O'REILLY"

React
Cookbook

Recipes for Mastering the React Framework

<

David Griffiths & Dawn Griffiths

9

O'REILLY"

React Cookbook

React helps you create and work on an app in just a few
minutes. But learning how to put all the pieces together is
hard. How do you validate a form? Or implement a complex
multistep user action without writing messy code? How do
you test your code? Make it reusable? Wire it to a backend?
Keep it easy to understand? The React Cookbook delivers
answers fast.

Many books teach you how to get started, understand the
framework, or use a component library with React, but very
few provide examples to help you solve particular problems.
This easy-to-use cookbook includes the example code
developers need to unravel the most common problems
when using React, categorized by topic area and problem.

You'll learn how to:
¢ Build a single-page application in React using a rich Ul

¢ Create progressive web applications that users can install
and work with offline

¢ Integrate with backend services such as REST and GraphQL

» Automatically test for accessibility problems in your
application

¢ Secure applications with fingerprints and security tokens
using WebAuthn

¢ Deal with bugs and avoid common functional and
performance problems

“Takes you through
the whole life cycle of
React development.
Eachrecipe is a concise,
easily digestible nugget
of wisdom. A must-read
for any developer!”

—Sam Warner
Software Engineer

David Griffiths is an author, trainer,
and software developer who has
written code professionally in React for
five years. He has created applications
for startups, retail stores, vehicle
manufacturers, national sports bodies,
and large software vendors.

Dawn Griffiths is an author and trainer
with more than 20 years of software
development experience creating
desktop and web applications.

Together, David and Dawn have written
several books, including Head First
Android Development and Head First
Kotlin. They also deliver live online
training for O'Reilly.

PROGRAMMING LANGUAGES / JAVASCRIPT

US $5999 CAN $7999
ISBN: 978-1-492-08584-3

781 085843

492

999

i

8

Twitter: @oreillymedia
facebook.com/oreilly

React Cookbook

Recipes for Mastering the React Framework

David Griffiths and Dawn Griffiths

Beijing + Boston « Farnham -« Sebastopol + Tokyo [K@2a{=|HNE

React Cookbook
by David Griftiths and Dawn Griffiths

Copyright © 2021 Dawn Griffiths and David Griffiths. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Amanda Quinn Indexer: Ellen Troutman-Zaig
Development Editor: Corbin Collins Interior Designer: David Futato
Production Editor: Kate Galloway Cover Designer: Karen Montgomery
Copyeditor: Kim Wimpsett lllustrator: Kate Dullea

Proofreader: Kim Sandoval
August 2021: First Edition

Revision History for the First Edition
2021-08-11: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492085843 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. React Cookbook, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-492-08584-3
[LST]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492085843

Table of Contents

Preface.oooviiiiiiii vii
1. Creating Applications.cuvvernreiii ettt iiie e iieenieannaaes 1
1.1 Generate a Simple Application 1
1.2 Build Content-Rich Apps with Gatsby 6
1.3 Build Universal Apps with Razzle 10
1.4 Manage Server and Client Code with Next.js 12
1.5 Create a Tiny App with Preact 14
1.6 Build Libraries with nwb 18
1.7 Add React to Rails with Webpacker 20
1.8 Create Custom Elements with Preact 22
1.9 Use Storybook for Component Development 26
1.10 Test Your Code in a Browser with Cypress 29
2, ROULING. o eietet ittt ittt eeenesneraestesnesneenesnesnosnnsnnss 33
2.1 Create Interfaces with Responsive Routes 33
2.2 Move State into Routes 40
2.3 Use MemoryRouter for Unit Testing 45
2.4 Use Prompt for Page Exit Confirmations 48
2.5 Create Transitions with React Transition Group 55
2.6 Create Secured Routes 61
3. Managing State.vvuiiniiretttiii it i e e aae e 67
3.1 Use Reducers to Manage Complex State 67
3.2 Create an Undo Feature 76

3.3 Create and Validate Forms 83

3.4 Measure Time with a Clock

3.5 Monitor Online Status

3.6 Manage Global State with Redux

3.7 Survive Page Reloads with Redux Persist
3.8 Calculate Derived State with Reselect

Interaction Design.ocoviniiniiiiiiiiiiiiiiiiiiiiiiies

4.1 Build a Centralized Error Handler

4.2 Create an Interactive Help Guide

4.3 Use Reducers for Complex Interactions
4.4 Add Keyboard Interaction

4.5 Use Markdown for Rich Content

4.6 Animate with CSS Classes

4.7 Animate with React Animation

4.8 Animate Infographics with TweenOne

. Connecting to Services.ovvvviieiieeniennrrnrrneeneensenanns

5.1 Convert Network Calls to Hooks

5.2 Refresh Automatically with State Counters

5.3 Cancel Network Requests with Tokens

5.4 Make Network Calls with Redux Middleware

5.5 Connect to GraphQL

5.6 Reduce Network Load with Debounced Requests

. ComponentLibraries...........coovvuiiiiiiiiiiiiiiiiieennnns

6.1 Use Material Design with Material-Ul

6.2 Create a Simple UTI with React Bootstrap

6.3 View Data Sets with React Window

6.4 Create Responsive Dialogs with Material-UT
6.5 Build an Admin Console with React Admin
6.6 No Designer? Use Semantic Ul

BT 1 11175

7.1 Secure Requests, Not Routes

7.2 Authenticate with Physical Tokens
7.3 Enable HTTPS

7.4 Authenticate with Fingerprints

7.5 Use Confirmation Logins

7.6 Use Single-Factor Authentication
7.7 Test on an Android Device

91
95
97
104
108

113
113
118
126
132
135
140
143
147

155
155
162
170
173
179
187

191
192
199
203
205
208
215

221
221
230
240
244
251
257
262

iv

| Table of Contents

7.8 Check Security with ESlint 266

7.9 Make Login Forms Browser Friendly 269

R -] R 273
8.1 Use the React Testing Library 274
8.2 Use Storybook for Render Tests 282
8.3 Test Without a Server Using Cypress 288
8.4 Use Cypress for Offline Testing 296
8.5 Test in a Browser with Selenium 300
8.6 Test Cross-Browser Visuals with ImageMagick 307
8.7 Add a Console to Mobile Browsers 315
8.8 Remove Randomness from Tests 320
8.9 Time Travel 323

9. Accessibility.iiiii 331
9.1 Use Landmarks 332
9.2 Apply Roles, Alts, and Titles 337
9.3 Check Accessibility with ESlint 346
9.4 Use Axe DevTools at Runtime 351
9.5 Automate Browser Testing with Cypress Axe 356
9.6 Add Skip Buttons 360
9.7 Add Skip Regions 367
9.8 Capture Scope in Modals 375
9.9 Create a Page Reader with the Speech API 378
10. Performance.........couvvviiiiiiiiiiiiiiiiii i 383
10.1 Use Browser Performance Tools 384
10.2 Track Rendering with Profiler 391
10.3 Create Profiler Unit Tests 397
10.4 Measure Time Precisely 401
10.5 Shrink Your App with Code Splitting 405
10.6 Combine Network Promises 412
10.7 Use Server-Side Rendering 415
10.8 Use Web Vitals 426

11. Progressive Web Applications.coviiiiiiiiiiiiiiiiiiiiiniennennn, 429
11.1 Create Service Workers with Workbox 430
11.2 Build a PWA with Create React App 446
11.3 Cache Third-Party Resources 449
11.4 Automatically Reload Workers 453

Table of Contents | v

11.5 Add Notifications

11.6 Make Offline Changes with Background Sync
11.7 Add a Custom Installation UI

11.8 Provide Offline Responses

458
465
470
475

vi

Table of Contents

Preface

This book contains a collection of code that we've found helpful over several years of
building React applications. Like recipes you would use in the kitchen, we've designed
them to be starting points or inspirations for your own code. You should adjust them
to match your situation and replace any ingredients (such as example servers) with
those that seem more appropriate for your needs. The recipes range from general web
development tips to larger pieces of code that you could generalize into libraries.

Most of the recipes are built with Create React App, as this is now the common start-
ing point for most React projects. It should be straightforward to convert each recipe
for use in Preact or Gatsby.

To keep the code compact, we have generally used hooks and functions rather than
class components. We have also used the Prettier tool to apply standard code format-
ting throughout. We have used Prettier’s default options, other than narrower indents
and line lengths, to fit the code neatly onto the printed page. You should adjust the
code format to match your preferred standard.

We have used many libraries in the creation of these recipes:

Tool/library Description Versions
Apollo Client GraphQL client 3.3.19
axios HTTP library 0.21.1
chai Unit test support library 43.0
chromedriver Browser automation tool 88.0.0
Create React App Tool for generating React apps 403
Cypress Automated test system 7.3.0
Cypress Axe Automated accessibility testing 0.12.2
Gatshy Tool for generating React apps 3.4.1
GraphQL APl query language 15.5.0

jsx-ally ESLint plugin for accessibility 6.4.1

vii

Tool/library Description

Material-Ul Component library

Node JavaScript runtime

npm The Node package manager

nvm Tool for running multiple Node environments
nwh Tool for generating React apps
Next.js Tool for generating React apps
Preact Lightweight React-like framework
Preact Custom Elements Library to create custom elements
preset-create-react-app ~ Storybook plugin

Rails Web development framework
Razzle Tool for generating React apps
React Web framework

React Media Media queries in React code
React Router (DOM) Library for managing React routes
React Testing Library Unit testing library for React
react-animations React CSS animation library

React Focus Lock Library to capture keyboard focus
react-md-editor Markdown editor

React-Redux React support library for Redux
Redux State management library
Redux-Persist Library to store Redux state

Ruby Language used by Rails
selenium-webdriver Browser testing framework
Storybook Component gallery system
TweenOne React animation library
Typescript Type-safe extension to JavaScript
Webpacker Tool for adding React to Rails apps
Workbox Library to create service workers
Yarn Another Node package manager

Versions
4114
v12.20.0
6.14.8
0.33.2
0.25.x
10.2.0
10.3.2
421
317
6.0.3.7
4.04
17.0.2
1.10.0
520
11.1.0
1.0.0
25.0
33.6
722
4.05
6.0.0
2.7.0p0
4.0.0-beta.1
6.2.9
273
412
43.0
513
1.22.10

vii | Preface

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/dogriffiths/ReactCookbook-source.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

Preface | ix

https://github.com/dogriffiths/ReactCookbook-source
mailto:bookquestions@oreilly.com

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O'Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product's documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “React Cookbook by
David Griffiths and Dawn Griffiths (O’Reilly). Copyright 2021 Dawn Griffiths and
David Griffiths, 978-1-492-08584-3”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Online Learning

o » For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil ly/react-cb.

X | Preface

mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com
https://oreil.ly/react-cb

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

We want to thank our very patient editor Corbin Collins for his help and advice over
the past year. His calm, good humor has been a steadying influence during the writ-
ing process. We would also like to thank Amanda Quinn, senior contents acquisition
editor at O’Reilly Media, for commissioning the book, and Danny Elfanbaum and the
production team at O’Reilly for making the physical and electronic versions a reality.

Special thanks also to Sam Warner and Mark Hobson for their very rigorous review
of the material in this book.

We are also grateful to the developers working on the many open source libraries that
support the React ecosystem. We are grateful to them all, particularly for the speed at
which they responded to bug reports or pleas for help.

If you find these recipes useful, it is primarily because of the work of these people. If
you find errors in the code or the text, that is entirely our responsibility.

Preface | xi

mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER1
Creating Applications

React is a surprisingly adaptable development framework. Developers use it to create
large JavaScript-heavy Single-Page Applications (SPAs) or to build surprisingly small
plug-ins. You can use it to embed code inside a Rails application or generate a
content-rich website.

In this chapter, we look at the various ways of creating a React application. We also
look at some of the more valuable tools you might want to add to your development
cycle. Few people now create their JavaScript projects from scratch. Doing so is a tedi-
ous process, involving an uncomfortable amount of tinkering and configuration. The
good news is that you can use a tool to generate the code you need in almost every
case.

Let’s take a whistle-stop tour of the many ways of starting your React journey, begin-
ning with the one most frequently used: create-react-app.

1.1 Generate a Simple Application

Problem

React projects are challenging to create and configure from scratch. Not only are
there numerous design choices to make—which libraries to include, which tools to
use, which language features to enable—but manually created applications will, by
their nature, differ from one another. Project idiosyncrasies increase the time it takes
a new developer to become productive.

Solution

create-react-app is a tool for building SPAs with a standard structure and a good
set of default options. Generated projects use the React Scripts library to build, test,
and run the code. Projects have a standard Webpack configuration and a standard set
of language features enabled.

Any developer who has worked on one create-react-app application instantly feels
at home with any other. They understand the project structure and know which lan-
guage features they can use. It is simple to use and contains all the features that a typi-
cal application requires: from Babel configuration and file loaders to testing libraries
and a development server.

If you're new to React, or need to create a generic SPA with the minimum of fuss,
then you should consider creating your app with create-react-app.

You can choose to install the create-react-app command globally on your machine,
but this is now discouraged. Instead, you should create a new project by calling
create-react-app via npx. Using npx ensures youre building your application with
the latest version of create-react-app:

$ npx create-react-app my-app

This command creates a new project directory called my-app. By default, the applica-
tion uses JavaScript. If you want to use TypeScript as your development language,
create-react-app provides that as an option:

$ npx create-react-app --template typescript my-app

Facebook developed create-react-app, so it should come as no surprise that if you
have the yarn package manager installed, then your new project will use yarn by
default. To use npm, you can either specify the --use-npm flag or change into the
directory and remove the yarn.lock file and then rerun the install with npm:

$ cd my-app

$ rm yarn.lock
$ npm install

To start your application, run the start script:
$ npm start # or yarn start

This command launches a server on port 3000 and opens a browser at the home page,
as shown in Figure 1-1.

2 | Chapter 1: Creating Applications

Edit src/App. j s and save to reload

Learn React

Figure 1-1. The generated front page

The server delivers your application as a single, large bundle of JavaScript. The code
mounts all of its components inside this <div/> in public/index.html.:

<div id="root"s></div>

The code to generate the components begins in the src/index.js file (src/index.tsx if
you're using TypeScript):

import React from 'react'

import ReactDOM from 'react-dom'

import './index.css'

import App from './App'

import reportWebVitals from './reportWebVitals'

ReactDOM. render(
<React.StrictMode>
<App />
</React.StrictMode>,
document.getElementById('root"')

)

// If you want to start measuring performance in your app, pass a function
// to log results (for example: reportiWebVitals(console.log))

// or send to an analytics endpoint. Learn more: https://bit.ly/CRA-vitals
reportWebVitals()

1.1 Generate a Simple Application | 3

This file does little more than render a single component called <App/>, which it
imports from App.js (or App.tsx) in the same directory:

import logo from './logo.svg'
import './App.css'

function App() {
return (
<div className="App">
<header className="App-header">

<p>
Edit <code>src/App.js</code> and save to reload.
</p>
<a
className="App-link"
href="https://reactjs.org"
target="_blank"
rel="noopener noreferrer"

Learn React

</header>

</div>
)
}

export default App

If you edit this file while the application is start-ed, the page in the browser auto-
matically updates.

When you're ready to ship the code to production, you need to generate a set of static
files that you can deploy on a standard web server. To do this, run the build script:

$ npm run build

The build script creates a build directory and then publishes a set of static files (see
Figure 1-2).

build

asset-manifest.json
favicon.ico
index.html
logo192.png
logo512.png
manifest.json
robots.txt
static

css

js

media

Figure 1-2. The generated contents in the build directory

4 | Chapter 1: Creating Applications

The build copies many of these files from the public/ directory. The code for the app
is transpiled into browser-compatible JavaScript and stored in one or more files in the
static/js directory. Stylesheets used by the application are stitched together and stored
in static/css. Several of the files have hashed IDs added to them so that when you
deploy your application, browsers download the latest code rather than some old
cached version.

Discussion

create-react-app is not just a tool for generating a new application but also a plat-
form to keep your React application up-to-date with the latest tools and libraries. You
can upgrade the react-scripts library as you would any other: by changing the ver-
sion number and rerunning npm install. You don’t need to manage a list of Babel
plugins or postcss libraries, or maintain a complex webpack.config.js file. The react-
scripts library manages them all for you.

The configuration is all still there, of course, but buried deep within the react-scripts
directory. In there, you will find the webpack.config.js file, containing all the Babel
configuration and file loaders that your application will use. Because it’s a library, you
can update React Scripts just as you would any other dependency.

If, however, you later decide to manage all of this yourself, you're free to do so. If you
eject the application, then everything comes back under your control:

$ npm run eject

However, this is a one-time-only change. Once you have ejected your application,
there is no going back. You should think carefully before ever ejecting an application.
You may find that the configuration you need is already available. For example, devel-
opers would often eject an application to switch to using TypeScript. The - -template
typescript option now removes the need for that.

Another common reason for ejecting was to proxy web services. React apps often
need to connect to some separate API backend. Developers used to do this by config-
uring Webpack to proxy a remote server through the local development server. You
can now avoid doing this by setting a proxy in the package.json file:

"proxy": "http://myapiserver",

If your code now contacts a URL that the server cannot find locally (/api/thing), the
react-scripts automatically proxies these requests to http://myapiserver/api/thing.

