

David Griffiths and Dawn Griffiths

React Cookbook
Recipes for Mastering the React Framework

978-1-492-08584-3

[LSI]

React Cookbook
by David Griffiths and Dawn Griffiths

Copyright © 2021 Dawn Griffiths and David Griffiths. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn
Development Editor: Corbin Collins
Production Editor: Kate Galloway
Copyeditor: Kim Wimpsett
Proofreader: Kim Sandoval

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

August 2021: First Edition

Revision History for the First Edition
2021-08-11: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492085843 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. React Cookbook, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492085843

Table of Contents

Preface. vii

1. Creating Applications. 1
1.1 Generate a Simple Application 1
1.2 Build Content-Rich Apps with Gatsby 6
1.3 Build Universal Apps with Razzle 10
1.4 Manage Server and Client Code with Next.js 12
1.5 Create a Tiny App with Preact 14
1.6 Build Libraries with nwb 18
1.7 Add React to Rails with Webpacker 20
1.8 Create Custom Elements with Preact 22
1.9 Use Storybook for Component Development 26
1.10 Test Your Code in a Browser with Cypress 29

2. Routing. 33
2.1 Create Interfaces with Responsive Routes 33
2.2 Move State into Routes 40
2.3 Use MemoryRouter for Unit Testing 45
2.4 Use Prompt for Page Exit Confirmations 48
2.5 Create Transitions with React Transition Group 55
2.6 Create Secured Routes 61

3. Managing State. 67
3.1 Use Reducers to Manage Complex State 67
3.2 Create an Undo Feature 76
3.3 Create and Validate Forms 83

iii

3.4 Measure Time with a Clock 91
3.5 Monitor Online Status 95
3.6 Manage Global State with Redux 97
3.7 Survive Page Reloads with Redux Persist 104
3.8 Calculate Derived State with Reselect 108

4. Interaction Design. 113
4.1 Build a Centralized Error Handler 113
4.2 Create an Interactive Help Guide 118
4.3 Use Reducers for Complex Interactions 126
4.4 Add Keyboard Interaction 132
4.5 Use Markdown for Rich Content 135
4.6 Animate with CSS Classes 140
4.7 Animate with React Animation 143
4.8 Animate Infographics with TweenOne 147

5. Connecting to Services. 155
5.1 Convert Network Calls to Hooks 155
5.2 Refresh Automatically with State Counters 162
5.3 Cancel Network Requests with Tokens 170
5.4 Make Network Calls with Redux Middleware 173
5.5 Connect to GraphQL 179
5.6 Reduce Network Load with Debounced Requests 187

6. Component Libraries. 191
6.1 Use Material Design with Material-UI 192
6.2 Create a Simple UI with React Bootstrap 199
6.3 View Data Sets with React Window 203
6.4 Create Responsive Dialogs with Material-UI 205
6.5 Build an Admin Console with React Admin 208
6.6 No Designer? Use Semantic UI 215

7. Security. 221
7.1 Secure Requests, Not Routes 221
7.2 Authenticate with Physical Tokens 230
7.3 Enable HTTPS 240
7.4 Authenticate with Fingerprints 244
7.5 Use Confirmation Logins 251
7.6 Use Single-Factor Authentication 257
7.7 Test on an Android Device 262

iv | Table of Contents

7.8 Check Security with ESlint 266
7.9 Make Login Forms Browser Friendly 269

8. Testing. 273
8.1 Use the React Testing Library 274
8.2 Use Storybook for Render Tests 282
8.3 Test Without a Server Using Cypress 288
8.4 Use Cypress for Offline Testing 296
8.5 Test in a Browser with Selenium 300
8.6 Test Cross-Browser Visuals with ImageMagick 307
8.7 Add a Console to Mobile Browsers 315
8.8 Remove Randomness from Tests 320
8.9 Time Travel 323

9. Accessibility. 331
9.1 Use Landmarks 332
9.2 Apply Roles, Alts, and Titles 337
9.3 Check Accessibility with ESlint 346
9.4 Use Axe DevTools at Runtime 351
9.5 Automate Browser Testing with Cypress Axe 356
9.6 Add Skip Buttons 360
9.7 Add Skip Regions 367
9.8 Capture Scope in Modals 375
9.9 Create a Page Reader with the Speech API 378

10. Performance. 383
10.1 Use Browser Performance Tools 384
10.2 Track Rendering with Profiler 391
10.3 Create Profiler Unit Tests 397
10.4 Measure Time Precisely 401
10.5 Shrink Your App with Code Splitting 405
10.6 Combine Network Promises 412
10.7 Use Server-Side Rendering 415
10.8 Use Web Vitals 426

11. Progressive Web Applications. 429
11.1 Create Service Workers with Workbox 430
11.2 Build a PWA with Create React App 446
11.3 Cache Third-Party Resources 449
11.4 Automatically Reload Workers 453

Table of Contents | v

11.5 Add Notifications 458
11.6 Make Offline Changes with Background Sync 465
11.7 Add a Custom Installation UI 470
11.8 Provide Offline Responses 475

Index. 481

vi | Table of Contents

Preface

This book contains a collection of code that we’ve found helpful over several years of
building React applications. Like recipes you would use in the kitchen, we’ve designed
them to be starting points or inspirations for your own code. You should adjust them
to match your situation and replace any ingredients (such as example servers) with
those that seem more appropriate for your needs. The recipes range from general web
development tips to larger pieces of code that you could generalize into libraries.

Most of the recipes are built with Create React App, as this is now the common start‐
ing point for most React projects. It should be straightforward to convert each recipe
for use in Preact or Gatsby.

To keep the code compact, we have generally used hooks and functions rather than
class components. We have also used the Prettier tool to apply standard code format‐
ting throughout. We have used Prettier’s default options, other than narrower indents
and line lengths, to fit the code neatly onto the printed page. You should adjust the
code format to match your preferred standard.

We have used many libraries in the creation of these recipes:

Tool/library Description Versions
Apollo Client GraphQL client 3.3.19

axios HTTP library 0.21.1

chai Unit test support library 4.3.0

chromedriver Browser automation tool 88.0.0

Create React App Tool for generating React apps 4.0.3

Cypress Automated test system 7.3.0

Cypress Axe Automated accessibility testing 0.12.2

Gatsby Tool for generating React apps 3.4.1

GraphQL API query language 15.5.0

jsx-a11y ESLint plugin for accessibility 6.4.1

vii

Tool/library Description Versions
Material-UI Component library 4.11.4

Node JavaScript runtime v12.20.0

npm The Node package manager 6.14.8

nvm Tool for running multiple Node environments 0.33.2

nwb Tool for generating React apps 0.25.x

Next.js Tool for generating React apps 10.2.0

Preact Lightweight React-like framework 10.3.2

Preact Custom Elements Library to create custom elements 4.2.1

preset-create-react-app Storybook plugin 3.1.7

Rails Web development framework 6.0.3.7

Razzle Tool for generating React apps 4.0.4

React Web framework 17.0.2

React Media Media queries in React code 1.10.0

React Router (DOM) Library for managing React routes 5.2.0

React Testing Library Unit testing library for React 11.1.0

react-animations React CSS animation library 1.0.0

React Focus Lock Library to capture keyboard focus 2.5.0

react-md-editor Markdown editor 3.3.6

React-Redux React support library for Redux 7.2.2

Redux State management library 4.0.5

Redux-Persist Library to store Redux state 6.0.0

Ruby Language used by Rails 2.7.0p0

selenium-webdriver Browser testing framework 4.0.0-beta.1

Storybook Component gallery system 6.2.9

TweenOne React animation library 2.7.3

Typescript Type-safe extension to JavaScript 4.1.2

Webpacker Tool for adding React to Rails apps 4.3.0

Workbox Library to create service workers 5.1.3

Yarn Another Node package manager 1.22.10

viii | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/dogriffiths/ReactCookbook-source.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

Preface | ix

https://github.com/dogriffiths/ReactCookbook-source
mailto:bookquestions@oreilly.com

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “React Cookbook by
David Griffiths and Dawn Griffiths (O’Reilly). Copyright 2021 Dawn Griffiths and
David Griffiths, 978-1-492-08584-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/react-cb.

x | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/react-cb

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
We want to thank our very patient editor Corbin Collins for his help and advice over
the past year. His calm, good humor has been a steadying influence during the writ‐
ing process. We would also like to thank Amanda Quinn, senior contents acquisition
editor at O’Reilly Media, for commissioning the book, and Danny Elfanbaum and the
production team at O’Reilly for making the physical and electronic versions a reality.

Special thanks also to Sam Warner and Mark Hobson for their very rigorous review
of the material in this book.

We are also grateful to the developers working on the many open source libraries that
support the React ecosystem. We are grateful to them all, particularly for the speed at
which they responded to bug reports or pleas for help.

If you find these recipes useful, it is primarily because of the work of these people. If
you find errors in the code or the text, that is entirely our responsibility.

Preface | xi

mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Creating Applications

React is a surprisingly adaptable development framework. Developers use it to create
large JavaScript-heavy Single-Page Applications (SPAs) or to build surprisingly small
plug-ins. You can use it to embed code inside a Rails application or generate a
content-rich website.

In this chapter, we look at the various ways of creating a React application. We also
look at some of the more valuable tools you might want to add to your development
cycle. Few people now create their JavaScript projects from scratch. Doing so is a tedi‐
ous process, involving an uncomfortable amount of tinkering and configuration. The
good news is that you can use a tool to generate the code you need in almost every
case.

Let’s take a whistle-stop tour of the many ways of starting your React journey, begin‐
ning with the one most frequently used: create-react-app.

1.1 Generate a Simple Application
Problem
React projects are challenging to create and configure from scratch. Not only are
there numerous design choices to make—which libraries to include, which tools to
use, which language features to enable—but manually created applications will, by
their nature, differ from one another. Project idiosyncrasies increase the time it takes
a new developer to become productive.

1

Solution
create-react-app is a tool for building SPAs with a standard structure and a good
set of default options. Generated projects use the React Scripts library to build, test,
and run the code. Projects have a standard Webpack configuration and a standard set
of language features enabled.

Any developer who has worked on one create-react-app application instantly feels
at home with any other. They understand the project structure and know which lan‐
guage features they can use. It is simple to use and contains all the features that a typi‐
cal application requires: from Babel configuration and file loaders to testing libraries
and a development server.

If you’re new to React, or need to create a generic SPA with the minimum of fuss,
then you should consider creating your app with create-react-app.

You can choose to install the create-react-app command globally on your machine,
but this is now discouraged. Instead, you should create a new project by calling
create-react-app via npx. Using npx ensures you’re building your application with
the latest version of create-react-app:

$ npx create-react-app my-app

This command creates a new project directory called my-app. By default, the applica‐
tion uses JavaScript. If you want to use TypeScript as your development language,
create-react-app provides that as an option:

$ npx create-react-app --template typescript my-app

Facebook developed create-react-app, so it should come as no surprise that if you
have the yarn package manager installed, then your new project will use yarn by
default. To use npm, you can either specify the --use-npm flag or change into the
directory and remove the yarn.lock file and then rerun the install with npm:

$ cd my-app
$ rm yarn.lock
$ npm install

To start your application, run the start script:

$ npm start # or yarn start

This command launches a server on port 3000 and opens a browser at the home page,
as shown in Figure 1-1.

2 | Chapter 1: Creating Applications

Figure 1-1. The generated front page

The server delivers your application as a single, large bundle of JavaScript. The code
mounts all of its components inside this <div/> in public/index.html:

<div id="root"></div>

The code to generate the components begins in the src/index.js file (src/index.tsx if
you’re using TypeScript):

import React from 'react'
import ReactDOM from 'react-dom'
import './index.css'
import App from './App'
import reportWebVitals from './reportWebVitals'

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
)

// If you want to start measuring performance in your app, pass a function
// to log results (for example: reportWebVitals(console.log))
// or send to an analytics endpoint. Learn more: https://bit.ly/CRA-vitals
reportWebVitals()

1.1 Generate a Simple Application | 3

This file does little more than render a single component called <App/>, which it
imports from App.js (or App.tsx) in the same directory:

import logo from './logo.svg'
import './App.css'

function App() {
 return (
 <div className="App">
 <header className="App-header">

 <p>
 Edit <code>src/App.js</code> and save to reload.
 </p>
 <a
 className="App-link"
 href="https://reactjs.org"
 target="_blank"
 rel="noopener noreferrer"
 >
 Learn React

 </header>
 </div>
)
}

export default App

If you edit this file while the application is start-ed, the page in the browser auto‐
matically updates.

When you’re ready to ship the code to production, you need to generate a set of static
files that you can deploy on a standard web server. To do this, run the build script:

$ npm run build

The build script creates a build directory and then publishes a set of static files (see
Figure 1-2).

Figure 1-2. The generated contents in the build directory

4 | Chapter 1: Creating Applications

The build copies many of these files from the public/ directory. The code for the app
is transpiled into browser-compatible JavaScript and stored in one or more files in the
static/js directory. Stylesheets used by the application are stitched together and stored
in static/css. Several of the files have hashed IDs added to them so that when you
deploy your application, browsers download the latest code rather than some old
cached version.

Discussion
create-react-app is not just a tool for generating a new application but also a plat‐
form to keep your React application up-to-date with the latest tools and libraries. You
can upgrade the react-scripts library as you would any other: by changing the ver‐
sion number and rerunning npm install. You don’t need to manage a list of Babel
plugins or postcss libraries, or maintain a complex webpack.config.js file. The react-
scripts library manages them all for you.

The configuration is all still there, of course, but buried deep within the react-scripts
directory. In there, you will find the webpack.config.js file, containing all the Babel
configuration and file loaders that your application will use. Because it’s a library, you
can update React Scripts just as you would any other dependency.

If, however, you later decide to manage all of this yourself, you’re free to do so. If you
eject the application, then everything comes back under your control:

$ npm run eject

However, this is a one-time-only change. Once you have ejected your application,
there is no going back. You should think carefully before ever ejecting an application.
You may find that the configuration you need is already available. For example, devel‐
opers would often eject an application to switch to using TypeScript. The --template
typescript option now removes the need for that.

Another common reason for ejecting was to proxy web services. React apps often
need to connect to some separate API backend. Developers used to do this by config‐
uring Webpack to proxy a remote server through the local development server. You
can now avoid doing this by setting a proxy in the package.json file:

"proxy": "http://myapiserver",

If your code now contacts a URL that the server cannot find locally (/api/thing), the
react-scripts automatically proxies these requests to http://myapiserver/api/thing.

If you can, avoid ejecting your application. Look through the
create-react-app documentation to see if you can make the
change some other way.

1.1 Generate a Simple Application | 5

https://oreil.ly/99Ied

You can download the source for this recipe in JavaScript or TypeScript from the
GitHub site.

1.2 Build Content-Rich Apps with Gatsby
Problem
Content-rich sites like blogs and online stores need to serve large amounts of complex
content efficiently. A tool like create-react-app is not suitable for this kind of web‐
site because it delivers everything as a single large bundle of JavaScript that a browser
must download before anything displays.

Solution
If you are building a content-rich site, consider using Gatsby.

Gatsby focuses on loading, transforming, and delivering content in the most efficient
way possible. It can generate static versions of web pages, which means that the
response times of Gatsby sites are often significantly slower than, say, those built with
create-react-app.

Gatsby has many plugins that can load and transform data efficiently from static local
data, GraphQL sources, and third-party content management systems such as
WordPress.

You can install gatsby globally, but you can also run it via the npx command:

$ npx gatsby new my-app

The gatsby new command creates a new project in a subdirectory called my-app. The
first time you run this command, it asks which package manager to use: either yarn
or npm.

To start your application, change into the new directory and run it in development
mode:

$ cd my-app
$ npm run develop

You can then open your application at http://localhost:8000, as shown in Figure 1-3.

6 | Chapter 1: Creating Applications

https://oreil.ly/UK0dZ
https://oreil.ly/oOSo9

Figure 1-3. Gatsby page at http://localhost:8000

Gatsby projects have a straightforward structure, as shown in Figure 1-4.

Figure 1-4. The Gatsby directory structure

The core of the application lives under the src directory. Each page within a Gatsby
app has its own React component. This is the front page of the default application in
index.js:

import * as React from "react"
import { Link } from "gatsby"
import { StaticImage } from "gatsby-plugin-image"

1.2 Build Content-Rich Apps with Gatsby | 7

1 And yes, this means that Gatsby has TypeScript support built-in.
2 You can do this in most operating systems by pressing Ctrl-C.

import Layout from "../components/layout"
import Seo from "../components/seo"

const IndexPage = () => (
 <Layout>
 <Seo title="Home" />
 <h1>Hi people</h1>
 <p>Welcome to your new Gatsby site.</p>
 <p>Now go build something great.</p>
 <StaticImage
 src="../images/gatsby-astronaut.png"
 width={300}
 quality={95}
 formats={["AUTO", "WEBP", "AVIF"]}
 alt="A Gatsby astronaut"
 style={{ marginBottom: `1.45rem` }}
 />
 <p>
 <Link to="/page-2/">Go to page 2</Link>

 <Link to="/using-typescript/">Go to "Using TypeScript"</Link>
 </p>
 </Layout>
)

export default IndexPage

There is no need to create a route for the page. Each page component is automatically
assigned a route. For example, the page at src/pages/using-typescript.tsx is
automatically available at using-typescript.1 This approach has multiple advantages.
First, if you have many pages, you don’t need to manage the routes for them man‐
ually. Second, it means that Gatsby can deliver much more rapidly. To see why, let’s
look at how to generate a production build for a Gatsby application.

If you stop the Gatsby development server,2 you can generate a production build with
the following:

$ npm run build

This command runs a gatsby build command, which creates a public directory. And
it is the public directory that contains the real magic of Gatsby. For each page, you
find two files. First, a generated JavaScript file:

1389 06:48 component---src-pages-using-typescript-tsx-93b78cfadc08d7d203c6.js

8 | Chapter 1: Creating Applications

Here you can see that the code for using-typescript.tsx is just 1,389 bytes long, which,
with the core framework, is just enough JavaScript to build the page. It is not the kind
of include-everything script that you find in a create-react-app project.

Second, there is a subdirectory for each page containing a generated HTML file. For
using-typescript.tsx, the file is called public/using-typescript/index.html, containing a
statically generated version of the web page. It contains the HTML that the using-
typescript.tsx component would otherwise render dynamically. At the end of the web
page, it loads the JavaScript version of the page to generate any dynamic content.

This file structure means that Gatsby pages load as quickly as static pages. Using the
bundled react-helmet library, you can also generate <meta/> header tags with addi‐
tional features about your site. Both features are great for search engine optimization
(SEO).

Discussion
How will the content get into your Gatsby application? You might use a headless con‐
tent management system, a GraphQL service, a static data source, or something else.
Fortunately, Gatsby has many plugins that allow you to connect data sources to your
application and then transform the content from other formats, such as Markdown,
into HTML.

You can find a complete set of plugins on the Gatsby website.

Most of the time, you choose the plugins you need when you first create the project.
To give you a head start, Gatsby also supports start templates. The template provides
the initial application structure and configuration. The app we built earlier uses the
default starter template, which is quite simple. The gatsby-config.js file in the root of
the application configures which plugins your application uses.

But there are masses of Gatsby starters available, preconfigured to build applications
that connect to various data sources, with preconfigured options for SEO, styling, off‐
line caching, progressive web applications (PWAs), and more. Whatever kind of
content-rich application you are building, there is a starter close to what you need.

There is more information on the Gatsby website about Gatsby starters, as well as a
cheat sheet for the most useful tools and commands.

You can download the source for this recipe from the GitHub site.

1.2 Build Content-Rich Apps with Gatsby | 9

https://oreil.ly/9GwLv
https://oreil.ly/vwUd8
https://oreil.ly/f7xbF
https://oreil.ly/DzLSy

3 The name is intentionally similar to create-react-app. The maintainer of Razzle, Jared Palmer, lists create-
react-app as one of the inspirations for Razzle.

1.3 Build Universal Apps with Razzle
Problem
Sometimes when you start to build an application, it is not always clear what the sig‐
nificant architectural decisions will be. Should you create an SPA? If performance is
critical, should you use server side r? You will need to decide what your deployment
platform will be and whether you will write your code in JavaScript or TypeScript.

Many tools require that you answer these questions early on. If you later change your
mind, modifying how you build and deploy your application can be complicated.

Solution
If you want to defer decisions about how you build and deploy your application, you
should consider using Razzle.

Razzle is a tool for building Universal applications: applications that can execute their
JavaScript on the server. Or the client. Or both.

Razzle uses a plugin architecture that allows you to change your mind about how you
build your application. It will even let you change your mind about building your
code in React, Preact, or some other framework entirely, like Elm or Vue.

You can create a Razzle application with the create-razzle-app command:3

$ npx create-razzle-app my-app

This command creates a new Razzle project in the my-app subdirectory. You can start
the development server with the start script:

$ cd my-app
$ npm run start

The start script will dynamically build both client code and server code and then
run the server on port 3000, as shown in Figure 1-5.

10 | Chapter 1: Creating Applications

https://oreil.ly/3pZic
https://oreil.ly/C496O

Figure 1-5. The Razzle front page at http://localhost:3000

When you want to deploy a production version of your application, you can then run
the build script:

$ npm run build

Unlike create-react-app, this will build not just the client code but also a Node
server. Razzle generates the code in the build subdirectory. The server code will con‐
tinue to generate static code for your client at runtime. You can start a production
server by running the build/server.js file using the start:prod script:

$ npm run start:prod

You can deploy the production server anywhere that Node is available.

The server and the client can both run the same code, which makes it Universal. But
how does it do this?

The client and the server have different entry points. The server runs the code in src/
server.js; the browser runs the code in src/client.js. Both server.js and client.js then ren‐
der the same app using src/App.js.

If you want to run your app as an SPA, remove the src/index.js and src/server.js files.
Then create an index.html file in the public folder containing a <div/> with an ID of
root, and rebuild the application with this:

$ node_modules/.bin/razzle build --type=spa

To build your application as an SPA every time, add --type=spa to
the start and build scripts in package.json.

You will generate a full SPA in build/public/ that you can deploy on any web server.

1.3 Build Universal Apps with Razzle | 11

Discussion
Razzle is so adaptable because it is built from a set of highly configurable plugins.
Each plugin is a higher-order function that receives a Webpack configuration and
returns a modified version. One plugin might transpile TypeScript code; another
might bundle the React libraries.

If you want to switch your application to Vue, you only need to replace the plugins
you use.

You can find a list of available plugins on the Razzle website.

You can download the source for this recipe from the GitHub site.

1.4 Manage Server and Client Code with Next.js
Problem
React generates client code—even if it generates the client code on the server. Some‐
times, however, you might have a relatively small amount of application program‐
ming interface (API) code that you would prefer to manage as part of the same React
application.

Solution
Next.js is a tool for generating React applications and server code. The API end-
points and the client pages use default routing conventions, making them simpler to
build and deploy than they would be if you manage them yourself. You can find full
details about Next.js on the website.

You can create a Next.js application with this command:

$ npx create-next-app my-app

This will use yarn as the package manager if you have it installed. You can force it to
use the npm package manager with the --user-npm flag:

$ npx create-next-app --use-npm my-app

This will create a Next.js application in the my-app subdirectory. To start the app, run
the dev script (see Figure 1-6):

$ cd my-app
$ npm run dev

12 | Chapter 1: Creating Applications

https://oreil.ly/UXwPv
https://oreil.ly/rBR9r
https://nextjs.org

4 See Recipe 1.2.

Figure 1-6. A Next.js page running at http://localhost:3000

Next.js allows you to create pages without the need to manage any routing configura‐
tion. If you add a component script to the pages folder, it will instantly become avail‐
able through the server. For example, the pages/index.js component generates the
home page of the default application.

This approach is similar to the one taken by Gatsby,4 but is taken further in Next.js to
include server-side code.

Next.js applications usually include some API server code, which is unusual for React
applications, which are often built separately from server code. But if you look inside
pages/api, you will find an example server endpoint called hello.js:

// Next.js API route support: https://nextjs.org/docs/api-routes/introduction

export default (req, res) => {
 res.status(200).json({ name: 'John Doe' })
}

The routing that mounts this to the endpoint api/hello happens automatically.

1.4 Manage Server and Client Code with Next.js | 13

Next.js transpiles your code into a hidden directory called .next, which it can then
deploy to a service such as Next.js’s own Vercel platform.

If you want, you generate a static build of your application with:

$ node_modules/.bin/next export

The export command will build your client code in a directory called out. The com‐
mand will convert each page into a statically rendered HTML file, which will load
quickly in the browser. At the end of the page, it will load the JavaScript version to
generate any dynamic content.

If you create an exported version of a Next.js application, it won’t
include any server-side APIs.

Next.js comes with a bunch of data-fetching options, which allow you to get data
from static content, or via headless content management system (CMS) sources.

Discussion
Next.js is in many ways similar to Gatsby. Its focus is on the speed of delivery, with a
small amount of configuration. It’s probably most beneficial for teams that will have
very little server code.

You can download the source for this recipe from the GitHub site.

1.5 Create a Tiny App with Preact
Problem
React applications can be large. It’s pretty easy to create a simple React application
that is transpiled into bundles of JavaScript code that are several hundred kilobytes in
size. You might want to build an app with React-like features but with a much smaller
footprint.

Solution
If you want React features but don’t want to pay the price of a React-size JavaScript
bundle, consider using Preact.

Preact is not React. It is a separate library, designed to be as close to React as possible
but much smaller.

14 | Chapter 1: Creating Applications

https://vercel.com
https://oreil.ly/Xmia8
https://oreil.ly/9gbJs

5 See Recipes 1.2 and 1.3.

The reason that the React framework is so big is because of the way it works. React
components don’t generate elements in the Document Object Model (DOM) of the
browser directly. Instead, they build elements within a virtual DOM and then update
the actual DOM at frequent intervals. Doing so allows basic DOM rendering to be
fast because the actual DOM needs to be updated only when there are actual changes.
However, it does have a downside. React’s virtual DOM requires a lot of code to keep
it up-to-date. It needs to manage an entire synthetic event model, which parallels the
one in the browser. For this reason, the React framework is large and can take some
time to download.

One way around this is to use techniques such as SSR, but SSR can be complex to
configure.5 Sometimes, you want to download a small amount of code. And that’s why
Preact exists.

The Preact library, although similar to React, is tiny. At the time of writing, the main
Preact library is around 4KB, which is small enough that it’s possible to add React-
like features to web pages in barely more code than is required to write native
JavaScript.

Preact lets you choose how to use it: as a small JavaScript library included in a web
page (the no-tools approach) or as a full-blown JavaScript application.

The no-tools approach is basic. The core Preact library does not support JSX, and you
will have no Babel support, so you will not be able to use modern JavaScript. Here is
an example web page using the raw Preact library:

<html>
 <head>
 <title>No Tools!</title>
 <script src="https://unpkg.com/preact?umd"></script>
 </head>
 <body>
 <h1>No Tools Preact App!</h1>
 <div id="root"></div>
 <script>
 var h = window.preact.h;
 var render = window.preact.render;

 var mount = document.getElementById('root');

 render(
 h('button',
 {
 onClick: function() {
 render(h('div', null, 'Hello'), mount);
 }

1.5 Create a Tiny App with Preact | 15

 },
 'Click!'),
 mount
);
 </script>
 </body>
</html>

This application will mount itself at the <div/> with an ID of root, where it will dis‐
play a button. When you click the button, it will replace the contents of the root div
with the string "Hello", which is about as basic as a Preact app can be.

You would rarely write an application in this way. In reality, you would create a sim‐
ple build-chain that would, at the least, support modern JavaScript.

Preact supports the entire spectrum of JavaScript applications. At the other extreme,
you can create a complete Preact application with preact-cli.

preact-cli is a tool for creating Preact projects and is analogous to tools like
create-react-app. You can create a Preact application with:

$ npx preact-cli create default my-app

This command uses the default template. Other templates are avail‐
able for creating projects using, for example, Material components
or TypeScript. See the Preact GitHub page for more information.

This command will create your new Preact application in the my-app subdirectory. To
start it, run the dev script:

$ cd my-app
$ npm run dev

The server will run on port 8080, as shown in Figure 1-7.

Figure 1-7. A page from Preact

The server generates a web page, which calls back for a JavaScript bundle made from
the code in src/index.js.

16 | Chapter 1: Creating Applications

https://oreil.ly/IVQua

You now have a full-scale React-like application. The code inside the Home component
(src/routes/home/index.js), for example, looks very React-like, with full JSX support:

import { h } from 'preact';
import style from './style.css';

const Home = () => (
 <div class={style.home}>
 <h1>Home</h1>
 <p>This is the Home component.</p>
 </div>
);

export default Home;

The only significant difference from a standard React component is that a function
called h is imported from the preact library, instead of importing React from the
react library.

The JSX within the Preact code will be converted into a series of
calls to the h function, which is why it needs to be imported. For
the same reason, applications created with create-react-app prior
to version 17 also required the import of the react object. From
version 17 create-react-app switched to use the JSX transform,
doing away for the need to import react every time. It’s always
possible that future versions of Preact will make a similar change.

However, the size of the application has increased: it is now a little over 300KB. That’s
pretty large, but we are still in dev mode. To see the real power of Preact, stop the dev
server by pressing Ctrl-C, and then run the build script:

$ npm run build

This command will generate a static version of the application in the build directory.
First, this will have the advantage of creating a static copy of the front page, which
will render quickly. Second, it will remove all unused code from the application and
shrink everything down. If you serve this built version of the app on a standard web
server, the browser will transfer only about 50–60KB when it’s opened.

Discussion
Preact is a remarkable project. Despite working in a very different way from React, it
provides virtually the same power at a fraction of the size. And the fact that you can
use it for anything from the lowliest inline code to a full-blown SPA means it is well
worth considering if code size is critical to your project.

You can find out more about Preact on the Preact website.

1.5 Create a Tiny App with Preact | 17

https://oreil.ly/HOwS9
https://preactjs.com

You can download the source for the no-tools example and the larger Preact example
from the GitHub site.

If you would like to make Preact look even more like React, see the preact-compat
library.

Finally, for a project that takes a similar approach to Preact, look at InfernoJS.

1.6 Build Libraries with nwb
Problem
Large organizations often develop several React applications at the same time. If
you’re a consultancy, you might create applications for multiple organizations. If
you’re a software house, you might create various applications that require the same
look and feel, so you will probably want to build shared components to use across
several applications.

When you create a component project, you need to create a directory structure, select
a set of tools, choose a set of language features, and create a build chain that can bun‐
dle your component in a deployable format. This process can be just as tedious as
manually creating a project for an entire React application.

Solution
You can use the nwb toolkit to create complete React applications or single React com‐
ponents. It can also create components for use within Preact and InfernoJS projects,
but we concentrate on React components here.

To create a new React component project, you will first need to install the nwb tool
globally:

$ npm install -g nwb

You can then create a new project with the nwb command:

$ nwb new react-component my-component

If instead of creating a single component, you want to create an
entire nwb application, you can replace react-component in this
command with react-app, preact-app, or inferno-app to create
an application in the given framework. You can also use vanilla-
app if you want to create a basic JavaScript project without a
framework.

18 | Chapter 1: Creating Applications

https://oreil.ly/N9PKf
https://oreil.ly/F0tW9
https://oreil.ly/3YXOv
https://infernojs.org

When you run this command, it will ask you several questions about the type of
library you want to build. For example, it will ask you if you’re going to build ECMA‐
Script modules:

Creating a react-component project...
? Do you want to create an ES modules build? (Y/n)

This option allows you to build a version including an export statement, which Web‐
pack can use to decide if it needs to include the component in a client application.
You will also be asked if you want to create a Universal Module Definition (UMD):

? Do you want to create a UMD build? (y/N)

That’s useful if you want to include your component in a <script/> within a web
page. For our example, we won’t create a UMD build.

After the questions, the tool will create an nwb component project inside the my-
component subdirectory. The project comes with a simple wrapper application that
you can start with the start script:

$ cd my-component
$ npm run start

The demo application runs on port 3000, as shown in Figure 1-8.

Figure 1-8. An nwb component

The application will contain a single component defined in src/index.js:
import React, { Component } from 'react'

export default class extends Component {
 render() {
 return (
 <div>
 <h2>Welcome to React components</h2>
 </div>
)
 }
}

You can now build the component as you would any React project. When you are
ready to create a publishable version, type:

$ npm run build

The built component will be in lib/index.js, which you can deploy to a repository for
use within other projects.

1.6 Build Libraries with nwb | 19

Discussion
For further details on creating nwb components, see the nwb guide to developing com‐
ponents and libraries.

You can download the source for this recipe from the GitHub site.

1.7 Add React to Rails with Webpacker
Problem
The Rails framework was created before interactive JavaScript applications became
popular. Rails applications follow a more traditional model for web application devel‐
opment, in which it generates HTML pages on the server in response to browser
requests. But sometimes, you may want to include more interactive elements inside a
Rails application.

Solution
You can use the Webpacker library to insert React applications into Rails-generated
web pages. To see how it works, let’s first generate a Rails application that includes
Webpacker:

$ rails new my-app --webpack=react

This command will create a Rails application in a directory called my-app that is pre‐
configured to run a Webpacker server. Before we start the application, let’s go into it
and generate an example page/controller:

$ cd my-app
$ rails generate controller Example index

That code will generate this template page at app/views/example/index.html.erb:

<h1>Example#index</h1>
<p>Find me in app/views/example/index.html.erb</p>

Next, we need to create a small React application that we can insert into this page.
Rails inserts Webpacker applications as packs: small JavaScript bundles within Rails.
We’ll create a new pack in app/javascript/packs/counter.js containing a simple counter
component:

import React, { useState } from 'react'
import ReactDOM from 'react-dom'

const Counter = (props) => {
 const [count, setCount] = useState(0)
 return (
 <div className="Counter">
 You have clicked the button {count} times.

20 | Chapter 1: Creating Applications

https://oreil.ly/XHrQa
https://oreil.ly/XHrQa
https://oreil.ly/P4Xzj

 <button onClick={() => setCount((c) => c + 1)}>Click!</button>
 </div>
)
}

document.addEventListener('DOMContentLoaded', () => {
 ReactDOM.render(
 <Counter />,
 document.body.appendChild(document.createElement('div'))
)
})

This application updates a counter every time a user clicks the button.

We can now insert the pack into the web page by adding a single line of code to the
template page:

<h1>Example#index</h1>
<p>Find me in app/views/example/index.html.erb</p>
<%= javascript_pack_tag 'counter' %>

Finally, we can run the Rails server on port 3000:

$ rails server

At the time of writing, you will need the yarn package manager
installed when starting the server. You can install yarn globally
with npm install -g yarn.

You will see the http://localhost:3000/example/index.html page in Figure 1-9.

Figure 1-9. A React app embedded in http://localhost:3000/example/index.html

Discussion
Behind the scenes, as you have probably guessed, Webpacker transforms the applica‐
tion using a copy of Webpack, which you can configure with the app/config/
webpacker.yml config file.

1.7 Add React to Rails with Webpacker | 21

6 For more information on creating Preact applications, see Recipe 1.5.

Webpacker is used alongside Rails code rather than as a replacement for it. You
should consider using it if your Rails application requires a small amount of addi‐
tional interactivity.

You can find out more about Webpacker on the Webpacker GitHub site.

You can download the source for this recipe from the GitHub site.

1.8 Create Custom Elements with Preact
Problem
There are sometimes circumstances where it is challenging to add React code into
existing content. For example, in some CMS configurations, users are not allowed to
insert additional JavaScript into the body of a page. In these cases, it would be helpful
to have some standardized way to insert JavaScript applications safely into a page.

Solution
Custom elements are a standard way of creating new HTML elements you can use on
a web page. In effect, they extend the HTML language by making more tags available
to a user.

This recipe looks at how we can use a lightweight framework like Preact to create cus‐
tom elements, which we can publish on a third-party server.

Let’s begin by creating a new Preact application. This application will serve the cus‐
tom element that we will be able to use elsewhere:6

$ preact create default my-element

Now we will change into the app’s directory and add the preact-custom-element
library to the project:

$ cd my-element
$ npm install preact-custom-element

The preact-custom-element library will allow us to register a new custom HTML
element in a browser.

Next, we need to modify the src/index.js file of the Preact project so that it registers a
new custom element, which we will call components/Converter/index.js:

import register from 'preact-custom-element'
import Converter from './components/Converter'

22 | Chapter 1: Creating Applications

https://oreil.ly/aYZ0h
https://oreil.ly/H3q1F

register(Converter, 'x-converter', ['currency'])

The register method tells the browser that we want to create a new custom HTML
element called <x-converter/> that has a single property called currency, which we
will define in src/components/Converter/index.js:

import { h } from 'preact'
import { useEffect, useState } from 'preact/hooks'
import 'style/index.css'

const rates = { gbp: 0.81, eur: 0.92, jpy: 106.64 }

export default ({ currency = 'gbp' }) => {
 const [curr, setCurr] = useState(currency)
 const [amount, setAmount] = useState(0)

 useEffect(() => {
 setCurr(currency)
 }, [currency])

 return (
 <div className="Converter">
 <p>
 <label htmlFor="currency">Currency: </label>
 <select
 name="currency"
 value={curr}
 onChange={(evt) => setCurr(evt.target.value)}
 >
 {Object.keys(rates).map((r) => (
 <option value={r}>{r}</option>
))}
 </select>
 </p>
 <p className="Converter-amount">
 <label htmlFor="amount">Amount: </label>
 <input
 name="amount"
 size={8}
 type="number"
 value={amount}
 onInput={(evt) => setAmount(parseFloat(evt.target.value))}
 />
 </p>
 <p>
 Cost:
 {((amount || 0) / rates[curr]).toLocaleString('en-US', {
 style: 'currency',
 currency: 'USD',
 })}
 </p>

1.8 Create Custom Elements with Preact | 23

7 See the WHATWG specification for further details on custom elements and naming conventions.

 </div>
)
}

To be compliant with the custom elements specification, we must
choose a name for our element that begins with a lowercase letter,
does not include any uppercase letters, and contains a hyphen.7
This convention ensures the name does not clash with any stan‐
dard element name.

Our Converter component is a currency converter, which in our example uses a fixed
set of exchange rates. If we now start our Preact server:

$ npm run dev

the JavaScript for the custom element will be available at http://localhost:8080/
bundle.js.

To use this new custom element, let’s create a static web page somewhere with this
HTML:

<html>
 <head>
 <script src="https://unpkg.com/babel-polyfill/dist/polyfill.min.js">
 </script>
 <script src="https://unpkg.com/@webcomponents/webcomponentsjs">
 </script>
 <!-- Replace this with the address of your custom element -->
 <script type="text/javascript" src="http://localhost:8080/bundle.js">
 </script>
 </head>
 <body>
 <h1>Custom Web Element</h1>
 <div style="float: right; clear: both">
 <!-- This tag will insert the Preact app -->
 <x-converter currency="jpy"/>
 </div>
 <p>This page contains an example custom element called
 <code><x-converter/></code>,
 which is being served from a different location</p>
 </body>
</html>

This web page includes the definition of the custom element in the final <script/> of
the <head/> element. To ensure that the custom element is available across both new
and old browsers, we also include a couple of shims from unpkg.com.

24 | Chapter 1: Creating Applications

https://oreil.ly/KOjmP

8 For further details on shrinking Preact downloads, see Recipe 1.5.

Now that we’ve included the custom element code in the web page, we can insert
<x-converter/> tags into the code, as if they are part of standard HTML. In our
example, we are also passing a currency property to the underlying Preact
component.

Custom element properties are passed to the underlying compo‐
nent with lowercase names, regardless of how we define them in
the HTML.

We can run this page through a web server, separate from the Preact server.
Figure 1-10 shows the new custom element.

Figure 1-10. The custom element embedded in a static page

Discussion
The custom element does not need to be on the same server as the web page that uses
it, which means that we can use custom elements to publish widgets for any web
page. Because of this, you might want to check the Referer header on any incoming
request to the component to prevent any unauthorized usage.

Our example is serving the custom element from Preact’s development server. For a
production release, you would probably want to create a static build of the compo‐
nent, which will likely be significantly smaller.8

You can download the source for this recipe from the GitHub site.

1.8 Create Custom Elements with Preact | 25

https://oreil.ly/aB7BP

1.9 Use Storybook for Component Development
Problem
React components are the stable building material of React applications. If we write
them carefully, we can reuse the components in other React applications. But when
you build a component, it takes work to check how it works in all circumstances. For
example, in an asynchronous application, React might render the component with
undefined properties. Will the component still render correctly? Will it show errors?

But if you are building components as part of a complex application, it can be tough
to create all of the situations with which your component will need to cope.

Also, if you have specialized user experience (UX) developers working on your team,
it can waste a lot of time if they have to navigate through an application to view the
single component they have in development.

It would be helpful if there were some way of displaying a component in isolation and
passing it example sets of properties.

Solution
Storybook is a tool for displaying libraries of components in various states. You could
describe it as a gallery for components, but that’s probably selling it short. In reality,
Storybook is a tool for component development.

How do we add Storybook to a project? Let’s begin by creating a React application
with create-react-app:

$ npx create-react-app my-app
$ cd my-app

Now we can add Storybook to the project:

$ npx sb init

We then start the Storybook server with yarn or npm:

$ npm run storybook

Storybook runs a separate server on port 9000, as you can see in Figure 1-11. When
you use Storybook, there is no need to run the actual React application.

26 | Chapter 1: Creating Applications

Figure 1-11. The welcome page in Storybook

Storybook calls a single component rendered with example properties a story. The
default installation of Storybook generates sample stories in the src/stories directory
of the application. For example, this is src/stories/Button.stories.js:

import React from 'react';

import { Button } from './Button';

export default {
 title: 'Example/Button',
 component: Button,
 argTypes: {
 backgroundColor: { control: 'color' },
 },
};

const Template = (args) => <Button {...args} />;

export const Primary = Template.bind({});
Primary.args = {
 primary: true,
 label: 'Button',
};

export const Secondary = Template.bind({});
Secondary.args = {

1.9 Use Storybook for Component Development | 27

 label: 'Button',
};

export const Large = Template.bind({});
Large.args = {
 size: 'large',
 label: 'Button',
};

export const Small = Template.bind({});
Small.args = {
 size: 'small',
 label: 'Button',
};

Storybook watches for files named *.stories.js in your source folder, and it doesn’t care
where they are, so you are free to create them where you like. One typical pattern
places the stories in a folder alongside the component they are showcasing. So if you
copy the folder to a different application, you can include stories as living
documentation.

Figure 1-12 shows what Button.stories.js looks like in Storybook.

Figure 1-12. An example story

Discussion
Despite its simple appearance, Storybook is a productive development tool. It allows
you to focus on one component at a time. Like a kind of visual unit test, it enables

28 | Chapter 1: Creating Applications

you to try a component in a series of possible scenarios to check that it behaves
appropriately.

Storybook also has a large selection of additional add-ons.

The add-ons allow you to:

• Check for accessibility problems (addon-a11y)
• Add interactive controls for setting properties (Knobs)
• Include inline documentation for each story (Docs)
• Record snapshots of the HTML to test the impact of changes (Storyshots)

And do much more.

For further information about Storybook, see the website.

You can download the source for this recipe from the GitHub site.

1.10 Test Your Code in a Browser with Cypress
Problem
Most React projects include a testing library. The most common is probably
@testing-library/react, which comes bundled with create-react-app, or
Enzyme, which is used by Preact.

But nothing quite beats testing code in a real browser, with all the additional compli‐
cations that entails. Traditionally, browser testing can be unstable and requires fre‐
quent maintenance as you need to upgrade browser drivers (such as ChromeDriver)
every time you upgrade the browser.

Add to that the issue of generating test data on a backend server, and browser-based
testing can be complex to set up and manage.

Solution
The Cypress testing framework avoids many of the downsides of traditional browser
testing. It runs in a browser but avoids the need for an external web-driver tool.
Instead, it communicates directly with a browser, like Chrome or Electron, over a
network port and then injects JavaScript to run much of the test code.

Let’s create an application create-react-app to see how it works:

$ npx create-react-app --use-npm my-app

Now let’s go into the app directory and install Cypress:

1.10 Test Your Code in a Browser with Cypress | 29

https://oreil.ly/3kSVa
https://storybook.js.org
https://oreil.ly/GyxTX
https://www.cypress.io

$ cd my-app
$ npm install cypress --save-dev

Before we run Cypress, we need to configure it so that it knows how to find our appli‐
cation. We can do this by creating a cypress.json file in the application directory and
telling it the uniform resource locator (URL) of our app:

{
 "baseUrl": "http://localhost:3000/"
}

Once we have started the main application:

$ npm start

we can then open Cypress:

$ npx cypress open

The first time you run Cypress, it will install all the dependencies it needs. We’ll now
create a test in the cypress/integration directory called screenshot.js, which opens the
home page and takes a screenshot:

describe('screenshot', () => {
 it('should be able to take a screenshot', () => {
 cy.visit('/');
 cy.screenshot('frontpage');
 });
});

You’ll notice that we wrote the tests in Jest format. Once you save the test, it will
appear in the main Cypress window, shown in Figure 1-13.

Figure 1-13. The Cypress window

30 | Chapter 1: Creating Applications

If you double-click the test, Cypress will run it in a browser. The front page of the
application will open, and the test will save a screenshot to cypress/screenshots/screen‐
shot.js/frontpage.png.

Discussion
Here are some example commands you can perform with Cypress:

Command Description

cy.contains('Fred') Finds the element containing Fred

cy.get('.Norman').click() Clicks the element with class Norman

cy.get('input').type('Hi!') Types "Hi!" into the input field

cy.get('h1').scrollIntoView() Scrolls the <h1/> into view

These are just some of the commands that interact with the web page. But Cypress
has another trick up its sleeve. Cypress can also modify the code inside the browser to
change the time (cy.clock()), the cookies (cy.setCookie()), the local storage
(cy.clearLocalStorage()) and—most impressively—fake requests and responses to
an API server.

It does this by modifying the networking functions that are built into the browser so
that this code:

cy.route("/api/server?*", [{some: 'Data'}])

will intercept any requests to a server endpoint beginning /api/server? and return the
JSON array [{some: 'Data'}].

Simulating network responses can completely change the way teams develop applica‐
tions because it decouples the frontend development from the backend. The browser
tests can specify what data they need without having to create a real server and
database.

To learn more about Cypress, visit the documentation site.

You can download the source for this recipe from the GitHub site.

1.10 Test Your Code in a Browser with Cypress | 31

https://oreil.ly/eX09t
https://oreil.ly/3j8vI

CHAPTER 2

Routing

This chapter looks at recipes using React routes and the react-router-dom library.

react-router-dom uses declarative routing, which means you treat routes as you
would any other React component. Unlike buttons, text fields, and blocks of text,
React routes have no visual appearance. But in most other ways, they are similar to
buttons and blocks of text. Routes live in the virtual DOM tree of components. They
listen for changes in the current browser location and allow you to switch on and
switch off parts of the interface. They are what give SPAs the appearance of multipage
applications.

Used well, they can make your application feel like any other website. Users will be
able to bookmark sections of your application, as they might bookmark a page from
Wikipedia. They can go backward and forward in their browser history, and your
interface will behave properly. If you are new to React, then it is well worth your time
to look deeply into the power of routing.

2.1 Create Interfaces with Responsive Routes
Problem
People use most applications on both mobile and laptop computers, which means
you probably want your React application to work well across all screen sizes. Making
your application responsive involves relatively simple CSS changes to adjust the siz‐
ing of text and screen layout, and more substantial changes, which can give mobile
and desktop users very different experiences when navigating around your site.

Our example application shows the names and addresses of a list of people. In
Figure 2-1, you can see the application running on a desktop machine.

33

Figure 2-1. The desktop view of the app

But this layout won’t work very well on a mobile device, which might have space to
display either the list of people or the details of one person, but not both.

What can we do in React to provide a custom navigation experience for both mobile
and desktop users without creating two completely separate versions of the
application?

Solution
We’re going to use responsive routes. A responsive route changes according to the size
of the user’s display. Our existing application uses a single route for displaying the
information for a person: /people/:id.

When you navigate to this route, the browser shows the page in Figure 2-1. You can
see the people listed down the left side. The page highlights the selected person and
displays their details on the right.

We’re going to modify our application to cope with an additional route at /people.
Then we will make the routes responsive so that the user will see different things on
different devices:

Route Mobile Desktop
/people Shows list of people Redirects to people:someId

people:id Shows details for :id Shows list of people and details of :id

What ingredients will we need to do this? First, we need to install react-router-dom
if our application does not already have it:

34 | Chapter 2: Routing

$ npm install react-router-dom

The react-router-dom library allows us to coordinate the browser’s current location
with the state of our application. Next, we will install the react-media library, which
allows us to create React components that respond to changes in the display screen
size:

$ npm install react-media

Now we’re going to create a responsive PeopleContainer component that will man‐
age the routes we want to create. On small screens, our component will display either
a list of people or the details of a single person. On large screens, it will show a com‐
bined view of a list of people on the left and the details of a single person on the right.

The PeopleContainer will use the Media component from react-media. The Media
component performs a similar job to the CSS @media rule: it allows you to generate
output for a specified range of screen sizes. The Media component accepts a queries
property that allows you to specify a set of screen sizes. We’re going to define a single
screen size—small—that we’ll use as the break between mobile and desktop screens:

<Media queries={{
 small: "(max-width: 700px)"
 }}>
 ...
</Media>

The Media component takes a single child component, which it expects to be a func‐
tion. This function is given a size object that can be used to tell what the current
screen size is. In our example, the size object will have a small attribute, which we
can use to decide what other components to display:

<Media queries={{
 small: "(max-width: 700px)"
 }}>
 {
 size => size.small ? [SMALL SCREEN COMPONENTS] : [BIG SCREEN COMPONENTS]
 }
</Media>

Before we look at the details of what code we are going to return for large and small
screens, it’s worth taking a look at how we will mount the PeopleContainer in our
application. The following code is going to be our main App component:

import { BrowserRouter, Link, Route, Switch } from 'react-router-dom'
import PeopleContainer from './PeopleContainer'

function App() {
 return (
 <BrowserRouter>
 <Switch>
 <Route path="/people">

2.1 Create Interfaces with Responsive Routes | 35

 <PeopleContainer />
 </Route>
 <Link to="/people">People</Link>
 </Switch>
 </BrowserRouter>
)
}

export default App

We are using the BrowserRouter from react-router-dom, which links our code and
the HTML5 history API in the browser. We need to wrap all of our routes in a Router
to give them access to the browser’s current address.

Inside the BrowserRouter, we have a Switch. The Switch looks at the components
inside it, looking for a Route that matches the current location. Here we have a single
Route matching paths that begin with /people. If that’s true, we display the People
Container. If no route matches, we fall through to the end of the Switch and render a
Link to the /people path. So when someone goes to the front page of the application,
they see only a link to the People page.

The code will match routes beginning with the specified path,
unless the exact attribute is specified, in which case a route will be
displayed only if the entire path matches.

So we know if we’re in the PeopleContainer, we’re already on a route that begins
with /people/…. If we’re on a small screen, we need to either show a list of people or
display the details of a single person, but not both. We can do this with Switch:

<Media queries={{
 small: "(max-width: 700px)"
 }}>
 {
 size => size.small ? [SMALL SCREEN COMPONENTS]
 <Switch>
 <Route path='/people/:id'>
 <Person/>
 </Route>
 <PeopleList/>
 </Switch>
 : [BIG SCREEN COMPONENTS]
 }
</Media>

On a small device, the Media component will call its child function with a value that
means size.small is true. Our code will render a Switch that will show a Person

36 | Chapter 2: Routing

1 We won’t show the code for the PeopleList here, but it is available on GitHub.

component if the current path contains an id. Otherwise, the Switch will fail to
match that Route and will instead render a PeopleList.

Ignoring the fact that we’ve yet to write the code for large screens, if we were to run
this code right now on a mobile device and hit the People link on the front page, we
would navigate to people, which could cause the application to render the PeopleList
component. The PeopleList component displays a set of links to people with paths
of the form /people/id.1 When someone selects a person from the list, our components
are re-rendered, and this time PeopleContainer displays the details of a single person
(see Figure 2-2).

Figure 2-2. In mobile view: the list of people (left) that links to a person’s details (right)

So far, so good. Now we need to make sure that our application still works for larger
screens. We need to generate responsive routes in PeopleContainer for when
size.small is false. If the current route is of the form /people/id, we can display the
PeopleList component on the left and the Person component on the right:

<div style={{display: 'flex'}}>
 <PeopleList/>
 <Person/>
</div>

2.1 Create Interfaces with Responsive Routes | 37

https://oreil.ly/tZzMD

Unfortunately, that doesn’t handle the case where the current path is /people. We need
another Switch that either will display the details for a single person or will redirect
to /people/first-person-id for the first person in the list of people.

<div style={{display: 'flex'}}>
 <PeopleList/>
 <Switch>
 <Route path='/people/:id'>
 <Person/>
 </Route>
 <Redirect to={`/people/${people[0].id}`}/>
 </Switch>
</div>

The Redirect component doesn’t perform an actual browser redirect. It simply
updates the current path to /people/first-person-id, which causes the PeopleContainer
to re-render. It’s similar to making a call to history.push() in JavaScript, except it
doesn’t add an extra page to the browser history. If a person navigates to /people, the
browser will simply change its location to /people/first-person-id.

If we were now to go to /people on a laptop or larger tablet, we would see the list of
people next to the details for the first person (Figure 2-3).

Figure 2-3. What you see at http://localhost:3000/people on a large display

Here is the final version of our PeopleContainer:

import Media from 'react-media'
import { Redirect, Route, Switch } from 'react-router-dom'
import Person from './Person'
import PeopleList from './PeopleList'
import people from './people'

38 | Chapter 2: Routing

const PeopleContainer = () => {
 return (
 <Media
 queries={{
 small: '(max-width: 700px)',
 }}
 >
 {(size) =>
 size.small ? (
 <Switch>
 <Route path="/people/:id">
 <Person />
 </Route>
 <PeopleList />
 </Switch>
) : (
 <div style={{ display: 'flex' }}>
 <PeopleList />
 <Switch>
 <Route path="/people/:id">
 <Person />
 </Route>
 <Redirect to={`/people/${people[0].id}`} />
 </Switch>
 </div>
)
 }
 </Media>
)
}

export default PeopleContainer

Discussion
Declarative routing inside components can seem an odd thing when you first meet it.
Suppose you’ve used a centralized routing model before. In that case, declarative
routes may at first seem messy because they spread the wiring of your application
across several components rather than in a single file. Instead of creating clean com‐
ponents that know nothing of the outside world, you are suddenly giving the intimate
knowledge of the paths used in the application, which might make them less portable.

However, responsive routes show the real power of declarative routing. If you’re con‐
cerned about your components knowing too much about the paths in your applica‐
tion, consider extracting the path strings into a shared file. That way, you will have
the best of both worlds: components that modify their behavior based upon the cur‐
rent path and a centralized set of path configurations.

You can download the source for this recipe from the GitHub site.

2.1 Create Interfaces with Responsive Routes | 39

https://oreil.ly/tZzMD

2.2 Move State into Routes
Problem
It is often helpful to manage the internal state of a component using the route that
displays it. For example, this is a React component that displays two tabs of informa‐
tion: one for /people and one for /offices:

import { useState } from 'react'
import People from './People'
import Offices from './Offices'

import './About.css'

const OldAbout = () => {
 const [tabId, setTabId] = useState('people')

 return (
 <div className="About">
 <div className="About-tabs">
 <div
 onClick={() => setTabId('people')}
 className={
 tabId === 'people' ? 'About-tab active' : 'About-tab'
 }
 >
 People
 </div>
 <div
 onClick={() => setTabId('offices')}
 className={
 tabId === 'offices' ? 'About-tab active' : 'About-tab'
 }
 >
 Offices
 </div>
 </div>
 {tabId === 'people' && <People />}
 {tabId === 'offices' && <Offices />}
 </div>
)
}

export default OldAbout

When a user clicks a tab, an internal tabId variable is updated, and the People or
Offices component is displayed (see Figure 2-4).

40 | Chapter 2: Routing

Figure 2-4. By default, the OldAbout component shows people’s details

What’s the problem? The component works, but if we select the Offices tab and then
refresh the page, the component resets to the People tab. Likewise, we can’t bookmark
the page when it’s on the Offices tab. We can’t create a link anywhere else in the appli‐
cation, which takes us directly to Offices. Accessibility hardware is less likely to notice
that the tabs are working as hyperlinks because they are not rendered in that way.

Solution
We are going to move the tabId state from the component into the current browser
location. So instead of rendering the component at /about and then using onClick
events to change the internal state, we are instead going to have routes to /about/
people and /about/offices, which display one tab or the other. The tab selection will
survive a browser refresh. We can bookmark the page on a given tab or create a link
to a given tab. And we make the tabs actual hyperlinks, which will be recognized as
such by anyone navigating with a keyboard or screen reader.

What ingredients do we need? Just one: react-router-dom:

$ npm install react-router-dom

react-router-dom will allow us to synchronize the current browser URL with the
components that we render on the screen.

Our existing application is already using react-router-dom to display the OldAbout
component at path /oldabout as you can see from this fragment of code from the
App.js file:

<Switch>
 <Route path="/oldabout">
 <OldAbout/>
 </Route>
 <p>Choose an option</p>
</Switch>

You can see the complete code for this file at the GitHub repository.

2.2 Move State into Routes | 41

https://oreil.ly/WmZ18

We’re going to create a new version of the OldAbout component called About, and
we’re going to mount it at its own route:

<Switch>
 <Route path="/oldabout">
 <OldAbout/>
 </Route>
 <Route path="/about/:tabId?">
 <About/>
 </Route>
 <p>Choose an option</p>
</Switch>

This addition allows us to open both versions of the code in the example application.

Our new version is going to appear to be virtually identical to the old component.
We’ll extract the tabId from the component and move it into the current path.

Setting the path of the Route to /about/:tabId? means that /about, /about/offices,
and /about/people will all mount our component. The ? indicates that the tabId
parameter is optional.

We’ve now done the first part: we’ve put the component’s state into the path that dis‐
plays it. We now need to update the component to interact with the route rather than
an internal state variable.

In the OldAbout component, we had onClick listeners on each of the tabs:

<div onClick={() => setTabId("people")}
 className={tabId === "people" ? "About-tab active" : "About-tab"}
>
 People
</div>
<div onClick={() => setTabId("offices")}
 className={tabId === "offices" ? "About-tab active" : "About-tab"}
>
 Offices
</div>

We’re going to convert these into Link components, going to /about/people
and /about/offices. In fact, we’re going to convert them into NavLink components. A
NavLink is like a link, except it has the ability to set an additional class name, if the
place it’s linking to is the current location. This means we don’t need the className
logic in the original code:

<NavLink to="/about/people"
 className="About-tab"
 activeClassName="active">
 People
</NavLink>
<NavLink to="/about/offices"
 className="About-tab"

42 | Chapter 2: Routing

 activeClassName="active">
 Offices
</NavLink>

We no longer set the value of a tabId variable. We instead go to a new location with a
new tabId value in the path.

But what do we do to read the tabId value? The OldAbout code displays the current
tab contents like this:

{tabId === "people" && <People/>}
{tabId === "offices" && <Offices/>}

This code can be replaced with a Switch and a couple of Route components:

<Switch>
 <Route path='/about/people'>
 <People/>
 </Route>
 <Route path='/about/offices'>
 <Offices/>
 </Route>
</Switch>

We’re now almost finished. There’s just one step remaining: deciding what to do if the
path is /about and contains no tabId.

The OldAbout sets a default value for tabId when it first creates the state:

const [tabId, setTabId] = useState("people")

We can achieve the same effect by adding a Redirect to the end of our Switch. The
Switch will process its child components in order until it finds a matching Route. If
no Route matches the current path, it will reach the Redirect, which will change the
address to /about/people. This will cause a re-render of the About component, and the
People tab will be selected by default:

<Switch>
 <Route path='/about/people'>
 <People/>
 </Route>
 <Route path='/about/offices'>
 <Offices/>
 </Route>
 <Redirect to='/about/people'/>
</Switch>

You can make Redirect conditional on the current path by giving
it a from attribute. In this case, we could set from to /about so that
only routes matching /about are redirected to /about/people.

2.2 Move State into Routes | 43

This is our completed About component:

import { NavLink, Redirect, Route, Switch } from 'react-router-dom'
import './About.css'
import People from './People'
import Offices from './Offices'

const About = () => (
 <div className="About">
 <div className="About-tabs">
 <NavLink
 to="/about/people"
 className="About-tab"
 activeClassName="active"
 >
 People
 </NavLink>
 <NavLink
 to="/about/offices"
 className="About-tab"
 activeClassName="active"
 >
 Offices
 </NavLink>
 </div>
 <Switch>
 <Route path="/about/people">
 <People />
 </Route>
 <Route path="/about/offices">
 <Offices />
 </Route>
 <Redirect to="/about/people" />
 </Switch>
 </div>
)

export default About

We no longer need an internal tabId variable, and we now have a purely declarative
component (see Figure 2-5).

44 | Chapter 2: Routing

Figure 2-5. Going to http://localhost/about/offices with the new component

Discussion
Moving state out of your components and into the address bar can simplify your
code, but this is merely a fortunate side effect. The real value is that your application
starts to behave less like an application and more like a website. We can bookmark
pages, and the browser’s Back and Forward buttons work correctly. Managing more
state in routes is not an abstract design decision; it’s a way of making your application
less surprising to users.

You can download the source for this recipe from the GitHub site.

2.3 Use MemoryRouter for Unit Testing
Problem
We use routes in React applications so that we make more of the facilities of the
browser. We can bookmark pages, create deep links into an app, and go backward and
forward in history.

However, once we use routes, we make the component dependent upon something
outside itself: the browser location. That might not seem like too big an issue, but it
does have consequences.

2.3 Use MemoryRouter for Unit Testing | 45

https://oreil.ly/myAGj

2 We are using the React Testing Library in this example.
3 See Recipe 1.9.

Let’s say we want to unit test a route-aware component. As an example, let’s create a
unit test for the About component we built in Recipe 2.2:2

describe('About component', () => {
 it('should show people', () => {
 render(<About />)
 expect(screen.getByText('Kip Russel')).toBeInTheDocument()
 })
})

This unit test renders the component and then checks that it can find the name “Kip
Russel” appearing in the output. When we run this test, we get the following error:

console.error node_modules/jsdom/lib/jsdom/virtual-console.js:29
 Error: Uncaught [Error: Invariant failed: You should not use <NavLink>
 outside a <Router>]

The error occurred because a NavLink could not find a Router higher in the compo‐
nent tree. That means we need to wrap the component in a Router before we test it.

Also, we might want to write a unit test that checks that the About component works
when we mount it on a specific route. Even if we provide a Router component, how
will we fake a particular route?

It’s not just an issue with unit tests. If we’re using a library tool like Storybook,3 we
might want to show an example of how a component appears when we mount it on a
given path.

We need something like an actual browser router but that allows us to specify its
behavior.

Solution
The react-router-dom library provides just such a router: MemoryRouter. The
MemoryRouter appears to the outside world just like BrowserRouter. The difference is
that while the BrowserRouter is an interface to the underlying browser history API,
the MemoryRouter has no such dependency. It can keep track of the current location,
and it can go backward and forward in history, but it achieves this through simple
memory structures.

46 | Chapter 2: Routing

Let’s take another look at that failing unit test. Instead of just rendering the About
component, let’s wrap it in a MemoryRouter:

describe('About component', () => {
 it('should show people', () => {
 render(
 <MemoryRouter>
 <About />
 </MemoryRouter>
)

 expect(screen.getByText('Kip Russel')).toBeInTheDocument()
 })
})

Now, when we run the test, it works. That’s because the MemoryRouter injects a
mocked-up version of the API into the context. That makes it available to all of its
child components. The About component can now render a Link or Route because
the history is available.

But the MemoryRouter has an additional advantage. Because it’s faking the browser
history API, it can be given a completely fake history, using the initialEntries
property. The initialEntries property should be set to an array of history entries. If
you pass a single value array, it will be interpreted as the current location. That allows
you to write unit tests that check for component behavior when it’s mounted on a
given route:

describe('About component', () => {
 it('should show offices if in route', () => {
 render(
 <MemoryRouter initialEntries={[{ pathname: '/about/offices' }]}>
 <About />
 </MemoryRouter>
)

 expect(screen.getByText('South Dakota')).toBeInTheDocument()
 })
})

We can use a real BrowserRouter inside Storybook because we’re in a real browser,
but the MemoryRouter also allows us to fake the current location, as we do in the
ToAboutOffices Storybook story (see Figure 2-6).

2.3 Use MemoryRouter for Unit Testing | 47

Figure 2-6. Using MemoryRouter, we can fake the /about/offices route

Discussion
Routers let you separate the details of where you want to go from how you’re going to
get there. In this recipe, we see one advantage of this separation: we can create a fake
browser location to examine component behavior on different routes. This separation
allows you to change the way the application follows links without breaking. If you
convert your SPA to an SSR application, you swap your BrowserRouter for a
StaticRouter. The links used to make calls into the browser’s history API will
become native hyperlinks that cause the browser to make native page loads. Routers
are an excellent example of the advantages of splitting policy (what you want to do)
from mechanisms (how you’re going to do it).

You can download the source for this recipe from the GitHub site.

2.4 Use Prompt for Page Exit Confirmations
Problem
Sometimes you need to ask a user to confirm that they want to leave a page if they’re
in the middle of editing something. This seemingly simple task can be complicated
because it relies on spotting when the user clicks the Back button and then finding a

48 | Chapter 2: Routing

https://oreil.ly/1NW8e

way to intercept the move back through history and potentially canceling it (see
Figure 2-7).

Figure 2-7. Asking for a confirmation before leaving

What if there are several pages in the application that need the same feature? Is there
a simple way to create this feature across any component that needs it?

Solution
The react-router-dom library includes a component called Prompt, which asks users
to confirm that they want to leave a page.

The only ingredient we need for this recipe is the react-router-dom library itself:

npm install react-router-dom

Let’s say we have a component called Important mounted at /important, which allows
a user to edit a piece of text:

import React, { useEffect, useState } from 'react'

const Important = () => {
 const initialValue = 'Initial value'

 const [data, setData] = useState(initialValue)
 const [dirty, setDirty] = useState(false)

 useEffect(() => {
 if (data !== initialValue) {
 setDirty(true)
 }
 }, [data, initialValue])

 return (
 <div className="Important">
 <textarea
 onChange={(evt) => setData(evt.target.value)}

2.4 Use Prompt for Page Exit Confirmations | 49

 cols={40}
 rows={12}
 >
 {data}
 </textarea>

 <button onClick={() => setDirty(false)} disabled={!dirty}>
 Save
 </button>
 </div>
)
}

export default Important

Important is already tracking whether the text in the textarea has changed from the
original value. If the text is different, the value of dirty is true. How do we ask the
user to confirm they want to leave the page if they click the Back button when dirty
is true?

We add a Prompt component:

return (
 <div className="Important">
 <textarea
 onChange={(evt) => setData(evt.target.value)}
 cols={40}
 rows={12}
 >
 {data}
 </textarea>

 <button onClick={() => setDirty(false)} disabled={!dirty}>
 Save
 </button>
 <Prompt
 when={dirty}
 message={() => 'Do you really want to leave?'}
 />
 </div>
)

If the user edits the text and then hits the Back button, the Prompt appears (see
Figure 2-8).

50 | Chapter 2: Routing

Figure 2-8. The Prompt asks the user to confirm they want to leave

Adding the confirmation is easy, but the default prompt interface is a simple Java‐
Script dialog. It would be helpful to decide for ourselves how we want the user to con‐
firm they’re leaving.

To demonstrate how we can do this, let’s add the Material-UI component library to
the application:

$ npm install '@material-ui/core'

The Material-UI library is a React implementation of Google’s Material Design stan‐
dard. We’ll use it as an example of how to replace the standard Prompt interface with
something more customized.

The Prompt component does not render any UI. Instead, the Prompt component asks
the current Router to show the confirmation. By default, BrowserRouter shows the
default JavaScript dialog, but you can replace this with your own code.

When the BrowserRouter is added to the component tree, we can pass it a property
called getUserConfirmation:

<div className="App">
 <BrowserRouter
 getUserConfirmation={(message, callback) => {
 // Custom code goes here
 }}
 >
 <Switch>
 <Route path='/important'>
 <Important/>
 </Route>
 </Switch>
 </BrowserRouter>
</div>

2.4 Use Prompt for Page Exit Confirmations | 51

The getUserConfirmation property is a function that accepts two parameters: the
message it should display and a callback function.

When the user clicks the Back button, the Prompt component will run getUser
Confirmation and then wait for the callback function to be called with the value true
or false.

The callback function returns the user’s response asynchronously. The Prompt com‐
ponent will wait while we ask the user what they want to do. That allows us to create a
custom interface.

Let’s create a custom Material-UI dialog called Alert. We’ll show this instead of the
default JavaScript modal:

import Button from '@material-ui/core/Button'
import Dialog from '@material-ui/core/Dialog'
import DialogActions from '@material-ui/core/DialogActions'
import DialogContent from '@material-ui/core/DialogContent'
import DialogContentText from '@material-ui/core/DialogContentText'
import DialogTitle from '@material-ui/core/DialogTitle'

const Alert = ({ open, title, message, onOK, onCancel }) => {
 return (
 <Dialog
 open={open}
 onClose={onCancel}
 aria-labelledby="alert-dialog-title"
 aria-describedby="alert-dialog-description"
 >
 <DialogTitle id="alert-dialog-title">{title}</DialogTitle>
 <DialogContent>
 <DialogContentText id="alert-dialog-description">
 {message}
 </DialogContentText>
 </DialogContent>
 <DialogActions>
 <Button onClick={onCancel} color="primary">
 Cancel
 </Button>
 <Button onClick={onOK} color="primary" autoFocus>
 OK
 </Button>
 </DialogActions>
 </Dialog>
)
}

export default Alert

52 | Chapter 2: Routing

Of course, there is no reason why we need to display a dialog. We could show a
countdown timer or a snackbar message or automatically save the user’s changes. But
we will display a custom Alert dialog.

How will we use the Alert component in our interface? The first thing we’ll need to
do is create our own getUserConfirmation function. We’ll store the message and the
callback function and then set a Boolean value saying that we want to open the Alert
dialog:

const [confirmOpen, setConfirmOpen] = useState(false)
const [confirmMessage, setConfirmMessage] = useState()
const [confirmCallback, setConfirmCallback] = useState()

return (
 <div className="App">
 <BrowserRouter
 getUserConfirmation={(message, callback) => {
 setConfirmMessage(message)
 // Use this setter form because callback is a function
 setConfirmCallback(() => callback)
 setConfirmOpen(true)
 }}
 >

It’s worth noting that when we store the callback function, we use setConfirmCall
back(() => callback) instead of simply writing setConfirmCallback(callback).
That’s because the setters returned by the useState hook will execute any function
passed to them, rather than store them.

We can then use the values of confirmMessage, confirmCallback, and confirmOpen
to render the Alert in the interface.

This is the complete App.js file:

import { useState } from 'react'
import './App.css'
import { BrowserRouter, Link, Route, Switch } from 'react-router-dom'
import Important from './Important'
import Alert from './Alert'

function App() {
 const [confirmOpen, setConfirmOpen] = useState(false)
 const [confirmMessage, setConfirmMessage] = useState()
 const [confirmCallback, setConfirmCallback] = useState()

 return (
 <div className="App">
 <BrowserRouter
 getUserConfirmation={(message, callback) => {
 setConfirmMessage(message)

2.4 Use Prompt for Page Exit Confirmations | 53

 // Use this setter form because callback is a function
 setConfirmCallback(() => callback)
 setConfirmOpen(true)
 }}
 >
 <Alert
 open={confirmOpen}
 title="Leave page?"
 message={confirmMessage}
 onOK={() => {
 confirmCallback(true)
 setConfirmOpen(false)
 }}
 onCancel={() => {
 confirmCallback(false)
 setConfirmOpen(false)
 }}
 />
 <Switch>
 <Route path="/important">
 <Important />
 </Route>
 <div>
 <h1>Home page</h1>
 <Link to="/important">Go to important page</Link>
 </div>
 </Switch>
 </BrowserRouter>
 </div>
)
}

export default App

Now when a user backs out of an edit, they see the custom dialog, as shown in
Figure 2-9.

Figure 2-9. The custom Alert appears when the user clicks the Back button

54 | Chapter 2: Routing

4 See Recipes 2.2 and 2.3.

Discussion
In this recipe, we have re-implemented the Prompt modal using a component library,
but you don’t need to be limited to just replacing one dialog box with another. There
is no reason why, if someone leaves a page, that you couldn’t do something else: such
as store the work-in-progress somewhere so that they could return to it later. The
asynchronous nature of the getUserConfirmation function allows this flexibility. It’s
another example of how react-router-dom abstracts away a cross-cutting concern.

You can download the source for this recipe from the GitHub site.

2.5 Create Transitions with React Transition Group
Problem
Native and desktop applications often use animation to connect different elements
visually. If you tap an item in a list, it expands to show you the details. Swiping left or
right can be used to indicate whether a user accepts or rejects an option.

Animations, therefore, are often used to indicate a location change. They zoom in on
the details. They take you to the next person on the list. We reflect a change in the
URL with a matching animation.

But how do we create an animation when we move from one location to another?

Solution
For this recipe, we’re going to need the react-router-dom library and the react-
transition-group library:

$ npm install react-router-dom
$ npm install react-transition-group

We’re going to animate the About component that we’ve used previously.4 The About
component has two tabs called People and Offices, which are displayed for the
routes /about/people and /about/offices.

When someone clicks one of the tabs, we’re going to fade out the old tab’s content and
then fade in the content of the new tab. Although we’re using a fade, there’s no reason
why we couldn’t use a more complex animation, such as sliding the tab contents left

2.5 Create Transitions with React Transition Group | 55

https://oreil.ly/1FyoE

5 This is a common feature of third-party tabbed components. The animation reinforces in the user’s mind that
they are moving left and right through the tabs.

or right.5 However, a simple fade animation will more clearly demonstrate how it
works.

Inside the About component, the tab contents are rendered by People and Offices
components within distinct routes:

import { NavLink, Redirect, Route, Switch } from 'react-router-dom'
import './About.css'
import People from './People'
import Offices from './Offices'

const About = () => (
 <div className="About">
 <div className="About-tabs">
 <NavLink
 to="/about/people"
 className="About-tab"
 activeClassName="active"
 >
 People
 </NavLink>
 <NavLink
 to="/about/offices"
 className="About-tab"
 activeClassName="active"
 >
 Offices
 </NavLink>
 </div>
 <Switch>
 <Route path="/about/people">
 <People />
 </Route>
 <Route path="/about/offices">
 <Offices />
 </Route>
 <Redirect to="/about/people" />
 </Switch>
 </div>
)

export default About

We need to animate the components inside the Switch component. We’ll need two
things to do this:

56 | Chapter 2: Routing

6 The code uses relative positioning to place both components in the same position during the fade.

• Something to track when the location has changed
• Something to animate the tab contents when that happens

How do we know when the location has changed? We can get the current location
from the useLocation hook from react-router-dom:

const location = useLocation()

Now on to the more complex task: the animation itself. What follows is quite a com‐
plex sequence of events, but taking time to understand it is worth it.

When we are animating from one component to another, we need to keep both com‐
ponents on the page. As the Offices component fades out, the People component
fades in.6 We can do this by keeping both components in a transition group. A transi‐
tion group is a set of components, some of which are appearing and others are
disappearing.

We can create a transition group by wrapping our animation in a TransitionGroup
component. We also need a CSSTransition component to coordinate the details of
the CSS animation.

