
Dan Vanderkam

 Effective
TypeScript
62 Specific Ways to Improve Your TypeScript

Praise for Effective TypeScript

“Effective TypeScript explores the most common questions we see when working with
TypeScript and provides practical, results-oriented advice. Regardless of your level of

TypeScript experience, you can learn something from this book.”
—Ryan Cavanaugh, Engineering Lead for TypeScript at

Microsoft

“This book is packed with practical recipes and must be kept on the desk of every
professional TypeScript developer. Even if you think you know TypeScript already, get this

book and you won’t regret it.”
—Yakov Fain, Java Champion

“TypeScript is taking over the development world...The deeper understanding of
TypeScript this book provides will help many developers shine as they take advantage of

TypeScript’s powerful features.”
—Jason Killian, Cofounder of TypeScript NYC and former

TSLint maintainer

“This book is not just about what TypeScript can do—it teaches why each language
feature is useful, and where to apply patterns to get the greatest effect. The book focuses

on practical advice that will be useful in day-to-day work, with just enough theory to give
the reader a deep understanding of how everything works. I consider myself to be an

advanced TypeScript user, and I learned a number of new things from this book.”
—Jesse Hallett, Senior Software Engineer, Originate, Inc.

Dan Vanderkam

Effective TypeScript
62 Specific Ways to Improve Your TypeScript

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-05374-3

[LSI]

Effective TypeScript
by Dan Vanderkam

Copyright © 2020 Dan Vanderkam. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Angela Rufino
Production Editor: Deborah Baker
Copyeditor: Jasmine Kwityn
Proofreader: Kim Wimpsett

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

November 2019: First Edition

Revision History for the First Edition
2019-10-16: First Release
2020-03-06: Second Release
2021-07-16: Third Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492053743 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Effective TypeScript, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492053743

For Alex.
You’re just my type.

Table of Contents

Preface. xi

1. Getting to Know TypeScript. 1
Item 1: Understand the Relationship Between TypeScript and JavaScript 1
Item 2: Know Which TypeScript Options You’re Using 7
Item 3: Understand That Code Generation Is Independent of Types 10
Item 4: Get Comfortable with Structural Typing 16
Item 5: Limit Use of the any Type 20

2. TypeScript’s Type System. 25
Item 6: Use Your Editor to Interrogate and Explore the Type System 25
Item 7: Think of Types as Sets of Values 29
Item 8: Know How to Tell Whether a Symbol Is in the Type Space or Value

Space 35
Item 9: Prefer Type Declarations to Type Assertions 40
Item 10: Avoid Object Wrapper Types (String, Number, Boolean, Symbol,

BigInt) 43
Item 11: Recognize the Limits of Excess Property Checking 46
Item 12: Apply Types to Entire Function Expressions When Possible 49
Item 13: Know the Differences Between type and interface 52
Item 14: Use Type Operations and Generics to Avoid Repeating Yourself 56
Item 15: Use Index Signatures for Dynamic Data 64
Item 16: Prefer Arrays, Tuples, and ArrayLike to number Index Signatures 68
Item 17: Use readonly to Avoid Errors Associated with Mutation 71
Item 18: Use Mapped Types to Keep Values in Sync 77

3. Type Inference. 81
Item 19: Avoid Cluttering Your Code with Inferable Types 81

vii

Item 20: Use Different Variables for Different Types 87
Item 21: Understand Type Widening 90
Item 22: Understand Type Narrowing 93
Item 23: Create Objects All at Once 96
Item 24: Be Consistent in Your Use of Aliases 99
Item 25: Use async Functions Instead of Callbacks for Asynchronous Code 102
Item 26: Understand How Context Is Used in Type Inference 107
Item 27: Use Functional Constructs and Libraries to Help Types Flow 111

4. Type Design. 117
Item 28: Prefer Types That Always Represent Valid States 117
Item 29: Be Liberal in What You Accept and Strict in What You Produce 122
Item 30: Don’t Repeat Type Information in Documentation 125
Item 31: Push Null Values to the Perimeter of Your Types 127
Item 32: Prefer Unions of Interfaces to Interfaces of Unions 131
Item 33: Prefer More Precise Alternatives to String Types 134
Item 34: Prefer Incomplete Types to Inaccurate Types 138
Item 35: Generate Types from APIs and Specs, Not Data 142
Item 36: Name Types Using the Language of Your Problem Domain 147
Item 37: Consider “Brands” for Nominal Typing 149

5. Working with any. 153
Item 38: Use the Narrowest Possible Scope for any Types 153
Item 39: Prefer More Precise Variants of any to Plain any 155
Item 40: Hide Unsafe Type Assertions in Well-Typed Functions 157
Item 41: Understand Evolving any 159
Item 42: Use unknown Instead of any for Values with an Unknown Type 162
Item 43: Prefer Type-Safe Approaches to Monkey Patching 166
Item 44: Track Your Type Coverage to Prevent Regressions in Type Safety 168

6. Types Declarations and @types. 171
Item 45: Put TypeScript and @types in devDependencies 171
Item 46: Understand the Three Versions Involved in Type Declarations 173
Item 47: Export All Types That Appear in Public APIs 177
Item 48: Use TSDoc for API Comments 178
Item 49: Provide a Type for this in Callbacks 181
Item 50: Prefer Conditional Types to Overloaded Declarations 185
Item 51: Mirror Types to Sever Dependencies 187
Item 52: Be Aware of the Pitfalls of Testing Types 188

7. Writing and Running Your Code. 193
Item 53: Prefer ECMAScript Features to TypeScript Features 193

viii | Table of Contents

Item 54: Know How to Iterate Over Objects 198
Item 55: Understand the DOM hierarchy 201
Item 56: Don’t Rely on Private to Hide Information 205
Item 57: Use Source Maps to Debug TypeScript 208

8. Migrating to TypeScript. 213
Item 58: Write Modern JavaScript 214
Item 59: Use @ts-check and JSDoc to Experiment with TypeScript 222
Item 60: Use allowJs to Mix TypeScript and JavaScript 226
Item 61: Convert Module by Module Up Your Dependency Graph 228
Item 62: Don’t Consider Migration Complete Until You Enable noImplicitAny 233

Index. 235

Table of Contents | ix

Preface

In the spring of 2016, I visited my old coworker Evan Martin at Google’s San Fran‐
cisco office and asked him what he was excited about. I’d asked him this same ques‐
tion many times over the years because the answers were wide-ranging and
unpredictable but always interesting: C++ build tools, Linux audio drivers, online
crosswords, emacs plugins. This time, Evan was excited about TypeScript and Visual
Studio Code.

I was surprised! I’d heard of TypeScript before, but I knew only that it was created by
Microsoft and that I mistakenly believed it had something to do with .NET. As a life‐
long Linux user, I couldn’t believe that Evan had hopped on team Microsoft.

Then Evan showed me vscode and the TypeScript playground and I was instantly
converted. Everything was so fast, and the code intelligence made it easy to build a
mental model of the type system. After years of writing type annotations in JSDoc
comments for the Closure Compiler, this felt like typed JavaScript that really worked.
And Microsoft had built a cross-platform text editor on top of Chromium? Perhaps
this was a language and toolchain worth learning.

I’d recently joined Sidewalk Labs and was writing our first JavaScript. The codebase
was still small enough that Evan and I were able to convert it all to TypeScript over
the next few days.

I’ve been hooked ever since. TypeScript is more than just a type system. It also brings
a whole suite of language services which are fast and easy to use. The cumulative
effect is that TypeScript doesn’t just make JavaScript development safer: it also makes
it more fun!

Who This Book Is For
The Effective books are intended to be the “standard second book” on their topic.
You’ll get the most out of Effective TypeScript if you have some previous practical
experience working with JavaScript and TypeScript. My goal with this book is not to

xi

teach you TypeScript or JavaScript but to help you advance from a beginning or inter‐
mediate user to an expert. The items in this book do this by helping you build mental
models of how TypeScript and its ecosystem work, making you aware of pitfalls and
traps to avoid, and by guiding you toward using TypeScript’s many capabilities in the
most effective ways possible. Whereas a reference book will explain the five ways that
a language lets you do X, an Effective book will tell you which of those five to use and
why.

TypeScript has evolved rapidly over the past few years, but my hope is that it has sta‐
bilized enough that the content in this book will remain valid for years to come. This
book focuses primarily on the language itself, rather than any frameworks or build
tools. You won’t find any examples of how to use React or Angular with TypeScript,
or how to configure TypeScript to work with webpack, Babel, or Rollup. The advice
in this book should be relevant to all TypeScript users.

Why I Wrote This Book
When I first started working at Google, I was given a copy of the third edition of
Effective C++. It was unlike any other programming book I’d read. It made no attempt
to be accessible to beginners or to be a complete guide to the language. Rather than
telling you what the different features of C++ did, it told you how you should and
should not use them. It did so through dozens of short, specific items motivated by
concrete examples.

The effect of reading all these examples while using the language daily was unmistak‐
able. I’d used C++ before, but for the first time I felt comfortable with it and knew
how to think about the choices it presented me. In later years I would have similar
experiences reading Effective Java and Effective JavaScript.

If you’re already comfortable working in a few different programming languages,
then diving straight into the odd corners of a new one can be an effective way to chal‐
lenge your mental models and learn what makes it different. I’ve learned an enor‐
mous amount about TypeScript from writing this book. I hope you’ll have the same
experience reading it!

How This Book Is Organized
This book is a collection of “items,” each of which is a short technical essay that gives
you specific advice about some aspect of TypeScript. The items are grouped themati‐
cally into chapters, but feel free to jump around and read whichever ones look most
interesting to you.

Each item’s title conveys the key takeaway. These are the things you should remember
as you’re using TypeScript, so it’s worth skimming the table of contents to get them in

xii | Preface

your head. If you’re writing documentation, for example, and have a nagging sense
that you shouldn’t be writing type information, then you’ll know to go read Item 30:
Don’t repeat type information in documentation.

The text of the item motivates the advice in the title and backs it up with concrete
examples and technical arguments. Almost every point made in this book is demon‐
strated through example code. I tend to read technical books by looking at the exam‐
ples and skimming the prose, and I assume you do something similar. I hope you’ll
read the prose and explanations! But the main points should still come across if you
skim the examples.

After reading the item, you should understand why it will help you use TypeScript
more effectively. You’ll also know enough to understand if it doesn’t apply to your sit‐
uation. Scott Meyers, the author of Effective C++, gives a memorable example of this.
He met a team of engineers who wrote software that ran on missiles. They knew they
could ignore his advice about preventing resource leaks, because their programs
would always terminate when the missile hit the target and their hardware blew up.
I’m not aware of any missiles with JavaScript runtimes, but the James Webb Space
Telescope has one, so you never know!

Finally, each item ends with “Things to Remember.” These are a few bullet points that
summarize the item. If you’re skimming through, you can read these to get a sense for
what the item is saying and whether you’d like to read more. You should still read the
item! But the summary will do in a pinch.

Conventions in TypeScript Code Samples
All code samples are TypeScript except where it’s clear from context that they are
JSON, GraphQL, or some other language. Much of the experience of using Type‐
Script involves interacting with your editor, which presents some challenges in print.
I’ve adopted a few conventions to make this work.

Most editors surface errors using squiggly underlines. To see the full error message,
you hover over the underlined text. To indicate an error in a code sample, I put squig‐
gles in a comment line under the place where the error occurs:

let str = 'not a number';
let num: number = str;
 // ~~~ Type 'string' is not assignable to type 'number'

I occasionally edit the error messages for clarity and brevity, but I never remove an
error. If you copy/paste a code sample into your editor, you should get exactly the
errors indicated, no more no less.

Preface | xiii

To draw attention to the lack of an error, I use // OK:

let str = 'not a number';
let num: number = str as any; // OK

You should be able to hover over a symbol in your editor to see what TypeScript con‐
siders its type. To indicate this in text, I use a comment starting with “type is”:

let v = {str: 'hello', num: 42}; // Type is { str: string; num: number; }

The type is for the first symbol on the line (v in this case) or for the result of a func‐
tion call:

'four score'.split(' '); // Type is string[]

This matches the type you’d see in your editor character for character. In the case of
function calls you may need to assign to a temporary variable to see the type.

I will occasionally introduce no-op statements to indicate the type of a variable on a
specific line of code:

function foo(x: string|string[]) {
 if (Array.isArray(x)) {
 x; // Type is string[]
 } else {
 x; // Type is string
 }
}

The x; lines are only there to demonstrate the type in each branch of the conditional.
You don’t need to (and shouldn’t) include statements like this in your own code.

Unless it’s otherwise noted or clear from context, code samples are intended to be
checked with the --strict flag. All samples were verified using TypeScript 4.4 beta.

Typographical Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

xiv | Preface

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/danvk/effective-typescript.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Effective TypeScript by
Dan Vanderkam (O’Reilly). Copyright 2020 Dan Vanderkam, 978-1-492-05374-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xv

https://github.com/danvk/effective-typescript
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, please visit http://
oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can access the web page for this book, where we list errata, examples, and any
additional information, at https://oreil.ly/Effective_TypeScript.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
There are many people who helped make this book possible. Thanks to Evan Martin
for introducing me to TypeScript and showing me how to think about it. To Douwe
Osinga for connecting me with O’Reilly and being supportive of the project. To Brett
Slatkin for advice on structure and for showing me that someone I knew could write

xvi | Preface

http://oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/Effective_TypeScript
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia

an Effective book. To Scott Meyers for coming up with this format and for his “Effec‐
tive Effective Books” blog post, which provided essential guidance.

To my reviewers, Rick Battagline, Ryan Cavanaugh, Boris Cherny, Yakov Fain, Jesse
Hallett, and Jason Killian. To all my coworkers at Sidewalk who learned TypeScript
with me over the years. To everyone at O’Reilly who helped make this book happen:
Angela Rufino, Jennifer Pollock, Deborah Baker, Nick Adams, and Jasmine Kwityn.
To the TypeScript NYC crew, Jason, Orta, and Kirill, and to all the speakers. Many
items were inspired by talks at the Meetup, as described in the following list:

• Item 3 was inspired by a blog post of Evan Martin’s that I found particularly
enlightening as I was first learning TypeScript.

• Item 7 was inspired by Anders’s talk about structural typing and keyof relation‐
ships at TSConf 2018, and by a talk of Jesse Hallett’s at the April 2019 TypeScript
NYC Meetup.

• Both Basarat’s guide and helpful answers by DeeV and GPicazo on Stack Over‐
flow were essential in writing Item 9.

• Item 10 builds on similar advice in Item 4 of Effective JavaScript (Addison-
Wesley).

• I was inspired to write Item 11 by mass confusion around this topic at the August
2019 TypeScript NYC Meetup.

• Item 13 was greatly aided by several questions about type vs. interface on Stack
Overflow. Jesse Hallett suggested the formulation around extensibility.

• Jacob Baskin provided encouragement and early feedback on Item 14.
• Item 19 was inspired by several code samples submitted to the r/typescript

subreddit.
• Item 26 is based on my own writing on Medium and a talk I gave at the October

2018 TypeScript NYC Meetup.
• Item 28 is based on common advice in Haskell (“make illegal states unrepresenta‐

ble”). The Air France 447 story is inspired by Jeff Wise’s incredible 2011 article in
Popular Mechanics.

• Item 29 is based on an issue I ran into with the Mapbox type declarations. Jason
Killian suggested the phrasing in the title.

• The advice about naming in Item 36 is common but this particular formulation
was inspired by Dan North’s short article in 97 Things Every Programmer Should
Know (O’Reilly).

• Item 37 was inspired by Jason Killian’s talk at the very first TypeScript NYC
Meetup in September 2017.

Preface | xvii

• Item 41 is based on the TypeScript 2.1 release notes. The term “evolving any” is
not widely used outside the TypeScript compiler itself, but I find it useful to have
a name for this unusual pattern.

• Item 42 was inspired by a blog post of Jesse Hallett’s. Item 43 was greatly aided by
feedback from Titian Cernicova Dragomir in TypeScript issue #33128.

• Item 44 is based on York Yao’s work on the type-coverage tool. I wanted some‐
thing like this and it existed!

• Item 46 is based on a talk I gave at the December 2017 TypeScript NYC Meetup.
• Item 50 owes a debt of gratitude to David Sheldrick’s post on the Artsy blog on

conditional types, which greatly demystified the topic for me.
• Item 51 was inspired by a talk Steve Faulkner aka southpolesteve gave at the Feb‐

ruary 2019 Meetup.
• Item 52 is based on my own writing on Medium and work on the typings-

checker tool, which eventually got folded into dtslint.
• Item 53 was inspired/reinforced by Kat Busch’s Medium post on the various types

of enums in TypeScript, as well as Boris Cherny’s writings on this topic in Pro‐
gramming TypeScript (O’Reilly).

• Item 54 was inspired by my own confusion and that of my coworkers on this
topic. The definitive explanation is given by Anders on TypeScript PR #12253.

• The MDN documentation was essential for writing Item 55.
• Item 56 is loosely based on Item 35 of Effective JavaScript (Addison-Wesley).
• Chapter 8 is based on my own experience migrating the aging dygraphs library.

I found many of the blog posts and talks that led to this book through the excellent r/
typescript subreddit. I’m particularly grateful to developers who provided code sam‐
ples there which were essential for understanding common issues in beginner Type‐
Script. Thanks to Marius Schulz for the TypeScript Weekly newsletter. While it’s only
occasionally weekly, it’s always an excellent source of material and a great way to keep
up with TypeScript. To Anders, Daniel, Ryan, and the whole TypeScript team at
Microsoft for the talks and all the feedback on issues. Most of my issues were misun‐
derstandings, but there is nothing quite so satisfying as filing a bug and immediately
seeing Anders Hejlsberg himself fix it! Finally, thanks to Alex for being so supportive
during this project and so understanding of all the working vacations, mornings, eve‐
nings, and weekends I needed to complete it.

xviii | Preface

CHAPTER 1

Getting to Know TypeScript

Before we dive into the details, this chapter helps you understand the big picture of
TypeScript. What is it and how should you think about it? How does it relate to Java‐
Script? Are its types nullable or are they not? What’s this about any? And ducks?

TypeScript is a bit unusual as a language in that it neither runs in an interpreter (as
Python and Ruby do) nor compiles down to a lower-level language (as Java and C
do). Instead, it compiles to another high-level language, JavaScript. It is this Java‐
Script that runs, not your TypeScript. So TypeScript’s relationship with JavaScript is
essential, but it can also be a source of confusion. Understanding this relationship will
help you be a more effective TypeScript developer.

TypeScript’s type system also has some unusual aspects that you should be aware of.
Later chapters cover the type system in much greater detail, but this one will alert you
to some of the surprises that it has in store.

Item 1: Understand the Relationship Between TypeScript
and JavaScript
If you use TypeScript for long, you’ll inevitably hear the phrase “TypeScript is a
superset of JavaScript” or “TypeScript is a typed superset of JavaScript.” But what does
this mean, exactly? And what is the relationship between TypeScript and JavaScript?
Since these languages are so closely linked, a strong understanding of how they relate
to each other is the foundation for using TypeScript well.

TypeScript is a superset of JavaScript in a syntactic sense: so long as your JavaScript
program doesn’t have any syntax errors then it is also a TypeScript program. It’s quite
likely that TypeScript’s type checker will flag some issues with your code. But this is

1

an independent problem. TypeScript will still parse your code and emit JavaScript.
(This is another key part of the relationship. We’ll explore this more in Item 3.)

TypeScript files use a .ts (or .tsx) extension, rather than the .js (or .jsx) extension of a
JavaScript file. This doesn’t mean that TypeScript is a completely different language!
Since TypeScript is a superset of JavaScript, the code in your .js files is already Type‐
Script. Renaming main.js to main.ts doesn’t change that.

This is enormously helpful if you’re migrating an existing JavaScript codebase to
TypeScript. It means that you don’t have to rewrite any of your code in another lan‐
guage to start using TypeScript and get the benefits it provides. This would not be
true if you chose to rewrite your JavaScript in a language like Java. This gentle migra‐
tion path is one of the best features of TypeScript. There will be much more to say
about this topic in Chapter 8.

All JavaScript programs are TypeScript programs, but the converse is not true: there
are TypeScript programs which are not JavaScript programs. This is because Type‐
Script adds additional syntax for specifying types. (There are some other bits of syn‐
tax it adds, largely for historical reasons. See Item 53.)

For instance, this is a valid TypeScript program:

function greet(who: string) {
 console.log('Hello', who);
}

But when you run this through a program like node that expects JavaScript, you’ll get
an error:

function greet(who: string) {
 ^

SyntaxError: Unexpected token :

The : string is a type annotation that is specific to TypeScript. Once you use one,
you’ve gone beyond plain JavaScript (see Figure 1-1).

Figure 1-1. All JavaScript is TypeScript, but not all TypeScript is JavaScript

2 | Chapter 1: Getting to Know TypeScript

This is not to say that TypeScript doesn’t provide value for plain JavaScript programs.
It does! For example, this JavaScript program:

let city = 'new york city';
console.log(city.toUppercase());

will throw an error when you run it:

TypeError: city.toUppercase is not a function

There are no type annotations in this program, but TypeScript’s type checker is still
able to spot the problem:

let city = 'new york city';
console.log(city.toUppercase());
 // ~~~~~~~~~~~ Property 'toUppercase' does not exist on type
 // 'string'. Did you mean 'toUpperCase'?

You didn’t have to tell TypeScript that the type of city was string: it inferred it from
the initial value. Type inference is a key part of TypeScript and Chapter 3 explores
how to use it well.

One of the goals of TypeScript’s type system is to detect code that will throw an
exception at runtime, without having to run your code. When you hear TypeScript
described as a “static” type system, this is what it refers to. The type checker cannot
always spot code that will throw exceptions, but it will try.

Even if your code doesn’t throw an exception, it still might not do what you intend.
TypeScript tries to catch some of these issues, too. For example, this JavaScript
program:

const states = [
 {name: 'Alabama', capital: 'Montgomery'},
 {name: 'Alaska', capital: 'Juneau'},
 {name: 'Arizona', capital: 'Phoenix'},
 // ...
];
for (const state of states) {
 console.log(state.capitol);
}

will log:

undefined
undefined
undefined

Whoops! What went wrong? This program is valid JavaScript (and hence Type‐
Script). And it ran without throwing any errors. But it clearly didn’t do what you
intended. Even without adding type annotations, TypeScript’s type checker is able to
spot the error (and offer a helpful suggestion):

Item 1: Understand the Relationship Between TypeScript and JavaScript | 3

for (const state of states) {
 console.log(state.capitol);
 // ~~~~~~~ Property 'capitol' does not exist on type
 // '{ name: string; capital: string; }'.
 // Did you mean 'capital'?
}

While TypeScript can catch errors even if you don’t provide type annotations, it’s able
to do a much more thorough job if you do. This is because type annotations tell Type‐
Script what your intent is, and this lets it spot places where your code’s behavior does
not match your intent. For example, what if you’d reversed the capital/capitol
spelling mistake in the previous example?

const states = [
 {name: 'Alabama', capitol: 'Montgomery'},
 {name: 'Alaska', capitol: 'Juneau'},
 {name: 'Arizona', capitol: 'Phoenix'},
 // ...
];
for (const state of states) {
 console.log(state.capital);
 // ~~~~~~~ Property 'capital' does not exist on type
 // '{ name: string; capitol: string; }'.
 // Did you mean 'capitol'?
}

The error that was so helpful before now gets it exactly wrong! The problem is that
you’ve spelled the same property two different ways, and TypeScript doesn’t know
which one is right. It can guess, but it may not always be correct. The solution is to
clarify your intent by explicitly declaring the type of states:

interface State {
 name: string;
 capital: string;
}
const states: State[] = [
 {name: 'Alabama', capitol: 'Montgomery'},
 // ~~~~~~~~~~~~~~~~~~~~~
 {name: 'Alaska', capitol: 'Juneau'},
 // ~~~~~~~~~~~~~~~~~
 {name: 'Arizona', capitol: 'Phoenix'},
 // ~~~~~~~~~~~~~~~~~~ Object literal may only specify known
 // properties, but 'capitol' does not exist in type
 // 'State'. Did you mean to write 'capital'?
 // ...
];
for (const state of states) {
 console.log(state.capital);
}

Now the errors match the problem and the suggested fix is correct. By spelling out
our intent, you’ve also helped TypeScript spot other potential problems. For instance,

4 | Chapter 1: Getting to Know TypeScript

had you only misspelled capitol once in the array, there wouldn’t have been an error
before. But with the type annotation, there is:

const states: State[] = [
 {name: 'Alabama', capital: 'Montgomery'},
 {name: 'Alaska', capitol: 'Juneau'},
 // ~~~~~~~~~~~~~~~~~ Did you mean to write 'capital'?
 {name: 'Arizona', capital: 'Phoenix'},
 // ...
];

In terms of the Venn diagram, we can add in a new group of programs: TypeScript
programs which pass the type checker (see Figure 1-2).

Figure 1-2. All JavaScript programs are TypeScript programs. But only some JavaScript
(and TypeScript) programs pass the type checker.

If the statement that “TypeScript is a superset of JavaScript” feels wrong to you, it may
be because you’re thinking of this third set of programs in the diagram. In practice,
this is the most relevant one to the day-to-day experience of using TypeScript. Gener‐
ally when you use TypeScript, you try to keep your code passing all the type checks.

TypeScript’s type system models the runtime behavior of JavaScript. This may result in
some surprises if you’re coming from a language with stricter runtime checks. For
example:

const x = 2 + '3'; // OK, type is string
const y = '2' + 3; // OK, type is string

These statements both pass the type checker, even though they are questionable and
do produce runtime errors in many other languages. But this does model the runtime
behavior of JavaScript, where both expressions result in the string "23".

TypeScript does draw the line somewhere, though. The type checker flags issues in all
of these statements, even though they do not throw exceptions at runtime:

const a = null + 7; // Evaluates to 7 in JS
 // ~~~~ Operator '+' cannot be applied to types ...
const b = [] + 12; // Evaluates to '12' in JS

Item 1: Understand the Relationship Between TypeScript and JavaScript | 5

 // ~~~~~~~ Operator '+' cannot be applied to types ...
alert('Hello', 'TypeScript'); // alerts "Hello"
 // ~~~~~~~~~~~~ Expected 0-1 arguments, but got 2

The guiding principle of TypeScript’s type system is that it should model JavaScript’s
runtime behavior. But in all of these cases, TypeScript considers it more likely that the
odd usage is the result of an error than the developer’s intent, so it goes beyond sim‐
ply modeling the runtime behavior. We saw another example of this in the capital/
capitol example, where the program didn’t throw (it logged undefined) but the type
checker still flagged an error.

How does TypeScript decide when to model JavaScript’s runtime behavior and when
to go beyond it? Ultimately this is a matter of taste. By adopting TypeScript you’re
trusting the judgment of the team that builds it. If you enjoy adding null and 7 or []
and 12, or calling functions with superfluous arguments, then TypeScript might not
be for you!

If your program type checks, could it still throw an error at runtime? The answer is
“yes.” Here’s an example:

const names = ['Alice', 'Bob'];
console.log(names[2].toUpperCase());

When you run this, it throws:

TypeError: Cannot read property 'toUpperCase' of undefined

TypeScript assumed the array access would be within bounds, but it was not. The
result was an exception.

Uncaught errors also frequently come up when you use the any type, which we’ll dis‐
cuss in Item 5 and in more detail in Chapter 5.

The root cause of these exceptions is that TypeScript’s understanding of a value’s type
and reality have diverged. A type system which can guarantee the accuracy of its
static types is said to be sound. TypeScript’s type system is very much not sound, nor
was it ever intended to be. If soundness is important to you, you may want to look at
other languages like Reason or Elm. While these do offer more guarantees of runtime
safety, this comes at a cost: neither is a superset of JavaScript, so migration will be
more complicated.

Things to Remember
• TypeScript is a superset of JavaScript. In other words, all JavaScript programs are

already TypeScript programs. TypeScript has some syntax of its own, so Type‐
Script programs are not, in general, valid JavaScript programs.

• TypeScript adds a type system that models JavaScript’s runtime behavior and tries
to spot code which will throw exceptions at runtime. But you shouldn’t expect it

6 | Chapter 1: Getting to Know TypeScript

to flag every exception. It is possible for code to pass the type checker but still
throw at runtime.

• While TypeScript’s type system largely models JavaScript behavior, there are
some constructs that JavaScript allows but TypeScript chooses to bar, such as call‐
ing functions with the wrong number of arguments. This is largely a matter of
taste.

Item 2: Know Which TypeScript Options You’re Using
Does this code pass the type checker?

function add(a, b) {
 return a + b;
}
add(10, null);

Without knowing which options you’re using, it’s impossible to say! The TypeScript
compiler has an enormous set of these, nearly 100 at the time of this writing.

They can be set via the command line:

$ tsc --noImplicitAny program.ts

or via a configuration file, tsconfig.json:

{
 "compilerOptions": {
 "noImplicitAny": true
 }
}

You should prefer the configuration file. It ensures that your coworkers and tools all
know exactly how you plan to use TypeScript. You can create one by running tsc --
init.

Many of TypeScript’s configuration settings control where it looks for source files and
what sort of output it generates. But a few control core aspects of the language itself.
These are high-level design choices that most languages do not leave to their users.
TypeScript can feel like a very different language depending on how it is configured.
To use it effectively, you should understand the most important of these settings:
noImplicitAny and strictNullChecks.

noImplicitAny controls whether variables must have known types. This code is valid
when noImplicitAny is off:

function add(a, b) {
 return a + b;
}

Item 2: Know Which TypeScript Options You’re Using | 7

If you mouse over the add symbol in your editor, it will reveal what TypeScript has
inferred about the type of that function:

function add(a: any, b: any): any

The any types effectively disable the type checker for code involving these parame‐
ters. any is a useful tool, but it should be used with caution. For much more on any,
see Item 5 and Chapter 3.

These are called implicit anys because you never wrote the word “any” but still wound
up with dangerous any types. This becomes an error if you set the noImplicitAny
option:

function add(a, b) {
 // ~ Parameter 'a' implicitly has an 'any' type
 // ~ Parameter 'b' implicitly has an 'any' type
 return a + b;
}

These errors can be fixed by explicitly writing type declarations, either : any or a
more specific type:

function add(a: number, b: number) {
 return a + b;
}

TypeScript is the most helpful when it has type information, so you should be sure to
set noImplicitAny whenever possible. Once you grow accustomed to all variables
having types, TypeScript without noImplicitAny feels almost like a different
language.

For new projects, you should start with noImplicitAny on, so that you write the types
as you write your code. This will help TypeScript spot problems, improve the read‐
ability of your code, and enhance your development experience (see Item 6). Leaving
noImplicitAny off is only appropriate if you’re transitioning a project from Java‐
Script to TypeScript (see Chapter 8).

strictNullChecks controls whether null and undefined are permissible values in
every type.

This code is valid when strictNullChecks is off:

const x: number = null; // OK, null is a valid number

but triggers an error when you turn strictNullChecks on:

const x: number = null;
// ~ Type 'null' is not assignable to type 'number'

A similar error would have occurred had you used undefined instead of null.

If you mean to allow null, you can fix the error by making your intent explicit:

8 | Chapter 1: Getting to Know TypeScript

const x: number | null = null;

If you do not wish to permit null, you’ll need to track down where it came from and
add either a check or an assertion:

 const el = document.getElementById('status');
 el.textContent = 'Ready';
// ~~ Object is possibly 'null'

 if (el) {
 el.textContent = 'Ready'; // OK, null has been excluded
 }
 el!.textContent = 'Ready'; // OK, we've asserted that el is non-null

strictNullChecks is tremendously helpful for catching errors involving null and
undefined values, but it does increase the difficulty of using the language. If you’re
starting a new project, try setting strictNullChecks. But if you’re new to the lan‐
guage or migrating a JavaScript codebase, you may elect to leave it off. You should
certainly set noImplicitAny before you set strictNullChecks.

If you choose to work without strictNullChecks, keep an eye out for the dreaded
“undefined is not an object” runtime error. Every one of these is a reminder that you
should consider enabling stricter checking. Changing this setting will only get harder
as your project grows, so try not to wait too long before enabling it.

There are many other settings that affect language semantics (e.g., noImplicitThis
and strictFunctionTypes), but these are minor compared to noImplicitAny and
strictNullChecks. To enable all of these checks, turn on the strict setting. Type‐
Script is able to catch the most errors with strict, so this is where you eventually
want to wind up.

Know which options you’re using! If a coworker shares a TypeScript example and
you’re unable to reproduce their errors, make sure your compiler options are the
same.

Things to Remember
• The TypeScript compiler includes several settings which affect core aspects of the

language.
• Configure TypeScript using tsconfig.json rather than command-line options.
• Turn on noImplicitAny unless you are transitioning a JavaScript project to

TypeScript.
• Use strictNullChecks to prevent “undefined is not an object”-style runtime

errors.

Item 2: Know Which TypeScript Options You’re Using | 9

• Aim to enable strict to get the most thorough checking that TypeScript can
offer.

Item 3: Understand That Code Generation Is Independent
of Types
At a high level, tsc (the TypeScript compiler) does two things:

• It converts next-generation TypeScript/JavaScript to an older version of Java‐
Script that works in browsers (“transpiling”).

• It checks your code for type errors.

What’s surprising is that these two behaviors are entirely independent of one another.
Put another way, the types in your code cannot affect the JavaScript that TypeScript
emits. Since it’s this JavaScript that gets executed, this means that your types can’t
affect the way your code runs.

This has some surprising implications and should inform your expectations about
what TypeScript can and cannot do for you.

Code with Type Errors Can Produce Output
Because code output is independent of type checking, it follows that code with type
errors can produce output!

$ cat test.ts
let x = 'hello';
x = 1234;
$ tsc test.ts
test.ts:2:1 - error TS2322: Type '1234' is not assignable to type 'string'

2 x = 1234;
 ~

$ cat test.js
var x = 'hello';
x = 1234;

This can be quite surprising if you’re coming from a language like C or Java where
type checking and output go hand in hand. You can think of all TypeScript errors as
being similar to warnings in those languages: it’s likely that they indicate a problem
and are worth investigating, but they won’t stop the build.

10 | Chapter 1: Getting to Know TypeScript

Compiling and Type Checking
This is likely the source of some sloppy language that is common around TypeScript.
You’ll often hear people say that their TypeScript “doesn’t compile” as a way of saying
that it has errors. But this isn’t technically correct! Only the code generation is
“compiling.” So long as your TypeScript is valid JavaScript (and often even if it isn’t),
the TypeScript compiler will produce output. It’s better to say that your code has
errors, or that it “doesn’t type check.”

Code emission in the presence of errors is helpful in practice. If you’re building a web
application, you may know that there are problems with a particular part of it. But
because TypeScript will still generate code in the presence of errors, you can test the
other parts of your application before you fix them.

You should aim for zero errors when you commit code, lest you fall into the trap of
having to remember what is an expected or unexpected error. If you want to disable
output on errors, you can use the noEmitOnError option in tsconfig.json, or the equiv‐
alent in your build tool.

You Cannot Check TypeScript Types at Runtime
You may be tempted to write code like this:

interface Square {
 width: number;
}
interface Rectangle extends Square {
 height: number;
}
type Shape = Square | Rectangle;

function calculateArea(shape: Shape) {
 if (shape instanceof Rectangle) {
 // ~~~~~~~~~ 'Rectangle' only refers to a type,
 // but is being used as a value here
 return shape.width * shape.height;
 // ~~~~~~ Property 'height' does not exist
 // on type 'Shape'
 } else {
 return shape.width * shape.width;
 }
}

The instanceof check happens at runtime, but Rectangle is a type and so it cannot
affect the runtime behavior of the code. TypeScript types are “erasable”: part of com‐
pilation to JavaScript is simply removing all the interfaces, types, and type annota‐
tions from your code.

Item 3: Understand That Code Generation Is Independent of Types | 11

To ascertain the type of shape you’re dealing with, you’ll need some way to recon‐
struct its type at runtime. In this case you can check for the presence of a height
property:

function calculateArea(shape: Shape) {
 if ('height' in shape) {
 shape; // Type is Rectangle
 return shape.width * shape.height;
 } else {
 shape; // Type is Square
 return shape.width * shape.width;
 }
}

This works because the property check only involves values available at runtime, but
still allows the type checker to refine shape’s type to Rectangle.

Another way would have been to introduce a “tag” to explicitly store the type in a way
that’s available at runtime:

interface Square {
 kind: 'square';
 width: number;
}
interface Rectangle {
 kind: 'rectangle';
 height: number;
 width: number;
}
type Shape = Square | Rectangle;

function calculateArea(shape: Shape) {
 if (shape.kind === 'rectangle') {
 shape; // Type is Rectangle
 return shape.width * shape.height;
 } else {
 shape; // Type is Square
 return shape.width * shape.width;
 }
}

The Shape type here is an example of a “tagged union.” Because they make it so easy
to recover type information at runtime, tagged unions are ubiquitous in TypeScript.

Some constructs introduce both a type (which is not available at runtime) and a value
(which is). The class keyword is one of these. Making Square and Rectangle classes
would have been another way to fix the error:

class Square {
 constructor(public width: number) {}
}
class Rectangle extends Square {

12 | Chapter 1: Getting to Know TypeScript

 constructor(public width: number, public height: number) {
 super(width);
 }
}
type Shape = Square | Rectangle;

function calculateArea(shape: Shape) {
 if (shape instanceof Rectangle) {
 shape; // Type is Rectangle
 return shape.width * shape.height;
 } else {
 shape; // Type is Square
 return shape.width * shape.width; // OK
 }
}

This works because class Rectangle introduces both a type and a value, whereas
interface only introduced a type.

The Rectangle in type Shape = Square | Rectangle refers to the type, but the
Rectangle in shape instanceof Rectangle refers to the value. This distinction is
important to understand but can be quite subtle. See Item 8.

Type Operations Cannot Affect Runtime Values
Suppose you have a value that could be a string or a number and you’d like to normal‐
ize it so that it’s always a number. Here’s a misguided attempt that the type checker
accepts:

function asNumber(val: number | string): number {
 return val as number;
}

Looking at the generated JavaScript makes it clear what this function really does:

function asNumber(val) {
 return val;
}

There is no conversion going on whatsoever. The as number is a type operation, so it
cannot affect the runtime behavior of your code. To normalize the value you’ll need
to check its runtime type and do the conversion using JavaScript constructs:

function asNumber(val: number | string): number {
 return typeof(val) === 'string' ? Number(val) : val;
}

(as number is a type assertion. For more on when it’s appropriate to use these, see
Item 9.)

Item 3: Understand That Code Generation Is Independent of Types | 13

Runtime Types May Not Be the Same as Declared Types
Could this function ever hit the final console.log?

function setLightSwitch(value: boolean) {
 switch (value) {
 case true:
 turnLightOn();
 break;
 case false:
 turnLightOff();
 break;
 default:
 console.log(`I'm afraid I can't do that.`);
 }
}

TypeScript usually flags dead code, but it does not complain about this, even with the
strict option. How could you hit this branch?

The key is to remember that boolean is the declared type. Because it is a TypeScript
type, it goes away at runtime. In JavaScript code, a user might inadvertently call set
LightSwitch with a value like "ON". There are ways to trigger this code path in pure
TypeScript, too. Perhaps the function is called with a value which comes from a net‐
work call:

interface LightApiResponse {
 lightSwitchValue: boolean;
}
async function setLight() {
 const response = await fetch('/light');
 const result: LightApiResponse = await response.json();
 setLightSwitch(result.lightSwitchValue);
}

You’ve declared that the result of the /light request is LightApiResponse, but noth‐
ing enforces this. If you misunderstood the API and lightSwitchValue is really a
string, then a string will be passed to setLightSwitch at runtime. Or perhaps the
API changed after you deployed.

TypeScript can get quite confusing when your runtime types don’t match the declared
types, and this is a situation you should avoid whenever you can. But be aware that it’s
possible for a value to have types other than the ones you’ve declared.

You Cannot Overload a Function Based on TypeScript Types
Languages like C++ allow you to define multiple versions of a function that differ
only in the types of their parameters. This is called “function overloading.” Because
the runtime behavior of your code is independent of its TypeScript types, this con‐
struct isn’t possible in TypeScript:

14 | Chapter 1: Getting to Know TypeScript

function add(a: number, b: number) { return a + b; }
 // ~~~ Duplicate function implementation
function add(a: string, b: string) { return a + b; }
 // ~~~ Duplicate function implementation

TypeScript does provide a facility for overloading functions, but it operates entirely at
the type level. You can provide multiple declarations for a function, but only a single
implementation:

function add(a: number, b: number): number;
function add(a: string, b: string): string;

function add(a, b) {
 return a + b;
}

const three = add(1, 2); // Type is number
const twelve = add('1', '2'); // Type is string

The first two declarations of add only provide type information. When TypeScript
produces JavaScript output, they are removed, and only the implementation remains.
(If you use this style of overloading, take a look at Item 50 first. There are some sub‐
tleties to be aware of.)

TypeScript Types Have No Effect on Runtime Performance
Because types and type operations are erased when you generate JavaScript, they can‐
not have an effect on runtime performance. TypeScript’s static types are truly zero
cost. The next time someone offers runtime overhead as a reason to not use Type‐
Script, you’ll know exactly how well they’ve tested this claim!

There are two caveats to this:

• While there is no runtime overhead, the TypeScript compiler will introduce build
time overhead. The TypeScript team takes compiler performance seriously and
compilation is usually quite fast, especially for incremental builds. If the overhead
becomes significant, your build tool may have a “transpile only” option to skip
the type checking.

• The code that TypeScript emits to support older runtimes may incur a perfor‐
mance overhead vs. native implementations. For example, if you use generator
functions and target ES5, which predates generators, then tsc will emit some
helper code to make things work. This may have some overhead vs. a native
implementation of generators. In any case, this has to do with the emit target and
language levels and is still independent of the types.

Item 3: Understand That Code Generation Is Independent of Types | 15

Things to Remember
• Code generation is independent of the type system. This means that TypeScript

types cannot affect the runtime behavior or performance of your code.
• It is possible for a program with type errors to produce code (“compile”).
• TypeScript types are not available at runtime. To query a type at runtime, you

need some way to reconstruct it. Tagged unions and property checking are com‐
mon ways to do this. Some constructs, such as class, introduce both a Type‐
Script type and a value that is available at runtime.

Item 4: Get Comfortable with Structural Typing
JavaScript is inherently duck typed: if you pass a function a value with all the right
properties, it won’t care how you made the value. It will just use it. (“If it walks like a
duck and talks like a duck…”) TypeScript models this behavior, and it can sometimes
lead to surprising results because the type checker’s understanding of a type may be
broader than what you had in mind. Having a good grasp of structural typing will
help you make sense of errors and non-errors and help you write more robust code.

Say you’re working on a physics library and have a 2D vector type:

interface Vector2D {
 x: number;
 y: number;
}

You write a function to calculate its length:

function calculateLength(v: Vector2D) {
 return Math.sqrt(v.x * v.x + v.y * v.y);
}

Now you introduce the notion of a named vector:

interface NamedVector {
 name: string;
 x: number;
 y: number;
}

The calculateLength function will work with NamedVectors because they have x and
y properties, which are numbers. TypeScript is smart enough to figure this out:

const v: NamedVector = { x: 3, y: 4, name: 'Zee' };
calculateLength(v); // OK, result is 5

What is interesting is that you never declared the relationship between Vector2D and
NamedVector. And you did not have to write an alternative implementation of
calculateLength for NamedVectors. TypeScript’s type system is modeling JavaScript’s

16 | Chapter 1: Getting to Know TypeScript

runtime behavior (Item 1). It allowed calculateLength to be called with a NamedVec
tor because its structure was compatible with Vector2D. This is where the term
“structural typing” comes from.

But this can also lead to trouble. Say you add a 3D vector type:

interface Vector3D {
 x: number;
 y: number;
 z: number;
}

and write a function to normalize them (make their length 1):

function normalize(v: Vector3D) {
 const length = calculateLength(v);
 return {
 x: v.x / length,
 y: v.y / length,
 z: v.z / length,
 };
}

If you call this function, you’re likely to get something longer than unit length:

> normalize({x: 3, y: 4, z: 5})
{ x: 0.6, y: 0.8, z: 1 }

So what went wrong and why didn’t TypeScript catch the error?

The bug is that calculateLength operates on 2D vectors but normalize operates on
3D vectors. So the z component is ignored in the normalization.

What’s perhaps more surprising is that the type checker does not catch this issue.
Why are you allowed to call calculateLength with a 3D vector, despite its type decla‐
ration saying that it takes 2D vectors?

What worked so well with named vectors has backfired here. Calling calculate
Length with an {x, y, z} object doesn’t throw an error. So the type checker doesn’t
complain, either, and this behavior has led to a bug. (If you want this to be an error,
you have some options. We’ll return to this example in Item 37.)

As you write functions, it’s easy to imagine that they will be called with arguments
having the properties you’ve declared and no others. This is known as a “sealed” or
“precise” type, and it cannot be expressed in TypeScript’s type system. Like it or not,
your types are “open.”

This can sometimes lead to surprises:

function calculateLengthL1(v: Vector3D) {
 let length = 0;
 for (const axis of Object.keys(v)) {

Item 4: Get Comfortable with Structural Typing | 17

 const coord = v[axis];
 // ~~~~~~~ Element implicitly has an 'any' type because ...
 // 'string' can't be used to index type 'Vector3D'
 length += Math.abs(coord);
 }
 return length;
}

Why is this an error? Since axis is one of the keys of v, which is a Vector3D, it should
be either "x", "y", or "z". And according to the declaration of Vector3D, these are all
numbers, so shouldn’t the type of coord be number?

Is this error a false positive? No! TypeScript is correct to complain. The logic in the
previous paragraph assumes that Vector3D is sealed and does not have other proper‐
ties. But it could:

const vec3D = {x: 3, y: 4, z: 1, address: '123 Broadway'};
calculateLengthL1(vec3D); // OK, returns NaN

Since v could conceivably have any properties, the type of axis is string. TypeScript
has no reason to believe that v[axis] is a number because, as you just saw, it might
not be. Iterating over objects can be tricky to type correctly. We’ll return to this topic
in Item 54, but in this case an implementation without loops would be better:

function calculateLengthL1(v: Vector3D) {
 return Math.abs(v.x) + Math.abs(v.y) + Math.abs(v.z);
}

Structural typing can also lead to surprises with classes, which are compared struc‐
turally for assignability:

class C {
 foo: string;
 constructor(foo: string) {
 this.foo = foo;
 }
}

const c = new C('instance of C');
const d: C = { foo: 'object literal' }; // OK!

Why is d assignable to C? It has a foo property that is a string. In addition, it has a
constructor (from Object.prototype) that can be called with one argument
(though it is usually called with zero). So the structures match. This might lead to
surprises if you have logic in C’s constructor and write a function that assumes it’s
run. This is quite different from languages like C++ or Java, where declaring a param‐
eter of type C guarantees that it will be either C or a subclass of it.

Structural typing is beneficial when you’re writing tests. Say you have a function that
runs a query on a database and processes the results:

18 | Chapter 1: Getting to Know TypeScript

interface Author {
 first: string;
 last: string;
}
function getAuthors(database: PostgresDB): Author[] {
 const authorRows = database.runQuery(`SELECT FIRST, LAST FROM AUTHORS`);
 return authorRows.map(row => ({first: row[0], last: row[1]}));
}

To test this, you could create a mock PostgresDB. But a better approach is to use
structural typing and define a narrower interface:

interface DB {
 runQuery: (sql: string) => any[];
}
function getAuthors(database: DB): Author[] {
 const authorRows = database.runQuery(`SELECT FIRST, LAST FROM AUTHORS`);
 return authorRows.map(row => ({first: row[0], last: row[1]}));
}

You can still pass getAuthors a PostgresDB in production since it has a runQuery
method. Because of structural typing, the PostgresDB doesn’t need to say that it
implements DB. TypeScript will figure out that it does.

When you write your tests, you can pass in a simpler object instead:

test('getAuthors', () => {
 const authors = getAuthors({
 runQuery(sql: string) {
 return [['Toni', 'Morrison'], ['Maya', 'Angelou']];
 }
 });
 expect(authors).toEqual([
 {first: 'Toni', last: 'Morrison'},
 {first: 'Maya', last: 'Angelou'}
]);
});

TypeScript will verify that our test DB conforms to the interface. And your tests don’t
need to know anything about your production database: no mocking libraries neces‐
sary! By introducing an abstraction (DB), we’ve freed our logic (and tests) from the
details of a specific implementation (PostgresDB).

Another advantage of structural typing is that it can cleanly sever dependencies
between libraries. For more on this, see Item 51.

Things to Remember
• Understand that JavaScript is duck typed and TypeScript uses structural typing to

model this: values assignable to your interfaces might have properties beyond
those explicitly listed in your type declarations. Types are not “sealed.”

Item 4: Get Comfortable with Structural Typing | 19

• Be aware that classes also follow structural typing rules. You may not have an
instance of the class you expect!

• Use structural typing to facilitate unit testing.

Item 5: Limit Use of the any Type
TypeScript’s type system is gradual and optional: gradual because you can add types to
your code bit by bit and optional because you can disable the type checker whenever
you like. The key to these features is the any type:

 let age: number;
 age = '12';
// ~~~ Type '"12"' is not assignable to type 'number'
 age = '12' as any; // OK

The type checker is right to complain here, but you can silence it just by typing as
any. As you start using TypeScript, it’s tempting to use any types and type assertions
(as any) when you don’t understand an error, think the type checker is incorrect, or
simply don’t want to take the time to write out type declarations. In some cases this
may be OK, but be aware that any eliminates many of the advantages of using Type‐
Script. You should at least understand its dangers before you use it.