If you can, avoid ejecting your application. Look through the
create-react-app documentation to see if you can make the
change some other way.

1.1 Generate a Simple Application | 5

https://oreil.ly/99Ied

You can download the source for this recipe in JavaScript or TypeScript from the
GitHub site.

1.2 Build Content-Rich Apps with Gatsby

Problem

Content-rich sites like blogs and online stores need to serve large amounts of complex
content efficiently. A tool like create-react-app is not suitable for this kind of web-
site because it delivers everything as a single large bundle of JavaScript that a browser
must download before anything displays.

Solution
If you are building a content-rich site, consider using Gatsby.

Gatsby focuses on loading, transforming, and delivering content in the most efficient
way possible. It can generate static versions of web pages, which means that the
response times of Gatsby sites are often significantly slower than, say, those built with
create-react-app.

Gatsby has many plugins that can load and transform data efficiently from static local
data, GraphQL sources, and third-party content management systems such as
WordPress.

You can install gatsby globally, but you can also run it via the npx command:
$ npx gatsby new my-app

The gatsby new command creates a new project in a subdirectory called my-app. The
first time you run this command, it asks which package manager to use: either yarn
or npm.

To start your application, change into the new directory and run it in development
mode:

$ cd my-app
$ npm run develop

You can then open your application at http://localhost:8000, as shown in Figure 1-3.

6 | Chapter1: Creating Applications

https://oreil.ly/UK0dZ
https://oreil.ly/oOSo9

Gatsby Default Starter

Hi people
Welcome to your new Gatsby site.

Now go build something great.

(© 2021, Built with Gatsby

Figure 1-3. Gatsby page at http://localhost:8000

Gatsby projects have a straightforward structure, as shown in Figure 1-4.

Project

= LICENSE

- README.md

I gatsby-browser.js
|- gatsby-config.js
I gatsby-node.js

|- gatsby-ssr.js

I+ node_modules/

I package-lock.json
I package.json

src
components
images

pages

Figure 1-4. The Gatsby directory structure

The core of the application lives under the src directory. Each page within a Gatsby
app has its own React component. This is the front page of the default application in
index.js:

import * as React from "react"

import { Link } from "gatsby"
import { StaticImage } from "gatsby-plugin-image"

1.2 Build Content-Rich Apps with Gatsby | 7

import Layout from "../components/layout"
import Seo from "../components/seo"

const IndexPage = () => (
<Layout>

<Seo title="Home" />

<h1>H1 people</h1>

<p>Welcome to your new Gatsby site.</p>

<p>Now go build something great.</p>

<StaticImage
src="../images/gatsby-astronaut.png"
width={300}
quality={95}
formats={["AUTO", "WEBP", "AVIF"]}
alt="A Gatsby astronaut"
style={{ marginBottom: "1.45rem’ }}

/>

<p>
<Link to="/page-2/">Go to page 2</Link>

<Link to="/using-typescript/">Go to "Using TypeScript"</Link>

</p>

</Layout>
)

export default IndexPage

There is no need to create a route for the page. Each page component is automatically
assigned a route. For example, the page at src/pages/using-typescript.tsx is
automatically available at using-typescript.! This approach has multiple advantages.
First, if you have many pages, you don't need to manage the routes for them man-
ually. Second, it means that Gatsby can deliver much more rapidly. To see why, lets
look at how to generate a production build for a Gatsby application.

If you stop the Gatsby development server,” you can generate a production build with
the following:

$ npm run build

This command runs a gatsby build command, which creates a public directory. And
it is the public directory that contains the real magic of Gatsby. For each page, you
find two files. First, a generated JavaScript file:

1389 06:48 component---src-pages-using-typescript-tsx-93b78cfadc08d7d203c6.js

1 And yes, this means that Gatsby has TypeScript support built-in.

2 You can do this in most operating systems by pressing Ctrl-C.

8 | Chapter1: Creating Applications

Here you can see that the code for using-typescript.tsx is just 1,389 bytes long, which,
with the core framework, is just enough JavaScript to build the page. It is not the kind
of include-everything script that you find in a create-react-app project.

Second, there is a subdirectory for each page containing a generated HTML file. For
using-typescript.tsx, the file is called public/using-typescript/index.html, containing a
statically generated version of the web page. It contains the HTML that the using-
typescript.tsx component would otherwise render dynamically. At the end of the web
page, it loads the JavaScript version of the page to generate any dynamic content.

This file structure means that Gatsby pages load as quickly as static pages. Using the
bundled react-helmet library, you can also generate <meta/> header tags with addi-
tional features about your site. Both features are great for search engine optimization
(SEO).

Discussion

How will the content get into your Gatsby application? You might use a headless con-
tent management system, a GraphQL service, a static data source, or something else.
Fortunately, Gatsby has many plugins that allow you to connect data sources to your
application and then transform the content from other formats, such as Markdown,
into HTML.

You can find a complete set of plugins on the Gatsby website.

Most of the time, you choose the plugins you need when you first create the project.
To give you a head start, Gatsby also supports start templates. The template provides
the initial application structure and configuration. The app we built earlier uses the
default starter template, which is quite simple. The gatsby-config.js file in the root of
the application configures which plugins your application uses.

But there are masses of Gatsby starters available, preconfigured to build applications
that connect to various data sources, with preconfigured options for SEO, styling, off-
line caching, progressive web applications (PWAs), and more. Whatever kind of
content-rich application you are building, there is a starter close to what you need.

There is more information on the Gatsby website about Gatsby starters, as well as a
cheat sheet for the most useful tools and commands.

You can download the source for this recipe from the GitHub site.

1.2 Build Content-Rich Apps with Gatsby | 9

https://oreil.ly/9GwLv
https://oreil.ly/vwUd8
https://oreil.ly/f7xbF
https://oreil.ly/DzLSy

1.3 Build Universal Apps with Razzle

Problem

Sometimes when you start to build an application, it is not always clear what the sig-
nificant architectural decisions will be. Should you create an SPA? If performance is
critical, should you use server side r? You will need to decide what your deployment
platform will be and whether you will write your code in JavaScript or TypeScript.

Many tools require that you answer these questions early on. If you later change your
mind, modifying how you build and deploy your application can be complicated.

Solution

If you want to defer decisions about how you build and deploy your application, you
should consider using Razzle.

Razzle is a tool for building Universal applications: applications that can execute their
JavaScript on the server. Or the client. Or both.

Razzle uses a plugin architecture that allows you to change your mind about how you
build your application. It will even let you change your mind about building your
code in React, Preact, or some other framework entirely, like Elm or Vue.

You can create a Razzle application with the create-razzle-app command:®

$ npx create-razzle-app my-app

This command creates a new Razzle project in the my-app subdirectory. You can start
the development server with the start script:

$ cd my-app
$ npm run start

The start script will dynamically build both client code and server code and then
run the server on port 3000, as shown in Figure 1-5.

3 The name is intentionally similar to create-react-app. The maintainer of Razzle, Jared Palmer, lists create-
react-app as one of the inspirations for Razzle.

10 | Chapter 1: Creating Applications

https://oreil.ly/3pZic
https://oreil.ly/C496O

@

Welcome to Razzle

To get started, edit sxc/app. s Or src/Home. §s and save to reload.

Docs Issues Community Slack

Figure 1-5. The Razzle front page at http://localhost:3000

When you want to deploy a production version of your application, you can then run
the build script:

$ npm run build

Unlike create-react-app, this will build not just the client code but also a Node
server. Razzle generates the code in the build subdirectory. The server code will con-
tinue to generate static code for your client at runtime. You can start a production
server by running the build/server.js file using the start:prod script:

$ npm run start:prod
You can deploy the production server anywhere that Node is available.

The server and the client can both run the same code, which makes it Universal. But
how does it do this?

The client and the server have different entry points. The server runs the code in src/
server.js; the browser runs the code in src/client.js. Both server.js and client.js then ren-
der the same app using src/App.js.

If you want to run your app as an SPA, remove the src/index.js and src/server.js files.
Then create an index.html file in the public folder containing a <div/> with an ID of
root, and rebuild the application with this:

$ node_modules/.bin/razzle build --type=spa

To build your application as an SPA every time, add - - type=spa to
the start and build scripts in package.json.

You will generate a full SPA in build/public/ that you can deploy on any web server.

1.3 Build Universal Apps with Razzle | 11

Discussion

Razzle is so adaptable because it is built from a set of highly configurable plugins.
Each plugin is a higher-order function that receives a Webpack configuration and
returns a modified version. One plugin might transpile TypeScript code; another
might bundle the React libraries.

If you want to switch your application to Vue, you only need to replace the plugins
you use.

You can find a list of available plugins on the Razzle website.

You can download the source for this recipe from the GitHub site.

1.4 Manage Server and Client Code with Next.js

Problem

React generates client code—even if it generates the client code on the server. Some-
times, however, you might have a relatively small amount of application program-
ming interface (API) code that you would prefer to manage as part of the same React
application.

Solution

Next.js is a tool for generating React applications and server code. The API end-
points and the client pages use default routing conventions, making them simpler to
build and deploy than they would be if you manage them yourself. You can find full
details about Next.js on the website.

You can create a Next.js application with this command:
$ npx create-next-app my-app

This will use yarn as the package manager if you have it installed. You can force it to
use the npm package manager with the - -user-npm flag:

$ npx create-next-app --use-npm my-app

This will create a Next.js application in the my-app subdirectory. To start the app, run
the dev script (see Figure 1-6):

$ cd my-app
$ npm run dev

12 | Chapter 1: Creating Applications

https://oreil.ly/UXwPv
https://oreil.ly/rBR9r
https://nextjs.org

Welcome to Next.js!

Get started by editing pages/index. js

Documentation Learn >

Find in-depth information about Learn about Next.js in an interactive
Next.js features and AP course with quizzes!

Examples = Deploy »

Discover and deploy boilerplate Instantly deploy your Next.js site to
example Next.js projects. a public URL with Vercel.

Powered by A Vercel

Figure 1-6. A Next.js page running at http://localhost:3000

Next.js allows you to create pages without the need to manage any routing configura-
tion. If you add a component script to the pages folder, it will instantly become avail-
able through the server. For example, the pages/index.js component generates the
home page of the default application.

This approach is similar to the one taken by Gatsby,* but is taken further in Next.js to
include server-side code.

Next.js applications usually include some API server code, which is unusual for React
applications, which are often built separately from server code. But if you look inside
pages/api, you will find an example server endpoint called hello.js:

// Next.js API route support: https://nextjs.org/docs/api-routes/introduction

export default (req, res) => {
res.status(200).json({ name: 'John Doe' })

}
The routing that mounts this to the endpoint api/hello happens automatically.

4 See Recipe 1.2.

1.4 Manage Server and Client Code with Nextjs | 13

Next.js transpiles your code into a hidden directory called .next, which it can then
deploy to a service such as Next.js's own Vercel platform.

If you want, you generate a static build of your application with:
$ node_modules/.bin/next export

The export command will build your client code in a directory called out. The com-
mand will convert each page into a statically rendered HTML file, which will load
quickly in the browser. At the end of the page, it will load the JavaScript version to
generate any dynamic content.

If you create an exported version of a Next.js application, it won’t
include any server-side APIs.

\

Next.js comes with a bunch of data-fetching options, which allow you to get data
from static content, or via headless content management system (CMS) sources.

Discussion

Next.js is in many ways similar to Gatsby. Its focus is on the speed of delivery, with a
small amount of configuration. It's probably most beneficial for teams that will have
very little server code.

You can download the source for this recipe from the GitHub site.

1.5 Create a Tiny App with Preact

Problem

React applications can be large. It's pretty easy to create a simple React application
that is transpiled into bundles of JavaScript code that are several hundred kilobytes in
size. You might want to build an app with React-like features but with a much smaller
footprint.

Solution

If you want React features but don't want to pay the price of a React-size JavaScript
bundle, consider using Preact.

Preact is not React. It is a separate library, designed to be as close to React as possible
but much smaller.

14 | Chapter 1: Creating Applications

https://vercel.com
https://oreil.ly/Xmia8
https://oreil.ly/9gbJs

The reason that the React framework is so big is because of the way it works. React
components don't generate elements in the Document Object Model (DOM) of the
browser directly. Instead, they build elements within a virtual DOM and then update
the actual DOM at frequent intervals. Doing so allows basic DOM rendering to be
fast because the actual DOM needs to be updated only when there are actual changes.
However, it does have a downside. React’s virtual DOM requires a lot of code to keep
it up-to-date. It needs to manage an entire synthetic event model, which parallels the
one in the browser. For this reason, the React framework is large and can take some
time to download.

One way around this is to use techniques such as SSR, but SSR can be complex to
configure.” Sometimes, you want to download a small amount of code. And that’s why
Preact exists.

The Preact library, although similar to React, is tiny. At the time of writing, the main
Preact library is around 4KB, which is small enough that it’s possible to add React-
like features to web pages in barely more code than is required to write native
JavaScript.

Preact lets you choose how to use it: as a small JavaScript library included in a web
page (the no-tools approach) or as a full-blown JavaScript application.

The no-tools approach is basic. The core Preact library does not support JSX, and you
will have no Babel support, so you will not be able to use modern JavaScript. Here is
an example web page using the raw Preact library:

<html>
<head>
<title>No Tools!</title>
<script src="https://unpkg.com/preact?umd"></script>
</head>
<body>
<h1>No Tools Preact App!</hi>
<div id="root"></div>
<script>
var h = window.preact.h;
var render = window.preact.render;

var mount = document.getElementById('root');

render(
h('button',
{
onClick: function() {
render(h('div', null, 'Hello'), mount);

}

5 See Recipes 1.2 and 1.3.

1.5 Create a Tiny App with Preact | 15

}’
"Click!"),
mount
);
</script>
</body>
</html>
This application will mount itself at the <div/> with an ID of root, where it will dis-
play a button. When you click the button, it will replace the contents of the root div

with the string "Hello", which is about as basic as a Preact app can be.

You would rarely write an application in this way. In reality, you would create a sim-
ple build-chain that would, at the least, support modern JavaScript.

Preact supports the entire spectrum of JavaScript applications. At the other extreme,
you can create a complete Preact application with preact-cli.

preact-cli is a tool for creating Preact projects and is analogous to tools like
create-react-app. You can create a Preact application with:

$ npx preact-cli create default my-app

This command uses the default template. Other templates are avail-
able for creating projects using, for example, Material components
or TypeScript. See the Preact GitHub page for more information.

This command will create your new Preact application in the my-app subdirectory. To
start it, run the dev script:

$ cd my-app
$ npm run dev

The server will run on port 8080, as shown in Figure 1-7.

Preact App Home Me John

Home

This is the Home component.

Figure 1-7. A page from Preact

The server generates a web page, which calls back for a JavaScript bundle made from
the code in src/index.js.

16 | Chapter 1: Creating Applications

https://oreil.ly/IVQua

You now have a full-scale React-like application. The code inside the Home component
(src/routes/home/index.js), for example, looks very React-like, with full JSX support:

import { h } from 'preact';
import style from './style.css';

const Home = () => (
<div class={style.home}>
<h1>Home</h1>
<p>This is the Home component.</p>
</div>

);
export default Home;

The only significant difference from a standard React component is that a function
called h is imported from the preact library, instead of importing React from the
react library.

The JSX within the Preact code will be converted into a series of
calls to the h function, which is why it needs to be imported. For
the same reason, applications created with create-react-app prior
to version 17 also required the import of the react object. From
version 17 create-react-app switched to use the JSX transform,
doing away for the need to import react every time. Its always
possible that future versions of Preact will make a similar change.

However, the size of the application has increased: it is now a little over 300KB. That’s
pretty large, but we are still in dev mode. To see the real power of Preact, stop the dev
server by pressing Ctrl-C, and then run the build script:

$ npm run build

This command will generate a static version of the application in the build directory.
First, this will have the advantage of creating a static copy of the front page, which
will render quickly. Second, it will remove all unused code from the application and
shrink everything down. If you serve this built version of the app on a standard web
server, the browser will transfer only about 50-60KB when it’s opened.

Discussion

Preact is a remarkable project. Despite working in a very different way from React, it
provides virtually the same power at a fraction of the size. And the fact that you can
use it for anything from the lowliest inline code to a full-blown SPA means it is well
worth considering if code size is critical to your project.

You can find out more about Preact on the Preact website.

1.5 Create a Tiny App with Preact | 17

https://oreil.ly/HOwS9
https://preactjs.com

You can download the source for the no-tools example and the larger Preact example
from the GitHub site.

If you would like to make Preact look even more like React, see the preact-compat
library.

Finally, for a project that takes a similar approach to Preact, look at Inferno]Js.

1.6 Build Libraries with nwb

Problem

Large organizations often develop several React applications at the same time. If
youre a consultancy, you might create applications for multiple organizations. If
you’re a software house, you might create various applications that require the same
look and feel, so you will probably want to build shared components to use across
several applications.

When you create a component project, you need to create a directory structure, select
a set of tools, choose a set of language features, and create a build chain that can bun-
dle your component in a deployable format. This process can be just as tedious as
manually creating a project for an entire React application.

Solution

You can use the nwb toolkit to create complete React applications or single React com-
ponents. It can also create components for use within Preact and InfernoJS projects,
but we concentrate on React components here.