Our updated code wraps the Switch in both a TransitionGroup and a
CSSTransition:

import {
 NavLink,
 Redirect,
 Route,
 Switch,
 useLocation,
} from 'react-router-dom'
import People from './People'
import Offices from './Offices'
import {
 CSSTransition,
 TransitionGroup,
} from 'react-transition-group'

import './About.css'
import './fade.css'

const About = () => {
 const location = useLocation()

 return (
 <div className="About">

2.5 Create Transitions with React Transition Group | 57

 <div className="About-tabs">
 <NavLink
 to="/about/people"
 className="About-tab"
 activeClassName="active"
 >
 People
 </NavLink>
 <NavLink
 to="/about/offices"
 className="About-tab"
 activeClassName="active"
 >
 Offices
 </NavLink>
 </div>
 <TransitionGroup className="About-tabContent">
 <CSSTransition
 key={location.key}
 classNames="fade"
 timeout={500}
 >
 <Switch location={location}>
 <Route path="/about/people">
 <People />
 </Route>
 <Route path="/about/offices">
 <Offices />
 </Route>
 <Redirect to="/about/people" />
 </Switch>
 </CSSTransition>
 </TransitionGroup>
 </div>
)
}

export default About

Notice that we pass the location.key to the key of the CSSTransition group, and we
pass the location to the Switch component. The location.key is a hash value of the
current location. Passing the location.key to the transition group will keep the
CSSTransition in the virtual DOM until the animation is complete. When the user
clicks one of the tabs, the location changes, which refreshes the About component.
The TransitionGroup will keep the existing CSSTransition in the tree of compo‐
nents until its timeout occurs: in 500 milliseconds. But it will now also have a second
CSSTransition component.

58 | Chapter 2: Routing

Each of these CSSTransition components will keep their child components alive (see
Figure 2-10).

Figure 2-10. The TransitionGroup keeps both the old and new components in the virtual
DOM

We need to pass the location value to the Switch components: we need the Switch
for the old tab, and we need the Switch for the new tab to keep rendering their
routes.

So now, on to the animation itself. The CSSTransition component accepts a property
called classNames, which we have set to the value fade. Note that classNames is a
plural to distinguish it from the standard className attribute.

CSSTransition will use classNames to generate four distinct class names:

• fade-enter

• fade-enter-active

• fade-exit

• fade-exit-active

The fade-enter class is for components that are about to start to animate into view.
The fade-enter-active class is applied to components that are actually animating.
fade-exit and fade-exit-active are for components that are beginning or animat‐
ing their disappearance.

The CSSTransition component will add these class names to their immediate chil‐
dren. If we are animating from the Offices tab to the People tab, then the old
CSSTransition will add the fade-enter-active class to the People HTML and will
add the fade-exit-active to the Offices HTML.

All that’s left to do is define the CSS animations themselves:

2.5 Create Transitions with React Transition Group | 59

.fade-enter {
 opacity: 0;
}
.fade-enter-active {
 opacity: 1;
 transition: opacity 250ms ease-in;
}
.fade-exit {
 opacity: 1;
}
.fade-exit-active {
 opacity: 0;
 transition: opacity 250ms ease-in;
}

The fade-enter- classes use CSS transitions to change the opacity of the component
from 0 to 1. The fade-exit- classes animate the opacity from 1 back to 0. It’s gener‐
ally a good idea to keep the animation class definitions in a separate CSS file. That
way, we can reuse them for other animations.

The animation is complete. When the user clicks a tab, they see the contents cross-
fade from the old data to the new data (Figure 2-11).

Figure 2-11. The contents of the tab fade from offices to people

Discussion
Animations can be pretty irritating when used poorly. Each animation you add
should have some intent. If you find that you want to add an animation just because
you think it will be attractive, you will almost certainly find users will dislike it. Gen‐
erally, it is best to ask a few questions before adding an animation:

• Will this animation clarify the relationship between the two routes? Are you
zooming in to see more detail or moving across to look at a related item?

• How short should the animation be? Any longer than half a second is probably
too much.

60 | Chapter 2: Routing

• What is the impact on performance? CSS transitions usually have minimal effect
if the browser hands the work off to the GPU. But what happens in an old
browser on a mobile device?

You can download the source for this recipe from the GitHub site.

2.6 Create Secured Routes
Problem
Most applications need to prevent access to particular routes until a person logs in.
But how do you secure some routes and not others? Is it possible to separate the secu‐
rity mechanisms from the user interface elements for logging in and logging out?
And how do you do it without writing a vast amount of code?

Solution
Let’s look at one way to implement route-based security in a React application. This
application contains a home page (/), it has a public page with no security (/public),
and it also has two private pages (/private1 and /private2) that we need to secure:

import React from 'react'
import './App.css'
import { BrowserRouter, Route, Switch } from 'react-router-dom'
import Public from './Public'
import Private1 from './Private1'
import Private2 from './Private2'
import Home from './Home'

function App() {
 return (
 <div className="App">
 <BrowserRouter>
 <Switch>
 <Route exact path="/">
 <Home />
 </Route>
 <Route path="/private1">
 <Private1 />
 </Route>
 <Route path="/private2">
 <Private2 />
 </Route>
 <Route exact path="/public">
 <Public />
 </Route>
 </Switch>
 </BrowserRouter>
 </div>

2.6 Create Secured Routes | 61

https://oreil.ly/UCu75

)
}

export default App

We’re going to build the security system using a context. A context is where data can
be stored by a component and made available to the component’s children. A Browser
Router uses a context to pass routing information to the Route components within it.

We’re going to create a custom context called SecurityContext:

import React from 'react'

const SecurityContext = React.createContext({})

export default SecurityContext

The default value of our context is an empty object. We need something that will add
functions into the context for logging in and logging out. We’ll do that by creating a
SecurityProvider:

import { useState } from 'react'
import SecurityContext from './SecurityContext'

const SecurityProvider = (props) => {
 const [loggedIn, setLoggedIn] = useState(false)

 return (
 <SecurityContext.Provider
 value={{
 login: (username, password) => {
 // Note to engineering team:
 // Maybe make this more secure...
 if (username === 'fred' && password === 'password') {
 setLoggedIn(true)
 }
 },
 logout: () => setLoggedIn(false),
 loggedIn,
 }}
 >
 {props.children}
 </SecurityContext.Provider>
)
}

export default SecurityProvider

The code would be very different in a real system. You would probably create a com‐
ponent that logged in and logged out using a web service or third-party security
system. But in our example, the SecurityProvider keeps track of whether we have

62 | Chapter 2: Routing

7 We’ll omit the contents of the Login component here, but the code is available on the GitHub repository.

logged in using a simple loggedIn Boolean value. The SecurityProvider puts three
things into the context:

• A function for logging in (login)
• A function for logging out (logout)
• A Boolean value saying whether we have logged in or out (loggedIn)

These three things will be available to any components placed inside a Security
Provider component. To allow any component inside a SecurityProvider to access
these functions, we’ll add a custom hook called useSecurity:

import SecurityContext from './SecurityContext'
import { useContext } from 'react'

const useSecurity = () => useContext(SecurityContext)

export default useSecurity

Now that we have a SecurityProvider, we need to use it to secure a subset of the
routes. We’ll create another component, called SecureRoute:

import Login from './Login'
import { Route } from 'react-router-dom'
import useSecurity from './useSecurity'

const SecureRoute = (props) => {
 const { loggedIn } = useSecurity()

 return (
 <Route {...props}>{loggedIn ? props.children : <Login />}</Route>
)
}

export default SecureRoute

The SecureRoute component gets the current loggedIn status from the Security
Context (using the useSecurity hook), and if the user is logged in, it renders the
contents of the route. If the user is not logged in, it displays a login form.7

The LoginForm calls the login function, which—if successful—will re-render the
SecureRoute and then show the secured data.

How do we use all of these new components? Here is an updated version of the App.js
file:

2.6 Create Secured Routes | 63

import './App.css'
import { BrowserRouter, Route, Switch } from 'react-router-dom'
import Public from './Public'
import Private1 from './Private1'
import Private2 from './Private2'
import Home from './Home'
import SecurityProvider from './SecurityProvider'
import SecureRoute from './SecureRoute'

function App() {
 return (
 <div className="App">
 <BrowserRouter>
 <SecurityProvider>
 <Switch>
 <Route exact path="/">
 <Home />
 </Route>
 <SecureRoute path="/private1">
 <Private1 />
 </SecureRoute>
 <SecureRoute path="/private2">
 <Private2 />
 </SecureRoute>
 <Route exact path="/public">
 <Public />
 </Route>
 </Switch>
 </SecurityProvider>
 </BrowserRouter>
 </div>
)
}

export default App

The SecurityProvider wraps our whole routing system, making login(), logout(),
and loggedIn available to each SecureRoute.

You can see the application running in Figure 2-12.

Figure 2-12. The home page has links to the other pages

If we click the Public Page link, the page appears (see Figure 2-13).

64 | Chapter 2: Routing

Figure 2-13. The public page is available without logging in

But if we click Private Page 1, we’re presented with the login screen (Figure 2-14).

Figure 2-14. You need to log in before you can see Private Page 1

If you log in with the username fred and password password, you will then see the
private content (see Figure 2-15).

Figure 2-15. The content of Private Page 1 after login

Discussion
Real security is only ever provided by secured backend services. However, secured
routes prevent a user from stumbling into a page that can’t read data from the server.

A better implementation of the SecurityProvider would defer to some third-party
OAuth tool or other security services. But by splitting the SecurityProvider from
the security UI (Login and Logout) and the main application, you can modify the
security mechanisms over time without changing a lot of code in your application.

If you want to see how your components behave when people log in and out, you can
always create a mocked version of the SecurityProvider for use in unit tests.

You can download the source for this recipe from the GitHub site.

2.6 Create Secured Routes | 65

https://oreil.ly/Kut73

CHAPTER 3

Managing State

When we manage state in React, we have to store data, but we also record data depen‐
dencies. Dependencies are intrinsic to the way that React works. They allow React to
update the page efficiently and only when necessary.

Managing data dependencies, then, is the key to managing state in React. You will see
throughout this chapter that most of the tools and techniques we use are to ensure
that we manage dependencies efficiently.

A key concept in the following recipes is a data reducer. A reducer is simply a func‐
tion that receives a single object or an array and then returns a modified copy. This
simple concept is what lies behind much of the state management in React. We’ll look
at how React uses reducer functions natively and how we can use the Redux library to
manage data application-wide with reducers.

We’ll also look at selector functions. These allow us to drill into the state returned by
reducers. Selectors help us ignore the irrelevant data, and in doing so, they signifi‐
cantly improve the performance of our code.

Along the way, we’ll look at simple ways of checking whether you’re online, how to
manage form data, and various other tips and tricks to keep your application ticking
along.

3.1 Use Reducers to Manage Complex State
Problem
Many React components are straightforward. They do little more than render a sec‐
tion of HTML and perhaps show a few properties.

67

However, some components can be more complicated. They might need to manage
several pieces of internal state. For example, consider the simple number game you
can see in Figure 3-1.

Figure 3-1. A simple number puzzle

The component displays a series of numeric tiles, in a grid, with a single space. If the
user clicks a tile next to the space, they can move it. In this way, the user can rear‐
range the tiles until they are in the correct order from 1 to 8.

This component renders a small amount of HTML, but it will require some fairly
complex logic and data. It will record the positions of the tiles. It will need to know
whether a user can move a given tile. It will need to know how to move the tile. It will
need to know whether the game is complete. It will also need to do other things, such
as reset the game by shuffling the tiles.

It’s entirely possible to write all this code inside the component, but it will be harder
to test it. You could use the React Testing Library, but that is probably overkill, given
that most of the code will have very little to do with rendering HTML.

Solution
If you have a component with some complex internal state or that needs to manipu‐
late its state in complex ways, consider using a reducer.

A reducer is a function that accepts two parameters:

• An object or array that represents a given state
• An action that describes how you want to modify the state

The function returns a new copy of the state we pass to it.

68 | Chapter 3: Managing State

The action parameter can be whatever you want, but typically it is an object with a
string type attribute and a payload with additional information. You can think of the
type as a command name and the payload as parameters to the command.

For example, if we number our tile positions from 0 (top-left) to 8 (bottom-right), we
might tell the reducer to move whatever tile is in the top-left corner with:

{type: 'move', payload: 0}

We need an object or array that completely defines our game’s internal state. We could
use a simple array of strings:

['1', '2', '3', null, '5', '6', '7', '8', '4']

That would represent the tiles laid out like this:

1 2 3

5 6

7 8 4

However, a slightly more flexible approach uses an object for our state and gives it an
items attribute containing the current tile layout:

{
 items: ['1', '2', '3', null, '5', '6', '7', '8', '4']
}

Why would we do this? Because it will allow our reducer to return other state values,
such as whether or not the game is complete:

{
 items: ['1', '2', '3', '4', '5', '6', '7', '8', null],
 complete: true
}

We’ve decided on an action (move) and know how the state will be structured, which
means we’ve done enough design to create a test:

import reducer from './reducer'

describe('reducer', () => {
 it('should be able to move 1 down if gap below', () => {
 let state = {
 items: ['1', '2', '3', null, '5', '6', '7', '8', '4'],
 }

 state = reducer(state, { type: 'move', payload: 0 })

 expect(state.items).toEqual([
 null,
 '2',

3.1 Use Reducers to Manage Complex State | 69

 '3',
 '1',
 '5',
 '6',
 '7',
 '8',
 '4',
])
 })

 it('should say when it is complete', () => {
 let state = {
 items: ['1', '2', '3', '4', '5', '6', '7', null, '8'],
 }

 state = reducer(state, { type: 'move', payload: 8 })

 expect(state.complete).toBe(true)

 state = reducer(state, { type: 'move', payload: 5 })

 expect(state.complete).toBe(false)
 })
})

In our first test scenario, we pass in the tiles’ locations in one state. Then we check
that the reducer returns the tiles in a new state.

In our second test, we perform two tile moves and then look for a complete attribute
to tell us the game has ended.

OK, we’ve delayed looking at the actual reducer code long enough:

function trySwap(newItems, position, t) {
 if (newItems[t] === null) {
 const temp = newItems[position]
 newItems[position] = newItems[t]
 newItems[t] = temp
 }
}

function arraysEqual(a, b) {
 for (let i = 0; i < a.length; i++) {
 if (a[i] !== b[i]) {
 return false
 }
 }
 return true
}

const CORRECT = ['1', '2', '3', '4', '5', '6', '7', '8', null]

function reducer(state, action) {

70 | Chapter 3: Managing State

 switch (action.type) {
 case 'move': {
 const position = action.payload
 const newItems = [...state.items]
 const col = position % 3

 if (position < 6) {
 trySwap(newItems, position, position + 3)
 }
 if (position > 2) {
 trySwap(newItems, position, position - 3)
 }
 if (col < 2) {
 trySwap(newItems, position, position + 1)
 }
 if (col > 0) {
 trySwap(newItems, position, position - 1)
 }

 return {
 ...state,
 items: newItems,
 complete: arraysEqual(newItems, CORRECT),
 }
 }
 default: {
 throw new Error('Unknown action: ' + action.type)
 }
 }
}

export default reducer

Our reducer currently recognizes a single action: move. The code in our GitHub
repository also includes actions for shuffle and reset. The repository also has a
more exhaustive set of tests that we used to create the previous code.

But none of this code includes any React components. It’s pure JavaScript and so can
be created and tested in isolation from the outside world.

Be careful to generate a new object in the reducer to represent the
new state. Doing so ensures each new state completely independent
of those that came before it.

Now it’s time to wire up our reducer into a React component, with the useReducer
hook:

import { useReducer } from 'react'
import reducer from './reducer'

3.1 Use Reducers to Manage Complex State | 71

https://oreil.ly/q85H3
https://oreil.ly/q85H3
https://oreil.ly/yRNyU

import './Puzzle.css'

const Puzzle = () => {
 const [state, dispatch] = useReducer(reducer, {
 items: ['4', '1', '2', '7', '6', '3', null, '5', '8'],
 })

 return (
 <div className="Puzzle">
 <div className="Puzzle-squares">
 {state.items.map((s, i) => (
 <div
 className={`Puzzle-square ${
 s ? '' : 'Puzzle-square-empty'
 }`}
 key={`square-${i}`}
 onClick={() => dispatch({ type: 'move', payload: i })}
 >
 {s}
 </div>
))}
 </div>
 <div className="Puzzle-controls">
 <button
 className="Puzzle-shuffle"
 onClick={() => dispatch({ type: 'shuffle' })}
 >
 Shuffle
 </button>
 <button
 className="Puzzle-reset"
 onClick={() => dispatch({ type: 'reset' })}
 >
 Reset
 </button>
 </div>
 {state.complete && (
 <div className="Puzzle-complete">Complete!</div>
)}
 </div>
)
}

export default Puzzle

Even though our puzzle component is doing something quite complicated, that actual
React code is relatively short.

The useReducer accepts a reducer function and a starting state, and it returns a two-
element array:

72 | Chapter 3: Managing State

• The first element in the array is the current state from the reducer
• The second element is a dispatch function that allows us to send actions to the

reducer.

We display the tiles by looping through the strings in the array given by state.items.

If someone clicks a tile at position i, we send a move command to the reducer:

onClick={() => dispatch({type: 'move', payload: i})}

The React component has no idea what it takes to move the tile. It doesn’t even know
if it can move the tile at all. The component sends the action to the reducer.

If the move action moves a tile, the component will automatically re-render the com‐
ponent with the tiles in their new positions. If the game is complete, the component
will know by the value of state.complete:

state.complete && <div className='Puzzle-complete'>Complete!</div>

We also added two buttons to run the shuffle and reset actions, which we omitted
earlier but is in the GitHub repository.

Now that we’ve created our component, let’s try it. When we first load the compo‐
nent, we see it in its initial state, as shown in Figure 3-2.

Figure 3-2. The starting state of the game

If we click the tile labeled 7, it moves into the gap (see Figure 3-3).

3.1 Use Reducers to Manage Complex State | 73

https://oreil.ly/WmZ18

Figure 3-3. After moving tile 7

If we click the Shuffle button, the reducer rearranges tiles randomly, as shown in
Figure 3-4.

Figure 3-4. The Shuffle button moves tiles to random positions

And if we click Reset, the puzzle changes to the completed position, and the “Com‐
plete!” text appears (see Figure 3-5).

74 | Chapter 3: Managing State

Figure 3-5. The Reset button moves the tiles to their correct positions

We bury all of the complexity inside the reducer function, where we can test it, and
the component is simple and easy to maintain.

Discussion
Reducers are a way of managing complexity. You will typically use a reducer in either
of these cases:

• You have a large amount of internal state to manage.
• You need complex logic to manage the internal state of your component.

If either of these things is correct, then a reducer can make your code significantly
easier to manage.

However, be wary of using reducers for very small components. If your component
has a simple state and little logic, you probably don’t need the added complexity of a
reducer.

Sometimes, even if you do have a complex state, there are alternative approaches. For
example, if you are capturing and validating data in a form, it might be better to cre‐
ate a validating form component (see Recipe 3.3).

You need to ensure that your reducer does not have any side effects. Avoid, say, mak‐
ing network calls that update a server. If your reducer has side effects, there is every
chance that it might break. React (sneakily) might sometimes make additional calls to
your reducer in development mode to make sure that no side effects are happening. If

3.1 Use Reducers to Manage Complex State | 75

you’re using a reducer and notice that React calls your code twice when rendering a
component, it means React is checking for bad behavior.

With all of those provisos, reducers are an excellent tool at fighting
complexity. They are integral to libraries such as Redux, can easily
be reused and combined, simplify components, and make your
React code significantly easier to test.

You can download the source for this recipe from the GitHub site.

3.2 Create an Undo Feature
Problem
Part of the promise of JavaScript-rich frameworks like React is that web applications
can closely resemble desktop applications. One common feature in desktop applica‐
tions is the ability to undo an action. Some native components within React applica‐
tions automatically support an undo function. If you edit some text in a text area, and
then press Cmd/Ctrl-Z, it will undo your edit. But what about extending undo into
custom components? How is it possible to track state changes without a large amount
of code?

Solution
If a reducer function manages the state in your component, you can implement a
quite general undo function using an undo-reducer.

Consider this piece of code from the Puzzle example from Recipe 3.1:

const [state, dispatch] = useReducer(reducer, {
 items: ['4', '1', '2', '7', '6', '3', null, '5', '8'],
})

This code uses a reducer function (called reducer) and an initial state to manage the
tiles in a number-puzzle game (see Figure 3-6).

76 | Chapter 3: Managing State

https://oreil.ly/q85H3

Figure 3-6. A simple number puzzle game

If the user clicks the Shuffle button, the component updates the tile state by sending a
shuffle action to the reducer:

<button className='Puzzle-shuffle'
 onClick={() => dispatch({type: 'shuffle'})}>Shuffle</button>

(For more details on what reducers are and when you should use them, see Recipe
3.1.)

We will create a new hook called useUndoReducer, which is a drop-in replacement for
useReducer:

const [state, dispatch] = useUndoReducer(reducer, {
 items: ['4', '1', '2', '7', '6', '3', null, '5', '8'],
})

The useUndoReducer hook will magically give our component the ability to go back
in time:

<button
 className="Puzzle-undo"
 onClick={() => dispatch({ type: 'undo' })}
>
 Undo
</button>

If we add this button to the component, it undoes the last action the user performed,
as shown in Figure 3-7.

3.2 Create an Undo Feature | 77

Figure 3-7. (1) Game in progress; (2) Make a move; (3) Click Undo to undo move

But how do we perform this magic? Although useUndoReducer is relatively easy to
use, it’s somewhat harder to understand. But it’s worth doing so that you can adjust
the recipe to your requirements.

We can take advantage of the fact that all reducers work in the same way:

• The action defines what you want to do.
• The reducer returns a fresh state after each action.
• No side effects are allowed when calling the reducer.

Also, reducers are just simple JavaScript functions that accept a state object and an
action object.

Because reducers work in such a well-defined way, we can create a new reducer (an
undo-reducer) that wraps around another reducer function. Our undo-reducer will
work as an intermediary. It will pass most actions through to the underlying reducer
while keeping a history of all previous states. If someone wants to undo an action, it
will find the last state from its history and then return that without calling the under‐
lying reducer.

We’ll begin by creating a higher-order function that accepts one reducer and returns
another:

import lodash from 'lodash'

const undo = (reducer) => (state, action) => {
 let {
 undoHistory = [],

78 | Chapter 3: Managing State

 undoActions = [],
 ...innerState
 } = lodash.cloneDeep(state)
 switch (action.type) {
 case 'undo': {
 if (undoActions.length > 0) {
 undoActions.pop()
 innerState = undoHistory.pop()
 }
 break
 }

 case 'redo': {
 if (undoActions.length > 0) {
 undoHistory = [...undoHistory, { ...innerState }]
 undoActions = [
 ...undoActions,
 undoActions[undoActions.length - 1],
]
 innerState = reducer(
 innerState,
 undoActions[undoActions.length - 1]
)
 }
 break
 }

 default: {
 undoHistory = [...undoHistory, { ...innerState }]
 undoActions = [...undoActions, action]
 innerState = reducer(innerState, action)
 }
 }
 return { ...innerState, undoHistory, undoActions }
}

export default undo

This reducer is quite a complex function, so it’s worth taking some time to under‐
stand what it does.

It creates a reducer function that keeps track of the actions and states we pass to it.
Let’s say our game component sends an action to shuffle the tiles in the game. Our
reducer will first check if the action has the type undo or redo. It doesn’t. So it passes
the shuffle action to the underlying reducer that manages the tiles in our game (see
Figure 3-8).

3.2 Create an Undo Feature | 79

Figure 3-8. The undo-reducer passes most actions to the underlying reducer

As it passes the shuffle action through to the underlying reducer, the undo code
keeps track of the existing state and the shuffle action by adding them to the undo
History and undoActions. It then returns the state of the underlying game reducer
and the undoHistory and undoActions.

If our puzzle component sends in an undo action, the undo-reducer returns the previ‐
ous state from the undoHistory, completely bypassing the game’s own reducer func‐
tion (see Figure 3-9).

Figure 3-9. For undo actions, the undo-reducer returns the latest historic state

Now let’s look at the useUndoReducer hook itself:

import { useReducer } from 'react'
import undo from './undo'

const useUndoReducer = (reducer, initialState) =>
 useReducer(undo(reducer), initialState)

export default useUndoReducer

This useUndoReducer hook is a concise piece of code. It’s simply a call to the built-in
useReducer hook, but instead of passing the reducer straight through, it passes
undo(reducer). The result is that your component uses an enhanced version of the
reducer you provide: one that can undo and redo actions.

Here is our updated Puzzle component (see Recipe 3.1 for the original version):

80 | Chapter 3: Managing State

import reducer from './reducer'
import useUndoReducer from './useUndoReducer'

import './Puzzle.css'

const Puzzle = () => {
 const [state, dispatch] = useUndoReducer(reducer, {
 items: ['4', '1', '2', '7', '6', '3', null, '5', '8'],
 })

 return (
 <div className="Puzzle">
 <div className="Puzzle-squares">
 {state.items.map((s, i) => (
 <div
 className={`Puzzle-square ${
 s ? '' : 'Puzzle-square-empty'
 }`}
 key={`square-${i}`}
 onClick={() => dispatch({ type: 'move', payload: i })}
 >
 {s}
 </div>
))}
 </div>
 <div className="Puzzle-controls">
 <button
 className="Puzzle-shuffle"
 onClick={() => dispatch({ type: 'shuffle' })}
 >
 Shuffle
 </button>
 <button
 className="Puzzle-reset"
 onClick={() => dispatch({ type: 'reset' })}
 >
 Reset
 </button>
 </div>
 <div className="Puzzle-controls">
 <button
 className="Puzzle-undo"
 onClick={() => dispatch({ type: 'undo' })}
 >
 Undo
 </button>
 <button
 className="Puzzle-redo"
 onClick={() => dispatch({ type: 'redo' })}
 >
 Redo
 </button>

3.2 Create an Undo Feature | 81

 </div>
 {state.complete && (
 <div className="Puzzle-complete">Complete!</div>
)}
 </div>
)
}

export default Puzzle

The only changes are that we use useUndoReducer instead of useReducer, and we’ve
added a couple of buttons to call the “undo” and “redo” actions.

If you now load the component and makes some changes, you can undo the changes
one at a time, as shown in Figure 3-10.

Figure 3-10. With useUndoReducer, you can now send undo and redo actions

Discussion
The undo-reducer shown here will work with reducers that accept and return state
objects. If your reducer manages state using arrays, you will have to modify the undo
function.

Because it keeps a history of all previous states, you probably want to avoid using it if
your state data is extensive or if you’re using it in circumstances where it might make
a huge number of changes. Otherwise, you might want to limit the maximum size of
the history.

Also, bear in mind that it maintains its history in memory. If a user reloads the entire
page, then the history will disappear. It should be possible to resolve this issue by per‐
sisting the global state in local storage whenever it changes.

82 | Chapter 3: Managing State

You can download the source for this recipe from the GitHub site.

3.3 Create and Validate Forms
Problem
Most React applications use forms to some degree, and most applications take an ad-
hoc approach to creating them. If a team is building your application, you might find
that some developers manage individual fields in separate state variables. Others will
choose to record form state in a single-value object, which is simpler to pass into and
out of the form but can be tricky for each field to update. Field validation often leads
to spaghetti code, with some forms validating at submit time and others validating
dynamically as the user types. Some forms might show validation messages when the
form first loads. In other forms, the messages might appear only after the user has
touched the fields.

These variations in design can lead to poor user experience and an inconsistent
approach to writing code. In our experience working with React teams, forms and
form validation are common stumbling blocks for developers.

Solution
To apply some consistency to form development, we will create a SimpleForm compo‐
nent that we will wrap around one or more InputField components. This is an
example of the use of SimpleForm and InputField:

import { useEffect, useState } from 'react'
import './App.css'
import SimpleForm from './SimpleForm'
import InputField from './InputField'

const FormExample0 = ({ onSubmit, onChange, initialValue = {} }) => {
 const [formFields, setFormFields] = useState(initialValue)

 const [valid, setValid] = useState(true)
 const [errors, setErrors] = useState({})

 useEffect(() => {
 if (onChange) {
 onChange(formFields, valid, errors)
 }
 }, [onChange, formFields, valid, errors])

 return (
 <div className="TheForm">
 <h1>Single field</h1>

 <SimpleForm

3.3 Create and Validate Forms | 83

https://oreil.ly/Oz27A

 value={formFields}
 onChange={setFormFields}
 onValid={(v, errs) => {
 setValid(v)
 setErrors(errs)
 }}
 >
 <InputField
 name="field1"
 onValidate={(v) =>
 !v || v.length < 3 ? 'Too short!' : null
 }
 />

 <button
 onClick={() => onSubmit && onSubmit(formFields)}
 disabled={!valid}
 >
 Submit!
 </button>
 </SimpleForm>
 </div>
)
}

export default FormExample0

We track the state of the form in a single object, formFields. Whenever we change a
field in the form, the field will call onChange on the SimpleForm. The field1 field is
validated using the onValidate method, and whenever the validation state changes,
the field calls the onValid method on the SimpleForm. Validation will occur only if
the user has interacted with a field: making it dirty.

You can see the form running in Figure 3-11.

There is no need to track individual field values. The form value object records indi‐
vidual field values with attributes derived from the name of the field. The InputField
handles the details of when to run the validation: it will update the form value and
decide when to display errors.

84 | Chapter 3: Managing State

Figure 3-11. A simple form with field validation

Figure 3-12 shows a slightly more complex example that uses the SimpleForm with
several fields.

Figure 3-12. A more complex form

To create the SimpleForm and InputField components, we must first look at how
they will communicate with each other. An InputField component will need to tell
the SimpleForm when its value has changed and whether or not the new value is valid.
It will do this with a context.

3.3 Create and Validate Forms | 85

A context is a storage scope. When a component stores values in a context, that value
is visible to its subcomponents. The SimpleForm will create a context called Form
Context and use it to store a set of callback functions that any child component can
use to communicate with the form:

import { createContext } from 'react'

const FormContext = createContext({})

export default FormContext

To see how SimpleForm works, let’s begin with a simplified version, which tracks only
its subcomponents’ values, without worrying about validation just yet:

import React, { useCallback, useEffect, useState } from 'react'

import './SimpleForm.css'
import FormContext from './FormContext'

function updateWith(oldValue, field, value) {
 const newValue = { ...oldValue }
 newValue[field] = value
 return newValue
}

const SimpleForm = ({ children, value, onChange, onValid }) => {
 const [values, setValues] = useState(value || {})

 useEffect(() => {
 setValues(value || {})
 }, [value])

 useEffect(() => {
 if (onChange) {
 onChange(values)
 }
 }, [onChange, values])

 let setValue = useCallback(
 (field, v) => setValues((vs) => updateWith(vs, field, v)),
 [setValues]
)
 let getValue = useCallback((field) => values[field], [values])
 let form = {
 setValue: setValue,
 value: getValue,
 }

 return (
 <div className="SimpleForm-container">
 <FormContext.Provider value={form}>
 {children}

86 | Chapter 3: Managing State

 </FormContext.Provider>
 </div>
)
}

export default SimpleForm

The final version of SimpleForm will have additional code for tracking validation and
errors, but this cut-down form is easier to understand.

The form is going to track all of its field values in the values object. The form creates
two callback functions called getValue and setValue and puts them into the context
(as the form object), where subcomponents will find them. We put the form into the
context by wrapping a <FormContext.Provider> around the child components.

Notice that we have wrapped the getValue and setValue callbacks in useCallback,
which prevents the component from creating a new version of each function every
time we render the SimpleForm.

Whenever a child component calls the form.value() function, it will receive the cur‐
rent value of the specified field. If a child component calls form.setValue(), it will
update that value.

Now let’s look at a simplified version of the InputField component, again with any
validation code removed to make it easier to understand:

import React, { useContext } from 'react'
import FormContext from './FormContext'

import './InputField.css'

const InputField = (props) => {
 const form = useContext(FormContext)

 if (!form.value) {
 return 'InputField should be wrapped in a form'
 }

 const { name, label, ...otherProps } = props

 const value = form.value(name)

 return (
 <div className="InputField">
 <label htmlFor={name}>{label || name}:</label>
 <input
 id={name}
 value={value || ''}
 onChange={(event) => {
 form.setValue(name, event.target.value)
 }}

3.3 Create and Validate Forms | 87

 {...otherProps}
 />{' '}
 {}
 </div>
)
}

export default InputField

The InputField extracts the form object from the FormContext. If it cannot find a
form object, it knows that we have not wrapped it in a SimpleForm component. The
InputField then renders an input field, setting its value to whatever is returned by
form.value(name). If the user changes the field’s value, the InputField component
sends the new value to form.setValue(name, event.target.value).

If you need a form field other than an input, you can wrap it in some component
similar to the InputField shown here.

The validation code is just more of the same. In the same way that the form tracks its
current value in the values state, it also needs to track which fields are dirty and
which are invalid. It then needs to pass callbacks for setDirty, isDirty, and set
Invalid. These callbacks are used by the child fields when running their onValidate
code.

Here is the final version of the SimpleForm component, including validation:

import { useCallback, useEffect, useState } from 'react'
import FormContext from './FormContext'
import './SimpleForm.css'

const SimpleForm = ({ children, value, onChange, onValid }) => {
 const [values, setValues] = useState(value || {})
 const [dirtyFields, setDirtyFields] = useState({})
 const [invalidFields, setInvalidFields] = useState({})

 useEffect(() => {
 setValues(value || {})
 }, [value])

 useEffect(() => {
 if (onChange) {
 onChange(values)
 }
 }, [onChange, values])

 useEffect(() => {
 if (onValid) {
 onValid(
 Object.keys(invalidFields).every((i) => !invalidFields[i]),
 invalidFields
)

88 | Chapter 3: Managing State

 }
 }, [onValid, invalidFields])

 const setValue = useCallback(
 (field, v) => setValues((vs) => ({ ...vs, [field]: v })),
 [setValues]
)
 const getValue = useCallback((field) => values[field], [values])
 const setDirty = useCallback(
 (field) => setDirtyFields((df) => ({ ...df, [field]: true })),
 [setDirtyFields]
)
 const getDirty = useCallback(
 (field) => Object.keys(dirtyFields).includes(field),
 [dirtyFields]
)
 const setInvalid = useCallback(
 (field, error) => {
 setInvalidFields((i) => ({
 ...i,
 [field]: error ? error : undefined,
 }))
 },
 [setInvalidFields]
)
 const form = {
 setValue: setValue,
 value: getValue,

 setDirty: setDirty,
 isDirty: getDirty,

 setInvalid: setInvalid,
 }

 return (
 <div className="SimpleForm-container">
 <FormContext.Provider value={form}>
 {children}
 </FormContext.Provider>
 </div>
)
}

export default SimpleForm

And this is the final version of the InputField component. Notice that the field is
counted as dirty once it loses focus or its value changes:

import { useContext, useEffect, useState } from 'react'
import FormContext from './FormContext'

import './InputField.css'

3.3 Create and Validate Forms | 89

const splitCamelCase = (s) =>
 s
 .replace(/([a-z0-9])([A-Z0-9])/g, '$1 $2')
 .replace(/^([a-z])/, (x) => x.toUpperCase())

const InputField = (props) => {
 const form = useContext(FormContext)

 const [error, setError] = useState('')

 const { onValidate, name, label, ...otherProps } = props

 let value = form.value && form.value(name)

 useEffect(() => {
 if (onValidate) {
 setError(onValidate(value))
 }
 }, [onValidate, value])

 const setInvalid = form.setInvalid

 useEffect(() => {
 if (setInvalid) {
 setInvalid(name, error)
 }
 }, [setInvalid, name, error])

 if (!form.value) {
 return 'InputField should be wrapped in a form'
 }

 return (
 <div className="InputField">
 <label htmlFor={name}>{label || splitCamelCase(name)}:</label>
 <input
 id={name}
 onBlur={() => form.setDirty(name)}
 value={value || ''}
 onChange={(event) => {
 form.setDirty(name)
 form.setValue(name, event.target.value)
 }}
 {...otherProps}
 />{' '}
 {
 <div className="InputField-error">
 {form.isDirty(name) && error ? error : <> </>}
 </div>
 }
 </div>

90 | Chapter 3: Managing State

)
}

export default InputField

Discussion
You can use this recipe to create many simple forms, and you can extend it for use
with any React component. For example, if you are using a third-party calendar or
date picker, you would only need to wrap it in a component similar to InputField to
use it inside a SimpleForm.

This recipe doesn’t support forms within forms or arrays of forms. It should be possi‐
ble to modify the SimpleForm component to behave like an InputField to place one
form inside another.

You can download the source for this recipe from the GitHub site.

3.4 Measure Time with a Clock
Problem
Sometimes a React application needs to respond to the time of day. It might only need
to display the current time, or it might need to poll a server at regular intervals or
change its interface as day turns to night. But how do you cause your code to re-
render as the result of a time change? How do you avoid rendering components too
often? And how do you do all that without overcomplicating your code?

Solution
We’re going to create a useClock hook. The useClock hook will give us access to a
formatted version of the current date and time and automatically update the interface
when the time changes. Here’s an example of the code in use, and Figure 3-13 shows
it running:

import { useEffect, useState } from 'react'
import useClock from './useClock'
import ClockFace from './ClockFace'

import './Ticker.css'

const SimpleTicker = () => {
 const [isTick, setTick] = useState(false)

 const time = useClock('HH:mm:ss')

 useEffect(() => {
 setTick((t) => !t)

3.4 Measure Time with a Clock | 91

https://oreil.ly/gU03F

 }, [time])

 return (
 <div className="Ticker">
 <div className="Ticker-clock">
 <h1>Time {isTick ? 'Tick!' : 'Tock!'}</h1>
 {time}

 <ClockFace time={time} />
 </div>
 </div>
)
}

export default SimpleTicker

Figure 3-13. The SimpleTicker over three seconds

The time variable contains the current time in the format HH:mm:ss. When the time
changes, the value of the isTick state is toggled between true and false and then used
to display the word Tick! or Tock! We show the current time and then also display the
time with a ClockFace component.

As well as accepting a date and time format, useClock can take a number specifying
the number of milliseconds between updates (see Figure 3-14):

import { useEffect, useState } from 'react'
import useClock from './useClock'

import './Ticker.css'

const IntervalTicker = () => {
 const [isTick3, setTick3] = useState(false)

 const tickThreeSeconds = useClock(3000)

92 | Chapter 3: Managing State

 useEffect(() => {
 setTick3((t) => !t)
 }, [tickThreeSeconds])

 return (
 <div className="Ticker">
 <div className="Ticker-clock">
 <h1>{isTick3 ? '3 Second Tick!' : '3 Second Tock!'}</h1>
 {tickThreeSeconds}
 </div>
 </div>
)
}

export default IntervalTicker

Figure 3-14. The IntervalTicker re-renders the component every three seconds

This version is more useful if you want to perform some task at regular intervals,
such as polling a network service.

To poll a network service, consider using a clock with Recipe 5.1. If
the current value of the clock is passed as a dependency to a hook
that makes network calls, the network call will be repeated every
time the clock changes.

If you pass a numeric parameter to useClock, it will return a time string in ISO for‐
mat like 2021-06-11T14:50:34.706.

To build this hook, we will use a third-party library called Moment.js to handle date
and time formatting. If you would prefer to use another library, such as Day.js, it
should be straightforward to convert:

$ npm install moment

This is the code for useClock:

import { useEffect, useState } from 'react'
import moment from 'moment'

const useClock = (formatOrInterval) => {

3.4 Measure Time with a Clock | 93

https://momentjs.com
https://day.js.org

 const format =
 typeof formatOrInterval === 'string'
 ? formatOrInterval
 : 'YYYY-MM-DDTHH:mm:ss.SSS'
 const interval =
 typeof formatOrInterval === 'number' ? formatOrInterval : 500
 const [response, setResponse] = useState(
 moment(new Date()).format(format)
)

 useEffect(() => {
 const newTimer = setInterval(() => {
 setResponse(moment(new Date()).format(format))
 }, interval)

 return () => clearInterval(newTimer)
 }, [format, interval])

 return response
}

export default useClock

We derive the date and time format and the required ticking interval from the
formatOrInterval parameter passed to the hook. Then we create a timer with
setInterval. This time will set the response value every interval milliseconds.
When we set the response string to a new time, any component that relies on use
Clock will re-render.

We need to make sure that we cancel any timers that are no longer in use. We can do
this using a feature of the useEffect hook. If we return a function at the end of our
useEffect code, then that function will be called the next time useEffect needs to
run. So, we can use it to clear the old timer before creating a new one.

If we pass a new format or interval to useClock, it will cancel its old timer and
respond using a new timer.

Discussion
This recipe is an example of how you can use hooks to solve a simple problem simply.
React code (the clue is in the name) reacts to dependency changes. Instead of think‐
ing, “How can I run this piece of code every second?” the useClock hook allows you
to write code that depends on the current time and hides away all of the gnarly details
of creating timers, updating state, and clearing timers.

If you use the useClock hook several times in a component, then a time change can
result in multiple renders. For example, if you have two clocks that format the current
time in 12-hour format (04:45) and 24-hour format (16:45), then your component

94 | Chapter 3: Managing State

will render twice when the minute changes. An extra render once a minute is unlikely
to have much of a performance impact.

You can also use the useClock hook inside other hooks. If you create a useMessages
hook to retrieve messages from a server, you can call useClock inside it to poll the
server at regular intervals.

You can download the source for this recipe from the GitHub site.

3.5 Monitor Online Status
Problem
Let’s say someone is using your application on their cell phone, and then they head
into a subway with no data connection. How can you check that the network connec‐
tion has disappeared? What’s a React-friendly way of updating your interface to either
tell the user that there’s a problem or disable some features that require network
access?

Solution
We will create a hook called useOnline that will tell us whether we’re connected to a
network. We need code that runs when the browser loses or regains a connection to
the network. Fortunately, there are window/body-level events called online and
offline that do exactly that. When the online and offline events are triggered, the
current network state will be given by navigator.onLine, which will be set to true or
false:

import { useEffect, useState } from 'react'

const useOnline = () => {
 const [online, setOnline] = useState(navigator.onLine)

 useEffect(() => {
 if (window.addEventListener) {
 window.addEventListener('online', () => setOnline(true), false)
 window.addEventListener(
 'offline',
 () => setOnline(false),
 false
)
 } else {
 document.body.ononline = () => setOnline(true)
 document.body.onoffline = () => setOnline(false)
 }
 }, [])

 return online

3.5 Monitor Online Status | 95

https://oreil.ly/hohKK

}

export default useOnline

This hook manages its connection state in the online variable. When the hook is first
run (notice the empty dependency array), we register listeners to the browser’s
online/offline events. When either of these events occurs, we can set the value of
online to true or false. If this is a change to the current value, then any component
using this hook will re-render.

Here’s an example of the hook in action:

import useOnline from './useOnline'
import './App.css'

function App() {
 const online = useOnline()

 return (
 <div className="App">
 <h1>Network Checker</h1>

 You are now....
 {online ? (
 <div className="App-indicator-online">ONLINE</div>
) : (
 <div className="App-indicator-offline">OFFLINE</div>
)}

 </div>
)
}

export default App

If you run the app, the page will currently show as online. If you disconnect/recon‐
nect your network, the message will switch to OFFLINE and then back to ONLINE
(see Figure 3-15).

Figure 3-15. The code re-renders when the network is switched off and back on again

96 | Chapter 3: Managing State

Discussion
It’s important to note that this hook checks your browser’s connection to a network,
not whether it connects to the broader Internet or your server. If you would like to
check that your server is running and available, you would have to write additional
code.

You can download the source for this recipe from the GitHub site.

3.6 Manage Global State with Redux
Problem
In other recipes in this chapter, we’ve seen that you can manage complex component
state with a pure JavaScript function called a reducer. Reducers simplify components
and make business logic more testable.

But what if you have some data, such as a shopping basket, that needs to be accessed
everywhere?

Solution
We will use the Redux library to manage the global application state. Redux uses the
same reducers we can give to the React useReducer function, but they are used to
manage a single state object for the entire application. Plus, there are many extensions
to Redux that solve common programming problems and develop and manage your
application more quickly.

First, we need to install the Redux library:

$ npm install redux

We will also install the React Redux library, which will make Redux far easier to use
with React:

$ npm install react-redux

We’re going to use Redux to build an application containing a shopping basket (see
Figure 3-16).

3.6 Manage Global State with Redux | 97

https://oreil.ly/9hkSA

Figure 3-16. When a customer buys a product, the application adds it to the basket

If a customer clicks a Buy button, the application adds the product to the basket. If
they click the Buy button again, the quantity in the basket is updated. The basket will
appear in several places across the application, so it’s a good candidate for moving to
Redux. Here is the reducer function that we will use to manage the basket:

const reducer = (state = {}, action = {}) => {
 switch (action.type) {
 case 'buy': {
 const basket = state.basket ? [...state.basket] : []
 const existing = basket.findIndex(
 (item) => item.productId === action.payload.productId
)
 if (existing !== -1) {
 basket[existing].quantity = basket[existing].quantity + 1
 } else {
 basket.push({ quantity: 1, ...action.payload })
 }
 return {
 ...state,
 basket,
 }
 }
 case 'clearBasket': {
 return {
 ...state,
 basket: [],
 }
 }

98 | Chapter 3: Managing State

 default:
 return { ...state }
 }
}

export default reducer

We are creating a single reducer here. Once your application grows
in size, you will probably want to split your reducer into smaller
reducers, which you can combine with the Redux combine

Reducers function.

The reducer function responds to buy and clearBasket actions. The buy action will
either add a new item to the basket or update the quantity of an existing item if one
has a matching productId. The clearBasket action will set the basket back to an
empty array.

Now that we have a reducer function, we will use it to create a Redux store. The store
is going to be our central repository for the shared application state. To create a store,
add these two lines to some top-level component such as App.js:

import { createStore } from 'redux'
import reducer from './reducer'

const store = createStore(reducer)

The store needs to be available globally in the app, and to do that, we need to inject it
into the context of the components that might need it. The React Redux library pro‐
vides a component to inject the store in a component context called Provider:

<Provider store={store}>
 All the components inside here can access the store
</Provider>

Here is the reducer.js component from the example application, which you can find in
the GitHub repository for this book:

const reducer = (state = {}, action = {}) => {
 switch (action.type) {
 case 'buy': {
 const basket = state.basket ? [...state.basket] : []
 const existing = basket.findIndex(
 (item) => item.productId === action.payload.productId
)
 if (existing !== -1) {
 basket[existing].quantity = basket[existing].quantity + 1
 } else {
 basket.push({ quantity: 1, ...action.payload })
 }
 return {

3.6 Manage Global State with Redux | 99

https://oreil.ly/IVh7x
https://oreil.ly/j90xI

 ...state,
 basket,
 }
 }
 case 'clearBasket': {
 return {
 ...state,
 basket: [],
 }
 }
 default:
 return { ...state }
 }
}

export default reducer

Now that the store is available to our components, how do we use it? React Redux
allows you to access the store through hooks. If you want to read the contents of the
global state, you can use useSelector:

const basket = useSelector((state) => state.basket)

The useSelector hook accepts a function to extract part of the central state. Selectors
are pretty efficient and will cause your component to re-render only if the particular
part of the state you are interested in changes.

If you need to submit an action to the central store, you can do it with the
useDispatch hook:

const dispatch = useDispatch()

This returns a dispatch function that you can use to send actions to the store:

dispatch({ type: 'clearBasket' })

These hooks work by extracting the store from the current context. If you forget to
add a Provider to your application or try to run useSelector or useDispatch out‐
side of a Provider context, you will get an error, as shown in Figure 3-17.

100 | Chapter 3: Managing State

Figure 3-17. If you forget to include a Provider, you will get this error

The completed Basket component reads and clears the app-wide shopping basket:

import { useDispatch, useSelector } from 'react-redux'

import './Basket.css'

const Basket = () => {
 const basket = useSelector((state) => state.basket)
 const dispatch = useDispatch()

 return (
 <div className="Basket">
 <h2>Basket</h2>
 {basket && basket.length ? (
 <>
 {basket.map((item) => (
 <div className="Basket-item">
 <div className="Basket-itemName">{item.name}</div>
 <div className="Basket-itemProductId">
 {item.productId}
 </div>
 <div className="Basket-itemPricing">
 <div className="Basket-itemQuantity">
 {item.quantity}
 </div>
 <div className="Basket-itemPrice">{item.price}</div>
 </div>
 </div>

3.6 Manage Global State with Redux | 101

))}
 <button onClick={() => dispatch({ type: 'clearBasket' })}>
 Clear
 </button>
 </>
) : (
 'Empty'
)}
 </div>
)
}

export default Basket

To demonstrate some code adding items to the basket, here’s a Boots component that
allows a customer to buy a selection of products:

import { useDispatch } from 'react-redux'

import './Boots.css'

const products = [
 {
 productId: 'BE8290004',
 name: 'Ski boots',
 description: 'Mondo 26.5. White.',
 price: 698.62,
 },
 {
 productId: 'PC6310098',
 name: 'Snowboard boots',
 description: 'Mondo 27.5. Blue.',
 price: 825.59,
 },
 {
 productId: 'RR5430103',
 name: 'Mountaineering boots',
 description: 'Mondo 27.3. Brown.',
 price: 634.98,
 },
]

const Boots = () => {
 const dispatch = useDispatch()

 return (
 <div className="Boots">
 <h1>Boots</h1>

 <dl className="Boots-products">
 {products.map((product) => (
 <>
 <dt>{product.name}</dt>

102 | Chapter 3: Managing State

 <dd>
 <p>{product.description}</p>
 <p>${product.price}</p>
 <button
 onClick={() =>
 dispatch({ type: 'buy', payload: product })
 }
 >
 Add to basket
 </button>
 </dd>
 </>
))}
 </dl>
 </div>
)
}

export default Boots

These two components may appear at very different locations in the component tree,
but they share the same Redux store. As soon as a customer adds a product to the
basket, the Basket component will automatically update with the change (see
Figure 3-18).

Figure 3-18. The Redux-React hooks make sure that when a user buys a product, the
Basket is re-rendered

3.6 Manage Global State with Redux | 103

Discussion
Developers often use the Redux library with the React framework. For a long time, it
seemed, almost every React application included Redux by default. It’s probably true
that Redux was often overused or used inappropriately. We have seen projects that
have even banned local state in favor of using Redux for all state. We believe this
approach is a mistake. Redux is intended for central application state management,
not for simple component state. If you are storing data that is of concern to only one
component, or its subcomponents, you should probably not store it in Redux.

However, if your application manages some global application state, then Redux is
still the tool of choice.

You can download the source for this recipe from the GitHub site.

3.7 Survive Page Reloads with Redux Persist
Problem
Redux is an excellent way of managing the application state centrally. However, it
does have a small problem: when you reload the page, the entire state disappears (see
Figure 3-19).

Figure 3-19. Redux state (left) is lost if the page is reloaded (right)

The state disappears because Redux keeps its state in memory. How do we prevent the
state from disappearing?

104 | Chapter 3: Managing State

https://oreil.ly/j90xI

Solution
We will use the Redux Persist library to keep a copy of the Redux state in local stor‐
age. To install Redux Persist, type the following:

$ npm install redux-persist

The first thing we need to do is create a persisted reducer, wrapped around our exist‐
ing reducer:

import storage from 'redux-persist/lib/storage'

const persistConfig = {
 key: 'root',
 storage,
}

const persistedReducer = persistReducer(persistConfig, reducer)

The storage specifies where we will persist the Redux state: it will be in local
Storage by default. The persistConfig says that we want to keep our state in a
localStorage item called persist:root. When the Redux state changes, the persis
tedReducer will write a copy with localStorage.setItem('persist:root', ...).
We now need to create our Redux store with persistedReducer:

const store = createStore(persistedReducer)

We need to interject the Redux Persist code between the Redux store and the code
that’s accessing the Redux store. We do that with a component called PersistGate:

import { PersistGate } from 'redux-persist/integration/react'
import { persistStore } from 'redux-persist'

const persistor = persistStore(store)
...
<Provider store={store}>
 <PersistGate loading={<div>Loading...</div>} persistor={persistor}>
 Components live in here
 </PersistGate>
</Provider>

The PersistGate must be inside the Redux Provider and outside the components
that are going to use Redux. The PersistGate will watch for when the Redux state is
lost and then reload it from localStorage. It might take a moment to reload the data,
and if you want to show that the UI is briefly busy, you can pass a loading compo‐
nent to the PersistGate: for example, an animated spinner. The loading component
will be displayed in place of its child components when Redux is reloading. If you
don’t want a loading component, you can set it to null.

3.7 Survive Page Reloads with Redux Persist | 105

Here is the final version of the modified App.js from the example app:

import { BrowserRouter, Route, Switch } from 'react-router-dom'
import { Provider } from 'react-redux'
import { createStore } from 'redux'

import Menu from './Menu'
import Home from './Home'
import Boots from './Boots'
import Basket from './Basket'

import './App.css'
import reducer from './reducer'

import { persistStore, persistReducer } from 'redux-persist'
import { PersistGate } from 'redux-persist/integration/react'
import storage from 'redux-persist/lib/storage'

const persistConfig = {
 key: 'root',
 storage,
}

const persistedReducer = persistReducer(persistConfig, reducer)

const store = createStore(persistedReducer)

const persistor = persistStore(store)

function App() {
 return (
 <div className="App">
 <Provider store={store}>
 <PersistGate
 loading={<div>Loading...</div>}
 persistor={persistor}
 >
 <BrowserRouter>
 <Menu />
 <Switch>
 <Route exact path="/">
 <Home />
 </Route>
 <Route path="/boots">
 <Boots />
 </Route>
 </Switch>
 <Basket />
 </BrowserRouter>
 </PersistGate>
 </Provider>
 </div>
)

106 | Chapter 3: Managing State

}

export default App

Now, when the user reloads the page, the Redux state survives, as shown in
Figure 3-20.

Figure 3-20. Redux state before the reload (top) and after (bottom)

Discussion
The Redux Persist library is a simple way of persisting Redux state through page
reloads. If you have a substantial amount of Redux data, you will need to be careful
not to break the localStorage limit, which will vary from browser to browser but is
typically around 10 MB. However, if your Redux data is that size, you should consider
offloading some of it to a server.

3.7 Survive Page Reloads with Redux Persist | 107

You can download the source for this recipe from the GitHub site.

3.8 Calculate Derived State with Reselect
Problem
When you extract your application state into an external object with a tool like
Redux, you often need to process the data in some way before displaying it. For
example, Figure 3-21 shows an application we have used in a few recipes in this
chapter.

Figure 3-21. What’s the best method for calculating the total cost and tax of the basket?

What if we want to calculate the total cost of the items in the basket and then calcu‐
late the amount of sales tax to pay? We could create a JavaScript function that reads
through the basket items and calculates both, but that function would have to
recalculate the values every time the basket renders. Is there a way of calculating
derived values from the state that updates only when the state changes?

Solution
The Redux developers have created a library specifically designed to derive values
efficiently from state objects, called reselect.

The reselect library creates selector functions. A selector function takes a single
parameter—a state object—and returns a processed version.

108 | Chapter 3: Managing State

https://oreil.ly/K8U5J

We’ve already seen one selector in Recipe 3.6. We used it to return the current basket
from the central Redux state:

const basket = useSelector((state) => state.basket)

The state => state.basket is a selector function; it derives some value from a state
object. The reselect library creates highly efficient selector functions that can cache
their results if the state they depend upon has not changed.

To install reselect, enter this command:

$ npm install reselect

Let’s begin by creating a selector function that will do the following:

• Count the total number of items in a basket
• Calculate the total cost of all of the items

We’ll call this function summarizer. Before we go into the details of how we’ll write it,
we’ll begin by writing a test that will show what it will need to do:

it('should be able to handle multiple products', () => {
 const actual = summarizer({
 basket: [
 { productId: '1234', quantity: 2, price: 1.23 },
 { productId: '5678', quantity: 1, price: 1.5 },
],
 })
 expect(actual).toEqual({ itemCount: 3, cost: 3.96 })
})

So if we give it a state object, it will add up the quantities and costs and return an
object containing the itemCount and cost.

We can create a selector function called summarizer with the Reselect library like this:

import { createSelector } from 'reselect'

const summarizer = createSelector(
 (state) => state.basket || [],
 (basket) => ({
 itemCount: basket.reduce((i, j) => i + j.quantity, 0),
 cost: basket.reduce((i, j) => i + j.quantity * j.price, 0),
 })
)

export default summarizer

3.8 Calculate Derived State with Reselect | 109

The createSelector function creates a selector function based on other selector
functions. Each of the parameters passed to it—except the last parameter—should be
selector functions. We are passing just one:

(state) => state.basket || []

This code extracts the basket from the state.

The final parameter passed to createSelector (the combiner) is a function that
derives a new value, based on the results of the preceding selectors:

(basket) => ({
 itemCount: basket.reduce((i, j) => i + j.quantity, 0),
 cost: basket.reduce((i, j) => i + j.quantity * j.price, 0),
})

The basket value is the result of running the state through the first selector.

Why on Earth would anyone create functions this way? Isn’t it way more complicated
than just creating a JavaScript function manually, without the need to pass all of these
functions to functions?

The answer is efficiency. Selectors will recalculate their values only when they need to.
State objects can be complex and might have dozens of attributes. But we are interes‐
ted only in the contents of the basket attribute, and we don’t want to have to recalcu‐
late our costs if anything else changes.

What reselect does is work out when the value it returns is likely to have changed.
Let’s say we call it one time, and it calculates the itemCount and value like this:

{itemCount: 3, cost: 3.96}

Then the user runs a bunch of commands that update personal preferences, posts a
message to somebody, adds several things to their wish list, and so on.

Each of the events might update the global application state. But the next time we run
the summarizer function, it will return the cached value that it produced before:

{itemCount: 3, cost: 3.96}

Why? Because it knows that this value is dependent only upon the basket value in the
global state. And if that hasn’t changed, then it doesn’t need to recalculate the return
value.

Because reselect allows us to build selector functions from other selector functions,
we could build another selector called taxer to calculate the basket’s sales tax:

import { createSelector } from 'reselect'
import summarizer from './summarizer'

const taxer = createSelector(
 summarizer,

110 | Chapter 3: Managing State

 (summary) => summary.cost * 0.07
)

export default taxer

The taxer selector uses the value returned by the summarizer function. It takes the
cost of the summarizer result and multiplies it by 7%. If the basket’s summarized
total doesn’t change, then the taxer function will not need to update its result.

Now that we have the summarizer and taxer selectors, we can use them inside a
component, just as we would any other selector function:

import { useDispatch, useSelector } from 'react-redux'

import './Basket.css'
import summarizer from './summarizer'
import taxer from './taxer'

const Basket = () => {
 const basket = useSelector((state) => state.basket)
 const { itemCount, cost } = useSelector(summarizer)
 const tax = useSelector(taxer)
 const dispatch = useDispatch()

 return (
 <div className="Basket">
 <h2>Basket</h2>
 {basket && basket.length ? (
 <>
 {basket.map((item) => (
 <div className="Basket-item">
 <div className="Basket-itemName">{item.name}</div>
 <div className="Basket-itemProductId">
 {item.productId}
 </div>
 <div className="Basket-itemPricing">
 <div className="Basket-itemQuantity">
 {item.quantity}
 </div>
 <div className="Basket-itemPrice">{item.price}</div>
 </div>
 </div>
))}
 <p>{itemCount} items</p>
 <p>Total: ${cost.toFixed(2)}</p>
 <p>Sales tax: ${tax.toFixed(2)}</p>
 <button onClick={() => dispatch({ type: 'clearBasket' })}>
 Clear
 </button>
 </>
) : (
 'Empty'

3.8 Calculate Derived State with Reselect | 111

)}
 </div>
)
}

export default Basket

When we run the code now, we see a summary at the bottom of the shopping basket,
which will update whenever we buy a new product (see Figure 3-22).

Figure 3-22. The selectors recalculate the total cost and sales tax only when the basket
changes

Discussion
The first time you meet selector functions, they can seem complicated and hard to
understand. But it is worth taking the time to understand them. There is nothing
Redux-specific about them. There is no reason why you can’t also use them with non-
Redux reducers. Because they have no dependencies beyond the reselect library
itself, they are easy to unit test. We include example tests in the code for this chapter.

You can download the source for this recipe from the GitHub site.

112 | Chapter 3: Managing State

https://oreil.ly/U7SLr

CHAPTER 4

Interaction Design

In this chapter, we look at some recipes that address a bunch of typical interface prob‐
lems. How do you deal with errors? How do you help people use your system? How
do you create complex input sequences without writing a bunch of spaghetti code?

This is a collection of tips that we’ve found useful, time and again. At the end of the
chapter, we look at various ways of adding animation to your application. We take a
low-tech approach where possible, and ideally, the recipes we include will add mean‐
ing to your interface designs with a minimum of fuss.

4.1 Build a Centralized Error Handler
Problem
It’s hard to define precisely what makes good software good. But one thing that most
excellent software has in common is how it responds to errors and exceptions. There
will always be exceptional, unexpected situations when people are running your code:
the network can disappear, the server can crash, the storage can become corrupted.
It’s important to consider how you should deal with these situations when they occur.

One approach that is almost certain to fail is to ignore the fact that error conditions
occur and to hide the gory details of what went wrong. Somewhere, somehow, you
need to leave a trail of evidence that you can use to prevent that error from happening
again.

When we’re writing server code, we might log the error details and return an appro‐
priate message to a request. But if we’re writing client code, we need a plan for how
we’ll deal with local errors. We might choose to display the crash’s details to the user
and ask them to file an error report. We might use a third-party service like Sentry.io
to log the details remotely.

113

https://sentry.io

Whatever our code does, it should be consistent. But how can we handle exceptions
consistently in a React application?

Solution
In this recipe, we’re going to look at one way of creating a centralized error handler.
To be clear: this code won’t automatically capture all exceptions. It still needs to be
added explicitly to JavaScript catch blocks. It’s also not a replacement for dealing
with any error from which we can otherwise recover. If an order fails because the
server is down for maintenance, it is much better to ask the user to try again later.

But this technique helps catch any errors for which we have not previously planned.

As a general principle, when something goes wrong, there are three things that you
should tell the user:

• What happened
• Why it happened
• What they should do about it

In the example we show here, we’re going to handle errors by displaying a dialog box
that shows the details of a JavaScript Error object and asks the user to email the con‐
tents to systems support. We want a simple error-handler function that we can call
when an error happens:

setVisibleError('Cannot do that thing', errorObject)

If we want to make the function readily available across the entire application, the
usual way is by using a context. A context is a kind of scope that we can wrap around
a set of React components. Anything we put into that context is available to all the
child components. We will use our context to store the error-handler function that we
can run when an error occurs.

We’ll call our context ErrorHandlerContext:

import React from 'react'

const ErrorHandlerContext = React.createContext(() => {})

export default ErrorHandlerContext

To allow us to make the context available to a set of components, let’s create an
ErrorHandlerProvider component that will create an instance of the context and
make it available to any child components we pass to it:

import ErrorHandlerContext from './ErrorHandlerContext'

let setError = () => {}

114 | Chapter 4: Interaction Design

const ErrorHandlerProvider = (props) => {
 if (props.callback) {
 setError = props.callback
 }

 return (
 <ErrorHandlerContext.Provider value={setError}>
 {props.children}
 </ErrorHandlerContext.Provider>
)
}

export default ErrorHandlerProvider

Now we need some code that says what to do when we call the error-handler func‐
tion. In our case, we need some code that will respond to an error report by display‐
ing a dialog box containing all of the error details. If you want to handle errors differ‐
ently, this is the code you need to modify:

import { useCallback, useState } from 'react'
import ErrorHandlerProvider from './ErrorHandlerProvider'
import ErrorDialog from './ErrorDialog'

const ErrorContainer = (props) => {
 const [error, setError] = useState()
 const [errorTitle, setErrorTitle] = useState()
 const [action, setAction] = useState()

 if (error) {
 console.error(
 'An error has been thrown',
 errorTitle,
 JSON.stringify(error)
)
 }

 const callback = useCallback((title, err, action) => {
 console.error('ERROR RAISED ')
 console.error('Error title: ', title)
 console.error('Error content', JSON.stringify(err))
 setError(err)
 setErrorTitle(title)
 setAction(action)
 }, [])
 return (
 <ErrorHandlerProvider callback={callback}>
 {props.children}

 {error && (
 <ErrorDialog
 title={errorTitle}

4.1 Build a Centralized Error Handler | 115

1 You can download all source code for this recipe on the GitHub repository.

 onClose={() => {
 setError(null)
 setErrorTitle('')
 }}
 action={action}
 error={error}
 />
)}
 </ErrorHandlerProvider>
)
}

export default ErrorContainer

The ErrorContainer displays the details using an ErrorDialog. We won’t go into the
details of the code for ErrorDialog here as this is the code that you are most likely to
replace with your implementation.1

We need to wrap the bulk of our application in an ErrorContainer. Any components
inside the ErrorContainer will be able to call the error handler:

import './App.css'
import ErrorContainer from './ErrorContainer'
import ClockIn from './ClockIn'

function App() {
 return (
 <div className="App">
 <ErrorContainer>
 <ClockIn />
 </ErrorContainer>
 </div>
)
}

export default App

How does a component use the error handler? We’ll create a custom hook called
useErrorHandler(), which will get the error-handler function out of the context and
return it:

import ErrorHandlerContext from './ErrorHandlerContext'
import { useContext } from 'react'

const useErrorHandler = () => useContext(ErrorHandlerContext)

export default useErrorHandler

116 | Chapter 4: Interaction Design

https://oreil.ly/wUM7Q

That’s quite a complex set of code, but now we come to use the error handler; it’s very
simple. This example code makes a network request when a user clicks a button. If
the network request fails, then the details of the error are passed to the error handler:

import useErrorHandler from './useErrorHandler'
import axios from 'axios'

const ClockIn = () => {
 const setVisibleError = useErrorHandler()

 const doClockIn = async () => {
 try {
 await axios.put('/clockTime')
 } catch (err) {
 setVisibleError('Unable to record work start time', err)
 }
 }

 return (
 <>
 <h1>Click Button to Record Start Time</h1>
 <button onClick={doClockIn}>Start work</button>
 </>
)
}

export default ClockIn

You can see what the app looks like in Figure 4-1.

Figure 4-1. The time-recording app

When you click the button, the network request fails because the server code doesn’t
exist. Figure 4-2 shows the error dialog that appears. Notice that it shows what went
wrong, why it went wrong, and what the user should do about it.

4.1 Build a Centralized Error Handler | 117

Figure 4-2. When the network request throws an exception, we pass it to the error
handler

Discussion
Of all the recipes that we’ve created over the years, this one has saved the most time.
During development, code often breaks, and if the only evidence of a failure is a stack
trace hidden away inside the JavaScript console, you are likely to miss it.

Significantly, when some piece of infrastructure (networks, gateways, servers, data‐
bases) fails, this small amount of code can save you untold hours tracking down the
cause.

You can download the source for this recipe from the GitHub site.

4.2 Create an Interactive Help Guide
Problem
Tim Berners-Lee deliberately designed the web to have very few features. It has a sim‐
ple protocol (HTTP), and it originally had a straightforward markup language
(HTML). The lack of complexity meant that new users of websites immediately knew

118 | Chapter 4: Interaction Design

https://oreil.ly/wUM7Q

how to use them. If you saw something that looked like a hyperlink, you could click
on it and go to another page.

But rich JavaScript applications have changed all that. No longer are web applications
a collection of hyperlinked web pages. Instead, they resemble old desktop applica‐
tions; they are more powerful and feature-rich, but the downside is that they are now
far more complex to use.

How do you build an interactive guide into your application?

Solution
We’re going to build a simple help system that you can overlay onto an existing appli‐
cation. When the user opens the help, they will see a series of pop-up notes that
describe how to use the various features they can see on the page, as shown in
Figure 4-3.

Figure 4-3. Show a sequence of help messages when the user asks

We want something that will be easy to maintain and will provide help only for visible
components. That sounds like quite a big task, so let’s begin by first constructing a
component that will display a pop-up help message:

4.2 Create an Interactive Help Guide | 119

import { Popper } from '@material-ui/core'
import './HelpBubble.css'

const HelpBubble = (props) => {
 const element = props.forElement
 ? document.querySelector(props.forElement)
 : null

 return element ? (
 <Popper
 className="HelpBubble-container"
 open={props.open}
 anchorEl={element}
 placement={props.placement || 'bottom-start'}
 >
 <div className="HelpBubble-close" onClick={props.onClose}>
 Close [X]
 </div>
 {props.content}
 <div className="HelpBubble-controls">
 {props.previousLabel ? (
 <div
 className="HelpBubble-control HelpBubble-previous"
 onClick={props.onPrevious}
 >
 < {props.previousLabel}
 </div>
) : (
 <div> </div>
)}
 {props.nextLabel ? (
 <div
 className="HelpBubble-control HelpBubble-next"
 onClick={props.onNext}
 >
 {props.nextLabel} >
 </div>
) : (
 <div> </div>
)}
 </div>
 </Popper>
) : null
}

export default HelpBubble

We’re using the Popper component from the @material-ui library. The Popper com‐
ponent can be anchored on the page, next to some other component. Our Help
Bubble takes a forElement string, which will represent a CSS selector such

120 | Chapter 4: Interaction Design

as .class-name or #some-id. We will use selectors to associate things on the screen
with pop-up messages.

Now that we have a pop-up message component, we’ll need something that coordi‐
nates a sequence of HelpBubbles. We’ll call this the HelpSequence:

import { useEffect, useState } from 'react'

import HelpBubble from './HelpBubble'

function isVisible(e) {
 return !!(
 e.offsetWidth ||
 e.offsetHeight ||
 e.getClientRects().length
)
}

const HelpSequence = (props) => {
 const [position, setPosition] = useState(0)
 const [sequence, setSequence] = useState()

 useEffect(() => {
 if (props.sequence) {
 const filter = props.sequence.filter((i) => {
 if (!i.forElement) {
 return false
 }
 const element = document.querySelector(i.forElement)
 if (!element) {
 return false
 }
 return isVisible(element)
 })
 setSequence(filter)
 } else {
 setSequence(null)
 }
 }, [props.sequence, props.open])

 const data = sequence && sequence[position]

 useEffect(() => {
 setPosition(0)
 }, [props.open])

 const onNext = () =>
 setPosition((p) => {
 if (p === sequence.length - 1) {
 props.onClose && props.onClose()
 }
 return p + 1

4.2 Create an Interactive Help Guide | 121

 })

 const onPrevious = () =>
 setPosition((p) => {
 if (p === 0) {
 props.onClose && props.onClose()
 }
 return p - 1
 })

 return (
 <div className="HelpSequence-container">
 {data && (
 <HelpBubble
 open={props.open}
 forElement={data.forElement}
 placement={data.placement}
 onClose={props.onClose}
 previousLabel={position > 0 && 'Previous'}
 nextLabel={
 position < sequence.length - 1 ? 'Next' : 'Finish'
 }
 onPrevious={onPrevious}
 onNext={onNext}
 content={data.text}
 />
)}
 </div>
)
}

export default HelpSequence

The HelpSequence takes an array of JavaScript objects like this:

[
 {forElement: "p",
 text: "This is some introductory text telling you how to start"},
 {forElement: ".App-link", text: "This will show you how to use React"},
 {forElement: ".App-nowhere", text: "This help text will never appear"},
]

and converts it into a dynamic sequence of HelpBubbles. It will show a HelpBubble
only if it can find an element that matches the forElement selector. It then places the
HelpBubble next to the element and shows the help text.

Let’s add a HelpSequence to the default App.js code generated by create-react-app:

import { useState } from 'react'
import logo from './logo.svg'
import HelpSequence from './HelpSequence'
import './App.css'

122 | Chapter 4: Interaction Design

function App() {
 const [showHelp, setShowHelp] = useState(false)

 return (
 <div className="App">
 <header className="App-header">

 <p>
 Edit <code>src/App.js</code> and save to reload.
 </p>
 <a
 className="App-link"
 href="https://reactjs.org"
 target="_blank"
 rel="noopener noreferrer"
 >
 Learn React

 </header>
 <button onClick={() => setShowHelp(true)}>Show help</button>
 <HelpSequence
 sequence={[
 {
 forElement: 'p',
 text: 'This is some introductory text telling you how to start',
 },
 {
 forElement: '.App-link',
 text: 'This will show you how to use React',
 },
 {
 forElement: '.App-nowhere',
 text: 'This help text will never appear',
 },
]}
 open={showHelp}
 onClose={() => setShowHelp(false)}
 />
 </div>
)
}

export default App

To begin with, we cannot see anything different other than a help button (see
Figure 4-4).

4.2 Create an Interactive Help Guide | 123

Figure 4-4. The application, when it first loads

When the user clicks the help button, the first help topic appears, as shown in
Figure 4-5.

Figure 4-5. When the user clicks the help button, the help bubble appears for the first
match

124 | Chapter 4: Interaction Design

2 See Recipe 4.5 for details on how to use Markdown in your application.

Figure 4-6 shows the help moving to the next element when the user clicks Next. The
user can continue to move from item to item until there are no more matching ele‐
ments visible.

Figure 4-6. The final element has a Finish button

Discussion
Adding interactive help to your application makes your user interface discoverable.
Developers spend a lot of their time adding functionality to applications that people
might never use, simply because they don’t know that it’s there.

The implementation in this recipe displays the help as simple plain text. You might
consider using Markdown, as that will allow for a richer experience, and help topics
can then include links to other more expansive help pages.2

The help topics are automatically limited to just those elements that are visible on the
page. You could choose to create either a separate help sequence for each page or a

4.2 Create an Interactive Help Guide | 125

single large help sequence that will automatically adapt to the user’s current view of
the interface.

Finally, a help system like this is ideally suited for storage in a headless CMS, which
will allow you to update help dynamically, without the need to create a new deploy‐
ment each time.

You can download the source for this recipe from the GitHub site.

4.3 Use Reducers for Complex Interactions
Problem
Applications frequently need users to follow a sequence of actions. They might be
completing the steps in a wizard, or they might need to log in and confirm some dan‐
gerous operation (see Figure 4-7).

Figure 4-7. This deletion process requires logging in and then confirming the deletion

126 | Chapter 4: Interaction Design

https://oreil.ly/CsiMN

Not only will the user need to perform a sequence of steps, but the steps might be
conditional. If the user has logged in recently, they perhaps don’t need to log in again.
They might want to cancel partway through the sequence.

If you model the complex sequences inside your components, you can soon find your
application is full of spaghetti code.

Solution
We are going to use a reducer to manage a complex sequence of operations. We intro‐
duced reducers for managing state in Chapter 3. A reducer is a function that accepts a
state object and an action. The reducer uses the action to decide how to change the
state, and it must have no side effects.

Because reducers have no user-interface code, they are perfect for managing gnarly
pieces of interrelated state without worrying about the visual appearance. They are
particularly amenable to unit testing.

For example, let’s say we implement the deletion sequence mentioned at the start of
this recipe. We can begin in classic test-driven style by writing a unit test:

import deletionReducer from './deletionReducer'

describe('deletionReducer', () => {
 it('should show the login dialog if we are not logged in', () => {
 const actual = deletionReducer({}, { type: 'START_DELETION' })
 expect(actual.showLogin).toBe(true)
 expect(actual.message).toBe('')
 expect(actual.deleteButtonDisabled).toBe(true)
 expect(actual.loginError).toBe('')
 expect(actual.showConfirmation).toBe(false)
 })
})

Here our reducer function is going to be called deletionReducer. We pass it an
empty object ({}) and an action that says we want to start the deletion process
({type: 'START_DELETION'}). We then say that we expect the new version of the
state to have a showLogin value of true, a showConfirmation value of false, and so
on.

We can then implement the code for a reducer to do just that:

function deletionReducer(state, action) {
 switch (action.type) {
 case 'START_DELETION':
 return {
 ...state,
 showLogin: true,
 message: '',
 deleteButtonDisabled: true,

4.3 Use Reducers for Complex Interactions | 127

3 See the GitHub repository for the tests we used to drive out this code.

 loginError: '',
 showConfirmation: false,
 }
 default:
 return null // Or anything
 }
}

At first, we are merely setting the state attributes to values that pass the test. As we
add more and more tests, our reducer improves as it handles more situations.

