
ptg999

From the Library of Melissa Nuno



ptg999

THE ART OF
COMPUTER PROGRAMMING

From the Library of Melissa Nuno



ptg999

DONALD E. KNUTH Stanford University

6
77 ADDISON–WESLEY

From the Library of Melissa Nuno



ptg999

Volume 4A / Combinatorial Algorithms, Part 1

THE ART OF
COMPUTER PROGRAMMING

Upper Saddle River, NJ · Boston · Indianapolis · San Francisco
New York · Toronto · Montréal · London · Munich · Paris · Madrid
Capetown · Sydney · Tokyo · Singapore · Mexico City

From the Library of Melissa Nuno



ptg999

The poem on page 437 is quoted from The Golden Gate by Vikram Seth (New York:
Random House, 1986), copyright c⃝ 1986 by Vikram Seth.
The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity for bulk
purposes or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales (800) 382–3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:
International Sales international@pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Cataloging-in-Publication Data
Knuth, Donald Ervin, 1938-

The art of computer programming / Donald Ervin Knuth.
xvi,883 p. 24 cm.
Includes bibliographical references and index.
Contents: v. 1. Fundamental algorithms. -- v. 2. Seminumerical

algorithms. -- v. 3. Sorting and searching. -- v. 4a. Combinatorial
algorithms, part 1.

Contents: v. 4a. Combinatorial algorithms, part 1.
ISBN 978-0-201-89683-1 (v. 1, 3rd ed.)
ISBN 978-0-201-89684-8 (v. 2, 3rd ed.)
ISBN 978-0-201-89685-5 (v. 3, 2nd ed.)
ISBN 978-0-201-03804-0 (v. 4a)
1. Electronic digital computers--Programming. 2. Computer

algorithms. I. Title.
QA76.6.K64 1997
005.1--DC21 97-2147
Internet page http://www-cs-faculty.stanford.edu/~knuth/taocp.html contains
current information about this book and related books.
See also http://www-cs-faculty.stanford.edu/~knuth/sgb.html for information
about The Stanford GraphBase, including downloadable software for dealing with
the graphs used in many of the examples.
And see http://www-cs-faculty.stanford.edu/~knuth/mmix.html for basic infor-
mation about the MMIX computer.
Electronic version by Mathematical Sciences Publishers (MSP), http://msp.org
Copyright c⃝ 2011 by Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116 Fax: (617) 671-3447

ISBN-13 978-0-201-03804-0
ISBN-10 0-201-03804-8
Third digital release, March 2017

From the Library of Melissa Nuno

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://informit.com/aw
http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://www-cs-faculty.stanford.edu/~knuth/sgb.html
http://www-cs-faculty.stanford.edu/~knuth/mmix.html
http://msp.org


ptg999

PREFACE

To put all the good stuff into one book is patently impossible,
and attempting even to be reasonably comprehensive

about certain aspects of the subject is likely to lead to runaway growth.
— GERALD B. FOLLAND, “Editor’s Corner” (2005)

The title of Volume 4 is Combinatorial Algorithms, and when I proposed it
I was strongly inclined to add a subtitle: The Kind of Programming I Like Best.
My editors have decided to tone down such exuberance, but the fact remains
that programs with a combinatorial flavor have always been my favorites.

On the other hand I’ve often been surprised to find that, in many people’s
minds, the word “combinatorial” is linked with computational difficulty. Indeed,
Samuel Johnson, in his famous dictionary of the English language (1755), said
that the corresponding noun “is now generally used in an ill sense.” Colleagues
tell me tales of woe, in which they report that “the combinatorics of the sit-
uation defeated us.” Why is it that, for me, combinatorics arouses feelings of
pure pleasure, yet for many others it evokes pure panic?

It’s true that combinatorial problems are often associated with humongously
large numbers. Johnson’s dictionary entry also included a quote from Ephraim
Chambers, who had stated that the total number of words of length 24 or less,
in a 24-letter alphabet, is 1,391,724,288,887,252,999,425,128,493,402,200. The
corresponding number for a 10-letter alphabet is 11,111,111,110; and it’s only
3905 when the number of letters is 5. Thus a “combinatorial explosion” certainly
does occur as the size of the problem grows from 5 to 10 to 24 and beyond.

Computing machines have become tremendously more powerful throughout
my life. As I write these words, I know that they are being processed by a “lap-
top” whose speed is more than 100,000 times faster than the trusty IBM Type 650
computer to which I’ve dedicated these books; my current machine’s memory
capacity is also more than 100,000 times greater. Tomorrow’s computers will be
even faster and more capacious. But these amazing advances have not diminished
people’s craving for answers to combinatorial questions; quite the contrary. Our
once-unimaginable ability to compute so rapidly has raised our expectations,
and whetted our appetite for more — because, in fact, the size of a combinatorial
problem can increase more than 100,000-fold when n simply increases by 1.

Combinatorial algorithms can be defined informally as techniques for the
high-speed manipulation of combinatorial objects such as permutations or graphs.
We typically try to find patterns or arrangements that are the best possible ways
to satisfy certain constraints. The number of such problems is vast, and the art

v

From the Library of Melissa Nuno



ptg999

vi PREFACE

of writing such programs is especially important and appealing because a single
good idea can save years or even centuries of computer time.

Indeed, the fact that good algorithms for combinatorial problems can have a
terrific payoff has led to terrific advances in the state of the art. Many problems
that once were thought to be intractable can now be polished off with ease, and
many algorithms that once were known to be good have now become better.
Starting about 1970, computer scientists began to experience a phenomenon
that we called “Floyd’s Lemma”: Problems that seemed to need n3 operations
could actually be solved in O(n2); problems that seemed to require n2 could be
handled in O(n logn); and n logn was often reducible to O(n). More difficult
problems saw a reduction in running time from O(2n) to O(1.5n) to O(1.3n),
etc. Other problems remained difficult in general, but they were found to have
important special cases that are much simpler. Many combinatorial questions
that I once thought would never be answered during my lifetime have now been
resolved, and those breakthroughs have been due mainly to improvements in
algorithms rather than to improvements in processor speeds.

By 1975, such research was advancing so rapidly that a substantial fraction
of the papers published in leading journals of computer science were devoted
to combinatorial algorithms. And the advances weren’t being made only by
people in the core of computer science; significant contributions were coming
from workers in electrical engineering, artificial intelligence, operations research,
mathematics, physics, statistics, and other fields. I was trying to complete
Volume 4 of The Art of Computer Programming, but instead I felt like I was
sitting on the lid of a boiling kettle: I was confronted with a combinatorial
explosion of another kind, a prodigious explosion of new ideas!

This series of books was born at the beginning of 1962, when I naïvely
wrote out a list of tentative chapter titles for a 12-chapter book. At that time
I decided to include a brief chapter about combinatorial algorithms, just for
fun. “Hey look, most people use computers to deal with numbers, but we can
also write programs that deal with patterns.” In those days it was easy to give
a fairly complete description of just about every combinatorial algorithm that
was known. And even by 1966, when I’d finished a first draft of about 3000
handwritten pages for that already-overgrown book, fewer than 100 of those
pages belonged to Chapter 7. I had absolutely no idea that what I’d foreseen as
a sort of “salad course” would eventually turn out to be the main dish.

The great combinatorial fermentation of 1975 has continued to churn, as
more and more people have begun to participate. New ideas improve upon the
older ones, but rarely replace them or make them obsolete. So of course I’ve
had to abandon any hopes that I once had of being able to surround the field,
to write a definitive book that sets everything in order and provides one-stop
shopping for everyone who has combinatorial problems to solve. The array of
applicable techniques has mushroomed to the point where I can almost never
discuss a subtopic and say, “Here’s the final solution: end of story.” Instead, I
must restrict myself to explaining the most important principles that seem to
underlie all of the efficient combinatorial methods that I’ve encountered so far.

From the Library of Melissa Nuno



ptg999

PREFACE vii

At present I’ve accumulated more than twice as much raw material for Volume 4
as for all of Volumes 1–3 combined.

This sheer mass of material implies that the once-planned “Volume 4” must
actually become several physical volumes. You are now looking at Volume 4A.
Volumes 4B and 4C will exist someday, assuming that I’m able to remain healthy;
and (who knows?) there may also be Volumes 4D, 4E, . . . ; but surely not 4Z.

My plan is to go systematically through the files that I’ve amassed since 1962
and to tell the stories that I believe are still waiting to be told, to the best of
my ability. I can’t aspire to completeness, but I do want to give proper credit to
all of the pioneers who have been responsible for key ideas; so I won’t scrimp on
historical details. Furthermore, whenever I learn something that I think is likely
to remain important 50 years from now, something that can also be explained
elegantly in a paragraph or two, I can’t bear to leave it out. Conversely, difficult
material that requires a lengthy proof is beyond the scope of these books, unless
the subject matter is truly fundamental.

OK, it’s clear that the field of Combinatorial Algorithms is vast, and I can’t
cover it all. What are the most important things that I’m leaving out? My
biggest blind spot, I think, is geometry, because I’ve always been much better at
visualizing and manipulating algebraic formulas than objects in space. Therefore
I don’t attempt to deal in these books with combinatorial problems that are re-
lated to computational geometry, such as close packing of spheres, or clustering of
data points in n-dimensional Euclidean space, or even the Steiner tree problem in
the plane. More significantly, I tend to shy away from polyhedral combinatorics,
and from approaches that are based primarily on linear programming, integer
programming, or semidefinite programming. Those topics are treated well in
many other books on the subject, and they rely on geometrical intuition. Purely
combinatorial developments are easier for me to understand.

I also must confess a bias against algorithms that are efficient only in
an asymptotic sense, algorithms whose superior performance doesn’t begin to
“kick in” until the size of the problem exceeds the size of the universe. A great
many publications nowadays are devoted to algorithms of that kind. I can
understand why the contemplation of ultimate limits has intellectual appeal and
carries an academic cachet; but in The Art of Computer Programming I tend
to give short shrift to any methods that I would never consider using myself in
an actual program. (There are, of course, exceptions to this rule, especially with
respect to basic concepts in the core of the subject. Some impractical methods
are simply too beautiful and/or too insightful to be excluded; others provide
instructive examples of what not to do.)

Furthermore, as in earlier volumes of this series, I’m intentionally concen-
trating almost entirely on sequential algorithms, even though computers are
increasingly able to carry out activities in parallel. I’m unable to judge what
ideas about parallelism are likely to be useful five or ten years from now, let
alone fifty, so I happily leave such questions to others who are wiser than I.
Sequential methods, by themselves, already test the limits of my own ability to
discern what the artful programmers of tomorrow will want to know.

From the Library of Melissa Nuno



ptg999

viii PREFACE

The main decision that I needed to make when planning how to present this
material was whether to organize it by problems or by techniques. Chapter 5
in Volume 3, for example, was devoted to a single problem, the sorting of data
into order; more than two dozen techniques were applied to different aspects
of that problem. Combinatorial algorithms, by contrast, involve many different
problems, which tend to be attacked with a smaller repertoire of techniques.
I finally decided that a mixed strategy would work better than any pure ap-
proach. Thus, for example, these books treat the problem of finding shortest
paths in Section 7.3, and problems of connectivity in Section 7.4.1; but many
other sections are devoted to basic techniques, such as the use of Boolean algebra
(Section 7.1), backtracking (Section 7.2.2), matroid theory (Section 7.6), or
dynamic programming (Section 7.7). The famous Traveling Salesrep Problem,
and other classic combinatorial tasks related to covering, coloring, and packing,
have no sections of their own, but they come up several times in different places
as they are treated by different methods.

I’ve mentioned great progress in the art of combinatorial computing, but I
don’t mean to imply that all combinatorial problems have actually been tamed.
When the running time of a computer program goes ballistic, its programmers
shouldn’t expect to find a silver bullet for their needs in this book. The methods
described here will often work a great deal faster than the first approaches that
a programmer tries; but let’s face it: Combinatorial problems get huge very
quickly. We can even prove rigorously that a certain small, natural problem will
never have a feasible solution in the real world, although it is solvable in principle
(see the theorem of Stockmeyer and Meyer in Section 7.1.2). In other cases we
cannot prove as yet that no decent algorithm for a given problem exists, but
we know that such methods are unlikely, because any efficient algorithm would
yield a good way to solve thousands of other problems that have stumped the
world’s greatest experts (see the discussion of NP-completeness in Section 7.9).

Experience suggests that new combinatorial algorithms will continue to be
invented, for new combinatorial problems and for newly identified variations or
special cases of old ones; and that people’s appetite for such algorithms will also
continue to grow. The art of computer programming continually reaches new
heights when programmers are faced with challenges such as these. Yet today’s
methods are also likely to remain relevant.

Most of this book is self-contained, although there are frequent tie-ins with
the topics discussed in Volumes 1–3. Low-level details of machine language
programming have been covered extensively in those volumes, so the algorithms
in the present book are usually specified only at an abstract level, independent of
any machine. However, some aspects of combinatorial programming are heavily
dependent on low-level details that didn’t arise before; in such cases, all examples
in this book are based on the MMIX computer, which supersedes the MIX machine
that was defined in early editions of Volume 1. Details about MMIX appear in a
paperback supplement to that volume called The Art of Computer Programming,
Volume 1, Fascicle 1, containing Sections 1.3.1́ , 1.3.2́ , etc.; they’re also available
on the Internet, together with downloadable assemblers and simulators.

From the Library of Melissa Nuno



ptg999

PREFACE ix

Another downloadable resource, a collection of programs and data called The
Stanford GraphBase, is cited extensively in the examples of this book. Readers
are encouraged to play with it, in order to learn about combinatorial algorithms
in what I think will be the most efficient and most enjoyable way.

Incidentally, while writing the introductory material at the beginning of
Chapter 7, I was pleased to note that it was natural to mention some work of
my Ph.D. thesis advisor, Marshall Hall, Jr. (1910–1990), as well as some work
of his thesis advisor, Oystein Ore (1899–1968), as well as some work of his thesis
advisor, Thoralf Skolem (1887–1963). Skolem’s advisor, Axel Thue (1863–1922),
was already present in Chapter 6.

I’m immensely grateful to the hundreds of readers who have helped me to
ferret out numerous mistakes that I made in the early drafts of this volume, which
were originally posted on the Internet and subsequently printed in paperback
fascicles. In particular, the extensive comments of Thorsten Dahlheimer, Marc
van Leeuwen, and Udo Wermuth have been especially influential. But I fear that
other errors still lurk among the details collected here, and I want to correct them
as soon as possible. Therefore I will cheerfully award $2.56 to the first finder of
each technical, typographical, or historical error. The taocp webpage cited on
page iv contains a current listing of all corrections that have been reported to me.

Stanford, California D. E. K.
October 2010

In my preface to the first edition,
I begged the reader not to draw attention to errors.

I now wish I had not done so
and am grateful to the few readers who ignored my request.

— STUART SUTHERLAND, The International Dictionary of Psychology (1996)

Naturally, I am responsible for the remaining errors—
although, in my opinion, my friends could have caught a few more.

— CHRISTOS H. PAPADIMITRIOU, Computational Complexity (1994)

I like to work in a variety of fields
in order to spread my mistakes more thinly.

— VICTOR KLEE (1999)

A note on references. Several oft-cited journals and conference proceedings
have special code names, which appear in the Index and Glossary at the close of
this book. But the various kinds of IEEE Transactions are cited by including a
letter code for the type of transactions, in boldface preceding the volume number.
For example, ‘IEEE Trans. C-35’ means the IEEE Transactions on Computers,
volume 35. The IEEE no longer uses these convenient letter codes, but the codes
aren’t too hard to decipher: ‘EC’ once stood for “Electronic Computers,” ‘IT’
for “Information Theory,” ‘SE’ for “Software Engineering,” and ‘SP’ for “Signal
Processing,” etc.; ‘CAD’ meant “Computer-Aided Design of Integrated Circuits
and Systems.”

A cross-reference such as ‘exercise 7.10–00’ points to a future exercise in
Section 7.10 whose number is not yet known.

From the Library of Melissa Nuno



ptg999

x PREFACE

A note on notations. Simple and intuitive conventions for the algebraic rep-
resentation of mathematical concepts have always been a boon to progress, espe-
cially when most of the world’s researchers share a common symbolic language.
The current state of affairs in combinatorial mathematics is unfortunately a bit
of a mess in this regard, because the same symbols are occasionally used with
completely different meanings by different groups of people; some specialists who
work in comparatively narrow subfields have unintentionally spawned conflicting
symbolisms. Computer science — which interacts with large swaths of math-
ematics — needs to steer clear of this danger by adopting internally consistent
notations whenever possible. Therefore I’ve often had to choose among a number
of competing schemes, knowing that it will be impossible to please everyone.
I have tried my best to come up with notations that I believe will be best for the
future, often after many years of experimentation and discussion with colleagues,
often flip-flopping between alternatives until finding something that works well.
Usually it has been possible to find convenient conventions that other people
have not already coopted in contradictory ways.

Appendix B is a comprehensive index to all of the principal notations that
are used in the present book, inevitably including several that are not (yet?)
standard. If you run across a formula that looks weird and/or incomprehensible,
chances are fairly good that Appendix B will direct you to a page where my
intentions are clarified. But I might as well list here a few instances that you
might wish to watch for when you read this book for the first time:

• Hexadecimal constants are preceded by a number sign or hash mark. For
example, #123 means (123)16.
• The “monus” operation x .− y, sometimes called dot-minus or saturating

subtraction, yields max(0, x− y).
• The median of three numbers {x, y, z} is denoted by ⟨xyz⟩.
• A set such as {x}, which consists of a single element, is often denoted simply

by x in contexts such as X ∪ x or X \ x.
• If n is a nonnegative integer, the number of 1-bits in n’s binary representation

is νn. Furthermore, if n > 0, the leftmost and rightmost 1-bits of n are
respectively 2λn and 2ρn. For example, ν10 = 2, λ10 = 3, ρ10 = 1.
• The Cartesian product of graphs G and H is denoted by G H. For example,
Cm Cn denotes an m× n torus, because Cn denotes a cycle of n vertices.

From the Library of Melissa Nuno



ptg999

NOTES ON THE EXERCISES

The exercises in this set of books have been designed for self-study as well as
for classroom study. It is difficult, if not impossible, for anyone to learn a subject
purely by reading about it, without applying the information to specific problems
and thereby being encouraged to think about what has been read. Furthermore,
we all learn best the things that we have discovered for ourselves. Therefore the
exercises form a major part of this work; a definite attempt has been made to
keep them as informative as possible and to select problems that are enjoyable
as well as instructive.

In many books, easy exercises are found mixed randomly among extremely
difficult ones. A motley mixture is, however, often unfortunate because readers
like to know in advance how long a problem ought to take — otherwise they
may just skip over all the problems. A classic example of such a situation is
the book Dynamic Programming by Richard Bellman; this is an important,
pioneering work in which a group of problems is collected together at the end
of some chapters under the heading “Exercises and Research Problems,” with
extremely trivial questions appearing in the midst of deep, unsolved problems.
It is rumored that someone once asked Dr. Bellman how to tell the exercises
apart from the research problems, and he replied, “If you can solve it, it is an
exercise; otherwise it’s a research problem.”

Good arguments can be made for including both research problems and
very easy exercises in a book of this kind; therefore, to save the reader from
the possible dilemma of determining which are which, rating numbers have been
provided to indicate the level of difficulty. These numbers have the following
general significance:

Rating Interpretation

00 An extremely easy exercise that can be answered immediately if the
material of the text has been understood; such an exercise can almost
always be worked “in your head,” unless you’re multitasking.

10 A simple problem that makes you think over the material just read, but
is by no means difficult. You should be able to do this in one minute at
most; pencil and paper may be useful in obtaining the solution.

20 An average problem that tests basic understanding of the text mate-
rial, but you may need about fifteen or twenty minutes to answer it
completely. Maybe even twenty-five.

xi

From the Library of Melissa Nuno



ptg999

xii NOTES ON THE EXERCISES

30 A problem of moderate difficulty and/or complexity; this one may
involve more than two hours’ work to solve satisfactorily, or even more
if the TV is on.

40 Quite a difficult or lengthy problem that would be suitable for a term
project in classroom situations. A student should be able to solve the
problem in a reasonable amount of time, but the solution is not trivial.

50 A research problem that has not yet been solved satisfactorily, as far
as the author knew at the time of writing, although many people have
tried. If you have found an answer to such a problem, you ought to
write it up for publication; furthermore, the author of this book would
appreciate hearing about the solution as soon as possible (provided that
it is correct).

By interpolation in this “logarithmic” scale, the significance of other rating
numbers becomes clear. For example, a rating of 17 would indicate an exercise
that is a bit simpler than average. Problems with a rating of 50 that are
subsequently solved by some reader may appear with a 40 rating in later editions
of the book, and in the errata posted on the Internet (see page iv).

The remainder of the rating number divided by 5 indicates the amount of
detailed work required. Thus, an exercise rated 24 may take longer to solve
than an exercise that is rated 25, but the latter will require more creativity. All
exercises with ratings of 46 or more are open problems for future research, rated
according to the number of different attacks that they’ve resisted so far.

The author has tried earnestly to assign accurate rating numbers, but it is
difficult for the person who makes up a problem to know just how formidable it
will be for someone else to find a solution; and everyone has more aptitude for
certain types of problems than for others. It is hoped that the rating numbers
represent a good guess at the level of difficulty, but they should be taken as
general guidelines, not as absolute indicators.

This book has been written for readers with varying degrees of mathematical
training and sophistication; as a result, some of the exercises are intended only for
the use of more mathematically inclined readers. The rating is preceded by an M
if the exercise involves mathematical concepts or motivation to a greater extent
than necessary for someone who is primarily interested only in programming
the algorithms themselves. An exercise is marked with the letters “HM” if its
solution necessarily involves a knowledge of calculus or other higher mathematics
not developed in this book. An “HM” designation does not necessarily imply
difficulty.

Some exercises are preceded by an arrowhead, “x”; this designates prob-
lems that are especially instructive and especially recommended. Of course, no
reader/student is expected to work all of the exercises, so those that seem to
be the most valuable have been singled out. (This distinction is not meant to
detract from the other exercises!) Each reader should at least make an attempt
to solve all of the problems whose rating is 10 or less; and the arrows may help
to indicate which of the problems with a higher rating should be given priority.

From the Library of Melissa Nuno



ptg999

NOTES ON THE EXERCISES xiii

Several sections have more than 100 exercises. How can you find your way
among so many? In general the sequence of exercises tends to follow the sequence
of ideas in the main text. Adjacent exercises build on each other, as in the
pioneering problem books of Pólya and Szegő. The final exercises of a section
often involve the section as a whole, or introduce supplementary topics.

Solutions to most of the exercises appear in the answer section. Please use
them wisely; do not turn to the answer until you have made a genuine effort to
solve the problem by yourself, or unless you absolutely do not have time to work
this particular problem. After getting your own solution or giving the problem a
decent try, you may find the answer instructive and helpful. The solution given
will often be quite short, and it will sketch the details under the assumption
that you have earnestly tried to solve it by your own means first. Sometimes the
solution gives less information than was asked; often it gives more. It is quite
possible that you may have a better answer than the one published here, or you
may have found an error in the published solution; in such a case, the author
will be pleased to know the details. Later printings of this book will give the
improved solutions together with the solver’s name where appropriate.

When working an exercise you may generally use the answers to previous
exercises, unless specifically forbidden from doing so. The rating numbers have
been assigned with this in mind; thus it is possible for exercise n + 1 to have a
lower rating than exercise n, even though it includes the result of exercise n as
a special case.

Summary of codes:

x Recommended
M Mathematically oriented
HM Requiring “higher math”

00 Immediate
10 Simple (one minute)
20 Medium (quarter hour)
30 Moderately hard
40 Term project
50 Research problem

EXERCISES
x 1. [00 ] What does the rating “M15 ” mean?

2. [10 ] Of what value can the exercises in a textbook be to the reader?
3. [HM45 ] Prove that every simply connected, closed 3-dimensional manifold is topo-

logically equivalent to a 3-dimensional sphere.

Art derives a considerable part of its beneficial exercise
from flying in the face of presumptions.

— HENRY JAMES, “The Art of Fiction” (1884)

From the Library of Melissa Nuno



ptg999

I am grateful to all my friends,
and record here and now my most especial appreciation

to those friends who, after a decent interval,
stopped asking me, “How’s the book coming?”

— PETER J. GOMES, The Good Book (1996)

I at last deliver to the world a Work which I have long promised,
and of which, I am afraid, too high expectations have been raised.

The delay of its publication must be imputed, in a considerable degree,
to the extraordinary zeal which has been shown by distinguished persons

in all quarters to supply me with additional information.
— JAMES BOSWELL, The Life of Samuel Johnson, LL.D. (1791)

The author is especially grateful to the Addison–Wesley Publishing Company
for its patience in waiting a full decade for this manuscript

from the date the contract was signed.
— FRANK HARARY, Graph Theory (1969)

The average boy who abhors square root or algebra
finds delight in working puzzles which involve similar principles,

and may be led into a course of study
which would develop the mathematical and inventive bumps

in a way to astonish the family phrenologist.
— SAM LOYD, The World of Puzzledom (1896)

Bitte ein Bit!
— Slogan of Bitburger Brauerei (1951)

xiv

From the Library of Melissa Nuno



ptg999

CONTENTS

Chapter 7 — Combinatorial Searching . . . . . . . . . . . . . . . . 1

7.1. Zeros and Ones . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.1.1. Boolean Basics . . . . . . . . . . . . . . . . . . . . . . . 47
7.1.2. Boolean Evaluation . . . . . . . . . . . . . . . . . . . . . 96
7.1.3. Bitwise Tricks and Techniques . . . . . . . . . . . . . . . . 133
7.1.4. Binary Decision Diagrams . . . . . . . . . . . . . . . . . . 202

7.2. Generating All Possibilities . . . . . . . . . . . . . . . . . . . . 281
7.2.1. Generating Basic Combinatorial Patterns . . . . . . . . . . . 281

7.2.1.1. Generating all n-tuples . . . . . . . . . . . . . . . 281
7.2.1.2. Generating all permutations . . . . . . . . . . . . . 319
7.2.1.3. Generating all combinations . . . . . . . . . . . . . 355
7.2.1.4. Generating all partitions . . . . . . . . . . . . . . . 390
7.2.1.5. Generating all set partitions . . . . . . . . . . . . . 415
7.2.1.6. Generating all trees . . . . . . . . . . . . . . . . . 440
7.2.1.7. History and further references . . . . . . . . . . . . 486

Answers to Exercises . . . . . . . . . . . . . . . . . . . . . . . . 514

Appendix A — Tables of Numerical Quantities . . . . . . . . . . . . 818

1. Fundamental Constants (decimal) . . . . . . . . . . . . . . 818
2. Fundamental Constants (hexadecimal) . . . . . . . . . . . . 819
3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers . . . 820

Appendix B — Index to Notations . . . . . . . . . . . . . . . . . . 822

Appendix C — Index to Algorithms and Theorems . . . . . . . . . . 828

Appendix D — Index to Combinatorial Problems . . . . . . . . . . . 830

Index and Glossary . . . . . . . . . . . . . . . . . . . . . . . . . 834

xv

From the Library of Melissa Nuno



ptg999

From the Library of Melissa Nuno



ptg999

CHAPTER SEVEN

COMBINATORIAL SEARCHING

You shall seeke all day ere you finde them,
& when you have them, they are not worth the search.

— BASSANIO, in The Merchant of Venice (Act I, Scene 1, Line 117)

Amid the action and reaction of so dense a swarm of humanity,
every possible combination of events may be expected to take place,

and many a little problem will be presented which may be striking and bizarre.
— SHERLOCK HOLMES, in The Adventure of the Blue Carbuncle (1892)

The field of combinatorial algorithms is too vast to cover
in a single paper or even in a single book.

— ROBERT E. TARJAN (1976)

While jostling against all manner of people
it has been impressed upon my mind that the successful ones

are those who have a natural faculty for solving puzzles.
Life is full of puzzles, and we are called upon

to solve such as fate throws our way.
— SAM LOYD, JR. (1926)

Combinatorics is the study of the ways in which discrete objects can be
arranged into various kinds of patterns. For example, the objects might be 2n
numbers {1, 1, 2, 2, . . . , n, n}, and we might want to place them in a row so that
exactly k numbers occur between the two appearances of each digit k. When
n = 3 there is essentially only one way to arrange such “Langford pairs,” namely
231213 (and its left-right reversal); similarly, there’s also a unique solution when
n = 4. Many other types of combinatorial patterns are discussed below.

Five basic types of questions typically arise when combinatorial problems
are studied, some more difficult than others.

i) Existence: Are there any arrangements X that conform to the pattern?
ii) Construction: If so, can such an X be found quickly?
iii) Enumeration: How many different arrangements X exist?
iv) Generation: Can all arrangements X1, X2, . . . be visited systematically?
v) Optimization: What arrangements maximize or minimize f(X), given an

objective function f?
Each of these questions turns out to be interesting with respect to Langford pairs.

1

From the Library of Melissa Nuno



ptg999

2 COMBINATORIAL SEARCHING 7

For example, consider the question of existence. Trial and error quickly
reveals that, when n = 5, we cannot place {1, 1, 2, 2, . . . , 5, 5} properly into ten
positions. The two 1s must both go into even-numbered slots, or both into odd-
numbered slots; similarly, the 3s and 5s must choose between two evens or two
odds; but the 2s and 4s use one of each. Thus we can’t fill exactly five slots of
each parity. This reasoning also proves that the problem has no solution when
n = 6, or in general whenever the number of odd values in {1, 2, . . . , n} is odd.

In other words, Langford pairings can exist only when n = 4m−1 or n = 4m,
for some integer m. Conversely, when n does have this form, Roy O. Davies has
found an elegant way to construct a suitable placement (see exercise 1).

How many essentially different pairings, Ln, exist? Lots, when n grows:

L3 = 1;
L7 = 26;

L11 = 17,792;
L15 = 39,809,640;

L19 = 256,814,891,280;
L23 = 3,799,455,942,515,488;

L4 = 1;
L8 = 150;

L12 = 108,144;
L16 = 326,721,800;

L20 = 2,636,337,861,200;
L24 = 46,845,158,056,515,936.

(1)

[The values of L23 and L24 were determined by M. Krajecki, C. Jaillet, and A. Bui
in 2004 and 2005; see Studia Informatica Universalis 4 (2005), 151–190.] A seat-
of-the-pants calculation suggests that Ln might be roughly of order (4n/e3)n+1/2

when it is nonzero (see exercise 5); and in fact this prediction turns out to be
basically correct in all known cases. But no simple formula is apparent.

The problem of Langford arrangements is a simple special case of a general
class of combinatorial challenges called exact cover problems. In Section 7.2.2.1
we shall study an algorithm called “dancing links,” which is a convenient way to
generate all solutions to such problems. When n = 16, for example, that method
needs to perform only about 3200 memory accesses for each Langford pair
arrangement that it finds. Thus the value of L16 can be computed in a reasonable
amount of time by simply generating all of the pairings and counting them.

Notice, however, that L24 is a huge number — roughly 5 × 1016, or about
1500 MIP-years. (Recall that a “MIP-year” is the number of instructions exe-
cuted per year by a machine that carries out a million instructions per second,
namely 31,556,952,000,000.) Therefore it’s clear that the exact value of L24
was determined by some technique that did not involve generating all of the
arrangements. Indeed, there is a much, much faster way to compute Ln, using
polynomial algebra. The instructive method described in exercise 6 needs O(4nn)
operations, which may seem inefficient; but it beats the generate-and-count
method by a whopping factor of order ((n/e3)n−1/2), and even when n = 16
it runs about 20 times faster. On the other hand, the exact value of L100 will
probably never be known, even as computers become faster and faster.

We can also consider Langford pairings that are optimum in various ways.
For example, it’s possible to arrange sixteen pairs of weights {1, 1, 2, 2, . . . , 16, 16}
that satisfy Langford’s condition and have the additional property of being “well-

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 3

balanced,” in the sense that they won’t tip a balance beam when they are placed
in the appropriate order:

16 6 9 15 2 3 8 2 6 3 1310 9 1214 8 11 16 1 15 1 5 10 7 13 4 12 5 11 14 4 7 . (2)

In other words, 15.5 ·16+14.5 ·6+ · · ·+0.5 ·8 = 0.5 ·11+ · · ·+14.5 ·4+15.5 ·7; and
in this particular example we also have another kind of balance, 16+6+ · · ·+8 =
11 + 16 + · · ·+ 7, hence also 16 ·16 + 15 ·6 + · · ·+ 1 ·8 = 1 ·11 + · · ·+ 15 ·4 + 16 ·7.

Moreover, the arrangement in (2) has minimum width among all Langford
pairings of order 16: The connecting lines at the bottom of the diagram show
that no more than seven pairs are incomplete at any point, as we read from left
to right; and one can show that a width of six is impossible. (See exercise 7.)

What arrangements a1a2 . . . a32 of {1, 1, . . . , 16, 16} are the least balanced,
in the sense that

32
k=1 kak is maximized? The maximum possible value turns

out to be 5268. One such pairing — there are 12,016 of them — is

2 3 4 2 1 3 1 4 16 13 15 5 14 7 9 6 11 5 12 10 8 7 6 13 9 16 15 14 11 8 10 12. (3)

A more interesting question is to ask for the Langford pairings that are
smallest and largest in lexicographic order. The answers for n = 24 are
{abacbdecfgdoersfpgqtuwxvjklonhmirpsjqkhltiunmwvx ,
xvwsquntkigrdapaodgiknqsvxwutmrpohljcfbecbhmfejl} (4)

if we use the letters a, b, . . . , w, x instead of the numbers 1, 2, . . . , 23, 24.
We shall discuss many techniques for combinatorial optimization in later sec-

tions of this chapter. Our goal, of course, will be to solve such problems without
examining more than a tiny portion of the space of all possible arrangements.

Orthogonal latin squares. Let’s look back for a moment at the early days of
combinatorics. A posthumous edition of Jacques Ozanam’s Recreations math-
ematiques et physiques (Paris: 1725) included an amusing puzzle in volume 4,
page 434: “Take all the aces, kings, queens, and jacks from an ordinary deck of
playing cards and arrange them in a square so that each row and each column
contains all four values and all four suits.” Can you do it? Ozanam’s solution,
shown in Fig. 1 on the next page, does even more: It exhibits the full panoply
of values and of suits also on both main diagonals. (Please don’t turn the page
until you’ve given this problem a try.)

By 1779 a similar puzzle was making the rounds of St. Petersburg, and it
came to the attention of the great mathematician Leonhard Euler. “Thirty-six
officers of six different ranks, taken from six different regiments, want to march
in a 6× 6 formation so that each row and each column will contain one officer of
each rank and one of each regiment. How can they do it?” Nobody was able to

From the Library of Melissa Nuno



ptg999

4 COMBINATORIAL SEARCHING 7

Fig. 1. Disorder in the court cards:
No agreement in any line of four.
(This configuration is one of many
ways to solve a popular eighteenth-
century problem.)

find a satisfactory marching order. So Euler decided to resolve the riddle — even
though he had become nearly blind in 1771 and was dictating all of his work
to assistants. He wrote a major paper on the subject [eventually published in
Verhandelingen uitgegeven door het Zeeuwsch Genootschap der Wetenschappen
te Vlissingen 9 (1782), 85–239], in which he constructed suitable arrangements
for the analogous task with n ranks and n regiments when n = 1, 3, 4, 5, 7, 8,
9, 11, 12, 13, 15, 16, . . . ; only the cases with nmod 4 = 2 eluded him.

There’s obviously no solution when n = 2. But Euler was stumped when n =
6, after having examined a “very considerable number” of square arrangements
that didn’t work. He showed that any actual solution would lead to many others
that look different, and he couldn’t believe that all such solutions had escaped
his attention. Therefore he said, “I do not hesitate to conclude that one cannot
produce a complete square of 36 cells, and that the same impossibility extends
to the cases n = 10, n = 14 . . . in general to all oddly even numbers.”

Euler named the 36 officers aα, aβ, aγ, aδ, aϵ, aζ, bα, bβ, bγ, bδ, bϵ, bζ,
cα, cβ, cγ, cδ, cϵ, cζ, dα, dβ, dγ, dδ, dϵ, dζ, eα, eβ, eγ, eδ, eϵ, eζ, fα, fβ, fγ,
fδ, fϵ, fζ, based on their regiments and ranks. He observed that any solution
would amount to having two separate squares, one for Latin letters and another
for Greek. Each of those squares is supposed to have distinct entries in rows and
columns; so he began by studying the possible configurations for {a, b, c, d, e, f},
which he called Latin squares. A Latin square can be paired up with a Greek
square to form a “Græco-Latin square” only if the squares are orthogonal to each
other, meaning that no (Latin, Greek) pair of letters can be found together in
more than one place when the squares are superimposed. For example, if we let
a = A, b = K, c = Q, d = J, α = ♣, β = ♠, γ = ♢, and δ = ♡, Fig. 1 is equivalent

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 5

to the Latin, Greek, and Græco-Latin squares
d a b c
c b a d
a d c b
b c d a

 ,


γ δ β α
β α γ δ
α β δ γ
δ γ α β

 , and


dγ aδ bβ cα
cβ bα aγ dδ
aα dβ cδ bγ
bδ cγ dα aβ

 . (5)

Of course we can use any n distinct symbols in an n×n Latin square; all that
matters is that no symbol occurs twice in any row or twice in any column. So
we might as well use numeric values {0, 1, . . . , n−1} for the entries. Furthermore
we’ll just refer to “latin squares” (with a lowercase “l”), instead of categorizing
a square as either Latin or Greek, because orthogonality is a symmetric relation.

Euler’s assertion that two 6 × 6 latin squares cannot be orthogonal was
verified by Thomas Clausen, who reduced the problem to an examination of 17
fundamentally different cases, according to a letter from H. C. Schumacher to
C. F. Gauss dated 10 August 1842. But Clausen did not publish his analysis.
The first demonstration to appear in print was by G. Tarry [Comptes rendus,
Association française pour l’avancement des sciences 29, part 2 (1901), 170–203],
who discovered in his own way that 6× 6 latin squares can be classified into 17
different families. (In Section 7.2.3 we shall study how to decompose a problem
into combinatorially inequivalent classes of arrangements.)

Euler’s conjecture about the remaining cases n = 10, n = 14, . . . was
“proved” three times, by J. Petersen [Annuaire des mathématiciens (Paris: 1902),
413–427], by P. Wernicke [Jahresbericht der Deutschen Math.-Vereinigung 19
(1910), 264–267], and by H. F. MacNeish [Annals of Math. (2) 23 (1922), 221–
227]. Flaws in all three arguments became known, however; and the question
was still unsettled when computers became available many years later. One of
the very first combinatorial problems to be tackled by machine was therefore the
enigma of 10× 10 Græco-Latin squares: Do they exist or not?

In 1957, L. J. Paige and C. B. Tompkins programmed the SWAC computer to
search for a counterexample to Euler’s prediction. They selected one particular
10×10 latin square “almost at random,” and their program tried to find another
square that would be orthogonal to it. But the results were discouraging, and
they decided to shut the machine off after five hours. Already the program
had generated enough data for them to predict that at least 4.8× 1011 hours of
computer time would be needed to finish the run!

Shortly afterwards, three mathematicians made a breakthrough that put
latin squares onto page one of major world newspapers: R. C. Bose, S. S. Shri-
khande, and E. T. Parker found a remarkable series of constructions that yield
orthogonal n×n squares for all n > 6 [Proc. Nat. Acad. Sci. 45 (1959), 734–737,
859–862; Canadian J. Math. 12 (1960), 189–203]. Thus, after resisting attacks
for 180 years, Euler’s conjecture turned out to be almost entirely wrong.

Their discovery was made without computer help. But Parker worked for
UNIVAC, and he soon brought programming skills into the picture by solving the
problem of Paige and Tompkins in less than an hour, on a UNIVAC 1206 Military
Computer. [See Proc. Symp. Applied Math. 10 (1960), 71–83; 15 (1963), 73–81.]

From the Library of Melissa Nuno



ptg999

6 COMBINATORIAL SEARCHING 7

Let’s take a closer look at what the earlier programmers did, and how
Parker dramatically trumped their approach. Paige and Tompkins began with
the following 10× 10 square L and its unknown orthogonal mate(s) M :

L =



0 1 2 3 4 5 6 7 8 9
1 8 3 2 5 4 7 6 9 0
2 9 5 6 3 0 8 4 7 1
3 7 0 9 8 6 1 5 2 4
4 6 7 5 2 9 0 8 1 3
5 0 9 4 7 8 3 1 6 2
6 5 4 7 1 3 2 9 0 8
7 4 1 8 0 2 9 3 5 6
8 3 6 0 9 1 5 2 4 7
9 2 8 1 6 7 4 0 3 5


and M =



0 ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
1 ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
2 ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
3 ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
4 ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
5 ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
6 ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
7 ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
8 ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣
9 ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣ ␣


. (6)

We can assume without loss of generality that the rows of M begin with 0, 1,
. . . , 9, as shown. The problem is to fill in the remaining 90 blank entries, and the
original SWAC program proceeded from top to bottom, left to right. The top left
␣ can’t be filled with 0, since 0 has already occurred in the top row of M. And it
can’t be 1 either, because the pair (1, 1) already occurs at the left of the next row
in (L,M). We can, however, tentatively insert a 2. The digit 1 can be placed
next; and pretty soon we find the lexicographically smallest top row that might
work for M, namely 0214365897. Similarly, the smallest rows that fit below
0214365897 are 1023456789 and 2108537946; and the smallest legitimate row
below them is 3540619278. Now, unfortunately, the going gets tougher: There’s
no way to complete another row without coming into conflict with a previous
choice. So we change 3540619278 to 3540629178 (but that doesn’t work either),
then to 3540698172, and so on for several more steps, until finally 3546109278
can be followed by 4397028651 before we get stuck again.

In Section 7.2.3, we’ll study ways to estimate the behavior of such searches,
without actually performing them. Such estimates tell us in this case that
the Paige–Tompkins method essentially traverses an implicit search tree that
contains about 2.5× 1018 nodes. Most of those nodes belong to only a few levels
of the tree; more than half of them deal with choices on the right half of the
sixth row of M, after about 50 of the 90 blanks have been tentatively filled in.
A typical node of the search tree probably requires about 75 mems (memory
accesses) for processing, to check validity. Therefore the total running time on a
modern computer would be roughly the time needed to perform 2× 1020 mems.

Parker, on the other hand, went back to the method that Euler had originally
used to search for orthogonal mates in 1779. First he found all of the so-called
transversals of L, namely all ways to choose some of its elements so that there’s
exactly one element in each row, one in each column, and one of each value. For
example, one transversal is 0859734216, in Euler’s notation, meaning that we
choose the 0 in column 0, the 8 in column 1, . . . , the 6 in column 9. Each transver-
sal that includes the k in L’s leftmost column represents a legitimate way to place
the ten k’s into square M . The task of finding transversals is, in fact, rather
easy, and the given matrix L turns out to have exactly 808 of them; there are
respectively (79, 96, 76, 87, 70, 84, 83, 75, 95, 63) transversals for k = (0, 1, . . . , 9).

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 7

Once the transversals are known, we’re left with an exact cover problem of
10 stages, which is much simpler than the original 90-stage problem in (6). All we
need to do is cover the square with ten transversals that don’t intersect — because
every such set of ten is equivalent to a latin square M that is orthogonal to L.

The particular square L in (6) has, in fact, exactly one orthogonal mate:

0 1 2 3 4 5 6 7 8 9
1 8 3 2 5 4 7 6 9 0
2 9 5 6 3 0 8 4 7 1
3 7 0 9 8 6 1 5 2 4
4 6 7 5 2 9 0 8 1 3
5 0 9 4 7 8 3 1 6 2
6 5 4 7 1 3 2 9 0 8
7 4 1 8 0 2 9 3 5 6
8 3 6 0 9 1 5 2 4 7
9 2 8 1 6 7 4 0 3 5


⊥



0 2 8 5 9 4 7 3 6 1
1 7 4 9 3 6 5 0 2 8
2 5 6 4 8 7 0 1 9 3
3 6 9 0 4 5 8 2 1 7
4 8 1 7 5 3 6 9 0 2
5 1 7 8 0 2 9 4 3 6
6 9 0 2 7 1 3 8 4 5
7 3 5 1 2 0 4 6 8 9
8 0 2 3 6 9 1 7 5 4
9 4 3 6 1 8 2 5 7 0


. (7)

The dancing links algorithm finds it, and proves its uniqueness, after doing only
about 1.7× 108 mems of computation, given the 808 transversals. Furthermore,
the cost of the transversal-finding phase, about 5 million mems, is negligible by
comparison. Thus the original running time of 2× 1020 mems — which once was
regarded as the inevitable cost of solving a problem for which there are 1090 ways
to fill in the blanks — has been reduced by a further factor of more than 1012(!).

We will see later that advances have also been made in methods for solving
90-level problems like (6). Indeed, (6) turns out to be representable directly
as an exact cover problem (see exercise 17), which the dancing links procedure
of Section 7.2.2.1 solves after expending only 1.3 × 1011 mems. Even so, the
Euler–Parker approach remains about a thousand times better than the Paige–
Tompkins approach. By “factoring” the problem into two separate phases, one
for transversal-finding and one for transversal-combining, Euler and Parker es-
sentially reduced the computational cost from a product, T1T2, to a sum, T1+T2.

The moral of this story is clear: Combinatorial problems might confront us
with a huge universe of possibilities, yet we shouldn’t give up too easily. A single
good idea can reduce the amount of computation by many orders of magnitude.

Puzzles versus the real world. Many of the combinatorial problems we shall
study in this chapter, like Langford’s problem of pairs or Ozanam’s problem
of the sixteen honor cards, originated as amusing puzzles or “brain twisters.”
Some readers might be put off by this emphasis on recreational topics, which
they regard as a frivolous waste of time. Shouldn’t computers really be doing
useful work? And shouldn’t textbooks about computers be primarily concerned
with significant applications to industry and/or world progress?

Well, the author of the textbook you are reading has absolutely no objections
to useful work and human progress. But he believes strongly that a book such as
this should stress methods of problem solving, together with mathematical ideas
and models that help to solve many different problems, rather than focusing on
the reasons why those methods and models might be useful. We shall learn many
beautiful and powerful ways to attack combinatorial problems, and the elegance

From the Library of Melissa Nuno



ptg999

8 COMBINATORIAL SEARCHING 7

of those methods will be our main motivation for studying them. Combinatorial
challenges pop up everywhere, and new ways to apply the techniques discussed
in this chapter arise every day. So let’s not limit our horizons by attempting to
catalog in advance what the ideas are good for.

For example, it turns out that orthogonal latin squares are enormously
useful, particularly in the design of experiments. Already in 1788, François
Cretté de Palluel used a 4×4 latin square to study what happens when sixteen
sheep — four each from four different breeds — were fed four different diets and
harvested at four different times. [Mémoires d’Agriculture (Paris: Société Royale
d’Agriculture, trimestre d’été, 1788), 17–23.] The latin square allowed him to do
this with 16 sheep instead of 64; with a Græco-Latin square he could also have
varied another parameter by trying, say, four different quantities of food or four
different grazing paradigms.

But if we had focused our discussion on his approach to animal husbandry,
we might well have gotten bogged down in details about breeding, about root
vegetables versus grains and the costs of growing them, etc. Readers who aren’t
farmers might therefore have decided to skip the whole topic, even though latin
square designs apply to a wide range of studies. (Think about testing five kinds
of pills, on patients in five stages of some disease, five age brackets, and five
weight groups.) Moreover, a concentration on experimental design could lead
readers to miss the fact that latin squares also have important applications to
discrete geometry and error-correcting codes (see exercises 18–24).

Even the topic of Langford pairing, which seems at first to be purely recre-
ational, turns out to have practical importance. T. Skolem used Langford se-
quences to construct Steiner triple systems, which we have applied to database
queries in Section 6.5 [see Math. Scandinavica 6 (1958), 273–280]; and in the
1960s, E. J. Groth of Motorola Corporation applied Langford pairs to the design
of circuits for multiplication. Furthermore, the algorithms that efficiently find
Langford pairs and latin square transversals, such as the method of dancing links,
apply to exact cover problems in general; and the problem of exact covering has
great relevance to crucial problems such as the equitable apportionment of voter
precincts to electoral districts, etc.

The applications are not the most important thing, and neither are the
puzzles. Our primary goal is rather to get basic concepts into our brains, like
the notions of latin squares and exact covering. Such notions give us the building
blocks, vocabulary, and insights that tomorrow’s problems will need.

Still, it’s foolish to discuss problem solving without actually solving any
problems. We need good problems to stimulate our creative juices, to light up
our grey cells in a more or less organized fashion, and to make the basic concepts
familiar. Mind-bending puzzles are often ideal for this purpose, because they can
be presented in a few words, needing no complicated background knowledge.

Václav Havel once remarked that the complexities of life are vast: “There
is too much to know. . . We have to abandon the arrogant belief that the world
is merely a puzzle to be solved, a machine with instructions for use waiting to
be discovered, a body of information to be fed into a computer.” He called

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 9

for an increased sense of justice and responsibility; for taste, courage, and
compassion. His words were filled with great wisdom. Yet thank goodness we
do also have puzzles that can be solved! Puzzles deserve to be counted among
the great pleasures of life, to be enjoyed in moderation like all other treats.

Of course, Langford and Ozanam directed their puzzles to human beings, not
to computers. Aren’t we missing the point if we merely shuffle such questions off
to machines, to be solved by brute force instead of by rational thought? George
Brewster, writing to Martin Gardner in 1963, expressed a widely held view as
follows: “Feeding a recreational puzzle into a computer is no more than a step
above dynamiting a trout stream. Succumbing to instant recreation.”

Yes, but that view misses another important point: Simple puzzles often
have generalizations that go beyond human ability and arouse our curiosity. The
study of those generalizations often suggests instructive methods that apply to
numerous other problems and have surprising consequences. Indeed, many of the
key techniques that we shall study were born when people were trying to solve
various puzzles. While writing this chapter, the author couldn’t help relishing
the fact that puzzles are now more fun than ever, as computers get faster and
faster, because we keep getting more powerful dynamite to play with. [Further
comments appear in the author’s essay, “Are toy problems useful?”, originally
written in 1976; see Selected Papers on Computer Science (1996), 169–183.]

Puzzles do have the danger that they can be too elegant. Good puzzles tend
to be mathematically clean and well-structured, but we also need to learn how
to deal systematically with the messy, chaotic, organic stuff that surrounds us
every day. Indeed, some computational techniques are important chiefly because
they provide powerful ways to cope with such complexities. That is why, for
example, the arcane rules of library-card alphabetization were presented at the
beginning of Chapter 5, and an actual elevator system was discussed at length
to illustrate simulation techniques in Section 2.2.5.

A collection of programs and data called the Stanford GraphBase (SGB) has
been prepared so that experiments with combinatorial algorithms can readily be
performed on a variety of real-world examples. SGB includes, for example, data
about American highways, and an input-output model of the U.S. economy; it
records the casts of characters in Homer’s Iliad, Tolstoy’s Anna Karenina, and
several other novels; it encapsulates the structure of Roget’s Thesaurus of 1879;
it documents hundreds of college football scores; it specifies the gray-value pixels
of Leonardo da Vinci’s Gioconda (Mona Lisa). And perhaps most importantly,
SGB contains a collection of five-letter words, which we shall discuss next.
The five-letter words of English. Many of the examples in this chapter will
be based on the following list of five-letter words:
aargh, abaca, abaci, aback, abaft, abase, abash, . . . , zooms, zowie. (8)

(There are 5757 words altogether — too many to display here; but those that are
missing can readily be imagined.) It’s a personal list, collected by the author
between 1972 and 1992, beginning when he realized that such words would make
ideal data for testing many kinds of combinatorial algorithms.

From the Library of Melissa Nuno



ptg999

10 COMBINATORIAL SEARCHING 7

The list has intentionally been restricted to words that are truly part of the
English language, in the sense that the author has encountered them in actual
use. Unabridged dictionaries contain thousands of entries that are much more
esoteric, like aalii, abamp, . . . , zymin, and zyxst; words like that are useful
primarily to Scrabble R⃝ players. But unfamiliar words tend to spoil the fun
for anybody who doesn’t know them. Therefore, for twenty years, the author
systematically took note of all words that seemed right for the expository goals
of The Art of Computer Programming.

Finally it was necessary to freeze the collection, in order to have a fixed
point for reproducible experiments. The English language will always be evolv-
ing, but the 5757 SGB words will therefore always stay the same — even though
the author has been tempted at times to add a few words that he didn’t know in
1992, such as chads, stent, blogs, ditzy, phish, bling, and possibly tetch.
No; noway. The time for any changes to SGB has long since ended: finis.

The following Glossary is intended to contain all well-known English words
. . . which may be used in good Society, and which can serve as Links.

. . . There must be a stent to the admission of spick words.

— LEWIS CARROLL, Doublets: A Word-Puzzle (1879)

If there is such a verb as to tetch, Mr. Lillywaite tetched.

— ROBERT BARNARD, Corpse in a Gilded Cage (1984)

Proper names like Knuth are not considered to be legitimate words. But
gauss and hardy are valid, because “gauss” is a unit of magnetic induction and
“hardy” is hardy. In fact, SGB words are composed entirely of ordinary lowercase
letters; the list contains no hyphenated words, contractions, or terms like blasé
that require an accent. Thus each word can also be regarded as a vector, which
has five components in the range [0 . . 26). In the vector sense, the words yucca
and abuzz are furthest apart: The Euclidean distance between them is

∥(24, 20, 2, 2, 0)− (0, 1, 20, 25, 25)∥2 =


242 + 192 + 182 + 232 + 252 =
√

2415.

The entire Stanford GraphBase, including all of its programs and data sets,
is easy to download from the author’s website (see page iv). And the list of all
SGB words is even easier to obtain, because it is in the file ‘sgb-words.txt’ at
the same place. That file contains 5757 lines with one word per line, beginning
with ‘which’ and ending with ‘pupal’. The words appear in a default order,
corresponding to frequency of usage; for example, the words of rank 1000, 2000,
3000, 4000, and 5000 are respectively ditch, galls, visas, faker, and pismo.
The notation ‘WORDS(n)’ will be used in this chapter to stand for the n most
common words, according to this ranking.

Incidentally, five-letter words include many plurals of four-letter words, and
it should be noted that no Victorian-style censorship was done. Potentially offen-
sive vocabulary has been expurgated from The Official Scrabble R⃝ Players Dic-
tionary, but not from the SGB. One way to ensure that semantically unsuitable

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 11

terms will not appear in a professional paper based on the SGB wordlist is to
restrict consideration to WORDS(n) where n is, say, 3000.

Exercises 26–37 below can be used as warmups for initial explorations of the
SGB words, which we’ll see in many different combinatorial contexts throughout
this chapter. For example, while covering problems are still on our minds, we
might as well note that the four words ‘third flock began jumps’ cover 20 of
the first 21 letters of the alphabet. Five words can, however, cover at most 24
different letters, as in {becks, fjord, glitz, nymph, squaw}— unless we resort to
a rare non-SGB word like waqfs (Islamic endowments), which can be combined
with {gyved, bronx, chimp, klutz} to cover 25.

Simple words from WORDS(400) suffice to make a word square:

class
light
agree
sheep
steps

. (9)

We need to go almost to WORDS(3000), however, to obtain a word cube,

types
yeast
pasta
ester
start

yeast
earth
armor
stove
three

pasta
armor
smoke
token
arena

ester
stove
token
event
rents

start
three
arena
rents
tease

, (10)

in which every 5 × 5 “slice” is a word square. With a simple extension of the
basic dancing links algorithm (see Section 7.2.2.2), one can show after performing
about 390 billion mems of computation that WORDS(3000) supports only three
symmetric word cubes such as (10); exercise 36 reveals the other two. Surpris-
ingly, 83,576 symmetrical cubes can be made from the full set, WORDS(5757).

Graphs from words. It’s interesting and important to arrange objects into
rows, squares, cubes, and other designs; but in practical applications another
kind of combinatorial structure is even more interesting and important, namely
a graph. Recall from Section 2.3.4.1 that a graph is a set of points called
vertices, together with a set of lines called edges, which connect certain pairs
of vertices. Graphs are ubiquitous, and many beautiful graph algorithms have
been discovered, so graphs will naturally be the primary focus of many sections
in this chapter. In fact, the Stanford GraphBase is primarily about graphs, as
its name implies; and the SGB words were collected chiefly because they can be
used to define interesting and instructive graphs.

Lewis Carroll blazed the trail by inventing a game that he called Word-
Links or Doublets, at the end of 1877. [See Martin Gardner, The Universe in
a Handkerchief (1996), Chapter 6.] Carroll’s idea, which soon became quite
popular, was to transform one word to another by changing a letter at a time:

tears−−−sears−−−stars−−−stare−−−stale−−−stile−−−smile. (11)

From the Library of Melissa Nuno



ptg999

12 COMBINATORIAL SEARCHING 7

The shortest such transformation is the shortest path in a graph, where the
vertices of the graph are English words and the edges join pairs of words that
have “Hamming distance 1” (meaning that they disagree in just one place).

When restricted to SGB words, Carroll’s rule produces a graph of the
Stanford GraphBase whose official name is words (5757, 0, 0, 0). Every graph
defined by SGB has a unique identifier called its id, and the graphs that are
derived in Carrollian fashion from SGB words are identified by ids of the form
words (n, l, t, s). Here n is the number of vertices; l is either 0 or a list of weights,
used to emphasize various kinds of vocabulary; t is a threshold so that low-weight
words can be disallowed; and s is the seed for any pseudorandom numbers that
might be needed to break ties between words of equal weight. The full details
needn’t concern us, but a few examples will give the general idea:
• words (n, 0, 0, 0) is precisely the graph that arises when Carroll’s idea is

applied to WORDS(n), for 1 ≤ n ≤ 5757.
• words (1000, {0, 0, 0, 0, 0, 0, 0, 0, 0}, 0, s) contains 1000 randomly chosen SGB

words, usually different for different values of s.
• words (766, {0, 0, 0, 0, 0, 0, 0, 1, 0}, 1, 0) contains all of the five-letter words

that appear in The TEXbook and The METAFONTbook.
There are only 766 words in the latter graph, so we can’t form very many long
paths like (11), although

basic−−−basis−−−bases−−−based
−−−baked−−−naked−−−named−−−names−−−games (12)

is one noteworthy example.
Of course there are many other ways to define the edges of a graph when the

vertices represent five-letter words. We could, for example, require the Euclidean
distance to be small, instead of the Hamming distance. Or we could declare two
words to be adjacent whenever they share a subword of length four; that strategy
would substantially enrich the graph, making it possible for chaos to yield peace,
even when confined to the 766 words that are related to TEX:

chaos−−−chose−−−chore−−−score−−−store
−−−stare−−−spare−−−space−−−peace. (13)

(In this rule we remove a letter, then insert another, possibly in a different place.)
Or we might choose a totally different strategy, like putting an edge between word
vectors a1a2a3a4a5 and b1b2b3b4b5 if and only if their dot product a1b1 + a2b2 +
a3b3 + a4b4 + a5b5 is a multiple of some parameter m. Graph algorithms thrive
on different kinds of data.

SGB words lead also to an interesting family of directed graphs, if we write
a1a2a3a4a5 → b1b2b3b4b5 when {a2, a3, a4, a5} ⊆ {b1, b2, b3, b4, b5} as multisets.
(Remove the first letter, insert another, and rearrange.) With this rule we can,
for example, transform words to graph via a shortest oriented path of length six:

words→ dross→ soars→ orcas→ crash→ sharp→ graph. (14)

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 13

Theory is the first term in the Taylor series of practice.
— THOMAS M. COVER (1992)

The number of systems of terminology presently used in graph theory
is equal, to a close approximation, to the number of graph theorists.

— RICHARD P. STANLEY (1986)

Graph theory: The basics. A graph G consists of a set V of vertices together
with a set E of edges, which are pairs of distinct vertices. We will assume that V
and E are finite sets unless otherwise specified. We write u−−−v if u and v are ver-
tices with {u, v} ∈ E, and u /−−−v if u and v are vertices with {u, v} /∈ E. Vertices
with u−−−v are called “neighbors,” and they’re also said to be “adjacent” in G.
One consequence of this definition is that we have u−−− v if and only if v−−−u.
Another consequence is that v /−−−v, for all v ∈ V ; that is, no vertex is adjacent
to itself. (We shall, however, discuss multigraphs below, in which loops from a
vertex to itself are permitted, and in which repeated edges are allowed too.)

The graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E.
It’s a spanning subgraph of G if, in fact, V ′ = V . And it’s an induced subgraph
of G if E′ has as many edges as possible, when V ′ is a given subset of the
vertices. In other words, when V ′ ⊆ V the subgraph of G = (V,E) induced by
V ′ is G′ = (V ′, E′), where

E′ =

{u, v}

 u ∈ V ′, v ∈ V ′, and {u, v} ∈ E

. (15)

This subgraph G′ is denoted by G |V ′, and often called “G restricted to V ′.” In
the common case where V ′ = V \{v}, we write simply G\v (“G minus vertex v”)
as an abbreviation for G | (V \ {v}). The similar notation G \ e is used when
e ∈ E to denote the subgraph G′ = (V,E \ {e}), obtained by removing an edge
instead of a vertex. Notice that all of the SGB graphs known as words (n, l, t, s),
described earlier, are induced subgraphs of the main graph words (5757, 0, 0, 0);
only the vocabulary changes in those graphs, not the rule for adjacency.

A graph with n vertices and e edges is said to have order n and size e. The
simplest and most important graphs of order n are the complete graph Kn, the
path Pn, and the cycle Cn. Suppose the vertices are V = {1, 2, . . . , n}. Then
• Kn has


n
2


= 1
2n(n − 1) edges u−−− v for 1 ≤ u < v ≤ n; every n-vertex

graph is a spanning subgraph of Kn.
• Pn has n − 1 edges v −−− (v+1) for 1 ≤ v < n, when n ≥ 1; it is a path

of length n−1 from 1 to n.
• Cn has n edges v−−−((v mod n)+1) for 1 ≤ v ≤ n, when n ≥ 1; it is a graph

only when n ≥ 3 (but C1 and C2 are multigraphs).
We could actually have defined Kn, Pn, and Cn on the vertices {0, 1, . . . , n−1},
or on any n-element set V instead of {1, 2, . . . , n}, because two graphs that differ
only in the names of their vertices but not in the structure of their edges are
combinatorially equivalent.

Formally, we say that graphs G = (V,E) and G′ = (V ′, E′) are isomorphic
if there is a one-to-one correspondence φ from V to V ′ such that u−−−v in G if

From the Library of Melissa Nuno



ptg999

14 COMBINATORIAL SEARCHING 7

and only if φ(u)−−−φ(v) in G′. The notation G ∼= G′ is often used to indicate
that G and G′ are isomorphic; but we shall often be less precise, by treating
isomorphic graphs as if they were equal, and by occasionally writing G = G′

even when the vertex sets of G and G′ aren’t strictly identical.
Small graphs can be defined by simply drawing a diagram, in which the

vertices are small circles and the edges are lines between them. Figure 2 illus-
trates several important examples, whose properties we will be studying later.
The Petersen graph in Figure 2(e) is named after Julius Petersen, an early
graph theorist who used it to disprove a plausible conjecture [L’Intermédiaire
des Mathématiciens 5 (1898), 225–227]; it is, in fact, a remarkable configuration
that serves as a counterexample to many optimistic predictions about what might
be true for graphs in general. The Chvátal graph, Figure 2(f), was introduced
by Václav Chvátal in J. Combinatorial Theory 9 (1970), 93–94.

(a)

P5

(b)

C5

(c)

K5

(d)

3-cube

(e)

Petersen graph

(f)

Chvátal graph

Fig. 2. Six example graphs, which have respectively (5, 5, 5, 8, 10, 12) vertices and
(4, 5, 10, 12, 15, 24) edges.

The lines of a graph diagram are allowed to cross each other at points that
aren’t vertices. For example, the center point of Fig. 2(f) is not a vertex of
Chvátal’s graph. A graph is called planar if there’s a way to draw it without
any crossings. Clearly Pn and Cn are always planar; Fig. 2(d) shows that the
3-cube is also planar. But K5 has too many edges to be planar (see exercise 46).

The degree of a vertex is the number of neighbors that it has. If all vertices
have the same degree, the graph is said to be regular. In Fig. 2, for example, P5
is irregular because it has two vertices of degree 1 and three of degree 2. But
the other five graphs are regular, of degrees (2, 4, 3, 3, 4) respectively. A regular
graph of degree 3 is often called “cubic” or “trivalent.”

There are many ways to draw a given graph, some of which are much more
perspicuous than others. For example, each of the six diagrams

(16)

is isomorphic to the 3-cube, Fig. 2(d). The layout of Chvátal’s graph that appears
in Fig. 2(f) was discovered by Adrian Bondy many years after Chvátal’s paper
was published, thereby revealing unexpected symmetries.

The symmetries of a graph, also known as its automorphisms, are the permu-
tations of its vertices that preserve adjacency. In other words, the permutation
φ is an automorphism of G if we have φ(u)−−−φ(v) whenever u−−− v in G. A

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 15

well-chosen drawing like Fig. 2(f) can reveal underlying symmetry, but a single
diagram isn’t always able to display all the symmetries that exist. For example,
the 3-cube has 48 automorphisms, and the Petersen graph has 120. We’ll study
algorithms that deal with isomorphisms and automorphisms in Section 7.2.3.
Symmetries can often be exploited to avoid unnecessary computations, mak-
ing an algorithm almost k times faster when it operates on a graph that has
k automorphisms.

Graphs that have evolved in the real world tend to be rather different from
the mathematically pristine graphs of Figure 2. For example, here’s a familiar
graph that has no symmetry whatsoever, although it does have the virtue of
being planar:

DC

AL

AZ AR

CA CO

CT

DE

FL

GA

ID IL INIA

KS KY

LA

ME

MD

MAMIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

(17)

It represents the contiguous United States of America, and we’ll be using it later
in several examples. The 49 vertices of this diagram have been labeled with two-
letter postal codes for convenience, instead of being reduced to empty circles.

Paths and cycles. A spanning path Pn of a graph is called a Hamiltonian path,
and a spanning cycle Cn is called a Hamiltonian cycle, because W. R. Hamilton
invented a puzzle in 1856 whose goal was to find such paths and cycles on the
edges of a dodecahedron. T. P. Kirkman had independently studied the problem
for polyhedra in general, in Philosophical Transactions 146 (1856), 413–418; 148
(1858), 145–161. [See Graph Theory 1736–1936 by N. L. Biggs, E. K. Lloyd, and
R. J. Wilson (1998), Chapter 2.] The task of finding a spanning path or cycle is,
however, much older — indeed, we can legitimately consider it to be the oldest
combinatorial problem of all, because paths and tours of a knight on a chessboard
have a continuous history going back to ninth-century India (see Section 7.3.3).
A graph is called Hamiltonian if it has a Hamiltonian cycle. (The Petersen
graph, incidentally, is the smallest 3-regular graph that is neither planar nor
Hamiltonian; see C. de Polignac, Bull. Soc. Math. de France 27 (1899), 142–145.)

The girth of a graph is the length of its shortest cycle; the girth is infinite if
the graph is acyclic (containing no cycles). For example, the six graphs of Fig. 2
have girths (∞, 5, 3, 4, 5, 4), respectively. It’s not difficult to prove that a graph
of minimum degree k and girth 5 must have at least k2 + 1 vertices. Further
analysis shows in fact that this minimum value is achievable only if k = 2 (C5),
k = 3 (Petersen), k = 7, or perhaps k = 57. (See exercises 63 and 65.)

From the Library of Melissa Nuno



ptg999

16 COMBINATORIAL SEARCHING 7

The distance d(u, v) between two vertices u and v is the minimum length
of a path from u to v in the graph; it is infinite if there’s no such path. Clearly
d(v, v) = 0, and d(u, v) = d(v, u). We also have the triangle inequality

d(u, v) + d(v, w) ≥ d(u,w). (18)

For if d(u, v) = p and d(v, w) = q and p <∞ and q <∞, there are paths

u = u0−−−u1−−−· · ·−−−up = v and v = v0−−−v1−−−· · ·−−−vq = w, (19)

and we can find the least subscript r such that ur = vs for some s. Then

u0−−−u1−−−· · ·−−−ur−1−−−vs−−−vs+1−−−· · ·−−−vq (20)

is a path of length ≤ p+ q from u to w.
The diameter of a graph is the maximum of d(u, v), over all vertices u and v.

The graph is connected if its diameter is finite. The vertices of a graph can always
be partitioned into connected components, where two vertices u and v belong to
the same component if and only if d(u, v) <∞.

In the graph words (5757, 0, 0, 0), for example, we have d(tears, smile) = 6,
because (11) is a shortest path from tears to smile. Also d(tears, happy) = 6,
and d(smile, happy) = 10, and d(world, court) = 6. But d(world, happy) =
∞; the graph isn’t connected. In fact, it contains 671 words like aloof, which
have no neighbors and form connected components of order 1 all by themselves.
Word pairs such as alpha −−− aloha, droid −−− druid, and opium −−− odium
account for 103 further components of order 2. Some components of order 3,
like chain −−− chair −−− choir, are paths; others, like {getup, letup, setup},
are cycles. A few more small components are also present, like the curious path

login−−−logic−−−yogic−−−yogis−−−yogas−−−togas, (21)

whose words have no other neighbors. But the vast majority of all five-letter
words belong to a giant component of order 4493. If you can go two steps away
from a given word, changing two different letters, the odds are better than 15
to 1 that your word is connected to everything in the giant component.

Similarly, the graph words (n, 0, 0, 0) has a giant component of order (3825,
2986, 2056, 1186, 224) when n = (5000, 4000, 3000, 2000, 1000), respectively. But
if n is small, there aren’t enough edges to provide much connectivity. For exam-
ple, words (500, 0, 0, 0) has 327 different components, none of order 15 or more.

The concept of distance can be generalized to d(v1, v2, . . . , vk) for any value
of k, meaning the minimum number of edges in a connected subgraph that
contains the vertices {v1, v2, . . . , vk}. For example, d(blood, sweat, tears) turns
out to be 15, because the subgraph

blood−−−brood−−−broad−−−bread−−−tread−−−treed−−−tweed
| |

tears−−−teams−−−trams−−−trims−−−tries−−−trees tweet
|

sweat−−−sweet

(22)

has 15 edges, and there’s no suitable 14-edge subgraph.

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 17

We noted in Section 2.3.4.1 that a connected graph with fewest edges is
called a free tree. A subgraph that corresponds to the generalized distance
d(v1, . . . , vk) will always be a free tree. It is misleadingly called a Steiner tree,
because Jacob Steiner once mentioned the case k = 3 for points {v1, v2, v3} in
the Euclidean plane [Crelle 13 (1835), 362–363]. Joseph Gergonne had, however,
already posed and solved the problem for any k points in the plane [Annales de
mathématiques pures et appliquées 1 (1811), 292, 375–384 and planche 6].

Coloring. A graph is said to be k-partite or k-colorable if its vertices can be
partitioned into k or fewer parts, with the endpoints of each edge belonging to
different parts — or equivalently, if there’s a way to paint its vertices with at most
k different colors, never assigning the same color to two adjacent vertices. The fa-
mous Four Color Theorem, conjectured by F. Guthrie in 1852 and finally proved
with massive computer aid by K. Appel, W. Haken, and J. Koch [Illinois J. Math.
21 (1977), 429–567], states that every planar graph is 4-colorable. No simple
proof is known, but special cases like (17) can be colored at sight (see exercise 45);
and O(n2) steps suffice to 4-color a planar graph in general [N. Robertson, D. P.
Sanders, P. Seymour, and R. Thomas, STOC 28 (1996), 571–575].

The case of 2-colorable graphs is especially important in practice. A 2-
partite graph is generally called bipartite, or simply a “bigraph”; every edge of
such a graph has one endpoint in each part.

Theorem B. A graph is bipartite if and only if it contains no cycle of odd length.

Proof. [See D. König, Math. Annalen 77 (1916), 453–454.] Every subgraph of
a k-partite graph is k-partite. Therefore the cycle Cn can be a subgraph of a
bipartite graph only if Cn itself is a bigraph, in which case n must be even.

Conversely, if a graph contains no odd cycles we can color its vertices with
the two colors {0, 1} by carrying out the following procedure: Begin with all
vertices uncolored. If all neighbors of colored vertices are already colored, choose
an uncolored vertex w, and color it 0. Otherwise choose a colored vertex u that
has an uncolored neighbor v; assign to v the opposite color. Exercise 48 proves
that a valid 2-coloring is eventually obtained.

The complete bipartite graph Km,n is the largest bipartite graph whose
vertices have two parts of sizes m and n. We can define it on the vertex set
{1, 2, . . . ,m+n} by saying that u −−− v whenever 1 ≤ u ≤ m < v ≤ m + n.
In other words, Km,n has mn edges, one for each way to choose one vertex in
the first part and another in the second part. Similarly, the complete k-partite
graph Kn1,...,nk

has N = n1 + · · · + nk vertices partitioned into parts of sizes
{n1, . . . , nk}, and it has edges between any two vertices that don’t belong to the
same part. Here are some examples when N = 6:

; ∼= ; ∼= . (23)

K1,5 K3,3 K2,2,2

Notice that K1,n is a free tree; it is popularly called the star graph of order n+1.

From the Library of Melissa Nuno



ptg999

18 COMBINATORIAL SEARCHING 7

From now on say “digraph” instead of “directed graph.”
It is clear and short and it will catch on.

— GEORGE PÓLYA, letter to Frank Harary (c. 1954)

Directed graphs. In Section 2.3.4.2 we defined directed graphs (or digraphs),
which are very much like graphs except that they have arcs instead of edges.
An arc u −−→ v runs from one vertex to another, while an edge u −−− v joins
two vertices without distinguishing between them. Furthermore, digraphs are
allowed to have self-loops v−−→v from a vertex to itself, and more than one arc
u−−→v may be present between the same vertices u and v.

Formally, a digraph D = (V,A) of order n and size m is a set V of n vertices
and a multiset A of m ordered pairs (u, v), where u ∈ V and v ∈ V . The ordered
pairs are called arcs, and we write u−−→v when (u, v) ∈ A. The digraph is called
simple if A is actually a set instead of a general multiset — namely, if there’s at
most one arc (u, v) for all u and v. Each arc (u, v) has an initial vertex u and a
final vertex v, also called its “tip.” Each vertex has an out-degree d+(v), the num-
ber of arcs for which v is the initial vertex, and an in-degree d−(v), the number of
arcs for which v is the tip. A vertex with in-degree 0 is called a “source”; a vertex
with out-degree 0 is called a “sink.” Notice that


v∈V d

+(v) =


v∈V d
−(v),

because both sums are equal to m, the total number of arcs.
Most of the notions we’ve defined for graphs carry over to digraphs in a nat-

ural way, if we just insert the word “directed” or “oriented” (or the syllable “di”)
when it’s necessary to distinguish between edges and arcs. For example, digraphs
have subdigraphs, which can be spanning or induced or neither. An isomorphism
between digraphs D = (V,A) and D′ = (V ′, A′) is a one-to-one correspondence φ
from V to V ′ for which the number of arcs u−−→ v in D equals the number of
arcs φ(u)−−→φ(v) in D′, for all u, v ∈ V .

Diagrams for digraphs use arrows between the vertices, instead of unadorned
lines. The simplest and most important digraphs of order n are directed variants
of the graphs Kn, Pn, and Cn, namely the transitive tournament Kn⃗, the oriented
path Pn⃗, and the oriented cycle Cn⃗. They can be schematically indicated by the
following diagrams for n = 5:

; ; . (24)

K5⃗ P5⃗ C5⃗

There’s also the complete digraph Jn, which is the largest simple digraph on n
vertices; it has n2 arcs u−−→v, one for each choice of u and v.

Figure 3 shows a more elaborate diagram, for a digraph of order 17 that
we might call “expressly oriented”: It is the directed graph described by Her-
cule Poirot in Agatha Christie’s novel Murder on the Orient Express (1934).
Vertices correspond to the berths of the Stamboul–Calais coach in that story,
and an arc u −−→ v means that the occupant of berth u has corroborated the
alibi of the person in berth v. This example has six connected components,
namely {0, 1, 3, 6, 8, 12, 13, 14, 15, 16}, {2}, {4, 5}, {7}, {9}, and {10, 11}, because
connectivity in a digraph is determined by treating arcs as edges.

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 19

0

1

23

4

5

6

7

8910

11 1213

14 15

16

LEGEND
0: Pierre Michel, the French conductor
1: Hercule Poirot, the Belgian detective

2: Samuel Edward Ratchett, the deceased American
3: Caroline Martha Hubbard, the American matron
4: Edward Henry Masterman, the British valet
5: Antonio Foscarelli, the Italian automobile salesman
6: Hector Willard MacQueen, the American secretary
7: Harvey Harris, the Englishman who didn’t show up
8: Hildegarde Schmidt, the German lady’s maid
9: (vacancy)

10: Greta Ohlsson, the Swedish nurse
11: Mary Hermione Debenham, the English governess
12: Helena Maria Andrenyi, the beautiful countess
13: Rudolph Andrenyi, the Hungarian count/diplomat
14: Natalia Dragomiroff, the Russian princess dowager
15: Colonel Arbuthnot, the British officer from India
16: Cyrus Bethman Hardman, the American detective

Fig. 3. A digraph of order 17 and size 18, devised by Agatha Christie.

Two arcs are consecutive if the tip of the first is the initial vertex of the
second. A sequence of consecutive arcs (a1, a2, . . . , ak) is called a walk of length k;
it can be symbolized by showing the vertices as well as the arcs:

v0
a1−→ v1

a2−→ v2 · · · vk−1
ak−→ vk. (25)

In a simple digraph it’s sufficient merely to specify the vertices; for example,
1−−→0−−→8−−→14−−→8−−→3 is a walk in Fig. 3. The walk in (25) is an oriented
path when the vertices {v0, v1, . . . , vk} are distinct; it’s an oriented cycle when
they are distinct except that vk = v0.

In a digraph, the directed distance d(u, v) is the number of arcs in the short-
est oriented path from u to v, which is also the length of the shortest walk from
u to v. It may differ from d(v, u); but the triangle inequality (18) remains valid.

Every graph can be regarded as a digraph, because an edge u −−− v is
essentially equivalent to a matched pair of arcs, u−−→v and v−−→u. The digraph
obtained in this way retains all the properties of the original graph; for example,
the degree of each vertex in the graph becomes its out-degree in the digraph,
and also its in-degree in the digraph. Furthermore, distances remain the same.

A multigraph (V,E) is like a graph except that its edges E can be any
multiset of pairs {u, v}; edges v −−− v that loop from a vertex to itself, which
correspond to “multipairs” {v, v}, are also permitted. For example,

1 2 3 (26)

is a multigraph of order 3 with six edges, {1, 1}, {1, 2}, {2, 3}, {2, 3}, {3, 3}, and
{3, 3}. The vertex degrees in this example are d(1) = d(2) = 3 and d(3) = 6,
because each loop contributes 2 to the degree of its vertex. An edge loop v−−−v
becomes two arc loops v−−→v when a multigraph is regarded as a digraph.

Representation of graphs and digraphs. Any digraph, and therefore any
graph or multigraph, is completely described by its adjacency matrix A = (auv),
which has n rows and n columns when there are n vertices. Each entry auv of
this matrix specifies the number of arcs from u to v. For example, the adjacency
matrices for K3⃗, P3⃗, C3⃗, J3, and (26) are respectively

K3⃗ =
 011

001
000


, P3⃗ =

 010
001
000


, C3⃗ =

 010
001
100


, J3 =

 111
111
111


, A =

 210
102
024


. (27)

From the Library of Melissa Nuno



ptg999

20 COMBINATORIAL SEARCHING 7

The powerful mathematical tools of matrix theory make it possible to prove
many nontrivial results about graphs by studying their adjacency matrices;
exercise 65 provides a particularly striking example of what can be done. One
of the main reasons is that matrix multiplication has a simple interpretation in
the context of digraphs. Consider the square of A, where the element in row u
and column v is

(A2)uv =

w∈V

auwawv, (28)

by definition. Since auw is the number of arcs from u to w, we see that auwawv

is the number of walks of the form u−−→w−−→ v. Therefore (A2)uv is the total
number of walks of length 2 from u to v. Similarly, the entries of Ak tell us the
total number of walks of length k between any ordered pair of vertices, for all
k ≥ 0. For example, the matrix A in (27) satisfies

A =
 2 1 0

1 0 2
0 2 4


, A2 =

 5 2 2
2 5 8
2 8 20


, A3 =

 12 9 12
9 18 42
12 42 96


; (29)

there are 12 walks of length 3 from the vertex 1 of the multigraph (26) to vertex 3,
and 18 such walks from vertex 2 to itself.

Reordering of the vertices changes an adjacency matrix from A to P−AP ,
where P is a permutation matrix (a 0–1 matrix with exactly one 1 in each row
and column), and P− = PT is the matrix for the inverse permutation. Thus 210

102
024


,

 201
042
120


,

 012
120
204


,

 021
240
102


,

 402
021
210


, and

 420
201
012


(30)

are all adjacency matrices for (26), and there are no others.
There are more than 2n(n−1)/2/n! graphs of order n, when n > 1, and

almost all of them require Ω(n2) bits of data in their most economical encoding.
Consequently the best way to represent the vast majority of all possible graphs
inside a computer, from the standpoint of memory usage, is essentially to work
with their adjacency matrices.

But the graphs that actually arise in practical problems have quite different
characteristics from graphs that are chosen at random from the set of all possi-
bilities. A real-life graph usually turns out to be “sparse,” having say O(n logn)
edges instead of Ω(n2), unless n is rather small, because Ω(n2) bits of data are
difficult to generate. For example, suppose the vertices correspond to people,
and the edges correspond to friendships. If we consider 5 billion people, few
of them will have more than 10000 friends. But even if everybody had 10000
friends, on average, the graph would still have only 2.5×1013 edges, while almost
all graphs of order 5 billion have approximately 6.25× 1018 edges.

Thus the best way to represent a graph inside a machine usually turns out
to be rather different than to record n2 values auv of adjacency matrix elements.
Instead, the algorithms of the Stanford GraphBase were developed with a data
structure akin to the linked representation of sparse matrices discussed in Section
2.2.6, though somewhat simplified. That approach has proved to be not only
versatile and efficient, but also easy to use.

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 21

The SGB representation of a digraph is a combination of sequential and
linked allocation, using nodes of two basic types. Some nodes represent vertices,
other nodes represent arcs. (There’s also a third type of node, which represents
an entire graph, for algorithms that deal with several graphs at once. But each
graph needs only one graph node, so the vertex and arc nodes predominate.)

Here’s how it works: Every SGB digraph of order n and size m is built
upon a sequential array of n vertex nodes, making it easy to access vertex k
for 0 ≤ k < n. The m arc nodes, by contrast, are linked together within a
general memory pool that is essentially unstructured. Each vertex node typically
occupies 32 bytes, and each arc node occupies 20 (and the graph node occupies
220); but the node sizes can be modified without difficulty. A few fields of each
node have a fixed, definite meaning in all cases; the remaining fields can be used
for different purposes in different algorithms or in different phases of a single
algorithm. The fixed-purpose parts of a node are called its “standard fields,”
and the multipurpose parts are called its “utility fields.”

Every vertex node has two standard fields called NAME and ARCS. If v is a
variable that points to a vertex node, we’ll call it a vertex variable. Then NAME(v)
points to a string of characters that can be used to identify the corresponding
vertex in human-oriented output; for example, the 49 vertices of graph (17) have
names like CA, WA, OR, . . . , RI. The other standard field, ARCS(v), is far more
important in algorithms: It points to an arc node, the first in a singly linked list
of length d+(v), with one node for each arc that emanates from vertex v.

Every arc node has two standard fields called TIP and NEXT; a variable a that
points to an arc node is called an arc variable. TIP(a) points to the vertex node
that represents the tip of arc a; NEXT(a) points to the arc node that represents
the next arc whose initial vertex agrees with that of a.

A vertex v with out-degree 0 is represented by letting ARCS(v) = Λ (the null
pointer). Otherwise if, say, the out-degree is 3, the data structure contains three
arc nodes with ARCS(v) = a1, NEXT(a1) = a2, NEXT(a2) = a3, and NEXT(a3) =
Λ; and the three arcs from v lead to TIP(a1), TIP(a2), TIP(a3).

Suppose, for example, that we want to compute the out-degree of vertex v,
and store it in a utility field called ODEG. It’s easy:

Set a← ARCS(v) and d← 0.
While a ̸= Λ, set d← d+ 1 and a← NEXT(a).
Set ODEG(v)← d.

(31)

When a graph or a multigraph is considered to be a digraph, as mentioned
above, its edges u−−−v are each equivalent to two arcs, u−−→v and v−−→u. These
arcs are called “mates”; and they occupy two arc nodes, say a and a′, where a
appears in the list of arcs from u and a′ appears in the list of arcs from v. Then
TIP(a) = v and TIP(a′) = u. We’ll also write

MATE(a) = a′ and MATE(a′) = a, (32)

in algorithms that want to move rapidly from one list to another. However, we
usually won’t need to store an explicit pointer from an arc to its mate, or to have

From the Library of Melissa Nuno



ptg999

22 COMBINATORIAL SEARCHING 7

a utility field called MATE within each arc node, because the necessary link can
be deduced implicitly when the data structure has been constructed cleverly.

The implicit-mate trick works like this: While creating each edge u −−− v
of an undirected graph or multigraph, we introduce consecutive arc nodes for
u−−→v and v−−→u. For example, if there are 20 bytes per arc node, we’ll reserve
40 consecutive bytes for each new pair. We can also make sure that the memory
address of the first byte is a multiple of 8. Then if the arc node a is in memory
location α, its mate is in location

α+ 20, if αmod 8 = 0
α− 20, if αmod 8 = 4


= α− 20 +


40 & ((α& 4)− 1)


. (33)

Such tricks are valuable in combinatorial problems, when operations might
be performed a trillion times, because every way to save 3.6 nanoseconds per
operation will make such a computation finish an hour sooner. But (33) isn’t
directly “portable” from one implementation to another. If the size of an arc
node were changed from 20 to 24, for example, we would have to change the
numbers 40, 20, 8, and 4 in (33) to 48, 24, 16, and 8.

The algorithms in this book will make no assumptions about node sizes.
Instead, we’ll adopt a convention of the C programming language and its de-
scendants, so that if a points to an arc node, ‘a+ 1’ denotes a pointer to the arc
node that follows it in memory. And in general

LOC(NODE(a+ k)) = LOC(NODE(a)) + kc, (34)

when there are c bytes in each arc node. Similarly, if v is a vertex variable, ‘v+k’
will stand for the kth vertex node following node v; the actual memory location
of that node will be v plus k times the size of a vertex node.

The standard fields of a graph node g include M(g), the total number of arcs;
N(g), the total number of vertices; VERTICES(g), a pointer to the first vertex
node in the sequential list of all vertex nodes; ID(g), the graph’s identification,
which is a string like words(5757,0,0,0); and some other fields needed for the
allocation and recycling of memory when the graph grows or shrinks, or for
exporting a graph to external formats that interface with other users and other
graph-manipulation systems. But we will rarely need to refer to any of these
graph node fields, nor will it be necessary to give a complete description of SGB
format here, since we shall describe almost all of the graph algorithms in this
chapter by sticking to an English-language description at a fairly abstract level
instead of descending to the bit level of machine programs.
A simple graph algorithm. To illustrate a medium-high-level algorithm of
the kind that will appear later, let’s convert the proof of Theorem B into a
step-by-step procedure that paints the vertices of a given graph with two colors
whenever that graph is bipartite.
Algorithm B (Bipartiteness testing). Given a graph represented in SGB format,
this algorithm either finds a 2-coloring with COLOR(v) ∈ {0, 1} in each vertex v,
or it terminates unsuccessfully when no valid 2-coloring is possible. Here COLOR
is a utility field in each vertex node. Another vertex utility field, LINK(v), is a

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 23

vertex pointer used to maintain a stack of all colored vertices whose neighbors
have not yet been examined. An auxiliary vertex variable s points to the top of
this stack. The algorithm also uses variables u, v, w for vertices and a for arcs.
The vertex nodes are assumed to be v0 + k for 0 ≤ k < n.
B1. [Initialize.] Set COLOR(v0 + k) ← −1 for 0 ≤ k < n. (Now all vertices are

uncolored.) Then set w ← v0 + n.
B2. [Done?] (At this point all vertices ≥ w have been colored, and so have the

neighbors of all colored vertices.) Terminate the algorithm successfully if
w = v0. Otherwise set w ← w − 1, the next lower vertex node.

B3. [Color w if necessary.] If COLOR(w) ≥ 0, return to B2. Otherwise set
COLOR(w)← 0, LINK(w)← Λ, and s← w.

B4. [Stack⇒ u.] Set u← s, s← LINK(s), a← ARCS(u). (We will examine all
neighbors of the colored vertex u.)

B5. [Done with u?] If a = Λ, go to B8. Otherwise set v ← TIP(a).
B6. [Process v.] If COLOR(v) < 0, set COLOR(v)← 1− COLOR(u), LINK(v)← s,

and s← v. Otherwise if COLOR(v) = COLOR(u), terminate unsuccessfully.
B7. [Loop on a.] Set a← NEXT(a) and return to B5.
B8. [Stack nonempty?] If s ̸= Λ, return to B4. Otherwise return to B2.
This algorithm is a variant of a general graph traversal procedure called “depth-
first search,” which we will study in detail in Section 7.4.1. Its running time is
O(m + n) when there are m arcs and n vertices (see exercise 70); therefore it
is well adapted to the common case of sparse graphs. With small changes we
can make it output an odd-length cycle whenever it terminates unsuccessfully,
thereby proving the impossibility of a 2-coloring (see exercise 72).

Examples of graphs. The Stanford GraphBase includes a library of more than
three dozen generator routines, capable of producing a great variety of graphs
and digraphs for use in experiments. We’ve already discussed words; now let’s
look at a few of the others, in order to get a feeling for some of the possibilities.
• roget(1022, 0, 0, 0) is a directed graph with 1022 vertices and 5075 arcs. The

vertices represent the categories of words or concepts that P. M. Roget and J. L.
Roget included in their famous 19th-century Thesaurus (London: Longmans,
Green, 1879). The arcs are the cross-references between categories, as found
in that book. For example, typical arcs are water−−→moisture, discovery−−→
truth, preparation−−→learning, vulgarity−−→ugliness, wit−−→amusement.
• book("jean", 80, 0, 1, 356, 0, 0, 0) is a graph with 80 vertices and 254 edges.

The vertices represent the characters of Victor Hugo’s Les Misérables; the edges
connect characters who encounter each other in that novel. Typical edges are
Fantine−−−Javert, Cosette−−−Thénardier.
• bi book("jean", 80, 0, 1, 356, 0, 0, 0) is a bipartite graph with 80+356 vertices

and 727 edges. The vertices represent characters or chapters in Les Misérables;
the edges connect characters with the chapters in which they appear (for in-
stance, Napoleon−−−2.1.8, Marius−−−4.14.4).

From the Library of Melissa Nuno



ptg999

24 COMBINATORIAL SEARCHING 7

• plane miles(128, 0, 0, 0, 1, 0, 0) is a planar graph with 129 vertices and 381
edges. The vertices represent 128 cities in the United States or Canada, plus
a special vertex INF for a “point at infinity.” The edges define the so-called
Delaunay triangulation of those cities, based on latitude and longitude in a plane;
this means that u−−−v if and only if there’s a circle passing through u and v that
does not enclose any other vertex. Edges also run between INF and all vertices
that lie on the convex hull of all city locations. Typical edges are Seattle, WA−−−
Vancouver, BC−−− INF; Toronto, ON−−− Rochester, NY.
• plane lisa(360, 250, 15, 0, 360, 0, 250, 0, 22950000) is a planar graph that has

3027 vertices and 5967 edges. It is obtained by starting with a digitized image of
Leonardo da Vinci’s Mona Lisa, having 360 rows and 250 columns of pixels, then
rounding the pixel intensities to 16 levels of gray from 0 (black) to 15 (white).
The resulting 3027 rookwise connected regions of constant brightness are then
considered to be neighbors when they share a pixel boundary. (See Fig. 4.)

Fig. 4. A digital rendition of Mona Lisa, with a closeup detail (best viewed from afar).

• bi lisa(360, 250, 0, 360, 0, 250, 8192, 0) is a bipartite graph with 360 + 250 =
610 vertices and 40923 edges. It’s another takeoff on Leonardo’s famous painting,
this time linking rows and columns where the brightness level is at least 1/8. For
example, the edge r102−−−c113 occurs right in the middle of Lisa’s “smile.”
• raman(31, 23, 3, 1) is a graph with quite a different nature from the SGB

graphs in previous examples. Instead of being linked to language, literature,
or other outgrowths of human culture, it’s a so-called “Ramanujan expander
graph,” based on strict mathematical principles. Each of its (233−23)/2 = 6072
vertices has degree 32; hence it has 97152 edges. The vertices correspond to
equivalence classes of 2 × 2 matrices that are nonsingular modulo 23; a typical
edge is (2,7;1,1) −−− (4,6;1,3). Ramanujan graphs are important chiefly
because they have unusually high girth and low diameter for their size and degree.
This one has girth 4 and diameter 4.

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 25

• raman(5, 37, 4, 1), similarly, is a regular graph of degree 6 with 50616 vertices
and 151848 edges. It has girth 10, diameter 10, and happens also to be bipartite.
• random graph(1000, 5000, 0, 0, 0, 0, 0, 0, 0, s) is a graph with 1000 vertices,

5000 edges, and seed s. It “evolved” by starting with no edges, then by repeatedly
choosing pseudorandom vertex numbers 0 ≤ u, v < 1000 and adding the edge
u−−−v, unless u = v or that edge was already present. When s = 0, all vertices
belong to a giant component of order 999, except for the isolated vertex 908.
• random graph(1000, 5000, 0, 0, 1, 0, 0, 0, 0, 0) is a digraph with 1000 vertices

and 5000 arcs, obtained via a similar sort of evolution. (In fact, each of its arcs
happens to be part also of random graph(1000, 5000, 0, 0, 0, 0, 0, 0, 0, 0).)
• subsets(5, 1,−10, 0, 0, 0, #1, 0) is a graph with

11
5


= 462 vertices, one for
every five-element subset of {0, 1, . . . , 10}. Two vertices are adjacent whenever
the corresponding subsets are disjoint; thus, the graph is regular of degree 6,
and it has 1386 edges. We can consider it to be a generalization of the Petersen
graph, which has subsets(2, 1,−4, 0, 0, 0, #1, 0) as one of its SGB names.
• subsets(5, 1,−10, 0, 0, 0, #10, 0) has the same 462 vertices, but now they are

adjacent if the corresponding subsets have four elements in common. This graph
is regular of degree 30, and it has 6930 edges.
• parts(30, 10, 30, 0) is another SGB graph with a mathematical basis. It has

3590 vertices, one for each partition of 30 into at most 10 parts. Two partitions
are adjacent when one is obtained by subdividing a part of the other; this rule
defines 31377 edges. The digraph parts(30, 10, 30, 1) is similar, but its 31377 arcs
point from shorter to longer partitions (for example, 13+7+7+3−−→7+7+7+6+3).
• simplex(10, 10, 10, 10, 10, 0, 0) is a graph with 286 vertices and 1320 edges.

Its vertices are the integer solutions to x1 +x2 +x3 +x4 = 10 with xi ≥ 0, namely
the “compositions of 10 into four nonnegative parts”; they can also be regarded
as barycentric coordinates for points inside a tetrahedron. The edges, such as
3.1.4.2−−−3.0.4.3, connect compositions that are as close together as possible.
• board(8, 8, 0, 0, 5, 0, 0) and board(8, 8, 0, 0,−2, 0, 0) are graphs on 64 vertices

whose 168 or 280 edges correspond to the moves of a knight or bishop in chess.
And zillions of further examples are obtainable by varying the parameters to the
SGB graph generators. For example, Fig. 5 shows two simple variants of board
and simplex; the somewhat arcane rules of board are explained in exercise 75.

board(6, 9, 0, 0, 5, 0, 0)
(Knight moves on a 6× 9 chessboard)

simplex(10, 8, 7, 6, 0, 0, 0)
(A truncated triangular grid)

Fig. 5. Samples of SGB graphs related to board games.

From the Library of Melissa Nuno



ptg999

26 COMBINATORIAL SEARCHING 7

Graph algebra. We can also obtain new graphs by operating on the graphs
that we already have. For example, if G = (V,E) is any graph, its complement
G = (V,E) is obtained by letting

u−−−v in G ⇐⇒ u ̸= v and u /−−−v in G. (35)

Thus, non-edges become edges, and vice versa. Notice that G = G, and that Kn

has no edges. The corresponding adjacency matrices A and A satisfy

A+A = J − I ; (36)

here J is the matrix of all 1s, and I is the identity matrix, so J and J − I are
respectively the adjacency matrices of Jn and Kn when G has order n.

Furthermore, every graph G = (V,E) leads to a line graph L(G), whose
vertices are the edges E; two edges of G are adjacent in L(G) if they have a
common vertex. Thus, for example, the line graph L(Kn) has


n
2


vertices, and
it is regular of degree 2n − 4 when n ≥ 2 (see exercise 82). A graph is called
k-edge-colorable when its line graph is k-colorable.

Given two graphs G = (U,E) and H = (V, F ), their union G ∪ H is the
graph (U ∪V,E∪F ) obtained by combining the vertices and edges. For example,
suppose G and H are the graphs of rook and bishop moves in chess; then G∪H
is the graph of queen moves, and its official SGB name is

gunion(board (8, 8, 0, 0,−1, 0, 0), board (8, 8, 0, 0,−2, 0, 0), 0, 0). (37)

In the special case where the vertex sets U and V are disjoint, the union
G∪H doesn’t require the vertices to be identified in any consistent way for cross-
correlation; we get a diagram for G∪H by simply drawing a diagram of G next
to a diagram of H. This special case is called the “juxtaposition” or direct sum
of G and H, and we shall denote it by G⊕H. For example, it’s easy to see that

Km ⊕Kn
∼= Km,n , (38)

and that every graph is the direct sum of its connected components.
Equation (38) is a special case of the general formula

Kn1 ⊕Kn2 ⊕ · · · ⊕Knk
∼= Kn1,n2,...,nk , (39)

which holds for complete k-partite graphs whenever k ≥ 2. But (39) fails when
k = 1, because of a scandalous fact: The standard graph-theoretic notation
for complete graphs is inconsistent! Indeed, Km,n denotes a complete 2-partite
graph, but Kn does not denote a complete 1-partite graph. Somehow graph the-
orists have been able to live with this anomaly for decades without going berserk.

Another important way to combine disjoint graphs G and H is to form their
join, G−−−H, which consists of G⊕H together with all edges u−−−v for u ∈ U
and v ∈ V . [See A. A. Zykov, Mat. Sbornik 24 (1949), 163–188, §I.3.] And
if G and H are disjoint digraphs, their directed join G−−→H is similar, but it
supplements G⊕H by adding only the one-way arcs u−−→v from U to V .

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 27

The direct sum of two matrices A and B is obtained by placing B diagonally
below and to the right of A:

A⊕B =

A O
O B


, (40)

where each O in this example is a matrix of all zeros, with the proper number of
rows and columns to make everything line up correctly. Our notation G⊕H for
the direct sum of graphs is easy to remember because the adjacency matrix for
G⊕H is precisely the direct sum of the respective adjacency matrices A and B for
G and H. Similarly, the adjacency matrices for G−−−H, G−−→H, and G←−−H are

A−−−B =

A J
J B


, A−−→B =


A J
O B


, A←−−B =


A O
J B


, (41)

respectively, where J is an all-1s matrix as in (36). These operations are asso-
ciative, and related by complementation:

A⊕ (B ⊕ C) = (A⊕B)⊕ C, A−−−(B−−−C) = (A−−−B)−−−C ; (42)
A−−→(B−−→C) = (A−−→B)−−→C, A←−−(B←−−C) = (A←−−B)←−−C ; (43)

A⊕B = A−−−B, A−−−B = A⊕B ; (44)
A−−→B = A←−−B, A←−−B = A−−→B ; (45)

(A⊕B) + (A−−−B) = (A−−→B) + (A←−−B). (46)

Notice that, by combining (39) with (42) and (44), we have

Kn1,n2,...,nk
= Kn1−−−Kn2−−− · · · −−−Knk

(47)

when k ≥ 2. Also

Kn = K1−−−K1−−− · · · −−−K1 and Kn⃗ = K1−−→K1−−→· · ·−−→K1 , (48)

with n copies of K1, showing that Kn = K1,1,...,1 is a complete n-partite graph.
Direct sums and joins are analogous to addition, because we haveKm⊕Kn =

Km+n and Km−−−Kn = Km+n. We can also combine graphs with algebraic
operations that are analogous to multiplication. For example, the Cartesian
product operation forms a graph G H of order mn from a graph G = (U,E) of
order m and a graph H = (V, F ) of order n. The vertices of G H are ordered
pairs (u, v), where u ∈ U and v ∈ V ; the edges are (u, v)−−−(u′, v) when u−−−u′
in G, together with (u, v)−−− (u, v′) when v−−− v′ in H. In other words, G H
is formed by replacing each vertex of G by a copy of H, and replacing each edge
of G by edges between corresponding vertices of the appropriate copies:

= . (49)

From the Library of Melissa Nuno



ptg999

28 COMBINATORIAL SEARCHING 7

As usual, the simplest special cases of this general construction turn out to
be especially important in practice. When both G and H are paths or cycles, we
get “graph-paper graphs,” namely the m × n grid Pm Pn, the m × n cylinder
Pm Cn, and the m× n torus Cm Cn, illustrated here for m = 3 and n = 4:

P3 P4

(3× 4 grid)
P3 C4

(3× 4 cylinder)
C3 C4

(3× 4 torus)

(50)

Four other noteworthy ways to define products of graphs have also proved to
be useful. In each case the vertices of the product graph are ordered pairs (u, v).
• The direct product G⊗H, also called the “conjunction” of G and H, or their

“categorical product,” has (u, v)−−−(u′, v′) when u−−−u′ in G and v−−−v′ in H.
• The strong product G×H combines the edges of G H with those of G⊗H.
• The odd product G△H has (u, v)−−− (u′, v′) when we have either u−−− u′

in G or v−−−v′ in H, but not both.
• The lexicographic product G ◦H, also called the “composition” of G and H,

has (u, v)−−−(u′, v′) when u−−−u′ in G, and (u, v)−−−(u, v′) when v−−−v′ in H.
All five of these operations extend naturally to products of k ≥ 2 graphs G1 =
(V1, E1), . . . , Gk = (Vk, Ek), whose vertices are the ordered k-tuples (v1, . . . , vk)
with vj ∈ Vj for 1 ≤ j ≤ k. For example, when k = 3, the Cartesian products
G1 (G2 G3) and (G1 G2) G3 are isomorphic, if we consider the compound
vertices (v1, (v2, v3)) and ((v1, v2), v3) to be the same as (v1, v2, v3). Therefore
we can write this Cartesian product without parentheses, as G1 G2 G3. The
most important example of a Cartesian product with k factors is the k-cube,

P2 P2 · · · P2 ; (51)
its 2k vertices (v1, . . . , vk) are adjacent when their Hamming distance is 1.

In general, suppose v = (v1, . . . , vk) and v′ = (v′1, . . . , v′k) are k-tuples of
vertices, where we have vj −−− v′j in Gj for exactly a of the subscripts j, and
vj = v′j for exactly b of the subscripts. Then we have:
• v−−−v′ in G1 · · · Gk if and only if a = 1 and b = k − 1;
• v−−−v′ in G1 ⊗ · · · ⊗Gk if and only if a = k and b = 0;
• v−−−v′ in G1×· · ·×Gk if and only if a+ b = k and a > 0;
• v−−−v′ in G1 △ · · ·△Gk if and only if a is odd.

The lexicographic product is somewhat different, because it isn’t commutative;
in G1 ◦ · · · ◦Gk we have v−−−v′ for v ̸= v′ if and only if vj−−−v′j , where j is the
minimum subscript with vj ̸= v′j .

Exercises 91–102 explore some of the basic properties of graph products.
See also the book Product Graphs by Wilfried Imrich and Sandi Klavžar (2000),
which contains a comprehensive introduction to the general theory, including
algorithms for factorization of a given graph into “prime” subgraphs.

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 29

*Graphical degree sequences. A sequence d1d2 . . . dn of nonnegative integers
is called graphical if there’s at least one graph on vertices {1, 2, . . . , n} such that
vertex k has degree dk. We can assume that d1 ≥ d2 ≥ · · · ≥ dn. Clearly d1 < n
in any such graph; and the sum m = d1 +d2 + · · ·+dn of any graphical sequence
is always even, because it is twice the number of edges. Furthermore, it’s easy
to see that the sequence 3311 is not graphical, because a (simple) graph cannot
contain more than one edge between two vertices. Therefore graphical sequences
must also satisfy additional conditions. What are they?

A convenient way to decide if a given sequence d1d2 . . . dn is graphical, and
to construct such a graph if one exists, was discovered by V. Havel [Časopis pro
Pěstování Matematiky 80 (1955), 477–479]. We begin with an empty tableau,
having dk cells in row k; these cells represent “slots” into which we’ll place the
neighbors of vertex k in the constructed graph. Let cj be the number of cells in
column j; thus c1 ≥ c2 ≥ · · · , and when 1 ≤ k ≤ n we have cj ≥ k if and only if
dk ≥ j. For example, suppose n = 8 and d1 . . . d8 = 55544322; then

1
2
3
4
5
6
7
8

(52)

is the initial tableau, and we have c1 . . . c5 = 88653. Havel’s idea is to pair up
vertex n with dn of the highest-degree vertices. In this case, for example, we
create the two edges 8−−−3 and 8−−−2, and the tableau takes the following form:

1
2 8
3 8
4
5
6
7
8 2 3

. (53)

(We don’t want 8−−−1, because the empty slots should continue to form a tableau
shape; the cells of each column must be filled from the bottom up.) Next we set
n ← 7 and create two further edges, 7−−− 1 and 7−−− 5. And then come three
more, 6−−−4, 6−−−3, 6−−−2, making the tableau almost half full:

1 7
2 6 8
3 6 8
4 6
5 7
6 2 3 4
7 5 1
8 2 3

. (54)

From the Library of Melissa Nuno



ptg999

30 COMBINATORIAL SEARCHING 7

We’ve reduced the problem to finding a graph with degree sequence d1 . . . d5 =
43333; at this point we also have c1 . . . c4 = 5551. The reader is encouraged to
fill in the remaining blanks, before looking at the answer in exercise 103.
Algorithm H (Graph generator for specified degrees). Given d1 ≥ · · · ≥ dn ≥
dn+1 = 0, this algorithm creates edges between the vertices {1, . . . , n} in such
a way that exactly dk edges touch vertex k, for 1 ≤ k ≤ n, unless the sequence
d1 . . . dn isn’t graphical. An array c1 . . . cd1 is used for auxiliary storage.
H1. [Set the c’s.] Start with k ← d1 and j ← 0. Then while k > 0 do the follow-

ing operations: Set j ← j + 1; while k > dj+1, set ck ← j and k ← k − 1.
Terminate successfully if j = 0 (all d’s are zero).

H2. [Find n.] Set n← c1. Terminate successfully if n = 0; terminate unsuccess-
fully if d1 ≥ n > 0.

H3. [Begin loop on j.] Set i← 1, t← d1, r ← ct, and j ← dn.
H4. [Generate a new edge.] Set cj ← cj − 1 and m ← ct. Create the edge

n−−−m, and set dm ← dm − 1, ct ← m − 1, j ← j − 1. If j = 0, return
to step H2. Otherwise, if m = i, set i ← r + 1, t ← di, and r ← ct (see
exercise 104); repeat step H4.
When Algorithm H succeeds, it certainly has constructed a graph with the

desired degrees. But when it fails, how can we be sure that its mission was
impossible? The key fact is based on an important concept called “majorization”:
If d1 . . . dn and d′1 . . . d

′
n are two partitions of the same integer (that is, if d1 ≥

· · · ≥ dn and d′1 ≥ · · · ≥ d′n and d1 + · · · + dn = d′1 + · · · + d′n), we say that
d1 . . . dn majorizes d′1 . . . d′n if d1 + · · ·+ dk ≥ d′1 + · · ·+ d′k for 1 ≤ k ≤ n.
Lemma M. If d1 . . . dn is graphical and d1 . . . dn majorizes d′1 . . . d

′
n, then

d′1 . . . d
′
n is also graphical.

Proof. It is sufficient to prove the claim when d1 . . . dn and d′1 . . . d
′
n differ in

only two places,

d′k = dk − [k= i] + [k= j ] where i < j, (55)

because any sequence majorized by d1 . . . dn can be obtained by repeatedly
performing mini-majorizations such as this. (Exercise 7.2.1.4–55 discusses ma-
jorization in detail.)

Condition (55) implies that di > d′i ≥ d′i+1 ≥ d′j > dj . So any graph
with degree sequence d1 . . . dn contains a vertex v such that v−−− i and v /−−− j.
Deleting the edge v−−− i and adding the edge v−−− j yields a graph with degree
sequence d′1 . . . d′n, as desired.
Corollary H. Algorithm H succeeds whenever d1 . . . dn is graphical.
Proof. We may assume that n > 1. Suppose G is any graph on {1, . . . , n} with
degree sequence d1 . . . dn, and let G′ be the subgraph induced by {1, . . . , n− 1};
in other words, obtain G′ by removing vertex n and the dn edges that it touches.
The degree sequence d′1 . . . d′n−1 of G′ is obtained from d1 . . . dn−1 by reducing
some dn of the entries by 1 and sorting them into nonincreasing order. By

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 31

definition, d′1 . . . d′n−1 is graphical. The new degree sequence d′′1 . . . d′′n−1 produced
by the strategy of steps H3 and H4 is designed to be majorized by every such
d′1 . . . d

′
n−1, because it reduces the largest possible dn entries by 1. Thus the new

d′′1 . . . d
′′
n−1 is graphical. Algorithm H, which sets d1 . . . dn−1 ← d′′1 . . . d

′′
n−1, will

therefore succeed by induction on n.
The running time of Algorithm H is roughly proportional to the number

of edges generated, which can be of order n2. Exercise 105 presents a faster
method, which decides in O(n) steps whether or not a given sequence d1 . . . dn
is graphical (without constructing any graph).
Beyond graphs. When the vertices and/or arcs of a graph or digraph are
decorated with additional data, we call it a network. For example, every vertex of
words (5757, 0, 0, 0) has an associated rank, which corresponds to the popularity
of the corresponding five-letter word. Every vertex of plane lisa(360, 250, 15,
0, 360, 0, 250, 0, 22950000) has an associated pixel density, between 0 and 15.
Every arc of board (8, 8, 0, 0,−2, 0, 0) has an associated length, which reflects
the distance of a piece’s motion on the board: A bishop’s move from corner to
corner has length 7. The Stanford GraphBase includes several further generators
that were not mentioned above, because they are primarily used to generate
interesting networks, rather than to generate graphs with interesting structure:
• miles(128, 0, 0, 0, 0, 127, 0) is a network with 128 vertices, corresponding to

the same North American cities as the graph plane miles described earlier. But
miles, unlike plane miles, is a complete graph with

128
2


edges. Every edge has
an integer length, which represents the distance that a car or truck would have
needed to travel in 1949 when going from one given city to another. For example,
‘Vancouver, BC’ is 3496 miles from ‘West Palm Beach, FL’ in the miles network.
• econ(81, 0, 0, 0) is a network with 81 vertices and 4902 arcs. Its vertices

represent sectors of the United States economy, and its arcs represent the flow of
money from one sector to another during the year 1985, measured in millions of
dollars. For example, the flow value from Apparel to Household furniture is 44,
meaning that the furniture industry paid $44,000,000 to the apparel industry in
that year. The sum of flows coming into each vertex is equal to the sum of flows
going out. An arc appears only when the flow is nonzero. A special vertex called
Users receives the flows that represent total demand for a product; a few of these
end-user flows are negative, because of the way imported goods are treated by
government economists.
• games(120, 0, 0, 0, 0, 0, 128, 0) is a network with 120 vertices and 1276 arcs.

Its vertices represent football teams at American colleges and universities. Arcs
run between teams that played each other during the exciting 1990 season,
and they are labeled with the number of points scored. For example, the arc
Stanford−−→ California has value 27, and the arc California−−→ Stanford
has value 25, because the Stanford Cardinal defeated the U. C. Berkeley Golden
Bears by a score of 27–25 on 17 November 1990.
• risc(16) is a network of an entirely different kind. It has 3240 vertices and

7878 arcs, which define a directed acyclic graph or “dag” — namely, a digraph

From the Library of Melissa Nuno



ptg999

32 COMBINATORIAL SEARCHING 7

that contains no oriented cycles. The vertices represent gates that have Boolean
values; an arc such as Z45 −−→ R0:7~ means that the value of gate Z45 is an
input to gate R0:7~. Each gate has a type code (AND, OR, XOR, NOT, latch,
or external input); each arc has a length, denoting an amount of delay. The
network contains the complete logic for a miniature RISC chip that is able to
obey simple commands governing sixteen registers, each 16 bits wide.

Complete details about all the SGB generators can be found in the author’s
book The Stanford GraphBase (New York: ACM Press, 1994), together with
dozens of short example programs that explain how to manipulate the graphs and
networks that the generators produce. For example, a program called LADDERS
shows how to find a shortest path between one five-letter word and another. A
program called TAKE RISC demonstrates how to put a nanocomputer through
its paces by simulating the actions of a network built from the gates of risc(16).

Hypergraphs. Graphs and networks can be utterly fascinating, but they aren’t
the end of the story by any means. Lots of important combinatorial algorithms
are designed to work with hypergraphs, which are more general than graphs
because their edges are allowed to be arbitrary subsets of the vertices.

For example, we might have seven vertices, identified by nonzero binary
strings v = a1a2a3, together with seven edges, identified by bracketed nonzero
binary strings e = [b1b2b3], with v ∈ e if and only if (a1b1+a2b2+a3b3) mod 2 = 0.
Each of these edges contains exactly three vertices:

[001] = {010, 100, 110}; [010] = {001, 100, 101}; [011] = {011, 100, 111};
[100] = {001, 010, 011}; [101] = {010, 101, 111};
[110] = {001, 110, 111}; [111] = {011, 101, 110}. (56)

And by symmetry, each vertex belongs to exactly three edges. (Edges that
contain three or more vertices are sometimes called “hyperedges,” to distinguish
them from the edges of an ordinary graph. But it’s OK to call them just “edges.”)

A hypergraph is said to be r-uniform if every edge contains exactly r vertices.
Thus (56) is a 3-uniform hypergraph, and a 2-uniform hypergraph is an ordinary
graph. The complete r-uniform hypergraph K

(r)
n has n vertices and


n
r


edges.

Most of the basic concepts of graph theory can be extended to hypergraphs
in a natural way. For example, if H = (V,E) is a hypergraph and if U ⊆ V , the
subhypergraph H | U induced by U has the edges {e | e ∈ E and e ⊆ U }. The
complement H of an r-uniform hypergraph has the edges of K(r)

n that aren’t
edges of H. A k-coloring of a hypergraph is an assignment of at most k colors
to the vertices so that no edge is monochromatic. And so on.

Hypergraphs go by many other names, because the same properties can be
formulated in many different ways. For example, every hypergraph H = (V,E)
is essentially a family of sets, because each edge is a subset of V . A 3-uniform
hypergraph is also called a triple system. A hypergraph is also equivalent to
a matrix B of 0s and 1s, with one row for each vertex v and one column for
each edge e; row v and column e of this matrix contains the value bve = [v ∈ e].

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 33

Matrix B is called the incidence matrix of H, and we say that “v is incident
with e” when v ∈ e. Furthermore, a hypergraph is equivalent to a bipartite
graph, with vertex set V ∪ E and with the edge v −−− e whenever v is incident
with e. The hypergraph is said to be connected if and only if the corresponding
bipartite graph is connected. A cycle of length k in a hypergraph is defined to
be a cycle of length 2k in the corresponding bipartite graph.

For example, the hypergraph (56) can be defined by an equivalent incidence
matrix or an equivalent bipartite graph as follows:

[001] [010] [011] [100] [101] [110] [111]

001 0 1 0 1 0 1 0
010 1 0 0 1 1 0 0
011 0 0 1 1 0 0 1
100


1 1 1 0 0 0 0

101 0 1 0 0 1 0 1
110 1 0 0 0 0 1 1
111 0 0 1 0 1 1 0

[001]

010

[100]

001[010]

101

[101]

111

[110]

110

[111] 011

[011]

100

(57)

It contains 28 cycles of length 3, such as

[101]−−−101−−− [010]−−−001−−− [100]−−−010−−− [101]. (58)

The dual HT of a hypergraph H is obtained by interchanging the roles
of vertices and edges, but retaining the incidence relation. In other words, it
corresponds to transposing the incidence matrix. Notice, for example, that the
dual of an r-regular graph is an r-uniform hypergraph.

Incidence matrices and bipartite graphs might correspond to hypergraphs in
which some edges occur more than once, because distinct columns of the matrix
might be equal. When a hypergraph H = (V,E) does not have any repeated
edges, it corresponds also to yet another combinatorial object, namely a Boolean
function. For if, say, the vertex set V is {1, 2, . . . , n}, the function

h(x1, x2, . . . , xn) =

{j | xj = 1} ∈ E


(59)

characterizes the edges of H. For example, the Boolean formula
(x1 ⊕ x2 ⊕ x3) ∧ (x2 ⊕ x4 ⊕ x6) ∧ (x3 ⊕ x4 ⊕ x7)

∧ (x3 ⊕ x5 ⊕ x6) ∧ (x̄1 ∨ x̄2 ∨ x̄4) (60)

is another way to describe the hypergraph of (56) and (57).
The fact that combinatorial objects can be viewed in so many ways can

be mind-boggling. But it’s also extremely helpful, because it suggests different
ways to solve equivalent problems. When we look at a problem from different
perspectives, our brains naturally think of different ways to attack it. Sometimes
we get the best insights by thinking about how to manipulate rows and columns
in a matrix. Sometimes we make progress by imagining vertices and paths, or
by visualizing clusters of points in space. Sometimes Boolean algebra is just the
thing. If we’re stuck in one domain, another might come to our rescue.

From the Library of Melissa Nuno



ptg999

34 COMBINATORIAL SEARCHING 7

Covering and independence. If H = (V,E) is a graph or hypergraph, a set
U of vertices is said to cover H if every edge contains at least one member of U .
A set W of vertices is said to be independent (or “stable”) in H if no edge is
completely contained in W .

From the standpoint of the incidence matrix, a covering is a set of rows
whose sum is nonzero in every column. And in the special case that H is a
graph, every column of the matrix contains just two 1s; hence an independent
set in a graph corresponds to a set of rows that are mutually orthogonal — that
is, a set for which the dot product of any two different rows is zero.

These concepts are opposite sides of the same coin. If U covers H, then
W = V \ U is independent in H; conversely, if W is independent in H, then
U = V \W covers H. Both statements are equivalent to saying that the induced
hypergraph H |W has no edges.

This dual relationship between covering and independence, which was per-
haps first noted by Claude Berge [Proc. National Acad. Sci. 43 (1957), 842–844],
is somewhat paradoxical. Although it’s logically obvious and easy to verify, it’s
also intuitively surprising. When we look at a graph and try to find a large
independent set, we tend to have rather different thoughts from when we look at
the same graph and try to find a small vertex cover; yet both goals are the same.

A covering set U is minimal if U\u fails to be a cover for all u ∈ U . Similarly,
an independent set W is maximal if W ∪w fails to be independent for all w /∈W .
Here, for example, is a minimal cover of the 49-vertex graph of the contiguous
United States, (17), and the corresponding maximal independent set:

Minimal vertex cover,
with 38 vertices

Maximal independent set,
with 11 vertices

(61)

A covering is called minimum if it has the smallest possible size, and an
independent set is called maximum if it has the largest possible size. For example,
with graph (17) we can do much better than (61):

Minimum vertex cover,
with 30 vertices

Maximum independent set,
with 19 vertices

(62)

Notice the subtle distinction between “minimal” and “minimum” here: In gen-
eral (but in contrast to most dictionaries of English), people who work with
combinatorial algorithms use ‘-al’ words like “minimal” or “optimal” to refer to

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 35

combinatorial configurations that are locally best, in the sense that small changes
don’t improve them. The corresponding ‘-um’ words, “minimum” or “optimum,”
are reserved for configurations that are globally best, when considered over all
possibilities. It’s easy to find solutions to any optimization problem that are
merely optimal, in the weak local sense, by climbing repeatedly until reaching
the top of a hill. But it’s usually much harder to find solutions that are truly
optimum. For example, we’ll see in Section 7.9 that the problem of finding a
maximum independent set in a given graph belongs to a class of difficult problems
that are called NP-complete.

Even when a problem is NP-complete, we needn’t despair. We’ll discuss
techniques for finding minimum covers in several parts of this chapter, and those
methods work fine on smallish problems; the optimum solution in (62) was found
in less than a second, after examining only a tiny fraction of the 249 possibilities.
Furthermore, special cases of NP-complete problems often turn out to be simpler
than the general case. In Sections 7.5.1 and 7.5.5 we’ll see that a minimum vertex
cover can be discovered quickly in any bipartite graph, or in any hypergraph
that is the dual of a graph; we’ll also study efficient ways to discover a maximum
matching, which is a maximum independent set in the line graph of a given graph.

The problem of maximizing the size of an independent set occurs sufficiently
often that it has acquired a special notation: If H is any hypergraph, the number

α(H) = max

|W |

W is an independent set of vertices in H


(63)

is called the independence number (or the stability number) of H. Similarly,

χ(H) = min{k | H is k-colorable} (64)

is called the chromatic number of H. Notice that χ(H) is the size of a mini-
mum covering of H by independent sets, because the vertices that receive any
particular color must be independent according to our definitions.

These definitions of α(H) and χ(H) apply in particular to the case when
H is an ordinary graph, but of course we usually write α(G) and χ(G) in such
situations. Graphs have another important number called their clique number,

ω(G) = max

|X|

 X is a clique in G

, (65)

where a “clique” is a set of mutually adjacent vertices. Clearly

ω(G) = α(G), (66)

because a clique in G is an independent set in the complementary graph. Sim-
ilarly we can see that χ(G) is the minimum size of a “clique cover,” which is a
set of cliques that exactly covers all of the vertices.

Several instances of “exact cover problems” were mentioned earlier in this
section, without an explanation of exactly what such a problem really signifies.
Finally we’re ready for the definition: Given the incidence matrix of a hyper-
graph H, an exact cover of H is a set of rows whose sum is (1 1 . . . 1). In other
words, an exact cover is a set of vertices that touches each hyperedge exactly
once; an ordinary cover is only required to touch each hyperedge at least once.

From the Library of Melissa Nuno



ptg999

36 COMBINATORIAL SEARCHING 7

EXERCISES
1. [25 ] Suppose n = 4m − 1. Construct arrangements of Langford pairs for the

numbers {1, 1, . . . , n, n}, with the property that we also obtain a solution for n = 4m
by changing the first ‘2m−1’ to ‘4m’ and appending ‘2m−1 4m’ at the right. Hint:
Put the m− 1 even numbers 4m−4, 4m−6, . . . , 2m at the left.

2. [20 ] For which n can {0, 0, 1, 1, . . . , n−1, n−1} be arranged as Langford pairs?
3. [22 ] Suppose we arrange the numbers {0, 0, 1, 1, . . . , n−1, n−1} in a circle, instead

of a straight line, with distance k between the two k’s. Do we get solutions that are
essentially distinct from those of exercise 2?

4. [M20 ] (T. Skolem, 1957.) Show that the Fibonacci string S∞ = babbababbabba . . .
of exercise 1.2.8–36 leads directly to an infinite sequence 0012132453674 . . . of Langford
pairs for the set of all nonnegative integers, if we simply replace the a’s and b’s
independently by 0, 1, 2, etc., from left to right.

x 5. [HM22 ] If a permutation of {1, 1, 2, 2, . . . , n, n} is chosen at random, what is the
probability that the two k’s are exactly k positions apart, given k? Use this formula
to guess the size of the Langford numbers Ln in (1).

x 6. [M28 ] (M. Godfrey, 2002.) Let f(x1, . . . , x2n) =
n
k=1(xkxn+k

2n−k−1
j=1 xjxj+k+1).

a) Prove that

x1,...,x2n∈{−1,+1} f(x1, . . . , x2n) = 22n+1Ln.

b) Explain how to evaluate this sum in O(4nn) steps. How many bits of precision
are needed for the arithmetic?

c) Gain a factor of eight by exploiting the identities

f(x1, . . . , x2n) = f(−x1, . . . ,−x2n) = f(x2n, . . . , x1) = f(x1,−x2, . . . , x2n−1,−x2n).

7. [M22 ] Prove that every Langford pairing of {1, 1, . . . , 16, 16} must have seven
uncompleted pairs at some point, when read from left to right.

8. [23 ] The simplest Langford sequence is not only well-balanced; it’s planar, in the
sense that its pairs can be connected up without crossing lines as in (2):

2 23 31 1 .

Find all of the planar Langford pairings for which n ≤ 8.
9. [24 ] (Langford triples.) In how many ways can {1, 1, 1, 2, 2, 2, . . . , 9, 9, 9} be ar-

ranged in a row so that consecutive k’s are k apart, for 1 ≤ k ≤ 9?
10. [M20 ] Explain how to construct a magic square directly from Fig. 1. (Convert
each card into a number between 1 and 16, in such a way that the rows, columns, and
main diagonals all sum to 34.)
11. [20 ] Extend (5) to a “Hebraic-Græco-Latin” square by appending one of the
letters {@, A, B, C} to the two-letter string in each compartment. No letter pair (Latin,
Greek), (Latin, Hebrew), or (Greek, Hebrew) should appear in more than one place.

x 12. [M21 ] (L. Euler.) Let Lij = (i+j) mod n for 0 ≤ i, j < n be the addition table for
integers mod n. Prove that a latin square orthogonal to L exists if and only if n is odd.
13. [M25 ] A 10× 10 square can be divided into four quarters of size 5× 5. A 10× 10
latin square formed from the digits {0, 1, . . . , 9} has k “intruders” if its upper left
quarter has exactly k elements ≥ 5. (See exercise 14(e) for an example with k = 3.)
Prove that the square has no orthogonal mate unless there are at least three intruders.

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 37

14. [29 ] Find all orthogonal mates of the following latin squares:
(a)

3145926870
2819763504
9452307168
6208451793
8364095217
5981274036
4627530981
0576148329
1730689452
7093812645

;

(b)
2718459036
0287135649
7524093168
1435962780
6390718425
4069271853
3102684597
9871546302
8956307214
5643820971

;

(c)
0572164938
6051298473
4867039215
1439807652
8324756091
7203941586
5610473829
9148625307
2795380164
3986512740

;

(d)
1680397425
8346512097
9805761342
2754689130
0538976214
4963820571
7192034658
6219405783
3471258906
5027143869

;

(e)
7823456019
8234067195
2340178956
3401289567
4012395678
5678912340
6789523401
0195634782
1956740823
9567801234

.