To create a new React component project, you will first need to install the nwb tool
globally:

$ npm install -g nwb
You can then create a new project with the nwb command:

$ nwb new react-component my-component

If instead of creating a single component, you want to create an
entire nwb application, you can replace react-component in this
command with react-app, preact-app, or inferno-app to create
an application in the given framework. You can also use vanilla-
app if you want to create a basic JavaScript project without a
framework.

18 | Chapter 1: Creating Applications

https://oreil.ly/N9PKf
https://oreil.ly/F0tW9
https://oreil.ly/3YXOv
https://infernojs.org

When you run this command, it will ask you several questions about the type of
library you want to build. For example, it will ask you if you're going to build ECMA-
Script modules:

Creating a react-component project...

? Do you want to create an ES modules build? (Y/n)
This option allows you to build a version including an export statement, which Web-
pack can use to decide if it needs to include the component in a client application.
You will also be asked if you want to create a Universal Module Definition (UMD):

? Do you want to create a UMD build? (y/N)

That’s useful if you want to include your component in a <script/> within a web
page. For our example, we won’t create a UMD build.

After the questions, the tool will create an nwb component project inside the my-
component subdirectory. The project comes with a simple wrapper application that
you can start with the start script:

$ cd my-component
$ npm run start

The demo application runs on port 3000, as shown in Figure 1-8.

app Demo

Welcome to React components

Figure 1-8. An nwb component

The application will contain a single component defined in src/index.js:

import React, { Component } from 'react'

export default class extends Component {
render() {
return (
<div>
<h2>Welcome to React components</h2>
</div>
)
}
}

You can now build the component as you would any React project. When you are
ready to create a publishable version, type:

$ npm run build

The built component will be in lib/index.js, which you can deploy to a repository for
use within other projects.

1.6 Build Libraries withnwb | 19

Discussion

For further details on creating nwb components, see the nwb guide to developing com-
ponents and libraries.

You can download the source for this recipe from the GitHub site.

1.7 Add React to Rails with Webpacker

Problem

The Rails framework was created before interactive JavaScript applications became
popular. Rails applications follow a more traditional model for web application devel-
opment, in which it generates HTML pages on the server in response to browser
requests. But sometimes, you may want to include more interactive elements inside a
Rails application.

Solution

You can use the Webpacker library to insert React applications into Rails-generated
web pages. To see how it works, let’s first generate a Rails application that includes
Webpacker:

$ rails new my-app --webpack=react

This command will create a Rails application in a directory called my-app that is pre-
configured to run a Webpacker server. Before we start the application, let’s go into it
and generate an example page/controller:

$ cd my-app
$ rails generate controller Example index

That code will generate this template page at app/views/example/index.html.erb:

<h1>Example#index</h1>
<p>Find me in app/views/example/index.html.erb</p>

Next, we need to create a small React application that we can insert into this page.
Rails inserts Webpacker applications as packs: small JavaScript bundles within Rails.
We'll create a new pack in app/javascript/packs/counter.js containing a simple counter
component:

import React, { useState } from 'react'
import ReactDOM from 'react-dom'

const Counter = (props) => {
const [count, setCount] = useState(0)
return (
<div className="Counter">
You have clicked the button {count} times.

20 | Chapter 1: Creating Applications

https://oreil.ly/XHrQa
https://oreil.ly/XHrQa
https://oreil.ly/P4Xzj

<button onClick={() => setCount((c) => c + 1)}>Click!</button>
</div>
)
}

document.addEventListener('DOMContentLoaded', () => {
ReactDOM. render(
<Counter />,
document.body.appendChild(document.createElement('div'))
)
b

This application updates a counter every time a user clicks the button.

We can now insert the pack into the web page by adding a single line of code to the
template page:

<h1>Example#index</h1>
<p>Find me in app/views/example/index.html.erb</p>
<%= javascript_pack_tag 'counter' %>

Finally, we can run the Rails server on port 3000:

$ rails server

At the time of writing, you will need the yarn package manager
installed when starting the server. You can install yarn globally
\ with npm install -g yarn.

You will see the http://localhost:3000/example/index.html page in Figure 1-9.

Example#index

Find me in app/views/example/index .html.erb

You have clicked the button 3 times

Figure 1-9. A React app embedded in http://localhost:3000/example/index.html

Discussion

Behind the scenes, as you have probably guessed, Webpacker transforms the applica-
tion using a copy of Webpack, which you can configure with the app/config/
webpacker.yml config file.

1.7 Add React to Rails with Webpacker | 21

Webpacker is used alongside Rails code rather than as a replacement for it. You
should consider using it if your Rails application requires a small amount of addi-
tional interactivity.

You can find out more about Webpacker on the Webpacker GitHub site.

You can download the source for this recipe from the GitHub site.

1.8 Create Custom Elements with Preact

Problem

There are sometimes circumstances where it is challenging to add React code into
existing content. For example, in some CMS configurations, users are not allowed to
insert additional JavaScript into the body of a page. In these cases, it would be helpful
to have some standardized way to insert JavaScript applications safely into a page.

Solution

Custom elements are a standard way of creating new HTML elements you can use on
a web page. In effect, they extend the HTML language by making more tags available
to a user.

This recipe looks at how we can use a lightweight framework like Preact to create cus-
tom elements, which we can publish on a third-party server.

Let’s begin by creating a new Preact application. This application will serve the cus-
tom element that we will be able to use elsewhere:*

$ preact create default my-element

Now we will change into the app’s directory and add the preact-custom-element
library to the project:

$ cd my-element
$ npm install preact-custom-element

The preact-custom-element library will allow us to register a new custom HTML
element in a browser.

Next, we need to modify the src/index.js file of the Preact project so that it registers a
new custom element, which we will call components/Converter/index.js:

import register from 'preact-custom-element'
import Converter from './components/Converter'

6 For more information on creating Preact applications, see Recipe 1.5.

22 | Chapter 1: Creating Applications

https://oreil.ly/aYZ0h
https://oreil.ly/H3q1F

register(Converter, 'x-converter', ['currency'])

The register method tells the browser that we want to create a new custom HTML
element called <x-converter/> that has a single property called currency, which we
will define in src/components/Converter/index.js:

import { h } from 'preact'
import { useEffect, useState } from 'preact/hooks'
import 'style/index.css'

const rates = { gbp: 0.81, eur: 0.92, jpy: 106.64 }

export default ({ currency = 'gbp' }) => {
const [curr, setCurr] = useState(currency)
const [amount, setAmount] = useState(0)

useEffect(() => {
setCurr(currency)
}, [currency])

return (
<div className="Converter">
<p>
<label htmlFor="currency">Currency: </label>
<select

name="currency"
value={curr}
onChange={(evt) => setCurr(evt.target.value)}

>
{Object.keys(rates).map((r) => (
<option value={r}>{r}</option>
N}
</select>
</p>

<p className="Converter-amount">
<label htmlFor="amount">Amount: </label>

<input
name="amount"
size={8}

type="number"
value={amount}
onInput={(evt) => setAmount(parseFloat(evt.target.value))}
/>
</p>
<p>
Cost:
{((amount || ©) / rates[curr]).toLocaleString('en-US', {
style: 'currency',
currency: 'USD',
b
</p>

1.8 Create Custom Elements with Preact | 23

</div>

To be compliant with the custom elements specification, we must
choose a name for our element that begins with a lowercase letter,
does not include any uppercase letters, and contains a hyphen.”
This convention ensures the name does not clash with any stan-
dard element name.

Our Converter component is a currency converter, which in our example uses a fixed
set of exchange rates. If we now start our Preact server:

$ npm run dev

the JavaScript for the custom element will be available at http://localhost:8080/
bundle.js.

To use this new custom element, let’s create a static web page somewhere with this
HTML:

<html>
<head>
<script src="https://unpkg.com/babel-polyfill/dist/polyfill.min.js">
</script>
<script src="https://unpkg.com/@webcomponents/webcomponentsjs">
</script>
<!-- Replace this with the address of your custom element -->
<script type="text/javascript" src="http://localhost:8080/bundle.js">
</script>
</head>
<body>
<h1>Custom Web Element</h1>
<div style="float: right; clear: both">
</-- This tag will insert the Preact app -->
<x-converter currency="jpy"/>
</div>
<p>This page contains an example custom element called
<code>&1lt;x-converter/></code>,
which is being served from a different location</p>
</body>
</html>

This web page includes the definition of the custom element in the final <script/> of
the <head/> element. To ensure that the custom element is available across both new
and old browsers, we also include a couple of shims from unpkg.com.

7 See the WHATWG specification for further details on custom elements and naming conventions.

24 | Chapter 1: Creating Applications

https://oreil.ly/KOjmP

Now that we've included the custom element code in the web page, we can insert
<x-converter/> tags into the code, as if they are part of standard HTML. In our
example, we are also passing a currency property to the underlying Preact
component.

Custom element properties are passed to the underlying compo-
nent with lowercase names, regardless of how we define them in
“ the HTML.

We can run this page through a web server, separate from the Preact server.
Figure 1-10 shows the new custom element.

Custom Web Element
This page contains an example custom element
called <x-converter/>, which is being served Currency:
from a different location
Amount: [100] =
Cost:$0.94

Figure 1-10. The custom element embedded in a static page

Discussion

The custom element does not need to be on the same server as the web page that uses
it, which means that we can use custom elements to publish widgets for any web
page. Because of this, you might want to check the Referer header on any incoming
request to the component to prevent any unauthorized usage.

Our example is serving the custom element from Preact’s development server. For a
production release, you would probably want to create a static build of the compo-
nent, which will likely be significantly smaller.?

You can download the source for this recipe from the GitHub site.

8 For further details on shrinking Preact downloads, see Recipe 1.5.

1.8 Create Custom Elements with Preact | 25

https://oreil.ly/aB7BP

1.9 Use Storybook for Component Development

Problem

React components are the stable building material of React applications. If we write
them carefully, we can reuse the components in other React applications. But when
you build a component, it takes work to check how it works in all circumstances. For
example, in an asynchronous application, React might render the component with
undefined properties. Will the component still render correctly? Will it show errors?

But if you are building components as part of a complex application, it can be tough
to create all of the situations with which your component will need to cope.

Also, if you have specialized user experience (UX) developers working on your team,
it can waste a lot of time if they have to navigate through an application to view the
single component they have in development.

It would be helpful if there were some way of displaying a component in isolation and
passing it example sets of properties.

Solution

Storybook is a tool for displaying libraries of components in various states. You could
describe it as a gallery for components, but that’s probably selling it short. In reality,
Storybook is a tool for component development.

How do we add Storybook to a project? Let’s begin by creating a React application
with create-react-app:

$ npx create-react-app my-app
$ cd my-app

Now we can add Storybook to the project:
$ npx sb init

We then start the Storybook server with yarn or npm:
$ npm run storybook

Storybook runs a separate server on port 9000, as you can see in Figure 1-11. When
you use Storybook, there is no need to run the actual React application.

26 | Chapter 1: Creating Applications

a Storybook = Canvas Docs @ a M o & =2 M
Q Find components !
"EXAMPLE ¢
Welcome to Storybook
+ @ Button
+ @ Header Storybook helps you build Ul components in isolation frem your app’s business logic, data, and context. That
+ @ Page makes it easy to develop hard-to-reach states. Save these Ul states as stories to revisit during development,

testing, or QA.

Browse example stories now by navigating to them in the sidebar. View their code in the src/stories
directory to learn how they work. We recommend building Uls with a component-driven process starting with

atomic components and ending with pages.

CONFIGURE

". Presets for popular tools : Build configuration
Easy setup for TypeScript, SCSS and
more.

& Styling o) Data
How to load and configure CSS Providers and mocking for data
libraries libraries

How to customize webpack and Babel

Figure 1-11. The welcome page in Storybook

Storybook calls a single component rendered with example properties a story. The
default installation of Storybook generates sample stories in the src/stories directory

of the application. For example, this is src/stories/Button.stories.js:

import React from 'react';
import { Button } from './Button';

export default {
title: 'Example/Button',
component: Button,
argTypes: {
backgroundColor: { control: 'color' },
1,
b

const Template = (args) => <Button {...args} />;

export const Primary = Template.bind({});
Primary.args = {

primary: true,

label: 'Button',

}

export const Secondary = Template.bind({});
Secondary.args = {

1.9 Use Storybook for Component Development | 27

label: 'Button',
b

export const Large = Template.bind({});
Large.args = {

size: 'large',

label: 'Button',
b

export const Small = Template.bind({});
Small.args = {

size: 'small',

label: 'Button',
b

Storybook watches for files named *.stories.js in your source folder, and it doesn’t care
where they are, so you are free to create them where you like. One typical pattern
places the stories in a folder alongside the component they are showcasing. So if you
copy the folder to a different application, you can include stories as living

documentation.

Figure 1-12 shows what Button.stories.js looks like in Storybook.

ﬂStorybook ‘m Canvas Docs R a Q KN B e

| Q Find components B) m

"EXAMPLE 2

@ Introduction
~ @ Button
[l Secondary
[l Large
£ Small
+ @ Header
» @ Page

Controls (4) Actions
Name Control

backgroundColor Choose color 133

primary (true VFalse

label* Button

na
£
=]

Q

Figure 1-12. An example story

Discussion

Despite its simple appearance, Storybook is a productive development tool. It allows
you to focus on one component at a time. Like a kind of visual unit test, it enables

28 | Chapter 1: Creating Applications

you to try a component in a series of possible scenarios to check that it behaves
appropriately.

Storybook also has a large selection of additional add-ons.

The add-ons allow you to:

o Check for accessibility problems (addon-ally)
o Add interactive controls for setting properties (Knobs)
o Include inline documentation for each story (Docs)

 Record snapshots of the HTML to test the impact of changes (Storyshots)

And do much more.
For further information about Storybook, see the website.

You can download the source for this recipe from the GitHub site.

1.10 Test Your Code in a Browser with Cypress

Problem

Most React projects include a testing library. The most common is probably
@testing-library/react, which comes bundled with create-react-app, or
Enzyme, which is used by Preact.

But nothing quite beats testing code in a real browser, with all the additional compli-
cations that entails. Traditionally, browser testing can be unstable and requires fre-
quent maintenance as you need to upgrade browser drivers (such as ChromeDriver)
every time you upgrade the browser.

Add to that the issue of generating test data on a backend server, and browser-based
testing can be complex to set up and manage.

Solution

The Cypress testing framework avoids many of the downsides of traditional browser
testing. It runs in a browser but avoids the need for an external web-driver tool.
Instead, it communicates directly with a browser, like Chrome or Electron, over a
network port and then injects JavaScript to run much of the test code.

Let’s create an application create-react-app to see how it works:
$ npx create-react-app --use-npm my-app

Now let’s go into the app directory and install Cypress:

1.10 Test Your Code in a Browser with Cypress | 29

https://oreil.ly/3kSVa
https://storybook.js.org
https://oreil.ly/GyxTX
https://www.cypress.io

$ cd my-app

$ npm install cypress --save-dev
Before we run Cypress, we need to configure it so that it knows how to find our appli-
cation. We can do this by creating a cypress.json file in the application directory and
telling it the uniform resource locator (URL) of our app:

{
"baseUrl": "http://localhost:3000/"

}

Once we have started the main application:
$ npm start

we can then open Cypress:
$ npx cypress open

The first time you run Cypress, it will install all the dependencies it needs. We'll now
create a test in the cypress/integration directory called screenshot.js, which opens the
home page and takes a screenshot:

describe('screenshot', () => {
it('should be able to take a screenshot', () => {
cy.visit('/");
cy.screenshot('frontpage');
b;
bs

You'll notice that we wrote the tests in Jest format. Once you save the test, it will
appear in the main Cypress window, shown in Figure 1-13.

[BON | JUsers/davidg/Desktop/ReactCookbook/code/chapteri/cra-js-cypress
cra-js-cypress @ Support = Docs alogin
<> Tests & Runs £ Settings & Chrome 81~
Q, Search... » Run all specs

~ INTEGRATION TESTS

[screenshot.js

Version 4.6.0 | Changelog

Figure 1-13. The Cypress window

30 | Chapter1: Creating Applications

If you double-click the test, Cypress will run it in a browser. The front page of the
application will open, and the test will save a screenshot to cypress/screenshots/screen-
shot.js/frontpage.png.

Discussion

Here are some example commands you can perform with Cypress:

Command Description

cy.contains('Fred') Finds the element containing Fred
cy.get('.Norman').click() Clicks the element with class Norman
cy.get('input').type('HL!") Types "Hi!" into the input field
cy.get('h1').scrollIntoView() Scrollsthe <h1/> into view

These are just some of the commands that interact with the web page. But Cypress
has another trick up its sleeve. Cypress can also modify the code inside the browser to
change the time (cy.clock()), the cookies (cy.setCookie()), the local storage
(cy.clearLocalStorage()) and—most impressively—fake requests and responses to
an API server.

It does this by modifying the networking functions that are built into the browser so
that this code:

cy.route("/api/server?*", [{some: 'Data'}])

will intercept any requests to a server endpoint beginning /api/server? and return the
JSON array [{some: 'Data'}].

Simulating network responses can completely change the way teams develop applica-
tions because it decouples the frontend development from the backend. The browser
tests can specify what data they need without having to create a real server and
database.

To learn more about Cypress, visit the documentation site.

You can download the source for this recipe from the GitHub site.