There’s No Type Safety with any Types
In the preceding example, the type declaration says that age is a number. But any lets
you assign a string to it. The type checker will believe that it’s a number (that’s what
you said, after all), and the chaos will go uncaught:

age += 1; // OK; at runtime, age is now "121"

any Lets You Break Contracts
When you write a function, you are specifying a contract: if the caller gives you a cer‐
tain type of input, you’ll produce a certain type of output. But with an any type you
can break these contracts:

function calculateAge(birthDate: Date): number {
 // ...
}

let birthDate: any = '1990-01-19';
calculateAge(birthDate); // OK

The birth date parameter should be a Date, not a string. The any type has let you
break the contract of calculateAge. This can be particularly problematic because
JavaScript is often willing to implicitly convert between types. A string will some‐
times work where a number is expected, only to break in other circumstances.

20 | Chapter 1: Getting to Know TypeScript

There Are No Language Services for any Types
When a symbol has a type, the TypeScript language services are able to provide intel‐
ligent autocomplete and contextual documentation (as shown in Figure 1-3).

Figure 1-3. The TypeScript Language Service is able to provide contextual autocomplete
for symbols with types.

but for symbols with an any type, you’re on your own (Figure 1-4).

Figure 1-4. There is no autocomplete for properties on symbols with any types.

Renaming is another such service. If you have a Person type and functions to format
a person’s name:

interface Person {
 first: string;
 last: string;
}

const formatName = (p: Person) => `${p.first} ${p.last}`;
const formatNameAny = (p: any) => `${p.first} ${p.last}`;

then you can select first in your editor, choose “Rename Symbol,” and change it to
firstName (see Figures 1-5 and 1-6).

Figure 1-5. Renaming a symbol in vscode.

Item 5: Limit Use of the any Type | 21

Figure 1-6. Choosing the new name. The TypeScript language service ensures that all
uses of the symbol in the project are also renamed.

This changes the formatName function but not the any version:

interface Person {
 firstName: string;
 last: string;
}
const formatName = (p: Person) => `${p.firstName} ${p.last}`;
const formatNameAny = (p: any) => `${p.first} ${p.last}`;

TypeScript’s motto is “JavaScript that scales.” A key part of “scales” is the language
services, which are a core part of the TypeScript experience (see Item 6). Losing them
will lead to a loss in productivity, not just for you but for everyone else working with
your code.

any Types Mask Bugs When You Refactor Code
Suppose you’re building a web application in which users can select some sort of
item. One of your components might have an onSelectItem callback. Writing a type
for an Item seems like a hassle, so you just use any as a stand-in:

interface ComponentProps {
 onSelectItem: (item: any) => void;
}

Here’s code that manages that component:

function renderSelector(props: ComponentProps) { /* ... */ }

let selectedId: number = 0;
function handleSelectItem(item: any) {
 selectedId = item.id;
}

renderSelector({onSelectItem: handleSelectItem});

Later you rework the selector in a way that makes it harder to pass the whole item
object through to onSelectItem. But that’s no big deal since you just need the ID. You
change the signature in ComponentProps:

interface ComponentProps {
 onSelectItem: (id: number) => void;
}

22 | Chapter 1: Getting to Know TypeScript

You update the component and everything passes the type checker. Victory!

…or is it? handleSelectItem takes an any parameter, so it’s just as happy with an
Item as it is with an ID. It produces a runtime exception, despite passing the type
checker. Had you used a more specific type, this would have been caught by the type
checker.

any Hides Your Type Design
The type definition for complex objects like your application state can get quite long.
Rather than writing out types for the dozens of properties in your page’s state, you
may be tempted to just use an any type and be done with it.

This is problematic for all the reasons listed in this item. But it’s also problematic
because it hides the design of your state. As Chapter 4 explains, good type design is
essential for writing clean, correct, and understandable code. With an any type, your
type design is implicit. This makes it hard to know whether the design is a good one,
or even what the design is at all. If you ask a coworker to review a change, they’ll have
to reconstruct whether and how you changed the application state. Better to write it
out for everyone to see.

any Undermines Confidence in the Type System
Every time you make a mistake and the type checker catches it, it boosts your confi‐
dence in the type system. But when you see a type error at runtime, that confidence
takes a hit. If you’re introducing TypeScript on a larger team, this might make your
coworkers question whether TypeScript is worth the effort. any types are often the
source of these uncaught errors.

TypeScript aims to make your life easier, but TypeScript with lots of any types can be
harder to work with than untyped JavaScript because you have to fix type errors and
still keep track of the real types in your head. When your types match reality, it frees
you from the burden of having to keep type information in your head. TypeScript will
keep track of it for you.

For the times when you must use any, there are better and worse ways to do it. For
much more on how to limit the downsides of any, see Chapter 5.

Things to Remember
• The any type effectively silences the type checker and TypeScript language serv‐

ices. It can mask real problems, harm developer experience, and undermine con‐
fidence in the type system. Avoid using it when you can!

Item 5: Limit Use of the any Type | 23

CHAPTER 2

TypeScript’s Type System

TypeScript generates code (Item 3), but the type system is the main event. This is why
you’re using the language!

This chapter walks you through the nuts and bolts of TypeScript’s type system: how to
think about it, how to use it, choices you’ll need to make, and features you should
avoid. TypeScript’s type system is surprisingly powerful and able to express things
you might not expect a type system to be able to. The items in this chapter will give
you a solid foundation to build upon as you write TypeScript and read the rest of this
book.

Item 6: Use Your Editor to Interrogate and Explore the
Type System
When you install TypeScript, you get two executables:

• tsc, the TypeScript compiler
• tsserver, the TypeScript standalone server

You’re much more likely to run the TypeScript compiler directly, but the server is
every bit as important because it provides language services. These include autocom‐
plete, inspection, navigation, and refactoring. You typically use these services through
your editor. If yours isn’t configured to provide them, then you’re missing out! Serv‐
ices like autocomplete are one of the things that make TypeScript such a joy to use.
But beyond convenience, your editor is the best place to build and test your knowl‐
edge of the type system. This will help you build an intuition for when TypeScript is
able to infer types, which is key to writing compact, idiomatic code (see Item 19).

25

The details will vary from editor to editor, but you can generally mouse over a symbol
to see what TypeScript considers its type (see Figure 2-1).

Figure 2-1. An editor (vscode) showing that the inferred type of the num symbol is
number

You didn’t write number here, but TypeScript was able to figure it out based on the
value 10.

You can also inspect functions, as shown in Figure 2-2.

Figure 2-2. Using an editor to reveal the inferred type for a function

The noteworthy bit of information is the inferred value for the return type, number. If
this does not match your expectation, you should add a type declaration and track
down the discrepancy (see Item 9).

Seeing TypeScript’s understanding of a variable’s type at any given point is essential
for building an intuition around widening (Item 21) and narrowing (Item 22). Seeing
the type of a variable change in the branch of a conditional is a tremendous way to
build confidence in the type system (see Figure 2-3).

Figure 2-3. The type of message is string | null outside the branch but string inside.

26 | Chapter 2: TypeScript’s Type System

You can inspect individual properties in a larger object to see what TypeScript has
inferred about them (see Figure 2-4).

Figure 2-4. Inspecting how TypeScript has inferred types in an object

If your intention was for x to be a tuple type ([number, number, number]), then a
type annotation will be required.

To see inferred generic types in the middle of a chain of operations, inspect the
method name (as shown in Figure 2-5).

Figure 2-5. Revealing inferred generic types in a chain of method calls

The Array<string> indicates that TypeScript understands that split produced an
array of strings. While there was little ambiguity in this case, this information can
prove essential in writing and debugging long chains of function calls.

Seeing type errors in your editor can also be a great way to learn the nuances of the
type system. For example, this function tries to get an HTMLElement by its ID, or
return a default one. TypeScript flags two errors:

function getElement(elOrId: string|HTMLElement|null): HTMLElement {
 if (typeof elOrId === 'object') {
 return elOrId;
 // ~~~~~~~~~~~~~~ 'HTMLElement | null' is not assignable to 'HTMLElement'
 } else if (elOrId === null) {
 return document.body;
 } else {
 const el = document.getElementById(elOrId);

Item 6: Use Your Editor to Interrogate and Explore the Type System | 27

 return el;
 // ~~~~~~~~~~ 'HTMLElement | null' is not assignable to 'HTMLElement'
 }
}

The intent in the first branch of the if statement was to filter down to just the objects,
namely, the HTMLElements. But oddly enough, in JavaScript typeof null is "object",
so elOrId could still be null in that branch. You can fix this by putting the null
check first. The second error is because document.getElementById can return null,
so you need to handle that case as well, perhaps by throwing an exception.

Language services can also help you navigate through libraries and type declarations.
Suppose you see a call to the fetch function in code and want to learn more about it.
Your editor should provide a “Go to Definition” option. In mine it looks like it does
in Figure 2-6.

Figure 2-6. The TypeScript language service provides a “Go to Definition” feature that
should be surfaced in your editor.

Selecting this option takes you into lib.dom.d.ts, the type declarations which Type‐
Script includes for the DOM:

declare function fetch(
 input: RequestInfo, init?: RequestInit
): Promise<Response>;

You can see that fetch returns a Promise and takes two arguments. Clicking through
on RequestInfo brings you here:

type RequestInfo = Request | string;

from which you can go to Request:

declare var Request: {
 prototype: Request;
 new(input: RequestInfo, init?: RequestInit): Request;
};

Here you can see that the Request type and value are being modeled separately (see
Item 8). You’ve seen RequestInfo already. Clicking through on RequestInit shows
everything you can use to construct a Request:

28 | Chapter 2: TypeScript’s Type System

interface RequestInit {
 body?: BodyInit | null;
 cache?: RequestCache;
 credentials?: RequestCredentials;
 headers?: HeadersInit;
 // ...
}

There are many more types you could follow here, but you get the idea. Type declara‐
tions can be challenging to read at first, but they’re an excellent way to see what can
be done with TypeScript, how the library you’re using is modeled, and how you might
debug errors. For much more on type declarations, see Chapter 6.

Things to Remember
• Take advantage of the TypeScript language services by using an editor that can

use them.
• Use your editor to build an intuition for how the type system works and how

TypeScript infers types.
• Know how to jump into type declaration files to see how they model behavior.

Item 7: Think of Types as Sets of Values
At runtime, every variable has a single value chosen from JavaScript’s universe of val‐
ues. There are many possible values, including:

• 42

• null

• undefined

• 'Canada'

• {animal: 'Whale', weight_lbs: 40_000}

• /regex/

• new HTMLButtonElement

• (x, y) => x + y

But before your code runs, when TypeScript is checking it for errors, a variable just
has a type. This is best thought of as a set of possible values. This set is known as the
domain of the type. For instance, you can think of the number type as the set of all
number values. 42 and -37.25 are in it, but 'Canada' is not. Depending on strict
NullChecks, null and undefined may or may not be part of the set.

Item 7: Think of Types as Sets of Values | 29

The smallest set is the empty set, which contains no values. It corresponds to the
never type in TypeScript. Because its domain is empty, no values are assignable to a
variable with a never type:

const x: never = 12;
 // ~ Type '12' is not assignable to type 'never'

The next smallest sets are those which contain single values. These correspond to lit‐
eral types in TypeScript, also known as unit types:

type A = 'A';
type B = 'B';
type Twelve = 12;

To form types with two or three values, you can union unit types:

type AB = 'A' | 'B';
type AB12 = 'A' | 'B' | 12;

and so on. Union types correspond to unions of sets of values.

The word “assignable” appears in many TypeScript errors. In the context of sets of
values, it means either “member of ” (for a relationship between a value and a type) or
“subset of ” (for a relationship between two types):

const a: AB = 'A'; // OK, value 'A' is a member of the set {'A', 'B'}
const c: AB = 'C';
 // ~ Type '"C"' is not assignable to type 'AB'

The type "C" is a unit type. Its domain consists of the single value "C". This is not a
subset of the domain of AB (which consists of the values "A" and "B"), so this is an
error. At the end of the day, almost all the type checker is doing is testing whether one
set is a subset of another:

// OK, {"A", "B"} is a subset of {"A", "B"}:
const ab: AB = Math.random() < 0.5 ? 'A' : 'B';
const ab12: AB12 = ab; // OK, {"A", "B"} is a subset of {"A", "B", 12}

declare let twelve: AB12;
const back: AB = twelve;
 // ~~~~ Type 'AB12' is not assignable to type 'AB'
 // Type '12' is not assignable to type 'AB'

The sets for these types are easy to reason about because they are finite. But most
types that you work with in practice have infinite domains. Reasoning about these
can be harder. You can think of them as either being built constructively:

type Int = 1 | 2 | 3 | 4 | 5 // | ...

or by describing their members:

interface Identified {
 id: string;
}

30 | Chapter 2: TypeScript’s Type System

Think of this interface as a description of the values in the domain of its type. Does
the value have an id property whose value is assignable to (a member of) string?
Then it’s an Identified.

That’s all it says. As Item 4 explained, TypeScript’s structural typing rules mean that
the value could have other properties, too. It could even be callable! This fact can
sometimes be obscured by excess property checking (see Item 11).

Thinking of types as sets of values helps you reason about operations on them. For
example:

interface Person {
 name: string;
}
interface Lifespan {
 birth: Date;
 death?: Date;
}
type PersonSpan = Person & Lifespan;

The & operator computes the intersection of two types. What sorts of values belong to
the PersonSpan type? On first glance the Person and Lifespan interfaces have no
properties in common, so you might expect it to be the empty set (i.e., the never
type). But type operations apply to the sets of values (the domain of the type), not to
the properties in the interface. And remember that values with additional properties
still belong to a type. So a value that has the properties of both Person and Lifespan
will belong to the intersection type:

const ps: PersonSpan = {
 name: 'Alan Turing',
 birth: new Date('1912/06/23'),
 death: new Date('1954/06/07'),
}; // OK

Of course, a value could have more than those three properties and still belong to the
type! The general rule is that the values in an intersection type contain the union of
properties in each of its constituents.

The intuition about intersecting properties is correct, but for the union of two inter‐
faces, rather than their intersection:

type K = keyof (Person | Lifespan); // Type is never

There are no keys that TypeScript can guarantee belong to a value in the union type,
so keyof for the union must be the empty set (never). Or, more formally:

keyof (A&B) = (keyof A) | (keyof B)
keyof (A|B) = (keyof A) & (keyof B)

If you can build an intuition for why these equations hold, you’ll have come a long
way toward understanding TypeScript’s type system!

Item 7: Think of Types as Sets of Values | 31

Another perhaps more common way to write the PersonSpan type would be with
extends:

interface Person {
 name: string;
}
interface PersonSpan extends Person {
 birth: Date;
 death?: Date;
}

Thinking of types as sets of values, what does extends mean? Just like “assignable to,”
you can read it as “subset of.” Every value in PersonSpan must have a name property
which is a string. And every value must also have a birth property, so it’s a proper
subset.

You might hear the term “subtype.” This is another way of saying that one set’s
domain is a subset of the other’s. Thinking in terms of one-, two-, and three-
dimensional vectors:

interface Vector1D { x: number; }
interface Vector2D extends Vector1D { y: number; }
interface Vector3D extends Vector2D { z: number; }

You’d say that a Vector3D is a subtype of Vector2D, which is a subtype of Vector1D (in
the context of classes you’d say “subclass”). This relationship is usually drawn as a
hierarchy, but thinking in terms of sets of values, a Venn diagram is more appropriate
(see Figure 2-7).

Figure 2-7. Two ways of thinking of type relationships: as a hierarchy or as overlapping
sets

With the Venn diagram, it’s clear that the subset/subtype/assignability relationships
are unchanged if you rewrite the interfaces without extends:

interface Vector1D { x: number; }
interface Vector2D { x: number; y: number; }
interface Vector3D { x: number; y: number; z: number; }

The sets haven’t changed, so neither has the Venn diagram.

32 | Chapter 2: TypeScript’s Type System

While both interpretations are workable for object types, the set interpretation
becomes much more intuitive when you start thinking about literal types and union
types.

The extends keyword can also appear as a constraint in a generic type, and it also
means “subset of ” in this context (Item 14):

function getKey<K extends string>(val: any, key: K) {
 // ...
}

What does it mean to extend string? If you’re used to thinking in terms of object
inheritance, it’s hard to interpret. You could define a subclass of the object wrapper
type String (Item 10), but that seems inadvisable.

Thinking in terms of sets, on the other hand, it’s crystal clear: any type whose domain
is a subset of string will do. This includes string literal types, unions of string literal
types and string itself:

getKey({}, 'x'); // OK, 'x' extends string
getKey({}, Math.random() < 0.5 ? 'a' : 'b'); // OK, 'a'|'b' extends string
getKey({}, document.title); // OK, string extends string
getKey({}, 12);
 // ~~ Type '12' is not assignable to parameter of type 'string'

“extends” has turned into “assignable” in the last error, but this shouldn’t trip us up
since we know to read both as “subset of.” This is also a helpful mindset with finite
sets, such the ones you might get from keyof T, which returns type for just the keys
of an object type:

interface Point {
 x: number;
 y: number;
}
type PointKeys = keyof Point; // Type is "x" | "y"

function sortBy<K extends keyof T, T>(vals: T[], key: K): T[] {
 // ...
}
const pts: Point[] = [{x: 1, y: 1}, {x: 2, y: 0}];
sortBy(pts, 'x'); // OK, 'x' extends 'x'|'y' (aka keyof T)
sortBy(pts, 'y'); // OK, 'y' extends 'x'|'y'
sortBy(pts, Math.random() < 0.5 ? 'x' : 'y'); // OK, 'x'|'y' extends 'x'|'y'
sortBy(pts, 'z');
 // ~~~ Type '"z"' is not assignable to parameter of type '"x" | "y"

The set interpretation also makes more sense when you have types whose relationship
isn’t strictly hierarchical. What’s the relationship between string|number and
string|Date, for instance? Their intersection is non-empty (it’s string), but neither

Item 7: Think of Types as Sets of Values | 33

is a subset of the other. The relationship between their domains is clear, even though
these types don’t fit into a strict hierarchy (see Figure 2-8).

Figure 2-8. Union types may not fit into a hierarchy but can be thought of in terms of
sets of values.

Thinking of types as sets can also clarify the relationships between arrays and tuples.
For example:

const list = [1, 2]; // Type is number[]
const tuple: [number, number] = list;
 // ~~~~~ Type 'number[]' is missing the following
 // properties from type '[number, number]': 0, 1

Are there lists of numbers which are not pairs of numbers? Sure! The empty list and
the list [1] are examples. It therefore makes sense that number[] is not assignable to
[number, number] since it’s not a subset of it. (The reverse assignment does work.)

Is a triple assignable to a pair? Thinking in terms of structural typing, you might
expect it to be. A pair has 0 and 1 keys, so mightn’t it have others, too, like 2?

const triple: [number, number, number] = [1, 2, 3];
const double: [number, number] = triple;
 // ~~~~~~ '[number, number, number]' is not assignable to '[number, number]'
 // Types of property 'length' are incompatible
 // Type '3' is not assignable to type '2'

The answer is “no,” and for an interesting reason. Rather than modeling a pair of
numbers as {0: number, 1: number}, TypeScript models it as {0: number, 1: num
ber, length: 2}. This makes sense—you can check the length of a tuple—and it
precludes this assignment. And that’s probably for the best!

If types are best thought of as sets of values, that means that two types with the same
sets of values are the same. And indeed this is true. Unless two types are semantically
different and just happen to have the same domain, there’s no reason to define the
same type twice.

Finally, it’s worth noting that not all sets of values correspond to TypeScript types.
There is no TypeScript type for all the integers, or for all the objects that have x and y
properties but no others. You can sometimes subtract types using Exclude, but only
when it would result in a proper TypeScript type:

34 | Chapter 2: TypeScript’s Type System

type T = Exclude<string|Date, string|number>; // Type is Date
type NonZeroNums = Exclude<number, 0>; // Type is still just number

Table 2-1 summarizes the correspondence between TypeScript terms and terms from
set theory.

Table 2-1. TypeScript terms and set terms

TypeScript term Set term

never ∅ (empty set)

Literal type Single element set

Value assignable to T Value ∈ T (member of)

T1 assignable to T2 T1 ⊆ T2 (subset of)

T1 extends T2 T1 ⊆ T2 (subset of)

T1 | T2 T1 ∪ T2 (union)

T1 & T2 T1 ∩ T2 (intersection)

unknown Universal set

Things to Remember
• Think of types as sets of values (the type’s domain). These sets can either be finite

(e.g., boolean or literal types) or infinite (e.g., number or string).
• TypeScript types form intersecting sets (a Venn diagram) rather than a strict hier‐

archy. Two types can overlap without either being a subtype of the other.
• Remember that an object can still belong to a type even if it has additional prop‐

erties that were not mentioned in the type declaration.
• Type operations apply to a set’s domain. The intersection of A and B is the inter‐

section of A’s domain and B’s domain. For object types, this means that values in A
& B have the properties of both A and B.

• Think of “extends,” “assignable to,” and “subtype of ” as synonyms for “subset of.”

Item 8: Know How to Tell Whether a Symbol Is in the Type
Space or Value Space
A symbol in TypeScript exists in one of two spaces:

• Type space
• Value space

This can get confusing because the same name can refer to different things depending
on which space it’s in:

Item 8: Know How to Tell Whether a Symbol Is in the Type Space or Value Space | 35

interface Cylinder {
 radius: number;
 height: number;
}

const Cylinder = (radius: number, height: number) => ({radius, height});

interface Cylinder introduces a symbol in type space. const Cylinder introduces
a symbol with the same name in value space. They have nothing to do with one
another. Depending on the context, when you type Cylinder, you’ll either be refer‐
ring to the type or the value. Sometimes this can lead to errors:

function calculateVolume(shape: unknown) {
 if (shape instanceof Cylinder) {
 shape.radius
 // ~~~~~~ Property 'radius' does not exist on type '{}'
 }
}

What’s going on here? You probably intended the instanceof to check whether the
shape was of the Cylinder type. But instanceof is JavaScript’s runtime operator, and
it operates on values. So instanceof Cylinder refers to the function, not the type.

It’s not always obvious at first glance whether a symbol is in type space or value space.
You have to tell from the context in which the symbol occurs. This can get especially
confusing because many type-space constructs look exactly the same as value-space
constructs.

Literals, for example:

type T1 = 'string literal';
type T2 = 123;
const v1 = 'string literal';
const v2 = 123;

Generally the symbols after a type or interface are in type space while those intro‐
duced in a const or let declaration are values.

One of the best ways to build an intuition for the two spaces is through the Type‐
Script Playground, which shows you the generated JavaScript for your TypeScript
source. Types are erased during compilation (Item 3), so if a symbol disappears then
it was probably in type space (see Figure 2-9).

36 | Chapter 2: TypeScript’s Type System

https://www.typescriptlang.org/play/
https://www.typescriptlang.org/play/

Figure 2-9. The TypeScript playground showing generated JavaScript. The symbols on
the first two lines go away, so they were in type space.

Statements in TypeScript can alternate between type space and value space. The sym‐
bols after a type declaration (:) or an assertion (as) are in type space while everything
after an = is in value space. For example:

interface Person {
 first: string;
 last: string;
}
const p: Person = { first: 'Jane', last: 'Jacobs' };
// - --------------------------------- Values
// ------ Type

Function statements in particular can alternate repeatedly between the spaces:

function email(p: Person, subject: string, body: string): Response {
 // ----- - ------- ---- Values
 // ------ ------ ------ -------- Types
 // ...
}

The class and enum constructs introduce both a type and a value. In the first exam‐
ple, Cylinder should have been a class:

class Cylinder {
 radius=1;
 height=1;
}

function calculateVolume(shape: unknown) {
 if (shape instanceof Cylinder) {
 shape // OK, type is Cylinder
 shape.radius // OK, type is number
 }
}

The TypeScript type introduced by a class is based on its shape (its properties and
methods) while the value is the constructor.

There are many operators and keywords that mean different things in a type or value
context. typeof, for instance:

Item 8: Know How to Tell Whether a Symbol Is in the Type Space or Value Space | 37

type T1 = typeof p; // Type is Person
type T2 = typeof email;
 // Type is (p: Person, subject: string, body: string) => Response

const v1 = typeof p; // Value is "object"
const v2 = typeof email; // Value is "function"

In a type context, typeof takes a value and returns its TypeScript type. You can use
these as part of a larger type expression, or use a type statement to give them a name.

In a value context, typeof is JavaScript’s runtime typeof operator. It returns a string
containing the runtime type of the symbol. This is not the same as the TypeScript
type! JavaScript’s runtime type system is much simpler than TypeScript’s static type
system. In contrast to the infinite variety of TypeScript types, JavaScript’s typeof
operator has historically only had six possible return values: “string,” “number,”
“boolean,” “undefined,” “object,” and “function.”

typeof always operates on values. You can’t apply it to types. The class keyword
introduces both a value and a type, so what is the typeof a class? It depends on the
context:

const v = typeof Cylinder; // Value is "function"
type T = typeof Cylinder; // Type is typeof Cylinder

The value is "function" because of how classes are implemented in JavaScript. The
type isn’t particularly illuminating. What’s important is that it’s not Cylinder (the type
of an instance). It’s actually the constructor function, which you can see by using it
with new:

declare let fn: T;
const c = new fn(); // Type is Cylinder

You can go between the constructor type and the instance type using the Instance
Type generic:

type C = InstanceType<typeof Cylinder>; // Type is Cylinder

The [] property accessor also has an identical-looking equivalent in type space. But
be aware that while obj['field'] and obj.field are equivalent in value space, they
are not in type space. You must use the former to get the type of another type’s
property:

const first: Person['first'] = p['first']; // Or p.first
 // ----- ---------- Values
 // ------ ------- Types

Person['first'] is a type here since it appears in a type context (after a :). You can
put any type in the index slot, including union types or primitive types:

38 | Chapter 2: TypeScript’s Type System

type PersonEl = Person['first' | 'last']; // Type is string
type Tuple = [string, number, Date];
type TupleEl = Tuple[number]; // Type is string | number | Date

See Item 14 for more on this.

There are many other constructs that have different meanings in the two spaces:

• this in value space is JavaScript’s this keyword (Item 49). As a type, this is the
TypeScript type of this, aka “polymorphic this.” It’s helpful for implementing
method chains with subclasses.

• In value space & and | are bitwise AND and OR. In type space they are the inter‐
section and union operators.

• const introduces a new variable, but as const changes the inferred type of a lit‐
eral or literal expression (Item 21).

• extends can define a subclass (class A extends B) or a subtype (interface A
extends B) or a constraint on a generic type (Generic<T extends number>).

• in can either be part of a loop (for (key in object)) or a mapped type (Item
14).

If TypeScript doesn’t seem to understand your code at all, it may be because of confu‐
sion around type and value space. For example, say you change the email function
from earlier to take its arguments in a single object parameter:

function email(options: {person: Person, subject: string, body: string}) {
 // ...
}

In JavaScript you can use destructuring assignment to create local variables for each
property in the object:

function email({person, subject, body}) {
 // ...
}

If you try to do the same in TypeScript, you get some confusing errors:

function email({
 person: Person,
 // ~~~~~~ Binding element 'Person' implicitly has an 'any' type
 subject: string,
 // ~~~~~~ Duplicate identifier 'string'
 // Binding element 'string' implicitly has an 'any' type
 body: string}
 // ~~~~~~ Duplicate identifier 'string'
 // Binding element 'string' implicitly has an 'any' type
) { /* ... */ }

Item 8: Know How to Tell Whether a Symbol Is in the Type Space or Value Space | 39

The problem is that Person and string are being interpreted in a value context.
You’re trying to create a variable named Person and two variables named string.
Instead, you should separate the types and values:

function email(
 {person, subject, body}: {person: Person, subject: string, body: string}
) {
 // ...
}

This is significantly more verbose, but in practice you may have a named type for the
parameters or be able to infer them from context (Item 26).

While the similar constructs in type and value space can be confusing at first, they’re
eventually useful as a mnemonic once you get the hang of it.

Things to Remember
• Know how to tell whether you’re in type space or value space while reading a

TypeScript expression. Use the TypeScript playground to build an intuition for
this.

• Every value has a type, but types do not have values. Constructs such as type and
interface exist only in the type space.

• Some constructs such as class or enum introduce both a type and a value.
• "foo" might be a string literal, or it might be a string literal type. Be aware of this

distinction and understand how to tell which it is.
• typeof, this, and many other operators and keywords have different meanings

in type space and value space.

Item 9: Prefer Type Declarations to Type Assertions
TypeScript seems to have two ways of assigning a value to a variable and giving it a
type:

interface Person { name: string };

const alice: Person = { name: 'Alice' }; // Type is Person
const bob = { name: 'Bob' } as Person; // Type is Person

While these achieve similar ends, they are actually quite different! The first (alice:
Person) adds a type declaration to the variable and ensures that the value conforms to
the type. The latter (as Person) performs a type assertion. This tells TypeScript that,
despite the type it inferred, you know better and would like the type to be Person.

In general, you should prefer type declarations to type assertions. Here’s why:

40 | Chapter 2: TypeScript’s Type System

const alice: Person = {};
 // ~~~~~ Property 'name' is missing in type '{}'
 // but required in type 'Person'
const bob = {} as Person; // No error

The type declaration verifies that the value conforms to the interface. Since it does
not, TypeScript flags an error. The type assertion silences this error by telling the type
checker that, for whatever reason, you know better than it does.

The same thing happens if you specify an additional property:

const alice: Person = {
 name: 'Alice',
 occupation: 'TypeScript developer'
// ~~~~~~~~~ Object literal may only specify known properties
// and 'occupation' does not exist in type 'Person'
};
const bob = {
 name: 'Bob',
 occupation: 'JavaScript developer'
} as Person; // No error

This is excess property checking at work (Item 11), but it doesn’t apply if you use an
assertion.

Because they provide additional safety checks, you should use type declarations
unless you have a specific reason to use a type assertion.

You may also see code that looks like const bob = <Person>{}.
This was the original syntax for assertions and is equivalent to {}
as Person. It is less common now because <Person> is interpreted
as a start tag in .tsx files (TypeScript + React).

It’s not always clear how to use a declaration with arrow functions. For example, what
if you wanted to use the named Person interface in this code?

const people = ['alice', 'bob', 'jan'].map(name => ({name}));
// { name: string; }[]... but we want Person[]

It’s tempting to use a type assertion here, and it seems to solve the problem:

const people = ['alice', 'bob', 'jan'].map(
 name => ({name} as Person)
); // Type is Person[]

But this suffers from all the same issues as a more direct use of type assertions. For
example:

const people = ['alice', 'bob', 'jan'].map(name => ({} as Person));
// No error

Item 9: Prefer Type Declarations to Type Assertions | 41

So how do you use a type declaration in this context instead? The most straightfor‐
ward way is to declare a variable in the arrow function:

const people = ['alice', 'bob', 'jan'].map(name => {
 const person: Person = {name};
 return person
}); // Type is Person[]

But this introduces considerable noise compared to the original code. A more concise
way is to declare the return type of the arrow function:

const people = ['alice', 'bob', 'jan'].map(
 (name): Person => ({name})
); // Type is Person[]

This performs all the same checks on the value as the previous version. The parenthe‐
ses are significant here! (name): Person infers the type of name and specifies that the
returned type should be Person. But (name: Person) would specify the type of name
as Person and allow the return type to be inferred, which would produce an error.

In this case you could have also written the final desired type and let TypeScript
check the validity of the assignment:

const people: Person[] = ['alice', 'bob', 'jan'].map(
 (name): Person => ({name})
);

But in the context of a longer chain of function calls it may be necessary or desirable
to have the named type in place earlier. And it will help flag errors where they occur.

So when should you use a type assertion? Type assertions make the most sense when
you truly do know more about a type than TypeScript does, typically from context
that isn’t available to the type checker. For instance, you may know the type of a
DOM element more precisely than TypeScript does:

document.querySelector('#myButton').addEventListener('click', e => {
 e.currentTarget // Type is EventTarget
 const button = e.currentTarget as HTMLButtonElement;
 button // Type is HTMLButtonElement
});

Because TypeScript doesn’t have access to the DOM of your page, it has no way of
knowing that #myButton is a button element. And it doesn’t know that the current
Target of the event should be that same button. Since you have information that
TypeScript does not, a type assertion makes sense here. For more on DOM types, see
Item 55.

You may also run into the non-null assertion, which is so common that it gets a spe‐
cial syntax:

const elNull = document.getElementById('foo'); // Type is HTMLElement | null
const el = document.getElementById('foo')!; // Type is HTMLElement

42 | Chapter 2: TypeScript’s Type System

Used as a prefix, ! is boolean negation. But as a suffix, ! is interpreted as an assertion
that the value is non-null. You should treat ! just like any other assertion: it is erased
during compilation, so you should only use it if you have information that the type
checker lacks and can ensure that the value is non-null. If you can’t, you should use a
conditional to check for the null case.

Type assertions have their limits: they don’t let you convert between arbitrary types.
The general idea is that you can use a type assertion to convert between A and B if
either is a subset of the other. HTMLElement is a subtype of HTMLElement | null, so
this type assertion is OK. HTMLButtonElement is a subtype of EventTarget, so that
was OK, too. And Person is a subtype of {}, so that assertion is also fine.

But you can’t convert between a Person and an HTMLElement since neither is a sub‐
type of the other:

interface Person { name: string; }
const body = document.body;
const el = body as Person;
 // ~~~~~~~~~~~~~~ Conversion of type 'HTMLElement' to type 'Person'
 // may be a mistake because neither type sufficiently
 // overlaps with the other. If this was intentional,
 // convert the expression to 'unknown' first

The error suggests an escape hatch, namely, using the unknown type (Item 42). Every
type is a subtype of unknown, so assertions involving unknown are always OK. This lets
you convert between arbitrary types, but at least you’re being explicit that you’re
doing something suspicious!

const el = document.body as unknown as Person; // OK

Things to Remember
• Prefer type declarations (: Type) to type assertions (as Type).
• Know how to annotate the return type of an arrow function.
• Use type assertions and non-null assertions when you know something about

types that TypeScript does not.

Item 10: Avoid Object Wrapper Types (String, Number,
Boolean, Symbol, BigInt)
In addition to objects, JavaScript has seven types of primitive values: strings, num‐
bers, booleans, null, undefined, symbol, and bigint. The first five have been around
since the beginning. The symbol primitive was added in ES2015, and bigint is in the
process of being finalized.

Item 10: Avoid Object Wrapper Types (String, Number, Boolean, Symbol, BigInt) | 43

Primitives are distinguished from objects by being immutable and not having meth‐
ods. You might object that strings do have methods:

> 'primitive'.charAt(3)
"m"

But things are not quite as they seem. There’s actually something surprising and sub‐
tle going on here. While a string primitive does not have methods, JavaScript also
defines a String object type that does. JavaScript freely converts between these types.
When you access a method like charAt on a string primitive, JavaScript wraps it in a
String object, calls the method, and then throws the object away.

You can observe this if you monkey-patch String.prototype (Item 43):

// Don't do this!
const originalCharAt = String.prototype.charAt;
String.prototype.charAt = function(pos) {
 console.log(this, typeof this, pos);
 return originalCharAt.call(this, pos);
};
console.log('primitive'.charAt(3));

This produces the following output:

[String: 'primitive'] object 3
m

The this value in the method is a String object wrapper, not a string primitive. You
can instantiate a String object directly and it will sometimes behave like a string
primitive. But not always. For example, a String object is only ever equal to itself:

> "hello" === new String("hello")
false
> new String("hello") === new String("hello")
false

The implicit conversion to object wrapper types explains an odd phenomenon in
JavaScript—if you assign a property to a primitive, it disappears:

> x = "hello"
> x.language = 'English'
'English'
> x.language
undefined

Now you know the explanation: x is converted to a String instance, the language
property is set on that, and then the object (with its language property) is thrown
away.

There are object wrapper types for the other primitives as well: Number for numbers,
Boolean for booleans, Symbol for symbols, and BigInt for bigints (there are no object
wrappers for null and undefined).

44 | Chapter 2: TypeScript’s Type System

These wrapper types exist as a convenience to provide methods on the primitive val‐
ues and to provide static methods (e.g., String.fromCharCode). But there’s usually no
reason to instantiate them directly.

TypeScript models this distinction by having distinct types for the primitives and
their object wrappers:

• string and String
• number and Number
• boolean and Boolean
• symbol and Symbol
• bigint and BigInt

It’s easy to inadvertently type String (especially if you’re coming from Java or C#)
and it even seems to work, at least initially:

function getStringLen(foo: String) {
 return foo.length;
}

getStringLen("hello"); // OK
getStringLen(new String("hello")); // OK

But things go awry when you try to pass a String object to a method that expects a
string:

function isGreeting(phrase: String) {
 return [
 'hello',
 'good day'
].includes(phrase);
 // ~~~~~~
 // Argument of type 'String' is not assignable to parameter
 // of type 'string'.
 // 'string' is a primitive, but 'String' is a wrapper object;
 // prefer using 'string' when possible
}

So string is assignable to String, but String is not assignable to string. Confusing?
Follow the advice in the error message and stick with string. All the type declara‐
tions that ship with TypeScript use it, as do the typings for almost all other libraries.

Another way you can wind up with wrapper objects is if you provide an explicit type
annotation with a capital letter:

const s: String = "primitive";
const n: Number = 12;
const b: Boolean = true;

Item 10: Avoid Object Wrapper Types (String, Number, Boolean, Symbol, BigInt) | 45

Of course, the values at runtime are still primitives, not objects. But TypeScript per‐
mits these declarations because the primitive types are assignable to the object wrap‐
pers. These annotations are both misleading and redundant (Item 19). Better to stick
with the primitive types.

As a final note, it’s OK to call BigInt and Symbol without new, since these create
primitives:

> typeof BigInt(1234)
"bigint"
> typeof Symbol('sym')
"symbol"

These are the BigInt and Symbol values, not the TypeScript types (Item 8). Calling
them results in values of type bigint and symbol.

Things to Remember
• Understand how object wrapper types are used to provide methods on primitive

values. Avoid instantiating them or using them directly.
• Avoid TypeScript object wrapper types. Use the primitive types instead: string

instead of String, number instead of Number, boolean instead of Boolean, symbol
instead of Symbol, and bigint instead of BigInt.

Item 11: Recognize the Limits of Excess Property Checking
When you assign an object literal to a variable with a declared type, TypeScript makes
sure it has the properties of that type and no others:

interface Room {
 numDoors: number;
 ceilingHeightFt: number;
}
const r: Room = {
 numDoors: 1,
 ceilingHeightFt: 10,
 elephant: 'present',
// ~~~~~~~~~~~~~~~~~~ Object literal may only specify known properties,
// and 'elephant' does not exist in type 'Room'
};

While it is odd that there’s an elephant property, this error doesn’t make much sense
from a structural typing point of view (Item 4). That constant is assignable to the
Room type, which you can see by introducing an intermediate variable:

const obj = {
 numDoors: 1,
 ceilingHeightFt: 10,

46 | Chapter 2: TypeScript’s Type System

 elephant: 'present',
};
const r: Room = obj; // OK

The type of obj is inferred as { numDoors: number; ceilingHeightFt: number;
elephant: string }. Because this type includes a subset of the values in the Room
type, it is assignable to Room, and the code passes the type checker (see Item 7).

So what is different about these two examples? In the first you’ve triggered a process
known as “excess property checking,” which helps catch an important class of errors
that the structural type system would otherwise miss. But this process has its limits,
and conflating it with regular assignability checks can make it harder to build an intu‐
ition for structural typing. Recognizing excess property checking as a distinct process
will help you build a clearer mental model of TypeScript’s type system.

As Item 1 explained, TypeScript goes beyond trying to flag code that will throw
exceptions at runtime. It also tries to find code that doesn’t do what you intend. Here’s
an example of the latter:

interface Options {
 title: string;
 darkMode?: boolean;
}
function createWindow(options: Options) {
 if (options.darkMode) {
 setDarkMode();
 }
 // ...
}
createWindow({
 title: 'Spider Solitaire',
 darkmode: true
// ~~~~~~~~~~~~~ Object literal may only specify known properties, but
// 'darkmode' does not exist in type 'Options'.
// Did you mean to write 'darkMode'?
});

This code doesn’t throw any sort of error at runtime. But it’s also unlikely to do what
you intended for the exact reason that TypeScript says: it should be darkMode (capital
M), not darkmode.

A purely structural type checker wouldn’t be able to spot this sort of error because the
domain of the Options type is incredibly broad: it includes all objects with a title
property that’s a string and any other properties, so long as those don’t include a dark
Mode property set to something other than true or false.

It’s easy to forget how expansive TypeScript types can be. Here are a few more values
that are assignable to Options:

Item 11: Recognize the Limits of Excess Property Checking | 47

const o1: Options = document; // OK
const o2: Options = new HTMLAnchorElement; // OK

Both document and instances of HTMLAnchorElement have title properties that are
strings, so these assignments are OK. Options is a broad type indeed!

Excess property checking tries to rein this in without compromising the fundamen‐
tally structural nature of the type system. It does this by disallowing unknown prop‐
erties specifically on object literals. (It’s sometimes called “strict object literal
checking” for this reason.) Neither document nor new HTMLAnchorElement is an
object literal, so they did not trigger the checks. But the {title, darkmode} object is,
so it does:

const o: Options = { darkmode: true, title: 'Ski Free' };
 // ~~~~~~~~ 'darkmode' does not exist in type 'Options'...

This explains why using an intermediate variable without a type annotation makes
the error go away:

const intermediate = { darkmode: true, title: 'Ski Free' };
const o: Options = intermediate; // OK

While the righthand side of the first line is an object literal, the righthand side of the
second line (intermediate) is not, so excess property checking does not apply, and
the error goes away.

Excess property checking does not happen when you use a type assertion:

const o = { darkmode: true, title: 'Ski Free' } as Options; // OK

This is a good reason to prefer declarations to assertions (Item 9).

If you don’t want this sort of check, you can tell TypeScript to expect additional prop‐
erties using an index signature:

interface Options {
 darkMode?: boolean;
 [otherOptions: string]: unknown;
}
const o: Options = { darkmode: true }; // OK

Item 15 discusses when this is and is not an appropriate way to model your data.

A related check happens for “weak” types, which have only optional properties:

interface LineChartOptions {
 logscale?: boolean;
 invertedYAxis?: boolean;
 areaChart?: boolean;
}
const opts = { logScale: true };
const o: LineChartOptions = opts;

48 | Chapter 2: TypeScript’s Type System

 // ~ Type '{ logScale: boolean; }' has no properties in common
 // with type 'LineChartOptions'

From a structural point of view, the LineChartOptions type should include almost all
objects. For weak types like this, TypeScript adds another check to make sure that the
value type and declared type have at least one property in common. Much like excess
property checking, this is effective at catching typos and isn’t strictly structural. But
unlike excess property checking, it happens during all assignability checks involving
weak types. Factoring out an intermediate variable doesn’t bypass this check.

Excess property checking is an effective way of catching typos and other mistakes in
property names that would otherwise be allowed by the structural typing system. It’s
particularly useful with types like Options that contain optional fields. But it is also
very limited in scope: it only applies to object literals. Recognize this limitation and
distinguish between excess property checking and ordinary type checking. This will
help you build a mental model of both.

For a concrete example of how excess property checking can catch bugs and open up
new design possibilities, see Item 18.

Factoring out a constant made an error go away here, but it can also introduce an
error in other contexts. See Item 26 for examples of this.

Things to Remember
• When you assign an object literal to a variable or pass it as an argument to a

function, it undergoes excess property checking.
• Excess property checking is an effective way to find errors, but it is distinct from

the usual structural assignability checks done by the TypeScript type checker.
Conflating these processes will make it harder for you to build a mental model of
assignability.

• Be aware of the limits of excess property checking: introducing an intermediate
variable will remove these checks.

Item 12: Apply Types to Entire Function Expressions When
Possible
JavaScript (and TypeScript) distinguishes a function statement and a function
expression:

function rollDice1(sides: number): number { /* ... */ } // Statement
const rollDice2 = function(sides: number): number { /* ... */ }; // Expression
const rollDice3 = (sides: number): number => { /* ... */ }; // Also expression

Item 12: Apply Types to Entire Function Expressions When Possible | 49

An advantage of function expressions in TypeScript is that you can apply a type dec‐
laration to the entire function at once, rather than specifying the types of the parame‐
ters and return type individually:

type DiceRollFn = (sides: number) => number;
const rollDice: DiceRollFn = sides => { /* ... */ };

If you mouse over sides in your editor, you’ll see that TypeScript knows its type is
number. The function type doesn’t provide much value in such a simple example, but
the technique does open up a number of possibilities.

One is reducing repetition. If you wanted to write several functions for doing arith‐
metic on numbers, for instance, you could write them like this:

function add(a: number, b: number) { return a + b; }
function sub(a: number, b: number) { return a - b; }
function mul(a: number, b: number) { return a * b; }
function div(a: number, b: number) { return a / b; }

or consolidate the repeated function signatures with a single function type:

type BinaryFn = (a: number, b: number) => number;
const add: BinaryFn = (a, b) => a + b;
const sub: BinaryFn = (a, b) => a - b;
const mul: BinaryFn = (a, b) => a * b;
const div: BinaryFn = (a, b) => a / b;

This has fewer type annotations than before, and they’re separated away from the
function implementations. This makes the logic more apparent. You’ve also gained a
check that the return type of all the function expressions is number.

Libraries often provide types for common function signatures. For example, ReactJS
provides a MouseEventHandler type that you can apply to an entire function rather
than specifying MouseEvent as a type for the function’s parameter. If you’re a library
author, consider providing type declarations for common callbacks.

Another place you might want to apply a type to a function expression is to match the
signature of some other function. In a web browser, for example, the fetch function
issues an HTTP request for some resource:

const responseP = fetch('/quote?by=Mark+Twain'); // Type is Promise<Response>

You extract data from the response via response.json() or response.text():

async function getQuote() {
 const response = await fetch('/quote?by=Mark+Twain');
 const quote = await response.json();
 return quote;
}
// {
// "quote": "If you tell the truth, you don't have to remember anything.",
// "source": "notebook",

50 | Chapter 2: TypeScript’s Type System

// "date": "1894"
// }

(See Item 25 for more on Promises and async/await.)

There’s a bug here: if the request for /quote fails, the response body is likely to con‐
tain an explanation like “404 Not Found.” This isn’t JSON, so response.json() will
return a rejected Promise with a message about invalid JSON. This obscures the real
error, which was a 404.

It’s easy to forget that an error response with fetch does not result in a rejected
Promise. Let’s write a checkedFetch function to do the status check for us. The type
declarations for fetch in lib.dom.d.ts look like this:

declare function fetch(
 input: RequestInfo, init?: RequestInit
): Promise<Response>;

So you can write checkedFetch like this:

async function checkedFetch(input: RequestInfo, init?: RequestInit) {
 const response = await fetch(input, init);
 if (!response.ok) {
 // Converted to a rejected Promise in an async function
 throw new Error('Request failed: ' + response.status);
 }
 return response;
}

This works, but it can be written more concisely:

const checkedFetch: typeof fetch = async (input, init) => {
 const response = await fetch(input, init);
 if (!response.ok) {
 throw new Error('Request failed: ' + response.status);
 }
 return response;
}

We’ve changed from a function statement to a function expression and applied a type
(typeof fetch) to the entire function. This allows TypeScript to infer the types of the
input and init parameters.

The type annotation also guarantees that the return type of checkedFetch will be the
same as that of fetch. Had you written return instead of throw, for example, Type‐
Script would have caught the mistake:

const checkedFetch: typeof fetch = async (input, init) => {
 // ~~~~~~~~~~~~ Type 'Promise<Response | HTTPError>'
 // is not assignable to type 'Promise<Response>'
 // Type 'Response | HTTPError' is not assignable
 // to type 'Response'

Item 12: Apply Types to Entire Function Expressions When Possible | 51

 const response = await fetch(input, init);
 if (!response.ok) {
 return new Error('Request failed: ' + response.status);
 }
 return response;
}

The same mistake in the first example would likely have led to an error, but in the
code that called checkedFetch, rather than in the implementation.

In addition to being more concise, typing this entire function expression instead of its
parameters has given you better safety. When you’re writing a function that has the
same type signature as another one, or writing many functions with the same type
signature, consider whether you can apply a type declaration to entire functions,
rather than repeating types of parameters and return values.

Things to Remember
• Consider applying type annotations to entire function expressions, rather than to

their parameters and return type.
• If you’re writing the same type signature repeatedly, factor out a function type or

look for an existing one. If you’re a library author, provide types for common
callbacks.

• Use typeof fn to match the signature of another function.

Item 13: Know the Differences Between type and
interface
If you want to define a named type in TypeScript, you have two options. You can use
a type, as shown here:

type TState = {
 name: string;
 capital: string;
}

or an interface:

interface IState {
 name: string;
 capital: string;
}

(You could also use a class, but that is a JavaScript runtime concept that also intro‐
duces a value. See Item 8.)

52 | Chapter 2: TypeScript’s Type System

Which should you use, type or interface? The line between these two options has
become increasingly blurred over the years, to the point that in many situations you
can use either. You should be aware of the distinctions that remain between type and
interface and be consistent about which you use in which situation. But you should
also know how to write the same types using both, so that you’ll be comfortable read‐
ing TypeScript that uses either.

