

Learning GraphQL

Declarative Data Fetching for Modern Web Apps

Eve Porcello and Alex Banks

Learning GraphQL

by Eve Porcello and Alex Banks

Copyright © 2018 Moon Highway, LLC. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

		Acquisitions Editor: Mary Treseler

		Development Editor: Alicia Young

		Production Editor: Justin Billing

		Copyeditor: Chris Edwards

		Proofreader: Octal Publishing, Inc.

		Indexer: WordCo, Inc.

		Interior Designer: David Futato

		Cover Designer: Karen Montgomery

		Illustrator: Melanie Yarbrough

		August 2018: First Edition

Revision History for the First Edition

		2018-08-08: First Release

		2019-02-08: Second Release

			2021-09-24: Third Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492030713 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning GraphQL, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views. While the publisher and the authors have used good faith efforts to ensure that the information and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights.

978-1-492-03071-3

[LSI]

Preface

Acknowledgments

This book would not be a book without the help of many phenomenal people. It started with the idea from Ally MacDonald, our editor for Learning React, who encouraged us to write Learning GraphQL. We were then very lucky to get to work with Alicia Young, who shepherded the book to its printing. Thanks to Justin Billing, Melanie Yarbrough, and Chris Edwards who sanded off all of the rough edges during an extremely thorough production edit.

Throughout the process, we were fortunate to get feedback from Peggy Rayzis and Sashko Stubailo from the Apollo team who shared their insights and hot tips about the latest features. Thanks also to Adam Rackis, Garrett McCullough, and Shivi Singh, who were excellent technical editors.

We wrote this book about GraphQL because we love GraphQL. We think you will too.

Conventions Used in This Book

The following typographical conventions are used in this book:

		Italic

		
	Indicates new terms, URLs, email addresses, filenames, and file extensions.

	

		Constant width

		
	Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

	

		Constant width bold

		
	Shows commands or other text that should be typed literally by the user.

	

		Constant width italic

		
	Shows text that should be replaced with user-supplied values or by values determined by context.

	

Tip

This element signifies a tip or suggestion.

Note

This element signifies a general note.

Warning

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at https://github.com/moonhighway/learning-graphql/.

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: “Learning GraphQL by Eve Porcello and Alex Banks (O’Reilly). Copyright 2018 Moon Highway, LLC, 978-1-492-03071-3.”

If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari

Note

Safari (formerly Safari Books Online) is a membership-based training and reference platform for enterprise, government, educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interactive tutorials, and curated playlists from over 250 publishers, including O’Reilly Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

		O’Reilly Media, Inc.

		1005 Gravenstein Highway North

		Sebastopol, CA 95472

		800-998-9938 (in the United States or Canada)

		707-829-0515 (international or local)

		707-829-0104 (fax)

We have a web page for this book where we list errata and any additional information. You can access this page at http://bit.ly/learning-graphql-orm.

To comment or ask technical questions about this book, send email to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Chapter 1. Welcome to GraphQL

Before the Queen of England made him a knight, Tim Berners-Lee was a
programmer. He worked at CERN, the European particle physics laboratory
in Switzerland, and was surrounded by a swath of talented researchers.
Berners-Lee wanted to help his colleagues share their ideas, so he
decided to create a network in which scientists could post and update
information. The project eventually became the first web server and the
first web client, and the “WorldWideWeb” browser (later renamed “Nexus”) was rolled out at CERN in December 1990.

With his project, Berners-Lee made it possible for researchers to view
and update web content on their own computers. “WorldWideWeb” was HTML,
URLs, a browser, and a WYSIWYG interface in which to update content.

Today, the internet isn’t just HTML in a browser. The internet is
laptops. It’s wrist watches. It’s smartphones. It’s a radio-frequency identification (RFID) chip in your
ski lift ticket. It’s a robot that feeds your cat treats while you’re out of
town.

The clients are more numerous today, but we’re still striving to do the
same thing: load data somewhere as fast as possible. We need our
applications to be performant because our users hold us to a high
standard. They expect our apps to work well under any condition: from
2G on feature phones to blazing-fast fiber internet on big-screen
desktop computers. Fast apps make it easier for more people to interact
with our content. Fast apps make our users happy. And, yes, fast apps
make us money.

Getting data from a server to the client quickly and predictably is the
story of the web, past, present, and future. Although this book will often
dig in to the past for context, we’re here to talk about modern
solutions. We’re here to talk about the future. We’re here to talk about
GraphQL.

What Is GraphQL?

GraphQL is a query language for your APIs. It’s
also a runtime for fulfilling queries with your data. The GraphQL
service is transport agnostic but is typically served over HTTP.

To demonstrate a GraphQL query and its response, let’s take a look at
SWAPI, the Star Wars API. SWAPI is a Representational State Transfer (REST) API that has been wrapped with
GraphQL. We can use it to send queries and receive data.

A GraphQL query asks only for the data that it needs. Figure 1-1 is
an example of a GraphQL query. The query is on the left. We request the
data for a person, Princess Leia. We obtain Leia Organa’s record because we
specify that we want the fifth person (personID:5). Next, we ask for three fields of
data: name, birthYear, and created. On the right is our response: JSON
data formatted to match the shape of our query. This response contains
only the data that we need.

[image: lgql 0101]
Figure 1-1. Person query for the Star Wars API

We can then adjust the query because queries are interactive. We can
change it and see a new result. If we add the field filmConnection, we
can request the title of each of Leia’s films, as Figure 1-2 shows.

[image: lgql 0102]
Figure 1-2. Connection query

The query is nested, and when it is executed, can traverse related
objects. This allows us to make one HTTP request for two types of data.
We don’t need to make several round trips to drill down into multiple
objects. We don’t receive additional unwanted data about those types.
With GraphQL, our clients can obtain all of the data they need in one
request.

Whenever a query is executed against a GraphQL server, it is validated
against a type system. Every GraphQL service defines types in a GraphQL
schema. You can think of a type system as a blueprint for your API’s
data, backed by a list of objects that you define. For example, the
person query from earlier is backed by a Person object:

type Person {
 id: ID!
 name: String
 birthYear: String
 eyeColor: String
 gender: String
 hairColor: String
 height: Int
 mass: Float
 skinColor: String
 homeworld: Planet
 species: Species
 filmConnection: PersonFilmsConnection
 starshipConnection: PersonStarshipConnection
 vehicleConnection: PersonVehiclesConnection
 created: String
 edited: String
}

The Person type defines all of the fields, along with their types, that
are available to query on Princess Leia. In Chapter 3, we dig deeper into the schema and GraphQL’s type system.

GraphQL is often referred to as a declarative data-fetching language.
By that, we mean that developers will list their data requirements as
what data they need without focusing on how they’re going to get it.
GraphQL server libraries exist in a variety of different languages
including C#, Clojure, Elixir, Erlang, Go, Groovy, Java, JavaScript, .NET, PHP, Python, Scala, and Ruby.1

In this book, we focus on how to build GraphQL services with
JavaScript. All of the techniques that we discuss throughout this book are
applicable to GraphQL in any language.

The GraphQL Specification

GraphQL is a specification (spec) for client-server communication. What is a
spec? A spec describes the capabilities and characteristics of a language. We benefit from language specifications because they supply a common vocabulary and best practices for the community’s use of the language.

A fairly notable example of a software spec is the ECMAScript spec.
Every once in a while, a group of representatives from browser
companies, tech companies, and the community at large get together and
devise what should be included in (and left out of) the ECMAScript spec. The
same is true for GraphQL. A group of individuals got together and wrote
what should be included in (and left out of) the language. This
serves as a guideline for all of the implementations of GraphQL.

When the spec was released, the creators of GraphQL also shared a
reference implementation of a GraphQL server in JavaScript—graphql.js.
This is useful as a blueprint, but the goal of this reference
implementation is not to mandate which language you use to implement
your service. It’s merely a guide. After you have an understanding of the
query language and the type system, you can build your server in any
language you’d like.

If a spec and an implementation are different, what is actually in
the spec? The spec describes the language and grammar you should use when writing queries. It also sets up a type system plus the
execution and validation engines of that type system. Beyond that, the
spec isn’t particularly bossy. GraphQL doesn’t dictate which language to
use, how the data should be stored, or which clients to support. The
query language has guidelines but the actual design of your project is
up to you. (If you’d like to dig into the whole thing, you can explore the documentation.)

Design Principles of GraphQL

Even though GraphQL is not controlling about how you build your API, it
does offer some guidelines for how to think about a service:2

	Hierarchical

	
A GraphQL query is hierarchical. Fields are nested within other fields and the query is shaped like the data that it returns.

	Product centric

	
GraphQL is driven by the data needs of the client and the language and runtime that support the client.

	Strong typing

	
A GraphQL server is backed by the GraphQL type system. In the schema, each data point has a specific type against which it will be validated.

	Client-specified queries

	
A GraphQL server provides the capabilities that the clients are allowed to consume.

	Introspective

	
The GraphQL language is able to query the GraphQL server’s type system.

Now that we have an introductory understanding of what the GraphQL spec is, let’s look at why it was created.

Origins of GraphQL

In 2012, Facebook decided that it needed to rebuild the application’s native
mobile apps. The company’s iOS and Android apps were just thin wrappers around
the views of the mobile website. Facebook had a RESTful server and FQL
(Facebook’s version of SQL) data tables. Performance was struggling and
the apps often crashed. At that point, engineers realized they needed to
improve the way that data was being sent to their client applications.3

The team of Lee Byron, Nick Schrock, and Dan Schafer decided to rethink
their data from the client side. They set out to build GraphQL, a query
language that would describe the capabilities and requirements of data
models for the company’s client/server applications.

In July 2015, the team released its initial GraphQL specification and
a reference implementation of GraphQL in JavaScript called graphql.js.
In September 2016, GraphQL left its “technical preview” stage. This
meant that GraphQL was officially production-ready, even though it already had
been used for years in production at Facebook. Today, GraphQL now powers
almost all of Facebook’s data fetching and is used in production by IBM,
Intuit, Airbnb, and more.

History of Data Transport

GraphQL presents some very new ideas but all should be understood in a
historical context of data transport. When we think about data
transport, we’re trying to make sense of how to pass data back and forth
between computers. We request some data from a remote system and expect
a response.

Remote Procedure Call

In the 1960s, remote procedure call (RPC) was invented. An RPC was
initiated by the client, which sent a request message to a remote
computer to do something. The remote computer sent a response to the
client. These computers were different from clients and servers that we
use today, but the flow of information was basically the same: request
some data from the client, get a response from the server.

Simple Object Access Protocol

In the late 1990s, Simple Object Access Protocol (SOAP) emerged at
Microsoft. SOAP used XML to encode a message and HTTP as a
transport. SOAP also used a type system and introduced the concept of
resource-oriented calls for data. SOAP offered fairly predictable
results but caused frustration because SOAP implementations were fairly
complicated.

REST

The API paradigm that you’re probably most familiar with today is REST.
REST was defined in 2000 in Roy
Fielding’s doctoral dissertation at University of California–Irvine.
He described a resource-oriented architecture in which users would progress
through web resources by performing operations such as GET, PUT, POST,
and DELETE. The network of resources can be thought of as a virtual
state machine, and the actions (GET, PUT, POST, DELETE) are state
changes within the machine. We might take it for granted today, but this
was pretty huge. (Oh, and Fielding did get his Ph.D.)

In a RESTful architecture, routes represent information. For example,
requesting information from each of these routes will yield a specific
response:

/api/food/hot-dog
/api/sport/skiing
/api/city/Lisbon

REST allows us to create a data model with a variety of endpoints, a far
simpler approach than previous architectures. It provided a new way to
handle data on the increasingly complex web but didn’t enforce a
specific data response format. Initially, REST was used with XML. AJAX was originally an acronym that stood for Asynchronous JavaScript And XML, because the response data from an Ajax request was formatted as XML (it is now a freestanding word, spelled “Ajax”). This created a painful step
for web developers: the need to parse XML responses before the data
could be used in JavaScript.

Soon after, JavaScript Object Notation (JSON) was developed and
standardized by Douglas Crockford. JSON is language agnostic and
provides an elegant data format that many different languages can parse and consume. Crockford went on to write the seminal JavaScript: The Good Parts (O’Reilly, 2008) in which he let us know that JSON was one of the good parts.

The influence of REST is undeniable. It’s used to build countless APIs.
Developers up and down the stack have benefitted from it. There are even
devotees so interested in arguing about what is and is not RESTful that
they’ve been dubbed RESTafarians. So, if that’s the case, why did Byron,
Schrock, and Schafer embark on their journey to create something new?
We can find the answer in some of REST’s shortcomings.

REST Drawbacks

When GraphQL was first released, some touted it as a replacement to
REST. “REST is dead!” early adopters cried, and then encouraged us all
to throw a shovel in the trunk and drive our unsuspecting REST APIs out
to the woods. This was great for getting clicks on blogs and starting
conversations at conferences, but painting GraphQL as a REST killer is
an oversimplification. A more nuanced take is that as the web has
evolved, REST has shown signs of strain under certain conditions.
GraphQL was built to ease the strain.

Overfetching

Suppose that we’re building an app that uses data from the REST version of
SWAPI. First, we need to load some data about character number 1, Luke
Skywalker.4 We can make a GET request for this information by visiting https://swapi.co/api/people/1/. The response is this JSON
data:

{
 "name": "Luke Skywalker",
 "height": "172",
 "mass": "77",
 "hair_color": "blond",
 "skin_color": "fair",
 "eye_color": "blue",
 "birth_year": "19BBY",
 "gender": "male",
 "homeworld": "https://swapi.co/api/planets/1/",
 "films": [
 "https://swapi.co/api/films/2/",
 "https://swapi.co/api/films/6/",
 "https://swapi.co/api/films/3/",
 "https://swapi.co/api/films/1/",
 "https://swapi.co/api/films/7/"
],
 "species": [
 "https://swapi.co/api/species/1/"
],
 "vehicles": [
 "https://swapi.co/api/vehicles/14/",
 "https://swapi.co/api/vehicles/30/"
],
 "starships": [
 "https://swapi.co/api/starships/12/",
 "https://swapi.co/api/starships/22/"
],
 "created": "2014-12-09T13:50:51.644000Z",
 "edited": "2014-12-20T21:17:56.891000Z",
 "url": "https://swapi.co/api/people/1/"
}

This is a huge response. The response exceeds our app’s data needs. We
just need the information for name, mass, and height:

 {
 "name": "Luke Skywalker",
 "height": "172",
 "mass": "77"
 }

This is a clear case of overfetching—we’re getting a lot of data
back that we don’t need. The client requires three data points, but
we’re getting back an object with 16 keys and sending information over
the network that is useless.

In a GraphQL application, how would this request look? We still want
Luke Skywalker’s name, height, and mass here in Figure 1-3.

[image: Luke Skywalker Query]
Figure 1-3. Luke Skywalker query

On the left, we issue our GraphQL query. We ask for only the fields that
we want. On the right, we receive a JSON response, this time containing only
the data that we requested, not 13 extra fields that are required to
travel from a cell tower to a phone for no reason at all. We ask for
data in a certain shape, we receive the data back in that shape. Nothing
more, nothing less. This is more declarative and will likely yield a
faster response given that extraneous data is not being fetched.

Underfetching

Our project manager just showed up at our desk and wants to add another
feature to the Star Wars app. In addition to name, height, and mass, we
now need to display a list of movie titles for all films that Luke
Skywalker is in. After we request the data from https://swapi.co/api/people/1/, we still need to make additional requests for more data. This means we underfetched.

To get the title of each film, we need to fetch data from each of the
routes in the films array:

 "films": [
 "https://swapi.co/api/films/2/",
 "https://swapi.co/api/films/6/",
 "https://swapi.co/api/films/3/",
 "https://swapi.co/api/films/1/",
 "https://swapi.co/api/films/7/"
]

Getting this data requires one request for Luke Skywalker
(https://swapi.co/api/people/1/) and then five more for each of the
films. For each film, we get another large object. This time, we
use only one value.

 {
 "title": "The Empire Strikes Back",
 "episode_id": 5,
 "opening_crawl": "...",
 "director": "Irvin Kershner",
 "producer": "Gary Kurtz, Rick McCallum",
 "release_date": "1980-05-17",
 "characters": [
 "https://swapi.co/api/people/1/",
 "https://swapi.co/api/people/2/",
 "https://swapi.co/api/people/3/",
 "https://swapi.co/api/people/4/",
 "https://swapi.co/api/people/5/",
 "https://swapi.co/api/people/10/",
 "https://swapi.co/api/people/13/",
 "https://swapi.co/api/people/14/",
 "https://swapi.co/api/people/18/",
 "https://swapi.co/api/people/20/",
 "https://swapi.co/api/people/21/",
 "https://swapi.co/api/people/22/",
 "https://swapi.co/api/people/23/",
 "https://swapi.co/api/people/24/",
 "https://swapi.co/api/people/25/",
 "https://swapi.co/api/people/26/"
],
 "planets": [
 //... Long list of routes
],
 "starships": [
 //... Long list of routes
],
 "vehicles": [
 //... Long list of routes
],
 "species": [
 //... Long list of routes
],
 "created": "2014-12-12T11:26:24.656000Z",
 "edited": "2017-04-19T10:57:29.544256Z",
 "url": "https://swapi.co/api/films/2/"
 }

If we wanted to list the characters that are part of this movie, we’d
need to make a lot more requests. In this case, we’d need to hit 16 more
routes and make 16 more roundtrips to the client. Each HTTP request uses
client resources and overfetches data. The result is a slower user
experience, and users with slower network speeds or slower devices might
not be able to view the content at all.

The GraphQL solution to underfetching is to define a nested query and
then request the data all in one fetch, as Figure 1-4 shows.

[image: Films Connection]
Figure 1-4. Films connection

Here, we receive only the data that we need in one request. And, as
always, the shape of the query matches the shape of the returned data.

Managing REST Endpoints

Another common complaint about REST APIs is the lack of flexibility. As
the needs on the client change, you usually have to create new
endpoints, and those endpoints can begin to multiply quickly. To
paraphrase Oprah, “You get a route! You get a route! Every! Body! Gets!
A! Route!”

With the SWAPI REST API, we had to make requests to numerous routes. Larger
apps typically utilize custom endpoints to minimize HTTP requests. You
might see endpoints like /api/character-with-movie-title begin popping
up. Development speed can be slow because setting up new endpoints often
means that frontend and backend teams have more planning and
communication to do with each other.

With GraphQL, the typical architecture involves a single endpoint. The
single endpoint can act as a gateway and orchestrate several data
sources, but the one endpoint still makes organization of data easier.

In this discussion of REST drawbacks, it’s important to note that many
organizations use GraphQL and REST together. Setting up a GraphQL
endpoint that fetches data from REST endpoints is a perfectly valid way
to use GraphQL. It can be a great way to incrementally adopt GraphQL at
your organization.

GraphQL in the Real World

GraphQL is used by a variety of companies to power their apps, websites,
and APIs. One of the most visible early adopters of GraphQL was GitHub.
Its REST API went through three iterations, and version 4 of its
public API uses GraphQL. As it mentions on the
website, GitHub found that “the
ability to define precisely the data you want-and only the data you
want-is a powerful advantage over the REST API v3 endpoints.”

Other companies, like The New York Times, IBM, Twitter, and Yelp, have put
their faith in GraphQL, as well, and developers from those teams are
often found evangelizing the benefits of GraphQL at conferences.

There are at least three conferences devoted to GraphQL specifically:
GraphQL Summit in San Francisco, GraphQL Finland in Helsinki, and GraphQL Europe in Berlin. The community continues to grow via local meetups and a variety of software
conferences.

GraphQL Clients

As we’ve said numerous times, GraphQL is just a spec. It doesn’t care whether
you’re using it with React or Vue or JavaScript or even a browser.
GraphQL has opinions about a few specific topics, but beyond that, your
architectural decisions are up to you. This has led to the emergence of
tools to enforce some choices beyond the spec. Enter GraphQL clients.

GraphQL clients have emerged to speed the workflow for developer teams
and improve the efficiency and performance of applications. They handle
tasks like network requests, data caching, and injecting data into the
user interface. There are many GraphQL clients, but the leaders in the
space are Relay and
Apollo.

Relay is Facebook’s client that works with React and React Native. Relay
aims to be the connective tissue between React components and the data
that is fetched from the GraphQL server. Relay is used by Facebook,
GitHub, Twitch, and more.

Apollo Client was developed at Meteor Development Group and is a
community-driven effort to build more comprehensive tooling around GraphQL. Apollo Client supports all major frontend
development platforms and is framework agnostic. Apollo also develops
tools that assist with the creation of GraphQL services, the performance
enhancement of backend services, and tools to monitor the performance
of GraphQL APIs. Companies, including Airbnb, CNBC, The New York Times,
and Ticketmaster use Apollo Client in production.

The ecosystem is large and continues to change, but the good news is
that the GraphQL spec is a pretty stable standard. In upcoming chapters,
we discuss how to write a schema and create a GraphQL
server. Along the way, there are learning resources to support your journey in this book’s GitHub repository: https://github.com/moonhighway/learning-graphql/. There you’ll find helpful links, samples, and all of the project files by chapter.

Before we dig in to the tactics of working with GraphQL, let’s talk a bit about graph theory and the rich history of the ideas found in GraphQL.

1 See the GraphQL Server Libraries at https://graphql.org/code/.
2 See the GraphQL Spec, June 2018.
3 See “Data Fetching for React Applications” by Dan Schafer and Jing Chen, https://www.youtube.com/watch?v=9sc8Pyc51uU.
4 Note that the SWAPI data doesn’t include the most recent Star Wars films.

Chapter 2. Graph Theory

The alarm sounds. You reach for your phone. When you turn off the
beeping, you see two notifications. Fifteen people liked a tweet that
you wrote last night. Nice. Three people retweeted it. Double nice. Your
momentary Twitter notoriety was brought to you by a graph (as seen in Figure 2-1).

[image: Twitter Likes and Retweets Diagram]
Figure 2-1. Twitter likes and retweets diagram

You’re running up the stairs to catch the “L” at Irving Park. You jump in
right before the doors close. Perfect. The train shakes side to side as
you move forward, connecting every stop.

The doors open and close at each station. First, Addison. Then, Paulina,
Southport, and Belmont. At Belmont, you cross the platform to transfer to
the Red Line. On the Red Line, you make two more stops: Fullerton and North/Clybourn. This graph brought you to work, as shown in Figure 2-2.

[image: Chicago El Map]
Figure 2-2. Chicago “L” map

You’re riding the escalator up to street level when your phone rings.
It’s your sister. She says that she wants to buy train tickets to go to
your Grandpa’s 80th birthday party in July. “Mom’s dad or Dad’s dad?”
you ask. “Dad’s, but I think Mom’s parents will be there, too. And Aunt
Linda and Uncle Steve.” You begin to picture who will be there. Another
party planned by another graph: a family tree. Figure 2-3 shows this graph.

[image: Family Tree]
Figure 2-3. Family tree

Before long, you begin noticing graphs everywhere. You see them in social media apps, route maps, and snow day phone trees. And, from spectacular celestial constellations as seen in Figure 2-4.

[image: Big Dipper]
Figure 2-4. Big dipper

To nature’s smallest building blocks, seen in Figure 2-5.

[image: H2O Diagram]
Figure 2-5. H2O diagram

Graphs are all around us because they are a great way to diagram
interconnected items, people, ideas, or pieces of data. But where did
the concept of a graph come from? To understand this, we can take a closer look at graph theory and its origin in mathematics.

Note

You don’t need to know anything about graph theory to work successfully with GraphQL. There won’t be a quiz. We do, however, think it’s interesting to explore the history behind these concepts to add some additional context.

Graph Theory Vocabulary

Graph theory is the study of graphs. Graphs are used formally to
represent a collection of interconnected objects. You can think of a
graph as an object containing data points and their connections. In
computer science, graphs typically describe networks of data. A graph might look something like that shown in Figure 2-6.

[image: Graph Diagram]
Figure 2-6. Graph diagram

This graph diagram is made up of four circles that represent data
points. In graph terminology, these are called nodes or vertices.
The lines or connections between these nodes are called edges, of
which there are five.1

As an equation, a graph is G = (V, E).

Starting from the easiest abbreviation, G stands for graph, and V describes a set of vertices or nodes. For this graph, V would equal the following:

 vertices = { 1, 2, 3, 4}

E stands for a set of edges. Edges are represented by pairs of nodes.

 edges = { {1, 2},
 {1, 3},
 {1, 4},
 {2, 4},
 {3, 4} }

In the list of edge pairs, what would happen if we rearranged their
order? For example:

 edges = { {4, 3},
 {4, 2},
 {4, 1},
 {3, 1},
 {2, 1} }

In this case, the graph remains the same, as Figure 2-7 shows.

[image: Graph Diagram]
Figure 2-7. Graph diagram

The equation still represents the graph because there is no direction or
hierarchy between the nodes. In graph theory, we call this an
undirected graph. The edge definitions, or connections between data
points, are unordered pairs.

When traversing, or visiting, different nodes of this graph, you could
start anywhere and end anywhere, moving in any direction. Data doesn’t
follow in an obvious numerical order, and an undirected graph is,
therefore, a nonlinear data structure. Let’s consider another type of graph, the directed graph, which you can see in Figure 2-8.

[image: Directed Graph Diagram]
Figure 2-8. Directed graph diagram

The number of nodes is the same, but the edges look different. Instead
of lines, they are arrows. There is a direction or flow between nodes in
this graph. To represent it, we’d use the following:

 vertices = {1, 2, 3, 4}
 edges = ({1, 2},
 {1, 3}
 {3, 4})

All together, our graph equation would be as follows:

 graph = ({1, 2, 3, 4},
 ({1, 2}, {1, 3}, {3, 4}))

Notice that the pairs are wrapped in parentheses rather than curly
braces. The parentheses mean that these edge definitions are ordered
pairs. Whenever the edges are ordered pairs, we have a directed graph or
digraph. What would happen if we rearranged these ordered pairs? Would
our diagram look the same, as was the case with the undirected graph?

 graph = ({1, 2, 3, 4},
 ({4, 3}, {3, 1}, {1, 2}))

The resulting diagram would look quite different with node 4 now at the
root, as illustrated in Figure 2-9.

[image: Directed Graph Diagram]
Figure 2-9. Directed graph diagram

To traverse the graph, you’d need to start travel at node 4 and visit
each node of the graph by following the arrows. To help visualize
traversal, it can be useful to picture physically traveling from one
node to another. In fact, physical travel is how these graph theory
concepts emerged.

History of Graph Theory

We can trace the study of graph theory back to the town of Königsberg, Prussia in 1735. Situated on the Pregel River, the town was a shipping
hub that had two large islands connected by seven bridges to the four
main landmasses, as Figure 2-10 shows.

[image: Königsberg Bridges]
Figure 2-10. The Königsberg bridges

Königsberg was a gorgeous town, and the people of the town loved to
spend their Sundays getting fresh air and walking the bridges. Over
time, the townspeople became obsessed with trying to solve a puzzle: how
could they cross over each of the seven bridges once without ever
crossing back across the same bridge? They walked the town trying to
visit each island and cross every bridge without repeating bridges but
found themselves stuck. Hoping to get some help with the problem, they
called upon Leonhard Euler. Euler was a prolific Swiss
mathematician who published more than 500 books and papers during his
lifetime.

Busy being a genius, Euler didn’t care about what seemed like a trivial
problem. But after giving it a bit more thought, Euler grew as interested
as the residents of the town and tried feverishly to figure it out.
Instead of writing down every possible path, Euler decided it would be
simpler to look at the links (bridges) between the landmasses, as Figure 2-11 shows.

[image: Königsberg Bridges Numbered]
Figure 2-11. The Königsberg bridges numbered

He then simplified this, drawing the bridges and landmasses as what came
to be known as a graph diagram. It looked like Figure 2-12:

[image: Königsberg Bridges as a Diagram]
Figure 2-12. The Königsberg bridges as a diagram

In Figure 2-12, A and B are adjacent because they are connected
by an edge. Using these edge connections, we can calculate the degree
for each node. The degree of a node is equal to the number of edges
that are attached to that node. If we look at the nodes in the Bridge
Problem, we’ll find that each of the degrees are odd.

	
A: five edges to adjacent nodes (odd)

	
B: three edges to adjacent nodes (odd)

	
C: three edges to adjacent nodes (odd)

	
D: three edges to adjacent nodes (odd)

Because each of the nodes had odd degrees, Euler found that crossing each
bridge without recrossing was impossible. Long story short: if you take
a bridge to get to an island, you must leave via a different bridge.
The number of edges or bridges must be even if you don’t want to
recross a bridge.

Today, we call a graph in which each edge is visited once a Eulerian path. To qualify, the undirected graph will have two vertices with an
odd degree or all vertices will have an even degree. Here, we have two
vertices with an odd degree (1, 4), as seen in Figure 2-13.

[image: Eulerian Path]
Figure 2-13. A Eulerian path

Another idea associated with Euler is a circuit or Eulerian cycle. In
this case, the starting node is the same as the ending node. Each edge
is visited only once, but the start and end node is repeated (Figure 2-14).

[image: Eulerian Cycle]
Figure 2-14. A Eulerian cycle

The Königsberg Bridge Problem became the first theorem of graph theory.
In addition to being considered the originator of graph theory, Euler is
known for creating the constant e and the imaginary unit i. Even
the mathematical function syntax f(x), a function f applied to the
variable x, can be traced back to Leonhard Euler.2

The Königsberg Bridge Problem stated that a bridge could not be crossed more than
once. There was never a rule that the journey must start or end at a
specific node. This means that trying to solve the problem was an
exercise in undirected graph traversal. What if you wanted to try to
solve the bridge problem, but you had to start at a particular node?

If you live on island B, that’s where you’d always have to start your
traversal journey. In that case, you’d be dealing with a directed graph,
more commonly called a tree.

Trees are Graphs

Let’s consider another type of graph: a tree. A tree is a graph in which
nodes are arranged hierarchically. You know you’re looking at a tree if
there is a root node. In other words, the root is where the tree starts,
and then all of the other nodes are linked to the root as children.

Consider an organizational chart. This is a textbook tree. The CEO is at
the top and all of the other employees are underneath the CEO. The CEO
is the root of the tree and all of the other nodes are the root node’s
children, as Figure 2-15 shows.

[image: Organizational Chart]
Figure 2-15. An organizational chart

Trees have many uses. You might use one to represent a family’s
genealogy. Trees can map decision-making algorithms. They help access
information in databases quickly and efficiently. One day, you might
even have to reverse a binary tree on a whiteboard for the five people
standing between you and your new job where you’ll never have to do that
again.

We can determine whether a graph is a tree based on whether it has a root node or a starting node. From the root node, a tree is connected to child nodes by edges.
When a node is connected to a child node, that node is called a parent.
When a child has children, that node is referred to as a branch. When a
node has no children, it is called a leaf.

Nodes contain data points. For that reason, it’s important to understand
where data is in the tree so that it can be quickly accessed. To find
data quickly, we want to calculate the depth of individual nodes. The
depth of a node simply refers to how far away the node is from the root
of a tree. Let’s consider the tree A -> B -> C -> D. To find the depth
of node C, count the links between C and the root. There are exactly two
links between C and the root (A), so the depth of node C is 2, and the
depth of node D is 3.

The hierarchical structure of a tree means that trees often include
other trees. A tree nested inside of a tree is called a subtree. An HTML
page typically has several subtrees. The root of the tree is the
<html> tag. Then, there are two subtrees with <head> at the root of
the left subtree and <body> at the root of the right subtree. From
there, <header>, <footer>, and <div> are all roots of different
subtrees. With lots of nesting, there are a lot of subtrees, as Figure 2-16 depicts.

[image: HTML Tree]
Figure 2-16. An HTML tree

Just as a tree is a specific type of graph, a binary tree is a specific
type of tree. A binary tree means that each node has no more than two
child nodes. When talking about binary trees, we’re often referring to
binary search trees.3 A binary search tree is a binary tree that follows
specific ordering rules. The ordering rules and tree structure help us
to find the data that we need quickly. Figure 2-17 shows an example of a binary search tree.