1.10 Test Your Code in a Browser with Cypress | 31

https://oreil.ly/eX09t
https://oreil.ly/3j8vI

CHAPTER 2
Routing

This chapter looks at recipes using React routes and the react-router-dom library.

react-router-dom uses declarative routing, which means you treat routes as you
would any other React component. Unlike buttons, text fields, and blocks of text,
React routes have no visual appearance. But in most other ways, they are similar to
buttons and blocks of text. Routes live in the virtual DOM tree of components. They
listen for changes in the current browser location and allow you to switch on and
switch off parts of the interface. They are what give SPAs the appearance of multipage
applications.

Used well, they can make your application feel like any other website. Users will be
able to bookmark sections of your application, as they might bookmark a page from
Wikipedia. They can go backward and forward in their browser history, and your
interface will behave properly. If you are new to React, then it is well worth your time
to look deeply into the power of routing.

2.1 Create Interfaces with Responsive Routes

Problem

People use most applications on both mobile and laptop computers, which means
you probably want your React application to work well across all screen sizes. Making
your application responsive involves relatively simple CSS changes to adjust the siz-
ing of text and screen layout, and more substantial changes, which can give mobile
and desktop users very different experiences when navigating around your site.

Our example application shows the names and addresses of a list of people. In
Figure 2-1, you can see the application running on a desktop machine.

33

Kip Russel

Carter Heaney
Harrison Swift
28977789
Carter Heaney 1095 Johnny Ridge
Lynchstad
lowa
Evert Conroy 81452-3853
Clothing

Hoyt Kautzer

Miles Kerluke

Tiara Stoltenberg

Dovie Terry

Madelynn Berge

Figure 2-1. The desktop view of the app

But this layout won't work very well on a mobile device, which might have space to
display either the list of people or the details of one person, but not both.

What can we do in React to provide a custom navigation experience for both mobile
and desktop users without creating two completely separate versions of the
application?

Solution

We're going to use responsive routes. A responsive route changes according to the size
of the user’s display. Our existing application uses a single route for displaying the
information for a person: /people/:id.

When you navigate to this route, the browser shows the page in Figure 2-1. You can
see the people listed down the left side. The page highlights the selected person and
displays their details on the right.

We're going to modify our application to cope with an additional route at /people.
Then we will make the routes responsive so that the user will see different things on
different devices:

Route Mobile Desktop
/people Shows list of people Redirects to peaple:someld
people:id Shows details for :id ~ Shows list of people and details of :id

What ingredients will we need to do this? First, we need to install react-router-dom
if our application does not already have it:

34 | Chapter2:Routing

$ npm install react-router-dom

The react-router-dom library allows us to coordinate the browser’s current location
with the state of our application. Next, we will install the react-media library, which
allows us to create React components that respond to changes in the display screen
size:

$ npm install react-media

Now we're going to create a responsive PeopleContainer component that will man-
age the routes we want to create. On small screens, our component will display either
a list of people or the details of a single person. On large screens, it will show a com-
bined view of a list of people on the left and the details of a single person on the right.

The PeopleContainer will use the Media component from react-media. The Media
component performs a similar job to the CSS @media rule: it allows you to generate
output for a specified range of screen sizes. The Media component accepts a queries
property that allows you to specify a set of screen sizes. We're going to define a single
screen size—small—that we'll use as the break between mobile and desktop screens:

<Media queries={{
small: "(max-width: 700px)"
13>

</Media>
The Media component takes a single child component, which it expects to be a func-
tion. This function is given a size object that can be used to tell what the current

screen size is. In our example, the size object will have a small attribute, which we
can use to decide what other components to display:

<Media queries={{
small: "(max-width: 700px)"
13>
{
size => size.small ? [SMALL SCREEN COMPONENTS] : [BIG SCREEN COMPONENTS]

}
</Media>
Before we look at the details of what code we are going to return for large and small
screens, it's worth taking a look at how we will mount the PeopleContatiner in our
application. The following code is going to be our main App component:

import { BrowserRouter, Link, Route, Switch } from 'react-router-dom'
import PeopleContainer from './PeopleContainer'

function App() {
return (
<BrowserRouter>
<Switch>
<Route path="/people">

2.1 Create Interfaces with Responsive Routes | 35

<PeopleContainer />
</Route>
<Link to="/people">People</Link>
</Switch>
</BrowserRouter>
)
}

export default App

We are using the BrowserRouter from react-router-dom, which links our code and
the HTMLS5 history API in the browser. We need to wrap all of our routes in a Router
to give them access to the browser’s current address.

Inside the BrowserRouter, we have a Switch. The Switch looks at the components
inside it, looking for a Route that matches the current location. Here we have a single
Route matching paths that begin with /people. If that’s true, we display the People
Contatner. If no route matches, we fall through to the end of the Switch and render a
Link to the /people path. So when someone goes to the front page of the application,
they see only a link to the People page.

The code will match routes beginning with the specified path,
unless the exact attribute is specified, in which case a route will be
displayed only if the entire path matches.

So we know if were in the PeopleContainer, were already on a route that begins
with /people/.... If we're on a small screen, we need to either show a list of people or
display the details of a single person, but not both. We can do this with Switch:

<Media queries={{
small: "(max-width: 700px)"
13>
{
size => size.small ? [SMALL SCREEN COMPONENTS]
<Switch>
<Route path='/people/:id'>
<Person/>
</Route>
<PeopleList/>
</Switch>
: [BIG SCREEN COMPONENTS]
}

</Media>

On a small device, the Media component will call its child function with a value that
means size.small is true. Our code will render a Switch that will show a Person

36 | Chapter2:Routing

component if the current path contains an id. Otherwise, the Switch will fail to
match that Route and will instead render a PeopleList.

Ignoring the fact that we've yet to write the code for large screens, if we were to run
this code right now on a mobile device and hit the People link on the front page, we
would navigate to people, which could cause the application to render the PeopleList
component. The PeopleList component displays a set of links to people with paths
of the form /people/id.! When someone selects a person from the list, our components
are re-rendered, and this time PeopleContatiner displays the details of a single person
(see Figure 2-2).

Kip Russel
Carter Heaney
Harrison Swift 28877789
Carter Heaney 1095hJ?h§nV Ridge
ynchsta
lowa
Evert Conroy 81452-3853
Clothing
Hoyt Kautzer
Miles Kerluke

Tiara Stoltenberg

Dovie Terry

Madelynn Berge

Figure 2-2. In mobile view: the list of people (left) that links to a person’s details (right)

So far, so good. Now we need to make sure that our application still works for larger
screens. We need to generate responsive routes in PeopleContainer for when
size.small is false. If the current route is of the form /people/id, we can display the
PeopleList component on the left and the Person component on the right:
<div style={{display: 'flex'}}>
<PeopleList/>

<Person/>
</div>

1 We won't show the code for the PeopleList here, but it is available on GitHub.

2.1 Create Interfaces with Responsive Routes | 37

https://oreil.ly/tZzMD

Unfortunately, that doesn’t handle the case where the current path is /people. We need
another Switch that either will display the details for a single person or will redirect
to /people/first-person-id for the first person in the list of people.
<div style={{display: 'flex'}}>
<PeopleList/>
<Switch>
<Route path='"/people/:id'>
<Person/>
</Route>
<Redirect to={"/people/${people[0].id} }/>
</Switch>
</div>
The Redirect component doesn’t perform an actual browser redirect. It simply
updates the current path to /people/first-person-id, which causes the PeopleContainer
to re-render. It’s similar to making a call to history.push() in JavaScript, except it
doesn’t add an extra page to the browser history. If a person navigates to /people, the
browser will simply change its location to /people/first-person-id.

If we were now to go to /people on a laptop or larger tablet, we would see the list of
people next to the details for the first person (Figure 2-3).

Kip Russel

Carter Heaney

Harrison Swift

28977789

Carter Heaney 1095 Johnny Ridge
Lynchstad
lowa

Evert Conroy 81452-3853
Clothing

Hoyt Kautzer

Miles Kerluke

Tiara Stoltenberg

Dovie Terry

Madelynn Berge

Figure 2-3. What you see at http://localhost:3000/people on a large display

Here is the final version of our PeopleContainer:

import Media from 'react-media’

import { Redirect, Route, Switch } from 'react-router-dom'
import Person from './Person'

import PeoplelList from './PeoplelList'

import people from './people'

38 | Chapter2:Routing

const PeopleContainer = () => {
return (
<Media
queries={{
small: '(max-width: 700px)’',
1
>
{(size) =>
size.small ? (
<Switch>
<Route path="/people/:1d">
<Person />
</Route>
<PeopleList />
</Switch>
: (
<div style={{ display: 'flex' }}>
<PeopleList />
<Switch>
<Route path="/people/:id">
<Person />
</Route>
<Redirect to={'/people/${people[0].1d} '} />
</Switch>
</div>
)
}
</Media>
)
}

)

export default PeopleContainer

Discussion

Declarative routing inside components can seem an odd thing when you first meet it.
Suppose you've used a centralized routing model before. In that case, declarative
routes may at first seem messy because they spread the wiring of your application
across several components rather than in a single file. Instead of creating clean com-
ponents that know nothing of the outside world, you are suddenly giving the intimate
knowledge of the paths used in the application, which might make them less portable.

However, responsive routes show the real power of declarative routing. If you're con-
cerned about your components knowing too much about the paths in your applica-
tion, consider extracting the path strings into a shared file. That way, you will have
the best of both worlds: components that modify their behavior based upon the cur-
rent path and a centralized set of path configurations.

You can download the source for this recipe from the GitHub site.

2.1 Create Interfaces with Responsive Routes | 39

https://oreil.ly/tZzMD

2.2 Move State into Routes

Problem

It is often helpful to manage the internal state of a component using the route that
displays it. For example, this is a React component that displays two tabs of informa-
tion: one for /people and one for /offices:

import { useState } from 'react'
import People from './People'
import Offices from './Offices'

import './About.css'

const OldAbout = () => {
const [tabId, setTabId] = useState('people')

return (
<div className="About">
<div className="About-tabs">

<div
onClick={() => setTabId('people')}
className={

tabId === 'people' ? 'About-tab active' : 'About-tab'

}

>
People

</div>

<div
onClick={() => setTabId('offices')}
className={

tabId === 'offices' ? 'About-tab active' : 'About-tab'
}
>
Offices
</div>
</div>
{tabId === 'people' && <People />}
{tabId === 'offices' && <Offices />}

</div>
)
}

export default OldAbout

When a user clicks a tab, an internal tabId variable is updated, and the People or
0ffices component is displayed (see Figure 2-4).

40 | Chapter2:Routing

People Offices

e Kip Russel
e Harrison Swift
e Carter Heaney

Figure 2-4. By default, the OldAbout component shows people’s details

What’s the problem? The component works, but if we select the Offices tab and then
refresh the page, the component resets to the People tab. Likewise, we can’t bookmark
the page when it’s on the Offices tab. We can’t create a link anywhere else in the appli-
cation, which takes us directly to Offices. Accessibility hardware is less likely to notice
that the tabs are working as hyperlinks because they are not rendered in that way.

Solution

We are going to move the tabId state from the component into the current browser
location. So instead of rendering the component at /about and then using onClick
events to change the internal state, we are instead going to have routes to /about/
people and /about/offices, which display one tab or the other. The tab selection will
survive a browser refresh. We can bookmark the page on a given tab or create a link
to a given tab. And we make the tabs actual hyperlinks, which will be recognized as
such by anyone navigating with a keyboard or screen reader.

What ingredients do we need? Just one: react-router-dom:

$ npm install react-router-dom

react-router-dom will allow us to synchronize the current browser URL with the
components that we render on the screen.

Our existing application is already using react-router-dom to display the 0ldAbout
component at path /oldabout as you can see from this fragment of code from the
App.js file:

<Switch>
<Route path="/oldabout">
<0ldAbout/>
</Route>
<p>Choose an option</p>
</Switch>

You can see the complete code for this file at the GitHub repository.

2.2 Move State into Routes | 41

https://oreil.ly/WmZ18

We're going to create a new version of the 0ldAbout component called About, and
we're going to mount it at its own route:

<Switch>
<Route path="/oldabout">
<0ldAbout/>
</Route>
<Route path="/about/:tabId?">
<About/>
</Route>
<p>Choose an option</p>
</Switch>

This addition allows us to open both versions of the code in the example application.

Our new version is going to appear to be virtually identical to the old component.
We'll extract the tabId from the component and move it into the current path.

Setting the path of the Route to /about/:tabld? means that /about, /about/offices,
and /about/people will all mount our component. The ? indicates that the tabId
parameter is optional.

We've now done the first part: we've put the component’s state into the path that dis-
plays it. We now need to update the component to interact with the route rather than
an internal state variable.

In the 0ldAbout component, we had onClick listeners on each of the tabs:

<div onClick={() => setTabId("people")}

className={tabId === "people" ? "About-tab active" : "About-tab"}
>

People
</div>
<div onClick={() => setTabId("offices")}

className={tabId === "offices" ? "About-tab active" : "About-tab"}
>

Offices
</div>

Were going to convert these into Link components, going to /about/people
and /about/offices. In fact, were going to convert them into NavLink components. A
NavLink is like a link, except it has the ability to set an additional class name, if the
place it’s linking to is the current location. This means we don’t need the className
logic in the original code:

<NavLink to="/about/people"
className="About-tab"
activeClassName="active">
People
</NavLink>
<NavLink to="/about/offices"
className="About-tab"

42 | Chapter2:Routing

activeClassName="active">
Offices
</NavLink>

We no longer set the value of a tabId variable. We instead go to a new location with a
new tabId value in the path.

But what do we do to read the tabId value? The 0ldAbout code displays the current
tab contents like this:

{tabId === "people" && <People/>}
{tabId === "offices" && <Offices/>}

This code can be replaced with a Switch and a couple of Route components:

<Switch>
<Route path='/about/people's>
<People/>
</Route>
<Route path='/about/offices'>
<0ffices/>
</Route>
</Switch>

We're now almost finished. There’s just one step remaining: deciding what to do if the
path is /about and contains no tabId.

The 0ldAbout sets a default value for tabId when it first creates the state:
const [tabId, setTabId] = useState("people")

We can achieve the same effect by adding a Redirect to the end of our Switch. The
Switch will process its child components in order until it finds a matching Route. If
no Route matches the current path, it will reach the Redirect, which will change the
address to /about/people. This will cause a re-render of the About component, and the
People tab will be selected by default:

<Switch>
<Route path='/about/people'>
<People/>
</Route>
<Route path='/about/offices'>
<0ffices/>
</Route>
<Redirect to='/about/people'/>
</Switch>

You can make Redirect conditional on the current path by giving
it a from attribute. In this case, we could set from to /about so that
only routes matching /about are redirected to /about/people.

2.2 Move State into Routes | 43

This is our completed About component:

import { NavLink, Redirect, Route, Switch } from 'react-router-dom'
import './About.css'

import People from './People'

import Offices from './Offices'

const About = () => (
<div className="About">
<div className="About-tabs">
<NavLink
to="/about/people"
className="About-tab"
activeClassName="active"

People

</NavLink>

<NavLink
to="/about/offices"
className="About-tab"
activeClassName="active"

Offices
</NavLink>
</div>
<Switch>
<Route path="/about/people">
<People />
</Route>
<Route path="/about/offices">
<0ffices />
</Route>
<Redirect to="/about/people" />
</Switch>
</div>

)

export default About

We no longer need an internal tabId variable, and we now have a purely declarative
component (see Figure 2-5).

44 | Chapter2:Routing

People Offices

South Dakota
18627 Sporer Mews
Maximechester
South Dakota
04691

Wisconsin
910 Lueilwitz Lake
Lake Troy
Wisconsin
25072

Figure 2-5. Going to http://localhost/about/offices with the new component

Discussion

Moving state out of your components and into the address bar can simplify your
code, but this is merely a fortunate side effect. The real value is that your application
starts to behave less like an application and more like a website. We can bookmark
pages, and the browser’s Back and Forward buttons work correctly. Managing more
state in routes is not an abstract design decision; it's a way of making your application
less surprising to users.

You can download the source for this recipe from the GitHub site.

2.3 Use MemoryRouter for Unit Testing

Problem

We use routes in React applications so that we make more of the facilities of the
browser. We can bookmark pages, create deep links into an app, and go backward and
forward in history.

However, once we use routes, we make the component dependent upon something
outside itself: the browser location. That might not seem like too big an issue, but it
does have consequences.

2.3 Use MemoryRouter for Unit Testing | 45

https://oreil.ly/myAGj

Let’s say we want to unit test a route-aware component. As an example, let’s create a
unit test for the About component we built in Recipe 2.2:?

describe('About component', () => {
it('should show people', () => {
render (<About />)
expect(screen.getByText('Kip Russel')).toBeInTheDocument()
b
b
This unit test renders the component and then checks that it can find the name “Kip
Russel” appearing in the output. When we run this test, we get the following error:

console.error node_modules/jsdom/1ib/jsdom/virtual-console.js:29
Error: Uncaught [Error: Invariant failed: You should not use <NavLink>
outside a <Router>]

The error occurred because a NavLink could not find a Router higher in the compo-
nent tree. That means we need to wrap the component in a Router before we test it.

Also, we might want to write a unit test that checks that the About component works
when we mount it on a specific route. Even if we provide a Router component, how
will we fake a particular route?