The examples in this item prefix type names with I or T solely to
indicate how they were defined. You should not do this in your
code! Prefixing interface types with I is common in C#, and this
convention made some inroads in the early days of TypeScript. But
it is considered bad style today because it’s unnecessary, adds little
value, and is not consistently followed in the standard libraries.

First, the similarities: the State types are nearly indistinguishable from one another. If
you define an IState or a TState value with an extra property, the errors you get are
character-by-character identical:

const wyoming: TState = {
 name: 'Wyoming',
 capital: 'Cheyenne',
 population: 500_000
// ~~~~~~~~~~~~~~~~~~ Type ... is not assignable to type 'TState'
// Object literal may only specify known properties, and
// 'population' does not exist in type 'TState'
};

You can use an index signature with both interface and type:

type TDict = { [key: string]: string };
interface IDict {
 [key: string]: string;
}

You can also define function types with either:

type TFn = (x: number) => string;
interface IFn {
 (x: number): string;
}

const toStrT: TFn = x => '' + x; // OK
const toStrI: IFn = x => '' + x; // OK

The type alias looks more natural for this straightforward function type, but if the
type has properties as well, then the declarations start to look more alike:

type TFnWithProperties = {
 (x: number): number;
 prop: string;

Item 13: Know the Differences Between type and interface | 53

}
interface IFnWithProperties {
 (x: number): number;
 prop: string;
}

You can remember this syntax by reminding yourself that in JavaScript, functions are
callable objects.

Both type aliases and interfaces can be generic:

type TPair<T> = {
 first: T;
 second: T;
}
interface IPair<T> {
 first: T;
 second: T;
}

An interface can extend a type (with some caveats, explained momentarily), and a
type can extend an interface:

interface IStateWithPop extends TState {
 population: number;
}
type TStateWithPop = IState & { population: number; };

Again, these types are identical. The caveat is that an interface cannot extend a
complex type like a union type. If you want to do that, you’ll need to use type and &.

A class can implement either an interface or a simple type:

class StateT implements TState {
 name: string = '';
 capital: string = '';
}
class StateI implements IState {
 name: string = '';
 capital: string = '';
}

Those are the similarities. What about the differences? You’ve seen one already—
there are union types but no union interfaces:

type AorB = 'a' | 'b';

An interface can extend some types, but not this one. Extending union types can
sometimes be useful. If you have separate types for Input and Output variables and a
mapping from name to variable:

type Input = { /* ... */ };
type Output = { /* ... */ };
interface VariableMap {

54 | Chapter 2: TypeScript’s Type System

 [name: string]: Input | Output;
}

then you might want a type that attaches the name to the variable. This would be:

type NamedVariable = (Input | Output) & { name: string };

This type cannot be expressed with interface. A type is, in general, more capable
than an interface. It can be a union, and it can also take advantage of more
advanced features like mapped or conditional types.

It can also more easily express tuple and array types:

type Pair = [number, number];
type StringList = string[];
type NamedNums = [string, ...number[]];

You can express something like a tuple using interface:

interface Tuple {
 0: number;
 1: number;
 length: 2;
}
const t: Tuple = [10, 20]; // OK

But this is awkward and drops all the tuple methods like concat. Better to use a type.
For more on the problems of numeric indices, see Item 16.

An interface does have some abilities that a type doesn’t, however. One of these is
that an interface can be augmented. Going back to the State example, you could
have added a population field in another way:

interface IState {
 name: string;
 capital: string;
}
interface IState {
 population: number;
}
const wyoming: IState = {
 name: 'Wyoming',
 capital: 'Cheyenne',
 population: 500_000
}; // OK

This is known as “declaration merging,” and it’s quite surprising if you’ve never seen it
before. This is primarily used with type declaration files (Chapter 6), and if you’re
writing one, you should follow the norms and use interface to support it. The idea
is that there may be gaps in your type declarations that users need to fill, and this is
how they do it.

Item 13: Know the Differences Between type and interface | 55

TypeScript uses merging to get different types for the different versions of JavaScript’s
standard library. The Array interface, for example, is defined in lib.es5.d.ts. By default
this is all you get. But if you add ES2015 to the lib entry of your tsconfig.json, Type‐
Script will also include lib.es2015.d.ts. This includes another Array interface with
additional methods like find that were added in ES2015. They get added to the other
Array interface via merging. The net effect is that you get a single Array type with
exactly the right methods.

Merging is supported in regular code as well as declarations, and you should be aware
of the possibility. If it’s essential that no one ever augment your type, then use type.

Returning to the question at the start of the item, should you use type or interface?
For complex types, you have no choice: you need to use a type alias. But what about
the simpler object types that can be represented either way? To answer this question,
you should consider consistency and augmentation. Are you working in a codebase
that consistently uses interface? Then stick with interface. Does it use type? Then
use type.

For projects without an established style, you should think about augmentation. Are
you publishing type declarations for an API? Then it might be helpful for your users
to be able to be able to merge in new fields via an interface when the API changes.
So use interface. But for a type that’s used internally in your project, declaration
merging is likely to be a mistake. So prefer type.

Things to Remember
• Understand the differences and similarities between type and interface.
• Know how to write the same types using either syntax.
• In deciding which to use in your project, consider the established style and

whether augmentation might be beneficial.

Item 14: Use Type Operations and Generics to Avoid
Repeating Yourself
This script prints the dimensions, surface areas, and volumes of a few cylinders:

console.log('Cylinder 1 x 1 ',
 'Surface area:', 6.283185 * 1 * 1 + 6.283185 * 1 * 1,
 'Volume:', 3.14159 * 1 * 1 * 1);
console.log('Cylinder 1 x 2 ',
 'Surface area:', 6.283185 * 1 * 1 + 6.283185 * 2 * 1,
 'Volume:', 3.14159 * 1 * 2 * 1);
console.log('Cylinder 2 x 1 ',
 'Surface area:', 6.283185 * 2 * 1 + 6.283185 * 2 * 1,
 'Volume:', 3.14159 * 2 * 2 * 1);

56 | Chapter 2: TypeScript’s Type System

Is this code uncomfortable to look at? It should be. It’s extremely repetitive, as though
the same line was copied and pasted, then modified. It repeats both values and con‐
stants. This has allowed an error to creep in (did you spot it?). Much better would be
to factor out some functions, a constant, and a loop:

const surfaceArea = (r, h) => 2 * Math.PI * r * (r + h);
const volume = (r, h) => Math.PI * r * r * h;
for (const [r, h] of [[1, 1], [1, 2], [2, 1]]) {
 console.log(
 `Cylinder ${r} x ${h}`,
 `Surface area: ${surfaceArea(r, h)}`,
 `Volume: ${volume(r, h)}`);
}

This is the DRY principle: don’t repeat yourself. It’s the closest thing to universal
advice that you’ll find in software development. Yet developers who assiduously avoid
repetition in code may not think twice about it in types:

interface Person {
 firstName: string;
 lastName: string;
}

interface PersonWithBirthDate {
 firstName: string;
 lastName: string;
 birth: Date;
}

Duplication in types has many of the same problems as duplication in code. What if
you decide to add an optional middleName field to Person? Now Person and Person
WithBirthDate have diverged.

One reason that duplication is more common in types is that the mechanisms for fac‐
toring out shared patterns are less familiar than they are with code: what’s the type
system equivalent of factoring out a helper function? By learning how to map
between types, you can bring the benefits of DRY to your type definitions.

The simplest way to reduce repetition is by naming your types. Rather than writing a
distance function this way:

function distance(a: {x: number, y: number}, b: {x: number, y: number}) {
 return Math.sqrt((a.x - b.x) ** 2 + (a.y - b.y) ** 2);
}

create a name for the type and use that:

interface Point2D {
 x: number;
 y: number;
}
function distance(a: Point2D, b: Point2D) { /* ... */ }

Item 14: Use Type Operations and Generics to Avoid Repeating Yourself | 57

This is the type system equivalent of factoring out a constant instead of writing it
repeatedly. Duplicated types aren’t always so easy to spot. Sometimes they can be
obscured by syntax. If several functions share the same type signature, for instance:

function get(url: string, opts: Options): Promise<Response> { /* ... */ }
function post(url: string, opts: Options): Promise<Response> { /* ... */ }

Then you can factor out a named type for this signature:

type HTTPFunction = (url: string, opts: Options) => Promise<Response>;
const get: HTTPFunction = (url, opts) => { /* ... */ };
const post: HTTPFunction = (url, opts) => { /* ... */ };

For more on this, see Item 12.

What about the Person/PersonWithBirthDate example? You can eliminate the repe‐
tition by making one interface extend the other:

interface Person {
 firstName: string;
 lastName: string;
}

interface PersonWithBirthDate extends Person {
 birth: Date;
}

Now you only need to write the additional fields. If the two interfaces share a subset
of their fields, then you can factor out a base class with just these common fields.
Continuing the analogy with code duplication, this is akin to writing PI and 2*PI
instead of 3.141593 and 6.283185.

You can also use the intersection operator (&) to extend an existing type, though this
is less common:

type PersonWithBirthDate = Person & { birth: Date };

This technique is most useful when you want to add some additional properties to a
union type (which you cannot extend). For more on this, see Item 13.

You can also go the other direction. What if you have a type, State, which represents
the state of an entire application, and another, TopNavState, which represents just a
part?

interface State {
 userId: string;
 pageTitle: string;
 recentFiles: string[];
 pageContents: string;
}
interface TopNavState {
 userId: string;
 pageTitle: string;

58 | Chapter 2: TypeScript’s Type System

 recentFiles: string[];
}

Rather than building up State by extending TopNavState, you’d like to define TopNav
State as a subset of the fields in State. This way you can keep a single interface
defining the state for the entire app.

You can remove duplication in the types of the properties by indexing into State:

type TopNavState = {
 userId: State['userId'];
 pageTitle: State['pageTitle'];
 recentFiles: State['recentFiles'];
};

While it’s longer, this is progress: a change in the type of pageTitle in State will get
reflected in TopNavState. But it’s still repetitive. You can do better with a mapped
type:

type TopNavState = {
 [k in 'userId' | 'pageTitle' | 'recentFiles']: State[k]
};

Mousing over TopNavState shows that this definition is, in fact, exactly the same as
the previous one (see Figure 2-10).

Figure 2-10. Showing the expanded version of a mapped type in your text editor. This is
the same as the initial definition, but with less duplication.

Mapped types are the type system equivalent of looping over the fields in an array.
This particular pattern is so common that it’s part of the standard library, where it’s
called Pick:

type Pick<T, K> = { [k in K]: T[k] };

(This definition isn’t quite complete, as you will see.) You use it like this:

type TopNavState = Pick<State, 'userId' | 'pageTitle' | 'recentFiles'>;

Item 14: Use Type Operations and Generics to Avoid Repeating Yourself | 59

Pick is an example of a generic type. Continuing the analogy to removing code dupli‐
cation, using Pick is the equivalent of calling a function. Pick takes two types, T and
K, and returns a third, much as a function might take two values and return a third.

Another form of duplication can arise with tagged unions. What if you want a type
for just the tag?

interface SaveAction {
 type: 'save';
 // ...
}
interface LoadAction {
 type: 'load';
 // ...
}
type Action = SaveAction | LoadAction;
type ActionType = 'save' | 'load'; // Repeated types!

You can define ActionType without repeating yourself by indexing into the Action
union:

type ActionType = Action['type']; // Type is "save" | "load"

As you add more types to the Action union, ActionType will incorporate them auto‐
matically. This type is distinct from what you’d get using Pick, which would give you
an interface with a type property:

type ActionRec = Pick<Action, 'type'>; // {type: "save" | "load"}

If you’re defining a class which can be initialized and later updated, the type for the
parameter to the update method will optionally include most of the same parameters
as the constructor:

interface Options {
 width: number;
 height: number;
 color: string;
 label: string;
}
interface OptionsUpdate {
 width?: number;
 height?: number;
 color?: string;
 label?: string;
}
class UIWidget {
 constructor(init: Options) { /* ... */ }
 update(options: OptionsUpdate) { /* ... */ }
}

You can construct OptionsUpdate from Options using a mapped type and keyof:

type OptionsUpdate = {[k in keyof Options]?: Options[k]};

60 | Chapter 2: TypeScript’s Type System

keyof takes a type and gives you a union of the types of its keys:

type OptionsKeys = keyof Options;
// Type is "width" | "height" | "color" | "label"

The mapped type ([k in keyof Options]) iterates over these and looks up the cor‐
responding value type in Options. The ? makes each property optional. This pattern
is also extremely common and is included in the standard library as Partial:

class UIWidget {
 constructor(init: Options) { /* ... */ }
 update(options: Partial<Options>) { /* ... */ }
}

You may also find yourself wanting to define a type that matches the shape of a value:

const INIT_OPTIONS = {
 width: 640,
 height: 480,
 color: '#00FF00',
 label: 'VGA',
};
interface Options {
 width: number;
 height: number;
 color: string;
 label: string;
}

You can do so with typeof:

type Options = typeof INIT_OPTIONS;

This intentionally evokes JavaScript’s runtime typeof operator, but it operates at the
level of TypeScript types and is much more precise. For more on typeof, see Item 8.
Be careful about deriving types from values, however. It’s usually better to define
types first and declare that values are assignable to them. This makes your types more
explicit and less subject to the vagaries of widening (Item 21).

Similarly, you may want to create a named type for the inferred return value of a
function or method:

function getUserInfo(userId: string) {
 // ...
 return {
 userId,
 name,
 age,
 height,
 weight,
 favoriteColor,
 };

Item 14: Use Type Operations and Generics to Avoid Repeating Yourself | 61

}
// Return type inferred as { userId: string; name: string; age: number, ... }

Doing this directly requires conditional types (see Item 50). But, as we’ve seen before,
the standard library defines generic types for common patterns like this one. In this
case the ReturnType generic does exactly what you want:

type UserInfo = ReturnType<typeof getUserInfo>;

Note that ReturnType operates on typeof getUserInfo, the function’s type, rather
than getUserInfo, the function’s value. As with typeof, use this technique judi‐
ciously. Don’t get mixed up about your source of truth.

Generic types are the equivalent of functions for types. And functions are the key to
DRY for logic. So it should come as no surprise that generics are the key to DRY for
types. But there’s a missing piece to this analogy. You use the type system to constrain
the values you can map with a function: you add numbers, not objects; you find the
area of shapes, not database records. How do you constrain the parameters in a
generic type?

You do so with extends. You can declare that any generic parameter extends a type.
For example:

interface Name {
 first: string;
 last: string;
}
type DancingDuo<T extends Name> = [T, T];

const couple1: DancingDuo<Name> = [
 {first: 'Fred', last: 'Astaire'},
 {first: 'Ginger', last: 'Rogers'}
]; // OK
const couple2: DancingDuo<{first: string}> = [
 // ~~~~~~~~~~~~~~~
 // Property 'last' is missing in type
 // '{ first: string; }' but required in type 'Name'
 {first: 'Sonny'},
 {first: 'Cher'}
];

{first: string} does not extend Name, hence the error.

62 | Chapter 2: TypeScript’s Type System

At the moment, TypeScript always requires you to write out the
generic parameter in a declaration. Writing DancingDuo instead of
DancingDuo<Name> won’t cut it. If you want TypeScript to infer the
type of the generic parameter, you can use a carefully typed identity
function:

const dancingDuo = <T extends Name>(x: DancingDuo<T>) => x;
const couple1 = dancingDuo([
 {first: 'Fred', last: 'Astaire'},
 {first: 'Ginger', last: 'Rogers'}
]);
const couple2 = dancingDuo([
 {first: 'Bono'},
// ~~~~~~~~~~~~~~
 {first: 'Prince'}
// ~~~~~~~~~~~~~~~~
// Property 'last' is missing in type
// '{ first: string; }' but required in type 'Name'
]);

You can use extends to complete the definition of Pick from earlier. If you run the
original version through the type checker, you get an error:

type Pick<T, K> = {
 [k in K]: T[k]
 // ~ Type 'K' is not assignable to type 'string | number | symbol'
};

K is unconstrained in this type and is clearly too broad: it needs to be something that
can be used as an index, namely, string | number | symbol. But you can get nar‐
rower than that—K should really be some subset of the keys of T, namely, keyof T:

type Pick<T, K extends keyof T> = {
 [k in K]: T[k]
}; // OK

Thinking of types as sets of values (Item 7), it helps to read “extends” as “subset of ”
here.

As you work with increasingly abstract types, try not to lose sight of the goal: accept‐
ing valid programs and rejecting invalid ones. In this case, the upshot of the con‐
straint is that passing Pick the wrong key will produce an error:

type FirstLast = Pick<Name, 'first' | 'last'>; // OK
type FirstMiddle = Pick<Name, 'first' | 'middle'>;
 // ~~~~~~~~~~~~~~~~~~
 // Type '"middle"' is not assignable
 // to type '"first" | "last"'

Item 14: Use Type Operations and Generics to Avoid Repeating Yourself | 63

Repetition and copy/paste coding are just as bad in type space as they are in value
space. The constructs you use to avoid repetition in type space may be less familiar
than those used for program logic, but they are worth the effort to learn. Don’t repeat
yourself!

Things to Remember
• The DRY (don’t repeat yourself) principle applies to types as much as it applies to

logic.
• Name types rather than repeating them. Use extends to avoid repeating fields in

interfaces.
• Build an understanding of the tools provided by TypeScript to map between

types. These include keyof, typeof, indexing, and mapped types.
• Generic types are the equivalent of functions for types. Use them to map between

types instead of repeating types. Use extends to constrain generic types.
• Familiarize yourself with generic types defined in the standard library such as
Pick, Partial, and ReturnType.

Item 15: Use Index Signatures for Dynamic Data
One of the best features of JavaScript is its convenient syntax for creating objects:

const rocket = {
 name: 'Falcon 9',
 variant: 'Block 5',
 thrust: '7,607 kN',
};

Objects in JavaScript map string keys to values of any type. TypeScript lets you repre‐
sent flexible mappings like this by specifying an index signature on the type:

type Rocket = {[property: string]: string};
const rocket: Rocket = {
 name: 'Falcon 9',
 variant: 'v1.0',
 thrust: '4,940 kN',
}; // OK

The [property: string]: string is the index signature. It specifies three things:

A name for the keys
This is purely for documentation; it is not used by the type checker in any way.

A type for the key
This needs to be some combination of string, number, or symbol, but generally
you just want to use string (see Item 16).

64 | Chapter 2: TypeScript’s Type System

A type for the values
This can be anything.

While this does type check, it has a few downsides:

• It allows any keys, including incorrect ones. Had you written Name instead of
name, it would have still been a valid Rocket type.

• It doesn’t require any specific keys to be present. {} is also a valid Rocket.
• It cannot have distinct types for different keys. For example, thrust should prob‐

ably be a number, not a string.
• TypeScript’s language services can’t help you with types like this. As you’re typing
name:, there’s no autocomplete because the key could be anything.

In short, index signatures are not very precise. There are almost always better alterna‐
tives to them. In this case, Rocket should clearly be an interface:

interface Rocket {
 name: string;
 variant: string;
 thrust_kN: number;
}
const falconHeavy: Rocket = {
 name: 'Falcon Heavy',
 variant: 'v1',
 thrust_kN: 15_200
};

Now thrust_kN is a number and TypeScript will check for the presence of all required
fields. All the great language services that TypeScript provides are available: autocom‐
plete, jump to definition, rename—and they all work.

What should you use index signatures for? The canonical case is truly dynamic data.
This might come from a CSV file, for instance, where you have a header row and
want to represent data rows as objects mapping column names to values:

function parseCSV(input: string): {[columnName: string]: string}[] {
 const lines = input.split('\n');
 const [headerLine, ...rows] = lines;
 const headers = headerLine.split(',');
 return rows.map(rowStr => {
 const row: {[columnName: string]: string} = {};
 rowStr.split(',').forEach((cell, i) => {
 row[headers[i]] = cell;
 });
 return row;
 });
}

Item 15: Use Index Signatures for Dynamic Data | 65

There’s no way to know in advance what the column names are in such a general set‐
ting. So an index signature is appropriate. If the user of parseCSV knows more about
what the columns are in a particular context, they may want to use an assertion to get
a more specific type:

interface ProductRow {
 productId: string;
 name: string;
 price: string;
}

declare let csvData: string;
const products = parseCSV(csvData) as unknown as ProductRow[];

Of course, there’s no guarantee that the columns at runtime will actually match your
expectation. If this is something you’re concerned about, you can add undefined to
the value type:

function safeParseCSV(
 input: string
): {[columnName: string]: string | undefined}[] {
 return parseCSV(input);
}

Now every access requires a check:

const rows = parseCSV(csvData);
const prices: {[produt: string]: number} = {};
for (const row of rows) {
 prices[row.productId] = Number(row.price);
}

const safeRows = safeParseCSV(csvData);
for (const row of safeRows) {
 prices[row.productId] = Number(row.price);
 // ~~~~~~~~~~~~~ Type 'undefined' cannot be used as an index type
}

Of course, this may make the type less convenient to work with. Use your judgment.

For associative arrays, you may also want to consider using a Map type instead of an
object with an index signature. These work around some famous gotchas involving
the prototype chain. See Item 58 for a concrete example.

If your type has a limited set of possible fields, don’t model this with an index signa‐
ture. For instance, if you know your data will have keys like A, B, C, D, but you don’t
know how many of them there will be, you could model the type either with optional
fields or a union:

66 | Chapter 2: TypeScript’s Type System

interface Row1 { [column: string]: number } // Too broad
interface Row2 { a: number; b?: number; c?: number; d?: number } // Better
type Row3 =
 | { a: number; }
 | { a: number; b: number; }
 | { a: number; b: number; c: number; }
 | { a: number; b: number; c: number; d: number };

The last form is the most precise, but it may be less convenient to work with.

If the problem with using an index signature is that string is too broad, then there
are a few alternatives.

One is using Record. This is a generic type that gives you more flexibility in the key
type. In particular, you can pass in subsets of string:

type Vec3D = Record<'x' | 'y' | 'z', number>;
// Type Vec3D = {
// x: number;
// y: number;
// z: number;
// }

Another is using a mapped type. This gives you the possibility of using different types
for different keys:

type Vec3D = {[k in 'x' | 'y' | 'z']: number};
// Same as above
type ABC = {[k in 'a' | 'b' | 'c']: k extends 'b' ? string : number};
// Type ABC = {
// a: number;
// b: string;
// c: number;
// }

This uses a conditional type. For more on these, see Item 50.

Things to Remember
• Use index signatures when the properties of an object cannot be known until

runtime—for example, if you’re loading them from a CSV file.
• Consider adding undefined to the value type of an index signature for safer

access.
• Prefer more precise types to index signatures when possible: interfaces,
Records, or mapped types.

Item 15: Use Index Signatures for Dynamic Data | 67

Item 16: Prefer Arrays, Tuples, and ArrayLike to number
Index Signatures
JavaScript is a famously quirky language. Some of the most notorious quirks involve
implicit type coercions:

> "0" == 0
true

but these can usually be avoided by using === and !== instead of their more coercive
cousins.

JavaScript’s object model also has its quirks, and these are more important to under‐
stand because some of them are modeled by TypeScript’s type system. You’ve already
seen one such quirk in Item 10, which discussed object wrapper types. This item dis‐
cusses another.

What is an object? In JavaScript it’s a collection of key/value pairs. The keys are usu‐
ally strings (in ES2015 and later they can also be symbols). The values can be
anything.

This is more restrictive than what you find in many other languages. JavaScript does
not have a notion of “hashable” objects like you find in Python or Java. If you try to
use a more complex object as a key, it is converted into a string by calling its toString
method:

> x = {}
{}
> x[[1, 2, 3]] = 2
2
> x
{ '1,2,3': 2 }

In particular, numbers cannot be used as keys. If you try to use a number as a prop‐
erty name, the JavaScript runtime will convert it to a string:

> { 1: 2, 3: 4}
{ '1': 2, '3': 4 }

So what are arrays, then? They are certainly objects:

> typeof []
'object'

And yet it’s quite normal to use numeric indices with them:

> x = [1, 2, 3]
[1, 2, 3]
> x[0]
1

68 | Chapter 2: TypeScript’s Type System

Are these being converted into strings? In one of the oddest quirks of all, the answer
is “yes.” You can also access the elements of an array using string keys:

> x['1']
2

If you use Object.keys to list the keys of an array, you get strings back:

> Object.keys(x)
['0', '1', '2']

TypeScript attempts to bring some sanity to this by allowing numeric keys and distin‐
guishing between these and strings. If you dig into the type declarations for Array
(Item 6), you’ll find this in lib.es5.d.ts:

interface Array<T> {
 // ...
 [n: number]: T;
}

This is purely a fiction—string keys are accepted at runtime as the ECMAScript stan‐
dard dictates that they must—but it is a helpful one that can catch mistakes:

const xs = [1, 2, 3];
const x0 = xs[0]; // OK
const x1 = xs['1']; // stringified numeric constants are also OK

function get<T>(array: T[], k: string): T {
 return array[k];
 // ~ Element implicitly has an 'any' type
 // because index expression is not of type 'number'
}

While this fiction is helpful, it’s important to remember that it is just a fiction. Like all
aspects of TypeScript’s type system, it is erased at runtime (Item 3). This means that
constructs like Object.keys still return strings:

const keys = Object.keys(xs); // Type is string[]
for (const key in xs) {
 key; // Type is string
 const x = xs[key]; // Type is number
}

That this last access works is somewhat surprising since string is not assignable to
number. It’s best thought of as a pragmatic concession to this style of iterating over
arrays, which is common in JavaScript. That’s not to say that this is a good way to
loop over an array. If you don’t care about the index, you can use for … of:

for (const x of xs) {
 x; // Type is number
}

Item 16: Prefer Arrays, Tuples, and ArrayLike to number Index Signatures | 69

If you do care about the index, you can use Array.prototype.forEach, which gives it
to you as a number:

xs.forEach((x, i) => {
 i; // Type is number
 x; // Type is number
});

If you need to break out of the loop early, you’re best off using a C-style for(;;) loop:

for (let i = 0; i < xs.length; i++) {
 const x = xs[i];
 if (x < 0) break;
}

If the types don’t convince you, perhaps the performance will: in most browsers and
JavaScript engines, for-in loops over arrays are several orders of magnitude slower
than for-of or a C-style for loop.

The general pattern here is that a number index signature means that what you put in
has to be a number (with the notable exception of for-in loops and constants such as
"1"), but what you get out is a string.

If this sounds confusing, it’s because it is! As a general rule, there’s not much reason to
use number as the index signature of a type rather than string. If you want to specify
something that will be indexed using numbers, you probably want to use an Array or
tuple type instead. Using number as an index type can create the misconception that
numeric properties are a thing in JavaScript, either for yourself or for readers of your
code.

If you object to accepting an Array type because they have many other properties
(from their prototype) that you might not use, such as push and concat, then that’s
good—you’re thinking structurally! (If you need a refresher on this, refer to Item 4.)
If you truly want to accept tuples of any length or any array-like construct, TypeScript
has an ArrayLike type you can use:

function checkedAccess<T>(xs: ArrayLike<T>, i: number): T {
 if (i < xs.length) {
 return xs[i];
 }
 throw new Error(`Attempt to access ${i} which is past end of array.`)
}

This has just a length and numeric index signature. In the rare cases that this is what
you want, you should use it instead. But remember that the keys are still really
strings!

const tupleLike: ArrayLike<string> = {
 '0': 'A',
 '1': 'B',

70 | Chapter 2: TypeScript’s Type System

 length: 2,
}; // OK

Things to Remember
• Understand that arrays are objects, so their keys are strings, not numbers. number

as an index signature is a purely TypeScript construct which is designed to help
catch bugs.

• Prefer Array, tuple, or ArrayLike types to using number in an index signature
yourself.

Item 17: Use readonly to Avoid Errors Associated with
Mutation
Here’s some code to print the triangular numbers (1, 1+2, 1+2+3, etc.):

function printTriangles(n: number) {
 const nums = [];
 for (let i = 0; i < n; i++) {
 nums.push(i);
 console.log(arraySum(nums));
 }
}

This code looks straightforward. But here’s what happens when you run it:

> printTriangles(5)
0
1
2
3
4

The problem is that you’ve made an assumption about arraySum, namely, that it
doesn’t modify nums. But here’s my implementation:

function arraySum(arr: number[]) {
 let sum = 0, num;
 while ((num = arr.pop()) !== undefined) {
 sum += num;
 }
 return sum;
}

This function does calculate the sum of the numbers in the array. But it also has the
side effect of emptying the array! TypeScript is fine with this, because JavaScript
arrays are mutable.

Item 17: Use readonly to Avoid Errors Associated with Mutation | 71

It would be nice to have some assurances that arraySum does not modify the array.
This is what the readonly type modifier does:

function arraySum(arr: readonly number[]) {
 let sum = 0, num;
 while ((num = arr.pop()) !== undefined) {
 // ~~~ 'pop' does not exist on type 'readonly number[]'
 sum += num;
 }
 return sum;
}

This error message is worth digging into. readonly number[] is a type, and it is dis‐
tinct from number[] in a few ways:

• You can read from its elements, but you can’t write to them.
• You can read its length, but you can’t set it (which would mutate the array).
• You can’t call pop or other methods that mutate the array.

Because number[] is strictly more capable than readonly number[], it follows that
number[] is a subtype of readonly number[]. (It’s easy to get this backwards—
remember Item 7!) So you can assign a mutable array to a readonly array, but not
vice versa:

const a: number[] = [1, 2, 3];
const b: readonly number[] = a;
const c: number[] = b;
 // ~ Type 'readonly number[]' is 'readonly' and cannot be
 // assigned to the mutable type 'number[]'

This makes sense: the readonly modifier wouldn’t be much use if you could get rid of
it without even a type assertion.

When you declare a parameter readonly, a few things happen:

• TypeScript checks that the parameter isn’t mutated in the function body.
• Callers are assured that your function doesn’t mutate the parameter.
• Callers may pass your function a readonly array.

There is often an assumption in JavaScript (and TypeScript) that functions don’t
mutate their parameters unless explicitly noted. But as we’ll see time and again in this
book (particularly Items 30 and 31), these sorts of implicit understandings can lead to
trouble with type checking. Better to make them explicit, both for human readers and
for tsc.

The fix for arraySum is simple: don’t mutate the array!

72 | Chapter 2: TypeScript’s Type System

1 In practice you might just write lines.join('\n').split(/\n\n+/), but bear with me.

function arraySum(arr: readonly number[]) {
 let sum = 0;
 for (const num of arr) {
 sum += num;
 }
 return sum;
}

Now printTriangles does what you expect:

> printTriangles(5)
0
1
3
6
10

If your function does not mutate its parameters, then you should declare them
readonly. There’s relatively little downside: users will be able to call them with a
broader set of types (Item 29), and inadvertent mutations will be caught.

One downside is that you may need to call functions that haven’t marked their
parameters readonly. If these don’t mutate their parameters and are in your control,
make them readonly! readonly tends to be contagious: once you mark one function
with readonly, you’ll also need to mark all the functions that it calls. This is a good
thing since it leads to clearer contracts and better type safety. But if you’re calling a
function in another library, you may not be able to change its type declarations, and
you may have to resort to a type assertion (param as number[]).

readonly can also be used to catch a whole class of mutation errors involving local
variables. Imagine you’re writing a tool to process a novel. You get a sequence of lines
and would like to collect them into paragraphs, which are separated by blanks:

Frankenstein; or, The Modern Prometheus
by Mary Shelley

You will rejoice to hear that no disaster has accompanied the commencement
of an enterprise which you have regarded with such evil forebodings. I arrived
here yesterday, and my first task is to assure my dear sister of my welfare and
increasing confidence in the success of my undertaking.

I am already far north of London, and as I walk in the streets of Petersburgh,
I feel a cold northern breeze play upon my cheeks, which braces my nerves and
fills me with delight.

Here’s an attempt:1

Item 17: Use readonly to Avoid Errors Associated with Mutation | 73

function parseTaggedText(lines: string[]): string[][] {
 const paragraphs: string[][] = [];
 const currPara: string[] = [];

 const addParagraph = () => {
 if (currPara.length) {
 paragraphs.push(currPara);
 currPara.length = 0; // Clear the lines
 }
 };

 for (const line of lines) {
 if (!line) {
 addParagraph();
 } else {
 currPara.push(line);
 }
 }
 addParagraph();
 return paragraphs;
}

When you run this on the example at the beginning of the item, here’s what you get:

[[], [], []]

Well that went horribly wrong!

The problem with this code is a toxic combination of aliasing (Item 24) and mutation.
The aliasing happens on this line:

paragraphs.push(currPara);

Rather than pushing the contents of currPara, this pushes a reference to the array.
When you push a new value to currPara or clear it, this change is also reflected in the
entries in paragraphs because they point to the same object.

In other words, the net effect of this code:

paragraphs.push(currPara);
currPara.length = 0; // Clear lines

is that you push a new paragraph onto paragraphs and then immediately clear it.

The problem is that setting currPara.length and calling currPara.push both mutate
the currPara array. You can disallow this behavior by declaring it to be readonly.
This immediately surfaces a few errors in the implementation:

function parseTaggedText(lines: string[]): string[][] {
 const currPara: readonly string[] = [];
 const paragraphs: string[][] = [];

 const addParagraph = () => {
 if (currPara.length) {

74 | Chapter 2: TypeScript’s Type System

 paragraphs.push(
 currPara
 // ~~~~~~~~ Type 'readonly string[]' is 'readonly' and
 // cannot be assigned to the mutable type 'string[]'
);
 currPara.length = 0; // Clear lines
 // ~~~~~~ Cannot assign to 'length' because it is a read-only
 // property
 }
 };

 for (const line of lines) {
 if (!line) {
 addParagraph();
 } else {
 currPara.push(line);
 // ~~~~ Property 'push' does not exist on type 'readonly string[]'
 }
 }
 addParagraph();
 return paragraphs;
}

You can fix two of the errors by declaring currPara with let and using nonmutating
methods:

let currPara: readonly string[] = [];
// ...
currPara = []; // Clear lines
// ...
currPara = currPara.concat([line]);

Unlike push, concat returns a new array, leaving the original unmodified. By chang‐
ing the declaration from const to let and adding readonly, you’ve traded one sort of
mutability for another. The currPara variable is now free to change which array it
points to, but those arrays themselves are not allowed to change.

This leaves the error about paragraphs. You have three options for fixing this.

First, you could make a copy of currPara:

paragraphs.push([...currPara]);

This fixes the error because, while currPara remains readonly, you’re free to mutate
the copy however you like.

Second, you could change paragraphs (and the return type of the function) to be an
array of readonly string[]:

const paragraphs: (readonly string[])[] = [];

(The grouping is relevant here: readonly string[][] would be a readonly array of
mutable arrays, rather than a mutable array of readonly arrays.)

Item 17: Use readonly to Avoid Errors Associated with Mutation | 75

This works, but it seems a bit rude to users of parseTaggedText. Why do you care
what they do with the paragraphs after the function returns?

Third, you could use an assertion to remove the readonly-ness of the array:

paragraphs.push(currPara as string[]);

Since you’re assigning currPara to a new array in the very next statement, this doesn’t
seem like the most offensive assertion.

An important caveat to readonly is that it is shallow. You saw this with readonly
string[][] earlier. If you have a readonly array of objects, the objects themselves are
not readonly:

const dates: readonly Date[] = [new Date()];
dates.push(new Date());
 // ~~~~ Property 'push' does not exist on type 'readonly Date[]'
dates[0].setFullYear(2037); // OK

Similar considerations apply to readonly’s cousin for objects, the Readonly generic:

interface Outer {
 inner: {
 x: number;
 }
}
const o: Readonly<Outer> = { inner: { x: 0 }};
o.inner = { x: 1 };
// ~~~~ Cannot assign to 'inner' because it is a read-only property
o.inner.x = 1; // OK

You can create a type alias and then inspect it in your editor to see exactly what’s
happening:

type T = Readonly<Outer>;
// Type T = {
// readonly inner: {
// x: number;
// };
// }

The important thing to note is the readonly modifier on inner but not on x. There is
no built-in support for deep readonly types at the time of this writing, but it is possi‐
ble to create a generic to do this. Getting this right is tricky, so I recommend using a
library rather than rolling your own. The DeepReadonly generic in ts-essentials is
one implementation.

You can also write readonly on an index signature. This has the effect of preventing
writes but allowing reads:

let obj: {readonly [k: string]: number} = {};
// Or Readonly<{[k: string]: number}

76 | Chapter 2: TypeScript’s Type System

2 React’s useCallback hook is another technique to avoid creating new functions on every render.

obj.hi = 45;
// ~~ Index signature in type ... only permits reading
obj = {...obj, hi: 12}; // OK
obj = {...obj, bye: 34}; // OK

This can prevent issues with aliasing and mutation involving objects rather than
arrays.

Things to Remember
• If your function does not modify its parameters then declare them readonly.

This makes its contract clearer and prevents inadvertent mutations in its
implementation.

• Use readonly to prevent errors with mutation and to find the places in your code
where mutations occur.

• Understand the difference between const and readonly.
• Understand that readonly is shallow.

Item 18: Use Mapped Types to Keep Values in Sync
Suppose you’re writing a UI component for drawing scatter plots. It has a few differ‐
ent types of properties that control its display and behavior:

interface ScatterProps {
 // The data
 xs: number[];
 ys: number[];

 // Display
 xRange: [number, number];
 yRange: [number, number];
 color: string;

 // Events
 onClick: (x: number, y: number, index: number) => void;
}

To avoid unnecessary work, you’d like to redraw the chart only when you need to.
Changing data or display properties will require a redraw, but changing the event
handler will not. This sort of optimization is common in React components, where
an event handler Prop might be set to a new arrow function on every render.2

Here’s one way you might implement this optimization:

Item 18: Use Mapped Types to Keep Values in Sync | 77

function shouldUpdate(
 oldProps: ScatterProps,
 newProps: ScatterProps
) {
 let k: keyof ScatterProps;
 for (k in oldProps) {
 if (oldProps[k] !== newProps[k]) {
 if (k !== 'onClick') return true;
 }
 }
 return false;
}

(See Item 54 for an explanation of the keyof declaration in this loop.)

What happens when you or a coworker add a new property? The shouldUpdate func‐
tion will redraw the chart whenever it changes. You might call this the conservative or
“fail closed” approach. The upside is that the chart will always look right. The down‐
side is that it might be drawn too often.

A “fail open” approach might look like this:

function shouldUpdate(
 oldProps: ScatterProps,
 newProps: ScatterProps
) {
 return (
 oldProps.xs !== newProps.xs ||
 oldProps.ys !== newProps.ys ||
 oldProps.xRange !== newProps.xRange ||
 oldProps.yRange !== newProps.yRange ||
 oldProps.color !== newProps.color
 // (no check for onClick)
);
}

With this approach there won’t be any unnecessary redraws, but there might be some
necessary draws that get dropped. This violates the “first, do no harm” principle of
optimization and so is less common.

Neither approach is ideal. What you’d really like is to force your coworker or future
self to make a decision when adding the new property. You might try adding a
comment:

interface ScatterProps {
 xs: number[];
 ys: number[];
 // ...
 onClick: (x: number, y: number, index: number) => void;

 // Note: if you add a property here, update shouldUpdate!
}

78 | Chapter 2: TypeScript’s Type System

But do you really expect this to work? It would be better if the type checker could
enforce this for you.

If you set it up the right way, it can. The key is to use a mapped type and an object:

const REQUIRES_UPDATE: {[k in keyof ScatterProps]: boolean} = {
 xs: true,
 ys: true,
 xRange: true,
 yRange: true,
 color: true,
 onClick: false,
};

function shouldUpdate(
 oldProps: ScatterProps,
 newProps: ScatterProps
) {
 let k: keyof ScatterProps;
 for (k in oldProps) {
 if (oldProps[k] !== newProps[k] && REQUIRES_UPDATE[k]) {
 return true;
 }
 }
 return false;
}

The [k in keyof ScatterProps] tells the type checker that REQUIRES_UPDATE
should have all the same properties as ScatterProps. If future you adds a new prop‐
erty to ScatterProps:

interface ScatterProps {
 // ...
 onDoubleClick: () => void;
}

Then this will produce an error in the definition of REQUIRES_UPDATE:

const REQUIRES_UPDATE: {[k in keyof ScatterProps]: boolean} = {
 // ~~~~~~~~~~~~~~~ Property 'onDoubleClick' is missing in type
 // ...
};

This will certainly force the issue! Deleting or renaming a property will cause a simi‐
lar error.

It’s important that we used an object with boolean values here. Had we used an array:

const PROPS_REQUIRING_UPDATE: (keyof ScatterProps)[] = [
 'xs',
 'ys',
 // ...
];

Item 18: Use Mapped Types to Keep Values in Sync | 79

then we would have been forced into the same fail open/fail closed choice.

Mapped types are ideal if you want one object to have exactly the same properties as
another. As in this example, you can use this to make TypeScript enforce constraints
on your code.

Things to Remember
• Use mapped types to keep related values and types synchronized.
• Consider using mapped types to force choices when adding new properties to an

interface.

80 | Chapter 2: TypeScript’s Type System

CHAPTER 3

Type Inference

For programming languages used in industry, “statically typed” and “explicitly typed”
have traditionally been synonymous. C, C++, Java: they all made you write out your
types. But academic languages never conflated these two things: languages like ML
and Haskell have long had sophisticated type inference systems, and in the past dec‐
ade this has begun to work its way into industry languages. C++ has added auto, and
Java has added var.

TypeScript makes extensive use of type inference. Used well, this can dramatically
reduce the number of type annotations your code requires to get full type safety. One
of the easiest ways to tell a TypeScript beginner from a more experienced user is by
the number of type annotations. An experienced TypeScript developer will use rela‐
tively few annotations (but use them to great effect), while a beginner may drown
their code in redundant type annotations.

This chapter shows you some of the problems that can arise with type inference and
how to fix them. After reading it, you should have a good understanding of how
TypeScript infers types, when you still need to write type declarations, and when it’s a
good idea to write type declarations even when a type can be inferred.

Item 19: Avoid Cluttering Your Code with Inferable Types
The first thing that many new TypeScript developers do when they convert a code‐
base from JavaScript is fill it with type annotations. TypeScript is about types, after all!
But in TypeScript many annotations are unnecessary. Declaring types for all your
variables is counterproductive and is considered poor style.

Don’t write:

let x: number = 12;

81

Instead, just write:

let x = 12;

If you mouse over x in your editor, you’ll see that its type has been inferred as number
(as shown in Figure 3-1).

Figure 3-1. A text editor showing that the inferred type of x is number.

The explicit type annotation is redundant. Writing it just adds noise. If you’re unsure
of the type, you can check it in your editor.

TypeScript will also infer the types of more complex objects. Instead of:

const person: {
 name: string;
 born: {
 where: string;
 when: string;
 };
 died: {
 where: string;
 when: string;
 }
} = {
 name: 'Sojourner Truth',
 born: {
 where: 'Swartekill, NY',
 when: 'c.1797',
 },
 died: {
 where: 'Battle Creek, MI',
 when: 'Nov. 26, 1883'
 }
};

you can just write:

const person = {
 name: 'Sojourner Truth',
 born: {
 where: 'Swartekill, NY',
 when: 'c.1797',
 },
 died: {
 where: 'Battle Creek, MI',
 when: 'Nov. 26, 1883'

82 | Chapter 3: Type Inference

 }
};

Again, the types are exactly the same. Writing the type in addition to the value just
adds noise here. (Item 21 has more to say on the types inferred for object literals.)

What’s true for objects is also true for arrays. TypeScript has no trouble figuring out
the return type of this function based on its inputs and operations:

function square(nums: number[]) {
 return nums.map(x => x * x);
}
const squares = square([1, 2, 3, 4]); // Type is number[]

TypeScript may infer something more precise than what you expected. This is gener‐
ally a good thing. For example:

const axis1: string = 'x'; // Type is string
const axis2 = 'y'; // Type is "y"

"y" is a more precise type for the axis variable. Item 21 gives an example of how this
can fix a type error.

Allowing types to be inferred can also facilitate refactoring. Say you have a Product
type and a function to log it:

interface Product {
 id: number;
 name: string;
 price: number;
}

function logProduct(product: Product) {
 const id: number = product.id;
 const name: string = product.name;
 const price: number = product.price;
 console.log(id, name, price);
}

At some point you learn that product IDs might have letters in them in addition to
numbers. So you change the type of id in Product. Because you included explicit
annotations on all the variables in logProduct, this produces an error:

interface Product {
 id: string;
 name: string;
 price: number;
}

function logProduct(product: Product) {
 const id: number = product.id;
 // ~~ Type 'string' is not assignable to type 'number'
 const name: string = product.name;

Item 19: Avoid Cluttering Your Code with Inferable Types | 83

 const price: number = product.price;
 console.log(id, name, price);
}

Had you left off all the annotations in the logProduct function body, the code would
have passed the type checker without modification.

A better implementation of logProduct would use destructuring assignment (Item
58):

function logProduct(product: Product) {
 const {id, name, price} = product;
 console.log(id, name, price);
}

This version allows the types of all the local variables to be inferred. The correspond‐
ing version with explicit type annotations is repetitive and cluttered:

function logProduct(product: Product) {
 const {id, name, price}: {id: string; name: string; price: number } = product;
 console.log(id, name, price);
}

Explicit type annotations are still required in some situations where TypeScript
doesn’t have enough context to determine a type on its own. You have seen one of
these before: function parameters.

Some languages will infer types for parameters based on their eventual usage, but
TypeScript does not. In TypeScript, a variable’s type is generally determined when it is
first introduced.

Ideal TypeScript code includes type annotations for function/method signatures but
not for the local variables created in their bodies. This keeps noise to a minimum and
lets readers focus on the implementation logic.

There are some situations where you can leave the type annotations off of function
parameters, too. When there’s a default value, for example:

function parseNumber(str: string, base=10) {
 // ...
}

Here the type of base is inferred as number because of the default value of 10.

Parameter types can usually be inferred when the function is used as a callback for a
library with type declarations. The declarations on request and response in this
example using the express HTTP server library are not required:

// Don't do this:
app.get('/health', (request: express.Request, response: express.Response) => {
 response.send('OK');
});

84 | Chapter 3: Type Inference

// Do this:
app.get('/health', (request, response) => {
 response.send('OK');
});

Item 26 goes into more depth on how context is used in type inference.

There are a few situations where you may still want to specify a type even where it can
be inferred.

One is when you define an object literal:

const elmo: Product = {
 name: 'Tickle Me Elmo',
 id: '048188 627152',
 price: 28.99,
};

When you specify a type on a definition like this, you enable excess property check‐
ing (Item 11). This can help catch errors, particularly for types with optional fields.

You also increase the odds that an error will be reported in the right place. If you
leave off the annotation, a mistake in the object’s definition will result in a type error
where it’s used, rather than where it’s defined:

const furby = {
 name: 'Furby',
 id: 630509430963,
 price: 35,
};
logProduct(furby);
 // ~~~~~ Argument .. is not assignable to parameter of type 'Product'
 // Types of property 'id' are incompatible
 // Type 'number' is not assignable to type 'string'

With an annotation, you get a more concise error in the place where the mistake was
made:

 const furby: Product = {
 name: 'Furby',
 id: 630509430963,
// ~~ Type 'number' is not assignable to type 'string'
 price: 35,
 };
 logProduct(furby);

Similar considerations apply to a function’s return type. You may still want to anno‐
tate this even when it can be inferred to ensure that implementation errors don’t leak
out into uses of the function.

Say you have a function which retrieves a stock quote:

function getQuote(ticker: string) {
 return fetch(`https://quotes.example.com/?q=${ticker}`)

Item 19: Avoid Cluttering Your Code with Inferable Types | 85

 .then(response => response.json());
}

You decide to add a cache to avoid duplicating network requests:

const cache: {[ticker: string]: number} = {};
function getQuote(ticker: string) {
 if (ticker in cache) {
 return cache[ticker];
 }
 return fetch(`https://quotes.example.com/?q=${ticker}`)
 .then(response => response.json())
 .then(quote => {
 cache[ticker] = quote;
 return quote;
 });
}

There’s a mistake in this implementation: you should really be returning
Promise.resolve(cache[ticker]) so that getQuote always returns a Promise. The
mistake will most likely produce an error… but in the code that calls getQuote, rather
than in getQuote itself:

getQuote('MSFT').then(considerBuying);
 // ~~~~ Property 'then' does not exist on type
 // 'number | Promise<any>'
 // Property 'then' does not exist on type 'number'

Had you annotated the intended return type (Promise<number>), the error would
have been reported in the correct place:

const cache: {[ticker: string]: number} = {};
function getQuote(ticker: string): Promise<number> {
 if (ticker in cache) {
 return cache[ticker];
 // ~~~~~~~~~~~~~ Type 'number' is not assignable to 'Promise<number>'
 }
 // ...
}

When you annotate the return type, it keeps implementation errors from manifesting
as errors in user code. (See Item 25 for a discussion of async functions, which are an
effective way to avoid this specific error with Promises.)

Writing out the return type may also help you think more clearly about your func‐
tion: you should know what its input and output types are before you implement it.
While the implementation may shift around a bit, the function’s contract (its type sig‐
nature) generally should not. This is similar in spirit to test-driven development
(TDD), in which you write the tests that exercise a function before you implement it.
Writing the full type signature first helps get you the function you want, rather than
the one the implementation makes expedient.