[image: Binary Search Tree]
Figure 2-17. Binary search tree

It has a root node and follows the rule that each node should have no
more than two child nodes. Suppose that we wanted to find node 15. Without
a binary search tree, we’d need to visit every single node until we
found node 15. Maybe we’d get lucky and go down the correct branch.
Maybe we wouldn’t be so lucky and would need to backtrack inefficiently
around the tree.

With the binary search tree, we can locate node 15 skillfully by
understanding the rules of left and right. If we begin traversal at the root (9),
we’ll say, “Is 15 greater than or less than 9?” If it’s less than, we’ll
move to the left. If it’s greater than, we’ll move to the right. Fifteen is
greater than 9, so we’ll move right, and in doing so, we have excluded
half of the nodes in the tree from our search. From here, we have node
20. Is 15 greater than or less than 20? It’s less than, so we’ll move to
the left, eliminating half of the remaining nodes. Now at node 13, is 15
greater than or less than 13? It’s greater than, so we’ll head right.
We’ve found it! By using left and right to eliminate options, we can
find the data that we’re interested in much more quickly.

Graphs in the Real World

You might encounter these graph theory concepts every day, depending on the work you do with GraphQL. Or, you might just be using GraphQL as an efficient way to load data into user interfaces. Regardless, all of these ideas are going on behind the scenes in GraphQL projects. As we’ve seen, graphs are particularly well suited to handle the needs of applications with a lot of data points.

Think of Facebook. With our graph theory vocabulary in place, we know
that each person on Facebook is a node. When a person is connected with
another person, there is a two-way connection via an edge. Facebook is
an undirected graph. Whenever I connect to someone on Facebook, they are
connected to me. My connection to my best friend, Sarah, is a two-way
connection. We are friends with each other (as Figure 2-18 shows).

[image: Facebook Undirected Graph]
Figure 2-18. Facebook undirected graph

As an undirected graph, each node in the Facebook graph is part of a web
of many interconnected relationships—a social network. You are
connected to all of your friends. In the same graph, those friends are
connected to all of their friends. Traversal can start and end at any
node (Figure 2-19).

[image: Facebook Undirected Web]
Figure 2-19. Facebook undirected web

Alternatively, there’s Twitter. Unlike Facebook where everyone is paired
in a two-way connection, Twitter is a directed graph because each
connection is one way, as shown in Figure 2-20. If you follow Michelle Obama, she might not follow you back, even though she is always most welcome to do so
(@eveporcello, @moontahoe).

[image: Twitter Graph]
Figure 2-20. Twitter graph

If a person looks at all of her friendships, she becomes the root of a
tree. She is connected to her friends. Then, her friends are connected
to their friends in subtrees (Figure 2-21).

[image: Friend Tree]
Figure 2-21. Friend tree

The same would be true for anyone else in the Facebook graph. As soon as
you isolate a person and ask for their data, the request looks like a
tree. The person is at the root, and all of the data that you want from
that person is a child node. In this request, a person is connected to
all of their friends by an edge:

	
person

	
name

	
location

	
birthday

	
friends

	
friend name

	
friend location

	
friend birthday

This structure looks a lot like a GraphQL query:

 {
 me {
 name
 location
 birthday
 friends {
 name
 location
 birthday
 }
 }
 }

With GraphQL, we aim to simplify complex graphs of data by issuing
queries for the data that we need. In the next chapter, we dig deeper
into the mechanics of how a GraphQL query works and how a query is
validated against a type system.

1 For additional reading on nodes and edges, check out Vaidehi Joshi’s blog post, “A Gentle Introduction to Graph Theory.”
2 More information about Euler and his work can be found at http://www.storyofmathematics.com/18th_euler.html.
3 See Vaidehi Joshi’s blog post, “Leaf It Up to Binary Trees.”

Chapter 3. The GraphQL Query Language

Forty-five years before GraphQL was open sourced, an IBM employee, Edgar
M. Codd, released a fairly brief paper with a very long name. “A Relational Model of Data for Large Shared Databanks” didn’t have a
snappy title, but it contained some powerful ideas. It outlined a model
for storing and manipulating data using tables. Soon after that, IBM
began working on a relational database that could be queried using
Structured English Query Language, or SEQUEL, which later became known
only as SQL.

SQL, or Structured Query Language, is a domain-specific language used to
access, manage, and manipulate data in a database. SQL introduced the
idea of accessing multiple records with a single command. It also made
it possible to access any record with any key, not just with an ID.

The commands that could be run with SQL were very streamlined: SELECT,
INSERT, UPDATE, and DELETE. That’s all you can do to data. With SQL, we
can write a single query that can return connected data across multiple
data tables in a database.

This idea—that data can only be read, created, updated, or deleted—did
make its way to Representational State Transfer (REST), which requires us to use different HTTP methods
depending upon these four basic data operations: GET, POST, PUT, and
DELETE. However, the only way to specify what type of data you want to
read or change with REST is via endpoint URLs, not an actual query
language.

GraphQL takes the ideas that were originally developed to query
databases and applies them to the internet. A single GraphQL query can
return connected data. Like SQL, you can use GraphQL queries to change
or remove data. After all, the QL in SQL and in GraphQL stand for the
same thing: Query Language.

Even though they are both query languages, GraphQL and SQL are
completely different. They are intended for completely different
environments. You send SQL queries to a database. You send GraphQL
queries to an API. SQL data is stored in data tables. GraphQL data can
be stored anywhere: a database, multiple databases, file systems, REST
APIs, WebSockets, even other GraphQL APIs. SQL is a query language for
databases. GraphQL is a query language for the internet.

GraphQL and SQL also have entirely different syntax. Instead of
SELECT, GraphQL uses Query to request data. This operation is at the
heart of everything we do with GraphQL. Instead of INSERT, UPDATE,
or DELETE, GraphQL wraps all of these data changes into one data type:
the Mutation. Because GraphQL is built for the internet, it includes a
Subscription type that can be used to listen for data changes over
socket connections. SQL doesn’t have anything like a subscription. SQL
is like a grandparent that looks nothing like their grandchild, but we
know they are related because they have the same last name.

GraphQL is standardized according to its spec. It doesn’t matter what
language you are using: a GraphQL query is a GraphQL query. The query
syntax is a string that looks the same regardless of whether the project
uses JavaScript, Java, Haskell, or anything else.

Queries are simply strings that are sent in the body of POST requests to
a GraphQL endpoint. The following is a GraphQL query, a string written
in the GraphQL query language:

{
 allLifts {
 name
 }
}

You would send this query to a GraphQL endpoint with curl:

curl 'http://snowtooth.herokuapp.com/'
 -H 'Content-Type: application/json'
 --data '{"query":"{ allLifts {name }}"}'

Assuming that the GraphQL schema supports a query of this shape, you
will receive a JSON response directly in the terminal. That JSON
response will contain either the data that you requested in a field
named data, or the errors field if something went wrong. We make one
request. We receive one response.

To modify data, we can send mutations. Mutations look a lot like
queries, but their intention is to change something about the overall
state of an application. The data required to perform a change can be
sent directly with the mutation, as demonstrated here:

mutation {
 setLiftStatus(id: "panorama" status: OPEN) {
 name
 status
 }
}

The preceding mutation is written in the GraphQL query language and we can
assume that it will change the status of a lift with an id of panorama to OPEN. Again, we can send this operation to a GraphQL server by using cURL:

curl 'http://snowtooth.herokuapp.com/'
 -H 'Content-Type: application/json'
 --data '{"query":"mutation {setLiftStatus(id: \"panorama\" status: OPEN) {name status}}"}'

There are fancier ways to map variables to a query or a mutation, but
we cover those details later in the book. In this chapter, we focus on how
to construct queries, mutations, and subscriptions using GraphQL.

GraphQL API Tools

The GraphQL community has produced several open source tools that you can use to interact with GraphQL APIs. These tools allow you to write
queries in the GraphQL query language, send those queries to GraphQL
endpoints, and inspect the JSON response. In this next section, we
look at the two most popular tools for testing GraphQL queries against a
GraphQL API: GraphiQL and GraphQL Playground.

GraphiQL

GraphiQL is the in-browser integrated development environment (IDE) that was created at Facebook to allow you
to query and explore a GraphQL API. GraphiQL offers syntax highlighting,
code completion, and error warnings, and it lets you run and view query
results directly in the browser. Many public APIs provide a GraphiQL
interface with which you can query live data.

The interface is fairly straightforward. There is a panel in which you write your
query, a play button to run it, and a panel to display the response, as shown in Figure 3-1.

[image: GraphiQL]
Figure 3-1. The GraphiQL interface

Our queries start off as text written in the GraphQL Query Language. We
refer to this text as the query document. You place query text in the
left panel. A GraphQL document can contain the definitions of one or
more operations. An operation is a Query, Mutation, or
Subscription. Figure 3-2 shows how you would add a Query operation to your document.

[image: GraphiQL Query]
Figure 3-2. A GraphiQL query

Clicking the Play button runs the query. Then, in the right panel,
you receive a response formatted as JSON (Figure 3-3).

[image: GraphiQL]
Figure 3-3. GraphiQL

In the upper-right corner, you can click to open the Docs window, which defines everything you need
to know to interact with the current service. This documentation is
automatically added to GraphiQL because it is read from the service’s
schema. The schema defines the data that is available on the service,
and GraphiQL automatically builds documentation by running an
introspection query against the schema. You can always view this documentation in the Documentation Explorer, as seen in Figure 3-4.

[image: GraphiQL Docs]
Figure 3-4. GraphiQL Documentation Explorer panel

More often than not, you will access GraphiQL via a URL that is hosted
alongside the GraphQL service itself. If you build your own GraphQL
service, you can add a route that renders the GraphQL interface so that your
users can explore the data that you make public to users. You also can download a standalone version of GraphiQL.

GraphQL Playground

Another tool for exploring GraphQL APIs is GraphQL Playground. Created
by the team at Prisma, GraphQL Playground mirrors the functionality
of GraphiQL and adds on a few interesting options. The easiest way to
interact with a GraphQL Playground is to check it out in the browser at
https://www.graphqlbin.com. After you supply an endpoint, you can interact with
the data using the Playground.

The GraphQL Playground is very similar to GraphiQL, but it does come
with several extra features that you might find convenient. The most
important feature is the ability to send custom HTTP headers along with
your GraphQL request, as seen in Figure 3-5 (We discuss this feature in greater detail when we cover authorization in Chapter 5.)

[image: Playground]
Figure 3-5. GraphQL Playground

GraphQL Bin is also a fantastic collaboration tool because you can share
links to your bins with others, as seen in Figure 3-6.

[image: Sharing]
Figure 3-6. Sharing bins

GraphQL Playground has a desktop version that you can install locally
using Homebrew:

brew cask install graphql-playground

Or, you can just download it from the website.

After you have this installed or have navigated to GraphQL Bin, you can
begin sending queries. To get started quickly, you can paste an API
endpoint in the playground. This could be a public API or your project
running on a localhost port.

Public GraphQL APIs

One of the best ways to get started with GraphQL is to practice sending
queries using a public API. Several companies and
organizations provide a GraphiQL interface that you can use to
query public data:

	SWAPI (the Star Wars API)

	
This is a Facebook project that is a wrapper around the SWAPI REST API.

	GitHub API

	
One of the largest public GraphQL APIs, the GitHub GraphQL
API allows you to send queries and mutations to view and change your
live data on GitHub. You’ll need to sign in with your GitHub account to
interact with the data.

	Yelp

	
Yelp maintains a GraphQL API that you can query using GraphiQL.
You do need to create a Yelp developer account to interact with the data
in the Yelp API.

Many additional examples of public GraphQL APIs are available.

The GraphQL Query

Snowtooth Mountain is a fake ski resort. For the sake of the examples in
this chapter, we will pretend it is a real mountain and that we work
there. We are going to look at how the Snowtooth Mountain web team uses
GraphQL to provide real-time, up-to-date information on chairlift status
and trail status. The Snowtooth Ski Patrol can open and close chairlifts
and trails directly from their phones. To follow along with the examples
in this chapter, refer to Snowtooth’s GraphQL Playground interface.

You can use the query operation to request data from an API. A query describes the data that you want to fetch from a GraphQL server. When you
send a query, you ask for units of data by field. These fields map to
the same field in the JSON data response you receive from your server.
For example, if you send a query for allLifts and request the name
and status fields, you should receive a JSON response that contains an
array for allLifts and a string for each lift’s name and each lift’s
status, as demonstrated here:

query {
 allLifts {
 name
 status
 }
}

Handling Errors

Successful queries return a JSON document that contains a “data”
key. Unsuccessful queries return a JSON document that contains an
“errors” key. The details of what went wrong is passed as JSON data
under this key. A JSON response can contain both “data” and “errors.”

You can add multiple queries to a query document, but you can run only
one operation at a time. For example, you could place two query operations
in a query document:

query lifts {
 allLifts {
 name
 status
 }
}

query trails {
 allTrails {
 name
 difficulty
 }
}

When you press the play button, the GraphQL Playground asks you to
select one of these two operations. If you want to send one request for
all of this data, you’ll need to place it all within the same query:

query liftsAndTrails {
 liftCount(status: OPEN)
 allLifts {
 name
 status
 }
 allTrails {
 name
 difficulty
 }
}

Here is where the benefits of GraphQL begin to crystallize. We are able
to receive all kinds of different datapoints in a single query. We are
asking for the liftCount by status, which gives us the number of lifts that
currently have that status. We are also asking for the name and status of every lift. Finally, we ask for the name and status of every trail in the same query.

A Query is a GraphQL type. We call it a root type because it’s a
type that maps to an operation, and operations represent the roots of
our query document. The fields that are available to query in a
GraphQL API have been defined in that API’s schema. The documentation
will tell us what fields are available to select on the Query type.

This documentation tells us that we are able to select the fields
liftCount, allLifts, and allTrails when we query this API. It
also defines more fields that are available to select, but the whole
point of a query is that we get to choose which fields we need and which
fields to omit.

When we write queries, we are selecting the fields that we need by
encapsulating them in curly brackets. These blocks are referred to as selection sets. The fields that we define in a selection set are
directly related to GraphQL types. The liftCount, allLifts, and
allTrails fields are defined in the Query type.

You can nest selection sets within one another. Because the allLifts
field returns a list of Lift types, we need to use the curly brackets
to create a new selection set on this type. There is all sorts of data
that we can request about a lift, but in this example we want to
select only the lift’s name and status. Similarly, the allTrails query will return Trail types.

The JSON response contains all of the data that we requested in the
query. This data is formatted as JSON and is delivered in the same shape
as our query. Each JSON field is issued the same name as the field in
our selection set. We can change the field names in the response object
within the query by specifying an alias, as shown here:

query liftsAndTrails {
 open: liftCount(status: OPEN)
 chairlifts: allLifts {
 liftName: name
 status
 }
 skiSlopes: allTrails {
 name
 difficulty
 }
}

Following is the response:

{
 "data": {
 "open": 5,
 "chairlifts": [
 {
 "liftName": "Astra Express",
 "status": "open"
 }
],
 "skiSlopes": [
 {
 "name": "Ditch of Doom",
 "difficulty": "intermediate"
 }
]
 }
}

Now we get the data back in the same shape, but we have renamed several
fields in our response. A way to filter the results of a GraphQL query is to pass in query
arguments. Arguments are a key–value pair (or pairs) associated with a query field. If we want only the names of the closed
chairlifts, we can send an argument that will filter our
response:

query closedLifts {
 allLifts(status: "CLOSED" sortBy: "name") {
 name
 status
 }
}

You also can use arguments to select data. For instance, suppose that we
want to query the status of an individual chairlift. We can select
that chairlift by its unique identifier:

query jazzCatStatus {
 Lift(id: "jazz-cat") {
 name
 status
 night
 elevationGain
 }
}

Here we see the response contains the name, status, night,
and elevationGain for the “Jazz Cat” chairlift.

Edges and Connections

In the GraphQL query language, fields can be either scalar types or
object types. Scalar types are similar to primitives in other
languages. They are the leaves of our selection sets. Out of the box,
GraphQL comes with five built-in scalar types: integers (Int), floats
(Float), strings (String), Booleans (Boolean), and unique
identifiers (ID). Both integers and floats return JSON numbers, and
String and ID return JSON strings. Booleans just return Booleans. Even
though ID and String will return the same type of JSON data, GraphQL
still makes sure that IDs return unique strings.

GraphQL object types are groups of one or more fields that you define in
your schema. They define the shape of the JSON object that should be
returned. JSON can endlessly nest objects under fields, and so can
GraphQL. We can connect objects together by querying one object for
details about related objects.

For example, suppose that we want to receive a list of trails that we can access from a particular lift:

query trailsAccessedByJazzCat {
 Lift(id:"jazz-cat") {
 capacity
 trailAccess {
 name
 difficulty
 }
 }
}

In the preceding query, we are asking for some data about the “Jazz Cat”
chairlift. Our selection set includes a request for the capacity
field. Capacity is a scalar type; it returns an integer that represents
the number of people that can ride on one chair. The trailAccess field
is of type Trail (an object type). In this example,
trailAccess returns a filtered list of trails that are
accessible from Jazz Cat. Because trailAccess is a field within the
Lift type, the API can use details about the parent object, the Jazz
Cat Lift, to filter the list of returned trails.

This example operation queries a one-to-many connection between two types
of data, lifts and trails. One lift is connected to many related trails.
If we start our graph traversal from the Lift node, we can get to
one or more Trail nodes that are connected to that lift via an edge
that we have named trailAccess. For our graph to be
considered undirected, we would need to traverse back to the Lift node
from the Trail node, and we can:

query liftToAccessTrail {
 Trail(id:"dance-fight") {
 groomed
 accessedByLifts {
 name
 capacity
 }
 }
}

In the liftToAccessTrail query, we are selecting a Trail called
“Dance Fight.” The groomed field returns a Boolean scalar type that
lets us know whether Dance Fight is groomed. The
accessedByLifts field returns lifts that deliver skiers to the Dance
Fight trail.

Fragments

A GraphQL query document can contain definitions for operations and
fragments. Fragments are selection sets that can be reused in multiple
operations. Take a look at the following query:

query {
 Lift(id: "jazz-cat") {
 name
 status
 capacity
 night
 elevationGain
 trailAccess {
 name
 difficulty
 }
 }
 Trail(id: "river-run") {
 name
 difficulty
 accessedByLifts {
 name
 status
 capacity
 night
 elevationGain
 }
 }
}

This query requests information about the Jazz Cat lift and the “River
Run” trail. The Lift includes name, status, capacity, night,
and elevationGain in its selection set. The information that we want
to obtain about the River Run trail includes a subselection on the
Lift type for the same fields. We could create a fragment that can
help us reduce redundancy in our query:

fragment liftInfo on Lift {
 name
 status
 capacity
 night
 elevationGain
}

You create fragments by using the fragment identifier. Fragments are
selection sets on specific types, so you must include the type that is
associated with each fragment in its definition. The fragment in this example is
named liftInfo, and it is a selection set on the Lift type.

When we want to add the liftInfo fragment fields to another selection
set, we can do so by using three dots with the fragment name:

query {
 Lift(id: "jazz-cat") {
 ...liftInfo
 trailAccess {
 name
 difficulty
 }
 }
 Trail(id: "river-run") {
 name
 difficulty
 accessedByLifts {
 ...liftInfo
 }
 }
}

The syntax is similar to the JavaScript spread operator, which is used
for a similar purpose—to assign the keys and values of one object to
another. These three dots instruct GraphQL to assign the fields from the
fragment to the current selection set. In this example, we are able to
select the name, status, capacity, night, and elevationGain in
two different places within our query using one fragment.

We would not be able to add the liftInfo fragment to the Trail
selection set because it defines only fields on the Lift type. We can
add another fragment for trails:

query {
 Lift(id: "jazz-cat") {
 ...liftInfo
 trailAccess {
 ...trailInfo
 }
 }
 Trail(id: "river-run") {
 ...trailInfo
 groomed
 trees
 night
 }
}

fragment trailInfo on Trail {
 name
 difficulty
 accessedByLifts {
 ...liftInfo
 }
}

fragment liftInfo on Lift {
 name
 status
 capacity
 night
 elevationGain
}

In this example, we have created a fragment called trailInfo and used
it in two places within our query. We’re also using the liftInfo fragment in the trailInfo fragment to select details about the connected
lifts. You can create as many fragments as you want and use them
interchangeably. In the selection set used by the River Run Trail query,
we are combining our fragment with additional details that we want to
select about the River Run trail. You can use fragments in combination
with other fields in a selection set. You also can combine multiple fragments on the same type in a single selection set:

query {
 allTrails {
 ...trailStatus
 ...trailDetails
 }
}

fragment trailStatus on Trail {
 name
 status
}

fragment trailDetails on Trail {
 groomed
 trees
 night
}

One nice thing about fragments is that you can modify the selection sets
used in many different queries simply by modifying one fragment:

fragment liftInfo on Lift {
 name
 status
}

This change to the selection set in the liftInfo fragment causes
every query that is using this fragment to select less data.

Union types

We’ve already looked at how to return lists of objects, but in each case
so far, we’ve returned lists of a single type. If you wanted a list to
return more than one type, you could create a union type, which creates
an association between two different object types.

Suppose that we’re building a scheduling app for college students with which
they can add Workout and Study Group events to an agenda. You can check out this running sample at https://rm2rx3opqm.sse.codesandbox.io.

If you look at the documentation in GraphQL Playground, you will see that an
AgendaItem is a union type, which means that it can return multiple
types. Specifically, the AgendaItem can return a Workout or
StudyGroup, which are things that might be part of a college student’s schedule.

When writing a query for a student’s agenda, you can use fragments to
define which fields to select when the AgendaItem is a Workout, and
which fields to select when the AgendaItem is a StudyGroup:

query schedule {
 agenda {
 ...on Workout {
 name
 reps
 }
 ...on StudyGroup {
 name
 subject
 students
 }
 }
}

Here’s the response:

{
 "data": {
 "agenda": [
 {
 "name": "Comp Sci",
 "subject": "Computer Science",
 "students": 12
 },
 {
 "name": "Cardio",
 "reps": 100
 },
 {
 "name": "Poets",
 "subject": "English 101",
 "students": 3
 },
 {
 "name": "Math Whiz",
 "subject": "Mathematics",
 "students": 12
 },
 {
 "name": "Upper Body",
 "reps": 10
 },
 {
 "name": "Lower Body",
 "reps": 20
 }
]
 }
}

Here, we are using inline fragments. Inline fragments do not have
names. They assign selection sets to specific types directly within the
query. We use them to define which fields to select when a union returns
different types of objects. For each Workout, this query asks for the
names and the reps in the returned Workout object. For each study
group, we ask for the name, subject, and students in the returned
StudyGroup object. The returned agenda will consist of a single array
that contains different types of objects.

You can also use named fragments to query a union type:

query today {
 agenda {
 ...workout
 ...study
 }
}

fragment workout on Workout {
 name
 reps
}

fragment study on StudyGroup {
 name
 subject
 students
}

Interfaces

Interfaces are another option when dealing with multiple object types
that could be returned by a single field. An interface is an abstract
type that establishes a list of fields that should be implemented in
similar object types. When another type implements the interface, it
includes all of the fields from the interface and usually some of its
own fields. If you’d like to follow along with this sample, you can find it on GraphQL Bin.

When you look at the agenda field in the documentation, you can see that it returns the ScheduleItem interface. This interface defines the fields: name, start time, and end time. Any object type that implements the ScheduleItem interface needs to implement these fields.

The documentation also informs us that the StudyGroup and Workout
types implement this interface. This means that we can safely assume
that both of these types have fields for name, start, and end:

query schedule {
 agenda {
 name
 start
 end
 }
}

The schedule query doesn’t seem to care that the agenda field
returns multiple types. It needs only the name, start, and end times for
the item in order to create the schedule of when and where this student
should be.

When querying an interface, we can also use fragments to select
additional fields when a specific object type is returned:

query schedule {
 agenda {
 name
 start
 end
 ...on Workout {
 reps
 }
 }
}

The schedule query has been modified to additionally request the reps
when the ScheduleItem is a Workout.

Mutations

So far, we’ve talked a lot about reading data. Queries describe all of
the reads that happen in GraphQL. To write new data, we use
mutations. Mutations are defined like queries. They have names. They
can have selection sets that return object types or scalars. The
difference is that mutations perform some sort of a data change that
affects the state of your backend data.

For example, a dangerous mutation to implement would look like this:

mutation burnItDown {
 deleteAllData
}

The Mutation is a root object type. The API’s schema defines the
fields that are available on this type. The API in the preceding example
has the power to wipe out all data to the client by implementing a field
called deleteAllData that returns a scalar type: true if all of the
data was successfully deleted and it’s time to start looking for a new
job, or false if something went wrong and it’s time to start
looking for a new job. Whether the data is actually deleted is
handled by the implementation of the API, which we discuss further in
Chapter 5.

Let’s consider another mutation. But instead of destroying something,
let’s create something:

mutation createSong {
 addSong(title:"No Scrubs", numberOne: true, performerName:"TLC") {
 id
 title
 numberOne
 }
}

We can use this example to create new songs. The title, numberOne
status, and performerName are sent to this mutation as arguments, and
we can assume that the mutation adds this new song to a database. If the
mutation field returns an object, you will need to add a selection set
after the mutation. In this case, after it’s completed, the mutation will
return the Song type that contains details about the song that was
just created. We can select the id, title, and numberOne status of
the new song after the mutation:

{
 "data": {
 "addSong": {
 "id": "5aca534f4bb1de07cb6d73ae",
 "title": "No Scrubs",
 "numberOne": true
 }
 }
}

The preceding is an example of what the response to this mutation might look
like. If something went wrong, the mutation would return the error in
the JSON response instead of our newly created Song object.

We also can use mutations to change existing data. Suppose that we
want to change the status of a Snowtooth chairlift. We could use a
mutation to do that:

mutation closeLift {
 setLiftStatus(id: "jazz-cat" status: CLOSED) {
 name
 status
 }
}

We can use this mutation to change the status of the Jazz Cat lift
from open to closed. After the mutation, we can then select fields on
the Lift that was recently changed in our selection set. In this
case, we get the name of the lift that was changed and the new
status.

Using Query Variables

So far, we have changed data by sending new string values as mutation arguments. As an alternative, you could use input variables. Variables
replace the static value in the query so that we can pass dynamic values,
instead. Let’s consider our addSong mutation. Instead of dealing with
strings, let’s use variable names, which in GraphQL are always preceded
by a $ character:

mutation createSong($title:String! $numberOne:Int $by:String!) {
 addSong(title:$title, numberOne:$numberOne, performerName:$by) {
 id
 title
 numberOne
 }
}

The static value is replaced by a $variable. Then, we state that the
$variable can be accepted by the mutation. From there, we map each of
the $variable names with the argument name. In GraphiQL or the
Playground, there is a window for Query Variables. This is where we send
the input data as a JSON object. Be sure to use the correct variable
name as the JSON key:

{
 "title": "No Scrubs",
 "numberOne": true,
 "by": "TLC"
}

Variables are very useful when sending argument data. Not only will this
keep our mutations more organized in a test, but allowing
dynamic inputs will be hugely helpful later when connecting a client
interface.

Subscriptions

The third type of operation available with GraphQL is the
subscription. There are times when a client might want to have
real-time updates pushed from the server. A subscription allows us to
listen to the GraphQL API for real-time data changes.

Subscriptions in GraphQL came from a real-life use case at Facebook. The
team wanted a way to show real-time information about the number of
likes (Live Likes) that a post was getting without refreshing the page.
Live Likes are a real-time use case that is powered by subscriptions. Every client is subscribed to the like event and sees likes being updated in real time.

Just like the mutation and the query, a subscription is a root
type. Data changes clients can listen to are defined in an API
schema as fields under the subscription type. Writing the GraphQL
query to listen for a subscription is also similar to how we would
define other operations.

For example, with Snowtooth, we can listen for the status change of any
lift with a subscription:

subscription {
 liftStatusChange {
 name
 capacity
 status
 }
}

When we run this subscription, we listen for lift status changes
over a WebSocket. Notice that clicking the play button in the GraphQL Playground doesn’t immediately return data. When the subscription is sent to the server, the subscription is listening for any changes to the data.

To see data pushed to the subscription, we need to make a
change. We need to open a new window or tab to send that change via a
mutation. After a subscription operation is running in a GraphQL Playground tab, we cannot run anymore operations using the
same window or tab. If you are using GraphiQL to write subscriptions, simply open a second browser window to the GraphiQL interface. If you are using the GraphQL
Playground, you can open a new tab to add the mutation.

From the new window or tab, let’s send a lift status change mutation:

mutation closeLift {
 setLiftStatus(id: "astra-express" status: HOLD) {
 name
 status
 }
}

When we run this mutation, the status of “Astra Express” will change and
the name, capacity, and status of the Astra Express lift are
pushed to our subscription. Astra Express is the last lift that has
changed and the new status is pushed to the subscription.

Let’s change the status of a second lift. Try to set the status of the
“Whirlybird” lift to closed. Notice that this new information has
been passed to our subscription. The GraphQL Playground allows you to
see both sets of response data along with the time that the data was
pushed to the subscription.

Unlike queries and mutations, subscriptions remain open. New data will
be pushed to this subscription every time there is a status change on a
chairlift. To stop listening for status changes, you need to
unsubscribe from your subscription. To do this with the GraphQL
Playground, simply press the stop button. Unfortunately, the only way to
unsubscribe from a subscription with GraphiQL is to close the browser
tab on which the subscription is running.

Introspection

One of the most powerful features of GraphQL is introspection.
Introspection is the ability to query details about the current API’s
schema. Introspection is how those nifty GraphQL documents are added to
the GraphiQL Playground interface.

You can send queries to every GraphQL API that return data about a given API’s
schema. For example, if we want to know what GraphQL types are available to
us in Snowtooth, we can view that information by running a __schema
query, as demonstrated here:

query {
 __schema {
 types {
 name
 description
 }
 }
}

When we run this query, we see every type available on the API, including root types, custom types, and even scalar types. If we want to see the details of a particular type, we can run the __type query and send the name of the type that we want to query as an argument:

query liftDetails {
 __type(name:"Lift") {
 name
 fields {
 name
 description
 type {
 name
 }
 }
 }
}

This introspection query shows us all of the fields that are available
to query on the Lift type. When getting to know a new GraphQL API,
it is a good idea to find out what fields are available on the root
types:

query roots {
 __schema {
 queryType {
 ...typeFields
 }
 mutationType {
 ...typeFields
 }
 subscriptionType {
 ...typeFields
 }
 }
}

fragment typeFields on __Type {
 name
 fields {
 name
 }
}

An introspection query follows the rules of the GraphQL query language.
The redundancy of the preceding query has been reduced by using a fragment. We
are querying the name of the type and the available fields of each root
type. Introspection gives the client the ability to find out how the
current API schema works.

Abstract Syntax Trees

The query document is a string. When we send a query to a GraphQL API,
that string is parsed into an abstract syntax tree and validated
before the operation is run. An abstract syntax tree, or AST, is a hierarchical
object that represents our query. The AST is an object that contains nested fields that represent the details of a GraphQL query.

The first step in this process is to parse the string into a bunch of
smaller pieces. This includes parsing the keywords, arguments, and
even brackets and colons into a set of individual tokens. This process
is called lexing, or lexical analysis. Next, the lexed query is
parsed into an AST. A query is much easier to dynamically modify and validate as an AST.

For example, your queries start off as a GraphQL document. A document
contains at least one definition, but it can also contain a list of
definitions. Definitions are only one of two types:
OperationDefinition or FragmentDefinition. The following is an
example of a document that contains three definitions: two operations,
and one fragment:

query jazzCatStatus {
 Lift(id: "jazz-cat") {
 name
 night
 elevationGain
 trailAccess {
 name
 difficulty
 }
 }
}

mutation closeLift($lift: ID!) {
 setLiftStatus(id: $lift, status: CLOSED) {
 ...liftStatus
 }
}

fragment liftStatus on Lift {
 name
 status
}

An OperationDefinition can contain only one of three operation types: mutation, query, or subscription. Each operation definition contains the OperationType and the SelectionSet.