It’s not just an issue with unit tests. If were using a library tool like Storybook,’ we
might want to show an example of how a component appears when we mount it on a
given path.

We need something like an actual browser router but that allows us to specify its
behavior.

Solution

The react-router-dom library provides just such a router: MemoryRouter. The
MemoryRouter appears to the outside world just like BrowserRouter. The difference is
that while the BrowserRouter is an interface to the underlying browser history API,
the MemoryRouter has no such dependency. It can keep track of the current location,
and it can go backward and forward in history, but it achieves this through simple
memory structures.

2 We are using the React Testing Library in this example.

3 See Recipe 1.9.

46 | Chapter2:Routing

Let’s take another look at that failing unit test. Instead of just rendering the About
component, let’s wrap it in a MemoryRouter:

describe('About component', () => {
it('should show people', () => {
render(
<MemoryRouter>
<About />
</MemoryRouter>

)

expect(screen.getByText('Kip Russel')).toBeInTheDocument()
b
b
Now, when we run the test, it works. That’s because the MemoryRouter injects a
mocked-up version of the API into the context. That makes it available to all of its
child components. The About component can now render a Link or Route because
the history is available.

But the MemoryRouter has an additional advantage. Because it’s faking the browser
history API, it can be given a completely fake history, using the initialEntries
property. The initialEntries property should be set to an array of history entries. If
you pass a single value array, it will be interpreted as the current location. That allows
you to write unit tests that check for component behavior when its mounted on a
given route:

describe('About component', () => {
it('should show offices if in route', () => {

render(

<MemoryRouter initialEntries={[{ pathname: '/about/offices' }]}>
<About />

</MemoryRouter>

)

expect(screen.getByText('South Dakota')).toBeInTheDocument()

b
b

We can use a real BrowserRouter inside Storybook because we’re in a real browser,
but the MemoryRouter also allows us to fake the current location, as we do in the
ToAboutOffices Storybook story (see Figure 2-6).

2.3 Use MemoryRouter for Unit Testing | 47

E Storybook () Canvas Docs @ Q Q H 3B & 2 om m
{ Q Find components)
o about Pegple Offices
[l Basic South Dakota
" oul 01
{1 With Browser Router 18627 S Mews
A To About Maximechester
Souh Dako
04691
‘Wisconsin
910 Lueilwitz Lake
Lake Troy
‘Wisconsin
25072
Controls Actions m ®

This story is not configured to handle controls. Learn how to add controls >

No inputs found for this component. Read the docs »

Figure 2-6. Using MemoryRoutet, we can fake the /about/offices route

Discussion

Routers let you separate the details of where you want to go from how you're going to
get there. In this recipe, we see one advantage of this separation: we can create a fake
browser location to examine component behavior on different routes. This separation
allows you to change the way the application follows links without breaking. If you
convert your SPA to an SSR application, you swap your BrowserRouter for a
StaticRouter. The links used to make calls into the browser’s history API will
become native hyperlinks that cause the browser to make native page loads. Routers
are an excellent example of the advantages of splitting policy (what you want to do)
from mechanisms (how youre going to do it).

You can download the source for this recipe from the GitHub site.

2.4 Use Prompt for Page Exit Confirmations

Problem

Sometimes you need to ask a user to confirm that they want to leave a page if they’re
in the middle of editing something. This seemingly simple task can be complicated
because it relies on spotting when the user clicks the Back button and then finding a

48 | Chapter2:Routing

https://oreil.ly/1NW8e

way to intercept the move back through history and potentially canceling it (see
Figure 2-7).

Do you really want to leave?

Cancel || oOK

Figure 2-7. Asking for a confirmation before leaving

What if there are several pages in the application that need the same feature? Is there
a simple way to create this feature across any component that needs it?

Solution

The react-router-dom library includes a component called Prompt, which asks users
to confirm that they want to leave a page.

The only ingredient we need for this recipe is the react-router-dom library itself:
npm install react-router-dom

Let’s say we have a component called Important mounted at /important, which allows
a user to edit a piece of text:

import React, { useEffect, useState } from 'react’

const Important = () => {
const initialvalue = 'Initial value'

const [data, setData] = useState(initialvalue)
const [dirty, setDirty] = useState(false)

useEffect(() => {
if (data !== initialvalue) {
setDirty(true)

}
}, [data, initialvalue])

return (
<div className="Important">
<textarea
onChange={(evt) => setData(evt.target.value)}

2.4 Use Prompt for Page Exit Confirmations | 49

cols={40}
rows={12}
>
{data}
</textarea>

<button onClick={() => setDirty(false)} disabled={!dirty}>
Save
</button>
</div>
)
}

export default Important

Important is already tracking whether the text in the textarea has changed from the
original value. If the text is different, the value of dirty is true. How do we ask the
user to confirm they want to leave the page if they click the Back button when dirty
is true?

We add a Prompt component:

return (
<div className="Important">
<textarea
onChange={(evt) => setData(evt.target.value)}
cols={40}
rows={12}
>
{data}
</textarea>

<button onClick={() => setDirty(false)} disabled={!dirty}>
Save
</button>
<Prompt
when={dirty}
message={() => 'Do you really want to leave?'}
/>
</div>

)

If the user edits the text and then hits the Back button, the Prompt appears (see
Figure 2-8).

50 | Chapter2:Routing

Do you really want to leave?

Cancel || oOK

Figure 2-8. The Prormpt asks the user to confirm they want to leave

Adding the confirmation is easy, but the default prompt interface is a simple Java-
Script dialog. It would be helpful to decide for ourselves how we want the user to con-
firm they’re leaving.

To demonstrate how we can do this, let's add the Material-UI component library to
the application:

$ npm install '@material-ui/core’

The Material-UI library is a React implementation of Google’s Material Design stan-
dard. We'll use it as an example of how to replace the standard Prompt interface with
something more customized.

The Prompt component does not render any Ul Instead, the Prompt component asks
the current Router to show the confirmation. By default, BrowserRouter shows the
default JavaScript dialog, but you can replace this with your own code.

When the BrowserRouter is added to the component tree, we can pass it a property
called getUserConfirmation:

<div className="App">
<BrowserRouter
getUserConfirmation={(message, callback) => {
// Custom code goes here

1

<Switch>
<Route path='/important's>
<Important/>
</Route>
</Switch>
</BrowserRouter>
</div>

2.4 Use Prompt for Page Exit Confirmations | 51

The getUserConfirmation property is a function that accepts two parameters: the
message it should display and a callback function.

When the user clicks the Back button, the Prompt component will run getUser
Confirmation and then wait for the callback function to be called with the value true
or false.

The callback function returns the user’s response asynchronously. The Prompt com-
ponent will wait while we ask the user what they want to do. That allows us to create a
custom interface.

Let’s create a custom Material-UI dialog called Alert. We'll show this instead of the
default JavaScript modal:

import Button from '@material-ui/core/Button'

import Dialog from '@material-ui/core/Dialog’

import DialogActions from '@material-ui/core/DialogActions'’

import DialogContent from '@material-ui/core/DialogContent’

import DialogContentText from '@material-ui/core/DialogContentText'
import DialogTitle from '@material-ui/core/DialogTitle’

const Alert = ({ open, title, message, onOK, onCancel }) => {
return (
<Dialog
open={open}
onClose={onCancel}
aria-labelledby="alert-dialog-title"
aria-describedby="alert-dialog-description”

<DialogTitle id="alert-dialog-title">{title}</DialogTitle>
<DialogContent>
<DialogContentText id="alert-dialog-description">
{message}
</DialogContentText>
</DialogContent>
<DialogActions>
<Button onClick={onCancel} color="primary">
Cancel
</Button>
<Button onClick={onOK} color="primary" autoFocus>
OK
</Button>
</DialogActions>
</Dialog>
)
}

export default Alert

52 | Chapter2:Routing

Of course, there is no reason why we need to display a dialog. We could show a
countdown timer or a snackbar message or automatically save the user’s changes. But
we will display a custom Alert dialog.

How will we use the Alert component in our interface? The first thing well need to
do is create our own getUserConfirmation function. We'll store the message and the
callback function and then set a Boolean value saying that we want to open the Alert
dialog:

const [confirmOpen, setConfirmOpen] = useState(false)
const [confirmMessage, setConfirmMessage] = useState()
const [confirmCallback, setConfirmCallback] = useState()

return (
<div className="App">
<BrowserRouter
getUserConfirmation={(message, callback) => {
setConfirmMessage(message)
// Use this setter form because callback is a function
setConfirmCallback(() => callback)
setConfirmOpen(true)

1}

It's worth noting that when we store the callback function, we use setConfirmCall
back(() => callback) instead of simply writing setConfirmCallback(callback).
That’s because the setters returned by the useState hook will execute any function
passed to them, rather than store them.

We can then use the values of confirmMessage, confirmCallback, and confirmOpen
to render the Alert in the interface.

This is the complete App.js file:

import { useState } from 'react'

import './App.css'

import { BrowserRouter, Link, Route, Switch } from 'react-router-dom'
import Important from './Important'

import Alert from './Alert'

function App() {
const [confirmOpen, setConfirmOpen] = useState(false)
const [confirmMessage, setConfirmMessage] = useState()
const [confirmCallback, setConfirmCallback] = useState()

return (
<div className="App">
<BrowserRouter
getUserConfirmation={(message, callback) => {
setConfirmMessage(message)

2.4 Use Prompt for Page Exit Confirmations | 53

// Use this setter form because callback is a function
setConfirmCallback(() => callback)
setConfirmOpen(true)
13
>
<Alert
open={confirmOpen}
title="Leave page?"
message={confirmMessage}
onOK={() => {
confirmCallback(true)
setConfirmOpen(false)
13
onCancel={() => {
confirmCallback(false)
setConfirmOpen(false)
13
/>
<Switch>
<Route path="/important"s>
<Important />
</Route>
<div>
<h1>Home page</h1>
<Link to="/important">Go to important page</Link>
</div>
</Switch>
</BrowserRouter>
</div>
)
}

export default App

Now when a user backs out of an edit, they see the custom dialog, as shown in
Figure 2-9.

Leave page?

Do you really want to leave?

CANCEL OK

Figure 2-9. The custom Alert appears when the user clicks the Back button

54 | Chapter2:Routing

Discussion

In this recipe, we have re-implemented the Prompt modal using a component library,
but you don’t need to be limited to just replacing one dialog box with another. There
is no reason why, if someone leaves a page, that you couldn't do something else: such
as store the work-in-progress somewhere so that they could return to it later. The
asynchronous nature of the getUserConfirmation function allows this flexibility. It’s
another example of how react-router-dom abstracts away a cross-cutting concern.

You can download the source for this recipe from the GitHub site.

2.5 Create Transitions with React Transition Group

Problem

Native and desktop applications often use animation to connect different elements
visually. If you tap an item in a list, it expands to show you the details. Swiping left or
right can be used to indicate whether a user accepts or rejects an option.

Animations, therefore, are often used to indicate a location change. They zoom in on
the details. They take you to the next person on the list. We reflect a change in the
URL with a matching animation.

But how do we create an animation when we move from one location to another?

Solution

For this recipe, we're going to need the react-router-dom library and the react-
transition-group library:

$ npm install react-router-dom
$ npm install react-transition-group

We're going to animate the About component that we've used previously.* The About
component has two tabs called People and Offices, which are displayed for the
routes /about/people and /about/offices.

When someone clicks one of the tabs, we're going to fade out the old tab’s content and
then fade in the content of the new tab. Although we're using a fade, there’s no reason
why we couldn’t use a more complex animation, such as sliding the tab contents left

4 See Recipes 2.2 and 2.3.

2.5 Create Transitions with React Transition Group | 55

https://oreil.ly/1FyoE

or right.” However, a simple fade animation will more clearly demonstrate how it
works.

Inside the About component, the tab contents are rendered by People and Offices
components within distinct routes:

import { NavLink, Redirect, Route, Switch } from 'react-router-dom'
import './About.css'

import People from './People'

import Offices from './Offices'

const About = () => (
<div className="About">
<div className="About-tabs">
<NavLink
to="/about/people"
className="About-tab"
activeClassName="active"
People
</NavLink>
<NavLink
to="/about/offices"
className="About-tab"
activeClassName="active"
Offices
</NavLink>
</div>
<Switch>
<Route path="/about/people">
<People />
</Route>
<Route path="/about/offices">
<0ffices />
</Route>
<Redirect to="/about/people" />
</Switch>
</div>

)

export default About

We need to animate the components inside the Switch component. We'll need two
things to do this:

5 This is a common feature of third-party tabbed components. The animation reinforces in the user’s mind that
they are moving left and right through the tabs.

56 | Chapter2:Routing

 Something to track when the location has changed

 Something to animate the tab contents when that happens

How do we know when the location has changed? We can get the current location
from the useLocation hook from react-router-dom:

const location = uselocation()

Now on to the more complex task: the animation itself. What follows is quite a com-
plex sequence of events, but taking time to understand it is worth it.

When we are animating from one component to another, we need to keep both com-
ponents on the page. As the 0ffices component fades out, the People component
fades in.® We can do this by keeping both components in a transition group. A transi-
tion group is a set of components, some of which are appearing and others are
disappearing.

We can create a transition group by wrapping our animation in a TransitionGroup
component. We also need a CSSTransition component to coordinate the details of
the CSS animation.

Our updated code wraps the Switch in both a TransitionGroup and a
CSSTransition:

import {

NavLink,

Redirect,

Route,

Switch,

uselLocation,
} from 'react-router-dom'
import People from './People'
import Offices from './Offices
import {

CSSTransition,

TransitionGroup,
} from 'react-transition-group

import './About.css'
import './fade.css'

const About = () => {
const location = uselLocation()

return (
<div className="About">

6 The code uses relative positioning to place both components in the same position during the fade.

2.5 Create Transitions with React Transition Group | 57

<div className="About-tabs">
<NavLink
to="/about/people"
className="About-tab"
activeClassName="active"

People
</NavLink>
<NavLink
to="/about/offices"
className="About-tab"
activeClassName="active"
>
Offices
</NavLink>
</div>
<TransitionGroup className="About-tabContent">
<CSSTransition
key={location.key}
classNames="fade"
timeout={500}

<Switch location={location}>
<Route path="/about/people">
<People />
</Route>
<Route path="/about/offices">
<0ffices />
</Route>
<Redirect to="/about/people" />
</Switch>
</CSSTransition>
</TransitionGroup>
</div>
)
}

export default About

Notice that we pass the location.key to the key of the CSSTransition group, and we
pass the location to the Switch component. The location.key is a hash value of the
current location. Passing the location.key to the transition group will keep the
CSSTransition in the virtual DOM until the animation is complete. When the user
clicks one of the tabs, the location changes, which refreshes the About component.
The TransitionGroup will keep the existing CSSTransition in the tree of compo-
nents until its timeout occurs: in 500 milliseconds. But it will now also have a second
CSSTransition component.

58 | Chapter2: Routing

Each of these CSSTransition components will keep their child components alive (see
Figure 2-10).

[
TransitionGroup

[CSSTransition (old tab)g] {CSSTransition (new tab)CI]

| Switch ;c')Id tab)cll |Switch (::ew tab)Dl
\ 4 A 4

| Offices (old tab)D' l Offices (new tab)Dl

Figure 2-10. The TransitionGroup keeps both the old and new components in the virtual
DOM

We need to pass the location value to the Switch components: we need the Switch

for the old tab, and we need the Switch for the new tab to keep rendering their
routes.

So now, on to the animation itself. The CSSTransition component accepts a property
called classNames, which we have set to the value fade. Note that classNames is a
plural to distinguish it from the standard className attribute.

CSSTransition will use classNames to generate four distinct class names:

o fade-enter
o fade-enter-active
o fade-exit

o fade-exit-active

The fade-enter class is for components that are about to start to animate into view.
The fade-enter-active class is applied to components that are actually animating.
fade-exit and fade-exit-active are for components that are beginning or animat-
ing their disappearance.

The CSSTransition component will add these class names to their immediate chil-
dren. If we are animating from the Offices tab to the People tab, then the old
CSSTransition will add the fade-enter-active class to the People HTML and will
add the fade-exit-active to the 0ffices HTML.

All that’s left to do is define the CSS animations themselves:

2.5 Create Transitions with React Transition Group | 59

.fade-enter {
opacity: 0;
}
.fade-enter-active {
opacity: 1;
transition: opacity 250ms ease-in;
}
.fade-exit {
opacity: 1;
}
.fade-exit-active {
opacity: 0;
transition: opacity 250ms ease-in;

}
The fade-enter- classes use CSS transitions to change the opacity of the component
from 0 to 1. The fade-exit- classes animate the opacity from 1 back to 0. It’s gener-

ally a good idea to keep the animation class definitions in a separate CSS file. That
way, we can reuse them for other animations.

The animation is complete. When the user clicks a tab, they see the contents cross-
fade from the old data to the new data (Figure 2-11).

