O'REILLY"

Learning

PHP. MySQL,

Robin Nixon

9

O'REILLY"

Learning PHP, MySQL & JavaScript

Build interactive, data-driven websites with the potent combination of
open source technologies and web standards, even if you have only basic
HTML knowledge. In this update to this popular hands-on guide, you'll
tackle dynamic web programming with the latest versions of today's
core technologies: PHP, MySQL, JavaScript, CSS, HTML5, and key jQuery
libraries.

Web designers will learn how to use these technologies together and pick
up valuable web programming practices along the way—including how
to optimize websites for mobile devices. At the end of the book, you'll
put everything together to build a fully functional social networking site
suitable for both desktop and mobile browsers.

m Explore MySQL, from database structure to complex queries
m Use the MySQLi extension, PHP's improved MySQL interface

m Create dynamic PHP web pages that tailor themselves to
the user

®m Manage cookies and sessions and maintain a high level of
security

m Enhance the JavaScript language with jQuery and jQuery
mobile libraries

m Use Ajax calls for background browser-server communication
m Style your web pages by acquiring CSS2 and CSS3 skills

m Implement HTMLS5 features, including geolocation, audio,
video, and the canvas element

m Reformat your websites into mobile web apps

Robin Nixon is an IT journalist who's worked with and written about computers
since the early 1980s. Robin has written hundreds of articles and several books
on computing and has developed numerous websites using open source tools,
specializing in the technologies featured in this book.

“This is a great beginner’s

book that introduces
several crucial web
developer languages.

It's a quick-paced,
easy-to-read, information-
packed book that will
soon have you creating
dynamically driven
websites, including a
basic social networking

site.”

—Albert Wiersch
Developer of CSE HTML ValidatorZ

US $49.99 CAN $65.99
ISBN: 978-1-491-97891-7

MIMERVORIO
2 I

49119789

8

Twitter: @oreillymedia
facebook.com/oreilly

FIFTH EDITION

Learning PHP, MySQL & JavaScript

With jQuery, CSS & HTML5

Robin Nixon

Bejng - Boston « Farnham - Sebastopol - Tokyo [@YRIIMNY

Learning PHP, MySQL & JavaScript
by Robin Nixon

Copyright © 2018 Robin Nixon. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram Indexer: Judy McConville
Production Editor: Melanie Yarbrough Interior Designer: David Futato
Copyeditor: Rachel Head Cover Designer: Karen Montgomery
Proofreader: Rachel Monaghan lllustrator: Rebecca Demarest

July 2009: First Edition

August 2012: Second Edition

June 2014: Third Edition

December 2014: Fourth Edition

May 2018: Fifth Edition

Revision History for the Fifth Edition
2018-05-08: First Release
2018-07-27: Second Release
2018-10-12: Third Release
2019-08-09: Fourth Release
2020-01-10: Fifth Release
2020-07-31: Sixth Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491978917 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning PHE, MySQL & JavaScript, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-491-97891-7
[LSCH]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491978917

For Julie

Table of Contents

Preface.oooiiiiiiii Xxiii
1. Introduction to DynamicWeb Content...........c.cooviniiiiiiiiiiiieiiienennnes 1
HTTP and HTML: Berners-Lee’s Basics 2
The Request/Response Procedure 2
The Benefits of PHP, MySQL, JavaScript, CSS, and HTML5 5
MariaDB: The MySQL Clone 6
Using PHP 6
Using MySQL 7
Using JavaScript 8
Using CSS 10

And Then Theres HTML5 10
The Apache Web Server 11
Handling Mobile Devices 12
About Open Source 12
Bringing It All Together 13
Questions 14

2. Setting Up a Development Server.........oovvueiiiiiiiiiieeiierinerenenennn, 17
What Is a WAMP, MAMP, or LAMP? 18
Installing AMPPS on Windows 18
Testing the Installation 22
Accessing the Document Root (Windows) 24
Alternative WAMPs 25
Installing AMPPS on macOS 26
Accessing the Document Root (macOS) 27
Installing a LAMP on Linux 28

Working Remotely 28

Logging In

Using FTP
Using a Program Editor
Using an IDE
Questions

IntroductiontoPHP..........oooiiiiiiii
Incorporating PHP Within HTML
This Book’s Examples
The Structure of PHP
Using Comments
Basic Syntax
Variables
Operators
Variable Assignment
Multiple-Line Commands
Variable Typing
Constants
Predefined Constants
The Difference Between the echo and print Commands
Functions
Variable Scope
Questions

Expressions and Control Flow inPHP............ccooiviiiiiiiiiiiiiiiiinennnn
Expressions
TRUE or FALSE?
Literals and Variables
Operators
Operator Precedence
Associativity
Relational Operators
Conditionals
The if Statement
The else Statement
The elseif Statement
The switch Statement
The ? Operator
Looping
while Loops
do...while Loops
for Loops

29
29
30
31
33

35
35
37
38
38
39
40
45
48
50
52
53
54
55
55
56
62

63
63
64
65
66
67
69
70
74
75
76
78
79
82
83
84
86
86

vi

| Table of Contents

Breaking Out of a Loop
The continue Statement
Implicit and Explicit Casting

PHP Dynamic Linking
Dynamic Linking in Action
Questions

5. PHP Functions and Objects.........................

PHP Functions
Defining a Function
Returning a Value
Returning an Array
Passing Arguments by Reference
Returning Global Variables
Recap of Variable Scope
Including and Requiring Files
The include Statement
Using include_once
Using require and require_once
PHP Version Compatibility
PHP Objects
Terminology
Declaring a Class
Creating an Object
Accessing Objects
Cloning Objects
Constructors
Destructors
Writing Methods
Declaring Properties
Declaring Constants
Property and Method Scope
Static Methods
Static Properties
Inheritance
Questions

6. PHPAIAYs.covvvviniiiiiiiiiiiiiiiiiiiineenns

Basic Access
Numerically Indexed Arrays
Associative Arrays
Assignment Using the array Keyword

88
89
90
91
92
93

.......................... 95

96

97

98

99
100
102
102
103
103
103
104
104
105
106
107
108
108
110
111
111
112
113
113
114
115
116
117
120

........................ 123

123
123
125
126

Table of Contents | vii

The foreach...as Loop
Multidimensional Arrays
Using Array Functions

is_array

count

sort

shuffle

explode

extract

compact

reset

end
Questions

Practical PHP. oe et ciieeas

Using printf
Precision Setting
String Padding
Using sprintf

Date and Time Functions
Date Constants
Using checkdate

File Handling
Checking Whether a File Exists
Creating a File
Reading from Files
Copying Files
Moving a File
Deleting a File
Updating Files
Locking Files for Multiple Accesses
Reading an Entire File
Uploading Files

System Calls

XHTML or HTML5?

Questions

IntroductiontoMySQL.oovviiiiiiiiiiiiiiiiiiena,

MySQL Basics

Summary of Database Terms

Accessing MySQL via the Command Line
Starting the Command-Line Interface

127
129
132
132
133
133
133
134
135
135
137
137
137

139
139
140
142
143
143
146
146
147
147
147
149
150
150
151
151
153
154
155
161
162
163

165
165
166
166
167

viii

| Table of Contents

10.

Using the Command-Line Interface
MySQL Commands
Data Types
Indexes
Creating an Index
Querying a MySQL Database
Joining Tables Together
Using Logical Operators
MySQL Functions
Accessing MySQL via phpMyAdmin
Questions

Database Design
Primary Keys: The Keys to Relational Databases
Normalization
First Normal Form
Second Normal Form
Third Normal Form
When Not to Use Normalization
Relationships
One-to-One
One-to-Many
Many-to-Many
Databases and Anonymity
Transactions
Transaction Storage Engines
Using BEGIN
Using COMMIT
Using ROLLBACK
Using EXPLAIN
Backing Up and Restoring
Using mysqldump
Creating a Backup File
Restoring from a Backup File
Dumping Data in CSV Format
Planning Your Backups
Questions

Accessing MySQLUSINGPHP.covvniiiiiiiiiiiiiiiii i iiieennees

Querying a MySQL Database with PHP
The Process

. Mastering MySQL.uiinitiit i i i i e

171
172
177
187
187
193
203
205
206
206
207

209
209
210
211
212
214
216
218
219
219
220
221
222
223
223
224
225
225
226
227
227
229
231
231
232
232

235
235
235

Table of Contents

| ix

1.

Creating a Login File

Connecting to a MySQL Database

A Practical Example

The $_POST Array

Deleting a Record

Displaying the Form

Querying the Database

Running the Program
Practical MySQL

Creating a Table

Describing a Table

Dropping a Table

Adding Data

Retrieving Data

Updating Data

Deleting Data

Using AUTO_INCREMENT

Performing Additional Queries
Preventing Hacking Attempts

Steps You Can Take

Using Placeholders

Preventing HTML Injection
Using mysqli Procedurally
Questions

FormHandling.............oooiiiiiiiiiiiiiiiiiininn,

Building Forms

Retrieving Submitted Data
Default Values
Input Types
Sanitizing Input

An Example Program

HTML5 Enhancements
The autocomplete Attribute
The autofocus Attribute
The placeholder Attribute
The required Attribute
Override Attributes
The width and height Attributes
The min and max Attributes
The step Attribute
The form Attribute

oooooooooooooooooooo

236
237
243
246
247
247
248
249
250
251
251
252
253
254
255
255
256
257
258
259
260
263
264
266

267
267
269
270
271
278
280
283
283
283
283
284
284
284
284
284
285

X

Table of Contents

The list Attribute 285

The color Input Type 285
The number and range Input Types 285
Date and Time Pickers 286
Questions 286
. Cookies, Sessions, and Authentication.covvriiiieienrenenenennenens 287
Using Cookies in PHP 287
Setting a Cookie 289
Accessing a Cookie 290
Destroying a Cookie 290
HTTP Authentication 290
Storing Usernames and Passwords 294
An Example Program 296
Using Sessions 299
Starting a Session 299
Ending a Session 302
Setting a Timeout 303
Session Security 304
Questions 307
. Exploring JavaScript.ooouiiiii i s 309
JavaScript and HTML Text 310
Using Scripts Within a Document Head 311
Older and Nonstandard Browsers 311
Including JavaScript Files 312
Debugging JavaScript Errors 313
Using Comments 314
Semicolons 314
Variables 314
String Variables 315
Numeric Variables 315
Arrays 316
Operators 316
Arithmetic Operators 317
Assignment Operators 317
Comparison Operators 318
Logical Operators 318
Incrementing, Decrementing, and Shorthand Assignment 318
String Concatenation 318
Escape Characters 319
Variable Typing 319

Table of Contents | xi

14.

15.

Functions

Global Variables

Local Variables

The Document Object Model
Another Use for the $ Symbol
Using the DOM

About document.write
Using console.log
Using alert
Writing into Elements
Using document.write

Questions

Expressions and Control Flow in JavaScript

Expressions
Literals and Variables
Operators
Operator Precedence
Associativity
Relational Operators
The with Statement
Using onerror
Using try...catch
Conditionals
The if Statement
The else Statement
The switch Statement
The ? Operator
Looping
while Loops
do...while Loops
for Loops
Breaking Out of a Loop
The continue Statement
Explicit Casting
Questions

JavaScript Functions, Objects, and Arrays

JavaScript Functions
Defining a Function
Returning a Value
Returning an Array

321
321
321
322
324
325
326
326
326
326
327
327

329
329
330
331
332
332
333
336
337
338
339
339
339
340
342
342
342
343
344
345
345
346
347

349
349
349
351
353

Xii

| Table of Contents

16.

17.

18.

JavaScript Objects
Declaring a Class
Creating an Object
Accessing Objects
The prototype Keyword

JavaScript Arrays
Numeric Arrays
Associative Arrays
Multidimensional Arrays
Using Array Methods

Questions

JavaScript and PHP Validation and Error Handling..............

Validating User Input with JavaScript

The validate.html Document (Part 1)

The validate.html Document (Part 2)
Regular Expressions

Matching Through Metacharacters

Fuzzy Character Matching

Grouping Through Parentheses

Character Classes

Indicating a Range

Negation

Some More Complicated Examples

Summary of Metacharacters

General Modifiers

Using Regular Expressions in JavaScript

Using Regular Expressions in PHP
Redisplaying a Form After PHP Validation
Questions

Using Asynchronous Communication...................ouues

What Is Asynchronous Communication?
Using XMLHttpRequest

Your First Asynchronous Program

Using GET Instead of POST

Sending XML Requests

Using Frameworks for Asynchronous Communication
Questions

Introductionto (S, . ovvv vt ittt

Importing a Stylesheet

354
354
356
356
356
359
360
361
362
363
368

................. 3N

371
372
374
377
378
378
379
380
380
380
381
383
385
385
386
387
393

................. 395

396
396
399
403
406
411
411

................ 413

414

Table of Contents | xiii

Importing CSS from Within HTML
Embedded Style Settings
Using IDs
Using Classes
Using Semicolons
CSS Rules
Multiple Assignments
Using Comments
Style Types
Default Styles
User Styles
External Stylesheets
Internal Styles
Inline Styles
CSS Selectors
The Type Selector
The Descendant Selector
The Child Selector
The ID Selector
The Class Selector
The Attribute Selector
The Universal Selector
Selecting by Group
The CSS Cascade
Stylesheet Creators
Stylesheet Methods
Stylesheet Selectors
The Difference Between div and span Elements
Measurements
Fonts and Typography
font-family
font-style
font-size
font-weight
Managing Text Styles
Decoration
Spacing
Alignment
Transformation
Indenting
CSS Colors
Short Color Strings

414
415
415
415
416
416
416
417
418
418
418
419
419
420
420
420
420
421
422
423
424
424
425
425
426
426
427
429
431
433
433
434
434
435
435
435
436
436
436
436
437
438

Xiv

| Table of Contents

Gradients 438
Positioning Elements 440
Absolute Positioning 440
Relative Positioning 440
Fixed Positioning 441
Pseudoclasses 443
Shorthand Rules 445
The Box Model and Layout 446
Setting Margins 446
Applying Borders 448
Adjusting Padding 449
Object Contents 451
Questions 451
19. Advanced (SSWith (SS3.......ovviiiiiiiiii 453
Attribute Selectors 454
Matching Parts of Strings 454
The box-sizing Property 455
CSS3 Backgrounds 456
The background-clip Property 456
The background-origin Property 458
The background-size Property 458
Using the auto Value 459
Multiple Backgrounds 459
CSS3 Borders 461
The border-color Property 461
The border-radius Property 461
Box Shadows 465
Element Overflow 466
Multicolumn Layout 466
Colors and Opacity 468
HSL Colors 468
HSLA Colors 469
RGB Colors 469
RGBA Colors 469
The opacity Property 470
Text Effects 470
The text-shadow Property 470
The text-overflow Property 470
The word-wrap Property 471
Web Fonts 472
Google Web Fonts 473
Table of Contents | xv

20.

21.

Transformations
3D Transformations
Transitions
Properties to Transition
Transition Duration
Transition Delay
Transition Timing
Shorthand Syntax
Questions

Accessing €SS from JavaScript.ovviiiiiiiiiii i

Revisiting the getElementByld Function
The O function
The S Function
The C Function
Including the Functions
Accessing CSS Properties from JavaScript
Some Common Properties
Other Properties
Inline JavaScript
The this Keyword
Attaching Events to Objects in a Script
Attaching to Other Events
Adding New Elements
Removing Elements
Alternatives to Adding and Removing Elements
Using Interrupts
Using setTimeout
Canceling a Timeout
Using setInterval
Using Interrupts for Animation
Questions

IntroductiontojQUery.ccovviiiiiiii i

Why jQuery?

Including jQuery
Choosing the Right Version
Downloading
Using a Content Delivery Network
Customizing jQuery

jQuery Syntax
A Simple Example

474
475
476
476
477
477
477
478
480

481
481
481
482
483
484
484
485
486
488
488
489
490
491
492
493
494
494
495
495
497
499

501
501
502
502
504
504
505
505
506

Xvi

| Table of Contents

Avoiding Library Conflicts
Selectors

The css Method

The Element Selector

The ID Selector

The Class Selector

Combining Selectors
Handling Events
Waiting Until the Document Is Ready
Event Functions and Properties

The blur and focus Events

The this Keyword

The click and dblclick Events

The keypress Event

Considerate Programming

The mousemove Event

Other Mouse Events

Alternative Mouse Methods

The submit Event
Special Effects

Hiding and Showing

The toggle Method

Fading In and Out

Sliding Elements Up and Down

Animations

Stopping Animations
Manipulating the DOM

The Difference Between the text and html Methods

The val and attr Methods

Adding and Removing Elements
Dynamically Applying Classes
Moditying Dimensions

The width and height Methods

The innerWidth and innerHeight Methods

The outerWidth and OuterHeight Methods
DOM Traversal

Parent Elements

Child Elements

Sibling Elements

Selecting the Next and Previous Elements

Traversing jQuery Selections

The is Method

507
507
508
508
509
509
509
510
511
512
513
514
514
515
517
517
520
521
522
523
524
525
526
527
528
531
532
533
533
535
537
537
538
540
540
541
541
545
545
547
549
550

Table of Contents

| xvii

22,

23.

24,

Using jQuery Without Selectors
The $.each Method
The $.map Method
Using Asynchronous Communication
Using the POST Method
Using the GET Method
Plug-ins
jQuery User Interface
Other Plug-ins
Questions

Introduction to jQuery Mobile.cooiiiiiiiiniat

Including jQuery Mobile
Getting Started
Linking Pages
Linking Synchronously
Linking Within a Multipage Document
Page Transitions
Styling Buttons
List Handling
Filterable Lists
List Dividers
What Next?
Questions

Introductionto HTMLS. . oo v vvve et ci e e

The Canvas
Geolocation
Audio and Video
Forms

Local Storage
Web Workers
Microdata
Questions

The HTMLS Canvas. . o vvvveeerirneieeeenenennenennenens

Creating and Accessing a Canvas
The toDataURL Function
Specifying an Image Type
The fillRect Method
The clearRect Method
The strokeRect Method

552
552
553
554
554
555
555
556
556
556

559
560
561
563
563
564
565
568
571
572
574
577
577

579
579
581
583
584
585
585
585
586

587
587
589
591
591
591
592

Xviii

| Table of Contents

Combining These Commands 592

The createLinearGradient Method 593
The addColorStop Method in Detail 595
The createRadialGradient Method 596
Using Patterns for Fills 598
Writing Text to the Canvas 600
The strokeText Method 600
The textBaseline Property 601
The font Property 601
The textAlign Property 601
The fillText Method 602
The measureText Method 603
Drawing Lines 603
The lineWidth Property 604
The lineCap and lineJoin Properties 604
The miterLimit Property 606
Using Paths 606
The moveTo and lineTo Methods 607
The stroke Method 607
The rect Method 608
Filling Areas 608
The clip Method 610
The isPointInPath Method 613
Working with Curves 614
The arc Method 614
The arcTo Method 617
The quadraticCurveTo Method 618
The bezierCurveTo Method 619
Manipulating Images 620
The drawImage Method 620
Resizing an Image 621
Selecting an Image Area 621
Copying from a Canvas 623
Adding Shadows 623
Editing at the Pixel Level 625
The getImageData Method 625
The putImageData Method 628
The createImageData Method 629
Advanced Graphical Effects 629
The globalCompositeOperation Property 629
The globalAlpha Property 632
Transformations 632

Table of Contents | xix

25.

26.

27.

The scale Method

The save and restore Methods

The rotate Method

The translate Method

The transform Method

The setTransform Method
Questions

HTML5 Audioand Video.c.ovvevniiieininnnnnens.

About Codecs
The <audio> Element
Supporting Non-HTML5 Browsers
The <video> Element

The Video Codecs

Supporting Older Browsers
Questions

Other HTMLS Features. ..oovvvvvrenrienennenenennenenns

Geolocation and the GPS Service
Other Location Methods
Geolocation and HTML5
Local Storage

Using Local Storage

The localStorage Object
Web Workers
Drag and Drop
Cross-Document Messaging
Other HTMLS5 Tags
Questions

Bringing It AllTogether..........ccovviiiiiiiiiiiinennnn,

Designing a Social Networking App
On the Website
functions.php
The Functions
header.php
setup.php
index.php
signup.php
Checking for Username Availability
Logging In
checkuser.php

633
634
634
635
636
638
639

641
642
643
646
647
648
651
653

655
655
656
657
660
661
661
663
666
668
672
672

675
676
676
676
677
679
682
683
684
685
685
688

XX

| Table of Contents

login.php 689

profile.php 691
Adding the “About Me” Text 692
Adding a Profile Image 692
Processing the Image 692
Displaying the Current Profile 693

members.php 696
Viewing a User’s Profile 696
Adding and Dropping Friends 697
Listing All Members 697

friends.php 700

messages.php 703

logout.php 706

styles.css 708

javascript.js 710

A. Solutions to the Chapter QUestions.cooveuieiiiiiiierieeenneennnnns 713
B. Online Resources.oooivvuviiiiiiiiiiiiiiiii i 735
C. MySQL's FULLTEXT StOPWOIdS. . .o vevvveeenieeiieeeeeenieeneennenenaeennnns 739
D. MySQLFUNCRIONS. ... vveeiit ittt eaaes 743
E. jQuery Selectors, Objects, and Methods.cccovvviiiiiiiiiiiennnnnnn. 753
INAEX. e 777

Table of Contents | xxi

Preface

The combination of PHP and MySQL is the most convenient approach to dynamic,
database-driven web design, holding its own in the face of challenges from integrated
frameworks—such as Ruby on Rails—that are harder to learn. Due to its open source
roots (unlike the competing Microsoft NET Framework), it is free to implement and
is therefore an extremely popular option for web development.

Any would-be developer on a Unix/Linux or even a Windows/Apache platform will
need to master these technologies. And, combined with the partner technologies of
JavaScript, jQuery, CSS, and HTML5, you will be able to create websites of the caliber
of industry standards like Facebook, Twitter, and Gmail.

Audience

This book is for people who wish to learn how to create effective and dynamic web-
sites. This may include webmasters or graphic designers who are already creating
static websites but wish to take their skills to the next level, as well as high school and
college students, recent graduates, and self-taught individuals.

In fact, anyone ready to learn the fundamentals behind responsive web design will
obtain a thorough grounding in the core technologies of PHP, MySQL, JavaScript,
CSS, and HTMLS5, and you’ll learn the basics of the jQuery and jQuery Mobile libra-
ries, too.

Assumptions This Book Makes

This book assumes that you have a basic understanding of HTML and can at least put
together a simple, static website, but does not assume that you have any prior knowl-
edge of PHP, MySQL, JavaScript, CSS, or HTML5—although if you do, your progress
through the book will be even quicker.

Xxiii

Organization of This Book

The chapters in this book are written in a specific order, first introducing all of the
core technologies it covers and then walking you through their installation on a web
development server so that you will be ready to work through the examples.

In the first section, you will gain a grounding in the PHP programming language,
covering the basics of syntax, arrays, functions, and object-oriented programming.

Then, with PHP under your belt, you will move on to an introduction to the MySQL
database system, where you will learn everything from how MySQL databases are
structured to how to generate complex queries.

After that, you will learn how you can combine PHP and MySQL to start creating
your own dynamic web pages by integrating forms and other HTML features. You
will then get down to the nitty-gritty practical aspects of PHP and MySQL develop-
ment by learning a variety of useful functions and how to manage cookies and ses-
sions, as well as how to maintain a high level of security.

In the next few chapters, you will gain a thorough grounding in JavaScript, from sim-
ple functions and event handling to accessing the Document Object Model, in-
browser validation, and error handling. You'll also get a comprehensive primer on
using the popular jQuery library for JavaScript.

With an understanding of all three of these core technologies, you will then learn how
to make behind-the-scenes Ajax calls and turn your websites into highly dynamic
environments.

Next, you'll spend two chapters learning all about using CSS to style and lay out your
web pages, before discovering how the jQuery libraries can make your development
job a great deal easier. You'll then move on to the final section on the interactive fea-
tures built into HTMLS5, including geolocation, audio, video, and the canvas. After
this, you’ll put together everything you’ve learned in a complete set of programs that
together constitute a fully functional social networking website.

Along the way, you'll find plenty of advice on good programming practices and tips
that can help you find and solve hard-to-detect programming errors. There are also
plenty of links to websites containing further details on the topics covered.

Supporting Books

Once you have learned to develop using PHP, MySQL, JavaScript, CSS, and HTMLS5,
you will be ready to take your skills to the next level using the following O’Reilly ref-
erence books:

o Dynamic HTML: The Definitive Reference by Danny Goodman

xxiv | Preface

http://shop.oreilly.com/product/9780596527402.do

o PHP in a Nutshell by Paul Hudson

o MySQL in a Nutshell by Russell Dyer

o JavaScript: The Definitive Guide by David Flanagan

o CSS: The Definitive Guide by Eric A. Meyer and Estelle Weyl
o HTMLS5: The Missing Manual by Matthew MacDonald

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, options, and buttons.

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities. Also used for database, table, and column
names.

Constant width
Indicates commands and command-line options, variables and other code ele-
ments, HTML tags, and the contents of files.

Constant width bold
Shows program output and is used to highlight sections of code that are dis-
cussed in the text.

Constant width italic
Shows text that should be replaced with user-supplied values.

This element signifies a tip, suggestion, or general note.

This element indicates a warning or caution.

N

Preface | xxv

http://shop.oreilly.com/product/9780596100674.do
http://shop.oreilly.com/product/9780596514334.do
http://shop.oreilly.com/product/9780596805531.do
http://shop.oreilly.com/product/0636920012726.do
http://shop.oreilly.com/product/0636920029243.do

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
http://lpmj.net.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless youre reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning PHBE, MySQL ¢ JavaScript
by Robin Nixon (O’Reilly). Copyright 2018 Robin Nixon, 978-1-491-97891-7”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Online Learning

o » For more than 40 years, O'Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O'Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

xxvi | Preface

http://lpmj.net
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/Ipmjch_5e.

To comment or ask technical questions about this book, send email to bookques-
tions@oreilly.com.

For news and more information about our books and courses, see our website at
http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

I would like to once again thank my editor, Andy Oram, and everyone who worked
so hard on this book, including Jon Reid, Michal Spaéek, and John Craig for their
comprehensive technical reviews, Melanie Yarbrough for overseeing production,
Rachel Head for copy editing, Rachel Monaghan for proofreading, Rebecca Demarest
for illustrations, Judy McConville for creating the index, Karen Montgomery for the
original sugar glider front cover design, Randy Comer for the latest book cover, and
everyone else too numerous to name who submitted errata and offered suggestions
for this new edition.

Preface | xvii

http://bit.ly/lpmjch_5e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1
Introduction to Dynamic Web Content

The World Wide Web is a constantly evolving network that has already traveled far
beyond its conception in the early 1990s, when it was created to solve a specific prob-
lem. State-of-the-art experiments at CERN (the European Laboratory for Particle
Physics, now best known as the operator of the Large Hadron Collider) were produc-
ing incredible amounts of data—so much that the data was proving unwieldy to dis-
tribute to the participating scientists, who were spread out across the world.

At this time, the internet was already in place, connecting several hundred thousand
computers, so Tim Berners-Lee (a CERN fellow) devised a method of navigating
between them using a hyperlinking framework, which came to be known as Hyper-
text Transfer Protocol, or HT'TP. He also created a markup language called Hypertext
Markup Language, or HTML. To bring these together, he wrote the first web browser
and web server.

Today we take these tools for granted, but back then, the concept was revolutionary.
The most connectivity so far experienced by at-home modem users was dialing up
and connecting to a bulletin board that was hosted by a single computer, where you
could communicate and swap data only with other users of that service. Conse-
quently, you needed to be a member of many bulletin board systems in order to effec-
tively communicate electronically with your colleagues and friends.

But Berners-Lee changed all that in one fell swoop, and by the mid-1990s, there were
three major graphical web browsers competing for the attention of 5 million users. It
soon became obvious, though, that something was missing. Yes, pages of text and
graphics with hyperlinks to take you to other pages was a brilliant concept, but the
results didn’t reflect the instantaneous potential of computers and the internet to
meet the particular needs of each user with dynamically changing content. Using the
web was a very dry and plain experience, even if we did now have scrolling text and
animated GIFs!

Shopping carts, search engines, and social networks have clearly altered how we use
the web. In this chapter, we’ll take a brief look at the various components that make
up the web, and the software that helps make using it a rich and dynamic experience.

It is necessary to start using some acronyms more or less right
away. I have tried to clearly explain them before proceeding, but
don’t worry too much about what they stand for or what these
names mean, because the details will become clear as you read on.

HTTP and HTML: Berners-Lee’s Basics

HTTP is a communication standard governing the requests and responses that are
sent between the browser running on the end user’s computer and the web server.
The server’s job is to accept a request from the client and attempt to reply to it in a
meaningful way, usually by serving up a requested web page—that’s why the term
server is used. The natural counterpart to a server is a client, so that term is applied
both to the web browser and the computer on which it’s running.

Between the client and the server there can be several other devices, such as routers,
proxies, gateways, and so on. They serve different roles in ensuring that the requests
and responses are correctly transferred between the client and server. Typically, they
use the internet to send this information. Some of these in-between devices can also
help speed up the internet by storing pages or information locally in what is called a
cache, and then serving this content up to clients directly from the cache rather than
fetching it all the way from the source server.

A web server can usually handle multiple simultaneous connections, and when not
communicating with a client, it spends its time listening for an incoming connection.
When one arrives, the server sends back a response to confirm its receipt.

The Request/Response Procedure

At its most basic level, the request/response process consists of a web browser asking
the web server to send it a web page and the server sending back the page. The
browser then takes care of displaying the page (see Figure 1-1).

2 | Chapter 1: Introduction to Dynamic Web Content

Web The Web server Disk drive
browser internet at server.com at server.com
1 User enters:
et vt com) |-
Look up IP
2 prensensnennnnanasd address of
server.com
Request
3 server.com main
page using IP i
Receive
4 re Uest fOl' :
index page
Fetch
5 pemrenanennnnanane] index.html
; from hard disk
6 Return
H index page
7 Receive and
display page

Figure 1-1. The basic client/server request/response sequence

The steps in the request and response sequence are as follows:

You enter http://server.com into your browser’s address bar.

Your browser looks up the Internet Protocol (IP) address for server.com.

Your browser issues a request for the home page at server.com.

The request crosses the internet and arrives at the server.com web server.

The web server, having received the request, looks for the web page on its disk.

The web server retrieves the page and returns it to the browser.

Ny » N

Your browser displays the web page.

For an average web page, this process also takes place once for each object within the
page: a graphic, an embedded video or Flash file, and even a CSS template.

In step 2, notice that the browser looks up the IP address of server.com. Every
machine attached to the internet has an IP address—your computer included—but
we generally access web servers by name, such as google.com. As you probably know,
the browser consults an additional internet service called the Domain Name Service

The Request/Response Procedure | 3

(DNS) to find the server’s associated IP address and then uses it to communicate with
the computer.