The curly brackets that come after each operation contain the
operation’s SelectionSet. These are the actual fields that we are
querying along with their arguments. For example, the Lift field is
the SelectionSet for the jazzCatStatus query and the setLiftStatus
field represents the selection set for the closeLift mutation.

Selection sets are nested within one another. The jazzCatStatus query has three nested selection sets. The first SelectionSet contains the Lift field. Nested within is a SelectionSet that contains the field: name, night, elevationGain, and trailAccess. Nested under the trailAccess field is another SelectionSet that contains the name and difficulty fields for each trail.

GraphQL can traverse this AST and validate its details against the
GraphQL language and the current schema. If the query language syntax is
correct and the schema contains the fields and types that we are
requesting, the operation is executed. If not, a specific error is
returned, instead.

Additionally, this AST object is easier to modify than a string. If we wanted to append
the number of open lifts to the jazzCatStatus query, we could do so by
directly modifying the AST. All we need to do is add an additional
SelectionSet to the operation. ASTs are an essential part of GraphQL. Every operation is parsed into an AST so that it can be validated and eventually executed.

In this chapter, you learned about the GraphQL query language. We
can now use this language to interact with a GraphQL service. But, none of
this would be possible without a specific definition of what operations and
fields are available on a particular GraphQL service. This specific
definition is called the GraphQL schema, and we take a
closer look at how to create schemas in the next chapter.

Chapter 4. Designing a Schema

GraphQL is going to change your design process. Instead of looking at
your APIs as a collection of REST endpoints, you are going to begin looking at your APIs as collections of types. Before breaking ground on
your new API, you need to think about, talk about, and formally
define the data types that your API will expose. This collection of
types is called a schema.

Schema First is a design methodology that will get all of your teams
on the same page about the data types that make up your application. The
backend team will have a clear understanding about the data that it
needs to store and deliver. The frontend team will have the definitions
that it needs to begin building user interfaces. Everyone will have a
clear vocabulary that they can use to communicate about the system they
are building. In short, everyone can get to work.

To facilitate defining types, GraphQL comes with a language that we can
use to define our schemas, called the Schema
Definition Language, or SDL. Just like the GraphQL Query Language, the
GraphQL SDL is the same no matter what language
or framework you use to construct your applications. GraphQL schema
documents are text documents that define the types available in an
application, and they are later used by both clients and servers to
validate GraphQL requests.

In this chapter, we take a look at the GraphQL SDL and build a schema for a photo sharing application.

Defining Types

The best way to learn about GraphQL types and schemas is to build one. The photo sharing
application will let users log in with their GitHub accounts to post
photos and tag users in those photos. Managing users and posts
represents functionality that is core to just about every type of
internet application.

The PhotoShare application will have two main types: User and Photo.
Let’s get started designing the schema for the entire application.

Types

The core unit of any GraphQL Schema is the type. In GraphQL, a type
represents a custom object and these objects describe your application’s
core features. For example, a social media application consists of
Users and Posts. A blog would consist of Categories and Articles. The
types represent your application’s data.

If you were to build Twitter from scratch, a Post would contain the
text that the user wishes to broadcast. (In this case, a Tweet might
be a better name for that type.) If you were building Snapchat, a Post
would contain an image and would more appropriately be named a
Snap. When defining a schema, you will define a common language that
your team will use when talking about your domain objects.

A type has fields that represent the data associated with each
object. Each field returns a specific type of data. This could mean an
integer or a string, but it also could mean a custom object type or list
of types.

A schema is a collection of type definitions. You can write your schemas in a JavaScript file as a string or in any text file. These files usually carry the .graphql extension.

Let’s define the first GraphQL object type in our schema file—the Photo:

type Photo {
 id: ID!
 name: String!
 url: String!
 description: String
}

Between the curly brackets, we’ve defined the Photo’s fields. The Photo’s url is a
reference to the location of the image file. This description also contains some
metadata about the Photo: a name and a description. Finally, each Photo will have an ID, a unique identifier that can be used as a key
to access the photo.

Each field contains data of a specific type. We have defined only one
custom type in our schema, the Photo, but GraphQL comes with some
built-in types that we can use for our fields. These built-in types are
called scalar types. The description, name, and url fields use the
String scalar type. The data that is returned when we query these
fields will be JSON strings. The exclamation point specifies that the
field is non-nullable, which means that the name and url fields
must return some data in each query. The description is nullable,
which means that photo descriptions are optional. When queried, this
field could return null.

The Photo’s ID field specifies a unique identifier for each photo. In
GraphQL, the ID scalar type is used when a unique identifier should be
returned. The JSON value for this identifier will be a string, but this
string will be validated as a unique value.

Scalar Types

GraphQL’s built in scalar types (Int, Float, String, Boolean,
ID) are very useful, but there might be times when you want to
define your own custom scalar types. A scalar type is not an object
type. It does not have fields. However, when implementing a GraphQL
service, you can specify how custom scalar types should be validated; for example:

scalar DateTime

type Photo {
 id: ID!
 name: String!
 url: String!
 description: String
 created: DateTime!
}

Here, we have created a custom scalar type: DateTime. Now we can find
out when each photo was created. Any field marked DateTime will
return a JSON string, but we can use the custom scalar to make sure that
string can be serialized, validated, and formatted as an official date
and time.

You can declare custom scalars for any type that you need to validate.

Note

The graphql-custom-types npm package contains some commonly used custom
scalar types that you can quickly add to your Node.js GraphQL service.

Enums

Enumeration types, or enums, are scalar types that allow a field to
return a restrictive set of string values. When you want to make sure
that a field returns one value from a limited set of values, you can use
an enum type.

For example, let’s create an enum type called PhotoCategory that
defines the type of photo that is being posted from a set of five
possible choices: SELFIE, PORTRAIT, ACTION, LANDSCAPE, or GRAPHIC:

enum PhotoCategory {
 SELFIE
 PORTRAIT
 ACTION
 LANDSCAPE
 GRAPHIC
}

You can use enumeration types when defining fields. Let’s add a category
field to our Photo object type:

type Photo {
 id: ID!
 name: String!
 url: String!
 description: String
 created: DateTime!
 category: PhotoCategory!
}

Now that we have added category, we will make sure that it returns one of the five valid values when we implement the service.

Note

It does not matter whether your implementation has full support
for enumeration types. You can implement GraphQL enumeration fields in
any language.

Connections and Lists

When you create GraphQL schemas, you can define fields that return lists
of any GraphQL type. Lists are created by surrounding a GraphQL type
with square brackets. [String] defines a list of strings and
[PhotoCategory] defines a list of photo categories. As Chapter 3 discusses, lists can also consist of multiple types if we incorporate
union or interface types. We discuss these types of lists in
greater detail toward the end of this chapter.

Sometimes, the exclamation point can be a little tricky when defining
lists. When the exclamation point comes after the closing square
bracket, it means that the field itself is non-nullable. When the
exclamation point comes before the closing square bracket, it means that
the values contained in the list are non-nullable. Wherever you see an
exclamation point, the value is required and cannot return null. Table 4-1 defines these various situations.

Table 4-1. Nullability rules with lists

	list declaration
	definition

	[Int]

	A list of nullable integer values

	[Int!]

	A list of non-nullable integer values

	[Int]!

	A non-nullable list of nullable integer values

	[Int!]!

	A non-nullable list of non-nullable integer values

Most list definitions are non-nullable lists of non-nullable values. This is because we typically do not want values within our list to be
null. We should filter out any null values ahead of time. If our list
doesn’t contain any values, we can simply return an empty JSON array; for example,
[]. An empty array is technically not null: it is just an array that
doesn’t contain any values.

The ability to connect data and query multiple types of related data is
a very important feature. When we create lists of our custom object
types, we are using this powerful feature and connecting objects to one
another.

In this section, we cover how to use a list to connect object
types.

One-to-One Connections

When we create fields based on custom object types, we are connecting
two objects. In graph theory, a connection or link between two objects
is called an edge. The first type of connection is a one-to-one
connection in which we connect a single object type to another single
object type.

Photos are posted by users, so every photo in our system should contain an edge connecting the photo to the user who posted it. Figure 4-1 shows a one-way connection between two types: Photo and User. The edge that connects the two nodes is called postedBy.

[image: One-To-One Connection]
Figure 4-1. One-to-one connection

Let’s see how we would define this in the schema:

type User {
 githubLogin: ID!
 name: String
 avatar: String
}

type Photo {
 id: ID!
 name: String!
 url: String!
 description: String
 created: DateTime!
 category: PhotoCategory!
 postedBy: User!
}

First, we’ve added a new type to our schema, the User. The users of
the PhotoShare application are going to sign in via GitHub. When the user signs in, we obtain their githubLogin and use it as the unique
identifier for their user record. Optionally, if they added their
name or photo to GitHub, we will save that information under the fields
name and avatar.

Next, we added the connection by adding a postedBy field to the photo
object. Each photo must be posted by a user, so this field is set to
the User! type; the exclamation point is added to make this field
non-nullable.

One-to-Many Connections

It is a good idea to keep GraphQL services undirected when possible.
This provides our clients with the ultimate flexibility to create
queries because they can start traversing the graph from any node. All
we need to do to follow this practice is provide a path back from User
types to Photo types. This means that when we query a User, we
should get to see all of the photos that particular user posted:

type User {
 githubLogin: ID!
 name: String
 avatar: String
 postedPhotos: [Photo!]!
}

By adding the postedPhotos field to the User type, we have provided
a path back to the Photo from the user. The postedPhotos field will
return a list of Photo types, those photos posted by the parent user.
Because one user can post many photos, we’ve created a one-to-many
connection. One-to-many connections, as shown in Figure 4-2, are common connections that are created when a parent object contains
a field that lists other objects.

[image: One-To-Many Connection]
Figure 4-2. One-to-many connection

A common place to add one-to-many connections is in our root types. To make our photos or users available in a query, we need to
define the fields of our Query root type. Let’s take a look at how we
can add our new custom types to the Query root type:

type Query {
 totalPhotos: Int!
 allPhotos: [Photo!]!
 totalUsers: Int!
 allUsers: [User!]!
}

schema {
 query: Query
}

Adding the Query type defines the queries that are available in our API. In this example, we’ve added two queries for each type: one to deliver the total number of records available on each type, and another to deliver the full list of those records. Additionally, we’ve added the Query type to the schema as a file. This makes our queries available in our GraphQL API.

Now our photos and users can be queried with the following query string:

query {
 totalPhotos
 allPhotos {
 name
 url
 }
}

Many-to-Many Connections

Sometimes we want to connect lists of nodes to other lists of nodes. Our
PhotoShare application will allow users to identify other users in
each photo that they post. This process is called tagging. A photo can
consist of many users, and a user can be tagged in many photos, as Figure 4-3 shows.

[image: Many to Many Connection]
Figure 4-3. Many-to-many connection

To create this type of connection, we need to add list fields to both
the User and the Photo types.

type User {
 ...
 inPhotos: [Photo!]!
}

type Photo {
 ...
 taggedUsers: [User!]!
}

As you can see, a many-to-many connection consists of two
one-to-many connections. In this case, a Photo can have many tagged
users, and a User can be tagged in many photos.

Through types

Sometimes, when creating many-to-many relationships, you might want to
store some information about the relationship itself. Because there is no
real need for a through type in our photo sharing app, we are going to
use a different example to define a through type, a friendship between
users.

We can connect many users to many users by defining a field under a
User that contains a list of other users:

type User {
 friends: [User!]!
}

Here, we’ve defined a list of friends for each user. Consider a case
in which we wanted to save some information about the friendship itself,
like how long users have known one another or where they met.

In this situation, we need to define the edge as a custom object type.
We call this object a through type because it is a node that is
designed to connect two nodes. Let’s define a through type called
Friendship that we can use to connect two friends but also deliver
data on how the friends are connected:

type User {
 friends: [Friendship!]!
}
type Friendship {
 friend_a: User!
 friend_b: User!
 howLong: Int!
 whereWeMet: Location
}

Instead of defining the friends field directly on a list of other
User types, we’ve created a Friendship to connect the friends. The
Friendship type defines the two connected friends: friend_a and
friend_b. It also defines some detail fields about how the friends are
connected: howLong and whereWeMet. The howLong field is an Int
that will define the length of the friendship, and the whereWeMet field
links to a custom type called Location.

We can improve upon the design of the Friendship type by allowing for
a group of friends to be a part of the friendship. For example, maybe
you met your best friends at the same time in first grade. We can allow
for two or more friends to be a part of the friendship by adding a
single field called friends:

 type Friendship {
 friends: [User!]!
 how_long: Int!
 where_we_met: Location
 }

We’ve only included one field for all of the friends in a
Friendship. Now this type can reflect two or more friends.

Lists of Different Types

In GraphQL, our lists do not always need to return the same type. In Chapter 3, we introduced union types and interfaces, and we learned how to write queries for these types using fragments. Let’s take a
look at how we can add these types to our schema.

Here, we will use a schedule as an example. You might have a schedule made up of different events, each requiring different data fields. For instance, the details about a study group meeting or a workout might be completely different, but you should be able to add both to a schedule. You can think of a daily schedule as a list of different types of activities.

There are two ways in which we can handle defining a schema for a
schedule in GraphQL: unions and interfaces.

Union types

In GraphQL, a union type is a type that we can use to return one of several different types. Recall from Chapter 3 how we wrote a query called schedule that queried an agenda and returned different data when the agenda item was a workout than when it was a study group. Let’s take a look at it again here:

query schedule {
 agenda {
 ...on Workout {
 name
 reps
 }
 ...on StudyGroup {
 name
 subject
 students
 }
 }
}

In the student’s daily agenda, we could handle this by creating a union
type called AgendaItem:

union AgendaItem = StudyGroup | Workout

type StudyGroup {
 name: String!
 subject: String
 students: [User!]!
}

type Workout {
 name: String!
 reps: Int!
}

type Query {
 agenda: [AgendaItem!]!
}

AgendaItem combines study groups and workouts under a single type.
When we add the agenda field to our Query, we are defining it as a
list of either workouts or study groups.

It is possible to join as many types as we want under a single union.
Simply separate each type with a pipe:

union = StudyGroup | Workout | Class | Meal | Meeting | FreeTime

Interfaces

Another way of handling fields that could contain multiple types is to
use an interface. Interfaces are abstract types that can be
implemented by object types. An interface defines all of the fields that
must be included in any object that implements it. Interfaces are a
great way to organize code within your schema. This ensures that certain
types always include specific fields that are queryable no matter what
type is returned.

In Chapter 3, we wrote a query for an agenda that used an interface to return fields on different items in a schedule. Let’s review that here:

query schedule {
 agenda {
 name
 start
 end
 ...on Workout {
 reps
 }
 }
}

Here is what it might look like to query an agenda that implemented
interfaces. For a type to interface with our schedule, it must
contain specific fields that all agenda items will implement. These
fields include name, start, and end times. It doesn’t matter what
type of schedule item you have, they all need these details in order to
be listed on a schedule.

Here is how we would implement this solution in our GraphQL schema:

scalar DataTime

interface AgendaItem {
 name: String!
 start: DateTime!
 end: DateTime!
}

type StudyGroup implements AgendaItem {
 name: String!
 start: DateTime!
 end: DateTime!
 participants: [User!]!
 topic: String!
}

type Workout implements AgendaItem {
 name: String!
 start: DateTime!
 end: DateTime!
 reps: Int!
}

type Query {
 agenda: [AgendaItem!]!
}

In this example, we create an interface called AgendaItem. This interface is an
abstract type that other types can implement. When another type
implements an interface, it must contain the fields defined by the
interface. Both StudyGroup and Workout implement the AgendaItem
interface, so they both need to use the name, start, and end
fields. The query agenda returns a list of AgendaItem types. Any
type that implements the AgendaItem interface can be returned in the
agenda list.

Also notice that these types can implement other fields, as well. A
StudyGroup has a topic and a list of participants, and a Workout
still has reps. You can select these additional fields in a query by using fragments.

Both union types and interfaces are tools that you can use to create
fields that contain different object types. It’s up to you to decide
when to use one or the other. In general, if the objects contain
completely different fields, it is a good idea to use union types.
They are very effective. If an object type must contain specific
fields in order to interface with another type of object, you will need
to use an interface rather than a union type.

Arguments

Arguments can be added to any field in GraphQL. They allow us to send
data that can affect outcome of our GraphQL operations. In Chapter 3, we looked at user arguments within our queries and
mutations. Now, let’s take a look at how we would define arguments in our
schema.

The Query type contains fields that will list allUsers or
allPhotos, but what happens when you want to select only one User or
one Photo? You would need to supply some information on the one user
or photo that you would like to select. You can send that information
along with my query as an argument:

type Query {
 ...
 User(githubLogin: ID!): User!
 Photo(id: ID!): Photo!
}

Just like a field, an argument must have a type. That type can be defined
using any of the scalar types or object types that are available in our
schema. To select a specific user, we need to send that user’s
unique githubLogin as an argument. The following query selects
only MoonTahoe’s name and avatar:

query {
 User(githubLogin: "MoonTahoe") {
 name
 avatar
 }
}

To select details about an individual photo, we need to supply that photo’s ID:

query {
 Photo(id: "14TH5B6NS4KIG3H4S") {
 name
 description
 url
 }
}

In both cases, arguments were required to query details about
one specific record. Because these arguments are required, they are
defined as non-nullable fields. If we do not supply the id or
githubLogin with these queries, the GraphQL parser will return an
error.

Filtering Data

Arguments do not need to be non-nullable. We can add optional arguments
using nullable fields. This means that we can supply arguments as
optional parameters when we execute query operations. For example, we
could filter the photo list that is returned by the allPhotos query by
photo category:

type Query {
 ...
 allPhotos(category: PhotoCategory): [Photo!]!
}

We have added an optional category field to the allPhotos query.
The category must match the values of the enumeration type
PhotoCategory. If a value is not sent with the query, we can assume
that this field will return every photo. However, if a category is
supplied, we should get a filtered list of photos in the same
category:

query {
 allPhotos(category: "SELFIE") {
 name
 description
 url
 }
}

This query would return the name, description, and url of
every photo categorized as a SELFIE.

Data paging

If our PhotoShare application is successful, which it will be, it will
have a lot of Users and Photos. Returning every User or every
Photo in our application might not be possible. We can use GraphQL
arguments to control the amount of data that is returned from our
queries. This process is called data paging because a specific number
of records are returned to represent one page of data.

To implement data paging, we are going to add two optional arguments:
first to collect the number of records that should be returned at once
in a single data page, and start to define the starting position or
index of the first record to return. We can add these arguments to both
of our list queries:

type Query {
 ...
 allUsers(first: Int=50 start: Int=0): [User!]!
 allPhotos(first: Int=25 start: Int=0): [Photo!]!
}

In the preceding example, we have added optional arguments for first and start. If the
client does not supply these arguments with the query, we will use the default values provided. By default, the allUsers query returns only the
first 50 users, and the allPhotos query returns only the first 25
photos.

The client can query a different range of either user or photos by
supplying values for these arguments. For example, if we want to
select users 90 through 100, we could do so by using the following query:

query {
 allUsers(first: 10 start: 90) {
 name
 avatar
 }
}

This query selects only 10 years starting at the 90th user. It should
return the name and avatar for that specific range of users. We can calculate the total number of pages that are available on the client by dividing the total number of items by the size of one page
of data:

pages = pageSize/total

Sorting

When querying a list of data, we might also want to define how the
returned list of data should be sorted. We can use arguments for this, as
well.

Consider a scenario in which we wanted to incorporate the ability to sort
any lists of Photo records. One way to tackle this challenge is to
create enums that specify which fields can be used to sort Photo
objects and instructions for how to sort those fields:

enum SortDirection {
 ASCENDING
 DESCENDING
}

enum SortablePhotoField {
 name
 description
 category
 created
}

Query {
 allPhotos(
 sort: SortDirection = DESCENDING
 sortBy: SortablePhotoField = created
): [Photo!]!
}

Here, we’ve added the arguments sort and sortBy to the allPhotos
query. We created an enumeration type called SortDirection that we can
use to limit the values of the sort argument to ASCENDING or
DESCENDING. We’ve also created another enumeration type for
SortablePhotoField. We don’t want to sort photos on just any field, so
we’ve restricted sortBy values to include only four of the photo
fields: name, description, category, or created (the date and
time that the photo was added). Both sort and sortBy are optional
arguments, so they default to DESCENDING and created if
either of the arguments are not supplied.

Clients can now control how their photos are sorted when they issue an
allPhotos query:

query {
 allPhotos(sortBy: name)
}

This query will return all of the photos sorted by descending name.

So far, we’ve added arguments only to fields of the Query type, but
it is important to note that you can add arguments to any field. We
could add the filtering, sorting, and paging arguments to the photos
that have been posted by a single user:

type User {
 postedPhotos(
 first: Int = 25
 start: Int = 0
 sort: SortDirection = DESCENDING
 sortBy: SortablePhotoField = created
 category: PhotoCategory
): [Photo!]

Adding pagination filters can help reduce the amount of data a query can return. We discuss the idea of limiting data at greater length in Chapter 7.

Mutations

Mutations must be defined in the schema. Just like queries, mutations
also are defined in their own custom object type and added to the
schema. Technically, there is no difference between how a mutation or
query is defined in your schema. The difference is in intent. We should create mutations only when an action or event will change something
about the state of our application.

Mutations should represent the verbs in your application. They should
consist of the things that users should be able to do with your
service. When designing your GraphQL service, make a list of all of the
actions that a user can take with your application. Those are most
likely your mutations.

In the PhotoShare app, users can sign in with GitHub, post photos,
and tag photos. All of these actions change something about the state of
the application. After they are signed in with GitHub, the current users accessing
the client will change. When a user posts a photo, there will be an
additional photo in the system. The same is true for tagging photos. New
photo-tag data records are generated each time a photo is tagged.

We can add these mutations to our root mutation type in our schema and
make them available to the client. Let’s begin with our first mutation,
postPhoto:

type Mutation {
 postPhoto(
 name: String!
 description: String
 category: PhotoCategory=PORTRAIT
): Photo!
}

schema {
 query: Query
 mutation: Mutation
}

Adding a field under the Mutation type called postPhoto makes it
possible for users to post photos. Well, at least it makes it possible
for users to post metadata about photos. We handle uploading the
actual photos in Chapter 7.

When a user posts a photo, at a bare minimum the photo’s name is required.
The description and category are optional. If a category argument
is not supplied, the posted photo will be defaulted to PORTRAIT. For
example, a user can post a photo by sending the following mutation:

mutation {
 postPhoto(name: "Sending the Palisades") {
 id
 url
 created
 postedBy {
 name
 }
 }
}

After the user posts a photo, they can select information about the
photo that they just posted. This is good because some of the record
details about the new photo will be generated on the server. The ID
for our new photo will be created by the database. The photo’s url
will automatically be generated. The photo will also be timestamped with
the date and time that the photo was created. This query selects all
of these new fields after a photo has been posted.

Additionally, the selection set includes information about the user who
posted the photo. A user must be signed in to post a photo. If no user
is presently signed in, this mutation should return an error. Assuming that a
user is signed in, we can obtain details about who posted the photo via
the postedBy field. In Chapter 5, we cover how to
authenticate an authorized user by using an access token.

Mutation Variables

When you use mutations, it is often a good idea to declare mutation
variables like you did back in Chapter 3. This makes your mutation
reusable when creating many users. It also prepares you to use that
mutation on an actual client. For brevity, we’ve omitted this step for
the remainder of the chapter, but here’s what it looks like:

 mutation postPhoto(
 $name: String!
 $description: String
 $category: PhotoCategory
) {
 postPhoto(
 name: $name
 description: $description
 category: $category
) {
 id
 name
 email
 }
 }

Input Types

As you might have noticed, the arguments for a couple of our queries and
mutations are getting quite lengthy. There is a better way to organize
these arguments using input types. An input type is similar to the
GraphQL object type except it is used only for input arguments.

Let’s improve the postPhoto mutation using an input type for our
arguments:

input PostPhotoInput {
 name: String!
 description: String
 category: PhotoCategory=PORTRAIT
}

type Mutation {
 postPhoto(input: PostPhotoInput!): Photo!
}

The PostPhotoInput type is like an object type, but it was created
only for input arguments. It requires a name and the
description, but category fields are still optional. Now when sending
the postPhoto mutation, the details about the new photo need to be
included in one object:

mutation newPhoto($input: PostPhotoInput!) {
 postPhoto(input: $input) {
 id
 url
 created
 }
}

When we create this mutation, we set the $input query variable’s type
to match our PostPhotoInput! input type. It is non-nullable because
at minimum we need to access the input.name field to add a new photo.
When we send the mutation, we need to supply the new photo data in our
query variables nested under the input field:

{
 "input": {
 "name": "Hanging at the Arc",
 "description": "Sunny on the deck of the Arc",
 "category": "LANDSCAPE"
 }
}

Our input is grouped together in a JSON object and sent along with the
mutation in the query variables under the “input” key. Because the query
variables are formatted as JSON, the category needs to be a string that
matches one of the categories from the PhotoCategory type.

Input types are key to organizing and
writing a clear GraphQL schema. You can use input types as arguments on
any field. You can use them to improve both data paging and data
filtering in applications.

Let’s take a look at how we can organize and reuse all of our sorting
and filtering fields by using input types:

input PhotoFilter {
 category: PhotoCategory
 createdBetween: DateRange
 taggedUsers: [ID!]
 searchText: String
}

input DateRange {
 start: DateTime!
 end: DateTime!
}

input DataPage {
 first: Int = 25
 start: Int = 0
}

input DataSort {
 sort: SortDirection = DESCENDING
 sortBy: SortablePhotoField = created
}

type User {
 ...
 postedPhotos(filter:PhotoFilter paging:DataPage sorting:DataSort): [Photo!]!
 inPhotos(filter:PhotoFilter paging:DataPage sorting:DataSort): [Photo!]!
}

type Photo {
 ...
 taggedUsers(sorting:DataSort): [User!]!
}

type Query {
 ...
 allUsers(paging:DataPage sorting:DataSort): [User!]!
 allPhotos(filter:PhotoFilter paging:DataPage sorting:DataSort): [Photo!]!
}

We’ve organized numerous fields under input types and have reused those
fields as arguments across our schema.

The PhotoFilter input types contain optional input fields that allow
the client to filter a list of photos. The PhotoFilter type includes a
nested input type, DateRange, under the field createdBetween.
DateRange must include start and end dates. Using the
PhotoFilter, we also can filter photos by category, search
string, or taggedUsers. We add all of these filter options to every
field that returns a list of photos. This gives the client a lot of
control over which photos are returned from every list.

Input types have also been created for paging and sorting. The
DataPage input type contains the fields needed to request a page of
data and the DataSort input type contains our sorting fields. These
input types have been added to every field in our schema that returns a
list of data.

We could write a query that accepts some pretty complex input data using
the available input types:

query getPhotos($filter:PhotoFilter $page:DataPage $sort:DataSort) {
 allPhotos(filter:$filter paging:$page sorting:$sort) {
 id
 name
 url
 }
}

This query optionally accepts arguments for three input types:
$filter, $page, and $sort. Using query variables, we can send some
specific details about what photos we would like to return:

{
 "filter": {
 "category": "ACTION",
 "taggedUsers": ["MoonTahoe", "EvePorcello"],
 "createdBetween": {
 "start": "2018-11-6",
 "end": "2018-5-31"
 }
 },
 "page": {
 "first": 100
 }
}

This query will find all of the ACTION photos for which GitHub users
MoonTahoe and EvePorcello are tagged between November 6th and May
31st, which happens to be ski season. We also ask for the first 100
photos with this query.

Input types help us organize our schema and reuse arguments. They also improve the schema documentation that GraphiQL or GraphQL Playground automatically
generates. This will make your API more approachable and easier to learn
and digest. Finally, you can use input types to give the client a lot of
power to execute organized queries.

Return Types

All of the fields in our schema have been returning our main types,
User and Photo. But sometimes we need to return meta
information about queries and mutations in addition to the actual
payload data. For example, when a user has signed in and been
authenticated, we need to return a token in addition to the User
payload.

To sign in with GitHub OAuth, we must obtain an OAuth code from GitHub.
We discuss setting up your own GitHub OAuth account and obtaining the
GitHub code in “GitHub Authorization”.
For now, let’s assume that you have a valid GitHub code that you can send
to the githubAuth mutation to sign in a user:

type AuthPayload {
 user: User!
 token: String!
}

type Mutation {
 ...
 githubAuth(code: String!): AuthPayload!
}

Users are authenticated by sending a valid GitHub code to the
githubAuth mutation. If successful, we will return a custom object
type that contains both information about the user that was successfully
signed in as well as a token that can be used to authorize further
queries and mutations including the postPhoto mutation.

You can use custom return types on any field for which we need more than
simple payload data. Maybe we want to know how long it takes for a query
to deliver a response, or how many results were found in a particular
response in addition to the query payload data. You can handle all of this by using a custom return type.

At this point, we have introduced all of the types that are available to
you when creating GraphQL schemas. We’ve even taken a bit of time to
discuss techniques that can help you improve your schema design. But there
is one last root object type that we need to introduce—the
Subscription type.

Subscriptions

Subscription types are no different than any other object type in the
GraphQL schema definition language. Here, we define the available
subscriptions as fields on a custom object type. It will be up to us to
make sure the subscriptions implement the PubSub design pattern along
with some sort of real-time transport when we build the GraphQL service later in Chapter 7.

For example, we can add subscriptions that allow our clients to listen
for the creation of new Photo or User types:

type Subscription {
 newPhoto: Photo!
 newUser: User!
}

schema {
 query: Query
 mutation: Mutation
 subscription: Subscription
}

Here, we create a custom Subscription object that contains two fields:
newPhoto and newUser. When a new photo is posted, that new
photo will be pushed to all of the clients who have subscribed to the
newPhoto subscription. When a new user has been created, their details
are pushed to every client who is listening for new users.

Just like queries or mutations, subscriptions can take advantage of
arguments. Suppose that we want to add filters to the newPhoto
subscription that would cause it to listen only for new ACTION photos:

type Subscription {
 newPhoto(category: PhotoCategory): Photo!
 newUser: User!
}

When users subscribe to the newPhoto subscription, they now have the
option to filter the photos that are pushed to this subscription. For
example, to filter for only new ACTION photos, clients could send the
following operation to our GraphQL API:

subscription {
 newPhoto(category: "ACTION") {
 id
 name
 url
 postedBy {
 name
 }
 }
}

This subscription should return details for only ACTION photos.

A subscription is a great solution when it’s important to handle data in real time.
In Chapter 7, we talk more about subscription implementation for all of your real-time data handling needs.

Schema Documentation

Chapter 3 explains how GraphQL has an introspection
system that can inform you as to what queries the server supports. When writing
a GraphQL schema, you can add optional descriptions for each field that
will provide additional information about the schema’s types and fields.
Providing descriptions can make it easier for your team, yourself, and
other users of the API to understand your type system.

For example, let’s add comments to the User type in our schema:

"""
A user who has been authorized by GitHub at least once
"""
type User {

 """
 The user's unique GitHub login
 """
 githubLogin: ID!

 """
 The user's first and last name
 """
 name: String

 """
 A url for the user's GitHub profile photo
 """
 avatar: String

 """
 All of the photos posted by this user
 """
 postedPhotos: [Photo!]!

 """
 All of the photos in which this user appears
 """
 inPhotos: [Photo!]!

}

By adding three quotation marks above and below your comment on each type or field, you
provide users with a dictionary for your API. In addition to types and
fields, you can also document arguments. Let’s look at the postPhoto
mutation:

Replace with:

 type Mutation {
 """
 Authorizes a GitHub User
 """
 githubAuth(
 "The unique code from GitHub that is sent to authorize the user"
 code: String!
): AuthPayload!
 }

The argument comments share the name of the argument and whether the
field is optional. If you’re using input types, you can document these
like any other type:

"""
The inputs sent with the postPhoto Mutation
"""
input PostPhotoInput {
 "The name of the new photo"
 name: String!
 "(optional) A brief description of the photo"
 description: String
 "(optional) The category that defines the photo"
 category: PhotoCategory=PORTRAIT
}

postPhoto(
 "input: The name, description, and category for a new photo"
 input: PostPhotoInput!
): Photo!