People Offices People Offices People Offices
South Dakota . Ki
18627 Sporer Mews %g% gg@gﬁhﬂews . ﬁ'apr:?::segwm
Maximechester .
South Dakota ﬁ%ﬁ% (o} Carter Heaney
04691 04691
Wisconsin Wisconsin
910 Lueilwitz Lake 910 Lueilwitz Lake
Lake Troy Lake Troy
Wisconsin Wisconsin
25072 25072

Figure 2-11. The contents of the tab fade from offices to people

Discussion

Animations can be pretty irritating when used poorly. Each animation you add
should have some intent. If you find that you want to add an animation just because
you think it will be attractive, you will almost certainly find users will dislike it. Gen-
erally, it is best to ask a few questions before adding an animation:

o Will this animation clarify the relationship between the two routes? Are you
zooming in to see more detail or moving across to look at a related item?

o How short should the animation be? Any longer than half a second is probably
too much.

60 | Chapter2:Routing

o What is the impact on performance? CSS transitions usually have minimal effect
if the browser hands the work off to the GPU. But what happens in an old
browser on a mobile device?

You can download the source for this recipe from the GitHub site.

2.6 Create Secured Routes

Problem

Most applications need to prevent access to particular routes until a person logs in.
But how do you secure some routes and not others? Is it possible to separate the secu-
rity mechanisms from the user interface elements for logging in and logging out?
And how do you do it without writing a vast amount of code?

Solution

Let’s look at one way to implement route-based security in a React application. This
application contains a home page (/), it has a public page with no security (/public),
and it also has two private pages (/privatel and /private2) that we need to secure:

import React from 'react'’

import './App.css'

import { BrowserRouter, Route, Switch } from 'react-router-dom'
import Public from './Public'

import Privatel from './Privatel’

import Private2 from './Private2'

import Home from './Home'

function App() {
return (
<div className="App">
<BrowserRouter>
<Switch>
<Route exact path="/">
<Home />
</Route>
<Route path="/privatel"s>
<Privatel />
</Route>
<Route path="/private2"s>
<Private2 />
</Route>
<Route exact path="/public">
<Public />
</Route>
</Switch>
</BrowserRouter>
</div>

2.6 Create Secured Routes | 61

https://oreil.ly/UCu75

)
}

export default App

We're going to build the security system using a context. A context is where data can
be stored by a component and made available to the component’s children. A Browser
Router uses a context to pass routing information to the Route components within it.

We're going to create a custom context called SecurityContext:

import React from 'react'
const SecurityContext = React.createContext({})

export default SecurityContext

The default value of our context is an empty object. We need something that will add
functions into the context for logging in and logging out. We'll do that by creating a
SecurityProvider:

import { useState } from 'react'
import SecurityContext from './SecurityContext'

const SecurityProvider = (props) => {
const [loggedIn, setLoggedIn] = useState(false)

return (
<SecurityContext.Provider
value={{
login: (username, password) => {
// Note to engineering team:
// Maybe make this more secure...
if (username === 'fred' && password === 'password') {
setlLoggedIn(true)
}
}!
logout: () => setLoggedIn(false),
loggedIn,
1}

>
{props.children}
</SecurityContext.Providers>
)
}

export default SecurityProvider

The code would be very different in a real system. You would probably create a com-
ponent that logged in and logged out using a web service or third-party security
system. But in our example, the SecurityProvider keeps track of whether we have

62 | Chapter2:Routing

logged in using a simple loggedIn Boolean value. The SecurityProvider puts three
things into the context:

o A function for logging in (login)

o A function for logging out (logout)

o A Boolean value saying whether we have logged in or out (LoggedIn)

These three things will be available to any components placed inside a Security
Provider component. To allow any component inside a SecurityProvider to access
these functions, we’ll add a custom hook called useSecurity:

import SecurityContext from './SecurityContext'
import { useContext } from 'react'

const useSecurity = () => useContext(SecurityContext)

export default useSecurity

Now that we have a SecurityProvider, we need to use it to secure a subset of the
routes. We'll create another component, called SecureRoute:
import Login from './Login'

import { Route } from 'react-router-dom'
import useSecurity from './useSecurity'

const SecureRoute = (props) => {
const { loggedIn } = useSecurity()

return (
<Route {...props}>{loggedIn ? props.children : <Login />}</Route>
)
}

export default SecureRoute

The SecureRoute component gets the current loggedIn status from the Security
Context (using the useSecurity hook), and if the user is logged in, it renders the
contents of the route. If the user is not logged in, it displays a login form.”

The LoginForm calls the login function, which—if successful—will re-render the
SecureRoute and then show the secured data.

How do we use all of these new components? Here is an updated version of the App.js
file:

7 We'll omit the contents of the Login component here, but the code is available on the GitHub repository.

2.6 Create Secured Routes | 63

import './App.css'

import { BrowserRouter, Route, Switch } from 'react-router-dom'
import Public from './Public'

import Privatel from './Privatel’

import Private2 from './Private2'

import Home from './Home'

import SecurityProvider from './SecurityProvider'

import SecureRoute from './SecureRoute'

function App() {
return (
<div className="App">
<BrowserRouter>
<SecurityProvider>
<Switch>
<Route exact path="/">
<Home />
</Route>
<SecureRoute path="/privatel"s
<Privatel />
</SecureRoute>
<SecureRoute path="/private2"s>
<Private2 />
</SecureRoute>
<Route exact path="/public">
<Public />
</Route>
</Switch>
</SecurityProvider>
</BrowserRouter>
</div>
)
}

export default App

The SecurityProvider wraps our whole routing system, making login(), logout(),
and loggedIn available to each SecureRoute.

You can see the application running in Figure 2-12.

Home

e Public Page
e Private Page 1
e Private Page 2

Figure 2-12. The home page has links to the other pages

If we click the Public Page link, the page appears (see Figure 2-13).

64 | Chapter2:Routing

Public Page

Anyone can see this page.

Figure 2-13. The public page is available without logging in

But if we click Private Page 1, we're presented with the login screen (Figure 2-14).

Login Page

You need to log in. (hint: try fred/password)

Username|]
Password| |

Login

Figure 2-14. You need to log in before you can see Private Page 1

If you log in with the username fred and password password, you will then see the
private content (see Figure 2-15).

Private page 1

Highly secret information here.

Figure 2-15. The content of Private Page 1 after login

Discussion

Real security is only ever provided by secured backend services. However, secured
routes prevent a user from stumbling into a page that can’t read data from the server.

A better implementation of the SecurityProvider would defer to some third-party
OAuth tool or other security services. But by splitting the SecurityProvider from
the security UI (Login and Logout) and the main application, you can modify the
security mechanisms over time without changing a lot of code in your application.

If you want to see how your components behave when people log in and out, you can
always create a mocked version of the SecurityProvider for use in unit tests.

You can download the source for this recipe from the GitHub site.

2.6 Create Secured Routes | 65

https://oreil.ly/Kut73

CHAPTER 3
Managing State

When we manage state in React, we have to store data, but we also record data depen-
dencies. Dependencies are intrinsic to the way that React works. They allow React to
update the page efficiently and only when necessary.

Managing data dependencies, then, is the key to managing state in React. You will see
throughout this chapter that most of the tools and techniques we use are to ensure
that we manage dependencies efficiently.

A key concept in the following recipes is a data reducer. A reducer is simply a func-
tion that receives a single object or an array and then returns a modified copy. This
simple concept is what lies behind much of the state management in React. We'll look
at how React uses reducer functions natively and how we can use the Redux library to
manage data application-wide with reducers.

We'll also look at selector functions. These allow us to drill into the state returned by
reducers. Selectors help us ignore the irrelevant data, and in doing so, they signifi-
cantly improve the performance of our code.

Along the way, we'll look at simple ways of checking whether youre online, how to
manage form data, and various other tips and tricks to keep your application ticking
along.

3.1 Use Reducers to Manage Complex State

Problem

Many React components are straightforward. They do little more than render a sec-
tion of HTML and perhaps show a few properties.

67

However, some components can be more complicated. They might need to manage
several pieces of internal state. For example, consider the simple number game you
can see in Figure 3-1.

Puzzle Puzzle Puzzle

SHUFFLE RESET

Complete!

Figure 3-1. A simple number puzzle

The component displays a series of numeric tiles, in a grid, with a single space. If the
user clicks a tile next to the space, they can move it. In this way, the user can rear-
range the tiles until they are in the correct order from 1 to 8.

This component renders a small amount of HTML, but it will require some fairly
complex logic and data. It will record the positions of the tiles. It will need to know
whether a user can move a given tile. It will need to know how to move the tile. It will
need to know whether the game is complete. It will also need to do other things, such
as reset the game by shuffling the tiles.

It’s entirely possible to write all this code inside the component, but it will be harder
to test it. You could use the React Testing Library, but that is probably overkill, given
that most of the code will have very little to do with rendering HTML.

Solution

If you have a component with some complex internal state or that needs to manipu-
late its state in complex ways, consider using a reducer.

A reducer is a function that accepts two parameters:

» An object or array that represents a given state

o An action that describes how you want to modify the state

The function returns a new copy of the state we pass to it.

68 | Chapter3: Managing State

The action parameter can be whatever you want, but typically it is an object with a
string type attribute and a payload with additional information. You can think of the
type as a command name and the payload as parameters to the command.

For example, if we number our tile positions from 0 (top-left) to 8 (bottom-right), we
might tell the reducer to move whatever tile is in the top-left corner with:

{type: 'move', payload: 0}

We need an object or array that completely defines our game’s internal state. We could
use a simple array of strings:

[|1|, |2|’ '3‘; null, |5|, ‘6', |7|, ‘8', |4|]

That would represent the tiles laid out like this:

123
56
7 8 4

However, a slightly more flexible approach uses an object for our state and gives it an
items attribute containing the current tile layout:

{
}

Why would we do this? Because it will allow our reducer to return other state values,
such as whether or not the game is complete:

{

items: ['1', '2', '3', null, '5', '6', '7', '8', '4']

items: ['1', '2', '3', '4', '5', '6', '7', '8', null],
complete: true

}

We've decided on an action (move) and know how the state will be structured, which
means we've done enough design to create a test:

import reducer from './reducer'

describe('reducer', () => {
i1t('should be able to move 1 down if gap below', () => {
let state = {
items: ['1', '2', '3', null, '5', '6', '7', '8', '4'],
}

state = reducer(state, { type: 'move', payload: 0 })
expect(state.items).toEqual([

null,
|2l’

3.1 Use Reducers to Manage Complex State | 69

|3|’
|1|’
|5|’
‘6',
|7|’
‘8',
|4|’

D
b

it('should say when it is complete', () => {
let state = {
items: ['1', '2', '3', '4', '5', '6', '7', null, '8'],
}

state = reducer(state, { type: 'move', payload: 8 })
expect(state.complete).toBe(true)
state = reducer(state, { type: 'move', payload: 5 })

expect(state.complete).toBe(false)

b
b

In our first test scenario, we pass in the tiles’ locations in one state. Then we check
that the reducer returns the tiles in a new state.

In our second test, we perform two tile moves and then look for a complete attribute
to tell us the game has ended.

OK, we've delayed looking at the actual reducer code long enough:

function trySwap(newItems, position, t) {
if (newItems[t] === null) {
const temp = newItems[position]
newItems[position] = newItems[t]
newltems[t] = temp
}
}

function arraysEqual(a, b) {
for (let 1 = 0; 1 < a.length; i++) {
if (a[i] !'== b[i]) {

return false
}

}
return true
}
const CORRECT = ['1', '2', '3', '4', '5', '6', '7', '8', null]

function reducer(state, action) {

70 | Chapter3: Managing State

switch (action.type) {
case 'move': {
const position = action.payload
const newItems = [...state.items]
const col = position % 3

if (position < 6) {

trySwap(newItems, position, position + 3)
}
if (position > 2) {

trySwap(newItems, position, position - 3)
}
if (col < 2) {

trySwap(newItems, position, position + 1)
}
if (col > 0) {

trySwap(newItems, position, position - 1)

}

return {

...state,

items: newltems,

complete: arraysEqual(newItems, CORRECT),
}

}
default: {

throw new Error('Unknown action:
}
}

+ action.type)

}

export default reducer

Our reducer currently recognizes a single action: move. The code in our GitHub
repository also includes actions for shuffle and reset. The repository also has a
more exhaustive set of tests that we used to create the previous code.

But none of this code includes any React components. It’s pure JavaScript and so can
be created and tested in isolation from the outside world.

Be careful to generate a new object in the reducer to represent the
new state. Doing so ensures each new state completely independent
“ of those that came before it.

\

Now it’s time to wire up our reducer into a React component, with the useReducer
hook:

import { useReducer } from 'react'
import reducer from './reducer'

3.1 Use Reducers to Manage Complex State | 71

https://oreil.ly/q85H3
https://oreil.ly/q85H3
https://oreil.ly/yRNyU

import './Puzzle.css'

const Puzzle = () => {
const [state, dispatch] = useReducer(reducer, {
items: ['4', "1', '2', '7', '6', '3', null, '5', '8'],
D)

return (
<div className="Puzzle">
<div className="Puzzle-squares">
{state.items.map((s, 1) => (

<div
className={ " Puzzle-square ${
s 72 ''" : 'Puzzle-square-empty'
'3

key={"square-${i} "}
onClick={() => dispatch({ type: 'move', payload: i })}

{s}
</div>
N}
</div>
<div className="Puzzle-controls">
<button
className="Puzzle-shuffle"
onClick={() => dispatch({ type: 'shuffle' })}

>
Shuffle
</button>
<button
className="Puzzle-reset"
onClick={() => dispatch({ type: 'reset' })}

>
Reset
</button>
</div>
{state.complete && (
<div className="Puzzle-complete">Complete!</div>

)}
</div>
)
}

export default Puzzle

Even though our puzzle component is doing something quite complicated, that actual
React code is relatively short.

The useReducer accepts a reducer function and a starting state, and it returns a two-
element array:

72 | (Chapter3: Managing State

o The first element in the array is the current state from the reducer

o The second element is a dispatch function that allows us to send actions to the
reducer.

We display the tiles by looping through the strings in the array given by state.itenms.
If someone clicks a tile at position 1, we send a move command to the reducer:
onClick={() => dispatch({type: 'move', payload: i})}

The React component has no idea what it takes to move the tile. It doesn’t even know
if it can move the tile at all. The component sends the action to the reducer.

If the move action moves a tile, the component will automatically re-render the com-
ponent with the tiles in their new positions. If the game is complete, the component
will know by the value of state.complete:

state.complete && <div className='Puzzle-complete'>Complete!</div>

We also added two buttons to run the shuffle and reset actions, which we omitted
earlier but is in the GitHub repository.

Now that we've created our component, let’s try it. When we first load the compo-
nent, we see it in its initial state, as shown in Figure 3-2.

Puzzle

SHUFFLE RESET

Figure 3-2. The starting state of the game

If we click the tile labeled 7, it moves into the gap (see Figure 3-3).

3.1 Use Reducers to Manage Complex State | 73

https://oreil.ly/WmZ18

SHUFFLE RESET

Figure 3-3. After moving tile 7

If we click the Shuffle button, the reducer rearranges tiles randomly, as shown in
Figure 3-4.

Puzzle

SHUFFLE

Figure 3-4. The Shuffle button moves tiles to random positions

And if we click Reset, the puzzle changes to the completed position, and the “Com-
plete!” text appears (see Figure 3-5).

74 | Chapter3: Managing State

SHUFFLE RESET

Complete!

Figure 3-5. The Reset button moves the tiles to their correct positions

We bury all of the complexity inside the reducer function, where we can test it, and
the component is simple and easy to maintain.

Discussion

Reducers are a way of managing complexity. You will typically use a reducer in either
of these cases:

« You have a large amount of internal state to manage.

 You need complex logic to manage the internal state of your component.

If either of these things is correct, then a reducer can make your code significantly
easier to manage.

However, be wary of using reducers for very small components. If your component
has a simple state and little logic, you probably don’t need the added complexity of a
reducer.

Sometimes, even if you do have a complex state, there are alternative approaches. For
example, if you are capturing and validating data in a form, it might be better to cre-
ate a validating form component (see Recipe 3.3).

You need to ensure that your reducer does not have any side effects. Avoid, say, mak-
ing network calls that update a server. If your reducer has side effects, there is every
chance that it might break. React (sneakily) might sometimes make additional calls to
your reducer in development mode to make sure that no side effects are happening. If

3.1 Use Reducers to Manage Complex State | 75

you’re using a reducer and notice that React calls your code twice when rendering a
component, it means React is checking for bad behavior.

With all of those provisos, reducers are an excellent tool at fighting
complexity. They are integral to libraries such as Redux, can easily
be reused and combined, simplify components, and make your
React code significantly easier to test.

You can download the source for this recipe from the GitHub site.

3.2 Create an Undo Feature

Problem

Part of the promise of JavaScript-rich frameworks like React is that web applications
can closely resemble desktop applications. One common feature in desktop applica-
tions is the ability to undo an action. Some native components within React applica-
tions automatically support an undo function. If you edit some text in a text area, and
then press Cmd/Ctrl-Z, it will undo your edit. But what about extending undo into
custom components? How is it possible to track state changes without a large amount
of code?

Solution

If a reducer function manages the state in your component, you can implement a
quite general undo function using an undo-reducer.

Consider this piece of code from the Puzzle example from Recipe 3.1:
const [state, dispatch] = useReducer(reducer, {
items: ['4', '1', '2', '7', '6', '3', null, '5', '8'],
b
This code uses a reducer function (called reducer) and an initial state to manage the
tiles in a number-puzzle game (see Figure 3-6).