15. [50 ] Find three 10× 10 latin squares that are mutually orthogonal to each other.
16. [48 ] (H. J. Ryser, 1967.) A latin square is said to be of “order n” if it has n rows,
n columns, and n symbols. Does every latin square of odd order have a transversal?
17. [25 ] Let L be a latin square with elements Lij for 0 ≤ i, j < n. Show that the
problems of (a) finding all the transversals of L, and (b) finding all the orthogonal
mates of L, are special cases of the general exact cover problem.
18. [M26 ] The string x1x2 . . . xN is called “n-ary” if each element xj belongs to the
set {0, 1, . . . , n−1} of n-ary digits. Two strings x1x2 . . . xN and y1y2 . . . yN are said to
be orthogonal if the N pairs (xj , yj) are distinct for 1 ≤ j ≤ N . (Consequently, two
n-ary strings cannot be orthogonal if their length N exceeds n2.) An n-ary matrix
with m rows and n2 columns whose rows are orthogonal to each other is called an
orthogonal array of order n and depth m.

Find a correspondence between orthogonal arrays of depth m and lists of m − 2
mutually orthogonal latin squares. What orthogonal array corresponds to exercise 11?

x 19. [M25 ] Continuing exercise 18, prove that an orthogonal array of order n > 1 and
depth m is possible only if m ≤ n + 1. Show that this upper limit is achievable when
n is a prime number p. Write out an example when p = 5.
20. [HM20 ] Show that if each element k in an orthogonal array is replaced by e2πki/n,
the rows become orthogonal vectors in the usual sense (their dot product is zero).

x 21. [M21 ] A geometric net is a system of points and lines that obeys three axioms:
i) Each line is a set of points.

ii) Distinct lines have at most one point in common.
iii) If p is a point and L is a line with p /∈ L, then there is exactly one line M such

that p ∈M and L ∩M = ∅.
If L ∩M = ∅ we say that L is parallel to M , and write L ∥M .

a) Prove that the lines of a geometric net can be partitioned into equivalence classes,
with two lines in the same class if and only if they are equal or parallel.

b) Show that if there are at least two classes of parallel lines, every line contains the
same number of points as the other lines in its class.

c) Furthermore, if there are at least three classes, there are numbers m and n such
that all points belong to exactly m lines and all lines contain exactly n points.

x 22. [M22 ] Show that every orthogonal array can be regarded as a geometric net. Is
the converse also true?
23. [M23 ] (Error-correcting codes.) The “Hamming distance” d(x, y) between two
strings x = x1 . . . xN and y = y1 . . . yN is the number of positions j where xj ̸= yj . A

From the Library of Melissa Nuno



ptg999

38 COMBINATORIAL SEARCHING 7

b-ary code with n information digits and r check digits is a set C(b, n, r) of bn strings
x = x1 . . . xn+r, where 0 ≤ xj < b for 1 ≤ j ≤ n+r. When a codeword x is transmitted
and the message y is received, d(x, y) is the number of transmission errors. The code
is called t-error correcting if we can reconstruct the value of x whenever a message y
is received with d(x, y) ≤ t. The distance of the code is the minimum value of d(x, x′),
taken over all pairs of codewords x ̸= x′.

a) Prove that a code is t-error correcting if and only if its distance exceeds 2t.
b) Prove that a single-error correcting b-ary code with 2 information digits and 2 check

digits is equivalent to a pair of orthogonal latin squares of order b.
c) Furthermore, a code C(b, 2, r) with distance r+1 is equivalent to a set of r mutually

orthogonal latin squares of order b.
x 24. [M30 ] A geometric net with N points and R lines leads naturally to the binary

code C(2, N,R) with codewords x1 . . . xNxN+1 . . . xN+R defined by the parity bits

xN+k = fk(x1, . . . , xN ) = ({xj | point j lies on line k}) mod 2.

a) If the net has m classes of parallel lines, prove that this code has distance m+ 1.
b) Find an efficient way to correct up to t errors with this code, assuming that m = 2t.

Illustrate the decoding process in the case N = 25, R = 30, t = 3.
25. [27 ] Find a latin square whose rows and columns are five-letter words. (For this
exercise you’ll need to dig out the big dictionaries.)

x 26. [25 ] Compose a meaningful English sentence that contains only five-letter words.
27. [20 ] How many SGB words contain exactly k distinct letters, for 1 ≤ k ≤ 5?
28. [20 ] Are there any pairs of SGB word vectors that differ by±1 in each component?
29. [20 ] Find all SGB words that are palindromes (equal to their reflection), or mirror
pairs (like regal lager).

x 30. [20 ] The letters of first are in alphabetic order from left to right. What is the
lexicographically first such five-letter word? What is the last?
31. [21 ] (C. McManus.) Find all sets of three SGB words that are in arithmetic
progression but have no common letters in any fixed position. (One such example is
{power, slugs, visit}.)
32. [23 ] Does the English language contain any 10-letter words a0a1 . . . a9 for which
both a0a2a4a6a8 and a1a3a5a7a9 are SGB words?
33. [20 ] (Scot Morris.) Complete the following list of 26 interesting SGB words:

about, bacon, faced, under, chief, . . . , pizza.

x 34. [21 ] For each SGB word that doesn’t include the letter y, obtain a 5-bit binary
number by changing the vowels {a, e, i, o, u} to 1 and the other letters to 0. What are
the most common words for each of the 32 binary outcomes?

x 35. [26 ] Sixteen well-chosen elements of WORDS(1000) lead to the branching pattern

sheep

sheet

shelf

shell

shore

short

shown

shows

stalk

stall

stars

start

steal

steam

steel

steep

,

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 39

which is a complete binary trie of words that begin with the letter s. But there’s no such
pattern of words beginning with a, even if we consider the full collection WORDS(5757).

What letters of the alphabet can be used as the starting letter of sixteen words
that form a complete binary trie within WORDS(n), given n?
36. [M17 ] Explain the symmetries that appear in the word cube (10). Also show that
two more such cubes can be obtained by changing only the two words {stove, event}.
37. [20 ] Which vertices of the graph words (5757, 0, 0, 0) have maximum degree?
38. [22 ] Using the digraph rule in (14), change tears to smile in just three steps,
without computer assistance.
39. [M00 ] Is G \ e an induced subgraph of G? Is it a spanning subgraph?
40. [M15 ] How many (a) spanning (b) induced subgraphs does a graph G = (V,E)
have, when |V | = n and |E| = e?
41. [M10 ] For which integers n do we have (a) Kn = Pn? (b) Kn = Cn?
42. [15 ] (D. H. Lehmer.) Let G be a graph with 13 vertices, in which every vertex
has degree 5. Make a nontrivial statement about G.
43. [23 ] Are any of the following graphs the same as the Petersen graph?

44. [M23 ] How many symmetries does Chvátal’s graph have? (See Fig. 2(f).)
45. [20 ] Find an easy way to 4-color the planar graph (17). Would 3 colors suffice?
46. [M25 ] Let G be a graph with n ≥ 3 vertices, defined by a planar diagram that
is “maximal,” in the sense that no additional lines can be drawn between nonadjacent
vertices without crossing an existing edge.

a) Prove that the diagram partitions the plane into regions that each have exactly
three vertices on their boundary. (One of these regions is the set of all points that
lie outside the diagram.)

b) Therefore G has exactly 3n− 6 edges.
47. [M22 ] Prove that the complete bigraph K3,3 isn’t planar.
48. [M25 ] Complete the proof of Theorem B by showing that the stated procedure
never gives the same color to two adjacent vertices.
49. [18 ] Draw diagrams of all the cubic graphs with at most 6 vertices.
50. [M24 ] Find all bipartite graphs that can be 3-colored in exactly 24 ways.

x 51. [M22 ] Given a geometric net as described in exercise 21, construct the bipartite
graph whose vertices are the points p and the lines L of the net, with p−−− L if and
only if p ∈ L. What is the girth of this graph?
52. [M16 ] Find a simple inequality that relates the diameter of a graph to its girth.
(How small can the diameter be, if the girth is large?)
53. [15 ] Which of the words world and happy belongs to the giant component of the
graph words (5757, 0, 0, 0)?

From the Library of Melissa Nuno



ptg999

40 COMBINATORIAL SEARCHING 7

x 54. [21 ] The 49 postal codes in graph (17) are AL, AR, AZ, CA, CO, CT, DC, DE, FL, GA,
IA, ID, IL, IN, KS, KY, LA, MA, MD, ME, MI, MN, MO, MS, MT, NC, ND, NE, NH, NJ, NM, NV,
NY, OH, OK, OR, PA, RI, SC, SD, TN, TX, UT, VA, VT, WA, WI, WV, WY, in alphabetical order.

a) Suppose we consider two states to be adjacent if their postal codes agree in one
place (namely AL−−−AR−−−OR−−−OH, etc.). What are the components of this graph?

b) Now form a directed graph with XY −−→ YZ (for example, AL −−→ LA −−→ AR, etc.).
What are the strongly connected components of this digraph? (See Section 2.3.4.2.)

c) The United States has additional postal codes AA, AE, AK, AP, AS, FM, GU, HI, MH,
MP, PW, PR, VI, besides those in (17). Reconsider question (b), using all 62 codes.

55. [M20 ] How many edges are in the complete k-partite graph Kn1,...,nk?
x 56. [M10 ] True or false: A multigraph is a graph if and only if the corresponding

digraph is simple.
57. [M10 ] True or false: Vertices u and v are in the same connected component of a
directed graph if and only if either d(u, v) <∞ or d(v, u) <∞.
58. [M17 ] Describe all (a) graphs (b) multigraphs that are regular of degree 2.

x 59. [M23 ] A tournament of order n is a digraph on n vertices that has exactly

n
2


arcs, either u−−→v or v−−→u for every pair of distinct vertices {u, v}.
a) Prove that every tournament contains an oriented spanning path v1−−→· · ·−−→vn.
b) Consider the tournament on vertices {0, 1, 2, 3, 4} for which u−−→ v if and only if

(u− v) mod 5 ≥ 3. How many oriented spanning paths does it have?
c) Is Kn⃗ the only tournament of order n that has a unique oriented spanning path?

x 60. [M22 ] Let u be a vertex of greatest out-degree in a tournament, and let v be any
other vertex. Prove that d(u, v) ≤ 2.
61. [M16 ] Construct a digraph that has k walks of length k from vertex 1 to vertex 2.
62. [M21 ] A permutation digraph is a directed graph in which every vertex has out-
degree 1 and in-degree 1; therefore its components are oriented cycles. If it has
n vertices and k components, we call it even if n− k is even, odd if n− k is odd.

a) Let G be a directed graph with adjacency matrix A. Prove that the number of
spanning permutation digraphs of G is perA, the permanent of A.

b) Interpret the determinant, detA, in terms of spanning permutation digraphs.
63. [M23 ] Let G be a graph of girth g in which every vertex has at least d neighbors.
Prove that G has at least N vertices, where

N =


1 +


0≤k<t d(d− 1)k, if g = 2t+ 1;

1 + (d− 1)t +


0≤k<t d(d− 1)k, if g = 2t+ 2.

x 64. [M21 ] Continuing exercise 63, show that there’s a unique graph of girth 4, mini-
mum degree d, and order 2d, for each d ≥ 2.

x 65. [HM31 ] Suppose graph G has girth 5, minimum degree d, and N = d2+1 vertices.
a) Prove that the adjacency matrix A of G satisfies the equation A2+A = (d−1)I+J .
b) Since A is a symmetric matrix, it has N orthogonal eigenvectors xj , with corre-

sponding eigenvalues λj , such that Axj = λjxj for 1 ≤ j ≤ N . Prove that each
λj is either d or (−1±

√
4d− 3)/2.

c) Show that if
√

4d− 3 is irrational, then d = 2. Hint: λ1 + · · ·+λN = trace(A) = 0.
d) And if

√
4d− 3 is rational, d ∈ {3, 7, 57}.

66. [M30 ] Continuing exercise 65, construct such a graph when d = 7.

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 41

67. [M48 ] Is there a regular graph of degree 57, order 3250, and girth 5?
68. [M20 ] How many different adjacency matrices does a graph G on n vertices have?

x 69. [20 ] Extending (31), explain how to calculate both out-degree ODEG(v) and in-
degree IDEG(v) for all vertices v in a graph that has been represented in SGB format.

x 70. [M20 ] How often is each step of Algorithm B performed, when that algorithm
successfully 2-colors a graph with m arcs and n vertices?
71. [26 ] Implement Algorithm B for the MMIX computer, using the MMIXAL assembly
language. Assume that, when your program begins, register v0 points to the first vertex
node and register n contains the number of vertices.

x 72. [M22 ] When COLOR(v) is set in step B6, call u the parent of v; but when COLOR(w)
is set in step B3, say that w has no parent. Define the (inclusive) ancestors of vertex v,
recursively, to be v together with the ancestors of v’s parent (if any).

a) Prove that if v is below u in the stack during Algorithm B, the parent of v is an
ancestor of u.

b) Furthermore, if COLOR(v) = COLOR(u) in step B6, v is currently in the stack.
c) Use these facts to extend Algorithm B so that, if the given graph is not bipartite,

the names of vertices in a cycle of odd length are output.
73. [15 ] What’s another name for random graph(10, 45, 0, 0, 0, 0, 0, 0, 0, 0)?
74. [21 ] What vertex of roget(1022, 0, 0, 0) has the largest out-degree?
75. [22 ] The SGB graph generator board(n1, n2, n3, n4, p, w, o) creates a graph whose
vertices are the t-dimensional integer vectors (x1, . . . , xt) for 0 ≤ xi < bi, determined
by the first four parameters (n1, n2, n3, n4) as follows: Set n5 ← 0 and let j ≥ 0 be min-
imum such that nj+1 ≤ 0. If j = 0, set b1 ← b2 ← 8 and t← 2; this is the default 8× 8
board. Otherwise if nj+1 = 0, set bi ← ni for 1 ≤ i ≤ j and t← j. Finally, if nj+1 < 0,
set t ← |nj+1|, and set bi to the ith element of the periodic sequence (n1, . . . , nj ,
n1, . . . , nj , n1, . . . ). (For example, the specification (n1, n2, n3, n4) = (2, 3, 5,−7) is
about as tricky as you can get; it produces a 7-dimensional board with (b1, . . . , b7) =
(2, 3, 5, 2, 3, 5, 2), hence a graph with 2 · 3 · 5 · 2 · 3 · 5 · 2 = 1800 vertices.)

The remaining parameters (p, w, o), for “piece, wrap, and orientation,” determine
the arcs of the graph. Suppose first that w = o = 0. If p > 0, we have (x1, . . . , xt)−−→
(y1, . . . , yt) if and only if yi = xi + δi for 1 ≤ i ≤ t, where (δ1, . . . , δt) is an integer
solution to the equation δ2

1 + · · ·+ δ2
t = |p|. And if p < 0, we allow also yi = xi + kδi

for k ≥ 1, corresponding to k moves in the same direction.
If w ̸= 0, let w = (wt . . . w1)2 in binary notation. Then we allow “wraparound,”

yi = (xi + δi) mod bi or yi = (xi + kδi) mod bi, in each coordinate i for which wi = 1.
If o ̸= 0, the graph is directed; offsets (δ1, . . . , δt) produce arcs only when they are

lexicographically greater than (0, . . . , 0). But if o = 0, the graph is undirected.
Find settings of (n1, n2, n3, n4, p, w, o) for which board will produce the following

fundamental graphs: (a) the complete graph Kn; (b) the path Pn; (c) the cycle Cn;
(d) the transitive tournament Kn⃗; (e) the oriented path Pn⃗; (f) the oriented cycle Cn⃗;
(g) the m×n grid Pm Pn; (h) the m×n cylinder Pm Cn; (i) the m×n torus Cm Cn;
(j) the m× n rook graph Km Kn; (k) the m× n directed torus Cm⃗ Cn⃗ ; (l) the null
graph Kn; (m) the n-cube P2 · · · P2 with 2n vertices.
76. [20 ] Can board(n1, n2, n3, n4, p, w, o) produce loops, or parallel (repeated) edges?
77. [M20 ] If graph G has diameter ≥ 3, prove that G has diameter ≤ 3.

From the Library of Melissa Nuno



ptg999

42 COMBINATORIAL SEARCHING 7

78. [M27 ] Let G = (V,E) be a graph with |V | = n and G ∼= G. (In other words, G
is self-complementary: There’s a permutation φ of V such that u−−− v if and only if
φ(u) /−−−φ(v) and u ̸= v. We can imagine that the edges of Kn have been painted black
or white; the white edges define a graph that’s isomorphic to the graph of black edges.)

a) Prove that nmod 4 = 0 or 1. Draw diagrams for all such graphs with n < 8.
b) Prove that if nmod 4 = 0, every cycle of the permutation φ has a length that is a

multiple of 4.
c) Conversely, every permutation φ with such cycles arises in some such graph G.
d) Extend these results to the case nmod 4 = 1.

x 79. [M22 ] Given k ≥ 0, construct a graph on the vertices {0, 1, . . . , 4k} that is both
regular and self-complementary.

x 80. [M22 ] A self-complementary graph must have diameter 2 or 3, by exercise 77.
Given k ≥ 2, construct self-complementary graphs of both possible diameters, when
(a) V = {1, 2, . . . , 4k}; (b) V = {0, 1, 2, . . . , 4k}.
81. [20 ] The complement of a simple digraph without loops is defined by extending
(35) and (36), so that we have u→ v in D if and only if u ̸= v and u ̸→ v in D. What
are the self-complementary digraphs of order 3?
82. [M21 ] Are the following statements about line graphs true or false?

a) If G is contained in G′, then L(G) is an induced subgraph of L(G′).
b) If G is a regular graph, so is L(G).
c) L(Km,n) is regular, for all m,n > 0.
d) L(Km,n,r) is regular, for all m,n, r > 0.
e) L(Km,n) ∼= Km Kn.
f) L(K4) ∼= K2,2,2.
g) L(Pn+1) ∼= Pn.
h) The graphs G and L(G) both have the same number of components.

83. [16 ] Draw the graph L(K5).
x 84. [M21 ] Is L(K3,3) self-complementary?

85. [M22 ] (O. Ore, 1962.) For which graphs G do we have G ∼= L(G)?
86. [M20 ] (R. J. Wilson.) Find a graph G of order 6 for which G ∼= L(G).
87. [20 ] Is the Petersen graph (a) 3-colorable? (b) 3-edge-colorable?
88. [M20 ] The graph Wn = K1−−−Cn−1 is called the wheel of order n,
when n ≥ 4. How many cycles does it contain as subgraphs?

W889. [M20 ] Prove the associative laws, (42) and (43).
x 90. [M24 ] A graph is called a cograph if it can be constructed algebraically from

1-element graphs by means of complementation and/or direct sum operations. For
example, there are four nonisomorphic graphs of order 3, and they all are cographs:
K3 = K1 ⊕K1 ⊕K1 and its complement, K3; K1,2 = K1 ⊕K2 and its complement,
K1,2, where K2 = K1 ⊕K1.

Exhaustive enumeration shows that there are 11 nonisomorphic graphs of order 4.
Give algebraic formulas to prove that 10 of them are cographs. Which one isn’t?

x 91. [20 ] Draw diagrams for the 4-vertex graphs (a) K2 K2; (b) K2⊗K2; (c) K2×K2;
(d) K2 △K2; (e) K2 ◦K2; (f) K2 ◦K2; (g) K2 ◦K2.
92. [21 ] The five types of graph products defined in the text work fine for simple
digraphs as well as for ordinary graphs. Draw diagrams for the 4-vertex digraphs
(a) K2⃗ K2⃗ ; (b) K2⃗ ⊗K2⃗ ; (c) K2⃗ ×K2⃗ ; (d) K2⃗ △K2⃗ ; (e) K2⃗ ◦K2⃗ .

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 43

93. [15 ] Which of the five graph products takes Km and Kn into Kmn?
94. [10 ] Are the SGB words graphs induced subgraphs of P26 P26 P26 P26 P26?
95. [M20 ] If vertex u of G has degree du and vertex v of H has degree dv, what is
the degree of vertex (u, v) in (a) G H? (b) G⊗H? (c) G×H? (d) G△H? (e) G ◦H?

x 96. [M22 ] Let A be an m ×m′ matrix with auu′ in row u and column u′; let B be
an n × n′ matrix with bvv′ in row v and column v′. The direct product A ⊗ B is an
mn ×m′n′ matrix with auu′bvv′ in row (u, v) and column (u′, v′). Thus A ⊗ B is the
adjacency matrix of G⊗H, if A and B are the adjacency matrices of G and H.

Find analogous formulas for the adjacency matrices of (a) G H; (b) G×H;
(c) G△H; (d) G ◦H.
97. [M25 ] Find as many interesting algebraic relations between graph sums and prod-
ucts as you can. (For example, the distributive law (A⊕B)⊗C = (A⊗C)⊕(B⊗C) for
direct sums and products of matrices implies that (G⊕G′)⊗H = (G⊗H)⊕ (G′⊗H).
We also have Km H = H ⊕ · · · ⊕H, with m copies of H, etc.)
98. [M20 ] If the graph G has k components and the graph H has l components, how
many components are in the graphs G H and G×H?
99. [M20 ] Let dG(u, u′) be the distance from vertex u to vertex u′ in graph G.
Prove that dG H((u, v), (u′, v′)) = dG(u, u′) + dH(v, v′), and find a similar formula
for dG×H((u, v), (u′, v′)).
100. [M21 ] For which connected graphs is G⊗H connected?

x 101. [M25 ] Find all connected graphs G and H such that G H ∼= G⊗H.
102. [M20 ] What’s a simple algebraic formula for the graph of king moves (which
take one step horizontally, vertically, or diagonally) on an m× n board?
103. [20 ] Complete tableau (54). Also apply Algorithm H to the sequence 866444444.
104. [18 ] Explain the manipulation of variables i, t, and r in steps H3 and H4.
105. [M38 ] Suppose d1 ≥ · · · ≥ dn ≥ 0, and let c1 ≥ · · · ≥ cd1 be its conjugate as in
Algorithm H. Prove that d1 . . . dn is graphical if and only if d1 + · · ·+ dn is even and
d1 + · · ·+ dk ≤ c1 + · · ·+ ck − k for 1 ≤ k ≤ s, where s is maximal such that ds ≥ s.
106. [20 ] True or false: If d1 = · · · = dn = d < n and nd is even, Algorithm H
constructs a connected graph.
107. [M21 ] Prove that the degree sequence d1 . . . dn of a self-complementary graph
satisfies dj + dn+1−j = n− 1 and d2j−1 = d2j for 1 ≤ j ≤ n/2.

x 108. [M23 ] Design an algorithm analogous to Algorithm H that constructs a simple
directed graph on vertices {1, . . . , n}, having specified values d−k and d+

k for the in-degree
and out-degree of each vertex k, whenever at least one such graph exists.
109. [M20 ] Design an algorithm analogous to Algorithm H that constructs a bipartite
graph on vertices {1, . . . ,m + n}, having specified degrees dk for each vertex k when
possible; all edges j−−−k should have j ≤ m and k > m.
110. [M22 ] Without using Algorithm H, show by a direct construction that the se-
quence d1 . . . dn is graphical when n > d1 ≥ · · · ≥ dn ≥ d1−1 and d1 + · · ·+dn is even.

x 111. [25 ] Let G be a graph on vertices V = {1, . . . , n}, with dk the degree of k and
max(d1, . . . , dn) = d. Prove that there’s an integer N with n ≤ N ≤ 2n and a graph H
on vertices {1, . . . , N}, such that H is regular of degree d and H |V = G. Explain how
to construct such a regular graph with N as small as possible.

From the Library of Melissa Nuno



ptg999

44 COMBINATORIAL SEARCHING 7

x 112. [20 ] Does the network miles(128, 0, 0, 0, 0, 127, 0) have three equidistant cities?
If not, what three cities come closest to an equilateral triangle?
113. [05 ] When H is a hypergraph with m edges and n vertices, how many rows and
columns does its incidence matrix have?
114. [M20 ] Suppose the multigraph (26) is regarded as a hypergraph. What is the
corresponding incidence matrix? What is the corresponding bipartite multigraph?

x 115. [M20 ] When B is the incidence matrix of a graph G, explain the significance of
the symmetric matrices BTB and BBT.
116. [M17 ] Describe the edges of the complete bipartite r-uniform hypergraph K(r)

m,n.
117. [M22 ] How many nonisomorphic 1-uniform hypergraphs have m edges and n ver-
tices? (Edges may be repeated.) List them all when m = 4 and n = 3.
118. [M20 ] A “hyperforest” is a hypergraph that contains no cycles. If a hyperforest
has m edges, n vertices, and p components, what’s the sum of the degrees of its vertices?
119. [M18 ] What hypergraph corresponds to (60) without the final term (x̄1∨x̄2∨x̄4)?
120. [M20 ] Define directed hypergraphs, by generalizing the concept of directed graphs.
121. [M19 ] Given a hypergraph H = (V,E), let I(H) = (V, F ), where F is the family
of all maximal independent sets of H. Express χ(H) in terms of |V |, |F |, and α(I(H)T ).

x 122. [M24 ] Find a maximum independent set and a minimum coloring of the following
triple systems: (a) the hypergraph (56); (b) the dual of the Petersen graph.
123. [17 ] Show that the optimum colorings of Kn Kn are equivalent to the solutions
of a famous combinatorial problem.
124. [M22 ] What is the chromatic number of the Chvátal graph, Fig. 2(f)?
125. [M48 ] For what values of g is there a 4-regular, 4-chromatic graph of girth g?

x 126. [M22 ] Find optimum colorings of the “kingwise torus,” Cm×Cn, when m,n ≥ 3.
127. [M22 ] Prove that (a) χ(G) + χ(G) ≤ n+ 1 and (b) χ(G)χ(G) ≥ n when G is a
graph of order n, and find graphs for which equality holds.
128. [M18 ] Express χ(G H) in terms of χ(G) and χ(H), when G and H are graphs.
129. [23 ] Describe the maximal cliques of the 8× 8 queen graph (37).
130. [M20 ] How many maximal cliques are in a complete k-partite graph?
131. [M30 ] Let N(n) be the largest number of maximal cliques that an n-vertex graph
can have. Prove that 3⌊n/3⌋ ≤ N(n) ≤ 3⌈n/3⌉.

x 132. [M20 ] We call G tightly colorable if χ(G) = ω(G). Prove that χ(G×H) =
χ(G)χ(H) whenever G and H are tightly colorable.
133. [21 ] The “musical graph” illustrated here pro-
vides a nice way to review numerous definitions
that were given in this section, because its proper-
ties are easily analyzed. Determine its (a) order;
(b) size; (c) girth; (d) diameter; (e) independ-
ence number, α(G); (f) chromatic number, χ(G);
(g) edge-chromatic number, χ(L(G)); (h) clique
number, ω(G); (i) algebraic formula as a product
of well-known smaller graphs. What is the size
of (j) a minimum vertex cover? (k) a maximum
matching? Is G (l) regular? (m) planar? (n) con-
nected? (o) directed? (p) a free tree? (q) Hamiltonian?

c

g
d

a
e

b

f]

c]

g]
d]=e[ b

[

f

E[

B[

F
C

G

D

A

E

B
F]=G[

D[

A[

From the Library of Melissa Nuno



ptg999

7 COMBINATORIAL SEARCHING 45

134. [M22 ] How many automorphisms does the musical graph have?
x 135. [HM26 ] Suppose a composer takes a random walk in the musical graph, starting

at vertex C and then making five equally likely choices at each step. Show that after
an even number of steps, the walk is more likely to end at vertex C than at any other
vertex. What is the exact probability of going from C to C in a 12-step walk?
136. [HM23 ] A Cayley digraph is a directed graph whose vertices V are the elements
of a group and whose arcs are v −−→ vαj for 1 ≤ j ≤ d and all vertices v, where
(α1, . . . , αd) are fixed elements of the group. A Cayley graph is a Cayley digraph that
is also a graph. Is the Petersen graph a Cayley graph?

0
4
8

3
7
11

6
10
2

9
1
5

0
4
8

3
7
11

6
10
2

9
1
5

0
4
8

3
7
11

6
10
2

9
1
5

0
4
8

3
7
11

6
10
2

9
1
5

0
4
8

3
7
11

6
10
2

9
1
5

0
4
8

3
7
11

6
10
2

9
1
5

0
4
8

3
7
11

6
10
2

9
1
5

0
4
8

3
7
11

6
10
2

9
1
5

0
4
8

3
7
11

6
10
2

9
1
5

1 4
8 11

3
7

2
10
6 9 0

5
1 4

8 11
3
7

2
10
6 9 0

5
1 4

8 11
3
7

2
10
6 9 0

5

1 4
8 11

3
7

2
10
6 9 0

5
1 4

8 11
3
7

2
10
6 9 0

5

1 4
8 11

3
7

2
10
6 9 0

5
1 4

8 11
3
7

2
10
6 9 0

5
1 4

8 11
3
7

2
10
6 9 0

5

1 4
8 11

3
7

2
10
6 9 0

5

x 137. [M25 ] (Generalized toruses.) An m× n torus can be regarded as a tiling of the
plane. For example, we can imagine that infinitely many copies of the 3 × 4 torus
in (50) have been placed together gridwise, as indicated in the left-hand illustration
above; from each vertex we can move north, south, east, or west to another vertex of the
torus. The vertices have been numbered here so that a northward move from v goes to
(v+4) mod 12, and an eastward move to (v+3) mod 12, etc. The right-hand illustration
shows the same torus, but with a differently shaped tile; any way to choose twelve cells
numbered {0, 1, . . . , 11} will tile the plane, with exactly the same underlying graph.

Shifted copies of a single shape will also tile the plane if they form a generalized
torus, in which cell (x, y) corresponds to the same vertex as cells (x + a, y + b) and
(x + c, y + d), where (a, b) and (c, d) are integer vectors and n = ad − bc > 0. The
generalized torus will then have n points. These vectors (a, b) and (c, d) are (4, 0) and
(0, 3) in the 3×4 example above; and when they are respectively (5, 2) and (1, 3) we get

0 1 2 3
4 5 6 7 8

9 10 11 12
0 1 2 3
4 5 6 7 8

9 10 11 12
0 1 2 3
4 5 6 7 8

9 10 11 12

0 1 2 3
4 5 6 7 8

9 10 11 12

0 1 2 3
4 5 6 7 8

9 10 11 12

0 1 2 3
4 5 6 7 8

9 10 11 12
0 1 2 3
4 5 6 7 8

9 10 11 12
.

Here n = 13, and a northward move from v goes to (v + 4) mod 13; an eastward move
goes to (v + 1) mod 13.

Prove that if gcd(a, b, c, d) = 1, the vertices of such a generalized torus can always
be assigned integer labels {0, 1, . . . , n−1} in such a way that the neighbors of v are
(v ± p) mod n and (v ± q) mod n, for some integers p and q.

From the Library of Melissa Nuno



ptg999

46 COMBINATORIAL SEARCHING 7

138. [HM27 ] Continuing exercise 137, what is a good way to label k-dimensional
vertices x = (x1, . . . , xk), when integer vectors αj are given such that each vector x
is equivalent to x + αj for 1 ≤ j ≤ k? Illustrate your method in the case k = 3,
α1 = (3, 1, 1), α2 = (1, 3, 1), α3 = (1, 1, 3).

x 139. [M22 ] Let H be a fixed graph of order h, and let #(H:G) be the number of times
that H occurs as an induced subgraph of a given graph G. If G is chosen at random
from the set of all 2n(n−1)/2 graphs on the vertices V = {1, 2, . . . , n}, what is the average
value of #(H:G) when H is (a) Kh; (b) Ph, for h > 1; (c) Ch, for h > 2; (d) arbitrary?
140. [M30 ] A graph G is called proportional if its induced subgraph counts #(K3:G),
#(K3:G), and #(P3:G) each agree with the expected values derived in exercise 139.

a) Show that the wheel graph W8 of exercise 88 is proportional in this sense.
b) Prove that G is proportional if and only if #(K3:G) = 1

8

n
3


and the degree
sequence d1 . . . dn of its vertices satisfies the identities

d1 + · · ·+ dn =

n

2


, d2

1 + · · ·+ d2
n = n

2


n

2


. (∗)

141. [26 ] The conditions of exercise 140(b) can hold only if nmod 16 ∈ {0, 1, 8}.
Write a program to find all of the proportional graphs that have n = 8 vertices.
142. [M30 ] (S. Janson and J. Kratochvíl, 1991.) Prove that no graph G on 4 or more
vertices can be “extraproportional,” in the sense that its subgraph counts #(H:G) agree
with the expected values in exercise 139 for each of the eleven nonisomorphic graphs H
of order 4 that are considered in exercise 90. Hint: Observe that (n − 3)#(K3:G) =
4#(K4:G) + 2#(K1,1,2:G) + #(K1,3:G) + #(K1⊕K1,2:G).

x 143. [M25 ] Let A be any matrix with m > 1 distinct rows, and n ≥ m columns. Prove
that at least one column of A can be deleted, without making any two rows equal.

x 144. [21 ] Let X be an m × n matrix whose entries xij are either 0, 1, or ∗. A
“completion” of X is a matrix X∗ in which every ∗ has been replaced by either 0 or 1.
Show that the problem of finding a completion with fewest distinct rows is equivalent
to the problem of finding the chromatic number of a graph.

x 145. [25 ] (R. S. Boyer and J. S. Moore, 1980.) Suppose the array a1 . . . an contains a
majority element, namely a value that occurs more than n/2 times. Design an algorithm
that finds it after making fewer than n comparisons. Hint: If n ≥ 3 and an−1 ̸= an,
the majority element of a1 . . . an is also the majority element of a1 . . . an−2.

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 47

Yet now and then your men of wit
Will condescend to take a bit.

— JONATHAN SWIFT, Cadenus and Vanessa (1713)

If the base 2 is used the resulting units may be called binary digits,
or more briefly bits, a word suggested by J. W. Tukey.

— CLAUDE E. SHANNON, in Bell System Technical Journal (1948)

bit (bit), n . . . [A] boring tool . . .
— Random House Dictionary of the English Language (1987)

7.1. ZEROS AND ONES
Combinatorial algorithms often require special attention to efficiency, and
the proper representation of data is an important way to gain the necessary
speed. It is therefore wise to beef up our knowledge of elementary representation
techniques before we set out to study combinatorial algorithms in detail.

Most of today’s computers are based on the binary number system, instead
of working directly with the decimal numbers that human beings prefer, because
machines are especially good at dealing with the two-state on-off quantities that
we usually denote by the digits 0 and 1. But in Chapters 1 to 6 we haven’t made
much use of the fact that binary computers can do several things quickly that
decimal computers cannot. A binary machine can usually perform “logical” or
“bitwise” operations just as easily as it can add or subtract; yet we have seldom
capitalized on that capability. We’ve seen that binary and decimal computers are
not significantly different, for many purposes, but in a sense we’ve been asking
a binary computer to operate with one hand tied behind its back.

The amazing ability of 0s and 1s to encode information as well as to encode
the logical relations between items, and even to encode algorithms for processing
information, makes the study of binary digits especially rich. Indeed, we not only
use bitwise operations to enhance combinatorial algorithms, we also find that the
properties of binary logic lead naturally to new combinatorial problems that are
of great interest in their own right.

Computer scientists have gradually become better and better at taming the
wild 0s and 1s of the universe and making them do useful tricks. But as bit
players on the world’s stage, we’d better have a thorough understanding of the
low-level properties of binary quantities before we launch into a study of higher-
level concepts and techniques. Therefore we shall start by investigating basic
ways to combine individual bits and sequences of bits.

7.1.1. Boolean Basics
There are 16 possible functions f(x, y) that transform two given bits x and y
into a third bit z = f(x, y), since there are two choices for each of f(0, 0), f(0, 1),
f(1, 0), and f(1, 1). Table 1 indicates the names and notations that have tradi-
tionally been associated with these functions in studies of formal logic, assuming
that 1 corresponds to “true” and 0 to “false.” The sequence of four values
f(0, 0)f(0, 1)f(1, 0)f(1, 1) is customarily called the truth table of the function f.

From the Library of Melissa Nuno



ptg999

48 COMBINATORIAL SEARCHING 7.1.1

Let us conceive, then, of an Algebra
in which the symbols x, y, z, &c. admit indifferently of

the values 0 and 1, and of these values alone.
— GEORGE BOOLE, An Investigation of the Laws of Thought (1854)

‘Contrariwise,’ continued Tweedledee, ‘if it was so, it might be;
and if it were so, it would be;

but as it isn’t, it ain’t. That’s logic.’
— LEWIS CARROLL, Through the Looking Glass (1871)

Such functions are often called “Boolean operations” in honor of George
Boole, who first discovered that algebraic operations on 0s and 1s could be used
to construct a calculus for logical reasoning [The Mathematical Analysis of Logic
(Cambridge: 1847); An Investigation of the Laws of Thought (London: 1854)].
But Boole never actually dealt with the “logical or” operation ∨; he confined
himself strictly to ordinary arithmetic operations on 0s and 1s. Thus he would
write x+ y to stand for disjunction, but he took pains never to use this notation
unless x and y were mutually exclusive (not both 1). If necessary, he wrote
x+ (1−x)y to ensure that the result of a disjunction would never be equal to 2.

When rendering the + operation in English, Boole sometimes called it “and,”
sometimes “or.” This practice may seem strange to modern mathematicians until
we realize that his usage was in fact normal English for disjoint sets; we say, for
example, that “boys and girls are children,” but “children are boys or girls.”

Boole’s calculus was extended to include the unconventional rule x+ x = x
by W. Stanley Jevons [Pure Logic (London: Edward Stanford, 1864), §69], who
pointed out that (x+ y)z was equal to xz + yz using his new + operation. But
Jevons did not know the other distributive law xy+z = (x+z)(y+z). Presumably
he missed this because of the notation he was using, since the second distributive
law has no familiar counterpart in arithmetic; the more symmetrical notations
x ∧ y, x ∨ y in Table 1 make it easier for us to remember both distributive laws

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z); (1)
(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z). (2)

The second law (2) was introduced by C. S. Peirce, who had discovered indepen-
dently how to extend Boole’s calculus [Proc. Amer. Acad. Arts and Sciences 7
(1867), 250–261]. Incidentally, when Peirce discussed these early developments
several years later [Amer. J. Math. 3 (1880), 32], he referred to “the Boolian
algebra, with Jevons’s addition”; his now-unfamiliar spelling of “Boolean” was
in use for many years, appearing in the Funk and Wagnalls unabridged dictionary
as late as 1963.

The notion of truth-value combination is actually much older than Boolean
algebra. Indeed, propositional logic had been developed by Greek philosophers
already in the fourth century B.C. There was considerable debate in those days
about how to assign an appropriate true-or-false value to the proposition “if x
then y” when x and y are propositions; Philo of Megara, about 300 B.C., defined

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 49

Table 1
THE SIXTEEN LOGICAL OPERATIONS ON TWO VARIABLES

Truth
table New and old notation(s) Operator

symbol ◦ Name(s)

0000 0 ⊥ Contradiction; falsehood; antilogy; constant 0
0001 xy, x ∧ y, x& y ∧ Conjunction; and
0010 x ∧ ȳ, x ̸⊃ y, [x>y ], x

.− y ⊃ Nonimplication; difference; but not
0011 x Left projection; first dictator
0100 x̄ ∧ y, x ̸⊂ y, [x<y ], y

.− x ⊂ Converse nonimplication; not . . . but
0101 y Right projection; second dictator
0110 x⊕ y, x ̸≡ y, xˆy ⊕ Exclusive disjunction; nonequivalence; “xor”
0111 x ∨ y, x | y ∨ (Inclusive) disjunction; or; and/or
1000 x̄ ∧ ȳ, x ∨ y, x ∨ y, x ↓ y ∨ Nondisjunction; joint denial; neither . . . nor
1001 x≡ y, x↔ y, x⇔ y ≡ Equivalence; if and only if; “iff”
1010 ȳ, ¬y, !y, ∼y Right complementation
1011 x ∨ ȳ, x⊂ y, x⇐ y, [x≥ y ], xy ⊂ Converse implication; if
1100 x̄, ¬x, !x, ∼x Left complementation
1101 x̄ ∨ y, x⊃ y, x⇒ y, [x≤ y ], yx ⊃ Implication; only if; if . . . then
1110 x̄ ∨ ȳ, x ∧ y, x ∧ y, x | y ∧ Nonconjunction; not both . . . and; “nand”
1111 1 ⊤ Affirmation; validity; tautology; constant 1

it by the truth table shown in Table 1, which states in particular that the
implication is true when both x and y are false. Much of this early work has been
lost, but there are passages in the works of Galen (2nd century A.D.) that refer
to both inclusive and exclusive disjunction of propositions. [See I. M. Bocheński,
Formale Logik (1956), English translation by Ivo Thomas (1961), for an excellent
survey of the development of logic from ancient times up to the 20th century.]

A function of two variables is often written x◦y instead of f(x, y), using some
appropriate operator symbol ◦. Table 1 shows the sixteen operator symbols that
we shall adopt for Boolean functions of two variables; for example, ⊥ symbolizes
the function whose truth table is 0000, ∧ is the symbol for 0001, ⊃ is the symbol
for 0010, and so on. We have x ⊥ y = 0, x ∧ y = xy, x⊃ y = x .− y, x y = x,
. . . , x ∧ y = x̄ ∨ ȳ, x⊤ y = 1.

Of course the operations in Table 1 aren’t all of equal importance. For
example, the first and last cases are trivial, since they have a constant value
independent of x and y. Four of them are functions of x alone or y alone. We
write x̄ for 1− x, the complement of x.

The four operations whose truth table contains just a single 1 are easily
expressed in terms of the AND operator ∧, namely x ∧ y, x ∧ ȳ, x̄ ∧ y, x̄ ∧ ȳ.
Those with three 1s are easily written in terms of the OR operator ∨, namely
x ∨ y, x ∨ ȳ, x̄ ∨ y, x̄ ∨ ȳ. The basic functions x ∧ y and x ∨ y have proved to be
more useful in practice than their complemented or half-complemented cousins,
although the NOR and NAND operations x∨ y = x̄∧ ȳ and x∧ y = x̄∨ ȳ are also
of interest because they are easily implemented in transistor circuits.

From the Library of Melissa Nuno



ptg999

50 COMBINATORIAL SEARCHING 7.1.1

In 1913, H. M. Sheffer showed that all 16 of the functions can be expressed
in terms of just one, starting with either ∨ or ∧ as the given operation (see
exercise 4). Actually C. S. Peirce had made the same discovery about 1880, but
his work on the subject remained unpublished until after his death [Collected
Papers of Charles Sanders Peirce 4 (1933), §§12–20, 264]. Table 1 indicates that
NAND and NOR have occasionally been written x | y and x ↓ y; sometimes they
have been called “Sheffer’s stroke” and the “Peirce arrow.” Nowadays it is best
not to use Sheffer’s vertical line for NAND, because x | y denotes bitwise x∨ y in
programming languages like C.

So far we have discussed all but two of the functions in Table 1. The
remaining two are x ≡ y and x ⊕ y, “equivalence” and “exclusive-or,” which
are related by the identities

x≡ y = x̄⊕ y = x⊕ ȳ = 1⊕ x⊕ y; (3)
x⊕ y = x̄≡ y = x≡ ȳ = 0≡ x≡ y. (4)

Both operations are associative (see exercise 6). In propositional logic, the notion
of equivalence is more important than the notion of exclusive-or, which means
inequivalence; but when we consider bitwise operations on full computer words,
we shall see in Section 7.1.3 that the situation is reversed: Exclusive-or turns
out to be more useful than equivalence, in typical programs. The chief reason
why x⊕ y has significant applications, even in the one-bit case, is the fact that

x⊕ y = (x+ y) mod 2. (5)

Therefore x⊕y and x∧y denote addition and multiplication in the field of two el-
ements (see Section 4.6), and x⊕y naturally inherits many “clean” mathematical
properties.
Basic identities. Now let’s take a look at interactions between the fundamental
operators ∧, ∨, ⊕, and ,̄ since the other operations are easily expressed in terms
of these four. Each of ∧, ∨, ⊕ is associative and commutative. Besides the
distributive laws (1) and (2), we also have

(x⊕ y) ∧ z = (x ∧ z)⊕ (y ∧ z), (6)

as well as the absorption laws

(x ∧ y) ∨ x = (x ∨ y) ∧ x = x. (7)

One of the simplest, yet most useful, identities is

x⊕ x = 0, (8)

since it implies among other things that

(x⊕ y)⊕ x = y, (x⊕ y)⊕ y = x, (9)

when we use the obvious fact that x ⊕ 0 = x. In other words, given x ⊕ y and
either x or y, it is easy to determine the other. And let us not overlook the
simple complementation law

x̄ = x⊕ 1. (10)

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 51

Another important pair of identities is known as De Morgan’s laws in honor
of Augustus De Morgan, who stated that “The contrary of an aggregate is the
compound of the contraries of the aggregants; the contrary of a compound is
the aggregate of the contraries of the components. Thus (A,B) and AB have
ab and (a, b) for contraries.” [Trans. Cambridge Philos. Soc. 10 (1858), 208.] In
more modern notation, these are the rules we have implicitly derived via truth
tables in connection with the operations NAND and NOR in Table 1, namely

x ∧ y = x̄ ∨ ȳ ; (11)
x ∨ y = x̄ ∧ ȳ . (12)

Incidentally, W. S. Jevons knew (12) but not (11); he consistently wrote ĀB +
B̄A + ĀB̄ instead of Ā + B̄ for the complement of AB. Yet De Morgan was
not the first Englishman who enunciated the laws above. Both (11) and (12)
can be found in the early 14th century writings of two scholastic philosophers,
William of Ockham [Summa Logicæ 2 (1323)] and Walter Burley [De Puritate
Artis Logicæ (c. 1330)].

De Morgan’s laws and a few other identities can be used to express ∧, ∨,
and ⊕ in terms of each other:

x ∧ y = x̄ ∨ ȳ = x⊕ y ⊕ (x ∨ y); (13)
x ∨ y = x̄ ∧ ȳ = x⊕ y ⊕ (x ∧ y); (14)
x⊕ y = (x ∨ y) ∧ x ∧ y = (x ∧ ȳ) ∨ (x̄ ∧ y). (15)

According to exercise 7.1.2–77, all computations of x1 ⊕ x2 ⊕ · · · ⊕ xn that use
only the operations ∧, ∨, and ¯ must be at least 4(n − 1) steps long; thus, the
other three operations are not an especially good substitute for ⊕.

Functions of n variables. A Boolean function f(x, y, z) of three Boolean vari-
ables x, y, z can be defined by its 8-bit truth table f(0, 0, 0)f(0, 0, 1) . . . f(1, 1, 1);
and in general, every n-ary Boolean function f(x1, . . . , xn) corresponds to a 2n-
bit truth table that lists the successive values of f(0, . . . , 0, 0), f(0, . . . , 0, 1),
f(0, . . . , 1, 0), . . . , f(1, . . . , 1, 1).

We needn’t devise special names and notations for all these functions, since
they can all be expressed in terms of the binary functions that we’ve already
learned. For example, as observed by I. I. Zhegalkin [Matematicheskĭı Sbornik
35 (1928), 311–369], we can always write

f(x1, . . . , xn) = g(x1, . . . , xn−1) ⊕ h(x1, . . . , xn−1)∧xn (16)

when n > 0, for appropriate functions g and h, by letting

g(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0);
h(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0)⊕ f(x1, . . . , xn−1, 1).

(17)

(The operation ∧ conventionally takes precedence over ⊕, so we need not use
parentheses to enclose the subformula ‘h(x1, . . . , xn−1) ∧ xn’ on the right-hand
side of (16).) Repeating this process recursively on g and h until we’re down

From the Library of Melissa Nuno



ptg999

52 COMBINATORIAL SEARCHING 7.1.1

to 0-ary functions leaves us with an expression that involves only the operators
⊕, ∧, and a sequence of 2n constants, together with the variables {x1, . . . , xn}.
Furthermore, those constants can usually be simplified away, because we have

x ∧ 0 = 0 and x ∧ 1 = x⊕ 0 = x. (18)

After applying the associative and distributive laws, we end up needing the
constant 0 only if f(x1, . . . , xn) is identically zero, and the constant 1 only if
f(0, . . . , 0) = 1.

We might have, for instance,

f(x, y, z) =

(1⊕ 0∧x)⊕ (0⊕ 1∧x)∧y


⊕

(0⊕ 1∧x)⊕ (1⊕ 1∧x)∧y


∧z

= (1⊕ x∧y) ⊕ (x⊕ y ⊕ x∧y)∧z
= 1 ⊕ x∧y ⊕ x∧z ⊕ y∧z ⊕ x∧y∧z.

And by rule (5), we see that we’re simply left with the polynomial

f(x, y, z) = (1 + xy + xz + yz + xyz) mod 2, (19)

because x∧y = xy. Notice that this polynomial is linear (of degree ≤1) in each of
its variables. In general, a similar calculation will show that any Boolean function
f(x1, . . . , xn) has a unique representation such as this, called its multilinear rep-
resentation or exclusive normal form, which is a sum (modulo 2) of zero or more
of the 2n possible terms 1, x1, x2, x1x2, x3, x1x3, x2x3, x1x2x3, . . . , x1x2 . . . xn.

George Boole decomposed Boolean functions in a different way, which is
often simpler for the kinds of functions that arise in practice. Instead of (16), he
essentially wrote

f(x1, . . . , xn) =

g(x1, . . . , xn−1) ∧ x̄n


∨


h(x1, . . . , xn−1) ∧ xn


(20)

and called it the “law of development,” where we now have simply

g(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0),
h(x1, . . . , xn−1) = f(x1, . . . , xn−1, 1),

(21)

instead of (17). Repeatedly iterating Boole’s procedure, using the distributive
law (1), and eliminating constants, leaves us with a formula that is a disjunc-
tion of zero or more minterms, where each minterm is a conjunction such as
x1∧ x̄2∧ x̄3∧x4∧x5 in which every variable or its complement is present. Notice
that a minterm is a Boolean function that is true at exactly one point.

For example, let’s consider the more-or-less random function f(w, x, y, z)
whose truth table is

1100 1001 0000 1111. (22)
When this function is expanded by repeatedly applying Boole’s law (20), we get
a disjunction of eight minterms, one for each of the 1s in the truth table:

f(w, x, y, z) = (w̄∧x̄∧ȳ∧z̄) ∨ (w̄∧x̄∧ȳ∧z) ∨ (w̄∧x∧ȳ∧z̄) ∨ (w̄∧x∧y∧z)
∨ (w∧x∧ȳ∧z̄) ∨ (w∧x∧ȳ∧z) ∨ (w∧x∧y∧z̄) ∨ (w∧x∧y∧z). (23)

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 53

In general, a disjunction of minterms is called a full disjunctive normal
form. Every Boolean function can be expressed in this way, and the result is
unique — except, of course, for the order of the minterms. Nitpick: A special
case arises when f(x1, . . . , xn) is identically zero. We consider ‘0’ to be an empty
disjunction, with no terms, and we also consider ‘1’ to be an empty conjunction,
for the same reasons as we defined

0
k=1 ak = 0 and

0
k=1 ak = 1 in Section 1.2.3.

C. S. Peirce observed, in Amer. J. Math. 3 (1880), 37–39, that every Boolean
function also has a full conjunctive normal form, which is a conjunction of “min-
clauses” like x̄1 ∨ x2 ∨ x̄3 ∨ x̄4 ∨ x5. A minclause is 0 at only one point; so each
clause in such a conjunction accounts for a place where the truth table has a 0.
For example, the full conjunctive normal form of our function in (22) and (23) is

f(w, x, y, z) = (w∨x∨ȳ∨z) ∧ (w∨x∨ȳ∨z̄) ∧ (w∨x̄∨y∨z̄) ∧ (w∨x̄∨ȳ∨z)
∧ (w̄∨x∨y∨z) ∧ (w̄∨x∨y∨z̄) ∧ (w̄∨x∨ȳ∨z) ∧ (w̄∨x∨ȳ∨z̄). (24)

Not surprisingly, however, we often want to work with disjunctions and con-
junctions that don’t necessarily involve full minterms or minclauses. Therefore,
following nomenclature introduced by Paul Bernays in his Habilitationsschrift
(1918), we speak in general of a disjunctive normal form or “DNF” as any
disjunction of conjunctions,

m
j=1

sj
k=1

ujk = (u11 ∧ · · · ∧ u1s1) ∨ · · · ∨ (um1 ∧ · · · ∧ umsm), (25)

where each ujk is a literal, namely a variable xi or its complement. Similarly,
any conjunction of disjunctions of literals,

m
j=1

sj
k=1

ujk = (u11 ∨ · · · ∨ u1s1) ∧ · · · ∧ (um1 ∨ · · · ∨ umsm), (26)

is called a conjunctive normal form, or “CNF” for short.
A great many electrical circuits embedded inside today’s computer chips are

composed of “programmable logic arrays” (PLAs), which are ORs of ANDs of
possibly complemented input signals. In other words, a PLA basically computes
one or more disjunctive normal forms. Such building blocks are fast, versatile,
and relatively inexpensive; and indeed, DNFs have played a prominent role in
electrical engineering ever since the 1950s, when switching circuits were imple-
mented with comparatively old-fashioned devices like relays or vacuum tubes.
Therefore people have long been interested in finding the simplest DNFs for
classes of Boolean functions, and we can expect that an understanding of disjunc-
tive normal forms will continue to be important as technology continues to evolve.

The terms of a DNF are often called implicants, because the truth of any
term in a disjunction implies the truth of the whole formula. In a formula like

f(x, y, z) = (x ∧ ȳ ∧ z) ∨ (y ∧ z) ∨ (x̄ ∧ y ∧ z̄),

for example, we know that f is true when x∧ȳ∧z is true, namely when (x, y, z) =
(1, 0, 1). But notice that in this example the shorter term x∧ z also turns out to

From the Library of Melissa Nuno



ptg999

54 COMBINATORIAL SEARCHING 7.1.1

be an implicant of f, even though not written explicitly, because the additional
term y ∧ z makes the function true whenever x = z = 1, regardless of the value
of y. Similarly, x̄ ∧ y is an implicant of this particular function. So we might as
well work with the simpler formula

f(x, y, z) = (x ∧ z) ∨ (y ∧ z) ∨ (x̄ ∧ y). (27)

At this point no more deletions are possible within the implicants, because
neither x nor y nor z nor x̄ is a strong enough condition to imply the truth of f.

An implicant that can’t be factored further by removing any of its literals
without making it too weak is called a prime implicant, following the terminology
of W. V. Quine in AMM 59 (1952), 521–531.

These basic concepts can perhaps be understood most easily if we simplify
the notation and adopt a more geometric viewpoint. We can write simply ‘f(x)’
instead of f(x1, . . . , xn), and regard x as a vector, or as a binary string x1 . . . xn
of length n. For example, the strings wxyz where the function of (22) is true are

{0000, 0001, 0100, 0111, 1100, 1101, 1110, 1111}, (28)

and we can think of them as eight points in the 4-dimensional hypercube 2 ×
2 × 2 × 2. The eight points in (28) correspond to the minterm implicants that
are explicitly present in the full disjunctive normal form (23); but none of those
implicants is actually prime. For example, the first two points of (28) make the
subcube 000∗, and the last four points constitute the subcube 11∗∗, if we use
asterisks to denote “wild cards” as we did when discussing database queries in
Section 6.5; therefore w̄ ∧ x̄ ∧ ȳ is an implicant of f, and so is w ∧ x. Similarly,
we can see that the subcube 0∗00 accounts for two of the eight points in (28),
making w̄ ∧ ȳ ∧ z̄ an implicant.

In general, each prime implicant corresponds in this way to a maximal
subcube that stays within the set of points that make f true. (The subcube
is maximal in the sense that it isn’t contained in any larger subcube with the
same property; we can’t replace any of its explicit bits by an asterisk. A maximal
subcube has a maximal number of asterisks, hence a minimal number of con-
strained coordinates, hence a minimal number of variables in the corresponding
implicant.) The maximal subcubes of the eight points in (28) are

000∗, 0∗00, ∗100, ∗111, 11∗∗; (29)

so the prime implicants of the function f(w, x, y, z) in (23) are

(w̄ ∧ x̄ ∧ ȳ) ∨ (w̄ ∧ ȳ ∧ z̄) ∨ (x ∧ ȳ ∧ z̄) ∨ (x ∧ y ∧ z) ∨ (w ∧ x). (30)

The disjunctive prime form of a Boolean function is the disjunction of all its
prime implicants. Exercise 30 contains an algorithm to find all the prime impli-
cants of a given function, based on a list of the points where the function is true.

We can define a prime clause in an exactly similar way: It is a disjunctive
clause that is implied by f, having no subclause with the same property. And
the conjunctive prime form of f is the conjunction of all its prime clauses. (An
example appears in exercise 19.)

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 55

In many simple cases, the disjunctive prime form is the shortest possible
disjunctive normal form that a function can have. But we can often do better,
because we might be able to cover all the necessary points with only a few of
the maximal subcubes. For example, the prime implicant (y ∧ z) is unnecessary
in (27). And in expression (30) we don’t need both (w̄ ∧ ȳ ∧ z̄) and (x ∧ ȳ ∧ z̄);
either one is sufficient, in the presence of the other terms.

Unfortunately, we will see in Section 7.9 that the task of finding a shortest
disjunctive normal form is NP-hard, thus quite difficult in general. But many
useful shortcuts have been developed for sufficiently small problems, and they
are well explained in the book Introduction to the Theory of Switching Circuits
by E. J. McCluskey (New York: McGraw–Hill, 1965). For later developments,
see Petr Fišer and Jan Hlavička, Computing and Informatics 22 (2003), 19–51.

There’s an important special case for which the shortest DNF is, however,
easily characterized. A Boolean function is said to be monotone or positive if
its value does not change from 1 to 0 when any of its variables changes from 0
to 1. In other words, f is monotone if and only if f(x) ≤ f(y) whenever x ⊆ y,
where the bit string x = x1 . . . xn is regarded as contained in or equal to the bit
string y = y1 . . . yn if and only if xj ≤ yj for all j. An equivalent condition (see
exercise 21) is that the function f either is constant or can be expressed entirely
in terms of ∧ and ∨, without complementation.

Theorem Q. The shortest disjunctive normal form of a monotone Boolean
function is its disjunctive prime form.

Proof. [W. V. Quine, Boletín de la Sociedad Matemática Mexicana 10 (1953),
64–70.] Let f(x1, . . . , xn) be monotone, and let u1 ∧ · · · ∧ us be one of its prime
implicants. We cannot have, say, u1 = x̄i, because in that case the shorter term
u2 ∧ · · · ∧ us would also be an implicant, by monotonicity. Therefore no prime
implicant has a complemented literal.

Now if we set u1 ← · · · ← us ← 1 and all other variables to 0, the value of f
will be 1, but all of f ’s other prime implicants will vanish. Thus u1 ∧ · · · ∧ us
must be in every shortest DNF, because every implicant of a shortest DNF is
clearly prime.

Corollary Q. A disjunctive normal form is the disjunctive prime form of a
monotone Boolean function if and only if it has no complemented literals and
none of its implicants is contained in another.

Satisfiability. A Boolean function is said to be satisfiable if it is not identically
zero — that is, if it has at least one implicant. The most famous unsolved problem
in all of computer science is to find an efficient way to decide whether a given
Boolean function is satisfiable or unsatisfiable. More precisely, we ask: Is there an
algorithm that inputs a Boolean formula of length N and tests it for satisfiability,
always giving the correct answer after performing at most NO(1) steps?

When you hear about this problem for the first time, you might be tempted
to ask a question of your own in return: “What? Are you serious that computer
scientists still haven’t figured out how to do such a simple thing?”

From the Library of Melissa Nuno



ptg999

56 COMBINATORIAL SEARCHING 7.1.1

Well, if you think satisfiability testing is trivial, please tell us your method.
We agree that the problem isn’t always difficult; if, for example, the given formula
involves only 30 Boolean variables, a brute-force trial of 230 cases — that’s about
a billion — will indeed settle the matter. But an enormous number of practical
problems that still await solution can be formulated as Boolean functions with,
say, 100 variables, because mathematical logic is a very powerful way to express
concepts. And the solutions to those problems correspond to the vectors x =
x1 . . . x100 for which f(x) = 1. So a truly efficient solution to the satisfiability
problem would be a wonderful achievement.

There is at least one sense in which satisfiability testing is a no-brainer: If
the function f(x1, . . . , xn) has been chosen at random, so that all 2n-bit truth
tables are equally likely, then f is almost surely satisfiable, and we can find an x
with f(x) = 1 after making fewer than 2 trials (on the average). It’s like flipping
a coin until it comes up heads; we rarely need to wait long. But the catch, of
course, is that practical problems do not have random truth tables.

Okay, let’s grant that satisfiability testing does seem to be tough, in general.
In fact, satisfiability turns out to be difficult even when we try to simplify it by
requiring that the Boolean function be presented as a “formula in 3CNF” —
namely as a conjunctive normal form that has only three literals in each clause:

f(x1, . . . , xn) = (t1 ∨ u1 ∨ v1) ∧ (t2 ∨ u2 ∨ v2) ∧ · · · ∧ (tm ∨ um ∨ vm). (31)

Here each tj , uj , and vj is xk or x̄k for some k. The problem of deciding
satisfiability for formulas in 3CNF is called “3SAT,” and exercise 39 explains
why it is not really easier than satisfiability in general.

We will be seeing many examples of hard-to-crack 3SAT problems, for in-
stance in Section 7.2.2.2, where satisfiability testing will be discussed in great
detail. The situation is a little peculiar, however, because a formula needs to be
fairly long before we need to think twice about its satisfiability. For example, the
shortest unsatisfiable formula in 3CNF is (x∨x∨x)∧ (x̄∨ x̄∨ x̄); but that one is
obviously no challenge to the intellect. We don’t get into rough waters unless the
three literals tj , uj , vj of a clause correspond to three different variables. And
in that case, each clause rules out exactly 1/8 of the possibilities, because seven
different settings of (tj , uj , vj) will make it true. Consequently every such 3CNF
with at most seven clauses is automatically satisfiable, and a random setting of
its variables will succeed with probability ≥ 1− 7/8 = 1/8.

The shortest interesting formula in 3CNF therefore has at least eight clauses.
And in fact, an interesting 8-clause formula does exist, based on the associative
block design by R. L. Rivest that we considered in 6.5–(13):

(x1∨x2∨x̄3) ∧ (x2∨x3∨x̄4) ∧ (x3∨x4∨x1) ∧ (x4∨x̄1∨x2)
∧ (x̄1∨x̄2∨x3) ∧ (x̄2∨x̄3∨x4) ∧ (x̄3∨x̄4∨x̄1) ∧ (x̄4∨x1∨x̄2). (32)

Any seven of these eight clauses are satisfiable, in exactly two ways, and they
force the values of three variables; for example, the last seven imply that we have
x1x2x3 = 001. But the complete set of eight cannot be satisfied simultaneously.

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 57

Simple special cases. Two important classes of Boolean formulas have been
identified for which the satisfiability problem does turn out to be pretty easy.
These special cases arise when the conjunctive normal form being tested consists
entirely of “Horn clauses” or entirely of “Krom clauses.” A Horn clause is an
OR of literals in which all or nearly all of the literals are complemented — at
most one of its literals is a pure, unbarred variable. A Krom clause is an OR of
exactly two literals. Thus, for example,

x̄ ∨ ȳ, w ∨ ȳ ∨ z̄, ū ∨ v̄ ∨ w̄ ∨ x̄ ∨ ȳ ∨ z, and x

are examples of Horn clauses; and

x ∨ x, x̄ ∨ x̄, x̄ ∨ ȳ, x ∨ ȳ, x̄ ∨ y, and x ∨ y

are examples of Krom clauses, only the last of which is not also a Horn clause.
(The first example qualifies because x ∨ x = x.) Notice that a Horn clause
is allowed to contain any number of literals, but when we restrict ourselves to
Krom clauses we are essentially considering the 2SAT problem. In both cases
we will see that satisfiability can be decided in linear time — that is, by carrying
out only O(N) simple steps, when given a formula of length N .

Let’s consider Horn clauses first. Why are they so easy to handle? The
main reason is that a clause like ū ∨ v̄ ∨ w̄ ∨ x̄ ∨ ȳ ∨ z can be recast in the form
¬(u ∧ v ∧ w ∧ x ∧ y) ∨ z, which is the same as

u ∧ v ∧ w ∧ x ∧ y ⇒ z.

In other words, if u, v, w, x, and y are all true, then z must also be true. For
this reason, parameterized Horn clauses were chosen to be the basic underlying
mechanism of the programming language called Prolog. Furthermore there is
an easy way to characterize exactly which Boolean functions can be represented
entirely with Horn clauses:

Theorem H. The Boolean function f(x1, . . . , xn) is expressible as a conjunction
of Horn clauses if and only if

f(x1, . . . , xn) = f(y1, . . . , yn) = 1 implies f(x1 ∧ y1, . . . , xn ∧ yn) = 1 (33)

for all Boolean values xj and yj .

Proof. [Alfred Horn, J. Symbolic Logic 16 (1951), 14–21, Lemma 7.] If we have
x0 ∨ x̄1 ∨ · · · ∨ x̄k = 1 and y0 ∨ ȳ1 ∨ · · · ∨ ȳk = 1, then

(x0 ∧ y0) ∨ x1 ∧ y1 ∨ · · · ∨ xk ∧ yk
= (x0 ∨ x̄1 ∨ ȳ1 ∨ · · · ∨ x̄k ∨ ȳk) ∧ (y0 ∨ x̄1 ∨ ȳ1 ∨ · · · ∨ x̄k ∨ ȳk)
≥ (x0 ∨ x̄1 ∨ · · · ∨ x̄k) ∧ (y0 ∨ ȳ1 ∨ · · · ∨ ȳk) = 1;

and a similar (but simpler) calculation applies when the unbarred literals x0
and y0 are not present. Therefore every conjunction of Horn clauses satisfies (33).

Conversely, condition (33) implies that every prime clause of f is a Horn
clause (see exercise 44).

From the Library of Melissa Nuno



ptg999

58 COMBINATORIAL SEARCHING 7.1.1

Let’s say that a Horn function is a Boolean function that satisfies con-
dition (33), and let’s also call it definite if it satisfies the further condition
f(1, . . . , 1) = 1. It’s easy to see that a conjunction of Horn clauses is definite if
and only if each clause has exactly one unbarred literal, because only an entirely
negative clause like x̄∨ ȳ will fail if all variables are true. Definite Horn functions
are slightly simpler to work with than Horn functions in general, because they
are obviously always satisfiable. Thus, by Theorem H, they have a unique least
vector x such that f(x) = 1, namely the bitwise AND of all vectors that satisfy
all clauses. The core of a definite Horn function is the set of all variables xj that
are true in this minimum vector x. Notice that the variables in the core must
be true whenever f is true, so we can essentially factor them out.

Definite Horn functions arise in many ways, for example in the analysis
of games (see exercises 51 and 52). Another nice example comes from compiler
technology. Consider the following typical (but simplified) grammar for algebraic
expressions in a programming language:

⟨ expression ⟩ → ⟨ term ⟩ | ⟨ expression ⟩ + ⟨ term ⟩ | ⟨ expression ⟩ - ⟨ term ⟩
⟨ term ⟩ → ⟨ factor ⟩ | - ⟨ factor ⟩ | ⟨ term ⟩ * ⟨ factor ⟩ | ⟨ term ⟩ / ⟨ factor ⟩
⟨ factor ⟩ → ⟨ variable ⟩ | ⟨ constant ⟩ | (⟨ expression ⟩)
⟨ variable ⟩ → ⟨ letter ⟩ | ⟨ variable ⟩⟨ letter ⟩ | ⟨ variable ⟩⟨digit ⟩
⟨ letter ⟩ → a | b | c
⟨ constant ⟩ → ⟨digit ⟩ | ⟨ constant ⟩⟨ digit ⟩
⟨digit ⟩ → 0 | 1

(34)

For example, the string a/(-b0-10)+cc*cc meets the syntax for ⟨ expression ⟩
and uses each of the grammatical rules at least once.

Suppose we want to know what pairs of characters can appear next to each
other in such expressions. Definite Horn clauses provide the answer, because
we can set the problem up as follows: Let the quantities Xx, xX, and xy denote
Boolean “propositions,” where X is one of the symbols {E, T, F, V, L, C, D} standing
respectively for ⟨ expression ⟩, ⟨ term ⟩, . . . , ⟨digit ⟩, and where x and y are sym-
bols in the set {+, -, *, /, (, ), a, b, c, 0, 1}. The proposition Xx means, “X can
end with x”; similarly, xX means, “X can start with x”; and xy means, “The
character x can be followed immediately by y in an expression.” (There are
7× 11 + 11× 7 + 11× 11 = 275 propositions altogether.) Then we can write

xT⇒ xE
Tx⇒ Ex
Ex⇒ x+
xT⇒ +x
Ex⇒ x-
xT⇒ -x
xF⇒ xT
Fx⇒ Tx

⇒ -T
xF⇒ -x
Tx⇒ x*
xF⇒ *x
Tx⇒ x/
xF⇒ /x
xV⇒ xF
Vx⇒ Fx

xC⇒ xF
Cx⇒ Fx
⇒ (F

xE⇒ (x
Ex⇒ x)
⇒ F)

xL⇒ xV
Lx⇒ Vx

Vx ∧ yL⇒ xy
Vx ∧ yD⇒ xy

Dx⇒ Vx
⇒ aL
⇒ La
⇒ bL
⇒ Lb
⇒ cL

⇒ Lc
xD⇒ xC
Dx⇒ Cx

Cx ∧ yD⇒ xy
⇒ 0D
⇒ D0
⇒ 1D
⇒ D1

(35)

where x and y run through the eleven terminal symbols {+, . . . , 1}. This sche-
matic specification gives us a total of 24×11+3×11×11+13×1 = 640 definite

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 59

Horn clauses, which we could write out formally as
+T ∨ +E


∧

-T ∨ -E


∧ · · · ∧


V+ ∨ 0L ∨ +0


∧ · · · ∧


D1


if we prefer the cryptic notation of Boolean algebra to the⇒ convention of (35).

Why did we do this? Because the core of all these clauses is the set of all
propositions that are true in this particular grammar. For example, one can
verify that -E is true, hence the symbols (- can occur next to each other within
an expression; but the symbol pairs ++ and *- cannot (see exercise 46).

Furthermore, we can find the core of any given set of definite Horn clauses
without great difficulty. We just start out with the propositions that appear
alone, on the right-hand side of ⇒ when the left-hand side is empty; thirteen
clauses of that kind appear in (35). And once we assert the truth of those
propositions, we might find one or more clauses whose left-hand sides are now
known to be true. Hence their right-hand sides also belong to the core, and
we can keep going in the same way. The whole procedure is pretty much like
letting water run downhill until it has found its proper level. In fact, when
we choose appropriate data structures, this downhill process goes quite fast,
requiring only O(N+n) steps, when N denotes the total length of the clauses and
n is the number of propositional variables. (We assume here that all clauses have
been expanded out, not abbreviated in terms of parameters like x and y above.
More sophisticated techniques of theorem proving are available to deal with
parameterized clauses, but they are beyond the scope of our present discussion.)
Algorithm C (Core computation for definite Horn clauses). Given a set P of
propositional variables and a set C of clauses, each having the form

u1 ∧ · · · ∧ uk ⇒ v where k ≥ 0 and {u1, . . . , uk, v} ⊆ P , (36)
this algorithm finds the set Q ⊆ P of all propositional variables that are neces-
sarily true whenever all of the clauses are true.

We use the following data structures for clauses c and propositions p:

CONCLUSION(c) is the proposition on the right of clause c;
COUNT(c) is the number of hypotheses of c not yet asserted;
TRUTH(p) is 1 if p is known to be true, otherwise 0;
LAST(p) is the last clause in which p is waiting to be asserted;
PREV(c) is the previous clause that awaits the same hypothesis as c;
START(c) tells where the hypotheses of c appear in MEM.

An array called MEM holds all the left-hand sides of the clauses; if START(c) = l
and COUNT(c) = k, the not-yet-asserted hypotheses of clause c are MEM[l + 1],
. . . , MEM[l + k]. We also maintain a stack S0, S1, . . . , Ss−1 of all propositions
that are known to be true but not yet asserted.
C1. [Initialize.] Set LAST(p) ← Λ and TRUTH(p) ← 0 for each proposition p.

Also set l ← s ← 0, so that MEM and the stack are initially empty. Then
for each clause c, having the form (36), set CONCLUSION(c) ← v. If k = 0
and TRUTH(v) = 0, simply set TRUTH(v)← 1, Ss ← v, and s← s+ 1. But

From the Library of Melissa Nuno



ptg999

60 COMBINATORIAL SEARCHING 7.1.1

if k > 0, set MEM[l + j] ← uj for 1 ≤ j ≤ k, COUNT(c) ← k, l ← l + k,
PREV(c)← LAST(uk), and LAST(uk)← c.

C2. [Prepare to loop.] Terminate the algorithm if s = 0; the desired core now
consists of all propositions whose TRUTH has been set to 1. Otherwise set
s← s−1, p← Ss, and c← LAST(p). (We’ll update the clauses that await p.)

C3. [Done with loop?] If c = Λ, return to C2. Otherwise set k ← COUNT(c)− 1,
l← START(c), and c′ ← PREV(c).

C4. [Done with c?] If k = 0, go to C5. Otherwise set p ← MEM[l + k].
If TRUTH(p) = 1, set k ← k − 1 and repeat this step. Otherwise set
COUNT(c)← k, PREV(c)← LAST(p), LAST(p)← c, and go to C6.

C5. [Deduce CONCLUSION(c).] Set p ← CONCLUSION(c). If TRUTH(p) = 0, set
TRUTH(p)← 1, Ss ← p, s← s+ 1.

C6. [Loop on c.] Set c← c′ and return to C3.
Notice how smoothly the sequential and linked data structures work together,
avoiding any need to search for a place to make progress in the calculation. We’re
doing a bare minimum of work! Algorithm C is similar in many respects to Al-
gorithm 2.2.3T (topological sorting), which was the first example of multilinked
data structures that we discussed long ago in Chapter 2; in fact, we can regard
Algorithm 2.2.3T as the special case of Algorithm C in which every proposition
appears on the right-hand side of exactly one clause. (See exercise 47.)

Exercise 48 shows that a slight modification of Algorithm C solves the
satisfiability problem for Horn clauses in general. Further discussion can be
found in papers by W. F. Dowling and J. H. Gallier, J. Logic Programming 1
(1984), 267–284; M. G. Scutellà, J. Logic Programming 8 (1990), 265–273.

We turn now to Krom functions and the 2SAT problem. Again there’s a
linear-time algorithm; but again, we can probably appreciate it best if we look
first at a simplified-but-practical application. Let’s suppose that seven comedians
have each agreed to do one-night standup gigs at two of five hotels during a three-
day festival, but each of them is available for only two of those days because of
other commitments:

Tomlin should do Aladdin and Caesars on days 1 and 2;
Unwin should do Bellagio and Excalibur on days 1 and 2;
Vegas should do Desert and Excalibur on days 2 and 3;
Williams should do Aladdin and Desert on days 1 and 3;
Xie should do Caesars and Excalibur on days 1 and 3;
Yankovic should do Bellagio and Desert on days 2 and 3;
Zany should do Bellagio and Caesars on days 1 and 2.

(37)

Is it possible to schedule them all without conflict?
To solve this problem, we can introduce seven Boolean variables {t, u, v, w,

x, y, z}, where t (for example) means that Tomlin does Aladdin on day 1 and
Caesars on day 2 while t̄ means that the days booked for those hotels occur in the

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 61

opposite order. Then we can set up constraints to ensure that no two comedians
are booked in the same hotel on the same day:
¬(t ∧ w) [A1]
¬(u ∧ z) [B1]
¬(ū ∧ y) [B2]
¬(ū ∧ z̄) [B2]

¬(y ∧ z̄) [B2]
¬(̄t ∧ x) [C1]
¬(̄t ∧ z̄) [C1]
¬(x ∧ z̄) [C1]

¬(t ∧ z) [C2]
¬(v ∧ ȳ) [D2]
¬(v̄ ∧ w) [D3]
¬(v̄ ∧ y) [D3]

¬(w ∧ y) [D3]
¬(ū ∧ x̄) [E1]
¬(u ∧ v̄) [E2]
¬(v ∧ x) [E3]

(38)

Each of these constraints is, of course, a Krom clause; we must satisfy

(̄t∨w̄) ∧ (ū∨z̄) ∧ (u∨ȳ) ∧ (u∨z) ∧ (ȳ∨z) ∧ (t∨x̄) ∧ (t∨z) ∧ (x̄∨z)
∧ (̄t∨z̄) ∧ (v̄∨y) ∧ (v∨w̄) ∧ (v∨ȳ) ∧ (w̄∨ȳ) ∧ (u∨x) ∧ (ū∨v) ∧ (v̄∨x̄). (39)

Furthermore, Krom clauses (like Horn clauses) can be written as implications:

t⇒ w̄, u⇒ z̄, ū⇒ ȳ, ū⇒ z, y⇒ z, t̄⇒ x̄, t̄⇒ z, x⇒ z,

t⇒ z̄, v⇒ y, v̄⇒ w̄, v̄⇒ ȳ, w⇒ ȳ, ū⇒x, u⇒ v, v⇒ x̄. (40)

And every such implication also has an alternative, “contrapositive” form:

w⇒ t̄, z⇒ ū, y⇒u, z̄⇒u, z̄⇒ ȳ, x⇒ t, z̄⇒ t, z̄⇒ x̄,

z⇒ t̄, ȳ⇒ v̄, w⇒ v, y⇒ v, y⇒ w̄, x̄⇒u, v̄⇒ ū, x⇒ v̄. (41)

But oops — alas — there is a vicious cycle,
u ⇒

[B1]
z̄ ⇒

[B2]
ȳ ⇒

[D2]
v̄ ⇒

[E2]
ū ⇒

[B2]
z ⇒

[C2]
t̄ ⇒

[C1]
x̄ ⇒

[E1]
u. (42)

This cycle tells that u and ū must both have the same value; so there is no way
to accommodate all of the conditions in (37). The festival organizers will have to
renegotiate their agreement with at least one of the six comedians {t, u, v, x, y, z},
if a viable schedule is to be achieved. (See exercise 53.)

w

y z

t̄

x

ū

w̄

ȳz̄

t

x̄

u
Fig. 6. The digraph corresponding
to all implications of (40) and (41)
that do not involve either v or v̄.
Assigning appropriate values to the
literals in each strong component
will solve a binary scheduling prob-
lem that is an instance of 2SAT.

The organizers might, for instance, try to leave v out of the picture tem-
porarily. Then five of the sixteen constraints in (38) would go away and only 22
of the implications from (40) and (41) would remain, leaving the directed graph
illustrated in Fig. 6. This digraph does contain cycles, like z ⇒ ū⇒ x⇒ z and
t ⇒ z̄ ⇒ t; but no cycle contains both a variable and its complement. Indeed,

From the Library of Melissa Nuno



ptg999

62 COMBINATORIAL SEARCHING 7.1.1

we can see from Fig. 6 that the values tuwxyz = 110000 do satisfy every clause
of (39) that doesn’t involve v or v̄. These values give us a schedule that satisfies
six of the seven original stipulations in (37), starting with (Tomlin, Unwin, Zany,
Williams, Xie) at the (Aladdin, Bellagio, Caesars, Desert, Excalibur) on day 1.

In general, given any 2SAT problem with m Krom clauses that involve
n Boolean variables, we can form a directed graph in the same way. There
are 2n vertices {x1, x̄1, . . . , xn, x̄n}, one for each possible literal; and there are
2m arcs of the form ū → v and v̄ → u, two for each clause u ∨ v. Two literals
u and v belong to the same strong component of this digraph if and only if
there are oriented paths from u to v and from v to u. For example, the six
strong components of the digraph in Fig. 6 are indicated by dotted contours.
All literals in a strong component must have the same Boolean value, in any
solution to the corresponding 2SAT problem.
Theorem K. A conjunctive normal form with two literals per clause is satisfiable
if and only if no strong component of the associated digraph contains both a
variable and its complement.
Proof. [Melven Krom, Zeitschrift für mathematische Logik und Grundlagen der
Mathematik 13 (1967), 15–20, Corollary 2.2.] If there are paths from x to x̄ and
from x̄ to x, the formula is certainly unsatisfiable.

Conversely, assume that no such paths exist. Any digraph has at least
one strong component S that is a “source,” having no incoming arcs from
vertices in any other strong component. Moreover, our digraph always has an
attractive antisymmetry, illustrated in Fig. 6: We have u → v if and only if
v̄ → ū. Therefore the complements of the literals in S form another strong
component S ̸= S that is a “sink,” having no outgoing arcs to other strong
components. Hence we can assign the value 0 to all literals in S and 1 to
all literals in S, then remove them from the digraph and proceed in the same
way until all literals have received a value. The resulting values satisfy u ≤ v
whenever u → v in the digraph; hence they satisfy ū ∨ v whenever ū ∨ v is a
clause of the formula.

Theorem K leads immediately to an efficient solution of the 2SAT problem,
thanks to an algorithm by R. E. Tarjan that finds strong components in linear
time. [See SICOMP 1 (1972), 146–160; D. E. Knuth, The Stanford GraphBase
(1994), 512–519.] We shall study Tarjan’s algorithm in detail in Section 7.4.1.
Exercise 54 shows that the condition of Theorem K is readily checked whenever
the algorithm detects a new strong component. Furthermore, the algorithm
detects “sinks” first; thus, as a simple byproduct of Tarjan’s procedure, we can
assign values that establish satisfiability by choosing the value 1 for each literal
in a strong component that occurs before its complement.
Medians. We’ve been focusing on Boolean binary operations like x∨y or x⊕y.
But there’s also a significant ternary operation ⟨xyz⟩, called the median of x, y,
and z:

⟨xyz⟩ = (x∧y) ∨ (y∧z) ∨ (x∧z) = (x∨y) ∧ (y∨z) ∧ (x∨z). (43)

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 63

In fact, ⟨xyz⟩ is probably the most important ternary operation in the entire
universe, because it has amazing properties that are continually being discovered
and rediscovered.

In the first place, we can see easily that this formula for ⟨xyz⟩ describes the
majority value of any three Boolean quantities x, y, and z: ⟨000⟩ = ⟨001⟩ = 0
and ⟨011⟩ = ⟨111⟩ = 1. We call ⟨xyz⟩ the “median” instead of the “majority”
because, if x, y, and z are arbitrary real numbers, and if the operations ∧ and ∨
denote min and max in (43), then

⟨xyz⟩ = y when x ≤ y ≤ z. (44)

Secondly, the basic binary operations ∧ and ∨ are special cases of medians:

x ∧ y = ⟨x0y⟩; x ∨ y = ⟨x1y⟩. (45)

Thus any monotone Boolean function can be expressed entirely in terms of the
ternary median operator and the constants 0 and 1. In fact, if we lived in a
median-only world, we could let ∧ stand for falsehood and ∨ for truth; then
x∧ y = ⟨x∧y⟩ and x∨ y = ⟨x∨y⟩ would be perfectly natural expressions, and we
could even use Polish notation like ⟨∧xy⟩ and ⟨∨xy⟩ if we wanted to! The same
idea applies to extended real numbers under the min-max interpretation of ∧
and ∨, if we take medians with respect to the constants ∧ = −∞ and ∨ = +∞.

A Boolean function f(x1, x2, . . . , xn) is called self-dual when it satisfies

f(x1, x2, . . . , xn) = f(x̄1, x̄2, . . . , x̄n). (46)

We’ve noted that a Boolean function is monotone if and only if it can be expressed
in terms of ∧ and ∨; by De Morgan’s laws (11) and (12), a monotone formula is
self-dual if and only if the symbols ∧ and ∨ can be interchanged without changing
the formula’s value. Thus the median operation defined in (43) is both monotone
and self-dual. In fact, it is the simplest nontrivial function of that kind, since
none of the binary operations in Table 1 are both monotone and self-dual except
the projections and .

Furthermore, any expression that has been formed entirely with the median
operator, without using constants, is both monotone and self-dual. For example,
the function ⟨w⟨xyz⟩⟨w⟨uvw⟩x⟩⟩ is self-dual because

⟨w⟨xyz⟩⟨w⟨uvw⟩x⟩⟩ = ⟨w̄ ⟨xyz⟩ ⟨w⟨uvw⟩x⟩⟩
= ⟨w̄⟨x̄ȳz̄⟩⟨w̄⟨uvw⟩x̄⟩⟩ = ⟨w̄⟨x̄ȳz̄⟩⟨w̄⟨ūv̄w̄⟩x̄⟩⟩.

Emil Post, while working on his Ph.D. thesis (Columbia University, 1920), proved
that the converse statement is also true:

Theorem P. Every monotone, self-dual Boolean function f(x1, . . . , xn) can be
expressed entirely in terms of the median operation ⟨xyz⟩.

From the Library of Melissa Nuno



ptg999

64 COMBINATORIAL SEARCHING 7.1.1

Proof. [Annals of Mathematics Studies 5 (1941), 74–75.] Observe first that
x1y⟨x2y . . . y⟨xs−1yxs⟩ . . . ⟩


=


(x1 ∨ x2 ∨ · · · ∨ xs−1 ∨ xs) ∧ y


∨ (x1 ∧ x2 ∧ · · · ∧ xs−1 ∧ xs); (47)

this formula for repeated medianing is easily proved by induction on s.
Now suppose f(x1, . . . , xn) is monotone, self-dual, and has the disjunctive

prime form

f(x1, . . . , xn) = t1 ∨ · · · ∨ tm, tj = xj1 ∧ · · · ∧ xjsj ,

where no prime implicant tj is contained in another (Corollary Q). Any two prime
implicants must have at least one variable in common. For if we had, say, t1 =
x∧ y and t2 = u∧ v ∧w, the value of f would be 1 when x = y = 1 and u = v =
w = 0, as well as when x = y = 0 and u = v = w = 1, contradicting self-duality.
Therefore if any tj consists of a single variable x, it must be the only prime
implicant — in which case f is the trivial function f(x1, . . . , xn) = x = ⟨xxx⟩.

Define the functions g0, g1, . . . , gm by composing medians as follows:

g0(x1, . . . , xn) = x1 ;
gj(x1, . . . , xn) = h(xj1, . . . , xjsj ; gj−1(x1, . . . , xn)), for 1 ≤ j ≤ m;

(48)

here h(x1, . . . , xs; y) denotes the function on the top line of (47). By induction
on j, we can prove from (47) and (48) that gj(x1, . . . , xn) = 1 whenever we have
t1 ∨ · · · ∨ tj = 1, because (xj1 ∨ · · · ∨ xjsj ) ∧ tk = tk when k < j.

Finally, f(x1, . . . , xn) must equal gm(x1, . . . , xn), because both functions are
monotone and self-dual, and we have shown that f(x1, . . . , xn) ≤ gm(x1, . . . , xn)
for all combinations of 0s and 1s. This inequality suffices to prove equality,
because a self-dual function equals 1 in exactly half of the 2n possible cases.

One consequence of Theorem P is that we can express the median of five
elements via medians of three, because the median of any odd number of Boolean
variables is obviously a monotone and self-dual Boolean function. Let’s write
⟨x1 . . . x2k−1⟩ for such a median. Then the disjunctive prime form of ⟨vwxyz⟩ is

(v∧w∧x) ∨ (v∧w∧y) ∨ (v∧w∧z) ∨ (v∧x∧y) ∨ (v∧x∧z)
∨ (v∧y∧z) ∨ (w∧x∧y) ∨ (w∧x∧z) ∨ (w∧y∧z) ∨ (x∧y∧z);

so the construction in the proof of Theorem P expresses ⟨vwxyz⟩ as a huge
formula g10(v, w, x, y, z) involving 2,046 median-of-3 operations. Of course this
expression isn’t the shortest possible one; we actually have

⟨vwxyz⟩ =

v⟨xyz⟩⟨wx⟨wyz⟩⟩


. (49)

[See H. S. Miiller and R. O. Winder, IRE Transactions EC-11 (1962), 89–90.]

*Median algebras and median graphs. We noted earlier that the ternary
operation ⟨xyz⟩ is useful when x, y, and z belong to any ordered set like the real
numbers, when ∧ and ∨ are regarded as the operators min and max. In fact,
the operation ⟨xyz⟩ also plays a useful role in far more general circumstances.

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 65

A median algebra is any set M on which a ternary operation ⟨xyz⟩ is defined that
takes elements of M into elements of M and obeys the following three axioms:

⟨xxy⟩ = x (majority law); (50)
⟨xyz⟩= ⟨xzy⟩= ⟨yxz⟩= ⟨yzx⟩= ⟨zxy⟩= ⟨zyx⟩ (commutative law); (51)
xw⟨ywz⟩


=


⟨xwy⟩wz


(associative law). (52)

In the Boolean case, for example, the associative law (52) holds for w = 0 and
w = 1 because ∧ and ∨ are associative. Exercises 75 and 76 prove that these three
axioms imply also a distributive law for medians, which has both a short form

⟨xyz⟩uv


=

x⟨yuv⟩⟨zuv⟩


(53)

and a more symmetrical long form
⟨xyz⟩uv


=


⟨xuv⟩⟨yuv⟩⟨zuv⟩


. (54)

No simple proof of this fact is known, but we can at least verify the special case
of (53) and (54) when y = u and z = v: We have

⟨xyz⟩yz


= ⟨xyz⟩ (55)

because both sides equal ⟨xy⟨zyz⟩⟩. In fact, the associative law (52) is just the
special case y = u of (53). And with (55) and (52) we can also verify the case
x = u:


⟨uyz⟩uv


=


vu⟨yuz⟩


=


⟨vuy⟩uz


=


⟨yuv⟩uz


=


⟨⟨yuv⟩uv⟩uz


=

⟨yuv⟩u⟨vuz⟩


=

u⟨yuv⟩⟨zuv⟩


.

An ideal in a median algebra M is a set C ⊆M for which we have

⟨xyz⟩ ∈ C whenever x ∈ C, y ∈ C, and z ∈M . (56)

If u and v are any elements of M , the interval [u . . v] is defined as follows:

[u . . v] =

⟨xuv⟩

 x ∈M
. (57)

We say that “x is between u and v” if and only if x ∈ [u . . v]. According to these
definitions, u and v themselves always belong to the interval [u . . v].

Lemma M. Every interval [u . . v] is an ideal, and x ∈ [u . . v] ⇐⇒ x = ⟨uxv⟩.

Proof. Let ⟨xuv⟩ and ⟨yuv⟩ be arbitrary elements of [u . . v]. Then
⟨xuv⟩⟨yuv⟩z


=


⟨xyz⟩uv


∈ [u . . v]

for all z ∈M , by (51) and (53), so [u . . v] is an ideal. Furthermore every element
⟨xuv⟩ ∈ [u . . v] satisfies ⟨xuv⟩ =


u⟨xuv⟩v


by (51) and (55).

Our intervals [u . . v] have nice properties, because of the median laws:

v ∈ [u . . u] =⇒ u = v; (58)
x ∈ [u . . v] and y ∈ [u . . x] =⇒ y ∈ [u . . v]; (59)
x ∈ [u . . v] and y ∈ [u . . z] and y ∈ [v . . z] =⇒ y ∈ [x . . z]. (60)

Equivalently, [u . . u] = {u}; if x ∈ [u . . v] then [u . . x] ⊆ [u . . v]; and x ∈ [u . . v]
also implies that [u . . z] ∩ [v . . z] ⊆ [x . . z] for all z. (See exercise 72.)

From the Library of Melissa Nuno



ptg999

66 COMBINATORIAL SEARCHING 7.1.1

Now let’s define a graph on the vertex set M , with the following edges:

u−−−v ⇐⇒ u ̸= v and ⟨xuv⟩ ∈ {u, v} for all x ∈M. (61)

In other words, u and v are adjacent if and only if the interval [u . . v] consists of
just the two points u and v.

Theorem G. If M is any finite median algebra, the graph defined by (61) is
connected. Moreover, vertex x belongs to the interval [u . . v] if and only if x lies
on a shortest path from u to v.

Proof. If M isn’t connected, choose u and v so that there is no path from u
to v and the interval [u . . v] has as few elements as possible. Let x ∈ [u . . v] be
distinct from u and v. Then ⟨xuv⟩ = x ̸= v, so v /∈ [u . . x]; similarly u /∈ [x . . v].
But [u . . x] and [x . . v] are contained in [u . . v], by (59). So they are smaller
intervals, and there must be a path from u to x and from x to v. Contradiction.

The other half of the theorem is proved in exercise 73.
Our definition of intervals implies that ⟨xyz⟩ ∈ [x . . y] ∩ [x . . z] ∩ [y . . z],

because ⟨xyz⟩ =

⟨xyz⟩xy


=


⟨xyz⟩xz


=


⟨xyz⟩yz


by (55). Conversely,

if w ∈ [x . . y] ∩ [x . . z] ∩ [y . . z], exercise 74 proves that w = ⟨xyz⟩. In other
words, the intersection [x . . y]∩ [x . . z]∩ [y . . z] always contains exactly one point,
whenever x, y, and z are points of M .

Figure 7 illustrates this principle in a 4×4×4 cube, where each point x has
coordinates (x1, x2, x3) with 0 ≤ x1, x2, x3 < 4. The vertices of this cube form a
median algebra because ⟨xyz⟩ =


⟨x1y1z1⟩, ⟨x2y2z2⟩, ⟨x3y3z3⟩


; furthermore, the

edges of the graph in Fig. 7 are those defined in (61), running between vertices
whose coordinates agree except that one coordinate changes by±1. Three typical
intervals [x . . y], [x . . z], and [y . . z] are shown; the only point common to all three
intervals is the vertex ⟨xyz⟩ = (2, 2, 1).

(0,1,0)

(0,2,0)

(0,3,0)

(0,3,1)

(0,3,2)

(0,3,3)

(1,3,3)

(2,3,3)
(3,2,3)

(3,1,3)

(3,0,3)

(3,0,2)

(3,0,1)

(3,0,0)

(1,0,0)

(0,0,0)

(3,3,3)

(2,0,0)

(a) The interval [x . . y].

(0,1,0)

(0,2,0)

(0,3,0)

(0,3,1)

(0,3,2)

(0,3,3)

(1,3,3)

(2,3,3)
(3,2,3)

(3,1,3)

(3,0,3)

(3,0,2)

(3,0,1)

(3,0,0)

(1,0,0)

(0,0,0)

(3,3,3)

(2,0,0)

(b) The interval [x . . z].

(0,1,0)

(0,2,0)

(0,3,0)

(0,3,1)

(0,3,2)

(0,3,3)

(1,3,3)

(2,3,3)
(3,2,3)

(3,1,3)

(3,0,3)

(3,0,2)

(3,0,1)

(3,0,0)

(1,0,0)

(0,0,0)

(3,3,3)

(2,0,0)

(c) The interval [y . . z].

Fig. 7. Intervals between the vertices x = (0, 2, 1),
y = (3, 3, 3), and z = (2, 0, 0) in a 4× 4× 4 cube.

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 67

So far we’ve started with a median algebra and used it to define a graph with
certain properties. But we can also start with a graph that has those properties
and use it to define a median algebra. If u and v are vertices of any graph, let us
define the interval [u . . v] to be the set of all points on shortest paths between u
and v. A finite graph is said to be a median graph if exactly one vertex lies in the
intersection [x . . y]∩ [x . . z]∩ [y . . z] of the three intervals that tie any three given
vertices x, y, and z together; and we denote that vertex by ⟨xyz⟩. Exercise 75
proves that the resulting ternary operation satisfies the median axioms.

Many important graphs turn out to be median graphs according to this
definition. For example, any free tree is easily seen to be a median graph; and a
graph like the n1×n2×· · ·×nm hyperrectangle provides another simple example.
Cartesian products of arbitrary median graphs also satisfy the required condition.

*Median labels. If u and v are any elements of a median algebra, the mapping
f(x) that takes x →→ ⟨xuv⟩ is a homomorphism; that is, it satisfies

f

⟨xyz⟩


=


f(x)f(y)f(z)


, (62)

because of the long distributive law (54). This function ⟨xuv⟩ “projects” any
given point x into the interval [u . . v], by (57). And it is particularly interesting
in the case when u−−− v is an edge of the corresponding graph, because f(x) is
then two-valued, essentially a Boolean mapping.

For example, consider the typical free tree shown below, with eight vertices
and seven edges. We can project each vertex x onto each of the edge intervals
[u . . v] by deciding whether x is closer to u or to v:

a

c

d

e

f g

h

b

ac bc cd de ef eg dh
a →→ a c c d e e d
b →→ c b c d e e d
c →→ c c c d e e d
d →→ c c d d e e d
e →→ c c d e e e d
f →→ c c d e f e d
g →→ c c d e e g d
h →→ c c d d e e h

0000000
1100000
1000000
1010000
1011000
1011100
1011010
1010001

(63)

On the right we’ve reduced the projections to 0s and 1s, arbitrarily deciding that
a →→ 0000000. The resulting bit strings are called labels of the vertices, and we
write, for example, l(b) = 1100000. Since each projection is a homomorphism,
we can calculate the median of any three points by simply taking Boolean
medians in each component of their labels. For example, to compute ⟨bgh⟩ we
find the bitwise median of l(b) = 1100000, l(g) = 1011010, and l(h) = 1010001,
namely 1010000 = l(d).

When we project onto all the edges of a median graph, we might find that
two columns of the binary labels are identical. This situation cannot occur with
a free tree, but let’s consider what would happen if the edge g−−−h were added
to the tree in (63): The resulting graph would still be a median graph, but the

From the Library of Melissa Nuno



ptg999

68 COMBINATORIAL SEARCHING 7.1.1

columns for eg and dh would become identical (except with e ↔ d and g ↔ h).
Furthermore, the new column for gh would turn out to be equivalent to the
column for de. Redundant components should be omitted from the labels in
such cases; therefore the vertices of the augmented graph would have six-bit
labels, like l(g) = 101101 and l(h) = 101001, instead of seven-bit labels.

The elements of any median algebra can always be represented by labels in
this way. Therefore any identity that holds in the Boolean case will be true in
all median algebras. This “zero-one principle” makes it possible to test whether
any two given expressions built from the ternary operation ⟨xyz⟩ can be shown
to be equal as a consequence of axioms (50), (51), and (52) — although we do
have to check 2n−1−1 cases when we test n-variable expressions by this method.

For example, the associative law

xw⟨ywz⟩


=


⟨xwy⟩wz


suggests that

there should be a symmetrical interpretation of both sides that does not involve
nested brackets. And indeed, there is such a formula:

xw⟨ywz⟩


=

⟨xwy⟩wz


= ⟨xwywz⟩, (64)

where ⟨xwywz⟩ denotes the median of the five-element multiset {x,w, y, w, z} =
{w,w, x, y, z}. We can prove this formula by using the zero-one principle, noting
also that median is the same thing as majority in the Boolean case. In a similar
way we can prove (49), and we can show that the function used by Post in (47)
can be simplified to

x1y⟨x2y . . . y⟨xs−1yxs⟩ . . . ⟩


= ⟨x1yx2y . . . yxs−1yxs⟩; (65)

it’s a median of 2s− 1 quantities, where nearly half of them are equal to y.
A set C of vertices in a graph is called convex if [u . . v] ⊆ C whenever

u ∈ C and v ∈ C. In other words, whenever the endpoints of a shortest path
belong to C, all vertices of that path must also be present in C. (A convex
set is therefore identical to what we called an “ideal,” a few pages ago; now
our language has become geometric instead of algebraic.) The convex hull of
{v1, . . . , vm} is defined to be the smallest convex set that contains each of the
vertices v1, . . . , vm. Our theoretical results above have shown that every interval
[u . . v] is convex; hence [u . . v] is the convex hull of the two-point set {u, v}. But
in fact much more is true:

Theorem C. The convex hull of {v1, v2, . . . , vm} in a median graph is the set
of all points

C =

⟨v1xv2x . . . xvm⟩

 x ∈M
. (66)

Furthermore, x is in C if and only if x = ⟨v1xv2x . . . xvm⟩.

Proof. Clearly vj ∈ C for 1 ≤ j ≤ m. Every point of C must belong to the
convex hull, because the point x′ = ⟨v2x . . . xvm⟩ is in the hull (by induction
on m), and because ⟨v1x . . . xvm⟩ ∈ [v1 . . x

′]. The zero-one principle proves that
x⟨v1yv2y . . . yvm⟩⟨v1zv2z . . . zvm⟩


=


v1⟨xyz⟩v2⟨xyz⟩ . . . ⟨xyz⟩vm


; (67)

hence C is convex. Setting y = x in this formula proves that ⟨v1xv2x . . . xvm⟩ is
the closest point of C to x, and that ⟨v1xv2x . . . xvm⟩ ∈ [x . . z] for all z ∈ C.

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 69

Corollary C. Let the label of vj be vj1 . . . vjt for 1 ≤ j ≤ m. Then the convex
hull of {v1, . . . , vm} is the set of all x ∈M whose label x1 . . . xt satisfies xj = cj
whenever v1j = v2j = · · · = vmj = cj .
For example, the convex hull of {c, g, h} in (63) consists of all elements whose
label matches the pattern 10∗∗0∗∗, namely {c, d, e, g, h}.

When a median graph contains a 4-cycle u−−−x−−− v−−− y−−−u, the edges
u−−−x and v−−− y are equivalent, in the sense that projection onto [u . . x] and
projection onto [v . . y] both yield the same label coordinates. The reason is that,
for any z with ⟨zux⟩ = u, we have

y = ⟨uvy⟩ =

⟨zux⟩vy


=


⟨zvy⟩⟨uvy⟩⟨xvy⟩


=


⟨zvy⟩yv


,

hence ⟨zvy⟩ = y; similarly ⟨zux⟩ = x implies ⟨zvy⟩ = v. The edges x−−− v and
y −−− u are equivalent for the same reasons. Exercise 77 shows, among other
things, that two edges yield equivalent projections if and only if they can be
proved equivalent by a chain of equivalences obtained from 4-cycles in this way.
Therefore the number of bits in each vertex label is the number of equivalence
classes of edges induced by the 4-cycles; and it follows that the reduced labels for
vertices are uniquely determined, once we specify a vertex whose label is 00 . . . 0.

A nice way to find the vertex labels of any median graph was discovered
by P. K. Jha and G. Slutzki [Ars Combin. 34 (1992), 75–92] and improved by
J. Hagauer, W. Imrich, and S. Klavžar [Theor. Comp. Sci. 215 (1999), 123–136]:
Algorithm H (Median labels). Given a median graph G and a source vertex a,
this algorithm determines the equivalence classes defined by the 4-cycles of G,
and computes the labels l(v) = v1 . . . vt of each vertex, where t is the number of
classes and l(a) = 0 . . . 0.
H1. [Initialize.] Preprocess G by visiting all vertices in order of their distance

from a. For each edge u−−−v, we say that u is an early neighbor of v if a is
closer to u than to v, otherwise u is a late neighbor ; in other words, the early
neighbors of v will already have been visited when v is encountered, but the
late neighbors will still be awaiting their turn. Rearrange all adjacency lists
so that early neighbors are listed first. Place each edge initially in its own
equivalence class; a “union-find algorithm” like Algorithm 2.3.3E will be
used to merge classes when the algorithm learns that they’re equivalent.

H2. [Call the subroutine.] Set j ← 0 and invoke Subroutine I with parameter a.
(Subroutine I appears below. The global variable j will be used to create a
master list of edges rj−−− sj for 1 ≤ j < n, where n is the total number of
vertices; there will be one entry with sj = v, for each vertex v ̸= a.)

H3. [Assign the labels.] Number the equivalence classes from 1 to t. Then set
l(a) to the t-bit string 0 . . . 0. For j = 1, 2, . . . , n − 1 (in this order), set
l(sj) to l(rj) with bit k changed from 0 to 1, where k is the equivalence
class of edge rj−−−sj .

From the Library of Melissa Nuno



ptg999

70 COMBINATORIAL SEARCHING 7.1.1

Subroutine I (Process descendants of r). This recursive subroutine, with
parameter r and global variable j, does the main work of Algorithm H on
the graph of all vertices currently reachable from vertex r. In the course of
processing, all such vertices will be recorded on the master list, except r itself,
and all edges between them will be removed from the current graph. Each vertex
has four fields called its LINK, MARK, RANK, and MATE, initially null.

I1. [Loop over s.] Choose a vertex s with r −−− s. If there is no such vertex,
return from the subroutine.

I2. [Record the edge.] Set j ← j + 1, rj ← r, and sj ← s.
I3. [Begin breadth-first search.] (Now we want to find and delete all edges

of the current graph that are equivalent to r −−− s.) Set MARK(s) ← s,
RANK(s)← 1, LINK(s)← Λ, and v ← q ← s.

I4. [Find the mate of v.] Find the early neighbor u of v for which MARK(u) ̸= s
or RANK(u) ̸= 1. (There will be exactly one such vertex u. Recall that early
neighbors have been placed first, in step H1.) Set MATE(v)← u.

I5. [Delete u−−− v.] Make the edges u−−− v and r−−− s equivalent by merging
their equivalence classes. Remove u and v from each other’s adjacency lists.

I6. [Classify the neighbors of v.] For each early neighbor u of v, do step I7; for
each late neighbor u of v, do step I8. Then go to step I9.

I7. [Note a possible equivalence.] If MARK(u) = s and RANK(u) = 1, make the
edge u−−−v equivalent to the edge MATE(u)−−−MATE(v). Return to I6.

I8. [Rank u.] If MARK(u) = s and RANK(u) = 1, return to I6. Otherwise set
MARK(u) ← s and RANK(u) ← 2. Set w to the first neighbor of u (it will
be early). If w = v, reset w to u’s second early neighbor; but return to I6
if u has only one early neighbor. If MARK(w) ̸= s or RANK(w) ̸= 2, set
RANK(u)← 1, LINK(u)← Λ, LINK(q)← u, and q ← u. Return to I6.

I9. [Continue breadth-first search.] Set v ← LINK(v). Return to I4 if v ̸= Λ.
I10. [Process subgraph s.] Call Subroutine I recursively with parameter s. Then

return to I1.
This algorithm and subroutine have been described in terms of relatively high-
level data structures; further details are left to the reader. For example, adja-
cency lists should be doubly linked, so that edges can readily be deleted in step I5.
Any convenient method for merging equivalence classes can be used in that step.

Exercise 77 explains the theory that makes this algorithm work, and ex-
ercise 78 proves that each vertex is encountered at most lgn times in step I4.
Furthermore, exercise 79 shows that a median graph has at most O(n logn)
edges. Therefore the total running time of Algorithm H is O(n(logn)2), except
perhaps for the bit-setting in step H3.

The reader may wish to play through Algorithm H by hand on the median
graph in Table 2, whose vertices represent the twelve monotone self-dual Boolean
functions of four variables {w, x, y, z}. All such functions that actually involve
all four variables can be expressed as a median of five things, like (64). With

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 71

Table 2
LABELS FOR THE FREE MEDIAN ALGEBRA ON FOUR GENERATORS

〈xyz〉

〈wxxyz〉

x

y

〈wxyyz〉

〈wxy〉

z

〈wxyzz〉

〈wxz〉

〈wyz〉

〈wwxyz〉

w

j rj sj l(sj)
w 0000000

1 w ⟨wwxyz⟩ 0000001
2 ⟨wwxyz⟩ ⟨wyz⟩ 0010001
3 ⟨wyz⟩ ⟨wxyzz⟩ 0010101
4 ⟨wxyzz⟩ ⟨xyz⟩ 0010111
5 ⟨wxyzz⟩ z 1010101
6 ⟨wyz⟩ ⟨wxyyz⟩ 0010011
7 ⟨wxyyz⟩ y 0110011
8 ⟨wwxyz⟩ ⟨wxz⟩ 0000101
9 ⟨wxz⟩ ⟨wxxyz⟩ 0000111
10 ⟨wxxyz⟩ x 0001111
11 ⟨wwxyz⟩ ⟨wxy⟩ 0000011

starting vertex a = w, the algorithm computes the master list of edges rj−−−sj
and the binary labels shown in the table. (The actual order of processing depends
on the order in which vertices appear in adjacency lists. But the final labels will
be the same under any ordering, except for permutations of the columns.)

Notice that the number of 1-bits in each label l(v) is the distance of v from
the starting vertex a. In fact, the uniqueness of labels tells us that the distance
between any two vertices is the number of bit positions in which their labels
differ, because we could have started at any particular vertex.

The special median graph in Table 2 could actually have been handled in a
completely different way, without using Algorithm H at all, because the labels
in this case are essentially the same as the truth tables of the corresponding
functions. Here’s why: We can say that the simple functions w, x, y, z have
the respective truth tables t(w) = 0000000011111111, t(x) = 0000111100001111,
t(y) = 0011001100110011, t(z) = 0101010101010101. Then the truth table of
⟨wwxyz⟩ is the bitwise majority function


t(w)t(w)t(x)t(y)t(z)


, namely the

string 0000000101111111; and a similar computation gives the truth tables of all
the other vertices.

The last half of any self-dual function’s truth table is the same as the first
half, but complemented and reversed, so we can eliminate it. Furthermore the
leftmost bit in each of our truth tables is always zero. We are left with the
seven-bit labels shown in Table 2; and the uniqueness property guarantees that
Algorithm H will produce the same result, except for possible permutation of
columns, when it is presented with this particular graph.

This reasoning tells us that the edges of the graph in Table 2 correspond to
pairs of functions whose truth tables are almost the same. We move between
neighboring vertices by switching only two complementary bits of their truth
tables. In fact, the degree of each vertex turns out to be exactly the number of
prime implicants in the disjunctive prime form of the monotone self-dual function
represented by that vertex (see exercises 70 and 84).

From the Library of Melissa Nuno



ptg999

72 COMBINATORIAL SEARCHING 7.1.1

*Median sets. A median set is a collection X of binary vectors with the property
that ⟨xyz⟩ ∈ X whenever x ∈ X, y ∈ X, and z ∈ X, where the medians are
computed componentwise as we’ve done with median labels. Thomas Schaefer
noticed in 1978 that median sets provide us with an attractive counterpoint to
the characterization of Horn functions in Theorem H:

Theorem S. The Boolean function f(x1, . . . , xn) is expressible as a conjunction
of Krom clauses if and only if

f(x1, . . . , xn) = f(y1, . . . , yn) = f(z1, . . . , zn) = 1
implies f(⟨x1y1z1⟩, . . . , ⟨xnynzn⟩) = 1 (68)

for all Boolean values xj , yj , and zj .

Proof. [STOC 10 (1978), 216–226, Lemma 3.1B.] If we have x1∨x2 = y1∨ y2 =
z1∨z2 = 1, say, with x1 ≤ y1 ≤ z1, then ⟨x1y1z1⟩∨⟨x2y2z2⟩ = y1∨⟨x2y2z2⟩ = 1,
since y1 = 0 implies that x2 = y2 = 1. Thus (68) is necessary.

Conversely, if (68) holds, let u1 ∨ · · · ∨uk be a prime clause of f, where each
uj is a literal. Then, for 1 ≤ j ≤ k, the clause u1 ∨ · · · ∨ uj−1 ∨ uj+1 ∨ · · · ∨ uk is
not a clause of f ; so there’s a vector x(j) with f(x(j)) = 1 but with u

(j)
i = 0 for

all i ̸= j. If k ≥ 3, the median ⟨x(1)x(2)x(3)⟩ has ui = 0 for 1 ≤ i ≤ k; but that’s
impossible, because u1 ∨ · · · ∨ uk was supposedly a clause. Hence k ≤ 2.
Thus median sets are the same as “2SAT instances,” the sets of points that satisfy
some formula f in 2CNF.

A median set is said to be reduced if its vectors x = x1 . . . xt contain no
redundant components. In other words, for each coordinate position k, a reduced
median set has at least two vectors x(k) and y(k) with the property that x(k)

k = 0
and y(k)

k = 1 but x(k)
i = y

(k)
i for all i ̸= k. We’ve seen that the labels of a median

graph satisfy this condition; in fact, if coordinate k corresponds to the edge u−−−v
in the graph, we can let x(k) and y(k) be the labels of u and v. Conversely, any
reduced median set X defines a median graph, with one vertex for each element
of X and with adjacency defined by all-but-one equality of coordinates. The
median labels of these vertices must be identical to the original vectors in X,
because we know that median labels are essentially unique.

Median labels and reduced median sets can also be characterized in yet
another instructive way, which harks back to the networks of comparator modules
that we studied in Section 5.3.4. We noted in that section that such networks
are useful for “oblivious sorting” of numbers, and we noted in Theorem 5.3.4Z
that a network of comparators will sort all n! possible input permutations if and
only if it correctly sorts all 2n combinations of 0s and 1s. When a comparator
module is attached to two horizontal lines, with inputs x and y entering from
the left, it outputs the same two values on the right, but with min(x, y) = x ∧ y
on the upper line and max(x, y) = x ∨ y on the lower line. Let’s now extend
the concept slightly by also allowing inverter modules, which change 0 to 1 and
vice versa. Here, for example, is a comparator-inverter network (or CI-net, for

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 73

short), which transforms the binary value 0010 into 0111:

0

0

1

0

0

1

0

1

0

1

1

1

0

1

1

1

1

0

0

0

0

0

1

0

1

1

1

0

0

1

1

1

(69)

(A single dot denotes an inverter.) Indeed, this network transforms
0000 →→ 0110;
0001 →→ 0111;
0010 →→ 0111;
0011 →→ 0110;

0100 →→ 0111;
0101 →→ 1111;
0110 →→ 1111;
0111 →→ 0111;

1000 →→ 0111;
1001 →→ 0101;
1010 →→ 0101;
1011 →→ 0111;

1100 →→ 0110;
1101 →→ 0111;
1110 →→ 0111;
1111 →→ 0110.

(70)

Suppose a CI-net transforms the bit string x = x1 . . . xt into the bit string
x′1 . . . x

′
t = f(x). This function f, which maps the t-cube into itself, is in fact a

graph homomorphism. In other words, we have f(x)−−−f(y) whenever x−−−y in
the t-cube: Changing one bit of x always causes exactly one bit of f(x) to change,
because every module in the network has this behavior. Moreover, CI-nets have
a remarkable connection with median labels:
Theorem F. Every set X of t-bit median labels can be represented by a
comparator-inverter network that computes a Boolean function f(x) with the
property that f(x) ∈ X for all bit vectors x1 . . . xt, and f(x) = x for all x ∈ X.
Proof. [Tomás Feder, Memoirs Amer. Math. Soc. 555 (1995), 1–223, Lemma 3.37;
see also the Ph. D. thesis of D. H. Wiedemann (University of Waterloo, 1986).]
Consider columns i and j of the median labels, where 1 ≤ i < j ≤ t. Any such
pair of columns contains at least three of the four possibilities {00, 01, 10, 11}, if
we look through the entire set of labels, because median labels have no redundant
columns. Let us write ȷ̄→ i, j → i, i→ j, or i→ ȷ̄ if the value 00, 01, 10, or 11
(respectively) is missing from those two columns; we can also note the equivalent
relations ı̄→ j, ı̄→ ȷ̄, ȷ̄→ ı̄, or j → ı̄, respectively, which involve ı̄ instead of i.
For example, the labels in Table 2 give us the relations

1→ 2, 3, 4, 5, 6, 7
2→ 3, 4, 5, 6, 7
3→ 4, 7
4→ 5, 6, 7
5→ 7
6→ 7

2, 3, 4, 5, 6, 7→ 1;
3, 4, 5, 6, 7→ 2;

4, 7→ 3;
5, 6, 7→ 4;

7→ 5;
7→ 6.

(71)

(There is no relation between 3 and 5 because all four possibilities occur in those
columns. But we have 3 → 4 because 11 doesn’t appear in columns 3 and 4.
The vertices whose label has a 1 in column 3 are those closer to ⟨wyz⟩ than to
⟨wwxyz⟩ in Table 2; they form a convex set in which column 4 of the labels is
always 0, because they are also closer to ⟨wxxyz⟩ than to x.)

These relations between the literals {1, 1, 2, 2, . . . , t, t} contain no cycles,
so they can always be topologically sorted into an anti-symmetrical sequence

From the Library of Melissa Nuno



ptg999

74 COMBINATORIAL SEARCHING 7.1.1

u1 u2 . . . u2t in which uj is the complement of u2t+1−j . For example,
1 7 4 2 3 5 6 6 5 3 2 4 7 1 (72)

is one such way to sort the relations in (71) topologically.
Now we proceed to construct the network, by starting with t empty lines

and successively examining elements uk and uk+d in the topological sequence,
for d = 2t − 2, 2t − 3, . . . , 1 (in this order), and for k = 1, 2, . . . , t − ⌈d/2⌉. If
uk → uk+d is a relation between columns i and j, where i < j, we append new
modules to lines i and j of the network as follows:

If i→ j If i→ ȷ̄ If ı̄→ j If ı̄→ ȷ̄
(73)

For example, from (71) and (72) we first enforce 1→ 7, then 1→ 4, then 1→ 2,
then 7→ 4 (that is, 4→ 7), etc., obtaining the following network:

(74)

(Go figure. No modules are contributed when, say, uk is 7 and uk+d is 3, because
the relation 3→ 7 does not appear in (71).)

Exercise 89 proves that each new cluster of modules (73) preserves all of the
previous relations and enforces a new one. Therefore, if x is any input vector,
f(x) satisfies all of the relations; so f(x) ∈ X by Theorem S. Conversely, if
x ∈ X, every cluster of modules in the network leaves x unchanged.
Corollary F. Suppose the median labels in Theorem F are closed under the
operations of bitwise AND and OR, so that x & y ∈ X and x | y ∈ X whenever
x ∈ X and y ∈ X. Then there is a permutation of coordinates under which the
labels are representable by a network of comparator modules only.
Proof. The bitwise AND of all labels is 0 . . . 0, and the bitwise OR is 1 . . . 1. So the
only possible relations between columns are i → j and j → i. By topologically
sorting and renaming the columns, we can ensure that only i → j occurs when
i < j; and in this case the construction in the proof never uses an inverter.

In general, if G is any graph, a homomorphism f that maps the vertices of G
onto a subset X of those vertices is called a retraction if it satisfies f(x) = x for all
x ∈ X; and we callX a retract ofG when such an f exists. The importance of this
concept in the theory of graphs was first pointed out by Pavol Hell [see Lecture
Notes in Math. 406 (1974), 291–301]. One consequence, for example, is that
the distance between vertices in X — the number of edges on a shortest path —
remains the same even if we restrict consideration to paths that lie entirely in X.
(See exercise 93.)

Theorem F demonstrates that every t-dimensional set of median labels is
a retract of the t-dimensional hypercube. Conversely, exercise 94 shows that
hypercube retracts are always median graphs.

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 75

Threshold functions. A particularly appealing and important class of Boolean
functions f(x1, x2, . . . , xn) arises when f can be defined by the formula

f(x1, x2, . . . , xn) = [w1x1 + w2x2 + · · ·+ wnxn≥ t], (75)

where the constants w1, w2, . . . , wn are integer “weights” and t is an integer
“threshold” value. For example, threshold functions are important even when
all the weights are unity: We have

x1 ∧ x2 ∧ · · · ∧ xn = [x1 + x2 + · · ·+ xn≥n]; (76)
x1 ∨ x2 ∨ · · · ∨ xn = [x1 + x2 + · · ·+ xn≥ 1]; (77)

and ⟨x1x2 . . . x2t−1⟩ = [x1 + x2 + · · ·+ x2t−1≥ t], (78)

where ⟨x1x2 . . . x2t−1⟩ stands for the median (or majority) value of a multiset that
consists of any odd number of Boolean values {x1, x2, . . . , x2t−1}. In particular,
the basic mappings x ∧ y, x ∨ y, and ⟨xyz⟩ are all threshold functions, and so is

x̄ = [−x≥ 0]. (79)

With more general weights we get many other functions of interest, such as

[2n−1x1 + 2n−2x2 + · · ·+ xn≥ (t1t2 . . . tn)2 ], (80)

which is true if and only if the binary string x1x2 . . . xn is lexicographically
greater than or equal to a given binary string t1t2 . . . tn. Given a set of n objects
having sizes w1, w2, . . . , wn, a subset of those objects will fit into a knapsack
of size t − 1 if and only if f(x1, x2, . . . , xn) = 0, where xj = 1 represents the
presence of object j in the subset. Simple models of neurons, originally proposed
by W. McCulloch and W. Pitts in Bull. Math. Biophysics 5 (1943), 115–133, have
led to thousands of research papers about “neural networks” built from threshold
functions.

We can get rid of any negative weight wj by setting xj ← x̄j , wj ← −wj ,
and t ← t + |wj |. Thus a general threshold function can be reduced to a
positive threshold function in which all weights are nonnegative. Furthermore,
any positive threshold function (75) can be expressed as a special case of the
median/majority-of-odd function, because we have

⟨0a1bxw1
1 xw2

2 . . . xwn
n ⟩ = [b+ w1x1 + w2x2 + · · ·+ wnxn≥ b+ t], (81)

where xm stands for m copies of x, and where a and b are defined by the rules

a = max(0, 2t−1−w), b = max(0, w+1−2t), w = w1 +w2 +· · ·+wn. (82)

For example, when all weights are 1, we have

⟨0n−1x1 . . . xn⟩ = x1 ∧ · · · ∧ xn and ⟨1n−1x1 . . . xn⟩ = x1 ∨ · · · ∨ xn; (83)

we’ve already seen these formulas in (45) when n = 2. In general, either a or b is
zero, and the left-hand side of (81) specifies a median of 2T − 1 elements, where

T = b+ t = max(t, w1 + w2 + · · ·+ wn + 1− t). (84)

From the Library of Melissa Nuno



ptg999

76 COMBINATORIAL SEARCHING 7.1.1

There would be no point in letting both a and b be greater than zero, because
the majority function clearly satisfies the cancellation law

⟨01x1x2 . . . x2t−1⟩ = ⟨x1x2 . . . x2t−1⟩. (85)

One important consequence of (81) is that every positive threshold function
comes from the pure majority function

g(x0, x1, x2, . . . , xn) = ⟨xa+b
0 xw1

1 xw2
2 . . . xwn

n ⟩ (86)

by setting x0 = 0 or 1. In other words, we know all threshold functions of n vari-
ables if and only if we know all of the distinct median-of-odd functions of n+1 or
fewer variables (containing no constants). Every pure majority function is mono-
tone and self-dual; thus we’ve seen the pure majority functions of four variables
{w, x, y, z} in column sj of Table 2 on page 71, namely ⟨w⟩, ⟨wwxyz⟩, ⟨wyz⟩,
⟨wxyzz⟩, ⟨xyz⟩, ⟨z⟩, ⟨wxyyz⟩, ⟨y⟩, ⟨wxz⟩, ⟨wxxyz⟩, ⟨x⟩, ⟨wxy⟩. By setting w = 0
or 1, we obtain all the positive threshold functions f(x, y, z) of three variables:

⟨0⟩, ⟨1⟩, ⟨00xyz⟩, ⟨11xyz⟩, ⟨0yz⟩, ⟨1yz⟩, ⟨0xyzz⟩, ⟨1xyzz⟩, ⟨xyz⟩, ⟨z⟩,
⟨0xyyz⟩, ⟨1xyyz⟩, ⟨y⟩, ⟨0xz⟩, ⟨1xz⟩, ⟨0xxyz⟩, ⟨1xxyz⟩, ⟨x⟩, ⟨0xy⟩, ⟨1xy⟩. (87)

All 150 positive threshold functions of four variables can be obtained in a similar
fashion from the self-dual majority functions in the answer to exercise 84.

There are infinitely many sequences of weights (w1, w2, . . . , wn), but only
finitely many threshold functions for any given value of n. So it is clear that
many different weight sequences are equivalent. For example, consider the pure
majority function

⟨x2
1x

3
2x

5
3x

7
4x

11
5 x

13
6 ⟩,

in which prime numbers have been used as weights. A brute-force examination
of 26 cases shows that

⟨x2
1x

3
2x

5
3x

7
4x

11
5 x

13
6 ⟩ = ⟨x1x

2
2x

2
3x

3
4x

4
5x

5
6⟩; (88)

thus we can express the same function with substantially smaller weights. Simi-
larly, the threshold function

[(x1x2 . . . x20)2≥ (01100100100001111110)2 ] = ⟨1225028x524288
1 x262144

2 . . . x20⟩,

a special case of (80), turns out to be simply

⟨1323x764
1 x323

2 x323
3 x118

4 x118
5 x87

6 x
31
7 x

31
8 x

25
9 x

6
10x

6
11x

6
12x

6
13x14x15x16x17x18x19⟩. (89)

Exercise 103 explains how to find a minimum set of weights without resorting to
a huge brute-force search, using linear programming.

A nice indexing scheme by which a unique identifier can be assigned to
any threshold function was discovered by C. K. Chow [FOCS 2 (1961), 34–38].
Given any Boolean function f(x1, . . . , xn), let N(f) be the number of vectors
x = (x1, . . . , xn) for which f(x) = 1, and let Σ(f) be the sum of all those
vectors. For example, if f(x1, x2) = x1 ∨ x2, we have N(f) = 3 and Σ(f) =
(0, 1) + (1, 0) + (1, 1) = (2, 2).

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 77

Theorem T. Let f(x1, . . . , xn) and g(x1, . . . , xn) be Boolean functions with
N(f) = N(g) and Σ(f) = Σ(g), where f is a threshold function. Then f = g.
Proof. Suppose there are exactly k vectors x(1), . . . , x(k) such that f(x(j)) = 1
and g(x(j)) = 0. Since N(f) = N(g), there must be exactly k vectors y(1), . . . ,
y(k) such that f(y(j)) = 0 and g(y(j)) = 1. And since Σ(f) = Σ(g), we must also
have x(1) + · · ·+ x(k) = y(1) + · · ·+ y(k).

Now suppose f is the threshold function (75); then we have w · x(j) ≥ t and
w ·y(j) < t for 1 ≤ j ≤ k. But if f ̸= g we have k > 0, and w ·(x(1) + · · ·+x(k)) ≥
kt > w · (y(1) + · · ·+ y(k)), a contradiction.

Threshold functions have many curious properties, some of which are ex-
plored in the exercises below. Their classical theory is well summarized in Saburo
Muroga’s book Threshold Logic and its Applications (Wiley, 1971).
Symmetric Boolean functions. A function f(x1, . . . , xn) is called symmetric
if f(x1, . . . , xn) is equal to f(xp(1), . . . , xp(n)) for all permutations p(1) . . . p(n) of
{1, . . . , n}. When all the xj are 0 or 1, this condition means that f depends only
on the number of 1s that are present in the arguments, namely the “sideways
sum” νx = ν(x1, . . . , xn) = x1 + · · ·+xn. The notation Sk1,k2,...,kr (x1, . . . , xn) is
commonly used to stand for the Boolean function that is true if and only if νx is
either k1 or k2 or · · · or kr. For example, S1,3,5(v, w, x, y, z) = v⊕w⊕ x⊕ y⊕ z;
S3,4,5(v, w, x, y, z) = ⟨vwxyz⟩; S4,5(v, w, x, y, z) = ⟨00vwxyz⟩.