Eventually, we get something that looks like this:3

function deletionReducer(state, action) {
 switch (action.type) {
 case 'START_DELETION':
 return {
 ...state,
 showLogin: !state.loggedIn,
 message: '',
 deleteButtonDisabled: true,
 loginError: '',
 showConfirmation: !!state.loggedIn,
 }
 case 'CANCEL_DELETION':
 return {
 ...state,
 showLogin: false,
 showConfirmation: false,
 showResult: false,
 message: 'Deletion canceled',
 deleteButtonDisabled: false,
 }
 case 'LOGIN':
 const passwordCorrect = action.payload === 'swordfish'
 return {
 ...state,
 showLogin: !passwordCorrect,
 showConfirmation: passwordCorrect,
 loginError: passwordCorrect ? '' : 'Invalid password',
 loggedIn: true,
 }
 case 'CONFIRM_DELETION':
 return {
 ...state,
 showConfirmation: false,
 showResult: true,
 message: 'Widget deleted',
 }

128 | Chapter 4: Interaction Design

https://oreil.ly/DCGIv

 case 'FINISH':
 return {
 ...state,
 showLogin: false,
 showConfirmation: false,
 showResult: false,
 deleteButtonDisabled: false,
 }
 default:
 throw new Error('Unknown action: ' + action.type)
 }
}

export default deletionReducer

Although this code is complicated, you can write it quickly if you create the tests first.

Now that we have the reducer, we can use it in our application:

import { useReducer, useState } from 'react'
import './App.css'
import deletionReducer from './deletionReducer'

function App() {
 const [state, dispatch] = useReducer(deletionReducer, {})
 const [password, setPassword] = useState()

 return (
 <div className="App">
 <button
 onClick={() => {
 dispatch({ type: 'START_DELETION' })
 }}
 disabled={state.deleteButtonDisabled}
 >
 Delete Widget!
 </button>
 <div className="App-message">{state.message}</div>
 {state.showLogin && (
 <div className="App-dialog">
 <p>Enter your password</p>
 <input
 type="password"
 value={password}
 onChange={(evt) => setPassword(evt.target.value)}
 />
 <button
 onClick={() =>
 dispatch({ type: 'LOGIN', payload: password })
 }
 >
 Login
 </button>

4.3 Use Reducers for Complex Interactions | 129

 <button
 onClick={() => dispatch({ type: 'CANCEL_DELETION' })}
 >
 Cancel
 </button>
 <div className="App-error">{state.loginError}</div>
 </div>
)}
 {state.showConfirmation && (
 <div className="App-dialog">
 <p>Are you sure you want to delete the widget?</p>
 <button
 onClick={() =>
 dispatch({
 type: 'CONFIRM_DELETION',
 })
 }
 >
 Yes
 </button>
 <button
 onClick={() =>
 dispatch({
 type: 'CANCEL_DELETION',
 })
 }
 >
 No
 </button>
 </div>
)}
 {state.showResult && (
 <div className="App-dialog">
 <p>The widget was deleted</p>
 <button
 onClick={() =>
 dispatch({
 type: 'FINISH',
 })
 }
 >
 Done
 </button>
 </div>
)}
 </div>
)
}

export default App

130 | Chapter 4: Interaction Design

Most of this code is purely creating the user interface for each of the dialogs in the
sequence. There is virtually no logic in this component. It just does what the reducer
tells it. It will take the user through the happy path of logging in and confirming the
deletion (see Figure 4-8).

Figure 4-8. The final result

But Figure 4-9 shows it also handles all of the edge cases, such as invalid passwords
and cancellation.

4.3 Use Reducers for Complex Interactions | 131

Figure 4-9. The edge cases are all handled by the reducer

Discussion
There are times when reducers can make your code convoluted; if you have few
pieces of state with few interactions between them, you probably don’t need a reducer.
But if you find yourself drawing a flowchart or a state diagram to describe a sequence
of user interactions, that’s a sign that you might need a reducer.

You can download the source for this recipe from the GitHub site.

4.4 Add Keyboard Interaction
Problem
Power users like to use keyboards for frequently used operations. React components
can respond to keyboard events, but only when they (or their children) have focus.
What do you do if you want your component to respond to events at the document
level?

Solution
We’re going to create a key-listener hook to listen for keydown events at the document
level. Still, it could be easily modified to listen for any other JavaScript event in the
DOM. This is the hook:

import { useEffect } from 'react'

const useKeyListener = (callback) => {
 useEffect(() => {
 const listener = (e) => {
 e = e || window.event
 const tagName = e.target.localName || e.target.tagName
 // Only accept key-events that originated at the body level

132 | Chapter 4: Interaction Design

https://oreil.ly/hfqLn

 // to avoid key-strokes in e.g. text-fields being included
 if (tagName.toUpperCase() === 'BODY') {
 callback(e)
 }
 }
 document.addEventListener('keydown', listener, true)
 return () => {
 document.removeEventListener('keydown', listener, true)
 }
 }, [callback])
}

export default useKeyListener

The hook accepts a callback function and registers it for keydown events on the
document object. At the end of the useEffect, it returns a function that will unregi‐
ster the callback. If the callback function we pass in changes, we will first unregister
the old function before registering the new one.

How do we use the hook? Here is an example. See if you notice the little coding wrin‐
kle we have to deal with:

import { useCallback, useState } from 'react'
import './App.css'
import useKeyListener from './useKeyListener'

const RIGHT_ARROW = 39
const LEFT_ARROW = 37
const ESCAPE = 27

function App() {
 const [angle, setAngle] = useState(0)
 const [lastKey, setLastKey] = useState('')

 let onKeyDown = useCallback(
 (evt) => {
 if (evt.keyCode === LEFT_ARROW) {
 setAngle((c) => Math.max(-360, c - 10))
 setLastKey('Left')
 } else if (evt.keyCode === RIGHT_ARROW) {
 setAngle((c) => Math.min(360, c + 10))
 setLastKey('Right')
 } else if (evt.keyCode === ESCAPE) {
 setAngle(0)
 setLastKey('Escape')
 }
 },
 [setAngle]
)
 useKeyListener(onKeyDown)

 return (

4.4 Add Keyboard Interaction | 133

 <div className="App">
 <p>
 Angle: {angle} Last key: {lastKey}
 </p>
 <svg
 width="400px"
 height="400px"
 title="arrow"
 fill="none"
 strokeWidth="10"
 stroke="black"
 style={{
 transform: `rotate(${angle}deg)`,
 }}
 >
 <polyline points="100,200 200,0 300,200" />
 <polyline points="200,0 200,400" />
 </svg>
 </div>
)
}

export default App

This code listens for the user pressing the left/right cursor keys. Our onKeyDown func‐
tion says what should happen when those key clicks occur, but notice that we’ve
wrapped it in a useCallback. If we didn’t do that, the browser would re-create the
onKeyDown function each time it rendered the App component. The new function
would do the same as the old onKeyDown function, but it would live in a different
place in memory, and the useKeyListener would keep unregistering and re-
registering it.

If you forget to wrap your callback function in a useCallback, it
may result in a blizzard of render calls, which might slow your
application down.

By using useCallback, we can ensure that we only create the function if setAngle
changes.

If you run the application, you will see an arrow on the screen. If you press the left/
right cursor keys (Figure 4-10), you can rotate the image. If you press the Escape key,
you can reset it to vertical.

134 | Chapter 4: Interaction Design

Figure 4-10. Pressing the left/right/Escape keys causes the arrow to rotate

Discussion
We are careful in the useKeyListener function to only listen to events that originated
at the body level. If the user clicks the arrow keys in a text field, the browser won’t
send those events to your code.

You can download the source for this recipe from the GitHub site.

4.5 Use Markdown for Rich Content
Problem
If your application allows users to provide large blocks of text content, it would be
helpful if that content could also include formatted text, links, and so forth. However,
allowing users to pass in such horrors as raw HTML can lead to security flaws and
untold misery for developers.

How do you allow users to post rich content without undermining the security of
your application?

Solution
Markdown is an excellent way of allowing users to post rich content into your appli‐
cation safely. To see how to use Markdown in your application, let’s consider this sim‐
ple application, which allows a user to post a timestamped series of messages into a
list:

import { useState } from 'react'
import './Forum.css'

const Forum = () => {
 const [text, setText] = useState('')

4.5 Use Markdown for Rich Content | 135

https://oreil.ly/VIY1O

 const [messages, setMessages] = useState([])

 return (
 <section className="Forum">
 <textarea
 cols={80}
 rows={20}
 value={text}
 onChange={(evt) => setText(evt.target.value)}
 />
 <button
 onClick={() => {
 setMessages((msgs) => [
 {
 body: text,
 timestamp: new Date().toISOString(),
 },
 ...msgs,
])
 setText('')
 }}
 >
 Post
 </button>
 {messages.map((msg) => {
 return (
 <dl>
 <dt>{msg.timestamp}</dt>
 <dd>{msg.body}</dd>
 </dl>
)
 })}
 </section>
)
}

export default Forum

When you run the application (Figure 4-11), you see a large text area. When you post
a plain-text message, the app preserves white space and line breaks.

136 | Chapter 4: Interaction Design

Figure 4-11. A user enters text into a text area, and it gets posted as a plain-text message

If your application contains a text area, it’s worth considering allowing the user to
enter Markdown content.

There are many, many Markdown libraries available, but most of them are wrappers
for react-markdown or a syntax highlighter like PrismJS or CodeMirror.

We’ll look at a library called react-md-editor that adds extra features to react-
markdown and allows you to display Markdown and edit it. We will begin by installing
the library:

$ npm install @uiw/react-md-editor

4.5 Use Markdown for Rich Content | 137

https://prismjs.com
https://codemirror.net

We’ll now convert our plain-text area to a Markdown editor and convert the posted
messages from Markdown to HTML:

import { useState } from 'react'
import MDEditor from '@uiw/react-md-editor'

const MarkdownForum = () => {
 const [text, setText] = useState('')
 const [messages, setMessages] = useState([])

 return (
 <section className="Forum">
 <MDEditor height={300} value={text} onChange={setText} />
 <button
 onClick={() => {
 setMessages((msgs) => [
 {
 body: text,
 timestamp: new Date().toISOString(),
 },
 ...msgs,
])
 setText('')
 }}
 >
 Post
 </button>
 {messages.map((msg) => {
 return (
 <dl>
 <dt>{msg.timestamp}</dt>
 <dd>
 <MDEditor.Markdown source={msg.body} />
 </dd>
 </dl>
)
 })}
 </section>
)
}

export default MarkdownForum

Converting plain text to Markdown is a small change with a significant return. As
you can see in Figure 4-12, the user can apply rich formatting to a message and
choose to edit it full-screen before posting it.

138 | Chapter 4: Interaction Design

Figure 4-12. The Markdown editor shows a preview as you type and also allows you to
work full-screen

4.5 Use Markdown for Rich Content | 139

Discussion
Adding Markdown to an application is quick and improves the user’s experience with
minimal effort. For more details on Markdown, see John Gruber’s original guide.

You can download the source for this recipe from the GitHub site.

4.6 Animate with CSS Classes
Problem
You want to add a small amount of simple animation to your application, but you
don’t want to increase your application size by installing a third-party library.

Solution
Most of the animation you are ever likely to need in a React application will probably
not require a third-party animation library. That’s because CSS animation now gives
browsers the native ability to animate CSS properties with minimal effort. It takes
very little code, and the animation is smooth because the graphics hardware will gen‐
erate it. GPU animation uses less power, making it more appropriate for mobile
devices.

If you are looking to add animation to your React application,
begin with CSS animation before looking elsewhere.

How does CSS animation work? It uses a CSS property called transition. Let’s say
we want to create an expandable information panel. When the user clicks the button,
the panel opens smoothly. When they click it again, it closes smoothly, as shown in
Figure 4-13.

140 | Chapter 4: Interaction Design

https://oreil.ly/2EE9x
https://oreil.ly/S0n7x

Figure 4-13. Simple CSS animation will smoothly expand and contract the panel

We can create this effect using the CSS transition property:

.InfoPanel-details {
 height: 350px;
 transition: height 0.5s;
}

This CSS specifies a height, as well as a transition property. This combination
translates to “Whatever your current height, animate to my preferred height during
the next half-second.”

The animation will occur whenever the height of the element changes, such as when
an additional CSS rule becomes valid. For example, if we have an extra CSS class-
name with a different height, the transition property will animate the height change
when an element switches to a different class:

.InfoPanel-details {
 height: 350px;
 transition: height 0.5s;
}
.InfoPanel-details.InfoPanel-details-closed {
 height: 0;
}

This class name structure is an example of block element modifier
(BEM) naming. The block is the component (InfoPanel), the ele‐
ment is a thing inside the block (details), and the modifier says
something about the element’s current state (closed). The BEM
convention reduces the chances of name clashes in your code.

4.6 Animate with CSS Classes | 141

If an InfoPanel-details element suddenly acquires an additional .InfoPanel-
details-closed class, the height will change from 350px to 0, and the transition
property will smoothly shrink the element. Conversely, if the component loses
the .InfoPanel-details-closed class, the element will expand again.

That means that we can defer the hard work to CSS, and all we need to do in our
React code is add or remove the class to an element:

import { useState } from 'react'

import './InfoPanel.css'

const InfoPanel = ({ title, children }) => {
 const [open, setOpen] = useState(false)

 return (
 <section className="InfoPanel">
 <h1>
 {title}
 <button onClick={() => setOpen((v) => !v)}>
 {open ? '^' : 'v'}
 </button>
 </h1>
 <div
 className={`InfoPanel-details ${
 open ? '' : 'InfoPanel-details-closed'
 }`}
 >
 {children}
 </div>
 </section>
)
}

export default InfoPanel

Discussion
We have frequently seen many projects bundle in third-party component libraries to
use some small widget that expands or contracts its contents. As you can see, such
animation is trivial to include.

You can download the source for this recipe from the GitHub site.

142 | Chapter 4: Interaction Design

https://oreil.ly/FKnIc

4.7 Animate with React Animation
Problem
CSS animations are very low-tech and will be appropriate for most animations that
you are likely to need.

However, they require you to understand a lot about the various CSS properties and
the effects of animating them. If you want to illustrate an item being deleted by it rap‐
idly expanding and becoming transparent, how do you do that?

Libraries such as Animate.css contain a whole host of pre-canned CSS animations,
but they often require more advanced CSS animation concepts like keyframes and are
not particularly tuned for React. How can we add CSS library animations to a React
application?

Solution
The React Animations library is a React wrapper for the Animate.css library. It will
efficiently add animated styling to your components without generating unnecessary
renders or significantly increasing the size of the generated DOM.

It’s able to work so efficiently because React Animations works with a CSS-in-JS
library. CSS-in-JS is a technique for coding your style information directly in your
JavaScript code. React will let you add your style attributes as React components, but
CSS-in-JS does this more efficiently, dynamically creating shared style elements in the
head of the page.

There are several CSS-in-JS libraries to choose from, but in this recipe, we’re going to
use one called Radium.

Let’s begin by installing Radium and React Animations:

$ npm install radium
$ npm install react-animations

Our example application (Figure 4-14) will run an animation each time we add an
image item to the collection.

4.7 Animate with React Animation | 143

https://animate.style
https://oreil.ly/oNBEl

4 Paper books are beautiful things, but to fully experience the animation effect, see the complete code on
GitHub.

Figure 4-14. Clicking the Add button will load a new image from picsum.photos

Likewise, when a user clicks an image, it shows a fade-out animation before removing
the images from the list, as shown in Figure 4-15.4

Figure 4-15. If we click the fifth image, it will fade out from the list and disappear

144 | Chapter 4: Interaction Design

https://oreil.ly/OcAqo

We’ll begin by importing some animations and helper code from Radium:

import { pulse, zoomOut, shake, merge } from 'react-animations'
import Radium, { StyleRoot } from 'radium'

const styles = {
 created: {
 animation: 'x 0.5s',
 animationName: Radium.keyframes(pulse, 'pulse'),
 },
 deleted: {
 animation: 'x 0.5s',
 animationName: Radium.keyframes(merge(zoomOut, shake), 'zoomOut'),
 },
}

From React Animations we get pulse, zoomOut, and shake animations. We are going
to use the pulse animation when we add an image. We’ll use a combined animation of
zoomOut and shake when we remove an image. We can combine animations using
React Animations’ merge function.

The styles generate all of the CSS styles needed to run each of these half-second ani‐
mations. The call to Radium.keyframes() handles all of the animation details for us.

We must know when an animation has completely ended. If we delete an image
before the deletion-animation completes, there would be no image to animate.

We can keep track of CSS animations by passing an onAnimationEnd callback to any
element we are going to animate. For each item in our image collection, we are going
to track three things:

• The URL of the image it represents
• A Boolean value that will be true while the “created” animation is running
• A Boolean value that will be true while the “deleted” animation is running

Here is the example code to animate images into and out of the collection:

import { useState } from 'react'
import { pulse, zoomOut, shake, merge } from 'react-animations'
import Radium, { StyleRoot } from 'radium'

import './App.css'

const styles = {
 created: {
 animation: 'x 0.5s',
 animationName: Radium.keyframes(pulse, 'pulse'),
 },
 deleted: {
 animation: 'x 0.5s',

4.7 Animate with React Animation | 145

 animationName: Radium.keyframes(merge(zoomOut, shake), 'zoomOut'),
 },
}

function getStyleForItem(item) {
 return item.deleting
 ? styles.deleted
 : item.creating
 ? styles.created
 : null
}

function App() {
 const [data, setData] = useState([])

 let deleteItem = (i) =>
 setData((d) => {
 const result = [...d]
 result[i].deleting = true
 return result
 })
 let createItem = () => {
 setData((d) => [
 ...d,
 {
 url: `https://picsum.photos/id/${d.length * 3}/200`,
 creating: true,
 },
])
 }
 let completeAnimation = (d, i) => {
 if (d.deleting) {
 setData((d) => {
 const result = [...d]
 result.splice(i, 1)
 return result
 })
 } else if (d.creating) {
 setData((d) => {
 const result = [...d]
 result[i].creating = false
 return result
 })
 }
 }
 return (
 <div className="App">
 <StyleRoot>
 <p>
 Images from
 Lorem Picsum
 </p>

146 | Chapter 4: Interaction Design

 <button onClick={createItem}>Add</button>
 {data.map((d, i) => (
 <div
 style={getStyleForItem(d)}
 onAnimationEnd={() => completeAnimation(d, i)}
 >
 <img
 id={`image${i}`}
 src={d.url}
 width={200}
 height={200}
 alt="Random"
 title="Click to delete"
 onClick={() => deleteItem(i)}
 />
 </div>
))}
 </StyleRoot>
 </div>
)
}

export default App

Discussion
When choosing which animation to use, we should first ask: what will this animation
mean?

All animation should have meaning. It can show something existential (creation or
deletion). It might indicate a change of state (becoming enabled or disabled). It might
zoom in to show detail or zoom out to reveal a broader context. Or it might illustrate
a limit or boundary (a spring-back animation at the end of a long list) or allow a user
to express a preference (swiping left or right).

Animation should also be short. Most animations should probably be over in half a
second so that the user can experience the meaning of the animation without being
consciously aware of its appearance.

An animation should never be merely attractive.

You can download the source for this recipe from the GitHub site.

4.8 Animate Infographics with TweenOne
Problem
CSS animations are smooth and highly efficient. Browsers might defer CSS anima‐
tions to the graphics hardware at the compositing stage, which means that not only

4.8 Animate Infographics with TweenOne | 147

https://oreil.ly/rRK8F

are the animations running at machine-code speeds, but the machine-code itself is
not running on the CPU.

However, the downside to running CSS animations on graphics hardware is that your
application code won’t know what’s happening during an animation. You can track
when an animation has started, ended, or is repeated (onAnimationStart, on
AnimationEnd, onAnimationIteration), but everything that happens in between is a
mystery.

If you are animating an infographic, you may want to animate the numbers on a bar
chart as the bars grow or shrink. Or, if you are writing an application to track cyclists,
you might want to show the current altitude as the bicycle animates its way up and
down the terrain.

But how do you create animations that you can listen to while they are happening?

Solution
The TweenOne library creates animations with JavaScript, which means you can
track them as they happen, frame by frame.

Let’s begin by installing the TweenOne library:

$ npm install rc-tween-one

TweenOne works with CSS, but it doesn’t use CSS animations. Instead, it generates
CSS transforms, which it updates many times each second.

You need to wrap the thing you want to animate in a <TweenOne/> element. For
example, let’s say we want to animate a rect inside an SVG:

<TweenOne component='g' animation={...details here}>
 <rect width="2" height="6" x="3" y="-3" fill="white"/>
</TweenOne>

TweenOne takes an element name and an object that will describe the animation to
perform. We’ll come to what that animation object looks like shortly.

TweenOne will use the element name (g in this case) to generate a wrapper around
the animated thing. This wrapper will have a style attribute that will include a set of
CSS transforms to move and rotate the contents somewhere.

So in our example, at some point in the animation, the DOM might look like this:

<g style="transform: translate(881.555px, 489.614px) rotate(136.174deg);">
 <rect width="2" height="6" x="3" y="-3" fill="white"/>
</g>

Although you can create similar effects to CSS animations, the TweenOne library
works differently. Instead of handing the animation to the hardware, the TweenOne
library uses JavaScript to create each frame, which has two consequences. First, it uses

148 | Chapter 4: Interaction Design

more CPU power (bad), and second, we can track the animation while it’s happening
(good).

If we pass TweenOne an onUpdate callback, we will be sent information about the ani‐
mation on every single frame:

<TweenOne component='g' animation={...details here} onUpdate={info=>{...}}>
 <rect width="2" height="6" x="3" y="-3" fill="white"/>
</TweenOne>

The info object passed to onUpdate has a ratio value between 0 and 1, representing
the proportion of the way the TweenOne element is through an animation. We can
use the ratio to animate text that is associated with the graphics.

For example, if we build an animated dashboard that shows vehicles on a race track,
we can use onUpdate to show each car’s speed and distance as it animates.

We’ll create the visuals for this example in SVG. First, let’s create a string containing
an SVG path, which represents the track:

export default 'm 723.72379,404.71306 ... -8.30851,-3.00521 z'

This is a greatly truncated version of the actual path that we’ll use. We can import the
path string from track.js like this:

import path from './track'

To display the track inside a React component, we can render an svg element:

<svg height="600" width="1000" viewBox="0 0 1000 600"
 style={{backgroundColor: 'black'}}>
 <path stroke='#444' strokeWidth={10}
 fill='none' d={path}/>
</svg>

We can add a couple of rectangles for the vehicle—a red one for the body and a white
one for the windshield:

<svg height="600" width="1000" viewBox="0 0 1000 600"
 style={{backgroundColor: 'black'}}>
 <path stroke='#444' strokeWidth={10}
 fill='none' d={path}/>
 <rect width={24} height={16} x={-12} y={-8} fill='red'/>
 <rect width={2} height={6} x={3} y={-3} fill='white'/>
</svg>

Figure 4-16 shows the track with the vehicle at the top-left corner.

4.8 Animate Infographics with TweenOne | 149

Figure 4-16. The static image with a tiny vehicle at the top left

But how do we animate the vehicle around the track? TweenOne makes this easy
because it contains a plugin to generate animations that follow SVG path strings.

import PathPlugin from 'rc-tween-one/lib/plugin/PathPlugin'

TweenOne.plugins.push(PathPlugin)

We’ve configured TweenOne for use with SVG path animations. That means we can
look at how to describe an animation for TweenOne. We do it with a simple Java‐
Script object:

import path from './track'

const followAnimation = {
 path: { x: path, y: path, rotate: path },
 repeat: -1,
}

We tell TweenOne two things with this object: first, we’re telling it to generate trans‐
lates and rotations that follow the path string that we’ve imported from track.js. Sec‐
ond, we’re saying that we want the animation to loop infinitely by setting the repeat
count to –1.

150 | Chapter 4: Interaction Design

We can use this as the basis of animation for our vehicle:

<svg height="600" width="1000" viewBox="0 0 1000 600"
 style={{backgroundColor: 'black'}}>
 <path stroke='#444' strokeWidth={10}
 fill='none' d={path}/>
 <TweenOne component='g' animation={{...followAnimation, duration: 16000}}>
 <rect width={24} height={16} x={-12} y={-8} fill='red'/>
 <rect width={2} height={6} x={3} y={-3} fill='white'/>
 </TweenOne>
</svg>

Notice that we’re using the spread operator to provide an additional animation
parameter: duration. A value of 16000 means we want the animation to take 16
seconds.

We can add a second vehicle and use the onUpdate callback method to create a very
rudimentary set of faked telemetry statistics for each one as they move around the
track. Here is the completed code:

import { useState } from 'react'
import TweenOne from 'rc-tween-one'
import Details from './Details'
import path from './track'
import PathPlugin from 'rc-tween-one/lib/plugin/PathPlugin'
import grid from './grid.svg'

import './App.css'

TweenOne.plugins.push(PathPlugin)

const followAnimation = {
 path: { x: path, y: path, rotate: path },
 repeat: -1,
}

function App() {
 const [redTelemetry, setRedTelemetry] = useState({
 dist: 0,
 speed: 0,
 lap: 0,
 })
 const [blueTelemetry, setBlueTelemetry] = useState({
 dist: 0,
 speed: 0,
 lap: 0,
 })

 const trackVehicle = (info, telemetry) => ({
 dist: info.ratio,
 speed: info.ratio - telemetry.dist,
 lap:

4.8 Animate Infographics with TweenOne | 151

 info.ratio < telemetry.dist ? telemetry.lap + 1 : telemetry.lap,
 })

 return (
 <div className="App">
 <h1>Nürburgring</h1>
 <Details
 redTelemetry={redTelemetry}
 blueTelemetry={blueTelemetry}
 />
 <svg
 height="600"
 width="1000"
 viewBox="0 0 1000 600"
 style={{ backgroundColor: 'black' }}
 >
 <image href={grid} width={1000} height={600} />
 <path stroke="#444" strokeWidth={10} fill="none" d={path} />
 <path
 stroke="#c0c0c0"
 strokeWidth={2}
 strokeDasharray="3 4"
 fill="none"
 d={path}
 />

 <TweenOne
 component="g"
 animation={{
 ...followAnimation,
 duration: 16000,
 onUpdate: (info) =>
 setRedTelemetry((telemetry) =>
 trackVehicle(info, telemetry)
),
 }}
 >
 <rect width={24} height={16} x={-12} y={-8} fill="red" />
 <rect width={2} height={6} x={3} y={-3} fill="white" />
 </TweenOne>

 <TweenOne
 component="g"
 animation={{
 ...followAnimation,
 delay: 3000,
 duration: 15500,
 onUpdate: (info) =>
 setBlueTelemetry((telemetry) =>
 trackVehicle(info, telemetry)
),
 }}

152 | Chapter 4: Interaction Design

 >
 <rect width={24} height={16} x={-12} y={-8} fill="blue" />
 <rect width={2} height={6} x={3} y={-3} fill="white" />
 </TweenOne>
 </svg>
 </div>
)
}

export default App

Figure 4-17 shows the animation. The vehicles follow the path of the race track, rotat‐
ing to face the direction of travel.

Figure 4-17. Our final animation with telemetry generated from the current animation
state

Discussion
CSS animations are what you should use for most UI animation. However, in the case
of infographics, you often need to synchronize the text and the graphics. TweenOne
makes that possible, at the cost of greater CPU usage.

You can download the source for this recipe from the GitHub site.

4.8 Animate Infographics with TweenOne | 153

https://oreil.ly/8l7Vp

CHAPTER 5

Connecting to Services

React, unlike frameworks such as Angular, does not include everything you might
need for an application. In particular, it does not provide a standard way to get data
from network services into your application. That freedom is excellent because it
means that React applications can use the latest technology. The downside is that
developers just starting with React are left to struggle on their own.

In this chapter, we will look at a few ways to attach network services to your applica‐
tion. We will see some common themes through each of these recipes, and we’ll try to
keep the network code separate from the components that use it. That way, when a
new web service technology comes along, we can switch to it without changing a lot
of code.

5.1 Convert Network Calls to Hooks
Problem
One of the advantages of component-based development is that it breaks the code
down into small manageable chunks, each of which performs a distinct, identifiable
action. In some ways, the best kind of component is one that you can see on a large
screen without scrolling. One of the great features of React is that it has, in many
ways, gotten simpler over time. React hooks and the move away from class-based
components have removed boilerplate and reduced the amount of code.

However, one way to inflate the size of a component is by filling it with networking
code. If you aim to create simple code, you should try to strip out networking code
from your components. The components will become smaller, and the network code
will be more reusable.

But how should we split out the networking code?

155

Solution
In this recipe, we will look at a way of moving your network requests into React
hooks to track whether a network request is still underway or if there has been some
error that prevented it from succeeding.

Before we look at the details, we need to think about what is important to us when
making an asynchronous network request. There are three things that we need to
track:

• The data returned by the request
• Whether the request is still loading the data from the server
• Any errors that might have occurred when running the request

You will see these three things appearing in each of the recipes in this chapter. It
doesn’t matter whether we are making the requests with fetch or axios commands,
via Redux middleware, or through an API query layer like GraphQL; our component
will always care about data, loading state, and errors.

As an example, let’s build a simple message board that contains several forums. The
messages on each forum contain an author field and a text field. Figure 5-1 shows a
screenshot of the example application, which you can download from the GitHub
site.

Figure 5-1. The buttons select the NASA or Not NASA forums

The buttons at the top of the page select the “NASA” or “Not NASA” forums. A small
Node server provides the backend for our example application, which has pre-
populated some messages into the NASA forum. Once you have downloaded the
source code, you can run the backend server by running the server.js script in the
application’s main directory:

$ node ./server.js

The backend server runs at http://localhost:5000. We can start the React application
itself in the usual way:

156 | Chapter 5: Connecting to Services

$ npm run start

The React application will run on port 3000.

When in development mode, we proxy all backend requests
through the React server. If you’re using create-react-app, you
can do this by adding a proxy property to package.json and setting
it to http://localhost:5000. The React server will pass API calls to
our server.js backend. For example, http://localhost:3000/messages/
nasa (which returns an array of messages for the NASA forum) will
be proxied to http://localhost:5000/messages/nasa.

We’ll make the network request to read the messages using a simple fetch command:

const response = await fetch(`/messages/${forum}`)
if (!response.ok) {
 const text = await response.text()
 throw new Error(`Unable to read messages for ${forum}: ${text}`)
}
const body = await response.json()

Here, the forum value will contain the string ID of the forum. The fetch command is
asynchronous and returns a promise, so we will await it. Then we can check whether
the call failed with any bad HTTP status, and if so, we will throw an error. We will
extract the JSON object out of the response and store it in the body variable. If the
response body is not a correctly formatted JSON object, we will also throw an error.

We need to keep track of three things in this call: the data, the loading state, and any
errors. We’re going to bundle this whole thing up inside a custom hook, so let’s have
three states called data, loading, and error:

const useMessages = (forum) => {
 const [data, setData] = useState([])
 const [loading, setLoading] = useState(false)
 const [error, setError] = useState()

 return { data, loading, error }
}

We’ll pass in the forum name as a parameter to the useMessages hook, which will
return an object containing the data, loading, and error states. We can use object
destructuring to extract and rename the values in any component that uses the hook,
like this:

const {
 data: messages,
 loading: messagesLoading,
 error: messagesError,
} = useMessages('nasa')

5.1 Convert Network Calls to Hooks | 157

Renaming the variables in a spread operator helps avoid naming
conflicts. For example, if you want to read messages from more
than one forum, you could make a second call to the useMessages
hook and choose a variable other than messages for the second
hook response.

Let’s get back to the useMessages hook. The network request depends upon the forum
value that we pass in, so we need to make sure that we run the fetch request inside a
useEffect:

useEffect(() => {
 setError(null)
 if (forum) {

 } else {
 setData([])
 setLoading(false)
 }
}, [forum])

We’re omitting for the moment the code that makes the actual request. The code
inside the useEffect will run the first time the hook is called. If the client component
is re-rendered and passes in the same value for forum, the useEffect will not run
because the [forum] dependency will not have changed. It will run again only if the
forum value changes.

Now let’s look at how we can drop in the fetch request to this hook:

import { useEffect, useState } from 'react'

const useMessages = (forum) => {
 const [data, setData] = useState([])
 const [loading, setLoading] = useState(false)
 const [error, setError] = useState()

 useEffect(() => {
 let didCancel = false
 setError(null)
 if (forum) {
 ;(async () => {
 try {
 setLoading(true)
 const response = await fetch(`/messages/${forum}`)
 if (!response.ok) {
 const text = await response.text()
 throw new Error(
 `Unable to read messages for ${forum}: ${text}`
)
 }
 const body = await response.json()

158 | Chapter 5: Connecting to Services

 if (!didCancel) {
 setData(body)
 }
 } catch (err) {
 setError(err)
 } finally {
 setLoading(false)
 }
 })()
 } else {
 setData([])
 setLoading(false)
 }
 return () => {
 didCancel = true
 }
 }, [forum])

 return { data, loading, error }
}

export default useMessages

Because we’re using await to handle the promises correctly, we need to wrap the code
in a rather ugly (async () => {...}) call. Inside there, we’re able to set values for
data, loading, and error as the request runs, finishes, and (possibly) fails. All of this
will happen asynchronously after the call to the hook has been completed. When the
data, loading, and error states change, the hook will cause the component to be re-
rendered with the new values.

A consequence of having asynchronous code inside a hook is that
the hook will return before the network response has been
received. This means there’s a chance that the hook might be called
again, before the previous network response has been received. To
avoid the network responses being resolved in the wrong order, the
example code tracks if the current request was overridden by a later
request using the didCancel variable. This variable will control
whether the hook returns the data from the hook. It won’t cancel
the network request itself. To do that, see Recipe 5.3.

Let’s take a look at App.js in the example application to see what it looks like to use
this hook:

import './App.css'
import { useState } from 'react'
import useMessages from './useMessages'

function App() {
 const [forum, setForum] = useState('nasa')

5.1 Convert Network Calls to Hooks | 159

 const {
 data: messages,
 loading: messagesLoading,
 error: messagesError,
 } = useMessages(forum)

 return (
 <div className="App">
 <button onClick={() => setForum('nasa')}>NASA</button>
 <button onClick={() => setForum('notNasa')}>Not NASA</button>
 {messagesError ? (
 <div className="error">
 Something went wrong:
 <div className="error-contents">
 {messagesError.message}
 </div>
 </div>
) : messagesLoading ? (
 <div className="loading">Loading...</div>
) : messages && messages.length ? (
 <dl>
 {messages.map((m) => (
 <>
 <dt>{m.author}</dt>
 <dd>{m.text}</dd>
 </>
))}
 </dl>
) : (
 'No messages'
)}
 </div>
)
}

export default App

Our example application changes which forum is loaded when you click either the
NASA or Not NASA button. The example server returns a 404-status for the “Not
NASA” forum, which causes an error to appear on-screen. In Figure 5-2, we can see
the example application showing the loading state, the messages from the NASA
forum, and an error when we try to load data from the missing “Not NASA” forum.

160 | Chapter 5: Connecting to Services

Figure 5-2. The application showing loading, messages, and errors

The useMessages hook will also cope if the server throws an error, as shown in
Figure 5-3.

Figure 5-3. The component can display errors from the server

Discussion
When you’re creating an application, it’s tempting to spend your time building fea‐
tures that assume everything works. But it is worth investing the time to handle
errors and make an effort to show when data is still loading. Your application will be
pleasant to use, and you will have an easier time tracking down slow services and
errors.

You might also consider combining this recipe with Recipe 4.1, which will make it
easier for users to describe what happened.

You can download the source for this recipe from the GitHub site.

5.1 Convert Network Calls to Hooks | 161

https://oreil.ly/T6M6q

5.2 Refresh Automatically with State Counters
Problem
Network services often need to interact with each other. Take, for example, the forum
application we used in the previous recipe. If we add a form to post a new message,
we want the message list to update automatically every time a person posts
something.

In the previous version of this application, we created a custom hook called
useMessages, which contained all of the code needed to read a forum’s messages.

We’ll add a form to the application to post new messages to the server:

const {
 data: messages,
 loading: messagesLoading,
 error: messagesError,
} = useMessages('nasa')
const [text, setText] = useState()
const [author, setAuthor] = useState()
const [createMessageError, setCreateMessageError] = useState()
// Other code here...
<input
 type="text"
 value={author}
 placeholder="Author"
 onChange={(evt) => setAuthor(evt.target.value)}
/>
<textarea
 value={text}
 placeholder="Message"
 onChange={(evt) => setText(evt.target.value)}
/>
<button
 onClick={async () => {
 try {
 await [code to post message here]
 setText('')
 setAuthor('')
 } catch (err) {
 setCreateMessageError(err)
 }
 }}
>
 Post
</button>

Here’s the problem: when you post a new message, it doesn’t appear on the list unless
you refresh the page manually (see Figure 5-4).

162 | Chapter 5: Connecting to Services

Figure 5-4. Posting a message does not refresh the message list

How do we automatically reload the messages from the server each time we post a
new one?

Solution
We’re going to trigger data refreshes by using a thing called a state counter. A state
counter is just an increasing number. It doesn’t matter what the counter’s current
value is; it just matters that we change it every time we want to reload the data:

const [stateVersion, setStateVersion] = useState(0)

You can think of a state counter as representing our perceived version of the data on
the server. When we do something that we suspect will change the server state, we
update the state counter to reflect the change:

// code to post a new message here
setStateVersion((v) => v + 1)

Notice that we’re increasing the stateVersion value using a func‐
tion, rather than saying setStateVersion(stateVersion + 1).
You should always use a function to update a state value if the new
value depends upon the old value. That’s because React sets states
asynchronously. If we ran setStateVersion(stateVersion + 1)
twice in rapid succession, the value of stateVersion might not
change in between the two calls, and we would miss an increment.

The code that reads the current set of messages is wrapped inside a useEffect, which
we can force to rerun by making it dependent upon the stateVersion value:

useEffect(() => {
 setError(null)
 if (forum) {
 // Code to read /messages/:forum

5.2 Refresh Automatically with State Counters | 163

 } else {
 setData([])
 setLoading(false)
 }
}, [forum, stateVersion])

If the value of the forum variable changes or if the stateVersion changes, it will auto‐
matically reload the messages (see Figure 5-5).

Figure 5-5. Posting a new message causes the message list to reload

So that’s our approach. Now we need to look at where we’re going to put the code.
Here is the previous version of the component, which is only reading messages:

import './App.css'
import { useState } from 'react'
import useMessages from './useMessages'

function App() {
 const [forum, setForum] = useState('nasa')
 const {
 data: messages,
 loading: messagesLoading,
 error: messagesError,
 } = useMessages(forum)

 return (
 <div className="App">
 <button onClick={() => setForum('nasa')}>NASA</button>
 <button onClick={() => setForum('notNasa')}>Not NASA</button>
 {messagesError ? (
 <div className="error">
 Something went wrong:
 <div className="error-contents">
 {messagesError.message}
 </div>

164 | Chapter 5: Connecting to Services

1 We’re renaming it because it is no longer just a way to read a list of messages but the forum as a whole. We
could eventually add functions to delete, edit, or flag messages.

 </div>
) : messagesLoading ? (
 <div className="loading">Loading...</div>
) : messages && messages.length ? (
 <dl>
 {messages.map((m) => (
 <>
 <dt>{m.author}</dt>
 <dd>{m.text}</dd>
 </>
))}
 </dl>
) : (
 'No messages'
)}
 </div>
)
}

export default App

We’re going to add the new form to this component. We could also include the net‐
working code and the state counter code right here, inside the component. However,
that would put the posting code in the component and the reading code in the
useMessages hook. It’s better to keep all the networking code together in the hook.
Not only will the component be cleaner, but the networking code will be more
reusable.

This is code we’ll use for a new version of the useMessages hook, which we will
rename useForum:1

import { useCallback, useEffect, useState } from 'react'

const useForum = (forum) => {
 const [data, setData] = useState([])
 const [loading, setLoading] = useState(false)
 const [error, setError] = useState()
 const [creating, setCreating] = useState(false)
 const [stateVersion, setStateVersion] = useState(0)

 const create = useCallback(
 async (message) => {
 try {
 setCreating(true)
 const response = await fetch(`/messages/${forum}`, {
 method: 'POST',
 body: JSON.stringify(message),

5.2 Refresh Automatically with State Counters | 165

 headers: {
 'Content-type': 'application/json; charset=UTF-8',
 },
 })
 if (!response.ok) {
 const text = await response.text()
 throw new Error(
 `Unable to create a ${forum} message: ${text}`
)
 }
 setStateVersion((v) => v + 1)
 } finally {
 setCreating(false)
 }
 },
 [forum]
)

 useEffect(() => {
 let didCancel = false
 setError(null)
 if (forum) {
 ;(async () => {
 try {
 setLoading(true)
 const response = await fetch(`/messages/${forum}`)
 if (!response.ok) {
 const text = await response.text()
 throw new Error(
 `Unable to read messages for ${forum}: ${text}`
)
 }
 const body = await response.json()
 if (!didCancel) {
 setData(body)
 }
 } catch (err) {
 setError(err)
 } finally {
 setLoading(false)
 }
 })()
 } else {
 setData([])
 setLoading(false)
 }
 return () => {
 didCancel = true
 }
 }, [forum, stateVersion])

 return { data, loading, error, create, creating }

166 | Chapter 5: Connecting to Services

}

export default useForum

We now construct a create function inside the useForum hook and then return it
with various other pieces of state to the component. Notice that we are wrapping the
create function inside a useCallback, which means that we won’t create a new ver‐
sion of the function unless we need to do it to create data for a different forum value.

Be careful when creating functions inside hooks and components.
React will often trigger a re-render if a new function object is cre‐
ated, even if that function does the same thing as the previous
version.

When we call the create function, it posts a new message to the forum and then
updates the stateVersion value, which will automatically cause the hook to re-read
the messages from the server. Notice that we also have a creating value, which is
true when the network code is sending the message to the server. We can use the
creating value to disable the POST button.

However, we don’t track any errors inside the create. Why don’t we? After all, we do
when we’re reading data from the server. It’s because you often want more control
over exception handling when changing data on the server than you do when you are
simply reading it. In the example application, we clear out the message form when
sending a message to the server. If there’s an error, we want to leave the text in the
message form.

Now let’s look at the code that calls the hook:

import './App.css'
import { useState } from 'react'
import useForum from './useForum'

function App() {
 const {
 data: messages,
 loading: messagesLoading,
 error: messagesError,
 create: createMessage,
 creating: creatingMessage,
 } = useForum('nasa')
 const [text, setText] = useState()
 const [author, setAuthor] = useState()
 const [createMessageError, setCreateMessageError] = useState()

 return (
 <div className="App">
 <input

5.2 Refresh Automatically with State Counters | 167

 type="text"
 value={author}
 placeholder="Author"
 onChange={(evt) => setAuthor(evt.target.value)}
 />
 <textarea
 value={text}
 placeholder="Message"
 onChange={(evt) => setText(evt.target.value)}
 />
 <button
 onClick={async () => {
 try {
 await createMessage({ author, text })
 setText('')
 setAuthor('')
 } catch (err) {
 setCreateMessageError(err)
 }
 }}
 disabled={creatingMessage}
 >
 Post
 </button>
 {createMessageError ? (
 <div className="error">
 Unable to create message
 <div className="error-contents">
 {createMessageError.message}
 </div>
 </div>
) : null}
 {messagesError ? (
 <div className="error">
 Something went wrong:
 <div className="error-contents">
 {messagesError.message}
 </div>
 </div>
) : messagesLoading ? (
 <div className="loading">Loading...</div>
) : messages && messages.length ? (
 <dl>
 {messages.map((m) => (
 <>
 <dt>{m.author}</dt>
 <dd>{m.text}</dd>
 </>
))}
 </dl>
) : (
 'No messages'

168 | Chapter 5: Connecting to Services

2 See Recipe 3.4.

)}
 </div>
)
}

export default App

The details of how we read and write messages are hidden inside the useForum hook.
We use object destructuring to assign the create function to the createMessage vari‐
able. If we call createMessage, it will not only post the message but also automati‐
cally re-read the new messages from the forum and update the screen (see
Figure 5-6).

Figure 5-6. Posting a new message and automatically reloading

Our hook is no longer just a way to read data from the server. It’s becoming a service
for managing the forum itself.

Discussion
Be careful using this approach if you intend to post data to the server in one compo‐
nent and then read data in a different component. Separate hook instances will have
separate state counters, and posting data from one component will not automatically
re-read the data in another component. If you want to split code to post and read
across separate components, call the custom hook in some common parent compo‐
nent, pass the data, and post functions to the child components that need them.

If you want to make your code poll a network service at a regular interval, then con‐
sider creating a clock and making your network code depend upon the current clock
value, much as the preceding code depends upon the state counter.2

5.2 Refresh Automatically with State Counters | 169

You can download the source for this recipe from the GitHub site.

5.3 Cancel Network Requests with Tokens
Problem
Let’s consider a buggy application that can search for cities. When a user starts to type
a name in the search field, a list of matching cities appears. As the user types “C…
H… I… G…” the matching cities appear in the table of results. But then, after a
moment, a longer list of cities appears, which includes erroneous results, such as
Wichita Falls (see Figure 5-7).

Figure 5-7. The search works initially; then the wrong cities appear

The problem is that the application is sending a new network request each time the
user types a character. But not all network requests take the same amount of time. In
the example you can see here, the network request searching for “CHI” took a couple
of seconds longer than the search for “CHIG.” That meant that the “CHI” results
returned after the results for “CHIG.”

How can you prevent a series of asynchronous network calls from returning out of
sequence?

Solution
If you are making multiple GET calls to a network server, you can cancel old calls
before sending new ones, which means that you will never get results back out of
order because you will have only one network request calling the service at a time.

170 | Chapter 5: Connecting to Services

https://oreil.ly/knyC5

3 Compare this code with Recipe 5.1, which uses fetch.

For this recipe, we are going to use the Axios network library. That means that we
have to install it:

$ npm install axios

The Axios library is a wrapper for the native fetch function and allows you to cancel
network requests using tokens. The Axios implementation is based on the cancelable
promises proposal from ECMA.

Let’s begin by looking at our problem code. The network code is wrapped in a custom
hook:3

import { useEffect, useState } from 'react'
import axios from 'axios'

const useSearch = (terms) => {
 const [data, setData] = useState([])
 const [loading, setLoading] = useState(false)
 const [error, setError] = useState()

 useEffect(() => {
 setError(null)
 if (terms) {
 ;(async () => {
 try {
 setLoading(true)
 const response = await axios.get('/search', {
 params: { terms },
 })
 setData(response.data)
 } catch (err) {
 setError(err)
 } finally {
 setLoading(false)
 }
 })()
 } else {
 setData([])
 setLoading(false)
 }
 }, [terms])

 return { data, loading, error }
}

export default useSearch

5.3 Cancel Network Requests with Tokens | 171

https://oreil.ly/jd4LF
https://oreil.ly/jd4LF

4 If the previous network request has completed, canceling it will have no effect.

The terms parameter contains the search string. The problem occurred because the
code made a network request to /search for the string "CHI".

While that was in progress, we made another call with the string "CHIG". The earlier
request took longer, which caused the bug.

We’re going to avoid this problem by using an Axios cancel token. If we attach a
token to a request, we can then later use the token to cancel the request. The browser
will terminate the request, and we’ll never hear back from it.

To use the token, we need to first create a source for it:

const source = axios.CancelToken.source()

The source is like a remote control for the network request. Once a network request
is connected to a source, we can tell the source to cancel it. We associate a source with
a request using source.token:

const response = await axios.get('/search', {
 params: { terms },
 cancelToken: source.token,
})

Axios will remember which token is attached to which network request. If we want to
cancel the request, we can call this:

source.cancel('axios request canceled')

We need to make sure that we cancel a request only when we make a new request.
Fortunately, our network call is inside a useEffect, which has a handy feature. If we
return a function that cancels the current request, this function will be run just before
the useEffect runs again. So if we return a function that cancels the current network
request, we will automatically cancel the old network request each time we run a new
one.4 Here is the updated version of the custom hook:

import { useEffect, useState } from 'react'
import axios from 'axios'

const useCancelableSearch = (terms) => {
 const [data, setData] = useState([])
 const [loading, setLoading] = useState(false)
 const [error, setError] = useState()

 useEffect(() => {
 setError(null)
 if (terms) {
 const source = axios.CancelToken.source()
 ;(async () => {

172 | Chapter 5: Connecting to Services

5 It can also be quite confusing when you first use it. See Chapter 3 for more Redux recipes.

 try {
 setLoading(true)
 const response = await axios.get('/search', {
 params: { terms },
 cancelToken: source.token,
 })
 setData(response.data)
 } catch (err) {
 setError(err)
 } finally {
 setLoading(false)
 }
 })()

 return () => {
 source.cancel('axios request cancelled')
 }
 } else {
 setData([])
 setLoading(false)
 }
 }, [terms])

 return { data, loading, error }
}

export default useCancelableSearch

Discussion
You should use this approach only if you are accessing idempotent services. In prac‐
tice, this means that you should use it for GET requests where you are interested only
in the latest results.

You can download the source for this recipe from the GitHub site.

5.4 Make Network Calls with Redux Middleware
Problem
Redux is a library that allows you to manage application state centrally.5 When you
want to change the application state, you do it by dispatching commands (called
actions) that are captured and processed by JavaScript functions called reducers.
Redux is popular with React developers because it provides a way to separate
state-management logic from component code. Redux performs actions

5.4 Make Network Calls with Redux Middleware | 173

https://oreil.ly/aQj5g

asynchronously but in strict order. So, you can create large, complex applications in
Redux that are both efficient and stable.

It would be great if we could leverage the power of Redux to orchestrate all of our
network requests. We could dispatch actions that say things like “Go and read the lat‐
est search results,” and Redux could make the network request and then update the
central state.

However, to ensure that Redux code is stable, reducer functions have to meet several
quite strict criteria: and one of them is that no reducer function can have side effects.
That means that you should never make network requests inside a reducer.

But if we cannot make network requests inside reducer functions, how can we config‐
ure Redux to talk to the network for us?

Solution
In a React Redux application, components publish (dispatch) actions, and reducers
respond to actions by updating the central state (see Figure 5-8).

Figure 5-8. Using Redux reducers to update central state

If we want to create actions with side effects, we will have to use Redux middleware.
Middleware receives actions before Redux sends them to the reducers, and middle‐
ware can transform actions, cancel them, or create new actions. Most importantly,
Redux middleware code is allowed to have side effects. That means that if a compo‐
nent dispatches an action that says “Go and search for this string,” we can write mid‐
dleware that receives that action, generates a network call, and then converts the
response into a new “Store these search results” action. You can see how Redux mid‐
dleware works in Figure 5-9.

174 | Chapter 5: Connecting to Services

Figure 5-9. Middleware can make network calls

Let’s create some middleware that intercepts an action of type "SEARCH" and uses it to
generate a network service.

When we get the results back from the network, we will then create a new action of
type "SEARCH_RESULTS", which we can then use to store the search results in the cen‐
tral Redux state. Our action object will look something like this:

{
 "type": "SEARCH",
 "payload": "Some search text"
}

This is the axiosMiddleware.js code that we’ll use to intercept SEARCH actions:

import axios from 'axios'

const axiosMiddleware = (store) => (next) => (action) => {
 if (action.type === 'SEARCH') {
 const terms = action.payload
 if (terms) {
 ;(async () => {
 try {
 store.dispatch({
 type: 'SEARCH_RESULTS',
 payload: {
 loading: true,
 data: null,
 error: null,
 },
 })
 const response = await axios.get('/search', {
 params: { terms },
 })
 store.dispatch({
 type: 'SEARCH_RESULTS',
 payload: {

5.4 Make Network Calls with Redux Middleware | 175

 loading: false,
 error: null,
 data: response.data,
 },
 })
 } catch (err) {
 store.dispatch({
 type: 'SEARCH_RESULTS',
 payload: {
 loading: false,
 error: err,
 data: null,
 },
 })
 }
 })()
 }
 }
 return next(action)
}
export default axiosMiddleware

The function signature for Redux middleware can be confusing. You can think of it as
a function that receives a store, an action, and another function called next that can
forward actions on to the rest of Redux.

In the preceding code, we check to see if the action is of type SEARCH. If it is, we will
make a network call. If it isn’t, we run next(action), which will pass it on to any
other code interested in it.

When we start the network call, receive data, or capture any errors, then we can gen‐
erate a new SEARCH_RESULTS action:

store.dispatch({
 type: 'SEARCH_RESULTS',
 payload: {
 loading: ...,
 error: ...,
 data: ...
 },
})

The payload for our new action has the following:

• A Boolean flag called loading, which is true while the network request is
running

• A data object that contains the response from the server

176 | Chapter 5: Connecting to Services

6 To simplify things, we are simply storing the entire object. In reality, you would want to ensure that the error
contained only serializable text.

• An error object containing the details of any error that has occurred6

We can then create a reducer that will store SEARCH_RESULTS in the central state:

const reducer = (state, action) => {
 if (action.type === 'SEARCH_RESULTS') {
 return {
 ...state,
 searchResults: { ...action.payload },
 }
 }
 return { ...state }
}

export default reducer

We also need to register our middleware using the Redux applyMiddleware function
when we create the Redux store. In the example code, we do this in the App.js file:

import { Provider } from 'react-redux'
import { createStore, applyMiddleware } from 'redux'
import './App.css'

import reducer from './reducer'
import Search from './Search'
import axiosMiddleware from './axiosMiddleware'

const store = createStore(reducer, applyMiddleware(axiosMiddleware))

function App() {
 return (
 <div className="App">
 <Provider store={store}>
 <Search />
 </Provider>
 </div>
)
}

export default App

Finally, we can wire everything up in a Search component, which will dispatch a
search request, and then read the results through a Redux selector:

import './App.css'
import { useState } from 'react'
import { useDispatch, useSelector } from 'react-redux'

5.4 Make Network Calls with Redux Middleware | 177

const Search = () => {
 const [terms, setTerms] = useState()
 const {
 data: results,
 error,
 loading,
 } = useSelector((state) => state.searchResults || {})
 const dispatch = useDispatch()

 return (
 <div className="App">
 <input
 placeholder="Search..."
 type="text"
 value={terms}
 onChange={(e) => {
 setTerms(e.target.value)
 dispatch({
 type: 'SEARCH',
 payload: e.target.value,
 })
 }}
 />
 {error ? (
 <p>Error: {error.message}</p>
) : loading ? (
 <p>Loading...</p>
) : results && results.length ? (
 <table>
 <thead>
 <tr>
 <th>City</th>
 <th>State</th>
 </tr>
 </thead>
 {results.map((r) => (
 <tr>
 <td>{r.name}</td>
 <td>{r.state}</td>
 </tr>
))}
 </table>
) : (
 <p>No results</p>
)}
 </div>
)
}
export default Search

You can see the demo application running in Figure 5-10.

178 | Chapter 5: Connecting to Services

7 See Recipe 5.3.

Figure 5-10. The application when data is loading, loaded, or errored

Discussion
Redux reducers always process actions in strict dispatch order. The same is not true
for network requests generated by middleware. If you are making many network
requests in quick succession, you might find that responses return in a different
order. If this is likely to lead to bugs, then consider using cancellation tokens.7

You might also consider moving all Redux useDispatch()/useSelector() code out
of components and into custom hooks, which will give you a more flexible architec‐
ture by separating your service layer from your component code.

You can download the source for this recipe from the GitHub site.

5.5 Connect to GraphQL
Problem
GraphQL is an excellent way of creating APIs. If you’ve used REST services for a
while, then some features of GraphQL will seem odd (or even heretical), but having
worked on a few GraphQL projects, we would certainly recommend that you con‐
sider it for your next development project.

When people refer to GraphQL, they can mean several things. They might be refer‐
ring to the GraphQL language, which is managed and maintained by the GraphQL
Foundation. GraphQL allows you to specify APIs and to create queries to access and
mutate the data stored behind those APIs. They might be referring to a GraphQL
server, which stitches together multiple low-level data access methods into a rich web

5.5 Connect to GraphQL | 179

https://oreil.ly/YlqEF

service. Or they might be talking about a GraphQL client, which allows you to rapidly
create new client requests with very little code and transfer just the data you need
across the network.

But how do you integrate GraphQL with your React application?

Solution
Before we look at how to use GraphQL from React, we will begin by creating a small
GraphQL server. The first thing we need is a GraphQL schema. The schema is a for‐
mal definition of the data and services that our GraphQL server will provide.

Here is the schema.graphql schema we’ll use. It’s a GraphQL specification of the forum
message example we’ve used previously in this chapter:

type Query {
 messages: [Message]
}

type Message {
 id: ID!
 author: String!
 text: String!
}

type Mutation {
 addMessage(
 author: String!
 text: String!
): Message
}

This schema defines a single query (method for reading data) called messages, which
returns an array of Message objects. Each Message has an id, a non-null string called
author, and a non-null string called text. We also have a single mutation (method for
changing data) called addMessage, which will store a message based on an author
string and a text string.

Before we create our sample server, we’ll install a few libraries:

$ npm install apollo-server
$ npm install graphql
$ npm install require-text

The apollo-server is a framework for creating GraphQL servers. The require-text
library will allows us to read the schema.graphql file. This is server.js, our example
server:

const { ApolloServer } = require('apollo-server')
const requireText = require('require-text')

180 | Chapter 5: Connecting to Services

const typeDefs = requireText('./schema.graphql', require)

const messages = [
 {
 id: 0,
 author: 'SC',
 text: 'Rolls complete and a pitch is program. One BRAVO.',
 },
 {
 id: 1,
 author: 'PAO',
 text: 'One BRAVO is an abort control model. Altitude is 2 miles.',
 },
 {
 id: 2,
 author: 'CAPCOM',
 text: 'All is well at Houston. You are good at 1 minute.',
 },
]

const resolvers = {
 Query: {
 messages: () => messages,
 },
 Mutation: {
 addMessage: (parent, message) => {
 const item = { id: messages.length + 1, ...message }
 messages.push(item)
 return item
 },
 },
}

const server = new ApolloServer({
 typeDefs,
 resolvers,
})

server.listen({ port: 5000 }).then(({ url }) => {
 console.log(Launched at ${url}!)
})

The server stores messages in an array, which is prepopulated with a few messages.
You can start the server with:

$ node ./server.js

This command will start the server on port 5000. If you open a browser to http://
localhost:5000, you will see the GraphQL Playground client. The Playground client is
a tool that allows you to try out queries and mutations interactively before adding
them to your code (see Figure 5-11).

5.5 Connect to GraphQL | 181

Figure 5-11. The GraphQL Playground should be running at http://localhost:5000

Now we can start to look at the React client code. We’ll install the Apollo client:

$ npm install @apollo/client

GraphQL supports both GET and POST requests, but the Apollo client sends queries
and mutations to the GraphQL server as POST requests, which avoids any cross-
domain issues and means you can connect to a third-party GraphQL server without
having to proxy. As a consequence, it means that a GraphQL client has to handle its
own caching, so we will need to provide a cache and the address of the server when
we configure the client in App.js:

import './App.css'
import {
 ApolloClient,
 ApolloProvider,
 InMemoryCache,
} from '@apollo/client'
import Forum from './Forum'

const client = new ApolloClient({
 uri: 'http://localhost:5000',
 cache: new InMemoryCache(),
})

function App() {
 return (
 <div className="App">
 <ApolloProvider client={client}>

182 | Chapter 5: Connecting to Services

 <Forum />
 </ApolloProvider>
 </div>
)
}

export default App

The ApolloProvider makes the client available to any child component. If you forget
to add the ApolloProvider, you will find that all of your GraphQL client code will
fail.

We’re going to make the calls to GraphQL from inside the Forum component. We’ll be
performing two actions:

• A query called Messages that reads all of the messages
• A mutation called AddMessage that will post a new message

The query and the mutation are written in the GraphQL language. Here’s the
Messages query:

query Messages {
 messages {
 author text
 }
}

This query means that we want to read all of the messages, but we only want to return
the author and text strings. Because we’re not asking for the message id, the
GraphQL server won’t return it. This is part of the flexibility of GraphQL: you specify
what you want at query time rather than by crafting a particular API call for each
variation.

The AddMessage mutation is a little more complex, because it needs to be parameter‐
ized so that we can specify the author and text values each time we call it:

mutation AddMessage(
 $author: String!
 $text: String!
) {
 addMessage(
 author: $author
 text: $text
) {
 author
 text
 }
}

5.5 Connect to GraphQL | 183

8 This is a standard set of values for an asynchronous service. We’ve used them in other recipes in this chapter.

We’re going to use the useQuery and useMutation hooks provided by the Apollo
GraphQL client. The useQuery hook returns an object with data, loading, and error
attributes.8 The useMutation hook returns an array with two values: a function and
an object representing the result.

In Recipe 5.2, we looked at how to automatically reload data after some mutation has
changed it on the server. Thankfully, the Apollo client has a ready-made solution.
When you call a mutation, you can specify an array of other queries that should be
rerun if the mutation is successful:

await addMessage({
 variables: { author, text },
 refetchQueries: ['Messages'],
})

The 'Messages' string refers to the name of the GraphQL query, which means we
can be running multiple queries against the GraphQL service and specify which of
them are likely to need refreshing after a change.

Finally, here is the complete Forum component:

import { gql, useMutation, useQuery } from '@apollo/client'
import { useState } from 'react'

const MESSAGES = gql`
 query Messages {
 messages {
 author
 text
 }
 }
`

const ADD_MESSAGE = gql`
 mutation AddMessage($author: String!, $text: String!) {
 addMessage(author: $author, text: $text) {
 author
 text
 }
 }
`

const Forum = () => {
 const {
 loading: messagesLoading,
 error: messagesError,
 data,
 } = useQuery(MESSAGES)

184 | Chapter 5: Connecting to Services

 const [addMessage] = useMutation(ADD_MESSAGE)
 const [text, setText] = useState()
 const [author, setAuthor] = useState()

 const messages = data && data.messages

 return (
 <div className="App">
 <input
 type="text"
 value={author}
 placeholder="Author"
 onChange={(evt) => setAuthor(evt.target.value)}
 />
 <textarea
 value={text}
 placeholder="Message"
 onChange={(evt) => setText(evt.target.value)}
 />
 <button
 onClick={async () => {
 try {
 await addMessage({
 variables: { author, text },
 refetchQueries: ['Messages'],
 })
 setText('')
 setAuthor('')
 } catch (err) {}
 }}
 >
 Post
 </button>
 {messagesError ? (
 <div className="error">
 Something went wrong:
 <div className="error-contents">
 {messagesError.message}
 </div>
 </div>
) : messagesLoading ? (
 <div className="loading">Loading...</div>
) : messages && messages.length ? (
 <dl>
 {messages.map((m) => (
 <>
 <dt>{m.author}</dt>
 <dd>{m.text}</dd>
 </>
))}
 </dl>
) : (

5.5 Connect to GraphQL | 185

9 Much as we do with HTTP network calls in Recipe 5.2.

 'No messages'
)}
 </div>
)
}
export default Forum

When you run the application and post a new message, the messages list automati‐
cally updates with the new message added to the end, as shown in Figure 5-12.

Figure 5-12. After we post a message, it appears on the list

Discussion
GraphQL is particularly useful if you have a team split between frontend and backend
developers. Unlike REST, a GraphQL system does not require the backend developers
to handcraft every API call made by the client. Instead, the backend team can provide
a solid and consistent API structure and leave it to the frontend team to decide pre‐
cisely how they will use it.

If you are creating a React application using GraphQL, you might consider extracting
all of the useQuery and useMutation calls into a custom hooks.9 In this way, you will
create a more flexible architecture in which the components are less bound to the
details of the service layer.

You can download the source for this recipe from the GitHub site.

186 | Chapter 5: Connecting to Services

https://oreil.ly/xTcAK

5.6 Reduce Network Load with Debounced Requests
Problem
It is easy to forget about performance when you’re working in a development system.
That’s probably a good thing because it’s more important that code does the right
thing rather than do the wrong thing quickly.

But when your application gets deployed to its first realistic environment—such as
one used for user acceptance testing—then performance will become more impor‐
tant. The kind of dynamic interfaces associated with React often make a lot of net‐
work calls, and the cost of these calls will be noticeable only once the server has to
cope with lots of concurrent clients.

We’ve used an example search application a few times in this chapter. In the search
app, a user can look for a city by name or state. The search happens immediately—
while they are typing. If you open the developer tools and look at the network
requests (see Figure 5-13), you will see that it generates network requests for each
character typed.

Figure 5-13. The demo search application runs a network request for each character

Most of these network requests will provide almost no value. The average typist will
probably hit a key every half-second, and if they are looking at their keyboard, they
probably won’t even see the results for each of those searches. Of the seven requests
they send to the server, they will likely read the results from only one of them: the
last. That means the server is doing seven times more work than was needed.

What can we do to avoid sending so many wasted requests?

Solution
We’re going to debounce the network requests for the search calls. Debouncing means
that we will delay sending a network request for a very short period, say a half-
second. If another request comes in while we’re waiting, we’ll forget about the first

5.6 Reduce Network Load with Debounced Requests | 187

request and then create another delayed request. In this way, we defer sending any
request until we receive no new requests for half a second.

To see how to do this, look at our example search hook, useSearch.js:
import { useEffect, useState } from 'react'
import axios from 'axios'

const useSearch = (terms) => {
 const [data, setData] = useState([])
 const [loading, setLoading] = useState(false)
 const [error, setError] = useState()

 useEffect(() => {
 let didCancel = false
 setError(null)
 if (terms) {
 ;(async () => {
 try {
 setLoading(true)
 const response = await axios.get('/search', {
 params: { terms },
 })
 if (!didCancel) {
 setData(response.data)
 }
 } catch (err) {
 setError(err)
 } finally {
 setLoading(false)
 }
 })()
 } else {
 setData([])
 setLoading(false)
 }
 return () => {
 didCancel = true
 }
 }, [terms])

 return { data, loading, error }
}
export default useSearch

The code that sends the network request is inside the (async ()....)() block of
code. We need to delay this code until we get a half-second to spare.

The JavaScript function setTimeout will run the code after a delay. This will be key to
how we implement the debounce feature:

const newTimer = setTimeout(SOMEFUNCTION, 500)

188 | Chapter 5: Connecting to Services

We can use the newTimer value to clear the timeout, which might mean that our func‐
tion never gets called if we do it quickly enough. To see how we can use this to
debounce the network requests, look at useDebouncedSearch.js, a debounced version
of useSearch.js:

import { useEffect, useState } from 'react'
import axios from 'axios'

const useDebouncedSearch = (terms) => {
 const [data, setData] = useState([])
 const [loading, setLoading] = useState(false)
 const [error, setError] = useState()

 useEffect(() => {
 setError(null)
 if (terms) {
 const newTimer = setTimeout(() => {
 ;(async () => {
 try {
 setLoading(true)
 const response = await axios.get('/search', {
 params: { terms },
 })
 setData(response.data)
 } catch (err) {
 setError(err)
 } finally {
 setLoading(false)
 }
 })()
 }, 500)
 return () => clearTimeout(newTimer)
 } else {
 setData([])
 setLoading(false)
 }
 }, [terms])

 return { data, loading, error }
}

export default useDebouncedSearch

We pass the network code into the setTimeout function and then return the
following:

() => clearTimeout(newTimer)

5.6 Reduce Network Load with Debounced Requests | 189

If you return a function from useEffect, this code is called just before the next time
useEffect triggers, which means if the user keeps typing quickly, we will keep defer‐
ring the network request. Only when the user stops typing for half a second will the
code submit a network request.

The original version of the useSearch hook ran a network request for every single
character. With the debounced version of the hook, typing at an average speed will
result in just a single network request (see Figure 5-14).

Figure 5-14. The debounced search hook will send fewer requests

Discussion
Debouncing requests will reduce your network traffic and the load on the server. It’s
important to remember that debouncing reduces the number of unnecessary network
requests. It does not avoid the problem of network responses returning in a different
order. For more details on how to avoid the response order problem, see Recipe 5.3.

You can download the source for this recipe from the GitHub site.

190 | Chapter 5: Connecting to Services

https://oreil.ly/5nciD

CHAPTER 6

Component Libraries

If you are building an application of any size, you are likely to need a component
library. The data types that native HTML supports are somewhat limited, and the
implementations can vary from browser to browser. For example, a date input field
looks very different on Chrome, Firefox, and Edge browsers.

Component libraries allow you to create a consistent feel for your application. They
will often adapt well when switching between desktop and mobile clients. Most
importantly, component libraries often give your application a usability boost. They
have been either generated from design standards that have been thoroughly tested
(such as Material Design) or developed over several years. Any rough corners have
generally been smoothed out.

Be aware: there is no such thing as the perfect component library. They all have
strengths and weaknesses, and you need to choose a library that best meets your
needs. If you have a large UX team and a robust set of preexisting design standards,
you will likely want a library that allows for a lot of tweaking to adapt the library to
match your corporate themes. An example would be Material-UI, which allows you
to modify its components quite significantly. If you have a small UX team or no UX
team at all, you would probably want to consider something like Semantic UI, which
is clean and functional and gets you up and running quickly.

Whichever library you choose, always remember that the essential thing in UX is not
how your application looks but how it behaves. Users will soon ignore whatever fla‐
shy graphics you add to the interface, but they will never forget (or forgive) some part
of the interface that irritates them each time they use it.

191

1 For full details of the entire component set, see the Material-UI site.

6.1 Use Material Design with Material-UI
Problem
Many applications are now available on both the web and as native applications on
mobile devices. Google created Material Design to provide a seamless experience
across all platforms. Material Design will seem familiar to your users if they also use
Android phones or anything created by Google. Material Design is just a specifica‐
tion, and there are several implementations available. One such is the Material-UI
library for React. But what are the steps involved in using Material-UI, and how do
you install it?

Solution
Let’s begin by installing the core Material-UI library:

$ npm install @material-ui/core

The core library includes the main components, but it omits one notable feature: the
standard typeface. To make Material-UI feel the same as it does in a native mobile
application, you should also install Google’s Roboto typeface:

$ npm install fontsource-roboto

Material Design also specifies a large set of standard icons. These provide a common
visual language for standard tasks such as editing tasks, creating new items, sharing
content, etc. To use high-quality versions of these icons, you should also install the
Material-UI icon library:

$ npm install @material-ui/icons

Now that we have Material-UI up and running, what can we do with it? We can’t look
in detail at all of the available components here, but we will look at some of the more
popular features.1

We’ll begin by looking at the basics of styling within Material-UI. To ensure that
Material-UI components look the same across different browsers, they have included
a CssBaseline component, which will normalize the basic styling of your application.
It will remove margins and apply standard background colors. You should add a
CssBaseline component somewhere near the start of your application. For example,
if you are using create-react-app, you should probably add it to your App.js:

import CssBaseline from '@material-ui/core/CssBaseline'
...

192 | Chapter 6: Component Libraries

https://material-ui.com

function App() {
 // ...

 return (
 <div className="App">
 <CssBaseline />
 ...
 </div>
)
}

export default App

Next, we’ll take a look at the Material Design AppBar and Toolbar components. These
provide the standard heading you see in most Material Design applications and are
where other features such as hamburger menus and drawer panels will appear.

We’ll place an AppBar at the top of the screen and put a Toolbar inside. This will give
us a chance to look at the way that typography is handled inside Material-UI:

<div className="App">
 <CssBaseline/>
 <AppBar position='relative'>
 <Toolbar>
 <Typography component='h1' variant='h6' color='inherit' noWrap>
 Material-UI Gallery
 </Typography>
 </Toolbar>
 </AppBar>
 <main>
 {/* Main content goes here...*/}
 </main>
</div>

Although you can insert ordinary textual content inside Material-UI applications, it is
generally better to display it inside Typography. A Typography component will ensure
that the text matches the Material Design standards. We can also use it to display text
inside the appropriate markup elements. In this case, we’re going to display the text in
the Toolbar as an h1 element. That’s what the Typography component attribute speci‐
fies: the HTML element that should be used to wrap the text. However, we can also
tell Material-UI to style the text as if it’s an h6 heading. That will make it a little
smaller and less overpowering as a page heading.

Next, let’s look at how Material-UI styles the output. It uses themes. A theme is a Java‐
Script object that defines a hierarchy of CSS styles. You can define themes centrally,
and this allows you to control the overall appearance of your application.

Themes are extensible. We’ll import a function called makeStyles, which will allow us
to create a modified version of the default theme:

import { makeStyles } from '@material-ui/core/styles'

6.1 Use Material Design with Material-UI | 193

2 For more information on these components, see the Material-UI site.

We’re going to make our example application display a gallery of images, so we will
want to create styles for gallery items, descriptions, and so on. We can create styles for
these different screen elements with makeStyles:

const useStyles = makeStyles((theme) => ({
 galleryGrid: {
 paddingTop: theme.spacing(4),
 },
 galleryItemDescription: {
 overflow: 'hidden',
 textOverflow: 'ellipsis',
 whiteSpace: 'nowrap',
 },
}))

In this simplified example, we extend the base theme to include styles for the classes
galleryGrid and galleryItemDescription. Either we can add CSS attributes liter‐
ally or (in the case of paddingTop in the galleryGrid) we can reference some value in
the current theme: in this case theme.spacing(4). So, we can defer parts of the styl‐
ing to a centralized theme, where we can change it later.

The useStyles returned by makeStyles is a hook that will generate a set of CSS
classes and then return their names so we can refer to them inside our component.

For example, we will want to display a grid of images, using Container and Grid
components.2 We can attach the styles to them from the theme like this:

const classes = useStyles()

return (
 <div className="App">
 ...
 <main>
 <Container className={classes.galleryGrid}>
 <Grid container spacing="4">
 <Grid item>...</Grid>
 <Grid item>...</Grid>
 ...
 </Grid>
 </Container>
 </main>
 </div>
)

Each Grid component is either a container or an item. We will display a gallery image
within each item.

194 | Chapter 6: Component Libraries

https://material-ui.com

In Material Design, we show significant items inside cards. A card is a rectangular
panel that appears to float slightly above the background. If you’ve ever used the Goo‐
gle Play Store, you will have seen cards used to display applications, music tracks, or
other things you might want to download. We will place a card inside each Grid item
and use it to display a preview, a text description, and a button that can show a more
detailed version of the image. You can see the cards in the example application in
Figure 6-1.

Figure 6-1. Cards are inside grid items, which are inside a container

Material-UI also has extensive support for dialog windows. Here is an example of a
custom dialog:

import Dialog from '@material-ui/core/Dialog'
import DialogTitle from '@material-ui/core/DialogTitle'
import Typography from '@material-ui/core/Typography'
import DialogContent from '@material-ui/core/DialogContent'
import DialogActions from '@material-ui/core/DialogActions'
import Button from '@material-ui/core/Button'
import CloseIcon from '@material-ui/icons/Close'

const MyDialog = ({ onClose, open, title, children }) => {
 return (
 <Dialog open={open} onClose={onClose}>
 <DialogTitle>
 <Typography
 component="h1"
 variant="h5"
 color="inherit"

6.1 Use Material Design with Material-UI | 195

 noWrap
 >
 {title}
 </Typography>
 </DialogTitle>
 <DialogContent>{children}</DialogContent>
 <DialogActions>
 <Button
 variant="outlined"
 startIcon={<CloseIcon />}
 onClick={onClose}
 >
 Close
 </Button>
 </DialogActions>
 </Dialog>
)
}

export default MyDialog

Notice that we are importing an SVG icon from the Material-UI icons library that we
installed earlier. The DialogTitle appears at the top of the dialog. The
DialogActions are the buttons that appear at the base of the dialog. You define the
main body of the dialog in the DialogContent.