All of these documentation notes are then listed in the schema
documentation in the GraphQL Playground or GraphiQL as shown in Figure 4-4. Of course, you can also
issue introspection queries to find the descriptions of these types.

[image: postPhoto Documentation]
Figure 4-4. postPhoto Documentation

At the heart of all GraphQL projects is a solid, well-defined schema.
This serves as a roadmap and a contract between the frontend and backend teams to ensure that the product built always serves the schema.

In this chapter, we created a schema for our photo-sharing application.
In the next three chapters, we show you how to build a full-stack
GraphQL application that fulfills the contract of the schema we
just created.

Chapter 5. Creating a GraphQL API

You explored the history. You wrote some queries. You created a schema. Now you’re ready to create a fully functioning GraphQL service. This can be done with a range of different technologies, but we’re going to use JavaScript. The techniques that are shared here are fairly universal, so even if the implementation details differ, the overall architecture will be similar no matter which language or framework you choose.

If you are interested in server libraries for other languages, you can check out the many that exist at GraphQL.org.

When the GraphQL spec was released in 2015, it focused on a clear explanation of the query language and type system. It intentionally left details about server implementation more vague to allow developers from a variety of language backgrounds to use what was comfortable for them. The team at Facebook did provide a reference implementation that they built in JavaScript called GraphQL.js. Along with this, they released express-graphql, a simple way to create a GraphQL server with Express, and notably, the first library to help developers accomplish this task.

After our exploration of JavaScript implementations of GraphQL servers, we’ve chosen to use Apollo Server, an open-source solution from the Apollo team. Apollo Server is fairly simple to set up and offers an array of production-ready features including subscription support, file uploads, a data source API for quickly hooking up existing services, and Apollo Engine integration out of the box. It also includes GraphQL Playground for writing queries directly in the browser.

Project Setup

Let’s begin by creating the photo-share-api project as an empty folder on your computer. Remember: you can always visit the Learning GraphQL repo to see the completed project or to see the project running on Glitch. From within that folder, we’ll generate a new npm project using the npm init -y command in your Terminal or Command Prompt. This utility will generate a package.json file and set all of the options as the default, since we used the -y flag.

Next, we’ll install the project dependencies: apollo-server and graphql. We’ll also install nodemon:

npm install apollo-server graphql nodemon

apollo-server and graphql are required to set up an instance of Apollo Server. nodemon will watch files for changes and restart the server when we make changes. This way, we won’t have to stop and restart the server every time we make a change. Let’s add the command for nodemon to the package.json on the scripts key:

 "scripts": {
 "start": "nodemon -e js,json,graphql"
 }

Now every time we run npm start, our index.js file will run and nodemon will watch for changes in any files with a js, json, or graphql extension. Also, we want to create an index.js file at the root of the project. Be sure that the main file in the package.json is pointing to index.js:

 "main": "index.js"

Resolvers

In our discussion of GraphQL so far, we’ve focused a lot on queries. A
schema defines the query operations that clients are allowed to make and
also how different types are related. A schema describes the data
requirements but doesn’t perform the work of getting that data. That
work is handled by resolvers.

A resolver is a function that returns data for a particular field. Resolver functions return data in the type
and shape specified by the schema. Resolvers can be asynchronous and can fetch or update data from a REST API, database, or any other service.

Let’s take a look at what a resolver might look like for our root query.
In our index.js file at the root of the project, let’s add the totalPhotos field to the
Query:

const typeDefs = `
 type Query {
 totalPhotos: Int!
 }
`

const resolvers = {
 Query: {
 totalPhotos: () => 42
 }
}

The typeDefs variable is where we define our schema. It’s just a
string. Whenever we create a query like totalPhotos, it should be
backed by a resolver function of the same name. The type definition
describes which type the field should return. The resolver function
returns the data of that type from somewhere—in this case, just a
static value of 42.

It is also important to note that the resolver must be defined under an
object with the same typename as the object in the schema. The
totalPhotos field is a part of the query object. The resolver for this
field must also be a part of the Query object.

We have created initial type definitions for our root query. We’ve also
created our first resolver that backs the totalPhotos query field. To create the schema and enable the execution of queries against
the schema, we will use Apollo Server:

// 1. Require 'apollo-server'
const { ApolloServer } = require('apollo-server')

const typeDefs = `
	type Query {
		totalPhotos: Int!
	}
`

const resolvers = {
 Query: {
 totalPhotos: () => 42
 }
}

// 2. Create a new instance of the server.
// 3. Send it an object with typeDefs (the schema) and resolvers
const server = new ApolloServer({
 typeDefs,
 resolvers
})

// 4. Call listen on the server to launch the web server
server
 .listen()
 .then(({url}) => console.log(`GraphQL Service running on ${url}`))

After requiring ApolloServer, we’ll create a new instance of the server, sending it an object with two values: typeDefs and resolvers. This is a quick and minimal server setup that still allows us to stand up a powerful GraphQL API. Later in the chapter, we will talk about how to extend the functionality of the server using Express.

At this point, we are ready to execute a query for totalPhotos. Once we run npm start, we should see the GraphQL Playground running on http://localhost:4000. Let’s try the following query:

{
 totalPhotos
}

The returned data for totalPhotos is 42 as expected:

{
 "data": {
 "totalPhotos": 42
 }
}

Resolvers are key to the implementation of GraphQL. Every field must
have a corresponding resolver function. The resolver must follow the
rules of the schema. It must have the same name as the field that was
defined in the schema, and it must return the datatype defined by the
schema.

Root Resolvers

As discussed in Chapter 4, GraphQL APIs have root types for Query,
Mutation, and Subscription. These types are found at the top level
and represent all of the possible entry points into the API. So far,
we’ve added the totalPhotos field to the Query type, meaning that our API
can query this field.

Let’s add to this by creating a root type for Mutation. The mutation
field is called postPhoto and will take in a name and description as arguments of the type String. When the mutation is sent, it
must return a Boolean:

const typeDefs = `
 type Query {
 totalPhotos: Int!
 }

 type Mutation {
 postPhoto(name: String! description: String): Boolean!
 }
`

After we create the postPhoto mutation, we need to add a corresponding
resolver in the resolvers object:

// 1. A data type to store our photos in memory
var photos = []

const resolvers = {
 Query: {

 // 2. Return the length of the photos array
 totalPhotos: () => photos.length

 },

 // 3. Mutation and postPhoto resolver
 Mutation: {
 postPhoto(parent, args) {
 photos.push(args)
 return true
 }
 }

}

First, we need to create a variable called photos to store the photo details in an array. Later on in this chapter, we will store photos in a database.

Next, we enhance the totalPhotos resolver to return the length of the photos array. Whenever this field is queried, it will return the number of photos that are presently stored in the array.

From here, we add the postPhoto resolver. This time, we are using function arguments with our postPhoto function. The first argument is
a reference to the parent object. Sometimes you’ll see this represented as _, root, or obj in documentation. In this case, the parent of the postPhoto resolver is a Mutation. The parent does not currently
contain any data that we need to use, but it is always the first
argument sent to a resolver. Therefore, we need to add a placeholder
parent argument so that we can access the second argument sent to the resolver: the mutation arguments.

The second argument sent to the postPhoto resolver is the GraphQL
arguments that were sent to this operation: the name and, optionally,
the description. The args variable is an object that contains these
two fields: {name,description}. Right now, the arguments represent one
photo object, so we push them directly into the photos array.

It’s now time to test the postPhoto mutation in GraphQL Playground, sending a
string for the name argument:

mutation newPhoto {
 postPhoto(name: "sample photo")
}

This mutation adds the photo details to the array and returns true. Let’s modify this mutation to use query variables:

mutation newPhoto($name: String!, $description: String) {
 postPhoto(name: $name, description: $description)
}

After variables are added to the mutation, data must be passed to provide
the string variables. In the lower-left corner of the Playground, let’s add values for name and description to the Query
Variables window:

{
 "name": "sample photo A",
 "description": "A sample photo for our dataset"
}

Type Resolvers

When a GraphQL query, mutation, or subscription is executed, it returns a result that is the same shape of the query. We’ve seen how
resolvers can return scalar type values like integers, strings, and
Booleans, but resolvers can also return objects.

For our photo app, let’s create a Photo type and an allPhotos query
field that will return a list of Photo objects:

const typeDefs = `

 # 1. Add Photo type definition
 type Photo {
 id: ID!
 url: String!
 name: String!
 description: String
 }

 # 2. Return Photo from allPhotos
 type Query {
 totalPhotos: Int!
 allPhotos: [Photo!]!
 }

 # 3. Return the newly posted photo from the mutation
 type Mutation {
 postPhoto(name: String! description: String): Photo!
 }
`

Because we’ve added the Photo object and the allPhotos query to our
type definitions, we need reflect these adjustments in the resolvers.
The postPhoto mutation needs to return data in the shape of the
Photo type. The query allPhotos needs to return a list of objects
that have the same shape as the Photo type:

// 1. A variable that we will increment for unique ids
var _id = 0
var photos = []

const resolvers = {
 Query: {
 totalPhotos: () => photos.length,
 allPhotos: () => photos
 },
 Mutation: {
 postPhoto(parent, args) {

 // 2. Create a new photo, and generate an id
 var newPhoto = {
 id: _id++,
 ...args
 }
 photos.push(newPhoto)

 // 3. Return the new photo
 return newPhoto

 }
 }
}

Because the Photo type requires an ID, we created a variable to store
the ID. In the postPhoto resolver, we will generate IDs by
incrementing this value. The args variable provides the name and
description fields for the photo, but we also need an ID. It is
typically up to the server to create variables like identifiers and
timestamps. So, when we create a new photo object in the postPhoto
resolver, we add the ID field and spread the name and description
fields from args into our new photo object.

Instead of returning a Boolean, the mutation returns an object that
matches the shape of the Photo type. This object is constructed with
the generated ID and the name and description fields that were passed in
with data. Additionally, the postPhoto mutation adds photo objects
to the photos array. These objects match the shape of the Photo type
that we defined in our schema, so we can return the entire array of
photos from the allPhotos query.

Warning

Generating unique IDs with an incremented variable
is clearly a very unscalable way to create IDs, but will serve our
purposes here as a demonstration. In a real app, your ID would likely be
generated by the database.

To verify that postPhoto is working correctly, we can adjust the
mutation. Because Photo is a type, we need to add a
selection set to our mutation:

mutation newPhoto($name: String!, $description: String) {
 postPhoto(name: $name, description: $description) {
 id
 name
 description
 }
}

After adding a few photos via mutations, the following allPhotos query
should return an array of all of the Photo objects added:

query listPhotos {
 allPhotos {
 id
 name
 description
 }
}

We also added a non-nullable url field to our photo schema. What
happens when we add a url to our selection set?

query listPhotos {
 allPhotos {
 id
 name
 description
 url
 }
}

When url is added to our query’s selection set, an error is displayed:
Cannot return null for non-nullable field Photo.url. We do not add a
url field in the dataset. We do not need to store URLs, because they can be
automatically generated. Each field in our schema can map to a resolver.
All we need to do is add a Photo object to our list of resolvers and
define the fields that we want to map to functions. In this case, we
want to use a function to help us resolve URLs:

const resolvers = {
 Query: { ... },
 Mutation: { ... },
 Photo: {
 url: parent => `http://yoursite.com/img/${parent.id}.jpg`
 }
}

Because we are going to use a resolver for photo URLs, we’ve added a
Photo object to our resolvers. This Photo resolver added to
the root is called a trivial resolver. Trivial resolvers are added to
the top level of the resolvers object, but they are not required. We have the option to create custom resolvers for the Photo object using a trivial resolver. If you do not specify a trivial resolver, GraphQL will fall back to a default resolver that returns a property as the same name as the field.

When we select a photo’s url in our query, the corresponding resolver
function is invoked. The first argument sent to resolvers is always the parent object. In this case, the parent represents the current
Photo object that is being resolved.
We’re assuming here that our service handles only JPEG images. Those images
are named by their photo ID and can be found on the
http://yoursite.com/img/ route. Because the parent is the photo, we
can obtain the photo’s ID through this argument and use it to
automatically generate a URL for the current photo.

When we define a GraphQL schema, we describe the data requirements of
our application. With resolvers, we can powerfully and flexibly fulfill
those requirements. Functions give us this power and flexibility. Functions can be asynchronous, can return scalar types and return objects, and can return data from various sources. Resolvers are just functions, and every field in our GraphQL schema can map to a resolver.

Using Inputs and Enums

It’s time to introduce an enumeration type, PhotoCategory, and an
input type, PostPhotoInput, to our typeDefs:

 enum PhotoCategory {
 SELFIE
 PORTRAIT
 ACTION
 LANDSCAPE
 GRAPHIC
 }

 type Photo {
 ...
 category: PhotoCategory!
 }

 input PostPhotoInput {
 name: String!
 category: PhotoCategory=PORTRAIT
 description: String
 }

 type Mutation {
 postPhoto(input: PostPhotoInput!): Photo!
 }

In Chapter 4, we created these types when we designed the schema for the PhotoShare application. We also added the PhotoCategory
enumeration type and added a category field to our photos. When
resolving photos, we need to make sure that the photo category—a string
that matches the values defined in the enumeration type—is available.
We also need to collect a category when users post new photos.

We’ve added a PostPhotoInput type to organize the argument for
the postPhoto mutation under a single object. This input type has a
category field. Even when a user does not supply a category field as an argument, the default, PORTRAIT, will be used.

For the postPhoto resolver, we need to make some adjustments, as well. The
details for the photo, the name, description, and category are
now nested within the input field. We need to make sure that we access these values at args.input instead of args:

postPhoto(parent, args) {
 var newPhoto = {
 id: _id++,
 ...args.input
 }
 photos.push(newPhoto)
 return newPhoto
}

Now, we run the mutation with the new input type:

mutation newPhoto($input: PostPhotoInput!) {
 postPhoto(input:$input) {
 id
 name
 url
 description
 category
 }
}

We also need to send the corresponding JSON in the Query Variables panel:

{
 "input": {
 "name": "sample photo A",
 "description": "A sample photo for our dataset"
 }
}

If the category is not supplied, it will default to PORTRAIT.
Alternatively, if a value is provided for category, it will be
validated against our enumeration type before the operation is even sent
to the server. If it’s a valid category, it will be passed to the
resolver as an argument.

With input types, we can make passing arguments to mutations more
reusable and less error-prone. When combining input types and enums, we
can be more specific about the types of inputs that can be supplied to
specific fields. Inputs and enums are incredibly valuable and are made
even better when you use them together.

Edges and Connections

As we’ve discussed previously, the power of GraphQL comes from the
edges: the connections between data points. When standing up a GraphQL
server, types typically map to models. Think of these types as being saved in
tables of like data. From there, we link types with connections. Let’s
explore the kinds of connections that we can use to define the
interconnected relationships between types.

One-to-many connections

Users need to access the list of photos they previously
posted. We will access this data on a field called postedPhotos that
will resolve to a filtered list of photos that the user has posted.
Because one User can post many Photos, we call this a one-to-many
relationship. Let’s add the User to our typeDefs:

type User {
 githubLogin: ID!
 name: String
 avatar: String
 postedPhotos: [Photo!]!
}

At this point, we’ve created a directed graph. We can traverse from the
User type to the Photo type. To have an undirected graph,
we need to provide a way back to the User type from the Photo type.
Let’s add a postedBy field to the Photo type:

type Photo {
 id: ID!
 url: String!
 name: String!
 description: String
 category: PhotoCategory!
 postedBy: User!
}

By adding the postedBy field, we have created a link back to the
User who posted the Photo, creating an undirected graph. This is a
one-to-one connection because one photo can only be posted by one
User.

Sample Users

To test our server, let’s add some sample data to our index.js file. Be sure to remove the current photos variable that is set to an empty array:

var users = [
 { "githubLogin": "mHattrup", "name": "Mike Hattrup" },
 { "githubLogin": "gPlake", "name": "Glen Plake" },
 { "githubLogin": "sSchmidt", "name": "Scot Schmidt" }
]

var photos = [
 {
 "id": "1",
 "name": "Dropping the Heart Chute",
 "description": "The heart chute is one of my favorite chutes",
 "category": "ACTION",
 "githubUser": "gPlake"
 },
 {
 "id": "2",
 "name": "Enjoying the sunshine",
 "category": "SELFIE",
 "githubUser": "sSchmidt"
 },
 {
 id: "3",
 "name": "Gunbarrel 25",
 "description": "25 laps on gunbarrel today",
 "category": "LANDSCAPE",
 "githubUser": "sSchmidt"
 }
]

Because connections are created using the fields of an object type, they
can map to resolver functions. Inside these functions, we can use the
details about the parent to help us locate and return the connected
data.

Let’s add the postedPhotos and postedBy resolvers to our service:

const resolvers = {
 ...
 Photo: {
 url: parent => `http://yoursite.com/img/${parent.id}.jpg`,
 postedBy: parent => {
 return users.find(u => u.githubLogin === parent.githubUser)
 }
 },
 User: {
 postedPhotos: parent => {
 return photos.filter(p => p.githubUser === parent.githubLogin)
 }
}

In the Photo resolver, we need to add a field for postedBy. Within
this resolver, it’s up to us to figure out how to find the connected
data. Using the .find() array method, we can obtain the user who’s
githubLogin matches the githubUser value saved with each photo. The
.find() method returns a single user object.

In the User resolver, we retrieve a list of photos posted by that user
using the array’s .filter() method. This method returns an array
of only those photos that contain a githubUser value that matches the
parent user’s githubLogin value. The filter method returns an array of
photos.

Now let’s try to send the allPhotos query:

query photos {
 allPhotos {
 name
 url
 postedBy {
 name
 }
 }
}

When we query each photo, we are able to query the user who posted that
photo. The user object is being located and returned by the resolver. In
this example, we select only the name of the user who posted the photo.
Given our sample data, the result should return the following JSON:

{
 "data": {
 "allPhotos": [
 {
 "name": "Dropping the Heart Chute",
 "url": "http://yoursite.com/img/1.jpg",
 "postedBy": {
 "name": "Glen Plake"
 }
 },
 {
 "name": "Enjoying the sunshine",
 "url": "http://yoursite.com/img/2.jpg",
 "postedBy": {
 "name": "Scot Schmidt"
 }
 },
 {
 "name": "Gunbarrel 25",
 "url": "http://yoursite.com/img/3.jpg",
 "postedBy": {
 "name": "Scot Schmidt"
 }
 }
]
 }
}

We are responsible for connecting the data with resolvers, but as soon as we
are able to return that connected data, our clients can begin writing
powerful queries. In the next section, we show you some techniques to
create many-to-many connections.

Many-to-many

The next feature we want to add to our service is the ability to tag
users in photos. This means that a User could be tagged in many
different photos, and Photo could have many different users tagged in
it. The relationship that photo tags will create between users and
photos can be referred to as many-to-many—many users to many photos.

To facilitate the many-to-many relationship, we add the taggedUsers
field to Photo and a inPhotos field to User. Let’s modify the
typeDefs:

 type User {
 ...
 inPhotos: [Photo!]!
 }

 type Photo {
 ...
 taggedUsers: [User!]!
 }

The taggedUsers field returns a list of users, and the inPhotos
field returns a list of photos in which a user appears. To
facilitate this many-to-many connection, we need to add a tags
array. To test the tagging feature, you need to populate some sample data for tags:

var tags = [
 { "photoID": "1", "userID": "gPlake" },
 { "photoID": "2", "userID": "sSchmidt" },
 { "photoID": "2", "userID": "mHattrup" },
 { "photoID": "2", "userID": "gPlake" }
]

When we have a photo, we must search our datasets to find the
users who have been tagged in the photo. When we have a user, it is up to us to find the list of photos in which that user appears. Because our data
is currently stored in JavaScript arrays, we will use array methods
within the resolvers to find the data:

Photo: {
 ...
 taggedUsers: parent => tags

 // Returns an array of tags that only contain the current photo
 .filter(tag => tag.photoID === parent.id)

 // Converts the array of tags into an array of userIDs
 .map(tag => tag.userID)

 // Converts array of userIDs into an array of user objects
 .map(userID => users.find(u => u.githubLogin === userID))

 },
 User: {
 ...
 inPhotos: parent => tags

 // Returns an array of tags that only contain the current user
 .filter(tag => tag.userID === parent.id)

 // Converts the array of tags into an array of photoIDs
 .map(tag => tag.photoID)

 // Converts array of photoIDs into an array of photo objects
 .map(photoID => photos.find(p => p.id === photoID))

 }

The taggedUsers field resolver filters out any photos that are not the
current photo and maps that filtered list to an array of actual User
objects. The inPhotos field resolver filters the tags by user and maps the user tags
to an array of actual Photo objects.

We can now view which users are tagged in every photo by sending a
GraphQL query:

query listPhotos {
 allPhotos {
 url
 taggedUsers {
 name
 }
 }
}

You might have noticed that we have an array for tags, but we do not have
a GraphQL type called Tag. GraphQL does not require our data models
to exactly match the types in our schema. Our clients can find the
tagged users in every photo and the photos that any users are tagged in
by querying the User type or the Photo type. They don’t need to
query a Tag type: that would just complicate things. We’ve already
done the heavy lifting of finding the tagged users or photos in our
resolver specifically to make it easy for clients to query this data.

Custom Scalars

As discussed in Chapter 4, GraphQL has a collection of default
scalar types that you can use for any fields. Scalars like Int,
Float, String, Boolean, and ID are suitable for the majority of
situations, but there might be instances for which you need to create a custom
scalar type to suit your data requirements.

When we implement a custom scalar, we need to create rules around how
the type should be serialized and validated. For example, if we create a
DateTime type, we will need to define what should be considered a valid
DateTime.

Let’s add this custom DateTime scalar to our typeDefs and use it in
the Photo type for the created field. The created field is
used to store the date and time at which a specific photo was posted:

const typeDefs = `
 scalar DateTime
 type Photo {
 ...
 created: DateTime!
 }
 ...
`

Every field in our schema needs to map to a resolver. The created
field needs to map to a resolver for the DateTime type. We created a
custom scalar type for DateTime because we want to parse and validate
any fields that use this scalar as JavaScript Date types.

Consider the various ways in which we can represent a date and time as a
string. All of these strings represent valid dates:

	
“4/18/2018”

	
“4/18/2018 1:30:00 PM”

	
“Sun Apr 15 2018 12:10:17 GMT-0700 (PDT)”

	
“2018-04-15T19:09:57.308Z”

We can use any of these strings to create datetime objects with
JavaScript:

var d = new Date("4/18/2018")
console.log(d.toISOString())
// "2018-04-18T07:00:00.000Z"

Here, we created a new date object using one format and then converted
that datetime string into an ISO-formatted date string.

Anything that the JavaScript Date object does not understand is
invalid. You can try to parse the following data:

var d = new Date("Tuesday March")
console.log(d.toString())
// "Invalid Date"

When we query the photo’s created field, we want to make sure that the
value returned by this field contains a string in the ISO date-time
format. Whenever a field returns a date value, we serialize that
value as an ISO-formatted string:

const serialize = value => new Date(value).toISOString()

The serialize function obtains the field values from our object, and as
long as that field contains a date formatted as a JavaScript object or
any valid datetime string, it will always be returned by GraphQL in the
ISO datetime format.

When your schema implements a custom scalar, it can be used as an
argument in a query. Let’s assume that we created a filter for the
allPhotos query. This query would return a list of photos taken after
a specific date:

type Query {
 ...
 allPhotos(after: DateTime): [Photo!]!
}

If we had this field, clients could send us a query that contains a
DateTime value:

query recentPhotos(after:DateTime) {
 allPhotos(after: $after) {
 name
 url
 }
}

And they would send the $after argument using query variables:

{
 "after": "4/18/2018"
}

We want to make sure that the after argument is parsed into a
JavaScript Date object before it is sent to the resolver:

const parseValue = value => new Date(value)

We can use the parseValue function to parse the values of incoming
strings that are sent along with queries. Whatever parseValue returns is
passed to the resolver arguments:

const resolvers = {
 Query: {
 allPhotos: (parent, args) => {
 args.after // JavaScript Date Object
 ...
 }
 }
}

Custom scalars need to be able to serialize and parse date values. There
is one more place that we need to handle date strings. This is when
clients add the date string directly to the query itself:

query {
 allPhotos(after: "4/18/2018") {
 name
 url
 }
}

The after argument is not being passed as a query variable.
Instead, it has been added directly to the query document. Before we can
parse this value, we need to obtain it from the query after it has been
parsed into an abstract syntax tree (AST). We use the parseLiteral function
to obtain these values from the query document before they are parsed:

const parseLiteral = ast => ast.value

The parseLiteral function is used to obtain the value of the date that
was added directly to the query document. In this case, all we need to
do is return that value, but if needed, we could take extra parsing
steps inside this function.

We need all three of these functions that we designed to handle DateTime
values when we create our custom scalar. Let’s add the resolver for our
custom DateTime scalar to our code:

const { GraphQLScalarType } = require('graphql')
...
const resolvers = {
 Query: { ... },
 Mutation: { ... },
 Photo: { ... },
 User: { ... },
 DateTime: new GraphQLScalarType({
 name: 'DateTime',
 description: 'A valid date time value.',
 parseValue: value => new Date(value),
 serialize: value => new Date(value).toISOString(),
 parseLiteral: ast => ast.value
 })
}

We use the GraphQLScalarType object to create resolvers for custom
scalars. The DateTime resolver is placed within our list of resolvers.
When creating a new scalar type, we need to add the three functions:
serialize, parseValue, and parseLiteral, which will handle any fields or arguments that implement the DateType
scalar.

Sample Dates

Within the data, let’s also be sure to add a created key and a date
value for the two existing photos. Any valid date string or date object
will work because the created field will be serialized before it is
returned:

var photos = [
 {
 ...
 "created": "3-28-1977"
 },
 {
 ...
 "created": "1-2-1985"
 },
 {
 ...
 "created": "2018-04-15T19:09:57.308Z"
 }
]

Now, when we add DateTime fields to our selection sets, we can see
those dates and types formatted as ISO date strings:

query listPhotos {
 allPhotos {
 name
 created
 }
}

The only thing left to do is make sure that we add a timestamp to each
photo when it is posted. We do this by adding a created field to
every photo and timestamping it with the current DateTime using the
JavaScript Date object:

postPhoto(parent, args) {
 var newPhoto = {
 id: _id++,
 ...args.input,
 created: new Date()
 }
 photos.push(newPhoto)
 return newPhoto
}

Now, when new photos are posted, they will be timestamped with the date
and time that they were created.

apollo-server-express

 There might be a scenario where you want to add Apollo Server to an existing app, or you might want to take advantage of Express middleware. In that case, you might consider using apollo-server-express. With Apollo Server Express, you’ll get to use all of the latest features of Apollo Server, but you’ll also be able to set up a more custom configuration. For our purposes, we are going to refactor the server to use Apollo Server Express in order to set up a custom home route, a playground route, and later to allow for images that are posted to be uploaded and saved on the server.

Let’s start by removing apollo-server:

npm remove apollo-server

Then, let’s install Apollo Server Express and Express:

npm install apollo-server-express express

Express

Express is by far one of the most popular projects in the Node.js
ecosystem. It allows you to set up a Node.js web application quickly and
efficiently.

From here, we can refactor our index.js file. We’ll start by changing the require statement to include apollo-server-express. Then we’ll include express:

// 1. Require `apollo-server-express` and `express`
const { ApolloServer } = require('apollo-server-express')
const express = require('express')

...

// 2. Call `express()` to create an Express application
var app = express()

const server = new ApolloServer({ typeDefs, resolvers })

// 3. Call `applyMiddleware()` to allow middleware mounted on the same path
server.applyMiddleware({ app })

// 4. Create a home route
app.get('/', (req, res) => res.end('Welcome to the PhotoShare API'))

// 5. Listen on a specific port
app.listen({ port: 4000 }, () =>
 console.log(`GraphQL Server running @ http://localhost:4000${server.graphqlPath}`)
)

By including Express, we can take advantage of all of the middleware functions provided to us by the framework. To incorporate this into the server, we just need to call the express function, call applyMiddleware, and then we can set up a custom route. Now when we visit http://localhost:4000, we should see a page that reads “Welcome to the PhotoShare API”. This is a placeholder for now.

Next, we want to set up a custom route for the GraphQL Playground to run at http://localhost:4000/playground. We can do so by installing a helper package from npm. First, we need to install the package, graphql-playground-middleware-express:

npm install graphql-playground-middleware-express

Then require this package at the top of the index file:

const expressPlayground = require('graphql-playground-middleware-express').default

...

app.get('/playground', expressPlayground({ endpoint: '/graphql' }))

Then we’ll use Express to create a route for the Playground, so anytime we want to use the Playground, we’ll visit http://localhost:4000/playground.

Now our server is set up with Apollo Server Express, and we have three distinct routes running:

	
/ for a homepage

	
/graphql for the GraphQL endpoint

	
/playground for the GraphQL Playground

At this point, we’ll also reduce the length of our index file by moving the typeDefs and resolvers to their own files.

First, we’ll create a file called typeDefs.graphql and place it at the root of the project. This will be just the schema, only text. You can also move the resolvers to their own folder called resolvers. You can place these functions in an index.js file, or you can modularize the resolver files as we do in the repository.

Once complete, you can import the typeDefs and resolvers as shown below. We’ll use the fs module from Node.js to read the typeDefs.graphql file:

const { ApolloServer } = require('apollo-server-express')
const express = require('express')
const expressPlayground = require('graphql-playground-middleware-express').default
const { readFileSync } = require('fs')

const typeDefs = readFileSync('./typeDefs.graphql', 'UTF-8')
const resolvers = require('./resolvers')

var app = express()

const server = new ApolloServer({ typeDefs, resolvers })

server.applyMiddleware({ app })

app.get('/', (req, res) => res.end('Welcome to the PhotoShare API'))
app.get('/playground', expressPlayground({ endpoint: '/graphql' }))

app.listen({ port: 4000 }, () =>
 console.log(`GraphQL Server running at http://localhost:4000${server.graphqlPath}`)
)

Now that we’ve refactored the server, we’re ready to take the next step: integrating a database.

Context

In this section, we take a look at context, which is the location
where you can store global values that any resolver can access. Context
is a good place to store authentication information, database details,
local data caches, and anything else that is needed to resolve a GraphQL
operation.

You can directly call REST APIs and databases in your resolvers, but we commonly abstract that logic into an object that we place on the context to enforce separation of concerns and allow for easier refactors later. You can also use context to access REST data from an Apollo Data Source. For more information on that, check out Apollo Data Sources in the documentation.

For our purposes here though, we are going to incorporate context now to address some of our app’s current limitations. First of all, we’re storing data in memory, which is not a very scalable solution. We are also handling IDs sloppily by incrementing these values with each mutation. Instead, we
are going to rely on a database to handle data storage and ID
generation. Our resolvers will be able to access this database from
context.

Installing Mongo

GraphQL does not care what database you use. You can use Postgres,
Mongo, SQL Server, Firebase, MySQL, Redis, Elastic—whatever you want.
Due to its popularity among the Node.js community, we will use Mongo as
the data storage solution for our application.

To get started with MongoDB on a Mac, we will use Homebrew. To install
Homebrew, visit https://brew.sh/. After you have installed Homebrew, we
will go through the process of installing Mongo with it by running the
following commands:

brew install mongo
brew services list
brew services start

After you have successfully started MongoDB, we can start reading and
writing data to the local Mongo instance.

Note for Windows Users

If you want to run a local version of MongoDB on Windows, check out
http://bit.ly/inst-mdb-windows.

You can also use an online Mongo service like mLab, as pictured in Figure 5-1. You can create a sandbox database for free.

[image: MongoLab]
Figure 5-1. mLab

Adding Database to Context

Now it’s time to connect to our database and add the connection to
context. We are going to use a package called mongodb to communicate
with our database. We can install this by using the command: npm install mongodb.

After we install this package, we will modify the Apollo Server configuration file, the index.js. We need to wait until mongodb successfully connects to our database to start the service. We also will need to pull the database host information from an environment variable called DB_HOST. We’ll make this environment variable accessible in our project in a file called .env at the root of the project.