Many applications of symmetry involve the basic functions Sk(x1, . . . , xn)
that are true only when νx = k. For example, S3(x1, x2, x3, x4, x5, x6) is true
if and only if exactly half of the arguments {x1, . . . , x6} are true and the other
half are false. In such cases we obviously have

Sk(x1, . . . , xn) = S≥k(x1, . . . , xn) ∧ S≥k+1(x1, . . . , xn), (90)
where S≥k(x1, . . . , xn) is an abbreviation for Sk,k+1,...,n(x1, . . . , xn). The func-
tions S≥k(x1, . . . , xn) are, of course, the threshold functions [x1 + · · ·+ xn≥ k ]
that we have already studied.

More complicated cases can be treated as threshold functions of threshold
functions. For example, we have

S2,3,6,8,9(x1, . . . , x12) =

νx ≥ 2 + 4[νx≥ 4] + 2[νx≥ 7] + 5[νx≥ 10]


=


00x1 . . . x12⟨05x̄1 . . . x̄12⟩4⟨1x̄1 . . . x̄12⟩2⟨17x̄1 . . . x̄12⟩5


, (91)

because the number of 1s in the outermost majority-of-25 turns out to be re-
spectively (11, 12, 13, 14, 11, 12, 13, 12, 13, 14, 10, 11, 12) when x1 + · · · + x12 =
(0, 1, . . . , 12). A similar two-level scheme works in general [R. C. Minnick, IRE
Trans. EC-10 (1961), 6–16]; and with three or more levels of logic we can reduce
the number of thresholding operations even further. (See exercise 113.)

A variety of ingenious tricks have been discovered for evaluating symmetric
Boolean functions. For example, S. Muroga attributes the following remarkable
sequence of formulas to F. Sasaki:
x0 ⊕ x1 ⊕ · · · ⊕ x2m = ⟨x̄0s1s2 . . . s2m⟩,

where sj = ⟨x0xjxj+1 . . . xj+m−1x̄j+mx̄j+m+1 . . . x̄j+2m−1⟩, (92)

From the Library of Melissa Nuno



ptg999

78 COMBINATORIAL SEARCHING 7.1.1

if m > 0 and if we consider x2m+k to be the same as xk for k ≥ 1. In particular,
when m = 1 and m = 2 we have the identities

x0 ⊕ x1 ⊕ x2 = ⟨x̄0⟨x0x1x̄2⟩⟨x0x2x̄1⟩⟩; (93)
x0 ⊕ · · · ⊕ x4 = ⟨x̄0⟨x0x1x2x̄3x̄4⟩⟨x0x2x3x̄4x̄1⟩⟨x0x3x4x̄1x̄2⟩⟨x0x4x1x̄2x̄3⟩⟩. (94)

The right-hand sides are fully symmetric, but not obviously so! (See exercise 115.)

Canalizing functions. A Boolean function f(x1, . . . , xn) is said to be canalizing
or “forcing” if we might be able to deduce its value by examining at most one of
its variables. More precisely, f is canalizing if n = 0 or if there’s a subscript j for
which f(x) either has a constant value when we set xj = 0 or a constant value
when we set xj = 1. For example, f(x, y, z) = (x⊕ z)∨ ȳ is canalizing because it
always equals 1 when y = 0. (When y = 1 we don’t know the value of f without
examining also x and z; but half a loaf is better than none.) Such functions,
introduced by Stuart Kauffman [Lectures on Mathematics in the Life Sciences
3 (1972), 63–116; J. Theoretical Biology 44 (1974), 167–190], have proved to be
important in many applications, especially in chemistry and biology. Some of
their properties are examined in exercises 125–129.

Quantitative considerations. We’ve been studying many different kinds of
Boolean functions, so it’s natural to ask: How many n-variable functions of each
type actually exist? Tables 3, 4, and 5 provide the answers, at least for small
values of n.

All functions are counted in Table 3. There are 22n possibilities for each n,
since there are 22n possible truth tables. Some of these functions are self-dual,
some are monotone; some are both monotone and self-dual, as in Theorem P.
Some are Horn functions as in Theorem H; some are Krom functions as in
Theorem S; and so on.

But in Table 4, two functions are considered identical if they differ only
because the names of variables have changed. Thus only 12 different cases arise
when n = 2, because (for example) x ∨ ȳ and x̄ ∨ y are essentially the same.

Table 5 goes a step further: It allows us to complement individual variables,
and even to complement the entire function, without essentially changing it.
From this perspective the 256 Boolean functions of (x, y, z) fall into only 14
different equivalence classes:

Representative Class size
0 2
x 6

x ∧ y 24
x⊕ y 6

x ∧ y ∧ z 16
x⊕ y ⊕ z 2
x ∧ (y ∨ z) 48

Representative Class size
x ∧ (y ⊕ z) 24
x⊕ (y ∧ z) 24

(x ∧ y) ∨ (x̄ ∧ z) 24
(x ∨ y) ∧ (x⊕ z) 48
(x⊕ y) ∨ (x⊕ z) 8

⟨xyz⟩ 8
S1(x, y, z) 16

(95)

We shall study ways to count and to list inequivalent combinatorial objects in
Section 7.2.3.

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 79

Table 3
BOOLEAN FUNCTIONS OF n VARIABLES

n= 0 n= 1 n= 2 n= 3 n= 4 n= 5 n= 6
arbitrary 2 4 16 256 65,536 4,294,967,296 18,446,744,073,709,551,616
self-dual 0 2 4 16 256 65,536 4,294,967,296
monotone 2 3 6 20 168 7,581 7,828,354
both 0 1 2 4 12 81 2,646
Horn 2 4 14 122 4,960 2,771,104 151,947,502,948
Krom 2 4 16 166 4,170 224,716 24,445,368
threshold 2 4 14 104 1,882 94,572 15,028,134
symmetric 2 4 8 16 32 64 128
canalizing 2 4 14 120 3,514 1,292,276 103,071,426,294

Table 4
BOOLEAN FUNCTIONS DISTINCT UNDER PERMUTATION OF VARIABLES

n= 0 n= 1 n= 2 n= 3 n= 4 n= 5 n= 6
arbitrary 2 4 12 80 3,984 37,333,248 25,626,412,338,274,304
self-dual 0 2 2 8 32 1,088 6,385,408
monotone 2 3 5 10 30 210 16,353
both 0 1 1 2 3 7 30
Horn 2 4 10 38 368 29,328 216,591,692
Krom 2 4 12 48 308 3,028 49,490
threshold 2 4 10 34 178 1,720 590,440
canalizing 2 4 10 38 294 15,774 149,325,022

Table 5
BOOLEAN FUNCTIONS DISTINCT UNDER COMPLEMENTATION/PERMUTATION

n= 0 n= 1 n= 2 n= 3 n= 4 n= 5 n= 6
arbitrary 1 2 4 14 222 616,126 200,253,952,527,184
self-dual 0 1 1 3 7 83 109,950
threshold 1 2 3 6 15 63 567
both 0 1 1 2 3 7 21
canalizing 1 2 3 6 22 402 1,228,158

EXERCISES
1. [15 ] (Lewis Carroll.) Make sense of Tweedledee’s comment, quoted near the

beginning of this section. [Hint: See Table 1.]
2. [17 ] Logicians on the remote planet Pincus use the symbol 1 to represent “false”

and 0 to represent “true.” Thus, for example, they have a binary operation called “or”
whose properties

1 or 1 = 1, 1 or 0 = 0, 0 or 1 = 0, 0 or 0 = 0

we associate with ∧. What operations would we associate with the 16 logical opera-
tors that Pincusians respectively call “falsehood,” “and,” . . . , “nand,” “validity” (see
Table 1)?

From the Library of Melissa Nuno



ptg999

80 COMBINATORIAL SEARCHING 7.1.1

x 3. [13 ] Suppose logical values were respectively−1 for falsehood and +1 for truth, in-
stead of 0 and 1. What operations ◦ in Table 1 would then correspond to (a) max(x, y)?
(b) min(x, y)? (c) −x? (d) x · y?

4. [24 ] (H. M. Sheffer.) The purpose of this exercise is to show that all of the
operations in Table 1 can be expressed in terms of NAND. (a) For each of the 16
operators ◦ in that table, find a formula equivalent to x ◦ y that uses only ∧ as an
operator. Your formula should be as short as possible. For example, the answer for
operation is simply “x”, but the answer for is “x ∧ x”. Do not use the constants
0 or 1 in your formulas. (b) Similarly, find 16 short formulas when constants are
allowed. For example, x y can now be expressed also as “x ∧ 1”.

5. [24 ] Consider exercise 4 with ⊂ as the basic operation instead of ∧.
6. [21 ] (E. Schröder.) (a) Which of the 16 operations in Table 1 are associative — in

other words, which of them satisfy x ◦ (y ◦ z) = (x ◦ y) ◦ z? (b) Which of them satisfy
the identity (x ◦ y) ◦ (y ◦ z) = x ◦ z?

7. [20 ] Which operations in Table 1 have the property that x ◦ y = z if and only if
y ◦ z = x?

8. [24 ] Which of the 162 pairs of operations (◦, ) satisfy the left-distributive law
x ◦ (y z) = (x ◦ y) (x ◦ z)?

9. [16 ] True or false? (a) (x ⊕ y) ∨ z = (x ∨ z) ⊕ (y ∨ z); (b) (w ⊕ x ⊕ y) ∨ z =
(w ∨ z)⊕ (x ∨ z)⊕ (y ∨ z); (c) (x⊕ y) ∨ (y ⊕ z) = (x⊕ z) ∨ (y ⊕ z).
10. [17 ] What is the multilinear representation of the “random” function (22)?
11. [M25 ] Is there an intuitive way to understand exactly when the multilinear rep-
resentation of f(x1, . . . , xn) contains, say, the term x2x3x6x8? (See (19).)

x 12. [M23 ] The integer multilinear representation of a Boolean function extends rep-
resentations like (19) to a polynomial f(x1, . . . , xn) with integer coefficients, in such
a way that f(x1, . . . , xn) has the correct value (0 or 1) for all 2n possible 0–1 vectors
(x1, . . . , xn), without taking a remainder mod 2. For example, the integer multilinear
representation corresponding to (19) is 1− xy − xz − yz + 3xyz.

a) What is the integer multilinear representation of the “random” function (22)?
b) How large can the coefficients of such a representation f(x1, . . . , xn) be?
c) Show that, in every integer multilinear representation, 0 ≤ f(x1, . . . , xn) ≤ 1

whenever x1, . . . , xn are real numbers with 0 ≤ x1, . . . , xn ≤ 1.
d) Similarly, if f(x1, . . . , xn) ≤ g(x1, . . . , xn) whenever {x1, . . . , xn} ⊆ {0, 1}, then

f(x1, . . . , xn) ≤ g(x1, . . . , xn) whenever {x1, . . . , xn} ⊆ [0 . . 1].
e) If f is monotone and 0 ≤ xj ≤ yj ≤ 1 for 1 ≤ j ≤ n, prove that f(x) ≤ f(y).

x 13. [20 ] Consider a system that consists of n units, each of which may be “working”
or “failing.” If xj represents the condition “unit j is working,” then a Boolean function
like x1 ∧ (x̄2 ∨ x̄3) represents the statement “unit 1 is working, but either unit 2 or
unit 3 is failing”; and S3(x1, . . . , xn) means “exactly three units are working.”

Suppose each unit j is in working order with probability pj , independent of the
other units. Show that the Boolean function f(x1, . . . , xn) is true with probability
F (p1, . . . , pn), where F is a polynomial in the variables p1, . . . , pn.
14. [20 ] The probability function F (p1, . . . , pn) in exercise 13 is often called the
availability of the system. Find the self-dual function f(x1, x2, x3) of maximum avail-
ability when the probabilities (p1, p2, p3) are (a) (.9, .8, .7); (b) (.8, .6, .4); (c) (.8, .6, .1).

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 81

x 15. [M20 ] If f(x1, . . . , xn) is any Boolean function, show that there is a polynomial
F (x) with the property that F (x) is an integer when x is an integer, and f(x1, . . . , xn) =
F ((xn . . . x1)2) mod 2. Hint: Consider


x
k


mod 2.

16. [13 ] Can we replace each ∨ by ⊕ in a full disjunctive normal form?
17. [10 ] By De Morgan’s laws, a general disjunctive normal form such as (25) is not
only an OR of ANDs, it is a NAND of NANDs:

(u11 ∧ · · · ∧ u1s1 ) ∧ · · · ∧ (um1 ∧ · · · ∧ umsm).

Both levels of logic can therefore be considered to be identical.
A student named J. H. Quick rewrote this expression in the form

(u11 ∧ · · · ∧ u1s1 ) ∧ · · · ∧ (um1 ∧ · · · ∧ umsm).

Was that a good idea?
x 18. [20 ] Let u1 ∧ · · · ∧ us be an implicant in a disjunctive normal form for a Boolean

function f, and let v1 ∨ · · · ∨ vt be a clause in a conjunctive normal form for the same
function. Prove that ui = vj for some i and j.
19. [20 ] What is the conjunctive prime form of the “random” function in (22)?
20. [M21 ] True or false: Every prime implicant of f ∧ g can be written f ′∧ g′, where
f ′ is a prime implicant of f and g′ is a prime implicant of g.
21. [M20 ] Prove that a nonconstant Boolean function is monotone if and only if it
can be expressed entirely in terms of the operations ∧ and ∨.
22. [20 ] Suppose f(x1, . . . , xn) = g(x1, . . . , xn−1) ⊕ h(x1, . . . , xn−1)∧xn as in (16).
What conditions on the functions g and h are necessary and sufficient for f to be
monotone?
23. [15 ] What is the conjunctive prime form of (v∧w∧x) ∨ (v∧x∧z) ∨ (x∧y∧z)?
24. [M20 ] Consider the complete binary tree with
2k leaves, illustrated here for k = 3. Operate al-
ternately with ∧ or ∨ on each level, using ∧ at the
root, obtaining for example ((x0 ∧x1)∨ (x2 ∧x3))∧
((x4∧x5)∨(x6∧x7)). How many prime implicants does the resulting function contain?

∧
∨ ∨

∧ ∧ ∧ ∧
x0 x1 x2 x3 x4 x5 x6 x7

25. [M21 ] How many prime implicants does (x1∨x2)∧(x2∨x3)∧· · ·∧(xn−1∨xn) have?
26. [M23 ] Let F and G be the families of index sets for the prime clauses and the
prime implicants of a monotone CNF and a monotone DNF:

f(x) =

I∈F


i∈I

xi ; g(x) =

J∈G


j∈J

xj .

Efficiently exhibit an x such that f(x) ̸= g(x) if any of the following conditions hold:
a) There is an I ∈ F and a J ∈ G with I ∩ J = ∅.
b)

I∈F I ̸=


J∈G J .

c) There’s an I ∈ F with |I| > |G|, or a J ∈ G with |J | > |F|.
d)

I∈F 2n−|I| +


J∈G 2n−|J| < 2n, where n = |I∈F I |.

27. [M31 ] Continuing the previous exercise, consider the following algorithm X(F ,G),
which either returns a vector x with f(x) ̸= g(x), or returns Λ if f = g:

From the Library of Melissa Nuno



ptg999

82 COMBINATORIAL SEARCHING 7.1.1

X1. [Check necessary conditions.] Return an appropriate value x if condition (a),
(b), (c), or (d) in exercise 26 applies.

X2. [Done?] If |F||G| ≤ 1, return Λ.
X3. [Recurse.] Compute the following reduced families, for a “best” index k:

F1 = {I | I ∈ F , k /∈ I},
G0 = {J | J ∈ G, k /∈ J},

F0 = F1 ∪ {I | k /∈ I, I ∪ {k} ∈ F};
G1 = G0 ∪ {J | k /∈ J, J ∪ {k} ∈ G}.

Delete any member of F0 or G1 that contains another member of the same fam-
ily. The index k should be chosen so that the ratio ρ = min(|F1|/|F|, |G0|/|G|)
is as small as possible. If X(F0,G0) returns a vector x, return the same vector
extended with xk = 0. Otherwise if X(F1,G1) returns a vector x, return the
same vector extended with xk = 1. Otherwise return Λ.

If N = |F|+ |G|, prove that step X1 is executed at most NO(logN)2
times. Hint: Show

that we always have ρ ≤ 1− 1/lgN in step X3.
28. [21 ] (W. V. Quine, 1952.) If f(x1, . . . , xn) is a Boolean function with prime
implicants p1, . . . , pq, let g(y1, . . . , yq) =


f(x)=1

{yj | pj(x) = 1}. For example, the
“random” function (22) is true at the eight points (28), and it has five prime implicants
given by (29) and (30); so g(y1, . . . , y5) is

(y1∨y2) ∧ (y1) ∧ (y2∨y3) ∧ (y4) ∧ (y3∨y5) ∧ (y5) ∧ (y5) ∧ (y4∨y5)
= (y1∧y2∧y4∧y5) ∨ (y1∧y3∧y4∧y5)

in this case. Prove that every shortest DNF expression for f corresponds to a prime
implicant of the monotone function g.
29. [22 ] (The next several exercises are devoted to algorithms that deal with the
implicants of Boolean functions by representing points of the n-cube as n-bit numbers
(bn−1 . . . b1b0)2, rather than as bit strings x1 . . . xn.) Given a bit position j, and given
n-bit values v0 < v1 < · · · < vm−1, explain how to find all pairs (k, k′) such that
0 ≤ k < k′ < m and vk′ = vk ⊕ 2j , in increasing order of k. The running time of your
procedure should be O(m), if bitwise operations on n-bit words take constant time.

x 30. [27 ] The text points out that an implicant of a Boolean function can be regarded
as a subcube such as 01∗0∗, contained in the set V of all points for which the function is
true. Every subcube can be represented as a pair of binary numbers a = (an−1 . . . a0)2
and b = (bn−1 . . . b0)2, where a records the positions of the asterisks and b records the
bits in non-∗ positions. For example, the numbers a = (00101)2 and b = (01000)2
represent the subcube c = 01∗0∗. We always have a& b = 0.

The “j-buddy” of a subcube is defined whenever aj = 0, by changing b to b⊕ 2j .
For example, 01∗0∗ has three buddies, namely its 4-buddy 11∗0∗, its 3-buddy 00∗0∗,
and its 1-buddy 01∗1∗. Every subcube c ⊆ V can be assigned a tag value (tn−1 . . . t0)2,
where tj = 1 if and only if the j-buddy of c is defined and contained in V . With this
definition, c represents a maximal subcube (hence a prime implicant) if and only if its
tag is zero.

Use these concepts to design an algorithm that finds all maximal subcubes (a, b)
of a given set V , where V is represented by the n-bit numbers v0 < v1 < · · · < vm−1.

x 31. [28 ] The algorithm in exercise 30 requires a complete list of all points where a
Boolean function is true, and that list may be quite long. Therefore we may prefer to
work directly with subcubes, never going down to the level of explicit n-tuples unless

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 83

necessary. The key to such higher-level methods is the notion of consensus between
subcubes c and c′, denoted by c⊔ c′ and defined to be the largest subcube c′′ such that

c′′ ⊆ c ∪ c′, c′′ ̸⊆ c, and c′′ ̸⊆ c′.

Such a c′′ does not always exist. For example, if c = 000∗ and c′ = ∗111, every subcube
contained in c ∪ c′ is contained either in c or in c′.

a) Prove that the consensus, when it exists, can be computed componentwise using
the following formulas in each coordinate position:

x ⊔ x = x ⊔ ∗ = ∗ ⊔ x = x and x ⊔ x̄ = ∗ ⊔ ∗ = ∗, for x = 0 and x = 1.

Furthermore, c⊔ c′ exists if and only if the rule x⊔ x̄ = ∗ has been used in exactly
one component.

b) A subcube with k asterisks is called a k-cube. Show that, if c is a k-cube and c′

is a k′-cube, and if the consensus c′′ = c ⊔ c′ exists, then c′′ is a k′′-cube where
1 ≤ k′′ ≤ min(k, k′) + 1.

c) If C and C′ are families of subcubes, let

C ⊔ C′ = { c ⊔ c′ | c ∈ C, c′ ∈ C′, and c ⊔ c′ exists}.

Explain why the following algorithm works.

Algorithm E (Find maximal subcubes). Given a family C of subcubes of the n-
cube, this algorithm outputs the maximal subcubes of V =


c∈C c, without actually

computing the set V itself.
E1. [Initialize.] Set j ← 0. Delete any subcube c of C that is contained in another.
E2. [Done?] (At this point, every j-cube ⊆ V is contained in some element

of C, and C contains no k-cubes with k < j.) If C is empty, the algorithm
terminates.

E3. [Take consensuses.] Set C′ ← C ⊔ C, and remove all subcubes from C′ that
are k-cubes for k ≤ j. While performing this computation, also output any
j-cube c ∈ C for which c ⊔ C does not produce a (j + 1)-cube of C′.

E4. [Advance.] Set C ← C∪C′, but delete all j-cubes from this union. Then delete
any subcube c ∈ C that is contained in another. Set j ← j+1 and go to E2.

(See exercise 7.1.3–142 for an efficient way to perform these computations.)
x 32. [M29 ] Let c1, . . . , cm be subcubes of the n-cube.

a) Prove that c1 ∪ · · · ∪ cm contains at most one maximal subcube c that is not
contained in c1 ∪ · · · ∪ cj−1 ∪ cj+1 ∪ · · · ∪ cm for any j ∈ {1, . . . ,m}. (If c exists, we
call it the generalized consensus of c1, . . . , cm, because c = c1 ⊔ c2 in the notation
of exercise 31 when m = 2.)

b) Find a set of m subcubes for which each of the 2m − 1 nonempty subsets of
{c1, . . . , cm} has a generalized consensus.

c) Prove that a DNF with m implicants has at most 2m − 1 prime implicants.
d) Find a DNF that has m implicants and 2m − 1 prime implicants.

33. [M21 ] Let f(x1, . . . , xn) be one of the
2n

m


Boolean functions that are true at

exactly m points. If f is chosen at random, what is the probability that x1 ∧ · · · ∧ xk
is (a) an implicant of f? (b) a prime implicant of f? [Give the answer to part (b) as a
sum; but evaluate it in closed form when k = n.]

From the Library of Melissa Nuno



ptg999

84 COMBINATORIAL SEARCHING 7.1.1

x 34. [HM37 ] Continuing exercise 33, let c(m,n) be the average total number of impli-
cants, and let p(m,n) be the average total number of prime implicants.

a) If 0 ≤ m ≤ 2n/n, show that m ≤ c(m,n) ≤ 3
2m + O(m/n) and p(m,n) ≥

me−1 +O(m/n); hence p(m,n) = Θ(c(m,n)) in this range.
b) Now let 2n/n ≤ m ≤ (1 − ϵ)2n, where ϵ is a fixed positive constant. Define the

numbers t and αmn by the relations

n−4/3 ≤

m

2n
2t

= αmn < n−2/3, integer t.

Express the asymptotic values of c(m,n) and p(m,n) in terms of n, t, and αmn.
[Hint: Show that almost all of the implicants have exactly n−t or n−t−1 literals.]

c) Estimate c(m,n)/p(m,n) when m = 2n−1 and n = ⌊(ln t− ln ln t)22t⌋, integer t.
d) Prove that c(m,n)/p(m,n) = O(log logn/ log log logn) when m ≤ (1− ϵ)2n.

x 35. [M25 ] A DNF is called orthogonal if its implicants correspond to disjoint sub-
cubes. Orthogonal disjunctive normal forms are particularly useful when the reliability
polynomial of exercise 13 is being calculated or estimated.

The full DNF of every function is obviously orthogonal, because its subcubes
are single points. But we can often find an orthogonal DNF that has significantly
fewer implicants, especially when the function is monotone. For example, the function
(x1∧x2) ∨ (x2∧x3) ∨ (x3∧x4) is true at eight points, and it has the orthogonal DNF

(x1∧x2) ∨ (x̄1∧x2∧x3) ∨ (x̄2∧x3∧x4).

In other words, the overlapping subcubes 11∗∗, ∗11∗, ∗∗11 can be replaced by the dis-
joint subcubes 11∗∗, 011∗, ∗011. Using the binary notation for subcubes in exercise 30,
these subcubes have asterisk codes 0011, 0001, 1000 and bit codes 1100, 0110, 0011.

Every monotone function can be defined by a list of bit codes B1, . . . , Bp, when
the asterisk codes are respectively B̄1, . . . , B̄p. Given such a list, let the “shadow” Sk
of Bk be the bitwise OR of Bj & B̄k, for all 1 ≤ j < k such that ν(Bj & B̄k) = 1:

Sk = β1k | · · · | β(k−1)k, βjk = ((Bj&B̄k)⊕ ((Bj&B̄k)− 1)) .− ((Bj&B̄k)− 1).

For example, when the bit codes are (B1, B2, B3) = (1100, 0110, 0011), we get the
shadow codes (S1, S2, S3) = (0000, 1000, 0100).

a) Show that the asterisk codes A′
j = B̄j −Sj and bit codes Bj define subcubes that

cover the same points as the subcubes with asterisk codes Aj = B̄j .
b) A list of bit codes B1, . . . , Bp is called a shelling if Bj & Sk is nonzero for all

1 ≤ j < k ≤ p. For example, (1100, 0110, 0011) is a shelling; but if we arrange
those bit codes in the order (1100, 0011, 0110) the shelling condition fails when
j = 1 and k = 2, although we do have S3 = 1001. Prove that the subcubes in
part (a) are disjoint if and only if the list of bit codes is a shelling.

c) According to Theorem Q, every prime implicant must appear among the B’s when
we represent a monotone Boolean function in this way. But sometimes we need
to add additional implicants if we want the subcubes to be disjoint. For example,
there is no shelling for the bit codes 1100 and 0011. Show that we can, however,
obtain a shelling for this function (x1∧x2)∨ (x3∧x4) by adding one more bit code.
What is the resulting orthogonal DNF?

d) Permute the bit codes {11000, 01100, 00110, 00011, 11010} to obtain a shelling.
e) Add two bit codes to the set {110000, 011000, 001100, 000110, 000011} in order to

make a shellable list.

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 85

36. [M21 ] Continuing exercise 35, let f be any monotone function, not identically 1.
Show that the set of bit vectors

B = {x | f(x) = 1 and f(x′) = 0 }, x′ = x& (x−1),

is always shellable when listed in decreasing lexicographic order. (The vector x′ is
obtained from x by zeroing out the rightmost 1.) For example, this method produces
an orthogonal DNF for (x1∧x2) ∨ (x3∧x4) from the list (1100, 1011, 0111, 0011).

x 37. [M31 ] Find a shellable DNF for (x1∧x2) ∨ (x3∧x4) ∨ · · · ∨ (x2n−1∧x2n) that has
2n − 1 implicants, and prove that no orthogonal DNF for this function has fewer.
38. [05 ] Is it hard to test the satisfiability of functions in disjunctive normal form?

x 39. [25 ] Let f(x1, . . . , xn) be a Boolean formula represented as an extended binary
tree with N > 0 internal nodes and N+1 leaves. Each leaf is labeled with a variable xk,
and each internal node is labeled with one of the sixteen binary operators in Table 1;
applying the operators from bottom to top yields f(x1, . . . , xn) as the value of the root.

Explain how to construct a formula F (x1, . . . , xn, y1, . . . , yN ) in 3CNF, having
exactly 4N + 1 clauses, such that f(x1, . . . , xn) = ∃y1 . . .∃yNF (x1, . . . , xn, y1, . . . , yN ).
(Thus f is satisfiable if and only if F is satisfiable.)
40. [23 ] Given an undirected graph G, construct the following clauses on the Boolean
variables {puv | u ̸= v} ∪ {quvw | u ̸= v, u ̸= w, v ̸= w, u /−−−w}, where u, v, and w
denote vertices of G:
A =


{(puv ∨ pvu) ∧ (p̄uv ∨ p̄vu) | u ̸= v};

B =

{(p̄uv ∨ p̄vw ∨ puw) | u ̸= v, u ̸= w, v ̸= w};

C =

{(q̄uvw∨puv) ∧ (q̄uvw∨pvw) ∧ (quvw∨p̄uv∨p̄vw) | u ̸= v, u ̸= w, v ̸= w, u /−−−w};

D =

{(v/∈{u,w}(quvw ∨ qwvu)) | u ̸= w, u /−−−w}.

Prove that the formula A∧B ∧C ∧D is satisfiable if and only if G has a Hamiltonian
path. Hint: Think of puv as the statement ‘u < v’.
41. [20 ] (The pigeonhole principle.) The island of San Serriffe contains m pigeons and
n holes. Find a conjunctive normal form that is satisfiable if and only if each pigeon
can be the sole occupant of at least one hole.
42. [20 ] Find a short, unsatisfiable CNF that is not totally trivial, although it consists
entirely of Horn clauses that are also Krom clauses.
43. [20 ] Is there an efficient way to decide satisfiability of a conjunctive normal form
that consists entirely of Horn clauses and/or Krom clauses (possibly mixed)?
44. [M23 ] Complete the proof of Theorem H by studying the implications of (33).
45. [M20 ] (a) Show that exactly half of the Horn functions of n variables are definite.
(b) Also show that there are more Horn functions of n variables than monotone
functions of n variables (unless n = 0).
46. [20 ] Which of the 11× 11 character pairs xy can occur next to each other in the
context-free grammar (34)?
47. [20 ] Given a sequence of relations j ≺ k with 1 ≤ j, k ≤ n as in Algorithm 2.2.3T
(topological sorting), consider the clauses

xj1 ∧ · · · ∧ xjt ⇒ xk for 1 ≤ k ≤ n,

where {j1, . . . , jt} is the set of elements such that ji ≺ k. Compare the behavior of
Algorithm C on these clauses to the behavior of Algorithm 2.2.3T.

From the Library of Melissa Nuno



ptg999

86 COMBINATORIAL SEARCHING 7.1.1

x 48. [21 ] What’s a good way to test a set of Horn clauses for satisfiability?
49. [22 ] Show that, if f(x1, . . . , xn) and g(x1, . . . , xn) are both defined by Horn clauses
in CNF, there is an easy way to test if f(x1, . . . , xn) ≤ g(x1, . . . , xn) for all x1, . . . , xn.
50. [HM42 ] There are (n+ 2)2n−1 possible Horn clauses on n variables. Select c · 2n
of them at random, with repetition permitted, where c > 0; and let Pn(c) be the
probability that all of the selected clauses are simultaneously satisfiable. Prove that

lim
n→∞

Pn(c) = 1− (1−e−c)(1−e−2c)(1−e−4c)(1−e−8c) . . . .

x 51. [22 ] A great many two-player games can be defined by specifying a directed graph
in which each vertex represents a game position. There are two players, Alice and Bob,
who construct an oriented path by starting at a particular vertex and taking turns to
extend the path, one arc at a time. Before the game starts, each vertex has either
been marked A (meaning that Alice wins), or marked B (meaning that Bob wins), or
marked C (meaning that the cat wins), or left unmarked.

When the path reaches a vertex v marked A or B, that player wins. The game
stops without a winner if v has been visited before, with the same player to move. If v
is marked C, the currently active player has the option of accepting a draw; otherwise
he or she must choose an outgoing arc to extend the path, and the other player becomes
active. (If v is an unmarked vertex with out-degree zero, the active player loses.)

Associating four propositional variables A+(v), A−(v), B+(v), and B−(v) with
every vertex v of the graph, explain how to construct a set of definite Horn clauses
such that A+(v) is in the core if and only if Alice can force a win when the path starts
at v and she moves first; A−(v) is in the core if and only if Bob can force her to lose in
that game; B+(v) and B−(v) are similar to A+(v) and A−(v), but with roles reversed.
52. [25 ] (Boolean games.) Any Boolean function f(x1, . . . , xn) leads to a game called
“two steps forward or one step back,” in the following way: There are two players,
0 and 1, who repeatedly assign values to the variables xj ; player y tries to make
f(x1, . . . , xn) equal to y. Initially all variables are unassigned, and the position marker
m is zero. Players take turns, and the currently active player either sets m ← m + 2
(if m+ 2 ≤ n) or m← m− 1 (if m− 1 ≥ 1), then sets

xm ← 0 or 1, if xm was not previously assigned;
xm ← x̄m, if xm was previously assigned.

The game is over as soon as a value has been assigned to all variables; then f(x1, . . . , xn)
is the winner. A draw is declared if the same state (including the value of m) is reached
twice. Notice that at most four moves are possible at any time.

Study examples of this game when 2 ≤ n ≤ 9, in the following four cases:
a) f(x1, . . . , xn) = [x1 . . . xn<xn . . . x1 ] (in lexicographic order);
b) f(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn;
c) f(x1, . . . , xn) = [x1 . . . xn contains no two consecutive 1s];
d) f(x1, . . . , xn) = [(x1 . . . xn)2 is prime].

53. [23 ] Show that the impossible comedy festival of (37) can be scheduled if a
change is made to the requirements of only (a) Tomlin; (b) Unwin; (c) Vegas; (d) Xie;
(e) Yankovic; (f) Zany.
54. [20 ] Let S = {u1, u2, . . . , uk} be the set of literals in some strong component of a
digraph that corresponds to a 2CNF formula as in Fig. 6. Show that S contains both
a variable and its complement if and only if uj = ū1 for some j with 2 ≤ j ≤ k.

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 87

x 55. [30 ] Call f(x1, . . . , xn) a renamed Horn function if there are Boolean constants
y1, . . . , yn such that f(x1 ⊕ y1, . . . , xn ⊕ yn) is a Horn function.

a) Given f(x1, . . . , xn) in CNF, explain how to construct g(y1, . . . , yn) in 2CNF so that
the clauses off(x1⊕y1, . . . , xn⊕yn) are Horn clauses if and only if g(y1, . . . , yn)=1.

b) Design an algorithm that decides in O(m) steps whether or not all clauses of a
given CNF of length m can be converted into Horn clauses by complementing some
subset of the variables.

x 56. [20 ] The satisfiability problem for a Boolean function f(x1, x2, . . . , xn) can be
stated formally as the question of whether or not the quantified formula

∃x1 ∃x2 . . . ∃xn f(x1, x2, . . . , xn)

is true; here ‘∃xj α’ means, “there exists a Boolean value xj such that α holds.”
A much more general evaluation problem arises when we replace one or more of

the existential quantifiers ∃xj by the universal quantifier ∀xj , where ‘∀xj α’ means,
“for all Boolean values xj , α holds.”

Which of the eight quantified formulas ∃x∃y ∃z f(x, y, z), ∃x∃y ∀z f(x, y, z), . . . ,
∀x∀y ∀z f(x, y, z) are true when f(x, y, z) = (x∨y) ∧ (x̄∨z) ∧ (y∨z̄)?

x 57. [30 ] (B. Aspvall, M. F. Plass, and R. E. Tarjan.) Continuing exercise 56, design
an algorithm that decides in linear time whether or not a given fully quantified formula
f(x1, . . . , xn) is true, when f is any formula in 2CNF (any conjunction of Krom clauses).

x 58. [37 ] Continuing exercise 57, design an efficient algorithm that decides whether or
not a given fully quantified conjunction of Horn clauses is true.

x 59. [M20 ] (D. Pehoushek and R. Fraer, 1997.) If the truth table for f(x1, x2, . . . , xn)
has a 1 in exactly k places, show that exactly k of the fully quantified formulas
x1 x2 . . . xn f(x1, x2, . . . , xn) are true, when each is either ∃ or ∀.

60. [12 ] Which of the following expressions yield the median ⟨xyz⟩, as defined in (43)?
(a) (x∧y)⊕ (y∧z)⊕ (x∧z). (b) (x∨y)⊕ (y∨z)⊕ (x∨z). (c) (x⊕y) ∧ (y⊕z) ∧ (x⊕z).
(d) (x≡y)⊕ (y≡z)⊕ (x≡z). (e) (x∧y) ∧ (y∧z) ∧ (x∧z). (f) (x∧y) ∨ (y∧z) ∨ (x∧z).
61. [13 ] True or false: If ◦ is any one of the Boolean binary operations in Table 1, we
have the distributive law w ◦ ⟨xyz⟩ = ⟨(w◦x)(w◦y)(w◦z)⟩.
62. [25 ] (C. Schensted.) If f(x1, . . . , xn) is a monotone Boolean function and n ≥ 3,
prove the median expansion formula

f(x1, . . . , xn) = ⟨f(x1, x1, x3, x4, . . . , xn)f(x1, x2, x2, x4, . . . , xn)f(x3, x2, x3, x4, . . . , xn)⟩.

63. [20 ] Equation (49) shows how to compute the median of five elements via medians
of three. Conversely, can we compute ⟨xyz⟩ with a subroutine for medians of five?
64. [23 ] (S. B. Akers, Jr.) (a) Prove that a Boolean function f(x1, . . . , xn) is mono-
tone and self-dual if and only if it satisfies the following condition:

For all x = x1 . . . xn and y = y1 . . . yn there exists k such that f(x) = xk and f(y) = yk.

(b) Suppose f is undefined for certain values, but the stated condition holds whenever
both f(x) and f(y) are defined. Show that there is a monotone self-dual Boolean
function g for which g(x) = f(x) whenever f(x) is defined.

x 65. [M21 ] Any subsetX of {1, 2, . . . , n} corresponds to a binary vector x = x1x2 . . . xn
via the rule xj = [j ∈X ]. And any family F of such subsets corresponds to a Boolean
function f(x) = f(x1, x2, . . . , xn) of n variables, via the rule f(x) = [X ∈F ]. Therefore

From the Library of Melissa Nuno



ptg999

88 COMBINATORIAL SEARCHING 7.1.1

every statement about families of subsets corresponds to a statement about Boolean
functions, and vice versa.

A family F is called intersecting if X∩Y ̸= ∅ whenever X,Y ∈ F . An intersecting
family that loses this property whenever we try to add another subset is said to be
maximal. Prove that F is a maximal intersecting family if and only if the corresponding
Boolean function f is monotone and self-dual.

x 66. [M25 ] A coterie of {1, . . . , n} is a family C of subsets called quorums, which have
the following properties whenever Q ∈ C and Q′ ∈ C: (i) Q ∩ Q′ ̸= ∅; (ii) Q ⊆ Q′

implies Q = Q′. Coterie C dominates coterie C′ if C ̸= C′ and if, for every Q′ ∈ C′,
there is a Q ∈ C with Q ⊆ Q′. For example, the coterie {{1, 2}, {2, 3}} is dominated
by {{1, 2}, {1, 3}, {2, 3}} and also by {{2}}. [Coteries were introduced in classic papers
by L. Lamport, CACM 21 (1978), 558–565; H. Garcia-Molina and D. Barbara, JACM
32 (1985), 841–860. They have numerous applications to distributed system protocols,
including mutual exclusion, data replication, and name servers. In these applications
C is preferred to any coterie that it dominates.]

Prove that C is a nondominated coterie if and only if its quorums are the index
sets of variables in the prime implicants of a monotone self-dual Boolean function
f(x1, . . . , xn). (Thus Table 2 illustrates the nondominated coteries on {1, 2, 3, 4}.)

x 67. [M30 ] (J. W. Milnor and C. Schensted.) A triangular grid of
order n, illustrated here for n = 3, contains (n+ 2)(n+ 1)/2 points
with nonnegative “barycentric coordinates” xyz, where x+y+z = n.
Two points are adjacent if they differ by ±1 in exactly two coordinate
positions. A point is said to lie on the x side if its x coordinate is
zero, on the y side if its y coordinate is zero, or on the z side if its z
coordinate is zero; thus each side contains n+1 points. If n > 0, a point lies on two dif-
ferent sides if and only if it occupies one of the three corner positions.

003

012

021

030

102

111

120

201

210 300

A “Y” is a connected set of points with at least one point on each side. Suppose
each vertex of a triangular grid is covered with a white stone or a black stone. For
example, the 52 black stones in

contain a (somewhat distorted) Y; but if any of them is changed from black to white,
there is a white Y instead. A moment’s thought makes it intuitively clear that, in any
placement, the black stones contain a Y if and only if the white stones do not.

We can represent the color of each stone by a Boolean variable, with 0 for white and
1 for black. Let Y (t) = 1 if and only if there’s a black Y, where t is a triangular grid com-
prising all the Boolean variables. This function Y is clearly monotone; and the intuitive
claim made in the preceding paragraph is equivalent to saying that Y is also self-dual.
The purpose of this exercise is to prove the claim rigorously, using median algebra.

Given a, b, c ≥ 0, let tabc be the triangular subgrid containing all points whose
coordinates xyz satisfy x ≥ a, y ≥ b, z ≥ c. For example, t001 denotes all points except
those on the z side (the bottom row). Notice that, if a + b + c = n, tabc is the single
point with coordinates abc; and in general, tabc is a triangular grid of order n−a−b−c.

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 89

a) If n > 0, let t∗ be the triangular grid of order n− 1 defined by the rule

t∗xyz = ⟨t(x+1)yztx(y+1)ztxy(z+1)⟩, for x+ y + z = n− 1.

Prove that Y (t) = Y (t∗). [In other words, t∗ condenses each small triangle of
stones by taking the median of their colors. Repeating this process defines a
pyramid of stones, with the top stone black if and only if there is a black Y at the
bottom. It’s fun to apply this condensation principle to the twisted Y above.]

b) Prove that, if n > 0, Y (t) = ⟨Y (t100)Y (t010)Y (t001)⟩.
68. [46 ] The just-barely-Y configuration shown in the previous exercise has 52 black
stones. What is the largest number of black stones possible in such a configuration?
(That is, how many variables can there be in a prime implicant of the function Y (t)?)

x 69. [M26 ] (C. Schensted.) Exercise 67 expresses the Y function in terms of medians.
Conversely, let f(x1, . . . , xn) be any monotone self-dual Boolean function with m + 1
prime implicants p0, p1, . . . , pm. Prove that f(x1, . . . , xn) = Y (T ), where T is any
triangular grid of order m − 1 in which Tabc is a variable common to pa and pa+b+1,
for a+ b+ c = m− 1. For example, when f(w, x, y, z) = ⟨xwywz⟩ we have m = 3 and

f(w, x, y, z) = (w ∧ x) ∨ (w ∧ y) ∨ (w ∧ z) ∨ (x ∧ y ∧ z) = Y
 w
w w
x y z


.

x 70. [M20 ] (A. Meyerowitz, 1989.) Given any monotone self-dual Boolean function
f(x) = f(x1, . . . , xn), choose any prime implicant xj1 ∧ · · · ∧ xjs and let

g(x) = (f(x) ∧ [x ̸= t ]) ∨ [x= t̄ ],

where t = t1 . . . tn is the bit vector that has 1s in positions {j1, . . . , js}. Prove that
g(x) is also monotone and self-dual. (Notice that g(x) is equal to f(x) except at the
two points t and t̄.)

x 71. [M21 ] Given the axioms (50), (51), and (52) of a median algebra, prove that the
long distributive law (54) is a consequence of the shorter law (53).
72. [M22 ] Derive (58), (59), and (60) from the median laws (50)–(53).
73. [M32 ] (S. P. Avann.) Given a median algebra M , whose intervals are defined
by (57) and whose corresponding median graph is defined by (61), let d(u, v) denote
the distance from u to v. Also let ‘[uxv]’ stand for the statement “x lies on a shortest
path from u to v.”

a) Prove that [uxv] holds if and only if d(u, v) = d(u, x) + d(x, v).
b) Suppose x ∈ [u . . v] and u ∈ [x . . y], where x ̸= u and y −−− v is an edge of the

graph. Show that x−−−u is also an edge.
c) If x ∈ [u . . v], prove [uxv], by induction on d(u, v).
d) Conversely, prove that [uxv] implies x ∈ [u . . v].

74. [M21 ] In a median algebra, show that w = ⟨xyz⟩ whenever we have w ∈ [x . . y],
w ∈ [x . . z], and w ∈ [y . . z] according to definition (57).

x 75. [M36 ] (M. Sholander, 1954.) Suppose M is a set of points with a betweenness
relation “x lies between u and v,” symbolized by [uxv], which satisfies the following
three axioms:

i) If [uvu] then u = v.
ii) If [uxv] and [xyu] then [vyu].

iii) Given x, y, and z, exactly one point w = ⟨xyz⟩ satisfies [xwy], [xwz], and [ywz].
The object of this exercise is to prove that M is a median algebra.

a) Prove the majority law ⟨xxy⟩ = x, Eq. (50).

From the Library of Melissa Nuno



ptg999

90 COMBINATORIAL SEARCHING 7.1.1

b) Prove the commutative law ⟨xyz⟩ = ⟨xzy⟩ = · · · = ⟨zyx⟩, Eq. (51).
c) Prove that [uxv] if and only if x = ⟨uxv⟩.
d) If [uxy] and [uyv], prove that [xyv].
e) If [uxv] and [uyz] and [vyz], prove that [xyz]. Hint: Construct the points w =
⟨yuv⟩, p = ⟨wux⟩, q = ⟨wvx⟩, r = ⟨pxz⟩, s = ⟨qxz⟩, and t = ⟨rsz⟩.

f) Finally, deduce the short distributive law, Eq. (53): ⟨⟨xyz⟩uv⟩ = ⟨x⟨yuv⟩⟨zuv⟩⟩.
76. [M33 ] Derive the betweenness axioms (i), (ii), and (iii) of exercise 75, starting
from the three median axioms (50), (51), and (52), letting [uxv] be an abbreviation for
“x = ⟨uxv⟩.” Do not use the distributive law (53). Hint: See exercise 74.
77. [M28 ] Let G be a median graph containing the edge r−−−s. For each edge u−−−v,
call u an early neighbor of v if and only if r is closer to u than to v. Partition the
vertices into “left” and “right” parts, where left vertices are closer to r than to s and
right vertices are closer to s than to r. Each right vertex v has a rank, which is the
shortest distance from v to a left vertex. Similarly, each left vertex u has rank 1 − d,
where d is the shortest distance from u to a right vertex. Thus u has rank zero if it is
adjacent to a right vertex, otherwise its rank is negative. Vertex r clearly has rank 0,
and s has rank 1.

a) Show that every vertex of rank 1 is adjacent to exactly one vertex of rank 0.
b) Show that the set of all right vertices is convex.
c) Show that the set of all vertices with rank 1 is convex.
d) Prove that steps I3–I9 of Subroutine I correctly mark all vertices of ranks 1 and 2.
e) Prove that Algorithm H is correct.

x 78. [M26 ] If the vertex v is examined k times in step I4 during the execution of
Algorithm H, prove that the graph has at least 2k vertices. Hint: There are k ways to
start a shortest path from v to a; thus at least k 1s appear in l(v).

x 79. [M27 ] (R. L. Graham.) An induced subgraph of a hypercube is a graph whose
vertices v can be labeled with bit strings l(v) in such a way that u−−−v if and only if
l(u) and l(v) differ in exactly one bit position. (Each label has the same length.)

a) One way to define an n-vertex subgraph of a hypercube is to let l(v) be the
binary representation of v, for 0 ≤ v < n. Show that this subgraph has exactly
f(n) =

n−1
k=0 ν(k) edges, where ν(k) is the sideways addition function.

b) Prove that f(n) ≤ n⌈lgn⌉/2.
c) Prove that no n-vertex subgraph of a hypercube has more than f(n) edges.

80. [27 ] A partial cube is an “isometric” subgraph of a hypercube, namely a subgraph
in which the distances between vertices are the same as they are in the full graph. The
vertices of a partial cube can therefore be labeled in such a way that the distance
from u to v is the “Hamming distance” between l(u) and l(v), namely ν(l(u) ⊕ l(v)).
Algorithm H shows that every median graph is a partial cube.

a) Find an induced subgraph of the 4-cube that isn’t a partial cube.
b) Give an example of a partial cube that isn’t a median graph.

81. [16 ] Is every median graph bipartite?
82. [25 ] (Incremental changes in service.) Given a sequence of vertices (v0, v1, . . . , vt)
in a graph G, consider the problem of finding another sequence (u0, u1, . . . , ut) for which
u0 = v0 and the sum

(d(u0, u1) + d(u1, u2) + · · ·+ d(ut−1, ut)) + (d(u1, v1) + d(u2, v2) + · · ·+ d(ut, vt))

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 91

is minimized, where d(u, v) denotes the distance from u to v. (Each vk can be regarded
as a request for a resource needed at that vertex; a server moves to uk as those requests
are handled in sequence.) Prove that ifG is a median graph, we get an optimum solution
by choosing uk = ⟨uk−1vkvk+1⟩ for 0 < k < t, and ut = vt.

x 83. [38 ] Generalizing exercise 82, find an efficient way to minimize

(d(u0, u1) + d(u1, u2) + · · ·+ d(ut−1, ut)) + ρ(d(u1, v1) + d(u2, v2) + · · ·+ d(ut, vt))
in a median graph, given any positive ratio ρ.
84. [30 ] Write a program to find all monotone self-dual Boolean functions of five
variables. What are the edges of the corresponding median graph? (Table 2 illustrates
the four-variable case.)

x 85. [M22 ] Theorem S tells us that every formula in 2CNF corresponds to a median
set; therefore every antisymmetric digraph such as Fig. 6 also corresponds to a median
set. Precisely which of those digraphs correspond to reduced median sets?
86. [15 ] If v, w, x, y, and z belong to a median set X, does their five-element median
⟨vwxyz⟩, computed componentwise, always belong to X?
87. [24 ] What CI-net does the proof of Theorem F construct for the free tree (63)?
88. [M21 ] We can use parallel computation to condense the network (74) into

by letting each module act at the earliest possible time. Prove that, although the
network constructed in the proof of Theorem F may contain Ω(t2) modules, it always
requires at most O(t log t) levels of delay.
89. [24 ] When the construction (73) appends a new cluster of modules to enforce
the condition u → v, for some literals u and v, prove that it preserves all previously
enforced conditions u′ → v′.

x 90. [21 ] Construct a CI-net with input bits x1 . . . xt and output bits y1 . . . yt, where
y1 = · · · = yt−1 = 0 and yt = x1 ⊕ · · · ⊕ xt. Try for only O(log t) levels of delay.
91. [46 ] Can a retraction mapping for the labels of every median graph of dimension t
be computed by a CI-net that has only O(log t) levels of delay? [This question is moti-
vated by the existence of asymptotically optimum networks for the analogous problem
of sorting; see M. Ajtai, J. Komlós, and E. Szemerédi, Combinatorica 3 (1983), 1–19.]
92. [46 ] Can a CI-net sort n Boolean inputs with fewer modules than a “pure” sorting
network that has no inverters?
93. [M20 ] Prove that every retract X of a graph G is an isometric subgraph of G.
(In other words, distances in X are the same as in G; see exercise 80.)
94. [M21 ] Prove that every retract X of a hypercube is a set of median labels, if we
suppress coordinates that are constant for all x ∈ X.
95. [M25 ] True or false: The set of all outputs produced by a comparator-inverter
network, when the inputs range over all possible bit strings, is always a median set.
96. [HM25 ] Instead of insisting that the constants w1, w2, . . . , wn, and t in (75) must
be integers, we could allow them to be arbitrary real numbers. Would that increase
the number of threshold functions?

From the Library of Melissa Nuno



ptg999

92 COMBINATORIAL SEARCHING 7.1.1

97. [10 ] What median/majority functions arise in (81) when n = 2, w1 = w2 = 1,
and t = −1, 0, 1, 2, 3, or 4?
98. [M23 ] Prove that any self-dual threshold function can be expressed in the form

f(x1, x2, . . . , xn) = [v1y1 + · · ·+ vnyn> 0],

where each yj is either xj or x̄j . For example, 2x1 +3x2 +5x3 +7x4 +11x5 +13x6 ≥ 21
if and only if 2x1 + 3x2 + 5x3 − 7x̄4 + 11x5 − 13x̄6 > 0.

x 99. [20 ] (J. E. Mezei, 1961.) Prove that

⟨⟨x1 . . . x2s−1⟩y1 . . . y2t−2⟩ = ⟨x1 . . . x2s−1y
s
1 . . . y

s
2t−2⟩.

100. [20 ] True or false: If f(x1, . . . , xn) is a threshold function, so are the functions
f(x1, . . . , xn) ∧ xn+1 and f(x1, . . . , xn) ∨ xn+1.
101. [M23 ] The Fibonacci threshold function Fn(x1, . . . , xn) is defined by the formula
⟨xF1

1 xF2
2 . . . xFn−1

n−1 xFn−2
n ⟩ when n ≥ 3; for example, F7(x1, . . . , x7) = ⟨x1x2x

2
3x

3
4x

5
5x

8
6x

5
7⟩.

a) What are the prime implicants of Fn(x1, . . . , xn)?
b) Find an orthogonal DNF for Fn(x1, . . . , xn) (see exercise 35).
c) Express Fn(x1, . . . , xn) in terms of the Y function (see exercises 67 and 69).

102. [M21 ] The self-dualization of a Boolean function is defined by the formulas

f̂(x0, x1, . . . , xn) = (x0∧f(x1, . . . , xn)) ∨ (x̄0∧f(x̄1, . . . , x̄n))

= (x̄0∨f(x1, . . . , xn)) ∧ (x0∨f(x̄1, . . . , x̄n)).

a) If f(x1, . . . , xn) is any Boolean function, prove that f̂ is self-dual.
b) Prove that f̂ is a threshold function if and only if f is a threshold function.

103. [HM25 ] Explain how to use linear programming to test whether or not a mono-
tone, self-dual Boolean function is a threshold function, given a list of its prime
implicants. Also, if it is a threshold function, explain how to minimize the size of
its representation as a majority function ⟨xw1

1 . . . xwn
n ⟩.

104. [25 ] Apply the method of exercise 103 to find the shortest representations of
the following threshold functions as majority functions: (a) ⟨x2

1x
3
2x

5
3x

7
4x

11
5 x

13
6 x

17
7 x

19
8 ⟩;

(b) [(x1x2x3x4)2 ≥ t], for 0 ≤ t ≤ 16 (17 cases); (c) ⟨x29
1 x

25
2 x

19
3 x

15
4 x

12
5 x

8
6x

8
7x

3
8x

3
9x10⟩.

105. [M25 ] Show that the Fibonacci threshold function in exercise 101 has no shorter
representation as a majority function than the one used to define it.

x 106. [M25 ] The median-of-three operation ⟨xȳz̄⟩ is true if and only if x ≥ y + z.
a) Generalizing, show that we can test the condition (x1x2 . . . xn)2 ≥(y1y2 . . .yn)2+z

by performing a median of 2n+1 − 1 Boolean variables.
b) Prove that no median of fewer than 2n+1 − 1 will suffice for this problem.

107. [17 ] Calculate N(f) and Σ(f) for the 16 functions in Table 1. (See Theorem T.)
108. [M21 ] Let g(x0, x1, . . . , xn) be a self-dual function; thus N(g) = 2n in the nota-
tion of Theorem T. Express N(f) and Σ(f) in terms of Σ(g), when f(x1, . . . , xn) is
(a) g(0, x1, . . . , xn); (b) g(1, x1, . . . , xn).
109. [M25 ] The binary string α = a1 . . . an is said to majorize the binary string
β = b1 . . . bn, written α ⪰ β or β ⪯ α, if a1 + · · ·+ ak ≥ b1 + · · ·+ bk for 0 ≤ k ≤ n.

a) Let ᾱ = ā1 . . . ān. Show that α ⪰ β if and only if β̄ ⪰ ᾱ.

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 93

Fig. 8. The binary majori-
zation lattice for strings of
length 5. (See exercise 109.)

00000

00001

00010

0001100100

00101

00110

00111

01000

01001

01010

0101101100

01101

01110

01111

10000

10001

10010

1001110100

10101

10110

10111

11000

11001

11010

1101111100

11101

11110

11111

b) Show that any two binary strings of length n have a greatest lower bound α∧ β,
which has the property that α ⪰ γ and β ⪰ γ if and only if α ∧ β ⪰ γ. Explain
how to compute α ∧ β, given α and β.

c) Similarly, explain how to compute a least upper bound α ∨ β, with the property
that γ ⪰ α and γ ⪰ β if and only if γ ⪰ α ∨ β.

d) True or false: α ∧ (β∨γ) = (α∧β) ∨ (α∧γ); α ∨ (β∧γ) = (α∨β) ∧ (α∨γ).
e) Say that α covers β if α ⪰ β and α ̸= β, and if α ⪰ γ ⪰ β implies that we

have either γ = α or γ = β. For example, Fig. 8 illustrates the covering relations
between binary strings of length 5. Find a simple way to describe the strings that
are covered by a given binary string.

f) Show that every path α = α0, α1, . . . , αr = 0 . . . 0 from a given string α to 0 . . . 0,
where αj−1 covers αj for 1 ≤ j ≤ r, has the same length r = r(α).

g) Let m(α) be the number of strings β with β ⪰ α. Prove that m(1α) = m(α) and
m(0α) = m(α) +m(α′), where α′ is α with its leftmost 1 (if any) changed to 0.

h) How many strings α of length n satisfy ᾱ ⪰ α?
110. [M23 ] A Boolean function is called regular if x ⪯ y implies that f(x) ≤ f(y)
for all vectors x and y, where ⪯ is the majorization relation in exercise 109. Prove or
disprove the following statements:

a) Every regular function is monotone.
b) If f is a threshold function (75) for which w1 ≥ w2 ≥ · · · ≥ wn, then f is regular.
c) If f is as in (b) and Σ(f) = (s1, . . . , sn), then s1 ≥ s2 ≥ · · · ≥ sn.
d) Suppose f is a pure majority function, namely a threshold function of the form

(86) with a = b = 0. Then s1 ≥ s2 ≥ · · · ≥ sn implies that w1 ≥ w2 ≥ · · · ≥ wn.
111. [M36 ] An optimum coterie for a system with working probabilities (p1, . . . , pn) is
a coterie that corresponds to a monotone self-dual function with maximum availability,
among all monotone self-dual functions with n variables. (See exercises 14 and 66.)

a) Prove that if 1 ≥ p1 ≥ · · · ≥ pn ≥ 1
2 , at least one self-dual function with maximum

availability is a regular function. Describe such a function.
b) Furthermore, it suffices to test the optimality of a regular self-dual function f at

points y of the binary majorization lattice for which f(y) = 1 but f(x) = 0 for
all x covered by y.

c) What coterie is optimum when some probabilities are < 1
2 ?

From the Library of Melissa Nuno



ptg999

94 COMBINATORIAL SEARCHING 7.1.1

x 112. [M37 ] (J. Håstad.) If f(x1, x2, . . . , xm) is a Boolean function, let M(f) be its
representation as a multilinear polynomial with integer coefficients (see exercise 12).
Arrange the terms in this polynomial by using Chase’s sequence α0 = 00 . . . 0, α1 =
10 . . . 0, . . . , α2m−1 = 11 . . . 1 to order the exponents; Chase’s sequence, obtained
by concatenating the sequences Am0, A(m−1)1, . . . , A0m of 7.2.1.3–(35), has the nice
property that αj is identical to αj+1 except for a slight change, either 0→ 1 or 01→ 10
or 001→ 100 or 10→ 01 or 100→ 001. For example, Chase’s sequence is

0000, 1000, 0010, 0001, 0100, 1100, 1010, 1001, 0011, 0101, 0110, 1110, 1101, 1011, 0111, 1111

when m = 4, corresponding to the respective terms 1, x1, x3, x4, x2, x1x2, . . . , x2x3x4,
x1x2x3x4; so the relevant representation of, say, ((x1 ⊕ x̄2) ∧ x3) ∨ (x1 ∧ x̄3 ∧ x4) is

x3 − x1x3 + x1x4 − x2x3 + 2x1x2x3 − x1x3x4

when the terms have been arranged in this order. Now let

F (f) = [the most significant coefficient of M(f) is positive ].

For example, the most significant (final) nonzero term of ((x1⊕ x̄2)∧x3)∨(x1∧ x̄3∧x4)
is −x1x3x4 in Chase’s ordering, so F (f) = 0 in this case.

a) Determine F (f) for each of the 16 functions in Table 1.
b) Show that F (f) is a threshold function of the n = 2m entries {f0...00, f0...01, . . . ,

f1...11} of the truth table for f. Write this function out explicitly when m = 2.
c) Prove that, when m is large, all the weights in any threshold representation of F

must be huge: Their absolute values must all exceed

3(m3 ) 7(m4 )15(m5 )
. . . (2m−1−1)(

m
m)

n
(1−O(n−1)) = 2mn/2−n−2(3/2)m/ln 2+O((5/4)m).

Hint: Consider discrete Fourier transforms of the truth table entries.
113. [24 ] Show that the following three threshold operations suffice to evaluate the
function S2,3,6,8,9(x1, . . . , x12) in (91):

g1(x1, . . . , x12) = [νx≥ 6] = ⟨1x1 . . . x12⟩;
g2(x1, . . . , x12) = [νx− 6g1≥ 2] = ⟨13x1 . . . x12ḡ

6
1⟩;

g3(x1, . . . , x12) = [−2νx+ 13g1 + 7g2≥ 1] = ⟨05x̄2
1 . . . x̄

2
12g

13
1 g7

2⟩.

Also find a four-threshold scheme that evaluates S1,3,5,8(x1, . . . , x12).
114. [20 ] (D. A. Huffman.) What is the function S3,6(x, x, x, x, y, y, z)?
115. [M22 ] Explain why (92) correctly computes the parity function x0⊕x1⊕· · ·⊕x2m.

x 116. [HM28 ] (B. Dunham and R. Fridshal, 1957.) By considering symmetric functions,
one can prove that Boolean functions of n variables might have many prime implicants.

a) Suppose 0 ≤ j ≤ k ≤ n. For which symmetric functions f(x1, . . . , xn) is the term
x1 ∧ · · · ∧ xj ∧ x̄j+1 ∧ · · · ∧ x̄k a prime implicant?

b) How many prime implicants does the function S3,4,5,6(x1, . . . , x9) have?
c) Let b̂(n) be the maximum number of prime implicants, over all symmetric Boolean

functions of n variables. Find a recurrence formula for b̂(n), and compute b̂(9).
d) Prove that b̂(n) = Θ(3n/n).
e) Show that, furthermore, there are symmetric functions f(x1, . . . , xn) for which

both f and f̄ have Θ(23n/2/n) prime implicants.

From the Library of Melissa Nuno



ptg999

7.1.1 BOOLEAN BASICS 95

117. [M26 ] A disjunctive normal form is called irredundant if none of its implicants
implies another. Let b∗(n) be the maximum number of implicants in an irredundant
DNF, over all Boolean functions of n variables. Find a simple formula for b∗(n), and
determine its asymptotic value.
118. [29 ] How many Boolean functions f(x1, x2, x3, x4) have exactly m prime impli-
cants, for m = 0, 1, . . . ?
119. [M48 ] Continuing the previous exercises, let b(n) be the maximum number of
prime implicants in a Boolean function of n variables. Clearly b̂(n) ≤ b(n) < b∗(n);
what is the asymptotic value of b(n)?
120. [23 ] What is the shortest DNF for the symmetric functions (a) x1⊕x2⊕· · ·⊕xn?
(b) S0,1,3,4,6,7(x1, . . . , x7)? (c) Prove that every Boolean function of n variables can be
expressed as a DNF with at most 2n−1 prime implicants.

x 121. [M23 ] The function ⟨1(x1⊕x2)y1y2y3⟩ is partially symmetric, since it is symmet-
ric in {x1, x2} and in {y1, y2, y3}, but not in all five variables {x1, x2, y1, y2, y3}.

a) Exactly how many Boolean functions f(x1, . . . , xm, y1, . . . , yn) are symmetric in
{x1, . . . , xm} and {y1, . . . , yn}?

b) How many of those functions are monotone?
c) How many of those functions are self-dual?
d) How many of those functions are monotone and self-dual?

122. [M25 ] Continuing exercises 110 and 121, find all Boolean functions f(x1, x2, x3,
y1, y2, y3, y4, y5, y6) that are simultaneously symmetric in {x1, x2, x3}, symmetric in
{y1, y2, . . . , y6}, self-dual, and regular. Which of them are threshold functions?
123. [46 ] Determine the exact number of self-dual Boolean functions of ten variables
that are threshold functions.
124. [20 ] Find a Boolean function of four variables that is equivalent to 767 other
functions, under the ground rules of Table 5.
125. [18 ] Which of the function classes in (95) are canalizing?
126. [23 ] (a) Show that a Boolean function is canalizing if and only if its sets of prime
implicants and prime clauses have a certain simple property. (b) Show that a Boolean
function is canalizing if and only if its Chow parameters N(f) and Σ(f) have a certain
simple property (see Theorem T). (c) Define the Boolean vectors

∨(f) =

{x | f(x) = 1} and ∧(f) =


{x | f(x) = 1};

by analogy with the integer vector Σ(f). Show that it’s possible to decide whether or
not f is canalizing, given only the four vectors ∨(f), ∨(f̄), ∧(f), and ∧(f̄).
127. [M25 ] Which canalizing functions are (a) self-dual? (b) definite Horn functions?

x 128. [20 ] Find a noncanalizing f(x1, . . . , xn) that is true at exactly two points.
129. [M25 ] How many different canalizing functions of n variables exist?
130. [M21 ] According to Table 3, there are 168 monotone Boolean functions of four
variables. But some of them, like x ∧ y, depend on only three variables or fewer.

a) How many 4-variable monotone Boolean functions actually involve each variable?
b) How many of those functions are distinct under permutation, as in Table 4?

131. [HM42 ] Table 3 makes it clear that there are many more Horn functions than
Krom functions. What is the asymptotic number, as n→∞?

From the Library of Melissa Nuno



ptg999

96 COMBINATORIAL SEARCHING 7.1.1

x 132. [HM30 ] The Boolean function g(x) = g(x1, . . . , xn) is called affine if it can be
written in the form y0⊕ (x1∧y1)⊕· · ·⊕ (xn∧yn) = (y0 +x ·y) mod 2 for some Boolean
constants y0, y1, . . . , yn.

a) Given any Boolean function f(x), show that some affine function agrees with f(x)
at 2n−1 + 2n/2−1 or more points x. Hint: Let s(y) =


x(−1)f(x)+x·y, and prove

that

y s(y)s(y ⊕ z) = 22n[z= 0 . . . 0] for all n-bit vectors z.

b) The Boolean function f(x) is called bent if no affine function agrees with it at
more than 2n−1 + 2n/2−1 points. Prove that

(x1 ∧ x2)⊕ (x3 ∧ x4)⊕ · · · ⊕ (xn−1 ∧ xn)⊕ h(x2, x4, . . . , xn)

is a bent function, when n is even and h(y1, y2, . . . , yn/2) is arbitrary.
c) Prove that f(x) is a bent function if and only if

x

(f(x)⊕ f(x⊕ y)) = 2n−1 for all y ̸= 0 . . . 0.

d) If a bent function f(x1, . . . , xn) is represented by a multilinear polynomial mod 2
as in (19), show that it never contains the term x1 . . . xr when r > n/2 > 1.

x 133. [20 ] (Mark A. Smith, 1990.) Suppose we flip n independent coins to get n
random bits, where the kth coin produces bit 1 with probability pk. Find a way to
choose (p1, . . . , pn) so that f(x1, . . . , xn) = 1 with probability (t0t1 . . . t2n−1)2/(22n−1),
where t0t1 . . . t2n−1 is the truth table of the Boolean function f. (Thus, n suitable
random coins can generate a probability with 2n-bit precision.)

By and large the minimization of switching components
outweighs all other engineering considerations

in designing economical logic circuits.
— H. A. CURTIS, A New Approach to the Design of Switching Circuits (1962)

He must be a great calculator indeed who succeeds.
Simplify, simplify.

— HENRY D. THOREAU, Walden; or, Life in the Woods (1854)

7.1.2. Boolean Evaluation
Our next goal is to study the efficient evaluation of Boolean functions, much as
we studied the evaluation of polynomials in Section 4.6.4. One natural way to
investigate this topic is to consider chains of basic operations, analogous to the
polynomial chains discussed in that section.

A Boolean chain, for functions of n variables (x1, . . . , xn), is a sequence
(xn+1, . . . , xn+r) with the property that each step combines two of the preceding
steps:

xi = xj(i) ◦i xk(i), for n+ 1 ≤ i ≤ n+ r, (1)
where 1 ≤ j(i) < i and 1 ≤ k(i) < i, and where ◦i is one of the sixteen binary
operators of Table 7.1.1–1. For example, when n = 3 the two chains

x4 = x1 ∧ x2
x5 = x̄1 ∧ x3
x6 = x4 ∨ x5

and
x4 = x2 ⊕ x3
x5 = x1 ∧ x4
x6 = x3 ⊕ x5

(2)

both evaluate the “mux” or “if-then-else” function x6 = (x1? x2: x3), which
takes the value x2 or x3 depending on whether x1 is 1 (true) or 0 (false).

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 97

(Notice that the left-hand example in (2) uses the simplified notation ‘x5 =
x̄1 ∧ x3’ to specify the NOTBUT operation, instead of the form ‘x5 = x1 ⊂ x3’
that appears in Table 7.1.1–1. The main point is that, regardless of notation,
every step of a Boolean chain is a Boolean combination of two prior results.)

Boolean chains correspond naturally to electronic circuits, with each step
in the chain corresponding to a “gate” that has two inputs and one output.
Electrical engineers traditionally represent the Boolean chains of (2) by circuit
diagrams such as

1

2

3

and
1

2

3

. (3)

They need to design economical circuits that are subject to various technological
constraints; for example, some gates might be more expensive than others, some
outputs might need to be amplified if reused, the layout might need to be planar
or nearly so, some paths might need to be short. But our chief concern in this
book is software, not hardware, so we don’t have to worry about such things.
For our purposes, all gates have equal cost, and all outputs can be reused as
often as desired. (Jargonwise, our Boolean chains boil down to circuits in which
all gates have fanin 2 and unlimited fanout.)

Furthermore we shall depict Boolean chains as binary trees such as

∨
∧ ∨

1 2 1 3

and

+

∧
+

3

1

2 3

(4)

instead of using circuit diagrams like (3). Such binary trees will have overlapping
subtrees when intermediate steps of the chain are used more than once. Every
internal node is labeled with a binary operator; external nodes are labeled with
an integer k, representing the variable xk. The label ‘ ∨ ’ in the left tree of (4)
stands for the NOTBUT operator, since x̄ ∧ y = [x<y ]; similarly, the BUTNOT
operator, x ∧ ȳ, can be represented by the node label ‘ ∨ ’.

Several different Boolean chains might have the same tree diagram. For
example, the left-hand tree of (4) also represents the chain

x4 = x̄1 ∧ x3, x5 = x1 ∧ x2, x6 = x5 ∨ x4.

Any topological sorting of the tree nodes yields an equivalent chain.
Given a Boolean function f of n variables, we often want to find a Boolean

chain such that xn+r = f(x1, . . . , xn), where r is as small as possible. The
combinational complexity C(f) of a function f is the length of the shortest chain
that computes it. To save excess verbiage, we will simply call C(f) the “cost
of f .” The mux function in our examples above has cost 3, because one can show
by exhaustive trials that it can’t be produced by any Boolean chain of length 2.

The DNF and CNF representations of f , which we studied in Section 7.1.1,
rarely tell us much about C(f), since substantially more efficient schemes of

From the Library of Melissa Nuno



ptg999

98 COMBINATORIAL SEARCHING 7.1.2

calculation are usually possible. For example, in the discussion following 7.1.1–
(30) we found that the more-or-less random function of four variables whose
truth table is 1100 1001 0000 1111 has no DNF expression shorter than

(x̄1 ∧ x̄2 ∧ x̄3) ∨ (x̄1 ∧ x̄3 ∧ x̄4) ∨ (x2 ∧ x3 ∧ x4) ∨ (x1 ∧ x2). (5)

This formula corresponds to a Boolean chain of 10 steps. But that function can
also be expressed more cleverly as

((x2 ∧ x̄4)⊕ x̄3) ∧ x̄1

⊕ x2, (6)

so its complexity is at most 4.
How can nonobvious formulas like (6) be discovered? We will see that a

computer can find the best chains for functions of four variables without doing an
enormous amount of work. Still, the results can be quite startling, even for people
who have had considerable experience with Boolean algebra. Typical examples
of this phenomenon can be seen in Fig. 9, which illustrates the four-variable
functions that are perhaps of greatest general interest, namely the functions
that are symmetric under all permutations of their variables.

Consider, for example, the function S2(x1, x2, x3, x4), for which we have
x1 0000 0000 1111 1111
x2 0000 1111 0000 1111
x3 0011 0011 0011 0011
x4 0101 0101 0101 0101
x5 = x1 ⊕ x3 0011 0011 1100 1100
x6 = x1 ⊕ x2 0000 1111 1111 0000
x7 = x3 ⊕ x4 0110 0110 0110 0110
x8 = x5 ∨ x6 0011 1111 1111 1100
x9 = x6 ⊕ x7 0110 1001 1001 0110
x10 = x8 ∧ x̄9 0001 0110 0110 1000

(7)

according to Fig. 9. Truth tables are shown here so that we can easily verify
each step of the calculation. Step x8 yields a function that is true whenever
x1 ̸= x2 or x1 ̸= x3; and x9 = x1⊕x2⊕x3⊕x4 is the parity function (x1 +x2 +
x3 +x4) mod 2. Therefore the final result, x10, is true precisely when exactly two
of {x1, x2, x3, x4} are 1; these are the cases that satisfy x8 and have even parity.

Several of the other computational schemes of Fig. 9 can also be justified
intuitively. But some of the chains, like the one for S1,4 , are quite amazing.

Notice that the intermediate result x6 is used twice in (7). In fact, no six-
step chain for the function S2(x1, x2, x3, x4) is possible without making double
use of some intermediate subexpression; the shortest algebraic formulas for S2,
including nice symmetrical ones like

(x1 ∧ x2) ∨ (x3 ∧ x4)

⊕

(x1 ∨ x2) ∧ (x3 ∨ x4)


, (8)

all have cost 7. But Fig. 9 shows that the other symmetric functions of four vari-
ables can all be evaluated optimally via “pure” binary trees, without overlapping
subtrees except at external nodes (which represent the variables).

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 99

∧
∧ ∧

1 2 3 4

S4 = +

∧ ∧
∧ ∨ ∨ ∧

1 2 3 4 1 2 3 4

S3 = ∧
∨ ∧

∧ ∧ ∨ ∨

1 2 3 4 1 2 3 4

S3,4 =
∨

∨ +

+ + +

1 3 1 2 3 4

S2 = ∨
∨ +

∨ + +3

1 2 1 2 3 4

S2,4 = +

∨ ∨
+ +

+

1 2

3 3 4

1 2

S2,3 = ∨
∨ ∧

∧ ∧ ∨ ∨

1 2 3 4 1 2 3 4

S2,3,4 =

+

∨ ∨
∨ ∧ ∧ ∨

1 2 3 4 1 2 3 4

S1 = +

∧ ∨
∨ ∨ + +

1 2 3 4 1 2 3 4

S1,4 = +

+ +

1 2 3 4

S1,3 = ∨
∧ +

∧ + +3

1 2 1 2 3 4

S1,3,4 =

+

∨ ∧
+ +

+

1 2

3 3 4

1 2

S1,2 = +

∨ ∨
∧ ∧ + +

1 2 3 4 1 2 3 4

S1,2,4 = ∨
∨ +

+ +

1 2 3 4

1 3

S1,2,3 = ∨
∨ ∨

1 2 3 4

S1,2,3,4 =

Fig. 9. Optimum Boolean chains for the symmetric functions of four variables.

In general, if f(x1, . . . , xn) is any Boolean function, we say that its length
L(f) is the number of binary operators in the shortest formula for f . Obviously
L(f) ≥ C(f); and we can easily verify that L(f) = C(f) whenever n ≤ 3, by
considering the fourteen basic types of 3-variable functions in 7.1.1–(95). But we
have just seen that L(S2) = 7 exceeds C(S2) = 6 when n = 4, and in fact L(f)
is almost always substantially larger than C(f) when n is large (see exercise 49).

The depth D(f) of a Boolean function f is another important measure of its
inherent complexity: We say that the depth of a Boolean chain is the length of the
longest downward path in its tree diagram, and D(f) is the minimum achievable
depth when all Boolean chains for f are considered. All of the chains illustrated
in Fig. 9 have not only the minimum cost but also the minimum depth — except
in the cases S2,3 and S1,2, where we cannot simultaneously achieve cost 6 and
depth 3. The formula

S2,3(x1, x2, x3, x4) =

(x1 ∧ x2)⊕ (x3 ∧ x4)


∨

(x1 ∨ x2) ∧ (x3 ⊕ x4)


(9)

shows that D(S2,3) = 3, and a similar formula works for S1,2.

Optimum chains for n = 4. Exhaustive computations for 4-variable functions
are feasible because such functions have only 216 = 65,536 possible truth tables.
In fact we need only consider half of those truth tables, because the complement f̄
of any function f has the same cost, length, and depth as f itself.

From the Library of Melissa Nuno



ptg999

100 COMBINATORIAL SEARCHING 7.1.2

Let’s say that f(x1, . . . , xn) is normal if f(0, . . . , 0) = 0, and in general that

f(x1, . . . , xn) ⊕ f(0, . . . , 0) (10)

is the “normalization” of f . Any Boolean chain can be normalized by normalizing
each of its steps and by making appropriate changes to the operators; for if
(x̂1, . . . , x̂i−1) are the normalizations of (x1, . . . , xi−1) and if xi = xj(i) ◦i xk(i) as
in (1), then x̂i is clearly a binary function of x̂j(i) and x̂k(i). (Exercise 7 presents
an example.) Therefore we can restrict consideration to normal Boolean chains,
without loss of generality.

Notice that a Boolean chain is normal if and only if each of its binary
operators ◦i is normal. And there are only eight normal binary operators —
three of which, namely ⊥, , and , are trivial. So we can assume that all
Boolean chains of interest are formed from the five operators ∧, ⊂, ⊃, ∨, and ⊕,
which are denoted respectively by ∧ , ∨ , ∨ , ∨ , and + in Fig. 9. Furthermore
we can assume that j(i) < k(i) in each step.

There are 215 = 32,768 normal functions of four variables, and we can com-
pute their lengths without difficulty by systematically enumerating all functions
of length 0, 1, 2, etc. Indeed, L(f) = r implies that f = g ◦ h for some g and h,
where L(g) + L(h) = r − 1 and ◦ is one of the five nontrivial normal operators;
so we can proceed as follows:

Algorithm L (Find normal lengths). This algorithm determines L(f) for all
normal truth tables 0 ≤ f < 22n−1, by building lists of all nonzero normal
functions of length r for r ≥ 0.
L1. [Initialize.] Let L(0) ← 0 and L(f) ← ∞ for 1 ≤ f < 22n−1. Then, for

1 ≤ k ≤ n, set L(xk)← 0 and put xk into list 0, where

xk = (22n

− 1)/(22n−k

+ 1) (11)

is the truth table for xk. (See exercise 8.) Finally, set c ← 22n−1 − n − 1;
c is the number of places where L(f) =∞.

L2. [Loop on r.] Do step L3 for r = 1, 2, . . . ; eventually the algorithm will
terminate when c becomes 0.

L3. [Loop on j and k.] Do step L4 for j = 0, 1, . . . , and k = r − 1 − j, while
j ≤ k.

L4. [Loop on g and h.] Do step L5 for all g in list j and all h in list k. (If j = k,
it suffices to restrict h to functions that follow g in list k.)

L5. [Loop on f .] Do step L6 for f = g & h, f = ḡ & h, f = g & h̄, f = g | h, and
f = g⊕ h. (Here g & h denotes the bitwise AND of the integers g and h; we
are representing truth tables by integers in binary notation.)

L6. [Is f new?] If L(f) = ∞, set L(f) ← r, c ← c − 1, and put f in list r.
Terminate the algorithm if c = 0.

Exercise 10 shows that a similar procedure will compute all depths D(f).
With a little more work, we can in fact modify Algorithm L so that it finds

better upper bounds on C(f), by computing a heuristic bit vector ϕ(f) called

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 101

Table 1
THE NUMBER OF FOUR-VARIABLE FUNCTIONS WITH GIVEN COMPLEXITY

C(f) Classes Functions L(f) Classes Functions D(f) Classes Functions
0 2 10 0 2 10 0 2 10
1 2 60 1 2 60 1 2 60
2 5 456 2 5 456 2 17 1458
3 20 2474 3 20 2474 3 179 56456
4 34 10624 4 34 10624 4 22 7552
5 75 24184 5 75 24184 5 0 0
6 72 25008 6 68 24640 6 0 0
7 12 2720 7 16 3088 7 0 0

the “footprint” of f . A normal Boolean chain can begin in only 5

n
2


different
ways, since the first step xn+1 must be either x1 ∧ x2 or x̄1 ∧ x2 or x1 ∧ x̄2 or
x1 ∨x2 or x1⊕x2 or x1 ∧x3 or · · · or xn−1⊕xn. Suppose ϕ(f) is a bit vector of
length 5


n
2


and U(f) is an upper bound on C(f), with the following property:
Every 1 bit in ϕ(f) corresponds to the first step of some Boolean chain that
computes f in U(f) steps.

Such pairs (U(f), ϕ(f)) can be computed by extending the basic strategy of
Algorithm L. Initially we set U(f)← 1 and we set ϕ(f) to an appropriate vector
0 . . . 010 . . . 0, for all functions f of cost 1. Then, for r = 2, 3, . . . , we proceed to
look for functions f = g ◦ h where U(g) + U(h) = r − 1, as before, but with two
changes: (1) If the footprints of g and h have at least one element in common,
namely if ϕ(g) & ϕ(h) ̸= 0, then we know that C(f) ≤ r − 1, so we can decrease
U(f) if it was ≥ r. (2) If the cost of g ◦ h is equal to (but not less than) our
current upper bound U(f), we can set ϕ(f) ← ϕ(f) | (ϕ(g) | ϕ(h)) if U(f) = r,
ϕ(f)← ϕ(f) | (ϕ(g) & ϕ(h)) if U(f) = r − 1. Exercise 11 works out the details.

It turns out that this footprint heuristic is powerful enough to find chains of
optimum cost U(f) = C(f) for all functions f , when n = 4. Moreover, we’ll see
later that footprints also help us solve more complicated evaluation problems.

According to Table 7.1.1–5, the 216 = 65,536 functions of four variables
belong to only 222 distinct classes when we ignore minor differences due to
permutation of variables and/or complementation of values. Algorithm L and
its variants lead to the overall statistics shown in Table 1.

*Evaluation with minimum memory. Suppose the Boolean values x1, . . . , xn
appear in n registers, and we want to evaluate a function by performing a
sequence of operations having the form

xj(i) ← xj(i) ◦i xk(i), for 1 ≤ i ≤ r, (12)

where 1 ≤ j(i) ≤ n and 1 ≤ k(i) ≤ n and ◦i is a binary operator. At the end of
the computation, the desired function value should appear in one of the registers.
When n = 3, for example, the four-step sequence

(x1 = 00001111 x2 = 00110011 x3 = 01010101)
x1 ← x1 ⊕ x2 (x1 = 00111100 x2 = 00110011 x3 = 01010101)
x3 ← x3 ∧ x1 (x1 = 00111100 x2 = 00110011 x3 = 00010100)
x2 ← x2 ∧ x̄1 (x1 = 00111100 x2 = 00000011 x3 = 00010100)
x3 ← x3 ∨ x2 (x1 = 00111100 x2 = 00000011 x3 = 00010111)

(13)

From the Library of Melissa Nuno



ptg999

102 COMBINATORIAL SEARCHING 7.1.2

computes the median ⟨x1x2x3⟩ and puts it into the original position of x3. (All
eight possibilities for the register contents are shown here as truth tables, before
and after each operation.)

In fact we can check the calculation by working with only one truth table at a
time, instead of keeping track of all three, if we analyze the situation backwards.
Let fl(x1, . . . , xn) denote the function computed by steps l, l + 1, . . . , r of the
sequence, omitting the first l−1 steps; thus, in our example, f2(x1, x2, x3) would
be the result in x3 after the three steps x3 ← x3∧x1, x2 ← x2∧ x̄1, x3 ← x3∨x2.
Then the function computed in register x3 by all four steps is

f1(x1, x2, x3) = f2(x1 ⊕ x2, x2, x3). (14)

Similarly f2(x1, x2, x3) = f3(x1, x2, x3 ∧ x1), f3(x1, x2, x3) = f4(x1, x2 ∧ x̄1, x3),
f4(x1, x2, x3) = f5(x1, x2, x3 ∨ x2), and f5(x1, x2, x3) = x3. We can therefore go
back from f5 to f4 to · · · to f1 by operating on truth tables in an appropriate way.

For example, suppose f(x1, x2, x3) is a function whose truth table is

t = a0a1a2a3a4a5a6a7 ;

then the truth table for g(x1, x2, x3) = f(x1 ⊕ x2, x2, x3) is

u = a0a1a6a7a4a5a2a3 ,

obtained by replacing ax by ax′ , where

x = (x1x2x3)2 implies x′ = ((x1⊕x2)x2x3)2.

Similarly the truth table for, say, h(x1, x2, x3) = f(x1, x2, x3 ∧ x1) is

v = a0a0a2a2a4a5a6a7 .

And we can use bitwise operations to compute u and v from t (see 7.1.3–(83)):

u = t⊕

(t⊕ (t≫ 4)⊕ (t≪ 4)) & (00110011)2


; (15)

v = t⊕

(t⊕ (t≫ 1)) & (01010000)2


. (16)

Let Cm(f) be the length of a shortest minimum-memory computation for f .
The backward-computation principle tells us that, if we know the truth tables
of all functions f with Cm(f) < r, we can readily find all the truth tables of
functions with Cm(f) = r. Namely, we can restrict consideration to normal
functions as before. Then, for all normal g such that Cm(g) = r − 1, we can
construct the 5n(n− 1) truth tables for

g(x1, . . . , xj−1, xj ◦ xk, xj+1, . . . , xn) (17)

and mark them with cost r if they haven’t previously been marked. Exercise 14
shows that those truth tables can all be computed by performing simple bitwise
operations on the truth table for g.

When n = 4, all but 13 of the 222 basic function types turn out to have
Cm(f) = C(f), so they can be evaluated in minimum memory without increasing
the cost. In particular, all of the symmetric functions have this property —
although that fact is not at all obvious from Fig. 9. Five classes of functions

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 103

have C(f) = 5 but Cm(f) = 6; eight classes have C(f) = 6 but Cm(f) = 7. The
most interesting example of the latter type is probably the function (x1 ∨ x2)⊕
(x3 ∨ x4)⊕ (x1 ∧ x2 ∧ x3 ∧ x4), which has cost 6 because of the formula

x1 ⊕ (x3 ∨ x4)⊕

x2 ∧ (x̄1 ∨ (x3 ∧ x4))


, (18)

but it has no minimum-memory chain of length less than 7. (See exercise 15.)

*Determining the minimum cost. The exact value of C(f) can be found
by observing that all optimum Boolean chains (xn+1, . . . , xn+r) for f obviously
satisfy at least one of three conditions:

i) xn+r = xj ◦ xk, where xj and xk use no common intermediate results;
ii) xn+1 = xj ◦ xk, where either xj or xk is not used in steps xn+2, . . . , xn+r;
iii) Neither of the above, even when the intermediate steps are renumbered.
In case (i) we have f = g ◦ h, where C(g) + C(h) = r − 1, and we can call this
a “top-down” construction. In case (ii) we have f(x1, . . . , xn) = g(x1, . . . , xj−1,
xj ◦xk, xj+1, . . . , xn), where C(g) = r−1; we call this construction “bottom-up.”

The best chains that recursively use only top-down constructions correspond
to minimum formula length, L(f). The best chains that recursively use only
bottom-up constructions correspond to minimum-memory calculations, of length
Cm(f). We can do better yet, by mixing top-down constructions with bottom-up
constructions; but we still won’t know that we’ve found C(f), because a special
chain belonging to case (iii) might be shorter.

Fortunately such special chains are rare, because they must satisfy rather
strong conditions, and they can be exhaustively listed when n and r aren’t too
large. For example, exercise 19 proves that no special chains exist when r < n+2;
and when n = 4, r = 6, there are only 25 essentially different special chains that
cannot be shortened in an obvious way:

1

1

2

23

4

1

1

2

2

3

4

1 12 2

3 4

1

1

2

23

4

1

1

2

2

3

4

1

1

2

2

3

4

1

1

2

23

4

1

1

2

2 3

4

1

1

2

23

4

1

1

2

2

3

4

1

1

2

2

3

4

1

1

2

2

3

4

1

1

2

2

3

4

1

1

2

2

3

4

1

1

2

2

3

4

1

1

2

2

3

4

1

1

2

2

3 4

1

1

2

2

3

4

1

1

2

2

3

4

1

1

2

2

3

4

1

1

2

2

3

4

1

1

2

2

3

4

1

1

2

2

3

4

1

1

2

2

3

4

1

1

2

2

3

4

By systematically trying 5r possibilities in every special chain, one for each way
to assign a normal operator to the internal nodes of the tree, we will find at least

From the Library of Melissa Nuno



ptg999

104 COMBINATORIAL SEARCHING 7.1.2

one function f in every equivalence class for which the minimum cost C(f) is
achievable only in case (iii).

In fact, when n = 4 and r = 6, these 25 · 56 = 390,625 trials yield only
one class of functions that can’t be computed in 6 steps by any top-down-plus-
bottom-up chain. The missing class, typified by the partially symmetric function
(⟨x1x2x3⟩ ∨ x4) ⊕ (x1∧x2∧x3), can be reached in six steps by appropriately
specializing any of the first five chains illustrated above; for example, one way is

x5 = x1 ∧ x2, x6 = x1 ∨ x2, x7 = x3 ⊕ x5,
x8 = x4 ∧ x̄5, x9 = x6 ∧ x7, x10 = x8 ∨ x9, (19)

corresponding to the first special chain. Since all other functions have L(f) ≤ 7,
these trial calculations have established the true minimum cost in all cases.

Historical notes: The first concerted attempts to evaluate all Boolean func-
tions f(w, x, y, z) optimally were reported in Annals of the Computation Labo-
ratory of Harvard University 27 (1951), where Howard Aiken’s staff presented
heuristic methods and extensive tables of the best switching circuits they were
able to construct. Their cost measure V (f) was different from the cost C(f)
that we’ve been considering, because it was based on “control grids” of vacuum
tubes: They had four kinds of gates, NOT(f), NAND(f, g), OR(f1, . . . , fk), and
AND(f1, . . . , fk), respectively costing 1, 2, k, and 0. Every input to NOT, NAND,
or OR could be either a variable, or the complement of a variable, or the result
of a previous gate; every input to AND had to be the output of either NOT or
NAND that wasn’t also used elsewhere.

With those cost criteria, a function might not have the same cost as its
complement. One could, for instance, evaluate x∧ y as AND


NOT(x̄),NOT(ȳ)


,

with cost 2; but the cost of x̄ ∨ (ȳ ∧ z̄) = NAND(x,OR(y, z)) was 4 while its
complement x ∧ (y ∨ z) = AND


NOT(x̄),NAND(ȳ, z̄)


cost only 3. Therefore

the Harvard researchers needed to consider 402 essentially different classes of
4-variable functions instead of 222 (see the answer to exercise 7.1.1–125). Of
course in those days they worked mostly by hand. They found V (f) < 20 in all
cases, except for the 64 functions equivalent to S0,1(w, x, y, z)∨


S2(w, x, y)∧ z


,

which they evaluated with 20 control grids as follows:

g1 = AND(NOT(w̄),NOT(x̄)), g2 = NAND(ȳ, z),
g3 = AND(NOT(w),NOT(x));

f = AND

NAND(g1, g2),NAND(g3,AND(NOT(ȳ),NOT(z̄))),

NOT(AND(NOT(g3),NOT(ȳ),NOT(z))),
NOT(AND(NOT(g1),NOT(g2),NOT(g3)))


. (20)

The first computer program to find provably optimum circuits was written
by Leo Hellerman [IEEE Transactions EC-12 (1963), 198–223], who determined
the fewest NOR gates needed to evaluate any given function f(x, y, z). He re-
quired every input of every gate to be either an uncomplemented variable or the
output of a previous gate; fanin and fanout were limited to at most 3. When
two circuits had the same gate count, he preferred the one with smallest sum-

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 105

Table 2
THE NUMBER OF FIVE-VARIABLE FUNCTIONS WITH GIVEN COMPLEXITY

C(f) Classes Functions L(f) Classes Functions D(f) Classes Functions
0 2 12 0 2 12 0 2 12
1 2 100 1 2 100 1 2 100
2 5 1140 2 5 1140 2 17 5350
3 20 11570 3 20 11570 3 1789 6702242
4 93 109826 4 93 109826 4 614316 4288259592
5 389 995240 5 366 936440 5 0 0
6 1988 8430800 6 1730 7236880 6 0 0
7 11382 63401728 7 8782 47739088 7 0 0
8 60713 383877392 8 40297 250674320 8 0 0
9 221541 1519125536 9 141422 955812256 9 0 0

10 293455 2123645248 10 273277 1945383936 10 0 0
11 26535 195366784 11 145707 1055912608 11 0 0
12 1 1920 12 4423 31149120 12 0 0

of-inputs. For example, he computed x̄ = NOR(x) with cost 1; x ∨ y ∨ z =
NOR(NOR(x, y, z)) with cost 2; ⟨xyz⟩ = NOR(NOR(x, y),NOR(x, z),NOR(y, z))
with cost 4; S1(x, y, z) = NOR


NOR(x, y, z), ⟨xyz⟩


with cost 6; etc. Since he

limited the fanout to 3, he found that every function of three variables could be
evaluated with cost 7 or less, except for the parity function x⊕y⊕z = (x≡y)≡z,
where x≡y has cost 4 because it is NOR(NOR(x,NOR(x, y)),NOR(y,NOR(x, y))).

Electrical engineers continued to explore other cost criteria; but four-variable
functions seemed out of reach until 1977, when Frank M. Liang established the
values of C(f) shown in Table 1. Liang’s unpublished derivation was based on
a study of all chains that cannot be reduced by the bottom-up construction.

The case n = 5. There are 616,126 classes of essentially different functions
f(x1, x2, x3, x4, x5), according to Table 7.1.1–5. Computers are now fast enough
that this number is no longer frightening; so the author decided while writing
this section to investigate C(f) for all Boolean functions of five variables. Thanks
to a bit of good luck, complete results could indeed be obtained, leading to the
statistics shown in Table 2.

For this calculation Algorithm L and its variants were modified to deal
with class representatives, instead of with the entire set of 231 normal truth
tables. The method of exercise 7.2.1.2–20 made it easy to generate all functions
of a class, given any one of them, resulting in a thousand-fold speedup. The
bottom-up method was enhanced slightly, allowing it to deduce for example that
f(x1 ∧ x2, x1 ∨ x2, x3, x4, x5) has cost ≤ r if C(f) = r − 2. After all classes
of cost 10 had been found, the top-down and bottom-up methods were able to
find chains of length ≤ 11 for all but seven classes of functions. Then the time-
consuming part of the computation began, in which approximately 53 million
special chains with n = 5 and r = 11 were generated; every such chain led to
511 = 48,828,125 functions, some of which would hopefully fall into the seven
remaining mystery classes. But only six of those classes were found to have 11-
step solutions. The lone survivor, whose truth table is 169ae443 in hexadecimal
notation, is the unique class for which C(f) = 12, and it also has L(f) = 12.

From the Library of Melissa Nuno



ptg999

106 COMBINATORIAL SEARCHING 7.1.2

+

∧ ∧
∨ ∧

∧ ∨ ∧
∧ ∨

1

1

2 2 5

3 4 3 4

S4 = +

∧
+ +

∧ ∧
∧ ∨ ∨ ∧

1

1 1

2 3 4 5 2 3 4 5

S4,5 =

+

+

∧
+

∨ ∨
+ +

+

1 2

3 3 4

1 2

4 5

S3 =

∧
∨ +

∧ ∧ +

∨ ∨ +

+

5

1 2 4

3 4 5 3

1 2

S3,5 = ∧
∨ +

∨ ∧ ∨
+ +

+ ∧
3 4 1 2

5

1 2 3 4

S3,4 = +

∧
∨ ∨

+ + +

+

+

2 4 5

3

1 2

S3,4,5 =

+

∨

∨ +

+ +

∨ ∨ +

∧

4 5

4

1 2 3 3

1 2

S2,5 = +

+ ∨

+ + ∨
∨ ∨

5

1 2 3 4

1 2 3 4

S2,4 = +

∨

∨ +

∨ + +

+ +

1

2 3 4 5

1 2 3 4

S2,4,5 = +

∨

+ +

+

∨
∨

∨
+ +

2 3

2

4

2

1 5 4 5

S2,3,5 =

+

∨ ∨

+ + +

+ +2 3 4 5

1 2 3 4

S2,3 = +

∧
∨ ∨

+ ∧ ∧ +

∨ ∨

1

1 4 5 2 3 1

2 3 4 5

S2,3,4 = ∧
+ +

+ ∨
∨ ∨ + +

1 1

2 3 4 5 2 3 4 5

S1,5 =

+

∧
∨ ∨

+ + +

+ +1 5 2 3

1 2 3 4

S1,4 = +

∨ +

∧ ∨ ∨
∨ ∨ +

+ +

1

1

2 3 4 5

2 3 4 5

S1,3,4 = +

∧ +

+ + ∨ ∨
+ +1 1 2 3 4 5

2 3 4 5

S1,2,5 =

Fig. 10. Boolean chains of minimum cost
for symmetric functions of five variables.

The resulting constructions of symmetric functions are shown in Fig. 10.
Some of them are astonishingly beautiful; some of them are beautifully simple;
and others are simply astonishing. (Look, for example, at the 8-step computation
of S2,3(x1, x2, x3, x4, x5), or the elegant formula for S2,3,4, or the nonmonotonic
chains for S4,5 and S3,4,5.) Incidentally, Table 2 shows that all 5-variable func-
tions have depth≤ 4, but no attempt to minimize depth has been made in Fig. 10.

It turns out that all of these symmetric functions can be evaluated in
minimum memory without increasing the cost. No simple reason is known.

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 107

Multiple outputs. We often want to evaluate several different Boolean func-
tions f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) at the same input values x1, . . . , xn;
in other words, we often want to evaluate a multibit function y = f(x), where
y = f1 . . . fm is a binary vector of length m and x = x1 . . . xn is a binary
vector of length n. With luck, much of the work involved in the computation of
one component value fj(x1, . . . , xn) can be shared with the operations that are
needed to evaluate the other component values fk(x1, . . . , xn).

Let C(f) = C(f1 . . . fm) be the length of a shortest Boolean chain that com-
putes all of the nontrivial functions fj . More precisely, the chain (xn+1, . . . , xn+r)
should have the property that, for 1 ≤ j ≤ m, either fj(x1, . . . , xn) = xl(j) or
fj(x1, . . . , xn) = x̄l(j), for some l(j) with 0 ≤ l(j) ≤ n+r, where x0 = 0. Clearly
C(f) ≤ C(f1) + · · ·+ C(fm), but we might be able to do much better.

For example, suppose we want to compute the functions z1 and z0 defined by

(z1z0)2 = x1 + x2 + x3, (21)

the two-bit binary sum of three Boolean variables. We have

z1 = ⟨x1x2x3⟩ and z0 = x1 ⊕ x2 ⊕ x3, (22)

so the individual costs are C(z1) = 4 and C(z0) = 2. But it’s easy to see that
the combined cost C(z1z0) is at most 5, because x1 ⊕ x2 is a suitable first step
in the evaluation of each bit zj :

x4 = x1 ⊕ x2, z0 = x5 = x3 ⊕ x4;
x6 = x3 ∧ x4, x7 = x1 ∧ x2, z1 = x8 = x6 ∨ x7. (23)

Furthermore, exhaustive calculations show that C(z1z0) > 4; hence C(z1z0) = 5.
Electrical engineers traditionally call a circuit for (21) a full adder, because

n such building blocks can be hooked together to add two n-bit numbers. The
special case of (22) in which x3 = 0 is also important, although it boils down
simply to

z1 = x1 ∧ x2 and z0 = x1 ⊕ x2 (24)
and has complexity 2; engineers call it a “half adder” in spite of the fact that
the cost of a full adder exceeds the cost of two half adders.

The general problem of radix-2 addition
(xn−1 . . . x1x0)2
(yn−1 . . . y1 y0)2

(zn zn−1 . . . z1 z0)2

(25)

is to compute n + 1 Boolean outputs zn . . . z1z0 from the 2n Boolean inputs
xn−1 . . . x1x0yn−1 . . . y1y0; and it is readily solved by the formulas

cj+1 = ⟨xjyj cj ⟩, zj = xj ⊕ yj ⊕ cj , for 0 ≤ j < n, (26)

where the cj are “carry bits” and we have c0 = 0, zn = cn. Therefore we can
use a half adder to compute c1 and z0, followed by n− 1 full adders to compute
the other c’s and z’s, accumulating a total cost of 5n − 3. And in fact N. P.
Red’kin [Problemy Kibernetiki 38 (1981), 181–216] has proved that 5n−3 steps

From the Library of Melissa Nuno



ptg999

108 COMBINATORIAL SEARCHING 7.1.2

are actually necessary, by constructing an elaborate 35-page proof by induction,
which concludes with Case 2.2.2.3.1.2.3.2.4.3(!). But the depth of this circuit,
2n−1, is far too large for practical parallel computation, so a great deal of effort
has gone into the task of devising circuits for addition that have depth O(logn)
as well as reasonable cost. (See exercises 41–44.)

Now let’s extend (21) and try to compute a general “sideways sum”

(z⌊lg n⌋ . . . z1z0)2 = x1 + x2 + · · ·+ xn. (27)

If n = 2k+1, we can use k full adders to reduce the sum to (x1 + · · ·+xn) mod 2
plus k bits of weight 2, because each full adder decreases the number of weight-1
bits by 2. For example, if n = 9 and k = 4 the computation is
x10=x1⊕x2⊕x3,

y1=⟨x1x2x3⟩,
x11=x4⊕x5⊕x6,

y2=⟨x4x5x6⟩,
x12=x7⊕x8⊕x9,

y3=⟨x7x8x9⟩,
x13=x10⊕x11⊕x12,

y4=⟨x10x11x12⟩,

and we have x1 + · · · + x9 = x13 + 2(y1 + y2 + y3 + y4). If n = 2k is even, a
similar reduction applies but with a half adder at the end. The bits of weight 2
can then be summed in the same way; so we obtain the recurrence

s(n) = 5⌊n/2⌋ − 3[n even] + s(⌊n/2⌋), s(0) = 0, (28)

for the total number of gates that will compute z⌊lg n⌋ . . . z1z0. (A closed formula
for s(n) appears in exercise 30.) We have s(n) < 5n, and the first values

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
s(n) = 0 2 5 9 12 17 20 26 29 34 37 44 47 52 55 63 66 71 74 81

show that the method is quite efficient even for small n. For example, when
n = 5 it produces

∧ +

∨ ∨
∧ ∧ ∧ ∧ +

+

+

+

1 2 3 4 5 5

4

3

1 2

S4,5 = z2 = = z1 = S2,3

= z0 = S1,3,5

, (29)

which computes three different symmetric functions z2 = S4,5(x1, . . . , x5), z1 =
S2,3(x1, . . . , x5), z0 = S1,3,5(x1, . . . , x5) in just 12 steps. The 10-step computa-
tion of S4,5 is optimum, according to Fig. 10; of course the 4-step computation
of S1,3,5 is also optimum. Furthermore, although C(S2,3) = 8, the function S2,3
is computed here in a clever 10-step way that shares all but one gate with S4,5.

Notice that we can now compute any symmetric function efficiently, because
every symmetric function of {x1, . . . , xn} is a Boolean function of z⌊lg n⌋ . . . z1z0.
We know, for example, that any Boolean function of four variables has complexity
≤ 7; therefore any symmetric function Sk1,...,kt(x1, . . . , x15) costs at most s(15)+
7 = 62. Surprise: The symmetric functions of n variables were among the hardest
of all to evaluate, when n was small, but they’re among the easiest when n ≥ 10.

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 109

We can also compute sets of symmetric functions efficiently. If we want, say,
to evaluate all n + 1 symmetric functions Sk(x1, . . . , xn) for 0 ≤ k ≤ n with a
single Boolean chain, we simply need to evaluate the first n+1 minterms of z0, z1,
. . . , z⌊lg n⌋. For example, when n = 5 the minterms that give us all functions Sk

are respectively S0 = z̄0 ∧ z̄1 ∧ z̄2, S1 = z0 ∧ z̄1 ∧ z̄2, . . . , S5 = z0 ∧ z̄1 ∧ z2.
How hard is it to compute all 2n minterms of n variables? Electrical

engineers call this function an n-to-2n binary decoder, because it converts n bits
x1 . . . xn into a sequence of 2n bits d0d1 . . . d2n−1, exactly one of which is 1. The
principle of “divide and conquer” suggests that we first evaluate all minterms
on the first ⌈n/2⌉ variables, as well as all minterms on the last ⌊n/2⌋; then 2n
AND gates will finish the job. The cost of this method is t(n), where

t(0) = t(1) = 0; t(n) = 2n + t(⌈n/2⌉) + t(⌊n/2⌋) for n ≥ 2. (30)

So t(n) = 2n +O(2n/2); there’s roughly one gate per minterm. (See exercise 32.)
Functions with multiple outputs often help us build larger functions with

single outputs. For example, we’ve seen that the sideways adder (27) allows
us to compute symmetric functions; and an n-to-2n decoder also has many
applications, in spite of the fact that 2n can be huge when n is large. A case in
point is the 2m-way multiplexer Mm(x1, . . . , xm; y0, y1, . . . , y2m−1), also known
as the m-bit storage access function, which has n = m + 2m inputs and takes
the value yk when (x1 . . . xm)2 = k. By definition we have

Mm(x1, . . . , xm; y0, y1, . . . , y2m−1) =
2m−1
k=0

(dk ∧ yk), (31)

where dk is the kth output of an m-to-2m binary decoder; thus, by (30), we can
evaluate Mm with 2m + (2m−1) + t(m) = 3n + O(

√
n ) gates. But exercise 39

shows that we can actually reduce the cost to only 2n + O(
√
n ). (See also

exercise 78.)

Asymptotic facts. When the number of variables is small, our exhaustive-
search methods have turned up lots of cases where Boolean functions can be
evaluated with stunning efficiency. So it’s natural to expect that, when more
variables are present, even more opportunities for ingenious evaluations will arise.
But the truth is exactly the opposite, at least from a statistical standpoint:

Theorem S. The cost of almost every Boolean function f(x1, . . . , xn) exceeds
2n/n. More precisely, if c(n, r) Boolean functions have complexity ≤ r, we have

(r − 1)! c(n, r) ≤ 22r+1(n+ r − 1)2r. (32)

Proof. If a function can be computed in r − 1 steps, it is also computable by
an r-step chain. (This statement is obvious when r = 1; otherwise we can let
xn+r = xn+r−1 ∧ xn+r−1.) We will show that there aren’t very many r-step
chains, hence we can’t compute very many different functions with cost ≤ r.

Let π be a permutation of {1, . . . , n+ r} that takes 1 →→ 1, . . . , n →→ n, and
n+r →→ n+r; there are (r−1)! such permutations. Suppose (xn+1, . . . , xn+r) is a

From the Library of Melissa Nuno



ptg999

110 COMBINATORIAL SEARCHING 7.1.2

Boolean chain in which each of the intermediate steps xn+1, . . . , xn+r−1 is used
in at least one subsequent step. Then the permuted chains defined by the rule

xi = xj′(i) ◦′i xk′(i) = xj(iπ)π− ◦iπ xk(iπ)π− , for n < i ≤ n+ r, (33)

are distinct for different π. (If π takes a →→ b, we write b = aπ and a = bπ−.)
For example, if π takes 5 →→ 6 →→ 7 →→ 8 →→ 9 →→ 5, the chain (7) becomes

Original
x5 = x1 ⊕ x3,
x6 = x1 ⊕ x2,
x7 = x3 ⊕ x4,
x8 = x5 ∨ x6,
x9 = x6 ⊕ x7,
x10 = x8 ∧ x̄9;

Permuted
x5 = x1 ⊕ x2,
x6 = x3 ⊕ x4,
x7 = x9 ∨ x5,
x8 = x5 ⊕ x6,
x9 = x1 ⊕ x3,
x10 = x7 ∧ x̄8.

(34)

Notice that we might have j′(i) ≥ k′(i) or j′(i) > i or k′(i) > i, contrary to our
usual rules. But the permuted chain computes the same function xn+r as before,
and it doesn’t have any cycles by which an entry is defined indirectly in terms
of itself, because the permuted xi is the original xiπ.

We can restrict consideration to normal Boolean chains, as remarked earlier.
So the c(n, r)/2 normal Boolean functions of cost ≤ r lead to (r − 1)! c(n, r)/2
different permuted chains, where the operator ◦i in each step is either ∧, ∨, ⊃,
or ⊕. And there are at most 4r(n+r−1)2r such chains, because there are four
choices for ◦i and n+r−1 choices for each of j(i) and k(i), for n < i ≤ n + r.
Equation (32) follows; and we obtain the opening statement of the theorem by
setting r = ⌊2n/n⌋. (See exercise 46.)

On the other hand, there’s also good news for infinity-minded people: We
can actually evaluate every Boolean function of n variables with only slightly
more than 2n/n steps of computation, even if we avoid⊕ and≡, using a technique
devised by C. E. Shannon and improved by O. B. Lupanov [Bell System Tech. J.
28 (1949), 59–98, Theorem 6; Izvesti⁀ıa VUZov, Radiofizika 1 (1958), 120–140].

In fact, the Shannon–Lupanov approach leads to useful results even when
n is small, so let’s get acquainted with it by studying a small example. Consider

f(x1, x2, x3, x4, x5, x6) =

(x1x2x3x4x5x6)2 is prime


, (35)

a function that identifies all 6-bit prime numbers. Its truth table has 26 = 64
bits, and we can work with it conveniently by using a 4 × 16 array to look at
those bits instead of confining ourselves to one dimension:

x3 = 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x4 = 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
x5 = 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
x6 = 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

x1x2 = 00 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0
x1x2 = 01 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1


Group 1

x1x2 = 10 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 1
x1x2 = 11 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0


Group 2

(36)

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 111

The rows have been divided into two groups of two rows each; and each group
of rows has 16 columns, which are of four basic types, namely 0

0 , 0
1 , 1

0 , or 1
1 . Thus

we see that the function can be expressed as

f(x1, . . . , x6) =

[x1x2 ∈{00}] ∧ [x3x4x5x6 ∈{0010, 0101, 1011}]


∨


[x1x2 ∈{01}] ∧ [x3x4x5x6 ∈{0001, 1111}]


∨


[x1x2 ∈{00, 01}] ∧ [x3x4x5x6 ∈{0011, 0111, 1101}]


∨


[x1x2 ∈{10}] ∧ [x3x4x5x6 ∈{1001, 1111}]


∨


[x1x2 ∈{11}] ∧ [x3x4x5x6 ∈{1101}]


∨


[x1x2 ∈{10, 11}] ∧ [x3x4x5x6 ∈{0101, 1011}]


. (37)

(The first line corresponds to group 1, type 1
0 , then comes group 1, type 0

1 , etc.;
the last line corresponds to group 2 and type 1

1 .) A function like

x3x4x5x6 ∈

{0010, 0101, 1011}


is the OR of three minterms of {x3, x4, x5, x6}.
In general we can view the truth table as a 2k × 2n−k array, with l groups

of rows having either ⌊2k/l⌋ or ⌈2k/l⌉ rows in each group. A group of size m
will have columns of 2m basic types. We form a conjunction (git(x1, . . . , xk) ∧
hit(xk+1, . . . , xn)) for each group i and each nonzero type t, where git is the OR
of all minterms of {x1, . . . , xk} for the rows of the group where t has a 1, while
hit is the OR of all minterms of {xk+1, . . . , xn} for the columns having type t in
group i. The OR of all these conjunctions (git ∧ hit) gives f(x1, . . . , xn).

Once we’ve chosen the parameters k and l, with 1 ≤ k ≤ n−2 and 1 ≤ l ≤ 2k,
the computation starts by computing all the minterms of {x1, . . . , xk} and all
the minterms of {xk+1, . . . , xn}, in t(k) + t(n − k) steps (see (30)). Then, for
1 ≤ i ≤ l, we let group i consist of rows for the values of (x1, . . . , xk) such that
(i − 1)2k/l ≤ (x1 . . . xk)2 < i2k/l; it contains mi = ⌈i2k/l⌉ − ⌈(i − 1)2k/l⌉ rows.
We form all functions git for t ∈ Si, the family of 2mi − 1 nonempty subsets of
those rows; 2mi −mi − 1 ORs of previously computed minterms will accomplish
that task. We also form all functions hit representing columns of nonzero type t;
for this purpose we’ll need at most 2n−k OR operations in each group i, since we
can OR each minterm into the h function of the appropriate type t. Finally we
compute f =

l
i=1


t∈Si

(git ∧ hit); each AND operation is compensated by an
unnecessary first OR into hit. So the total cost is at most

t(k) + t(n−k) + (l−1) +
l

i=1


(2mi−mi−1) + 2n−k + (2mi−2)


; (38)

we want to choose k and l so that this upper bound is minimized. Exercise 52
discusses the best choice when n is small. And when n is large, a good choice
yields a provably near-optimum chain, at least for most functions:
Theorem L. Let C(n) denote the cost of the most expensive Boolean functions
of n variables. Then as n→∞ we have

C(n) ≥ 2n

n


1 + lgn

n
+O

 1
n


; (39)

C(n) ≤ 2n

n


1 + 3 lgn

n
+O

 1
n


. (40)

From the Library of Melissa Nuno



ptg999

112 COMBINATORIAL SEARCHING 7.1.2

Proof. Exercise 48 shows that the lower bound (39) is a consequence of The-
orem S. For the upper bound, we set k = ⌊2 lgn⌋ and l = ⌈2k/(n − 3 lgn)⌉ in
Lupanov’s method; see exercise 53.

Synthesizing a good chain. Formula (37) isn’t the best way to implement a 6-
bit prime detector, but it does suggest a decent strategy. For example, we needn’t
let variables x1 and x2 govern the rows: Exercise 51 shows that a better chain
results if the rows are based on x5x6 while the columns come from x1x2x3x4,
and in general there are many ways to partition a truth table by playing k of
the variables against the other n− k.

Furthermore, we can improve on (37) by using our complete knowledge of
all 4-variable functions; there’s no need to evaluate a function like [x3x4x5x6 ∈
{0010, 0101, 1011}] by first computing the minterms of {x3, x4, x5, x6}, if we know
the best way to evaluate every such function from scratch. On the other hand, we
do need to evaluate several 4-variable functions simultaneously, so the minterm
approach might not be such a bad idea after all. Can we really improve on it?

Let’s try to find a good way to synthesize a Boolean chain that computes a
given set of 4-variable functions. The six functions of x3x4x5x6 in (37) are rather
tame (see exercise 54), so we’ll learn more by considering a more interesting
example chosen from everyday life.

a

b

c

d

e

f

g

A seven-segment display is a now-ubiquitous way to represent
a 4-bit number (x1x2x3x4)2 in terms of seven cleverly positioned
segments that are either visible or invisible. The segments are
traditionally named (a, b, c, d, e, f, g) as shown; we get a ‘0’ by
turning on segments (a, b, c, d, e, f), but a ‘1’ uses only segments
(b, c). (Incidentally, the idea for such displays was invented by F. W.
Wood, U.S. Patent 974943 (1910), although Wood’s original design
used eight segments because he thought that a ‘4’ requires a diagonal stroke.)
Seven-segment displays usually support only the decimal digits ‘0’, ‘1’, . . . , ‘9’;
but of course a computer scientist’s digital watch should display also hexadecimal
digits. So we shall design seven-segment logic that displays the sixteen digits

(41)

when given the respective inputs x1x2x3x4 = 0000, 0001, 0010, . . . , 1111.
In other words, we want to evaluate seven Boolean functions whose truth

tables are respectively

a = 1011 0111 1110 0011,
b = 1111 1001 1110 0100,
c = 1101 1111 1111 0100,
d = 1011 0110 1101 1110,
e = 1010 0010 1011 1111,
f = 1000 1111 1111 0011,
g = 0011 1110 1111 1111.

(42)

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 113

If we simply wanted to evaluate each function separately, several methods that
we’ve already discussed would tell us how to do it with minimum costs C(a) = 5,
C(b) = C(c) = C(d) = 6, C(e) = C(f) = 5, and C(g) = 4; the total cost for all
seven functions would then be 37. But we want to find a single Boolean chain
that contains them all, and the shortest such chain is presumably much more
efficient. How can we discover it?

Well, the task of finding a truly optimum chain for {a, b, c, d, e, f, g} is
probably infeasible from a computational standpoint. But a surprisingly good
solution can be found with the help of the “footprint” idea explained earlier.
Namely, we know how to compute not only a function’s minimum cost, but also
the set of all first steps consistent with that minimum cost in a normal chain.
Function e, for example, has cost 5, but only if we evaluate it by starting with
one of the instructions

x5 = x1 ⊕ x4 or x5 = x2 ∧ x̄3 or x5 = x2 ∨ x3.

Fortunately, one of the desirable first steps belongs to four of the seven
footprints: Functions c, d, f , and g can all be evaluated optimally by starting
with x5 = x2⊕x3. So that is a natural choice; it essentially saves us three steps,
because we know that at most 33 of the original 37 steps will be needed to finish.

Now we can recompute the costs and footprints of all 216 functions, proceed-
ing as before but also initializing the cost of the new function x5 to zero. The
costs of functions c, d, f , and g decrease by 1 as a result, and the footprints
change too. For example, function a still has cost 5, but its footprint has
increased from {x1 ⊕ x3, x2 ∧ x3} to {x1 ⊕ x3, x1 ∧ x4, x̄1 ∧ x4, x2 ∧ x3, x̄2 ∧ x4,
x2 ⊕ x4, x4 ∧ x5, x4 ⊕ x5} when the function x5 = x2 ⊕ x3 is available for free.

In fact, x6 = x̄1 ∧ x4 is common to four of the new footprints, so again we
have a natural way to proceed. And when everything is recalculated with zero
cost given to both x5 and x6, the subsequent step x7 = x3 ∧ x̄6 turns out to be
desirable in five of the newest footprints. Continuing in this “greedy” fashion, we
aren’t always so lucky, but a chain of 22 steps does emerge; and David Stevenson
has shown that only 21 steps are actually needed if we choose x10 non-greedily:

x5 = x2 ⊕ x3,
x6 = x̄1 ∧ x4,
x7 = x3 ∧ x̄6,
x8 = x1 ⊕ x2,
x9 = x4 ⊕ x5,
x10 = x3 ∨ x9,
x11 = x6 ⊕ x10,

x12 = x1 ∧ x2,
x13 = x9 ∧ x̄12,
x14 = x̄3 ∧ x13,
x15 = x5 ⊕ x14,
x16 = x1 ⊕ x7,
x17 = x1 ∨ x5,
x18 = x6 ⊕ x13,

ā = x19 = x15 ⊕ x18,

b̄ = x20 = x11 ∧ x̄13,
c̄ = x21 = x̄8 ∧ x11,

d̄ = x22 = x9 ∧ x̄16,
ē = x23 = x6 ∨ x14,

f̄ = x24 = x̄8 ∧ x15,
g = x25 = x7 ∨ x17.

(43)

(This is a normal chain, so it contains the normalizations {ā, b̄, c̄, d̄, ē, f̄ , g}
instead of {a, b, c, d, e, f, g}. Simple changes will produce the unnormalized
functions without changing the cost.)
Partial functions. In practice the output value of a Boolean function is often
specified only at certain inputs x1 . . . xn, and the outputs in other cases don’t
really matter. We might know, for example, that some of the input combinations

From the Library of Melissa Nuno



ptg999

114 COMBINATORIAL SEARCHING 7.1.2

will never arise. In such cases, we place an asterisk into the corresponding
positions of the truth table, instead of specifying 0 or 1 everywhere.

The seven-segment display provides a case in point, because most of its
applications involve only the ten binary-coded decimal inputs for which we have
(x1x2x3x4)2 ≤ 9. We don’t care what segments are visible in the other six cases.
So the truth tables of (42) actually become

a = 1011 0111 11∗∗ ∗∗∗∗,
b = 1111 1001 11∗∗ ∗∗∗∗,
c = 1101 1111 11∗∗ ∗∗∗∗,
d = 1011 0110 11∗∗ ∗∗∗∗,
e = 1010 0010 10∗∗ ∗∗∗∗,
f = 1000 111∗ 11∗∗ ∗∗∗∗,
g = 0011 1110 11∗∗ ∗∗∗∗.

(44)

(Function f here has an asterisk also in position x1x2x3x4 = 0111, because a ‘7’
can be displayed as either or . Both of these styles appeared about equally
often in the display units available to the author when this section was written.
Truncated variants of the and the were sometimes seen in olden days, but
they have thankfully disappeared.)

Asterisks in truth tables are generally known as don’t-cares — a quaint term
that could only have been invented by an electrical engineer. Table 3 shows that
the freedom to choose arbitrary outputs is advantageous. For example, there are16

3

213 = 4,587,520 truth tables with 3 don’t-cares; 69% of them cost 4 or less,

even though only 21% of the asterisk-free truth tables permit such economy. On
the other hand, don’t-cares don’t save us as much as we might hope; exercise 63
proves that a random function with, say, 30% don’t-cares in its truth table tends
to save only about 30% of the cost of a fully specified function.

What is the shortest Boolean chain that evaluates the seven partially spec-
ified functions in (44)? Our greedy-footprint method adapts itself readily to
the presence of don’t-cares, because we can OR together the footprints of all 2d
functions that match a pattern with d asterisks. The initial costs to evaluate each
function separately are now reduced to C(a) = 3, C(b) = C(c) = 2, C(d) = 5,
C(e) = 2, C(f) = 3, C(g) = 4, totalling just 21 instead of 37. Function g hasn’t
gotten cheaper, but it does have a larger footprint. Proceeding as before, but
taking advantage of the don’t-cares, we now can find a suitable chain of length
only 11 — a chain with fewer than 1.6 operations per output(!):

x5 = x1 ∨ x2,
x6 = x3 ⊕ x5,
x7 = x̄2 ∧ x6,
x8 = x4 ∨ x7,

d̄ = x9 = x6 ⊕ x8,

f̄ = x10 = x̄5 ∧ x8,

b̄ = x11 = x2 ∧ x̄9,
ā = x12 = x̄3 ∧ x9,

c̄ = x13 = x̄4 ∧ x10,
ē = x14 = x4 ∨ x9,
g = x15 = x6 ∨ x11.

(45)

This amazing chain, found by Corey Plover in 2011, chooses x7 non-greedily.
Tic-tac-toe. Let’s turn now to a slightly larger problem, based on a popular
children’s game. Two players take turns filling the cells of a 3 × 3 grid. One
player writes X’s and the other writes O’s, continuing until there either are three

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 115

Table 3
THE NUMBER OF 4-VARIABLE FUNCTIONS WITH d DON’T-CARES AND COST c

c = 0 c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7
d = 0 10 60 456 2474 10624 24184 25008 2720
d = 1 160 960 7296 35040 131904 227296 119072 2560
d = 2 1200 7200 52736 221840 700512 816448 166144
d = 3 5600 33600 228992 831232 2045952 1381952 60192
d = 4 18200 108816 666528 2034408 3505344 1118128 3296
d = 5 43680 257472 1367776 3351488 3491648 433568 32
d = 6 80080 455616 2015072 3648608 1914800 86016
d = 7 114400 606944 2115648 2474688 533568 12032
d = 8 128660 604756 1528808 960080 71520 896
d = 9 114080 440960 707488 197632 4160
d = 10 78960 224144 189248 20160
d = 11 41440 72064 25472 800
d = 12 15480 12360 1280
d = 13 3680 800
d = 14 480
d = 15 32
d = 16 1

X’s or three O’s in a straight line (in which case that player wins) or all nine
cells are filled without a winner (in which case it’s a “cat’s game” or tie). For
example, the game might proceed thus:

X X

O

X X

O

OX X

O

OX X
X
O

OX X
X

O O

OX X
X

OXO
; (46)

X has won. Our goal is to design a machine that plays tic-tac-toe optimally —
making a winning move from each position in which a forced victory is possible,
and never making a losing move from a position in which defeat is avoidable.

More precisely, we will set things up so that there are 18 Boolean variables
x1, . . . , x9, o1, . . . , o9, which govern lamps to illuminate cells of the current
position. The cells are numbered 1 2 3

4 5 6
7 8 9

as on a telephone dial. Cell j displays
an X if xj = 1, an O if oj = 1, or remains blank if xj = oj = 0.* We never
have xj = oj = 1, because that would display ‘XO’. We shall assume that the
variables x1 . . . x9o1 . . . o9 have been set to indicate a legal position in which
nobody has won; the computer plays the X’s, and it is the computer’s turn to
move. For this purpose we want to define nine functions y1, . . . , y9, where yj
means “change xj from 0 to 1.” If the current position is a cat’s game, we should
make y1 = · · · = y9 = 0; otherwise exactly one yj should be equal to 1, and of
course the output value yj = 1 should occur only if xj = oj = 0.

With 18 variables, each of our nine functions yj will have a truth table of
size 218 = 262,144. It turns out that only 4520 legal inputs x1 . . . x9o1 . . . o9 are

* This setup is based on an exhibit from the early 1950s at the Museum of Science and
Industry in Chicago, where the author was first introduced to the magic of switching circuits.
The machine in Chicago, designed circa 1940 by W. Keister at Bell Telephone Laboratories,
allowed me to go first; yet I soon discovered that there was no way to defeat it. Therefore
I decided to move as stupidly as possible, hoping that the designer had not anticipated such
bizarre behavior. In fact I allowed the machine to reach a position where it had two winning
moves; and it seized both of them! Moving twice is of course a flagrant violation of the rules,
so I had won a moral victory even though the machine announced that I had lost.

From the Library of Melissa Nuno



ptg999

116 COMBINATORIAL SEARCHING 7.1.2

I commenced an examination of a game called “tit-tat-to” . . .
to ascertain what number of combinations were required

for all the possible variety of moves and situations.
I found this to be comparatively insignificant.

. . . A difficulty, however, arose of a novel kind.
When the automaton had to move, it might occur that there were

two different moves, each equally conducive to his winning the game.
. . . Unless, also, some provision were made,

the machine would attempt two contradictory motions.
— CHARLES BABBAGE, Passages from the Life of a Philosopher (1864)

possible, so those truth tables are 98.3% filled with don’t-cares. Still, 4520 is
uncomfortably large if we hope to design and understand a Boolean chain that
makes sense intuitively. Section 7.1.4 will discuss alternative ways to represent
Boolean functions, by which it is often possible to deal with hundreds of variables
even though the associated truth tables are impossibly large.

