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PrefaCe

What Is the Value Proposition for This Book?

This book contains a fast-paced introduction to as much relevant informa-
tion about dealing with data that can be reasonably included in a book this 
size. You will be exposed to statistical concepts, data-related techniques, 
features of Pandas, SQL, NLP topics, and data visualization.

Keep in mind that some topics are presented in a cursory manner, which 
is for two main reasons. First, it’s important that you be exposed to these 
concepts. In some cases, you will find topics that might pique your inter-
est, and hence motivate you to learn more about them through self-study; 
in other cases, you will probably be satisfied with a brief introduction. 
In other words, you will decide whether or not to delve into more detail 
regarding the topics in this book.

Second, a full treatment of all the topics that are covered in this book 
would significantly increase the size of this book, and few people are 
interested in reading technical tomes. 

The Target Audience

This book is intended primarily for people who plan to become data sci-
entists as well as anyone who needs to perform data cleaning tasks. This 
book is also intended to reach an international audience of readers with 
highly diverse backgrounds in various age groups. Hence, this book uses 
standard English rather than colloquial expressions that might be confus-
ing to those readers. As you know, many people learn by different types of 
imitation; which includes reading, writing, or hearing new material. This 
book takes these points into consideration in order to provide a comfort-
able and meaningful learning experience for the intended readers.
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What Will I Learn From This Book?

The first chapter briefly introduces basic probability and then discusses 
basic concepts in statistics, such as the mean, variance, and standard devi-
ation, as well as other concepts. Then you will learn about more advanced 
concepts, such as Gini impurity, entropy, cross entropy, and KL diver-
gence.  You will also learn about different types of distance metrics and 
Bayesian inference.

Chapter 2 delves into processing different data types in a dataset, along 
with normalization, standardization, and handling missing data. You will 
learn about outliers and how to detect them via z-scores and quantile 
transformation. You will also learn about SMOTE for handling imbalanced 
datasets.

Chapter 3 introduces Pandas, which is a very powerful Python library 
that enables you to read the contents of CSV files (and other text files) into 
data frames (somewhat analogous to Excel spreadsheets), where you can 
programmatically slice-and-dice the data to conform to your requirements.

Since large quantities of data are stored in the form structured data in 
relational databases, Chapter 4 introduces you to SQL concepts and also 
how to perform basic operations in MySQL, such as working with databases.

Chapter 5 covers database topics such as managing database tables and 
illustrates how to populate them with data. You will also see examples 
of SQL statements that select rows of data from a collection of database 
tables.

Chapter 6 introduces you to NLP and how to perform tasks such as tokeni-
zation and removing stop words and punctuation, followed by stemming 
and lemmatization.

The final chapter of this book delves into data visualization with 
Matplotlib, Seaborn, and an example of a rendering graphics effects 
in Bokeh. 

Why Are the Code Samples Primarily in Python?

Most of the code samples are short (usually less than one page and some-
times less than half a page), and if need be, you can easily and quickly 
copy/paste the code into a new Jupyter notebook. For the Python code 
samples that reference a CSV file, you do not need any additional code in 
the corresponding Jupyter notebook to access the CSV file. Moreover, the 
code samples execute quickly, so you won’t need to avail yourself of the 
free GPU that is provided in Google Colaboratory. 

xvi • PrefaCe
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If you do decide to use Google Colaboratory, you can easily copy/
paste the Python code into a notebook, and also use the upload fea-
ture to upload existing Jupyter notebooks. Keep in mind the following 
point: if the Python code references a CSV file, make sure that you 
include the appropriate code snippet (as explained in Chapter 1) to 
access the CSV file in the corresponding Jupyter notebook in Google 
Colaboratory.

Do I Need to Learn the Theory Portions of This Book?

Once again, the answer depends on the extent to which you plan to 
become involved in data analytics. For example, if you plan to study 
machine learning, then you will probably learn how to create and train a 
model, which is a task that is performed after data cleaning tasks. In gen-
eral, you will probably need to learn everything that you encounter in this 
book if you are planning to become a machine learning engineer.

Getting the Most From This Book

Some programmers learn well from prose, others learn well from sample 
code (and lots of it), which means that there’s no single style that can be 
used for everyone. 

Moreover, some programmers want to run the code first, see what it does, 
and then return to the code to delve into the details (and others use the 
opposite approach).

Consequently, there are various types of code samples in this book: some 
are short, some are long, and other code samples “build” from earlier 
code samples. 

What Do I Need to Know for This Book?

Current knowledge of Python 3.x is the most helpful skill. Knowledge of 
other programming languages (such as Java) can also be helpful because 
of the exposure to programming concepts and constructs. The less techni-
cal knowledge that you have, the more diligence will be required in order 
to understand the various topics that are covered.

If you want to be sure that you can grasp the material in this book, glance 
through some of the code samples to get an idea of how much is familiar 
to you and how much is new.

PrefaCe • xvii
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Does This Book Contain Production-Level Code Samples?

The primary purpose of the code samples in this book is to show you 
Python-based libraries for solving a variety of data-related tasks in con-
junction with acquiring a rudimentary understanding of statistical con-
cepts. Clarity has higher priority than writing more compact code that is 
more difficult to understand (and possibly more prone to bugs). If you 
decide to use any of the code in this book in a production website, you 
ought to subject that code to the same rigorous analysis as the other parts 
of your code base.

What Are the Nontechnical Prerequisites for This Book?

Although the answer to this question is more difficult to quantify, it’s very 
important to have strong desire to learn about data analytics, along with 
the motivation and discipline to read and understand the code samples. 

How Do I Set Up a Command Shell?

If you are a Mac user, there are three ways to do so. The first method is to 
use Finder to navigate to Applications > Utilities and then double 
click on the Utilities application. Next, if you already have a command 
shell available, you can launch a new command shell by typing the follow-
ing command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on a 
Macbook from a command shell that is already visible simply by clicking 
command+n in that command shell, and your Mac will launch another 
command shell.

If you are a PC user, you can install Cygwin (open source https://cyg-
win.com/) that simulates bash commands, or use another toolkit such as 
MKS (a commercial product). Please read the online documentation that 
describes the download and installation process. Note that custom aliases 
are not automatically set if they are defined in a file other than the main 
start-up file (such as .bash_login). 

xviii • PrefaCe
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Companion Files

All the code samples and figures in this book may be obtained by writing 
to the publisher at info@merclearning.com.

What Are the “Next Steps” After Finishing This Book?

The answer to this question varies widely, mainly because the answer 
depends heavily on your objectives. If you are interested primarily in NLP, 
then you can learn more advanced concepts, such as attention, transform-
ers, and the BERT-related models.

If you are primarily interested in machine learning, there are some sub-
fields of machine learning, such as deep learning and reinforcement 
learning (and deep reinforcement learning) that might appeal to you. 
Fortunately, there are many resources available, and you can perform an 
internet search for those resources. Keep in mind the different aspects of 
machine learning that pertain to you will vary as the needs of a machine 
learning engineer, data scientist, manager, student, or software developer 
are all different. 

PrefaCe • xix
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CHAPTER 1
IntroductIon to ProbabIlIty 
and StatIStIcS

This chapter introduces you to concepts in probability as well as to an 
assortment of statistical terms and algorithms.

The first section of this chapter starts with a discussion of probabil-
ity, how to calculate the expected value of a set of numbers (with associated 
probabilities), and the concept of a random variable (discrete and continuous), 
and a short list of some well-known probability distributions.

The second section of this chapter introduces basic statistical concepts, 
such as mean, median, mode, variance, and standard deviation, along with 
simple examples that illustrate how to calculate these terms. You will also learn 
about the terms RSS, TSS, R^2, and F1 score.

The third section of this chapter introduces Gini Impurity, entropy, per-
plexity, cross-entropy, and KL divergence. You will also learn about skewness 
and kurtosis. 

The fourth section explains covariance and correlation matrices and how to 
calculate eigenvalues and eigenvectors.

The fifth section explains principal component analysis (PCA), which is a 
well-known dimensionality reduction technique. The final section introduces 
you to Bayes’ Theorem.

WHAT IS A PROBABILITY?

If you have ever performed a science experiment in one of your classes, you 
might remember that measurements have some uncertainty. In general, we 
assume that there is a correct value, and we endeavor to find the best estimate 
of that value.

When we work with an event that can have multiple outcomes, we try to 
define the probability of an outcome as the chance that it will occur, which is 
calculated as follows:
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2 • Dealing with Data Pocket Primer

p(outcome)  = # of times outcome occurs/(total number of 
outcomes)

For example, in the case of a single balanced coin, the probability of tossing 
a head “H” equals the probability of tossing a tail “T”:

p(H) = 1/2 = p(T)

The set of probabilities associated with the outcomes {H, T} is shown in 
the set P:

P = {1/2, 1/2}

Some experiments involve replacement while others involve non-
replacement. For example, suppose that an urn contains 10 red balls and 
10 green balls. What is the probability that a randomly selected ball is red? 
The answer is 10/(10+10) = 1/2. What is the probability that the second ball 
is also red? 

There are two scenarios with two different answers. If each ball is selected 
with replacement, then each ball is returned to the urn after selection, which 
means that the urn always contains 10 red balls and 10 green balls. In this case, 
the answer is 1/2 * 1/2 = 1/4. In fact, the probability of any event is independ-
ent of all previous events. 

On the other hand, if balls are selected without replacement, then the 
answer is 10/20 * 9/19. As you undoubtedly know, card games are also exam-
ples of selecting cards without replacement.

One other concept is called conditional probability, which refers to the 
likelihood of the occurrence of event E1 given that event E2 has occurred. A 
simple example is the following statement:

"If it rains (E2), then I will carry an umbrella (E1)."

Calculating the Expected Value

Consider the following scenario involving a well-balanced coin: whenever 
a head appears, you earn $1 and whenever a tail appears, you earn $1 dollar. 
If you toss the coin 100 times, how much money do you expect to earn? Since 
you will earn $1 regardless of the outcome, the expected value (in fact, the 
guaranteed value) is 100.

Now consider this scenario: whenever a head appears, you earn $1 and 
whenever a tail appears, you earn 0 dollars. If you toss the coin 100 times, how 
much money do you expect to earn? You probably determined the value 50 
(which is the correct answer) by making a quick mental calculation. The more 
formal derivation of the value of E (the expected earning) is here:

E = 100 *[1 * 0.5 + 0 * 0.5] = 100 * 0.5 = 50

The quantity 1 * 0.5 + 0 * 0.5 is the amount of money you expected to earn 
during each coin toss (half the time you earn $1 and half the time you earn 
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Introduction to Probability and Statistics • 3

0 dollars), and multiplying this number by 100 is the expected earning after 
100 coin tosses. Also note that you might never earn $50: the actual amount 
that you earn can be any integer between 1 and 100 inclusive. 

As another example, suppose that you earn $3 whenever a head appears, 
and you lose $1.50 dollars whenever a tail appears. Then the expected earning 
E after 100 coin tosses is shown here:

E = 100 *[3 * 0.5 - 1.5 * 0.5] = 100 * 1.5 = 150

We can generalize the preceding calculations as follows. Let P = 
{p1, . . . ,pn} be a probability distribution, which means that the values in P 
are nonnegative and their sum equals 1. In addition, let R = {R1, . . . ,Rn} 
be a set of rewards, where reward Ri is received with probability pi. Then the 
expected value E after N trials is shown here:

E = N * [SUM pi*Ri]

In the case of a single balanced die, we have the following probabilities:

p(1) = 1/6
p(2) = 1/6
p(3) = 1/6
p(4) = 1/6
p(5) = 1/6
p(6) = 1/6
P = {1/6, 1/6, 1/6, 1/6, 1/6, 1/6}

As a simple example, suppose that the earnings are {3, 0, −1, 2, 4, −1} when 
the values 1, 2, 3, 4, 5, 6, respectively, appear when tossing the single die. Then 
after 100 trials our expected earnings are calculated as follows:

E = 100 * [3 + 0 + -1 + 2 + 4 + -1]/6 = 100 * 3/6 = 50

In the case of two balanced dice, we have the following probabilities of 
rolling 2, 3, . . . , or 12:

p(2) = 1/36
p(3) = 2/36
...
p(12) = 1/36
P = {1/36,2/36,3/36,4/36,5/36,6/36,5/36,4/36,3/36,2/36,1/36}

RANDOM VARIABLES

A random variable is a variable that can have multiple values, where 
each value has an associated probability of occurrence. For example, if we 
let X be a random variable whose values are the outcomes of tossing a well-
balanced die, then the values of X are the numbers in the set {1, 2, 3, 4, 5, 6}. 
Moreover, each of those values can occur with equal probability (which 
is 1/6).
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4 • Dealing with Data Pocket Primer

In the case of two well-balanced dice, let X be a random variable whose val-
ues can be any of the numbers in the set {2, 3, 4, . . . , 12}. Then the associated 
probabilities for the different values for X are listed in the previous section.

Discrete versus Continuous Random Variables

The preceding section contains examples of discrete random variables 
because the list of possible values is either finite or countably infinite (such as 
the set of integers). As an aside, the set of rational numbers is also countably 
infinite, but the set of irrational numbers and also the set of real numbers are 
both uncountably infinite (proofs are available online). As pointed out earlier, 
the associated set of probabilities must form a probability distribution, which 
means that the probability values are nonnegative and their sum equals 1.

A continuous random variable is a random variable whose values can be 
any number in an interval, which can be an uncountably infinite number of 
distinct values. For example, the amount of time required to perform a task is 
represented by a continuous random variable.

A continuous random variable also has a probability distribution that is rep-
resented as a continuous function. The constraint for such a variable is that 
the area under the curve (which is sometimes calculated via a mathematical 
integral) equals 1.

Well-Known Probability Distributions

There are many probability distributions, and some of the well-known 
probability distributions are listed here:

• Gaussian distribution
• Poisson distribution
• chi-squared distribution
• binomial distribution

The Gaussian distribution is named after Karl F Gauss, and it is sometimes 
called the normal distribution or the Bell curve. The Gaussian distribution is 
symmetric: the shape of the curve on the left of the mean is identical to the 
shape of the curve on the right side of the mean. As an example, the distribu-
tion of IQ scores follows a curve that is similar to a Gaussian distribution. 

Furthermore, the frequency of traffic at a given point in a road follows a 
Poisson distribution (which is not symmetric). Interestingly, if you count the 
number of people who go to a public pool based on 5˚ (Fahrenheit) increments 
of the ambient temperature, followed by 5˚ decrements in temperature, that 
set of numbers follows a Poisson distribution.

Perform an Internet search for each of the bullet items in the preceding list 
and you will find numerous articles that contain images and technical details 
about these (and other) probability distributions. 

This concludes the brief introduction to probability, and the next section 
delves into the concepts of mean, median, mode, and standard deviation.
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FUNDAMENTAL CONCEPTS IN STATISTICS

This section contains several subsections that discuss the mean, median, 
mode, variance, and standard deviation. Feel free to skim (or skip) this sec-
tion if you are already familiar with these concepts. As a starting point, we will 
suppose that we have a set of numbers X ={x1, ..., xn} that can be positive, 
negative, integer-valued or decimal values. 

The Mean

The mean of the numbers in the set X is the average of the values. For 
example, if the set X consists of {-10,35,75,100}, then the mean equals 
(−10 + 35 + 75 + 100)/4 = 50. If the set X consists of {2,2,2,2}, then the 
mean equals (2 + 2 + 2 + 2)/4 = 2. As you can see, the mean value is not neces-
sarily one of the values in the set.

Keep in mind that the mean is sensitive to outliers. For example, the mean 
of the set of numbers {1, 2, 3, 4} is 2.5, whereas the mean of the set of number 
{1, 2, 3, 4, 1000} is 202. Since the formulas for the variance and standard devia-
tion involve the mean of a set of numbers, both of these terms are also more 
sensitive to outliers.

The Median

The median of the numbers (sorted in increasing or decreasing order) 
in the set X is the middle value in the set of values, which means that half 
the numbers in the set are less than the median and half the numbers in 
the set are greater than the median. For example, if the set X consists of 
{-10,35,75,100}, then the median equals 55 because 55 is the average of 
the two numbers 35 and 75. As you can see, half the numbers are less than 55 
and half the numbers are greater than 55. If the set X consists of {2,2,2,2}, 
then the median equals 2.

By contrast, the median is much less sensitive to outliers than the mean. 
For example, the median of the set of numbers {1, 2, 3, 4} is 2.5, and the 
median of the set of numbers {1, 2, 3, 4, 1000} is 3. 

The Mode

The mode of the numbers (sorted in increasing or decreasing order) in the 
set X is the most frequently occurring value, which means that there can be 
more than one such value. If the set X consists of {2,2,2,2}, then the mode 
equals 2. 

If X is the set of numbers {2,4,5,5,6,8}, then the number 5 occurs 
twice and the other numbers occur only once, so the mode equals 5. 

If X is the set of numbers {2,2,4,5,5,6,8}, then the numbers 2 and 
5 occur twice and the other numbers occur only once, so the mode equals 
2 and 5. A set that has two modes is called bimodal, and a set that has more 
than two modes is called multimodal.
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One other scenario involves sets that have numbers with the same fre-
quency and they are all different. In this case, the mode does not provide 
meaningful information, and one alternative is to partition the numbers into 
subsets and then select the largest subset. For example, if set X has the values 
{1,2,15,16,17,25,35,50}, we can partition the set into subsets whose ele-
ments are in range that are multiples of ten, which results in the subsets {1, 2}, 
{15, 16, 17}, {25}, {35}, and {50}. The largest subset is {15, 16, 17}, so we could 
select the number 16 as the mode.

As another example, if set X has the values {-10,35,75,100}, then par-
titioning this set does not provide any additional information, so it is probably 
better to work with either the mean or the median.

The Variance and Standard Deviation

The variance is the sum of the squares of the difference between the num-
bers in X and the mean mu of the set X, divided by the number of value in X, 
as shown here:

variance = [SUM (xi - mu)**2 ] / n

For example, if the set X consists of {-10,35,75,100}, then the mean 
equals (−10 + 35 + 75 + 100)/4 = 50, and the variance is computed as follows:

variance = [(-10-50)**2 + (35-50)**2 + (75-50)**2 + (100-50)**2]/4
         = [60**2 + 15**2 + 25**2 + 50**2]/4
         = [3600 + 225 + 625 + 2500]/4
         = 6950/4 = 1,737

The standard deviation std is the square root of the variance:

std = sqrt(1737) = 41.677

If the set X consists of {2,2,2,2}, then the mean equals (2 + 2 + 2 + 
2)/4 = 2, and the variance is computed as follows:

variance = [(2-2)**2 + (2-2)**2 + (2-2)**2 + (2-2)**2]/4
         = [0**2 + 0**2 + 0**2 + 0**2]/4
         = 0

The standard deviation std is the square root of the variance:

std = sqrt(0) = 0

Population, Sample, and Population Variance

The population specifically refers to the entire set of entities in a given 
group, such as the entire population of a country, the people over 65 in the 
United States, or the number of first-year students in a university.

However, in many cases statistical quantities are calculated on samples 
instead of an entire population. Thus, a sample is a much smaller subset of the 
given population. See the central limit theorem regarding the distribution of 
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the mean of a set of sample of a population (which need not be a population 
with a Gaussian distribution).

If you want to learn about techniques for sampling data, here is a list of 
three different techniques that you can investigate:

• stratified sampling
• cluster sampling
• quota sampling

One other important point: the population variance is calculated by multi-
plying the sample variance by n/(n-1), as shown here:

population variance = [n/(n-1)]*variance

ChebyshevÕs Inequality

Chebyshev’s inequality provides a very simple way to determine the mini-
mum percentage of data that lies within k standard deviations. Specifically, 
this inequality states that for any positive integer k greater than 1, the amount 
of data in a sample that lies within k standard deviations is at least 1 - 1/k**2. 
For example, if k = 2, then at least 1 - 1/2**2 = 3/4 of the data must lie within 
2 standard deviations.

The interesting part of this inequality is that it is been mathematically 
proven to be true; that is, it is not an empirical or heuristic-based result. 
An extensive description regarding Chebyshev’s inequality (including some 
advanced mathematical explanations) can be found here:

https://en.wikipedia.org/wiki/Chebyshev%27s_inequality

What Is a P-Value?

The null hypothesis states that there is no correlation between a dependent 
variable (such as y) and an independent variable (such as x). The p-value is 
used to reject the null hypothesis if the p-value is small enough (< 0.005) which 
indicates a higher significance. The threshold value for p is typically 1% or 5%.

There is no straightforward formula for calculating p-values, which are 
values that are always between 0 and 1. In fact, p-values are statistical quanti-
ties to evaluate the null hypothesis, and they can be calculated using p-value 
tables or via spreadsheet/statistical software.

THE MOMENTS OF A FUNCTION (OPTIONAL)

The previous sections describe several statistical terms that is sufficient for 
the material in this book. However, several of those terms can be viewed from 
the perspective of different moments of a function.

In brief, the moments of a function are measures that provide information 
regarding the shape of the graph of a function. In the case of a probability dis-
tribution, the first four moments are defined below:
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• The mean is the first central moment.
• The variance is the second central moment.
• The skewness (discussed later) is the third central moment.
• The kurtosis (discussed later) is the fourth central moment.

More detailed information (including the relevant integrals) regarding 
moments of a function is available here:

https://en.wikipedia.org/wiki/Moment_(mathematics)#Variance

What Is Skewness?

Skewness is a measure of the asymmetry of a probability distribution. 
A Gaussian distribution is symmetric, which means that its skew value is zero 
(it is not exactly zero, but close enough for our purposes). In addition, the 
skewness of a distribution is the third moment of the distribution.

A distribution can be skewed on the left side or on the right side. 
A left-sided skew means that the long tail is on the left side of the curve, with 
the following relationships:

mean < median < mode

A right-sided skew means that the long tail is on the right side of the curve, 
with the following relationships (compare with the left-sided skew):

mode < median < mean

If need be, you can transform skewed data to a normally distributed 
dataset using one of the following techniques (which depends on the specific 
use-case):

• exponential transform
• log transform
• power transform

Perform an online search for more information regarding the preceding 
transforms and when to use each of these transforms.

What Is Kurtosis?

Kurtosis is related to the skewness of a probability distribution, in the sense 
that both of them assess the asymmetry of a probability distribution. The kur-
tosis of a distribution is a scaled version of the fourth moment of the distribu-
tion, whereas its skewness is the third moment of the distribution. Note that 
the kurtosis of a univariate distribution equals 3.

If you are interested in learning about additional kurtosis-related concepts, 
you can perform an online search for information regarding mesokurtic, lepto-
kurtic, and platykurtic types of so-called “excess kurtosis.”
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DATA AND STATISTICS

This section contains various subsections that briefly discuss some of the 
challenges and obstacles that you might encounter when working with datasets. 
This section and subsequent sections introduce you to the following concepts:

• correlation versus causation
• bias-variance tradeoff
• types of bias
• central limit theorem
• statistical inferences

First, keep in mind that statistics typically involves data samples, which are 
subsets of observations of a population. The goal is to find well-balanced sam-
ples that provide a good representation of the entire population. 

Although this goal can be very difficult to achieve, it is also possible to 
achieve highly accurate results with a very small sample size. For example, the 
Harris poll in the United States has been used for decades to analyze political 
trends. This poll computes percentages that indicate the favorability rating of 
political candidates, and it is usually within 3.5% of the correct percentage val-
ues. What is remarkable about the Harris poll is that its sample size is a mere 
4,000 people that are from the U.S. population that is greater than 325,000,000 
people.

Another aspect to consider is that each sample has a mean and variance, 
which do not necessarily equal the mean and variance of the actual population. 
However, the expected value of the sample mean and variance equal the mean 
and variance, respectively, of the population.

The Central Limit Theorem

Samples of a population have an interesting property. Suppose that you 
take a set of samples {S1, S3, ... , Sn} of a population and you calculate 
the mean of those samples, which is {m1, m2, ..., mn}. The central limit 
theorem is a remarkable result: given a set of samples of a population and 
the mean value of those samples, the distribution of the mean values can be 
approximated by a Gaussian distribution. Moreover, as the number of samples 
increases, the approximation becomes more accurate.

Correlation versus Causation

In general, datasets have some features (columns) that are more significant 
in terms of their set of values, and some features only provide additional infor-
mation that does not contribute to potential trends in the dataset. For example, 
the passenger names in the list of passengers on the Titanic are unlikely to 
affect the survival rate of those passengers, whereas the gender of the passen-
gers is likely to be an important factor.
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In addition, a pair of significant features may also be “closely coupled” in 
terms of their values. For example, a real estate dataset for a set of houses 
will contain the number of bedrooms and the number of bathrooms for each 
house in the dataset. As you know, these values tend to increase together and 
also decrease together. Have you ever seen a house that has ten bedrooms 
and one bathroom, or a house that has ten bathrooms and one bedroom? If 
you did find such a house, would you purchase that house as your primary 
residence?

The extent to which the values of two features change is called their cor-
relation, which is a number between −1 and 1. Two “perfectly” correlated fea-
tures have a correlation of 1, and two features that are not correlated have a 
correlation of 0. In addition, if the values of one feature decrease when the val-
ues of another feature increase, and vice versa, then their correlation is closer 
to −1 (and might also equal −1).

However, causation between two features means that the values of one fea-
ture can be used to calculate the values of the second feature (within some 
margin of error).

Keep in mind this fundamental point about machine learning models: they 
can provide correlation but they cannot provide causation.

Statistical Inferences

Statistical thinking relates processes and statistics, whereas statistical infer-
ence refers to the process by which the inferences that you make regarding a 
population. Those inferences are based on statistics that are derived from sam-
ples of the population. The validity and reliability of those inferences depend 
on random sampling in order to reduce bias. There are various metrics that you 
can calculate to help you assess the validity of a model that has been trained on 
a particular dataset.

STATISTICAL TERMS RSS, TSS, R^2, AND F1 SCORE

Statistics is extremely important in machine learning, so it is not surprising 
that many concepts are common to both fields. Machine learning relies on a 
number of statistical quantities in order to assess the validity of a model, some 
of which are listed here:

• RSS
• TSS
• R^2

The term RSS is the “residual sum of squares” and the term TSS is the 
“total sum of squares.” Moreover, these terms are used in regression models.

As a starting point so we can simplify the explanation of the preceding 
terms, suppose that we have a set of points {(x1,y1), . . . , (xn,yn)} in the 
Euclidean plane. In addition, we will define the following quantities:
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• (x,y) is any point in the dataset
• y is the y-coordinate of a point in the dataset
• y_ is the mean of the y-values of the points in the dataset
• y_hat is the y-coordinate of a point on a best-fitting 
line

To be clear, (x,y) is a point in the dataset, whereas (x,y_hat) is the 
corresponding point that lies on the best fitting line. With these definitions in 
mind, the definitions of RSS, TSS, and R^2 are listed here (n equals the num-
ber of points in the dataset):

RSS = (y - y_hat)**2/n
TSS = (y - y_bar)**2/n
R^2 = 1 - RSS/TSS

We also have the following inequalities involving RSS, TSS, and R^2:

0 <= RSS 
RSS <= TSS
0 <= RSS/TSS <= 1
0 <= 1 - RSS/TSS <= 1
0 <= R^2 <= 1

When RSS is close to 0, then RSS/TSS is also close to zero, which means that 
R^2 is close to 1. Conversely, when RSS is close to TSS, then RSS/TSS is close 
to 1, and R^2 is close to 0. In general, a larger R^2 is preferred (i.e., the model is 
closer to the data points), but a lower value of R^2 is not necessarily a bad score.

What Is an F1 Score?

In machine learning, an F1 score is for models that are evaluated on a 
feature that contains categorical data, and the p-value is useful for machine 
learning in general. An F1 score is a measure of the accuracy of a test, and it 
is defined as the harmonic mean of precision and recall. Here are the relevant 
formulas, where p is the precision and r is the recall:

p = (True Positive)/(True Positive + False Positive)
r = (True Positive)/(True Positive + False Negative)

F1-score  = 1/[((1/r) + (1/p))/2]
          = 2*[p*r]/[p+r]

The best value of an F1 score is 0 and the worse value is 0. Keep in mind 
that an F1 score is for categorical classification problems, whereas the R^2 
value is typically for regression tasks (such as linear regression).

GINI IMPURITY, ENTROPY, AND PERPLEXITY

These concepts are useful for assessing the quality of a machine learning 
model and the latter pair are useful for dimensionality reduction algorithms.
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Before we discuss the details of Gini impurity, suppose that P is a set 
of nonnegative numbers {p1, p2, . . . , pn} such that the sum of all the 
numbers in the set P equals 1. Under these two assumptions, the values in 
the set P comprise a probability distribution, which we can represent with 
the letter p.

Now suppose that the set K contains a total of M elements, with k1 elements 
from class S1, k2 elements from class S2, . . . , and kn elements from class Sn. 
Compute the fractional representation for each class as follows:

p1 = k1/M, p2 = k2/M, . . . , pn = kn/M

As you can surmise, the values in the set {p1, p2, . . . , pn} form a prob-
ability distribution. We’re going to use the preceding values in the following 
subsections.

What Is Gini Impurity?

The Gini impurity is defined as follows, where {p1,p2,…,pn} is a prob-
ability distribution:

Gini = 1 – [p1*p1 + p2*p2 + . . . + pn*pn] 
     = 1 – SUM pi*pi (for all i, where 1<=i<=n)

Since each pi is between 0 and 1, then pi*pi  <= pi, which means that:

1 = p1 + p2 + . . . + pn
  >= p1*p1 + p2*p2 + . . . + pn*pn
   = Gini impurity

Since the Gini impurity is the sum of the squared values of a set of prob-
abilities, the Gini impurity cannot be negative. Therefore, we have derived the 
following result:

0 <= Gini impurity <= 1

What Is Entropy?

A formal definition: entropy is a measure of the expected (“average”) num-
ber of bits required to encode the outcome of a random variable. The calcula-
tion for the entropy H (the letter E is reserved for Einstein’s formula) as defined 
via the following formula:

H = (-1)*[p1*log p1 + p2 * log p2 + . . . + pn * log pn]
  = (-1)* SUM [pi * log(pi)] (for all i, where 1<=i<=n)

Calculating Gini Impurity and Entropy Values

For our first example, suppose that we have three classes A and B and a 
cluster of 10 elements with 8 elements from class A and 2 elements from class 
B. Therefore p1 and p2 are 8/10 and 2/10, respectively. We can compute the 
Gini score as follows:
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Gini = 1 – [p1*p1 + p2*p2]
     = 1 – [64/100 + 04/100]
     = 1 - 68/100 
     = 32/100 
     = 0.32

We can also calculate the entropy for this example as follows:

Entropy = (-1)*[p1 * log p1 + p2 * log p2]
        = (-1)*[0.8 * log 0.8 + 0.2 * log 0.2]
        = (-1)*[0.8 * (-0.322) + 0.2 * (-2.322)]
        = 0.8 * 0.322 + 0.2 * 2.322
        = 0.7220

For our second example, suppose that we have three classes A, B, C, and 
a cluster of 10 elements with 5 elements from class A, 3 elements from class 
B, and 2 elements from class C. Therefore p1, p2, and p3 are 5/10, 3/10, and 
2/10, respectively. We can compute the Gini score as follows:

Gini = 1 – [p1*p1 + p2*p2 + p3*p3]
     = 1 – [25/100 + 9/100 + 04/100]
     = 1 - 38/100 
     = 62/100 
     = 0.62

We can also calculate the entropy for this example as follows:

Entropy = (-1)*[p1 * log p1 + p2 * log p2]
        = (-1)*[0.5*log0.5 + 0.3*log0.3 + 0.2*log0.2]
        = (-1)*[-1 + 0.3*(-1.737) + 0.2*(-2.322)]
        = 1 + 0.3*1.737 + 0.2*2.322
        = 1.9855

In both examples the Gini impurity is between 0 and 1. However, while 
the entropy is between 0 and 1 in the first example, it is greater than 1 in the 
second example (which was the rationale for showing you two examples).

Keep in mind that a set whose elements belong to the same class has Gini 
impurity equal to 0 and also its entropy equal to 0. For example, if a set has 10 
elements that belong to class S1, then:

Gini = 1 – SUM pi*pi 
     = 1 - p1*p1 
     = 1 – (10/10)*(10/10) 
     = 1 – 1 = 0

Entropy = (-1)*SUM pi*log pi 
        = (-1) * p1*log pi 
        = (-1) * (10/10) * log(10/10) 
        = (-1)*1*0  = 0

Multidimensional Gini Index

The Gini index is a one-dimensional index that works well because the 
value is uniquely defined. However, when working with multiple factors, 
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we need a multidimensional index. Unfortunately, the multidimensional 
Gini index (MGI) is not unique defined. While there have been various 
attempts to define an MGI that has unique values, they tend to be non-
intuitive and mathematically much more complex. More information about 
MGI is here:

https://link.springer.com/chapter/10.1007/978-981-13-1727-9_5

What Is Perplexity?

Suppose that q and p are two probability distributions, and 
{x1, x2, . . . , xN} is a set of sample values that is drawn from a model 
whose probability distribution is p. In addition, suppose that b is a positive 
integer (it is usually equal to 2). Now define the variable S as the following sum 
(logarithms are in base b not 10):

S = (-1/N) * [log q(x1) + log q(x2) + . . . + log q(xN)]
  = (-1/N) * SUM log q(xi)

The formula for the perplexity PERP of the model q is b raised to the 
power S, as shown here:

PERP = b^S

If you compare the formula for entropy with the formula for S, you can see 
that the formulas as similar, so the perplexity of a model is somewhat related 
to the entropy of a model. 

CROSS-ENTROPY AND KL DIVERGENCE

Cross-entropy is useful for understanding machine learning algorithms, and 
frameworks such as TensorFlow, which supports multiple APIs that involve 
cross-entropy.  KL divergence is relevant in machine learning, deep learning, 
and reinforcement learning.

As an interesting example, consider the credit assignment problem, which 
involves assigning credit to different elements or steps in a sequence. For 
example, suppose that users arrive at a Web page by clicking on a previous 
page, which was also reached by clicking on yet another Web page. Then on 
the final Web page users click on an ad. How much credit is given to the first 
and second Web pages for the selected ad? You might be surprised to discover 
that one solution to this problem involves KL divergence.

What Is Cross-Entropy?

The following formulas for logarithms are presented here because they are 
useful for the derivation of cross-entropy in this section:

• log (a * b) = log a + log b
• log (a / b) = log a - log b
• log (1 / b) = (-1) * log b
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In a previous section you learned that for a probability distribution P with 
values {p1,p2, . . . , pn}, its entropy is H defined as follows:

H(P) = (-1)*SUM pi*log(pi)

Now we will introduce another probability distribution Q whose values are 
{q1,q2, . . . , qn}, which means that the entropy H of Q is defined as follows:

H(Q) = (-1)*SUM qi*log(qi)

Now we can define the cross-entropy CE of Q and P as follows (notice the 
log qi and log pi terms and recall the formulas for logarithms in the previ-
ous section):

CE(Q,P) = SUM (pi*log qi) - SUM (pi*log pi)  
        = SUM (pi*log qi - pi*log pi)  
        = SUM pi*(log qi - log pi)
        = SUM pi*(log qi/pi)

What Is KL Divergence?

Now that entropy and cross-entropy have been discussed, we can easily 
define the KL divergence of the probability distributions Q and P as follows:

KL(P||Q) = CE(P,Q) - H(P)

The definitions of entropy H, cross-entropy CE, and KL divergence in this 
chapter involve discrete probability distributions P and Q. However, these con-
cepts have counterparts in continuous probability density functions. The math-
ematics involves the concept of a Lebesgue measure on Borel sets (which is 
beyond the scope of this book) that are described here:

https://en.wikipedia.org/wiki/Lebesgue_measure
https://en.wikipedia.org/wiki/Borel_set
In addition to KL divergence, there is also Jenson-Shannon divergence, 

also called JS divergence, which was developed by Johan Jensen and Claude 
Shannon (who defined the formula for entropy). JS divergence is based on 
KL divergence, and it has some differences: JS divergence is symmetric and a 
true metric, whereas KL divergence is neither (as noted in Chapter 4). More 
information regarding JS divergence is available here:

https://en.wikipedia.org/wiki/Jensen–Shannon_divergence

What Is Their Purpose?

The Gini impurity is often used to obtain a measure of the homogeneity 
of a set of elements in a decision tree. The entropy of that set is an alternative 
to its Gini impurity, and you will see both of these quantities used in machine 
learning models. 

The perplexity value in NLP is one way to evaluate language models, which 
are probability distributions over sentences or texts. This value provides an 
estimate for the encoding size of a set of sentences.
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Cross-entropy is used in various methods in the TensorFlow framework, 
and the KL divergence is used in various algorithms, such as the dimensional-
ity reduction algorithm t-SNE. For more information about any of these terms, 
perform an online search and you will find numerous online tutorials that pro-
vide more detailed information.

COVARIANCE AND CORRELATION MATRICES

This section explains two important matrices: the covariance matrix and the 
correlation matrix. Although these are relevant for PCA (principal component 
analysis) that is discussed later in this chapter, these matrices are not specific to 
PCA, which is the rationale for discussing them in a separate section. If you are 
familiar with these matrices, feel free to skim through this section.

The Covariance Matrix

As a reminder, the statistical quantity called the variance of a random vari-
able X is defined as follows:

variance(x) = [SUM (x – xbar)*(x-xbar)]/n

A covariance matrix C is an nxn matrix whose values on the main diagonal 
are the variance of the variables X1, X2, . . . , Xn. The other values of C are the 
covariance values of each pair of variables Xi and Xj.  

The formula for the covariance of the variables X and Y is a generalization 
of the variance of a variable, and the formula is shown here:

covariance(X, Y) = [SUM (x – xbar)*(y-ybar)]/n

Notice that you can reverse the order of the product of terms (multiplication 
is commutative), and therefore the covariance matrix C is a symmetric matrix:

covariance(X, Y) = covariance(Y,X)

Suppose that a comma separated values (CSV) file contains four numeric 
features, all of which have been scaled appropriately, and we will call them x1, 
x2, x3, and x4. Then the covariance matrix C is a 4x4 square matrix that is 
defined with the following entries (pretend that there are outer brackets on the 
left side and the right side to indicate a matrix):

cov(x1,x1) cov(x1,x2) cov(x1,x3) cov(x1,x4)
cov(x2,x1) cov(x2,x2) cov(x2,x3) cov(x2,x4)
cov(x3,x1) cov(x3,x2) cov(x3,x3) cov(x3,x4)
cov(x4,x1) cov(x4,x2) cov(x4,x3) cov(x4,x4) 

Note that the following is true for the diagonal entries in the preceding 
covariance matrix C:

var(x1,x1) = cov(x1,x1)
var(x2,x2) = cov(x2,x2)
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var(x3,x3) = cov(x3,x3)
var(x4,x4) = cov(x4,x4)

In addition, C is a symmetric matrix, which is to say that the transpose of 
matrix C (rows become columns and columns become rows) is identical to 
the matrix C. The latter is true because (as you saw in the previous section) 
cov(x,y) = cov(y,x) for any feature x and any feature y. 

Covariance Matrix: An Example

Suppose we have the two-column matrix A defined as follows:

      x  y
A = | 1  1 | <= 6x2 matrix
    | 2  1 |
    | 3  2 |
    | 4  2 |
    | 5  3 |
    | 6  3 |

The mean x_bar of column x is (1+2+3+4+5+6)/6 = 3.5, and the 
mean y_bar of column y is (1+1+2+2+3+3)/6 = 2. Now subtract x_bar 
from column x and subtract y_bar from column y and we get matrix B, as 
shown here:

B = | -2.5 -1 | <= 6x2 matrix
    | -1.5 -1 |
    | -0.5  0 |
    |  0.5  0 |
    |  1.5  1 |
    |  2.5  1 |

Let Bt indicate the transpose of the matrix B (i.e., switch columns with rows 
and rows with columns) which means that Bt is a 2 x 6 matrix, as shown here:

Bt = |-2.5 -1.5 -0.5 0.5, 1.5, 2.5|
     |-1   -1    0   0    1    1  |

The covariance matrix C is the product of Bt and B, as shown here:

C = Bt * B = | 15.25 4 |
             |  4    8 |

Note that if the units of measure of features x and y do not have a similar 
scale, then the covariance matrix is adversely affected. In this case, the solution 
is simple: use the correlation matrix, which defined in the next section.

The Correlation Matrix

As you learned in the preceding section, if the units of measure of features 
x and y do not have a similar scale, then the covariance matrix is adversely 
affected. The solution involves the correlation matrix, which equals the covari-
ance values cov(x,y) divided by the standard deviation stdx and stdy of x 
and y, respectively, as shown here:
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corr(x,y) = cov(x,y)/[stdx * stdy]

The correlation matrix no longer has units of measure, and we can use this 
matrix to find the eigenvalues and eigenvectors.

Now that you understand how to calculate the covariance matrix and the 
correlation matrix, you are ready for an example of calculating eigenvalues and 
eigenvectors. 

Eigenvalues and Eigenvectors

According to a well-known theorem in mathematics (whose proof you can 
find online), the eigenvalues of a real-valued symmetric matrix are real num-
bers. Consequently, the eigenvectors of C are vectors in a Euclidean vector 
space (not a complex vector space).

Before we continue, a non-zero vector x' is an eigenvector of the matrix C 
if there is a nonzero scalar lambda such that C*x' = lambda * x'.

Now suppose that the eigenvalues of C are b1, b2, b3, and b4, in decreas-
ing numeric order from left-to-right, and that the corresponding eigenvectors 
of C are the vectors w1, w2, w3, and w4. Then the matrix M that consists of 
the column vectors w1, w2, w3, and w4 represents the principal components.

CALCULATING EIGENVECTORS: A SIMPLE EXAMPLE

As a simple illustration of calculating eigenvalues and eigenvectors, sup-
pose that the square matrix C is defined as follows:

C = | 1  3 |
    | 3  1 |

Let I denote the 2 × 2 identity matrix, and let b' be an eigenvalue of C, 
which means that there is an eigenvector x' such that:

C* x' = b' * x', or
(C-b*I)*x' = 0 (the right side is a 2x1 vector)

Since x' is nonzero, that means the following is true (where det refers to 
the determinant of a matrix):

det(C-b*I) = det |1-b 3  | = (1-b)*(1-b)-9 = 0
                 |3   1-b|   

We can expand the quadratic equation in the preceding line to get: 

det(C-b*I) = (1-b)*(1-b) - 9
           = 1 - 2*b + b*b - 9
           = -8 - 2*b + b*b
           = b*b - 2*b - 8

Use the quadratic formula (or perform factorization by visual inspection) 
to determine that the solution for det(C-b*I) = 0 is b = -2 or b = 4. 
Next, substitute b = -2 into (C-b*I)x' = 0 and we get the following result:
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|1-(-2) 3     | |x1| = |0|
|3      1-(-2)| |x2|   |0|

The preceding reduces to the following identical equations:

3*x1 + 3*x2 = 0
3*x1 + 3*x2 = 0

The general solution is x1 = -x2, and we can choose any nonzero value 
for x2, so we will set x2 = 1 (any nonzero value will do just fine), which yields 
x1 = -1. Therefore, the eigenvector [-1, 1] is associated with the eigenvalue -2. 
In a similar fashion, if x' is an eigenvector whose eigenvalue is 4, then [1, 1] 
is an eigenvector.

Notice that the eigenvectors [-1, 1] and [1, 1] are orthogonal because their 
inner product is zero, as shown here:

[-1,1] * [1,1] = (-1)*1 + (1)*1 = 0

In fact, the set of eigenvectors of a square matrix (whose eigenvalues are 
real) are always orthogonal, regardless of the dimensionality of the matrix.

Gauss Jordan Elimination (Optional) 

This simple technique enables you to find the solution to systems of linear 
equations “in place,” which involves a sequence of arithmetic operations to 
transform a given matrix to an identity matrix.

The following example combines the Gauss-Jordan elimination technique 
(which finds the solution to a set of linear equations) with the bookkeeper’s 
method, which determines the inverse of an invertible matrix (its determinant 
is nonzero).

This technique involves two adjacent matrices: the left-side matrix 
is the initial matrix and the right-side matrix is an identity matrix. Next, 
perform various linear operations on the left-side matrix to reduce it to 
an identity matrix: the matrix on the right side equals its inverse. For 
example, consider the following pair of linear equations whose solution is 
x = 1 and y = 2:

2*x + 2*y = 6
4*x - 1*y = 2

Step 1: create a 2×2 matrix with the coefficients of x in column 1 and the 
coefficients of y in column two, followed by the 2×2 identity matrix, and finally 
a column from the numbers on the right of the equals sign:

| 2  2 | 1 0 | 6|
| 4 -1 | 0 1 | 2|

Step 2: add (-2) times the first row to the second row:

| 2  2  | 1  0 |6  |
| 0  -5 | -2 1 |-10|
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Step 3: divide the second row by 5:

| 2  2  | 1      0 |6    |
| 0  -1 | -2/5 1/5 |-10/5|

Step 4: add 2 times the second row to the first row:

| 2  0  |  1/5 2/5 |2 |
| 0  -1 | -2/5 1/5 |-2|

Step 5: divide the first row by 2:

| 1  0  | -2/10 2/10 |1 |
| 0  -1 | -2/5   1/5 |-2|

Step 6: multiply the second row by (-1):

| 1  0  | -2/10 2/10 |1|
| 0  1  |  2/5  -1/5 |2|

As you can see, the left-side matrix is the 2×2 identity matrix, the right-side 
matrix is the inverse of the original matrix, and the right-most column is the 
solution to the original pair of linear equations (x = 1 and y = 2).

PCA (PRINCIPAL COMPONENT ANALYSIS)

PCA is a linear dimensionality reduction technique for determining the 
most important features in a dataset. This section discusses PCA because it is 
a very popular technique that you will encounter frequently. Other techniques 
are more efficient than PCA, so later on it is worthwhile to learn other dimen-
sionality reduction techniques as well.

Keep in mind the following points regarding the PCA technique:

• PCA is a variance-based algorithm.
• PCA creates variables that are linear combinations of the original 

 variables. 
• The new variables are all pair-wise orthogonal.
• PCA can be a useful preprocessing step before clustering.
• PCA is generally preferred for data reduction.

PCA can be useful for variables that are strongly correlated. If most of the 
coefficients in the correlation matrix are smaller than 0.3, PCA is not helpful. 
PCA provides some advantages: less computation time for training a model 
(for example, using only five features instead of one hundred features), a sim-
pler model, and the ability to render the data visually when two or three fea-
tures are selected. Here is a key point about PCA:

PCA calculates the eigenvalues and the eigenvectors of the covariance 
(or correlation) matrix C.
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If you have four or five components, you will not be able to display them 
visually, but you could select subsets of three components for visualization, and 
perhaps gain some additional insight into the dataset.