For dynamic web pages, the procedure is a little more involved, because it may bring
both PHP and MySQL into the mix. For instance, you may click on a picture of a
raincoat. Then PHP will put together a request using the standard database language,
SQL—many of whose commands you will learn in this book—and send the request to
the MySQL server. The MySQL server will return information about the raincoat you
selected, and the PHP code will wrap it all up in some HTML, which the server will
send to your browser (see Figure 1-2).

10

1

Web The Web PHP Disk MysaL
browser internet server processor drive database
Enter |,
URL
.................. Look up
IP address
Request
main page
Receive
request
Fetch
page
Contains ~ |...............,
PHP
Process | oo,
PHP :
.................................... Execute
SQL
peeereeeeseeee] Receive
data
Return
page

Display
page

Figure 1-2. A dynamic client/server request/response sequence

The steps are as follows:

1. You enter http://server.com into your browser’s address bar.

4 |

Chapter 1: Introduction to Dynamic Web Content

Your browser looks up the IP address for server.com.
Your browser issues a request to that address for the web server’s home page.

The request crosses the internet and arrives at the server.com web server.

DA S

The web server, having received the request, fetches the home page from its hard

disk.

6. With the home page now in memory, the web server notices that it is a file incor-
porating PHP scripting and passes the page to the PHP interpreter.

7. The PHP interpreter executes the PHP code.

8. Some of the PHP contains SQL statements, which the PHP interpreter now
passes to the MySQL database engine.

9. The MySQL database returns the results of the statements to the PHP interpreter.

10. The PHP interpreter returns the results of the executed PHP code, along with the
results from the MySQL database, to the web server.

11. The web server returns the page to the requesting client, which displays it.

Although it’s helpful to be aware of this process so that you know how the three ele-
ments work together, in practice you don’t really need to concern yourself with these
details, because they all happen automatically.

The HTML pages returned to the browser in each example may well contain Java-
Script, which will be interpreted locally by the client, and which could initiate another
request—the same way embedded objects such as images would.

The Benefits of PHP, MySQL, JavaScript, CSS, and HTML5

At the start of this chapter, I introduced the world of Web 1.0, but it wasn't long
before the rush was on to create Web 1.1, with the development of such browser
enhancements as Java, JavaScript, JScript (Microsoft’s slight variant of JavaScript), and
ActiveX. On the server side, progress was being made on the Common Gateway
Interface (CGI) using scripting languages such as Perl (an alternative to the PHP lan-
guage) and server-side scripting—inserting the contents of one file (or the output of
running a local program) into another one dynamically.

Once the dust had settled, three main technologies stood head and shoulders above
the others. Although Perl was still a popular scripting language with a strong follow-
ing, PHP’s simplicity and built-in links to the MySQL database program had earned it
more than double the number of users. And JavaScript, which had become an essen-
tial part of the equation for dynamically manipulating Cascading Style Sheets (CSS)
and HTML, now took on the even more muscular task of handling the client side of
the asynchronous communication (exchanging data between a client and server after
a web page has loaded). Using asynchronous communication, web pages perform

The Benefits of PHP, MySQL, JavaScript, €SS, and HTMLS | 5

data handling and send requests to web servers in the background—without the web
user being aware that this is going on.

No doubt the symbiotic nature of PHP and MySQL helped propel them both for-
ward, but what attracted developers to them in the first place? The simple answer has
to be the ease with which you can use them to quickly create dynamic elements on
websites. MySQL is a fast and powerful yet easy-to-use database system that offers
just about anything a website would need in order to find and serve up data to brows-
ers. When PHP allies with MySQL to store and retrieve this data, you have the funda-
mental parts required for the development of social networking sites and the
beginnings of Web 2.0.

And when you bring JavaScript and CSS into the mix too, you have a recipe for build-
ing highly dynamic and interactive websites—especially as there is now a wide range
of sophisticated frameworks of JavaScript functions you can call on to really speed up
web development, such as the well-known jQuery, which is now probably the most
common way programmers access asynchronous communication features.

MariaDB: The MySQL Clone

After Oracle purchased Sun Microsystems (the owners of MySQL), the community
became wary that MySQL might not remain fully open source, so MariaDB was
forked from it to keep it free under the GNU GPL. Development of MariaDB is led by
some of the original developers of MySQL and it retains exceedingly close compati-
bility with MySQL. Therefore, you may well encounter MariaDB on some servers in
place of MySQL—but not to worry, everything in this book works equally well on
both MySQL and MariaDB, which is based on the same code base as MySQL Server
5.5. To all intents and purposes you can swap one with the other and notice no
difference.

Anyway, as it turns out, many of the initial fears appear to have been allayed as
MySQL remains open source, with Oracle simply charging for support and for edi-
tions that provide additional features such as geo-replication and automatic scaling.
However, unlike MariaDB, MySQL is no longer community driven, so knowing that
MariaDB will always be there if ever needed will keep many developers sleeping at
night, and probably ensures that MySQL itself will remain open source.

Using PHP

With PHP, it’s a simple matter to embed dynamic activity in web pages. When you

give pages the .php extension, they have instant access to the scripting language. From

a developer’s point of view, all you have to do is write code such as the following:
<?php

echo " Today is " . date("l") . ". ";
7>

6 | Chapter 1: Introduction to Dynamic Web Content

Here's the latest news.

The opening <?php tells the web server to allow the PHP program to interpret all the
following code up to the ?> tag. Outside of this construct, everything is sent to the
client as direct HTML. So, the text Here's the latest news. is simply output to the
browser; within the PHP tags, the built-in date function displays the current day of
the week according to the server’s system time.

The final output of the two parts looks like this:
Today is Wednesday. Here's the latest news.

PHP is a flexible language, and some people prefer to place the PHP construct
directly next to PHP code, like this:

Today is <?php echo date("1"); ?>. Here's the latest news.

There are even more ways of formatting and outputting information, which TI'll
explain in the chapters on PHP. The point is that with PHP, web developers have a
scripting language that, although not as fast as compiling your code in C or a similar
language, is incredibly speedy and also integrates seamlessly with HTML markup.

If you intend to enter the PHP examples in this book into a pro-
gram editor to work along with me, you must remember to add <?
php in front and ?> after them to ensure that the PHP interpreter
processes them. To facilitate this, you may wish to prepare a file
called example.php with those tags in place.

Using PHP, you have unlimited control over your web server. Whether you need to
modify HTML on the fly, process a credit card, add user details to a database, or fetch
information from a third-party website, you can do it all from within the same PHP
files in which the HTML itself resides.

Using MySQL

Of course, there’s not a lot of point to being able to change HTML output dynami-
cally unless you also have a means to track the information users provide to your
website as they use it. In the early days of the web, many sites used “flat” text files to
store data such as usernames and passwords. But this approach could cause problems
if the file wasn't correctly locked against corruption from multiple simultaneous
accesses. Also, a flat file can get only so big before it becomes unwieldy to manage—
not to mention the difficulty of trying to merge files and perform complex searches in
any kind of reasonable time.

That’s where relational databases with structured querying become essential. And
MySQL, being free to use and installed on vast numbers of internet web servers, rises

The Benefits of PHP, MySQL, JavaScript, €SS, and HTMLS | 7

superbly to the occasion. It is a robust and exceptionally fast database management
system that uses English-like commands.

The highest level of MySQL structure is a database, within which you can have one or
more tables that contain your data. For example, let’s suppose you are working on a
table called users, within which you have created columns for surname, firstname,
and email, and you now wish to add another user. One command that you might use
to do this is as follows:

INSERT INTO users VALUES('Smith', 'John', 'jsmith@mysite.com');

You will previously have issued other commands to create the database and table and
to set up all the correct fields, but the SQL INSERT command here shows how simple
it can be to add new data to a database. SQL is a language designed in the early 1970s
that is reminiscent of one of the oldest programming languages, COBOL. It is well
suited, however, to database queries, which is why it is still in use after all this time.

It’s equally easy to look up data. Let’s assume that you have an email address for a user
and need to look up that person’s name. To do this, you could issue a MySQL query
such as the following:

SELECT surname,firstname FROM users WHERE email='jsmith@mysite.com';

MySQL will then return Smith, John and any other pairs of names that may be asso-
ciated with that email address in the database.

As youd expect, there’s quite a bit more that you can do with MySQL than just simple
INSERT and SELECT commands. For example, you can combine related data sets to
bring related pieces of information together, ask for results in a variety of orders,
make partial matches when you know only part of the string that you are searching
for, return only the nth result, and a lot more.

Using PHP, you can make all these calls directly to MySQL without having to directly
access the MySQL command-line interface yourself. This means you can save the
results in arrays for processing and perform multiple lookups, each dependent on the
results returned from earlier ones, to drill down to the item of data you need.

For even more power, as you'll see later, there are additional functions built right into
MySQL that you can call up to efficiently run common operations within MySQL,
rather than creating them out of multiple PHP calls to MySQL.

Using JavaScript

The oldest of the three core technologies discussed in this book, JavaScript, was cre-
ated to enable scripting access to all the elements of an HTML document. In other
words, it provides a means for dynamic user interaction such as checking email
address validity in input forms and displaying prompts such as “Did you really mean

8 | Chapter 1: Introduction to Dynamic Web Content

that?” (although it cannot be relied upon for security, which should always be per-
formed on the web server).

Combined with CSS (see the following section), JavaScript is the power behind
dynamic web pages that change in front of your eyes rather than when a new page is
returned by the server.

However, JavaScript can also be tricky to use, due to some major differences in the
ways different browser designers have chosen to implement it. This mainly came
about when some manufacturers tried to put additional functionality into their
browsers at the expense of compatibility with their rivals.

Thankfully, the developers have mostly now come to their senses and have realized
the need for full compatibility with one another, so it is less necessary these days to
have to optimize your code for different browsers. However, there remain millions of
users using legacy browsers, and this will likely be the case for a good many years to
come. Luckily, there are solutions for the incompatibility problems, and later in this
book we'll look at libraries and techniques that enable you to safely ignore these dif-
ferences.

For now, let’s take a look at how to use basic JavaScript, accepted by all browsers:

<script type="text/javascript"s
document.write("Today is " + Date());
</script>
This code snippet tells the web browser to interpret everything within the <script>
tags as JavaScript, which the browser does by writing the text Today 1is to the current
document, along with the date, using the JavaScript function Date. The result will
look something like this:

Today is Sun Jan 01 2017 01:23:45
Unless you need to specify an exact version of JavaScript, you can

normally omit the type="text/javascript" and just use <script>
to start the interpretation of the JavaScript.

As previously mentioned, JavaScript was originally developed to offer dynamic con-
trol over the various elements within an HTML document, and that is still its main
use. But more and more, JavaScript is being used for asynchronous communication,
the process of accessing the web server in the background.

Asynchronous communication is what allows web pages to begin to resemble stand-
alone programs, because they don't have to be reloaded in their entirety to display
new content. Instead, an asynchronous call can pull in and update a single element on
a web page, such as changing your photograph on a social networking site or replac-

The Benefits of PHP, MySQL, JavaScript, €SS, and HTMLS | 9

ing a button that you click with the answer to a question. This subject is fully covered
in Chapter 17.

Then, in Chapter 21, we take a good look at the jQuery framework, which you can
use to save reinventing the wheel when you need fast, cross-browser code to manipu-
late your web pages. Of course, there are other frameworks available too, but jQuery
is by far the most popular. Due to continuous maintenance, it is extremely reliable,
and it’s a major tool in the utility kit of many seasoned web developers.

Using €SS

CSS is the crucial companion to HTML, ensuring that the HTML text and embedded
images are laid out consistently and in a manner appropriate for the user’s screen.
With the emergence of the CSS3 standard in recent years, CSS now offers a level of
dynamic interactivity previously supported only by JavaScript. For example, not only
can you style any HTML element to change its dimensions, colors, borders, spacing,
and so on, but now you can also add animated transitions and transformations to
your web pages, using only a few lines of CSS.

Using CSS can be as simple as inserting a few rules between <style> and </style>
tags in the head of a web page, like this:

<style>
p{
text-align:justify;
font-family:Helvetica;

}
</style>
These rules change the default text alignment of the <p> tag so that paragraphs con-
tained in it are fully justified and use the Helvetica font.

As you’ll learn in Chapter 18, there are many different ways you can lay out CSS rules,
and you can also include them directly within tags or save a set of rules to an external
file to be loaded in separately. This flexibility not only lets you style your HTML pre-
cisely, but can also (for example) provide built-in hover functionality to animate
objects as the mouse passes over them. You will also learn how to access all of an ele-
ment’s CSS properties from JavaScript as well as HTML.

And Then There’s HTML5

As useful as all these additions to the web standards became, they were not enough
for ever more ambitious developers. For example, there was still no simple way to
manipulate graphics in a web browser without resorting to plug-ins such as Flash.
And the same went for inserting audio and video into web pages. Plus, several annoy-
ing inconsistencies had crept into HTML during its evolution.

10 | Chapter 1: Introduction to Dynamic Web Content

So, to clear all this up and take the internet beyond Web 2.0 and into its next itera-
tion, a new standard for HTML was created to address all these shortcomings:
HTMLS. Its development began as long ago as 2004, when the first draft was drawn
up by the Mozilla Foundation and Opera Software (developers of two popular web
browsers), but it wasn’t until the start of 2013 that the final draft was submitted to the
World Wide Web Consortium (W3C), the international governing body for web
standards.

It has taken a few years for HTML5 to develop, but now we are at a very solid and
stable version 5.1 (since 2016). It’s a never-ending cycle of development, though, and
more functionality is sure to be built into it over time. Some of the best features in
HTML5 for handling and displaying media include the <audio>, <video>, and
<canvas> elements, which add sound, video, and advanced graphics. Everything you
need to know about these and all other aspects of HTMLS5 is covered in detail starting
in Chapter 23.

One of the little things I like about the HTMLS5 specification is that
XHTML syntax is no longer required for self-closing elements. In
the past, you could display a line break using the
 element.
Then, to ensure future compatibility with XHTML (the planned
replacement for HTML that never happened), this was changed to

, in which a closing / character was added (since all ele-
ments were expected to include a closing tag featuring this charac-
ter). But now things have gone full circle, and you can use either
version of these types of elements. So, for the sake of brevity and
fewer keystrokes, in this book I have reverted to the former style of

, <hr>, and so on.

The Apache Web Server

In addition to PHP, MySQL, JavaScript, CSS, and HTMLS5, there’s a sixth hero in the
dynamic web: the web server. In the case of this book, that means the Apache web
server. We've discussed a little of what a web server does during the HTTP server/
client exchange, but it does much more behind the scenes.

For example, Apache doesn’t serve up just HTML files—it handles a wide range of
files, from images and Flash files to MP3 audio files, RSS (Really Simple Syndication)
feeds, and so on. And these objects don't have to be static files such as GIF images.
They can all be generated by programs such as PHP scripts. That's right: PHP can
even create images and other files for you, either on the fly or in advance to serve up
later.

The Apache Web Server | 11

To do this, you normally have modules either precompiled into Apache or PHP or
called up at runtime. One such module is the GD (Graphics Draw) library, which
PHP uses to create and handle graphics.

Apache also supports a huge range of modules of its own. In addition to the PHP
module, the most important for your purposes as a web programmer are the modules
that handle security. Other examples are the Rewrite module, which enables the web
server to handle a range of URL types and rewrite them to its own internal require-
ments, and the Proxy module, which you can use to serve up often-requested pages
from a cache to ease the load on the server.

Later in the book, you'll see how to use some of these modules to enhance the fea-
tures provided by the three core technologies.

Handling Mobile Devices

We are now firmly in a world of interconnected mobile computing devices, and the
concept of developing websites solely for desktop computers has become rather
dated. Instead, developers now aim to develop responsive websites and web apps that
tailor themselves to the environment in which they find themselves running.

So, new in this edition, I show how you can easily create these types of products using
just the technologies detailed in this book, along with the powerful jQuery Mobile
library of responsive JavaScript functions. With it, you’ll be able to focus on the con-
tent and usability of your websites and web apps, knowing that how they display will
be automatically optimized for a range of different computing devices—one less thing
for you to worry about.

To demonstrate how to make full use of its power, the final chapter of this book cre-
ates a simple social networking example website, using jQuery Mobile to make it fully
responsive and ensure it displays well on anything from a small mobile phone screen
to a tablet or a desktop computer.

About Open Source

The technologies in this book are open source: anyone is allowed to read and change
the code. Whether or not this status is the reason these technologies are so popular
has often been debated, but PHP, MySQL, and Apache are the three most commonly
used tools in their categories. What can be said definitively, though, is that their being
open source means that they have been developed in the community by teams of pro-
grammers writing the features they themselves want and need, with the original code
available for all to see and change. Bugs can be found quickly and security breaches
can be prevented before they happen.

12 | Chapter 1: Introduction to Dynamic Web Content

There’s another benefit: all these programs are free to use. There’s no worrying about
having to purchase additional licenses if you have to scale up your website and add
more servers, and you don’'t need to check the budget before deciding whether to
upgrade to the latest versions of these products.

Bringing It All Together

The real beauty of PHP, MySQL, JavaScript (sometimes aided by jQuery or other
frameworks), CSS, and HTMLS5 is the wonderful way in which they all work together
to produce dynamic web content: PHP handles all the main work on the web server,
MySQL manages all the data, and the combination of CSS and JavaScript looks after
web page presentation. JavaScript can also talk with your PHP code on the web server
whenever it needs to update something (either on the server or on the web page).
And with the powerful new features in HTML5, such as the canvas, audio and video,
and geolocation, you can make your web pages highly dynamic, interactive, and
multimedia-packed.

Without using program code, let's summarize the contents of this chapter by looking
at the process of combining some of these technologies into an everyday asynchro-
nous communication feature that many websites use: checking whether a desired
username already exists on the site when a user is signing up for a new account. A
good example of this can be seen with Gmail (see Figure 1-3).

Robin Nixen

G Create your Google Accc X W %
& C 1} | & Secure | hitps;//accounts.google.com/SignUpZservice=mailfcontinue=https%3A%2F%2Fmailgoogleco... P ¥r
One accountis a you nee Name
One free account gets you inte everything Google. Samuel
Choose your username
G ™~ m ([»] L & > G samsmith @gmail.com |

That username is taken. Try another.
Create a password

Take it all with you

Confirm your password

Switch between devices, and pick up wherever you left off.

Birthday

Month = Day Yea

Figure 1-3. Gmail uses asynchronous communication to check the availability of user-
names

The steps involved in this asynchronous process will be similar to the following:

Bringing It All Together | 13

1. The server outputs the HTML to create the web form, which asks for the neces-
sary details, such as username, first name, last name, and email address.

2. At the same time, the server attaches some JavaScript to the HTML to monitor
the username input box and check for two things: whether some text has been
typed into it, and whether the input has been deselected because the user has
clicked on another input box.

3. Once the text has been entered and the field deselected, in the background the
JavaScript code passes the username that was entered back to a PHP script on the
web server and awaits a response.

4. The web server looks up the username and replies back to the JavaScript regard-
ing whether that name has already been taken.

5. The JavaScript then places an indication next to the username input box to show
whether the name is available to the user—perhaps a green checkmark or a red
cross graphic, along with some text.

6. If the username is not available and the user still submits the form, the JavaScript
interrupts the submission and reemphasizes (perhaps with a larger graphic
and/or an alert box) that the user needs to choose another username.

7. Optionally, an improved version of this process could even look at the username
requested by the user and suggest an alternative that is currently available.

All of this takes place quietly in the background and makes for a comfortable and
seamless user experience. Without asynchronous communication, the entire form
would have to be submitted to the server, which would then send back HTML, high-
lighting any mistakes. It would be a workable solution, but nowhere near as tidy or
pleasurable as on-the-fly form field processing.

Asynchronous communication can be used for a lot more than simple input verifica-
tion and processing, though; we’ll explore many additional things that you can do
with it later in this book.

In this chapter, you have read a good introduction to the core technologies of PHP,
MySQL, JavaScript, CSS, and HTMLS5 (as well as Apache), and have learned how they
work together. In Chapter 2, we'll look at how you can install your own web develop-
ment server on which to practice everything that you will be learning.

Questions

1. What four components (at the minimum) are needed to create a fully dynamic
web page?

2. What does HTML stand for?

14 | Chapter 1: Introduction to Dynamic Web Content

3. Why does the name MySQL contain the letters SQL?

4. PHP and JavaScript are both programming languages that generate dynamic
results for web pages. What is their main difference, and why would you use both
of them?

5. What does CSS stand for?
6. List three major new elements introduced in HTMLS5.

7. If you encounter a bug (which is rare) in one of the open source tools, how do
you think you could get it fixed?

8. Why is a framework such as jQuery Mobile so important for developing modern
websites and web apps?

See “Chapter 1 Answers” on page 713 in Appendix A for the answers to these ques-
tions.

Questions | 15

CHAPTER 2
Setting Up a Development Server

If you wish to develop internet applications but don’t have your own development
server, you will have to upload every modification you make to a server somewhere
else on the web before you can test it.

Even on a fast broadband connection, this can still represent a significant slowdown
in development time. On a local computer, however, testing can be as easy as saving
an update (usually just a matter of clicking once on an icon) and then hitting the
Refresh button in your browser.

Another advantage of a development server is that you don’t have to worry about
embarrassing errors or security problems while youre writing and testing, whereas
you need to be aware of what people may see or do with your application when it’s on
a public website. It’s best to iron everything out while you're still on a home or small
office system, presumably protected by firewalls and other safeguards.

Once you have your own development server, you'll wonder how you ever managed
without one, and it’s easy to set one up. Just follow the steps in the following sections,
using the appropriate instructions for a PC, a Mac, or a Linux system.

In this chapter, we cover just the server side of the web experience, as described in
Chapter 1. But to test the results of your work—particularly when we start using Java-
Script, CSS, and HTMLS5 later in this book—you should ideally have an instance of
every major web browser running on some system convenient to you. Whenever pos-
sible, the list of browsers should include at least Microsoft Edge, Mozilla Firefox,
Opera, Safari, and Google Chrome. If you plan to ensure that your sites look good on
mobile devices too, you should try to arrange access to a wide range of iOS and
Android devices.

17

What Isa WAMP, MAMP, or LAMP?

WAMP, MAMP, and LAMP are abbreviations for “Windows, Apache, MySQL, and
PHP “Mac, Apache, MySQL, and PHP, and “Linux, Apache, MySQL, and PHP”
These abbreviations each describe a fully functioning setup used for developing
dynamic internet web pages.

WAMPs, MAMPs, and LAMPs come in the form of packages that bind the bundled
programs together so that you don’t have to install and set them up separately. This
means you can simply download and install a single program and follow a few easy
prompts to get your web development server up and running fast, with minimal has-
sle.

During installation, several default settings are created for you. The security configu-
rations of such an installation will not be as tight as on a production web server,
because it is optimized for local use. For these reasons, you should never install such a
setup as a production server.

However, for developing and testing websites and applications, one of these installa-
tions should be entirely sufficient.

If you choose not to go the WAMP/MAMP/LAMP route for
building your own development system, you should know that
ol downloading and integrating the various parts yourself can be very
\ time-consuming and may require a lot of research in order to con-
figure everything fully. But if you already have all the components
installed and integrated with one another, they should work with
the examples in this book.

Installing AMPPS on Windows

There are several available WAMP servers, each offering slightly different configura-
tions. Of the various open source and free options, one of the best is AMPPS. You can
download it by clicking the button on the website’s home page, shown in Figure 2-1.

I recommend that you always download the latest stable release (as I write this, its
3.8, which is about 128 MB in size). The various Windows, macOS, and Linux instal-
lers are listed on the download page.

18 | Chapter2: Setting Up a Development Server

http://ampps.com

Robin Nixon

2 WAMP, MAMP and LAM X Y4}

C) | ® ampps.com

ClientArea Support Downloads

Contact News Blog Forums Company~

(4 apps PRODUCTS~ APPS ITSFREE DOCS ~DOWNLOADS ~ FORUMS ~ TOUR [‘Buy

Simple SQL Management
You can create multiple MySQL databases and manage them easily with phpMyAdmin Mg SQL Y PhP

AMPPS also has a SQLite Manager for managing SQLite databases.

SQLite

AMPPS is an easy to install software stack of Apache, Mysal. PHP, Perl, A complete package on your desktop. same like the server that provides many open
“, Python and Softaculous auto-installer that can be used on Desktops source web applications. Application Management, Domain management, Database
and office servers. management, etc. are provided in a secure environment to ease your development.
Read More
Read More

DOWNLOAD AMPPS

Figure 2-1. The AMPPS website

During the lifetime of this edition, some of the screens and options
shown in the following walk-through may change. If so, just use
your common sense to proceed in as similar a manner as possible
to the sequence of actions described.

Once youve downloaded the installer, run it to bring up the window shown in
Figure 2-2. Before arriving at that window, though, if you use an antivirus program or
have User Account Control activated on Windows, you may first be shown one or
more advisory notices, and will have to click Yes and/or OK to continue with the
installation.

Click Next, after which you must accept the agreement. Click Next once again, and
then once more to move past the information screen. You will now need to confirm
the installation location. This will probably be suggested as something like the follow-
ing, depending on the letter of your main hard drive, but you can change this if you
wish:

C:\Program Files (x86)\Ampps

Installing AMPPS on Windows | 19

Welcome to the Ampps Setup

Wizard
This will install Ampps 3.7 on your computer,

It iz recommended that you dose all other applications before
continuing.

Click Next to continue, or Cancel to exit Setup.

ampps

Mext = || Cancel

Figure 2-2. The opening window of the installer

Once you have decided where to install AMPPS, click Next, choose a Start menu
folder name, and click Next again. You can choose which icons you wish to install, as
shown in Figure 2-3. On the screen that follows, click the Install button to start the
process.

Select Additional Tasks
Which additional tasks should be performed?

~

Select the additional tasks you would like Setup to perform while installing Ampps, then
dlick Mext.

Additional icons:

Create a desktop icon
Create a quicklaunch icon
Create a startmenu icon

| < Back ” Mext = || Cancel

Figure 2-3. Choose which icons to install

Installation will take a few minutes, after which you should see the completion screen
in Figure 2-4, and you can click Finish.

20 | Chapter2: Setting Up a Development Server

Completing the Ampps Setup

Wizard
‘ \ Setup has finished installing Ampps on your computer, The

application may be launched by selecting the installed icons.

Click Finish to exit Setup.

ampps

Figure 2-4. AMPPS is now installed

The final thing you must do is install C++ Redistributable Visual Studio, if you
haven't already. Visual Studio is an environment in which you’ll be doing develop-
ment work. A window will pop up to prompt you, as shown in Figure 2-5. Click Yes
to start the installation or No if you are certain you already have it.

Do make sure that you have installed C++ Redistributable Visual Studio 2015, to
start installation click yes and click No if it is already installed

[¥ J[N |

Figure 2-5. Install C++ Redistributable Visual Studio if you don’t already have it

If you choose to go ahead and install, you will have to agree to the terms and condi-
tions in the pop-up window that appears, and then click Install. Installation of this
should be fairly fast. Click Close to finish.

Once AMPPS is installed, the control window shown in Figure 2-6 should appear at
the bottom right of your desktop. You can also call up this window using the AMPPS
application shortcut in the Start menu or on the desktop, if you allowed these icons to
be created.

Installing AMPPS on Windows | 21

-

¢ ampps

Powered By Softaculous
HOAS

Apache {:} Running

PHP 5.6 {:} Running

MySQL {:} Running

C:/Program Files (x88)/Ampps
Apache started
MySql Started

Support

Figure 2-6. The AMPPS control window

Before proceeding, I recommend you acquaint yourself with the AMPPS documenta-
tion. Once you have digested this, should you still have an issue, there’s a Support link
at the bottom of the control window that will take you to the AMPPS website, where
you can open up a trouble ticket.

You may notice that the default version of PHP in AMPPS is 5.6. In
other sections of this book I detail some of the more important
changes in PHP 7. If you wish to try them out for yourself, click the
Options button (nine white boxes in a square) within the AMPPS
control window, and then select Change PHP Version, whereupon
a new menu will appear from which you can choose a version
between 5.6 and 7.1.

Testing the Installation

The first thing to do at this point is verify that everything is working correctly. To do
this, enter either of the following two URLs into the address bar of your browser:

localhost
127.0.0.1

22 | Chapter2: Setting Up a Development Server

http://ampps.com/wiki
http://ampps.com/wiki

This will call up an introductory screen, where you will have the opportunity to
secure AMPPS by giving it a password (see Figure 2-7). I recommend you don't check
the box and just click the Submit button to proceed without setting a password.

Robin Mixon
o} Secure AMPPS - Powers: X W %

C 1} | ® localhost/ampps/index.php?act=secure

Welcome soft

& Secure AMPPS

Do you want your AMPPS to be secured?

Your AMPPS is currently Unsecured

Note: If you want yo APPS to be secured, you must set a password. So everytime you visit the AMPPS

Panel, it will ask forap ord.

All times are GMT. The time now is January 8, 2018, 9:40 am. y %

Powered By AMPPS 4.9.3 © 2018 Softaculous Ltd. Page Created In:0.028

Figure 2-7. The initial security setup screen

Once this has been done you will be taken to the main control page at localhost/
ampps/ (from now on I will assume you are accessing AMPPS through localhost
rather than 127.0.0.1). From here you can configure and control all aspects of the
AMPPS stack, so make a note of this for future reference, or perhaps set a bookmark
in your browser.

Next, type the following to view the document root (described in the following sec-
tion) of your new Apache web server:

localhost

This time, rather than seeing the initial screen about setting up security, you should
see something similar to Figure 2-8.

Installing AMPPS on Windows | 23

Robin Mixcn

i? Index of / x

<« C 1% @ localhost T
—
’ampps
by softaculous
Name Last modified Size Description
E’J cai-bin/ 2018-01-08 09:24
E’J error/ 2018-01-08 09:24

faviconico ~ 2013-01-20 15:18 1.1K

Powered by AMPPS and Softaculous

Figure 2-8. Viewing the document root

Accessing the Document Root (Windows)

The document root is the directory that contains the main web documents for a
domain. This directory is the one that the server uses when a basic URL without a
path is typed into a browser, such as http://yahoo.com or, for your local server, http://
localhost.

By default AMPPS will use the following location as the document root:
C:\Program Files (x86)\Ampps\www

To ensure that you have everything correctly configured, you should now create the
obligatory “Hello World” file. So, create a small HTML file along the following lines
using Windows Notepad or any other program or text editor, but not a rich word
processor such as Microsoft Word (unless you save as plain text):

<!DOCTYPE html>
<html lang="en">
<head>
<title>A quick test</title>
</head>
<body>
Hello World!
</body>
</html>

Once you have typed this, save the file into the document root directory, using the
filename fest.html. If you are using Notepad, make sure that the value in the “Save as
type” box is changed from “Text Documents (*.txt)” to “All Files (*.*)".