Most functions of 18 variables require more than 218/18 gates, but let’s hope
we can do better. Indeed, a plausible strategy for making suitable moves in
tic-tac-toe suggests itself immediately, in terms of several conditions that aren’t
hard to recognize:

wj , an X in cell j will win, completing a line of X’s;
bj , an O in cell j would lose, completing a line of O’s;
fj , an X in cell j will give X two ways to win;
dj , an O in cell j would give O two ways to win.

For example, X’s move to the center in (46) was needed to block O, so it was of
type b5; fortunately it was also of type f5, forcing a win on the next move.

Let L = {{1,2,3},{4,5,6},{7,8,9},{1,4,7},{2,5,8},{3,6,9},{1,5,9},{3,5,7}}
be the set of winning lines. Then we have

mj = x̄j ∧ ōj ; [moving in cell j is legal] (47)
wj = mj ∧


{i,j,k}∈L(xi ∧ xk); [moving in cell j wins] (48)

bj = mj ∧


{i,j,k}∈L(oi ∧ ok); [moving in cell j blocks] (49)
fj = mj ∧ S2


{αik | {i, j, k} ∈ L}


; [moving in cell j forks] (50)

dj = mj ∧ S2

{βik | {i, j, k} ∈ L}


; [moving in cell j defends] (51)

here αik and βik denote a single X or O together with a blank, namely

αik = (xi∧mk) ∨ (mi∧xk), βik = (oi∧mk) ∨ (mi∧ok). (52)

For example, b1 = m1∧

(o2∧o3)∨(o4∧o7)∨(o5∧o9)


; f2 = m2∧S2(α13, α58) =

m2 ∧ α13 ∧ α58; d5 = m5 ∧ S2(β19, β28, β37, β46).
With these definitions we might try rank-ordering our moves thus:

{w1, . . . , w9}> {b1, . . . , b9}> {f1, . . . , f9}> {d1, . . . , d9}> {m1, . . . ,m9}. (53)

“Win if you can; otherwise block if you can; otherwise fork if you can; otherwise
defend if you can; otherwise make a legal move.” Furthermore, when choosing

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 117

between legal moves it seems sensible to use the ordering

m5 > m1 > m3 > m9 > m7 > m2 > m6 > m8 > m4, (54)

because 5, the middle cell, occurs in four winning lines, while a corner move to
1, 3, 9, or 7 occurs in three, and a side cell 2, 6, 8, or 4 occurs in only two. We
might as well adopt this ordering of subscripts within all five groups of moves
{wj}, {bj}, {fj}, {dj}, and {mj} in (53).

To ensure that at most one move is chosen, we define w′
j , b′j , f ′j , d′j , m′

j to
mean “a prior choice is better.” Thus, w′

5 = 0, w′
1 = w5, w′

3 = w1 ∨ w′
1, . . . ,

w′
4 = w8 ∨ w′

8, b′5 = w4 ∨ w′
4, b′1 = b5 ∨ b′5, . . . , m′

4 = m8 ∨m′
8. Then we can

complete the definition of a tic-tac-toe automaton by letting

yj = (wj∧ ¯̄w′
j)∨ (bj∧ b̄′j)∨ (fj∧ f̄ ′j)∨ (dj∧ d̄′j)∨ (mj∧ ¯̄m′

j), for 1 ≤ j ≤ 9. (55)

So we’ve constructed 9 gates for the m’s, 48 for the w’s, 48 for the b’s, 144 for
the α’s and β’s, 35 for the f ’s (with the help of Fig. 9), 35 for the d’s, 43 for the
primed variables, and 80 for the y’s. Furthermore we can use our knowledge of
partial 4-variable functions to reduce the six operations in (52) to only four,

αik = (xi⊕xk) ∧ (oi⊕ok), βik = (xi⊕xk) ∧ (oi⊕ok). (56)

This trick saves 48 gates; so our design has cost 396 gates altogether.
The strategy for tic-tac-toe in (47)–(56) works fine in most cases, but it also

has some glaring glitches. For example, it loses ignominiously in the game
O O

X
O

X
O

O X
X
O

O X
X

O O

O X
X

OXO

O X
OX
OXO

; (57)

the second X move is d3, defending against a fork by O, yet it actually forces O
to fork in the opposite corner! Another failure arises, for example, after position

X

O
, when move m5 leads to the cat’s game X

X
O
, X

X
OO

, X
X

XOO
, XO

X
XOO

, XO
X X

XOO
, XO

OX X
XOO

, X XO
OX X
XOO

, instead
of to the victory for X that appeared in (46). Exercise 65 patches things up and
obtains a fully correct Boolean tic-tac-toe player that needs just 445 gates.

*Functional decomposition. If the function f(x1, . . . , xn) can be written in
the form g(x1, . . . , xk, h(xk+1, . . . , xn)), it’s usually a good idea to evaluate y =
h(xk+1, . . . , xn) first and then to compute g(x1, . . . , xk, y). Robert L. Ashenhurst
inaugurated the study of such decompositions in 1952 [see Annals Computation
Lab. Harvard University 29 (1957), 74–116], and observed that there’s an easy
way to recognize when f has this special property: If we write the truth table
for f in a 2k × 2n−k array as in (36), with rows for each setting of x1 . . . xk and
columns for each setting of xk+1 . . . xn, then the desired subfunctions g and h
exist if and only if the columns of this array have at most two different values.
For example, the truth table for the function ⟨x1x2⟨x3x4x5⟩⟩ is

0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 1 0 1 1 1
1 1 1 1 1 1 1 1

From the Library of Melissa Nuno



ptg999

118 COMBINATORIAL SEARCHING 7.1.2

when expressed in this two-dimensional form. One type of column corresponds
to the case h(xk+1, . . . , xn) = 0; the other corresponds to h(xk+1, . . . , xn) = 1.

In general the variables X = {x1, . . . , xn} might be partitioned into any two
disjoint subsets Y = {y1, . . . , yk} and Z = {z1, . . . , zn−k}, and we might have
f(x) = g(y, h(z)). We could test for a (Y, Z) decomposition by looking at the
columns of the 2k × 2n−k truth table whose rows correspond to values of y. But
there are 2n such ways to partition X; and all of them are potential winners,
except for trivial cases when |Y | = 0 or |Z| ≤ 1. How can we avoid examining
such a humungous number of possibilities?

A practical way to proceed was discovered by V. Y.-S. Shen, A. C. McKellar,
and P. Weiner [IEEE Transactions C-20 (1971), 304–309], whose method usually
needs only O(n2) steps to identify any potentially useful partition (Y, Z) that
may exist. The basic idea is simple: Suppose xi ∈ Z, xj ∈ Z, and xm ∈ Y .
Define eight binary vectors δl for l = (l1l2l3)2, where δl has (l1, l2, l3) respectively
in components (i, j,m), and zeros elsewhere. Consider any randomly chosen
vector x = x1 . . . xn, and evaluate fl = f(x⊕δl) for 0 ≤ l ≤ 7. Then the four pairs

f0

f1

 
f2

f3

 
f4

f5

 
f6

f7


(58)

will appear in a 2×4 submatrix of the 2k×2n−k truth table. So a decomposition
is impossible if these pairs are distinct, or if they contain three different values.

Let’s call the pairs “good” if they’re all equal, or if they have only two
different values. Otherwise they’re “bad.” If f has essentially random behavior,
we’ll soon find bad pairs if we do this experiment with several different randomly
chosen vectors x, because only 88 of the 256 possibilities for f0f1 . . . f7 correspond
to a good set of pairs; the probability of finding good pairs ten times in a row is
only ( 88

256 )10 ≈ .00002. And when we do discover bad pairs, we can conclude that
xi ∈ Z and xj ∈ Z =⇒ xm ∈ Z, (59)

because the alternative xm ∈ Y is impossible.
Suppose, for example, that n = 9 and that f is the function whose truth

table 11001001000011 . . . 00101 consists of the 512 most significant bits of π, in
binary notation. (This is the “more-or-less random function” that we studied
for n = 4 in (5) and (6) above.) Bad pairs for this π function are quickly
found in each of the cases (i, j,m) for which m ̸= i < j ̸= m. Indeed, in
the author’s experiments, 170 of those 252 cases were decided immediately; the
average number of random x vectors per case was only 1.52; and only one case
needed as many as eight x’s before bad pairs appeared. Thus (59) holds for all
relevant (i, j,m), and the function is clearly indecomposable. In fact, exercise
73 points out that we needn’t make 252 tests to establish the indecomposability
of this π function; only


n
2


= 36 of them would have been sufficient.
Turning to a less random function, let f(x1, . . . , x9) = (detX) mod 2, where

X =

x1 x2 x3
x4 x5 x6
x7 x8 x9

 . (60)

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 119

This function does not satisfy condition (59) when i = 1, j = 2, and m = 3,
because there are no bad pairs in that case. But it does satisfy (59) for 4 ≤ m ≤ 9
when {i, j} = {1, 2}. We can denote this behavior by the convenient abbreviation
‘12⇒456789’; the full set of implications, for all pairs {i, j}, is

12⇒456789
13⇒456789
14⇒235689
15⇒36789
16⇒25789
17⇒235689

18⇒34569
19⇒24568
23⇒456789
24⇒36789
25⇒134679
26⇒14789

27⇒34569
28⇒134679
29⇒14567
34⇒25789
35⇒14789
36⇒124578

37⇒24568
38⇒14567
39⇒124578
45⇒123789
46⇒123789
47⇒235689

48⇒12369
49⇒12358
56⇒123789
57⇒12369
58⇒134679
59⇒12347

67⇒12358
68⇒12347
69⇒124578
78⇒123456
79⇒123456
89⇒123456

(see exercise 69). Bad pairs are a little more difficult to find when we probe
this function at random: The average number of x’s needed in the author’s
experiments rose to about 3.6, when bad pairs did exist. And of course there
was a need to limit the testing, by choosing a tolerance threshold t and then
giving up when t consecutive trials failed to find any bad pairs. Choosing t = 10
would have found all but 8 of the 198 implications listed above.

Implications like (59) are Horn clauses, and we know from Section 7.1.1 that
it’s easy to make further deductions from Horn clauses. Indeed, the method of
exercise 74 will deduce that the only possible partition with |Z| > 1 is the trivial
one (Y = ∅, Z = {x1, . . . , x9}), after looking at fewer than 50 cases (i, j,m).

Similar results occur when f(x1, . . . , x9) = [perX > 0], where per denotes
the permanent function. (In this case f tells us if there is a perfect matching
in the bipartite subgraph of K3,3 whose edges are specified by the variables
x1 . . . x9.) Now there are just 180 implications,

12⇒456789
13⇒456789
14⇒235689
15⇒3678
16⇒2579
17⇒235689

18⇒3459
19⇒2468
23⇒456789
24⇒3678
25⇒134679
26⇒1489

27⇒3459
28⇒134679
29⇒1567
34⇒2579
35⇒1489
36⇒124578

37⇒2468
38⇒1567
39⇒124578
45⇒123789
46⇒123789
47⇒235689

48⇒1269
49⇒1358
56⇒123789
57⇒1269
58⇒134679
59⇒2347

67⇒1358
68⇒2347
69⇒124578
78⇒123456
79⇒123456
89⇒123456,

only 122 of which would have been discovered with t = 10 as the cutoff threshold.
(The best choice of t is not clear; perhaps it should vary dynamically.) Still, those
122 Horn clauses were more than enough to establish indecomposability.

What about a decomposable function? With f = ⟨x2x3x6x9⟨x1x4x5x7x8⟩⟩
we get i∧j⇒m for all m /∈ {i, j}, except when {i, j} ⊆ {1, 4, 5, 7, 8}; in the latter
case, m must also belong to {1, 4, 5, 7, 8}. Although only 185 of these 212 impli-
cations were discovered with tolerance t = 10, the partition Y = {x2, x3, x6, x9},
Z = {x1, x4, x5, x7, x8} emerged quickly as a strong possibility.

Whenever a potential decomposition is supported by the evidence, we need
to verify that the corresponding 2k × 2n−k truth table does indeed have only
one or two distinct columns. But we’re happy to spend 2n units of time on that
verification, because we’ve greatly simplified the evaluation of f .

From the Library of Melissa Nuno



ptg999

120 COMBINATORIAL SEARCHING 7.1.2

The comparison function f =

(x1x2x3x4)2 ≥ (x5x6x7x8)2 + x9


is another

interesting case. Its 184 potentially deducible implications are
12⇒3456789
13⇒2456789
14⇒2356789
15⇒2346789
16⇒2345789
17⇒2345689

18⇒2345679
19⇒2345678
23⇒46789
24⇒36789
25⇒1346789
26⇒34789

27⇒34689
28⇒34679
29⇒34678
34⇒789
35⇒1246789
36⇒24789

37⇒489
38⇒479
39⇒478
45⇒1236789
46⇒23789
47⇒389

48⇒9
49⇒8
56⇒1234789
57⇒1234689
58⇒1234679
59⇒1234678

67⇒23489
68⇒23479
69⇒23478
78⇒349
79⇒348
89⇒4,

and 145 of them were found when t = 10. Three decompositions reveal them-
selves in this case, having Z = {x4, x8, x9}, Z = {x3, x4, x7, x8, x9}, and Z =
{x2, x3, x4, x6, x7, x8, x9}, respectively. Ashenhurst proved that we can reduce f
immediately as soon as we find a nontrivial decomposition; the other decompo-
sitions will show up later, when we try to reduce the simpler functions g and h.

*Decomposition of partial functions. When the function f is only partially
specified, a decomposition with partition (Y,Z) hinges on being able to assign
values to the don’t-cares so that at most two different columns appear in the
corresponding 2k × 2n−k truth table.

Two vectors u1 . . . um and v1 . . . vm consisting of 0s, 1s, and ∗s are said to
be incompatible if either uj = 0 and vj = 1 or uj = 1 and vj = 0, for some j—
equivalently, if the subcubes of the m-cube specified by u and v have no points
in common. Consider the graph whose vertices are the columns of a truth table
with don’t-cares, where u−−−v if and only if u and v are incompatible. We can
assign values to the ∗s to achieve at most two distinct columns if and only if this
graph is bipartite. For if u1, . . . , ul are mutually compatible, their generalized
consensus u1⊔· · ·⊔ul, defined in exercise 7.1.1–32, is compatible with all of them.
[See S. L. Hight, IEEE Trans. C-22 (1973), 103–110; E. Boros, V. Gurvich, P. L.
Hammer, T. Ibaraki, and A. Kogan, Discrete Applied Math. 62 (1995), 51–75.]
Since a graph is bipartite if and only if it contains no odd cycles, we can easily
test this condition with a depth-first search (see Section 7.4.1).

Consequently the method of Shen, McKellar, and Weiner works also when
don’t-cares are present: The four pairs in (58) are considered bad if and only
if three of them are mutually incompatible. We can operate almost as before,
although bad pairs will naturally be harder to find when there are lots of ∗s (see
exercise 72). However, Ashenhurst’s theorem no longer applies. When several
decompositions exist, they all should be explored further, because they might use
different settings of the don’t-cares, and some might be better than the others.

Although most functions f(x) have no simple decomposition g(y, h(z)), we
needn’t give up hope too quickly, because other forms like g(y, h1(z), h2(z)) might
well lead to an efficient chain. If, for example, f is symmetric in three of its vari-
ables {z1, z2, z3}, we can always write f(x) = g


y, S1,2(z1, z2, z3), S1,3(z1, z2, z3)


,

since S1,2(z1, z2, z3) and S1,3(z1, z2, z3) characterize the value of z1 + z2 + z3.
(Notice that just four steps will suffice to compute both S1,2 and S1,3.)

In general, as observed by H. A. Curtis [JACM 8 (1961), 484–496], f(x) can
be expressed in the form g(y, h1(z), . . . , hr(z)) if and only if the 2k × 2n−k truth

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 121

table corresponding to Y and Z has at most 2r different columns. And when
don’t-cares are present, the same result holds if and only if the incompatibility
graph for Y and Z can be colored with at most 2r colors.

For example, the function f(x) = (detX) mod 2 considered above turns
out to have eight distinct columns when Z = {x4, x5, x6, x7, x8, x9}; that’s a
surprisingly small number, considering that the truth table has 8 rows and
64 columns. From this fact we might be led to discover how to expand a
determinant by cofactors of the first row,

f(x) = x1∧h1(x4, . . . , x9) ⊕ x2∧h2(x4, . . . , x9) ⊕ x3∧h3(x4, . . . , x9),

if we didn’t already know such a rule.
When there are d ≤ 2r different columns, we can think of f(x) as a function

of y and h(z), where h takes each binary vector z1 . . . zn−k into one of the
values {0, 1, . . . , d − 1}. Thus (h1, . . . , hr) is essentially an encoding of the
different column types, and we hope to find very simple functions h1, . . . , hr that
provide such an encoding. Moreover, if d is strictly less than 2r, the function
g(y, h1, . . . , hr) will have many don’t-cares that may well decrease its cost.

The distinct columns might also suggest a function g for which the h’s have
don’t-cares. For example, we can use g(y1, y2, h1, h2) = (y1⊕(h1∧y2))∧h2 when
all columns are either (0, 0, 0, 0)T or (0, 0, 1, 1)T or (0, 1, 1, 0)T ; then the value
of h1(z) is arbitrary when z corresponds to an all-zero column. H. A. Curtis
has explained how to exploit this idea when |Y | = 1 and |Z| = n− 1 [see IEEE
Transactions C-25 (1976), 1033–1044].

For a comprehensive discussion of decomposition techniques, see Richard M.
Karp, J. Society for Industrial and Applied Math. 11 (1963), 291–335.

Larger values of n. We’ve been considering only rather tiny examples of
Boolean functions. Theorem S tells us that large, random examples are inher-
ently difficult; but practical examples might well be highly nonrandom. So it
makes sense to search for simplifications using heuristic methods.

When n grows, the best ways currently known for dealing with Boolean
functions generally start with a Boolean chain — not with a huge truth table —
and they try to improve that chain via “local changes.” The chain can be
specified by a set of equations. Then, if an intermediate result is used in com-
paratively few subsequent steps, we can try to eliminate it, temporarily making
those subsequent steps into functions of three variables, and reformulating those
functions in order to make a better chain when possible.

For example, suppose the gate xi = xj ◦ xk is used only once, in the gate
xl = xi xm, so that xl = (xj ◦ xk) xm. Other gates might already exist, by
which we have computed other functions of xj , xk, and xm; and the definitions
of xj , xk, and xm may imply that some of the joint values of (xj , xk, xm) are
impossible. Thus we might be able to compute xl from other gates by doing
just one further operation. For example, if xi = xj ∧ xk and xl = xi ∨ xm, and
if the values xj ∨ xm and xk ∨ xm appear elsewhere in the chain, we can set
xl = (xj∨xm) ∧ (xk∨xm); this eliminates xi and reduces the cost by 1. Or if,

From the Library of Melissa Nuno



ptg999

122 COMBINATORIAL SEARCHING 7.1.2

say, xj ∧ (xk⊕xm) appears elsewhere and we know that xjxkxm ̸= 101, we can
set xl = xm ⊕ (xj ∧ (xk⊕xm)).

If xi is used only in xl and xl is used only in xp, then gate xp depends on four
variables, and we might be able to reduce the cost by using our total knowledge of
four-variable functions, obtaining xp in a better way while eliminating xi and xl.
Similarly, if xi appears only in xl and xp, we can eliminate xi if we find a better
way to evaluate two different functions of four variables, possibly with don’t-
cares and with other functions of those four variables available for free. Again,
we know how to solve such problems, using the footprint method discussed above.

When no local changes are able to decrease the cost, we can also try local
changes that preserve or even increase the cost, in order to discover different
kinds of chains that might simplify in other ways. We shall discuss such local
search methods extensively in Section 7.10.

Excellent surveys of techniques for Boolean optimization, which electrical
engineers call the problem of “multilevel logic synthesis,” have been published
by R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli, Proceedings
of the IEEE 78 (1990), 264–300, and in the book Synthesis and Optimization of
Digital Circuits by G. De Micheli (McGraw–Hill, 1994).

Lower bounds. Theorem S tells us that nearly every Boolean function of
n ≥ 12 variables is hard to evaluate, requiring a chain whose length exceeds 2n/n.
Yet modern computers, which are built from logic circuits involving electric
signals that represent thousands of Boolean variables, happily evaluate zillions
of Boolean functions every microsecond. Evidently there are plenty of important
functions that can be evaluated quickly, in spite of Theorem S. Indeed, the proof
of that theorem was indirect; we simply counted the cases of low cost, so we
learned absolutely nothing about any particular examples that might arise in
practice. When we want to compute a given function and we can only think of a
laborious way to do the job, how can we be sure that there’s no tricky shortcut?

The answer to that question is almost scandalous: After decades of concen-
trated research, computer scientists have been unable to find any explicit family
of functions f(x1, . . . , xn) whose cost is inherently nonlinear, as n increases.
The true behavior is 2n/n, but no lower bound as strong as n log log logn has
yet been proved! Of course we could rig up artificial examples, such as “the
lexicographically smallest truth table of length 2n that isn’t achievable by any
Boolean chain of length ⌊2n/n⌋ − 1”; but such functions are surely not explicit.
The truth table of an explicit function f(x1, . . . , xn) should be computable in
at most, say, 2cn units of time for some constant c; that is, the time needed to
specify all of the function values should be polynomial in the length of the truth
table. Under those ground rules, no family of single-output functions is currently
known to have a combinational complexity that exceeds 3n + O(1) as n → ∞.
[See N. Blum, Theoretical Computer Science 28 (1984), 337–345.]

The picture is not totally bleak, because several interesting linear lower
bounds have been proved for functions of practical importance. A basic way to
obtain such results was introduced by N. P. Red’kin in 1970: Suppose we have

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 123

an optimum chain of cost r for f(x1, . . . , xn). By setting xn ← 0 or xn ← 1, we
obtain reduced chains for the functions g(x1, . . . , xn−1) = f(x1, . . . , xn−1, 0) and
h(x1, . . . , xn−1) = f(x1, . . . , xn−1, 1), having cost r−u if xn was used as an input
to u different gates. Moreover, if xn is used in a “canalizing” gate xi = xn ◦ xk,
where the operator ◦ is neither ⊕ nor ≡, some setting of xn will force xi to
be constant, thereby further reducing the chain for g or h. Lower bounds on g
and/or h therefore lead to a lower bound on f . (See exercises 77–81.)

But where are the proofs of nonlinear lower bounds? Almost every problem
with a yes-no answer can be formulated as a Boolean function, so there’s no
shortage of explicit functions that we don’t know how to evaluate in linear
time, or even in polynomial time. For example, any directed graph G with
vertices {v1, . . . , vm} can be represented by its adjacency matrix X, where xij =
[vi→ vj ]; then

f(x12, . . . , x1m, . . . , xm1, . . . , xm(m−1)) = [G has a Hamiltonian path] (61)

is a Boolean function of n = m(m − 1) variables. We would dearly love to be
able to evaluate this function in, say, n4 steps. We do know how to compute
the truth table for f in O(m! 2n) = 2n+O(

√
n log n) steps, since only m! potential

Hamiltonian paths exist; thus f is indeed “explicit.” But nobody knows how to
evaluate f in polynomial time, or how to prove that there isn’t a 4n-step chain.

For all we know, short Boolean chains for f might exist, for each n. After all,
Figs. 9 and 10 reveal the existence of fiendishly clever chains even in the cases of
4 and 5 variables. Efficient chains for all of the larger problems that we ever will
need to solve might well be “out there” — yet totally beyond our grasp, because
we don’t have time to find them. Even if an omniscient being revealed the simple
chains to us, we might find them incomprehensible, because the shortest proof
of their correctness might be longer than the number of cells in our brains.

Theorem S rules out such a scenario for most Boolean functions. But fewer
than 2100 Boolean functions will ever be of practical importance in the entire
history of the world, and Theorem S tells us zilch about them.

In 1974, Larry Stockmeyer and Albert Meyer were, however, able to con-
struct a Boolean function f whose complexity is provably huge. Their f isn’t
“explicit,” in the precise sense described above, but it isn’t artificial either; it
arises naturally in mathematical logic. Consider symbolic statements such as

048+1015 6=1063 ; (62)
8m9n(m<n+1) ; (63)
8n9m(m+1<n) ; (64)
8a8b(b�a+2)9ab(a<ab^ab<b)) ; (65)
8A8B(A�B,:9n(n2A^n 62B_n2B^n 62A)) ; (66)
8A(9n(n2A))9m(m2A^8n(n2A)m�n))) ; (67)
8A(9n(n2A))9m(m2A^8n(n2A)m�n))) ; (68)
9P8a((a2P,a+362P),a<1000) ; (69)
8A8B(8C8c(C�A^c=1_C�B^c=0)(8n(n2C,n+12C),c=1))):A�B) . (70)

From the Library of Melissa Nuno



ptg999

124 COMBINATORIAL SEARCHING 7.1.2

Stockmeyer and Meyer defined a language L by using the 63-character alphabet

89:()�262+^_),<�=6=�>abcdefghijklmnopqABCDEFGHIJKLMNOPQ0123456789

and giving conventional meanings to these symbols. Strings of lowercase letters
within the sentences of L, like ‘ab’ in (65), represent numeric variables, restricted
to nonnegative integers; strings of uppercase letters represent set variables,
restricted to finite sets of such numbers. For example, (66) means, “For all
finite sets A and B, we have A = B if and only if there doesn’t exist a number n
that is in A but not in B, or in B but not in A.” Some of these statements are
true; others are false. (See exercise 82.)

All of the strings (62)–(70) belong to L, but the language is actually quite
restricted: The only arithmetic operation allowed on a number is to add a
constant; we can write ‘a+13’ but not ‘a+b’. The only relation allowed between
a number and a set is elementhood (2 or 62). The only relation allowed between
sets is equality (�). Furthermore all variables must be quantified by 9 or 8.*

Every sentence of L that has length k ≤ n can be represented by a binary
vector of length 6n, with zeros in the last 6(n− k) bits. Let f(x) be a Boolean
function of 6n variables such that f(x) = 1 whenever x represents a true sentence
of L, and f(x) = 0 whenever x represents a sentence that is false; the value of f(x)
is unspecified when x doesn’t represent a meaningful sentence. The truth table
for such a function f can be constructed in a finite number of steps, according
to theorems of Büchi and Elgot [Zeitschrift für math. Logik und Grundlagen der
Math. 6 (1960), 66–92; Transactions of the Amer. Math. Soc. 98 (1961), 21–51].
But “finite” does not mean “feasible”: Stockmeyer and Meyer proved that

C(f) > 2r−5 whenever n ≥ 460 + .302r + 5.08 ln r and r > 36. (71)

In particular, we have C(f) > 2426 > 10128 when n = 621. A Boolean chain with
that many gates could never be built, since 10128 is a generous upper bound on
the number of protons in the universe. So this is a fairly small, finite problem
that will never be solved.

Details of Stockmeyer and Meyer’s proof appear in JACM 49 (2002), 753–
784. The basic idea is that the language L, though limited, is rich enough to
describe truth tables and the complexity of Boolean chains, using fairly short
sentences; hence f has to deal with inputs that essentially refer to themselves.

*For further reading. Thousands of significant papers have been written about
networks of Boolean gates, because such networks underlie so many aspects of
theory and practice. We have focused in this section chiefly on topics that are
relevant to computer programming for sequential machines. But other topics
have also been extensively investigated, of primary relevance to parallel compu-
tation, such as the study of small-depth circuits in which gates can have any
number of inputs (“unlimited fanin”). Ingo Wegener’s book The Complexity of

* Technically speaking, the sentences of L belong to “weak second-order monadic logic with
one successor.” Weak second-order logic allows quantification over finite sets; monadic logic
with k successors is the theory of unlabeled k-ary trees.

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 125

Boolean Functions (Teubner and Wiley, 1987) provides a good introduction to
the entire subject.

We have mostly considered Boolean chains in which all binary operators
have equal importance. For our purposes, gates such as ⊕ or ⊂ are neither more
nor less desirable than gates such as ∧ or ∨. But it’s natural to wonder if we
can get by with only the monotone operators ∧ and ∨ when we are computing a
monotone function. Alexander Razborov has developed striking proof techniques
to show that, in fact, monotone operators by themselves have inherently limited
capabilities. He proved, for example, that all AND-OR chains to determine
whether the permanent of an n × n matrix of 0s and 1s is zero or nonzero
must have cost nΩ(log n). [See Doklady Akademii Nauk SSSR 281 (1985), 798–
801; Matematicheskie Zametki 37 (1985), 887–900.] By contrast, we will see in
Section 7.5.1 that this problem, equivalent to “bipartite matching,” is solvable
in only O(n2.5) steps. Furthermore, the efficient methods in that section can
be implemented as Boolean chains of only slightly larger cost, when we allow
negation or other Boolean operations in addition to ∧ and ∨. (Vaughan Pratt
has called this “the power of negative thinking.”) An introduction to Razborov’s
methods appears in exercises 85 and 86.

EXERCISES
1. [24 ] The “random” function in formula (6) corresponds to a Boolean chain of

cost 4 and depth 4. Find a formula of depth 3 that has the same cost.
2. [21 ] Show how to compute (a) w ⊕ ⟨xyz⟩ and (b) w ∧ ⟨xyz⟩ with formulas that

have depth 3 and cost 5.
3. [M23 ] (B. I. Finikov, 1957.) If the Boolean function f(x1, . . . , xn) is true at

exactly k points, prove that L(f) < 2n+(k−2)2k−1. Hint: Think of k = 3 and n = 106.
4. [M28 ] Prove that the minimum depth and formula length of a Boolean function

satisfy lgL(f) < D(f) < α lgL(f) when L(f) > 1, where α = 1/ lgχ ≈ 2.464965 is
related to the “plastic constant” χ of Eq. 7.1.4–(90). Hint: If f contains a subformula g,
we have f = g? f1: f0 for suitable f1 and f0.

x 5. [21 ] The Fibonacci threshold function Fn(x1, . . . , xn) = ⟨xF1
1 xF2

2 . . . xFn−1
n−1 xFn−2

n ⟩
was analyzed in exercise 7.1.1–101, when n ≥ 3. Is there an efficient way to evaluate it?

6. [20 ] True or false: A Boolean function f(x1, . . . , xn) is normal if and only if it
satisfies the general distributive law f(x1, . . . , xn) ∧ y = f(x1 ∧ y, . . . , xn ∧ y).

7. [20 ] Convert the Boolean chain ‘x5 = x1 ∨ x4, x6 = x̄2 ∨ x5, x7 = x̄1 ∧ x̄3,
x8 = x6 ≡ x7’ to an equivalent chain (x̂5, x̂6, x̂7, x̂8) in which every step is normal.

x 8. [20 ] Explain why (11) is the truth table of variable xk.
9. [20 ] Algorithm L determines the lengths of shortest formulas for all functions f ,

but it gives no further information. Extend the algorithm so that it also provides actual
minimum-length formulas like (6).

x 10. [20 ] Modify Algorithm L so that it computes D(f) instead of L(f).
x 11. [22 ] Modify Algorithm L so that, instead of lengths L(f), it computes upper

bounds U(f) and footprints ϕ(f) as described in the text.
12. [15 ] What Boolean chain is equivalent to the minimum-memory scheme (13)?

From the Library of Melissa Nuno



ptg999

126 COMBINATORIAL SEARCHING 7.1.2

13. [16 ] What are the truth tables of f1, f2, f3, f4, and f5 in example (13)?
14. [22 ] What’s a convenient way to compute the 5n(n−1) truth tables of (17), given
the truth table of g? (Use bitwise operations as in (15) and (16).)
15. [28 ] Find short-as-possible ways to evaluate the following Boolean functions us-
ing minimum memory: (a) S1(x1, x2, x3); (b) S2(x1, x2, x3, x4); (c) S1(x1, x2, x3, x4);
(d) the function in (18).
16. [HM33 ] Prove that fewer than 2118 of the 2128 Boolean functions f(x1, . . . , x7)
are computable in minimum memory.

x 17. [25 ] (M. S. Paterson, 1977.) Although Boolean functions f(x1, . . . , xn) cannot
always be evaluated in n registers, prove that n + 1 registers are always sufficient. In
other words, show that there is always a sequence of operations like (13) to compute
f(x1, . . . , xn) if we allow 0 ≤ j(i), k(i) ≤ n.

x 18. [35 ] Investigate optimum minimum-memory computations for f(x1, x2, x3, x4, x5):
How many classes of five-variable functions have Cm(f) = r, for r = 0, 1, 2, . . . ?
19. [M22 ] If a Boolean chain uses n variables and has length r < n+ 2, prove that it
must be either a “top-down” or a “bottom-up” construction.

x 20. [40 ] (R. Schroeppel, 2004.) A Boolean chain is canalizing if it does not use the
operators ⊕ or ≡. Find the optimum cost, length, and depth of all 4-variable functions
under this constraint. Does the footprint heuristic still give optimum results?
21. [46 ] For how many four-variable functions did the Harvard researchers discover
an optimum vacuum-tube circuit in 1951?
22. [21 ] Explain the chain for S3 in Fig. 10, by noting that it incorporates the chain
for S2,3 in Fig. 9. Find a similar chain for S2(x1, x2, x3, x4, x5).

x 23. [23 ] Figure 10 illustrates only 16 of the 64 symmetric functions on five elements.
Explain how to write down optimum chains for the others.
24. [47 ] Does every symmetric function f have Cm(f) = C(f)?

x 25. [17 ] Suppose we want a Boolean chain that includes all functions of n variables:
Let fk(x1, . . . , xn) be the function whose truth table is the binary representation of k,
for 0 ≤ k < m = 22n. What is C(f0f1 . . . fm−1)?
26. [25 ] True or false: If f(x0, . . . , xn) = (x0∧g(x1, . . . , xn))⊕h(x1, . . . , xn), where g
and h are nontrivial Boolean functions whose joint cost is C(gh), then C(f)=2+C(gh).

x 27. [23 ] Can a full adder (22) be implemented in five steps using only minimum
memory (that is, completely inside three one-bit registers)?
28. [26 ] Prove that C(u′v′) = C(u′′v′′) = 5 for the two-output functions defined by

(u′v′)2 = (x+ y − (uv)2) mod 4, (u′′v′′)2 = (−x− y − (uv)2) mod 4.

Use these functions to evaluate [(x1 + · · ·+ xn) mod 4 = 0], in fewer than 2.5n steps.
29. [M28 ] Prove that the text’s circuit for sideways addition (27) has depth O(logn).
30. [M25 ] Solve the binary recurrence (28) for the cost s(n) of sideways addition.
31. [21 ] If f(x1, . . . , xn) is symmetric, prove that C(f) ≤ 5n+O(n/logn).
32. [HM16 ] Why does the solution to (30) satisfy t(n) = 2n +O(2n/2)?
33. [HM22 ] True or false: If 1 ≤ N ≤ 2n, the first N minterms of {x1, . . . , xn} can
all be evaluated in N +O(

√
N ) steps, as n→∞ and N →∞.

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 127

x 34. [22 ] A priority encoder has n = 2m − 1 inputs x1 . . . xn and m outputs y1 . . . ym,
where (y1 . . . ym)2 = k if and only if k = max{j | j = 0 or xj = 1}. Design a priority
encoder that has cost O(n) and depth O(m).
35. [23 ] If n > 1, show that the conjunctions x1 ∧ · · · ∧ xk−1 ∧ xk+1 ∧ · · · ∧ xn for
1 ≤ k ≤ n can all be computed from (x1, . . . , xn) with total cost ≤ 3n− 6.

x 36. [M28 ] (R. E. Ladner and M. J. Fischer, 1980.) Let yk be the “prefix” x1∧ · · · ∧xk
for 1 ≤ k ≤ n. Clearly C(y1 . . . yn) = n − 1 and D(y1 . . . yn) = ⌈lgn⌉; but we can’t
simultaneously minimize both cost and depth. Find a chain of optimum depth ⌈lgn⌉
that has cost < 4n.
37. [M28 ] (Marc Snir, 1986.) Given n ≥ m ≥ 1, consider the following algorithm:

S1. [Upward loop.] For t ← 1, 2, . . . , ⌈lgm⌉, set xmin(m,2tk) ← x2t(k−1/2) ∧
xmin(m,2tk) for k ≥ 1 and 2t(k − 1/2) < m.

S2. [Downward loop.] For t ← ⌈lgm⌉ − 1, ⌈lgm⌉ − 2, . . . , 1, set x2t(k+1/2) ←
x2tk ∧ x2t(k+1/2) for k ≥ 1 and 2t(k + 1/2) < m.

S3. [Extension.] For k ← m+ 1, m+ 2, . . . , n, set xk ← xk−1 ∧ xk.
a) Prove that this algorithm solves the prefix problem of exercise 36: It transforms

(x1, x2, . . . , xn) into (x1, x1 ∧ x2, . . . , x1 ∧ x2 ∧ · · · ∧ xn).
b) Let c(m,n) and d(m,n) be the cost and depth of the corresponding Boolean chain.

Prove for fixed m that, if n is sufficiently large, c(m,n) + d(m,n) = 2n− 2.
c) Given n > 1, what is d(n) = min1≤m≤n d(m,n)? Show that d(n) < 2 lgn.
d) Prove that there’s a Boolean chain of cost 2n − 2 − d and depth d for the prefix

problem whenever d(n) ≤ d < n. (This cost is optimum, by exercise 81.)
38. [25 ] In Section 5.3.4 we studied sorting networks, by which Ŝ(n) comparator
modules are able to sort n numbers (x1, x2, . . . , xn) into ascending order. If the inputs
xj are 0s and 1s, each comparator module is equivalent to two gates (x ∧ y, x ∨ y);
so a sorting network corresponds to a certain kind of Boolean chain, which evaluates
n particular functions of (x1, x2, . . . , xn).

a) What are the n functions f1f2 . . . fn that a sorting network computes?
b) Show that those functions {f1, f2, . . . , fn} can be computed in O(n) steps with a

chain of depth O(logn). (Hence sorting networks aren’t asymptotically optimal,
Booleanwise.)

x 39. [M21 ] (M. S. Paterson and P. Klein, 1980.) Implement the 2m-way multiplexer
Mm(x1, . . . , xm; y0, y1, . . . , y2m−1) of (31) with an efficient chain that simultaneously
establishes the upper bounds C(Mm) ≤ 2n+O(

√
n ) and D(Mm) ≤ m+O(logm).

40. [25 ] If n ≥ k ≥ 1, let fnk(x1, . . . , xn) be the “k in a row” function,

(x1 ∧ · · · ∧ xk) ∨ (x2 ∧ · · · ∧ xk+1) ∨ · · · ∨ (xn+1−k ∧ · · · ∧ xn).

Show that the cost C(fnk) of this function is less than 4n− 3k.
41. [M23 ] (Conditional-sum adders.) One way to accomplish binary addition (25)
with depth O(logn) is based on the multiplexer trick of exercise 4: If (xx′)2 + (yy′)2 =
(zz′)2, where |x′| = |y′| = |z′|, we have either (x)2+(y)2 = (z)2 and (x′)2+(y′)2 = (z′)2,
or (x)2 + (y)2 + 1 = (z)2 and (x′)2 + (y′)2 = (1z′)2. To save time, we can compute both
(x)2 + (y)2 and (x)2 + (y)2 + 1 simultaneously as we compute (x′)2 + (y′)2. Afterwards,
when we know whether or not the less significant part (x′)2 + (y′)2 produces a carry,
we can use multiplexers to select the correct bits for the most significant part.

From the Library of Melissa Nuno



ptg999

128 COMBINATORIAL SEARCHING 7.1.2

If this method is used recursively to build 2n-bit adders from n-bit adders, how
many gates are needed when n = 2m? What is the corresponding depth?
42. [30 ] In the binary addition (25), let uk = xk ∧ yk and vk = xk⊕ yk for 0 ≤ k < n.

a) Show that zk = vk ⊕ ck, where the carry bits ck satisfy

ck = uk−1 ∨ (vk−1 ∧ (uk−2 ∨ (vk−2 ∧ (· · · (v1 ∧ u0) · · ·)))).

b) Let Ukk = 0, V kk = 1, and Uk+1
j = uk ∨ (vk ∧ Ukj ), V k+1

j = vk ∧ V kj , for k ≥ j.
Prove that ck = Uk0 , and that Uki = Ukj ∨ (V kj ∧ U ji ), V ki = V kj ∧ V ji for i ≤ j ≤ k.

c) Let h(m) = 2m(m−1)/2. Show that when n = h(m), the carries c1, . . . , cn can all
be evaluated with depth (m+ 1)m/2 ≈ lgn+

√
2 lgn and with total cost O(2mn).

x 43. [28 ] A finite-state transducer is an abstract machine with a finite input alpha-
bet A, a finite output alphabet B, and a finite set of internal states Q. One of those
states, q0, is called the “initial state.” Given a string α = a1 . . . an, where each aj ∈ A,
the machine computes a string β = b1 . . . bn, where each bj ∈ B, as follows:

T1. [Initialize.] Set j ← 1 and q ← q0.
T2. [Done?] Terminate the algorithm if j > n.
T3. [Output bj .] Set bj ← c(q, aj).
T4. [Advance j.] Set q ← d(q, aj), j ← j + 1, and return to step T2.

The machine has built-in instructions that specify c(q, a) ∈ B and d(q, a) ∈ Q for every
state q ∈ Q and every character a ∈ A. The purpose of this exercise is to show that, if
the alphabets A and B of any finite state transducer are encoded in binary, the string
β can be computed from α by a Boolean chain of size O(n) and depth O(logn).

a) Consider the problem of changing a binary vector a1 . . . an to b1 . . . bn by setting

bj ← aj ⊕ [aj = aj−1 = · · ·= aj−k = 1 and aj−k−1 = 0, where k≥ 1 is odd],

assuming that a0 = 0. For example, α = 1100100100011111101101010 →→ β =
1000100100010101001001010. Prove that this transformation can be carried out
by a finite state transducer with |A| = |B| = |Q| = 2.

b) Suppose a finite state transducer with |Q| = 2 is in state qj after reading a1 . . . aj−1.
Explain how to compute the sequence q1 . . . qn with a Boolean chain of cost O(n)
and depth O(logn), using the construction of Ladner and Fischer in exercise 36.
(From this sequence q1 . . . qn it is easy to compute b1 . . . bn, since bj = c(qj , aj).)

c) Apply the method of (b) to the problem in (a).
x 44. [26 ] (R. E. Ladner and M. J. Fischer, 1980.) Show that the problem of binary

addition (25) can be viewed as a finite state transduction. Describe the Boolean chain
that results from the construction of exercise 43 when n = 2m, and compare it to the
conditional-sum adder of exercise 41.
45. [HM20 ] Why doesn’t the proof of Theorem S simply argue that the number of
ways to choose j(i) and k(i) so that 1 ≤ j(i), k(i) < i is n2(n+1)2 . . . (n+r−1)2?

x 46. [HM21 ] Let α(n) = c(n, ⌊2n/n⌋)/22n

be the fraction of n-variable Boolean func-
tions f(x1, . . . , xn) for which C(f) ≤ 2n/n. Prove that α(n)→ 0 rapidly as n→∞.
47. [M23 ] Extend Theorem S to functions with n inputs and m outputs.
48. [HM23 ] Find the smallest integer r = r(n) such that (r−1)! 22n≤ 22r+1(n+r−1)2r,
(a) exactly when 1 ≤ n ≤ 16; (b) asymptotically when n→∞.

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 129

49. [HM25 ] Prove that, as n → ∞, almost all Boolean functions f(x1, . . . , xn) have
minimum formula length L(f) > 2n/ lgn− 2n+2/(lgn)2.

50. [24 ] What are the prime implicants and prime clauses of the prime-number func-
tion (35)? Express that function in (a) DNF (b) CNF of minimum length.

51. [20 ] What representation of the prime-number detector replaces (37), if rows of
the truth table are based on x5x6 instead of x1x2?

52. [23 ] What choices of k and l minimize the upper bound (38) when 5 ≤ n ≤ 16?

53. [HM22 ] Estimate (38) when k = ⌊2 lgn⌋ and l = ⌈2k/(n− 3 lgn)⌉ and n→∞.

54. [29 ] Find a short Boolean chain to evaluate all six of the functions fj(x) =
[x1x2x3x4 ∈Aj ], where A1 = {0010, 0101, 1011}, A2 = {0001, 1111}, A3 = {0011, 0111,
1101}, A4 = {1001, 1111}, A5 = {1101}, A6 = {0101, 1011}. (These six functions
appear in the prime-number detector (37).) Compare your chain to the minterm-first
evaluation scheme of Lupanov’s general method.

55. [34 ] Show that the cost of the 6-bit prime-detecting function is at most 14.

x 56. [16 ] Explain why all functions with 14 or more don’t-cares in Table 3 have cost 0.

57. [19 ] What seven-segment “digits” are displayed when (x1x2x3x4)2 > 9 in (45)?

x 58. [30 ] A 4×4-bit S-box is a permutation of the 4-bit vectors {0000, 0001, . . . , 1111};
such permutations are used as components of well-known cryptographic systems such
as the USSR All-Union standard GOST 28147 (1989). Every 4×4-bit S-box corresponds
to a sequence of four functions f1(x1, x2, x3, x4), . . . , f4(x1, x2, x3, x4), which transform
x1x2x3x4 →→ f1f2f3f4.

Find all 4×4-bit S-boxes for which C(f1) = C(f2) = C(f3) = C(f4) = 7.

59. [29 ] One of the S-boxes satisfying the conditions of exercise 58 takes (0, . . . , f) →→
(0, 6, 5, b, 3, 9, f, e, c, 4, 7, 8, d, 2, a, 1); in other words, the truth tables of (f1, f2, f3, f4)
are respectively (179a, 63e8, 5b26, 3e29). Find a Boolean chain that evaluates these
four “maximally difficult” functions in fewer than 20 steps.

60. [23 ] (Frank Ruskey.) Suppose z = (x+y) mod 3, where x = (x1x2)2, y = (y1y2)2,
z = (z1z2)2, and each two-bit value is required to be either 00, 01, or 10. Compute z1
and z2 from x1, x2, y1, and y2 in six Boolean steps.

61. [34 ] Continuing exercise 60, find a good way to compute z = (x+y) mod 5, using
the three-bit values 000, 001, 010, 011, 100.

62. [HM23 ] Consider a random Boolean partial function of n variables that has 2nc
“cares” and 2nd “don’t-cares,” where c+ d = 1. Prove that the cost of almost all such
partial functions exceeds 2nc/n.

63. [HM35 ] (L. A. Sholomov, 1969.) Continuing exercise 62, prove that all such
functions have cost ≤ 2nc/n(1 + O(n−1 logn)). Hint: There is a set of 2m(1 + k)
vectors x1 . . . xk that intersects every (k −m)-dimensional subcube of the k-cube.

64. [25 ] (Magic Fifteen.) Two players alternately select digits from 1 to 9, using no
digit twice; the winner, if any, is the first to get three digits that sum to 15. What’s a
good strategy for playing this game?

x 65. [35 ] Modify the tic-tac-toe strategy of (47)–(56) so that it always plays correctly.

66. [20 ] Criticize the moves chosen in exercise 65. Are they always optimum?

From the Library of Melissa Nuno



ptg999

130 COMBINATORIAL SEARCHING 7.1.2

x 67. [40 ] Instead of simply finding one correct move for each position in tic-tac-toe,
we might prefer to find them all. In other words, given x1 . . . x9o1 . . . o9, we could try
to compute nine outputs g1 . . . g9, where gj = 1 if and only if a move into cell j is legal
and minimizes X’s worst-case outcome. For example, exclamation marks indicate all
of the right moves for X in the following typical positions:

! ! !
! ! !
! ! !

; O
! ; ! O !

!
!

; ! !
O

! !
; X O

! !
!

; X O
!
! !

; X ! !
! O !
! ! !

; X !
! O

!
; X !

! O
; O ! !

! X !
! ! !

; ! O !
! X !
! !

; O X
! !
! !

; ! X
O ! ; ! X !

! O !
! !

; ! X

O
; ! X !

! ! !
! O !
.

A machine that chooses randomly among these possibilities is more fun to play against
than a machine that has only one fixed strategy.

One attractive way to solve the all-good-moves problem is to use the fact that
tic-tac-toe has eight symmetries. Imagine a chip that has 18 inputs x1 . . . x9o1 . . . o9
and three outputs (c, s,m), for “corner,” “side,” and “middle,” with the property
that the desired functions gj can be computed by hooking together eight of the chips
appropriately:

g1 = c(x1x2x3x4x5x6x7x8x9o1o2o3o4o5o6o7o8o9)
∨ c(x1x4x7x2x5x8x3x6x9o1o4o7o2o5o8o3o6o9),

g2 = s(x1x2x3x4x5x6x7x8x9o1o2o3o4o5o6o7o8o9)
∨ s(x3x2x1x6x5x4x9x8x7o3o2o1o6o5o4o9o8o7),

g3 = c(x3x2x1x6x5x4x9x8x7o3o2o1o6o5o4o9o8o7)
∨ c(x3x6x9x2x5x8x1x4x7o3o6o9o2o5o8o1o4o7),

g4 = s(x1x4x7x2x5x8x3x6x9o1o4o7o2o5o8o3o6o9)
∨ s(x7x4x1x8x5x2x9x6x3o7o4o1o8o5o2o9o6o3), . . .

g9 = c(x9x8x7x6x5x4x3x2x1o9o8o7o6o5o4o3o2o1)
∨ c(x9x6x3x8x5x2x7x4x1o9o6o3o8o5o2o7o4o1),

and g5 is the OR of the m outputs from all eight chips.
Design the logic for such a chip, using fewer than 2000 gates.

68. [M25 ] Consider the n-bit π function πn(x1 . . . xn), whose value is the (x1 . . . xn)2th
bit to the right of the most significant bit in the binary representation of π. Does the
method of exercise 4.3.1–39, which describes an efficient way to compute arbitrary bits
of π, prove that C(πn) < 2n/n for sufficiently large n?
69. [M24 ] Let the multilinear representation of f be

α000 ⊕ α001xm ⊕ α010xj ⊕ α011xjxm ⊕ α100xi ⊕ α101xixm ⊕ α110xixj ⊕ α111xixjxm,

where each coefficient αl is a function of the variables {x1, . . . , xn} \ {xi, xj , xm}.
a) Prove that the pairs (58) are “good” if and only if the coefficients satisfy

α010α101 = α011α100, α101α110 = α100α111, and α110α011 = α111α010.

b) For which values (i, j,m) are the pairs bad, when f = (detX) mod 2? (See (60).)
x 70. [M27 ] Let X be the 3 × 3 Boolean matrix (60). Find efficient chains for the

Boolean functions (a) (detX) mod 2; (b) [perX > 0]; (c) [detX > 0].
x 71. [M26 ] Suppose f(x) is equal to 0 with probability p at each point x = x1 . . . xn,

independent of its value at other points.
a) What is the probability that the pairs (58) are good?
b) What is the probability that bad pairs (58) exist?
c) What is the probability that bad pairs (58) are found in at most t random trials?
d) What is the expected time to test case (i, j,m), as a function of p, t, and n?

From the Library of Melissa Nuno



ptg999

7.1.2 BOOLEAN EVALUATION 131

72. [M24 ] Extend the previous exercise to the case of partial functions, where f(x) =
0 with probability p, f(x) = 1 with probability q, and f(x) = ∗ with probability r.

x 73. [20 ] If bad pairs (58) exist for all (i, j,m) with m ̸= i ̸= j ̸= m, show that the
indecomposability of f can be deduced after testing only


n
2


well-chosen triples (i, j,m).
74. [25 ] Extend the idea in the previous exercise, suggesting a strategy for choosing
successive triples (i, j,m) when using the method of Shen, McKellar, and Weiner.
75. [20 ] What happens when the text’s decomposition procedure is applied to the
“all-equal” function S0,n(x1, . . . , xn)?

x 76. [M26 ] (D. Uhlig, 1974.) The purpose of this exercise is to prove the amazing fact
that, for certain functions f , the best chain to evaluate the Boolean function

F (u1, . . . , un, v1, . . . , vn) = f(u1, . . . , un) ∨ f(v1, . . . , vn)

costs less than 2C(f); hence functional decomposition is not always a good idea.
We let n = m + 2m and write f(i1, . . . , im, x0, . . . , x2m−1) = fi(x), where i is

regarded as the number (i1 . . . im)2. Then (u1, . . . , un) = (i1, . . . , im, x0, . . . , x2m−1),
(v1, . . . , vn) = (j1, . . . , jm, y0, . . . , y2m−1), and F (u, v) = fi(x) ∨ fj(y).

a) Prove that a chain of cost O(n2) suffices to evaluate the 2m + 1 functions

zl = x⊕ (([l≤ i]⊕ [i≤ j ]) ∧ (x⊕ y)), 0 ≤ l ≤ 2m,

from given vectors i, j, x, and y; each zl is a vector of length 2m, and the one-bit
quantity ([l≤ i]⊕ [i≤ j ]) is ANDed with each component of x⊕ y.

b) Let gi(x) = fi(x)⊕ fi−1(x) for 0 ≤ i ≤ 2m, where f−1(x) = f2m(x) = 0. Estimate
the cost of computing the 2m + 1 values cl = gl(zl), given the vectors zl, for
0 ≤ l ≤ 2m.

c) Let c′l = cl ∧ ([i≤ j ]≡ [l≤ i]) and c′′l = cl ∧ ([i≤ j ]≡ [j > l]). Prove that

fi(x) = c′0 ⊕ c′1 ⊕ · · · ⊕ c′2m , fj(y) = c′′0 ⊕ c′′1 ⊕ · · · ⊕ c′′2m .

d) Conclude that C(F ) ≤ 2n/n+O(2n(logn)/n2). (When n is sufficiently large, this
cost is definitely less than 2n+1/n, but functions f exist with C(f) > 2n/n.)

e) For clarity, write out the chain for F when m = 1 and f(i, x0, x1) = (i ∧ x0) ∨ x1.
x 77. [35 ] (N. P. Red’kin, 1970.) Suppose a Boolean chain uses only the operations

AND, OR, or NOT; thus, every step is either xi = xj(i) ∧ xk(i) or xi = xj(i) ∨ xk(i)
or xi = x̄j(i). Prove that if such a chain computes either the “odd parity” function
fn(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn or the “even parity” function f̄n(x1, . . . , xn) = 1⊕ x1 ⊕
· · · ⊕ xn, where n ≥ 2, the length of the chain is at least 4(n− 1).
78. [26 ] (W. J. Paul, 1977.) Let f(x1, . . . , xm, y0, . . . , y2m−1) be any Boolean function
that equals yk whenever (x1 . . . xm)2 = k ∈ S, for some given set S ⊆ {0, 1, . . . , 2m−1};
we don’t care about the value of f at other points. Show that C(f) ≥ 2|S|−2 whenever
S is nonempty. (In particular, when S = {0, 1, . . . , 2m − 1}, the multiplexer chain of
exercise 39 is asymptotically optimum.)
79. [32 ] (C. P. Schnorr, 1976.) Say that variables u and v are “mates” in a Boolean
chain if there is exactly one simple path between them in the corresponding binary tree
diagram. Two variables can be mates only if they are each used only once in the chain;
but this necessary condition is not sufficient. For example, variables 2 and 4 are mates
in the chain for S1,2,3 in Fig. 9, but they are not mates in the chain for S2.

a) Prove that a Boolean chain on n variables with no mates has cost ≥ 2n− 2.
b) Prove that C(f) = 2n− 3 when f is the all-equal function S0,n(x1, . . . , xn).

From the Library of Melissa Nuno



ptg999

132 COMBINATORIAL SEARCHING 7.1.2

x 80. [M29 ] (L. J. Stockmeyer, 1977.) Another notation for symmetric functions is
sometimes convenient: If α = a0a1 . . . an is any binary string, let Sα(x) = aνx. For
example, ⟨x1x2x3⟩ = S0011 and x1 ⊕ x2 ⊕ x3 = S0101 in this notation. Notice that
Sα(0, x2, . . . , xn) = Sα′(x2, . . . , xn) and Sα(1, x2, . . . , xn) = S′α(x2, . . . , xn), where α′

and ′α stand respectively for α with its last or first element deleted. Also,

Sα(f(x3, . . . , xn), f̄(x3, . . . , xn), x3, . . . , xn) = S′α′(x3, . . . , xn)

when f is any Boolean function of n− 2 variables.
a) A parity function has a0 ̸= a1 ̸= a2 ̸= · · · ̸= an. Assume that n ≥ 2. Prove that if

Sα is not a parity function and S′α′ isn’t constant, then

C(Sα) ≥ max(C(Sα′)+2, C(S′α)+2, min(C(Sα′)+3, C(S′α)+3, C(S′α′)+5)).

b) What lower bounds on C(Sk) and C(S≥k) follow from this result, when 0 ≤ k ≤ n?
81. [23 ] (M. Snir, 1986.) Show that any chain of cost c and depth d for the prefix
problem of exercise 36 has c+ d ≥ 2n− 2.

x 82. [M23 ] Explain the logical sentences (62)–(70). Which of them are true?
83. [21 ] If there’s a Boolean chain for f(x1, . . . , xn) that contains p canalizing oper-
ations, show that C(f) < (p+ 1)(n+ p/2).
84. [M20 ] A monotone Boolean chain is a Boolean chain in which every operator ◦i
is monotone. The length of a shortest monotone chain for f is denoted by C+(f). If
there’s a monotone Boolean chain for f(x1, . . . , xn) that contains p occurrences of ∧
and q occurrences of ∨, show that C+(f) < min((p+ 1)(n+ p/2), (q + 1)(n+ q/2)).

x 85. [M28 ] Let Mn be the set of all monotone functions of n variables. If L is a family
of functions contained in Mn, let

x ⊔ y =

{z ∈ L | z ⊇ x ∨ y} and x ⊓ y =


{z ∈ L | z ⊆ x ∧ y}.

We call L “legitimate” if it includes the constant functions 0 and 1 as well as the
projection functions xj for 1 ≤ j ≤ n, and if x ⊔ y ∈ L, x ⊓ y ∈ L whenever x, y ∈ L.

a) When n = 3 we can write M3 = {00, 01, 03, 05, 11, 07, 13, 15, 0f, 33, 55, 17, 1f,
37, 57, 3f, 5f, 77, 7f, ff}, representing each function by its hexadecimal truth
table. There are 215 families L such that {00, 0f, 33, 55, ff} ⊆ L ⊆M3; how many
of them are legitimate?

b) If A is a subset of {1, . . . , n}, let ⌈A⌉ =

a∈A xa; also let ⌈∞⌉ = 1. Suppose A

is a family of subsets of {1, . . . , n} that contains all sets of size ≤ 1 and is closed
under intersection; in other words, A∩B ∈ A whenever A ∈ A and B ∈ A. Prove
that the family L = {⌈A⌉ | A ∈ A ∪∞} is legitimate.

c) Let (xn+1, . . . , xn+r) be a monotone Boolean chain (1). Suppose (x̂n+1, . . . , x̂n+r)
is obtained from the same Boolean chain, but with every operator ∧ changed to ⊓
and with every operator ∨ changed to ⊔, with respect to some legitimate family L.
Prove that, for n+ 1 ≤ l ≤ n+ r, we must have

x̂l ⊆ xl ∨
l

i=n+1

{x̂i ⊕ (x̂j(i) ∨ x̂k(i)) | ◦i = ∨};

xl ⊆ x̂l ∨
l

i=n+1

{x̂i ⊕ (x̂j(i) ∧ x̂k(i)) | ◦i = ∧}.

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 133

86. [HM37 ] A graph G on vertices {1, . . . , n} can be defined by N =

n
2


Boolean
variables xuv for 1 ≤ u < v ≤ n, where xuv = [u−−−v in G]. Let f be the function
f(x) = [G contains a triangle]; for example, when n = 4, f(x12, x13, x14, x23, x24, x34) =
(x12 ∧ x13 ∧ x23)∨ (x12 ∧ x14 ∧ x24)∨ (x13 ∧ x14 ∧ x34)∨ (x23 ∧ x24 ∧ x34). The purpose
of this exercise is to prove that the monotone complexity C+(f) is Ω(n/logn)3.

a) If uj −−− vj for 1 ≤ j ≤ r in a graph G, call S = {{u1, v1}, . . . , {ur, vr}} an r-
family, and let ∆(S) =


1≤i<j≤r({ui, vi}∩{uj , vj}) be the elements of its pairwise

intersections. Say that G is r-closed if we have u−−−v whenever ∆(S) ⊆ {u, v} for
some r-family S. It is strongly r-closed if, in addition, we have |∆(S)| ≥ 2 for all
r-families S. Prove that a strongly r-closed graph is also strongly (r + 1)-closed.

b) Prove that the complete bigraph Km,n is strongly r-closed when r > max(m,n).
c) Prove that a strongly r-closed graph has at most (r − 1)2 edges.
d) Let L be the family of functions {1} ∪ {⌈G⌉ | G is a strongly r-closed graph on
{1, . . . , n}}. (See exercise 85(b); we regard G as a set of edges. For example, when
the edges are 1−−−3, 1−−−4, 2−−−3, 2−−−4, we have ⌈G⌉ = x13 ∨ x14 ∨ x23 ∨ x24.)
Is L legitimate?

e) Let xN+1, . . . , xN+p+q = f be a monotone Boolean chain with p ∧-steps and q
∨-steps, and consider the modified chain x̂N+1, . . . , x̂N+p+q = f̂ based on the
family L in (d). If f̂ ̸= 1, show that 2(r− 1)3p+ (r− 1)2(n− 2) ≥


n
3

. Hint: Use

the second formula in exercise 85(c).
f) Furthermore, if f̂ = 1 we must have r2q ≥ 2r+1. Hint: Now use the first formula.
g) Therefore p = Ω(n/logn)3. Hint: Let r ≈ 6 lgn and apply exercise 84.

87. [M22 ] Show that when nonmonotonic operations are permitted, the triangle func-
tion of exercise 86 has cost C(f) = O(nlg 7(logn)2) = O(n2.81). Hint: A graph has a
triangle if and only if the cube of its adjacency matrix has a nonzero diagonal.

88. [40 ] A median chain is analogous to a Boolean chain, but it uses median-of-three
steps xi = ⟨xj(i)xk(i)xl(i)⟩ for n+1 ≤ i ≤ n+r, instead of the binary operations in (1).

Study the optimum length, depth, and cost of median chains, for all self-dual mono-
tone Boolean functions of 7 variables. What is the shortest chain for ⟨x1x2x3x4x5x6x7⟩?

Lady Caroline. Psha! that’s such a hack!
Sir Simon. A hack, Lady Caroline, that

the knowing ones have warranted sound.

— GEORGE COLMAN, John Bull, Act 3, Scene 1 (1803)

7.1.3. Bitwise Tricks and Techniques
Now comes the fun part: We get to use Boolean operations in our programs.

People are more familiar with arithmetic operations like addition, subtrac-
tion, and multiplication than they are with bitwise operations such as “and,”
“exclusive-or,” and so on, because arithmetic has a very long history. But we will
see that Boolean operations on binary numbers deserve to be much better known.
Indeed, they’re an important component of every good programmer’s toolkit.

Early machine designers provided fullword bitwise operations in their com-
puters primarily because such instructions could be included in a machine’s
repertoire almost for free. Binary logic seemed to be potentially useful, although

From the Library of Melissa Nuno



ptg999

134 COMBINATORIAL SEARCHING 7.1.3

only a few applications were originally foreseen. For example, the EDSAC com-
puter, completed in 1949, included a “collate” command that essentially per-
formed the operation z ← z + (x & y), where z was the accumulator, x was
the multiplier register, and y was a specified word in memory; it was used for
unpacking data. The Manchester Mark I computer, built at about the same
time, included not only bitwise AND, but also OR and XOR. When Alan Turing
wrote the first programming manual for the Mark I in 1950, he remarked that
bitwise NOT can be obtained by using XOR (denoted ‘ |≡’) in combination with a
row of 1s. R. A. Brooker, who extended Turing’s manual in 1952 when the Mark
II computer was being designed, remarked further that OR could be used “to
round off a number by forcing 1 into its least significant digit position.” By this
time the Mark II, which was to become the prototype of the Ferranti Mercury,
had also acquired new instructions for sideways addition and for the position of
the most significant 1.

Keith Tocher published an unusual application of AND and OR in 1954,
which has subsequently been reinvented frequently (see exercise 85). And dur-
ing the ensuing decades, programmers have gradually discovered that bitwise
operations can be amazingly useful. Many of these tricks have remained part of
the folklore; the time is now ripe to take advantage of what has been learned.

A trick is a clever idea that can be used once, while a technique is a mature
trick that can be used at least twice. We will see in this section that tricks tend
to evolve naturally into techniques.

Enriched arithmetic. Let’s begin by officially defining bitwise operations on
integers so that, if x = ( . . . x2x1x0)2, y = ( . . . y2y1y0)2, and z = ( . . . z2z1z0)2
in binary notation, we have

x& y = z ⇐⇒ xk ∧ yk = zk, for all k ≥ 0; (1)
x | y = z ⇐⇒ xk ∨ yk = zk, for all k ≥ 0; (2)
x⊕ y = z ⇐⇒ xk ⊕ yk = zk, for all k ≥ 0. (3)

(It would be tempting to write ‘x∧y’ instead of x&y, and ‘x∨y’ instead of x|y; but
when we study optimization problems we’ll find it better to reserve the notations
x ∧ y and x ∨ y for min(x, y) and max(x, y), respectively.) Thus, for example,

5 & 11 = 1, 5 | 11 = 15, and 5⊕ 11 = 14,

since 5 = (0101)2, 11 = (1011)2, 1 = (0001)2, 15 = (1111)2, and 14 = (1110)2.
Negative integers are to be thought of in this connection as infinite-precision
numbers in two’s complement notation, having infinitely many 1s at the left; for
example, −5 is ( . . . 1111011)2. Such infinite-precision numbers are a special case
of 2-adic integers, which are discussed in exercise 4.1–31, and in fact the operators
&, |, ⊕ make perfect sense when they are applied to arbitrary 2-adic numbers.

Mathematicians have never paid much attention to the properties of & and |
as operations on integers. But the third operation, ⊕, has a venerable history,
because it describes a winning strategy in the game of nim (see exercises 8–16).
For this reason x⊕y has often been called the “nim sum” of the integers x and y.

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 135

All three of the basic bitwise operations turn out to have many useful
properties. For example, every relation between ∧, ∨, and ⊕ that we studied in
Section 7.1.1 is automatically inherited by &, |, and ⊕ on integers, since the rela-
tion holds in every bit position. We might as well recap the main identities here:
x& y = y & x, x | y = y | x, x⊕ y = y ⊕ x; (4)
(x&y)&z = x&(y&z), (x |y) | z = x | (y | z), (x⊕y)⊕z = x⊕(y⊕z); (5)
(x | y) & z = (x& z) | (y & z), (x& y) | z = (x | z) & (y | z); (6)
(x⊕ y) & z = (x& z)⊕ (y & z); (7)
(x& y) | x = x, (x | y) & x = x; (8)
(x& y)⊕ (x | y) = x⊕ y; (9)
x& 0 = 0, x | 0 = x, x⊕ 0 = x; (10)
x& x = x, x | x = x, x⊕ x = 0; (11)
x&−1 = x, x | −1 = −1, x⊕−1 = x̄; (12)
x& x̄ = 0, x | x̄ = −1, x⊕ x̄ = −1; (13)
x& y = x̄ | ȳ, x | y = x̄& ȳ, x⊕ y = x̄⊕ y = x⊕ ȳ. (14)

The notation x̄ in (12), (13), and (14) stands for bitwise complementation of x,
namely ( . . . x̄2x̄1x̄0)2, also written ∼x. Notice that (12) and (13) aren’t quite
the same as 7.1.1–(10) and 7.1.1–(18); we must now use −1 = ( . . . 1111)2 instead
of 1 = ( . . . 0001)2 in order to make the formulas bitwise correct.

We say that x is contained in y, written x ⊆ y or y ⊇ x, if the individual
bits of x and y satisfy xk ≤ yk for all k ≥ 0. Thus

x ⊆ y ⇐⇒ x& y = x ⇐⇒ x | y = y ⇐⇒ x& ȳ = 0. (15)
Of course we needn’t use bitwise operations only in connection with each

other; we can combine them with all the ordinary operations of arithmetic. For
example, from the relation x+ x = ( . . . 1111)2 = −1 we can deduce the formula

−x = x+ 1, (16)
which turns out to be extremely important. Replacing x by x− 1 gives also

−x = x− 1; (17)
and in general we can reduce subtraction to complementation and addition:

x− y = x+ y. (18)
We often want to shift binary numbers to the left or right. These operations

are equivalent to multiplication and division by powers of 2, with appropriate
rounding, but it is convenient to have special notations for them:

x≪ k = x shifted left k bits = ⌊2kx⌋; (19)
x≫ k = x shifted right k bits = ⌊2−kx⌋. (20)

Here k can be any integer, possibly negative. In particular we have
x≪ (−k) = x≫ k and x≫ (−k) = x≪ k, (21)

From the Library of Melissa Nuno



ptg999

136 COMBINATORIAL SEARCHING 7.1.3

for every infinite-precision number x. Also (x& y)≪ k = (x≪ k) & (y≪ k), etc.
When bitwise operations are combined with addition, subtraction, multi-

plication, and/or shifting, extremely intricate results can arise, even when the
formulas are quite short. A taste of the possibilities can be seen, for example,
in Fig. 11. Furthermore, such formulas do not merely produce purposeless,
chaotic behavior: A famous chain of operations known as “Gosper’s hack,” first
published in 1972, opened people’s eyes to the fact that a large number of useful
and nontrivial functions can be computed rapidly (see exercise 20). Our goal in
this section is to explore how such efficient constructions might be discovered.

Fig. 11. A small portion of
the patchwork quilt defined by
the bitwise function f(x, y) =
((x ⊕ ȳ) & ((x − 350)≫ 3))2;
the square cell in row x and
column y is painted white or
black according as the value of
((f(x, y)≫ 12) & 1) is 0 or 1.
(Design by D. Sleator, 1976;
see also exercise 18.)

Packing and unpacking. We studied algorithms for multiple-precision arith-
metic in Section 4.3.1, dealing with situations where integers are too large to fit in
a single word of memory or a single computer register. But the opposite situation,
when integers are significantly smaller than the capacity of one computer word, is
actually much more common; D. H. Lehmer called this “fractional precision.” We
can often deal with several integers at once, by packing them into a single word.

For example, a date x that consists of a year number y, a month number m,
and a day number d, can be represented by using 4 bits for m and 5 bits for d:

x = (((y≪ 4) +m)≪ 5) + d. (22)

We’ll see below that many operations can be performed directly on dates in this
packed form. For example, x < x′ when date x precedes date x′. But if necessary
the individual components (y,m, d) can readily be unpacked when x is given:

d = xmod 32, m = (x≫ 5) mod 16, y = x≫ 9. (23)

And these “mod” operations do not require division, because of the important
law

x mod 2n = x& (2n−1) (24)
for any integer n ≥ 0. We have, for instance, d = x& 31 in (22) and (23).

Such packing of data obviously saves space in memory, and it also saves time:
We can more quickly move or copy items of data from one place to another when

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 137

they’ve been packed together. Moreover, computers run considerably faster when
they operate on numbers that fit into a cache memory of limited size.

The ultimate packing density is achieved when we have 1-bit items, because
we can then cram 64 of them into a single 64-bit word. Suppose, for example,
that we want a table of all odd prime numbers less than 1024, so that we can
easily decide the primality of a small integer. No problem; only eight 64-bit
numbers are required:
P0 = 0111011011010011001011010010011001011001010010001011011010000001,
P1 = 0100110000110010010100100110000110110000010000010110100110000100,
P2 = 1001001100101100001000000101101000000100100001101001000100100101,
P3 = 0010001010001000011000011001010010001011010000010001010001010010,
P4 = 0000110000000010010000100100110010000100100110010010110000010000,
P5 = 1101001001100000101001000100001000100001000100100101000100101000,
P6 = 1010000001000010000011000011011000010000001011010000001011010000,
P7 = 0000010100010000100010100100100000010100100100010010000010100110.
To test whether 2k + 1 is prime, for 0 ≤ k < 512, we simply compute

P⌊k/64⌋≪ (k & 63) (25)
in a 64-bit register, and see if the leftmost bit is 1. For example, the following
MMIX instructions will do the job, if register pbase holds the address of P0:

SRU $0,k,3 $0← ⌊k/8⌋ (i.e., k≫ 3).
LDOU $1,pbase,$0 $1← P⌊$0/8⌋ (i.e., P⌊k/64⌋).
AND $0,k,#3f $0← k mod 64 (i.e., k & #3f).
SLU $1,$1,$0 $1← ($1≪ $0) mod 264.
BN $1,Prime Branch to Prime if s($1) < 0.

(26)

Notice that the leftmost bit of a register is 1 if and only if the register contents
are negative.

We could equally well pack the bits from right to left in each word:
Q0 = 1000000101101101000100101001101001100100101101001100101101101110,
Q1 = 0010000110010110100000100000110110000110010010100100110000110010,
Q2 = 1010010010001001011000010010000001011010000001000011010011001001,
Q3 = 0100101000101000100000101101000100101001100001100001000101000100,
Q4 = 0000100000110100100110010010000100110010010000100100000000110000,
Q5 = 0001010010001010010010001000010001000010001001010000011001001011,
Q6 = 0000101101000000101101000000100001101100001100000100001000000101,
Q7 = 0110010100000100100010010010100000010010010100010000100010100000;
here Qj = PR

j . Instead of shifting left as in (25), we now shift right,
Q⌊k/64⌋≫ (k & 63), (27)

and look at the rightmost bit of the result. The last two lines of (26) become
SRU $1,$1,$0 $1← $1≫ $0.
BOD $1,Prime Branch to Prime if $1 is odd. (28)

(And of course we use qbase instead of pbase.) Either way, the classic sieve of
Eratosthenes will readily set up the basic table entries Pj or Qj (see exercise 24).

From the Library of Melissa Nuno



ptg999

138 COMBINATORIAL SEARCHING 7.1.3

Table 1
THE BIG-ENDIAN VIEW OF A 32-BYTE MEMORY

octa 0  
tetra 0 tetra 4     

wyde 0 wyde 2 wyde 4 wyde 6           
byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7                       
a0 . . . a7 a8 . . . a15 a16 . . . a23 a24 . . . a31 a32 . . . a39 a40 . . . a47 a48 . . . a55 a56 . . . a63

octa 8  
tetra 8 tetra 12     

wyde 8 wyde 10 wyde 12 wyde 14           
byte 8 byte 9 byte 10 byte 11 byte 12 byte 13 byte 14 byte 15                       

a64 . . . a71 a72 . . . a79 a80 . . . a87 a88 . . . a95 a96 . . . a103 a104 . . . a111 a112 . . . a119 a120 . . . a127

octa 16  
tetra 16 tetra 20     

wyde 16 wyde 18 wyde 20 wyde 22           
byte 16 byte 17 byte 18 byte 19 byte 20 byte 21 byte 22 byte 23                       

a128 . . . a135 a136 . . . a143 a144 . . . a151 a152 . . . a159 a160 . . . a167 a168 . . . a175 a176 . . . a183 a184 . . . a191

octa 24  
tetra 24 tetra 28     

wyde 24 wyde 26 wyde 28 wyde 30           
byte 24 byte 25 byte 26 byte 27 byte 28 byte 29 byte 30 byte 31                       

a192 . . . a199 a200 . . . a207 a208 . . . a215 a216 . . . a223 a224 . . . a231 a232 . . . a239 a240 . . . a247 a248 . . . a255

Big-endian and little-endian conventions. Whenever we pack bits or bytes
into words, we must decide whether to place them from left to right or from right
to left. The left-to-right convention is called “big-endian,” because the initial
items go into the most significant positions; thus they will have bigger significance
than their successors, when numbers are compared. The right-to-left convention
is called “little-endian”; it puts the first items where little numbers go.

A big-endian approach seems more natural in many cases, because we’re ac-
customed to reading and writing from left to right. But a little-endian placement
has advantages too. For example, let’s consider the prime number problem again;
let ak = [2k+1 is prime]. Our table entries {P0, P1, . . . , P7} are big-endian, and
we can regard them as the representation of a single multiple-precision integer
that is 512 bits long:

(P0P1 . . . P7)264 = (a0a1 . . . a511)2. (29)
Similarly, our little-endian table entries represent the multiprecise integer

(Q7 . . . Q1Q0)264 = (a511 . . . a1a0)2. (30)
The latter integer is mathematically nicer than the former, because it is

511
k=0

2kak =
511
k=0

2k[2k+1 is prime] =
 ∞
k=0

2k[2k+1 is prime]


mod 2512. (31)

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 139

Table 2
THE LITTLE-ENDIAN VIEW OF A 32-BYTE MEMORY

octa 24  
tetra 28 tetra 24     

wyde 30 wyde 28 wyde 26 wyde 24           
byte 31 byte 30 byte 29 byte 28 byte 27 byte 26 byte 25 byte 24                       

a255 . . . a248 a247 . . . a240 a239 . . . a232 a231 . . . a224 a223 . . . a216 a215 . . . a208 a207 . . . a200 a199 . . . a192

octa 16  
tetra 20 tetra 16     

wyde 22 wyde 20 wyde 18 wyde 16           
byte 23 byte 22 byte 21 byte 20 byte 19 byte 18 byte 17 byte 16                       

a191 . . . a184 a183 . . . a176 a175 . . . a168 a167 . . . a160 a159 . . . a152 a151 . . . a144 a143 . . . a136 a135 . . . a128

octa 8  
tetra 12 tetra 8     

wyde 14 wyde 12 wyde 10 wyde 8           
byte 15 byte 14 byte 13 byte 12 byte 11 byte 10 byte 9 byte 8                       

a127 . . . a120 a119 . . . a112 a111 . . . a104 a103 . . . a96 a95 . . . a88 a87 . . . a80 a79 . . . a72 a71 . . . a64

octa 0  
tetra 4 tetra 0     

wyde 6 wyde 4 wyde 2 wyde 0           
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0                       

a63 . . . a56 a55 . . . a48 a47 . . . a40 a39 . . . a32 a31 . . . a24 a23 . . . a16 a15 . . . a8 a7 . . . a0

Notice, however, that we used (Q7 . . . Q1Q0)264 to get this simple result, not
(Q0Q1 . . . Q7)264 . The other number,

(Q0Q1 . . . Q7)264 = (a63 . . . a1a0a127 . . . a65a64a191 . . . a385a384a511 . . . a449a448)2

is in fact quite weird, and it has no really nice formula. (See exercise 25.)
Endianness has important consequences, because most computers allow in-

dividual bytes of the memory to be addressed as well as register-sized units. MMIX
has a big-endian architecture; therefore if register x contains the 64-bit number
#0123456789abcdef, and if we use the commands ‘STOU x,0; LDBU y,1’ to
store x into octabyte location 0 and read back the byte in location 1, the result
in register y will be #23. On machines with a little-endian architecture, the
analogous commands would set y← #cd instead; #23 would be byte 6.

Tables 1 and 2 illustrate the competing “world views” of big-endian and
little-endian aficionados. The big-endian approach is basically top-down, with
bit 0 and byte 0 at the top left; the little-endian approach is basically bottom-up,
with bit 0 and byte 0 at the bottom right. Because of this difference, great care
is necessary when transmitting data from one kind of computer to another, or
when writing programs that are supposed to give equivalent results in both cases.
On the other hand, our example of the Q table for primes shows that we can
perfectly well use a little-endian packing convention on a big-endian computer

From the Library of Melissa Nuno



ptg999

140 COMBINATORIAL SEARCHING 7.1.3

like MMIX, or vice versa. The difference is noticeable only when data is loaded
and stored in different-sized chunks, or passed between machines.

Working with the rightmost bits. Big-endian and little-endian approaches
aren’t readily interchangeable in general, because the laws of arithmetic send
signals leftward from the bits that are “least significant.” Some of the most
important bitwise manipulation techniques are based on this fact.

If x is almost any nonzero 2-adic integer, we can write its bits in the form

x = (α 01a10b)2; (32)

in other words, x consists of some arbitrary (but infinite) binary string α, followed
by a 0, which is followed by a+ 1 ones, and followed by b zeros, for some a ≥ 0
and b ≥ 0. (The exceptions occur when x = −2b; then a =∞.) Consequently

x̄ = (ᾱ 10a01b)2, (33)
x− 1 = (α 01a01b)2, (34)
−x = (ᾱ 10a10b)2; (35)

and we see that x̄+ 1 = −x = x− 1, in agreement with (16) and (17). With two
operations we can therefore compute relatives of x in several useful ways:

x& (x−1) = ( α 01a00b)2 [remove the rightmost 1]; (36)
x&−x = (0∞00a10b)2 [extract the rightmost 1]; (37)
x | −x = (1∞11a10b)2 [smear the rightmost 1 to the left]; (38)
x⊕−x = (1∞11a00b)2 [remove and smear it to the left]; (39)

x | (x−1) = ( α 01a11b)2 [smear the rightmost 1 to the right]; (40)
x⊕ (x−1) = (0∞00a11b)2 [extract and smear it to the right]; (41)
x̄& (x−1) = (0∞00a01b)2 [extract, remove, and smear it to the right]. (42)

And two further operations produce yet another variant:

((x|(x−1))+1) & x = ( α 00a00b)2 [remove the rightmost run of 1s]. (43)

When x = 0, five of these formulas produce 0, the other three give −1. [For-
mula (36) is due to Peter Wegner, CACM 3 (1960), 322; and (43) is due to
H. Tim Gladwin, CACM 14 (1971), 407–408. See also Henry S. Warren, Jr.,
CACM 20 (1977), 439–441.]

The quantity b in these formulas, which specifies the number of trailing zeros
in x, is called the ruler function of x and written ρx, because it is related to
the lengths of the tick marks that are often used to indicate fractions of an inch:
‘ ’. In general, ρx is the largest integer k such that 2k divides x,
when x ̸= 0; and we define ρ0 =∞. The recurrence relations

ρ(2x+ 1) = 0, ρ(2x) = ρ(x) + 1 (44)

also serve to define ρx for nonzero x. Another handy relation is worthy of note,

ρ(x− y) = ρ(x⊕ y). (45)

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 141

The elegant formula x&−x in (37) allows us to extract the rightmost 1 bit
very nicely, but we often want to identify exactly which bit it is. The ruler
function can be computed in many ways, and the best method often depends
heavily on the computer that is being used. For example, a two-instruction
sequence due to J. Dallos does the job quickly and easily on MMIX (see (42)):

SUBU t,x,1; SADD rho,t,x. (46)

(See exercise 30 for the case x = 0.) We shall discuss here two approaches that
do not rely on exotic commands like SADD; and later, after learning a few more
techniques, we’ll consider a third way.

The first general-purpose method makes use of “magic mask” constants µk

that prove to be useful in many other applications, namely
µ0 = ( . . . 101010101010101010101010101010101)2 = −1/3,
µ1 = ( . . . 100110011001100110011001100110011)2 = −1/5,
µ2 = ( . . . 100001111000011110000111100001111)2 = −1/17,

(47)

and so on. In general µk is the infinite 2-adic fraction −1/(22k + 1), because
(22k + 1)µk = (µk ≪ 2k) + µk = ( . . . 11111)2 = −1. On a computer that has
2d-bit registers we don’t need infinite precision, of course, so we use the truncated
constants

µd,k = (22d

− 1)/(22k

+ 1) for 0 ≤ k < d. (48)
These constants are familiar from our study of Boolean evaluation, because they
are the truth tables of the projection functions xd−k (see, for example, 7.1.2–(7)).

When x is a power of 2, we can use these masks to compute

ρx = [x& µ0 = 0] + 2[x& µ1 = 0] + 4[x& µ2 = 0] + 8[x& µ3 = 0] + · · · , (49)

because [2j & µk = 0] = jk when j = ( . . . j3j2j1j0)2. Thus, on a 2d-bit computer,
we can start with ρ← 0 and y ← x&−x; then set ρ← ρ+ 2k if y&µd,k = 0, for
0 ≤ k < d. This procedure gives ρ = ρx when x ̸= 0. (It also gives ρ0 = 2d − 1,
an anomalous value that may need to be corrected; see exercise 30.)

For example, the corresponding MMIX program might look like this:

m0 GREG #5555555555555555 ;m1 GREG #3333333333333333;
m2 GREG #0f0f0f0f0f0f0f0f ;m3 GREG #00ff00ff00ff00ff;
m4 GREG #0000ffff0000ffff ;m5 GREG #00000000ffffffff;
NEGU y,x; AND y,x,y; AND q,y,m5; ZSZ rho,q,32;
AND q,y,m4; ADD t,rho,16; CSZ rho,q,t; (50)
AND q,y,m3; ADD t,rho,8; CSZ rho,q,t;
AND q,y,m2; ADD t,rho,4; CSZ rho,q,t;
AND q,y,m1; ADD t,rho,2; CSZ rho,q,t;
AND q,y,m0; ADD t,rho,1; CSZ rho,q,t;

total time = 19υ. Or we could replace the last three lines by

SRU y,y,rho; LDB t,rhotab,y; ADD rho,rho,t (51)

where rhotab points to the beginning of an appropriate 129-byte table (only
eight of whose entries are actually used). The total time would then be µ+ 13υ.

From the Library of Melissa Nuno



ptg999

142 COMBINATORIAL SEARCHING 7.1.3

The second general-purpose approach to the computation of ρx is quite
different. On a 64-bit machine it starts as before, with y ← x&−x; but then it
simply sets

ρ ← decode

((a · y) mod 264)≫ 58


, (52)

where a is a suitable multiplier and decode is a suitable 64-byte table. The
constant a = (a63 . . . a1a0)2 must have the property that its 64 substrings

a63a62 . . . a58, a62a61 . . . a57, . . . , a5a4 . . . a0, a4a3a2a1a00, . . . , a000000

are distinct. Exercise 2.3.4.2–23 shows that many such “de Bruijn cycles” exist;
for example, we can use M. H. Martin’s constant #03f79d71b4ca8b09, which
is discussed in exercise 3.2.2–17. The decoding table decode [0], . . . , decode [63] is
then

00, 01, 56, 02, 57, 49, 28, 03, 61, 58, 42, 50, 38, 29, 17, 04,
62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 05,
63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 09, 13, 08, 07, 06.

(53)

[This technique was devised in 1967 by Luther Woodrum of IBM’s Systems De-
velopment Division (unpublished); many other programmers have subsequently
discovered it independently.]

Working with the leftmost bits. The function λx = ⌊lg x⌋, which is dual to
ρx because it locates the leftmost 1 when x > 0, was introduced in Eq. 4.6.3–(6).
It satisfies the recurrence

λ1 = 0; λ(2x) = λ(2x+ 1) = λ(x) + 1 for x > 0; (54)

and it is undefined when x is not a positive integer. What is a good way to
compute it? Once again MMIX provides a quick-but-tricky solution:

FLOTU y,ROUND_DOWN,x; SUB y,y,fone; SR lam,y,52 (55)

where fone = #3ff0000000000000 is the floating point representation of 1.0.
(Total time 6υ.) This code floats x, then extracts the exponent.

But if floating point conversion is not readily available, a binary reduction
strategy works fairly well on a 2d-bit machine. We can start with λ ← 0 and
y ← x; then we set λ ← λ + 2k and y ← y≫ 2k if y≫ 2k ̸= 0, for k = d − 1,
. . . , 1, 0 (or until k is reduced to the point where a short table can be used to
finish up). The MMIX code analogous to (50) and (51) is now

SRU y,x,32; ZSNZ lam,y,32;
ADD t,lam,16; SRU y,x,t; CSNZ lam,y,t;
ADD t,lam,8; SRU y,x,t; CSNZ lam,y,t;

(56)

SRU y,x,lam; LDB t,lamtab,y; ADD lam,lam,t;

and the total time is µ+ 11υ. In this case table lamtab has 256 entries, namely
λx for 0 ≤ x < 256. Notice that the “conditional set” (CS) and “zero or set”
(ZS) instructions have been used here and in (50) instead of branch instructions.

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 143

There appears to be no simple way to extract the leftmost 1 bit that appears
in a register, analogous to the trick by which we extracted the rightmost 1 in (37).
For this purpose we could compute y ← λx and then 1≪y, if x ̸= 0; but a binary
“smearing right” method is somewhat shorter and faster:

Set y ← x, then y ← y | (y≫ 2k) for 0 ≤ k < d.
The leftmost 1 bit of x is then y − (y≫ 1). (57)

[These non-floating-point methods have been suggested by H. S. Warren, Jr.]
Other operations at the left of a register, like removing the leftmost run of

1s, are harder yet; see exercise 39. But there is a remarkably simple, machine-
independent way to determine whether or not λx = λy, given unsigned integers
x and y, in spite of the fact that we can’t compute λx or λy quickly:

λx = λy if and only if x⊕ y ≤ x& y. (58)
[See exercise 40. This elegant relation was discovered by W. C. Lynch in 2006.]
We will use (58) below, to devise another way to compute λx.
Sideways addition. Binary n-bit numbers x = (xn−1 . . . x1x0)2 are often used
to represent subsets X of the n-element universe {0, 1, . . . , n − 1}, with k ∈ X
if and only if 2k ⊆ x. The functions λx and ρx then represent the largest and
smallest elements of X. The function

νx = xn−1 + · · ·+ x1 + x0, (59)
which is called the “sideways sum” or “population count” of x, also has obvious
importance in this connection, because it represents the cardinality |X|, namely
the number of elements in X. This function, which we considered in 4.6.3–(7),
satisfies the recurrence

ν0 = 0; ν(2x) = ν(x) and ν(2x+1) = ν(x) + 1, for x ≥ 0. (60)
It also has an interesting connection with the ruler function (exercise 1.2.5–11),

ρx = 1 + ν(x−1)− νx; equivalently,
n

k=1
ρk = n− νn. (61)

The first textbook on programming, The Preparation of Programs for an
Electronic Digital Computer by Wilkes, Wheeler, and Gill, second edition (Read-
ing, Mass.: Addison–Wesley, 1957), 155, 191–193, presented an interesting sub-
routine for sideways addition due to D. B. Gillies and J. C. P. Miller. Their
method was devised for the 35-bit numbers of the EDSAC, but it is readily
converted to the following 64-bit procedure for νx when x = (x63 . . . x1x0)2:
Set y ← x− ((x≫ 1) &µ0). (Now y = (u31 . . . u1u0)4, where uj = x2j+1 +x2j .)
Set y ← (y&µ1) + ((y≫ 2) &µ1). (Now y = (v15 . . . v1v0)16, vj = u2j+1 +u2j .)
Set y ← (y + (y≫ 4)) & µ2. (Now y = (w7 . . . w1w0)256, wj = v2j+1 + v2j .)
Finally ν ← ((a · y) mod 264)≫ 56, where a = (11111111)256. (62)

The last step cleverly computes y mod 255 = w7+· · ·+w1+w0 via multiplication,
using the fact that the sum fits comfortably in eight bits. [David Muller had
programmed a similar method for the ILLIAC I machine in 1954.]

From the Library of Melissa Nuno



ptg999

144 COMBINATORIAL SEARCHING 7.1.3

If x is expected to be “sparse,” having at most a few 1-bits, we can use a
faster method [P. Wegner, CACM 3 (1960), 322]:

Set ν ← 0, y ← x. Then while y ̸= 0, set ν ← ν + 1, y ← y & (y − 1). (63)

A similar approach, using y ← y |(y+1), works when x is expected to be “dense.”

Bit reversal. For our next trick, let’s change x = (x63 . . . x1x0)2 to its left-
right mirror image, xR = (x0x1 . . . x63)2. Anybody who has been following the
developments so far, seeing methods like (50), (56), (57), and (62), will probably
think, “Aha — once again we can divide by 2 and conquer! If we’ve already
discovered how to reverse 32-bit numbers, we can reverse 64-bit numbers almost
as fast, because (xy)R = yRxR. All we have to do is apply the 32-bit method in
parallel to both halves of the register, then swap the left half with the right half.”

Right. For example, we can reverse an 8-bit string in three easy steps:
Given x7x6x5x4x3x2x1x0
Swap bits x6x7x4x5x2x3x0x1
Swap nyps x4x5x6x7x0x1x2x3
Swap nybbles x0x1x2x3x4x5x6x7

(64)

And six such easy steps will reverse 64 bits. Fortunately, each of the swapping
operations turns out to be quite simple with the help of the magic masks µk:

y ← (x≫ 1) & µ0, z ← (x& µ0)≪ 1, x← y | z;
y ← (x≫ 2) & µ1, z ← (x& µ1)≪ 2, x← y | z;
y ← (x≫ 4) & µ2, z ← (x& µ2)≪ 4, x← y | z;
y ← (x≫ 8) & µ3, z ← (x& µ3)≪ 8, x← y | z;
y ← (x≫ 16) & µ4, z ← (x& µ4)≪ 16, x← y | z;
x← (x≫ 32) | ((x≪ 32) mod 264).

(65)

[Christopher Strachey foresaw some aspects of this construction in CACM 4
(1961), 146, and a similar ternary method was devised in 1973 by Bruce Baum-
gart (see exercise 49). The mature algorithm (65) was presented by Henry S.
Warren, Jr., in Hacker’s Delight (Addison–Wesley, 2002), 102.]

But MMIX is once again able to trump this general-purpose technique with
less traditional commands that do the job much faster. Consider

rev GREG #0102040810204080; MOR x,x,rev; MOR x,rev,x; (66)

the first MOR instruction reverses the bytes of x from big-endian to little-endian
or vice versa, while the second reverses the bits within each byte.

Bit swapping. Suppose we only want to interchange two bits within a register,
xi ↔ xj , where i > j. What would be a good way to proceed? (Dear reader,
please pause for a moment and solve this problem in your head, or with pencil
and paper — without looking at the answer below.)

Let δ = i− j. Here is one solution (but don’t peek until you’re ready):

y ← (x≫δ) & 2j , z ← (x& 2j)≪δ, x← (x&m) | y | z, where m = 2i |2j . (67)

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 145

It uses two shifts and five bitwise Boolean operations, assuming that i and j
are given constants. It is like each of the first lines of (65), except that a new
mask m is needed because y and z don’t account for all of the bits of x.

We can, however, do better, saving one operation and one constant:

y ← (x⊕ (x≫ δ)) & 2j , x← x⊕ y ⊕ (y≪ δ). (68)

The first assignment now puts xi ⊕ xj into position j; the second changes xi to
xi ⊕ (xi ⊕ xj) and xj to xj ⊕ (xi ⊕ xj), as desired. In general it’s often wise to
convert a problem of the form “change x to f(x)” into a problem of the form
“change x to x⊕ g(x),” since the bit-difference g(x) might be easy to calculate.

On the other hand, there’s a sense in which (67) might be preferable to (68),
because the assignments to y and z in (67) can sometimes be performed simulta-
neously. When expressed as a circuit, (67) has a depth of 4 while (68) has depth 5.

Operation (68) can of course be used to swap several pairs of bits simulta-
neously, when we use a mask θ that’s more general than 2j :

y ← (x⊕ (x≫ δ)) & θ, x← x⊕ y ⊕ (y≪ δ). (69)

Let us call this operation a “δ-swap,” because it allows us to swap any non-
overlapping pairs of bits that are δ places apart. The mask θ has a 1 in the right-
most position of each pair that’s supposed to be swapped. For example, (69) will
swap the leftmost 25 bits of a 64-bit word with the rightmost 25 bits, while leav-
ing the 14 middle bits untouched, if we let δ = 39 and θ = 225 − 1 = #1ffffff.

Indeed, there’s an astonishing way to reverse 64 bits using δ-swaps, namely
y ← (x≫ 1) & µ0, z ← (x& µ0)≪ 1, x← y | z,
y ← (x⊕ (x≫ 4)) & #0300c0303030c303, x← x⊕ y ⊕ (y≪ 4),
y ← (x⊕ (x≫ 8)) & #00c0300c03f0003f, x← x⊕ y ⊕ (y≪ 8),
y ← (x⊕ (x≫ 20)) & #00000ffc00003fff, x← x⊕ y ⊕ (y≪ 20),
x← (x≫ 34) | ((x≪ 30) mod 264),

(70)

saving two of the bitwise operations in (65) even though (65) looks “optimum.”

*Bit permutation in general. The methods we’ve just seen can be extended to
obtain an arbitrary permutation of the bits in a register. In fact, there always ex-
ist masks θ0, . . . , θ5, θ̂4, . . . , θ̂0 such that the following operations transform x =
(x63 . . . x1x0)2 into any desired rearrangement xπ = (x63π . . . x1πx0π)2 of its bits:

x← 2k-swap of x with mask θk, for k = 0, 1, 2, 3, 4, 5;
x← 2k-swap of x with mask θ̂k, for k = 4, 3, 2, 1, 0.

(71)

In general, a permutation of 2d bits can be achieved with 2d−1 such steps, using
appropriate masks θk and θ̂k, where the swap distances are respectively 20, 21,
. . . , 2d−1, . . . , 21, 20.

To prove this fact, we can use a special case of the permutation networks
discovered independently by A. M. Duguid and J. Le Corre in 1959, based on
earlier work of D. Slepian [see V. E. Beneš, Mathematical Theory of Connecting
Networks and Telephone Traffic (New York: Academic Press, 1965), Section 3.3].

From the Library of Melissa Nuno



ptg999

146 COMBINATORIAL SEARCHING 7.1.3

Figure 12 shows a permutation network P (2n) for 2n elements constructed from
two permutation networks for n elements, when n = 4. Each ‘ ’ connection
between two lines represents a crossbar module that either leaves the line contents
unaltered or interchanges them, as the data flows from left to right. To start
the recursion when n = 1, we let P (2) consist of a single crossbar. Every setting
of the individual crossbars clearly causes P (2n) to produce a permutation of its
inputs; conversely, we will show that any permutation of the 2n inputs can be
achieved if we are clever enough to set the crossbars appropriately.

The construction of Fig. 12 is best understood by considering an example.
Suppose we want to route the inputs (0, 1, 2, 3, 4, 5, 6, 7) to (3, 2, 4, 1, 6, 0, 5, 7),
respectively. The first job is to determine the contents of the lines just after the
first column of crossbars and just before the last column, since we can then use
a similar method to set the crossbars in the inner P (4)’s. Thus, in the network

0
1
2
3
4
5
6
7

a

b
c

d
e

f
g

h

A
B
C
D
E
F
G
H

3
2
4
1
6
0
5
7

(72)

we want to find permutations abcdefgh and ABCDEFGH such that {a, b} = {0, 1},
{c, d} = {2, 3}, . . . , {g, h} = {6, 7}, {a, c, e, g} = {A, C, E, G}, {b, d, f, h} =
{B, D, F, H}, {A, B} = {3, 2}, {C, D} = {4, 1}, . . . , {G, H} = {5, 7}. Starting at
the bottom, let us choose h = 7, because we don’t wish to disturb the contents
of that line unless necessary. Then the following choices are forced:

H= 7; G= 5; e= 5; f= 4; D= 4; C= 1; a= 1; b= 0; F= 0; E= 6; g= 6. (73)

If we had chosen h = 6, the forcing pattern would have been similar but reversed,

F= 6; E= 0; a= 0; b= 1; D= 1; C= 4; e= 4; f= 5; H= 5; G= 7; g= 7. (74)

Options (73) and (74) can both be completed by choosing either d = 3 (hence
B = 3, A = 2, c = 2) or d = 2 (hence B = 2, A = 3, c = 3).

In general the forcing pattern will go in cycles, no matter what permutation
we begin with. To see this, consider the graph on eight vertices {ab, cd, ef, gh,
AB, CD, EF, GH} that has an edge from uv to UV whenever the pair of inputs
connected to uv has an element in common with the pair of outputs connected
to UV. Thus, in our example the edges are ab −−− EF, ab −−− CD, cd −−− AB,
cd−−− AB, ef−−− CD, ef−−− GH, gh−−− EF, gh−−− GH. We have a “double bond”
between cd and AB, since the inputs connected to c and d are exactly the outputs
connected to A and B; subject to this slight bending of the strict definition of
a graph, we see that each vertex is adjacent to exactly two other vertices, and
lowercase vertices are always adjacent to uppercase ones. Therefore the graph

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 147

P (2n)

P (n)

P (n)

crossbar modules

2
n
in
p
u
ts

︷
︸︸

︷
2
n
o
u
tp
u
ts

︷
︸︸

︷

Fig. 12. The inside of a black box P (2n) that permutes 2n elements
in all possible ways, when n > 1. (Illustrated for n = 4.)

always consists of disjoint cycles of even length. In our example, the cycles are

ab
CD ef

GH
ghEF

cd AB , (75)

where the longer cycle corresponds to (73) and (74). If there are k different
cycles, there will be 2k different ways to specify the behavior of the first and last
columns of crossbars.

To complete the network, we can process the inner 4-element permutations
in the same way; and any 2d-element permutation is achievable in this same
recursive fashion. The resulting crossbar settings determine the masks θj and θ̂j
of (71). Some choices of crossbars may lead to a mask that is entirely zero; then
we can eliminate the corresponding stage of the computation.

If the input and output are identical on the bottom lines of the network, our
construction shows how to ensure that none of the crossbars touching those lines
are active. For example, the 64-bit algorithm in (71) could be used also with a
60-bit register, without needing the four extra bits for any intermediate results.

Of course we can often beat the general procedure of (71) in special cases.
For example, exercise 52 shows that method (71) needs nine swapping steps to
transpose an 8× 8 matrix, but in fact three swaps suffice:

Given
00 01 02 03 04 05 06 07
10 11 12 13 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 76 77

7-swap
00 10 02 12 04 14 06 16
01 11 03 13 05 15 07 17
20 30 22 32 24 34 26 36
21 31 23 33 25 35 27 37
40 50 42 52 44 54 46 56
41 51 43 53 45 55 47 57
60 70 62 72 64 74 66 76
61 71 63 73 65 75 67 77

14-swap
00 10 20 30 04 14 24 34
01 11 21 31 05 15 25 35
02 12 22 32 06 16 26 36
03 13 23 33 07 17 27 37
40 50 60 70 44 54 64 74
41 51 61 71 45 55 65 75
42 52 62 72 46 56 66 76
43 53 63 73 47 57 67 77

28-swap
00 10 20 30 40 50 60 70
01 11 21 31 41 51 61 71
02 12 22 32 42 52 62 72
03 13 23 33 43 53 63 73
04 14 24 34 44 54 64 74
05 15 25 35 45 55 65 75
06 16 26 36 46 56 66 76
07 17 27 37 47 57 67 77

The “perfect shuffle” is another bit permutation that arises frequently in
practice. If x = ( . . . x2x1x0)2 and y = ( . . . y2y1y0)2 are any 2-adic integers, we
define x ‡ y (“x zip y,” the zipper function of x and y) by interleaving their bits:

x ‡ y = ( . . . x2y2x1y1x0y0)2. (76)

From the Library of Melissa Nuno



ptg999

148 COMBINATORIAL SEARCHING 7.1.3

This operation has important applications to the representation of 2-dimensional
data, because a small change in either x or y usually causes only a small change
in x ‡ y (see exercise 86). Notice also that the magic mask constants (47) satisfy

µk ‡ µk = µk+1. (77)
If x appears in the left half of a register and y appears in the right half, a perfect
shuffle is the permutation that changes the register contents to x ‡ y.

A sequence of d− 1 swapping steps will perfectly shuffle a 2d-bit register; in
fact, exercise 53 shows that there are several ways to achieve this. Once again,
therefore, we are able to improve on the (2d−1)-step method of (71) and Fig. 12.

Conversely, suppose we’re given the shuffled value z = x ‡ y in a 2d-bit
register; is there an efficient way to extract the original value of y? Sure: If the
d− 1 swaps that do a perfect shuffle are performed in reverse order, they’ll undo
the shuffle and recover both x and y. But if only y is wanted, we can save half of
the work: Start with y ← z & µ0; then set y ← (y + (y≫ 2k−1)) & µk for k = 1,
. . . , d − 1. For example, when d = 3 this procedure goes (0y30y20y10y0)2 →→
(00y3y200y1y0)2 →→ (0000y3y2y1y0)2. “Divide and conquer” conquers again.

Consider now a more general problem, where we want to extract and com-
press an arbitrary subset of a register’s bits. Suppose we’re given a 2d-bit word
z = (z2d−1 . . . z1z0)2 and a mask χ = (χ2d−1 . . . χ1χ0)2 that has s 1-bits; thus
νχ = s. The problem is to assemble the compact subword

y = (ys−1 . . . y1y0)2 = (zjs−1 . . . zj1zj0)2, (78)

where js−1 > · · · > j1 > j0 are the indices where χj = 1. For example, if
d = 3 and χ = (10110010)2, we want to transform z = (y3x3y2y1x2x1y0x0)2 into
y = (y3y2y1y0)2. (The problem of going from x ‡ y to y, considered above, is the
special case χ = µ0.) We know from (71) that y can be found by δ-swapping,
at most 2d− 1 times; but in this problem the relevant data always moves to the
right, so we can speed things up by doing shifts instead of swaps.

Let’s say that a δ-shift of x with mask θ is the operation

x ← x⊕

(x⊕ (x≫ δ)) & θ


, (79)

which changes bit xj to xj+δ if θ has 1 in position j but leaves xj unchanged
otherwise. Guy Steele discovered that there always exist masks θ0, θ1, . . . , θd−1
so that the general extraction problem (78) can be solved with a few δ-shifts:

Start with x← z; then do a 2k-shift of x with mask θk,
for k = 0, 1, . . . , d− 1; finally set y ← x. (80)

In fact, the idea for finding appropriate masks is surprisingly simple. Every bit
that wants to move a total of exactly l = (ld−1 . . . l1l0)2 places to the right should
be transported in the 2k-shifts for which lk = 1.

For example, suppose d = 3 and χ = (10110010)2. (We must assume that
χ ̸= 0.) Remembering that some 0s need to be shifted in from the left, we can
set θ0 = (00011001)2, θ1 = (00000110)2, θ2 = (11111000)2; then (80) maps

(y3x3y2y1x2x1y0x0)2 →→ (y3x3y2y2y1x1y0y0)2 →→ (y3x3y2y2y1y2y1y0)2 →→ (0000y3y2y1y0)2.

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 149

Exercise 69 proves that the bits being extracted will never interfere with each
other during their journey. Furthermore, there’s a slick way to compute suitable
masks θk dynamically from χ, in O(d2) steps (see exercise 70).

A “sheep-and-goats” or “grouping” operation has been suggested for com-
puter hardware, extending (78) to produce the general unshuffled word

(xr−1 . . . x1x0ys−1 . . . y1y0)2 = (zir−1 . . . zi1zi0 zjs−1 . . . zj1zj0)2; (81)

here ir−1 > · · · > i1 > i0 are the indices where χi = 0. But another operation
called “gather-flip,” which reverses the order of the unmasked bits and gives

(x0x1 . . . xr−1ys−1 . . . y1y0)2 = (zi0zi1 . . . zir−1 zjs−1 . . . zj1zj0)2, (81′)

turns out to be more useful and easier to implement. Any permutation of 2d bits
is achievable by using either operation, at most d times (see exercises 72 and 73).

Shifting also allows us to go beyond permutations, to arbitrary mappings of
bits within a register. Suppose we want to transform

x = (x2d−1 . . . x1x0)2 →→ xφ = (x(2d−1)φ . . . x1φx0φ)2, (82)

where φ is any of the (2d)2d functions from the set {0, 1, . . . , 2d − 1} into itself.
K. M. Chung and C. K. Wong [IEEE Transactions C-29 (1980), 1029–1032]
introduced an attractive way to do this in O(d) steps by using cyclic δ-shifts,
which are like (79) except that we set

x ← x⊕

(x⊕ (x≫ δ)⊕ (x≪ (2d − δ))) & θ


. (83)

Their idea is to let cl be the number of indices j such that jφ = l, for 0 ≤ l < 2d.
Then they find masks θ0, θ1, . . . , θd−1 with the property that a cyclic 2k-shift
of x with mask θk, done successively for 0 ≤ k < d, will transform x into a
number x′ that contains exactly cl copies of bit xl for each l. Finally the general
permutation procedure (71) can be used to change x′ →→ xφ.

For example, suppose d = 3 and xφ = (x3x1x1x0x3x7x5x5)2. Then we have
(c0, c1, c2, c3, c4, c5, c6, c7) = (1, 2, 0, 2, 0, 2, 0, 1). Using masks θ0 = (00011100)2,
θ1 = (00001000)2, and θ2 = (01100000)2, three cyclic 2k-shifts now take x =
(x7x6x5x4x3x2x1x0)2 →→ (x7x6x5x5x4x3x1x0)2 →→ (x7x6x5x5x5x3x1x0)2 →→
(x7x3x1x5x5x3x1x0)2 = x′. Then, some δ-swaps: x′ →→ (x3x7x5x1x3x5x1x0)2 →→
(x3x1x5x7x3x5x1x0)2 →→ (x3x1x1x0x3x5x5x7)2 →→ (x3x1x1x0x3x7x5x5)2 = xφ;
we’re done! Of course any 8-bit mapping can be achieved more quickly by brute
force, one bit at a time; the method of Chung and Wong becomes much more
impressive in a 256-bit register. Even with MMIX’s 64-bit registers it’s pretty
good, needing at most 96 cycles in the worst case.

To find θ0, we use the fact that

cl = 2d, and we look at Σeven =


c2l

and Σodd =

c2l+1. If Σeven = Σodd = 2d−1, we can set θ0 = 0 and omit the

cyclic 1-shift. But if, say, Σeven < Σodd, we find an even l with cl = 0. Cyclically
shifting into bits l, l+1, . . . , l+t (modulo 2d) for some t will produce new counts
(c′0, . . . , c′2d−1) for which Σ′

even = Σ′
odd = 2d−1; so θ0 = 2l + · · · + 2(l+t) mod 2d.

Then we can deal with the bits in even and odd positions separately, using the
same method, until getting down to 1-bit subwords. Exercise 74 has the details.

From the Library of Melissa Nuno



ptg999

150 COMBINATORIAL SEARCHING 7.1.3

Working with fragmented fields. Instead of extracting bits from various
parts of a word and gathering them together, we can often manipulate those bits
directly in their original positions.

For example, suppose we want to run through all subsets of a given set U ,
where (as usual) the set is specified by a mask χ such that [k∈U ] = (χ≫k)&1.
If x ⊆ χ and x ̸= χ, there’s an easy way to calculate the next largest subset of U
in lexicographic order, namely the smallest integer x′ > x such that x′ ⊆ χ:

x′ = (x− χ) & χ. (84)

In the special case when x = 0 and χ ̸= 0, we’ve already seen in (37) that this for-
mula produces the rightmost bit of χ, which corresponds to the lexicographically
smallest nonempty subset of U .

Why does formula (84) work? Imagine adding 1 to the number x | χ̄, which
has 1s wherever χ is 0. A carry will propagate through those 1s until it reaches
the rightmost bit position where x has a 0 and χ has a 1; furthermore all bits
to the right of that position will become zero. Therefore x′ = ((x | χ̄) + 1) & χ.
But we have (x | χ̄) + 1 = (x+ χ̄) + 1 = x+ (χ̄+ 1) = x− χ when x ⊆ χ. QED.

Notice further that x′ = 0 if and only if x = χ. So we’ll know when we’ve
found the largest subset. Exercise 79 shows how to go back to x, given x′.

We might also want to run through all elements of a subcube — for example,
to find all bit patterns that match a specification like ∗10∗1∗01, consisting of
0s, 1s, and ∗s (don’t-cares). Such a specification can be represented by asterisk
codes a = (an−1 . . . a0)2 and bit codes b = (bn−1 . . . b0)2, as in exercise 7.1.1–30;
our example corresponds to a = (10010100)2, b = (01001001)2. The problem of
enumerating all subsets of a set is the special case where a = χ and b = 0. In
the more general subcube problem, the successor of a given bit pattern x is

x′ = ((x− (a+ b)) & a) + b. (85)

Suppose the bits of z = (zn−1 . . . z0)2 have been stitched together from two
subwords x = (xr−1 . . . x0)2 and y = (ys−1 . . . y0)2, where r + s = n, using
an arbitrary mask χ for which νχ = s to govern the stitching. For example,
z = (y2x4x3y1x2y0x1x0)2 when n = 8 and χ = (10010100)2. We can think of z
as a “scattered accumulator,” in which alien bits xi lurk among friendly bits yj .
From this viewpoint the problem of finding successive elements of a subcube is
essentially the problem of computing y + 1 inside a scattered accumulator z,
without changing the value of x. The sheep-and-goats operation (81) would
untangle x and y; but it’s expensive, and (85) shows that we can solve the
problem without it. We can, in fact, compute y + y′ when y′ = (y′s−1 . . . y

′
0)2

is any value inside a scattered accumulator z′, if y and y′ both appear in the
positions specified by χ: Consider t = z & χ and t′ = z′ & χ. If we form the
sum (t | χ̄) + t′, all carries that occur in a normal addition y + y′ will propagate
through the blocks of 1s in χ̄, just as if the scattered bits were adjacent. Thus

((z & χ) + (z′ | χ̄)) & χ (86)

is the sum of y and y′, modulo 2s, scattered according to the mask χ.

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 151

Tweaking several bytes at once. Instead of concentrating on the data in one
field within a word, we often want to deal simultaneously with two or more sub-
words, performing calculations on each of them in parallel. For example, many
applications need to process long sequences of bytes, and we can gain speed by
acting on eight bytes at a time; we might as well use all 64 bits that our machine
provides. General multibyte techniques were introduced by Leslie Lamport in
CACM 18 (1975), 471–475, and subsequently extended by many programmers.

Suppose first that we simply wish to take two sequences of bytes and find
their sum, regarding them as coordinates of vectors, doing arithmetic mod-
ulo 256 in each byte. Algebraically speaking, we’re given 8-byte vectors x =
(x7 . . . x1x0)256 and y = (y7 . . . y1y0)256; we want to compute z = (z7 . . . z1z0)256,
where zj = (xj + yj) mod 256 for 0 ≤ j < 8. Ordinary addition of x to y doesn’t
quite work, because we need to prevent carries from propagating between bytes.
So we extract the high-order bits and deal with them separately:

z ← (x⊕ y) & h, where h = #8080808080808080;
z ← ((x& h̄) + (y & h̄))⊕ z. (87)

The total time for MMIX to do this is 6υ, plus 3µ+3υ if we also count the time to
load x, load y, and store z. By contrast, eight one-byte additions (LDBU, LDBU,
ADDU, and STBU, repeated eight times) would cost 8 × (3µ + 4υ) = 24µ + 32υ.
Parallel subtraction of bytes is just as easy (see exercise 88).

We can also compute bytewise averages, with zj = ⌊(xj + yj)/2⌋ for each j:
z ← ((x⊕ y) & l̄)≫ 1, where l = #0101010101010101;
z ← (x& y) + z. (88)

This elegant trick, suggested by H. G. Dietz, is based on the well-known formula
x+ y = (x⊕ y) + ((x& y)≪ 1) (89)

for radix-2 addition. (We can implement (88) with four MMIX instructions, not
five, because a single MOR operation will change x⊕ y to ((x⊕ y) & l̄)≫ 1.)

Exercises 88–93 and 100–104 develop these ideas further, showing how to do
mixed-radix arithmetic, as well as such things as the addition and subtraction of
vectors whose components are treated modulo m when m needn’t be a power of 2.

In essence, we can regard the bits, bytes, or other subfields of a register as if
they were elements of an array of independent microprocessors, acting indepen-
dently on their own subproblems yet tightly synchronized, and communicating
with each other via shift instructions and carry bits. Computer designers have
been interested for many years in the development of parallel processors with a
so-called SIMD architecture, namely a “Single Instruction stream with Multiple
Data streams”; see, for example, S. H. Unger, Proc. IRE 46 (1958), 1744–1750.
The increased availability of 64-bit registers has meant that programmers of
ordinary sequential computers are now able to get a taste of SIMD processing.
Indeed, computations such as (87), (88), and (89) are called SWAR methods —
“SIMD Within A Register,” a name coined by R. J. Fisher and H. G. Dietz [see
Lecture Notes in Computer Science 1656 (1999), 290–305]. See also R. B. Lee,
IEEE Micro 16, 4 (August 1996), 51–59.

From the Library of Melissa Nuno



ptg999

152 COMBINATORIAL SEARCHING 7.1.3

Of course bytes often contain alphabetic data as well as numbers, and one
of the most common programming tasks is to search through a long string of
characters in order to find the first appearance of some particular byte value. For
example, strings are often represented as a sequence of nonzero bytes terminated
by 0. In order to locate the end of a string quickly, we need a fast way to
determine whether all eight bytes of a given word x are nonzero (because they
usually are). Several fairly good solutions to this problem were found by Lamport
and others; but Alan Mycroft discovered in 1987 that three instructions actually
suffice:

t ← h& (x− l) & x̄, (90)
where h and l appear in (87) and (88). If each byte xj is nonzero, t will be zero;
for (xj−1)&x̄j will be 2ρxj−1, which is always less than #80 = 27. But if xj = 0,
while its right neighbors xj−1, . . . , x0 (if any) are all nonzero, the subtraction
x− l will produce #ff in byte j, and t will be nonzero. In fact, ρt will be 8j+ 7.

Caution: Although the computation in (90) pinpoints the rightmost zero
byte of x, we cannot deduce the position of the leftmost zero byte from the value
of t alone. (See exercise 94.) In this respect the little-endian convention proves
to be preferable to the corresponding big-endian behavior. An application that
needs to locate the leftmost zero byte can use (90) to skip quickly over nonzeros,
but then it must fall back on a slower method when the search has been narrowed
down to eight finalists. The following 4-operation formula produces a completely
precise test value t = (t7 . . . t1t0)256, in which tj = 128[xj = 0] for each j:

t ← h&∼(x | ((x | h)− l)). (91)

The leftmost zero byte of x is now xj , where λt = 8j + 7.
Incidentally, the single MMIX instruction ‘BDIF t,l,x’ solves the zero-byte

problem immediately by setting each byte tj of t to [xj = 0], because 1 .− x =
[x= 0]. But we are primarily interested here in fairly universal techniques that
don’t rely on exotic hardware; MMIX’s special features will be discussed later.

Now that we know a fast way to find the first 0, we can use the same ideas
to search for any desired byte value. For example, to test if any byte of x is the
newline character (#a), we simply look for a zero byte in x⊕#0a0a0a0a0a0a0a0a.

And these techniques also open up many other doors. Suppose, for instance,
that we want to compute z = (z7 . . . z1z0)256 from x and y, where zj = xj
when xj = yj but zj = ’*’ when xj ̸= yj . (Thus if x = "beaching" and
y = "belching", we’re supposed to set z ← "be*ching".) It’s easy:

t← h& ((x⊕ y) | (((x⊕ y) | h)− l));
m← (t≪ 1)− (t≫ 7);
z ← x⊕ ((x⊕ "********") &m).

(92)

The first step uses a variant of (91) to flag the high-order bits in each byte
where xj ̸= yj . The next step creates a mask to highlight those bytes: #00 if
xj = yj , otherwise #ff. And the last step, which could also be written z ←
(x&m) | ("********"&m), sets zj ← xj or zj ← ’*’, depending on the mask.

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 153

Operations (90) and (91) were originally designed as tests for bytes that are
zero; but a closer look reveals that we can more wisely regard them as tests for
bytes that are less than 1. Indeed, if we replace l by c · l = (cccccccc)256 in
either formula, where c is any positive constant ≤ 128, we can use (90) or (91)
to see if x contains any bytes that are less than c. Furthermore the comparison
values c need not be the same in every byte position; and with a bit more work
we can also do bytewise comparison in the cases where c > 128. Here’s an 8-step
formula that sets tj ← 128[xj <yj ] for each byte position j in the test word t:

t ← h&∼⟨xȳz⟩, where z = (x | h)− (y & h̄). (93)

(See exercise 96.) The median operation in this general formula can often be
simplified; for example, (93) reduces to (91) when y = l, because ⟨x(−1)z⟩ = x |z.

Once we’ve found a nonzero t in (90) or (91) or (93), we might want to
compute ρt or λt in order to discover the index j of the rightmost or leftmost
byte that has been flagged. The problem of calculating ρ or λ is now simpler
than before, since t can take on only 256 different values. Indeed, the operation

j ← table [((a · t) mod 264)≫ 56], where a = 256 − 1
27 − 1 , (94)

now suffices to compute j, given an appropriate 256-byte table. And the mul-
tiplication here can often be performed faster by doing three shift-and-add
operations, “t← t+ (t≪ 7), t← t+ (t≪ 14), t← t+ (t≪ 28),” instead.

Broadword computing. We’ve now seen more than a dozen ways in which
a computer’s bitwise operations can produce astonishing results at high speed,
and the exercises below contain many more such surprises.

Elwyn Berlekamp has remarked that computer chips containing N flip-flops
continue to be built with ever larger values of N, yet in practice only O(logN) of
those components are flipping or flopping at any given moment. The surprising
effectiveness of bitwise operations suggests that computers of the future might
make use of this untapped potential by having enhanced memory units that are
able to do efficient n-bit computations for fairly large values of n. To prepare for
that day, we ought to have a good name for the concept of manipulating “wide
words.” Lyle Ramshaw has suggested the pleasant term broadword, so that we
can speak of n-bit quantities as broadwords of width n.

Many of the methods we’ve discussed are 2-adic, in the sense that they work
correctly with binary numbers that have arbitrary (even infinite) precision. For
example, the operation x&−x always extracts 2ρx, the least significant 1 bit of
any nonzero 2-adic integer x. But other methods have an inherently broadword
nature, such as the methods that use O(d) steps to perform sideways addition
or bit permutation of 2d-bit words. Broadword computing is the art of dealing
with n-bit words, when n is a parameter that is not extremely small.

Some broadword algorithms are of theoretical interest only, because they are
efficient only in an asymptotic sense when n exceeds the size of the universe. But
others are eminently practical even when n = 64. And in general, a broadword
mindset often suggests good techniques.

From the Library of Melissa Nuno



ptg999

154 COMBINATORIAL SEARCHING 7.1.3

One fascinating-but-impractical fact about broadword operations is the dis-
covery by M. L. Fredman and D. E. Willard that O(1) broadword steps suffice
to evaluate the function λx = ⌊lg x⌋ for any nonzero n-bit number x, no matter
how big n is. Here is their remarkable scheme, when n = g2 and g is a power of 2:
t1 ← h& (x | ((x | h)− l)), where h = 2g−1l and l = (2n − 1)/(2g − 1);
y ← (((a · t1) mod 2n)≫ (n− g)) · l, where a = (2n−g − 1)/(2g−1 − 1);
t2 ← h& (y | ((y | h)− b)), where b = (2n+g − 1)/(2g+1 − 1);
m← (t2≪ 1)− (t2≫ (g − 1)), m← m⊕ (m≫ g);
z ← (((l · (x&m)) mod 2n)≫ (n− g)) · l;
t3 ← h& (z | ((z | h)− b));
λ← ((l · ((t2≫ (2g − lg g − 1)) + (t3≫ (2g − 1)))) mod 2n)≫ (n− g).

(95)

(See exercise 106.) The method fails to be practical because five of these 29 steps
are multiplications, so they aren’t really “bitwise” operations. In fact, we’ll prove
later that multiplication by a constant requires at least Ω(logn) bitwise steps.

A multiplication-free way to find λx, with only O(log logn) bitwise broad-
word operations, was discovered in 1997 by Gerth Brodal, whose method is even
more remarkable than (95). It is based on a formula analogous to (49),

λx = [λx=λ(x& µ̄0)] + 2[λx=λ(x& µ̄1)] + 4[λx=λ(x& µ̄2)] + · · · , (96)

and the fact that the relation λx = λy is easily tested (see (58)):

Algorithm B (Binary logarithm). This algorithm uses n-bit operations to
compute λx = ⌊lg x⌋, assuming that 0 < x < 2n and n = d · 2d.

B1. [Scale down.] Set λ← 0. Then set λ← λ+ 2k and x← x≫ 2k if x ≥ 22k ,
for k = ⌈lgn⌉ − 1, ⌈lgn⌉ − 2, . . . , d.

B2. [Replicate.] (At this point 0 < x < 22d ; the remaining task is to increase
λ by ⌊lg x⌋. We will replace x by d copies of itself, in 2d-bit fields.) Set
x← x | (x≪ 2d+k) for 0 ≤ k < ⌈lg d⌉.

B3. [Change leading bits.] Set y ← x&∼(µd,d−1 . . . µd,1µd,0)22d . (See (48).)
B4. [Compare all fields.] Set t ← h & (y | ((y | h) − (x ⊕ y))), where h =

(22d−1 . . . 22d−122d−1)22d .
B5. [Compress bits.] Set t← (t+ (t≪ (2d+k − 2k))) mod 2n for 0 ≤ k < ⌈lg d⌉.
B6. [Finish.] Finally, set λ← λ+ (t≫ (n− d)).
This algorithm is almost competitive with (56) when n = 64 (see exercise 107).

Another surprisingly efficient broadword algorithm was discovered in 2006
by M. S. Paterson and the author, who considered the problem of identifying
all occurrences of the pattern 01r in a given n-bit binary string. This problem,
which is related to finding r contiguous free blocks when allocating storage, is
equivalent to computing

q = x̄& (x≪ 1) & (x≪ 2) & (x≪ 3) & · · ·& (x≪ r) (97)

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 155

when x = (xn−1 . . . x1x0)2 is given. For example, when n = 16, r = 3, and
x = (1110111101100111)2, we have q = (0001000000001000)2. One might expect
intuitively that Ω(log r) bitwise operations would be needed. But in fact the
following 20-step computation does the job for all n > r > 0: Let s = ⌈r/2⌉,
l =


k≥0 2ks mod 2n, h = (2s−1l) mod 2n, and a =


k≥0(−1)k+122ks mod 2n.

y ← h& x& ((x& h̄) + l);
t← (x+ y) & x̄&−2r;
u← t& a, v ← t& ā;
m← (u− (u≫ r)) | (v − (v≫ r));
q ← t& ((x&m) + ((t≫ r) &∼(m≪ 1))).

(98)

Exercise 111 explains why these machinations are valid. The method has little
or no practical value; there’s an easy way to evaluate (97) in 2⌈lg r⌉ + 2 steps,
so (98) is not advantageous until r > 512. But (98) is another indication of the
unexpected power of broadword methods.

*Lower bounds. Indeed, the existence of so many tricks and techniques makes
it natural to wonder whether we’ve only been scratching the surface. Are there
many more incredibly fast methods, still waiting to be discovered? A few
theoretical results are known by which we can derive certain limitations on what
is possible, although such studies are still in their infancy.