The PCA algorithm involves the following sequence of steps:

1. Calculate the correlation matrix (from the covariance matrix) C of a 
 dataset. 

2. Find the eigenvalues of C. 
3. Find the eigenvectors of C. 
4. Cnstruct a new matrix that comprises the eigenvectors.

The covariance matrix and correlation matrix were explained in a previous 
section. You also saw the definition of eigenvalues and eigenvectors, along with 
an example of calculating eigenvalues and eigenvectors.  

The eigenvectors are treated as column vectors that are placed adjacent to 
each other in decreasing order (from left-to-right) with respect to their associ-
ated eigenvectors.

PCA uses the variance as a measure of information: the higher the vari-
ance, the more important the component. In fact, just to jump ahead slightly: 
PCA determines the eigenvalues and eigenvectors of a covariance matrix (dis-
cussed in a previous section), and constructs a new matrix whose columns are 
eigenvectors, ordered from left-to-right in a sequence that matches the cor-
responding sequence of eigenvalues: the left-most eigenvector has the largest 
eigenvalue, the next eigenvector has the second-largest eigenvalue, and con-
tinuing in this fashion until the right-most eigenvector (which has the smallest 
eigenvalue).

Alternatively, there is an interesting theorem in linear algebra: if C is a sym-
metric matrix, then there is a diagonal matrix D and an orthogonal matrix P (the 
columns are pair-wise orthogonal, which means their pair-wise inner product is 
zero), such that the following holds:

C = P * D * Pt (where Pt is the transpose of matrix P)

In fact, the diagonal values of D are eigenvalues, and the columns of P are 
the corresponding eigenvectors of the matrix C.

Fortunately, we can use NumPy and Pandas to calculate the mean, standard 
deviation, covariance matrix, correlation matrix, as well as the matrices D and P 
in order to determine the eigenvalues and eigenvectors.

A point of interest is that any positive definite square matrix has real-valued 
eigenvectors, which also applies to the covariance matrix C because it is a real-
valued symmetric matrix. 

The New Matrix of Eigenvectors

The previous section described how the matrices D and P are determined. 
The left-most eigenvector of D has the largest eigenvalue, the next eigenvector 
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has the second-largest eigenvalue, and so forth. Therefore, the eigenvector 
with the highest eigenvalue is the principal component of the dataset. The 
eigenvector with the second-highest eigenvalue is the second principal com-
ponent, and so forth. You specify the number of principal components that 
you want via the n_components hyperparameter in the PCA class of Sklearn 
(discussed briefly in Chapter 7).

As a simple and minimalistic example, consider the following code block 
that uses PCA for a (somewhat contrived) dataset:

import numpy as np
from sklearn.decomposition import PCA
data = np.array([[-1,-1], [-2,-1], [-3,-2], [1,1], [2,1], [3,2]])
pca = PCA(n_components=2)
pca.fit(X)

Note that a trade-off here: we greatly reduce the number of components, 
which reduces the computation time and the complexity of the model, but we 
also lose some accuracy. However, if the unselected eigenvalues are small, we 
lose only a small amount of accuracy.

Now we will use the following notation:

NM denotes the matrix with the new principal components.
NMt is the transpose of NM.
PC is the matrix of the subset of selected principal components.
SD is the matrix of scaled data from the original dataset.
SDt is the transpose of SD.

Then the matrix NM is calculated via the following formula:
NM = PCt * SDt
Although PCA is a very nice technique for dimensionality reduction, keep 

in mind the following limitations of PCA:

• It is less suitable for data with nonlinear relationships.
• It is less suitable for special classification problems.

A related algorithm is called kernel PCA, which is an extension of PCA 
that introduces a nonlinear transformation so you can still use the PCA 
approach.

WELL-KNOWN DISTANCE METRICS

There are several similarity metrics available, such as item similarity met-
rics, Jaccard (user-based) similarity, and cosine similarity (which is used to 
compare vectors of numbers). The following subsections introduce you to 
these similarity metrics.
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Another well-known distance metric is the so-called “taxicab” metric, which 
is also called the Manhattan distance metric. Given two points A and B in a 
rectangular grid, the taxicab metric calculates the distance between two points 
by counting the number of “blocks” that must be traversed in order to reach B 
from A (the other direction has the same taxicab metric value). For example, if 
you need to travel two blocks north and then three blocks east in a rectangular 
grid, then the Manhattan distance is 5.

In fact, there are various other metrics available, which you can learn about 
by searching Wikipedia. In the case of NLP, the most commonly used distance 
metric is calculated via the cosine similarity of two vectors, and it is derived 
from the formula for the inner (“dot”) product of two vectors.

Pearson Correlation Coefficient

Pearson correlation coefficient is the Pearson correlation between two 
vectors. Given random variables X and Y, and the following terms:

std(X)   = standard deviation of X
std(Y)   = standard deviation of Y
cov(X,Y) = covariance of X and Y

Then the Pearson correlation coefficient rho(X,Y) is defined as follows:

              cov(X,Y)
rho(X,Y) =  -------------
            std(X)*std(Y)

Keep in mind that the Pearson correlation coefficient is limited to items 
of the same type. More information about the Pearson correlation coefficient 
is here:

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Jaccard Index (or Similarity)

The Jaccard similarity is based on the number of users which have rated 
item A and B divided by the number of users who have rated either A or B. 
Jaccard similarity is based on unique words in a sentence and is unaffected 
by duplicates, whereas cosine similarity is based on the length of all word vec-
tors (which changes when duplicates are added). The choice between cosine 
similarity and Jaccard similarity depends on whether or not word duplicates 
are important. 

The following Python method illustrates how to compute the Jaccard 
similarity of two sentences:

def get_jaccard_sim(str1, str2):
  set1 = set(str1.split())
  set2 = set(str2.split())
  set3 = set1.intersection(set2)
  # (size of intersection) / (size of union):
  return float(len(set3)) / (len(set1) + len(set2) - len(set3))
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Jaccard similarity can be used in situations involving Boolean values, such 
as product purchases (true/false), instead of numeric values. More information 
is available here:

https://en.wikipedia.org/wiki/Jaccard_index

Local Sensitivity Hashing (Optional)

If you are familiar with hash algorithms, you know that they are algorithms 
that create a hash table that associate items with a value. The advantage of 
hash tables is that the lookup time to determine whether or not an item exists 
in the hash table is constant. Of course, it is possible for two items to “collide,” 
which means that they both occupy the same bucket in the hash table. In this 
case, a bucket can consist of a list of items that can be searched in more or less 
constant time. If there are too many items in the same bucket, then a different 
hashing function can be selected to reduce the number of collisions. The goal 
of a hash table is to minimize the number of collisions.

The local sensitivity hashing (LSH) algorithm hashes similar input items 
into the same “buckets.” In fact, the goal of LSH is to maximize the number 
of collisions, whereas traditional hashing algorithms attempt to minimize the 
number of collisions.

Since similar items end up in the same buckets, LSH is useful for data 
clustering and nearest neighbor searches. Moreover, LSH is a dimensional-
ity reduction technique that places data points of high dimensionality closer 
together in a lower-dimensional space, while simultaneously preserving the 
relative distances between those data points.

More details about LSH are available here:
https://en.wikipedia.org/wiki/Locality-sensitive_hashing

TYPES OF DISTANCE METRICS

Nonlinear dimensionality reduction techniques can also have different dis-
tance metrics. For example, linear reduction techniques can use the Euclidean 
distance metric (based on the Pythagorean theorem). However, you need to 
use a different distance metric to measure the distance between two points on 
a sphere (or some other curved surface). In the case of NLP, the cosine similar-
ity metric is used to measure the distance between word embeddings (which 
are vectors of floating point numbers that represent words or tokens).

Distance metrics are used for measuring physical distances, and some well-
known distance metrics are as follows:

• Euclidean distance
• Manhattan distance
• Chebyshev distance

The Euclidean algorithm also obeys the “triangle inequality,” which states 
that for any triangle in the Euclidean plane, the sum of the lengths of any pair 
of sides must be greater than the length of the third side.
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In spherical geometry, you can define the distance between two points as 
the arc of a great circle that passes through the two points (always selecting the 
smaller of the two arcs when they are different).

In addition to physical metrics, the following algorithms implement the 
concept of edit distance (the distance between strings):

• Hamming distance
• Jaro–Winkler distance
• Lee distance
• Levenshtein distance
• Mahalanobis distance metric
• Wasserstein metric

The Mahalanobis metric is based on an interesting idea: given a point P 
and a probability distribution D, this metric measures the number of standard 
deviations that separate point P from distribution D. More information about 
Mahalanobis is available here:

https://en.wikipedia.org/wiki/Mahalanobis_distance
In the branch of mathematics called topology, a metric space is a set for 

which distances between all members of the set are defined. Various met-
rics are available (such as the Hausdorff metric), depending on the type of 
topology.

The Wasserstein metric measures the distance between two probability dis-
tributions over a metric space X. This metric is also called the earth mover’s 
metric for the following reason: given two unit piles of dirt, it is the measure of 
the minimum cost of moving one pile on top of the other pile. 

KL divergence bears some superficial resemblance to the Wasserstein met-
ric. However, there are some important differences between them. Specifically, 
the Wasserstein metric has the following properties:

1. It is a metric.
2. It is symmetric.
3. It satisfies the triangle inequality.

Constrastingly, KL divergence has the following properties:

1. It is not a metric (it is a divergence).
2. It is not symmetric: KL(P, Q) != KL(Q, P).
3. It does not satisfy the triangle inequality.

Note that JS (Jenson-Shannon) divergence (which is based on KL diver-
gence) is a true metric, which would enable a more meaningful comparison 
with other metrics (such as the Wasserstein metric). A comparison of the 
Wasserstein metric and KL divergence can be found here:

https://stats.stackexchange.com/questions/295617/what-is-the-advantages-
of-wasserstein-metric-compared-to-kullback-leibler-diverg
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More information regarding the Wasstertein metric is available here:
https://en.wikipedia.org/wiki/Wasserstein_metric

WHAT IS BAYESIAN INFERENCE?

Bayesian inference is an important technique in statistics that involves sta-
tistical inference and Bayes’ theorem to update the probability for a hypoth-
esis as more information becomes available. Bayesian inference is often called 
Bayesian probability, and it is important in dynamic analysis of sequential data.

BayesÕ Theorem

Given two sets A and B, we will define the following numeric values (all of 
them are between 0 and 1):

P(A) = probability of being in set A
P(B) = probability of being in set B
P(Both) = probability of being in A intersect B
P(A|B) = probability of being in A (given you're in B)
P(B|A) = probability of being in B (given you're in A)

Then the following formulas are also true:

P(A|B) = P(Both)/P(B) (#1)
P(B|A) = P(Both)/P(A) (#2)

Multiply the preceding pair of equations by the term that appears in the 
denominator and we get these equations:

P(B)*P(A|B) = P(Both) (#3)
P(A)*P(B|A) = P(Both) (#4)

Now set the left-side of equations #3 and #4 equal to each another and that 
gives us this equation:

P(B)*P(A|B) = P(A)*P(B|A) (#5)

Divide both sides of #5 by P(B) and we get this well-known equation:

P(A|B) = P(A)*P(A|B)/P(B) (#6)

Some Bayesian Terminology

In the previous section, we derived the following relationship:

P(h|d) = (P(d|h) * P(h)) / P(d)

There is a name for each of the four terms in the preceding equation, as 
discussed below.

First, the posterior probability is P(h|d), which is the probability of 
hypothesis h given the data d. 
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Second, P(d|h) is the probability of data d given that the hypothesis h was 
true.

Third, the prior probability of h is P(h), which is the probability of hypoth-
esis h being true (regardless of the data). 

Finally, P(d) is the probability of the data (regardless of the hypothesis)
We are interested in calculating the posterior probability of P(h|d) from the 

prior probability p(h) with P(D) and P(d|h).

What Is MAP?

The maximum a posteriori (MAP) hypothesis is the hypothesis with the 
highest probability, which is the maximum probable hypothesis. This can be 
written as follows:

MAP(h) = max(P(h|d))

or:

MAP(h) = max((P(d|h) * P(h)) / P(d))

or:

MAP(h) = max(P(d|h) * P(h))

Why Use BayesÕ Theorem?

Bayes’ theorem describes the probability of an event based on the prior 
knowledge of the conditions that might be related to the event. If we know the 
conditional probability, we can use Bayes’ rule to find out the reverse probabil-
ities. The previous statement is the general representation of the Bayes’ rule.

SUMMARY

This chapter started with a discussion of probability, expected values, and 
the concept of a random variable. Then you learned about some basic statisti-
cal concepts, such as mean, median, mode, variance, and standard deviation. 
Next, you learned about the terms RSS, TSS, R^2, and F1 score. In addition, 
you got an introduction to the concepts of skewness, kurtosis, Gini impurity, 
entropy, perplexity, cross-entropy, and KL divergence. 

Next, you learned about covariance and correlation matrices and how to 
calculate eigenvalues and eigenvectors. Then you were introduced to the 
dimensionality reduction technique known as PCA (principal component anal-
ysis), after which you learned about Bayes’ theorem.
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CHAPTER 2
WorkIng WIth data

This chapter introduces you to various data types that you will encounter 
in datasets, how to scale data values, techniques for detecting outliers, 
and several ways for handling missing data values.

The first part of this chapter contains an overview of different types of 
data, and an explanation of how to normalize and standardize a set of numeric 
values by calculating the mean and standard deviation of a set of numbers. You 
will see how to map categorical data to a set of integers and how to perform a 
one-hot encoding. 

The second part of this chapter discusses outliers, anomalies, missing data, 
and various techniques for handling these scenarios. The third section dis-
cusses imbalanced data and several techniques, such as SMOTE, to deal with 
imbalanced classes in a dataset.

The fourth section contains details regarding the bias-variance tradeoff and 
various types of statistical bias, and also discusses ways to evaluate classifiers, 
such as LIME and ANOVA. 

As you will soon see, this chapter provides a high-level view of concepts that 
will help you work with datasets that require preprocessing before using them 
to train machine learning models. While the code samples reference APIs 
from Python libraries (such as Numpy and Pandas), the APIs are intuitive: 
mean() for calculating the mean of a set of numbers, std() for calculating the 
standard deviation of a set of numbers. 

However, the code sample that involves Sklearn is marked “optional” 
because it uses the EllipticEnvelope class in sklearn.covariance, 
whose functionality is not intuitive (yet good to be aware of for future study).
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DEALING WITH DATA: WHAT CAN GO WRONG?

In a perfect world, all datasets are in pristine condition, with no extreme 
values, no missing values, and no erroneous values. Every feature value is cap-
tured correctly, with no chance for any confusion. Moreover, no conversion is 
required between date formats, currency values, or languages because of the 
one universal standard that defines the correct formats and acceptable values 
for every possible set of data values.

Although the preceding scenario can occur, it’s more likely that you need 
techniques to process data in order to handle various types of inconsistencies. 
Even after you manage to create a clean and robust dataset, other issues can 
arise, such as data drift that is described in the next section. 

In fact, the task of cleaning data is not necessarily complete even after 
a machine learning model is deployed to a production environment. For 
instance, an online system that gathers terabytes or petabytes of data on a daily 
basis can contain skewed values that in turn adversely affect the performance 
of the model. Such adverse effects can be revealed through the changes in the 
metrics that are associated with the production model.

What Is Data Drift?

The value of data is based on its accuracy, its relevance, and its age. Data 
drift refers to data that has become less relevant—in some cases this happens 
over a period of time, and in other cases it is because some data is no longer 
relevant because of feature-related changes in an application. 

For example, online purchasing patterns in 2010 are probably not as rele-
vant as data from 2020 because of various factors (such as the profile of different 
types of customers). Another example involves an inventory of cell phones: dis-
continued models have a diminished value in such a system. Keep in mind that 
there might be multiple factors that can influence data drift in a specific dataset. 

Two techniques for handling data drift are domain classifier and the black-
box shift detector, both of which are discussed here:

https://blog.dataiku.com/towards-reliable-mlops-with-drift-detectors
Data drift is one of three types of drift, and all three types are listed here:

• concept drift
• data drift
• upstream data changes

Perform an online search to find more information about these types of 
drift.

WHAT ARE DATASETS?

In simple terms, a dataset is a source of data (such as a text file) that con-
tains rows and columns of data. Each row is typically called a “data point,” and 
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each column is called a “feature.” A dataset can be a CSV (comma separated 
values), TSV (tab separated values), Excel spreadsheet, a table in an RDMBS, a 
document in a NoSQL database, the output from a Web Service, and so forth. 
As you will see, someone needs to analyze the dataset to determine which fea-
tures are the most important and which features can be safely ignored in order 
to train a model with the given dataset.

A dataset can vary from very small (a couple of features and 100 rows) to 
very large (more than 1,000 features and more than one million rows). If you 
are unfamiliar with the problem domain, then you might struggle to determine 
the most important features in a large dataset. In this situation, you might 
need a “domain expert” who understands the importance of the features, their 
inter-dependencies (if any), and whether or not the data values for the features 
are valid. 

In addition, there are algorithms (called dimensionality reduction algo-
rithms) that can help you determine the most important features, such as PCA 
(principal component analysis), which is outside the scope of this book.

Data Preprocessing

Data preprocessing is the initial step that involves validating the contents 
of a dataset, which involves making decisions about missing and incorrect data 
values: 

• dealing with missing data values
• cleaning “noisy” text-based data 
• removing HTML tags 
• dealing with emojis/emoticons
• filtering data
• grouping data
• handling currency and date formats

Cleaning data is a subset of data wrangling that involves removing unwanted 
data as well as handling missing data. In the case of text-based data, you might 
need to remove HTML tags, punctuation, and so forth. In the case of numeric 
data, it is possible that alphabetic characters are mixed together with numeric 
data. However, a dataset with numeric features might have incorrect values or 
missing values (discussed later). In addition, calculating the minimum, maxi-
mum, mean, median, and standard deviation of the values of a feature obvi-
ously pertain only to numeric values. 

After the preprocessing step is completed, data wrangling is performed. 
Data wrangling refers to the transformation of data into a new format. For 
example, you might have to combine data from multiple sources into a single 
dataset. Perhaps you need to convert between different units of measurement 
(e.g., date formats, currency values, etc.) so that the data values can be repre-
sented in a consistent manner in a dataset.
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In case you didn’t already know, currency and data values are part of some-
thing that is called i18n (internationalization), whereas L10n (localization) tar-
gets a specific nationality, language, or region. Hard-coded values (such as text 
strings) can be stored as resource strings in a file that’s often called a resource 
bundle, where each string is referenced via a code. Each language has its own 
resource bundle. 

DATA TYPES

If you have written computer programs, then you know that explicit data 
types exist in many programming languages, such as C, C++, Java, TypeScript, 
and so forth. Some programming languages, such as JavaScript and awk, do 
not require initializing variables with an explicit type: the type of a variable is 
inferred dynamically via an implicit type system (i.e., one that is not directly 
exposed to a developer). 

In machine learning, datasets can contain features that have different types 
of data, such as a combination of one or more of the following:

• numeric data (integer/floating point and discrete/continuous)
• character/categorical data (different languages)
• date-related data (different formats)
• currency data (different formats)
• binary data (yes/no, 0/1, and so forth)
• nominal data (multiple unrelated values)
• ordinal data (multiple and related values)

Consider a dataset that contains real estate data, which can have as many as 
30 columns (or even more), often with the following features:

• the number of bedrooms in a house: numeric value and a discrete value
• the number of square feet: a numeric value and (probably) a continuous 

value
• the name of the city: character data
• the construction date: a date value
• the selling price: a currency value and probably a continuous value
• the “for sale” status: binary data (either “yes” or “no”)

An example of nominal data is the seasons in a year: although many coun-
tries have four distinct seasons, some countries have two distinct seasons. 
However, keep in mind that seasons can be associated with different tempera-
ture ranges (summer versus winter). An example of ordinal data is an employee 
pay grade: 1 = entry level, 2 = one year of experience, and so forth. Another 
example of nominal data is a set of colors, such as {Red, Green, Blue}.

An example of binary data is the pair {Male, Female}, and some datasets 
contain a feature with these two values. If such a feature is required for training 
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a model, first convert {Male, Female} to a numeric counterpart, such as {0, 1}. 
Similarly, if you need to include a feature whose values are the previous set of 
colors, you can replace {Red, Green, Blue} with the values {0, 1, 2}. Categorical 
data is discussed in more detail later in this chapter.

PREPARING DATASETS 

If you have the good fortune to inherit a dataset that is in pristine condition, 
then data cleaning tasks (discussed later) are vastly simplified: in fact, it might 
not be necessary to perform any data cleaning for the dataset. However, if you 
need to create a dataset that combines data from multiple datasets that contain 
different formats for dates and currency, then you need to perform a conver-
sion to a common format. 

If you need to train a model that includes features that have categorical 
data, then you need to convert that categorical data to numeric data. For 
instance, the Titanic dataset contains a feature called “gender,” which is either 
male or female. As you will see later in this chapter, Pandas makes it extremely 
simple to “map” male to 0 and female to 1.

Discrete Data versus Continuous Data

As a simple rule of thumb, discrete data is a set of values that can be counted 
whereas continuous data must be measured. Discrete data can reasonably fit in 
a drop-down list of values, but there is no exact value for making such a deter-
mination. One person might think that a list of 500 values is discrete, whereas 
another person might think it is continuous. 

For example, the list of provinces of Canada and the list of states of the 
United States are discrete data values, but is the same true for the number 
of countries in the world (roughly 200) or for the number of languages in the 
world (more than 7,000)? 

Alternatively, values for temperature, humidity, and barometric pressure 
are considered continuous. Currency is also treated as continuous, even though 
there is a measurable difference between two consecutive values. The smallest 
unit of currency for U.S. currency is one penny, which is 1/100th of a dollar 
(accounting-based measurements use the “mil,” which is 1/1,000th of a dollar).

Continuous data types can have subtle differences. For example, someone 
who is 200 centimeters tall is twice as tall as someone who is 100 centimeters 
tall; similarly for 100 kilograms versus 50 kilograms. However, temperature is 
different: 80˚ Fahrenheit is not twice as hot as 40˚ Fahrenheit.

Furthermore, keep in mind that the word continuous has a different mean-
ing in mathematics, and the definition is not necessarily the same as continu-
ous in machine learning. In the former, a continuous variable (e.g.,  in the 2D 
Euclidean plane) can have an uncountably infinite number of values. On the 
other hand, a feature in a dataset that can have more values that can be “rea-
sonably” displayed in a drop down list is treated as though it is a continuous 
variable.
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For instance, values for stock prices are discrete: they must differ by at 
least a penny (or some other minimal unit of currency), which is to say, it is 
meaningless to say that the stock price changes by one-millionth of a penny. 
However, since there are “so many” possible stock values, it is treated as a 
continuous variable. The same comments apply to car mileage, ambient tem-
perature, barometric pressure, and so forth.

ÒBinningÓ Continuous Data

With the previous section in mind, the concept of binning refers to subdi-
viding a set of values into multiple intervals, and then treating all the numbers 
in the same interval as though they had the same value.

As a simple example, suppose that a feature in a dataset contains the age of 
people in a dataset. The range of values is approximately between 0 and 120, 
and we could “bin” them into 12 equal intervals, where each consists of 10 
values: 0 through 9, 10 through 19, 20 through 29, and so forth. 

However, partitioning the values of people’s age as described in the pre-
ceding paragraph can be problematic. Suppose that person A, person B, and 
person C are 29, 30, and 39, respectively. Then person A and person B are 
probably more similar to each other than person B and person C, but because 
of the way in which the ages are partitioned, B is classified as closer to C than 
to A. In fact, binning can increase Type I errors (false positive) and Type II 
errors (false negative), as discussed in this blog post (along with some alterna-
tives to binning):

https://medium.com/@peterflom/why-binning-continuous-data-is-almost-
always-a-mistake-ad0b3a1d141f

As another example, using quartiles is even more coarse-grained than the 
earlier age-related binning example. The issue with binning pertains to the 
consequences of classifying people in different bins, even though they are in 
close proximity to each other. For instance, some people struggle financially 
because they earn a meager wage, and they are disqualified from financial 
assistance because their salary is higher than the cut-off point for receiving any 
assistance.

Scaling Numeric Data via Normalization

A range of values can vary significantly and it is important to note that they 
often need to be scaled to a smaller range, such as values in the range [−1, 1] 
or [0, 1], which you can do via the tanh function or the sigmoid function, 
respectively.

For example, measuring a person’s height in meters involves a range of val-
ues between 0.50 meters and 2.5 meters (in the vast majority of cases), whereas 
measuring height in centimeters ranges between 50 centimeters and 250 cen-
timeters: these two units differ by a factor of 100. A person’s weight in kilograms 
generally varies between 5 kilograms and 200 kilograms, whereas measuring 
weight in grams differs by a factor of 1,000. Distances between objects can 
be measured in meters or in kilometers, which also differ by a factor of 1,000.
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In general, use units of measure so that the data values in multiple features 
all belong to a similar range of values. In fact, some machine learning algo-
rithms require scaled data, often in the range of [0, 1] or [−1, 1]. In addition 
to the tanh and sigmoid function, there are other techniques for scaling data, 
such as “standardizing” data (think Gaussian distribution) and “normalizing” 
data (linearly scaled so that the new range of values is in [0, 1]).

The following examples involve a floating point variable X with different 
ranges of values that will be scaled so that the new values are in the interval 
[0, 1]. 

Example 1: if the values of X are in the range [0, 2], then X/2 is in the range 
[0, 1].

Example 2: if the values of X are in the range [3, 6], then X-3 is in the range 
[0, 3], and (X-3)/3 is in the range [0, 1].

Example 3: if the values of X are in the range [−10, 20], then X +10 is in the 
range [0, 30], and (X +10)/30 is in the range of [0, 1].

In general, suppose that X is a random variable whose values are in the range 
[a,b], where a < b. You can scale the data values by performing two steps:

Step 1: X-a is in the range [0,b-a]
Step 2: (X-a)/(b-a) is in the range [0,1]

If X is a random variable that has the values 
{x1, x2, x3, . . . , xn}, then the formula for normalization involves 
mapping each xi value to (xi – min)/(max – min), where min is the mini-
mum value of X and max is the maximum value of X.

As a simple example, suppose that the random variable X has the values 
{-1, 0, 1}. Then min and max are 1 and −1, respectively, and the normali-
zation of {-1, 0, 1} is the set of values {(-1-(-1))/2, (0-(-1))/2, 
(1-(-1))/2}, which equals {0, 1/2, 1}.

Scaling Numeric Data via Standardization

The standardization technique involves finding the mean mu and the stand-
ard deviation sigma, and then mapping each xi value to (xi – mu)/sigma. 
Recall the following formulas:

mu = [SUM (x) ]/n
variance(x) = [SUM (x – xbar)*(x-xbar)]/n
sigma = sqrt(variance)

As a simple illustration of standardization, suppose that the random vari-
able X has the values {−1, 0, 1}. Then mu and sigma are calculated as follows:

mu       = (SUM xi)/n = (-1 + 0 + 1)/3 = 0

variance = [SUM (xi- mu)^2]/n 
         = [(-1-0)^2 + (0-0)^2 + (1-0)^2]/3 
         = 2/3

sigma    = sqrt(2/3) = 0.816 (approximate value)
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Therefore, the standardization of {-1, 0, 1} is {-1/0.816, 0/0.816, 
1/0.816}, which in turn equals the set of values {-1.2254, 0, 1.2254}.

As another example, suppose that the random variable X has the values 
{-6, 0, 6}. Then mu and sigma are calculated as follows:

mu       = (SUM xi)/n = (-6 + 0 + 6)/3 = 0

variance = [SUM (xi- mu)^2]/n 
         = [(-6-0)^2 + (0-0)^2 + (6-0)^2]/3 
         = 72/3
         = 24

sigma    = sqrt(24) = 4.899 (approximate value)

Therefore, the standardization of {-6, 0, 6} is {-6/4.899, 0/4.899, 
6/4.899}, which in turn equals the set of values {-1.2247, 0, 1.2247}.

In the preceding two examples, the mean equals 0 in both cases but the vari-
ance and standard deviation are significantly different. One other point: the nor-
malization of a set of values always produces a set of numbers between 0 and 1. 

Alternately, the standardization of a set of values can generate numbers 
that are less than −1 and greater than 1: this will occur when sigma is less than 
the minimum value of every term |mu – xi|, where the latter is the absolute 
value of the difference between mu and each xi value. In the preceding exam-
ple, the minimum difference equals 1, whereas sigma is 0.816, and therefore 
the largest standardized value is greater than 1.

Scaling Numeric Data via Robust Standardization

The robust standardization technique is a variant of standardization that 
computes the mean mu and the standard deviation sigma based on a subset of 
values. Specifically, use only the values that are between the 25th percentile 
and 75th percentile, which ignores the first and fourth quartiles that might 
contain outliers. Now we will define the following variables:

X25 = 25th percentile
X75 = 75th percentile
XM = mean of {Xi} values
XR = robust standardization

Then XR is computed according to the following formula:

XR = (Xi - XM)/(X75 - X25)

The preceding technique is also called IQR, which is an acronym for inter-
quartile range, and you can see a sample calculation here:

https://en.wikipedia.org/wiki/Interquartile_range

What to Look for in Categorical Data

This section contains various suggestions for handling inconsistent data 
values, and you can determine which ones to adopt based on any additional 
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factors that are relevant to your particular task. For example, consider drop-
ping columns that have very low cardinality (equal to or close to 1), as well as 
numeric columns with zero or very low variance.

Next, check the contents of categorical columns for inconsistent spellings 
or errors. A good example pertains to the gender category, which can consist of 
a combination of the following values:

male 
Male
female
Female
m  
f  
M  
F 

The preceding categorical values for gender can be replaced with two cat-
egorical values (unless you have a valid reason to retain some of the other 
values). Moreover, if you are training a model whose analysis involves a sin-
gle gender, then you need to determine which rows (if any) of a dataset must 
be excluded. Also check categorical data columns for redundant or missing 
whitespaces.

Check for data values that have multiple data types, such as a numerical col-
umn with numbers as numerals and some numbers as strings or objects. Also 
ensure consistent data formats: numbers as integer or floating numbers and 
ensure that dates have the same format (for example, do not mix mm/dd/yyyy 
date formats with another date format, such as dd/mm/yyyy).

Mapping Categorical Data to Numeric Values

Character data is often called categorical data, examples of which include 
people’s names, home or work addresses, email addresses, and so forth. Many 
types of categorical data involve short lists of values. For example, the days of 
the week and the months in a year involve seven and twelve distinct values, 
respectively. Notice that the days of the week have a relationship: each day has 
a previous day and a next day, and similarly for the months of a year. 

However, the colors of an automobile are independent of each other: the 
color red is not “better” or “worse” than the color blue. Note that cars of a cer-
tain color can have a statistically higher number of accidents, but we will not 
address this case here.

There are several well-known techniques for mapping categorical values to 
a set of numeric values. A simple example where you need to perform this con-
version involves the gender feature in the Titanic dataset. This feature is one 
of the relevant features for training a machine learning model. The gender fea-
ture has {M,F} as its set of values. As you will see later in this chapter, Pandas 
makes it very easy to convert the set of values {M,F} to the set of values {0, 1}.

Another mapping technique involves mapping a set of categorical values to 
a set of consecutive integer values. For example, the set {Red, Green, Blue} 
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can be mapped to the set of integers {0, 1, 2}. The set {Male, Female} can be 
mapped to the set of integers {0, 1}. The days of the week can be mapped to 
{0, 1, 2, 3, 4, 5, 6}. Note that the first day of the week depends on the country: 
in some cases it is Sunday and in other cases it is Monday.

Another technique is called one-hot encoding, which converts each value 
to a vector (check Wikipedia if you need a refresher regarding vectors). Thus, 
{Male, Female} can be represented by the vectors [1,0] and [0,1], and 
the colors {Red, Green, Blue} can be represented by the vectors [1,0,0], 
[0,1,0], and [0,0,1]. If you vertically “line up” the two vectors for gender, 
they form a 2×2 identity matrix, and doing the same for the colors will form a 
3×3 identity matrix. 

If you vertically “line up” the two vectors for gender, they form a 2×2 iden-
tity matrix, and doing the same for the colors {R,G,B} will form a 3x3 identity 
matrix, as shown here:

[1,0,0]
[0,1,0]
[0,0,1]

If you are familiar with matrices, you probably noticed that the preceding 
set of vectors looks like the 3×3 identity matrix. In fact, this technique general-
izes in a straightforward manner. Specifically, if you have n distinct categorical 
values, you can map each of those values to one of the vectors in an nxn identity 
matrix. 

As another example, the set of titles {"Intern," "Junior," "Mid-
Range," "Senior," "Project Leader," "Dev Manager"} have a hier-
archical relationship in terms of their salaries (which can also overlap, but we’ll 
gloss over that detail for now).

Another set of categorical data involves the season of the year: {"Spring," 
"Summer," "Autumn," "Winter"} and while these values are generally 
independent of each other, there are cases in which the season is significant. 
For example, the values for the monthly rainfall, average temperature, crime 
rate, or foreclosure rate can depend on the season, month, week, or even the 
day of the year.

If a feature has a large number of categorical values, then a one-hot encod-
ing will produce many additional columns for each data point. Since the major-
ity of the values in the new columns equal 0, this can increase the sparsity of the 
dataset, which in turn can result in more overfitting and therefore adversely 
affect the accuracy of machine learning algorithms that you adopt during the 
training process.

Another solution is to use a sequence-based solution in which N categories 
are mapped to the integers 1, 2, . . . , N. Another solution involves examin-
ing the row frequency of each categorical value. For example, suppose that N 
equals 20, and there are 3 categorical values occur in 95% of the values for a 
given feature. You can try the following:
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1. Assign the values 1, 2, and 3 to those three categorical values.
2. Assign numeric values that reflect the relative frequency of those 

categorical values.
3. Assign the category “OTHER” to the remaining categorical values.
4. Delete the rows that whose categorical values belong to the 5%.

Working With Dates

The format for a calendar dates varies among different countries, and this 
belongs to something called localization of data (not to be confused with i18n, 
which is data internationalization). Some examples of date formats are shown 
here (and the first four are probably the most common):

MM/DD/YY
MM/DD/YYYY 
DD/MM/YY 
DD/MM/YYYY
YY/MM/DD 
M/D/YY 
D/M/YY 
YY/M/D 
MMDDYY 
DDMMYY 
YYMMDD

If you need to combine data from datasets that contain different date for-
mats, then converting the disparate date formats to a single common date for-
mat will ensure consistency. 

Working With Currency

The format for currency depends on the country, which includes different 
interpretations for a “,” and “.” in currency (and decimal values in general). 
For example, 1,124.78 equals “one thousand one hundred twenty four point 
seven eight” in the United States, whereas 1.124,78 has the same meaning in 
Europe (i.e., the “.” symbol and the “,” symbol are interchanged).

If you need to combine data from datasets that contain different currency 
formats, then you probably need to convert all the disparate currency formats 
to a single common currency format. There is another detail to consider: cur-
rency exchange rates can fluctuate on a daily basis, which in turn can affect the 
calculation of taxes, late fees, and so forth. Although you might be fortunate 
enough where you will not have to deal with these issues, it is still worth being 
aware of them.

WORKING WITH OUTLIERS AND ANOMALIES 

In simplified terms, an outlier is an abnormal data value that is outside 
the range of “normal” values. For example, a person’s height in centimeters is 
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typically between 30 centimeters and 250 centimeters. Therefore, a data point 
(e.g., a row of data in a spreadsheet) with a height of 5 centimeters or a height 
of 500 centimeters is an outlier. The consequences of these outlier values are 
unlikely to involve a significant financial or physical loss (although they could 
have an adverse effect on the accuracy of a trained model).

Anomalies are also outside the “normal” range of values (just like outli-
ers), and they are typically more problematic than outliers: anomalies can have 
more “severe” consequences than outliers. For example, consider the scenario 
in which someone who lives in California suddenly makes a credit card pur-
chase in New York. If the person is on vacation (or a business trip), then the 
purchase is an outlier (it is “outside” the typical purchasing pattern), but it is 
not an issue. However, if that person was in California when the credit card 
purchase was made, then it is most likely to be credit card fraud, as well as an 
anomaly.

Unfortunately, there is no simple way to decide how to deal with anoma-
lies and outliers in a dataset. Although you can drop rows that contain outli-
ers, keep in mind that doing so might deprive the dataset—and therefore the 
trained model—of valuable information. You can try modifying the data val-
ues (as will be discussed), but again, this might lead to erroneous inferences 
in the trained model. Another possibility is to train a model with the dataset 
that contains anomalies and outliers, and then train a model with a dataset 
from which the anomalies and outliers have been removed. Compare the two 
results and see if you can infer anything meaningful regarding the anomalies 
and outliers.

Outlier Detection/Removal

Although the decision to keep or drop outliers is your decision to make, 
there are some techniques available that help you detect outliers in a dataset. 
Here is a short list of techniques, along with a very brief description and links 
for additional information:

• trimming
• winsorizing
• minimum covariance determinant
• local outlier factor
• Huber and ridge
• isolation forest (tree-based algorithm)
• one-class SVM

Perhaps trimming is the simplest technique (apart from dropping outliers), 
which involves removing rows whose feature value is in the upper 5% range or 
the lower 5% range. Winsorizing the data is an improvement over trimming: 
set the values in the top 5% range equal to the maximum value in the 95th 
percentile, and set the values in the bottom 5% range equal to the minimum 
in the 5th percentile.
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The Minimum Covariance Determinant is a covariance-based technique, 
and a Python-based code sample that uses this technique is downloadable here:

https://scikit-learn.org/stable/modules/outlier_detection.html
The Local Outlier Factor (LOF) technique is an unsupervised technique 

that calculates a local anomaly score via the kNN (k Nearest Neighbor) algo-
rithm. Documentation and short code samples that use LOF are here:

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
LocalOutlierFactor.html

Two other techniques involve the Huber and the ridge classes, both of 
which are included as part of Sklearn. Huber error is less sensitive to outliers 
because it is calculated via linear loss, similar to MAE (mean absolute error). A 
code sample that compares Huber and ridge is downloadable here:

https://scikit-learn.org/stable/auto_examples/linear_model/plot_huber_vs_
ridge.html 

You can also explore the Theil-Sen estimator and RANSAC that are “robust” 
against outliers, and additional information is here:

https://scikit-learn.org/stable/auto_examples/linear_model/plot_theilsen.
html

https://en.wikipedia.org/wiki/Random_sample_consensus
Four algorithms for outlier detection are discussed here:
https://www.kdnuggets.com/2018/12/four-techniques-outlier-detection.

html
One other scenario involves “local” outliers. For example, suppose that you 

use kMeans (or some other clustering algorithm) and determine that a value that 
is an outlier with respect to one of the clusters. While this value is not necessarily 
an “absolute” outlier, detecting such a value might be important for your use case.

FINDING OUTLIERS WITH NUMPY

Although we have not discussed the Numpy library, we will use the Numpy 
array() method, the mean() method, and the std() method in this section, 
all of which have intuitive functionality. 

Listing 2.1 displays the contents of numpy_outliers1.py that illustrates 
how to use Numpy methods to find outliers in an array of numbers.

LISTING 2.1: numpy_outliers1.py

import numpy as np

arr1 = np.array([2,5,7,9,9,40])
print("values:",arr1)

data_mean = np.mean(arr1)
data_std  = np.std(arr1)
print("data_mean:",data_mean)
print("data_std:" ,data_std)
print()
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multiplier = 1.5
cut_off = data_std * multiplier
lower = data_mean - cut_off
upper = data_mean + cut_off
print("lower cutoff:",lower)
print("upper cutoff:",upper)
print()

outliers = [x for x in arr1 if x < lower or x > upper]
print('Identified outliers: %d' % len(outliers))
print("outliers:",outliers)

Listing 2.1 starts by defining a Numpy array of numbers and then calculates 
the mean and standard deviation of those numbers. The next block of code ini-
tializes two numbers that represent the upper and lower values that are based on 
the value of the cut_off variable. Any numbers in the array arr1 that lie to the 
left of the lower value or to the right of the upper value are treated as outliers.

The final section of code in Listing 2.1 initializes the variable outliers with 
the numbers that are determined to be outliers, and those values are printed. 
Now launch the code in Listing 2.1 and you will see the following output:

values: [ 2  5  7  9  9 40]
data_mean: 12.0
data_std: 12.754084313139327

lower cutoff: -7.131126469708988
upper cutoff: 31.13112646970899

Identified outliers: 1
outliers: [40]

The preceding code sample specifies a hard-coded value in order to calcu-
late the upper and lower range values. 

Listing 2.2 is an improvement in that you can specify a set of values from 
which to calculate the upper and lower range values, and the new block of code 
is shown in bold.

LISTING 2.2: numpy_outliers2.py

import numpy as np

arr1 = np.array([2,5,7,9,9,40])
print("values:",arr1)

data_mean = np.mean(arr1)
data_std  = np.std(arr1)
print("data_mean:",data_mean)
print("data_std:" ,data_std)
print()

multipliers = np.array([0.5,1.0,1.5,2.0,2.5,3.0])
for multiplier in multipliers:
  cut_off = data_std * multiplier
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  lower, upper = data_mean - cut_off, data_mean + cut_off
  print("=> multiplier:  ",multiplier)
  print("lower cutoff:",lower)
  print("upper cutoff:",upper)

  outliers = [x for x in df['data'] if x < lower or x > upper]
  print('Identified outliers: %d' % len(outliers))
  print("outliers:",outliers)
  print()

Listing 2.2 contains a block of new code that initializes the variable 
multipliers as an array of numeric values that are used for finding out-
liers. Although you will probably use a value of 2.0 or larger on a real 
dataset, this range of numbers can give you a better sense of detecting 
outliers. Now launch the code in Listing 2.2 and you will see the following 
output:

values: [ 2  5  7  9  9 40]
data_mean: 12.0
data_std: 12.754084313139327

lower cutoff: -7.131126469708988
upper cutoff: 31.13112646970899

Identified outliers: 1
outliers: [40]
=> multiplier:   0.5
lower cutoff: 5.622957843430337
upper cutoff: 18.377042156569665
Identified outliers: 3
outliers: [2, 5, 40]

=> multiplier:   1.0
lower cutoff: -0.7540843131393267
upper cutoff: 24.754084313139327
Identified outliers: 1
outliers: [40]

=> multiplier:   1.5
lower cutoff: -7.131126469708988
upper cutoff: 31.13112646970899
Identified outliers: 1
outliers: [40]

=> multiplier:   2.0
lower cutoff: -13.508168626278653
upper cutoff: 37.50816862627865
Identified outliers: 1
outliers: [40]

=> multiplier:   2.5
lower cutoff: -19.88521078284832
upper cutoff: 43.88521078284832
Identified outliers: 0
outliers: []
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=> multiplier:   3.0
lower cutoff: -26.262252939417976
upper cutoff: 50.26225293941798
Identified outliers: 0
outliers: []

FINDING OUTLIERS WITH PANDAS

Although we discuss Pandas in Chapter 3, the code in this section only 
involves a very simple Pandas data frame, the mean() method, and the std() 
method.

Listing 2.3 displays the contents of pandas_outliers1.py that illustrates 
how to use Pandas to find outliers in an array of numbers.

LISTING 2.3: pandas_outliers1.py 

import pandas as pd
  
df = pd.DataFrame([2,5,7,9,9,40])
df.columns = ["data"]

data_mean = df['data'].mean()
data_std  = df['data'].std()
print("data_mean:",data_mean)
print("data_std:" ,data_std)
print()

multiplier = 1.5
cut_off = data_std * multiplier
lower, upper = data_mean - cut_off, data_mean + cut_off
print("lower cutoff:",lower)
print("upper cutoff:",upper)
print()

outliers = [x for x in df['data'] if x < lower or x > upper]
print('Identified outliers: %d' % len(outliers))
print("outliers:",outliers)

Listing 2.3 starts by defining a Pandas data frame and then calculates the 
mean and standard deviation of those numbers. The next block of code initial-
izes two numbers that represent the upper and lower values that are based on 
the value of the cut_off variable. Any numbers in the data frame that lie to the 
left of the lower value or to the right of the upper value are treated as outliers.

The final section of code in Listing 2.3 initializes the variable outliers 
with the numbers that are determined to be outliers, and those values are 
printed. Now launch the code in Listing 2.3 and you will see the following 
output:

values: [ 2  5  7  9  9 40]
data_mean: 12.0
data_std: 12.754084313139327
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lower cutoff: -7.131126469708988
upper cutoff: 31.13112646970899

Identified outliers: 1
outliers: [40]

The preceding code sample specifies a hard-coded value in order to calcu-
late the upper and lower range values. 

Listing 2.4 is an improvement in that you can specify a set of values from 
which to calculate the upper and lower range values, and the new block of code 
is shown in bold.

LISTING 2.4: pandas_outliers2.py 

import pandas as pd

#df = pd.DataFrame([2,5,7,9,9,40])
#df = pd.DataFrame([2,5,7,8,42,44])
df = pd.DataFrame([2,5,7,8,42,492])
df.columns = ["data"]
print("=> data values:")
print(df['data'])

data_mean = df['data'].mean()
data_std  = df['data'].std()
print("=> data_mean:",data_mean)
print("=> data_std:" ,data_std)
print()

multipliers = [0.5,1.0,1.5,2.0,2.5,3.0]
for multiplier in multipliers:
  cut_off = data_std * multiplier
  lower, upper = data_mean - cut_off, data_mean + cut_off
  print("=> multiplier:  ",multiplier)
  print("lower cutoff:",lower)
  print("upper cutoff:",upper)

  outliers = [x for x in df['data'] if x < lower or x > upper]
  print('Identified outliers: %d' % len(outliers))
  print("outliers:",outliers)
  print()

Listing 2.4 contains a block of new code that initializes the variable mul-
tipliers as an array of numeric values that are used for finding outliers. 
Although you will probably use a value of 2.0 or larger on a real dataset, this 
range of numbers can give you a better sense of detecting outliers. Now launch 
the code in Listing 2.4 and you will see the following output:

=> data values:
0      2
1      5
2      7
3      8
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4     42
5    492
Name: data, dtype: int64
=> data_mean: 92.66666666666667
=> data_std: 196.187325448579

=> multiplier:   0.5
lower cutoff: -5.42699605762283
upper cutoff: 190.76032939095617
Identified outliers: 1
outliers: [492]

=> multiplier:   1.0
lower cutoff: -103.52065878191233
upper cutoff: 288.85399211524566
Identified outliers: 1
outliers: [492]

=> multiplier:   1.5
lower cutoff: -201.6143215062018
upper cutoff: 386.9476548395352
Identified outliers: 1
outliers: [492]

=> multiplier:   2.0
lower cutoff: -299.7079842304913
upper cutoff: 485.0413175638247
Identified outliers: 1
outliers: [492]

=> multiplier:   2.5
lower cutoff: -397.80164695478084
upper cutoff: 583.1349802881142
Identified outliers: 0
outliers: []

=> multiplier:   3.0
lower cutoff: -495.8953096790703
upper cutoff: 681.2286430124036
Identified outliers: 0
outliers: []

Calculating Z-Scores to Find Outliers

The z-score of a set of numbers is calculated by standardizing those num-
bers, which involves (a) subtracting their mean from each number, and (b) 
dividing by their standard deviation. Although you can perform these steps 
manually, the Python SciPy library performs these calculations. If need be, 
you can install this package with the following command:

pip3 install scipy

Listing 2.5 displays the contents of outliers_zscores.py that illustrates 
how to find outliers in an array of numbers. As you will see, this code sample 
relies on convenience methods from Numpy, Pandas, and SciPy.
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LISTING 2.5: outliers_zscores.py 

import numpy as np
import pandas as pd
from scipy import stats

arr1 = np.array([2,5,7,9,9,40])
print("values:",arr1)

df = pd.DataFrame(arr1)

zscores = np.abs(stats.zscore(df))
print("z scores:")
print(zscores)
print()

upper = 2.0
lower = 0.5
print("=> upper outliers:")
print(zscores[np.where(zscores > upper)])
print()

print("=> lower outliers:")
print(zscores[np.where(zscores < lower)])
print()

Listing 2.5 starts with several import statements, followed by initializing 
the variable arr1 as a Numpy array of numbers, and then displaying the values 
in arr1. The next code snippet initializes the variable df as a data frame that 
contains the values in the variable arr1.