24 | Chapter2: Setting Up a Development Server

You can now call this page up in your browser by entering the following URL in its
address bar (see Figure 2-9):

localhost/test.html

Robin Mixcn
? A quick test A\
& > C Y | @ localhost/test.htm

Hello World!

Figure 2-9. Your first web page

Remember that serving a web page from the document root (or a
subfolder) is different from loading one into a web browser from
your computer’s filesystem. The former will ensure access to PHP,
MySQL, and all the features of a web server, while the latter will
simply load the file into the browser, which will do its best to dis-
play it but will be unable to process any PHP or other server
instructions. So, you should generally run examples using the local-
host preface from your browser’s address bar, unless you are certain
that the file doesn’t rely on web server functionality.

Alternative WAMPs

When software is updated, it sometimes works differently from how you expect, and
bugs can even be introduced. So, if you encounter difficulties that you cannot resolve
in AMPPS, you may prefer to choose one of the other solutions available on the web.

You will still be able to make use of all the examples in this book, but youll have to
follow the instructions supplied with each WAMP, which may not be as easy to follow
as the preceding guide.

Here’s a selection of some of the best, in my opinion:

o EasyPHP

« XAMPP

« WAMPServer

« Glossword WAMP

Installing AMPPS on Windows | 25

http://easyphp.org
http://apachefriends.org
http://wampserver.com/en
http://glossword.biz/glosswordwamp

Updates to AMPPS

Over the life of this edition of the book, it is very likely that the
developers of AMPPS will make improvements to the software, and
therefore the installation screens and method of use may evolve
over time, as may versions of Apache, PHP, or MySQL. So, please
don’t assume something is wrong if the screens and operation look
different. The AMPPS developers take every care to ensure it is
easy to use, so just follow any prompts given, and refer to the docu-
mentation on the website.

Installing AMPPS on mac0S

AMPPS is also available on macOS, and you can download it from the website, as
shown previously in Figure 2-1 (as I write, the current version is 3.8 and its size is
around 270 MB).

If your browser doesn’t open it automatically once it has downloaded, double-click
the .dmg file, and then drag the AMPPS folder over to your Applications folder (see
Figure 2-10).

LY ampps

To install, drag AMPPS folder to Applications folder.

Lﬁ —_ A

A

AMPPS Applications

Figure 2-10. Drag the AMPPS folder to Applications

Now open your Applications folder in the usual manner, and double-click the AMPPS
program. If your security settings prevent the file being opened, hold down the

26 | Chapter2: Setting Up a Development Server

http://ampps.com
http://ampps.com

Control key and click the icon once. A new window will pop up asking if you are sure
you wish to open it. Click Open to do so. When the app starts you may have to enter
your macOS password to proceed.

Once AMPPS is up and running, a control window similar to the one shown in
Figure 2-6 will appear at the bottom left of your desktop.

You may notice that the default version of PHP in AMPPS is 5.6. In
other sections of this book I detail some of the more important
changes in PHP 7. If you wish to try them out for yourself, click the
Options button (nine white boxes in a square) within the AMPPS
control window, and then select Change PHP Version, whereupon
a new menu will appear in which you can choose a version between
5.6 and 7.1.

Accessing the Document Root (mac09)
By default, AMPPS will use the following location as the document root:
/Applications/Ampps/www

To ensure that you have everything correctly configured, you should now create the
obligatory “Hello World” file. So, create a small HTML file along the following lines
using the TextEdit program or any other program or text editor, but not a rich word
processor such as Microsoft Word (unless you save as plain text):

<html>
<head>
<title>A quick test</title>
</head>
<body>
Hello World!
</body>
</html>

Once you have typed this, save the file into the document root directory using the
filename test.html.

You can now call this page up in your browser by entering the following URL in its
address bar (to see a similar result to Figure 2-9):

localhost/test.html

Installing AMPPS onmac0S | 27

Remember that serving a web page from the document root (or a
subfolder) is different from loading one into a web browser from
your computer’s filesystem. The former will ensure access to PHP,
MySQL, and all the features of a web server, while the latter will
simply load the file into the browser, which will do its best to dis-
play it but will be unable to process any PHP or other server
instructions. So, you should generally run examples using the local-
host preface from your browser’s address bar, unless you are certain
that the file doesn't rely on web server functionality.

Installing a LAMP on Linux

This book is aimed mostly at PC and Mac users, but its contents will work equally
well on a Linux computer. However, there are dozens of popular flavors of Linux, and
each of them may require installing a LAMP in a slightly different way, so I can’t
cover them all in this book.

That said, many Linux versions come preinstalled with a web server and MySQL, and
the chances are that you may already be all set to go. To find out, try entering the
following into a browser and see whether you get a default document root web page:

localhost

If this works, you probably have the Apache server installed and may well have
MySQL up and running too; check with your system administrator to be sure.

If you don’t yet have a web server installed, however, there’s a version of AMPPS
available that you can download from the website.

Installation is similar to the sequence shown in the preceding section. If you need fur-
ther assistance on using the software, please refer to the documentation.

Working Remotely

If you have access to a web server already configured with PHP and MySQL, you can
always use that for your web development. But unless you have a high-speed connec-
tion, it is not always your best option. Developing locally allows you to test modifica-
tions with little or no upload delay.

Accessing MySQL remotely may not be easy either. You should use the secure SSH
protocol to log into your server to manually create databases and set permissions
from the command line. Your web hosting company will advise you on how best to
do this and provide you with any password it has set for your MySQL access (as well
as, of course, for getting into the server in the first place). Unless you have no choice,
I recommend you do not use the insecure Telnet protocol to remotely log into any
server.

28 | Chapter2: Setting Up a Development Server

http://ampps.com
http://ampps.com/wiki

Logging In

I recommend that, at minimum, Windows users should install a program such as
PuTTY, for Telnet and SSH access (remember that SSH is much more secure than
Telnet).

On a Mag, you already have SSH available. Just select the Applications folder, followed
by Utilities, and then launch Terminal. In the Terminal window, log in to a server
using SSH as follows:

ssh mylogin@server.com

where server.conm is the name of the server you wish to log into and mylogin is the
username you will log in under. You will then be prompted for the correct password
for that username and, if you enter it correctly, you will be logged in.

Using FTP

To transfer files to and from your web server, you will need an FTP program. If you
go searching the web for a good one, you'll find so many that it could take you quite a
while to come across one with all the right features for you.

My preferred FTP program is the open source FileZilla, for Windows, Linux, and
macOS 10.5 or newer (see Figure 2-11). Full instructions on how to use FileZilla are
available on the wiki.

Working Remotely | 29

http://putty.org
http://filezilla-project.org
http://wiki.filezilla-project.org

File Edit View Transfer Server Bookmarks Help
Status: Directory listing of "/lpmj.net” successful ~
Status: Retrieving directory listing of */lpmj.net/ Istedition”...
Status: Directory listing of "/lpmj.net/ Istedition” successful v
Local site: | W:A\lpmj.net\Istedition\ v | Remote site: | /lpmi.net/ Istedition v
S| | Ipmj.net ~ 7, francais ~
@ tstedition -7, named_examples
H [} 10 7, rebinsnest
il | styles
12 = 7, 2ndedition
13 7, 3rdedition
14 « 7, dthedition
15 2 images =
16 ?, named_eamples
17 7| scripts
12 o -2, styles v
Filename - Filesize Filetype ~ | Filename ~ * Filesize Filetype Last modified Permissions A
& 1.php 1,331 PHP File (& 4php 3832 PHPFile 16/07/2013 1737:37 adfrw (0644
& 10.php 3,195 PHP File (& s.php 3574 PHP File 16/07/2013 1737:38 adfrw (0644
[11.php 1873 PHPFile (& 6php 2,435 PHP File 16/07/2013 1737:36 adfrw (0644
[& 12.php 1,384 PHPFile [7.php 3,265 PHP File 16/07/2013 173843 adifruv (0644
[& 13.php 2,004 PHP File [ephp 3774 PHP File 16/07/2013 1737:37 adifruv (0644
[14.php 2,017 PHP File _| | & 2.php 2,249 PHPFile 16/07/2013 1737:37 acfrw (0644
[Z 15.php 3,011 PHP File = | k& defaulthtm 249 FirefoxHT.. 16/07/201317:37:35 adfrw (0644
[16.php 2522 PHPFile (& ephp 1,687 PHPFile 16/07/2013 1737:37 adfrw (0644
[& 17.php 1,376 PHP File [examples.php 1,777 PHP File 16/07/2013 1737:36 adifrw (0644]
[& 18.php 1,853 PHP File [index.php 5691 PHP File 10/12/20140748:15 adfrw (0644 =
[& 19.php 1,432 PHP File | & template ntm 4,046 Firefox HT.. 12/12/201411:45:09 adfrw (0644
< - m =T T > < mn >
26 files and 23 directories. Total size: 125,381 bytes 26 files and 22 directeries. Total size: 125,381 bytes
Server/Local file Direction Remote file Size Priority Status
Queued files | Failed transfers | Successful transfers
3@ Queue: empty e

Figure 2-11. FileZilla is a full-featured FTP program

Of course, if you already have an FTP program, all the better—stick with what you
know.

Using a Program Editor

Although a plain-text editor works for editing HTML, PHP, and JavaScript, there
have been some tremendous improvements in dedicated program editors, which now
incorporate very handy features such as colored syntax highlighting. Today’s program
editors are smart and can show you where you have syntax errors before you even
run a program. Once you've used a modern editor, youll wonder how you ever man-
aged without one.

There are a number of good programs available, but I have settled on Editra (see
Figure 2-12), because its free and available on macOS, Windows, and Linux/Unix,
and it suits the way I program. At the time of writing, Editra development appears to
have been discontinued, but you can download the last known fully working release
for free at https://editra.en.softonic.com. Everyone has different programming styles
and preferences, though, so if you don’t get on with it, there are plenty more program
editors available to choose from—or you may wish to go directly for an integrated
development environment (IDE), as described in the following section.

30 | Chapter2: Setting Up a Development Server

https://editra.en.softonic.com

f3 “examples.php - filey//C:\Users\Robin'\Desktop\examples.php - Editra v0.6.99 = B |-
File Edit View Format Settings Tools Help

LEEEs @@ 650 O&

*exampIP_s.php X b
1753 $ocontents = @file_get_contents($page); o
1754 if (!Scontents) return FALSE;

1755

1756 §checksum = md5 (§contents) ;

1757

1758 if (file_exists (3datafile))

1758 B {

1760 Srawfile = file get_contents($datafile);

1761 Sdata = explode ("\n", rtrim(Srawfile));

1782 S5left = array_map ("PU_F1", §data):

1763 Sright = array_map ("PU_F2", $data):

1764 Sexists = -1

1765

1766 for (53 = 0 ; §31 < count($left) ; ++57)

1767 & {

1768 if (§left[$3] = Spage)

1763 B {

1770 Sexists = §3;

1771 if (§right[$j] — $checksum) return O;

1772 }

1773 1
] 1 v

PHP ¢pl252 CRLF Line:1569 Column: 33

Figure 2-12. Program editors (like Editra, pictured here) are superior to plain-text
editors

As you can see from Figure 2-12, Editra highlights the syntax appropriately, using
colors to help clarify what’s going on. What's more, you can place the cursor next to
brackets or braces, and Editra will highlight the matching ones so that you can check
whether you have too many or too few. In fact, Editra does a lot more in addition,
which you will discover and enjoy as you use it.

Again, if you have a different preferred program editor, use that; it’s always a good
idea to use programs you're already familiar with.

Using an IDE

As good as dedicated program editors can be for your programming productivity,
their utility pales into insignificance when compared to integrated development envi-
ronments, which offer many additional features such as in-editor debugging and pro-
gram testing, as well as function descriptions and much more.

Figure 2-13 shows the popular phpDesigner IDE with a PHP program loaded into the
main frame, and the righthand Code Explorer listing the various classes, functions,
and variables that it uses.

UsinganIDE | 31

& phpDesigner 8 - [WMAIN: Dacuments\DocumentstWebsites\webdevelopmentcookbook comiWOC.php]

:Elé]

‘& File Edit Find Goto Insert Format CSS JavaScript PHP Debug Project Tools Swn Git Highlighters View Window Help

Trial expires in 21 days

: - » » . B e : i »igw | »
N0-Z-dd% e @ [-6 - Fe T HE AL 36 Em® |
H = - % B E- LS = 9 & p 7k = B G- - jv‘
[x] wWDC.php
- Run - (G Locahost = [[X PHP + XHTML + CSS + JavaScript - x Code Explorer 2 x
2848 if (Stcolor) I=- | Functions (104)
2843 if (Stsize) Stail . ==§toolor, §tsize"; - & AddUserToDB(Stable, Snmax, Shmax, Ssalt1, Ssal
2850 if ($labels) $tail labels"; [g_] AnagramFinder($word, $filename)
2851 if (%legends) Stail $legends": - & AutoBacklinks(§fiename)
2852 .':Lf (fcclcrs) f:a::tl s::clors"i - & BBCode($string)
2858 if ($bgfill) Stail .= "&chf=bg,s,BGEILL"; -] BlockUserByCookie (action, shandle, $expire)
2854
B 4] BypassCaptchal
2855 Surl = "nttp://chart.apis.google.com/chart?§Eaid"; '%] passCaptchal
2886 - &] CapsControl($text, $type)
2857 - & CheckCaptcha($captcha, Stoken, Ssaltl, $salt2)
2858 - & Checklinks($page, $timeout, Sruntime)
2859 - & CloseSession()
2860 $image = imagecreatefrompng ($url); - & ConvertCurrency($amount, Sfrom, $to)
2861 | - & CarnerGif(scorner, $border, Sbaround)
286z fw = lmagesx(Simage): - &] CountTail(gnumber)
foge{ Sh = imagesy (Simage) : . [&] CreateCaptcha(ssize, Slength, Sfont, Sfolder, $s2
2864 $image? = imagecreatetruecolor(fw + $border * 2, &) CrenteCoogiechart(iite, Steoor, Stize, &
e Sh + Sborder * 2): [.}] reateGoogleCharf le, $tcolor, Stsize, Stype,
2866 Sclr = imagecolorallocate (Simage,) & Createlist($items, Sstart, Stype, Sbullet)
2867 hexdec (substr ($bcolor, 0, 2)), @ - & CreateSession($handle, $pass, Sname, Semail)
zz68 hexdec (substr (Sbcoler, 2, 2)), —| @ &] CreateShortURL($url, Sredirect, Sien, $file)
2269 hexdec (substr (Sbcolozr, 4, 2))): - &] CurlGetContents(surl, Sagent)
2870 imagefilledrectangle (Simage2, 0, 0, §w + Sborder * 2, & &) Directorylist($path)
2871 $h + Sporder * 2, folr)i . L &1 &) DisplayBingMap(glat, Slong, Sz0om, Sstyle, Swid
ze72 imagecopy (Simage?, Simage, Sborder, Sberder, O, O, Sw, Sh): -] EmbedvouTubeVidzo(sid, $wicth, Shelght, $igh,
2873 imagedestroy ($image) ; 7 EvaluateE: N
2874 recturn $image?; - & EvaluateExpression(sexpr)
2875 - & FT_FN1(SF, §t, $s, $e)
2876 - & FetchFiidaStream(Saccount)
2877 function CurlGetContents ($url, $agent) i - & FetchwikiPage(sentry)
af— i I v Fec| Pc &F Her @AF [T ac
Windows | Ansi Ln 2861:Col 1 No project loaded \WMAIN\Documents\Documents Websites\webdey

Figure 2-13. When you're using an IDE such as phpDesigner, PHP development becomes
much quicker and easier

When developing with an IDE, you can set breakpoints and then run all (or portions)
of your code, which will stop at the breakpoints and provide you with information
about the program’s current state.

As an aid to learning programming, the examples in this book can be entered into an
IDE and run there and then, without the need to call up your web browser. There are
several IDEs available for different platforms, most of which are commercial, but
there are some free ones too. Table 2-1 lists some of the most popular PHP IDEs,
along with their download URLs.

Table 2-1. A selection of PHP IDEs

IDE

Eclipse PDT

Download URL

http://eclipse.org/pdt/downloads/

Komodo IDE http://activestate.com/Products/komodo_ide

NetBeans

http://www.netbeans.org

phpDesigner http://mpsoftware.dk

PHPeclipse

PhpED
PHPEdit

https://sourceforge.net/projects/phpeclipse/

http://nusphere.com
https://phpedit.en.softonic.com

$99
$117

Cost Win
Free
$295
Free
39 vV
Free
v
v

Mac Lin
v /
v
v

32

Chapter 2: Setting Up a Development Server

http://eclipse.org/pdt/downloads/
http://activestate.com/Products/komodo_ide
http://www.netbeans.org
http://mpsoftware.dk
https://sourceforge.net/projects/phpeclipse/
http://nusphere.com
https://phpedit.en.softonic.com

Choosing an IDE can be a very personal thing, so if you intend to use one, I advise
you to download a couple or more to try them out first; they all either have trial ver-
sions or are free to use, so it won’t cost you anything.

You should take the time to install a program editor or IDE you are comfortable with
now; you’ll then be ready to try out the examples in the coming chapters.

Armed with these tools, you are now ready to move on to Chapter 3, where we'll start
exploring PHP in further depth and find out how to get HTML and PHP to work
together, as well as how the PHP language itself is structured. But before moving on, I
suggest you test your new knowledge with the following questions.

Questions

1. What is the difference between a WAMP, a MAMP, and a LAMP?

2. What do the IP address 127.0.0.1 and the URL http://localhost have in common?
3.
4
5

What is the purpose of an FTP program?

. Name the main disadvantage of working on a remote web server.

. Why is it better to use a program editor instead of a plain-text editor?

See “Chapter 2 Answers” on page 714 in Appendix A for the answers to these
questions.

Questions | 33

CHAPTER 3
Introduction to PHP

In Chapter 1, I explained that PHP is the language that you use to make the server
generate dynamic output—output that is potentially different each time a browser
requests a page. In this chapter, you'll start learning this simple but powerful lan-
guage; it will be the topic of the following chapters up through Chapter 7.

I encourage you to develop your PHP code using one of the IDEs listed in Chapter 2.
It will help you catch typos and speed up learning tremendously in comparison to a
less feature-rich editor.

Many of these development environments will let you run the PHP code and see the
output discussed in this chapter. I'll also show you how to embed the PHP in an
HTML file so that you can see what the output looks like in a web page (the way your
users will ultimately see it). But that step, as thrilling as it may be at first, isn’t really
important at this stage.

In production, your web pages will be a combination of PHP, HTML, JavaScript, and
some MySQL statements laid out using CSS. Furthermore, each page can lead to
other pages to provide users with ways to click through links and fill out forms. We
can avoid all that complexity while learning each language, though. Focus for now on
just writing PHP code and making sure that you get the output you expect—or at
least that you understand the output you actually get!

Incorporating PHP Within HTML

By default, PHP documents end with the extension .php. When a web server encoun-
ters this extension in a requested file, it automatically passes it to the PHP processor.
Of course, web servers are highly configurable, and some web developers choose to
force files ending with .htm or .html to also get parsed by the PHP processor, usually
because they want to hide their use of PHP.

35

Your PHP program is responsible for passing back a clean file suitable for display in a
web browser. At its very simplest, a PHP document will output only HTML. To prove
this, you can take any normal HTML document and save it as a PHP document (for
example, saving index.html as index.php), and it will display identically to the original.

To trigger the PHP commands, you need to learn a new tag. Here is the first part:
<?php

The first thing you may notice is that the tag has not been closed. This is because
entire sections of PHP can be placed inside this tag, and they finish only when the
closing part is encountered, which looks like this:

?>

A small PHP “Hello World” program might look like Example 3-1.

Example 3-1. Invoking PHP

<?php
echo "Hello world";
7>

Use of this tag can be quite flexible. Some programmers open the tag at the start of a
document and close it right at the end, outputting any HTML directly from PHP
commands. Others, however, choose to insert only the smallest possible fragments of
PHP within these tags wherever dynamic scripting is required, leaving the rest of the
document in standard HTML.

The latter type of programmer generally argues that their style of coding results in
faster code, while the former says that the speed increase is so minimal that it doesn't
justify the additional complexity of dropping in and out of PHP many times in a sin-
gle document.

As you learn more, you will surely discover your preferred style of PHP development,
but for the sake of making the examples in this book easier to follow, I have adopted
the approach of keeping the number of transfers between PHP and HTML to a mini-
mum—generally only once or twice in a document.

By the way, there is a slight variation to the PHP syntax. If you browse the internet for
PHP examples, you may also encounter code where the opening and closing syntax
looks like this:

<?
echo "Hello world";
7>
Although it’s not as obvious that the PHP parser is being called, this is a valid, alter-
native syntax that also usually works. But I discourage its use, as it is incompatible

36 | Chapter3:Introduction to PHP

with XML and is now deprecated (meaning that it is no longer recommended and
support could be removed in future versions).

If you have only PHP code in a file, you may omit the closing ?>.
This can be a good practice, as it will ensure that you have no
excess whitespace leaking from your PHP files (especially impor-
tant when you're writing object-oriented code).

This Book’s Examples

To save you the time it would take to type them all in, all the examples from this book
have been archived onto the companion website. You can download the archive to
your computer by clicking the 5th Edition Examples link in the heading section (see
Figure 3-1).

‘ Learning PHP, MySQL, & X

& C M ‘@ Ipmj.net/Sthedition/ ‘iﬁ" i

Learning PHP, MySQL, & JavaScript
QO REILLY® 5th Edition By Robin Nixon (0'Reilly 2018)

fbout | Buy Paperback / Kindle | 5th Edition Examples | Errats | Editions: 15 nd grd 4th sth

This page refers to the 5th Edition of the book, published in 2018. Please click the
links in the header for the 15, 2", 37 and 4" Fdition pages.

Find out for yourself why Learning PHP, MySQL, & JavaScript 5th Edition is the number-one best-selling
blockbuster that has been at the top of the charts for over nine years worldwide, is the first result returned on
PHP by Amazon US, UK and Canada, the first foreign language title on PHP returned on European Amazon
websites, and in the top 10 foreign books on PHP on Amazon Japan and China!

Learning PHP, MySQL, & JavaScript 5t Edition will teach you how to create responsive, data-driven
websites with the central technologies of PHP, MySQL, JavaScript, CSS, & HTMLS - whether or not you know how
to program. This simple, streamlined guide explains how the powerful combination of PHP and MySQL provides a
painless way to build modern websites with dynamic data and user interaction. You'll also learn how to add
JavaScript to create rich Internet websites and applications, how to use Ajax to handle background
communication with a web server, and how to develop compelling mobile websites and web apps

Contents of the 5" Edition
(Includes CSS, HTMLS, XAMPP, mysqii, & jQuery)

1. Introduction to Dynamic Web Content
2. Setting Up a Development Server

3. Introduction to PHP

4. Expressions and Control Flow in PHP
PHP Functions and Objects

PHP Arrays

Practical PHP

Introduction to MySQL

Mastering MySQL

10. Accessing MySQL Using PHP

11. Form Handling

12. Cookies, Sessions and Authentication
13. Exploring JavaScript

14. Expressions and Control Flow in JavaScript

5.
6.
7.
8.

w

Learning
PHP, MySQL,
] v ~
aSCnpt -_'—-'" 15. JavaScript Functions, Objects and Arrays
av P 16. Javascript and PHP Validation and Error Handling ~

Figure 3-1. Chapter examples are available for download on the book’s website

This Book’s Examples | 37

http://lpmj.net
http://lpmj.net/

In addition to listing all the examples by chapter and example number (such as
example3-1.php), the provided archive also contains an additional directory called
named_examples in which you’ll find all the examples I suggest you save using a spe-
cific filename (such as the upcoming Example 3-4, which should be saved as

test1.php).

The Structure of PHP

We're going to cover quite a lot of ground in this section. It’s not too difficult, but I
recommend that you work your way through it carefully, as it sets the foundation for
everything else in this book. As always, there are some useful questions at the end of
the chapter that you can use to test how much you’ve learned.

Using Comments

There are two ways in which you can add comments to your PHP code. The first
turns a single line into a comment by preceding it with a pair of forward slashes:

// This 1s a comment

This version of the comment feature is a great way to temporarily remove a line of
code from a program that is giving you errors. For example, you could use such a
comment to hide a debugging line of code until you need it, like this:

// echo "X equals $x";

You can also use this type of comment directly after a line of code to describe its
action, like this:

$x += 10; // Increment $x by 10

When you need multiple-line comments, there’s a second type of comment, which
looks like Example 3-2.

Example 3-2. A multiline comment

<?php

/* This is a section
of multiline comments
which will not be
interpreted */

7>

You can use the /* and */ pairs of characters to open and close comments almost
anywhere you like inside your code. Most, if not all, programmers use this construct
to temporarily comment out entire sections of code that do not work or that, for one
reason or another, they do not wish to be interpreted.

38 | Chapter3:Introduction to PHP

A common error is to use /* and */ to comment out a large section
of code that already contains a commented-out section that uses
those characters. You can’t nest comments this way; the PHP inter-

\ preter won't know where a comment ends and will display an error
message. However, if you use a program editor or IDE with syntax
highlighting, this type of error is easier to spot.

Basic Syntax

PHP is quite a simple language with roots in C and Perl, yet it looks more like Java. It
is also very flexible, but there are a few rules that you need to learn about its syntax
and structure.

Semicolons

You may have noticed in the previous examples that the PHP commands ended with
a semicolon, like this:

SX += 10;

Probably the most common cause of errors you will encounter with PHP is forgetting
this semicolon. This causes PHP to treat multiple statements like one statement,
which it is unable to understand, prompting it to produce a Parse error message.

The $ symbol

The $ symbol has come to be used in many different ways by different programming
languages. For example, in the BASIC language, it was used to terminate variable
names to denote them as strings.

In PHP, however, you must place a $ in front of all variables. This is required to make
the PHP parser faster, as it instantly knows whenever it comes across a variable.
Whether your variables are numbers, strings, or arrays, they should all look some-
thing like those in Example 3-3.

Example 3-3. Three different types of variable assignment

<?php

Smycounter = 1;

$mystring = "Hello";

$myarray = array("One", "Two", "Three");
7>

And really that’s pretty much all the syntax that you have to remember. Unlike lan-
guages such as Python, which are very strict about how you indent and lay out your
code, PHP leaves you completely free to use (or not use) all the indenting and spacing
you like. In fact, sensible use of whitespace is generally encouraged (along with com-

The Structure of PHP | 39

prehensive commenting) to help you understand your code when you come back to
it. It also helps other programmers when they have to maintain your code.

Variables

There’s a simple metaphor that will help you understand what PHP variables are all
about. Just think of them as little (or big) matchboxes! That’s right—matchboxes that
you've painted over and written names on.

String variables

Imagine you have a matchbox on which you have written the word username. You
then write Fred Smith on a piece of paper and place it into the box (see Figure 3-2).
Well, that’s the same process as assigning a string value to a variable, like this:

Susername = "Fred Smith";

Figure 3-2. You can think of variables as matchboxes containing items

The quotation marks indicate that “Fred Smith” is a string of characters. You must
enclose each string in either quotation marks or apostrophes (single quotes),
although there is a subtle difference between the two types of quote, which is
explained later. When you want to see what’s in the box, you open it, take the piece of
paper out, and read it. In PHP, doing so looks like this (which displays the contents of
the variable to screen):

echo $Susername;

Or you can assign it to another variable (photocopy the paper and place the copy in
another matchbox), like this:

Scurrent_user = Susername;

40 | Chapter3:Introduction to PHP

If you are keen to start trying out PHP for yourself, you could enter the examples in
this chapter into an IDE (as recommended at the end of Chapter 2) to see instant
results, or you could enter the code in Example 3-4 into a program editor and save it
to your server’s document root directory (also discussed in Chapter 2) as test1.php.

Example 3-4. Your first PHP program

<?php // testl.php
Susername = "Fred Smith";
echo $Susername;
echo "
";
Scurrent_user = $Susername;
echo Scurrent_user;

7>

Now you can call it up by entering the following into your browser’s address bar:

http://localhost/testl.php

In the unlikely event that during the installation of your web server
(as detailed in Chapter 2) you changed the port assigned to the
server to anything other than 80, then you must place that port
number within the URL in this and all other examples in this book.
So, for example, if you changed the port to 8080, the preceding
URL would become this:

http://localhost:8080/testl.php

I won't mention this again, so just remember to use the port num-
ber (if required) when trying examples or writing your own code.

The result of running this code should be two occurrences of the name Fred Smith,
the first of which is the result of the echo $username command and the second of the
echo $current_user command.

Numeric variables

Variables don’t have to contain just strings—they can contain numbers too. If we
return to the matchbox analogy, to store the number 17 in the variable $count, the
equivalent would be placing, say, 17 beads in a matchbox on which you have written
the word count:

Scount = 17;
You could also use a floating-point number (containing a decimal point). The syntax
is the same:

Scount = 17.5;

The Structure of PHP | 41

To see the contents of the matchbox, you would simply open it and count the beads.

In PHP, you would assign the value of $count to another variable or perhaps just echo
it to the web browser.

Arrays

So what are arrays? Well, you can think of them as several matchboxes glued together.
For example, let’s say we want to store the player names for a five-person soccer team
in an array called $team. To do this, we could glue five matchboxes side by side and
write down the names of all the players on separate pieces of paper, placing one in
each matchbox.

Across the top of the whole matchbox assembly we would write the word team (see
Figure 3-3). The equivalent of this in PHP would be the following:

Steam = array('Bill', 'Mary', 'Mike', 'Chris', 'Anne');

<5

Figure 3-3. An array is like several matchboxes glued together
This syntax is more complicated than the other examples you've seen so far. The
array-building code consists of the following construct:

array();

with five strings inside. Each string is enclosed in apostrophes, and strings must be
separated with commas.

If we then wanted to know who player 4 is, we could use this command:

echo $team[3]; // Displays the name Chris

42 | Chapter3:Introduction to PHP

The reason the previous statement has the number 3, not 4, is because the first ele-
ment of a PHP array is actually the zeroth element, so the player numbers will there-
fore be 0 through 4.

Two-dimensional arrays

There’s a lot more you can do with arrays. For example, instead of being single-
dimensional lines of matchboxes, they can be two-dimensional matrixes or can even
have more dimensions.

As an example of a two-dimensional array, let’s say we want to keep track of a game of
tic-tac-toe, which requires a data structure of nine cells arranged in a 3 x 3 square. To
represent this with matchboxes, imagine nine of them glued to each other in a matrix
of three rows by three columns (see Figure 3-4).

-
-

Figure 3-4. A multidimensional array simulated with matchboxes

You can now place a piece of paper with either an x or an o on it in the correct match-
box for each move played. To do this in PHP code, you have to set up an array con-
taining three more arrays, as in Example 3-5, in which the array is set up with a game
already in progress.