76 | Chapter3: Managing State

https://oreil.ly/q85H3

Puzzle Puzzle

SHUFFLE RESET

Complete!

Figure 3-6. A simple number puzzle game

If the user clicks the Shuffle button, the component updates the tile state by sending a
shuffle action to the reducer:

<button className='Puzzle-shuffle’
onClick={() => dispatch({type: 'shuffle'})}>Shuffle</button>
(For more details on what reducers are and when you should use them, see Recipe
3.1)

We will create a new hook called useUndoReducer, which is a drop-in replacement for
useReducer:

const [state, dispatch] = useUndoReducer(reducer, {
items: ['4', '1', '2', '7', '6', '3', null, '5', '8'],
b
The useUndoReducer hook will magically give our component the ability to go back
in time:

<button

className="Puzzle-undo"

onClick={() => dispatch({ type: 'undo' })}
>

Undo
</button>

If we add this button to the component, it undoes the last action the user performed,
as shown in Figure 3-7.

3.2(reate an Undo Feature | 77

Puzzle Puzzle Puzzle

SHUFFLE RESET SHUFFLE RESET SHUFFLE RESET

UNDO REDO UNDO REDO UNDO REDO

Figure 3-7. (1) Game in progress; (2) Make a move; (3) Click Undo to undo move

But how do we perform this magic? Although useUndoReducer is relatively easy to
use, it's somewhat harder to understand. But it’s worth doing so that you can adjust
the recipe to your requirements.

We can take advantage of the fact that all reducers work in the same way:

o The action defines what you want to do.
o The reducer returns a fresh state after each action.

o No side effects are allowed when calling the reducer.

Also, reducers are just simple JavaScript functions that accept a state object and an
action object.

Because reducers work in such a well-defined way, we can create a new reducer (an
undo-reducer) that wraps around another reducer function. Our undo-reducer will
work as an intermediary. It will pass most actions through to the underlying reducer
while keeping a history of all previous states. If someone wants to undo an action, it
will find the last state from its history and then return that without calling the under-
lying reducer.

We'll begin by creating a higher-order function that accepts one reducer and returns
another:

import lodash from 'lodash'

const undo = (reducer) => (state, action) => {
let {
undoHistory = [],

78 | Chapter3: Managing State

undoActions = [],
...1lnnerState
} = lodash.cloneDeep(state)
switch (action.type) {
case 'undo': {
if (undoActions.length > 0) {
undoActions.pop()
innerState = undoHistory.pop()
}
break

}

case 'redo': {
if (undoActions.length > 0) {

undoHistory = [...undoHistory, { ...innerState }]
undoActions = [
...undoActions,
undoActions[undoActions.length - 1],
1
innerState = reducer(
innerState,
undoActions[undoActions.length - 1]
)
}
break
}
default: {
undoHistory = [...undoHistory, { ...innerState }]
undoActions = [...undoActions, action]
innerState = reducer(innerState, action)
}
}
return { ...innerState, undoHistory, undoActions }

}

export default undo

This reducer is quite a complex function, so it's worth taking some time to under-
stand what it does.

It creates a reducer function that keeps track of the actions and states we pass to it.
Lets say our game component sends an action to shuffle the tiles in the game. Our
reducer will first check if the action has the type undo or redo. It doesnt. So it passes
the shuffle action to the underlying reducer that manages the tiles in our game (see
Figure 3-8).

3.2(reatean Undo Feature | 79

Send “shuffle” action

- -"--

Record and send “shuffle” action
Return updated tile state

>

g
<

_Record and return update tile state

Figure 3-8. The undo-reducer passes most actions to the underlying reducer

A

As it passes the shuffle action through to the underlying reducer, the undo code
keeps track of the existing state and the shuffle action by adding them to the undo
History and undoActions. It then returns the state of the underlying game reducer
and the undoHistory and undoActions.

If our puzzle component sends in an undo action, the undo-reducer returns the previ-
ous state from the undoHistory, completely bypassing the game’s own reducer func-
tion (see Figure 3-9).

Component undo-reducer

Send undo action

>

' Pop and return previous tile state from history

Component undo-reducer

Figure 3-9. For undo actions, the undo-reducer returns the latest historic state

Now let’s look at the useUndoReducer hook itself:

import { useReducer } from 'react'
import undo from './undo'

const useUndoReducer = (reducer, initialState) =>
useReducer(undo(reducer), initialState)

export default useUndoReducer

This useUndoReducer hook is a concise piece of code. It’s simply a call to the built-in
useReducer hook, but instead of passing the reducer straight through, it passes
undo(reducer). The result is that your component uses an enhanced version of the
reducer you provide: one that can undo and redo actions.

Here is our updated Puzzle component (see Recipe 3.1 for the original version):

80 | Chapter3:Managing State

import reducer from './reducer'
import useUndoReducer from './useUndoReducer'

import './Puzzle.css'

const Puzzle = () => {
const [state, dispatch] = useUndoReducer(reducer, {
items: ['4', '1', '2', '7', '6', '3', null, '5', '8'],
D)

return (
<div className="Puzzle">
<div className="Puzzle-squares">
{state.items.map((s, 1) => (

<div
className={ " Puzzle-square ${
s 72 ''" : 'Puzzle-square-empty'
'}

key={"square-${i} "}
onClick={() => dispatch({ type: 'move', payload: i })}

{s}
</div>
N}
</div>
<div className="Puzzle-controls">
<button
className="Puzzle-shuffle"
onClick={() => dispatch({ type: 'shuffle' })}

Shuffle
</button>
<button
className="Puzzle-reset"
onClick={() => dispatch({ type: 'reset' })}

Reset
</button>
</div>
<div className="Puzzle-controls">
<button
className="Puzzle-undo"
onClick={() => dispatch({ type: 'undo' })}

Undo
</button>
<button
className="Puzzle-redo"
onClick={() => dispatch({ type: 'redo' })}

Redo
</button>

3.2 Create an Undo Feature

</div>
{state.complete && (
<div className="Puzzle-complete">Complete!</div>
)}
</div>
)
}

export default Puzzle

The only changes are that we use useUndoReducer instead of useReducer, and we've
added a couple of buttons to call the “undo” and “redo” actions.

If you now load the component and makes some changes, you can undo the changes
one at a time, as shown in Figure 3-10.

Puzzle Puzzle Puzzle

SHUFFLE RESET SHUFFLE RESET SHUFFLE RESET

Complete!

Figure 3-10. With useUndoReducer, you can now send undo and redo actions

Discussion

The undo-reducer shown here will work with reducers that accept and return state
objects. If your reducer manages state using arrays, you will have to modify the undo
function.

Because it keeps a history of all previous states, you probably want to avoid using it if
your state data is extensive or if you're using it in circumstances where it might make
a huge number of changes. Otherwise, you might want to limit the maximum size of
the history.

Also, bear in mind that it maintains its history in memory. If a user reloads the entire
page, then the history will disappear. It should be possible to resolve this issue by per-
sisting the global state in local storage whenever it changes.

82 | Chapter3: Managing State

You can download the source for this recipe from the GitHub site.

3.3 Create and Validate Forms

Problem

Most React applications use forms to some degree, and most applications take an ad-
hoc approach to creating them. If a team is building your application, you might find
that some developers manage individual fields in separate state variables. Others will
choose to record form state in a single-value object, which is simpler to pass into and
out of the form but can be tricky for each field to update. Field validation often leads
to spaghetti code, with some forms validating at submit time and others validating
dynamically as the user types. Some forms might show validation messages when the

form first loads. In other forms, the messages might appear only after the user has
touched the fields.

These variations in design can lead to poor user experience and an inconsistent
approach to writing code. In our experience working with React teams, forms and
form validation are common stumbling blocks for developers.

Solution

To apply some consistency to form development, we will create a SimpleForm compo-
nent that we will wrap around one or more InputField components. This is an
example of the use of SimpleForm and InputField:

import { useEffect, useState } from 'react'
import './App.css'

import SimpleForm from './SimpleForm'
import InputField from './InputField'

const FormExample® = ({ onSubmit, onChange, initialValue = {} }) => {
const [formFields, setFormFields] = useState(initialValue)

const [valid, setValid] = useState(true)
const [errors, setErrors] = useState({})

useEffect(() => {
if (onChange) {
onChange(formFields, valid, errors)

}

}, [onChange, formFields, valid, errors])
return (
<div className="TheForm">

<h1>Single field</h1>

<SimpleForm

3.3 Create and Validate Forms | 83

https://oreil.ly/Oz27A

value={formFields}

onChange={setFormFields}

onValid={(v, errs) => {
setValid(v)
setErrors(errs)

1

<InputField
name="field1"
onValidate={(v) =>
v || v.length < 3 ? '"Too short!"' : null
}
/>

<button
onClick={() => onSubmit && onSubmit(formFields)}
disabled={!valid}

>
Submit!

</button>

</SimpleForm>
</div>
)
}

export default FormExample®

We track the state of the form in a single object, formFields. Whenever we change a
field in the form, the field will call onChange on the SimpleForm. The field1 field is
validated using the onValidate method, and whenever the validation state changes,
the field calls the onvalid method on the SimpleForm. Validation will occur only if
the user has interacted with a field: making it dirty.

You can see the form running in Figure 3-11.

There is no need to track individual field values. The form value object records indi-
vidual field values with attributes derived from the name of the field. The InputField
handles the details of when to run the validation: it will update the form value and
decide when to display errors.

84 | (Chapter3:Managing State

Single field

Current value:

Field 1: {
"fieldl": "AB"
Too short! }
Submit! Valid?
false
Errors?
{
"fieldl™: "Too short!™

}

Figure 3-11. A simple form with field validation

Figure 3-12 shows a slightly more complex example that uses the SimpleForm with
several fields.

Submit!

" .
Multiple fields
Current value:

Address 1: {
"addressl™: "BB",
Too short! "price“: mgL
Address 2: }

id?
Required Valid?
Address 3: false
Required Errors?
Address 4: {

"addressl™: "Too short!™,
Required "address2": "Required",
Price: "address3™: "Required",
"address4™: "Required",
Must be at least 102 "price": "Must be at least 102",
"requiredBy": "Required™

Required By: } °q ¥ g S
Required

Figure 3-12. A more complex form

To create the SimpleForm and InputField components, we must first look at how
they will communicate with each other. An InputField component will need to tell

the SimpleForm when its value has changed and whether or not the new value is valid.

It will do this with a context.

3.3 Create and Validate Forms

85

A context is a storage scope. When a component stores values in a context, that value
is visible to its subcomponents. The SimpleForm will create a context called Form
Context and use it to store a set of callback functions that any child component can
use to communicate with the form:

import { createContext } from 'react'
const FormContext = createContext({})

export default FormContext

To see how SimpleForm works, let’s begin with a simplified version, which tracks only
its subcomponents’ values, without worrying about validation just yet:

import React, { useCallback, useEffect, useState } from 'react'

import './SimpleForm.css'
import FormContext from './FormContext'

function updateWith(oldValue, field, value) {
const newValue = { ...oldvalue }
newValue[field] = value
return newValue

}

const SimpleForm = ({ children, value, onChange, onvValid }) => {
const [values, setValues] = useState(value || {})

useEffect(() => {
setValues(value || {})
}, [valuel)

useEffect(() => {
if (onChange) {
onChange(values)

}
}, [onChange, values])

let setValue = useCallback(
(field, v) => setValues((vs) => updateWith(vs, field, v)),
[setVvalues]
)
let getValue = useCallback((field) => values[field], [values])
let form = {
setValue: setValue,
value: getValue,

}

return (
<div className="SimpleForm-container">
<FormContext.Provider value={form}>
{children}

86 | Chapter3:Managing State

</FormContext.Provider>
</div>
)
}

export default SimpleForm

The final version of SimpleForm will have additional code for tracking validation and
errors, but this cut-down form is easier to understand.

The form is going to track all of its field values in the values object. The form creates
two callback functions called getValue and setValue and puts them into the context
(as the form object), where subcomponents will find them. We put the form into the
context by wrapping a <FormContext.Provider> around the child components.

Notice that we have wrapped the getValue and setValue callbacks in useCallback,
which prevents the component from creating a new version of each function every
time we render the SimpleForm.

Whenever a child component calls the form.value() function, it will receive the cur-
rent value of the specified field. If a child component calls form.setvalue(), it will
update that value.

Now let’s look at a simplified version of the InputField component, again with any
validation code removed to make it easier to understand:

import React, { useContext } from 'react'
import FormContext from './FormContext'

import './InputField.css'

const InputField = (props) => {
const form = useContext(FormContext)

if (!form.value) {
return 'InputField should be wrapped in a form'

}
const { name, label, ...otherProps } = props
const value = form.value(name)

return (
<div className="InputField">
<label htmlFor={name}>{label || name}:</label>
<input
id={name}
value={value || ''}
onChange={(event) => {
form.setValue(name, event.target.value)

1

3.3 Create and Validate Forms | 87

{...otherProps}
/>{" '}
{3
</div>
)
}

export default InputField

The InputField extracts the form object from the FormContext. If it cannot find a
form object, it knows that we have not wrapped it in a SimpleForm component. The
InputField then renders an input field, setting its value to whatever is returned by
form.value(name). If the user changes the field’s value, the InputField component
sends the new value to form.setValue(name, event.target.value).

If you need a form field other than an input, you can wrap it in some component
similar to the InputField shown here.

The validation code is just more of the same. In the same way that the form tracks its
current value in the values state, it also needs to track which fields are dirty and
which are invalid. It then needs to pass callbacks for setDirty, isDirty, and set
Invalid. These callbacks are used by the child fields when running their onvalidate
code.

Here is the final version of the SimpleForm component, including validation:

import { useCallback, useEffect, useState } from 'react'
import FormContext from './FormContext'
import './SimpleForm.css'

const SimpleForm = ({ children, value, onChange, onValid }) => {
const [values, setValues] = useState(value || {})
const [dirtyFields, setDirtyFields] = useState({})
const [invalidFields, setInvalidFields] = useState({})

useEffect(() => {
setValues(value || {})
}, [valuel)

useEffect(() => {
if (onChange) {
onChange(values)
}
}, [onChange, values])

useEffect(() => {
if (onValid) {
onValid(
Object.keys(invalidFields).every((i) => !invalidFields[i]),
invalidFields

)

88 | (Chapter3: Managing State

}
}, [onvalid, invalidFields])

const setValue = useCallback(
(field, v) => setValues((vs) => ({ ...vs, [field]: v })),
[setValues]
)
const getValue = useCallback((field) => values[field], [values])
const setDirty = useCallback(
(field) => setDirtyFields((df) => ({ ...df, [field]: true })),
[setDirtyFields]
)
const getDirty = useCallback(
(field) => Object.keys(dirtyFields).includes(field),
[dirtyFields]
)
const setInvalid = useCallback(
(field, error) => {
setInvalidFields((i) => ({

i,
[field]: error ? error : undefined,
1))
1,
[setInvalidFields]
)

const form = {
setValue: setValue,
value: getValue,

setDirty: setDirty,
isDirty: getDirty,

setInvalid: setInvalid,

}

return (
<div className="SimpleForm-container">
<FormContext.Provider value={form}>
{children}
</FormContext.Provider>
</div>
)
}

export default SimpleForm

And this is the final version of the InputField component. Notice that the field is
counted as dirty once it loses focus or its value changes:

import { useContext, useEffect, useState } from 'react'
import FormContext from './FormContext'

import './InputField.css'

3.3 Create and Validate Forms | 89

const splitCamelCase = (s) =>
s
.replace(/([a-z0-9])([A-Z6-9])/g, 'S1 $2')
.replace(/"([a-z])/, (x) => x.toUpperCase())

const InputField = (props) => {
const form = useContext(FormContext)

const [error, setError] = useState('')
const { onValidate, name, label, ...otherProps } = props
let value = form.value && form.value(name)

useEffect(() => {
if (onValidate) {
setError(onValidate(value))

}
}, [onvalidate, value])

const setInvalid = form.setInvalid

useEffect(() => {
if (setInvalid) {
setInvalid(name, error)

}

}, [setInvalid, name, error])

if (!form.value) {
return 'InputField should be wrapped in a form'

}

return (
<div className="InputField">
<label htmlFor={name}>{1label || splitCamelCase(name)}:</label>
<input
id={name}
onBlur={() => form.setDirty(name)}
value={value || ''}
onChange={(event) => {
form.setDirty(name)
form.setValue(name, event.target.value)

i3
{...otherProps}
/>{" '}

{
<div className="InputField-error">
{form.isDirty(name) && error ? error : <> </>}
</div>
}

</div>

90 | Chapter3:Managing State

)
}

export default InputField

Discussion

You can use this recipe to create many simple forms, and you can extend it for use
with any React component. For example, if you are using a third-party calendar or
date picker, you would only need to wrap it in a component similar to InputField to
use it inside a SimpleForm.

This recipe doesn’t support forms within forms or arrays of forms. It should be possi-
ble to modify the SimpleForm component to behave like an InputField to place one
form inside another.

You can download the source for this recipe from the GitHub site.

3.4 Measure Time with a Clock

Problem

Sometimes a React application needs to respond to the time of day. It might only need
to display the current time, or it might need to poll a server at regular intervals or
change its interface as day turns to night. But how do you cause your code to re-
render as the result of a time change? How do you avoid rendering components too
often? And how do you do all that without overcomplicating your code?