Let’s say that a 2-adic chain is a sequence (x0, x1, . . . , xr) of 2-adic integers
in which each element xi for i > 0 is obtained from its predecessors via bitwise
manipulation. More precisely, we want the steps of the chain to be defined by
binary operations

xi = xj(i) ◦i xk(i) or ci ◦i xk(i) or xj(i) ◦i ci, (99)

where each ◦i is one of the operators {+,−,&, |,⊕,≡,⊂,⊃,⊂,⊃,∧,∨,≪,≫}
and each ci is a constant. Furthermore, when the operator ◦i is a left shift or
right shift, the amount of shift must be a positive integer constant; operations
such as xj(i)≪xk(i) or ci≫xk(i) are not permitted. (Without the latter restriction
we couldn’t derive meaningful lower bounds, because every 0–1 valued function
of a nonnegative integer x would be computable in two steps as “(c≫ x) & 1”
for some constant c.)

Similarly, a broadword chain of width n, also called an n-bit broadword
chain, is a sequence (x0, x1, . . . , xr) of n-bit numbers subject to essentially the
same restrictions, where n is a parameter and all operations are performed
modulo 2n. Broadword chains behave like 2-adic chains in many ways, but
subtle differences can arise because of the information loss that occurs at the left
of n-bit computations (see exercise 113).

Both types of chains compute a function f(x) = xr when we start them
out with a given value x = x0. Exercise 114 shows that an mn-bit broadword
chain is able to do m essentially simultaneous evaluations of any function that
is computable with an n-bit chain. Our goal is to study the shortest chains that
are able to evaluate a given function f .

From the Library of Melissa Nuno



ptg999

156 COMBINATORIAL SEARCHING 7.1.3

Any 2-adic or broadword chain (x0, x1, . . . , xr) has a sequence of “shift sets”
(S0, S1, . . . , Sr) and “bounds” (B0, B1, . . . , Br), defined as follows: Start with
S0 = {0} and B0 = 1; then for i ≥ 1, let

Si =


Sj(i) ∪ Sk(i),
Sk(i),
Sj(i),
Sj(i) + ci,
Sj(i) − ci,

and Bi =


MiBj(i)Bk(i), if xi = xj(i) ◦i xk(i),
MiBk(i), if xi = ci ◦i xk(i),
MiBj(i), if xi = xj(i) ◦i ci,
Bj(i), if xi = xj(i)≫ ci,
Bj(i), if xi = xj(i)≪ ci,

(100)

where Mi = 2 if ◦i ∈ {+,−} and Mi = 1 otherwise, and these formulas assume
that ◦i /∈ {≪,≫}. For example, consider the following 7-step chain:

xi Si Bi

x0 = x {0} 1
x1 = x0 &−2 {0} 1
x2 = x1 + 2 {0} 2
x3 = x2≫ 1 {1} 2
x4 = x2 + x3 {0, 1} 8
x5 = x4≫ 4 {4, 5} 8
x6 = x4 + x5 {0, 1, 4, 5} 128
x7 = x6≫ 4 {4, 5, 8, 9} 128

(101)

(We encountered this chain in exercise 4.4–9, which proved that these operations
will yield x7 = ⌊x/10⌋ for 0 ≤ x < 160 when performed with 8-bit arithmetic.)

To begin a theory of lower bounds, let’s notice first that the high-order bits
of x = x0 cannot influence any low-order bits unless we shift them to the right.
Lemma A. Given a 2-adic or broadword chain, let the binary representation of
xi be ( . . . xi2xi1xi0)2. Then bit xip can depend on bit x0q only if q ≤ p+maxSi.
Proof. By induction on i we can in fact show that, if Bi = 1, bit xip can depend
on bit x0q only if q − p ∈ Si. Addition and subtraction, which force Bi > 1,
allow any particular bit of their operands to affect all bits that lie to the left in
the sum or difference, but not those that lie to the right.
Corollary I. The function x .− 1 cannot be computed by a 2-adic chain, nor
can any function for which at least one bit of f(x) depends on an unbounded
number of bits of x.
Corollary W. An n-bit function f(x) can be computed by an n-bit broadword
chain without shifts if and only if x ≡ y (modulo 2p) implies f(x) ≡ f(y)
(modulo 2p) for 0 ≤ p < n.
Proof. If there are no shifts we have Si = {0} for all i. Thus bit xrp cannot
depend on bit x0q unless q ≤ p. In other words we must have xr ≡ yr (modulo 2p)
whenever x0 ≡ y0 (modulo 2p).

Conversely, all such functions are achievable by a sufficiently long chain.
Exercise 119 gives shift-free n-bit chains for the functions

fpy(x) = 2p [xmod 2p+1 = y ], when 0 ≤ p < n and 0 ≤ y < 2p+1, (102)

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 157

from which all the relevant functions arise by addition. [H. S. Warren, Jr., gener-
alized this result to functions of m variables in CACM 20 (1977), 439–441.]

Shift sets Si and bounds Bi are important chiefly because of a fundamental
lemma that is our principal tool for proving lower bounds:

Lemma B. Let Xpqr = {xr&⌊2p−2q⌋ | x0 ∈ Vpqr} in an n-bit broadword chain,
where

Vpqr = {x | x& ⌊2p+s − 2q+s⌋ = 0 for all s ∈ Sr} (103)
and p > q. Then |Xpqr| ≤ Br. (Here p and q are integers, possibly negative.)
This lemma states that at most Br different bit patterns xr(p−1) . . . xrq can occur
within f(x), when certain intervals of bits in x are constrained to be zero.

Proof. The result certainly holds when r = 0. Otherwise if, for example, xr =
xj + xk, we know by induction that |Xpqj | ≤ Bj and |Xpqk| ≤ Bk. Furthermore
Vpqr = Vpqj ∩ Vpqk, since Sr = Sj ∪ Sk. Thus at most BjBk possibilities for
(xj + xk) & ⌊2p − 2q⌋ arise when there’s no carry into position q, and at most
BjBk when there is a carry, making a grand total of at most Br = 2BjBk

possibilities altogether. Exercise 122 considers the other cases.
We now can prove that the ruler function needs Ω(log logn) steps.

Theorem R. If n = d · 2d, every n-bit broadword chain that computes ρx for
0 < x < 2n has more than lg d steps that are not shifts.

Proof. If there are l nonshift steps, we have |Sr| ≤ 2l and Br ≤ 22l−1. Apply
Lemma B with p = d and q = 0, and suppose |Xd0r| = 2d − t. Then there are t
values of k < 2d such that

{2k, 2k+2d

, 2k+2·2d

, . . . , 2k+(d−1)2d

} ∩ Vd0r = ∅.

But Vd0r excludes at most 2ld of the n possible powers of 2; so t ≤ 2l.
If l ≤ lg d, Lemma B tells us that 2d − t ≤ Br ≤ 2d−1; hence 2d−1 ≤ t ≤

2l ≤ d. But this is impossible unless d ≤ 2, when the theorem clearly holds.
The same proof works also for the binary logarithm function:

Corollary L. If n = d · 2d > 2, every n-bit broadword chain that computes λx
for 0 < x < 2n has more than lg d steps that are not shifts.

By using Lemma B with q > 0 we can derive the stronger lower bound
Ω(logn) for bit reversal, and hence for bit permutation in general.

Theorem P. If 2 ≤ g ≤ n, every n-bit broadword chain that computes the
g-bit reversal xR for 0 ≤ x < 2g has at least

 1
3 lg g


steps that are not shifts.

Proof. Assume as above that there are l nonshifts. Let h = ⌊ 3√g⌋ and suppose
that l < ⌊lg(h+ 1)⌋. Then Sr is a set of at most 2l ≤ 1

2 (h+ 1) shift amounts s.
We shall apply Lemma B with p = q+h, where p ≤ g and q ≥ 0, thus in g−h+1
cases altogether. The key observation is that xR & ⌊2p − 2q⌋ is independent of
x& ⌊2p+s − 2q+s⌋ whenever there are no indices j and k such that 0 ≤ j, k < h
and g − 1− q − j = q + s+ k. The number of “bad” choices of q for which such

From the Library of Melissa Nuno



ptg999

158 COMBINATORIAL SEARCHING 7.1.3

indices exist is at most 1
2 (h+ 1)h2 ≤ g − h; therefore at least one “good” choice

of q yields |Xpqr| = 2h. But then Lemma B leads to a contradiction, because we
obviously cannot have 2h ≤ Br ≤ 2(h−1)/2.
Corollary M. Multiplication by certain constants, modulo 2n, requires Ω(logn)
steps in an n-bit broadword chain.
Proof. In Hack 167 of the classic memorandum HAKMEM (M.I.T. A.I. Lab-
oratory, 1972), Richard Schroeppel observed that the operations

t← ((ax) mod 2n) & b, y ← ((ct) mod 2n)≫ (n− g) (104)
compute y = xR whenever n = g2 and 0 ≤ x < 2g, using the constants a =
(2n+g − 1)/(2g+1− 1), b = 2g−1(2n− 1)/(2g − 1), and c = (2n−g − 1)/(2g−1− 1).
(See exercise 123.)

At this point the reader might well be thinking, “Okay, I agree that broad-
word chains sometimes have to be asymptotically long. But programmers needn’t
be shackled by such chains; we can use other techniques, like conditional branches
or references to precomputed tables, which go beyond those restrictions.”

Right. And we’re in luck, because broadword theory can also be extended
to more general models of computation. Consider, for example, the follow-
ing idealization of an abstract reduced-instruction-set computer, called a basic
RAM : The machine has n-bit registers r1, . . . , rl, and n-bit memory words
{M [0], . . . ,M [2m − 1]}. It can perform the instructions

ri ← rj ± rk, ri ← rj ◦ rk, ri ← rj ≫ rk, ri ← c,

ri ←M [rj mod 2m], M [rj mod 2m]← ri,
(105)

where ◦ is any bitwise Boolean operator, and where rk in the shift instruction is
treated as a signed integer in two’s complement notation. The machine is also
able to branch if ri ≤ rj , treating ri and rj as unsigned integers. Its state is the
entire contents of all registers and memory, together with a “program counter”
that points to the current instruction. Its program begins in a designated state,
which may include precomputed tables in memory, and with an n-bit input
value x in register r1. This initial state is called Q(x, 0), and Q(x, t) denotes the
state after t instructions have been performed. When the machine stops, r1 will
contain some n-bit value f(x). Given a function f(x), we want to find a lower
bound on the least t such that r1 is equal to f(x) in state Q(x, t), for 0 ≤ x < 2n.
Theorem R′. Let ϵ = 2−e. A basic n-bit RAM with memory parameter m ≤
n1−ϵ requires at least lg lgn−e steps to evaluate the ruler function ρx, as n→∞.
Proof. Let n = 22e+f , so that m ≤ 22e+f−2f . Exercise 124 explains how an
omniscient observer can construct a broadword chain from a certain class of
inputs x, in such a way that each x causes the RAM to take the same branches,
use the same shift amounts, and refer to the same memory locations. Our earlier
methods can then be used to show that this chain has length ≥ f .

A skeptical reader may still object that Theorem R′ has no practical value,
because lg lgn never exceeds 6 in the real world. To this argument there is no
rebuttal. But the following result is slightly more relevant:

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 159

Theorem P′. A basic n-bit RAM requires at least 1
3 lg g steps to compute the

g-bit reversal xR for 0 ≤ x < 2g, if g ≤ n and

max(m, 1 + lgn) <
h+ 1

2⌊lg(h+ 1)⌋ − 2 , h = ⌊ 3√g⌋. (106)

Proof. An argument like the proof of Theorem R′ appears in exercise 125.
Lemma B and Theorems R, P, R′, P′ and their corollaries are due to

A. Brodnik, P. B. Miltersen, and J. I. Munro, Lecture Notes in Comp. Sci.
1272 (1997), 426–439, based on earlier work of Miltersen in Lecture Notes in
Comp. Sci. 1099 (1996), 442–453.

Many unsolved questions remain (see exercises 126–130). For example, does
sideways addition require Ω(logn) steps in an n-bit broadword chain? Can the
parity function (νx) mod 2, or the majority function [νx>n/2], be computed
substantially faster than νx itself, broadwordwise?
An application to directed graphs. Now let’s use some of what we’ve learned,
by implementing a simple algorithm. Given a digraph on a set of vertices V , we
write u −−→ v when there’s an arc from u to v. The reachability problem is to
find all vertices that lie on oriented paths beginning in a specified set Q ⊆ V ;
in other words, we seek the set

R = {v | u−−→∗ v for some u ∈ Q}, (107)
where u−−→∗ v means that there is a sequence of t arcs

u = u0−−→u1−−→ · · · −−→ut = v, for some t ≥ 0. (108)
This problem arises frequently in practice. For example, we encountered it in
Section 2.3.5 when marking all elements of Lists that are not “garbage.”

If the number of vertices is small, say |V | ≤ 64, we may want to approach
the reachability problem in quite a different way than we did before, by working
directly with subsets of vertices. Let

S[u] = {v | u−−→v} (109)
be the set of successors of vertex u, for all u ∈ V . Then the following algorithm
is almost completely different from Algorithm 2.3.5E, yet it solves the same
abstract problem:
Algorithm R (Reachability). Given a simple directed graph, represented by
the successor sets S[u] in (109), this algorithm computes the elements R that
are reachable from a given set Q.
R1. [Initialize.] Set R← Q and X ← ∅. (In the following steps, X is the subset

of vertices u ∈ R for which we’ve looked at S[u].)
R2. [Done?] If X = R, the algorithm terminates.
R3. [Examine another vertex.] Let u be an element of R \X. Set X ← X ∪ u,

R← R ∪ S[u], and return to step R2.
The algorithm is correct because (i) every element placed into R is reachable;
(ii) every reachable element uj in (108) is present in R, by induction on j; and
(iii) termination eventually occurs, because step R3 always increases |X|.

From the Library of Melissa Nuno



ptg999

160 COMBINATORIAL SEARCHING 7.1.3

To implement Algorithm R we will assume that V = {0, 1, . . . , n− 1}, with
n ≤ 64. The set X is conveniently represented by the integer σ(X) =


{2u |

u ∈ X}, and the same convention works nicely for the other sets Q, R, and
S[u]. Notice that the bits of S[0], S[1], . . . , S[n−1] are essentially the adjacency
matrix of the given digraph, as explained in Section 7, but in little-endian order:
The “diagonal” elements, which tell us whether or not u ∈ S[u], go from right to
left. For example, if n = 3 and the arcs are {0→0, 0→1, 1→0, 2→0}, we have
S[0] = (011)2 and S[1] = S[2] = (001)2, while the adjacency matrix is

110
100
100


.

Step R3 allows us to choose any element of R\X, so we use the ruler function
u ← ρ(σ(R)− σ(X)) to choose the smallest. The bitwise operations require no
further trickery when we adapt the algorithm to MMIX:

Program R (Reachability). The input set Q is given in register q, and each
successor set S[u] appears in octabyte M8[suc + 8u]. The output set R will
appear in register r; other registers s, t, tt, u, and x hold intermediate results.
01 1H SET r,q 1 R1. Initialize. r← σ(Q).
02 SET x,0 1 x← σ(∅).
03 JMP 2F 1 To R2.
04 3H SUBU tt,t,1 |R| R3. Examine another vertex. tt← t− 1.
05 SADD u,tt,t |R| u← ρ(t) [see (46)].
06 SLU s,u,3 |R| s← 8u.
07 LDOU s,suc,s |R| s← σ(S[u]).
08 ANDN tt,t,tt |R| tt← t &∼tt = 2u.
09 OR x,x,tt |R| X ← X ∪ u; that is, x← x | 2u, since x = σ(X).
10 OR r,r,s |R| R← R ∪ S[u]; that is, r← r | s, since r = σ(R).
11 2H SUBU t,r,x |R|+ 1 R2. Done? t← r− x = σ(R \X), since X ⊆ R.
12 PBNZ t,3B |R|+ 1 To R3 if R ̸= X.
The total running time is (µ + 9υ)|R| + 7υ. By contrast, exercise 131 imple-
ments Algorithm R with linked lists; the overall execution time then grows to
(3S+ 4|R|−2|Q|+ 1)µ+ (5S+ 12|R|−5|Q|+ 4)υ, where S =


u∈R |S[u]|. (But

of course that program is also able to handle graphs with millions of vertices.)
Exercise 132 presents another instructive algorithm where bitwise operations

work nicely on not-too-large graphs.

Application to data representation. Computers are binary, but (alas?)
the world isn’t. We often must find a way to encode nonbinary data into 0s
and 1s. One of the most common problems of this sort is to choose an efficient
representation for items that can be in exactly three different states.

Suppose we know that x ∈ {a, b, c}, and we want to represent x by two
bits xlxr. We could, for example, map a →→ 00, b →→ 01, and c →→ 10. But there
are many other possibilities — in fact, 4 choices for a, then 3 choices for b, and
2 for c, making 24 altogether. Some of these mappings might be much easier to
deal with than others, depending on what we want to do with x.

Given two elements x, y ∈ {a, b, c}, we typically want to compute z = x ◦ y,
for some binary operation ◦. If x = xlxr and y = ylyr then z = zlzr, where

zl = fl(xl, xr, yl, yr) and zr = fr(xl, xr, yl, yr); (110)

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 161

these Boolean functions fl and fr of four variables depend on ◦ and the chosen
representation. We seek a representation that makes fl and fr easy to compute.

Suppose, for example, that {a, b, c} = {−1, 0,+1} and that ◦ is multiplica-
tion. If we decide to use the natural mapping x →→ xmod 3, namely

0 →→ 00, +1 →→ 01, −1 →→ 10, (111)

so that x = xr − xl, then the truth tables for fl and fr are respectively

fl ↔ 000∗001∗010∗∗∗∗∗ and fr ↔ 000∗010∗001∗∗∗∗∗. (112)

(There are seven “don’t-cares,” for cases where xlxr = 11 and/or ylyr = 11.)
The methods of Section 7.1.2 tell us how to compute zl and zr optimally, namely

zl = (xl ⊕ yl) ∧ (xr ⊕ yr), zr = (xl ⊕ yr) ∧ (xr ⊕ yl); (113)

unfortunately the functions fl and fr in (112) are independent, in the sense that
they cannot both be evaluated in fewer than C(fl) + C(fr) = 6 steps.

On the other hand the somewhat less natural mapping scheme

+1 →→ 00, 0 →→ 01, −1 →→ 10 (114)

leads to the transformation functions

fl ↔ 001∗000∗100∗∗∗∗∗ and fr ↔ 010∗111∗010∗∗∗∗∗, (115)

and three operations now suffice to do the desired evaluation:

zr = xr ∨ yr, zl = (xl ⊕ yl) ∧ z̄r. (116)

Is there an easy way to discover such improvements? Fortunately we don’t
need to try all 24 possibilities, because many of them are basically alike. For
example, the mapping x →→ xrxl is equivalent to x →→ xlxr, because the new
representation x′lx

′
r = xrxl obtained by swapping coordinates makes

f ′l (x′l, x′r, y′l, y′r) = z′l = zr = fr(xl, xr, yl, yr);

the new transformation functions f ′l and f ′r defined by

f ′l (xl, xr, yl, yr) = fr(xr, xl, yr, yl), f ′r(xl, xr, yl, yr) = fl(xr, xl, yr, yl) (117)

have the same complexity as fl and fr. Similarly we can complement a coordi-
nate, letting x′lx′r = x̄lxr; then the transformation functions turn out to be

f ′l (xl, xr, yl, yr) = f̄l(x̄l, xr, ȳl, yr), f ′r(xl, xr, yl, yr) = fr(x̄l, xr, ȳl, yr), (118)

and again the complexity is essentially unchanged.
Repeated use of swapping and/or complementation leads to eight mappings

that are equivalent to any given one. So the 24 possibilities reduce to only three,
which we shall call classes I, II, and III:

Class I Class II Class III        
a →→ 00 01 10 11 00 10 01 11 00 01 10 11 00 10 01 11 00 01 10 11 00 10 01 11;
b →→ 01 00 11 10 10 00 11 01 01 00 11 10 10 00 11 01 11 10 01 00 11 01 10 00; (119)
c →→ 10 11 00 01 01 11 00 10 11 10 01 00 11 01 10 00 01 00 11 10 10 00 11 01.

From the Library of Melissa Nuno



ptg999

162 COMBINATORIAL SEARCHING 7.1.3

To choose a representation we need consider only one representative of each
class. For example, if a = +1, b = 0, and c = −1, representation (111) belongs
to class II, and (114) belongs to class I. Class III turns out to have cost 3, like
class I. So it appears that representation (114) is as good as any, with z computed
by (116), for the 3-element multiplication problem we’ve been studying.

Appearances can, however, be deceiving, because we need not map {a, b, c}
into unique two-bit codes. Consider the one-to-many mapping

+1 →→ 00, 0 →→ 01 or 11, −1 →→ 10, (120)

where both 01 and 11 are allowed as representations of zero. The truth tables
for fl and fr are now quite different from (112) and (115), because all inputs are
legal but some outputs can be arbitrary:

fl ↔ 0∗1∗∗∗∗∗1∗0∗∗∗∗∗ and fr ↔ 0101111101011111. (121)

And in fact, this approach needs just two operations, instead of the three in (116):

zl = xl ⊕ yl, zr = xr ∨ yr. (122)

A moment’s thought shows that indeed, these operations obviously yield the
product z = x·y when the three elements {+1, 0,−1} are represented as in (120).

Such nonunique mappings add 36 more possibilities to the 24 that we had
before. But again, they reduce under “2-cube equivalence” to a small number of
equivalence classes. First there are three classes that we call IVa, IVb, and IVc,
depending on which element has an ambiguous representation:

Class IVa Class IVb Class IVc        
a →→ 0∗ 0∗ 1∗ 1∗ ∗0 ∗0 ∗1 ∗1 11 10 01 00 11 01 10 00 10 11 00 01 01 11 00 10;
b →→ 10 11 00 01 01 11 00 10 0∗ 0∗ 1∗ 1∗ ∗0 ∗0 ∗1 ∗1 11 10 01 00 11 01 10 00; (123)
c →→ 11 10 01 00 11 01 10 00 10 11 00 01 01 11 00 10 0∗ 0∗ 1∗ 1∗ ∗0 ∗0 ∗1 ∗1.

(Representation (120) belongs to class IVb. Classes IVa and IVc don’t work well
for z = x·y.) Then there are three further classes with only four mappings each:

Class Va Class Vb Class Vc        
a →→ tt t̄t t̄t tt 10 11 00 01 01 00 11 10;
b →→ 01 00 11 10 tt t̄t t̄t tt 10 11 00 01; (124)
c →→ 10 11 00 01 01 00 11 10 tt t̄t t̄t tt.

These classes are a bit of a nuisance, because the indeterminacy in their truth
tables cannot be expressed simply in terms of don’t-cares as we did in (121). For
example, if we try

+1 →→ 00 or 11, 0 →→ 01, −1 →→ 10, (125)

which is the first mapping in class Va, there are binary variables pqrst such that

fl ↔ p01q000010r1s01t and fr ↔ p10q111101r0s10t. (126)

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 163

Furthermore, mappings of classes Va, Vb, and Vc almost never turn out to
be better than the mappings of the other six classes (see exercise 138). Still,
representatives of all nine classes must be examined before we can be sure that
an optimal mapping has been found.

In practice we often want to perform several different operations on ternary-
valued variables, not just a single operation like multiplication. For example, we
might want to compute max(x, y) as well as x·y. With representation (120), the
best we can do is zl = xl ∧ yl, zr = (xl ∧ yr)∨ (xr ∧ (yl ∨ yr)); but the “natural”
mapping (111) now shines, with zl = xl ∧ yl, zr = xr ∨ yr. Class III turns out
to have cost 4; other classes are inferior. To choose between classes II, III, and
IVb in this case, we need to know the relative frequencies of x·y and max(x, y).
And if we add min(x, y) to the mix, classes II, III, and IVb compute it with the
respective costs 2, 5, 5; hence (111) looks better yet.

The ternary max and min operations arise also in other contexts, such as the
three-valued logic developed by Jan Łukasiewicz in 1917. [See his Selected Works,
edited by L. Borkowski (1970), 84–88, 153–178.] Consider the logical values
“true,” “false,” and “maybe,” denoted respectively by 1, 0, and ∗. Łukasiewicz
defined the three basic operations of conjunction, disjunction, and implication
on these values by specifying the tables

y 
0 ∗ 1

0 0 0 0
x


∗ 0 ∗ ∗
1 0 ∗ 1

x ∧ y

,

y 

0 ∗ 1
0 0 ∗ 1

x


∗ ∗ ∗ 1
1 1 1 1

x ∨ y

,

y 

0 ∗ 1
0 1 1 1

x


∗ ∗ 1 1
1 0 ∗ 1

x⇒ y

. (127)

For these operations the methods above show that the binary representation

0 →→ 00, ∗ →→ 01, 1 →→ 11 (128)

works well, because we can compute the logical operations thus:
xlxr ∧ ylyr = (xl∧yl)(xr∧yr), xlxr ∨ ylyr = (xl∨yl)(xr∨yr),

xlxr⇒ ylyr = ((x̄l ∨ yl)∧ (x̄r ∨ yr)) (x̄l ∨ yr).
(129)

Of course x need not be an isolated ternary value in this discussion; we often
want to deal with ternary vectors x = x1x2 . . . xn, where each xj is either a, b,
or c. Such ternary vectors are conveniently represented by two binary vectors

xl = x1lx2l . . . xnl and xr = x1rx2r . . . xnr, (130)

where xj →→ xjlxjr as above. We could also pack the ternary values into two-bit
fields of a single vector,

x = x1lx1rx2lx2r . . . xnlxnr ; (131)

that would work fine if, say, we’re doing Łukasiewicz logic with the operations ∧
and ∨ but not ⇒. Usually, however, the two-vector approach of (130) is better,
because it lets us do bitwise calculations without shifting and masking.

From the Library of Melissa Nuno



ptg999

164 COMBINATORIAL SEARCHING 7.1.3

Applications to data structures. Bitwise operations offer many efficient ways
to represent elements of data and the relationships between them. For example,
chess-playing programs often use a “bit board” to represent the positions of
pieces (see exercise 143).

In Chapter 8 we shall discuss an important data structure developed by
Peter van Emde Boas for representing a dynamically changing subset of integers
between 0 and N. Insertions, deletions, and other operations such as “find the
largest element less than x” can be done in O(log logN) steps with his methods;
the general idea is to organize the full structure recursively as

√
N substructures

for subsets of intervals of size
√
N , together with an auxiliary structure that

tells which of those intervals are occupied. [See Information Processing Letters
6 (1977), 80–82; also P. van Emde Boas, R. Kaas, and E. Zijlstra, Math. Systems
Theory 10 (1977), 99–127.] Bitwise operations make those computations fast.

Hierarchical data can sometimes be arranged so that the links between
elements are implicit rather than explicit. For example, we studied “heaps”
in Section 5.2.3, where n elements of a sequential array implicitly have a binary
tree structure like

1

2 3

4 5 6 7

8 9 10

=

0001

0010 0011

0100 0101 0110 0111

1000 1001 1010

(132)

when, say, n = 10. (Node numbers are shown here both in decimal and binary
notation.) There is no need to store pointers in memory to relate node j of a
heap to its parent (which is node j≫ 1 if j ̸= 1), or to its sibling (which is node
j ⊕ 1 if j ̸= 1), or to its children (which are nodes j≪ 1 and (j≪ 1) + 1 if those
numbers don’t exceed n), because a simple calculation leads directly from j to
any desired neighbor.

Similarly, a sideways heap provides implicit links for another useful family
of n-node binary tree structures, typified by

1

2

3

4

5

6

7

8

9

10

12 =

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1100 (133)

when n = 10. (We sometimes need to go beyond n when moving from a node to
its parent, as in the path from 10 to 12 to 8 shown here.) Heaps and sideways
heaps can both be regarded as nodes 1 to n of infinite binary tree structures:
The heap with n = ∞ is rooted at node 1 and has no leaves; by contrast, the
sideways heap with n =∞ has infinitely many leaves 1, 3, 5, . . . , but no root(!).

The leaves of a sideways heap are the odd numbers, and their parents are the
odd multiples of 2. The grandparents of leaves, similarly, are the odd multiples
of 4; and so on. Thus the ruler function ρj tells how high node j is above leaf level.

The parent of node j in the infinite sideways heap is easily seen to be node

(j − k) | (k≪ 1), where k = j &−j; (134)

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 165

this formula rounds j to the nearest odd multiple of 21+ρj . And the children are

j − (k≫ 1) and j + (k≫ 1) (135)

when j is even. In general the descendants of node j form a closed interval

[j − 2ρj + 1 . . j + 2ρj − 1], (136)

arranged as a complete binary tree of 21+ρj−1 nodes. (These are the “inclusive”
descendants, including j itself.) The ancestor of node j at height h is node

(j | (1≪ h)) &−(1≪ h) = ((j≫ h) | 1)≪ h (137)

when h ≥ ρj. Notice that the symmetric order of the nodes, also called inorder,
is just the natural order 1, 2, 3, . . . .

Dov Harel noted these properties in his Ph.D. thesis (U. of California, Irvine,
1980), and observed that the nearest common ancestor of any two nodes of a
sideways heap can also be easily calculated. Indeed, if node l is the nearest
common ancestor of nodes i and j, where i ≤ j, there is a remarkable identity

ρl = max{ρx | i ≤ x ≤ j} = λ(j &−i), (138)

which relates the ρ and λ functions. (See exercise 146.) We can therefore use
formula (137) with h = λ(j &−i) to calculate l.

Subtle extensions of this approach lead to an asymptotically efficient algo-
rithm that finds nearest common ancestors in any oriented forest whose arcs
grow dynamically [D. Harel and R. E. Tarjan, SICOMP 13 (1984), 338–355].
Baruch Schieber and Uzi Vishkin [SICOMP 17 (1988), 1253–1262] subsequently
discovered a much simpler way to compute nearest common ancestors in an
arbitrary (but fixed) oriented forest, using an attractive and instructive blend of
bitwise and algorithmic techniques that we shall consider next.

Recall that an oriented forest with m trees and n vertices is an acyclic
digraph with n−m arcs. There is at most one arc from each vertex; the vertices
with out-degree zero are the roots of the trees. We say that v is the parent of u
when u−−→ v, and v is an (inclusive) ancestor of u when u−−→∗ v. Two vertices
have a common ancestor if and only if they belong to the same tree. Vertex w
is called the nearest common ancestor of u and v when we have

u−−→∗ z and v−−→∗ z if and only if w−−→∗ z. (139)

Schieber and Vishkin preprocess the given forest, mapping its vertices into
a sideways heap S of size n by computing three quantities for each vertex v:

πv, the rank of v in preorder (1 ≤ πv ≤ n);
βv, a node of the sideways heap S (1 ≤ βv ≤ n);
αv, a (1 + λn)-bit routing code (1 ≤ αv < 21+λn).

If u−−→v we have πu > πv by the definition of preorder. Node βv is defined to
be the nearest common ancestor of all sideways-heap nodes πu such that v is an
ancestor of vertex u (always meaning an inclusive ancestor). And we define

αv =

{2ρβw | v−−→∗ w}. (140)

From the Library of Melissa Nuno



ptg999

166 COMBINATORIAL SEARCHING 7.1.3

For example, here’s an oriented forest with ten vertices and two trees:
A

C

F

D

G

J

H

B

E

I

1

2

3

4

5

6

7

8

9

10
(141)

Each node has been labeled with its preorder rank, from which we can compute
the β and α codes:

v = A B C D E F G H I J

πv = 0001 1000 0010 0100 1001 0011 0101 0111 1010 0110
βv = 0100 1000 0010 0100 1010 0011 0110 0111 1010 0110
αv = 0100 1000 0110 0100 1010 0111 0110 0101 1010 0110

Notice that, for instance, βA = 4 = 0100 because the preorder ranks of the
descendants of A are {1, 2, 3, 4, 5, 6, 7}. And αH = 0101 because the ancestors
of H have β codes {βH, βD, βA} = {0111, 0100}. One can prove without
difficulty that the mapping v →→ βv satisfies the following key properties:

i) If u−−→v in the forest, then βu is a descendant of βv in S.
ii) If several vertices have the same value of βv, they form a path in the forest.

Property (ii) holds because exactly one child u of v has βu = βv when βv ̸= πv.
Now let’s imagine placing every vertex v of the forest into node βv of S:

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1100

F→C

B→Λ

D→A→Λ

C→A J→G→D I→E→B

H→D

(142)

If k vertices map into node j, we can arrange them into a path
v0−−→v1−−→· · ·−−→vk−1−−→vk, where βv0 = βv1 = · · · = βvk−1 = j. (143)

These paths are illustrated in (142); for example, J−−→G−−→D is a path in (141),
and ‘J−−→G−−→D’ appears with node 0110 = βJ = βG.

The preprocessing algorithm also computes a table τj for all nodes j of S,
containing pointers to the vertices vk at the tail ends of (143):

j = 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010
τj = Λ A C Λ Λ D D Λ Λ B

Exercise 149 shows that all four tables πv, βv, αv, and τj can be prepared in
O(n) steps. And once those tables are ready, they contain just enough informa-
tion to identify the nearest common ancestor of any two given vertices quickly:
Algorithm V (Nearest common ancestors). Suppose πv, βv, αv, and τj are
known for all n vertices v of an oriented forest, and for 1 ≤ j ≤ n. A dummy
vertex Λ is also assumed to be present, with πΛ = βΛ = αΛ = 0. This algorithm
computes the nearest common ancestor z of any given vertices x and y, returning
z = Λ if x and y belong to different trees. We assume that the values λj = ⌊lg j⌋
have been precomputed for 1 ≤ j ≤ n, and that λ0 = λn.

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 167

V1. [Find common height.] If βx ≤ βy, set h ← λ(βy & −βx); otherwise set
h← λ(βx&−βy). (See (138).)

V2. [Find true height.] Set k ← αx& αy &−(1≪ h), then h← λ(k &−k).
V3. [Find βz.] Set j ← ((βx≫ h) | 1)≪ h. (Now j = βz, if z ̸= Λ.)
V4. [Find x̂ and ŷ.] (We now seek the lowest ancestors of x and y in node j.)

If j = βx, set x̂ ← x; otherwise set l ← λ(αx & ((1≪ h) − 1)) and x̂ ←
τ(((βx≫ l) | 1)≪ l). Similarly, if j = βy, set ŷ ← y; otherwise set l ←
λ(αy & ((1≪ h)− 1)) and ŷ ← τ(((βy≫ l) | 1)≪ l).

V5. [Find z.] Set z ← x̂ if πx̂ ≤ πŷ, otherwise z ← ŷ.
These artful dodges obviously exploit (137); exercise 152 explains why they work.

Sideways heaps can also be used to implement an interesting type of priority
queue that J. Katajainen and F. Vitale call a “navigation pile,” illustrated here
for n = 10:

503 087 512 061 908 170 897275 653 426

2

1

4

3

6

5

8

7

10

9

12

11

14

13

16

15

18

17

20

19

24

(144)

Data elements go into the leaf positions 1, 3, . . . , 2n − 1 of the sideways heap;
they can be many bits wide, and they can appear in any order. By contrast, each
branch position 2, 4, 6, . . . contains a pointer to its largest descendant. And the
novel point is that these pointers take up almost no extra space — fewer than two
bits per item of data, on average — because only one bit is needed for pointers 2,
6, 10, . . . , only two bits for pointers 4, 12, 20, . . . , and only ρj for pointer j in
general. (See exercise 153.) Thus the navigation pile requires very little memory,
and it behaves nicely with respect to cache performance on a typical computer.

A
B

O

C

P

P ′

Q′

Q

R

R′

S T

A B

O

C
P ′

P

Q′Q

R

R′

S T

Fig. 13. Two views of five lines
in the hyperbolic plane.

*Cells in the hyperbolic plane. Hyperbolic geometry suggests an instructive
implicit data structure that has a rather different flavor. The hyperbolic plane is
a fascinating example of non-Euclidean geometry that is conveniently viewed by
projecting its points into the interior of a circle. Its straight lines then become
circular arcs, which meet the rim at right angles. For example, the lines PP ′,
QQ′, and RR′ in Fig. 13 intersect at points O, A, B, and those points form a
triangle. Lines SQ′ and QQ′ are parallel: They never touch, but their points
get closer and closer together. Line QT is also parallel to QQ′.

From the Library of Melissa Nuno



ptg999

168 COMBINATORIAL SEARCHING 7.1.3

We get different views by focusing on different center points. For example,
the second view in Fig. 13 puts O smack in the center. Notice that if a line passes
through the very center, it remains straight after being projected; such diameter-
spanning chords are the special case of a “circular arc” whose radius is infinite.

Most of Euclid’s axioms for plane geometry remain valid in the hyperbolic
plane. For example, exactly one line passes through any two distinct points; and
if point A lies on line PP ′ there’s exactly one line QQ′ such that angle PAQ has
any given value θ, for 0 < θ < 180◦. But Euclid’s famous fifth postulate does not
hold: If point C is not on line QQ′, there always are exactly two lines through C
that are parallel to QQ′. Furthermore there are many pairs of lines, like RR′

and SQ′ in Fig. 13, that are totally disjoint or ultraparallel, in the sense that
their points never become arbitrarily close. [These properties of the hyperbolic
plane were discovered by G. Saccheri in the early 1700s, and made rigorous by
N. I. Lobachevsky, J. Bolyai, and C. F. Gauss a century later.]

Quantitatively speaking, when points are projected onto the unit disk |z|<1,
the arc that meets the circle at eiθ and e−iθ has center at sec θ and radius
tan θ. The actual distance between two points whose projections are z and z′ is
d(z, z′) = ln(|1− z̄z′|+ |z − z′|)− ln(|1− z̄z′| − |z − z′|). Thus objects far from
the center appear dramatically shrunken when we see them near the circle’s rim.

The sum of the angles of a hyperbolic triangle is always less than 180◦. For
example, the angles at O, A, and B in Fig. 13 are respectively 90◦, 45◦, and 36◦.
Ten such 36◦-45◦-90◦ triangles can be placed together to make a regular pentagon
with 90◦ angles at each corner. And four such pentagons fit snugly together at
their corners, allowing us to tile the entire hyperbolic plane with right regular
pentagons (see Fig. 14). The edges of these pentagons form an interesting family
of lines, every two of which are either ultraparallel or perpendicular; so we have
a grid structure analogous to the unit squares of the ordinary plane. We call it
the pentagrid, because each cell now has five neighbors instead of four.

There’s a nice way to navigate in the pentagrid using Fibonacci numbers,
based on ideas of Maurice Margenstern [see F. Herrmann and M. Margenstern,
Theoretical Comp. Sci. 296 (2003), 345–351]. Instead of the ordinary Fibonacci
sequence ⟨Fn⟩, however, we shall use the negaFibonacci numbers ⟨F−n⟩, namely

F−1 = 1, F−2 = −1, F−3 = 2, F−4 = −3, . . . , F−n = (−1)n−1Fn. (145)

Exercise 1.2.8–34 introduced the Fibonacci number system, in which every non-
negative integer x can be written uniquely in the form

x = Fk1 + Fk2 + · · ·+ Fkr
, where k1 ≻≻ k2 ≻≻ · · · ≻≻ kr ≻≻ 0; (146)

here ‘j ≻≻ k’ means ‘j ≥ k+2’. But there’s also a negaFibonacci number system,
which suits our purposes better: Every integer x, whether positive, negative, or
zero, can be written uniquely in the form

x = Fk1 + Fk2 + · · ·+ Fkr
, where k1 ≺≺ k2 ≺≺ · · · ≺≺ kr ≺≺ 1. (147)

For example, 4 = 5 − 1 = F−5 + F−2 and −2 = −3 + 1 = F−4 + F−1. This
representation can conveniently be expressed as a binary code α = . . . a3a2a1,

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 169

Fig. 14. The pentagrid,
in which identical pentagons
tile the hyperbolic plane.
[See H. A. Schwarz, Crelle 75
(1873), page 318 and Tafel II
following page 348.]

A circular regular tiling, confined on all sides
by infinitely small shapes, is really wonderful.

— M. C. ESCHER, letter to George Escher (9 November 1958)

standing for N(α) =


k akF−k, with no two 1s in a row. For example, here are
the negaFibonacci representation codes of all integers between −14 and +15:
−14 = 10010100 −8 = 100000 −2 = 1001 4 = 10010 10 = 1001000
−13 = 10010101 −7 = 100001 −1 = 10 5 = 10000 11 = 1001001
−12 = 101010 −6 = 100100 0 = 0 6 = 10001 12 = 1000010
−11 = 101000 −5 = 100101 1 = 1 7 = 10100 13 = 1000000
−10 = 101001 −4 = 1010 2 = 100 8 = 10101 14 = 1000001
−9 = 100010 −3 = 1000 3 = 101 9 = 1001010 15 = 1000100

As in the negadecimal system (see 4.1–(6) and (7)), we can tell whether x is
negative or not by seeing if its representation has an even or odd number of digits.

The predecessor α− and successor α+ of any negaFibonacci binary code α
can be computed recursively by using the rules

(α01)− = α00, (α000)− = α010, (α100)− = α001, (α10)− = (α−)01,
(α10)+ = α00, (α00)+ = α01, (α1)+ = (α−)0. (148)

(See exercise 157.) But ten elegant 2-adic steps do the calculation directly:

y ← x⊕ µ̄0, z ← y ⊕ (y ± 1), where x = (α)2;
z ← z | (x& (z≪ 1));
w ← x⊕ z ⊕ ((z + 1)≫ 2); then w = (α±)2.

(149)

We just use y−1 in the top line to get the predecessor, y+1 to get the successor.

From the Library of Melissa Nuno



ptg999

170 COMBINATORIAL SEARCHING 7.1.3

And now here’s the point: A negaFibonacci code can be assigned to each
cell of the pentagrid in such a way that the codes of its five neighbors are easy to
compute. Let’s call the neighbors n, s, e, w, and o, for “north,” “south,” “east,”
“west,” and “other.” If α is the code assigned to a given cell, we define

αn = α≫ 2, αs = α≪ 2, αe = αs+, αw = αs−; (150)

thus αsn = α, and also αen = (α01)n = α. The “other” direction is trickier:

αo =

αn+, if α& 1 = 1;
αw−, if α& 1 = 0.

(151)

For example, 1000o = 101001 and 101001o = 1000. This mysterious interloper
lies between north and east when α ends with 1, but between north and west
when α ends with 0.

If we choose any cell and label it with code 0, and if we also choose an
orientation so that its neighbors are n, e, s, w, and o in clockwise order, rules
(150) and (151) will assign consistent labels to every cell of the pentagrid. (See
exercise 160.) For example, the vicinity of a cell labeled 1000 will look like this:

n
s

o
o

wn

s
n

e n

e
n

w
ne

n

e
n

o
o

e
n

o o e n

o
w

o
w

n

ow

s

w

s

w s

s

e

os

w

e

w

e w

e

s

o

w

s

s s

e

1000

10101001

100010

100000

100001

1010

10100101

10001001 10000001

1001

(152)

The code labels do not, however, identify cells uniquely, because infinitely
many cells receive the same label. (Indeed, we clearly have 0n = 0s = 0 and
1w = 1o = 1.) To get a unique identifier, we attach a second coordinate so that
each cell’s full name has the form (α, y), where y is an integer. When y is constant
and α ranges over all negaFibonacci codes, the cells (α, y) form a more-or-less
hook-shaped strip whose edges take a 90◦ turn next to cell (0, y). In general, the
five neighbors of (α, y) are (α, y)n = (αn, y + δn(α)), (α, y)s = (αs, y + δs(α)),

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 171

(α, y)e = (αe, y+δe(α)), (α, y)w = (αw, y+δw(α)), and (α, y)o = (αo, y+δo(α)),
where

δn(α) = [α= 0], δs(α) = −[α= 0], δe(α) = 0, δw(α) = −[α= 1];

δo(α) =
 sign(αo − αn)[αo & αn = 0], if α& 1 = 1;

sign(αo − αw)[αo & αw = 0], if α& 1 = 0.
(153)

(See the illustration below.) Bitwise operations now allow us to surf the entire
hyperbolic plane with ease. On the other hand, we could also ignore the y
coordinates as we move, thereby wrapping around a “hyperbolic cylinder” of
pentagons; the α coordinates define an interesting multigraph on the set of all
negaFibonacci codes, in which every vertex has degree 5.

(0,0)

(1,0)

(0,1)(1001,1)

(10,0)

(0,−1)

(10,1)

(0,−2)

(1,−1)

(100,0)

(101,0)

(1,1)

(0,2)

(1001,2)(100001,1)

(100100,1)

(100101,1)

(1010,0)

(1000,0)

(1001,0)

(10,−1)

(154)

Bitmap graphics. It’s fun to write programs that deal with pictures and shapes,
because they involve our left and right brains simultaneously. When image data
is involved, the results can be engrossing even if there are bugs in our code.

The book you are now reading was typeset by software that treated each
page as a gigantic matrix of 0s and 1s, called a “raster” or “bitmap,” containing
millions of square picture elements called “pixels.” The rasters were transmitted
to printing machines, causing tiny dots of ink to be placed wherever a 1 appeared
in the matrix. Physical properties of ink and paper caused those small clusters
of dots to look like smooth curves; but each pixel’s basic squareness becomes
evident if we enlarge the images tenfold, as in the letter ‘A’ shown in Fig. 15(a).

With bitwise operations we can achieve special effects like “custering,” in
which black pixels disappear when they’re surrounded on all sides (Fig. 15(b)):

(a) (b) Fig. 15. The letter A,
before and after custering.

From the Library of Melissa Nuno



ptg999

172 COMBINATORIAL SEARCHING 7.1.3

This operation, introduced by R. A. Kirsch, L. Cahn, C. Ray, and G. H. Urban
[Proc. Eastern Joint Computer Conf. 12 (1957), 221–229], can be expressed as

custer(X) = X &∼

(X ≪ 1) & (X ≫ 1) & (X ≪ 1) & (X

≪
1)

, (155)

where ‘X ≪1’ and ‘X

≪

1’ stand respectively for the result of shifting the bitmap X
down or up by one row. Let us write

XN = X ≪ 1, XW = X ≫ 1, XE = X ≪ 1, XS = X

≪

1 (156)

for the 1-pixel shifts of a bitmap X. Then, for example, the symbolic expression
‘XN & (XS |XE)’ evaluates to 1 in those pixel positions whose northern neighbor
is black, and which also have either a black neighbor on the south side or a white
neighbor to the east. With these abbreviations, (155) takes the form

custer(X) = X &∼(XN &XW &XE &XS), (157)

which can also be expressed as X & (XN | XW | XE | XS).
Every pixel has four “rook-neighbors,” with which it shares an edge at the

top, left, right, or bottom. It also has eight “king-neighbors,” with which it
shares at least one corner point. For example, the king-neighbors that lie to the
northeast of all pixels in a bitmap X can be denoted by XNE, which is equivalent
to (XN)E in pixel algebra. Notice that we also have XNE = (XE)N.

A 3 × 3 cellular automaton is an array of pixels that changes dynamically
via a sequence of local transformations, all performed simultaneously: The state
of each pixel at time t+ 1 depends entirely on its state at time t and the states
of its king-neighbors at that time. Thus the automaton defines a sequence of
bitmaps X(0), X(1), X(2), . . . that lead from any given initial state X(0), where

X(t+1) = f(X(t)
NW, X

(t)
N , X

(t)
NE , X

(t)
W , X(t), X

(t)
E , X

(t)
SW, X

(t)
S , X

(t)
SE ) (158)

and f is any bitwise Boolean function of nine variables. Fascinating patterns
often emerge in this way. For example, after Martin Gardner introduced John
Conway’s game of Life to the world in 1970, more computer time was probably
devoted to studying its implications than to any other computational task during
the next several years — although the people paying the computer bills were
rarely told! (See exercise 167.)

There are 2512 Boolean functions of nine variables, so there are 2512 different
3 × 3 cellular automata. Many of them are trivial, but most of them probably
have such complicated behavior that they are humanly impossible to understand.
Fortunately there also are many cases that do turn out to be useful in practice —
and much easier to justify on economic grounds than the simulation of a game.

For example, algorithms for recognizing alphabetic characters, fingerprints,
or similar patterns often make use of a “thinning” process, which removes excess
black pixels and reduces each component of the image to an underlying skeleton
that is comparatively simple to analyze. Several authors have proposed cellular
automata for this problem, beginning with D. Rutovitz [J. Royal Stat. Society
A129 (1966), 512–513] who suggested a 4×4 scheme. But parallel algorithms are
notoriously subtle, and flaws tended to turn up after various methods had been

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 173

Fig. 16. Example
results of Guo and
Hall’s 3×3 autom-
aton for thinning
the components of a
bitmap. (“Hollow”
pixels were origi-
nally black.)

published. For example, one, two, or three of the black pixels in a component like
should be removed, yet a symmetrical scheme will erroneously erase all four.
A satisfactory solution to the thinning problem was finally found by Z. Guo

and R. W. Hall [CACM 32 (1989), 359–373, 759], using a 3× 3 automaton that
invokes alternate rules on odd and even steps. Consider the function

f(xNW,xN,xNE,xW,x,xE,xSW,xS,xSE) = x∧¬g(xNW, . . . ,xW,xE, . . . ,xSE), (159)

where g = 1 only in the following 37 configurations surrounding a black pixel:

Then we use (158), but with f(xNW, xN, xNE, xW, x, xE, xSW, xS, xSE) replaced by
its 180◦ rotation f(xSE, xS, xSW, xE, x, xW, xNE, xN, xNW) on even-numbered steps.
The process stops when two consecutive cycles make no change.

With this rule Guo and Hall proved that the 3× 3 automaton will preserve
the connectivity structure of the image, in a strong sense that we will discuss
below. Furthermore their algorithm obviously leaves an image intact if it is
already so thin that it contains no three pixels that are king-neighbors of each
other. On the other hand it usually succeeds in “removing the meat off the
bones” of each black component, as shown in Fig. 16. Slightly thinner thinning
is obtained in certain cases if we add four additional configurations

(160)

to the 37 listed above. In either case the function g can be evaluated with a
Boolean chain of length 25. (See exercises 170–172.)

In general, the black pixels of an image can be grouped into segments or
components that are kingwise connected, in the sense that any black pixel can
be reached from any other pixel of its component by a sequence of king moves
through black pixels. The white pixels also form components, which are rookwise
connected: Any two white cells of a component are mutually reachable via rook
moves that touch nothing black. It’s best to use different kinds of connectedness
for white and black, in order to preserve the topological concepts of “inside” and
“outside” that are familiar from continuous geometry [see A. Rosenfeld, JACM
17 (1970), 146–160]. If we imagine that the corner points of a raster are black,
an infinitely thin black curve can cross between pixels at a corner, but a white
curve cannot. (We could also imagine white corner points, which would lead to
rookwise connectivity for black and kingwise connectivity for white.)

From the Library of Melissa Nuno



ptg999

174 COMBINATORIAL SEARCHING 7.1.3

time = 0 time = 1 time = 3

(a) (b) (c)
Fig. 17. The shrinking of a Cheshire cat

An amusing algorithm for shrinking a picture while preserving its connec-
tivity, except that isolated black or white pixels disappear, was presented by
S. Levialdi in CACM 15 (1972), 7–10; an equivalent algorithm, but with black
and white reversed, had also appeared in T. Beyer’s Ph.D. thesis (M.I.T., 1969).
The idea is to use a cellular automaton with the simple transition function

f(xNW, xN, xNE, xW, x, xE, xSW, xS, xSE) = (x ∧ (xW∨xSW∨xS)) ∨ (xW∧xS) (161)

at each step. This formula is actually a 2×2 rule, but we still need a 3×3 window
if we want to keep track of the cases when a one-pixel component goes away.

For example, the 25 × 30 picture of a Cheshire cat in Fig. 17(a) has seven
kingwise black components: the outline of its head, the two earholes, the two
eyes, the nose, and the smile. The result after one application of (161) is shown
in Fig. 17(b): Seven components remain, but there’s an isolated point in one ear,
and the other earhole will become isolated after the next step. Hence Fig. 17(c)
has only five components. After six steps the cat loses its nose, and even the
smile will be gone at time 14. Sadly, the last bit of cat will vanish during step 46.

At most M + N − 1 transitions will wipe out any M ×N picture, because
the lowest visible northwest-to-southeast diagonal line moves relentlessly upward
each time. Exercises 176 and 177 prove that different components will never
merge together and interfere with each other.

Of course this cubic-time cellular method isn’t the fastest way to count or
identify the components of a picture. We can actually do that job “online,”
while looking at a large image one row at a time, not bothering to keep all of
the previously seen rows in memory if we don’t wish to look at them again.

While we’re analyzing the components we might as well also record the
relationships between them. Let’s assume that only finitely many black pixels
are present. Then there’s an infinite component of white pixels called the
background. Black components adjacent to the background constitute the main
objects of the image. And these objects may in turn have holes, which may serve
as a background for another level of objects, and so on. Thus the connected
components of any finite picture form a hierarchy — an oriented tree, rooted at
the background. Black components appear at the odd-numbered levels of this
tree, and white components at the even-numbered levels, alternating between

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 175

time = 5 time = 10 time = 20

(d) (e) (f)
by repeated application of Levialdi’s transformation.

kingwise and rookwise connectedness. Each component except the background is
surrounded by its parent. Childless components are said to be simply connected.

For example, here are the Cheshire cat’s components, labeled with digits for
white pixels and letters for the black ones, and the corresponding oriented tree:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0
0 0 0 0 A A A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A A 0 0 0 0 0 0
0 0 0 0 A 1 A A 0 0 0 0 0 0 0 0 0 0 0 0 0 A 1 1 A 0 0 0 0 0
0 0 0 A 1 1 1 A A 0 0 0 A A A A A A A 0 0 A 1 1 A 0 0 0 0 0
0 0 0 A 1 B 1 1 A A A A 1 1 1 1 1 1 1 A A A 1 1 1 A 0 0 0 0
0 0 0 A 1 B 1 1 A 1 1 1 1 1 1 1 1 1 1 1 1 A 1 C 1 A 0 0 0 0
0 0 0 A 1 B 1 1 A 1 1 1 1 1 1 1 1 1 1 1 1 A 1 C 1 A 0 0 0 0
0 0 0 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A 1 1 1 A 0 0 0 0
0 0 0 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A 1 1 A 0 0 0 0
0 0 0 0 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A 1 A 0 0 0
0 0 0 0 0 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A 0 0 0
0 0 0 0 0 A 1 1 D D D 1 1 1 1 1 1 1 E E E 1 1 1 1 1 A 0 0 0
0 0 0 0 0 A 1 D 2 2 2 D 1 1 1 1 1 E 3 3 3 E 1 1 1 1 A 0 0 0
A A 0 0 A 1 1 D D D 2 D 1 1 1 1 1 E E E 3 E 1 1 1 1 1 A 0 0
0 0 A A A 1 1 D D D D D 1 1 1 1 1 1 E E E 1 1 1 1 1 1 A 0 0
0 0 0 0 A A 1 1 1 1 1 1 1 F 1 F 1 1 1 1 1 1 1 1 1 1 1 A 0 0
A A A A 1 1 1 1 1 1 1 1 1 F 1 F 1 1 1 1 1 1 1 1 1 1 A A A A
0 0 0 A A A A 1 1 1 1 1 F 1 1 F 1 1 1 1 1 1 A A A A 1 A 0 0
0 0 0 A 1 1 1 1 1 1 1 1 1 F F 1 1 1 1 1 1 1 1 1 1 1 1 A 0 0
0 0 0 0 A 1 1 1 G G 1 1 1 1 1 1 1 1 1 1 1 A A A A A A A A A
0 0 0 0 0 A 1 1 1 G G G G G 1 1 1 1 1 1 1 1 1 1 1 1 A 0 0 0
0 0 0 0 0 0 A A 1 1 1 G G G G G G G G G G G 1 1 1 A 0 0 0 0
0 0 0 0 0 0 0 0 A A 1 1 G G G G G G G 1 1 1 1 A A 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 A 1 1 1 1 1 1 1 1 1 A A A 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 A A A A A A A A A A 0 0 0 0 0 0 0 0 0

0

1

2 3

A

B C D E F G

(162)

During the shrinking process of Fig. 17, components disappear in the order
C , { B , 2 , 3 } (all at time 3), F , E , D , G , 1 , A .

Suppose we want to analyze the components of such a picture by reading
one row at a time. After we’ve seen four rows the result-so-far will be

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 0
0 0 0 0 B B B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A A 0 0 0 0 0 0
0 0 0 0 B 1 B B 0 0 0 0 0 0 0 0 0 0 0 0 0 A 2 2 A 0 0 0 0 0
0 0 0 B 1 1 1 B B 0 0 0 C C C C C C C 0 0 A 2 2 A 0 0 0 0 0

0

1 2

AB C (163)

and we’ll be ready to scan row five. A comparison of rows four and five will
then show that B and C should merge into A , but that new components B

and 3 should also be launched. Exercise 179 contains full details about an
instructive algorithm that properly updates the current tree as new rows are
input. Additional information can also be computed on the fly: For example, we
could determine the area of each component, the locations of its first and last
pixels, the smallest enclosing rectangle, and/or its center of gravity.

From the Library of Melissa Nuno



ptg999

176 COMBINATORIAL SEARCHING 7.1.3

*Filling. Let’s complete our quick tour of raster graphics by considering how
to fill regions that are bounded by straight lines and/or simple curves. Particu-
larly efficient algorithms are available when the curves are built up from “conic
sections” — circles, ellipses, parabolas, or hyperbolas, as in classical geometry.

In keeping with geometric tradition, we shall adopt Cartesian coordinates
(x, y) in the following discussion, instead of speaking about rows or columns
of pixels: An increase of x will signify a move to the right, while an increase
of y will move upward. More significantly, we will focus on the edges between
square pixels, instead of on the pixels themselves. Edges run between integer
points (x, y) and (x′, y′) of the plane when |x − x′| + |y − y′| = 1. Each pixel
is bounded by the four edges (x, y)−−− (x−1, y)−−− (x−1, y−1)−−− (x, y−1)−−−
(x, y). Experience has shown that algorithms for filling contours become simpler
and faster when we concentrate on the edge transitions between white and black,
instead of on the black pixels of a custerized boundary. (See, for example, the
discussion by B. D. Ackland and N. Weste in IEEE Trans. C-30 (1981), 41–48.)

Consider a continuous curve z(t) =

x(t), y(t)


that is traced out as t varies

from 0 to 1. We assume that the curve doesn’t intersect itself for 0 ≤ t < 1, and
that z(0) = z(1). The famous Jordan curve theorem [C. Jordan, Cours d’analyse
3 (1887), 587–594; O. Veblen, Trans. Amer. Math. Soc. 6 (1905), 83–98] states
that every such curve divides the plane into two regions, called the inside and
the outside. We can “digitize” z(t) by forcing it to travel along edges between
pixels; then we obtain an approximation in which the inside pixels are black and
the outside pixels are white. This digitization process essentially replaces the
original curve by the sequence of integer points

round(z(t)) =

⌊x(t) + 1

2⌋, ⌊y(t) + 1
2⌋

, for 0 ≤ t ≤ 1. (164)

The curve can be perturbed slightly, if necessary, so that z(t) never passes exactly
through the center of a pixel. Then the digitized curve takes discrete steps along
pixel edges as t grows; and a pixel lies inside the digitization if and only if its
center lies inside the original continuous curve {z(t) | 0 ≤ t ≤ 1}.

For example, the equations x(t) = 20 cos 2πt and y(t) = 10 sin 2πt define an
ellipse. Its digitization, round(z(t)), starts at (20, 0) when t = 0, then jumps to
(20, 1) when t ≈ .008 and 10 sin 2πt = 0.5. Then it proceeds to the points (20, 2),
(19, 2), (19, 3), (19, 4), (18, 4), . . . , (20,−1), (20, 0), as t increases through the
values .024, .036, .040, .057, .062, . . . , .976, .992:

(165)

The horizontal edges of such a boundary are conveniently represented by bit
vectors H(y) for each y; for example, H(10) = . . . 000000111111111111000000 . . .
and H(9) = . . . 011111000000000000111110 . . . in (165). If the ellipse is filled

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 177

with black to obtain a bitmap B, the H vectors mark transitions between black
and white, so we have the symbolic relation

H = B ⊕ (B

≪

1). (166)

Conversely, it’s easy to obtain B when the H vectors are given:

B(y) = H(ymax)⊕H(ymax−1)⊕ · · · ⊕H(y + 1)
= H(ymin)⊕H(ymin+1)⊕ · · · ⊕H(y). (167)

Notice that H(ymin)⊕H(ymin+1)⊕· · ·⊕H(ymax) is the zero vector, because each
bitmap is white at both top and bottom. Notice further that the analogous verti-
cal edge vectors V (x) are redundant: They satisfy the formulas V = B⊕(B≪1)
and B = V ⊕ (see exercise 36), but we need not bother to keep track of them.

Conic sections are easier to deal with than most other curves, because we
can readily eliminate the parameter t. For example, the ellipse that led to (165)
can be defined by the equation (x/20)2 + (y/10)2 = 1, instead of using sines
and cosines. Therefore pixel (x, y) should be black if and only if its center point
(x− 1

2 , y−
1
2 ) lies inside the ellipse, if and only if (x− 1

2 )2/400+(y− 1
2 )2/100−1 < 0.

In general, every conic section is the set of points for which F (x, y) = 0,
when F is an appropriate quadratic form. Therefore there’s a quadratic form

Q(x, y) = F (x− 1
2 , y −

1
2 ) = ax2 + bxy + cy2 + dx+ ey + f (168)

that is negative at the integer point (x, y) if and only if pixel (x, y) lies on a
given side of the digitized curve.

For practical purposes we may assume that the coefficients (a, b, . . . , f) of Q
are not-too-large integers. Then we’re in luck, because the exact value of Q(x, y)
is easy to compute. In fact, as pointed out by M. L. V. Pitteway [Comp. J.
10 (1967), 282–289], there’s a nice “three-register algorithm” by which we can
quickly track the boundary points: Let x and y be integers, and suppose we’ve got
the values of Q(x, y), Qx(x, y), and Qy(x, y) in three registers (Q,Qx, Qy), where

Qx(x, y) = 2ax+ by + d and Qy(x, y) = bx+ 2cy + e (169)

are ∂
∂xQ and ∂

∂yQ. We can then move to any adjacent integer point, because

Q(x±1, y) = Q(x, y)±Qx(x, y)+a, Q(x, y±1) = Q(x, y)±Qy(x, y)+c,
Qx(x±1, y) = Qx(x, y)±2a, Qx(x, y±1) = Qx(x, y)±b,
Qy(x±1, y) = Qy(x, y)±b; Qy(x, y±1) = Qy(x, y)±2c. (170)

Furthermore we can divide the contour into separate pieces, in each of which x(t)
and y(t) are both monotonic. For example, when the ellipse (165) travels from
(20, 0) to (0, 10), the value of x decreases while y increases; thus we need only
move from (x, y) to (x−1, y) or to (x, y+1). If registers (Q,R, S) respectively
hold (Q,Qx−a,Qy +c), a move to (x−1, y) simply sets Q← Q−R, R← R−2a,
and S ← S − b; a move to (x, y+1) is just as quick. With care, this idea leads
to a blindingly fast way to discover the correctly digitized edges of almost any
conic curve.

From the Library of Melissa Nuno



ptg999

178 COMBINATORIAL SEARCHING 7.1.3

For example, the quadratic form Q(x, y) for ellipse (165) is 4x2 + 16y2 −
(4x + 16y + 1595), when we integerize its coefficients. We have Q(20, 0) =
F (19.5,−0.5) = −75 and Q(21, 0) = +85; therefore pixel (20, 0), whose center is
(19.5,−0.5), is inside the ellipse, but pixel (21, 0) isn’t. Let’s zoom in closer:

(21, 0)
−371 −227 −75 85

−371 −227 −75 85

−339 −195 −43 117

−275 −131 21 181

−179 −35 117 277

−51 93 245 405

(171)

The boundary can be deduced without examining Q at very many points. In
fact, we don’t need to look at Q(21, 0), because we know that all edges between
(20, 0) and (0, 10) must go either upwards or to the left. First we test Q(20, 1)
and find it negative (−75); so we move up. Also Q(20, 2) is negative (−43), so
we go up again. Then we test Q(20, 3), and find it positive (21); so we move left.
And so on. Only the Q values −75, −43, 21, −131, −35, 93, −51, . . . actually
need to be examined, if we’ve set the three-register method up properly.

Algorithm T (Three-register algorithm for conics). Given two integer points
(x, y) and (x′, y′), and an integer quadratic form Q as in (168), this algorithm
decides how to digitize a portion of the conic section defined by F (x, y) = 0,
where F (x, y) = Q(x+ 1

2 , y+ 1
2 ). It creates |x′− x| horizontal edges and |y′− y|

vertical edges, which form a path from (x, y) to (x′, y′). We assume that
i) Real-valued points (ξ, η) and (ξ′, η′) exist such that F (ξ, η) = F (ξ′, η′) = 0.
ii) The curve travels from (ξ, η) to (ξ′, η′) monotonically in both coordinates.
iii) x = ⌊ξ + 1

2⌋, y = ⌊η + 1
2⌋, x

′ = ⌊ξ′ + 1
2⌋, and y′ = ⌊η′ + 1

2⌋.
iv) If we traverse the curve from (ξ, η) to (ξ′, η′), we see F < 0 on our left.
v) No edge of the integer grid contains two roots of Q (see exercise 183).
T1. [Initialize.] If x = x′, go to T11; if y = y′, go to T10. If x < x′ and y < y′,

set Q← Q(x+1, y+1), R← Qx(x+1, y+1)+a, S ← Qy(x+1, y+1)+c, and
go to T2. If x < x′ and y > y′, set Q← Q(x+1, y), R ← Qx(x+1, y) + a,
S ← Qy(x+1, y) − c, and go to T3. If x > x′ and y < y′, set Q ←
Q(x, y+1), R ← Qx(x, y+1) − a, S ← Qy(x, y+1) + c, and go to T4. If
x > x′ and y > y′, set Q← Q(x, y), R ← Qx(x, y)− a, S ← Qy(x, y)− c,
and go to T5.

T2. [Right or up.] If Q < 0, do T9; otherwise do T6. Repeat until interrupted.
T3. [Down or right.] IfQ< 0, do T7; otherwise do T9. Repeat until interrupted.

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 179

T4. [Up or left.] If Q < 0, do T6; otherwise do T8. Repeat until interrupted.
T5. [Left or down.] If Q < 0, do T8; otherwise do T7. Repeat until interrupted.
T6. [Move up.] Create the edge (x, y)−−−(x, y+1), then set y ← y+1. Interrupt

to T10 if y = y′; otherwise set Q← Q+ S, R← R+ b, S ← S + 2c.
T7. [Move down.] Create the edge (x, y) −−− (x, y−1), then set y ← y − 1.

Interrupt to T10 if y = y′; otherwise set Q← Q−S, R← R−b, S ← S−2c.
T8. [Move left.] Create the edge (x, y) −−− (x−1, y), then set x ← x − 1.

Interrupt to T11 if x = x′; otherwise setQ← Q−R, R← R−2a, S ← S−b.
T9. [Move right.] Create the edge (x, y) −−− (x+1, y), then set x ← x + 1.

Interrupt to T11 if x = x′; otherwise setQ← Q+R, R← R+2a, S ← S+b.
T10. [Finish horizontally.] While x < x′, create the edge (x, y)−−− (x+1, y) and

set x ← x + 1. While x > x′, create the edge (x, y)−−− (x−1, y) and set
x← x− 1. Terminate the algorithm.

T11. [Finish vertically.] While y < y′, create the edge (x, y) −−− (x, y+1) and
set y ← y + 1. While y > y′, create the edge (x, y)−−− (x, y−1) and set
y ← y − 1. Terminate the algorithm.

For example, when this algorithm is invoked with (x, y) = (20, 0), (x′, y′) =
(0, 10), and Q(x, y) = 4x2 + 16y2 − 4x − 16y − 1595, it will create the edges
(20, 0) −−− (20, 1) −−− (20, 2) −−− (19, 2) −−− (19, 3) −−− (19, 4) −−− (18, 4) −−−
(18, 5) −−− (17, 5) −−− (17, 6) −−− · · · −−− (6, 9) −−− (6, 10), then make a beeline
for (0, 10). (See (165) and (171).) Exercise 182 explains why it works.

Movement to the left in step T8 is conveniently implemented by setting
H(y) ← H(y) ⊕ (1 ≪ (xmax − x)), using the H vectors of (166) and (167).
Movement to the right is similar, but we set x← x+ 1 first. Step T10 could set
H(y)← H(y)⊕ ((1≪ (xmax −min(x, x′)))− (1≪ (xmax −max(x, x′)))); (172)

but one move at a time might be just as good, because |x′ − x| is often small.
Movement up or down needs no action, because vertical edges are redundant.

Notice that the algorithm runs somewhat faster in the special case when
b = 0; circles always belong to this case. The even more special case of straight
lines, when a = b = c = 0, is of course faster yet; then we have a simple one-
register algorithm (see exercise 185).

Fig. 18. Pixels change from
white to black and back again,
at the edges of digitized circles.

When many contours are filled in the same image, using H vectors, the
pixel values change between black and white whenever we cross an odd number
of edges. Figure 18 illustrates a tiling of the hyperbolic plane by equilateral
45◦-45◦-45◦ triangles, obtained by superimposing the results of several hundred
applications of Algorithm T.

From the Library of Melissa Nuno



ptg999

180 COMBINATORIAL SEARCHING 7.1.3

1

5

20

22

27

29

0

2

7

8

9

10

11

21

25

28
3

1416
1719

33 35 36 38

1315
18

23

34
37

31

6

4

12

24

30

32

26

39

Fig. 19. Squines that define
the outline contour of an ‘ ’.

Algorithm T applies only to conic curves. But that’s not really a limitation
in practice, because just about every shape we ever need to draw can be well ap-
proximated by “piecewise conics” called quadratic Bézier splines or squines. For
example, Fig. 19 shows a typical squine curve with 40 points (z0, z1, . . . , z39, z40),
where z40 = z0. The even-numbered points (z0, z2, . . . , z40) lie on the curve;
the others, (z1, z3, . . . , z39), are called “control points,” because they regulate
local bending and flexing. Each section S(z2j , z2j+1, z2j+2) begins at point z2j ,
traveling in direction z2j+1 − z2j . It ends at point z2j+2, traveling in direction
z2j+2−z2j+1. Thus if z2j lies on the straight line from z2j−1 to z2j+1, the squine
passes smoothly through point z2j without changing direction.

Exercise 186 defines S(z2j , z2j+1, z2j+2) precisely, and exercise 187 explains
how to digitize any squine curve using Algorithm T. The region inside the
digitized edges can then be filled with black pixels.

Incidentally, the task of drawing lines and curves on a bitmap turns out
to be much more difficult than the task of filling a digitized contour, because
we want diagonal strokes to have the same apparent thickness as vertical and
horizontal strokes do. An excellent solution to the line-drawing problem was
found by John D. Hobby, JACM 36 (1989), 209–229.

*Branchless computation. Modern computers tend to slow down when a
program contains conditional branch instructions, because an uncertain flow
of control can interfere with predictive lookahead circuitry. Therefore we’ve
used MMIX’s conditional-set instructions like CSNZ in programs like (56). Indeed,
four instructions such as ‘ADD z,y,1; SR t,u,2; CSNZ x,q,z; CSNZ v,q,t’ are
probably faster than their three-instruction counterpart

BZ q,@+12; ADD x,y,1; SR v,u,2 (173)

when the actual running time is measured on a highly pipelined machine, even
though the rule-of-thumb cost of (173) is only 3υ according to Table 1.3.1́ –1.

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 181

Bitwise operations can help diminish the need for costly branching. For
example, if MMIX didn’t have a CSNZ instruction we could write

NEGU m,q; OR m,m,q; SR m,m,63;
ADD t,y,1; XOR t,t,x; AND t,t,m; XOR x,x,t;
SR t,u,2; XOR t,t,v; AND t,t,m; XOR v,v,t;

(174)

here the first line creates the mask m = −[q ̸= 0]. On some computers these eleven
branchless instructions would still run faster than the three instructions in (173).

The inner loop of a merge sort algorithm provides an instructive example.
Suppose we want to do the following operations repeatedly:

If xi < yj , set zk ← xi, i← i+ 1, and go to x done if i = imax.
Otherwise set zk ← yj , j ← j + 1, and go to y done if j = jmax.
Then set k ← k + 1 and go to z done if k = kmax.

If we implement them in the “obvious” way, four conditional branches are in-
volved, three of which are active on each path through the loop:
1H CMP t,xi,yj; BNN t,2F Branch if xi ≥ yj .

STO xi,zbase,kk zk ← xi.
ADD ii,ii,8 i← i+ 1.
BZ ii,X Done To x done if i = imax.
LDO xi,xbase,ii Load xi into register xi.
JMP 3F Join the other branch.

2H STO yj,zbase,kk zk ← yj .
ADD jj,jj,8 j ← j + 1.
BZ jj,Y Done To y done if j = jmax.
LDO yj,ybase,jj Load yj into register yj.

3H ADD kk,kk,8 k ← k + 1.
PBNZ kk,1B Repeat if k ̸= kmax.
JMP Z Done To z done.

(Here ii = 8(i − imax), jj = 8(j − jmax), and kk = 8(k − kmax); the factor of
8 is needed because xi, yj , and zk are octabytes.) Those four branches can be
reduced to just one:
1H CMP t,xi,yj t← sign(xi − yj).

CSN yj,t,xi yj← min(xi, yj).
STO yj,zbase,kk zk ← yj.
AND t,t,8 t← 8[xi<yj ].
ADD ii,ii,t i← i+ [xi<yj ].
LDO xi,xbase,ii Load xi into register xi.
XOR t,t,8 t← t⊕ 8.
ADD jj,jj,t j ← j + [xi≥ yj ].
LDO yj,ybase,jj Load yj into register yj.
ADD kk,kk,8 k ← k + 1.
AND u,ii,jj; AND u,u,kk u← ii & jj & kk.
PBN u,1B Repeat if i<imax, j<jmax, and k<kmax.

When the loop stops in this version, we can readily decide whether to continue at
x done, y done, or z done. These instructions load both xi and yj from memory
each time, but the redundant value will already be present in the cache.

From the Library of Melissa Nuno



ptg999

182 COMBINATORIAL SEARCHING 7.1.3

*More applications of MOR and MXOR. Let’s finish off our study of bitwise
manipulation by taking a look at two operations that are specifically designed for
64-bit work. MMIX’s instructions MOR and MXOR, which essentially carry out matrix
multiplication on 8× 8 Boolean matrices, turn out to be extremely flexible and
powerful, both by themselves and in combination with other bitwise operations.

If x = (x7 . . . x1x0)256 is an octabyte and a = (a7 . . . a1a0)2 is a single byte,
the instruction MOR t,x,a sets t← a7x7 | · · · | a1x1 | a0x0, while MXOR t,x,a sets
t← a7x7⊕ · · · ⊕ a1x1⊕ a0x0. For example, MOR t,x,2 and MXOR t,x,2 both set
t← x1; MOR t,x,3 sets t← x1 | x0 ; and MXOR t,x,3 sets t← x1 ⊕ x0 .

In general, of course, MOR and MXOR are functions of octabytes. When y =
(y7 . . . y1y0)256 is a general octabyte, the instruction MOR t,x,y produces the
octabyte t whose jth byte tj is the result of MOR applied to x and yj .

Suppose x = −1 = #ffffffffffffffff. Then MOR t,x,y computes the
mask t in which byte tj is #ff whenever yj ̸= 0, while tj is zero when yj = 0. This
simple special case is quite useful, because it accomplishes in just one instruction
what we previously needed seven operations to achieve in situations like (92).

We observed in (66) that two MORs will suffice to reverse the bits of any 64-bit
word, and many other important bit permutations also become easy when MOR
is in a computer’s repertoire. Suppose π is a permutation of {0, 1, . . . , 7} that
takes 0 →→ 0π, 1 →→ 1π, . . . , 7 →→ 7π. Then the octabyte p = (27π . . . 21π20π)256
corresponds to a permutation matrix that makes MOR do nice tricks: MOR t,x,p
will permute the bytes of x, setting tj ← xjπ. Furthermore, MOR u,p,y will
permute the bits of each byte of y, according to the inverse permutation; it sets
uj ← (a7 . . . a1a0)2 when yj = (a7π . . . a1πa0π)2.

With a little more skullduggery we can also expedite further permutations
such as the perfect shuffle (76), which transforms a given octabyte z = 232x+y =
(x31 . . . x1x0y31 . . . y1y0)2 into the “zippered” octabyte

w = x ‡ y = (x31y31 . . . x1y1x0y0)2. (175)

With appropriate permutation matrices p, q, and r, the intermediate results

t = (x31x27x30x26x29x25x28x24y31y27y30y26y29y25y28y24 . . .
x7x3x6x2x5x1x4x0y7y3y6y2y5y1y4y0)2, (176)

u = (y27y31y26y30y25y29y24y28x27x31x26x30x25x29x24x28 . . .
y3y7y2y6y1y5y0y4x3x7x2x6x1x5x0x4)2 (177)

can be computed quickly via the four instructions

MOR t,z,p; MOR t,q,t; MOR u,t,r; MOR u,r,u; (178)

see exercise 204. So there’s a mask m for which ‘PUT rM,m; MUX w,t,u’ completes
the perfect shuffle in just six cycles altogether. By contrast, the traditional
method in exercise 53 requires 30 cycles (five δ-swaps).

The analogous instruction MXOR is especially useful when binary linear alge-
bra is involved. For example, exercise 1.3.1́ –37 shows that XOR and MXOR directly
implement addition and multiplication in a finite field of 2k elements, for k ≤ 8.

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 183

The problem of cyclic redundancy checking provides an instructive example
of another case where MXOR shines. Streams of data are often accompanied by
“CRC bytes” in order to detect common types of transmission errors [see W. W.
Peterson and D. T. Brown, Proc. IRE 49 (1961), 228–235]. One popular method,
used for example in MP3 audio files, is to regard each byte α = (a7 . . . a1a0)2
as if it were the polynomial

α(x) = (a7 . . . a1a0)x = a7x
7 + · · ·+ a1x+ a0. (179)

When transmitting n bytes αn−1 . . . α1α0, we then compute the remainder

β =

αn−1(x)x8(n−1) + · · ·+ α1(x)x8 + α0(x)


x16 mod p(x), (180)

where p(x) = x16 +x15 +x2 +1, using polynomial arithmetic mod 2, and append
the coefficients of β as a 16-bit redundancy check.

The usual way to compute β is to process one byte at a time, according to
classical methods like Algorithm 4.6.1D. The basic idea is to define the partial
result βm =


αn−1(x)x8(n−1−m) + · · · + αm+1(x)x8 + αm(x)


x16 mod p(x) so

that βn = 0, and then to use the recursion

βm = ((βm+1≪ 8) & #ff00)⊕ crc table[(βm+1≫ 8)⊕ αm] (181)

to decrease m by 1 until m = 0. Here crc table[α] is a 16-bit table entry that
holds the remainder of α(x)x16, modulo p(x) and mod 2, for 0 ≤ α < 256.
[See A. Perez, IEEE Micro 3, 3 (June 1983), 40–50.]

But of course we’d prefer to process 64 bits at once instead of 8. The solution
is to find 8× 8 matrices A and B such that

α(x)x64 ≡ (αA)(x) + (αB)(x)x−8 (modulo p(x) and 2), (182)

for arbitrary bytes α, considering α to be a 1 × 8 vector of bits. Then we can
pad the given data bytes αn−1 . . . α1α0 with leading zeros so that n is a multiple
of 8, and use the following efficient reduction method:

Begin with c← 0, n← n− 8, and t← (αn+7 . . . αn)256.
While n > 0, set u← t ·A, v ← t ·B, n← n− 8,

t← (αn+7 . . . αn)256 ⊕ u⊕ (v≫ 8)⊕ (c≪ 56), and c← v & #ff.
(183)

Here t · A and t · B denote matrix multiplication via MXOR. The desired CRC
bytes, (tx16 +cx8) mod p(x), are then readily obtained from the 64-bit quantity t
and the 8-bit quantity c. Exercise 213 contains full details; the total running
time for n bytes comes to only (µ+ 10υ)n/8 +O(1).

The exercises below contain many more instances where MOR and MXOR lead
to substantial economies. New tricks undoubtedly remain to be discovered.

For further reading. The book Hacker’s Delight by Henry S. Warren, Jr.
(Addison–Wesley, 2002) discusses bitwise operations in depth, emphasizing the
great variety of options that are available on real-world computers that are not
as ideal as MMIX.

From the Library of Melissa Nuno



ptg999

184 COMBINATORIAL SEARCHING 7.1.3

EXERCISES
x 1. [15 ] What is the net effect of setting x← x⊕ y, y ← y ⊕ (x&m), x← x⊕ y?

2. [16 ] (H. S. Warren, Jr.) Are any of the following relations valid for all integers x
and y? (i) x⊕ y ≤ x | y; (ii) x& y ≤ x | y; (iii) |x− y| ≤ x⊕ y.

3. [M20 ] If x = (xn−1 . . . x1x0)2 with xn−1 = 1, let xM = (x̄n−1 . . . x̄1x̄0)2. Thus we
have 0M , 1M , 2M , 3M , . . . = −1, 0, 1, 0, 3, 2, 1, 0, 7, 6, . . . , if we let 0M = −1. Prove
that (x⊕ y)M < |x− y| ≤ x⊕ y for all x, y ≥ 0.

x 4. [M16 ] Let xC = x̄, xN = −x, xS = x+1, and xP = x−1 denote the complement,
the negative, the successor, and the predecessor of an infinite-precision integer x. Then
we have xCC = xNN = xSP = xPS = x. What are xCN and xNC?

5. [M21 ] Prove or disprove the following conjectured laws concerning binary shifts:
a) (x≪ j)≪ k = x≪ (j + k);
b) (x≫ j) & (y≪ k) = ((x≫ (j + k)) & y)≪ k = (x& (y≪ (j + k)))≫ j.
6. [M22 ] Find all integers x and y such that (a) x≫ y = y≫ x; (b) x≪ y = y≪ x.
7. [M22 ] (R. Schroeppel, 1972.) Find a fast way to convert the binary number
x = ( . . . x2x1x0)2 to its negabinary counterpart x = ( . . . x′2x′1x′0)−2, and vice versa.
Hint: Only two bitwise operations are needed!

x 8. [M22 ] Given a finite set S of nonnegative integers, the “minimal excludant” of S
is defined to be

mex(S) = min{ k | k ≥ 0 and k /∈ S }.
Let x⊕ S denote the set {x⊕ y | y ∈ S}, and let S ⊕ y denote {x⊕ y | x ∈ S}. Prove
that if x = mex(S) and y = mex(T ) then x⊕ y = mex((S ⊕ y) ∪ (x⊕ T )).

9. [M26 ] (Nim.) Two people play a game with k piles of sticks, where there are aj
sticks in pile j. If a1 = · · · = ak = 0 when it is a player’s turn to move, that player
loses; otherwise the player reduces one of the piles by any desired amount, throwing
away the removed sticks, and it is the other player’s turn. Prove that the player to
move can force a victory if and only if a1 ⊕ · · · ⊕ ak ̸= 0. [Hint: Use exercise 8.]
10. [HM40 ] (Nimbers, also known as Conway’s field.) Continuing exercise 8, define
the operation x⊗ y of “nim multiplication” recursively by the formula

x⊗ y = mex{(x⊗ j)⊕ (i⊗ y)⊕ (i⊗ j) | 0 ≤ i < x, 0 ≤ j < y}.

Prove that ⊕ and ⊗ define a field over the set of all nonnegative integers. Prove also
that if 0 ≤ x, y < 22n then x ⊗ y < 22n, and 22n ⊗ y = 22n

y. (In particular, this field
contains subfields of size 22n for all n ≥ 0.) Explain how to compute x⊗ y efficiently.

x 11. [M26 ] (H. W. Lenstra, 1978.) Find a simple way to characterize all pairs of
positive integers (m,n) for which m⊗ n = mn in Conway’s field.
12. [M26 ] Devise an algorithm for division of nimbers. Hint: If x < 22n+1 then we
have x⊗ (x⊕ (x≫ 2n)) < 22n.
13. [M32 ] (Second-order nim.) Extend the game of exercise 9 by allowing two kinds
of moves: Either aj is reduced for some j, as before; or aj is reduced and ai is replaced
by an arbitrary nonnegative integer, for some i < j. Prove that the player to move
can now force a victory if and only if the pile sizes satisfy either a2 ̸= a3 ⊕ · · · ⊕ ak or
a1 ̸= a3⊕ (2⊗a4)⊕· · ·⊕ ((k−2)⊗ak). For example, when k = 4 and (a1, a2, a3, a4) =
(7, 5, 0, 5), the only winning move is to (7, 5, 6, 3).

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 185

14. [M30 ] Suppose each node of a complete, infinite binary tree has been labeled with
0 or 1. Such a labeling is conveniently represented as a sequence T = (t, t0, t1, t00, t01,
t10, t11, t000, . . . ), with one bit tα for every binary string α; the root is labeled t, the
left subtree labels are T0 = (t0, t00, t01, t000, . . . ), and the right subtree labels are T1 =
(t1, t10, t11, t100, . . . ). Any such labeling can be used to transform a 2-adic integer
x = ( . . . x2x1x0)2 into the 2-adic integer y = ( . . . y2y1y0)2 = T (x) by setting y0 = t,
y1 = tx0 , y2 = tx0x1 , etc., so that T (x) = 2Tx0 (⌊x/2⌋) + t. (In other words, x defines
an infinite path in the binary tree, and y corresponds to the labels on that path, from
right to left in the bit strings as we proceed from top to bottom of the tree.)

A branching function is the mapping xT = x ⊕ T (x) defined by such a labeling.
For example, if t01 = 1 and all of the other tα are 0, we have xT = x⊕ 4[xmod 4 = 2].

a) Prove that every branching function is a permutation of the 2-adic integers.
b) For which integers k is x⊕ (x≪ k) a branching function?
c) Let x →→ xT be a mapping from 2-adic integers into 2-adic integers. Prove that xT

is a branching function if and only if ρ(x⊕ y) = ρ(xT⊕ yT ) for all 2-adic x and y.
d) Prove that compositions and inverses of branching functions are branching func-

tions. (Thus the set B of all branching functions is a permutation group.)
e) A branching function is balanced if the labels satisfy tα = tα0⊕ tα1 for all α. Show

that the set of all balanced branching functions is a subgroup of B.
x 15. [M26 ] J. H. Quick noticed that ((x+ 2)⊕3)−2 = ((x−2)⊕3) + 2 for all x. Find

all constants a and b such that ((x+ a)⊕ b)− a = ((x− a)⊕ b) + a is an identity.
16. [M31 ] A function of x is called animating if it can be written in the form

((. . . ((((x+ a1)⊕ b1) + a2)⊕ b2) + · · · ) + am)⊕ bm

for some integer constants a1, b1, a2, b2, . . . , am, bm, with m > 0.
a) Prove that every animating function is a branching function (see exercise 14).
b) Furthermore, prove that it is balanced if and only if b1 ⊕ b2 ⊕ · · · ⊕ bm = 0. Hint:

What binary tree labeling corresponds to the animating function ((x⊕ c)−1)⊕ c?
c) Let ⌊x⌉ = x⊕ (x−1) = 2ρ(x)+1−1. Show that every balanced animating function

can be written in the form

x⊕ ⌊x⊕ p1⌉ ⊕ ⌊x⊕ p2⌉ ⊕ · · · ⊕ ⌊x⊕ pl⌉, p1 < p2 < · · · < pl,

for some integers {p1, p2, . . . , pl}, where l ≥ 0, and this representation is unique.
d) Conversely, show that every such expression defines a balanced animating function.

17. [HM36 ] The results of exercise 16 make it pos-
sible to decide whether or not any two given ani-
mating functions are equal. Is there an algorithm
that decides whether any given expression is iden-
tically zero, when that expression is constructed
from a finite number of integer variables and con-
stants using only the binary operations + and ⊕?
What if we also allow &?
18. [M25 ] The curious pixel pattern shown here
has (x2y ≫ 11) & 1 in row x and column y, for
1 ≤ x, y ≤ 256. Is there any simple way to explain
some of its major characteristics mathematically?

From the Library of Melissa Nuno



ptg999

186 COMBINATORIAL SEARCHING 7.1.3

x 19. [M37 ] (Paley’s rearrangement theorem.) Given three vectors A = (a0, . . . , a2n−1),
B = (b0, . . . , b2n−1), and C = (c0, . . . , c2n−1) of nonnegative numbers, let

f(A,B,C) =


j⊕k⊕l=0

ajbkcl.

For example, if n = 2 we have f(A,B,C) = a0b0c0 +a0b1c1 +a0b2c2 +a0b3c3 +a1b0c1 +
a1b1c0 + a1b2c3 + · · · + a3b3c0; in general there are 22n terms, one for each choice of
j and k. Our goal is to prove that f(A,B,C) ≤ f(A∗, B∗, C∗), where A∗ denotes the
vector A sorted into nonincreasing order: a∗0 ≥ a∗1 ≥ · · · ≥ a∗2n−1.

a) Prove the result when all elements of A, B, and C are 0s and 1s.
b) Show that it is therefore true in general.
c) Similarly, f(A,B,C,D) =


j⊕k⊕l⊕m=0 ajbkcldm ≤ f(A∗, B∗, C∗, D∗).

x 20. [21 ] (Gosper’s hack.) The following seven operations produce a useful function y
of x, when x is a positive integer. Explain what this function is and why it is useful.

u← x&−x; v ← x+ u; y ← v + (((v ⊕ x)/u)≫ 2).

21. [22 ] Construct the reverse of Gosper’s hack: Show how to compute x from y.
22. [21 ] Implement Gosper’s hack efficiently with MMIX code, assuming that x < 264,
without using division.

x 23. [27 ] A sequence of nested parentheses can be represented as a binary number by
putting a 1 in the position of each right parenthesis. For example, ‘(())()’ corresponds
in this way to (001101)2, the number 13. Call such a number a parenthesis trace.

a) What are the smallest and largest parenthesis traces that have exactly m 1s?
b) Suppose x is a parenthesis trace and y is the next larger parenthesis trace with

the same number of 1s. Show that y can be computed from x with a short chain
of operations analogous to Gosper’s hack.

c) Implement your method on MMIX, assuming that νx ≤ 32.
x 24. [M30 ] Program 1.3.2́ P instructed MMIX to produce a table of the first five hundred

prime numbers, using trial division to establish primality. Write an MMIX program that
uses the “sieve of Eratosthenes” (exercise 4.5.4–8) to build a table of all odd primes that
are less than N, packed into octabytes Q0, Q1, . . . , QN/128−1 as in (27). Assume that
N ≤ 232, and that it’s a multiple of 128. What is the running time when N = 3584?

x 25. [15 ] Four volumes sit side by side on a bookshelf. Each of them contains exactly
500 pages, printed on 250 sheets of paper 0.1 mm thick; each book also has a front and
back cover whose thicknesses are 1 mm each. A bookworm gnaws its way from page 1
of Volume 1 to page 500 of Volume 4. How far does it travel while doing so?
26. [22 ] Suppose we want random access to a table of 12 million items of 5-bit data.
We could pack 12 such items into one 64-bit word, thereby fitting the table into 8
megabytes of memory. But random access then seems to require division by 12, which
is rather slow; we might therefore prefer to let each item occupy a full byte, thus using
12 megabytes altogether.

Show, however, that there’s a memory-efficient approach that avoids division.
27. [21 ] In the notation of Eqs. (32)–(43), how would you compute (a) (α10a01b)2?
(b) (α10a11b)2? (c) (α00a01b)2? (d) (0∞11a00b)2? (e) (0∞01a00b)2? (f) (0∞11a11b)2?
28. [16 ] What does the operation (x+1) & x̄ produce?
29. [20 ] (V. R. Pratt.) Express the magic mask µk of (47) in terms of µk+1.

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 187

30. [20 ] If x = 0, the MMIX instructions (46) will set ρ← 64 (which is a close enough
approximation to ∞). What changes to (50) and (51) will produce the same result?

x 31. [20 ] A mathematician named Dr. L. I. Presume decided to calculate the ruler
function with a simple loop as follows: “Set ρ← 0; then while x& 1 = 0, set ρ← ρ+ 1
and x ← x≫ 1.” He reasoned that, when x is a random integer, the average number
of right shifts is the average value of ρ, which is 1; and the standard deviation is only√

2, so the loop almost always terminates quickly. Criticize his decision.
32. [20 ] What is the execution time for ρx when (52) is programmed for MMIX?

x 33. [26 ] (Leiserson, Prokop, and Randall, 1998.) Show that if ‘58’ is replaced by ‘49’
in (52), we can use that method to identify both bits of the number y = 2j +2k quickly,
when 64 > j > k ≥ 0. (Altogether

64
2


= 2016 cases need to be distinguished.)
34. [M23 ] Let x and y be 2-adic integers. True or false: (a) ρ(x& y) = max(ρx, ρy);
(b) ρ(x | y) = min(ρx, ρy); (c) ρx = ρy if and only if x⊕ y = (x− 1)⊕ (y − 1).

x 35. [M26 ] According to Reitwiesner’s theorem, exercise 4.1–34, every integer n has a
unique representation n = n+−n− such that n+ &n− = (n+ |n−)&((n+ |n−)≫1) = 0.
Show that n+ and n− can be calculated quickly with bitwise operations. Hint: Prove
the identity (x⊕ 3x) & ((x⊕ 3x)≫ 1) = 0.
36. [20 ] Given x = (x63 . . . x1x0)2, suggest efficient ways to calculate the quantities

i) x⊕ = (x⊕63 . . . x
⊕
1 x

⊕
0 )2, where x⊕k = xk ⊕ · · · ⊕ x1 ⊕ x0 for 0 ≤ k < 64;

ii) x& = (x&
63 . . . x

&
1 x

&
0 )2, where x&

k = xk ∧ · · · ∧ x1 ∧ x0 for 0 ≤ k < 64.
37. [16 ] What changes to (55) and (56) will make λ0 come out −1?
38. [17 ] How long does the leftmost-bit-extraction procedure (57) take when imple-
mented on MMIX?

x 39. [20 ] Formula (43) shows how to remove the rightmost run of 1 bits from a given
number x. How would you remove the leftmost run of 1 bits?

x 40. [21 ] Prove (58), and find a simple way to decide if λx < λy, given x and y ≥ 0.
41. [M22 ] What are the generating functions of the integer sequences (a) ρn, (b) λn,
and (c) νn?
42. [M21 ] If n = 2e1 + · · · + 2er , with e1 > · · · > er ≥ 0, express the sum

n−1
k=0 νk

in terms of the exponents e1, . . . , er.
x 43. [20 ] How sparse should x be, to make (63) faster than (62) on MMIX?
x 44. [23 ] (E. Freed, 1983.) What’s a fast way to evaluate the weighted bit sum


jxj?

x 45. [20 ] (T. Rokicki, 1999.) Explain how to test if xR< yR, without reversing x and y.
46. [22 ] Method (68) uses six operations to interchange two bits xi ↔ xj of a register.
Show that this interchange can actually be done with only three MMIX instructions.
47. [10 ] Can the general δ-swap (69) also be done with a method like (67)?
48. [M21 ] How many different δ-swaps are possible in an n-bit register? (When n = 4,
a δ-swap can transform 1234 into 1234, 1243, 1324, 1432, 2134, 2143, 3214, 3412, 4231.)

x 49. [M30 ] Let s(n) denote the fewest δ-swaps that suffice to reverse an n-bit number.
a) Prove that s(n) ≥ ⌈log3 n⌉ when n is odd, s(n) ≥ ⌈log3 3n/2⌉ when n is even.
b) Evaluate s(n) when n = 3m, 2 · 3m, (3m + 1)/2, and (3m − 1)/2.
c) What are s(32) and s(64)? Hint: Show that s(5n+ 2) ≤ s(n) + 2.

50. [M37 ] Continuing exercise 49, prove that s(n) = log3 n+O(log logn).

From the Library of Melissa Nuno



ptg999

188 COMBINATORIAL SEARCHING 7.1.3

51. [23 ] Let c be a constant, 0 ≤ c < 2d. Find all sequences of masks (θ0, θ1, . . . , θd−1,
θ̂d−2, . . . , θ̂1, θ̂0) such that the general permutation scheme (71) takes x →→ xπ, where
the bit permutation π is defined by either (a) jπ = j ⊕ c; or (b) jπ = (j + c) mod 2d.
[The masks should satisfy θk ⊆ µd,k and θ̂k ⊆ µd,k, so that (71) corresponds to Fig. 12;
see (48). Notice that reversal, xπ = xR, is the special case c = 2d− 1 of part (a), while
part (b) corresponds to the cyclic right shift xπ = (x≫ c) + (x≪ (2d − c)).]
52. [22 ] Find hexadecimal constants (θ0, θ1, θ2, θ3, θ4, θ5, θ̂4, θ̂3, θ̂2, θ̂1, θ̂0) that cause
(71) to produce the following important 64-bit permutations, based on the binary
representation j = (j5j4j3j2j1j0)2: (a) jπ = (j0j5j4j3j2j1)2; (b) jπ = (j2j1j0j5j4j3)2;
(c) jπ = (j1j0j5j4j3j2)2; (d) jπ = (j0j1j2j3j4j5)2. [Case (a) is the “perfect shuffle”
(175) that takes (x63 . . . x33x32x31 . . . x1x0)2 into (x63x31 . . . x33x1x32x0)2; case (b)
transposes an 8 × 8 matrix of bits; case (c), similarly, transposes a 4 × 16 matrix;
and case (d) arises in connection with “fast Fourier transforms,” see exercise 4.6.4–14.]

x 53. [M25 ] The permutations in exercise 52 are said to be “induced by a permutation
of index digits,” because we obtain jπ by permuting the binary digits of j. Suppose
jπ = (j(d−1)ψ . . . j1ψj0ψ)2, where ψ is a permutation of {0, 1, . . . , d− 1}. Prove that if
ψ has t cycles, the 2d-bit permutation x →→ xπ can be obtained with only d− t swaps.
In particular, show that this observation speeds up all four cases of exercise 52.
54. [22 ] (R. W. Gosper, 1985.) If an m × m bit matrix is stored in the rightmost
m2 bits of a register, show that it can be transposed by doing (2k(m − 1))-swaps for
0 ≤ k < ⌈lgm⌉. Write out the method in detail when m = 7.

x 55. [26 ] Suppose an n×n bit matrix is stored in the rightmost n2 bits of an n3-bit reg-
ister. Prove that 18d+2 bitwise operations suffice to multiply two such matrices, when
n = 2d; the matrix multiplication can be either Boolean (like MOR) or mod 2 (like MXOR).
56. [24 ] Suggest a way to transpose a 7× 9 bit matrix in a 64-bit register.
57. [22 ] The network P (2d) of Fig. 12 has a total of (2d − 1)2d−1 crossbars. Prove
that any permutation of 2d elements can be realized by some setting in which at most
d2d−1 of them are active.

x 58. [M32 ] The first d columns of crossbar modules in the permutation network P (2d)
perform a 1-swap, then a 2-swap, . . . , and finally a 2d−1-swap, when the network’s wires
are stretched into horizontal lines as shown here for d = 3. Let
N = 2d. These N lines, together with the Nd/2 crossbars, form a
so-called “Omega router” or “inverse butterfly.” The purpose of
this exercise is to study the set Ω of all permutations φ such that
we can obtain (0φ, 1φ, . . . , (N−1)φ) as outputs on the right of an
Omega router when the inputs at the left are (0, 1, . . . , N − 1).

0
1
2
3
4
5
6
7

0ϕ
1ϕ
2ϕ
3ϕ
4ϕ
5ϕ
6ϕ
7ϕ

a) Prove that |Ω| = 2Nd/2. (Thus lg |Ω| = Nd/2 ∼ 1
2 lgN !.)

b) Prove that a permutation φ of {0, 1, . . . , N − 1} belongs to Ω if and only if
imod 2k = j mod 2k and iφ≫ k = jφ≫ k implies iφ = jφ (∗)

for all 0 ≤ i, j < N and all 0 ≤ k ≤ d.
c) Simplify condition (∗) to the following, for all 0 ≤ i, j < N :

λ(iφ⊕ jφ) < ρ(i⊕ j) implies i = j .

d) Let T be the set of all permutations τ of {0, 1, . . . , N − 1} such that ρ(i ⊕ j) =
ρ(iτ⊕jτ) for all i and j. (This is the set of branching functions considered in exer-
cise 14, modulo 2d; so it has 2N−1 members, 2N/2+d−1 of which are the animating
functions modulo 2d.) Prove that φ ∈ Ω if and only if τφ ∈ Ω for all τ ∈ T .

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 189

e) Suppose φ and ψ are permutations of Ω that operate on different elements; that
is, jφ ̸= j implies jψ = j, for 0 ≤ j < N . Prove that φψ ∈ Ω.

f) Prove that the permutation 0φ . . . (N − 1)φ is Omega-routable if and only if it is
sorted by Batcher’s bitonic sorting network of order N . (See Section 5.3.4.)

59. [M30 ] Given 0 ≤ a < b < N = 2d, how many Omega-routable permutations
operate only on the interval [a . . b]? (Thus we want to count the number of φ ∈ Ω such
that jφ ̸= j implies a ≤ j ≤ b. Exercise 58(a) is the special case a = 0, b = N − 1.)
60. [HM28 ] Given a random permutation of {0, 1, . . . , 2n−1}, let pnk be the proba-
bility that there are 2k ways to set the crossbars in the first and last columns of the
permutation network P (2n) when realizing this permutation. In other words, pnk is the
probability that the associated graph has k cycles (see (75)). What is the generating
function


k≥0 pnkz

k? What are the mean and variance of 2k?
61. [46 ] Is it NP-hard to decide whether a given permutation is realizable with at
least one mask θj = 0, using the recursive method of Fig. 12 as implemented in (71)?

x 62. [22 ] Let N = 2d. We can obviously represent a permutation π of {0, 1, . . . , N−1}
by storing a table of N numbers, d bits each. With this representation we have instant
access to y = xπ, given x; but it takes Ω(N) steps to find x = yπ− when y is given.

Show that, with the same amount of memory, we can represent an arbitrary
permutation in such a way that xπ and yπ− are both computable in O(d) steps.
63. [19 ] For what integers w, x, y, and z does the zipper function satisfy (i) x‡y =
y‡x? (ii) (x‡y)≫z = (x≫⌈z/2⌉)‡(y≫⌊z/2⌋)? (iii) (w ‡x)&(y ‡z) = (w&y)‡(x&z)?
64. [22 ] Find a “simple” expression for the zipper-of-sums (x + x′) ‡ (y + y′), as a
function of z = x ‡ y and z′ = x′ ‡ y′.
65. [M16 ] The binary polynomial u(x) = u0 + u1x+ · · ·+ un−1x

n−1 (mod 2) can be
represented by the integer u = (un−1 . . . u1u0)2. If u(x) and v(x) correspond to integers
u and v in this way, what polynomial corresponds to u ‡ v?

x 66. [M26 ] Suppose the polynomial u(x) has been represented as an n-bit integer u as
in exercise 65, and let v = u⊕ (u≪ δ)⊕ (u≪ 2δ)⊕ (u≪ 3δ)⊕ · · · for some integer δ.

a) What’s a simple way to describe the polynomial v(x)?
b) Suppose n is large, and the bits of u have been packed into 64-bit words. How

would you compute v when δ = 1, using bitwise operations in 64-bit registers?
c) Consider the same question as (b), but when δ = 64.
d) Consider the same question as (b), but when δ = 3.
e) Consider the same question as (b), but when δ = 67.

67. [M31 ] If u(x) is a polynomial of degree < n, represented as in exercise 65, discuss
the computation of v(x) = u(x)2 mod (xn + xm + 1), when 0 < m < n and both m
and n are odd. Hint: This problem has an interesting connection with perfect shuffling.
68. [20 ] What three MMIX instructions implement the δ-shift operation, (79)?
69. [25 ] Prove that method (80) always extracts the proper bits when the masks θk
have been set up properly: We never clobber any of the crucial bits yj .

x 70. [31 ] (Guy L. Steele Jr., 1994.) What’s a good way to compute the masks θ0, θ1,
. . . , θd−1 that are needed in the general compression procedure (80), given χ ̸= 0?
71. [20 ] Explain how to reverse the procedure of (80), going from the compact value
y = (yr−1 . . . y1y0)2 to a number z = (z63 . . . z1z0)2 that has zji = yi for 0 ≤ i < r.
72. [25 ] (Y. Hilewitz and R. B. Lee.) Prove that the gather-flip operation (81′) is
Omega-routable in the sense of exercise 58.

From the Library of Melissa Nuno



ptg999

190 COMBINATORIAL SEARCHING 7.1.3

73. [22 ] Prove that d well-chosen steps of (a) the sheep-and-goats operation (81) or
(b) the gather-flip operation (81′) will implement any desired 2d-bit permutation.
74. [22 ] Given counts (c0, c1, . . . , c2d−1) for the Chung–Wong procedure, explain why
an appropriate cyclic 1-shift can always produce new counts (c′0, c′1, . . . , c′2d−1) for which
c′2l =


c′2l+1, thus allowing the recursion to proceed.

x 75. [32 ] The method of Chung and Wong replicates bit l of a register exactly cl
times, but it produces results in scrambled order. For example, the case (c0, . . . , c7) =
(1, 2, 0, 2, 0, 2, 0, 1) illustrated in the text produces (x7x3x1x5x5x3x1x0)2. In some
applications this can be a disadvantage; we might prefer to have the bits retain their
original order, namely (x7x5x5x3x3x1x1x0)2 in that example.

Prove that the permutation network P (2d) of Fig. 12 can be modified to achieve
this goal, given any sequence of counts (c0, c1, . . . , c2d−1), if we replace the d · 2d−1

crossbar modules in the right-hand half by general 2×2 mapping modules. (A crossbar
module with inputs (a, b) produces either (a, b) or (b, a) as output; a mapping module
can also produce (a, a) or (b, b).)
76. [47 ] A mapping network is analogous to a sorting network or a permutation
network, but it uses 2×2 mapping modules instead of comparators or crossbars, and it
is supposed to be able to output all nn possible mappings of its n inputs. Exercise 75,
in conjunction with Fig. 12, shows that a mapping network for n = 2d exists with only
4d−2 levels of delay, and with n/2 modules on each level; furthermore, this construction
needs general 2 × 2 mapping modules (instead of simple crossbars) in only d of those
levels.

To within O(n), what is the smallest number G(n) of modules that are sufficient
to implement a general n-element mapping network?
77. [26 ] (R. W. Floyd and V. R. Pratt.) Design an algorithm that tests whether
or not a given standard n-network is a sorting network, as defined in the exercises
of Section 5.3.4. When the given network has r comparator modules, your algorithm
should use O(r) bitwise operations on words of length 2n.
78. [M27 ] (Testing disjointness.) Suppose the binary numbers x1, x2, . . . , xm each
represent sets in a universe of n− k elements, so that each xj is less than 2n−k. J. H.
Quick (a student) decided to test whether the sets are disjoint by testing the condition

x1 | x2 | · · · | xm = (x1 + x2 + · · ·+ xm) mod 2n.

Prove or disprove: Quick’s test is valid if and only if k ≥ lg(m− 1).
x 79. [20 ] If x ̸= 0 and x ⊆ χ, what is an easy way to determine the largest integer
x′ < x such that x′ ⊆ χ? (Thus (x′)′ = (x′)′ = x, in connection with (84).)
80. [20 ] Suggest a fast way to find all maximal proper subsets of a set. More precisely,
given χ with νχ = m, we want to find all x ⊆ χ such that νx = m− 1.
81. [21 ] Find a formula for “scattered difference,” to go with the “scattered sum” (86).
82. [21 ] Is it easy to shift a scattered accumulator to the left by 1, for example to
change (y2x4x3y1x2y0x1x0)2 to (y1x4x3y0x20x1x0)2?

x 83. [33 ] Continuing exercise 82, find a way to shift a scattered 2d-bit accumulator to
the right by 1, given z and χ, in O(d) steps.
84. [25 ] Given n-bit numbers z = (zn−1 . . . z1z0)2 and χ = (χn−1 . . . χ1χ0)2, explain
how to calculate the “stretched” quantities z ↽ χ = (z(n−1)↽χ . . . z1↽χz0↽χ)2 and

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 191

z ⇁χ = (z(n−1)⇁χ . . . z1⇁χz0⇁χ)2, where

j ↽χ = max{k | k ≤ j and χk = 1}, j ⇁χ = min{k | k ≥ j and χk = 1};
we let zj↽χ = 0 if χk = 0 for 0 ≤ k ≤ j, and zj⇁χ = 0 if χk = 0 for n > k ≥ j. For
example, if n = 11 and χ = (01101110010)2, then z ↽ χ = (z9z9z8z6z6z5z4z1z1z10)2
and z ⇁χ = (0z9z8z8z6z5z4z4z4z1z1)2.
85. [22 ] (K. D. Tocher, 1954.) Imagine that you have a vintage 1950s computer
with a drum memory for storing data, and that you need to do some computations
with a 32 × 32 × 32 array a[i, j, k], whose subscripts are 5-bit integers in the range
0 ≤ i, j, k < 32. Unfortunately your machine has only a very small high-speed memory:
You can access only 128 consecutive elements of the array in fast memory at any time.
Since your application usually moves from a[i, j, k] to a neighboring position a[i′, j′, k′],
where |i− i′|+ |j − j′|+ |k− k′| = 1, you have decided to allocate the array so that, if
i = (i4i3i2i1i0)2, j = (j4j3j2j1j0)2, and k = (k4k3k2k1k0)2, the array entry a[i, j, k] is
stored in drum location (k4j4i4k3j3i3k2j2i2k1j1i1k0j0i0)2. By interleaving the bits in
this way, a small change to i, j, or k will cause only a small change in the address.

Discuss the implementation of this addressing function: (a) How does it change
when i, j, or k changes by ±1? (b) How would you handle a random access to a[i, j, k],
given i, j, and k? (c) How would you detect a “page fault” (namely, the condition that
a new segment of 128 elements must be swapped into fast memory from the drum)?
86. [M27 ] An array of 2p × 2q × 2r elements is to be allocated by putting a[i, j, k]
into a location whose bits are the p+ q + r bits of (i, j, k), permuted in some fashion.
Furthermore, this array is to be stored in an external memory using pages of size 2s.
(Exercise 85 considers the case p = q = r = 5 and s = 7.) What allocation strategy
of this kind minimizes the number of times that a[i, j, k] is on a different page from
a[i′, j′, k′], summed over all i, j, k, i′, j′, and k′ such that |i− i′|+ |j−j′|+ |k−k′| = 1?

x 87. [20 ] Suppose each byte of a 64-bit word x contains an ASCII code that represents
either a letter, a digit, or a space. What three bitwise operations will convert all the
lowercase letters to uppercase?
88. [20 ] Given x = (x7 . . . x0)256 and y = (y7 . . . y0)256, compute z = (z7 . . . z0)256,
where zj = (xj − yj) mod 256 for 0 ≤ j < 8. (See the addition operation in (87).)
89. [23 ] Given x = (x31 . . . x1x0)4 and y = (y31 . . . y1y0)4, compute z = (z31 . . . z1z0)4,
where zj = ⌊xj/yj⌋ for 0 ≤ j < 32, assuming that no yj is zero.
90. [20 ] The bytewise averaging rule (88) always rounds downward when xj + yj is
odd. Make it less biased by rounding to the nearest odd integer in such cases.

x 91. [26 ] (Alpha channels.) Recipe (88) is a good way to compute bytewise averages,
but applications to computer graphics often require a more general blending of 8-bit
values. Given three octabytes x = (x7 . . . x0)256, y = (y7 . . . y0)256, α = (a7 . . . a0)256,
show that bitwise operations allow us to compute z = (z7 . . . z0)256, where each byte zj
is a good approximation to ((255−aj)xj+ajyj)/255, without doing any multiplication.
Implement your method with MMIX instructions.

x 92. [21 ] What happens if the second line of (88) is changed to ‘z ← (x | y)− z’?
93. [18 ] What basic formula for subtraction is analogous to formula (89) for addition?
94. [21 ] Let x = (x7 . . . x1x0)256 and t = (t7 . . . t1t0)256 in (90). Can tj be nonzero
when xj is nonzero? Can tj be zero when xj is zero?
95. [22 ] What’s a bitwise way to tell if all bytes of x = (x7 . . . x1x0)256 are distinct?

From the Library of Melissa Nuno



ptg999

192 COMBINATORIAL SEARCHING 7.1.3

96. [21 ] Explain (93), and find a similar formula that sets test flags tj ← 128[xj ≤ yj ].
97. [23 ] Leslie Lamport’s paper in 1975 presented the following “problem taken from
an actual compiler optimization algorithm”: Given octabytes x = (x7 . . . x0)256 and y =
(y7 . . . y0)256, compute t = (t7 . . . t0)256 and z = (z7 . . . z0)256 so that tj ̸= 0 if and only
if xj ̸= 0, xj ̸= ’*’, and xj ̸= yj ; and zj = (xj = 0? yj : (xj ̸= ’*’∧ xj ̸= yj? ’*’: xj)).
98. [20 ] Given x = (x7 . . . x0)256 and y = (y7 . . . y0)256, compute z = (z7 . . . z0)256
and w = (w7 . . . w0)256, where zj = max(xj , yj) and wj = min(xj , yj) for 0 ≤ j < 8.

x 99. [28 ] Find hexadecimal constants a, b, c, d, e such that the six bitwise operations

y ← x⊕ a, t← ((((y & b) + c) | y)⊕ d) & e

will compute the flags t = (f7 . . . f1f0)256≪7 from any bytes x = (x7 . . . x1x0)256, where

f0 = [x0 = ’!’], f1 = [x1 ̸= ’*’], f2 = [x2 < ’A’], f3 = [x3 > ’z’], f4 = [x4≥ ’a’],
f5 = [x5 ∈{’0’, ’1’, . . . , ’9’}], f6 = [x6≤ 168], f7 = [x7 ∈{’<’, ’=’, ’>’, ’?’}].

100. [25 ] Suppose x = (x15 . . . x1x0)16 and y = (y15 . . . y1y0)16 are binary-coded dec-
imal numbers, where 0 ≤ xj , yj < 10 for each j. Explain how to compute their sum
u = (u15 . . . u1u0)16 and difference v = (v15 . . . v1v0)16, where 0 ≤ uj , vj < 10 and

(u15 . . . u1u0)10 = ((x15 . . . x1x0)10 + (y15 . . . y1y0)10) mod 1016,

(v15 . . . v1v0)10 = ((x15 . . . x1x0)10 − (y15 . . . y1y0)10) mod 1016,

without bothering to do any radix conversion.
x 101. [22 ] Two octabytes x and y contain amounts of time, represented in five fields

that respectively signify days (3 bytes), hours (1 byte), minutes (1 byte), seconds
(1 byte), and milliseconds (2 bytes). Can you add and subtract them quickly, without
converting from this mixed-radix representation to binary and back again?
102. [25 ] Discuss routines for the addition and subtraction of polynomials modulo 5,
when (a) 16 4-bit coefficients or (b) 21 3-bit coefficients are packed into a 64-bit word.

x 103. [22 ] Sometimes it’s convenient to represent small numbers in unary notation, so
that 0, 1, 2, 3, . . . , k appear respectively as (0)2, (1)2, (11)2, (111)2, . . . , 2k − 1 inside
the computer. Then max and min are easily implemented as | and &.

Suppose the bytes of x = (x7 . . . x0)256 are such unary numbers, while the bytes
of y = (y7 . . . y0)256 are all either 0 or 1. Explain how to “add” y to x or “subtract” y
from x, giving u = (u7 . . . u0)256 and v = (v7 . . . v0)256 where

uj = 2min(8,lg(xj+1)+yj) − 1 and vj = 2max(0,lg(xj+1)−yj) − 1.

104. [22 ] Use bitwise operations to check the validity of a date represented in “year-
month-day” fields (y,m, d) as in (22). You should compute a value t that is zero if and
only if 1900 < y < 2100, 1 ≤ m ≤ 12, and 1 ≤ d ≤ max day(m), where month m has
at most max day(m) days. Can it be done in fewer than 20 operations?
105. [30 ] Given x = (x7 . . . x0)256 and y = (y7 . . . y0)256, discuss bitwise operations
that will sort the bytes into order, so that x0 ≤ y0 ≤ · · · ≤ x7 ≤ y7 afterwards.
106. [27 ] Explain the Fredman–Willard procedure (95). Also show that a simple
modification of their method will compute 2λx without doing any left shifts.

x 107. [22 ] Implement Algorithm B on MMIX when d = 4, and compare it with (56).
108. [26 ] Adapt Algorithm B to cases where n does not have the form d · 2d.

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 193

109. [20 ] Evaluate ρx for n-bit numbers x in O(log logn) broadword steps.
x 110. [30 ] Suppose n = 22e

and 0 ≤ x < n. Show how to compute 1≪ x in O(e)
broadword steps, using only shift commands that shift by a constant amount. (Together
with Algorithm B we can therefore extract the most significant bit of an n-bit number
in O(log logn) such steps.)
111. [23 ] Explain the 01r pattern recognizer, (98).
112. [46 ] Can all occurrences of the pattern 1r0 be identified in O(1) broadword steps?
113. [23 ] A strong broadword chain is a broadword chain of a specified width n that
is also a 2-adic chain, for all n-bit choices of x0. For example, the 2-bit broadword
chain (x0, x1) with x1 = x0 + 1 is not strong because x0 = (11)2 makes x1 = (00)2.
But (x0, x1, . . . , x4) is a strong broadword chain that computes (x0 + 1) mod 4 for all
0 ≤ x0 < 4 if we set x1 = x0 ⊕ 1, x2 = x0 & 1, x3 = x2≪ 1, and x4 = x1 ⊕ x3.

Given a broadword chain (x0, x1, . . . , xr) of width n, construct a strong broadword
chain (x′0, x′1, . . . , x′r′) of the same width, such that r′ = O(r) and (x0, x1, . . . , xr) is a
subsequence of (x′0, x′1, . . . , x′r′).
114. [16 ] Suppose (x0, x1, . . . , xr) is a strong broadword chain of width n that com-
putes the value f(x) = xr whenever an n-bit number x = x0 is given. Construct a
broadword chain (X0, X1, . . . , Xr) of width mn that computes Xr = (f(ξ1) . . . f(ξm))2n

for any given mn-bit value X0 = (ξ1 . . . ξm)2n , where 0 ≤ ξ1, . . . , ξm < 2n.
x 115. [24 ] Given a 2-adic integer x = ( . . . x2x1x0)2, we might want to compute y =

( . . . y2y1y0)2 = f(x) from x by zeroing out all blocks of consecutive 1s that (a) are
not immediately followed by two 0s; or (b) are followed by an odd number of 0s
before the next block of 1s begins; or (c) contain an odd number of 1s. For exam-
ple, if x is ( . . . 01110111001101000110)2 then y is (a) ( . . . 00000111000001000110)2;
(b) ( . . . 00000111000000000110)2; (c) ( . . . 00000000001100000110)2. (Infinitely many
0s are assumed to appear at the right of x0. Thus, in case (a) we have

yj = xj ∧ ((x̄j−1∧x̄j−2) ∨ (xj−1∧x̄j−2∧x̄j−3) ∨ (xj−1∧xj−2∧x̄j−3∧x̄j−4) ∨ · · · )

for all j, where xk = 0 for k < 0.) Find 2-adic chains for y in each case.
116. [HM30 ] Suppose x = ( . . . x2x1x0)2 and y = ( . . . y2y1y0)2 = f(x), where y is
computable by a 2-adic chain having no shift operations. Let L be the set of all binary
strings such that yj = [xj . . . x1x0 ∈L], and assume that all constants used in the chain
are rational 2-adic numbers. Prove that L is a regular language. What languages L
correspond to the functions in exercise 115(a) and 115(b)?
117. [HM46 ] Continuing exercise 116, is there any simple way to characterize the reg-
ular languages L that arise in shift-free 2-adic chains? (The language L = 0∗(10∗10∗)∗
does not seem to correspond to any such chain.)
118. [30 ] According to Lemma A, we cannot compute the function x≫ 1 for all n-
bit numbers x by using only additions, subtractions, and bitwise Boolean operations
(no shifts or branches). Show, however, that O(n) such operations are necessary and
sufficient if we include also the “monus” operator y .− z in our repertoire.
119. [20 ] Evaluate the function fpy(x) in (102) with four broadword steps.

x 120. [M25 ] There are 2n2mn

functions that take n-bit numbers (x1, . . . , xm) into an
n-bit number f(x1, . . . , xm). How many of them can be implemented with addition,
subtraction, multiplication, and nonshift bitwise Boolean operations (modulo 2n)?

From the Library of Melissa Nuno



ptg999

194 COMBINATORIAL SEARCHING 7.1.3

x 121. [M25 ] By exercise 3.1–6, a function from [0 . . 2n) into itself is eventually periodic.
a) Prove that if f is any n-bit broadword function that can be implemented without

shift instructions, the lengths of its periods are always powers of 2.
b) However, for every p between 1 and n, there’s an n-bit broadword chain of length 3

that has a period of length p.
122. [M22 ] Complete the proof of Lemma B.

123. [M23 ] Let aq be the constant 1 + 2q + 22q + · · · + 2(q−1)q = (2q
2− 1)/(2q − 1).

Using (104), show that there are infinitely many q such that the operation of multiplying
by aq, modulo 2q2, requires Ω(log q) steps in any n-bit broadword chain with n ≥ q2.
124. [M38 ] Complete the proof of Theorem R′ by defining an n-bit broadword chain
(x0, x1, . . . , xf ) and sets (U0, U1, . . . , Uf ) such that, for 0 ≤ t ≤ f , all inputs x ∈ Ut lead
to an essentially similar state Q(x, t), in the following sense: (i) The current instruction
in Q(x, t) does not depend on x. (ii) If register rj has a known value in Q(x, t), it holds
xj′ for some definite index j′ ≤ t. (iii) If memory location M [z] has been changed, it
holds xz′′ for some definite index z′′ ≤ t. (The values of j′ and z′′ depend on j, z,
and t, but not on x.) Furthermore |Ut| ≥ n/22t−1, and the program cannot guarantee
that r1 = ρx when t < f . Hint: Lemma B implies that a limited number of shift
amounts and memory addresses need to be considered when t is small.
125. [M33 ] Prove Theorem P′. Hint: Lemma B remains true if we replace ‘= 0’ by
‘= αs’ in (103), for any values αs.
126. [M46 ] Does the operation of extracting the most significant bit, 2λx, require
Ω(log logn) steps in an n-bit basic RAM? (See exercise 110.)
127. [HM40 ] Prove that at least Ω(logn/log logn) broadword steps are needed to
compute the parity function, (νx) mod 2, using the theory of circuit complexity. [Hint:
Every broadword operation is in complexity class AC0.]
128. [M46 ] Can (νx) mod 2 be computed in O(logn/log logn) broadword steps?
129. [M46 ] Does sideways addition require Ω(logn) broadword steps?
130. [M46 ] Is there an n-bit constant a such that the function (a≪x) mod 2n requires
Ω(logn) n-bit broadword steps?

x 131. [23 ] Write an MMIX program for Algorithm R when the graph is represented by
arc lists. Vertex nodes have at least two fields, called LINK and ARCS, and arc nodes have
TIP and NEXT fields, as explained in Section 7. Initially all LINK fields are zero, except
in the given set of vertices Q, which is represented as a circular list. Your program
should change that circular list so that it represents the set R of all reachable vertices.

x 132. [M27 ] A clique in a graph is a set of mutually adjacent vertices; a clique is
maximal if it’s not contained in any other. The purpose of this exercise is to discuss
an algorithm due to J. K. M. Moody and J. Hollis, which provides a convenient way
to find every maximal clique of a not-too-large graph, using bitwise operations.

Suppose G is a graph with n vertices V = {0, 1, . . . , n − 1}. Let ρv =
{2u |

u −−− v or u = v} be row v of G’s reflexive adjacency matrix, and let δv =
{2u |

u ̸= v} = 2n − 1 − 2v. Every subset U ⊆ V is representable as an n-bit integer
σ(U) =


u∈U 2u; for example, δv = σ(V \ v). We also define the bitwise intersection

τ(U) = &
0≤u<n

(u ∈ U? ρu: δu).

For example, if n = 5 we have τ({0, 2}) = ρ0 & δ1 & ρ2 & δ3 & δ4.

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 195

a) Prove that U is a clique if and only if τ(U) = σ(U).
b) Show that if τ(U) = σ(T ) then T is a clique.
c) For 1 ≤ k ≤ n, consider the 2k bitwise intersections

Ck =


&
0≤u<k

(u ∈ U? ρu: δu)
 U ⊆ {0, 1, . . . , k − 1}


,

and let C+
k be the maximal elements of Ck. Prove that U is a maximal clique if

and only if σ(U) ∈ C+
n .

d) Explain how to compute C+
k from C+

k−1, starting with C+
0 = {2n − 1}.

x 133. [20 ] Given a graph G, how can the algorithm of exercise 132 be used to find
(a) all maximal independent sets of vertices? (b) all minimal vertex covers (sets that
hit every edge)?
134. [15 ] Nine classes of mappings for ternary values appear in (119), (123), and (124).
To which class does the representation (128) belong, if a = 0, b = ∗, c = 1?
135. [22 ] Łukasiewicz included a few operations besides (127) in his three-valued logic:
¬x (negation) interchanges 0 with 1 but leaves ∗ unchanged; ⋄x (possibility) is defined
as ¬x⇒ x; x (necessity) is defined as ¬⋄¬x; and x⇔ y (equivalence) is defined as
(x⇒y)∧ (y⇒x). Explain how to perform these operations using representation (128).
136. [29 ] Suggest two-bit encodings for binary operations on the set {a, b, c} that are
defined by the following “multiplication tables”:

(a)

a b c
b c c
c c c


; (b)


a c b
c b a
b a c


; (c)


a b a
a a c
a b c


.

137. [21 ] Show that the operation in exercise 136(c) is simpler with packed vectors
like (131) than with the unpacked form (130).
138. [24 ] Find an example of three-state-to-two-bit encoding where class Va is best.
139. [25 ] If x and y are signed bits 0, +1, or −1, what 2-bit encoding is good for
calculating their sum (z1z2)3 = x + y, where z1 and z2 are also required to be signed
bits? (This is a “half adder” for balanced ternary numbers.)
140. [27 ] Design an economical full adder for balanced ternary numbers: Show how
to compute signed bits u and v such that 3u+ v = x+y+ z when x, y, z ∈ {0,+1,−1}.

x 141. [30 ] The Ulam numbers ⟨U1, U2, . . . ⟩ = ⟨1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, . . . ⟩ are
defined for n ≥ 3 by letting Un be the smallest integer > Un−1 that has a unique
representation Un = Uj + Uk for 0 < j < k < n. Show that a million Ulam numbers
can be computed rapidly with the help of bitwise techniques.

x 142. [33 ] A subcube such as ∗10∗1∗01 can be represented by asterisk codes 10010100
and bit codes 01001001, as in (85); but many other encodings are also possible. What
representation scheme for subcubes works best, for finding prime implicants by the
consensus-based algorithm of exercise 7.1.1–31?
143. [20 ] Let x be a 64-bit number that represents an 8× 8 chessboard, with a 1 bit
in every position where a knight is present. Find a formula for the 64-bit number f(x)
that has a 1 in every position reachable in one move by a knight of x. For example,
the white knights at the start of a game correspond to x = #42; then f(x) = #a51800.
144. [16 ] What node is the sibling of node j in a sideways heap? (See (134).)
145. [17 ] Interpret (137) when h is less than the height of j.