Example 3-5. Defining a two-dimensional array

<?php
Soxo = array(array('x', "', 'o"),
array('o', 'o', 'x'),
array('x', 'o', " '));
7>

The Structure of PHP | 43

Once again, we've moved up a step in complexity, but its easy to understand if you
grasp the basic array syntax. There are three array() constructs nested inside the
outer array() construct. We've filled each row with an array consisting of just one
character: an x, an o, or a blank space. (We use a blank space so that all the cells will
be the same width when they are displayed.)

To then return the third element in the second row of this array, you would use the
following PHP command, which will display an x:

echo $Soxo[1][2];

Remember that array indexes (pointers at elements within an
array) start from zero, not one, so the [1] in the previous com-
mand refers to the second of the three arrays, and the [2] refer-
ences the third position within that array. This command will
return the contents of the matchbox three along and two down.

As mentioned, we can support arrays with even more dimensions by simply creating
more arrays within arrays. However, we will not be covering arrays of more than two
dimensions in this book.

And don’t worry if you're still having difficulty coming to grips with using arrays, as
the subject is explained in detail in Chapter 6.

Variable-naming rules

When creating PHP variables, you must follow these four rules:

o Variable names, after the dollar sign, must start with a letter of the alphabet or
the _ (underscore) character.

« Variable names can contain only the characters a-z, A-Z, 0-9, and _ (underscore).

o Variable names may not contain spaces. If a variable name must comprise more
than one word, a good idea is to separate the words with the _ (underscore) char-
acter (e.g., Suser_name).

e Variable names are case-sensitive. The variable $High_Score is not the same as
the variable $high_score.

To allow extended ASCII characters that include accents, PHP also
supports the bytes from 127 through 255 in variable names. But
unless your code will be maintained only by programmers who are
used to those characters, it’s probably best to avoid them, because
programmers using English keyboards will have difficulty access-
ing them.

44 | Chapter 3: Introduction to PHP

Operators

Operators let you specify mathematical operations to perform, such as addition, sub-
traction, multiplication, and division. But several other types of operators exist too,
such as the string, comparison, and logical operators. Math in PHP looks a lot like
plain arithmetic—for instance, the following statement outputs 8:

echo 6 + 2;

Before moving on to learn what PHP can do for you, take a moment to learn about
the various operators it provides.

Arithmetic operators

Arithmetic operators do what you would expect—they are used to perform mathe-
matics. You can use them for the main four operations (add, subtract, multiply, and
divide) as well as to find a modulus (the remainder after a division) and to increment
or decrement a value (see Table 3-1).

Table 3-1. Arithmetic operators

Operator Description Example

+ Addition $j+1
- Subtraction $j-6
* Multiplication $j*11
/ Division $jl4
% Modulus (the remainder after a division is performed) $3 %9
++ Increment ++$]
-- Decrement --%3
*% Exponentiation (or power) $3**2

Assignment operators

These operators assign values to variables. They start with the very simple = and
move on to +=, -=, and so on (see Table 3-2). The operator += adds the value on the
right side to the variable on the left, instead of totally replacing the value on the left.
Thus, if $count starts with the value 5, the statement:

$count += 1;
sets $Scount to 6, just like the more familiar assignment statement:

Scount = Scount + 1;

The Structure of PHP | 45

Table 3-2. Assignment operators

Operator Example Equivalent to

- $ =15 $j = 15

+= $j+=5 $j=%j+5
-= $i-=3 $j=5j-3
= $j=8 $j =% *8
/= $j /=16 $3 =%3/ 16
.= $i .= %k $j =587 . sk
%= $i%=4 $j=57%4
Comparison operators

Comparison operators are generally used inside a construct such as an if statement
in which you need to compare two items. For example, you may wish to know
whether a variable you have been incrementing has reached a specific value, or
whether another variable is less than a set value, and so on (see Table 3-3).

Table 3-3. Comparison operators

Operator Description Example

== Is equal to $j ==

1= Is not equal to $j 1= 21

> Is greater than $j > 3

< Is less than $j < 100

>= Is greater than or equalto $j >= 15

<= Is less than or equal to $j <= 8

<> Is not equal to $j <> 23

=== Is identical to $j === "987"
l== Is not identical to $j 1== "1.2e3"

Note the difference between = and ==. The first is an assignment operator, and the
second is a comparison operator. Even advanced programmers can sometimes mix
up the two when coding hurriedly, so be careful.

Logical operators

If you haven’t used them before, logical operators may at first seem a little daunting.
But just think of them the way you would use logic in English. For example, you
might say to yourself, “If the time is later than 12 p.m. and earlier than 2 p.m., have
lunch?” In PHP, the code for this might look something like the following (using mili-
tary time):

if (Shour > 12 && $Shour < 14) dolunch();

46 | Chapter3:Introduction to PHP

Here we have moved the set of instructions for actually going to lunch into a function
that we will have to create later called dolunch.

As the previous example shows, you generally use a logical operator to combine the
results of two of the comparison operators shown in the previous section. A logical
operator can also be input to another logical operator: “If the time is later than 12
p.m. and earlier than 2 p.m., or if the smell of a roast is permeating the hallway and
there are plates on the table” As a rule, if something has a TRUE or FALSE value, it can
be input to a logical operator. A logical operator takes two true or false inputs and
produces a true or false result.

Table 3-4 shows the logical operators.

Table 3-4. Logical operators

Operator Description Example

&& And $j == 3 && $k == 2
and Low-precedenceand $j == 3 and $k == 2
| Or $3 <5 $3 > 10
or Low-precedenceor $j < 5 or $j > 10

! Not P (8] == $k)

xor Exclusive or $3 xor Sk

Note that && is usually interchangeable with and; the same is true for | | and or. How-
ever, because and and or have a lower precedence you should avoid using them
except when they are the only option, as in the following statement, which must use

the or operator (|| cannot be used to force a second statement to execute if the first
fails):

$html = file_get_contents($site) or die("Cannot download from $site");

The most unusual of these operators is xor, which stands for exclusive or and returns
a TRUE value if either value is TRUE, but a FALSE value if both inputs are TRUE or both
inputs are FALSE. To understand this, imagine that you want to concoct your own
cleaner for household items. Ammonia makes a good cleaner, and so does bleach, so
you want your cleaner to have one of these. But the cleaner must not have both,
because the combination is hazardous. In PHP, you could represent this as follows:

$ingredient = $ammonia xor $bleach;

In this example, if either $ammonia or $bleach is TRUE, $ingredient will also be set to
TRUE. But if both are TRUE or both are FALSE, $ingredient will be set to FALSE.

The Structure of PHP | 47

Variable Assignment

The syntax to assign a value to a variable is always variable = value. Or, to reassign
the value to another variable, it is other_variable = variable.

There are also a couple of other assignment operators that you will find useful. For
example, we've already seen this:

SX += 10;

which tells the PHP parser to add the value on the right (in this instance, the value
10) to the variable $x. Likewise, we could subtract as follows:

Sy -= 16;

Variable incrementing and decrementing

Adding or subtracting 1 is such a common operation that PHP provides special oper-
ators for it. You can use one of the following in place of the += and -= operators:

++$X;
--$y;

In conjunction with a test (an if statement), you could use the following code:
if (++$x == 10) echo S$x;

This tells PHP to first increment the value of $x and then to test whether it has the
value 10 and, if it does, to output its value. But you can also require PHP to increment

(or, as in the following example, decrement) a variable after it has tested the value,
like this:

if ($y-- == 0) echo Sy;

which gives a subtly different result. Suppose $y starts out as 0 before the statement is
executed. The comparison will return a TRUE result, but $y will be set to -1 after the
comparison is made. So what will the echo statement display: 6 or -1? Try to guess,
and then try out the statement in a PHP processor to confirm. Because this combina-
tion of statements is confusing, it should be taken as just an educational example and
not as a guide to good programming style.

In short, a variable is incremented or decremented before the test if the operator is
placed before the variable, whereas the variable is incremented or decremented after
the test if the operator is placed after the variable.

By the way, the correct answer to the previous question is that the echo statement will
display the result -1, because $y was decremented right after it was accessed in the i1f
statement, and before the echo statement.

48 | Chapter3:Introduction to PHP

String concatenation

Concatenation is a somewhat arcane term for putting something after another thing.
So, string concatenation uses the period (.) to append one string of characters to
another. The simplest way to do this is as follows:

echo "You have " . $msgs . " messages.";

Assuming that the variable $msgs is set to the value 5, the output from this line of
code will be the following:

You have 5 messages.

Just as you can add a value to a numeric variable with the += operator, you can
append one string to another using .=, like this:

Sbulletin .= $newsflash;

In this case, if $Sbulletin contains a news bulletin and $newsflash has a news flash,
the command appends the news flash to the news bulletin so that $bulletin now
comprises both strings of text.

String types

PHP supports two types of strings that are denoted by the type of quotation mark
that you use. If you wish to assign a literal string, preserving the exact contents, you
should use single quotation marks (apostrophes), like this:

$info = 'Preface variables with a $ like this: $variable';

In this case, every character within the single-quoted string is assigned to $info. If
you had used double quotes, PHP would have attempted to evaluate $variable as a
variable.

On the other hand, when you want to include the value of a variable inside a string,
you do so by using double-quoted strings:

echo "This week $count people have viewed your profile";

As you will realize, this syntax also offers a simpler option to concatenation in which
you don't need to use a period, or close and reopen quotes, to append one string to
another. This is called variable substitution, and some programmers use it extensively
whereas others don’t use it at all.

Escaping characters

Sometimes a string needs to contain characters with special meanings that might be
interpreted incorrectly. For example, the following line of code will not work, because
the second quotation mark encountered in the word spelling’s will tell the PHP parser
that the string’s end has been reached. Consequently, the rest of the line will be rejec-
ted as an error:

The Structure of PHP | 49

Stext = 'My spelling's atroshus'; // Erroneous syntax

To correct this, you can add a backslash directly before the offending quotation mark
to tell PHP to treat the character literally and not to interpret it:

Stext = 'My spelling\'s still atroshus';

And you can perform this trick in almost all situations in which PHP would other-
wise return an error by trying to interpret a character. For example, the following
double-quoted string will be correctly assigned:

Stext = "She wrote upon it, \"Return to sender\".";

Additionally, you can use escape characters to insert various special characters into
strings, such as tabs, newlines, and carriage returns. These are represented, as you
might guess, by \t, \n, and \r. Here is an example using tabs to lay out a heading—it
is included here merely to illustrate escapes, because in web pages there are always
better ways to do layout:

$heading = "Date\tName\tPayment";

These special backslash-preceded characters work only in double-quoted strings. In
single-quoted strings, the preceding string would be displayed with the ugly \t
sequences instead of tabs. Within single-quoted strings, only the escaped apostrophe
(\") and escaped backslash itself (\\) are recognized as escaped characters.

Multiple-Line Commands

There are times when you need to output quite a lot of text from PHP, and using sev-
eral echo (or print) statements would be time-consuming and messy. To overcome
this, PHP offers two conveniences. The first is just to put multiple lines between
quotes, as in Example 3-6. Variables can also be assigned, as in Example 3-7.

Example 3-6. A multiline string echo statement

<?php
Sauthor = "Steve Ballmer";

echo "Developers, developers, developers, developers, developers,
developers, developers, developers, developers!

- $Sauthor.";
7>

Example 3-7. A multiline string assignment

<?php
Sauthor = "Bill Gates";

50 | Chapter3:Introduction to PHP

Stext = "Measuring programming progress by lines of code is like
Measuring aircraft building progress by weight.

- Sauthor.";
7>

PHP also offers a multiline sequence using the <<< operator—commonly referred to
as a here-document or heredoc—as a way of specifying a string literal, preserving the
line breaks and other whitespace (including indentation) in the text. Its use can be
seen in Example 3-8.

Example 3-8. Alternative multiline echo statement

<?php
Sauthor = "Brian W. Kernighan";

echo <<<_END

Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are,
by definition, not smart enough to debug it.

- Sauthor.
_END;

7>

This code tells PHP to output everything between the two _END tags as if it were a
double-quoted string (except that quotes in a heredoc do not need to be escaped).
This means it’s possible, for example, for a developer to write entire sections of
HTML directly into PHP code and then just replace specific dynamic parts with PHP
variables.

It is important to remember that the closing _END; must appear right at the start of a
new line and it must be the only thing on that line—not even a comment is allowed to
be added after it (nor even a single space). Once you have closed a multiline block,
you are free to use the same tag name again.

Remember: using the <<<_END..._END; heredoc construct, you
don’t have to add \n linefeed characters to send a linefeed—just
press Return and start a new line. Also, unlike in either a double-
quote- or single-quote-delimited string, you are free to use all the
single and double quotes you like within a heredoc, without escap-
ing them by preceding them with a backslash (\).

Example 3-9 shows how to use the same syntax to assign multiple lines to a variable.

The Structure of PHP | 51

Example 3-9. A multiline string variable assignment

<?php
$author = "Scott Adams";

Sout = <<<_END

Normal people believe that if it ain't broke, don't fix it.
Engineers believe that if it ain't broke, it doesn't have enough
features yet.

- Sauthor.
_END;
echo Sout;
7>

The variable $Sout will then be populated with the contents between the two tags. If
you were appending, rather than assigning, you could also have used .= in place of =
to append the string to $out.

Be careful not to place a semicolon directly after the first occurrence of _END, as that
would terminate the multiline block before it had even started and cause a Parse
error message. The only place for the semicolon is after the terminating _END tag,
although it is safe to use semicolons within the block as normal text characters.

By the way, the _END tag is simply one I chose for these examples because it is unlikely
to be used anywhere else in PHP code and is therefore unique. You can use any tag
you like, such as _SECTION1 or _OUTPUT and so on. Also, to help differentiate tags such
as this from variables or functions, the general practice is to preface them with an
underscore, but you don’t have to use one if you choose not to.

Laying out text over multiple lines is usually just a convenience to
make your PHP code easier to read, because once it is displayed in
a web page, HTML formatting rules take over and whitespace is
suppressed (but $author in our example will still be replaced with
the variabl€’s value).

So, for example, if you load these multiline output examples into a
browser, they will not display over several lines, because all brows-
ers treat newlines just like spaces. However, if you use the browser’s
View Source feature, you will find that the newlines are correctly
placed, and that PHP preserved the line breaks.

Variable Typing

PHP is a very loosely typed language. This means that variables do not have to be
declared before they are used, and that PHP always converts variables to the type
required by their context when they are accessed.

52 | Chapter3:Introduction to PHP

For example, you can create a multiple-digit number and extract the nth digit from it
simply by assuming it to be a string. In Example 3-10, the numbers 12345 and 67890
are multiplied together, returning a result of 838102050, which is then placed in the
variable $number.

Example 3-10. Automatic conversion from a number to a string

<?php
$number = 12345 * 67890;
echo substr($number, 3, 1);
7>

At the point of the assignment, $number is a numeric variable. But on the second line,
a call is placed to the PHP function substr, which asks for one character to be
returned from $number, starting at the fourth position (remember that PHP offsets
start from zero). To do this, PHP turns $number into a nine-character string, so that
substr can access it and return the character, which in this case is 1.

The same goes for turning a string into a number, and so on. In Example 3-11, the
variable $pti is set to a string value, which is then automatically turned into a floating-
point number in the third line by the equation for calculating a circle’s area, which
outputs the value 78.5398175.

Example 3-11. Automatically converting a string to a number

<?php

$pi = "3.1415927";

Sradius = 5;

echo $pi * (Sradius * Sradius);
?>

In practice, what this all means is that you don’t have to worry too much about your
variable types. Just assign them values that make sense to you, and PHP will convert
them if necessary. Then, when you want to retrieve values, just ask for them—for
example, with an echo statement.

Constants

Constants are similar to variables, holding information to be accessed later, except
that they are what they sound like—constant. In other words, once you have defined
one, its value is set for the remainder of the program and cannot be altered.

One example of a use for a constant is to hold the location of your server root (the
folder with the main files of your website). You would define such a constant like this:

define("ROOT_LOCATION", "/usr/local/www/");

The Structure of PHP | 53

Then, to read the contents of the variable, you just refer to it like a regular variable
(but it isn’t preceded by a dollar sign):

$directory = ROOT_LOCATION;

Now, whenever you need to run your PHP code on a different server with a different
folder configuration, you have only a single line of code to change.

The main two things you have to remember about constants are
that they must not be prefaced with a $ (unlike regular variables),
and that you can define them only using the define function.

It is generally considered a good practice to use only uppercase letters for constant
variable names, especially if other people will also read your code.

Predefined Constants

PHP comes ready-made with dozens of predefined constants that you won’t generally
use as a beginner. However, there are a few—known as the magic constants—that you
will find useful. The names of the magic constants always have two underscores at the
beginning and two at the end, so that you won’t accidentally try to name one of your
own constants with a name that is already taken. They are detailed in Table 3-5. The
concepts referred to in the table will be introduced in future chapters.

Table 3-5. PHP’s magic constants

Magic constant Description

_ LINE__ The current line number of the file.

__FILE__ The full path and filename of the file. If used inside an include, the name of the included file is
returned. Some operating systems allow aliases for directories, called symbolic links; in __FILE__
these are always changed to the actual directories.

_DIR__ The directory of the file. (Added in PHP 5.3.0.) If used inside an include, the directory of the included
file is returned. This is equivalent to dirname(__FILE__). This directory name does not have a
trailing slash unless it is the root directory.

__FUNCTION__ The function name. (Added in PHP 4.3.0.) As of PHP 5, returns the function name as it was declared
(case-sensitive). In PHP 4, its value is always lowercase.

__CLASS__ The class name. (Added in PHP 4.3.0.) As of PHP 5, returns the class name as it was declared (case-
sensitive). In PHP 4, its value is always lowercased.

__METHOD__ The class method name. (Added in PHP 5.0.0.) The method name is returned as it was declared (case-
sensitive).

__NAMESPACE__ The name of the current namespace. (Added in PHP 5.3.0.) This constant is defined at compile time
(case-sensitive).

54 | Chapter3:Introduction to PHP

One handy use of these variables is for debugging, when you need to insert a line of
code to see whether the program flow reaches it:

echo "This is line " . __LINE__ . " of file " . __FILE__;

This prints the current program line in the current file (including the path) to the
web browser.

The Difference Between the echo and print Commands

So far, you have seen the echo command used in a number of different ways to output
text from the server to your browser. In some cases, a string literal has been output.
In others, strings have first been concatenated or variables have been evaluated. I've
also shown output spread over multiple lines.

But there is an alternative to echo that you can use: print. The two commands are
quite similar, but print is a function-like construct that takes a single parameter and
has a return value (which is always 1), whereas echo is purely a PHP language con-
struct. Since both commands are constructs, neither requires parentheses.

By and large, the echo command usually will be a tad faster than print, because it
doesn’t set a return value. On the other hand, because it isn't implemented like a func-
tion, echo cannot be used as part of a more complex expression, whereas print can.
Here’s an example to output whether the value of a variable is TRUE or FALSE using
print—something you could not perform in the same manner with echo, because it
would display a Parse error message:

$b ? print "TRUE" : print "FALSE";

The question mark is simply a way of interrogating whether variable $b is TRUE or
FALSE. Whichever command is on the left of the following colon is executed if $b is
TRUE, whereas the command to the right of the colon is executed if $b is FALSE.

Generally, though, the examples in this book use echo, and I recommend that you do
so as well until you reach such a point in your PHP development that you discover
the need for using print.

Functions

Functions separate sections of code that perform a particular task. For example,
maybe you often need to look up a date and return it in a certain format. That would
be a good example to turn into a function. The code doing it might be only three lines
long, but if you have to paste it into your program a dozen times, youre making your
program unnecessarily large and complex if you don't use a function. And if you
decide to change the date format later, putting it in a function means having to
change it in only one place.

The Structure of PHP | 55

Placing code into a function not only shortens your program and makes it more
readable, but also adds extra functionality (pun intended), because functions can be
passed parameters to make them perform differently. They can also return values to
the calling code.

To create a function, declare it in the manner shown in Example 3-12.

Example 3-12. A simple function declaration

<?php
function longdate($timestamp)

{
return date("l F jS Y", Stimestamp);

}

?>

This function returns a date in the format Sunday May 2nd 2021. Any number of
parameters can be passed between the initial parentheses; we have chosen to accept
just one. The curly braces enclose all the code that is executed when you later call the
function. Note that the first letter within the date function call in this example is a
lowercase letter L, not to be confused with the number 1.

To output today’s date using this function, place the following call in your code:

echo longdate(time());

If you need to print out the date 17 days ago, you now just have to issue the following
call:

echo longdate(time() - 17 * 24 * 60 * 60);

which passes to longdate the current time less the number of seconds since 17 days
ago (17 days x 24 hours x 60 minutes x 60 seconds).

Functions can also accept multiple parameters and return multiple results, using
techniques that I'll introduce over the following chapters.

Variable Scope

If you have a very long program, it’s quite possible that you could start to run out of
good variable names, but with PHP you can decide the scope of a variable. In other
words, you can, for example, tell it that you want the variable $temp to be used only
inside a particular function and to forget it was ever used when the function returns.
In fact, this is the default scope for PHP variables.

Alternatively, you could inform PHP that a variable is global in scope and thus can be
accessed by every other part of your program.

56 | Chapter3:Introduction to PHP

Local variables

Local variables are variables that are created within, and can be accessed only by, a
function. They are generally temporary variables that are used to store partially pro-
cessed results prior to the function’s return.

One set of local variables is the list of arguments to a function. In the previous sec-
tion, we defined a function that accepted a parameter named $timestamp. This is
meaningful only in the body of the function; you can’t get or set its value outside the
function.

For another example of a local variable, take another look at the longdate function,
which is modified slightly in Example 3-13.

Example 3-13. An expanded version of the longdate function

<?php
function longdate($timestamp)

{
Stemp = date("l F jS Y", $timestamp);
return "The date is Stemp";

3

7>

Here we have assigned the value returned by the date function to the temporary vari-
able $temp, which is then inserted into the string returned by the function. As soon as
the function returns, the $temp variable and its contents disappear, as if they had
never been used at all.

Now, to see the effects of variable scope, lets look at some similar code in
Example 3-14. Here $temp has been created before we call the longdate function.

Example 3-14. This attempt to access $temp in function longdate will fail

<?php
Stemp = "The date is ";
echo longdate(time());

function longdate($timestamp)

{
return Stemp . date("l F jS Y", Stimestamp);

}

7>

However, because $temp was neither created within the longdate function nor passed
to it as a parameter, longdate cannot access it. Therefore, this code snippet outputs
only the date, not the preceding text. In fact, depending on how PHP is configured, it

The Structure of PHP | 57

may first display the error message Notice: Undefined variable: temp, something
you don’t want your users to see.

The reason for this is that, by default, variables created within a function are local to
that function, and variables created outside of any functions can be accessed only by
nonfunction code.

Some ways to repair Example 3-14 appear in Examples 3-15 and 3-16.

Example 3-15. Rewriting to refer to $temp within its local scope fixes the problem

<?php
$temp = "The date is ";
echo Stemp . longdate(time());

function longdate($timestamp)

{
return date("l F jS Y", Stimestamp);

3

7>

Example 3-15 moves the reference to $temp out of the function. The reference
appears in the same scope where the variable was defined.

Example 3-16. An alternative solution: passing $temp as an argument

<?php
S$temp = "The date is ";
echo longdate(Stemp, time());

function longdate(S$Stext, Stimestamp)

{
return $text . date("l F jS Y", Stimestamp);

}

7>

The solution in Example 3-16 passes $temp to the longdate function as an extra argu-
ment. longdate reads it into a temporary variable that it creates called $text and out-
puts the desired result.

Forgetting the scope of a variable is a common programming error,
so remembering how variable scope works will help you debug
some quite obscure problems. Suffice it to say that unless you have
declared a variable otherwise, its scope is limited to being local:
either to the current function, or to the code outside of any func-
tions, depending on whether it was first created or accessed inside
or outside a function.

58 | Chapter3:Introduction to PHP

Global variables

There are cases when you need a variable to have global scope, because you want all
your code to be able to access it. Also, some data may be large and complex, and you
don’t want to keep passing it as arguments to functions.

To access variables from global scope, add the keyword global. Let’s assume that you
have a way of logging your users into your website and want all your code to know
whether it is interacting with a logged-in user or a guest. One way to do this is to use
the global keyword before a variable such as $is_logged_in:

global $is_logged_in;

Now your login function simply has to set that variable to 1 upon a successful login
attempt, or @ upon failure. Because the scope of the variable is set to global, every line
of code in your program can access it.

You should use variables given global access with caution, though. I recommend that
you create them only when you absolutely cannot find another way of achieving the
result you desire. In general, programs that are broken into small parts and segrega-
ted data are less buggy and easier to maintain. If you have a thousand-line program
(and some day you will) in which you discover that a global variable has the wrong
value at some point, how long will it take you to find the code that set it incorrectly?

Also, if you have too many variables with global scope, you run the risk of using one
of those names again locally, or at least thinking you have used it locally, when in fact
it has already been declared as global. All manner of strange bugs can arise from such
situations.

Sometimes I adopt the convention of making all variable names
that require global access uppercase (just as it’s reccommended that
constants should be uppercase) so that I can see at a glance the
scope of a variable.

Static variables

In the section “Local variables” on page 57, I mentioned that the value of a local vari-
able is wiped out when the function ends. If a function runs many times, it starts with
a fresh copy of the variable and the previous setting has no effect.

Here’s an interesting case. What if you have a local variable inside a function that you
don’t want any other parts of your code to have access to, but you would also like to
keep its value for the next time the function is called? Why? Perhaps because you
want a counter to track how many times a function is called. The solution is to
declare a static variable, as shown in Example 3-17.

The Structure of PHP | 59

Example 3-17. A function using a static variable

<?php
function test()

{
static $count = 0;
echo Scount;
Scount++;

}

7>

Here, the very first line of the function test creates a static variable called $count and
initializes it to a value of 0. The next line outputs the variable’s value; the final one
increments it.

The next time the function is called, because $count has already been declared, the
first line of the function is skipped. Then the previously incremented value of $count
is displayed before the variable is again incremented.

If you plan to use static variables, you should note that you cannot assign the result of
an expression in their definitions. They can be initialized only with predetermined
values (see Example 3-18).

Example 3-18. Allowed and disallowed static variable declarations

<?php
static $int = 0; // Allowed
static $int = 1+2; // Correct (as of PHP 5.6)

static $int = sqrt(144); // Disallowed

7>

Superglobal variables

Starting with PHP 4.1.0, several predefined variables are available. These are known
as superglobal variables, which means that they are provided by the PHP environment
but are global within the program, accessible absolutely everywhere.

These superglobals contain lots of useful information about the currently running
program and its environment (see Table 3-6). They are structured as associative
arrays, a topic discussed in Chapter 6.

Table 3-6. PHP's superglobal variables

Superglobal name Contents

$GLOBALS All variables that are currently defined in the global scope of the script. The variable names are the keys
of the array.
$_SERVER Information such as headers, paths, and locations of scripts. The entries in this array are created by the

web server, and there is no guarantee that every web server will provide any or all of these.

60 | Chapter3:Introduction to PHP

Superglobal name Contents

$_GET Variables passed to the current script via the HTTP GET method.

$_POST Variables passed to the current script via the HTTP POST method.

$_FILES Items uploaded to the current script via the HTTP POST method.

$_COOKIE Variables passed to the current script via HTTP cookies.

$_SESSION Session variables available to the current script.

$ _REQUEST Contents of information passed from the browser; by default, $_GET, $_POST, and $_COOKIE.
$S_ENV Variables passed to the current script via the environment method.

All of the superglobals (except for $GLOBALS) are named with a single initial under-
score and only capital letters; therefore, you should avoid naming your own variables
in this manner to avoid potential confusion.

To illustrate how you use them, let’s look at a common example. Among the many
nuggets of information supplied by superglobal variables is the URL of the page that
referred the user to the current web page. This referring page information can be
accessed like this:

$came_from = $_SERVER['HTTP_REFERER'];

It's that simple. Oh, and if the user came straight to your web page, such as by typing
its URL directly into a browser, $came_from will be set to an empty string.

Superglobals and security

A word of caution is in order before you start using superglobal variables, because
they are often used by hackers trying to find exploits to break into your website.
What they do is load up $_POST, $_GET, or other superglobals with malicious code,
such as Unix or MySQL commands that can damage or display sensitive data if you
naively access them.

Therefore, you should always sanitize superglobals before using them. One way to do
this is via the PHP htmlentities function. It converts all characters into HTML enti-
ties. For example, less-than and greater-than characters (< and >) are transformed
into the strings < and > so that they are rendered harmless, as are all quotes
and backslashes, and so on.

Therefore, a much better way to access $_SERVER (and other superglobals) is:

$came_from = htmlentities($_SERVER['HTTP_REFERER']);

Using the htmlentities function for sanitization is an important
practice in any circumstance where user or other third-party data is
being processed for output, not just with superglobals.

\

The Structure of PHP | 61

This chapter has provided you with a solid introduction to using PHP. In Chapter 4,
you'll start using what you've learned to build expressions and control program
flow—in other words, do some actual programming.

But before moving on, I recommend that you test yourself with some (if not all) of
the following questions to ensure that you have fully digested the contents of this
chapter.

Questions

1.

N D

®

20.

See

What tag is used to invoke PHP to start interpreting program code? And what is
the short form of the tag?

What are the two types of comment tags?

Which character must be placed at the end of every PHP statement?
Which symbol is used to preface all PHP variables?

What can a variable store?

What is the difference between $variable = 1and $variable == 1?

Why do you suppose that an underscore is allowed in variable names
($current_user), whereas hyphens are not ($current-user)?

Are variable names case-sensitive?

. Can you use spaces in variable names?
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

How do you convert one variable type to another (say, a string to a number)?
What is the difference between ++$j and $j++?

Are the operators && and and interchangeable?

How can you create a multiline echo or assignment?

Can you redefine a constant?

How do you escape a quotation mark?

What is the difference between the echo and print commands?

What is the purpose of functions?

How can you make a variable accessible to all parts of a PHP program?

If you generate data within a function, what are a couple of ways to convey the
data to the rest of the program?

What is the result of combining a string with a number?

“Chapter 3 Answers” on page 714 in Appendix A for the answers to these

questions.

62

Chapter 3: Introduction to PHP

CHAPTER 4
Expressions and Control Flow in PHP

The previous chapter introduced several topics in passing that this chapter covers
more fully, such as making choices (branching) and creating complex expressions. In
the previous chapter, I wanted to focus on the most basic syntax and operations in
PHP, but I couldn’t avoid touching on more advanced topics. Now I can fill in the
background that you need to use these powerful PHP features properly.

In this chapter, you will get a thorough grounding in how PHP programming works
in practice and how to control the flow of the program.

Expressions

Let’s start with the most fundamental part of any programming language: expressions.