If you’re using Mongo locally, your URL will look something like this:

DB_HOST=mongodb://localhost:27017/<Your-Database-Name>

If you’re using mLab, your URL will look like this. Be sure to create a user and password for the database and replace <dbuser> and <dbpassword> with those values.

DB_HOST=mongodb://<dbuser>:<dbpassword>@5555.mlab.com:5555/<Your-Database-Name>

Let’s connect to the database and build a context object before starting the service. We’ll also use the dotenv package to load the DB_HOST URL:

const { MongoClient } = require('mongodb')
require('dotenv').config()

...

// 1. Create Asynchronous Function
async function start() {
 const app = express()
 const MONGO_DB = process.env.DB_HOST

 const client = await MongoClient.connect(
 MONGO_DB,
 { useNewUrlParser: true }
)
 const db = client.db()

 const context = { db }

 const server = new ApolloServer({ typeDefs, resolvers, context })

 server.applyMiddleware({ app })

 app.get('/', (req, res) => res.end('Welcome to the PhotoShare API'))

 app.get('/playground', expressPlayground({ endpoint: '/graphql' }))

 app.listen({ port: 4000 }, () =>
 console.log(
 `GraphQL Server running at http://localhost:4000${server.graphqlPath}`
)
)
}

// 5. Invoke start when ready to start
start()

With start, we connect to the database. Connecting to a database is an
asynchronous process. It will take some time to successfully connect to
a database. This asynchronous function allows us to wait for a promise to
resolve with the await keyword. The first thing we do in this function
is wait for a successful connection to the local or remote database.
After we have a database connection, we can add that connection to the
context object and start our server.

Now we can modify our query resolvers to return information from our
Mongo collections instead of local arrays. We’ll also add queries for totalUsers and allUsers and add them to the schema:

Schema

 type Query {
 ...
 totalUsers: Int!
 allUsers: [User!]!
 }

Resolvers

Query: {

 totalPhotos: (parent, args, { db }) =>
 db.collection('photos')
 .estimatedDocumentCount(),

 allPhotos: (parent, args, { db }) =>
 db.collection('photos')
 .find()
 .toArray(),

 totalUsers: (parent, args, { db }) =>
 db.collection('users')
 .estimatedDocumentCount(),

 allUsers: (parent, args, { db }) =>
 db.collection('users')
 .find()
 .toArray()

}

db.collection('photos') is how you access a Mongo collection. We can count the documents in the collection with .estimatedDocumentCount(). We can list all of the documents in a collection and convert them to an array with .find().toArray(). At this point, the photos collection is empty, but this code will work. The totalPhotos and totalUsers resolver should return nothing. The allPhotos and allUsers resolvers should return empty arrays.

To add photos to the database, a user must be logged in. In the
next section, we handle authorizing a user with GitHub and posting
our first photo to the database.

GitHub Authorization

Authorizing and authenticating users is an important part of any
application. There are a number of strategies that we can use to make
this happen. Social authorization is a popular one because it leaves a
lot of the account management details up to the social provider. It also
can help users feel more secure when logging in, because the social provider
might be a service with which they’re already comfortable. For our application,
we implement a GitHub authorization because it’s highly likely that
you already have a GitHub account (and if you don’t, it’s simple and quick to
get one!).1

Setting Up GitHub OAuth

Before we get started, you need to set up GitHub authorization for this
app to work. To do this, perform the following steps:

	
Go to https://www.github.com and log in.

	
Go to Account Settings.

	
Go to Developer Settings.

	
Click New OAuth App.

	
Add the following settings (as shown in Figure 5-2):

	Application name

	
Localhost 3000

	Homepage URL

	
http://localhost:3000

	Application description

	
All authorizations for local GitHub Testing

	Authorization callback URL

	
http://localhost:3000

[image: New OAuth App]
Figure 5-2. New OAuth App

	
Click Save.

	
Go to the OAuth Account Page and get your client_id and
client_secret, as shown in Figure 5-3.

[image: OAuth App Settings]
Figure 5-3. OAuth App Settings

With this setup in place, we can now get an auth token and information
about the user from GitHub. Specifically, we will need the client_id
and client_secret.

The Authorization Process

The process of authorizing a GitHub app happens on the client and the
server. In this section, we discuss how to handle the server, and in
Chapter 6, we go over the client implementation. As Figure 5-4 illustrates below, the full authorization process occurs in the following steps. Bold steps indicate what will happen in this chapter on the server:

	
Client: Asks GitHub for a code using a url with a client_id

	
User: Allows access to account information on GitHub for client application

	
GitHub: Sends code to OAuth redirect url: http://localhost:3000?code=XYZ

	
Client: Sends GraphQL Mutation githubAuth(code) with code

	
API: Requests a GitHub access_token with credentials: client_id, client_secret, and client_code

	
GitHub: Responds with access_token that can be used with future info requests

	
API: Request user info with access_token

	
GitHub: Responds with user info: name, githubLogin, and avatar

	
API: Resolves authUser(code) mutation with AuthPayload, which contains a token and the user

	
Client: Saves token to send with future GraphQL requests

[image: Authorization Process]
Figure 5-4. Authorization Process

To implement the githubAuth mutation, we’ll assume that we have a
code. After we use the code to obtain a token, we’ll save the new user
information and the token to our local database. We’ll also return that
info to the client. The client will save the token locally and send it
back to us with each request. We’ll use the token to authorize the user
and access their data record.

githubAuth Mutation

We handle authorizing users by using a GitHub mutation. In Chapter 4, we designed a custom payload type for our schema called
AuthPayload. Let’s add the AuthPayload and the githubAuth mutation
to our typeDefs:

type AuthPayload {
 token: String!
 user: User!
}

type Mutation {
 ...
 githubAuth(code: String!): AuthPayload!
}

The AuthPayload type is used only as a response to authorization
mutations. It contains the user who was authorized by the mutation along
with a token that they can use to identify themselves during future
requests.

Before we program the githubAuth resolver, we need to build two
functions to handle GitHub API requests:

const requestGithubToken = credentials =>
 fetch(
 'https://github.com/login/oauth/access_token',
 {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json',
 Accept: 'application/json'
 },
 body: JSON.stringify(credentials)
 }
)
 .then(res => res.json())
 .catch(error => {
 throw new Error(JSON.stringify(error))
 })

The requestGithubToken function returns a fetch promise. The credentials are
sent to a GitHub API URL in the body of a POST request. The
credentials consist of three things: the client_id, client_secret, and code.
After it is completed, the GitHub response is then parsed as JSON. We can now
use this function to request a GitHub access token with credentials. This and future helper functions can be found in a lib.js file in the repo.

As soon as we have a GitHub token, we need to access information from the
current user’s account. Specifically, we want their GitHub login,
name, and profile picture. To obtain this information, we need to
send another request to the GitHub API along with the access token
that we obtained from the previous request:

const requestGithubUserAccount = token =>
 fetch(`https://api.github.com/user?access_token=${token}`)
 .then(toJSON)
 .catch(throwError)

This function also returns a fetch promise. On this GitHub API route, we
can access information about the current user so long as we have an
access token.

Now, let’s combine both of these requests into a single asynchronous
function that we can use to authorize a user with GitHub:

async authorizeWithGithub(credentials) {
 const { access_token } = await requestGithubToken(credentials)
 const githubUser = await requestGithubUserAccount(access_token)
 return { ...githubUser, access_token }
}

Using async/await here makes it possible to handle multiple asynchronous
requests. First, we request the access token and wait for the response.
Then, using the access_token, we request the GitHub user account information
and wait for a response. After we have the data, we’ll put it all
together in a single object.

We’ve created the helper functions that will support the functionality
of the resolver. Now, let’s actually write the resolver to obtain a
token and a user account from GitHub:

async githubAuth(parent, { code }, { db }) {
 // 1. Obtain data from GitHub
 let {
 message,
 access_token,
 avatar_url,
 login,
 name
 } = await authorizeWithGithub({
 client_id: <YOUR_CLIENT_ID_HERE>,
 client_secret: <YOUR_CLIENT_SECRET_HERE>,
 code
 })
 // 2. If there is a message, something went wrong
 if (message) {
 throw new Error(message)
 }
 // 3. Package the results into a single object
 let latestUserInfo = {
 name,
 githubLogin: login,
 githubToken: access_token,
 avatar: avatar_url
 }
 // 4. Add or update the record with the new information
 const { ops:[user] } = await db
 .collection('users')
 .replaceOne({ githubLogin: login }, latestUserInfo, { upsert: true })
 // 5. Return user data and their token
 return { user, token: access_token }

 }

Resolvers can be asynchronous. We can wait for a network response before
returning the result of an operation to a client. The githubAuth
resolver is asynchronous because we must wait for two responses from
GitHub before we’ll have the data that we need to return.

After we have obtained the user’s data from GitHub, we check our
local database to see if this user has signed in to our app in the past,
which would mean that they already have an account. If the user has an
account, we will update their account details with the information that
we received from GitHub. They might have changed their name or profile
picture since they last logged in. If they do not already have an
account, we will add the new user to our collection of users. In both
cases, we return the logged in user and the token from this
resolver.

It’s time to test this authorization process, and to test, you need
code. To obtain the code, you’ll need to add your client ID to this URL:

https://github.com/login/oauth/authorize?client_id=YOUR-ID-HERE&scope=user

Paste the URL with your GitHub client_id into the location bar of a
new browser window. You will be directed to GitHub, where you will agree
to authorize this app. When you authorize the app, GitHub will redirect
you back to http://localhost:3000 with a code:

http://locahost:3000?code=XYZ

Here, the code is XYZ. Copy the code from the browser URL and then send it
with the githubAuth mutation:

mutation {
 githubAuth(code:"XYZ") {
 token
 user {
 githubLogin
 name
 avatar
 }
 }
}

This mutation will authorize the current user and return a token along
with information about that user. Save the token. We’ll need to send it
in the header with future requests.

Bad Credentials

When you see the error “Bad Credentials,” the client ID,
client secret, or code that was sent to the GitHub API is incorrect.
Check the client ID and client secret to be sure; often it’s the code that
causes this error.

GitHub codes are good for only a limited time period and can
be used only once. If there is a bug in the resolver after the credentials
were requested, the code used in the request will no longer be valid.
Typically, you can resolve this error by requesting another code from
GitHub.

Authenticating Users

To identify yourself in future requests, you will need to send
your token with every request in the Authorization header. That token
will be used to identify the user by looking up their database record.

The GraphQL Playground has a location where you can add headers to each
request. In the bottom corner, there is a tab right next to “Query
Variables” called “HTTP Headers.” You can add HTTP Headers to your
request using this tab. Just send the headers as JSON:

{
 "Authorization": "<YOUR_TOKEN>"
}

Replace <YOUR_TOKEN> with the token that was returned from the
githubAuth mutation. Now, you are sending the key to your
identification with each GraphQL request. We need to use that key to
find your account and add it to context.

me Query

From here, we want to create a query that refers back to our own user information: the me query. This query returns the current logged-in user based on the token sent in the HTTP headers of the request. If there is not currently a logged-in user, the query will return null.

The process begins when a client sends the GraphQL query, me, with
Authorization: token for secure user information. The API then captures an
Authorization header and uses the token to look up the current user record
in the database. It also adds the current user account to context. After it’s
in context, every resolver will have access to the current user.

It’s up to us to identify the current user and put them in context. Let’s modify the configuration of our server. We’ll need to change the way we build the context object. Instead of an object, we will use a function to handle context:

async function start() {
 const app = express()
 const MONGO_DB = process.env.DB_HOST

 const client = await MongoClient.connect(
 MONGO_DB,
 { useNewUrlParser: true }
)

 const db = client.db()

 const server = new ApolloServer({
 typeDefs,
 resolvers,
 context: async ({ req }) => {
 const githubToken = req.headers.authorization
 const currentUser = await db.collection('users').findOne({ githubToken })
 return { db, currentUser }
 }
 })

 ...

}

Context can be an object or a function. For our application to work, we
need it to be a function so that we can set the context every time there
is a request. When context is a function, it is invoked for every
GraphQL request. The object that is returned by this function is the
context that is sent to the resolver.

In the context function, we can capture the authorization header from
the request and parse it for the token. After we have a token, we can use
it to look up a user in our database. If we have a user, they will be
added to context. If not, the value for user in context will be null.

With this code in place, it is time to add the me query. First, we need to modify our typeDefs:

type Query {
 me: User
 ...
}

The me query returns a nullable user. It will be null if a current
authorized user is not found. Let’s add the resolver for the me query:

const resolvers = {
 Query: {
 me: (parent, args, { currentUser }) => currentUser,
 ...
 }
}

We’ve already done the heavy lifting of looking up the user based on their token. At this point, you’ll simply return the currentUser object from context. Again, this will be null if there is not a user.

If the correct token has been added to the HTTP authorization header, you can send a request to obtain details about yourself using the me query:

query currentUser {
 me {
 githubLogin
 name
 avatar
 }
}

When you run this query, you will be identified. A good test to confirm that everything is correct is to try to run this query without the authorization header or with an incorrect token. Given a wrong token or missing header, you should see that the me query is null.

postPhoto mutation

To post a photo to our application, a user must be logged in.
The postPhoto mutation can determine who is logged in by checking
context. Let’s modify the postPhoto mutation:

async postPhoto(parent, args, { db, currentUser }) {

 // 1. If there is not a user in context, throw an error
 if (!currentUser) {
 throw new Error('only an authorized user can post a photo')
 }

 // 2. Save the current user's id with the photo
 const newPhoto = {
 ...args.input,
 userID: currentUser.githubLogin,
 created: new Date()
 }

 // 3. Insert the new photo, capture the id that the database created
 const { insertedIds } = await db.collection('photos').insert(newPhoto)
 newPhoto.id = insertedIds[0]

 return newPhoto

}

The postPhoto mutation has undergone several changes in order to save
a new photo to the database. First, the currentUser is obtained from context.
If this value is null, we throw an error and prevent the postPhoto
mutation from executing any further. To post a photo, the user
must send the correct token in the Authorization header.

Next, we add the current user’s ID to the newPhoto object. Now, we can
save the new photo record to the photos collection in the database.
Mongo creates a unique identifier for each document that it saves.
When the new photo is added, we can obtain that identifier by using the
insertedIds array. Before we return the photo, we need to make sure that it has
a unique identifier.

We also need to change the Photo resolvers:

const resolvers = {
 ...
 Photo: {
 id: parent => parent.id || parent._id,
 url: parent => `/img/photos/${parent._id}.jpg`,
 postedBy: (parent, args, { db }) =>
 db.collection('users').findOne({ githubLogin: parent.userID })
}

First, if the client asks for a photo ID, we need to make sure it receives the correct value. If the parent photo does not already have an ID, we can assume that a database record has been created for the parent photo and it will have an ID saved under the field _id. We need to make sure that the ID field of the photo resolves to the database ID.

Next, let’s assume that we are serving these photos from the same web
server. We return the local route to the photo. This local route is
created using the photo’s ID.

Finally, we need to modify the postedBy resolver to look up the user
who posted the photo in the database. We can use the userID that is
saved with the parent photo to look up that user’s record in the
database. The photo’s userID should match the users githubLogin, so
the .findOne() method should return one user record, the user who
posted the photo.

With our authorization header in place, we should be able to post new
photos to the GraphQL service:

mutation post($input: PostPhotoInput!) {
 postPhoto(input: $input) {
 id
 url
 postedBy {
 name
 avatar
 }
 }
}

After we post the photo, we can ask for its id and url, along with the
name and the avatar of the user who posted the photo.

Add fake users mutation

To test our application with users other than
ourselves, we are going to add a mutation that will allow us to populate
the database with fake users from the random.me API.

We can handle this with a mutation called addFakeUsers. Let’s first add this to the schema:

type Mutation {
 addFakeUsers(count: Int = 1): [User!]!
 ...
}

Notice that the count argument takes in the number of fake users to add
and returns a list of users. This list of users contains the
accounts of the fake users added by this mutation. By default, we
add one user at a time, but you can add more by sending this mutation a
different count:

addFakeUsers: async (root, {count}, {db}) => {

 var randomUserApi = `https://randomuser.me/api/?results=${count}`

 var { results } = await fetch(randomUserApi)
 .then(res => res.json())

 var users = results.map(r => ({
 githubLogin: r.login.username,
 name: `${r.name.first} ${r.name.last}`,
 avatar: r.picture.thumbnail,
 githubToken: r.login.sha1
 }))

 await db.collection('users').insert(users)

 return users
}

To test adding new users, first we want to obtain some fake data from randomuser.me.
addFakeUsers is an asynchronous function that we can use to fetch that
data. Then, we serialize the data from randomuser.me, creating
user objects that match our schema. Next, we add these new users to
the database and return the list of new users.

Now, we can populate the database with a mutation:

mutation {
 addFakeUsers(count: 3) {
 name
 }
}

This mutation adds three fake users to the database. Now that we
have fake users, we also want to sign in with a fake user account via a
mutation. Let’s add a fakeUserAuth to our Mutation type:

type Mutation {
 fakeUserAuth(githubLogin: ID!): AuthPayload!
 ...
}

Next, we need to add a resolver that returns a token that we can use to authorize our fake users:

async fakeUserAuth (parent, { githubLogin }, { db }) {

 var user = await db.collection('users').findOne({ githubLogin })

 if (!user) {
 throw new Error(`Cannot find user with githubLogin "${githubLogin}"`)
 }

 return {
 token: user.githubToken,
 user
 }

}

The fakeUserAuth resolver obtains the githubLogin from the
mutation’s arguments and uses it to find that user in the database. After it finds that user, the user’s token and user account are returned in the shape of
our AuthPayload type.

Now we can authenticate fake users by sending a mutation:

mutation {
 fakeUserAuth(githubLogin:"jDoe") {
 token
 }
}

Add the returned token to the authorization HTTP header to post new
photos as this fake user.

Conclusion

Well, you did it. You built a GraphQL Server. You started by getting a
thorough understanding of resolvers. You handled queries and mutations. You added GitHub authorization. You identified the
current user via an access token that is added to the header of every
request. And finally, you modified the mutation that reads the user from
the resolver’s context and allows users to post photos.

If you want to run a completed version of the service that we constructed in this chapter, you can find it in this book’s repository. This app will need to know what database to use and which GitHub OAuth credentials to use. You can add these values by created a new file named .env and placing it in the project root:

DB_HOST=<YOUR_MONGODB_HOST>
CLIENT_ID=<YOUR_GITHUB_CLIENT_ID>
CLIENT_SECRET=<YOUR_GITHUB_CLIENT_SECRET>

With the .env file in place, you are ready to install the dependencies: yarn or npm install and run the service: yarn start or npm start. Once the service is running on port 4000, you can send queries to it using the Playground at: http://localhost:4000/playground. You can request a GitHub code by clicking the link found at http://localhost:4000. If you want to access the GraphQL endpoint from some other client, you can find it at: http://localhost:4000/graphql.

In Chapter 7, we show you how
to modify this API to handle subscriptions and file uploads. But before
we do that, we need to show you how clients will consume this API, so in Chapter 6, we look at how to construct a frontend that can work with this service.

1 You can create an account at https://www.github.com.

Chapter 6. GraphQL Clients

With your GraphQL server built, it’s now time to set up GraphQL on the
client side. Very broadly, a client is just an application that
communicates with a server. Because of the flexibility of GraphQL, there’s
no prescription for how to build a client. You might be building apps
for web browsers. You might be creating native applications for phones.
You might be building a GraphQL service for a screen on your
refrigerator. It also does not matter to the client in which language the
service is written.

All you really need to send queries and mutations is the ability to send
an HTTP request. When the service responds with some data, you can use
it in your client no matter what that client is.

Using a GraphQL API

The easiest way to begin is just to make an HTTP request to your
GraphQL endpoint. To test the server that we built in Chapter 5, make sure your service is running locally at http://localhost:4000/graphql. You can also find all of these samples running on CodeSandbox at the links found in the Chapter 6 repository.

fetch Requests

As you saw in Chapter 3, you can send requests to a GraphQL service by using
cURL. All you need is a few different values:

	
A query: {totalPhotos, totalUsers}

	
A GraphQL endpoint: http://localhost:4000/graphql

	
A content type: Content-Type: application/json

From there, you send the cURL request directly from the
terminal/command prompt using the POST method:

curl -X POST \
 -H "Content-Type: application/json" \
 --data '{ "query": "{totalUsers, totalPhotos}" }' \
 http://localhost:4000/graphql

If we send this request, we should see the correct results,
{"data":{"totalUsers":7,"totalPhotos":4}}, as JSON data returned in
the terminal. Your numbers for totalUsers and totalPhotos will reflect your current data. If your client is a shell script, you can start
building that script with cURL.

Because we’re using cURL, we can use anything that sends an HTTP request.
We could build a tiny client by using fetch, which will work in the
browser:

var query = `{totalPhotos, totalUsers}`
var url = 'http://localhost:4000/graphql'

var opts = {
 method: 'POST',
 headers: { 'Content-Type': 'application/json' },
 body: JSON.stringify({ query })
}

fetch(url, opts)
 .then(res => res.json())
 .then(console.log)
 .catch(console.error)

After we fetch the data, we’ll see the expected result logged in the
console:

{
 "data": {
 "totalPhotos": 4,
 "totalUsers": 7
 }
}

We can use the resulting data on the client to build applications.
Let’s consider a basic example to see how we might list totalUsers and
totalPhotos directly in the DOM:

fetch(url, opts)
 .then(res => res.json())
 .then(({data}) => `
 <p>photos: ${data.totalPhotos}</p>
 <p>users: ${data.totalUsers}</p>
 `)
 .then(text => document.body.innerHTML = text)
 .catch(console.error)

Instead of logging the results to the console, we use the data to
build some HTML text. We can then take that text and write it directly
to the document’s body. Be careful: it’s possible to overwrite anything that was
in the body after the request is complete.

If you already know how to send HTTP requests using your favorite
client, you already have the tools necessary to build a client
application that communicates with any GraphQL API.

graphql-request

Though cURL and fetch work well, there are other frameworks that you can use to send GraphQL operations to an API. One of the most notable examples of this is graphql-request. graphql-request wraps fetch requests in a promise that can be used to make requests to the GraphQL server. It also handles the details of making the request and parsing the data for you.

To get started with graphql-request, you first need to install it:

npm install graphql-request

From there, you import and use the module as request. Be sure to
keep the photo service running on port 4000:

import { request } from 'graphql-request'

var query = `
 query listUsers {
 allUsers {
 name
 avatar
 }
 }
`

request('http://localhost:4000/graphql', query)
 .then(console.log)
 .catch(console.error)

The request function takes in url and query, makes the request to
the server, and returns the data in one line of code. The data returned
is, as expected, a JSON response of all of the users:

{
 "allUsers": [
 { "name": "sharon adams", "avatar": "http://..." },
 { "name": "sarah ronau", "avatar": "http://..." },
 { "name": "paul young", "avatar": "http://..." },
]
}

We can begin using this data in our client straight away.

You can also send mutations with graphql-request:

import { request } from 'graphql-request'

var url = 'http://localhost:4000/graphql'

var mutation = `
 mutation populate($count: Int!) {
 addFakeUsers(count:$count) {
 id
 name
 }
 }
`

var variables = { count: 3 }

request(url, mutation, variables)
 .then(console.log)
 .catch(console.error)

The request function takes in the API URL, the mutation, and a third
argument for variables. This is just a JavaScript object that passes in
a field and value for the query variables. After we invoke request, we
issue the addFakeUsers mutation.

Though graphql-request doesn’t offer any formal integration with UI
libraries and frameworks, we can incorporate a library fairly simply.
Let’s load some data into a React component using graphql-request, as demonstrated in Example 6-1.

Example 6-1. GraphQL Request and React

 import React from 'react'
 import ReactDOM from 'react-dom'
 import { request } from 'graphql-request'

 var url = 'http://localhost:4000/graphql'

 var query = `
 query listUsers {
 allUsers {
 avatar
 name
 }
 }
 `

 var mutation = `
 mutation populate($count: Int!) {
 addFakeUsers(count:$count) {
 githubLogin
 }
 }
 `

 const App = ({ users=[] }) =>
 <div>
 {users.map(user =>
 <div key={user.githubLogin}>

 {user.name}
 </div>
)}
 <button onClick={addUser}>Add User</button>
 </div>

 const render = ({ allUsers=[] }) =>
 ReactDOM.render(
 <App users={allUsers} />,
 document.getElementById('root')
)

 const addUser = () =>
 request(url, mutation, {count:1})
 .then(requestAndRender)
 .catch(console.error)

 const requestAndRender = () =>
 request(url, query)
 .then(render)
 .catch(console.error)

 requestAndRender()

Our file starts with an import of both React and ReactDOM. We then
create an App component. App maps over the users that are passed
as props and creates div elements containing their avatar and
username. The render function renders the App to the #root element
and passes in allUsers as a property.

From there, requestAndRender calls request from graphql-request. This issues the query, receives the data, and then calls render, which provides the data to the App component.

This little app also handles mutations. In the App component, the
button has an onClick event that calls the addUser function. When
invoked, this sends the mutation and then calls requestAndRender to
issue a new request for the services users and rerenders the <App />
with the new list of users.

So far, we’ve looked at a few different ways to begin building
client apps using GraphQL. You can write shell scripts with cURL. You
can build web pages with fetch. You can build apps a little faster with
graphql-request. You could stop right there if you wanted to, but there
are even more powerful GraphQL clients available. Let’s go for it.

Apollo Client

A huge benefit of using Representational State Transfer (REST) is the ease with which you can handle
caching. With REST, you can save the response data from a request in a
cache under the URL that was used to access that request. Caching done,
no problem. Caching GraphQL is a little trickier. We don’t have a
multitude of routes with a GraphQL API—everything is sent and received
over a single endpoint, so we cannot simply save the data returned from
a route under the URL that was used to request it.

To build a robust, performant application, we need a way to cache
queries and their resulting objects. Having a localized caching solution
is essential as we constantly strive to create fast, efficient apps. We
could create something like this ourselves, or we could lean on one of
the vetted clients that already exist.

The most prominent GraphQL client solutions available today are Relay
and Apollo Client. Relay was open sourced by Facebook in 2015 at the same time
as GraphQL. It brings together everything that Facebook learned about
using GraphQL in production. Relay is compatible with React and React
Native only, which means that there was an opportunity to create a
GraphQL client to support developers who might not use React.

Enter Apollo Client. Brought to you by Meteor Development Group, Apollo Client is a community-driven project to build a flexible GraphQL client solution to handle tasks like caching, optimistic UI updates, and more. The team has created packages that supply bindings for React, Angular, Ember, Vue, iOS, and Android.

We’ve already been using several tools from the Apollo team on the
server, but Apollo Client focuses specifically on sending and receiving
requests from the client to the server. It handles the network requests
with Apollo Link and handles all caching with Apollo Cache. Apollo
Client then wraps the link and the cache and manages all interactions
with the GraphQL service efficiently.

For the rest of the chapter, we take a closer look at Apollo Client. We’re going to be using React to build out our UI components, but we can apply many of the techniques described here to projects that use different libraries and frameworks.

Apollo Client with React

Since working with React is what led us to GraphQL in the first place, we have chosen React as the user interface library. We haven’t offered much explanation about React itself. It is a library that was created at Facebook that uses a component-based architecture to compose UIs. If you are a user of a different library and you never want to look at React again after this, that’s ok. The ideas presented in this next section are applicable to other UI frameworks.

Project Setup

In this chapter, we show you how to build a React app that
interacts with a GraphQL service using Apollo Client. To begin, we need to scaffold the frontend of this project using
create-react-app. create-react-app allows you to generate an entire
React project without setting up any build configuration. If you haven’t
used create-react-app before, you might need to install it:

npm install -g create-react-app

Once installed, you can create a React project anywhere on your computer with:

create-react-app photo-share-client

This command installs a new base React application in a folder named photo-share-client. It automatically adds and installs everything that you will need to get started building a React app. To start the application, navigate to the photo-share-client folder and run npm start. You’ll see your browser open to http://localhost:3000 where your React client application is running. Remember, you can find all of the files for this chapter in the repository at http://github.com/moonhighway/learning-graphql.

Configure Apollo Client

You’ll need to install a few packages to build a GraphQL client with Apollo tools. First, you’ll need graphql which includes the GraphQL language parser. Then you’ll need a package called apollo-boost. Apollo Boost includes the Apollo packages necessary for creating an Apollo Client and sending operations to that client. Finally, we’ll need react-apollo. React Apollo is an npm library that contains React components that we will use to construct a user interface with Apollo.

Let’s install these three packages at the same time:

npm install graphql apollo-boost react-apollo

Now we are ready to create our client. The ApolloClient constructor found in apollo-boost can be used to create our first client. Open the src/index.js file and replace the code in that file with the following:

import ApolloClient from 'apollo-boost'

const client = new ApolloClient({ uri: 'http://localhost:4000/graphql' })

Using the ApolloClient constructor, we’ve created a new client instance. The client is ready to handle all network communication with the GraphQL service hosted at http://localhost:4000/graphql. For example, we can use the client to send a query to the PhotoShare Service:

import ApolloClient, { gql } from 'apollo-boost'

const client = new ApolloClient({ uri: 'http://localhost:4000/graphql' })

const query = gql`
 {
 totalUsers
 totalPhotos
 }
`

client.query({query})
 .then(({ data }) => console.log('data', data))
 .catch(console.error)

This code uses the client to send a query for the total photo count and the total user count. To make this happen, we imported the gql function from apollo-boost. This function is a part of the graphql-tag package that was automatically included with apollo-boost. The gql function is used to parse a query into an AST or abstract syntax tree.

We can send the AST to the client by invoking client.query({query}). This method returns a promise. It sends the query as an HTTP request to our GraphQL service and resolves the data returned from that service. In the above example, we are logging the response to the console:

{ totalUsers: 4, totalPhotos: 7, Symbol(id): "ROOT_QUERY" }

GraphQL Service Should Be Running

Make sure that the GraphQL service is still running on http://localhost:4000 so that you can test the client connection to the server.

In addition to handling all network requests to our GraphQL service, the client also caches the responses locally in memory. At any point, we can take a look at the cache by invoking client.extract():

console.log('cache', client.extract())
client.query({query})
 .then(() => console.log('cache', client.extract()))
 .catch(console.error)

Here we have a look at the cache before the query is sent, and another look at it after the query has been resolved. We can see that we now have the results saved in a local object which is managed by the client:

 {
 ROOT_QUERY: {
 totalPhotos: 4,
 totalUsers: 7
 }
 }

The next time we send the client a query for this data, it will read it from the cache as opposed to sending another network request to our service. Apollo Client provides us with options to specify when, and how often, we should send HTTP requests over the network. We’ll cover those options later on in this chapter. For now, it is important to understand that Apollo Client is used to handle all network requests to our GraphQL service. Additionally, by default, it automatically caches the results locally and defers to the local cache to improve our applications performance.

To get started with react-apollo, all we need to do is create a client and add it to our user interface with a component called ApolloProvider. Replace the code found in the index.js file with the following:

import React from 'react'
import { render } from 'react-dom'
import App from './App'
import { ApolloProvider } from 'react-apollo'
import ApolloClient from 'apollo-boost'

const client = new ApolloClient({ uri: 'http://localhost:4000/graphql' })

render(
 <ApolloProvider client={client}>
 <App />
 </ApolloProvider>,
 document.getElementById('root')
)

This is all the code you will need to get started using Apollo with React. Here, we’ve created a client and then placed that client in React’s global scope with the help of a component called the ApolloProvider. Any child component wrapped by the ApolloProvider will have access to the client. That means that the <App /> component and any of its children are ready to receive data from our GraphQL service via Apollo Client.

The Query Component

Using Apollo Client, we need a way to handle queries to fetch data to
load into our React UI. The Query component will take care of fetching data, handling loading state, and updating our UI. We can use the Query component anywhere within the ApolloProvider. The Query component sends a query using the client. Once resolved, the client will return the results that we’ll use to construct the user interface.