Here is the complete code for App.js:
import './App.css'
import CssBaseline from '@material-ui/core/CssBaseline'
import AppBar from '@material-ui/core/AppBar'
import { Toolbar } from '@material-ui/core'
import Container from '@material-ui/core/Container'
import Grid from '@material-ui/core/Grid'
import Card from '@material-ui/core/Card'
import CardMedia from '@material-ui/core/CardMedia'
import CardContent from '@material-ui/core/CardContent'
import CardActions from '@material-ui/core/CardActions'
import Typography from '@material-ui/core/Typography'
import { makeStyles } from '@material-ui/core/styles'
import { useState } from 'react'
import MyDialog from './MyDialog'
import ImageSearchIcon from '@material-ui/icons/ImageSearch'

import gallery from './gallery.json'
import IconButton from '@material-ui/core/IconButton'

const useStyles = makeStyles((theme) => ({
 galleryGrid: {
 paddingTop: theme.spacing(4),
 },
 galleryItem: {

196 | Chapter 6: Component Libraries

 height: '100%',
 display: 'flex',
 flexDirection: 'column',
 // maxWidth: '200px'
 },
 galleryImage: {
 paddingTop: '54%',
 },
 galleryItemDescription: {
 overflow: 'hidden',
 textOverflow: 'ellipsis',
 whiteSpace: 'nowrap',
 },
}))

function App() {
 const [showDetails, setShowDetails] = useState(false)
 const [selectedImage, setSelectedImage] = useState()
 const classes = useStyles()

 return (
 <div className="App">
 <CssBaseline />
 <AppBar position="relative">
 <Toolbar>
 <Typography
 component="h1"
 variant="h6"
 color="inherit"
 noWrap
 >
 Material-UI Gallery
 </Typography>
 </Toolbar>
 </AppBar>
 <main>
 <Container className={classes.galleryGrid}>
 <Grid container spacing="4">
 {gallery.map((item, i) => {
 return (
 <Grid item key={`photo-${i}`} xs={12} sm={3} lg={2}>
 <Card className={classes.galleryItem}>
 <CardMedia
 image={item.image}
 className={classes.galleryImage}
 title="A photo"
 />
 <CardContent>
 <Typography
 gutterBottom
 variant="h6"
 component="h2"

6.1 Use Material Design with Material-UI | 197

 >
 Image
 </Typography>
 <Typography
 className={classes.galleryItemDescription}
 >
 {item.description}
 </Typography>
 </CardContent>
 <CardActions>
 <IconButton
 aria-label="delete"
 onClick={() => {
 setSelectedImage(item)
 setShowDetails(true)
 }}
 color="primary"
 >
 <ImageSearchIcon />
 </IconButton>
 </CardActions>
 </Card>
 </Grid>
)
 })}
 </Grid>
 </Container>
 </main>
 <MyDialog
 open={showDetails}
 title="Details"
 onClose={() => setShowDetails(false)}
 >
 <img
 src={selectedImage && selectedImage.image}
 alt="From PicSum"
 />
 <Typography>
 {selectedImage && selectedImage.description}
 </Typography>
 </MyDialog>
 </div>
)
}

export default App

198 | Chapter 6: Component Libraries

Discussion
Material-UI is a great library to use and is one of the most popular libraries currently
used with React. Users coming to your application will almost certainly have used it
elsewhere, which will increase your application’s usability. Before launching into
using Material-UI in your application, it is worth spending some time understanding
the Material Design principles. That way, you will create an application that is not
only attractive but also easy to use and accessible to users.

You can download the source for this recipe from the GitHub site.

6.2 Create a Simple UI with React Bootstrap
Problem
The most popular CSS library of the last 10 years is probably Twitter’s Bootstrap
library. It’s also a good choice if you are creating a new application and have very little
time to worry about creating a custom UI and simply want something easy-to-use
and familiar to the vast number of users.

But Bootstrap comes from a time before frameworks like React existed. Bootstrap
includes CSS resources and a set of JavaScript libraries designed for web pages con‐
taining a small amount of handcrafted client code. The base Bootstrap library doesn’t
play well with a framework like React.

How do you use Bootstrap when you’re creating a React application?

Solution
There are several ports of the Bootstrap library for use with React. In this recipe, we
will look at React Bootstrap. React Bootstrap works alongside the standard Bootstrap
CSS libraries, but it extends the Bootstrap JavaScript to make it more React-friendly.

Let’s begin by first installing the React Bootstrap components and the Bootstrap Java‐
Script libraries:

$ npm install react-bootstrap bootstrap

The React Bootstrap library does not include any CSS styling of its own. You will
need to include a copy of that yourself. The most common way of doing this is by
downloading it from a content distribution network (CDN) in your HTML. For
example, if you are using create-react-app, you should include something like this
in your public/index.html file:

6.2 Create a Simple UI with React Bootstrap | 199

https://oreil.ly/Jlk7w
https://oreil.ly/RJiW1
https://oreil.ly/TqVFz

<link
 rel="stylesheet"
 href="https://maxcdn.bootstrapcdn.com/bootstrap/4.5.0/css/bootstrap.min.css"
 integrity="sha384-9aIt2nRpC12Uk9gS9baDl411NQApFmC26EwAOH8WgZl5MYYxFfc+NcPb1dKG"
 crossorigin="anonymous"
/>

It would be best if you replaced this with the latest stable version of Bootstrap that’s
available. You will need to manage the version of Bootstrap manually; it will not
update when you upgrade your JavaScript libraries.

Bootstrap is a good, general-purpose library, but its support for forms is particularly
strong. Good form layout can take time and can be tedious. Bootstrap handles all of
the hard work for you and allows you to focus on the functionality of your form. For
example, the React Bootstrap Form component contains almost everything you need
to create a form. The Form.Control component will generate an input by default.
The Form.Label will generate a label, and a Form.Group will associate the two
together and lay them out appropriately:

<Form.Group controlId="startupName">
 <Form.Label>Startup name</Form.Label>
 <Form.Control placeholder="No names ending in ...ly, please"/>
</Form.Group>

Form fields are normally displayed on a single line and take up the available width. If
you want more than one field to appear on a line, then you can use a Form.Row:

<Form.Row>
 <Form.Group as={Col} controlId="startupName">
 <Form.Label>Startup name</Form.Label>
 <Form.Control placeholder="No names ending in ...ly, please"/>
 </Form.Group>
 <Form.Group as={Col} controlId="market">
 <Form.Label>Market</Form.Label>
 <Form.Control placeholder="e.g. seniors on Tik-Tok"/>
 </Form.Group>
</Form.Row>

The Col component ensures that the labels and fields are sized appropriately. If you
want a form field that’s something other than an input, you can use the as attribute:

<Form.Control as="select" defaultValue="Choose...">
 <option>Progressive web application</option>
 <option>Conservative web application</option>
 <option>Android native</option>
 <option>iOS native</option>
 <option>New Jersey native</option>
 <option>VT220</option>
</Form.Control>

This will generate a Bootstrap-styled select element.

200 | Chapter 6: Component Libraries

Putting the whole thing together leads to the form you can see in Figure 6-2:

import Form from 'react-bootstrap/Form'
import Col from 'react-bootstrap/Col'
import Button from 'react-bootstrap/Button'
import Alert from 'react-bootstrap/Alert'
import { useState } from 'react'
import './App.css'

function App() {
 const [submitted, setSubmitted] = useState(false)

 return (
 <div className="App">
 <h1>VC Funding Registration</h1>
 <Form>
 <Form.Row>
 <Form.Group as={Col} controlId="startupName">
 <Form.Label>Startup name</Form.Label>
 <Form.Control placeholder="No names ending in ...ly, please" />
 </Form.Group>
 <Form.Group as={Col} controlId="market">
 <Form.Label>Market</Form.Label>
 <Form.Control placeholder="e.g. seniors on Tik-Tok" />
 </Form.Group>
 <Form.Group as={Col} controlId="appType">
 <Form.Label>Type of application</Form.Label>
 <Form.Control as="select" defaultValue="Choose...">
 <option>Progressive web application</option>
 <option>Conservative web application</option>
 <option>Android native</option>
 <option>iOS native</option>
 <option>New Jersey native</option>
 <option>VT220</option>
 </Form.Control>
 </Form.Group>
 </Form.Row>

 <Form.Row>
 <Form.Group as={Col} controlId="description">
 <Form.Label>Description</Form.Label>
 <Form.Control as="textarea" />
 </Form.Group>
 </Form.Row>

 <Form.Group id="technologiesUsed">
 <Form.Label>
 Technologies used (check at least 3)
 </Form.Label>
 <Form.Control as="select" multiple>
 <option>Blockchain</option>
 <option>Machine learning</option>
 <option>Quantum computing</option>

6.2 Create a Simple UI with React Bootstrap | 201

 <option>Autonomous vehicles</option>
 <option>For-loops</option>
 </Form.Control>
 </Form.Group>

 <Button variant="primary" onClick={() => setSubmitted(true)}>
 Submit
 </Button>
 </Form>
 <Alert
 show={submitted}
 variant="success"
 onClose={() => setSubmitted(false)}
 dismissible
 >
 <Alert.Heading>We'll be in touch!</Alert.Heading>
 <p>One of our partners will be in touch shortly.</p>
 </Alert>
 </div>
)
}

export default App

Figure 6-2. A React bootstrap form and alert box

Discussion
Bootstrap is a much older UI toolkit than Material Design, but there are still markets
where it feels more appropriate. If you’re building an application that has to feel more
like a traditional website, then Bootstrap will give it that more traditional feel. If you

202 | Chapter 6: Component Libraries

3 See Recipe 5.1 for more information.
4 Including dealing with all the nasty edge cases that occur if the viewport changes size.
5 You can use the library for variable and fixed-sized lists and grids. See the documentation for more details.

want to build something that feels more like a cross-platform application, you should
consider Material-UI.3

You can download the source for this recipe from the GitHub site.

6.3 View Data Sets with React Window
Problem
Some applications need to display a seemingly endless quantity of data. If you are
writing an application like Twitter, you don’t want to download all of the tweets in the
user’s timeline because it would probably take several hours, days, or months. The
solution is to window the data. When you window a list of items, you keep only the
items in memory that are currently on display. As you scroll up or down, the applica‐
tion downloads the data needed for the current view.

But creating this windowing logic is quite complex. Not only does it involve meticu‐
lous tracking of what’s currently visible,4 but if you’re not careful, you can quickly run
into memory issues if you fail to cache the windowing data efficiently.

How do you implement windowing code inside a React application?

Solution
The React Window library is a set of components for applications that need to scroll a
large amount of data. We’ll look at how to create a large, fixed-size list.5

To start, we need to create a component that will show the details for a single item. In
our example application, we’re going to create a set of 10,000 date strings. We will
render each date with a component called DateRow, which will be our item-renderer.
React Window works by rendering only the items that are visible in the current view‐
port. As the user scrolls up or down the list, it will create new items as they come into
view and remove them as they disappear.

When React Window calls an item renderer, it passes it two properties: an item num‐
ber, which begins at 0, and a style object.

6.3 View Data Sets with React Window | 203

https://oreil.ly/pCYaq
https://oreil.ly/ZpzF3

This is our DateRow item-renderer:

import moment from 'moment'

const DateRow = ({ index, style }) => (
 <div className={`aDate ${index % 2 && 'aDate-odd'}`} style={style}>
 {moment().add(index, 'd').format('dddd, MMMM Do YYYY')}
 </div>
)

export default DateRow

This component calculates a date index days in the future. In a more realistic applica‐
tion, this component would probably download an item of data from a backend
server.

To generate the list itself, we will use a FixedSizeList. We need to give the list a fixed
width and height. React Window calculates how many items are visible using the
height of the list and the height of each item, using the value from the itemSize
attribute. If the height is 400 and the itemHeight is 40, then the list will only need to
display 10 or 11 DateRow components (see Figure 6-3).

Here is the final version of the code. Notice that the FixedSizeList does not include
an instance of the DateRow component. That’s because it wants to use the DateRow
function to create multiple items dynamically as we scroll the list. So instead of using
<DateRow/>, the list uses the {DateRow} function itself:

import { FixedSizeList } from 'react-window'
import DateRow from './DateRow'
import './App.css'

function App() {
 return (
 <div className="App">
 <FixedSizeList
 height={400}
 itemCount={10000}
 itemSize={40}
 width={300}
 >
 {DateRow}
 </FixedSizeList>
 </div>
)
}

export default App

204 | Chapter 6: Component Libraries

Figure 6-3. The list contains only visible items

One final point to note is that because the items are dynamically added to and
removed from the list, you have to be careful using the nth-child selector in CSS:

.aDate:nth-child(even) { /* This won't work */
 background-color: #eee;
}

Instead, you need to dynamically check the current index for an item and check if it’s
odd using a little modulo-2 math, as we do in the example:

<div className={`aDate ${index % 2 && 'aDate-odd'}`} ...>

Discussion
React Window is a narrowly focused component library but valuable if you need to
present a vast data set. You are still responsible for downloading and caching the data
that appears in the list, but this is a relatively simple task compared to the windowing
magic that React Window performs.

You can download the source for this recipe from the GitHub site.

6.4 Create Responsive Dialogs with Material-UI
Problem
If you’re using a component library, there’s a good chance that at some point you will
display a dialog window. Dialogs allow you to add UI detail without making the user
feel they are traveling to another page. They work well for content creation or as a
quick way of displaying more detail about an item.

However, dialogs don’t play well with mobile devices. Mobiles have a small display
screen, and dialogs frequently waste a lot of space around the edges to display the
background page.

6.4 Create Responsive Dialogs with Material-UI | 205

https://oreil.ly/lXxv3

How can you create responsive dialogs, which act like floating windows when you are
using a desktop machine but look like separate full-screen pages on a mobile device?

Solution
The Material-UI library includes a higher-order function that can tell when you are
on a mobile device and display dialogs as full-screen windows:

import { withMobileDialog } from '@material-ui/core'
...

const ResponsiveDialog = withMobileDialog()(
 ({ fullScreen }) => {
 // Return some component using the fullScreen (true/false) property
 }
)

The withMobileDialog gives any component it wraps an extra property called full
Screen, which is set to true or false. A Dialog component can use this property to
change its behavior. If you pass fullScreen to a Dialog like this:

import { withMobileDialog } from '@material-ui/core'
import Dialog from '@material-ui/core/Dialog'
import DialogTitle from '@material-ui/core/DialogTitle'
import Typography from '@material-ui/core/Typography'
import DialogContent from '@material-ui/core/DialogContent'
import DialogActions from '@material-ui/core/DialogActions'
import Button from '@material-ui/core/Button'
import CloseIcon from '@material-ui/icons/Close'

const ResponsiveDialog = withMobileDialog()(
 ({ onClose, open, title, fullScreen, children }) => {
 return (
 <Dialog open={open} fullScreen={fullScreen} onClose={onClose}>
 <DialogTitle>
 <Typography
 component="h1"
 variant="h5"
 color="inherit"
 noWrap
 >
 {title}
 </Typography>
 </DialogTitle>
 <DialogContent>{children}</DialogContent>
 <DialogActions>
 <Button
 variant="outlined"
 startIcon={<CloseIcon />}
 onClick={onClose}
 >
 Close

206 | Chapter 6: Component Libraries

 </Button>
 </DialogActions>
 </Dialog>
)
 }
)

export default ResponsiveDialog

the dialog will change its behavior when running on a mobile or desktop device.

Let’s say we modify the application we created in Recipe 5.1. In our original applica‐
tion, a dialog appears when the user clicked an image in a gallery. The dialog is shown
on a mobile device in Figure 6-4.

Figure 6-4. By default, a dialog on a mobile device has space around the edge

If you replace this dialog with a ResponsiveDialog, it will look the same on a large
screen. But on a small screen, the dialog will fill the display, as you can see in
Figure 6-5. This not only gives you more space for the contents of the dialog, but it
will simplify the experience of mobile users. Instead of it working like a pop-up win‐
dow, it will feel more like a separate page.

6.4 Create Responsive Dialogs with Material-UI | 207

Figure 6-5. On a mobile device, the responsive dialog fills the screen

Discussion
For more ideas on how to deal with responsive interfaces, see Recipe 2.1.

You can download the source for this recipe from the GitHub site.

6.5 Build an Admin Console with React Admin
Problem
Developers can spend so long creating and maintaining end-user applications that
one important task is often left neglected: admin consoles. Customers don’t use
admin consoles; they are used by back-office staff and administrators to look at the
current data set and to investigate and resolve data issues in an application. Some data
storage systems like Firebase have quite advanced admin consoles built-in. But that’s
not the case for most backend services. Instead, developers often have to dig into data

208 | Chapter 6: Component Libraries

https://oreil.ly/836i2
https://oreil.ly/ugvEI

problems by directly accessing the databases, which live behind several layers of cloud
infrastructure.

How can we create an admin console for almost any React application?

Solution
We’re going to look at the React Admin, and although this chapter is about compo‐
nent libraries, React Admin contains far more than components. It’s an application
framework that makes it easy to build interfaces to allow administrators to examine
and maintain the data in your application.

Different applications will use different network service layers. They might use REST,
GraphQL, or one of many other systems. But in most cases, data is accessed as a set of
resources held on the server. React Admin has most of the pieces in place for creating
an admin application that will allow you to browse through each resource. It lets you
create, maintain, and search data. It can also export the data to an external
application.

To show how react-admin works, we’re going to create an admin console for the
message board application we created in Chapter 5 (see Figure 6-6).

Figure 6-6. The original message board application

The backend for the application is a simple GraphQL server. The GraphQL server has
a relatively simple schema, which defines messages in the schema language like this:

type Message {
 id: ID!
 author: String!
 text: String!
}

6.5 Build an Admin Console with React Admin | 209

Each message had a unique id. Strings record the text of the message and the name of
the author.

There was only one type of change that a user could make to the data: they could add
a message. There was one type of query they could run: they could read all of the
messages.

To create a react-admin application, you first need to create a new React application
and then install the react-admin library:

$ npm install react-admin

The main component of the library is called Admin. This will form the shell of our
entire application:

<Admin dataProvider={...}>
 ...UI for separate resources goes here...
</Admin>

An Admin component needs a data provider. A data provider is an adapter that will
connect the application to the backend service. Our backend service uses GraphQL,
so we need a GraphQL data provider:

$ npm install graphql
$ npm install ra-data-graphql-simple

There are data providers available for most backend services. See the React Admin
website for more details. We’ll need to initialize our data provider before we can use
it. GraphQL is configured with a buildGraphQLProvider function that is asynchro‐
nous, so we need to be careful that it’s ready before we use it:

import { Admin } from 'react-admin'
import buildGraphQLProvider from 'ra-data-graphql-simple'
import { useEffect, useState } from 'react'

function App() {
 const [dataProvider, setDataProvider] = useState()

 useEffect(() => {
 let didCancel = false
 ;(async () => {
 const dp = await buildGraphQLProvider({
 clientOptions: { uri: 'http://localhost:5000' },
 })
 if (!didCancel) {
 setDataProvider(() => dp)
 }
 })()
 return () => {
 didCancel = true
 }
 }, [])

210 | Chapter 6: Component Libraries

https://oreil.ly/2qtVY
https://oreil.ly/2qtVY

6 You will find the server in the source code for this chapter. You can run the server by typing node ./
server.js.

 return (
 <div className="App">
 {dataProvider && (
 <Admin dataProvider={dataProvider}>
 ...resource UI here...
 </Admin>
)}
 </div>
)
}

export default App

The data provider connects to our GraphQL server running on port 5000.6 The data
provider will first download the schema for the application, which will tell it what
resources (just a single resource, Messages, in our case) are available and what opera‐
tions it can perform on them.

If we try to run the application now, it won’t do anything. That’s because even though
it knows that there’s a Messages resource on the server, it doesn’t know that we want
to do anything with it. So, let’s add the Messages resource to the application.

If we want the application to list all the messages on the server, we will need to create
a simple component called ListMessages. This will use some of the ready-made com‐
ponents in react-admin to build its interface:

const ListMessages = (props) => {
 return (
 <List {...props}>
 <Datagrid>
 <TextField source="id" />
 <TextField source="author" />
 <TextField source="text" />
 </Datagrid>
 </List>
)
}

This will create a table with columns for message id, author, and text. We can now
tell the admin system about the new component by passing a Resource to the Admin
component:

<Admin dataProvider={dataProvider}>
 <Resource name="Message" list={ListMessages}/>
</Admin>

6.5 Build an Admin Console with React Admin | 211

The Admin component will see the new Resource, contact the server to read the mes‐
sages, and then render them with a ListMessages component (see Figure 6-7).

Figure 6-7. Displaying the messages from the server

The screen update appears to work by magic, but it’s because the server has to follow
certain conventions so that the GraphQL adapter knows which service to call. In this
case, it will find a query called allMessages, which returns messages:

type Query {
 Message(id: ID!): Message
 allMessages(page: Int, perPage: Int,
 sortField: String, sortOrder: String,
 filter: MessageFilter): [Message]
}

As a result, you might need to change your backend API to meet the requirements of
your data provider. However, the services that you add will probably be useful in your
main application.

The allMessages query allows the admin interface to page through the data from
your server. It can accept a property called filter, which it uses to search for the
data. The MessageFilter in the example schema will allow the admin console to find
messages containing strings for author and text. It will also allow the admin console
to send a general search string (q), which it will use to find messages that contain a
string in any field.

Here is the GraphQL schema definition of the MessageFilter object. You will need to
create something similar for each resource in your application:

input MessageFilter {
 q: String
 author: String
 text: String
}

212 | Chapter 6: Component Libraries

To enable filtering and searching in the frontend, we will first need to create some
filtering fields in a React component we’ll call MessageFilter. This is quite distinct
from the MessageFilter in the schema, although you will notice it contains matching
fields:

const MessageFilter = (props) => (
 <Filter {...props}>
 <TextInput label="Author" source="author" />
 <TextInput label="Text" source="text" />
 <TextInput label="Search" source="q" alwaysOn />
 </Filter>
)

We can now add the MessageFilter to the ListMessages component, and we will
suddenly find that we can page, search, and filter messages in the admin console (see
Figure 6-8):

const ListMessages = (props) => {
 return (
 <List {...props} filters={<MessageFilter />}>
 <Datagrid>
 <TextField source="id" />
 <TextField source="author" />
 <TextField source="text" />
 </Datagrid>
 </List>
)
}

Figure 6-8. Filtering the messages table by author or text

We can also add the ability to create new messages by adding a CreateMessage
component:

const CreateMessage = (props) => {
 return (
 <Create title="Create a Message" {...props}>
 <SimpleForm>
 <TextInput source="author" />

6.5 Build an Admin Console with React Admin | 213

7 Some of them are available only if you subscribe to the Enterprise edition.

 <TextInput multiline source="text" />
 </SimpleForm>
 </Create>
)
}

and then adding the CreateMessage component to the Resource (see Figure 6-9):

<Resource name="Message" list={ListMessages} create={CreateMessage}/>

Figure 6-9. Creating messages on the console

The GraphQL data provider will create messages by passing the contents of the
CreateMessage form to a mutation called CreateMessage:

type Mutation {
 createMessage(
 author: String!
 text: String!
): Message
}

Similarly, you can add the ability to update or delete messages. If you have a complex
schema with subresources, react-admin can display subitems within a table. It can
also handle different display types. It can show images and links. There are compo‐
nents available that can display resources on calendars or in charts (see Figure 6-10
for examples from the online demo application).7 Admin consoles can also work with
your existing security system.

214 | Chapter 6: Component Libraries

https://oreil.ly/fmFwR

8 Including at least one of the authors…

Figure 6-10. Different view types in the online demo

Discussion
Although you will have to make some additional changes to your backend services to
make react-admin work for you, there is an excellent chance that these additional
services will also be helpful for your main application. Even if they aren’t, the building
blocks that react-admin provides will likely slash the development time needed to
create a back-office system.

You can download the source for this recipe from the GitHub site.

6.6 No Designer? Use Semantic UI
Problem
Well-designed styling can add a lot of visual appeal to an application. But poor styling
can make even a good application appear cheap and amateurish. Many developers
have a limited sense of design.8 In cases where you have little or no access to profes‐
sional design help, a simple, clear UI component library can allow you to focus on the
application’s functionality without spending endless hours tweaking the location of
buttons and borders.

6.6 No Designer? Use Semantic UI | 215

https://oreil.ly/2sUhp

9 See Recipe 6.2 for guidance on how to use Bootstrap with your application.

Tried-and-tested frameworks like Bootstrap can provide a good, no-gloss foundation
for most applications.9 But even they often require a lot of focus on visual appearance.
If you want to focus on the functionality of an application and want to get a clear
functional visual appearance, then the Semantic UI library is a good choice.

But the Semantic UI library is old, coming from the days when jQuery ruled the
roost. At the time of writing, it has not been updated in more than two years. What
do you do if you want to use a reliable and well-established library like Semantic UI
with React?

Solution
The Semantic UI React library is a wrapper that makes the Semantic UI library avail‐
able for React users.

As the name suggests, Semantic UI focuses on the meaning of the interface. You man‐
age its visual appearance with CSS rather than components. Instead, Semantic UI
components focus on functionality. When you create a form, for example, you say
which fields to include, rather than saying anything about their layout. That leads to a
clean, consistent appearance, which needs little or no visual adjustment.

To get started, let’s install the Semantic library and its styling support:

$ npm install semantic-ui-react semantic-ui-css

In addition, we also need to include a reference to the stylesheet in the index.js file of
the application:

import React from 'react'
import ReactDOM from 'react-dom'
import './index.css'
import App from './App'
import reportWebVitals from './reportWebVitals'
import 'semantic-ui-css/semantic.min.css'

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
)

// If you want to start measuring performance in your app, pass a function
// to log results (for example: reportWebVitals(console.log))
// or send to an analytics endpoint. Learn more: https://bit.ly/CRA-vitals
reportWebVitals()

216 | Chapter 6: Component Libraries

We’re going to re-create our message posting application. We’ll need a form with a
text field for the author’s name and a text area for posting a message. Semantic com‐
ponents are designed to be as similar to simple HTML elements as possible. So if
we’re building a form, we’ll import a Form, Input, TextArea, and Button to post the
message:

import { Button, Form, Input, TextArea } from 'semantic-ui-react'
import './App.css'
import { useState } from 'react'

function App() {
 const [author, setAuthor] = useState('')
 const [text, setText] = useState('')
 const [messages, setMessages] = useState([])

 return (
 <div className="App">
 <Form>
 <Form.Field>
 <label htmlFor="author">Author</label>
 <Input
 value={author}
 id="author"
 onChange={(evt) => setAuthor(evt.target.value)}
 />
 </Form.Field>
 <Form.Field>
 <label htmlFor="text">Message</label>
 <TextArea
 value={text}
 id="text"
 onChange={(evt) => setText(evt.target.value)}
 />
 </Form.Field>
 <Button
 basic
 onClick={() => {
 setMessages((m) => [
 {
 icon: 'pencil',
 date: new Date().toString(),
 summary: author,
 extraText: text,
 },
 ...m,
])
 setAuthor('')
 setText('')
 }}
 >
 Post
 </Button>

6.6 No Designer? Use Semantic UI | 217

 </Form>
 </div>
)
}

export default App

This code should feel familiar. The Form component does have a Field helper, which
makes it a little easier to group labels and fields, but beyond that, the code looks simi‐
lar to an elementary HTML form.

In the example application, we’re “posting” messages by adding them to an array
called messages. You may have noticed that we’re adding messages to the array in a
particular object structure:

setMessages((m) => [
 {
 icon: 'pencil',
 date: new Date().toString(),
 summary: author,
 extraText: text,
 },
 ...m,
])

We did not choose these attributes by accident. Although most of the components in
Semantic are simple, there are some more complex components, which are there to
support some common use cases. One such example is the Feed component. The
Feed component is there to render a social message stream, such as you might see on
Twitter or Instagram. It will render a clean series of messages, with date stamps, head‐
lines, icons, and so on. Here’s what our final code looks like with the Feed included:

import {
 Button,
 Form,
 Input,
 TextArea,
 Feed,
} from 'semantic-ui-react'
import './App.css'
import { useState } from 'react'

function App() {
 const [author, setAuthor] = useState('')
 const [text, setText] = useState('')
 const [messages, setMessages] = useState([])

 return (
 <div className="App">
 <Form>
 <Form.Field>

218 | Chapter 6: Component Libraries

 <label htmlFor="author">Author</label>
 <Input
 value={author}
 id="author"
 onChange={(evt) => setAuthor(evt.target.value)}
 />
 </Form.Field>
 <Form.Field>
 <label htmlFor="text">Message</label>
 <TextArea
 value={text}
 id="text"
 onChange={(evt) => setText(evt.target.value)}
 />
 </Form.Field>
 <Button
 basic
 onClick={() => {
 setMessages((m) => [
 {
 icon: 'pencil',
 date: new Date().toString(),
 summary: author,
 extraText: text,
 },
 ...m,
])
 setAuthor('')
 setText('')
 }}
 >
 Post
 </Button>
 </Form>
 <Feed events={messages} />
 </div>
)
}

export default App

When you run the application, the interface is clean and unfussy (see Figure 6-11).

6.6 No Designer? Use Semantic UI | 219

10 For more details, see The Lean Startup by Eric Ries (Crown Business).

Figure 6-11. The Semantic UI interface in action

Discussion
Semantic UI is an old library. But that’s not a bad thing. Its battle-tested interface is
clean and functional and is one of the best ways of getting your application up and
running without the support of a visual designer. It’s particularly useful if you’re cre‐
ating a Lean Startup and want to throw something together quickly to test if there is a
market for your product.10

You can download the source for this recipe from the GitHub site.

220 | Chapter 6: Component Libraries

https://oreil.ly/qeNqy

CHAPTER 7

Security

In this chapter, we look at various ways of securing your application. We’ll look at
common patterns for integrating your application with standard security systems.
We’ll look at how you can audit your code for several common security flaws. In sev‐
eral recipes in this chapter, we will use the WebAuthn API to integrate an application
with security devices, such as fingerprint sensors and physical tokens. WebAuthn is
an exciting and underused technology that can increase your application’s security
and enhance the user’s experience.

7.1 Secure Requests, Not Routes
Problem
Recipe 2.6 showed how you could use React Router to create secured routes. That
means if the user tries to get to specific paths within your application, you can force
them to submit a login form before seeing the contents of that page.

The secured routes approach is a good, reasonably general approach when you are
first building an application. However, some applications don’t fall so easily into this
static model of security. Some pages will be secure, and some will be insecure. But in
many applications, it’s easier to secure data services rather than pages. What matters
is not which page you are on but the data you are viewing.

All of these complexities are usually straightforward to define at the API level. But it’s
the kind of complexity that you don’t want to reproduce in the logic of your frontend
client. For these reasons, the simple approach of marking some routes secure and
others as insecure is not good enough.

221

Solution
If defining routes as secure or insecure is not sufficient for your client’s security, you
might want to consider controlling access to your application by using the security
responses you receive from the backend server.

With this approach, you begin by assuming the user can go anywhere in your app.
You don’t worry about secure routes and insecure routes. You just have routes. If a
user visits a path that contains private data, the API server will return an error, typi‐
cally an HTTP status 401 (Unauthorized). When the error occurs, the security redi‐
rects the user to a login form.

With this approach, the API server drives the policy of what is private and what is
public. If the security policies change, you only need to modify the code on the API
server without changing the client code.

Let’s take a look at the code for the original secured-routes recipe again. In our appli‐
cation, we inject a SecurityProvider, which controls the security of all of its child
components. In the example application, we do this in the App.js file:

import './App.css'
import { BrowserRouter, Route, Switch } from 'react-router-dom'
import Public from './Public'
import Private1 from './Private1'
import Private2 from './Private2'
import Home from './Home'
import SecurityProvider from './SecurityProvider'
import SecureRoute from './SecureRoute'

function App() {
 return (
 <div className="App">
 <BrowserRouter>
 <SecurityProvider>
 <Switch>
 <Route exact path="/">
 <Home />
 </Route>
 <SecureRoute path="/private1">
 <Private1 />
 </SecureRoute>
 <SecureRoute path="/private2">
 <Private2 />
 </SecureRoute>
 <Route exact path="/public">
 <Public />
 </Route>
 </Switch>
 </SecurityProvider>
 </BrowserRouter>
 </div>

222 | Chapter 7: Security

)
}

export default App

You can see that the application has simple Routes and SecuredRoutes. If an unau‐
thenticated user tries to access a secured route, they are redirected to the login form,
as you can see in Figure 7-1.

Figure 7-1. When you first access a secured route, you see a login form

Once they are logged in (see Figure 7-2), they can access the secured content.

Figure 7-2. Once you are logged in, secured routes are visible

If we want to base our security upon the security of the backend API, we’ll begin by
replacing all of the SecuredRoutes with simple Routes. The application simply
doesn’t know, until the API server tells it, which data is private and public. For the
example app in this recipe, we’ll have two pages on the application that contain a mix
of public and private data. The Transactions page will read secure data from the
server. The Offers page will read insecure data from the server. Here is the new ver‐
sion of our App.js file:

import './App.css'
import { BrowserRouter, Route, Switch } from 'react-router-dom'
import Transactions from './Transactions'
import Offers from './Offers'
import Home from './Home'
import SecurityProvider from './SecurityProvider'

function App() {

7.1 Secure Requests, Not Routes | 223

 return (
 <div className="App">
 <BrowserRouter>
 <SecurityProvider>
 <Switch>
 <Route exact path="/">
 <Home />
 </Route>
 <Route exact path="/transactions">
 <Transactions />
 </Route>
 <Route exact path="/offers">
 <Offers />
 </Route>
 </Switch>
 </SecurityProvider>
 </BrowserRouter>
 </div>
)
}

export default App

We’ll also need to make a change to our SecurityProvider. In an API security
model, the client begins by assuming that all data is public, which is the opposite of
the secured-routes approach, which assumes you don’t have access until you prove
that you do by logging in.

This means our new SecurityProvider has to default its initial logged-in state to
true:

import { useState } from 'react'
import SecurityContext from './SecurityContext'
import Login from './Login'
import axios from 'axios'

const SecurityProvider = (props) => {
 const [loggedIn, setLoggedIn] = useState(true)

 return (
 <SecurityContext.Provider
 value={{
 login: async (username, password) => {
 await axios.post('/api/login', { username, password })
 setLoggedIn(true)
 },
 logout: async () => {
 await axios.post('/api/logout')
 return setLoggedIn(false)
 },
 onFailure() {
 return setLoggedIn(false)

224 | Chapter 7: Security

 },
 loggedIn,
 }}
 >
 {loggedIn ? props.children : <Login />}
 </SecurityContext.Provider>
)
}

export default SecurityProvider

We’ve also made several other changes:

• The code that decides whether the user should see the Login form is now in the
SecurityProvider. This code used to live inside the SecuredRoute component,
but now we display it centrally.

• We’ve replaced the dummy username/password checks with calls to the backend
services called /api/login and /api/logout. It would be best if you replaced these
with whatever security code applies to your system.

• The SecurityProvider now provides a new function called onFailure, which
simply marks the person as logged out.

When you call this function, it forces the user to log in. If we no longer have secured
routes, at what point do we perform the security checks? We do them in the API calls
themselves.

In a real application, you would want to add code that deals with an
invalid login attempt. To keep the code short, we’ve omitted any
special handling here. A failed login will simply leave you in the
login form without any error messages.

Let’s look at our new Transactions page, as defined in src/Transactions.js. This compo‐
nent reads the transactions data and displays it on the screen:

import useTransactions from './useTransactions'

const Transactions = () => {
 const { data: transactions } = useTransactions()

 return (
 <div>
 <h1>Transactions</h1>
 <main>
 <table>
 <thead>
 <tr>
 <th>Date</th>

7.1 Secure Requests, Not Routes | 225

 <th>Amount</th>
 <th>Description</th>
 </tr>
 </thead>
 <tbody>
 {transactions &&
 transactions.map((trx) => (
 <tr>
 <td>{trx.date}</td>
 <td>{trx.amount}</td>
 <td>{trx.description}</td>
 </tr>
))}
 </tbody>
 </table>
 </main>
 </div>
)
}

export default Transactions

The useTransactions hook contains the network code to read data from the server.
It’s inside this hook that we need to add our check for a 401 (Unauthorized) response
from the server:

import { useEffect, useState } from 'react'
import axios from 'axios'
import useSecurity from './useSecurity'

const useTransactions = () => {
 const security = useSecurity()
 const [transactions, setTransactions] = useState([])

 useEffect(() => {
 ;(async () => {
 try {
 const result = await axios.get('/api/transactions')
 setTransactions(result.data)
 } catch (err) {
 const status = err.response && err.response.status
 if (status === 401) {
 security.onFailure()
 }
 // Handle other exceptions here (consider a shared
 // error handler -- see elsewhere in the book)
 }
 })()
 }, [])

 return { data: transactions }
}

226 | Chapter 7: Security

export default useTransactions

In the example application, we’re using the axios library to contact the server. axios
handles HTTP errors such as 401 (the HTTP status for Unauthorized) as exceptions.
That makes it a little clearer which code is dealing with an unexpected response. If
you were using a different API standard, like GraphQL, you would be able to deal
with security errors in an analogous way by examining the contents of the error
object that GraphQL returns.

In the event that there’s an unauthorized response from the server, the use
Transactions hook makes a call to the onFailure function in the Security
Provider.

We’ll build the Offers page in the same way. The src/Offers.js component will format
the offers data from the server:

import useOffers from './useOffers'

const Offers = () => {
 const { data: offers } = useOffers()

 return (
 <div>
 <h1>Offers</h1>
 <main>

 {offers &&
 offers.map((offer) => <li className="offer">{offer})}

 </main>
 </div>
)
}

export default Offers

And the code that reads the data is inside the src/useOffers.js hook:

import { useEffect, useState } from 'react'
import axios from 'axios'
import useSecurity from './useSecurity'

const useOffers = () => {
 const security = useSecurity()
 const [offers, setOffers] = useState([])

 useEffect(() => {
 ;(async () => {
 try {
 const result = await axios.get('/api/offers')
 setOffers(result.data)

7.1 Secure Requests, Not Routes | 227

 } catch (err) {
 const status = err.response && err.response.status
 if (status === 401) {
 security.onFailure()
 }
 // Handle other exceptions here (consider a shared
 // error handler -- see elsewhere in the book)
 }
 })()
 }, [])

 return { data: offers }
}

export default useOffers

Even though the /api/offers endpoint is not secured, we still have
code that checks for security errors. One consequence of the API
security approach is that you have to treat all endpoints as secure,
just in case they become secure in the future.

Let’s try our example application. We’ll begin by opening the front page (see
Figure 7-3).

Figure 7-3. The front page of the application

If we click the Offers link, we see the offers read from the server (see Figure 7-4). This
data is unsecured, and the application doesn’t ask us to log in.

Figure 7-4. If we click the Offers link, we can see the contents

228 | Chapter 7: Security

1 Or, in the case of GraphQL, accessors and mutators.

If we now go back to the home page and click the Transactions link, the application
asks us to log in (see Figure 7-5). The transactions page has attempted to download
transaction data from the server, which resulted in a 401 (Unauthorized) response.
The code catches this as an exception and calls the onFailure function in the
SecurityProvider, which then displays the login form (see Figure 7-5).

Figure 7-5. If we try to access the Transactions page, we are asked to log in

If we log in, the application sends our username and password to the server. Assum‐
ing that doesn’t result in an error, the SecurityProvider hides the login form, the
Transactions page is re-rendered, and the data is now able to be read as we’ve logged
in (see Figure 7-6).

Figure 7-6. Once we log in, we can see the Transactions page

Discussion
Our example app now contains nothing to indicate which APIs are secured and
which are unsecured. The server now handles all of that work. The API endpoints are
entirely in charge of the security of the application.

Using this approach, you should apply the same security handling to all API calls.
One of the benefits of extracting API calls into custom hooks is that the hooks can
share the security code. Hooks can call other hooks, and a common approach is to
create hooks that act as general-purpose GET and POST calls.1 A general-purpose GET

7.1 Secure Requests, Not Routes | 229

2 With the notable exception of Internet Explorer.

hook could not only handle access failures but also include request cancellations,
debouncing (Recipes 5.3 and 5.6), and shared error handling (Recipe 4.1).

Another advantage to the secured API approach is that it’s possible to disable security
in some circumstances entirely. For example, during development, you can do away
with the need for developers to have an identity provider configured. You can also
choose to have different security configurations in different deployments.

Finally, for automated testing systems, like Cypress, which can simulate network
responses, you can split the testing of application functionality from nonfunctional
security testing. It’s a good idea to have additional server-only security tests that are
separate from the UI tests to ensure that the server is secure in its own right.

You can download the source for this recipe from the GitHub site.

7.2 Authenticate with Physical Tokens
Problem
Usernames and passwords are not always enough; they might be stolen or guessed. So
some users might only use applications that provide additional security.

An increasing number of systems now provide two-factor authentication. A two-
factor system requires the user to log in with a form and then provide some addi‐
tional information. The additional information might be a code sent to them by an
SMS text message. Or it might be an application on their phone that generates a one-
time password. Or, perhaps most securely, it might involve the use of a physical hard‐
ware device, like a YubiKey, which is attached to the computer when required and
pressed.

These physical tokens work using public-key cryptography, which generates a public
key for use with a given application and encrypts strings using a private key. An
application can send a random “challenge” string to the device, generating a signature
using the private key. The application can then use the public key to check that the
string was signed correctly.

But how do you integrate them with your React application?

Solution
Web Authentication (also known as WebAuthn) is a widely supported2 W3C standard
that allows a browser to communicate with a physical device, like a YubiKey.

230 | Chapter 7: Security

https://oreil.ly/ByWVZ
https://www.yubico.com

There are two flows in web authentication. The first is called attestation. During attes‐
tation, a user registers a security device with an application. During assertion, the user
can verify their identity to log in to a system.

First, let’s look at attestation. During this flow, the user registers a physical device
against their account. That means that the user should always be logged in during
attestation.

The code for this recipe includes a dummy Node server, which you can run from the
server directory within the application:

$ cd server
$ npm install
$ npm run start

There are three steps to attestation:

1. The server generates an attestation request, saying what kind of device is
acceptable.

2. The user connects the device and activates it, probably by pressing a button on it.
3. A response is generated from the device, which includes the public key, and is

then returned to the server, where it can be stored against the user’s account.

We can tell if the browser supports WebAuthn by checking for the existence of
window.PublicKeyCredential. If it exists, you’re good to go.

There is an endpoint at /startRegister, which will create the attestation request on the
server. So we’ll begin by calling that:

import axios from 'axios'
...
// Ask to start registering a physical token for the current user
const response = await axios.post('/startRegister')

This is what an attestation request looks like:

{
 "rpName": "Physical Token Server",
 "rpID": "localhost",
 "userID": "1234",
 "userName": "freda",
 "excludeCredentials": [
 {"id": "existingKey1", "type": "public-key"}
],
 "authenticatorSelection": {
 "userVerification": "discouraged"
 },
 "extensions": {
 "credProps": true

7.2 Authenticate with Physical Tokens | 231

 }
}

Some of the attributes begin with the letters rp..., which stands for relying party.
The relying party is the application that generated the request.

The rpName is a free-form text string that describes the application. You should set the
rpId to the current domain name. Here it’s localhost because we’re running on a
development server. The userID is a string that uniquely identifies the user. The user
Name is the name of the user.

excludeCredentials is an interesting attribute. Users might record multiple devices
against their accounts. This value lists the devices that are already recorded to avoid
the user registering the same device twice. If you attempt to register the same device
more than once, the browser will immediately throw an exception saying that the
device has been registered elsewhere.

The authenticatorSelection allows you to set various options about what the user
needs to do when they activate their device. Here we’re setting userVerification to
false to prevent the user from performing any additional steps (such as entering a
PIN) when activating their device. Consequently, when asked to plug in their device,
the user will insert it into the USB socket and press the button, with nothing else
needed.

The credProps extension asks the device to return additional credential properties,
which might be helpful to the server.

Once the server has generated the attestation request, we need to ask the user to con‐
nect their security device. We do this with a browser function called:

navigator.credentials.create()

The create function accepts an attestation request object. Unfortunately, the data
within the object needs to be in a variety of low-level binary forms, such as byte
arrays. We can make our life significantly easier by installing a library from GitHub
called webauthn-json, which lets you use JSON to specify the request:

$ npm install "@github/webauthn-json"

We can then pass the contents of the WebAuthn request to the GitHub version of the
create function:

import { create } from '@github/webauthn-json'
import axios from 'axios'
...
// Ask to start registering a physical token for the current user
const response = await axios.post('/startRegister')
// Pass the WebAuthn config to webauthn-json 'create' function
const attestation = await create({ publicKey: response.data })

232 | Chapter 7: Security

This is the point where the browser asks the user to insert and activate their security
device (see Figure 7-7).

Figure 7-7. The browser asks for the token when create is called

The create function resolves to an attestation object, which you can think of as the
registration information for the device. The server can use the attestation object to
verify the user’s identity when they log in. We need to record the attestation object
against the user’s account. We’ll do that by posting it back to an endpoint on the
example server at /register:

import { create } from '@github/webauthn-json'
import axios from 'axios'
...
// Ask to start registering a physical token for the current user
const response = await axios.post('/startRegister')
// Pass the WebAuthn config to webauthn-json 'create' function
const attestation = await create({ publicKey: response.data })
// Send the details of the physical YubiKey to be stored against the user
const attestationResponse = await axios.post('/register', {
 attestation,
})

That’s the overview of how we register a new device for a user. But where do we put
that in the code?

The example application has an Account page (see Figure 7-8), and we’ll add a button
in there to register a new key.

Figure 7-8. We’ll add a button to the account page to register a new device

7.2 Authenticate with Physical Tokens | 233

Here is the registration code in place:

import { useState } from 'react'
import Logout from './Logout'
import axios from 'axios'
import { create } from '@github/webauthn-json'

const Private2 = () => {
 const [busy, setBusy] = useState(false)
 const [message, setMessage] = useState()

 return (
 <div className="Private2">
 <h1>Account page</h1>

 {window.PublicKeyCredential && (
 <>
 <p>Register new hardware key</p>
 <button
 onClick={async () => {
 setBusy(true)
 try {
 const response = await axios.post('/startRegister')
 setMessage('Send response')
 const attestation = await create({
 publicKey: response.data,
 })
 setMessage('Create attestation')
 const attestationResponse = await axios.post(
 '/register',
 {
 attestation,
 }
)
 setMessage('registered!')
 if (
 attestationResponse.data &&
 attestationResponse.data.verified
) {
 alert('New key registered')
 }
 } catch (err) {
 setMessage('' + err)
 } finally {
 setBusy(false)
 }
 }}
 disabled={busy}
 >
 Register
 </button>
 </>
)}

234 | Chapter 7: Security

 <div className="Account-message">{message}</div>

 <Logout />
 </div>
)
}

export default Private2

If we click the registration button on the account page, the browser asks us to connect
the security device (see Figure 7-9). Once we do that, the application sends the devi‐
ce’s credentials to the server and then tells us it has recorded a new device against our
account (see Figure 7-10).

Figure 7-9. When you choose to register a new device, you are asked to activate it

Figure 7-10. We are told when a new device is registered

The next flow we need to think about is assertion. Assertion happens when a user
verifies their identity when logging in.

The steps are pretty similar to attestation:

7.2 Authenticate with Physical Tokens | 235

1. The application asks the server to create an assertion request.
2. The user converts that request into an assertion object by activating their security

device.
3. The server checks the assertion against its stored credentials to prove the person

is who they say they are.

Let’s begin with the first stage when we create an assertion request. This is what an
assertion request looks like:

{
 "allowCredentials": [
 {"id": "existingTokenID", "type": "public-key"}
],
 "attestation": "direct",
 "extensions": {
 "credProps": true,
 },
 "rpID": "localhost",
 "timeout": 60000,
 "challenge": "someRandomString"
}

The allowCredentials attribute is an array of registered devices that will be accepta‐
ble. The browser will use this array to check that the user has connected the correct
device.

The assertion request also includes a challenge string: a randomly generated string
the device will need to create a signature with its private key. The server will check
this signature with the public key to ensure that we used the correct device.

The timeout specifies how long the user will have to prove their identity.

The example server generates an assertion request when you call the /startVerify end‐
point with a specified user ID:

import axios from 'axios'
...
// Ask for a challenge to verify user userID
const response = await axios.post('/startVerify', { userID })

We can then pass the assertion request to the get webauthn-json function, which will
ask the user to verify their identity by connecting an acceptable device (see
Figure 7-11):

import { get } from '@github/webauthn-json'
import axios from 'axios'
...
const response = await axios.post('/startVerify', { userID })
const assertion = await get({ publicKey: response.data })

236 | Chapter 7: Security

3 See Recipe 2.6.

Figure 7-11. The get function asks the user to connect the device

The get function returns an assertion object, which contains a signature for the chal‐
lenge string sent back to the server’s /verify endpoint to check the signature. The
response to that call will tell us if the user has correctly verified their identity:

import { get } from '@github/webauthn-json'
import axios from 'axios'
...
const response = await axios.post('/startVerify', { userID })
const assertion = await get({ publicKey: response.data })
const resp2 = await axios.post('/verify', { userID, assertion })
if (resp2.data && resp2.data.verified) {
 // User is verified
}

Where do we put this code in the application?

The example application is based on the secured-routes recipe.3 It contains a
SecurityProvider, which manages the security for all of its child components. The
SecurityProvider provides a login function, which is called with the username and
password when the user submits a login form. We’ll put the verification code in here:

import { useState } from 'react'
import SecurityContext from './SecurityContext'
import { get } from '@github/webauthn-json'
import axios from 'axios'

const SecurityProvider = (props) => {
 const [loggedIn, setLoggedIn] = useState(false)

 return (
 <SecurityContext.Provider
 value={{
 login: async (username, password) => {

7.2 Authenticate with Physical Tokens | 237

 const response = await axios.post('/login', {
 username,
 password,
 })
 const { data } = response
 if (data.twoFactorNeeded) {
 const userID = data.userID
 const response = await axios.post('/startVerify', {
 userID,
 })
 const assertion = await get({ publicKey: response.data })
 const resp2 = await axios.post('/verify', {
 userID,
 assertion,
 })
 if (resp2.data && resp2.data.verified) {
 setLoggedIn(true)
 }
 } else {
 setLoggedIn(true)
 }
 },
 logout: async () => {
 await axios.post('/logout')
 setLoggedIn(false)
 },
 loggedIn,
 }}
 >
 {props.children}
 </SecurityContext.Provider>
)
}
export default SecurityProvider

We first send the username and password to the /login endpoint. If the user has regis‐
tered a security device, the response to the /login will have a twoFactorNeeded
attribute set to true. We can call the /startVerify endpoint with the user’s ID and use
the resulting assertion request to ask the user to activate their device. We can send the
assertion back to the server. And if all is well, we set loggedIn to true, and the user
will then see the page.

Let’s look at it in action. We’ll assume we’ve already registered the device against our
account. We open the application and click the Account page (see Figure 7-12).

238 | Chapter 7: Security

Figure 7-12. When the application opens, click the Account link

The Account page is secured, so we’re asked for a username and password (see
Figure 7-13.) In the example application, you can enter freda as the username and
mypassword as the password.

Figure 7-13. The login form appears

Once we’ve entered the username and password, the browser asks us to connect the
security device (see Figure 7-14).

Figure 7-14. The browser asks the user to activate their security device

If they connect their device and activate it, the user can see the secured page (see
Figure 7-15).

7.2 Authenticate with Physical Tokens | 239

4 It is possible to get around this problem on Android devices by proxying your phone through your develop‐
ment machine. See Recipe 7.7.

Figure 7-15. The Account page is visible once the user has verified their identity

Discussion
As you can probably tell, WebAuthn is quite a complex API. It uses quite obscure lan‐
guage (attestation for registration, and assertion for verification) and uses some low-
level data types, which fortunately the GitHub webauthn-json allows us to avoid.

The complexity lives on the server. The example server in the downloadable source
code uses a library called SimpleWebAuthn to handle most of the cryptological stuff
for us. If you are planning on using SimpleWebAuthn for the server side of your
application, be aware that there is also a client SimpleWebAuthn library that works
with it. We’ve avoided using it in the example client source to avoid making our code
too SimpleWebAuthn-specific.

If you implement two-factor authentication, you will need to think about what you
will do if a user loses their security device. Technically, all you will have to do to re-
enable their account is remove the device that’s registered against their name. But it
would be best to be extremely careful. A typical attack against two-factor authentica‐
tion is to call the service desk and pretend to be a user who has lost their token.

Instead, you will need to create a sufficiently rigorous process that will check the
identity of any person asking for an account reset.

You can download the source for this recipe from the GitHub site.

7.3 Enable HTTPS
Problem
HTTPS is often used in production environments, but there are circumstances where
it can be helpful to use HTTPS during development. Some networked services will
only work from within pages secured with HTTPS. WebAuthn will only work
remotely with HTTPS.4 Numerous bugs and other issues can creep into your code if
your application uses a proxy server with HTTPS.

240 | Chapter 7: Security

https://oreil.ly/Diy5D

5 See the Let’s Encrypt site.
6 By default, this will be on port 443.

Enabling HTTPS on production servers is now relatively straightforward,5 but how
do you enable HTTPS on a development server?

Solution
If you’ve created your application with create-react-app, you can enable HTTPS
by:

• Generating a self-signed SSL certificate
• Registering the certificate with your development server

To generate a self-signed certificate, we need to understand a little about how HTTPS
works.

HTTPS is just HTTP that is tunneled through an encrypted Secure Sockets Layer
(SSL) connection. When a browser connects to an HTTPS address, it opens a con‐
nection to a secure socket on the server.6 The server has to provide a certificate from
an organization the browser trusts. If the browser accepts the certificate, it will then
send encrypted data to the secure socket on the server, which will then be decrypted
on the server and forwarded to an HTTP server.

The main difficulty setting up an HTTPS server is getting a certificate that a web
browser will trust. Browsers maintain a set of root certificates. These are certificates
that large, trustworthy organizations issue. When an HTTPS server presents a certifi‐
cate to a browser, that certificate must be signed by one of the browser’s root
certificates.

If we want to generate an SSL certificate, we will first need to create a root certificate
and tell the browser to trust it. Then we must generate a certificate for our develop‐
ment server that has been signed by the root certificate.

If this sounds complicated, it’s because it is.

Let’s begin by creating a root certificate. To do this, you will need a tool called
OpenSSL installed on your machine.

We’ll use the openssl command to create a key file. It will ask you for a passphrase,
which you will have to enter twice:

$ openssl genrsa -des3 -out mykey.key 2048
Generating RSA private key, 2048 bit long modulus
...+++
.................................+++

7.3 Enable HTTPS | 241

https://letsencrypt.org

7 The .pem extension stands for Privacy-Enhanced Mail. The PEM format was initially designed for use with
email but is now used as a general certificate storage format.

8 For a detailed guide, see this tutorial from BounCA.

e is 65537 (0x10001)
Enter pass phrase for mykey.key:
Verifying - Enter pass phrase for mykey.key:
$

The mykey.key file now contains a private key, which can be used for encrypting data.
We can use the key file to create a certificate file. A certificate file contains informa‐
tion about an organization and an end date after which it is no longer valid.

You can create a certificate using the following command:

$ openssl req -x509 -new -nodes -key mykey.key -sha256 -days 2048 -out mypem.pem
Enter pass phrase for mykey.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:US
State or Province Name (full name) []:Massachusetts
Locality Name (eg, city) []:Cambridge
Organization Name (eg, company) []:O'Reilly Media
Organizational Unit Name (eg, section) []:Harmless scribes
Common Name (eg, fully qualified host name) []:Local
Email Address []:me@example.com
$

Here we are creating a certificate that will be valid for the next 2,048 days. The pass‐
phrase you are asked for is the one you set when you created the mykey.key file. It
doesn’t matter what you enter for the organization details, as you will be using it only
on your local machine.

The certificate is stored in a file called mypem.pem, and we need to install this file as a
root certificate on our machine.7 There are several ways to install root certificates on
your machine.8 You can use a root certificate to sign website certificates, which is
what we’ll do next.

We’ll create a local key file, and a certificate signing request (CSR) file, with the fol‐
lowing command:

$ openssl req -new -sha256 -nodes -out myprivate.csr -newkey rsa:2048 \
-keyout myprivate.key \
-subj "/C=US/ST=Massachusetts/L=Cambridge/O=O'Reilly \
Media/OU=Harmless scribes/CN=Local/emailAddress=me@example.com"

242 | Chapter 7: Security

https://oreil.ly/9NN1H

Generating a 2048 bit RSA private key
....................+++
..+++
writing new private key to 'myprivate.key'

$

Next, create a file called extfile.txt, containing the following:

authorityKeyIdentifier=keyid,issuer
basicConstraints=CA:FALSE
keyUsage=digitalSignature,nonRepudiation,keyEncipherment,dataEncipherment
subjectAltName=DNS:localhost

We can now run a command that will generate an SSL certificate for our application:

$ openssl x509 -req -in myprivate.csr -CA mypem.pem -CAkey mykey.key \
-CAcreateserial -out \
myprivate.crt -days 500 -sha256 -extfile ./extfile.txt
Signature ok
subject=/C=US/ST=Massachusetts/L=Cambridge/O=O'Reilly
Media/OU=Harmless scribes/CN=Local/
emailAddress=me@example.com
Getting CA Private Key
Enter pass phrase for mykey.key:
$

Remember, the passphrase is the one you created when you first created the
mykey.key file.

The result of going through all of those steps is that we have two files that we can use
to secure our development server:

• The myprivate.crt file is a certificate signed by the root certificate, which is the file
that reassures the browser that it can trust our application

• The myprivate.key file will be used to encrypt connections between the develop‐
ment server and the browser.

If you created your application with create-react-app, you could enable HTTPS by
putting this in a .env file in your application directory:

HTTPS=true
SSL_CRT_FILE=myprivate.crt
SSL_KEY_FILE=myprivate.key

If you restart your server, you should be able to access your application at https://
localhost:3000 instead of http://localhost:3000.

7.3 Enable HTTPS | 243

Discussion
Self-signed certificates are pretty complex things to create, but there are circumstan‐
ces when they are required. However, even if you don’t need to run HTTPS in your
development environment, it can still be worth understanding what HTTPS is, how it
works, and why you should trust it.

You can download the source for this recipe from the GitHub site.

7.4 Authenticate with Fingerprints
Problem
Recipe 7.2 looked at how physical tokens, such as YubiKeys, can be used for two-
factor authentication. But physical tokens are still relatively rare and can be pretty
expensive. Most people already have mobile devices, such as cell phones and tablets.
Many of those have built-in fingerprint sensors. But how can we get a React applica‐
tion to use a fingerprint sensor for two-factor authentication?

Solution
We can use fingerprint sensors as WebAuthn authentication tokens. They connect to
the API in the same way, although several configuration changes are required.

This recipe is based on Recipe 7.2 for using removable tokens for two-factor authenti‐
cation. We saw in Recipe 7.2 that there are two main flows in WebAuthn
authentication:

Attestation
In this flow, the user registers a device or token against their account. One way to
do this is by pressing the fingerprint sensor on their phone.

Assertion
In this flow, the user activates the device or token, and the server checks that it
matches the device or token that was previously registered.

Both attestation and assertion have three stages:

1. The server generates a request.
2. The user uses the token, which generates a response.
3. The response is sent to the server.

If we want to switch from using a removable physical token to using the built-in fin‐
gerprint sensor in a device, we will only need to change the attestation request stage.
The attestation request says what kind of token the browser can register for a user.

244 | Chapter 7: Security

https://oreil.ly/BAKAE

For removable physical tokens, like YubiKeys, we generated an attestation request
that looked like this:

{
 "rpName": "Physical Token Server",
 "rpID": "localhost",
 "userID": "1234",
 "userName": "freda",
 "excludeCredentials": [
 {"id": "existingKey1", "type": "public-key"}
],
 "authenticatorSelection": {
 "userVerification": "discouraged"
 },
 "extensions": {
 "credProps": true,
 },
}

We need to change this slightly to allow the user to use a fingerprint sensor:

{
 "rpName": "Physical Token Server",
 "rpID": "localhost",
 "userID": "1234",
 "userName": "freda",
 "excludeCredentials": [
 {"id": "existingKey1", "type": "public-key"}
],
 "authenticatorSelection": {
 "authenticatorAttachment": "platform",
 "userVerification": "required"
 },
 "attestation": "direct",
 "extensions": {
 "credProps": true,
 },
}

The two requests are almost the same. The first change is in the authenticator selec‐
tion. We now want to use a platform authenticator because fingerprint sensors are
built into the device and not removable, which means we effectively limit the user to
their current physical device. In contrast, a YubiKey can be disconnected from one
machine and then connected to another.

We’re also saying that we want to use direct attestation, which means we won’t require
any additional verification. For example, we won’t be asking the user to press the fin‐
gerprint sensor and then enter a PIN.

Beyond changing this initial attestation request object, all of the other code remains
the same. Once a user responds to the attestation request by pressing the fingerprint

7.4 Authenticate with Fingerprints | 245

sensor, it will generate a public key that we can store against the user. When the user
logs back in and confirms their identity by pressing the fingerprint sensor, it will sign
the challenge string in the same way that a YubiKey would.

Therefore, if you’re going to support one type of authenticator, it’s worth allowing the
user to use both fingerprint sensors and removable tokens.

Unless a user has a removable token that also works on mobile
devices—for example, by using Near-Field Communication
(NFC)—it’s unlikely that any user will register both removable
tokens and fingerprints. As soon as they have registered a finger‐
print, they won’t be able to log in and register a removable token,
and vice versa.

Here is the updated component that allows a user to register a token:

import { useState } from 'react'
import Logout from './Logout'
import axios from 'axios'
import { create } from '@github/webauthn-json'

const Private2 = () => {
 const [busy, setBusy] = useState(false)
 const [message, setMessage] = useState()

 const registerToken = async (startRegistrationEndpoint) => {
 setBusy(true)
 try {
 const response = await axios.post(startRegistrationEndpoint)
 setMessage('Send response')
 const attestation = await create({ publicKey: response.data })
 setMessage('Create attestation')
 const attestationResponse = await axios.post('/register', {
 attestation,
 })
 setMessage('registered!')
 if (
 attestationResponse.data &&
 attestationResponse.data.verified
) {
 alert('New key registered')
 }
 } catch (err) {
 setMessage('' + err)
 } finally {
 setBusy(false)
 }
 }
 return (
 <div className="Private2">

246 | Chapter 7: Security

 <h1>Account page</h1>

 {window.PublicKeyCredential && (
 <>
 <p>Register new hardware key</p>
 <button
 onClick={() => registerToken('/startRegister')}
 disabled={busy}
 >
 Register Removable Token
 </button>
 <button
 onClick={() => registerToken('/startFingerprint')}
 disabled={busy}
 >
 Register Fingerprint
 </button>
 </>
)}
 <div className="Account-message">{message}</div>

 <Logout />
 </div>
)
}

export default Private2

We’re calling a slightly different endpoint when we want to register a fingerprint.
Otherwise, the rest of the code remains the same.

To try it, you’ll need to use a device with a fingerprint sensor. We can only use
WebAuthn if we run the application on localhost or a remote server using HTTPS. To
test this code from a mobile device, you will need to configure HTTPS on your devel‐
opment server (see Recipe 7.3), or you will need to configure your device to proxy
localhost connections to your development machine (see Recipe 7.7).

To run the example application, you will need to change into the application directory
and start the development server with the following:

$ npm run start

You will also need to run the API server. Open a separate terminal for this and then
run it from the server subdirectory:

$ cd server
$ npm run start

The development server will run on port 3000 and the API server on port 5000. The
development server will proxy API requests to the API server.

7.4 Authenticate with Fingerprints | 247

When you open the application, you should click the “Account page” link (see
Figure 7-16).

Figure 7-16. Click the “Account page” link on the home page

The application will ask you to sign in. Enter the username freda and the password
mypassword (see Figure 7-17). These values have been hardcoded in the example
server.

248 | Chapter 7: Security

Figure 7-17. Enter freda/mypassword into the login form

You will now see two buttons for registering tokens against your account: one for
removable tokens, the other for fingerprints (see Figure 7-18).

Figure 7-18. There are buttons to register removable tokens and fingerprints

7.4 Authenticate with Fingerprints | 249

Press the button to register a fingerprint. Your mobile device will ask you to press the
fingerprint sensor. Your fingerprint sensor will generate a public key that the applica‐
tion can store against the freda account. A message box will appear to tell you when
this has been done, as shown in Figure 7-19.

Figure 7-19. The application will confirm when the token is registered

Now log out. When you log back in again, enter freda and mypassword in the form.
The application will now ask you to confirm your identity by pressing the fingerprint
sensor, and it will then log you back in.

Discussion
Built-in fingerprint sensors are much more common than removable tokens like
YubiKeys. There is a difference in the usage pattern of the two devices. YubiKeys can
be moved from device to device, whereas fingerprints are typically limited to a single

250 | Chapter 7: Security

9 An exception would be if the user has connected an external fingerprint sensor.

device.9 Removable tokens, therefore, have additional flexibility for users who might
want to connect from several devices. The downside to removable devices is that they
are far easier to lose than a cell phone. In most cases, it is worth supporting both
types of devices and leaving it to the users to decide which option is best for them.

You can download the source for this recipe from the GitHub site.

7.5 Use Confirmation Logins
Problem
Sometimes a user might want to perform operations that are more dangerous or are
not easily reversible. They might want to delete data, remove a user account, or do
something that will send an email. How do you prevent a malicious third party from
carrying out these operations if they find a logged-in but unattended machine?

Solution
Many systems force users to confirm their login credentials before being able to per‐
form sensitive operations. You will most likely want to do this for several operations,
so it would be helpful if there was a way of doing the confirmation centrally.

We’ll base this recipe on the code for the secured routes in Recipe 2.6. In that recipe,
we built a SecurityProvider component that provided login and logout functions
to its child components:

import { useState } from 'react'
import SecurityContext from './SecurityContext'

const SecurityProvider = (props) => {
 const [loggedIn, setLoggedIn] = useState(false)

 return (
 <SecurityContext.Provider
 value={{
 login: (username, password) => {
 // Note to engineering team:
 // Maybe make this more secure...
 if (username === 'fred' && password === 'password') {
 setLoggedIn(true)
 }
 },
 logout: () => setLoggedIn(false),
 loggedIn,
 }}

7.5 Use Confirmation Logins | 251

https://oreil.ly/m8hs6

 >
 {props.children}
 </SecurityContext.Provider>
)
}

export default SecurityProvider

Components that needed to use the login and logout functions could access them
from the useSecurity hook:

const security = useSecurity()
...
// Anywhere that we need to logout...
security.logout()

For this recipe, we’ll add an extra function to SecurityProvider that will allow a
child component to confirm that the user is logged in. Once they’ve provided the
username and password, we allow them to perform the dangerous operation.

We could do this by creating a function that accepts a callback function containing
the dangerous operation, which the application calls after the user confirms their
login details. This function will be easier to implement in the SecurityProvider but
will have some issues when we call it from a component. We could return a success/
failure flag:

// We WON'T do it like this
confirmLogin((success) => {
 if (success) {
 // Do dangerous thing here
 } else {
 // Handle the user canceling the login
 }
})

This approach has the disadvantage that if you forget to check the value of the suc
cess flag, the code will perform the dangerous operation, even if the user cancels the
login form.

Alternatively, we will have to pass two separate callbacks: one for success and one for
cancellation:

// We WON'T do it like this either
confirmLogin(
 () => {
 // Do dangerous thing here
 },
 () => {
 // Handle the user canceling the login
 });

However, this code is a little ugly.

252 | Chapter 7: Security

Instead, we’ll implement the code with a promise, which will make the implementa‐
tion more complex, but it will simplify any code that calls it.

This is a version of SecurityProvider, complete with the new confirmLogin
function:

import { useRef, useState } from 'react'
import SecurityContext from './SecurityContext'
import LoginForm from './LoginForm'

export default (props) => {
 const [showLogin, setShowLogin] = useState(false)
 const [loggedIn, setLoggedIn] = useState(false)
 const resolver = useRef()
 const rejecter = useRef()

 const onLogin = async (username, password) => {
 // Note to engineering team:
 // Maybe make this more secure...
 if (username === 'fred' && password === 'password') {
 setLoggedIn(true)
 }
 }
 const onConfirmLogin = async (username, password) => {
 // Note to engineering team:
 // Same here...
 return username === 'fred' && password === 'password'
 }

 return (
 <SecurityContext.Provider
 value={{
 login: onLogin,
 confirmLogin: async (callback) => {
 setShowLogin(true)
 return new Promise((res, rej) => {
 resolver.current = res
 rejecter.current = rej
 })
 },
 logout: () => setLoggedIn(false),
 loggedIn,
 }}
 >
 {showLogin ? (
 <LoginForm
 onLogin={async (username, password) => {
 const valid = await onConfirmLogin(username, password)
 if (valid) {
 setShowLogin(false)
 resolver.current()
 }

7.5 Use Confirmation Logins | 253

 }}
 onCancel={() => {
 setShowLogin(false)
 rejecter.current()
 }}
 />
) : null}
 {props.children}
 </SecurityContext.Provider>
)
}

If the user calls the confirmLogin function, the SecurityProvider will display a
login form to allow the user to confirm their username and password. The confirm
Login function returns a promise that will resolve only if the user types in the user‐
name and password correctly. If the user cancels the login form, the promise will be
rejected.

We’re not showing the details of the LoginForm component here, but you can find it
in the downloadable source for this recipe.

Our example code here checks the username and password against static strings to
see if they’re correct. In your version of the code, you will replace this with a call to
some security service.

When we call the confirmLogin, we’re storing the promise in a ref.
Refs commonly point to elements in the DOM, but you can use
them to store any piece of state. Unlike useState, refs will update
immediately. In general, it’s not good practice to use a lot of refs in
your code, and we’re only using them here so we can record the
promise immediately, without waiting for a useState operation to
finish.

How would you use the confirmLogin function in practice? Let’s say we have a com‐
ponent that contains a button that performs some dangerous operation:

import { useState } from 'react'
import Logout from './Logout'

const Private1 = () => {
 const [message, setMessage] = useState()

 const doDangerousThing = () => {
 setMessage('DANGEROUS ACTION!')
 }

 return (
 <div className="Private1">
 <h1>Private page 1</h1>

254 | Chapter 7: Security

 <button
 onClick={() => {
 doDangerousThing()
 }}
 >
 Do dangerous thing
 </button>

 <p className="message">{message}</p>

 <Logout />
 </div>
)
}

export default Private1

If we want the user to confirm their login details before performing this operation, we
can first get hold of the context provided by the SecurityProvider:

const security = useSecurity()

In the code that performs the dangerous operation, we can then await the promise
returned by confirmLogin:

const security = useSecurity()
...
await security.confirmLogin()
setMessage('DANGEROUS ACTION!')

The code following the call to confirmLogin will run only if the user provides the
correct username and password.

If the user cancels the login dialog, the promise will be rejected, and we can handle
the cancellation in a catch block.

Here is a modified version of the component performing dangerous code that now
confirms the user’s login before proceeding:

import { useState } from 'react'
import Logout from './Logout'
import useSecurity from './useSecurity'

export default () => {
 const security = useSecurity()
 const [message, setMessage] = useState()

 const doDangerousThing = async () => {
 try {
 await security.confirmLogin()
 setMessage('DANGEROUS ACTION!')
 } catch (err) {

7.5 Use Confirmation Logins | 255

 setMessage('DANGEROUS ACTION CANCELLED!')
 }
 }

 return (
 <div className="Private1">
 <h1>Private page 1</h1>

 <button
 onClick={() => {
 doDangerousThing()
 }}
 >
 Do dangerous thing
 </button>

 <p className="message">{message}</p>

 <Logout />
 </div>
)
}

If we try the code, we will first need to run the application from the app directory:

$ npm run start

When the application opens (see Figure 7-20), you will need to click Private Page 1.

Figure 7-20. Begin by clicking the Private Page 1 link

The application will then ask you to log in (see Figure 7-21.) You should log in with
fred/password.

Figure 7-21. The page is secured, so you will need to log in

256 | Chapter 7: Security

10 For an example of such a service, see the useForum hook in Recipe 5.2.

If you now click the button to perform the dangerous operation, you will need to
confirm your credentials before continuing (as shown in Figure 7-22).

Figure 7-22. You must confirm your login details before continuing

Discussion
This recipe centralizes your confirmation code in the SecurityProvider, which has
an advantage: not only does this lighten the code in our components, but it means
that user confirmation can take place inside custom hooks. If you abstract a set of
operations into some hook-based service,10 you can also include the confirmation
logic in that service. As a result, your components will be completely unaware of
which operations are dangerous and which are not.

You can download the source for this recipe from the GitHub site.

7.6 Use Single-Factor Authentication
Problem
We’ve already seen that removable tokens and fingerprints can be used in a two-factor
authentication system to provide additional security to a user’s account.

However, you can also use them as a simple login convenience. Many mobile applica‐
tions allow a user to log in by pressing the fingerprint sensor without entering a user‐
name or password.

How do you enable single-factor authentication for a React application?

Solution
Security tokens, such as fingerprint sensors and USB devices like YubiKeys, need to
be recorded against a user account on the server. The problem with single-factor
authentication is that we don’t know who the user is supposed to be when they tap the
fingerprint sensor. In a two-factor system, they have just typed their username into a

7.6 Use Single-Factor Authentication | 257

https://oreil.ly/zP75q

11 The assertion request is needed when the browser asks the user to scan their fingerprint or activate their
token. It includes a list of all acceptable devices and so will be unique to a given user.

12 A consequence of this approach is that the user will perform single-factor authentication on the browser only
where they registered the token. If they use a different browser or have recently cleared their cookies, they will
have to fall back to using the login form.

13 This assumes that you are using a cookie that is readable by JavaScript. It’s also possible to use an HTTP-only
cookie, which only the server (or service workers) can read. If you use an HTTP-only cookie, you will need
code on the server to check whether the user should provide a token.

form. But in a single-factor system, we need to know who the user is supposed to be
when we create the assertion request.11

We can avoid this problem by setting a cookie in the browser containing the user ID
whenever a person with a token-enabled account logs in.12

When the application displays the login form, the app can check for the existence of
the cookie and then use it to create an assertion request and ask the user for the secu‐
rity token. If the user does not want to use the token, they can cancel the request and
simply use the login form.13

User IDs are often machine-generated internal keys, which contain
no secure information. However, if your user IDs are more easily
identifiable, such as an email address, you should not use this
approach.

We’re basing the code for this recipe on the secured routes code from Recipe 2.6. We
manage all of our security through a wrapper component called SecurityProvider.
This provides child components with login and logout functions. We’ll add another
functions called loginWithToken:

import { useState } from 'react'
import SecurityContext from './SecurityContext'
import { get } from '@github/webauthn-json'
import axios from 'axios'

const SecurityProvider = (props) => {
 const [loggedIn, setLoggedIn] = useState(false)

 return (
 <SecurityContext.Provider
 value={{
 login: async (username, password) => {
 const response = await axios.post('/login', {
 username,
 password,
 })
 setLoggedIn(true)

258 | Chapter 7: Security

 },
 loginWithToken: async (userID) => {
 const response = await axios.post('/startVerify', {
 userID,
 })
 const assertion = await get({ publicKey: response.data })
 await axios.post('/verify', { userID, assertion })
 setLoggedIn(true)
 },
 logout: async () => {
 await axios.post('/logout')
 setLoggedIn(false)
 },
 loggedIn,
 }}
 >
 {props.children}
 </SecurityContext.Provider>
)
}
export default SecurityProvider

The loginWithToken accepts a user ID and then asks the user to verify their identity
with a token by:

1. Calling a startVerify function on the server to create an assertion request
2. Passing the request to WebAuthn to ask the user to press the fingerprint sensor
3. Passing the generated assertion back to an endpoint called verify to check that

the token is valid

You will need to replace the startVerify and verify endpoints in your
implementation.