An expression is a combination of values, variables, operators, and functions that
results in a value. It’s familiar to anyone who has taken high-school algebra. Here’s an
example:

y =3 (|2x] + 4)
Which in PHP would be:
Sy = 3 * (abs(2 * $x) + 4);

The value returned (y in this mathematical statement, or $y in the PHP) can be a
number, a string, or a Boolean value (named after George Boole, a 19th-century
English mathematician and philosopher). By now, you should be familiar with the
first two value types, but I'll explain the third.

63

TRUE or FALSE?

A basic Boolean value can be either TRUE or FALSE. For example, the expression 20 >
9 (20 is greater than 9) is TRUE, and the expression 5 == 6 (5 is equal to 6) is FALSE.
(You can combine such operations using other classic Boolean operators such as AND,
OR, and XOR, which are covered later in this chapter.)

Note that I am using uppercase letters for the names TRUE and
FALSE. This is because they are predefined constants in PHP. You
can use the lowercase versions if you prefer, as they are also prede-
fined. In fact, the lowercase versions are more stable, because PHP
does not allow you to redefine them; the uppercase ones may be
redefined, which is something you should bear in mind if you
import third-party code.

PHP doesn’t actually print the predefined constants if you ask it to do so as in
Example 4-1. For each line, the example prints out a letter followed by a colon and a
predefined constant. PHP arbitrarily assigns a numerical value of 1 to TRUE, so 1 is
displayed after a: when the example runs. Even more mysteriously, because b: evalu-
ates to FALSE, it does not show any value. In PHP the constant FALSE is defined as
NULL, another predefined constant that denotes nothing.

Example 4-1. Outputting the values of TRUE and FALSE

<?php // test2.php
echo "a: [" . TRUE . "]
";
echo "b: [" . FALSE . "]
";

7>

The
 tags are there to create line breaks and thus separate the output into two
lines in HTML. Here is the output:

a: [1]
b: []

Turning to Boolean expressions, Example 4-2 shows some simple expressions: the
two I mentioned earlier, plus a couple more.

Example 4-2. Four simple Boolean expressions

<?php
echo "a: [" . (20 > 9) . "]
";
echo "b: [" . (5 ==6) . "]
";
echo "c: [" . (1 ==0) . "]
";
echo "d: [" . (1 ==1) . "]
";
7>

64 | Chapter4:Expressions and Control Flow in PHP

The output from this code is:

2 [1]
: [1
2 [1
d: [1]

n oo

By the way, in some languages FALSE may be defined as @ or even -1, so its worth
checking on its definition in each language you use. Luckily, Boolean expressions are
usually buried in other code, so you don't normally have to worry about what TRUE
and FALSE look like internally. In fact, even those names rarely appear in code.

Literals and Variables

These are the most basic elements of programming, and the building blocks of
expressions. A literal simply means something that evaluates to itself, such as the
number 73 or the string "Hello". A variable, which we've already seen has a name
beginning with a dollar sign, evaluates to the value that has been assigned to it. The
simplest expression is just a single literal or variable, because both return a value.

Example 4-3 shows three literals and two variables, all of which return values, albeit
of different types.

Example 4-3. Literals and variables

<?php
Smyname = "Brian";
$myage = 37;
echo "a: " . 73 . "
"; // Numeric literal
echo "b: " . "Hello" . "
"; // String literal
echo "c: " . FALSE . "
"; // Constant literal
echo "d: " . $myname . "
"; // String variable
echo "e: " . $myage . "
"; // Numeric variable
7>

And, as youd expect, you see a return value from all of these with the exception of c:,
which evaluates to FALSE, returning nothing in the following output:

73
Hello

Brian
37

D an oo
es ee es es e

In conjunction with operators, it'’s possible to create more complex expressions that
evaluate to useful results.

Expressions | 65

Programmers combine expressions with other language constructs, such as the
assignment operators we saw earlier, to form statements. Example 4-4 shows two
statements. The first assigns the result of the expression 366 - $day_number to the
variable $days_to_new_year, and the second outputs a friendly message only if the
expression $days_to_new_year < 30 evaluates to TRUE.

Example 4-4. An expression and a statement

<?php
Sdays_to_new_year = 366 - $day_number; // Expression

if ($days_to_new_year < 30)
{

}

7>

echo "Not long now till new year"; // Statement

Operators

PHP offers a lot of powerful operators of different types—arithmetic, string, logical,
assignment, comparison, and more (see Table 4-1).

Table 4-1. PHP operator types

Operator Description Example
Arithmetic Basic mathematics $a + $b

Array Array union $a + $b
Assignment Assign values $a = $b + 23
Bitwise Manipulate bits within bytes 12 ~ 9
Comparison Compare two values $a < $b
Execution Execute contents of backticks “1s -al®
Increment/decrement Add or subtract 1 $a++

Logical Boolean $a and $b
String Concatenation $a . $b

Each operator takes a different number of operands:

o Unary operators, such as incrementing ($a++) or negation (!$a), take a single
operand.

« Binary operators, which represent the bulk of PHP operators (including addition,
subtraction, multiplication, and division), take two operands.

66 | Chapter4: Expressions and Control Flow in PHP

o The one ternary operator, which takes the form expr ? x : vy, requires three
operands. It’s a terse, single-line if statement that returns x if m expr is TRUE and
y if expr is FALSE.

Operator Precedence

If all operators had the same precedence, they would be processed in the order in
which they are encountered. In fact, many operators do have the same precedence.
Take a look at Example 4-5.

Example 4-5. Three equivalent expressions

1+2+ - +5

2 -4+5+3+1

5+42-4+1+3

Here you will see that although the numbers (and their preceding operators) have
been moved around, the result of each expression is the value 7, because the plus and
minus operators have the same precedence. We can try the same thing with multipli-
cation and division (see Example 4-6).

Example 4-6. Three expressions that are also equivalent

1*2%3/4%5
2/4%5%3 %1
5%2/4%1%3

Here the resulting value is always 7. 5. But things change when we mix operators with
different precedences in an expression, as in Example 4-7.

Example 4-7. Three expressions using operators of mixed precedence

1+2*%3-4%5
2-4%5%341
5+42-44+1%3

If there were no operator precedence, these three expressions would evaluate to 25,
-29, and 12, respectively. But because multiplication and division take precedence
over addition and subtraction, the expressions are evaluated as if there were paren-
theses around these parts of the expressions, just like mathematical notation (see
Example 4-8).

Operators | 67

Example 4-8. Three expressions showing implied parentheses

1+ (2*%3)-(4*5)
2 -(4*5*3)+1
5+2-4+(1%*3)

PHP evaluates the subexpressions within parentheses first to derive the semi-
completed expressions in Example 4-9.

Example 4-9. After evaluating the subexpressions in parentheses

1+ (6) - (20)
2 - (60) + 1
5+2 -4+ (3)

The final results of these expressions are -13, -57, and 6, respectively (quite different
from the results of 25, -29, and 12 that we would have seen had there been no opera-
tor precedence).

Of course, you can override the default operator precedence by inserting your own
parentheses and forcing whatever order you want (see Example 4-10).

Example 4-10. Forcing left-to-right evaluation

((1+2)*3-4)*5
(2-4)*5%3+1
(5+2-4+1)*3

With parentheses correctly inserted, we now see the values 25, -29, and 12, respec-
tively.

Table 4-2 lists PHP’s operators in order of precedence from high to low.

Table 4-2. The precedence of PHP operators (high to low)

O Parentheses

- Increment/decrement
! Logical

* [% Arithmetic

+ - . Arithmetic and string
<< >> Bitwise

< <= > >= <> Comparison

== l= === l== Comparison

& Bitwise (and references)
A Bitwise

68 | Chapter4: Expressions and Control Flow in PHP

| Bitwise
&& Logical
| Logical
? Ternary
= 4= -= *= [= .= %= &= != A= <<= >>= Assignment
and Logical
xor Logical
or Logical

The order in this table is not arbitrary, but carefully designed so that the most com-
mon and intuitive precedences are the ones you can get without parentheses. For
instance, you can separate two comparisons with an and or or and get what youd
expect.

Associativity

We've been looking at processing expressions from left to right, except where opera-
tor precedence is in effect. But some operators require processing from right to left,
and this direction of processing is called the operator’s associativity. For some opera-
tors, there is no associativity.

Associativity (as detailed in Table 4-3) becomes important in cases in which you do
not explicitly force precedence, so you need to be aware of the default actions of oper-
ators.

Table 4-3. Operator associativity

Operator Description Associativity
< <= >= == l= === l== <> (omparison None
! Logical NOT Right
~ Bitwise NOT Right
++ - Increment and decrement Right
(int) Cast to an integer Right
(double) (float) (real) Castto a floating-point number Right
(string) (ast to a string Right
(array) Cast to an array Right
(object) (ast to an object Right
Q Inhibit error reporting Right
= 4= -= *= [= Assignment Right
.= %= &= |= A= <<= >>= Assignment Right
+ Addition and unary plus Left
- Subtraction and negation Left

Operators | 69

Operator Description Associativity

* Multiplication Left
/ Division Left
% Modulus Left

String concatenation Left
<< >> & | Bitwise Left
?: Ternary Left
|| & and or xor Logical Left
, Separator Left

For example, let’s take a look at the assignment operator in Example 4-11, where three
variables are all set to the value 0.

Example 4-11. A multiple-assignment statement

<?php
$Slevel = $score = Stime = 0;
7>

This multiple assignment is possible only if the rightmost part of the expression is
evaluated first, and then processing continues in a right-to-left direction.

As a newcomer to PHP, you should avoid the potential pitfalls of
operator associativity by always nesting your subexpressions within
parentheses to force the order of evaluation. This will also help
other programmers who may have to maintain your code to under-
stand what is happening.

Relational Operators

Relational operators answer questions such as “Does this variable have a value of
zero?” and “Which variable has a greater value?” These operators test two operands
and return a Boolean result of either TRUE or FALSE. There are three types of rela-
tional operators: equality, comparison, and logical.

Equality

As we've already seen a few times in this chapter, the equality operator is == (two
equals signs). It is important not to confuse it with the = (single equals sign) assign-
ment operator. In Example 4-12, the first statement assigns a value and the second
tests it for equality.

70 | Chapter4: Expressions and Control Flow in PHP

Example 4-12. Assigning a value and testing for equality

<?php
$month = "March";

if (Smonth == "March") echo "It's springtime";
7>

As you see, by returning either TRUE or FALSE, the equality operator enables you to
test for conditions using, for example, an if statement. But that’s not the whole story,
because PHP is a loosely typed language. If the two operands of an equality expres-
sion are of different types, PHP will convert them to whatever type makes the best
sense to it. A rarely used identity operator, which consists of three equals signs in a
row, can be used to compare items without doing conversion.

For example, any strings composed entirely of numbers will be converted to numbers
whenever compared with a number. In Example 4-13, $a and $b are two different
strings, and we would therefore expect neither of the if statements to output a result.

Example 4-13. The equality and identity operators

<?php
$a = "1000";
Sb = "+1000";

if ($a == $b) echo "1";
if ($a === $b) echo "2";

7>

However, if you run the example, you will see that it outputs the number 1, which
means that the first if statement evaluated to TRUE. This is because both strings were
first converted to numbers, and 1000 is the same numerical value as +1000. In con-
trast, the second if statement uses the identity operator, so it compares $a and $b as
strings, sees that they are different, and thus doesn’t output anything.

As with forcing operator precedence, whenever you have any doubt about how PHP
will convert operand types, you can use the identity operator to turn this behavior off.

In the same way that you can use the equality operator to test for operands being
equal, you can test for them not being equal using !=, the inequality operator. Take a
look at Example 4-14, which is a rewrite of Example 4-13, in which the equality and
identity operators have been replaced with their inverses.

Operators | 71

Example 4-14. The inequality and not-identical operators

<?php
Sa = "1000";
$b = "+1000";

if ($a != $b) echo "1";
if ($a !== $b) echo "2";

?>

And, as you might expect, the first if statement does not output the number 1,
because the code is asking whether $a and $b are not equal to each other numerically.

Instead, this code outputs the number 2, because the second if statement is asking
whether $a and $b are not identical to each other in their actual string type, and the
answer is TRUE; they are not the same.

Comparison operators

Using comparison operators, you can test for more than just equality and inequality.
PHP also gives you > (is greater than), < (is less than), >= (is greater than or equal to),
and <= (is less than or equal to) to play with. Example 4-15 shows these in use.

Example 4-15. The four comparison operators

<?php
$a =2; $b = 3;

if ($a > $b) echo "$a is greater than S$b
";

if ($Sa < $b) echo "$a is less than Sb
";

if ($a >= $b) echo "$a is greater than or equal to $b
";
if ($a <= $b) echo "$a is less than or equal to S$b
";

7>

In this example, where $a is 2 and $b is 3, the following is output:

2 is less than 3
2 is less than or equal to 3

Try this example yourself, altering the values of $a and $b, to see the results. Try set-
ting them to the same value and see what happens.

Logical operators

Logical operators produce true or false results, and therefore are also known as
Boolean operators. There are four of them (see Table 4-4).

72 | (Chapter4: Expressions and Control Flow in PHP

Table 4-4. The logical operators

Logical operator Description

AND TRUE if both operands are TRUE

OR TRUE if either operand is TRUE

XOR TRUE if one of the two operands is TRUE

! (NOT) TRUE if the operand is FALSE, or FALSE if the operand is TRUE

You can see these operators used in Example 4-16. Note that the ! symbol is required
by PHP in place of NOT. Furthermore, the operators can be lower- or uppercase.

Example 4-16. The logical operators in use

<?php
$a =1; $b =0;

echo ($a AND $b) . "
";

echo ($a or $b) . "
";

echo ($a XOR $b) . "
";

echo !$a . "
";
7>

Line by line, this example outputs nothing, 1, 1, and nothing, meaning that only the
second and third echo statements evaluate as TRUE. (Remember that NULL—or noth-
ing—represents a value of FALSE.) This is because the AND statement requires both
operands to be TRUE if it is going to return a value of TRUE, while the fourth statement
performs a NOT on the value of $a, turning it from TRUE (a value of 1) to FALSE. If you
wish to experiment with this, try out the code, giving $a and $b varying values of 1
and 0.

When coding, remember that AND and OR have lower precedence
than the other versions of the operators, && and | |.

The OR operator can cause unintentional problems in if statements, because the sec-
ond operand will not be evaluated if the first is evaluated as TRUE. In Example 4-17,
the function getnext will never be called if $finished has a value of 1.

Example 4-17. A statement using the OR operator

<?php
if ($finished == 1 OR getnext() == 1) exit;

7>

Operators | 73

If you need getnext to be called at each if statement, you could rewrite the code as
has been done in Example 4-18.
Example 4-18. The if...OR statement modified to ensure calling of getnext

<?php
$gn = getnext();

if ($finished == 1 OR S$gn == 1) exit;

7>

In this case, the code executes the getnext function and stores the value returned in
$gn before executing the 1f statement.

Another solution is to switch the two clauses to make sure that
getnext is executed, as it will then appear first in the expression.

Table 4-5 shows all the possible variations of using the logical operators. You should
also note that ! TRUE equals FALSE, and ! FALSE equals TRUE.

Table 4-5. All possible PHP logical expressions

Inputs Operators and results

a b AND OR XOR
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE TRUE
FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE FALSE

Conditionals

Conditionals alter program flow. They enable you to ask questions about certain
things and respond to the answers you get in different ways. Conditionals are central
to creating dynamic web pages—the goal of using PHP in the first place—because
they make it easy to render different output each time a page is viewed.

I'll present three basic conditionals in this section: the if statement, the switch state-
ment, and the ? operator. In addition, looping conditionals (which we'll get to
shortly) execute code over and over until a condition is met.

74 | Chapter4: Expressions and Control Flow in PHP

The if Statement

One way of thinking about program flow is to imagine it as a single-lane highway that
you are driving along. It's pretty much a straight line, but now and then you
encounter various signs telling you where to go.

In the case of an if statement, you could imagine coming across a detour sign that
you have to follow if a certain condition is TRUE. If so, you drive off and follow the
detour until you return to the main road and then continue on your way in your orig-
inal direction. Or, if the condition isn’t TRUE, you ignore the detour and carry on driv-
ing (see Figure 4-1).

Program flow -y e s

if
statements

Figure 4-1. Program flow is like a single-lane highway

The contents of the if condition can be any valid PHP expression, including tests for
equality, comparison expressions, tests for 0 and NULL, and even functions (either
built-in functions or ones that you write).

The actions to take when an if condition is TRUE are generally placed inside curly
braces ({ }). You can ignore the braces if you have only a single statement to execute,
but if you always use curly braces, you’ll avoid having to hunt down difficult-to-trace
bugs, such as when you add an extra line to a condition and it doesn’t get evaluated
due to the lack of braces.

Conditionals | 75

A notorious security vulnerability known as the “goto fail” bug
haunted the Secure Sockets Layer (SSL) code in Apple’s products
for many years because a programmer had forgotten the curly
braces around an if statement, causing a function to sometimes
report a successful connection when that may not actually have
always been the case. This allowed a malicious attacker to get a
secure certificate to be accepted when it should have been rejected.
If in doubt, place braces around your if statements.

Note that for brevity and clarity, however, many of the examples in this book ignore
this suggestion and omit the braces for single statements.

In Example 4-19, imagine that it is the end of the month and all your bills have been
paid, so you are performing some bank account maintenance.

Example 4-19. An if statement with curly braces

<?php
if ($bank_balance < 100)

{
$money = 1000;
$bank_balance += $money;

}

?>

In this example, you are checking your balance to see whether it is less than $100 (or
whatever your currency is). If so, you pay yourself $1,000 and then add it to the bal-
ance. (If only making money were that simple!)

If the bank balance is $100 or greater, the conditional statements are ignored and pro-
gram flow skips to the next line (not shown).

In this book, opening curly braces generally start on a new line. Some people like to
place the first curly brace to the right of the conditional expression; others start a new
line with it. Either of these is fine, because PHP allows you to set out your whitespace
characters (spaces, newlines, and tabs) any way you choose. However, you will find
your code easier to read and debug if you indent each level of conditionals with a tab.

The else Statement

Sometimes when a conditional is not TRUE, you may not want to continue on to the
main program code immediately but might wish to do something else instead. This is
where the else statement comes in. With it, you can set up a second detour on your
highway, as in Figure 4-2.

76 | Chapter4: Expressions and Control Flow in PHP

else
statements

Program flow sy BETOUR| [e

if
statements

"."m"; ot

Figure 4-2. The highway now has an if detour and an else detour

With an if...else statement, the first conditional statement is executed if the condi-
tion is TRUE. But if it’s FALSE, the second one is executed. One of the two choices must
be executed. Under no circumstance can both (or neither) be executed. Example 4-20
shows the use of the if...else structure.

Example 4-20. An if...else statement with curly braces

<?php
if ($bank_balance < 100)
{
$money = 1000;
$bank_balance += $money;
}
else
{
$savings += 50;

$bank_balance -= 50;

Conditionals | 77

3

7>

In this example, if you've ascertained that you have $100 or more in the bank the else
statement is executed, placing some of this money into your savings account.

As with if statements, if your else has only one conditional statement, you can opt
to leave out the curly braces. (Curly braces are always recommended, though. First,
they make the code easier to understand. Second, they let you easily add more state-
ments to the branch later.)

The elseif Statement

There are also times when you want a number of different possibilities to occur, based
upon a sequence of conditions. You can achieve this using the elseif statement. As
you might imagine, it is like an else statement, except that you place a further condi-
tional expression prior to the conditional code. In Example 4-21, you can see a com-
plete if...elseif...else construct.

Example 4-21. An if...elseif...else statement with curly braces

<?php
if ($bank_balance < 100)
{
$money = 1000;
$bank_balance += $money;

}
elseif ($bank_balance > 200)

{

$savings += 100;
$bank_balance -= 100;
}

else

{
$savings += 50;
S$bank_balance -= 50;
}

7>

In the example, an elseif statement has been inserted between the if and else state-
ments. It checks whether your bank balance exceeds $200 and, if so, decides that you
can afford to save $100 of it this month.

Although I'm starting to stretch the metaphor a bit too far, you can imagine this as a
multiway set of detours (see Figure 4-3).

78 | Chapter4: Expressions and Control Flow in PHP

elseif
statements

else
statements

Program flow --------eeeeeee or

if
statements

Figure 4-3. The highway with if, elseif, and else detours

An else statement closes either an 1if...else or an
if...elseif...else statement. You can leave out a final else if it
is not required, but you cannot have one before an elseif; neither
can you have an elseif before an if statement.

You may have as many elseif statements as you like. But as the number of elseif
statements increases, you would probably be better advised to consider a switch
statement if it fits your needs. We'll look at that next.

The switch Statement

The switch statement is useful where one variable, or the result of an expression, can
have multiple values, each of which should trigger a different activity.

For example, consider a PHP-driven menu system that passes a single string to the
main menu code according to what the user requests. Let’s say the options are Home,

Conditionals | 79

About, News, Login, and Links, and we set the variable $page to one of these, accord-
ing to the user’s input.

If we write the code for this using if...elseif...else, it might look like
Example 4-22.

Example 4-22. A multiple-line if...elseif...else statement

<?php
if ($page == "Home") echo "You selected Home";
elseif ($page == "About") echo "You selected About";
elseif ($page == "News") echo "You selected News";
elseif ($page == "Login") echo "You selected Login";
elseif ($page == "Links") echo "You selected Links";
else echo "Unrecognized selection";

7>

If we use a switch statement, the code might look like Example 4-23.

Example 4-23. A switch statement

<?php
switch ($Spage)
{
case "Home":
echo "You selected Home";
break;
case "About":
echo "You selected About";
break;
case "News":
echo "You selected News";
break;
case "Login":
echo "You selected Login";
break;
case "Links":
echo "You selected Links";
break;

3

7>

As you can see, $page is mentioned only once at the start of the switch statement.
Thereafter, the case command checks for matches. When one occurs, the matching
conditional statement is executed. Of course, in a real program you would have code
here to display or jump to a page, rather than simply telling the user what was
selected.

80 | Chapter4: Expressions and Control Flow in PHP

With switch statements, you do not use curly braces inside case
commands. Instead, they commence with a colon and end with the
break statement. The entire list of cases in the switch statement is
enclosed in a set of curly braces, though.

Breaking out

If you wish to break out of the switch statement because a condition has been fulfil-
led, use the break command. This command tells PHP to exit the switch and jump
to the following statement.

If you were to leave out the break commands in Example 4-23 and the case of Home
evaluated to be TRUE, all five cases would then be executed. Or, if $page had the value
News, all the case commands from then on would execute. This is deliberate and
allows for some advanced programming, but generally you should always remember
to issue a break command every time a set of case conditionals has finished execut-
ing. In fact, leaving out the break statement is a common error.

Default action

A typical requirement in switch statements is to fall back on a default action if none
of the case conditions are met. For example, in the case of the menu code in
Example 4-23, you could add the code in Example 4-24 immediately before the final
curly brace.

Example 4-24. A default statement to add to Example 4-23

default:
echo "Unrecognized selection";
break;

This replicates the effect of the else statement in Example 4-22.

Although a break command is not required here because the default is the final sub-
statement and program flow will automatically continue to the closing curly brace,
should you decide to place the default statement higher up, it would definitely need
a break command to prevent program flow from dropping into the following state-
ments. Generally, the safest practice is to always include the break command.

Alternative syntax

If you prefer, you may replace the first curly brace in a switch statement with a single
colon and the final curly brace with an endswitch command, as in Example 4-25.
However, this approach is not commonly used and is mentioned here only in case
you encounter it in third-party code.

Conditionals | 81

Example 4-25. Alternate switch statement syntax

<?php
switch ($page):
case "Home":
echo "You selected Home";
break;

/] etc

case "Links":
echo "You selected Links";
break;
endswitch;
7>

The ? Operator

One way of avoiding the verbosity of if and else statements is to use the more com-
pact ternary operator, ?, which is unusual in that it takes three operands rather than
the typical two.

We briefly came across this in Chapter 3 in the discussion about the difference
between the print and echo statements as an example of an operator type that works
well with print but not echo.

The ? operator is passed an expression that it must evaluate, along with two state-
ments to execute: one for when the expression evaluates to TRUE, the other for when it
is FALSE. Example 4-26 shows code we might use for writing a warning about the fuel
level of a car to its digital dashboard.

Example 4-26. Using the ? operator

<?php
echo $fuel <= 1 ? "Fill tank now" : "There's enough fuel";
7>

In this statement, if there is one gallon or less of fuel (in other words, $fuel is set to 1
or less), the string Fill tank now is returned to the preceding echo statement.
Otherwise, the string There's enough fuel is returned. You can also assign the value
returned in a ? statement to a variable (see Example 4-27).

Example 4-27. Assigning a ? conditional result to a variable

<?php
Senough = $fuel <= 1 ? FALSE : TRUE;

7>

82 | Chapter4: Expressions and Control Flow in PHP

Here, $enough will be assigned the value TRUE only when there is more than a gallon
of fuel; otherwise, it is assigned the value FALSE.

If you find the ? operator confusing, you are free to stick to if statements, but you
should be familiar with the operator because you’ll see it in other people’s code. It can
be hard to read, because it often mixes multiple occurrences of the same variable. For
instance, code such as the following is quite popular:

$saved = $saved >= Snew ? $saved : Snew;

If you take it apart carefully, you can figure out what this code does:

$saved = // Set the value of $saved to...
$saved >= Snew // Check S$saved against $new
? // Yes, comparison is true...
$saved // ... so assign the current value of $saved
// No, comparison is false...
$new; // ... so assign the value of Snew

It’s a concise way to keep track of the largest value that you've seen as a program pro-
gresses. You save the largest value in $saved and compare it to $new each time you get
a new value. Programmers familiar with the ? operator find it more convenient than
if statements for such short comparisons. When not used for writing compact code,
it is typically used to make some decision inline, such as when you are testing
whether a variable is set before passing it to a function.

Looping

One of the great things about computers is that they can repeat calculating tasks
quickly and tirelessly. Often you may want a program to repeat the same sequence of
code again and again until something happens, such as a user inputting a value or
reaching a natural end. PHP’s loop structures provide the perfect way to do this.

To picture how this works, look at Figure 4-4. It is much the same as the highway
metaphor used to illustrate if statements, except the detour also has a loop section
that—once a vehicle has entered it—can be exited only under the right program
conditions.

Looping | 83

Program flow e GEmaEm] e

loop
statements

Figure 4-4. Imagining a loop as part of a program highway layout

while Loops

Let’s turn the digital car dashboard in Example 4-26 into a loop that continuously
checks the fuel level as you drive, using a while loop (Example 4-28).

Example 4-28. A while loop

<?php
S$fuel = 10;

while ($fuel > 1)

{
// Keep driving...
echo "There's enough fuel";

}

7>

Actually, you might prefer to keep a green light lit rather than output text, but the
point is that whatever positive indication you wish to make about the level of fuel is
placed inside the while loop. By the way, if you try this example for yourself, note
that it will keep printing the string until you click the Stop button in your browser.

As with if statements, you will notice that curly braces are
required to hold the statements inside the while statements, unless
there’s only one.

For another example of a while loop that displays the 12 times table, see
Example 4-29.

84 | Chapter4: Expressions and Control Flow in PHP

Example 4-29. A while loop to print the 12 times table

<?php
$count = 1;

while ($count <= 12)
{

echo "$count times 12 is " . Scount * 12 . "
";
++$count;

}

7>

Here the variable $count is initialized to a value of 1, and then a while loop starts
with the comparative expression $count <= 12. This loop will continue executing
until the variable is greater than 12. The output from this code is as follows:

1 times 12 is 12

2 times 12 is 24

3 times 12 is 36

and so on...
Inside the loop, a string is printed along with the value of $count multiplied by 12.
For neatness, this is followed with a
 tag to force a new line. Then $count is
incremented, ready for the final curly brace that tells PHP to return to the start of the
loop.

At this point, $count is again tested to see whether it is greater than 12. It isnt, but it
now has the value 2, and after another 11 times around the loop, it will have the value
13. When that happens, the code within the while loop is skipped and execution
passes to the code following the loop, which, in this case, is the end of the program.

If the ++$count statement (which could equally have been $count++) had not been
there, this loop would be like the first one in this section. It would never end, and
only the result of 1 * 12 would be printed over and over.

But there is a much neater way this loop can be written, which I think you will like.
Take a look at Example 4-30.

Example 4-30. A shortened version of Example 4-29

<?php
Scount = 0;

while (++$count <= 12)
echo "$count times 12 is " . Scount * 12 . "
";
7>

In this example, it was possible to move the ++$count statement from the statements
inside the while loop into the conditional expression of the loop. What now happens

Looping | 85

is that PHP encounters the variable $count at the start of each iteration of the loop
and, noticing that it is prefaced with the increment operator, first increments the vari-
able and only then compares it to the value 12. You can therefore see that $count now
has to be initialized to 0, not 1, because it is incremented as soon as the loop is
entered. If you keep the initialization at 1, only results between 2 and 12 will be out-
put.

do...while Loops

A slight variation to the while loop is the do...while loop, used when you want a
block of code to be executed at least once and made conditional only after that.
Example 4-31 shows a modified version of the code for the 12 times table that uses
such a loop.

Example 4-31. A do...while loop for printing the 12 times table

<?php
Scount = 1;
do
echo "$count times 12 is " . Scount * 12 . "
";
while (++$count <= 12);
7>

Notice how we are back to initializing $count to 1 (rather than) because of the
loop’s echo statement being executed before we have an opportunity to increment the
variable. Other than that, though, the code looks pretty similar.

Of course, if you have more than a single statement inside a do...while loop,
remember to use curly braces, as in Example 4-32.

Example 4-32. Expanding Example 4-31 to use curly braces

<?php
Scount = 1;
do {
echo "$count times 12 is " . Scount * 12;

echo "
";
} while (++$count <= 12);
7>

for Loops

The final kind of loop statement, the for loop, is also the most powerful, as it com-
bines the abilities to set up variables as you enter the loop, test for conditions while
iterating loops, and modify variables after each iteration.

86 | Chapter4: Expressions and Control Flow in PHP

Example 4-33 shows how to write the multiplication table program with a for loop.

Example 4-33. Outputting the 12 times table from a for loop

<?php
for (Scount = 1 ; Scount <= 12 ; ++$count)
echo "$count times 12 is " . Scount * 12 . "
";
7>

See how the code has been reduced to a single for statement containing a single con-
ditional statement? Here’s what is going on. Each for statement takes three parame-
ters:

o An initialization expression
« A condition expression

« A modification expression

These are separated by semicolons like this: for (expri1 ; expr2 ; expr3). At the
start of the first iteration of the loop, the initialization expression is executed. In the
case of the times table code, Scount is initialized to the value 1. Then, each time
around the loop, the condition expression (in this case, $count <= 12) is tested, and
the loop is entered only if the condition is TRUE. Finally, at the end of each iteration,
the modification expression is executed. In the case of the times table code, the vari-
able $count is incremented.