Open the src/App.js file and replace the code that is currently inside of this file with the following:

import React from 'react'
import Users from './Users'
import { gql } from 'apollo-boost'

export const ROOT_QUERY = gql`
 query allUsers {
 totalUsers
 allUsers {
 githubLogin
 name
 avatar
 }
 }
`

const App = () => <Users />

export default App

In the App component, we’ve created a query called ROOT_QUERY. Remember, one of the benefits of using GraphQL is to request everything you’ll need to construct your UI and receive all of that data in a single response. That means we are going to request both the totalUsers count and the allUsers array in a query that we’ve created in the root of our application. Using the gql function, we’ve converted our string query an AST object named ROOT_QUERY, and we’ve exported this object so that other components can use it.

At this point, you should see an error. This is because we’ve told the App to render a component that we have not created. Create a new file called src/Users.js and place this code inside of that file:

import React from 'react'
import { Query } from 'react-apollo'
import { ROOT_QUERY } from './App'

const Users = () =>
 <Query query={ROOT_QUERY}>
 {result =>
 <p>Users are loading: {result.loading ? "yes" : "no"}</p>
 }
 </Query>

export default Users

Now you should see the error clear, and the message “Users are loading: no” should be displayed in the browser window. Under the hood, the Query component is sending the ROOT_QUERY to our GraphQL service and caching the result locally. We obtain the result using a React technique called render props. Render props allow us to pass properties as function arguments to child components. Notice that we are obtaining the result from a function and returning a paragraph element.

The result contains more information than just the response data. It will tell us whether or not an operation is loading via the result.loading property. In the preceding example, we can tell the user whether or not the current query is loading.

Throttle the HTTP Request

Your network might be too fast to see more than a quick flicker of the loading property in the browser. You can use the Network tab in Chrome’s developer tools to throttle the HTTP request. In the developer tools, you’ll find a dropdown that has the “Online” option selected. Selecting “Slow 3G” from the dropdown will simulate a slower response. This will allow you to see the loading happen in the browser.

Once the data has loaded, it will be passed along with the result.

Instead of displaying “yes” or “no” when the client is loading data, we can display UI components instead. Let’s adjust the Users.js file:

const Users = () =>
 <Query query={ROOT_QUERY}>
 {({ data, loading }) => loading ?
 <p>loading users...</p> :
 <UserList count={data.totalUsers} users={data.allUsers} />
 }
 </Query>

const UserList = ({ count, users }) =>
 <div>
 <p>{count} Users</p>

 {users.map(user =>
 <UserListItem key={user.githubLogin}
 name={user.name}
 avatar={user.avatar} />
)}

 </div>

const UserListItem = ({ name, avatar }) =>

 {name}

If the client is loading the current query, we will display a “loading users…” message. If the data has been loaded, we will pass the total user count along with an array containing the name, githubLogin, and avatar of every user to the UserList component: exactly the data we asked for in our query. The UserList uses the result data to build the UI. It displays the count along with a list that displays the user’s avatar image alongside of their name.

The results object also has several utility functions for pagination, refetching, and polling. Let’s use the refetch function to refetch the list of users when we click a button:

const Users = () =>
 <Query query={ROOT_QUERY}>
 {({ data, loading, refetch }) => loading ?
 <p>loading users...</p> :
 <UserList count={data.totalUsers}
 users={data.allUsers}
 refetchUsers={refetch} />
 }
 </Query>

Here we’ve obtained a function that can be used to refetch the ROOT_QUERY or request the data from the server again. The refetch property is simply a function. We can pass it to the UserList where it can be added to a button click:

const UserList = ({ count, users, refetch }) =>
 <div>
 <p>{count} Users</p>
 <button onClick={() => refetch()}>Refetch</button>

 {users.map(user =>
 <UserListItem key={user.githubLogin}
 name={user.name}
 avatar={user.avatar} />
)}

 </div>

In the UserList, we are using the refetch function to request the same root data from our GraphQL service. Whenever you click the “Refetch Users” button, another query will be sent to the GraphQL endpoint to refetch any data changes. This is one way to keep your user interface in sync with the data on the server.

Note

To test this, we can change the user data after the initial fetch. You can delete the users collection, delete user documents directly from MongoDB, or add fake users by sending a query with the server’s GraphQL Playground. When you change the data in the database, the “Refetch Users” button will need to be clicked in order to re-render the most up to date data in the browser.

Polling is another option that is available with the Query component. When we add the pollInterval prop to the Query component, data is automatically fetched over and over again based on a given interval:

<Query query={ROOT_QUERY} pollInterval={1000}>

Setting a pollInterval automatically refetches the data at a specified time. In this case, we will refetch the data from the server every second. Be careful when using polling as this code actually sends a new network request every second.

In addition to loading, data, and refetch, the response object has some additional options:

	stopPolling

	
A function that stops polling

	startPolling

	
A function that will start polling

	fetchMore

	
A function that can be used to fetch the next page of data

Before we continue, remove any pollInterval properties from the Query component. We do not want polling to take place as we continue to iterate on this example.

The Mutation Component

When we want to send mutations to the GraphQL service, we can use
the Mutation component. In the next example, we use this component
to handle the addFakeUsers mutation. When we send this mutation, we
write the new list of users directly to the cache.

To begin, let’s import the Mutation component and add a mutation to the Users.js file:

import { Query, Mutation } from 'react-apollo'
import { gql } from 'apollo-boost'

...

const ADD_FAKE_USERS_MUTATION = gql`
 mutation addFakeUsers($count:Int!) {
 addFakeUsers(count:$count) {
 githubLogin
 name
 avatar
 }
 }
`

Once we have the mutation, we can use it in combination with the Mutation component. This component will pass a function to its children via render props. This function can be used to send the mutation when we are ready:

const UserList = ({ count, users, refetchUsers }) =>
 <div>
 <p>{count} Users</p>
 <button onClick={() => refetchUsers()}>Refetch Users</button>
 <Mutation mutation={ADD_FAKE_USERS_MUTATION} variables={{ count: 1 }}>
 {addFakeUsers =>
 <button onClick={addFakeUsers}>Add Fake Users</button>
 }
 </Mutation>

 {users.map(user =>
 <UserListItem key={user.githubLogin}
 name={user.name}
 avatar={user.avatar} />
)}

 </div>

Just as we sent query as a prop to the Query component, we will send a mutation prop to the Mutation component. Notice also that we’re using the variables property. This will send the necessary query variables with the mutation. In this case, it sets the count to 1, which will cause the mutation to add one fake user at a time. The Mutation component uses a function, addFakeUsers, that will send the mutation once it has been invoked. When the user clicks the “Add Fake Users” button, the mutation will be sent to our API.

Currently, these users are being added to the database, but the only way to see the changes is to click the “Refetch Users” button. We can tell the Mutation component to refetch specific queries once the mutation has completed instead of waiting for our users to click a button:

<Mutation mutation={ADD_FAKE_USERS_MUTATION}
 variables={{ count: 1 }}
 refetchQueries={[{ query: ROOT_QUERY }]}>
 {addFakeUsers =>
 <button onClick={addFakeUsers}>Add Fake Users</button>
 }
</Mutation>

refetchQueries is a property that lets you specify which queries to refetch after sending a mutation. Simply place a list of objects that contain queries. Each of the query operations found in this list will refetch data after the mutation has completed.

Authorization

In Chapter 5, we built a mutation to authorize a
user with GitHub. In the following section, we show you how to set
up user authorization on the client side.

The process of authorizing a user involves several steps. The bold steps indicate the functionality we’ll add to the client:

	Client

	
Redirects the user to GitHub with the client_id

	User

	
Allows access to account information on GitHub for the client application

	GitHub

	
Redirects back to the website with code: http://localhost:3000?code=XYZ

	Client

	
Sends GraphQL Mutation authUser(code) with code

	API

	
Requests a GitHub access_token with client_id, client_secret, and client_code

	GitHub

	
Responds with access_token that can be used with future info requests

	API

	
Request user info with access_token

	GitHub

	
Responds with user info: name, github_login, avatar_url

	API

	
Resolves authUser(code) mutation with AuthPayload, which contains a token and the user

	Client

	
Saves token to send with future GraphQL requests

Authorizing the User

It is now time to authorize the user. To facilitate this
example, we use React Router, which we install via npm: npm install react-router-dom.

Let’s modify our main <App /> component. We’ll incorporate the BrowserRouter, and we’ll add a new component, AuthorizedUser, that we can use to authorize users with GitHub:

import React from 'react'
import Users from './Users'
import { BrowserRouter } from 'react-router-dom'
import { gql } from 'apollo-boost'
import AuthorizedUser from './AuthorizedUser'

export const ROOT_QUERY = gql`
 query allUsers {
 totalUsers
 allUsers { ...userInfo }
 me { ...userInfo }
 }

 fragment userInfo on User {
 githubLogin
 name
 avatar
 }
`

const App = () =>
 <BrowserRouter>
 <div>
 <AuthorizedUser />
 <Users />
 </div>
 </BrowserRouter>

export default App

BrowserRouter wraps all of the other components that we want to render. We also will add a new AuthorizedUser component, which we will build in a new file. We should see an error until we add that component.

We’ve also modified the ROOT_QUERY to get it ready for authorization. We are now additionally asking for the me field, which returns information about the current user when someone is logged in. When a user is not logged in, this field will simply return null. Notice that we’ve added a fragment called userInfo to the query document. This allows us obtain the same information about a User in two places: the me field and the allUsers field.

The AuthorizedUser component should redirect the user to GitHub to request a code. That code should be passed back from GitHub to our app at http://localhost:3000.

In a new file called AuthorizedUser.js, let’s implement this process:

import React, { Component } from 'react'
import { withRouter } from 'react-router-dom'

class AuthorizedUser extends Component {

 state = { signingIn: false }

 componentDidMount() {
 if (window.location.search.match(/code=/)) {
 this.setState({ signingIn: true })
 const code = window.location.search.replace("?code=", "")
 alert(code)
 this.props.history.replace('/')
 }
 }

 requestCode() {
 var clientID = <YOUR_GITHUB_CLIENT_ID>
 window.location =
 `https://github.com/login/oauth/authorize?client_id=${clientID}&scope=user`
 }

 render() {
 return (
 <button onClick={this.requestCode} disabled={this.state.signingIn}>
 Sign In with GitHub
 </button>
)
 }
}

export default withRouter(AuthorizedUser)

The AuthorizedUser component renders a “Sign In with GitHub” button. Once clicked, this button will redirect the user to GitHub’s OAuth process. Once authorized, GitHub will pass a code back to the browser: http://localhost:3000?code=XYZGNARLYSENDABC. If the code is found in the query string, the component parses it from the window’s location and displays it in an alert box to the user before removing it with the history property that was sent to this component with React Router.

Instead of sending the user an alert with the GitHub code, we need to send it to the githubAuth mutation:

import { Mutation } from 'react-apollo'
import { gql } from 'apollo-boost'
import { ROOT_QUERY } from './App'

const GITHUB_AUTH_MUTATION = gql`
 mutation githubAuth($code:String!) {
 githubAuth(code:$code) { token }
 }
`

The above mutation will be used to authorize the current user. All we need is the code. Let’s add this mutation to the render method of this component:

render() {
 return (
 <Mutation mutation={GITHUB_AUTH_MUTATION}
 update={this.authorizationComplete}
 refetchQueries={[{ query: ROOT_QUERY }]}>

 {mutation => {
 this.githubAuthMutation = mutation
 return (
 <button
 onClick={this.requestCode}
 disabled={this.state.signingIn}>
 Sign In with GitHub
 </button>
)
 }}

 </Mutation>
)
}

The Mutation component is tied to the GITHUB_AUTH_MUTATION. Once completed, it will invoke the component’s authorizationComplete method and refetch the ROOT_QUERY. The mutation function has been added to the scope of the AuthorizedUser component by setting: this.githubAuthMutation = mutation. We can now invoke this this.githubAuthMutation() function when we are ready (when we have a code).

Instead of alerting the code, we will send it along with the mutation to authorize the current user. Once authorized, we will save the resulting token to localStorage and use the router’s history property to remove the code from the window’s location:

class AuthorizedUser extends Component {

 state = { signingIn: false }

 authorizationComplete = (cache, { data }) => {
 localStorage.setItem('token', data.githubAuth.token)
 this.props.history.replace('/')
 this.setState({ signingIn: false })
 }

 componentDidMount() {
 if (window.location.search.match(/code=/)) {
 this.setState({ signingIn: true })
 const code = window.location.search.replace("?code=", "")
 this.githubAuthMutation({ variables: {code} })
 }
 }

 ...

}

To start the authorization process, invoke this.githubAuthMutation() and add the code to the operation’s variables. Once complete, the authorizationComplete method will be called. The data passed to this method is the data that we selected in the mutation. It has a token. We’ll save the token locally and use React Router’s history to remove the code query string from the window’s location bar.

At this point, we will have signed in the current user with GitHub. The next step will be to make sure that we send this token along with every request in the HTTP headers.

Identifying the User

Our next task is to add a token to the authorization header for each request. Remember, the photo-share-api service that we created in the last chapter will identify users who pass an authorization token in the header. All we have to do is make sure any token saved to localStorage is sent along with every request sent to our GraphQL service.

Let’s modify the src/index.js file. We need to find the line where we create the Apollo Client and replace it with this code:

const client = new ApolloClient({
 uri: 'http://localhost:4000/graphql',
 request: operation => {
 operation.setContext(context => ({
 headers: {
 ...context.headers,
 authorization: localStorage.getItem('token')
 }
 }))
 }
})

We’ve now added a request method to our Apollo Client configuration. This method passes the details about every operation just before it is sent to the GraphQL service. Here we are setting the context of every operation to include an authorization header that contains the token saved to local storage. Don’t worry, if we don’t have a token saved the value of this header will simply be null and our service will assume that there a user has not been authorized.

Now that we’ve added the authorization token to every header, our me field should return data about the current user. Let’s display that data in our UI. Find the render method in the AuthorizedUser component and replace it with this code:

render() {
 return (
 <Mutation
 mutation={GITHUB_AUTH_MUTATION}
 update={this.authorizationComplete}
 refetchQueries={[{ query: ROOT_QUERY }]}>
 {mutation => {
 this.githubAuthMutation = mutation
 return (
 <Me signingIn={this.state.signingIn}
 requestCode={this.requestCode}
 logout={() => localStorage.removeItem('token')} />
)
 }}
 </Mutation>
)
}

Instead of rendering a button, this Mutation component now renders a component called Me. The Me component will either display information about the current user who is logged in or the authorize button. It will need to know whether or not the user is currently in the process of signing in. It also needs to access the requestCode methods of the AuthorizedUser component. Finally, we need to provide a function that can log the current user out. For now, we’ll just remove the token from localStorage when the user logs out. All of these values have been passed down to the Me component as properties.

It’s now time to create the Me component. Add the following code above the declaration of the AuthorizedUser component:

const Me = ({ logout, requestCode, signingIn }) =>
 <Query query={ROOT_QUERY}>
 {({ loading, data }) => data.me ?
 <CurrentUser {...data.me} logout={logout} /> :
 loading ?
 <p>loading... </p> :
 <button
 onClick={requestCode}
 disabled={signingIn}>
 Sign In with GitHub
 </button>
 }
 </Query>

const CurrentUser = ({ name, avatar, logout }) =>
 <div>

 <h1>{name}</h1>
 <button onClick={logout}>logout</button>
 </div>

The Me component renders a Query component to obtain the data about the current user from the ROOT_QUERY. If there is a token, the me field in the ROOT_QUERY will not be null. Within the query component, we check to see if data.me is null. If there is data under this field, we will display the CurrentUser component and pass the data about the current user to this component as properties. The code {...data.me} uses the spread operator to pass all of the fields to the CurrentUser component as individual properties. Additionally, the logout function is passed to the CurrentUser component. When the user clicks the logout button, this function will be invoked and their token removed.

Working with the Cache

As developers, we’re in the network request minimization business. We don’t want our users to have to make extraneous requests. In order to minimize the number of network requests that our apps send, we can dig deeper into how to customize the Apollo Cache.

Fetch Policies

By default, Apollo Client stores data in a local JavaScript variable. Every time we create a client, a cache is created for us. Every time we send an operation, the response is cached locally. The fetchPolicy tells Apollo Client where to look for data to resolve an operation: either the local cache or a network request. The default fetchPolicy is cache-first. This means that the client will look locally in the cache for data to resolve the operation. If the client can resolve the operation without sending a network request, it will do so. However, if data to resolve the query is not in the cache then the client will send a network request to the GraphQL service.

Another type of fetchPolicy is cache-only. This policy tells the client to only look in the cache and never send a network request. If the data to fulfill the query does not exist in the cache, then an error will be thrown.

Take a look at src/Users.js, and find the Query inside the Users component. We can change the fetch policy of individual queries simply by adding the fetchPolicy property:

<Query query={{ query: ROOT_QUERY }} fetchPolicy="cache-only">

At present, if we set the policy for this Query to cache-only and refresh the browser, we should see an error because Apollo Client is only looking in the cache for the data to resolve our query and that data is not present when the app starts. To clear the error, change the fetch policy to cache-and-network:

<Query query={{ query: ROOT_QUERY }} fetchPolicy="cache-and-network">

The application works again. The cache-and-network policy always resolves the query immediately from the cache and additionally sends a network request to get the latest data. If the local cache does not exist, as is the case when the app starts, this policy will simply retrieve the data from the network. Other policies include:

	network-only

	
Always sends a network request to resolve a query

	no-cache

	
Always sends a network request to resolve the data and it doesn’t cache the resulting response

Persisting The Cache

It is possible to save the cache locally on the client. This unlocks the power of the cache-first policy, because the cache will already exist when the user returns to the application. In this case, the cache-first policy will immediately resolve the data from the existing local cache and not send a request to the network at all.

To save cache data locally, we’ll need to install an npm package:

npm install apollo-cache-persist

The apollo-cache-persist package contains a function that enhances the cache by saving it to a local store whenever it changes. To implement cache persistance, we’ll need to create our own cache object and add it to the client when we configure our application.

Add the following code to the src/index.js file:

import ApolloClient, { InMemoryCache } from 'apollo-boost'
import { persistCache } from 'apollo-cache-persist'

const cache = new InMemoryCache()
persistCache({
 cache,
 storage: localStorage
})

const client = new ApolloClient({
 cache,

 ...

})

First, we’ve created our own cache instance using the InMemoryCache constructor provided with apollo-boost. Next, we imported the persistCache method from apollo-cache-persist. Using InMemoryCache, we create a new cache instance and send it to the persistCache method along with a storage location. We’ve chosen to save the cache in the browser window’s localStorage store. This means that once we start our application, we should see the value of our cache saved to our store. You can check for it by adding the following syntax:

console.log(localStorage['apollo-cache-persist'])

The next step is to check localStorage on startup to see if we already have a cache saved. If we do, then we’ll want to initialize our local cache with that data before creating the client:

const cache = new InMemoryCache()
persistCache({
 cache,
 storage: localStorage
})

if (localStorage['apollo-cache-persist']) {
 let cacheData = JSON.parse(localStorage['apollo-cache-persist'])
 cache.restore(cacheData)
}

Now our application will load any cached data before it starts. If we do have data saved under the key apollo-cache-persist, then we’ll use the cache.restore(cacheData) method to add it to the cache instance.

We’ve successfully minimized the number of network requests to our service simply by using Apollo Client’s cache effectively. In the next section, we will learn about how we can write data directly to the local cache.

Updating the Cache

The Query component is capable of reading directly from the cache. That’s what makes a fetch policy like cache-only possible. We are also able to interact directly with the Apollo Cache. We can read current data from the cache or write data directly to the cache. Every time we change data stored in the cache, react-apollo detects that change and re-renders all of the effected components. All we have to do is change the cache and the UI will automatically update to match the change.

Data is read from the Apollo Cache using GraphQL. You read queries. Data is written to the Apollo Cache using GraphQL, you write data to queries. Consider the ROOT_QUERY that is located in src/App.js:

export const ROOT_QUERY = gql`
 query allUsers {
 totalUsers
 allUsers { ...userInfo }
 me { ...userInfo }
 }

 fragment userInfo on User {
 githubLogin
 name
 avatar
 }
`

This query has three fields in its selection set: totalUsers, allUsers, and me. We can read any data that we currently have stored in our cache using the cache.readQuery method:

let { totalUsers, allUsers, me } = cache.readQuery({ query: ROOT_QUERY })

In this line of code, we’ve obtained the values for totalUsers, allUsers, and me that were stored in the cache.

We can also write data directly to the totalUsers, allUsers, and me fields of the ROOT_QUERY using the cache.writeQuery method:

cache.writeQuery({
 query: ROOT_QUERY,
 data: {
 me: null,
 allUsers: [],
 totalUsers: 0
 }
})

In this example, we are clearing all of the data from our cache and resetting default values for all of the fields in the ROOT_QUERY. Because we are using react-apollo, this change would trigger a UI update and clear the entire list of users from the current DOM.

A good place to write data directly to the cache is inside of the logout function in the AuthorizedUser component. At present this function is removing the user’s token, but the UI does not update until the “Refetch” button has been clicked or the browser is refreshed. To improve this feature, we will clear out the current user from the cache directly when the user logs out.

First we need to make sure that this component has access to the client in its props. One of the fastest ways to pass this property is to use the withApollo higher order component. This will add the client to the AuthorizedUser component’s properties. Since this component already uses the withRouter higher order component, we will use the compose function to make sure that the AuthorizedUser component is wrapped with both higher order components:

import { Query, Mutation, withApollo, compose } from 'react-apollo'

class AuthorizedUser extends Component {
 ...
}

export default compose(withApollo, withRouter)(AuthorizedUser)

Using compose, we assemble the withApollo and withRouter functions into a single function. withRouter adds the Router’s history to the properties, and withApollo adds Apollo Client to the properties.

This means that we can access Apollo Client in our logout method and use it to remove the details about the current user from the cache:

logout = () => {
 localStorage.removeItem('token')
 let data = this.props.client.readQuery({ query: ROOT_QUERY })
 data.me = null
 this.props.client.writeQuery({ query: ROOT_QUERY, data })
}

The above code not only removes the current user’s token from localStorage, it clears the me field for the current user saved in the cache. Now when users log out, they will see the “Sign In with GitHub” button immediately without having to refresh the browser. This button is rendered only when the ROOT_QUERY doesn’t have any values for me.

Another place that we can improve our application thorough working directly with the cache is in the src/Users.js file. Currently, when we click the “Add Fake User” button, a mutation is sent to the GraphQL service. The Mutation component that renders the “Add Fake User” button contains the following property:

refetchQueries={[{ query: ROOT_QUERY }]}

This property tells the client to send an additional query to our service once the mutation has completed. However, we are already receiving a list of the new fake users in the response of the mutation itself:

mutation addFakeUsers($count:Int!) {
 addFakeUsers(count:$count) {
 githubLogin
 name
 avatar
 }
}

Since we already have a list of the new fake users, there is no need to go back to the server for the same information. What we need to do is obtain this new list of users in the mutation’s response and add it directly to the cache. Once the cache changes, the UI will follow.

Find the Mutation component in the Users.js file that handles the addFakeUsers mutation and replace the refetchQueries with an update property:

<Mutation mutation={ADD_FAKE_USERS_MUTATION}
 variables={{ count: 1 }}
 update={updateUserCache}>
 {addFakeUsers =>
 <button onClick={addFakeUsers}>Add Fake User</button>
 }
</Mutation>

Now, when the mutation has completed, the response data will be sent to a function called updateUserCache:

const updateUserCache = (cache, { data:{ addFakeUsers } }) => {
 let data = cache.readQuery({ query: ROOT_QUERY })
 data.totalUsers += addFakeUsers.length
 data.allUsers = [
 ...data.allUsers,
 ...addFakeUsers
]
 cache.writeQuery({ query: ROOT_QUERY, data })
}

When the Mutation component invokes the updateUserCache function, it sends the cache and the data that has been returned in the mutation’s response.

We want to add the fake users to the current cache, so we’ll read the data that is already in the cache using cache.readQuery({ query: ROOT_QUERY }) and add to it. First, we’ll increment the total users, data.totalUsers += addFakeUsers.length. Then, we’ll concatenate the current list of users with the fake users that we’ve received from the mutation. Now that the current data has been changed, it can be written back to the cache using cache.writeQuery({ query: ROOT_QUERY, data }). Replacing the data in the cache will cause the UI to update and display the new fake user.

At this point, we have completed the first version of the User portion of our app. We can list all users, add fake users, and sign in with GitHub. We have built a full stack GraphQL application using Apollo Server and Apollo Client. The Query and Mutation components are tools that we can use to quickly begin developing clients with Apollo Client and React.

In Chapter 7, we see how we can incorporate subscriptions
and file uploading into the PhotoShare application. We also discuss
emerging tools in the GraphQL ecosystem that you can incorporate into
your projects.

Chapter 7. GraphQL in the Real World

So far, you have designed a schema, constructed a GraphQL API, and implemented a client using Apollo Client. We’ve taken one complete full-stack
iteration with GraphQL and developed an understanding of how GraphQL
APIs are consumed by clients. Now it’s time to prepare our GraphQL APIs
and clients for production.

To take your new skills into production, you are going to need to meet the requirements of your current applications. Our current applications likely allow for file transfer between the client and the server.
Our current applications might use WebSockets to push real-time
data updates to our clients. Our current APIs are secure and protect
against malicious clients. To work with GraphQL in production, we
need to be able to meet these requirements.

Also we need to think about our development teams. You might be working
with a full-stack team, but more often than not, teams are split
into frontend developers and backend developers. How can all of your
developers work efficiently from different specializations within our
GraphQL stack?

And what about the sheer scope of your current code base? At present,
you likely have many different services and APIs running in production and
probably have neither the time nor the resources to rebuild everything
from the ground up with GraphQL.

In this chapter, we address all of these requirements and concerns. We begin by taking two more iterations in the PhotoShare API. First, we incorporate subscriptions and real-time data transport. Second, we allow users to post photos by implementing a solution for file transport with GraphQL. After we’ve completed these iterations on the PhotoShare application, we will look at ways to secure our GraphQL API to guard against malicious client queries. We wrap up this chapter by examining ways in which teams can work together to effectively migrate to GraphQL.

Subscriptions

Real-time updates are an essential feature for modern web and mobile
applications. The current technology that allows for real-time data transport
between websites and mobile applications are WebSockets. You can use the WebSocket
protocol to open duplex two-way communication channels over
a TCP socket. This means that web pages and applications can send and
receive data over a single connection. This technology allows updates to
be pushed from the server directly to the web page in real time.

Up to this point, we have implemented GraphQL queries and mutations using the HTTP
protocol. HTTP gives us a way to send and receive data between the
client and the server, but it does not help us connect to a
server and listen for state changes. Before WebSockets were introduced,
the only way to listen for state changes on the server was to
incrementally send HTTP requests to the server to determine whether anything had
changed. We saw how to easily implement polling with the query tag in Chapter 6.

But if we really want to take full advantage of the new web, GraphQL has to
be able to support real-time data transport over WebSockets in addition
to HTTP requests. The solution is subscriptions. Let’s take a look at
how we can implement subscriptions in GraphQL.

Working with Subscriptions

In GraphQL, you use subscriptions to listen to your API for specific
data changes. Apollo Server already supports subscriptions. It wraps
a couple of npm packages that are routinely used to set up WebSockets in
GraphQL applications: graphql-subscriptions and
subscriptions-transport-ws. The graphql-subscriptions package is an
npm package that provides an implementation of the publisher/subscriber design
pattern, PubSub. PubSub is essential for publishing data
changes that client subscribers can consume.
subscriptions-transport-ws is a WebSocket server and client that
allows transporting subscriptions over WebSockets. Apollo Server
automatically incorporates both of these packages to support
subscriptions out of the box.

By default, Apollo Server sets up a WebSocket at ws://localhost:4000. If you use the simple server configuration that we demonstrated at the beginning of Chapter 5, you’re using a configuration that supports WebSockets out of the box.

Because we are working with apollo-server-express, we’ll have to take few steps to make subscriptions work. Locate the index.js file in the photo-share-api and import the createServer function from the http module:

const { createServer } = require('http')

Apollo Server will automatically set up subscription support, but to do so, it needs an HTTP server. We’ll use createServer to create one. Locate the code at the bottom of the start function where the GraphQL service is started on a specific port with app.listen(...). Replace this code with the following:

const httpServer = createServer(app)
server.installSubscriptionHandlers(httpServer)

httpServer.listen({ port: 4000 }, () =>
 console.log(`GraphQL Server running at localhost:4000${server.graphqlPath}`)
)

First, we create a new httpServer using the Express app instance. The httpServer is ready to handle all of the HTTP requests sent to it based upon our current Express configuration. We also have a server instance where we can add WebSocket support. The next line of code, server.installSubscriptionHandlers(httpServer) is what makes the WebSockets work. This is where Apollo Server adds the necessary handlers to support subscriptions with WebSockets. In addition to an HTTP server, our backend is now ready to receive requests at ws://localhost:4000/graphql.

Now that we have a server that is ready to support subscriptions, it’s time to implement them.

Posting photos

 We want to know when any of our users post a photo. This is a good use case for a subscription. Just like everything else in GraphQL, to implement subscriptions we need to start with the schema first. Let’s add a subscription type to the schema just below the definition for the Mutation type:

type Subscription {
 newPhoto: Photo!
}

The newPhoto subscription will be used to push data to the client when photos are added. We send a subscription operation with the following GraphQL query language operation:

subscription {
 newPhoto {
 url
 category
 postedBy {
 githubLogin
 avatar
 }
 }
}

This subscription will push data about new photos to the client. Just like a Query or Mutation, GraphQL allows us to request data about specific fields with selection sets. With this subscription every time there is a new photo, we will receive its url and category along with the githubLogin and avatar of the user who posted this photo.

When a subscription is sent to our service, the connection remains open. It is listening for data changes. Every photo that is added will push data to the subscriber. If you set up a subscription with GraphQL Playground, you will notice that the Play button will change to a red Stop button.

The Stop button means that the subscription is currently open and listening for data. When you press the Stop button, the subscription will be unsubscribed. It will stop listening for data changes.

It is finally time to take a look at the postPhoto mutation: the mutation that adds new photos to the database. We want to publish new photo details to our subscription from this mutation:

async postPhoto(root, args, { db, currentUser, pubsub }) {

 if (!currentUser) {
 throw new Error('only an authorized user can post a photo')
 }

 const newPhoto = {
 ...args.input,
 userID: currentUser.githubLogin,
 created: new Date()
 }

 const { insertedIds } = await db.collection('photos').insert(newPhoto)
 newPhoto.id = insertedIds[0]

 pubsub.publish('photo-added', { newPhoto })

 return newPhoto

}

This resolver expects that an instance of pubsub has been added to context. We’ll do that in the next step. pubsub is a mechanism that can publish events and send data to our subscription resolver. It’s like the Node.js EventEmitter. You can use it to publish events and send data to every handler that has subscribed to an event. Here, we publish a photo-added event just after we insert a new photo to the database. The details of the new photo are passed as the second argument of the pubsub.publish method. This will pass details about the new photo to every handler that has subscribed to photo-added events.

Next, let’s add the Subscription resolver that will be used to subscribe to photo-added events:

const resolvers = {

 ...

 Subscription: {
 newPhoto: {
 subscribe: (parent, args, { pubsub }) =>
 pubsub.asyncIterator('photo-added')
 }
 }
}

The Subscription resolver is a root resolver. It should be added directly to the resolver object right next to the Query and Mutation resolvers. Within the Subscription resolver, we need to define resolvers for each field. Since we defined the newPhoto field in our schema, we need to make sure a newPhoto resolver exists in our resolvers.

Unlike Query or Mutation resolvers, Subscription resolvers contain a subscribe method. The subscribe method receives the parent, args, and context just like the any other resolver functions. Inside of this method, we subscribe to specific events. In this case, we are using the pubsub.asyncIterator to subscribe to photo-added events. Any time a photo-added event is raised by pubsub, it will be passed through this new photo subscription.

Subscription Resolvers in the Repo

The example files in the GitHub repository breaks the resolvers up into several files. The above code can be found in resolvers/Subscriptions.js.