Next, the variable zscores is initialized with the z-scores of the elements 
of the df data frame, as shown here:

zscores = np.abs(stats.zscore(df))

The next section of code initializes the variables upper and lower, and 
the z-scores whose values are less than the value of lower or greater than 
the value upper are treated as outliers, and those values are displayed. Now 
launch the code in Listing 2.5 and you will see the following output:

values: [2  5  7  9  9 40]
z scores:
[[0.78406256]
 [0.54884379]
 [0.39203128]
 [0.23521877]
 [0.23521877]
 [2.19537517]]

=> upper outliers:
[2.19537517]

=> lower outliers:
[0.39203128 0.23521877 0.23521877]
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FINDING OUTLIERS WITH SKLEARN (OPTIONAL)

This section is optional because the code involves the EllipticEnvelope 
class in sklearn.covariance, which we do not cover in this book. However, 
it is still worthwhile to peruse the code and compare this code with earlier code 
samples for finding outliers.

Listing 2.6 displays the contents of elliptic_envelope_outliers.py 
that illustrates how to use Pandas to find outliers in an array of numbers.

LISTING 2.6: elliptic_envelope_outliers.py 

# pip3 install sklearn
from sklearn.covariance import EllipticEnvelope
import numpy as np

# Create a sample normal distribution:
Xdata = np.random.normal(loc=5, scale=2, size=10).reshape(-1, 1)
print("Xdata values:")
print(Xdata)
print()

# instantiate and fit the estimator:
envelope = EllipticEnvelope(random_state=0)
envelope.fit(Xdata)

# create a test set:
test = np.array([0, 2, 4, 6, 8, 10, 15, 20, 25, 30]).reshape(-1, 1)
print("test values:")
print(test)
print()

# predict() returns 1 for inliers and -1 for outliers:
print("envelope.predict(test):")
print(envelope.predict(test))

Listing 2.6 starts with several import statements and then initializes 
the variable Xdata as a column vector of random numbers from a Gaussian 
distribution. The next code snippet initializes the variable envelope as an 
instance of the EllipticEnvelope from Sklearn (which will determine 
if there are any outliers in Xdata), and then trained on the data values in 
Xdata.

The next portion of Listing 2.6 initializes the variable test as a column vec-
tor, much like the initialization of Xdata. The final portion of Listing 2.6 makes 
a prediction on the values in the variable test and also displays the results: the 
value −1 indicates an outlier. Now launch the code in Listing 2.6 and you will 
see the following output:

Xdata values:
[[5.21730452]
 [5.49182377]
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 [2.87553776]
 [4.20297013]
 [8.29562026]
 [5.78097977]
 [4.86631006]
 [5.47184212]
 [4.77954946]
 [8.66184028]]

test values:
[[ 0]
 [ 2]
 [ 4]
 [ 6]
 [ 8]
 [10]
 [15]
 [20]
 [25]
 [30]]

envelope.predict(test):
[-1  1  1  1  1 -1 -1 -1 -1 -1]

WORKING WITH MISSING DATA

There are various reasons for missing values in a dataset, some of which are 
as follows:

• Values are unavailable.
• Values were improperly collected.
• Inaccurate data was entered. 

Although you might be tempted to always replace a missing values with 
a concrete value, there are situations in which you cannot determine a value. 
As a simple example, a survey that contains questions for people under 30 will 
have a missing value for respondents who are over 30, and in this case specify-
ing a value for the missing value would be incorrect. With these details in mind, 
there are various ways to fill missing values, some of which are listed here:

• Remove the lines with the data if the dataset is large enough and there is 
a high percentage of missing values (50% or larger).

• Fill null variables with 0 for numeric features.
• Use the Imputerclass from the scikit-learn library.
• Fill missing values with the value in an adjacent row.
• Replace missing data with the mean/median/mode value.
• Infer (“impute”) the value for missing data.
• Delete rows with missing data.
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Once again, the technique that you select for filling missing values is influ-
enced by various factors, such as:

• how you want to process the data
• the type of data involved
• the cause of missing values. (See list at the beginning of this section.)

Although the most common technique involves the mean value for numeric 
features, someone needs to determine which technique is appropriate for a 
given feature.

However, if you are not confident that you can impute a reasonable value, 
consider either deleting the row with a missing value, or training a model with 
the imputed value and also with the deleted row. 

One problem that can arise after removing rows with missing values is that 
the resulting data set is too small. In this case, consider using SMOTE (synthetic 
minority oversampling technique), which is discussed later in this chapter in 
order to generate synthetic data.

https://www.kdnuggets.com/2020/09/missing-value-imputation-review.
html

Imputing Values: When Is Zero a Valid Value?

In general, replace a missing numeric value with zero is a risky choice: 
this value is obviously incorrect if the values of a feature are positive numbers 
between 1,000 and 5,000 (or some other range of positive numbers). For a fea-
ture that has numeric values, replacing a missing value with the mean of exist-
ing values can be better than the value zero (unless the average equals zero); 
also consider using the median value. For categorical data, consider using the 
mode to replace a missing value.

There are situations where you can use the mean of existing values to impute 
missing values but not the value zero, and vice versa. As a first example, sup-
pose that an attribute contains the height in centimeters of a set of persons. In 
this case, the mean could be a reasonable imputation, whereas 0 suffers from:

1. It is an invalid value (nobody has height 0).
2. It will skew statistical quantities such as the mean and variance.

You might be tempted to use the mean instead of 0 when the minimum 
allowable value is a positive number, but use caution when working with highly 
imbalanced data sets. As a second example, consider a small community of 50 
residents in which:

1. Forty-five people have an average annual income of US$ 50,000.
2. Four other residents have an annual income of US$ 10,000,000.
3. One resident has an unknown annual income.
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Although the preceding example might seem contrived, it is likely that the 
median income is preferable to the mean income, and certainly better than 
imputing a value of 0.

As a third example, suppose that a company generates weekly sales reports 
for multiple office branches, and a new office has been opened, but has yet 
to make any sales. In this case, the use of the mean to impute missing values 
for this branch would produce fictitious results. Therefore, it makes sense to 
use the value 0 for all sales-related quantities, which will accurately reflect the 
sales-related status of the new branch.

DEALING WITH IMBALANCED DATASETS

Imbalanced datasets contain at least once class that has many more val-
ues than another class in the dataset. For example, if class A has 99% of 
the data and class B has 1%, which classification algorithm would you use? 
Unfortunately, classification algorithms do not work so well with this type of 
imbalanced dataset. 

Imbalanced classification involves dealing with imbalanced datasets, and 
the following list contains several well-known techniques:

• Random resampling rebalances the class distribution.
• Random undersampling deletes examples from the majority class.
• Random oversampling duplicates data in the minority class. 
• SMOTE (synthetic minority oversampling technique) to calculate missing 

values.

Random resampling rebalances the class distribution by resampling the 
data space.

Alternatively, the random undersampling technique removes samples that 
belong to the majority class from the dataset, and involves the following:

• randomly remove samples from majority class
• can be performed with or without replacement
• alleviates imbalance in the dataset
• may increase the variance of the classifier
• may discard useful or important samples

However, random undersampling does not work so well with extremely 
unbalanced datasets, such as a 99% and 1% split into two classes. Moreover, 
undersampling can result in losing information that is useful for a model.

Random oversampling generates new samples from a minority class: this 
technique duplicates examples from the minority class.

Another option to consider is the Python package imbalanced-learn 
in the scikit-learn-contrib project. This project provides various 
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re-sampling techniques for datasets that exhibit class imbalance. More details 
are available here:

https://github.com/scikit-learn-contrib/imbalanced-learn
Another well-known technique is called SMOTE, which involves data aug-

mentation (i.e., synthesizing new data samples). SMOTE was initially developed 
by means of the kNN algorithm (other options are available), and it can be 
an effective technique for handling imbalanced classes. SMOTE is discussed in 
more detail in the next section.

WHAT IS SMOTE?

SMOTE (synthetic minority oversampling technique) is a technique for 
synthesizing new samples for a dataset. This technique is based on linear 
interpolation:

Step 1: Select two samples that are close in the feature space.
Step 2: Draw a line between the two samples in the feature space.
Step 3: Draw a new sample at a point on the line in Step 2.

A more detailed explanation of the SMOTE algorithm is as follows:

• Step 1: Select a random sample “a” from the minority class.
• Step 2: Find k nearest neighbors for that example.
• Step 3: Select a random neighbor “b” from the nearest neighbors.
• Step 4: Create a line L that connects “a” and “b.”
• Step 5: Randomly select one or more points “c” on line L.

If need be, you can repeat this process for the other (k−1) nearest neigh-
bors in order to distribute the synthetic values more evenly among the nearest 
neighbors.

SMOTE Extensions

The initial SMOTE algorithm is based on the kNN classification algorithm, 
which has been extended in various ways, such as replacing kNN with SVM. A 
list of SMOTE extensions is as follows:

• selective synthetic sample generation
• borderline-SMOTE (kNN)
• borderline-SMOTE (SVM)
• adaptive synthetic sampling (ADASYN)

Perform an Internet search for more details about these algorithms, and 
also navigate to the following URL:

https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_
data_analysis
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THE BIAS-VARIANCE TRADEOFF

This section is presented from the viewpoint of machine learning, but the 
concepts of bias and variance are highly relevant outside of machine learning, 
so it is probably still worthwhile to read this section as well as the previous 
section.

Bias in machine learning can be due to an error from wrong assumptions 
in a learning algorithm. High bias might cause an algorithm to miss relevant 
relations between features and target outputs (underfitting). Prediction bias 
can occur because of “noisy” data, an incomplete feature set, or a biased train-
ing sample.

Error due to bias is the difference between the expected (or average) pre-
diction of your model and the correct value that you want to predict. Repeat 
the model building process multiple times, and gather new data each time, 
and also perform an analysis to produce a new model. The resulting models 
have a range of predictions because the underlying datasets have a degree of 
randomness. Bias measures the extent to the predictions for these models are 
from the correct value.

Variance in machine learning is the expected value of the squared devia-
tion from the mean. High variance can/might cause an algorithm to model 
the random noise in the training data, rather than the intended outputs (also 
referred to as “overfitting”). Moreover, adding parameters to a model increases 
its complexity, increases the variance, and decreases the bias. 

The point to remember: dealing with bias and variance involves dealing 
with underfitting and overfitting. 

Error due to variance is the variability of a model prediction for a given 
data point. As before, repeat the entire model building process, and the vari-
ance is the extent to which predictions for a given point vary among different 
“instances” of the model.

If you have worked with datasets and performed data analysis, you 
already know that finding well-balanced samples can be difficult or highly 
impractical. Moreover, performing an analysis of the data in a dataset is 
vitally important, yet there is no guarantee that you can produce a dataset 
that is 100% “clean.”

A biased statistic is a statistic that is systematically different from the entity 
in the population that is being estimated. In more casual terminology, if a data 
sample “favors” or “leans” toward one aspect of the population, then the sam-
ple has bias. For example, if you prefer movies that are comedies more so than 
any other type of movie, then clearly you are more likely to select a comedy 
instead of a dramatic movie or a science fiction movie. Thus, a frequency graph 
of the movie types in a sample of your movie selections will be more closely 
clustered around comedies.

However, if you have a wide-ranging set of preferences for movies, then 
the corresponding frequency graph will be more varied, and therefore have a 
larger spread of values. 
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As another example, suppose that you have an assignment that involves 
writing a term paper on a controversial subject that has many opposing view-
points. Since you want a bibliography that supports your well-balanced term 
paper that takes into account multiple viewpoints, your bibliography will con-
tain a wide variety of sources. 

In other words, your bibliography will have a larger variance and a smaller 
bias. Contrastingly if most (or all) the references in your bibliography espouses 
the same point of view, then you will have a smaller variance and a larger bias. 
(It is an analogy, so it is not a perfect counterpart to bias-versus-variance).

The bias-variance trade-off can be stated in simple terms: in general, 
reducing the bias in samples can increase the variance, whereas reducing the 
variance tends to increase the bias.

Types of Bias in Data

In addition to the bias-variance trade-off that is discussed in the previous 
section, there are several types of bias, some of which are listed here:

• availability bias
• confirmation bias
• false causality
• sunk cost fallacy
• survivorship bias

Availability bias is akin to making a “rule” based on an exception. For exam-
ple, there is a known link between smoking cigarettes and cancer, but there are 
exceptions. If you find someone who has smoked three packs of cigarettes on 
a daily basis for four decades and is still healthy, can you assert that smoking 
does not lead to cancer?

Confirmation bias refers to the tendency to focus on data that confirms 
their beliefs and simultaneously ignore data that contradicts a belief. 

False causality occurs when you incorrectly assert that the occurrence of a 
particular event causes another event to occur as well. One of the most well-
known examples involves ice cream consumption and violent crime in New 
York during the summer. Since more people eat ice cream in the summer, that 
seems to “cause” more violent crime, which is a false causality. Other factors, 
such as the increase in temperature, may be linked to the increase in crime. 
However, it is important to distinguish between correlation and causality: the 
latter is a much stronger link than the former, and it is also more difficult to 
establish causality instead of correlation.

Sunk cost refers to something (often money) that has been spent or incurred 
that cannot be recouped. A common example pertains to gambling at a casino: 
people fall into the pattern of spending more money in order to recoup a sub-
stantial amount of money that has already been lost. While there are cases in 
which people do recover their money, in many (most?) cases people simply 
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incur an even greater loss because they continue to spend their money. Perhaps 
you have heard of “it is time to cut your losses and walk away.”

Survivorship bias refers to analyzing a particular subset of “positive” data 
while ignoring the “negative” data. This bias occurs in various situations, such 
as being influenced by individuals who recount their rags-to-riches success 
story (“positive” data) while ignoring the fate of the people (which is often a 
very high percentage) who did not succeed (the “negative” data) in a similar 
quest. So, while it is certainly possible for an individual to overcome many 
difficult obstacles in order to succeed, is the success rate one in one thousand 
(or even lower)?

ANALYZING CLASSIFIERS (OPTIONAL)

This section is marked optional because its contents pertain to machine 
learning classifiers, which is not the focus of this book. However, it is still 
worthwhile to glance through the material, or perhaps return to this section 
after you have a basic understanding of machine learning classifiers.

Several well-known techniques are available for analyzing the quality of 
machine learning classifiers. Two techniques are LIME and ANOVA, both of 
which are discussed in the following subsections.

What Is LIME?

LIME is an acronym for local interpretable model-agnostic explanations. 
LIME is a model-agnostic technique that can be used with machine learning 
models. The intuition for this technique is straightforward: make small random 
changes to data samples and then observe the manner in which predictions 
change (or not). The intuition involves changing the output (slightly) and then 
observe what happens to the output.

By way of analogy, consider food inspectors who test for bacteria in truck-
loads of perishable food. Clearly it is infeasible to test every food item in a 
truck (or a train car), so inspectors perform “spot checks” that involve testing 
randomly selected items. In an analogous fashion, LIME makes small changes 
to input data in random locations and then analyzes the changes in the associ-
ated output values.

However, there are two caveats to keep in mind when you use LIME with 
input data for a given model:

1. The actual changes to input values are model-specific.
2. This technique works on input that is interpretable.

Examples of interpretable input include machine learning classifiers (such 
as trees and random forests) and NLP techniques such as BoW. Noninterpretable 
input involves “dense” data, such as a word embedding (which is a vector of 
floating point numbers).
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You could also substitute your model with another model that involves 
interpretable data, but then you need to evaluate how accurate the approxima-
tion is to the original model.

What Is ANOVA?

ANOVA is an acronym for analysis of variance, which attempts to analyze the 
differences among the mean values of a sample that’s taken from a population. 
ANOVA enables you to test if multiple mean values are equal. More impor-
tantly, ANOVA can assist in reducing Type I (false positive) errors and Type II 
errors (false negative) errors. For example, suppose that person A is diagnosed 
with cancer and person B is diagnosed as healthy, and that both diagnoses are 
incorrect. Then the result for person A is a false positive whereas the result for 
person B is a false negative. In general, a test result of false positive is much 
preferable to a test result of false negative.

ANOVA pertains to the design of experiments and hypothesis testing, which 
can produce meaningful results in various situations. For example, suppose 
that a dataset contains a feature that can be partitioned into several “reason-
ably” homogenous groups. Next, analyze the variance in each group and per-
form comparisons with the goal of determining different sources of variance 
for the values of a given feature. For more information about ANOVA, navigate 
to the following link:

https://en.wikipedia.org/wiki/Analysis_of_variance

SUMMARY

This chapter started with an explanation of datasets, a description of data 
wrangling, and details regarding various types of data. Then you learned about 
techniques for scaling numeric data, such as normalization and standardiza-
tion. You saw how to convert categorical data to numeric values and how to 
handle dates and currency.

Then you learned how to work with outliers, anomalies, and missing data, 
along with various techniques for handling these scenarios. You also learned 
about imbalanced data and evaluating the use of SMOTE to deal with imbal-
anced classes in a dataset. In addition, you learned about the bias-variance 
tradeoff and various types of statistical bias. Finally, you learned about classi-
fiers using the techniques LIME and ANOVA. 
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CHAPTER 3
IntroductIon to PandaS

This chapter introduces the Pandas library and contains various code 
samples that illustrate some useful Pandas features. As you will see, 
the title of each section clearly indicates its contents, so you can easily 

scan this chapter for those sections that contain material that is new to you. 
This approach will help you make efficient use of your time when you read the 
contents of this chapter.

The first part of this chapter contains a brief introduction to Pandas, fol-
lowed by code samples that illustrate how to define Pandas DataFrames and 
also display their attributes. Please keep in mind that this chapter is devoted to 
Pandas DataFrames. There is one code block that illustrates how to define a 
Pandas Series, and if you want to learn more about this Pandas Series, you 
can search online for more information.

The second part of this chapter discusses various types of data frames that 
you can create, such as numeric and Boolean Data frames. In addition, you 
will see examples of creating Data frames with NumPy functions and random 
numbers. You will also see examples of converting between Python dictionar-
ies and JSON-based data, and also how to create a Pandas DataFrame from 
JSON-based data. 

WHAT IS PANDAS? 

Pandas is a Python package that is compatible with other Python pack-
ages, such as NumPy, Matplotlib, and so forth. Install Pandas by opening a 
command shell and invoking this command for Python 3.x:

pip3 install pandas

In many ways the Pandas package has the semantics of a spreadsheet, 
and it also works with various file types, such as xsl, xml, html, csv files. 
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Pandas provides a data type called a Data frame (similar to a Python dic-
tionary) with extremely powerful functionality (similar to the functionality of 
a spreadsheet). 

Pandas DataFrames

In simplified terms, a Pandas DataFrame is a two-dimensional data 
structure, and it is convenient to think of the data structure in terms of rows 
and columns. Data frames can be labeled (rows as well as columns), and 
the columns can contain different data types. The source of the dataset can 
be a data file, database tables, web service, and so forth. Pandas DataFrame  
features include:

• data frame methods
• data frame statistics
• grouping, pivoting, and reshaping
• handle missing data
• join data frames

Pandas Operations: In-place or Not?

In Pandas makes a copy of the underlying data frame before performing 
an operation on that data frame. Although you can specify inplace=True, 
Pandas might still create a copy of the data frame. Such behavior can have 
an impact in code that performs method chaining, which involves executing a 
“chain” of functions that are connected via a “.”, without the need to initialize 
intermediate variables.

More details regarding Pandas in-place operations can be found here:
https://stackoverflow.com/questions/69969482/why-arent-pandas- 

operations-in-place

Data Frames and Data Cleaning Tasks

The specific tasks that you need to perform depend on the structure and 
contents of a dataset. In general, you will perform a workflow with the following 
steps (not necessarily always in this order), all of which can be performed with 
a Pandas DataFrame:

• Read data into a data frame.
• Display top of data frame.
• Display column data types.
• Display nonmissing values.
• Replace NA with a value.
• Iterate through the columns.
• Compute statistics for each column
• Find missing values.
• Total missing values.
• Calculate percentage of missing values
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• Sort table values.
• Print summary information.
• Find columns with > 50% missing values
• Rename columns.

A PANDAS DATAFRAME  EXAMPLE

Listing 3.1 displays the contents of pandas_df.py that illustrates how to 
define several Pandas DataFrames and display their contents. 

LISTING 3.1: pandas_df.py

import pandas as pd
import numpy as np

myvector1 = np.array([1,2,3,4,5])
print("myvector1:")
print(myvector1)
print()

mydf1 = pd.Data frame(myvector1)
print("mydf1:")
print(mydf1)
print()

myvector2 = np.array([i for i in range(1,6)])
print("myvector2:")
print(myvector2)
print()

mydf2 = pd.Data frame(myvector2)
print("mydf2:")
print(mydf2)
print()

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])
print("myarray:")
print(myarray)
print()

mydf3 = pd.Data frame(myarray)
print("mydf3:")
print(mydf3)
print()

Listing 3.1 starts with a standard import statement for Pandas and NumPy, 
followed by the definition of two one-dimensional NumPy arrays and a two-
dimensional NumPy array. The NumPy syntax ought to be familiar to you (many 
basic tutorials are available online). Each NumPy variable is followed by a cor-
responding Pandas DataFrame mydf1, mydf2, and mydf3. Now launch the 

DDPP.indb   59 13-04-2022   10:31:44



60 • Dealing with Data Pocket Primer 

code in Listing 3.1 and you will see the following output, and you can compare 
the NumPy arrays with the Pandas DataFrames:

myvector1:
[1 2 3 4 5]

mydf1:
   0
0  1
1  2
2  3
3  4
4  5

myvector2:
[1 2 3 4 5]

mydf2:
   0
0  1
1  2
2  3
3  4
4  5

myarray:
[[  10   30   20]
 [  50   40   60]
 [1000 2000 3000]]

mydf3:
      0     1     2
0    10    30    20
1    50    40    60
2  1000  2000  3000

By contrast, the following code block illustrates how to define a Pandas 
Series:

names = pd.Series(['SF', 'San Jose', 'Sacramento'])
sizes = pd.Series([852469, 1015785, 485199])
df = pd.Data frame({ 'Cities': names, 'Size': sizes })
print(df)

Create a Python file with the preceding code (along with the required 
import statement), and when you launch that code you will see the following 
output:

    City name    sizes
0          SF   852469
1    San Jose  1015785
2  Sacramento   485199
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DESCRIBING A PANDAS DATA FRAME 

Listing 3.2 displays the contents of pandas_df_describe.py that illus-
trates how to define a Pandas DataFrame that contains a 3×3 NumPy array 
of integer values, where the rows and columns of the data frame are labeled. 
Various other aspects of the data frame are also displayed.

LISTING 3.2: pandas_df_describe.py

import numpy as np
import pandas as pd

myarray = np.array([[10,30,20], [50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']
colnames = ['January', 'February', 'March']

mydf = pd.Data frame(myarray, index=rownames, columns=colnames)
print("contents of df:")
print(mydf)
print()

print("contents of January:")
print(mydf['January'])
print()

print("Number of Rows:")
print(mydf.shape[0])
print()

print("Number of Columns:")
print(mydf.shape[1])
print()

print("Number of Rows and Columns:")
print(mydf.sh
ape)
print()

print("Column Names:")
print(mydf.columns)
print()

print("Column types:")
print(mydf.dtypes)
print()

print("Description:")
print(mydf.describe())
print()
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Listing 3.2 starts with two standard import statements followed by the 
variable myarray, which is a 3×3 NumPy array of numbers. The variables row-
names and colnames provide names for the rows and columns, respectively, 
of the Pandas DataFrame mydf, which is initialized as a Pandas DataFrame 
with the specified data source (i.e., myarray).

The first portion of the output below requires a single print() statement 
(which simply displays the contents of mydf). The second portion of the out-
put is generated by invoking the describe() method that is available for any 
NumPy Data frame. The describe() method is very useful: you will see vari-
ous statistical quantities, such as the mean, standard deviation minimum, and 
maximum performed column_wise (not row_wise), along with values for the 
25th, 50th, and 75th percentiles. The output of Listing 3.2 is here:

contents of df: 
         January  February  March
apples        10        30     20
oranges       50        40     60
beer        1000      2000   3000

contents of January:
apples       10
oranges      50
beer       1000
Name: January, dtype: int64

Number of Rows:
3

Number of Columns: 
3

Number of Rows and Columns:
(3, 3)

Column Names:
Index(['January', 'February', 'March'], dtype='object')

Column types:
January     int64
February    int64
March       int64
dtype: object

Description:
           January     February        March
count     3.000000     3.000000     3.000000
mean    353.333333   690.000000  1026.666667
std     560.386771  1134.504297  1709.073823
min      10.000000    30.000000    20.000000
25%      30.000000    35.000000    40.000000
50%      50.000000    40.000000    60.000000
75%     525.000000  1020.000000  1530.000000
max    1000.000000  2000.000000  3000.000000
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PANDAS BOOLEAN DATA FRAMES

Pandas supports Boolean operations on Data frames, such as the logi-
cal or, the logical and, and the logical negation of a pair of Data frames. 
Listing 3.3 displays the contents of pandas_boolean_df.py that illustrates 
how to define a Pandas DataFrame in which rows and columns are Boolean 
values.

LISTING 3.3: pandas_boolean_df.py

import pandas as pd

df1 = pd.Data frame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=bool)
df2 = pd.Data frame({'a': [0, 1, 1], 'b': [1, 1, 0] }, dtype=bool)

print("df1 & df2:")
print(df1 & df2)

print("df1 | df2:")
print(df1 | df2)

print("df1 ^ df2:")
print(df1 ^ df2)

Listing 3.3 initializes the Data frames df1 and df2, and then computes 
df1 & df2, df1 | df2, df1 ^ df2, which represent the logical AND, the logi-
cal OR, and the logical negation, respectively, of df1 and df2. The output from 
launching the code in Listing 3.3 is here:

df1 & df2:
       a      b
0  False  False
1  False   True
2   True  False
df1 | df2:
      a     b
0  True  True
1  True  True
2  True  True
df1 ^ df2:
       a      b
0   True   True
1   True  False
2  False   True

Transposing a Pandas Data Frame

The T attribute (as well as the transpose function) enables you to generate 
the transpose of a Pandas DataFrame, similar to a NumPy ndarray.

For example, the following code snippet defines a Pandas DataFrame 
df1 and then displays the transpose of df1:
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df1 = pd.Data frame({'a': [1, 0, 1], 'b': [0, 1, 1] }, dtype=int)

print("df1.T:")
print(df1.T)

The output is here: 

df1.T:
   0  1  2
a  1  0  1
b  0  1  1

The following code snippet defines Pandas DataFrames df1 and df2 
and then displays their sum:

df1 = pd.Data frame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=int)
df2 = pd.Data frame({'a' : [3, 3, 3], 'b' : [5, 5, 5] }, dtype=int)

print("df1 + df2:")
print(df1 + df2)

The output is here: 

df1 + df2:
   a  b
0  4  5
1  3  6
2  4  6

PANDAS DATA FRAMES AND RANDOM NUMBERS 

Listing 3.4 displays the contents of pandas_random_df.py that illustrates 
how to create a Pandas DataFrame with random numbers.

LISTING 3.4: pandas_random_df.py

import pandas as pd
import numpy as np

df = pd.Data frame(np.random.randint(1, 5, size=(5, 2)), 
columns=['a','b'])
df = df.append(df.agg(['sum', 'mean']))

print("Contents of data frame:")
print(df)

Listing 3.4 defines the Pandas DataFrame df that consists of 5 rows and 
2 columns that contain random integers between 1 and 5. Notice that the col-
umns of df are labeled “a” and “b.” In addition, the next code snippet appends 
two rows consisting of the sum and the mean of the numbers in both columns. 
The output of Listing 3.4 is here:
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a    b
0      1.0  2.0
1      1.0  1.0
2      4.0  3.0
3      3.0  1.0
4      1.0  2.0
sum   10.0  9.0
mean   2.0  1.8

Listing 3.5 displays the contents of pandas_combine_df.py that illus-
trates how to define a Pandas DataFrame that is based on two NumPy arrays 
of numbers.

LISTING 3.5: pandas_combine_df.py

import pandas as pd
import numpy as np

df = pd.Data frame({'foo1' : np.random.randn(5),
                    'foo2' : np.random.randn(5)})

print("contents of df:")
print(df)

print("contents of foo1:")
print(df.foo1)

print("contents of foo2:")
print(df.foo2)

Listing 3.5 defines the Pandas DataFrame df that consists of 5 rows and 
2 columns (labeled “foo1” and “foo2”) of random real numbers between 0 
and 5. The next portion of Listing 3.5 displays the contents of df and foo1. 
The output of Listing 3.5 is here:

contents of df:
       foo1      foo2
0  0.274680 _0.848669
1 _0.399771 _0.814679
2  0.454443 _0.363392
3  0.473753  0.550849
4 _0.211783 _0.015014
contents of foo1:
0    0.256773
1    1.204322
2    1.040515
3   _0.518414
4    0.634141
Name: foo1, dtype: float64
contents of foo2:
0   _2.506550
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1   _0.896516
2   _0.222923
3    0.934574
4    0.527033
Name: foo2, dtype: float64

CONVERTING CATEGORICAL DATA TO NUMERIC DATA

One common task in machine learning involves converting a feature con-
taining character data into a feature that contains numeric data.

Listing 3.6 displays the contents of sometext.tsv that contains labeled 
data (spam or ham), which is used in the code sample displayed in Listing 3.7.

LISTING 3.6: sometext.tsv

type    text
ham     Available only for today
ham     I'm joking with you
spam    Free entry in 2 a wkly comp
ham     U dun say so early hor
ham     I don't think he goes to usf
spam    FreeMsg Hey there
ham     my brother is not sick
ham     As per your request Melle
spam    WINNER!! As a valued customer

Listing 3.7 displays the contents of cat2numeric.py that illustrates how 
to replace a text field with a corresponding numeric field.

LISTING 3.7: cat2numeric.py

import pandas as pd
import numpy as np

df = pd.read_csv('sometext.tsv', delimiter='\t')

print("=> First five rows (before):")
print(df.head(5))
print("-------------------------")

# map ham/spam to 0/1 values:
df['type'] = df['type'].map( {'ham':0 , 'spam':1} )

print("=> First five rows (after):")
print(df.head(5))
print("-------------------------")

Listing 3.7 initializes the data frame df with the contents of the CSV file 
sometext.tsv, and then displays the contents of the first five rows by invok-
ing df.head(5), which is also the default number of rows to display. The next 
code snippet in Listing 3.7 invokes the map() method to replace occurrences 
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of ham with 0 and replace occurrences of spam with 1 in the column labeled 
type, as shown here:

df['type'] = df['type'].map( {'ham':0 , 'spam':1} )

The last portion of Listing 3.7 invokes the head() method again to display 
the first five rows of the dataset after having renamed the contents of the col-
umn type. Launch the code in Listing 3.7 and you will see the following output:

=> First five rows (before):
   type                          text
0   ham     Available only for today 
1   ham           I'm joking with you
2  spam  Free entry in 2 a wkly comp 
3   ham        U dun say so early hor
4   ham  I don't think he goes to usf
-------------------------
=> First five rows (after):
   type                          text
0     0     Available only for today 
1     0           I'm joking with you
2     1  Free entry in 2 a wkly comp 
3     0        U dun say so early hor
4     0  I don't think he goes to usf
-------------------------

As another example, Listing 3.8 displays the contents of shirts.csv and 
Listing 3.9 displays the contents of shirts.py that illustrates four techniques 
for converting categorical data to numeric data.

LISTING 3.8: shirts.csv

type,ssize
shirt,xxlarge
shirt,xxlarge
shirt,xlarge
shirt,xlarge
shirt,xlarge
shirt,large
shirt,medium
shirt,small
shirt,small
shirt,xsmall
shirt,xsmall
shirt,xsmall

LISTING 3.9: shirts.py

import pandas as pd

shirts = pd.read_csv("shirts.csv")
print("shirts before:")
print(shirts)
print()
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# TECHNIQUE #1:
#shirts.loc[shirts['ssize']=='xxlarge','size'] = 4
#shirts.loc[shirts['ssize']=='xlarge', 'size'] = 4
#shirts.loc[shirts['ssize']=='large',  'size'] = 3
#shirts.loc[shirts['ssize']=='medium', 'size'] = 2
#shirts.loc[shirts['ssize']=='small',  'size'] = 1
#shirts.loc[shirts['ssize']=='xsmall', 'size'] = 1

# TECHNIQUE #2:
#shirts['ssize'].replace('xxlarge', 4, inplace=True)
#shirts['ssize'].replace('xlarge',  4, inplace=True)
#shirts['ssize'].replace('large',   3, inplace=True)
#shirts['ssize'].replace('medium',  2, inplace=True)
#shirts['ssize'].replace('small',   1, inplace=True)
#shirts['ssize'].replace('xsmall',  1, inplace=True)

# TECHNIQUE #3:
#shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 'xlarge':4, 
'large':3, 'medium':2, 'small':1, 'xsmall':1}.get)

# TECHNIQUE #4:
shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)
shirts['ssize'] = shirts['ssize'].replace(regex='large',  value=3)
shirts['ssize'] = shirts['ssize'].replace(regex='medium', value=2)
shirts['ssize'] = shirts['ssize'].replace(regex='small',  value=1)

print("shirts after:")
print(shirts)

Listing 3.9 starts with a code block of six statements that uses direct com-
parison with strings to make numeric replacements. For example, the fol-
lowing code snippet replaces all occurrences of the string xxlarge with the 
value 4:

shirts.loc[shirts['ssize']=='xxlarge','size'] = 4

The second code block consists of six statements that use the replace() 
method to perform the same updates, an example of which is shown here:

shirts['ssize'].replace('xxlarge', 4, inplace=True)

The third code block consists of a single statement that use the apply() 
method to perform the same updates, as shown here:

shirts['ssize'] = shirts['ssize'].apply({'xxlarge':4, 
'xlarge':4, 'large':3, 'medium':2, 'small':1, 'xsmall':1}.
get)

The fourth code block consists of four statements that use regular expres-
sions to perform the same updates, an example of which is shown here:

shirts['ssize'] = shirts['ssize'].replace(regex='xlarge', value=4)
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Since the preceding code snippet matches xxlarge as well as xlarge, we 
only need four statements instead of six statements. If you are unfamiliar with 
regular expressions, you can find articles online that contains an assortment of 
regular expressions. Now launch the code in Listing 3.9 and you will see the 
following output:

shirts before
     type     size
0   shirt  xxlarge
1   shirt  xxlarge
2   shirt   xlarge
3   shirt   xlarge
4   shirt   xlarge
5   shirt    large
6   shirt   medium
7   shirt    small
8   shirt    small
9   shirt   xsmall
10  shirt   xsmall
11  shirt   xsmall

shirts after:
     type  size
0   shirt     4
1   shirt     4
2   shirt     4
3   shirt     4
4   shirt     4
5   shirt     3
6   shirt     2
7   shirt     1
8   shirt     1
9   shirt     1
10  shirt     1
11  shirt     1

MERGING AND SPLITTING COLUMNS IN PANDAS

Listing 3.10 displays the contents of employees.csv and Listing 3.11 dis-
plays the contents of emp_merge_split.py that illustrates how to merge col-
umns and split columns of a CSV file.

LISTING 3.10: employees.csv

name,year,month
Jane-Smith,2015,Aug
Dave-Smith,2020,Jan
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Jane-Jones,2018,Dec
Jane-Stone,2017,Feb
Dave-Stone,2014,Apr
Mark-Aster,,Oct
Jane-Jones,NaN,Jun

LISTING 3.11: emp_merge_split.py

import pandas as pd

emps = pd.read_csv("employees.csv")
print("emps:")
print(emps)
print()

emps['year']  = emps['year'].astype(str)
emps['month'] = emps['month'].astype(str)

# separate column for first name and for last name:
emps['fname'],emps['lname'] = emps['name'].str.split("-",1).str

# concatenate year and month with a "#" symbol:
emps['hdate1'] = emps['year'].astype(str)+"#"+emps['month'].astype(str)

# concatenate year and month with a "-" symbol:
emps['hdate2'] = emps[['year','month']].agg('-'.join, axis=1)

print(emps)
print()

Listing 3.11 initializes the data frame df with the contents of the CSV file 
employees.csv, and then displays the contents of the data frame. The next 
pair of code snippets invoke the astype() method to convert the contents of 
the year and month columns to strings.

The next code snippet in Listing 3.11 uses the split() method to split the 
name column into the columns fname and lname that contain the first name 
and last name, respectively, of each employee’s name:

emps['fname'],emps['lname'] = emps['name'].str.split("-",1).str

The next code snippet concatenates the contents of the year and month 
string with a “#” character to create a new column called hdate1, as shown 
here:

emps['hdate1'] = emps['year'].astype(str)+"#"+emps['month'].astype(str)

The final code snippet concatenates the contents of the year and 
month string with a “-” to create a new column called hdate2, as shown 
here:

emps['hdate2'] = emps[['year','month']].agg('-'.join, axis=1)
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Now launch the code in Listing 3.11 and you will see the following output:
emps:

         name    year month
0  Jane-Smith  2015.0   Aug
1  Dave-Smith  2020.0   Jan
2  Jane-Jones  2018.0   Dec
3  Jane-Stone  2017.0   Feb
4  Dave-Stone  2014.0   Apr
5  Mark-Aster     NaN   Oct
6  Jane-Jones     NaN   Jun

         name    year month fname  lname      hdate1      hdate2
0  Jane-Smith  2015.0   Aug  Jane  Smith  2015.0#Aug  2015.0-Aug
1  Dave-Smith  2020.0   Jan  Dave  Smith  2020.0#Jan  2020.0-Jan
2  Jane-Jones  2018.0   Dec  Jane  Jones  2018.0#Dec  2018.0-Dec
3  Jane-Stone  2017.0   Feb  Jane  Stone  2017.0#Feb  2017.0-Feb
4  Dave-Stone  2014.0   Apr  Dave  Stone  2014.0#Apr  2014.0-Apr
5  Mark-Aster     nan   Oct  Mark  Aster     nan#Oct     nan-Oct
6  Jane-Jones     nan   Jun  Jane  Jones     nan#Jun     nan-Jun

One other detail regarding the following code snippet:

#emps['fname'],emps['lname'] = emps['name'].str.split("-",1).str

The following deprecation message is displayed:

#FutureWarning: Columnar iteration over characters 
#will be deprecated in future releases.

COMBINING PANDAS DATAFRAMES

Pandas supports the concat() method in Data frames in order to concat-
enate Data frames. Listing 3.12 displays the contents of concat_frames.
py that illustrates how to combine two Pandas DataFrames.

LISTING 3.12: concat_frames.py

import pandas as pd

can_weather = pd.Data frame({
    "city": ["Vancouver","Toronto","Montreal"],
    "temperature": [72,65,50],
    "humidity": [40, 20, 25]
})

us_weather = pd.Data frame({
    "city": ["SF","Chicago","LA"],
    "temperature": [60,40,85],
    "humidity": [30, 15, 55]
})

df = pd.concat([can_weather, us_weather])
print(df)
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The first line in Listing 3.12 is an import statement, followed by the defi-
nition of the Pandas DataFrames can_weather and us_weather that 
contain weather-related information for cities in Canada and the United States, 
respectively. The Pandas DataFrame df is the concatenation of can_weather 
and us_weather. The output from Listing 3.12 is here:

0  Vancouver        40           72
1    Toronto        20           65
2   Montreal        25           50
0         SF        30           60
1    Chicago        15           40
2         LA        55           85

DATA MANIPULATION WITH PANDAS DATAFRAMES

As a simple example, suppose that we have a two-person company that 
keeps track of income and expenses on a quarterly basis, and we want to calcu-
late the profit/loss for each quarter, and also the overall profit/loss.

Listing 3.13 displays the contents of pandas_quarterly_df1.py that illus-
trates how to define a Pandas DataFrame consisting of income-related values.

LISTING 3.13: pandas_quarterly_df1.py

import pandas as pd

summary = {
    'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],
    'Cost':    [23500, 34000, 57000, 32000],
    'Revenue': [40000, 40000, 40000, 40000]
}

df = pd.Data frame(summary)

print("Entire Dataset:\n",df)
print("Quarter:\n",df.Quarter)
print("Cost:\n",df.Cost)
print("Revenue:\n",df.Revenue)

Listing 3.13 defines the variable summary that contains hard-coded quar-
terly information about cost and revenue for our two-person company. In gen-
eral these hard-coded values would be replaced by data from another source 
(such as a CSV file), so think of this code sample as a simple way to illustrate 
some of the functionality that is available in Pandas DataFrames.

The variable df is a Pandas DataFrame based on the data in the  summary 
variable. The three print() statements display the quarters, the cost per 
quarter, and the revenue per quarter. The output from Listing 3.13 is here:

Entire Dataset:
     Cost Quarter  Revenue
0  23500      Q1    40000
1  34000      Q2    60000
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2  57000      Q3    50000
3  32000      Q4    30000
Quarter:
0    Q1
1    Q2
2    Q3
3    Q4
Name: Quarter, dtype: object
Cost:
0    23500
1    34000
2    57000
3    32000
Name: Cost, dtype: int64
Revenue:
0    40000
1    60000
2    50000
3    30000
Name: Revenue, dtype: int64

PANDAS DATAFRAMES AND CSV FILES

The code samples in several earlier sections contain hard-coded data inside 
the Python scripts. However, it is also very common to read data from a CSV 
file. You can use the Python csv.reader() function, the NumPy loadtxt() 
function, or the Pandas function read_csv() function (shown in this section) 
to read the contents of CSV files.

Listing 3.14 displays the contents of the CSV file weather_data.csv and 
Listing 3.15 displays the contents of weather_data.py that illustrates how to 
read the CSV weather_data.csv. 

LISTING 3.14: weather_data.csv

day,temperature,windspeed,event
7/1/2021,42,16,Rain
7/2/2021,45,3,Sunny
7/3/2021,78,12,Snow
7/4/2021,74,9,Snow
7/5/2021,42,24,Rain
7/6/2021,51,32,Sunny

LISTING 3.15: weather_data.py

import pandas as pd

df = pd.read_csv("weather_data.csv")

print(df)
print(df.shape)  # rows, columns
print(df.head()) # df.head(3)
print(df.tail())
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print(df[1:3])
print(df.columns)
print(type(df['day']))
print(df[['day','temperature']])
print(df['temperature'].max())

Listing 3.15 invokes the Pandas read_csv() function to read the contents 
of the CSV file weather_data.csv, followed by a set of Python print() 
statements that display various portions of the CSV file. The output from 
Listing 3.15 is here:

        day  temperature  windspeed     event
0  7/1/2021           42         16   Rain   
1  7/2/2021           45          3  Sunny   
2  7/3/2021           78         12   Snow   
3  7/4/2021           74          9  Snow    
4  7/5/2021           42         24   Rain   
5  7/6/2021           51         32    Sunny 
(6, 4)
        day  temperature  windspeed     event
0  7/1/2021           42         16   Rain   
1  7/2/2021           45          3  Sunny   
2  7/3/2021           78         12   Snow   
3  7/4/2021           74          9  Snow    
4  7/5/2021           42         24   Rain   
        day  temperature  windspeed     event
1  7/2/2021           45          3  Sunny   
2  7/3/2021           78         12   Snow   
3  7/4/2021           74          9  Snow    
4  7/5/2021           42         24   Rain   
5  7/6/2021           51         32    Sunny 
        day  temperature  windspeed     event
1  7/2/2021           45          3  Sunny   
2  7/3/2021           78         12   Snow   
Index(['day', 'temperature', 'windspeed', 'event'], dtype='object')
<class 'pandas.core.series.Series'>
        day  temperature
0  7/1/2021           42
1  7/2/2021           45
2  7/3/2021           78
3  7/4/2021           74
4  7/5/2021           42
5  7/6/2021           51
78

In some situations you might need to apply Boolean conditional logic to 
“filter out” some rows of data, based on a conditional condition that’s applied 
to a column value. 

Listing 3.16 displays the contents of the CSV file people.csv and Listing 
3.17 displays the contents of people_pandas.py that illustrates how to define 
a Pandas DataFrame that reads the CSV file and manipulates the data.
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LISTING 3.16: people.csv
fname,lname,age,gender,country
john,smith,30,m,usa
jane,smith,31,f,france
jack,jones,32,m,france
dave,stone,33,m,italy
sara,stein,34,f,germany
eddy,bower,35,m,spain

LISTING 3.17: people_pandas.py

import pandas as pd

df = pd.read_csv('people.csv')
df.info()
print('fname:')
print(df['fname'])
print('____________')
print('age over 33:')
print(df['age'] > 33)
print('____________')
print('age over 33:')
myfilter = df['age'] >  33
print(df[myfilter])

Listing 3.17 populates the Pandas DataFrame df with the contents of 
the CSV file people.csv. The next portion of Listing 3.17 displays the struc-
ture of df, followed by the first names of all the people. The next portion 
of Listing 3.17 displays a tabular list of six rows containing either “True” or 
“False” depending on whether a person is over 33 or at most 33, respectively. 
The final portion of Listing 3.17 displays a tabular list of two rows containing 
all the details of the people who are over 33. The output from Listing 3.17 
is here:

myfilter = df['age'] >  33
<class 'pandas.core.frame.Data frame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 5 columns):
fname      6 non_null object
lname      6 non_null object
age        6 non_null int64
gender     6 non_null object
country    6 non_null object
dtypes: int64(1), object(4)
memory usage: 320.0+ bytes
fname:
0    john
1    jane
2    jack
3    dave
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4    sara
5    eddy
Name: fname, dtype: object
____________
age over 33:
0    False
1    False
2    False
3    False
4     True
5     True
Name: age, dtype: bool
____________
age over 33:
  fname  lname  age gender country
4  sara  stein   34      f  france
5  eddy  bower   35      m  france

Useful Options for the Pandas read_csv() Function

Skip the initial header information contained in the first row with this code 
snippet:

df = pd.read_csv("data.csv", header=None)

The following code snippet shows you how to save a Pandas DataFrame 
to a CSV file without including the indices:

df.to_csv("data.csv", sep=",", index=False)

If need be, you can remove the first line immediately following the header 
row with this code snippet:

my_dataset = pd.read_csv("dataset.csv", skiprows=1, low_memory=False)

Skip the first three rows of a CSV file:

df = pd.read_csv("data.csv", skiprows=3, header=None)

Skip a range of rows that are specified by index:

df = pd.read_csv("data.csv", skiprows=[0,2])

Reading Selected Rows From CSV Files

You have seen Pandas-based examples of reading the entire contents of 
CSV files into a Pandas DataFrame, and then selecting subsets of those rows 
for additional processing. In this section, you will see how to read portions of 
CSV files, which eliminates the need to drop redundant rows from Pandas 
DataFrames. 