Solution

We're going to create a useClock hook. The useClock hook will give us access to a
formatted version of the current date and time and automatically update the interface
when the time changes. Here’s an example of the code in use, and Figure 3-13 shows
it running;:

import { useEffect, useState } from 'react'

import useClock from './useClock'
import ClockFace from './ClockFace'

import './Ticker.css'

const SimpleTicker = () => {
const [isTick, setTick] = useState(false)

const time = useClock('HH:mm:ss')

useEffect(() => {
setTick((t) => !'t)

3.4 Measure Time witha Clock | 91

https://oreil.ly/gU03F

3, [time])

return (

<div className="Ticker">
<div className="Ticker-clock">

<h1>Time {isTick ? 'Tick!

{time}

<ClockFace time={time} />

</div>
</div>
)
}

export default SimpleTicker

'"Tock!'}</h1>

Time Tick!

23:49:12

Time Tock!

23:49:13

Time Tick!

23:49:114

Figure 3-13. The SimpleTicker over three seconds

The time variable contains the current time in the format HH:mm:ss. When the time
changes, the value of the isTick state is toggled between true and false and then used
to display the word Tick! or Tock! We show the current time and then also display the

time with a ClockFace component.

As well as accepting a date and time format, useClock can take a number specifying

the number of milliseconds between updates (see Figure 3-14):

import { useEffect, useState } from 'react'

import useClock from './useClock'

import './Ticker.css'

const IntervalTicker = () => {

const [isTick3, setTick3] = useState(false)

const tickThreeSeconds = useClock()

92 | Chapter3: Managing State

useEffect(() => {
setTick3((t) => !'t)
}, [tickThreeSeconds])

return (
<div className="Ticker">
<div className="Ticker-clock">
<h1>{isTick3 ? '3 Second Tick!' : '3 Second Tock!'}</h1>
{tickThreeSeconds}
</div>
</div>
)
}

export default IntervalTicker

3 Second 3 Second
Tick! Tock!

2021-05-15T23:49:12.472 2021-05-156T23:49:15.472

Figure 3-14. The IntervalTicker re-renders the component every three seconds

This version is more useful if you want to perform some task at regular intervals,
such as polling a network service.

To poll a network service, consider using a clock with Recipe 5.1. If
the current value of the clock is passed as a dependency to a hook
that makes network calls, the network call will be repeated every
time the clock changes.

If you pass a numeric parameter to useClock, it will return a time string in ISO for-
mat like 2021-06-11T14:50:34.706.

To build this hook, we will use a third-party library called Moment.js to handle date
and time formatting. If you would prefer to use another library, such as Dayjs, it
should be straightforward to convert:

$ npm install moment
This is the code for useClock:

import { useEffect, useState } from 'react'
import moment from 'moment'

const useClock = (formatOrInterval) => {

3.4 Measure Time witha Clock | 93

https://momentjs.com
https://day.js.org

const format =
typeof formatOrInterval === 'string'
? formatOrInterval
¢ '"YYYY-MM-DDTHH:mm:ss.SSS'
const interval =
typeof formatOrInterval === 'number' ? formatOrInterval : 500
const [response, setResponse] = useState(
moment(new Date()).format(format)

)

useEffect(() => {
const newTimer = setInterval(() => {
setResponse(moment(new Date()).format(format))
}, interval)

return () => clearInterval(newTimer)
}, [format, interval])

return response

}

export default useClock

We derive the date and time format and the required ticking interval from the
formatOrInterval parameter passed to the hook. Then we create a timer with
setInterval. This time will set the response value every interval milliseconds.
When we set the response string to a new time, any component that relies on use
Clock will re-render.

We need to make sure that we cancel any timers that are no longer in use. We can do
this using a feature of the useEffect hook. If we return a function at the end of our
useEffect code, then that function will be called the next time useEffect needs to
run. So, we can use it to clear the old timer before creating a new one.

If we pass a new format or interval to useClock, it will cancel its old timer and
respond using a new timer.

Discussion

This recipe is an example of how you can use hooks to solve a simple problem simply.
React code (the clue is in the name) reacts to dependency changes. Instead of think-
ing, “How can I run this piece of code every second?” the useClock hook allows you
to write code that depends on the current time and hides away all of the gnarly details
of creating timers, updating state, and clearing timers.

If you use the useClock hook several times in a component, then a time change can
result in multiple renders. For example, if you have two clocks that format the current
time in 12-hour format (04:45) and 24-hour format (16:45), then your component

94 | Chapter3: Managing State

will render twice when the minute changes. An extra render once a minute is unlikely
to have much of a performance impact.

You can also use the useClock hook inside other hooks. If you create a useMessages
hook to retrieve messages from a server, you can call useClock inside it to poll the
server at regular intervals.

You can download the source for this recipe from the GitHub site.

3.5 Monitor Online Status

Problem

Let’s say someone is using your application on their cell phone, and then they head
into a subway with no data connection. How can you check that the network connec-
tion has disappeared? What's a React-friendly way of updating your interface to either
tell the user that there’s a problem or disable some features that require network
access?

Solution

We will create a hook called useOnline that will tell us whether were connected to a
network. We need code that runs when the browser loses or regains a connection to
the network. Fortunately, there are window/body-level events called online and
of fline that do exactly that. When the online and offline events are triggered, the
current network state will be given by navigator.onLine, which will be set to true or
false:

import { useEffect, useState } from 'react'

const useOnline = () => {
const [online, setOnline] = useState(navigator.onLine)

useEffect(() => {
if (window.addEventListener) {
window.addEventListener('online', () => setOnline(true), false)
window.addEventListener(
'offline’,
() => setOnline(false),
false
)
} else {
document.body.ononline = () => setOnline(true)
document.body.onoffline = () => setOnline(false)
}
1L D

return online

3.5 Monitor Online Status | 95

https://oreil.ly/hohKK

}
export default useOnline

This hook manages its connection state in the online variable. When the hook is first
run (notice the empty dependency array), we register listeners to the browser’s
online/offline events. When either of these events occurs, we can set the value of
online to true or false. If this is a change to the current value, then any component
using this hook will re-render.

Here’s an example of the hook in action:

import useOnline from './useOnline'
import './App.css'

function App() {
const online = useOnline()

return (
<div className="App">
<h1>Network Checker</h1>

You are now....
{online ? (
<div className="App-indicator-online">0ONLINE</div>
) (
<div className="App-indicator-offline">0FFLINE</div>
)}

</div>
)
}

export default App

If you run the app, the page will currently show as online. If you disconnect/recon-
nect your network, the message will switch to OFFLINE and then back to ONLINE
(see Figure 3-15).

Network Checker Network Checker Network Checker

You are now....ONLINE You are now....OFFLINE You are now....ONLINE

Figure 3-15. The code re-renders when the network is switched off and back on again

96 | Chapter3:Managing State

Discussion

It's important to note that this hook checks your browser’s connection to a network,
not whether it connects to the broader Internet or your server. If you would like to
check that your server is running and available, you would have to write additional
code.

You can download the source for this recipe from the GitHub site.

3.6 Manage Global State with Redux

Problem

In other recipes in this chapter, we've seen that you can manage complex component
state with a pure JavaScript function called a reducer. Reducers simplify components
and make business logic more testable.

But what if you have some data, such as a shopping basket, that needs to be accessed
everywhere?

Solution

We will use the Redux library to manage the global application state. Redux uses the
same reducers we can give to the React useReducer function, but they are used to
manage a single state object for the entire application. Plus, there are many extensions
to Redux that solve common programming problems and develop and manage your
application more quickly.

First, we need to install the Redux library:

$ npm install redux

We will also install the React Redux library, which will make Redux far easier to use
with React:

$ npm install react-redux

We're going to use Redux to build an application containing a shopping basket (see
Figure 3-16).

3.6 Manage Global State with Redux | 97

https://oreil.ly/9hkSA

= Boots Boots Basket
Ski boots Snowboard boots1 x$825.59
PCE310038
Mondo 26.5. White.
$608.62

Snowboard boots
Mondo 27.5. Blue.
$825.59

Mountaineering boots
Mondo 27.3. Brown.
$634.98

Figure 3-16. When a customer buys a product, the application adds it to the basket

If a customer clicks a Buy button, the application adds the product to the basket. If
they click the Buy button again, the quantity in the basket is updated. The basket will
appear in several places across the application, so it’s a good candidate for moving to
Redux. Here is the reducer function that we will use to manage the basket:

const reducer = (state = {}, action = {}) => {
switch (action.type) {
case 'buy': {
const basket = state.basket ? [...state.basket] : []
const existing = basket.findIndex(
(item) => item.productld === action.payload.productld
)
if (existing !== -1) {
basket[existing].quantity = basket[existing].quantity + 1
} else {
basket.push({ quantity: 1, ...action.payload })
}
return {
...state,
basket,
}
}
case 'clearBasket': {
return {
...state,
basket: [],
}
}

98 | Chapter3: Managing State

default:
return { ...state }
}
}

export default reducer

We are creating a single reducer here. Once your application grows
in size, you will probably want to split your reducer into smaller
reducers, which you can combine with the Redux combine
Reducers function.

The reducer function responds to buy and clearBasket actions. The buy action will
either add a new item to the basket or update the quantity of an existing item if one
has a matching productId. The clearBasket action will set the basket back to an
empty array.

Now that we have a reducer function, we will use it to create a Redux store. The store
is going to be our central repository for the shared application state. To create a store,
add these two lines to some top-level component such as App.js:

import { createStore } from 'redux'
import reducer from './reducer'

const store = createStore(reducer)

The store needs to be available globally in the app, and to do that, we need to inject it
into the context of the components that might need it. The React Redux library pro-
vides a component to inject the store in a component context called Provider:

<Provider store={store}s
All the components inside here can access the store
</Provider>

Here is the reducer.js component from the example application, which you can find in
the GitHub repository for this book:

const reducer = (state = {}, action = {}) => {
switch (action.type) {
case 'buy': {
const basket = state.basket ? [...state.basket] : []
const existing = basket.findIndex(

(item) => item.productld === action.payload.productId
)
if (existing !== -1) {
basket[existing].quantity = basket[existing].quantity + 1
} else {
basket.push({ quantity: 1, ...action.payload })
}
return {

3.6 Manage Global State with Redux | 99

https://oreil.ly/IVh7x
https://oreil.ly/j90xI

...state,
basket,

}
}
case 'clearBasket': {
return {
...state,
basket: [],
}

}
default:

return { ...state }
}
}

export default reducer

Now that the store is available to our components, how do we use it? React Redux
allows you to access the store through hooks. If you want to read the contents of the
global state, you can use useSelector:

const basket = useSelector((state) => state.basket)

The useSelector hook accepts a function to extract part of the central state. Selectors
are pretty efficient and will cause your component to re-render only if the particular
part of the state you are interested in changes.

If you need to submit an action to the central store, you can do it with the
useDispatch hook:

const dispatch = useDispatch()
This returns a dispatch function that you can use to send actions to the store:
dispatch({ type: 'clearBasket' })

These hooks work by extracting the store from the current context. If you forget to
add a Provider to your application or try to run useSelector or useDispatch out-
side of a Provider context, you will get an error, as shown in Figure 3-17.

100 | Chapter3: Managing State

Error: could not find react-redux context value; please X
ensure the component is wrapped in a <Provider>

» 2 stack frames were collapsed.

./src/Basket.js/__webpack_exports__.default
src/Basket.js:7

4 | import "./Basket.css";
5|
6 | export default () => {

= 7 const basket = useSelector(state == state.basket);
8 const dispatch = useDispatch(};
9
@

1 return <div className='Basket'=

|
|
|
|
View compiled

» 16 stack frames were collapsed.

./src/findex. js
src/index.js:7

4 | import App from './App';

iceWorker from './servicedorker';

Figure 3-17. If you forget to include a Provider, you will get this error

The completed Basket component reads and clears the app-wide shopping basket:

import { useDispatch, useSelector } from 'react-redux'
import './Basket.css'

const Basket = () => {
const basket = useSelector((state) => state.basket)
const dispatch = useDispatch()

return (
<div className="Basket">
<h2>Basket</h2>
{basket && basket.length ? (
<>
{basket.map((item) => (
<div className="Basket-item">
<div className="Basket-itemName">{item.name}</div>
<div className="Basket-itemProductId">
{item.productId}
</div>
<div className="Basket-itemPricing">
<div className="Basket-itemQuantity">
{item.quantity}
</div>
<div className="Basket-itemPrice">{item.price}</div>
</div>
</div>

3.6 Manage Global State with Redux | 101

N}
<button onClick={() => dispatch({ type: 'clearBasket' })}>
Clear
</button>
</>
D¢
"Empty’
)}
</div>
)
}

export default Basket

To demonstrate some code adding items to the basket, here’s a Boots component that
allows a customer to buy a selection of products:

import { useDispatch } from 'react-redux'

import './Boots.css'
const products = [
{
productId: 'BE8290004',
name: 'Ski boots',
description: 'Mondo 26.5. White.',
price: 698.62,
}s
{
productId: 'PC6310098',
name: 'Snowboard boots',
description: 'Mondo 27.5. Blue.',
price: 825.59,
}s
{
productId: 'RR5430103',
name: 'Mountaineering boots',
description: 'Mondo 27.3. Brown.',
price: 634.98,
}s
1

const Boots = () => {
const dispatch = useDispatch()

return (
<div className="Boots">
<h1>Boots</h1>

<dl className="Boots-products">
{products.map((product) => (
<>

<dt>{product.name}</dt>

102 | Chapter3: Managing State

<dd>
<p>{product.description}</p>
<p>${product.pricel}</p>
<button
onClick={() =>
dispatch({ type: 'buy', payload: product })
}
>
Add to basket
</button>
</dd>
</>
N}
</dl>
</div>
)
}

export default Boots

These two components may appear at very different locations in the component tree,
but they share the same Redux store. As soon as a customer adds a product to the
basket, the Basket component will automatically update with the change (see
Figure 3-18).

* Home
= Boots Boots Basket
Ski boots Snowboard boots1 x$825.59
PCE310088
Mondo 26.5. White. .
Ski boots 2x$698.62
$698.62 BEB290004

Snowboard boots
Mondo 27.5. Blue.
$825.59

Add to basket

Mountaineering boots
Mondo 27.3. Brown.
$634.98

Add to basket

Figure 3-18. The Redux-React hooks make sure that when a user buys a product, the
Basket is re-rendered

3.6 Manage Global State with Redux | 103

Discussion

Developers often use the Redux library with the React framework. For a long time, it
seemed, almost every React application included Redux by default. It’s probably true
that Redux was often overused or used inappropriately. We have seen projects that
have even banned local state in favor of using Redux for all state. We believe this
approach is a mistake. Redux is intended for central application state management,
not for simple component state. If you are storing data that is of concern to only one
component, or its subcomponents, you should probably not store it in Redux.

However, if your application manages some global application state, then Redux is
still the tool of choice.

You can download the source for this recipe from the GitHub site.

3.7 Survive Page Reloads with Redux Persist

Problem

Redux is an excellent way of managing the application state centrally. However, it
does have a small problem: when you reload the page, the entire state disappears (see
Figure 3-19).

* Home = Home
. Boots Boots Basket . Boots Basket
Ski boots Snowboard boots1x$825.59 Ski boots Emety
PC6310098
Mondo 26.5. White. . Mondo 26.5. White.
Ski boots 2 x$698.62
$69862 BEB290004 $698.62
o
Snowboard boots Snowboard boots
Mondo 27.5. Blue. Mondo 27.5. Blue.
$825.59 $825.59
Mountaineering boots Mountaineering boots
Mondo 27.3. Brown. Mondo 27.3. Brown.
$634.98 $634.98

Figure 3-19. Redux state (left) is lost if the page is reloaded (right)

The state disappears because Redux keeps its state in memory. How do we prevent the
state from disappearing?

104 | Chapter3: Managing State

https://oreil.ly/j90xI

Solution

We will use the Redux Persist library to keep a copy of the Redux state in local stor-
age. To install Redux Persist, type the following:

$ npm install redux-persist

The first thing we need to do is create a persisted reducer, wrapped around our exist-
ing reducer:

import storage from 'redux-persist/lib/storage’

const persistConfig = {
key: 'root',
storage,

}

const persistedReducer = persistReducer(persistConfig, reducer)

The storage specifies where we will persist the Redux state: it will be in local
Storage by default. The persistConfig says that we want to keep our state in a
localStorage item called persist:root. When the Redux state changes, the persis
tedReducer will write a copy with localStorage.setItem('persist:root', ...).
We now need to create our Redux store with persistedReducer:

const store = createStore(persistedReducer)

We need to interject the Redux Persist code between the Redux store and the code
that’s accessing the Redux store. We do that with a component called PersistGate:

import { PersistGate } from 'redux-persist/integration/react’
import { persistStore } from 'redux-persist'

const persistor = persistStore(store)

<Provider store={store}>
<PersistGate loading={<div>Loading...</div>} persistor={persistor}>
Components live in here
</PersistGate>
</Provider>

The PersistGate must be inside the Redux Provider and outside the components
that are going to use Redux. The PersistGate will watch for when the Redux state is
lost and then reload it from localStorage. It might take a moment to reload the data,
and if you want to show that the Ul is briefly busy, you can pass a loading compo-
nent to the PersistGate: for example, an animated