To call the loginWithToken function in SecurityProvider, we will need to find the
current user’s ID from the cookies. We’ll do this by installing the js-cookie library:

$ npm install js-cookie

This will allow us to read a userID cookie like this:

import Cookies from 'js-cookie'
...
const userIDCookie = Cookies.get('userID')

We can now use this code in a Login component, which will check for a userID
cookie. If one exists, it will ask to log in by token. Otherwise, it will allow the user to
log in using a username and password:

import { useEffect, useState } from 'react'
import useSecurity from './useSecurity'
import Cookies from 'js-cookie'

7.6 Use Single-Factor Authentication | 259

const Login = () => {
 const { login, loginWithToken } = useSecurity()
 const [username, setUsername] = useState()
 const [password, setPassword] = useState()
 const userIDCookie = Cookies.get('userID')

 useEffect(() => {
 ;(async () => {
 if (userIDCookie) {
 loginWithToken(userIDCookie)
 }
 })()
 }, [userIDCookie])

 return (
 <div>
 <h1>Login Page</h1>

 <p>You need to log in.</p>

 <label htmlFor="username">Username:</label>
 <input
 id="username"
 name="username"
 type="text"
 value={username}
 onChange={(evt) => setUsername(evt.target.value)}
 />

 <label htmlFor="password">Password:</label>
 <input
 id="password"
 name="password"
 type="password"
 value={password}
 onChange={(evt) => setPassword(evt.target.value)}
 />

 <button onClick={() => login(username, password)}>Login</button>
 </div>
)
}

export default Login

Let’s try the example application. We must first start the development server from the
application directory:

$ npm run start

260 | Chapter 7: Security

Then in a separate terminal, we can start the example API server:

$ cd server
$ npm run start

The development server runs on port 3000; the API server runs on port 5000.

When the application starts, click the link to the Account page (as shown in
Figure 7-23).

Figure 7-23. When the app opens, click the link to the Account page

The application asks us to log in (see Figure 7-24). Use the username freda and the
password mypassword.

Figure 7-24. Log in with freda/mypassword

The account page asks if we want to enable login with a fingerprint sensor or physical
token (see Figure 7-25). You can register a token and then log out.

Figure 7-25. Choose to enable login with a physical token or fingerprint

The next time we log in, we will immediately see the request to activate a token (see
Figure 7-26).

7.6 Use Single-Factor Authentication | 261

Figure 7-26. Once enabled, you can log in with just the token

If we activate the token, we will log in without providing a username and password.

Discussion
It’s important to note that single-factor authentication is about increasing conve‐
nience rather than security. Fingerprint sensors are particularly convenient, as log‐
ging in literally involves moving one finger.

You should always provide the ability to fall back to using the login form. Doing so
will not reduce the security of your application, as a wily hacker could delete the
cookie and fall back to using the form anyway.

You can download the source for this recipe from the GitHub site.

7.7 Test on an Android Device
Problem
You can perform most mobile browser testing with a desktop browser simulating the
appearance of a mobile device (see Figure 7-27).

262 | Chapter 7: Security

https://oreil.ly/4ZDh6

Figure 7-27. You can use a desktop browser for most mobile testing

But there are times when it is best to test a React application on a physical mobile
device, which is usually not a problem; the mobile device can access the React appli‐
cation remotely using the IP address of the development machine.

There are, however, circumstances where that is not true:

• Your mobile device might not be able to connect to the same network as your
development machine.

• You might be using a technology, such as WebAuthn, that requires HTTPS for
domains other than localhost.

Is it possible to configure a mobile device to access a React app as if it is running on
localhost, even though it is running on a separate machine?

Solution
This recipe will look at how we can proxy the network on an Android-based device so
that connections to localhost will go to the server on your development machine.

The first thing you’ll need is an Android device that has USB debugging enabled. You
will also need a copy of the Android SDK installed, which will allow you to use a tool
called the Android Debug Bridge (ADB). The ADB opens a communication channel
between your development machine and an Android device.

7.7 Test on an Android Device | 263

https://oreil.ly/fc5Fv
https://oreil.ly/BFeXr

14 You will need to locate the Android SDK installed on your machine. You can find the adb command in a sub‐
directory within this installation.

You will then need to connect your Android device to your development machine
with a USB cable and ensure that the adb command is available on your command
path.14 You can then list the Android devices connected to your machine:

$ adb devices
* daemon not running; starting now at tcp:5037
* daemon started successfully
List of devices attached
25PRIFFEJZWWDFWO device
$

Here you can see there is a single device connected, with a device ID of 25PRIF
FEJZWWDFWO.

You can now use the adb command to configure a proxy on the Android device,
which will redirect all HTTP traffic to its internal port 3000:

$ adb shell settings put global http_proxy localhost:3000

If you have more than one Android device connected to your
machine, you will need to specify its device ID with the adb option
-s <device-id>.

You will next need to tell adb to run a proxy service on the Android device, which will
forward any traffic from port 3000 on the device to port 3000 on the development
machine:

$ adb reverse tcp:3000 tcp:3000

If you now open a browser on the Android device and tell it to go to http://localhost:
3000, it will display the app running on your development machine, as if it’s running
inside the device (see Figure 7-28).

264 | Chapter 7: Security

Figure 7-28. If you open a mobile browser to localhost, it will connect to the development
machine

Once you have finished using the app, you will need to disable the proxy setting on
the Android device.

If you fail to disable the proxy on the Android device, it will no
longer access the network.

You can do this by resetting the proxy back to :0:

$ adb shell settings put global http_proxy :0

Discussion
This recipe requires a lot of work the first time you use it because it involves installing
an entire Android SDK on your development machine. But then it will be straightfor‐
ward to connect and disconnect real Android devices to your machine.

7.7 Test on an Android Device | 265

7.8 Check Security with ESlint
Problem
Just a few common coding issues frequently cause security threats in JavaScript. You
can decide to create a set of coding standards that will avoid those errors. However,
you will need to frequently review the standards to keep them up-to-date with the lat‐
est changes in technology, and you will also need to introduce slow and expensive
code review processes.

Is there a way to check for poor security practices in code that will not slow down
your development processes?

Solution
One way to introduce security reviews is to try to automate them. One tool that will
allow you to do this is eslint. If you’ve created your application with a tool like
create-react-app, you have probably already got eslint installed. In fact, create-
react-app runs eslint each time it restarts its development server. If you’ve ever
seen coding issues highlighted in the terminal, that output has come from eslint:

Compiled with warnings.

src/App.js
 Line 5:9: 'x' is assigned a value but never used no-unused-vars

Search for the keywords to learn more about each warning.
To ignore, add // eslint-disable-next-line to the line before.

If you don’t have eslint installed, you can install it through npm:

$ npm install --save-dev eslint

Once installed, you can initialize it like this:

$ node_modules/.bin/eslint --init
- How would you like to use ESLint? · problems
- What type of modules does your project use? · esm
- Which framework does your project use? · react
- Does your project use TypeScript? · No / Yes
- Where does your code run? · browser
- What format do you want your config file to be in? · JavaScript
Local ESLint installation not found.
The config that you've selected requires the following dependencies:

eslint-plugin-react@latest eslint@latest
- Would you like to install them now with npm? · No / Yes
$

266 | Chapter 7: Security

Remember: you don’t need to initialize eslint if you’re using create-react-app; it’s
already done for you.

At this point, you could choose to write your own set of eslint rules to check for
breaches of any security practices. However, it’s far easier to install an eslint plugin
with a set of security rules already written for you.

For example, let’s install the eslint-plugin-react-security package, which is cre‐
ated and managed by Slyk:

$ npm install --save-dev eslint-plugin-react-security

Once installed, we can enable this plugin by editing the eslintConfig section of
package.json (if you’re using create-react-app) or the eslintrc* file in your app
directory.

You should change it from this:

"eslintConfig": {
 "extends": [
 "react-app",
 "react-app/jest"
]
},

to this:

"eslintConfig": {
 "extends": [
 "react-app",
 "react-app/jest"
],
 "plugins": [
 "react-security"
],
 "rules": {
 "react-security/no-javascript-urls": "warn",
 "react-security/no-dangerously-set-innerhtml": "warn",
 "react-security/no-find-dom-node": "warn",
 "react-security/no-refs": "warn"
 }
},

This change will enable four rules from the React Security plugin.

To check that they work, let’s add some code to an application that will contravene the
no-dangerously-set-innerhtml rule:

import logo from './logo.svg'
import './App.css'

function App() {
 return (

7.8 Check Security with ESlint | 267

https://slyk.io

 <div className="App">
 <header className="App-header">

 <p>
 Edit <code>src/App.js</code> and save to reload.
 </p>
 <div
 dangerouslySetInnerHTML={{
 __html: '<p>This is a bad idea</p>',
 }}
 />
 <a
 className="App-link"
 href="https://reactjs.org"
 target="_blank"
 rel="noopener noreferrer"
 >
 Learn React

 </header>
 </div>
)
}

export default App

If you’ve installed eslint manually, you can now scan this file with:

$ node_modules/.bin/eslint src/App.js

If you’re using create-react-app, you just need to restart the server to ensure that it
reloads the eslint config:

Compiled with warnings.

src/App.js
 Line 12:16: dangrouslySetInnerHTML prop usage detected
 react-security/no-dangerously-set-innerhtml

Search for the keywords to learn more about each warning.
To ignore, add // eslint-disable-next-line to the line before.

Discussion
If you have a team of developers, you might also want to run the eslint checks using
a Git pre-commit hook to prevent developers from ever checking in code that fails the
audit. A Git hook will give faster feedback to the developer and prevent them from
failing the build for everyone else.

If you want to configure pre-commit hooks through your package.json file, consider
installing Husky code hooks.

268 | Chapter 7: Security

https://oreil.ly/uEjix

Another advantage of automating your security checks is that you can add them to
your build-and-deploy pipeline. If you run the checks at the start of the pipeline, you
can reject a commit immediately and notify the developer.

You can download the source for this recipe from the GitHub site.

7.9 Make Login Forms Browser Friendly
Problem
Many security solutions rely on username/password forms, but several usability traps
are easy to fall into when creating them. On some devices, automated capitalization
and autocorrect can corrupt usernames and passwords in an attempt to be helpful.
Some browsers will attempt to autocomplete username fields, but it is often unclear
what rules they use, so autocomplete works on some sites but not others.

What practices should you follow when building login forms so that they will work
with the browser rather than against it?

Solution
Several HTML attributes can significantly improve the usability of your login forms.

First, it can be useful to disable autocorrect for username fields. Autocorrect is fre‐
quently applied on mobile devices to compensate for the small keyboards and the
spelling mistakes that inevitably occur. But autocorrect is of little use when typing
usernames. You can disable autocorrect using the autoCorrect attribute:

<input autoCorrect="off"/>

Next, if your username is an email address, consider setting the type to email, which
might launch an email-specific keyboard on mobile devices. Some browsers may even
show recent email addresses in an autocomplete window or in the header of an email-
specific keyboard:

<input type="email"/>

You might also consider using j_username as the id and name of the username field.
Why? It’s because Java-based applications commonly have fields named j_username,
and so the user is likely to have provided a j_username value in the past. This increa‐
ses the likelihood that the browser might offer the email address in an autocomplete
window:

<input id="j_username" name="j_username"/>

You can explicitly say that a field represents a username field, making it very likely
that you will trigger an autocomplete response from the browser:

7.9 Make Login Forms Browser Friendly | 269

https://oreil.ly/kvBcS

<input autoComplete="username"/>

Now, what to do about passwords?

First, always set the type to password:

<input type="password"/>

Never be tempted to reproduce the visual appearance of a password field in some
other way, for example, by custom CSS styling. Doing so will prevent the browser
from applying standard security features to the password field, such as disabling the
copy function inside it. Also, if you don’t set the type to password, the browser will
not offer to store the value in its password manager.

There are two types of password fields: for current passwords (when logging in) and
for new passwords (when signing up or changing a password).

Why is this relevant? It’s because the HTML autoComplete attribute can indicate to
the browser how you intend to use the password field.

If it’s a login form, you will want to say that the password is a current-password:

<input type="password" autoComplete="current-password"/>

If it’s a registration or change password form, you should set it to new-password:

<input type="password" autoComplete="new-password"/>

This value will encourage the browser to autocomplete stored passwords in a login
form. It will also trigger any built-in or third-party password generation tools.

Finally, avoid using wizard-style login screens (see Figure 7-29 for an example from
the Washington Post).

Browsers are less likely to recognize a single username field as a login form and so are
less likely to offer to complete the details for you.

270 | Chapter 7: Security

Figure 7-29. Multistep forms can prevent a browser from using autocomplete

Discussion
The autocomplete attribute has many other seldom-used values for several types of
form fields, from address details and phone numbers to credit card numbers. For fur‐
ther information, see the Mozilla development site.

7.9 Make Login Forms Browser Friendly | 271

https://oreil.ly/TLHLF

CHAPTER 8

Testing

In this chapter, we’ll look at various techniques for testing your React applications. In
general, we’ve found that it is a bad idea to be too prescriptive about the precise mix
of tests you should have. A good guiding principle is to follow these two rules:

• Never write code unless you have a failing test.
• If a test passes the first time you run it, delete it.

These two rules will help you build code that works while avoiding creating redun‐
dant tests that provide little value.

We have found that early in a project, it is easier to write more browser-based tests.
These tests tend to be higher-level and help capture the principal business require‐
ments for an application. Later, when the application’s architecture starts to emerge
and stabilize, it becomes easier to write more unit tests of individual components.
They are faster to write and quicker to run, and once you have a stable structure to
your code, you will not need to update them continuously.

Sometimes it’s worth loosening the definition of what a test is. When you are working
on layout code, whose primary value is visual, you might consider a Storybook story
to be a “test.” The assertion is done by your eye, looking at the component as you cre‐
ate. Of course, this kind of test will not automatically pick up regression failures, but
we present a technique in a recipe that will allow you to turn these visual checks into
actual automated tests.

If you write tests before you write code, you will find that tests are tools for design.
They will become executable examples of how you would like your application to
work.

273

Instead, if you write tests after you write the code, they will be simply artifacts. Pieces
of code that you must slavishly create because they feel like the sorts of things a pro‐
fessional developer should write.

We focus on four tools in this chapter: the React Testing Library, Storybook, the Sele‐
nium library, and Cypress.

The React Testing Library is an excellent way of creating very detailed unit tests.

Storybook is a gallery tool that we have looked at previously. We include it in this
chapter because a gallery is a set of code examples, which is also what tests are. You
will find ways of using Storybook as part of your testing/development process.

Selenium is one of the most established libraries for testing your application in a real
browser.

Finally, what is quickly becoming our favorite tool for testing: Cypress. Cypress is
similar to Selenium in that it runs inside a browser. But it includes a whole host of
additional features, such as test replays, generated videos of test runnings, and a sig‐
nificantly simpler programming model. If you use only one tool from this chapter, let
it be Cypress.

8.1 Use the React Testing Library
Problem
There are many ways that you can test a React application. Early on in a project, when
you are still defining an application’s essential purpose and function, you might
choose to create tests in some very high-level form, such as Cucumber tests. If you
are looking at some isolated piece of the system (such as creating and maintaining a
data item), you might want to create functional tests using a tool like Cypress.

But if you are deep into the detail of creating a single component, then you will prob‐
ably want to create unit tests. Unit tests are so-called because they attempt to test a
single piece of code as an isolated unit. While it’s debatable whether unit test is the
correct term for testing components (which often contain subcomponents and so are
not isolated), it’s the name usually applied to tests of components that you can test
outside of a browser.

But how do you unit test React components? There have historically been several
approaches. Early unit tests relied on rendering the component into an HTML string,
which required minimal testing infrastructure, but there were multiple downsides:

• Handling re-renders when the component state changed.
• Making assertions on HTML elements that the test must parse from the string.

274 | Chapter 8: Testing

https://cucumber.io

• To test UI interactions, you need to mock the event model.

It was not long before developers created libraries to take care of the details of each of
these problems.

However, tests created in this way lacked the reality of tests created in browsers. The
subtleties of the interaction between the virtual Document Object Model (DOM) and
the browser DOM were lost. Often subcomponents were not rendered to reduce the
complexity of the tests.

The result was that React applications often had few unit tests. Developers would
refactor their code to move complex logic into easily testable JavaScript functions.
Developers would have to test anything more complex with a real browser, leading to
slower tests. Because they were slow, developers would be discouraged from testing
too many scenarios.

So how can you unit test React components realistically without the overhead of
launching the entire app and running the tests in a real browser?

Solution
The Testing Library by Kent C. Dodds attempts to avoid the issues with previous unit
testing libraries by providing a standalone implementation of the DOM. As a result,
tests can render a React component to a virtual DOM, which can then be synchron‐
ized with the Testing Library’s DOM and create a tree of HTML elements that behave
like they would in a real browser.

You can inspect the elements in the same way that you would within a browser. They
have the same attributes and properties. You can even pass keystrokes to input fields
and have them behave the same way as fields in the browser.

If you created your application with create-react-app, you should already have the
Testing Library installed. If not, you can install it from the command line:

$ npm install --save-dev "@testing-library/react"
$ npm install --save-dev "@testing-library/jest-dom"
$ npm install --save-dev "@testing-library/user-event"

These three libraries will allow us to unit test components.

The Testing Library allows us to render components using the DOM implementation
in @testing-library/jest-dom. The User Event library (@testing-library/user-
event) simplifies interacting with the generated DOM elements. This User Event
library allows us to click the buttons and type into the fields of our components.

8.1 Use the React Testing Library | 275

To show how to unit test components, we will need an application to test. We’ll be
using the same application through much of this chapter. When the application
opens, it asks the user to perform a simple calculation. The application will say if the
user’s answer is right or wrong (see Figure 8-1).

Figure 8-1. The application under test

The main component of the application is called App. We can create a unit test for this
component by writing a new file called App.test.js:

describe('App', () => {
 it('should tell you when you win', () => {
 // Given we've rendered the app
 // When we enter the correct answer
 // Then we are told that we've won
 })
})

The preceding code is a Jest test, with a single scenario that tests that the App compo‐
nent will tell us we’ve won if we enter the correct answer. We’ve put placeholder com‐
ments for the structure of the test.

We will begin by rendering the App component. We can do this by importing the
component and passing it to the Testing Library’s render function:

import { render } from '@testing-library/react'
import App from './App'

describe('App', () => {
 it('should tell you when you win', () => {
 // Given we've rendered the app
 render(<App />)

 // When we enter the correct answer

276 | Chapter 8: Testing

1 You will see in other recipes in this chapter that it’s possible to dynamically remove the randomness from a
test and fix the correct answer without capturing the question from the page.

 // Then we are told that we've won
 })
})

Notice that we pass actual JSX to the render function, which means that we could, if
we wanted, test the component’s behavior when passed different sets of properties.

For the next part of the test, we’ll need to enter the correct answer. To do that, we
must first know what the correct answer is. The puzzle is always a randomly gener‐
ated multiplication, so we can capture the numbers from the page and then type the
product into the Guess field.1

We will need to look at the elements generated by the App component. The render
function returns an object that contains the elements and a set of functions for filter‐
ing them. Instead of using this returned value, we’ll instead use the Testing Library’s
screen object.

You can think of the screen object as the contents of the browser window. It allows us
to find elements within the page so that we can interact with them. For example, if we
want to find the input field labeled Guess, we can do it like this:

const input = screen.getByLabelText(/guess:/i)

The filter methods in the screen object typically begin with:

getBy...

If you know that the DOM contains a single instance of the matching element

queryBy...

If you know there are zero or one elements that match

getAllBy...

If you know there are one or more matching elements (returns an array)

queryAllBy...

To find zero or more elements (returns an array)

These methods will throw an exception if they find more or fewer elements than they
were expecting. There are also findBy... and findAllBy... methods that are asyn‐
chronous versions of getBy... and getAllBy... that return promises.

8.1 Use the React Testing Library | 277

For each of these filter method types, you can search the following:

Function name ends Description

...ByLabelText Finds field by label

...ByPlaceHolderText Finds field with placeholder text

...ByText With matching text content

...ByDisplayValue Finds by value

...ByAltText Matching the alt attribute

...ByTitle Matching the title attribute

...ByRole Finds by aria role

...ByTestId Finds by data-testid attribute

There are nearly 50 ways to find elements within the page. However, you might have
noticed that none of them use a CSS selector to track an element down, which is
deliberate. The Testing Library restricts the number of ways that you can find ele‐
ments within the DOM. It doesn’t allow you to, for example, find elements by class
name to reduce the fragility of the test. Class names are frequently used for cosmetic
styling and are subject to frequent change.

It is still possible to track down elements with selectors, by using the container
returned by the render method:

const { container } = render(<App />)
const theInput = container.querySelector('#guess')

But this approach is considered poor practice. If you use the Testing Library, it’s prob‐
ably best to follow the standard approach and find elements based upon their content
or role.

There is one small concession to this approach made by the filter functions:
the ...ByTestId functions. If you have no practical way of finding an element by its
content, you can always add a data-testid attribute to the relevant tag. That is useful
for the test we are currently writing because we need to find two numbers displayed
on the page. And these numbers are randomly generated, so we don’t know their con‐
tent (Figure 8-2).

278 | Chapter 8: Testing

Figure 8-2. We cannot find the numbers by content because we won’t know what they
are

So, we make a small amendment to the code and add test IDs:

<div className="Question-detail">
 <div data-testid="number1" className="number1">
 {pair && pair[0]}
 </div>
 ×
 <div data-testid="number2" className="number2">
 {pair && pair[1]}
 </div>
 ?
</div>

This means we can start to implement the next part of our test:

import { render, screen } from '@testing-library/react'
import App from './App'

describe('App', () => {
 it('should tell you when you win', () => {
 // Given we've rendered the app
 render(<App />)

 // When we enter the correct answer
 const number1 = screen.getByTestId('number1').textContent
 const number2 = screen.getByTestId('number2').textContent
 const input = screen.getByLabelText(/guess:/i)
 const submitButton = screen.getByText('Submit')
 // Err...

 // Then we are told that we've won
 })
})

We have the text for each of the numbers, and we have the input element. We now
need to type the correct number into the field and then submit the answer. We’ll do
this with the @testing-library/user-event library. The User Event library

8.1 Use the React Testing Library | 279

2 Notice that many tests make text comparisons using regular expressions, which allows, as in this example, for
case-insensitive matches of substrings. Regular expressions can prevent tests from breaking frequently.

simplifies the process of generating JavaScript events for HTML elements. You will
often see the User Event library imported with the alias user, which is because you
can think of the calls to the User Event library as the actions a user is making:

import { render, screen } from '@testing-library/react'
import user from '@testing-library/user-event'
import App from './App'

describe('App', () => {
 it('should tell you when you win', () => {
 // Given we've rendered the app
 render(<App />)

 // When we enter the correct answer
 const number1 = screen.getByTestId('number1').textContent
 const number2 = screen.getByTestId('number2').textContent
 const input = screen.getByLabelText(/guess:/i)
 const submitButton = screen.getByText('Submit')
 user.type(input, '' + parseFloat(number1) * parseFloat(number2))
 user.click(submitButton)

 // Then we are told that we've won
 })
})

Finally, we need to assert that we have won. We can write this simply by looking for
some element containing the word won:2

// Then we are told that we've won
screen.getByText(/won/i)

This assertion will work because getByText throws an exception if it does not find
precisely one matching element.

If you are unsure about the current HTML state at some point in a
test, try adding screen.getByTestId('NONEXISTENT') into the
code. The exception that’s thrown will show you the current
HTML.

However, the test is liable to break if your application is running slowly. This is
because the get... and query... functions look at the existing state of the DOM. If
the result takes a couple of seconds to appear, the assertion will fail. For this reason,
it’s a good idea to make some assertions asynchronous. It makes the code a little more
complex, but the test will be more stable when running against slow-moving code.

280 | Chapter 8: Testing

The find... methods are asynchronous versions of the get... methods, and the
Testing Library’s waitFor will allow you to rerun code for a period of time. By com‐
bining the two functions, we can create the final part of our test:

import { render, screen, waitFor } from '@testing-library/react'
import user from '@testing-library/user-event'
import App from './App'

describe('App', () => {
 it('should tell you when you win', async () => {
 // Given we've rendered the app
 render(<App />)

 // When we enter the correct answer
 const number1 = screen.getByTestId('number1').textContent
 const number2 = screen.getByTestId('number2').textContent
 const input = screen.getByLabelText(/guess:/i)
 const submitButton = screen.getByText('Submit')
 user.type(input, '' + parseFloat(number1) * parseFloat(number2))
 user.click(submitButton)

 // Then we are told that we've won
 await waitFor(() => screen.findByText(/won/i), { timeout: 4000 })
 })
})

Unit tests should run quickly, but if for some reason your test takes
longer than five seconds, you will need to pass a second timeout
value in milliseconds to the it function.

Discussion
Working with different teams, we found that early on in a project, the developers
would write unit tests for each component. But over time, they would write fewer and
fewer unit tests. Eventually, they might even delete unit tests if they required too
much maintenance.

This happens partly because unit tests are more abstract than browser tests. They are
doing the same kinds of things as browser tests, but they do them invisibly. When
they are interacting with components, you don’t see them.

A second reason is that teams often see tests as deliverable artifacts within a project.
The team might even have builds that fail if unit tests don’t cover a certain percentage
of the code.

8.1 Use the React Testing Library | 281

These issues generally disappear if developers write tests before they write code. If you
write the tests first, a line at a time, you will have a much better grasp of the current
state of HTML. If you stop seeing tests as development artifacts and start to look at
them as tools for designing your code, they stop becoming a time-consuming burden
and become tools that make your work easier.

The important thing when writing code is that you begin with a failing test. In the
early days of a project, that might be a failing browser test. As the project matures and
the architecture stabilizes, you should create more and more unit tests.

You can download the source for this recipe from the GitHub site.

8.2 Use Storybook for Render Tests
Problem
Tests are simply examples that you can execute. Consequently, tests have a lot in com‐
mon with component gallery systems like Storybook. Both tests and galleries are
examples of components running in particular circumstances. Whereas a test will
make assertions with code, a developer will make an assertion of a library example by
looking at it and checking that it appears as expected. In both galleries and tests,
exceptions will be easily visible.

There are differences. Tests can automatically interact with components; gallery com‐
ponents require a person to press buttons and type text. Developers can run tests
with a single command; galleries have to be manually viewed, one example at a time.
Gallery components are visual and easy to understand; tests are abstract and less fun
to create.

Is there some way to combine galleries like Storybook with automated tests to get the
best of both worlds?

Solution
We’re going to look at how you can reuse your Storybook stories inside tests. You can
install Storybook into your application with this command:

$ npx sb init

The example application in this chapter is a simple mathematical game in which the
user needs to calculate the answer to a multiplication problem (see Figure 8-3).

282 | Chapter 8: Testing

https://oreil.ly/P1Tqj

Figure 8-3. The example application

One of the components in the game is called Question, and it displays a randomly
generated multiplication question (Figure 8-4).

Figure 8-4. The Question component

Let’s say we don’t worry too much about tests for this component. Let’s just build it by
creating some Storybook stories. We’ll write a new Question.stories.js file:

import Question from './Question'

const Info = {
 title: 'Question',
}

export default Info

export const Basic = () => <Question />

And then we’ll create an initial version of the component that we can look at in Story‐
book and be happy with:

import { useEffect, useState } from 'react'
import './Question.css'

const RANGE = 10

function rand() {
 return Math.floor(Math.random() * RANGE + 1)

8.2 Use Storybook for Render Tests | 283

}

const Question = ({ refreshTime }) => {
 const [pair, setPair] = useState()

 const refresh = () => {
 setPair((pair) => {
 return [rand(), rand()]
 })
 }

 useEffect(refresh, [refreshTime])

 return (
 <div className="Question">
 <div className="Question-detail">
 <div data-testid="number1" className="number1">
 {pair && pair[0]}
 </div>
 ×
 <div data-testid="number2" className="number2">
 {pair && pair[1]}
 </div>
 ?
 </div>
 <button onClick={refresh}>Refresh</button>
 </div>
)
}

export default Question

This component displays a randomly generated question if the user clicks the Refresh
button or if a parent component passes in a new refreshTime value.

We display the component in Storybook, and it looks like it works fine. We can click
the Refresh button, and it refreshes. So at that point, we start to use the component in
the main application. After a while, we add a few extra features, but none of them are
visual changes, so we don’t look at the Storybook stories for it again. After all, it will
still look the same. Right?

This is a modified version of the component, after we’ve wired it into the rest of the
application:

import { useEffect, useState } from 'react'
import './Question.css'

const RANGE = 10

function rand() {
 return Math.floor(Math.random() * RANGE + 1)
}

284 | Chapter 8: Testing

const Question = ({ onAnswer, refreshTime }) => {
 const [pair, setPair] = useState()
 const result = pair && pair[0] * pair[1]

 useEffect(() => {
 onAnswer(result)
 }, [onAnswer, result])

 const refresh = () => {
 setPair((pair) => {
 return [rand(), rand()]
 })
 }

 useEffect(refresh, [refreshTime])

 return (
 <div className="Question">
 <div className="Question-detail">
 <div data-testid="number1" className="number1">
 {pair && pair[0]}
 </div>
 ×
 <div data-testid="number2" className="number2">
 {pair && pair[1]}
 </div>
 ?
 </div>
 <button onClick={refresh}>Refresh</button>
 </div>
)
}

export default Question

This version is only slightly longer than before. We’ve added an onAnswer callback
function that will return the correct answer to the parent component each time the
application generates a new question.

The new component appears to work well in the application, but then an odd thing
occurs. The next time someone looks at Storybook, they notice an error, as shown in
Figure 8-5.

8.2 Use Storybook for Render Tests | 285

Figure 8-5. An error occurs when we look at the new version of the component

What happened? We’ve added an implicit assumption into the code that the parent
component will always pass an onAnswer callback into the component. Because the
Storybook stories rendered Basic story without an onAnswer, we got the error:

<Question/>

Does this matter? Not for a simple component like this. After all, the application itself
still worked. But failure to cope with missing properties, such as the missing callback
here or, more frequently, missing data, is one of the most typical causes of errors in
React.

Applications frequently generate React properties using data from the network, and
that means the initial properties you pass to components will often be null or unde‐
fined. It’s generally a good idea to either use a type-safe language, like TypeScript, to
avoid these issues or write tests that check that your components can cope with miss‐
ing properties.

We created this component without any tests, but we did create it with a Storybook
story—and that story did catch the issue. So is there some way to write a test that will
automatically check that Storybook can render all the stories?

We’re going to create a test for this component in a file called Question.test.js.

286 | Chapter 8: Testing

3 See the source code in the GitHub repository to see how we’ve structured the code in the example application.
4 If you don’t have the Testing Library installed, see Recipe 8.1.

Consider creating a folder for each component. Instead of simply
having a file called Question.js in the src directory, create a folder
called src/Question, and inside there you can place Question.js,
Question.stories.js, and Question.test.js. If you then add an src/Ques‐
tion/index.js file, which does a default export of the Question com‐
ponent, the rest of your code will be unaffected, and you will
reduce the number of files other developers have to deal with.3

In the test file, we can then create a Jest test that loads each of the stories and then
passes them to the Testing Library’s render function:4

import { render } from '@testing-library/react'
import Question from './Question'

const stories = require('./Question.stories')

describe('Question', () => {
 it('should render all storybook stories without error', () => {
 for (let story in stories) {
 if (story !== 'default') {
 let C = stories[story]
 render(<C />)
 }
 }
 })
})

If your stories are using decorators to provide such things as routers
or styling, this technique will not pick them up automatically. You
should add them into the render method within the test.

When you run this test, you will get a failure:

onAnswer is not a function
TypeError: onAnswer is not a function

We can fix the error by checking if there is a callback before calling it:

useEffect(() => {
 // We need to check to avoid an error
 if (onAnswer && result) {
 onAnswer(result)
 }
}, [onAnswer, result])

8.2 Use Storybook for Render Tests | 287

https://oreil.ly/P1Tqj

This technique allows you to create some elementary tests for a component with min‐
imal effort. It’s worth creating a story for the component, which includes no proper‐
ties whatsoever. Then, before you add a new property, create a story that uses it and
think about how you will expect the component to behave.

Even though the test will perform only a simple render of each story, there is no rea‐
son why you can’t import a single story and create a test using that story:

import { render, screen } from '@testing-library/react'
import user from '@testing-library/user-event'
import Question from './Question'
import { Basic, WithDisabled } from './Question.stories'
...
it('should disable the button when asked', () => {
 render(<WithDisabled />)
 const refreshButton = screen.getByRole('button')
 expect(refreshButton.disabled).toEqual(true)
})

Discussion
Storybook render tests introduce rudimentary unit testing into your application, and
it can find a surprising number of regression bugs. It also helps you think of tests as
examples, which are there to help you design your code rather than coding artifacts
that you must create to keep the team lead happy. Creating render tests for stories is
also helpful if you have a team that is new to unit testing. By creating visual examples,
it avoids the problems that can arise from nonvisual tests feeling abstract. It can also
get developers into the habit of having a test file for each component in the system.
When you need to make a minor change to the component, it will then be much eas‐
ier to add a small unit test function before adding the change.

You can download the source for this recipe from the GitHub site.

8.3 Test Without a Server Using Cypress
Problem
One of the principal features of high-quality code is the way it responds to errors. The
first of Peter Deutsch’s Eight Fallacies of Distributed Computing is: the network is reli‐
able. Not only is the network not reliable, but neither are the servers or databases that
connect to it. At some point, your application is going to have to deal with some net‐
work failure. It might be that the phone loses its connection, or the server goes down,
or the database crashes, or someone else has deleted the data you are trying to update.
Whatever the causes, you will need to decide what your application will do when ter‐
rible things happen.

288 | Chapter 8: Testing

https://oreil.ly/P1Tqj
https://oreil.ly/eDtKG

5 Either directly or indirectly via libraries such as Axios.

Network issues can be challenging to simulate in testing environments. If you write
code that puts the server into some error state, that is likely to cause problems for
other tests or users who connect to the server.

How can you create automated tests for network failure cases?

Solution
For this recipe, we are going to use Cypress. We mentioned the Cypress testing sys‐
tem in Chapter 1. It’s a genuinely remarkable testing system that is rapidly becoming
our go-to tool in many development projects.

To install Cypress into your project, type the following:

$ npm install --save-dev cypress

Cypress works by automating a web browser. In that sense, it is similar to other sys‐
tems like Selenium. Still, the difference is that Cypress does not require you to install
a separate driver, and it can both control the browser remotely and inject itself into
the browser’s JavaScript engine.

Cypress can therefore actively replace core parts of the JavaScript infrastructure with
faked versions that it can control. For example, Cypress can replace the JavaScript
fetch function used to make network calls to the server.5 Cypress tests can therefore
spoof the behavior of a network server and allow a client-side developer to artificially
craft responses from the server.

We will use the example game application that we use for other recipes in this chapter.
We will add a network call to store the result each time a user answers a question. We
can do this without creating the actual server code by faking the responses in
Cypress.

To show how this works, we will first create a test that simulates the server respond‐
ing correctly. Then we will create a test to simulate a server failure.

8.3 Test Without a Server Using Cypress | 289

6 It doesn’t matter what you call the file, but we follow the convention of prefixing high-level tests such as this
with story numbers. Doing so reduces the likelihood of test merge conflicts and makes it much easier to track
the intent of individual changes.

7 This will run the tests more quickly and record a video for each one, which is helpful if your tests run on an
integration server.

Once Cypress is installed, create a file in cypress/integration/ called 0001-basic-game-
functions.js:6

describe('Basic game functions', () => {
 it('should notify the server if I lose', () => {
 // Given I started the application
 // When I enter an incorrect answer
 // Then the server will be told that I have lost
 })
})

We’ve put placeholder comments for each of the steps we will need to write.

Each command and assertion in Cypress begins with cy. If we want to open the
browser at location http://localhost:3000, we can do it with the following:

describe('Basic game functions', () => {
 it('should notify the server if I lose', () => {
 // Given I started the application
 cy.visit('http://localhost:3000')

 // When I enter an incorrect answer
 // Then the server will be told that I have lost
 })
})

To run the test, we can type:

$ npx cypress run

That command will run all tests without showing the browser.7 We can also type the
following:

$ npx cypress open

This command will open the Cypress application window (as you can see in
Figure 8-6). If we double-click the test file, the test will open in a browser (as you can
see in Figure 8-7).

290 | Chapter 8: Testing

Figure 8-6. The test will appear in the Cypress window when you type npx cypress
open

Figure 8-7. A Cypress test running in a browser

8.3 Test Without a Server Using Cypress | 291

8 Cypress commands are similar in many ways to promises, although they are not promises. You can think of
each one as a “prom-ish.”

The example application asks the user to multiply two random numbers (see
Figure 8-8). The numbers will be in the range 1–10, so if we enter the value 101, we
can be sure that the answer will be incorrect.

Cypress does not allow you to capture textual content from the
screen directly. So we cannot simply read the values of the two
numbers and store them in variables because the commands in
Cypress don’t immediately perform the actions in the browser.
Instead, when you run a command, Cypress adds it to a chain of
instructions, which it performs at the end of the test. This approach
might seem a little odd, but these chainable instructions allow
Cypress to cope with most of the problems caused by asynchro‐
nous interfaces.8 The downside is that no command can return the
page’s contents as the page will not exist when the command runs.

We will see elsewhere in this chapter how we can remove randomness in test scenar‐
ios and make this test deterministic, which will remove the need to capture data from
the page.

Figure 8-8. The application asks the user to calculate the product of two random
numbers

We can use the cy.get command to find the input field by a CSS selector. We can also
use the cy.contains command to find the Submit button:

describe('Basic game functions', () => {
 it('should notify the server if I lose', () => {
 // Given I started the application
 cy.visit('http://localhost:3000')

 // When I enter an incorrect answer

292 | Chapter 8: Testing

 cy.get('input').type('101')
 cy.contains('Submit').click()

 // Then the server will be told that I have lost
 })
})

Now we just need to test that the application contacts the server with the result of the
game.

We will use the cy.intercept() command to do this. The cy.intercept() com‐
mand will change the behavior of network requests in the application so that we can
fake responses for a given request. If the result is going to be POSTed to the end‐
point /api/result, we generate a faked response like this:

cy.intercept('POST', '/api/result', {
 statusCode: 200,
 body: '',
})

Once this command takes effect, network requests to /api/result will receive the faked
response. That means we need to run the command before the network request is
made. We will do it at the start of the test:

describe('Basic game functions', () => {
 it('should notify the server if I lose', () => {
 // Given I started the application
 cy.intercept('POST', '/api/result', {
 statusCode: 200,
 body: '',
 })
 cy.visit('http://localhost:3000')

 // When I enter an incorrect answer
 cy.get('input').type('101')
 cy.contains('Submit').click()

 // Then the server will be told that I have lost
 })
})

We’ve now specified the network response. But how do we assert that the application
has made the network call, and how do we know that it has sent the correct data to
the /api/result endpoint?

8.3 Test Without a Server Using Cypress | 293

9 The cy.intercept command cannot simply return a reference to the faked network request because of the
chainable nature of Cypress commands.

We will need to give the network request an alias. This will allow us to refer to the
request later in the test:9

cy.intercept('POST', '/api/result', {
 statusCode: 200,
 body: '',
}).as('postResult')

We can then make an assertion at the end of the test, which will wait for the network
call to be made and will check the contents of the data sent in the request body:

describe('Basic game functions', () => {
 it('should notify the server if I lose', () => {
 // Given I started the application
 cy.intercept('POST', '/api/result', {
 statusCode: 200,
 body: '',
 }).as('postResult')
 cy.visit('http://localhost:3000')

 // When I enter an incorrect answer
 cy.get('input').type('101')
 cy.contains('Submit').click()

 // Then the server will be told that I have lost
 cy.wait('@postResult').then((xhr) => {
 expect(xhr.request.body.guess).equal(101)
 expect(xhr.request.body.result).equal('LOSE')
 })
 })
})

This assertion is checking two of the attributes of the request body for the expected
values.

If we run the test now, it will pass (as you can see in Figure 8-9).

294 | Chapter 8: Testing

Figure 8-9. The completed test passes

Now that we’ve created a test for the successful case, we can write a test for the failure
case. The application should display a message on-screen if the network call fails. We
don’t actually care what details are sent to the server in this test, but we still need to
wait for the network request to complete before checking for the existence of the
error message:

it('should display a message if I cannot post the result', () => {
 // Given I started the application
 cy.intercept('POST', '/api/result', {
 statusCode: 500,
 body: { message: 'Bad thing happened!' },
 }).as('postResult')
 cy.visit('http://localhost:3000')

 // When I enter an answer
 cy.get('input').type('16')
 cy.contains('We are unable to save the result').should('not.exist')
 cy.contains('Submit').click()

 // Then I will see an error message
 cy.wait('@postResult')
 cy.contains('We are unable to save the result')
})

8.3 Test Without a Server Using Cypress | 295

Notice that we check for the error message not existing before we make the network
call to ensure that the network call causes the error.

In addition to generating stubbed responses and status codes, cy.intercept can per‐
form other tricks, such as slowing response times, throttling network speed, or gener‐
ating responses from test functions. For further details, see the cy.intercept
documentation.

Discussion
Cypress testing can transform how a development team works, specifically in its abil‐
ity to mock network calls. Teams frequently develop APIs at a different cadence than
frontend code. Also, some teams have developers who specialize in frontend or server
code. Cypress can help in these situations because it allows frontend developers to
write code against endpoints that don’t currently exist. Cypress can also simulate all
of the pathological failure cases.

Network performance can introduce intermittent bugs. Development environments
use local servers with little or no data, which means that API performance is far bet‐
ter at development time than in a production environment. It is straightforward to
write code that assumes that data is immediately available, but this code will break in
a production environment where the data may take a second or so to arrive.

It is therefore worth having at least one test for each API call where the response is
slowed by a second or so:

cy.intercept('GET', '/api/widgets', {
 statusCode: 200,
 body: [{ id: 1, name: 'Flange' }],
 delay: 1000,
}).as('getWidgets')

Simulating slow network responses will often flush out a whole plethora of asynchro‐
nous bugs that might otherwise creep into your code.

Almost as importantly, creating artificially slow network responses will give you a
sense of the overall impact of each API call on performance.

You can download the source for this recipe from the GitHub site.

8.4 Use Cypress for Offline Testing
Problem
This recipe uses a custom Cypress command invented by Etienne Bruines.

296 | Chapter 8: Testing

https://oreil.ly/tcZR8
https://oreil.ly/tcZR8
https://oreil.ly/P1Tqj
https://oreil.ly/oOMHP

10 See Recipe 3.5.

Applications need to cope with being disconnected from the network. We’ve seen
elsewhere how to create a hook to detect if we are currently offline.10 But how are we
test for offline behavior?

Solution
We can simulate offline working using Cypress. Cypress tests can inject code that
modifies the internal behavior of the browser under test. We should therefore be able
to modify the network code to simulate offline conditions.

For this recipe, you will need to install Cypress in your application. If you don’t
already have Cypress, you can install it by running this command in your application
directory:

$ npm install --save-dev cypress

You can then add a 0002-offline-working.js file to the cypress/integration directory:

describe('Offline working', () => {
 it(
 'should tell us when we are offline',
 { browser: '!firefox' },
 () => {
 // Given we have started the application
 // When the application is offline
 // Then we will see a warning
 // When the application is back online
 // Then we will not see a warning
 }
)
})

We will ignore this test on Firefox. The offline simulation code
relies upon the Chrome DevTools remote debugging protocol,
which is not currently available in the Firefox browser.

We have marked out the structure of the test as a series of comments. Cypress com‐
mands all begin with cy, so we can open the application like this:

describe('Offline working', () => {
 it(
 'should tell us when we are offline',
 { browser: '!firefox' },
 () => {
 // Given we have started the application

8.4 Use Cypress for Offline Testing | 297

 cy.visit('http://localhost:3000')

 // When the application is offline
 // Then we will see a warning
 // When the application is back online
 // Then we will not see a warning
 }
)
})

The question is, how do we force the browser to simulate offline working?

We can do it because Cypress is designed to be extensible. We can add a custom
Cypress command that will allow us to go offline and back online:

cy.network({ offline: true })
cy.network({ offline: false })

To add a custom command, open the cypress/support/commands.js file, and add the
following code:

Cypress.Commands.add('network', (options = {}) => {
 Cypress.automation('remote:debugger:protocol', {
 command: 'Network.enable',
 })

 Cypress.automation('remote:debugger:protocol', {
 command: 'Network.emulateNetworkConditions',
 params: {
 offline: options.offline,
 latency: 0,
 downloadThroughput: 0,
 uploadThroughput: 0,
 connectionType: 'none',
 },
 })
})

This command uses the remote debugging protocol in DevTools to emulate offline
network conditions. Once you have saved this file, you can then implement the rest of
the test:

describe('Offline working', () => {
 it(
 'should tell us when we are offline',
 { browser: '!firefox' },
 () => {
 // Given we have started the application
 cy.visit('http://localhost:3000')
 cy.contains(/you are currently offline/i).should('not.exist')

 // When the application is offline
 cy.network({ offline: true })

298 | Chapter 8: Testing

 // Then we will see a warning
 cy.contains(/you are currently offline/i).should('be.visible')

 // When the application is back online
 cy.network({ offline: false })

 // Then we will not see a warning
 cy.contains(/you are currently offline/i).should('not.exist')
 }
)
})

If you run the test now, in Electron, it will pass (see Figure 8-10).

Figure 8-10. You can view each stage of the online/offline test by clicking on the left
panel

Discussion
It should be possible to create similar commands that simulate various network con‐
ditions and speeds.

For more information on how the network command works, see this blog post from
Cypress.io.

You can download the source for this recipe from the GitHub site.

8.4 Use Cypress for Offline Testing | 299

https://oreil.ly/PB4zO
https://oreil.ly/PB4zO
https://oreil.ly/P1Tqj

11 This doesn’t mean that the tests will work against every browser, just that they will all run across every
browser.

12 We are following a convention where we prefix the test with its associated story number. Selenium does not
require this.

8.5 Test in a Browser with Selenium
Problem
Nothing beats running your code inside a real browser, and the most common way of
writing automated browser-based tests is by using a web driver. You can control most
browsers by sending a command to a network port. Different browsers have different
commands, and a web driver is a command-line tool that simplifies controlling the
browser.

But how can we write a test for a React application that uses a web driver?

Solution
We are going to use the Selenium library. Selenium is a framework that provides a
consistent API for a whole set of different web drivers, which means that you can
write a test for Firefox and the same code should work in the same way for Chrome,
Safari, and Edge.11

We will use the same example application that we are using for all recipes in this
chapter. It’s a game that asks the user for the answer to a simple multiplication prob‐
lem.

The Selenium library is available for a whole set of different languages, such as
Python, Java, and C#. We will be using the JavaScript version: Selenium WebDriver.

We’ll begin by installing Selenium:

$ npm install --save-dev selenium-webdriver

We will also need to install at least one web driver. You can install web drivers glob‐
ally, but it is more manageable to install them in your application. We could install a
driver like geckodriver for Firefox, but for now, we will install chromedriver for
Chrome:

$ npm install --save-dev chromedriver

We can now start to create a test. It’s useful to include Selenium tests inside the src
folder of the application, because it will make it easier to use an IDE to run the tests
manually. So we’ll create a folder called src/selenium and then add a file inside it called
0001-basic-game-functions.spec.js:12

300 | Chapter 8: Testing

describe('Basic game functions', () => {
 it('should tell me if I won', () => {
 // Given I have started the application
 // When I enter the correct answer
 // Then I will be told that I have won
 })
})

We have outlined the test in the comments.

While it’s convenient to include Selenium tests in the src tree, it can
mean that a tool like Jest will run it as if it were a unit test, which is
a problem if you run unit tests continually in the background. For
example, if you created your application with create-react-app
and leave an npm run test command running, you will find that a
browser will suddenly appear on your screen each time you save
the Selenium test. To avoid this, adopt some naming convention to
distinguish between Selenium and unit tests. If you name all your
Selenium tests *.spec.js, you can modify your test script to avoid
them by setting it to react-scripts test ‘.*.test.js’.

Selenium uses a web driver to automate the web browser. We can create an instance
of the driver at the start of each test:

import { Builder } from 'selenium-webdriver'
let driver

describe('Basic game functions', () => {
 beforeEach(() => {
 driver = new Builder().forBrowser('chrome').build()
 })

 afterEach(() => {
 driver.quit()
 })

 it('should tell me if I won', () => {
 // Given I have started the application
 // When I enter the correct answer
 // Then I will be told that I have won
 })
})

In this example, we are creating a Chrome driver.

8.5 Test in a Browser with Selenium | 301

By creating a driver for each test, we will also create a fresh instance
of the browser for each test, ensuring that no browser state is car‐
ried between tests. If we carry no state between tests, it will allow us
to run the tests in any order. We have no such guarantee on shared
server state. If your tests are reliant upon, for example, database
data, you should ensure that each test initializes the server correctly
when it starts.

For Selenium to create an instance of the driver, we should also explicitly require the
driver:

import { Builder } from 'selenium-webdriver'
require('chromedriver')

let driver

describe('Basic game functions', () => {
 beforeEach(() => {
 driver = new Builder().forBrowser('chrome').build()
 })

 afterEach(() => {
 driver.quit()
 })

 it('should tell me if I won', () => {
 // Given I have started the application
 // When I enter the correct answer
 // Then I will be told that I have won
 })
})

We can now start to fill out the test. The JavaScript version of Selenium is highly
asynchronous. Virtually all commands return promises, which means that it is very
efficient, but it is also far too easy to introduce testing bugs.

Let’s begin our test by opening the application:

import { Builder } from 'selenium-webdriver'
require('chromedriver')

let driver

describe('Basic game functions', async () => {
 beforeEach(() => {
 driver = new Builder().forBrowser('chrome').build()
 })

 afterEach(() => {
 driver.quit()
 })

302 | Chapter 8: Testing

 it('should tell me if I won', () => {
 // Given I have started the application
 await driver.get('http://localhost:3000')
 // When I enter the correct answer
 // Then I will be told that I have won
 }, 60000)
})

The driver.get command tells the browser to open the given URL. For this to work,
we’ve also had to make two other changes. First, we’ve had to mark the test function
with async, which will allow us to await the promise returned by driver.get.

Second, we’ve added a timeout value of 60,000 milliseconds to the test, overriding the
implicit five-second limit of Jest tests. If you don’t increase the default timeout, you
will find your test fails before the browser starts. We’ve set it to 60,000 milliseconds
here to ensure the test works on any machine. You should adjust this value to match
your expected hardware.

To enter the correct value into the game, we will need to read the two numbers that
appear in the question (as shown in Figure 8-11).

Figure 8-11. The game asks the user to calculate a random product

We can find the two numbers on the page and the input and submit buttons using a
command called findElement:

const number1 = await driver.findElement(By.css('.number1')).getText()
const number2 = await driver.findElement(By.css('.number2')).getText()
const input = await driver.findElement(By.css('input'))
const submit = await driver.findElement(
 By.xpath("//button[text()='Submit']")
)

If you are ever reading a set of elements from the page and don’t care about resolving
them in a strict order, you can use the Promise.all function to combine them into a
single promise that you can then await:

8.5 Test in a Browser with Selenium | 303

const [number1, number2, input, submit] = await Promise.all([
 driver.findElement(By.css('.number1')).getText(),
 driver.findElement(By.css('.number2')).getText(),
 driver.findElement(By.css('input')),
 driver.findElement(By.xpath("//button[text()='Submit']")),
])

In the example application, this optimization will save virtually no time, but if you
have a page that renders different components in uncertain orders, combining the
promises can improve test performance.

This means we can now complete the next part of our test:

import { Builder, By } from 'selenium-webdriver'
require('chromedriver')

let driver

describe('Basic game functions', async () => {
 beforeEach(() => {
 driver = new Builder().forBrowser('chrome').build()
 })

 afterEach(() => {
 driver.quit()
 })

 it('should tell me if I won', () => {
 // Given I have started the application
 await driver.get('http://localhost:3000')
 // When I enter the correct answer
 const [number1, number2, input, submit] = await Promise.all([
 driver.findElement(By.css('.number1')).getText(),
 driver.findElement(By.css('.number2')).getText(),
 driver.findElement(By.css('input')),
 driver.findElement(By.xpath("//button[text()='Submit']")),
])
 await input.sendKeys('' + number1 * number2)
 await submit.click()
 // Then I will be told that I have won
 }, 60000)
})

Notice that we are not combining the promises returned by sendKeys and click
because we care that the test enters the answer into the input field before we submit it.

Finally, we want to assert that a You have won! message appears on the screen (see
Figure 8-12).

304 | Chapter 8: Testing

13 You will find the code to do this in the downloadable source for this chapter from GitHub.

Figure 8-12. The app tells the user they got the correct answer

Now we could write our assertion like this:

const resultText = await driver
 .findElement(By.css('.Result'))
 .getText()
expect(resultText).toMatch(/won/i)

This code will almost certainly work because the result is displayed quickly after the
user submits an answer. React applications will often display dynamic results slowly,
particularly if they rely upon data from the network. If we modify the application
code to simulate a two-second delay before the result appears,13 our test will produce
the following error:

no such element: Unable to locate element: {"method":"css selector",
 "selector":".Result"}
 (Session info: chrome=88.0.4324.192)
NoSuchElementError: no such element: Unable to locate element: {
 "method":"css selector","selector":".Result"}
 (Session info: chrome=88.0.4324.192)

We can avoid this problem by waiting until the element appears on the screen and
then waiting until the text matches the expected result. We can do both of those
things with the driver.wait function:

await driver.wait(until.elementLocated(By.css('.Result')))
const resultElement = driver.findElement(By.css('.Result'))
await driver.wait(until.elementTextMatches(resultElement, /won/i))

This gives us the final version of our test:

8.5 Test in a Browser with Selenium | 305

https://oreil.ly/P1Tqj

import { Builder, By } from 'selenium-webdriver'
require('chromedriver')

let driver

describe('Basic game functions', async () => {
 beforeEach(() => {
 driver = new Builder().forBrowser('chrome').build()
 })

 afterEach(() => {
 driver.quit()
 })

 it('should tell me if I won', () => {
 // Given I have started the application
 await driver.get('http://localhost:3000')
 // When I enter the correct answer
 const [number1, number2, input, submit] = await Promise.all([
 driver.findElement(By.css('.number1')).getText(),
 driver.findElement(By.css('.number2')).getText(),
 driver.findElement(By.css('input')),
 driver.findElement(By.xpath("//button[text()='Submit']")),
])
 await input.sendKeys('' + number1 * number2)
 await submit.click()
 // Then I will be told that I have won
 await driver.wait(until.elementLocated(By.css('.Result')))
 const resultElement = driver.findElement(By.css('.Result'))
 await driver.wait(until.elementTextMatches(resultElement, /won/i))
 }, 60000)
})

Discussion
In our experience, web driver tests are the most popular form of automated tests for
web applications—popular that is, in the sense of frequently used. They are inevitably
dependent upon matching versions of browsers and web drivers, and they do have a
reputation for failing intermittently. Timing issues usually cause these failures, and
those timing issues occur more in Single-Page Applications, which can update their
contents asynchronously.

Although it is possible to avoid these problems by carefully adding timing delays and
retries into the code, this can make your tests sensitive to environmental changes,
such as running your application on a different testing server. Another option, if you
experience a lot of intermittent failures, is to move more of your tests to a system like
Cypress, which is generally more tolerant of timing failures.

You can download the source for this recipe from the GitHub site.

306 | Chapter 8: Testing

https://oreil.ly/IZJ2T
https://oreil.ly/P1Tqj

8.6 Test Cross-Browser Visuals with ImageMagick
Problem
Applications can look very different when viewed on different browsers. Applications
can even look different if viewed on the same browser but on a different operating
system. One example of this would be Chrome, which tends to hide scrollbars when
viewed on a Mac but display them on Windows. Thankfully, old browsers like Inter‐
net Explorer are finally disappearing, but even modern browsers can apply CSS in
subtly different ways, radically changing the appearance of a page.

It can be time-consuming to constantly check an application manually across a range
of browsers and platforms.

What can we do to automate this compatibility process?

Solution
In this recipe, we’re going to combine three tools to check for visual consistency
across different browsers and platforms:

Storybook
This will give us a basic gallery of all of the components, in all relevant configura‐
tions, that we need to check.

Selenium
This will allow us to capture the visual appearance of all of the components in
Storybook. The Selenium Grid will also allow us to remotely connect to browsers
on different operating systems to make comparisons between operating systems.

ImageMagick
Specifically, we’ll use ImageMagick’s compare tool to generate visual differences
between two screenshots and provide a numerical measure of how far apart the
two images are.

We’ll begin by installing Storybook. You can do this in your application with this
command:

$ npx sb init

You will then need to create stories for each of the components and configurations
you are interested in tracking. You can find out how to do this from other recipes in
this book or the Storybook tutorials.

Next, we will need Selenium to automate the capture of screenshots. You can install
Selenium with this command:

$ npm install --save-dev selenium-webdriver

8.6 Test Cross-Browser Visuals with ImageMagick | 307

https://oreil.ly/ak7VW

14 You could put this script anywhere, but this is the location we used in the example code on the GitHub site.

You will also need to install the relevant web drivers. For example, to automate Fire‐
fox and Chrome, you will need the following:

$ npm install --save-dev geckodriver
$ npm install --save-dev chromedriver

Finally, you will need to install ImageMagick, a set of command-line image manipu‐
lation tools. For details on how to install ImageMagick, see the ImageMagick down‐
load page.

We are going to use the same example game application that we’ve used previously in
this chapter. You can see the components from the application displayed in Storybook
in Figure 8-13.

Figure 8-13. Components from the application displayed in Storybook

You can run the Storybook server on your application by typing:

$ npm run storybook

Next, we will create a test that will just be a script for capturing screenshots of each of
the components inside Storybook. In a folder called src/selenium, create a script called
shots.spec.js:14

import { Builder, By, until } from 'selenium-webdriver'

require('chromedriver')
let fs = require('fs')

308 | Chapter 8: Testing

https://oreil.ly/NIQ0A
https://oreil.ly/NIQ0A

describe('shots', () => {
 it('should take screenshots of storybook components', async () => {
 const browserEnv = process.env.SELENIUM_BROWSER || 'chrome'
 const url = process.env.START_URL || 'http://localhost:6006'
 const driver = new Builder().forBrowser('chrome').build()
 driver.manage().window().setRect({
 width: 1200,
 height: 900,
 x: 0,
 y: 0,
 })

 const outputDir = './screenshots/' + browserEnv
 fs.mkdirSync(outputDir, { recursive: true })

 await driver.get(url)

 await driver.wait(
 until.elementLocated(By.className('sidebar-item')),
 60000
)
 let elements = await driver.findElements(
 By.css('button.sidebar-item')
)
 for (let e of elements) {
 const expanded = await e.getAttribute('aria-expanded')
 if (expanded !== 'true') {
 await e.click()
 }
 }
 let links = await driver.findElements(By.css('a.sidebar-item'))
 for (let link of links) {
 await link.click()
 const s = await link.getAttribute('id')
 let encodedString = await driver
 .findElement(By.css('#storybook-preview-wrapper'))
 .takeScreenshot()
 await fs.writeFileSync(
 `${outputDir}/${s}.png`,
 encodedString,
 'base64'
)
 }

 driver.quit()
 }, 60000)
})

This script opens a browser to the Storybook server, opens each of the components,
and takes a screenshot of each story, which it stores in a subdirectory within
screenshots.

8.6 Test Cross-Browser Visuals with ImageMagick | 309

15 The remote machine must have the appropriate browser and web driver installed for this to work.

We could use a different testing system to take screenshots of each component, such
as Cypress. The advantage of using Selenium is that we can remotely open a browser
session on a remote machine.

By default, the shots.spec.js test will take screenshots of Storybook at address http://
localhost:6006 using the Chrome browser. Let’s say we are running the shots test on a
Mac. If we have a Windows machine on the same network, we can install a Selenium
Grid server, which is a proxy server that allows remote machines to start a web driver
session.

If the Windows machine has address 192.168.1.16, we can set this environment
variable on the command line before running the shots.spec.js test:

$ export SELENIUM_REMOTE_URL=http://192.168.1.16:4444/wd/hub

Because the Windows machine will be accessing the Storybook server back on the
Mac, for example, with an IP address of 192.168.1.14, we will also need to set an
environment variable for that on the command line:

$ export START_URL=http://192.168.1.14:6006

We can also choose which browser we want the Windows machine to use:15

$ export SELENIUM_BROWSER=firefox

If we create a script to run shots.spec.js in package.json:

 "scripts": {
 ...
 "testShots": "CI=true react-scripts test --detectOpenHandles \
 'selenium/shots.spec.js'"
 }

we can run the test and capture the screenshots of each component:

$ npm run testShots

The test will use the environment variables we created to contact the Selenium Grid
server on the remote machine. It will ask Selenium Grid to open a Firefox browser to
our local Storybook server. It will then send a screenshot of each of the components
over the network, where the test will store them in a folder called screenshots/firefox.

Once we’ve run it for Firefox, we can then run it for Chrome:

$ export SELENIUM_BROWSER=chrome
$ npm run testShots

The test will write the Chrome screenshots to screenshots/chrome.

310 | Chapter 8: Testing

https://oreil.ly/gYLds

A fuller implementation of this technique would also record the
operating system and type of client (e.g., screen size) used.

We now need to check for visual differences between the screenshots from Chrome
and the screenshots from Firefox, and this is where ImageMagick is useful. The
compare command in ImageMagick can generate an image that highlights the visual
differences between two other images. For example, consider the two screenshots
from Firefox and Chrome in Figure 8-14.

Figure 8-14. The same component in Chrome and Firefox

These two images appear to be identical. If we type in this command from the appli‐
cation directory:

$ compare -fuzz 15% screenshots/firefox/question--basic.png \
 screenshots/chrome/question--basic.png difference.png

we will generate a new image that shows the differences between the two screenshots,
which you can see in Figure 8-15.

8.6 Test Cross-Browser Visuals with ImageMagick | 311

Figure 8-15. The generated image showing the differences between two screen captures

The generated image shows pixels that are more than 15% visually different between
the two images. And you can see that the screenshots are virtually identical.

That’s good, but it still requires a human being to look at the images and assess
whether the differences are significant. What else can we do?

The compare command also has the ability to display a numerical measure of the dif‐
ference between two images:

$ compare -metric AE -fuzz 15% screenshots/firefox/question--basic.png
 screenshots/chrome/question--basic.png difference.png
6774

The value 6774 is a numerical measure (based on the absolute error count, or AE) of
the visual difference between the two images. For another example, consider the two
screenshots in Figure 8-16, which show the Answer component when given a
disabled property.

Figure 8-16. Disabled form rendered by Chrome and Firefox

Comparing these two images returns a much larger number:

$ compare -metric AE -fuzz 15% screenshots/firefox/answer--with-disabled.png
 screenshots/chrome/answer--with-disabled.png difference3.png
28713

Indeed, the generated image (see Figure 8-17) shows precisely where the difference
lies: the disabled input field.

Figure 8-17. The visual difference between the Chrome and Firefox forms

312 | Chapter 8: Testing

Figure 8-18 shows a similarly significant difference (21,131) for a component that dis‐
plays different font styling between the browsers, resulting from some Mozilla-
specific CSS attributes.

Figure 8-18. A component with different text styling in Chrome and Firefox

In fact, it’s possible to write a shell script to run through each of the images and gen‐
erate a small web report showing the visual differences alongside their metrics:

#!/bin/bash
mkdir -p screenshots/diff
export HTML=screenshots/compare.html
echo '<body>' > $HTML
for file in screenshots/chrome/*.png
do
 FROM=$file
 TO=$(echo $file | sed 's/chrome/firefox/')
 DIFF=$(echo $file | sed 's/chrome/diff/')
 echo "FROM $FROM TO $TO"
 ls -l $FROM
 ls -l $TO
 METRIC=$(compare -metric AE -fuzz 15% $FROM $TO $DIFF 2>&1)
 echo "$FROM $METRIC
" >> $HTML
done
echo "</body>" >> $HTML

This script creates the screenshots/compare.html report you can see in Figure 8-19.

8.6 Test Cross-Browser Visuals with ImageMagick | 313

Figure 8-19. An example of the generated comparison report

Discussion
To save space, we have shown only a simplistic implementation of this technique. It
would be possible to create a ranked report that showed visual differences from larg‐
est to smallest. Such a report would highlight the most significant visual differences
between platforms.

You can also use automated visual tests to prevent regressions. You need to avoid false
positives caused by minor variations, such as anti-aliasing. A continuous integration
job could set some visual threshold between images and fail if any components vary
by more than that threshold.

You can download the source for this recipe from the GitHub site.

314 | Chapter 8: Testing

https://oreil.ly/P1Tqj

16 For create-react-app applications, this should be added to public/index.html.

8.7 Add a Console to Mobile Browsers
Problem
This recipe is slightly different from the others in this chapter because instead of
being about automated testing, it’s about manual testing—specifically manually test‐
ing code on mobile devices.

If you are testing an application on a mobile, you might stumble across a bug that
doesn’t appear in the desktop environment. Generally, if a bug appears, you’re able to
add debug messages into the JavaScript console. But mobile browsers tend not to
have a visible JavaScript console. It’s true that if you are using Mobile Chrome, you
can try debugging it remotely with a desktop version of Chrome. But what if you dis‐
cover the problem in another browser? Or if you simply don’t want to go through the
work of setting up a remote debug session?

Is there some way to access the JavaScript console, and other development tools, from
within a mobile browser?

Solution
We are going to use a piece of software called Eruda.

Eruda is a lightweight implementation of a development tools panel, which will allow
you to view the JavaScript console, the structure of the page, and a whole heap of
other plugins and extensions.

To enable Eruda, you will need to install a small amount of reasonably rudimentary
JavaScript in the head section of your application. You can download Eruda from a
content distribution network. Still, because it can be pretty large, you should enable it
only if the person using the browser has indicated that they want to access it.

One way of doing this is by enabling Eruda only if eruda=true appears in the URL.
Here’s an example script that you can insert into your page container:16

<script>
 (function () {
 var src = '//cdn.jsdelivr.net/npm/eruda';
 if (!/eruda=true/.test(window.location)
 && localStorage.getItem('active-eruda') != 'true') return;
 document.write('<scr' + 'ipt src="' + src
 + '"></scr' + 'ipt>');
 document.write('<scr' + 'ipt>');
 document.write('window.addEventListener(' +
 '"load", ' +

8.7 Add a Console to Mobile Browsers | 315

https://oreil.ly/jCFSn
https://oreil.ly/ZUQHw

17 The code is available in the source code repository for this book.

 'function () {' +
 ' var container=document.createElement("div"); ' +
 ' document.body.appendChild(container);' +
 ' eruda.init({' +
 ' container: container,' +
 ' tool: ["console", "elements"]' +
 ' });' +
 '})');
 document.write('</scr' + 'ipt>');
 })();
</script>

If you now open your application as http://ipaddress/?eruda=true or http://ipaddress/
#eruda=true, you will notice that an additional button has appeared in the interface,
as shown in Figure 8-20.

Figure 8-20. If you add ?eruda=true to the URL, a button will appear on the right of the
page

If you are using the example application for this chapter, then try entering a few
answers into the game.17 Then, click the Eruda button. The console will appear as
shown in Figure 8-21.

316 | Chapter 8: Testing

https://oreil.ly/P1Tqj

Figure 8-21. Clicking the button opens the Eruda tools

Because the endpoint the example application calls is missing, you should find some
errors and other logs recorded in the console. The console even supports the much
underused console.table function, which is a helpful way of displaying an array of
objects in tabular format.

The Elements tab provides a fairly rudimentary view of the DOM (see Figure 8-22).

8.7 Add a Console to Mobile Browsers | 317

Figure 8-22. The Eruda elements view

Meanwhile, the Settings tab has an extensive set of JavaScript features that you can
enable and disable while interacting with the web page (see Figure 8-23).

318 | Chapter 8: Testing

Figure 8-23. The Eruda settings view

Discussion
Eruda is a delightful tool that delivers a whole bucket of functionality, with very little
work required by the developer. In addition to the basic features, it also has plugins
that allow you to track performance, set the screen refresh rate, generate fake

8.7 Add a Console to Mobile Browsers | 319

geolocations, and even write and run JavaScript from inside the browser. Once you
start to use it, you probably find that it quickly becomes a standard part of your man‐
ual testing process.

You can download the source for this recipe from the GitHub site.

8.8 Remove Randomness from Tests
Problem
In a perfect world, tests would always have a completely artificial environment. Tests
are examples of how you would like your application to work under explicitly defined
conditions. But tests often have to cope with uncertainties. For example, they might
run at different times of day. The example application that we have used throughout
this chapter has to deal with randomness.

Our example application is a game that presents the user with a randomly generated
question that they must answer (see Figure 8-24).

Figure 8-24. The game asks the user to calculate a random multiplication problem

Randomness might also appear in the generation of identifiers within the code or
random data sets. If you ask for a new username, your application might suggest a
randomly generated string.

But randomness creates a problem for tests. This is an example test that we imple‐
mented earlier in this chapter:

describe('Basic game functions', () => {
 it('should notify the server if I lose', () => {
 // Given I started the application
 // When I enter an incorrect answer
 // Then the server will be told that I have lost
 })
})

320 | Chapter 8: Testing

https://oreil.ly/P1Tqj

There was actually a good reason why that test looked at the case where the user
entered an incorrect answer. The question asked is always to calculate the product of
two numbers between 1 and 10. It’s therefore easy to think of an incorrect answer:
101. It will always be wrong. But if we want to write a test to show what happens
when the user enters the correct answer, we have a problem. The correct answer
depends upon data that is randomly generated. We could write some code that finds
the two numbers that appear on the screen, as in this example from the first Selenium
recipe in this chapter:

const [number1, number2, input, submit] = await Promise.all([
 driver.findElement(By.css('.number1')).getText(),
 driver.findElement(By.css('.number2')).getText(),
 driver.findElement(By.css('input')),
 driver.findElement(By.xpath("//button[text()='Submit']")),
])
await input.sendKeys('' + number1 * number2)
await submit.click()

Sometimes this approach is not even possible. For example, Cypress does not allow
you to capture data from the page. If we wanted to write a Cypress test to enter the
correct answer to the multiplication problem, we would have great difficulty. That’s
because Cypress does not allow you to capture values from the page and pass them to
other steps in the test.

It would be much better if we could turn off the randomness during a test.

But can we?

Solution
We will look at how we can use the Sinon library to temporarily replace the Math.ran
dom function with a faked one of our own making.

Let’s first consider how we can do this inside a unit test. We’ll create a new test for the
top-level App component, which will check that entering the correct value results in a
message saying that we won.

We’ll create a function that will fix the return value of Math.random:

const sinon = require('sinon')

function makeRandomAlways(result) {
 if (Math.random.restore) {
 Math.random.restore()
 }
 sinon.stub(Math, 'random').returns(result)
}

This function works by replacing the random method of the Math object with a stub‐
bed method that always returns the same value. We can now use this in a test. The

8.8 Remove Randomness from Tests | 321

18 You can find out more about this test in Recipe 8.3.

Question that appears on the page always generates random numbers between 1 and
10, based upon the value of:

Math.random() * 10 + 1

If we fix Math.random so that it always produced the value 0.5, then the “random”
number will always be 6. That means we can write a unit test like this:

it('should tell you that you entered the right answer', async () => {
 // Given we've rendered the app
 makeRandomAlways(0.5)
 render(<App />)

 // When we enter the correct answer
 const input = screen.getByLabelText(/guess:/i)
 const submitButton = screen.getByText('Submit')
 user.type(input, '36')
 user.click(submitButton)

 // Then we are told that we've won
 await waitFor(() => screen.findByText(/won/i), { timeout: 4000 })
})

And this test will always pass because the application will always ask the question,
“What is 6 × 6?”

The real value of fixing Math.random is when we use a testing framework that explic‐
itly prevents us from capturing a randomly generated value such as Cypress, as we saw
earlier.

Cypress allows us to add custom commands by adding them to the cypress/support/
commands.js script. If you edit that file and add this code:

Cypress.Commands.add('random', (result) => {
 cy.reload().then((win) => {
 if (win.Math.random.restore) {
 win.Math.random.restore()
 }
 sinon.stub(win.Math, 'random').returns(result)
 })
})

you will create a new command called cy.random. We can use this command to create
a test for the winning case that we discussed in the introduction:18

describe('Basic game functions', () => {
 it('should notify the server if I win', () => {
 // Given I started the application
 cy.intercept('POST', '/api/result', {

322 | Chapter 8: Testing

 statusCode: 200,
 body: '',
 }).as('postResult')
 cy.visit('http://localhost:3000')
 cy.random(0.5)
 cy.contains('Refresh').click()

 // When I enter the correct answer
 cy.get('input').type('36')
 cy.contains('Submit').click()

 // Then the server will be told that I have won
 cy.wait('@postResult').then((xhr) => {
 assert.deepEqual(xhr.request.body, {
 guess: 36,
 answer: 36,
 result: 'WIN',
 })
 })
 })
})

After calling the cy.random command, we need to click the Refresh
button in case the application generated the random numbers
before the Math.random function was replaced.

Discussion
You can never remove all randomness from a test. For example, the machine’s perfor‐
mance can significantly affect when and how often your components are re-rendered.
But removing uncertainty as much as we can is generally a good thing in a test. The
more we can do to remove external dependencies from our tests, the better.

We will also look at removing external dependencies in the following recipe.

You can download the source for this recipe from the GitHub site.

8.9 Time Travel
Problem
Time can be the source of a tremendous number of bugs. If time were simply a scien‐
tific measurement, it would be relatively straightforward. But it isn’t. The representa‐
tion of time is affected by national boundaries and by local laws. Some countries have
their own time zone. Others have multiple time zones. One reassuring factor is that

8.9 Time Travel | 323

https://oreil.ly/P1Tqj

19 That is, allow the browser to say to the server Let’s pretend it’s Thursday, April 14.

all countries have a time zone offset in whole hours, except for places like India,
where time is offset by +05:30 from UTC.

That’s why it is helpful to try to fix the time within a test. But how do we do that?

Solution
We will look at how you can fix the time when testing your React application. There
are some issues that you need to consider when testing time-dependent code. First,
you should probably avoid changing the time on your server. In most cases, it’s best
to set your server to UTC and leave it that way.

That does mean that if you want to fake date and time in your browser, you will have
problems as soon as the browser makes contact with the server. That means you will
either have to modify the server APIs to accept an effective date or test time-
dependent browser code in isolation from the server.19

We will adopt the latter approach for this recipe: using the Cypress testing system to
fake any connections with the server.

We will use the same application we use for other recipes in this chapter. It’s a simple
game that asks the user to calculate the product of two numbers. We’re going to test a
feature of the game that gives the user 30 seconds to provide an answer. After 30 sec‐
onds, they will see a message telling them they’ve run out of time (see Figure 8-25).

Figure 8-25. The player will lose if they don’t answer within 30 seconds

324 | Chapter 8: Testing

We could try writing a test that somehow pauses for 30 seconds, but that has two
problems. First, it will slow your test down. You don’t need many 30-second pauses
before your tests will become unbearable to run. Second, adding a pause is not a very
precise way to test a feature. If you try to pause for 30 seconds, you might pause for
30.5 seconds before looking for the message.

To get precision, we need to take control of time within the browser. As you saw in
the previous recipe, Cypress can inject code into the browser, replacing critical pieces
of code with stubbed functions, which we can control. Cypress has a built-in com‐
mand called cy.clock, which allows us to specify the current time.

Let’s see how to use cy.clock by creating a test for the timeout feature. This will be
the structure of our test:

describe('Basic game functions', () => {
 it('should say if I timed out', () => {
 // Given I have started a new game
 // When 29 seconds have passed
 // Then I will not see the time-out message
 // When another second has passed
 // Then I will see the time-out message
 // And the game will be over
 })
})

We can start by opening the application and clicking the Refresh button:

describe('Basic game functions', () => {
 it('should say if I timed out', () => {
 // Given I have started a new game
 cy.visit('http://localhost:3000')
 cy.contains('Refresh').click()

 // When 29 seconds have passed
 // Then I will not see the time-out message
 // When another second has passed
 // Then I will see the time-out message
 // And the game will be over
 })
})

Now we need to simulate 29 seconds of time passing. We can do this with the
cy.clock and cy.tick commands. The cy.clock command allows you to either
specify a new date and time; or, if you call cy.clock without parameters, it will set the
time and date back to 1970. The cy.tick() command allows you to add a set number
of milliseconds to the current date and time:

describe('Basic game functions', () => {
 it('should say if I timed out', () => {
 // Given I have started a new game
 cy.clock()

8.9 Time Travel | 325

 cy.visit('http://localhost:3000')
 cy.contains('Refresh').click()

 // When 29 seconds have passed
 cy.tick(29000)

 // Then I will not see the time-out message
 // When another second has passed
 // Then I will see the time-out message
 // And the game will be over
 })
})

We can now complete the other steps in the test. For details on the other Cypress
commands we’re using, see the Cypress documentation:

describe('Basic game functions', () => {
 it('should say if I timed out', () => {
 // Given I have started a new game
 cy.clock()
 cy.visit('http://localhost:3000')
 cy.contains('Refresh').click()

 // When 29 seconds have passed
 cy.tick(29000)

 // Then I will not see the time-out message
 cy.contains(/out of time/i).should('not.exist')

 // When another second has passed
 cy.tick(1000)

 // Then I will see the time-out message
 cy.contains(/out of time/i).should('be.visible')

 // And the game will be over
 cy.get('input').should('be.disabled')
 cy.contains('Submit').should('be.disabled')
 })
})

If we run the test in Cypress, it passes (as you can see in Figure 8-26).