This technique involves reading portions of CSV files by specifying the 
chunksize parameter. This is a useful method for large datasets: Pandas will 
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process the dataset in sequential chunks without reading the entire file into 
memory. Although the CSV dataset in this example is very small, you now know 
how to specify this parameter.

Listing 3.18 displays the contents of fruits.csv that is referenced in 
Listing 3.19 that retrieves a subset of rows from fruits.csv.

LISTING 3.18: fruits.csv

name,month,day
avocado,Aug,13
persimmon,Jul,28
apples,Sept,25
oranges,Aug,30
bananas,Dec,20
cantelope,Nov,18

Listing 3.19 displays the contents of pandas_csv1.py that illustrates how 
to read a subset of rows from a CSV file based on some conditional logic.

LISTING 3.19: pandas_csv1.py

import pandas as pd

csv_file="fruits.csv"

df1 = pd.read_csv(csv_file)
print("df1 set of rows:")
print(df1)
print()

df1 = pd.read_csv(csv_file, chunksize=10000000)
df2 = pd.concat((item.query("name == 'oranges'") for item 
in df1), ignore_index=True)
print("df2:")
print(df2)
print()

Listing 3.19 initialized the string variable csv_file with the value of 
fruits.csv, populates the Pandas DataFrame df1 with the contents of 
fruits.csv, and then displays the contents of df1. 

The next portion of Listing 3.19 initializes the Pandas DataFrame df2 
with the subset of rows in df1 whose name attribute equals oranges. Launch 
the code in Listing 3.19 and you will see the following output:

df1 set of rows:
        name month  day
0    avocado   Aug   13
1  persimmon   Jul   28
2     apples  Sept   25
3    oranges   Aug   30
4    bananas   Dec   20
5  cantelope   Nov   18
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df2 rows with oranges:
      name month  day
0  oranges   Aug   30

Listing 3.20 displays the contents of pandas_schema1.py that illustrates 
how to read a subset of rows from a CSV file based on some conditional logic.

LISTING 3.20: pandas_schema1.py

import pandas as pd

csv_file="emp_ages.csv"

schema = { "age": int }

df1 = pd.read_csv(csv_file, dtype=schema, chunksize=10000000)
df2 = pd.concat((item.query("'age' >= 45") for item in 
df1), ignore_index=True)

print("df2 ages at least 45:")
print(df2)

Listing 3.20 initializes the string variable csv_file with the value   
emp_ages.csv and then initializes the string variable schema with a JSON-
based string. The next code snippet initializes the Pandas DataFrames df1 
with the contents of the CSV file emp_ages.csv. 

Next, the Pandas DataFrame df2 is initialized with the subset of rows 
in df1 whose age attribute is at least 45. The back quotes in this code snippet 
are required when you specify an attribute that has an embedded whitespace. 
Launch the code in Listing 3.20 and you will see the following output:

df2 ages at least 45:
  fname  lname  age
0  Jane  Jones   65
1  Jane  Jones   65
2  Dave  Stone   45
3  Mark  Aster   53
4  Jane  Jones   58

Listing 3.21 displays the contents of pandas_schema2.py that illus-
trates how to read a subset of rows from a CSV file based on some condi-
tional logic.

LISTING 3.21: pandas_schema2.py

import pandas as pd

csv_file="emp_ages.csv"

schema = { "age": int, "fname":str}
df1 = pd.read_csv(csv_file, dtype=schema, chunksize=10000000)
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df2 = pd.concat((item.query(“age >= 45 | age < 20”) for 
item in df1), ignore_index=True)

print("df2 ages at least 45 or less than 20:")
print(df2)

Listing 3.21 extends the code in Listing 3.20 by specifying a compound 
condition for the rows in the Pandas DataFrame df2, which involves the 
rows in df1 whose age attribute is at least 45 or the rows in df1 whose age 
attribute is less than 20. Launch the code in Listing 3.21 and you will see the 
following output:

df2 ages at least 45 or less than 20:
  fname  lname  age
0  Dave  Smith   10
1  Jane  Jones   65
2  Jane  Jones   65
3  Dave  Stone   45
4  Mark  Aster   53
5  Jane  Jones   58

PANDAS DATAFRAMES AND EXCEL SPREADSHEETS

Listing 3.22 displays the contents of write_people_xlsx.py that illus-
trates how to read data from a CSV file and then create an Excel spreadsheet 
with that data.

LISTING 3.22: write_people_xlsx.py

import pandas as pd

df1 = pd.read_csv("people.csv")
df1.to_excel("people.xlsx")

#optionally specify the sheet name:
#df1.to_excel("people.xlsx", sheet_name='Sheet_name_1')

Listing 3.22 initializes the Pandas DataFrame df1 with the contents of 
the CSV file people.csv, and then invokes the to_excel() method in order 
to save the contents of the data frame to the Excel spreadsheet people.xlsx.

Listing 3.23 displays the contents of read_people_xlsx.py that illus-
trates how to read data from the Excel spreadsheet people.xlsx and create 
a Pandas DataFrame with that data.

LISTING 3.23: read_people_xlsx.py

import pandas as pd

df = pd.read_excel("people.xlsx")
print("Contents of Excel spreadsheet:")
print(df)
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Listing 3.23 is straightforward: the Pandas DataFrame df is initialized 
with the contents of the spreadsheet people.xlsx (whose contents are the 
same as people.csv) via the Pandas function read_excel(). The output 
from Listing 3.23 is here:

df1:
   Unnamed: 0 fname  lname  age gender  country
0           0  john  smith   30      m      usa
1           1  jane  smith   31      f   france
2           2  jack  jones   32      m   france
3           3  dave  stone   33      m    italy
4           4  sara  stein   34      f  germany
5           5  eddy  bower   35      m    spain

Useful Options for Reading Excel Spreadsheets

Sometimes you need extra control over the values that you read from an 
Excel spreadsheet into a Pandas DataFrame, just as you do with CSV files.

Skip the header and the footer in an Excel spreadsheet with this code 
snippet:

df = pd.read_excel("myfile.xls",header=15,skipfooter=_Y_)

SELECT, ADD, AND DELETE COLUMNS IN DATA FRAMES

This section contains short code blocks that illustrate how to perform oper-
ations on a Data frame that resemble the operations on a Python dictionary. 
For example, getting, setting, and deleting columns works with the same syn-
tax as the analogous Python dict operations, as shown here:

df = pd.Data frame.from_dict(dict([('A',[1,2,3]),('B',[4,5,6])]),
                orient='index', columns=['one', 'two', 'three'])

print(df)

The output from the preceding code snippet is here:

   one  two  three
A    1    2      3    
B    4    5      6  

Now look at the following operation that appends a new column to the 
contents of the data frame df:

df['four'] = df['one'] * df['two']
print(df) 

The output from the preceding code block is here:

   one  two  three  four
A    1    2      3     2
B    4    5      6    20
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The following operation squares the contents of a column in the data frame df:

df['three'] = df['two'] * df['two']
print(df) 

The output from the preceding code block is here:

   one  two  three  four
A    1    2      4     2
B    4    5     25    20

The following operation inserts a column of random numbers in index posi-
tion 1 (which is the second column) in the data frame df:

import numpy as np
rand = np.random.randn(2)
df.insert(1, 'random', rand)     
print(df)

The output from the preceding code block is here:

   one    random  two  three  four
A    1 -1.703111    2      4     2
B    4  1.139189    5     25    20

The following operation appends a new column called flag that contains 
True or False, based on whether or not the numeric value in the “one” column 
is greater than 2:

import numpy as np
rand = np.random.randn(2)
df.insert(1, 'random', rand)     
print(df)

The output from the preceding code block is here:

   one    random  two  three  four   flag
A    1 -1.703111    2      4     2  False
B    4  1.139189    5     25    20   True

Columns can be deleted, as shown in following code snippet that deletes 
the “two” column:

del df['two']
print(df)

The output from the preceding code block is here:

one    random  three  four   flag

A    1 -0.460401      4     2  False
B    4  1.211468     25    20   True

Columns can be deleted via the pop() method, as shown in following code 
snippet that deletes the “three” column:
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three = df.pop('three')
print(df)

   one    random  four   flag
A    1 -0.544829     2  False
B    4  0.581476    20   True

When inserting a scalar value, it will naturally be propagated to fill the 
column:

df['foo'] = 'bar'
print(df)

The output from the preceding code snippet is here:

   one    random  four   flag  foo
A    1 -0.187331     2  False  bar
B    4 -0.169672    20   True  bar

HANDLING OUTLIERS IN PANDAS

If you are unfamiliar with outliers and anomalies, please read online articles 
that discuss these two concepts because this section uses Pandas to find outli-
ers in a dataset. The key idea involves finding the “z score” of the values in the 
dataset, which involves calculating the mean sigma and standard deviation std, 
and then mapping each value x in the dataset to the value (x-sigma)/std.

Next, you specify a value of z (such as 3) and find the rows whose z score 
is greater than 3. These are the rows that contain values that are considered 
outliers. Note that a suitable value for the z score is your decision (not some 
other external factor).

pandas-outliers1.py
pandas-outliers2.py
pandas-outliers3.py

Listing 3.24 displays the contents of outliers_zscores.py that illus-
trates how to find rows of a dataset whose z-score greater than (or less than) a 
specified value.

LISTING 3.24: outliers_zscores.py

import numpy as np
import pandas as pd
from scipy import stats
from sklearn import datasets 

df = datasets.load_iris()
columns = df.feature_names
iris_df = pd.Data frame(df.data)
iris_df.columns = columns
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print("=> iris_df.shape:",iris_df.shape)
print(iris_df.head())
print()

z = np.abs(stats.zscore(iris_df))
print("z scores for iris:")
print("z.shape:",z.shape)

upper = 2.5 
lower = 0.01
print("=> upper outliers:")
print(z[np.where(z > upper)])
print()

outliers = iris_df[z < lower]
print("=> lower outliers:")
print(outliers)
print()

Listing 3.24 initializes the variable df with the contents of the built-in Iris 
dataset. Next, the variable columns is initialized with the column names, and 
the data frame iris_df is initialized from the contents of df.data that con-
tains the actual data for the Iris dataset. In addition, iris_df.columns is 
initialized with the contents of the variable columns.

The next portion of Listing 3.24 displays the shape of the data frame iris_df, 
followed by the zscore of the iris_df data frame, which is computed by 
subtracting the mean and then dividing by the standard deviation (performed 
for each row).

The last two portions of Listing 3.24 display the outliers (if any) whose 
zscore is outside the interval [0.01, 2.5]. Launch the code in Listing 3.24 and 
you will see the following output:

=> iris_df.shape: (150, 4)
   sepal length (cm)  sepal width (cm)  petal length (cm)  
petal width (cm)
0                5.1               3.5                1.4               
0.2
1                4.9               3.0                1.4               
0.2
2                4.7               3.2                1.3               
0.2
3                4.6               3.1                1.5               
0.2
4                5.0               3.6                1.4               
0.2

z scores for iris:
z.shape: (150, 4)

=> upper outliers:
[3.09077525 2.63038172]

=> lower outliers:
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    sepal length (cm)  sepal width (cm)  petal length (cm)  
petal width (cm)
73                6.1               2.8                4.7               
1.2
82                5.8               2.7                3.9               
1.2
90                5.5               2.6                4.4               
1.2
92                5.8               2.6                4.0               
1.2
95                5.7               3.0                4.2               
1.2

PANDAS DATAFRAMES AND SIMPLE STATISTICS

Listing 3.25 displays the contents of housing_stats.py that illustrates 
how to gather basic statistics from data in a Pandas DataFrame.

LISTING 3.25: housing_stats.py

import pandas as pd

df = pd.read_csv("Housing.csv")

minimum_bdrms = df["bedrooms"].min()
median_bdrms  = df["bedrooms"].median()
maximum_bdrms = df["bedrooms"].max()

print("minimum # of bedrooms:",minimum_bdrms)
print("median  # of bedrooms:",median_bdrms)
print("maximum # of bedrooms:",maximum_bdrms)
print("")

print("median values:",df.median().values)
print("")

prices = df["price"]
print("first 5 prices:")
print(prices.head())
print("")

median_price = df["price"].median()
print("median price:",median_price)
print("")

corr_matrix = df.corr()
print("correlation matrix:")
print(corr_matrix["price"].sort_values(ascending=False))

Listing 3.25 initializes the Pandas DataFrame df with the contents of 
the CSV file housing.csv. The next three variables are initialized with the 
minimum, median, and maximum number of bedrooms, respectively, and then 
these values are displayed.
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The next portion of Listing 3.25 initializes the variable prices with the 
contents of the prices column of the Pandas DataFrame df. Next, the first 
five rows are printed via the prices.head() statement, followed by the 
median value of the prices. 

The final portion of Listing 3.25 initializes the variable corr_matrix with 
the contents of the correlation matrix for the Pandas DataFrame df, and 
then displays its contents. The output from Listing 3.25 is here:

Apples
10

FINDING DUPLICATE ROWS IN PANDAS

Listing 3.26 displays the contents of duplicates.csv and Listing 3.27 
displays the contents of duplicates.py that illustrates how to find duplicate 
rows in a Pandas DataFrame.

LISTING 3.26: duplicates.csv

fname,lname,level,dept,state
Jane,Smith,Senior,Sales,California
Dave,Smith,Senior,Devel,California
Jane,Jones,Year1,Mrktg,Illinois
Jane,Jones,Year1,Mrktg,Illinois
Jane,Stone,Senior,Mrktg,Arizona
Dave,Stone,Year2,Devel,Arizona
Mark,Aster,Year3,BizDev,Florida
Jane,Jones,Year1,Mrktg,Illinois

LISTING 3.27: duplicates.py

import pandas as pd

df = pd.read_csv("duplicates.csv")
print("Contents of data frame:")
print(df)
print()

print("Duplicate rows:")
#df2 = df.duplicated(subset=None)
df2 = df.duplicated(subset=None, keep='first')
print(df2)
print()

print("Duplicate first names:")
df3 = df[df.duplicated(['fname'])]
print(df3)
print()

print("Duplicate first name and level:")
df3 = df[df.duplicated(['fname','level'])]
print(df3)
print()
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Listing 3.27 initializes the data frame df with the contents of the CSV 
file duplicates.csv, and then displays the contents of the data frame. 
The next portion of Listing 3.27 displays the duplicate rows by invoking the 
 duplicated() method, whereas the next portion of Listing 3.27 displays only 
the first name fname of the duplicate rows. The final portion of Listing 3.27 
displays the first name fname as well as the level of the duplicate rows. Launch 
the code in Listing 3.27 and you will see the following output:

Contents of data frame:
  fname  lname   level    dept       state
0  Jane  Smith  Senior   Sales  California
1  Dave  Smith  Senior   Devel  California
2  Jane  Jones   Year1   Mrktg    Illinois
3  Jane  Jones   Year1   Mrktg    Illinois
4  Jane  Stone  Senior   Mrktg     Arizona
5  Dave  Stone   Year2   Devel     Arizona
6  Mark  Aster   Year3  BizDev     Florida
7  Jane  Jones   Year1   Mrktg    Illinois

Duplicate rows:
0    False
1    False
2    False
3     True
4    False
5    False
6    False
7     True
dtype: bool

Duplicate first names:
  fname  lname   level   dept     state
2  Jane  Jones   Year1  Mrktg  Illinois
3  Jane  Jones   Year1  Mrktg  Illinois
4  Jane  Stone  Senior  Mrktg   Arizona
5  Dave  Stone   Year2  Devel   Arizona
7  Jane  Jones   Year1  Mrktg  Illinois

Duplicate first name and level:
  fname  lname   level   dept     state
3  Jane  Jones   Year1  Mrktg  Illinois
4  Jane  Stone  Senior  Mrktg   Arizona
7  Jane  Jones   Year1  Mrktg  Illinois

Listing 3.28 displays the contents of drop_duplicates.py that illustrates 
how to drop duplicate rows in a Pandas DataFrame.

LISTING 3.28: drop_duplicates.py

import pandas as pd

df = pd.read_csv("duplicates.csv")
print("Contents of data frame:")
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print(df)
print()

fname_filtered = df.drop_duplicates(['fname'])
print("Drop duplicate first names:")
print(fname_filtered)
print()

fname_lname_filtered = df.drop_duplicates(['fname','lname'])
print("Drop duplicate first and last names:")
print(fname_lname_filtered)
print()

Listing 3.28 initializes the data frame df with the contents of the CSV file 
duplicates.csv, and then displays the contents of the data frame. The 
next portion of Listing 3.28 deletes the rows that have duplicate fname val-
ues, followed by a code block that drops rows with duplicate fname and 
lname values. Launch the code in Listing 3.28 and you will see the following 
output:

Contents of data frame:
  fname  lname   level    dept       state
0  Jane  Smith  Senior   Sales  California
1  Dave  Smith  Senior   Devel  California
2  Jane  Jones   Year1   Mrktg    Illinois
3  Jane  Jones   Year1   Mrktg    Illinois
4  Jane  Stone  Senior   Mrktg     Arizona
5  Dave  Stone   Year2   Devel     Arizona
6  Mark  Aster   Year3  BizDev     Florida
7  Jane  Jones   Year1   Mrktg    Illinois

Drop duplicate first names:
  fname  lname   level    dept       state
0  Jane  Smith  Senior   Sales  California
1  Dave  Smith  Senior   Devel  California
6  Mark  Aster   Year3  BizDev     Florida

Drop duplicate first and last names:
  fname  lname   level    dept       state
0  Jane  Smith  Senior   Sales  California
1  Dave  Smith  Senior   Devel  California
2  Jane  Jones   Year1   Mrktg    Illinois
4  Jane  Stone  Senior   Mrktg     Arizona
5  Dave  Stone   Year2   Devel     Arizona
6  Mark  Aster   Year3  BizDev     Florida

FINDING MISSING VALUES IN PANDAS

Listing 3.29 displays the contents of employees2.csv and Listing 3.30 
displays the contents of missing_values.py that illustrates how to display 
rows of a data frame that have missing values in a Pandas DataFrame.
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LISTING 3.29: employees2.csv

name,year,month
Jane-Smith,2015,Aug
Jane-Smith,2015,Aug
Dave-Smith,2020,
Dave-Stone,,Apr
Jane-Jones,2018,Dec
Jane-Stone,2017,Feb
Jane-Stone,2017,Feb
Mark-Aster,,Oct
Jane-Jones,NaN,Jun

LISTING 3.30: missing_values.py

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

df = pd.read_csv("employees2.csv")

print("=> contents of CSV file:")
print(df)
print()

#NA:  Not Available (Pandas)
#NaN: Not a Number (Pandas)
#NB:  NumPy uses np.nan() to check for NaN values

df = pd.read_csv("employees2.csv")

print("=> contents of CSV file:")
print(df)
print()

print("=> any NULL values per column?")
print(df.isnull().any())
print()

print("=> count of NAN/MISSING values in each column:")
print(df.isnull().sum())
print()

print("=> count of NAN/MISSING values in each column:")
print(pd.isna(df).sum())
print()

print("=> count of NAN/MISSING values in each column (sorted):")
print(df.isnull().sum().sort_values(ascending=False))
print()

nan_null = df.isnull().sum().sum()
miss_values = df.isnull().any().sum()
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print("=> count of NaN/MISSING values:",nan_null)
print("=> count of MISSING values:",miss_values)
print("=> count of NaN values:",nan_null-miss_values)

Listing 3.30 initializes the data frame df with the contents of the CSV file 
employees2.csv, and then displays the contents of the data frame. The next 
portion of Listing 3.30 displays the number of null values that appear in any 
row or column. The next portion of Listing 3.30 displays the fields and the 
names of the fields that have null values.

The next portion of Listing 3.30 displays the number of duplicate rows, fol-
lowed by the row numbers that are duplicates. Launch the code in Listing 3.30 
and you will see the following output:

=> contents of CSV file:
         name    year month
0  Jane-Smith  2015.0   Aug
1  Jane-Smith  2015.0   Aug
2  Dave-Smith  2020.0   NaN
3  Dave-Stone     NaN   Apr
4  Jane-Jones  2018.0   Dec
5  Jane-Stone  2017.0   Feb
6  Jane-Stone  2017.0   Feb
7  Mark-Aster     NaN   Oct
8  Jane-Jones     NaN   Jun

=> any NULL values per column?
name     False
year      True
month     True
dtype: bool

=> count of NAN/MISSING values in each column:
name     0
year     3
month    1
dtype: int64

=> count of NAN/MISSING values in each column:
name     0
year     3
month    1
dtype: int64

=> count of NAN/MISSING values in each column (sorted):
year     3
month    1
name     0
dtype: int64

=> count of NaN/MISSING values: 4
=> count of MISSING values: 2
=> count of NaN values: 2
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MISSING VALUES IN IRIS-BASED DATASET

This section shows you how to replace missing values in the dataset  
nan_iris.csv that was created as follows:

• Copy the header and the first 50 data rows of the Iris dataset.
• Substitute NaN in randomly selected rows and columns.

For your convenience, the iris.csv dataset and the nan_iris.csv 
dataset are included in the companion files.

Listing 3.32 displays an initial portion of the contents of nan_iris.csv, 
whereas Listing 3.33 displays the contents of missingdatairis.py that 
illustrates how to replace the NaN values with meaningful values. 

LISTING 3.32: nan_iris.csv

SepalLength,SepalWidth,PetalLength,PetalWidth,Name
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3,1.4,0.2,Iris-setosa
NaN,3.2,NaN,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
5,3.6,1.4,0.2,Iris-setosa
NaN,3.9,1.7,0.4,Iris-setosa
4.6,3.4,1.4,0.3,Iris-setosa
NaN,3.4,1.5,0.2,Iris-setosa
4.4,2.9,1.4,0.2,Iris-setosa
4.9,3.1,NaN,0.1,NaN
// details omitted for brevity
4.5,2.3,1.3,0.3,Iris-setosa
4.4,NaN,NaN,NaN,NaN
5,3.5,NaN,NaN,Iris-setosa
5.1,3.8,1.9,0.4,Iris-setosa
4.8,3,1.4,0.3,Iris-setosa
5.1,3.8,1.6,0.2,Iris-setosa
4.6,3.2,1.4,0.2,Iris-setosa
5.3,3.7,1.5,0.2,Iris-setosa
5,3.3,1.4,0.2,Iris-setosa

LISTING 3.33: missingdatairis.py

import numpy as np
import pandas as pd

# Step 1:
data = pd.read_csv('nan_iris.csv')

# Step 2:
print("=> Details of dataset columns:")
print(data.info())
print()
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# Step 3:
print("=> Missing values per column:")
print(data.isnull().sum())
print()

# Step 4:
print("=> First range from 40 to 45:")
print(data[40:45])
print()

# Step 5:
print("=> List of Mean Values:")
print(data.mean())
print()

# list of column labels:
# SepalLength SepalWidth PetalLength PetalWidth Name

# Step 6:
# fill numeric columns with the mean (per column):
data.fillna(data.mean(), inplace=True)

# Step 7:
print("=> Second range from 40 to 45:")
print(data[40:45])
print()

# Step 8:
# create a new category for categorical data:
data['Name'] = data['Name'].fillna('UNKNOWN')

# Step 9:
print("=> Third range from 40 to 45:")
print(data[40:45])

Listing 3.33 contains various blocks of code with self-explanatory comments 
that explain the purpose of the code, starting with the first step that reads the 
contents of nan_iris.csv into the data frame data, followed by the block of 
code that displays the details of the dataset.  

Next, the third block of code displays the number of missing values in each 
column of the dataset, followed by a block of code that display the contents of 
rows 40 through 45.

The fifth block of code displays the mean values for each column in the data-
set, followed by a block of code that replaces the missing numeric values with 
the mean value, on a column-by-column basis, via the following code snippet:

data.fillna(data.mean(), inplace=True)

The seventh block of code displays the updated contents of the dataset, 
followed by a block of code that replaces the NaN values with UNKNOWN in the 
Name column.

DDPP.indb   91 13-04-2022   10:31:45



92 • Dealing with Data Pocket Primer 

The final block of code displays the data in rows 40 through 45, and at this 
point all the NaN values in the data frame have been replaced with a numeric 
value or the string UNKNOWN. Now launch the code in Listing 3.33 and you will 
see the following output:

=> Details of dataset columns:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   SepalLength  39 non-null     float64
 1   SepalWidth   49 non-null     float64
 2   PetalLength  46 non-null     float64
 3   PetalWidth   48 non-null     float64
 4   Name         46 non-null     object 
dtypes: float64(4), object(1)
memory usage: 2.1+ KB
None

=> Missing values per column:
SepalLength    11
SepalWidth      1
PetalLength     4
PetalWidth      2
Name            4
dtype: int64

=> First range from 40 to 45:
    SepalLength  SepalWidth  PetalLength  PetalWidth         Name
40          NaN         3.5          1.3         0.3  Iris-setosa
41          4.5         2.3          1.3         0.3  Iris-setosa
42          4.4         NaN          NaN         NaN          NaN
43          5.0         3.5          NaN         NaN  Iris-setosa
44          5.1         3.8          1.9         0.4  Iris-setosa

=> List of Mean Values:
SepalLength    5.002564
SepalWidth     3.422449
PetalLength    1.467391
PetalWidth     0.237500
dtype: float64

=> Second range from 40 to 45:
    SepalLength  SepalWidth  PetalLength  PetalWidth         Name
40     5.002564    3.500000     1.300000      0.3000  Iris-setosa
41     4.500000    2.300000     1.300000      0.3000  Iris-setosa
42     4.400000    3.422449     1.467391      0.2375          NaN
43     5.000000    3.500000     1.467391      0.2375  Iris-setosa
44     5.100000    3.800000     1.900000      0.4000  Iris-setosa

=> Third range from 40 to 45:
    SepalLength  SepalWidth  PetalLength  PetalWidth         Name
40     5.002564    3.500000     1.300000      0.3000  Iris-setosa
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41     4.500000    2.300000     1.300000      0.3000  Iris-setosa
42     4.400000    3.422449     1.467391      0.2375      UNKNOWN
43     5.000000    3.500000     1.467391      0.2375  Iris-setosa
44     5.100000    3.800000     1.900000      0.4000  Iris-setosa

SORTING DATA FRAMES IN PANDAS

Listing 3.34 displays the contents of sort_df.py that illustrates how to 
sort the rows in a Pandas DataFrame.

LISTING 3.34: sort_df.py

import pandas as pd

df = pd.read_csv("duplicates.csv")
print("Contents of data frame:")
print(df)
print()

df.sort_values(by=['fname'], inplace=True)
print("Sorted (ascending) by first name:")
print(df)
print()

df.sort_values(by=['fname'], inplace=True,ascending=False)
print("Sorted (descending) by first name:")
print(df)
print()

df.sort_values(by=['fname','lname'], inplace=True)
print("Sorted (ascending) by first name and last name:")
print(df)
print()

Listing 3.34 initializes the data frame df with the contents of the CSV file 
duplicates.csv, and then displays the contents of the data frame. The next 
portion of Listing 3.34 displays the rows in ascending order based on the first 
name, and the next code block displays the rows in descending order based on 
the first name. The final code block in Listing 3.34 displays the rows in ascend-
ing order based on the first name as well as the last name. Launch the code in 
Listing 3.34 and you will see the following output:

Contents of data frame:
  fname  lname   level    dept       state
0  Jane  Smith  Senior   Sales  California
1  Dave  Smith  Senior   Devel  California
2  Jane  Jones   Year1   Mrktg    Illinois
3  Jane  Jones   Year1   Mrktg    Illinois
4  Jane  Stone  Senior   Mrktg     Arizona
5  Dave  Stone   Year2   Devel     Arizona
6  Mark  Aster   Year3  BizDev     Florida
7  Jane  Jones   Year1   Mrktg    Illinois
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Sorted (ascending) by first name:
  fname  lname   level    dept       state
1  Dave  Smith  Senior   Devel  California
5  Dave  Stone   Year2   Devel     Arizona
0  Jane  Smith  Senior   Sales  California
2  Jane  Jones   Year1   Mrktg    Illinois
3  Jane  Jones   Year1   Mrktg    Illinois
4  Jane  Stone  Senior   Mrktg     Arizona
7  Jane  Jones   Year1   Mrktg    Illinois
6  Mark  Aster   Year3  BizDev     Florida

Sorted (descending) by first name:
  fname  lname   level    dept       state
6  Mark  Aster   Year3  BizDev     Florida
0  Jane  Smith  Senior   Sales  California
2  Jane  Jones   Year1   Mrktg    Illinois
3  Jane  Jones   Year1   Mrktg    Illinois
4  Jane  Stone  Senior   Mrktg     Arizona
7  Jane  Jones   Year1   Mrktg    Illinois
1  Dave  Smith  Senior   Devel  California
5  Dave  Stone   Year2   Devel     Arizona

Sorted (ascending) by first name and last name:
  fname  lname   level    dept       state
1  Dave  Smith  Senior   Devel  California
5  Dave  Stone   Year2   Devel     Arizona
2  Jane  Jones   Year1   Mrktg    Illinois
3  Jane  Jones   Year1   Mrktg    Illinois
7  Jane  Jones   Year1   Mrktg    Illinois
0  Jane  Smith  Senior   Sales  California
4  Jane  Stone  Senior   Mrktg     Arizona
6  Mark  Aster   Year3  BizDev     Florida

WORKING WITH GROUPBY() IN PANDAS 

Listing 3.35 displays the contents of groupby1.py that illustrates how to 
invoke the Pandas groupby() method in order to compute subtotals of fea-
ture values.

LISTING 3.35: groupby1.py

import pandas as pd

# colors and weights of balls:
data = {'color':['red','blue','blue','red','blue'],
        'weight':[40,50,20,30,90]}
df1 = pd.Data frame(data)
print("df1:")
print(df1)
print()
print(df1.groupby('color').mean())
print()
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red_filter = df1['color']=='red'
print(df1[red_filter])
print()
blue_filter = df1['color']=='blue'
print(df1[blue_filter])
print()

red_avg = df1[red_filter]['weight'].mean()
blue_avg = df1[blue_filter]['weight'].mean()
print("red_avg,blue_avg:")
print(red_avg,blue_avg)
print()

df2 = pd.Data frame({'color':['blue','red'],'weight':[red_
avg,blue_avg]})
print("df2:")
print(df2)
print()

Listing 3.35 defines the variable data containing color and weight  values, 
and then initializes the data frame df with the contents of the variable data. The 
next two code blocks define red_filter and blue_filter that match the rows 
whose colors are red and blue, respectively, and then prints the matching rows.

The next portion of Listing 3.35 defines the two filters red_avg and blue_avg 
that calculate the average weight of the red value and the blue values, respec-
tively. The last code block in Listing 3.35 defines the data frame df2 with a 
color column and a weight column, where the latter contains the average 
weight of the red values and the blue values. Launch the code in Listing 3.35 
and you will see the following output:

initial data frame:
df1:
  color  weight
0   red      40
1  blue      50
2  blue      20
3   red      30
4  blue      90

          weight
color           
blue   53.333333
red    35.000000

  color  weight
0   red      40
3   red      30

  color  weight
1  blue      50
2  blue      20
4  blue      90
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red_avg,blue_avg:
35.0 53.333333333333336

df2:
  color     weight
0  blue  35.000000
1   red  53.333333

AGGREGATE OPERATIONS WITH THE TITANIC.CSV DATASET

Listing 3.36 displays the contents of aggregate2.py that illustrates how 
to perform aggregate operations with columns in the CSV file titanic.csv.

LISTING 3.36: aggregate2.py

import pandas as pd

#Loading titanic.csv in Seaborn:
#df = sns.load_dataset('titanic')
df = pd.read_csv("titanic.csv")

# convert floating point values to integers:
df['survived'] = df['survived'].astype(int)

# specify column and aggregate functions:
aggregates1 = {'embark_town': ['count', 'nunique', 'size']}

# group by 'deck' value and apply aggregate functions:
result = df.groupby(['deck']).agg(aggregates1)
print("=> Grouped by deck:")
print(result)
print()

# some details regarding count() and nunique():
# count() excludes NaN values whereas size() includes them
# nunique() excludes NaN values in the unique counts

# group by 'age' value and apply aggregate functions:
result2 = df.groupby(['age']).agg(aggregates1)
print("=> Grouped by age (before):")
print(result2)
print()

# some "age" values are missing (so drop them):
df = df.dropna()

# convert floating point values to integers:
df['age'] = df['age'].astype(int)

# group by 'age' value and apply aggregate functions:
result3 = df.groupby(['age']).agg(aggregates1)
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print("=> Grouped by age (after):")
print(result3)
print()

Listing 3.36 initializes the data frame df with the contents of the CSV file 
titanic.csv. The next code snippet converts floating point values to integer, 
followed by defining the variable aggregates1 that specifies the functions 
count(), nunique(), and size() that will be invoked on the embark_
town field.

The next code snippet initializes the variable result after invoking the 
groupby() method on the deck field, followed by invoking the agg() 
method.

The next code block performs the same computation to initialize the vari-
able result2, except that the groupby() function is invoked on the age field 
instead of the embark_town field. Notice the comment section regarding the 
count() and nunique() functions: we will drop the rows with missing values 
via df.dropna() and investigate how that affects the calculations.

After dropping the rows with missing values, the final code block initializes 
the variable result3 in exactly the same way that result2 was initialized. 
Now launch the code in Listing 3.36 and the output is shown here:

=> Grouped by deck:

     embark_town    
           count nunique size
deck    
A             15       2   15  
B             45       2   47  
C             59       3   59  
D             33       2   33  
E             32       3   32  
F             13       3   13  
G              4       1    4   

=> Grouped by age (before):
        age    
      count nunique size
age    
0.42      1       1    1   
0.67      1       1    1   
0.75      2       1    2   
0.83      2       1    2   
0.92      1       1    1   
...     ...     ...  ... 
70.00     2       1    2   
70.50     1       1    1   
71.00     2       1    2
74.00     1       1    1
80.00     1       1    1

[88 rows x 3 columns]
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=> Grouped by age (after):
      age
    count nunique size
age
0       1       1    1
1       1       1    1
2       3       1    3
3       1       1    1
4       3       1    3
6       1       1    1
11      1       1    1
14      1       1    1
15      1       1    1
// details omitted for brevity
60      2       1    2
61      2       1    2
62      1       1    1
63      1       1    1
64      1       1    1
65      2       1    2
70      1       1    1
71      1       1    1
80      1       1    1

WORKING WITH APPLY() AND MAPAPPLY() IN PANDAS 

Earlier in this chapter you saw an example of the Pandas apply() method 
for modifying the categorical values of a feature in the CSV file shirts.csv. 
This section contains more examples of the apply() method, along with 
examples of the mapappy() method.

Listing 3.37 displays the contents of apply1.py that illustrates how to 
invoke the Pandas apply() method in order to compute the sum of a set of 
values.

LISTING 3.37: apply1.py

import pandas as pd

df = pd.Data frame({'X1': [1,2,3], 'X2': [10,20,30]})

def cube(x):
  return x * x * x

df1 = df.apply(cube)
# same result:
# df1 = df.apply(lambda x: x * x * x)

print("initial data frame:")
print(df)
print("cubed values:")
print(df1)
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Listing 3.37 initializes the data frame df with columns X1 and X2, where the 
values for X2 are 10 times the corresponding values in X1. Next, the Python 
function cube() returns the cube of its argument. Listing 3.36 then defines 
the variable df1 by invoking the apply() function, which specifies the user-
defined Python function cube(), and then prints the values of df as well as 
df1. Launch the code in Listing 3.37 and you will see the following output:

initial data frame:
   X1  X2
0   1  10
1   2  20
2   3  30
cubed values:
   X1     X2
0   1   1000
1   8   8000
2  27  27000

Listing 3.38 displays the contents of apply2.py that illustrates how to 
invoke the Pandas apply() method in order to compute the sum of a set of 
values.

LISTING 3.38: apply2.py

import pandas as pd
import numpy as np

df = pd.Data frame({'X1': [10,20,30], 'X2': [50,60,70]})

df1 = df.apply(np.sum, axis=0)
df2 = df.apply(np.sum, axis=1)

print("initial data frame:")
print(df)
print("add values (axis=0):")
print(df1)
print("add values (axis=1):")
print(df2)

Listing 3.38 is a variation of Listing 3.37: the variables df1 and df2 contain 
the column-wise sum and the row-wise sum, respectively, of the data frame df. 
Launch the code in Listing 3.38 and you will see the following output:

   X1  X2
0  10  50
1  20  60
2  30  70
add values (axis=0):
X1     60
X2    180
dtype: int64
add values (axis=1):
0     60
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1     80
2    100
dtype: int64

Listing 3.39 displays the contents of mapapply1.py that illustrates how to 
invoke the Pandas mapapply() method in order to compute the sum of a set 
of values.

LISTING 3.39: mapapply1.py

import pandas as pd
import math

df = pd.Data frame({'X1': [1,2,3], 'X2': [10,20,30]})
df1 = df.applymap(math.sqrt)

print("initial data frame:")
print(df)
print("square root values:")
print(df1)

Listing 3.39 is yet another variant of Listing 3.37: in this case, the variable 
df1 is defined by invoking the applymap() function on the variable df, which 
in turn references (but does not execute) the math.sqrt() function. Next, a 
print statement displays the contents of df, followed by a print() statement 
that displays the contents of df1: it is at this point that the built-in math.
sqrt() function is invoked in order to calculate the square root of the values 
in df. Launch the code in Listing 3.39 and you will see the following output:

initial data frame:
   X1  X2
0   1  10
1   2  20
2   3  30

square root values:
         X1        X2
0  1.000000  3.162278
1  1.414214  4.472136
2  1.732051  5.477226

Listing 3.40 displays the contents of mapapply2.py that illustrates how to 
invoke the Pandas mapapply() method in order to convert strings to lower-
case and uppercase.

LISTING 3.40: mapapply2.py

import pandas as pd

df = pd.Data frame({'fname': ['Jane'], 'lname': ['Smith']},
                  {'fname': ['Dave'], 'lname': ['Jones']})
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df1 = df.applymap(str.lower)
df2 = df.applymap(str.upper)

print("initial data frame:")
print(df)
print()
print("lowercase:")
print(df1)
print()
print("uppercase:")
print(df2)
print()

Listing 3.40 initializes the variable df with two first and last name pairs, and 
then defines the variables df1 and df2 by invoking the applymap() method 
to the variable df. The variable df1 converts its input values to lowercase, 
whereas the variable df2 converts its input values to uppercase. Launch the 
code in Listing 3.40 and you will see the following output:

initial data frame:
      fname  lname
fname  Jane  Smith
lname  Jane  Smith

lowercase:
      fname  lname
fname  jane  smith
lname  jane  smith

uppercase:
      fname  lname
fname  JANE  SMITH
lname  JANE  SMITH

USEFUL ONE-LINE COMMANDS IN PANDAS 

This section contains an eclectic mix of one-line commands in Pandas 
(some of which you have already seen in this chapter) that are useful to know:

List the column names of a Data frame:

df.columns

Drop missing data from a Data frame:

df.dropna(axis=0, how='any')

Remove an unnecessary column: 

my_dataset = my_dataset.drop(["url"],axis=1)
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Remove columns with a single value, or columns that are missing more 
than 50% of their values:

dataset = dataset.dropna(thresh=half_count,axis=1)

Replace missing data in a Data frame:

df.replace(to_replace=None, value=None)

Check for NANs in a Data frame:

pd.isnull(object)

Drop a feature in a Data frame:

df.drop('feature_variable_name', axis=1)

Convert object type to float in a Data frame:

pd.to_numeric(df["feature_name"], errors='coerce')

Convert data in a Data frame to NumPy array:

df.as_matrix()

Display the first n rows of a data frame:

df.head(n)

Get data by feature name in a Data frame:

df.loc[feature_name]

Apply a function to a data frame, such as multiplying all values in the 
“height” column of the data frame by 3:

df["height"].apply(lambda height: 3 * height)

OR:

def multiply(x):
    return x * 3
df["height"].apply(multiply)

Rename the fourth column of the data frame as “height”:

df.rename(columns = {df.columns[3]:'height'}, inplace=True)

Get the unique entries of the column “first” in a data frame:

df["first"].unique()

Create a data frame with columns first and last from an existing Data 
frame:

new_df = df[["first", "last"]]
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Sort the data in a Data frame:

df.sort_values(ascending = False)

Filter the data column named “size” to display only values equal to 7:

df[df["size"] == 7]

Select the first row of the “height” column in a Data frame:

df.loc([0], ['height'])

WORKING WITH JSON-BASED DATA

A JSON object consists of data represented as colon-separated name/value 
pairs and data objects are separated by commas. An object is specified inside 
curly braces {}, and an array of objects is indicated by square brackets []. 
Note that character-valued data elements are inside a pair of double quotes “” 
(but no quotes are used for numeric data).

Here is a simple example of a JSON object:

{ "fname":"Jane", "lname":"Smith", "age":33, "city":"SF" }

Here is a simple example of an array of JSON objects (note the outer 
enclosing square brackets):

[
{ "fname":"Jane", "lname":"Smith", "age":33, "city":"SF" },
{ "fname":"John", "lname":"Jones", "age":34, "city":"LA" },
{ "fname":"Dave", "lname":"Stone", "age":35, "city":"NY" },
]

Python Dictionary and JSON

The Python json library enables you to work with JSON-based data in 
Python.

Listing 3.41 displays the contents of dict2json.py that illustrates how to 
convert a Python dictionary to a JSON string.

LISTING 3.41: dict2json.py

import json

dict1 = {}
dict1["fname"] = "Jane"
dict1["lname"] = "Smith"
dict1["age"]   = 33
dict1["city"]  = "SF"

print("Python dictionary to JSON data:")
print("dict1:",dict1)
json1 = json.dumps(dict1, ensure_ascii=False)
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print("json1:",json1)
print("")

# convert JSON string to Python dictionary:
json2 = '{"fname":"Dave", "lname":"Stone", "age":35, "city":"NY"}'
dict2 = json.loads(json2)
print("JSON data to Python dictionary:")
print("json2:",json2)
print("dict2:",dict2)

Listing 3.41 invokes the json.dumps() function to perform the conver-
sion from a Python dictionary to a JSON string. Launch the code in Listing 
3.41 and you will see the following output:

Python dictionary to JSON data:
dict1: {'fname': 'Jane', 'lname': 'Smith', 'age': 33, 'city': 'SF'}
json1: {"fname": "Jane", "lname": "Smith", "age": 33, "city": "SF"}

JSON data to Python dictionary:
json2: {"fname":"Dave", "lname":"Stone", "age":35, "city":"NY"}
dict2: {'fname': 'Dave', 'lname': 'Stone', 'age': 35, 'city': 'NY'}

Python, Pandas, and JSON

Listing 3.42 displays the contents of pd_python_json.py that illustrates 
how to convert a Python dictionary to a Pandas DataFrame and then convert 
the data frame to a JSON string.

LISTING 3.42: pd_python_json.py

import json
import pandas as pd

dict1 = {}
dict1["fname"] = "Jane"
dict1["lname"] = "Smith"
dict1["age"]   = 33
dict1["city"]  = "SF"

df1 = pd.Data frame.from_dict(dict1, orient='index')
print("Pandas df1:")
print(df1)
print()

json1 = json.dumps(dict1, ensure_ascii=False)
print("Serialized to JSON1:")
print(json1)
print()

print("Data frame to JSON2:")
json2 = df1.to_json(orient='split')
print(json2)

Listing 3.42 initializes a Python dictionary dict1 with multiple attributes 
for a user (first name, last name, and so forth). Next, the data frame df1 is cre-
ated from the Python dictionary dict1, and its contents are displayed.
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The next portion of Listing 3.42 initializes the variable json1 by serializing 
the contents of dict1, and its contents are displayed. The last code block in 
Listing 3.42 initializes the variable json2 to the result of converting the data 
frame df1 to a JSON string. Launch the code in Listing 3.42 and you will see 
the following output:

dict1: {'fname': 'Jane', 'lname': 'Smith', 'age': 33, 'city': 'SF'}
Pandas df1:
           0
fname   Jane
lname  Smith
age       33
city      SF

Serialized to JSON1:
{"fname": "Jane", "lname": "Smith", "age": 33, "city": "SF"}

Data frame to JSON2:
{"columns":[0],"index":["fname","lname","age","city"],"data":[["Jane"],
["Smith"],[33],["SF"]]}
json1: {"fname": "Jane", "lname": "Smith", "age": 33, "city": "SF"}

SUMMARY

This chapter introduced you to Pandas for creating labeled Data frames 
and displaying metadata of Pandas DataFrames. Then you learned how to 
create Pandas DataFrames from various sources of data, such as random 
numbers and hard-coded data values.

You also learned how to read Excel spreadsheets and perform numeric 
calculations on that data, such as the minimum, mean, and maximum values 
in numeric columns. Then you saw how to create Pandas DataFrames from 
data stored in CSV files. In addition, you learned how to generate a scatterplot 
from data in a Pandas DataFrame. 

Finally, you got a brief introduction to JSON, along with an example of con-
verting a Python dictionary to JSON-based data (and vice versa).
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CHAPTER 4
IntroductIon to rdbMS and SQl

This chapter introduces you to RDBMSes, various SQL concepts, and a 
quick introduction to MySQL. In case you are wondering, MySQL is a 
robust RDBMS and it is available as a free download from an ORACLE 

website. Moreover, virtually everything that you learn about MySQL in this 
chapter transfer to other RDBMSes, such as PostgreSQL and ORACLE.