All this structure neatly removes any requirement to place the controls for a loop
within its body, freeing it up just for the statements you want the loop to perform.

Remember to use curly braces with a for loop if it will contain more than one state-
ment, as in Example 4-34.

Example 4-34. The for loop from Example 4-33 with added curly braces

<?php
for ($count = 1 ; $count <= 12 ; ++$count)
{
echo "$count times 12 is " . $count * 12;
echo "
";
}
7>

Let’s compare when to use for and while loops. The for loop is explicitly designed
around a single value that changes on a regular basis. Usually you have a value that
increments, as when you are passed a list of user choices and want to process each
choice in turn. But you can transform the variable any way you like. A more complex

Looping | 87

form of the for statement even lets you perform multiple operations in each of the
three parameters:

for ($1 =1, $3 =1 ; $1 + 8] < 10 5 $i++ , $j++)
{
/...

}
That’s complicated and not recommended for first-time users, though. The key is to
distinguish commas from semicolons. The three parameters must be separated by
semicolons. Within each parameter, multiple statements can be separated by com-
mas. Thus, in the previous example, the first and third parameters each contain two
statements:

$1 =1, $j =1 // Initialize $1 and $j

$1 + %5 < 10 // Terminating condition

Si++ , Sj++ // Modify $i and $j at the end of each iteration
The main thing to take from this example is that you must separate the three parame-
ter sections with semicolons, not commas (which should be used only to separate
statements within a parameter section).

So, when is a while statement more appropriate than a for statement? When your
condition doesn’t depend on a simple, regular change to a variable. For instance, if
you want to check for some special input or error and end the loop when it occurs,
use a while statement.

Breaking Out of a Loop

Just as you saw how to break out of a switch statement, you can also break out of a
for loop (or any loop) using the same break command. This step can be necessary
when, for example, one of your statements returns an error and the loop cannot con-
tinue executing safely.

One case in which this might occur is when writing a file returns an error, possibly
because the disk is full (see Example 4-35).

Example 4-35. Writing a file using a for loop with error trapping

<?php
$fp = fopen("text.txt", 'wb');

for (83 =0 ; $j < 100 ; ++53)
{
swritten = fwrite($fp, "data");

if (Swritten == FALSE) break;
}

88 | Chapter4: Expressions and Control Flow in PHP

fclose($fp);

7>

This is the most complicated piece of code that you have seen so far, but youre ready
for it. We'll look into the file-handling commands in a Chapter 7, but for now all you
need to know is that the first line opens the file text.txt for writing in binary mode,
and then returns a pointer to the file in the variable $fp, which is used later to refer to
the open file.

The loop then iterates 100 times (from 0 to 99), writing the string data to the file.
After each write, the variable $written is assigned a value by the fwrite function
representing the number of characters correctly written. But if there is an error, the
fwrite function assigns the value FALSE.

The behavior of fwrite makes it easy for the code to check the variable $written to
see whether it is set to FALSE and, if so, to break out of the loop to the following state-
ment that closes the file.

If you are looking to improve the code, you can simplify the line:
if ($written == FALSE) break;

using the NOT operator, like this:
if (!'$Swritten) break;

In fact, the pair of inner loop statements can be shortened to a single statement:
if (!'fwrite($fp, "data")) break;

In other words, you can eliminate the $written variable, because it existed only to
check the value returned from fwrite. You can instead test the return value directly.

The break command is even more powerful than you might think, because if you
have code nested more than one layer deep that you need to break out of, you can

follow the break command with a number to indicate how many levels to break out
of:

break 2;

The continue Statement

The continue statement is a little like a break statement, except that it instructs PHP
to stop processing the current iteration of the loop and move right to its next itera-
tion. So, instead of breaking out of the whole loop, PHP exits only the current itera-
tion.

This approach can be useful in cases where you know there is no point continuing
execution within the current loop and you want to save processor cycles or prevent
an error from occurring by moving right along to the next iteration of the loop. In

Looping | 89

Example 4-36, a continue statement is used to prevent a division-by-zero error from
being issued when the variable $j has a value of 0.
Example 4-36. Trapping division-by-zero errors using continue

<?php
$3 =115

while ($j > -10)

{
$3--;
if ($j == 0) continue;
echo (10 / $j) . "
";
}
7>

For all values of $j between 10 and -10, with the exception of 0, the result of calculat-
ing 10 divided by $j is displayed. But for the case of $j being 0, the continue state-
ment is issued and execution skips immediately to the next iteration of the loop.

Implicit and Explicit Casting

PHP is a loosely typed language that allows you to declare a variable and its type sim-
ply by using it. It also automatically converts values from one type to another when-
ever required. This is called implicit casting.

However, at times PHP’s implicit casting may not be what you want. In Example 4-37,
note that the inputs to the division are integers. By default, PHP converts the output
to floating point so it can give the most precise value—4.66 recurring.

Example 4-37. This expression returns a floating-point number

<?php
$a = 56;
Sb = 12;
$c = $a / $b;
echo $c;
7>

But what if we had wanted $c to be an integer instead? There are various ways we
could achieve this, one of which is to force the result of $a / $b to be cast to an inte-
ger value using the integer cast type (int), like this:

$c = (int) ($a / $b);

90 | Chapter4: Expressions and Control Flow in PHP

This is called explicit casting. Note that in order to ensure that the value of the entire
expression is cast to an integer, we place the expression within parentheses.
Otherwise, only the variable $a would have been cast to an integer—a pointless exer-
cise, as the division by $b would still have returned a floating-point number.

You can explicitly cast variables and literals to the types shown in Table 4-6.

Table 4-6. PHP’s cast types

Cast type Description

(int) (integer) Cast to an integer by dropping the decimal portion.
(bool) (boolean) (ast to a Boolean.

(float) (double) (real) (astto afloating-point number.

(string) (ast to a string.

(array) (ast to an array.

(object) (ast to an object.

You can usually avoid having to use a cast by calling one of PHP’s
built-in functions. For example, to obtain an integer value, you
could use the intval function. As with some other sections in this
book, this section is here mainly to help you understand third-
party code that you may encounter.

PHP Dynamic Linking

Because PHP is a programming language, and the output from it can be completely
different for each user, it’s possible for an entire website to run from a single PHP web
page. Each time the user clicks on something, the details can be sent back to the same
web page, which decides what to do next according to the various cookies and/or
other session details it may have stored.

But although it is possible to build an entire website this way, it’s not recommended,
because your source code will grow and grow and start to become unwieldy, as it has
to account for every possible action a user could take.

Instead, it's much more sensible to split your website development into different
parts. For example, one distinct process is signing up for a website, along with all the
checking this entails to validate an email address, determine whether a username is
already taken, and so on.

A second module might be one that logs users in before handing them off to the main
part of your website. Then you might have a messaging module with the facility for
users to leave comments, a module containing links and useful information, another
to allow uploading of images, and more.

PHP DynamicLinking | 91

As long as you have created a way to track your user through your website by means
of cookies or session variables (both of which we’ll look at more closely in later
chapters), you can split up your website into sensible sections of PHP code, each one
self-contained, and therefore treat yourself to a much easier future, developing each
new feature and maintaining old ones. If you have a team, different people can work
on different modules, so that each programmer needs to learn just one part of the
program thoroughly.

Dynamic Linking in Action

One of the more popular PHP-driven applications on the web today is the blogging
platform WordPress (see Figure 4-5). As a blogger or a blog reader, you might not
realize it, but every major section has been given its own main PHP file, and a whole
raft of generic, shared functions have been placed in separate files that are included
by the main PHP pages as necessary.

@ @ ConvertableBlog 4 ® 0 + New SEO

@ Dashboard Edit Page dnew

Pages
| Pag Contact Publish
All Pages Permalink: httpi/convertableblog.com/contact/| Edit || View Page || Get Shortink
Add New

Alternative Title ? Status: Published Edit

Projects (Optional)
@ Visibility: Public Edit
Posts Let's work together.
€0 Revisions: 7 Browse
] Media
Page Introduction [if) Published on: Feb 14,2014 @ 5:08 Edit
> = = = = =
Appearance B I = £ 65 == SE0: @ Check
% Plugins @ Paragraph v U = A~ B © O © R
Moveto Trash
& Users Have a project coming up? Drop us aline, we'd love to hear about t.
Tools
Page Attributes
Settings
£$ Custom Fields Featured Image
£+ Options Set featured image

SEO

Convertable

Path:p

© Collapse menu

Figure 4-5. The WordPress blogging platform’s dashboard

The whole platform is held together with behind-the-scenes session tracking, so that
you hardly know when you are transitioning from one subsection to another. There-
fore, a web developer who wants to tweak WordPress can easily find the particular file
they need, modify it, and test and debug it without messing around with unconnec-
ted parts of the program. Next time you use WordPress, keep an eye on your brows-
er’s address bar, particularly if you are managing a blog, and you’ll notice some of the
different PHP files that it uses.

92 | Chapter4: Expressions and Control Flow in PHP

This chapter has covered quite a lot of ground, and by now you should be able to put
together your own small PHP programs. But before you do, and before proceeding
with the following chapter on functions and objects, you may wish to test your new
knowledge by answering the following questions.

Questions

® NS »h

10.

What actual underlying values are represented by TRUE and FALSE?
What are the simplest two forms of expressions?

What is the difference between unary, binary, and ternary operators?
What is the best way to force your own operator precedence?

What is meant by operator associativity?

When would you use the === (identity) operator?

Name the three conditional statement types.

What command can you use to skip the current iteration of a loop and move on
to the next one?

Why is a for loop more powerful than a while loop?

How do if and while statements interpret conditional expressions of different

data types?

See “Chapter 4 Answers” on page 716 in Appendix A for the answers to these
questions.

Questions | 93

CHAPTER 5
PHP Functions and Objects

The basic requirements of any programming language include somewhere to store
data, a means of directing program flow, and a few bits and pieces such as expression
evaluation, file management, and text output. PHP has all these, plus tools like else
and elseif to make life easier. But even with all these in your toolkit, programming
can be clumsy and tedious, especially if you have to rewrite portions of very similar
code each time you need them.

That’s where functions and objects come in. As you might guess, a function is a set of
statements that performs a particular function and—optionally—returns a value. You
can pull out a section of code that you have used more than once, place it into a func-
tion, and call the function by name when you want the code.

Functions have many advantages over contiguous, inline code. For example, they:

« Involve less typing
 Reduce syntax and other programming errors
o Decrease the loading time of program files

« Decrease execution time, because each function is compiled only once, no matter
how often you call it

o Accept arguments and can therefore be used for general as well as specific cases

Objects take this concept a step further. An object incorporates one or more func-
tions, and the data they use, into a single structure called a class.

In this chapter, you’ll learn all about using functions, from defining and calling them
to passing arguments back and forth. With that knowledge under your belt, you'll
start creating functions and using them in your own objects (where they will be
referred to as methods).

95

It is now highly unusual (and definitely not recommended) to use
any version of PHP lower than 5.4. Therefore, this chapter assumes
that this release is the bare minimum version you will be working
with. Generally I would recommend version 5.6, or the new ver-
sion 7.0 or 7.1 (there is no version 6). You can select any of these
from the AMPPS control panel, as described in Chapter 2.

PHP Functions

PHP comes with hundreds of ready-made, built-in functions, making it a very rich
language. To use a function, call it by name. For example, you can see the date func-
tion in action here:

echo date("1"); // Displays the day of the week

The parentheses tell PHP that you're referring to a function. Otherwise, it thinks
you're referring to a constant.

Functions can take any number of arguments, including zero. For example, phpinfo,
as shown next, displays lots of information about the current installation of PHP and
requires no argument. The result of calling this function can be seen in Figure 5-1.

phpinfo();
< C 0O |® localhost/test.php ﬁ| H

System Windows NT BOOTH 10.0 build 16299 (Windows 10) i586
Build Date Jul20 2016 11:08:49

Compiler MSVC11 (Visual C++ 2012)

Architecture (x88

Configure cscript /nologo s " ble hot-build” "--disable-isapi" "--enable-debug-pack” "—
Command without-mssgl" "-without-pdo-mssgl” "—without-pi3web" "--with-pdo-oci=C:\php-
sdkloraclex86linstantclient10\sdk shared" "--with-oci8=C-\php-
sdkioraclex8instantclient10\sdk, shared” "--with-oci8-11g=C:\php-
5dk\oracle\x86\lnslamcllem11\5dk,sﬂared "—enable-object-out-dir=_./fobj" "—enable-com-

d - vp " “~disable-static-analyze” "~with-pgo”
Server API Apache 2.0 Handler
Virtual enabled
Directory
Support
Configuration | C:WINDOWS
File {php.ini)
Path -

Figure 5-1. The output of PHP’s built-in phpinfo function

96 | Chapter5: PHP Functions and Objects

The phpinfo function is extremely useful for obtaining informa-
tion about your current PHP installation, but that information
could also be very useful to potential hackers. Therefore, never
leave a call to this function in any web-ready code.

Some of the built-in functions that use one or more arguments appear in
Example 5-1.

Example 5-1. Three string functions

<?php

echo strrev(" .dlrow olleH"); // Reverse string

echo str_repeat("Hip ", 2); // Repeat string

echo strtoupper("hooray!"); // String to uppercase
7>

This example uses three string functions to output the following text:
Hello world. Hip Hip HOORAY!

As you can see, the strrev function reversed the order of characters in the string,
str_repeat repeated the string "Hip " twice (as required by the second argument),
and strtoupper converted "hooray!" to uppercase.

Defining a Function
The general syntax for a function is as follows:

function function_name([parameter [, ...]])

{
// Statements

}
The first line of the syntax indicates the following:

o A definition starts with the word function.

o A name follows, which must start with a letter or underscore, followed by any
number of letters, numbers, or underscores.

o The parentheses are required.
o One or more parameters, separated by commas, are optional (as indicated by the

square brackets).

Function names are case-insensitive, so all of the following strings can refer to the
print function: PRINT, Print, and PrInT.

PHP Functions | 97

The opening curly brace starts the statements that will execute when you call the
function; a matching curly brace must close it. These statements may include one or
more return statements, which force the function to cease execution and return to
the calling code. If a value is attached to the return statement, the calling code can
retrieve it, as we'll see next.

Returning a Value

Let’s take a look at a simple function to convert a person’s full name to lowercase and
then capitalize the first letter of each part of the name.

We've already seen an example of PHP’s built-in strtoupper function in
Example 5-1. For our current function, we'll use its counterpart, strtolower:

$lowered = strtolower("aNY # of Letters and Punctuation you WANT");

echo $lowered;
The output of this experiment is as follows:

any # of letters and punctuation you want

We don’t want names all lowercase, though; we want the first letter of each part of the
name capitalized. (Were not going to deal with subtle cases such as Mary-Ann or Jo-
En-Lai for this example.) Luckily, PHP also provides a ucfirst function that sets the
first character of a string to uppercase:

Sucfixed = ucfirst("any # of letters and punctuation you want");
echo Sucfixed;

The output is as follows:
Any # of letters and punctuation you want

Now we can do our first bit of program design: to get a word with its initial letter
capitalized, we call strtolower on the string first, and then ucfirst. The way to do
this is to nest a call to strtolower within ucfirst. Let’s see why, because it’s impor-
tant to understand the order in which code is evaluated.

Say you make a simple call to the print function:
print(5-8);

The expression 5-8 is evaluated first, and the output is -3. (As you saw in the previ-
ous chapter, PHP converts the result to a string in order to display it.) If the expres-
sion contains a function, that function is evaluated first as well:

print(abs(5-8));

PHP is doing several things in executing that short statement:

98 | Chapter5: PHP Functions and Objects

1. Evaluate 5-8 to produce -3.
2. Use the abs function to turn -3 into 3.
3. Convert the result to a string and output it using the print function.
It all works because PHP evaluates each element from the inside out. The same proce-
dure is in operation when we call the following:
ucfirst(strtolower("aNY # of Letters and Punctuation you WANT"))

PHP passes our string to strtolower and then to ucfirst, producing (as weve
already seen when we played with the functions separately):

Any # of letters and punctuation you want

Now let’s define a function (shown in Example 5-2) that takes three names and makes
each one lowercase, with an initial capital letter.

Example 5-2. Cleaning up a full name

<?php
echo fix_names("WILLIAM", "henry", "gatES");

function fix_names($n1, $n2, $n3)

{
$n1l = ucfirst(strtolower(Sn1));

$n2 = ucfirst(strtolower($n2));

$n3 = ucfirst(strtolower(Sn3));

return $n1 . " " . %$n2 . " " . $n3;
}

7>

You may well find yourself writing this type of code, because users often leave their
Caps Lock key on, accidentally insert capital letters in the wrong places, and even for-
get capitals altogether. The output from this example is shown here:

William Henry Gates

Returning an Array

We just saw a function returning a single value. There are also ways of getting multi-
ple values from a function.

The first method is to return them within an array. As you saw in Chapter 3, an array
is like a bunch of variables stuck together in a row. Example 5-3 shows how you can
use an array to return function values.

PHP Functions | 99

Example 5-3. Returning multiple values in an array

<?php
$names = fix_names("WILLIAM", "henry", "gatES");
echo $names[0] . " " . $Snames[1] . " " . Snames[2];

function fix_names($n1, $n2, $n3)

{
$n1 = ucfirst(strtolower($n1));
$n2 = ucfirst(strtolower($n2));
$n3 = ucfirst(strtolower($n3));

return array($ni, $n2, $n3);
}

7>

This method has the benefit of keeping all three names separate, rather than concate-
nating them into a single string, so you can refer to any user simply by first or last
name without having to extract either name from the returned string.

Passing Arguments by Reference

In PHP versions prior to 5.3, you used to be able to preface a variable with the &
symbol at the time of calling a function (for example, increment(&Smyvar);) to tell
the parser to pass a reference to the variable, not the variable’s value. This granted a
function access to the variable (allowing different values to be written back to it).

Call-time pass-by-reference was deprecated in PHP 5.3 and
removed in PHP 5.4. You should therefore not use this feature
other than on legacy websites, and even there you are recom-

\ mended to rewrite code that passes by reference, because it will halt
with a fatal error on newer versions of PHP.

However, within a function definition, you may continue to access arguments by ref-
erence. This concept can be hard to get your head around, so let’s go back to the
matchbox metaphor from Chapter 3.

Imagine that, instead of taking a piece of paper out of a matchbox, reading it, copying
what’s on it onto another piece of paper, putting the original back, and passing the
copy to a function (phew!), you could simply attach a piece of thread to the original
piece of paper and pass one end of it to the function (see Figure 5-2).

100 | Chapter5: PHP Functions and Objects

function(')

{
//Code...

Figure 5-2. Imagining a reference as a thread attached to a variable

Now the function can follow the thread to find the data to be accessed. This avoids all
the overhead of creating a copy of the variable just for the function’s use. What’s
more, the function can now modify the variable’s value.

This means you can rewrite Example 5-3 to pass references to all the parameters, and
then the function can modify these directly (see Example 5-4).

Example 5-4. Passing values to a function by reference

<?php
$al = "WILLIAM";
$a2 = "henry";
$a3 = "gatES";
echo $a1 . " " . %a2 . " " . $a3 . "
";
fix_names($al, $a2, $a3);
echo $a1 . " " . %32 . " " . $a3;

function fix_names(&$n1, &$n2, &Sn3)

{
$n1 = ucfirst(strtolower($n1));
$n2 = ucfirst(strtolower($n2));
$n3 = ucfirst(strtolower($n3));
}
7>

Rather than passing strings directly to the function, you first assign them to variables
and print them out to see their “before” values. Then you call the function as before,
but within the function definition you place a & symbol in front of each parameter to
be passed by reference.

PHP Functions | 101

Now the variables $n1, $n2, and $n3 are attached to “threads” that lead to the values of
$al, $a2, and $a3. In other words, there is one group of values, but two sets of vari-
able names are allowed to access them.

Therefore, the function fix_names only has to assign new values to $n1, $n2, and $n3
to update the values of $a1, $a2, and $a3. The output from this code is:

WILLIAM henry gatES
William Henry Gates

As you see, both of the echo statements use only the values of $a1, $a2, and $a3.

Returning Global Variables

The better way to give a function access to an externally created variable is by declar-
ing it to have global access from within the function. The global keyword followed
by the variable name gives every part of your code full access to it (see Example 5-5).

Example 5-5. Returning values in global variables

<?php
$al = "WILLIAM";
$a2 = "henry";
$a3 = "gatES";
echo $a1 . " " . %a2 . " " . $Sa3 . "
";
fix_names();
echo $a1 . " " . %32 . " " . $a3;

function fix_names()
{
global $a1; $al
global $a2; $a2
global $a3; $a3
}

7>

ucfirst(strtolower($al));
ucfirst(strtolower($a2));
ucfirst(strtolower($a3));

Now you don’t have to pass parameters to the function, and it doesn’t have to accept
them. Once declared, these variables retain global access and are available to the rest
of your program, including its functions.

Recap of Variable Scope
A quick reminder of what you know from Chapter 3:

o Local variables are accessible just from the part of your code where you define
them. If they’re outside of a function, they can be accessed by all code outside of

102 | Chapter5: PHP Functions and Objects

functions, classes, and so on. If a variable is inside a function, only that function
can access the variable, and its value is lost when the function returns.

o Global variables are accessible from all parts of your code.

o Static variables are accessible only within the function that declared them but
retain their value over multiple calls.

Including and Requiring Files

As you progress in your use of PHP programming, you are likely to start building a
library of functions that you think you will need again. You’ll also probably start
using libraries created by other programmers.

There’s no need to copy and paste these functions into your code. You can save them
in separate files and use commands to pull them in. There are two commands to per-
form this action: include and require.

The include Statement

Using include, you can tell PHP to fetch a particular file and load all its contents. It’s
as if you pasted the included file into the current file at the insertion point.
Example 5-6 shows how you would include a file called library.php.

Example 5-6. Including a PHP file

<?php
include "library.php";

// Your code goes here
7>

Using include_once

Each time you issue the include directive, it includes the requested file again, even if
you've already inserted it. For instance, suppose that library.php contains a lot of use-
ful functions, so you include it in your file, but you also include another library that
includes library.php. Through nesting, you've inadvertently included Iibrary.php
twice. This will produce error messages, because you're trying to define the same con-
stant or function multiple times. So, you should use include_once instead (see
Example 5-7).

Including and Requiring Files | 103

Example 5-7. Including a PHP file only once

<?php
include_once "library.php";

// Your code goes here
?>

Then, any further attempts to include the same file (with include or include_once)
will be ignored. To determine whether the requested file has already been executed,
the absolute file path is matched after all relative paths are resolved and the file is
found in your include path.

In general, it's probably best to stick with include_once and ignore
the basic include statement. That way, you will never have the
problem of files being included multiple times.

Using require and require_once

A potential problem with include and include_once is that PHP will only attempt to
include the requested file. Program execution continues even if the file is not found.

When it is absolutely essential to include a file, require it. For the same reasons I
gave for using 1include_once, I recommend that you generally stick with
require_once whenever you need to require a file (see Example 5-8).

Example 5-8. Requiring a PHP file only once

<?php
require_once "library.php";

// Your code goes here
?>

PHP Version Compatibility

PHP is in an ongoing process of development, and there are multiple versions. If you
need to check whether a particular function is available to your code, you can use the
function_exists function, which checks all predefined and user-created functions.

Example 5-9 checks for array_combine, a function specific to only some versions of
PHP.

104 | Chapter5: PHP Functions and Objects

Example 5-9. Checking for a function’s existence

<?php
if (function_exists("array_combine"))

{

echo "Function exists";

}

else

{

echo "Function does not exist - better write our own";

}

7>

Using code such as this, you can take advantage of features in newer versions of PHP
and yet still have your code run on earlier versions, as long as you replicate any fea-
tures that are missing. Your functions may be slower than the built-in ones, but at
least your code will be much more portable.

You can also use the phpversion function to determine which version of PHP your
code is running on. The returned result will be similar to the following, depending on
the version:

5.5.38

PHP Objects

In much the same way that functions represent a huge increase in programming
power over the early days of computing, where sometimes the best program naviga-
tion available was a very basic GOTO or GOSUB statement, object-oriented programming
(OOP) takes the use of functions to a whole new level.

Once you get the hang of condensing reusable bits of code into functions, it’s not that
great a leap to consider bundling the functions and their data into objects.

Let’s take a social networking site that has many parts. One handles all user functions
—that is, code to enable new users to sign up and existing users to modify their
details. In standard PHP, you might create a few functions to handle this and embed
some calls to the MySQL database to keep track of all the users.

Imagine how much easier it would be to create an object to represent the current user.
To do this, you could create a class, perhaps called User, that would contain all the
code required for handling users and all the variables needed for manipulating the
data within the class. Then, whenever you need to manipulate a user’s data, you could
simply create a new object with the User class.

You could treat this new object as if it were the actual user. For example, you could
pass the object a name, password, and email address; ask it whether such a user
already exists; and, if not, have it create a new user with those attributes. You could

PHP Objects | 105

even have an instant messaging object, or one for managing whether two users are
friends.

Terminology

When creating a program to use objects, you need to design a composite of data and
code called a class. Each new object based on this class is called an instance (or occur-
rence) of that class.

The data associated with an object is called its properties; the functions it uses are
called methods. In defining a class, you supply the names of its properties and the
code for its methods. See Figure 5-3 for a jukebox metaphor for an object. Think of
the CDs that it holds in the carousel as its properties; the method of playing them is
to press buttons on the front panel. There is also a slot for inserting coins (the
method used to activate the object), and the laser disc reader (the method used to
retrieve the music, or properties, from the CDs).

Figure 5-3. A jukebox: a great example of a self-contained object

When you're creating objects, it is best to use encapsulation, or writing a class in such
a way that only its methods can be used to manipulate its properties. In other words,

106 | Chapter5: PHP Functions and Objects

you deny outside code direct access to its data. The methods you supply are known as
the object’s interface.

This approach makes debugging easy: you have to fix faulty code only within a class.
Additionally, when you want to upgrade a program, if you have used proper encapsu-
lation and maintained the same interface, you can simply develop new replacement
classes, debug them fully, and then swap them in for the old ones. If they don't work,
you can swap the old ones back in to immediately fix the problem before further
debugging the new classes.

Once you have created a class, you may find that you need another class that is simi-
lar to it but not quite the same. The quick and easy thing to do is to define a new class
using inheritance. When you do this, your new class has all the properties of the one
it has inherited from. The original class is now called the superclass, and the new one
is the subclass (or derived class).

In our jukebox example, if you invent a new jukebox that can play a video along with
the music, you can inherit all the properties and methods from the original jukebox
superclass and add some new properties (videos) and new methods (a movie player).

An excellent benefit of this system is that if you improve the speed or any other aspect
of the superclass, its subclasses will receive the same benefit.

Declaring a Class

Before you can use an object, you must define a class with the class keyword. Class
definitions contain the class name (which is case-sensitive), its properties, and its
methods. Example 5-10 defines the class User with two properties, which are $name
and $password (indicated by the public keyword—see “Property and Method Scope”
on page 114). It also creates a new instance (called $object) of this class.

Example 5-10. Declaring a class and examining an object

<?php
Sobject = new User;
print_r($object);

class User

{

public $name, $password;

function save_user()
{
echo "Save User code goes here";
}
}

7>

PHP Objects | 107

Here I have also used an invaluable function called print_r. It asks PHP to display
information about a variable in human-readable form. (The _r stands for human-
readable.) In the case of the new object $object, it displays the following:

User Object
(

[name] =>
[password] =>

)

However, a browser compresses all the whitespace, so the output in a browser is
slightly harder to read:

User Object ([name] => [password] =>)

In any case, the output says that $object is a user-defined object that has the proper-
ties name and password.

Creating an Object

To create an object with a specified class, use the new keyword, like this: Sobject =
new Class. Here are a couple of ways in which we could do this:

Sobject = new User;
Stemp = new User('name', 'password');

On the first line, we simply assign an object to the User class. In the second, we pass
parameters to the call.

A class may require or prohibit arguments; it may also allow arguments without

explicitly requiring them.

Accessing Objects
Let’s add a few lines to Example 5-10 and check the results. Example 5-11 extends the

previous code by setting object properties and calling a method.
Example 5-11. Creating and interacting with an object
<?php

Sobject = new User;

print_r(Sobject); echo "
";

Sobject->name = "Joe";

Sobject->password = "mypass";

print_r(Sobject); echo "
";

Sobject->save_user();

class User

108 | Chapter5: PHP Functions and Objects

{

public $name, $password;

function save_user()

{

echo "Save User code goes here";

}
3

7>

As you can see, the syntax for accessing an object’s property is Sobject->property.
Likewise, you call a method like this: Sobject->method().

You should note that the example property and method do not have $ signs in front
of them. If you were to preface them with $ signs, the code would not work, as it
would try to reference the value inside a variable. For example, the expression
$object->$property would attempt to look up the value assigned to a variable
named $property (lets say that value is the string brown) and then attempt to refer-
ence the property Sobject->brown. If $property is undefined, an attempt to refer-
ence $object->NULL would occur and cause an error.

When looked at using a browser’s View Source facility, the output from Example 5-11
is as follows:

User Object
(

[name] =>
[password] =>

)
User Object

(
[name] => Joe
[password] => mypass

)

Save User code goes here
Again, print_r shows its utility by providing the contents of $object before and
after property assignment. From now on, I'll omit print_r statements, but if you are
working along with this book on your development server, you can put some in to see
exactly what is happening.

You can also see that the code in the method save_user was executed via the call to
that method. It printed the string reminding us to create some code.

You can place functions and class definitions anywhere in your
code, before or after statements that use them. Generally, though, it
is considered good practice to place them toward the end of a file.

PHP Objects | 109

Cloning Objects

Once you have created an object, it is passed by reference when you pass it as a
parameter. In the matchbox metaphor, this is like keeping several threads attached to
an object stored in a matchbox, so that you can follow any attached thread to access
it.

In other words, making object assignments does not copy objects in their entirety.
You'll see how this works in Example 5-12, where we define a very simple User class
with no methods and only the property name.

Example 5-12. Copying an object?

<?php
Sobjectl = new User();
$objectl->name = "Alice";
Sobject2 = Sobjectl;
$Sobject2->name = "Amy";

. Sobjectl->name . "
";
. Sobject2->name;

echo "objectl name
echo "object2 name

class User

{

public $name;

}

7>

Here, we first create the object $object1 and assign the value Alice to the name prop-
erty. Then we create Sobject2, assigning it the value of $objectl, and assign the
value Amy just to the name property of $object2—or so we might think. But this code
outputs the following:

objectl name = Amy

object2 name = Amy
What has happened? Both $objectl and $object2 refer to the same object, so chang-
ing the name property of $object2 to Amy also sets that property for $object1.