From the Library of Melissa Nuno



ptg999

196 COMBINATORIAL SEARCHING 7.1.3

x 146. [M20 ] Prove Eq. (138), which relates the ρ and λ functions.
x 147. [M20 ] What values of πv, βv, αv, and τj occur in Algorithm V when the forest is

a) the empty digraph with vertices {v1, . . . , vn} and no arcs?
b) the oriented path vn−−→ · · · −−→v2−−→v1?

148. [M21 ] When preprocessing for Algorithm V, is it possible to have βx3 −−→∗

βy2 −−→∗ βx2 −−→∗ βy1 −−→∗ βx1 in S when x3 −−→ x2 −−→ x1 −−→Λ and y2 −−→ y1 −−→Λ in
the forest? (If so, two different trees are “entangled” in S.)

x 149. [23 ] Design a preprocessing procedure for Algorithm V.
x 150. [25 ] Given an array of elements A1, . . . , An, the range minimum query problem

is to determine k(i, j) such that Ak(i,j) = min(Ai, . . . , Aj) for any given indices i and j
with 1 ≤ i ≤ j ≤ n. Prove that Algorithm V will solve this problem, after O(n) steps of
preprocessing on the array A have prepared the necessary tables (π, β, α, τ). Hint: Con-
sider the binary search tree constructed from the sequence of keys (p(1), p(2), . . . , p(n)),
where p is a permutation of {1, 2, . . . , n} such that Ap(1) ≤ Ap(2) ≤ · · · ≤ Ap(n).
151. [22 ] Conversely, show that any algorithm for range minimum queries can be used
to find nearest common ancestors, with essentially the same efficiency.
152. [M21 ] Prove that Algorithm V is correct.

x 153. [M20 ] The pointers in a navigation pile like (144) can be packed into a binary
string such as

0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
2 4 6 8 10 12 14 16 18 20 22 24

.

At what bit position (from the left) does the pointer for node j end?
154. [20 ] The gray lines in Fig. 14 show how each pentagon is composed of ten
triangles. What decomposition of the hyperbolic plane is defined by those gray lines
alone, without the black pentagon edges?

x 155. [M21 ] Prove that (xϕ) mod 1 = (α0)1/ϕ when α is the negaFibonacci code for x.
156. [21 ] Design algorithms (a) to convert a given integer x to its negaFibonacci
code α, and (b) to convert a given negaFibonacci code α to x = N(α).
157. [M21 ] Explain the recursion (148) for negaFibonacci predecessor and successor.
158. [M26 ] Let α = an . . . a1 be the binary code for F (α0) = anFn+1 + · · · + a1F2
in the standard Fibonacci number system (146). Develop methods analogous to (148)
and (149) for incrementing and decrementing such codewords.
159. [M34 ] Exercise 7 shows that it’s easy to convert between the negabinary and
binary number systems. Discuss conversion between negaFibonacci codewords and the
ordinary Fibonacci codes in exercise 158.
160. [M29 ] Prove that (150) and (151) yield consistent code labels for the pentagrid.
161. [20 ] The cells of a chessboard can be colored black and white, so that neighboring
cells have different colors. Does the pentagrid also have this property?

x 162. [HM37 ] Explain how to draw the pentagrid, Fig. 14. What circles are present?
163. [HM41 ] Devise a way to navigate through the triangles in the tiling of Fig. 18.
164. [23 ] The original definition of custerization in 1957 was not (157) but

custer′(X) = X &∼(XNW &XN &XNE &XW &XE &XSW &XS &XSE).

Why is (157) preferable?

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 197

165. [21 ] (R. A. Kirsch.) Discuss the computation of the 3×3 cellular automaton with

X(t+1) = custer(X(t)) = ∼X(t) & (X(t)
N | X(t)

W | X(t)
E | X(t)

S ).

166. [M23 ] Let f(M,N) be the maximum number of black pixels in an M × N
bitmap X for which X = custer(X). Prove that f(M,N) = 4

5MN +O(M +N).
167. [24 ] (Life.) If the bitmap X represents an array of cells that are either dead (0)
or alive (1), the Boolean function

f(xNW, . . . , x, . . . , xSE) = [2<xNW +xN +xNE +xW + 1
2x+xE +xSW +xS +xSE < 4]

can lead to astonishing life histories when it governs a cellular automaton as in (158).
a) Find a way to evaluate f with a Boolean chain of 26 steps or less.
b) Let X(t)

j denote row j of X at time t. Show that X(t+1)
j can be evaluated in

at most 23 broadword steps, as a function of the three rows X(t)
j−1, X(t)

j , and
X

(t)
j+1.

x 168. [23 ] To keep an image finite, we might insist that a 3 × 3 cellular automaton
treats a M×N bitmap as a torus, wrapping around seamlessly between top and bottom
and between left and right. The task of simulating its actions efficiently with bitwise
operations is somewhat tricky: We want to minimize references to memory, yet each
new pixel value depends on old values that lie on all sides. Furthermore the shifting of
bits between neighboring words tends to be awkward, taxing the capacity of a register.

Show that such difficulties can be surmounted by maintaining an array of n-bit
words Ajk for 0 ≤ j ≤M and 0 ≤ k ≤ N ′ = ⌈N/(n−2)⌉. If j ̸= M and k ̸= 0, word Ajk
should contain the pixels of row j and columns (k − 1)(n − 2) through k(n − 2) + 1,
inclusive; the other words AMk and Aj0 provide auxiliary buffer space. (Notice that
some bits of the raster appear twice.)
169. [22 ] Continuing the previous two exercises, what happens to the Cheshire cat of
Fig. 17(a) when it is subjected to the vicissitudes of Life, in a 26× 31 torus?

x 170. [21 ] What result does the Guo–Hall thinning automaton produce when given a
solid black rectangle of M rows and N columns? How long does it take?
171. [24 ] Find a Boolean chain of length ≤ 25 to evaluate the local thinning function
g(xNW, xN, xNE, xW, xE, xSW, xS, xSE) of (159), with or without the extra cases in (160).
172. [M29 ] Prove or disprove: If a pattern contains three black pixels that are king-
neighbors of each other, the Guo–Hall procedure extended by (160) will reduce it,
unless none of those pixels can be removed without destroying the connectivity.

x 173. [M30 ] Raster images often need to be cleaned up if they contain noisy data. For
example, accidental specks of black or white may well spoil the results when a thinning
algorithm is used for optical character recognition.

Say that a bitmap X is closed if every white pixel is part of a 2 × 2 square of
white pixels, and open if every black pixel is part of a 2× 2 square of black pixels. Let

XD = & {Y | Y ⊇ X and Y is closed}; XL = {Y | Y ⊆ X and Y is open}.
A bitmap is called clean if it equals XDL for some X. We might, for example, have

X = ; XD = ; XDL = .

In general XD is “darker” than X, while XL is “lighter”: XD ⊇ X ⊇ XL.
a) Prove that (XDL)DL = XDL. Hint: X ⊆ Y implies XD ⊆ Y D and XL ⊆ Y L.
b) Show that XD can be computed with one step of a 3× 3 cellular automaton.

From the Library of Melissa Nuno



ptg999

198 COMBINATORIAL SEARCHING 7.1.3

174. [M46 ] (M. Minsky and S. Papert.) Is there a three-dimensional shrinking algo-
rithm that preserves connectivity, analogous to (161)?
175. [15 ] How many rookwise connected black components does the Cheshire cat have?
176. [M24 ] LetG be the graph whose vertices are the black pixels of a given bitmapX,
with u−−−v when u and v are a king move apart. Let G′ be the corresponding graph
after the shrinking transformation (161) has been applied. The purpose of this exercise
is to show that the number of connected components of G′ is the number of components
of G minus the number of isolated vertices of G.

Let N(i,j) = {(i, j), (i−1, j), (i−1, j+1), (i, j+1)} be pixel (i, j) together with its
north and/or east neighbors. For each v ∈ G let S(v) = {v′ ∈ G′ | v′ ∈ Nv}.

a) Prove that S(v) is empty if and only if v is isolated in G.
b) If u−−−v in G, u′ ∈ S(u), and v′ ∈ S(v), prove that u′−−−∗ v′ in G′ (that is, they

are in the same component).
c) For each v′ ∈ G′ let S′(v′) = {v ∈ G | v′ ∈ Nv}. Is S′(v′) always nonempty?
d) If u′−−−v′ in G′, u ∈ S′(u′), and v ∈ S′(v′), prove that u−−−∗ v in G.
e) Hence there’s a one-to-one correspondence between the nontrivial components

of G and the components of G′.
177. [M22 ] Continuing exercise 176, prove an analogous result for the white pixels.
178. [20 ] If X is an M×N bitmap,
let X∗ be the M × (2N + 1) bitmap
X ‡ (X | (X ≪ 1)). Show that the
kingwise connected components of
X∗ are also rookwise connected, and
that bitmap X∗ has the same “sur-
roundedness tree” (162) as X.

x 179. [34 ] Design an algorithm that constructs the surroundedness tree of a given
M × N bitmap, scanning the image one row at a time as discussed in the text. (See
(162) and (163).)

x 180. [M24 ] Digitize the hyperbola y2 = x2 + 13 by hand, for 0 < y ≤ 7.
181. [HM20 ] Explain how to subdivide a general conic (168) with rational coefficients
into monotonic parts so that Algorithm T applies.
182. [M31 ] Why does the three-register method (Algorithm T) digitize correctly?

x 183. [M29 ] (G. Rote.) Explain why Algorithm T might fail if condition (v) is false.
x 184. [M22 ] Find a quadratic form Q′(x, y) so that, when Algorithm T is applied to

(x′, y′), (x, y), and Q′, it produces exactly the same edges as it does from (x, y), (x′, y′),
and Q, but in the reverse order. Hint: There is a simple answer.

x 185. [23 ] Design an algorithm that properly digitizes a straight line from (ξ, η) to
(ξ′, η′), when ξ, η, ξ′, and η′ are rational numbers, by simplifying Algorithm T.
186. [HM22 ] Given three complex numbers (z0,z1,z2), consider the curve traced out by

B(t) = (1− t)2z0 + 2(1− t)tz1 + t2z2, for 0 ≤ t ≤ 1.

a) What is the approximate behavior of B(t) when t is near 0 or 1?
b) Let S(z0, z1, z2) = {B(t) | 0 ≤ t ≤ 1}. Prove that all points of S(z0, z1, z2) lie

on or inside the triangle whose vertices are z0, z1, and z2.
c) True or false? S(w + ζz0, w + ζz1, w + ζz2) = w + ζS(z0, z1, z2).
d) Prove that S(z0, z1, z2) is part of a straight line if and only if z0, z1, and z2 are

collinear; otherwise it is part of a parabola.

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 199

e) Prove that if 0 ≤ θ ≤ 1, we have the recurrence

S(z0, z1, z2) = S(z0, (1−θ)z0 + θz1, B(θ)) ∪ S(B(θ), (1−θ)z1 + θz2, z2).
187. [M29 ] Continuing exercise 186, show how to digitize S(z0, z1, z2) using the three-
register method (Algorithm T). For best results, the digitizations of S(z2, z1, z0) and
S(z0, z1, z2) should produce the same edges, but in reverse order.

x 188. [25 ] Bitmap images can often be viewed conveniently using pixels that are shades
of gray instead of just black or white. Such gray levels typically are 8-bit values that
range from 0 (black) to 255 (white); notice that the black/white convention is tradition-
ally reversed with respect to the 1-bit case. An m× n bitmap whose resolution is 600
dots per inch corresponds nicely to the (m/8) × (n/8) grayscale image with 75 pixels
per inch that is obtained by mapping each 8× 8 subarray of 1-bit pixels into the gray
level ⌊255(1− k/64)1/γ + 1

2⌋, where γ = 1.3 and k is the number of 1s in the subarray.
Write an MMIX routine that converts a given m × n array BITMAP into the corre-

sponding (m/8)× (n/8) image GRAYMAP, assuming that m = 8m′ and n = 64n′.
189. [25 ] Given a 64 × 64 bitmap, what’s a good way (a) to transpose it, or (b) to
rotate it counterclockwise by 90◦, using operations on 64-bit numbers?
190. [23 ] A parity pattern of length m and width n is an m × n matrix of 0s and
1s with the property that each element is the sum of its rook-neighbors, mod 2. For
example,

1 1
0 0
1 1

,

0 0 1 1
0 1 0 0
1 1 0 1
0 1 0 1

,
0 1 0 1 0
1 1 0 1 1
0 1 0 1 0

,

1 0 0
1 1 0
1 0 1
0 1 1
0 0 1

, and

0 1 1 1 0
1 0 1 0 1
1 1 0 1 1
1 0 1 0 1
0 1 1 1 0

are parity patterns of sizes 3× 2, 4× 4, 3× 5, 5× 3, and 5× 5.
a) If the binary vectors α1, α2, . . . , αm are the rows of a parity pattern, show that

α2, . . . , αm can all be computed from the top row α1 by using bitwise operations.
Thus at most one m× n parity pattern can begin with any given bit vector.

b) True or false: The sum (mod 2) of two m×n parity patterns is a parity pattern.
c) A parity pattern is called perfect if it contains no all-zero row or column. For

example, three of the matrices above are perfect, but the 3×2 and 3×5 examples
are not. Show that every m× n parity pattern contains a perfect parity pattern
as a submatrix. Furthermore, all such submatrices have the same size, m′ × n′,
where m′ + 1 is a divisor of m+ 1 and n′ + 1 is a divisor n+ 1.

d) There’s a perfect parity pattern whose first row is 0011, but there is no such
pattern beginning with 01010. Is there a simple way to decide whether a given
binary vector is the top row of a perfect parity pattern?

e) Prove that there’s a unique perfect parity pattern that begins with 1
n−1  

0 . . . 0.
191. [M30 ] A wraparound parity pattern is analogous to the parity patterns of exer-
cise 190, except that the leftmost and rightmost elements of each row are also neighbors.

a) Find a simple relation between the parity pattern of width n that begins with α
and the wraparound parity pattern of width 2n+ 2 that begins with 0α0αR.

b) The Fibonacci polynomials Fj(x) are defined by the recurrence

F0(x) = 0, F1(x) = 1, and Fj+1(x) = xFj(x) + Fj−1(x) for j ≥ 1.

Show that there’s a simple relation between the wraparound parity patterns that
begin with 10 . . . 0 (N−1 zeros) and the Fibonacci polynomials modulo xN + 1.
Hint: Consider Fj(x−1 + 1 + x), and do arithmetic mod 2 as well as mod xN+ 1.

From the Library of Melissa Nuno



ptg999

200 COMBINATORIAL SEARCHING 7.1.3

c) If α is the binary string a1 . . . an, let fα(x) = a1x+ · · ·+ anx
n. Show that

f(α
j
0αR

j
)(x) = (fα(x) + fα(x−1))Fj(x−1+1+x) mod (xN+ 1) and mod 2,

when N = 2n+ 2 and αj is row j of a width-n parity pattern that begins with α.
d) Consequently we can compute αj from α in only O(n2 log j) steps. Hints: See ex-

ercise 4.6.3–26; and use the identity Fm+n(x) = Fm(x)Fn+1(x) +Fm−1(x)Fn(x),
which generalizes Eq. 1.2.8–(6).

192. [HM38 ] The shortest parity pattern that begins with a given string can be quite
long; for example, it turns out that the perfect pattern of width 120 whose first row is
10 . . . 0 has length 36,028,797,018,963,966(!). The purpose of this exercise is to consider
how to calculate the interesting function

c(q) = 1 + max{m | there exists a perfect parity pattern of length m and width q−1},

whose initial values (1, 3, 4, 6, 5, 24, 9, 12, 28) for 1 ≤ q ≤ 9 are easy to compute by hand.
a) Characterize c(q) algebraically, using the Fibonacci polynomials of exercise 191.
b) Explain how to calculate c(q) if we know a number M such that c(q) divides M ,

and if we also know the prime factors of M .
c) Prove that c(2e) = 3 · 2e−1 when e > 0. Hint: F2e(y) has a simple form, mod 2.
d) Prove that when q is odd and not a multiple of 3, c(q) is a divisor of 22e − 1,

where e is the order of 2 modulo q. Hint: F2e−1(y) has a simple form, mod 2.
e) What happens when q is an odd multiple of 3?
f) Finally, explain how to handle the case when q is even.

x 193. [M21 ] If a perfect m × n parity pattern exists,
when m and n are odd, show that there’s also a perfect
(2m+1)×(2n+1) parity pattern. (Intricate fractals arise
when this observation is applied repeatedly; for example,
the 5× 5 pattern in exercise 190 leads to Fig. 20.)

Fig. 20. A perfect
383×383 parity pattern.

194. [M24 ] Find all n ≤ 383 for which there exists a
perfect n× n parity pattern with 8-fold symmetry, such
as the example in Fig. 20. Hint: The diagonal elements
of all such patterns must be zero.

x 195. [HM25 ] Let A be a binary matrix having rows
α1, . . . , αm of length n. Explain how to use bitwise operations to compute the
rank m − r of A over the binary field {0, 1}, and to find linearly independent binary
vectors θ1, . . . , θr of length m such that θjA = 0 . . . 0 for 1 ≤ j ≤ r. Hint: See the
“triangularization” algorithm for null spaces, Algorithm 4.6.2N.
196. [21 ] (K. Thompson, 1992.) Integers in the range 0 ≤ x < 231 can be encoded as
a string of up to six bytes α(x) = α1 . . . αl in the following way: If x < 27, set l← 1 and
α1 ← x. Otherwise let x = (x5 . . . x1x0)64; set l← ⌈(λx)/5⌉, α1 ← 28−28−l+xl−1, and
αj ← 27 +xl−j for 2 ≤ j ≤ l. Notice that α(x) contains a zero byte if and only if x = 0.

a) What are the encodings of #a, #3a3, #7b97, and #1d141?
b) If x ≤ x′, prove that α(x) ≤ α(x′) in lexicographic order.
c) Suppose a sequence of values x(1)x(2). . . x(n) has been encoded as a byte string

α(x(1))α(x(2)) . . . α(x(n)), and let αk be the kth byte in that string. Show that
it’s easy to determine the value x(i) from which αk came, by looking at a few of
the neighboring bytes if necessary.

From the Library of Melissa Nuno



ptg999

7.1.3 BITWISE TRICKS AND TECHNIQUES 201

197. [22 ] The Universal Character Set (UCS), also known as Unicode, is a standard
mapping of characters to integer codepoints x in the range 0 ≤ x < 220 + 216. An
encoding called UTF-16 represents such integers as one or two wydes β(x) = β1 or
β(x) = β1β2, in the following way: If x < 216 then β(x) = x; otherwise

β1 = #d800 + ⌊y/210⌋ and β2 = #dc00 + (y mod 210), where y = x− 216.

Answer questions (a), (b), and (c) of exercise 196 for this encoding.
x 198. [21 ] Unicode characters are often represented as strings of bytes using a scheme

called UTF-8, which is the encoding of exercise 196 restricted to integers in the range
0 ≤ x < 220+216. Notice that UTF-8 efficiently preserves the standard ASCII character
set (the codepoints with x < 27), and that it is quite different from UTF-16.

Let α1 be the first byte of a UTF-8 string α(x). Show that there are reasonably
small integer constants a, b, and c such that only four bitwise operations

(a≫ ((α1≫ b) & c)) & 3

suffice to determine the number l − 1 of bytes between α1 and the end of α(x).
x 199. [23 ] A person might try to encode #a as #c08a or #e0808a or #f080808a in

UTF-8, because the obvious decoding algorithm produces the same result in each case.
But such unnecessarily long forms are illegal, because they could lead to security holes.

Suppose α1 and α2 are bytes such that α1 ≥ #80 and #80 ≤ α2 <
#c0. Find

a branchless way to decide whether α1 and α2 are the first two bytes of at least one
legitimate UTF-8 string α(x).
200. [20 ] Interpret the contents of register $3 after the following three MMIX instruc-
tions have been executed: MOR $1,$0,#94; MXOR $2,$0,#94; SUBU $3,$1,$2.
201. [20 ] Suppose x = (x15 . . . x1x0)16 has sixteen hexadecimal digits. What one
MMIX instruction will change each nonzero digit to f, while leaving zeros untouched?
202. [20 ] What two instructions will change an octabyte’s nonzero wydes to #ffff?
203. [22 ] Suppose we want to convert a tetrabyte x = (x7 . . . x1x0)16 to the octabyte
y = (y7 . . . y1y0)256, where yj is the ASCII code for the hexadecimal digit xj . For
example, if x = #1234abcd, y should represent the 8-character string "1234abcd".
What clever choices of five constants a, b, c, d, and e will make the following MMIX
instructions do the job?

MOR t,x,a; SLU s,t,4; XOR t,s,t; AND t,t,b
ADD t,t,c; MOR s,d,t; ADD t,t,e; ADD y,t,s

x 204. [22 ] What are the amazing constants p, q, r, m that achieve a perfect shuffle
with just six MMIX commands? (See (175)–(178).)

x 205. [22 ] How would you perfectly unshuffle on MMIX, going from w in (175) back to z?
206. [20 ] The perfect shuffle (175) is sometimes called an “outshuffle,” by comparison
with the “inshuffle” that takes z →→ y ‡ x = (y31x31 . . . y1x1y0x0)2; the outshuffle
preserves the leftmost and rightmost bits of z, but the inshuffle has no fixed points.
Can an inshuffle be performed as efficiently as an outshuffle?
207. [22 ] Use MOR to perform a 3-way perfect shuffle or “triple zip,” taking (x63 . . . x0)2
to (x21x42x63x20 . . . x2x23x44x1x22x43x0)2, as well as the inverse of this shuffle.

x 208. [23 ] What’s a fast way for MMIX to transpose an 8× 8 Boolean matrix?
x 209. [21 ] Is the suffix parity operation x⊕ of exercise 36 easy to compute with MXOR?

From the Library of Melissa Nuno



ptg999

202 COMBINATORIAL SEARCHING 7.1.3

210. [22 ] A puzzle: Register x contains a number 8j+k, where 0 ≤ j, k < 8. Registers
a and b contain arbitrary octabytes (a7 . . . a1a0)256 and (b7 . . . b1b0)256. Find a sequence
of four MMIX instructions that will put aj & bk into register x.

x 211. [M25 ] The truth table of a Boolean function f(x1, . . . , x6) is essentially a 64-bit
number f = (f(0, 0, 0, 0, 0, 0) . . . f(1, 1, 1, 1, 1, 0)f(1, 1, 1, 1, 1, 1))2. Show that two MOR
instructions will convert f to the truth table of the least monotone Boolean function,
f̂ , that is greater than or equal to f at each point.
212. [M32 ] Suppose a = (a63 . . . a1a0)2 represents the polynomial

a(x) = (a63 . . . a1a0)x = a63x
63 + · · ·+ a1x+ a0.

Discuss using MXOR to compute the product c(x) = a(x)b(x), modulo x64 and mod 2.
x 213. [HM26 ] Implement the CRC procedure (183) on MMIX.
x 214. [HM28 ] (R. W. Gosper.) Find a short, branchless MMIX computation that com-

putes the inverse of any given 8× 8 matrix X of 0s and 1s, modulo 2, if detX is odd.
x 215. [21 ] What’s a quick way for MMIX to test if a 64-bit number is a multiple of 3?
x 216. [M26 ] Given n-bit integers x1, . . . , xm ≥ 0, n ≥ λm, compute in O(m) steps the

least y > 0 such that y /∈ {a1x1+· · ·+amxm | a1, . . . , am ∈ {0, 1}}, if λx takes unit time.
217. [40 ] Explore the processing of long strings of text by packing them in a “trans-
posed” or “sliced” manner: Represent 64 consecutive characters as a sequence of eight
octabytes w0 . . . w7, where wk contains all 64 of their kth bits.

x 218. [M30 ] (Hans Petter Selasky, 2009.) For fixed d ≥ 3, design an algorithm to
compute a ·xy mod 2d, given integers a, x, and y, where x is odd, using O(d) additions
and bitwise operations together with a single multiplication by y.

x 219. [20 ] What does this hack do? “While x&(x+1) ̸= 0, set x←x−((x&(x+1))≫1).”

In popular usage, the term BDDBDDBDD almost always refers to
Reduced Ordered Binary Decision Diagram (ROBDD in the literature,

used when the ordering and reduction aspects need to be emphasized).
— WIKIPEDIA, The Free Encyclopedia (7 July 2007)

7.1.4. Binary Decision Diagrams
Let’s turn now to an important family of data structures that have rapidly be-
come the method of choice for representing and manipulating Boolean functions
inside a computer. The basic idea is a divide-and-conquer scheme somewhat like
the binary tries of Section 6.3, but with several new twists.

Figure 21 shows the binary decision diagram for a simple Boolean function
of three variables, the median function ⟨x1x2x3⟩ of Eq. 7.1.1–(43). We can un-
derstand it as follows: The node at the top is called the root. Every internal nodekj , also called a branch node, is labeled with a name or index j = V ( kj ) that
designates a variable; for example, the root node k1 in Fig. 21 designates x1.
Branch nodes have two successors, indicated by descending lines. One of the
successors is drawn as a dashed line and called LO; the other is drawn as a solid
line and called HI. These branch nodes define a path in the diagram for any values
of the Boolean variables, if we start at the root and take the LO branch from
node kj when xj = 0, the HI branch when xj = 1. Eventually this path leads
to a sink node, which is either ⊥ (denoting FALSE) or ⊤ (denoting TRUE).

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 203

⊥ >

1
2 2

3
Fig. 21. The binary decision diagram (BDD)
for the majority or median function ⟨x1x2x3⟩.

In Fig. 21 it’s easy to verify that this process yields the function value FALSE
when at least two of the variables {x1, x2, x3} are 0, otherwise it yields TRUE.

Many authors use 0 and 1 to denote the sink nodes. We use ⊥ and ⊤
instead, hoping to avoid any confusion with the branch nodes k0 and k1 .

Inside a computer, Fig. 21 would be represented as a set of four nodes in
arbitrary memory locations, where each node has three fields V LO HI .
The V field holds the index of a variable, while the LO and HI fields each point
to another node or to a sink:

1

2 2

3

⊥ >

⊥ >

ROOT

(1)

With 64-bit words, we might for example use 8 bits for V, then 28 bits for LO
and the other 28 bits for HI.

Such a structure is called a “binary decision diagram,” or BDD for short.
Small BDDs can readily be drawn as actual diagrams on a piece of paper
or a computer screen. But in essence each BDD is really an abstract set of
linked nodes, which might more properly be called a “binary decision dag” — a
binary tree with shared subtrees, a directed acyclic graph in which exactly two
distinguished arcs emanate from every nonsink node.

We shall assume that every BDD obeys two important restrictions. First, it
must be ordered: Whenever a LO or HI arc goes from branch node ki to branch
node kj , we must have i < j. Thus, in particular, no variable xj will ever be
queried twice when the function is evaluated. Second, a BDD must be reduced,
in the sense that it doesn’t waste space. This means that a branch node’s LO
and HI pointers must never be equal, and that no two nodes are allowed to have
the same triple of values (V, LO, HI). Every node should also be accessible from
the root. For example, the diagrams

⊥ >

1

2 3

3 2
and

1

2 2

3 3 3 3

⊥ ⊥ ⊥ > ⊥ > > >

(2)

are not BDDs, because the first one isn’t ordered and the other one isn’t reduced.
Many other flavors of decision diagrams have been invented, and the liter-

ature of computer science now contains a rich alphabet soup of acronyms like

From the Library of Melissa Nuno



ptg999

204 COMBINATORIAL SEARCHING 7.1.4

EVBDD, FBDD, IBDD, OBDD, OFDD, OKFDD, PBDD, . . . , ZDD. In this
book we shall always use the unadorned code name “BDD” to denote a binary
decision diagram that is ordered and reduced as described above, just as we
generally use the word “tree” to denote an ordered (plane) tree, because such
BDDs and such trees are the most common in practice.

Recall from Section 7.1.1 that every Boolean function f(x1, . . . , xn) cor-
responds to a truth table, which is the 2n-bit binary string that starts with
the function value f(0, . . . , 0) and continues with f(0, . . . , 0, 1), f(0, . . . , 0, 1, 0),
f(0, . . . , 0, 1, 1), . . . , f(1, . . . , 1, 1, 1). For example, the truth table of the median
function ⟨x1x2x3⟩ is 00010111. Notice that this truth table is the same as the se-
quence of leaves in the unreduced decision tree of (2), with 0 →→ ⊥ and 1 →→ ⊤ .
In fact, there’s an important relationship between truth tables and BDDs, which
is best understood in terms of a class of binary strings called “beads.”

A truth table of order n is a binary string of length 2n. A bead of order n is
a truth table β of order n that is not a square; that is, β doesn’t have the form
αα for any string α of length 2n−1. (Mathematicians would say that a bead is a
“primitive string of length 2n.”) There are two beads of order 0, namely 0 and 1;
and there are two of order 1, namely 01 and 10. In general there are 22n− 22n−1

beads of order n when n > 0, because there are 22n binary strings of length 2n
and 22n−1 of them are squares. The 16− 4 = 12 beads of order 2 are

0001, 0010, 0011, 0100, 0110, 0111, 1000, 1001, 1011, 1100, 1101, 1110; (3)

these are also the truth tables of all functions f(x1, x2) that depend on x1, in
the sense that f(0, x2) is not the same function as f(1, x2).

Every truth table τ is a power of a unique bead, called its root. For if τ has
length 2n and isn’t already a bead, it’s the square of another truth table τ ′; and
by induction on the length of τ , we must have τ ′ = βk for some root β. Hence
τ = β2k, and β is the root of τ as well as τ ′. (Of course k is a power of 2.)

A truth table τ of order n > 0 always has the form τ0τ1, where τ0 and τ1 are
truth tables of order n − 1. Clearly τ represents the function f(x1, x2, . . . , xn)
if and only if τ0 represents f(0, x2, . . . , xn) and τ1 represents f(1, x2, . . . , xn).
These functions f(0, x2, . . . , xn) and f(1, x2, . . . , xn) are called subfunctions of f ;
and their truth tables, τ0 and τ1, are called subtables of τ .

Subtables of a subtable are also considered to be subtables, and a table is
considered to be a subtable of itself. Thus, in general, a truth table of order n
has 2k subtables of order n − k, for 0 ≤ k ≤ n, corresponding to 2k possible
settings of the first k variables (x1, . . . , xk). Many of these subtables often turn
out to be identical; in such cases we’re able to represent τ in a compressed form.

The beads of a Boolean function are the subtables of its truth table that hap-
pen to be beads. For example, let’s consider again the median function ⟨x1x2x3⟩,
with its truth table 00010111. The distinct subtables of this truth table are
{00010111, 0001, 0111, 00, 01, 11, 0, 1}; and all of them except 00 and 11 are
beads. Therefore the beads of ⟨x1x2x3⟩ are

{00010111, 0001, 0111, 01, 0, 1}. (4)

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 205

And now we get to the point: The nodes of a Boolean function’s BDD are in
one-to-one correspondence with its beads. For example, we can redraw Fig. 21
by placing the relevant bead inside of each node:

0 1

00010111

0001 0111
01

. (5)

In general, a function’s truth tables of order n + 1 − k correspond to its sub-
functions f(c1, . . . , ck−1, xk, . . . , xn) of that order; so its beads of order n+ 1−k
correspond to those subfunctions that depend on their first variable, xk. There-
fore every such bead corresponds to a branch node kk in the BDD. And if kk is
a branch node corresponding to the truth table τ ′ = τ ′0τ

′
1, its LO and HI branches

point respectively to the nodes that correspond to the roots of τ ′0 and τ ′1.
This correspondence between beads and nodes proves that every Boolean

function has one and only one representation as a BDD. The individual nodes
of that BDD might, of course, be placed in different locations inside a computer.

If f is any Boolean function, let B(f) denote the number of beads that it has.
This is the size of its BDD — the total number of nodes, including the sinks. For
example, B(f) = 6 when f is the median-of-three function, because (5) has size 6.

To fix the ideas, let’s work out another example, the “more-or-less random”
function of 7.1.1–(22) and 7.1.2–(6). Its truth table, 1100100100001111, is a
bead, and so are the two subtables 11001001 and 00001111. Thus we know that
the root of its BDD will be a k1 branch, and that the LO and HI nodes below the
root will both be k2 s. The subtables of length 4 are {1100, 1001, 0000, 1111};
here the first two are beads, but the others are squares. To get to the next level,
we break the beads in half and carry over the square roots of the nonbeads,
identifying duplicates; this leaves us with {11, 00, 10, 01}. Again there are two
beads, and a final step produces the desired BDD:

1

2 2

3 3

4 4

⊥ >

> ⊥

> ⊥

. (6)

(In this diagram and others below, it’s convenient to repeat the sink nodes ⊥
and ⊤ in order to avoid excessively long connecting lines. Only one ⊥ node
and one ⊤ node are actually present; so the size of (6) is 9, not 13.)

An alert reader might well be thinking at this point, “Very nice, but what
if the BDD is huge?” Indeed, functions can easily be constructed whose BDD is
impossibly large; we’ll study such cases later. But the wonderful thing is that a
great many of the Boolean functions that are of practical importance turn out
to have reasonably small values of B(f). So we shall concentrate on the good

From the Library of Melissa Nuno



ptg999

206 COMBINATORIAL SEARCHING 7.1.4

news first, postponing the bad news until we’ve seen why BDDs have proved to
be so popular.
BDD virtues. If f(x) = f(x1, . . . , xn) is a Boolean function whose BDD is
reasonably small, we can do many things quickly and easily. For example:
• We can evaluate f(x) in at most n steps, given any input vector x = x1 . . . xn,

by simply starting at the root and branching until we get to a sink.
• We can find the lexicographically smallest x such that f(x) = 1, by start-

ing at the root and repeatedly taking the LO branch unless it goes directly
to ⊥ . The solution has xj = 1 only when the HI branch was necessary at kj .
For example, this procedure gives x1x2x3 = 011 in the BDD of Fig. 21, and
x1x2x3x4 = 0000 in (6). (It locates the value of x that corresponds to the
leftmost 1 in the truth table for f .) Only n steps are needed, because every
branch node corresponds to a nonzero bead; we can always find a downward
path to ⊤ without backing up. Of course this method fails when the root itself
is ⊥ . But that happens only when f is identically zero.
• We can count the number of solutions to the equation f(x) = 1, using

Algorithm C below. That algorithm does B(f) operations on n-bit numbers; so
its running time is O(nB(f)) in the worst case.
• After Algorithm C has acted, we can speedily generate random solutions

to the equation f(x) = 1, in such a way that every solution is equally likely.
• We can also generate all solutions x to the equation f(x) = 1. The algorithm

in exercise 16 does this in O(nN) steps when there are N solutions.
• We can solve the linear Boolean programming problem: Find x such that

w1x1 + · · ·+ wnxn is maximum, subject to f(x1, . . . , xn) = 1, (7)
given constants (w1, . . . , wn). Algorithm B (below) does this inO(n+B(f)) steps.
• We can compute the generating function a0 + a1z + · · ·+ anz

n, where there
are aj solutions to f(x1, . . . , xn) = 1 with x1 + · · ·+ xn = j. (See exercise 25.)
• We can calculate the reliability polynomial F (p1, . . . , pn), which is the prob-

ability that f(x1, . . . , xn) = 1 when each xj is independently set to 1 with a
given probability pj . Exercise 26 does this in O(B(f)) steps.
Moreover, we will see that BDDs can be combined and modified efficiently. For
example, it is not difficult to form the BDDs for f(x1, . . . , xn) ∧ g(x1, . . . , xn)
and f(x1, . . . , xj−1, g(x1, . . . , xn), xj+1, . . . , xn) from the BDDs for f and g.

Algorithms for solving basic problems with BDDs are often described most
easily if we assume that the BDD is given as a sequential list of branch instruc-
tions Is−1, Is−2, . . . , I1, I0, where each Ik has the form (v̄k? lk:hk). For example,
(6) might be represented as a list of s = 9 instructions

I8 = (1̄? 7: 6),
I7 = (2̄? 5: 4),
I6 = (2̄? 0: 1),

I5 = (3̄? 1: 0),
I4 = (3̄? 3: 2),
I3 = (4̄? 1: 0),

I2 = (4̄? 0: 1),
I1 = (5̄? 1: 1),
I0 = (5̄? 0: 0),

(8)

with v8 = 1, l8 = 7, h8 = 6, v7 = 2, l7 = 5, h7 = 4, . . . , v0 = 5, l0 = h0 = 0. In
general the instruction ‘(v̄? l:h)’ means, “If xv = 0, go to Il, otherwise go to Ih,”

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 207

except that the last cases I1 and I0 are special. We require that the LO and HI
branches lk and hk satisfy

lk < k, hk < k, vlk > vk, and vhk
> vk, for s > k ≥ 2; (9)

in other words, all branches move downward, to variables of greater index. But
the sink nodes ⊤ and ⊥ are represented by dummy instructions I1 and I0, in
which lk = hk = k and the “variable index” vk has the impossible value n+ 1.

These instructions can be numbered in any way that respects the topological
ordering of the BDD, as required by (9). The root node must correspond to Is−1,
and the sink nodes must correspond to I1 and I0, but the other index numbers
aren’t so rigidly prescribed. For example, (6) might also be expressed as

I ′8 = (1̄? 7: 2),
I ′7 = (2̄? 4: 6),
I ′6 = (3̄? 3: 5),

I ′5 = (4̄? 0: 1),
I ′4 = (3̄? 1: 0),
I ′3 = (4̄? 1: 0),

I ′2 = (2̄? 0: 1),
I ′1 = (5̄? 1: 1),
I ′0 = (5̄? 0: 0),

(10)

and in 46 other isomorphic ways. Inside a computer, the BDD need not actu-
ally appear in consecutive locations; we can readily traverse the nodes of any
acyclic digraph in topological order, when the nodes are linked as in (1). But
we will imagine that they’ve been arranged sequentially as in (8), so that various
algorithms are easier to understand.

One technicality is worth noting: If f(x) = 1 for all x, so that the BDD
is simply the sink node ⊤ , we let s = 2 in this sequential representation.
Otherwise s is the size of the BDD. Then the root is always represented by Is−1.
Algorithm C (Count solutions). Given the BDD for a Boolean function f(x) =
f(x1, . . . , xn), represented as a sequence Is−1, . . . , I0 as described above, this
algorithm determines |f |, the number of binary vectors x = x1 . . . xn such that
f(x) = 1. It also computes the table c0, c1, . . . , cs−1, where ck is the number
of 1s in the bead that corresponds to Ik.
C1. [Loop over k.] Set c0 ← 0, c1 ← 1, and do step C2 for k = 2, 3, . . . , s− 1.

Then return the answer 2vs−1−1cs−1.
C2. [Compute ck.] Set l← lk, h← hk, and ck ← 2vl−vk−1cl + 2vh−vk−1ch.
For example, when presented with (8), this algorithm computes

c2 ← 1, c3 ← 1, c4 ← 2, c5 ← 2, c6 ← 4, c7 ← 4, c8 ← 8;

the total number of solutions to f(x1, x2, x3, x4) = 1 is 8.
The integers ck in Algorithm C satisfy

0 ≤ ck < 2n+1−vk , for 2 ≤ k < s, (11)

and this upper bound is the best possible. Therefore multiprecision arithmetic
may be needed when n is large. If extra storage space for high precision is prob-
lematic, one could use modular arithmetic instead, running the algorithm several
times and computing ck mod p for various single-precision primes p; then the final
answer would be deducible with the Chinese remainder algorithm, Eq. 4.3.2–(24).
On the other hand, floating point arithmetic is usually sufficient in practice.

From the Library of Melissa Nuno



ptg999

208 COMBINATORIAL SEARCHING 7.1.4

Let’s look at some examples that are more interesting than (6). The BDDs

1

2 2

3 3 3

4 4 4 4

5 5 5

6

⊥

⊥

⊥ ⊥

⊥ ⊥

> ⊥

Independent sets

1
2

3
4

5

6

The cycle C6

1

2 2

3 3 3

4 4 4 4

5 5 5

66

⊥

⊥ ⊥

⊥ ⊥

> ⊥

⊥

⊥

Kernels (12)

represent functions of six variables that correspond to subsets of vertices in the
cycle graph C6. In this setup a vector such as x1 . . . x6 = 100110 stands for the
subset {1, 4, 5}; the vector 000000 stands for the empty subset; and so on. On the
left is the BDD for which we have f(x) = 1 when x is independent in C6; on the
right is the BDD for maximal independent subsets, also called the kernels of C6
(see exercise 12). In general, the independent subsets of Cn correspond to ar-
rangements of 0s and 1s in a circle of length n, with no two 1s in a row; the kernels
correspond to such arrangements in which there also are no three consecutive 0s.

Algorithm C decorates a BDD with counts ck, working from bottom to top,
where ck is the number of ways to go from node k to ⊤ by choosing values for
xl . . . xn, if l is the label of node k. When we apply that algorithm to the BDDs
in (12) we get

1

2 2

3 3 3

4 4 4 4

5 5 5

6

⊥

⊥

⊥ ⊥

⊥ ⊥

> ⊥

18

13 5

8 5 5

5 3 3 2

3 2 1

1

0

0

0 0

0 0

1 0

1

2 2

3 3 3

4 4 4 4

5 5 5

66

⊥

⊥ ⊥

⊥ ⊥

> ⊥

⊥

⊥

5

3 2

1 2 2

2 1 1 1

1 1 1

11

0

0 0

0 0

1 0

0

0

; (13)

hence C6 has 18 independent sets and 5 kernels.
These counts make it easy to generate uniformly random solutions. For

example, to get a random independent set vector x1 . . . x6, we know that 13 of
the solutions in the left-hand BDD have x1 = 0, while the other 5 have x1 = 1.
So, with probability 13/18, we set x1 ← 0 and take the LO branch; otherwise we
set x1 ← 1 and take the HI branch. In the latter case, x1 = 1 forces x2 ← 0, but
then x3 could go either way.

Suppose we’ve chosen to set x1 ← 1, x2 ← 0, x3 ← 0, and x4 ← 0; this case
occurs with probability 5

18 ·
5
5 ·

3
5 ·

2
3 = 2

18 . Then there’s a branch from k4 to k6 ,

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 209

so we flip a coin and set x5 to a completely random value. In general, a branch
from ki to kj means that the j − i− 1 intermediate bits xi+1 . . . xj−1 should
independently become 0 or 1 with equal probability. Similarly, a branch fromki to ⊤ should assign random values to xi+1 . . . xn.

Of course there are simpler ways to make a random choice between 18
solutions to a combinatorial problem. Moreover, the right-hand BDD in (13)
is an embarrassingly complex way to represent the five kernels of C6: We could
simply have listed them, 001001, 010010, 010101, 100100, 101010! But the point
is that this same method will yield the independent sets and kernels of Cn when
n is much larger. For example, the 100-cycle C100 has 1,630,580,875,002 kernels,
yet the BDD describing them has only 855 nodes. One hundred simple steps will
therefore generate a fully random kernel from this vast collection.
Boolean programming and beyond. A bottom-up algorithm analogous to
Algorithm C is also able to find optimum weighted solutions (7) to the Boolean
equation f(x) = 1. The basic idea is that it’s easy to deduce an optimum solution
for any bead of f , once we know optimum solutions for the LO and HI beads
that lie directly below it.
Algorithm B (Solutions of maximum weight). Let Is−1, . . . , I0 be a sequence
of branch instructions that represents the BDD for a Boolean function f, as in
Algorithm C, and let (w1, . . . , wn) be an arbitrary sequence of integer weights.
This algorithm finds a binary vector x = x1 . . . xn such that w1x1 + · · ·+ wnxn
is maximum, over all x with f(x) = 1. We assume that s > 1; otherwise f(x) is
identically 0. Auxiliary integer vectors m1 . . .ms−1 and W1 . . .Wn+1 are used in
the calculations, as well as an auxiliary bit vector t2 . . . ts−1.
B1. [Initialize.] Set Wn+1 ← 0 and Wj ←Wj+1 + max(wj , 0) for n ≥ j ≥ 1.
B2. [Loop on k.] Set m1 ← 0 and do step B3 for 2 ≤ k < s. Then do step B4.
B3. [Process Ik.] Set v ← vk, l ← lk, h ← hk, tk ← 0. If l ̸= 0, set mk ←

ml + Wv+1 −Wvl . Then if h ̸= 0, do the following: Compute m ← mh +
Wv+1 −Wvh + wv; and if l = 0 or m > mk, set mk ← m and tk ← 1.

B4. [Compute the x’s.] Set j ← 0, k ← s − 1, and do the following operations
until j = n: While j < vk − 1, set j ← j + 1 and xj ← [wj > 0]; if k > 1,
set j ← j + 1 and xj ← tk and k ← (tk =0? lk: hk).

A simple case of this algorithm is worked out in exercise 18. Step B3 does tech-
nical maneuvers that may look a bit scary, but their net effect is just to compute

mk ← max(ml +Wv+1 −Wvl , mh +Wv+1 −Wvh + wv), (14)
and to record in tk whether l or h is better. In fact, vl and vh are usually both
equal to v + 1; then the calculation simply sets mk ← max(ml,mh + wv), cor-
responding to the cases xv = 0 and xv = 1. Technicalities arise only because we
want to avoid fetching m0, which is −∞, and because vl or vh might exceed v+1.

With this algorithm we can, for example, quickly find an optimum set of ker-
nel vertices in an n-cycle Cn, using weights based on the “Thue–Morse” sequence,

wj = (−1)νj ; (15)

From the Library of Melissa Nuno



ptg999

210 COMBINATORIAL SEARCHING 7.1.4

here νj denotes sideways addition, Eq. 7.1.3–(59). In other words, wj is −1 or
+1, depending on whether j has odd parity or even parity when expressed as
a binary number. The maximum of w1x1 + · · · + wnxn occurs when the even-
parity vertices 3, 5, 6, 9, 10, 12, 15, . . . most strongly outnumber the odd-parity
vertices 1, 2, 4, 7, 8, 11, 13, . . . that appear in a kernel. It turns out that

{1, 3, 6, 9, 12, 15, 18, 20, 23, 25, 27, 30, 33, 36, 39, 41, 43, 46, 48,
51, 54, 57, 60, 63, 66, 68, 71, 73, 75, 78, 80, 83, 86, 89, 92, 95, 97, 99} (16)

is an optimum kernel in this sense when n = 100; only five vertices of odd parity,
namely {1, 25, 41, 73, 97}, need to be included in this set of 38 to satisfy the kernel
conditions, hence max(w1x1+· · ·+w100x100) = 28. Thanks to Algorithm B, a few
thousand computer instructions are sufficient to select (16) from more than a tril-
lion possible kernels, because the BDD for all those kernels happens to be small.

Mathematically pristine problems related to combinatorial objects like cycle
kernels could also be resolved efficiently with more traditional techniques, which
are based on recurrences and induction. But the beauty of BDD methods is that
they apply also to real-world problems that don’t have any elegant structure. For
example, let’s consider the graph of 49 “united states” that appeared in 7–(17)
and 7–(61). The Boolean function that represents all the maximal independent
sets of that graph (all the kernels) has a BDD of size 780 that begins as follows:

ME

NH NH

VT VT

MA MA MA

RI RI RI RI

CT CT CT CT

NY NY NY

⊥
⊥

⊥
⊥

⊥ ⊥ ⊥

(17)

Algorithm B quickly discovers the following kernels of minimum and maximum
weight, when each state vertex is simply weighted according to the sum of letters
in its postal code (wCA = 3 + 1, wDC = 4 + 3, . . . , wWY = 23 + 25):

AL

AZ AR

CT

FL

IL IN

KS KY MD

MIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

OK

OR PA RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

DC

CA CO DE

GA

ID IA

LA

ME

MA

ND

OH

Minimum weight = 155

AL

AZ AR

CA CO

CT

DE

GA

ID ILIA

KY

LA

MD

MAMIMN

MS

MO

MT

NE

NH

NM

NY

NC

OH

OK

OR PA

SD

UT

VA DC

FL

IN

KS

ME

NV

NJ

ND

RI

SC

TN

TX

VT

WA

WV

WI

WY

Maximum weight = 492 (18)

This graph has 266,137 kernels; but with Algorithm B, we needn’t generate them
all. In fact, the right-hand example in (18) could also be obtained with a smaller
BDD of size 428, which characterizes the independent sets, because all weights

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 211

are positive. (A kernel of maximum weight is the same thing as an independent
set of maximum weight, in such cases.) There are 211,954,906 independent sets
in this graph, many more than the number of kernels; yet we can
find an independent set of maximum weight more quickly than
a kernel of maximum weight, because the BDD is smaller.

1 2 4

3 5 7

6 8 9

Fig. 22. The grid P3 P3, and
a BDD for its connected subgraphs.

89

79 79

68 68 68

58 58 58 58 58

57 57 57

36 36 36 3636

35 35 35

25 25 25 25

47 47 47 47

24 24

13 13

12

>⊥

⊥

⊥ ⊥

⊥

⊥

⊥

⊥ ⊥

⊥

A quite different sort of graph-related BDD is shown in
Fig. 22. This one is based on the 3×3 grid P3 P3; it characterizes
the sets of edges that connect all vertices of the grid together. Thus,
it’s a function f(x12, x13, . . . , x89) of the twelve edges 1−−− 2, 1−−− 3, . . . ,
8−−− 9 instead of the nine vertices {1, . . . , 9}. Exercise 55 describes one way to
construct it. When Algorithm C is applied to this BDD, it tells us that exactly
431 of the 212 = 4096 spanning subgraphs of P3 P3 are connected.

A straightforward extension of Algorithm C (see exercise 25) will refine this
total and compute the generating function of these solutions, namely

G(z) =

x

zνxf(x) = 192z8 + 164z9 + 62z10 + 12z11 + z12. (19)

Thus P3 P3 has 192 spanning trees, plus 164 spanning subgraphs that are
connected and have nine edges, and so on. Exercise 7.2.1.6–106(a) gives a formula
for the number of spanning trees in Pm Pn for general m and n; but the
full generating function G(z) contains considerably more information, and it
probably has no simple formula unless min(m,n) is small.

Suppose each edge u−−− v is present with probability puv, independent of
all other edges of P3 P3. What is the probability that the resulting subgraph
is connected? This is the reliability polynomial, which also goes by a variety
of other names because it arises in many different applications. In general, as
discussed in exercise 7.1.1–12, every Boolean function f(x1, . . . , xn) has a unique
representation as a polynomial F (x1, . . . , xn) with the properties that

i) F (x1, . . . , xn) = f(x1, . . . , xn) whenever each xj is 0 or 1;
ii) F (x1, . . . , xn) is multilinear: Its degree in xj is ≤ 1 for all j.

This polynomial F has integer coefficients and satisfies the basic recurrence

F (x1, . . . , xn) = (1− x1)F0(x2, . . . , xn) + x1F1(x2, . . . , xn), (20)

where F0 and F1 are the integer multilinear representations of f(0, x2, . . . , xn)
and f(1, x2, . . . , xn). Indeed, (20) is George Boole’s “law of development.”

Two important things follow from recurrence (20). First, F is precisely
the reliability polynomial F (p1, . . . , pn) mentioned earlier, because the reliability

From the Library of Melissa Nuno



ptg999

212 COMBINATORIAL SEARCHING 7.1.4

polynomial obviously satisfies the same recurrence. Second, F is easily calculated
from the BDD for f , working upward from the bottom and using (20) to compute
the reliability of each bead. (See exercise 26.)

The connectedness function for an 8×8 grid P8 P8 is, of course, much more
complicated than the one for P3 P3; it is a Boolean function of 112 variables and
its BDD has 43790 nodes, compared to only 37 in Fig. 22. Still, computations
with this BDD are quite feasible, and in a second or two we can compute

G(z) = 126231322912498539682594816z63

+ 1006611140035411062600761344z64

+ · · ·+ 6212z110 + 112z111 + z112,

as well as the probability F (p) of connectedness
and its derivative F ′(p), when each of the edges is
present with probability p (see exercise 29):

F (p):

0 p 1

; F ′(p):

0 p 1

. (21)

*A sweeping generalization. Algorithms B and C and the algorithms we’ve
been discussing for bottom-up BDD scanning are actually special cases of a much
more general scheme that can be exploited in many additional ways. Consider
an abstract algebra with two associative binary operators ◦ and •, satisfying the
distributive laws

α • (β ◦ γ) = (α • β) ◦ (α • γ), (β ◦ γ) • α = (β • α) ◦ (γ • α). (22)

Every Boolean function f(x1, . . . , xn) corresponds to a fully elaborated truth table
involving the symbols ◦, •, ⊥, and ⊤, together with x̄j and xj for 1 ≤ j ≤ n, in
a way that’s best understood by considering a small example: When n = 2 and
when the ordinary truth table for f is 0010, the fully elaborated truth table is

(x̄1 • x̄2 • ⊥) ◦ (x̄1 • x2 • ⊥) ◦ (x1 • x̄2 • ⊤) ◦ (x1 • x2 • ⊥). (23)

The meaning of such an expression depends on the meanings that we attach to
the symbols ◦, •, ⊥, ⊤, and to the literals x̄j and xj ; but whatever the expression
means, we can compute it directly from the BDD for f .

For example, let’s return to Fig. 21, the BDD for ⟨x1x2x3⟩. The elaborations
of nodes ⊥ and ⊤ are α⊥ = ⊥ and α⊤ = ⊤, respectively. Then the elaboration
of k3 is α3 = (x̄3 •α⊥) ◦ (x3 •α⊤); the elaborations of the nodes labeled k2 are
αl

2 = (x̄2•(x̄3◦x3)•α⊥)◦(x2•α3) on the left and αr
2 = (x̄2•α3)◦(x2•(x̄3◦x3)•α⊤)

on the right; and the elaboration of node k1 is α1 = (x̄1 • αl
2) ◦ (x1 • αr

2).
(Exercise 31 discusses the general procedure.) Expanding these formulas via the
distributive laws (22) leads to a full elaboration with 2n = 8 “terms”:

α1 = (x̄1•x̄2•x̄3•⊥) ◦ (x̄1•x̄2•x3•⊥) ◦ (x̄1•x2•x̄3•⊥) ◦ (x̄1•x2•x3•⊤)
◦ (x1•x̄2•x̄3•⊥) ◦ (x1•x̄2•x3•⊤) ◦ (x1•x2•x̄3•⊤) ◦ (x1•x2•x3•⊤). (24)

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 213

Algorithm C is the special case where ‘◦’ is addition, ‘•’ is multiplication,
‘⊥’ is 0, ‘⊤’ is 1, ‘x̄j ’ is 1, and ‘xj ’ is also 1. Algorithm B arises when ‘◦’ is the
maximum operator and ‘•’ is addition; the distributive laws

α+ max(β, γ) = max(α+β, α+γ), max(β, γ) + α = max(β+α, γ+α) (25)

are easily checked. We interpret ‘⊥’ as −∞, ‘⊤’ as 0, ‘x̄j ’ as 0, and ‘xj ’ as wj .
Then, for example, (24) becomes

max(−∞,−∞,−∞, w2 + w3,−∞, w1 + w3, w1 + w2, w1 + w2 + w3);

and in general the full elaboration under this interpretation is equivalent to the
expression max{w1x1 + · · ·+ wnxn | f(x1, . . . , xn) = 1}.

Friendly functions. Many families of functions are known to have BDDs of
modest size. If f is, for example, a symmetric function of n variables, it’s easy
to see that B(f) = O(n2). Indeed, when n = 5 we can start with the triangular
pattern

1

2 2

3 3 3

4 4 4 4

5 5 5 5 5

ν=0 ν=1 ν=2 ν=3 ν=4 ν=5

(26)

and set the leaves to ⊥ or ⊤ depending on the respective values of f when the
value of νx = x1+· · ·+x5 equals 0, 1, 2, 3, 4, or 5. Then we can remove redundant
or equivalent nodes, always obtaining a BDD whose size is


n+1

2


+ 2 or less.
Suppose we take any function f(x1, . . . , xn) and make two adjacent variables

equal:
g(x1, . . . , xn) = f(x1, . . . , xk−1, xk, xk, xk+2, . . . , xn). (27)

Exercise 40 proves that B(g) ≤ B(f). And by repeating this condensation
process, we find that a function such as f(x1, x1, x3, x3, x3, x6) has a small BDD
wheneverB(f) is small. In particular, the threshold function [2x1 + 3x3 + x6≥ t]
must have a small BDD for any value of t, because it’s a condensed version of
the symmetric function f(x1, . . . , x6) = [x1 + · · ·+ x6≥ t]. This argument shows
that any threshold function with nonnegative integer weights,

f(x1, x2, . . . , xn) = [w1x1 + w2x2 + · · ·+ wnxn≥ t], (28)

can be obtained by condensing a symmetric function of w1 + w2 + · · · + wn

variables, so its BDD size is O(w1 + w2 + · · ·+ wn)2.
Threshold functions often turn out to be easy even when the weights grow

exponentially. For example, suppose t = (t1t2 . . . tn)2 and consider

ft(x1, x2, . . . , xn) = [2n−1x1 + 2n−2x2 + · · ·+ xn≥ t]. (29)

From the Library of Melissa Nuno



ptg999

214 COMBINATORIAL SEARCHING 7.1.4

This function is true if and only if the binary string x1x2 . . . xn is lexicographically
greater than or equal to t1t2 . . . tn, and its BDD always has exactly n+ 2 nodes
when tn = 1. (See exercise 170.)

Another kind of function with small BDD is the 2m-way multiplexer of
Eq. 7.1.2–(31), a function of n = m+ 2m variables:

Mm(x1, . . . , xm;xm+1, . . . , xn) = xm+1+(x1...xm)2 . (30)

Its BDD begins with 2k−1 branch nodes kk for 1 ≤ k ≤ m. But below that com-
plete binary tree, there’s just one kk for each xk in the main block of variables
with m < k ≤ n. Hence B(Mm) = 1 + 2 + · · ·+ 2m−1 + 2m + 2 = 2m+1 + 1 < 2n.

A linear network model of computation, illustrated in Fig. 23, helps to
clarify the cases where a BDD is especially efficient. Consider an arrangement
of computational modules M1, M2, . . . , Mn, in which the Boolean variable xk
is input to module Mk; there also are wires between neighboring modules, each
carrying a Boolean signal, with ak wires from Mk to Mk+1 and bk wires from
Mk+1 to Mk for 1 ≤ k ≤ n. A special wire out of Mn contains the output of
the function, f(x1, . . . , xn). We define a0 = b0 = bn = 0 and an = 1, so that
module Mk has exactly ck = 1+ak−1 +bk input ports and exactly dk = ak+bk−1
output ports for each k. It computes dk Boolean functions of its ck inputs.

The individual functions computed by each module can be arbitrarily com-
plicated, but they must be well defined in the sense that their joint values are
completely determined by the x’s: Every choice of (x1, . . . , xn) must lead to
exactly one way to set the signals on all the wires, consistent with all of the
given functions. Kenneth McMillan has discovered an interesting upper bound
that holds whenever we can formulate a computation using this general setup.

Theorem M. If f can be computed by such a network, thenB(f)≤
n

k=0 2ak2bk.

Proof. We will show that the BDD for f has at most 2ak−12bk−1 branch nodeskk , for 1 ≤ k ≤ n. This is clear if bk−1 = 0, because at most 2ak−1 subfunctions
are possible when x1 through xk−1 have any given values. So we will show that
any network that has ak−1 forward wires and bk−1 backward wires between Mk−1
and Mk can be replaced by an equivalent network that has ak−12bk−1 forward
wires and none that run backward.

For convenience, let’s consider the case k = 4 in Fig. 23, with a3 = 4 and
b3 = 2; we want to replace those 6 wires by 16 that run only forward. Suppose
Alice is in charge of M3 and Bob is in charge of M4. Alice sends a 4-bit signal, a,
to Bob while he sends a 2-bit signal, b, to her. More precisely, for any fixed
value of (x1, . . . , xn), Alice computes a certain function A and Bob computes a
function B, where

A(b) = a and B(a) = b. (31)
Alice’s function A depends on (x1, x2, x3), so Bob doesn’t know what it is; Bob’s
function B is, similarly, unknown to Alice, since it depends on (x4, . . . , xn).
But those unknown functions have the key property that, for every choice of
(x1, . . . , xn), there’s exactly one solution (a, b) to the equations (31).

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 215

M1

x1

M2

x2

M3

x3

M4

x4

Mn

xn

}
a4

} b4

an−1

{
bn−1

{

. . . . .

. . . . .

. . . . .

. . . . .

Output

Fig. 23. A generic network of Boolean modules for which Theorem M is valid.

So Alice changes the behavior of module M3: She sends Bob four 4-bit
values, A(00), A(01), A(10), and A(11), thereby revealing her A function. And
Bob changes the behavior of M4: Instead of sending any feedback, he looks at
those four values, together with his other inputs (namely x4 and the b4 bits
received from M5), and discovers the unique a and b that solve (31). His new
module uses this value of a to compute the a4 bits that he outputs to M5.

Theorem M says that the BDD size will be reasonably small if we can
construct such a network with small values of ak and bk. Indeed, B(f) will be
O(n) if the a’s and b’s are bounded, although the constant of proportionality
might be huge. Let’s work an example by considering the three-in-a-row function,

f(x1, . . . , xn) = x1x2x3∨x2x3x4∨· · ·∨xn−2xn−1xn∨xn−1xnx1∨xnx1x2, (32)

which is true if and only if a circular necklace labeled with bits x1, . . . , xn has
three consecutive 1s. One way to implement it via Boolean modules is to give Mk

three inputs (uk, vk, wk) from Mk−1 and two inputs (yk, zk) from Mk+1, where
uk = xk−1, vk = xk−2xk−1, wk = xn−1xnx1 ∨ · · · ∨ xk−3xk−2xk−1;

yk = xn, zk = xn−1xn.
(33)

Here subscripts are treated modulo n, and appropriate changes are made at the
left or right when k = 1 or k ≥ n− 1. Then Mk computes the functions

uk+1 = xk, vk+1 = ukxk, wk+1 = wk ∨ vkxk, yk−1 = yk, zk−1 = zk (34)

for nearly all values of k; exercise 45 has the details. With this construction we
have ak ≤ 3 and bk ≤ 2 for all k, hence Theorem M tells us that B(f) ≤ 212n =
4096n. In fact, the truth is much sweeter: B(f) is actually < 9n (see exercise 46).

Shared BDDs. We often want to deal with several Boolean functions at once,
and related functions often have common subfunctions. In such cases we can
work with the “BDD base” for {f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)}, which is
a directed acyclic graph that contains one node for every bead that occurs
within the truth tables of any of the functions. The BDD base also has m
“root pointers,” Fj , one for each function fj ; the BDD for fj is then the set of
all nodes reachable from node Fj . Notice that node Fj itself is reachable from
node Fi if and only if fj is a subfunction of fi.

For example, consider the problem of computing the n + 1 bits of the sum
of two n-bit numbers,

(fn+1fnfn−1 . . . f1)2 = (x1x3 . . . x2n−1)2 + (x2x4 . . . x2n)2. (35)

From the Library of Melissa Nuno



ptg999

216 COMBINATORIAL SEARCHING 7.1.4

The BDD base for those n+ 1 bits looks like this when n = 4:

x1x3x5x7
+ x2x4x6x8

f5f4f3f2f1

1 1

2 2 2 2

3 3 3

4 4 4 4 4 4

5 5 5

6 6 6 6 6 6

7 7 7

8 8

⊥ >

⊥ > ⊥ >

⊥ > ⊥ >

⊥ >

⊥ >

F1

F2

F3

F4F5

(36)

The way we’ve numbered the x’s in (35) is important here (see exercise 51). In
general there are exactly B(f1, . . . , fn+1) = 9n−5 nodes, when n > 1. The node
just to the left of Fj , for 1 ≤ j ≤ n, represents the subfunction for a carry cj out
of the jth bit position from the right; the node just to the right of Fj represents
the complement of that carry, c̄j ; and node Fn+1 represents the final carry cn.
Operations on BDDs. We’ve been talking about lots of things to do when a
BDD is given. But how do we get a BDD into the computer in the first place?

One way is to start with an ordered binary decision diagram such as (26) or
the right-hand example in (2), and to reduce it so that it becomes a true BDD.
The following algorithm, based on ideas of D. Sieling and I.Wegener [Information
Processing Letters 48 (1993), 139–144], shows that an arbitrary N -node binary
decision diagram whose branches are properly ordered can be reduced to a BDD
in O(N + n) steps when there are n variables.

Of course we need some extra memory space in order to decide whether
two nodes are equivalent, when doing such a reduction. Having only the three
fields (V, LO, HI) in each node, as in (1), would give us no room to maneuver.
Fortunately, only one additional pointer-size field, called AUX, is needed, together
with two additional state bits. We will assume for convenience that the state bits
are implicitly present in the signs of the LO and AUX fields, so that the algorithm
needs to deal with only four fields: (V, LO, HI, AUX). The fact that the sign is
preempted does mean that a 28-bit LO field will accommodate only 227 nodes at
most — about 134 million — instead of 228. (On a computer like MMIX, we might
prefer to assume that all node addresses are even, and to add 1 to a field instead
of complementing it as done here.)
Algorithm R (Reduction to a BDD). Given a binary decision diagram that
is ordered but not necessarily reduced, this algorithm transforms it into a valid
BDD by removing unnecessary nodes and rerouting all pointers appropriately.
Each node is assumed to have four fields (V, LO, HI, AUX) as described above, and
ROOT points to the diagram’s top node. The AUX fields are initially irrelevant, ex-
cept that they must be nonnegative; they will again be nonnegative at the end of
the process. All deleted nodes are pushed onto a stack addressed by AVAIL, linked
together by the HI fields of its nodes. (The LO fields of these nodes will be neg-
ative; their complements point to equivalent nodes that have not been deleted.)

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 217

The V fields of branch nodes are assumed to run from V(ROOT) up to vmax,
in increasing order from the top downwards in the given dag. The sink nodes ⊥
and ⊤ are assumed to be nodes 0 and 1, respectively, with nonnegative LO and
HI fields. They are never deleted; in fact, they are left untouched except for their
AUX fields. An auxiliary array of pointers, HEAD[v] for V(ROOT) ≤ v ≤ vmax, is
used to create temporary lists of all nodes that have a given value of V.
R1. [Initialize.] Terminate immediately if ROOT ≤ 1. Otherwise, set AUX(0) ←

AUX(1) ← AUX(ROOT) ← −1, and HEAD[v] ← −1 for V(ROOT) ≤ v ≤ vmax.
(We use the fact that −1 = ∼0 is the bitwise complement of 0.) Then set
s← ROOT and do the following operations while s ̸= 0:

Set p← s, s← ∼AUX(p), AUX(p)← HEAD[V(p)], HEAD[V(p)]← ∼p.
If AUX(LO(p)) ≥ 0, set AUX(LO(p))← ∼s and s← LO(p).
If AUX(HI(p)) ≥ 0, set AUX(HI(p))← ∼s and s← HI(p).

(We’ve essentially done a depth-first search of the dag, temporarily marking
all nodes reachable from ROOT by making their AUX fields negative.)

R2. [Loop on v.] Set AUX(0)← AUX(1)← 0, and v ← vmax.
R3. [Bucket sort.] (At this point all remaining nodes whose V field exceeds v

have been properly reduced, and their AUX fields are nonnegative.) Set
p← ∼HEAD[v], s← 0, and do the following steps while p ̸= 0:

Set p′ ← ∼AUX(p).
Set q ← HI(p); if LO(q) < 0, set HI(p)← ∼LO(q).
Set q ← LO(p); if LO(q) < 0, set LO(p)← ∼LO(q) and q ← LO(p).
If q = HI(p), set LO(p)← ∼q, HI(p)← AVAIL, AUX(p)← 0, AVAIL← p;
otherwise if AUX(q) ≥ 0, set AUX(p)← s, s← ∼q, and AUX(q)← ∼p;
otherwise set AUX(p)← AUX(∼AUX(q)) and AUX(∼AUX(q))← p.
Then set p← p′.

R4. [Clean up.] (Nodes with LO = x ̸= HI have now been linked together via
their AUX fields, beginning with ∼AUX(x).) Set r ← ∼s, s← 0, and do the
following while r ≥ 0:

Set q ← ∼AUX(r) and AUX(r)← 0.
If s = 0 set s← q; otherwise set AUX(p)← q.
Set p← q; then while AUX(p) > 0, set p← AUX(p).
Set r ← ∼AUX(p).

R5. [Loop on p.] Set p← s. Go to step R9 if p = 0. Otherwise set q ← p.
R6. [Examine a bucket.] Set s← LO(p). (At this point p = q.)
R7. [Remove duplicates.] Set r ← HI(q). If AUX(r) ≥ 0, set AUX(r) ← ∼q;

otherwise set LO(q) ← AUX(r), HI(q) ← AVAIL, and AVAIL ← q. Then set
q ← AUX(q). If q ̸= 0 and LO(q) = s, repeat step R7.

R8. [Clean up again.] If LO(p) ≥ 0, set AUX(HI(p))← 0. Then set p← AUX(p),
and repeat step R8 until p = q.

R9. [Done?] If p ̸= 0, return to R6. Otherwise, if v > V(ROOT), set v ← v − 1
and return to R3. Otherwise, if LO(ROOT) < 0, set ROOT← ∼LO(ROOT).

From the Library of Melissa Nuno



ptg999

218 COMBINATORIAL SEARCHING 7.1.4

The intricate link manipulations of Algorithm R are easier to program than to
explain, but they are highly instructive and not really difficult. The reader is
urged to work through the example in exercise 53.

Algorithm R can also be used to compute the BDD for any restriction of a
given function, namely for any function obtained by “hardwiring” one or more
variables to a constant value. The idea is to do a little extra work between steps
R1 and R2, setting HI(p)← LO(p) if variable V(p) is supposed to be fixed at 0,
or LO(p)← HI(p) if V(p) is to be fixed at 1. We also need to recycle all nodes
that become inaccessible after restriction. Exercise 57 fleshes out the details.

Synthesis of BDDs. We’re ready now for the most important algorithm on
binary decision diagrams, which takes the BDD for one function, f , and combines
it with the BDD for another function, g, in order to obtain the BDD for further
functions such as f ∧ g or f ⊕ g. Synthesis operations of this kind are the
principal way to build up the BDDs for complex functions, and the fact that
they can be done efficiently is the main reason why BDD data structures have
become popular. We will discuss several approaches to the synthesis problem,
beginning with a simple method and then speeding it up in various ways.

The basic notion that underlies synthesis is a product operation on BDD
structures that we shall call melding. Suppose α = (v, l, h) and α′ = (v′, l′, h′)
are BDD nodes, each containing the index of a variable together with LO and
HI pointers. The “meld” of α and α′, written α ⋄ α′, is defined as follows when
α and α′ are not both sinks:

α ⋄ α′ =


(v, l ⋄ l′, h ⋄ h′), if v = v′;
(v, l ⋄ α′, h ⋄ α′), if v < v′;
(v′, α ⋄ l′, α ⋄ h′), if v > v′.

(37)

For example, Fig. 24 shows how two small but typical BDDs are melded. The
one on the left, with branch nodes (α, β, γ, δ), represents f(x1, x2, x3, x4) =
(x1 ∨ x2) ∧ (x3 ∨ x4); the one in the middle, with branch nodes (ω, ψ, χ, φ, υ, τ),
represents g(x1, x2, x3, x4) = (x1⊕x2)∨ (x3⊕x4). Nodes δ and τ are essentially
the same, so we would have δ = τ if f and g were part of a single BDD base; but
melding can be applied also to BDDs that do not have common nodes. At the
right of Fig. 24, α ⋄ ω is the root of a decision diagram that has eleven branch
nodes, and it essentially represents the ordered pair (f, g).

1

2

3

4

⊥ >

α

β

γ

δ

1

2 2

3

4 4

⊥ >

ω

χ ψ

ϕ

τ υ

1

2 2

3 3 3

4 4 4 4 4

α � ω

β � χ γ � ψ

⊥ � ϕ γ �> γ � ϕ

⊥ � τ ⊥ � υ δ �> δ � τ >� υ

⊥ � > ⊥ � ⊥ > � > > � ⊥
Fig. 24. Two BDDs can be melded together with the ⋄ operation (37).

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 219

An ordered pair of two Boolean functions can be visualized by placing the
truth table of one above the truth table of the other. With this interpretation,
α ⋄ ω stands for the ordered pair 0000011101110111

0110111111110110 , and β ⋄ χ stands for 00000111
01101111 ,

etc. The melded BDD of Fig. 24 corresponds to the diagram
0000011101110111
0110111111110110

00000111
01101111

01110111
11110110

0000
0110

0111
1111

0111
0110

00
01

00
10

01
11

01
01

11
10

0
1

0
0

1
1

1
0

, (38)

which is analogous to (5) except that each node denotes an ordered pair of
functions instead of a single function. Beads and subtables are defined on ordered
pairs just as before. But now we have four possible sinks instead of two, namely

⊥ ⋄ ⊥, ⊥ ⋄ ⊤, ⊤ ⋄ ⊥, and ⊤ ⋄ ⊤, (39)

corresponding to the ordered pairs 0
0 , 0

1 , 1
0 , and 1

1 .
To compute the conjunction f ∧ g, we AND together the truth tables of f

and g. This operation corresponds to replacing 0
0 , 0

1 , 1
0 , and 1

1 by 0, 0, 0, and 1,
respectively; so we get the BDD for f ∧ g from f ⋄ g by replacing the respective
sink nodes of (39) by ⊥ , ⊥ , ⊥ , and ⊤ , then reducing the result. Similarly,
the BDD for f ⊕ g is obtained if we replace the sinks (39) by ⊥ , ⊤ , ⊤ ,
and ⊥ . (In this particular case f ⊕ g turns out to be the symmetric function
S1,4(x1, x2, x3, x4), as computed in Fig. 9 of Section 7.1.2.) The melded diagram
f ⋄ g contains all the information needed to compute any Boolean combination
of f and g ; and the BDD for every such combination has at most B(f ⋄g) nodes.

Clearly B(f ⋄ g) ≤ B(f)B(g), because each node of f ⋄ g corresponds to
a node of f and a node of g. Therefore the meld of small BDDs cannot be
extremely large. Usually, in fact, melding produces a result that is considerably
smaller than this worst-case upper bound, with something like B(f) + B(g)
nodes instead of B(f)B(g). Exercise 60 discusses a sharper bound that sheds
some light on why melds often turn out to be small. But exercises 59(b) and 63
present interesting examples where quadratic growth does occur.

Melding suggests a simple algorithm for synthesis: We can form an array of
B(f)B(g) nodes, with node α ⋄ α′ in row α and column α′ for every α in the
BDD for f and every α′ in the BDD for g. Then we can convert the four sink
nodes (39) to ⊥ or ⊤ as desired, and apply Algorithm R to the root node
f ⋄ g. Voilà — we’ve got the BDD for f ∧ g or f ⊕ g or f ∨ ḡ or whatever.

The running time of this algorithm is clearly of order B(f)B(g). We can
reduce it to order B(f ⋄ g), because there’s no need to fill in all of the matrix
entries α⋄α′; only the nodes that are reachable from f ⋄g are relevant, and we can
generate them on the fly when necessary. But even with this improvement in the

From the Library of Melissa Nuno



ptg999

220 COMBINATORIAL SEARCHING 7.1.4

running time, the simple algorithm is unsatisfactory because of the requirement
for B(f)B(g) nodes in memory. When we deal with BDDs, time is cheap but
space is expensive: Attempts to solve large problems tend to fail more often
because of “spaceout” than because of “timeout.” That’s why Algorithm R was
careful to perform its machinations with only one auxiliary link field per node.

The following algorithm solves the synthesis problem with working space of
order B(f ⋄g); in fact, it needs only about sixteen bytes per element of the BDD
for f ⋄ g. The algorithm is designed to be used as the main engine of a “Boolean
function calculator,” which represents functions as BDDs in compressed form on
a sequential stack. The stack is maintained at the lower end of a large array
called the pool. Each BDD on the stack is a sequence of nodes, which each have
three fields (V, LO, HI). The rest of the pool is available to hold temporary results
called templates, which each have four fields (L, H, LEFT, RIGHT). A node typically
occupies one octabyte of memory, while a template occupies two.

The purpose of Algorithm S is to examine the top two Boolean functions
on the stack, f and g, and to replace them by the Boolean combination f ◦ g,
where ◦ is one of the 16 possible binary operators. This operator is identified by
its 4-bit truth table, op. For example, Algorithm S will form the BDD for f ⊕ g
when op is (0110)2 = 6; it will deliver f ∧ g when op = 1.

When the algorithm begins, operand f appears in locations [f0 . . g0) of
the pool, and operand g appears in locations [g0 . . NTOP). All higher locations
[NTOP . . POOLSIZE) are available for storing the templates that the algorithm
needs. Those templates will appear in locations [TBOT . . POOLSIZE) at the high
end of the pool; the boundary markers NTOP and TBOT will change dynamically
as the algorithm proceeds. The resulting BDD for f ◦g will eventually be placed
in locations [f0 . . NTOP), taking over the space formerly occupied by f and g. We
assume that a template occupies the space of two nodes. Thus, the assignments
“t← TBOT−2, TBOT← t” allocate space for a new template, pointed to by t; the
assignments “p← NTOP, NTOP← p+ 1” allocate a new node p. For simplicity of
exposition, Algorithm S does not check that the condition NTOP ≤ TBOT remains
valid throughout the process; but of course such tests are essential in practice.
Exercise 69 remedies this oversight.

The input functions f and g are specified to Algorithm S as sequences of
instructions (Is−1, . . . , I1, I0) and (I ′s′−1, . . . , I

′
1, I

′
0), as in Algorithms B and C

above. The lengths of these sequences are s = B+(f) and s′ = B+(g), where

B+(f) = B(f) + [f is identically 1] (40)

is the number of BDD nodes when the sink ⊥ is forced to be present. For
example, the two BDDs at the left of Fig. 24 could be specified by the instructions

I5 = (1̄? 4: 3),
I4 = (2̄? 0: 3),

I3 = (3̄? 2: 1),
I2 = (4̄? 0: 1);

I ′7 = (1̄? 5: 6),
I ′6 = (2̄? 1: 4),
I ′5 = (2̄? 4: 1),

I ′4 = (3̄? 2: 3),
I ′3 = (4̄? 1: 0),
I ′2 = (4̄? 0: 1);

(41)

as usual, I1, I0, I ′1, and I ′0 are the sinks. These instructions are packed into
nodes, so that if Ik = (v̄k? lk: hk) we have V(f0 + k) = vk, LO(f0 + k) = lk, and

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 221

HI(f0 + k) = hk for 2 ≤ k < s when Algorithm S begins. Similar conventions
apply to the instructions I ′k that define g. Furthermore

V(f0) = V(f0 + 1) = V(g0) = V(g0 + 1) = vmax + 1, (42)

where we assume that f and g depend only on the variables xv for 1 ≤ v ≤ vmax.
Like the simple but space-hungry algorithm described earlier, Algorithm S

proceeds in two phases: First it builds the BDD for f ⋄g, constructing templates
so that every important meld α ⋄ α′ is represented as a template t for which

LEFT(t) = α, RIGHT(t) = α′, L(t) = LO(α ⋄ α′), H(t) = HI(α ⋄ α′). (43)

(The L and H fields point to templates, not nodes.) Then the second phase
reduces these templates, using a procedure similar to Algorithm R; it changes
template t from (43) to

LEFT(t) = ∼κ(t), RIGHT(t) = τ(t),
L(t) = τ(LO(α ⋄ α′)), H(t) = τ(HI(α ⋄ α′)), (44)

where τ(t) is the unique template to which t has been reduced, and where κ(t)
is the “clone” of t if τ(t) = t. Every reduced template t corresponds to an
instruction node in the BDD of f ◦ g, and κ(t) is the index of this node relative
to position f0 in the stack. (Setting LEFT(t) to ∼κ(t) instead of κ(t) is a sneaky
trick that makes steps S7–S10 run faster.) Special overlapping templates are
permanently reserved for sinks at the bottom of the pool, so that we always have

LEFT(0) = ∼0, RIGHT(0) = 0, LEFT(1) = ∼1, RIGHT(1) = 1, (45)

in accord with the conventions of (42) and (44).
We needn’t make a template for α ⋄α′ when the value of α ◦α′ is obviously

constant. For example, if we’re computing f ∧ g, we know that α ⋄ α′ will
eventually reduce to ⊥ if α = 0 or α′ = 0. Such simplifications are discovered
by a subroutine called find level (f, g), which returns the positive integer j if the
root of f ⋄g begins with the branch kj , unless f ◦g clearly has a constant value;
in the latter case, find level (f, g) returns the value −(f ◦ g), which is 0 or −1.
The procedure is slightly technical, but simple, using the global truth table op:
Subroutine find level (f, g), with local variable t:
If f ≤ 1 and g ≤ 1, return −((op≫ (3− 2f − g)) & 1), which is −(f ◦ g).
If f ≤ 1 and g > 1, set t← (f? op & 3: op≫ 2); return 0 if t = 0, −1 if t = 3.
If f > 1 and g ≤ 1, set t← (g? op: op≫ 1) & 5; return 0 if t = 0, −1 if t = 5.
Otherwise return min(V(f0 + f), V(g0 + g)). (46)

The main difficulty that faces us, when generating a template for a descen-
dant of α ⋄ α′ according to (37), is to decide whether or not such a template
already exists — and if so, to link to it. The best way to solve such problems is
usually to use a hash table; but then we must decide where to put such a table,
and how much extra space to devote to it. Alternatives such as binary search
trees would be much easier to adapt to our purposes, but they would add an
unwanted factor of logB(f ⋄ g) to the running time. The synthesis problem can

From the Library of Melissa Nuno



ptg999

222 COMBINATORIAL SEARCHING 7.1.4

actually be solved in worst-case time and space O(B(f ⋄ g)) by using a bucket
sort method analogous to Algorithm R (see exercise 72); but that solution is
complicated and somewhat awkward.

Fortunately there’s a nice way out of this dilemma, requiring almost no extra
memory and only modestly complex code, if we generate the templates one level
at a time. Before generating the templates for level l, we’ll know the number
Nl of templates to be requested on that level. So we can temporarily allocate
space for 2b templates at the top of the currently free area, where b = ⌈lgNl⌉,
and put new templates there while hashing into the same area. The idea is to
use chaining with separate lists, as in Fig. 38 of Section 6.4; the H and L fields of
our templates and potential templates play the roles of heads and links in that
illustration, while the keys appear in (LEFT, RIGHT). Here’s the logic, in detail:
Subroutine make template (f, g), with local variable t:
Set h ← HBASE + 2(((314159257f + 271828171g) mod 2d)≫ (d − b)), where d
is a convenient upper bound on the size of a pointer (usually d = 32). Then
set t ← H(h). While t ̸= Λ and either LEFT(t) ̸= f or RIGHT(t) ̸= g, set
t← L(t). If t = Λ, set t← TBOT− 2, TBOT← t, LEFT(t)← f , RIGHT(t)← g,
L(t)← H(h), and H(h)← t. Finally, return the value t. (47)

The calling routine in steps S4 and S5 ensures that NTOP ≤ HBASE ≤ TBOT.
This breadth-first, level-at-a-time strategy for constructing the templates

has an added payoff, because it promotes “locality of reference”: Memory ac-
cesses tend to be confined to nearby locations that have recently been seen, hence
controlled in such a way that cache misses and page faults are significantly
reduced. Furthermore, the eventual BDD nodes placed on the stack will also
appear in order, so that all branches on the same variable appear consecutively.

Algorithm S (Breadth-first synthesis of BDDs). This algorithm computes the
BDD for f ◦ g as described above, using subroutines (46) and (47). Auxiliary
arrays LSTART[l], LCOUNT[l], LLIST[l], and HLIST[l] are used for 0 ≤ l ≤ vmax.
S1. [Initialize.] Set f ← g0− 1− f0, g ← NTOP− 1− g0, and l← find level (f, g).

See exercise 66 if l ≤ 0. Otherwise set LSTART[l − 1] ← POOLSIZE, and
LLIST[k] ← HLIST[k] ← Λ, LCOUNT[k] ← 0 for l < k ≤ vmax. Set
TBOT← POOLSIZE− 2, LEFT(TBOT)← f , and RIGHT(TBOT)← g.

S2. [Scan the level-l templates.] Set LSTART[l]← TBOT and t← LSTART[l − 1].
While t > TBOT, schedule requests for future levels by doing the following:

Set t← t−2, f← LEFT(t), g ← RIGHT(t), vf ← V(f0+f), vg ← V(g0+g),
l l ← find level ((vf ≤ vg? LO(f0 + f): f), (vf ≥ vg? LO(g0 + g): g)),
lh ← find level ((vf ≤ vg? HI(f0 + f): f), (vf ≥ vg? HI(g0 + g): g)).

If l l ≤ 0, set L(t)← −l l ; otherwise set L(t)← LLIST[l l], LLIST[l l]← t,
LCOUNT[l l] ← LCOUNT[l l] + 1. If lh ≤ 0, set H(t) ← −lh ; otherwise set
H(t)← HLIST[lh], HLIST[lh]← t, LCOUNT[lh]← LCOUNT[lh] + 1.

S3. [Done with phase one?] Go to S6 if l = vmax. Otherwise set l ← l + 1, and
return to S2 if LCOUNT[l] = 0.

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 223

S4. [Initialize for hashing.] Set b ← ⌈lg LCOUNT[l]⌉, HBASE ← TBOT − 2b+1,
and H(HBASE + 2k)← Λ for 0 ≤ k < 2b.

S5. [Make the level-l templates.] Set t ← LLIST[l]. While t ̸= Λ, set s ←
L(t), f ← LEFT(t), g ← RIGHT(t), vf ← V(f0 + f), vg ← V(g0 + g),
L(t) ← make template ((vf ≤ vg? LO(f0+f): f), (vf ≥ vg? LO(g0+g): g)),
t ← s. (We’re half done.) Then set t ← HLIST[l]. While t ̸= Λ, set
s ← H(t), f ← LEFT(t), g ← RIGHT(t), vf ← V(f0 + f), vg ← V(g0 + g),
H(t) ← make template ((vf ≤ vg? HI(f0+f): f), (vf ≥ vg? HI(g0+g): g)),
t← s. (Now the other half is done.) Go back to step S2.

S6. [Prepare for phase two.] (At this point it’s safe to obliterate the nodes of f
and g, because we’ve built all the templates (43). Now we’ll convert them
to form (44). Note that V(f0) = V(f0 + 1) = vmax + 1.) Set NTOP← f0 + 2.

S7. [Bucket sort.] Set t← LSTART[l − 1]. Do the following while t > LSTART[l]:
Set t← t− 2, L(t)← RIGHT(L(t)), and H(t)← RIGHT(H(t)).
If L(t) = H(t), set RIGHT(t)← L(t). (This branch is redundant.)
Otherwise set RIGHT(t)← −1, LEFT(t)← LEFT(L(t)), LEFT(L(t))← t.

S8. [Restore clone addresses.] If t = LSTART[l − 1], set t ← LSTART[l] − 2
and go to S9. Otherwise, if LEFT(t) < 0, set LEFT(L(t)) ← LEFT(t). Set
t← t+ 2 and repeat step S8.

S9. [Done with level?] Set t← t+2. If t = LSTART[l − 1], go to S12. Otherwise,
if RIGHT(t) ≥ 0 repeat step S9.

S10. [Examine a bucket.] (Suppose L(t1) = L(t2) = L(t3), where t1 > t2 >
t3 = t and no other templates on level l have this L value. Then at this point
we have LEFT(t3) = t2, LEFT(t2) = t1, LEFT(t1) < 0, and RIGHT(t1) =
RIGHT(t2) = RIGHT(t3) = −1.) Set s ← t. While s > 0, do the following:
Set r ← H(s), RIGHT(s)← LEFT(r); if LEFT(r) < 0, set LEFT(r)← s; and
set s← LEFT(s). Finally set s← t again.

S11. [Make clones.] If s < 0, go back to step S9. Otherwise if RIGHT(s) ≥ 0,
set s ← LEFT(s). Otherwise set r ← LEFT(s), LEFT(H(s)) ← RIGHT(s),
RIGHT(s) ← s, q ← NTOP, NTOP ← q + 1, LEFT(s) ← ∼(q − f0), LO(q) ←
∼LEFT(L(s)), HI(q)← ∼LEFT(H(s)), V(q)← l, s← r. Repeat step S11.

S12. [Loop on l.] Set l ← l − 1. Return to S7 if LSTART[l] < POOLSIZE.
Otherwise, if RIGHT(POOLSIZE− 2) = 0, set NTOP ← NTOP − 1 (because
f ◦ g is identically 0).

As usual, the best way to understand an algorithm like this is to trace through
an example. Exercise 67 discusses what Algorithm S does when it is asked to
compute f ∧ g, given the BDDs in (41).

Algorithm S can be used, for example, to construct the BDDs for interesting
functions such as the “monotone-function function” µn(x1, . . . , x2n), which is
true if and only if x1 . . . x2n is the truth table of a monotone function:

µn(x1, . . . , x2n) =


0≤i⊆j<2n

[xi+1≤xj+1 ]. (48)

From the Library of Melissa Nuno



ptg999

224 COMBINATORIAL SEARCHING 7.1.4

1

3 3

5 5

7

⊥

> ⊥

> ⊥

∧

2

4 4

6 6

8

⊥

> ⊥

> ⊥

∧

1

2

3

4

5

6

7

8

>

⊥

⊥

⊥

⊥

=

1

2 2

3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6

7 7

8

> ⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

Fig. 25. µ2(x1, x3, x5, x7)∧ µ2(x2, x4, x6, x8)∧G8(x1, . . . , x8) = µ3(x1, . . . , x8),
as computed by Algorithm S.

Starting with µ0(x1) = 1, this function satisfies the recursion relation

µn(x1, . . . , x2n) =
µn−1(x1, x3, . . . , x2n−1) ∧ µn−1(x2, x4, . . . , x2n) ∧G2n(x1, . . . , x2n), (49)

where G2n(x1, . . . , x2n) = [x1≤x2 ] ∧ [x3≤x4 ] ∧ · · · ∧ [x2n−1≤x2n ]. So its
BDD is easy to obtain with a BDD calculator like Algorithm S: The BDDs for
µn−1(x1, x3, . . . , x2n−1) and µn−1(x2, x4, . . . , x2n) are simple variants of the one
for µn−1(x1, x2, . . . , x2n−1), and G2n has an extremely simple BDD (see Fig. 25).

Repeating this process six times will produce the BDD for µ6, which has
103,924 nodes. There are exactly 7,828,354 monotone Boolean functions of six
variables (see exercise 5.3.4–31); this BDD nicely characterizes them all, and we
need only about 4.8 million memory accesses to compute it with Algorithm S.
Furthermore, 6.7 billion mems will suffice to compute the BDD for µ7, which
has 155,207,320 nodes and characterizes 2,414,682,040,998 monotone functions.

We must stop there, however; the size of the next case, B(µ8), turns out to
be a whopping 69,258,301,585,604 (see exercise 77).

Synthesis in a BDD base. Another approach is called for when we’re dealing
with many functions at once instead of computing a single BDD on the fly.
The functions of a BDD base often share common subfunctions, as in (36).
Algorithm S is designed to take disjoint BDDs and to combine them efficiently,
afterwards destroying the originals; but in many cases we would rather form
combinations of functions whose BDDs overlap. Furthermore, after forming a
new function f ∧ g, say, we might want to keep f and g around for future use;
indeed, the new function might well share nodes with f or g or both.

Let’s therefore consider the design of a general-purpose toolkit for manip-
ulating a collection of Boolean functions. BDDs are especially attractive for

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 225

this purpose because most of the necessary operations have a simple recursive
formulation. We know that every nonconstant Boolean function can be written

f(x1, x2, . . . , xn) = (x̄v? fl: fh), (50)

where v = fv indexes the first variable on which f depends, and where we have

fl = f(0, . . . , 0, xv+1, . . . , xn); fh = f(1, . . . , 1, xv+1, . . . , xn). (51)

This rule corresponds to branch node kv at the top of the BDD for f ; and
the rest of the BDD follows by using (50) and (51) recursively, until we reach
constant functions that correspond to ⊥ or ⊤ . A similar recursion defines any
combination of two functions, f ◦g: For if f and g aren’t both constant, we have

f(x1, . . . , xn) = (x̄v? fl: fh) and g(x1, . . . , xn) = (x̄v? gl: gh), (52)

where v = min(fv, gv) and where fl, fh, gl, gh are given by (51). Then, presto,

f ◦ g = (x̄v? fl ◦ gl: fh ◦ gh). (53)

This important formula is another way of stating the rule by which we defined
melding, Eq. (37).

Caution: The notations above need to be understood carefully, because the
subfunctions fl and fh in (50) might not be the same as the fl and fh in (52).
Suppose, for example, that f = x2 ∨ x3 while g = x1 ⊕ x3. Then Eq. (50) holds
with fv = 2 and f = (x̄2? fl: fh), where fl = x3 and fh = 1. We also have
gv = 1 and g = (x̄1? x3: x̄3). But in (52) we use the same branch variable xv for
both functions, and v = min(fv, gv) = 1 in our example; so Eq. (52) holds with
f = (x̄1? fl: fh) and fl = fh = x2 ∨ x3.

Every node of a BDD base represents a Boolean function. Furthermore, a
BDD base is reduced; therefore two of its functions or subfunctions are equal
if and only if they correspond to exactly the same node. (This convenient
uniqueness property was not true in Algorithm S.)

Formulas (51)–(53) immediately suggest a recursive way to compute f ∧ g:

AND(f, g) =


If f ∧ g has an obvious value, return it.
Otherwise represent f and g as in (52);
compute rl ← AND(fl, gl) and rh ← AND(fh, gh);
return the function (x̄v? rl: rh).

(54)

(Recursions always need to terminate when a sufficiently simple case arises. The
“obvious” values in the first line correspond to the terminal cases f ∧ 1 = f ,
1 ∧ g = g, f ∧ 0 = 0 ∧ g = 0, and f ∧ g = f when f = g.) When f and g are
the functions in our example above, (54) reduces f ∧ g to the computation of
(x2∨x3)∧x3 and (x2∨x3)∧x̄3. Then (x2∨x3)∧x3 reduces to x3∧x3 and 1∧x3; etc.

But (54) is problematic if we simply implement it as stated, because every
nonterminal step launches two more instances of the recursion. The computation
explodes, with 2k instances of AND when we’re k levels deep!

Fortunately there’s a good way to avoid that blowup. Since f has only B(f)
different subfunctions, at most B(f)B(g) distinctly different calls of AND can

From the Library of Melissa Nuno



ptg999

226 COMBINATORIAL SEARCHING 7.1.4

arise. To keep a lid on the computations, we just need to remember what we’ve
done before, by making a memo of the fact that f ∧ g = r just before returning
r as the computed value. Then when the same subproblem occurs later, we
can retrieve the memo and say, “Hey, we’ve already been there and done that.”
Previously solved cases thereby become terminal; only distinct subproblems can
generate new ones. (Chapter 8 will discuss this memoization technique in detail.)

The algorithm in (54) also glosses over another problem: It’s not so easy to
“return the function (x̄v? rl: rh),” because we must keep the BDD base reduced.
If rl = rh, we should return the node rl ; and if rl ̸= rh, we need to decide
whether the branch node (x̄v? rl: rh) already exists, before creating a new one.

Thus we need to maintain additional information, besides the BDD nodes
themselves. We need to keep memos of problems already solved; we also need
to be able to find a node by its content, instead of by its address. The search
algorithms of Chapter 6 now come to our rescue by telling us how to do both of
these things, for example by hashing. To record a memo that f ∧ g = r, we can
hash the key ‘(f,∧, g)’ and associate it with the value r; to record the existence
of an existing node (V,LO,HI), we can hash the key ‘(V,LO,HI)’ and associate
it with that node’s memory address.

The dictionary of all existing nodes (V,LO,HI) in a BDD base is traditionally
called the unique table, because we use it to enforce the all-important uniqueness
criterion that forbids duplication. Instead of putting all that information into
one giant dictionary, however, it turns out to be better to maintain a collection
of smaller unique tables, one for each variable V. With such separate tables we
can efficiently find all nodes that branch on a particular variable.

The memos are handy, but they aren’t as crucial as the unique table entries.
If we happen to forget the isolated fact that f ∧ g = r, we can always recompute
it again later. Exponential blowup won’t be worrisome, if the answers to the
subproblems fl ∧ gl and fh ∧ gh are still remembered with high probability.
Therefore we can use a less expensive method to store memos, designed to do
a pretty-good-but-not-perfect job of retrieval: After hashing the key ‘(f,∧, g)’
to a table position p, we need look for a memo only in that one position, not
bothering to consider collisions with other keys. If several keys all share the same
hash address, position p will record only the most recent relevant memo. This
simplified scheme will still be adequate in practice, as long as the hash table is
large enough. We shall call such a near-perfect table the memo cache, because
it is analogous to the hardware caches by which a computer tries to remember
significant values that it has dealt with in relatively slow storage units.

Okay, let’s flesh out algorithm (54) by explicitly stating how it interacts
with the unique tables and the memo cache:

AND(f, g) =



If f ∧ g has an obvious value, return it.
Otherwise, if f ∧ g = r is in the memo cache, return r.
Otherwise represent f and g as in (52);
compute rl ← AND(fl, gl) and rh ← AND(fh, gh);
set r ← UNIQUE(v, rl, rh), using Algorithm U;
put ‘f ∧ g = r’ into the memo cache, and return r.

(55)

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 227

Algorithm U (Unique table lookup). Given (v, p, q), where v is an integer while
p and q point to nodes of a BDD base with variable rank > v, this algorithm re-
turns a pointer to a node UNIQUE(v, p, q) that represents the function (x̄v? p: q).
A new node is added to the base if that function wasn’t already present.
U1. [Easy case?] If p = q, return p.
U2. [Check the table.] Search variable xv’s unique table using the key (p, q). If

the search successfully finds the value r, return r.
U3. [Create a node.] Allocate a new node r, and set V(r) ← v, LO(r) ← p,

HI(r)← q. Put r into xv’s unique table using the key (p, q). Return r.
Notice that we needn’t zero out the memo cache after finishing a top-level
computation of AND(f, g). Each memo that we have made states a relationship
between nodes of the structure; those facts are still valid, and they might be
useful later when we want to compute AND(f, g) for new functions f and g.

A refinement of (55) will enhance that method further, namely to swap
f ↔ g if we discover that f > g when f ∧ g isn’t obvious. Then we won’t have
to waste time computing f ∧ g when we’ve already computed g ∧ f .

With simple changes to (55), the other binary operators OR(f, g), XOR(f, g),
BUTNOT(f, g), NOR(f, g), . . . can also be computed readily; see exercise 81.

The combination of (55) and Algorithm U looks considerably simpler than
Algorithm S. Thus one might well ask, why should anybody bother to learn the
other method? Its breadth-first approach seems quite complex by comparison
with the “depth-first” order of computation in the recursive structure of (55); yet
Algorithm S is able to deal only with BDDs that are disjoint, while Algorithm U
and recursions like (55) apply to any BDD base.

Appearances can, however, be deceiving: Algorithm S has been described
at a low level, with every change to every element of its data structures spelled
out explicitly. By contrast, the high-level descriptions in (55) and Algorithm U
assume that a substantial infrastructure exists behind the scenes. The memo
cache and the unique tables need to be set up, and their sizes need to be carefully
adjusted as the BDD base grows or contracts. When all is said and done, the
total length of a program that implements Algorithms (55) and U properly “from
scratch” is roughly ten times the length of a similar program for Algorithm S.

Indeed, the maintenance of a BDD base involves interesting questions of
dynamic storage allocation, because we want to free up memory space when
nodes are no longer accessible. Algorithm S solves this problem in a last-in-first-
out manner, by simply keeping its nodes and templates on sequential stacks, and
by making do with a single small hash table that can easily be integrated with
the other data. A general BDD base, however, requires a more intricate system.

The best way to maintain a dynamic BDD base is probably to use reference
counters, as discussed in Section 2.3.5, because BDDs are acyclic by definition.
Therefore let’s assume that every BDD node has a REF field, in addition to V, LO,
and HI. The REF field tells us how many references exist to this node, either
from LO or HI pointers in other nodes or from external root pointers Fj as in (36).
For example, the REF fields for the nodes labeled k3 in (36) are respectively 4,

From the Library of Melissa Nuno



ptg999

228 COMBINATORIAL SEARCHING 7.1.4

1, and 2; and all of the nodes labeled k2 or k4 or k6 in that example have
REF = 1. Exercise 82 discusses the somewhat tricky issue of how to increase
and decrease REF counts properly in the midst of a recursive computation.

A node becomes dead when its reference count becomes zero. When that
happens, we should decrease the REF fields of the two nodes below it; and then
they too might die in the same manner, recursively spreading the plague.

But a dead node needn’t be removed from memory immediately. It still
represents a potentially useful Boolean function, and we might discover that we
need that function again as our computation proceeds. For example, we might
find a dead node in step U2, because pointers from the unique table don’t get
counted as references. Likewise, in (55), we might accidentally stumble across a
cache memo telling us that f ∧ g = r, when r is currently dead. In such cases,
node r comes back to life. (And we must increase the REF counts of its LO and
HI descendants, possibly resurrecting them recursively in the same fashion.)

Periodically, however, we will want to reclaim memory space by removing
the deadbeats. Then we must do two things: We must purge all memos from
the cache for which either f , g, or r is dead; and we must remove all dead
nodes from memory and from their unique tables. See exercise 84 for typical
heuristic strategies by which an automated system might decide when to invoke
such cleanups and when to resize the tables dynamically.

Because of the extra machinery that is needed to support a BDD base,
Algorithm U and top-down recursions like (55) cannot be expected to match the
efficiency of Algorithm S on one-shot examples such as the monotone-function
function µn in (49). The running time is approximately quadrupled when the
more general approach is applied to this example, and the memory requirement
grows by a factor of about 2.4.

But a BDD base really begins to shine in numerous other applications.
Suppose, for example, that we want the formulas for each bit of the product
of two binary numbers,

(z1 . . . zm+n)2 = (x1 . . . xm)2 × (y1 . . . yn)2. (56)
Clearly z1 . . . zm = 0 . . . 0 when n = 0, and the simple recurrence

(x1 . . . xm)2 × (y1 . . . ynyn+1)2 = (z1 . . . zm+n0)2 + (x1 . . . xm)2yn+1 (57)
allows us to increase n by 1. This recurrence is easy to code for a BDD base.
Here’s what we get when m = n = 3, with subscripts chosen to match the
analogous diagram for binary addition in (36):

x1x3x5
× x2x4x6

· · ·
· · ·

· · ·
f6f5f4f3f2f1

1 1 1 1

2 2 2 2 2 22

3 3 3 3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5

6 6

⊥

⊥

⊥ ⊥

> ⊥ >

> ⊥ ⊥ > ⊥

⊥ > ⊥ >

F6 F5 F3 F4F1 F2

(58)

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 229

Clearly multiplication is much more complicated than addition, bitwise. (Indeed,
if it weren’t, factorization wouldn’t be so hard.) The corresponding BDD base
for binary multiplication when m = n = 16 is huge, with B(f1, . . . , f32) =
136,398,751 nodes. It can be found after doing about 56 gigamems of calculation
with Algorithm U, in 6.3 gigabytes of memory — including some 1.9 billion
invocations of recursive subroutines, with hundreds of dynamic resizings of the
unique tables and the memo cache, plus dozens of timely garbage collections.
A similar calculation with Algorithm S would be almost unthinkable, although
the individual functions in this particular example do not share many common
subfunctions: It turns out that B(f1) + · · · + B(f32) = 168,640,131, with the
maximum occurring at the “middle bit,” B(f16) = 38,174,143.

*Ternary operations. Given three Boolean functions f = f(x1, . . . , xn), g =
g(x1, . . . , xn), and h = h(x1, . . . , xn), not all constant, we can generalize (52) to

f = (x̄v? fl: fh) and g = (x̄v? gl: gh) and h = (x̄v? hl: hh), (59)

by taking v = min(fv, gv, hv). Then, for example, (53) generalizes to

⟨fgh⟩ =

x̄v? ⟨flglhl⟩: ⟨fhghhh⟩


; (60)

and similar formulas hold for any ternary operation on f , g, and h, including

(f̄? g: h) =

x̄v? (f̄l? gl: hl): (f̄h? gh: hh)


. (61)

(The reader of these formulas will please forgive the two meanings of ‘h’ in ‘hh’.)
Now it’s easy to generalize (55) to ternary combinations like multiplexing:

MUX(f, g, h) =



If (f̄? g: h) has an obvious value, return it.
Otherwise, if (f̄? g: h) = r is in the memo cache, return r.
Otherwise represent f , g, and h as in (59);
compute rl ← MUX(fl, gl, hl) and rh ← MUX(fh, gh, hh);
set r ← UNIQUE(v, rl, rh), using Algorithm U;
put ‘(f̄? g: h) = r’ into the memo cache, and return r.

(62)

(See exercises 86 and 87.) The running time is O

B(f)B(g)B(h)


. The memo

cache must now be consulted with a more complex key than before, including
three pointers (f, g, h) instead of two, together with a code for the relevant
operation. But each memo (op, f, g, h, r) can still be represented conveniently in,
say, two octabytes, if the number of distinct pointer addresses is at most 231.

The ternary operation f ∧ g ∧ h is an interesting special case. We could
compute it with two invocations of (55), either as AND(f,AND(g, h)) or as
AND(g,AND(h, f)) or as AND(h,AND(f, g)); or we could use a ternary sub-
routine, ANDAND(f, g, h), analogous to (62). This ternary routine first sorts
the operands so that the pointers satisfy f ≤ g ≤ h. Then if f = 0, it returns 0;
if f = 1 or f = g, it returns AND(g, h); if g = h it returns AND(f, g); otherwise
1 < f < g < h and the operation remains ternary at the current level of recursion.

Suppose, for example, that f = µ5(x1, x3, . . . , x63), g = µ5(x2, x4, . . . , x64),
and h = G64(x1, . . . , x64), as in Eq. (49). The computation AND(f,AND(g, h))

From the Library of Melissa Nuno



ptg999

230 COMBINATORIAL SEARCHING 7.1.4

costs 0.2 + 6.8 = 7.0 megamems in the author’s experimental implementation;
AND(g,AND(h, f)) costs 0.1 + 7.0 = 7.1; AND(h,AND(f, g)) costs 24.4 + 5.6 =
30.0 (!); and ANDAND(f, g, h) costs 7.5. So in this instance the all-binary
approach wins, if we don’t choose a bad order of computation. But sometimes
ternary ANDAND beats all three of its binary competitors (see exercise 88).

*Quantifiers. If f = f(x1, . . . , xn) is a Boolean function and 1 ≤ j ≤ n, logicians
traditionally define existential and universal quantification by the formulas

∃xj f(x1, . . . , xn) = f0 ∨ f1 and ∀xj f(x1, . . . , xn) = f0 ∧ f1, (63)

where fc = f(x1, . . . , xj−1, c, xj+1, . . . , xn). Thus the quantifier ‘∃xj ’, pro-
nounced “there exists xj ,” changes f to the function of the remaining variables
(x1, . . . , xj−1, xj+1, . . . , xn) that is true if and only if at least one value of xj
satisfies f(x1, . . . , xn); the quantifier ‘∀xj ’, pronounced “for all xj ,” changes f
to the function that is true if and only if both values of xj satisfy f .

Several quantifiers are often applied simultaneously. For example, the for-
mula ∃x2 ∃x3 ∃x6 f(x1, . . . , xn) stands for the OR of eight terms, representing
the eight functions of (x1, x4, x5, x7, . . . , xn) that are obtained when we plug the
values 0 or 1 into the variables x2, x3, and x6 in all possible ways. Similarly,
∀x2 ∀x3 ∀x6 f(x1, . . . , xn) stands for the AND of those same eight terms.

One common application arises when the function f(i1, . . . , il; j1, . . . , jm)
denotes the value in row (i1 . . . il)2 and column (j1 . . . jm)2 of a 2l× 2m Boolean
matrix F . Then the function h(i1, . . . , il; k1, . . . , kn) given by

∃j1 . . . ∃jm

f(i1, . . . , il; j1, . . . , jm) ∧ g(j1, . . . , jm; k1, . . . , kn)


(64)

represents the matrix H that is the Boolean product F G.
A convenient way to implement multiple quantification in a BDD base has

been suggested by R. L. Rudell: Let g = xj1 ∧ · · · ∧ xjm be a conjunction of
positive literals. Then we can regard ∃xj1 . . . ∃xjm f as the binary operation
f E g, implemented by the following variant of (55):

EXISTS(f, g) =



If f E g has an obvious value, return it.
Otherwise represent f and g as in (52);
if v ̸= fv, return EXISTS(f, gh).
Otherwise, if f E g = r is in the memo cache, return r.
Otherwise, rl←EXISTS(fl, gh) and rh←EXISTS(fh, gh);
if v ̸= gv, set r ← UNIQUE(v, rl, rh) using Algorithm U,
otherwise compute r ← OR(rl, rh);
put ‘f E g = r’ into the memo cache, and return r.

(65)

(See exercise 94.) The E operation is undefined when g does not have the stated
form. Notice how the memo cache nicely remembers existential computations
that have gone before.

The running time of (65) is highly variable — not like (55) where we know
that O(B(f)B(g)) is the worst possible case — because m OR operations are
invoked when g specifies m-fold quantification. The worst case now can be as

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 231

bad as order B(f)2m, if all of the quantification occurs near the root of the BDD
for f ; this is only O(B(f)2) if m = 1, but it might become unbearably large as m
grows. On the other hand, if all of the quantification occurs near the sinks, the
running time is simply O(B(f)), regardless of the size of m. (See exercise 97.)

Several other quantifiers are worthy of note, and equally easy, although they
aren’t as famous as ∃ and ∀. The Boolean difference and the yes/no quantifiers
are defined by formulas analogous to (63):

xj f = f0 ⊕ f1; xj f = f̄0 ∧ f1; xj f = f0 ∧ f̄1. (66)

The Boolean difference, , is the most important of these: xj f is true for
all values of {x1, . . . , xj−1, xj+1, . . . , xn} such that f depends on xj . If the
multilinear representation of f is f = (xjg + h) mod 2, where g and h are
multilinear polynomials in {x1, . . . , xj−1, xj+1, . . . , xn}, then xj f = g mod 2.
(See Eq. 7.1.1–(19).) Thus acts like a derivative in calculus, over a finite field.

A Boolean function f(x1, . . . , xn) is monotone (nondecreasing) if and only
if
n

j=1 xjf = 0, which is the same as saying that xj f = 0 for all j. However,
exercise 105 presents a faster way to test a BDD for monotonicity.

Let’s consider now a detailed example of existential quantification that is
particularly instructive. If G is any graph, we can form Boolean functions IND(x)
and KER(x) for its independent sets and kernels as follows, where x is a bit vector
with one entry xv for each vertex v of G:

IND(x) = ¬


u−−v

(xu ∧ xv); (67)

KER(x) = IND(x) ∧

v


xv ∨


u−−v

xu

. (68)

We can form a new graph G whose vertices are the kernels of G, namely the
vectors x such that KER(x) = 1. Let’s say that two kernels x and y are adjacent
in G if they differ in just the two entries for u and v, where (xu, xv) = (1, 0) and
(yu, yv) = (0, 1), in which case we’ll also have u−−−v. Kernels can be considered
as certain ways to place markers on vertices of G; moving a marker from one
vertex to a neighboring vertex produces an adjacent kernel. Formally we define

ADJ(x, y) = [ν(x⊕ y) = 2] ∧ KER(x) ∧ KER(y). (69)

Then x−−−y in G if and only if ADJ(x, y) = 1.
Notice that, if x = x1 . . . xn, the function [ν(x) = 2] is the symmetric func-

tion S2(x1, . . . , xn). Furthermore f(x ⊕ y) has at most 3 times as many nodes
as f(x), if we interleave the variables zipperwise so that the branching order is
(x1, y1, . . . , xn, yn). So B(ADJ) won’t be extremely large unless B(KER) is large.

Quantification now makes it easy to express the condition that x is an
isolated vertex of G (a vertex of degree 0, a kernel without neighbors):

ISO(x) = KER(x) ∧ ¬∃yADJ(x, y). (70)

For example, suppose G is the graph of contiguous states in the USA, as
in (18). Then each kernel vector x has 49 entries xv for v ∈ {ME, NH, . . . , CA}.

From the Library of Melissa Nuno



ptg999

232 COMBINATORIAL SEARCHING 7.1.4

The graph G has 266,137 vertices, and we have observed earlier that the BDD
sizes for IND(x) and KER(x) are respectively 428 and 780 (see (17)). In this case
ADJ(x, y) in (69) has a BDD of only 7260 nodes, even though it’s a function of
98 Boolean variables. The BDD for ∃yADJ(x, y), which describes all kernels x
of G that have at least one neighbor, turns out to have 842 nodes; and the one
for ISO(x) has only 77. We find that G has exactly three isolated kernels, namely

(71)

and another that is a blend of these two. Using the algorithms above, this entire
calculation, starting from a list of the vertices and edges of G (not G), can be
carried out with a total cost of about 4 megamems, in about 1.6 megabytes of
memory; that’s only about 15 memory accesses per kernel of G.

In a similar fashion we can use BDDs to work with other “implicit graphs,”
which have more vertices than could possibly be represented in memory, if those
vertices can be characterized as the solution vectors of Boolean functions. When
the functions aren’t too complicated, we can answer queries about those graphs
that could never be answered by representing the vertices and arcs explicitly.

*Functional composition. The pièce de résistance of recursive BDD algorithms
is a general procedure to compute f(g1, g2, . . . , gn), where f is a given function of
{x1, x2, . . . , xn} and so is each argument gj . Suppose we know a number m ≥ 0
such that gj = xj for m < j ≤ n; then the procedure can be expressed as follows:

COMPOSE(f, g1, . . . , gn) =



If f = 0 or f = 1, return f .
Otherwise suppose f = (x̄v? fl: fh), as in (50);
if v > m, return f ; otherwise, if f(g1, . . . , gn)=r

is in the memo cache, return r.
Compute rl ← COMPOSE(fl, g1, . . . , gn)

and rh ← COMPOSE(fh, g1, . . . , gn);
set r ← MUX(gv, rl, rh) using (62);
put ‘f(g1, . . . , gn) = r’ into the cache, and return r.

(72)

The representation of cache memos like ‘f(g1, . . . , gn) = r’ in this algorithm is a
bit tricky; we will discuss it momentarily.

Although the computations here look basically the same as those we’ve been
seeing in previous recursions, there is in fact a huge difference: The functions rl
and rh in (72) can now involve all variables {x1, . . . , xn}, not just the x’s near
the bottom of the BDDs. So the running time of (72) might actually be huge.
But there also are many cases when everything works together harmoniously and
efficiently. For example, the computation of [ν(x⊕ y) = 2] in (69) is no problem.

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 233

The key of a memo like ‘f(g1, . . . , gn) = r’ should not be a completely
detailed specification of (f, g1, . . . , gn), because we want to hash it efficiently.
Therefore we store only ‘f [G] = r’, where G is an identification number for the
sequence of functions (g1, . . . , gn). Whenever that sequence changes, we can use a
new number G; and we can remember the G’s for special sequences of functions
that occur repeatedly in a particular computation, as long as the individual
functions gj don’t die. (See also the alternative scheme in exercise 102.)

Let’s return to the graph of contiguous states for one more example. That
graph is planar; suppose we want to color it with four colors. Since the colors
can be given 2-bit codes {00, 01, 10, 11}, it’s easy to express the valid colorings
as a Boolean function of 98 variables that is true if and only if the color codes
ab are different for each pair of adjacent states:

COLOR(aME, bME, . . . , aCA, bCA) =
IND(aME ∧ bME, . . . , aCA ∧ bCA) ∧ IND(aME ∧ b̄ME, . . . , aCA ∧ b̄CA) (73)
∧ IND(āME ∧ bME, . . . , āCA ∧ bCA) ∧ IND(āME ∧ b̄ME, . . . , āCA ∧ b̄CA).

Each of the four INDs has a BDD of 854 nodes, which can be computed via (72)
with a cost of about 70 kilomems. The COLOR function turns out to have only
25579 BDD nodes. Algorithm C now quickly establishes that the total number
of ways to 4-color this graph is exactly 25,623,183,458,304 — or, if we divide
by 4! to remove symmetries, about 1.1 trillion. The total time needed for this
computation, starting from a description of the graph, is less than 3.5 megamems,
in 2.2 megabytes of memory. (We can also find random 4-colorings, etc.)
Nasty functions. Of course there also are functions of 98 variables that aren’t
nearly so nice as COLOR. Indeed, the total number of 98-variable functions is
2298; exercise 108 proves that at most 2246 of them have a BDD size less than
a trillion, and that almost all Boolean functions of 98 variables actually have
B(f) ≈ 298/98 ≈ 3.2 × 1027. There’s just no way to compress 298 bits of data
into a small space, unless that data happens to be highly redundant.

What’s the worst case? If f is a Boolean function of n variables, how large
can B(f) be? The answer isn’t hard to discover, if we consider the profile of
a given BDD, which is the sequence (b0, . . . , bn−1, bn) when there are bk nodes
that branch on variable xk+1 and bn sinks. Clearly

B(f) = b0 + · · ·+ bn−1 + bn . (74)
We also have b0 ≤ 1, b1 ≤ 2, b2 ≤ 4, b3 ≤ 8, and in general

bk ≤ 2k, (75)
because each node has only two branches. Furthermore bn = 2 whenever f isn’t
constant; and bn−1 ≤ 2, because there are only two legal choices for the LO and
HI branches of kn . Indeed, we know that bk is the number of beads of order
n − k in the truth table for f , namely the number of distinct subfunctions of
(xk+1, . . . , xn) that depend on xk+1 after the values of (x1, . . . , xk) have been
specified. Only 22m − 22m−1 beads of order m are possible, so we must have

bk ≤ 22n−k

− 22n−k−1
, for 0 ≤ k < n. (76)

From the Library of Melissa Nuno



ptg999

234 COMBINATORIAL SEARCHING 7.1.4

When n = 11, for instance, (75) and (76) tell us that (b0, . . . , b11) is at most

(1, 2, 4, 8, 16, 32, 64, 128, 240, 12, 2, 2). (77)

Thus B(f) ≤ 1 + 2 + · · ·+ 128 + 240 + · · ·+ 2 = 255 + 256 = 511 when n = 11.
This upper bound is in fact obtained with the truth table

00000000 00000001 00000010 . . . 11111110 11111111, (78)

or with any string of length 211 that is a permutation of the 256 possible 8-bit
bytes, because all of the 8-bit beads are clearly present, and because all of the
subtables of lengths 16, 32, . . . , 211 are clearly beads. Similar examples can be
constructed for all n (see exercise 110). Therefore the worst case is known:

Theorem U. Every Boolean function f(x1, . . . , xn) has B(f) ≤ Un, where

Un = 2 +
n−1
k=0

min(2k, 22n−k

− 22n−k−1
) = 2n−λ(n−λn) + 22λ(n−λn)

− 1. (79)

Furthermore, explicit functions fn with B(fn) = Un exist for all n.

If we replace λ by lg, the right-hand side of (79) becomes 2n/(n − lgn) +
2n/n − 1. In general, Un is un times 2n/n, where the factor un lies between 1
and 2 +O( log n

n ). A BDD with about 2n+1/n nodes needs about n+ 1− lgn bits
for each of two pointers in every node, plus lgn bits to indicate the variable for
branching. So the total amount of memory space taken up by the BDD for any
function f(x1, . . . , xn) is never more than about 2n+2 bits, which is four times
the number of bits in its truth table, even if f happens to be one of the worst
possible functions from the standpoint of BDD representation.

The average case turns out to be almost the same as the worst case, if we
choose the truth table for f at random from among all 22n possibilities. Again the
calculations are straightforward: The average number of

� �� �k+1 nodes is exactly

b̂k =

22n−k

− 22n−k−1
22n

− (22n−k

− 1)2k
22n

, (80)

because there are 22n−k− 22n−k−1 beads of order n − k and (22n−k− 1)2k truth
tables in which any particular bead does not occur. Exercise 112 shows that this
complicated-looking quantity b̂k always lies extremely close to the worst-case
estimate min(2k, 22n−k− 22n−k−1), except for two values of k. The exceptional
levels occur when k ≈ 2n−k and the “min” has little effect. For example, the
average profile (b̂0, . . . , b̂n−1, b̂n) when n = 11 is approximately

(1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 127.4, 151.9, 12.0, 2.0, 2.0) (81)

when rounded to one decimal place, and these values are virtually indistinguish-
able from the worst case (77) except when k = 7 or 8.

A related concept called a quasi-BDD, or “QDD,” is also important. Every
function has a unique QDD, which is similar to its BDD except that the root
node is always k1 , and every kk node for k < n branches to two

� �� �k+1 nodes;
thus every path from the root to a sink has length n. To make this possible,

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 235

we allow the LO and HI pointers of a QDD node to be identical. But the QDD
must still be reduced, in the sense that different nodes cannot have the same two
pointers (LO, HI). For example, the QDD for ⟨x1x2x3⟩ is

⊥ >

1
2 2

33 3 ;
(82)

it has two more nodes than the corresponding BDD in Fig. 21. Notice that the
V fields are redundant in a QDD, so they needn’t be present in memory.

The quasi-profile of a function is (q0, . . . , qn−1, qn), where qk−1 is the number
of kk nodes in the QDD. It’s easy to see that qk is also the number of distinct
subtables of order n − k in the truth table, just as bk is the number of distinct
beads. Every bead is a subtable, so we have

qk ≥ bk, for 0 ≤ k ≤ n. (83)

Furthermore, exercise 115 proves that

qk ≤ 1 + b0 + · · ·+ bk−1 and qk ≤ bk + · · ·+ bn, for 0 ≤ k ≤ n. (84)

Consequently each element of the quasi-profile is a lower bound on the BDD size:

B(f) ≥ 2qk − 1, for 0 ≤ k ≤ n. (85)

Let Q(f) = q0 + · · · + qn−1 + qn be the total size of the QDD for f . We
obviously have Q(f) ≥ B(f), by (83). On the other hand Q(f) can’t be too
much bigger than B(f), because (85) implies that

Q(f) ≤ n+ 1
2


B(f) + 1


. (86)

Exercises 116 and 117 explore other basic properties of quasi-profiles.
The worst-case truth table (78) actually corresponds to a familiar function

that we’ve already seen, the 8-way multiplexer

M3(x9, x10, x11; x1, . . . , x8) = x1+(x9x10x11)2 . (87)

But we’ve renumbered the variables perversely so that the multiplexing now
occurs with respect to the last three variables (x9, x10, x11), instead of the first
three as in Eq. (30). This simple change to the ordering of the variables raises
the BDD size of M3 from 17 to 511; and an analogous change when n = 2m +m
would cause B(Mm) to make a colossal leap from 2n− 2m+ 1 to 2n−m+1 − 1.

R. E. Bryant has introduced an interesting “navel-gazing” multiplexer called
the hidden weighted bit function, defined as follows:

hn(x1, . . . , xn) = xx1+···+xn
= xνx, (88)

with the understanding that x0 = 0. For example, h4(x1, x2, x3, x4) has the truth
table 0000 0111 1001 1011. He proved [IEEE Trans. C-40 (1991), 208–210] that
hn has a large BDD, regardless of how we might try to renumber its variables.

From the Library of Melissa Nuno



ptg999

236 COMBINATORIAL SEARCHING 7.1.4

With the standard ordering of variables, the profile (b0, . . . , b11) of h11 is

(1, 2, 4, 8, 15, 27, 46, 40, 18, 7, 2, 2); (89)

hence B(h11) = 172. The first half of this profile is actually the Fibonacci se-
quence in slight disguise, with bk = Fk+4 − k− 2. In general, hn always has this
value of bk for k < n/2; thus its initial profile counts grow with order ϕk instead of
the worst-case rate of 2k. This growth rate slackens after k surpasses n/2, so that,
for example, B(h32) is only a modest 86,636. But exponential growth eventually
takes over, and B(h100) is out of sight: 17,530,618,296,680. (When n = 100, the
maximum profile element is b59 = 2,947,635,944,748, which dwarfs b0+· · ·+b49 =
139,583,861,115.) Exercise 125 proves that B(hn) is asymptotically cχn+O(n2),
where

χ =
3


27−
√

621 + 3


27 +
√

621
3√54

= 1.32471 79572 44746 02596 09088 54478 09734 07344+ (90)

is the so-called “plastic constant,” the positive root of χ3 = χ + 1, and the
coefficient c is 7χ− 1 + 14/(3 + 2χ) ≈ 10.75115.

On the other hand we can do substantially better if we change the order
in which the variables are tested in the BDD. If f(x1, . . . , xn) is any Boolean
function and if π is any permutation of {1, . . . , n}, let us write

fπ(x1, . . . , xn) = f(x1π, . . . , xnπ). (91)

For example, if f(x1, x2, x3, x4) = (x3 ∨ (x1 ∧ x4)) ∧ (x̄2 ∨ x̄4) and if (1π, 2π,
3π, 4π) = (3, 2, 4, 1), then fπ(x1, x2, x3, x4) = (x4 ∨ (x3 ∧ x1)) ∧ (x̄2 ∨ x̄1); and
we have B(f) = 10, B(fπ) = 6 because the BDDs are

f :

1

2 2

3 3 3

4 4> ⊥

> ⊥ >

>

, fπ :

1

2

3

4

⊥ >

>

⊥ . (92)

The BDD for fπ corresponds to a BDD for f that has a nonstandard ordering,
in which a branch is permitted from ki to kj only if iπ < jπ:

f :

4

2

1

3

⊥ >

>

⊥ . (93)

The root is ki , where i = 1π− is the index for which iπ = 1. When the branch
variables are listed from the top down, we have (4π, 2π, 1π, 3π) = (1, 2, 3, 4).

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 237

Applying these ideas to the hidden weighted bit function, we have

hπn(x1, . . . , xn) = x(x1+···+xn)π, (94)

with the understanding that 0π = 0 and x0 = 0. For example, hπ3 (0, 0, 1) = 1 if
(1π, 2π, 3π) = (3, 1, 2), because x(x1+x2+x3)π = x3 = 1. (See exercise 120.)