This chapter describes a hypothetical website that enables users to register 
themselves for the purpose of purchasing various tools (hammers, wrenches, 
and so forth). Although there is no code in this section, you will learn about the 
tables that are required, their relationships, and the structure of those tables.

WHAT IS AN RDBMS?

RDBMS is an acronym for relational database management system. RDBMSes 
store data in tables that contain labeled attributes (informally sometimes called 
columns) that have a specific data type. Examples of an RDBMS include MySQL, 
ORACLE, and IBM DB2. Although relational databases usually provide a decent 
solution for storing data, speed and scalability might be an issue in some cases, 
NoSQL databases (such as MongoDB) might be more suitable for scalability.

What Relationships Do Tables Have in an RDBMS?

While an RDBMS can consist of a single table, it often comprises multiple 
tables that can have various types of associations with each other. For exam-
ple, when you buy various items at a food store, your receipt consists of one 
purchase order that contains one or more “line items,” where each line item 
indicates the details of a particular item that you purchased. This is called a 
one-to-many relationship between a purchase order (which is stored in a pur-
chase_orders table) and the line items (stored in a line_items table) for each 
item that you purchased.
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Another example involves students and courses: each student is enrolled 
in one or more courses, which is a one-to-many relationship from students to 
courses. Moreover, each course contains one or more students, so there is a 
one-to-many relationship from courses to students. Therefore, the students 
and courses tables have a many-to-many relationship. 

A third example is an employees table, where each row contains informa-
tion about one employee. If each row includes the id of the manager of the 
given employee, then the employees table is a self-referential table because 
finding the manager of the employee involves searching the employees table 
with the manager’s id that is stored in the given employee record. However, if 
the rows in an employees table do not contain information about an employ-
ee’s manager, then the table is not self-referential.

In addition to table definitions, a database frequently contains indexes, pri-
mary keys, and foreign keys that facilitate searching for data in tables and also 
“connecting” a row in a given table with its logically related row (or rows) in 
another table. For example, if we have the id value for a particular purchase 
order in a purchase_orders table, we can find all the line items (i.e., the 
items that were purchased) in a line_items table that contain the same pur-
chase order id.

Features of an RDBMS

An RDBMS provides a convenient way to store data, often associated with some 
type of application. For example, later you will see the details of a four-table 
RDBMS that keeps track of tools that are purchased via a Web-based application. 
From a high-level perspective, an RDBMS provides the following characteristics:

• a database contains one or more tables 
• data is stored in tables 
• data records have the same structure
• well-suited for vertical scaling
• support for ACID (explained in the following section)

Another useful concept is a logical schema that consists of the collection of 
tables and their relationships (along with indexes, views, triggers, and so forth) 
in an RDBMS. The schema is used for generating a physical schema, which con-
sists of all the SQL statements that are required in order to create the specified 
tables and their relationships.

What Is ACID?

ACID is an acronym for atomicity, consistency, isolation, and durability, 
which refers to properties of RDBMS transactions.

Atomicity means that each transaction is all-or-nothing, so if a transaction 
fails, the system is rolled back to its previous state.

Consistency means that successful transactions always result in a valid data-
base state.
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Isolation means that executing transactions concurrently or serially will 
result in the state.

Durability means that a committed transaction will remain in the same 
state.

Keep in mind that RDBMSes support ACID, whereas NoSQL databases gener-
ally do not support ACID.

WHEN DO WE NEED AN RDBMS?

The short answer is that an RDBMS is useful when we need to store one or 
more records of events that have occurred, which can be involve simple item 
purchases as well as complex multi-table financial transactions.

An RDBMS allows you to define a collection of tables that contain rows of 
data, where a row contains one or more attributes (informally called “fields”). 
A row of data is a record of an event that occurred at a specific point in time, 
which can involve more than one table, and can also involve some type of 
“transaction.” 

For example, consider a database that contains a single table called an 
events table in which a single row contains information about a single event 
that you created by some process (such as a Web page registration form). 
Although this is conceptually simple, notice that the following attributes are 
relevant for each row in the events table: event_id, event_time, event_
title, event_duration, and event_location, and possibly additional 
attributes.

Now consider a money transfer scenario between two bank accounts: you 
need to transfer USD 100 from a savings account to a checking account. The 
process involves two steps: 

1. debiting (subtracting) the savings account by USD 100, and 
2. crediting (adding) the savings account with USD 100. 

However, if there is a system failure after step 1 and before step 2 can be 
completed, you have lost USD 100. Obviously steps 1 and 2 must be treated 
as an atomic transaction, which means that the transaction is successful only 
when both steps have completed successfully. If the transaction is unsuccess-
ful, the transaction is “rolled back” so the system is returned to the state prior 
to transferring money between the two accounts.

As you learned earlier in this chapter, RDBMSes support ACID, which ensures 
that the previous transaction (i.e., transferring money between accounts) is 
treated as an atomic transaction.

Although atomic transactions are fundamental to financial systems, they 
might not be as critical for other systems. For example, the previous example 
involved inserting a new row in an events table whenever a new event is cre-
ated. If this process fails, the solution might involve registering the event again 
when the system is online again (perhaps the database crashed). 
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As another example, displaying a set of pictures in a Web page might not 
display the pictures in the correct order (e.g., based on their creation time). 
However, a failure in the event creation is not as critical as a failure in a finan-
cial system, and displaying images in the wrong sequence will probably be 
rectified when the Web page is refreshed.

THE IMPORTANCE OF NORMALIZATION

This section contains a gentle introduction to the concept of normalization, 
ideally providing you with the intuition that underlies normal forms. A complete 
explanation is beyond the scope of this book, but you can find detailed infor-
mation in online articles.

As a starting point, consider an RDBMS that stores records for the tempera-
ture of a room during a time interval (such as a day, a week, or some other time 
interval). We just need one device_temperature table where each row con-
tains the temperature of a room at a specific time. In the case of IoT (internet 
of things), the temperature is recorded during regular time intervals (such as 
minute-by-minute or hourly).

If you need to track only one room, the device_temperature table is prob-
ably sufficient. However, if you need to track multiple devices in a room, then 
it is convenient to create a second table called device_details that contains 
attributes for each device, such as device_id, device_name, device_year, 
device_price, device_warranty, and so forth.

However, we need to connect information from a row in the table device_
temperature to its associated row in the device_details table. The two-ta-
ble connection is simple: each row in the device_details table contains 
a device_id that uniquely identifies the given row. Moreover, the same 
device_id appears in any row of the device_temperature table that refers 
to the given device.

The preceding two-table structure is a minimalistic example of something 
called database normalization, which reduces data redundancy in database 
tables, sometimes at the expense of slower performance during the execution 
of some types of SQL statements (e.g., those that contain a JOIN keyword). 

If you are new to the concept of database normalization, you might be 
thinking that normalization increases complexity and reduces performance 
without providing tangible benefits. While this is a valid question, the trade-off 
is worthwhile.

In order to convince you of the value of normalization, suppose that 
every record in the purchase_orders table contains all the details of the 
customer who made the associated purchase. As a result, we can eliminate 
the customers table. However, if we ever need to update the address of a 
particular customer, we need to update all the rows in the purchase_orders 
table that contain that customer. By contrast, if we maintain a customers 
table then updating a customer’s address involves changing a single row in the 
customers table. 
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Normalization enables us to avoid data duplication so that there is a single 
“source of truth” in the event that information (such as a customer’s address) 
must be updated. From another perspective, data duplication means that the 
same data appears in two (or possibly more) locations, and if an update is not 
applied to all those locations, the database data is in an inconsistent state. 
Depending on the nature of the application, the consequences of inconsistent 
data can range from minor to catastrophic.

Always remember the following point: whenever you need to update the 
same data that resides in two different locations, you increase the risk of data 
inconsistency that adversely affects data integrity.

As another example, suppose that a website sells widgets online: at a mini-
mum, the associated database needs the following four tables:

• customer_details
• purchase_orders
• po_line_items
• item_desc

The preceding scenario is explored in greater detail in the next section that 
specifies the attributes of each of the preceding tables.

A FOUR-TABLE RDBMS

As an introductory example, suppose that www.mytools.com sells tools for 
home use or construction (the details of which are not important). For simplic-
ity, we will pretend that an actual Web page is available at the preceding URL 
and the Web page contains the following sections:

• new user register registration
• existing user log in
• input fields for selecting items for purchase (and the quantities)

For example, the registered user John Smith wants to purchase one ham-
mer, two screwdrivers, and three wrenches. The Web page needs to provide 
users with the ability to search for products by their type (e.g., hammer, screw-
driver, wrench, and so forth) and then display a list of matching products. Each 
product in that list would also contain an SKU, which is an industry-standard 
labeling mechanism for products (just like ISBNs for identifying books). 

The preceding functionality is necessary in order to develop a Web page 
that enables users to purchase products. However, the purpose of this section is 
to describe a set of tables (and their relationships to each other) in an RDBMS, so 
we will assume that the necessary Web-based features are available at our URL.

We will describe a so-called “use case” that contains the sequence of steps that 
will be performed on behalf of an existing customer John Smith (whose customer 
id is 1000), who wants to purchase 1 hammer, 2 screwdrivers, and 3 wrenches:
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Step 1: Customer John Smith (with cust_id 1000) initiates a new purchase.
Step 2: A new purchase order is created with the value 12500 for po_id.
Step 3: John Smith selects 1 hammer, 2 screwdrivers, and 3 wrenches.
Step 4: The associated US price of $20.00, $16.00, and $30.00 is displayed 

on the screen.
Step 5: The subtotal is displayed, which is $66.00.
Step 6: The tax of $6.60 is displayed (a tax rate of 10%).
Step 7: The total cost of $72.60 is displayed.

Step 8 would allow John Smith to remove an item, increase/decrease the 
quantity for each selected item, delete items, or cancel the purchase order. 
Step 9 would enable John Smith to make a payment. Once again, for the sake 
of simplicity, we will assume that step 8 and step 9 are available. 

Note that step 8 involves updating several of our tables with the details of 
the purchase order. Step 9 creates a time stamp for the date when the purchase 
order was created, as well as the status of the purchase order (“paid” versus 
“pending”). The status of a purchase order is used to generate reports to display 
the customers whose payment is overdue (and perhaps also send them friendly 
reminders). Sometimes companies have a reward-based system whereby cus-
tomers who have paid on time can collect credits that can be applied to other 
purchases (in other words, it’s essentially a discount mechanism).

DETAILED TABLE DESCRIPTIONS

If you visualize the use case described in the previous section, you can 
probably see that we need a table for storing customer-specific information, 
another table to store purchase orders (which is somehow linked to the associ-
ated customer), a table that contains the details of the items and quantity that 
are purchased (which are commonly called “line items”), and a table that con-
tains information about each tool (which includes the name, the description, 
and the price of the tool). Therefore, the RDBMS for our website requires the 
following tables:

customers
purchase_orders
line_items
item_desc

The following subsections describe the contents of the preceding tables, 
along with the relationships among these tables.

The customers Table

Although there are different ways to specify the attributes of the 
customers table, you need enough information to uniquely identify each 
customer in the table. By analogy, the following information (except for 
cust_id) is required in order to mail an envelope to a person:
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cust_id
first_name
last_name
home_address
city 
state
zip_code

We will create the customers table with the attributes in the preceding list. 
Note that the cust_id attribute is called a key because it uniquely identifies 
every customer. Although we’ll defer the discussion of keys to a later chapter, it 
is obvious that we need a mechanism for uniquely identifying every customer.

Whenever we need to refer to the details of a particular customer, we will 
use the associated value of cust_id to retrieve those details from the row in 
the customers table that has the associated cust_id.

The preceding paragraph describes the essence of linking related tables T1 
and T2 in an RDBMS: the key in T1 is stored as an attribute value in T2. If we 
need to access related information in table T3, then we store the key in T2 as 
an attribute value in T3.

Note that a customers table in a production system would contain other 
attributes, such as the following:

title (Mr, Mrs, Ms, and so forth)
shipping_address
cell_phone

For the sake of simplicity, we’ll use the initial set of attributes to define the 
customers table: later on you can add the new attributes to the table schema 
to make the system more like a real life system.

In order to make this table more concrete, suppose that the following infor-
mation pertains to customer John Smith, who has been assigned a cust_id 
of 1000:

cust_id: 1000
first_name: John
last_name: Smith
home_address: 1000 Appian Way
city: Sunnyvale 
state: California
zip_code:95959

Whenever John Smith makes a new purchase, we will use the cust_id 
value of 1000 to create a new row for this customer in the purchase_order 
table.

The purchase_orders Table

When customers visit the website, we need to create a purchase order that 
will be inserted as a new row in the purchase_orders table. While you might 
be tempted to place all the customers’ details in the new row, we will identify 
the customer by the associated cust_id and use this value instead. 
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Note that we create a new row in the customers table whenever new 
users register at the website, whereas repeat customers are identified by an 
existing cust_id that must be determined by searching the customers table 
with the information that the customer types into the input fields of the main 
Web page. 

We saw that the customers table contains a key attribute; similarly, the 
purchase_orders table requires an attribute that we will call po_id (you are 
free to use a different string) in order to identify a purchase order for a given 
customer. 

Keep in mind the following detail: the row with a given po_id requires a 
cust_id attribute in order to also identify the customer (in the customers 
table) who is making the current purchase.

Although there are multiple ways to define a set of suitable attributes, we 
will use the following set of attributes for the purchase_orders table:

po_id
cust_id
purchase_date

For example, suppose that customer John Smith, whose cust_id is 1000, 
purchases some tools on December 15, 2021. There are dozens of different 
date formats that are supported in RDBMSes: for simplicity, we will use the 
MM-DD-YYYY format (which you can change to suit your particular needs).

Then the new row for John Smith in the purchase_orders would look 
something like the following:

po_id: 12500
cust_id: 1000
purchase_date: 12-01-2021

The line_items Table

As a concrete example, suppose that customer John Smith requested 
1 hammer, 2 screwdrivers, and 3 wrenches in his most recent purchase order. 
Each of these purchased items requires a row in the line_items table that:

• is identified by a line_id value
• specifies the quantity of each purchased item
• contains the value for the associated po_id in the purchase_orders table
• contains the value for the associated item_id in the item_desc table

For simplicity, we will assign the values 5001, 5002, and 5003 to the line_id 
attribute for the three new rows in the line_items table that represent the 
hammer, screwdriver, and wrench items in the current purchase order. A 
line_item row might look something like this:

po_id: 12500
line_id: 5001
item_id: 100 <= we'll discuss this soon
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item_count: 1
item_price: 20.00
item_tax:  2.00 
item_subtotal: 22.00

Notice there is no cust_id in the preceding line_item: that’s because of the 
top-down approach for retrieving data. Specifically, we start with a particular 
cust_id that we use to find a list of purchase orders in the purchase_orders 
table that belong to the given cust_id, and for each purchase order in the 
purchase_orders table, we perform a search for the associated line items in 
the line_items table. Moreover, we can repeat the preceding sequence of 
steps for each customer in a list of cust_id values.

Returning to the earlier line_item details: we need to reference each pur-
chased item by its associated identifier in the item_desc table. Once again, 
we will arbitrarily assign item_id values of 100, 200, and 300, respectively, for 
the hammer, screwdriver, and wrench items. The actual values will undoubt-
edly be different in your application, so there is no special significance to the 
numbers 100, 200, and 300.

The three rows in the line_items table (that belong to the same purchase 
order) would look like this (we’ll look at the corresponding SQL statements 
later):

po_id: 12500
line_id: 5001
item_id: 100
item_count: 1
item_price: 20.00
item_tax:  2.00 
item_subtotal: 22.00

po_id: 12500
line_id: 5002
item_id: 200
item_count: 2
item_price: 8.00
item_tax:   1.60
item_subtotal: 17.60

po_id: 12500
line_id: 5003
item_id: 300
item_count: 3
item_price: 10.00
item_tax:    3.00
item_subtotal: 33.00

The item_desc Table

Recall that the customers table contains information about each customer, 
and a new row is created each time that a new customer creates an account for 
our Web application. In a somewhat analogous fashion, the item_desc table 
contains information about each item (aka product) that can be purchased from 
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our website. If our website becomes popular, the contents of the item_desc 
table contents are updated more frequently than the customers table, typically 
in the following situations:

• A new tool (aka product) is available for purchase.
• An existing tool is no longer available for purchase.

Thus, the item_desc table contains all the details for every tool that is 
available for sale, and it is the “source of truth” for the tools that customers can 
purchase from the website. At a minimum, this table contains three fields, as 
shown here (later we’ll discuss the SQL statement for creating and populating 
this table):

SELECT * 
FROM item_desc;
+---------+-------------+------------+
| item_id | item_desc   | item_price |
+---------+-------------+------------+
|     100 | hammer      |      20.00 |
|     200 | screwdriver |       8.00 |
|     300 | wrench      |      10.00 |
+---------+-------------+------------+
3 rows in set (0.001 sec)

There is one more important detail to discuss: if an item is no longer for 
sale, can we simply drop its row from the item_desc table? The answer is “no” 
because we need this row in order to generate reports that contain information 
about the items that customers purchased. 

Therefore, it would be a good idea to add another attribute called 
AVAILABLE (or something similar) that contains either 1 or 0 to indicate 
whether or not the product is available for purchase. As a result, some of 
the SQL queries that involve this table will also need to take into account 
this new attribute. Implementation of this functionality is not central to 
the purpose of this book, and therefore it is left as an enhancement to the 
reader.

WHAT IS SQL?

SQL is an acronym for structured query language, which is used for manag-
ing data in tables in a relational database (RDBMS). In fact, SQL is a standard 
language for retrieving and manipulating structured databases. 

In high-level terms, a SQL statement to retrieve data generally involves the 
following:

• choosing desired data (SELECT)
• the table(s) where the data resides (FROM)
• constraints (if any) on the data (WHERE)
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For example, suppose that a friends table contains the attributes (data-
base parlance for “fields”) lname and fname for the last name and first name, 
respectively, of a set of friends, and each row in this table contains details about 
one friend. 

In Chapter 2, we’ll learn how to create database tables and how to populate 
those tables with data, but for now we will just pretend that those tasks have 
already been performed. Then the SQL statement for retrieving the first and 
last names of the people in the friends table looks like this:

SELECT lname, fname
FROM friends;

Suppose that the friends table also contains a height attribute, which is 
a number (in centimeters) for each person in the friends table. We can extend 
the preceding SQL statement to specify that we want the people (rows) whose 
height attribute is less than 180 as follows:

SELECT lname, fname
FROM friends
WHERE height < 180;

As you will see, SQL provides a plethora of keywords that enable you to 
specify sophisticated queries for retrieving data from multiple tables. Both of 
the preceding SQL statements are called DML statements, which is one of the 
four main categories of SQL statements:

• DCL (data control language
• DDL (data definition language)
• DQL (data query language)
• DML (data manipulation language)

The following subsections provide additional information for each item in 
the preceding list.

DCL, DDL, DQL, DML, and TCL

DCL is an acronym for data control language, which refers to any SQL state-
ment that contains the keywords GRANT or REVOKE. Both of the keywords 
affect the permissions that are either granted or revoked for a particular user.

DDL is an acronym for data definition language, which refers to any SQL 
statements that specify: CREATE, ALTER, DROP, RENAME, TRUNCATE, or 
COMMENT. These SQL keywords are used in conjunction with database tables 
and in many cases with database views (discussed later).

DQL is an acronym for data query language, which refers to any SQL state-
ment that contains the keyword SELECT.

DML is an acronym for data manipulation language, which refers to SQL 
statements that execute queries against one or more tables in a database. 
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Specifically, the SQL statements can contain any of the keywords INSERT, 
UPDATE, DELETE, MERGE, CALL, EXPLAIN PLAN, or LOCK TABLE. In most 
cases these keywords modify the existing values of data in one or more tables.

TCL is an acronym for transaction control language, which refers to any of 
the keywords COMMIT, ROLLBACK, SAVEPOINT, or SET TRANSACTION.

SQL Privileges

There are two types of privileges available in SQL, both of which are 
described briefly in this section. These privileges refer to database objects such 
as database tables and indexes that are discussed in greater detail in subse-
quent chapters.

System privileges involve an object of a particular type and specifies the 
right to perform one or more actions on the object. Such actions include the 
administrator giving users permission to perform tasks such as ALTER INDEX, 
ALTER CACHE GROUP, CREATE/ALTER/DELETE TABLE, or CREATE/ALTER/
DELETE VIEW.

Object privileges allow users to perform actions on an object or object of 
another user, such as tables, views, indexes, and so forth. Additional object 
privileges are EXECUTE, INSERT, UPDATE, DELETE, SELECT, FLUSH, LOAD, 
INDEX, and REFERENCES.

PROPERTIES OF SQL STATEMENTS

SQL statements and SQL functions are not case sensitive, but quoted text is 
case sensitive. Here are some examples:

select VERSION();
+-----------+
| VERSION() |
+-----------+
| 8.0.21    |
+-----------+
1 row in set (0.000 sec)

MySQL [mytools]> SeLeCt Version();
+-----------+
| Version() |
+-----------+
| 8.0.21    |
+-----------+
1 row in set (0.000 sec)

Also keep in mind the following useful details regarding SQL statements:

• SQL statements are not case sensitive.
• SQL statements can be on one or more lines.
• Keywords cannot be abbreviated or split across lines.
• Clauses are usually placed on separate lines.
• Indentation is for enhancing readability.
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The CREATE Keyword

In general, you will use the CREATE keyword sometimes to create a 
database and more often to create tables, views, and indexes. However, the 
following list contains all the objects that you can create via the CREATE 
statement:

• DATABASE
• EVENT
• FUNCTION
• INDEX
• PROCEDURE
• TABLE
• TRIGGER
• USER
• VIEW

Some of the keywords in the preceding list are discussed in this chapter as 
well as the next chapter of this book.

WHAT IS MYSQL?

MySQL is open source database that is portable and provides many features 
that are available in commercial databases. Oracle is the steward of the MySQL 
database, which you can download here:

https://www.mysql.com/downloads/
If you prefer, MySQL also provides a GUI interface for performing data-

base-related operations. MySQL 8 provides the following new features:

• a transactional data dictionary
• Improved support for BLOB, TEXT, GEOMETRY, and JSON data types

As you will see in Chapter 7, MySQL supports pluggable storage engines, 
such as InnoDB (the most commonly used MySQL storage engine). In addi-
tion, Facebook developed an open source storage engine called MyRocks 
that has better compression and performance, so it might be worthwhile 
to explore the advantage of MyRocks over the other storage engines for 
MySQL.

What About MariaDB?

MySQL began as an open source project, and retained its name after the 
Oracle acquisition. Shortly thereafter, the MariaDB database was created, 
which is a “fork” of the MySQL database. Although MariaDB supports all 
the features of MySQL, there are important differences between MySQL and 
MariaDB that you can read about here:

https://mariadb.com/kb/en/mariadb-vs-mysql-compatibility/
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Installing MySQL

Download the MySQL distribution for your machine and perform the instal-
lation procedure.

https://towardsdatascience.com/pandas-and-sql-together-a-premier-
league-and-player-scouting-example-b41713a5dd3e

You can log into MySQL as root with the following command, which will 
prompt you for the root password:

$ mysql -u root -p

If you installed MySQL via a DMG file, then the root password is the same as 
the password for your machine.

DATA TYPES IN MYSQL

This section start with a lengthy list of data types that MySQL supports, fol-
lowed by some comments about several of the data types, all of which you can 
use in table definitions:

• The BIT datatype is for storing bit values in MySQL.
• The BOOLEAN datatype stores True/False values.
• The CHAR data type is for storing fixed length strings.
• The DATE datatype is for storing date values.
• The DATETIME datatype is for storing combined date and time values.
• The DECIMAL datatype is for storing exact values in decimal format.
• The ENUM datatype is a compact way to store string values.
• The INT datatype is for storing an integer data type.
• The JSON data type is for storing JSON documents.
• The TEXT datatype is for storing text values.
• The TIME datatype is for storing time values.
• The TIMESTAMP datatype is for a wider range of date and time values.
• The TO_SECONDS datatype is for converting time to seconds.
• The VARCHAR datatype is for variable length strings.
• The XML data type provides support for XML documents.

The CHAR and VARCHAR Data Types

The CHAR type has a fixed column length, declared while creating tables, 
whose length can range from 1 to 255. CHAR values are right padded with 
spaces to the specified length, and trailing spaces are removed when CHAR 
values are retrieved.

By contrast, the VARCHAR type indicates variable length CHAR values whose 
length can be between 1 and 2000, and it occupies the space for NULL values.

By contrast, the VARCHAR2 type indicates variable length CHAR values 
whose length can be between 1 and 4000, but can not occupy the space for 
NULL values. Therefore, VARCHAR2 has better performance that VARCHAR.
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String-Based Data Types

The previous bullet list contains various string types that have been 
extracted and placed in a separate list below for your convenience:

• BLOB
• CHAR
• ENUM
• SET
• TEXT
• VARCHAR

The ENUM datatype is string object that specifies a set of predefined values, 
which can be used during table creation, as shown here:

CREATE TABLE PIZZA(name ENUM('Small', 'Medium','Large'));
Query OK, 0 rows affected (0.021 sec)

DESC pizza;
+-------+--------------------------------+------+-----+---------+-------+
| Field | Type                           | Null | Key | Default | Extra |
+-------+--------------------------------+------+-----+---------+-------+
| name  | enum('Small','Medium','Large') | YES  |     | NULL    |       |
+-------+--------------------------------+------+-----+---------+-------+
1 row in set (0.004 sec)

FLOAT and DOUBLE Data Types

Numbers in the FLOAT format are stored in four bytes and have eight deci-
mal places of accuracy. Numbers in the DOUBLE format are stored in eight 
bytes and have eighteen decimal places of accuracy.

BLOB and TEXT Data Types

A BLOB is an acronym for binary large object that can hold a variable 
amount of data. There are four BLOB types whose only difference is their maxi-
mum length:

• TINYBLOB
• BLOB
• MEDIUMBLOB 
• LONGBLOB

A TEXT data type is a case-insensitive BLOB, and there are four TEXT types 
whose difference pertains to their maximum length (all of which are nonstand-
ard data types):

• TINYTEXT
• TEXT
• MEDIUMTEXT 
• LONGTEXT
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Keep in mind the following difference between BLOB types and TEXT types: 
BLOB types involve case-sensitive sorting and comparisons, whereas these 
operations are case-insensitive for TEXT types.

MYSQL DATABASE OPERATIONS

There are several operations that you can perform with a MySQL database, 
as shown here:

• Create a database.
• Export a database.
• Drop a database.
• Rename a database.

You will see examples of how to perform each of the preceding bullet items 
in the following subsections.

Creating a Database

Log into MySQL and invoke the following command to create the mytools 
database:

MySQL [mysql]> create database mytools;
Query OK, 1 row affected (0.004 sec)

Now select the mytools database with the following command:

MySQL [(none)]> use mytools;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
Database changed

Display a List of Databases

Display the existing databases by invoking the following SQL statement:

mysql> SHOW DATABASES;

The preceding command displays the following output (the output will be 
different for your machine):

+--------------------+
| Database           |
+--------------------+
| beans              |
| information_schema |
| minimal            |
| mysql              |
| mytools            |
| performance_schema |
| sys                |
+--------------------+
9 rows in set (0.002 sec)
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Display a List of Database Users

Display the existing users by invoking the following SQL statement:

mysql> select user from mysql.user;
The preceding command displays the following output:
+------------------+
| user             |
+------------------+
| mysql.infoschema |
| mysql.session    |
| mysql.sys        |
| root             |
+------------------+
4 rows in set (0.001 sec)

Dropping a Database

Log into MySQL and invoke the following command to create, select, and 
then drop the pizza database:

MySQL [(none)]> create database pizza;
Query OK, 1 row affected (0.004 sec)

MySQL [(none)]> use pizza;
Database changed
MySQL [pizza]> drop database pizza;
Query OK, 0 rows affected (0.007 sec)

Although performing this task with a database that does not contain any 
data might seem pointless, it is very straightforward and you will already know 
how to perform this task if it becomes necessary to do so in the future.

EXPORTING A DATABASE

Although you currently have an empty database, it is still good to know 
the steps for exporting a database, which is handy as a backup and also 
provides a simple way to create a copy of an existing database on another 
machine.

By way of illustration, we will first create the database called minimal in 
MySQL, as shown here:

MySQL [mytools]> create database minimal;
Query OK, 1 row affected (0.006 sec)

Next, invoke the mysqldump command to export the minimal database, as 
shown here:

mysqldump -u username -p"password" -R minimal > minimal.sql

Notice the following details at the preceding command. First, there are no 
intervening spaces between the -p flag and the password in order to bypass a 
command line prompt to enter the password. Second, make sure that you omit 
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the quote marks. Third, the -R flag instructs mysqldump to copy stored proce-
dures and functions in addition to the database data.

At this point you can create tables in the minimal database and periodically 
export its contents. If you are curious, Listing 4.1 displays the contents of 
minimal.sql, which is the complete description of the minimal database.

LISTING 4.1: minimal.sql

-- MariaDB dump 10.18  Distrib 10.5.8-MariaDB, for osx10.15 
(x86_64)
--
-- Host: localhost    Database: minimal
-- ------------------------------------------------------
-- Server version 8.0.21

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_
CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_
RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_
CONNECTION */;
/*!40101 SET NAMES utf8mb4 */;
/*!40103 SET @OLD_TIME_ZONE=@@TIME_ZONE */;
/*!40103 SET TIME_ZONE='+00:00' */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_
CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, 
FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE=@@SQL_MODE, SQL_MODE='NO_AUTO_
VALUE_ON_ZERO' */;
/*!40111 SET @OLD_SQL_NOTES=@@SQL_NOTES, SQL_NOTES=0 */;

--
-- Dumping routines for database 'minimal'
--
/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;
/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;
/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT 
*/;
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_
RESULTS */;
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION 
*/;
/*!40111 SET SQL_NOTES=@OLD_SQL_NOTES */;

-- Dump completed on 2022-02-03 22:44:54

RENAMING A DATABASE

Although you currently have an empty database, it is still good to know how 
to rename a database (and besides, it is faster to do so with an empty database).
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Older versions of MySQL provided the RENAME DATABASE command to 
rename a database; however, newer versions of MySQL have removed this func-
tionality in order to avoid security risks.

Fortunately, you can perform a three-step process involving sev-
eral MySQL command line utilities to rename a MySQL database OLD_DB 
(which you need to replace with the name of the database that you want to 
rename) to a new database NEW_DB (replaced with the actual new database 
name):

Step 1. Create an exported copy of database OLD_DB
Step 2. Create a new database called NEW_DB
Step 3. Import data from OLD_DB into NEW_DB

Perform step 1) by invoking the following command (see previous 
section):

mysqldump -u username -p"password" -R OLD_DB > OLD_DB.sql

Perform step 2) by invoking the following command:

mysqladmin -u username -p"password" create NEW_DB

Perform step 3) by invoking the following command:

mysql -u username -p"password" newDbName < OLD_DB.sql

Verify that everything worked correctly by logging into MySQL and selecting 
the new database:

MySQL [mysql]> use NEW_DB;
Database changed

THE INFORMATION_SCHEMA TABLE

The INFORMATION_SCHEMA table enables you to retrieve information 
about the columns in a given table, and it has the following attributes:

TABLE_SCHEMA
TABLE_NAME
COLUMN_NAME
ORDINAL_POSITION
COLUMN_DEFAULT
IS_NULLABLE
DATA_TYPE
CHARACTER_MAXIMUM_LENGTH
NUMERIC_PRECISION
NUMERIC_SCALE
DATETIME_PRECISION

For example, we will look at the structure of the weather table that is avail- 
able in the companion files:
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MySQL [mytools]> desc weather;
+----------+----------+------+-----+---------+-------+
| Field    | Type     | Null | Key | Default | Extra |
+----------+----------+------+-----+---------+-------+
| day      | date     | YES  |     | NULL    |       |
| temper   | int      | YES  |     | NULL    |       |
| wind     | int      | YES  |     | NULL    |       |
| forecast | char(20) | YES  |     | NULL    |       |
| city     | char(20) | YES  |     | NULL    |       |
| state    | char(20) | YES  |     | NULL    |       |
+----------+----------+------+-----+---------+-------+
6 rows in set (0.001 sec)

We can obtain additional information about the columns in the weather 
table with the following SQL query:

SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT
FROM INFORMATION_SCHEMA.COLUMNS
WHERE TABLE_NAME = 'weather'
AND table_schema = 'mytools';
The preceding SQL query generates the following output:
+-------------+-----------+-------------+----------------+
| COLUMN_NAME | DATA_TYPE | IS_NULLABLE | COLUMN_DEFAULT |
+-------------+-----------+-------------+----------------+
| city        | char      | YES         | NULL           |
| day         | date      | YES         | NULL           |
| forecast    | char      | YES         | NULL           |
| state       | char      | YES         | NULL           |
| temper      | int       | YES         | NULL           |
| wind        | int       | YES         | NULL           |
+-------------+-----------+-------------+----------------+
6 rows in set (0.001 sec)

THE PROCESSLIST TABLE

The PROCESSLIST table contains information about the status of SQL state-
ments. This information is useful when you want to see the status of table-
level or row-level locks on a table (discussed in Chapter 2). The following SQL 
statement shows you an example of the contents of this table:

MySQL [mytools]> show processlist;
+----+-----------------+-----------+---------+---------+---
-----+------------------------+------------------+
| Id | User            | Host      | db      | Command | 
Time   | State                  | Info             |
+----+-----------------+-----------+---------+---------+---
-----+------------------------+------------------+
|  5 | event_scheduler | localhost | NULL    | Daemon  | 
138765 | Waiting on empty queue | NULL             |
|  9 | root            | localhost | mytools | Query   |      
0 | starting               | show processlist |
+----+-----------------+-----------+---------+---------+---
-----+------------------------+------------------+
2 rows in set (0.000 sec)
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SQL FORMATTING TOOLS

As you might expect, there are various formatting styles for SQL statements, 
and you can peruse them to determine which style is most appealing to you. 
The following link is for an online SQL formatter:

https://codebeautify.org/sqlformatter
The following link contains 18 SQL formatters, some of which are commer-

cial and some are free:
https://www.sqlshack.com/sql-formatter-tools/
The following link contains a list of SQL formatting conventions (i.e., it is 

not about formatting tools):
https://opendatascience.com/best-practices-sql-formatting
If you work in an environment where the SQL formatting rules have already 

been established, it might be interesting to compare that style with those of the 
SQL formatting tools in the preceding links. 

If you are a SQL beginner working on your own, it is also worth exploring 
these links as you learn more about SQL statements throughout this book. As 
you gain more knowledge about writing SQL statements, you will encounter 
various styles in blog posts, which means you will also notice which conven-
tions those blog posts adopt for formatting SQL statements.

SUMMARY

This chapter started with an introduction to the concept of an RDBMS, 
and the rationale for using an RDBMS. In particular, you saw an example of 
an RDBMS with a single table, two tables, and four tables (and much larger 
RDBMSes abound). 

Then you got a brief introduction to the notion of database normaliza-
tion, and how doing so will help you maintain data integrity (“single source of 
truth”) in an RDBMS.  

Next, you learned about the structure of the tables in a four-table database 
that keeps track of customer purchases of tools through a Web page. You also 
saw which tables have a one-to-many relationship so that you can find all the 
line items that belong to a given purchase order.

In addition, you got a brief introduction to SQL and some basic examples 
of SQL queries (more details are in Chapter 2). You also learned about various 
types of SQL statements that can be classified as DCL (data control language, 
DDL (data definition language), DQL (data query language), or DML (data 
manipulation language).

Finally, you learned about MySQL, some simple SQL statements, data 
types in MySQL, and various operations that you can perform with MySQL 
databases.
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CHAPTER 5
WorkIng WIth SQl and MySQl

The previous chapter provided a fast-paced introduction to RDBMSes 
and SQL concepts, whereas this chapter focuses on MySQL and the SQL 
statements that are necessary to manage database tables and the data 

in those tables. MySQL is used for the SQL in this book because it is an RDBMS 
that is available as a free download from an Oracle website. Moreover, virtu-
ally everything that you learn about MySQL in this chapter will transfer to other 
RDBMSes, such as PostgreSQL and ORACLE.

The first part of this chapter presents various ways to create MySQL tables, 
which can be done manually, from SQL scripts, or from the command line. 
You will also see how to create a MySQL table that contains Japanese text that 
contains a mixture of Kanji and Hiragana. This section also shows you how to 
drop and alter MySQL tables, and how to populate MySQL tables with seed data.

The second part of this chapter contains an assortment of SQL statements 
that use the SELECT keyword. You will see SQL statements that find the dis-
tinct rows in a MySQL table as well as the unique rows, along with using the 
EXISTS and LIMIT keywords. This section also explains the differences among 
the DELETE, TRUNCATE, and DROP keywords in SQL.

The third part of this chapter shows you how to create indexes on MySQL 
tables, and some criteria for defining indexes, followed by how to select col-
umns for an index. Although the four tables in Chapter 1 are small enough that 
they do not require any indexes, it is important to understand the purpose of 
indexes and how to create them.

The final part of this chapter shows you how to export the result set of a 
SQL query,  and also how to export a database as well as the entire contents of 
a database.
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CREATE DATABASE TABLES

Log into MySQL and select the mytools database as shown below:

MySQL [(none)]> use mytools;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
Database changed

There are three ways to create database tables in MySQL as well as other 
RDBMSes. One technique is manual (shown first); another technique (shown sec-
ond) invokes a SQL file that contains suitable SQL commands; a third technique 
involves redirecting a SQL file to the MySQL executable from the command line.

The next section shows you how to create the four tables (described in 
Chapter 4) for the mini application.

Manually Creating Tables for mytools.com

This section shows you how to manually create the four tables for the 
mytools database in MySQL. Specifically, you will see how to create the fol-
lowing four tables:

• customers
• purchase_orders
• line_items 
• item_desc

Log into MySQL, and after selecting the mytools database, type the follow-
ing commands to create the required tables:

MySQL [mytools]> CREATE TABLE customers (cust_id INTEGER, first_name 
VARCHAR(20), last_name VARCHAR(20), home_address VARCHAR(20), city 
VARCHAR(20), state VARCHAR(20), zip_code VARCHAR(10));

MySQL [mytools]> CREATE TABLE purchase_orders ( cust_id INTEGER, 
po_id INTEGER, purchase_date date);

MySQL [mytools]> CREATE TABLE line_items (po_id INTEGER, line_
id INTEGER, item_id INTEGER, item_count INTEGER, item_price 
DECIMAL(8,2), item_tax DECIMAL(8,2), item_subtotal DECIMAL(8,2));

MySQL [mytools]> CREATE TABLE item_desc (item_id INTEGER, item_
desc VARCHAR(80), item_price DECIMAL(8,2));

Describe the structure of the customers table with the following command:

MySQL [mytools]> desc customers;
+--------------+-------------+------+-----+---------+-------+
| Field        | Type        | Null | Key | Default | Extra |
+--------------+-------------+------+-----+---------+-------+
| cust_id      | int         | YES  |     | NULL    |       |
| first_name    | varchar(20) | YES  |     | NULL    |       |
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| last_name    | varchar(20) | YES  |     | NULL    |       |
| home_address | varchar(20) | YES  |     | NULL    |       |
| city         | varchar(20) | YES  |     | NULL    |       |
| state        | varchar(20) | YES  |     | NULL    |       |
| zip_code     | varchar(10) | YES  |     | NULL    |       |
+--------------+-------------+------+-----+---------+-------+
7 rows in set (0.003 sec)

Describe the structure of the purchase_orders table with the following 
command:

MySQL [mytools]> desc purchase_orders;
+---------------+------+------+-----+---------+-------+
| Field         | Type | Null | Key | Default | Extra |
+---------------+------+------+-----+---------+-------+
| cust_id       | int  | YES  |     | NULL    |       |
| po_id         | int  | YES  |     | NULL    |       |
| purchase_date | date | YES  |     | NULL    |       |
+---------------+------+------+-----+---------+-------+
3 rows in set (0.004 sec)

Describe the structure of the line_items table with the following 
command:

MySQL [mytools]> desc line_items;
+---------------+--------------+------+-----+---------+-------+
| Field         | Type         | Yes  | Key | Default | Extra |
+---------------+--------------+------+-----+---------+-------+
| po_id         | int          | YES  |     | NULL    |       |
| line_id       | int          | YES  |     | NULL    |       |
| item_id       | int          | YES  |     | NULL    |       |
| item_count    | int          | YES  |     | NULL    |       |
| item_price    | decimal(8,2) | YES  |     | NULL    |       |
| item_tax      | decimal(8,2) | YES  |     | NULL    |       |
| item_subtotal | decimal(8,2) | YES  |     | NULL    |       |
+---------------+--------------+------+-----+---------+-------+
7 rows in set (0.002 sec)

Describe the structure of the item_desc table with the following command:

MySQL [mytools]> desc item_desc;
+------------+--------------+------+-----+---------+-------+
| Field      | Type         | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
| item_id    | int          | YES  |     | NULL    |       |
| item_desc  | varchar(80)  | YES  |     | NULL    |       |
| item_price | decimal(8,2) | YES  |     | NULL    |       |
+------------+--------------+------+-----+---------+-------+
3 rows in set (0.006 sec)

Creating Tables via an SQL Script for mytools.com

The previous section shows you a manual technique for creating database 
tables, and this section shows you how to create the required tables by launch-
ing the SQL file mytools_create_tables.sql whose contents are displayed 
in Listing 5.1.
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LISTING 5.1: mytools_create_tables.sql

USE mytools;

-- drop tables if they already exist:
DROP TABLE IF EXISTS customers;
DROP TABLE IF EXISTS purchase_orders;
DROP TABLE IF EXISTS line_items;
DROP TABLE IF EXISTS item_desc;

—- these SQL statements are the same as the previous section:
CREATE TABLE customers (cust_id INTEGER, first_name 
VARCHAR(20), last_name VARCHAR(20), home_address 
VARCHAR(20), city VARCHAR(20), state VARCHAR(20), zip_code 
VARCHAR(10));

CREATE TABLE purchase_orders ( cust_id INTEGER, po_id 
INTEGER, purchase_date date);

CREATE TABLE line_items (po_id INTEGER, line_id 
INTEGER, item_id INTEGER, item_count INTEGER, item_
price DECIMAL(8,2), item_tax DECIMAL(8,2), item_subtotal 
DECIMAL(8,2));

CREATE TABLE item_desc (item_id INTEGER, item_desc 
VARCHAR(80), item_price DECIMAL(8,2));

Listing 5.1 contains three sections. The first section selects the mytools 
database, and the second section drops any of the four required tables if they 
already exist. The third section contains the SQL commands to create the four 
required tables.

Creating Tables With Japanese Text

Although this section is not required for any of the code samples in this 
book, it is nonetheless interesting to see how easily you can create a MySQL 
table with Japanese text. In case you are wondering, the Japanese text was 
inserted from a MacBook after adding a Hiragana keyboard and a Katakana 
keyboard. Perform an online search for instructions that show you how to add 
these keyboards to your laptop.

Listing 5.2 displays the contents of japanese1.sql that illustrates how to 
create a MySQL table that is populated with Japanese text.

LISTING 5.2: japanese1.sql

use mytools;
DROP TABLE IF EXISTS japn1;

CREATE TABLE japn1
(
   emp_id INT NOT NULL AUTO_INCREMENT,
   fname VARCHAR(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
   lname VARCHAR(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
   title VARCHAR(100) CHARACTER SET utf8 COLLATE utf8_general_ci NOT NULL,
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   PRIMARY KEY (emp_id)
);

INSERT INTO japn1 SET fname="ひでき", lname="日浦",title="しちお";
INSERT INTO japn1 SET fname="ももたろ", lname="つよい",title="かちょ";
INSERT INTO japn1 SET fname="オズワルド", lname="カmポ",title="悪ガキ";
INSERT INTO japn1 SET fname="東京", lname="日本",title="すごい！";

\! echo '=> All rows in table japn1:';
SELECT * FROM japn1;

\! echo '=> Rows whose lname contains カ:';
SELECT * FROM japn1
WHERE lname LIKE '%カ%';

Listing 5.2 starts with the definition of the table japn1 that defines the 
fname, lname, and title attributes as VARCHAR(100) and also specifies 
utf8 as the character set and utf8_general_ci as the collating sequence. 
These extra keywords enable us to store Hiragana and Kanji characters in these 
three attributes. Launch the code in Listing 5.2 from the MySQL prompt and 
you will see the following output:

Database changed
Query OK, 0 rows affected (0.005 sec)
Query OK, 0 rows affected, 6 warnings (0.005 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)

=> All rows in table japn1:
+--------+-----------------+-----------+--------------+
| emp_id | fname           | lname     | title        |
+--------+-----------------+-----------+--------------+
|      1 | ひでき           | 日浦       | しちお        |
|      2 | ももたろ         | つよい     | かちょ        |
|      3 | オズワルド        | カmポ     | 悪ガキ        |
|      4 | 東京             | 日本       | すごい！      |
+--------+-----------------+-----------+--------------+
4 rows in set (0.000 sec)

=> Rows whose lname matches カ:
+--------+-----------------+---------+-----------+
| emp_id | fname           | lname   | title     |
+--------+-----------------+---------+-----------+
|      3 | オズワルド        | カmポ    | 悪ガキ     |
+--------+-----------------+---------+-----------+
1 row in set (0.000 sec)

The preceding example is a rudimentary example of working with Japanese 
text in a MySQL table. Chapter 4 shows you how to perform a join on the table 
japn1 with the table japn2, where the text in japn2 contains the English 
counterpart to the text in japn1. You can also search online for other SQL-based 
operations that you can perform with this data, as well as examples of creating 
MySQL tables for other Asian languages.
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Creating Tables From the Command Line 

The third technique for invoking a SQL file is from the command line. First 
make sure that the specified database already exists (such as mytools). Next, 
invoke the following command from the command line to execute the contents 
of employees.sql in MySQL:

mysql --password=<your-password> --user=root mytools < user.sql

Listing 5.3 displays the contents of user.sql that illustrates how to create 
a database table and populate that table with data.

LISTING 5.3: user.sql

USE mytools;

DROP TABLE IF EXISTS user;
CREATE TABLE user (user_id INTEGER(8), user_title VARCHAR(20));

INSERT INTO user VALUES (1000, 'Developer');
INSERT INTO user VALUES (2000, 'Project Lead');
INSERT INTO user VALUES (3000, 'Dev Manager');
INSERT INTO user VALUES (4000, 'Senior Dev Manager');

Now log into MySQL with the following command from the command line:

mysql --password=<your-password> —user=root

Now enter the following two commands (shown in bold):

MySQL [(none)]> use mytools;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Database changed
MySQL [mytools]> desc user;
+------------+-------------+------+-----+---------+-------+
| Field      | Type        | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+-------+
| user_id    | int         | YES  |     | NULL    |       |
| user_class | int         | YES  |     | NULL    |       |
| user_title | varchar(20) | YES  |     | NULL    |       |
+------------+-------------+------+-----+---------+-------+
3 rows in set (0.002 sec)

DROP DATABASE TABLES

There are several ways of dropping database tables in MySQL that are 
described in the following subsections.