The postPhoto resolver and the newPhoto subscription resolver both expect there to be an instance of pubsub in context. Let’s modify the context to include pubsub. Locate the index.js file and make the following changes:

const { ApolloServer, PubSub } = require('apollo-server-express')

...

async function start() {

 ...

 const pubsub = new PubSub()
 const server = new ApolloServer({
 typeDefs,
 resolvers,
 context: async ({ req, connection }) => {

 const githubToken = req ?
 req.headers.authorization :
 connection.context.Authorization

 const currentUser = await db
 .collection('users')
 .findOne({ githubToken })

 return { db, currentUser, pubsub }

 }
 })

 ...

}

First, we need to import the PubSub constructor from apollo-server-express package. We use this constructor to create a pubsub instance and add it to context.

You may have also notice that we change the context function. Queries and mutations will still use HTTP. When we send either of these operations to the GraphQL Service the request argument, req, is sent to the context handler. However, when the operation is a Subscription, there is no HTTP request so the req argument is null. Information for subscriptions is instead passed when the client connects to the WebSocket. In this case, the WebSocket connection argument will be sent to the context function instead. When we have a subscription we’ll have to pass authorization details through the connection’s context, not the HTTP request headers.

Now we are ready to try out our new subscription. Open the playground and start a subscription:

subscription {
 newPhoto {
 name
 url
 postedBy {
 name
 }
 }
}

Once the subscription is running, open a new Playground tab and run the postPhoto mutation. Every time you run this mutation, you will see your new photo data sent to the subscription.

[image: newPhoto subscription in the playground]
Figure 7-1. The newPhoto subscription in the playground

Challenge: newUser subscription

Can you implement a newUser subscription? Whenever new users are added
to the database via the githubLogin or the addFakeUsers mutation, can
you publish a new-user event to a subscription?

Hint: when handling addFakeUsers, you might need to publish the event a
number of times, once for each user added.

If you get stuck, you can find the answer in the repo.

Consuming Subscriptions

Assuming that you completed the challenge in the preceding sidebar, the PhotoShare server supports subscriptions for Photos and Users. In this next section, we subscribe to the newUser subscription and immediately display any new users on the page. Before we can get started, we need to set up Apollo Client to handle subscriptions.

Adding the WebSocketLink

Subscriptions are used over WebSockets. To enable WebSockets on the server, we need to install a few additional packages:

 npm install apollo-link-ws apollo-utilities subscription-transport-ws

From here, we want to add a WebSocket link to the Apollo Client
configuration. Locate the src/index.js file in the photo-share-client project and add the following imports:

import {
 InMemoryCache,
 HttpLink,
 ApolloLink,
 ApolloClient,
 split
} from 'apollo-boost'
import { WebSocketLink } from 'apollo-link-ws'
import { getMainDefinition } from 'apollo-utilities'

Notice that we’ve imported split from apollo-boost. We will use this
to split GraphQL operations between HTTP requests and WebSockets. If the operation is a mutation or a query, Apollo Client will send an HTTP request. If the operation is a subscription, the client will connect to the WebSocket.

Under the hood of Apollo Client, network requests are managed with ApolloLink. In the current app, this has been responsible for sending HTTP requests to the GraphQL service. Any time we send an operation with the Apollo Client, that operation is sent to an Apollo Link to handle the network request. We can also use an Apollo Link to handle networking over WebSockets.

We’ll need to set up two types of links to support WebSockets: an HttpLink and a WebsocketLink:

const httpLink = new HttpLink({ uri: 'http://localhost:4000/graphql' })
const wsLink = new WebSocketLink({
 uri: `ws://localhost:4000/graphql`,
 options: { reconnect: true }
 })

The httpLink can be used to send HTTP requests over the network to http://localhost:4000/graphql and the wsLink can be used to connect to ws://localhost:4000/graphql and consume data over WebSockets.

Links are composable. That means they can be chained together to build custom pipelines for our GraphQL operations. In addition to being able to send an operation to a single ApolloLink, we can send an operation through a chain of reusable links where each link in the chain can manipulate the operation before it reaches the last link in the chain which handles the request and returns a result.

Lets create a link chain with the httpLink by adding a custom Apollo Link that is responsible for adding the authorization header to the operation:

const authLink = new ApolloLink((operation, forward) => {
 operation.setContext(context => ({
 headers: {
 ...context.headers,
 authorization: localStorage.getItem('token')
 }
 }))
 return forward(operation)
})

const httpAuthLink = authLink.concat(httpLink)

The httpLink is concatenated to the authLink to handle user authorization for HTTP requests. Keep in mind that this .concat function is not the same function that you’ll find in JavaScript that concatenates arrays. This is a special function that concatenates Apollo Links. Once concatenated, we have more appropriately named the link httpAuthLink to describe the behavior more clearly. When an operation is sent to this link, it will first be passed to the authLink where the authorization header is added to the operation before it is forwarded to the httpLink to handle the network request. If you are familiar with middleware in Express or Redux, the pattern is similar.

Now we need to tell the client which link to use. This is where split comes in handy. The split function will return one of two Apollo Links based upon a predicate. The first argument of the split function is the predicate. A predicate is a function that returns true or false. The second argument of the split function represents the link to return when the predicate returns true, and the third argument represents the link to return when the predicate returns false.

Let’s implement a split link that will check to see if our operation happens to be a subscriptions. If it is a subscription, we will use the wsLink to handle the network, otherwise we will use the httpLink:

const link = split(
 ({ query }) => {
 const { kind, operation } = getMainDefinition(query)
 return kind === 'OperationDefinition' && operation === 'subscription'
 },
 wsLink,
 httpAuthLink
)

The first argument is the predicate function. It will check the operation’s query AST using the getMainDefinition function. If this operation is a subscription, then our predicate will return true. When the predicate returns true, the link will return the wsLink. When the predicate returns false the link will return the httpAuthLink.

Finally, we need to change our Apollo Client configuration to use our custom links by passing it the link and the cache:

const client = new ApolloClient({ cache, link })

Now our client is ready to handle subscriptions. In the next section, we will send our first subscription operation using Apollo Client.

Listening for new users

On the client, we can listen for new users by creating a constant called LISTEN_FOR_USERS. This contains a string with our subscription that will return a new user’s githubLogin, name, and avatar:

const LISTEN_FOR_USERS = gql`
 subscription {
 newUser {
 githubLogin
 name
 avatar
 }
 }
`

Then, we can use the <Subscription /> component to listen for new users:

<Subscription subscription={LISTEN_FOR_USERS}>
 {({ data, loading }) => loading ?
 <p>loading a new user...</p> :
 <div>

 <h2>{data.newUser.name}</h2>
 </div>
</Subscription>

As you can see here, the <Subscription /> component works like the
<Mutation /> or <Query /> components. You send it the subscription,
and when a new user is received, their data is passed to a function. The
problem with using this component in our app is that the newUser
subscription passes one new user at a time. So, the preceding component
would show only the last new user that was created.

What we want to do is listen for new users when the PhotoShare client
starts, and when we have a new user, we add them to our current
local cache. When the cache is updated, the UI will follow, so there is
no need to change anything about the UI for new users.

Let’s modify the App component. First, we convert it to a class
component so that we can take advantage of React’s component lifecycle.
When the component mounts, we start listening for new users via our
subscription. When the App component unmounts, we stop listening by
invoking the subscription’s unsubscribe method:

import { withApollo } from 'react-apollo'

...

class App extends Component {

 componentDidMount() {
 let { client } = this.props
 this.listenForUsers = client
 .subscribe({ query: LISTEN_FOR_USERS })
 .subscribe(({ data:{ newUser } }) => {
 const data = client.readQuery({ query: ROOT_QUERY })
 data.totalUsers += 1
 data.allUsers = [
 ...data.allUsers,
 newUser
]
 client.writeQuery({ query: ROOT_QUERY, data })
 })
 }

 componentWillUnmount() {
 this.listenForUsers.unsubscribe()
 }

 render() {
 ...
 }
}

export default withApollo(App)

When we export the <App /> component, we use the withApollo function to pass the client to the App via props. When the component mounts, we will use the client to start listening for new users. When the component unmounts, we stop the subscription using the unsubscribe method.

The subscription is created using the client.subscribe().subscribe(). The first subscribe function is an Apollo Client method that is used to send the subscription operation to our service. It returns an observer object. The second subscribe function is a method of the observer object. It is used to subscribe handlers to the observer. The handlers are invoked every time the subscription pushes data to the client. In the above code, we’ve added a handler that captures the information about each new users and adds them directly to the Apollo Cache using writeQuery.

Now, when new users are added, they are instantly pushed into our local cache which immediately updates the UI. Because the subscription is adding every new user to the list in real time, there is no longer a need to update the local cache from src/Users.js. Within this file, you should remove the updateUserCache function as well as the mutation’s update property. You can see a completed version of the app component at the book’s website.

Uploading Files

There’s one last step to creating our PhotoShare application—actually
uploading a photo. In order to upload a file with GraphQL, we need to modify both the API and the client so that they can handle multipart/form-data, the encoding type that is required to pass a file with a POST body over the internet. We are going to take an additional step that will allow us to pass a file as a GraphQL argument so that the file itself can be handled directly within the resolver.

To help us with this implementation, we are going to use two npm packages: apollo-upload-client and apollo-upload-server. Both of these packages are designed to pass files from a web browser over HTTP. apollo-upload-client will be responsible for capturing the file in the browser and passing it along to the server with the operation. apollo-upload-server is designed to handle files passed to the server from apollo-upload-client. apollo-upload-server captures the file and maps it to the appropriate query argument before sending it to the resolver as an argument.

Handling Uploads on the Server

Apollo Server automatically incorporates the apollo-upload-server.
There is no need to install that npm in your API project because it’s
already there and working. The GraphQL API needs to be ready to accept
an uploaded file. An Upload custom scalar type is provided in the Apollo Server. It can be used to capture the file stream, mimetype, and encoding of an uploaded file.

We’ll start with the schema first, adding a custom scalar to our type definitions. In the schema file, we’ll add the Upload scalar:

scalar Upload

input PostPhotoInput {
 name: String!
 category: Photo_Category = PORTRAIT
 description: String,
 file: Upload!
}

The Upload type will allow us to pass the contents of a file with our PostPhotoInput. This means that we will receive the file itself in the resolver. The Upload type contains information about the file including an upload stream that we can use to save the file. Let’s use this stream in the postPhoto mutation. Add the following code to the bottom of the postPhoto mutation found in resolvers/Mutation.js:

const { uploadStream } = require('../lib')
const path = require('path')

...

async postPhoto(root, args, { db, user, pubsub }) => {

 ...

 var toPath = path.join(
 __dirname, '..', 'assets', 'photos', `${photo.id}.jpg`
)

 await { stream } = args.input.file
 await uploadFile(input.file, toPath)

 pubsub.publish('photo-added', { newPhoto: photo })

 return photo
}

In this example, the uploadStream function would return a promise which would be resolved when the upload is complete. The file argument contains the upload stream that can be piped to a writeStream and saved locally to the assets/photos directory. Each newly posted photo will be named based upon its unique identifier. We are only handling JPEG images in this example for brevity.

If we want to serve these photo files from the same API, we will have to add some middleware to our Express application that will allow us to serve static JPEG images. In the index.js file where we set up our Apollo Server, we can add the express.static middleware that allows us to serve local static files over a route:

const path = require('path')

...

app.use(
 '/img/photos',
 express.static(path.join(__dirname, 'assets', 'photos'))
)

This bit of code will handle serving the static files from assets/photos to /img/photos for HTTP requests.

With that, our server is in place and can now handle photo uploads. It’s time to transition to the client side where we’ll create a form that can manage photo uploads.

Use a File Service

In a real Node.js application, you would typically save user uploads to
a cloud-based file storage service. The previous example uses an uploadFile
function to upload the file to a local directory, which limits the
scalability of this sample application. Services such as AWS, Google
Cloud, or Cloudinary can handle large volumes of file uploads from
distributed applications.

Posting a New Photo with Apollo Client

Now, let’s handle the photos on the client. First to display the photos, we’ll need to add the allPhotos field to our ROOT_QUERY. Modify the following query in the src/App.js file:

export const ROOT_QUERY = gql`
 query allUsers {
 totalUsers
 totalPhotos
 allUsers { ...userInfo }
 me { ...userInfo }
 allPhotos {
 id
 name
 url
 }
 }

 fragment userInfo on User {
 githubLogin
 name
 avatar
 }
`

Now when the website loads, we will receive the id, name, and url of every photo stored in the database. We can use this information to display the photos. Let’s create a Photos component that will be used to display each photo:

import React from 'react'
import { Query } from 'react-apollo'
import { ROOT_QUERY } from './App'

const Photos = () =>
 <Query query={ALL_PHOTOS_QUERY}>
 {({loading, data}) => loading ?
 <p>loading...</p> :
 data.allPhotos.map(photo =>
 <img
 key={photo.id}
 src={photo.url}
 alt={photo.name}
 width={350} />

)
 }
 </Query>

export default Photos

Remember, the Query component takes in the ROOT_QUERY as a property. Then, we use the render prop pattern to display all of the photos when loading is complete. For each photo in the data.allPhotos array, we’ll add a new img element with metadata that we pull from each photo object including the photo.url and photo.name.

When we add this code to the App component, our photos will be displayed. But first, let’s create another component. Let’s create a PostPhoto component that will contain the form:

import React, { Component } from 'react'

export default class PostPhoto extends Component {

 state = {
 name: '',
 description: '',
 category: 'PORTRAIT',
 file: ''
 }

 postPhoto = (mutation) => {
 console.log('todo: post photo')
 console.log(this.state)
 }

 render() {
 return (
 <form onSubmit={e => e.preventDefault()}
 style={{
 display: 'flex',
 flexDirection: 'column',
 justifyContent: 'flex-start',
 alignItems: 'flex-start'
 }}>

 <h1>Post a Photo</h1>

 <input type="text"
 style={{ margin: '10px' }}
 placeholder="photo name..."
 value={this.state.name}
 onChange={({target}) =>
 this.setState({ name: target.value })} />

 <textarea type="text"
 style={{ margin: '10px' }}
 placeholder="photo description..."
 value={this.state.description}
 onChange={({target}) =>
 this.setState({ description: target.value })} />

 <select value={this.state.category}
 style={{ margin: '10px' }}
 onChange={({target}) =>
 this.setState({ category: target.value })}>
 <option value="PORTRAIT">PORTRAIT</option>
 <option value="LANDSCAPE">LANDSCAPE</option>
 <option value="ACTION">ACTION</option>
 <option value="GRAPHIC">GRAPHIC</option>
 </select>

 <input type="file"
 style={{ margin: '10px' }}
 accept="image/jpeg"
 onChange={({target}) =>
 this.setState({
 file: target.files && target.files.length ?
 target.files[0] :
 ''
 })} />

 <div style={{ margin: '10px' }}>
 <button onClick={() => this.postPhoto()}>
 Post Photo
 </button>
 <button onClick={() => this.props.history.goBack()}>
 Cancel
 </button>
 </div>

 </form>
)
 }

}

The PostPhoto component is simply a form. This form uses input elements for the name, description, category, and the file itself. In React, we call this controlled because each input element is linked to a state variable. Any time an input’s value changes, the state of the PostPhoto component will change too.

We submit photos by pressing the “Post Photo” button. The file input accepts a JPEG and sets the state for file. This state field represents the actual file, not just text. We have not added any form validation to this component for brevity.

It’s time to add our new components to the App component. When we do so, we will make sure that the home route displays our Users and Photos. We will also add a /newPhoto route that can be used to display the form.

import React, { Fragment } from 'react'
import { Switch, Route, BrowserRouter } from 'react-router-dom'
import Users from './Users'
import Photos from './Photos'
import PostPhoto from './PostPhoto'
import AuthorizedUser from './AuthorizedUser'

const App = () =>
 <BrowserRouter>
 <Switch>
 <Route
 exact
 path="/"
 component={() =>
 <Fragment>
 <AuthorizedUser />
 <Users />
 <Photos />
 </Fragment>
 } />
 <Route path="/newPhoto" component={PostPhoto} />
 <Route component={({ location }) =>
 <h1>"{location.pathname}" not found</h1>
 } />
 </Switch>
 </BrowserRouter>

export default App

The <Switch> component allows us to render one route at a time. When the url contains the home route, “/”, we will display a component that contains the AuthorizedUser, Users, and Photos components. The Fragment is used in React when we want to display sibling components without having to wrap them in an extra div element. When the route is “/newPhoto”, we will display the new photo form. And when the route is not recognized, we will display a h1 element that let’s the user know that we can’t find the route that they provided.

Only authorized users can post photos, so we’ll append a “Post Photo” NavLink to the AuthorizedUser component. Clicking this button will cause the PostPhoto to render.

import { withRouter, NavLink } from 'react-router-dom'

...

class AuthorizedUser extends Component {

 ...

 render() {
 return (
 <Query query={ME_QUERY}>
 {({ loading, data }) => data.me ?
 <div>
 <img
 src={data.me.avatar_url}
 width={48}
 height={48}
 alt="" />
 <h1>{data.me.name}</h1>
 <button onClick={this.logout}>logout</button>
 <NavLink to="/newPhoto">Post Photo</NavLink>
 </div> :

 ...

Here we import the <NavLink> component. When the Post Photo link is clicked, the user will be sent to the /newPhoto route.

At this point, the app navigation should work. A user is allowed to navigate between screens, and when posting a photo, we should see the necessary input data logged in the console. It is time for us to take that post data, including the file, and send it with a mutation.

First, let’s install apollo-upload-client:

npm install apollo-upload-client

We are going to replace the current HTTP link with an HTTP link that is supplied by apollo-upload-client. This link will support multipart/form-data requests that contain upload files. To create this link, we’ll use the createUploadLink function:

import { createUploadLink } from 'apollo-upload-client'

...

const httpLink = createUploadLink({
 uri: 'http://localhost:4000/graphql'
})

We’ve replaced the old HTTP link with a new one called using the createUploadLink function. This looks fairly similar to the HTTP link. It has the API route included as the uri.

It’s time to add the postPhoto mutation to the PostPhoto form:

import React, { Component } from 'react'
import { Mutation } from 'react-apollo'
import { gql } from 'apollo-boost'
import { ROOT_QUERY } from './App'

const POST_PHOTO_MUTATION = gql`
 mutation postPhoto($input: PostPhotoInput!) {
 postPhoto(input:$input) {
 id
 name
 url
 }
 }
`

The POST_PHOTO_MUTATION is our mutation parsed as an AST and ready to be sent to the server. We import the ALL_PHOTOS_QUERY because we’ll need to use it when it is time to update the local cache with the new photo that will be returned by the mutation.

To add the mutation, we will encapsulate the Post Photo button element with the Mutation component:

<div style={{ margin: '10px' }}>
 <Mutation mutation={POST_PHOTO_MUTATION}
 update={updatePhotos}>
 {mutation =>
 <button onClick={() => this.postPhoto(mutation)}>
 Post Photo
 </button>
 }
 </Mutation>
 <button onClick={() => this.props.history.goBack()}>
 Cancel
 </button>
</div>

The Mutation component passes the mutation as a function. When we click the button, we will pass the mutation function to postPhoto so that it can be used to change the photo data. Once the mutation is complete, the updatePhotos function will be called in order to update the local cache.

Next, let’s actually send the mutation:

postPhoto = async (mutation) => {
 await mutation({
 variables: {
 input: this.state
 }
 }).catch(console.error)
 this.props.history.replace('/')
}

This mutation function returns a promise. Once complete, we will use React Router to navigate the user back to the home page by replacing the current route using the history property. When the mutation is complete, we need to capture the data returned from it to update the local cache:

const updatePhotos = (cache, { data:{ postPhoto } }) => {
 var data = cache.readQuery({ query: ALL_PHOTOS_QUERY })
 data.allPhotos = [
 postPhoto,
 ...allPhotos
]
 cache.writeQuery({ query: ALL_PHOTOS_QUERY, data })
}

The updatePhotos method handles the cache update. We will read the photos from the cache using the ROOT_QUERY. Then, we’ll add the new photo to the cache using writeQuery. This little bit of maintenance will make sure that our local data is in sync.

At this point, we are ready to post new photos. Go ahead and give it a shot.

We’ve taken a closer look at how queries, mutations, and subscriptions are handled on the client side. When you’re using React Apollo, you can take advantage of the <Query>, <Mutation>, and <Subscription> components to help you connect the data from your GraphQL service to your user interface.

Now that the application is working, we’ll add one more layer to handle security.

Security

Your GraphQL service provides a lot of freedom and flexibility to your
clients. They have the flexibility to query data from multiple
sources in a single request. They also have the ability to request large
amounts of related, or connected, data in a single request. Left
unchecked, your clients have the capability of requesting too much from
your service in a single request. Not only will the strain of large
queries affect server performance, it could also take your
service down entirely. Some clients might do this unwittingly or
unintentionally, whereas other clients might have more malicious intent.
Either way, you need to put some safeguards in place and monitor
your server’s performance in order to protect against large or malicious
queries.

In this next section, we cover some of the options available to
improve the security of your GraphQL service.

Request Timeouts

A request timeout is a first defense against large or
malicious queries. A request timeout allows only a certain amount of
time to process each request. This means that requests of your service
need to be completed within a specific time frame. Request timeouts are
used not only for GraphQL services, they are used for all sorts of
services and processes across the internet. You might have already
implemented these timeouts for your Representational State Transfer (REST) API to guard against lengthy requests with too much POST data.

You can add an overall request timeout to the express server by setting
the timeout key. In the following, we’ve added a timeout of five seconds to guard
against troublesome queries:

const httpServer = createServer(app)
server.installSubscriptionHandlers(httpServer)

httpServer.timeout = 5000

Additionally, you can set timeouts for overall queries or individual
resolvers. The trick to implementing timeouts for queries or resolvers
is to save the start time for each query or resolver and validate it
against your preferred timeout. You can record the start time for each
request in context:

const context = async ({ request }) => {

 ...

 return {
 ...
 timestamp: performance.now()
 }

 }

Now each of the resolvers will know when the query began and can throw
an error if the query takes too long.

Data Limitations

Another simple safeguard that you can place against large or malicious
queries is to limit the amount of data that can be returned by each
query. You can return a specific number of records, or a page of data,
by allowing your queries to specify how many records to return.

For example, recall in Chapter 4 that we designed a schema that could handle data paging. But what if a client requested an extremely large page of data? Here’s an example of a client doing just that:

query allPhotos {
 allPhotos(first=99999) {
 name
 url
 postedBy {
 name
 avatar
 }
}

You can guard against these types of large requests by simply setting a
limit for a page of data. For example, you could set a limit for 100 photos per query in your GraphQL server. That limit can be enforced in the query resolver
by checking an argument:

 allPhotos: (root, data, context) {
 if (data.first > 100) {
 throw new Error('Only 100 photos can be requested at a time')
 }
 }

When you have a large number of records that can be requested, it is always a good idea to implement data paging. You can implement data paging simply by providing the number of records that should be returned by a query.

Limiting Query Depth

One of the benefits GraphQL provides the client is the ability to
query connected data. For example, in our photo API, we can write a
query that can deliver information about a photo, who posted it, and all
the other photos posted by that photograph all in one request:

query getPhoto($id:ID!) {
 Photo(id:$id) {
 name
 url
 postedBy {
 name
 avatar
 postedPhotos {
 name
 url
 }
 }
 }
}

This is a really nice feature that can improve network performance
within your applications. We can say that the preceding query has a depth of
3 because it queries the photo itself along with two connected fields:
postedBy and postedPhotos. The root query has a depth of 0, the
Photo field has a depth of 1, the postedBy field has a depth of 2 and
the postedPhotos field has a depth of 3.

Clients can take advantage of this feature. Consider the following
query:

query getPhoto($id:ID!) {
 Photo(id:$id) {
 name
 url
 postedBy {
 name
 avatar
 postedPhotos {
 name
 url
 taggedUsers {
 name
 avatar
 postedPhotos {
 name
 url
 }
 }
 }
 }
 }
}

We’ve added two more levels to this query’s depth: the taggedUsers in
all of the photos posted by the photographer of the original photo, and
the postedPhotos of all of the taggedUsers in all of the photos
posted by the photographer of the original photo. This means that if I posted
the original photo, this query would also resolve to all of the photos I’ve
posted, all of the users tagged in those photos, and all of the photos
posted by all of those tagged users. That’s a lot of data to request. It
is also a lot of work to be performed by your resolvers. Query depth
grows exponentially and can easily get out of hand.

You can implement a query depth limit for your GraphQL services to
prevent deep queries from taking your service down. If we had set a
query depth limit of 3, the first query would have been within the limit,
whereas the second query would not because it has a query
depth of 5.

Query depth limitations are typically implemented by parsing the query’s
AST and determining how deeply nested the selection sets are within
these objects. There are npm packages like graphql-depth-limit that
can assist with this task:

npm install graphql-depth-limit

After you install it, you can add a validation rule to your GraphQL server
configuration using the depthLimit function:

const depthLimit = require('graphql-depth-limit')

...

const server = new ApolloServer({
 typeDefs,
 resolvers,
 validationRules: [depthLimit(5)],
 context: async({ req, connection }) => {
 ...
 }
})

Here, we have set the query depth limit to 10, which means that we
provided our clients with the capability of writing queries that can go
10 selection sets deep. If they go any deeper, the GraphQL server will
prevent the query from executing and return an error.

Limiting Query Complexity

Another measurement that can help you identify troublesome queries is query complexity. There are some client queries that might not run too deep but can still be expensive due to the amount of fields that are queried. Consider this query:

query everything($id:ID!) {
 totalUsers
 Photo(id:$id) {
 name
 url
 }
 allUsers {
 id
 name
 avatar
 postedPhotos {
 name
 url
 }
 inPhotos {
 name
 url
 taggedUsers {
 id
 }
 }
 }
}

The everything query does not exceed our query depth limit, but it’s
still pretty expensive due to the number of fields that are being
queried. Remember, each field maps to a resolver function that needs to
be invoked.

Query complexity assigns a complexity value to each field and then
totals the overall complexity of any query. You can set an overall limit
that defines the maximum complexity available for any given query. When
implementing query complexity you can identify your expensive resolvers
and give those fields a higher complexity value.

There are several npm packages available to assist with the
implementation of query complexity limits. Let’s take a look at how we
could implement query complexity in our service using
graphql-validation-complexity:

npm install graphql-validation-complexity

GraphQL validation complexity has a set of default rules out of the box
for determining query complexity. It assigns a value of 1 to each scalar
field. If that field is in a list, it multiplies the value by a factor
of 10.

For example, let’s look at how graphql-validation-complexity would
score the everything query:

query everything($id:ID!) {
 totalUsers # complexity 1
 Photo(id:$id) {
 name # complexity 1
 url # complexity 1
 }
 allUsers {
 id # complexity 10
 name # complexity 10
 avatar # complexity 10
 postedPhotos {
 name # complexity 100
 url # complexity 100
 }
 inPhotos {
 name # complexity 100
 url # complexity 100
 taggedUsers {
 id # complexity 1000
 }
 }
 }
} # total complexity 1433

By default, graphql-validation-complexity assigns each field a value.
It multiplies that value by a factor of 10 for any list. In this
example, totalUsers represents a single integer field and is assigned
a complexity of 1. Querying fields in a single photo have the same
value. Notice that the fields queried in the allUsers list are
assigned a value of 10. This is because they are within a list. Every
list field is multiplied by 10. So a list within a list is assigned a value of
100. Because taggedUsers is a list within the inPhotos list, which is
within the allUsers list, the values of taggedUser fields is 10 × 10 × 10, or 1000.

We can prevent this particular query from executing by setting an
overall query complexity limit of 1000:

const { createComplexityLimitRule } = require('graphql-validation-complexity')

...

 const options = {

 ...

 validationRules: [
 depthLimit(5),
 createComplexityLimitRule(1000, {
 onCost: cost => console.log('query cost: ', cost)
 })
]
 }

In this example, we set the maximum complexity limit to 1000 with the use of the
createComplexityLimitRule found in the graphql-validation-complexity
package. We’ve also implemented the onCost function, which will be
invoked with the total cost of each query as soon as it is calculated.
The preceding query would not be allowed to execute under these
circumstances because it exceeds a maximum complexity of 1000.

Most query complexity packages allow you to set your own rules. We could
change the complexity values assigned to scalars, objects, and lists
with the graphql-validation-complexity package. It is also possible to
set custom complexity values for any field that we deem very complicated
or expensive.

Apollo Engine

It is not recommended to simply implement security features and hope for
the best. Any good security and performance strategy needs metrics. You
need a way to monitor your GraphQL service so that you can identify your
popular queries and see where your performance bottlenecks occur.

You can use Apollo Engine to monitor your GraphQL service, but it’s more than just a monitoring tool. Apollo Engine is a robust cloud service that provides insights into your GraphQL layer so that you can run the service in production with confidence. It monitors the GraphQL operations sent to your services and provides a detailed live report available online at https://engine.apollographql.com, which
you can use to identify your most popular queries, monitor execution
time, monitor errors, and help find bottlenecks. It also provides tools for schema management including validation.

Apollo Engine is already included in your Apollo Server 2.0 implementation. With just one line of code, you can run Engine anywhere that Apollo Server runs, including serverless environments and on the edge. All you need to do is turn it on by setting the engine key to true:

 const server = new ApolloServer({
 typeDefs,
 resolvers,
 engine: true
 })

The next step is to make sure that you have an environment variable called ENGINE_API_KEY set to your Apollo Engine API key. Head to https://engine.apollographql.com to create an account and generate your key.

In order to publish your application to Apollo Engine, you will need to install the Apollo CLI tools:

npm install -g apollo

Once installed you can use the CLI to publish your app:

apollo schema:publish
 --key=<YOUR ENGINE API KEY>
 --endpoint=http://localhost:4000/graphql

Don’t forget to add your ENGINE_API_KEY to the environment variables as well.

Now when we run the PhotoShare GraphQL API, all operations sent to the GraphQL service will be monitored. You can view an activity report at the Engine website. This activity report can be used to help find and alleviate bottlenecks. Additionally, Apollo Engine will improve the performance and response time of our queries as well as monitor the performance of our service.

Taking the Next Steps

Throughout this book, you’ve learned about graph theory; you’ve written
queries; you’ve designed schemas; you’ve set up GraphQL servers and
explored GraphQL client solutions. The foundation is in place, so you
can use what you need to improve your applications with GraphQL. In this
section, we share some concepts and resources that will further
support your future GraphQL applications.

Incremental Migration

Our PhotoShare app is a prime example of a Greenfield project. When you
are working on your own projects, you might not have the luxury of
starting from scratch. The flexibility of GraphQL allows you to start
incorporating GraphQL incrementally. There’s no reason that you need to
tear down everything and start over to benefit from GraphQL’s features.
You can start slow by applying the following ideas:

	Fetch data from REST in your resolvers

	
Instead of rebuilding every
REST endpoint, use GraphQL as a gateway and make a fetch request for that
data on the server inside of a resolver. Your service can also cache the
data sent from REST to improve query response time.

	Or use GraphQL request

	
Robust client solutions are great, but implementing
them at the start might be too much setup. To get started simply, use
graphql-request and make a request in the same place you use fetch
for a REST API. This approach will get you started, get you hooked on
GraphQL, and will likely lead you to a more comprehensive client solution when
you’re ready to optimize for performance. There is no reason you
cannot fetch data from four REST endpoints and one GraphQL service within
the same app. Everything does not have to migrate to GraphQL all at the
same time.

	Incorporate GraphQL in one or two components

	
Instead of rebuilding
your entire site, pick a single component or page and drive the data to
that particular feature using GraphQL. Keep everything else about your
site in place while you monitor the experience of moving a single
component.

	Don’t build any more REST endpoints

	
Instead of expanding REST, build a
GraphQL endpoint for your new service or feature. You can host a GraphQL endpoint on the same server as your REST endpoints. Express does not
care if it is routing a request to a REST function or a GraphQL
resolver. Every time a task requires a new REST endpoint, add that
feature to your GraphQL service, instead.

	Don’t maintain your current REST endpoints

	
The next time there is a
task to modify a REST endpoint or create a custom endpoint for some
data, don’t! Instead, take the time to section off this one endpoint and
update it to GraphQL. You can slowly move your entire REST API this
way.