Element qk of the quasi-profile counts the number of distinct subfunctions
that arise when the values of x1 through xk are known. Using (94), we can
represent all such subfunctions by means of a slate of options [r0, . . . , rn−k],
where rj is the result of the subfunction when xk+1 + · · · + xn = j. Suppose
x1 = c1, . . . , xk = ck, and let s = c1 + · · ·+ck. Then rj = c(s+j)π if (s+j)π ≤ k;
otherwise rj = x(s+j)π. However, we set r0 ← 0 if sπ > k, and rn−k ← 1 if
(s+ n− k)π > k, so that the first and last options of every slate are constant.

For example, calculations show that the following permutation 1π . . . 100π
reduces the BDD size of h100 from 17.5 trillion to B(hπ100) = 1,124,432,105:

2 4 6 8 10 12 14 16 18 20 97 57 77 37 87 47 67 27 92 52
72 32 82 42 62 22 100 60 80 40 90 50 70 30 95 55 75 35 85 45
65 25 98 58 78 38 88 48 68 28 93 53 73 33 83 43 63 23 99 59
79 39 89 49 69 29 94 54 74 34 84 44 64 24 96 56 76 36 86 46
66 26 91 51 71 31 81 41 61 21 19 17 15 13 11 9 7 5 3 1

(95)

Such calculations can be based on an enumeration of all slates that can arise, for
0 ≤ s ≤ k ≤ n. Suppose we’ve tested x1, . . . , x83 and found that xj = [j≤ 42],
say, for 1 ≤ j ≤ 83. Then s = 42; and the subfunction of the remaining 17
variables (x84, . . . , x100) is given by the slate [r0, . . . , r17] = [c25, x98, c58, c78, c38,
x88, c48, c68, c28, x93, c53, c73, c33, c83, c43, c63, c23, x99], which reduces to

[1, x98, 0, 0, 1, x88, 0, 0, 1, x93, 0, 0, 1, 0, 0, 0, 1, 1]. (96)

This is one of the 214 subfunctions counted by q83 when s = 42. Exercise 124
explains how to deal similarly with the other values of k and s.

We’re ready now to prove Bryant’s theorem:
Theorem B. The BDD size of hπn exceeds 2⌊n/5⌋, for all permutations π.
Proof. Observe first that two subfunctions of hπn are equal if and only if they
have the same slate. For if [r0, . . . , rn−k] ̸= [r′0, . . . , r′n−k], suppose rj ̸= r′j . If
both rj and r′j are constant, the subfunctions differ when xk+1 + · · · + xn = j.
If rj is constant but r′j = xi, we have 0 < j < n − k; the subfunctions differ
because xk+1 + · · · + xn can equal j with xi ̸= rj . And if rj = xi but r′j = xi′
with i ̸= i′, we can have xk+1 + · · ·+ xn = j with xi ̸= xi′ . (The latter case can
arise only when the slates correspond to different offsets s and s′.)

Therefore qk is the number of different slates [r0, . . . , rn−k]. Exercise 123
proves that this number, for any given k, n, and s as described above, is exactly

w

w−s


+


w

w−s+1


+ · · ·+


w

k−s


=


w

s+w−k


+ · · ·+


w

s−1


+

w

s


, (97)

where w is the number of indices j such that s ≤ j ≤ s+ n− k and jπ ≤ k.
Now consider the case k = ⌊3n/5⌋+1, and let s = k−⌈n/2⌉, s′ = ⌊n/2⌋+1.

(Think of n = 100, k = 61, s = 11, s′ = 51. We may assume that n ≥ 10.) Then

From the Library of Melissa Nuno



ptg999

238 COMBINATORIAL SEARCHING 7.1.4

w + w′ = k − w′′, where w′′ counts the indices with jπ ≤ k and either j < s
or j > s′ + n − k. Since w′′ ≤ (s − 1) + (k − s′) = 2k − 2 − n, we must have
w + w′ ≥ n + 2 − k = ⌈2n/5⌉ + 1. Hence either w > ⌊n/5⌋ or w′ > ⌊n/5⌋; and
in both cases (97) exceeds 2⌊n/5⌋−1. The theorem follows from (85).

Conversely, there’s always a permutation π such that B(hπn) = O(20.2029n),
although the constant hidden byO-notation is quite large. This result was proved
by B. Bollig, M. Löbbing, M. Sauerhoff, and I. Wegener, Theoretical Informatics
and Applications 33 (1999), 103–115, using a permutation like (95): The first
indices, with jπ ≤ n/5, come alternately from j > 9n/10 and j ≤ n/10; the
others are ordered by reading the binary representation of 9n/10− j from right
to left (colex order).

Let’s also look briefly at a much simpler example, the permutation function
Pm(x1, . . . , xm2), which equals 1 if and only if the binary matrix with x(i−1)m+j

in row i and column j is a permutation matrix:

Pm(x1, . . . , xm2) =
m
i=1

S1(x(i−1)m+1, x(i−1)m+2, . . . , x(i−1)m+m)

∧
m
j=1

S1(xj , xm+j , . . . , xm2−m+j). (98)

In spite of its simplicity, this function cannot be represented with a small BDD,
under any reordering of its variables:
Theorem K. The BDD size of Pπ

m exceeds m2m−1, for all permutations π.
Proof. [See I. Wegener, Branching Programs and Binary Decision Diagrams
(SIAM, 2000), Theorem 4.12.3.] Given the BDD for Pπ

m, notice that each of the
m! vectors x such that Pπ

m(x) = 1 traces a path of length n = m2 from the root
to ⊤ ; every variable must be tested. Let vk(x) be the node from which the
path for x takes its kth HI branch. This node branches on the value in row i and
column j of the given matrix, for some pair (i, j) = (ik(x), jk(x)).

Suppose vk(x) = vk′(x′), where x ̸= x′. Construct x′′ by letting it agree
with x up to vk(x) and with x′ thereafter. Then Pπ

m(x′′) = 1; consequently we
must have k = k′. In fact, this argument shows that we must also have

{i1(x), i2(x), . . . , ik−1(x)} = {i1(x′), i2(x′), . . . , ik−1(x′)}
and {j1(x), j2(x), . . . , jk−1(x)} = {j1(x′), j2(x′), . . . , jk−1(x′)}. (99)

Imagine m colors of tickets, with m! tickets of each color. Place a ticket of
color k on node vk(x), for all k and all x. Then no node gets tickets of different
colors; and no node of color k gets more than (k−1)! (m−k)! tickets altogether,
by Eq. (99). Therefore at least m!/((k − 1)! (m − k)!) = k


m
k


different nodes

must receive tickets of color k. Summing over k gives m2m−1 non-sink nodes.
Exercise 184 shows that B(Pm) is less than m2m+1, so the lower bound in
Theorem K is nearly optimum except for a factor of 4. Although the size grows
exponentially, the behavior isn’t hopelessly bad, because m =

√
n. For example,

B(P20) is only 38,797,317, even though P20 is a Boolean function of 400 variables.

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 239

*Optimizing the order. Let Bmin(f) and Bmax(f) denote the smallest and
largest values of B(fπ), taken over all permutations π that can prescribe an
ordering of the variables. We’ve seen several cases where Bmin and Bmax are
dramatically different; for example, the 2m-way multiplexer has Bmin(Mm) ≈ 2n
and Bmax(Mm) ≈ 2n/n, when n = 2m + m. And indeed, simple functions for
which a good ordering is crucial are not at all unusual. Consider, for instance,

f(x1, x2, . . . , xn) = (x̄1 ∨ x2) ∧ (x̄3 ∨ x4) ∧ · · · ∧ (x̄n−1 ∨ xn), n even; (100)

this is the important subset function [x1x3 . . . xn−1⊆x2x4 . . . xn ], and we have
B(f) = Bmin(f) = n + 2. But the BDD size explodes to B(fπ) = Bmax(f) =
2n/2+1 when π is “organ-pipe order,” namely the ordering for which

fπ(x1, x2, . . . , xn) = (x̄1 ∨ xn) ∧ (x̄2 ∨ xn−1) ∧ · · · ∧ (x̄n/2 ∨ xn/2+1). (101)

And the same bad behavior occurs for the ordering [x1 . . . xn/2⊆xn/2+1 . . . xn ].
In these orderings the BDD must “remember” the states of n/2 variables, while
the original formulation (100) needs very little memory.

Every Boolean function f has a master profile chart, which encapsulates the
set of all its possible sizes B(fπ). If f has n variables, this chart has 2n vertices,
one for each subset of the variables; and it has n2n−1 edges, one for each pair of
subsets that differ in just one element. For example, the master profile chart for
the function in (92) and (93) is

∅

{1} {2}

{1, 2}

{3}

{1, 3} {2, 3}

{1, 2, 3}

{4}

{1, 4} {2, 4}

{1, 2, 4}

{3, 4}

{1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

. (102)

Every edge has a weight, illustrated here by the number of lines; for example,
the weight between {1, 2} and {1, 2, 3} is 3. The chart has the following interpre-
tation: If X is a subset of k variables, and if x /∈ X, then the weight between X
and X∪x is the number of subfunctions of f that depend on x when the variables
of X have been replaced by constants in all 2k possible ways. For example, if
X = {1, 2}, we have f(0, 0, x3, x4) = x3, f(0, 1, x3, x4) = f(1, 1, x3, x4) = x3∧x̄4,
and f(1, 0, x3, x4) = x3 ∨ x4; all three of these subfunctions depend on x3, but
only two of them depend on x4, as shown in the weights below {1, 2}.

There are n! paths of length n from ∅ to {1, . . . , n}, and we can let the path
∅ → {a1} → {a1, a2} → · · · → {a1, . . . , an} correspond to the permutation π
if a1π = 1, a2π = 2, . . . , anπ = n. Then the sum of the weights on path π is
B(fπ), if we add 2 for the sink nodes. For example, the path ∅ → {4} → {2, 4} →
{1, 2, 4} → {1, 2, 3, 4} yields the only way to achieve B(fπ) = 6 as in (93).

From the Library of Melissa Nuno



ptg999

240 COMBINATORIAL SEARCHING 7.1.4

Notice that the master profile chart is a familiar graph, the n-cube, whose
edges have been decorated so that they count the number of beads in various sets
of subfunctions. The graph has exponential size, n2n−1; yet it is much smaller
than the total number of permutations, n!. When n is, say, 25 or less, exercise 138
shows that the entire chart can be computed without great difficulty, and we can
find an optimum permutation for any given function. For example, the hidden
weighted bit function turns out to have Bmin(h25) = 2090 and Bmax(h25) =
35441; the minimum is achieved with (1π, . . . , 25π) = (3, 5, 7, 9, 11, 13, 15, 17,
25, 24, 23, 22, 21, 20, 19, 18, 16, 14, 12, 10, 8, 6, 4, 2, 1), while the maximum
results from a strange permutation (22, 19, 17, 25, 15, 13, 11, 10, 9, 8, 7, 24, 6,
5, 4, 3, 2, 12, 1, 14, 23, 16, 18, 20, 21) that tests many “middle” variables first.

Instead of computing the entire master profile chart, we can sometimes save
time by learning just enough about it to determine a path of least weight. (See
exercise 140.) But when n grows and functions get more weird, we are unlikely
to be able to determine Bmin(f) exactly, because the problem of finding the best
ordering is NP-complete (see exercise 137).

We’ve defined the profile and quasi-profile of a single Boolean function f , but
the same ideas apply also to an arbitrary BDD base that contains m functions
{f1, . . . , fm}. Namely, the profile is (b0, . . . , bn) when there are bk nodes on
level k, and the quasi-profile is (q0, . . . , qn) when there are qk nodes on level k of
the corresponding QDD base; the truth tables of the functions have bk different
beads of order n− k, and qk different subtables. For example, the profile of the
(4 + 4)-bit addition functions {f1, f2, f3, f4, f5} in (36) is (2, 4, 3, 6, 3, 6, 3, 2, 2),
and the quasi-profile is worked out in exercise 144. Similarly, the concept of
master profile chart applies to m functions whose variables are reordered simul-
taneously; and we can use it to find Bmin(f1, . . . , fm) and Bmax(f1, . . . , fm), the
minimum and maximum of b0 + · · ·+ bn taken over all profiles.

*Local reordering. What happens to a BDD base when we decide to branch
on x2 first, then on x1, x3, . . . , xn? Figure 26 shows that the structure of the
top two levels can change dramatically, but all other levels remain the same.

A closer analysis reveals, in fact, that this level-swapping process isn’t
difficult to understand or to implement. The k1 nodes before swapping can
be divided into two kinds, “tangled” and “solitary,” depending on whether they
have k2 nodes as descendants; for example, there are three tangled nodes at
the left of Fig. 26, pointed to by s1, s2, and s3, while s4 points to a solitary
node. Similarly, the k2 nodes before swapping are either “visible” or “hidden,”
depending on whether they are independent source functions or accessible only
from k1 nodes; all four of the k2 nodes at the left of Fig. 26 are hidden.

After swapping, the solitary k1 nodes simply move down one level; but
the tangled nodes are transmogrified into k2 s, according to a process that we
shall explain shortly. The hidden k2 nodes disappear, if any, and the visible ones
simply move up to the top level. Additional nodes might also arise during the
transmogrification process; such nodes, labeled k1 , are called “newbies.” For ex-
ample, two newbies appear above t2 at the right of Fig. 26. This process decreases
the total number of nodes if and only if the hidden nodes outnumber the newbies.

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 241

s1 s2 s3 s4

1 1 1 1

2 2 2 2

t1 t2 t3 t4

s1 s2 s3 s4

2 2 2

1 1 1

t1 t2 t3 t4

Fig. 26. Interchanging the top two levels of a BDD base. Here (s1, s2, s3, s4) are source
functions; (t1, t2, t3, t4) are target nodes, representing subfunctions at lower levels.

The reverse of a swap is, of course, the same as a swap, but with the roles ofk1 and k2 interchanged. If we begin with the diagram at the right of Fig. 26,
we see that it has three tangled nodes (labeled k2 ) and one that’s visible (la-
beled k1 ); two of its nodes are hidden, none are solitary. The swapping process
in general sends (tangled, solitary, visible, hidden) nodes into (tangled, visible,
solitary, newbie) nodes, respectively — after which newbies would become hidden
in a reverse swap, and the originally hidden nodes would reappear as newbies.

Transmogrification is easiest to understand if we treat all nodes below the
top two levels as if they were sinks, having constant values. Then every source
function f(x1, x2) depends only on x1 and x2; hence it takes on four values
a = f(0, 0), b = f(0, 1), c = f(1, 0), and d = f(1, 1), where a, b, c, and d
represent sinks. We may suppose that there are q sinks, 1 , 2 , . . . , q , and
that 1 ≤ a, b, c, d ≤ q. Then f(x1, x2) is fully described by its extended truth
table, f(0, 0)f(0, 1)f(1, 0)f(1, 1) = abcd. And after swapping, we’re left with
f(x2, x1), which has the extended truth table acbd. For example, Fig. 26 can be
redrawn as follows, using extended truth tables to label its nodes:

1224 2324 1324 3344

1224 2324 1324 3344

12 13 24 23

1 2 3 4

1224 2234 1234 3434

1224 2234 1234

12 24 34

1 2 3 4

Fig. 27. Another way to represent the transformations in Fig. 26.

In these terms, the source function abcd points to a solitary node when a = b ̸=
c = d, and to a visible node when a = c ̸= b = d; otherwise it points to a tangled
node (unless a = b = c = d, when it points directly to a sink). The tangled node
abcd usually has LO = ab and HI = cd, unless a = b or c = d; in the exceptional
cases, LO or HI is a sink. After transmogrification it will have LO = ac and
HI = bd in a similar way, where latter nodes will be either newbies or visibles
or sinks (but not both sinks). One interesting case is 1224, whose children 12
and 24 on the left are hidden nodes, while the 12 and 24 on the right are newbies.

Exercise 147 discusses an efficient implementation of this transformation,
which was introduced by Richard Rudell in IEEE/ACM International Conf.
Computer-Aided Design CAD-93 (1993), 42–47. It has the important property
that no pointers need to change, except within the nodes on the top two levels:

From the Library of Melissa Nuno



ptg999

242 COMBINATORIAL SEARCHING 7.1.4

All source nodes sj still point to the same place in computer memory, and all
sinks retain their previous identity. We have described it as a swap between k1 s
and k2 s, but in fact the same transformation will swap kj s and kk s whenever
the variables xj and xk correspond to branching on adjacent levels. The reason
is that the upper levels of any BDD base essentially define source functions for
the lower levels, which constitute a BDD base in their own right.

We know from our study of sorting that any reordering of the variables of
a BDD base can be produced by a sequence of swaps between adjacent levels.
In particular, we can use adjacent swaps to do a “jump-up” transformation,
which brings a given variable xk to the top level without disturbing the relative
order of the other variables. It’s easy, for instance, to jump x4 up to the top:
We simply swap k4 ↔ k3 , then k4 ↔ k2 , then k4 ↔ k1 , because x4 will be
adjacent to x1 after it has jumped past x2.

Since repeated swaps can produce any ordering, they are sometimes able
to make a BDD base grow until it is too big to handle. How bad can a single
swap be? If exactly (s, t, v, h, ν) nodes are solitary, tangled, visible, hidden, and
newbie, the top two levels end up with s+ t+ v + ν nodes; and this is at most
m+ν ≤ m+2t when there arem source functions, becausem ≥ s+t+v. Thus the
new size of those levels can’t exceed twice the original, plus the number of sources.

If a single swap can double the size, a jump-up for xk threatens to increase
the size exponentially, because it does k− 1 swaps. Fortunately, however, jump-
ups are no worse than single swaps in this regard:

Theorem J+. B(fπ1 , . . . , fπm) < m+2B(f1, . . . , fm) after a jump-up operation.

Proof. Let a1a2 . . . a2k−1a2k be the extended truth table for a source function
f(x1, . . . , xk), with lower-level nodes regarded as sinks. After the jump-up, the
extended truth table for fπ(x1, . . . , xk) = f(x1π, . . . , xkπ) = f(x2, . . . , xk, x1) is
a1a3 . . . a2k−1a2a4 . . . a2k . Thus we can see that each bead on level j of fπ is
derived from some bead on level j − 1 of f , for 1 ≤ j < k; but every bead on
level j − 1 of f spawns at most two beads, of half the size, in fπ. Therefore,
if the respective profiles of {f1, . . . , fm} and {fπ1 , . . . , fπm} are (b0, . . . , bn) and
(b′0, . . . , b′n), we must have b′0 ≤ m, b′1 ≤ 2b0, . . . , b′k−1 ≤ 2bk−2, b′k = bk, . . . ,
b′n = bn. The total is therefore ≤ m+B(f1, . . . , fm) + b0 + · · ·+ bk−2− bk−1.

The opposite of a jump-up is a “jump-down,” which demotes the topmost
variable by k−1 levels. As before, this operation can be implemented with k−1
swaps. But we have to settle for a much weaker upper bound on the resulting size:

Theorem J−. B(fπ1 , . . . , fπm) < B(f1, . . . , fm)2 after a jump-down operation.

Proof. Now the extended truth table in the previous proof changes from a1 . . . a2k

to a1 . . . a2k−1 ‡ a2k−1+1 . . . a2k = a1a2k−1+1 . . . a2k−1a2k , the “zipper function”
7.1.3–(76). In this case we can identify every bead after the jump with an
ordered pair of original subfunctions, as in the melding operation (37) and (38).
For example, when k = 3 the truth table 12345678 becomes 15263748, whose
bead 1526 can be regarded as the meld 12 ⋄ 56.

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 243

This proof indicates why quadratic growth might occur. If, for example,

f(x1, . . . , xn) = x1? Mm(x2, . . . , xm+1;x2m+2, . . . , xn):
Mm(xm+2, . . . , x2m+1; x̄2m+2, . . . , x̄n), (103)

where n = 1 + 2m+ 2m, a jump-down of 2m levels changes B(f) = 4n− 8m− 3
to B(fπ) = 2n2 − 8m(n−m)− 2(n− 2m) + 1 ≈ B(f)2/8.

Since jump-up and jump-down are inverse operations, we can also use Theo-
rems J+ and J− in reverse: A jump-up operation might conceivably decrease the
BDD size to something like its square root, but a jump-down cannot reduce the
size to less than about half. That’s bad news for fans of jump-down, although
they can take comfort from the knowledge that jump-downs are sometimes the
only decent way to get from a given ordering to an optimum one.

Theorems J+ and J− are due to B. Bollig, M. Löbbing, and I. Wegener, Inf.
Processing Letters 59 (1996), 233–239. (See also exercise 149.)

*Dynamic reordering. In practice, a natural way to order the variables often
suggests itself, based on the modules-in-a-row perspective of Fig. 23 and Theo-
rem M. But sometimes no suitable ordering is apparent, and we can only hope
to be lucky; perhaps the computer will come to our rescue and find one. Fur-
thermore, even if we do know a good way to begin a computation, the ordering
of variables that works best in the first stages of the work might turn out to be
unsatisfactory in later stages. Therefore we can get better results if we don’t
insist on a fixed ordering. Instead, we can try to tune up the current order of
branching whenever a BDD base becomes unwieldy.

For example, we might try to swap xj−1 ↔ xj in the order, for 1 < j ≤ n,
undoing the swap if it increases the total number of nodes but letting it ride
otherwise; we could keep this up until no such swap makes an improvement.
That method is easy to implement, but unfortunately it’s too weak; it doesn’t
give much of a reduction. A much better reordering technique was proposed by
Richard Rudell at the same time as he introduced the swap-in-place algorithm of
exercise 147. His method, called “sifting,” has proved to be quite successful. The
idea is simply to take a variable xk and to try jumping it up or down to all other
levels — that is, essentially to remove xk from the ordering and then to insert it
again, choosing a place for insertion that keeps the BDD size as small as possible.
All of the necessary work can be done with a sequence of elementary swaps:

Algorithm J (Sifting a variable). This algorithm moves variable xk into an
optimum position with respect to the current ordering of the other variables
{x1, . . . , xk−1, xk+1, . . . , xn} in a given BDD base. It works by repeatedly calling
the procedure of exercise 147 to swap adjacent variables xj−1↔ xj . Throughout
this algorithm, S denotes the current size of the BDD base (the total number of
nodes); the swapping operation usually changes S.
J1. [Initialize.] Set p← 0, j ← k, and s← S. If k > n/2, go to J5.
J2. [Sift up.] While j > 1, swap xj−1↔ xj and set j ← j − 1, s← min(S, s).

From the Library of Melissa Nuno



ptg999

244 COMBINATORIAL SEARCHING 7.1.4

J3. [End the pass.] If p = 1, go to J4. Otherwise, while j ̸= k, set j ← j+ 1 and
swap xj−1↔ xj ; then set p← 1 and go to J5.

J4. [Finish downward.] While s ̸= S, set j ← j + 1 and swap xj−1↔ xj . Stop.
J5. [Sift down.] While j<n, set j← j+1, swap xj−1↔xj , and set s←min(S, s).
J6. [End the pass.] If p = 1, go to J7. Otherwise, while j ̸= k, swap xj−1↔ xj

and set j ← j − 1; then set p← 1 and go to J2.
J7. [Finish upward.] While s ̸= S, swap xj−1↔ xj and set j ← j − 1. Stop.
Whenever Algorithm J swaps xj−1 ↔ xj , the original variable xk is currently
called either xj−1 or xj . The total number of swaps varies from about n to
about 2.5n, depending on k and the optimum final position of xk. But we can
improve the running time substantially, without seriously affecting the outcome,
if steps J2 and J5 are modified to proceed immediately to J3 and J6, respectively,
whenever S becomes larger than, say, 1.2s or even 1.1s or even 1.05s. In such
cases, further sifting in the same direction is unlikely to decrease s.

Rudell’s sifting procedure consists of applying Algorithm J exactly n times,
once for each variable that is present; see exercise 151. We could continue sifting
again and again until there is no more improvement; but the additional gain is
usually not worth the extra effort.

Let’s look at a detailed example, in order to make these ideas concrete.
We’ve observed that when the contiguous United States are arranged in the order

ME NH VT MA RI CT NY NJ PA DE MD DC VA NC SC GA FL AL TN KY WV OH MI IN
IL WI MN IA MO AR MS LA TX OK KS NE SD ND MT WY CO NM AZ UT ID WA OR NV CA

(104)

as in (17), they lead to a BDD of size 428 for the independent-set function

¬

(xAL ∧ xFL)∨ (xAL ∧ xGA)∨ (xAL ∧ xMS)∨ · · · ∨ (xUT ∧ xWY)∨ (xVA ∧ xWV)


. (105)

The author chose the ordering (104) by hand, starting with the historical/geo-
graphical listing of states that he had been taught as a child, then trying to
minimize the size of the boundary between states-already-listed and states-to-
come, so that the BDD for (105) would not need to “remember” too many partial
results at any level. The resulting size, 428, is pretty good for a function of 49
variables; but sifting is able to make it even better. For example, consider WV:
Some of the possibilities for altering its position, with varying sizes S, are

424
RI

422
CT

417
NY

415
NJ

414
PA

412
DE

411
MD

410
DC

412
VA

412
NC

415
SC

420
GA

421
FL

426
AL

425
TN

427
KY

428
OH

428
MI

436
IN

442
IL

453

so we can save 428− 410 = 18 nodes by jumping WV up to a position between MD
and DC. By using Algorithm J to sift on all the variables — first on ME, then on
NH, then . . . , then on CA— we end up with the ordering

VT MA ME NH CT RI NY NJ DE PA MD WV VA DC KY OH NC GA SC AL FL MS TN IN
IL MI AR TX LA OK MO IA WI MN CO NE KS MT ND WY SD UT AZ NM ID CA OR WA NV

(106)

and the BDD size has been reduced to 345(!). That sifting process involves a
total of 4663 swaps, requiring less than 4 megamems of computation altogether.

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 245

Instead of choosing an ordering carefully, let’s consider a lazier alternative:
We might begin with the states in alphabetic order

AL AR AZ CA CO CT DC DE FL GA IA ID IL IN KS KY LA MA MD ME MI MN MO MS
MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY

(107)

and proceed from there. Then the BDD for (105) turns out to have 306,214
nodes; it can be computed either via Algorithm S (with about 380 megamems of
machine time) or via (55) and Algorithm U (with about 565 megamems). In this
case sifting makes a dramatic difference: Those 306,214 nodes become only 2871,
at a cost of 430 additional megamems. Furthermore, the sifting cost goes down
from 430 Mµ to 210 Mµ if the loops of Algorithm J are aborted when S > 1.1s.
(The more radical choice of aborting when S > 1.05s would reduce the cost of
sifting to 155 Mµ; but the BDD size would be reduced only to 2946 in that case.)

And we can actually do much, much better, if we sift the variables while eval-
uating (105), instead of waiting until that whole long sequence of disjunctions has
been entirely computed. For example, suppose we invoke sifting automatically
whenever the BDD size surpasses twice the number of nodes that were present
after the previous sift. Then the evaluation of (105), starting from the alphabetic
ordering (107), runs like a breeze: It automatically churns out a BDD that has
only 419 nodes, after only about 60 megamems of calculation! Neither human
ingenuity nor “geometric understanding” are needed to discover the ordering

NV OR ID WA AZ CA UT NM WY CO MT OK TX NE MO KS LA AR MS TN IA ND MN SD
GA FL AL NC SC KY WI MI IL OH IN WV MD VA DC PA NJ DE NY CT RI NH ME VT MA

(108)

which beats the author’s (104). For this one, the computer just decided to invoke
autosifting 39 times, on smaller BDDs.

What is the best ordering of states for the function (105)? The answer to
that question will probably never be known for sure, but we can make a pretty
good guess. First of all, a few more sifts of (108) will yield a still-better ordering

OR ID NV WA AZ CA UT NM WY CO MT SD MN ND IA NE OK KS TX MO LA AR MS TN
GA FL AL NC SC KY WI MI IL OH IN WV MD DC VA PA NJ DE NY CT RI NH ME VT MA

(109)

with BDD size 354. Sifting will not improve (109) further; but sifting has only
limited power, because it explores only (n − 1)2 alternative orderings, out of
n! possibilities. (Indeed, exercise 134 exhibits a function of only four variables
whose BDD cannot be improved by sifting, even though the ordering of its
variables is not optimum.) There is, however, another arrow in our quiver: We
can use master profile charts to optimize every window of, say, 16 consecutive
levels in the BDD. There are 34 such windows; and the algorithm of exercise 139
optimizes each of them rather quickly. After about 9.6 gigamems of computation,
that algorithm discovers a new champion

OR ID NV WA AZ CA UT NM WY CO MT SD MN ND IA NE OK KS TX MO LA AR MS WI
KY MI IN IL AL TN FL NC SC GA WV OH MD DC VA PA NJ DE NY CT RI NH ME VT MA

(110)

by cleverly rearranging 16 states within (109). This ordering, for which the BDD
size is only 339, might well be optimum, because it cannot be improved either
by sifting or by optimizing any window of width 25. However, such a conjecture

From the Library of Melissa Nuno



ptg999

246 COMBINATORIAL SEARCHING 7.1.4

rests on shaky ground: The ordering
AL GA FL TN NC SC VA MS AR TX LA OK KY MO NM WV MD DC PA NJ DE OH IL MI

IN IA NE KS WI SD WY ND MN MT UT CO ID CA AZ OR WA NV NY CT RI NH ME VT MA
(111)

also happens to be unimprovable by sifting and by width-25 window optimiza-
tion, yet its BDD has 606 nodes and is far from optimum.

With the improved ordering (110), the 98-variable COLOR function of (73)
needs only 22037 BDD nodes, instead of 25579. Sifting reduces it to 16098.

*Read-once functions. Boolean functions such as (x1 ⊃ x2)⊕ ((x3≡x4)∧x5),
which can be expressed as formulas in which each variable occurs exactly once,
form an important class for which optimum orderings of variables can easily be
computed. Formally, let us say that f(x1, . . . , xn) is a read-once function if either
(i) n = 1 and f(x1) = x1; or (ii) f(x1, . . . , xn) = g(x1, . . . , xk) ◦ h(xk+1, . . . , xn),
where ◦ is one of the binary operators {∧,∨,∧,∨,⊃,⊂,⊃,⊂,⊕,≡} and where
both g and h are read-once functions. In case (i) we obviously have B(f) = 3.
And in case (ii), exercise 163 proves that

B(f) =

B(g) +B(h)− 2, if ◦ ∈ {∧,∨,∧,∨,⊃,⊂,⊃,⊂};
B(g) +B(h, h̄)− 2, if ◦ ∈ {⊕,≡}.

(112)

In order to get a recurrence, we also need the similar formulas

B(f, f̄) =


4, if n = 1;
2B(g) +B(h, h̄)− 4, if ◦ ∈ {∧,∨,∧,∨,⊃,⊂,⊃,⊂};
B(g, ḡ) +B(h, h̄)− 2, if ◦ ∈ {⊕,≡}.

(113)

A particularly interesting family of read-once functions arises when we define

um+1(x1, . . . , x2m+1) = vm(x1, . . . , x2m) ∧ vm(x2m+1, . . . , x2m+1),
vm+1(x1, . . . , x2m+1) = um(x1, . . . , x2m)⊕ um(x2m+1, . . . , x2m+1),

(114)

and u0(x1) = v0(x1) = x1; for example, u3(x1, . . . , x8) =

(x1∧x2)⊕(x3∧x4)


∧

(x5∧x6)⊕(x7∧x8)

. Exercise 165 shows that the BDD sizes for these functions,

calculated via (112) and (113), involve Fibonacci numbers:

B(u2m) = 2mF2m+2 + 2,
B(v2m) = 2mF2m+2 + 2,

B(u2m+1) = 2m+1F2m+2 + 2;
B(v2m+1) = 2mF2m+4 + 2.

(115)

Thus um and vm are functions of n = 2m variables whose BDD sizes grow as

Θ(2m/2ϕm) = Θ(nβ), where β = 1/2 + lg ϕ ≈ 1.19424. (116)

In fact, the BDD sizes in (115) are optimum for the u and v functions,
under all permutations of the variables, because of a fundamental result due to
M. Sauerhoff, I. Wegener, and R. Werchner:

Theorem W. If f(x1, . . . , xn) = g(x1, . . . , xk) ◦ h(xk+1, . . . , xn) is a read-
once function, there is a permutation π that minimizes B(fπ) and B(fπ, f̄π)
simultaneously, and in which the variables {x1, . . . , xk} occur either first or last.

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 247

Proof. Any permutation (1π, . . . , nπ) leads naturally to an “unshuffled” per-
mutation (1σ, . . . , nσ) in which the first k elements are {1, . . . , k} and the last
n− k elements are {k + 1, . . . , n}, retaining the π order within each group. For
example, if k = 7, n = 9, and (1π, . . . , 9π) = (3, 1, 4, 5, 9, 2, 6, 8, 7), we have
(1σ, . . . , 9σ) = (3, 1, 4, 5, 2, 6, 7, 9, 8). Exercise 166 proves that, in appropriate
circumstances, we have B(fσ) ≤ B(fπ) and B(fσ, f̄σ) ≤ B(fπ, f̄π).

Using this theorem together with (112) and (113), we can readily optimize
the ordering of variables for the BDD of any given read-once function. Consider,
for example, (x1∨x2)⊕(x3∧x4∧x5) = g(x1, x2)⊕h(x3, x4, x5). We have B(g) = 4
and B(g, ḡ) = 6; B(h) = 5 and B(h, h̄) = 8. For the overall formula f = g ⊕ h,
Theorem W says that there are two candidates for a best ordering (1π, . . . , 5π),
namely (1, 2, 3, 4, 5) and (4, 5, 1, 2, 3). The first of these gives B(fπ) = B(g) +
B(h, h̄)− 2 = 10; the other one excels, with B(fπ) = B(h) +B(g, ḡ)− 2 = 9.

The algorithm in exercise 167 finds an optimum π for any read-once function
f(x1, . . . , xn) in O(n) steps. Moreover, a careful analysis proves that B(fπ) =
O(nβ) in the best ordering, where β is the constant in (116). (See exercise 168.)

*Multiplication. Some of the most interesting Boolean functions, from a math-
ematical standpoint, are the m + n bits that arise when an m-bit number is
multiplied by an n-bit number:

(xm . . . x2x1)2 × (yn . . . y2y1)2 = (zm+n . . . z2z1)2. (117)

In particular, the “leading bit” zm+n, and the “middle bit” zn when m = n, are
especially noteworthy. To remove the dependence of this notation on m and n,
we can imagine that m = n =∞ by letting xi = yj = 0 for all i > m and j > n;
then each zk is a function of 2k variables, zk = Zk(x1, . . . , xk; y1, . . . , yk), namely
the middle bit of the product (xk . . . x1)2 × (yk . . . y1)2.

The middle bit turns out to be difficult, BDDwise, even when y is constant.
Let Zn,a(x1, . . . , xn) = Zn(x1, . . . , xn; a1, . . . , an), where a = (an . . . a1)2.
Theorem X. There is a constant a such that Bmin(Zn,a) > 5

288 · 2
⌊n/2⌋ − 2.

Proof. [P. Woelfel, J. Computer and System Sci. 71 (2005), 520–534.] We may
assume that n = 2t is even, since Z2t+1,2a = Z2t,a. Let x = (xn . . . x1)2 and
m = ([nπ≤ t] . . . [1π≤ t])2. Then x = p + q, where q = x & m represents the
“known” bits of x after t branches have been taken in a BDD for Zn,a with the
ordering π, and p = x&m represents the bits yet unknown. Let

P = {x&m | 0 ≤ x < 2n} and Q = {x&m | 0 ≤ x < 2n}. (118)

For any fixed a, the function Zn,a has 2t subfunctions

fq(p) =

(pa+ qa)≫ (n− 1)


& 1, q ∈ Q. (119)

We want to show that some n-bit number a will make many of these subfunctions
differ; in other words we want to find a large subset Q∗ ⊆ Q such that

q ∈ Q∗ and q′ ∈ Q∗ and q ̸= q′ implies fq(p) ̸= fq′(p) for some p ∈ P . (120)

Exercise 176 shows in detail how this can be done.

From the Library of Melissa Nuno



ptg999

248 COMBINATORIAL SEARCHING 7.1.4

Table 1
BEST AND WORST ORDERINGS FOR THE MIDDLE BIT zn OF MULTIPLICATION

x11x10x9x7x8x6x13x15
× x16x14x12x5x4x3x2x1

Bmin(Z8) = 756

x24x20x18x16x9x8x10x11x7x12x14x21
× x22x19x17x15x6x5x4x3x2x1x13x23

Bmin(Z12) = 21931

x10x11x9x8x7x16x6x15
× x5x4x3x12x13x2x1x14

Bmax(Z8) = 6791

x16x17x15x14x24x13x12x11x20x10x9x23
× x8x7x6x5x18x4x22x3x2x19x1x21

Bmax(Z12) = 866283

Table 2
BEST AND WORST ORDERINGS FOR ALL BITS {z1, . . . , zm+n} OF MULTIPLICATION

x11x16x15x14x13x12x10x9
× x8x7x6x5x4x3x2x1

Bmin(Z(1)
8,8 , . . . , Z

(16)
8,8 ) = 9700

x15x17x24x23x22x21x20x19x18x16x14x13
× x1x2x3x4x5x6x7x8x9x10x11x12

Bmin(Z(1)
12,12, . . . , Z

(24)
12,12) = 648957

x17x16x10x9x11x12 . . . x15x18x19x24x23 . . . x20
× x1x2x3x4x5x6x7x8

Bmin(Z(1)
16,8, . . . , Z

(24)
16,8) = 157061

x10x8x9x13x2x1x11x7
× x16x5x15x6x4x14x3x12

Bmax(Z(1)
8,8 , . . . , Z

(16)
8,8 ) = 28678

x17x22x14x13x16x10x20x3x2x1x19x12
× x24x15x9x8x21x7x6x11x23x5x4x18

Bmax(Z(1)
12,12, . . . , Z

(24)
12,12) = 4224195

x13x14x12x15x16x17x22x10x8x7x18x9x2x1x19x6
× x24x11x21x5x4x23x3x20

Bmax(Z(1)
16,8, . . . , Z

(24)
16,8) = 1236251

A good upper bound for the BDD size of the middle bit function when
neither operand is constant has been found by K. Amano and A. Maruoka,
Discrete Applied Math. 155 (2007), 1224–1232:

Theorem A. Let f(x1, . . . , x2n) = Zn(x1, x3, . . . , x2n−1;x2, x4, . . . , x2n). Then

B(f) ≤ Q(f) < 19
7 2⌈6n/5⌉. (121)

Proof. Consider two n-bit numbers x = 2kxh +xl and y = 2kyh + yl, with n− k
unknown bits in each of their high parts (xh, yh), while their k-bit low parts
(xl, yl) are both known. Then the middle bit of xy is determined by adding
together three (n − k)-bit quantities when k ≥ n/2, namely xhyl mod 2n−k,
xlyh mod 2n−k, and (xlyl ≫ k) mod 2n−k. Hence level 2k of the QDD needs to
“remember” only the least significant n − k bits of each of the prior quantities
xl, yl, and xlyl ≫ k, a total of 3n − 3k bits, and we have q2k ≤ 23n−3k in f ’s
quasi-profile. Exercise 177 completes the proof.

Amano and Maruoka also discovered another important upper bound. Let
Z

(p)
m,n(x1, . . . , xm; y1, . . . , yn) denote the pth bit zp of the product (117).

Theorem Y. For all constants (am . . . a1)2 and for all p, the BDD and QDD
for the function Z

(p)
m,n(a1, . . . , am;x1, . . . , xn) have fewer than 3 · 2(n+1)/2 nodes.

Proof. Exercise 180 proves that qk ≤ 2n+1−k for this function. The theorem
follows when we combine that result with the obvious upper bound qk ≤ 2k.

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 249

Theorem Y shows that the lower bound of Theorem X is best possible, except
for a constant factor. It also shows that the BDD base for all m + n product
functions Z(p)

m,n(x1, . . . , xm;xm+1, . . . , xm+n) is not nearly as large as Θ(2m+n),
which we get for almost all instances of m+ n functions of m+ n variables:

Corollary Y. If m ≤ n, B(Z(1)
m,n, . . . , Z

(m+n)
m,n ) < 3(m+ n)2m+(n+1)/2.

The best orderings of variables for the middle-bit function Zn and for the
complete BDD base remain mysterious, but empirical results for small m and n
give reason to conjecture that the upper bounds of Theorem A and Corollary Y
are not far from the truth; see Tables 1 and 2. Here, for example, are the
optimum results of Zn when n ≤ 12:

n = 1 2 3 4 5 6 7 8 9 10 11 12
Bmin(Zn) = 4 8 14 31 63 136 315 756 1717 4026 9654 21931

26n/5 ≈ 2 5 12 28 64 147 338 776 1783 4096 9410 21619

The ratios Bmax/Bmin with respect to the full BDD base {Z(1)
m,n, . . . , Z

(m+n)
m,n }

are surprisingly small in Table 2. Therefore all orderings for that problem might
turn out to be roughly equivalent.

Zero-suppressed BDDs: A combinatorial alternative. When BDDs are
applied to combinatorial problems, a glance at the data in memory often reveals
that most of the HI fields simply point to ⊥ . In such cases, we’re better
off using a variant data structure called a zero-suppressed binary decision dia-
gram, or “ZDD” for short, introduced by Shin-ichi Minato [ACM/IEEE Design
Automation Conf. 30 (1993), 272–277]. A ZDD has nodes like a BDD, but its
nodes are interpreted differently: When an ki node branches to a kj node for
j > i+1, it means that the Boolean function is false unless xi+1 = · · · = xj−1 = 0.

For example, the BDDs for independent sets and kernels in (12) have many
nodes with HI = ⊥ . Those nodes go away in the corresponding ZDDs, although
a few new nodes must also be added:

1

2

3 3

4 4

5 5

6

>

Independent sets

1
2

3
4

5

6

The cycle C6

1

2

3 3

4 4

5

6

⊥

⊥ >

⊥ >

⊥ >

Kernels

(122)

Notice that we might have LO = HI in a ZDD, because of the new conventions.
Furthermore, the example on the left shows that a ZDD need not contain ⊥ at
all! About 40% of the nodes in (12) have been eliminated from each diagram.

From the Library of Melissa Nuno



ptg999

250 COMBINATORIAL SEARCHING 7.1.4

One good way to understand a ZDD is to regard it as a condensed repre-
sentation of a family of sets. Indeed, the ZDDs in (122) represent respectively
the families of all independent sets and all kernels of C6. The root node of a
ZDD names the smallest element that appears in at least one of the sets; its HI
and LO branches represent the residual subfamilies that do and don’t contain that
element; and so on. At the bottom, ⊥ represents the empty family ‘∅’, and ⊤
represents ‘{∅}’. For example, the rightmost ZDD in (122) represents the fam-
ily


{1, 3, 5}, {1, 4}, {2, 4, 6}, {2, 5}, {3, 6}


, because the HI branch of the root

represents {{3, 5}, {4}} and the LO branch represents {{2, 4, 6}, {2, 5}, {3, 6}}.
Every Boolean function f(x1, . . . , xn) is, of course, equivalent to a fam-

ily of subsets of {1, . . . , n}, and vice versa. But the family concept gives us
a different perspective from the function concept. For example, the family
{{1, 3}, {2}, {2, 5}} has the same ZDD for all n ≥ 5; but if, say, n = 7, the
BDD for the function f(x1, . . . , x7) that defines this family needs additional
nodes to ensure that x4 = x6 = x7 = 0 when f(x) = 1.

Almost every notion that we’ve discussed for BDDs has a counterpart in the
theory of ZDDs, although the actual data structures are often strikingly different.
We can, for example, take the truth table for any given function f(x1, . . . , xn) and
construct its unique ZDD in a straightforward way, analogous to the construction
of its BDD as illustrated in (5). We know that the BDD nodes for f correspond
to the “beads” of f ’s truth table; the ZDD nodes, similarly, correspond to zeads,
which are binary strings of the form αβ with |α| = |β| and β ̸= 0 . . . 0, or with
|α| = |β| − 1. Any binary string corresponds to a unique zead, obtained by
lopping off the right half repeatedly, if necessary, until the string either has odd
length or its right half is nonzero.

Dear reader, please take a moment now to work exercise 187. (Really.)
The z-profile of f(x1, . . . , xn) is (z0, . . . , zn), where zk is the number of zeads

of order n−k in f ’s truth table, for 0 ≤ k < n, namely the number of
� �� �k+1 nodes

in the ZDD; also zn is the number of sinks. We write Z(f) = z0 + · · · + zn for
the total number of nodes. For example, the functions in (122) have z-profiles
(1, 1, 2, 2, 2, 1, 1) and (1, 1, 2, 2, 1, 1, 2), respectively, so Z(f) = 10 in each case.

The basic relations (83)–(85) between profiles and quasi-profiles hold true
also for z-profiles, but with q′k counting only nonzero subtables of order n− k:

q′k ≥ zk, for 0 ≤ k < n; (123)
q′k ≤ 1 + z0 + · · ·+ zk−1 and q′k ≤ zk + · · ·+ zn, for 0 ≤ k ≤ n; (124)

Z(f) ≥ 2q′k − 1, for 0 ≤ k ≤ n. (125)

Consequently the BDD size and the ZDD size can never be wildly different:
Z(f) ≤ n

2

B(f) + 1


+ 1 and B(f) ≤ n

2

Z(f) + 1


+ 2. (126)

On the other hand, a factor of 50 when n = 100 is nothing to sneeze at.
When ZDDs are used to find independent sets and kernels of the contiguous

USA, using the original order of (17), the BDD sizes of 428 and 780 go down to
177 and 385, respectively. Sifting reduces these ZDD sizes to 160 and 335. Is any-
body sneezing? That’s amazingly good, for complicated functions of 49 variables.

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 251

When we know the ZDDs for f and g, we can synthesize them to obtain
the ZDDs for f ∧ g, f ∨ g, f ⊕ g, etc., using algorithms that are very much like
the methods we’ve used for BDDs. Furthermore we can count and/or optimize
the solutions of f , with analogs of Algorithms C and B; in fact, ZDD-based
techniques for counting and optimization turn out to be a bit easier than the
corresponding BDD-based algorithms are. With slight modifications of BDD
methods, we can also do dynamic variable reordering via sifting. Exercises 197–
209 discuss the nuts and bolts of all the basic ZDD procedures.

In general, a ZDD tends to be better than a BDD when we’re dealing with
functions whose solutions are sparse, in the sense that νx tends to be small
when f(x) = 1. And if f(x) itself happens to be sparse, in the sense that it has
comparatively few solutions, so much the better.

For example, ZDDs are well suited to exact cover problems, defined by an
m×n matrix of 0s and 1s: We want to find all ways to choose rows that sum to
(1, 1, . . . , 1). Our goal might be, say, to cover a chessboard with 32 dominoes, like

, , or . (127)

This is an exact cover problem whose matrix has 8 × 8 = 64 columns, one for
each cell; there are 2× 7× 8 = 112 rows, one for each pair of adjacent cells:

1 1 0 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 . . . 0 0 0 0 0 0 0 0 0 0 0

...
...

0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 1 1


. (128)

Let variable xj represent the choice (or not) of row j. Thus the three so-
lutions in (127) have (x1, x2, x3, x4, . . . , x110, x111, x112) = (1, 0, 0, 0, . . . , 1, 0, 1),
(1, 0, 0, 0, . . . , 1, 0, 1), and (0, 1, 0, 1, . . . , 1, 0, 0), respectively. In general, the so-
lutions to an exact cover problem are represented by the function

f(x1, . . . , xm) =
n

j=1
S1(Xj) =

n
j=1

[νXj = 1], (129)

where Xj = {xi | aij = 1} and (aij) is the given matrix.
The dominoes-on-a-chessboard ZDD turns out to have only Z(f) = 2300

nodes, even though f has m = 112 variables in this case. We can use it to prove
that there are exactly 12,988,816 coverings such as (127).

From the Library of Melissa Nuno



ptg999

252 COMBINATORIAL SEARCHING 7.1.4

Similarly, we can investigate more exotic kinds of covering. In

, (130)

for instance, a chessboard has been covered with monominoes, dominoes, and/or
trominoes — that is, with rookwise-connected pieces that each have either one,
two, or three cells. There are exactly 92,109,458,286,284,989,468,604 ways to
do this(!); and we can compute that number almost instantly, doing only about
75 megamems of calculation, by forming a ZDD of size 512,227 on 468 variables.

A special algorithm could be devised to find the ZDD for any given exact
cover problem; or we can synthesize the result using (129). See exercise 212.

Incidentally, the problem of domino covering as in (127) is equivalent to
finding the perfect matchings of the grid graph P8 P8, which is bipartite. We
will see in Section 7.5.1 that efficient algorithms are available by which perfect
matchings can be studied on graphs that are far too large to be treated with
BDD/ZDD techniques. In fact, there’s even an explicit formula for the number
of domino coverings of an m × n grid. By contrast, general coverings such as
(130) fall into a wider category of hypergraph problems for which polynomial-
time methods are unlikely to be helpful as m,n→∞.

An amusing variant of domino covering called the “mutilated
chessboard” was considered by Max Black in his book Critical
Thinking (1946), pages 142 and 394: Suppose we remove opposite
corners of the chessboard, and try to cover the remaining cells
with 31 dominoes. It’s easy to place 30 of them, for example
as shown here; but then we’re stuck. Indeed, if we consider the
corresponding 108×62 exact cover problem, but leave out the last
two constraints of (129), we obtain a ZDD with 1224 nodes from which we can
deduce that there are 324,480 ways to choose rows that sum to (1, 1, . . . , 1, 1, ∗, ∗).
But each of those solutions has at least two 1s in column 61; therefore the ZDD
reduces to ⊥ after we AND in the constraint [νX61 = 1]. (“Critical thinking”
explains why; see exercise 213.) This example reminds us that (i) the size of the
final ZDD or BDD in a calculation can be much smaller than the time needed
to compute it; and (ii) using our brains can save oodles of computer cycles.

ZDDs as dictionaries. Let’s switch gears now, to note that ZDDs are advanta-
geous also in applications that have an entirely different flavor. We can use them,
for instance, to represent the five-letter words of English, the set WORDS(5757)
from the Stanford GraphBase that is discussed near the beginning of this chapter.
One way to do this is to consider the function f(x1, . . . , x25) that is defined to
be 1 if and only if the five numbers (x1 . . . x5)2, (x6 . . . x10)2, . . . , (x21 . . . x25)2
encode the letters of an English word, where a = (00001)2, . . . , z = (11010)2.

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 253

For example, f(0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, x25) = x25.
This function of 25 variables has Z(f) = 6233 nodes — which isn’t bad, since it
represents 5757 words.

Of course we’ve studied many other ways to represent 5757 words, in Chap-
ter 6. The ZDD approach is no match for binary trees or tries or hash tables,
when we merely want to do simple searches. But with ZDDs we can also retrieve
data that is only partially specified, or data that is only supposed to match a
key approximately; many complex queries can be handled with ease.

Furthermore, we don’t need to worry very much about having lots of vari-
ables when ZDDs are being used. Instead of working with the 25 variables xj
considered above, we can also represent those five-letter words as a sparse func-
tion F (a1, . . . , z1, a2, . . . , z2, . . . , a5, . . . , z5) that has 26×5 = 130 variables, where
variable a2 (for example) controls whether the second letter is ‘a’. To indicate
that crazy is a word, we make F true when c1 = r2 = a3 = z4 = y5 = 1 and
all other variables are 0. Equivalently, we consider F to be a family consisting
of the 5757 subsets {w1, h2, i3, c4, h5}, {t1, h2, e3, r4, e5}, etc. With these 130
variables the ZDD size Z(F ) turns out to be only 5020 instead of 6233.

Incidentally, B(F ) is 46,189 — more than nine times as large as Z(F ). But
B(f)/Z(f) is only 8870/6233 ≈ 1.4 in the 25-variable case. The ZDD world is
different from the BDD world in many ways, in spite of having similar algorithms
and a similar theory.

One consequence of this difference is a need for new primitive operations by
which complex families of subsets can readily be constructed from elementary
families. Notice that the simple subset {f1, u2, n3, n4, y5} is actually an extremely
long-winded Boolean function:

ā1 ∧ · · · ∧ ē1 ∧ f1 ∧ ḡ1 ∧ · · · ∧ t̄2 ∧ u2 ∧ v̄2 ∧ · · · ∧ x̄5 ∧ y5 ∧ z̄5, (131)

a minterm of 130 Boolean variables. Exercise 203 discusses an important family
algebra, by which that subset is expressed more naturally as ‘f1⊔u2⊔n3⊔n4⊔y5’.
With family algebra we can readily describe and compute many interesting
collections of words and word fragments (see exercise 222).

ZDDs to represent simple paths. An important connection between arbi-
trary directed, acyclic graphs (dags) and a special class of ZDDs is illustrated in
Fig. 28. When every source vertex of the dag has out-degree 1 and every sink
vertex has in-degree 1, the ZDD for all oriented paths from a source to a sink
has essentially the same “shape” as the original dag. The variables in this ZDD
are the arcs of the dag, in a suitable topological order. (See exercise 224.)

1

23
4

5

6

7
8

9

10

1
2

3 4 5

6
7 8

9
10

>
>

Fig. 28. A dag, and the ZDD for its
source-to-sink paths. Arcs of the dag
correspond to vertices of the ZDD. All
branches to ⊥ have been omitted from
the ZDD in order to show the structural
similarities more clearly.

From the Library of Melissa Nuno



ptg999

254 COMBINATORIAL SEARCHING 7.1.4

1 2 4

3 5 7

6 8 9

We can also use ZDDs to represent simple paths in an undirected graph.
For example, there are 12 ways to go from the upper left corner of a 3× 3
grid to the lower right corner, without visiting any point twice:

(132)

These paths can be represented by the ZDD shown at the right, which charac-
terizes all sets of suitable edges. For example, we get the first path by taking
the HI branches at 13 , 36 , 68 , and 89 of the ZDD. (As in Fig. 28,
this diagram has been simplified by omitting all of the uninteresting
LO branches that merely go to ⊥ .) Of course this ZDD isn’t a truly
great way to represent (132), because that family of paths has only 12
members. But on the larger grid P8 P8, the number of simple paths
from corner to corner turns out to be 789,360,053,252; and they can all
be represented by a ZDD that has at most 33580 nodes. Exercise 225
explains how to construct such a ZDD quickly.

1213

2424 25

25 47

4757

57

57

35 3535

3636

6868

5858

7989

>

A similar algorithm, discussed in exercise 226, constructs a ZDD
that represents all cycles of a given graph. With a ZDD of size 22275,
we can deduce that P8 P8 has exactly 603,841,648,931 simple cycles.
This ZDD may well provide the best way to represent all of those cycles within
a computer, and the best way to generate them systematically if desired.

The same ideas work well with graphs from the “real world” that don’t
have a neat mathematical structure. For example, we can use them to answer
a question posed to the author in 2008 by Randal Bryant: “Suppose I wanted
to take a driving tour of the Continental U.S., visiting all of the state capitols,
and passing through each state only once. What route should I take to minimize
the total distance?” The following diagram shows the shortest distances between
neighboring capital cities, when restricted to local itineraries that each cross only
one state boundary:

AL

AZ AR

CA CO

CT

DE

FL

GA

ID IL INIA

KS KY

LA

ME

MD

MAMIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

205

160242

282416

340

253

337 344

504

755

476

713 652

129

535

536

486

355 626

488

100

101111

72

62

108124

252

434

212

255

291

244

255

187

490 279438

541

441

338

619

727 190

415192

249

145

244

175

204

165

293

562

186

203 532

197

150430

68

165

45

236

103

129

397

139

237

614

435

404 258

343

416 453

392

624

742

675

200

530 156

215

392

444

106

193

127

585

697

663

534

268

153

425

160

388

160

354

455

597

435

302

(133)

The problem is to choose a subset of these edges that form a Hamiltonian path
of smallest total length.

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 255

Every Hamiltonian path in this graph must clearly either start or end
at Augusta, Maine (ME). Suppose we start in Sacramento, California (CA).
Proceeding as above, we can find a ZDD that characterizes all paths from CA
to ME; this ZDD turns out to have only 7850 nodes, and it quickly tells us that
exactly 437,525,772,584 simple paths from CA to ME are possible. In fact, the
generating function by number of edges turns out to be

4z11 + 124z12 + 1539z13 + · · ·+ 33385461z46 + 2707075z47; (134)

so the longest such paths are Hamiltonian, and there are exactly 2,707,075 of
them. Furthermore, exercise 227 shows how to construct a smaller ZDD, of size
4726, which describes just the Hamiltonian paths from CA to ME.

We could repeat this experiment for each of the states in place of California.
(Well, the starting point had better be outside of New England, if we are going
to get past New York, which is an articulation point of this graph.) For example,
there are 483,194 Hamiltonian paths from NJ to ME. But exercise 228 shows how
to construct a single ZDD of size 28808 for the family of all Hamiltonian paths
from ME to any other final state — of which there are 68,656,026. The answer to
Bryant’s problem now pops out immediately, via Algorithm B. (The reader may
like to try finding a minimum route by hand, before turning to exercise 230 and
discovering the absolutely optimum answer.)

*ZDDs and prime implicants. Finally, let’s look at an instructive application
in which BDDs and ZDDs are both used simultaneously.

According to Theorem 7.1.1Q, every monotone Boolean function f has a
unique shortest two-level representation as an OR of ANDs, called its “disjunctive
prime form” — the disjunction of all of its prime implicants. The prime impli-
cants correspond to the minimal points where f(x) = 1, namely the binary
vectors x for which we have f(x′) = 1 and x′ ⊆ x if and only if x′ = x. If

f(x1, x2, x3) = x1 ∨ (x2 ∧ x3), (135)

for example, the prime implicants of f are x1 and x2 ∧ x3, while the minimal
solutions are x1x2x3 = 100 and 011. These minimal solutions can also be
expressed conveniently as e1 and e2 ⊔ e3, using family algebra (see exercise 203).

In general, xi1 ∧ · · · ∧ xis is a prime implicant of a monotone function f if
and only if ei1 ⊔ · · · ⊔ eis is a minimal solution of f . Thus we can consider f ’s
prime implicants PI(f) to be its family of minimal solutions. Notice, however,
that xi1 ∧ · · · ∧xis ⊆ xj1 ∧ · · · ∧xjt if and only if ei1 ⊔ · · · ⊔ eis ⊇ ej1 ⊔ · · · ⊔ ejt ; so
it’s confusing to say that one prime implicant “contains” another. Instead, we
say that the shorter one “absorbs” the longer one.

A curious phenomenon shows up in example (135): The diagram
1

2
3⊥

⊥ >

>

is not only the BDD for f, it’s also the ZDD for PI(f)! Similarly, Fig. 21 at the
beginning of this section illustrates not only the BDD for ⟨x1x2x3⟩ but also the
ZDD for PI(⟨x1x2x3⟩). On the other hand, let g = (x1∧x3)∨x2. Then the BDD
for g is 1

2 2
3⊥

⊥
>

>
>

but the ZDD for PI(g) is 1
2 3

⊥ ⊥> >

. What’s going on here?

From the Library of Melissa Nuno



ptg999

256 COMBINATORIAL SEARCHING 7.1.4

The key to resolving this mystery lies in the recursive structure on which
BDDs and ZDDs are based. Every Boolean function can be represented as

f(x1, . . . , xn) = (x̄1? f0: f1) = (x̄1 ∧ f0) ∨ (x1 ∧ f1), (136)

where fc is the value of f when x1 is replaced by c. When f is monotone we also
have f = f0 ∨ (x1 ∧ f1), because f0 ⊆ f1. If f0 ̸= f1, the BDD for f is obtained
by creating a node k1 whose LO and HI branches point to the BDDs for f0
and f1. Similarly, it’s not difficult to see that the prime implicants of f are

PI(f) = PI(f0) ∪

e1 ⊔ (PI(f1) \ PI(f0))


. (137)

(See exercise 253.) This is the recursion that defines the ZDD for PI(f), when
we add the termination conditions for constant functions: The ZDDs for PI(0)
and PI(1) are ⊥ and ⊤ .

Let’s say that a Boolean function f is sweet if it is monotone and if the ZDD
for PI(f) is exactly the same as the BDD for f . Constant functions are clearly
sweet. And nonconstant sweetness is easily characterized:

Theorem S. A Boolean function that depends on x1 is sweet if and only if its
prime implicants are P ∪ (x1 ⊔ Q), where P and Q are sweet and independent
of x1, and every member of P is absorbed by some member of Q.

Proof. See exercise 246. (To say that “P and Q are sweet” means that they
each are families of prime implicants that define a sweet Boolean function.)

Corollary S. The connectedness function of any graph is sweet.

Proof. The prime implicants of the connectedness function f are the spanning
trees of the graph. Every spanning tree that does not include arc x1 has at least
one subtree that will be spanning when arc x1 is added to it. Furthermore, all
subfunctions of f are the connectedness functions of smaller graphs.
Thus, for example, the BDD in Fig. 22, which defines all 431 of the connected
subgraphs of P3 P3, also is the ZDD that defines all 192 of its spanning trees.

Whether f is sweet or not, we can use (137) to compute the ZDD for PI(f)
whenever f is monotone. When we do this we can actually let the BDD nodes
and the ZDD nodes coexist in the same big base of data: Two nodes with identical
(V, LO, HI) fields might as well appear only once in memory, even though they
might have completely different meanings in different contexts. We use one
routine to synthesize f ∧ ḡ when f and g point to BDDs, and another routine
to form f \ g when f and g point to ZDDs; no trouble will arise if these routines
happen to share nodes, as long as the variables aren’t being reordered. (Of course
the cache memos must distinguish BDD facts from ZDD facts when we do this.)

For example, exercise 7.1.1–67 defines an interesting class of self-dual func-
tions called the Y functions, and the BDD for Y12 (which is a function of 91
variables) has 748,416 nodes. This function has 2,178,889,774 prime implicants;
yet Z(PI(Y12)) is only 217,388. (We can find this ZDD with a computational
cost of about 13 gigamems and 660 megabytes.)

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 257

A brief history. The seeds of binary decision diagrams were implicitly planted
by Claude Shannon [Trans. Amer. Inst. Electrical Engineers 57 (1938), 713–723],
in his illustrations of relay-contact networks. Section 4 of that paper showed that
any symmetric Boolean function of n variables has a BDD with at most


n+1

2


branch nodes. Shannon preferred to work with Boolean algebra; but C. Y. Lee, in
Bell System Tech. J. 38 (1959), 985–999, pointed out several advantages of what
he called “binary-decision programs,” because any n-variable function could be
evaluated by executing at most n branch instructions in such a program.

S. Akers coined the name “binary decision diagrams” and pursued the ideas
further in IEEE Trans. C-27 (1978), 509–516. He showed how to obtain a
BDD from a truth table by working bottom-up, or from algebraic subfunctions
by working top-down. He explained how to count the paths from a root to ⊤
or ⊥ , and observed that these paths partition the n-cube into disjoint subcubes.

Meanwhile a very similar model of Boolean computation arose in theoret-
ical studies of automata. For example, A. Cobham [FOCS 7 (1966), 78–87]
related the minimum sizes of branching programs for a sequence of functions
fn(x1, . . . , xn) to the space complexity of nonuniform Turing machines that
compute this sequence. More significantly, S. Fortune, J. Hopcroft, and E. M.
Schmidt [Lecture Notes in Comp. Sci. 62 (1978), 227–240] considered “free B-
schemes,” now known as FBDDs, in which no Boolean variable is tested twice
on any path (see exercise 35). Among other results, they gave a polynomial-time
algorithm to test whether f = g, given FBDDs for f and g, provided that at
least one of those FBDDs is ordered consistently as in a BDD. The theory of
finite-state automata, which has intimate connections to BDD structure, was also
being developed; thus several researchers worked on problems that are equivalent
to analyzing the size, B(f), for various functions f . (See exercise 261.)

All of this work was conceptual, not implemented in computer programs,
although programmers had found good uses for binary tries and Patrician trees —
which are similar to BDDs except that they are trees instead of dags (see Sec-
tion 6.3). But then Randal E. Bryant discovered that binary decision diagrams
are significantly important in practice when they are required to be both reduced
and ordered. His introduction to the subject [IEEE Trans. C-35 (1986), 677–691]
became for many years the most cited paper in all of computer science, because
it revolutionized the data structures used to represent Boolean functions.

In his paper, Bryant pointed out that the BDD for any function is essentially
unique under his conventions, and that most of the functions encountered in
practice had BDDs of reasonable size. He presented efficient algorithms to
synthesize the BDDs for f∧g and f⊕g, etc., from the BDDs for f and g. He also
showed how to compute the lexicographically least x such that f(x) = 1, etc.

Lee, Akers, and Bryant all noted that many functions can profitably co-
exist in a BDD base, sharing their common subfunctions. A high-performance
“package” for BDD base operations, developed by K. S. Brace, R. L. Rudell,
and R. E. Bryant [ACM/IEEE Design Automation Conf. 27 (1990), 40–45], has
strongly influenced all subsequent implementations of BDD toolkits. Bryant
summarized the early uses of BDDs in Computing Surveys 24 (1992), 293–318.

From the Library of Melissa Nuno



ptg999

258 COMBINATORIAL SEARCHING 7.1.4

Shin-ichi Minato introduced ZDDs in 1993, as noted above, to improve
performance in combinatorial work. He gave a retrospective account of early
ZDD applications in Software Tools for Technology Transfer 3 (2001), 156–170.

The use of Boolean methods in graph theory was pioneered by K. Maghout
[Comptes Rendus Acad. Sci. 248 (Paris, 1959), 3522–3523], who showed how
to express the maximal independent sets and the minimal dominating sets of
any graph or digraph as the prime implicants of a monotone function. Then
R. Fortet [Cahiers du Centre d’Etudes Recherche Operationelle 1, 4 (1959), 5–36]
considered Boolean approaches to a variety of other problems; for example, he
introduced the idea of 4-coloring a graph by assigning two Boolean variables to
each vertex, as we have done in (73). P. Camion, in that same journal [2 (1960),
234–289], transformed integer programming problems into equivalent problems
in Boolean algebra, hoping to resolve them via techniques of symbolic logic. This
work was extended by others, notably P. L. Hammer and S. Rudeanu, whose book
Boolean Methods in Operations Research (Springer, 1968) summarized the ideas.
Unfortunately, however, their approach foundered, because no good techniques
for Boolean calculation were available at the time. The proponents of Boolean
methods had to wait until the advent of BDDs before the general Boolean
programming problem (7) could be resolved, thanks to Algorithm B. The special
case of Algorithm B in which all weights are nonnegative was introduced by
B. Lin and F. Somenzi [International Conf. Computer-Aided Design CAD-90
(IEEE, 1990), 88–91]. S. Minato [Formal Methods in System Design 10 (1997),
221–242] developed software that automatically converts linear inequalities be-
tween integer variables into BDDs that can be manipulated conveniently, some-
what as the researchers of the 1960s had hoped would be possible.

The classic problem of finding a minimum size DNF for a given function also
became spectacularly simpler when BDD methods became understood. The
latest techniques for that problem are beyond the scope of this book, but Olivier
Coudert has given an excellent overview in Integration 17 (1994), 97–140.

A fine book by Ingo Wegener, Branching Programs and Binary Decision
Diagrams (SIAM, 2000), surveys the vast literature of the subject, develops the
mathematical foundations carefully, and discusses many ways in which the basic
ideas have been generalized and extended.

Caveat. We’ve seen dozens of examples in which the use of BDDs and/or
ZDDs has made it possible to solve a wide variety of combinatorial problems
with amazing efficiency, and the exercises below contain dozens of additional
examples where such methods shine. But BDD and ZDD structures are by no
means a panacea; they’re only two of the weapons in our arsenal. They apply
chiefly to problems that have more solutions than can readily be examined one by
one, problems whose solutions have a local structure that allows our algorithms
to deal with only relatively few subproblems at a time. In later sections of The
Art of Computer Programming we shall be studying additional techniques by
which other kinds of combinatorial problems can be tamed.

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 259

EXERCISES
x 1. [20 ] Draw the BDDs for all 16 Boolean functions f(x1, x2). What are their sizes?
x 2. [21 ] Draw a planar dag with sixteen vertices, each of which is the root of one of

the 16 BDDs in exercise 1.
3. [16 ] How many Boolean functions f(x1, . . . , xn) have BDD size 3 or less?
4. [21 ] Suppose three fields V LO HI have been packed into a 64-bit word x,

where V occupies 8 bits and the other two fields occupy 28 bits each. Show that five
bitwise instructions will transform x →→ x′, where x′ is equal to x except that a LO or
HI value of 0 is changed to 1 and vice versa. (Repeating this operation on every branch
node x of a BDD for f will produce the BDD for the complementary function, f̄ .)

5. [20 ] If you take the BDD for f(x1, . . . , xn) and interchange the LO and HI pointers
of every node, and if you also swap the two sinks ⊥ ↔ ⊤ , what do you get?

6. [10 ] Let g(x1, x2, x3, x4) = f(x4, x3, x2, x1), where f has the BDD in (6). What
is the truth table of g, and what are its beads?

7. [21 ] Given a Boolean function f(x1, . . . , xn), let

gk(x0, x1, . . . , xn) = f(x0, . . . , xk−2, xk−1∨ xk, xk+1, . . . , xn) for 1 ≤ k ≤ n.

Find a simple relation between (a) the truth tables and (b) the BDDs of f and gk.
8. [22 ] Solve exercise 7 with xk−1⊕ xk in place of xk−1∨ xk.
9. [16 ] Given the BDD for a function f(x) = f(x1, . . . , xn), represented sequentially

as in (8), explain how to determine the lexicographically largest x such that f(x) = 0.
x 10. [21 ] Given two BDDs that define Boolean functions f and f ′, represented sequen-

tially as in (8) and (10), design an algorithm that tests f = f ′.
11. [20 ] Does Algorithm C give the correct answer if it is applied to a binary decision
diagram that is (a) ordered but not reduced? (b) reduced but not ordered?

x 12. [M21 ] A kernel of a digraph is a set of vertices K such that

v ∈ K implies v −̸−→u for all u ∈ K;
v /∈ K implies v−−→u for some u ∈ K.

a) Show that when the digraph is an ordinary graph (that is, when u−−→v if and only
if v−−→u), a kernel is the same as a maximal independent set.

b) Describe the kernels of the oriented cycle Cn⃗.
c) Prove that an acyclic digraph has a unique kernel.

13. [M15 ] How is the concept of a graph kernel related to the concept of (a) a maximal
clique? (b) a minimal vertex cover?
14. [M24 ] How big, exactly, are the BDDs for (a) all independent sets of the cycle
graph Cn, and (b) all kernels of Cn, when n ≥ 3? (Number the vertices as in (12).)
15. [M23 ] How many (a) independent sets and (b) kernels does Cn have, when n ≥ 3?

x 16. [22 ] Design an algorithm that successively generates all vectors x1 . . . xn for which
f(x1, . . . , xn) = 1, when a BDD for f is given.
17. [32 ] If possible, improve the algorithm of exercise 16 so that its running time is
O(B(f)) +O(N) when there are N solutions.
18. [13 ] Play through Algorithm B with the BDD (8) and (w1, . . . , w4) = (1,−2,−3, 4).

From the Library of Melissa Nuno



ptg999

260 COMBINATORIAL SEARCHING 7.1.4

19. [20 ] What are the largest and smallest possible values of variable mk in Algo-
rithm B, based only on the weights (w1, . . . , wn), not on any details of the function f?
20. [15 ] Devise a fast way to compute the Thue–Morse weights (15) for 1 ≤ j ≤ n.
21. [05 ] Can Algorithm B minimize w1x1 + · · ·+ wnxn, instead of maximizing it?

x 22. [M21 ] Suppose step B3 has been simplified so that ‘Wv+1−Wvl ’ and ‘Wv+1−Wvh ’
are eliminated from the formulas. Prove that the algorithm will still work, when applied
to BDDs that represent kernels of graphs.

x 23. [M20 ] All paths from the root of the BDD in Fig. 22 to ⊤ have exactly eight
solid arcs. Why is this not a coincidence?
24. [M22 ] Suppose twelve weights (w12, w13, . . . , w89) have been assigned to the edges
of the grid in Fig. 22. Explain how to find a minimum spanning tree in that graph
(namely, a spanning tree whose edges have minimum total weight), by applying Algo-
rithm B to the BDD shown there.
25. [M20 ] Modify Algorithm C so that it computes the generating function for the so-
lutions to f(x1, . . . , xn) = 1, namely G(z) =

1
x1=0 · · ·

1
xn=0 z

x1+···+xnf(x1, . . . , xn).
26. [M20 ] Modify Algorithm C so that it computes the reliability polynomial for given
probabilities, namely

F (p1, . . . , pn) =
1

x1=0

· · ·
1

xn=0

(1− p1)1−x1px1
1 . . . (1− pn)1−xnpxnn f(x1, . . . , xn).

x 27. [M26 ] Suppose F (p1, . . . , pn) and G(p1, . . . , pn) are the reliability polynomials
for Boolean functions f(x1, . . . , xn) and g(x1, . . . , xn), where f ̸= g. Let q be a prime
number, and choose independent random integers q1, . . . , qn, uniformly distributed
in the range 0 ≤ qk < q. Prove that F (q1, . . . , qn) mod q ̸= G(q1, . . . , qn) mod q with
probability ≥ (1−1/q)n. (In particular, if n = 1000 and q = 231−1, different functions
lead to different “hash values” under this scheme with probability at least 0.9999995.)
28. [M16 ] Let F (p) be the value of the reliability polynomial F (p1, . . . , pn) when p1 =
· · · = pn = p. Show that it’s easy to compute F (p) from the generating function G(z).
29. [HM20 ] Modify Algorithm C so that it computes the reliability polynomial F (p)
of exercise 28 and also its derivative F ′(p), given p and the BDD for f.

x 30. [M21 ] The reliability polynomial is the sum, over all solutions to f(x1, . . . , xn)=1,
of contributions from all “minterms” (1− p1)1−x1px1

1 . . . (1− pn)1−xnpxnn . Explain how
to find a solution x1 . . . xn whose contribution to the total reliability is maximum, given
a BDD for f and a sequence of probabilities (p1, . . . , pn).
31. [M21 ] Modify Algorithm C so that it computes the fully elaborated truth table
of f , formalizing the procedure by which (24) was obtained from Fig. 21.

x 32. [M20 ] What interpretations of ‘◦’, ‘•’, ‘⊥’, ‘⊤’, ‘x̄j ’, and ‘xj ’ will make the general
algorithm of exercise 31 specialize to the algorithms of exercises 25, 26, 29, and 30?

x 33. [M22 ] Specialize exercise 31 so that we can efficiently compute
f(x)=1

(w1x1 + · · ·+ wnxn) and


f(x)=1

(w1x1 + · · ·+ wnxn)2

from the BDD of a Boolean function f(x) = f(x1, . . . , xn).

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 261

34. [M25 ] Specialize exercise 31 so that we can efficiently compute

max{ max
1≤k≤n

(w1x1 + · · ·+wk−1xk−1 +w′
kxk +wk+1xk+1 + · · ·+wnxn +w′′

k ) | f(x) = 1}

from the BDD of f , given 3n arbitrary weights (w1, . . . , wn, w
′
1, . . . , w

′
n, w

′′
1 , . . . , w

′′
n).

x 35. [22 ] A free binary decision diagram (FBDD) is a binary decision diagram such as

2

3 4

4 1 3

⊥ > ⊥ >

where the branch variables needn’t appear in any particular order, but no variable is
allowed to occur more than once on any downward path from the root. (An FBDD is
“free” in the sense that every path in the dag is possible: No branch constrains another.)

a) Design an algorithm to verify that a supposed FBDD is really free.
b) Show that it’s easy to compute the reliability polynomial F (p1, . . . , pn) of a Bool-

ean function f(x1, . . . , xn), given (p1, . . . , pn) and an FBDD that defines f , and
to compute the number of solutions to f(x1, . . . , xn) = 1.

36. [25 ] By extending exercise 31, explain how to compute the elaborated truth table
for any given FBDD, if the abstract operators ◦ and • are commutative as well as
distributive and associative. (Thus we can find optimum solutions as in Algorithm B, or
solve problems such as those in exercises 30 and 33, with FBDDs as well as with BDDs.)
37. [M20 ] (R. L. Rivest and J. Vuillemin, 1976.) A Boolean function f(x1, . . . , xn) is
called evasive if every FBDD for f contains a downward path of length n. Let G(z) be
the generating function for f, as in exercise 25. Prove that f is evasive if G(−1) ̸= 0.

x 38. [27 ] Let Is−1, . . . , I0 be branch instructions that define a nonconstant Boolean
function f(x1, . . . , xn) as in (8) and (10). Design an algorithm that computes the status
variables t1 . . . tn, where

tj =

+1, if f(x1, . . . , xn) = 1 whenever xj = 1;
−1, if f(x1, . . . , xn) = 1 whenever xj = 0;
0, otherwise.

(If t1 . . . tn ̸= 0 . . . 0, the function f is therefore canalizing as defined in Section 7.1.1.)
The running time of your algorithm should be O(n+ s).
39. [M20 ] What is the size of the BDD for the threshold function [x1 + · · ·+ xn≥ k ]?

x 40. [22 ] Let g be the “condensation” of f obtained by setting xk+1 ← xk as in (27).
a) Prove that B(g) ≤ B(f). [Hint: Consider subtables and beads.]
b) Suppose h is obtained from f by setting xk+2 ← xk. Is B(h) ≤ B(f)?

41. [M25 ] Assuming that n ≥ 4, find the BDD size of the Fibonacci threshold func-
tions (a) ⟨xF1

1 xF2
2 . . . xFn−2

n−2 xFn−1
n−1 xFn−2

n ⟩ and (b) ⟨xF1
n xF2

n−1 . . . x
Fn−2
3 xFn−1

2 xFn−2
1 ⟩.

42. [22 ] Draw the BDD base for all symmetric Boolean functions of 3 variables.
x 43. [22 ] What is B(f) when (a) f(x1, . . . , x2n) = [x1 + · · ·+ xn =xn+1 + · · ·+ x2n ]?

(b) f(x1, . . . , x2n) = [x1 + x3 + · · ·+ x2n−1 =x2 + x4 + · · ·+ x2n ]?
x 44. [M32 ] Determine the maximum possible size, Σn, of B(f) when f is a symmetric

Boolean function of n variables.

From the Library of Melissa Nuno



ptg999

262 COMBINATORIAL SEARCHING 7.1.4

45. [22 ] Give precise specifications for the Boolean modules that compute the three-
in-a-row function as in (33) and (34), and show that the network is well defined.
46. [M23 ] What is the true BDD size of the three-in-a-row function?
47. [M21 ] Devise and prove a converse of Theorem M: Every Boolean function f with
a small BDD can be implemented by an efficient network of modules.
48. [M22 ] Implement the hidden weighted bit function with a network of modules
like Fig. 23, using ak = 2 + λk and bk = 1 + λ(n− k) connecting wires for 1 ≤ k < n.
Conclude from Theorem B that the upper bound in Theorem M cannot be improved
to
n
k=0 2p(ak,bk) for any polynomial p.

49. [20 ] Draw the BDD base for the following sets of symmetric Boolean functions:
(a) {S≥k(x1, x2, x3, x4) | 1 ≤ k ≤ 4}; (b) {Sk(x1, x2, x3, x4) | 0 ≤ k ≤ 4}.
50. [22 ] Draw the BDD base for the functions of the -segment display (7.1.2–(42)).
51. [22 ] Describe the BDD base for binary addition when the input bits are numbered
from right to left, namely (fn+1fnfn−1 . . . f1)2 = (x2n−1 . . . x3x1)2 + (x2n . . . x4x2)2,
instead of from left to right as in (35) and (36).
52. [20 ] There’s a sense in which the BDD base for m functions {f1, . . . , fm} isn’t
really very different from a BDD with just one root: Consider the junction function
J(u1, . . . , un; v1, . . . , vn) = (u1? v1: u2? v2: · · ·un? vn: 0), and let

f(t1, . . . , tm+1, x1, . . . , xn) = J(t1, . . . , tm+1; f1(x1, . . . , xn), . . . , fm(x1, . . . , xn), 1),
where (t1, . . . , tm+1) are new “dummy” variables, placed ahead of (x1, . . . , xn) in the or-
dering. Show that B(f) is almost the same as the size of the BDD base for {f1, . . . , fm}.

x 53. [23 ] Play through Algorithm R, when it is applied to the binary decision diagram
with seven branch nodes in (2).
54. [17 ] Construct the BDD of f(x1, . . . , xn) from f ’s truth table, in O(2n) steps.
55. [M30 ] Explain how to construct the “connectedness BDD” of a graph (like Fig. 22).
56. [20 ] Modify Algorithm R so that, instead of pushing any unnecessary nodes onto
an AVAIL stack, it creates a brand new BDD, consisting of consecutive instructions
Is−1, . . . , I1, I0 that have the compact form (v̄k? lk: hk) assumed in Algorithms B
and C. (The original nodes input to the algorithm can then all be recycled en masse.)
57. [25 ] Specify additional actions to be taken between steps R1 and R2 when Algo-
rithm R is extended to compute the restriction of a function. Assume that FIX[v] =
t ∈ {0, 1} if variable v is to be given the fixed value t; otherwise FIX[v] < 0.
58. [20 ] Prove that the “melded” diagram defined by recursive use of (37) is reduced.

x 59. [M28 ] Let h(x1, . . . , xn) be a Boolean function. Describe the melded BDD f ⋄g in
terms of the BDD for h, when (a) f(x1, . . . , x2n) = h(x1, . . . , xn) and g(x1, . . . , x2n) =
h(xn+1, . . . , x2n); (b) f(x1, x2, . . . , x2n) = h(x1, x3, . . . , x2n−1) and g(x1, x2, . . . , x2n) =
h(x2, x4, . . . , x2n). [In both cases we obviously have B(f) = B(g) = B(h).]
60. [M22 ] Suppose f(x1, . . . , xn) and g(x1, . . . , xn) have the profiles (b0, . . . , bn) and
(b′0, . . . , b′n), respectively, and let their respective quasi-profiles be (q0, . . . , qn) and
(q′0, . . . , q′n). Show that their meld f ⋄ g has B(f ⋄ g) ≤n

j=0(qjb′j + bjq
′
j − bjb′j) nodes.

x 61. [M27 ] If α and β are nodes of the respective BDDs for f and g, prove that

in-degree(α ⋄ β) ≤ in-degree(α) · in-degree(β)

in the melded BDD f ⋄ g. (Imagine that the root of a BDD has in-degree 1.)

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 263

x 62. [M21 ] If f(x) =
⌊n/2⌋
j=1 (x2j−1∧x2j) and g(x) = (x1∧xn)∨⌈n/2⌉−1

j=1 (x2j∧x2j+1),
what are the asymptotic values of B(f), B(g), B(f ⋄ g), and B(f ∨ g) as n→∞?
63. [M27 ] Let f(x1, . . . , xn) = Mm(x1⊕x2, x3⊕x4, . . . , x2m−1⊕x2m;x2m+1, . . . , xn)
and g(x1, . . . , xn) = Mm(x2 ⊕ x3, . . . , x2m−2 ⊕ x2m−1, x2m; x̄2m+1, . . . , x̄n), where n =
2m+ 2m. What are B(f), B(g), and B(f ∧ g)?
64. [M21 ] We can compute the median ⟨f1f2f3⟩ of three Boolean functions by forming

f4 = f1 ∨ f2, f5 = f1 ∧ f2, f6 = f3 ∧ f4, f7 = f5 ∨ f6.

Then B(f4) = O(B(f1)B(f2)), B(f5) = O(B(f1)B(f2)), B(f6) = O(B(f3)B(f4)) =
O(B(f1)B(f2)B(f3)); therefore B(f7) = O(B(f5)B(f6)) = O(B(f1)2B(f2)2B(f3)).
Prove, however, that B(f7) is actually only O(B(f1)B(f2)B(f3)), and the running
time to compute it from f5 and f6 is also O(B(f1)B(f2)B(f3)).

x 65. [M25 ] If h(x1, . . . , xn) = f(x1, . . . , xj−1, g(x1, . . . , xn), xj+1, . . . , xn), prove that
B(h) = O(B(f)2B(g)). Can this upper bound be improved to O(B(f)B(g)) in general?
66. [20 ] Complete Algorithm S by explaining what to do in step S1 if f ◦ g turns out
to be trivially constant.
67. [24 ] Sketch the actions of Algorithm S when (41) defines f and g, and op = 1.
68. [20 ] Speed up step S10 by streamlining the common case when LEFT(t) < 0.
69. [21 ] Algorithm S ought to have one or more precautionary instructions such as
“if NTOP > TBOT, terminate the algorithm unsuccessfully,” in case it runs out of room.
Where are the best places to insert them?
70. [21 ] Discuss setting b to ⌊lg LCOUNT[l]⌋ instead of ⌈lg LCOUNT[l]⌉ in step S4.
71. [20 ] Discuss how to extend Algorithm S to ternary operators.
72. [25 ] Explain how to eliminate hashing from Algorithm S.

x 73. [25 ] Discuss the use of “virtual addresses” instead of actual addresses as the links
of a BDD: Each pointer p has the form π(p)2e +σ(p), where π(p) = p≫ e is p’s “page”
and σ(p) = pmod 2e is p’s “slot”; the parameter e can be chosen for convenience. Show
that, with this approach, only two fields (LO, HI) are needed in BDD nodes, because
the variable identifier V (p) can be deduced from the virtual address p itself.

x 74. [M23 ] Explain how to count the number of self-dual monotone Boolean functions
of n variables, by modifying (49).
75. [M20 ] Let ρn(x1, . . . , x2n) be the Boolean function that is true if and only if
x1 . . . x2n is the truth table of a regular function (see exercise 7.1.1–110). Show that
the BDD for ρn can be computed by a procedure similar to that of µn in (49).

x 76. [M22 ] A “clutter” is a family S of mutually incomparable sets; in other words,
S ̸⊆ S′ whenever S and S′ are distinct members of S. Every set S ⊆ {0, 1, . . . , n− 1}
can be represented as an n-bit integer s =

{2e | e ∈ S}; so every family of subsets of
{0, 1, . . . , n− 1} corresponds to a binary vector x0x1 . . . x2n−1, with xs = 1 if and only
if s represents a set of the family.

Show that the BDD for the function ‘[x0x1 . . . x2n−1 corresponds to a clutter]’ has
a simple relation to the BDD for the monotone-function function µn(x1, . . . , x2n).

x 77. [M35 ] Show that there’s an infinite sequence (b0, b1, b2, . . . ) = (1, 2, 3, 5, 6, . . . )
such that the profile of the BDD for µn is (b0, b1, . . . , b2n−1−1, b2n−1−1, . . . , b1, b0, 2).
(See Fig. 25.) How many branch nodes of that BDD have LO = ⊥ ?

From the Library of Melissa Nuno



ptg999

264 COMBINATORIAL SEARCHING 7.1.4

x 78. [25 ] Use BDDs to determine the number of graphs on 12 labeled vertices for which
the maximum vertex degree is d, for 0 ≤ d ≤ 11.
79. [20 ] For 0 ≤ d ≤ 11, compute the probability that a graph on vertices {1, . . . , 12}
has maximum degree d, if each edge is present with probability 1/3.
80. [23 ] The recursive algorithm (55) computes f ∧ g in a depth-first manner, while
Algorithm S does its computation breadth-first. Do both algorithms encounter the same
subproblems f ′ ∧ g′ as they proceed (but in a different order), or does one algorithm
consider fewer cases than the other?

x 81. [20 ] By modifying (55), explain how to compute f ⊕ g in a BDD base.
x 82. [25 ] When the nodes of a BDD base have been endowed with REF fields, explain

how those fields should be adjusted within (55) and within Algorithm U.
83. [M20 ] Prove that if f and g both have reference count 1, we needn’t consult the
memo cache when computing AND(f, g) by (55).
84. [24 ] Suggest strategies for choosing the size of the memo cache and the sizes of
the unique tables, when implementing algorithms for BDD bases. What is a good way
to schedule periodic garbage collections?
85. [16 ] Compare the size of a BDD base for the 32 functions of 16×16-bit binary mul-
tiplication with the alternative of just storing a complete table of all possible products.

x 86. [21 ] The routine MUX in (62) refers to “obvious” values. What are they?
87. [20 ] If the median operator ⟨fgh⟩ is implemented with a recursive subroutine
analogous to (62), what are its “obvious” values?

x 88. [M25 ] Find functions f , g, and h for which the recursive ternary computation of
f ∧g∧h outperforms any of the binary computations (f ∧g)∧h, (g∧h)∧f , (h∧f)∧g.
89. [15 ] Are the following quantified formulas true or false? (a) ∃x1∃x2f = ∃x2∃x1f .
(b) ∀x1∀x2f = ∀x2∀x1f . (c) ∀x1∃x2f ≤ ∃x2∀x1f . (d) ∀x1∃x2f ≥ ∃x2∀x1f .
90. [M20 ] When l = m = n = 3, Eq. (64) corresponds to the MOR operation of MMIX.
Is there an analogous formula that corresponds to MXOR (matrix multiplication mod 2)?

x 91. [26 ] In practice we often want to simplify a Boolean function f with respect to a
“care set” g, by finding a function f̂ with small B(f̂) such that

f(x) ∧ g(x) ≤ f̂(x) ≤ f(x) ∨ ḡ(x) for all x.

In other words, f̂(x) must agree with f(x) whenever x satisfies g(x) = 1, but we
don’t care what value f̂(x) assumes when g(x) = 0. An appealing candidate for such
an f̂ is provided by the function f ↓g, “f constrained by g,” defined as follows: If g(x) is
identically 0, f ↓ g = 0. Otherwise (f ↓ g)(x) = f(y), where y is the first element of
the sequence x, x ⊕ 1, x ⊕ 2, . . . , such that g(y) = 1. (Here we think of x and y as
n-bit numbers (x1 . . . xn)2 and (y1 . . . yn)2. Thus x⊕ 1 = x⊕ 0 . . . 01 = x1 . . . xn−1x̄n;
x⊕ 2 = x⊕ 0 . . . 010 = x1 . . . xn−2x̄n−1xn; etc.)

a) What are f ↓ 1, f ↓ xj , and f ↓ x̄j?
b) Prove that (f ∧ f ′) ↓ g = (f ↓ g) ∧ (f ′ ↓ g).
c) True or false: f̄ ↓ g = f ↓ g.
d) Simplify the formula f(x1, . . . , xn) ↓ (x2 ∧ x̄3 ∧ x̄5 ∧ x6).
e) Simplify the formula f(x1, . . . , xn) ↓ (x1 ⊕ x2 ⊕ · · · ⊕ xn).
f) Simplify the formula f(x1, . . . , xn) ↓ ((x1 ∧ · · · ∧ xn) ∨ (x̄1 ∧ · · · ∧ x̄n)).
g) Simplify the formula f(x1, . . . , xn) ↓ (x1 ∧ g(x2, . . . , xn)).

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 265

h) Find functions f(x1, x2) and g(x1, x2) such that B(f ↓ g) > B(f).
i) Devise a recursive way to compute f ↓ g, analogous to (55).

92. [M27 ] The operation f ↓g in exercise 91 sometimes depends on the ordering of the
variables. Given g = g(x1, . . . , xn), prove that (fπ ↓ gπ) = (f ↓ g)π for all permutations
π of {1, . . . , n} and for all functions f = f(x1, . . . , xn) if and only if g = 0 or g is a
subcube (a conjunction of literals).
93. [36 ] Given a graph G on the vertices {1, . . . , n}, construct Boolean functions f
and g with the property that an approximating function f̂ exists as in exercise 91 with
small B(f̂) if and only if G can be 3-colored. (Hence the task of minimizing B(f̂) is
NP-complete.)
94. [21 ] Explain why (65) performs existential quantification correctly.

x 95. [20 ] Improve on (65) by testing if rl = 1 before computing rh.
96. [20 ] Show how to achieve (a) universal quantification ∀xj1 . . .∀xjm f = fAg, and
(b) differential quantification xj1 . . . xjm f = f D g, by modifying (65).
97. [M20 ] Prove that it’s possible to compute arbitrary bottom-of-the-BDD quantifi-
cations such as ∃xn−5∀xn−4 xn−3∃xn−2 xn−1∀xnf(x1, . . . , xn) in O(B(f)) steps.

x 98. [22 ] In addition to (70), explain how to define the vertices ENDPT(x) of G that
have degree ≤ 1. Also characterize PAIR(x, y), the components of size 2.
99. [20 ] (R. E. Bryant, 1984.) Every 4-coloring of the US map considered in the text
corresponds to 24 solutions of the COLOR function (73), under permutation of colors.
What’s a good way to remove this redundancy?

x 100. [24 ] In how many ways is it possible to 4-color the contiguous USA with exactly
12 states of each color? (Eliminate DC from the graph.)
101. [20 ] Continuing exercise 100, with colors {1, 2, 3, 4}, find such a coloring that
maximizes


(state weight)× (state color), where states are weighted as in (18).

102. [23 ] Design a method to cache the results of functional composition using the fol-
lowing conventions: The system maintains at all times an array of functions [g1, . . . , gn],
one for each variable xj . Initially gj is simply the projection function xj , for 1 ≤ j ≤ n.
This array can be changed only by the subroutine NEWG(j, g), which replaces gj by g.
The subroutine COMPOSE(f) always performs functional composition with respect to
the current array of replacement functions.

x 103. [20 ] Mr. B. C. Dull wanted to evaluate the formula

∃y1 . . .∃ym((y1 = f1(x1, . . . , xn)) ∧ · · · ∧ (ym = fm(x1, . . . , xn)) ∧ g(y1, . . . , ym)),

for certain functions f1, . . . , fm, and g. But his fellow student, J. H. Quick, found a
much simpler formula for the same problem. What was Quick’s idea?

x 104. [21 ] Devise an efficient way to decide whether f ≤ g or f ≥ g or f ∥ g, where
f ∥ g means that f and g are incomparable, given the BDDs for f and g.
105. [25 ] A Boolean function f(x1, . . . , xn) is called unate with polarities (y1, . . . , yn)
if the function h(x1, . . . , xn) = f(x1 ⊕ y1, . . . , xn ⊕ yn) is monotone.

a) Show that f can be tested for unateness by using the and quantifiers.
b) Design a recursive algorithm to test unateness in at most O(B(f)2) steps, given

the BDD forf. If f is unate, your algorithm should also find appropriate polarities.

From the Library of Melissa Nuno



ptg999

266 COMBINATORIAL SEARCHING 7.1.4

106. [25 ] Let f $g$h denote the relation “f(x) = g(y) = 1 implies h(x∧y) = 1, for all
x and y.” Show that this relation can be evaluated in at most O(B(f)B(g)B(h)) steps.
[Motivation: Theorem 7.1.1H states that f is a Horn function if and only if f $f $f ;
thus we can test Horn-ness in O(B(f)3) steps.]
107. [26 ] Continuing exercise 106, show that it’s possible to determine whether or not
f is a Krom function in O(B(f)4) steps. [Hint: See Theorem 7.1.1S.]
108. [HM24 ] Let b(n, s) be the number of n-variable Boolean functions with B(f) ≤ s.
Prove that (s − 3)! b(n, s) ≤ (n(s − 1)2)s−2 when s ≥ 3, and explore the ramifications
of this inequality when s = ⌊2n/(n+ 1/ln 2)⌋. Hint: See the proof of Theorem 7.1.2S.

x 109. [HM17 ] Continuing exercise 108, show that almost all Boolean functions of n var-
iables have B(fπ) > 2n/(n+ 1/ln 2), for all permutations π of {1, . . . , n}, as n→∞.
110. [25 ] Construct explicit worst-case functions fn with B(fn) =Un in Theorem U.
111. [M22 ] Verify the summation formula (79) in Theorem U.

112. [HM23 ] Prove that min(2k, 22n−k− 22n−k−1
) − b̂k is very small, where b̂k is the

number defined in (80), except when n− lgn− 1 < k < n− lgn+ 1.
113. [20 ] Instead of having two sink nodes, one for each Boolean constant, we could
have 216 sinks, one for each Boolean function of four variables. Then a BDD could stop
four levels earlier, after branching on xn−4. Would this be a good idea?
114. [20 ] Is there a function with profile (1,1,1,1,1,2) and quasi-profile (1,2,3,4,3,2)?

x 115. [M22 ] Prove the quasi-profile inequalities (84) and (124).
116. [M21 ] What is the (a) worst case (b) average case of a random quasi-profile?
117. [M20 ] Compare Q(f) to B(f) when f = Mm(x1, . . . , xm;xm+1, . . . , xm+2m).
118. [M23 ] Show that, from the perspective of Section 7.1.2, the hidden weighted bit
function has cost C(hn) = O(n). What is the exact value of C(h4)?
119. [20 ] True or false: Every symmetric Boolean function of n variables is a special
case of h2n+1. (For example, x1 ⊕ x2 = h5(0, 1, 0, x1, x2).)
120. [18 ] Explain the hidden-permuted-weighted-bit formula (94).

x 121. [M22 ] If f(x1, . . . , xn) is any Boolean function, its dual fD is f̄(x̄1, . . . , x̄n), and
its reflection fR is f(xn . . . , x1). Notice that fDD = fRR = f and fDR = fRD.

a) Show that hDRn (x1, . . . , xn) = hn(x2, . . . , xn, x1).
b) Furthermore, the hidden weighted bit function satisfies the recurrence

h1(x1) = x1, hn+1(x1, . . . , xn+1) = (xn+1? hn(x2, . . . , xn, x1): hn(x1, . . . , xn)).

c) Define xψ, a permutation on the set of all binary strings x, by the recursive rules

ϵψ = ϵ, (x1 . . . xn0)ψ = (x1 . . . xnψ)0, (x1 . . . xn1)ψ = (x2 . . . xnx1)ψ1.

For example, 1101ψ = (101ψ)1 = (01ψ)11 = (0ψ)111 = (ψ)0111 = 0111; and we
also have 0111ψ = 1101. Is ψ an involution?

d) Show that hn(x) = ĥn(xψ), where the function ĥn has a very small BDD.
122. [27 ] Construct an FBDD for hn that has fewer than n2 nodes, when n > 1.
123. [M20 ] Prove formula (97), which enumerates all slates of offset s.

x 124. [27 ] Design an efficient algorithm to compute the profile and quasi-profile of hπn,
given a permutation π. Hint: When does the slate [r0, . . . , rn−k] correspond to a bead?

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 267

x 125. [HM34 ] Prove that B(hn) can be expressed exactly in terms of the sequences

An =
n
k=0


n− k

2k


, Bn =

n
k=0


n− k
2k + 1


.

126. [HM42 ] Analyze B(hπn) for the organ-pipe permutation π = (2, 4, . . . , n, . . . , 3, 1).
127. [46 ] Find a permutation π that minimizes B(hπ100).

x 128. [25 ] Given a permutation π of {1, . . . ,m + 2m}, explain how to compute the
profile and quasi-profile of the permuted 2m-way multiplexer

Mπ
m(x1, . . . , xm;xm+1, . . . , xm+2m) = Mm(x1π, . . . , xmπ;x(m+1)π, . . . , x(m+2m)π).

129. [M25 ] Define Qm(x1, . . . , xm2 ) to be 1 if and only if the 0–1 matrix (x(i−1)m+j)
has no all-zero row and no all-zero column. Prove that B(Qπm) = Ω(2m/m2) for all π.
130. [HM31 ] The adjacency matrix of an undirected graph G on vertices {1, . . . ,m}
consists of


m
2


variable entries xuv = [u−−− v in G], for 1 ≤ u < v ≤ m. Let Cm,k
be the Boolean function [G has a k-clique], for some ordering of those


m
2


variables.
a) If 1 < k ≤ √m, prove that B(Cm,k) ≥


s+t
s


, where s =


k
2

−1 and t = m+2−k2.

b) Consequently B(Cm,⌈m/2⌉) = Ω(2m/3−O(
√
m)), regardless of the variable ordering.

131. [M28 ] (The covering function.) The Boolean function

C(x1, x2, . . . , xp; y11, y12, . . . , y1q, y21, . . . , y2q, . . . , yp1, yp2, . . . , ypq)
= ((x1∧y11)∨(x2∧y21)∨ · · · ∨(xp∧yp1)) ∧ · · · ∧ ((x1∧y1q)∨(x2∧y2q)∨ · · · ∨(xp∧ypq))

is true if and only if all columns of the matrix product

x · Y = (x1x2 . . . xp)


y11 y12 . . . y1q
y21 y22 . . . y2q
...

...
. . .

...
yp1 yp2 . . . ypq


are positive, i.e., when the rows of Y selected by x “cover” every column of that matrix.
The reliability polynomial of C is important in the analysis of fault-tolerant systems.

a) When a BDD for C tests the variables in the order

x1, y11, y12, . . . , y1q, x2, y21, y22, . . . , y2q, . . . , xp, yp1, yp2, . . . , ypq,

show that the number of nodes is asymptotically pq2q−1 for fixed q as p→∞.
b) Find an ordering for which the size is asymptotically pq2p−1 for fixed p as q →∞.
c) Prove that Bmin(C) = Ω(2min(p,q)/2) in general.

132. [32 ] What Boolean functions f(x1, x2, x3, x4, x5) have the largest Bmin(f)?
133. [20 ] Explain how to compute Bmin(f) and Bmax(f) from f ’s master profile chart.
134. [24 ] Construct the master profile chart, analogous to (102), for the Boolean
function x1 ⊕ ((x2 ⊕ (x1 ∨ (x̄2 ∧ x3))) ∧ (x3 ⊕ x4)). What are Bmin(f) and Bmax(f)?
Hint: The identity f(x1, x2, x3, x4) = f(x1, x2, x̄4, x̄3) saves about half the work.
135. [M27 ] For all n ≥ 4, find a Boolean function θn(x1, . . . , xn) that is uniquely thin,
in the sense that B(θπn) = n+ 2 for exactly one permutation π. (See (93) and (102).)

From the Library of Melissa Nuno



ptg999

268 COMBINATORIAL SEARCHING 7.1.4

x 136. [M34 ] What is the master profile chart of the median-of-medians function

⟨⟨x11x12 . . . x1n⟩⟨x21x22 . . . x2n⟩ . . . ⟨xm1xm2 . . . xmn⟩⟩,
when m and n are odd integers? What is the best ordering? (There are mn variables.)
137. [M38 ] Given a graph, the optimum linear arrangement problem asks for a permu-
tation π of the vertices that minimizes


u−−v |uπ−vπ|. Construct a Boolean function f

for which this minimum value is characterized by the optimum BDD size Bmin(f).
x 138. [M36 ] The purpose of this exercise is to develop an attractive algorithm that

computes the master profile chart for a function f, given f ’s QDD (not its BDD).
a) Explain how to find


n+1

2


weights of the master profile chart from a single QDD.
b) Show that the jump-up operation can be performed easily in a QDD, without

garbage collection or hashing. Hint: See the “bucket sort” in Algorithm R.
c) Consider the 2n−1 orderings of variables in which the (i + 1)st is obtained from

the ith by a jump-up from depth ρi+ νi to depth νi− 1. For example, we get
12345 21345 32145 31245 43125 41325 42135 42315 54231 52431 53241 53421 51342 51432 51243 51234

when n = 5. Show that every k-element subset of {1, . . . , n} occurs at the top k
levels of one of these orderings.

d) Combine these ideas to design the desired chart-construction algorithm.
e) Analyze the space and time requirements of your algorithm.

139. [22 ] Generalize the algorithm of exercise 138 so that (i) it computes a common
profile chart for all functions of a BDD base, instead of a single function; and (ii) it
restricts the chart to variables {xa, xa+1, . . . , xb}, preserving {x1, . . . , xa−1} at the top
and {xb+1, . . . , xn} at the bottom.
140. [27 ] Explain how to find Bmin(f) without knowing all of f ’s master profile chart.
141. [30 ] True or false: If X1, X2, . . . , Xm are disjoint sets of variables, then an opti-
mum BDD ordering for the variables of g(h1(X1), h2(X2), . . . , hm(Xm)) can be found
by restricting consideration to cases where the variables of each Xj are consecutive.

x 142. [HM32 ] The representation of threshold functions by BDDs is surprisingly myste-
rious. Consider the self-dual function f(x) = ⟨xw1

1 . . . xwn
n ⟩, where each wj is a positive

integer and w1+· · ·+wn is odd. We observed in (28) that B(f) = O(w1+· · ·+wn)2; and
B(f) is often O(n) even when the weights grow exponentially, as in (29) or exercise 41.

a) Prove that when w1 = 1, wk = 2k−2 for 1 < k ≤ m, and wk = 2m − 2n−k for
m < k ≤ 2m = n, B(f) grows exponentially as n→∞, but Bmin(f) = O(n2).

b) Find weights {w1, . . . , wn} for which Bmin(f) = Ω(2
√
n/2).

143. [24 ] Continuing exercise 142(a), find an optimum ordering of variables for the
function ⟨x1x2x

2
3x

4
4x

8
5x

16
6 x

32
7 x

64
8 x

128
9 x256

10 x
512
11 x

768
12 x

896
13 x

960
14 x

992
15 x

1008
16 x1016

17 x1020
18 x1022

19 x1023
20 ⟩.

144. [16 ] What is the quasi-profile of the addition functions {f1, f2, f3, f4, f5} in (36)?
145. [24 ] Find Bmin(f1, f2, f3, f4, f5) and Bmax(f1, f2, f3, f4, f5) of those functions.

x 146. [M22 ] Let (b0, . . . , bn) and (q0, . . . , qn) be a BDD base profile and quasi-profile.
a) Prove that b0 ≤ min(q0, (b1 + q2)(b1 + q2 − 1)), b1 ≤ min(b0 + q0, q2(q2 − 1)), and

b0 + b1 ≥ q0 − q2.
b) Conversely, if b0, b1, q0, and q2 are nonnegative integers that satisfy those in-

equalities, there is a BDD base with such a profile and quasi-profile.
x 147. [27 ] Flesh out the details of Rudell’s swap-in-place algorithm, using the conven-

tions of Algorithm U and the reference counters of exercise 82.

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 269

148. [M21 ] True or false: B(fπ1 , . . . , fπm) ≤ 2B(f1, . . . , fm), after swapping j1 ↔ j2 .
149. [M20 ] (Bollig, Löbbing, and Wegener.) Show that, in addition to Theorem J−,
we also have B(fπ1 , . . . , fπm) ≤ (2k − 2)b0 +B(f1, . . . , fm) after a jump-down operation
of k − 1 levels, when (b0, . . . , bn) is the profile of {f1, . . . , fm}.
150. [30 ] When repeated swaps are used to implement jump-up or jump-down, the
intermediate results might be much larger than the initial or final BDD. Show that
variable jumps can actually be done more directly, with a method whose worst-case
running time is O(B(f1, . . . , fm) +B(fπ1 , . . . , fπm)).
151. [20 ] Suggest a way to invoke Algorithm J so that each variable is sifted just once.
152. [25 ] The hidden weighted bit function h100 has more than 17.5 trillion nodes
in its BDD. By how much does sifting reduce this number? Hint: Use exercise 124,
instead of actually constructing the diagrams.
153. [30 ] Put the tic-tac-toe functions {y1, . . . , y9} of exercise 7.1.2–65 into a BDD
base. How many nodes are present when variables are tested in the order x1, x2, . . . , x9,
o1, o2, . . . , o9, from top to bottom? What is Bmin(y1, . . . , y9)?
154. [20 ] By comparing (104) to (106), can you tell how far each state was moved
when it was sifted?

x 155. [25 ] Let f1 be the independent-set function (105) of the contiguous USA, and
let f2 be the corresponding kernel function (see (68)). Find orderings π of the states
so that (a) B(fπ2 ) and (b) B(fπ1 , fπ2 ) are as small as you can make them. (Note that
the ordering (110) gives B(fπ1 ) = 339, B(fπ2 ) = 795, and B(fπ1 , fπ2 ) = 1129.)
156. [30 ] Theorems J+ and J− suggest that we could save reordering time by only
jumping up when sifting, not bothering to jump down. Then we could eliminate steps
J3, J5, J6, and J7 of Algorithm J. Would that be wise?
157. [M24 ] Show that if the m+ 2m variables of the 2m-way multiplexer Mm are ar-
ranged in any order such that B(Mπ

m) > 2m+1+1, then sifting will reduce the BDD size.
158. [M24 ] When a Boolean function f(x1, . . . , xn) is symmetrical in the variables
{x1, . . . , xp}, it’s natural to expect that those variables will appear consecutively in at
least one of the reorderings fπ(x1, . . . , xn) that minimize B(fπ). Show, however, that if

f(x1, . . . , xn) = [x1 + · · ·+ xp = ⌊p/3⌋] + [x1 + · · ·+ xp = ⌈2p/3⌉] g(xp+1, . . . , xp+m),

where p = n−m and g(y1, . . . , ym) is any nonconstant Boolean function, then B(fπ) =
1
3n

2 +O(n) as n→∞ when {x1, . . . , xp} are consecutive in π, but B(fπ) = 1
4n

2 +O(n)
when π places about half of those variables at the beginning and half at the end.
159. [20 ] John Conway’s basic rule for Life, exercise 7.1.3–167, is a Boolean function
L(xNW, xN, xNE, xW, x, xE, xSW, xS, xSE). What ordering of those nine variables will
make the BDD as small as possible?

x 160. [24 ] (Chess Life.) Consider an 8× 8 matrix X = (xij) of 0s and 1s, bordered by
infinitely many 0s on all sides. Let Lij(X) = L(x(i−1)(j−1), . . . , xij , . . . , x(i+1)(j+1)) be
Conway’s basic rule at position (i, j). Call X “tame” if Lij(X) = 0 whenever i /∈ [1 . . 8]
or j /∈ [1 . . 8]; otherwise X is “wild,” because it activates cells outside the matrix.

a) How many tame configurations X vanish in one Life step, making all Lij(X) = 0?
b) What is the maximum weight

8
i=1
8
j=1 xij among all such solutions?

c) How many wild configurations vanish within the matrix after one Life step?
d) What are the minimum and maximum weight, among all such solutions?
e) How many configurations X make Lij(X) = 1 for 1 ≤ i, j ≤ 8?

From the Library of Melissa Nuno



ptg999

270 COMBINATORIAL SEARCHING 7.1.4

f) Investigate the tame 8× 8 predecessors of the following patterns:

(1) (2) (3) (4) (5)

(Here, as in Section 7.1.3, black cells denote 1s in the matrix.)
161. [28 ] Continuing exercise 160, write L(X) = Y = (yij) if X is a tame matrix such
that Lij(X) = yij for 1 ≤ i, j ≤ 8.

a) How many X’s satisfy L(X) = X (“still Life”)?
b) Find an 8× 8 still Life with weight 35.
c) A “flip-flop” is a pair of distinct matrices with L(X)=Y, L(Y )=X. Count them.
d) Find a flip-flop for which X and Y both have weight 28.

x 162. [30 ] (Caged Life.) If X and L(X) are tame but L(L(X)) is wild, we say that X
“escapes” its cage after three steps. How many 6× 6 matrices escape their 6× 6 cage
after exactly k steps, for k = 1, 2, . . . ?
163. [23 ] Prove formulas (112) and (113) for the BDD sizes of read-once functions.

x 164. [M27 ] What is the maximum of B(f), over all read-once functions f(x1, . . . , xn)?
165. [M21 ] Verify the Fibonacci-based formulas (115) for B(um) and B(vm).
166. [M29 ] Complete the proof of Theorem W.
167. [21 ] Design an efficient algorithm that computes a permutation π for which both
B(fπ) and B(fπ, f̄π) are minimized, given any read-once function f(x1, . . . , xn).

x 168. [HM40 ] Consider the following binary operations on ordered pairs z = (x, y):

z ◦ z′ = (x, y) ◦ (x′, y′) = (x+ x′,min(x+ y′, x′ + y));
z • z′ = (x, y) • (x′, y′) = (x+ x′ + min(y, y′),max(y, y′)).

(These operations are associative and commutative.) Let S1 = {(1, 0)}, and

Sn =
n−1
k=1

{z ◦ z′ | z ∈ Sk, z′ ∈ Sn−k} ∪
n−1
k=1

{z • z′ | z ∈ Sk, z′ ∈ Sn−k} for n > 1.

Thus S2 = {(2, 0), (2, 1)}; S3 = {(3, 0), (3, 1), (3, 2)}; S4 = {(4, 0), . . . , (4, 3), (5, 1)}; etc.
a) Prove that there exists a read-once function f(x1, . . . , xn) for which we have

minπ B(fπ) = c and minπ B(fπ, f̄π) = c′ if and only if ( 1
2c

′−1, c− 1
2c

′−1) ∈ Sn.
b) True or false: 0 ≤ y < x for all (x, y) ∈ Sn.
c) If zT = (x+ y, x− y)/

√
2, show that zT ◦ z′T = (z • z′)T and zT • z′T = (z ◦ z′)T .

d) Prove that x2 + y2 ≤ n2β for all (x, y) ∈ Sn, if β is the constant in (116). Hints:
Let |z|2 = x2+y2; it suffices to prove that |z•z′| ≤ 2β =

√
2ϕ whenever 0 ≤ y ≤ x,

0 ≤ y′ ≤ x′, |z| = r = (1−δ)β , |z′| = r′ = (1+δ)β , and 0 ≤ δ ≤ 1. If also y = y′,
z •z′ lies inside the ellipse (a cos θ+b sin θ, b sin θ), where a = r+r′ and b =

√
rr′.

169. [M46 ] Is minπB(fπ)≤B(v2m+1) for every read-once functionf of 22m+1variables?
x 170. [M25 ] Let’s say that a Boolean function is “skinny” if its BDD involves all the

variables in the simplest possible way: A skinny BDD has exactly one branch node jj
for each variable xj , and either LO or HI is a sink node at every branch.

a) How many Boolean functions f(x1, . . . , xn) are skinny in this sense?
b) How many of them are monotone?
c) Show that ft(x1, . . . , xn) = [(x1 . . . xn)2≥ t] is skinny when 0< t < 2n and t is odd.

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 271

d) What is the dual of the function ft in part (c)?
e) Explain how to find the shortest CNF and DNF formulas for ft, given t.

171. [M26 ] Continuing exercise 170, show that a function is read-once and regular if
and only if it is skinny and monotone.
172. [M28 ] How many skinny functions f(x1, . . . , xn) are also Horn functions? How
many of them have the property that f and f̄ both satisfy Horn’s condition?

x 173. [HM33 ] Exactly how many Boolean functions f(x1, . . . , xn) are skinny after some
reordering of the variables, f(x1π, . . . , xnπ)?

x 174. [M39 ] Let Sn be the number of Boolean functions f(x1, . . . , xn) whose BDD is
“thin” in the sense that it has exactly one node labeled jj for 1 ≤ j ≤ n. Show
that Sn is also the number of combinatorial objects of the following types:

a) Dellac permutations of order 2n (namely, permutations p1p2 . . . p2n such that
⌈k/2⌉ ≤ pk ≤ n+ ⌈k/2⌉ for 1 ≤ k ≤ 2n).

b) Genocchi derangements of order 2n+2 (namely, permutations q1q2 . . . q2n+2 such
that qk > k if and only if k is odd, for 1 ≤ k ≤ 2n+2; also qk ̸= k in a
derangement).

c) Irreducible Dumont pistols of order 2n+ 2 (namely, sequences r1r2 . . . r2n+2 such
that k ≤ rk ≤ 2n + 2 for 1 ≤ k ≤ 2n+2 and {r1, r2, . . . , r2n+2} = {2, 4, 6, . . . ,
2n, 2n+ 2}, with the special property that 2k ∈ {r1, . . . , r2k−1} for 1 ≤ k ≤ n).

d) Paths from (1, 0) to (2n+ 2, 0) in the directed graph

(1,0) (2,0) (3,0)

(3,1)

(4,0)

(4,1)

(5,0)

(5,1)

(5,2)

(6,0)

(6,1)

(6,2)

(7,0)

(7,1)

(7,2)

(7,3)

(8,0)

(8,1)

(8,2)

(8,3)

· · ·

· · ·

· · ·

· · ·

.

(Notice that objects of type (d) are very easy to count.)
175. [M30 ] Continuing exercise 174, find a way to enumerate the Boolean functions
whose BDD contains exactly bj−1 nodes labeled jj , given a profile (b0, . . . , bn−1, bn).
176. [M35 ] To complete the proof of Theorem X, we will use exercise 6.4–78, which
states that {ha,b | a ∈ A and b ∈ B} is a universal family of hash functions from n bits
to l bits, when ha,b(x) = ((ax+ b)≫ (n− l)) mod 2l, A = {a | 0 < a < 2n, a odd}, B =
{b | 0 ≤ b < 2n−l}, and 0 ≤ l ≤ n. Let I = {ha,b(p) | p ∈ P} and J = {ha,b(q) | q ∈ Q}.

a) Show that if 2l − 1 ≤ 2t−1ϵ/(1 − ϵ), there are constants a ∈ A and b ∈ B for
which |I| ≥ (1− ϵ)2l and |J | ≥ (1− ϵ)2l.

b) Given such an a, let J = {j1, . . . , j|J|} where 0 = j1 < · · · < j|J|, and choose
Q′ = {q1, . . . , q|J|} ⊆ Q so that ha,b(qk) = jk for 1 ≤ k ≤ |J |. Let g(q) denote the
middle l−1 bits of aq, namely (aq≫(n−l+1)) mod 2l−1. Prove that g(q) ̸= g(q′)
whenever q and q′ are distinct elements of the set Q′′ = {q1, q3, . . . , q2⌈|J|/2⌉−1}.

c) Prove that the following set Q∗ satisfies condition (120), when l ≥ 3 and y = a:

Q∗ = {q | q ∈ Q′′, g(q) is even, and g(p) + g(q) = 2l−1 for some p ∈ P}.
d) Finally, show that |Q∗| is large enough to prove Theorem X.

177. [M22 ] Complete the proof of Theorem A by bounding the entire quasi-profile.
178. [M24 ] (Amano and Maruoka.) Improve the constant in (121) by using a better
variable ordering: Zn(x2n−1, x1, x3, . . . , x2n−3;x2n, x2, x4, . . . , x2n−2).

From the Library of Melissa Nuno



ptg999

272 COMBINATORIAL SEARCHING 7.1.4

179. [M47 ] Does the middle bit of multiplication satisfy Bmin(Zn) = Θ(26n/5)?
180. [M27 ] Prove Theorem Y, using the hint given in the text.

181. [M21 ] Let Lm,n be the leading bit function Z(m+n)
m,n (x1, . . . , xm; y1, . . . , yn). Prove

that Bmin(Lm,n) = O(2mn) when m ≤ n.
182. [M38 ] (I. Wegener.) Does Bmin(Ln,n) grow exponentially as n→∞?

x 183. [M25 ] Draw the first few levels of the BDD for the “limiting leading bit function”

[(.x1x3x5 . . . )2 · (.x2x4x6 . . . )2 ≥ 1
2 ],

which has infinitely many Boolean variables. How many nodes bk are there on level k?
(We don’t allow (.x1x3x5 . . . )2 or (.x2x4x6 . . . )2 to end with infinitely many 1s.)
184. [M23 ] What are the BDD and ZDD profiles of the permutation function Pm?
185. [M25 ] How large can Z(f) be, when f is a symmetric Boolean function of
n variables? (See exercise 44.)
186. [10 ] What Boolean function of {x1, x2, x3, x4, x5, x6} has the ZDD ‘⊥ >

3 ’?
x 187. [20 ] Draw the ZDDs for all 16 Boolean functions f(x1, x2) of two variables.

188. [16 ] Express the 16 Boolean functions f(x1, x2) as families of subsets of {1, 2}.
189. [18 ] What functions f(x1, . . . , xn) have a ZDD equal to their BDD?
190. [20 ] Describe all functions f for which (a) Q(f) = B(f); (b) Q(f) = Z(f).

x 191. [HM25 ] How many functions f(x1, . . . , xn) have no ⊥ in their ZDD?
192. [M20 ] Define the Z-transform of binary strings as follows: ϵZ = ϵ, 0Z = 0,
1Z = 1, and

(αβ)Z =

αZαZ , if |α| = n and β = 0n;
αZ0n, if |α| = n and β = α;
αZβZ , if |α| = |β| − 1, or if |α| = |β| = n and α ̸= β ̸= 0n.

a) What is 11001001000011111Z?
b) True or false: (τZ)Z = τ for all binary strings τ .
c) If f(x1, . . . , xn) is a Boolean function with truth table τ , let fZ(x1, . . . , xn) be

the Boolean function whose truth table is τZ . Show that the profile of f is almost
identical to the z-profile of fZ , and vice versa. (Therefore Theorem U holds for
ZDDs as well as for BDDs, and statistics such as (80) are valid also for z-profiles.)

193. [M21 ] Continuing exercise 192, what is SZk (x1, . . . , xn) when 0 ≤ k ≤ n?
194. [M25 ] How many f(x1, . . . , xn) have the z-profile (1, . . . , 1)? (See exercise 174.)
195. [24 ] Find Z(M2), Zmin(M2), and Zmax(M2), where M2 is the 4-way multiplexer.
196. [M21 ] Find a function f(x1, . . . , xn) for which Z(f) = O(n) and Z(f̄) = Ω(n2).
197. [25 ] Modify the algorithm of exercise 138 so that it computes the “master z-
profile chart” of f . (Then Zmin(f) and Zmax(f) can be found as in exercise 133.)

x 198. [23 ] Explain how to compute AND(f, g) with ZDDs instead of BDDs (see (55)).
199. [21 ] Similarly, implement (a) OR(f, g), (b) XOR(f, g), (c) BUTNOT(f, g).
200. [21 ] And similarly, implement MUX(f, g, h) for ZDDs (see (62)).
201. [22 ] The projection functions xj each have a simple 3-node BDD, but their ZDD
representations are more complicated. What’s a good way to implement these functions
in a general-purpose ZDD toolkit?

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 273

202. [24 ] What changes are needed to the swap-in-place algorithm of exercise 147,
when levels ju ↔ jv are being interchanged in a ZDD base instead of a BDD base?

x 203. [M24 ] (Family algebra.) The following algebraic conventions are useful for deal-
ing with finite families of finite subsets of positive integers, and with their representation
as ZDDs. The simplest such families are the empty family, denoted by ∅ and represented
by ⊥ ; the unit family {∅}, denoted by ϵ and represented by ⊤ ; and the elementary
families {{j}} for j ≥ 1, denoted by ej and represented by a branch node jj with
LO = ⊥ and HI = ⊤ . (Exercise 186 illustrates the ZDD for e3.)

Two families f and g can be combined with the usual set operations:
• The union f ∪ g = {α | α ∈ f or α ∈ g} is implemented by OR(f, g);
• The intersection f ∩ g = {α | α ∈ f and α ∈ g} is implemented by AND(f, g);
• The difference f \ g = {α | α ∈ f and α /∈ g} is implemented by BUTNOT(f, g);
• The symmetric difference f ⊕ g = (f \ g) ∪ (g \ f) is implemented by XOR(f, g).

And we also define three new ways to construct families of subsets:
• The join f ⊔ g = {α ∪ β | α ∈ f and β ∈ g}, sometimes written just fg;
• The meet f ⊓ g = {α ∩ β | α ∈ f and β ∈ g};
• The delta f g = {α⊕ β | α ∈ f and β ∈ g}.

All three are commutative and associative: f ⊔ g = g ⊔ f , f ⊔ (g ⊔ h) = (f ⊔ g)⊔ h, etc.
a) Suppose f = {∅, {1, 2}, {1, 3}} = ϵ ∪ (e1 ⊔ (e2 ∪ e3)) and g = {{1, 2}, {3}} =

(e1 ⊔ e2) ∪ e3. What are f ⊔ g and (f ⊓ g) \ (f e1)?
b) Any family f can also be regarded as a Boolean function f(x1, x2, . . . ), where

α ∈ f ⇐⇒ f([1∈α], [2∈α], . . . ) = 1. Describe the operations ⊔, ⊓, and in
terms of Boolean logical formulas.

c) Which of the following formulas hold for all families f , g, and h? (i) f ⊔ (g∪h) =
(f⊔g)∪(f⊔h); (ii) f⊓(g∪h) = (f⊓g)∪(f⊓h); (iii) f⊔(g⊓h) = (f⊔g)⊓(f⊔h);
(iv) f ∪ (g ⊔ h) = (f ∪ g) ⊔ (f ∪ h); (v) f ∅ = ∅ ⊓ g = h ⊔ ∅; (vi) f ⊓ ϵ = ϵ.

d) We say that f and g are orthogonal, written f ⊥ g, if α ∩ β = ∅ for all α ∈ f
and all β ∈ g. Which of the following statements is true for all families f and g?
(i) f ⊥ g ⇐⇒ f ⊓ g = ϵ; (ii) f ⊥ g =⇒ |f ⊔ g| = |f ||g|; (iii) |f ⊔ g| = |f ||g| =⇒
f ⊥ g; (iv) f ⊥ g ⇐⇒ f ⊔ g = f g.

e) Describe all families f for which the following statements hold: (i) f ∪ g = g for
all g; (ii) f ⊔ g = g for all g; (iii) f ⊓ g = g for all g; (iv) f ⊔ (e1 ⊔ e2) = f ;
(v) f ⊔ (e1 ∪ e2) = f ; (vi) f ((e1 ⊔ e2)∪ e3) = f ; (vii) f f = ϵ; (viii) f ⊓ f = f .

x 204. [M25 ] Continuing exercise 203, two further operations are also important:
• the quotient f/g = {α | α ∪ β ∈ f and α ∩ β = ∅, for all β ∈ g}.
• the remainder f mod g = f \ (g ⊔ (f/g)).

The quotient is sometimes also called the “cofactor” of f with respect to g.
a) Prove that f/(g ∪ h) = (f/g) ∩ (f/h).
b) Suppose f = {{1, 2}, {1, 3}, {2}, {3}, {4}}. What are f/e2 and f/(f/e2)?
c) Simplify the expressions f/∅, f/ϵ, f/f , and (f mod g)/g, for arbitrary f and g.
d) Show that f/g = f/(f/(f/g)). Hint: Start with the relation g ⊆ f/(f/g).
e) Prove that f/g can also be defined as

 {h | g ⊔ h ⊆ f and g ⊥ h}.
f) Given f and j, show that f has a unique representation (ej⊔g)∪h with ej⊥(g∪h).
g) True or false: (f⊔g) mod ej=(f mod ej)⊔(g mod ej); (f⊓g)/ej=(f/ej)⊓(g/ej).

205. [M25 ] Implement the five basic operations of family algebra, namely (a) f ⊔ g,
(b) f ⊓ g, (c) f g, (d) f/g, and (e) f mod g, using the conventions of exercise 198.

From the Library of Melissa Nuno



ptg999

274 COMBINATORIAL SEARCHING 7.1.4

206. [M46 ] What are the worst-case running times of the algorithms in exercise 205?
x 207. [M25 ] When one or more projection functions xj are needed in applications, as

in exercise 201, the following “symmetrizing” operation turns out to be very handy:

(ei1 ∪ ei2 ∪ · · · ∪ eil) § k = Sk(xi1 , xi2 , . . . , xil), integer k ≥ 0.