To avoid this confusion, you can use the clone operator, which creates a new instance
of the class and copies the property values from the original instance to the new
instance. Example 5-13 illustrates this usage.

Example 5-13. Cloning an object

<?php
$Sobject1 = new User();
Sobjectl->name = "Alice";

110 | Chapter5: PHP Functions and Objects

Sobject2 = clone $objectil;
Sobject2->name = "Amy";
echo "objectl name = " . Sobjectl->name . "
";

echo "object2 name . $Sobject2->name;

class User

{

public $name;

3

7>

Voila! The output from this code is what we initially wanted:

Alice
Amy

objectl name
object2 name

Constructors

When creating a new object, you can pass a list of arguments to the class being called.
These are passed to a special method within the class, called the constructor, which
initializes various properties.

To do this you use the function name __construct (that is, construct preceded by
two underscore characters), as in Example 5-14.

Example 5-14. Creating a constructor method

<?php
class User
{
function __construct($parami, $param2)
{
// Constructor statements go here
public Susername = "Guest";
}
}
7>
Destructors

You also have the ability to create destructor methods. This ability is useful when code
has made the last reference to an object or when a script reaches the end.
Example 5-15 shows how to create a destructor method. The destructor can do clean-
up such as releasing a connection to a database or some other resource that you
reserved within the class. Because you reserved the resource within the class, you
have to release it here, or it will stick around indefinitely. Many system-wide prob-
lems are caused by programs reserving resources and forgetting to release them.

PHP Objects | 111

Example 5-15. Creating a destructor method

<?php
class User
{
function __destruct()
{
// Destructor code goes here
}
}
7>

Writing Methods

As you have seen, declaring a method is similar to declaring a function, but there are
a few differences. For example, method names beginning with a double underscore
(__) are reserved, and you should not create any of this form.

You also have access to a special variable called $this, which can be used to access the
current object’s properties. To see how it works, take a look at Example 5-16, which
contains a different method from the User class definition called get_password.

Example 5-16. Using the variable $this in a method

<?php
class User

{

public $name, $password;

function get_password()

{

return $this->password;
}
}

7>

get_password uses the $this variable to access the current object and then return the
value of that object’s password property. Note how the preceding $ of the property
$password is omitted when we use the -> operator. Leaving the $ in place is a typical
error you may run into, particularly when you first use this feature.

Here’s how you would use the class defined in Example 5-16:

Sobject new User;
Sobject->password = "secret";

echo $Sobject->get_password();

This code prints the password secret.

112 | Chapter5: PHP Functions and Objects

Declaring Properties

It is not necessary to explicitly declare properties within classes, as they can be
implicitly defined when first used. To illustrate this, in Example 5-17 the class User
has no properties and no methods but is legal code.

Example 5-17. Defining a property implicitly

<?php
$Sobject1 = new User();
Sobjectl->name = "Alice";

echo $objectl->name;

class User {}
7>

This code correctly outputs the string Alice without a problem, because PHP implic-
itly declares the property $Sobject1->name for you. But this kind of programming can
lead to bugs that are infuriatingly difficult to discover, because name was declared
from outside the class.

To help yourself and anyone else who will maintain your code, I advise that you get
into the habit of always declaring your properties explicitly within classes. You'll be

glad you did.

Also, when you declare a property within a class, you may assign a default value to it.
The value you use must be a constant and not the result of a function or expression.
Example 5-18 shows a few valid and invalid assignments.

Example 5-18. Valid and invalid property declarations

<?php
class Test
{
public $name = "Paul Smith"; // valid
public $Sage = 42; // Valid
public Stime = time(); // Invalid - calls a function

public $score = Slevel * 2; // Invalid - uses an expression

}

?>

Declaring Constants

In the same way that you can create a global constant with the define function, you
can define constants inside classes. The generally accepted practice is to use upper-
case letters to make them stand out, as in Example 5-19.

PHP Objects | 113

Example 5-19. Defining constants within a class

<?php
Translate: :lookup();

class Translate
{
const ENGLISH
const SPANISH
const FRENCH
const GERMAN

/...

w N R o
e we

we

static function lookup()

{
echo self::SPANISH;

}
}

7>

You can reference constants directly, using the self keyword and double colon oper-
ator. Note that this code calls the class directly, using the double colon operator at line
1, without creating an instance of it first. As you would expect, the value printed
when you run this code is 1.

Remember that once you define a constant, you can't change it.

Property and Method Scope

PHP provides three keywords for controlling the scope of properties and methods
(members):

public
Public members can be referenced anywhere, including by other classes and
instances of the object. This is the default when variables are declared with the
var or public keywords, or when a variable is implicitly declared the first time it
is used. The keywords var and public are interchangeable because, although
deprecated, var is retained for compatibility with previous versions of PHP.
Methods are assumed to be public by default.

protected
These members can be referenced only by the object’s class methods and those of
any subclasses.

private
These members can be referenced only by methods within the same class—not
by subclasses.

114 | Chapter5: PHP Functions and Objects

Here’s how to decide which you need to use:
o Use public when outside code should access this member and extending classes
should also inherit it.

+ Use protected when outside code should not access this member but extending
classes should inherit it.

« Use private when outside code should not access this member and extending
classes also should not inherit it.

Example 5-20 illustrates the use of these keywords.

Example 5-20. Changing property and method scope

<?php
class Example
{
var $name = "Michael"; // Same as public but deprecated
public $age = 23; // Public property

protected Susercount; // Protected property

private function admin() // Private method

{

// Admin code goes here
}
}

7>

Static Methods

You can define a method as static, which means that it is called on a class, not on an
object. A static method has no access to any object properties and is created and
accessed as in Example 5-21.

Example 5-21. Creating and accessing a static method

<?php
User::pwd_string();

class User

{

static function pwd_string()
{
echo "Please enter your password";
}
}

7>

PHP Objects | 115

Note how we call the class itself, along with the static method, using a double colon
(also known as the scope resolution operator), not ->. Static functions are useful for
performing actions relating to the class itself, but not to specific instances of the class.
You can see another example of a static method in Example 5-19.

If you try to access $this->property, or other object properties
from within a static function, you will receive an error message.

Static Properties

Most data and methods apply to instances of a class. For example, in a User class, you
want to do such things as set a particular user’s password or check when the user has
been registered. These facts and operations apply separately to each user and there-
fore use instance-specific properties and methods.

But occasionally you’ll want to maintain data about a whole class. For instance, to
report how many users are registered, you will store a variable that applies to the
whole User class. PHP provides static properties and methods for such data.

As shown briefly in Example 5-21, declaring members of a class static makes them
accessible without an instantiation of the class. A property declared static cannot be
directly accessed within an instance of a class, but a static method can.

Example 5-22 defines a class called Test with a static property and a public method.

Example 5-22. Defining a class with a static property

<?php
Stemp = new Test();

echo "Test A: " . Test::$static_property . "
";
echo "Test B: " . $temp->get_sp() .
";
echo "Test C: " . $temp->static_property . "
";
class Test
{

static S$static_property = "I'm static";

function get_sp()
{

}
3

7>

return self::$static_property;

116 | Chapter5: PHP Functions and Objects

When you run this code, it returns the following output:

Test A: I'm static
Test B: I'm static

Notice: Undefined property: Test::$static_property

Test C:
This example shows that the property $static_property could be directly referenced
from the class itself via the double colon operator in Test A. Also, Test B could obtain
its value by calling the get_sp method of the object Stemp, created from class Test.
But Test C failed, because the static property $static_property was not accessible to
the object $temp.

Note how the method get_sp accesses $static_property using the keyword self.
This is how a static property or constant can be directly accessed within a class.

Inheritance

Once you have written a class, you can derive subclasses from it. This can save lots of
painstaking code rewriting: you can take a class similar to the one you need to write,
extend it to a subclass, and just modify the parts that are different. You achieve this
using the extends keyword.

In Example 5-23, the class Subscriber is declared a subclass of User by means of the
extends keyword.

Example 5-23. Inheriting and extending a class

<?php
Sobject = new Subscriber;
$object->name = "Fred";
Sobject->password = "pword";
$object->phone = "012 345 6789";
Sobject->email = "fred@bloggs.com";

$object->display();

class User

{

public $name, $password;

function save_user()

{

echo "Save User code goes here";
}
}

class Subscriber extends User

{

PHP Objects | 117

public $phone, $email;

function display()

{
echo "Name: " . Sthis->name . "
";
echo "Pass: " . Sthis->password . "
";
echo "Phone: " . Sthis->phone . "
";

echo "Email: . Sthis->email;

}
3

7>

The original User class has two properties, $name and $password, and a method to
save the current user to the database. Subscriber extends this class by adding an
additional two properties, $phone and $ematil, and includes a method of displaying
the properties of the current object using the variable $this, which refers to the cur-
rent values of the object being accessed. The output from this code is as follows:

Name: Fred

Pass: pword

Phone: 012 345 6789
Email: fred@bloggs.com

The parent keyword

If you write a method in a subclass with the same name as one in its parent class, its
statements will override those of the parent class. Sometimes this is not the behavior
you want, and you need to access the parent’s method. To do this, you can use the
parent operator, as in Example 5-24.

Example 5-24. Overriding a method and using the parent operator

<?php
Sobject = new Son;
$object->test();
Sobject->test2();

class Dad

{

function test()

{

echo "[Class Dad] I am your Father
";
}
}

class Son extends Dad

{

function test()

{

echo "[Class Son] I am Luke
";

118 | Chapter5: PHP Functions and Objects

}

function test2()

{
parent::test();

}
}

7>

This code creates a class called Dad and a subclass called Son that inherits its proper-
ties and methods, and then overrides the method test. Therefore, when line 2 calls
the method test, the new method is executed. The only way to execute the overrid-
den test method in the Dad class is to use the parent operator, as shown in function
test2 of class Son. The code outputs the following:

[Class Son] I am Luke

[Class Dad] I am your Father
If you wish to ensure that your code calls a method from the current class, you can
use the self keyword, like this:

self::method();

Subdlass constructors

When you extend a class and declare your own constructor, you should be aware that
PHP will not automatically call the constructor method of the parent class. If you
want to be certain that all initialization code is executed, subclasses should always call
the parent constructors, as in Example 5-25.

Example 5-25. Calling the parent class constructor

<?php
$object = new Tiger();

echo "Tigers have...
";
echo "Fur: " . $Sobject->fur . "
";
echo "Stripes: " . $object->stripes;

class Wildcat

{
public $fur; // Wildcats have fur

function __construct()

{
Sthis->fur = "TRUE";

}
}

class Tiger extends Wildcat

PHP Objects | 119

{

public $stripes; // Tigers have stripes

function __construct()

{

parent::__construct(); // Call parent constructor first

Sthis->stripes = "TRUE";
}
}

?>

This example takes advantage of inheritance in the typical manner. The Wildcat class
has created the property $fur, which wed like to reuse, so we create the Tiger class to
inherit $fur and additionally create another property, $stripes. To verify that both
constructors have been called, the program outputs the following:

Tigers have...
Fur: TRUE
Stripes: TRUE

Final methods

When you wish to prevent a subclass from overriding a superclass method, you can
use the final keyword. Example 5-26 shows how.

Example 5-26. Creating a final method

<?php
class User

{
final function copyright()

{

echo "This class was written by Joe Smith";
}
}

7>

Once you have digested the contents of this chapter, you should have a strong feel for
what PHP can do for you. You should be able to use functions with ease and, if you
wish, write object-oriented code. In Chapter 6, we'll finish off our initial exploration
of PHP by looking at the workings of PHP arrays.

Questions

1. What is the main benefit of using a function?
2. How many values can a function return?

3. What is the difference between accessing a variable by name and by reference?

120 | Chapter5: PHP Functions and Objects

What is the meaning of scope in PHP?

How can you incorporate one PHP file within another?
How is an object different from a function?

How do you create a new object in PHP?

What syntax would you use to create a subclass from an existing one?

¥ ® N N

How can you cause an object to be initialized when you create it?

10. Why is it a good idea to explicitly declare properties within a class?

See “Chapter 5 Answers” on page 716 in Appendix A for the answers to these
questions.

Questions | 121

CHAPTER 6
PHP Arrays

In Chapter 3, I gave a very brief introduction to PHP’s arrays—just enough for a little
taste of their power. In this chapter, I'll show you many more things that you can do
with arrays, some of which—if you have ever used a strongly typed language such as
C—may surprise you with their elegance and simplicity.

Arrays are an example of what has made PHP so popular. Not only do they remove
the tedium of writing code to deal with complicated data structures, but they also
provide numerous ways to access data while remaining amazingly fast.

Basic Access

We've already looked at arrays as if they were clusters of matchboxes glued together.
Another way to think of an array is like a string of beads, with the beads representing
variables that can be numbers, strings, or even other arrays. They are like bead strings
because each element has its own location and (with the exception of the first and last
ones) each has other elements on either side.

Some arrays are referenced by numeric indexes; others allow alphanumeric identifi-
ers. Built-in functions let you sort them, add or remove sections, and walk through
them to handle each item through a special kind of loop. And by placing one or more
arrays inside another, you can create arrays of two, three, or any number of dimen-
sions.

Numerically Indexed Arrays

Let’s assume that you've been tasked with creating a simple website for a local office
supply company and you're currently working on the section devoted to paper. One
way to manage the various items of stock in this category would be to place them in a
numeric array. You can see the simplest way of doing so in Example 6-1.

123

Example 6-1. Adding items to an array

<?php
$paper[] = "Copier";
Spaper[] = "Inkjet";
$paper[] = "Laser";
$paper[] = "Photo";

print_r(Spaper);

7>

In this example, each time you assign a value to the array $paper, the first empty
location within that array is used to store the value, and a pointer internal to PHP is
incremented to point to the next free location, ready for future insertions. The famil-
iar print_r function (which prints out the contents of a variable, array, or object) is
used to verify that the array has been correctly populated. It prints out the following:

Array

([0] => Copier
[1] => Inkjet
[2] => Laser
[3] => Photo
)
The previous code could also have been written as shown in Example 6-2, where the
exact location of each item within the array is specified. But, as you can see, that
approach requires extra typing and makes your code harder to maintain if you want
to insert supplies into or remove them from the array. So, unless you wish to specify a
different order, it’s usually better to simply let PHP handle the actual location num-
bers.

Example 6-2. Adding items to an array using explicit locations

<?php
$Spaper[0] = "Copier";
Spaper[1] = "Inkjet";
$Spaper[2] = "Laser";
$paper[3] = "Photo";

print_r(Spaper);

?>

The output from these examples is identical, but you are not likely to use print_rina
developed website, so Example 6-3 shows how you might print out the various types
of paper the website offers using a for loop.

124 | Chapter6: PHP Arrays

Example 6-3. Adding items to an array and retrieving them

<?php
$paper[] = "Copier";
Spaper[] = "Inkjet";
$paper[] = "Laser";
$paper[] = "Photo";

for (8§ =0 ; $j <4 ; ++%3)
echo "$j: $paper[$jl
";

7>

This example prints out the following:

Copier
Inkjet
Laser
Photo

W NReR O
oo se s e

So far, you've seen a couple of ways in which you can add items to an array and one
way of referencing them. PHP offers many more, which I'll get to shortly. But first,
we'll look at another type of array.

Associative Arrays

Keeping track of array elements by index works just fine, but can require extra work
in terms of remembering which number refers to which product. It can also make
code hard for other programmers to follow.

This is where associative arrays come into their own. Using them, you can reference
the items in an array by name rather than by number. Example 6-4 expands on the
previous code by giving each element in the array an identifying name and a longer,
more explanatory string value.

Example 6-4. Adding items to an associative array and retrieving them

<?php
Spaper['copier'] = "Copier & Multipurpose";
Spaper['inkjet'] = "Inkjet Printer";
Spaper['laser'] = "Laser Printer";
Spaper['photo'] = "Photographic Paper";

echo S$paper['laser'];
7>

In place of a number (which doesn’t convey any useful information, aside from the
position of the item in the array), each item now has a unique name that you can use
to reference it elsewhere, as with the echo statement—which simply prints out Laser

BasicAccess | 125

Printer. The names (copier, inkjet, and so on) are called indexes or keys, and the
items assigned to them (such as Laser Printer) are called values.

This very powerful feature of PHP is often used when you are extracting information
from XML and HTML. For example, an HTML parser such as those used by a search
engine could place all the elements of a web page into an associative array whose
names reflect the page’s structure:

shtml['title'] = "My web page";
Shtml['body'] = "... body of web page ...";

The program would also probably break down all the links found within a page into
another array, and all the headings and subheadings into another. When you use
associative rather than numeric arrays, the code to refer to all of these items is easy to
write and debug.

Assignment Using the array Keyword

So far, you've seen how to assign values to arrays by just adding new items one at a
time. Whether you specify keys, specify numeric identifiers, or let PHP assign
numeric identifiers implicitly, this is a long-winded approach. A more compact and
faster assignment method uses the array keyword. Example 6-5 shows both a
numeric and an associative array assigned using this method.

Example 6-5. Adding items to an array using the array keyword

<?php
$pl = array("Copier", "Inkjet", "Laser", "Photo");

echo "pl element: " . $p1[2] . "
";

S$p2 = array('copier' => "Copier & Multipurpose",
'inkjet' => "Inkjet Printer",
'laser' => "Laser Printer",
'photo' => "Photographic Paper");

echo "p2 element: " . $p2['inkjet'] . "
";
?>

The first half of this snippet assigns the old, shortened product descriptions to the
array $p1. There are four items, so they will occupy slots 0 through 3. Therefore, the
echo statement prints out the following:

pl element: Laser

The second half assigns associative identifiers and accompanying longer product
descriptions to the array $p2 using the format key => value. The use of => is similar
to the regular = assignment operator, except that you are assigning a value to an index

126 | Chapter 6: PHP Arrays

and not to a variable. The index is then inextricably linked with that value, unless it is
assigned a new value. The echo command therefore prints out this:

p2 element: Inkjet Printer

You can verify that $p1 and $p2 are different types of array, because both of the fol-
lowing commands, when appended to the code, will cause an Undefined index or
Undefined offset error, as the array identifier for each is incorrect:

echo $p1['inkjet']; // Undefined index
echo $p2[3]; // Undefined offset

The foreach...as Loop

The creators of PHP have gone to great lengths to make the language easy to use. So,
not content with the loop structures already provided, they added another one espe-
cially for arrays: the foreach. . .as loop. Using it, you can step through all the items
in an array, one at a time, and do something with them.

The process starts with the first item and ends with the last one, so you don’t even
have to know how many items there are in an array. Example 6-6 shows how
foreach...as can be used to rewrite Example 6-3.

Example 6-6. Walking through a numeric array using foreach...as

<?php
Spaper = array("Copier", "Inkjet", "Laser", "Photo");
$j =0;
foreach($paper as $item)
{
echo "$j: $item
";
++53;
}
7>

When PHP encounters a foreach statement, it takes the first item of the array and
places it in the variable following the as keyword; and each time control flow returns
to the foreach, the next array element is placed in the as keyword. In this case, the
variable $item is set to each of the four values in turn in the array $paper. Once all
values have been used, execution of the loop ends. The output from this code is
exactly the same as in Example 6-3.

Now let’s see how foreach works with an associative array by taking a look at
Example 6-7, which is a rewrite of the second half of Example 6-5.

The foreach...asLoop | 127

Example 6-7. Walking through an associative array using foreach...as

<?php
$paper = array('copier' => "Copier & Multipurpose",
'inkjet' => "Inkjet Printer",
'laser' => "Laser Printer",
'photo' => "Photographic Paper");

foreach(Spaper as $item => $description)
echo "$item: $description
";
7>

Remember that associative arrays do not require numeric indexes, so the variable $j
is not used in this example. Instead, each item of the array $paper is fed into the key/
value pair of variables $item and $description, from which they are printed out.

The displayed result of this code is as follows:

copier: Copier & Multipurpose
inkjet: Inkjet Printer

laser: Laser Printer

photo: Photographic Paper

Prior to version 7.2 of PHP, as an alternative syntax to foreach...as, you could use
the list function in conjunction with the each function. However, each was then
deprecated and therefore is not recommended for use because it may be removed in a
future version. This is a bit of a nightmare for PHP programmers with legacy code to
update, especially as the each function is extremely useful. Therefore, I have written a
replacement for each called myEach, which works identically and will allow you to

easily update old code, as in Example 6-8.

Example 6-8. Walking through an associative array using myEach and list

<?php
Spaper = array('copier' => "Copier & Multipurpose",
'inkjet' => "Inkjet Printer",
'laser' => "Laser Printer",
'photo' => "Photographic Paper");

while (list($item, $description) = myEach(Spaper))
echo "$item: $description
";

function myEach(&S$array) // Replacement for the deprecated each function

{

$key key($array);
$result = (Skey === null) ? false :

[$key, current($array), 'key', 'value' => current($array)];

next($array);
return $result;

128 | Chapter 6: PHP Arrays

3

7>

In this example, a while loop is set up and will continue looping until the myEach
function (equivalent to the old PHP each function) returns a value of FALSE. The
myEach function acts like foreach in that it returns an array containing a key/value
pair from the array $paper and then moves its built-in pointer to the next pair in that
array. When there are no more pairs to return, myEach returns FALSE.

The list function takes an array as its argument (in this case, the key/value pair
returned by the function myEach) and then assigns the values of the array to the vari-
ables listed within parentheses.

You can see how list works a little more clearly in Example 6-9, where an array is
created out of the two strings Alice and Bob and then passed to the list function,
which assigns those strings as values to the variables $a and $b.

Example 6-9. Using the list function

<?php
1ist($Sa, $b) = array('Alice', 'Bob');
echo "a=$a b=$b";

7>

The output from this code is as follows:
a=Alice b=Bob

So, you can take your pick when walking through arrays. Use foreach. . .as to create
a loop that extracts values to the variable following the as, or use the myEach function
and create your own looping system.

Multidimensional Arrays

A simple design feature in PHP’s array syntax makes it possible to create arrays of
more than one dimension. In fact, they can be as many dimensions as you like
(although it’s a rare application that goes further than three).

That feature is the ability to include an entire array as a part of another one, and to be
able to keep doing so, just like the old rhyme: “Big fleas have little fleas upon their
backs to bite em. Little fleas have lesser fleas, add flea, ad infinitum.”

Let’s look at how this works by taking the associative array in the previous example
and extending it; see Example 6-10.

Multidimensional Arrays | 129

Example 6-10. Creating a multidimensional associative array

<?php
$products = array(

'paper' => array(
'copier' => "Copier & Multipurpose",
'inkjet' => "Inkjet Printer",
'laser' => "Laser Printer",
'photo' => "Photographic Paper"),
'pens' => array(
'ball’ => "Ball Point",
'hilite' => "Highlighters",

'marker' => "Markers"),

'misc' => array(

'tape' => "Sticky Tape",
'glue’ => "Adhesives",
'clips' => "Paperclips"

)
);

echo "<pre>";

foreach(Sproducts as S$section => $items)
foreach($items as $key => Svalue)
echo "$section:\tSkey\t($value)
";

echo "</pre>";
7>

To make things clearer now that the code is starting to grow, I've renamed some of
the elements. For example, because the previous array $paper is now just a subsection
of a larger array, the main array is now called $products. Within this array, there are
three items—paper, pens, and misc—each of which contains another array with key/
value pairs.

If necessary, these subarrays could have contained even further arrays. For example,
under ball there might be many different types and colors of ballpoint pens available
in the online store. But for now, I've restricted the code to a depth of just two.

Once the array data has been assigned, I use a pair of nested foreach. . .as loops to
print out the various values. The outer loop extracts the main sections from the top
level of the array, and the inner loop extracts the key/value pairs for the categories
within each section.

130 | Chapter6: PHP Arrays

As long as you remember that each level of the array works the same way (it’s a key/
value pair), you can easily write code to access any element at any level.

The echo statement makes use of the PHP escape character \t, which outputs a tab.
Although tabs are not normally significant to the web browser, I let them be used for
layout by using the <pre>...</pre> tags, which tell the web browser to format the
text as preformatted and monospaced, and nof to ignore whitespace characters such
as tabs and line feeds. The output from this code looks like the following:

paper: copier (Copier & Multipurpose)
paper: 1inkjet (Inkjet Printer)

paper: laser (Laser Printer)

paper: photo (Photographic Paper)
pens: ball (Ball Point)

pens: hilite (Highlighters)

pens: marker (Markers)

misc: tape (Sticky Tape)

misc: glue (Adhesives)

misc: clips (Paperclips)

You can directly access a particular element of the array by using square brackets:
echo $products['misc']['glue'];
This outputs the value Adhesives.

You can also create numeric multidimensional arrays that are accessed directly by
indexes rather than by alphanumeric identifiers. Example 6-11 creates the board for a
chess game with the pieces in their starting positions.

Example 6-11. Creating a multidimensional numeric array

<?php
Schessboard = array(

array('r', 'n', 'b', 'q', 'k', 'b', 'n', 'r'),
array('p', 'p', 'p', 'P', P, P, P, P,
array(' ', o, o,y
array(‘ ',",",",",",",' '),
array(' ', o, o,y
array(‘ ',",",",",",",' '),

array(|pl’ IP|’ IPI’ IPI’ lpl, IPI’ IPI, IPI)’
al_l_a)/(|Rl’ IN|’ IBI’ IQI, 'KI, IB', 'Nl, |Rl)
);

echo "<pre>";

foreach($chessboard as $row)

{
foreach (Srow as S$piece)
echo "$piece ";

Multidimensional Arrays | 131

echo "
";

3

echo "</pre>";
7>

In this example, the lowercase letters represent black pieces, and the uppercase white.
The key is r = rook, n = knight, b = bishop, k = king, g = queen, and p = pawn. Again,
a pair of nested foreach...as loops walks through the array and displays its con-
tents. The outer loop processes each row into the variable $row, which itself is an
array, because the $chessboard array uses a subarray for each row. This loop has two
statements within it, so curly braces enclose them.

The inner loop then processes each square in a row, outputting the character
($piece) stored in it, followed by a space (to square up the printout). This loop has a
single statement, so curly braces are not required to enclose it. The <pre> and </pre>
tags ensure that the output displays correctly, like this:

rnbqkbnr
PPPPPPPP

PPPPPPP

[}
RNBQKBNR

You can also directly access any element within this array by using square brackets:

echo $chessboard[7][3];

This statement outputs the uppercase letter Q, the eighth element down and the
fourth along (remember that array indexes start at 0, not 1).

Using Array Functions

You've already seen the list and each functions, but PHP comes with numerous
other functions for handling arrays. You can find the full list in the documentation.
However, some of these functions are so fundamental that it’s worth taking the time
to look at them here.

is_array

Arrays and variables share the same namespace. This means that you cannot have a
string variable called $fred and an array also called $fred. If youre in doubt and
your code needs to check whether a variable is an array, you can use the is_array
function, like this:

132 | Chapter6: PHP Arrays

http://tinyurl.com/arraysinphp

echo (is_array($fred)) ? "Is an array" : "Is not an array";

Note that if $fred has not yet been assigned a value, an Undefined variable message
will be generated.

count

Although the each function and foreach...as loop structure are excellent ways to
walk through an array’s contents, sometimes you need to know exactly how many ele-
ments there are in your array, particularly if you will be referencing them directly. To
count all the elements in the top level of an array, use a command such as this:

echo count($fred);

Should you wish to know how many elements there are altogether in a multidimen-
sional array, you can use a statement such as the following:

echo count($fred, 1);

The second parameter is optional and sets the mode to use. It should be either 0 to
limit counting to only the top level, or 1 to force recursive counting of all subarray
elements too.

sort

Sorting is so common that PHP provides a built-in function for it. In its simplest
form, you would use it like this:

sort($fred);

Unlike some other functions, sort will act directly on the supplied array rather than
returning a new array of sorted elements. It returns TRUE on success and FALSE on
error and also supports a few flags—the main two that you might wish to use force
items to be sorted either numerically or as strings, like this:

sort(S$fred, SORT_NUMERIC);
sort($fred, SORT_STRING);

You can also sort an array in reverse order using the rsort function, like this:

rsort($fred, SORT_NUMERIC);
rsort($fred, SORT_STRING);

shuffle

There may be times when you need the elements of an array to be put in random
order, such as when you’re creating a game of playing cards:

shuffle($cards);

Using Array Functions | 133

Like sort, shuffle acts directly on the supplied array and returns TRUE on success or
FALSE on error.

explode

explode is a very useful function with which you can take a string containing several
items separated by a single character (or string of characters) and then place each of
these items into an array. One handy example is to split up a sentence into an array
containing all its words, as in Example 6-12.

Example 6-12. Exploding a string into an array using spaces

<?php
Stemp = explode(' ', "This is a sentence with seven words");
print_r(Stemp);

7>

This example prints out the following (on a single line when viewed in a browser):

Array
(
[0] => This
[1] => is
[2] => a
[3] => sentence
[4] => with
[5] => seven
[6] => words

)

The first parameter, the delimiter, need not be a space or even a single character.
Example 6-13 shows a slight variation.

Example 6-13. Exploding a string delimited with *** into an array

<?php
Stemp = explode('***', "A***sentence***with***asterisks");
print_r($temp);

7>

The code in Example 6-13 prints out the following:

Array
(
[@] => A
[1] => sentence
[2] => with
[3] => asterisks

134 | Chapter6: PHP Arrays

extract

Sometimes it can be convenient to turn the key/value pairs from an array into PHP
variables. One such time might be when you are processing the $_GET or $_POST vari-
ables sent to a PHP script by a form.

When a form is submitted over the web, the web server unpacks the variables into a
global array for the PHP script. If the variables were sent using the GET method, they
will be placed in an associative array called $_GET; if they were sent using POST, they
will be placed in an associative array called $_POST.

You could, of course, walk through such associative arrays in the manner shown in
the examples so far. However, sometimes you just want to store the values sent into
variables for later use. In this case, you can have PHP do the job automatically:

extract($_GET);

So, if the query string parameter q is sent to a PHP script along with the associated
value Hi there, a new variable called $q will be created and assigned that value.

Be careful with this approach, though, because if any extracted variables conflict with
ones that you have already defined, your existing values will be overwritten. To avoid
this possibility, you can use one of the many additional parameters available to this
function, like this:

extract($_GET, EXTR_PREFIX_ALL, 'fromget');

In this case, all the new variables will begin with the given prefix string followed by an
underscore, so $q will become $fromget_q. I strongly recommend that you use this
version of the function when handling the $_GET and $_POST arrays, or any other
array whose keys could be controlled by the user, because malicious users could sub-
mit keys chosen deliberately to overwrite commonly used variable names and com-
promise your website.

compact

At times you may want to use compact, the inverse of extract, to create an array
from variables and their values. Example 6-14 shows how you might use this func-
tion.