86 | Chapter 3: Type Inference

A final reason to annotate return values is if you want to use a named type. You might
choose not to write a return type for this function, for example:

interface Vector2D { x: number; y: number; }
function add(a: Vector2D, b: Vector2D) {
 return { x: a.x + b.x, y: a.y + b.y };
}

TypeScript infers the return type as { x: number; y: number; }. This is compatible
with Vector2D, but it may be surprising to users of your code when they see Vector2D
as a type of the input and not of the output (as shown in Figure 3-2).

Figure 3-2. The parameters to the add function have named types, while the inferred
return value does not.

If you annotate the return type, the presentation is more straightforward. And if
you’ve written documentation on the type (Item 48) then it will be associated with the
returned value as well. As the complexity of the inferred return type increases, it
becomes increasingly helpful to provide a name.

If you are using a linter, the eslint rule no-inferrable-types (note the variant spell‐
ing) can help ensure that all your type annotations are really necessary.

Things to Remember
• Avoid writing type annotations when TypeScript can infer the same type.
• Ideally your code has type annotations in function/method signatures but not on

local variables in their bodies.
• Consider using explicit annotations for object literals and function return types

even when they can be inferred. This will help prevent implementation errors
from surfacing in user code.

Item 20: Use Different Variables for Different Types
In JavaScript it’s no problem to reuse a variable to hold a differently typed value for a
different purpose:

let id = "12-34-56";
fetchProduct(id); // Expects a string

Item 20: Use Different Variables for Different Types | 87

id = 123456;
fetchProductBySerialNumber(id); // Expects a number

In TypeScript, this results in two errors:

 let id = "12-34-56";
 fetchProduct(id);

 id = 123456;
// ~~ '123456' is not assignable to type 'string'.
 fetchProductBySerialNumber(id);
 // ~~ Argument of type 'string' is not assignable to
 // parameter of type 'number'

Hovering over the first id in your editor gives a hint as to what’s going on (see
Figure 3-3).

Figure 3-3. The inferred type of id is string.

Based on the value "12-34-56", TypeScript has inferred id’s type as string. You can’t
assign a number to a string and hence the error.

This leads us to a key insight about variables in TypeScript: while a variable’s value can
change, its type generally does not. The one common way a type can change is to nar‐
row (Item 22), but this involves a type getting smaller, not expanding to include new
values. There are some important exceptions to this rule (Item 41), but they are the
exceptions and not the rule.

How can you use this idea to fix the example? In order for id’s type to not change, it
must be broad enough to encompass both strings and numbers. This is the very defi‐
nition of the union type, string|number:

let id: string|number = "12-34-56";
fetchProduct(id);

id = 123456; // OK
fetchProductBySerialNumber(id); // OK

This fixes the errors. It’s interesting that TypeScript has been able to determine that id
is really a string in the first call and really a number in the second. It has narrowed
the union type based on the assignment.

While a union type does work, it may create more issues down the road. Union types
are harder to work with than simple types like string or number because you usually
have to check what they are before you do anything with them.

88 | Chapter 3: Type Inference

The better solution is to introduce a new variable:

const id = "12-34-56";
fetchProduct(id);

const serial = 123456; // OK
fetchProductBySerialNumber(serial); // OK

In the previous version, the first and second id were not semantically related to one
another. They were only related by the fact that you reused a variable. This was con‐
fusing for the type checker and would be confusing for a human reader, too.

The version with two variables is better for a number of reasons:

• It disentangles two unrelated concepts (ID and serial number).
• It allows you to use more specific variable names.
• It improves type inference. No type annotations are needed.
• It results in simpler types (string and number, rather than string|number).
• It lets you declare the variables const rather than let. This makes them easier for

people and the type checker to reason about.

Try to avoid type-changing variables. If you can use different names for different con‐
cepts, it will make your code clearer both to human readers and to the type checker.

This is not to be confused with “shadowed” variables as in this example:

const id = "12-34-56";
fetchProduct(id);

{
 const id = 123456; // OK
 fetchProductBySerialNumber(id); // OK
}

While these two ids share a name, they are actually two distinct variables with no
relationship to one another. It’s fine for them to have different types. While Type‐
Script is not confused by this, your human readers might be. In general it’s better to
use different names for different concepts. Many teams choose to disallow this sort of
shadowing via linter rules. This item focused on scalar values, but similar considera‐
tions apply to objects. For more on that, see Item 23.

Things to Remember
• While a variable’s value can change, its type generally does not.
• To avoid confusion, both for human readers and for the type checker, avoid reus‐

ing variables for differently typed values.

Item 20: Use Different Variables for Different Types | 89

Item 21: Understand Type Widening
As Item 7 explained, at runtime every variable has a single value. But at static analysis
time, when TypeScript is checking your code, a variable has a set of possible values,
namely, its type. When you initialize a variable with a constant but don’t provide a
type, the type checker needs to decide on one. In other words, it needs to decide on a
set of possible values from the single value that you specified. In TypeScript, this pro‐
cess is known as widening. Understanding it will help you make sense of errors and
make more effective use of type annotations.

Suppose you’re writing a library to work with vectors. You write out a type for a 3D
vector and a function to get the value of any of its components:

interface Vector3 { x: number; y: number; z: number; }
function getComponent(vector: Vector3, axis: 'x' | 'y' | 'z') {
 return vector[axis];
}

But when you try to use it, TypeScript flags an error:

let x = 'x';
let vec = {x: 10, y: 20, z: 30};
getComponent(vec, x);
 // ~ Argument of type 'string' is not assignable to
 // parameter of type '"x" | "y" | "z"'

This code runs fine, so why the error?

The issue is that x’s type is inferred as string, whereas the getComponent function
expected a more specific type for its second argument. This is widening at work, and
here it has led to an error.

This process is ambiguous in the sense that there are many possible types for any
given value. In this statement, for example:

const mixed = ['x', 1];

what should the type of mixed be? Here are a few possibilities:

• ('x' | 1)[]

• ['x', 1]

• [string, number]

• readonly [string, number]

• (string|number)[]

• readonly (string|number)[]

• [any, any]

90 | Chapter 3: Type Inference

• any[]

Without more context, TypeScript has no way to know which one is “right.” It has to
guess at your intent. (In this case, it guesses (string|number)[].) And smart as it is,
TypeScript can’t read your mind. It won’t get this right 100% of the time. The result is
inadvertent errors like the one we just looked at.

In the initial example, the type of x is inferred as string because TypeScript chooses
to allow code like this:

let x = 'x';
x = 'a';
x = 'Four score and seven years ago...';

But it would also be valid JavaScript to write:

let x = 'x';
x = /x|y|z/;
x = ['x', 'y', 'z'];

In inferring the type of x as string, TypeScript attempts to strike a balance between
specificity and flexibility. The general rule is that a variable’s type shouldn’t change
after it’s declared (Item 20), so string makes more sense than string|RegExp or
string|string[] or any.

TypeScript gives you a few ways to control the process of widening. One is const. If
you declare a variable with const instead of let, it gets a narrower type. In fact, using
const fixes the error in our original example:

const x = 'x'; // type is "x"
let vec = {x: 10, y: 20, z: 30};
getComponent(vec, x); // OK

Because x cannot be reassigned, TypeScript is able to infer a narrower type without
risk of inadvertently flagging errors on subsequent assignments. And because the
string literal type "x" is assignable to "x"|"y"|"z", the code passes the type checker.

const isn’t a panacea, however. For objects and arrays, there is still ambiguity. The
mixed example here illustrates the issue for arrays: should TypeScript infer a tuple
type? What type should it infer for the elements? Similar issues arise with objects.
This code is fine in JavaScript:

const v = {
 x: 1,
};
v.x = 3;
v.x = '3';
v.y = 4;
v.name = 'Pythagoras';

Item 21: Understand Type Widening | 91

The type of v could be inferred anywhere along the spectrum of specificity. At the
specific end is {readonly x: 1}. More general is {x: number}. More general still
would be {[key: string]: number} or object. In the case of objects, TypeScript’s
widening algorithm treats each element as though it were assigned with let. So the
type of v comes out as {x: number}. This lets you reassign v.x to a different number,
but not to a string. And it prevents you from adding other properties. (This is a
good reason to build objects all at once, as explained in Item 23.)

So the last three statements are errors:

 const v = {
 x: 1,
 };
 v.x = 3; // OK
 v.x = '3';
// ~ Type '"3"' is not assignable to type 'number'
 v.y = 4;
// ~ Property 'y' does not exist on type '{ x: number; }'
 v.name = 'Pythagoras';
// ~~~~ Property 'name' does not exist on type '{ x: number; }'

Again, TypeScript is trying to strike a balance between specificity and flexibility. It
needs to infer a specific enough type to catch errors, but not so specific that it creates
false positives. It does this by inferring a type of number for a property initialized to a
value like 1.

If you know better, there are a few ways to override TypeScript’s default behavior. One
is to supply an explicit type annotation:

const v: {x: 1|3|5} = {
 x: 1,
}; // Type is { x: 1 | 3 | 5; }

Another is to provide additional context to the type checker (e.g., by passing the
value as the parameter of a function). For much more on the role of context in type
inference, see Item 26.

A third way is with a const assertion. This is not to be confused with let and const,
which introduce symbols in value space. This is a purely type-level construct. Look at
the different inferred types for these variables:

const v1 = {
 x: 1,
 y: 2,
}; // Type is { x: number; y: number; }

const v2 = {
 x: 1 as const,
 y: 2,
}; // Type is { x: 1; y: number; }

92 | Chapter 3: Type Inference

const v3 = {
 x: 1,
 y: 2,
} as const; // Type is { readonly x: 1; readonly y: 2; }

When you write as const after a value, TypeScript will infer the narrowest possible
type for it. There is no widening. For true constants, this is typically what you want.
You can also use as const with arrays to infer a tuple type:

const a1 = [1, 2, 3]; // Type is number[]
const a2 = [1, 2, 3] as const; // Type is readonly [1, 2, 3]

If you’re getting incorrect errors that you think are due to widening, consider adding
some explicit type annotations or const assertions. Inspecting types in your editor is
the key to building an intuition for this (see Item 6).

Things to Remember
• Understand how TypeScript infers a type from a constant by widening it.
• Familiarize yourself with the ways you can affect this behavior: const, type anno‐

tations, context, and as const.

Item 22: Understand Type Narrowing
The opposite of widening is narrowing. This is the process by which TypeScript goes
from a broad type to a narrower one. Perhaps the most common example of this is
null checking:

const el = document.getElementById('foo'); // Type is HTMLElement | null
if (el) {
 el // Type is HTMLElement
 el.innerHTML = 'Party Time'.blink();
} else {
 el // Type is null
 alert('No element #foo');
}

If el is null, then the code in the first branch won’t execute. So TypeScript is able to
exclude null from the type union within this block, resulting in a narrower type
which is much easier to work with. The type checker is generally quite good at nar‐
rowing types in conditionals like these, though it can occasionally be thwarted by ali‐
asing (Item 24).

You can also narrow a variable’s type for the rest of a block by throwing or returning
from a branch. For example:

const el = document.getElementById('foo'); // Type is HTMLElement | null
if (!el) throw new Error('Unable to find #foo');

Item 22: Understand Type Narrowing | 93

el; // Now type is HTMLElement
el.innerHTML = 'Party Time'.blink();

There are many ways that you can narrow a type. Using instanceof works:

function contains(text: string, search: string|RegExp) {
 if (search instanceof RegExp) {
 search // Type is RegExp
 return !!search.exec(text);
 }
 search // Type is string
 return text.includes(search);
}

So does a property check:

interface A { a: number }
interface B { b: number }
function pickAB(ab: A | B) {
 if ('a' in ab) {
 ab // Type is A
 } else {
 ab // Type is B
 }
 ab // Type is A | B
}

Some built-in functions such as Array.isArray are able to narrow types:

function contains(text: string, terms: string|string[]) {
 const termList = Array.isArray(terms) ? terms : [terms];
 termList // Type is string[]
 // ...
}

TypeScript is generally quite good at tracking types through conditionals. Think twice
before adding an assertion—it might be onto something that you’re not! For example,
this is the wrong way to exclude null from a union type:

const el = document.getElementById('foo'); // type is HTMLElement | null
if (typeof el === 'object') {
 el; // Type is HTMLElement | null
}

Because typeof null is "object" in JavaScript, you have not, in fact, excluded null
with this check! Similar surprises can come from falsy primitive values:

function foo(x?: number|string|null) {
 if (!x) {
 x; // Type is string | number | null | undefined
 }
}

94 | Chapter 3: Type Inference

Because the empty string and 0 are both falsy, x could still be a string or number in
that branch. TypeScript is right!

Another common way to help the type checker narrow your types is by putting an
explicit “tag” on them:

interface UploadEvent { type: 'upload'; filename: string; contents: string }
interface DownloadEvent { type: 'download'; filename: string; }
type AppEvent = UploadEvent | DownloadEvent;

function handleEvent(e: AppEvent) {
 switch (e.type) {
 case 'download':
 e // Type is DownloadEvent
 break;
 case 'upload':
 e; // Type is UploadEvent
 break;
 }
}

This pattern is known as a “tagged union” or “discriminated union,” and it is ubiqui‐
tous in TypeScript.

If TypeScript isn’t able to figure out a type, you can even introduce a custom function
to help it out:

function isInputElement(el: HTMLElement): el is HTMLInputElement {
 return 'value' in el;
}

function getElementContent(el: HTMLElement) {
 if (isInputElement(el)) {
 el; // Type is HTMLInputElement
 return el.value;
 }
 el; // Type is HTMLElement
 return el.textContent;
}

This is known as a “user-defined type guard.” The el is HTMLInputElement as a
return type tells the type checker that it can narrow the type of the parameter if the
function returns true.

Some functions are able to use type guards to perform type narrowing across arrays
or objects. If you do some lookups in an array, for instance, you may wind up with an
array of nullable types:

const jackson5 = ['Jackie', 'Tito', 'Jermaine', 'Marlon', 'Michael'];
const members = ['Janet', 'Michael'].map(
 who => jackson5.find(n => n === who)
); // Type is (string | undefined)[]

Item 22: Understand Type Narrowing | 95

If you filter out the undefined values using filter, TypeScript isn’t able to follow
along:

const members = ['Janet', 'Michael'].map(
 who => jackson5.find(n => n === who)
).filter(who => who !== undefined); // Type is (string | undefined)[]

But if you use a type guard, it can:

function isDefined<T>(x: T | undefined): x is T {
 return x !== undefined;
}
const members = ['Janet', 'Michael'].map(
 who => jackson5.find(n => n === who)
).filter(isDefined); // Type is string[]

As always, inspecting types in your editor is key to building an intuition for how nar‐
rowing works.

Understanding how types in TypeScript narrow will help you build an intuition for
how type inference works, make sense of errors, and generally have a more produc‐
tive relationship with the type checker.

Things to Remember
• Understand how TypeScript narrows types based on conditionals and other types

of control flow.
• Use tagged/discriminated unions and user-defined type guards to help the pro‐

cess of narrowing.

Item 23: Create Objects All at Once
As Item 20 explained, while a variable’s value may change, its type in TypeScript gen‐
erally does not. This makes some JavaScript patterns easier to model in TypeScript
than others. In particular, it means that you should prefer creating objects all at once,
rather than piece by piece.

Here’s one way to create an object representing a two-dimensional point in JavaScript:

const pt = {};
pt.x = 3;
pt.y = 4;

In TypeScript, this will produce errors on each assignment:

const pt = {};
pt.x = 3;
// ~ Property 'x' does not exist on type '{}'
pt.y = 4;
// ~ Property 'y' does not exist on type '{}'

96 | Chapter 3: Type Inference

This is because the type of pt on the first line is inferred based on its value {}, and
you may only assign to known properties.

You get the opposite problem if you define a Point interface:

interface Point { x: number; y: number; }
const pt: Point = {};
 // ~~ Type '{}' is missing the following properties from type 'Point': x, y
pt.x = 3;
pt.y = 4;

The solution is to define the object all at once:

const pt = {
 x: 3,
 y: 4,
}; // OK

If you must build the object piecemeal, you may use a type assertion (as) to silence
the type checker:

const pt = {} as Point;
pt.x = 3;
pt.y = 4; // OK

But the better way is by building the object all at once and using a declaration (see
Item 9):

const pt: Point = {
 x: 3,
 y: 4,
};

If you need to build a larger object from smaller ones, avoid doing it in multiple steps:

const pt = {x: 3, y: 4};
const id = {name: 'Pythagoras'};
const namedPoint = {};
Object.assign(namedPoint, pt, id);
namedPoint.name;
 // ~~~~ Property 'name' does not exist on type '{}'

You can build the larger object all at once instead using the object spread opera‐
tor, ...:

const namedPoint = {...pt, ...id};
namedPoint.name; // OK, type is string

You can also use the object spread operator to build up objects field by field in a type-
safe way. The key is to use a new variable on every update so that each gets a new
type:

const pt0 = {};
const pt1 = {...pt0, x: 3};
const pt: Point = {...pt1, y: 4}; // OK

Item 23: Create Objects All at Once | 97

1 Prior to TypeScript 4.1, you’ll see a union type. While this is technically more accurate, the type with optional
fields is more convenient. See Item 32

While this is a roundabout way to build up such a simple object, it can be a useful
technique for adding properties to an object and allowing TypeScript to infer a new
type.

To conditionally add a property in a type-safe way, you can use spread syntax with
null or {}, which add no properties:

declare let hasMiddle: boolean;
const firstLast = {first: 'Harry', last: 'Truman'};
const president = {...firstLast, ...(hasMiddle ? {middle: 'S'} : {})};

If you mouse over president in your editor, you’ll see that its type is inferred as one
with an optional property:

const president: {
 middle?: string;
 first: string;
 last: string;
}

You can also use spread syntax to add multiple fields conditionally:

declare let hasDates: boolean;
const nameTitle = {name: 'Khufu', title: 'Pharaoh'};
const pharaoh = {
 ...nameTitle,
 ...(hasDates && {start: -2589, end: -2566})
};

In this case, if you mouse over the pharaoh symbol in your editor, you’ll see that both
start and end have become optional fields1:

const pharaoh: {
 start?: number;
 end?: number;
 name: string;
 title: string;
}

If you read start off this type, you’ll have to consider the possibility that it’s
undefined:

const {start} = pharaoh; // type is number | undefined

Sometimes you want to build an object or array by transforming another one. In this
case the equivalent of “building objects all at once” is using built-in functional con‐
structs or utility libraries like Lodash rather than loops. See Item 27 for more on this.

98 | Chapter 3: Type Inference

Things to Remember
• Prefer to build objects all at once rather than piecemeal. Use object spread

({...a, ...b}) to add properties in a type-safe way.
• Know how to conditionally add properties to an object.

Item 24: Be Consistent in Your Use of Aliases
When you introduce a new name for a value:

const borough = {name: 'Brooklyn', location: [40.688, -73.979]};
const loc = borough.location;

you have created an alias. Changes to properties on the alias will be visible on the
original value as well:

> loc[0] = 0;
> borough.location
[0, -73.979]

Aliases are the bane of compiler writers in all languages because they make control
flow analysis difficult. If you’re deliberate in your use of aliases, TypeScript will be
able to understand your code better and help you find more real errors.

Suppose you have a data structure that represents a polygon:

interface Coordinate {
 x: number;
 y: number;
}

interface BoundingBox {
 x: [number, number];
 y: [number, number];
}

interface Polygon {
 exterior: Coordinate[];
 holes: Coordinate[][];
 bbox?: BoundingBox;
}

The geometry of the polygon is specified by the exterior and holes properties. The
bbox property is an optimization that may or may not be present. You can use it to
speed up a point-in-polygon check:

function isPointInPolygon(polygon: Polygon, pt: Coordinate) {
 if (polygon.bbox) {
 if (pt.x < polygon.bbox.x[0] || pt.x > polygon.bbox.x[1] ||
 pt.y < polygon.bbox.y[0] || pt.y > polygon.bbox.y[1]) {
 return false;

Item 24: Be Consistent in Your Use of Aliases | 99

 }
 }

 // ... more complex check
}

This code works (and type checks) but is a bit repetitive: polygon.bbox appears five
times in three lines! Here’s an attempt to factor out an intermediate variable to reduce
duplication:

function isPointInPolygon(polygon: Polygon, pt: Coordinate) {
 const box = polygon.bbox;
 if (polygon.bbox) {
 if (pt.x < box.x[0] || pt.x > box.x[1] ||
 // ~~~ ~~~ Object is possibly 'undefined'
 pt.y < box.y[0] || pt.y > box.y[1]) {
 // ~~~ ~~~ Object is possibly 'undefined'
 return false;
 }
 }
 // ...
}

(I’m assuming you’ve enabled strictNullChecks.)

This code still works, so why the error? By factoring out the box variable, you’ve cre‐
ated an alias for polygon.bbox, and this has thwarted the control flow analysis that
quietly worked in the first example.

You can inspect the types of box and polygon.bbox to see what’s happening:

function isPointInPolygon(polygon: Polygon, pt: Coordinate) {
 polygon.bbox // Type is BoundingBox | undefined
 const box = polygon.bbox;
 box // Type is BoundingBox | undefined
 if (polygon.bbox) {
 polygon.bbox // Type is BoundingBox
 box // Type is BoundingBox | undefined
 }
}

The property check refines the type of polygon.bbox but not of box and hence the
errors. This leads us to the golden rule of aliasing: if you introduce an alias, use it
consistently.

Using box in the property check fixes the error:

function isPointInPolygon(polygon: Polygon, pt: Coordinate) {
 const box = polygon.bbox;
 if (box) {
 if (pt.x < box.x[0] || pt.x > box.x[1] ||
 pt.y < box.y[0] || pt.y > box.y[1]) { // OK
 return false;

100 | Chapter 3: Type Inference

 }
 }
 // ...
}

The type checker is happy now, but there’s an issue for human readers. We’re using
two names for the same thing: box and bbox. This is a distinction without a difference
(Item 36).

Object destructuring syntax rewards consistent naming with a more compact syntax.
You can even use it on arrays and nested structures:

function isPointInPolygon(polygon: Polygon, pt: Coordinate) {
 const {bbox} = polygon;
 if (bbox) {
 const {x, y} = bbox;
 if (pt.x < x[0] || pt.x > x[1] ||
 pt.y < y[0] || pt.y > y[1]) {
 return false;
 }
 }
 // ...
}

A few other points:

• This code would have required more property checks if the x and y properties
had been optional, rather than the whole bbox property. We benefited from fol‐
lowing the advice of Item 31, which discusses the importance of pushing null val‐
ues to the perimeter of your types.

• An optional property was appropriate for bbox but would not have been appro‐
priate for holes. If holes was optional, then it would be possible for it to be
either missing or an empty array ([]). This would be a distinction without a dif‐
ference. An empty array is a fine way to indicate “no holes.”

In your interactions with the type checker, don’t forget that aliasing can introduce
confusion at runtime, too:

const {bbox} = polygon;
if (!bbox) {
 calculatePolygonBbox(polygon); // Fills in polygon.bbox
 // Now polygon.bbox and bbox refer to different values!
}

TypeScript’s control flow analysis tends to be quite good for local variables. But for
properties you should be on guard:

function fn(p: Polygon) { /* ... */ }

polygon.bbox // Type is BoundingBox | undefined

Item 24: Be Consistent in Your Use of Aliases | 101

if (polygon.bbox) {
 polygon.bbox // Type is BoundingBox
 fn(polygon);
 polygon.bbox // Type is still BoundingBox
}

The call to fn(polygon) could very well un-set polygon.bbox, so it would be safer for
the type to revert to BoundingBox | undefined. But this would get frustrating: you’d
have to repeat your property checks every time you called a function. So TypeScript
makes the pragmatic choice to assume the function does not invalidate its type refine‐
ments. But it could. If you’d factored out a local bbox variable instead of using poly
gon.bbox, the type of bbox would remain accurate, but it might no longer be the same
value as polygon.bbox.

Things to Remember
• Aliasing can prevent TypeScript from narrowing types. If you create an alias for a

variable, use it consistently.
• Use destructuring syntax to encourage consistent naming.
• Be aware of how function calls can invalidate type refinements on properties.

Trust refinements on local variables more than on properties.

Item 25: Use async Functions Instead of Callbacks for
Asynchronous Code
Classic JavaScript modeled asynchronous behavior using callbacks. This leads to the
infamous “pyramid of doom”:

fetchURL(url1, function(response1) {
 fetchURL(url2, function(response2) {
 fetchURL(url3, function(response3) {
 // ...
 console.log(1);
 });
 console.log(2);
 });
 console.log(3);
});
console.log(4);

// Logs:
// 4
// 3
// 2
// 1

102 | Chapter 3: Type Inference

As you can see from the logs, the execution order is the opposite of the code order.
This makes callback code hard to read. It gets even more confusing if you want to run
the requests in parallel or bail when an error occurs.

ES2015 introduced the concept of a Promise to break the pyramid of doom. A
Promise represents something that will be available in the future (they’re also some‐
times called “futures”). Here’s the same code using Promises:

const page1Promise = fetch(url1);
page1Promise.then(response1 => {
 return fetch(url2);
}).then(response2 => {
 return fetch(url3);
}).then(response3 => {
 // ...
}).catch(error => {
 // ...
});

Now there’s less nesting, and the execution order more directly matches the code
order. It’s also easier to consolidate error handling and use higher-order tools like
Promise.all.

ES2017 introduced the async and await keywords to make things even simpler:

async function fetchPages() {
 const response1 = await fetch(url1);
 const response2 = await fetch(url2);
 const response3 = await fetch(url3);
 // ...
}

The await keyword pauses execution of the fetchPages function until each Promise
resolves. Within an async function, awaiting a Promise that rejects will throw an
exception. This lets you use the usual try/catch machinery:

async function fetchPages() {
 try {
 const response1 = await fetch(url1);
 const response2 = await fetch(url2);
 const response3 = await fetch(url3);
 // ...
 } catch (e) {
 // ...
 }
}

When you target ES5 or earlier, the TypeScript compiler will perform some elaborate
transformations to make async and await work. In other words, whatever your run‐
time, with TypeScript you can use async/await.

There are a few good reasons to prefer Promises or async/await to callbacks:

Item 25: Use async Functions Instead of Callbacks for Asynchronous Code | 103

• Promises are easier to compose than callbacks.
• Types are able to flow through Promises more easily than callbacks.

If you want to fetch the pages in parallel, for example, you can compose Promises
with Promise.all:

async function fetchPages() {
 const [response1, response2, response3] = await Promise.all([
 fetch(url1), fetch(url2), fetch(url3)
]);
 // ...
}

Using destructuring assignment with await is particularly nice in this context.

TypeScript is able to infer the types of each of the three response variables as
Response. The equivalent code to do the requests in parallel with callbacks requires
more machinery and a type annotation:

function fetchPagesCB() {
 let numDone = 0;
 const responses: string[] = [];
 const done = () => {
 const [response1, response2, response3] = responses;
 // ...
 };
 const urls = [url1, url2, url3];
 urls.forEach((url, i) => {
 fetchURL(url, r => {
 responses[i] = url;
 numDone++;
 if (numDone === urls.length) done();
 });
 });
}

Extending this to include error handling or to be as generic as Promise.all is
challenging.

Type inference also works well with Promise.race, which resolves when the first of
its input Promises resolves. You can use this to add timeouts to Promises in a general
way:

function timeout(millis: number): Promise<never> {
 return new Promise((resolve, reject) => {
 setTimeout(() => reject('timeout'), millis);
 });
}

async function fetchWithTimeout(url: string, ms: number) {

104 | Chapter 3: Type Inference

 return Promise.race([fetch(url), timeout(ms)]);
}

The return type of fetchWithTimeout is inferred as Promise<Response>, no type
annotations required. It’s interesting to dig into why this works: the return type of
Promise.race is the union of the types of its inputs, in this case Promise<Response |
never>. But taking a union with never (the empty set) is a no-op, so this gets simpli‐
fied to Promise<Response>. When you work with Promises, all of TypeScript’s type
inference machinery works to get you the right types.

There are some times when you need to use raw Promises, notably when you are
wrapping a callback API like setTimeout. But if you have a choice, you should gener‐
ally prefer async/await to raw Promises for two reasons:

• It typically produces more concise and straightforward code.
• It enforces that async functions always return Promises.

An async function always returns a Promise, even if it doesn’t involve awaiting any‐
thing. TypeScript can help you build an intuition for this:

// function getNumber(): Promise<number>
async function getNumber() {
 return 42;
}

You can also create async arrow functions:

const getNumber = async () => 42; // Type is () => Promise<number>

The raw Promise equivalent is:

const getNumber = () => Promise.resolve(42); // Type is () => Promise<number>

While it may seem odd to return a Promise for an immediately available value, this
actually helps enforce an important rule: a function should either always be run syn‐
chronously or always be run asynchronously. It should never mix the two. For exam‐
ple, what if you want to add a cache to the fetchURL function? Here’s an attempt:

// Don't do this!
const _cache: {[url: string]: string} = {};
function fetchWithCache(url: string, callback: (text: string) => void) {
 if (url in _cache) {
 callback(_cache[url]);
 } else {
 fetchURL(url, text => {
 _cache[url] = text;
 callback(text);
 });
 }
}

Item 25: Use async Functions Instead of Callbacks for Asynchronous Code | 105

While this may seem like an optimization, the function is now extremely difficult for
a client to use:

let requestStatus: 'loading' | 'success' | 'error';
function getUser(userId: string) {
 fetchWithCache(`/user/${userId}`, profile => {
 requestStatus = 'success';
 });
 requestStatus = 'loading';
}

What will the value of requestStatus be after calling getUser? It depends entirely on
whether the profile is cached. If it’s not, requestStatus will be set to “success.” If it is,
it’ll get set to “success” and then set back to “loading.” Oops!

Using async for both functions enforces consistent behavior:

const _cache: {[url: string]: string} = {};
async function fetchWithCache(url: string) {
 if (url in _cache) {
 return _cache[url];
 }
 const response = await fetch(url);
 const text = await response.text();
 _cache[url] = text;
 return text;
}

let requestStatus: 'loading' | 'success' | 'error';
async function getUser(userId: string) {
 requestStatus = 'loading';
 const profile = await fetchWithCache(`/user/${userId}`);
 requestStatus = 'success';
}

Now it’s completely transparent that requestStatus will end in “success.” It’s easy to
accidentally produce half-synchronous code with callbacks or raw Promises, but diffi‐
cult with async.

Note that if you return a Promise from an async function, it will not get wrapped in
another Promise: the return type will be Promise<T> rather than
Promise<Promise<T>>. Again, TypeScript will help you build an intuition for this:

// Function getJSON(url: string): Promise<any>
async function getJSON(url: string) {
 const response = await fetch(url);
 const jsonPromise = response.json(); // Type is Promise<any>
 return jsonPromise;
}

106 | Chapter 3: Type Inference

Things to Remember
• Prefer Promises to callbacks for better composability and type flow.
• Prefer async and await to raw Promises when possible. They produce more con‐

cise, straightforward code and eliminate whole classes of errors.
• If a function returns a Promise, declare it async.

Item 26: Understand How Context Is Used in Type
Inference
TypeScript doesn’t just infer types based on values. It also considers the context in
which the value occurs. This usually works well but can sometimes lead to surprises.
Understanding how context is used in type inference will help you identify and work
around these surprises when they do occur.

In JavaScript you can factor an expression out into a constant without changing the
behavior of your code (so long as you don’t alter execution order). In other words,
these two statements are equivalent:

// Inline form
setLanguage('JavaScript');

// Reference form
let language = 'JavaScript';
setLanguage(language);

In TypeScript, this refactor still works:

function setLanguage(language: string) { /* ... */ }

setLanguage('JavaScript'); // OK

let language = 'JavaScript';
setLanguage(language); // OK

Now suppose you take to heart the advice of Item 33 and replace the string type with
a more precise union of string literal types:

type Language = 'JavaScript' | 'TypeScript' | 'Python';
function setLanguage(language: Language) { /* ... */ }

setLanguage('JavaScript'); // OK

let language = 'JavaScript';
setLanguage(language);
 // ~~~~~~~~ Argument of type 'string' is not assignable
 // to parameter of type 'Language'

Item 26: Understand How Context Is Used in Type Inference | 107

What went wrong? With the inline form, TypeScript knows from the function decla‐
ration that the parameter is supposed to be of type Language. The string literal 'Java
Script' is assignable to this type, so this is OK. But when you factor out a variable,
TypeScript must infer its type at the time of assignment. In this case it infers string,
which is not assignable to Language. Hence the error.

(Some languages are able to infer types for variables based on their eventual usage.
But this can also be confusing. Anders Hejlsberg, the creator of TypeScript, refers to it
as “spooky action at a distance.” By and large, TypeScript determines the type of a
variable when it is first introduced. For a notable exception to this rule, see Item 41.)

There are two good ways to solve this problem. One is to constrain the possible val‐
ues of language with a type declaration:

let language: Language = 'JavaScript';
setLanguage(language); // OK

This also has the benefit of flagging an error if there’s a typo in the language—for
example 'Typescript' (it should be a capital “S”).

The other solution is to make the variable constant:

const language = 'JavaScript';
setLanguage(language); // OK

By using const, we’ve told the type checker that this variable cannot change. So Type‐
Script can infer a more precise type for language, the string literal type "Java
Script". This is assignable to Language so the code type checks. Of course, if you do
need to reassign language, then you’ll need to use the type declaration. (For more on
this, see Item 21.)

The fundamental issue here is that we’ve separated the value from the context in
which it’s used. Sometimes this is OK, but often it is not. The rest of this item walks
through a few cases where this loss of context can cause errors and shows you how to
fix them.

Tuple Types
In addition to string literal types, problems can come up with tuple types. Suppose
you’re working with a map visualization that lets you programmatically pan the map:

// Parameter is a (latitude, longitude) pair.
function panTo(where: [number, number]) { /* ... */ }

panTo([10, 20]); // OK

const loc = [10, 20];
panTo(loc);

108 | Chapter 3: Type Inference

// ~~~ Argument of type 'number[]' is not assignable to
// parameter of type '[number, number]'

As before, you’ve separated a value from its context. In the first instance [10, 20] is
assignable to the tuple type [number, number]. In the second, TypeScript infers the
type of loc as number[] (i.e., an array of numbers of unknown length). This is not
assignable to the tuple type, since many arrays have the wrong number of elements.

So how can you fix this error without resorting to any? You’ve already declared it
const, so that won’t help. But you can still provide a type declaration to let TypeScript
know precisely what you mean:

const loc: [number, number] = [10, 20];
panTo(loc); // OK

Another way is to provide a “const context.” This tells TypeScript that you intend the
value to be deeply constant, rather than the shallow constant that const gives:

const loc = [10, 20] as const;
panTo(loc);
 // ~~~ Type 'readonly [10, 20]' is 'readonly'
 // and cannot be assigned to the mutable type '[number, number]'

If you hover over loc in your editor, you’ll see that its type is now inferred as
readonly [10, 20], rather than number[]. Unfortunately this is too precise! The type
signature of panTo makes no promises that it won’t modify the contents of its where
parameter. Since the loc parameter has a readonly type, this won’t do. The best solu‐
tion here is to add a readonly annotation to the panTo function:

function panTo(where: readonly [number, number]) { /* ... */ }
const loc = [10, 20] as const;
panTo(loc); // OK

If the type signature is outside your control, then you’ll need to use an annotation.

const contexts can neatly solve issues around losing context in inference, but they do
have an unfortunate downside: if you make a mistake in the definition (say you add a
third element to the tuple) then the error will be flagged at the call site, not at the
definition. This may be confusing, especially if the error occurs in a deeply nested
object:

const loc = [10, 20, 30] as const; // error is really here.
panTo(loc);
// ~~~ Argument of type 'readonly [10, 20, 30]' is not assignable to
// parameter of type 'readonly [number, number]'
// Types of property 'length' are incompatible
// Type '3' is not assignable to type '2'

Item 26: Understand How Context Is Used in Type Inference | 109

Objects
The problem of separating a value from its context also comes up when you factor
out a constant from a larger object that contains some string literals or tuples. For
example:

type Language = 'JavaScript' | 'TypeScript' | 'Python';
interface GovernedLanguage {
 language: Language;
 organization: string;
}

function complain(language: GovernedLanguage) { /* ... */ }

complain({ language: 'TypeScript', organization: 'Microsoft' }); // OK

const ts = {
 language: 'TypeScript',
 organization: 'Microsoft',
};
complain(ts);
// ~~ Argument of type '{ language: string; organization: string; }'
// is not assignable to parameter of type 'GovernedLanguage'
// Types of property 'language' are incompatible
// Type 'string' is not assignable to type 'Language'

In the ts object, the type of language is inferred as string. As before, the solution is
to add a type declaration (const ts: GovernedLanguage = ...) or use a const asser‐
tion (as const).

Callbacks
When you pass a callback to another function, TypeScript uses context to infer the
parameter types of the callback:

function callWithRandomNumbers(fn: (n1: number, n2: number) => void) {
 fn(Math.random(), Math.random());
}

callWithRandomNumbers((a, b) => {
 a; // Type is number
 b; // Type is number
 console.log(a + b);
});

The types of a and b are inferred as number because of the type declaration for callWi
thRandomNumbers. If you factor the callback out into a constant, you lose that context
and get noImplicitAny errors:

const fn = (a, b) => {
 // ~ Parameter 'a' implicitly has an 'any' type

110 | Chapter 3: Type Inference

 // ~ Parameter 'b' implicitly has an 'any' type
 console.log(a + b);
}
callWithRandomNumbers(fn);

The solution is either to add type annotations to the parameters:

const fn = (a: number, b: number) => {
 console.log(a + b);
}
callWithRandomNumbers(fn);

or to apply a type declaration to the entire function expression if one is available. See
Item 12.

Things to Remember
• Be aware of how context is used in type inference.
• If factoring out a variable introduces a type error, consider adding a type declara‐

tion.
• If the variable is truly a constant, use a const assertion (as const). But be aware

that this may result in errors surfacing at use, rather than definition.

Item 27: Use Functional Constructs and Libraries to Help
Types Flow
JavaScript has never included the sort of standard library you find in Python, C, or
Java. Over the years many libraries have tried to fill the gap. jQuery provided helpers
not just for interacting with the DOM but also for iterating and mapping over objects
and arrays. Underscore focused more on providing general utility functions, and
Lodash built on this effort. Today libraries like Ramda continue to bring ideas from
functional programming into the JavaScript world.

Some features from these libraries, such as map, flatMap, filter, and reduce, have
made it into the JavaScript language itself. While these constructs (and the other ones
provided by Lodash) are helpful in JavaScript and often preferable to a hand-rolled
loop, this advantage tends to get even more lopsided when you add TypeScript to the
mix. This is because their type declarations ensure that types flow through these con‐
structs. With hand-rolled loops, you’re responsible for the types yourself.

For example, consider parsing some CSV data. You could do it in plain JavaScript in a
somewhat imperative style:

const csvData = "...";
const rawRows = csvData.split('\n');
const headers = rawRows[0].split(',');

Item 27: Use Functional Constructs and Libraries to Help Types Flow | 111

const rows = rawRows.slice(1).map(rowStr => {
 const row = {};
 rowStr.split(',').forEach((val, j) => {
 row[headers[j]] = val;
 });
 return row;
});

More functionally minded JavaScripters might prefer to build the row objects with
reduce:

const rows = rawRows.slice(1)
 .map(rowStr => rowStr.split(',').reduce(
 (row, val, i) => (row[headers[i]] = val, row),
 {}));

This version saves three lines (almost 20 non-whitespace characters!) but may be
more cryptic depending on your sensibilities. Lodash’s zipObject function, which
forms an object by “zipping” up a keys and values array, can tighten it even further:

import _ from 'lodash';
const rows = rawRows.slice(1)
 .map(rowStr => _.zipObject(headers, rowStr.split(',')));

I find this the clearest of all. But is it worth the cost of adding a dependency on a
third-party library to your project? If you’re not using a bundler and the overhead of
doing this is significant, then the answer may be “no.”

When you add TypeScript to the mix, it starts to tip the balance more strongly in
favor of the Lodash solution.

Both vanilla JS versions of the CSV parser produce the same error in TypeScript:

const rowsA = rawRows.slice(1).map(rowStr => {
 const row = {};
 rowStr.split(',').forEach((val, j) => {
 row[headers[j]] = val;
 // ~~~~~~~~~~~~~~~ No index signature with a parameter of
 // type 'string' was found on type '{}'
 });
 return row;
});
const rowsB = rawRows.slice(1)
 .map(rowStr => rowStr.split(',').reduce(
 (row, val, i) => (row[headers[i]] = val, row),
 // ~~~~~~~~~~~~~~~ No index signature with a parameter of
 // type 'string' was found on type '{}'
 {}));

The solution in each case is to provide a type annotation for {}, either {[column:
string]: string} or Record<string, string>.

The Lodash version, on the other hand, passes the type checker without modification:

112 | Chapter 3: Type Inference

const rows = rawRows.slice(1)
 .map(rowStr => _.zipObject(headers, rowStr.split(',')));
 // Type is _.Dictionary<string>[]

Dictionary is a Lodash type alias. Dictionary<string> is the same as {[key:
string]: string} or Record<string, string>. The important thing here is that the
type of rows is exactly correct, no type annotations needed.

These advantages get more pronounced as your data munging gets more elaborate.
For example, suppose you have a list of the rosters for all the NBA teams:

interface BasketballPlayer {
 name: string;
 team: string;
 salary: number;
}
declare const rosters: {[team: string]: BasketballPlayer[]};

To build a flat list using a loop, you might use concat with an array. This code runs
fine but does not type check:

let allPlayers = [];
 // ~~~~~~~~~~ Variable 'allPlayers' implicitly has type 'any[]'
 // in some locations where its type cannot be determined
for (const players of Object.values(rosters)) {
 allPlayers = allPlayers.concat(players);
 // ~~~~~~~~~~ Variable 'allPlayers' implicitly has an 'any[]' type
}

To fix the error you need to add a type annotation to allPlayers:

let allPlayers: BasketballPlayer[] = [];
for (const players of Object.values(rosters)) {
 allPlayers = allPlayers.concat(players); // OK
}

But a better solution is to use Array.prototype.flat:

const allPlayers = Object.values(rosters).flat();
// OK, type is BasketballPlayer[]

The flat method flattens a multidimensional array. Its type signature is something
like T[][] => T[]. This version is the most concise and requires no type annotations.
As an added bonus you can use const instead of let to prevent future mutations to
the allPlayers variable.

Say you want to start with allPlayers and make a list of the highest-paid players on
each team ordered by salary.

Here’s a solution without Lodash. It requires a type annotation where you don’t use
functional constructs:

Item 27: Use Functional Constructs and Libraries to Help Types Flow | 113

const teamToPlayers: {[team: string]: BasketballPlayer[]} = {};
for (const player of allPlayers) {
 const {team} = player;
 teamToPlayers[team] = teamToPlayers[team] || [];
 teamToPlayers[team].push(player);
}

for (const players of Object.values(teamToPlayers)) {
 players.sort((a, b) => b.salary - a.salary);
}

const bestPaid = Object.values(teamToPlayers).map(players => players[0]);
bestPaid.sort((playerA, playerB) => playerB.salary - playerA.salary);
console.log(bestPaid);

Here’s the output:

[
 { team: 'GSW', salary: 37457154, name: 'Stephen Curry' },
 { team: 'HOU', salary: 35654150, name: 'Chris Paul' },
 { team: 'LAL', salary: 35654150, name: 'LeBron James' },
 { team: 'OKC', salary: 35654150, name: 'Russell Westbrook' },
 { team: 'DET', salary: 32088932, name: 'Blake Griffin' },
 ...
]

Here’s the equivalent with Lodash:

const bestPaid = _(allPlayers)
 .groupBy(player => player.team)
 .mapValues(players => _.maxBy(players, p => p.salary)!)
 .values()
 .sortBy(p => -p.salary)
 .value() // Type is BasketballPlayer[]

In addition to being half the length, this code is clearer and requires only a single
non-null assertion (the type checker doesn’t know that the players array passed to
_.maxBy is non-empty). It makes use of a “chain,” a concept in Lodash and Under‐
score that lets you write a sequence of operations in a more natural order. Instead of
writing:

.c(.b(_.a(v)))

you write:

_(v).a().b().c().value()

The _(v) “wraps” the value, and the .value() “unwraps” it.

You can inspect each function call in the chain to see the type of the wrapped value.
It’s always correct.

Even some of the quirkier shorthands in Lodash can be modeled accurately in Type‐
Script. For instance, why would you want to use _.map instead of the built-in

114 | Chapter 3: Type Inference

Array.prototype.map? One reason is that instead of passing in a callback you can
pass in the name of a property. These calls all produce the same result:

const namesA = allPlayers.map(player => player.name) // Type is string[]
const namesB = _.map(allPlayers, player => player.name) // Type is string[]
const namesC = _.map(allPlayers, 'name'); // Type is string[]

It’s a testament to the sophistication of TypeScript’s type system that it can model a
construct like this accurately, but it naturally falls out of the combination of string lit‐
eral types and index types (see Item 14). If you’re used to C++ or Java, this sort of type
inference can feel quite magical!

const salaries = _.map(allPlayers, 'salary'); // Type is number[]
const teams = _.map(allPlayers, 'team'); // Type is string[]
const mix = _.map(allPlayers, Math.random() < 0.5 ? 'name' : 'salary');
 // Type is (string | number)[]

It’s not a coincidence that types flow so well through built-in functional constructs
and those in libraries like Lodash. By avoiding mutation and returning new values
from every call, they are able to produce new types as well (Item 20). And to a large
extent, the development of TypeScript has been driven by an attempt to accurately
model the behavior of JavaScript libraries in the wild. Take advantage of all this work
and use them!

Things to Remember
• Use built-in functional constructs and those in utility libraries like Lodash

instead of hand-rolled constructs to improve type flow, increase legibility, and
reduce the need for explicit type annotations.

Item 27: Use Functional Constructs and Libraries to Help Types Flow | 115

CHAPTER 4

Type Design

Show me your flowcharts and conceal your tables, and I shall continue to be mystified.
Show me your tables, and I won’t usually need your flowcharts; they’ll be obvious.

—Fred Brooks, The Mythical Man Month

The language in Fred Brooks’s quote is dated, but the sentiment remains true: code is
difficult to understand if you can’t see the data or data types on which it operates.
This is one of the great advantages of a type system: by writing out types, you make
them visible to readers of your code. And this makes your code understandable.

Other chapters cover the nuts and bolts of TypeScript types: using them, inferring
them, and writing declarations with them. This chapter discusses the design of the
types themselves. The examples in this chapter are all written with TypeScript in
mind, but most of the ideas are more broadly applicable.

If you write your types well, then with any luck your flowcharts will be obvious, too.

Item 28: Prefer Types That Always Represent Valid States
If you design your types well, your code should be straightforward to write. But if you
design your types poorly, no amount of cleverness or documentation will save you.
Your code will be confusing and bug prone.

A key to effective type design is crafting types that can only represent a valid state.
This item walks through a few examples of how this can go wrong and shows you
how to fix them.

Suppose you’re building a web application that lets you select a page, loads the con‐
tent of that page, and then displays it. You might write the state like this:

interface State {
 pageText: string;

117

 isLoading: boolean;
 error?: string;
}

When you write your code to render the page, you need to consider all of these fields:

function renderPage(state: State) {
 if (state.error) {
 return `Error! Unable to load ${currentPage}: ${state.error}`;
 } else if (state.isLoading) {
 return `Loading ${currentPage}...`;
 }
 return `<h1>${currentPage}</h1>\n${state.pageText}`;
}

Is this right, though? What if isLoading and error are both set? What would that
mean? Is it better to display the loading message or the error message? It’s hard to say!
There’s not enough information available.

Or what if you’re writing a changePage function? Here’s an attempt:

async function changePage(state: State, newPage: string) {
 state.isLoading = true;
 try {
 const response = await fetch(getUrlForPage(newPage));
 if (!response.ok) {
 throw new Error(`Unable to load ${newPage}: ${response.statusText}`);
 }
 const text = await response.text();
 state.isLoading = false;
 state.pageText = text;
 } catch (e) {
 state.error = '' + e;
 }
}

There are many problems with this! Here are a few:

• We forgot to set state.isLoading to false in the error case.
• We didn’t clear out state.error, so if the previous request failed, then you’ll

keep seeing that error message instead of a loading message.
• If the user changes pages again while the page is loading, who knows what will

happen. They might see a new page and then an error, or the first page and not
the second depending on the order in which the responses come back.

The problem is that the state includes both too little information (which request
failed? which is loading?) and too much: the State type allows both isLoading and
error to be set, even though this represents an invalid state. This makes both
render() and changePage() impossible to implement well.