326 | Chapter 8: Testing

https://oreil.ly/vahMA

20 Firefox will not generally accept this format.

Figure 8-26. By controlling time, we can force a timeout in the test

That’s a relatively simple time-based test. But what if we wanted to test something
much more complex, like daylight saving time (DST)?

DST bugs are the bane of most development teams. They sit in your codebase silently
for months and then suddenly appear in the spring and fall, in the early hours of the
morning.

When DST occurs depends upon your time zone. And that’s a particularly awful
thing to deal with in client code because JavaScript dates don’t work with time zones.
They can certainly handle offsets; for example, you can create a Date object in a
browser like Chrome that is set to five hours before Greenwich Mean Time:20

new Date('2021-03-14 01:59:30 GMT-0500')

But JavaScript dates are all implicitly in the time zone of the browser. When you cre‐
ate a date with a time zone name in it, the JavaScript engine will simply shift it into
the browser’s time zone.

The browser’s time zone is fixed at the time that the browser opens. There’s no way to
say Let’s pretend we’re in New York from now on.

If developers create tests for DST, the tests might work only in the developer’s time
zone. The tests might fail if run on an integration server set to UTC.

There is, however, a way around this problem. On Linux and Mac computers (but not
Windows), you can specify the time zone when you launch a browser by setting an
environment variable called TZ. If we start the Cypress with the TZ variable set, any

8.9 Time Travel | 327

browser that Cypress launches will inherit it, which means that while we can’t set the
time zone for a single test, we can set it for an entire test run.

First, let’s launch Cypress with the time zone set to New York:

$ TZ='America/New_York' npx cypress open

The example application has a button that allows you to see the current time (see
Figure 8-27).

Figure 8-27. The current time is shown on the screen

We can create a test that checks that the time on the page correctly handles the
change to DST. This is the test we’ll create:

describe('Timing', () => {
 it('should tell us the current time', () => {
 cy.clock(new Date('2021-03-14 01:59:30').getTime())
 cy.visit('http://localhost:3000')
 cy.contains('Show time').click()
 cy.contains('2021-03-14T01:59:30.000').should('be.visible')
 cy.tick(30000)
 cy.contains('2021-03-14T03:00:00.000').should('be.visible')
 })
})

In this test, we are passing an explicit date to cy.clock. We need to convert this to
milliseconds by calling getTime as cy.clock accepts only numeric times. We then
check the initial time, and 30 seconds later, we check the time rolls over to 3 a.m.,
instead of 2 a.m. (as shown in Figure 8-28).

328 | Chapter 8: Testing

Figure 8-28. After 30 seconds, the time correctly changes from 01:59 to 03:00

Discussion
If you need to create tests that depend on the current time zone, consider placing
them into a subfolder so you can run them separately. If you want to format dates
into various time zones, you can use the toLocaleString date method:

new Date().toLocaleString('en-US', { timeZone: 'Asia/Tokyo' })

You can download the source for this recipe from the GitHub site.

8.9 Time Travel | 329

https://oreil.ly/P1Tqj

CHAPTER 9

Accessibility

This was a challenging chapter to write because other than wearing glasses and con‐
tact lenses, neither of us needs to use special accessibility equipment or software. We
have tried to bring together a collection of tools and techniques in this chapter that
will ideally help you find some of the more obvious accessibility problems in your
code.

We look at how you can use landmarks and ARIA roles, which will add meaning and
structure to your pages that would otherwise come only from visual grouping. We
then have several recipes that show how to run manual and automated audits on your
application, look for glitches in code with static analysis, and find runtime errors by
automating browsers.

We then look at some of the more technical issues involved in creating custom dia‐
logs (hint: try to use prebuilt ones from libraries), and finally, we build a simple
screen reader.

For a more in-depth look at accessibility, be sure to check the Web Content Accessi‐
bility Guidelines (WCAG), which provide three conformance levels: A, AA, and
AAA. AAA is the highest level of conformance.

If you are writing professional software, you will ideally find these recipes helpful.
But nothing can replace the experience of someone who has to live with the issues
caused by inaccessible software every day of their lives. Accessible software is simply
good software. It maximizes your market and forces you to think more deeply about
design. We would recommend, at the least, having an accessibility audit run on your
code. You can contact organizations like AbilityNet in the UK, or just search for
accessibility software testing wherever you are, and you will find that is the most effi‐
cient way to track down problems with your code.

331

https://oreil.ly/ie0aT
https://oreil.ly/ie0aT
https://oreil.ly/N7XkH

9.1 Use Landmarks
Problem
Let’s consider the application in Figure 9-1. It’s a simple application for creating and
managing tasks.

Figure 9-1. The example tasks application

If someone can see the application, they will easily distinguish between the main con‐
tent (the tasks) and all of the other stuff around the edge: the links to other pages, the
headings, the copyright, etc.

Let’s look at the code for the main App component of this application:

const App = () => {
 ...
 return (
 <>
 <h1>Manage Tasks</h1>
 Contacts |
 Events |
 Tasks |
 Notes |
 TimeRec |
 Diary |

332 | Chapter 9: Accessibility

 Expenses |
 Invoices
 <button className='addButton'
 onClick={() => setFormOpen(true)}>+</button>
 <TaskContexts .../>
 ©2029, Amalgamated Consultants Corp. All Rights Reserved.
 <TaskForm .../>
 <ModalQuestion ...>
 Are you sure you want to delete this task?
 </ModalQuestion>
 </>
)
}

The problem is that if you rely on a device to read the page to you, it can be hard to
understand the page’s structure. Which parts are the navigation links? Where is the
main content on the page? The parsing that the human eye performs (see Figure 9-2)
is difficult to replicate if you can’t assess the spatial grouping of the interface.

So, how can we get around this problem? What can we use instead of visual grouping
to make the structure of a page more understandable?

Figure 9-2. Sighted viewers can quickly identify the sections of the page spatially

9.1 Use Landmarks | 333

Solution
We are going to introduce landmarks to our code. Landmarks are HTML elements
that we can use to group parts of our interface structurally to mirror how they’re
grouped visually. Landmarks are also helpful when designing a page because they
force you to think about the functions of the various types of page content.

Let’s begin by highlighting the header. This part of the page identifies what the page is
about. We would typically use an h1 heading for this, but we might also include com‐
monly used tools, or perhaps a logo. We can identify the header using the header tag:

<header>
 <h1>Manage Tasks</h1>
</header>

We should always have an h1 heading on the page, and we should
use lower-level headings to structure the content of the rest of the
page without skipping any levels. For example, you should never
have an h1 heading and an h3 heading without an h2 heading
somewhere between the two. Headings are a handy navigation
device for people using screen readers, including functions that
allow the user to skip backward and forward between headings.

Next, we need to think about navigation. Navigation can come in many forms. It
might be a list of links (as here), or it could be a series of menus or a sidebar. The
navigation is a block of components that allow you to visit the major parts of a web‐
site. You will almost certainly have other links on the page that are not part of the
navigation.

We can use the nav landmark to identify the navigation of our page:

<nav>
 Contacts |
 Events |
 Tasks |
 Notes |
 TimeRec |
 Diary |
 Expenses |
 Invoices
</nav>

The crucial part of a page is the content. In our tasks application, the content is the
collection of tasks. The main content is what the user primarily wants to read and
interact with on the page. Occasionally, the main content might also include tools—
such as the floating “add” button in the tasks application—but these don’t have to be
in the main content, and we can move them to somewhere in the header.

334 | Chapter 9: Accessibility

We can group together the main content of the page with the main tag:

<main>
 <button className='addButton'
 onClick={() => setFormOpen(true)}>+</button>
 <TaskContexts contexts={contexts}
 tasks={tasks}
 onDelete={setTaskToRemove}
 onEdit={task => {
 setEditTask(task)
 setFormOpen(true)
 }}
 />
</main>

Finally, we have the web page’s metadata: the data about data. In the task application,
the copyright notice at the bottom of the page is an example of metadata. You will
often find metadata placed in a group at the bottom of a page, and so it is grouped in
a footer tag:

<footer>
 ©2029, Amalgamated Consultants Corp. All Rights Reserved.
</footer>

There are still a couple things left from our original App component:

<TaskForm .../>
<ModalQuestion ...>
 Are you sure you want to delete this task?
</ModalQuestion>

The TaskForm is a modal dialog that appears when the user wants to create or edit a
task (see Figure 9-3).

Figure 9-3. The TaskForm is a modal dialog that appears above other content

9.1 Use Landmarks | 335

The ModalQuestion is a confirmation box that appears if a user tries to delete a task
(see Figure 9-4).

Figure 9-4. A modal question box asks the user to confirm the deletion of a task

These two components will appear only when needed. When the page is in its normal
state, the modals will not appear in the page’s structure, so they don’t have to be
included in a landmark. We will see elsewhere in this chapter that there are other
ways of dealing with dynamic content, such as modals, that will make them more
accessible to your audience.

This is what the final form of our App component looks like:

const App = () => {

 return (
 <>
 <header>
 <h1>Manage Tasks</h1>
 </header>
 <nav>
 Contacts |
 Events |
 Tasks |
 Notes |
 TimeRec |
 Diary |
 Expenses |
 Invoices
 </nav>
 <main>
 <button className='addButton'
 onClick={() => setFormOpen(true)}>+</button>
 <TaskContexts .../>
 </main>
 <footer>
 ©2029, Amalgamated Consultants Corp. All Rights Reserved.
 </footer>
 <TaskForm .../>
 <ModalQuestion ...>
 Are you sure you want to delete this task?
 </ModalQuestion>
 </>
)
}

336 | Chapter 9: Accessibility

Discussion
Landmarks are part of HTML5 and so are natively supported in browsers. This
means that you can start using them without needing to add special tooling or sup‐
port libraries.

You will find that some automated accessibility tools might complain about land‐
marks rendered by React applications. The standard guidelines state that all content
in the body of a web page should be inside a landmark. But most React applications
render their content (including any landmarks) inside a single div, which instantly
breaks the rules.

It is probably safe to ignore the issue. So long as the landmarks exist and they are all
at the same level, it shouldn’t matter that they are wrapped in an additional div.

You can download the source for this recipe from the [GitHub site].

9.2 Apply Roles, Alts, and Titles
Problem
It’s common to have components in applications that behave like buttons, even if
they’re not buttons. Likewise, you might have components that look like pop-up dia‐
log boxes without actually being dialog boxes. Or you might have collections of data
structurally similar to lists that don’t use the ol and ul tags.

Creating components that behave like standard UI elements isn’t a problem if you can
see the visual styling of the component. If something looks like a button to a user,
they will treat it as a button, regardless of its implementation.

But there’s a problem if someone can’t see the visual styling of a component. Instead,
you need to describe the purpose of a component for people who can’t see it.

Solution
We’re going to look at using roles within the application. The role describes the mean‐
ing of a component: it tells the user what purpose it serves. Roles are part of the
semantics of a web page and so are similar to the semantic landmarks that we discuss
in Recipe 9.1.

Here is a list of some typical roles that you can apply to rendered HTML:

9.2 Apply Roles, Alts, and Titles | 337

Role name Purpose
alert Tells the user that something has happened.

article Large block of text content, like a news story.

button Something you can click to do something.

checkbox A user-selectable true/false value.

comment Like a user-submitted comment or reaction.

complementary Additional information, perhaps in a sidebar.

contentinfo Copyright notices, author names, publication dates.

dialog Something floats over the other content. Often modal.

feed Common in blogs. It’s a list of articles.

figure An illustration.

list A sequential group of things.

listitem Each of the things in a list.

search A search field.

menu A sequence of options, typically used for navigation.

menuitem An item on a menu.

You apply roles to elements with the role attribute. Let’s consider the Task compo‐
nent from the example application in this chapter. The Task component renders each
of the tasks as a small panel, with a Delete button:

import DeleteIcon from './delete-24px.svg'
import './Task.css'

const Task = ({ task, onDelete, onEdit }) => {
 return (
 <div className="Task">
 <div className="Task-contents"
 ...
 >
 <div className="Task-details">
 <div className="Task-title">{task.title}</div>
 <div className="Task-description">{task.description}</div>
 </div>
 <div className="Task-controls">
 <img
 src={DeleteIcon}
 width={24}
 height={24}
 title="Delete"
 onClick={(evt) => {
 evt.stopPropagation()
 onDelete()
 }}
 alt="Delete icon"

338 | Chapter 9: Accessibility

 />
 </div>
 </div>
 </div>
)
}

We group tasks on the page under headings that describe the context in which a per‐
son would perform the task. For example, you might have a series of tasks grouped
under the heading Phone (see Figure 9-5).

Figure 9-5. Each group contains a list of tasks

So, the tasks appear to match the listitem role. They are things that appear inside an
ordered collection. We could therefore add that role to the first div:

return <div role='listitem' className='Task'>
 <div className='Task-details'>

If we stopped there, we would have a problem. Roles have rules. You cannot apply the
listitem role to a component unless it appears inside something with a list role. So
if we are going to mark our Task components as listitems, we will also need to give
the TaskList parent a list role:

9.2 Apply Roles, Alts, and Titles | 339

import Task from '../Task'
import './TaskList.css'

function TaskList({ tasks, onDelete, onEdit }) {
 return (
 <div role="list" className="TaskList">
 {tasks.map((t) => (
 <Task
 key={t.id}
 task={t}
 onDelete={() => onDelete(t)}
 onEdit={() => onEdit(t)}
 />
))}
 </div>
)
}

export default TaskList

Using list and listitem roles is perfectly valid. But it is probably far better in prac‐
tice if we have HTML that behaves like a list to change the markup and use real ul
and li tags. From an accessibility point of view, it probably makes no difference. But
it is always good to avoid filling your HTML with endless div tags. In general, if you
can use a real HTML tag instead of a role, it’s probably best to do so.

Let’s remove the list role from TaskList and make a real ul:

import Task from '../Task'
import './TaskList.css'

function TaskList({ tasks, onDelete, onEdit }) {
 return (
 <ul className="TaskList">
 {tasks.map((t) => (
 <Task
 key={t.id}
 task={t}
 onDelete={() => onDelete(t)}
 onEdit={() => onEdit(t)}
 />
))}

)
}

export default TaskList

Then we can replace the listitem role in Task with a li tag:

340 | Chapter 9: Accessibility

1 For an interesting discussion on the issues surrounding menus and menu items, see this article by Adrian
Roselli.

import './Task.css'

const Task = ({ task, onDelete, onEdit }) => {
 return (
 <li className="Task">
 <div
 className="Task-contents"
 ...
 >
 <div className="Task-details">...</div>
 <div className="Task-controls">...</div>
 </div>

)
}

export default Task

Using li tags will mean that we have to make a few CSS style changes to remove the
list bullet points, but the code will be easier to read for any developer (and it may be
you) who looks at it in the future.

Next, let’s take a look at the navigation section of the example application. It has a
series of links that you might almost think of as a menu of options:

<nav>
 Contacts |
 Events |
 Tasks |
 Notes |
 TimeRec |
 Diary |
 Expenses |
 Invoices
</nav>

So, should you apply the menu and menuitem roles here? The answer to this is: almost
certainly no.

Menus and menu items have expected behavior. A user who arrives at a menu will
probably expect it to pop up if they select it. Once the menu is visible, they will prob‐
ably use the arrow keys to navigate the options rather than move around with the Tab
key.1

Now let’s take a look at the + button in our example application that allows a user to
create a new task by displaying a pop-up task form (see Figure 9-6).

9.2 Apply Roles, Alts, and Titles | 341

https://oreil.ly/i8AMI

Figure 9-6. A new task form appears when the user clicks the + button

This is the code for the button:

<button className='addButton'
 onClick={() => setFormOpen(true)}>+</button>

Do we need to apply the button role? No. The element is already a button. But we can
provide some additional information about what the user can expect to happen if
they click the button. A pop-up will appear. We can make that explicit in the HTML
with the aria-haspopup attribute:

<button aria-haspopup='dialog' className='addButton'
 onClick={() => setFormOpen(true)}>+</button>

The value of the aria-haspopup attribute has to match the role of
the component that will appear as a result. In this case, we’re going
to display a dialog. You can also set the aria-haspopup attribute to
the value true. Still, a screen reader will interpret this as a menu
because components with associated pop-ups typically are used to
open menus.

Because we’ve set aria-haspopup to dialog, we will also need to make sure the Task
Form that appears has the role dialog. This is the current code for the TaskForm:

const TaskForm = ({ task, contexts, onCreate, onClose, open }) => {
 ...

342 | Chapter 9: Accessibility

 return <Modal open={open} onCancel={close}>
 <form>

 </form>
 <ModalFooter>
 <button onClick={...}>Cancel</button>
 <button onClick={...}>Save</button>
 </ModalFooter>
 </Modal>
}

We will wrap the TaskForm in a Modal component, like this:

import './Modal.css'

function Modal({ open, onCancel, children }) {
 if (!open) {
 return null
 }

 return <div className='Modal'
 ...
 >
 <div className='Modal-dialog'
 ...
 >
 {children}
 </div>
 </div>
}

export default Modal

There are two parts to this Modal component:

• An external Modal wrapper, which is there to shade the other content of the page
and is a semi-transparent layer

• An inner Modal-dialog div, which displays the contents in what looks like a
window

Because the Modal class is reusable and might be used in things other than dialogs
(such as alerts), we will give the Modal class an additional title property, which will
be applied to the Modal-dialog. The title will make the purpose of the dialog clear
to anyone with a screen reader.

This gives us our updated Modal component:

import './Modal.css'

function Modal({ open, onCancel, children, role, title }) {

9.2 Apply Roles, Alts, and Titles | 343

 if (!open) {
 return null
 }

 return <div role='presentation' className='Modal'
 ...
 >
 <div className='Modal-dialog'
 role={role} title={title}
 ...
 >
 {children}
 </div>
 </div>
}

export default Modal

Here is our updated TaskForm component:

const TaskForm = ({ task, contexts, onCreate, onClose, open }) => {
 ...

 return <Modal title='Create or edit a task'
 role='dialog'
 open={open} onCancel={close}>
 <form>

 </form>
 <ModalFooter>
 <button onClick={...}>Cancel</button>
 <button onClick={...}>Save</button>
 </ModalFooter>
 </Modal>
}

Finally, let’s consider the Delete button that appears next to each Task and looks like a
small trash can:

<img src={DeleteIcon}
 width={24}
 height={24}
 alt='Delete icon'
 aria-haspopup='dialog'
 role='button'
 title='Delete'
 onClick={evt => {
 evt.stopPropagation()
 evt.preventDefault()
 onDelete()
 }}
/>

344 | Chapter 9: Accessibility

The trash can icon is working as a button, so we’ve given it that role. The trash can
already has an aria-haspopup because a dialog will ask the user to confirm the
deletion.

But just like in the case of the lists and list items, it is often better to implement but‐
tons as buttons. We can rewrite this component as a button wrapping an image:

<button
 onClick={evt => {
 evt.stopPropagation()
 evt.preventDefault()
 onDelete()
 }}
 title='Delete'
 aria-haspopup='dialog'
>
 <img src={DeleteIcon}
 width={24}
 height={24}
 alt='Delete icon'
 />
</button>

Not only will this be clearer to developers, but it will also be automatically tabbable.

Discussion
Roles overlap in some ways with landmarks. There are landmark roles available, like
main and header. But they serve two different purposes. Landmarks are, as the name
suggests, ways of highlighting major parts of a web page. Roles, in contrast, describe
the intended behavior of some part of the interface. In both cases, landmarks and
roles are there to provide additional meaning to a web page.

If your interface contains components that behave like standard HTML elements,
such as lists, it is often better to style the standard HTML markup than re-create the
elements with custom code.

You can download the source for this recipe from the GitHub site.

9.2 Apply Roles, Alts, and Titles | 345

https://oreil.ly/0GfgA

2 We found this ourselves while writing this chapter. As a result, we have undoubtedly missed many, many
accessibility issues in the example application.

3 Particularly useful if you want to check your code in pre-commit Git hooks or on an integration server.

9.3 Check Accessibility with ESlint
Problem
If you don’t need to use any accessibility equipment, it can be challenging to identify
accessibility problems.2 In the heat of development, it’s also easy to acquire regression
issues that break the accessibility of code that you’ve previously tested.

What you need is a way to quickly and easily find accessibility problems as you create
them. You need a process that is continuously watching your code as you type and
flagging them immediately while you still remember what you did.

Solution
We’re going to see how you can configure the eslint tool to find the more obvious
accessibility problems in code.

eslint is a tool that performs static analysis on your code. It will find unused vari‐
ables, missing dependencies in useEffect calls, and so on. If you created your appli‐
cation with create-react-app, you probably have eslint running continuously on
your application. The development server will rerun eslint each time the code needs
recompiling, and any eslint errors will appear in the server window.

If you don’t already have eslint installed, you can install it with this command:

$ npm install --save-dev eslint

Or you can use its yarn equivalent. eslint can be extended with plugins. A plugin is a
collection of rules that eslint will apply to static code as it is saved. There is a plugin
specifically created to check for accessibility problems. It’s called jsx-a11y, and you
can install it with the following:

$ npm install --save-dev eslint-plugin-jsx-a11y

If you want to be able to run eslint manually, you can add a script to your pack‐
age.json file:3

"scripts": {

 "lint": "eslint src"
},

346 | Chapter 9: Accessibility

Before we can use the jsx-a11y plugin, we will need to configure it. We can do this by
updating the eslintConfig section of package.json:

"eslintConfig": {
 "extends": [
 "react-app"
 "react-app/jest",
 "plugin:jsx-a11y/recommended"
],
 "plugins": [
 "jsx-a11y"
],
 "rules": {}
}

This configuration will tell eslint to use the new plugin, and it will also enable a set
of recommended accessibility rules.

You can also, if you choose, configure the way each of the rules works by adding addi‐
tional configuration to the rules section. And we’re going to do that now, by disa‐
bling one of the rules:

"eslintConfig": {
 "extends": [
 "react-app"
 "react-app/jest",
 "plugin:jsx-a11y/recommended"
],
 "plugins": [
 "jsx-a11y"
],
 "rules": {
 "jsx-a11y/no-onchange": "off"
 }
}

Disabling rules might seem like a bad idea, but there is a reason why you might want
to disable the no-onchange rule specifically.

The jsx-a11y developers created the no-onchange rule because of a problem with old
browsers, which implemented onchange in disparate ways. Some would generate an
onChange event every time the user typed a character into an input field. Others
would generate the event only when the user left the field. The different behaviors
caused a huge number of problems for people using accessibility tools.

The solution was to replace all onChange handlers with onBlur handlers, which meant
that all browsers would fire field change events consistently: when the user left the
field.

But this rule is entirely out-of-date now and is deprecated in the plugin. If you try to
replace all of the onChange handlers in your React code with onBlur handlers, you

9.3 Check Accessibility with ESlint | 347

will change significantly how your application works. You will also be going away
from the standard way React tracks the state of form fields: to use onChange.

So, in this one case, it is a good idea to disable the rule.

We can now run eslint, with our accessibility rules enabled:

$ npm run lint

In an earlier version of the application, eslint found a number of errors:

$ npm run lint
> app@0.1.0 lint app
> eslint src
app/src/Task/Task.js
 6:9 error Visible, non-interactive elements with click handlers
 must have at least one keyboard listener
 jsx-a11y/click-events-have-key-events
 6:9 error Static HTML elements with event handlers require a role
 jsx-a11y/no-static-element-interactions
✖ 2 problems (2 errors, 0 warnings)

To see what the cause of these errors, let’s take a look at the Task.js source code:

<li className="Task">
 <div className="Task-contents" onClick={onEdit}>

 </div>

The Task component displays the details of a task inside a small card panel (see
Figure 9-7).

Figure 9-7. The app displays tasks in separate panels, each with a delete button

If the user clicks a task, they will open a form that will allow them to edit the task’s
details. The code that does this is the onClick handler on the Task-contents div.

To understand why eslint is unhappy, let’s first look at this error:

6:9 error Static HTML elements with event handlers require a role
 jsx-a11y/no-static-element-interactions

Elements like divs are static. They have no built-in interactive behavior. By default,
they are just things that layout other things. eslint is unhappy because the onClick
handler suggests that this particular div is actually being used as an active

348 | Chapter 9: Accessibility

4 See Recipe 9.2 for details on roles and their uses.

component. If someone is using an accessibility device, we will need to tell them the
purpose of this component. eslint expects us to do that by giving the div a role.4

We will give this div a role of button to indicate that the user will use the component
by clicking it. When we click a task, we will display a pop-up edit window, so we will
also give the div an aria-haspopup attribute to tell the user that clicking the task will
open a dialog:

<li className='Task'>
 <div className='Task-contents'
 role='button'
 aria-haspopup='dialog'
 onClick={onEdit}
 >

</div>

It is often better to convert an element to a native button tag rather
than use the button role. However, in this case, the div is wrapping
a reasonably large block of HTML text, so it makes more sense to
provide a role rather than deal with the styling consequences of
making a gray button look like a card.

If we run eslint again, we still have two errors. But one of them is new:

$ npm run lint
> app@0.1.0 lint app
> eslint src
app/src/Task/Task.js
 6:9 error Visible, non-interactive elements with click handlers
 must have at least one keyboard listener
 jsx-a11y/click-events-have-key-events
 6:9 error Elements with the 'button' interactive role must be tabbable
 jsx-a11y/interactive-supports-focus
✖ 2 problems (2 errors, 0 warnings)

We’ve said that the task behaves like a button. But: roles have rules. If we want some‐
thing to be treated like a button, it must behave like a button. One thing that buttons
can do is be tabbed to. They need to be able to receive focus from the keyboard. We
can do that by adding a tabIndex attribute:

<li className='Task'>
 <div className='Task-contents'
 role='button'
 tabIndex={0}

9.3 Check Accessibility with ESlint | 349

5 See the issues involving values greater than zero in Recipe 9.8.

 onClick={onEdit}
 >

</div>

Setting tabIndex to 0 means that our task will become part of the tab sequence of the
page.

tabIndex can have several values: –1 means that it can be focused
programmatically only; 0 means that it is an ordinary tabbable
component. If an element has a tabbable value greater than 0, it
means the focus system should give it a higher priority. It would be
best if you generally avoided values greater than 0, as they can
cause accessibility problems.5

If we run eslint again, we have just one error:

$ npm run lint
> app@0.1.0 lint app
> eslint src
app/src/Task/Task.js
 6:9 error Visible, non-interactive elements with click handlers
 must have at least one keyboard listener
 jsx-a11y/click-events-have-key-events
1 problems (1 errors, 0 warnings)

This error means that we have an onClick event to say what happens if someone
clicks the task with a mouse, but we have no code to respond to the keyboard. If
someone is unable to use the mouse, they will be unable to edit a task.

So we will need to add some sort of key-event handler. We’ll add code to call the edit
event if the user presses the Enter key or presses the spacebar:

<li className="Task">
 <div
 className="Task-contents"
 role="button"
 tabIndex={0}
 onClick={onEdit}
 onKeyDown={(evt) => {
 if (evt.key === 'Enter' || evt.key === ' ') {
 evt.preventDefault()
 onEdit()
 }
 }}
 >

350 | Chapter 9: Accessibility

 </div>

Adding the keyboard handler will fix the remaining error.

Each of the rules in jsx-a11y has an associated page on GitHub,
providing more details about why code might break a rule and
what you can do to fix it.

Discussion
jsx-a11y is probably one of the most useful plugins available for eslint. Often, lint
rules will check for good programming practice and can find a few coding issues. But
the jsx-a11y plugin can genuinely change the design of your application.

Making sure your application allows keyboard navigation is important not only for
people using accessibility tools, but it’s also useful for people who might use your
application frequently. If someone uses an application for a long time, they will often
prefer to use a keyboard instead of a mouse because a keyboard requires less move‐
ment and is more precise.

We’ve also looked at how setting tabIndex can give elements keyboard focus. Some
browsers—notably Firefox—provide subtle indicators to show which elements have
keyboard focus. If you want to make it clear to users where the focus currently is,
consider adding some top-level CSS to your application:

:focus-visible {
 outline: 2px solid blue;
}

This style rule will add a discernible outline to any component with keyboard focus.
Some users will be more likely to choose keyboard navigation once they can see it is
available.

You can download the source for this recipe from the GitHub site.

9.4 Use Axe DevTools at Runtime
Problem
Static code analysis tools, like eslint, can be used to uncover many accessibility
problems. But static analysis is limited. It will often miss errors that occur at runtime.

9.4 Use Axe DevTools at Runtime | 351

https://oreil.ly/uo7Ry
https://oreil.ly/0GfgA

Code might dynamically behave in a way that a static analysis tool could not predict.
We need to check the accessibility of an application when it is up and running in a
web browser.

Solution
We’re going to install the axe DevTools plugin. This is available for both Firefox and
Chrome.

Once it’s installed, you will have an additional tab in the browser’s developer console
(see Figure 9-8).

Figure 9-8. The axe DevTools in the developer console

To see how it works, let’s mess up some of the code in the example task application we
are using throughout this chapter.

The application includes a pop-up TaskForm component. This component has been
given a dialog role, but we can modify it to have some invalid value:

const TaskForm = ({ task, contexts, onCreate, onClose, open }) => {
 ...
 return (
 <Modal
 title="Create or edit a task"
 role="fish"
 open={open}
 onCancel={close}
 >
 <form>...</form>
 <ModalFooter>...</ModalFooter>
 </Modal>
)
}

352 | Chapter 9: Accessibility

https://oreil.ly/S1TcB
https://oreil.ly/MhiK0

If you open http://localhost:3000 and click the button to create a task, you will see the
task form (see Figure 9-9).

Figure 9-9. The new task form appears when you press the + button

If we now open the developer tools window in the browser, switch to the axe Dev‐
Tools tab, and run an audit on the page, you will see two errors (see Figure 9-10).

Figure 9-10. Setting an invalid value in the modal causes two errors

There are two errors because, first, the dialog does not contain a valid role. Second,
the modal no longer has a dialog role, which means it no longer acts as a landmark.

9.4 Use Axe DevTools at Runtime | 353

6 By the time you read this book, such a rule might exist.

Some roles, such as dialog, mark an element as a vital landmark element within the
page. Every part of the application must appear inside a landmark.

If you reset the code and refresh the DevTools audit, the errors will disappear.

You could imagine that some future static code analysis might include a scan of all
code that checks for invalid role values.6 However, DevTools can also check for other,
more subtle problems.

In the example application, edit the App.css file, and add some code to change the
color of the main heading:

h1 {
 color: #9e9e9e;
}

Figure 9-11. The result of changing the color of the first-level heading

The result doesn’t appear to be too drastic (see Figure 9-11), but it does cause Dev‐
Tools to display this error:

Elements must have sufficient color contrast

Fix the following:
Element has insufficient color contrast of 2.67 (foreground color: #9e9e9e,
background color: #ffffff, font size: 24.0pt (32px), font weight: bold).
Expected contrast ratio of 3:1

The Chrome browser makes it relatively easy to fix contrast errors from within the
developer console. If you inspect the h1 heading, examine the color style of the ele‐
ment, and then click the small color panel, you will see the contrast problem reported
in Figure 9-12.

354 | Chapter 9: Accessibility

Figure 9-12. View the contrast by clicking the small gray square in the color property

If you now open the Contrast section, you can adjust the color to meet both AA and
AAA accessibility standards for contrast (see Figure 9-13).

Figure 9-13. Open the contrast ratio to adjust the color to meet accessibility standards

9.4 Use Axe DevTools at Runtime | 355

Chrome suggests changing the color from #949494 to #767676. The difference is not
hugely noticeable for most people but will be significantly easier to read for the users
who are less sensitive to contrast (see Figure 9-14).

Figure 9-14. The result of changing the contrast to meet the AAA standard

Sometimes, Chrome will not display the contrast information if it
cannot identify a specific background color. You can avoid this
problem by temporarily assigning a backgroundColor to the ele‐
ment you are checking.

Discussion
The axe DevTools extension is straightforward to use and can find many issues that a
static analysis tool will miss.

It does rely on the developer manually checking for errors, but we will see in the next
chapter that there are ways of automating browser-based accessibility tests.

You can download the source for this recipe from the GitHub site.

9.5 Automate Browser Testing with Cypress Axe
Problem
The previous recipe made clear that some accessibility problems appear only at run‐
time in a real web browser and so can’t be found with static analysis.

If we rely on manual browser testing, we will likely acquire regression issues. It would
be much better to automate the kinds of manual checks that tools like axe DevTools
allow us to perform inside a browser.

Solution
We will examine how to automate browser accessibility testing with a plugin for the
Cypress testing framework called cypress-axe. The cypress-axe plugin uses the
same axe-core library as axe DevTools. Still, because we can use cypress-axe in
browser-level tests, we can automate the auditing process so that an integration server
can instantly find regression errors.

We will need to have Cypress and the axe-core library installed in our application:

356 | Chapter 9: Accessibility

https://oreil.ly/0GfgA

7 You can call this file whatever you like, so long as it has a .js extension and is inside the integration directory.

$ npm install --save-dev cypress axe-core

We can then install the cypress-axe extension:

$ npm install --save-dev cypress-axe

If this is the first time you’ve installed Cypress, you will need to run the Cypress
application, which will create the appropriate directories and initial code that you can
use as the basis of your tests. You can start Cypress with this command:

$ npx cypress open

We’ll need to configure the cypress-axe plugin. Edit the cypress/support/index.js file,
and add this line of code:

import 'cypress-axe'

We will also need to add a couple of hooks that will allow us to record errors during a
test run. We can do this by editing the cypress/plugins/index.js file and adding this
code:

module.exports = (on, config) => {
 on('task', {
 log(message) {
 console.log(message)
 return null
 },
 table(message) {
 console.table(message)
 return null
 },
 })
}

You can then remove all of the example tests from the cypress/integration directory
and create a new file called cypress/integration/accessibility.js:7

function terminalLog(violations) {
 cy.task(
 'log',
 `${violations.length} accessibility violation${
 violations.length === 1 ? '' : 's'
 } ${violations.length === 1 ? 'was' : 'were'} detected`
)
 const violationData = violations.map(
 ({ id, impact, description, nodes }) => ({
 id,
 impact,
 description,
 nodes: nodes.length,

9.5 Automate Browser Testing with Cypress Axe | 357

 })
)

 cy.task('table', violationData)
 console.table(violationData)
}

describe('can be used', () => {
 it('should be accessible when starting', () => {
 cy.visit('/')
 cy.injectAxe()
 cy.checkA11y(null, null, terminalLog)
 })
})

This is based on the example code from the cypress-axe repository.

The test is inside the describe function. The terminalLog function is used to report
errors.

The test has this structure:

1. Opens the page at /.
2. Injects the axe-core library into the page
3. Runs an audit of the page

The axe-core library doing most of the work is the same library used by other tools,
such as the axe DevTools browser extension. The axe-core library will examine the
current DOM and check it against its rule base. It will then report any failures it finds.

The cypress-axe plugin injects the axe-core library into the browser and uses the
checkA11y command to run an audit. It sends the issues to the terminalLog function.

If you run this test in Cypress, by double-clicking accessibility.js, it will pass (see
Figure 9-15).

So, let’s create a problem. Let’s add a second test:

it('should be accessible when creating a task', () => {
 cy.visit('/')
 cy.injectAxe()
 cy.contains('+').click()
 cy.checkA11y(null, null, terminalLog)
})

358 | Chapter 9: Accessibility

https://oreil.ly/2Exyx

Figure 9-15. The code passing the accessibility test

The test opens the application, clicks the + button to open the form to create a task,
and then performs an audit.

In its current form, the application will also pass this test. So, let’s modify the Task
Form in the example application to have an invalid role value:

const TaskForm = ({ task, contexts, onCreate, onClose, open }) => {
 ...
 return (
 <Modal
 title="Create or edit a task"
 role="hatstand"
 open={open}
 onCancel={close}
 >
 <form>...</form>
 <ModalFooter>...</ModalFooter>
 </Modal>
)
}

If you rerun the test, it will now fail. You need to run the test with the JavaScript con‐
sole open (see Figure 9-16) to see the failure inside a console table.

9.5 Automate Browser Testing with Cypress Axe | 359

Figure 9-16. You will find the details of failures if the console is open during the test

Discussion
For a great introduction to accessibility audits and cypress-axe testing, see Marcy Sut‐
ton’s talk at the ReactJS Girls Conference. The talk first introduced us to the plugin,
and we’ve been using it ever since.

You can download the source for this recipe from the GitHub site.

9.6 Add Skip Buttons
Problem
Pages often have a bunch of content right at the start. There might navigation links,
quick-action menus, links to social media accounts, search fields, etc. If you can use a
mouse and see the page, this won’t be a problem. You will probably mentally filter
them out and start using the main content of the page.

But if you are using a screen reader, you might have to listen to details of each one of
those initial elements on each page you visit. Modern screen reader technology often
allows users to automatically navigate through sections and headings, but it can still
take some time to figure out where the important things start.

360 | Chapter 9: Accessibility

https://oreil.ly/nS6R2
https://oreil.ly/nS6R2
https://oreil.ly/0GfgA

That’s why many websites include hidden links and button that typically include text
like “Skip to content” that allows keyboard users to get to the critical start of the page.

One example is YouTube. If you open YouTube and then hit the Tab key a few times,
you see a button appear (see Figure 9-17), which will move the keyboard focus to the
main content if you hit the spacebar.

Figure 9-17. YouTube displays a skip button if you press Tab three times

How do you create a button that appears only when you Tab to it?

Solution
This recipe contains a reusable SkipButton component that we can include on pretty
much any page without breaking the design or layout.

It needs to have several features:

• It needs to be hidden unless we tab into it. We don’t just want a transparent but‐
ton, just in case the user hits it if they accidentally click that part of the screen.

• It needs to float above the page content so that we don’t need to leave space for it
in the layout.

• It needs to work as an accessible button. That means it has to be recognized by
screen readers and behave how a button behaves. If we hit the Enter key or space‐
bar when it’s focused, we want it to work.

• It needs to disappear once we’ve used it.

We’ll add a few other requirements along the way, but this should get us started.

9.6 Add Skip Buttons | 361

Let’s start by creating a new component, called SkipButton. We’ll make it return a
single div and allow it to include any children that are passed to it:

const SkipButton = (props) => {
 const { className, children, ...others } = props

 return (
 <div className={`SkipButton ${className || ''}`} {...others}>
 {children}
 </div>
)
}

The component will also accept a class name and any other properties that a parent
might care to pass.

We want screen readers to see it as an actual button. We could do this by replacing
the div with a button, but we’ll keep it as a div so that the styling is a little easier to
apply. However, we will give it a role of button and—because roles have rules—we
will also give it a tabIndex value of 0. That’s something that we’d need to do anyway,
because we want the user to be able to Tab to it:

const SkipButton = (props) => {
 const { className, children, ...others } = props

 return (
 <div
 className={`SkipButton ${className || ''}`}
 role="button"
 tabIndex={0}
 {...others}
 >
 {children}
 </div>
)
}

We need the button to do something when it’s clicked. Or rather, we need it to do
something when the user presses the Enter key or the spacebar. So, we’ll allow it to
accept a property called onClick, but then we’ll attach it to an event handler that will
trigger if the user presses the Enter key or spacebar:

const SkipButton = (props) => {
 const { className, children, onClick, ...others } = props

 return (
 <div
 className={`SkipButton ${className || ''}`}
 role="button"
 tabIndex={0}
 {...others}

362 | Chapter 9: Accessibility

 onKeyDown={(evt) => {
 if (evt.key === 'Enter' || evt.key === ' ') {
 evt.preventDefault()
 onClick(evt)
 }
 }}
 >
 {children}
 </div>
)
}

Of course, we could have named this property onKeyDown, but buttons generally have
onClicks, and that will likely be easier to remember when we come to use it.

There’s one final thing that we’ll do to the component: we’ll allow it to accept a refer‐
ence, which will be useful when we reuse the component in the next recipe.

You can’t pass references in the same way that you’d pass most other properties. The
React renderer uses references to keep track of the generated elements in the DOM.

If we want a component to accept a reference object, we’ll need to wrap everything in
a call to React’s forwardRef function. The forwardRef function returns a wrapped
version of your component, extracting the reference from the parent component and
passing it explicitly to the component it wraps. That sounds a little complicated, but it
just means this:

import { forwardRef } from 'react'
import './SkipButton.css'

const SkipButton = forwardRef((props, ref) => {
 const { className, children, onClick, ...others } = props

 return (
 <div
 className={`SkipButton ${className || ''}`}
 role="button"
 tabIndex={0}
 ref={ref}
 {...others}
 onKeyDown={(evt) => {
 if (evt.key === 'Enter' || evt.key === ' ') {
 evt.preventDefault()
 onClick(evt)
 }
 }}
 >
 {children}
 </div>
)
})

9.6 Add Skip Buttons | 363

That’s our completed SkipButton, complete with an import of some style informa‐
tion. It’s just a button. The rest is down to styling in the SkipButton.css file.

We want the button to float above the other content in the page, so we’ll set the z-
index to something really high:

.SkipButton {
 z-index: 10000;
}

We want to hide the button until the user has tabbed into it. We could try to make it
transparent, but that will have two problems. First, it might position itself in front of
something clickable. It would block the clicks unless we also went to the trouble of
setting pointer-events to none. Second, if the button is transparent but still on the
screen, it might be seen as extra screen clutter for a screen reader to handle. If a
screen reader is converting the screen spatially into braille, the user would hear “Skip
to content” in the middle of some other piece of text.

So instead, we’ll put the button way off screen until we need it:

.SkipButton {
 z-index: 10000;
 position: absolute;
 left: -1000px;
 top: -1000px;
}

So, what happens when someone tabs into the button? We can set styles that are
applied only when the button has focus:

.SkipButton {
 z-index: 10000;
 position: absolute;
 left: -1000px;
 top: -1000px;
}

.SkipButton:focus {
 top: auto;
 left: auto;
}

Beyond that, we can just add some pure visual styling. It’s important to remember
that not everyone using this button is going to be using a screen reader. Some will
want to use keyboard navigation because they are unable to use a mouse, or else they
might just want to navigate with a keyboard because they find it faster:

.SkipButton {
 z-index: 10000;
 position: absolute;
 left: -1000px;
 top: -1000px;

364 | Chapter 9: Accessibility

 font-size: 12px;
 line-height: 16px;
 display: inline-block;
 color: black;
 font-family: sans-serif;
 background-color: #ffff88;
 padding: 8px;
 margin-left: 8px;

}

.SkipButton:focus {
 top: auto;
 left: auto;
}

We can now insert the SkipButton somewhere near the start of the page. It won’t be
visible until the user tabs into it, but positioning does matter. We want it to be within
two or three Tabs from the start of the page. We’ll add it to the header section:

<header>
 <SkipButton onClick={() => document.querySelector('.addButton').focus()}>
 Skip to content
 </SkipButton>
 <h1>Manage Tasks</h1>
</header>

We’re just using document.querySelector here to find the element that will receive
the focus. You could choose to reference the element you want to skip to or else navi‐
gate to a location. In practice, we’ve found that a simple document.querySelector is
the most straightforward approach. It allows you to easily refer to elements that might
not be in the current component. And it doesn’t rely on navigating to an anchor
within a page, which might break if the application changes its routing method.

If you open the example application in a browser and then press Tab, you will see the
SkipButton (see Figure 9-18).

9.6 Add Skip Buttons | 365

8 See Recipe 9.1 for more information about main sections.

Figure 9-18. The skip button appears over the main heading if you press the Tab key

Discussion
It’s a good idea to place the SkipButton within three Tabs of the start of the page, and
it’s helpful if the number of Tabs needed is the same on every page in your applica‐
tion. The user will then soon learn how to skip to the critical part of each page. We’ve
found that SkipButtons are also popular with people who find using a keyboard
more productive.

You could create a standard SkipButton for each page that also moved the focus to
the first tabbable item on the main section of the page.8

You can download the source for this recipe from the GitHub site.

366 | Chapter 9: Accessibility

https://oreil.ly/0GfgA

9.7 Add Skip Regions
Problem
We saw in the previous recipe that skip buttons are helpful if a user wants to quickly
get past all of the headers and navigation at the start of a page and get into the main
content.

However, even within the main content, there may be times where it would be helpful
for a user to skip past a set of components. Consider the example tasks application
that we are using throughout this chapter. A user can create a reasonably large num‐
ber of tasks in different groups (see Figure 9-19).

Figure 9-19. The example application displays a set of tasks, broken into groups

If they want to get to the Shopping tasks, they would potentially have to skip past 14
other tasks. And each one of those tasks would have two focus points: the task itself
and the task’s delete button. That means skipping past 28 focus points, even after get‐
ting into the content of the page.

What can we do to make it easier for a user to skip past a collection of components?

9.7 Add Skip Regions | 367

Solution
We’re going to use the SkipButton component we created in the previous recipe to
create skip-regions.

If we tab forward into some section of the main content of the page, such as the
Office tasks, we want a button to appear that allows the user to skip past the Office
tasks entirely (see Figure 9-20).

Figure 9-20. We want a skip button to appear when we tab forward into a group

Conversely, if they are tabbing backward into the Office section, we want a button to
appear that allows them to skip before the Office tasks (see Figure 9-21).

We only want these buttons to appear when entering a region and not when we’re
leaving. That means the Skip Office button appears only when we tab forward, and
the Skip before Office appears only when we tab backward.

368 | Chapter 9: Accessibility

Figure 9-21. A skip button should also appear when we tab back into a group

Before looking at the implementation, let’s look at how we will use a skip-region
before getting into the gory details of the implementation. Our task application ren‐
ders a series of groups of tasks using the TasksContexts component:

import TaskList from '../TaskList'
import './TaskContexts.css'

function TaskContexts({ contexts, tasks, onDelete, onEdit }) {
 return contexts.map((c) => {
 const tasksForContext = tasks.filter((t) => t.context === c.value)
 if (tasksForContext.length === 0) {
 return <div className="TaskContexts-context"> </div>
 }
 return (
 <div key={c.value} className="TaskContexts-context">
 <h2>{c.name}</h2>
 <TaskList
 tasks={tasksForContext}
 onDelete={onDelete}
 onEdit={onEdit}
 />
 </div>
)
 })
}

9.7 Add Skip Regions | 369

export default TaskContexts

Each “context” (group of tasks, for shopping, office, research, etc.) has a heading and
a list of tasks. We want the user to be able to skip over each of the groups. We’ll wrap
each of the task-groups in a new component called Skip, like this:

import TaskList from '../TaskList'
import Skip from '../Skip'
import './TaskContexts.css'

function TaskContexts({ contexts, tasks, onDelete, onEdit }) {
 return contexts.map((c) => {
 const tasksForContext = tasks.filter((t) => t.context === c.value)
 if (tasksForContext.length === 0) {
 return <div className="TaskContexts-context"> </div>
 }
 return (
 <div key={c.value} className="TaskContexts-context">
 <Skip name={c.name}>
 <h2>{c.name}</h2>
 <TaskList
 tasks={tasksForContext}
 onDelete={onDelete}
 onEdit={onEdit}
 />
 </Skip>
 </div>
)
 })
}

export default TaskContexts

If we wrap some tasks in our (as yet nonexistent) Skip component, the user will see
the SkipButtons magically appear and disappear each time they enter the group of
tasks.

All we need to pass to the Skip component is a name, which it will use in the “Skip…”
and “Skip before…” text.

Now, to create the Skip component, let’s begin with a simple component that renders
two SkipButtons and any child components it’s been given:

import { useRef } from 'react'
import SkipButton from '../SkipButton'
import './Skip.css'

const Skip = ({ children, name }) => {
 const startButton = useRef()
 const endButton = useRef()

370 | Chapter 9: Accessibility

 return (
 <div className="Skip">
 <SkipButton ref={startButton}>Skip {name}</SkipButton>
 {children}
 <SkipButton ref={endButton}>Skip before {name}</SkipButton>
 </div>
)
}

We have created two references that will allow us to keep track of each of the buttons.
When a user clicks the startButton, the focus will skip to the endButton, and vice
versa:

import { useRef, useState } from 'react'
import SkipButton from '../SkipButton'
import './Skip.css'

const Skip = ({ children, name }) => {
 const startButton = useRef()
 const endButton = useRef()

 const skipAfter = () => {
 if (endButton.current) {
 endButton.current.focus()
 }
 }
 const skipBefore = () => {
 if (startButton.current) {
 startButton.current.focus()
 }
 }

 return (
 <div className="Skip">
 <SkipButton ref={startButton} onClick={skipAfter}>
 Skip {name}
 </SkipButton>
 {children}
 <SkipButton ref={endButton} onClick={skipBefore}>
 Skip before {name}
 </SkipButton>
 </div>
)
}

If we run this code, we will see the SkipButton when we enter a set of tasks, and we
click Enter, the focus will shift to the SkipButton at the end of the list of tasks.

However, instead of jumping to the endButton, we want to focus on whatever comes
after the endButton. It’s as if we want to jump to the button at the end of the list and

9.7 Add Skip Regions | 371

9 This is based on an answer to a question on StackOverflow by user Radek.

then immediately press Tab to get to the next thing. And we can do that if we create a
function that will programmatically perform a Tab operation:9

const focusableSelector = 'a[href], ..., *[contenteditable]'

function focusNextElement() {
 var focusables = document.querySelectorAll(focusableSelector)
 var current = document.querySelectorAll(':focus')
 var nextIndex = 0
 if (current.length === 1) {
 var currentIndex = Array.prototype.indexOf.call(
 focusables,
 current[0]
)
 if (currentIndex + 1 < focusables.length) {
 nextIndex = currentIndex + 1
 }
 }

 focusables[nextIndex].focus()
}

This code finds all of the elements in the DOM that we can navigate to with the Tab
key. It then searches through the list until it finds the element that currently has focus,
and then it sets the focus to the next element.

We can write a similar function called focusPreviousElement, which programmati‐
cally performs a back-Tab. We can then add our Skip component:

import { useRef, useState } from 'react'
import {
 focusNextElement,
 focusPreviousElement,
} from './focusNextElement'
import SkipButton from '../SkipButton'
import './Skip.css'

const Skip = ({ children, name }) => {
 const startButton = useRef()
 const endButton = useRef()

 const skipAfter = () => {
 if (endButton.current) {
 endButton.current.focus()
 focusNextElement()
 }
 }
 const skipBefore = () => {
 if (startButton.current) {

372 | Chapter 9: Accessibility

https://oreil.ly/Li5sB
https://oreil.ly/5p8nS

 startButton.current.focus()
 focusPreviousElement()
 }
 }

 return (
 <div className="Skip">
 <SkipButton ref={startButton} onClick={skipAfter}>
 Skip {name}
 </SkipButton>
 {children}
 <SkipButton ref={endButton} onClick={skipBefore}>
 Skip before {name}
 </SkipButton>
 </div>
)
}

When we enter a group of tasks—such as Office—we see a SkipButton, which will let
us skip past the group entirely, onto whatever follows.

We have just one more feature to add. We only want the SkipButtons to appear when
we are entering a skip-region, not when we’re leaving one. We can do this by keeping
a state variable called inside updated with whether the focus is currently inside or
outside the current component:

import { useRef, useState } from 'react'
import {
 focusNextElement,
 focusPreviousElement,
} from './focusNextElement'
import SkipButton from '../SkipButton'
import './Skip.css'

const Skip = ({ children, name }) => {
 const startButton = useRef()
 const endButton = useRef()
 const [inside, setInside] = useState(false)

 const skipAfter = () => {
 if (endButton.current) {
 endButton.current.focus()
 focusNextElement()
 }
 }
 const skipBefore = () => {
 if (startButton.current) {
 startButton.current.focus()
 focusPreviousElement()
 }
 }

9.7 Add Skip Regions | 373

 return (
 <div
 className="Skip"
 onFocus={(evt) => {
 if (
 evt.target !== startButton.current &&
 evt.target !== endButton.current
) {
 setInside(true)
 }
 }}
 onBlur={(evt) => {
 if (
 evt.target !== startButton.current &&
 evt.target !== endButton.current
) {
 setInside(false)
 }
 }}
 >
 <SkipButton
 ref={startButton}
 tabIndex={inside ? -1 : 0}
 onClick={skipAfter}
 >
 Skip {name}
 </SkipButton>
 {children}
 <SkipButton
 ref={endButton}
 tabIndex={inside ? -1 : 0}
 onClick={skipBefore}
 >
 Skip before {name}
 </SkipButton>
 </div>
)
}

Our skip-region is now complete. If a user tabs into a group of tasks, a SkipButton
appears. They can use the button to skip past that group and on to the next.

Discussion
It would help if you were careful about applying skip-regions too often. They are best
used to skip past many components that the user would otherwise need to tab
through.

374 | Chapter 9: Accessibility

There are other approaches you can take. For example, suppose your page contains a
series of headings and subheadings. In that case, you might consider adding Skip
Buttons that allow the user to skip to the next heading (if they are tabbing forward)
or the previous heading (if they are tabbing backward).

Some users will have accessibility software that allows them to skip past groups and
sections of components without any additional code required in the application. In
those cases, the SkipButtons will not appear on the page, and the user will ignore
them entirely.

You can download the source for this recipe from the GitHub site.

9.8 Capture Scope in Modals
Problem
React applications frequently display pop-ups. For example, the example tasks appli‐
cation used in this chapter displays a pop-up dialog box when you click a task. The
dialog box allows the user to edit the task’s details (see Figure 9-22).

Figure 9-22. A edit dialog appears when the user clicks a task

9.8 Capture Scope in Modals | 375

https://oreil.ly/0GfgA

These pop-ups are frequently modal, which means we will either interact with them
or dismiss them before returning to the rest of the application. However, there can be
a problem with custom modal dialogs: the focus can escape from them.

Let’s look at the task form from the example application. An earlier version of the
code suffered from this leaky-focus problem. If the user clicked a task, they would see
the task form, and the first field would instantly grab the focus. But if the user then
pressed back-Tab, the focus would shift into the other items in the background (see
Figure 9-23).

Figure 9-23. Pressing back-Tab moves the focus out of the dialog and on to the Charts
task

If you can see where the focus has gone, then this is a slightly odd feature. But this
would be a significant source of confusion for anyone using accessibility software,
who might be completely unaware that the modal dialog is still on the screen. If
someone can see the screen but cannot use a mouse, the experience might be even
stranger. The user might be able to focus on a component that is hidden by the dialog.

We need a way of trapping the focus within a set of components so that the user can‐
not accidentally move into components that are supposed to be out of reach.

376 | Chapter 9: Accessibility

Solution
We will install the React Focus Lock library, which will trap the focus into a small
subset of components. We will install it with this command:

$ npm install react-focus-lock

The React Focus Lock library works by wrapping a set of components inside a
ReactFocusLock, which will watch the focus, waiting for it to move outside of itself. If
that happens, it will immediately move the focus back inside.

The modal in our example application is created with the Modal component:

import './Modal.css'

function Modal({ open, onCancel, children, role, title }) {
 if (!open) {
 return null
 }

 return (
 <div role="presentation" className="Modal" ...>
 <div className="Modal-dialog" role={role} title={title} ...>
 {children}
 </div>
 </div>
)
}

We pass the entire contents of the modal as child components. We can use the React
Focus Lock library to trap the focus within those child components by wrapping
them in a ReactFocusLock:

import ReactFocusLock from 'react-focus-lock'
import './Modal.css'

function Modal({ open, onCancel, children, role, title }) {
 if (!open) {
 return null
 }

 return (
 <div role="presentation" className="Modal" ...>
 <div className="Modal-dialog" role={role} title={title} ...>
 <ReactFocusLock>{children}</ReactFocusLock>
 </div>
 </div>
)
}

9.8 Capture Scope in Modals | 377

Now, if a user opens the TaskForm and starts hitting the Tab key, they will cycle
through the buttons and fields within the dialog box. If they Tab past the last button,
they will move to the first field, and vice versa.

The library works by creating a hidden button with tabIndex set to
1, breaking the tabindex rule in axe-core, stating that no tabindex
should be greater than 0. If this causes a problem, then you can dis‐
able the tabindex rule. For example, in cypress-axe, you can run
cy.configureAxe({rules: [{ id: 'tabindex', enabled:

false }]}) before performing an audit on the page.

Discussion
Our example application uses a custom-mode dialog box and, in so doing, demon‐
strates why that is often a bad idea. If you use dialog boxes and other components
from libraries like Material UI, you will often get many accessibility features for free.
Also, libraries will often create floating elements outside of the “root” div of the React
application. They will then set the aria-hidden attribute of the entire “root” div to
true, which effectively hides the whole rest of the application from screen readers
and other accessibility software.

For an excellent example of an accessible modal, take a look at React Modal from the
ReactJS team.

You can download the source for this recipe from the GitHub site.

9.9 Create a Page Reader with the Speech API
Problem
You can use many tools to check for accessibility, but it is hard to get a feel for what it
is like for a person with particular needs to use your application. That is why the best
way to create an accessible application is to involve people who have to use accessibil‐
ity devices to build and test your code.

For the rest of us, getting a “feel” for the experience of using the application with
accessibility software is still helpful. But there are problems. Braille readers rely on
the ability of the user to read Braille. Software that reads out your application is a
good option, but most screen readers are pretty expensive. The Mac comes with a
built-in screen reader called VoiceOver, which has a whole host of features that allow
you to skip around a screen. But not everyone uses a Mac.

Chrome has an extension called ChromeVox, which works well, but it’s available only
for Chrome and no longer appears to be actively developed.

378 | Chapter 9: Accessibility

https://oreil.ly/2nI5x
https://oreil.ly/0GfgA

10 Thanks to Terry Tibbs for his help in writing this tool.

In addition to all of those issues, screen readers will want to tell you about everything.
You might want to use the screen reader to see what some part of your application is
like to use, but it will continue to read to you when you switch back to your IDE or
some reference material in another browser tab.

Even with all of those issues, it is still worth trying to experience an audio version of
your application. If nothing else, it will give you some sense of what a poor job most
of us do at writing software that people can use.

What can we do to try our application with a screen reader?

Solution
We’re going to create a simple screen reader—a very, very simple screen reader. It
won’t be professional quality, but it will provide some sense of using our application
with only a keyboard and audio feedback. It will also work on our local React applica‐
tion and won’t affect our machine’s other pages or desktop applications. It’s called
TalkToMe.10

We will add a small amount of code to the example tasks application we are using
throughout this chapter. We don’t want the screen reader code to be included in the
production version of our code, so we’ll begin by adding a file called talkToMe.js to
the main source folder:

function talkToMe() {
 if (
 process.env.NODE_ENV !== 'production' &&
 sessionStorage.getItem('talkToMe') === 'true'
) {
 ...
 }
}

By checking the NODE_ENV value, we can limit the code to our development environ‐
ment. We’re also checking for the session-storage variable called talkToMe. We will
run the screen reader only if this exists and has the value "true".

We need the code to read out the details of the current element that has the focus.
Focus events don’t bubble, which means we cannot simply attach an onFocus event
handler to a high-level element and start tracking focus.

However, we can listen to focusin events. We can attach a focusin listener to the
document object, and it will be called every time the user moves to a new component:

9.9 Create a Page Reader with the Speech API | 379

function talkToMe() {
 if (
 process.env.NODE_ENV !== 'production' &&
 sessionStorage.getItem('talkToMe') === 'true'
) {
 document.addEventListener('focusin', (evt) => {
 if (sessionStorage.getItem('talkToMe') === 'true') {

 }
 })
 }
}

Notice that we do an additional check for the talkToMe item, just in case the user has
switched it off while using the application.

We need some way of describing the currently focused element. This function will
provide a rough description of the current element, based upon its name, its role, and
so on:

function getDescription(element) {
 const nodeName = element.nodeName.toUpperCase()
 const role = element.role
 ? element.role
 : nodeName === 'BUTTON'
 ? 'button'
 : nodeName === 'INPUT' || nodeName === 'TEXTAREA'
 ? 'text field ' + element.value
 : nodeName === 'SELECT'
 ? 'select field ' + element.value
 : element.getAttribute('role') || 'group'
 const title = element.title || element.textContent
 const extraInstructions =
 nodeName === 'INPUT' || nodeName === 'TEXTAREA'
 ? 'You are currently in a text field. To enter text, type.'
 : ''
 return role + '. ' + title + '. ' + extraInstructions
}

We can get now get a description of the currently focused element:

function talkToMe() {
 if (
 process.env.NODE_ENV !== 'production' &&
 sessionStorage.getItem('talkToMe') === 'true'
) {
 document.addEventListener('focusin', (evt) => {
 if (sessionStorage.getItem('talkToMe') === 'true') {
 const description = getDescription(evt.target)

 }
 })

380 | Chapter 9: Accessibility

 }
}

Now we need to convert the text of the description into speech. For this, we can use
the Web Speech API, which most browsers now include. The speech synthesizer
accepts an object called an utterance:

window.speechSynthesis.speak(
 new SpeechSynthesisUtterance(description)
)

Before we start to read out a piece of text, we first need to check if we are already in
the process of reading something else. If we are, we will cancel the old utterance and
begin the new one, which will allow the user to quickly skip from component to com‐
ponent as soon as they have heard enough information:

if (window.speechSynthesis.speaking) {
 window.speechSynthesis.cancel()
}
window.speechSynthesis.speak(
 new SpeechSynthesisUtterance(description)
)

This gives us the final version of talkToMe:

function talkToMe() {
 if (
 process.env.NODE_ENV !== 'production' &&
 sessionStorage.getItem('talkToMe') === 'true'
) {
 document.addEventListener('focusin', (evt) => {
 if (sessionStorage.getItem('talkToMe') === 'true') {
 const description = getDescription(evt.target)
 if (window.speechSynthesis.speaking) {
 window.speechSynthesis.cancel()
 }
 window.speechSynthesis.speak(
 new SpeechSynthesisUtterance(description)
)
 }
 })
 }
}

We can now add talkToMe to our application, by calling it from the index.js file at the
top of our application:

import React from 'react'
import ReactDOM from 'react-dom'
import './index.css'
import App from './App'
import reportWebVitals from './reportWebVitals'
import talkToMe from './talkToMe'

9.9 Create a Page Reader with the Speech API | 381

talkToMe()

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
)

// If you want to start measuring performance in your app, pass a function
// to log results (for example: reportWebVitals(console.log))
// or send to an analytics endpoint. Learn more: https://bit.ly/CRA-vitals
reportWebVitals()

If you now open your application in a browser, open the developer console, and cre‐
ate a new session-storage variable called talkToMe set to the string “true,” you should
now hear elements described as you Tab between them.

Discussion
The talkToMe screen reader is little more than a toy, but it will help you create concise
titles and other metadata in your code, stressing how important it is to “front-load”
information in descriptions. The sooner the user can decide that an element is not
what they’re looking for, the sooner they can move on. It will also make it abundantly
clear which parts of your application are challenging to navigate and allow you to try
your application without looking at the screen.

You can download the source for this recipe from the GitHub site.

382 | Chapter 9: Accessibility

https://oreil.ly/0GfgA

CHAPTER 10

Performance

One of us had a computer science lecturer who began one class by saying, “You
should never, ever, ever try to optimize your code. But when you do optimize your
code, here’s how you should do it.”

Premature optimization, as Donald Knuth once said, is the root of all evil. It would be
best if you first made your code work. Then make your code maintainable. And only
then—if you have a problem—should you worry about making your code fast. Slow
code that works will always beat fast code that doesn’t.

That said, there are times when performance can be a significant issue. If your appli‐
cation takes more than a few seconds to load, you may lose users who will never
return. Slow can become unusable on low-powered devices. This chapter will take
what we like to call an essentialist approach to performance. You should rarely tune
your code, but when you do, you should tune the right code. We look at various tools
and techniques that will allow you to track down and measure performance bottle‐
necks so that if you do need to apply performance fixes, they will be in the right place,
and you will have some way of measuring the difference they make.

All performance fixes come at a cost. If you make your client code faster, it might cost
more memory or more server time. You will almost always have to add more code
and more complexity.

The recipes in this chapter follow the order in which we would suggest you approach
performance problems. We begin with high-level measurements in the browser and
look at ways that you can objectively identify performance bottlenecks. If you find a
bottleneck, we will show you how you can use React’s built-in Profiler component
to track down the individual components that are the source of the problem. We then
look at lower-level and more precise ways of measuring performance down to the
sub-millisecond level.

383

Only once you can precisely measure performance can you even think about improv‐
ing the speed of your code.

We then show you just a few ways that you can improve the performance of your
application. Some are simple, such as splitting your code into smaller bundles or
combining asynchronous network calls. Others are more complex, such as pre-
rendering your pages on a server.

In summary: this chapter is far more about performance measurement than perfor‐
mance tuning. Because you should never, ever, ever optimize your code, but when
you do, you should begin with measurement.

10.1 Use Browser Performance Tools
Problem
It is worth delaying performance tuning until you know you have a problem. In a
sense, the only time you have a problem is if a user notices that your application isn’t
performing. But if you wait until a user notices, that might be too late. For that rea‐
son, it would be helpful to have some objective measure for when an application
needs tuning, something that realistically measures performance and isn’t just look‐
ing for code that could run faster. You can almost always make code faster, and many
developers have wasted many hours tuning code that results in no noticeable effect
on the user experience.

It would be helpful to have a tool that will focus on where you might need to optimize
your code.

Solution
The best way to check for performance is by using a browser. In the end, the user’s
experience is the only thing that matters. So, we will look at the various in-browser
tools that will provide objective measures and find potential bottlenecks in your code.

The first thing we will look at is a tool built into Chrome called Lighthouse.

Google produces an add-in for Firefox called Google Lighthouse.
Although this works well, it is simply a frontend for the Google
Page Speed service, so you can use it only on public-facing web
pages. However, you can use the Lighthouse extension in Chrome
on any page that Chrome can read.

384 | Chapter 10: Performance

The Lighthouse extension is a great way to check the basic road-worthiness of your
application. As well as checking performance, Lighthouse will look at the accessibility
of your web page and whether you are following best practices for the web. It will
check whether your pages are optimized for search engine robots and will look to see
if your web application meets the standards required to consider it a progressive web
application (see Figure 10-1).

Figure 10-1. The metrics checked by Lighthouse

You can run a Lighthouse audit in two ways: either on the command line or in a
browser.

If you want to run audits on the command line, you will first need to install the Light‐
house command:

$ npm install -g lighthouse

You can then run an audit with the lighthouse command:

$ lighthouse http://localhost:3000

The command-line version of Lighthouse is simply an automated script for the Goo‐
gle Chrome browser. It has the advantage that it generates an HTML report of the
audit, which makes it suitable for use on a continuous integration server.

You can also use Lighthouse interactively, within Google Chrome. It’s best to do this
in an incognito window, as this will reduce the likelihood of other extensions and
storage interfering with the Lighthouse audit. Once you have started Chrome and
opened your application, go to developer tools and then switch to the Lighthouse tab
(see Figure 10-2).

10.1 Use Browser Performance Tools | 385

Figure 10-2. The Lighthouse tab with Chrome DevTools

Then click the Generate audit button. Lighthouse will refresh your page several times
and perform a series of audits. The performance audit will concentrate on six differ‐
ent metrics (see Figure 10-3).

Figure 10-3. The six web vitals measured by the Lighthouse performance audit

These metrics are known as web vitals. The web vitals are metrics that you can use to
track performance when applications are running in production.

The First Contentful Paint (FCP) is the time taken for the browser to start to render
content. The FCP will significantly affect the user’s perception of performance. Before
the FCP, the user will see only a blank screen, and if this lasts for too long, the user
might close down the browser and go elsewhere.

Lighthouse measures the time taken for the FCP and then compares that against the
performance statistics Google records globally. If your application is in the top 25% of
FCPs globally, it will mark you as green. Currently, a green rating means that the first

386 | Chapter 10: Performance

1 See Recipe 10.5.

content renders within two seconds. If you are within the top 75%, it will give you an
orange grade, which means your page started to render within four seconds. Light‐
house will give anything else a red grade.

The Speed Index (SI) measures how long it takes until your page stabilizes visually. It
performs this check visually by recording a video and checking for differences
between frames.

Lighthouse will compare the SI metric to website performance globally. If the SI takes
less than 4.3 seconds, you are in the top 25% of web pages globally, and Lighthouse
will give a green rating. If you take less than 5.8 seconds, you will be in the top 75%,
and Lighthouse will give you an orange rating. It will give everything else a red grade.

The Largest Contentful Paint (LCP) occurs when the browser’s viewport is completely
loaded. Other content might still be loading out of view, but the LCP is when the user
will feel that the page is visible. To be rated green, the LCP needs to be within 2.5 sec‐
onds. It needs to be less than 4 seconds for an orange rating. Everything else is rated
red. Server-side rendering can significantly improve the LCP rating.

Time to interactive (TTI) is how long it takes before you can interact with the page
using the mouse and keyboard. In React, this happens after the first complete render,
when React has attached the event handlers. You want this to be less than 3.8 seconds
to get a green rating. If you can get a TTI of 7.3 or less, you will be rated orange.
Everything else is rated red. You can improve the TTI by deferring the loading of
third-party JavaScript or by code splitting.1

Total blocking time (TBT) is the sum of all blocking tasks that occur between the FCP
and TTI. A blocking task is anything that takes longer than 50 ms. That’s about how
long it takes to display a frame in a movie, and anything longer than 50 ms starts to
become noticeable. If you have too many blocking tasks, the browser will start to feel
like it’s freezing up. For this reason, the grades for TBT cover short periods. If TBT is
less than 300 ms, Lighthouse will grade your page as green. Anything up to 600 ms is
orange, and everything else is graded red. A high TBT score will feel to the user like
the browser is being overloaded. TBT is generally improved by running less Java‐
Script code or reducing the number of scans of the DOM. The most effective techni‐
que is probably code splitting.

Cumulative Layout Shift (CLS) is a measure of the jumpiness or visual stability of your
web page. If your application inserts additional content that moves other content
around during a page load, this will start to affect the CLS metric. The CLS is the pro‐
portion of the page that moves during loading.

10.1 Use Browser Performance Tools | 387

Not included in the Lighthouse report is the First Input Delay (FID) metric, which is
how long it takes between a user sending an event to the page—such as by clicking a
button—and the JavaScript handler receiving the event. You want an FID of no more
than 300 ms. The FID is closely related to the TBT because blocking events are typi‐
cally created by event handlers.

As well as providing an audit of the primary metrics of your page, the Lighthouse
report will also include advice for how to fix any problems it finds.

Lighthouse is an excellent starting point when checking for performance issues. It’s
not an exhaustive check, but it will highlight problems that you might not otherwise
notice.

Many factors (bandwidth, memory, CPU, and so on) can affect a
Lighthouse audit, so expect your results to vary from run to run.
Online services such as WebPageTest and GTmetrix can run audits
on your application from various locations around the world,
which will give you a more realistic view of your application’s speed
than a Lighthouse audit running against http://localhost:3000.

While Lighthouse is good at highlighting the existence of performance problems, it’s
less helpful at finding the cause of those problems. It might be that code for a web
page is too large or too slow. It might be that the server is responding sluggishly. It
might even be a resource problem, such as low memory or large cache size.

To find out why a bottleneck exists, we can next visit the performance tools of the
browser itself.

If you are using Firefox or Chrome, you can get to the performance console by open‐
ing your page in an incognito window and then going to the Performance tab in the
development tools (see Figure 10-4).

Figure 10-4. The Performance tab within the browser DevTools

388 | Chapter 10: Performance

https://www.webpagetest.org
https://gtmetrix.com

The Performance tab is like the engine management system of the browser. There,
you can track the memory usage, any CPU blockers, the number of elements within
the DOM, and so on. To gather statistics, you will need to click the Record button on
the toolbar and then interact with your page for a few seconds before stopping the
recording. The performance system will trace everything you selected. In the example
in Figure 10-5, you can see that a blocking operation (see TBT earlier) occurred when
the user clicked a button, and the browser blocked for 60.92 ms until the event han‐
dler returned.

Figure 10-5. Zooming in to investigate a long-running task

The Performance tab gives you all the statistics you are ever likely to want when per‐
formance tuning. It probably has far more detail than you are ever likely to need. For
that reason, you might want to install the React Developer Tools, which are available
for Chrome and Firefox.

When you install the React Developer Tools, you may find that they cannot run in
incognito mode by default. It’s worth enabling them to have access (see Figure 10-6
for Chrome and Figure 10-7 for Firefox).

Figure 10-6. Enabling React Dev Tools in incognito mode in Chrome

10.1 Use Browser Performance Tools | 389

https://oreil.ly/vvCLp
https://oreil.ly/mw1yn

Figure 10-7. Enabling React Dev Tools in private mode in Firefox

In a similar way to the browser’s performance tools, the React Developer Tools need
you to record a performance session by clicking the Record button in the top left of
the developer panel (see Figure 10-8).

Figure 10-8. The React Profiler tab in Chrome DevTools

Once you have recorded a session, the performance statistics will be displayed and
related to the React components that rendered the web page. If a component took a
long time to display, you can hover over it in the performance results and see it high‐
lighted on the page (see Figure 10-9).

The React Developer Tools are often the best interactive tool to identify the underly‐
ing cause of a performance issue. But, as ever, you should consider tuning perfor‐
mance only if a user or some higher-level tool such as Lighthouse discovers that a
performance bottleneck exists.

390 | Chapter 10: Performance

Figure 10-9. If you hover over a component in the flamegraph, it will be highlighted on
the page

Discussion
If you are taking an essentialist approach to performance, you should always begin in
the browser, either by using the application or by using one of the built-in tools or
extensions we discuss here.

10.2 Track Rendering with Profiler
Problem
Browser tools provide a wealth of performance detail, and they should always be the
first place you look to discover the cause of underlying performance problems.

Once you have identified a problem, it can be helpful to get more detailed perfor‐
mance statistics for a small part of the application. The only way to boost perfor‐
mance is by gathering actual performance figures before and after a change. That can
be difficult to do with browser extensions because they will flood you with informa‐
tion about everything.

How do we get performance statistics for the part of the application we are tuning?

10.2 Track Rendering with Profiler | 391

Solution
We are going to use the React Profiler component. You can wrap the Profiler
component around any part of your application that you will tune. It will record per‐
formance statistics whenever React renders it and will tell you several vital pieces of
information:

Statistic Purpose
Phase Whether a mount or an update caused the render

Actual duration How long the render would take to complete if no internal caching was applied

Base duration How long the render took with caching

Start time The number of milliseconds since the page loaded

Commit time When the results of the render find their way into the browser’s DOM

Interactions Any event handlers that we are currently tracing

To see how the Profiler component works, let’s start to examine the example appli‐
cation you can see in Figure 10-10.

Figure 10-10. The example Calendar application

This is the code for the App component:

import { useState } from 'react'
import { unstable_trace as trace } from 'scheduler/tracing'
import './App.css'

function App({ onRender }) {
 const [year, setYear] = useState(2023)

392 | Chapter 10: Performance

 return (
 <div className="App">
 <h1>Year: {year}</h1>
 <button onClick={() => setYear((y) => y - 1)}>Previous</button>
 <button onClick={() => setYear((y) => y + 1)}>Next</button>

 <YearCalendar year={year} onRender={onRender} />
 </div>
)
}

export default App

The application displays two buttons: one for moving forward a year and one for
moving back.