Dropping Tables via a SQL Script for mytools.com

Sometimes you might want to simply drop database tables without recreat-
ing them. Listing 5.4 displays the contents of mytools_drop_tables.sql 
that illustrates how to drop database tables without recreating them.
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LISTING 5.4: mytools_drop_tables.sql

USE mytools;

-- drop tables if they already exist:
DROP TABLE IF EXISTS customers;
DROP TABLE IF EXISTS purchase_orders;
DROP TABLE IF EXISTS line_items;
DROP TABLE IF EXISTS item_desc;

Listing 5.4 is straightforward: it consists of section 1 and section 2 of the 
SQL file displayed in Listing 5.1.

ALTERING DATABASE TABLES WITH THE ALTER KEYWORD

If you want to modify the columns in a table, you can use the ALTER 
command to add new columns, drop existing columns, or modify the data 
type of an existing column. Whenever a new column is added to a database 
table, that column will contain NULL values. However, you can invoke SQL 
statements to populate the new column with values, as shown in the next 
section.

Add a Column to a Database Table

As a simple example, we will create the table user2 from table user, as 
shown here:

CREATE TABLE user2 AS (SELECT * FROM user);

Add the character columns fname and lname to table user2 by executing 
the following SQL commands:

MySQL [mytools]> 
ALTER TABLE user2 
ADD COLUMN fname VARCHAR(20);
Query OK, 0 rows affected (0.011 sec)
Records: 0  Duplicates: 0  Warnings: 0

MySQL [mytools]> 
ALTER TABLE user2 
ADD COLUMN lname VARCHAR(20);
Query OK, 0 rows affected (0.012 sec)
Records: 0  Duplicates: 0  Warnings: 0

Now look at the structure of table user2, which contains two new columns 
with NULL values:

MySQL [mytools]> desc user2;
+------------+-------------+------+-----+---------+-------+
| Field      | Type        | Null | Key | Default | Extra |
+------------+-------------+------+-----+---------+-------+
| user_id    | int         | YES  |     | NULL    |       |
| user_title | varchar(20) | YES  |     | NULL    |       |
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| fname      | varchar(20) | YES  |     | NULL    |       |
| lname      | varchar(20) | YES  |     | NULL    |       |
+------------+-------------+------+-----+---------+-------+
4 rows in set (0.002 sec)

Now look at the rows in table user2 by issuing the following SQL query:

select * from user2;
+---------+--------------------+-------+-------+
| user_id | user_title         | fname | lname |
+---------+--------------------+-------+-------+
|    1000 | Developer          | NULL  | NULL  |
|    2000 | Project Lead       | NULL  | NULL  |
|    3000 | Dev Manager        | NULL  | NULL  |
|    4000 | Senior Dev Manager | NULL  | NULL  |
+---------+--------------------+-------+-------+
4 rows in set (0.001 sec)

How do we insert appropriate values for the new fname and lname attrib-
utes for each existing row? One way to update these attributes is to issue a SQL 
query for each row that updates these attributes based on the user_id:

UPDATE user2
SET fname = 'John', lname = 'Smith'
WHERE user_id = 1000;

UPDATE user2
SET fname = 'Jane', lname = 'Stone'
WHERE user_id = 2000;

UPDATE user2
SET fname = 'Dave', lname = 'Dodds'
WHERE user_id = 3000;

UPDATE user2
SET fname = 'Jack', lname = 'Jones'
WHERE user_id = 4000;

We can confirm that the user2 table has been updated correctly with the 
following SQL query:

select * from user2;
+---------+--------------------+-------+-------+
| user_id | user_title         | fname | lname |
+---------+--------------------+-------+-------+
|    1000 | Developer          | John  | Smith |
|    2000 | Project Lead       | Jane  | Stone |
|    3000 | Dev Manager        | Dave  | Dodds |
|    4000 | Senior Dev Manager | Jack  | Jones |
+---------+--------------------+-------+-------+
4 rows in set (0.000 sec)

Unfortunately, the preceding solution is not scalable if you need to update 
hundreds or thousands of rows with values for the new attributes. There are 
several options available, depending on the location of the values for the new 
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attributes: one option involves importing data and another involves program-
matically generating SQL statements.

If you have a CSV file that contains the complete data for the table rows, 
including values for the fname and lname attributes, the solution is straight-
forward: delete the rows from the user2 table and then import the data from 
the CSV file into the user2 table.

However, if the existing data is located in one CSV file and the data for the 
two new attributes is located in a separate CSV file, you need to merge the two 
CSV files into a single CSV file, after which you can import the CSV file directly 
into the user2 table. An example of performing this task is discussed after the 
following section that describes referential constraints.

Drop a Column From a Database Table

The following SQL statement illustrates how to drop the column str_date 
from the table mytable:

ALTER TABLE mytable
DROP COLUMN str_date;

Just to be safe, it is a good idea to make a backup of a table before you drop 
any of its columns. If you have enough disk space and/or the table is medium-
sized or smaller, you can create an online backup with this SQL statement:

CREATE TABLE mytable_backup AS (SELECT * FROM mytable);

Change the Data Type of a Column

Listing 5.5 displays the contents of people_ages.sql that illustrates how 
to change the data type of a column in a MySQL table.

LISTING 5.5: people_ages.sql

USE mytools;
DROP TABLE IF EXISTS people_ages;
CREATE TABLE people_ages (float_ages DECIMAL(4,2), floor_ages INT);

INSERT INTO people_ages VALUES (12.3,0);
INSERT INTO people_ages VALUES (45.6,0);
INSERT INTO people_ages VALUES (78.9,0);
INSERT INTO people_ages VALUES (-3.4,0);
DESC people_ages;
SELECT * FROM people_ages;

-- populate floor_ages with FLOOR (=INT) value:
UPDATE people_ages
SET floor_ages = FLOOR(float_ages);
SELECT * FROM people_ages;

-- change float_ages to INT data type:
ALTER TABLE people_ages CHANGE float_ages int_ages INT;
DESC people_ages;
SELECT * FROM people_ages;
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-- rows whose minimum age is less than min_value:
SELECT @min_value := 2;
SELECT * FROM people_ages WHERE floor_ages < @min_value;

Listing 5.5 creates and populates the people_ages table with data. The 
other code in Listing 5.5 contains three SQL statements, each of which starts 
with a comment statement that explains its purpose. 

The first SQL statement populates the integer-valued column floor_ages 
with the floor of the float_ages column via the built-in FLOOR() function.  

The second SQL statement alters the decimal-valued column float_ages 
to a column of type INT.

The third SQL statement displays the rows in the people_ages table 
whose floor_ages value is  less than min_value.

Now launch the code in Listing 5.5 and you will see the following output:

+------------+--------------+------+-----+---------+-------+
| Field      | Type         | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+-------+
| float_ages  | decimal(4,2) | YES  |     | NULL    |       |
| floor_ages  | int          | YES  |     | NULL    |       |
+------------+--------------+------+-----+---------+-------+
2 rows in set (0.001 sec)

+------------+------------+
| float_ages  | floor_ages  |
+------------+------------+
|      12.30 |          0 |
|      45.60 |          0 |
|      78.90 |          0 |
|      -3.40 |          0 |
+------------+------------+
4 rows in set (0.000 sec)

Query OK, 4 rows affected (0.001 sec)
Rows matched: 4  Changed: 4  Warnings: 0

+------------+------------+
| float_ages  | floor_ages  |
+------------+------------+
|      12.30 |         12 |
|      45.60 |         45 |
|      78.90 |         78 |
|      -3.40 |         -4 |
+------------+------------+
4 rows in set (0.000 sec)

Query OK, 4 rows affected (0.014 sec)
Records: 4  Duplicates: 0  Warnings: 0

+------------+------+------+-----+---------+-------+
| Field      | Type | Null | Key | Default | Extra |
+------------+------+------+-----+---------+-------+
| int_ages   | int  | YES  |     | NULL    |       |
| floor_ages  | int  | YES  |     | NULL    |       |
+------------+------+------+-----+---------+-------+
2 rows in set (0.001 sec)
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+----------+------------+
| int_ages | floor_ages  |
+----------+------------+
|       12 |         12 |
|       46 |         45 |
|       79 |         78 |
|       -3 |         -4 |
+----------+------------+
4 rows in set (0.000 sec)

+-----------------+
| @min_value := 2 |
+-----------------+
|               2 |
+-----------------+
1 row in set, 1 warning (0.000 sec)

+----------+------------+
| int_ages | floor_ages  |
+----------+------------+
|       -3 |         -4 |
+----------+------------+
1 row in set (0.000 sec)

What Are Referential Constraints?

Referential constraints (also called constraints) prevent the insertion of 
invalid data into database tables. In general, constraints on a table are specified 
during the creation of the table. Here is a list of constraints that SQL imple-
mentations support:

• CHECK
• DEFAULT
• FOREIGN KEY
• PRIMARY KEY
• NOT NULL
• UNIQUE

In case you do not already know, an orphan row in a database table is a row 
without its associated parent row that’s typically stored in a separate table. An 
example would be a customer in the (parent) customers table and the associ-
ated (child) rows in the purchase_orders table. Note that a similar relation-
ship exists between the (parent) purchase_orders table and the associated 
(child) rows in the line_items table.

COMBINING DATA FOR A TABLE UPDATE (OPTIONAL)

This section shows you how to perform the task described in the previous 
section: how to merge two CSV files and load the result into a database table. 
This section is optional because the solution involves Pandas, which has not 
been discussed yet. You can skip this section with no loss of continuity, and 
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perhaps return to this section when you need to perform this task. Also keep in 
mind that there are other ways to perform the tasks in this section.

The first subsection shows you how to merge the columns of a CSV file into the 
columns of another CSV file, and then save the updated CSV file to the file system. 
The second subsection shows you how to append the contents of a CSV file to the 
contents of another CSV file, and then save the updated CSV file to the file system.

Merging Data for a Table Update

Suppose that we have a CSV files called user.csv with a set of columns 
and that we want to merge the columns of user.csv with columns of the CSV 
file user2.csv. For simplicity, assume that there are no missing values in 
either CSV file.

Listing 5.6 displays the contents of user.csv that contains the original 
data for the user table, and Listing 5.7 displays the contents of user2.csv that 
contains the data for the fname and lname attributes.

LISTING 5.6: user.csv

fname,lname
id,title
1000,Developer
2000,Project Lead
3000,Dev Manager
4000,Senior Dev Manager

LISTING 5.7: user2.csv

fname,lname
1000,John,Smith
2000,Jane,Stone
3000,Dave,Dodds
4000,Jack,Jones 

Listing 5.8 displays the contents of user_merged.py that illustrates how 
to use Pandas data frames to merge two CSV file and generate a CSV file with 
the merged data.

LISTING 5.8: user_merged.py

import pandas as pd
  
df_user = pd.read_csv("user.csv")
df_user2 = pd.read_csv("user2.csv")
df_user['fname'] = df_user2['fname'].values
df_user['lname'] = df_user2['lname'].values
df_user.to_csv('user_merged.csv', index=False)

Listing 5.8 contains an import statement followed by assigning the con-
tents of user.csv and user2.csv to the Pandas data frames df_user and 
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df_user2, respectively. The next pair of code snippets create the columns 
fname and lname in the df_users data frame and initialize their values from 
the corresponding columns in the df_user2 data frame. 

The last code snippet in Listing 5.8 saves the updated data frame to the 
CSV file user_merged.csv, which is located in the same directory as the CSV 
files user.csv and user2.csv. Now launch the code in Listing 5.8 in order 
to generate the CSV file user_merged.csv, whose contents are displayed in 
Listing 5.9.

LISTING 5.9: user_merged.csv

id,title,fname,lname
5000,Developer,Sara,Edwards
6000,Project Lead,Beth,Woodward
7000,Dev Manager,Donald,Jackson
8000,Senior Dev Manager,Steve,Edwards

If need be, the code in Listing 5.7 can be modified to insert the fname 
values and the lname value in the first two columns.

Appending Data to a Table From a CSV File

Suppose that we have two CSV files called user_merged.csv and 
user_merged2.csv that contain the same columns. For simplicity, we will 
also assume that there are no missing values in either CSV file.

Listing 5.10 displays the contents of user_merged.csv and Listing 5.11 
displays the contents of user_merged2.csv. 

LISTING 5.10: user_merged.csv

id,title,fname,lname
5000,Developer,Sara,Edwards
6000,Project Lead,Beth,Woodward
7000,Dev Manager,Donald,Jackson
8000,Senior Dev Manager,Steve,Edwards

LISTING 5.11: user_merged2.csv

id,title,fname,lname
5000,Developer,Sara,Edwards
6000,Project Lead,Beth,Woodward
7000,Dev Manager,Donald,Jackson
8000,Senior Dev Manager,Steve,Edwards

Listing 5.12 displays the contents of merge_all_data.py that illustrates 
how to use Pandas data frames to concatenate the contents of two or more 
CSV files in the same directory and generate a CSV file with the merged data. 
This code sample generalizes the code in Listing 5.8 that concatenates only 
two CSV files.
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LISTING 5.12: merge_all_data.py

import glob
import os
import pandas as pd

# merge the data-related files as one data frame:
df = pd.concat(map(pd.read_csv, glob.glob(os.path.join('', 
"data*.csv"))))
# save data frame to a CSV file:
df.to_csv('all_data.csv')

Listing 5.12 contains an import statement followed by assigning the con-
tents of user.csv and user2.csv to the Pandas data frames df_user and 
df_user2, respectively. The next pair of code snippets create the columns 
fname and lname in the df_users data frame and initialize their values from 
the corresponding columns in the df_user2 data frame. 

The last code snippet in Listing 5.12 saves the updated data frame to the 
CSV file all_data.csv, which is located in the same directory as the CSV 
files user_merged.csv and user_merged2.csv. Now launch the code in 
Listing 5.12 to generate the CSV file user_merged3.csv, whose contents are 
displayed in Listing 5.13.

LISTING 5.13: all_data.csv

id,title
1000,Developer
2000,Project Lead
3000,Dev Manager
4000,Senior Dev Manager
1000,Developer
2000,Project Lead
3000,Dev Manager
4000,Senior Dev Manager
1000,Developer
2000,Project Lead
3000,Dev Manager
4000,Senior Dev Manager
1000,Developer
2000,Project Lead
3000,Dev Manager
4000,Senior Dev Manager

Appending Table Data from CSV Files via SQL

Suppose that the data in the CSV file user_merged.csv has already been 
inserted into table user3. We can use the following SQL statement to insert the 
contents of the CSV file user_merged2.csv into the table user3 as follows:

LOAD DATA INFILE 'user_merged.csv'
    INTO TABLE user3
    FIELDS TERMINATED BY ','
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    ENCLOSED BY '"'
    LINES TERMINATED BY '/n';

Depending on the manner in which the MySQL server was launched, you 
might encounter the following error message:

ERROR 1290 (HY000): The MySQL server is running with 
the --secure-file-priv option so it cannot execute this 
statement

The preceding error occurs due to either of the following reasons:

• The SQL statement specified an incorrect path to the file
• No directory is specified under secure_file_priv variable

Select @@global.secure_file_priv;
+---------------------------+
| @@global.secure_file_priv |
+---------------------------+
| NULL                      |
+---------------------------+
1 row in set (0.001 sec)

Another similar query is shown below:

SHOW VARIABLES LIKE "secure_file_priv";
+------------------+-------+
| Variable_name    | Value |
+------------------+-------+
| secure_file_priv  | NULL  |
+------------------+-------+
1 row in set (0.022 sec)

If you have verified that the path to the file is correct and you still see the 
same error message, then launch the following command (requires root access):

sudo /usr/local/mysql/support-files/mysql.server restart  
--secure_file_priv=/tmp

Keep in mind that you might need to replace preceding command with a 
command that is specific to your system, which depends on a combination of:

• the operating system (Windows/Mac/Linux)
• the version of MySQL on your system
• the utility that installed MySQL (brew, .dmg file, and so forth)

Perform an online search to find a solution that is specific to your 
MySQLinstallation on your machine. Keep in mind that some solutions specify 
modifying the file /etc/my.ini or /etc/my.cnf, neither of which exists on 
Mac Catalina with MySQL 8.
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Another possibility is the following SQL statement that specifies LOCAL:

LOAD DATA LOCAL INFILE "user_merged.csv" INTO TABLE user3;

Unfortunately, the preceding SQL statement does not work with MySQL 8: 
you will see the following error message:

ERROR 3948 (42000): Loading local data is disabled; this 
must be enabled on both the client and server sides

Fortunately, there is a solution: MySQL Workbench that enables you to 
export tables and databases via a GUI interface, and also how to import data-
bases and CSV files into tables. Perform an online search for MySQL Workbench 
to download the distribution and perform an installation. If you launch a SQL 
query from inside SQL Workbench, simply click on the “Export” icon, and then 
follow the subsequent prompts to save the result set to a file with the desired 
format.

INSERTING DATA INTO TABLES

This section shows you several SQL statements for inserting data into data-
base tables in the mytools database. The following SQL statements insert 
data into the customers, purchase_orders, and line_items tables, 
respectively: 

use mytools;

-- create a new customer:
INSERT INTO customers
VALUES (1000,'John','Smith','123 Main St','Fremont','CA','94123');

-- create a new purchase order:
INSERT INTO purchase_orders VALUES (1000,12500, '2021-12-01');

-- line item => one hammer:
INSERT INTO line_items VALUES (12500,5001,100,1,20.00,2.00,22.00);

-- line item => two screwdrivers:
INSERT INTO line_items VALUES (12500,5002,200,2,8.00,1.60,17.60);

-- line item => three wrenches:
INSERT INTO line_items VALUES (12500,5003,300,3,10.00,3.00,33.20);

You can also create a SQL file that consists of multiple SQL INSERT state-
ments that populate one or more tables with data. In addition, you can upload 
data from CSV files into database tables, which is discussed in the next section.

POPULATING TABLES FROM TEXT FILES

Log into MySQL, select the mytools database, and invoke the following 
command to create the people table:
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MySQL [mytools]> CREATE TABLE people (fname VARCHAR(20), 
lname VARCHAR(20), age VARCHAR(20), gender CHAR(1), country 
VARCHAR(20));

Describe the structure of the people table with the following command:

MySQL [mytools]> desc people;
+---------+-------------+------+-----+---------+-------+
| Field   | Type        | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
| fname   | varchar(20) | YES  |     | NULL    |       |
| lname   | varchar(20) | YES  |     | NULL    |       |
| age     | varchar(20) | YES  |     | NULL    |       |
| gender  | char(1)     | YES  |     | NULL    |       |
| country | varchar(20) | YES  |     | NULL    |       |
+---------+-------------+------+-----+---------+-------+
5 rows in set (0.002 sec)

Listing 5.14 displays the contents of the CSV file people.csv that con-
tains information about several people that will be inserted into the people 
table.

LISTING 5.14: people.csv

fname,lname,age,gender,country
john,smith,30,m,usa
jane,smith,31,f,france
jack,jones,32,m,france
dave,stone,33,m,italy
sara,stein,34,f,germany

Listing 5.15 displays the contents of people.sql that contains several SQL 
commands for inserting the data in Listing 5.19 into the people table.

LISTING 5.15: people.sql

INSERT INTO people VALUES ('john','smith','30','m','usa');
INSERT INTO people VALUES ('jane','smith','31','f','france');
INSERT INTO people VALUES ('jack','jones','32','m','france');
INSERT INTO people VALUES ('dave','stone','33','m','italy');
INSERT INTO people VALUES ('sara','stein','34','f','germany');
INSERT INTO people VALUES ('eddy','bower','35','m','spain');

As you can see, the INSERT statements in Listing 5.15 contain data that is 
located in people.csv. Now log into MySQL, select the mytools database, 
and invoke the following command to populate the people table:

MySQL [mysql]> source people.sql
Query OK, 1 row affected (0.004 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
Query OK, 1 row affected (0.001 sec)
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Execute the following SQL statement to display the contents of the people 
table:

MySQL [mysql]> select * from people;
+-------+-------+------+--------+---------+
| fname | lname | age  | gender | country |
+-------+-------+------+--------+---------+
| john  | smith | 30   | m      | usa     |
| jane  | smith | 31   | f      | france  |
| jack  | jones | 32   | m      | france  |
| dave  | stone | 33   | m      | italy   |
| sara  | stein | 34   | f      | germany |
| eddy  | bower | 35   | m      | spain   |
+-------+-------+------+--------+---------+
6 rows in set (0.000 sec)

The second option involves manually executing each SQL statement in 
Listing 5.20, which is obviously inefficient for a large number of rows. The 
third option involves loading data from a CSV file into a table, as shown below:

MySQL [mysql]> LOAD DATA LOCAL INFILE 'people.csv' INTO TABLE people;

However, you might encounter the following error (which depends on the 
configuration of MySQL on your machine):

ERROR 3948 (42000): Loading local data is disabled; this 
must be enabled on both the client and server sides

In general, a SQL script is preferred because it is easy to execute multiple 
times, and you can schedule SQL scripts to run as “cron” jobs.

WORKING WITH SIMPLE SELECT STATEMENTS

Earlier in this chapter you saw examples of the SELECT keyword in SQL 
statements, and this section contains additional SQL statements to show you 
additional ways to select subsets of data from a table. In its simplest form, a 
SQL statement with the SELECT keyword looks like this:

SELECT [one-or-more-attributes]
FROM [one-table]

Specify  an asterisk (“*”) after the SELECT statement if you want to select 
all the attributes of a table. For example the following SQL statement illustrates 
how to select all rows from the people table:

MySQL [mytools]> select * from people;
+-------+-------+------+--------+---------+
| fname | lname | age  | gender | country |
+-------+-------+------+--------+---------+
| john  | smith | 30   | m      | usa     |
| jane  | smith | 31   | f      | france  |
| jack  | jones | 32   | m      | france  |
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| dave  | stone | 33   | m      | italy   |
| sara  | stein | 34   | f      | germany |
| eddy  | bower | 35   | m      | spain   |
+-------+-------+------+--------+---------+
6 rows in set (0.000 sec)

Issue the following SQL statement that contains the LIMIT keyword if you 
want only the first row from the people table:

select * from people limit 1;
+-------+-------+------+--------+---------+
| fname | lname | age  | gender | country |
+-------+-------+------+--------+---------+
| john  | smith | 30   | m      | usa     |
+-------+-------+------+--------+---------+
1 row in set (0.000 sec)

Replace the number 1 in the previous SQL query with any other 
positive integer in order to display the number of rows that you need. 
Incidentally, if you replace the number 1 with the number 0 you will see 
0 rows returned. 

Include the WHERE keyword to specify a condition on the rows, which will 
return a (possibly empty) subset of rows:

SELECT [one-or-more-attributes]
FROM [one-or-more-tables]
WHERE [some condition]

For example, the following SQL statement illustrates how to display all the 
attributes of the rows in the people table where the first name is john:

MySQL [mytools]> select * from people where fname = 'john';
+-------+-------+------+--------+---------+
| fname | lname | age  | gender | country |
+-------+-------+------+--------+---------+
| john  | smith | 30   | m      | usa     |
+-------+-------+------+--------+---------+
1 row in set (0.000 sec)

Include the ORDER BY to specify the order in which you want to display 
the rows:

SELECT * 
FROM weather
ORDER BY city;
+------------+--------+------+----------+------+-------+
| day        | temper | wind | forecast | city | state |
+------------+--------+------+----------+------+-------+
| 2021-07-01 |     42 |   16 | Rain     |      | ca    |
| 2021-08-04 |     50 |   12 | Snow     |      | mn    |
| 2021-09-03 |     15 |   12 | Snow     | chi  | il    |
| 2021-04-03 |     78 |  -12 | NULL     | se   | wa    |
| 2021-04-01 |     42 |   16 | Rain     | sf   | ca    |
| 2021-04-02 |     45 |    3 | Sunny    | sf   | ca    |
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| 2021-07-02 |     45 |   -3 | Sunny    | sf   | ca    |
| 2021-07-03 |     78 |   12 | NULL     | sf   | mn    |
| 2021-08-06 |     51 |   32 |          | sf   | ca    |
| 2021-09-01 |     42 |   16 | Rain     | sf   | ca    |
| 2021-09-02 |     45 |   99 |          | sf   | ca    |
+------------+--------+------+----------+------+-------+
11 rows in set (0.003 sec)

Although we will not cover the JOIN keyword, it is very important for 
retrieving related data from two or more tables.

Duplicate versus Distinct Rows

Unless it is explicitly stated, the default action for a SQL SELECT statement 
is to select all rows (which includes duplicates), as shown here:

SELECT department_id
FROM employees;

However, you can retrieve only distinct rows by specifying the keyword 
DISTINCT, an example of which is here:

SELECT DISTINCT department_id
FROM employees;

Later you will learn how to use the GROUP BY clause and the HAVING clause 
in SQL statements. 

Unique Rows

The DISTINCT keyword selects a single row (i.e., it ignores duplicates), 
whereas the UNIQUE keyword selects a row only if that row does not have any 
duplicates. A query that contains the UNIQUE keyword returns the same result 
set as a query that contains the DISTINCT keyword if and only if there are no 
duplicate rows.

As a preview, the following SQL query contains a SQL subquery, which is a 
topic that outside the scope of this book. However, the SQL query is included 
in this section of the chapter so that you can compare the functionality of 
DISTINCT versus UNIQUE. With the preceding in mind, here is the SQL state-
ment to find unique rows in a database table:

select city, state
from weather
where unique (select state from weather);

The EXISTS Keyword

The EXISTS keyword selects a row based on the existence of a value.

select city, state
from weather where exists
(select city from weather where city = 'abc');
Empty set (0.001 sec)
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The preceding is somewhat contrived because it can be replaced with this 
simpler and intuitive query:

select city, state
from weather 
where city = 'abc';

The LIMIT Keyword

The LIMIT keyword limits the number of rows that are in a result set. For 
example, the weather table contains 11 rows, as shown here:

SELECT COUNT(*) FROM weather;
+----------+
| count(*) |
+----------+
|       11 |
+----------+
1 row in set (0.001 sec)

If we want to see only three rows instead of all the rows in the weather 
table, issue the following SQL query:

SELECT city,state 
FROM weather ORDER 
BY state, city 
LIMIT 3;
+------+-------+
| city | state |
+------+-------+
|      | ca    |
| sf   | ca    |
| sf   | ca    |
+------+-------+
3 rows in set (0.000 sec)

DELETE, TRUNCATE, AND DROP IN SQL

SQL enables you to delete all the data from a table in several ways. One way 
is to invoke the following SQL statement:

DELETE from customers;

However, if a database table has a large number of rows, a faster technique 
is the TRUNCATE statement, as shown here:

TRUNCATE customers;

Both of the preceding SQL commands involve removing rows from a table 
without dropping the table. If you want to drop the rows in a table then also 
drop the table, use the DROP statement as shown here:

DROP TABLE IF EXISTS customers;
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More Options for the DELETE Statement in SQL

The preceding section showed you how to delete all the rows in a table, 
and this section shows you how to delete a subset of the rows in a table, which 
involves specifying a condition for the rows that you want to drop from a table. 

The following SQL statement deletes the rows in the customers table 
where the first name is John:

DELETE
FROM customers
Where FNAME = 'John';

The next SQL statement deletes the rows in the customers table where 
the first name is John and the rows in the purchase_orders table that are 
associated with John:

DELETE 
FROM customers
Where FNAME = 'John'
CASCADE;

The preceding SQL statement is called a “cascading delete” and is very use-
ful when the rows in a table have external dependencies. For example, the 
customers table has a one-to-many relationship with the purchase_orders 
table; therefore, if you remove a “parent” row from the customers table, you 
want to remove the “child” rows from the purchase_orders table.

You can also specify the LIMIT keyword with DELETE, an example of which 
is shown here:

DELETE
FROM customers
Where FNAME = 'JOHN'
LIMIT 1;

The preceding SQL statement will delete one row, but there is an exception: 
the preceding SQL query will delete all rows whose name equals JOHN if you 
specify ON DELETE CASCADE in the table definition of the customers table.

CREATING TABLES FROM EXISTING TABLES IN SQL

SQL provides two ways to create new tables without specifying their attrib-
utes. One technique involves a SQL statement that contains the TEMPORARY 
keyword, and the second technique does not specify the TEMPORARY keyword. 

A temporary table is useful when it is impractical to query data that requires 
a single SELECT statement with JOIN clauses. Instead, use a temporary table to 
store an immediate result and then process that data with other SQL queries. 
However, keep in mind that the query optimizer cannot optimizer SQL queries 
containing a temporary table.
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Working With Temporary Tables in SQL

Before we create a temporary table, we will drop the temp_cust table if 
it already exists:

MySQL [mytools]> DROP TEMPORARY TABLE IF EXISTS temp_cust;
Query OK, 0 rows affected, 1 warning (0.000 sec)

The following SQL statement illustrates how to create the temporary table 
temp_cust from the customers table:

MySQL [mytools]> CREATE TEMPORARY TABLE IF NOT EXISTS temp_cust 
                AS (SELECT * FROM customers);
Query OK, 1 row affected (0.019 sec)
Records: 1  Duplicates: 0  Warnings: 0

The following SQL statement displays the structure of temp_cust:

MySQL [mytools]> DESC temp_cust;
+--------------+-------------+------+-----+---------+-------+
| Field        | Type        | Null | Key | Default | Extra |
+--------------+-------------+------+-----+---------+-------+
| cust_id      | int         | YES  |     | NULL    | NULL  |
| first_name    | varchar(20) | YES  |     | NULL    | NULL  |
| last_name    | varchar(20) | YES  |     | NULL    | NULL  |
| home_address | varchar(20) | YES  |     | NULL    | NULL  |
| city         | varchar(20) | YES  |     | NULL    | NULL  |
| state        | varchar(20) | YES  |     | NULL    | NULL  |
| zip_code     | varchar(10) | YES  |     | NULL    | NULL  |
+--------------+-------------+------+-----+---------+-------+
7 rows in set (0.005 sec)

The temp_cust table contains the same data as the customers table, as 
shown here:

MySQL [mytools]> SELECT * FROM temp_cust;
+---------+------------+-----------+--------------+---------+-------+----------+
| cust_id | first_name  | last_name | home_address | city    | state | zip_code |
+---------+------------+-----------+--------------+---------+-------+----------+
|    1000 | John       | Smith     | 123 Main St  | Fremont | CA    | 94123    |
+---------+------------+-----------+--------------+---------+-------+----------+
1 row in set (0.001 sec)

In addition, you can specify an index for a temporary table, as shown 
here:

CREATE TEMPORARY TABLE IF NOT EXISTS
  temp_cust3 ( INDEX(last_name) )
ENGINE=MyISAM
AS (
  SELECT first_name, last_name
  FROM customers
);
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In fact, you can also create a temporary table with a primary key, as shown 
here:

MySQL [mytools]> CREATE TEMPORARY TABLE temp_cust4 ENGINE=MEMORY
    -> as (select * from customers);
Query OK, 1 row affected (0.003 sec)
Records: 1  Duplicates: 0  Warnings: 0

However, keep in mind the following point: ENGINE=MEMORY is not sup-
ported when a table contains BLOB/TEXT columns. Now that you understand 
how to create tables with the TEMPORARY keyword, we will look at the preced-
ing SQL statements when we omit the TEMPORARY keyword.

Creating Copies of Existing Tables in SQL

Another technique to create a copy of an existing table is to execute the 
previous SQL statements without the TEMPORARY keyword, as shown here:

MySQL [mytools]> DROP TABLE IF EXISTS temp_cust2;
Query OK, 0 rows affected, 1 warning (0.008 sec)

MySQL [mytools]> CREATE TABLE IF NOT EXISTS temp_cust2 
                AS (SELECT * FROM customers);
Query OK, 1 row affected (0.028 sec)
Records: 1  Duplicates: 0  Warnings: 0

MySQL [mytools]> SELECT COUNT(*) FROM temp_cust2;
+----------+
| COUNT(*) |
+----------+
|        1 |
+----------+
1 row in set (0.009 sec)

WHAT IS AN SQL INDEX?

An index is a construct that enables faster retrieval of records from database 
tables and therefore improve performance. An index contains an entry that 
corresponds to each row in a table, and the index itself is stored in a tree-like 
structure. SQL enables you to define one or more indexes for a table, and some 
guidelines are provided in a subsequent section.

By way of analogy, the index of a book enables you to search for a word or a 
term, locate the associated page number(s), and then you can navigate to one 
of those pages. Clearly the use of the book index is much faster than looking 
sequentially through every page in a book.

Types of Indexes

A unique index prevents duplicate values in a column, provided that the 
column is also uniquely indexed, which can be performed automatically if a 
table has a primary key.
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A clustered index actually changes the order of the rows in a table, and then 
performs a search that is based in the key values. A table can have only one 
clustered index. A clustered index is useful for optimizing DML statements for 
tables that use the InnoDB engine.

MySQL 8 introduced invisible indexes that are unavailable for the query 
optimizer. MySQL ensures that those indexes are kept current when data in the 
referenced column are modified. You can make indexes invisible by explicitly 
declare their visibility during table creation or via the ALTER TABLE com-
mand, as you will see in a later section.

Creating an Index

An index on a MySQL table can be defined in two convenient ways: 

• as part of the table definition during table creation
• after table has been created

Here is an example of creating an index on the full_name attribute during 
the creation of the table friend_table:

DROP TABLE IF EXISTS friend_table; 

CREATE TABLE friend_table  (
  friend_id int(8) NOT NULL AUTO_INCREMENT,
  full_name varchar(40) NOT NULL,
  fname varchar(20) NOT NULL,
  lname varchar(20) NOT NULL,
  PRIMARY KEY (friend_id),INDEX(full_name)
);

Here is an example of creating index friend_lname_idx on the lname 
attribute after the creation of the table friend_table:

CREATE INDEX friend_lname_idx ON friend_table(lname);
Query OK, 0 rows affected (0.035 sec)
Records: 0  Duplicates: 0  Warnings: 0

You can create an index on multiple columns, an example of which is shown 
here:

CREATE INDEX friend_lname_fname_idx ON friend_table(lname,fname);

Keep in mind that an index on a MySQL table can specify a maximum of 16 
indexed columns, and a table can contain a maximum of 64 secondary indexes.

Disabling and Enabling an Index

As you will learn shortly, sometimes it is useful to disable indexes, perform 
some intensive operation, and then re-enable the indexes. The syntax for disa-
bling an index is here:
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alter table friend_table disable keys;
Query OK, 0 rows affected, 1 warning (0.004 sec)

The corresponding syntax for re-enabling an index is here:

alter table friend_table enable keys;
Query OK, 0 rows affected, 1 warning (0.002 sec)

View and Drop Indexes

As you probably guessed, you can drop specific indexes as well as display 
the indexes associated with a given table and also drop specific indexes. The 
following SQL statement drops the specified index on the friend_table 
table:

DROP INDEX friend_lname_fname_idx ON friend_table;
Query OK, 0 rows affected (0.011 sec)
Records: 0  Duplicates: 0  Warnings: 0

Invoke the preceding SQL statement again, and the following error message 
confirms that the index was dropped:

ERROR 1091 (42000): Can't DROP 'friend_lname_fname_idx'; 
check that column/key exists

You can also issue the following SQL statement to display the indexes that 
exist on the table friend_table:

SHOW INDEXES FROM friend_table;
+--------------+------------+------------------+--------------
+-------------+-----------+-------------+----------+--------+--
----+------------+---------+---------------+---------+--------
----+
| Table        | Non_unique | Key_name         | Seq_in_index 
| Column_name | Collation | Cardinality | Sub_part | Packed 
| Null | Index_type | Comment | Index_comment | Visible | 
Expression |
+--------------+------------+------------------+--------------
+-------------+-----------+-------------+----------+--------+--
----+------------+---------+---------------+---------+--------
----+
| friend_table |          0 | PRIMARY          |            1 
| friend_id   | A         |           0 |     NULL |   NULL |      
| BTREE      |         |               | YES     | NULL       |
| friend_table |          1 | full_name        |            1 
| full_name   | A         |           0 |     NULL |   NULL |      
| BTREE      |         |               | YES     | NULL       |
| friend_table |          1 | friend_lname_idx |            1 
| lname       | A         |           0 |     NULL |   NULL |      
| BTREE      |         |               | YES     | NULL       |
+--------------+------------+------------------+--------------
+-------------+-----------+-------------+----------+--------+--
----+------------+---------+---------------+---------+--------
----+
3 rows in set (0.005 sec)
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When you define a MySQL table, you can specify that an index is invisible 
with the following code snippet:

INDEX phone(phone) INVISIBLE 

The following SQL statement displays the invisible indexes in MySQL, which 
is a new feature in version 8:

SHOW INDEXES FROM friend_table
WHERE VISIBLE = 'NO';
Empty set (0.003 sec)

Overhead of Indexes

An index occupies some memory on secondary storage. In general, if you 
issue a SQL statement that involves an index, that index is first loaded into 
memory and then it is utilized to access the appropriate record(s). A SQL query 
that involves simply accessing (reading) data via an index is almost always more 
efficient than accessing data without an index. 

However, if a SQL statement updates records in one or more tables, then all 
the affected indexes must be updated. As a result, there can be a performance 
impact when multiple indexes are updated as a result of updating table data. 
Hence, it is important to determine a suitable number of indexes, and the col-
umns in each of those indexes, which can be done either by experimentation 
(not recommended for beginners) or open source tools that provide statistics 
regarding the performance of SQL statements when indexes are involved.

Considerations for Defining Indexes

As you might already know, a full table scan for large tables will likely be 
computationally expensive. Therefore, make sure that you define an index on 
columns that appear in the WHERE clause in your SQL statements. As a simple 
example, consider the following SQL statement:

SELECT * 
FROM customers
WHERE lname = 'Smith';

If you do not have an index that includes the lname attribute of the custom-
ers table, then a full table scan is executed.

Consider defining an index on attributes that appear in query statements 
that involve SELECT, GROUP BY, ORDER BY, or JOIN. As mentioned earlier, 
updates to table data necessitate updates to indexes, which in turn can result 
in lower performance.

A suggestion before inserting a large volume of data into a table (or tables): 

1. Disable the indexes.
2. Insert the data.
3. Reactivate the indexes.
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Although the preceding approach involves rebuilding the indexes, which 
is performed after step 3, you might see a performance improvement com-
pared to directly inserting the table data. Of course, you could also try both 
approaches and calculate the time required to complete the data insertion.

As yet another option, it is possible to perform a multirow insert in MySQL, 
which enables you to insert several rows with a single SQL statement, thereby 
reducing the number of times the indexes must be updated. The maximum 
number of rows that can be inserted via a multirow insert depends on the 
value of max_allowed_packet (whose default value is 4M), as described 
here:

https://dev.mysql.com/doc/refman/5.7/en/packet-too-large.html
Another suggestion: check the order of the columns in multicolumn indexes 

and compare that order with the order of the columns in each index. MySQL 
will only use an index if the left-leading column is referenced.

Selecting Columns for an Index

An index of a database table is used if the attribute in the WHERE clause 
is included in the index. For example, the following SQL query specifies the 
lname attribute of the users table in the WHERE clause:

SELECT * 
FROM users 
WHERE lname = 'SMITH'

In the previous section, you learned that the users table does not have an 
index containing the lname attribute then a full table scan is executed and the 
contents of the lname attribute in every row is compared with SMITH. 

Keep in mind that the average number of comparisons in a full table 
scan is n/2, where n is the number of rows in the given table. Thus, a table 
containing 1,024 rows (which is a very modest size) would require an aver-
age of 512 comparisons, whereas a suitably defined index would reduce 
the average number of comparisons to 10 (and sometimes even fewer 
comparisons).

Based on the preceding paragraph, indexes can be useful for improving 
the performance of read operations. In general, the candidates for inclu-
sion in the definition of an index are the attributes that appear in frequently 
invoked SQL statements that select, join, group, or order data.  However, keep 
in mind that the space requirement for indexes is related to the number of 
rows in tables. 

Hence, keep in mind that too many indexes involve more memory, and 
they must be updated after a write operation, which can incur a performance 
penalty. An experienced DBA can provide you with helpful advice. Experiment 
with the number and type of indexes, and profile your system in order to 
determine the optimal combination for your system. In addition, you can 
download various SQL monitoring tools to determine which SQL operations 
are candidates for optimization.
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Finding Columns Included in Indexes

Please keep in mind that this section contains SQL statements that are spe-
cific to MySQL: for information about other databases (such as Oracle) perform 
an online search to find the correct syntax. MySQL enables you to find columns 
that are in indexes with this SQL statement:

SHOW INDEX FROM people;

You can also query the STATISTICS table in the INFORMATION_SCHEMA 
to show indexes for all tables in a schema, an example of which is shown here:

SELECT DISTINCT TABLE_NAME, INDEX_NAME
FROM INFORMATION_SCHEMA.STATISTICS
WHERE TABLE_SCHEMA = 'mytools';

EXPORT DATA FROM MYSQL

In Chapter 4, you learned how to import data from CSV files into MySQL 
tables, and in this section you will learn how to export data from MySQL to files 
of various formats. After you create a SQL query that produces the desired 
data set, you can launch the SQL query from the command line or from inside 
a tool such as SQL Workbench that is available as a free download. Moreover, 
there are two main options for exporting data, as discussed in the following 
subsections.

Export the Result Set of a SQL Query

Any SQL query that generates a result set can be exported. For example, a 
SQL query that select all rows (or some rows) from a single table or a SQL query 
that is based on the join of two tables can be exported. The format of a file that 
contains a result set includes CSV, TSV, XML, HTML, JSON, and Excel. As 
you learned earlier in this chapter, you can save the output of a SQL statement 
from inside SQL Workbench by clicking on the “Export” icon, and then follow 
the subsequent prompts to save the result set to a file with the desired format.

Export a Database or Its Contents

This option for exporting a database involves three options:

1. Export all the data in all the database tables and save that data in a file.
2. Export only the structure of the database tables and indexes.
3. Export the data and the database structure.

Option #1 serves as a database backup, which you can use to restore the 
entire database. Keep in mind that you can lose the most recent data in some 
tables, which depends on when the most recent backup was performed. The 
backup enables you to restore the database to a state in which most of the 
earlier data is available.
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Option #2 is useful when you want to re-create the structure of a database, 
or some of its tables, in another database that can be on a different machine or 
even for a different person.

Option #3 has combines the benefits of the first two options. Moreover, you 
can either create one file for everything, or create one file for each table. Keep 
in mind that if you want to restore only one table from a very large backup file, 
this option can be much more time consuming than restoring a table from a 
SQL statement that contains everything pertaining to that table.

For example, the following command exports everything in the mytools 
database:

mysqldump –u root –p mytools > mytools.sql

Again, SQL Workbench provides a GUI interface for exporting and import-
ing databases, tables, and CSV files, without the need to remember the syntax 
for the associated commands.

USING LOAD DATA IN MYSQL

MySQL enables you to load data from a CSV file into a database table using 
the following syntax:

LOAD DATA INFILE 'path of the file/file_name.txt' 
INTO TABLE employees
FIELDS TERMINATED BY ';' 
LINES TERMINATED BY '\r\n'
(id,name,sex,designation,dob)

The preceding command specifies a semi-colon as the delimiter separating 
the values in each row.

LOAD DATA INFILE is relevant when you need to load a large amount of 
data into a database table. The first step involves creating a table (if it does not 
already exist) that corresponds to the columns in a CSV file, and then we can 
invoke a suitable SQL statement to populate that table from a CSV file.

DATA CLEANING IN SQL

This section contains several subsections that perform data cleaning tasks 
in SQL. Note that it is not mandatory to perform these tasks in SQL: another 
option is to read the contents of a database table into a Pandas data frame and 
then use Pandas methods to achieve the same result.

However, this section illustrates how to perform the following data cleaning 
tasks that affect an attribute of a database table:

• Replace NULL with 0.
• Replace NULL with the average value. 
• Replace multiple values into a single value.
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• Handle data type mismatch.
• Convert a string date to a date format.

Replace NULL With 0

This task is very straightforward, which you can perform with either of the 
following SQL statements:

SELECT ISNULL(column_name, 0 ) FROM table_name 
OR
SELECT COALESCE(column_name, 0 ) FROM table_name 

Replace NULL Values With Average Value

This task involves two steps: first find the average of the non-NULL values of 
a column in a database table, and then update the NULL values in that column 
with the value that you found in the first step. 

Listing 5.16 displays the contents of replace_null_values.sql that 
performs this pair of steps.

LISTING 5.16: replace_null_values.sql

USE mytools;
DROP TABLE IF EXISTS temperatures;
CREATE TABLE temperatures (temper INT, city CHAR(20));

INSERT INTO temperatures VALUES(78,'sf');
INSERT INTO temperatures VALUES(NULL,'sf');
INSERT INTO temperatures VALUES(42,NULL);
INSERT INTO temperatures VALUES(NULL,'ny');
SELECT * FROM temperatures;

SELECT @avg1 := AVG(temper) FROM temperatures;
update temperatures
set temper = @avg1
where ISNULL(temper);
SELECT * FROM temperatures;

-- initialize city1 with the most frequent city value:
SELECT @city1 := (SELECT city FROM temperatures GROUP BY 
city ORDER BY COUNT(*) DESC LIMIT 1);

-- update NULL city values with the value of city1:
update temperatures
set city = @city1
where ISNULL(city);
SELECT * FROM temperatures;

Listing 5.16 creates and populates the table temperatures with several 
rows and then initializes the variable avg1 with the average temperature in 
the temper attribute of the temperatures table. Now launch the code in 
Listing 5.16 and you will see the following output:
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+--------+------+
| temper | city |
+--------+------+
|     78 | sf   |
|   NULL | sf   |
|     42 | NULL |
|   NULL | ny   |
+--------+------+
4 rows in set (0.000 sec)

+----------------------+
| @avg1 := AVG(temper) |
+----------------------+
|         60.000000000 |
+----------------------+
1 row in set, 1 warning (0.000 sec)

Query OK, 2 rows affected (0.001 sec)
Rows matched: 2  Changed: 2  Warnings: 0

+--------+------+
| temper | city |
+--------+------+
|     78 | sf   |
|     60 | sf   |
|     42 | NULL |
|     60 | ny   |
+--------+------+
4 rows in set (0.000 sec)

+----------------------------------------------------------
----------+
| @city1 := (SELECT city FROM temperatures GROUP BY city 
ORDER BY COUNT(*) DESC LIMIT 1) |
+----------------------------------------------------------
----------+
| sf                                                                                     
|
+----------------------------------------------------------
----------+
1 row in set, 1 warning (0.000 sec)

Query OK, 1 row affected (0.000 sec)
Rows matched: 1  Changed: 1  Warnings: 0

+--------+------+
| temper | city |
+--------+------+
|     78 | sf   |
|     60 | sf   |
|     42 | sf   |
|     60 | ny   |
+--------+------+
4 rows in set (0.000 sec)
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Replace Multiple Values With a Single Value 

An example of coalescing multiple values in an attribute involves replac-
ing multiple strings for the state of New York (such as new_york, NewYork, 
NY, New_York, and so forth) with NY. Listing 5.17 displays the contents of 
reduce_values.sql that performs this pair of steps.