118 | Chapter 4: Type Design

Here’s a better way to represent the application state:

interface RequestPending {
 state: 'pending';
}
interface RequestError {
 state: 'error';
 error: string;
}
interface RequestSuccess {
 state: 'ok';
 pageText: string;
}
type RequestState = RequestPending | RequestError | RequestSuccess;

interface State {
 currentPage: string;
 requests: {[page: string]: RequestState};
}

This uses a tagged union (also known as a “discriminated union”) to explicitly model
the different states that a network request can be in. This version of the state is three
to four times longer, but it has the enormous advantage of not admitting invalid
states. The current page is modeled explicitly, as is the state of every request that you
issue. As a result, the renderPage and changePage functions are easy to implement:

function renderPage(state: State) {
 const {currentPage} = state;
 const requestState = state.requests[currentPage];
 switch (requestState.state) {
 case 'pending':
 return `Loading ${currentPage}...`;
 case 'error':
 return `Error! Unable to load ${currentPage}: ${requestState.error}`;
 case 'ok':
 return `<h1>${currentPage}</h1>\n${requestState.pageText}`;
 }
}

async function changePage(state: State, newPage: string) {
 state.requests[newPage] = {state: 'pending'};
 state.currentPage = newPage;
 try {
 const response = await fetch(getUrlForPage(newPage));
 if (!response.ok) {
 throw new Error(`Unable to load ${newPage}: ${response.statusText}`);
 }
 const pageText = await response.text();
 state.requests[newPage] = {state: 'ok', pageText};
 } catch (e) {
 state.requests[newPage] = {state: 'error', error: '' + e};

Item 28: Prefer Types That Always Represent Valid States | 119

 }
}

The ambiguity from the first implementation is entirely gone: it’s clear what the cur‐
rent page is, and every request is in exactly one state. If the user changes the page
after a request has been issued, that’s no problem either. The old request still com‐
pletes, but it doesn’t affect the UI.

For a simpler but more dire example, consider the fate of Air France Flight 447, an
Airbus 330 that disappeared over the Atlantic on June 1, 2009. The Airbus was a fly-
by-wire aircraft, meaning that the pilots’ control inputs went through a computer sys‐
tem before affecting the physical control surfaces of the plane. In the wake of the
crash there were many questions raised about the wisdom of relying on computers to
make such life-and-death decisions. Two years later when the black box recorders
were recovered, they revealed many factors that led to the crash. But a key one was
bad state design.

The cockpit of the Airbus 330 had a separate set of controls for the pilot and copilot.
The “side sticks” controlled the angle of attack. Pulling back would send the airplane
into a climb, while pushing forward would make it dive. The Airbus 330 used a sys‐
tem called “dual input” mode, which let the two side sticks move independently.
Here’s how you might model its state in TypeScript:

interface CockpitControls {
 /** Angle of the left side stick in degrees, 0 = neutral, + = forward */
 leftSideStick: number;
 /** Angle of the right side stick in degrees, 0 = neutral, + = forward */
 rightSideStick: number;
}

Suppose you were given this data structure and asked to write a getStickSetting
function that computed the current stick setting. How would you do it?

One way would be to assume that the pilot (who sits on the left) is in control:

function getStickSetting(controls: CockpitControls) {
 return controls.leftSideStick;
}

But what if the copilot has taken control? Maybe you should use whichever stick is
away from zero:

function getStickSetting(controls: CockpitControls) {
 const {leftSideStick, rightSideStick} = controls;
 if (leftSideStick === 0) {
 return rightSideStick;
 }
 return leftSideStick;
}

120 | Chapter 4: Type Design

But there’s a problem with this implementation: we can only be confident returning
the left setting if the right one is neutral. So you should check for that:

function getStickSetting(controls: CockpitControls) {
 const {leftSideStick, rightSideStick} = controls;
 if (leftSideStick === 0) {
 return rightSideStick;
 } else if (rightSideStick === 0) {
 return leftSideStick;
 }
 // ???
}

What do you do if they’re both non-zero? Hopefully they’re about the same, in which
case you could just average them:

function getStickSetting(controls: CockpitControls) {
 const {leftSideStick, rightSideStick} = controls;
 if (leftSideStick === 0) {
 return rightSideStick;
 } else if (rightSideStick === 0) {
 return leftSideStick;
 }
 if (Math.abs(leftSideStick - rightSideStick) < 5) {
 return (leftSideStick + rightSideStick) / 2;
 }
 // ???
}

But what if they’re not? Can you throw an error? Not really: the ailerons need to be
set at some angle!

On Air France 447, the copilot silently pulled back on his side stick as the plane
entered a storm. It gained altitude but eventually lost speed and entered a stall, a con‐
dition in which the plane is moving too slowly to effectively generate lift. It began to
drop.

To escape a stall, pilots are trained to push the controls forward to make the plane
dive and regain speed. This is exactly what the pilot did. But the copilot was still
silently pulling back on his side stick. And the Airbus function looked like this:

function getStickSetting(controls: CockpitControls) {
 return (controls.leftSideStick + controls.rightSideStick) / 2;
}

Even though the pilot pushed the stick fully forward, it averaged out to nothing. He
had no idea why the plane wasn’t diving. By the time the copilot revealed what he’d
done, the plane had lost too much altitude to recover and it crashed into the ocean,
killing all 228 people on board.

The point of all this is that there is no good way to implement getStickSetting
given that input! The function has been set up to fail. In most planes the two sets of

Item 28: Prefer Types That Always Represent Valid States | 121

controls are mechanically connected. If the copilot pulls back, the pilot’s controls will
also pull back. The state of these controls is simple to express:

interface CockpitControls {
 /** Angle of the stick in degrees, 0 = neutral, + = forward */
 stickAngle: number;
}

And now, as in the Fred Brooks quote from the start of the chapter, our flowcharts are
obvious. You don’t need a getStickSetting function at all.

As you design your types, take care to think about which values you are including
and which you are excluding. If you only allow values that represent valid states, your
code will be easier to write and TypeScript will have an easier time checking it. This is
a very general principle, and several of the other items in this chapter will cover spe‐
cific manifestations of it.

Things to Remember
• Types that represent both valid and invalid states are likely to lead to confusing

and error-prone code.
• Prefer types that only represent valid states. Even if they are longer or harder to

express, they will save you time and pain in the end!

Item 29: Be Liberal in What You Accept and Strict in What
You Produce
This idea is known as the robustness principle or Postel’s Law, after Jon Postel, who
wrote it in the context of TCP:

TCP implementations should follow a general principle of robustness: be conservative
in what you do, be liberal in what you accept from others.

A similar rule applies to the contracts for functions. It’s fine for your functions to be
broad in what they accept as inputs, but they should generally be more specific in
what they produce as outputs.

As an example, a 3D mapping API might provide a way to position the camera and to
calculate a viewport for a bounding box:

declare function setCamera(camera: CameraOptions): void;
declare function viewportForBounds(bounds: LngLatBounds): CameraOptions;

It is convenient that the result of viewportForBounds can be passed directly to
setCamera to position the camera.

Let’s look at the definitions of these types:

122 | Chapter 4: Type Design

interface CameraOptions {
 center?: LngLat;
 zoom?: number;
 bearing?: number;
 pitch?: number;
}
type LngLat =
 { lng: number; lat: number; } |
 { lon: number; lat: number; } |
 [number, number];

The fields in CameraOptions are all optional because you might want to set just the
center or zoom without changing the bearing or pitch. The LngLat type also makes
setCamera liberal in what it accepts: you can pass in a {lng, lat} object, a {lon,
lat} object, or a [lng, lat] pair if you’re confident you got the order right. These
accommodations make the function easy to call.

The viewportForBounds function takes in another “liberal” type:

type LngLatBounds =
 {northeast: LngLat, southwest: LngLat} |
 [LngLat, LngLat] |
 [number, number, number, number];

You can specify the bounds either using named corners, a pair of lat/lngs, or a four-
tuple if you’re confident you got the order right. Since LngLat already accommodates
three forms, there are no fewer than 19 possible forms for LngLatBounds. Liberal
indeed!

Now let’s write a function that adjusts the viewport to accommodate a GeoJSON Fea‐
ture and stores the new viewport in the URL (for a definition of calculateBounding
Box, see Item 31):

function focusOnFeature(f: Feature) {
 const bounds = calculateBoundingBox(f);
 const camera = viewportForBounds(bounds);
 setCamera(camera);
 const {center: {lat, lng}, zoom} = camera;
 // ~~~ Property 'lat' does not exist on type ...
 // ~~~ Property 'lng' does not exist on type ...
 zoom; // Type is number | undefined
 window.location.search = `?v=@${lat},${lng}z${zoom}`;
}

Whoops! Only the zoom property exists, but its type is inferred as number|undefined,
which is also problematic. The issue is that the type declaration for viewportFor
Bounds indicates that it is liberal not just in what it accepts but also in what it pro‐
duces. The only type-safe way to use the camera result is to introduce a code branch
for each component of the union type (Item 22).

Item 29: Be Liberal in What You Accept and Strict in What You Produce | 123

The return type with lots of optional properties and union types makes viewportFor
Bounds difficult to use. Its broad parameter type is convenient, but its broad return
type is not. A more convenient API would be strict in what it produces.

One way to do this is to distinguish a canonical format for coordinates. Following
JavaScript’s convention of distinguishing “Array” and “Array-like” (Item 16), you can
draw a distinction between LngLat and LngLatLike. You can also distinguish between
a fully defined Camera type and the partial version accepted by setCamera:

interface LngLat { lng: number; lat: number; };
type LngLatLike = LngLat | { lon: number; lat: number; } | [number, number];

interface Camera {
 center: LngLat;
 zoom: number;
 bearing: number;
 pitch: number;
}
interface CameraOptions extends Omit<Partial<Camera>, 'center'> {
 center?: LngLatLike;
}
type LngLatBounds =
 {northeast: LngLatLike, southwest: LngLatLike} |
 [LngLatLike, LngLatLike] |
 [number, number, number, number];

declare function setCamera(camera: CameraOptions): void;
declare function viewportForBounds(bounds: LngLatBounds): Camera;

The loose CameraOptions type adapts the stricter Camera type (Item 14).

Using Partial<Camera> as the parameter type in setCamera would not work here
since you do want to allow LngLatLike objects for the center property. And you can’t
write "CameraOptions extends Partial<Camera>" since LngLatLike is a superset of
LngLat, not a subset (Item 7). If this seems too complicated, you could also write the
type out explicitly at the cost of some repetition:

interface CameraOptions {
 center?: LngLatLike;
 zoom?: number;
 bearing?: number;
 pitch?: number;
}

In either case, with these new type declarations the focusOnFeature function passes
the type checker:

function focusOnFeature(f: Feature) {
 const bounds = calculateBoundingBox(f);
 const camera = viewportForBounds(bounds);
 setCamera(camera);

124 | Chapter 4: Type Design

 const {center: {lat, lng}, zoom} = camera; // OK
 zoom; // Type is number
 window.location.search = `?v=@${lat},${lng}z${zoom}`;
}

This time the type of zoom is number, rather than number|undefined. The viewport
ForBounds function is now much easier to use. If there were any other functions that
produced bounds, you would also need to introduce a canonical form and a distinc‐
tion between LngLatBounds and LngLatBoundsLike.

Is allowing 19 possible forms of bounding box a good design? Perhaps not. But if
you’re writing type declarations for a library that does this, you need to model its
behavior. Just don’t have 19 return types!

Things to Remember
• Input types tend to be broader than output types. Optional properties and union

types are more common in parameter types than return types.
• To reuse types between parameters and return types, introduce a canonical form

(for return types) and a looser form (for parameters).

Item 30: Don’t Repeat Type Information in
Documentation
What’s wrong with this code?

/**
 * Returns a string with the foreground color.
 * Takes zero or one arguments. With no arguments, returns the
 * standard foreground color. With one argument, returns the foreground color
 * for a particular page.
 */
function getForegroundColor(page?: string) {
 return page === 'login' ? {r: 127, g: 127, b: 127} : {r: 0, g: 0, b: 0};
}

The code and the comment disagree! Without more context it’s hard to say which is
right, but something is clearly amiss. As a professor of mine used to say, “when your
code and your comments disagree, they’re both wrong!”

Let’s assume that the code represents the desired behavior. There are a few issues with
this comment:

• It says that the function returns the color as a string when it actually returns an
{r, g, b} object.

Item 30: Don’t Repeat Type Information in Documentation | 125

• It explains that the function takes zero or one arguments, which is already clear
from the type signature.

• It’s needlessly wordy: the comment is longer than the function declaration and
implementation!

TypeScript’s type annotation system is designed to be compact, descriptive, and read‐
able. Its developers are language experts with decades of experience. It’s almost cer‐
tainly a better way to express the types of your function’s inputs and outputs than
your prose!

And because your type annotations are checked by the TypeScript compiler, they’ll
never get out of sync with the implementation. Perhaps getForegroundColor used to
return a string but was later changed to return an object. The person who made the
change might have forgotten to update the long comment.

Nothing stays in sync unless it’s forced to. With type annotations, TypeScript’s type
checker is that force! If you put type information in annotations and not in documen‐
tation, you greatly increase your confidence that it will remain correct as the code
evolves.

A better comment might look like this:

/** Get the foreground color for the application or a specific page. */
function getForegroundColor(page?: string): Color {
 // ...
}

If you want to describe a particular parameter, use an @param JSDoc annotation. See
Item 48 for more on this.

Comments about a lack of mutation are also suspect. Don’t just say that you don’t
modify a parameter:

/** Does not modify nums */
function sort(nums: number[]) { /* ... */ }

Instead, declare it readonly (Item 17) and let TypeScript enforce the contract:

function sort(nums: readonly number[]) { /* ... */ }

What’s true for comments is also true for variable names. Avoid putting types in
them: rather than naming a variable ageNum, name it age and make sure it’s really a
number.

An exception to this is for numbers with units. If it’s not clear what the units are, you
may want to include them in a variable or property name. For instance, timeMs is a
much clearer name than just time, and temperatureC is a much clearer name than
temperature. Item 37 describes “brands,” which provide a more type-safe approach
to modeling units.

126 | Chapter 4: Type Design

Things to Remember
• Avoid repeating type information in comments and variable names. In the best

case it is duplicative of type declarations, and in the worst it will lead to conflict‐
ing information.

• Consider including units in variable names if they aren’t clear from the type (e.g.,
timeMs or temperatureC).

Item 31: Push Null Values to the Perimeter of Your Types
When you first turn on strictNullChecks, it may seem as though you have to add
scores of if statements checking for null and undefined values throughout your
code. This is often because the relationships between null and non-null values are
implicit: when variable A is non-null, you know that variable B is also non-null and
vice versa. These implicit relationships are confusing both for human readers of your
code and for the type checker.

Values are easier to work with when they’re either completely null or completely non-
null, rather than a mix. You can model this by pushing the null values out to the
perimeter of your structures.

Suppose you want to calculate the min and max of a list of numbers. We’ll call this the
“extent.” Here’s an attempt:

function extent(nums: number[]) {
 let min, max;
 for (const num of nums) {
 if (!min) {
 min = num;
 max = num;
 } else {
 min = Math.min(min, num);
 max = Math.max(max, num);
 }
 }
 return [min, max];
}

The code type checks (without strictNullChecks) and has an inferred return type of
number[], which seems fine. But it has a bug and a design flaw:

• If the min or max is zero, it may get overridden. For example, extent([0, 1,
2]) will return [1, 2] rather than [0, 2].

• If the nums array is empty, the function will return [undefined, undefined].
This sort of object with several undefineds will be difficult for clients to work
with and is exactly the sort of type that this item discourages. We know from

Item 31: Push Null Values to the Perimeter of Your Types | 127

reading the source code that min and max will either both be undefined or nei‐
ther, but that information isn’t represented in the type system.

Turning on strictNullChecks makes both of these issues more apparent:

function extent(nums: number[]) {
 let min, max;
 for (const num of nums) {
 if (!min) {
 min = num;
 max = num;
 } else {
 min = Math.min(min, num);
 max = Math.max(max, num);
 // ~~~ Argument of type 'number | undefined' is not
 // assignable to parameter of type 'number'
 }
 }
 return [min, max];
}

The return type of extent is now inferred as (number | undefined)[], which makes
the design flaw more apparent. This is likely to manifest as a type error wherever you
call extent:

const [min, max] = extent([0, 1, 2]);
const span = max - min;
 // ~~~ ~~~ Object is possibly 'undefined'

The error in the implementation of extent comes about because you’ve excluded
undefined as a value for min but not max. The two are initialized together, but this
information isn’t present in the type system. You could make it go away by adding a
check for max, too, but this would be doubling down on the bug.

A better solution is to put the min and max in the same object and make this object
either fully null or fully non-null:

function extent(nums: number[]) {
 let result: [number, number] | null = null;
 for (const num of nums) {
 if (!result) {
 result = [num, num];
 } else {
 result = [Math.min(num, result[0]), Math.max(num, result[1])];
 }
 }
 return result;
}

128 | Chapter 4: Type Design

The return type is now [number, number] | null, which is easier for clients to work
with. The min and max can be retrieved with either a non-null assertion:

const [min, max] = extent([0, 1, 2])!;
const span = max - min; // OK

or a single check:

const range = extent([0, 1, 2]);
if (range) {
 const [min, max] = range;
 const span = max - min; // OK
}

By using a single object to track the extent, we’ve improved our design, helped Type‐
Script understand the relationship between null values, and fixed the bug: the if (!
result) check is now problem free.

A mix of null and non-null values can also lead to problems in classes. For instance,
suppose you have a class that represents both a user and their posts on a forum:

class UserPosts {
 user: UserInfo | null;
 posts: Post[] | null;

 constructor() {
 this.user = null;
 this.posts = null;
 }

 async init(userId: string) {
 return Promise.all([
 async () => this.user = await fetchUser(userId),
 async () => this.posts = await fetchPostsForUser(userId)
]);
 }

 getUserName() {
 // ...?
 }
}

While the two network requests are loading, the user and posts properties will be
null. At any time, they might both be null, one might be null, or they might both be
non-null. There are four possibilities. This complexity will seep into every method
on the class. This design is almost certain to lead to confusion, a proliferation of null
checks, and bugs.

Item 31: Push Null Values to the Perimeter of Your Types | 129

A better design would wait until all the data used by the class is available:

class UserPosts {
 user: UserInfo;
 posts: Post[];

 constructor(user: UserInfo, posts: Post[]) {
 this.user = user;
 this.posts = posts;
 }

 static async init(userId: string): Promise<UserPosts> {
 const [user, posts] = await Promise.all([
 fetchUser(userId),
 fetchPostsForUser(userId)
]);
 return new UserPosts(user, posts);
 }

 getUserName() {
 return this.user.name;
 }
}

Now the UserPosts class is fully non-null, and it’s easy to write correct methods on
it. Of course, if you need to perform operations while data is partially loaded, then
you’ll need to deal with the multiplicity of null and non-null states.

(Don’t be tempted to replace nullable properties with Promises. This tends to lead to
even more confusing code and forces all your methods to be async. Promises clarify
the code that loads data but tend to have the opposite effect on the class that uses that
data.)

Things to Remember
• Avoid designs in which one value being null or not null is implicitly related to

another value being null or not null.
• Push null values to the perimeter of your API by making larger objects either
null or fully non-null. This will make code clearer both for human readers and
for the type checker.

• Consider creating a fully non-null class and constructing it when all values are
available.

• While strictNullChecks may flag many issues in your code, it’s indispensable
for surfacing the behavior of functions with respect to null values.

130 | Chapter 4: Type Design

Item 32: Prefer Unions of Interfaces to Interfaces of
Unions
If you create an interface whose properties are union types, you should ask whether
the type would make more sense as a union of more precise interfaces.

Suppose you’re building a vector drawing program and want to define an interface for
layers with specific geometry types:

interface Layer {
 layout: FillLayout | LineLayout | PointLayout;
 paint: FillPaint | LinePaint | PointPaint;
}

The layout field controls how and where the shapes are drawn (rounded corners?
straight?), while the paint field controls styles (is the line blue? thick? thin? dashed?).

Would it make sense to have a layer whose layout is LineLayout but whose paint
property is FillPaint? Probably not. Allowing this possibility makes using the
library more error-prone and makes this interface difficult to work with.

A better way to model this is with separate interfaces for each type of layer:

interface FillLayer {
 layout: FillLayout;
 paint: FillPaint;
}
interface LineLayer {
 layout: LineLayout;
 paint: LinePaint;
}
interface PointLayer {
 layout: PointLayout;
 paint: PointPaint;
}
type Layer = FillLayer | LineLayer | PointLayer;

By defining Layer in this way, you’ve excluded the possibility of mixed layout and
paint properties. This is an example of following Item 28’s advice to prefer types that
only represent valid states.

The most common example of this pattern is the “tagged union” (or “discriminated
union”). In this case one of the properties is a union of string literal types:

interface Layer {
 type: 'fill' | 'line' | 'point';
 layout: FillLayout | LineLayout | PointLayout;
 paint: FillPaint | LinePaint | PointPaint;
}

Item 32: Prefer Unions of Interfaces to Interfaces of Unions | 131

As before, would it make sense to have type: 'fill' but then a LineLayout and
PointPaint? Certainly not. Convert Layer to a union of interfaces to exclude this
possibility:

interface FillLayer {
 type: 'fill';
 layout: FillLayout;
 paint: FillPaint;
}
interface LineLayer {
 type: 'line';
 layout: LineLayout;
 paint: LinePaint;
}
interface PointLayer {
 type: 'paint';
 layout: PointLayout;
 paint: PointPaint;
}
type Layer = FillLayer | LineLayer | PointLayer;

The type property is the “tag” and can be used to determine which type of Layer
you’re working with at runtime. TypeScript is also able to narrow the type of Layer
based on the tag:

function drawLayer(layer: Layer) {
 if (layer.type === 'fill') {
 const {paint} = layer; // Type is FillPaint
 const {layout} = layer; // Type is FillLayout
 } else if (layer.type === 'line') {
 const {paint} = layer; // Type is LinePaint
 const {layout} = layer; // Type is LineLayout
 } else {
 const {paint} = layer; // Type is PointPaint
 const {layout} = layer; // Type is PointLayout
 }
}

By correctly modeling the relationship between the properties in this type, you help
TypeScript check your code’s correctness. The same code involving the initial Layer
definition would have been cluttered with type assertions.

Because they work so well with TypeScript’s type checker, tagged unions are ubiqui‐
tous in TypeScript code. Recognize this pattern and apply it when you can. If you can
represent a data type in TypeScript with a tagged union, it’s usually a good idea to do
so. If you think of optional fields as a union of their type and undefined, then they fit
this pattern as well. Consider this type:

interface Person {
 name: string;
 // These will either both be present or not be present

132 | Chapter 4: Type Design

 placeOfBirth?: string;
 dateOfBirth?: Date;
}

The comment with type information is a strong sign that there might be a problem
(Item 30). There is a relationship between the placeOfBirth and dateOfBirth fields
that you haven’t told TypeScript about.

A better way to model this is to move both of these properties into a single object.
This is akin to moving null values to the perimeter (Item 31):

interface Person {
 name: string;
 birth?: {
 place: string;
 date: Date;
 }
}

Now TypeScript complains about values with a place but no date of birth:

const alanT: Person = {
 name: 'Alan Turing',
 birth: {
// ~~~~ Property 'date' is missing in type
// '{ place: string; }' but required in type
// '{ place: string; date: Date; }'
 place: 'London'
 }
}

Additionally, a function that takes a Person object only needs to do a single check:

function eulogize(p: Person) {
 console.log(p.name);
 const {birth} = p;
 if (birth) {
 console.log(`was born on ${birth.date} in ${birth.place}.`);
 }
}

If the structure of the type is outside your control (e.g., it’s coming from an API), then
you can still model the relationship between these fields using a now-familiar union
of interfaces:

interface Name {
 name: string;
}

interface PersonWithBirth extends Name {
 placeOfBirth: string;
 dateOfBirth: Date;
}

Item 32: Prefer Unions of Interfaces to Interfaces of Unions | 133

type Person = Name | PersonWithBirth;

Now you get some of the same benefits as with the nested object:

function eulogize(p: Person) {
 if ('placeOfBirth' in p) {
 p // Type is PersonWithBirth
 const {dateOfBirth} = p // OK, type is Date
 }
}

In both cases, the type definition makes the relationship between the properties more
clear.

Things to Remember
• Interfaces with multiple properties that are union types are often a mistake

because they obscure the relationships between these properties.
• Unions of interfaces are more precise and can be understood by TypeScript.
• Consider adding a “tag” to your structure to facilitate TypeScript’s control flow

analysis. Because they are so well supported, tagged unions are ubiquitous in
TypeScript code.

Item 33: Prefer More Precise Alternatives to String Types
The domain of the string type is big: "x" and "y" are in it, but so is the complete text
of Moby Dick (it starts "Call me Ishmael…" and is about 1.2 million characters long).
When you declare a variable of type string, you should ask whether a narrower type
would be more appropriate.

Suppose you’re building a music collection and want to define a type for an album.
Here’s an attempt:

interface Album {
 artist: string;
 title: string;
 releaseDate: string; // YYYY-MM-DD
 recordingType: string; // E.g., "live" or "studio"
}

The prevalence of string types and the type information in comments (see Item 30)
are strong indications that this interface isn’t quite right. Here’s what can go wrong:

const kindOfBlue: Album = {
 artist: 'Miles Davis',
 title: 'Kind of Blue',
 releaseDate: 'August 17th, 1959', // Oops!

134 | Chapter 4: Type Design

 recordingType: 'Studio', // Oops!
}; // OK

The releaseDate field is incorrectly formatted (according to the comment) and "Stu
dio" is capitalized where it should be lowercase. But these values are both strings, so
this object is assignable to Album and the type checker doesn’t complain.

These broad string types can mask errors for valid Album objects, too. For example:

function recordRelease(title: string, date: string) { /* ... */ }
recordRelease(kindOfBlue.releaseDate, kindOfBlue.title); // OK, should be error

The parameters are reversed in the call to recordRelease but both are strings, so the
type checker doesn’t complain. Because of the prevalence of string types, code like
this is sometimes called “stringly typed.”

Can you make the types narrower to prevent these sorts of issues? While the com‐
plete text of Moby Dick would be a ponderous artist name or album title, it’s at least
plausible. So string is appropriate for these fields. For the releaseDate field it’s bet‐
ter to just use a Date object and avoid issues around formatting. Finally, for the
recordingType field, you can define a union type with just two values (you could also
use an enum, but I generally recommend avoiding these; see Item 53):

type RecordingType = 'studio' | 'live';

interface Album {
 artist: string;
 title: string;
 releaseDate: Date;
 recordingType: RecordingType;
}

With these changes TypeScript is able to do a more thorough check for errors:

const kindOfBlue: Album = {
 artist: 'Miles Davis',
 title: 'Kind of Blue',
 releaseDate: new Date('1959-08-17'),
 recordingType: 'Studio'
// ~~~~~~~~~~~~ Type '"Studio"' is not assignable to type 'RecordingType'
};

There are advantages to this approach beyond stricter checking. First, explicitly
defining the type ensures that its meaning won’t get lost as it’s passed around. If you
wanted to find albums of just a certain recording type, for instance, you might define
a function like this:

function getAlbumsOfType(recordingType: string): Album[] {
 // ...
}

Item 33: Prefer More Precise Alternatives to String Types | 135

How does the caller of this function know what recordingType is expected to be? It’s
just a string. The comment explaining that it’s "studio" or "live" is hidden in the
definition of Album, where the user might not think to look.

Second, explicitly defining a type allows you attach documentation to it (see Item 48):

/** What type of environment was this recording made in? */
type RecordingType = 'live' | 'studio';

When you change getAlbumsOfType to take a RecordingType, the caller is able to
click through and see the documentation (see Figure 4-1).

Figure 4-1. Using a named type instead of string makes it possible to attach documenta‐
tion to the type that is surfaced in your editor.

Another common misuse of string is in function parameters. Say you want to write
a function that pulls out all the values for a single field in an array. The Underscore
library calls this “pluck”:

function pluck(records, key) {
 return records.map(r => r[key]);
}

How would you type this? Here’s an initial attempt:

function pluck(records: any[], key: string): any[] {
 return records.map(r => r[key]);
}

This type checks but isn’t great. The any types are problematic, particularly on the
return value (see Item 38). The first step to improving the type signature is introduc‐
ing a generic type parameter:

function pluck<T>(records: T[], key: string): any[] {
 return records.map(r => r[key]);
 // ~~~~~~ Element implicitly has an 'any' type
 // because type '{}' has no index signature
}

TypeScript is now complaining that the string type for key is too broad. And it’s
right to do so: if you pass in an array of Albums then there are only four valid values
for key (“artist,” “title,” “releaseDate,” and “recordingType”), as opposed to the vast set
of strings. This is precisely what the keyof Album type is:

type K = keyof Album;
// Type is "artist" | "title" | "releaseDate" | "recordingType"

136 | Chapter 4: Type Design

So the fix is to replace string with keyof T:

function pluck<T>(records: T[], key: keyof T) {
 return records.map(r => r[key]);
}

This passes the type checker. We’ve also let TypeScript infer the return type. How
does it do? If you mouse over pluck in your editor, the inferred type is:

function pluck<T>(record: T[], key: keyof T): T[keyof T][]

T[keyof T] is the type of any possible value in T. If you’re passing in a single string as
the key, this is too broad. For example:

const releaseDates = pluck(albums, 'releaseDate'); // Type is (string | Date)[]

The type should be Date[], not (string | Date)[]. While keyof T is much nar‐
rower than string, it’s still too broad. To narrow it further, we need to introduce a
second generic parameter that is a subset of keyof T (probably a single value):

function pluck<T, K extends keyof T>(records: T[], key: K): T[K][] {
 return records.map(r => r[key]);
}

(For more on extends in this context, see Item 14.)

The type signature is now completely correct. We can check this by calling pluck in a
few different ways:

pluck(albums, 'releaseDate'); // Type is Date[]
pluck(albums, 'artist'); // Type is string[]
pluck(albums, 'recordingType'); // Type is RecordingType[]
pluck(albums, 'recordingDate');
 // ~~~~~~~~~~~~~~~ Argument of type '"recordingDate"' is not
 // assignable to parameter of type ...

The language service is even able to offer autocomplete on the keys of Album (as
shown in Figure 4-2).

Figure 4-2. Using a parameter type of keyof Album instead of string results in better
autocomplete in your editor.

string has some of the same problems as any: when used inappropriately, it permits
invalid values and hides relationships between types. This thwarts the type checker
and can hide real bugs. TypeScript’s ability to define subsets of string is a powerful

Item 33: Prefer More Precise Alternatives to String Types | 137

way to bring type safety to JavaScript code. Using more precise types will both catch
errors and improve the readability of your code.

Things to Remember
• Avoid “stringly typed” code. Prefer more appropriate types where not every
string is a possibility.

• Prefer a union of string literal types to string if that more accurately describes
the domain of a variable. You’ll get stricter type checking and improve the devel‐
opment experience.

• Prefer keyof T to string for function parameters that are expected to be proper‐
ties of an object.

Item 34: Prefer Incomplete Types to Inaccurate Types
In writing type declarations you’ll inevitably find situations where you can model
behavior in a more precise or less precise way. Precision in types is generally a good
thing because it will help your users catch bugs and take advantage of the tooling that
TypeScript provides. But take care as you increase the precision of your type declara‐
tions: it’s easy to make mistakes, and incorrect types can be worse than no types at all.

Suppose you are writing type declarations for GeoJSON, a format we’ve seen before in
Item 31. A GeoJSON Geometry can be one of a few types, each of which have differ‐
ently shaped coordinate arrays:

interface Point {
 type: 'Point';
 coordinates: number[];
}
interface LineString {
 type: 'LineString';
 coordinates: number[][];
}
interface Polygon {
 type: 'Polygon';
 coordinates: number[][][];
}
type Geometry = Point | LineString | Polygon; // Also several others

This is fine, but number[] for a coordinate is a bit imprecise. Really these are latitudes
and longitudes, so perhaps a tuple type would be better:

type GeoPosition = [number, number];
interface Point {
 type: 'Point';
 coordinates: GeoPosition;

138 | Chapter 4: Type Design

}
// Etc.

You publish your more precise types to the world and wait for the adulation to roll in.
Unfortunately, a user complains that your new types have broken everything. Even
though you’ve only ever used latitude and longitude, a position in GeoJSON is
allowed to have a third element, an elevation, and potentially more. In an attempt to
make the type declarations more precise, you’ve gone too far and made the types
inaccurate! To continue using your type declarations, your user will have to introduce
type assertions or silence the type checker entirely with as any.

As another example, consider trying to write type declarations for a Lisp-like lan‐
guage defined in JSON:

12
"red"
["+", 1, 2] // 3
["/", 20, 2] // 10
["case", [">", 20, 10], "red", "blue"] // "red"
["rgb", 255, 0, 127] // "#FF007F"

The Mapbox library uses a system like this to determine the appearance of map fea‐
tures across many devices. There’s a whole spectrum of precision with which you
could try to type this:

1. Allow anything.
2. Allow strings, numbers, and arrays.
3. Allow strings, numbers, and arrays starting with known function names.
4. Make sure each function gets the correct number of arguments.
5. Make sure each function gets the correct type of arguments.

The first two options are straightforward:

type Expression1 = any;
type Expression2 = number | string | any[];

Beyond this, you should introduce a test set of expressions that are valid and expres‐
sions that are not. As you make your types more precise, this will help prevent regres‐
sions (see Item 52):

const tests: Expression2[] = [
 10,
 "red",
 true,
// ~~~ Type 'true' is not assignable to type 'Expression2'
 ["+", 10, 5],
 ["case", [">", 20, 10], "red", "blue", "green"], // Too many values
 ["**", 2, 31], // Should be an error: no "**" function
 ["rgb", 255, 128, 64],

Item 34: Prefer Incomplete Types to Inaccurate Types | 139

 ["rgb", 255, 0, 127, 0] // Too many values
];

To go to the next level of precision you can use a union of string literal types as the
first element of a tuple:

type FnName = '+' | '-' | '*' | '/' | '>' | '<' | 'case' | 'rgb';
type CallExpression = [FnName, ...any[]];
type Expression3 = number | string | CallExpression;

const tests: Expression3[] = [
 10,
 "red",
 true,
// ~~~ Type 'true' is not assignable to type 'Expression3'
 ["+", 10, 5],
 ["case", [">", 20, 10], "red", "blue", "green"],
 ["**", 2, 31],
// ~~~~~~~~~~~ Type '"**"' is not assignable to type 'FnName'
 ["rgb", 255, 128, 64],
 ["rgb", 255, 0, 127, 0] // Too many values
];

There’s one new caught error and no regressions. Pretty good!

What if you want to make sure that each function gets the correct number of argu‐
ments? This gets trickier since the type now needs to be recursive to reach down into
all the function calls. TypeScript allows this, though we do need to take some care to
convince the type checker that our recursion isn’t infinite. In this case that means
defining CaseCall (which must be an array of even length) with an interface rather
than a type. This is possible, if a bit awkward:

type Expression4 = number | string | CallExpression;

type CallExpression = MathCall | CaseCall | RGBCall;

type MathCall = [
 '+' | '-' | '/' | '*' | '>' | '<',
 Expression4,
 Expression4,
];

interface CaseCall {
 0: 'case';
 1: Expression4;
 2: Expression4;
 3: Expression4;
 4?: Expression4;
 5?: Expression4;
 // etc.
 length: 4 | 6 | 8 | 10 | 12 | 14 | 16; // etc.
}

140 | Chapter 4: Type Design

type RGBCall = ['rgb', Expression4, Expression4, Expression4];

const tests: Expression4[] = [
 10,
 "red",
 true,
// ~~~ Type 'true' is not assignable to type 'Expression4'
 ["+", 10, 5],
 ["case", [">", 20, 10], "red", "blue", "green"],
// ~~~~~~ ~~~~~~~
// Type '"case"' is not assignable to type '"rgb"'.
// Type 'string' is not assignable to type 'undefined'.
 ["**", 2, 31],
// ~~~~ Type '"**"' is not assignable to type '"+" | "-" | "/" | ...
 ["rgb", 255, 128, 64],
 ["rgb", 255, 0, 127, 0]
 // ~ Type 'number' is not assignable to type 'undefined'.
];

Now all the invalid expressions produce errors. And it’s interesting that you can
express something like “an array of even length” using a TypeScript interface. But
some of these error messages aren’t very good, particularly the one about "case" not
being assignable to "rgb".

Is this an improvement over the previous, less precise types? The fact that you get
errors for some incorrect usages is a win, but confusing error messages will make this
type more difficult to work with. Language services are as much a part of the Type‐
Script experience as type checking (see Item 6), so it’s a good idea to look at the error
messages resulting from your type declarations and try autocomplete in situations
where it should work. If your new type declarations are more precise but break auto‐
complete, then they’ll make for a less enjoyable TypeScript development experience.

The complexity of this type declaration has also increased the odds that a bug will
creep in. For example, Expression4 requires that all math operators take two param‐
eters, but the Mapbox expression spec says that + and * can take more. Also, - can
take a single parameter, in which case it negates its input. Expression4 incorrectly
flags errors in all of these:

const okExpressions: Expression4[] = [
 ['-', 12],
// ~~~ Type '"-"' is not assignable to type '"rgb"'.
 ['+', 1, 2, 3],
// ~~~ Type '"+"' is not assignable to type '"rgb"'.
 ['*', 2, 3, 4],
// ~~~ Type '"*"' is not assignable to type '"rgb"'.
];

Item 34: Prefer Incomplete Types to Inaccurate Types | 141

Once again, in trying to be more precise we’ve overshot and become inaccurate.
These inaccuracies can be corrected, but you’ll want to expand your test set to con‐
vince yourself that you haven’t missed anything else. Complex code generally requires
more tests, and the same is true of types.

As you refine types, it can be helpful to think of the “uncanny valley” metaphor.
Refining very imprecise types like any is usually helpful. But as your types get more
precise, the expectation that they’ll also be accurate increases. You’ll start to rely on
the types more, and so inaccuracies will produce bigger problems.

Things to Remember
• Avoid the uncanny valley of type safety: incorrect types are often worse than no

types.
• If you cannot model a type accurately, do not model it inaccurately! Acknowl‐

edge the gaps using any or unknown.
• Pay attention to error messages and autocomplete as you make typings increas‐

ingly precise. It’s not just about correctness: developer experience matters, too.

Item 35: Generate Types from APIs and Specs, Not Data
The other items in this chapter have discussed the many benefits of designing your
types well and shown what can go wrong if you don’t. A well-designed type makes
TypeScript a pleasure to use, while a poorly designed one can make it miserable. But
this does put quite a bit of pressure on type design. Wouldn’t it be nice if you didn’t
have to do this yourself?

At least some of your types are likely to come from outside your program: file for‐
mats, APIs, or specs. In these cases you may be able to avoid writing types by generat‐
ing them instead. If you do this, the key is to generate types from specifications,
rather than from example data. When you generate types from a spec, TypeScript will
help ensure that you haven’t missed any cases. When you generate types from data,
you’re only considering the examples you’ve seen. You might be missing important
edge cases that could break your program.

In Item 31 we wrote a function to calculate the bounding box of a GeoJSON Feature.
Here’s what it looked like:

function calculateBoundingBox(f: GeoJSONFeature): BoundingBox | null {
 let box: BoundingBox | null = null;

 const helper = (coords: any[]) => {
 // ...
 };

142 | Chapter 4: Type Design

1 GeoJSON is also known as RFC 7946. The very readable spec is at http://geojson.org.

 const {geometry} = f;
 if (geometry) {
 helper(geometry.coordinates);
 }

 return box;
}

The GeoJSONFeature type was never explicitly defined. You could write it using some
of the examples from Item 31. But a better approach is to use the formal GeoJSON
spec.1 Fortunately for us, there are already TypeScript type declarations for it on Defi‐
nitelyTyped. You can add these in the usual way:

$ npm install --save-dev @types/geojson
+ @types/geojson@7946.0.7

When you plug in the GeoJSON declarations, TypeScript immediately flags an error:

import {Feature} from 'geojson';

function calculateBoundingBox(f: Feature): BoundingBox | null {
 let box: BoundingBox | null = null;

 const helper = (coords: any[]) => {
 // ...
 };

 const {geometry} = f;
 if (geometry) {
 helper(geometry.coordinates);
 // ~~~~~~~~~~~
 // Property 'coordinates' does not exist on type 'Geometry'
 // Property 'coordinates' does not exist on type
 // 'GeometryCollection'
 }

 return box;
}

The problem is that your code assumes a geometry will have a coordinates property.
This is true for many geometries, including points, lines, and polygons. But a Geo‐
JSON geometry can also be a GeometryCollection, a heterogeneous collection of
other geometries. Unlike the other geometry types, it does not have a coordinates
property.

Item 35: Generate Types from APIs and Specs, Not Data | 143

http://geojson.org

If you call calculateBoundingBox on a Feature whose geometry is a GeometryCollec
tion, it will throw an error about not being able to read property 0 of undefined.
This is a real bug! And we caught it using type definitions from a spec.

One option for fixing it is to explicitly disallow GeometryCollections, as shown here:

const {geometry} = f;
if (geometry) {
 if (geometry.type === 'GeometryCollection') {
 throw new Error('GeometryCollections are not supported.');
 }
 helper(geometry.coordinates); // OK
}

TypeScript is able to refine the type of geometry based on the check, so the reference
to geometry.coordinates is allowed. If nothing else, this results in a clearer error
message for the user.

But the better solution is to support all the types of geometry! You can do this by
pulling out another helper function:

const geometryHelper = (g: Geometry) => {
 if (geometry.type === 'GeometryCollection') {
 geometry.geometries.forEach(geometryHelper);
 } else {
 helper(geometry.coordinates); // OK
 }
}

const {geometry} = f;
if (geometry) {
 geometryHelper(geometry);
}

Had you written type declarations for GeoJSON yourself, you would have based them
off of your understanding and experience with the format. This might not have
included GeometryCollections and would have led to a false sense of security about
your code’s correctness. Using types based on a spec gives you confidence that your
code will work with all values, not just the ones you’ve seen.

Similar considerations apply to API calls: if you can generate types from the specifica‐
tion of an API, then it is usually a good idea to do so. This works particularly well
with APIs that are typed themselves, such as GraphQL.

A GraphQL API comes with a schema that specifies all the possible queries and inter‐
faces using a type system somewhat similar to TypeScript. You write queries that
request specific fields in these interfaces. For example, to get information about a
repository using the GitHub GraphQL API you might write:

query {
 repository(owner: "Microsoft", name: "TypeScript") {

144 | Chapter 4: Type Design

 createdAt
 description
 }
}

The result is:

{
 "data": {
 "repository": {
 "createdAt": "2014-06-17T15:28:39Z",
 "description":
 "TypeScript is a superset of JavaScript that compiles to JavaScript."
 }
 }
}

The beauty of this approach is that you can generate TypeScript types for your specific
query. As with the GeoJSON example, this helps ensure that you model the relation‐
ships between types and their nullability accurately.

Here’s a query to get the open source license for a GitHub repository:

query getLicense($owner:String!, $name:String!){
 repository(owner:$owner, name:$name) {
 description
 licenseInfo {
 spdxId
 name
 }
 }
}

$owner and $name are GraphQL variables which are themselves typed. The type syn‐
tax is similar enough to TypeScript that it can be confusing to go back and forth.
String is a GraphQL type—it would be string in TypeScript (see Item 10). And
while TypeScript types are not nullable, types in GraphQL are. The ! after the type
indicates that it is guaranteed to not be null.

There are many tools to help you go from a GraphQL query to TypeScript types. One
is Apollo. Here’s how you use it:

$ apollo client:codegen \
 --endpoint https://api.github.com/graphql \
 --includes license.graphql \
 --target typescript
Loading Apollo Project
Generating query files with 'typescript' target - wrote 2 files

You need a GraphQL schema to generate types for a query. Apollo gets this from the
api.github.com/graphql endpoint. The output looks like this:

Item 35: Generate Types from APIs and Specs, Not Data | 145

export interface getLicense_repository_licenseInfo {
 __typename: "License";
 /** Short identifier specified by <https://spdx.org/licenses> */
 spdxId: string | null;
 /** The license full name specified by <https://spdx.org/licenses> */
 name: string;
}

export interface getLicense_repository {
 __typename: "Repository";
 /** The description of the repository. */
 description: string | null;
 /** The license associated with the repository */
 licenseInfo: getLicense_repository_licenseInfo | null;
}

export interface getLicense {
 /** Lookup a given repository by the owner and repository name. */
 repository: getLicense_repository | null;
}

export interface getLicenseVariables {
 owner: string;
 name: string;
}

The important bits to note here are that:

• Interfaces are generated for both the query parameters (getLicenseVariables)
and the response (getLicense).

• Nullability information is transferred from the schema to the response interfaces.
The repository, description, licenseInfo, and spdxId fields are nullable,
whereas the license name and the query variables are not.

• Documentation is transferred as JSDoc so that it appears in your editor (Item 48).
These comments come from the GraphQL schema itself.

This type information helps ensure that you use the API correctly. If your queries
change, the types will change. If the schema changes, then so will your types. There is
no risk that your types and reality diverge since they are both coming from a single
source of truth: the GraphQL schema.

What if there’s no spec or official schema available? Then you’ll have to generate types
from data. Tools like quicktype can help with this. But be aware that your types may
not match reality: there may be edge cases that you’ve missed.

Even if you’re not aware of it, you are already benefiting from code generation. Type‐
Script’s type declarations for the browser DOM API are generated from the official

146 | Chapter 4: Type Design

interfaces (see Item 55). This ensures that they correctly model a complicated system
and helps TypeScript catch errors and misunderstandings in your own code.

Things to Remember
• Consider generating types for API calls and data formats to get type safety all the

way to the edge of your code.
• Prefer generating code from specs rather than data. Rare cases matter!

Item 36: Name Types Using the Language of Your Problem
Domain

There are only two hard problems in Computer Science: cache invalidation and nam‐
ing things.

—Phil Karlton

This book has had much to say about the shape of types and the sets of values in their
domains, but much less about what you name your types. But this is an important
part of type design, too. Well-chosen type, property, and variable names can clarify
intent and raise the level of abstraction of your code and types. Poorly chosen types
can obscure your code and lead to incorrect mental models.

Suppose you’re building out a database of animals. You create an interface to repre‐
sent one:

interface Animal {
 name: string;
 endangered: boolean;
 habitat: string;
}

const leopard: Animal = {
 name: 'Snow Leopard',
 endangered: false,
 habitat: 'tundra',
};

There are a few issues here:

• name is a very general term. What sort of name are you expecting? A scientific
name? A common name?

• The boolean endangered field is also ambiguous. What if an animal is extinct? Is
the intent here “endangered or worse?” Or does it literally mean endangered?

• The habitat field is very ambiguous, not just because of the overly broad string
type (Item 33) but also because it’s unclear what’s meant by “habitat.”

Item 36: Name Types Using the Language of Your Problem Domain | 147

• The variable name is leopard, but the value of the name property is “Snow Leop‐
ard.” Is this distinction meaningful?

Here’s a type declaration and value with less ambiguity:

interface Animal {
 commonName: string;
 genus: string;
 species: string;
 status: ConservationStatus;
 climates: KoppenClimate[];
}
type ConservationStatus = 'EX' | 'EW' | 'CR' | 'EN' | 'VU' | 'NT' | 'LC';
type KoppenClimate = |
 'Af' | 'Am' | 'As' | 'Aw' |
 'BSh' | 'BSk' | 'BWh' | 'BWk' |
 'Cfa' | 'Cfb' | 'Cfc' | 'Csa' | 'Csb' | 'Csc' | 'Cwa' | 'Cwb' | 'Cwc' |
 'Dfa' | 'Dfb' | 'Dfc' | 'Dfd' |
 'Dsa' | 'Dsb' | 'Dsc' | 'Dwa' | 'Dwb' | 'Dwc' | 'Dwd' |
 'EF' | 'ET';
const snowLeopard: Animal = {
 commonName: 'Snow Leopard',
 genus: 'Panthera',
 species: 'Uncia',
 status: 'VU', // vulnerable
 climates: ['ET', 'EF', 'Dfd'], // alpine or subalpine
};

This makes a number of improvements:

• name has been replaced with more specific terms: commonName, genus, and
species.

• endangered has become status, a ConservationStatus type which uses a stan‐
dard classification system from the IUCN.

• habitat has become climates and uses another standard taxonomy, the Köppen
climate classification.

If you needed more information about the fields in the first version of this type, you’d
have to go find the person who wrote them and ask. In all likelihood, they’ve left the
company or don’t remember. Worse yet, you might run git blame to find out who
wrote these lousy types, only to find that it was you!

The situation is much improved with the second version. If you want to learn more
about the Köppen climate classification system or track down what the precise mean‐
ing of a conservation status is, then there are myriad resources online to help you.

Every domain has specialized vocabulary to describe its subject. Rather than invent‐
ing your own terms, try to reuse terms from the domain of your problem. These

148 | Chapter 4: Type Design

vocabularies have often been honed over years, decades, or centuries and are well
understood by people in the field. Using these terms will help you communicate with
users and increase the clarity of your types.

Take care to use domain vocabulary accurately: co-opting the language of a domain
to mean something different is even more confusing than inventing your own.

Here are a few other rules to keep in mind as you name types, properties, and
variables:

• Make distinctions meaningful. In writing and speech it can be tedious to use the
same word over and over. We introduce synonyms to break the monotony. This
makes prose more enjoyable to read, but it has the opposite effect on code. If you
use two different terms, make sure you’re drawing a meaningful distinction. If
not, you should use the same term.

• Avoid vague, meaningless names like “data,” “info,” “thing,” “item,” “object,” or the
ever-popular “entity.” If Entity has a specific meaning in your domain, fine. But if
you’re using it because you don’t want to think of a more meaningful name, then
you’ll eventually run into trouble.

• Name things for what they are, not for what they contain or how they are compu‐
ted. Directory is more meaningful than INodeList. It allows you to think about
a directory as a concept, rather than in terms of its implementation. Good names
can increase your level of abstraction and decrease your risk of inadvertent
collisions.

Things to Remember
• Reuse names from the domain of your problem where possible to increase the

readability and level of abstraction of your code.
• Avoid using different names for the same thing: make distinctions in names

meaningful.