We can begin by wrapping the buttons and the calendar component in a Profiler
component:

import { useState, Profiler } from 'react'
import { unstable_trace as trace } from 'scheduler/tracing'
import './App.css'

function App({ onRender }) {
 const [year, setYear] = useState(2023)

 return (
 <div className="App">
 <h1>Year: {year}</h1>
 <Profiler id="app" onRender={() => {}}>
 <button onClick={() => setYear((y) => y - 1)}>
 Previous
 </button>
 <button onClick={() => setYear((y) => y + 1)}>Next</button>

 <YearCalendar year={year} onRender={onRender} />
 </Profiler>
 </div>
)
}

export default App

The Profiler takes an id and a callback function onRender. Each time the Profiler
is rendered, it sends back statistics to the onRender function. So, let’s fill out the
details of the onRender function a little more:

import { useState, Profiler } from 'react'
import { unstable_trace as trace } from 'scheduler/tracing'
import './App.css'

let renders = []

10.2 Track Rendering with Profiler | 393

let tracker = (
 id,
 phase,
 actualDuration,
 baseDuration,
 startTime,
 commitTime,
 interactions
) => {
 renders.push({
 id,
 phase,
 actualDuration,
 baseDuration,
 startTime,
 commitTime,
 interactions: JSON.stringify(Array.from(interactions)),
 })
}

function App({ onRender }) {
 const [year, setYear] = useState(2023)

 return (
 <div>

 <Profiler id="app" onRender={tracker}>

 </Profiler>
 <button onClick={() => console.table(renders)}>Stats</button>
 </div>
)
}

The tracker function will record each of the results from the Profiler in an array
called renders. We’ve also added a button to the interface, which will display the ren‐
ders in the console in tabular format whenever we click it.

If we reload the page and click the Previous and Next buttons a few times, followed
by the Stats button, we will see the profile statistics on the console (see Figure 10-11).

The data is in tabular format, which makes it a little easier to read. It also means that
we can sort by any of the columns. We can also copy the entire table and paste it into
a spreadsheet for more analysis.

394 | Chapter 10: Performance

Figure 10-11. The render statistics displayed in the JavaScript console

You will notice that the interactions column is always an empty array. That’s because
we are not currently tracking any event handlers or other pieces of code. If we want to
see which event handlers are currently running during a render, we can import a trac‐
ing function and wrap it around any piece of code that we want to track. For example,
this is how we can start to track the user clicking the Previous button:

import { unstable_trace as trace } from 'scheduler/tracing'
...
<button
 onClick={() => {
 trace('previous button click', performance.now(), () => {
 setYear((y) => y - 1)
 })
 }}
/>

The trace function takes a label, a timestamp, and a callback containing the code it is
tracing. The timestamp could be a date, but it is often better to use the milliseconds
returned from performance.now().

If we reload the web page, click Next a few times, and then click Previous a few times,
we will start to see the interactions appearing in the table of results (see Figure 10-12).

10.2 Track Rendering with Profiler | 395

Figure 10-12. Traced interactions are shown as JSON strings within the results table

We stringify the output because trace stores interactions as JavaScript sets, which
often don’t display correctly in the console. Even though the interaction data looks
truncated in the table, you can still copy the results. Here is the example of the data
returned by a single trace interaction:

[
 {
 "__count":1,
 "id":1,
 "name":"previous button click",
 "timestamp":4447.909999988042
 }
]

Discussion
The Profiler component has been in React since version 16.4.3. The trace function
is still experimental, but it is tremendously powerful. Although we are using it for
only a simple event handler in our example, it can also provide real-world timing for
larger pieces of code, such as network requests. React container components will
often have many network requests “in-flight” during a render, and the trace function
gives you the ability to see what was going on at the time of a particularly slow render.
It will also give you some idea of how many renders resulted from a whole chain of
different network processes.

You can download the source for this recipe from the GitHub site.

396 | Chapter 10: Performance

https://oreil.ly/XhJLR

10.3 Create Profiler Unit Tests
Problem
The React Profiler is a powerful tool. It gives you access to the same profiling infor‐
mation that is available within the React Developer Tools. It has the advantage that
you can focus on the code that you are trying to optimize.

However, it still relies on the interactions that you make with the web page. You will
want to test performance before and after you make a code change. But how can you
be sure that the timings you take before and after are measuring the same things? If
you perform a manual test, how can you guarantee that you will perform the same set
of actions each time?

Solution
This recipe will look at how to create unit tests that call the Profiler code. Automa‐
ted tests will allow us to create repeatable performance tests that we can run to check
that any optimizations we make are having a real impact on performance.

In a unit test, we can render a React component outside of a web browser because the
Testing Library provides a headless implementation of the DOM.

To see how to use the Profiler, we will take another look at the example calendar
application (see Figure 10-13).

Figure 10-13. The example Calendar application

10.3 Create Profiler Unit Tests | 397

We can add a Profiler component to the main code for the App component and then
allow any other code to pass in an onRender method that can be used to track render
performance:

import { useState, Profiler } from 'react'
import YearCalendar from './YearCalendar'
import { unstable_trace as trace } from 'scheduler/tracing'
import './App.css'

function App({ onRender }) {
 const [year, setYear] = useState(2023)

 return (
 <div className="App">
 <h1>Year: {year}</h1>
 <Profiler id="app" onRender={onRender || (() => {})}>
 <button
 onClick={() => {
 trace('previous button click', performance.now(), () => {
 setYear((y) => y - 1)
 })
 }}
 >
 Previous
 </button>
 <button onClick={() => setYear((y) => y + 1)}>Next</button>

 <YearCalendar year={year} onRender={onRender} />
 </Profiler>
 </div>
)
}

export default App

We can also pass the onRender function down to child components to track their ren‐
der performance. In the preceding code, we’re passing onRender to YearCalendar,
which can then use it in its own Profiler component or pass it further down the
component tree.

You can avoid the need to pass the onRender to child components
by creating a provider component that will inject the onRender into
the current context. We are not doing that here to keep the code
simple. But there are various other examples using providers else‐
where in the book. For example, see the SecurityProvider in
Recipe 7.1.

398 | Chapter 10: Performance

The Profiler component must be given an id property and an onRender property.
When the application is run normally, no onRender property will be passed to the App
component, so we need to provide a default function:

<Profiler id='app' onRender={onRender || (() => {})}>

The Profiler component is relatively lightweight and does not
generally slow down the application’s performance. If you forget to
remove the Profiler from your code, it won’t matter. The
Profiler runs only in development mode. It will be removed from
the code when you create a production build.

We can now start to build a unit test:

import { render, screen } from '@testing-library/react'
import user from '@testing-library/user-event'
import App from './App'

let renders = []
let tracker = (
 id,
 phase,
 actualDuration,
 baseDuration,
 startTime,
 commitTime,
 interactions
) => {
 renders.push({
 id,
 phase,
 actualDuration,
 baseDuration,
 startTime,
 commitTime,
 interactions: JSON.stringify(Array.from(interactions)),
 })
}

let startTime = 0

describe('App', () => {
 beforeEach(() => {
 renders = []
 startTime = performance.now()
 })
 afterEach(() => {
 console.log('Time taken: ', performance.now() - startTime)
 console.table(renders)
 })

10.3 Create Profiler Unit Tests | 399

 it('should move between years', async () => {
 render(<App onRender={tracker} />)
 user.click(screen.getByRole('button', { name: /previous/i }))
 user.click(screen.getByRole('button', { name: /previous/i }))
 user.click(screen.getByRole('button', { name: /previous/i }))
 user.click(screen.getByRole('button', { name: /next/i }))
 user.click(screen.getByRole('button', { name: /next/i }))
 user.click(screen.getByRole('button', { name: /next/i }))
 }, 30000)
})

Tests that last longer than five seconds are likely to breach the Jest
timeout limit. The easiest way to avoid this limit is by adding a
timeout parameter to the it function call, as we do here, to set the
timeout to 30,000 ms. You will need to adjust this value according
to the complexity of your test.

When you run this test, an enormous amount of data is captured in the console (see
Figure 10-14).

Figure 10-14. The unit test will capture an enormous amount of rendering information

Notably, the test is repeatable. It will perform the same actions each time. We’ve found
that unit tests tend to be far more consistent than code run in the browser. Repeated
runs of the previous test gave overall times of 2,100 ms +/– 20 ms. That’s a variation
of less than 1%. They also produced exactly 2,653 profile scores each time.

400 | Chapter 10: Performance

2 For example, by checking that the component is in a particular state before performing some action.

It’s unlikely that we’d get repeatable results in a browser with a manual test.

In the example here, we are simply displaying the capture results. In an actual perfor‐
mance situation, you might want to process the results in some way to find the aver‐
age render time of a particular component, for example. Then, when you start to tune
the component, you can be more confident that any performance gains result from
actual performance changes rather than variations in the browser’s behavior.

Discussion
Even though we are writing this performance testing code in a Jest unit test, it is not a
test in the same way that a regular functional test is; we are not performing any asser‐
tions. Assertions can still be helpful,2 but it is not good to write performance tests that
assert that some operation is faster than a given time. Performance tests are highly
dependent upon the environment. If you write a test on a development that asserts
that something will take less than three seconds, you should not be surprised if it fails
on an integration server, where it took nine seconds.

If you do want to track performance automatically, you might consider adding
regression checks. A regression check will record a set of performance statistics in
some central repository and record the ID of the environment that produced them.
You can check that future runs in the same environment are not significantly slower
than historic runs in the same environment.

In general, though, it is better to report performance results rather than assert what
you want the performance to be.

You can download the source for this recipe from the GitHub site.

10.4 Measure Time Precisely
Problem
Once you get to the point where you need to optimize quite low-level JavaScript code,
what should you use to measure performance? You could, for example, use the
Date() function to create a timestamp at the start and end of some JavaScript code:

const beforeDate = new Date()
for (let i = 0; i < 1000; i++) {}
const afterDate = new Date()
console.log(
 '1,000 loops took',
 afterDate.getTime() - beforeDate.getTime()
)

10.4 Measure Time Precisely | 401

https://oreil.ly/XhJLR

3 If you run it in Node, performance.now() measures the time from the start of the current process.

We can convert each date into milliseconds, so we can see how long it takes if we sub‐
tract one date from another.

This was such a common technique that the console object was given to new meth‐
ods called time and timeEnd, to make the code shorter:

console.time('1,000 loops')
for (let i = 0; i < 1000; i++) {}
console.timeEnd('1,000 loops')

The time function accepts a label parameter, and if we call timeEnd with the same
label, it displays the results on the console. Let’s run the code:

1,000 loops: 0ms

That’s a problem. React applications rarely contain long-running functions, so you
typically need to optimize small pieces of JavaScript code only if the browser calls
them many times. For example, you might want to optimize game code that is ren‐
dering animation on a screen. It can be hard to measure short pieces of code because
they might run in less than a millisecond. We can’t measure the performance with
Date objects because they resolve down to the millisecond only, even though the
machine’s internal clock is far more precise than that.

We need something that we can use for measuring times of less than a millisecond.

Solution
We are going to use performance.now(). This function call returns a high-resolution
timestamp measured in fractions of milliseconds. For example, if you open the
Chrome console and type performance.now(), you will see something like this:

> performance.now()
< 10131.62500000908

The time is measured differently from the time in JavaScript dates. JavaScript dates
measure time from January 1, 1970. Instead, performance.now() measures time from
when the current web page loaded.3

An interesting thing happens if you try to run performance.now() inside Firefox:

> performance.now()
< 4194

By default, Firefox will return only whole numbers of milliseconds for
performance.now(), effectively removing most of the advantages of using it. Firefox

402 | Chapter 10: Performance

rounds to the whole milliseconds because of security. Technically, if JavaScript can
time tiny amounts of code precisely, this can provide a signature for the browser.

You can enable high-resolution time within Firefox by opening about:config,
searching for the property called privacy.reduceTimerPrecision, and setting it to
false. If you do this, you will start to get high-resolution times:

performance.now()
151405.8

Be sure you disable this property if you want to avoid third parties using it to track
you.

To go back to our example code, we can measure the time taken to perform loops like
this:

const before0 = performance.now()
for (let i = 0; i < 1000; i++) {}
const after0 = performance.now()
console.log('1,000 loops took', after0 - before0)
const before1 = performance.now()
for (let i = 0; i < 100000; i++) {}
const after1 = performance.now()
console.log('100,000 loops took', after1 - before1)

When we run this code, we see the following:

1,000 loops took 0.03576700000007804
100,000 loops took 1.6972319999999854

These answers are far more precise and provide more information about the underly‐
ing performance of JavaScript. In this case, we can see that adding more iterations to
a loop does not scale linearly, which suggests that the JavaScript engine starts to opti‐
mize the code on the fly once it realizes that each of the loop iterations is the same.

Discussion
performance.now() has several advantages over JavaScript dates. Aside from the
additional precision, it is unaffected by clock changes, which is good if you decide to
add some performance monitoring to long-running code. It also starts at zero when
the page starts to load, which is useful for optimizing page load times.

One word of caution when using performance.now(): be wary of using it to build
some higher-level timing function. For example, we once created a simple JavaScript
generator function to make it a little easier to use performance.now():

function* timekeeper() {
 let now = 0
 while (true) yield -now + (now = performance.now())
}

10.4 Measure Time Precisely | 403

This function was created to avoid the need to calculate the difference between start
and end times. Instead of writing this:

const before0 = performance.now()
for (let i = 0; i < 1000; i++) {}
const after0 = performance.now()
console.log('1,000 loops took', after0 - before0)
const before1 = performance.now()
for (let i = 0; i < 100000; i++) {}
const after1 = performance.now()
console.log('100,000 loops took', after1 - before1)

we could instead write this:

const t = timekeeper()
t.next()
for (let i = 0; i < 1000; i++) {}
console.log('1,000 loops took', t.next().value)
for (let i = 0; i < 100000; i++) {}
console.log('100,000 loops took', t.next().value)

No need for all of those ugly before and after variables. The time would reset to
zero after each call to t.next().value, doing away with the need for the calculation.

The problem? The act of wrapping the performance.now() call inside another func‐
tion adds a significant amount of time to the measure, destroying the precision of
performance.now():

1,000 loops took 0.05978800000002593
100,000 loops took 19.585223999999926

In this case, even though it takes only 1.69 ms to run 100,000 loops, the function
reports the time as over 19 ms.

Never hide a call to performance.now() inside another function if
you want it to be accurate.

You can download the source for this recipe from the GitHub site.

404 | Chapter 10: Performance

https://oreil.ly/baiOr

10.5 Shrink Your App with Code Splitting
Problem
One of the biggest drains on performance for an SPA is the amount of JavaScript code
that needs to be downloaded and run. Not only does the JavaScript take time to ren‐
der, but the amount of network bandwidth required can slow your app down signifi‐
cantly on devices connected to a mobile network.

Let’s consider the synchronized routes application we used in Chapter 2 (see
Figure 10-15).

Figure 10-15. The synchronized routes application

The example application is tiny, but it contains some quite large JavaScript bundles:

$ ls -l build/static/js
total 1336
-rw-r--r-- 1 davidg admin 161800 12:07 2.4db4d779.chunk.js
-rw-r--r-- 1 davidg admin 1290 12:07 2.4db4d779.chunk.js.LICENSE.txt
-rw-r--r-- 1 davidg admin 461100 12:07 2.4db4d779.chunk.js.map
-rw-r--r-- 1 davidg admin 4206 12:07 3.307a63d5.chunk.js
-rw-r--r-- 1 davidg admin 9268 12:07 3.307a63d5.chunk.js.map
-rw-r--r-- 1 davidg admin 3082 12:07 main.e8a3e1cb.chunk.js
-rw-r--r-- 1 davidg admin 6001 12:07 main.e8a3e1cb.chunk.js.map
-rw-r--r-- 1 davidg admin 2348 12:07 runtime-main.67df5f2e.js
-rw-r--r-- 1 davidg admin 12467 12:07 runtime-main.67df5f2e.js.map
$

The largest (2.4db4d779.chunk.js) contains the main React framework code, and the
app-specific code is limited to the small main.e8a3e1cb.chunk.js file. That means this
application is about as small as a React application can be. Most React applications
will be significantly larger: often totaling 1 Mb in size, which will be a significant
problem for users on slow connections.

So, what can we do to reduce the size of JavaScript bundles in React?

10.5 Shrink Your App with Code Splitting | 405

Solution
We will use code splitting, which involves breaking the main code for our application
into several smaller bundles. The browser will then load these bundles lazily. A par‐
ticular bundle will load only when one of the components it contains is needed.

The example application we are using for this recipe is most certainly not one that
requires code splitting. As with all performance changes, you should only really try to
split your code if doing so makes a significant change to web performance. We will
split the code in this application because it will be easier to see how it works.

We split code in React with a function called lazy:

import { lazy } from 'react'

The lazy function accepts a factory function, which, when called, will import a com‐
ponent. The lazy function returns a placeholder component, which will do nothing
until the browser renders it. The placeholder component will run the factory function
and dynamically load whichever bundle contains the actual component.

To see how this works, consider this component from our example application:

import { NavLink, Redirect, Route, Switch } from 'react-router-dom'
import People from './People'
import Offices from './Offices'
import './About.css'

const About = () => (
 <div className="About">
 <div className="About-tabs">
 <NavLink
 to="/about/people"
 className="About-tab"
 activeClassName="active"
 >
 People
 </NavLink>
 <NavLink
 to="/about/offices"
 className="About-tab"
 activeClassName="active"
 >
 Offices
 </NavLink>
 </div>
 <Switch>
 <Route path="/about/people">
 <People />
 </Route>
 <Route path="/about/offices">
 <Offices />
 </Route>

406 | Chapter 10: Performance

 <Redirect to="/about/people" />
 </Switch>
 </div>
)

export default About

The browser will render the People and Offices components only when the user vis‐
its a given route. If the application is currently on the path /about/people, the Offices
component will not render, which means that we could potentially delay loading the
Offices component until later. We can do this with the lazy function.

We’ll replace the import of the Offices component with a call to lazy:

//import Offices from "./Offices"
const Offices = lazy(() => import('./Offices'))

The object now stored in the Offices variable will appear to the rest of the applica‐
tion as just another component. It’s a lazy placeholder. Internally it contains a refer‐
ence to the factory function, which it will call when the browser renders it.

If we try to refresh the web page, we will see an error (see Figure 10-16).

Figure 10-16. You will get a lazy loading error if you forget to add a Suspense component

The placeholder will not wait for the actual component to load before returning.
Instead, it will substitute some other HTML while it is waiting for the actual compo‐
nent to load.

We can set this “loading” interface with the Suspense container:

import { lazy, Suspense } from 'react'
import { NavLink, Redirect, Route, Switch } from 'react-router-dom'
import People from './People'
// import Offices from './Offices'
import './About.css'

const Offices = lazy(() => import('./Offices'))

10.5 Shrink Your App with Code Splitting | 407

const About = () => (
 <div className="About">
 <div className="About-tabs">
 <NavLink
 to="/about/people"
 className="About-tab"
 activeClassName="active"
 >
 People
 </NavLink>
 <NavLink
 to="/about/offices"
 className="About-tab"
 activeClassName="active"
 >
 Offices
 </NavLink>
 </div>
 <Suspense fallback={<div>Loading...</div>}>
 <Switch>
 <Route path="/about/people">
 <People />
 </Route>
 <Route path="/about/offices">
 <Offices />
 </Route>
 <Redirect to="/about/people" />
 </Switch>
 </Suspense>
 </div>
)

export default About

The lazy placeholder will check its context to find the fallback component provided
by Suspense, and it will display this on the page while waiting for the additional Java‐
Script bundle to load.

We are using a simple “Loading…” message here, but there’s no reason why you can’t
instead show some fake replacement interface to give the impression that the new
component has loaded before it has. YouTube uses the same technique on its front
page. When YouTube is loading content, it displays a set of blocks and rectangles in
place of the videos it’s about to load (see Figure 10-17). Videos will often take two to
three seconds to load, but this technique gives the user the impression that they load
instantly.

408 | Chapter 10: Performance

Figure 10-17. YouTube renders a fake front page while loading recommendations

In our application, if you refresh the page now, you should see the application go back
to normal, as shown in Figure 10-18.

Figure 10-18. Adding a Suspense component removes the error

Behind the scenes, the Webpack development server will split off the Offices code
into a separate JavaScript bundle.

Webpack will also split out the bundles when you generate a build. It will use tree
shaking to identify which components can safely appear in which JavaScript bundles.

10.5 Shrink Your App with Code Splitting | 409

Tree shaking is a process that recursively analyzes which code files
are imported by other files, starting from some initial file, such as
index.js. This allows Webpack to avoid adding code into a bundle
that is never imported by any other code. The calls to React.lazy
will not be tracked by the tree shaking process, and so the lazily
loaded code will not be included in the initial JavaScript bundle.
Webpack will instead run a separate tree shaking process for each
lazily loaded file, which will result in a large number of small code
bundles in the production application.

If we generate a new build and then look at the generated JavaScript code, we will
now see some extra files:

$ yarn build
...Builds code
$ ls -l build/static/js
total 1352
-rw-r--r-- 1 davidg admin 628 12:09 0.a30b3768.chunk.js
-rw-r--r-- 1 davidg admin 599 12:09 0.a30b3768.chunk.js.map
-rw-r--r-- 1 davidg admin 161801 12:09 3.f7664178.chunk.js
-rw-r--r-- 1 davidg admin 1290 12:09 3.f7664178.chunk.js.LICENSE.txt
-rw-r--r-- 1 davidg admin 461100 12:09 3.f7664178.chunk.js.map
-rw-r--r-- 1 davidg admin 4206 12:09 4.a74be2bf.chunk.js
-rw-r--r-- 1 davidg admin 9268 12:09 4.a74be2bf.chunk.js.map
-rw-r--r-- 1 davidg admin 3095 12:09 main.e4de2e45.chunk.js
-rw-r--r-- 1 davidg admin 6089 12:09 main.e4de2e45.chunk.js.map
-rw-r--r-- 1 davidg admin 2361 12:09 runtime-main.9df06006.js
-rw-r--r-- 1 davidg admin 12496 12:09 runtime-main.9df06006.js.map

Because this is such a small application, this is unlikely to affect the performance, but
let’s check anyway.

Loading performance is easiest to check using Chrome’s Lighthouse tool. You can see
the performance of the original version of this application in Figure 10-19.

410 | Chapter 10: Performance

Figure 10-19. The application’s performance without code splitting

If we add some lazy loading, we do get a slight performance increase, primarily
because of the time taken to complete the FCP (see Figure 10-20).

Figure 10-20. The application’s performance with code splitting

It’s not a massive increase in performance, but it does indicate that you can get some
benefit from lazy loading even in tiny applications.

Discussion
All optimizations have a price, but code splitting takes minimal effort to implement,
and it’s the one that we find we use most often. It will often improve web-vitals met‐
rics for FCP and TTI. You should avoid using it too aggressively because the

10.5 Shrink Your App with Code Splitting | 411

4 An exception to this is in the case of GraphQL services. In GraphQL, the client can make a complex query to
the backend, and a standardized query resolver will “stitch together” the results of low-level queries on the
server. GraphQL can produce faster network responses without needing to tune the client.

framework needs to do more work to download and evaluate each of the scripts. But
for most reasonably large applications, you will get some immediate benefit from
splitting the code.

It is often best to split code at the route level. Routes control which
components are visible and so are a good place to divide the code
you need to load now from the code you need to load later. It will
also mean that if anyone bookmarks a location in your application,
they will only download the code required for that location when
they return to it.

You can download the source for this recipe from the GitHub site.

10.6 Combine Network Promises
Problem
Many React applications make asynchronous network calls, and a lot of application
lethargy results from waiting for responses to those asynchronous requests. The
application is probably doing very little during those calls, so the application is not
busy; it’s just waiting.

Over time, client applications have become more complex, and server APIs have
become simpler. In the case of serverless applications, the server APIs are so generic
that no custom code is required, which leads to an increase in the number of API
calls that the client code makes.4

Let’s look at an example. We have an application that reads the details of several peo‐
ple from a backend API. The server has an end point that, if a browser sends a GET
request to /people/1234, will return the details of a person with the id of 1234. The
developer has written a hook to make these requests:

import { useEffect, useState } from 'react'
import { get } from './fakeios'

const usePeopleSlow = (...ids) => {
 const [people, setPeople] = useState([])

 useEffect(() => {
 let didCancel = false
 ;(async () => {

412 | Chapter 10: Performance

https://oreil.ly/Pj2Bu

 const result = []
 for (let i = 0; i < ids.length; i++) {
 const id = ids[i]
 result.push(await get('/people/' + id))
 }
 if (!didCancel) {
 setPeople(result)
 }
 })()
 return () => {
 didCancel = true
 }
 // eslint-disable-next-line react-hooks/exhaustive-deps
 }, [...ids])

 return people
}

export default usePeopleSlow

The hook is called like this:

const peopleSlow = usePeopleSlow(1, 2, 3, 4)

The code calls the server for each ID. It waits for each response to complete before
storing the results in an array. If the API endpoint takes 5 seconds to respond, the
usePeopleSlow hook will take 20 seconds to return all of the data.

Is there anything we can do to speed things up?

Solution
We will combine asynchronous promises so that multiple API requests can be in
flight at the same time.

Most asynchronous request libraries work by returning promises. If you wait for a
promise, it will return the payload of the response. But in the example usePeople
Slow code earlier, these promises are waited for in sequence:

const result = []
for (let i = 0; i < ids.length; i++) {
 const id = ids[i]
 result.push(await get('/people/' + id))
}

The request for the second person is not even sent until the response for the first per‐
son is received, which is why a 5-second delay results in a 20-second response time
when we are reading the details of four people.

10.6 Combine Network Promises | 413

There is another way we can do this. We could send the requests without waiting and
have all of them in-flight simultaneously. We then need to wait for all the responses,
and when we receive the last one, we can return the data from the hook.

You can make parallel requests with a JavaScript function called Promise.all.

The Promise.all function accepts a list of promises and combines them into a single
promise. That means we could combine several get() calls like this:

const [res1, res2, res3] = await Promise.all(
 get('/people/1'),
 get('/people/2'),
 get('/people/3')
)

Promise.all combines not just promises, but also results. If you wait for an array of
promises with Promise.all, you will receive an array containing each of the
promises.

We can now write a new version of the usePeopleSlow hook, using Promise.all:

import { useEffect, useState } from 'react'
import { get } from './fakeios'

const usePeopleFast = (...ids) => {
 const [people, setPeople] = useState([])

 useEffect(() => {
 let didCancel = false
 ;(async () => {
 const result = await Promise.all(
 ids.map((id) => get('/people/' + id))
)
 if (!didCancel) {
 setPeople(result)
 }
 })()
 return () => {
 didCancel = true
 }
 // eslint-disable-next-line react-hooks/exhaustive-deps
 }, [...ids])

 return people
}

export default usePeopleFast

The key to this code is these three lines:

const result = await Promise.all(
 ids.map((id) => get('/people/' + id))
)

414 | Chapter 10: Performance

By mapping the ids into an array of the promises returned by network requests, we
can wait for the Promise.all result and receive an array of all the responses.

If you time the two hooks, then usePeopleFast will read the details of four people in
just over five seconds. Effectively, we have made five requests in the time taken to
make one. In the example application, these were the comparative timings of the two
versions of the code:

Version Time Taken (ms)
usePeopleSlow 5000.99999998929

usePeopleFast 20011.224999994738

Discussion
This approach will significantly improve performance if you have multiple independ‐
ent asynchronous requests. If you make many parallel requests, then the browser, the
network card, or the server might start to queue responses. However, it will still gen‐
erate a response more rapidly than a series of independent responses.

If you send parallel requests, it will intensify the load on the server, but this is unlikely
to be a huge issue. First, as we just noted, servers often queue requests when they are
busy. Second, the server will still be performing the same total amount of work. All
you are doing is concentrating that work into a shorter period.

You can download the source for this recipe from the GitHub site.

10.7 Use Server-Side Rendering
Problem
SPAs do a great job of making websites as feature-rich as desktop applications. If you
use an application like Google Docs, the experience is almost indistinguishable from
using a desktop word processor.

But all things come at a price. One of the major performance issues for SPAs is that
the browser has to download a large bundle of JavaScript code before it can build an
interface. If you create a React application with a tool like create-react-app, the
only thing you will have in the body of the HTML is an empty DIV called root:

<div id="root"></div>

That empty DIV is all the browser will see until the JavaScript engine downloads the
code, runs it, and updates the DOM.

10.7 Use Server-Side Rendering | 415

https://oreil.ly/LhVY8

Even if we reduce the bundle size with code splitting and the browser has cached the
JavaScript, it can still take a couple of seconds to read the code and set up the
interface.

Building the entire interface from JavaScript means that SPAs typically suffer from
two main issues. First, and most important, the user experience can degrade, particu‐
larly for large React applications. Second, your application will have poor search
engine optimization (SEO). Search engine robots will often not wait for the JavaScript
to render an interface when scanning your site. They will download the basic HTML
of the page and index its contents. For many business applications, this might not
matter. But if you are building, say, a shopping site, you will probably want as many of
the pages indexed as possible to capture passing traffic.

Therefore, it would be helpful if, instead of displaying an empty DIV when the HTML
is loaded, we could begin by including the initial HTML of our page before the
browser downloads and runs the application’s JavaScript.

Solution
We will look at using server-side rendering to replace the empty DIV of a React page
with a prerendered HTML version. We’ll be able to do this because of the way that
React interacts with the DOM of a web page.

When you render a component in React, you are not directly updating the DOM.
Instead, when you run a piece of code like this:

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
)

the render method updates a virtual DOM, which, at intervals, we will synchronize
with the actual HTML elements on the page. React does this efficiently, so it will only
update elements in the real DOM that don’t match the elements in the virtual DOM.

Server-side rendering works by rendering not to the React virtual DOM, but to a
string. When the browser sends a request for the HTML page to the server, we will
render a version of the React contents to a string and then insert that string into the
HTML, before returning it to the browser. This means that the browser will immedi‐
ately render HTML of the page before it even starts to download the JavaScript of the
application. Our server-side code will look something like this:

let indexHTML = <contents of index.html>
const app = <render App to string>
indexHTML = indexHTML.replace(
 '<div id="root"></div>',

416 | Chapter 10: Performance

 `<div id="app">${app}</div>`
)
res.contentType('text/html')
res.status(200)
return res.send(indexHTML)

Let’s begin by creating an application with create-react-app to see how this works
in more detail.

There are many React tools and frameworks that support server-side rendering.
create-react-app is not one of those tools. So looking at how to convert a create-
react-app application will allow us to understand all the steps required to enable SSR
in React:

$ npx create-react-app ssrapp

We’ll be building a server to host the SSR code. Let’s start by creating a folder for the
server code:

$ mkdir server

We’ll build the server using Express. Our server code will be rendering the compo‐
nents of our application.

We’ll need some additional libraries that will be useful when loading the React com‐
ponents. In the main application directory (not the server subdirectory), install the
following:

$ npm install --save-dev ignore-styles url-loader @babel/register

The create-react-app tool generates code that uses a lot of modern JavaScript fea‐
tures that are not available out of the box, so the first thing we’ll need to do in our
server code is enable those JavaScript features for the server to run our React compo‐
nents. Within the new server folder, create a file called index.js and put this into it:

require('ignore-styles')
require('url-loader')
require('file-loader')
require('regenerator-runtime/runtime')
require('@babel/register')({
 ignore: [/(node_modules)/],
 presets: [
 '@babel/preset-env',
 [
 '@babel/preset-react',
 {
 runtime: 'automatic',
 },
],
],
 plugins: [],

10.7 Use Server-Side Rendering | 417

})
require('./ssr')

This file will configure language features that we are going to use in the server code.
We’re loading the preset-react Babel plugin that is installed automatically in every
create-react-app application. At the end of the script, we load a file called ssr.js,
where we’ll put our main server code.

Create the server/ssr.js file and add the following code to it:

import express from 'express'
import fs from 'fs'
import path from 'path'

const server = express()

server.get(
 /.(js|css|map|ico|svg|png)$/,
 express.static(path.resolve(__dirname, '../build'))
)

server.use('*', async (req, res) => {
 let indexHTML = fs.readFileSync(
 path.resolve(__dirname, '../build/index.html'),
 {
 encoding: 'utf8',
 }
)

 res.contentType('text/html')
 res.status(200)

 return res.send(indexHTML)
})

server.listen(8000, () => {
 console.log(`Launched at http://localhost:8000!`)
})

Our custom server will work similarly to the development server that comes with
create-react-app. It creates a web server with this line:

const server = express()

If the server receives a request for a JavaScript, stylesheet, or image file, it will look for
the file in the build directory. The build directory is where create-react-app gener‐
ates the deployable version of our application:

server.get(
 /.(js|css|map|ico|svg|png)$/,
 express.static(path.resolve(__dirname, '../build'))
)

418 | Chapter 10: Performance

If we receive a request for anything else, we will return the contents of the build/
index.html file:

server.use('*', async (req, res) => {
 ...
})

Finally, we start the server running on port 8000:

server.listen(8000, () => {
 console.log(`Launched at http://localhost:8000!`)
})

Before we can run this server, we need to build the application. We can do this with
the following command:

$ yarn run build

Building the application generates all of the static files in the build directory that our
server will need. We can now run the server itself:

$ node server
Launched at http://localhost:8000!

If we open a browser at http://localhost:8000, we will see our React application (see
Figure 10-21).

Figure 10-21. The application running on our new server

10.7 Use Server-Side Rendering | 419

So far, so good. But we aren’t actually doing any server-side rendering. For that, we
will need to load some React code to load and render the App component:

import express from 'express'
import fs from 'fs'
import path from 'path'
import { renderToString } from 'react-dom/server'
import App from '../src/App'

const server = express()

server.get(
 /.(js|css|map|ico|svg|png)$/,
 express.static(path.resolve(__dirname, '../build'))
)

server.use('*', async (req, res) => {
 let indexHTML = fs.readFileSync(
 path.resolve(__dirname, '../build/index.html'),
 {
 encoding: 'utf8',
 }
)

 const app = renderToString(<App />)

 indexHTML = indexHTML.replace(
 '<div id="root"></div>',
 `<div id="app">${app}</div>`
)

 res.contentType('text/html')
 res.status(200)

 return res.send(indexHTML)
})

server.listen(8000, () => {
 console.log(`Launched at http://localhost:8000!`)
})

This new code uses the renderToString function from React’s SSR library react-
dom/server. The renderToString function does what you would expect. Instead of
rendering the App component into a virtual DOM, it simply renders it into a string.
We can replace the empty DIV in the index.html content with the HTML generated
from the App component. If you restart the server and then reload the web browser,
you will find that the application still works. Mostly (see Figure 10-22).

420 | Chapter 10: Performance

Figure 10-22. The React application showing a broken SVG image

Instead of seeing the rotating React logo, we instead see a broken image symbol. We
can see what happens if we look at the generated HTML returned by the server:

<div id="app">
 <div class="App" data-reactroot="">
 <header class="App-header">

 <p>Edit <code>src/App.js</code> and save to reload.</p>
 <a class="App-link" href="https://reactjs.org"
 target="_blank" rel="noopener noreferrer">
 Learn React

 </header>
 </div>
</div>

Something odd has happened to the img element. Instead of rendering an SVG image,
it tries to load the URL “[object Object].” What’s happening here?

In the React code, we are loading the logo like this:

import logo from './logo.svg'
...

10.7 Use Server-Side Rendering | 421

This code relies on some Webpack configuration from create-react-app. When you
access the application through the development server, Webpack will use a library
called svgr to replace any imports of SVG files with generated React components that
contain the raw SVG contents. svgr allows SVG images to be loaded just like any other
React components. That’s what allows us to import them as we might import a .js file.

However, in our hand-built server, we have no such Webpack configuration. Instead
of going to the trouble of configuring Webpack, we can avoid the problem by copying
the logo.svg file to the public folder and then changing the code in the App component
to the following:

// import logo from './logo.svg'
import './App.css'

function App() {
 return (
 <div className="App">
 <header className="App-header">

 <p>
 Edit <code>src/App.js</code> and save to reload.
 </p>
 <a
 className="App-link"
 href="https://reactjs.org"
 target="_blank"
 rel="noopener noreferrer"
 >
 Learn React

 </header>
 </div>
)
}

export default App

If we now rebuild the application and restart the server:

$ yarn build
$ node server

the SSR application will display the application correctly (see Figure 10-23).

422 | Chapter 10: Performance

Figure 10-23. The application now displays the SVG image correctly

There is actually just one step left, which we should implement. In the src/index.js file,
we render the single-page version of the application like this:

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
)

Remember, this code will still run, even when we access our application through the
SSR server. The browser will download the prerendered version of the web page, and
it will then download the JavaScript for the SPA. When the SPA code runs, it will exe‐
cute the preceding code from index.js. The browser still needs to load and run the
JavaScript to make the interface interactive. The ReactDOM.render method may
replace all of our prerendered HTML when it doesn’t need to. So if we replace the call
to ReactDOM.render with ReactDOM.hydrate, we will only replace the HTML in the
DOM if it is different from the HTML in the virtual DOM. For our server-side ren‐
dered page, the content of the static web page and the content of the virtual DOM
should be the same. The result is that hydrate will not update the elements on the
page; it will just attach a set of event listeners to make the page interactive.

So, we now have a server-side rendered application. But has it made the page load any
faster?

10.7 Use Server-Side Rendering | 423

The simplest way to test page load time is to run a Lighthouse performance audit
within Chrome. Lighthouse, remember, performs a basic audit of a web page, check‐
ing performance, accessibility, and a bunch of other features. It will give us a metric
that we can use to compare the two versions of the application.

When we tried this on a development laptop when accessing the ordinary React
development server that comes bundled with create-react-app, we got a perfor‐
mance grade of 91 out of 100 and a first contentful paint (FCP) time of 1.2 seconds
(see Figure 10-24).

Figure 10-24. Base performance of the application, without server-side rendering

That’s not a bad performance score. But we are running a small React application.

What happens when we test the SSR version of the application? After all, the server
will still have to spend some time rendering the React code. Will it run any faster?
You can see the results of our test in Figure 10-25.

The overall score has increased to 99 out of 100. The time to FCP has dropped to 0.6
seconds: half that of our original version. Also, if you load the original SPA version of
the application in a browser and keep hitting Refresh, you will see the page will often
flash white for a moment before rendering the web page. The flash occurs because the
downloaded HTML is just an empty DIV, which the browser displays as a white page
before the JavaScript can render the application.

424 | Chapter 10: Performance

Figure 10-25. Performance of the application with server-side rendering

Compare that to the SSR version of the application. If you keep hitting Refresh on the
SSR version, the only thing you should notice is that the rotation of the logo keeps
resetting. You will see almost no flashing.

Even though there is still a render process occurring on the server, the time needed to
render a string version of the HTML is less than the time needed to render the same
set of DOM elements.

Discussion
In this recipe, we have taken you through the basics of how you might set up basic
server-side rendering for your application. The details for your application are likely
to vary quite a lot, dependent upon which additional libraries your application uses.

Most React applications use some form of routing, for example. If you are using
react-router, then you will need to add some additional code on the server side to
handle the fact that different components will need to be rendered, based upon the
path that the browser has requested. For example, we can use the StaticRouter from
react-router like this:

import { StaticRouter } from 'react-router-dom'
...
const app = renderToString(
 <StaticRouter location={req.originalUrl} context={{}}>
 <App />
 </StaticRouter>
)

The StaticRouter renders its child components for a single, specific route. In this
case, we use the originalURL route from the browser request. If the browser asks
for /person/1234, the StaticRouter will render the App component for this route.

10.7 Use Server-Side Rendering | 425

Notice that we can also use the StaticRouter to pass any additional context for the
rest of the application. We could use the context to pass content to the rest of the
application.

If you are using code splitting in your application with React.lazy, you need to be
aware that this will not work on the server side. Fortunately, there is a workaround.
The Loadable Components library does the same job as React.lazy, but it can also
run on the server side. Therefore, Loadable Components gives you all of the advan‐
tages of server-side rendering with all the benefits of code splitting.

As with all optimizations, there is a price to pay with server-side rendering. It will
require additional complexity in your code, and it will also require additional load on
your server. You can deploy an SPA as static code on any web server. That’s not true
for server-side rendered code. It will need a JavaScript server and may well increase
your cloud hosting costs.

Also, if you know from the outset that you want to use server-side rendering for your
application, you should probably consider a tool like Razzle or Next.js for your appli‐
cation and build server-side rendering from day one.

Finally, there are alternative approaches to SSR that can boost the performance of
your web page without the need for server-side rendering. Consider using Gatsby.
Gatsby can prerender your pages at build time, giving you many of the advantages of
SSR without needing server-side code.

You can download the source for this recipe from the GitHub site.

10.8 Use Web Vitals
Problem
It is more important to have code that works and is readable than it is to have highly
tuned code. Tuning, as we’ve seen, always comes with an associated cost.

But if there are noticeable performance issues, it is essential to become aware of them
and fix them as quickly as possible. Much of the Internet relies upon passing trade. If
people go to your website and it doesn’t immediately respond, they may leave and
never return.

Developers often track server performance using trackers—known as beacons—
embedded within the code. If there’s a performance issue, the beacons can generate
an alert, and the developer can fix the problem before it affects a lot of users.

But how do we embed a tracking beacon into our client code?

426 | Chapter 10: Performance

https://oreil.ly/v8zan
https://oreil.ly/Mfzex

Solution
We’re going to look at how to track web vitals. We mentioned web vitals in Recipe
10.1. They are a small set of metrics that measure your application’s most important
performance features, such as the Cumulative Layout Shift (CLS), which measures
how much your application jumps around when it first loads.

Several tools, such as the Lighthouse Chrome extension, track web vitals. The name
web vitals is intended to remind you of vital signs, like heart rate and blood pressure,
because they tell you about an underlying issue that you need to address.

If you created your application with create-react-app, you probably already have
code embedded that can automatically track the web vitals of your application. If you
look in the src/index.js file, you will see a call to report the web vitals at the end:

import React from 'react'
import ReactDOM from 'react-dom'
import './index.css'
import App from './App'
import reportWebVitals from './reportWebVitals'

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
)

reportWebVitals()

The reportWebVitals function can be given a callback function that can be used to
track the various metrics while the application is running. For example, if you pass it
console.log:

reportWebVitals(console.log)

you will then see metrics appearing in your JavaScript console as a series of JSON
objects (see Figure 10-26).

Figure 10-26. The web vitals in the JavaScript console

This is not really how you are intended to track web vitals. A better option is to send
the data back to some backend store. For example, you might choose to POST them to
send API endpoint:

10.8 Use Web Vitals | 427

reportWebVitals((vital) => {
 fetch('/trackVitals', {
 body: JSON.stringify(vital),
 method: 'POST',
 keepalive: true,
 })
})

Many browsers have a built-in function that is intended for use when recording vital
measurements. The browser will cancel normal network requests, such as those made
by calling fetch, if the user leaves the page. Given that the most important web vitals
happen when the page loads, it would be a pity to lose these metrics. For that reason,
you should consider using the navigator.sendBeacon function when it’s available:

reportWebVitals((vital) => {
 if (navigator.sendBeacon) {
 navigator.sendBeacon('/trackVitals', JSON.stringify(vital))
 } else {
 fetch('/trackVitals', {
 body: JSON.stringify(vital),
 method: 'POST',
 keepalive: true,
 })
 }
})

If the user briefly opens the page and then goes elsewhere, the navigator.sendBea
con will be allowed to complete its POST request before dying.

Discussion
There are commercial tracking services available that you can use to record web
vitals, such as sentry.io. If you have a performance monitoring system installed, you
might also be able to wire it up using web vitals to provide additional performance
monitoring for your system.

Finally, consider tracking web vitals with Google Analytics as described on the
create-react-app site.

428 | Chapter 10: Performance

https://sentry.io
https://oreil.ly/wImZt

CHAPTER 11

Progressive Web Applications

Progressive web applications (PWAs) are web applications that try to behave like
locally installed applications. They can work offline, integrate with the native notifica‐
tion system, and have the ability to run long background processes, which can con‐
tinue even after you leave the website. They’re called progressive because they
smoothly downgrade their functionality if some feature is not available in the current
browser.

This chapter focuses almost exclusively on one feature of PWAs: service workers. You
will occasionally encounter the term progressive web application used to describe any
JavaScript-rich browser application. The truth is that unless that application uses ser‐
vice workers, it isn’t a PWA.

Service workers are, in effect, a locally installed server for the application. The back‐
end server is a software distribution mechanism and a provider of live data services,
but the service worker is really in charge because it provides access to the network. It
can choose to satisfy network requests from its own local cache. If the network is not
available, it can choose to replace network resources with local placeholders. It can
even queue data updates offline and synchronize with the backend server when the
network connection reappears.

This is a good topic for the final chapter because it has been the most enjoyable chap‐
ter to write. Service workers are one of the most fascinating features found in modern
browsers. We hope you have fun.

429

11.1 Create Service Workers with Workbox
Problem
PWAs can work even when you’re offline. They can cache any content or code they
require, and the cache will survive the user refreshing the page. They can run back‐
ground operations independently of the code that runs in the browser.

PWAs can do this because of service workers. Service workers are a kind of web
worker. A web worker is a piece of JavaScript that runs in a separate thread from the
JavaScript running in a web page. Service workers are specialized web workers that
can intercept network traffic between a web page and the server, giving them a tre‐
mendous amount of control over the page that registers them. You can think of a ser‐
vice worker as a kind of local proxy service that’s available even when you’ve discon‐
nected from the network.

Service workers are most often used to cache content locally. Browsers will cache
most content they see, but a service worker can do so much more aggressively. For
example, hitting force-refresh in a browser will often force it to reload assets from the
network. But the force-refresh function will not affect service workers, no matter how
many times a user uses it.

You can see a service worker in operation in Figure 11-1.

Figure 11-1. A service worker will intercept all network requests

In this case, the service worker will cache files the first time they are downloaded. If
the page asks for the logo.svg file more than once, the service worker will return it
from its private cache rather than from the network.

430 | Chapter 11: Progressive Web Applications

How a service worker caches data and how it decides if it needs to
return data from its cache or the network is called a strategy. We
will look at various standard strategies in this chapter.

Service workers are stored on the server as separate JavaScript files, and the browser
will download and install them from a URL. There is nothing to prevent you from
handcrafting a service worker and storing it in the public folder of your application,
but there are several problems with writing service workers from scratch.

First, service workers are notoriously difficult to create. Not only can they include
complex code, but they also have complex life cycles. It’s far too easy to write a service
worker that fails to load or caches the wrong files. Even worse, it’s possible to write a
service worker that will isolate your application from the network.

Second, you can use service workers to precache application code. For a React appli‐
cation, this is a fantastic feature. Instead of downloading several hundred kilobytes of
JavaScript, a service worker can return it all in a split second from a local cache,
which means that your application can start almost immediately, even on a low-
powered device with a bad network connection.

But code caching has its own set of problems. Let’s say we have a React application
that includes the following generated JavaScript files:

$ ls build/static/js/
2.d106afb5.chunk.js 2.d106afb5.chunk.js.map
3.9e79b289.chunk.js.map main.095e14c4.chunk.js.map
runtime-main.b175c5d9.js.map 2.d106afb5.chunk.js.LICENSE.txt
3.9e79b289.chunk.js main.095e14c4.chunk.js
runtime-main.b175c5d9.js
$

If we want to precache these files, the service worker will need to know the names.
That’s because it will download the files in the background, even before the browser
has asked for them. So if you create a service worker by hand, you will need to
include the names of each of the files that it will precache.

But then what happens if you make a small change to your source code and then re-
build the application?

$ yarn run build
$ ls build/static/js/
2.d106afb5.chunk.js 2.d106afb5.chunk.js.map
3.9e79b289.chunk.js.map main.f5b66cc7.chunk.js.map
runtime-main.b175c5d9.js.map 2.d106afb5.chunk.js.LICENSE.txt
3.9e79b289.chunk.js main.f5b66cc7.chunk.js
runtime-main.b175c5d9.js
$

11.1 Create Service Workers with Workbox | 431

The filenames change, which means you will now have to update the service worker
script with the latest generated filenames.

How can you create stable service workers that are always in sync with the latest
application code?

Solution
We’re going to use a set of tools from Google called Workbox. The Workbox tools
allow you to generate service workers that are up-to-date with your latest application
files.

Workbox includes a set of standard strategies to handle the details of common service
worker use cases. If you want to precache your application, you can do so with a sin‐
gle line of code into Workbox.

To see how to use Workbox, consider the application you can see in Figure 11-2.

Figure 11-2. Our example application has two pages

It’s a simple two-page application based on the default application generated by
create-react-app. We’re going to build a service worker that will precache all of the
application’s code and files.

We’ll begin by installing a few of the libraries from Workbox:

$ yarn add workbox-core
$ yarn add workbox-precaching
$ yarn add workbox-routing

You will see what each of these libraries is for as we build the service worker.

In our application, we will create a new file for the service worker called service-
worker.js. We can place this file in the same directory as the rest of the application
code:

import { clientsClaim } from 'workbox-core'
import { precacheAndRoute } from 'workbox-precaching'

432 | Chapter 11: Progressive Web Applications

https://oreil.ly/9dPXh

1 See Recipe 11.2.

clientsClaim()

precacheAndRoute(self.__WB_MANIFEST)

If we were creating a service worker by hand, we would have to cre‐
ate it in the same directory we use to store other static content. For
example, in a create-react-app application, we would have to
create it in the public directory.

Our service worker will precache all of the application code. That means it will auto‐
matically cache any CSS, JavaScript, HTML, and images that are part of the
application.

The service worker calls the clientsClaim function from workbox-core, which will
make the service worker the controller for all clients within its scope. A client is a web
page, and the scope is any web page with a URL within the same path as the service
worker. Workbox will generate our service worker at https://host/service-worker.js,
which means the service worker will be the controller for all pages that begin with
https://host/.

The precacheAndRoute function will handle all of the gory details of the precaching
process. It will create and manage the local cache, and it will intercept network
requests for application files and load them from the local cache rather than the
network.

Service workers will function only if loaded with HTTPS. Most
browsers make an exception for sites loaded from localhost. For
security reasons, browsers will not run service workers in private
tabs.

As we’ve created our service worker, we need to register it from the main application
code. Registration is a complex process, but the good news is that it’s almost always
the same. Once you’ve written the registration code for one application, you can copy
it, unchanged, to another. Also, if you are building your application using the cra-
template-pwa template, it will generate the registration code for you.1

It is still worth understanding the details of the registration process; it will give you
insight into the life cycle of a service worker. That will make it a lot easier to under‐
stand any seemingly odd behavior that occurs after you deploy your application.

11.1 Create Service Workers with Workbox | 433

Create a new file called registerWorker.js in the main source directory of the
application:

const register = (pathToWorker, onInstall, onUpdate, onError) => {
 // We will write this code shortly
}

const registerWorker = () => {
 register(
 '/service-worker.js',
 (reg) => console.info('Service worker installed', reg),
 (reg) => console.info('Service worker updated', reg),
 (err) => console.error('Service worker failed', err)
)
}

export default registerWorker

Leave the register function empty for now.

We will call the registerWorker function from the index.js file in our application:

import React from 'react'
import ReactDOM from 'react-dom'
import './index.css'
import App from './App'
import registerWorker from './registerWorker'

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
)

registerWorker()

The registerWorker function will call register with the path of our generated ser‐
vice worker: service-worker.js.

We can now start to write the register function:

const register = (pathToWorker, onInstall, onUpdate, onError) => {
 if (
 process.env.NODE_ENV === 'production' &&
 'serviceWorker' in navigator
) {
 const publicUrl = new URL(
 process.env.PUBLIC_URL,
 window.location.href
)
 if (publicUrl.origin !== window.location.origin) {
 return

434 | Chapter 11: Progressive Web Applications

2 The code we will build here is a simplified version of the code in the cra-template-pwa library. For further
information, see this issue on GitHub.

 }

 // Do the loading and registering here
 }
}

We’ll check that we’re in production mode and that the browser can run service work‐
ers. The progressive in progressive web application means that we should always check
that a feature is available before using it. Almost all browsers (with the notable excep‐
tion of Internet Explorer) support service workers, but we can skip the service worker
entirely if a browser doesn’t. It will mean that the application will lose its ability to
work offline, but other than that, the application should still work.

We also add an extra check to ensure we are running on the specified PUBLIC URL of
the application, which will avoid cross-domain issues that arise when loading code
from content distribution networks.2

Now we can download and register the service worker:

const register = (pathToWorker, onInstall, onUpdate, onError) => {
 if (
 process.env.NODE_ENV === 'production' &&
 'serviceWorker' in navigator
) {
 const publicUrl = new URL(
 process.env.PUBLIC_URL,
 window.location.href
)
 if (publicUrl.origin !== window.location.origin) {
 return
 }

 window.addEventListener('load', async () => {
 try {
 const registration = await navigator.serviceWorker.register(
 process.env.PUBLIC_URL + pathToWorker
)

 // Code to check progress goes here
 } catch (err) {
 if (onError) {
 onError(err)
 }
 }
 })
 }
}

11.1 Create Service Workers with Workbox | 435

https://oreil.ly/dKJE0

Once we know the web page is loaded, we can register the service worker with the
navigator.serviceWorker.register function, passing it the full URL of the service
worker: https://host/service-worker.js.

It returns a registration object, which can be used to track and manage the service
worker. For example, you can use the registration object to find out when the service
worker is updated or installed:

const register = (pathToWorker, onInstall, onUpdate, onError) => {
 if (
 process.env.NODE_ENV === 'production' &&
 'serviceWorker' in navigator
) {
 const publicUrl = new URL(
 process.env.PUBLIC_URL,
 window.location.href
)
 if (publicUrl.origin !== window.location.origin) {
 return
 }

 window.addEventListener('load', async () => {
 try {
 const registration = await navigator.serviceWorker.register(
 process.env.PUBLIC_URL + pathToWorker
)

 registration.onupdatefound = () => {
 const worker = registration.installing
 if (worker) {
 worker.onstatechange = () => {
 if (worker.state === 'installed') {
 if (navigator.serviceWorker.controller) {
 if (onUpdate) {
 onUpdate(registration)
 }
 } else {
 if (onInstall) {
 onInstall(registration)
 }
 }
 }
 }
 }
 }
 } catch (err) {
 if (onError) {
 onError(err)
 }
 }
 })

436 | Chapter 11: Progressive Web Applications

https://host/service-worker.js

 }
}

The onupdatefound handler runs when the browser starts to install the service
worker. Once the browser has installed the service worker, we can check
navigator.serviceWorker.controller to see if a previous service worker is still
running. If not, we know that this is a fresh installation and not an update.

One of the most confusing things about service workers is the way
that they are updated. If an old service worker is already in control
of a page, the browser will put the new service worker into a wait‐
ing state, which means it will do absolutely nothing until the old ser‐
vice worker stops. A service worker stops when the user closes all
the pages that it controls. Consequently, if you update your service
worker, you will not run the new code until you open, close, and
then open the page again.

This process can be confusing for anyone manually testing a new service worker
feature.

Before we build the application, we will need to configure the build tools to convert
our service-worker.js source file into a densely written service worker script.

If you’re building your application with Webpack, you should install the Workbox
Webpack Plugin:

$ yarn install -D workbox-webpack-plugin

You will not need to install the Workbox Webpack Plugin or con‐
figure its use if you created your application with create-react-
app, which includes and configures the plugin for you.

You can then add the following to your webpack.config.js configuration:

const { InjectManifest } = require('workbox-webpack-plugin')

module.exports = {

 plugins: [

 new InjectManifest({
 swSrc: './src/service-worker.js',
 }),
],
}

11.1 Create Service Workers with Workbox | 437

This configuration will tell Webpack to generate a service worker from the src/service-
worker.js file. It will also generate a file called asset-manifest.json in your built applica‐
tion, which will list all of the application files. The service worker will use the infor‐
mation in asset-manifest.json when it’s precaching the application.

Now you build the application:

$ yarn run build

In your build directory, you will see a generated service-worker.js file and the asset-
manifest.json file:

asset-manifest.json logo192.png service-worker.js.map
favicon.ico manifest.json static
index.html robots.txt
logo512.png service-worker.js

The asset-manifest.json file will contain something like this:

{
 "files": {
 "main.css": "/static/css/main.8c8b27cf.chunk.css",
 "main.js": "/static/js/main.f5b66cc7.chunk.js",
 "main.js.map": "/static/js/main.f5b66cc7.chunk.js.map",
 "runtime-main.js": "/static/js/runtime-main.b175c5d9.js",
 "runtime-main.js.map": "/static/js/runtime-main.b175c5d9.js.map",
 "static/js/2.d106afb5.chunk.js": "/static/js/2.d106afb5.chunk.js",
 "static/js/2.d106afb5.chunk.js.map": "/static/js/2.d106afb5.chunk.js.map",
 "static/js/3.9e79b289.chunk.js": "/static/js/3.9e79b289.chunk.js",
 "static/js/3.9e79b289.chunk.js.map": "/static/js/3.9e79b289.chunk.js.map",
 "index.html": "/index.html",
 "service-worker.js": "/service-worker.js",
 "service-worker.js.map": "/service-worker.js.map",
 "static/css/main.8c8b27cf.chunk.css.map":
 "/static/css/main.8c8b27cf.chunk.css.map",
 "static/js/2.d106afb5.chunk.js.LICENSE.txt":
 "/static/js/2.d106afb5.chunk.js.LICENSE.txt",
 "static/media/logo.6ce24c58.svg": "/static/media/logo.6ce24c58.svg"
 },
 "entrypoints": [
 "static/js/runtime-main.b175c5d9.js",
 "static/js/2.d106afb5.chunk.js",
 "static/css/main.8c8b27cf.chunk.css",
 "static/js/main.f5b66cc7.chunk.js"
]
}

You can now run the application. You can’t just start the development server with
this:

$ yarn run start

438 | Chapter 11: Progressive Web Applications

That will only run the application in development mode, and the service worker will
not start. You will need to run a server on the contents of the build directory. The
simplest way to do this is by installing the serve package globally and then running it
against the build directory:

$ npm install -s serve
$ serve -s build/
 ┌──┐
 │ │
 │ Serving! │
 │ │
 │ - Local: http://localhost:5000 │
 │ - On Your Network: http://192.168.1.14:5000 │
 │ │
 │ Copied local address to clipboard! │
 │ │
 └──┘

The -s option is for running SPAs. If the server can’t find a matching file, it will
return the build/index.html file.

You can now open a browser at http://localhost:5000. The application will appear, and
if you open the developer tools and switch to the Application tab, under Service
Workers, you should see the service-worker.js script running (see Figure 11-3).

Figure 11-3. The service worker installed and running in the application

11.1 Create Service Workers with Workbox | 439

The service worker will download all of the application files into a local cache so that
the next time the page is loaded, the files will come from the local cache rather than
the server. You can see this happen if you switch to the Network tab in developer tools
and then reload the page (see Figure 11-4). The service worker will supply each of the
network responses, except those that fall outside its scope. Any file that belongs at the
site level rather than page level, such as favicon icons, will still be downloaded in the
usual way.

Figure 11-4. After refresh, the files are downloaded using the service worker

The service worker is returning the files from a local cache. If you are using Chrome,
you can see the cache on the Application tab. For Firefox, you will find it on the Stor‐
age tab (see Figure 11-5).

Figure 11-5. A cache stores the files locally

The cache doesn’t contain a copy of all the application files, only those that the appli‐
cation has requested. In this way, it will avoid downloading files that are not needed
and will download files into the cache only after the browser or the application code
has requested them.

So the first time you load the application, the cache might be empty. It depends on
when the service worker becomes active. If the page loads before the service worker is

440 | Chapter 11: Progressive Web Applications

active, the service worker won’t intercept the network requests and cache the respon‐
ses. As a result, you might have to refresh a page before you see the caches appear.

To prove that the files are genuinely coming from the service worker, you can stop the
server and refresh the web page. Even though the server is no longer there, the page
should load as usual (see Figure 11-6).

Figure 11-6. Even without the server running, you can refresh the page

You should now think of the React application as a local application rather than a net‐
work application. It’s served from the service worker rather than the backend server.
It will even let you get to navigate to page 2 (see Figure 11-7).

11.1 Create Service Workers with Workbox | 441

Figure 11-7. You can still navigate between pages even when the server is offline

Using code splitting can interfere with some offline functionality. If
the code to display page 2 in the example application was stored in
a separate JavaScript file that was not initially loaded, the browser
will not return it from the local cache. It will be available once the
browser has visited that page when the server is online.

While we are looking at page 2, we can examine a current problem with the service
worker. Make sure the server is not running, and navigate to page 2. It should load
normally. Then reload the page. Instead of seeing page 2, you will get an error page
from the browser (see Figure 11-8).

Figure 11-8. Page 2 will not reload when the server is offline

442 | Chapter 11: Progressive Web Applications

3 This code is based on the example service worker is cra-template-pwa, which we will look at in the following
recipe.

We can reload the front page of the application while offline, so why isn’t this true for
page 2? It’s because this is an SPA. When we navigate to page 2, the browser isn’t load‐
ing a new web page from the server; instead, it uses the history API to update the
URL in the address bar and then modify the DOM to show page 2.

However, when you reload the page, the browser will make a new request to the
server for http://localhost:5000/page2. When the server is running, it will return the
contents of index.html for all page requests, and the React router will render the com‐
ponents to look like page 2.

This process falls apart when the server is no longer online. The service worker will
not be able to respond to a request for http://localhost:5000/page2 using cached data.
There is nothing in the cache for page2. So, it will forward the request to the server,
which is no longer running. That’s why you get the error page.

We can fix this by adding a little more code to service-worker.js:3

import { clientsClaim } from 'workbox-core'
import {
 createHandlerBoundToURL,
 precacheAndRoute,
} from 'workbox-precaching'
import { registerRoute } from 'workbox-routing'

clientsClaim()

precacheAndRoute(self.__WB_MANIFEST)

const fileExtensionRegexp = new RegExp('/[^/?]+\.[^/]+$')
registerRoute(({ request, url }) => {
 if (request.mode !== 'navigate') {
 return false
 }
 if (url.pathname.startsWith('/_')) {
 return false
 }
 if (url.pathname.match(fileExtensionRegexp)) {
 return false
 }
 return true
}, createHandlerBoundToURL(process.env.PUBLIC_URL + '/index.html'))

We are now registering an explicit route using workbox-routing. A route decides
how the service worker will deal with requests for a set of paths. We’re registering a
new route using a filter function and a handler in the previous example code. The
filter function is the first value passed to the registerRoute call. It will return true if

11.1 Create Service Workers with Workbox | 443

this route deals with a given request. The filter function in the preceding code will
deal with any navigation requests to new web pages. So if you open the browser at
http://localhost:5000/ or http://localhost:5000/page2, this route will return the same
cached copy of index.html.

The function createHandlerBoundToURL will create a handler to treat any of these
requests as if they were requests for http://localhost:5000/index.html, which means
that if we reload the application while we’re on page 2, the service worker should load
the HTML the same way it does when we are on the front page.

Let’s try this. After saving the change to service-worker.js, rebuild the application:

$ yarn run build

Now make sure that your local server is running:

$ serve -s build/

Open the browser at http://localhost:5000, and you should see the application. If you
check the developer tools, you will find that it has loaded the new version of the ser‐
vice worker, but the old version of the service worker is still running (see
Figure 11-9).

Figure 11-9. The old and new service workers are both visible in the tools

The previous version of the service worker is still in control of the application. The
browser has installed the new service worker, but it’s in a waiting state. It won’t take
over until the old service work disappears, and that will happen if you close down the
tab and then reopen it (see Figure 11-10).

444 | Chapter 11: Progressive Web Applications

Figure 11-10. Reopen the application to activate the new worker

If you now stop your local server and navigate to page 2, you should be able to reload
it with no problems (see Figure 11-11).

Figure 11-11. Once you’ve registered a route handler, you can reload page 2

Discussion
We’ve gone into quite a lot of depth in this recipe, looking at how to create, register,
and use service workers. In the following recipe, you will see that you can automati‐
cally generate a lot of this code when you first build the application. But it’s still worth
digging into the messy details of how service workers operate. It helps to understand
the life cycle of a worker: how a browser installs a service worker and how it becomes
active.

We have found that service workers can confuse anyone who is manually testing the
code. If the browser is still running an old version of a service worker, it may still be
running an old version of your application. This confusion can lead to failed test
reports because an old bug might still appear to be there. Once you understand how

11.1 Create Service Workers with Workbox | 445

new service workers load and how old service workers disappear, you can quickly
diagnose the problem.

Out-of-date service workers are not an issue with automated browser tests, which will
tend to run in a clean state at the start of a test, with no caches or running service
workers.

Progressive web applications with service workers are a kind of hybrid between a
local application and a remote application. The server becomes a distribution server
for an application that is installed locally. When the application is updated, it will
install a new version in the browser, but that new application will not typically
become available until the browser reopens it.

Now that we’ve gone through service workers in a detailed way, we can look at how
you can quickly add them to a new application.

You can download the source for this recipe from the GitHub site.

11.2 Build a PWA with Create React App
Problem
You need two things before you can run service workers in your application. First,
you need a service worker, and Recipe 11.1 looked at how the Workbox library would
help simplify the creation and management of service workers. Second, you need
code that will register the service worker in your application. Although complex to
create, you can copy registration code to new applications with few changes.

However, as patterns evolve in the use of service workers, it would be helpful to avoid
the need to create our own registration code. How can we do that?

Solution
We will look at how to use templates in create-react-app to build an application
that includes service workers.

Even if you don’t intend to use create-react-app, it can be worth generating an
application with it and then reusing the service worker code in your project.

We briefly saw how to use application templates in Chapter 1 when we generated
TypeScript projects with create-react-app. Templates are the boilerplate code that
create-react-app uses when it generates a new application.

If we want to create a progressive web application, we can do it by typing the
following:

$ npx create-react-app appname --template cra-template-pwa

446 | Chapter 11: Progressive Web Applications

https://oreil.ly/su224

If you want to create a TypeScript application, replace cra-
template-pwa with cra-template-pwa-typescript.

If we do that, it will generate a React application in a new folder called appname. The
application will look virtually the same as any other CRA application, but it will
install several Workbox libraries. It will add two additional source files. In the src
directory, you will find an example service-worker.js script:

import { clientsClaim } from 'workbox-core'
import { ExpirationPlugin } from 'workbox-expiration'
import {
 precacheAndRoute,
 createHandlerBoundToURL,
} from 'workbox-precaching'
import { registerRoute } from 'workbox-routing'
import { StaleWhileRevalidate } from 'workbox-strategies'

clientsClaim()

precacheAndRoute(self.__WB_MANIFEST)

const fileExtensionRegexp = new RegExp('/[^/?]+\.[^/]+$')
registerRoute(({ request, url }) => {
 if (request.mode !== 'navigate') {
 return false
 }

 if (url.pathname.startsWith('/_')) {
 return false
 }

 if (url.pathname.match(fileExtensionRegexp)) {
 return false
 }

 return true
}, createHandlerBoundToURL(process.env.PUBLIC_URL + '/index.html'))

registerRoute(
 ({ url }) =>
 url.origin === self.location.origin &&
 url.pathname.endsWith('.png'),
 new StaleWhileRevalidate({
 cacheName: 'images',
 plugins: [new ExpirationPlugin({ maxEntries: 50 })],
 })
)

11.2 Build a PWA with Create React App | 447

self.addEventListener('message', (event) => {
 if (event.data && event.data.type === 'SKIP_WAITING') {
 self.skipWaiting()
 }
})

The service worker is similar to the one we created in Recipe 11.1.

You will also find a new file in the src directory called serviceWorkerRegistration.js.
This file is very long, so we won’t include the contents here. But it serves the same
purpose as the registerWorker.js script we wrote in Recipe 11.1. It registers the service
worker as the controller of the application. The serviceWorkerRegistration.js file is val‐
uable, even if you don’t intend to use create-react-app for your application. It has
several additional features that the registration code in the previous recipe did not.
For example, suppose you are running on localhost. In that case, it will unregister any
service workers that look like they belong to a different application, which is helpful if
you’re working on several React applications.

Even though the service worker and the registration code are created for you in your
new application, they won’t actually be configured. In the index.js file, you will find
that the application will actually unregister any service workers:

import React from 'react'
import ReactDOM from 'react-dom'
import './index.css'
import App from './App'
import * as serviceWorkerRegistration from './serviceWorkerRegistration'
import reportWebVitals from './reportWebVitals'

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
)

serviceWorkerRegistration.unregister()

reportWebVitals()

If you want to enable the service-worker.js script, you will need to change service
WorkerRegistration.unregister to serviceWorkerRegistration.register.

The register function allows you to pass callbacks into the registration process so
that you can track the current status of the service worker installation. To do this,
pass an object with onInstall and onUpdate functions:

serviceWorkerRegistration.register({
 onInstall: (registration) => {
 console.log('Service worker installed')
 },

448 | Chapter 11: Progressive Web Applications

4 A recent project we worked on relied on a third-party payment library. When we were testing the application’s
performance, the payment library was by far the slowest component, not simply because it was large but
because its server often took several 100 ms to start downloading the code.

 onUpdate: (registration) => {
 console.log('Service worker updated')
 },
})

The callbacks are helpful if you want to defer some processing until after the browser
has installed the service worker or if you would like to run code when the new service
worker is an update to a previous one. If onUpdate is called, you will know that your
new service worker is waiting for an old service worker to disappear.

Discussion
Recipe 11.1 helps you understand how service workers operate. When you are finally
building a real application, templated code will be far more polished and feature-rich.

You can download the source for this recipe from the GitHub site.

11.3 Cache Third-Party Resources
Problem
Many of the resources used in a modern application come from third-party servers:
payment libraries, fonts, images, etc. Third-party resources can consume a lot of
bandwidth and might grow in size over time. If they come from slow servers, then
they might slow down your application in a way that’s out of your control.4

Is it possible to use a service worker to cache third-party resources?

Solution
Service workers have limited scope because they are allowed to control pages only
within the same URL path. That’s why service workers are generally at the root of an
application; it allows them to control every page.

But there is no such limitation on the URLs that they are allowed to contact. They can
talk to any endpoint that your page or code can. That means you can start to cache
resources that come from third-party servers.

The application you can see in Figure 11-12 is using a font downloaded from Google
Fonts.

11.3 Cache Third-Party Resources | 449

https://oreil.ly/hHAC9

Figure 11-12. An application with a Google font—beautiful!

The font was added using these two lines in the header of the page:

<link rel="preconnect" href="https://fonts.gstatic.com">
<link href="https://fonts.googleapis.com/css2?family=Fascinate&display=swap"
 rel="stylesheet">

The first link imports the web font, and the second imports the associated stylesheet.

To cache this in the application, we will first need to register a service worker. The
example application was created with the cra-template-pwa template, so we will need
to call the register function in the index.js file:

import React from 'react'
import ReactDOM from 'react-dom'
import './index.css'
import App from './App'
import * as serviceWorkerRegistration from './serviceWorkerRegistration'
import reportWebVitals from './reportWebVitals'

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
)

serviceWorkerRegistration.register()

450 | Chapter 11: Progressive Web Applications

reportWebVitals()

We will now add some routes into the service-worker.js script, which contains the ser‐
vice worker for the application. The service worker uses the Workbox library.

We need to cache the stylesheet and the downloadable font.

We saw in Recipe 11.1 that we could precache the application code, which is such a
common requirement that Workbox lets you do it with a single line of code:

precacheAndRoute(self.__WB_MANIFEST)

This command will create a route that will cache any application code locally. We
need to do a little more work if we want to cache third-party resources. Let’s create a
route to cache the stylesheet:

registerRoute(
 ({ url }) => url.origin === 'https://fonts.googleapis.com'
 // TODO Add handler
)

When we call registerRoute, we have to pass it a filter function and a handler. The
filter function is given a request object and returns true if the handler should process
it. The handler is a function that decides how to satisfy the request. It might look in a
local cache, pass the request onto the network, or do some combination of the two.

Handlers are quite complex functions to build, but they typically follow some stan‐
dard strategy, such as checking the cache before downloading a file from the network.
Workbox has functions that will provide implementations of several strategies.

When we’re downloading stylesheets, we’ll use a stale-while-revalidate strategy,
which means that when the browser wants to download the Google stylesheet, we will
send a request for the stylesheet and also check the local cache to see if we already
have a copy of the stylesheet file. If not, we’ll wait for the stylesheet network request
to return. This strategy is helpful if you make frequent requests for a resource but
don’t care if you have the latest version. We’ll prefer to use the cached version of the
stylesheet because that will be faster. But we will also always request a new version of
the stylesheet from the network. We’ll cache whatever comes back from Google, so
even if we don’t get the latest version of the stylesheet this time, we will the next time
we load it.

This is how we create a handler for the stale-while-revalidate strategy:

registerRoute(
 ({ url }) => url.origin === 'https://fonts.googleapis.com',
 new StaleWhileRevalidate({
 cacheName: 'stylesheets',
 })
)

11.3 Cache Third-Party Resources | 451

https://oreil.ly/Ct1K3

5 “Internal Server Error.”

The StaleWhileRevalidate function will return a handler function that will cache
the stylesheet in a cache called stylesheets.

When loading third-party requests, you might find that your
request might fail with a cross-origin resource sharing (CORS)
error. This error can occur even if the third-party resource is
returned with a valid CORS header because the GET request comes
from JavaScript code rather than the HTML of the page. You can
fix it by setting the crossorigin to anonymous on the HTML ele‐
ment using the resource, for example, the link reference that is
downloading a stylesheet.

We could apply the same strategy when downloading the Google font. But font files
can be large, and the stale-while-revalidate strategy will always download the lat‐
est version of the resource, even if it does so only to update the local cache.

Instead, we’ll use a cache-first strategy. In a cache-first strategy, we first check the
cache for the resource, and if it’s there, we use it. If we don’t find the resource locally,
we will send a network request. This is a helpful strategy for large resources. It does
have a downside: you will download a new version of the resource only if the cache
doesn’t contain it. That means you might never be able to download any updated
versions.

For that reason, we usually configure the cache-first strategy to cache resources for
only a given period. If the handler finds the resource in the local cache but it’s too old,
it will request the resource from the network and then cache the updated version.

Whatever we cache, we’ll be using until the cache times out. So if there’s some tempo‐
rary problem on the third-party server and we receive a 500 status,5 we don’t want to
cache the response. So, we will also need to check the status before we decide to cache
a response.

The following code shows how we will register a route to cache the Google font:

registerRoute(
 ({ url }) => url.origin === 'https://fonts.gstatic.com',
 new CacheFirst({
 cacheName: 'fonts',
 plugins: [
 new CacheableResponsePlugin({
 statuses: [0, 200],
 }),
 new ExpirationPlugin({
 maxAgeSeconds: 60 * 60 * 24 * 7,

452 | Chapter 11: Progressive Web Applications

https://oreil.ly/c8aa5

 maxEntries: 5,
 }),
],
 })
)

This code will cache up to five font files in a local cache called fonts. The cached
copies will time out after a week, and we will cache the response only if the status is
either 200 or 0. A 0 status indicates a cross-origin issue with the request, and in this
case, we cache the response. A CORS error will not go away without a code change,
and if we cache the error, we will avoid sending future requests that are doomed to
fail.

Discussion
Third-party resource caching can significantly improve the performance of your
application, but much more importantly, it will make resources available when your
application is offline. It doesn’t matter too much if the application cannot read some‐
thing cosmetic like a font file. Still, if you’re using third-party code to generate a pay‐
ment form, it would be helpful to keep doing so, even if the user’s device is temporar‐
ily off the network.

You can download the source for this recipe from the GitHub site.

11.4 Automatically Reload Workers
Problem
The way that service workers are updated can be confusing for anyone using or test‐
ing an application. If we make a change to a service worker, the application will
download the new version and set its status to Installed (see Figure 11-13).

11.4 Automatically Reload Workers | 453

https://oreil.ly/QaFYG

Figure 11-13. The updated worker is installed, but the old version is still running

The old service worker will go away only if the user closes the tab and then reopens it.
The old worker disappears, and the new worker can stop waiting and start running
(see Figure 11-14).