LISTING 5.17: reduce_values.sql

use mytools;

DROP TABLE IF EXISTS mytable;
CREATE TABLE mytable (str_date CHAR(15), state CHAR(20), 
reply CHAR(10));

INSERT INTO mytable VALUES('20210915','New York','Yes');
INSERT INTO mytable VALUES('20211016','New York','no');
INSERT INTO mytable VALUES('20220117','Illinois','yes');
INSERT INTO mytable VALUES('20220218','New York','No');
SELECT * FROM mytable;

-- replace yes, Yes, y, Ys with Y:
update mytable
set reply = 'Y'
where upper(substr(reply,1,1)) = 'Y';
SELECT * FROM mytable;

-- replace all other values with
update mytable
set reply = 'N' where substr(reply,1,1) != 'Y';
SELECT * FROM mytable;

Listing 5.17 creates and populates the table mytable, and then replaces 
the variants of the word “yes” with the letter Y in the reply attribute. The final 
portion of Listing 5.17 replaces any string that does not start with the letter Y 
with the letter N. Launch the code in Listing 5.17 and you will see the follow-
ing output:

+----------+----------+-------+
| str_date | state    | reply |
+----------+----------+-------+
| 20210915 | New York | Yes   |
| 20211016 | New York | no    |
| 20220117 | Illinois | yes   |
| 20220218 | New York | No    |
+----------+----------+-------+
4 rows in set (0.000 sec)

Query OK, 2 rows affected (0.001 sec)
Rows matched: 2  Changed: 2  Warnings: 0
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+----------+----------+-------+
| str_date | state    | reply |
+----------+----------+-------+
| 20210915 | New York | Y     |
| 20211016 | New York | no    |
| 20220117 | Illinois | Y     |
| 20220218 | New York | No    |
+----------+----------+-------+
4 rows in set (0.000 sec)

Query OK, 2 rows affected (0.001 sec)
Rows matched: 2  Changed: 2  Warnings: 0

+----------+----------+-------+
| str_date | state    | reply |
+----------+----------+-------+
| 20210915 | New York | Y     |
| 20211016 | New York | N     |
| 20220117 | Illinois | Y     |
| 20220218 | New York | N     |
+----------+----------+-------+
4 rows in set (0.001 sec)

Handle Mismatched Attribute Values

This task involves two steps: first find the average of the non-NULL values of 
a column in a database table, and then update the NULL values in that column 
with the value that you found in the first step. 

Listing 5.18 displays the contents of type_mismatch.sql that performs 
this pair of steps.

LISTING 5.18: type_mismatch.sql

USE mytools;
DROP TABLE IF EXISTS emp_details;
CREATE TABLE emp_details (emp_id CHAR(15), city CHAR(20), state 
CHAR(20));

INSERT INTO emp_details VALUES('1000','Chicago','Illinois');
INSERT INTO emp_details VALUES('2000','Seattle','Washington');
INSERT INTO emp_details VALUES('3000','Santa Cruz','California');
INSERT INTO emp_details VALUES('4000','Boston','Massachusetts');
SELECT * FROM emp_details;

select emp.emp_id, emp.title, det.city, det.state
from employees emp join emp_details det 
WHERE emp.emp_id = det.emp_id; 

--required for earlier versions of MySQL:
--WHERE emp.emp_id = cast(det.emp_id as INT);

Listing 5.18 creates and populates the table emp_details, followed by a 
SQL JOIN statement involving the tables emp and emp_details. Although 
the emp_id attribute is defined as an INT type and a CHAR type, respectively, 
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in the tables emp and emp_details, the code works as desired. However, in 
earlier versions of MySQL, you need to use the built-in CAST() function in 
order to convert a CHAR value to an INT value (or vice versa), as shown in the 
commented out code snippet:

--WHERE emp.emp_id = cast(det.emp_id as INT);

Now launch the code in Listing 5.18 and you will see the following 
output:

+--------+------------+---------------+
| emp_id | city       | state         |
+--------+------------+---------------+
| 1000   | Chicago    | Illinois      |
| 2000   | Seattle    | Washington    |
| 3000   | Santa Cruz | California    |
| 4000   | Boston     | Massachusetts |
+--------+------------+---------------+
4 rows in set (0.000 sec)
+--------+--------------------+------------+---------------+
| emp_id | title              | city       | state         |
+--------+--------------------+------------+---------------+
|   1000 | Developer          | Chicago    | Illinois      |
|   2000 | Project Lead       | Seattle    | Washington    |
|   3000 | Dev Manager        | Santa Cruz | California    |
|   4000 | Senior Dev Manager | Boston     | Massachusetts |
+--------+--------------------+------------+---------------+
4 rows in set (0.002 sec)

Convert Strings to Date Values

Listing 5.19 displays the contents of str_to_date.sql that illustrates 
how to populate a date attribute with date values that are determined from 
another string-based attribute that contains strings for dates.

LISTING 5.19: str_to_date.sql

use mytools;

DROP TABLE IF EXISTS mytable;
CREATE TABLE mytable (str_date CHAR(15), state CHAR(20), 
reply CHAR(10));

INSERT INTO mytable VALUES('20210915','New York','Yes');
INSERT INTO mytable VALUES('20211016','New York','no'););
INSERT INTO mytable VALUES('20220117','Illinois','yes'););
INSERT INTO mytable VALUES('20220218','New York','No'););

SELECT * FROM mytable;

-- 1) insert date-based feature:
ALTER TABLE mytable
ADD COLUMN (real_date DATE);
SELECT * FROM mytable;
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-- 2) populate real_date from str_date:
UPDATE mytable t1
        INNER JOIN mytable t2
             ON t1.str_date = t2.str_date
SET t1.real_date = DATE(t2.str_date);
SELECT * FROM mytable;

-- 3) Remove unwanted features:
ALTER TABLE mytable
DROP COLUMN str_date;
SELECT * FROM mytable;

Listing 5.19 creates and populates the table mytable and displays the 
contents of this table. The remainder of Listing 5.19 consists of three SQL 
statements, each of which starts with a comment statement that explains its 
purpose. 

The first SQL statement inserts a new column real_date of type DATE. 
The second SQL statement populates the real_date column with the values 
in the str_date column that have been converted to a date value via the 
DATE() function. The third SQL statement is optional: it drops the str_date 
column if you wish to do so. Now launch the code in Listing 5.19 and you will 
see the following output:

+----------+----------+-------+
| str_date | state    | reply |
+----------+----------+-------+
| 20210915 | New York | Yes   |
| 20211016 | New York | no    |
| 20220117 | Illinois | yes   |
| 20220218 | New York | No    |
+----------+----------+-------+
4 rows in set (0.000 sec)

Query OK, 0 rows affected (0.007 sec)
Records: 0  Duplicates: 0  Warnings: 0

+----------+----------+-------+-----------+
| str_date | state    | reply | real_date |
+----------+----------+-------+-----------+
| 20210915 | New York | Yes   | NULL      |
| 20211016 | New York | no    | NULL      |
| 20220117 | Illinois | yes   | NULL      |
| 20220218 | New York | No    | NULL      |
+----------+----------+-------+-----------+
4 rows in set (0.002 sec)

Query OK, 4 rows affected (0.002 sec)
Rows matched: 4  Changed: 4  Warnings: 0

+----------+----------+-------+------------+
| str_date | state    | reply | real_date  |
+----------+----------+-------+------------+
| 20210915 | New York | Yes   | 2021-09-15 |
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| 20211016 | New York | no    | 2021-10-16 |
| 20220117 | Illinois | yes   | 2022-01-17 |
| 20220218 | New York | No    | 2022-02-18 |
+----------+----------+-------+------------+
4 rows in set (0.000 sec)

Query OK, 0 rows affected (0.018 sec)
Records: 0  Duplicates: 0  Warnings: 0

+----------+-------+------------+
| state    | reply | real_date  |
+----------+-------+------------+
| New York | Yes   | 2021-09-15 |
| New York | no    | 2021-10-16 |
| Illinois | yes   | 2022-01-17 |
| New York | No    | 2022-02-18 |
+----------+-------+------------+
4 rows in set (0.000 sec)

DATA CLEANING FROM THE COMMAND LINE (OPTIONAL)

This section is marked “optional” because the solutions to tasks involve an 
understanding of some Unix-based utilities. Although this book does not con-
tain details about those utilities, you can find online tutorials with examples 
regarding these utilities.

This section contains several subsections that perform data cleaning tasks 
that involve the “sed” and “awk” utilities: 

• Replace multiple delimiters with a single delimiter (sed).
• Restructure a dataset so all rows have the same column count (awk).

Keep in mind the following point about these examples: they must be per-
formed from the command line before they can be processed in a Pandas data 
frame.

Working With the sed Utility

This section contains an example of how to use the sed command line util-
ity to replace different delimiters with a single delimiter for the fields in a text 
file. You can use the same code for other file formats, such as CSV files and 
TSV files.

Keep in mind that this section does not provide any details about sed 
beyond the code sample in this section. However, after you read the code—it 
is a one-liner—you will understand how to adapt that code snippet to your own 
requirements (i.e., how to specify different delimiters).

Listing 5.20 displays the contents of delimiter1.txt and Listing 5.21 
displays the contents of delimiter1.sh that replaces all delimiters with a 
comma (“,”).
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LISTING 5.20: delimiter1.txt

1000|Jane:Edwards^Sales
2000|Tom:Smith^Development
3000|Dave:Del Ray^Marketing

LISTING 5.21: delimiter1.sh

cat delimiter1.txt | sed -e 's/:/,/' -e 's/|/,/' -e 's/\^/,/'

Listing 5.26 starts with the cat command line utility, which sends the con-
tents of the file delimiter1.txt “standard output,” which is the screen (by 
default). However, in this example the output of this command becomes the 
input to the sed command because of the pipe (“|”) symbol. 

The sed command consists of three parts, all of which are connected by the 
“-e” switch. You can think of “-e” as indicating “there is more processing to be 
done” by the sed command. In this example, there are three occurrences of 
“-e,” which means that the sed command will be invoked three times.

The first code snippet is 's/:/,/', which translates into “replace each 
semi-colon with a comma.” The result of this operation is passed to the next 
code snippet, which is 's/|/,/'. This code snippet translates into “replace 
each pipe symbol with a comma.” The result of this operation is passed to 
the next code snippet, which is 's/\^/,/'.  This code snippet translates into 
“replace each caret symbol (“^”) with a comma.” The result of this operation is 
sent to standard output, which can be redirected to another text file. Launch 
the code in Listing 5.27 and you will see the following output:

1000,Jane,Edwards,Sales
2000,Tom,Smith,Development
3000,Dave,Del Ray,Marketing

There are three things to keep in mind. First, the snippet contains a back-
slash because the caret symbol (“^”) is a meta character, so we need to “escape” 
this character. The same is true for other meta characters, such as “$” and “.”.

Second, you can easily extend the sed command for each new delimiter 
that you encounter as a field separator in a text file: simply follow the pattern 
that you see in Listing 5.21.

Third, launch the following command to redirect the output of 
delimiter1.sh to the text file delimiter2.txt:

./delimiter1.sh > delimiter2.txt

If an error occurs in the preceding code snippet, make sure that 
delimiter1.sh is executable by invoking the following command:

chmod 755 delimiter1.sh

This concludes the example involving the sed command line utility, which 
is a very powerful utility for processing text files. Check online for articles and 
blog posts if you want to learn more about the sed utility.
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Working With the awk Utility

The awk command line utility is a self-contained programming language, 
with a truly impressive capability for processing text files. However, this sec-
tion does not provide details about awk beyond the code sample. If you are 
interested, there are plenty of online articles that provide in-depth explana-
tions regarding the awk utility.

Listing 5.22 displays the contents FixedFieldCount1.sh that illustrates 
how to use the awk utility in order to split a string into rows that contain three 
strings.

LISTING 5.22: FixedFieldCount1.sh

echo "=> pairs of letters:"
echo "aa bb cc dd ee ff gg hh"
echo

echo "=> split on multiple lines:"
echo "aa bb cc dd ee ff gg hh"| awk '
BEGIN { colCount = 3 }
{
  for(i=1; i<=NF; i++) {
     printf("%s ", $i)
     if(i % colCount == 0) { print "" }
  }
  print ""
}
'

Listing 5.22 displays the contents of a string, and then provides this 
string as input to the awk command. The main body of Listing 5.22 is a loop 
that iterates from 1 to NF, where NF is the number of fields in the input 
line, which in this example equals 8. The value of each field is represented 
by $i: $1 is the first field, $2 is the second field, and so forth. Note that 
$0 is the contents of the entire input line (which is used in the next code 
sample). 

Next, if the value of i (which is the field position, not the contents of the 
field) is a multiple of 3, then the code prints a linefeed. Launch the code in 
Listing 5.22 and you will see the following output:

=> pairs of letters:
aa bb cc dd ee ff gg hh

=> split on multiple lines:
aa bb cc 
dd ee ff 
gg hh 

Listing 5.23 displays the contents of employees.txt and Listing 5.24 
displays the contents of FixedFieldCount2.sh that illustrates how to use 
the awk utility in order to ensure that all the rows have the same number of 
columns.
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LISTING 5.23: employees.txt

jane:jones:SF:
john:smith:LA: 
dave:smith:NY: 
sara:white:CHI:
>>>none:none:none<<<:
jane:jones:SF:john:
smith:LA:
dave:smith:NY:sara:white:
CHI:

LISTING 5.24: FixedFieldCount2.sh

cat employees.txt | awk -F":" '{printf("%s", $0)}' | awk -F':' '
BEGIN { colCount = 3 } 
{ 
  for(i=1; i<=NF; i++) {
     printf("%s#", $i)
     if(i % colCount == 0) { print "" }
  }
}
'

Notice that the code in Listing 5.24 is almost identical to the code in 
Listing 5.28: the new code snippet that is shown in bold removes the “\n” char-
acter from its input that consists of the contents of employees.txt.  In case 
you need to be convinced, launch the following code snippet from the com-
mand line:

cat employees.txt | awk -F":" '{printf("%s", $0)}'

The output of the preceding code snippet is shown here:

jane:jones:SF:john:smith:LA:dave:smith:NY:sara:white:CHI:>>
>none:none:none<<<:jane:jones:SF:john:smith:LA:dave:smith:N
Y:sara:white:CHI:

The reason that the “\n” has been removed in the preceding output is 
because of this code snippet:

printf("%s", $0)

If you want to retain the “\n” character after each input line, then replace 
the preceding code snippet with this snippet:

printf("%s\n", $0)

 We have now reduced the task in Listing 5.24 to the same task as 
Listing 5.22, which is why we have the same awk-based inner code block.
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Now launch the code in Listing 5.24 and you will see the following output:

jane#jones#SF#
john#smith#LA#
dave#smith#NY#
sara#white#CHI#
>>>none#none#none<<<#
jane#jones#SF#
john#smith#LA#
dave#smith#NY#
sara#white#CHI#

SUMMARY

This chapter introduced you to SQL and how to invoke various types of SQL 
statements. You saw how to create tables manually from the SQL prompt and 
also by launching a SQL script that contains SQL statements for creating tables. 

You learned how to drop tables, along with the effect of the DELETE, 
TRUNCATE, and DROP keywords in SQL statements. Next, you learned how to 
invoke a SQL statement to dynamically create a new table based on the struc-
ture of an existing table. 

Then you saw an assortment of SQL statements that use the SELECT key-
word. Examples of such SQL statements include finding the distinct rows in 
a MySQL table, finding unique rows, along with using the EXISTS and LIMIT 
keywords. Moreover, you learned about the differences among the DELETE, 
TRUNCATE, and DROP keywords in SQL.

Next, you saw how to create indexes on MySQL tables, and some criteria for 
defining indexes, followed by how to select columns for an index.

Finally, you learned how to use the sed command line utility to replace 
multiple field delimiters with the same delimiter, followed by the awk com-
mand utility to generate a text file in which every row has the same number of 
columns.
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CHAPTER 6
nlP and data cleanIng

This chapter contains Python code samples for some NLP-related 
concepts, along with an assortment of code samples involving regular 
expressions, the Python library BeautifulSoup, Scrapy, and various 

NLP-related Python code samples that use the SpaCy library.
The first part of this chapter describes some common NLP tasks and NLP 

techniques, such as stemming and lemmatization. The second section dis-
cusses POS (parts of speech) in text as well as POS tagging techniques.

The third section contains examples of cleaning text via regular expres-
sion (REs), and also how to handle contractions of words. In addition, you will 
learn about BeautifulSoup, which is a Python module for scraping HTML 
Web pages. This section contains some Python code samples that retrieve and 
then manipulate the contents of an HTML Web page from the GitHub code 
repository. This section also contains a brief introduction to Scrapy, which is 
a Python-based library that provides Web scraping functionality and various 
other APIs.

NLP TASKS IN ML

Since there are many types of NLP tasks, there are also many NLP tech-
niques that have been developed, some of which are listed here:

text embeddings
text summarization
text classification
sentence segmentation
POS (part-of-speech tagging) 
NER (named entity recognition)
word sense disambiguation 
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text categorization
topic modeling
text similarity
syntax and parsing
language modeling
dialogs
probabilistic parsing 
clustering

In this chapter, we’ll focus on NLP preprocessing steps for training a lan-
guage model, some of which are discussed in the following subsections.

NLP Steps for Training a Model

Although the specific set of text-related tasks depends on the specific task 
that you are trying to complete, the following set of steps is common:

[1] convert words to lowercase
[1] noise removal
[2] normalization
[3] text enrichment 
[3] stop word removal 
[3] stemming
[3] lemmatization

The number in brackets in the preceding bullet list indicates the type of 
task. Specifically, the values [1], [2], and [3] indicate “must do,” “should do,” 
and “task dependent,” respectively.

TEXT NORMALIZATION AND TOKENIZATION

Text normalization involves several tasks, such as the removal of unwanted 
hash tags, emojis, URLs, special characters such as “&,” “!,” “$,” and so forth. 
However, you might need to make decisions regarding some punctuation marks.

First, what about the period (“.”) punctuation mark? If you retain every 
period (“.”) in a dataset, consider whether or not to treat this character as a token 
during the tokenization step. However, if you remove every period (“.”) from a 
dataset, this will also remove every ellipsis (three consecutive periods), and also 
the period from the strings “Mr.,” “U.S.A.,” “P.O.,” and so forth. If the dataset is 
small, perform a visual inspection of the dataset. If the dataset is very large, try 
inspecting several smaller and randomly selected subsets of the original dataset.

Second, although you might think it is a good idea to remove question 
marks (“?”), the opposite is true: in general, question marks enable you to iden-
tify questions (as opposed to statements) in a corpus.

Third, you also need to determine whether or not to remove numbers, which 
can convey quantity when they are separate tokens (“1,000 barrels of oil”) or 
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they can be data entry errors when they are embedded in alphabetic strings. 
For example, it is probably okay to remove the 99 from the string “large99 
oranges,” but what about the 99 in “99large oranges”?

Another standard normalization task involves converting all words to low-
ercase (“case folding”). Chinese characters do not have uppercase text, so con-
verting text to lowercase is unnecessary. Keep in mind that text normalization 
is entirely unrelated to normalizing database tables in an RDBMS, or normal-
izing (scaling) numeric data in machine learning tasks. The task of converting 
categorical (character) data into a numeric counterpart.

Although “case folding” is a straightforward task, this step can be problem-
atic. For instance, accents are optional for uppercase French words, and after 
case folding some words do require an accent. A simple example is the French 
word peche, which means fish or peach with one accent mark, and sin with a 
different accent mark. The Italian counterparts are pesce, pesca, and peccato, 
respectively, and there is no issue regarding accents marks. Incidentally, the 
plural of pesce is pesci (so Joe Pesci is Joe Fish or Joe Fishes, depending on 
whether you are referring to one type of fish or multiple types of fish). To a 
lesser extent, converting English words from uppercase to lowercase can cause 
issues: is the word “stone” from the noun “stone” or from the surname “Stone”?

After normalizing a dataset, tokenization involves “splitting” a sentence, 
paragraph, or document into its individual words (tokens). The complexity of 
this task can vary significantly between languages, depending on the nature 
of the alphabet of a specific language. In particular, tokenization is straight-
forward for Indo-European languages because those languages use a space 
character to separate words. 

However, although tokenization can be straightforward when working with 
regular text, the process can be more challenging when working with biomedi-
cal data that contains acronyms and a higher frequency use of punctuation. 
One NLP technique for handling acronyms is named entity recognition (NER), 
which is discussed later in this chapter.

Word Tokenization in Japanese

Unlike most languages, the use of a space character in Japanese text is 
optional. Another complicating factor is the existence of multiple alpha-
bets in Japanese, and sentences often contain a mixture of these alphabets. 
Specifically, Japanese supports Romaji (essentially the English alphabet), 
Hiragana, Katakana (used exclusively for words imported to Japanese from 
other languages), and Kanji characters. 

As a simple example, navigate to Google translate in your browser and enter 
the following sentence, which in English means “I gave a book to my friend”:

watashiwatomodachinihonoagemashita

The translation (which is almost correct) is the following text in Hiragana:

わたしはこれだけのほげあげました
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Now enter the same sentence, but with spaces between each word, as 
shown here:

watashi wa tomodachi ni hon o agemashita

Now Google translate produces the following correct translation in 
Hiragana:

私はともだちに本をあげました

The preceding sentence starts with the Kanji character 私 that is the cor-
rect translation for “watashi.”

Mandarin and Cantonese are two more languages that involves compli-
cated tokenization. Both of these languages are tonal, and they use pictographs 
instead of an alphabets. Mandarin provides Pinyin, which is the romanization 
of the sounds in Mandarin, along with 4 digits to indicate the specific tone for 
each syllable (the neutral sound does not have a tone). Mandarin has 6 tones, 
of which 4 are commonly used, whereas Cantonese has 9 tones (but does not 
have a counterpart to Pinyin).

As a simple example, the following sentences are in Mandarin and in 
Pinyin, respectively, and their translation into English is “How many children 
do you have”:

 • 你有几个孩子
• Nǐ yǒu jǐ gè háizi
• Ni3 you3 ji3ge4 hai2zi (digits instead of tone marks)

The second and third sentences in the preceding group are both Pinyin. 
The third sentence contains the numbers 2, 3, and 4 that correspond to the 
second, third, and fourth tones, respectively, in Mandarin. The third sentence 
is used in situations where the tonal characters are not supported (such as 
older browsers). Navigate to Google Translate and type the following words 
for the source language:

ni you jige haizi

Select Mandarin for the target language and you will see the following 
translation:

how many kids do you have

The preceding translation is quite impressive, when you consider that the 
tones were omitted, which can significantly change the meaning of words. If 
you are skeptical, look at the translation of the string “ma” when it is written 
with the first tone, then the second tone, and again with the third tone and the 
fourth tone: the meanings of these our words are entirely unrelated.

Tokenization can be performed via regular expressions (which are discussed 
in one of the appendices) and rule-based tokenization. However, rule-based 
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tokenizers are not well-equipped to handle rare words or compound words 
that are very common in German. 

Text Tokenization With Unix Commands

Text tokenization can be performed not only in Python but also from the 
Unix command line. For example, consider the text file words.txt whose 
contents are shown here:

lemmatization: removing word endings edit distance: measure 
the distance between two words based on the number of 
changes needed based on the inner product of 2 vectors a 
metric for determining word similarity

The following command illustrates how to tokenize the preceding para-
graph using several Unix commands that are connected via the Unix pipe (“|”) 
symbol:

tr -sc 'A-Za-z' '\n' < words.txt | sort | uniq

The output from the preceding command is shown here:

1a
2 based
1 between
1 changes
1 determining
2 distance
1 edit
1 endings
1for
1 inner
1 lemmatization
// text omitted for brevity

As you can see, the preceding output is an alphabetical listing of the tokens 
of the contents of the text file words.txt, along with the frequency of each 
token.

HANDLING STOP WORDS

Stop words are words that are considered unimportant in a sentence. 
Although the omission of such words would result in grammatically incor-
rect sentences, the meaning of such sentences would most likely still be 
recognizable. 

In English, stop words include the words “a,” “an,” and “the,” along with 
common words and prepositions (“inside,” “outside,” and so forth). Stop words 
are usually filtered from search queries because they would return a vast 
amount of unnecessary information. As you will see later, Python libraries 
such as NLTK provide a list of built-in stop words, and you can supplement that 
list of words with your own list. 
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Removing stop words works fine with BoW and tf-idf, both of which are 
discussed in Chapter 7, but they can adversely models that use word context 
to detect semantic meaning. A more detailed explanation (and an example) is 
here:

https://towardsdatascience.com/why-you-should-avoid-removing-stop-
words-aa7a353d2a52 

Keep in mind that a universal list of stop words does not exist, and differ-
ent toolkits (NLTK, gensim, and so forth) have different sets of stop words. 
The Sklearn library provides a list of stop words that consists of basic words 
(“and,” “the,” “her,” and so forth). However, a list of stop words for the text in 
a marketing-related website is probably different from such a list for a techni-
cal website. Fortunately, Sklearn enables you to specify your own list of stop 
words via the hyperparameter stop_words. 

Finally, the following link contains a list of stop words for an impressive 
number of languages:

https://github.com/Alir3z4/stop-words

WHAT IS STEMMING?

This concept refers to reducing words to their root or base unit. Keep in 
mind that a stemmer operates on individual words without any context for 
those words. Stemming will “chop off” the ends of words, which means that 
“fast” is the stem for the words fast, faster, and fastest. Stemming 
algorithms are typically rule-based and involve conditional logic. In general, 
stemming is simpler than lemmatization (discussed later), and it is a special 
case of normalization.

Singular versus Plural Word Endings

The manner in which the plural of a word is formed varies among lan-
guages. In many cases, the letter “s” or the letters “es” represent the plural 
form of words in English. In some cases, English words have a singular form 
that ends in s/us/x (basis, abacus, and box), and a plural form with the letter “I” 
or “ces”: cactus/cacti, appendix/appendices, and so forth.

However, German can form the plural of a noun with “er” and “en,” such as 
buch/bucher, frau/frauen, and so on.

Common Stemmers

The following list contains several commonly used stemmers in NLP:

Porter stemmer (English)
Lancaster stemmer
SnowballStemmers (more than 10 languages) 
ISRIStemmer (Arabic)
RSLPSStemmer (Portuguese)
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The Porter stemmer was developed in the 1980s, and while it is good in a 
research environment, it is not recommended for production. The Snowball 
stemmer is based on the Porter2 stemming algorithm, and it is an improved 
version of Porter (about 5% better).

The Lancaster stemmer is a good stemming algorithm, and you can even 
add custom rules to the Lancaster stemmer in NLTK (but results can be odd). 
The other three stemmers support non-English languages.

As a simple example, the following code snippet illustrates how to define 
two stemmers using the NLTK library:

import nltk
from nltk.stem import PorterStemmer, SnowballStemmer

porter = PorterStemmer()
porter.stem("Running")

snowball = SnowballStemmer("spanish", ignore_stopwords=True) 
snowball.stem("Corriendo")

Notice that the second stemmer defined in the preceding code block also 
ignores stop words.

Stemmers and Word Prefixes

Word prefixes can pose interesting challenges. For example, the prefix “un” 
often means “not” (such as the word unknown) but not in the case of “univer-
sity.” One approach for handling this type of situation involves creating a word 
list and after removing a prefix, check if the remaining word is in the list: if not, 
then the prefix in the original word is not a negative. Among the few (only?) 
stemmers that provides prefix stemming in NLTK are Arabic stemmers:

https://github.com/nltk/nltk/blob/develop/nltk/stem/arlstem.py#L115
https://github.com/nltk/nltk/blob/develop/nltk/stem/snowball.py#L372
However, it is possible to write custom Python code to remove prefixes. 

First, navigate to this URL to see a list of prefixes in the English language is here:
https://dictionary.cambridge.org/grammar/british-grammar/word-formation/

prefixes
https://stackoverflow.com/questions/62035756/how-to-find-the-prefix- 

of-a-word-for-nlp
Next, a Python code sample that implements a basic prefix finder is here:
https://stackoverflow.com/questions/52140526/python-nltk-stemmers- 

never-remove-prefixes

Over Stemming and Under Stemming

Over stemming occurs when too much of a word is truncated, which can 
result in unrelated words having the same stem. For example, consider the fol-
lowing sequence of words:

university, universities, universal, universe 
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The stem for the four preceding words is universe, even though these 
words have different meanings.

Under stemming is the opposite of over stemming: this happens when a 
word is insufficiently “trimmed.” For example, the words data and datu both 
have the stem dat, but what about the word date? This simple example illus-
trates that it is difficult to create good stemming algorithms.

WHAT IS LEMMATIZATION?

Lemmatization determines whether or not words have the same root, 
which involves the removal of inflectional endings of words. Lemmatization 
involves the WordNet database during the process of finding the root word of 
each word in a corpus.

Lemmatization finds the base form of a word, such as the base word good 
for the three words good, better, and best. Lemmatization determines the dic-
tionary form of words and therefore requires knowledge of parts of speech. In 
general, creating a lemmatizer is more difficult than a heuristic stemmer. The 
NLTK lemmatizer is based on the WordNet database.

Lemmatization is also relevant for verb tenses. For instance, the words run, 
runs, running, and ran are variants of the verb “run.” Another example of lem-
matization involves irregular verbs, such as “to be” and “to have” in romance 
languages. Thus, the collection of verbs is, was, were, and be are all variants of 
the verb “be.” Keep in mind that there is a trade-off: lemmatization can pro-
duce better results than stemming at the cost of being more computationally 
expensive.

Stemming/Lemmatization Caveats

Both techniques are designed for “recall” whereas precision tends to suffer. 
Result can also differ significantly in non-English languages, even those that 
seem related to English, because the implementation details of some concepts 
are quite different.

Although both techniques generate the root form of inflected words, 
the stem might not be an actual word, whereas the lemma is an actual lan-
guage word. In general, use stemming if you are primarily interested in 
higher speed, and use lemmatization if you are primarily interested in higher 
accuracy.

Limitations of Stemming and Lemmatization

Although stemming and lemmatization are suitable for Indo-European lan-
guages, these techniques are not as well-suited for Chinese because a Chinese 
character can be a combination of two other characters, all three of which can 
have different meanings. 

For example, the character for mother is the combination of the radical 
for female and the radical for horse. Hence, separating the two radicals for 
mother via stemming and lemmatization change the meaning of the word from 
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“mother” to “female.” More detailed information regarding Chinese natural 
language processing is available here:

https://towardsdatascience.com/chinese-natural-language-pre-processing-
an-introduction-995d16c2705f

WORKING WITH TEXT: POS

The acronym POS refers to parts of speech, which involves identifying the 
parts of speech for words in a sentence. The following subsections provide 
more details regarding POS, some POS techniques, and also NER (named entity 
recognition).

POS Tagging

Parts of Speech (POS) are the grammatical function of the words in a sen-
tence. Consider the following simple English sentence:

The sun gives warmth to the Earth.

In the preceding example, “sun” is the subject, “gives” is the verb, “warmth” 
is the direct object, and Earth is the indirect object. In addition, the subject, 
direct object, and direct object are also nouns.

When the meaning of a word “overloaded,” its function depends on the 
context. Here are three examples of using the word “bank” in three different 
contexts:

He went to the bank.
He sat on the river bank.
He cannot bank on that outcome.

POS tagging refers to assigning a grammatical tag to the words in a corpus, 
and useful for developing lemmatizers. POS tags are used during the creation 
of parse trees and to define NERs (discussed in the next section).

POS Tagging Techniques

Several major POS tagging techniques exist, each of which uses different 
criteria for assigning a POS tag to a given word.

Deep learning architectures, such as RNNs and LSTMs, can be used for 
assigning tags to words.

Lexical-based methods assign a tag to a word by determining the tags that is 
the most frequently associated with a given word.

A probabilistic method assigns a tag to a given word based on the frequency 
of a word or the probability of the occurrence of a particular tag sequence.

As you can probably surmise, rule-based methods involve rules. An example 
of a simple rule involves treating words that have an “ing” suffix as verbs. More 
complex rules can be devised that involve regular expressions. A rule-based sys-
tem can consist of hundreds of rules for deciding on the tag for a specific word.
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Other POS tagging techniques exist, which are also more complex, such as 
Hidden Markov Model (HMM) POS tagging.

Perform an online search for articles that contain more detailed informa-
tion about the preceding POS tagging techniques.

CLEANING DATA WITH REGULAR EXPRESSIONS

This section contains a simple preview of what you can accomplish with 
regular expressions when you need to clean your data. If you are new to regular 
expressions, look for various blog posts that contain introductory material. The 
main concepts for understanding the code samples in this section are listed 
here:

• the range [A-Z] matches any uppercase letter
• the range [a-z] matches any lowercase letter
• the range [a-zA-Z] matches any lowercase or uppercase letter
• the range [^a-zA-Z] matches anything except lowercase or uppercase 

letters

Listing 6.1 displays the contents of text_clean_regex.py that illustrates 
how to remove any symbols that are not characters from a text string.

LISTING 6.1: text_clean_regex.py

import re # this is for regular expressions

text = "I have 123 apples for sale. Call me at 650-555-1212 
or send me email at apples@acme.com."

print("text:")
print(text)
print()

# replace the '@' symbol with the string ' at ':
cleaned1 = re.sub('@', ' at ',text)
print("cleaned1:")
print(cleaned1)

# replace non-letters with ' ':
cleaned2 = re.sub('[^a-zA-Z]', ' ',cleaned1)
print("cleaned2:")
print(cleaned2)

# replace multiple adjacent spaces with a single ' ':
cleaned3 = re.sub('[ ]+', ' ',cleaned2)
print("cleaned3:")
print(cleaned3)

Listing 6.1 contains an import statement so that we can use regular 
expressions in the subsequent code. After initializing the variable text with a 
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sentence and displaying its contents, the variable cleaned1 is defined, which 
involves replacing the “@“ symbol with the text string “ at. “ (Notice the white 
space before and after the text “at”). Next, the variable cleaned2 is defined, 
which involves replacing anything that is not a letter with a white space. Finally, 
the variable cleaned3 is defined, which involves “squeezing” multiple white 
spaces into a single white space. Launch the code in Listing 6.1 and you will 
see the following output:

text:
I have 123 apples for sale. Call me at 650-555-1212 or send 
me email at apples@acme.com.

cleaned1:
I have 123 apples for sale. Call me at 650-555-1212 or send 
me email at apples at acme.com.
cleaned2:
I have     apples for sale  Call me at              or send 
me email at apples at acme com 
cleaned3:
I have apples for sale Call me at or send me email at 
apples at acme com 

Listing 6.2 displays the contents of text_clean_regex2.py that illus-
trates how to remove HTML tags from a text string.

LISTING 6.2: text_clean_regex2.py

import re # this is for regular expressions

# [^>]:  matches anything except a '>'
# <[^>]: matches anything after '<' except a '>'
tagregex = re.compile(r'<[^>]+>')

def remove_html_tags(doc):
  return tagregex.sub(':', doc)

doc1 = "<html><head></head></body><p>paragraph1</p><div>div 
element</div></html>"

print("doc1:")
print(doc1)
print()

doc2 = remove_html_tags(doc1)
print("doc2:")
print(doc2)

Listing 6.2 contains an import statement, followed by the variable 
tagregex, which is a regular expression that matches a left angle bracket 
“<“, followed by any character except for a right angle bracket “>”. Next, the 
Python function remove_html_tags() removes all the HTML tags in a text 
string. 
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The next portion of Listing 6.2 initializes the variable doc1 as an HTML 
string and displays its contents. The final code block invokes the Python func-
tion remove_html_tags() to remove the HTML tags from doc1, and then 
prints the results. Launch the code in Listing 6.2 and you will see the following 
output:

doc1:
<html><head></head></body><p>paragraph1</p><div>div 
element</div></html>

doc2:
:::::paragraph1::div element::

The third (and final) code sample for this section also involves regu-
lar expressions, and it is useful when you need to remove contractions (e.g., 
replacing “that’s” with “that is”).

Listing 6.3 displays the contents of text_clean_regex3.py that illus-
trates how to replace contractions with the original words.

LISTING 6.3: text_clean_regex3.py

import re # this is for regular expressions

def clean_text(text):
  text = text.lower()

  text = re.sub(r"i'm",     "i am", text)
  text = re.sub(r"he's",    "he is", text)
  text = re.sub(r"she's",   "she is", text)
  text = re.sub(r"that's",  "that is", text)
  text = re.sub(r"what's",  "what is", text)
  text = re.sub(r"where's", "where is", text)
  text = re.sub(r"how's",   "how is", text)
  text = re.sub(r"it is",    "it is", text)
  text = re.sub(r"\'ll",    " will", text)
  text = re.sub(r"\'ve",    " have", text)
  text = re.sub(r"\'re",    " are", text)
  text = re.sub(r"\'d",     " would", text)
  text = re.sub(r"n't",     "not", text)
  text = re.sub(r"won't",   "will not", text)
  text = re.sub(r"can't",   "can not", text)

  text = re.sub(r"[-()\"#/@;:<>{}'+=~|.!?,]", "", text)
  return text

sentences = ["It is a hot day and i'm sweating",
             "How's the zoom class going?",
             "She's smarter than me - that's a fact"]

for sent in sentences:
  print("Sentence:",sent)
  print("Cleaned: ",clean_text(sent))
  print("----------------")
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Listing 6.3 contains an import statement, followed by the Python func-
tion clean_text() that performs a brute-force replacement of hyphenated 
strings with their unhyphenated counterparts. The final code snippet in this 
function also removes any special characters in a text string. 

The next portion of Listing 6.3 initializes the variable sentences that con-
tains multiple sentences, followed by a loop that passes individual sentences to 
the Python clean_text() function. Launch the code in Listing 6.3 and you 
will see the following output:

Sentence: It is a hot day and i'm sweating
Cleaned:  it is a hot day and i am sweating
----------------
Sentence: How's the zoom class going?
Cleaned:  how is the zoom class going
----------------
Sentence: She's smarter than me - that's a fact
Cleaned:  she is smarter than me  that is a fact
----------------

The Python package contractions is an alternative to regular expres-
sions for expanding contractions. An example is shown later in this chapter.

Listing 6.4 displays the contents of remove_urls.py that illustrates how 
to remove URLs from an array of strings.

LISTING 6.4: remove_urls.py

import re
import pandas as pd

arr1 = ["https://www.yahoo.com",
        "http://www.acme.com"]

data = pd.DataFrame(data=arr1)

print("before:")
print(data)
print()

no_urls = []
for url in arr1:
  clean = re.sub(r"http\S+", "", url)
  no_urls.append(clean)

data["cleaned"] = no_urls

print("after:")
print(data)

Listing 6.4 starts with two import statements, followed by the initializa-
tion of the variable arr1 with two URLs. Next, the variable data is a Pandas 
data frame whose contents are based on the contents of arr1. The contents of 
data are displayed, followed by a for loop that removes the http prefix from 
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each element of arr1. The last code section appends a new column called 
cleaned to the data data frame and then displays the contents of that data 
frame. Launch the code in Listing 6.4 and you will see the following output:

before:
                                0
0  https://www.yahoo.com web page
1    http://www.acme.com web page

after:
                                0    cleaned
0  https://www.yahoo.com web page   web page
1    http://www.acme.com web page   web page

This concludes the brief introduction to cleaning data with basic regular 
expressions.

CLEANING DATA WITH THE CLEANTEXT LIBRARY

This section contains a simple Python code sample that uses the cleantext 
library to clean a text string.

Listing 6.1 displays the contents of clean_text.py that illustrates how to 
remove any symbols that are not characters from a text string.

LISTING 6.1: clean_text.py

import sys
sys.path.append('/usr/local/lib/python3.9/site-packages')

# pip3 install clean-text

#Importing the clean text library
from cleantext import clean

text = """
私わ悪ガキですよう Göteborg is a city in Sweden (https://
google.com), whose currency is obviously not the same as 
the Japanese ¥
"""

#Cleaning the "text" with clean text:
result = clean(text, 
      fix_unicode=True, 
      to_ascii=True, 
      lower=True, 
      no_urls=True, 
      no_numbers=True, 
      no_digits=True, 
      no_currency_symbols=True, 
      no_punct=True, 
      replace_with_punct=" ", 
      replace_with_url="", 
      replace_with_number="", 
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      replace_with_digit=" ", 
      replace_with_currency_symbol="yen")

print("original:")
print(text)
print()

print("cleaned:")
print(result)

Listing 6.4 contains an import statement and then initializes the varia-
ble text as a comment string that contains Hiragana, a city name (with an 
umlaut), and the Japanese yen currency symbol. 

The next portion of Listing 6.4 initializes the variable result with the 
result of invoking the clean() API with a long set of parameters and values 
for those parameters. For example, no_punct is equal to True, which means 
that punctuation will be suppressed. Now launch the code in Listing 6.3 and 
you will see the following output:

original:
私わ悪ガキですよう Göteborg is a city in Sweden (https://
google.com), whose currency is obviously not the same as 
the Japanese ¥

cleaned:
si wae gakidesuyou goteborg is a city in sweden whose 
currency is obviously not the same as the japanese yen

Notice that the preceding output translates Hiragana and Kanji to Romaji, 
but it is only partially correct.

Another Python library for cleaning text is called textcleaner, which 
you can also install via pip3 and more details are here:

https://pypi.org/project/textcleaner/

HANDLING CONTRACTED WORDS

This section contains an example of expanding contractions via the Python 
package contractions that is available here:

https://github.com/kootenpv/contractions
Install the contractions package with this command:

pip3 install contractions
Listing 6.5 displays the contents of contract.py that illustrates how to 

expand English contractions and also how to add custom expansion rules.

LISTING 6.5: contract.py

import contractions

sentences = ["what's new?",
             "how's the weather",

DDPP.indb   185 13-04-2022   10:31:52

https://pypi.org/project/textcleaner/
https://github.com/kootenpv/contractions


186 • Dealing with Data Pocket Primer

             "it is humid today",
             "we've been there before",
             "you should've been there!",
             "the sky's the limit"]

for sent in sentences:
  result = contractions.fix(sent)
  print("sentence:",sent)
  print("expanded:",result)
  print()

print("=> updating contraction rules...")
contractions.add("sky's", "sky is")

sent = "the sky's the limit"
result = contractions.fix(sent)
print("sentence:",sent)
print("expanded:",result)
print()

Listing 6.5 contains an import statement and then initializes the variable 
sentences to an array of text strings. The next portion of Listing 6.5 contains 
a loop that iterates through the array of strings in sentences, and then prints 
each sentence as well as the expanded version of the sentence. 

As you will see in the output, the contraction sky's in the last sentence in 
the array sentences is not expanded, so we will add a new expansion rule, as 
shown here:

contractions.add("sky's", "sky is")

Now when we process this string again, the contraction sky's is expanded 
correctly. Launch the code in Listing 6.5 and you will see the following output:

sentence: what's new?
expanded: what is new?

sentence: how's the weather
expanded: how is the weather

sentence: it is humid today
expanded: it is humid today

sentence: we've been there before
expanded: we have been there before

sentence: you should've been there!
expanded: you should have been there!

sentence: the sky's the limit
expanded: the sky's the limit

=> updating contraction rules...
sentence: the sky's the limit
expanded: the sky is the limit
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As an alternative, you can also write Python code to expand contractions, 
as shown in the following code block:

CONTRACT = {"how's":"how is", "what's":"what is", "it is":"it 
is", "we've":"we have", "should've" :"should have", "sky's": 
"sky is"}

sentences = ["what's new?",
             "how's the weather",
             "it is humid today", 
             "we've been there before", 
             "you should've been there!",
             "the sky's the limit"]

for sent in sentences:
  words = sent.split()
  expanded = [CONTRACT[w] if w in CONTRACT else w for w in words]
  new_sent = " ".join(expanded)
  print("sentence:",sent)
  print("expanded:",new_sent)
  print()

The next section contains some Python-based code samples that involve 
BoW (bag of words).

WHAT IS BEAUTIFULSOUP?

BeautifulSoup is a very useful Python module that provides a plethora 
of APIs for retrieving the contents of HTML Web pages and extracting subsets 
of their content using XPath-based expressions. If need be, you can find online 
tutorials that discuss basic concepts of XPath.

This section contains three code samples: how to retrieve the contents of an 
HTML Web page, how to display the contents of HTML anchor (“a”) tags, and 
how to remove nonalphanumeric characters from HTML anchor (“a”) tags. 

Listing 6.16 displays the contents of scrape_text1.py that illustrates 
how to retrieve the contents of the HTML Web page https://www.github.com.  

LISTING 6.16: scrape_text1.py

import requests
import re
from bs4 import BeautifulSoup

src = "https://www.github.com"

# retrieve html web page as text
text = requests.get(src).text
#print("text:",text)

# parse into BeautifulSoup object
soup = BeautifulSoup(text, "html.parser")
print("soup:",soup)
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Listing 6.16 contains import statements, followed by initializing the variable 
src as the URL for Github. Next, the variable text is initialized with the contents 
of the Github Web page, and then the variable soup is initialized as an instance of 
the BeautifulSoup class. Notice that html.parser is specified, which is why 
the HTML tags are removed. Launch the code in Listing 6.16 and you will see 
1,036 lines of output, and only the first portion of the output is displayed here:

soup:
<!DOCTYPE html>

<html lang="en">
<head>
<meta charset="utf-8"/>
<link href="https://github.githubassets.com" rel="dns-
prefetch"/>
<link href="https://avatars0.githubusercontent.com" 
rel="dns-prefetch"/>
<link href="https://avatars1.githubusercontent.com" 
rel="dns-prefetch"/>
<link href="https://avatars2.githubusercontent.com" 
rel="dns-prefetch"/>
<link href="https://avatars3.githubusercontent.com" 
rel="dns-prefetch"/>
<link href="https://github-cloud.s3.amazonaws.com" 
rel="dns-prefetch"/>
<link href="https://user-images.githubusercontent.com/" 
rel="dns-prefetch"/>
<link crossorigin="anonymous" href="https://github.
githubassets.com/assets/frameworks-146fab5ea30e8afac08dd110
13bb4ee0.css" integrity="sha512-FG+rXqMOivrAjdEQE7tO4BwM1p
oGmg70hJFTlNSxjX87grtrZ6UnPR8NkzwUHlQEGviu9XuRYeO8zH9YwvZh
dg==" media="all" rel="stylesheet">

Listing 6.17 displays the contents of scrape_text2.py that illustrates 
how to retrieve the contents of the HTML Web page https://www.github.com 
and display the contents of the HTML anchor (“a”) tags. The new code is 
shown in bold.