Item 37: Consider “Brands” for Nominal Typing
Item 4 discussed structural (“duck”) typing and how it can sometimes lead to surpris‐
ing results:

interface Vector2D {
 x: number;
 y: number;
}
function calculateNorm(p: Vector2D) {
 return Math.sqrt(p.x * p.x + p.y * p.y);
}

Item 37: Consider “Brands” for Nominal Typing | 149

calculateNorm({x: 3, y: 4}); // OK, result is 5
const vec3D = {x: 3, y: 4, z: 1};
calculateNorm(vec3D); // OK! result is also 5

What if you’d like calculateNorm to reject 3D vectors? This goes against the struc‐
tural typing model of TypeScript but is certainly more mathematically correct.

One way to achieve this is with nominal typing. With nominal typing, a value is a
Vector2D because you say it is, not because it has the right shape. To approximate this
in TypeScript, you can introduce a “brand” (think cows, not Coca-Cola):

interface Vector2D {
 _brand: '2d';
 x: number;
 y: number;
}
function vec2D(x: number, y: number): Vector2D {
 return {x, y, _brand: '2d'};
}
function calculateNorm(p: Vector2D) {
 return Math.sqrt(p.x * p.x + p.y * p.y); // Same as before
}

calculateNorm(vec2D(3, 4)); // OK, returns 5
const vec3D = {x: 3, y: 4, z: 1};
calculateNorm(vec3D);
 // ~~~~~ Property '_brand' is missing in type...

The brand ensures that the vector came from the right place. Granted there’s nothing
stopping you from adding _brand: '2d' to the vec3D value. But this is moving from
the accidental into the malicious. This sort of brand is typically enough to catch inad‐
vertent misuses of functions.

Interestingly, you can get many of the same benefits as explicit brands while operating
only in the type system. This removes runtime overhead and also lets you brand
built-in types like string or number where you can’t attach additional properties.

For instance, what if you have a function that operates on the filesystem and requires
an absolute (as opposed to a relative) path? This is easy to check at runtime (does the
path start with “/”?) but not so easy in the type system.

Here’s an approach with brands:

type AbsolutePath = string & {_brand: 'abs'};
function listAbsolutePath(path: AbsolutePath) {
 // ...
}
function isAbsolutePath(path: string): path is AbsolutePath {
 return path.startsWith('/');
}

150 | Chapter 4: Type Design

You can’t construct an object that is a string and has a _brand property. This is
purely a game with the type system.

If you have a string path that could be either absolute or relative, you can check
using the type guard, which will refine its type:

function f(path: string) {
 if (isAbsolutePath(path)) {
 listAbsolutePath(path);
 }
 listAbsolutePath(path);
 // ~~~~ Argument of type 'string' is not assignable
 // to parameter of type 'AbsolutePath'
}

This sort of approach could be helpful in documenting which functions expect abso‐
lute or relative paths and which type of path each variable holds. It is not an ironclad
guarantee, though: path as AbsolutePath will succeed for any string. But if you
avoid these sorts of assertions, then the only way to get an AbsolutePath is to be
given one or to check, which is exactly what you want.

This approach can be used to model many properties that cannot be expressed within
the type system. For example, using binary search to find an element in a list:

function binarySearch<T>(xs: T[], x: T): boolean {
 let low = 0, high = xs.length - 1;
 while (high >= low) {
 const mid = low + Math.floor((high - low) / 2);
 const v = xs[mid];
 if (v === x) return true;
 [low, high] = x > v ? [mid + 1, high] : [low, mid - 1];
 }
 return false;
}

This works if the list is sorted, but will result in false negatives if it is not. You can’t
represent a sorted list in TypeScript’s type system. But you can create a brand:

type SortedList<T> = T[] & {_brand: 'sorted'};

function isSorted<T>(xs: T[]): xs is SortedList<T> {
 for (let i = 1; i < xs.length; i++) {
 if (xs[i] < xs[i - 1]) {
 return false;
 }
 }
 return true;
}

function binarySearch<T>(xs: SortedList<T>, x: T): boolean {
 // ...
}

Item 37: Consider “Brands” for Nominal Typing | 151

In order to call this version of binarySearch, you either need to be given a Sorted
List (i.e., have a proof that the list is sorted) or prove that it’s sorted yourself using
isSorted. The linear scan isn’t great, but at least you’ll be safe!

This is a helpful perspective to have on the type checker in general. In order to call a
method on an object, for instance, you either need to be given a non-null object or
prove that it’s non-null yourself with a conditional.

You can also brand number types—for example, to attach units:

type Meters = number & {_brand: 'meters'};
type Seconds = number & {_brand: 'seconds'};

const meters = (m: number) => m as Meters;
const seconds = (s: number) => s as Seconds;

const oneKm = meters(1000); // Type is Meters
const oneMin = seconds(60); // Type is Seconds

This can be awkward in practice since arithmetic operations make the numbers forget
their brands:

const tenKm = oneKm * 10; // Type is number
const v = oneKm / oneMin; // Type is number

If your code involves lots of numbers with mixed units, however, this may still be an
attractive approach to documenting the expected types of numeric parameters.

Things to Remember
• TypeScript uses structural (“duck”) typing, which can sometimes lead to surpris‐

ing results. If you need nominal typing, consider attaching “brands” to your val‐
ues to distinguish them.

• In some cases you may be able to attach brands entirely in the type system, rather
than at runtime. You can use this technique to model properties outside of Type‐
Script’s type system.

152 | Chapter 4: Type Design

CHAPTER 5

Working with any

Type systems were traditionally binary affairs: either a language had a fully static type
system or a fully dynamic one. TypeScript blurs the line, because its type system is
optional and gradual. You can add types to parts of your program but not others.

This is essential for migrating existing JavaScript codebases to TypeScript bit by bit
(Chapter 8). Key to this is the any type, which effectively disables type checking for
parts of your code. It is both powerful and prone to abuse. Learning to use any wisely
is essential for writing effective TypeScript. This chapter walks you through how to
limit the downsides of any while still retaining its benefits.

Item 38: Use the Narrowest Possible Scope for any Types
Consider this code:

function processBar(b: Bar) { /* ... */ }

function f() {
 const x = expressionReturningFoo();
 processBar(x);
 // ~ Argument of type 'Foo' is not assignable to
 // parameter of type 'Bar'
}

If you somehow know from context that x is assignable to Bar in addition to Foo, you
can force TypeScript to accept this code in two ways:

function f1() {
 const x: any = expressionReturningFoo(); // Don't do this
 processBar(x);
}

function f2() {

153

 const x = expressionReturningFoo();
 processBar(x as any); // Prefer this
}

Of these, the second form is vastly preferable. Why? Because the any type is scoped to
a single expression in a function argument. It has no effect outside this argument or
this line. If code after the processBar call references x, its type will still be Foo, and it
will still be able to trigger type errors, whereas in the first example its type is any until
it goes out of scope at the end of the function.

The stakes become significantly higher if you return x from this function. Look what
happens:

function f1() {
 const x: any = expressionReturningFoo();
 processBar(x);
 return x;
}

function g() {
 const foo = f1(); // Type is any
 foo.fooMethod(); // This call is unchecked!
}

An any return type is “contagious” in that it can spread throughout a codebase. As a
result of our changes to f, an any type has quietly appeared in g. This would not have
happened with the more narrowly scoped any in f2.

(This is a good reason to consider including explicit return type annotations, even
when the return type can be inferred. It prevents an any type from “escaping.” See dis‐
cussion in Item 19.)

We used any here to silence an error that we believed to be incorrect. Another way to
do this is with @ts-ignore:

function f1() {
 const x = expressionReturningFoo();
 // @ts-ignore
 processBar(x);
 return x;
}

This silences an error on the next line, leaving the type of x unchanged. Try not to
lean too heavily on @ts-ignore: the type checker usually has a good reason to com‐
plain. It also means that if the error on the next line changes to something more
problematic, you won’t know.

You may also run into situations where you get a type error for just one property in a
larger object:

154 | Chapter 5: Working with any

const config: Config = {
 a: 1,
 b: 2,
 c: {
 key: value
 // ~~~ Property ... missing in type 'Bar' but required in type 'Foo'
 }
};

You can silence errors like this by throwing an as any around the whole config
object:

const config: Config = {
 a: 1,
 b: 2,
 c: {
 key: value
 }
} as any; // Don't do this!

But this has the side effect of disabling type checking for the other properties (a and
b) as well. Using a more narrowly scoped any limits the damage:

const config: Config = {
 a: 1,
 b: 2, // These properties are still checked
 c: {
 key: value as any
 }
};

Things to Remember
• Make your uses of any as narrowly scoped as possible to avoid undesired loss of

type safety elsewhere in your code.
• Never return an any type from a function. This will silently lead to the loss of

type safety for any client calling the function.
• Consider @ts-ignore as an alternative to any if you need to silence one error.

Item 39: Prefer More Precise Variants of any to Plain any
The any type encompasses all values that can be expressed in JavaScript. This is a vast
set! It includes not just all numbers and strings, but all arrays, objects, regular expres‐
sions, functions, classes, and DOM elements, not to mention null and undefined.
When you use an any type, ask whether you really had something more specific in
mind. Would it be OK to pass in a regular expression or a function?

Item 39: Prefer More Precise Variants of any to Plain any | 155

Often the answer is “no,” in which case you might be able to retain some type safety
by using a more specific type:

function getLengthBad(array: any) { // Don't do this!
 return array.length;
}

function getLength(array: any[]) {
 return array.length;
}

The latter version, which uses any[] instead of any, is better in three ways:

• The reference to array.length in the function body is type checked.
• The function’s return type is inferred as number instead of any.
• Calls to getLength will be checked to ensure that the parameter is an array:

getLengthBad(/123/); // No error, returns undefined
getLength(/123/);
 // ~~~~~ Argument of type 'RegExp' is not assignable
 // to parameter of type 'any[]'

If you expect a parameter to be an array of arrays but don’t care about the type, you
can use any[][]. If you expect some sort of object but don’t know what the values will
be, you can use {[key: string]: any}:

function hasTwelveLetterKey(o: {[key: string]: any}) {
 for (const key in o) {
 if (key.length === 12) {
 return true;
 }
 }
 return false;
}

You could also use the object type in this situation, which includes all non-primitive
types. This is slightly different in that, while you can still enumerate keys, you can’t
access the values of any of them:

function hasTwelveLetterKey(o: object) {
 for (const key in o) {
 if (key.length === 12) {
 console.log(key, o[key]);
 // ~~~~~~ Element implicitly has an 'any' type
 // because type '{}' has no index signature
 return true;
 }
 }
 return false;
}

156 | Chapter 5: Working with any

1 If you are using React, you should use the built-in useMemo hook, rather than rolling your own.

If this sort of type fits your needs, you might also be interested in the unknown type.
See Item 42.

Avoid using any if you expect a function type. You have several options here depend‐
ing on how specific you want to get:

type Fn0 = () => any; // any function callable with no params
type Fn1 = (arg: any) => any; // With one param
type FnN = (...args: any[]) => any; // With any number of params
 // same as "Function" type

All of these are more precise than any and hence preferable to it. Note the use of
any[] as the type for the rest parameter in the last example. any would also work here
but would be less precise:

const numArgsBad = (...args: any) => args.length; // Returns any
const numArgsGood = (...args: any[]) => args.length; // Returns number

This is perhaps the most common use of the any[] type.

Things to Remember
• When you use any, think about whether any JavaScript value is truly permissible.
• Prefer more precise forms of any such as any[] or {[id: string]: any} or ()
=> any if they more accurately model your data.

Item 40: Hide Unsafe Type Assertions in Well-Typed
Functions
There are many functions whose type signatures are easy to write but whose imple‐
mentations are quite difficult to write in type-safe code. And while writing type-safe
implementations is a noble goal, it may not be worth the difficulty to deal with edge
cases that you know don’t come up in your code. If a reasonable attempt at a type-safe
implementation doesn’t work, use an unsafe type assertion hidden inside a function
with the right type signature. Unsafe assertions hidden inside well-typed functions
are much better than unsafe assertions scattered throughout your code.

Suppose you want to make a function cache its last call. This is a common technique
for eliminating expensive function calls with frameworks like React.1 It would be nice
to write a general cacheLast wrapper that adds this behavior to any function. Its dec‐
laration is easy to write:

declare function cacheLast<T extends Function>(fn: T): T;

Item 40: Hide Unsafe Type Assertions in Well-Typed Functions | 157

Here’s an attempt at an implementation:

function cacheLast<T extends Function>(fn: T): T {
 let lastArgs: any[]|null = null;
 let lastResult: any;
 return function(...args: any[]) {
 // ~~~~~~~~~~~~~~~~~~~~~~~~~~
 // Type '(...args: any[]) => any' is not assignable to type 'T'
 if (!lastArgs || !shallowEqual(lastArgs, args)) {
 lastResult = fn(...args);
 lastArgs = args;
 }
 return lastResult;
 };
}

The error makes sense: TypeScript has no reason to believe that this very loose func‐
tion has any relation to T. But you know that the type system will enforce that it’s
called with the right parameters and that its return value is given the correct type. So
you shouldn’t expect too many problems if you add a type assertion here:

function cacheLast<T extends Function>(fn: T): T {
 let lastArgs: any[]|null = null;
 let lastResult: any;
 return function(...args: any[]) {
 if (!lastArgs || !shallowEqual(lastArgs, args)) {
 lastResult = fn(...args);
 lastArgs = args;
 }
 return lastResult;
 } as unknown as T;
}

And indeed this will work great for any simple function you pass it. There are quite a
few any types hidden in this implementation, but you’ve kept them out of the type
signature, so the code that calls cacheLast will be none the wiser.

(Is this actually safe? There are a few real problems with this implementation: it
doesn’t check that the values of this for successive calls are the same. And if the orig‐
inal function had properties defined on it, then the wrapped function would not have
these, so it wouldn’t have the same type. But if you know that these situations don’t
come up in your code, this implementation is just fine. This function can be written
in a type-safe way, but it is a more complex exercise that is left to the reader.)

The shallowEqual function from the previous example operated on two arrays and is
easy to type and implement. But the object variation is more interesting. As with
cacheLast, it’s easy to write its type signature:

declare function shallowObjectEqual<T extends object>(a: T, b: T): boolean;

158 | Chapter 5: Working with any

The implementation requires some care since there’s no guarantee that a and b have
the same keys (see Item 54):

function shallowObjectEqual<T extends object>(a: T, b: T): boolean {
 for (const [k, aVal] of Object.entries(a)) {
 if (!(k in b) || aVal !== b[k]) {
 // ~~~~ Element implicitly has an 'any' type
 // because type '{}' has no index signature
 return false;
 }
 }
 return Object.keys(a).length === Object.keys(b).length;
}

It’s a bit surprising that TypeScript complains about the b[k] access despite your hav‐
ing just checked that k in b is true. But it does, so you have no choice but to cast:

function shallowObjectEqual<T extends object>(a: T, b: T): boolean {
 for (const [k, aVal] of Object.entries(a)) {
 if (!(k in b) || aVal !== (b as any)[k]) {
 return false;
 }
 }
 return Object.keys(a).length === Object.keys(b).length;
}

This type assertion is harmless (since you’ve checked k in b), and you’re left with a
correct function with a clear type signature. This is much preferable to scattering iter‐
ation and assertions to check for object equality throughout your code!

Things to Remember
• Sometimes unsafe type assertions are necessary or expedient. When you need to

use one, hide it inside a function with a correct signature.

Item 41: Understand Evolving any
In TypeScript a variable’s type is generally determined when it is declared. After this,
it can be refined (by checking if it is null, for instance), but it cannot expand to
include new values. There is one notable exception to this, however, involving any
types.

In JavaScript, you might write a function to generate a range of numbers like this:

function range(start, limit) {
 const out = [];
 for (let i = start; i < limit; i++) {
 out.push(i);
 }

Item 41: Understand Evolving any | 159

 return out;
}

When you convert this to TypeScript, it works exactly as you’d expect:

function range(start: number, limit: number) {
 const out = [];
 for (let i = start; i < limit; i++) {
 out.push(i);
 }
 return out; // Return type inferred as number[]
}

Upon closer inspection, however, it’s surprising that this works! How does TypeScript
know that the type of out is number[] when it’s initialized as [], which could be an
array of any type?

Inspecting each of the three occurrences of out to reveal its inferred type starts to tell
the story:

function range(start: number, limit: number) {
 const out = []; // Type is any[]
 for (let i = start; i < limit; i++) {
 out.push(i); // Type of out is any[]
 }
 return out; // Type is number[]
}

The type of out starts as any[], an undifferentiated array. But as we push number val‐
ues onto it, its type “evolves” to become number[].

This is distinct from narrowing (Item 22). An array’s type can expand by pushing dif‐
ferent elements onto it:

const result = []; // Type is any[]
result.push('a');
result // Type is string[]
result.push(1);
result // Type is (string | number)[]

With conditionals, the type can even vary across branches. Here we show the same
behavior with a simple value, rather than an array:

let val; // Type is any
if (Math.random() < 0.5) {
 val = /hello/;
 val // Type is RegExp
} else {
 val = 12;
 val // Type is number
}
val // Type is number | RegExp

160 | Chapter 5: Working with any

A final case that triggers this “evolving any” behavior is if a variable is initially null.
This often comes up when you set a value in a try/catch block:

let val = null; // Type is any
try {
 somethingDangerous();
 val = 12;
 val // Type is number
} catch (e) {
 console.warn('alas!');
}
val // Type is number | null

Interestingly, this behavior only happens when a variable’s type is implicitly any with
noImplicitAny set! Adding an explicit any keeps the type constant:

let val: any; // Type is any
if (Math.random() < 0.5) {
 val = /hello/;
 val // Type is any
} else {
 val = 12;
 val // Type is any
}
val // Type is any

This behavior can be confusing to follow in your editor since the
type is only “evolved” after you assign or push an element. Inspect‐
ing the type on the line with the assignment will still show any or
any[].

If you use a value before any assignment to it, you’ll get an implicit any error:

function range(start: number, limit: number) {
 const out = [];
 // ~~~ Variable 'out' implicitly has type 'any[]' in some
 // locations where its type cannot be determined
 if (start === limit) {
 return out;
 // ~~~ Variable 'out' implicitly has an 'any[]' type
 }
 for (let i = start; i < limit; i++) {
 out.push(i);
 }
 return out;
}

Put another way, “evolving” any types are only any when you write to them. If you try
to read from them while they’re still any, you’ll get an error.

Item 41: Understand Evolving any | 161

Implicit any types do not evolve through function calls. The arrow function here trips
up inference:

function makeSquares(start: number, limit: number) {
 const out = [];
 // ~~~ Variable 'out' implicitly has type 'any[]' in some locations
 range(start, limit).forEach(i => {
 out.push(i * i);
 });
 return out;
 // ~~~ Variable 'out' implicitly has an 'any[]' type
}

In cases like this, you may want to consider using an array’s map and filter methods
to build arrays in a single statement and avoid iteration and evolving any entirely. See
Items 23 and 27.

Evolving any comes with all the usual caveats about type inference. Is the correct type
for your array really (string|number)[]? Or should it be number[] and you incor‐
rectly pushed a string? You may still want to provide an explicit type annotation to
get better error checking instead of using evolving any.

Things to Remember
• While TypeScript types typically only refine, implicit any and any[] types are

allowed to evolve. You should be able to recognize and understand this construct
where it occurs.

• For better error checking, consider providing an explicit type annotation instead
of using evolving any.

Item 42: Use unknown Instead of any for Values with an
Unknown Type
Suppose you want to write a YAML parser (YAML can represent the same set of val‐
ues as JSON but allows a superset of JSON’s syntax). What should the return type of
your parseYAML method be? It’s tempting to make it any (like JSON.parse):

function parseYAML(yaml: string): any {
 // ...
}

But this flies in the face of Item 38’s advice to avoid “contagious” any types, specifi‐
cally by not returning them from functions.

Ideally you’d like your users to immediately assign the result to another type:

162 | Chapter 5: Working with any

2 With the exception of never.

interface Book {
 name: string;
 author: string;
}
const book: Book = parseYAML(`
 name: Wuthering Heights
 author: Emily Brontë
`);

Without the type declarations, though, the book variable would quietly get an any
type, thwarting type checking wherever it’s used:

const book = parseYAML(`
 name: Jane Eyre
 author: Charlotte Brontë
`);
alert(book.title); // No error, alerts "undefined" at runtime
book('read'); // No error, throws "TypeError: book is not a
 // function" at runtime

A safer alternative would be to have parseYAML return an unknown type:

function safeParseYAML(yaml: string): unknown {
 return parseYAML(yaml);
}
const book = safeParseYAML(`
 name: The Tenant of Wildfell Hall
 author: Anne Brontë
`);
alert(book.title);
 // ~~~~ Object is of type 'unknown'
book("read");
// ~~~~~~~~~~ Object is of type 'unknown'

To understand the unknown type, it helps to think about any in terms of assignability.
The power and danger of any come from two properties:

• Any type is assignable to the any type.
• The any type is assignable to any other type.2

In the context of “thinking of types as sets of values” (Item 7), any clearly doesn’t fit
into the type system, since a set can’t simultaneously be both a subset and a superset
of all other sets. This is the source of any’s power but also the reason it’s problematic.
Since the type checker is set-based, the use of any effectively disables it.

The unknown type is an alternative to any that does fit into the type system. It has the
first property (any type is assignable to unknown) but not the second (unknown is only

Item 42: Use unknown Instead of any for Values with an Unknown Type | 163

assignable to unknown and, of course, any). The never type is the opposite: it has the
second property (can be assigned to any other type) but not the first (nothing can be
assigned to never).

Attempting to access a property on a value with the unknown type is an error. So is
attempting to call it or do arithmetic with it. You can’t do much with unknown, which
is exactly the point. The errors about an unknown type will encourage you to add an
appropriate type:

const book = safeParseYAML(`
 name: Villette
 author: Charlotte Brontë
`) as Book;
alert(book.title);
 // ~~~~~ Property 'title' does not exist on type 'Book'
book('read');
// ~~~~~~~~~ this expression is not callable

These errors are more sensible. Since unknown is not assignable to other types, a type
assertion is required. But it is also appropriate: we really do know more about the
type of the resulting object than TypeScript does.

unknown is appropriate whenever you know that there will be a value but you don’t
know its type. The result of parseYAML is one example, but there are others. In the
GeoJSON spec, for example, the properties property of a Feature is a grab-bag of
anything JSON serializable. So unknown makes sense:

interface Feature {
 id?: string | number;
 geometry: Geometry;
 properties: unknown;
}

A type assertion isn’t the only way to recover a type from an unknown object. An
instanceof check will do:

function processValue(val: unknown) {
 if (val instanceof Date) {
 val // Type is Date
 }
}

You can also use a user-defined type guard:

function isBook(val: unknown): val is Book {
 return (
 typeof(val) === 'object' && val !== null &&
 'name' in val && 'author' in val
);
}
function processValue(val: unknown) {

164 | Chapter 5: Working with any

 if (isBook(val)) {
 val; // Type is Book
 }
}

TypeScript requires quite a bit of proof to narrow an unknown type: in order to avoid
errors on the in checks, you first have to demonstrate that val is an object type and
that it is non-null (since typeof null === 'object').

You’ll sometimes see a generic parameter used instead of unknown. You could have
declared the safeParseYAML function this way:

function safeParseYAML<T>(yaml: string): T {
 return parseYAML(yaml);
}

This is generally considered bad style in TypeScript, however. It looks different than a
type assertion, but is functionally the same. Better to just return unknown and force
your users to use an assertion or narrow to the type they want.

unknown can also be used instead of any in “double assertions”:

declare const foo: Foo;
let barAny = foo as any as Bar;
let barUnk = foo as unknown as Bar;

These are functionally equivalent, but the unknown form has less risk if you do a refac‐
tor and break up the two assertions. In that case the any could escape and spread. If
the unknown type escapes, it will probably just produce an error.

As a final note, you may see code that uses object or {} in a similar way to how
unknown has been described in this item. They are also broad types but are slightly
narrower than unknown:

• The {} type consists of all values except null and undefined.
• The object type consists of all non-primitive types. This doesn’t include true or
12 or "foo" but does include objects and arrays.

The use of {} was more common before the unknown type was introduced. Uses today
are somewhat rare: only use {} instead of unknown if you really do know that null
and undefined aren’t possibilities.

Things to Remember
• The unknown type is a type-safe alternative to any. Use it when you know you

have a value but do not know what its type is.
• Use unknown to force your users to use a type assertion or do type checking.

Item 42: Use unknown Instead of any for Values with an Unknown Type | 165

• Understand the difference between {}, object, and unknown.

Item 43: Prefer Type-Safe Approaches to Monkey
Patching
One of the most famous features of JavaScript is that its objects and classes are “open”
in the sense that you can add arbitrary properties to them. This is occasionally used
to create global variables on web pages by assigning to window or document:

window.monkey = 'Tamarin';
document.monkey = 'Howler';

or to attach data to DOM elements:

const el = document.getElementById('colobus');
el.home = 'tree';

This style is particularly common with code that uses jQuery.

You can even attach properties to the prototypes of built-ins, with sometimes surpris‐
ing results:

> RegExp.prototype.monkey = 'Capuchin'
"Capuchin"
> /123/.monkey
"Capuchin"

These approaches are generally not good designs. When you attach data to window or
a DOM node, you are essentially turning it into a global variable. This makes it easy
to inadvertently introduce dependencies between far-flung parts of your program and
means that you have to think about side effects whenever you call a function.

Adding TypeScript introduces another problem: while the type checker knows about
built-in properties of Document and HTMLElement, it certainly doesn’t know about the
ones you’ve added:

document.monkey = 'Tamarin';
 // ~~~~~~ Property 'monkey' does not exist on type 'Document'

The most straightforward way to fix this error is with an any assertion:

(document as any).monkey = 'Tamarin'; // OK

This satisfies the type checker, but, as should be no surprise by now, it has some
downsides. As with any use of any, you lose type safety and language services:

(document as any).monky = 'Tamarin'; // Also OK, misspelled
(document as any).monkey = /Tamarin/; // Also OK, wrong type

166 | Chapter 5: Working with any

The best solution is to move your data out of document or the DOM. But if you can’t
(perhaps you’re using a library that requires it or are in the process of migrating a
JavaScript application), then you have a few next-best options available.

One is to use an augmentation, one of the special abilities of interface (Item 13):

interface Document {
 /** Genus or species of monkey patch */
 monkey: string;
}

document.monkey = 'Tamarin'; // OK

This is an improvement over using any in a few ways:

• You get type safety. The type checker will flag misspellings or assignments of the
wrong type.

• You can attach documentation to the property (Item 48).
• You get autocomplete on the property.
• There is a record of precisely what the monkey patch is.

In a module context (i.e., a TypeScript file that uses import / export), you’ll need to
add a declare global to make this work:

export {};
declare global {
 interface Document {
 /** Genus or species of monkey patch */
 monkey: string;
 }
}
document.monkey = 'Tamarin'; // OK

The main issues with using an augmentation have to do with scope. First, the aug‐
mentation applies globally. You can’t hide it from other parts of your code or from
libraries. And second, if you assign the property while your application is running,
there’s no way to introduce the augmentation only after this has happened. This is
particularly problematic when you patch HTML Elements, where some elements on
the page will have the property and some will not. For this reason, you might want to
declare the property to be string|undefined. This is more accurate, but will make
the type less convenient to work with.

Another approach is to use a more precise type assertion:

interface MonkeyDocument extends Document {
 /** Genus or species of monkey patch */
 monkey: string;
}

Item 43: Prefer Type-Safe Approaches to Monkey Patching | 167

(document as MonkeyDocument).monkey = 'Macaque';

TypeScript is OK with the type assertion because Document and MonkeyDocument
share properties (Item 9). And you get type safety in the assignment. The scope issues
are also more manageable: there’s no global modification of the Document type, just
the introduction of a new type (which is only in scope if you import it). You have to
write an assertion (or introduce a new variable) whenever you reference the monkey-
patched property. But you can take that as encouragement to refactor into something
more structured. Monkey patching shouldn’t be too easy!

Things to Remember
• Prefer structured code to storing data in globals or on the DOM.
• If you must store data on built-in types, use one of the type-safe approaches (aug‐

mentation or asserting a custom interface).
• Understand the scoping issues of augmentations.

Item 44: Track Your Type Coverage to Prevent Regressions
in Type Safety
Are you safe from the problems associated with any types once you’ve added type
annotations for values with implicit any types and enabled noImplicitAny? The
answer is “no”; any types can still enter your program in two main ways:

Explicit any types
Even if you follow the advice of Items 38 and 39, making your any types both
narrow and specific, they remain any types. In particular, types like any[] and
{[key: string]: any} become plain anys once you index into them, and the
resulting any types can flow through your code.

From third-party type declarations
This is particularly insidious since any types from an @types declaration file
enter silently: even though you have noImplicitAny enabled and you never typed
any, you still have any types flowing through your code.

Because of the negative effects any types can have on type safety and developer expe‐
rience (Item 5), it’s a good idea to keep track of the number of them in your codebase.
There are many ways to do this, including the type-coverage package on npm:

$ npx type-coverage
9985 / 10117 98.69%

168 | Chapter 5: Working with any

This means that, of the 10,117 symbols in this project, 9,985 (98.69%) had a type
other than any or an alias to any. If a change inadvertently introduces an any type and
it flows through your code, you’ll see a corresponding drop in this percentage.

In some ways this percentage is a way of keeping score on how well you’ve followed
the advice of the other items in this chapter. Using narrowly scoped any will reduce
the number of symbols with any types, and so will using more specific forms like
any[]. Tracking this numerically helps you make sure things only get better over
time.

Even collecting type coverage information once can be informative. Running type-
coverage with the --detail flag will print where every any type occurs in your code:

$ npx type-coverage --detail
path/to/code.ts:1:10 getColumnInfo
path/to/module.ts:7:1 pt2
...

These are worth investigating because they’re likely to turn up sources of anys that
you hadn’t considered. Let’s look at a few examples.

Explicit any types are often the result of choices you made for expediency earlier on.
Perhaps you were getting a type error that you didn’t want to take the time to sort out.
Or maybe the type was one that you hadn’t written out yet. Or you might have just
been in a rush.

Type assertions with any can prevent types from flowing where they otherwise would.
Perhaps you’ve built an application that works with tabular data and needed a single-
parameter function that built up some kind of column description:

function getColumnInfo(name: string): any {
 return utils.buildColumnInfo(appState.dataSchema, name); // Returns any
}

The utils.buildColumnInfo function returned any at some point. As a reminder,
you added a comment and an explicit “: any” annotation to the function.

However, in the intervening months you’ve also added a type for ColumnInfo, and
utils.buildColumnInfo no longer returns any. The any annotation is now throwing
away valuable type information. Get rid of it!

Third-party any types can come in a few forms, but the most extreme is when you
give an entire module an any type:

declare module 'my-module';

Now you can import anything from my-module without error. These symbols all have
any types and will lead to more any types if you pass values through them:

Item 44: Track Your Type Coverage to Prevent Regressions in Type Safety | 169

import {someMethod, someSymbol} from 'my-module'; // OK

const pt1 = {
 x: 1,
 y: 2,
}; // type is {x: number, y: number}
const pt2 = someMethod(pt1, someSymbol); // OK, pt2's type is any

Since the usage looks identical to a well-typed module, it’s easy to forget that you
stubbed out the module. Or maybe a coworker did it and you never knew in the first
place. It’s worth revisiting these from time to time. Maybe there are official type dec‐
larations for the module. Or perhaps you’ve gained enough understanding of the
module to write types yourself and contribute them back to the community.

Another common source of anys with third-party declarations is when there’s a bug
in the types. Maybe the declarations didn’t follow the advice of Item 29 and declared a
function to return a union type when in fact it returns something much more spe‐
cific. When you first used the function this didn’t seem worth fixing so you used an
any assertion. But maybe the declarations have been fixed since then. Or maybe it’s
time to fix them yourself!

The considerations that led you to use an any type might not apply any more. Maybe
there’s a type you can plug in now where previously you used any. Maybe an unsafe
type assertion is no longer necessary. Maybe the bug in the type declarations you were
working around has been fixed. Tracking your type coverage highlights these choices
and encourages you to keep revisiting them.

Things to Remember
• Even with noImplicitAny set, any types can make their way into your code either

through explicit anys or third-party type declarations (@types).
• Consider tracking how well-typed your program is. This will encourage you to

revisit decisions about using any and increase type safety over time.

170 | Chapter 5: Working with any

CHAPTER 6

Types Declarations and @types

Dependency management can be confusing in any language, and TypeScript is no
exception. This chapter will help you build a mental model for how dependencies
work in TypeScript and show you how to work through some of the issues that can
come up with them. It will also help you craft your own type declaration files to pub‐
lish and share with others. By writing great type declarations, you can help not just
your own project but the entire TypeScript community.

Item 45: Put TypeScript and @types in devDependencies
The Node Package Manager, npm, is ubiquitous in the JavaScript world. It provides
both a repository of JavaScript libraries (the npm registry) and a way to specify which
versions of them you depend on (package.json).

npm draws a distinction between a few types of dependencies, each of which goes in a
separate section of package.json:

dependencies

These are packages that are required to run your JavaScript. If you import lodash
at runtime, then it should go in dependencies. When you publish your code on
npm and another user installs it, it will also install these dependencies. (These are
known as transitive dependencies.)

devDependencies

These packages are used to develop and test your code but are not required at
runtime. Your test framework would be an example of a devDependency. Unlike
dependencies, these are not installed transitively with your packages.

171

peerDependencies

These are packages that you require at runtime but don’t want to be responsible
for tracking. The canonical example is a plug-in. Your jQuery plug-in is compati‐
ble with a range of versions of jQuery itself, but you’d prefer that the user select
one, rather than you choosing for them.

Of these, dependencies and devDependencies are by far the most common. As you
use TypeScript, be aware of which type of dependency you’re adding. Because Type‐
Script is a development tool and TypeScript types do not exist at runtime (Item 3),
packages related to TypeScript generally belong in devDependencies.

The first dependency to consider is TypeScript itself. It is possible to install Type‐
Script system-wide, but this is generally a bad idea for two reasons:

• There’s no guarantee that you and your coworkers will always have the same ver‐
sion installed.

• It adds a step to your project setup.

Make TypeScript a devDependency instead. That way you and your coworkers will
always get the correct version when you run npm install. And updating your Type‐
Script version follows the same pattern as updating any other package.

Your IDE and build tools will happily discover a version of TypeScript installed in this
way. On the command line you can use npx to run the version of tsc installed by
npm:

$ npx tsc

The next type of dependency to consider is type dependencies or @types. If a library
itself does not come with TypeScript type declarations, then you may still be able to
find typings on DefinitelyTyped, a community-maintained collection of type defini‐
tions for JavaScript libraries. Type definitions from DefinitelyTyped are published on
the npm registry under the @types scope: @types/jquery has type definitions for the
jQuery, @types/lodash has types for Lodash, and so on. These @types packages only
contain the types. They don’t contain the implementation.

Your @types dependencies should also be devDependencies, even if the package itself
is a direct dependency. For example, to depend on React and its type declarations,
you might run:

$ npm install react

$ npm install --save-dev @types/react

This will result in a package.json file that looks something like this:

{
 "devDependencies": {

172 | Chapter 6: Types Declarations and @types

 "@types/react": "^16.8.19",
 "typescript": "^3.5.3"
 },
 "dependencies": {
 "react": "^16.8.6"
 }
}

The idea here is that you should publish JavaScript, not TypeScript, and your Java‐
Script does not depend on the @types when you run it. There are a few things that
can go wrong with @types dependencies, and the next item will delve deeper into this
topic.

Things to Remember
• Avoid installing TypeScript system-wide. Make TypeScript a devDependency of

your project to ensure that everyone on the team is using a consistent version.
• Put @types dependencies in devDependencies, not dependencies. If you need
@types at runtime, then you may want to rework your process.

Item 46: Understand the Three Versions Involved in Type
Declarations
Dependency management rarely conjures up happy feelings for software developers.
Usually you just want to use a library and not think too much about whether its tran‐
sitive dependencies are compatible with yours.

The bad news is that TypeScript doesn’t make this any better. In fact, it makes
dependency management quite a bit more complicated. This is because instead of
having a single version to worry about, you now have three:

• The version of the package
• The version of its type declarations (@types)
• The version of TypeScript

If any of these versions get out of sync with one another, you can run into errors that
may not be clearly related to dependency management. But as the saying goes, “make
things as simple as possible but no simpler.” Understanding the full complexity of
TypeScript package management will help you diagnose and fix problems. And it will
help you make more informed decisions when it comes time to publish type declara‐
tions of your own.

Here’s how dependencies in TypeScript are supposed to work. You install a package as
a direct dependency, and you install its types as a dev dependency (see Item 45):

Item 46: Understand the Three Versions Involved in Type Declarations | 173

$ npm install react
+ react@16.8.6

$ npm install --save-dev @types/react
+ @types/react@16.8.19

Note that the major and minor versions (16.8) match but that the patch versions (.6
and .19) do not. This is exactly what you want to see. The 16.8 in the @types version
means that these type declarations describe the API of version 16.8 of react. Assum‐
ing the react module follows good semantic versioning hygiene, the patch versions
(16.8.1, 16.8.2, …) will not change its public API and will not require updates to
the type declarations. But the type declarations themselves might have bugs or omis‐
sions. The patch versions of the @types module correspond to these sorts of fixes and
additions. In this case, there were many more updates to the type declarations than
the library itself (19 versus 6).

This can go wrong in a few ways.

First, you might update a library but forget to update its type declarations. In this case
you’ll get type errors whenever you try to use new features of the library. If there were
breaking changes to the library, you might get runtime errors despite your code pass‐
ing the type checker.

The solution is usually to update your type declarations so that the versions are back
in sync. If the type declarations have not been updated, you have a few options. You
can use an augmentation in your own project to add new functions and methods that
you’d like to use. Or you can contribute updated type declarations back to the
community.

Second, your type declarations might get ahead of your library. This can happen if
you’ve been using a library without its typings (perhaps you gave it an any type using
declare module) and try to install them later. If there have been new releases of the
library and its type declarations, your versions might be out of sync. The symptoms
of this are similar to the first problem, just in reverse. The type checker will be com‐
paring your code against the latest API, while you’ll be using an older one at runtime.
The solution is to either upgrade the library or downgrade the type declarations until
they match.

Third, the type declarations might require a newer version of TypeScript than you’re
using in your project. Much of the development of TypeScript’s type system has been
motivated by an attempt to more precisely type popular JavaScript libraries like
Lodash, React, and Ramda. It makes sense that the type declarations for these libra‐
ries would want to use the latest and greatest features to get you better type safety.

If this happens, you’ll experience it as type errors in the @types declarations them‐
selves. The solution is to either upgrade your TypeScript version, use an older version

174 | Chapter 6: Types Declarations and @types

of the type declarations, or, if you really can’t update TypeScript, stub out the types
with declare module. It is possible for a library to provide different type declarations
for different versions of TypeScript via typesVersions, but this is rare: at the time of
this writing, fewer than 1% of the packages on DefinitelyTyped did so.

To install @types for a specific version of TypeScript, you can use:

npm install --save-dev @types/lodash@ts3.1

The version matching between libraries and their types is best effort and may not
always be correct. But the more popular the library is, the more likely it is that its type
declarations will get this right.

Fourth, you can wind up with duplicate @types dependencies. Say you depend on
@types/foo and @types/bar. If @types/bar depends on an incompatible version of
@types/foo, then npm will attempt to resolve this by installing both versions, one in
a nested folder:

node_modules/
 @types/
 foo/
 index.d.ts @1.2.3
 bar/
 index.d.ts
 node_modules/
 @types/
 foo/
 index.d.ts @2.3.4

While this is sometimes OK for node modules that are used at runtime, it almost cer‐
tainly won’t be OK for type declarations, which live in a flat global namespace. You’ll
see this as errors about duplicate declarations or declarations that cannot be merged.
You can track down why you have a duplicate type declaration by running npm ls
@types/foo. The solution is typically to update your dependency on @types/foo or
@types/bar so that they are compatible. Transitive @types dependencies like these
are often a source of trouble. If you’re publishing types, see Item 51 for ways to avoid
them.

Some packages, particularly those written in TypeScript, choose to bundle their own
type declarations. This is usually indicated by a "types" field in their package.json
which points to a .d.ts file:

{
 "name": "left-pad",
 "version": "1.3.0",
 "description": "String left pad",
 "main": "index.js",
 "types": "index.d.ts",
 // ...
}

Item 46: Understand the Three Versions Involved in Type Declarations | 175

Does this solve all our problems? Would I even be asking if the answer was “yes”?

Bundling types does solve the problem of version mismatch, particularly if the library
itself is written in TypeScript and the type declarations are generated by tsc. But bun‐
dling has some problems of its own.

First, what if there’s an error in the bundled types that can’t be fixed through augmen‐
tation? Or the types worked fine when they were published, but a new TypeScript ver‐
sion has since been released which flags an error. With @types you could depend on
the library’s implementation but not its type declarations. But with bundled types,
you lose this option. One bad type declaration might keep you stuck on an old ver‐
sion of TypeScript. Contrast this with DefinitelyTyped: as TypeScript is developed,
Microsoft runs it against all the type declarations on DefinitelyTyped. Breaks are
fixed quickly.

Second, what if your types depend on another library’s type declarations? Usually this
would be a devDependency (Item 45). But if you publish your module and another
user installs it, they won’t get your devDependencies. Type errors will result. On the
other hand, you probably don’t want to make it a direct dependency either, since then
your JavaScript users will install @types modules for no reason. Item 51 discusses the
standard workaround for this situation. But if you publish your types on Definitely‐
Typed, this is not a problem at all: you declare your type dependency there and only
your TypeScript users will get it.

Third, what if you need to fix an issue with the type declarations of an old version of
your library? Would you be able to go back and release a patch update? DefinitelyTy‐
ped has mechanisms for simultaneously maintaining type declarations for different
versions of the same library, something that might be hard for you to do in your own
project.

Fourth, how committed to accepting patches for type declarations are you? Remem‐
ber the versions of react and @types/react from the start of this item. There were
three times more patch updates to the type declarations than the library itself. Defini‐
telyTyped is community-maintained and is able to handle this volume. In particular,
if a library maintainer doesn’t look at a patch within five days, a global maintainer
will. Can you commit to a similar turnaround time for your library?

Managing dependencies in TypeScript can be challenging, but it does come with
rewards: well-written type declarations can help you learn how to use libraries cor‐
rectly and can greatly improve your productivity with them. As you run into issues
with dependency management, keep the three versions in mind.

If you are publishing packages, weigh the pros and cons of bundling type declarations
versus publishing them on DefinitelyTyped. The official recommendation is to bun‐
dle type declarations only if the library is written in TypeScript. This works well in
practice since tsc can automatically generate type declarations for you (by using the

176 | Chapter 6: Types Declarations and @types

declaration compiler option). For JavaScript libraries, handcrafted type declarations
are more likely to contain errors, and they’ll require more updates. If you publish
your type declarations on DefinitelyTyped, the community will help you support and
maintain them.

Things to Remember
• There are three versions involved in an @types dependency: the library version,

the @types version, and the TypeScript version.
• If you update a library, make sure you update the corresponding @types.
• Understand the pros and cons of bundling types versus publishing them on Defi‐

nitelyTyped. Prefer bundling types if your library is written in TypeScript and
DefinitelyTyped if it is not.

Item 47: Export All Types That Appear in Public APIs
Use TypeScript long enough and you’ll eventually find yourself wanting to use a type
or interface from a third-party module only to find that it isn’t exported. Fortu‐
nately TypeScript’s tools for mapping between types are rich enough that, as a library
user, you can almost always find a way to reference the type you want. As a library
author, this means that you ought to just export your types to begin with. If a type
ever appears in a function declaration, it is effectively exported. So you may as well
make things explicit.

Suppose you want to create some secret, unexported types:

interface SecretName {
 first: string;
 last: string;
}

interface SecretSanta {
 name: SecretName;
 gift: string;
}

export function getGift(name: SecretName, gift: string): SecretSanta {
 // ...
}

As a user of your module, I cannot directly import SecretName or SecretSanta, only
getGift. But this is no barrier: because those types appear in an exported function
signature, I can extract them. One way is to use the Parameters and ReturnType
generic types:

Item 47: Export All Types That Appear in Public APIs | 177

type MySanta = ReturnType<typeof getGift>; // SecretSanta
type MyName = Parameters<typeof getGift>[0]; // SecretName

If your goal in not exporting these types was to preserve flexibility, then the jig is up!
You’ve already committed to them by putting them in a public API. Do your users a
favor and export them.

Things to Remember
• Export types that appear in any form in any public method. Your users will be

able to extract them anyway, so you may as well make it easy for them.

Item 48: Use TSDoc for API Comments
Here’s a TypeScript function to generate a greeting:

// Generate a greeting. Result is formatted for display.
function greet(name: string, title: string) {
 return `Hello ${title} ${name}`;
}

The author was kind enough to leave a comment describing what this function does.
But for documentation intended to be read by users of your functions, it’s better to
use JSDoc-style comments:

/** Generate a greeting. Result is formatted for display. */
function greetJSDoc(name: string, title: string) {
 return `Hello ${title} ${name}`;
}

The reason is that there is a nearly universal convention in editors to surface JSDoc-
style comments when the function is called (see Figure 6-1).

Figure 6-1. JSDoc-style comments are typically surfaced in tooltips in your editor.

Whereas the inline comment gets no such treatment (see Figure 6-2).

178 | Chapter 6: Types Declarations and @types

Figure 6-2. Inline comments are typically not shown in tooltips.

The TypeScript language service supports this convention, and you should take
advantage of it. If a comment describes a public API, it should be JSDoc. In the con‐
text of TypeScript, these comments are sometimes called TSDoc. You can use many of
the usual conventions like @param and @returns:

/**
 * Generate a greeting.
 * @param name Name of the person to greet
 * @param salutation The person's title
 * @returns A greeting formatted for human consumption.
 */
function greetFullTSDoc(name: string, title: string) {
 return `Hello ${title} ${name}`;
}

This lets editors show the relevant documentation for each parameter as you’re writ‐
ing out a function call (as shown in Figure 6-3).

Figure 6-3. An @param annotation lets your editor show documentation for the current
parameter as you type it.

You can also use TSDoc with type definitions:

/** A measurement performed at a time and place. */
interface Measurement {
 /** Where was the measurement made? */
 position: Vector3D;
 /** When was the measurement made? In seconds since epoch. */
 time: number;
 /** Observed momentum */
 momentum: Vector3D;
}

As you inspect individual fields in a Measurement object, you’ll get contextual docu‐
mentation (see Figure 6-4).

Item 48: Use TSDoc for API Comments | 179

Figure 6-4. TSDoc for a field is shown when you mouse over that field in your editor.

TSDoc comments are formatted using Markdown, so if you want to use bold, italic,
or bulleted lists, you can (see Figure 6-5):

/**
 * This _interface_ has **three** properties:
 * 1. x
 * 2. y
 * 3. z
 */
interface Vector3D {
 x: number;
 y: number;
 z: number;
}

Figure 6-5. TSDoc comments

Try to avoid writing essays in your documentation, though: the best comments are
short and to the point.

180 | Chapter 6: Types Declarations and @types

JSDoc includes some conventions for specifying type information (@param {string}
name ...), but you should avoid these in favor of TypeScript types (Item 30).

Things to Remember
• Use JSDoc-/TSDoc-formatted comments to document exported functions,

classes, and types. This helps editors surface information for your users when it’s
most relevant.

• Use @param, @returns, and Markdown for formatting.
• Avoid including type information in documentation (see Item 30).

Item 49: Provide a Type for this in Callbacks
JavaScript’s this keyword is one of the most notoriously confusing parts of the lan‐
guage. Unlike variables declared with let or const, which are lexically scoped, this is
dynamically scoped: its value depends not on the way in which it was defined but on
the way in which it was called.

this is most often used in classes, where it typically references the current instance of
an object:

class C {
 vals = [1, 2, 3];
 logSquares() {
 for (const val of this.vals) {
 console.log(val * val);
 }
 }
}

const c = new C();
c.logSquares();

This logs:

1
4
9

Now look what happens if you try to put logSquares in a variable and call that:

const c = new C();
const method = c.logSquares;
method();

Item 49: Provide a Type for this in Callbacks | 181

This version throws an error at runtime:

Uncaught TypeError: Cannot read property 'vals' of undefined

The problem is that c.logSquares() actually does two things: it calls C.proto
type.logSquares and it binds the value of this in that function to c. By pulling out a
reference to logSquares, you’ve separated these, and this gets set to undefined.

JavaScript gives you complete control over this binding. You can use call to explic‐
itly set this and fix the problem:

const c = new C();
const method = c.logSquares;
method.call(c); // Logs the squares again

There’s no reason that this had to be bound to an instance of C. It could have been
bound to anything. So libraries can, and do, make the value of this part of their APIs.
Even the DOM makes use of this. In an event handler, for instance:

document.querySelector('input')!.addEventListener('change', function(e) {
 console.log(this); // Logs the input element on which the event fired.
});

this binding often comes up in the context of callbacks like this one. If you want to
define an onClick handler in a class, for example, you might try this:

class ResetButton {
 render() {
 return makeButton({text: 'Reset', onClick: this.onClick});
 }
 onClick() {
 alert(`Reset ${this}`);
 }
}

When Button calls onClick, it will alert “Reset undefined.” Oops! As usual, the cul‐
prit is this binding. A common solution is to create a bound version of the method
in the constructor:

class ResetButton {
 constructor() {
 this.onClick = this.onClick.bind(this);
 }
 render() {
 return makeButton({text: 'Reset', onClick: this.onClick});
 }
 onClick() {
 alert(`Reset ${this}`);
 }
}

182 | Chapter 6: Types Declarations and @types

The onClick() { ... } definition defines a property on ResetButton.prototype.
This is shared by all instances of ResetButton. When you bind this.onClick = ...
in the constructor, it creates a property called onClick on the instance of ResetBut
ton with this bound to that instance. The onClick instance property comes before
the onClick prototype property in the lookup sequence, so this.onClick refers to
the bound function in the render() method.