Example 6-14. Using the compact function

<?php
$fname = "Doctor";
$sname = "Who";
$planet = "Gallifrey";
Ssystem = "Gridlock";
$constellation = "Kasterborous";

Using Array Functions | 135

Scontact = compact('fname', 'sname', 'planet', 'system', 'constellation');

print_r($contact);
7>

The result of running Example 6-14 is as follows:

Array
(
[fname] => Doctor
[sname] => Who
[planet] => Gallifrey
[system] => Gridlock
[constellation] => Kasterborous

)

Note how compact requires the variable names to be supplied in quotes, not preceded
by a $ symbol. This is because compact is looking for a list of variable names, not
their values.

Another use of this function is for debugging, when you wish to quickly view several
variables and their values, as in Example 6-15.

Example 6-15. Using compact to help with debugging

<?php
$3 = 23;
Stemp = "Hello";
Saddress = "1 0ld Street";
Sage = 61;

print_r(compact(explode(' ', 'j temp address age')));
7>

This works by using the explode function to extract all the words from the string into
an array, which is then passed to the compact function, which in turn returns an array
to print_r, which finally shows its contents.

If you copy and paste the print_r line of code, you only need to alter the variables
named there for a quick printout of a group of variables’ values. In this example, the
output is shown here:

Array
(
[j] => 23
[temp] => Hello
[address] => 1 0ld Street
[age] => 61

136 | Chapter 6: PHP Arrays

reset

When the foreach...as construct or the each function walks through an array, it
keeps an internal PHP pointer that makes a note of which element of the array it
should return next. If your code ever needs to return to the start of an array, you can
issue reset, which also returns the value of that element. Examples of how to use this
function are as follows:

reset($fred); // Throw away return value

$item = reset($fred); // Keep first element of the array in $item

end

As with reset, you can move PHP’s internal array pointer to the final element in an
array using the end function, which also returns the value of the element, and can be
used as in these examples:

end($fred);
S$item = end($fred);

This chapter concludes your basic introduction to PHP, and you should now be able
to write quite complex programs using the skills you have learned. In the next chap-
ter, we'll look at using PHP for common, practical tasks.

Questions

What is the difference between a numeric and an associative array?
What is the main benefit of the array keyword?

What is the difference between foreach and each?

How can you create a multidimensional array?

How can you determine the number of elements in an array?

What is the purpose of the explode function?

N e

How can you set PHP’s internal pointer into an array back to the first element of
the array?

See “Chapter 6 Answers” on page 717 in Appendix A for the answers to these ques-
tions.

Questions | 137

CHAPTER 7
Practical PHP

The previous chapters went over the elements of the PHP language. This chapter
builds on your new programming skills to teach you how to perform some common
but important practical tasks. You will learn the best ways to handle strings in order
to achieve clear and concise code that displays in web browsers exactly how you want
it to, including advanced date and time management. You’ll also find out how to cre-
ate and otherwise modify files, including those uploaded by users.

Using printf

You've already seen the print and echo functions, which simply output text to the
browser. But a much more powerful function, printf, controls the format of the out-
put by letting you put special formatting characters in a string. For each formatting
character, printf expects you to pass an argument that it will display using that for-
mat. For instance, the following example uses the %d conversion specifier to display
the value 3 in decimal:

printf("There are %d items in your basket", 3);
If you replace the %d with %b, the value 3 will be displayed in binary (11). Table 7-1
shows the conversion specifiers supported.
Table 7-1. The printf conversion specifiers

Specifier Conversion action on argumentarg Example (for an arg of 123)

% Display a % character (no arg required) %

b Display arg as a binary integer 1111011

c Display ASCII character for arg {

d Display arg as a signed decimal integer 123

e Display arg using scientific notation 1.23000e+2

139

Specifier Conversion action on argumentarg Example (for an arg of 123)

f Display arg as floating point 123.000000
0 Display arg as an octal integer 173
s Display arg as a string 123
u Display arg as an unsigned decimal 123

Display arg in lowercase hexadecimal ~ 7b
Display arg in uppercase hexadecimal 7B

x X

You can have as many specifiers as you like in a printf function, as long as you pass a
matching number of arguments and as long as each specifier is prefaced by a % sym-
bol. Therefore, the following code is valid, and will output "My name is Simon. I'm
33 years old, which is 21 in hexadecimal":
printf("My name is %s. I'm %d years old, which is %X in hexadecimal",
'Simon', 33, 33);

If you leave out any arguments, you will receive a parse error informing you that a
right bracket,), was unexpectedly encountered.

A more practical example of printf sets colors in HTML using decimal values. For
example, suppose you know you want a color that has a triplet value of 65 red, 127
green, and 245 blue, but don’t want to convert this to hexadecimal yourself. Here’s an
easy solution:

printf("Hello", 65, 127, 245);

Check the format of the color specification between the apostrophes ('') carefully.
First comes the pound, or hash, sign (#) expected by the color specification. Then
come three %X format specifiers, one for each of your numbers. The resulting output
from this command is as follows:

Hello

Usually, you'll find it convenient to use variables or expressions as arguments to
printf. For instance, if you stored values for your colors in the three variables $r, $g,
and $b, you could create a darker color with this:

printf("Hello", $r-20, $g-20, $b-20);

Precision Setting

Not only can you specify a conversion type, but you can also set the precision of the
displayed result. For example, amounts of currency are usually displayed with only
two digits of precision. However, after a calculation, a value may have a greater preci-
sion than this, such as 123.42 / 12, which results in 10.285. To ensure that such values
are correctly stored internally, but displayed with only two digits of precision, you can
insert the string ".2" between the % symbol and the conversion specifier:

140 | Chapter7: Practical PHP

printf("The result is: $%.2f", 123.42 / 12);
The output from this command is as follows:
The result is $10.29

But you actually have even more control than that, because you can also specify
whether to pad output with either zeros or spaces by prefacing the specifier with cer-
tain values. Example 7-1 shows four possible combinations.

Example 7-1. Precision setting

<?php
echo

'<pre>"; // Enables viewing of the spaces

// Pad to 15 spaces
printf("The result is $%15f\n", 123.42 / 12);

// Pad to 15 spaces, fill with zeros
printf("The result is $%015f\n", 123.42 / 12);

// Pad to 15 spaces, 2 decimal places precision
printf("The result is $%15.2f\n", 123.42 [/ 12);

// Pad to 15 spaces, 2 decimal places precision, fill with zeros
printf("The result is $%015.2f\n", 123.42 / 12);

// Pad to 15 spaces, 2 decimal places precision, fill with # symbol
printf("The result is $%'#15.2f\n", 123.42 / 12);

7>

The output from this example looks like this:

The result is $ 10.285000
The result is $00000010.285000
The result is $ 10.29

The result is $000000000010.29
The result is S####H##H###10.29

The way it works is simple if you go from right to left (see Table 7-2). Notice that:

o The rightmost character is the conversion specifier: in this case, f for floating
point.

o Just before the conversion specifier, if there is a period and a number together,
then the precision of the output is specified as the value of the number.

« Regardless of whether there’s a precision specifier, if there is a number, then that
represents the number of characters to which the output should be padded. In
the previous example, this is 15 characters. If the output is already equal to or
greater than the padding length, then this argument is ignored.

Usingprintf | 141

o The leftmost parameter allowed after the % symbol is a 0, which is ignored unless
a padding value has been set, in which case the output is padded with zeros
instead of spaces. If a pad character other than zero or a space is required, you
can use any one of your choice as long as you preface it with a single quotation
mark, like this: '#.

o On the left is the % symbol, which starts the conversion.

Table 7-2. Conversion specifier components

Start conversion Pad character Number of pad Display precision Conversion Example
characters specifier
% 15 f 10.285000
% 0 15 .2 f 000000000010.29
% '# 15 .4 f #1110 . 2850

String Padding

You can also pad strings to required lengths (as you can with numbers), select differ-
ent padding characters, and even choose between left and right justification.
Example 7-2 shows various examples.

Example 7-2. String padding

<?php
echo

'<pre>"; // Enables viewing of the spaces

Sh = 'Rasmus’';

printf("[%s]\n", $h); // Standard string output
printf("[%12s]\n", $h); // Right justify with spaces to width 12
printf("[%-12s]\n", $h); // Left justify with spaces
printf("[%012s]\n", S$h); // Pad with zeros

printf("[%'#12s]\n\n", $h); // Use the custom padding character '#'
$d = 'Rasmus Lerdorf'; // The original creator of PHP
printf("[%12.8s]\n", $d); // Right justify, cutoff of 8 characters

printf("[%-12.12s]\n", $d); // Left justify, cutoff of 12 characters
printf("[%-'@12.10s]\n", $d); // Left justify, pad with '@', cutoff 10 chars

7>

Note how for purposes of layout in a web page, I've used the <pre> HTML tag to pre-
serve all the spaces and the \n newline character after each of the lines to be dis-
played. The output from this example is as follows:

142 | Chapter7: Practical PHP

[Rasmus]

[Rasmus]
[Rasmus 1
[000000Rasmus]
[######Rasmus]

[Rasmus L]

[Rasmus Lerdo]

[Rasmus Ler@@]
When you specify a padding value, strings of a length equal to or greater than that
value will be ignored, unless a cutoff value is given that shortens the strings back to
less than the padding value.

Table 7-3 shows the components available to string conversion specifiers.

Table 7-3. String conversion specifier components

Start conversion Left/right Padding Number of pad Cutoff Conversion Example

justify character characters specifier (using “Rasmus”)
% s [Rasmus]
% - 10 3 [Rasmus]
% '# 8 .4 s [####Rasm]
Using sprintf

Often, you don’t want to output the result of a conversion but need it to use elsewhere
in your code. This is where the sprintf function comes in. With it, you can send the
output to another variable rather than to the browser.

You might use it to make a conversion, as in the following example, which returns the
hexadecimal string value for the RGB color group 65, 127, 245 in $hexstring:

Shexstring = sprintf("%X%X%X", 65, 127, 245);
Or you may wish to store output ready to display later on:

Sout = sprintf("The result is: $%.2f", 123.42 / 12);
echo $Sout;

Date and Time Functions

To keep track of the date and time, PHP uses standard Unix timestamps, which are
simply the number of seconds since the start of January 1, 1970. To determine the
current timestamp, you can use the time function:

echo time();

Date and Time Functions | 143

Because the value is stored as seconds, to obtain the timestamp for this time next
week, you would use the following, which adds 7 days x 24 hours x 60 minutes x 60
seconds to the returned value:

echo time() + 7 * 24 * 60 * 60;

If you wish to create a timestamp for a given date, you can use the mktime function.
Its output is the timestamp 946684800 for the first second of the first minute of the
first hour of the first day of the year 2000:

echo mktime(0, 0, 0, 1, 1, 2000);

The parameters to pass are, in order from left to right:

o The number of the hour (0-23)

o The number of the minute (0-59)

o The number of seconds (0-59)

o The number of the month (1-12)

o The number of the day (1-31)

o The year (1970-2038, or 1901-2038 with PHP 5.1.0+ on 32-bit signed systems)

You may ask why you are limited to the years 1970 through 2038.
Well, it’s because the original developers of Unix chose the start of
the year 1970 as the base date that no programmer should need to
go before!

Luckily, as of version 5.1.0, PHP supports systems using a signed
32-bit integer for the timestamp, and dates from 1901 to 2038 are
allowed on them. However, that introduces a problem even worse
than the original one, because the Unix designers also decided that
nobody would still be using Unix after about 70 years or so and
therefore believed they could get away with storing the timestamp
as a 32-bit value—which will run out on January 19, 2038!

This will create what has come to be known as the Y2K38 bug
(much like the millennium bug, which was caused by storing years
as two-digit values, and which also had to be fixed). PHP intro-
duced the DateTime class in version 5.2 to overcome this issue, but
it will work only on 64-bit architecture, which most computers will
be these days (but do check before you use it).

To display the date, use the date function, which supports a plethora of formatting
options enabling you to display the date any way you wish. The format is as follows:

date($format, Stimestamp);

144 | Chapter7: Practical PHP

The parameter $format should be a string containing formatting specifiers as detailed
in Table 7-4, and $timestamp should be a Unix timestamp. For the complete list of
specifiers, please see the documentation. The following command will output the cur-
rent date and time in the format "Thursday July 6th, 2017 - 1:38pm":

echo date("l F jS, Y - g:ia", time());

Table 7-4. The major date function format specifiers

Format Description

Returned value

Day specifiers

d Day of month, two digits, with leading zeros

D Day of the week, three letters

j Day of month, no leading zeros

1 Day of week, full names

N Day of week, numeric, Monday to Sunday

S Suffix for day of month (useful with specifier j)
W Day of week, numeric, Sunday to Saturday

z Day of year

Week specifier

W Week number of year

Month specifiers

F Month name

m Month number with leading zeros

M Month name, three letters

n Month number, no leading zeros

t Number of days in given month

Year specifiers

L Leap year

y Year, 2 digits

Y Year, 4 digits

Time specifiers

a Before or after midday, lowercase

A Before or after midday, uppercase

g Hour of day, 12-hour format, no leading zeros
G Hour of day, 24-hour format, no leading zeros
h Hour of day, 12-hour format, with leading zeros
H Hour of day, 24-hour format, with leading zeros
i Minutes, with leading zeros

s Seconds, with leading zeros

01t031

Mon to Sun

1to031

Sunday to Saturday
1to7

st, nd, rd, or th
Oto6

0to 365

01to 52

January to December
01t012

Janto Dec

1to 12

281031

1=VYes, ®=No
001099
0000 to 9999

am or pm
AM or PM
1t012

0to23

01t012
001023
00 to 59
00 to 59

Date and Time Functions

145

http://php.net/manual/en/function.date.php

Date Constants

There are a number of useful constants that you can use with the date command to
return the date in specific formats. For example, date(DATE_RSS) returns the current
date and time in the valid format for an RSS feed. Some of the more commonly used
constants are as follows:

DATE_ATOM
This is the format for Atom feeds. The PHP format is "Y-m-d\TH:1:sP" and
example output is "2022-10-22T12:00:00+00:00".

DATE_COOKIE
This is the format for cookies set from a web server or JavaScript. The PHP for-
mat is "1, d-M-y H:i:s T" and example output is "Wednesday, 26-Oct-22
12:00:00 UTC".

DATE_RSS
This is the format for RSS feeds. The PHP format is "D, d M Y H:1i:s 0" and
example output is "Wed, 26 Oct 2022 12:00:00 UTC".

DATE_W3C
This is the format for the World Wide Web Consortium. The PHP format is "Y-
m-d\TH:1:sP" and example output is "2022-10-26T12:00:00+00:00".

The complete list can be found in the documentation.

Using checkdate

You've seen how to display a valid date in a variety of formats. But how can you check
whether a user has submitted a valid date to your program? The answer is to pass the
month, day, and year to the checkdate function, which returns a value of TRUE if the
date is valid, or FALSE if it is not.

For example, if September 31 of any year is input, it will always be an invalid date.
Example 7-3 shows code that you could use for this. As it stands, it will find the given
date invalid.

Example 7-3. Checking for the validity of a date

<?php
Smonth = 9; // September (only has 30 days)
$day = 31; // 31st
Syear = 2022; // 2022

if (checkdate(Smonth, $day, Syear)) echo "Date is valid";
else echo "Date is invalid";
7>

146 | Chapter7: Practical PHP

http://php.net/manual/en/class.datetime.php

File Handling

Powerful as it is, MySQL is not the only (or necessarily the best) way to store all data
on a web server. Sometimes it can be quicker and more convenient to directly access
files on the hard disk. Cases in which you might need to do this are when modifying
images such as uploaded user avatars, or with log files that you wish to process.

First, though, a note about file naming: if you are writing code that may be used on
various PHP installations, there is no way of knowing whether these systems are case-
sensitive. For example, Windows and macOS filenames are not case-sensitive, but
Linux and Unix ones are. Therefore, you should always assume that the system is
case-sensitive and stick to a convention such as all-lowercase filenames.

Checking Whether a File Exists

To determine whether a file already exists, you can use the file_exists function,
which returns either TRUE or FALSE and is used like this:

if (file_exists("testfile.txt")) echo "File exists";

Creating a File

At this point, festfile.txt doesn't exist, so let’s create it and write a few lines to it. Type
Example 7-4 and save it as festfile.php.

Example 7-4. Creating a simple text file

<?php // testfile.php
$th = fopen("testfile.txt", 'w') or die("Failed to create file");

Stext = <<<_END
Line 1
Line 2
Line 3
_END;

fwrite($fh, Stext) or die("Could not write to file");
fclose($fh);
echo "File 'testfile.txt' written successfully";

?>

Should a program call the die function, the open file will be automatically closed as
part of terminating the program.

When you run this in a browser, all being well, you will receive the message File
'testfile.txt' written successfully. If you receive an error message, your hard
disk may be full or, more likely, you may not have permission to create or write to the

FileHandling | 147

file, in which case you should modify the attributes of the destination folder accord-
ing to your operating system. Otherwise, the file festfile.txt should now be residing in
the same folder in which you saved the testfile.php program. Try opening the file in a
text or program editor—the contents will look like this:

Line 1
Line 2
Line 3

This simple example shows the sequence that all file handling takes:

1. Always start by opening the file. You do this through a call to fopen.

2. Then you can call other functions; here we write to the file (fwrite), but you can
also read from an existing file (fread or fgets) and do other things.

3. Finish by closing the file (fclose). Although the program does this for you when
it ends, you should clean up by closing the file when you're finished.

Every open file requires a file resource so that PHP can access and manage it. The
preceding example sets the variable $fh (which I chose to stand for file handle) to the
value returned by the fopen function. Thereafter, each file-handling function that
accesses the opened file, such as fwrite or fclose, must be passed $fh as a parameter
to identify the file being accessed. Don’t worry about the content of the $fh variable;
it's a number PHP uses to refer to internal information about the file—you just pass
the variable to other functions.

Upon failure, FALSE will be returned by fopen. The previous example shows a simple
way to capture and respond to the failure: it calls the die function to end the program
and give the user an error message. A web application would never abort in this crude
way (you would create a web page with an error message instead), but this is fine for
our testing purposes.

Notice the second parameter to the fopen call. It is simply the character w, which tells
the function to open the file for writing. The function creates the file if it doesn’t
already exist. Be careful when playing around with these functions: if the file already
exists, the w mode parameter causes the fopen call to delete the old contents (even if
you don’t write anything new!).

There are several different mode parameters that can be used here, as detailed in
Table 7-5. The modes that include a + symbol are further explained in the section
“Updating Files” on page 151.

148 | Chapter7: Practical PHP

Table 7-5. The supported fopen modes

Mode Action Description

'r' Read from file’s beginning Open for reading only; place the file pointer at the beginning of the file. Return
FALSE if the file doesn't already exist.

r+' Read from file’s beginning Open for reading and writing; place the file pointer at the beginning of the file. Return

and allow writing FALSE if the file doesn't already exist.

'w' Write from file’s beginning Open for writing only; place the file pointer at the beginning of the file and truncate
and truncate file the file to zero length. If the file doesn't exist, attempt to create it.

'w+' Write from file’s beginning, Open for reading and writing; place the file pointer at the beginning of the file and
truncate file, and allow truncate the file to zero length. If the file doesn't exist, attempt to create it.
reading

'a' Append to file's end Open for writing only; place the file pointer at the end of the file. If the file doesn’t

exist, attempt to create it.

a+' Append to file’s end and Open for reading and writing; place the file pointer at the end of the file. If the file
allow reading doesn't exist, attempt to create it.

Reading from Files

The easiest way to read from a text file is to grab a whole line through fgets (think of
the final s as standing for string), as in Example 7-5.

Example 7-5. Reading a file with fgets

<?php
$fh = fopen("testfile.txt", 'r') or
die("File does not exist or you lack permission to open it");

S$line = fgets($fh);
fclose($fh);
echo $line;

7>

If you created the file as shown in Example 7-4, you’ll get the first line:
Line 1

You can retrieve multiple lines or portions of lines through the fread function, as in
Example 7-6.

Example 7-6. Reading a file with fread

<?php
$fh = fopen("testfile.txt", 'r') or
die("File does not exist or you lack permission to open it");

Stext = fread($fh, 3);
fclose($fh);

FileHandling | 149

echo Stext;
7>

I've requested three characters in the fread call, so the program displays this:

Lin
The fread function is commonly used with binary data. If you use it on text data that
spans more than one line, remember to count newline characters.

Copying Files

Let’s try out the PHP copy function to create a clone of testfile.txt. Type Example 7-7,
save it as copyfile.php, and then call up the program in your browser.

Example 7-7. Copying a file

<?php // copyfile.php
copy('testfile.txt', 'testfile2.txt') or die("Could not copy file");
echo "File successfully copied to 'testfile2.txt'";

7>

If you check your folder again, you’ll see that you now have the new file testfile2.txt in
it. By the way, if you don’t want your programs to exit on a failed copy attempt, you
could try the alternate syntax in Example 7-8. This uses the ! (NOT) operator as a
quick and easy shorthand. Placed in front of an expression, it applies the NOT operator
to it, so the equivalent statement here in English would begin “If not able to copy..”

Example 7-8. Alternate syntax for copying a file

<?php // copyfile2.php
if (!copy('testfile.txt', 'testfile2.txt')) echo "Could not copy file";
else echo "File successfully copied to 'testfile2.txt'";

7>

Moving a File

To move a file, rename it with the rename function, as in Example 7-9.

Example 7-9. Moving a file

<?php // movefile.php
if (!rename('testfile2.txt', 'testfile2.new'))
echo "Could not rename file";
else echo "File successfully renamed to 'testfile2.new'";
7>

150 | Chapter7: Practical PHP

You can use the rename function on directories, too. To avoid any warning messages if
the original file doesn’t exist, you can call the file_exists function first to check.

Deleting a File

Deleting a file is just a matter of using the unlink function to remove it from the file-
system, as in Example 7-10.

Example 7-10. Deleting a file

<?php // deletefile.php
if ('unlink('testfile2.new')) echo "Could not delete file";
else echo "File 'testfile2.new' successfully deleted";

7>

Whenever you access files on your hard disk directly, you must also
always ensure that it is impossible for your filesystem to be com-
promised. For example, if you are deleting a file based on user
input, you must make absolutely certain it is a file that can be safely
deleted and that the user is allowed to delete it.

As with moving a file, a warning message will be displayed if the file doesn’t exist,
which you can avoid by using file_exists to first check for its existence before call-
ing unlink.

Updating Files

Often, you will want to add more data to a saved file, which you can do in many ways.
You can use one of the append write modes (see Table 7-5), or you can simply open a
file for reading and writing with one of the other modes that supports writing, and
move the file pointer to the correct place within the file that you wish to write to or
read from.

The file pointer is the position within a file at which the next file access will take place,
whether it’s a read or a write. It is not the same as the file handle (as stored in the
variable $fh in Example 7-4), which contains details about the file being accessed.

You can see this in action by typing Example 7-11 and saving it as update.php. Then
call it up in your browser.

Example 7-11. Updating a file

<?php // update.php
$fh = fopen("testfile.txt", 'r+') or die("Failed to open file");
Stext = fgets($fh);

FileHandling | 151

fseek($fh, 0, SEEK_END);
fwrite($fth, "Stext") or die("Could not write to file");
fclose($fh);

echo "File 'testfile.txt' successfully updated";
7>

This program opens festfile.txt for both reading and writing by setting the mode with
'r+', which puts the file pointer right at the start. It then uses the fgets function to
read in a single line from the file (up to the first line feed). After that, the fseek func-
tion is called to move the file pointer right to the file end, at which point the line of
text that was extracted from the start of the file (stored in $text) is then appended to
the file’s end and the file is closed. The resulting file now looks like this:

Line 1
Line 2
Line 3
Line 1

The first line has successfully been copied and then appended to the file’s end.

As used here, in addition to the $fh file handle, the fseek function was passed two
other parameters, @ and SEEK_END. SEEK_END tells the function to move the file
pointer to the end of the file, and 0 tells it how many positions it should then be
moved backward from that point. In the case of Example 7-11, a value of 0 is used
because the pointer is required to remain at the file’s end.

There are two other seek options available to the fseek function: SEEK_SET and
SEEK_CUR. The SEEK_SET option tells the function to set the file pointer to the exact
position given by the preceding parameter. Thus, the following example moves the
file pointer to position 18:

fseek($fh, 18, SEEK_SET);

SEEK_CUR sets the file pointer to the current position plus the value of the given offset.
Therefore, if the file pointer is currently at position 18, the following call will move it
to position 23:

fseek($fh, 5, SEEK_CUR);

Although this is not recommended unless you have very specific reasons for it, it is
even possible to use text files such as this (but with fixed line lengths) as simple flat
file databases. Your program can then use fseek to move back and forth within such
a file to retrieve, update, and add new records. You can also delete records by over-
writing them with zero characters, and so on.

152 | Chapter7: Practical PHP

Locking Files for Multiple Accesses

Web programs are often called by many users at the same time. If more than one per-
son tries to write to a file simultaneously, it can become corrupted. And if one person
writes to it while another is reading from it, the file is all right, but the person reading
it can get odd results. To handle simultaneous users, you must use the file-locking
flock function. This function queues up all other requests to access a file until your
program releases the lock. So, whenever your programs use write access on files that
may be accessed concurrently by multiple users, you should also add file locking to
them, as in Example 7-12, which is an updated version of Example 7-11.

Example 7-12. Updating a file with file locking

<?php
$fh = fopen("testfile.txt", 'r+') or die("Failed to open file");
Stext = fgets($fh);

if (flock($fh, LOCK_EX))

{
fseek($fh, 0, SEEK_END);
fwrite($fh, "Stext") or die("Could not write to file");
flock($fh, LOCK_UN);

}

fclose($fh);
echo "File 'testfile.txt' successfully updated";
7>

There is a trick to file locking to preserve the best possible response time for your
website visitors: perform it directly before a change you make to a file, and then
unlock it immediately afterward. Having a file locked for any longer than this will
slow down your application unnecessarily. This is why the calls to flock in
Example 7-12 are directly before and after the fwrite call.

The first call to flock sets an exclusive file lock on the file referred to by $fh using the
LOCK_EX parameter:

flock($fh, LOCK_EX);

From this point onward, no other processes can write to (or even read from) the file
until you release the lock by using the LOCK_UN parameter, like this:

flock($fh, LOCK_UN);

As soon as the lock is released, other processes are again allowed access to the file.
This is one reason why you should reseek to the point you wish to access in a file each
time you need to read or write data—another process could have changed the file
since the last access.

FileHandling | 153

However, did you notice that the call to request an exclusive lock is nested as part of
an if statement? This is because flock is not supported on all systems; thus, it is wise
to check whether you successfully secured a lock, just in case one could not be
obtained.

Something else you must consider is that flock is what is known as an advisory lock.
This means that it locks out only other processes that call the function. If you have
any code that goes right in and modifies files without implementing flock file lock-
ing, it will always override the locking and could wreak havoc on your files.

By the way, implementing file locking and then accidentally leaving it out in one sec-
tion of code can lead to an extremely hard-to-locate bug.

flock will not work on NFS and many other networked filesys-
tems. Also, when using a multithreaded server like ISAPI, you may
not be able to rely on flock to protect files against other PHP

\ scripts running in parallel threads of the same server instance.
Additionally, flock is not supported on any system using the old
FAT filesystem, such as older versions of Windows.

If in doubt, you can try making a quick lock on a test file at the
start of a program to see whether you can obtain a lock on the file.
Don't forget to unlock it (and maybe delete it if not needed) after
checking.

Also remember that any call to the die function automatically
unlocks a lock and closes the file as part of ending the program.

Reading an Entire File

A handy function for reading in an entire file without having to use file handles is
file_get_contents. It’s very easy to use, as you can see in Example 7-13.

Example 7-13. Using file_get_contents

<?php
echo "<pre>"; [/ Enables display of line feeds
echo file_get_contents("testfile.txt");
echo "</pre>"; [/ Terminates <pre> tag

7>

But the function is actually a lot more useful than that, because you can also use it to
fetch a file from a server across the internet, as in Example 7-14, which requests the
HTML from the O'Reilly home page, and then displays it as if the user had surfed to
the page itself. The result will be similar to Figure 7-1.

154 | Chapter7: Practical PHP

Example 7-14. Grabbing the O’Reilly home page

<?php
echo file_get_contents("http://oreilly.com");
7>

Robin Mixon

i O'Reilly Media - Technol X W& %

& Cc 0O |® localhost/test.php
O.RE"_LYF Q YOUR ACCOUNT =—

ON OUR RADAR I Al I BUSINESS I DATA I DESIGN SEE ALL

Tim O'Reilly's new
book is included in
your Safari

membership.

Start reading now

Already a Safari member?
Signin.

Not yet a member? Read a
free excerpt now and sign up
for a 10-day free trial—no
credit card needed.

Figure 7-1. The O’Reilly home page grabbed with file_get_contents

Uploading Files

Uploading files to a web server is a subject that seems daunting to many people, but it
actually couldn’t be much easier. All you need to do to upload a file from a form is
choose a special type of encoding called multipart/form-data, and your browser
will handle the rest. To see how this works, type the program in Example 7-15 and
save it as upload.php. When you run it, you'll see a form in your browser that lets you

upload a file of your choice.

File Handling

Example 7-15. Image uploader upload.php

<?php // upload.php
echo <<<_END

<html><head><title>PHP Form Upload</title></head><body>
<form method='post' action='upload.php' enctype='multipart/form-data'>
Select File: <input type='file' name='filename' size='10'>
<input type='submit' value='Upload'>
</form>

_END;

if (S_FILES)

{
$name = $_FILES['filename']['name'];
move_uploaded_file($_FILES['filename']['tmp_name'], $name);
echo "Uploaded image 'S$Sname'
";

}

echo "</body></html>";

?>

Let’s examine this program a section at a time. The first line of the multiline echo
statement starts an HTML document, displays the title, and then starts the docu-
ment’s body.

Next we come to the form, which selects the POST method of form submission, sets
the target for posted data to the program upload.php (the program itself), and tells
the web browser that the data posted should be encoded via the content type of multi
part/form-data.

With the form set up, the next lines display the prompt Select File: and then
request two inputs. The first request is for a file; it uses an input type of file, a name
of filename, and an input field with a width of 10 characters. The second requested
input is just a submit button that is given the label Upload (which replaces the default
button text of Submit Query). And then the form is closed.

This short program shows a common technique in web programming in which a sin-
gle program is called twice: once when the user first visits a page, and again when the
user presses the submit button.

The PHP code to receive the uploaded data is fairly simple, because all uploaded files
are placed into the associative system array $_FILES. Therefore, a quick check to see
whether $_FILES contains anything is sufficient to determine whether the user has
uploaded a file. This is done with the statement 1f ($_FILES).

The first time the user visits the page, before uploading a file, $_FILES is empty, so the
program skips this block of code. When the user uploads a file, the program runs
again and discovers an element in the $_FILES array.

156 | Chapter7: Practical PHP

Once the program realizes that a file was uploaded, the actual name, as read from the
uploading computer, is retrieved and placed into the variable $name. Now all that’s
necessary is to move the uploaded file from the temporary location