Moving to GraphQL slowly can allow you to benefit from features right
away without the pains associated with starting from nothing. Start with
what you have, and you can make your transition to GraphQL a smooth and
gradual one.

Schema-First Development

You’re at a meeting for a new web project. Members of different frontend and backend teams are represented. After the meeting, someone might come up with some specifications, but these documents are often lengthy and underutilized. Frontend and backend teams start coding, and without clear guidelines, the project is delivered behind schedule and is different than everyone’s initial expectations.

Problems with web projects usually stem from a lack of communication or
miscommunication about what should be built. Schemas provide clarity and
communication, which is why many projects practice schema-first development. Instead of getting bogged down by domain-specific
implementation details, disparate teams can work together on solidifying
a schema before building anything.

Schemas are an agreement between the frontend and the backend teams
and define all of the data relationships for an application. When teams
sign off on a schema, they can work independently to fulfill the schema.
Working to serve the schema yields better results because there is
clarity in type definitions. Frontend teams know exactly which queries
to make to load data into user interfaces. Backend teams know exactly
what the data needs are and how to support them. Schema-first
development provides a clear blueprint, and the teams can build the
project with more consensus and less stress.

Mocking is an important part of Schema First Development. Once the front-end team has the schema, they can use it to start developing components immediately. The following code is all that is needed to stand up a mock GraphQL service running on http://localhost:4000.

const { ApolloServer } = require('apollo-server')
const { readFileSync } = require('fs')

var typeDefs = readFileSync('./typeDefs.graphql', 'UTF-8')

const server = new ApolloServer({ typeDefs, mocks: true })

server.listen()

Assuming you’ve provided the typeDefs.graphql file designed during the schema-first process, you can begin developing UI components that send query, mutation, and subscription operations to the mock GraphQL service while the back-end team implements the real service.

Mocks work out of the box by providing default values for each scalar type. Everywhere a field is supposed to resolve to a string, you’ll see “Hello World” as the data.

You can customize the data this is returned by a mock server. This makes it possible to return data that looks more like the real data. This is an important feature that will assist with the task of styling your user interface components:

const { ApolloServer, MockList } = require('apollo-server')
const { readFileSync } = require('fs')

const typeDefs = readFileSync('./typeDefs.graphql', 'UTF-8')
const resolvers = {}

const mocks = {
 Query: () => ({
 totalPhotos: () => 42,
 allPhotos: () => new MockList([5, 10]),
 Photo: () => ({
 name: 'sample photo',
 description: null
 })
 })
}

const server = new ApolloServer({
 typeDefs,
 resolvers,
 mocks
})

server.listen({ port: 4000 }, () =>
 console.log(`Mock Photo Share GraphQL Service`)
)

The above code adds a mock for the totalPhotos and allPhotos fields along with the Photo type. Every time we query the totalPhotos the number 42 will be returned. When we query the allPhotos field we will receive somewhere between 5 and 10 photos. The MockList constructor is included in the apollo-server and is used to generate list types with specific lengths. Every time a Photo type is resolved by the service the name of the photo is “a sample photo” and the description is null. You can create pretty robust mocks in conjunction with packages like faker or casual. These npms provide all sorts of fake data that can be used to build realistic mocks.

To learn more about mocking an Apollo Server, check out Apollo’s documentation.

GraphQL Events

There are a number of conferences and meetups that focus on GraphQL
content.

	GraphQL Summit

	
A conference organized by Apollo GraphQL.

	GraphQL Day

	
A hands-on developer conference in The Netherlands.

	GraphQL Europe

	
A nonprofit GraphQL conference in Europe.

	GraphQL Finland

	
A community-organized GraphQL conference in Helsinki, Finland.

You’ll also find GraphQL content at almost any development conference,
particularly those that focus on JavaScript.

If you’re looking for events near you, there are also GraphQL meetups in cities all over the world. If there’s not one near you, you could be the one to start a local group!

Community

GraphQL is popular because it’s a wonderful technology. It also is
popular due to the fervent support of the GraphQL community. The
community is quite welcoming, and there are a number of ways of getting
involved and staying on top of the latest changes.

The knowledge that you’ve gained about GraphQL will serve as a good
foundation when you’re exploring other libraries and tools. If you’re
looking to take the next steps to expand your skills, here are some
other topics to check out:

	Schema stitching

	
Schema stitching allows you to create a single
GraphQL schema from multiple GraphQL APIs. Apollo provides some great
tooling around the composition of remote schemas. Learn more about how to take on a project like this in the Apollo documentation.

	Prisma

	
Throughout the book, we’ve used GraphQL Playground and GraphQL Request: two tools from the Prisma team. Prisma is a tool that turns your existing database into a GraphQL API, no matter what database you’re using. While a GraphQL API stands between the client and the database, Prisma stands between a GraphQL API and the database. Prisma is open-source, so you can deploy your Prisma service in production using any cloud provider.

The team has also released a related tool called Prisma Cloud, a hosting
platform for Prisma services. Instead of having to set up your own
hosting, you can use Prisma Cloud to manage all of the DevOps concerns
for you.

	AWS AppSync

	
Another new player in the ecosystem is Amazon Web Services. It has released a new product built on GraphQL and Apollo tools to simplify the process of setting up a GraphQL service. With AppSync, you create a schema and then connect to your data source. AppSync updates the data in real-time and even handles offline data changes.

Community Slack Channels

Another great way to get involved is to join one of the many GraphQL
community Slack channels. Not only can you stay connected to the latest
news in GraphQL, but you can ask questions sometimes answered
by the creators of these technologies.

You can also share your knowledge with others in these growing communities from wherever you are:

	
GraphQL Slack

	
Apollo Slack

As you continue your journey with GraphQL, you can become more involved in
the community as a contributor, as well. Right now, there are high-profile projects like React Apollo, Prisma, and GraphQL itself that
have open issues with help wanted tags. Your help with one of these
issues could help many others! There are also many opportunities to
contribute new tools to the ecosystem.

Though change is inevitable, the ground under our feet as GraphQL API
developers is very solid. At the heart of everything we do, we’re
creating a schema and writing resolvers to fulfill the data requirements
of the schema. No matter how many tools come out to shake things up in
the ecosystem, we can rely on the stability of the query language
itself. On the API timeline, GraphQL is very new, but the future is very
bright. So, let’s all go build something amazing.

Index
Symbols
	! (exclamation point), Connections and Lists

A
	abstract syntax trees, Abstract Syntax Trees-Abstract Syntax Trees
	access token, githubAuth Mutation
	adjacent nodes, History of Graph Theory
	Amazon Web Services (AWS), Community
	API tools, GraphQL API Tools-Public GraphQL APIs	GraphiQL, GraphiQL-GraphiQL
	GraphQL Playground, GraphQL Playground-GraphQL Playground
	public GraphQL APIs, Public GraphQL APIs

	API, GraphQL	client setup, Using a GraphQL API-graphql-request
	context, Context-Adding Database to Context
	creating, Creating a GraphQL API-Conclusion
	fetch requests, fetch Requests-fetch Requests
	GitHub authorization, GitHub Authorization-Add fake users mutation
	graphql-request, graphql-request-graphql-request
	monitoring, Apollo Engine-Apollo Engine
	resolvers, Resolvers-Custom Scalars

	Apollo Client, Apollo Client	about, GraphQL Clients
	and cache, Apollo Client
	Mutation component, The Mutation Component
	posting a new photo with, Posting a New Photo with Apollo Client-Posting a New Photo with Apollo Client
	project setup, Project Setup
	Query component, The Query Component
	WebSocket link, Adding the WebSocketLink

	Apollo Engine, Apollo Engine-Apollo Engine
	Apollo Server, Working with Subscriptions
	apollo-server-express, GraphQL, apollo-server-express
	AppSync, Community
	arguments, Arguments-Sorting	data paging, Data paging
	defined, The GraphQL Query
	filtering, Filtering Data-Sorting
	organizing with input types, Input Types-Input Types
	sorting, Sorting

	authentication, Authenticating Users-Add fake users mutation	fake users mutation, Add fake users mutation-Add fake users mutation
	me query, me Query-me Query

	authorization	client-side, Authorization
	GitHub, GitHub Authorization-Add fake users mutation
	identifying the user, Identifying the User
	of user, Authorizing the User

	AWS AppSync, Community

B
	Bad Credentials error, githubAuth Mutation
	Berners-Lee, Tim, Welcome to GraphQL
	binary trees, Trees are Graphs
	Byron, Lee, Origins of GraphQL

C
	cache, Apollo Client and, Apollo Client
	clients, GraphQL Clients, GraphQL Clients	(see also Apollo Client)
	authorization, Authorization
	fetch requests, fetch Requests-fetch Requests
	graphql-request, graphql-request-graphql-request
	using a GraphQL API, Using a GraphQL API-graphql-request

	Codd, Edgar M., The GraphQL Query Language
	community, Community-Community Slack Channels	GraphQL events, GraphQL Events
	Slack channels, Community Slack Channels

	connections	many-to-many, Many-to-Many Connections, Many-to-many-Many-to-many
	one-to-many, One-to-Many Connections, One-to-many connections-One-to-many connections
	one-to-one, One-to-One Connections
	queries and, Edges and Connections
	resolvers and, Edges and Connections-Many-to-many
	schemas and, Connections and Lists-Interfaces

	context, Context-Adding Database to Context	adding database to, Adding Database to Context
	defined, Context
	MongoDB installation for, Installing Mongo

	create-react-app, Project Setup
	Crockford, Douglas, REST
	cURL, The GraphQL Query Language, fetch Requests-fetch Requests
	custom scalars, Custom Scalars-Custom Scalars

D
	data paging, Data paging
	data transport, history of, History of Data Transport
	declarative data-fetching language, What Is GraphQL?
	definitions, in GraphQL Document, Abstract Syntax Trees
	degree of a node, History of Graph Theory
	depth of a node, Trees are Graphs
	design principles, GraphQL, Design Principles of GraphQL
	directed graph (digraph)	defined, Graph Theory Vocabulary
	Twitter as, Graphs in the Real World

	documentation, of schemas, Schema Documentation-Schema Documentation

E
	edges (term), Graph Theory Vocabulary
	endpoints, managing, Managing REST Endpoints
	enums (enumeration types), Enums, Using Inputs and Enums-Using Inputs and Enums
	error handling, The GraphQL Query
	Euler, Leonhard, History of Graph Theory-History of Graph Theory
	Eulerian cycle, History of Graph Theory
	Eulerian path, History of Graph Theory
	exclamation point, Connections and Lists
	Express	and Node.js, apollo-server-express

F
	Facebook	and GraphQL’s origins, Origins of GraphQL
	as undirected graph, Graphs in the Real World
	subscriptions and, Subscriptions
	SWAPI project, Public GraphQL APIs

	fake users mutation, Add fake users mutation-Add fake users mutation
	fetch requests, fetch Requests-fetch Requests
	Fielding, Roy, REST
	fields, Types
	filtering, Filtering Data-Sorting	data paging, Data paging
	sorting, Sorting

	FragmentDefinition, Abstract Syntax Trees
	fragments	and union types, Union types
	interfaces, Interfaces
	queries and, Fragments-Interfaces

G
	GitHub API, Public GraphQL APIs
	GitHub authorization, GitHub Authorization-Add fake users mutation	authenticating users, Authenticating Users-Add fake users mutation
	Bad Credentials error, githubAuth Mutation
	fake users mutation, Add fake users mutation-Add fake users mutation
	githubAuth mutation, githubAuth Mutation-githubAuth Mutation
	me query, me Query-me Query
	postPhoto mutation, postPhoto mutation
	process of, The Authorization Process
	setting up GitHub OAuth, Setting Up GitHub OAuth-Setting Up GitHub OAuth

	GitHub OAuth	return types, Return Types
	setting up, Setting Up GitHub OAuth-Setting Up GitHub OAuth

	GitHub, as early adopter of GraphQL, GraphQL in the Real World
	graph theory, Graph Theory-Graphs in the Real World	history of, History of Graph Theory-History of Graph Theory
	real-world applications of concepts, Graphs in the Real World-Graphs in the Real World
	real-world examples of graphs, Graph Theory-Graph Theory
	trees as graphs, Trees are Graphs-Trees are Graphs
	vocabulary of, Graph Theory Vocabulary-Graph Theory Vocabulary

	GraphiQL, GraphiQL-GraphiQL
	GraphQL (generally)	about, Welcome to GraphQL-GraphQL Clients
	and history of data transport, History of Data Transport
	basics, What Is GraphQL?-Design Principles of GraphQL
	clients, GraphQL Clients
	design principles, Design Principles of GraphQL
	origins, Origins of GraphQL
	real world uses, GraphQL in the Real World
	specification, The GraphQL Specification

	GraphQL Bin, GraphQL Playground
	GraphQL Day, GraphQL Events
	GraphQL Europe, GraphQL Events
	GraphQL Finland, GraphQL Events
	GraphQL Playground, GraphQL Playground-GraphQL Playground, Authenticating Users
	GraphQL Summit, GraphQL Events
	graphql-request, graphql-request-graphql-request

H
	Homebrew, Installing Mongo
	HTML trees, Trees are Graphs

I
	incremental migration, Incremental Migration
	inline fragments, Union types
	input types	with resolvers, Using Inputs and Enums-Using Inputs and Enums
	with schemas, Input Types-Input Types

	input variables, Using Query Variables
	interfaces, Interfaces, Interfaces
	introspection, Introspection

J
	JSON (JavaScript Object Notation), origins of, REST

K
	Königsberg bridge problem, History of Graph Theory-History of Graph Theory

L
	lexical analysis (lexing), Abstract Syntax Trees
	lists	and interfaces, Interfaces
	of different types, Lists of Different Types-Interfaces
	schemas and, Connections and Lists-Interfaces
	union types, Union types, Union types

M
	many-to-many connections, Many-to-Many Connections, Many-to-many-Many-to-many
	me query, me Query-me Query
	migration, incremental, Incremental Migration
	MongoDB, installing, Installing Mongo
	monitoring, API, Apollo Engine-Apollo Engine
	Mutation component, The Mutation Component
	mutations, Mutations-Using Query Variables	about, The GraphQL Query Language
	and query variables, Using Query Variables
	declaring variables, Mutations
	defining in the schema, Mutations-Mutations
	fake user, Add fake users mutation-Add fake users mutation
	githubAuth, githubAuth Mutation-githubAuth Mutation
	postPhoto, postPhoto mutation

N
	nodes	adjacent, History of Graph Theory
	defined, Graph Theory Vocabulary
	degree of, History of Graph Theory

	non-nullable fields	defined, Types
	exclamation points and, Connections and Lists

	nullable fields, Types

O
	object types (see types)
	one-to-many connections, Edges and Connections, One-to-Many Connections, One-to-many connections-One-to-many connections
	one-to-one connections, One-to-One Connections
	OperationDefinition, Abstract Syntax Trees
	operations, defined, GraphiQL
	overfetching, Overfetching-Overfetching

P
	parent object, Type Resolvers
	PhotoShare application	GraphQL API for, Creating a GraphQL API-Conclusion
	GraphQL clients for, GraphQL Clients
	schema design, Designing a Schema-Schema Documentation
	security, Security-Apollo Engine
	subscriptions, Subscriptions-Listening for new users
	uploading files, Uploading Files-Posting a New Photo with Apollo Client

	Playground (see GraphQL Playground)
	Prisma, Community
	public GraphQL APIs, Public GraphQL APIs
	PubSub, Working with Subscriptions

Q
	query arguments, The GraphQL Query
	query complexity, Limiting Query Complexity-Limiting Query Complexity
	Query component, The Query Component
	query document, GraphiQL
	query language, The GraphQL Query Language-Abstract Syntax Trees	abstract syntax trees, Abstract Syntax Trees-Abstract Syntax Trees
	API tools, GraphQL API Tools-Public GraphQL APIs
	edges and connections, Edges and Connections
	fragments, Fragments-Interfaces
	introspection, Introspection
	mutations, Mutations-Using Query Variables
	simple GraphQL query example, The GraphQL Query Language
	subscriptions, Subscriptions

	query variables, Using Query Variables
	query(ies)	as GraphQL root type, The GraphQL Query
	data limitations on, Data Limitations
	defined, The GraphQL Query
	error handling, The GraphQL Query
	limiting complexity of, Limiting Query Complexity-Limiting Query Complexity
	limiting depth of, Limiting Query Depth-Limiting Query Depth
	simple GraphQL example, The GraphQL Query Language

R
	React Router, Authorizing the User
	React, Apollo Client with, Project Setup
	real-world applications of GraphQL, GraphQL in the Real World-Community Slack Channels	incremental migration, Incremental Migration
	schema-first development, Schema-First Development
	security, Security-Apollo Engine
	subscriptions, Subscriptions-Listening for new users
	uploading files, Uploading Files-Posting a New Photo with Apollo Client

	Relay, GraphQL Clients
	request timeouts, Request Timeouts
	resolvers	custom scalars, Custom Scalars-Custom Scalars
	defined, Resolvers
	edges and connections, Edges and Connections-Many-to-many
	githubAuth, githubAuth Mutation
	root, Root Resolvers-Root Resolvers
	type, Type Resolvers-Type Resolvers
	using inputs and enums, Using Inputs and Enums-Using Inputs and Enums

	REST (Representational State Transfer), REST-Managing REST Endpoints	basic data operations, The GraphQL Query Language
	drawbacks, REST Drawbacks-Managing REST Endpoints
	managing endpoints, Managing REST Endpoints
	origins, REST
	overfetching, Overfetching-Overfetching
	underfetching, Underfetching-Underfetching

	return types, Return Types
	root nodes, Trees are Graphs
	root resolvers, Root Resolvers-Root Resolvers
	root type, The GraphQL Query
	RPC (remote procedure call), Remote Procedure Call

S
	scalar types, Scalar Types	custom scalars, Custom Scalars-Custom Scalars
	defined, Edges and Connections
	enums, Enums

	Schafer, Dan, Origins of GraphQL
	Schema Definition Language (SDL), Designing a Schema
	Schema First design methodology, Designing a Schema, Schema-First Development
	schema stitching, Community
	schemas	arguments, Arguments-Sorting
	connections and lists, Connections and Lists-Interfaces
	defined, Designing a Schema
	designing, Designing a Schema-Schema Documentation
	documentation, Schema Documentation-Schema Documentation
	input types, Input Types-Input Types
	mutations, Mutations-Mutations
	return types, Return Types
	subscription types, Subscriptions
	types, Defining Types-Enums

	Schrock, Nick, Origins of GraphQL
	security, Security-Apollo Engine	API monitoring, Apollo Engine-Apollo Engine
	data limitations on queries, Data Limitations
	limiting query complexity, Limiting Query Complexity-Limiting Query Complexity
	limiting query depth, Limiting Query Depth-Limiting Query Depth
	request timeouts, Request Timeouts

	selection sets, The GraphQL Query
	SelectionSet, Abstract Syntax Trees
	servers, GraphQL	handling uploads on, Handling Uploads on the Server

	Slack channels, Community Slack Channels
	SOAP (Simple Object Access Protocol), Simple Object Access Protocol
	social authorization, GitHub Authorization
	sorting, Sorting
	specification (spec), The GraphQL Specification
	SQL (Structured Query Language), The GraphQL Query Language-Abstract Syntax Trees
	state changes (see mutations, subscriptions)
	subscriptions, Subscriptions	and WebSocketLink, Adding the WebSocketLink
	consuming, Consuming Subscriptions-Listening for new users
	in schemas, Subscriptions
	listening for new users, Listening for new users-Listening for new users
	posting photos, Posting photos
	real-world applications, Subscriptions-Listening for new users
	working with, Working with Subscriptions-Posting photos

	subtrees, Trees are Graphs
	SWAPI (Star Wars API), Public GraphQL APIs

T
	tagging, Many-to-Many Connections
	through types, Through types
	timeouts, request, Request Timeouts
	trees	abstract syntax trees, Abstract Syntax Trees-Abstract Syntax Trees
	as graphs, Trees are Graphs-Trees are Graphs

	trivial resolvers, Type Resolvers
	Twitter, as directed graph, Graphs in the Real World
	type resolvers, Type Resolvers-Type Resolvers
	types, Edges and Connections	basics, Types
	defining, Defining Types-Enums
	enums, Enums
	in GraphQL, Types
	interfaces, Interfaces, Interfaces
	lists of different types, Lists of Different Types-Interfaces
	scalar, Scalar Types
	through, Through types
	union, Union types, Union types

U
	underfetching, Underfetching-Underfetching
	undirected graph	defined, Graph Theory Vocabulary
	Facebook as, Graphs in the Real World

	union types, Union types, Union types
	uploading files, Uploading Files-Posting a New Photo with Apollo Client	handling uploads on the server, Handling Uploads on the Server
	posting a new photo with Apollo, Posting a New Photo with Apollo Client-Posting a New Photo with Apollo Client

V
	variables	input, Using Query Variables
	mutation, Mutations

	vertices (term), Graph Theory Vocabulary

W
	WebSocketLink, Adding the WebSocketLink
	WebSockets, Subscriptions
	WorldWideWeb, origins of, Welcome to GraphQL

Y
	Yelp GraphQL API, Public GraphQL APIs

 About the Authors

 Alex Banks and Eve Porcello are software engineers and instructors based in Tahoe City, California. With their company, Moon Highway, they have developed and delivered custom training curriculum for corporate clients and online for LinkedIn Learning. They also are the authors of Learning React from O’Reilly Media.

Colophon

The animal on the cover of Learning GraphQL is Bonelli’s Eagle (Aquila fasciata). This large raptor is found across Southeast Asia, the Middle East, and the Mediterranean, preferring drier climates and areas where it can nest in crags or tall trees. It has an average wingspan of about 60 in., and it is distinguished by a dark-brown head and wings with a white underbelly adorned in dark stripes and flecks.

Usually silent outside of the nest, this stealthy hunter feeds primarily on other birds, up to and including other raptors, but is also known to eat small mammals and reptiles. Despite a propensity to eat other birds of prey, adult nesting pairs are known for their affection for chicks regardless of lineage, and have been observed to foster eggs and hatchlings in abandoned nests, both of Aquila fasciata and other raptor species in which lethal aggression is not displayed between siblings.

Many of the animals on O’Reilly covers are endangered; all of them are important to the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Brehms Tierleben. The cover fonts are URW Typewriter and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

OEBPS/assets/lgql_0216.png

OEBPS/assets/lgql_0219.png

OEBPS/assets/lgql_0305.png
. hello . allSongs . addSong

PRETTIFY HISTORY http:/localhost:4000/graphg| COPY CURL SHARE PLAYGROUND

1 v A
"data": {
"hello": "hi!"

hello

QUERY VARIABLES HTTP HEADERS TRACING

OEBPS/assets/lgql_0701.png
@ me [newPhoto o (S newPhoto -

PRETTIFY HISTORY http:/iocalhost:4000/

=~ secs ago
~ subscription {
~ newPhoto { ~{
name - data": {
url - data": {
postedBy { - "newPhoto": {
name "name": "Highest Peak",
} "url": "/img/photos/5ac930ff9012934e35e914a8. jpg",
} "postedBy": {
} "name": "noa pierre"
}
}
}
}
}
1 sec ago
=i
- data": {
- data": {
B "newPhoto”: {
"name": "Lowest Valley",
"url": "/img/photos/5ac931079012934e35e914a9. jpg",
"postedBy": {
"name": "noa pierre"
}
}
}
}

OEBPS/assets/lgql_0204.png
Big Dipper

OEBPS/assets/lgql_0201.png

OEBPS/assets/lgql_0208.png

OEBPS/assets/lgql_0104.png
1+ query {
2~ person(personID:1) {
3 name

4 height

5 mass

6~ filmConnection {
7 films {

8 title

© }

10 }

11 1

12 }

-~ {
v "data": {
v "person": {

"name": "Luke Skywalker",

"height": 172,

"mass": 77,
v "filmConnection": {
v "films": [
{
"title": "A New Hope"
s
{
"title": "The Empire Strikes Back"
s
{
"title": "Return of the Jedi"
s
{
"title": "Revenge of the Sith"
s
{
"title": "The Force Awakens"
}
]
}

(S}

OEBPS/assets/lgql_0205.png
()"

OEBPS/assets/lgql_0217.png

OEBPS/assets/lgql_0303.png
GraphiQL (B | Pretity | | History < Docs

hello "data": {
"hello": "hi!"

}

}

wWN =

{ v {
3

OEBPS/assets/cover.png
O'REILLY"

GraphQL

DECLARATIVE DATA FETCHING FOR MODERN WEB APPS

Eve Porcello & Alex Banks

OEBPS/assets/lgql_0221.png

OEBPS/assets/lgql_0502.png
Application name

Localhost 3000
Something users will recognize and trust
Homepage URL

http://localhost:3000
‘The full URL to your application homepage
Application description

Al authorizations for local Github

Testing.)

‘This is displayed to all users of your application
Authorization callback URL

http://localhost:3000

‘Your application’s callback URL. Read our OAuth documentat

OEBPS/assets/lgql_0101.png
1~ query {

2~

NoO UV AW

i

person(personID:5) {

}

name
birthYear
created

v {

v

"data": {
"person": {

"name": "Leia Organa",
"birthYear": "19BBY",

"created":

"2014-12-10T15:20:09.791000Z"

OEBPS/assets/lgql_0503.png
Localhost 3000

E MoonTahoe owns this application. Transfer ownership

You can st your application in the GitHub Marketplace 5o that other Lot shis application in the Marketplace
users can discover it

2 users

Client ID

Client Secret

Revoke all user tokens Reset client secret
Application logo
Upload new logo
e Ty e —
Drag & drop
Application name

Localhost 3000
Something users will recognize and trust
Homepage URL

http://localhost:3000
‘The full URL to your application homepage
Application description

Al authorizations for local Github

Testing.)

ht

isplayed to all users of your application
Authorization callback URL

http://localhost:3000

‘Your application’s callback URL. Read our OAuth documentation for more information.

Update application [ELIISCELEEENE)

OEBPS/assets/lgql_0302.png
GraphiQL \}/ Prettify History

hello

wWwN =
IR

OEBPS/assets/lgql_0102.png
1+ query {
2~ person(personID:5) {
3 name

4 birthYear

5 created

6~ filmConnection {
7 films {

8 title

© }

10 }

11 1

12}

> {

"data": {

v "person": {

"name": "Leia Organa",

"birthYear": "19BBY",

"created": "2014-12-10T15:20:09.791000Z",
"filmConnection": {

4

4

v "films": [
{
"title": "A New Hope"
e
{
"title": "The Empire Strikes Back"
e
{
"title": "Return of the Jedi"
e
{
"title": "Revenge of the Sith"
e
{
"title": "The Force Awakens"
1

OEBPS/assets/lgql_0306.png
COPY CURL SHARE PLAYGROUND

https://graphqlbin.com/v2/DRJkSj

OEBPS/assets/lgql_0301.png
GraphiQL \b > Prettify | History < Docs

OEBPS/assets/lgql_0403.png

OEBPS/assets/lgql_0210.png

OEBPS/assets/lgql_0304.png
Documentation Explorer X

Q_ Search Schema...

A GraphQL schema provides a root type for each
kind of operation.

ROOT TYPES

query: Query

mutation: Mutation

OEBPS/assets/lgql_0402.png

OEBPS/assets/lgql_0501.png
MongoDB Deployments

Development and Utility Single-node deployments intended for environments that do not require high availabilty.

> Nawe PLANTYPE RAM

> () ds121189/photoshare Sandbox shared

5 Create from backup

+ Create new

SZEONDISK

000KB

OEBPS/UbuntuMono-BoldItalic.otf

OEBPS/UbuntuMono-Italic.otf

OEBPS/UbuntuMono-Regular.otf

OEBPS/css_assets/titlepage_footer_ebook.png
Beijing + Boston + Farnham - Sebastopol + Tokyo

OEBPS/assets/lgql_0215.png

OEBPS/css_assets/beaver_epub.png

OEBPS/assets/lgql_0202.png
Irving Park

Addison
Paulina
Southport Belmont
Belmont

Fullerton

North/Clybourn

OEBPS/assets/lgql_0203.png
Your Grandma

Your Grandp

</

Your Grandpa
@ w

OEBPS/DejaVuSans-Bold.otf

OEBPS/assets/lgql_0206.png

OEBPS/assets/lgql_0211.png

OEBPS/DejaVuSerif.otf

OEBPS/UbuntuMono-Bold.otf

OEBPS/toc01.html
		Preface

		Acknowledgments

		Conventions Used in This Book

		Using Code Examples

		O’Reilly Safari

		How to Contact Us

		1. Welcome to GraphQL

		What Is GraphQL?

		The GraphQL Specification

		Design Principles of GraphQL

		Origins of GraphQL

		History of Data Transport

		Remote Procedure Call

		Simple Object Access Protocol

		REST

		REST Drawbacks

		Overfetching

		Underfetching

		Managing REST Endpoints

		GraphQL in the Real World

		GraphQL Clients

		2. Graph Theory

		Graph Theory Vocabulary

		History of Graph Theory

		Trees are Graphs

		Graphs in the Real World

		3. The GraphQL Query Language

		GraphQL API Tools

		GraphiQL

		GraphQL Playground

		Public GraphQL APIs

		The GraphQL Query

		Edges and Connections

		Fragments

		Mutations

		Using Query Variables

		Subscriptions

		Introspection

		Abstract Syntax Trees

		4. Designing a Schema

		Defining Types

		Types

		Scalar Types

		Enums

		Connections and Lists

		One-to-One Connections

		One-to-Many Connections

		Many-to-Many Connections

		Lists of Different Types

		Arguments

		Filtering Data

		Mutations

		Input Types

		Return Types

		Subscriptions

		Schema Documentation

		5. Creating a GraphQL API

		Project Setup

		Resolvers

		Root Resolvers

		Type Resolvers

		Using Inputs and Enums

		Edges and Connections

		Custom Scalars

		apollo-server-express

		Context

		Installing Mongo

		Adding Database to Context

		GitHub Authorization

		Setting Up GitHub OAuth

		The Authorization Process

		githubAuth Mutation

		Authenticating Users

		Conclusion

		6. GraphQL Clients

		Using a GraphQL API

		fetch Requests

		graphql-request

		Apollo Client

		Apollo Client with React

		Project Setup

		Configure Apollo Client

		The Query Component

		The Mutation Component

		Authorization

		Authorizing the User

		Identifying the User

		Working with the Cache

		Fetch Policies

		Persisting The Cache

		Updating the Cache

		7. GraphQL in the Real World

		Subscriptions

		Working with Subscriptions

		Consuming Subscriptions

		Uploading Files

		Handling Uploads on the Server

		Posting a New Photo with Apollo Client

		Security

		Request Timeouts

		Data Limitations

		Limiting Query Depth

		Limiting Query Complexity

		Apollo Engine

		Taking the Next Steps

		Incremental Migration

		Schema-First Development

		GraphQL Events

		Community

		Community Slack Channels

		Index

OEBPS/assets/lgql_0103.png
query { ~{
person(personID:1) { ~ “data": {

name - "person": {
height "name": "Luke Skywalker",
mass "height": 172,
} "mass": 77
} }
}

OEBPS/assets/lgql_0504.png
Photo Share App

Request code

| EEEEEE—

Receive code

Client

http://localhost:3000
AuthPayload Mutation
{token, user} githubAuth(code)

GraphQL API
http://localhost:4000/graphq|

Request token N

Receive token

e

Request User

e

Receive User

e

) GitHub

OEBPS/assets/lgql_0220.png
directed graph Niichdiie

Obama

Eve

OEBPS/assets/lgql_0214.png
Start here.
End here.

even

even

even

OEBPS/assets/lgql_0218.png
undirected graph

Sarah

OEBPS/assets/lgql_0213.png
even

odd even

OEBPS/assets/lgql_0401.png
postedBy

OEBPS/assets/lgql_0207.png

OEBPS/assets/lgql_0404.png
postPhoto(
input: PostPhotolnput!
): Photo!

Adds a new photo

Arguments input: The name,
description, and category for a new
photo

OEBPS/assets/lgql_0212.png

OEBPS/assets/lgql_0209.png