LISTING 6.17: scrape_text2.py

import requests
import re
from bs4 import BeautifulSoup

src = "https://www.github.com"

# retrieve html web page as text
text = requests.get(src).text
#print("text:",text)

# parse into BeautifulSoup object
soup = BeautifulSoup(text, "html.parser")
print("soup:",soup)
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# display contents of anchors ("a"):
for item in soup.find_all("a"):
  if len(item.contents) > 0:
    print("anchor:",item.get('href')) 

Listing 6.17 contains three import statements and then initializes the vari-
able src with the URL for Github. Next, the variable text is initialized with 
the contents of the Github page. The next snippet initializes the variable soup 
as an instance of the BeautifulSoup class. The final block of code is a loop 
(shown in bold) that iterates through all the <a> elements in the variable text, 
and displays the href value embedded in each <a> element (after determin-
ing that its contents are not empty). 

Launch the code in Listing 6.17 and you will see 102 lines of output, and 
only the first portion of the output is displayed here:

anchor: #start-of-content
anchor: https://help.github.com/articles/supported-browsers
anchor: https://github.com/
anchor: /join?ref_cta=Sign+up&ref_loc=header+logged+out&ref_
page=%2F&source=header-home
anchor: /features
anchor: /features/code-review/
anchor: /features/project-management/
anchor: /features/integrations
anchor: /features/actions
anchor: /features/packages
anchor: /features/security
anchor: /features#team-management
anchor: /features#hosting
anchor: /customer-stories
anchor: /security
anchor: /team

Listing 6.18 displays the contents of scrape_text3.py that illustrates 
how to remove the nonalphanumeric characters from the HTML anchor (“a”) 
tags in the HTML Web page https://www.github.com. The new code is shown 
in bold.

LISTING 6.18: scrape_text3.py

import requests
import re
from bs4 import BeautifulSoup

# removes non-alphanumeric characters
def remove_non_alpha_chars(text):
  # define the pattern to keep
  regex = r'[^a-zA-Z0-9]' 
  return re.sub(regex, '', text)

src = "https://www.github.com"
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# retrieve html web page as text                           
text = requests.get(src).text
#print("text:",text)

# parse into BeautifulSoup object
soup = BeautifulSoup(text, "html.parser")
print("soup:",soup)
# display contents of anchors ("a"):
for item in soup.find_all("a"):
  if len(item.contents) > 0:
   #print("anchor:",item.get('href'))
    cleaned = remove_non_alpha_chars(item.get('href'))
    print("cleaned:",cleaned) 

Listing 6.18 is similar to Listing 6.16, and differs in the for loop (shown in 
bold) and that displays the href values after removing nonalphabetic characters 
and also all whitespaces. Launch the code in Listing 6.18 and you will see 102 
lines of output, and only the first portion of the output is displayed here:

cleaned: startofcontent
cleaned: httpshelpgithubcomarticlessupportedbrowsers
cleaned: httpsgithubcom
cleaned: joinrefctaSignupreflocheaderloggedoutrefpage2F-
sourceheaderhome
cleaned: features
cleaned: featurescodereview
cleaned: featuresprojectmanagement
cleaned: featuresintegrations
cleaned: featuresactions
cleaned: featurespackages
cleaned: featuressecurity
cleaned: featuresteammanagement
cleaned: featureshosting
cleaned: customerstories
cleaned: security
cleaned: team

WEB SCRAPING WITH PURE REGULAR EXPRESSIONS

The previous section contains several examples of using BeautifulSoup 
to scrape HTML Web pages, and this section contains an example that involves 
only regular expressions. Once again, you need some familiarity with regular 
expressions, which are discussed in one of the appendices. 

Listing 6.19 displays the contents of scrape_pure_regex.py that illus-
trates how to retrieve the contents of the HTML Web page https://www.
github.com and remove the HTML tags with a single regular expression.  

LISTING 6.19: scrape_pure_regex.py

import requests
import re
import os
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src = "https://www.github.com"

# retrieve the web page contents:
r = requests.get(src)
print(r.text)

# remove HTML tags (notice the "?"):
pattern = re.compile(r'<.*?>')

cleaned = pattern.sub('', r.text)

#remove leading whitespaces:
cleaned = os.linesep.join([s.lstrip() for s in cleaned.
splitlines() if s])

#remove embedded blank lines:
cleaned = os.linesep.join([s for s in cleaned.splitlines() 
if s])
print("cleaned text:")
print(cleaned)

#remove ALL whitespaces:
#cleaned = cleaned.replace(" ", "")

#this does not work:
#cleaned = cleaned.trim(" ", "")

Listing 6.19 also removes the HTML elements from the variable text that 
contains the contents of the Github Web page. However, there is a subtle yet 
very important detail regarding the regular expression <.*> versus the regular 
expression <.*?>.

The regular expression <.*> performs a greedy match, which means 
that it will continue matching characters until the right-most “>” is encoun-
tered. However, we want the greedy match to stop after finding the first “>” 
character, which matches the previous “<” character. The solution is simple: 
specify the regular expression <.*?>, which contains a question mark (“?”) 
whose purpose is to disable the greedy matching nature of the metacharac-
ter “*”. 

Launch the code in Listing 6.19 and you will see the following output 
(some output omitted for brevity):

<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="utf-8">
  <link rel="dns-prefetch" href="https://github.
githubassets.com">
  <link rel="dns-prefetch" href="https://avatars0.
githubusercontent.com">
  <link rel="dns-prefetch" href="https://avatars1.
githubusercontent.com">
  <link rel="dns-prefetch" href="https://avatars2.
githubusercontent.com">
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  <link rel="dns-prefetch" href="https://avatars3.
githubusercontent.com">
  <link rel="dns-prefetch" href="https://github-cloud.
s3.amazonaws.com">
  <link rel="dns-prefetch" href="https://user-images.
githubusercontent.com/">

  <link crossorigin="anonymous" media="all" 
integrity="sha512-/uy49LxdzjR0L36uT6CnmV1omP/8ZHxvOg4
zq/dczzABHq9atntjJDmo5B7sV0J+AwVmv0fR0ZyW3EQawzdLFA==" 
rel="stylesheet" href="https://github.githubassets.com/
assets/frameworks-feecb8f4bc5dce34742f7eae4fa0a799.css" />
  <link crossorigin="anonymous" media="all" 
integrity="sha512-37pLQI8klDWPjWVVWFB9ITJLwVTTkp3Rt4bV
f+yixrViURK9OoGHEJDbTLxBv/rTJhsLm8pb00H2H5AG3hUJfg==" 
rel="stylesheet" href="https://github.githubassets.com/
assets/site-dfba4b408f2494358f8d655558507d21.css" />
  <meta name="viewport" content="width=device-width">
  
  <title>The world's leading software development platform 
· GitHub</title>

[details omitted for brevity]
    <div class="position-relative js-header-wrapper ">
      <a href="#start-of-content" class="px-2 py-4 bg-
blue text-white show-on-focus js-skip-to-content">Skip to 
content</a>
      <span class="Progress progress-pjax-loader position-
fixed width-full js-pjax-loader-bar">
        <span class="progress-pjax-loader-bar top-0 left-0" 
style="width: 0%;"></span>
      </span>
[details omitted for brevity]
cleaned text:
The world's leading software development platform · GitHub
Skip to content
GitHub no longer supports this web browser.
Learn more about the browsers we support.
<a href="/join?ref_cta=Sign+up&amp;ref_
loc=header+logged+out&amp;ref_page=%2F&amp;source=header-
home"
[details omitted for brevity]

WHAT IS SCRAPY?

In the previous section, you learned that BeautifulSoup is a Python-
based library for scraping HTML Web pages. BeautifulSoup also supports 
XPath (which is an integral component of XSLT), whose APIs enable you to 
parse the scraped data, and also to extract portions of that data. 

However, Scrapy is a Python-based library that provides data extraction 
and an assortment of additional APIs for a wide range of operations, including 
redirections, HTTP caching, filtering duplicated requests, preserving sessions/
cookies across multiple requests, and various other features. Scrapy supports 
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both CSS selectors and XPath expressions for data extraction. Moreover, you 
can also use BeautifulSoup or PyQuery as a data extraction mechanism.

Based on the preceding paragraph, you can probably see that while 
Scrapy and BeautifulSoup can do some of the same things (i.e., Web scrap-
ing), they have fundamentally different purposes. As a rule of thumb: use 
BeautifulSoup if you need a “one-off” Web page scraper. However, if you 
need to perform Web scraping and perform additional operations for one or 
more Web pages, then Scrapy is probably a better choice. 

At the same time, keep in mind that Scrapy does have a steeper learning 
curve than BeautifulSoup, so decide whether or not the extra features of 
Scrapy are necessary for your requirements before you invest your time learn-
ing Scrapy. As a starting point, the Scrapy documentation Web page is here:

https://doc.scrapy.org/en/latest/intro/tutorial.html

SUMMARY

This chapter described some common NLP tasks and NLP techniques, 
such as stemming and lemmatization. Then you learned about POS (parts of 
speech) in text as well as POS tagging techniques.

You also how to clean text via regular expression (REs), and also how to 
handle contractions of words. Then you learned about BeautifulSoup, which 
is a Python module for scraping HTML Web pages. 

Finally, you learned about Scrapy, which is a Python-based library that 
provides Web scraping functionality and various other APIs.
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CHAPTER 7
data VISualIzatIon

This chapter introduces data visualization, along with a wide-ranging 
collection of Python-based code samples that use various visualiza-
tion tools (including Matplotlib and Seaborn) to render charts and 

graphs. In addition, this chapter contains Python code samples that combine 
Pandas, Matplotlib, and built-in datasets. 

The first part of this chapter briefly discusses data visualization, with a short 
list of some data visualization tools, and a list of various types of visualization 
(bar graphs, pie charts, and so forth).

The second part of this chapter introduces you to Matplotlib, which is 
an open source Python library that is modeled after MatLab. This section also 
provides the Python code samples for the line graphs (horizontal, vertical, and 
diagonal) in the Euclidean plane that you saw in a previous chapter.

The third part of the chapter introduces you to Seaborn for data visualiza-
tion, which is a layer above Matplotlib. Although Seaborn does not have all 
of the features that are available in Matplotlib, Seaborn provides an easier 
set of APIs for rendering charts and graphs. 

The final portion of this chapter contains a very short introduction to 
Bokeh, along with a code sample that illustrates how to create a more artistic 
graphics effect with relative ease in Bokeh.

WHAT IS DATA VISUALIZATION?

Data visualization refers to presenting data in a graphical manner, such as 
bar charts, line graphs, heat maps, and many other specialized representations. 
As you probably know, big data comprises massive amounts of data, which lev-
erages data visualization tools to assist in making better decisions.

A key role for good data visualization is to tell a meaningful story, which 
in turn focuses on useful information that resides in datasets that can contain 
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many data points (i.e., billions of rows of data). Another aspect of data visuali-
zation is its effectiveness: how well does it convey the trends that might exist 
in the dataset?

There are many open source data visualization tools available, some of 
which are listed here (many others are available):

• Matplotlib
• Seaborn 
• Bokeh
• YellowBrick
• Tableau
• D3.js (JavaScript and SVG)

Incidentally, in case you have not already done so, it would be helpful to 
install the following Python libraries (using pip3) on your computer so that 
you can launch the code samples in this chapter:

pip3 install matplotlib
pip3 install seaborn
pip3 install bokeh

Types of Data Visualization

Bar graphs, line graphs, and pie charts are common ways to present data, 
and yet many other types exist, some of which are listed here: 

• 2D/3D area chart
• bar chart
• Gantt chart
• heat map
• histogram
• polar area
• scatter plot (2D or 3D)
• timeline

The Python code samples in the next several sections illustrate how to 
perform visualization via rudimentary APIs from matplotlib. 

WHAT IS MATPLOTLIB? 

Matplotlib is a plotting library that supports NumPy, SciPy, and tool-
kits such as wxPython (among others). Matplotlib supports only version 3 
of Python: support for version 2 of Python was available only through 2020. 
Matplotlib is a multi-platform library that is built on NumPy arrays.

The plotting-related code samples in this chapter use pyplot, 
which is a Matplotlib module that provides a MATLAB-like interface. 
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Here is an example of using pyplot (copied from https://www.biorxiv.org/
content/10.1101/120378v1.full.pdf) to plot a smooth curve based on negative 
powers of Euler’s constant e:

import matplotlib.pyplot as plt 
import numpy as np

a = np.linspace(0, 10, 100)
b = np.exp(-a)
plt.plot(a, b)
plt.show()

The Python code samples for visualization in this chapter use primarily 
Matplotlib, along with some code samples that use Seaborn. Keep in mind 
that the code samples that plot line segments assume that you are familiar with 
the equation of a (non-vertical) line in the plane: y = m*x + b, where m is the 
slope and b is the y-intercept.

Furthermore, some code samples use NumPy APIs such as np.linspace(), 
np.array(),  np.random.rand(), and np.ones() and you read relevant 
online articles if you need to refresh your memory for these APIs.

LINES IN A GRID IN MATPLOTLIB

Listing 7.1 displays the contents of diagonallines.py that illustrate how 
to plot lines in a grid.

LISTING 7.1: diagonallines.py

import numpy as np
import pylab
from itertools import product
import matplotlib.pyplot as plt

fig = plt.figure()
graph = fig.add_subplot(1,1,1)
graph.grid(which='major', linestyle='-', linewidth='0.5', color='red')

x1 = np.linspace(-5,5,num=200)
y1 = 1*x1
graph.plot(x1,y1, 'r-o')

x2 = np.linspace(-5,5,num=200)
y2 = -x2
graph.plot(x2,y2, 'b-x')

fig.show() # to update
plt.show()

Listing 7.1 contains some import statements and then initializes the vari-
ables x1 and y1 as an array of 200 equally space points, where the points in y1 
equal the values in x1.
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Similarly, the variables x2 and y2 are defined, except that the values in y2 
are the negative of the values in x2. The Pyplot API plot() uses the points 
variable to display a pair of diagonal line segments. 

Figure 7.1 displays a set of “dashed” line segment whose equations are 
contained in Listing 7.1.
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FIGURE 7.1. A pair of diagonal line segments.

A COLORED GRID IN MATPLOTLIB

Listing 7.2 displays the contents of plotgrid2.py that illustrate how to 
display a colored grid.

LISTING 7.2: plotgrid2.py

import matplotlib.pyplot as plt
from matplotlib import colors
import numpy as np

data = np.random.rand(10, 10) * 20

# create discrete colormap
cmap = colors.ListedColormap(['red', 'blue'])
bounds = [0,10,20]
norm = colors.BoundaryNorm(bounds, cmap.N)

fig, ax = plt.subplots()
ax.imshow(data, cmap=cmap, norm=norm)

# draw gridlines
ax.grid(which='major', axis='both', linestyle='-', 
color='k', linewidth=2)
ax.set_xticks(np.arange(-.5, 10, 1));
ax.set_yticks(np.arange(-.5, 10, 1));

plt.show()
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Listing 7.2 defines the NumPy variable data that defines a 2D set of points 
with 10 rows and 10 columns. The Pyplot API plot() uses the data variable 
to display a colored grid-like pattern. 

Figure 7.2 displays a colored grid whose equations are contained in 
Listing 7.2.
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FIGURE 7.2. A colored grid of line segments.

RANDOMIZED DATA POINTS IN MATPLOTLIB

Listing 7.3 displays the contents of lin_reg_plot.py that illustrate how 
to plot a graph of random points.

LISTING 7.3: lin_plot_reg.py

import numpy as np
import matplotlib.pyplot as plt

trX = np.linspace(-1, 1, 101) # Linear space of 101 and [-1,1]

#Create the y function based on the x axis
trY = 2*trX + np.random.randn(*trX.shape)*0.4+0.2

#create figure and scatter plot of the random points
plt.figure()
plt.scatter(trX,trY)

# Draw one line with the line function
plt.plot (trX, .2 + 2 * trX)
plt.show()  
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Listing 7.3 defines the NumPy variable trX that contains 101 equally 
spaced numbers that are between −1 and 1 (inclusive). The variable trY is 
defined in two parts: the first part is 2*trX and the second part is a random 
value that is partially based on the length of the one-dimensional array trX. 
The variable trY is the sum of these two “parts”, which creates a “fuzzy” line 
segment. The next portion of Listing 7.3 creates a scatterplot based on the 
values in trX and trY, followed by the Pyplot API plot() that renders a 
line segment.

Figure 7.3 displays a random set of points based on the code in 
Listing 7.3.
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FIGURE 7.3. A random set of points.

A HISTOGRAM IN MATPLOTLIB

Listing 7.4 displays the contents of histogram1.py that illustrate how to 
plot a histogram using Matplotlib.

LISTING 7.4: histogram1.py

import numpy as np
import Matplotlib.pyplot as plt

max1 = 500
max2 = 500

appl_count = 28 + 4 * np.random.randn(max1)
bana_count = 24 + 4 * np.random.randn(max2)

plt.hist([appl_count, appl_count],stacked=True,color=['r','b'])
plt.show()
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Listing 7.4 is straightforward: the NumPy variables appl_count and 
bana_count contain a random set of values whose upper bound is max1 and 
max2, respectively. The Pyplot API hist() uses the points appl_count and 
bana_count in order to display a histogram. Figure 7.4 displays a histogram 
whose shape is based on the code in Listing 7.4.
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FIGURE 7.4. A histogram based on random values.

A SET OF LINE SEGMENTS IN MATPLOTLIB

Listing 7.5 displays the contents of line_segments.py that illustrate how 
to plot a set of connected line segments in Matplotlib.

LISTING 7.5: line_segments.py

import numpy as np
import matplotlib.pyplot as plt

x = [7,11,13,15,17,19,23,29,31,37]

plt.plot(x) # OR: plt.plot(x, 'ro-') or bo
plt.ylabel('Height')
plt.xlabel('Weight')
plt.show()

Listing 7.5 defines the array x that contains a hard-coded set of val-
ues. The Pyplot API plot() uses the variable x to display a set of con-
nected line segments. Figure 7.5 displays the result of launching the code 
in Listing 7.5.
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FIGURE 7.5 A set of connected line segments.

PLOTTING MULTIPLE LINES IN MATPLOTLIB

Listing 7.6 displays the contents of plt_array2.py that illustrate the ease 
with which you can plot multiple lines in Matplotlib.

LISTING 7.6: plt_array2.py

import matplotlib.pyplot as plt

x = [7,11,13,15,17,19,23,29,31,37]
data = [[8, 4, 1], [5, 3, 3], [6, 0, 2], [1, 7, 9]]
plt.plot(data, 'd-')
plt.show()

Listing 7.6 defines the array data that contains a hard-coded set of values. 
The Pyplot API plot() uses the variable data to display a line segment. 
Figure 7.6 displays multiple lines based on the code in Listing 7.6.
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FIGURE 7.6. Multiple lines in Matplotlib.
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TRIGONOMETRIC FUNCTIONS IN MATPLOTLIB

In case you are wondering, you can display the graph of trigonometric func-
tions as easily as you can render “regular” graphs using Matplotlib. Listing 7.7 
displays the contents of sincos.py that illustrates how to plot a sine function 
and a cosine function in Matplotlib.

LISTING 7.7: sincos.py

import numpy as np
import math

x = np.linspace(0, 2*math.pi, 101)
s = np.sin(x)
c = np.cos(x)

import matplotlib.pyplot as plt
plt.plot (s)
plt.plot (c)
plt.show()

Listing 7.7 defines the NumPy variables x, s, and c using the NumPy 
APIs linspace(), sin(), and cos(), respectively. Next, the Pyplot 
API plot() uses these variables to display a sine function and a cosine 
function. 

Figure 7.7 displays a graph of two trigonometric functions based on the 
code in Listing 7.7.
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FIGURE 7.7. Sine and cosine trigonometric functions.

Now let’s look at a simple dataset consisting of discrete data points, which 
is the topic of the next section.
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DISPLAY IQ SCORES IN MATPLOTLIB

Listing 7.8 displays the contents of iq_scores.py that illustrates how to 
plot a histogram that displays IQ scores (based on a normal distribution).

LISTING 7.8: iq_scores.py

import numpy as npf
import matplotlib.pyplot as plt

mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)

# the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)

plt.xlabel('Intelligence')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()

Listing 7.8 defines the scalar variables mu and sigma, followed by the NumPy 
variable x that contains a random set of points. Next, the variables n, bins, and 
patches are initialized via the return values of the NumPy hist() API. Finally, 
these points are plotted via the usual plot() API to display a histogram.

Figure 7.8 displays a histogram whose shape is based on the code in 
Listing 7.8.
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FIGURE 7.8. A histogram to display IQ scores.

PLOT A BEST-FITTING LINE IN MATPLOTLIB

Listing 7.9 displays the contents of plot_best_fit.py that illustrates how 
to plot a best-fitting line in Matplotlib.
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LISTING 7.9: plot_best_fit.py

import numpy as np

xs = np.array([1,2,3,4,5], dtype=np.float64)
ys = np.array([1,2,3,4,5], dtype=np.float64)

def best_fit_slope(xs,ys):
  m = (((np.mean(xs)*np.mean(ys))-np.mean(xs*ys)) /
       ((np.mean(xs)**2) - np.mean(xs**2)))
  b = np.mean(ys) - m * np.mean(xs)

  return m, b

m,b = best_fit_slope(xs,ys)
print('m:',m,'b:',b)

regression_line = [(m*x)+b for x in xs]

import matplotlib.pyplot as plt
from matplotlib import style
style.use('ggplot')

plt.scatter(xs,ys,color='#0000FF')
plt.plot(xs, regression_line)
plt.show()

Listing 7.9 defines the NumPy array variables xs and ys that are “fed” into 
the Python function best_fit_slope() that calculates the slope m and the 
y-intercept b for the best-fitting line. The Pyplot API scatter() displays a 
scatter plot of the points xs and ys, followed by the plot() API that displays 
the best-fitting line. Figure 7.9 displays a simple line based on the code in 
Listing 7.9.
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FIGURE 7.9. A best-fitting line for a 2D dataset.
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This concludes the portion of the chapter regarding NumPy and Matplotlib. 
The next section introduces you to Sklearn, which is a powerful Python-based 
library that supports many algorithms for machine learning. After you have 
read the short introduction, subsequent sections contain Python code samples 
that combine Pandas, Matplotlib, and Sklearn built-in datasets.

THE IRIS DATASET IN SKLEARN

Listing 7.10 displays the contents of sklearn_iris.py that illustrates 
how to access the Iris dataset in Sklearn.

In addition to support for machine learning algorithms, Sklearn provides 
various built-in datasets that you can access with literally one line of code. In 
fact, Listing 7.10 displays the contents of sklearn_iris1.py that illustrates 
how you can easily load the Iris dataset into a Pandas data frame.

LISTING 7.10: sklearn_iris1.py

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris

iris = load_iris()

print("=> iris keys:")
for key in iris.keys():
  print(key)
print()

#print("iris dimensions:")
#print(iris.shape)
#print()

print("=> iris feature names:")
for feature in iris.feature_names:
  print(feature)
print()

X = iris.data[:, [2, 3]]
y = iris.target
print('=> Class labels:', np.unique(y))
print()

x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5

print("=> target:")
print(iris.target)
print()

print("=> all data:")
print(iris.data)
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Listing 7.10 contains several import statements and then initializes the 
variable iris with the Iris dataset. Next, a loop displays the keys in the data-
set, followed by another loop that displays the feature names. 

The next portion of Listing 7.10 initializes the variable X with the feature 
values in columns 2 and 3, and then initializes the variable y with the values of 
the target column. 

The variable x_min is initialized as the minimum value of column 0 and 
then an additional 0.5 is subtracted from x_min. Similarly, the variable x_max 
is initialized as the maximum value of column 0, and then an additional 0.5 
is added to x_max. The variables y_min and y_max are the counterparts to 
x_min and x_max, applied to column 1 instead of column 0. 

Launch the code in Listing 7.10 and you will see the following output (trun-
cated to save space):

Pandas df1:
      
=> iris keys:
data
target
target_names
DESCR
feature_names
filename

=> iris feature names:
sepal length (cm)
sepal width (cm)
petal length (cm)
petal width (cm)

=> Class labels: [0 1 2]

=> x_min: 0.5 x_max: 7.4
=> y_min: -0.4 y_max: 3.0

=> target:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 2 2]

=> all data:
[[5.1 3.5 1.4 0.2]
 [4.9 3.  1.4 0.2]
 [4.7 3.2 1.3 0.2]
 // details omitted for brevity
 [6.5 3.  5.2 2. ]
 [6.2 3.4 5.4 2.3]
 [5.9 3.  5.1 1.8]]

Sklearn, Pandas, and the Iris Dataset

Listing 7.11 displays the contents of pandas_iris.py that illustrates how 
to load the contents of the Iris dataset (from Sklearn) into a Pandas data 
frame.

DDPP.indb   207 13-04-2022   10:31:58



208 • Dealing with Data Pocket Primer

LISTING 7.11: pandas_iris.py

import numpy as np
import pandas as pd
from sklearn.datasets import load_iris

iris = load_iris()

print("=> IRIS feature names:")
for feature in iris.feature_names:
  print(feature)
print()

# Create a data frame with the feature variables
df = pd.Data frame(iris.data, columns=iris.feature_names)

print("=> number of rows:")
print(len(df))
print()

print("=> number of columns:")
print(len(df.columns))
print()

print("=> number of rows and columns:")
print(df.shape)
print()

print("=> number of elements:")
print(df.size)
print()

print("=> IRIS details:")
print(df.info())
print()

print("=> top five rows:")
print(df.head())
print()

X = iris.data[:, [2, 3]]
y = iris.target
print('=> Class labels:', np.unique(y))

Listing 7.11 contains several import statements and then initializes the 
variable iris with the IRIS dataset. Next, a for loop displays the feature 
names. The next code snippet initializes the variable df as a Pandas data 
frame that contains the data from the IRIS dataset.

The next block of code invokes some attributes and methods of a Pandas 
data frame to display the number of rows, columns, and elements in the data 
frame, as well as the details of the Iris dataset, the first five rows, and the 
unique labels in the IRIS dataset. Launch the code in Listing 7.20 and you will 
see the following output:
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=> IRIS feature names:
sepal length (cm)
sepal width (cm)
petal length (cm)
petal width (cm)

=> number of rows:
150

=> number of columns:
4

=> number of rows and columns:
(150, 4)

=> number of elements:
600

=> IRIS details:
<class 'pandas.core.frame.Data frame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 4 columns):
sepal length (cm)    150 non-null float64
sepal width (cm)     150 non-null float64
petal length (cm)    150 non-null float64
petal width (cm)     150 non-null float64
dtypes: float64(4)
memory usage: 4.8 KB
None

=> top five rows:
   sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0                5.1               3.5                1.4               0.2
1                4.9               3.0                1.4               0.2
2                4.7               3.2                1.3               0.2
3                4.6               3.1                1.5               0.2
4                5.0               3.6                1.4               0.2

=> Class labels: [0 1 2]

Now we will turn our attention to Seaborn, which is an efficient data visu-
alization package for Python.

WORKING WITH SEABORN

Seaborn is a Python package for data visualization that also provides a 
high-level interface to Matplotlib. Seaborn is easier to work with than 
Matplotlib, and actually extends Matplotlib, but keep in mind that 
Seaborn is not as powerful as Matplotlib.

Seaborn addresses two challenges of Matplotlib. The first involves the 
default Matplotlib parameters. Seaborn works with different parameters, 
which provides greater flexibility than the default rendering of Matplotlib 
plots. Seaborn addresses the limitations of the Matplotlib default values for 
features such as colors, tick marks on the upper and right axes, and the style 
(among others).
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In addition, Seaborn makes it easier to plot entire data frames (some-
what like pandas) than doing so in Matplotlib. Nevertheless, since Seaborn 
extends Matplotlib, knowledge of the latter is advantageous and will simplify 
your learning curve.

Features of Seaborn

Some of the features of Seaborn include:

• scale seaborn plots
• set the plot style
• set the figure size
• rotate label text
• set xlim or ylim
• set log scale
• add titles

Some useful methods:

• plt.xlabel()
• plt.ylabel()
• plt.annotate()
• plt.legend()
• plt.ylim()
• plt.savefig()

Seaborn supports various built-in datasets, just like NumPy and Pandas, 
including the Iris dataset and the Titanic dataset, both of which you will 
see in subsequent sections. As a starting point, the three-line code sample in 
the next section shows you how to display the rows in the built-in “tips” dataset.

SEABORN BUILT-IN DATASETS

Listing 7.12 displays the contents of seaborn_tips.py that illustrate how 
to read the tips dataset into a data frame and display the first five rows of the 
dataset.

LISTING 7.23: seaborn_tips.py

import seaborn as sns
df = sns.load_dataset("tips")
print(df.head())

Listing 7.12 is very simple: after importing seaborn, the variable df is ini-
tialized with the data in the built-in dataset tips, and the print() statement 
displays the first five rows of df. Note that the load_dataset() API searches 
for online or built-in datasets. The output from Listing 7.12 is here:

DDPP.indb   210 13-04-2022   10:31:59



Data Visualization • 211

   total_bill   tip     sex smoker  day    time  size
0       16.99  1.01  Female     No  Sun  Dinner     2
1       10.34  1.66    Male     No  Sun  Dinner     3
2       21.01  3.50    Male     No  Sun  Dinner     3
3       23.68  3.31    Male     No  Sun  Dinner     2
4       24.59  3.61  Female     No  Sun  Dinner     4

THE IRIS DATASET IN SEABORN

Listing 7.13 displays the contents of seaborn_iris.py that illustrate how 
to plot the Iris dataset.

LISTING 7.13: seaborn_iris.py

import seaborn as sns
import Matplotlib.pyplot as plt

# Load iris data
iris = sns.load_dataset("iris")

# Construct iris plot
sns.swarmplot(x="species", y="petal_length", data=iris)

# Show plot
plt.show()

Listing 7.13 imports seaborn and Matplotlib.pyplot and then ini-
tializes the variable iris with the contents of the built-in Iris dataset. 
Next, the swarmplot() API displays a graph with the horizontal axis labeled 
species, the vertical axis labeled petal_length, and the displayed points 
are from the Iris dataset. 

Figure 7.10 displays the images in the Iris dataset based on the code in 
Listing 7.13.
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FIGURE 7.10 The Iris dataset.
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THE TITANIC DATASET IN SEABORN

Listing 7.14 displays the contents of seaborn_titanic_plot.py that 
illustrates how to plot the Titanic dataset.

LISTING 7.14: seaborn_titanic_plot.py

import matplotlib.pyplot as plt
import seaborn as sns

titanic = sns.load_dataset("titanic")
g = sns.factorplot("class", "survived", "sex", 
data=titanic, kind="bar", palette="muted", legend=False)

plt.show()

Listing 7.14 contains the same import statements as Listing 7.13, and 
then initializes the variable titanic with the contents of the built-in Titanic 
dataset. Next, the factorplot() API displays a graph with dataset attributes 
that are listed in the API invocation. 

Figure 7.11 displays a plot of the data in the Titanic dataset based on the 
code in Listing 7.14.
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FIGURE 7.11. A histogram of the Titanic dataset.

EXTRACTING DATA FROM THE TITANIC DATASET IN SEABORN (1)

Listing 7.15 displays the contents of seaborn_titanic.py that illustrates 
how to extract subsets of data from the Titanic dataset.
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LISTING 7.15: seaborn_titanic.py

import matplotlib.pyplot as plt
import seaborn as sns

titanic = sns.load_dataset("titanic")
print("titanic info:")
titanic.info() 

print("first five rows of titanic:")
print(titanic.head())

print("first four ages:")
print(titanic.loc[0:3,'age'])

print("fifth passenger:")
print(titanic.iloc[4])

#print("first five ages:")
#print(titanic['age'].head())

#print("first five ages and gender:")
#print(titanic[['age','sex']].head())

#print("descending ages:")
#print(titanic.sort_values('age', ascending = False).head())

#print("older than 50:")
#print(titanic[titanic['age'] > 50])

#print("embarked (unique):")
#print(titanic['embarked'].unique())

#print("survivor counts:")
#print(titanic['survived'].value_counts())

#print("counts per class:")
#print(titanic['pclass'].value_counts())

#print("max/min/mean/median ages:")
#print(titanic['age'].max())
#print(titanic['age'].min())
#print(titanic['age'].mean())
#print(titanic['age'].median())

Listing 7.15 contains the same import statements as Listing 7.13, and 
then initializes the variable titanic with the contents of the built-in Titanic 
dataset. The next portion of Listing 7.15 displays various aspects of the Titanic 
dataset, such as its structure, the first five rows, the first four ages, and the 
details of the fifth passenger. 

As you can see, there is a large block of “commented out” code that you 
can uncomment in order to see the associated output, such as age, gender, 
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persons over 50, unique rows, and so forth. The output from Listing 7.15 is 
here:

#print(titanic['age'].mean())
titanic info:
<class 'pandas.core.frame.Data frame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
survived       891 non-null int64
pclass         891 non-null int64
sex            891 non-null object
age            714 non-null float64
sibsp          891 non-null int64
parch          891 non-null int64
fare           891 non-null float64
embarked       889 non-null object
class          891 non-null category
who            891 non-null object
adult_male     891 non-null bool
deck           203 non-null category
embark_town    889 non-null object
alive          891 non-null object
alone          891 non-null bool
dtypes: bool(2), category(2), float64(2), int64(4), object(5)
memory usage: 80.6+ KB
first five rows of titanic:
   survived  pclass     sex   age  sibsp  parch     fare embarked  class  \
0         0       3    male  22.0      1      0   7.2500        S  Third
1         1       1  female  38.0      1      0  71.2833        C  First
2         1       3  female  26.0      0      0   7.9250        S  Third
3         1       1  female  35.0      1      0  53.1000        S  First
4         0       3    male  35.0      0      0   8.0500        S  Third

     who  adult_male deck  embark_town alive  alone
0    man        True  NaN  Southampton    no  False
1  woman       False    C    Cherbourg   yes  False
2  woman       False  NaN  Southampton   yes   True
3  woman       False    C  Southampton   yes  False
4    man        True  NaN  Southampton    no   True
first four ages:
0    22.0
1    38.0
2    26.0
3    35.0
Name: age, dtype: float64
fifth passenger:
survived                 0
pclass                   3
sex                   male
age                     35
sibsp                    0
parch                    0
fare                  8.05
embarked                 S
class                Third
who                    man
adult_male            True
deck                   NaN
embark_town    Southampton
alive                   no
alone                 True
Name: 4, dtype: object
counts per class:
3    491
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1    216
2    184
Name: pclass, dtype: int64
max/min/mean/median ages:
80.0
0.42
29.69911764705882
28.0

EXTRACTING DATA FROM TITANIC DATASET IN SEABORN (2)

Listing 7.16 displays the contents of seaborn_titanic2.py that illus-
trates how to extract subsets of data from the Titanic dataset.

LISTING 7.16: seaborn_titanic2.py

import matplotlib.pyplot as plt
import seaborn as sns

titanic = sns.load_dataset("titanic")

# Returns a scalar
# titanic.ix[4, 'age']
print("age:",titanic.at[4, 'age'])

# Returns a Series of name 'age', and the age values associated
# to the index labels 4 and 5
# titanic.ix[[4, 5], 'age']
print("series:",titanic.loc[[4, 5], 'age'])

# Returns a Series of name '4', and the age and fare values
# associated to that row.
# titanic.ix[4, ['age', 'fare']]
print("series:",titanic.loc[4, ['age', 'fare']])

# Returns a Data frame with rows 4 and 5, and columns 'age' and 'fare'
# titanic.ix[[4, 5], ['age', 'fare']]
print("data frame:",titanic.loc[[4, 5], ['age', 'fare']])

query = titanic[
    (titanic.sex == 'female')
    & (titanic['class'].isin(['First', 'Third']))
    & (titanic.age > 30)
    & (titanic.survived == 0)
]
print("query:",query)

Listing 7.16 contains the same import statements as Listing 7.15, and 
then initializes the variable titanic with the contents of the built-in Titanic 
dataset. The next code snippet displays the age of the passenger with index 4 in 
the dataset (which equals 35). 

The following code snippet displays the ages of passengers with index val-
ues 4 and 5 in the dataset:

print("series:",titanic.loc[[4, 5], 'age'])
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The next snippet displays the age and fare of the passenger with index 4 in 
the dataset, followed by another code snippet displays the age and fare of the 
passengers with index 4 and index 5 in the dataset.

The final portion of Listing 7.16 is the most interesting part: it defines a 
variable query as shown here:

query = titanic[
    (titanic.sex == 'female')
    & (titanic['class'].isin(['First', 'Third']))
    & (titanic.age > 30)
    & (titanic.survived == 0)
]

The preceding code block will retrieve information about the female 
passengers who were in first class or third class, and who were also over 30, 
and did not survive the accident. The entire output from Listing 7.16 is 
here:

age: 35.0
series: 4    35.0
5     NaN
Name: age, dtype: float64
series: age       35
fare    8.05
Name: 4, dtype: object
data frame:     age    fare
4  35.0  8.0500
5   NaN  8.4583
query:      survived  pclass     sex   age  sibsp  parch     
fare embarked  class  \
18          0       3  female  31.0      1      0  18.0000        
S  Third   
40          0       3  female  40.0      1      0   9.4750        
S  Third   
132         0       3  female  47.0      1      0  14.5000        
S  Third   
167         0       3  female  45.0      1      4  27.9000        
S  Third   
177         0       1  female  50.0      0      0  28.7125        
C  First   
254         0       3  female  41.0      0      2  20.2125        
S  Third   
276         0       3  female  45.0      0      0   7.7500        
S  Third   
362         0       3  female  45.0      0      1  14.4542        
C  Third   
396         0       3  female  31.0      0      0   7.8542        
S  Third   
503         0       3  female  37.0      0      0   9.5875        
S  Third   
610         0       3  female  39.0      1      5  31.2750        
S  Third   
638         0       3  female  41.0      0      5  39.6875        
S  Third   
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657         0       3  female  32.0      1      1  15.5000        
Q  Third   
678         0       3  female  43.0      1      6  46.9000        
S  Third   
736         0       3  female  48.0      1      3  34.3750        
S  Third   
767         0       3  female  30.5      0      0   7.7500        
Q  Third   
885         0       3  female  39.0      0      5  29.1250        
Q  Third   

VISUALIZING A PANDAS DATASET IN SEABORN

Listing 7.17 displays the contents of pandas_seaborn.py that illustrate 
how to display a Pandas dataset in Seaborn.

LISTING 7.17: pandas_seaborn.py

import pandas as pd
import random
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.Data frame()

df['x'] = random.sample(range(1, 100), 25)
df['y'] = random.sample(range(1, 100), 25)

print("top five elements:")
print(df.head())

# display a density plot
#sns.kdeplot(df.y)

# display a density plot
#sns.kdeplot(df.y, df.x)

#sns.distplot(df.x)

# display a histogram
#plt.hist(df.x, alpha=.3)
#sns.rugplot(df.x)

# display a boxplot
#sns.boxplot([df.y, df.x])

# display a violin plot
#sns.violinplot([df.y, df.x])

# display a heatmap
#sns.heatmap([df.y, df.x], annot=True, fmt="d")

# display a cluster map
#sns.clustermap(df)
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# display a scatterplot of the data points
sns.lmplot('x', 'y', data=df, fit_reg=False)
plt.show()

Listing 7.17 contains several familiar import statements, followed by 
the initialization of the Pandas variable df as a Pandas data frame. The next 
two code snippets initialize the columns and rows of the data frame and the 
print() statement displays the first five rows. 

For your convenience, Listing 7.17 contains an assortment of “commented 
out” code snippets that use Seaborn in order to render a density plot, a histogram, 
a boxplot, a violin plot, a heatmap, and a cluster. Uncomment the portions that 
interest you in order to see the associated plot. The output from Listing 7.17 is 
here:

top five elements:
    x   y
0  52  34
1  31  47
2  23  18
3  34  70
4  71   1

Figure 7.12 displays a plot of the data in the Titanic dataset based on the 
code in Listing 7.17.
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FIGURE 7.12. A Pandas data frame displayed via Seaborn.
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DATA VISUALIZATION IN PANDAS

Although Matplotlib and Seaborn are often the “go to” Python libraries 
for data visualization, you can also use Pandas for such tasks.

Listing 7.18 displays the contents pandas_viz1.py that illustrates 
how to render various types of charts and graphs using Pandas and 
Matplotlib.

LISTING 7.18: pandas_viz1.py

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

df = pd.Data frame(np.random.rand(16,3), columns=['X1','X2','X3'])
print("First 5 rows:")
print(df.head())
print()

print("Diff of first 5 rows:")
print(df.diff().head())
print()

# bar chart:
#ax = df.plot.bar()

# horizontal stacked bar chart:
#ax = df.plot.barh(stacked=True)

# vertical stacked bar chart:
ax = df.plot.bar(stacked=True)

# stacked area graph:
#ax = df.plot.area()

# non-stacked area graph:
#ax = df.plot.area(stacked=False)

#plt.show(ax)

Listing 7.18 initializes the data frame df with a 16x3 matrix of random 
numbers, followed by the contents of df. The bulk of Listing 7.18 contains 
code snippets for generating a bar chart, a horizontal stacked bar chart, a verti-
cal stacked bar chart, a stacked area graph, and a nonstacked area graph. You 
can uncomment the individual code snippet that displays the graph of your 
choice with the contents of df. Launch the code in Listing 7.18 and you will 
see the following output:
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First 5 rows:
         X1        X2        X3
0  0.051089  0.357183  0.344414
1  0.800890  0.468372  0.800668
2  0.492981  0.505133  0.228399
3  0.461996  0.977895  0.471315
4  0.033209  0.411852  0.347165

Diff of first 5 rows:
         X1        X2        X3
0       NaN       NaN       NaN
1  0.749801  0.111189  0.456255
2 -0.307909  0.036760 -0.572269
3 -0.030984  0.472762  0.242916
4 -0.428787 -0.566043 -0.124150  

WHAT IS BOKEH?

Bokeh is an open source project that depends on Matplotlib as well as 
Sklearn. As you will see in the subsequent code sample, Bokeh generates an 
HTML Web page that is based on Python code, and then launches that Web 
page in a browser. Bokeh and D3.js (which is a JavaScript layer of abstrac-
tion over SVG) both provide elegant visualization effects that support anima-
tion effects and user interaction. 

Bokeh enables the rapid creation statistical visualization, and it works with 
other tools with as Python Flask and Django. In addition to Python, Bokeh 
supports Julia, Lua, and R (JSON files are generated instead of HTML Web pages).

Listing 7.19 displays the contents bokeh_trig.py that illustrates how to 
create a graphics effect using various Bokeh APIs.

LISTING 7.19: bokeh_trig.py

# pip3 install bokeh
from bokeh.plotting import figure, output_file, show
from bokeh.layouts import column
import bokeh.colors as colors
import numpy as np
import math

deltaY = 0.01
maxCount = 150
width  = 800
height = 400
band_width = maxCount/3

x = np.arange(0, math.pi*3, 0.05)
y1 = np.sin(x)
y2 = np.cos(x)

white = colors.RGB(255,255,255)
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fig1 = figure(plot_width = width, plot_height = height)

for i in range(0,maxCount):
  rgb1 = colors.RGB(i*255/maxCount, 0, 0)
  rgb2 = colors.RGB(i*255/maxCount, i*255/maxCount, 0)
  fig1.line(x, y1-i*deltaY,line_width = 2, line_color = rgb1)
  fig1.line(x, y2-i*deltaY,line_width = 2, line_color = rgb2)

for i in range(0,maxCount):
  rgb1 = colors.RGB(0, 0, i*255/maxCount)
  rgb2 = colors.RGB(0, i*255/maxCount, 0)
  fig1.line(x, y1+i*deltaY,line_width = 2, line_color = rgb1)
  fig1.line(x, y2+i*deltaY,line_width = 2, line_color = rgb2)
  if (i % band_width == 0):
    fig1.line(x, y1+i*deltaY,line_width = 5, line_color = white)

show(fig1)

Listing 7.19 starts with a commented out pip3 code snippet that you can 
launch from the command line in order to install Bokeh (in case you haven’t 
done so already).

The next code block contains several Bokeh-related statements as well as 
NumPy and Math.

Notice that the variable white is defined as an (R, G, B) triple of integers, 
which represents the red, green, and blue components of a color. In particular, 
(255, 255, 255) represents the color white (check online if you are unfamiliar 
with RGB). The next portion of Listing 7.19 initializes some scalar variables 
that are used in the two for loops that are in the second half of Listing 7.19. 

Next, the NumPy variable x is a range of values from 0 to math.PI/3, with 
an increment of 0.05 between successive values. Then the NumPy variables y1 
and y2 are defined as the sine and cosine values, respectively, of the values 
in x. The next code snippet initializes the variable fig1 that represents a context 
in which the graphics effects will be rendered. This completes the initialization 
of the variables that are used in the two loops.

The next portion of Listing 7.19 contains the first for loop that creates a 
gradient-like effect by defining (R, G, B) triples whose values are based par-
tially on the value of the loop variable i. For example, the variable rgb1 ranges 
in a linear fashion from (0, 0, 0) to (255, 0, 0), which represent the colors black 
and red, respectively. The variable rgb2 ranges in a linear fashion from (0, 0, 0) 
to (255, 255, 0), which represent the colors black and yellow, respectively. The 
next portion of the for loop contains two invocations of the fig1.line() API 
that renders a sine wave and a cosine wave in the context variable fig1.

The second for loop is similar to the first for loop: the main difference is 
that the variable rgb1 varies from black to blue, and the variable rgb2 vari-
ables from black to green. The final code snippet in Listing 7.19 invokes the 
show() method that generates an HTML Web page (with the same prefix as the 
Python file) and then launches the Web page in a browser. 
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Figure 7.13 displays the graphics effect based on the code in Listing 7.19. If 
this image is displayed as black and white, launch the code from the command 
line and you will see the gradient-like effects in the image.
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FIGURE 7.13 A Bokeh graphics sample.

SUMMARY

This chapter started with a brief introduction of a short list of data visuali-
zation tools, and a list of various types of visualization (bar graphs, pie charts, 
and so forth).

Then you learned about Matplotlib, which is an open source Python 
library that is modeled after MatLab. You saw some examples of plotting histo-
grams and simple trigonometric functions.

In addition, you were introduced to Seaborn, which is an extension of 
Matplotlib, and you saw examples of plotting lines and histograms, and also 
how to plot a Pandas data frame using Seaborn. 

Finally, you got a very short introduction to Bokeh, along with a code sam-
ple that illustrates how to create a more artistic graphics effect with relative 
ease in Bokeh.
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