There is a shorthand for binding that can sometimes be convenient:

class ResetButton {
 render() {
 return makeButton({text: 'Reset', onClick: this.onClick});
 }
 onClick = () => {
 alert(`Reset ${this}`); // "this" always refers to the ResetButton instance.
 }
}

Here we’ve replaced onClick with an arrow function. This will define a new function
every time a ResetButton is constructed with this set to the appropriate value. It’s
instructive to look at the JavaScript that this generates:

class ResetButton {
 constructor() {
 var _this = this;
 this.onClick = function () {
 alert("Reset " + _this);
 };
 }
 render() {
 return makeButton({ text: 'Reset', onClick: this.onClick });
 }
}

So what does this all have to do with TypeScript? Because this binding is part of
JavaScript, TypeScript models it. This means that if you’re writing (or typing) a
library that sets the value of this on callbacks, then you should model this, too.

You do this by adding a this parameter to your callback:

function addKeyListener(
 el: HTMLElement,
 fn: (this: HTMLElement, e: KeyboardEvent) => void
) {
 el.addEventListener('keydown', e => {
 fn.call(el, e);
 });
}

Item 49: Provide a Type for this in Callbacks | 183

The this parameter is special: it’s not just another positional argument. You can see
this if you try to call it with two parameters:

function addKeyListener(
 el: HTMLElement,
 fn: (this: HTMLElement, e: KeyboardEvent) => void
) {
 el.addEventListener('keydown', e => {
 fn(el, e);
 // ~ Expected 1 arguments, but got 2
 });
}

Even better, TypeScript will enforce that you call the function with the correct this
context:

function addKeyListener(
 el: HTMLElement,
 fn: (this: HTMLElement, e: KeyboardEvent) => void
) {
 el.addEventListener('keydown', e => {
 fn(e);
 // ~~~~~ The 'this' context of type 'void' is not assignable
 // to method's 'this' of type 'HTMLElement'
 });
}

As a user of this function, you can reference this in the callback and get full type
safety:

declare let el: HTMLElement;
addKeyListener(el, function(e) {
 this.innerHTML; // OK, "this" has type of HTMLElement
});

Of course, if you use an arrow function here, you’ll override the value of this. Type‐
Script will catch the issue:

class Foo {
 registerHandler(el: HTMLElement) {
 addKeyListener(el, e => {
 this.innerHTML;
 // ~~~~~~~~~ Property 'innerHTML' does not exist on type 'Foo'
 });
 }
}

Don’t forget about this! If you set the value of this in your callbacks, then it’s part of
your API, and you should include it in your type declarations.

184 | Chapter 6: Types Declarations and @types

Things to Remember
• Understand how this binding works.
• Provide a type for this in callbacks when it’s part of your API.

Item 50: Prefer Conditional Types to Overloaded
Declarations
How would you write a type declaration for this JavaScript function?

function double(x) {
 return x + x;
}

double can be passed either a string or a number. So you might use a union type:

function double(x: number|string): number|string;
function double(x: any) { return x + x; }

(These examples all make use of TypeScript’s concept of function overloading. For a
refresher, see Item 3.)

While this declaration is accurate, it’s a bit imprecise:

const num = double(12); // string | number
const str = double('x'); // string | number

When double is passed a number, it returns a number. And when it’s passed a string,
it returns a string. This declaration misses that nuance and will produce types that
are hard to work with.

You might try to capture this relationship using a generic:

function double<T extends number|string>(x: T): T;
function double(x: any) { return x + x; }

const num = double(12); // Type is 12
const str = double('x'); // Type is "x"

Unfortunately, in our zeal for precision we’ve overshot. The types are now a little too
precise. When passed a string type, this double declaration will result in a string
type, which is correct. But when passed a string literal type, the return type is the
same string literal type. This is wrong: doubling 'x' results in 'xx', not 'x'.

Another option is to provide multiple type declarations. While TypeScript only allows
you to write one implementation of a function, it allows you to write any number of
type declarations. You can use this to improve the type of double:

function double(x: number): number;
function double(x: string): string;

Item 50: Prefer Conditional Types to Overloaded Declarations | 185

function double(x: any) { return x + x; }

const num = double(12); // Type is number
const str = double('x'); // Type is string

This is progress! But is this declaration correct? Unfortunately there’s still a subtle
bug. This type declaration will work with values that are either a string or a number,
but not with values that could be either:

function f(x: number|string) {
 return double(x);
 // ~ Argument of type 'string | number' is not assignable
 // to parameter of type 'string'
}

This call to double is safe and should return string|number. When you overload
type declarations, TypeScript processes them one by one until it finds a match. The
error you’re seeing is a result of the last overload (the string version) failing, because
string|number is not assignable to string.

While you could patch this issue by adding a third string|number overload, the best
solution is to use a conditional type. Conditional types are like if statements (condi‐
tionals) in type space. They’re perfect for situations like this one where there are a few
possibilities that you need to cover:

function double<T extends number | string>(
 x: T
): T extends string ? string : number;
function double(x: any) { return x + x; }

This is similar to the first attempt to type double using a generic, but with a more
elaborate return type. You read the conditional type like you’d read a ternary (?:)
operator in JavaScript:

• If T is a subset of string (e.g., string or a string literal or a union of string liter‐
als), then the return type is string.

• Otherwise return number.

With this declaration, all of our examples work:

const num = double(12); // number
const str = double('x'); // string

// function f(x: string | number): string | number
function f(x: number|string) {
 return double(x);
}

The number|string example works because conditional types distribute over unions.
When T is number|string, TypeScript resolves the conditional type as follows:

186 | Chapter 6: Types Declarations and @types

 (number|string) extends string ? string : number
-> (number extends string ? string : number) |
 (string extends string ? string : number)
-> number | string

While the type declaration using overloading was simpler to write, the version using
conditional types is more correct because it generalizes to the union of the individual
cases. This is often the case for overloads. Whereas overloads are treated independ‐
ently, the type checker can analyze conditional types as a single expression, distribut‐
ing them over unions. If you find yourself writing an overloaded type declarations,
consider whether it might be better expressed using a conditional type.

Things to Remember
• Prefer conditional types to overloaded type declarations. By distributing over

unions, conditional types allow your declarations to support union types without
additional overloads.

Item 51: Mirror Types to Sever Dependencies
Suppose you’ve written a library for parsing CSV files. Its API is simple: you pass in
the contents of the CSV file and get back a list of objects mapping column names to
values. As a convenience for your NodeJS users, you allow the contents to be either a
string or a NodeJS Buffer:

function parseCSV(contents: string | Buffer): {[column: string]: string}[] {
 if (typeof contents === 'object') {
 // It's a buffer
 return parseCSV(contents.toString('utf8'));
 }
 // ...
}

The type definition for Buffer comes from the NodeJS type declarations, which you
must install:

npm install --save-dev @types/node

When you publish your CSV parsing library, you include the type declarations with
it. Since your type declarations depend on the NodeJS types, you include these as a
devDependency (Item 45). If you do this, you’re liable to get complaints from two
groups of users:

• JavaScript developers who wonder what these @types modules are that they’re
depending on.

• TypeScript web developers who wonder why they’re depending on NodeJS.

Item 51: Mirror Types to Sever Dependencies | 187

These complaints are reasonable. The Buffer behavior isn’t essential and is only rele‐
vant for users who are using NodeJS already. And the declaration in @types/node is
only relevant to NodeJS users who are also using TypeScript.

TypeScript’s structural typing (Item 4) can help you out of the jam. Rather than using
the declaration of Buffer from @types/node, you can write your own with just the
methods and properties you need. In this case that’s just a toString method that can
accept an encoding:

interface CsvBuffer {
 toString(encoding?: string): string;
}
function parseCSV(contents: string | CsvBuffer): {[column: string]: string}[] {
 // ...
}

This interface is dramatically shorter than the complete one, but it does capture our
(simple) needs from a Buffer. In a NodeJS project, calling parseCSV with a real
Buffer is still OK because the types are compatible:

parseCSV(new Buffer("column1,column2\nval1,val2", "utf-8")); // OK

If your library only depends on the types for another library, rather than its imple‐
mentation, consider mirroring just the declarations you need into your own code.
This will result in a similar experience for your TypeScript users and an improved
experience for everyone else.

If you depend on the implementation of a library, you may still be able to apply the
same trick to avoid depending on its typings. But this becomes increasingly difficult
as the dependence grows larger and more essential. If you’re copying a large portion
of the type declarations for another library, you may want to formalize the relation‐
ship by making the @types dependency explicit.

This technique is also helpful for severing dependencies between your unit tests and
production systems. See the getAuthors example in Item 4.

Things to Remember
• Use structural typing to sever dependencies that are nonessential.
• Don’t force JavaScript users to depend on @types. Don’t force web developers to

depend on NodeJS.

Item 52: Be Aware of the Pitfalls of Testing Types
You wouldn’t publish code without writing tests for it (I hope!), and you shouldn’t
publish type declarations without writing tests for them, either. But how do you test
types? If you’re authoring type declarations, testing is an essential but surprisingly

188 | Chapter 6: Types Declarations and @types

fraught undertaking. It’s tempting to make assertions about types inside the type sys‐
tem using the tools that TypeScript provides. But there are several pitfalls with this
approach. Ultimately it’s safer and more straightforward to use dtslint or a similar
tool that inspects types from outside of the type system.

Suppose you’ve written a type declaration for a map function provided by a utility
library (the popular Lodash and Underscore libraries both provide such a function):

declare function map<U, V>(array: U[], fn: (u: U) => V): V[];

How can you check that this type declaration results in the expected types? (Presuma‐
bly there are separate tests for the implementation.) One common technique is to
write a test file that calls the function:

map(['2017', '2018', '2019'], v => Number(v));

This will do some blunt error checking: if your declaration of map only listed a single
parameter, this would catch the mistake. But does it feel like something is missing
here?

The equivalent of this style of test for runtime behavior might look something like
this:

test('square a number', () => {
 square(1);
 square(2);
});

Sure, this tests that the square function doesn’t throw an error. But it’s missing any
checks on the return value, so there’s no real test of the behavior. An incorrect imple‐
mentation of square would still pass this test.

This approach is common in testing type declaration files because it’s simple to copy
over existing unit tests for a library. And while it does provide some value, it would
be much better to actually check some types!

One way is to assign the result to a variable with a specific type:

const lengths: number[] = map(['john', 'paul'], name => name.length);

This is exactly the sort of superfluous type declaration that Item 19 would encourage
you to remove. But here it plays an essential role: it provides some confidence that the
map declaration is at least doing something sensible with the types. And indeed you
can find many type declarations in DefinitelyTyped that use exactly this approach for
testing. But, as we’ll see, there are a few fundamental problems with using assignment
for testing.

One is that you have to create a named variable that is likely to be unused. This adds
boilerplate, but also means that you’ll have to disable some forms of linting.

A common workaround is to define a helper:

Item 52: Be Aware of the Pitfalls of Testing Types | 189

function assertType<T>(x: T) {}

assertType<number[]>(map(['john', 'paul'], name => name.length));

This eliminates the unused variable issue, but there are still surprises.

A second issue is that we’re checking assignability of the two types rather than equal‐
ity. Often this works as you’d expect. For example:

const n = 12;
assertType<number>(n); // OK

If you inspect the n symbol, you’ll see that its type is actually 12, a numeric literal
type. This is a subtype of number and so the assignability check passes, just as you’d
expect.

So far so good. But things get murkier when you start checking the types of objects:

const beatles = ['john', 'paul', 'george', 'ringo'];
assertType<{name: string}[]>(
 map(beatles, name => ({
 name,
 inYellowSubmarine: name === 'ringo'
 }))); // OK

The map call returns an array of {name: string, inYellowSubmarine: boolean}
objects. This is assignable to {name: string}[], sure, but shouldn’t we be forced to
acknowledge the yellow submarine? Depending on the context you may or may not
really want to check for type equality.

If your function returns another function, you may be surprised at what’s considered
assignable:

const add = (a: number, b: number) => a + b;
assertType<(a: number, b: number) => number>(add); // OK

const double = (x: number) => 2 * x;
assertType<(a: number, b: number) => number>(double); // OK!?

Are you surprised that the second assertion succeeds? The reason is that a function in
TypeScript is assignable to a function type, which takes fewer parameters:

const g: (x: string) => any = () => 12; // OK

This reflects the fact that it’s perfectly fine to call a JavaScript function with more
parameters than it’s declared to take. TypeScript chooses to model this behavior
rather than bar it, largely because it is pervasive in callbacks. The callback in the
Lodash map function, for example, takes up to three parameters:

map(array, (name, index, array) => { /* ... */ });

While all three are available, it’s very common to use only one or sometimes two, as
we have so far in this item. In fact, it’s quite rare to use all three. By disallowing this

190 | Chapter 6: Types Declarations and @types

assignment, TypeScript would report errors in an enormous amount of JavaScript
code.

So what can you do? You could break apart the function type and test its pieces using
the generic Parameters and ReturnType types:

const double = (x: number) => 2 * x;
let p: Parameters<typeof double> = null!;
assertType<[number, number]>(p);
// ~ Argument of type '[number]' is not
// assignable to parameter of type [number, number]
let r: ReturnType<typeof double> = null!;
assertType<number>(r); // OK

But if “this” isn’t complicated enough, there’s another issue: map sets the value of this
for its callback. TypeScript can model this behavior (see Item 49), so your type decla‐
ration should do so. And you should test it. How can we do that?

Our tests of map so far have been a bit black box in style: we’ve run an array and func‐
tion through map and tested the type of the result, but we haven’t tested the details of
the intermediate steps. We can do so by filling out the callback function and verifying
the types of its parameters and this directly:

const beatles = ['john', 'paul', 'george', 'ringo'];
assertType<number[]>(map(
 beatles,
 function(name, i, array) {
// ~~~~~~~ Argument of type '(name: any, i: any, array: any) => any' is
// not assignable to parameter of type '(u: string) => any'
 assertType<string>(name);
 assertType<number>(i);
 assertType<string[]>(array);
 assertType<string[]>(this);
 // ~~~~ 'this' implicitly has type 'any'
 return name.length;
 }
));

This surfaced a few issues with our declaration of map. Note the use of a non-arrow
function so that we could test the type of this.

Here is a declaration that passes the checks:

declare function map<U, V>(
 array: U[],
 fn: (this: U[], u: U, i: number, array: U[]) => V
): V[];

There remains a final issue, however, and it is a major one. Here’s a complete type
declaration file for our module that will pass even the most stringent tests for map but
is worse than useless:

Item 52: Be Aware of the Pitfalls of Testing Types | 191

declare module 'overbar';

This assigns an any type to the entire module. Your tests will all pass, but you won’t
have any type safety. What’s worse, every call to a function in this module will quietly
produce an any type, contagiously destroying type safety throughout your code. Even
with noImplicitAny, you can still get any types through type declarations.

Barring some advanced trickery, it’s quite difficult to detect an any type from within
the type system. This is why the preferred method for testing type declarations is to
use a tool that operates outside the type checker.

For type declarations in the DefinitelyTyped repository, this tool is dtslint. It oper‐
ates through specially formatted comments. Here’s how you might write the last test
for the map function using dtslint:

const beatles = ['john', 'paul', 'george', 'ringo'];
map(beatles, function(
 name, // $ExpectType string
 i, // $ExpectType number
 array // $ExpectType string[]
) {
 this // $ExpectType string[]
 return name.length;
}); // $ExpectType number[]

Rather than checking assignability, dtslint inspects the type of each symbol and
does a textual comparison. This matches how you’d manually test the type declara‐
tions in your editor: dtslint essentially automates this process. This approach does
have some drawbacks: number|string and string|number are textually different but
the same type. But so are string and any, despite being assignable to each other,
which is really the point.

Testing type declarations is tricky business. You should test them. But be aware of the
pitfalls of some of the common techniques and consider using a tool like dtslint to
avoid them.

Things to Remember
• When testing types, be aware of the difference between equality and assignability,

particularly for function types.
• For functions that use callbacks, test the inferred types of the callback parame‐

ters. Don’t forget to test the type of this if it’s part of your API.
• Be wary of any in tests involving types. Consider using a tool like dtslint for

stricter, less error-prone checking.

192 | Chapter 6: Types Declarations and @types

CHAPTER 7

Writing and Running Your Code

This chapter is a bit of a grab bag: it covers some issues that come up in writing code
(not types) as well as issues you may run into when you run your code.

Item 53: Prefer ECMAScript Features to TypeScript
Features
The relationship between TypeScript and JavaScript has changed over time. When
Microsoft first started work on TypeScript in 2010, the prevailing attitude around
JavaScript was that it was a problematic language that needed to be fixed. It was com‐
mon for frameworks and source-to-source compilers to add missing features like
classes, decorators, and a module system to JavaScript. TypeScript was no different.
Early versions included home-grown versions of classes, enums, and modules.

Over time TC39, the standards body that governs JavaScript, added many of these
same features to the core JavaScript language. And the features they added were not
compatible with the versions that existed in TypeScript. This left the TypeScript team
in an awkward predicament: adopt the new features from the standard or break exist‐
ing code?

TypeScript has largely chosen to do the latter and eventually articulated its current
governing principle: TC39 defines the runtime while TypeScript innovates solely in
the type space.

There are a few remaining features from before this decision. It’s important to recog‐
nize and understand these, because they don’t fit the pattern of the rest of the lan‐
guage. In general, I recommend avoiding them to keep the relationship between
TypeScript and JavaScript as clear as possible.

193

Enums
Many languages model types that can take on a small set of values using enumerations
or enums. TypeScript adds them to JavaScript:

enum Flavor {
 VANILLA = 0,
 CHOCOLATE = 1,
 STRAWBERRY = 2,
}

let flavor = Flavor.CHOCOLATE; // Type is Flavor

Flavor // Autocomplete shows: VANILLA, CHOCOLATE, STRAWBERRY
Flavor[0] // Value is "VANILLA"

The argument for enums is that they provide more safety and transparency than bare
numbers. But enums in TypeScript have some quirks. There are actually several var‐
iants on enums that all have subtly different behaviors:

• A number-valued enum (like Flavor). Any number is assignable to this, so it’s
not very safe. (It was designed this way to make bit flag structures possible.)

• A string-valued enum. This does offer type safety, and also more transparent val‐
ues at runtime. But it’s not structurally typed, unlike every other type in Type‐
Script (more on this momentarily).

• const enum. Unlike regular enums, const enums go away completely at runtime.
If you changed to const enum Flavor in the previous example, the compiler
would rewrite Flavor.CHOCOLATE as 0. This also breaks our expectations around
how the compiler behaves and still has the divergent behaviors between string
and number-valued enums.

• const enum with the preserveConstEnums flag set. This emits runtime code for
const enums, just like for a regular enum.

That string-valued enums are nominally typed comes as a particular surprise, since
every other type in TypeScript uses structural typing for assignability (see Item 4):

enum Flavor {
 VANILLA = 'vanilla',
 CHOCOLATE = 'chocolate',
 STRAWBERRY = 'strawberry',
}

let flavor = Flavor.CHOCOLATE; // Type is Flavor
 flavor = 'strawberry';
 // ~~~~~~ Type '"strawberry"' is not assignable to type 'Flavor'

194 | Chapter 7: Writing and Running Your Code

This has implications when you publish a library. Suppose you have a function that
takes a Flavor:

function scoop(flavor: Flavor) { /* ... */ }

Because a Flavor at runtime is really just a string, it’s fine for your JavaScript users to
call it with one:

scoop('vanilla'); // OK in JavaScript

but your TypeScript users will need to import the enum and use that instead:

scoop('vanilla');
 // ~~~~~~~~~ '"vanilla"' is not assignable to parameter of type 'Flavor'

import {Flavor} from 'ice-cream';
scoop(Flavor.VANILLA); // OK

These divergent experiences for JavaScript and TypeScript users are a reason to avoid
string-valued enums.

TypeScript offers an alternative to enums that is less common in other languages: a
union of literal types.

type Flavor = 'vanilla' | 'chocolate' | 'strawberry';

let flavor: Flavor = 'chocolate'; // OK
 flavor = 'mint chip';
 // ~~~~~~ Type '"mint chip"' is not assignable to type 'Flavor'

This offers as much safety as the enum and has the advantage of translating more
directly to JavaScript. It also offers similarly strong autocomplete in your editor:

function scoop(flavor: Flavor) {
 if (flavor === 'v
 // Autocomplete here suggests 'vanilla'
}

For more on this approach, see Item 33.

What about numeric enums? If you have the option, strongly consider using strings
for your values instead. Numeric enums don’t offer the safety you expect, and they’re
harder to work with than strings. Which would you rather see in your JavaScript
debugger or in a network request, {"flavor": 1} or {"flavor": "chocolate"}?

Parameter Properties
It’s common to assign properties to a constructor parameter when initializing a class:

class Person {
 name: string;
 constructor(name: string) {
 this.name = name;

Item 53: Prefer ECMAScript Features to TypeScript Features | 195

 }
}

TypeScript provides a more compact syntax for this:

class Person {
 constructor(public name: string) {}
}

This is called a “parameter property,” and it is equivalent to the code in the first exam‐
ple. There are a few issues to be aware of with parameter properties:

• They are one of the few constructs which generates code when you compile to
JavaScript (enums are another). Generally compilation just involves erasing types.

• Because the parameter is only used in generated code, the source looks like it has
unused parameters.

• A mix of parameter and non-parameter properties can hide the design of your
classes.

For example:

class Person {
 first: string;
 last: string;
 constructor(public name: string) {
 [this.first, this.last] = name.split(' ');
 }
}

This class has three properties (first, last, name), but this is hard to read off the
code because only two are listed before the constructor. This gets worse if the con‐
structor takes other parameters, too.

If your class consists only of parameter properties and no methods, you might con‐
sider making it an interface and using object literals. Remember that the two are
assignable to one another because of structural typing Item 4:

class Person {
 constructor(public name: string) {}
}
const p: Person = {name: 'Jed Bartlet'}; // OK

Opinions are divided on parameter properties. While I generally avoid them, others
appreciate the saved keystrokes. Be aware that they do not fit the pattern of the rest of
TypeScript, however, and may in fact obscure that pattern for new developers. Try to
avoid hiding the design of your class by using a mix of parameter and non-parameter
properties.

196 | Chapter 7: Writing and Running Your Code

Namespaces and Triple-Slash Imports
Before ECMAScript 2015, JavaScript didn’t have an official module system. Different
environments added this missing feature in different ways: Node.js used require and
module.exports whereas AMD used a define function with a callback.

TypeScript also filled this gap with its own module system. This was done using a
module keyword and “triple-slash” imports. After ECMAScript 2015 added an official
module system, TypeScript added namespace as a synonym for module, to avoid
confusion:

namespace foo {
 function bar() {}
}

/// <reference path="other.ts"/>
foo.bar();

Outside of type declarations, triple-slash imports and the module keyword are just a
historical curiosity. In your own code, you should use ECMASCript 2015–style mod‐
ules (import and export). See Item 58.

Decorators
Decorators can be used to annotate or modify classes, methods, and properties. For
example, you could define a logged annotation that logs all calls to a method on a
class:

class Greeter {
 greeting: string;
 constructor(message: string) {
 this.greeting = message;
 }
 @logged
 greet() {
 return "Hello, " + this.greeting;
 }
}

function logged(target: any, name: string) {
 const fn = target[name];
 target[name] = function() {
 console.log(`Calling ${name}`);
 return fn.apply(this, arguments);
 };
 return target;
}

console.log(new Greeter('Dave').greet());
// Logs:

Item 53: Prefer ECMAScript Features to TypeScript Features | 197

// Calling greet
// Hello, Dave

This feature was initially added to support the Angular framework and requires the
experimentalDecorators property to be set in tsconfig.json. Their implementa‐
tion has not yet been standardized by TC39 at the time of this writing, so any code
you write today using decorators is liable to break or become non-standard in the
future. Unless you’re using Angular or another framework that requires annotations
and until they’re standardized, don’t use TypeScript’s decorators.

Things to Remember
• By and large, you can convert TypeScript to JavaScript by removing all the types

from your code.
• Enums, parameter properties, triple-slash imports, and decorators are historical

exceptions to this rule.
• In order to keep TypeScript’s role in your codebase as clear as possible, I recom‐

mend avoiding these features.

Item 54: Know How to Iterate Over Objects
This code runs fine, and yet TypeScript flags an error in it. Why?

const obj = {
 one: 'uno',
 two: 'dos',
 three: 'tres',
};
for (const k in obj) {
 const v = obj[k];
 // ~~~~~~ Element implicitly has an 'any' type
 // because type ... has no index signature
}

Inspecting the obj and k symbols gives a clue:

const obj = { /* ... */ };
// const obj: {
// one: string;
// two: string;
// three: string;
// }
for (const k in obj) { // const k: string
 // ...
}

198 | Chapter 7: Writing and Running Your Code

The type of k is string, but you’re trying to index into an object whose type only has
three specific keys: 'one', 'two', and 'three'. There are strings other than these
three, so this has to fail.

Plugging in a narrower type declaration for k fixes the issue:

let k: keyof typeof obj; // Type is "one" | "two" | "three"
for (k in obj) {
 const v = obj[k]; // OK
}

So the real question is: why is the type of k in the first example inferred as string
rather than "one" | "two" | "three"?

To understand, let’s look at a slightly different example involving an interface and a
function:

interface ABC {
 a: string;
 b: string;
 c: number;
}

function foo(abc: ABC) {
 for (const k in abc) { // const k: string
 const v = abc[k];
 // ~~~~~~ Element implicitly has an 'any' type
 // because type 'ABC' has no index signature
 }
}

It’s the same error as before. And you can “fix” it using the same sort of declaration
(let k: keyof ABC). But in this case TypeScript is right to complain. Here’s why:

const x = {a: 'a', b: 'b', c: 2, d: new Date()};
foo(x); // OK

The function foo can be called with any value assignable to ABC, not just a value with
“a,” “b,” and “c” properties. It’s entirely possible that the value will have other proper‐
ties, too (see Item 4). To allow for this, TypeScript gives k the only type it can be con‐
fident of, namely, string.

Using the keyof declaration would have another downside here:

function foo(abc: ABC) {
 let k: keyof ABC;
 for (k in abc) { // let k: "a" | "b" | "c"
 const v = abc[k]; // Type is string | number
 }
}

Item 54: Know How to Iterate Over Objects | 199

If "a" | "b" | "c" is too narrow for k, then string | number is certainly too nar‐
row for v. In the preceding example one of the values is a Date, but it could be any‐
thing. The types here give a false sense of certainty that could lead to chaos at
runtime.

So what if you just want to iterate over the object’s keys and values without type
errors? Object.entries lets you iterate over both simultaneously:

function foo(abc: ABC) {
 for (const [k, v] of Object.entries(abc)) {
 k // Type is string
 v // Type is any
 }
}

While these types may be hard to work with, they are at least honest!

You should also be aware of the possibility of prototype pollution. Even in the case of
an object literal that you define, for-in can produce additional keys:

> Object.prototype.z = 3; // Please don't do this!
> const obj = {x: 1, y: 2};
> for (const k in obj) { console.log(k); }
x
y
z

Hopefully this doesn’t happen in a nonadversarial environment (you should never
add enumerable properties to Object.prototype), but it is another reason that for-in
produces string keys even for object literals.

If you want to iterate over the keys and values in an object, use either a keyof declara‐
tion (let k: keyof T) or Object.entries. The former is appropriate for constants
or other situations where you know that the object won’t have additional keys and
you want precise types. The latter is more generally appropriate, though the key and
value types are more difficult to work with.

Things to Remember
• Use let k: keyof T and a for-in loop to iterate objects when you know exactly

what the keys will be. Be aware that any objects your function receives as parame‐
ters might have additional keys.

• Use Object.entries to iterate over the keys and values of any object.

200 | Chapter 7: Writing and Running Your Code

Item 55: Understand the DOM hierarchy
Most of the items in this book are agnostic about where you run your TypeScript: in a
web browser, on a server, on a phone. This one is different. If you’re not working in a
browser, skip ahead!

The DOM hierarchy is always present when you’re running JavaScript in a web
browser. When you use document.getElementById to get an element or docu
ment.createElement to create one, it’s always a particular kind of element, even if
you’re not entirely familiar with the taxonomy. You call the methods and use the
properties that you want and hope for the best.

With TypeScript, the hierarchy of DOM elements becomes more visible. Knowing
your Nodes from your Elements and EventTargets will help you debug type errors
and decide when type assertions are appropriate. Because so many APIs are based on
the DOM, this is relevant even if you’re using a framework like React or d3.

Suppose you want to track a user’s mouse as they drag it across a <div>. You write
some seemingly innocuous JavaScript:

function handleDrag(eDown: Event) {
 const targetEl = eDown.currentTarget;
 targetEl.classList.add('dragging');
 const dragStart = [eDown.clientX, eDown.clientY];
 const handleUp = (eUp: Event) => {
 targetEl.classList.remove('dragging');
 targetEl.removeEventListener('mouseup', handleUp);
 const dragEnd = [eUp.clientX, eUp.clientY];
 console.log('dx, dy = ', [0, 1].map(i => dragEnd[i] - dragStart[i]));
 }
 targetEl.addEventListener('mouseup', handleUp);
}
const div = document.getElementById('surface');
div.addEventListener('mousedown', handleDrag);

TypeScript’s type checker flags no fewer than 11 errors in these 14 lines of code:

function handleDrag(eDown: Event) {
 const targetEl = eDown.currentTarget;
 targetEl.classList.add('dragging');
// ~~~~~~~ Object is possibly 'null'.
// ~~~~~~~~~ Property 'classList' does not exist on type 'EventTarget'
 const dragStart = [
 eDown.clientX, eDown.clientY];
 // ~~~~~~~ Property 'clientX' does not exist on 'Event'
 // ~~~~~~~ Property 'clientY' does not exist on 'Event'
 const handleUp = (eUp: Event) => {
 targetEl.classList.remove('dragging');
// ~~~~~~~~ Object is possibly 'null'.
// ~~~~~~~~~ Property 'classList' does not exist on type 'EventTarget'
 targetEl.removeEventListener('mouseup', handleUp);

Item 55: Understand the DOM hierarchy | 201

// ~~~~~~~~ Object is possibly 'null'
 const dragEnd = [
 eUp.clientX, eUp.clientY];
 // ~~~~~~~ Property 'clientX' does not exist on 'Event'
 // ~~~~~~~ Property 'clientY' does not exist on 'Event'
 console.log('dx, dy = ', [0, 1].map(i => dragEnd[i] - dragStart[i]));
 }
 targetEl.addEventListener('mouseup', handleUp);
// ~~~~~~~ Object is possibly 'null'
}

 const div = document.getElementById('surface');
 div.addEventListener('mousedown', handleDrag);
// ~~~ Object is possibly 'null'

What went wrong? What’s this EventTarget? And why might everything be null?

To understand the EventTarget errors it helps to dig into the DOM hierarchy a bit.
Here’s some HTML:

<p id="quote">and <i>yet</i> it moves</p>

If you open your browser’s JavaScript console and get a reference to the p element,
you’ll see that it’s an HTMLParagraphElement:

const p = document.getElementsByTagName('p')[0];
p instanceof HTMLParagraphElement
// True

An HTMLParagraphElement is a subtype of HTMLElement, which is a subtype of Ele
ment, which is a subtype of Node, which is a subtype of EventTarget. Here are some
examples of types along the hierarchy:

Table 7-1. Types in the DOM Hierarchy

Type Examples
EventTarget window, XMLHttpRequest

Node document, Text, Comment

Element includes HTMLElements, SVGElements

HTMLElement <i>,

HTMLButtonElement <button>

An EventTarget is the most generic of DOM types. All you can do with it is add
event listeners, remove them, and dispatch events. With this in mind, the classList
errors start to make a bit more sense:

function handleDrag(eDown: Event) {
 const targetEl = eDown.currentTarget;
 targetEl.classList.add('dragging');
// ~~~~~~~ Object is possibly 'null'

202 | Chapter 7: Writing and Running Your Code

// ~~~~~~~~~ Property 'classList' does not exist on type 'EventTarget'
 // ...
}

As its name implies, an Event’s currentTarget property is an EventTarget. It could
even be null. TypeScript has no reason to believe that it has a classList property.
While currentTarget could be an HTMLElement in practice, from the type system’s
perspective there’s no reason it couldn’t be window or XMLHttpRequest.

Moving up the hierarchy we come to Node. A couple of examples of Nodes that are not
Elements are text fragments and comments. For instance, in this HTML:

<p>
 And <i>yet</i> it moves
 <!-- quote from Galileo -->
</p>

the outermost element is an HTMLParagraphElement. As you can see here, it has chil
dren and childNodes:

> p.children
HTMLCollection [i]
> p.childNodes
NodeList(5) [text, i, text, comment, text]

children returns an HTMLCollection, an array-like structure containing just the
child Elements (<i>yet</i>). childNodes returns a NodeList, an Array-like collec‐
tion of Nodes. This includes not just Elements (<i>yet</i>) but also text fragments
(“And,” “it moves”) and comments (“quote from Galileo”).

What’s the difference between an Element and an HTMLElement? There are non-
HTML Elements including the whole hierarchy of SVG tags. These are SVGElements,
which are another type of Element. What’s the type of an <html> or <svg> tag?
They’re HTMLHtmlElement and SVGSVGElement.

Sometimes these specialized classes will have properties of their own—for example,
an HTMLImageElement has a src property, and an HTMLInputElement has a value
property. If you want to read one of these properties off a value, its type must be spe‐
cific enough to have that property.

TypeScript’s type declarations for the DOM make liberal use of literal types to try to
get you the most specific type possible. For example:

document.getElementsByTagName('p')[0]; // HTMLParagraphElement
document.createElement('button'); // HTMLButtonElement
document.querySelector('div'); // HTMLDivElement

but this is not always possible, notably with document.getElementById:

document.getElementById('my-div'); // HTMLElement

Item 55: Understand the DOM hierarchy | 203

While type assertions are generally frowned upon (Item 9), this is a case where you
know more than TypeScript does and so they are appropriate. There’s nothing wrong
with this, so long as you know that #my-div is a div:

document.getElementById('my-div') as HTMLDivElement;

with strictNullChecks enabled, you will need to consider the case that docu
ment.getElementById returns null. Depending on whether this can really happen,
you can either add an if statement or an assertion (!):

const div = document.getElementById('my-div')!;

These types are not specific to TypeScript. Rather, they are generated from the formal
specification of the DOM. This is an example of the advice of Item 35 to generate
types from specs when possible.

So much for the DOM hierarchy. What about the clientX and clientY errors?

function handleDrag(eDown: Event) {
 // ...
 const dragStart = [
 eDown.clientX, eDown.clientY];
 // ~~~~~~~ Property 'clientX' does not exist on 'Event'
 // ~~~~~~~ Property 'clientY' does not exist on 'Event'
 // ...
}

In addition to the hierarchy for Nodes and Elements, there is also a hierarchy for
Events. The Mozilla documentation currently lists no fewer than 52 types of Event!

Plain Event is the most generic type of event. More specific types include:

UIEvent

Any sort of user interface event

MouseEvent

An event triggered by the mouse such as a click

TouchEvent

A touch event on a mobile device

WheelEvent

An event triggered by rotating the scroll wheel

KeyboardEvent

A key press

The problem in handleDrag is that the events are declared as Event, while clientX
and clientY exist only on the more specific MouseEvent type.

204 | Chapter 7: Writing and Running Your Code

So how can you fix the example from the start of this item? TypeScript’s declarations
for the DOM make extensive use of context (Item 26). Inlining the mousedown han‐
dler gives TypeScript more information to work with and removes most of the errors.
You can also declare the parameter type to be MouseEvent rather than Event. Here’s a
version that uses both techniques to fix the errors:

function addDragHandler(el: HTMLElement) {
 el.addEventListener('mousedown', eDown => {
 const dragStart = [eDown.clientX, eDown.clientY];
 const handleUp = (eUp: MouseEvent) => {
 el.classList.remove('dragging');
 el.removeEventListener('mouseup', handleUp);
 const dragEnd = [eUp.clientX, eUp.clientY];
 console.log('dx, dy = ', [0, 1].map(i => dragEnd[i] - dragStart[i]));
 }
 el.addEventListener('mouseup', handleUp);
 });
}

const div = document.getElementById('surface');
if (div) {
 addDragHandler(div);
}

The if statement at the end handles the possibility that there is no #surface element.
If you know that this element exists, you could use an assertion instead (div!). add
DragHandler requires a non-null HTMLElement, so this is an example of pushing null
values to the perimeter (Item 31).

Things to Remember
• The DOM has a type hierarchy that you can usually ignore while writing Java‐

Script. But these types become more important in TypeScript. Understanding
them will help you write TypeScript for the browser.

• Know the differences between Node, Element, HTMLElement, and EventTarget, as
well as those between Event and MouseEvent.

• Either use a specific enough type for DOM elements and Events in your code or
give TypeScript the context to infer it.

Item 56: Don’t Rely on Private to Hide Information
JavaScript has historically lacked a way to make properties of a class private. The
usual workaround is a convention of prefixing fields that are not part of a public API
with underscores:

Item 56: Don’t Rely on Private to Hide Information | 205

class Foo {
 _private = 'secret123';
}

But this only discourages users from accessing private data. It is easy to circumvent:

const f = new Foo();
f._private; // 'secret123'

TypeScript adds public, protected, and private field modifiers that seem to provide
some enforcement:

class Diary {
 private secret = 'cheated on my English test';
}

const diary = new Diary();
diary.secret
 // ~~~~~~ Property 'secret' is private and only
 // accessible within class 'Diary'

But private is a feature of the type system and, like all features of the type system, it
goes away at runtime (see Item 3). Here’s what this snippet looks like when TypeScript
compiles it to JavaScript (with target=ES2017):

class Diary {
 constructor() {
 this.secret = 'cheated on my English test';
 }
}
const diary = new Diary();
diary.secret;

The private indicator is gone, and your secret is out! Much like the _private con‐
vention, TypeScript’s access modifiers only discourage you from accessing private
data. With a type assertion, you can even access a private property from within
TypeScript:

class Diary {
 private secret = 'cheated on my English test';
}

const diary = new Diary();
(diary as any).secret // OK

In other words, don’t rely on private to hide information!

So what should you do if you want something more robust? The traditional answer
has been to take advantage of one of JavaScript’s most reliable ways to hide informa‐
tion: closures. You can create one in a constructor:

declare function hash(text: string): number;

206 | Chapter 7: Writing and Running Your Code

class PasswordChecker {
 checkPassword: (password: string) => boolean;
 constructor(passwordHash: number) {
 this.checkPassword = (password: string) => {
 return hash(password) === passwordHash;
 }
 }
}

const checker = new PasswordChecker(hash('s3cret'));
checker.checkPassword('s3cret'); // Returns true

JavaScript offers no way to access the passwordHash variable from outside of the con‐
structor of PasswordChecker. This does have a few downsides, however: specifically,
because passwordHash can’t be seen outside the constructor, every method that uses it
also has to be defined there. This results in a copy of each method being created for
every class instance, which will lead to higher memory use. It also prevents other
instances of the same class from accessing private data. Closures may be inconven‐
ient, but they will certainly keep your data private!

A newer option is to use private fields, a proposed language feature that is solidifying
as this book goes to print. In this proposal, to make a field private both for type
checking and at runtime, prefix it with a #:

class PasswordChecker {
 #passwordHash: number;

 constructor(passwordHash: number) {
 this.#passwordHash = passwordHash;
 }

 checkPassword(password: string) {
 return hash(password) === this.#passwordHash;
 }
}

const checker = new PasswordChecker(hash('s3cret'));
checker.checkPassword('secret'); // Returns false
checker.checkPassword('s3cret'); // Returns true

The #passwordHash property is not accessible from outside the class. In contrast to
the closure technique, it is accessible from class methods and from other instances of
the same class. For ECMAScript targets that don’t natively support private fields, a
fallback implementation using WeakMaps is used instead. The upshot is that your data
is still private. This proposal was stage 3 and support was being added to TypeScript
as this book went to print. If you’d like to use it, check the TypeScript release notes to
see if it’s generally available.

Item 56: Don’t Rely on Private to Hide Information | 207

Finally, if you are worried about security, rather than just encapsulation, then there
are others concerns to be aware of such as modifications to built-in prototypes and
functions.

Things to Remember
• The private access modifier is only enforced through the type system. It has no

effect at runtime and can be bypassed with an assertion. Don’t assume it will keep
data hidden.

• For more reliable information hiding, use a closure.

Item 57: Use Source Maps to Debug TypeScript
When you run TypeScript code, you’re actually running the JavaScript that the Type‐
Script compiler generates. This is true of any source-to-source compiler, be it a mini‐
fier, a compiler, or a preprocessor. The hope is that this is mostly transparent, that you
can pretend that the TypeScript source code is being executed without ever having to
look at the JavaScript.

This works well until you have to debug your code. Debuggers generally work on the
code you’re executing and don’t know about the translation process it went through.
Since JavaScript is such a popular target language, browser vendors collaborated to
solve this problem. The result is source maps. They map positions and symbols in a
generated file back to the corresponding positions and symbols in the original source.
Most browsers and many IDEs support them. If you’re not using them to debug your
TypeScript, you’re missing out!

Suppose you’ve created a small script to add a button to an HTML page that incre‐
ments every time you click it:

function addCounter(el: HTMLElement) {
 let clickCount = 0;
 const button = document.createElement('button');
 button.textContent = 'Click me';
 button.addEventListener('click', () => {
 clickCount++;
 button.textContent = `Click me (${clickCount})`;
 });
 el.appendChild(button);
}

addCounter(document.body);

If you load this in your browser and open the debugger, you’ll see the generated Java‐
Script. This closely matches the original source, so debugging isn’t too difficult, as you
can see in Figure 7-1.

208 | Chapter 7: Writing and Running Your Code

Figure 7-1. Debugging generated JavaScript using Chrome’s developer tools. For this sim‐
ple example, the generated JavaScript closely resembles the TypeScript source.

Let’s make the page more fun by fetching an interesting fact about each number from
numbersapi.com:

function addCounter(el: HTMLElement) {
 let clickCount = 0;
 const triviaEl = document.createElement('p');
 const button = document.createElement('button');
 button.textContent = 'Click me';
 button.addEventListener('click', async () => {
 clickCount++;
 const response = await fetch(`http://numbersapi.com/${clickCount}`);
 const trivia = await response.text();
 triviaEl.textContent = trivia;
 button.textContent = `Click me (${clickCount})`;
 });
 el.appendChild(triviaEl);
 el.appendChild(button);
}

If you open up your browser’s debugger now, you’ll see that the generated source has
gotten dramatically more complicated (see Figure 7-2).

Item 57: Use Source Maps to Debug TypeScript | 209

Figure 7-2. In this case the TypeScript compiler has generated JavaScript that doesn’t
closely resemble the original TypeScript source. This will make debugging more difficult.

To support async and await in older browsers, TypeScript has rewritten the event
handler as a state machine. This has the same behavior, but the code no longer bears
such a close resemblance to the original source.

This is where source maps can help. To tell TypeScript to generate one, set the source
Map option in your tsconfig.json:

{
 "compilerOptions": {
 "sourceMap": true
 }
}

Now when you run tsc, it generates two output files for each .ts file: a .js file and
a .js.map file. The latter is the source map.

210 | Chapter 7: Writing and Running Your Code

With this file in place, a new index.ts file appears in your browser’s debugger. You can
set breakpoints and inspect variables in it, just as you’d hope (see Figure 7-3).

Figure 7-3. When a source map is present, you can work with the original TypeScript
source in your debugger, rather than the generated JavaScript.

Note that index.ts appears in italics in the file list on the left. This indicates that it isn’t
a “real” file in the sense that the web page included it. Rather, it was included via the
source map. Depending on your settings, index.js.map will contain either a reference
to index.ts (in which case the browser loads it over the network) or an inline copy of
it (in which case no request is needed).

There are a few things to be aware of with source maps:

• If you are using a bundler or minifier with TypeScript, it may generate a source
map of its own. To get the best debugging experience, you want this to map all
the way back to the original TypeScript sources, not the generated JavaScript. If
your bundler has built-in support for TypeScript, then this should just work. If
not, you may need to hunt down some flags to make it read source map inputs.

• Be aware of whether you’re serving source maps in production. The browser
won’t load source maps unless the debugger is open, so there’s no performance
impact for end users. But if the source map contains an inline copy of your origi‐
nal source code, then there may be content that you didn’t intend to publicize.
Does the world really need to see your snarky comments or internal bug tracker
URLs?

Item 57: Use Source Maps to Debug TypeScript | 211

You can also debug NodeJS programs using source maps. This is typically done via
your editor or by connecting to your Node process from a browser’s debugger. Con‐
sult the Node docs for details.

The type checker can catch many errors before you run your code, but it is no substi‐
tute for a good debugger. Use source maps to get a great TypeScript debugging
experience.

Things to Remember
• Don’t debug generated JavaScript. Use source maps to debug your TypeScript

code at runtime.
• Make sure that your source maps are mapped all the way through to the code that

you run.
• Depending on your settings, your source maps might contain an inline copy of

your original code. Don’t publish them unless you know what you’re doing!

212 | Chapter 7: Writing and Running Your Code

1 Z. Gao, C. Bird, and E. T. Barr, “To Type or Not to Type: Quantifying Detectable Bugs in JavaScript,” ICSE
2017, http://earlbarr.com/publications/typestudy.pdf.

2 Brie Bunge, “Adopting TypeScript at Scale,” JSConf Hawaii 2019, https://youtu.be/P-J9Eg7hJwE.

CHAPTER 8

Migrating to TypeScript

You’ve heard that TypeScript is great. You also know from painful experience that
maintaining your 15-year-old, 100,000-line JavaScript library isn’t. If only it could
become a TypeScript library!

This chapter offers some advice about migrating your JavaScript project to TypeScript
without losing your sanity and abandoning the effort.

Only the smallest codebases can be migrated in one fell swoop. The key for larger
projects is to migrate gradually. Item 60 discusses how to do this. For a long migra‐
tion, it’s essential to track your progress and make sure you don’t backslide. This cre‐
ates a sense of momentum and inevitability to the change. Item 61 discusses ways to
do this.

Migrating a large project to TypeScript won’t necessarily be easy, but it does offer a
huge potential upside. A 2017 study found that 15% of bugs fixed in JavaScript
projects on GitHub could have been prevented with TypeScript.1 Even more impres‐
sive, a survey of six months’ worth of postmortems at AirBnb found that 38% of them
could have been prevented by TypeScript.2 If you’re advocating for TypeScript at your
organization, stats like these will help! So will running some experiments and finding
early adopters. Item 59 discusses how to experiment with TypeScript before you
begin migration.

Since this chapter is largely about JavaScript, many of the code samples are either
pure JavaScript (and not expected to pass the type checker) or checked with looser
settings (e.g., with noImplicitAny off).

213

http://earlbarr.com/publications/typestudy.pdf
https://youtu.be/P-J9Eg7hJwE

Item 58: Write Modern JavaScript
In addition to checking your code for type safety, TypeScript compiles your Type‐
Script code to any version of JavaScript code, all the way back to 1999 vintage ES3.
Since TypeScript is a superset of the latest version of JavaScript, this means that you
can use tsc as a “transpiler”: something that takes new JavaScript and converts it to
older, more widely supported JavaScript.

Taking a different perspective, this means that when you decide to convert an existing
JavaScript codebase to TypeScript, there’s no downside to adopting all the latest Java‐
Script features. In fact, there’s quite a bit of upside: because TypeScript is designed to
work with modern JavaScript, modernizing your JS is a great first step toward adopt‐
ing TypeScript.

And because TypeScript is a superset of JavaScript, learning to write more modern
and idiomatic JavaScript means you’re learning to write better TypeScript, too.

This item gives a quick tour of some of the features in modern JavaScript, which I’m
defining here as everything introduced in ES2015 (aka ES6) and after. This material is
covered in much greater detail in other books and online. If any of the topics men‐
tioned here are unfamiliar, you owe it to yourself to learn more about them. Type‐
Script can be tremendously helpful when you’re learning a new language feature like
async/await: it almost certainly understands the feature better than you do and can
guide you toward correct usage.

These are all worth understanding, but by far the most important for adopting Type‐
Script are ECMAScript Modules and ES2015 classes.

Use ECMAScript Modules
Before the 2015 version of ECMAScript there was no standard way to break your
code into separate modules. There were many solutions, from multiple <script>
tags, manual concatenation, and Makefiles to node.js-style require statements or
AMD-style define callbacks. TypeScript even had its own module system (Item 53).

Today there is one standard: ECMAScript modules, aka import and export. If your
JavaScript codebase is still a single file, if you use concatenation or one of the other
module systems, it’s time to switch to ES modules. This may require setting up a tool
like webpack or ts-node. TypeScript works best with ES modules, and adopting them
will facilitate your transition, not least because it will allow you to migrate modules
one at a time (see Item 61).