Figure 11-14. The new worker will start only if you close and re-open the application

The service worker may be caching the application’s code, so if the service worker
does not start running, it will not download the latest code from the server. You
might find that you are using an old version of the entire client application. To run
the new application, you need to reload the page (to install the new worker) and then
close and reopen the tab (removing the old worker and starting the new one).

454 | Chapter 11: Progressive Web Applications

6 This is not the case if you use semantic versioning of API endpoints.
7 See Recipe 11.2.

Testers will soon get used to this slightly odd sequence, but the same is not true for
real users. In reality, the fact that new code will only update the next-but-one time
that it’s available is usually not a big problem. It can be a problem if you have made a
significant change to the code, such as an update to an API.6

In some cases, you want to use the new code immediately. Is there a way to clear out
the old service workers and upgrade to the new version of the application?

Solution
There are two things that we need to do to switch to a new service worker:

If you’ve created your application with create-react-app or you are using the code
from the cra-template-pwa template,7 then you will be registering your service worker,
using the serviceWorkerRegistration.register function. For example, you might
have code in the index.js file of your application that looks like this:

import React from 'react'
import ReactDOM from 'react-dom'
import './index.css'
import App from './App'
import * as serviceWorkerRegistration from './serviceWorkerRegistration'
import reportWebVitals from './reportWebVitals'

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
)

serviceWorkerRegistration.register()

reportWebVitals()

Even if you’ve written your own registration code, you will likely have something
similar.

The serviceWorkerRegistration.register function allows you to pass a couple of
callbacks, which will tell you when a service worker has been installed or updated:

serviceWorkerRegistration.register({
 onInstall: (registration) => {},
 onUpdate: (registration) => {},
})

11.4 Automatically Reload Workers | 455

The callbacks receive a registration object: a wrapper for the service worker that the
browser has just installed or updated.

A service worker is installed when it is downloaded. But if an existing service worker
is running, the new service worker will wait for the old service worker to disappear. If
a service worker is waiting, the onUpdate function will be called.

We want to automatically remove the old service worker whenever the onUpdate
function is called. That will allow the new service worker to start operating.

Service workers are a specialized form of web worker. A web worker is a piece of Java‐
Script that runs in a separate thread from the JavaScript running in the web page. You
communicate with all web workers by posting asynchronous messages to them. Ser‐
vice workers can intercept network requests because the browser will convert net‐
work requests into messages.

So, we can ask a service worker to run an arbitrary piece of code by sending it a mes‐
sage. We can make our service worker respond to messages by giving it a message
event listener:

self.addEventListener('message', (event) => {
 // handle messages here
})

The self variable contains the global scope for the service worker. It’s like window is
for page code.

The page code can send a message to the new service worker, telling it that we want it
to stop waiting and replace the old service worker:

serviceWorkerRegistration.register({
 onUpdate: (registration) => {
 registration.waiting.postMessage({ type: 'SKIP_WAITING' })
 },
})

registration.waiting is a reference to the service worker, and registration.
waiting.postMessage will send it a message.

When the browser installs a new version of a service worker but the old service
worker is still running, the application code will send a SKIP_WAITING message to the
new service worker.

Service workers have a built-in function called skipWaiting, which will kill the old
service worker and allow the new one to take over. So, we can call skipWaiting in the
service worker, when it receives a SKIP_WAITING message:

456 | Chapter 11: Progressive Web Applications

self.addEventListener('message', (event) => {
 if (event.data && event.data.type === 'SKIP_WAITING') {
 self.skipWaiting()
 }
})

If the application is now updated, the new service worker will immediately replace
the old service worker.

There’s just one step remaining: we need to reload the page so that we can download
the new application code through the new service worker. This means that the upda‐
ted version of the index.js file in the application looks like this:

import React from 'react'
import ReactDOM from 'react-dom'
import './index.css'
import App from './App'
import * as serviceWorkerRegistration from './serviceWorkerRegistration'
import reportWebVitals from './reportWebVitals'

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
)

serviceWorkerRegistration.register({
 onUpdate: (registration) => {
 registration.waiting.postMessage({ type: 'SKIP_WAITING' })
 window.location.reload()
 },
})

reportWebVitals()

Once you’ve installed this new version of the code, the application will automatically
update itself each time the application changes. Instead of seeing the old service
worker alongside a patiently waiting version of the new service worker, you will
instead just see the newly loaded version (see Figure 11-15).

11.4 Automatically Reload Workers | 457

Figure 11-15. The new service worker will now immediately replace the old version

Discussion
By adding a page reload, you will find that the page “blinks” when the new code is
downloading. If you have a large application, this might be jarring for the user, so you
might choose to ask the user if they want to upgrade to the new version of the appli‐
cation before reloading. Gmail does this whenever a significant update is available.

You can download the source for this recipe from the GitHub site.

11.5 Add Notifications
Problem
One of the advantages of service workers, and web workers in general, is that they
don’t stop running just because the user leaves the page. If a service worker performs
a slow operation, it will continue to run in the background, so long as the browser
itself is still running. That means you can leave the page or close the tab and be sure
that your worker will have time to finish.

However, what if the user wants to know when the background task has finally fin‐
ished? Service workers don’t have any visual interface. They might control web pages,
but they can’t update them. The only way that a web page and a service worker can
communicate is by sending messages.

Given that service workers have no visual interface, how can they let us know when
something important has happened?

458 | Chapter 11: Progressive Web Applications

https://oreil.ly/Lbal7

Solution
We’re going to create notifications from a service worker. Our example application
(see Figure 11-16) will start a long-running process, taking around 20 seconds, when
you click the button.

Figure 11-16. The example application starts a slow process when you click the button

The user will have to grant permission to be sent a completion notification (see
Figure 11-17). If they deny permission, the background task will still run, but they
won’t see anything when it’s complete.

11.5 Add Notifications | 459

Figure 11-17. You will have to grant permission to receive notifications

Notifications have a poor reputation. You usually see them when a
site wants to spam you with information. In general, if you’re using
notifications, it’s best to defer asking for permission until it’s appa‐
rent to the user why you want it. Avoid asking for permission to
send notifications when the page first loads because the user will
have no idea why you want to send them.

The service worker will then run some code that will pause for 20 seconds, and then it
will display a notification (see Figure 11-18).

Figure 11-18. The notification that appears when the task is finished

Let’s start to look at the code. In the App component, we’ll add a button to run the
background but make sure we make it visible only if the browser supports service
workers:

function App() {
 const startTask = () => {
 // Start task here
 }
 return (

460 | Chapter 11: Progressive Web Applications

 <div className="App">
 <header className="App-header">

 <p>
 Edit <code>src/App.js</code> and save to reload.
 </p>
 {'serviceWorker' in navigator && (
 <button onClick={startTask}>Do slow thing</button>
)}
 </header>
 </div>
)
}

When the user clicks the button, they will call the startTask function. We can ask for
permission to show notifications in there:

const startTask = () => {
 Notification.requestPermission((permission) => {
 navigator.serviceWorker.ready.then(() => {
 const notifyMe = permission === 'granted'
 // Then run task
 })
 })
}

If the user grants permission, the permission string will have the value granted,
which will set the notifyMe variable to true. We can run the task in the service
worker and tell it whether it’s allowed to send a notification when it’s complete.

We cannot talk to service workers directly. Instead, we have to post messages because
service workers run in a separate thread from web page code.

We can get the current service worker controlling the page from navigator.service
Worker.controller. So, we can send a message to the service worker like this:

const startTask = () => {
 Notification.requestPermission((permission) => {
 navigator.serviceWorker.ready.then(() => {
 const notifyMe = permission === 'granted'
 navigator.serviceWorker.controller.postMessage({
 type: 'DO_SLOW_THING',
 notifyMe,
 })
 })
 })
}

In the example application, our service is in service-worker.js. It can receive messages
by adding a message event handler:

self.addEventListener('message', (event) => {
 ...

11.5 Add Notifications | 461

8 You will see the message in Chrome. You will not see it if you use Firefox because Firefox does not give service
workers access to the JavaScript console.

 if (event.data && event.data.type === 'DO_SLOW_THING') {
 // Code for slow task here
 }
})

In a service worker, self refers to the global scope object. It’s the equivalent of window
in web page code. Let’s simulate a slow task, with a call to setTimeout, which will wait
for 20 seconds before sending a message to the console:8

self.addEventListener('message', (event) => {
 ...
 if (event.data && event.data.type === 'DO_SLOW_THING') {
 setTimeout(() => {
 console.log('Slow thing finished!')
 // TODO: Send notification here
 }, 20000)
 }
})

All that’s left to do now is show the notification. We can do this with the service
worker’s registration object, which has a showNotification method:

self.addEventListener('message', (event) => {
 ...
 if (event.data && event.data.type === 'DO_SLOW_THING') {
 setTimeout(() => {
 console.log('Slow thing finished!')
 if (event.data.notifyMe) {
 self.registration.showNotification('Slow thing finished!', {
 body: 'Now get on with your life',
 icon: '/logo512.png',
 vibrate: [100, 100, 100, 200, 200, 200, 100, 100, 100],
 // tag: 'some-id-if-you-do-not-want-duplicates'
 })
 }
 }, 20000)
 }
})

Notice that we check event.data.notifyMe before attempting to show a notification;
this is the variable we added to the message in the web page code.

The notification takes a title and an options object. The options allow you to mod‐
ify the behavior of the notification. In this case, we’re giving it some body text and an
icon and setting a vibration sequence. If the user’s device supports them, they should
feel a set of dot-dot-dot-dash-dash-dash-dot-dot-dot vibrations when the notification
appears.

462 | Chapter 11: Progressive Web Applications

There’s also a tag option, which we’ve commented out in the example code. We can
use the tag to uniquely identify a notification and prevent the user from receiving the
same notification multiple times. If you omit it, each call to showNotification will
make a new notification appear.

To try the code, you will first need to build the application because service workers
will run only in production mode:

$ yarn run build

You will then need to run a server on the contents of the generated build directory.
You can do this by installing the serve module and then running this command:

$ serve -s build

If you open the application at http://localhost:5000 and click the button, the slow pro‐
cess will start. You can then go to a different page or close the tab, and the slow task
will continue running. It will stop only if you close the browser.

After 20 seconds, you should see a notification appear that looks similar to
Figure 11-19.

Figure 11-19. A notification as it appears on a Mac

It’s tempting to access your server from a mobile device to check
that the vibrations work in the notification. Be aware that service
workers are enabled only if you access localhost or are using
HTTPS. If you want to test your application over HTTPS, see
Recipe 7.3 to enable it on a server.

Given that notifications can appear after you’ve closed the page, it’s helpful if you give
the user a simple way of navigating back to your application. You can do this by
adding a notification-click handler to your service worker. If a service worker creates
a notification and the user clicks it, the browser will send a notificationclick event
to the service worker. You can create a handler for it like this:

self.addEventListener('notificationclick', (event) => {
 event.notification.close()
 // TODO Go back to the application
})

You can close the notification by calling event.notification.close. But how do
you send the user back to the React application?

11.5 Add Notifications | 463

The service worker is the controller of zero or more browser tabs, which are called its
clients. These are tabs whose network requests are intercepted by the service worker.
You can get access to the list of clients using self.clients. This object has a utility
function called openWindow that can be used to open a new tab in the browser:

self.addEventListener('notificationclick', (event) => {
 event.notification.close()
 if (self.clients.openWindow) {
 self.clients.openWindow('/')
 }
})

If the user now clicks the notification, the browser will return them to the front page
of the React application.

But we can do a little better than that. If the user has switched to a different tab but
the React application is still open, we can switch the focus back to the correct tab.

To do this, we will need to get hold of an array of each of the open tabs that our ser‐
vice worker controls. Then we can look to see if any match the correct path. If we find
one, we can switch focus to that tab:

self.addEventListener('notificationclick', (event) => {
 event.notification.close()

 event.waitUntil(
 self.clients
 .matchAll({
 type: 'window',
 })
 .then((clientList) => {
 const returnPath = '/'

 const tab = clientList.find((t) => {
 return t.url === self.location.origin + returnPath
 })
 if (tab && 'focus' in tab) {
 tab.focus()
 } else if (self.clients.openWindow) {
 self.clients.openWindow(returnPath)
 }
 })
)
})

If we click the notification, we will switch back to an open tab rather than always cre‐
ate a new one (see Figure 11-20).

464 | Chapter 11: Progressive Web Applications

9 Admittedly, more and more subways now have mobile repeater stations.

Figure 11-20. The notification can switch back to our application if it’s still open

Discussion
Notifications are a great way of keeping the user informed about important events.
The critical thing is to clarify why they should agree to receive notifications and then
send them only if something significant has happened.

You can download the source for this recipe from the GitHub site.

11.6 Make Offline Changes with Background Sync
Problem
Imagine someone is using an application in a place where a network connection is
not available, for example, on a subway train.9 Precaching of application code means
that there should be no problem opening an application without a network connec‐
tion. The user can also move from page to page, and everything should appear
normal.

But what if they do something that will send data to a server? What if they try to post
a message?

11.6 Make Offline Changes with Background Sync | 465

https://oreil.ly/ZkcrR

Solution
Background sync is a way of queuing network requests when the server is not avail‐
able and then resending them automatically at a later time.

Our example application will send some data to a backend server when the user clicks
a button (see Figure 11-21).

Figure 11-21. The example application sends data to the server when the user clicks a
button

To start the application, you will first need to build it with this command:

$ yarn run build

The example project includes this server in server/index.js:
const express = require('express')
const app = express()

app.use(express.json())
app.use(express.static('build'))

app.post('/endpoint', (request, response) => {
 console.log('Server received data', request.body)
 response.send('OK')
})

app.listen(8000, () => console.log('Launched on port 8000!'))

466 | Chapter 11: Progressive Web Applications

The server will deliver content from the build directory, where the generated code is
published. It also displays the data from any POST requests sent to http://localhost:
8000/endpoint.

You can start the server with this command:

$ node server

If you now open the application in a browser at http://localhost:8000 and click the
button on the front page a few times, you will see data appearing in the server
window:

$ node server
Launched on port 8000!
Server received data { timeIs: '2021-05-09T18:59:37.280Z' }
Server received data { timeIs: '2021-05-09T18:59:37.720Z' }
Server received data { timeIs: '2021-05-09T18:59:38.064Z' }
Server received data { timeIs: '2021-05-09T18:59:38.352Z' }

This is the application code that sends data to the server. It uses the fetch function to
POST the current time when the button is pressed:

import React from 'react'
import logo from './logo.svg'
import './App.css'

function App() {
 const sendData = () => {
 const options = {
 method: 'POST',
 body: JSON.stringify({ timeIs: new Date() }),
 headers: {
 'Content-Type': 'application/json',
 },
 }
 fetch('/endpoint', options)
 }
 return (
 <div className="App">
 <header className="App-header">

 <p>
 Edit <code>src/App.js</code> and save to reload.
 </p>
 <button onClick={sendData}>Send data to server</button>
 </header>
 </div>
)
}

export default App

11.6 Make Offline Changes with Background Sync | 467

If you now stop the server, clicking the button on the web page will generate a series
of failed network requests, as shown in Figure 11-22.

Figure 11-22. If the server cannot be contacted, the network requests fail

Stopping the server simulates what would happen if the user was temporarily out of
network contact and then tried to send data from the application.

We can fix this problem using service workers. A service worker can intercept the
network requests made by a web page in a progressive web application. In the other
recipes in this chapter, we have used service workers to handle network failures by
returning locally cached versions of files. We now need to handle data going in the
opposite direction: from the browser to the server.

We need to cache the POST requests that we try to send to the server and then resend
them when we are back in contact with the server.

To do this, we will use the workbox-background-sync library. Background sync is an
API for diverting network requests onto a queue in those cases where we cannot con‐
tact the server. It’s a complex API, and not all browsers support it.

The workbox-background-sync library makes the API far easier to use, and it will
also work on browsers like Firefox that don’t support Background Sync natively.

The service worker for the example application is in the service-worker.js file. We can
add background syncing by adding this code:

import { NetworkOnly } from 'workbox-strategies'
import { BackgroundSyncPlugin } from 'workbox-background-sync'

// Other service worker code here....

registerRoute(
 //endpoint/,

468 | Chapter 11: Progressive Web Applications

 new NetworkOnly({
 plugins: [
 new BackgroundSyncPlugin('endPointQueue1', {
 maxRetentionTime: 24 * 60,
 }),
],
 }),
 'POST'
)

This code will register a new route in the service worker, saying how to deal with net‐
work requests to particular URLs. In this case, we are creating a route to handle all
requests to http://localhost:8000/endpoint. We’re using a regular expression to match
the path. We’re then using a Network Only strategy, which means that the browser
will send all requests to the service worker, and all responses will come from the net‐
work. But we’re configuring that strategy to use the background sync plugin. The
third parameter in the route says that it is interested only in POST requests to the
endpoint.

When the application sends a POST request to http://localhost:8000/endpoint, the ser‐
vice worker intercepts it. The service worker will forward the request to the server,
and if successful, it will return the response to the web page. If the server is unavail‐
able, the service worker will return a network error to the web page and then add the
network request to a retry queue called endPointQueue1.

Workbox stores queues in indexed databases within the browser. Setting the max
RetentionTime to 24 * 60 stores the requests in the database for a maximum of one
day.

The workbox-background-sync library will resend the requests in the queue when‐
ever it thinks the server might have become available, for example, if the network
connection comes online. Retries will also happen every few minutes.

If you restart the server and then wait about five minutes, you should see the failed
network requests appearing in the server:

$ node server
Launched on port 8000!
Server received data { timeIs: '2021-05-09T21:26:11.068Z' }
Server received data { timeIs: '2021-05-09T21:02:44.647Z' }
Server received data { timeIs: '2021-05-09T21:02:45.647Z' }

You can force Chrome to resend the requests immediately if you open the Applica‐
tion tab in the developer tools, select the service worker, and then send a sync mes‐
sage to workbox-background-sync:endPointQueue1 (as shown in Figure 11-23).

11.6 Make Offline Changes with Background Sync | 469

https://oreil.ly/rLqLq

10 In a RESTful API, you would probably perform updates with a PUT or PATCH request.

Figure 11-23. Forcing a sync to occur in Chrome

Discussion
Background sync is a tremendously powerful feature, but you need to think carefully
before enabling it. The order in which the client code sends requests will not neces‐
sarily be the order they are processed at the server.

The exact order will probably not matter if you are creating a simple set of resources
with POST requests. For example, if you buy books from an online bookstore, it
doesn’t matter what sequence you buy them in.

But if you create dependent resources or apply multiple updates to the same
resource,10 then you need to careful. If you amend your credit card number to 1111
1111 1111 1111 and then to 2222 2222 2222 2222, the order of updates will com‐
pletely change the final result.

You can download the source for this recipe from the GitHub site.

11.7 Add a Custom Installation UI
Problem
PWAs behave, in many ways, like locally installed applications. You can install them
alongside other applications on a desktop machine or a mobile device. Many
browsers allow you to create a shortcut on the current device to launch your

470 | Chapter 11: Progressive Web Applications

https://oreil.ly/NFVAY

11 At the time of writing, Chrome, Edge, and Samsung Internet support this event.
12 You can check if your application meets the requirements of a PWA by running the Lighthouse tool in

Chrome Developer Tools. Not only will it tell you if your application qualifies, it will also give you reasons
why, if it doesn’t.

application in a separate window. If you’re using a desktop machine, you can add the
shortcut to the dock or launch menus. If you’re on a mobile device, you can add the
application to the home screen.

But many users miss the fact that that they can install PWAs, a situation that is not
helped by the low-key interface used in browsers to indicate that installation is possi‐
ble (see Figure 11-24).

Figure 11-24. PWAs are installed with a small button in the address bar

Browsers do this to maximize the amount of screen estate available for your website.
However, if you think that a local installation would be helpful to your users, you
might choose to add a custom installation UI. But how can you do that?

Solution
Some browsers11 will generate a JavaScript beforeinstallprompt event if they detect
that your application is a fully fledged PWA.12

You can capture this event and use it to display your custom installation UI.

Create a component called MyInstaller.js and add this code:

import React, { useEffect, useState } from 'react'

const MyInstaller = ({ children }) => {
 const [installEvent, setInstallEvent] = useState()

 useEffect(() => {
 window.addEventListener('beforeinstallprompt', (event) => {

11.7 Add a Custom Installation UI | 471

 event.preventDefault()
 setInstallEvent(event)
 })
 }, [])

 return (
 <>
 {installEvent && (
 <button
 onClick={async () => {
 installEvent.prompt()
 await installEvent.userChoice
 setInstallEvent(null)
 }}
 >
 Install this app!
 </button>
)}
 {children}
 </>
)
}

export default MyInstaller

This component will capture the onbeforeinstallprompt event and store it in the
installEvent variable. It then uses the existence of the event to display a custom user
interface. In the code here, it displays a simple button on the screen. You can then
insert this component into your application, for example:

function App() {
 return (
 <div className="App">
 <MyInstaller>
 <header className="App-header">

 <p>
 Edit <code>src/App.js</code> and save to reload.
 </p>
 <a
 className="App-link"
 href="https://reactjs.org"
 target="_blank"
 rel="noopener noreferrer"
 >
 Learn React

 </header>
 </MyInstaller>
 </div>
)
}

472 | Chapter 11: Progressive Web Applications

If you now build and run the application:

$ yarn run build
$ serve -s build

you will see the install button at the top of the front page (see Figure 11-25). You
won’t see the install button if you run the application with the development server,
like this:

$ yarn run start

Figure 11-25. The custom install button appears at the top of the page

That’s because the application will qualify as a PWA only if it has a service worker
running. The service worker will run only in production code.

If you click the Install button, the MyInstaller component will run the install
Event.prompt method. This will display the usual installation dialog (see
Figure 11-26).

11.7 Add a Custom Installation UI | 473

13 While it will create a separate application window, it will disappear if you close the web browser. If you launch
the application directly, it will also launch the web browser if it’s not already running.

Figure 11-26. The install prompt will appear when you click the custom install button

If your device has already installed the application, the browser will
not fire the onbeforeinstallprompt event.

If the user chooses to install the application, it will launch a separate application win‐
dow.13 If they are using a desktop machine, a finder or explorer window might appear,
with a launch icon for the application that can be added to the dock or launch menus
on your machine (see Figure 11-27). On a mobile device, the icon will appear on the
home screen.

474 | Chapter 11: Progressive Web Applications

Figure 11-27. The browser will create a launch icon for the application

Discussion
Local installation is an excellent feature for users who want to run your application
often. In our experience, many users don’t realize that the installation option is avail‐
able for some sites, so adding a custom interface is a good idea. However, you should
be wary of creating an intrusive interface if you think your users are likely to be one-
time visitors. It’s probably also best to avoid triggering the appearance of the instance
automatically when the page loads. Doing so is likely to irritate your users and deter
them from returning to your site.

You can download the source for this recipe from the GitHub site.

11.8 Provide Offline Responses
Problem
You won’t want to cache all third-party resources in your application; it would take
too much space. That means there will be times when your code will be unable to
load all the resources it needs. For example, you can see in Figure 11-28 an applica‐
tion we created in an earlier chapter that displayed a series of images from a third-
party image site.

11.8 Provide Offline Responses | 475

https://oreil.ly/Dbmpc

Figure 11-28. The application displays images from http://picsum.photos

You can use a service worker to cache all of this application’s code to work offline. You
probably wouldn’t want to cache the third-party images because there will be too
many. That means that if you disconnect from the network, the application will still
open but without images (see Figure 11-29).

Figure 11-29. If you’re offline, the images won’t load

476 | Chapter 11: Progressive Web Applications

It would be helpful to replace the missing image with a locally served replacement.
That way, when the user is offline, they will still see a placeholder image.

This is a particular case of a general problem: you may want to have placeholder files
when a sizable external file is unavailable. You might want to replace video files, audio
files, or even complete web pages with some temporary replacement.

Solution
To solve this problem, we’ll use a couple of service worker techniques that together
will return a local replacement with a cached file.

Let’s say we want to replace all failed image loads with the replacement image shown
in Figure 11-30.

Figure 11-30. Replacement for images that fail to load

The first thing we need to do is make sure that the image file is available in the local
cache. We’ll add the image to static files used by the application, but we can’t rely on
the replacement image being cached automatically. Precaching will store any files we
download from the server. We will not need the placeholder image until the network
is offline, so we will have to use cache warming to load the image into a local cache
explicitly.

In the service worker, we’re going to run some code as soon as the service worker is
installed. We can do this by adding an install event handler:

self.addEventListener('install', (event) => {
 // Cache image here
})

We can explicitly open a local cache—which we’ll call fallback—and then add the
file to it from the network:

11.8 Provide Offline Responses | 477

14 For more details about the Workbox library, see the other recipes in this chapter.

self.addEventListener('install', (event) => {
 event.waitUntil(
 caches.open('fallback').then((cache) => {
 cache.add('/comingSoon.png')
 })
)
})

You can use this technique if you ever want to cache files when your application is
installed, which is helpful for files that will be needed when you’re offline but that are
not immediately loaded by the application.

Now that we have the replacement image stored, we need to return it when the real
images are not available. We’ll need to add code that will run when network requests
fail. We can do this with a catch handler. A catch handler is executed when a Workbox
strategy fails:14

setCatchHandler(({ event }) => {
 if (event.request.destination === 'image') {
 return caches.match('/comingSoon.png')
 }
 return Response.error()
})

The catch handler receives the failed request object. We could check the URL of the
request, but it is better to check the request’s destination. The destination is the
thing that will consume the file, and the destination is helpful when selecting a place‐
holder for the file. If the destination is image, the request happened because the
browser was trying to load an img element. Here are some other examples of request
destinations:

Destination Generated by
“” JavaScript network requests

“audio” Loading an <audio>

“document” Navigation to a web page

“embed” Loading an <embed>

“font” Loading a font in CSS

“frame” Loading a <frame>

“iframe” Loading an<iframe>

“image” Loading an , /favicon.ico, SVG <image>, or a CSS image

“object” Loading an <object>

“script” Loading a <script>

“serviceworker” Loading a service worker

478 | Chapter 11: Progressive Web Applications

Destination Generated by
“sharedworker” Loading a shared worker

“style” Loading CSS

“video” Loading a <video>

“worker” Loading a worker

If our catch handler is called, we will return the comingSoon.png image from the
cache. We’re using caches.match to find the file in any of the available caches.

But now that we have a catch handler, we need to make sure that we define a Work‐
box strategy for every request. If not, a failed request might not trigger the catch han‐
dler. If we set a default handler, it will apply a strategy to every request not handled in
some other way:

setDefaultHandler(new NetworkOnly())

This command will ensure that the service worker forwards all requests to the net‐
work unless some more specific handler is defined.

Each of the img tags on the page will generate a request with a destination of image.
The default handler will forward them to a third-party server, which will cause an
error because the application can’t contact the network. The catch handler will then
return the replacement image file to each img element. You can see the result of this
process in Figure 11-31.

Figure 11-31. When offline, all images are replaced by a placeholder

11.8 Provide Offline Responses | 479

Discussion
This technique is beneficial for large media files that are difficult or impossible to
cache locally. If, for example, you have built an application to play podcasts, you
could replace a missing episode with a short audio clip, explaining that the episode
will be available only when you are next online.

Warming the cache with files can increase the time needed for the service worker to
install. For this reason, if you’re warming a cache with reasonably large files, you
should also add this line to your service worker:

import * as navigationPreload from 'workbox-navigation-preload'
...
navigationPreload.enable()

Navigation preload is a browser optimization that will run network requests in the
background if they begin when a service worker is installing. Not all browsers sup‐
port navigation preload, but the workbox-navigation-preload library will use it if
it’s available.

You can download the source for this recipe from the GitHub site.

480 | Chapter 11: Progressive Web Applications

https://oreil.ly/5nN80

Index

A
accessibility, 331-382

adding skip buttons to pages, 360-366
adding skip-regions to pages, 367-375
applying roles, alts, and titles, 337-345
auditing or tracking down problems with,

331
browser testing automation with cypress-

axe, 356-360
capturing scope in modals, 375-378
checking with eslint, 346-351
creating page reader with Speech API,

378-382
using axe DevTools at runtime, 351-356
using landmarks, 332-337

actions, 173
dispatching and responding to in React

Redux apps, 174
with side effects, creating using Redux mid‐

dleware, 174
submitting to central store with useDis‐

patch, 100
undoActions function, 80

adb (Android Debug Bridge) command, 263
admin console, building with React Admin,

208-215
Alert component, 52
Android Debug Bridge (adb) command, 263
Android device, testing React app on, 262-265
animations

animating infographics using TweenOne,
147-153

animating with CSS classes, 140-142

creating transitions with react-transition-
group, 55-61

using React Animations, 143-147
choosing which animation to use, 147
importing animations and helper code

from Radium, 145
installing Radium and React Anima‐

tions, 143
APIs

faking server requests/responses using
Cypress, 31

GraphQL, 179, 186
React apps connecting to, proxying in

create-react-app, 5
secured, 221-230

treating all endpoints as secured, 228
testing calls with slow response using

Cypress, 296
Apollo GraphQL client

installing, 182
useQuery and useMutation hooks, 184

apollo-server framework, 180
ApolloProvider, 183
AppBar component (Material-UI), 193
applications, creating, 1-31

client and server code, managing with
Next.js, 12-14

component development using Storybook,
26-29

content-rich sites, using Gatsby, 6-9
custom elements, creating with Preact,

22-25
inserting React apps into Rails pages using

Webpacker, 20-22

481

libraries, building with nwb, 18-20
simple application, 1-6
testing code in browsers using Cypress,

29-31
tiny apps, using Preact, 14-18
Universal applications, using Razzle, 10-12

applyMiddleware function (Redux), 177
aria-haspopup attribute, 342, 349

set to true, 342
trash can icon with, 345

aria-hidden attribute, 378
arrays

of forms, 91
messages array in Semantic UI, 218
representing state, 68
returned by useReducer, 72

assertion, 259
assertion (WebAuthn), 231, 240, 244
asset-manifest.json file, 438
asynchronous code

making asynchronous network requests,
156

multiple asynchronous requests, performace
gains for, 415

used inside a hook, network response com‐
ing after, 159

using await to handle promises, 159
attestation (WebAuthn), 231, 240, 244
authentication

for secured routes, 223
single-factor, 257-262
using fingerprints, 244-251
using physical tokens, 230-240

authenticators, 245
autoComplete attribute, 269
autoCorrect attribute, 269
await function, 157, 159
axe DevTools, checking accessibility at runtime,

351-356
axe-core library, 356
Axios library, 171

axiosMiddleware.js code to intercept
SEARCH actions, 175

B
background sync, 466-470

cautions with, 470
backgroundColor for elements, 356
beforeinstallprompt event, 471

block element modifier (BEM) naming, 141
Bootstrap library, 199-203

forms, creating and laying out, 200-202
BrowserRouter, 36

MemoryRouter versus, 46
browsers

automating accessibility testing with
cypress-axe, 356-360

axe DevTools plugin, accessibility checks
with, 351-356

Background Sync, 468
checking ability to run service workers, 435
cross-testing visuals using ImageMagick,

307-314
functions to use in recording vitals, 428
getting high-resolution time in Firefox, 402
hearing elements described while tabbing

between them, 382
installation of PWAs, 471
installing service worker, 437
launch icon for PWA, 474
loading code bundles lazily, 406
login forms that are browser friendly,

269-271
measuring using browser performance tools

metrics checked by Lighthouse, 385
mobile

adding console to, 315-320
opening on Android device and con‐

necting to localhost, 264
testing, 262

native support of landmarks, 337
navigation preload optimization, 480
network connection, checking, 95
old, no-onchange rule in jsx-ally, 347
open tabs controlled by service worker, 464
root certificates, 241
service worker clients, 464
service worker running in, 439
simulating offline working using Cypress,

297-299
testing code using Cypress, 29-31
testing in, using Selenium, 300-306
tests, browser-based, 273
time-based tests in, 323-329
using browser performance tools, 384-391

installing React Developer Tools, 389
Lighthouse, 384
Performance tab, 388

482 | Index

recording performance sessions, 390
web vital measured by Lighthouse, 386

build script (create-react-app), 4
buttons, 341

adding skip buttons for accessibility,
360-366

button role and, 342, 349
button role for trash can icon, 345
implementing as buttons, 345
tabbed to, 349

C
cache-first strategy, 452
caches.match, 479
caching

code or content by PWAs, 430
problems with code caching, 431
service worker downloading app files into

local cache, 440
service worker returning files from local

cache, 440
service workers pre-caching all application

code, 433
strategies, 431
third-party resource caching by service

workers, 449-453
using service workers to precache applica‐

tion code, 431
Calendar application example, tracking render‐

ing with Profiler, 392-396
catch handler, 478
certificates

certificate signing requests (CSRs), 242
creating with openssl, 242
root, 241
self-signed SSL certificates, generating, 241
SSL, generating for application, 243

chainable nature of Cypress, 292
Chrome DevTools remote debugging protocol,

297
click events having no keyboard response, 350
clients and servers

building with Razzle, 10
clients getting more complex, server APIs

becoming simpler, 412
GraphQL, 180

connecting to third-party server without
proxy, 182

creating a server, 180

GraphQL Playground client, 181
managing code with Next.js, 12-14
service worker clients, 464

clock, measuring time with, 91-95
CLS (Cumulative Layout Shift), 387, 427
code splitting, 387

interfering with offline functionality, 442
shrinking your app with, 405-412

app performance without/with code
splitting, 410

code splitting at route level, 412
low cost of code splitting, 411
splittinc code with lazy function, 406

using lazy function, 426
combined animations, 145
compare command (ImageMagick), 311
complexity, managing with reducers, 75
component libraries, 191-220

Material-UI with Material Design, 192-199
React Admin, building admin console with,

208-215
React Bootstrap, creating UI with, 199-203
React Window, viewing data sets with,

203-205
components

behaving like standard UI elements, creat‐
ing, 337

building elements in virtual DOM, 15
creating with nwb, 18
using Storybook for development, 26-29

confirmation logins, 251-257
confirmations, modal question box, 336
connecting to services (see network services,

connecting to)
console.log function, 427
Container components, 194
content

all page body content rendered inside land‐
marks, 337

grouping main page content in main land‐
mark, 334

content-rich apps, generating with Gatsby, 6-9
contexts, 114

ErrorHandlerContext example, 114
FormContext example, 85

contrast errors (accessibility), 354
cookies, 259

HTTP-only, 258

Index | 483

Login component checking for userID
cookies, 259

user ID in, 258
Coordinated Universal Time (UTC), 324
CORS (cross-origin resource sharing), 452
CPU usage, TweenOne using JavaScript, 148
cra-template-pwa, 455
create-razzle-app command, 10
create-react-app tool, 2-6

application created with, enabling SSR, 417
building progressive web applications,

446-449
using templates, 446

HelpSequence, adding to default App.js
code, 122

JSX transforms, 17
keeping your application up to date, 5

CreateMessage component, 214
cross-origin resource sharing (CORS) errors,

452
CSRs (certificate signing requests), 242
CSS

browsers applying in different ways, 307
focus-visible style, 351
styles, defined in Material-UI themes, 193
stylesheets, including in React Bootstrap UI,

199
CSS animations, 140-142

benefits and limitations of, 143
block element modifier class names, 141
CSS-in-JS libraries, 143
generating styles for, 145
height property, 141
keeping track of, 145
transition property, 140
TweenOne and, 148

CssBaseline component, 192
CSSTransition components, 57-61
Cucumber tests, 274
Cumulative Layout Shift (CLS), 387, 427
cy.intercept command, 293
Cypress, 274

creating new command cy.random, 322
cypress-axe plugin, automating browser

testing with, 356-360
configuring cypress-axe, 357

simulating time passing with cy.clock and
cy.tick, 325

specifying current time with cy.clock com‐
mand, 325

testing code in browsers, 29-31
testing daylight saving time (DST), 328
testing without a server, 288-296
using for offline testing, 296-299

D
data providers, 210
data reducers (see reducers)
data sets, viewing with React Window, 203-205
data state, 157
data-fetching options (Next.js), 14
Date function, 401
dates and time

fixing time within a test, 323-329
formatting library, MomentJS, 93
measuring time precisely, 401-404
rendering dates with DateRow component,

203
daylight saving time (DST), testing, 327
debounced requests, reducing network load

with, 187-190
declarative routing, 33
decorators, stories using, 287
Delete button in TaskForm, 344
deletion sequence, using reducers to manage,

126-132
dialogs, 349

accessibility errors found with axe Dev‐
Tools, 352

aria-haspopup attribute set to dialog, 342
custom modal dialogs, focus escaping from,

376
custom modal dialogs, trapping focus in,

377
responsive, creating with Material-UI,

205-208
TaskForm modal dialog, 335

discoverable UI, 125
dispatch function, 100
Document Object Model (see DOM)
document.querySelector, 365
DOM

checking against rules by axe-core library in
cypress-axe, 358

interaction between virtual DOM and
browser DOM, 275

react-router-dom, 34, 41

484 | Index

reducing number of scans to improve TBT,
387

render method updating virtual DOM, 416
standalone implementation for unit tests in

React Testing library, 275
updating real DOM elements not matching

virtual DOM, 416
viewing in Eruda Elements tab, 317
virtual DOM in Preact, 15

DST (daylight saving time), testing, 327
duration parameter, 151

E
effective date, 324
ejecting applications, 5
element (block element modifier naming), 141
email input type attribute, 269
empty object ({}), 127
error handlers

building centralized error handler, 113-118
ErrorContainer, 115
ErrorHandlerContext, 114
ErrorHandlerProvider component, 114
information to pass on to end user, 114
useErrorHandler hook, 116
wrapping bulk of application in Error‐

Container, 116
errors, 156

accessibility, found by eslint, 348
cross-origin resource sharing (CORS), 452
error object from SEARCH_RESULTS

action, 177
error state, 157
failures to cope with missisng properties or

data, 286
network call failures, testing in Cypress, 295
network request converted to hook, 160
not tracking in create function of useForum,

167
unauthorized access, 222

Eruda, 315-320
eslint

checking accessibility with, 346-351
configuring jsx-ally plugin, 347
errors found, 348
extending eslint with plugins, 346
jsx-a11y plugin, 346
running with rules enabled, 348

checking security with, 266-269

enabling eslint, 267
installing plugin with security rules, 267
no-dangerously-set-innerhtml rule, 267
running checks with Git pre-commit

hooks, 268
event.data.notifyMe, 462
exceptions

handling consistently in React applications,
114

network request throwing exception, 117

F
fade-out animations, 144
FCP (First Contentful Paint), 386, 424
Feed component, 218
fetch command, 157
fetch function, 171
fetch request, dropping into useMessages hook,

158
filter methods, screen object, 277
fingerprints, authenticating with, 244-251
First Contentful Paint (FCP), 386, 424
First Input Delay (FID), 388
FixedSizeList, 204
flows in web authentication, 231
focus

buttons receiving from keyboard, 349
describing currently focused elemet in

screen reader, 380
escaping from custom modal dialogs, 376
finding element receiving with docu‐

ment.querySelector, 365
function performing Tab operation, 372
listener for focusin events, 379
making clear to users where it is, 351
SkipButtons in Skip component, 371
style for skip button having focus, 364
trapping within small subset of components,

376-378
footer tag, page metadata grouped in, 335
forms

adding form to post messages to forum, 162
building in Semantic UI, 217
creating and laying out with Bootstrap,

200-202
creating and validating, 83-91

InputField component with validation,
89

Index | 485

InputField component without valida‐
tion, 87

SimpleForm with validation code, 88
SimpleForm without validation, 86

TaskForm modal dialog, 335
forwardRef function, 363
fullScreen property, dialogs in Material-UI, 206

G
Gatsby

building content-rich apps with, 6-9
directory structure, 7
plugins, getting content into the applica‐

tion, 9
prerendering pages at build time, 426

getUserConfirmation function, 53
Git pre-commit hooks, 268
GitHub repository for this book, 6
Google Analytics, tracking web vitals with, 428
GraphQL data provider for admin console,

210-215
GraphQL server, 209
GraphQL, connecting to, 179-186

creating GraphQL server, 180
making query and mutation calls from

Forum component, 183
React client code, 181
React Forum component code, 184

Grid components, 194
Gruber, John, guide to Markdown, 140

H
headings

color contrast accessibility error in, 354
h1 and lower-level headings on page, 334
SkipButtons allowing user to skip, 375

headless content management system sources
getting data with Next.js, 14

height property (CSS), 141
help system, interactive, 118-126

HelpBubble component, displaying pop-up
help message, 119

HelpSequence, adding to default App.js
code, 122

HelpSequence, coordinating HelpBubbles,
121

showing sequence of help messages when
user asks, 119

history

MemoryRouter faking browser history API,
47

undoHistory function, 80
hooks

converting network calls to, 155-161
useForum hook, 165-169

extracting API calls into custom hooks, 229
Git pre-commit hook, 268
GraphQL useQuery and useMutation calls

in custom hooks, 186
moving Redux useDispatch/useSelector

code into, 179
HTML

attributes to improve usability of login
forms, 269

converting Markdown to, 138
files generated for page components using

Gatsby, 9
landmarks in HTML5, 337
no-dangerously-set-innerhtml check in

eslint, 267
HTML elements

applying roles to, 338
custom, creating with Preact, 22-25
finding using Testing library, 275-281
landmarks, 334

HTTP status 401 (Unauthorized), 222, 226
HTTPS, 247, 263

enabling, 240-244
loading service workers with, 433, 463

I
ImageMagick, cross-testing browser visuals,

307-314
InfernoJS, 18
infographics, animating with TweenOne,

147-153
installation UI (custom) for PWAs, 470-475
installEvent.prompt method, 473
interaction design, 113-153

adding keyboard interaction, 132-135
animating with CSS classes, 140-142
animating with React Animations, 143-147
centralized error handler, 113-118
creating interactive help guide, 118-126
using Markdown for rich content, 135-140
using reducers for complex interactions,

126-132
intervals

486 | Index

IntervalTicker for clock component, 92
ticking interval format, 94

J
JavaScript

application development, 1
CSS-in-JS libraries, 143
dates not working with time zones, 327
default language for create-react-app, 2
generated file for page components using

Gatsby, 8
Selenium WebDriver, 300
use by TweenOne, consequences of, 148

Jest testing library, 275
running Selenium tests in src tree like unit

tests, 301
test loading stories and passing them to

Testing Library's render function, 287
timeout limit for tests, 400
unit test for performance written in, 401

John Gruber's original guide (to Markdown),
140

js-cookie library, 259
JSON, 157

asset-manifest.json file, 438
cypress.json file, 30
enabling eslint in package.json file, 267
proxy property in package.json file, 157
setting proxy in package.json file, 5
start and build scripts in package.json file,

11
traced interactions shown as JSON strings,

395
web vitals shown as JSON objects in Java‐

Script console, 427
webauth-json library, 232

JSX, 17
passed to render function, 277
support in Preact applications, 17

jsx-a11y plugin (eslint), 346
acccessibility rules, 347
benefits of, 351
configuring, 347

jumpiness, 387, 427
j_username as id and name of username field,

269

K
keyboard

click events handler, 350
importance of keyboard navigation, 351
navigation with, 364
responding to click events, 362
tabbing to buttons with, 349

keyboard interaction, adding to application,
132-135
pressing keys causing arrow to rotate, 134
registering callback for keydown events on

document, 133
useKeyListener hook, 132

L
landmarks, 334-337

browsers' native support for, 337
main, grouping main page content, 334
metadata, grouped in footer tag, 335
ModalQuestion confirmation box, 336
nav, identifying navigation on pages, 334
rendered by React applications, 337
versus roles, 345
TaskForm modal dialog, 335

Largest Contentful Paint (LCP), 387
lazy function, 406, 426

returning placeholder component, 406
lazy loading, 406

error without Suspense component, 407
performance gain from, 411

LCP (Largest Contentful Paint), 387
Lighthouse, 384-388

checking loading performance, 410
installing command-line, 385
Lighthouse tab with Chrome DevTools, 385
many factors affecting performance audit,

388
web vitals measured by performance audit,

386
Link components, 47

NavLink, 42
ListMessages component, 211
lists

list and listitem roles, 339
ul and li tags, 340

Loadable Components library, 426
loading flag from SEARCH_RESULTS action,

176
loading state, 157
localhost

Index | 487

configuring mobile device to access React
app on, 263

service workers on, 463
login/logout

enabling login with a token, 261
invalid login attempts, 225
Login component checking for userID

cookies, 259
making login forms browser friendly,

269-271
placing in SecurityProvider, 224
for secured routes, 61-65
using confirmaion logins, 251-257

M
Markdown

using for rich content, 135-140
John Gruber's original guide, 140

using to display help messages, 125
Material-UI library, 51

creating custom Alert dialog, 52
creating responsive dialogs, 205-208
Popper component, 120
using Material Design, 192-199

core library, 192
dialog window content, 196
dialog windows, example of, 195
icons, 192
styling with themes, 193
styling within, 192

Math.random function, fixing return value of,
321-323

Media component, 35
MemoryRouter, using for unit testing, 45-48
menus

aria-haspopup seen as, 342
expected behavior of, 341
menu and menuitem roles, 341

MessageFilter object, 212
messages

creating on admin console, 214
displaying on admin console, 212
Feed component in Semantic UI, 218
filtering by author and text on admin con‐

sole, 213
making service worker respond to, 456
posting in Semantic UI, 218
service workers receiving, 461

Messages resource, 211

metadata, 335
middleware (Redux), making network calls,

174-179
mobile devices

adding console to mobile browsers, 315-320
dialogs on, creating with Material-UI, 206
removable tokens and fingerprint sensors,

246
testing React app on Android device,

262-265
Modal component, 343
Modal-dialog div, 343

title property applied to, 343
ModalQuestion confirmation box, 336
modals, capturing scope in, 375-378
modifier (block element modifier naming), 141
MomentJS library, 93
mutation (GraphQL), 180

AddMessage mutation, 183

N
navigation

keyboard, 364
keyboard, importance of, 351
links looking like menu of options, 341
using nav landmark to identify, 334

navigation preload, 480
navigator.sendBeacon function, 428
navigator.serviceWorker.controller, 437, 461
navigator.serviceWorker.register function, 436
NavLink components, 42
Near-Field Communication (NFC), 246
network connection, checking for browser, 95
Network Only strategy, 469
network services, connecting to, 155-190

canceling network requests with tokens,
170-173

converting network calls to hooks, 155-161
reducing network load with debounced

requests, 187-190
refreshing automatically with state counters,

162-170
using Redux middleware for network calls,

173-179
networks

background sync queuing requests when
server unavailable, 465-470

combining network promises, 412-415

488 | Index

emulating offline working using Chrome
DevTools, 298

failures of, 288
creating automated tests for failure cases,

289-296
Next.js, 426

managing server and client code with, 12-14
NFC (Near-Field Communication), 246
no-dangerously-set-innerhtml rule, 267
no-onchange rule (jsx-ally), 347
no-tools approach, 15
Node

backend server for example Rect applica‐
tion, 156

building server with Razzle, 11
notifications from service workers, 459-465

notification of task finishing, 460
notification-click handler, 463
posting messages to service workers, 461
sending user back to React application, 463
showing notification with registration

object, 462
tag option, 463
title and options, 462
user granting permissions for, 459

npm
using with create-react-app, 2
using with Next.js applications, 12

npx command
calling create-razzle-app via, 10
calling create-react-app via, 2
initiating Storybook, 26
opening and running Cypress, 290
running Gatsby with, 6

nth-child selector in CSS, 205
nwb tool, building libraries with, 18-20

O
object destructuring, 169
objects

empty, 127
representing state, 68, 71

offline changes, making with background sync,
465-470

offline responses, providing, 475-480
offline testing, using Cypress, 296
onAnimationEnd callback, 145
onbeforeinstallprompt event, 472, 474
onBlur event handlers, 347

onChange events, 347
onKeyDown function, 134
online and offline events, 95
online status, monitoring for application, 95-97
onRender function, 393, 398
onUpdate function, 456
onupdatefound handler, 437
OpenSSL tool, 241
optimizations

checking impact on performance, 397
cost of, 411
costs of, 383
premature, 383
server-side rendering, cost of, 426

P
packs, 20
page exit confirmations, using Prompt for,

48-55
page reloads, surviving with Redux Persist,

104-108
password input type, avoiding on login forms,

270
PEM (Privacy-Enhanced Mail) format, 242
PeopleContainer, 36
PeopleList component, 37
performance, 383-428

combining network promises, 412-415
creating Profiler unit tests, 397-401
essentialist approach to, 383
fixes, cost of, 383
measuring precisely, 384
measuring time precisely, 401-404

measuring less than milliseconds, 402
performance.now, advantages over dates,

403
time and timeEnd functions, 402
using Date function, 401
using performance.now function, 402

measuring using browser performance
tools, 384-391
browser Performance tab, 388
Lighthouse, 384
web vital measured by Lighthouse, 386

shrinking your app with code splitting,
405-412

tracking rendering with Profiler, 391-396
using browser performance tools

metrics checked by Lighthouse, 385

Index | 489

using server-side rendering, 415-426
using web vitals, 426-428

Performance tab (in browser DevTools), 388
investigating long-running task, 389

persisted reducers, 105
PersistGate component, 105
platform authenticator, 245
Playground client (GraphQL), 181
polling a network service, 93
pop-ups

aria-haspopup attribute, 342, 349
dialogs, 375
modal, 376
usually associated with menus, 342

Popper component, 120
pre-commit hooks, 268
Preact

creating custom elements with, 22-25
creating tiny apps with, 14-18

preact-cli tool, 16
preset-react Babel plugin, 418
Privacy-Enhanced Mail (PEM) format, 242
Profiler component, 383

creating Profiler unit tests, 397-401
adding Profiler to Calendar App compo‐

nent, 398
building a unit test, 399
example Calendar application, 397
passing onRender function to child com‐

ponents, 398
rendering information captured, 400

tracking rendering with, 391-396
example Calendar application, 392
onRender function, 393
performance statistics recorded, 392
render statistics in JavaScript console,

394
trace function, 395
tracker function, 394
wrapping Calendar app and buttons in

Profiler, 393
progressive web applications (PWAs), 429-480

adding custom installation UI, 470-475
adding notifications, 458-465
building with create-react-app, 446-449
caching third-party resources, 449-453
creating service workers using Workbox,

430-446

making offline changes using background
sync, 465-470

providing offline responses, 475-480
reloading workers automatically, 453-458
with service workers, hybrid between local

and remote application, 446
projects (React), tool for building SPAs, 1
promises, 157

cancelable promises proposal from ECMA,
171

combining network promises, 412-415
parallelizing requests with Promise.all

function, 414
receiving array of promises with

Promise.all, 414
handling correctly with await, 159
returned by confirmLogin function, 254,

255
Prompt component, using for page exit confir‐

mations, 48-55
properties (custom element), 25
Provider context, 99, 100

ErrorHandlerProvider component, 114
PersistGate inside of, 105

proxies
proxying network on Android-based device,

263
proxying web services, 5
Selenium Grid server, 310

public-key cryptography, 230
generating RSA private key, 241

pulse animations, 145
PWAs (see progressive web applications)

Q
query (GraphQL), 180

Messages query, 183

R
Radium library, 143

importing animations and helper code
from, 145

keyframes method, 145
Rails, adding React to using Webpacker, 20-22
randomness, removing from tests, 320-323
Razzle, 426

building universal apps with, 10-12
React Admin library, building an admin con‐

sole, 208-215

490 | Index

React Animations library, 143-147
combining animations with merge function,

145
React Bootstrap (see Bootstrap library)
React Developer Tools

installed in browser, performance statistics
displayed, 390

installing in Chrome or Firefox, 389
React Focus Lock library, 377-378
React Modal, 378
React Scripts library, 2

keeping updated with create-react-app, 5
React Testing library, 274-282

providing headless DOM implementation,
397

React Window library, 203-205
creating large, fixed-size list, 203-205

react-helmet library, 9
react-markdown, 137
react-md-editor library, 137
react-media, 35
react-router-dom, 34, 41

BrowserRouter, 36
MemoryRouter, 46
Prompt component, 49

react-transition-group, 55
ReactDOM.hydrate method, 423
ReactDOM.render method, 423
Redirect component, 38

adding to end of Switch, 43
reducers, 67, 173

ensuring Redux code is stable, criteria for,
174

global state management with Redux, 97
reducer component for shopping basket

app, 99
persisted, 105
Redux middleware, storing

SEARCH_RESULTS in central state, 177
Redux reducers updating central state, 174
using for complex interactions, 126-132

deletionReducer example, 127-132
using to implement undo function, 76-83
using to manage complex state, 67-76

use cases, 75
Redux library

making network calls with middleware,
173-179

function signature for Redux middle‐
ware, 176

registering middleware, 177
Search component, 177

managing global state with, 97-104
Redux Persist, persisting state through page

reloads, 104-108
references, components accepting, 363
Referer header, 25
refreshes, automatic, using state counter,

162-170
refs, 254
register function, 434, 436, 455
registerRoute function, 451
registerWorker function, 434
registration, 240

physical token for authentication, 233
registration object, 456

showNotification method, 462
registration.waiting, 456
regression checks, 401
relying party (rp), 232
render function

JSX passed to, 277
passing Storybook stories to, 287

rendering
React components outside the browser in

unit tests, 397
tracking performance with Profiler, 397-401
tracking with Profiler, 391-396
using server-side rendering, 415-426

renderToString function, 420
reportWebVitals function, 427
require-text library, 180
reselect library, calculating derived state,

108-112
resources, admin application browsing

through, 209
responsive routes, 34-39
rich content, using Markdown for, 135-140
Roboto typeface, 192
roles, 337-345, 353

applying to elements with role attribute, 338
aria-haspopup attribute matching roles of

component that appears, 342
button, 342, 362
button role for trash can icon, 345
dialog, 342
lacking in eslint accessibility check, 349

Index | 491

versus landmarks, 345
list and listitem, 339
menu and menuitem, 341
rules for, 339, 349
typical roles applied to rendered HTML,

337
root certificates, 241
routing, 33-65

creating interfaces with responsive routes,
33-39

creating secured routes, 61-65
creating transitions with react-transition-

group, 55-61
moving state into routes, 40-45
registering explicit route using workbox-

routing, 443
route to cache third-party resource, 451
routes for page components generated with

Gatsby, 8
secured routes, 221
splitting code at route level, 412
synchronized routes application, 405
using MemoryRouter for unit testing, 45-48
using Prompt for page exit confirmations,

48-55
using react-router, additional code for

server-side rendering, 425
rp (relying party), 232
rules

accessibility
for jsx-ally eslint plugin, 347
running eslint with rules enabled, 348

for roles, 339, 349

S
schemas (GraphQL), 180
screen object, 277

filter methods, 277
screen readers

creating page reader with Speech API, 378
headings, handy navigation device in, 334
interpreting aria-haspopup as menu, 342
making clear purpose of dialog, 343
skip button and, 361
skipping over content, 360

search engine optimization (SEO)
Gatsby applications, 9
issues with Single Page Applications, 416

Secure Sockets Layer (SSL), 241

SecureRoute components, 63
security, 221-271

authenticating with physical tokens, 230-240
authentication with fingerprints, 244-251
checking with eslint, 266-269
creating secured routes, 61-65
enabling HTTPS, 240-244
making login forms browser friendly,

269-271
secured API approach, 221-230
secured routes and, 221
testing React app on Android device,

262-265
using confirmation logins, 251-257
using single-factor authentication, 257-262

SecurityContext, 63
SecurityProvider components, 63, 222

changing for API security model, 224
confirmation code centralized in, benefits

of, 257
confirmLogin function, 252
login and logout functions, 251
loginWithToken function, 258
onFailure function, 227

selectors, 67
associating screen events with pop-up help

messages, 121
nth-child selector in CSS, 205
Redux, 177
reselect library, calculating derived state,

108-112
efficiency of selectors, 110
summarizer selector, 109
taxer selector, 110

using to read global state, 100
Selenium library, 274

testing in browsers with, 300-306
using in cross-testing browser visuals, 307

script for screenshot captures, 308
self variable, 456, 462
self-signed certificates, 241, 244
self.clients, 464
Semantic UI, 215-220

message posting application, 217
SEO (see search engine optimization)
server-side rendering, 415-426

building server to host code, 417
converting SPA to SSR application, 48

492 | Index

fixing React App code showing broken SVG
image, 422

performance gain from, 423
React application showing broken SVG

image, 420
React code to load and render App compo‐

nent, 420
rendering to a string, not to virtual DOM,

416
renderToString function, 420

serverless applications, 412
servers, 412

(see also clients and servers)
building server to host server-side render‐

ing code, 417
service workers, 429, 473

automatically reloading, 453-458
background tasks in, 458
caching application code to work offline,

476
caching third-party resources, 449
creating notifications from, 459-465
creating using Workbox, 432-446

calling clientsClaim function from
workbox-core, 433

converting service-worker.js file to ser‐
vice worker, 437

downloading and registering service
worker, 435

problem loading page 2 with server off‐
line, 442

proving files are coming from service
worker, 441

re-opening application to activate new
worker, 444

registering route handler, 443
registering service workers, 433
registration object, 436
updating of service workers, 437

PWA including, building with create-react-
app, 446-449

queuing network requests with Background
Sync, 468-470

using to precache application code, 431
serviceWorkerRegistration.register function,

455
setConfirmCallback function, 53
setTimeout function, 188
shake animations, 145

shopping basket application example, 97-104
adding items to basket using Boots compo‐

nent, 102
Basket component, 101
calculating derived state with reselect,

108-112
SI (Speed Index), 387
side effects

reducer functions and, 174
Redux middleware code, 174

SimpleWebAuthn library, 240
single-factor authentication, 257-262
Single-Page Applications (SPAs)

building with Razzle, 11
generating with create-react-app, 2-6
performance issues, 415

Sinon library, 321
skip buttons, 360-366

document.querySelector to find element
receiving focus, 365

event handler for keyboard presses, 362
hiding button until user tabs into it, 364
inserting SkipButton near beginning of

page, 365
SkipButton component, features needed,

361
wrapping SkipButton in forwardRef func‐

tion, 363
skip-regions, adding, 367

context or group of tasks, 369
function performing back-Tab operation,

372
function to perform Tab operation, 372
how skip-region will be used, 369
not adding too many, 374
references allowing tracking of SkipButtons,

371
Skip component code, 372
Skip component that renders two SkipBut‐

tons, 370
SkipButton appearing when user tabs to/

away from section of main content, 368
SkipButton only appearing when entering

skip-region, 373
wrapping groups of tasks in Skip compo‐

nent, 370
SKIP_WAITING message to new service

worker, 456
SPAs (see Single-Page Applications)

Index | 493

Speech API, creating page reader with, 378-382
Speed Index (SI), 387
SSL (Secure Sockets Layer), 241
SSL certificates, 244

(see also certificates)
generating for application, 243
self-signed, generating, 241

SSR (see server-side rendering)
stale-while-revalidate strategy, 451
starters (Gatsby), 9
state, 67-112

complex, managing with reducers, 67-76,
127
reducer code, 70
wiring up reducer to React component,

71
data, loading, and error, 157

in custom hook, 159
derived, calculating with reselect, 108-112
forms, creating and validating, 83-91

tracking form state in formFields object,
84

global, managing with Redux, 97-104
implementing general undo function using

undo-reducer, 76-83
monitoring online status, 95-97
moving into routes, 40-45
React application responding to time of day,

91-95
Redux reducer storing SEARCH_RESULTS

in central state, 177
refreshing automatically with state counters,

162-170
surviving page reloads with Redux Persist,

104-108
updating central state in React Redux apps,

174
StaticRouter, 48, 425
storage

context as storage scope, 86
persisting global state in local storage, 82
specifying for persistence of Redux state,

105
Storybook, 274

component development with, 26-29
reusing stories inside tests, 282-288
similarities and differences between galleries

and tests, 282
using BrowserMemory in, 47

using in cross-testing browser visuals, 307
strategies (caching), 431

cache-first, 452
catch handler executed when Workbox

strategy fails, 478
in Workbox, 432
Network Only, 469
stale-while-revalidate, 451

Suspense component
fallback component provided by, 408
lazy loading error without, 407

SVG path animations, using TweenOne, 148
synchronized routes application, 405
syntax highlighters, 137

T
Tab operation, function performing, 372
tabIndex attribute, 349, 362

possible problem in Focus Lock library, 378
talkToMe screen reader example, 379-382
TaskForm

accessibility checking with cypress-axe, 359
dialog role, 342
runtime accessibility check with axe Dev‐

Tools, 352
updated component, 344

TBT (Total blocking time), 387
test-driven development (TDD), 127
testing, 273-329

adding console to mobile browsers, 315-320
in a browser, using Selenium, 300-306
browser-based, using Cypress, 29-31
creating unit tests that call Profiler, 397-401
cross-browser visuals, testing using Image‐

Magick, 307-314
loosening defiinition of test, 273
network failures without server using

Cypress, 288-296
offline, using Cypress, 296-299
React app on Android device, 262-265
time-dependent code, 323-329
using MemoryRouter for unit testing, 45
using React Testing library, 274-282

text, converting to speech, 381
themes, 193
third-party resource caching, 449-453, 475
time, 323

(see also dates and time)
measuring with a clock, 91-95

494 | Index

time function, 402
Time to interactive (TTI), 387
time zones, DST and, 327
timeEnd function, 402
timeouts, 188

Jest timeout limit for tests, 400
timestamps

creating at start and end of code with Date
function, 401

messages posted to a list, 135
trace function, 395

tiny apps, creating with Preact, 14-18
titles, 343
tokens

canceling network requests with, 170-173,
179
creating source for token, 172

fingerprint sensors as WebAuthn tokens,
244

physical, authenticating with, 230-240
using in single-factor authentication,

257-262
Toolbar component (Material-UI), 193
Total blocking time (TBT), 387
transforms (CSS), 148
TransitionGroup components, 57
transitions

creating with react-transition-group, 55-61
CSS transition property, 140

tree shaking, 410
TTI (Time to interactive), 387
TweenOne, animating infographics with,

147-153
two-factor authentication, 230-240
TypeScript

Gatsby's built-in support for, 8
generating applications with create-react-

app, 2
Typography component (Material-UI), 193

U
UIs (user interfaces), 113

(see also interaction design)
creating with React Bootstrap, 199-203
custom installation UI for PWAs, 470-475
making discoverable, 125

UMD (Universal Module Definition), 19
Unauthorized (HTTP status), 222, 226
Undo feature, creating, 76-83

undoActions and undoHistory functions, 80
unit tests, 274-282

creating Profiler unit tests, 397-401
early approaches, 274

universal apps, building with Razzle, 10-12
Universal Module Definition (UMD), 19
useCallback hook, 134
useCancelableSearch custom hook, 172
useClock hook, 91-95
useDebouncedSearch custom hook, 189
useDispatch hook, 100
useEffect hook, 94, 133, 190

fetch request inside of, 158
network call in, 172

useErrorHandler hook, 116
useForum hook, 165-169
useKeyListener hook, 132

only listening for events at body level, 135
useMessages hook, 157

adding form to post messages to forum
server, 162

useMutation hook, 184
useOnline hook, 95-97
useQuery hook, 184
User Event library, 275

simplifying generation of JavaScript events
for HTML elements, 279

user IDs
accepted by loginWithToken, 259
finding current user ID from cookies, 259
setting cookie in browser with, 258

user interfaces (see UIs)
useReducer hook, 71
useSearch custom hook, 171
useSecurity hook, 252
useSelector hook, 100
useStyles hook, 194
useUndoReducer hook, 80
UTC (Coordinated Universal Time), 324
utterances, 381

V
validation

InputField component with validation, 89
simple form with field validation, 84

Vercel platform, 14
verification, 240
vibration for notifications, 462
virtual DOM, 15

Index | 495

interaction between browser DOM and, 275
vision problems

inability to see visual styling of a compo‐
nent, 337

using landmarks instead of visual grouping
for page structure, 333

W
Web Context Accessibility Guidelines (WCAG),

331
web driver tests, 300-306
web drivers, installing for cross-browser test‐

ing, 308
Web Speech API, 381
web vitals mesured by Lighthouse, 386

Cumulative Layout Shift (CLS), 387
First Contentful Paint (FCP), 386
First Input Delay (FID), 388
Largest Contentful Paint (LCP), 387
Speed Index (SI), 387
Time to interactive (TTI), 387
Total blocking time (TBT), 387

web vitals, tracking, 426-428
browser functions recording vitals, 428
reportWebVitals function, 427
sending data back to backend store, 427

web workers, 430, 456
background tasks in, 458

WebAuthn, 221, 230
assertion, 235
attestation, 231
registration code for new device, 233
requiring HTTPS for domains other than

Localhost, 263
using fingerprint sensors as tokens, 244-251

webauthn-json
avoiding use of low-level data types with,

240
get function, assertion request passed to,

236

installing from GitHub, 232
Webpack

generating service worker from src/service-
worker.js, 438

svgr library replacing imports of SVG
images, 422

Workbox Webpack Plugin, 437
Webpack configuration, 2

keeping config file updated with create-
react-app, 5

Webpacker, adding React to Rails applications,
20-22

WHATWG specification, 24
windows, React Window library, 203-205
withMobileDialog function, 206
wizard-style login screens, avoiding, 270
Workbox Webpack Plugin, 437
Workbox, creating service workers with,

432-446
installing Workbox libraries, 432

workbox-background-sync library, 468
resending requests to queue, 469

workbox-core library, 432
workbox-navigation-preload library, 480
workbox-precaching library, 432
workbox-routing library, 432, 443

Y
yarn package manager

installing before starting Rails server, 21
use with create-react-script, 2
using with Next.js applications, 12

YubiKeys, 230
attestation request for, 244
built-in fingerprint sensors versus, 250

Z
zoomOut animations, 145

496 | Index

About the Authors
David Griffiths is an author and trainer who has written code professionally in React
for five years. React Cookbook is his sixth book. He has created applications for start‐
ups, retail stores, vehicle manufacturers, and national sports bodies. He lives and
works in the United Kingdom.

Dawn Griffiths is an author and trainer with more than 20 years of software develop‐
ment experience creating desktop and web applications. She has written about
Android development, Kotlin, and statistics.

Together, David and Dawn have written several books in the Head First series, includ‐
ing Head First Android Development and Head First Kotlin, and are contributors to
the book 97 Things Every Java Programmer Should Know. They developed the Agile
Sketchpad video course as a way of teaching fundamental concepts and techniques in
a way that keeps your brain active and engaged, and they deliver live, online training
for O’Reilly.

Colophon
The animal on the cover of React Cookbook is a great blue heron (Ardea herodias).
These birds, sometimes called “cranes,” are found across much of North America:
breeding in Canada, wintering in Mexico, and spending most of the year in the Uni‐
ted States. Great blue herons frequent both fresh- and saltwater shorelines, river
banks, and the edges of marshes, estuaries, and ponds. They can also be found forag‐
ing in meadows, agricultural fields, and other open grasslands.

Great blue herons are the largest of the herons in North America. They are character‐
ized by their long legs and neck, and a thick bill often described as “daggerlike.” They
appear blue-gray from a distance and their plumage can make them appear shaggy.
An all-white form known as the great white heron can be found in Southern Florida
and the Caribbean—though there is some debate as to whether these birds constitute
a separate species. Populations in the Eastern US will migrate to the Caribbean, Cen‐
tral America, or northern South America—by day or night, alone or in flocks. Those
living along the Pacific Coast are less likely to migrate and may reside permanently in
one location, even as far north as southeastern Alaska. Great blue herons are oppor‐
tunistic when it comes to their diet and will eat almost anything they can catch or
impale with their bills, including fish, amphibians, reptiles, small mammals, insects,
and even other birds!

When breeding, great blue herons will nest within a few miles of their feeding areas.
Colonies of several hundred pairs may build stick nests in trees, on bushes, or on the
ground near isolated swamps, islands, ponds, and lakes. These herons perform elabo‐
rate courtship and pair-bonding displays that can include a ritualized greeting, stick

https://learning.oreilly.com/library/view/head-first-android/9781492076513/
https://learning.oreilly.com/library/view/head-first-kotlin/9781491996683/
https://learning.oreilly.com/library/view/97-things-every/9781491952689/
https://www.oreilly.com/online-learning/intro-interactive-learning.html

transfers, and nest relief ceremonies. Pairs can be monogamous for a season but will
choose new partners each year. Both parents feed their young by regurgitation. Young
herons are capable of flight at about 60 days and will leave the nest within a month of
fledging.

Populations of great blue herons have been increasing in the US since 1966, with the
exception of the “great white heron” group in southern Florida where elevated mer‐
cury levels in local waterways may be contributing to a notable population decline.
Like most birds in the US, herons are legally protected by the Migratory Bird Treaty
Act. Many of the animals on O’Reilly covers are endangered; all of them are impor‐
tant to the world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Audubon. The cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Creating Applications
	1.1 Generate a Simple Application
	Problem
	Solution
	Discussion

	1.2 Build Content-Rich Apps with Gatsby
	Problem
	Solution
	Discussion

	1.3 Build Universal Apps with Razzle
	Problem
	Solution
	Discussion

	1.4 Manage Server and Client Code with Next.js
	Problem
	Solution
	Discussion

	1.5 Create a Tiny App with Preact
	Problem
	Solution
	Discussion

	1.6 Build Libraries with nwb
	Problem
	Solution
	Discussion

	1.7 Add React to Rails with Webpacker
	Problem
	Solution
	Discussion

	1.8 Create Custom Elements with Preact
	Problem
	Solution
	Discussion

	1.9 Use Storybook for Component Development
	Problem
	Solution
	Discussion

	1.10 Test Your Code in a Browser with Cypress
	Problem
	Solution
	Discussion

	Chapter 2. Routing
	2.1 Create Interfaces with Responsive Routes
	Problem
	Solution
	Discussion

	2.2 Move State into Routes
	Problem
	Solution
	Discussion

	2.3 Use MemoryRouter for Unit Testing
	Problem
	Solution
	Discussion

	2.4 Use Prompt for Page Exit Confirmations
	Problem
	Solution
	Discussion

	2.5 Create Transitions with React Transition Group
	Problem
	Solution
	Discussion

	2.6 Create Secured Routes
	Problem
	Solution
	Discussion

	Chapter 3. Managing State
	3.1 Use Reducers to Manage Complex State
	Problem
	Solution
	Discussion

	3.2 Create an Undo Feature
	Problem
	Solution
	Discussion

	3.3 Create and Validate Forms
	Problem
	Solution
	Discussion

	3.4 Measure Time with a Clock
	Problem
	Solution
	Discussion

	3.5 Monitor Online Status
	Problem
	Solution
	Discussion

	3.6 Manage Global State with Redux
	Problem
	Solution
	Discussion

	3.7 Survive Page Reloads with Redux Persist
	Problem
	Solution
	Discussion

	3.8 Calculate Derived State with Reselect
	Problem
	Solution
	Discussion

	Chapter 4. Interaction Design
	4.1 Build a Centralized Error Handler
	Problem
	Solution
	Discussion

	4.2 Create an Interactive Help Guide
	Problem
	Solution
	Discussion

	4.3 Use Reducers for Complex Interactions
	Problem
	Solution
	Discussion

	4.4 Add Keyboard Interaction
	Problem
	Solution
	Discussion

	4.5 Use Markdown for Rich Content
	Problem
	Solution
	Discussion

	4.6 Animate with CSS Classes
	Problem
	Solution
	Discussion

	4.7 Animate with React Animation
	Problem
	Solution
	Discussion

	4.8 Animate Infographics with TweenOne
	Problem
	Solution
	Discussion

	Chapter 5. Connecting to Services
	5.1 Convert Network Calls to Hooks
	Problem
	Solution
	Discussion

	5.2 Refresh Automatically with State Counters
	Problem
	Solution
	Discussion

	5.3 Cancel Network Requests with Tokens
	Problem
	Solution
	Discussion

	5.4 Make Network Calls with Redux Middleware
	Problem
	Solution
	Discussion

	5.5 Connect to GraphQL
	Problem
	Solution
	Discussion

	5.6 Reduce Network Load with Debounced Requests
	Problem
	Solution
	Discussion

	Chapter 6. Component Libraries
	6.1 Use Material Design with Material-UI
	Problem
	Solution
	Discussion

	6.2 Create a Simple UI with React Bootstrap
	Problem
	Solution
	Discussion

	6.3 View Data Sets with React Window
	Problem
	Solution
	Discussion

	6.4 Create Responsive Dialogs with Material-UI
	Problem
	Solution
	Discussion

	6.5 Build an Admin Console with React Admin
	Problem
	Solution
	Discussion

	6.6 No Designer? Use Semantic UI
	Problem
	Solution
	Discussion

	Chapter 7. Security
	7.1 Secure Requests, Not Routes
	Problem
	Solution
	Discussion

	7.2 Authenticate with Physical Tokens
	Problem
	Solution
	Discussion

	7.3 Enable HTTPS
	Problem
	Solution
	Discussion

	7.4 Authenticate with Fingerprints
	Problem
	Solution
	Discussion

	7.5 Use Confirmation Logins
	Problem
	Solution
	Discussion

	7.6 Use Single-Factor Authentication
	Problem
	Solution
	Discussion

	7.7 Test on an Android Device
	Problem
	Solution
	Discussion

	7.8 Check Security with ESlint
	Problem
	Solution
	Discussion

	7.9 Make Login Forms Browser Friendly
	Problem
	Solution
	Discussion

	Chapter 8. Testing
	8.1 Use the React Testing Library
	Problem
	Solution
	Discussion

	8.2 Use Storybook for Render Tests
	Problem
	Solution
	Discussion

	8.3 Test Without a Server Using Cypress
	Problem
	Solution
	Discussion

	8.4 Use Cypress for Offline Testing
	Problem
	Solution
	Discussion

	8.5 Test in a Browser with Selenium
	Problem
	Solution
	Discussion

	8.6 Test Cross-Browser Visuals with ImageMagick
	Problem
	Solution
	Discussion

	8.7 Add a Console to Mobile Browsers
	Problem
	Solution
	Discussion

	8.8 Remove Randomness from Tests
	Problem
	Solution
	Discussion

	8.9 Time Travel
	Problem
	Solution
	Discussion

	Chapter 9. Accessibility
	9.1 Use Landmarks
	Problem
	Solution
	Discussion

	9.2 Apply Roles, Alts, and Titles
	Problem
	Solution
	Discussion

	9.3 Check Accessibility with ESlint
	Problem
	Solution
	Discussion

	9.4 Use Axe DevTools at Runtime
	Problem
	Solution
	Discussion

	9.5 Automate Browser Testing with Cypress Axe
	Problem
	Solution
	Discussion

	9.6 Add Skip Buttons
	Problem
	Solution
	Discussion

	9.7 Add Skip Regions
	Problem
	Solution
	Discussion

	9.8 Capture Scope in Modals
	Problem
	Solution
	Discussion

	9.9 Create a Page Reader with the Speech API
	Problem
	Solution
	Discussion

	Chapter 10. Performance
	10.1 Use Browser Performance Tools
	Problem
	Solution
	Discussion

	10.2 Track Rendering with Profiler
	Problem
	Solution
	Discussion

	10.3 Create Profiler Unit Tests
	Problem
	Solution
	Discussion

	10.4 Measure Time Precisely
	Problem
	Solution
	Discussion

	10.5 Shrink Your App with Code Splitting
	Problem
	Solution
	Discussion

	10.6 Combine Network Promises
	Problem
	Solution
	Discussion

	10.7 Use Server-Side Rendering
	Problem
	Solution
	Discussion

	10.8 Use Web Vitals
	Problem
	Solution
	Discussion

	Chapter 11. Progressive Web Applications
	11.1 Create Service Workers with Workbox
	Problem
	Solution
	Discussion

	11.2 Build a PWA with Create React App
	Problem
	Solution
	Discussion

	11.3 Cache Third-Party Resources
	Problem
	Solution
	Discussion

	11.4 Automatically Reload Workers
	Problem
	Solution
	Discussion

	11.5 Add Notifications
	Problem
	Solution
	Discussion

	11.6 Make Offline Changes with Background Sync
	Problem
	Solution
	Discussion

	11.7 Add a Custom Installation UI
	Problem
	Solution
	Discussion

	11.8 Provide Offline Responses
	Problem
	Solution
	Discussion

	Index
	About the Authors