The details will vary depending on your setup, but if you’re using CommonJS like
this:

214 | Chapter 8: Migrating to TypeScript

// CommonJS
// a.js
const b = require('./b');
console.log(b.name);

// b.js
const name = 'Module B';
module.exports = {name};

then the ES module equivalent would look like:

// ECMAScript module
// a.ts
import * as b from './b';
console.log(b.name);

// b.ts
export const name = 'Module B';

Use Classes Instead of Prototypes
JavaScript has a flexible prototype-based object model. But by and large JS developers
have ignored this in favor of a more rigid class-based model. This was officially
enshrined into the language with the introduction of the class keyword in ES2015.

If your code uses prototypes in a straightforward way, switch to using classes. That is,
instead of:

function Person(first, last) {
 this.first = first;
 this.last = last;
}

Person.prototype.getName = function() {
 return this.first + ' ' + this.last;
}

const marie = new Person('Marie', 'Curie');
const personName = marie.getName();

write:

class Person {
 first: string;
 last: string;

 constructor(first: string, last: string) {
 this.first = first;
 this.last = last;
 }

 getName() {
 return this.first + ' ' + this.last;

Item 58: Write Modern JavaScript | 215

 }
}

const marie = new Person('Marie', 'Curie');
const personName = marie.getName();

TypeScript struggles with the prototype version of Person but understands the class-
based version with minimal annotations. If you’re unfamiliar with the syntax, Type‐
Script will help you get it right.

For code that uses older-style classes, the TypeScript language service offers a “Con‐
vert function to an ES2015 class” quick fix that can speed this up (Figure 8-1).

Figure 8-1. The TypeScript language service offers a quick fix to convert older-style
classes to ES2015 classes.

Use let/const Instead of var
JavaScript’s var has some famously quirky scoping rules. If you’re curious to learn
more about them, read Effective JavaScript. But better to avoid var and not worry!
Instead, use let and const. They’re truly block-scoped and work in much more intu‐
itive ways than var.

Again, TypeScript will help you here. If changing var to let results in an error, then
you’re almost certainly doing something you shouldn’t be.

Nested function statements also have var-like scoping rules:

function foo() {
 bar();
 function bar() {
 console.log('hello');
 }
}

216 | Chapter 8: Migrating to TypeScript

When you call foo(), it logs hello because the definition of bar is hoisted to the top
of foo. This is surprising! Prefer function expressions (const bar = () => { ... })
instead.

Use for-of or Array Methods Instead of for(;;)
In classic JavaScript you used a C-style for loop to iterate over an array:

for (var i = 0; i < array.length; i++) {
 const el = array[i];
 // ...
}

In modern JavaScript you can use a for-of loop instead:

for (const el of array) {
 // ...
}

This is less prone to typos and doesn’t introduce an index variable. If you want the
index variable, you can use forEach:

array.forEach((el, i) => {
 // ...
});

Avoid using the for-in construct to iterate over arrays as it has many surprises (see
Item 16).

Prefer Arrow Functions Over Function Expressions
The this keyword is one of the most famously confusing aspects of JavaScript
because it has different scoping rules than other variables:

class Foo {
 method() {
 console.log(this);
 [1, 2].forEach(function(i) {
 console.log(this);
 });
 }
}
const f = new Foo();
f.method();
// Prints Foo, undefined, undefined in strict mode
// Prints Foo, window, window (!) in non-strict mode

Generally you want this to refer to the relevant instance of whichever class you’re in.
Arrow functions help you do that by keeping the this value from their enclosing
scope:

Item 58: Write Modern JavaScript | 217

class Foo {
 method() {
 console.log(this);
 [1, 2].forEach(i => {
 console.log(this);
 });
 }
}
const f = new Foo();
f.method();
// Always prints Foo, Foo, Foo

In addition to having simpler semantics, arrow functions are more concise. You
should use them whenever possible. For more on this binding, see Item 49. With the
noImplicitThis (or strict) compiler option, TypeScript will help you get your
this-binding right.

Use Compact Object Literals and Destructuring Assignment
Instead of writing:

const x = 1, y = 2, z = 3;
const pt = {
 x: x,
 y: y,
 z: z
};

you can simply write:

const x = 1, y = 2, z = 3;
const pt = { x, y, z };

In addition to being more concise, this encourages consistent naming of variables
and properties, something your human readers will appreciate as well (Item 36).

To return an object literal from an arrow function, wrap it in parentheses:

['A', 'B', 'C'].map((char, idx) => ({char, idx}));
// [{ char: 'A', idx: 0 }, { char: 'B', idx: 1 }, { char: 'C', idx: 2 }]

There is also shorthand for properties whose values are functions:

const obj = {
 onClickLong: function(e) {
 // ...
 },
 onClickCompact(e) {
 // ...
 }
};

The inverse of compact object literals is object destructuring. Instead of writing:

218 | Chapter 8: Migrating to TypeScript

const props = obj.props;
const a = props.a;
const b = props.b;

you can write:

const {props} = obj;
const {a, b} = props;

or even:

const {props: {a, b}} = obj;

In this last example only a and b become variables, not props.

You may specify default values when destructuring. Instead of writing:

let {a} = obj.props;
if (a === undefined) a = 'default';

write this:

const {a = 'default'} = obj.props;

You can also destructure arrays. This is particularly useful with tuple types:

const point = [1, 2, 3];
const [x, y, z] = point;
const [, a, b] = point; // Ignore the first one

Destructuring can also be used in function parameters:

const points = [
 [1, 2, 3],
 [4, 5, 6],
];
points.forEach(([x, y, z]) => console.log(x + y + z));
// Logs 6, 15

As with compact object literal syntax, destructuring is concise and encourages consis‐
tent variable naming. Use it!

Use Default Function Parameters
In JavaScript, all function parameters are optional:

function log2(a, b) {
 console.log(a, b);
}
log2();

This outputs:

undefined undefined

This is often used to implement default values for parameters:

Item 58: Write Modern JavaScript | 219

function parseNum(str, base) {
 base = base || 10;
 return parseInt(str, base);
}

In modern JavaScript, you can specify the default value directly in the parameter list:

function parseNum(str, base=10) {
 return parseInt(str, base);
}

In addition to being more concise, this makes it clear that base is an optional param‐
eter. Default parameters have another benefit when you migrate to TypeScript: they
help the type checker infer the type of the parameter, removing the need for a type
annotation. See Item 19.

Use async/await Instead of Raw Promises or Callbacks
Item 25 explains why async and await are preferable, but the gist is that they’ll sim‐
plify your code, prevent bugs, and help types flow through your asynchronous code.

Instead of either of these:

function getJSON(url: string) {
 return fetch(url).then(response => response.json());
}
function getJSONCallback(url: string, cb: (result: unknown) => void) {
 // ...
}

write this:

async function getJSON(url: string) {
 const response = await fetch(url);
 return response.json();
}

Use Map and Set Instead of Objects for Associative Arrays
Item 15 discussed the use of index signatures with object types. These are convenient
to work with, but they do have some problems. For example, you might write a func‐
tion like this to count the frequency of words in a string:

function countWords(text: string) {
 const counts: {[word: string]: number} = {};
 for (const word of text.split(/[\s,.]+/)) {
 counts[word] = 1 + (counts[word] || 0);
 }
 return counts;
}

This will seemingly work until you call it with the wrong string:

220 | Chapter 8: Migrating to TypeScript

console.log(countWords('Objects have a constructor'));

This prints something like:

{
 Objects: 1,
 have: 1,
 a: 1,
 constructor: "1function Object() { [native code] }"
}

The initial value of constructor comes from Object.prototype. In addition to con‐
taining a gibberish value, the runtime type of count has diverged from its TypeScript
type.

Better to play it safe and use a Map:

function countWordsMap(text: string) {
 const counts = new Map<string, number>();
 for (const word of text.split(/[\s,.]+/)) {
 counts.set(word, 1 + (counts.get(word) || 0));
 }
 return counts;
}

Don’t Put use strict in TypeScript
ES5 introduced “strict mode” to make some suspect patterns more explicit errors. You
enable it by putting 'use strict' in your code:

'use strict';
function foo() {
 x = 10; // Throws in strict mode, defines a global in non-strict.
}

If you’ve never used strict mode in your JavaScript codebase, then give it a try. The
errors it finds are likely to be ones that the TypeScript compiler will find, too.

But as you transition to TypeScript, there’s not much value in keeping 'use strict'
in your source code. By and large, the sanity checks that TypeScript provides are far
stricter than those offered by strict mode.

There is some value in having a 'use strict' in the JavaScript that tsc emits. If you
set the alwaysStrict or strict compiler options, TypeScript will parse your code in
strict mode and put a 'use strict' in the JavaScript output for you.

In short, don’t write 'use strict' in your TypeScript. Use alwaysStrict instead.

These are just a few of the many new JavaScript features that TypeScript lets you use.
TC39, the body that governs JS standards, is very active, and new features are added
year to year. The TypeScript team is currently committed to implementing any

Item 58: Write Modern JavaScript | 221

feature that reaches stage 3 (out of 4) in the standardization process, so you don’t
even have to wait for the ink to dry. Check out the TC39 GitHub repo for the latest.
As of this writing, the pipeline and decorators proposals in particular have great
potential to impact TypeScript.

Things to Remember
• TypeScript lets you write modern JavaScript whatever your runtime environ‐

ment. Take advantage of this by using the language features it enables. In addi‐
tion to improving your codebase, this will help TypeScript understand your code.

• Use TypeScript to learn language features like classes, destructuring, and async/
await.

• Don’t bother with 'use strict': TypeScript is stricter.
• Check the TC39 GitHub repo and TypeScript release notes to learn about all the

latest language features.

Item 59: Use @ts-check and JSDoc to Experiment with
TypeScript
Before you begin the process of converting your source files from JavaScript to Type‐
Script (Item 60), you may want to experiment with type checking to get an initial read
on the sorts of issues that will come up. TypeScript’s @ts-check directive lets you do
exactly this. It directs the type checker to analyze a single file and report whatever
issues it finds. You can think of it as an extremely loose version of type checking:
looser even than TypeScript with noImplicitAny off (Item 2).

Here’s how it works:

// @ts-check
const person = {first: 'Grace', last: 'Hopper'};
2 * person.first
 // ~~~~~~~~~~~~ The right-hand side of an arithmetic operation must be of type
 // 'any', 'number', 'bigint', or an enum type

TypeScript infers the type of person.first as string, so 2 * person.first is a type
error, no type annotations required.

While it may surface this sort of blatant type error, or functions called with too many
arguments, in practice, // @ts-check tends to turn up a few specific types of errors:

222 | Chapter 8: Migrating to TypeScript

https://github.com/tc39/proposals

Undeclared Globals
If these are symbols that you’re defining, then declare them with let or const. If they
are “ambient” symbols that are defined elsewhere (in a <script> tag in an HTML file,
for instance), then you can create a type declarations file to describe them.

For example, if you have JavaScript like this:

// @ts-check
console.log(user.firstName);
 // ~~~~ Cannot find name 'user'

then you could create a file called types.d.ts:
interface UserData {
 firstName: string;
 lastName: string;
}
declare let user: UserData;

Creating this file on its own may fix the issue. If it does not, you may need to explic‐
itly import it with a “triple-slash” reference:

// @ts-check
/// <reference path="./types.d.ts" />
console.log(user.firstName); // OK

This types.d.ts file is a valuable artifact that will become the basis for your project’s
type declarations.

Unknown Libraries
If you’re using a third-party library, TypeScript needs to know about it. For example,
you might use jQuery to set the size of an HTML element. With @ts-check, Type‐
Script will flag an error:

// @ts-check
 $('#graph').style({'width': '100px', 'height': '100px'});
// ~ Cannot find name '$'

The solution is to install the type declarations for jQuery:

$ npm install --save-dev @types/jquery

Now the error is specific to jQuery:

// @ts-check
$('#graph').style({'width': '100px', 'height': '100px'});
 // ~~~~~ Property 'style' does not exist on type 'JQuery<HTMLElement>'

In fact, it should be .css, not .style.

Item 59: Use @ts-check and JSDoc to Experiment with TypeScript | 223

@ts-check lets you take advantage of the TypeScript declarations for popular Java‐
Script libraries without migrating to TypeScript yourself. This is one of the best rea‐
sons to use it.

DOM Issues
Assuming you’re writing code that runs in a web browser, TypeScript is likely to flag
issues around your handling of DOM elements. For example:

// @ts-check
const ageEl = document.getElementById('age');
ageEl.value = '12';
 // ~~~~~ Property 'value' does not exist on type 'HTMLElement'

The issue is that only HTMLInputElements have a value property, but document.getE
lementById returns the more generic HTMLElement (see Item 55). If you know that
the #age element really is an input element, then this is an appropriate time to use a
type assertion (Item 9). But this is still a JS file, so you can’t write as HTMLInputEle
ment. Instead, you can assert a type using JSDoc:

// @ts-check
const ageEl = /** @type {HTMLInputElement} */(document.getElementById('age'));
ageEl.value = '12'; // OK

If you mouse over ageEl in your editor, you’ll see that TypeScript now considers it an
HTMLInputElement. Take care as you type the JSDoc @type annotation: the parenthe‐
ses after the comment are required.

This leads to another type of error that comes up with @ts-check, inaccurate JSDoc,
as explained next.

Inaccurate JSDoc
If your project already has JSDoc-style comments, TypeScript will begin checking
them when you flip on @ts-check. If you previously used a system like the Closure
Compiler that used these comments to enforce type safety, then this shouldn’t cause
major headaches. But you may be in for some surprises if your comments were more
like “aspirational JSDoc”:

// @ts-check
/**
 * Gets the size (in pixels) of an element.
 * @param {Node} el The element
 * @return {{w: number, h: number}} The size
 */
function getSize(el) {
 const bounds = el.getBoundingClientRect();
 // ~~~~~~~~~~~~~~~~~~~~~ Property 'getBoundingClientRect'
 // does not exist on type 'Node'

224 | Chapter 8: Migrating to TypeScript

 return {width: bounds.width, height: bounds.height};
 // ~~~~~~~~~~~~~~~~~~~ Type '{ width: any; height: any; }' is not
 // assignable to type '{ w: number; h: number; }'
}

The first issue is a misunderstanding of the DOM: getBoundingClientRect() is
defined on Element, not Node. So the @param tag should be updated. The second is a
mismatch between properties specified in the @return tag and the implementation.
Presumably the rest of the project uses the width and height properties, so the
@return tag should be updated.

You can use JSDoc to gradually add type annotations to your project. The TypeScript
language service will offer to infer type annotations as a quick fix for code where it’s
clear from usage, as shown here and in Figure 8-2:

function double(val) {
 return 2 * val;
}

Figure 8-2. The TypeScript Language Services offer a quick fix to infer paramter types
from usage.

This results in a correct JSDoc annotation:

// @ts-check
/**
 * @param {number} val
 */
function double(val) {
 return 2 * val;
}

This can be helpful to encourage types to flow through your code with @ts-check.
But it doesn’t always work so well. For instance:

function loadData(data) {
 data.files.forEach(async file => {
 // ...

Item 59: Use @ts-check and JSDoc to Experiment with TypeScript | 225

 });
}

If you use the quick fix to annotate data, you’ll wind up with:

/**
 * @param {{
 * files: { forEach: (arg0: (file: any) => Promise<void>) => void; };
 * }} data
 */
function loadData(data) {
 // ...
}

This is structural typing gone awry (Item 4). While the function would technically
work on any sort of object with a forEach method with that signature, the intent was
most likely for the parameter to be {files: string[]}.

You can get much of the TypeScript experience in a JavaScript project using JSDoc
annotations and @ts-check. This is appealing because it requires no changes in your
tooling. But it’s best not to go too far in this direction. Comment boilerplate has real
costs: it’s easy for your logic to get lost in a sea of JSDoc. TypeScript works best
with .ts files, not .js files. The goal is ultimately to convert your project to TypeScript,
not to JavaScript with JSDoc annotations. But @ts-check can be a useful way to
experiment with types and find some initial errors, especially for projects that already
have extensive JSDoc annotations.

Things to Remember
• Add "// @ts-check" to the top of a JavaScript file to enable type checking.
• Recognize common errors. Know how to declare globals and add type declara‐

tions for third-party libraries.
• Use JSDoc annotations for type assertions and better type inference.
• Don’t spend too much time getting your code perfectly typed with JSDoc.

Remember that the goal is to convert to .ts!

Item 60: Use allowJs to Mix TypeScript and JavaScript
For a small project, you may be able to convert from JavaScript to TypeScript in one
fell swoop. But for a larger project this “stop the world” approach won’t work. You
need to be able to transition gradually. That means you need a way for TypeScript and
JavaScript to coexist.

The key to this is the allowJs compiler option. With allowJs, TypeScript files and
JavaScript files may import one another. For JavaScript files this mode is extremely

226 | Chapter 8: Migrating to TypeScript

permissive. Unless you use @ts-check (Item 59), the only errors you’ll see are syntax
errors. This is “TypeScript is a superset of JavaScript” in the most trivial sense.

While it’s unlikely to catch errors, allowJs does give you an opportunity to introduce
TypeScript into your build chain before you start making code changes. This is a
good idea because you’ll want to be able to run your tests as you convert modules to
TypeScript (Item 61).

If your bundler includes TypeScript integration or has a plug-in available, that’s usu‐
ally the easiest path forward. With browserify, for instance, you run npm install
--save-dev tsify and add it as a plug-in:

$ browserify index.ts -p [tsify --noImplicitAny] > bundle.js

Most unit testing tools have an option like this as well. With the jest tool, for
instance, you install ts-jest and pass TypeScript sources through it by specifying a
jest.config.js like:

module.exports = {
 transform: {
 '^.+\\.tsx?$': 'ts-jest',
 },
};

If your build chain is custom, your task will be more involved. But there’s always a
good fallback option: when you specify the outDir option, TypeScript will generate
pure JavaScript sources in a directory that parallels your source tree. Usually your
existing build chain can be run over that. You may need to tweak TypeScript’s Java‐
Script output so that it closely matches your original JavaScript source (e.g., by speci‐
fying the target and module options).

Adding TypeScript into your build and test process may not be the most enjoyable
task, but it is an essential one that will let you begin to migrate your code with
confidence.

Things to Remember
• Use the allowJs compiler option to support mixed JavaScript and TypeScript as

you transition your project.
• Get your tests and build chain working with TypeScript before beginning large-

scale migration.

Item 60: Use allowJs to Mix TypeScript and JavaScript | 227

Item 61: Convert Module by Module Up Your Dependency
Graph
You’ve adopted modern JavaScript, converting your project to use ECMAScript mod‐
ules and classes (Item 58). You’ve integrated TypeScript into your build chain and
have all your tests passing (Item 60). Now for the fun part: converting your JavaScript
to TypeScript. But where to begin?

When you add types to a module, it’s likely to surface new type errors in all the mod‐
ules that depend on it. Ideally you’d like to convert each module once and be done
with it. This implies that you should convert modules going up the dependency
graph: starting with the leaves (modules that depend on no others) and moving up to
the root.

The very first modules to migrate are your third-party dependencies since, by defini‐
tion, you depend on them but they do not depend on you. Usually this means instal‐
ling @types modules. If you use the lodash utility library, for example, you’d run npm
install --save-dev @types/lodash. These typings will help types flow through
your code and surface issues in your use of the libraries.

If your code calls external APIs, you may also want to add type declarations for these
early on. Although these calls may happen anywhere in your code, this is still in the
spirit of moving up the dependency graph since you depend on the APIs but they do
not depend on you. Many types flow from API calls, and these are generally difficult
to infer from context. If you can find a spec for the API, generate types from that (see
Item 35).

As you migrate your own modules, it’s helpful to visualize the dependency graph.
Figure 8-3 shows an example graph from a medium-sized JavaScript project, made
using the excellent madge tool.

The bottom of this dependency graph is the circular dependency between utils.js and
tickers.js. There are many modules that depend on these two, but they only depend on
one another. This pattern is quite common: most projects will have some sort of util‐
ity module at the bottom of the dependency graph.

As you migrate your code, focus on adding types rather than refactoring. If this is an
old project, you’re likely to notice some strange things and want to fix them. Resist
this urge! The immediate goal is to convert your project to TypeScript, not to
improve its design. Instead, write down code smells as you detect them and make a
list of future refactors.

228 | Chapter 8: Migrating to TypeScript

Figure 8-3. The dependency graph for a medium-sized JavaScript project. Arrows indi‐
cate dependencies. Darker-shaded boxes indicate that a module is involved in a circular
dependency.

There are a few common errors you’ll run into as you convert to TypeScript. Some of
these were covered in Item 59, but new ones include:

Undeclared Class Members
Classes in JavaScript do not need to declare their members, but classes in TypeScript
do. When you rename a class’s .js file to .ts, it’s likely to show errors for every single
property you reference:

class Greeting {
 constructor(name) {
 this.greeting = 'Hello';
 // ~~~~~~~~ Property 'greeting' does not exist on type 'Greeting'
 this.name = name;
 // ~~~~ Property 'name' does not exist on type 'Greeting'
 }
 greet() {
 return this.greeting + ' ' + this.name;
 // ~~~~~~~~ ~~~~ Property ... does not exist
 }
}

Item 61: Convert Module by Module Up Your Dependency Graph | 229

There’s a helpful quick fix (see Figure 8-4) for this that you should take advantage of.

Figure 8-4. The quick fix to add declarations for missing members is particularly helpful
in converting a class to TypeScript.

This will add declarations for the missing members based on usage:

class Greeting {
 greeting: string;
 name: any;
 constructor(name) {
 this.greeting = 'Hello';
 this.name = name;
 }
 greet() {
 return this.greeting + ' ' + this.name;
 }
}

TypeScript was able to get the type for greeting correct, but not the type for name.
After applying this quick fix, you should look through the property list and fix the
any types.

If this is the first time you’ve seen the full property list for your class, you may be in
for a shock. When I converted the main class in dygraph.js (the root module in
Figure 8-3), I discovered that it had no fewer than 45 member variables! Migrating to
TypeScript has a way of surfacing bad designs like this that were previously implicit.
It’s harder to justify a bad design if you have to look at it. But again, resist the urge to
refactor now. Note the oddity and think about how you’d fix it some other day.

Values with Changing Types
TypeScript will complain about code like this:

const state = {};
state.name = 'New York';
 // ~~~~ Property 'name' does not exist on type '{}'

230 | Chapter 8: Migrating to TypeScript

state.capital = 'Albany';
 // ~~~~~~~ Property 'capital' does not exist on type '{}'

This topic is covered in more depth in Item 23, so you may want to brush up on that
item if you run into this error. If the fix is trivial, you can build the object all at once:

const state = {
 name: 'New York',
 capital: 'Albany',
}; // OK

If it is not, then this is an appropriate time to use a type assertion:

interface State {
 name: string;
 capital: string;
}
const state = {} as State;
state.name = 'New York'; // OK
state.capital = 'Albany'; // OK

You should fix this eventually (see Item 9), but this is expedient and will help you
keep the migration going.

If you’ve been using JSDoc and @ts-check (Item 59), be aware that you can actually
lose type safety by converting to TypeScript. For instance, TypeScript flags an error in
this JavaScript:

// @ts-check
/**
 * @param {number} num
 */
function double(num) {
 return 2 * num;
}

double('trouble');
 // ~~~~~~~~~ Argument of type '"trouble"' is not assignable to
 // parameter of type 'number'

When you convert to TypeScript, the @ts-check and JSDoc stop being enforced. This
means the type of num is implicitly any, so there’s no error:

/**
 * @param {number} num
 */
function double(num) {
 return 2 * num;
}

double('trouble'); // OK

Item 61: Convert Module by Module Up Your Dependency Graph | 231

Fortunately there’s a quick fix available to move JSDoc types to TypeScript types. If
you have any JSDoc, you should use what’s shown in Figure 8-5.

Figure 8-5. Quick fix to copy JSDoc annotations to TypeScript type annotations

Once you’ve copied type annotations to TypeScript, make sure to remove them from
the JSDoc to avoid redundancy (see Item 30):

function double(num: number) {
 return 2 * num;
}

double('trouble');
 // ~~~~~~~~~ Argument of type '"trouble"' is not assignable to
 // parameter of type 'number'

This issue will also be caught when you turn on noImplicitAny, but you may as well
add the types now.

Migrate your tests last. They should be at the top of your dependency graph (since
your code doesn’t depend on them), and it’s extremely helpful to know that your tests
continue to pass during the migration despite your not having changed them at all.

Things to Remember
• Start migration by adding @types for third-party modules and external API calls.
• Begin migrating your modules from the bottom of the dependency graph

upwards. The first module will usually be some sort of utility code. Consider vis‐
ualizing the dependency graph to help you track progress.

• Resist the urge to refactor your code as you uncover odd designs. Keep a list of
ideas for future refactors, but stay focused on TypeScript conversion.

• Be aware of common errors that come up during conversion. Copy JSDoc anno‐
tations if necessary to avoid losing type safety as you convert.

232 | Chapter 8: Migrating to TypeScript

Item 62: Don’t Consider Migration Complete Until You
Enable noImplicitAny
Converting your whole project to .ts is a big accomplishment. But your work isn’t
done quite yet. Your next goal is to turn on the noImplicitAny option (Item 2). Type‐
Script code without noImplicitAny is best thought of as transitional because it can
mask real errors you’ve made in your type declarations.

For example, perhaps you’ve used the “Add all missing members” quick fix to add
property declarations to a class (Item 61). You’re left with an any type and would like
to fix it:

class Chart {
 indices: any;

 // ...
}

indices sounds like it should be an array of numbers, so you plug in that type:

class Chart {
 indices: number[];

 // ...
}

No new errors result, so you then keep moving. Unfortunately, you’ve made a mis‐
take: number[] is the wrong type. Here’s some code from elsewhere in the class:

getRanges() {
 for (const r of this.indices) {
 const low = r[0]; // Type is any
 const high = r[1]; // Type is any
 // ...
 }
}

Clearly number[][] or [number, number][] would be a more accurate type. Does it
surprise you that indexing into a number is allowed? Take this as an indication of just
how loose TypeScript can be without noImplicitAny.

When you turn on noImplicitAny, this becomes an error:

getRanges() {
 for (const r of this.indices) {
 const low = r[0];
 // ~~~~ Element implicitly has an 'any' type because
 // type 'Number' has no index signature
 const high = r[1];
 // ~~~~ Element implicitly has an 'any' type because
 // type 'Number' has no index signature

Item 62: Don’t Consider Migration Complete Until You Enable noImplicitAny | 233

 // ...
 }
}

A good strategy for enabling noImplicitAny is to set it in your local client and start
fixing errors. The number of errors you get from the type checker gives you a good
sense of your progress. You can commit the type corrections without committing the
tsconfig.json change until you get the number of errors down to zero.

There are many other knobs you can turn to increase the strictness of type checking,
culminating with "strict": true. But noImplicitAny is the most important one
and your project will get most of the benefits of TypeScript even if you don’t adopt
other settings like strictNullChecks. Give everyone on your team a chance to get
used to TypeScript before you adopt stricter settings.

Things to Remember
• Don’t consider your TypeScript migration done until you adopt noImplicitAny.

Loose type checking can mask real mistakes in type declarations.
• Fix type errors gradually before enforcing noImplicitAny. Give your team a

chance to get comfortable with TypeScript before adopting stricter checks.

234 | Chapter 8: Migrating to TypeScript

Index

Symbols
! operator, 43
(private field prefix), 207
& operator, 31, 39
() => any, 155-157
.js/.jsx extension, 2
.ts/.tsx extension, 2
@param type, 179
@returns type, 179
@ts-check, 222-226
@ts-ignore, 154
@types (type dependencies)

installing in devDependencies, 171
JavaScript developers and, 187
preventing regressions in type safety, 168
three versions involved in, 173-177

[] property accessor, 38
{ } type, 162-166
{[id: string]: any}, 155-157
{[key: string]: any} type, 156, 168
| operator, 39

A
aliases, 99-102
allowJs, 226
Angular, 198
any types

drawbacks of, 20-23
evolving, 159-162
hiding unsafe type assertions, 157
versus inaccurate models, 136
plain any versus more precise variants,

155-157
preventing regressions in type safety, 168

type-safe approaches versus monkey-
patching, 166

unknown versus any types, 162-166
using narrow scope for, 153-155

any[] types, 155-157, 159-162, 168
Array interface, 56
array methods, 217
Array type, 70
ArrayLike type, 70
arrays, 68
arrow functions, 41, 217
as const, 92, 110
assignable to, 30, 188, 199
Astaire, Fred, 62
async arrow functions, 105
async functions, 102-107
async/await, 220
asynchronous code, 102-107
augmentation, 55, 166
await keyword, 103-107, 220

B
bigint primitive, 43-46
boolean primitives, 43-46
brands, 149-152
Brooks, Fred, 117, 122
browserify, 227
built-in types, storing data on, 166
bundling types, 175

C
C++, 14, 18, 81, 115
callbacks

async functions versus callbacks, 102-107

235

versus async/await, 220
ECMAScript modules, 214
providing types for this keyword in, 181
testing inferred types, 188
type declarations for, 50
type inference and, 110

class construct, 37
classes

ES2015, 215
implements, 54
nominal typing, 149
parameter properties, 195
private fields, 205
this, 195
type versus value, 35

classes, versus prototypes, 215
Closure Compiler, 224
closures, 206
code generation, independent of types, 10-16
code samples, conventions used in, xiii
code, writing and running

debugging with source maps, 208-212
DOM hierarchy, 201-205
ECMAScript versus TypeScript features,

193-198
hiding information, 205
iterating over objects, 198

compact object literals, 218
compiling

compiler options, 9, 218, 221, 226
compiling versus type checking, 10-16
in TypeScript, 1

conditional types, 185
configuration settings, 7-10
const

avoiding errors associated with mutation,
71-77

const versus as const, 39
need for context, 90
type declarations and, 109

const assertion, 92, 110
context, 91, 107-111
contracts, breaking with any type, 20
CSV, 65-67, 111, 187
Curie, Marie, 215
Curry, Stephen, 114

D
Davis, Miles, 134

debugging
any type drawbacks, 22
with source maps, 208-212

declaration merging, 55, 166
declared types, 14
decorators, 197
DefinitelyTyped, 172, 175
dependencies, 171
destructuring assignment, 218
devDependencies, 171
discriminated unions (see tagged unions)
documentation, type information in, 125
DOM hierarchy, 201-205, 224
domain of a type, 29-35
double assertion, 165
DRY (don’t repeat yourself) principle, 56-64
dtslint, 189, 192
duck typing, 16-20, 149-152
dygraph.js, 230
dynamic data, 64-67

E
ECMAScript, 193-198, 214
editors, using to interrogate and explore type

system, 25-29
Element, 201
enums (enumerations), 37, 194
equality, 188
ES2015

class keyword, 215
Convert function, 216
keys in, 68
merging and, 56
Promises in, 103
symbol primitive, 43
writing modern JavaScript, 214

ES2017, 103, 206
ES5

async and await in, 103
generator functions, 15
merging and, 56
numeric keys and, 69
strict mode, 221

eslint, 87
Event, 204
EventTarget, 201
evolving any, 159-162
excess property checking

limits of, 46-49

236 | Index

type declaration and, 41
explicitly typed languages, 81
extends, 32, 39, 58

F
flatMap, 111
for(;;), 70, 217
for-in loops, 70, 198
for-of, 69, 217
function expressions, 217
functions

applying type annotations to function
expressions, 49-52

arrow functions, 41, 217
avoid returning any types from, 153-155
default function parameters, 219
hiding unsafe type assertions in, 157
inspecting with editors, 26
overloading, 14
robustness principle, 122-125
testing inferred types of callbacks, 188
utility libraries versus hand-rolled, 111-115

G
generic types, 60
GeoJSON, 123, 138-139, 142-147, 164
Geometry, 138, 144, 164
global variables, 166, 223
Griffin, Blake, 114

H
Hejlsberg, Anders, 108
Hopper, Grace, 222
HTMLElement, 202

I
implicit anys, 8
in construct

in (for-in), 70, 198
in (mapped type), 59, 67, 77-80
value versus type space meanings, 39

index signatures
versus arrays, tuples, and ArrayLike, 68-71
for dynamic data, 64-67
readonly and, 76

indexing, 59
inferable types, 81-87
interface construct

as alternative to index signatures, 65
existence in type space, 40
type versus interface, 52-56
unions of interfaces versus interfaces of

unions, 131-134
invalid states, 117-122

J
James, LeBron, 114
Java

addition of var, 81
declaring parameters in, 18
hashable objects in, 68
rewriting code in, 2
standard libraries in, 111
String objects, 45
type checking and output in, 10
versus TypeScript, 1, 115

JavaScript
duck typing, 16-20, 149-152
function statements versus function expres‐

sions, 49
implicit type coercions in, 68
migrating to TypeScript, 2, 213-234
mixing with TypeScript, 226
objects in, 68
open classes in, 166
relationship to TypeScript, 1-7, 193
this keyword, 181, 217
writing modern, 214-222

jQuery
dependencies, 172
interacting with DOM, 111
type declarations for, 223
type-safe approaches versus monkey-

patching, 166
JSDoc-style comments, 178, 222-226
JSON, 51, 139, 162, 164

K
Karlton, Phil, 147
keyof, 60
keyof T, 136

L
language services

commenting convention supported by, 179
components of, 25

Index | 237

drawbacks of any types, 21
navigating libraries and type declarations,

28
let k: keyof T, 198
let/const, 216
libraries

navigating libraries and type declarations,
28

unknown third-party, 223
using utility libraries, 111-115

Lodash library, 111-115, 171-174, 189, 190

M
Mapbox library, 139, 141
mapped types, 59, 67, 77-80
migration

converting module by module, 228-232
experimenting with TypeScript, 222-226
mixing TypeScript with JavaScript, 226
noImplicitAny, 233
overview of, 213
writing modern JavaScript, 214-222

MouseEvent, 204
mutations, avoiding errors associated with,

71-77

N
named types, 136
names and naming, 147-149
namespace

triple-slash imports and, 197
type declarations and, 175

narrowing, 93
never type, 164
Node, 201
Node Package Manager (npm), dependency

distinctions in, 171
NodeJS, 187
noImplicitAny, 7-10, 168, 233
noImplicitThis, 9, 218
nominal typing, 149-152
non-null assertions, 43
non-null values, 127-130
null primitive, 43-46
null values, 127-130
number primitives, 43-46

O
object spread operator (…), 97
object type, 162-166
object wrapper types, 43-46
Object.entries, 198
Object.keys, 17, 69, 159
Object.values, 113
objects

compact object literals, 218
creating all at once, 96-99
iterating over, 198
in JavaScript, 68
type inference and, 110

overloaded declarations, 185
overloading functions, 14

P
parameter properties, 195
parameter types, 124
Partial type, 61
Paul, Chris, 114
Pick type, 60
Postel's Law, 122-125
private field modifier, 205
Promises, 102-107, 130, 220
properties

attaching to built-in types, 166
modeling outside of type system, 149-152
naming, 147-149
parameter properties, 195

property checking, 16
protected field modifier, 205
prototype pollution, 200
prototypes, 215
public APIs

exporting all types appearing in, 177
TSDoc for API comments, 178

public field modifier, 205

R
Ramda library, 111, 174
React library

dependencies, 172-174
DOM hierarchy and, 201
optimizations in, 77
Person in, 41
useMemo hook, 157

readonly, 71-77

238 | Index

Records, 67
recursive types, 140
repetition, avoiding, 56-64
return types, 124
ReturnType, 62
robustness principle, 122-125
Rogers, Ginger, 62
runtime

effect of TypeScript types on performance,
15

inability to check TypeScript at, 11
runtime types versus declared types, 14
type operations and runtime values, 13

S
security, 208
Shelley, Mary, 73
source maps, 208-212
statically typed languages, 81
strict mode, 221
strictNullChecks, 7-10, 127-130
string primitives, 43-46
string types, alternatives to, 134-138
structural typing, 16-20, 149-152, 188
subsets, 32
subtypes, 32
symbols

symbol primitives, 43-46
type space versus value space, 35-40

T
tagged unions

example of, 12, 95
querying at runtime using, 16
unions of interfaces versus interfaces of

unions, 131-134
TC39, 222
test-driven development (TDD), 86
Testing types, 188-192
third-party type declarations, 168
this keyword, 181, 217
this operator, 39
transpiling, 10

(see also compiling)
triple-slash imports, 197
Truth, Sojourner, 82
ts-node, 214
tsconfig.json

experimentalDecorators property, 198

knowing which options you’re using, 7-11
merging and, 56
noImplicitAny, 234
sourceMap option, 210

TSDoc, 178
tuple type, 70, 108
Turing, Alan, 31, 133
Twain, Mark, 50
type annotations

avoiding cluttered code, 81-87
reducing need for, 111-115
using explicit with any types, 154, 159-162
using more effectively, 90

type assertion
example of, 13
hiding unsafe type assertions, 157
misuse of, 20
versus type declarations, 40-43

type checking, versus excess property checking,
47

type construct, 52-56
type declaration

conditional types versus overloaded declara‐
tions, 185

mirroring types to sever dependencies, 187
navigating with language services, 28
pitfalls of testing types, 188
providing types for this keyword in call‐

backs, 181
third-party, 168
three versions involved in, 173-177
TSDoc for API comments, 178
versus type assertion, 40-43
types in public APIs, 177
TypeScript and @types, 171

type dependencies (see @types)
type design

alternatives to string types, 134-138
any type drawbacks, 23
generating types from specifications,

142-147
incomplete versus inaccurate types, 138-142
naming types, 147-149
nominal typing, 149-152
null values, 127-130
robustness principle, 122-125
type information in documentation, 125
types representing valid versus invalid

states, 117-122

Index | 239

unions of interfaces versus interfaces of
unions, 131-134

type domains, 29-35
type inference

aliases, 99-102
asynchronous code, 102-107
avoiding variable reuse, 87-89
benefits of inferable types, 81-87
context in, 107-111
functional constructs and libraries, 111-115
object creation, 96-99
type narrowing, 93-96
type widening, 90-93

type narrowing, 93-96
type refinements, 102
type safety

avoid returning any types from functions,
153-155

ensuring, 147
hiding unsafe type assertions, 157
lack of with any types, 20
preventing regressions in, 168
subsets of string and, 137
type-safe approaches versus monkey-

patching, 166
type space, 35-40
type system

applying type annotations to function
expressions, 49-52

arrays, tuples, and ArrayLike, 68-71
avoiding errors associated with mutation,

71-77
avoiding repetition, 56-64
excess property checking limits, 46-49
index signatures for dynamic data, 64-67
mapped types, 77-80
object wrapper types, 43-46
as optional and gradual, 153
type declarations versus type assertions,

40-43
type space versus value space, 35-40
type versus interface, 52-56
types as set values, 29-35
using editors to interrogate and explore,

25-29
type widening, 90-93
typeof fn, 49-52
typeof operator, 37, 61
TypeScript

any type drawbacks, 20-23
configuration settings, 7-10
experimenting with, 222-226
function statements versus function expres‐

sions, 49
installing as a devDependency, 171
migrating to, 2, 213-234
mixing with JavaScript, 226
relationship to JavaScript, 1-7, 193
release notes, 222
structural typing, 16-20, 149-152, 188
terms and set terms, 35
type inference in, 81-87
writing for browsers, 201-205

TypeScript compiler (tsc)
code generation and type checking, 10-16
functions of, 10

TypeScript Playground, 36

U
undeclared globals, 223
undefined primitive, 43-46
undefined value type, 66
Underscore library, 111, 114, 136, 189
union types

difficulty in using, 124
extending, 54
purpose of, 88
unions of interfaces versus interfaces of

unions, 131-134
unknown libraries, 223
unknown types

versus inaccurate models, 142
unknown versus any types, 162-166

unsafe casts, 157
use strict, 221
user-defined type guards, 95

V
valid states, 117-122
value space, 35-40
values

assigning to variables, 40-43
keeping in sync with mapped types, 77-80
null values versus non-null values, 127-130
types as set values, 29-35
with unknown types, 162-166

var, 216
variables

240 | Index

assigning values to, 40-43
avoiding reuse for different types, 87-89
including units in variable names, 126
naming, 147-149

versions, managing for type declarations,
173-177

W
webpack, 214

Westbrook, Russell, 114
widening, 90-93

Y
YAML, 162

Z
zipObject, 112

Index | 241

About the Author
Dan Vanderkam is a principal software engineer at Sidewalk Labs. He previously
worked on open source genome visualizations at Mount Sinai’s Icahn School of Medi‐
cine and on Google search features used by billions of people (search for “sunset nyc”
or “population of france”). He has a long history of building open source projects and
is a cofounder of the NYC TypeScript Meetup.

When he’s not programming, Dan enjoys climbing rocks and playing bridge. He
writes on Medium and at danvk.org. He earned his bachelor’s in computer science
from Rice University in Houston, Texas, and lives in Brooklyn, New York.

Colophon
The animal on the cover of Effective TypeScript is a red-billed oxpecker (Buphagus
erythrorhynchus). These birds inhabit a fragmented range across eastern Africa, from
Ethiopia and Somalia in the northeast to a few pockets in South Africa; however,
these birds can be said to inhabit the range of the grazing animals on which they
spend almost all their lives.

Red-billed oxpeckers are related to starlings and mynahs, though they are of a distinct
and separate family. About eight inches long, and weighing about two ounces, these
birds have a bark-brown head, back, and tail, with paler coloring below. Their most
striking physical features are their red beaks and red eyes set off by bright yellow
eyerings.

Dominating the life of this bird is where and how it finds its food: red-billed oxpeck‐
ers feed on ticks and other animal parasites, and they perch on animals as they forage.
Their host animals are most often antelope (such as kudu and impala) as well as large
animals such as zebra, giraffe, buffalo, and rhinoceros (elephants do not tolerate
them). Red-billed oxpeckers have evolved adaptations to assist them in their search
for food, such as a flat beak to pierce thick animal hair, and sharp claws and a stiff tail
to hang on to their host animals. These birds even conduct courtship while perched
on a host animal, and only leave during nesting season. Parent birds raise three chicks
in a nest hole (lined with hair pulled from their host) close to the animal herds so that
they can feed themselves and their young.

The birds’ relationship with their animal hosts was once seen as a clear-cut and classic
example of mutualism (a mutually beneficial interaction between species). However,
recent studies have shown that oxpeckers’ feeding habits don’t significantly affect
hosts’ parasite loads, and additionally showed that oxpeckers actually work to keep
animals’ wounds open, so that they can feed on their blood.

Red-billed oxpeckers remain common across their range; though pesticide use is a
threat, their adoption of domestic cattle herds as a food source helps their population
remain stable. Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Jose Marzan, based on a black-and-white engraving from
Elements of Ornithology. The cover fonts are Gilroy and Guardian Sans. The text font
is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code
font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://www.oreilly.com/online-learning/

	Copyright
	Table of Contents
	Preface
	Who This Book Is For
	Why I Wrote This Book
	How This Book Is Organized
	Conventions in TypeScript Code Samples
	Typographical Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Getting to Know TypeScript
	Item 1: Understand the Relationship Between TypeScript and JavaScript
	Things to Remember

	Item 2: Know Which TypeScript Options You’re Using
	Things to Remember

	Item 3: Understand That Code Generation Is Independent of Types
	Code with Type Errors Can Produce Output
	You Cannot Check TypeScript Types at Runtime
	Type Operations Cannot Affect Runtime Values
	Runtime Types May Not Be the Same as Declared Types
	You Cannot Overload a Function Based on TypeScript Types
	TypeScript Types Have No Effect on Runtime Performance
	Things to Remember

	Item 4: Get Comfortable with Structural Typing
	Things to Remember

	Item 5: Limit Use of the any Type
	There’s No Type Safety with any Types
	any Lets You Break Contracts
	There Are No Language Services for any Types
	any Types Mask Bugs When You Refactor Code
	any Hides Your Type Design
	any Undermines Confidence in the Type System
	Things to Remember

	Chapter 2. TypeScript’s Type System
	Item 6: Use Your Editor to Interrogate and Explore the Type System
	Things to Remember

	Item 7: Think of Types as Sets of Values
	Things to Remember

	Item 8: Know How to Tell Whether a Symbol Is in the Type Space or Value Space
	Things to Remember

	Item 9: Prefer Type Declarations to Type Assertions
	Things to Remember

	Item 10: Avoid Object Wrapper Types (String, Number, Boolean, Symbol, BigInt)
	Things to Remember

	Item 11: Recognize the Limits of Excess Property Checking
	Things to Remember

	Item 12: Apply Types to Entire Function Expressions When Possible
	Things to Remember

	Item 13: Know the Differences Between type and interface
	Things to Remember

	Item 14: Use Type Operations and Generics to Avoid Repeating Yourself
	Things to Remember

	Item 15: Use Index Signatures for Dynamic Data
	Things to Remember

	Item 16: Prefer Arrays, Tuples, and ArrayLike to number Index Signatures
	Things to Remember

	Item 17: Use readonly to Avoid Errors Associated with Mutation
	Things to Remember

	Item 18: Use Mapped Types to Keep Values in Sync
	Things to Remember

	Chapter 3. Type Inference
	Item 19: Avoid Cluttering Your Code with Inferable Types
	Things to Remember

	Item 20: Use Different Variables for Different Types
	Things to Remember

	Item 21: Understand Type Widening
	Things to Remember

	Item 22: Understand Type Narrowing
	Things to Remember

	Item 23: Create Objects All at Once
	Things to Remember

	Item 24: Be Consistent in Your Use of Aliases
	Things to Remember

	Item 25: Use async Functions Instead of Callbacks for Asynchronous Code
	Things to Remember

	Item 26: Understand How Context Is Used in Type Inference
	Tuple Types
	Objects
	Callbacks
	Things to Remember

	Item 27: Use Functional Constructs and Libraries to Help Types Flow
	Things to Remember

	Chapter 4. Type Design
	Item 28: Prefer Types That Always Represent Valid States
	Things to Remember

	Item 29: Be Liberal in What You Accept and Strict in What You Produce
	Things to Remember

	Item 30: Don’t Repeat Type Information in Documentation
	Things to Remember

	Item 31: Push Null Values to the Perimeter of Your Types
	Things to Remember

	Item 32: Prefer Unions of Interfaces to Interfaces of Unions
	Things to Remember

	Item 33: Prefer More Precise Alternatives to String Types
	Things to Remember

	Item 34: Prefer Incomplete Types to Inaccurate Types
	Things to Remember

	Item 35: Generate Types from APIs and Specs, Not Data
	Things to Remember

	Item 36: Name Types Using the Language of Your Problem Domain
	Things to Remember

	Item 37: Consider “Brands” for Nominal Typing
	Things to Remember

	Chapter 5. Working with any
	Item 38: Use the Narrowest Possible Scope for any Types
	Things to Remember

	Item 39: Prefer More Precise Variants of any to Plain any
	Things to Remember

	Item 40: Hide Unsafe Type Assertions in Well-Typed Functions
	Things to Remember

	Item 41: Understand Evolving any
	Things to Remember

	Item 42: Use unknown Instead of any for Values with an Unknown Type
	Things to Remember

	Item 43: Prefer Type-Safe Approaches to Monkey Patching
	Things to Remember

	Item 44: Track Your Type Coverage to Prevent Regressions in Type Safety
	Things to Remember

	Chapter 6. Types Declarations and @types
	Item 45: Put TypeScript and @types in devDependencies
	Things to Remember

	Item 46: Understand the Three Versions Involved in Type Declarations
	Things to Remember

	Item 47: Export All Types That Appear in Public APIs
	Things to Remember

	Item 48: Use TSDoc for API Comments
	Things to Remember

	Item 49: Provide a Type for this in Callbacks
	Things to Remember

	Item 50: Prefer Conditional Types to Overloaded Declarations
	Things to Remember

	Item 51: Mirror Types to Sever Dependencies
	Things to Remember

	Item 52: Be Aware of the Pitfalls of Testing Types
	Things to Remember

	Chapter 7. Writing and Running Your Code
	Item 53: Prefer ECMAScript Features to TypeScript Features
	Enums
	Parameter Properties
	Namespaces and Triple-Slash Imports
	Decorators
	Things to Remember

	Item 54: Know How to Iterate Over Objects
	Things to Remember

	Item 55: Understand the DOM hierarchy
	Things to Remember

	Item 56: Don’t Rely on Private to Hide Information
	Things to Remember

	Item 57: Use Source Maps to Debug TypeScript
	Things to Remember

	Chapter 8. Migrating to TypeScript
	Item 58: Write Modern JavaScript
	Use ECMAScript Modules
	Use Classes Instead of Prototypes
	Use let/const Instead of var
	Use for-of or Array Methods Instead of for(;;)
	Prefer Arrow Functions Over Function Expressions
	Use Compact Object Literals and Destructuring Assignment
	Use Default Function Parameters
	Use async/await Instead of Raw Promises or Callbacks
	Use Map and Set Instead of Objects for Associative Arrays
	Don’t Put use strict in TypeScript
	Things to Remember

	Item 59: Use @ts-check and JSDoc to Experiment with TypeScript
	Undeclared Globals
	Unknown Libraries
	DOM Issues
	Inaccurate JSDoc
	Things to Remember

	Item 60: Use allowJs to Mix TypeScript and JavaScript
	Things to Remember

	Item 61: Convert Module by Module Up Your Dependency Graph
	Undeclared Class Members
	Values with Changing Types
	Things to Remember

	Item 62: Don’t Consider Migration Complete Until You Enable noImplicitAny
	Things to Remember

	Index
	About the Author
	Colophon