For example, ej § 1 = xj ; ej § 0 = x̄j ; (ei ∪ ej) § 1 = xi ⊕ xj ; (e2 ∪ e3 ∪ e5) § 2 =
(x2 ∧ x3 ∧ x̄5) ∨ (x2 ∧ x̄3 ∧ x5) ∨ (x̄2 ∧ x3 ∧ x5). Show that it’s easy to implement this
operation. (Notice that ei1 ∪ · · · ∪ eil has a very simple ZDD of size l+ 2, when l > 0.)

x 208. [16 ] By modifying Algorithm C, show that all solutions of a Boolean function
can readily be counted when its ZDD is given instead of its BDD.
209. [M21 ] Explain how to compute the fully elaborated truth table of a Boolean
function from its ZDD representation. (See exercise 31.)

x 210. [23 ] Given the ZDD for f , show how to construct the ZDD for the function

g(x) = [f(x) = 1 and νx= max{νy | f(y) = 1}].

211. [M20 ] When f describes the solutions to an exact cover problem, is Z(f)≤B(f)?
x 212. [25 ] What’s a good way to compute the ZDD for an exact cover problem?

213. [16 ] Why can’t the mutilated chessboard be perfectly covered with dominoes?
x 214. [21 ] When some shape is covered by dominoes, we say that the covering is

faultfree if every straight line that passes through the interior of the shape also passes
through the interior of some domino. For example, the right-hand covering in (127)
is faultfree, but the middle one isn’t; and the left-hand one has faults galore.

How many domino coverings of a chessboard are faultfree?
215. [21 ] Japanese tatami mats are 1×2 rectangles that are traditionally used to cover
rectangular floors in such a way that no four mats meet at any corner. For example,
Fig. 29(a) shows a 6×5 pattern from the 1641 edition of Mitsuyoshi Yoshida’s Jinkōki,
a book first published in 1627.

Find all domino coverings of a chessboard that are also tatami tilings.

Fig. 29. Two nice examples:
(a) A 17th-century tatami tiling;
(b) a tricolored domino covering.

(a) (b)

x 216. [30 ] Figure 29(b) shows a chessboard covered with red, white, and blue domi-
noes, in such a way that no two dominoes of the same color are next to each other.

a) In how many ways can this be done?
b) How many of the 12,988,816 domino coverings are 3-colorable?

217. [29 ] The monomino/domino/tromino covering illustrated in (130) happens to
satisfy an additional constraint: No two congruent pieces are adjacent. How many of
the 92 sextillion coverings mentioned in the text are “separated,” in this sense?

x 218. [24 ] Apply BDD and ZDD techniques to the problem of Langford pairs, discussed
at the beginning of this chapter.

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 275

219. [20 ] What is Z(F ) when F is the family (a) WORDS(1000); . . . ; (e) WORDS(5000)?
x 220. [21 ] The z-profile of the 5757 SGB words, represented with 130 variables a1 . . z5

as discussed in (131), is (1, 1, 1, . . . , 1, 1, 1, 23, 3, . . . , 6, 2, 0, 3, 2, 1, 1, 2).
a) Explain the entries 23 and 3, which correspond to the variables a2 and b2.
b) Explain the final entries 0, 3, 2, 1, 1, 2, which correspond to v5, w5, x5, etc.

x 221. [M27 ] Only 5020 nodes are needed to represent the 5757 most common five-letter
words of English, using the 130-variable representation, because of special linguistic
properties. But there are 265 = 11,881,376 possible five-letter words. Suppose we
choose 5757 of them at random; how big will the ZDD be then, on average?

x 222. [27 ] When family algebra is applied to five-letter words as in (131), the 130
variables are called a1, b1, . . . , z5 instead of x1, x2, . . . , x130; and the corresponding
elementary families are denoted by the symbols a1, b1, . . . , z5 instead of e1, e2, . . . , e130.
Thus the family F = WORDS(5757) can be constructed by synthesizing the formula

F = (w1⊔ h2⊔ i3⊔ c4⊔ h5)∪ · · · ∪ (f1⊔ u2⊔ n3⊔ n4⊔ y5)∪ · · · ∪ (p1⊔ u2⊔ p3⊔ a4⊔ l5).

a) Let ℘ denote the universal family of all subsets of {a1, . . . , z5}, also called the
“power set.” What does the formula F ⊓ ℘ signify?

b) Let X = X1⊔· · ·⊔X5, where Xj = {aj , bj , . . . , zj}. Interpret the formula F ⊓X.
c) Find a simple formula for all words of F that match the pattern t*u*h.
d) Find a formula for all SGB words that contain exactly k vowels, for 0 ≤ k ≤ 5

(considering only a, e, i, o, and u to be vowels). Let Vj = aj ∪ ej ∪ ij ∪ oj ∪ uj .
e) How many patterns in which exactly three letters are specified are matched by

at least one SGB word? (For example, m*tc* is such a pattern.) Give a formula.
f) How many of those patterns are matched at least twice (e.g., *atc*)?
g) Express all words that remain words when a ‘b’ is changed to ‘o’.
h) What’s the significance of the formula F/V2?
i) Contrast (X1 ⊔ V2 ⊔ V3 ⊔ V4 ⊔X5)∩ F with (X1 ⊔X5) \ ((℘ \F )/(V2 ⊔ V3 ⊔ V4)).

223. [28 ] A “median word” is a five-letter word µ = µ1 . . . µ5 that can be obtained
from three words α = α1 . . . α5, β = β1 . . . β5, γ = γ1 . . . γ5 by the rule [αi =µi ] +
[βi =µi ] + [γi =µi ] = 2 for 1 ≤ i ≤ 5. For example, mixed is a median of the words
{fixed, mixer, mound}, and also of {mated, mixup, nixed}. But noted is not a median
of {notes, voted, naked}, because each of those words has e in position 4.

a) Show that {d(α, µ), d(β, µ), d(γ, µ)} is either {1, 1, 3} or {1, 2, 2} whenever µ is a
median of {α, β, γ}. (Here d denotes Hamming distance.)

b) How many medians can be obtained from WORDS(n), when n = 100? 1000? 5757?
c) How many of those medians belong to WORDS(m), when m = 100? 1000? 5757?

x 224. [20 ] Suppose we form the ZDD for all source-to-sink paths in a dag, as in Fig. 28,
when the dag happens to be a forest; that is, assume that every non-source vertex of
the dag has in-degree 1. Show that the corresponding ZDD is essentially the same as
the binary tree that represents the forest under the “natural correspondence between
forests and binary trees,” Eqs. 2.3.2–(1) through 2.3.2–(3).

x 225. [30 ] Design an algorithm that will produce a ZDD for all sets of edges that form
a simple path from s to t, given a graph and two distinct vertices {s, t} of the graph.

x 226. [20 ] Modify the algorithm of exercise 225 so that it yields a ZDD for all of the
simple cycles in a given graph.
227. [20 ] Similarly, modify it so that it considers only Hamiltonian paths from s to t.

From the Library of Melissa Nuno



ptg999

276 COMBINATORIAL SEARCHING 7.1.4

228. [21 ] And mutate it once more, for Hamiltonian paths from s to any other vertex.
229. [15 ] There are 587,218,421,488 paths from CA to ME in the graphs (18), but only
437,525,772,584 such paths in (133). Explain the discrepancy.
230. [25 ] Find the Hamiltonian paths of (133) that have minimum and maximum
total length. What is the average length, if all Hamiltonian paths are equally likely?
231. [23 ] In how many ways can a king travel from one corner of a chessboard to
the opposite corner, never occupying the same cell twice? (These are the simple paths
from corner to corner of the graph P8×P8.)

x 232. [23 ] Continuing exercise 231, a king’s tour of the chessboard is an oriented
Hamiltonian cycle of P8×P8. Determine the exact number of king’s tours. What is the
longest possible king’s tour, in terms of Euclidean distance traveled?

x 233. [25 ] Design an algorithm that builds a ZDD for the family of all oriented cycles
of a given digraph. (See exercise 226.)
234. [22 ] Apply the algorithm of exercise 233 to the directed graph on the 49 postal
codes AL, AR, . . . , WY of (18), with XY−−→ YZ as in exercise 7–54(b). For example, one
such oriented cycle is NC−−→ CT−−→ TN−−→ NC. How many oriented cycles are possible?
What are the minimum and maximum cycle lengths?
235. [22 ] Form a digraph on the five-letter words of English by saying that x−−→ y
when the last three letters of x match the first three letters of y (e.g., crown−−→owner).
How many oriented cycles does this digraph have? What are the longest and shortest?

x 236. [M25 ] Many extensions to the family algebra of exercise 203 suggest themselves
when ZDDs are applied to combinatorial problems, including the following five opera-
tions on families of sets:
• The maximal elements f↑ = {α ∈ f | β ∈ f and α ⊆ β implies α = β};
• The minimal elements f↓ = {α ∈ f | β ∈ f and α ⊇ β implies α = β};
• The nonsubsets f↗ g = {α ∈ f | β ∈ g implies α ̸⊆ β};
• The nonsupersets f ↘ g = {α ∈ f | β ∈ g implies α ̸⊇ β};
• The minimal hitting sets f ♯ = {α | β ∈ f implies α ∩ β ̸= ∅}↓.

For example, when f and g are the families of exercise 203(a) we have f↑ = e1⊔(e2∪e3),
f↓ = ϵ, f ♯ = ∅, g↑ = g↓ = g, g♯ = (e1∪e2)⊔e3, f↗g = e1⊔e3, f↘g = ϵ, g↗f = g↘f = ∅.

a) Prove that f ↗ g = f \ (f ⊓ g), and give a similar formula for f ↘ g.
b) Let fC = {α | α ∈ f} = f U , where U = e1 ⊔ e2 ⊔ · · · is the “universal set.”

Clearly fCC = f , (f∪g)C = fC∪gC , (f∩g)C = fC∩gC , (f \g)C = fC\gC . Show
that we also have the duality laws f↑C = fC↓, f↓C = fC↑; (f ⊔ g)C = fC ⊓ gC ,
(f ⊓ g)C = fC ⊔ gC ; (f↗ g)C = fC ↘ gC , (f ↘ g)C = fC↗ gC ; f ♯ = (℘↗ fC)↓.

c) True or false? (i) x↓1 = e1; (ii) x↑1 = e1; (iii) x♯1 = e1; (iv) (x1 ∨ x2)↓ = e1 ∪ e2;
(v) (x1 ∧ x2)↓ = e1 ⊔ e2.

d) Which of the following formulas hold for all families f , g, and h? (i) f↑↑ = f↑;
(ii) f↑↓ = f↓; (iii) f↑↓ = f↑; (iv) f↓↑ = f↓; (v) f ♯↓ = f ♯; (vi) f ♯↑ = f ♯;
(vii) f↓♯ = f ♯; (viii) f↑♯ = f ♯; (ix) f ♯♯ = f ♯; (x) f ↗ (g ∪ h) = (f ↗ g) ∩ (f ↗ h);
(xi) f↘(g∪h) = (f↘g)∩(f↘h); (xii) f↘(g∪h) = (f↘g)↘h; (xiii) f↗g↑ = f↗g;
(xiv) f ↘ g↑ = f ↘ g; (xv) (f ⊔ g)♯ = (f ♯ ∪ g♯)↓; (xvi) (f ∪ g)♯ = (f ♯ ⊔ g♯)↓.

e) Suppose g =

u−−v(eu ⊔ ev) is the family of all edges in a graph, and let f be

the family of all the independent sets. Using the operations of extended family
algebra, find simple formulas that express (i) f in terms of g; (ii) g in terms of f .

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 277

237. [25 ] Implement the five operations of exercise 236, in the style of exercise 205.
x 238. [22 ] Use ZDDs to compute the maximal induced bipartite subgraphs of the con-

tiguous-USA graph G in (18), namely the maximal subsets U such that G | U has no
cycles of odd length. How many such sets U exist? Give examples of the smallest and
largest. Consider also the maximal induced tripartite (3-colorable) subgraphs.

x 239. [21 ] Explain how to compute the maximal cliques of a graph G using family
algebra, when G is specified by its edges g as in exercise 236(e). Find the maximal sets
of vertices that can be covered by k cliques, for k = 1, 2, . . . , when G is the graph (18).

x 240. [22 ] A set of vertices U is called a dominating set of a graph if every vertex is
at most one step away from U .

a) Prove that every kernel of a graph is a minimal dominating set.
b) How many minimal dominating sets does the USA graph (18) have?
c) Find seven vertices of (18) that dominate 36 of the others.

x 241. [28 ] The queen graph Q8 consists of the 64 squares of a chessboard, with u−−−v
when squares u and v lie in the same row, column, or diagonal. How large are the ZDDs
for its (a) kernels? (b) maximal cliques? (c) minimal dominating sets? (d) minimal
dominating sets that are also cliques? (e) maximal induced bipartite subgraphs?

Illustrate each of these five categories by exhibiting smallest and largest examples.
242. [24 ] Find all of the maximal ways to choose points on an 8 × 8 grid so that no
three points lie on a straight line of any slope.
243. [M23 ] The closure f∩ of a family f of sets is the family of all sets that can be
obtained by intersecting one or more members of f .

a) Prove that f∩ = {α | α=
{β | β ∈ f and β ⊇ α}}.

b) What’s a good way to compute the ZDD for f∩, given the ZDD for f?
c) Find the generating function for F ∩ when F = WORDS(5757) as in exercise 222.

244. [25 ] What is the ZDD for the connectedness function of P3 P3 (Fig. 22)? What
is the BDD for the spanning tree function of the same graph? (See Corollary S.)

x 245. [M22 ] Show that the prime clauses of a monotone function f are PI(f)♯.
246. [M21 ] Prove Theorem S, assuming that (137) is true.

x 247. [M27 ] Determine the number of sweet Boolean functions of n variables for n ≤ 7.
248. [M22 ] True or false: If f and g are sweet, so is f(x1, . . . , xn) ∧ g(x1, . . . , xn).
249. [HM31 ] The connectedness function of a graph is “ultrasweet,” in the sense that
it is sweet under all permutations of its variables. Is there a nice way to characterize
ultrasweet Boolean functions?
250. [28 ] There are 7581 monotone Boolean functions f(x1, x2, x3, x4, x5). What are
the average values of B(f) and Z(PI(f)) when one of them is chosen at random? What
is the probability that Z(PI(f)) > B(f)? What is the maximum of Z(PI(f))/B(f)?
251. [M46 ] Is Z(PI(f)) = O(B(f)) for all monotone Boolean functions f?
252. [M30 ] When a Boolean function isn’t monotone, its prime implicants involve
negative literals; for example, the prime implicants of (x1? x2: x3) are x1∧x2, x̄1∧x3,
and x2∧x3. In such cases we can conveniently represent them with ZDDs if we consider
them to be words in the 2n-letter alphabet {e1, e

′
1, . . . , en, e

′
n}. A “subcube” such as

01∗0∗ is then e′1 ⊔ e2 ⊔ e′4 in family algebra (see 7.1.1–(29)); and PI(x1? x2: x3) =
(e1 ⊔ e2) ∪ (e′1 ⊔ e3) ∪ (e2 ⊔ e3).

From the Library of Melissa Nuno



ptg999

278 COMBINATORIAL SEARCHING 7.1.4

Exercise 7.1.1–116 shows that symmetric functions of n variables might have
Ω(3n/n) prime implicants. How large can Z(PI(f)) be when f is symmetric?

x 253. [M26 ] Continuing exercise 252, prove that if f = (x̄1∧f0) ∨ (x1∧f1) we have
PI(f) = A ∪ (e′1⊔B) ∪ (e1⊔C), where A = PI(f0 ∧ f1), B = PI(f0) \ A, and C =
PI(f1) \A. (Equation (137) is the special case when f is monotone.)

x 254. [M23 ] Let the functions f and g of (52) be monotone, with f ⊆ g. Prove that

PI(g) \ PI(f) = (PI(gl) \PI(fl)) ∪ (PI(gh) \PI(fh ∪ gl)).

x 255. [25 ] A multifamily of sets, in which members of f are allowed to occur more
than once, can be represented as a sequence of ZDDs (f0, f1, f2, . . . ) in which fk is the
family of sets that occur ( . . . a2a1a0)2 times in f where ak = 1. For example, if α
appears exactly 9 = (1001)2 times in the multifamily, α would be in f3 and f0.

a) Explain how to insert and delete items from this representation of a multifamily.
b) Implement the multiset union h = f ⊎ g for multifamilies.

256. [M32 ] Any nonnegative integer x can be represented as a family of subsets of
the binary powers U = {22k | k ≥ 0} = {21, 22, 24, 28, . . . }, in the following way: If
x = 2e1 + · · · + 2et , where e1 > · · · > et ≥ 0 and t ≥ 0, the corresponding family has
t sets Ej ⊆ U , where 2ej =

{u | u ∈ Ej}. Conversely, every finite family of finite
subsets of U corresponds in this way to a nonnegative integer x. For example, the
number 41 = 25 + 23 + 1 corresponds to the family {{21, 24}, {21, 22}, ∅}.

a) Find a simple connection between the binary representation of x and the truth
table of the Boolean function that corresponds to the family for x.

b) Let Z(x) be the size of the ZDD for the family that represents x, when the ele-
ments of U are tested in reverse order . . . , 24, 22, 21 (with highest exponents near-
est to the root); for example, Z(41) = 5. Show that Z(x) = O(log x/log log x).

c) The integer x is called “sparse” if Z(x) is substantially smaller than the upper
bound in (b). Prove that the sum of sparse integers is sparse, in the sense that
Z(x+ y) = O(Z(x)Z(y)).

d) Is the saturating difference of sparse integers, x .− y, always sparse?
e) Is the product of sparse integers always sparse?

257. [40 ] (S. Minato.) Explore the use of ZDDs to represent polynomials with nonneg-
ative integer coefficients. Hint: Any such polynomial in x, y, and z can be regarded as
a family of subsets of {2, 22, 24, . . . , x, x2, x4, . . . , y, y2, y4, . . . , z, z2, z4, . . . }; for exam-
ple, x3 + 3xy+ 2z corresponds naturally to the family {{x, x2}, {x, y}, {2, x, y}, {2, z}}.

x 258. [25 ] Given a positive integer n, what is the minimum size of a BDD that has
exactly n solutions? Answer this question also for a ZDD of minimum size.

x 259. [25 ] A sequence of parentheses can be encoded as a binary string by letting 0
represent ‘(’ and 1 represent ‘)’. For example, ())(() is encoded as 011001.

Every forest of n nodes corresponds to a sequence of 2n parentheses that are
properly nested, in the sense that left and right parentheses match in the normal way.
(See, for example, 2.3.3–(1) or 7.2.1.6–(1).) Let

Nn(x1, . . . , x2n) = [x1 . . . x2n represents properly nested parentheses].

For example, N3(0, 1, 1, 0, 0, 1) = 0 and N3(0, 0, 1, 0, 1, 1) = 1; in general, Nn has Cn ≈
4n/(
√
π n3/2) solutions, where Cn is a Catalan number. What are B(Nn) and Z(Nn)?

From the Library of Melissa Nuno



ptg999

7.1.4 BINARY DECISION DIAGRAMS 279

x 260. [M27 ] We will see in Section 7.2.1.5 that every partition of {1, . . . , n} into disjoint
subsets corresponds to a “restricted growth string” a1 . . . an, which is a sequence of
nonnegative integers with

a1 = 0 and aj+1 ≤ 1 + max(a1, . . . , aj) for 1 ≤ j < n.

Elements j and k belong to the same subset of the partition if and only if aj = ak.
a) Let xj,k = [aj = k ] for 0 ≤ k < j ≤ n, and let Rn be the function of these


n+1

2


variables that is true if and only if a1 . . . an is a restricted growth string. (By
studying this Boolean function we can study the family of all set partitions, and
by placing further restrictions on Rn we can study set partitions with special
properties. There are ϖ100 ≈ 5× 10115 set partitions when n = 100.) Calculate
B(R100) and Z(R100). Approximately how large are B(Rn) and Z(Rn) as n →
∞?

b) Show that, with a proper ordering of the variables xj,k, the BDD base for
{R1, . . . , Rn} has the same number of nodes as the BDD for Rn alone.

c) We can also use fewer variables, approximately n lgn instead of

n+1

2

, if we

represent each ak as a binary integer with ⌈lg k⌉ bits. How large are the BDD
and ZDD bases in this representation of set partitions?

261. [HM21 ] “The deterministic finite-state automaton with fewest states that ac-
cepts any given regular language is unique.” What is the connection between this
famous theorem of automata theory and the theory of binary decision diagrams?
262. [M26 ] The determination of optimum Boolean chains in Section 7.1.2 was greatly
accelerated by restricting consideration to Boolean functions that are normal, in the
sense that f(0, . . . , 0) = 0. (See Eq. 7.1.2–(10).) Similarly, we could restrict BDDs so
that each of their nodes denotes a normal function.

a) Explain how to do this by introducing “complement links,” which point to the
complement of a subfunction instead of to the subfunction itself.

b) Show that every Boolean function has a unique normalized BDD.
c) Draw the normalized BDDs for the 16 functions in exercise 1.
d) Let B0(f) be the size of the normalized BDD for f . Find the average and worst

case of B0(f), and compare B0(f) to B(f). (See (80) and Theorem U.)
e) The BDD base for 3 × 3 multiplication in (58) has B(F1, . . . , F6) = 52 nodes.

What is B0(F1, . . . , F6)?
f) How do (54) and (55) change, when AND is implemented with complement links?

263. [HM25 ] A linear block code is the set of binary column vectors x = (x1, . . . , xn)T
such that Hx = 0, where H is a given m× n “parity check matrix.”

a) The linear block code with n = 2m − 1, whose columns are the nonzero binary
m-tuples from (0, . . . , 0, 1)T to (1, . . . , 1, 1)T, is called the Hamming code. Prove
that the Hamming code is 1-error correcting in the sense of exercise 7–23.

b) Let f(x) = [Hx= 0], where H is an m×n matrix with no all-zero columns. Show
that the BDD profile of f has a simple relation to the ranks of submatrices of H
mod 2, and compute B(f) for the Hamming code.

c) In general we can let f(x) = [x is a codeword] define any block code. Suppose
some codeword x = x1 . . . xn has been transmitted through a possibly noisy
channel, and that we’ve received the bits y = y1 . . . yn, where the channel delivers
yk = xk with probability pk for each k independently. Explain how to determine
the most likely codeword x, given y, p1, . . . , pn, and the BDD for f .

From the Library of Melissa Nuno



ptg999

280 COMBINATORIAL SEARCHING 7.1.4

264. [M46 ] The text’s “sweeping generalization” of Algorithms B and C, based on (22),
embraces many important applications; but it does not appear to include quantities
such as

max
f(x)=1

 n
k=1

wkxk +
n−1
k=1

w′
kxkxk+1


or max

f(x)=1

n−1
j=0


wj

n−j
k=1

xk . . . xk+j


,

which also can be computed efficiently from the BDD or ZDD for f .
Develop a generalization that is even more sweeping.

x 265. [21 ] Devise an algorithm that finds the mth smallest solution to f(x) = 1 in
lexicographic order of x1 . . . xn, given m and the BDD for a Boolean function f of n
variables. Your algorithm should take O(nB(f) + n2) steps.

x 266. [20 ] Every forest F whose nodes are numbered {1, . . . , n} in preorder defines
two families of sets

a(F ) = {anc(1), . . . , anc(n)} and d(F ) = {dec(1), . . . , dec(n)},
where anc(k) and dec(k) are the inclusive ancestors and descendants of node k. For
example, if F is ❦1❦2

❦3❦4 ❦5
then a(F ) = {{1}, {1,2}, {3}, {3,4}, {3,5}} and d(F ) = {{1,2}, {2}, {3,4,5}, {4}, {5}}.
Conversely, F can be reconstructed from either a(F ) or d(F ).

Prove that the ZDD for the family a(F ) has exactly n+ 2 nodes.
267. [HM32 ] Continuing exercise 266, find the minimum, maximum, and average size
of the ZDD for the family d(F ), as F ranges over all forests on n nodes.

We dare not lengthen this book much more,
lest it be out of due proportion,

and repel men by its size.
— ÆLFRIC, Catholic Homilies II (c. 1000)

There are a thousand hacking at the branches of evil
to one who is striking at the root.

— HENRY D. THOREAU, Walden; or, Life in the Woods (1854)

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 281

7.2. GENERATING ALL POSSIBILITIES
All present or accounted for, sir.

— Traditional American military saying

All present and correct, sir.
— Traditional British military saying

7.2.1. Generating Basic Combinatorial Patterns
Our goal in this section is to study methods for running through all of the
possibilities in some combinatorial universe, because we often face problems
in which an exhaustive examination of all cases is necessary or desirable. For
example, we might want to look at all permutations of a given set.

Some authors call this the task of enumerating all of the possibilities; but
that’s not quite the right word, because “enumeration” most often means that
we merely want to count the total number of cases, not that we actually want
to look at them all. If somebody asks you to enumerate the permutations of
{1, 2, 3}, you are quite justified in replying that the answer is 3! = 6; you needn’t
give the more complete answer {123, 132, 213, 231, 312, 321}.

Other authors speak of listing all the possibilities; but that’s not such a great
word either. No sensible person would want to make a list of the 10! = 3,628,800
permutations of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} by printing them out on thousands of
sheets of paper, nor even by writing them all in a computer file. All we really
want is to have them present momentarily in some data structure, so that a
program can examine each permutation one at a time.

So we will speak of generating all of the combinatorial objects that we need,
and visiting each object in turn. Just as we studied algorithms for tree traversal
in Section 2.3.1, where the goal was to visit every node of a tree, we turn now
to algorithms that systematically traverse a combinatorial space of possibilities.

He’s got ’em on the list —
he’s got ’em on the list;

And they’ll none of ’em be missed —
they’ll none of ’em be missed.

— WILLIAM S. GILBERT, The Mikado (1885)

7.2.1.1. Generating all n-tuples. Let’s start small, by considering how to
run through all 2n strings that consist of n binary digits. Equivalently, we want
to visit all n-tuples (a1, . . . , an) where each aj is either 0 or 1. This task is
also, in essence, equivalent to examining all subsets of a given set {x1, . . . , xn},
because we can say that xj is in the subset if and only if aj = 1.

Of course such a problem has an absurdly simple solution. All we need to
do is start with the binary number (0 . . . 00)2 = 0 and repeatedly add 1 until
we reach (1 . . . 11)2 = 2n− 1. We will see, however, that even this utterly trivial
problem has astonishing points of interest when we look into it more deeply. And
our study of n-tuples will pay off later when we turn to the generation of more
difficult kinds of patterns.

From the Library of Melissa Nuno



ptg999

282 COMBINATORIAL SEARCHING 7.2.1.1

In the first place, we can see that the binary-notation trick extends to other
kinds of n-tuples. If we want, for example, to generate all (a1, . . . , an) in which
each aj is one of the decimal digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, we can simply count
from (0 . . . 00)10 = 0 to (9 . . . 99)10 = 10n − 1 in the decimal number system.
And if we want more generally to run through all cases in which

0 ≤ aj < mj for 1 ≤ j ≤ n, (1)

where the upper limits mj might be different in different components of the
vector (a1, . . . , an), the task is essentially the same as repeatedly adding unity
to the number 

a1,

m1,

a2,

m2,

. . . ,

. . . ,

an
mn


(2)

in a mixed-radix number system; see Eq. 4.1–(9) and exercise 4.3.1–9.
We might as well pause to describe the process more formally:

Algorithm M (Mixed-radix generation). This algorithm visits all n-tuples
that satisfy (1), by repeatedly adding 1 to the mixed-radix number in (2) until
overflow occurs. Auxiliary variables a0 and m0 are introduced for convenience.
M1. [Initialize.] Set aj ← 0 for 0 ≤ j ≤ n, and set m0 ← 2.
M2. [Visit.] Visit the n-tuple (a1, . . . , an). (The program that wants to examine

all n-tuples now does its thing.)
M3. [Prepare to add one.] Set j ← n.
M4. [Carry if necessary.] If aj = mj − 1, set aj ← 0, j ← j − 1, and repeat this

step.
M5. [Increase, unless done.] If j = 0, terminate the algorithm. Otherwise set

aj ← aj + 1 and go back to step M2.

Algorithm M is simple and straightforward, but we shouldn’t forget that
nested loops are even simpler, when n is a fairly small constant. When n = 4,
we could for example write out the following instructions:

For a1 = 0, 1, . . . , m1 − 1 (in this order) do the following:
For a2 = 0, 1, . . . , m2 − 1 (in this order) do the following:
For a3 = 0, 1, . . . , m3 − 1 (in this order) do the following:
For a4 = 0, 1, . . . , m4 − 1 (in this order) do the following:
Visit (a1, a2, a3, a4).

(3)

These instructions are equivalent to Algorithm M, and they are easily expressed
in any programming language.

Gray binary code. Algorithm M runs through all (a1, . . . , an) in lexicographic
order, as in a dictionary. But there are many situations in which we prefer to visit
those n-tuples in some other order. The most famous alternative arrangement is
the so-called Gray binary code, which lists all 2n strings of n bits in such a way

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 283

Fig. 30.

00
00

000
∗

0001

00∗∗
0010
001∗00110∗∗∗0100

0
1
0 ∗

0
1
0
1

0
1 ∗∗

0
1
1
0

0
1
1∗

0111

∗∗∗∗

1000

100∗

1001

10∗∗
1010
101

∗ 10
11 1∗

∗∗ 11
00 1
1
0∗

1
1
0
1

1
1
∗∗

1
1
1
0

1
1
1
∗

11
11

∗∗
∗∗

(a) Lexicographic binary code.

00
00

000
∗

0001

00∗1
0011
001∗00100∗100110

0
1
1 ∗

0
1
1
1

0
1 ∗

1
0
1
0
1

0
1
0∗

0100
∗100

1100

110∗

1101

11∗1
1111
111

∗ 11
10 1∗

10 10
10 1
0
1∗

1
0
1
1

1
0
∗ 1

1
0
0
1

1
0
0
∗

10
00

∗0
00

(b) Gray binary code.

that only one bit changes each time, in a simple and regular way. For example,
the Gray binary code for n = 4 is

0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100,
1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000. (4)

Such codes are especially important in applications where analog information
is being converted to digital or vice versa. For example, suppose we want to
identify our current position on a rotating disk that has been divided into 16
sectors, using four sensors that each distinguish black from white. If we use
lexicographic order to mark the tracks from 0000 to 1111, as in Fig. 30(a), wildly
inaccurate measurements can occur at the boundaries between sectors; but the
code in Fig. 30(b) never gives a bad reading.

Gray binary code can be defined in many equivalent ways. For example,
if Γn stands for the Gray binary sequence of n-bit strings, we can define Γn

recursively by the two rules
Γ0 = ϵ;

Γn+1 = 0Γn, 1ΓR
n .

(5)

Here ϵ denotes the empty string, 0Γn denotes the sequence Γn with 0 prefixed to
each string, and 1ΓR

n denotes the sequence Γn in reverse order with 1 prefixed
to each string. Since the last string of Γn equals the first string of ΓR

n , it is clear
from (5) that exactly one bit changes in every step of Γn+1 if Γn enjoys the same
property.

Another way to define the sequence Γn = g(0), g(1), . . . , g(2n− 1) is to give
an explicit formula for its individual elements g(k). Indeed, since Γn+1 begins
with 0Γn, the infinite sequence

Γ∞ = g(0), g(1), g(2), g(3), g(4), . . .
= (0)2, (1)2, (11)2, (10)2, (110)2, . . .

(6)

is a permutation of all the nonnegative integers, if we regard each string of 0s
and 1s as a binary integer with optional leading 0s. Then Γn consists of the first
2n elements of (6), converted to n-bit strings by inserting 0s at the left if needed.

From the Library of Melissa Nuno



ptg999

284 COMBINATORIAL SEARCHING 7.2.1.1

When k = 2n + r, where 0 ≤ r < 2n, relation (5) tells us that g(k) is equal
to 2n + g(2n− 1− r). Therefore we can prove by induction on n that the integer
k whose binary representation is (. . . b2b1b0)2 has a Gray binary equivalent g(k)
with the representation (. . . a2a1a0)2, where

aj = bj ⊕ bj+1, for j ≥ 0. (7)

(See exercise 6.) For example, g

(111001000011)2


= (100101100010)2. Con-

versely, if g(k) = (. . . a2a1a0)2 is given, we can find k = (. . . b2b1b0)2 by inverting
the system of equations (7), obtaining

bj = aj ⊕ aj+1 ⊕ aj+2 ⊕ · · · , for j ≥ 0; (8)

this infinite sum is really finite because aj+t = 0 for all large t.
One of the many pleasant consequences of Eq. (7) is that g(k) can be com-

puted very easily with bitwise arithmetic:

g(k) = k ⊕ ⌊k/2⌋. (9)

Similarly, the inverse function in (8) satisfies

g[−1](l) = l ⊕ ⌊l/2⌋ ⊕ ⌊l/4⌋ ⊕ · · · ; (10)

this function, however, requires more computation (see exercise 7.1.3–117). We
can also deduce from (7) that, if k and k′ are any nonnegative integers,

g(k ⊕ k′) = g(k)⊕ g(k′). (11)

Yet another consequence is that the (n+ 1)-bit Gray binary code can be written

Γn+1 = 0Γn, (0Γn)⊕110 . . . 0;

this pattern is evident, for example, in (4). Comparing with (5), we see that
reversing the order of Gray binary code is equivalent to complementing the first
bit:

ΓR
n = Γn ⊕ 1

n−1  
0 . . . 0, also written Γn ⊕ 10n−1. (12)

The exercises below show that the function g(k) defined in (7), and its inverse
g [−1] defined in (8), have many further properties and applications of interest.
Sometimes we think of these as functions taking binary strings to binary strings;
at other times we regard them as functions from integers to integers, via binary
notation, with leading zeros irrelevant.

Gray binary code is named after Frank Gray, a physicist who became fa-
mous for helping to devise the method long used for compatible color television
broadcasting [Bell System Tech. J. 13 (1934), 464–515]. He invented Γn for
applications to pulse code modulation, a method for analog transmission of dig-
ital signals [see Bell System Tech. J. 30 (1951), 38–40; U.S. Patent 2632058 (17
March 1953); W. R. Bennett, Introduction to Signal Transmission (1971), 238–
240]. But the idea of “Gray binary code” was known long before he worked on it;
for example, it appeared in U.S. Patent 2307868 by George Stibitz (12 January
1943). More significantly, Γ5 was used in a telegraph machine demonstrated
in 1878 by Émile Baudot, after whom the term “baud” was later named. At

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 285

about the same time, a similar but less systematic code for telegraphy was
independently devised by Otto Schäffler [see Journal Télégraphique 4 (1878),
252–253; Annales Télégraphiques 6 (1879), 361, 382–383].*

In fact, Gray binary code is implicitly present in a classic toy that has
fascinated people for centuries, now generally known as the “Chinese ring puzzle”
in English, although Englishmen used to call it the “tiring irons.” Figure 31
shows a seven-ring example. The challenge is to remove the rings from the bar,
and the rings are interlocked in such a way that only two basic types of move are
possible (although this may not be immediately apparent from the illustration):
a) The rightmost ring can be removed or replaced at any time;
b) Any other ring can be removed or replaced if and only if the ring to its right

is on the bar and all rings to the right of that one are off.
We can represent the current state of the puzzle in binary notation, writing 1
if a ring is on the bar and 0 if it is off; thus Fig. 31 shows the rings in state
1011000. (The second ring from the left is encoded as 0, because it lies entirely
above the bar.)

Fig. 31.
The Chinese ring puzzle.

A French magistrate named Louis Gros demonstrated an explicit connection
between Chinese rings and binary numbers, in a booklet called Théorie du Bague-
nodier [sic] (Lyon: Aimé Vingtrinier, 1872) that was published anonymously.
If the rings are in state an−1 . . . a0, and if we define the binary number k =
(bn−1 . . . b0)2 by Eq. (8), he showed that exactly k more steps are necessary and
sufficient to solve the puzzle. Thus Gros is the true inventor of Gray binary code.

Certainly no home should be without
this fascinating, historic, and instructive puzzle.

— HENRY E. DUDENEY (1901)

When the rings are in any state other than 00 . . . 0 or 10 . . . 0, exactly two
moves are possible, one of type (a) and one of type (b). Only one of these moves
advances toward the desired goal; the other is a step backward that will need to
be undone. A type (a) move changes k to k ⊕ 1; thus we want to do it when k
is odd, since this will decrease k. A type (b) move from a position that ends in
(10j−1)2 for 1 ≤ j < n changes k to k⊕(1j+1)2 = k⊕(2j+1−1). [In this formula
‘1j+1’ stands for j + 1 repetitions of ‘1’, but ‘2j+1’ denotes a power of 2.] When

* Some authors have asserted that Gray code was invented by Elisha Gray, who developed a
printing telegraph machine at the same time as Baudot and Schäffler. Such claims are untrue,
although Elisha did get a raw deal with respect to priority for inventing the telephone [see
L. W. Taylor, Amer. Physics Teacher 5 (1937), 243–251].

From the Library of Melissa Nuno



ptg999

286 COMBINATORIAL SEARCHING 7.2.1.1

k is even, we want k ⊕ (2j+1 − 1) to equal k − 1, which means that k must be a
multiple of 2j but not a multiple of 2j+1; in other words,

j = ρ(k), (13)
where ρ is the “ruler function” of Eq. 7.1.3–(44). Therefore the rings follow a nice
pattern when the puzzle is solved properly: If we number them 0, 1, . . . , n − 1
(starting at the free end), the sequence of ring moves on or off the bar is the
sequence of numbers that ends with . . . , ρ(4), ρ(3), ρ(2), ρ(1).

Going backwards, starting with 00 . . . 0 and successively putting rings on or
off until we reach the ultimate state 10 . . . 0 (which, as John Wallis observed in
1693, is more difficult to reach than the supposedly harder state 11 . . . 1), yields
an algorithm for counting in Gray binary code:

Algorithm G (Gray binary generation). This algorithm visits all binary n-
tuples (an−1, . . . , a1, a0) by starting with (0, . . . , 0, 0) and changing only one bit
at a time, also maintaining a parity bit a∞ such that

a∞ = an−1 ⊕ · · · ⊕ a1 ⊕ a0. (14)

It successively complements bits ρ(1), ρ(2), ρ(3), . . . , ρ(2n− 1) and then stops.
G1. [Initialize.] Set aj ← 0 for 0 ≤ j < n; also set a∞ ← 0.
G2. [Visit.] Visit the n-tuple (an−1, . . . , a1, a0).
G3. [Change parity.] Set a∞ ← 1− a∞.
G4. [Choose j.] If a∞ = 1, set j ← 0. Otherwise let j ≥ 1 be minimum such

that aj−1 = 1. (After the kth time we have performed this step, j = ρ(k).)
G5. [Complement coordinate j.] Terminate if j = n; otherwise set aj ← 1− aj

and return to G2.

The parity bit a∞ comes in handy if we are computing a sum like

X000 −X001 −X010 +X011 −X100 +X101 +X110 −X111
or

X∅ −Xa −Xb +Xab −Xc +Xac +Xbc −Xabc,

where the sign depends on the parity of a binary string or the number of elements
in a subset. Such sums arise frequently in “inclusion-exclusion” formulas such
as Eq. 1.3.3–(29). The parity bit is also necessary, for efficiency: Without it we
could not easily choose between the two ways of determining j, which correspond
to performing a type (a) or type (b) move in the Chinese ring puzzle. But the
most important feature of Algorithm G is that step G5 makes only a single
coordinate change. Therefore only a simple change is usually needed to the
terms X that we are summing, or to whatever other structures we are concerned
with as we visit each n-tuple.

It is impossible, of course, to remove all ambiguity in the lowest-order digit
except by a scheme like one the Irish railways are said to have used

of removing the last car of every train
because it is too susceptible to collision damage.

— G. R. STIBITZ and J. A. LARRIVEE, Mathematics and Computers (1957)

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 287

Fig. 32. Walsh functions wk(x) for
0 ≤ k < 8, with the analogous trigo-
nometric functions

√
2 cos kπx shown

in gray for comparison.

w (x)0

w (x)1

w (x)2

w (x)3

w (x)4

w (x)5

w (x)6

w (x)7

x = 0 x = 1
4

x = 1
2

x = 3
4 x = 1

Another key property of Gray binary code was discovered by J. L. Walsh
in connection with an important sequence of functions now known as Walsh
functions [see Amer. J. Math. 45 (1923), 5–24]. Let w0(x) = 1 for all real
numbers x, and

wk(x) = (−1)⌊2x⌋⌈k/2⌉w⌊k/2⌋(2x), for k > 0. (15)

For example, w1(x) = (−1)⌊2x⌋ changes sign whenever x is an integer or an
integer plus 1

2 . It follows that wk(x) = wk(x+ 1) for all k, and that wk(x) = ±1
for all x. More significantly, wk(0) = 1 and wk(x) has exactly k sign changes in
the interval (0 . . 1), so that it approaches (−1)k as x approaches 1 from the left.
Therefore wk(x) behaves rather like a trigonometric function cos kπx or sin kπx,
and we can represent other functions as a linear combination of Walsh functions
in much the same way as they are traditionally represented as Fourier series. This
fact, together with the simple discrete nature of wk(x), makes Walsh functions
extremely useful in computer calculations related to information transmission,
image processing, and many other applications.

Figure 32 shows the first eight Walsh functions together with their trigono-
metric cousins. Engineers commonly call wk(x) the Walsh function of sequency
k, by analogy with the fact that cos kπx and sin kπx have frequency k/2. [See,
for example, the book Sequency Theory: Foundations and Applications (New
York: Academic Press, 1977), by H. F. Harmuth.]

From the Library of Melissa Nuno



ptg999

288 COMBINATORIAL SEARCHING 7.2.1.1

Although Eq. (15) may look formidable at first glance, it actually provides an
easy way to see by induction why wk(x) has exactly k sign changes as claimed. If
k is even, say k = 2l, we have w2l(x) = wl(2x) for 0 ≤ x < 1

2 ; the effect is simply
to compress the function wl(x) into half the space, so w2l(x) has accumulated
l sign changes so far. Then w2l(x) = (−1)lwl(2x) = (−1)lwl(2x − 1) in the
range 1

2 ≤ x < 1; this concatenates another copy of wl(2x), flipping the sign if
necessary to avoid a sign change at x = 1

2 . The function w2l+1(x) is similar, but
it forces a sign change when x = 1

2 .
What does this have to do with Gray binary code? Walsh discovered that

his functions could all be expressed neatly in terms of simpler functions called
Rademacher functions [Hans Rademacher, Math. Annalen 87 (1922), 112–138],

rk(x) = (−1)⌊2kx⌋, (16)

which take the value (−1)c−k when (. . . c2c1c0.c−1c−2 . . . )2 is the binary represen-
tation of x. Indeed, we have w1(x) = r1(x), w2(x) = r1(x)r2(x), w3(x) = r2(x),
and in general

wk(x) =

j≥0

rj+1(x)bj⊕bj+1 when k = (. . . b2b1b0)2. (17)

(See exercise 33.) Thus the exponent of rj+1(x) in wk(x) is the jth bit of the
Gray binary number g(k), according to (7), and we have

wk(x) = rρ(k)+1(x)wk−1(x), for k > 0. (18)

Equation (17) implies the handy formula

wk(x)wk′(x) = wk⊕k′(x), (19)

which is much simpler than the corresponding product formulas for sines and
cosines. This identity follows easily because rj(x)2 = 1 for all j and x, hence
rj(x)a⊕b = rj(x)a+b. It implies in particular that wk(x) is orthogonal to wk′(x)
when k ̸= k′, in the sense that the average value of wk(x)wk′(x) is zero. We also
can use (17) to define wk(x) for fractional values of k like 1/2 or 13/8.

The Walsh transform of 2n numbers (X0, . . . , X2n−1) is the vector defined by
the equation (x0, . . . , x2n−1)T = Wn(X0, . . . , X2n−1)T , where Wn is the 2n × 2n
matrix having wj(k/2n) in row j and column k, for 0 ≤ j, k < 2n. For example,
Fig. 32 tells us that the Walsh transform when n = 3 is

x000
x001
x010
x011
x100
x101
x110
x111


=



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1





X000
X001
X010
X011
X100
X101
X110
X111


. (20)

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 289

(Here 1 stands for −1, and the subscripts are conveniently regarded as binary
strings 000–111 instead of as the integers 0–7.) The Hadamard transform is
defined similarly, but with the matrix Hn in place of Wn, where Hn has (−1)j·k
in row j and column k; here ‘j ·k’ denotes the dot product an−1bn−1 + · · ·+a0b0
of the binary representations j = (an−1 . . . a0)2 and k = (bn−1 . . . b0)2. For
example, the Hadamard transform for n = 3 is

x′000
x′001
x′010
x′011
x′100
x′101
x′110
x′111


=



1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1





X000
X001
X010
X011
X100
X101
X110
X111


. (21)

This is the same as the discrete Fourier transform on an n-dimensional cube,
Eq. 4.6.4–(38), and we can evaluate it quickly “in place” by adapting the method
of Yates discussed in Section 4.6.4:
Given First step Second step Third step
X000 X000+X001 X000+X001+X010+X011 X000+X001+X010+X011+X100+X101+X110+X111

X001 X000−X001 X000−X001+X010−X011 X000−X001+X010−X011+X100−X101+X110−X111

X010 X010+X011 X000+X001−X010−X011 X000+X001−X010−X011+X100+X101−X110−X111

X011 X010−X011 X000−X001−X010+X011 X000−X001−X010+X011+X100−X101−X110+X111

X100 X100+X101 X100+X101+X110+X111 X000+X001+X010+X011−X100−X101−X110−X111

X101 X100−X101 X100−X101+X110−X111 X000−X001+X010−X011−X100+X101−X110+X111

X110 X110+X111 X100+X101−X110−X111 X000+X001−X010−X011−X100−X101+X110+X111

X111 X110−X111 X100−X101−X110+X111 X000−X001−X010+X011−X100+X101+X110−X111

Notice that the rows of H3 are a permutation of the rows of W3. This is true in
general, so we can obtain the Walsh transform by permuting the elements of the
Hadamard transform. Exercise 36 discusses the details.

Going faster. When we’re running through 2n possibilities, we usually want
to reduce the computation time as much as possible. Algorithm G needs to
complement only one bit aj per visit to (an−1, . . . , a0), but it loops in step G4
while choosing an appropriate value of j. Another approach has been suggested
by Gideon Ehrlich [JACM 20 (1973), 500–513], who introduced the notion of
loopless combinatorial generation: With a loopless algorithm, the number of
operations performed between successive visits is required to be bounded in
advance, so there never is a long wait before a new pattern has been generated.

We learned some tricks in Section 7.1.3 about quick ways to determine the
number of leading or trailing 0s in a binary number. Those methods could be
used in step G4 to make Algorithm G loopless, assuming that n isn’t unreason-
ably large. But Ehrlich’s method is quite different, and much more versatile,
so it provides us with a new weapon in our arsenal of techniques for efficient
computation. Here is how his approach can be used to generate binary n-tuples
[see Bitner, Ehrlich, and Reingold, CACM 19 (1976), 517–521]:

From the Library of Melissa Nuno



ptg999

290 COMBINATORIAL SEARCHING 7.2.1.1

Algorithm L (Loopless Gray binary generation). This algorithm, like Algo-
rithm G, visits all binary n-tuples (an−1, . . . , a0) in the order of the Gray binary
code. But instead of maintaining a parity bit, it uses an array of “focus pointers”
(fn, . . . , f0), whose significance is discussed below.
L1. [Initialize.] Set aj ← 0 and fj ← j for 0 ≤ j < n; also set fn ← n. (A

loopless algorithm is allowed to have loops in its initialization step, as long
as the initial setup is reasonably efficient; after all, every program needs to
be loaded and launched.)

L2. [Visit.] Visit the n-tuple (an−1, . . . , a1, a0).
L3. [Choose j.] Set j ← f0, f0 ← 0. (If this is the kth time we are performing

the present step, j is now equal to ρ(k).) Terminate if j = n; otherwise set
fj ← fj+1 and fj+1 ← j + 1.

L4. [Complement coordinate j.] Set aj ← 1− aj and return to L2.

For example, the computation proceeds as follows when n = 4. Elements aj have
been underlined in this table if the corresponding bit bj is 1 in the binary string
b3b2b1b0 such that a3a2a1a0 = g(b3b2b1b0):

a3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
a2 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
a1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
a0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
f3 3 3 3 3 3 3 3 3 4 4 4 4 3 3 3 3
f2 2 2 2 2 3 3 2 2 2 2 2 2 4 4 2 2
f1 1 1 2 1 1 1 3 1 1 1 2 1 1 1 4 1
f0 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Although the binary number k = (bn−1 . . . b0)2 never appears explicitly in Al-
gorithm L, the focus pointers fj represent it implicitly in a clever way, so that
we can repeatedly form g(k) = (an−1 . . . a0)2 by complementing bit aρ(k) as we
should. Let’s say that aj is passive when it is underlined, active otherwise. Then
the focus pointers satisfy the following invariant relations:
1) If aj is passive and aj−1 is active, then fj is the smallest index j′ > j such

that aj′ is active. (Bits an and a−1 are considered to be active for purposes
of this rule, although they aren’t really present in the algorithm.)

2) Otherwise fj = j.
Thus, the rightmost element aj of a block of passive elements ai−1 . . . aj+1aj ,
with decreasing subscripts, has a focus fj that points to the element ai just to
the left of that block. All other elements aj have fj pointing to themselves.

In these terms, the first two operations ‘j ← f0, f0 ← 0’ in step L3 are
equivalent to saying, “Set j to the index of the rightmost active element, and
activate all elements to the right of aj .” Notice that if f0 = 0, the operation
f0 ← 0 is redundant; but it doesn’t do any harm. The other two operations of L3,
‘fj ← fj+1, fj+1 ← j + 1’, are equivalent to saying, “Make aj passive,” because
we know that aj and aj−1 are both active at this point in the computation.

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 291

(Again the operation fj+1 ← j + 1 might be harmlessly redundant.) The net
effect of activation and passivation is therefore equivalent to counting in binary
notation, as in Algorithm M, with 1-bits passive and 0-bits active.

Algorithm L is almost blindingly fast, because it does only five assignment
operations and one test for termination between each visit to a generated n-tuple.
But we can do even better. In order to see how, let’s consider an application
to recreational linguistics: Rudolph Castown, in Word Ways 1 (1968), 165–
169, noted that all 16 of the ways to intermix the letters of sins with the
corresponding letters of fate produce words that are found in a sufficiently large
dictionary of English: sine, sits, site, etc.; and all but three of those words
(namely fane, fite, and sats) are sufficiently common as to be unquestionably
part of standard English. Therefore it is natural to ask the analogous question
for five-letter words: What two strings of five letters will produce the maximum
number of words in the Stanford GraphBase, when letters in corresponding
positions are swapped in all 32 possible ways?

To answer this question, we need not examine all
26

2
5 = 3,625,908,203,125

essentially different pairs of strings; it suffices to look at all
5757

2


= 16,568,646
pairs of words in the GraphBase, provided that at least one of those pairs
produces at least 17 words, because every set of 17 or more five-letter words
obtainable from two five-letter strings must contain two that are “antipodal”
(with no corresponding letters in common). For every antipodal pair, we want
to determine as rapidly as possible whether the 32 possible subset-swaps produce
a significant number of English words.

Every 5-letter word can be represented as a 25-bit number using 5 bits per
letter, from "a" = 00000 to "z" = 11001. A table of 225 bits or bytes will then
determine quickly whether a given five-letter string is a word. So the problem
is reduced to generating the bit patterns of the 32 potential words obtainable
by mixing the letters of two given words, and looking those patterns up in the
table. We can proceed as follows, for each pair of 25-bit words w and w′:
W1. [Check the difference.] Set z ← w ⊕ w′. Reject the word pair (w,w′) if

m′ & (z −m) & m̄ ̸= 0, where m = 220 + 215 + 210 + 25 + 1 and m′ = 24m;
this test eliminates cases where w and w′ have a common letter in some
position. (See 7.1.3–(90). It turns out that 10,614,085 of the 16,568,646
word pairs have no such common letters.)

W2. [Form individual masks.] Set m0 ← z & (25 − 1), m1 ← z & (210 − 25),
m2 ← z & (215 − 210), m3 ← z & (220 − 215), and m4 ← z & (225 − 220), in
preparation for the next step.

W3. [Count words.] Set l← 1 and A0 ← w; the variable l will count how many
words starting with w we have found so far. Then perform the operations
swap(4) defined below.

W4. [Print a record-setting solution.] If l exceeds or equals the current maxi-
mum, print Aj for 0 ≤ j < l.

The heart of this high-speed method is the sequence of operations swap(4), which
should be expanded inline (for example with a macro-processor) to eliminate all

From the Library of Melissa Nuno



ptg999

292 COMBINATORIAL SEARCHING 7.2.1.1

unnecessary overhead. It is defined in terms of the basic operation

sw(j): Set w ← w ⊕mj . Then if w is a word, set Al ← w and l← l + 1.

Given sw(j), which flips the letters in position j, we define

swap(0) = sw(0);
swap(1) = swap(0), sw(1), swap(0);
swap(2) = swap(1), sw(2), swap(1);
swap(3) = swap(2), sw(3), swap(2);
swap(4) = swap(3), sw(4), swap(3).

(22)

Thus swap(4) expands into a sequence of 31 steps sw(0), sw(1), sw(0), sw(2),
. . . , sw(0) = sw(ρ(1)), sw(ρ(2)), . . . , sw(ρ(31)); these steps will be used 10
million times. We clearly gain speed by embedding the ruler function values
ρ(k) directly into our program, instead of recomputing them repeatedly for each
word pair via Algorithm M, G, or L.

The winning pair of words generates a set of 21, namely
ducks , ducky , duces , dunes , dunks , dinks , dinky ,
dines , dices , dicey , dicky , dicks , picks , picky ,
pines , piney , pinky , pinks , punks , punky , pucks .

(23)

If, for example, w = ducks and w′ = piney, then m0 = s ⊕ y, so the first
operation sw(0) changes ducks to ducky, which is seen to be a word. The next
operation sw(1) applies m1, which is k⊕ e in the next-to-last letter position, so
it produces the nonword ducey. Another application of sw(0) changes ducey to
duces (a legal term generally followed by the word tecum). And so on. All word
pairs can be processed by this method in at most a few seconds.

Further streamlining is also possible. For example, once we have found
a pair that yields k words, we can reject later pairs as soon as they generate
33 − k nonwords. But the method we’ve discussed is already quite fast, and it
demonstrates the fact that even the loopless Algorithm L can be beaten.

Fans of Algorithm L may, of course, complain that we have speeded up
the process only in the small special case n = 5, while Algorithm L solves the
generation problem for n in general. A similar idea does, however, work also
for general values of n > 5: We can expand out a program so that it rapidly
generates all 32 settings of the rightmost bits a4a3a2a1a0, as above; then we can
apply Algorithm L after every 32 steps, using it to generate successive changes
to the other bits an−1 . . . a5. This approach reduces the amount of unnecessary
work done by Algorithm L by nearly a factor of 32.

Other binary Gray codes. The Gray binary code g(0), g(1), . . . , g(2n− 1) is
only one of many ways to traverse all possible n-bit strings while changing only
a single bit at each step. Let us say that, in general, a “Gray cycle” on binary
n-tuples is any sequence (v0, v1, . . . , v2n−1) that includes every n-tuple and has
the property that vk differs from v(k+1) mod 2n in just one bit position. Thus,
in the terminology of graph theory, a Gray cycle is an oriented Hamiltonian

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 293

Fig. 33.

00
00

000
∗

0001

00∗1
0011
001∗00100∗100110

0
1 ∗

0

0
1
0
0

0
1
0 ∗

0
1
0
1

0
1∗

1
0111

∗111

1111

111∗

1110

11∗0
1100
110

∗ 11
01 1∗

01 10
01 1
0∗

1

1
0
1
1

1
0
1
∗

1
0
1
0

1
0
∗ 0

10
00

∗0
00

(a) Complementary Gray code.

00
00

000
∗

0001

00∗1
0011
001∗00100∗100110

0
1
1 ∗

0
1
1
1

∗
1
1
1

1
1
1
1

1∗
1
1

1011
10∗1

1001

1∗01

1101

∗101
0101
010

∗ 01
00 ∗1

00 11
00 1
1∗

0

1
1
1
0

1
∗ 1

0
1
0
1
0

1
0
∗ 0

10
00

∗0
00

(b) Balanced Gray code.

cycle on the n-cube. We can assume that subscripts have been chosen so that
v0 = 0 . . . 0.

If we think of the v’s as binary numbers, there are integers δ0 . . . δ2n−1 such
that

v(k+1) mod 2n = vk ⊕ 2δk , for 0 ≤ k < 2n; (24)
this so-called “delta sequence” is another way to describe a Gray cycle. For
example, the delta sequence for standard Gray binary when n = 3 is 01020102;
it is essentially the ruler function δk = ρ(k+ 1) of (13), but the final value δ2n−1
is n− 1 instead of n, so that the cycle closes. The individual elements δk always
lie in the range 0 ≤ δk < n, and they are called “coordinates.”

Let d(n) be the number of different delta sequences that define an n-bit
Gray cycle, and let c(n) be the number of “canonical” delta sequences in which
each coordinate k appears before the first appearance of k + 1. Then d(n) =
n! c(n), because every permutation of the coordinate numbers in a delta sequence
obviously produces another delta sequence. The only possible canonical delta
sequences for n ≤ 3 are easily seen to be

00; 0101; 01020102 and 01210121. (25)

Therefore c(1) = c(2) = 1, c(3) = 2; d(1) = 1, d(2) = 2, and d(3) = 12. A
straightforward computer calculation, using techniques for the enumeration of
Hamiltonian cycles that we will study later, establishes the next values,

c(4) = 112;
c(5) = 15,109,096;

d(4) = 2688;
d(5) = 1,813,091,520.

(26)

No simple pattern is evident, and the numbers grow quite rapidly (see exer-
cise 47); therefore it’s a fairly safe bet that nobody will ever know the exact
values of c(8) and d(8).

Since the number of possibilities is so huge, people have been encouraged
to look for Gray cycles that have additional useful properties. For example,
Fig. 33(a) shows a 4-bit Gray cycle in which every string a3a2a1a0 is diametrically
opposite to its complement a3a2a1a0. Such coding schemes are possible whenever
the number of bits is even (see exercise 49).

From the Library of Melissa Nuno



ptg999

294 COMBINATORIAL SEARCHING 7.2.1.1

An even more interesting Gray cycle, found by G. C. Tootill [Proc. IEE 103,
Part B Supplement (1956), 435], is shown in Fig. 33(b). This one has the same
number of changes in each of the four coordinate tracks, hence all coordinates
share equally in the activities. Gray cycles that are balanced in a similar way can
in fact be constructed for all larger values of n, by using the following versatile
method to extend a cycle from n bits to n+ 2 bits:

Theorem D. Let α1j1α2j2 . . . αljl be a delta sequence for an n-bit Gray cycle,
where each jk is a single coordinate, each αk is a possibly empty sequence of
coordinates, and l is odd. Then

α1(n+1)αR
1 nα1

j1α2nα
R
2 (n+1)α2 j2α3(n+1)αR

3 nα3 . . . jl−1αl(n+1)αR
l nαl

(n+1)αR
l jl−1α

R
l−1 . . . α

R
2 j1α

R
1 n

(27)

is the delta sequence of an (n+ 2)-bit Gray cycle.

For example, if we start with the sequence 01020102 for n = 3 and let the three
underlined elements be j1, j2, j3, the new sequence (27) for a 5-bit cycle is

01410301020131024201043401020103. (28)

Proof. Let αk have length mk and let vkt be the vertex reached if we start at
0 . . . 0 and apply the coordinate changes α1j1 . . . αk−1jk−1 and the first t of αk.
We need to prove that all vertices 00vkt, 01vkt, 10vkt, and 11vkt occur when (27)
is used, for 1 ≤ k ≤ l and 0 ≤ t ≤ mk. (The leftmost coordinate is n+1.)

Starting with 000 . . . 0 = 00v10, we proceed to obtain the vertices

00v11, . . . , 00v1m1 , 10v1m1 , . . . , 10v10, 11v10, . . . , 11v1m1 ;

then j1 yields 11v20, which is followed by

11v21, . . . , 11v2m2 , 10v2m2 , . . . , 10v20, 00v20, . . . , 00v2m2 ;

then comes 00v30, etc., and we eventually reach 11vlml
. The glorious finale then

uses the third line of (27) to generate all the missing vertices 01vlml
, . . . , 01v10

and take us back to 000 . . . 0.

The transition counts (c0, . . . , cn−1) of a delta sequence are defined by letting
cj be the number of times δk = j. For example, (28) has transition counts
(12, 8, 4, 4, 4), and it arose from a sequence with transition counts (4, 2, 2). If we
choose the original delta sequence carefully and underline appropriate elements
jk, we can obtain transition counts that are as equal as possible:

Corollary B. For all n ≥ 1, there is an n-bit Gray cycle with transition counts
(c0, c1, . . . , cn−1) that satisfy the condition

|cj − ck | ≤ 2 for 0 ≤ j < k < n. (29)

(This is the best possible balance condition, because each cj must be an even
number, and we must have c0 + c1 + · · · + cn−1 = 2n. Indeed, condition (29)

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 295

holds if and only if n− r of the counts are equal to 2q and r are equal to 2q+ 2,
where q = ⌊2n−1/n⌋ and r = 2n−1 mod n.)
Proof. Given a delta sequence for an n-bit Gray cycle with transition counts
(c0, . . . , cn−1), the counts for cycle (27) are obtained by starting with the values
(c′0, . . . , c′n−1, c

′
n, c

′
n+1) = (4c0, . . . , 4cn−1, l+1, l+1), then subtracting 2 from c′jk

for 1 ≤ k < l and subtracting 4 from c′jl . For example, when n = 3 we can obtain
a balanced 5-bit Gray cycle having transition counts (8 − 2, 16 − 10, 8, 6, 6) =
(6, 6, 8, 6, 6) if we apply Theorem D to the delta sequence 01210121. Exercise 51
works out the details for other values of n.

Another important class of n-bit Gray cycles in which each of the coordinate
tracks has equal responsibility arises when we consider run lengths, namely the
distances between consecutive appearances of the same δ value. Standard Gray
binary code has run length 2 in the least significant position, and this can lead to
a loss of accuracy when precise measurements need to be made [see, for example,
the discussion by G. M. Lawrence and W. E. McClintock, Proc. SPIE 2831
(1996), 104–111]. But all runs have length 4 or more in the remarkable 5-bit
Gray cycle whose delta sequence is

(0123042103210423)2. (30)

Let r(n) be the maximum value r such that an n-bit Gray cycle can be
found in which all runs have length ≥ r. Clearly r(1) = 1, and r(2) = r(3) =
r(4) = 2; and it is easy to see that r(n) must be less than n when n > 2, hence
(30) proves that r(5) = 4. Exhaustive computer searches establish the values
r(6) = 4 and r(7) = 5. Indeed, a fairly straightforward backtrack calculation
for the case n = 7 needs a tree of only about 60 million nodes to determine
that r(7) < 6, and exercise 61(a) constructs a 7-bit cycle with no run shorter
than 5. The exact values of r(n) are unknown for n ≥ 8; but r(10) is almost
certainly 8, and interesting constructions are known by which we can prove that
r(n) = n−O(logn) as n→∞. (See exercises 60–64.)

*Binary Gray paths. We have defined an n-bit Gray cycle as a way to arrange
all binary n-tuples into a sequence (v0, v1, . . . , v2n−1) with the property that
vk is adjacent to vk+1 in the n-cube for 0 ≤ k < 2n − 1, and such that v2n−1
is also adjacent to v0. The cyclic property is nice, but not always essential;
sometimes we can do better without it. Therefore we say that an n-bit Gray path,
also commonly called a Gray code, is any sequence that satisfies the conditions
of a Gray cycle except that the last element need not be adjacent to the first. In
other words, a Gray cycle is a Hamiltonian cycle on the vertices of the n-cube,
but a Gray code is simply a Hamiltonian path on that graph.

The most important binary Gray paths that are not also Gray cycles are
n-bit sequences (v0, v1, . . . , v2n−1) that are monotonic, in the sense that

ν(vk) ≤ ν(vk+2) for 0 ≤ k < 2n− 2. (31)

(Here, as elsewhere, we use ν to denote the “weight” or the “sideways sum” of a
binary string, namely the number of 1s that it has.) Trial and error shows that

From the Library of Melissa Nuno



ptg999

296 COMBINATORIAL SEARCHING 7.2.1.1

(a) (b) (c) (d) (e) (f) (g)

Fig. 34. Examples of
8-bit Gray codes:

a) standard;
b) balanced;
c) complementary;
d) long-run;
e) nonlocal;
f) monotonic;
g) trend-free.

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 297

there are essentially only two monotonic n-bit Gray codes for each n ≤ 4, one
starting with 0n and the other starting with 0n−11. The two for n = 3 are

000, 001, 011, 010, 110, 100, 101, 111; (32)
001, 000, 010, 110, 100, 101, 111, 011. (33)

The two for n = 4 are slightly less obvious, but not really difficult to discover.
Since ν(vk+1) = ν(vk) ± 1 whenever vk is adjacent to vk+1, we obviously

can’t strengthen (31) to the requirement that all n-tuples be strictly sorted by
weight. But relation (31) is strong enough to determine the weight of each vk,
given k and the weight of v0, because we know that exactly


n
j


of the n-tuples

have weight j.
Figure 34 summarizes our discussions so far, by illustrating seven of the

zillions of Gray codes that make a grand tour through all 256 of the possible
8-bit bytes. Black squares represent ones and white squares represent zeros.
Figure 34(a) is the standard Gray binary code, while Fig. 34(b) is balanced with
exactly 256/8 = 32 transitions in each coordinate position. Figure 34(c) is a Gray
code analogous to Fig. 33(a), in which the bottom 128 codes are complements
of the top 128. In Fig. 34(d), the transitions in each coordinate position never
occur closer than five steps apart; in other words, all run lengths are at least 5.
The cycle in Fig. 34(e) is nonlocal in the sense of exercise 59. A monotonic path
for n = 8 appears in Fig. 34(f); notice how black it gets near the bottom. Finally,
Fig. 34(g) illustrates a Gray code that is totally nonmonotonic, in the sense that
the center of gravity of the black squares lies exactly at the halfway point in each
column. Standard Gray binary code has this property in seven of the coordinate
positions, but Fig. 34(g) achieves perfect black-white weight balance in all eight.
Such codes are called trend-free; they are important in the design of agricultural
and other experiments (see exercises 75 and 76).

Carla Savage and Peter Winkler [J. Combinatorial Theory A70 (1995), 230–
248] found an elegant way to construct monotonic binary Gray codes for all n > 0.
Such paths are necessarily built from subpaths Pnj in which all transitions are
between n-tuples of weights j and j + 1. Savage and Winkler defined suitable
subpaths recursively by letting P10 = 0, 1 and, for all n > 0,

P(n+1)j = 1Pπn

n(j−1), 0Pnj ; (34)
Pnj = ∅ if j < 0 or j ≥ n. (35)

Here πn is a permutation of the coordinates that we will specify later, and the
notation Pπ means that every element an−1 . . . a1a0 of the sequence P is replaced
by bn−1 . . . b1b0, where bjπ = aj . (We don’t define Pπ by letting bj = ajπ,
because we want (2j)π to be 2jπ.) It follows, for example, that

P20 = 0P10 = 00, 01 (36)

because P1(−1) is vacuous; also

P21 = 1Pπ1
10 = 10, 11 (37)

From the Library of Melissa Nuno



ptg999

298 COMBINATORIAL SEARCHING 7.2.1.1

because P11 is vacuous and π1 must be the identity permutation. In general,
Pnj is a sequence of n-bit strings containing exactly


n−1
j


strings of weight j

interleaved with

n−1
j


strings of weight j + 1.

Let αnj and ωnj be the first and last elements of Pnj . Then we easily find

ωnj = 0n−j−11j+1, for 0 ≤ j < n; (38)
αn0 = 0n, for n > 0; (39)
αnj = 1απn−1

(n−1)(j−1), for 1 ≤ j < n. (40)

In particular, αnj always has weight j, and ωnj always has weight j+ 1. We will
define permutations πn of {0, 1, . . . , n− 1} so that both of the sequences

Pn0, P
R
n1, Pn2, P

R
n3, . . . (41)

and PR
n0, Pn1, P

R
n2, Pn3, . . . (42)

are monotonic binary Gray paths for n = 1, 2, 3, . . . . In fact, the monotonicity
is clear, so only the Grayness is in doubt; and the sequences (41), (42) link up
nicely because the adjacencies

αn0−−−αn1−−−· · ·−−−αn(n−1), ωn0−−−ωn1−−−· · ·−−−ωn(n−1) (43)

follow immediately from (34), regardless of the permutations πn. Thus the
crucial point is the transition at the comma in formula (34), which makes P(n+1)j
a Gray subpath if and only if

ωπn

n(j−1) = αnj for 0 < j < n. (44)

For example, when n = 2 and j = 1 we need (01)π2 = α21 = 10, by (38)–
(40); hence π2 must transpose coordinates 0 and 1. The general formula (see
exercise 71) turns out to be

πn = σnπ
2
n−1, (45)

where σn is the n-cycle (n−1 . . . 1 0). The first few cases are therefore

π1 = (0),
π2 = (0 1),
π3 = (0 2 1),

π4 = (0 3),
π5 = (0 4 3 2 1),
π6 = (0 5 2 4 1 3);

no simple “closed form” for the magic permutations πn is apparent. Exercise 73
shows that the Savage–Winkler codes can be generated efficiently.

Nonbinary Gray codes. We have studied the case of binary n-tuples in
great detail, because it is the simplest, most classical, most applicable, and
most thoroughly explored part of the subject. But of course there are numerous
applications in which we want to generate (a1, . . . , an) with integer components
in the more general ranges 0 ≤ aj < mj , as in Algorithm M. Gray codes apply
nicely to this case as well.

Consider, for example, decimal digits, where we want 0 ≤ aj < 10 for
each j. Is there a decimal way to count that is analogous to the Gray binary
code, changing only one digit at a time? Yes; in fact, two natural schemes are

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 299

available. In the first, called reflected Gray decimal, the sequence for counting
up to a thousand with 3-digit strings has the form

000, 001, . . . , 009, 019, 018, . . . , 011, 010, 020, 021, . . . , 091, 090, 190, 191, . . . , 900,

with each component moving alternately from 0 up to 9 and then back down from
9 to 0. In the second, called modular Gray decimal, the digits always increase
by 1 mod 10, therefore they “wrap around” from 9 to 0:

000, 001, . . . , 009, 019, 010, . . . , 017, 018, 028, 029, . . . , 099, 090, 190, 191, . . . , 900.

In both cases the digit that changes on step k is determined by the radix-ten
ruler function ρ10(k), the largest power of 10 that divides k. Therefore each
n-tuple of digits occurs exactly once: We generate 10j different settings of the
rightmost j digits before changing any of the others, for 1 ≤ j ≤ n.

In general, the reflected Gray code in any mixed-radix system can be re-
garded as a permutation of the nonnegative integers, a function that maps an
ordinary mixed-radix number

k =

bn−1,

mn−1,

. . . ,

. . . ,

b1,

m1,

b0

m0


= bn−1mn−2 . . .m1m0 + · · ·+ b1m0 + b0 (46)

into its reflected-Gray equivalent

ĝ(k) =

an−1,

mn−1,

. . . ,

. . . ,

a1,

m1,

a0

m0


= an−1mn−2 . . .m1m0 + · · ·+ a1m0 + a0, (47)

just as (7) does this in the special case of binary numbers. Let

Aj =

an−1,

mn−1,

. . . ,

. . . ,

aj
mj


, Bj =


bn−1,

mn−1,

. . . ,

. . . ,

bj
mj


, (48)

with An = Bn = 0, so that when 0 ≤ j < n we have

Aj = mjAj+1 + aj and Bj = mjBj+1 + bj . (49)

The rule connecting the a’s and b’s is not difficult to derive by induction on n−j:

aj =

bj , if Bj+1 is even;
mj − 1− bj , if Bj+1 is odd.

(50)

(Here we are numbering the coordinates of the n-tuples (an−1, . . . , a1, a0) and
(bn−1, . . . , b1, b0) from right to left, for consistency with (7) and the conven-
tions of mixed-radix notation in Eq. 4.1–(9). Readers who prefer notations like
(a1, . . . , an) can change j to n − j in all the formulas if they wish.) Going the
other way, we have

bj =

aj , if aj+1 + aj+2 + · · · is even;
mj − 1− aj , if aj+1 + aj+2 + · · · is odd.

(51)

Curiously, rule (50) and its inverse in (51) are exactly the same when all of the
radicesmj are odd. In Gray ternary code, for example, whenm0 = m1 = · · · = 3,
we have ĝ


(10010211012)3


= (12210211010)3 and also ĝ


(12210211010)3


=

From the Library of Melissa Nuno



ptg999

300 COMBINATORIAL SEARCHING 7.2.1.1

(10010211012)3. Exercise 78 proves (50) and (51), and discusses similar formulas
that hold in the modular case.

We can in fact generate such Gray sequences looplessly, generalizing Algo-
rithms M and L:

Algorithm H (Loopless reflected mixed-radix Gray generation). This algorithm
visits all n-tuples (an−1, . . . , a0) such that 0 ≤ aj < mj for 0 ≤ j < n, changing
only one component by ±1 at each step. It maintains an array of focus pointers
(fn, . . . , f0) to control the actions as in Algorithm L, together with an array of
directions (on−1, . . . , o0). We assume that each radix mj is ≥ 2.
H1. [Initialize.] Set aj ← 0, fj ← j, and oj ← 1, for 0 ≤ j < n; also set fn ← n.
H2. [Visit.] Visit the n-tuple (an−1, . . . , a1, a0).
H3. [Choose j.] Set j ← f0 and f0 ← 0. (As in Algorithm L, j was the rightmost

active coordinate; all elements to its right have now been reactivated.)
H4. [Change coordinate j.] Terminate if j = n; otherwise set aj ← aj + oj .
H5. [Reflect?] If aj = 0 or aj = mj − 1, set oj ← −oj , fj ← fj+1, and

fj+1 ← j + 1. (Coordinate j has thus become passive.) Return to H2.

A similar algorithm generates the modular variation (see exercise 77).

*Subforests. An interesting and instructive generalization of Algorithm H,
discovered by Y. Koda and F. Ruskey [J. Algorithms 15 (1993), 324–340], sheds
further light on the subject of Gray codes and loopless generation. Suppose we
have a forest of n nodes, and we want to visit all of its “principal subforests,”
namely all subsets of nodes S such that if x is in S and x is not a root, the
parent of x is also in S. For example, the 7-node forest has 33 such subsets,
corresponding to the black nodes in the following 33 diagrams:

(52)

Notice that if we read the top row from left to right, the middle row from right
to left, and the bottom row from left to right, the status of exactly one node
changes at each step.

If the given forest consists of degenerate nonbranching trees, the principal
subforests are equivalent to mixed-radix numbers. For example, a forest like

has 3 × 2 × 4 × 2 principal subforests, corresponding to 4-tuples (x1, x2, x3, x4)
such that 0 ≤ x1 < 3, 0 ≤ x2 < 2, 0 ≤ x3 < 4, and 0 ≤ x4 < 2; the value of xj is
the number of nodes selected in the jth tree. When the algorithm of Koda and

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 301

Ruskey is applied to such a forest, it will visit the subforests in the same order
as the reflected Gray code on radices (3, 2, 4, 2).

Algorithm K (Loopless reflected subforest generation). Given a forest whose
nodes are (1, . . . , n) when arranged in postorder, this algorithm visits all binary
n-tuples (a1, . . . , an) such that ap ≥ aq whenever p is a parent of q. (Thus,
ap = 1 means that p is a node in the current subforest.) Exactly one bit aj
changes between one visit and the next. Focus pointers (f0, f1, . . . , fn) analogous
to those of Algorithm L are used together with additional arrays of pointers
(l0, l1, . . . , ln) and (r0, r1, . . . , rn), which represent a doubly linked list called the
“current fringe.” The current fringe contains all nodes of the current subforest
and their children; r0 points to its leftmost node and l0 to its rightmost.

An auxiliary array (c0, c1, . . . , cn) defines the forest as follows: If p has no
children, cp = 0; otherwise cp is the leftmost (smallest) child of p. Also c0 is the
leftmost root of the forest itself. When the algorithm begins, we assume that
rp = q and lq = p whenever p and q are consecutive children of the same family.
Thus, for example, the forest in (52) has the postorder numbering

1

2

3

4 5

6

7

;

therefore we should have (c0, . . . , c7) = (2, 0, 1, 0, 0, 0, 4, 3) and r2 = 7, l7 = 2,
r3 = 6, l6 = 3, r4 = 5, and l5 = 4 at the beginning of step K1 in this case.
K1. [Initialize.] Set aj ← 0 and fj ← j for 1 ≤ j ≤ n, thereby making the initial

subforest empty and all nodes active. Set f0 ← 0, l0 ← n, rn ← 0, r0 ← c0,
and lc0 ← 0, thereby putting all roots into the current fringe.

K2. [Visit.] Visit the subforest defined by (a1, . . . , an).
K3. [Choose p.] Set q ← l0, p← fq. (Now p is the rightmost active node of the

fringe.) Also set fq ← q (thereby activating all nodes to p’s right).
K4. [Check ap.] Terminate the algorithm if p = 0. Otherwise go to K6 if ap = 1.
K5. [Insert p’s children.] Set ap ← 1. Then, if cp ̸= 0, set q ← rp, lq ← p − 1,

rp−1 ← q, rp ← cp, lcp ← p (thereby putting p’s children to the right of p
in the fringe). Go to K7.

K6. [Delete p’s children.] Set ap ← 0. Then, if cp ̸= 0, set q ← rp−1, rp ← q,
lq ← p (thereby removing p’s children from the fringe).

K7. [Make p passive.] (At this point we know that p is active.) Set fp ← f lp
and f lp ← lp. Return to K2.

The reader is encouraged to play through this algorithm on examples like (52),
in order to understand the beautiful mechanism by which the fringe grows and
shrinks at just the right times.

From the Library of Melissa Nuno



ptg999

302 COMBINATORIAL SEARCHING 7.2.1.1

*Shift register sequences. A completely different way to generate all n-tuples of
m-ary digits is also possible: We can generate one digit at a time, and repeatedly
work with the n most recently generated digits, thus passing from one n-tuple
(x0, x1, . . . , xn−1) to another one (x1, . . . , xn−1, xn) by shifting an appropriate
new digit in at the right. For example, Fig. 35 shows how all 5-bit numbers can
be obtained as blocks of 5 consecutive bits in a certain cyclic pattern of length 32.
This general idea has already been discussed in some of the exercises of Sections
2.3.4.2 and 3.2.2, and we now are ready to explore it further.

Fig. 35.
A de Bruijn cycle
for 5-bit numbers.

00
00
0

000
01

00010

00100
01000
100010001100110

01100

1
1
0
0
1

1
0
0
1
0

0
0
1
0
1

0
1
0
1
0

1
0
1
0
0

01001

10011

00111

01110

11101

11010
10101
010

11 10
11
0 01

10
1

11
01
1

1
0
1
1
1

0
1
1
1
1

1
1
1
1
1

1
1
1
1
0

1
1
1
0
0

11
00
0

10
00
0

Algorithm S (Generic shift register generation). This algorithm visits all n-
tuples (a1, . . . , an) such that 0 ≤ aj < m for 1 ≤ j ≤ n, provided that a suitable
function f is used in step S3.
S1. [Initialize.] Set aj ← 0 for −n < j ≤ 0 and k ← 1.
S2. [Visit.] Visit the n-tuple (ak−n, . . . , ak−1). Terminate if k = mn.
S3. [Advance.] Set ak ← f(ak−n, . . . , ak−1), k ← k + 1, and return to S2.

Every function f that makes Algorithm S valid corresponds to a cycle of
mn radix-m digits such that every combination of n digits occurs consecutively
in the cycle. For example, the case m = 2 and n = 5 illustrated in Fig. 35
corresponds to the binary cycle

00000100011001010011101011011111; (53)

and the first m2 digits of the infinite sequence

0011021220313233041424344 . . . (54)

yield an appropriate cycle for n = 2 and arbitrary m. Such cycles are commonly
called m-ary de Bruijn cycles, because N. G. de Bruijn treated the binary case
for arbitrary n in Indagationes Mathematicæ 8 (1946), 461–467.

Exercise 2.3.4.2–23 proves that exactly m!mn−1
/mn functions f have the

required properties. That’s a huge number, but only a few of those functions are
known to be efficiently computable. We will discuss three kinds of f that appear
to be the most useful.

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 303

Table 1
PARAMETERS FOR ALGORITHM A

3 : 1 8 : 1, 5 13 : 1, 3 18 : 7 23 : 5 28 : 3
4 : 1 9 : 4 14 : 1, 11 19 : 1, 5 24 : 1, 3 29 : 2
5 : 2 10 : 3 15 : 1 20 : 3 25 : 3 30 : 1, 15
6 : 1 11 : 2 16 : 2, 3 21 : 2 26 : 1, 7 31 : 3
7 : 1 12 : 3, 4 17 : 3 22 : 1 27 : 1, 7 32 : 1, 27

The entries ‘n : s’ or ‘n : s, t’ mean that the polynomials xn + xs + 1 or xn + (xs + 1)(xt + 1)
are primitive modulo 2. Additional values up to n = 168 have been tabulated by W. Stahnke,
Math. Comp. 27 (1973), 977–980.

The first important case occurs when m is a prime number, and f is the
almost linear recurrence

f(x1, . . . , xn) =


c1, if (x1, x2, . . . , xn) = (0, 0, . . . , 0);
0, if (x1, x2, . . . , xn) = (1, 0, . . . , 0);
(c1x1 + c2x2 + · · ·+ cnxn) modm, otherwise.

(55)

Here the coefficients (c1, . . . , cn) must be such that

xn − cnxn−1 − · · · − c2x− c1 (56)

is a primitive polynomial modulo m, in the sense discussed following Eq. 3.2.2–
(9). The number of such polynomials is φ(mn − 1)/n, large enough to allow us
to find one in which only a few of the c’s are nonzero. [This construction goes
back to a pioneering paper of Willem Mantel, Nieuw Archief voor Wiskunde (2)
1 (1897), 172–184.]

For example, suppose m = 2. We can generate binary n-tuples with a very
simple loopless procedure:

Algorithm A (Almost linear bit-shift generation). This algorithm visits all
n-bit vectors, by using either a special offset s [Case 1] or two special offsets s
and t [Case 2], as found in Table 1.
A1. [Initialize.] Set (x0, x1, . . . , xn−1) ← (1, 0, . . . , 0) and k ← 0, j ← s. In

Case 2, also set i← t and h← s+ t.
A2. [Visit.] Visit the n-tuple (xk−1, . . . , x0, xn−1, . . . , xk+1, xk).
A3. [Test for end.] If xk ̸= 0, set r ← 0; otherwise set r ← r + 1, and go to A6

if r = n− 1. (We have just seen r consecutive zeros.)
A4. [Shift.] Set k ← (k − 1) mod n and j ← (j − 1) mod n. In Case 2 also set

i← (i− 1) mod n and h← (h− 1) mod n.
A5. [Compute a new bit.] Set xk ← xk ⊕ xj [Case 1] or xk ← xk ⊕ xj ⊕ xi ⊕ xh

[Case 2]. Return to A2.
A6. [Finish.] Visit (0, . . . , 0) and terminate.

Appropriate offset parameters s and possibly t almost certainly exist for all n,
because primitive polynomials are so abundant; for example, eight different
choices of (s, t) would work when n = 32, and Table 1 merely lists the smallest.

From the Library of Melissa Nuno



ptg999

304 COMBINATORIAL SEARCHING 7.2.1.1

However, a rigorous proof of existence in all cases lies well beyond the present
state of mathematical knowledge.

Our first construction of de Bruijn cycles, in (55), was algebraic, relying for
its validity on the theory of finite fields. A similar method that works when m
is not a prime number appears in exercise 3.2.2–21. Our next construction, by
contrast, will be purely combinatorial. In fact, it is strongly related to the idea
of modular Gray m-ary codes.
Algorithm R (Recursive de Bruijn cycle generation). Suppose f() is a coroutine
that will output the successive digits of an m-ary de Bruijn cycle of length mn,
beginning with n zeros, when it is invoked repeatedly. This algorithm is a similar
coroutine that outputs a cycle of length mn+1, provided that n ≥ 2. It maintains
three private variables x, y, and t; variable x should initially be zero.
R1. [Output.] Output x. Go to R3 if x ̸= 0 and t ≥ n.
R2. [Invoke f .] Set y ← f().
R3. [Count ones.] If y = 1, set t← t+ 1; otherwise set t← 0.
R4. [Skip one?] If t = n and x ̸= 0, go back to R2.
R5. [Adjust x.] Set x← (x+ y) modm and return to R1.
For example, let m = 3 and n = 2. If f() produces the infinite 9-cycle

001102122 001102122 0 . . . , (57)

then Algorithm R will produce the following infinite 27-cycle at step R1:
y = 001021220011110212200102122 001 . . .
t = 001001000012340010000100100 001 . . .
x = 000110102220120020211122121 0001 . . .

The proof that Algorithm R works correctly is interesting and instructive (see
exercise 93). And the proof of the next algorithm, which doubles the window
size n, is even more so (see exercise 95).
Algorithm D (Doubly recursive de Bruijn cycle generation). Suppose f()
and f ′() are coroutines that each will output the successive digits of an m-ary
de Bruijn cycle of length mn when invoked repeatedly, beginning with n zeros.
(The two cycles must be identical; but they are to be generated by independent
coroutines, because we will consume their values at different rates.) This algo-
rithm is a similar coroutine that outputs a cycle of length m2n. It maintains six
private variables x, y, t, x′, y′, and t′; variables x and x′ should initially be m.

The special parameter r must be set to a constant value such that

0 ≤ r ≤ m and gcd(mn − r, mn + r) = 2. (58)

The best choice is usually r = 1 when m is odd and r = 2 when m is even.
D1. [Possibly invoke f .] If t ̸= n or x ≥ r, set y ← f().
D2. [Count repeats.] If x ̸= y, set x← y and t← 1. Otherwise set t← t+ 1.
D3. [Output from f .] Output the current value of x.

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 305

D4. [Invoke f ′.] Set y′ ← f ′().
D5. [Count repeats.] If x′ ̸= y′, set x′ ← y′ and t′ ← 1. Otherwise set t′ ← t′+1.
D6. [Possibly reject f ′.] If t′ = n and x′ < r and either t < n or x′ < x, go to

D4. If t′ = n and x′ < r and x′ = x, go to D3.
D7. [Output from f ′.] Output the current value of x′. Return to D3 if t′ = n

and x′ < r; otherwise return to D1.

The basic idea of Algorithm D is to output from f() and f ′() alternately, making
special adjustments when either sequence generates n consecutive x’s for x < r.
For example, when f() and f ′() produce the 9-cycle (57), we take r = 1 and get

t in step D2: 12 31211112 12312111 12123121 11121231 21111212 . . .
x in step D3: 00001102122 00011021 22000110 21220001 102122000 . . .
t′ in step D5: 121211112121211112121211112121211112121211112121 . . .
x′ in step D7: 0 11021220 11021220 11021220 11021220 11021220 1 . . . ;

so the 81-cycle produced in steps D3 and D7 is 00001011012 . . . 2222 00001 . . . .
The case m = 2 of Algorithm R was discovered by Abraham Lempel [IEEE

Trans. C-19 (1970), 1204–1209]; Algorithm D was not discovered until more than
25 years later [C. J. Mitchell, T. Etzion, and K. G. Paterson, IEEE Trans. IT-
42 (1996), 1472–1478]. By using them together, starting with simple coroutines
for n = 2 based on (54), we can build up an interesting family of cooperating
coroutines that will generate a de Bruijn cycle of length mn for any desired m ≥ 2
and n ≥ 2, using only O(logn) simple computations for each digit of output.
(See exercise 96.) Furthermore, in the simplest case m = 2, this combination
“R&D method” has the property that its kth output can be computed directly,
as a function of k, by doing O(n logn) simple operations on n-bit numbers.
Conversely, given any n-bit pattern β, the position of β in the cycle can also be
computed in O(n logn) steps. (See exercises 97–99.) No other family of binary
de Bruijn cycles is presently known to have the latter property.

Our third construction of de Bruijn cycles is based on the theory of prime
strings, which will be of great importance to us when we study pattern matching
in Chapter 9. Suppose γ = αβ is the concatenation of two strings; we say that
α is a prefix of γ and β is a suffix. A prefix or suffix of γ is called proper if its
length is positive but less than the length of γ. Thus β is a proper suffix of αβ
if and only if α ̸= ϵ and β ̸= ϵ.

Definition P. A string is prime if it is nonempty and (lexicographically) less
than all of its proper suffixes.

For example, 01101 is not prime, because it is greater than 01; but 01102 is
prime, because it is less than 1102, 102, 02, and 2. (We assume that strings are
composed of letters, digits, or other symbols from a linearly ordered alphabet.
Lexicographic or dictionary order is the normal way to compare strings, so we
write α < β and say that α is less than β when α is lexicographically less than β.
In particular, we always have α ≤ αβ, and α < αβ if and only if β ̸= ϵ.)

From the Library of Melissa Nuno



ptg999

306 COMBINATORIAL SEARCHING 7.2.1.1

Prime strings have often been called Lyndon words, because they were
introduced by R. C. Lyndon [Trans. Amer. Math. Soc. 77 (1954), 202–215];
Lyndon called them “standard sequences.” The simpler term “prime” is justified
because of the fundamental factorization theorem in exercise 101. We will,
however, continue to pay respect to Lyndon implicitly by often using the letter λ
to denote strings that are prime.

Several of the most important properties of prime strings were derived by
Chen, Fox, and Lyndon in an important paper on group theory [Annals of Math.
(2) 68 (1958), 81–95], including the following easy but basic result:

Theorem P. A nonempty string that is less than all its cyclic shifts is prime.

(The cyclic shifts of a1 . . . an are a2 . . . ana1, a3 . . . ana1a2, . . . , ana1 . . . an−1.)

Proof. Suppose γ = αβ is not prime, because α ̸= ϵ and γ ≥ β ̸= ϵ; but suppose
γ is also less than its cyclic shift βα. Then the conditions β ≤ γ < βα imply
that γ = βθ for some string θ < α. Therefore, if γ is also less than its cyclic
shift θβ, we have θ < α < αβ < θβ. But that is impossible, because α and θ
have the same length.

Let Lm(n) be the number of m-ary primes of length n. Every string a1 . . . an,
together with its cyclic shifts, yields d distinct strings for some divisor d of n,
corresponding to exactly one prime of length d. For example, from 010010 we
get also 100100 and 001001 by cyclic shifting, and the smallest of the periodic
parts {010, 100, 001} is the prime 001. Therefore we must have

d\n

dLm(d) = mn, for all m,n ≥ 1. (59)

This family of equations can be solved for Lm(n), using the Möbius function and
exercise 4.5.3–28(a); we obtain

Lm(n) = 1
n


d\n

µ(d)mn/d. (60)

During the 1970s, Harold Fredricksen and James Maiorana discovered a
beautifully simple way to generate all of the m-ary primes of length n or less,
in increasing order [Discrete Math. 23 (1978), 207–210]. Before we are ready to
understand their algorithm, we need to consider the n-extension of a nonempty
string λ, namely the first n characters of the infinite string λλλ . . . . For example,
the 10-extension of 123 is 1231231231. In general if |λ| = k, its n-extension is
λ⌊n/k⌋λ′, where λ′ is the prefix of λ whose length is nmod k.

Definition Q. A string is preprime if it is a nonempty prefix of a prime, on
some alphabet.

Theorem Q. A string of length n > 0 is preprime if and only if it is the n-
extension of a prime string λ of length k ≤ n. This prime string is uniquely
determined.

Proof. See exercise 105.

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 307

Theorem Q states, in essence, that there is a one-to-one correspondence between
primes of length ≤ n and preprimes of length n. The following algorithm
generates all of the m-ary instances, in increasing order.

Algorithm F (Prime and preprime string generation). This algorithm visits
all m-ary n-tuples (a1, . . . , an) such that the string a1 . . . an is preprime. It also
identifies the index j such that a1 . . . an is the n-extension of the prime a1 . . . aj .
F1. [Initialize.] Set a1 ← · · · ← an ← 0 and j ← 1; also set a0 ← −1.
F2. [Visit.] Visit (a1, . . . , an) with index j.
F3. [Prepare to increase.] Set j ← n. Then if aj = m − 1, decrease j until

finding aj < m− 1.
F4. [Add one.] Terminate if j = 0. Otherwise set aj ← aj + 1. (Now a1 . . . aj is

prime, by exercise 105(a).)
F5. [Make n-extension.] For k ← j + 1, . . . , n (in this order) set ak ← ak−j .

Return to F2.

For example, Algorithm F visits 32 ternary preprimes when m = 3 and n = 4:
0
∧
000 0011

∧
0022

∧
0111

∧
0122

∧
0212

∧
1
∧
111 12

∧
12

0001
∧

0012
∧

01
∧
01 0112

∧
02

∧
02 022

∧
0 1112

∧
122

∧
1

0002
∧

002
∧
0 0102

∧
012

∧
0 021

∧
0 0221

∧
112

∧
1 1222

∧

001
∧
0 0021

∧
011

∧
0 0121

∧
0211

∧
0222

∧
1122

∧
2
∧
222

(61)

(The digits preceding ‘
∧
’ are the prime strings 0, 0001, 0002, 001, 0011, . . . , 2.)

Theorem Q explains why this algorithm is correct, because steps F3 and F4
obviously find the smallest m-ary prime of length ≤ n that exceeds the previous
preprime a1 . . . an. Notice that after a1 increases from 0 to 1, the algorithm
proceeds to visit all the (m− 1)-ary primes and preprimes, increased by 1 . . . 1.

Algorithm F is quite beautiful, but what does it have to do with de Bruijn
cycles? Here now comes the punch line: If we output the digits a1, . . . , aj in
step F2 whenever j is a divisor of n, the sequence of all such digits forms a
de Bruijn cycle! For example, in the case m = 3 and n = 4, the following 81
digits are output:

0 0001 0002 0011 0012 0021 0022 01 0102 0111 0112
0121 0122 02 0211 0212 0221 0222 1 1112 1122 12 1222 2. (62)

(We omit the primes 001, 002, 011, . . . , 122 of (61) because their length does
not divide 4.) The reasons underlying this almost magical property are explored
in exercise 108. Notice that the cycle has the correct length, by (59).

There is a sense in which the outputs of this procedure are actually equiva-
lent to the “granddaddy” of all de Bruijn cycle constructions that work for all m
and n, namely the construction first published by M. H. Martin in Bull. Amer.
Math. Soc. 40 (1934), 859–864: Martin’s original cycle for m = 3 and n = 4
was 2222122202211 . . . 10000, the twos’ complement of (62). In fact, Fredricksen
and Maiorana discovered Algorithm F almost by accident while looking for a

From the Library of Melissa Nuno



ptg999

308 COMBINATORIAL SEARCHING 7.2.1.1

simple way to generate Martin’s sequence. The explicit connection between
their algorithm and preprime strings was not noticed until many years later,
when Ruskey, Savage, and Wang carried out a careful analysis of the running
time [J. Algorithms 13 (1992), 414–430]. The principal results of that analysis
appear in exercise 107, namely

i) The average value of n− j in steps F3 and F5 is approximately 1/(m− 1).
ii) The total running time to produce a de Bruijn cycle like (62) is O(mn).

EXERCISES
1. [10 ] Explain how to generate all n-tuples (a1, . . . , an) in which lj ≤ aj ≤ uj , given

lower bounds lj and upper bounds uj for each component. (Assume that lj ≤ uj .)
2. [15 ] What is the 1000000th n-tuple visited by Algorithm M if n = 10 and mj = j

for 1 ≤ j ≤ n? Hint: [ 0,
1,

0,
2,

1,
3,

2,
4,

3,
5,

0,
6,

2,
7,

7,
8,

1,
9,

0
10 ] = 1000000.

x 3. [M20 ] How many times does Algorithm M perform step M4?
x 4. [18 ] On most computers it is faster to count down to 0 rather than up to m.

Revise Algorithm M so that it visits all n-tuples in the opposite order, starting with
(m1 − 1, . . . ,mn − 1) and finishing with (0, . . . , 0).

x 5. [22 ] Algorithms such as the “fast Fourier transform” (exercise 4.6.4–14) often
end with an array of answers in bit-reflected order, having A[(b0 . . . bn−1)2] in the place
where A[(bn−1 . . . b0)2] is desired. What is a good way to rearrange the answers into
proper order? [Hint: Reflect Algorithm M.]

6. [M17 ] Prove (7), the basic formula for Gray binary code.
7. [20 ] Figure 30(b) shows the Gray binary code for a disk that is divided into 16

sectors. What would be a good Gray-like code to use if the number of sectors were 12
or 60 (for hours or minutes on a clock), or 360 (for degrees in a circle)?

8. [15 ] What’s an easy way to run through all n-bit strings of even parity, changing
only two bits at each step?

9. [16 ] What move should follow Fig. 31, when solving the Chinese ring puzzle?
x 10. [M21 ] Find a simple formula for the total number of steps An or Bn in which a

ring is (a) removed or (b) replaced, in the shortest procedure for removing n Chinese
rings. For example, A3 = 4 and B3 = 1.
11. [M22 ] (H. J. Purkiss, 1865.) The two smallest rings of the Chinese ring puzzle
can actually be taken on or off the bar simultaneously. How many steps does the puzzle
require when such accelerated moves are permitted?

x 12. [25 ] The compositions of n are the sequences of positive integers that sum to n.
For example, the compositions of 4 are 1111, 112, 121, 13, 211, 22, 31, and 4. An integer
n has exactly 2n−1 compositions, corresponding to all subsets of the points {1, . . . , n−1}
that might be used to break the interval (0 . . n) into integer-sized subintervals.

a) Design a loopless algorithm to generate all compositions of n, representing each
composition as a sequential array of integers s1s2 . . . sj .

b) Similarly, design a loopless algorithm that represents the compositions implicitly
in an array of pointers q0q1 . . . qt, where the elements of the composition are
(q0 − q1)(q1 − q2) . . . (qt−1 − qt) and we have q0 = n, qt = 0. For example, the
composition 211 would be represented under this scheme by the pointers q0 = 4,
q1 = 2, q2 = 1, q3 = 0, and with t = 3.

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 309

13. [21 ] Continuing the previous exercise, compute also the multinomial coefficient
C =


n

s1,...,sj


for use as the composition s1 . . . sj is being visited.

14. [20 ] Design an algorithm to generate all strings a1 . . . aj such that 0 ≤ j ≤ n and
0 ≤ ai < mi for 1 ≤ i ≤ j, in lexicographic order. For example, if m1 = m2 = n = 2,
your algorithm should successively visit ϵ, 0, 00, 01, 1, 10, 11.

x 15. [25 ] Design a loopless algorithm to generate the strings of the previous exercise.
All strings of the same length should be visited in lexicographic order as before, but
strings of different lengths can be intermixed in any convenient way. For example,
0, 00, 01, ϵ, 10, 11, 1 is an acceptable order when m1 = m2 = n = 2.
16. [23 ] A loopless algorithm obviously cannot generate all binary vectors (a1, . . . , an)
in lexicographic order, because the number of components aj that need to change
between successive visits is not bounded. Show, however, that loopless lexicographic
generation does become possible if a linked representation is used instead of a sequential
one: Suppose there are 2n + 1 nodes {0, 1, . . . , 2n}, each containing a LINK field. The
binary n-tuple (a1, . . . , an) is represented by letting

LINK(0) = 1 + na1;
LINK(j − 1 + naj−1) = j + naj , for 1 < j ≤ n;
LINK(n+ nan) = 0;

the other n LINK fields can have any convenient values.
17. [20 ] A well-known construction called the Karnaugh map [M. Karnaugh, Amer.
Inst. Elect. Eng. Trans. 72, part I (1953), 593–599] uses Gray binary code in two
dimensions to display all 4-bit numbers in a 4× 4 torus:

0000 0001 0011 0010
0100 0101 0111 0110
1100 1101 1111 1110
1000 1001 1011 1010

(The entries of a torus “wrap around” at the left and right and also at the top and
bottom — just as if they were tiles, replicated infinitely often in a plane.) Show that,
similarly, all 6-bit numbers can be arranged in an 8×8 torus so that only one coordinate
position changes when we move north, south, east, or west from any point.

x 18. [20 ] The Lee weight of a vector u = (u1, . . . , un), where each component satisfies
0 ≤ uj < mj , is defined to be

νL(u) =
n
j=1

min(uj ,mj − uj);

and the Lee distance between two such vectors u and v is

dL(u, v) = νL(u− v), where u− v = ((u1 − v1) modm1, . . . , (un − vn) modmn).

(This is the minimum number of steps needed to change u to v if we adjust some
component uj by ±1 (modulo mj) in each step.)

A quaternary vector has mj = 4 for 1 ≤ j ≤ n, and a binary vector has all mj = 2.
Find a simple one-to-one correspondence between quaternary vectors u = (u1, . . . , un)
and binary vectors u′ = (u′

1, . . . , u
′
2n), with the property that νL(u) = ν(u′) and

dL(u, v) = ν(u′ ⊕ v′).

From the Library of Melissa Nuno



ptg999

310 COMBINATORIAL SEARCHING 7.2.1.1

19. [23 ] (The octacode.) Let g(x) = x3 + 2x2 + x− 1.
a) Use one of the algorithms in this section to evaluate


zu0zu1zu2zu3zu4zu5zu6zu∞ ,

a polynomial in the variables z0, z1, z2, and z3, summed over all 256 polynomials

(v0 +v1x+v2x
2 +v3x

3)g(x) mod 4 = u0 +u1x+u2x
2 +u3x

3 +u4x
4 +u5x

5 +u6x
6

for 0 ≤ v0, v1, v2, v3 < 4, where u∞ is chosen so that 0 ≤ u∞ < 4 and (u0 + u1 +
u2 + u3 + u4 + u5 + u6 + u∞) mod 4 = 0.

b) Construct a set of 256 16-bit numbers that differ from each other in at least six
different bit positions. (Such a set, first discovered by Nordstrom and Robinson
[Information and Control 11 (1967), 613–616], is essentially unique.)

20. [M36 ] The 16-bit codewords in the previous exercise can be used to transmit 8
bits of information, allowing transmission errors to be corrected if any one or two bits
are corrupted; furthermore, mistakes will be detected (but not necessarily correctable)
if any three bits are received incorrectly. Devise an algorithm that either finds the
nearest codeword to a given 16-bit number u′ or determines that at least three bits of
u′ are erroneous. How does your algorithm decode the number (1100100100001111)2?
[Hint: Use the facts that x7 ≡ 1 (modulo g(x) and 4), and that every quaternary
polynomial of degree < 3 is congruent to xj + 2xk (modulo g(x) and 4) for some
j, k ∈ {0, 1, 2, 3, 4, 5, 6,∞}, where x∞ = 0.]
21. [M30 ] A t-subcube of an n-cube can be represented by a string like ∗∗10∗∗0∗,
containing t asterisks and n − t specified bits. If all 2n binary n-tuples are written in
lexicographic order, the elements belonging to such a subcube appear in 2t′ clusters
of consecutive entries, where t′ is the number of asterisks that lie to the left of the
rightmost specified bit. (In the example given, n = 8, t = 5, and t′ = 4.) But if the
n-tuples are written in Gray binary order, the number of clusters might be reduced.
For example, the (n− 1)-subcubes ∗ . . . ∗0 and ∗ . . . ∗1 occur in only 2n−2 + 1 and 2n−2

clusters, respectively, when Gray binary order is used, not in 2n−1 of them.
a) Explain how to compute C(α), the number of Gray binary clusters of the subcube

defined by a given string α of asterisks, 0s, and 1s. What is C(∗∗10∗∗0∗)?
b) Prove that C(α) always lies between 2t′−1 and 2t′, inclusive.
c) What is the average value of C(α), over all 2n−t


n
t


possible t-subcubes?

x 22. [22 ] A “right subcube” is a subcube such as 0110∗∗ in which all the asterisks
appear after all the specified digits. Any binary trie (Section 6.3) can be regarded as a
way to partition a cube into disjoint right subcubes, as in Fig. 36(a). If we interchange
the left and right subtries of every right subtrie, proceeding downward from the root,
we obtain a Gray binary trie, as in Fig. 36(b).

Prove that if the “lieves” of a Gray binary trie are traversed in order, from left to
right, consecutive lieves correspond to adjacent subcubes. (Subcubes are adjacent if
they contain adjacent vertices. For example, 00∗∗ is adjacent to 011∗ because the first
contains 0010 and the second contains 0110; but 011∗ is not adjacent to 10∗∗.)

Fig. 36.

00∗∗
010∗ 011∗ 100∗

1010 1011

11∗∗

(a) Normal binary trie.

00∗∗
010∗011∗ 100∗

1010 1011

11∗∗

(b) Gray binary trie.

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 311

23. [20 ] Suppose g(k)⊕ 2j = g(l). What is a simple way to find l, given j and k?
24. [M21 ] Consider extending the Gray binary function g to all 2-adic integers (see
Section 7.1.3). What is the corresponding inverse function g[−1]?

x 25. [M25 ] Prove that if g(k) and g(l) differ in t > 0 bits, and if 0 ≤ k, l < 2n, then
⌈2t/3⌉ ≤ |k − l| ≤ 2n − ⌈2t/3⌉.
26. [25 ] (Frank Ruskey.) For which integers N is it possible to generate all of the
nonnegative integers less than N in such a way that only one bit of the binary repre-
sentation changes at each step?

x 27. [20 ] Let S0 = {1} and Sn+1 = 1/(2 + Sn) ∪ 1/(2− Sn); thus, for example,

S2 =


1

2 + 1
2 + 1

,
1

2 + 1
2− 1

,
1

2− 1
2 + 1

,
1

2− 1
2− 1

 =


3
7 ,

1
3 ,

3
5 , 1

,

and Sn has 2n elements that lie between 1
3 and 1. Compute the 1010th smallest element

of S100.
28. [M27 ] A median of n-bit strings {α1, . . . , αt}, where αk has the binary represen-
tation αk = ak(n−1) . . . ak0, is a string α̂ = an−1 . . . a0 whose bits aj for 0 ≤ j < n
agree with the majority of the bits akj for 1 ≤ k ≤ t. (If t is even and the bits
akj are half 0 and half 1, the median bit aj can be either 0 or 1.) For example, the
strings {0010, 0100, 0101, 1110} have two medians, 0100 and 0110, which we can denote
by 01∗0.

a) Find a simple way to describe the medians of Gt = {g(0), . . . , g(t− 1)}, the first t
Gray binary strings, when 0 < t ≤ 2n.

b) Prove that if α = an−1 . . . a0 is such a median, and if 2n−1 < t < 2n, then the
string β obtained from α by complementing any bit aj is also an element of Gt.

29. [M24 ] If integer values k are transmitted as n-bit Gray binary codes g(k) and
received with errors described by a bit pattern p = (pn−1 . . . p0)2, the average numerical
error is

1
2n

2n−1
k=0

g[−1](g(k)⊕ p)− k
,

assuming that all values of k are equally likely. Show that this sum is equal to2n−1
k=0 |(k ⊕ p) − k|/2n, just as if Gray binary code were not used, and evaluate it

explicitly.
x 30. [M27 ] (Gray permutation.) Design a one-pass algorithm to replace the array

elements (X0, X1, X2, . . . , X2n−1) by (Xg(0), Xg(1), Xg(2), . . . , Xg(2n−1)), using only a
constant amount of auxiliary storage. Hint: Considering the function g(n) as a per-
mutation of all nonnegative integers, show that the set

L = {0, 1, (10)2, (100)2, (100∗)2, (100∗0)2, (100∗0∗)2, . . . }
is the set of cycle leaders (the smallest elements of the cycles).
31. [HM35 ] (Gray fields.) Let fn(x) = g(rn(x)) denote the operation of reflecting
the bits of an n-bit binary string as in exercise 5 and then converting to Gray binary
code. For example, the operation f3(x) takes (001)2 →→ (110)2 →→ (010)2 →→ (011)2 →→
(101)2 →→ (111)2 →→ (100)2 →→ (001)2, hence all of the nonzero possibilities appear in
a single cycle. Therefore we can use f3 to define a field of 8 elements, with ⊕ as the

From the Library of Melissa Nuno



ptg999

312 COMBINATORIAL SEARCHING 7.2.1.1

addition operator and with multiplication defined by the rule

f
[j]
3 (1)× f [k]

3 (1) = f
[j+k]
3 (1) = f

[j]
3 (f [k]

3 (1)).
The functions f2, f5, and f6 have the same nice property. But f4 does not, because
f4((1011)2) = (1011)2.

Find all n ≤ 100 for which fn defines a field of 2n elements.
32. [M20 ] True or false: Walsh functions satisfy wk(−x) = (−1)kwk(x).

x 33. [M20 ] Prove the Rademacher-to-Walsh law (17).
34. [M21 ] The Paley functions pk(x) are defined by

p0(x) = 1 and pk(x) = (−1)⌊2x⌋kp⌊k/2⌋(2x).

Show that pk(x) has a simple expression in terms of Rademacher functions, analogous
to (17), and relate Paley functions to Walsh functions.
35. [HM23 ] The 2n × 2n Paley matrix Pn is obtained from Paley functions just as
the Walsh matrix Wn is obtained from Walsh functions. (See (20).) Find interesting
relations between Pn, Wn, and the Hadamard matrix Hn. Prove that all three matrices
are symmetric.
36. [21 ] Spell out the details of an efficient algorithm to compute the Walsh transform
(x0, . . . , x2n−1) of a given vector (X0, . . . , X2n−1).
37. [HM23 ] Let zkl be the location of the lth sign change in wk(x), for 1 ≤ l ≤ k and
0 < zkl < 1. Prove that |zkl − l/(k + 1)| = O((log k)/k).

x 38. [M25 ] Devise a ternary generalization of Walsh functions.
x 39. [HM30 ] (J. J. Sylvester.) The rows of (ab b

−a) are orthogonal to each other and
have the same magnitude; therefore the matrix identity

(A B )

a2 + b2 0

0 a2 + b2


A
B


= (A B )


a b
b −a


a b
b −a


A
B


= (Aa+Bb Ab−Ba )


aA+ bB
bA− aB


implies the sum-of-two-squares identity (a2 + b2)(A2 +B2) = (aA+ bB)2 + (bA−aB)2.
Similarly, the matrix 

a b c d
b −a d −c
d c −b −a
c −d −a b


leads to the sum-of-four-squares identity

(a2 +b2 +c2 +d2)(A2 +B2 +C2 +D2) = (aA+bB+cC+dD)2 +(bA−aB+dC−cD)2

+ (dA+ cB − bC − aD)2 + (cA− dB − aC + bD)2.

a) Attach the signs of the matrix H3 in (21) to the symbols {a, b, c, d, e, f, g, h},
obtaining a matrix with orthogonal rows and a sum-of-eight-squares identity.

b) Generalize to H4 and higher-order matrices.
x 40. [21 ] Would the text’s five-letter word pairing scheme produce correct answers also

if the masks in step W2 were computed as mj = z & (25j+5− 1) for 0 ≤ j < 5?
41. [25 ] If we use only the 3000 most common five-letter words — thereby omitting
ducky, duces, dunks, dinks, dinky, dices, dicey, dicky, dicks, picky, pinky, punky,
and pucks from (23) — how many valid words can still be generated from a single pair?

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 313

42. [35 ] (M. L. Fredman.) Algorithm L uses Θ(n logn) bits of auxiliary memory
for focus pointers as it chooses the Gray binary bit aj to complement next. Step L3
examines Θ(logn) of the auxiliary bits, and it occasionally changes Ω(logn) of them.

Show that, from a theoretical standpoint, we can do better: The n-bit Gray binary
code can be generated by changing at most 2 auxiliary bits between visits. (We still
allow ourselves to examine O(logn) of the auxiliary bits on each step, so that we know
which of them should be changed.)
43. [41 ] Determine d(6), the number of 6-bit Gray cycles. (See (26).)
44. [M20 ] Show that d(n) ≤


M(n)

2

, if the n-cube has M(n) perfect matchings.

45. [M40 ] (T. Feder and C. Subi, 2009.) This exercise constructs a large number of
Gray cycles in the (4r+2)-cube G = G4 G3 G2 G1 G0 G−1, where Gi is an r-cube
for i > 0 and G0 = G−1 = P2. The vertices v are (4r+2)-bit strings v4 . . . v0v−1, where
vi has r bits for i > 0 and 1 bit for i ≤ 0. The “signature” of v is the 4-bit string σ(v) =
s4s3s2(s1⊕v0), where si is the parity of vi. We treat bit strings as binary numbers.

For 1 ≤ l ≤ 4, let Ml(v) be a perfect matching in G with v−−− v′ = v′4 . . . v
′
0v

′
−1

and v′i = vi for i ̸= l. (Note that Ml(v′) = v.) Also define M0(v) = v ⊕ 2. Consider
the cycles formed by the edges v−−−Ml(v)(v), where l(v) depends on v’s signature:
σ(v) =
l(v) =

0000

0
0001

2
0011

0
0010

3
0110

1
0111

2
0101

0
0100

4
1100

1
1101

2
1111

1
1110

3
1010

1
1011

2
1001

0
1000

4
a) Suppose r = 2 and Ml(v) = v ⊕ 22l+sl−1 for l > 1 and M1(v) = v ⊕ 22+(v0⊕v−1).

What cycle contains vertex 0 . . . 0 in this case?
b) A vertex whose signature is a power of 2 is called a “ground vertex.” Four vertices

with the same v4 . . . v1 are called “siblings.” Define u ≡ v if u and v are in the same
cycle, or if u and v are sibling ground vertices, or if a chain of such equivalences
leads from u to v. Explain how to construct cycles in G for each equivalence class.

c) Furthermore, if u and v are sibling ground vertices, there is such a cycle that
retains the edges {u⊕2−−−u, v⊕2−−−v} of the original cycles.

d) Finally, show how to convert the cycles of (b) and (c) into a single cycle.
e) When M1, . . . , M4 vary, how many different Hamiltonian cycles do we get?

46. [M23 ] Extend exercise 45 to the (kr + 2)-cube, for k even.
47. [HM24 ] What asymptotic estimates do exercises 44 and 46 give for d(n)1/2n

?
48. [HM48 ] Determine the asymptotic behavior of d(n)1/2n

as n→∞.
49. [20 ] Prove that for all n ≥ 1 there is a 2n-bit Gray cycle in which vk+22n−1 is the
complement of vk, for all k ≥ 0.

x 50. [21 ] Find a construction like that of Theorem D but with l even.
51. [M24 ] (Balanced Gray cycles.) Complete the proof of Corollary B to Theorem D.
52. [M20 ] Prove that if the transition counts of an n-bit Gray cycle satisfy c0 ≤ c1 ≤
· · · ≤ cn−1, we must have c0 + · · ·+ cj−1 ≥ 2j , with equality when j = n.
53. [M46 ] If the numbers (c0, . . . , cn−1) are even and satisfy the condition of the
previous exercise, is there always an n-bit Gray cycle with these transition counts?
54. [M20 ] (H. S. Shapiro, 1953.) Show that if a sequence of integers (a1, . . . , a2n) con-
tains only n distinct values, then there is a subsequence whose product ak+1ak+2 . . . al
is a perfect square, for some 0 ≤ k < l ≤ 2n. However, this conclusion might not be
true if we disallow the case l = 2n.

x 55. [35 ] (F. Ruskey and C. Savage, 1993.) If (v0, . . . , v2n−1) is an n-bit Gray cycle,
the pairs { {v2k, v2k+1} | 0 ≤ k < 2n−1 } form a perfect matching between the vertices

From the Library of Melissa Nuno



ptg999

314 COMBINATORIAL SEARCHING 7.2.1.1

of even and odd parity in the n-cube. Conversely, does every such perfect matching
arise as “half” of some n-bit Gray cycle?
56. [M30 ] (E. N. Gilbert, 1958.) Say that two Gray cycles are equivalent if their delta
sequences can be made equal by permuting the coordinate names, or by reversing the
cycle and/or starting the cycle at a different place. Show that the 2688 different 4-bit
Gray cycles fall into just 9 equivalence classes.
57. [32 ] Consider a graph whose vertices are the 2688 possible 4-bit Gray cycles,
where two such cycles are adjacent if they are related by one of the following simple
transformations:

Before After Type 1 After Type 2 After Type 3 After Type 4

(Type 1 changes arise when the cycle can be broken into two parts and reassembled
with one part reversed. Types 2, 3, and 4 arise when the cycle can be broken into three
parts and reassembled after reversing 0, 1, or 2 of the parts. The parts need not have
equal size. Such transformations of Hamiltonian cycles are often possible.)

Write a program to discover which 4-bit Gray cycles are transformable into each
other, by finding the connected components of the graph; restrict consideration to only
one of the four types at a time.

x 58. [21 ] Let α be the delta sequence of an n-bit Gray cycle, and obtain β from α by
changing q occurrences of 0 to n, where q is odd. Prove that ββ is the delta sequence
of an (n+ 1)-bit Gray cycle.
59. [22 ] The 5-bit Gray cycle of (30) is nonlocal in the sense that no 2t consecutive
elements belong to a single t-subcube, for 1 < t < n. Prove that nonlocal n-bit Gray
cycles exist for all n ≥ 5. [Hint: See the previous exercise.]
60. [20 ] Show that the run-length-bound function satisfies r(n+ 1) ≥ r(n).
61. [M30 ] Show that r(m + n) ≥ r(m) + r(n)− 1 if (a) m = 2 and 2 < r(n) < 8; or
(b) m ≤ n and r(n) ≤ 2m−3.
62. [46 ] Does r(8) = 6?
63. [30 ] (Luis Goddyn.) Prove that r(10) ≥ 8.

x 64. [HM35 ] (L. Goddyn and P. Gvozdjak.) An n-bit Gray stream is a sequence of
permutations (σ0, σ1, . . . , σl−1) where each σk is a permutation of the vertices of the
n-cube, taking every vertex to one of its neighbors.

a) Suppose (u0, . . . , u2m−1) is an m-bit Gray cycle and (σ0, σ1, . . . , σ2m−1) is an n-bit
Gray stream. Let v0 = 0 . . . 0 and vk+1 = vkσk, where σk = σk mod 2m if k ≥ 2m.
Under what conditions is the sequence

W = (u0v0, u0v1, u1v1, u1v2, . . . , u2m+n−1−1v2m+n−1−1, u2m+n−1−1v2m+n−1 )

an (m+ n)-bit Gray cycle?
b) Show that if m is sufficiently large, there is an n-bit Gray stream satisfying the

conditions of (a) for which all run lengths of the sequence (v0, v1, . . . ) are ≥ n− 2.
c) Apply these results to prove that r(n) ≥ n−O(logn).

65. [30 ] (Brett Stevens.) In Samuel Beckett’s play Quad, the stage begins and ends
empty; n actors enter and exit one at a time, running through all 2n possible subsets,
and the actor who leaves is always the one whose previous entrance was earliest. When

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 315

n = 4, as in the actual play, some subsets are necessarily repeated. Show, however,
that there is a perfect pattern with exactly 2n entrances and exits when n = 5.
66. [40 ] Is there a perfect Beckett–Gray pattern for 8 actors?
67. [20 ] Sometimes it is desirable to run through all n-bit binary strings by changing
as many bits as possible from one step to the next, for example when testing a physical
circuit for reliable behavior in worst-case conditions. Explain how to traverse all binary
n-tuples in such a way that each step changes n or n− 1 bits, alternately.
68. [21 ] Rufus Q. Perverse decided to construct an anti-Gray ternary code, in which
each n-trit number differs from its neighbors in every digit position. Is such a code
possible for all n?

x 69. [M25 ] Modify the definition of Gray binary code (7) by letting

h(k) = (. . . (b6 ⊕ b5)(b5 ⊕ b4)(b4 ⊕ b3 ⊕ b2 ⊕ b0)(b3 ⊕ b0)(b2 ⊕ b1 ⊕ b0)b1)2,

when k = (. . . b5b4b3b2b1b0)2.
a) Show that the sequence h(0), h(1), . . . , h(2n− 1) runs through all n-bit numbers

in such a way that exactly 3 bits change each time, when n > 3.
b) Generalize this rule to obtain sequences in which exactly t bits change at each

step, when t is odd and n > t.
70. [21 ] How many monotonic n-bit Gray codes exist for n = 5 and n = 6?
71. [M22 ] Derive (45), the recurrence that defines the Savage–Winkler permutations.
72. [20 ] What is the Savage–Winkler code from 00000 to 11111?

x 73. [32 ] Design an efficient algorithm to construct the delta sequence of an n-bit
monotonic Gray code.
74. [HM25 ] (Savage and Winkler.) Prove that adjacent vertices of the n-cube cannot
be separated by more than O(2n/

√
n ) positions in a monotonic Gray code.

75. [32 ] Find all 5-bit Gray paths v0, . . . , v31 that are trend-free, in the sense that31
k=0 k(−1)vkj = 0 in each coordinate position j.

76. [M25 ] Prove that trend-free n-bit Gray codes exist for all n ≥ 5.
77. [21 ] Modify Algorithm H in order to visit mixed-radix n-tuples in modular Gray
order.
78. [M26 ] Prove the conversion formulas (50) and (51) for reflected mixed-radix Gray
codes, and derive analogous formulas for the modular case.

x 79. [M22 ] When is the last n-tuple of the (a) reflected (b) modular mixed-radix Gray
code adjacent to the first?
80. [M20 ] Explain how to run through all divisors of a number, given its prime fac-
torization pe1

1 . . . pett , repeatedly multiplying or dividing by a single prime at each step.
81. [M21 ] Let (a0, b0), (a1, b1), . . . , (am2−1, bm2−1) be the 2-digit m-ary modular
Gray code. Show that, if m > 2, every edge (x, y)−−−(x, (y + 1) modm) and (x, y)−−−
((x+ 1) modm, y) occurs in one of the two cycles

(a0, b0)−−−(a1, b1)−−−· · ·−−−(am2−1, bm2−1)−−−(a0, b0),
(b0, a0)−−−(b1, a1)−−−· · ·−−−(bm2−1, am2−1)−−−(b0, a0).

x 82. [M25 ] (G. Ringel, 1956.) Use the previous exercise to deduce that there exist four
8-bit Gray cycles that, together, cover all edges of the 8-cube.
83. [41 ] Can four balanced 8-bit Gray cycles cover all edges of the 8-cube?

From the Library of Melissa Nuno



ptg999

316 COMBINATORIAL SEARCHING 7.2.1.1

x 84. [25 ] (Howard L. Dyckman.) Figure 37 shows a fascinating puzzle called Loony
Loop or the Gordian Knot, in which the object is to remove a flexible cord from the
rigid loops that surround it. Show that the solution to this puzzle is inherently related
to the reflected Gray ternary code.

Fig. 37. The Loony Loop puzzle.

x 85. [M25 ] (Dana Richards.) If Γ = (α0, . . . , αt−1) is any sequence of t strings and
Γ′ = (α′

0, . . . , α
′
t′−1) is any sequence of t′ strings, the boustrophedon product Γ ≀Γ′ is the

sequence of tt′ strings that begins

(α0α
′
0, . . . , α0α

′
t′−1, α1α

′
t′−1, . . . , α1α

′
0, α2α

′
0, . . . , α2α

′
t′−1, α3α

′
t′−1, . . . )

and ends with αt−1α
′
0 if t is even, αt−1α

′
t′−1 if t is odd. For example, the basic definition

of Gray binary code in (5) can be expressed in this notation as Γn = (0, 1) ≀Γn−1 when
n > 0. Prove that the operation ≀ is associative, hence Γm+n = Γm ≀ Γn.

x 86. [26 ] Define an infinite Gray code that runs through all possible nonnegative
integer n-tuples (a1, . . . , an) in such a way that max(a1, . . . , an) ≤ max(a′1, . . . , a′n)
when (a1, . . . , an) is followed by (a′1, . . . , a′n).
87. [27 ] Continuing the previous exercise, define an infinite Gray code that runs
through all integer n-tuples (a1, . . . , an), in such a way that max(|a1|, . . . , |an|) ≤
max(|a′1|, . . . , |a′n|) when (a1, . . . , an) is followed by (a′1, . . . , a′n).

x 88. [25 ] After Algorithm K has terminated in step K4, what would happen if we
immediately restarted it in step K2?

x 89. [25 ] (Gray code for Morse code.) The Morse code words of length n (exercise
4.5.3–32) are strings of dots and dashes, where n is the number of dots plus twice the
number of dashes.

a) Show that it is possible to generate all Morse code words of length n by successively
changing a dash to two dots or vice versa. For example, the path for n = 3 must
be q , q q q, q or its reverse.

b) What string follows q q q q q in your sequence for n = 15?
90. [26 ] For what values of n can the Morse code words be arranged in a cycle, under
the ground rules of exercise 89? [Hint: The number of code words is Fn+1.]

x 91. [34 ] Design a loopless algorithm to visit all binary n-tuples (a1, . . . , an) such that
a1 ≤ a2 ≥ a3 ≤ a4 ≥ · · · . [The number of such n-tuples is Fn+2.]
92. [M30 ] Is there an infinite sequence Φn whose first mn elements form an m-ary
de Bruijn cycle, for all m? [The case n = 2 is solved in (54).]

x 93. [M28 ] Prove that Algorithm R outputs a de Bruijn cycle as advertised.
94. [22 ] What is the output of Algorithm D when m = 5, n = 1, and r = 3, if the
coroutines f() and f ′() generate the trivial cycles 01234 01234 01 . . .?

From the Library of Melissa Nuno



ptg999

7.2.1.1 GENERATING ALL n-TUPLES 317

x 95. [M24 ] Suppose an infinite sequence a0a1a2 . . . of period p is interleaved with an
infinite sequence b0b1b2 . . . of period q to form the infinite cyclic sequence

c0c1c2c3c4c5 . . . = a0b0a1b1a2b2 . . . .

a) Under what circumstances does c0c1c2 . . . have period pq? (The “period” of a
sequence a0a1a2 . . . , for the purposes of this exercise, is the smallest integer p > 0
such that ak = ak+p for all k ≥ 0.)

b) Which 2n-tuples would occur as consecutive outputs of Algorithm D if step D6
were changed to say simply “If t′ = n and x′ < r, go to D4”?

c) Prove that Algorithm D outputs a de Bruijn cycle as advertised.
x 96. [M28 ] Suppose a family of coroutines has been set up to generate a de Bruijn

cycle of length mn using Algorithms R and D, based recursively on simple coroutines
like Algorithm S for the base case n = 2, and using Algorithm D when n > 2 is even.

a) How many coroutines (Rn, Dn, Sn) of each type will there be?
b) What is the maximum number of coroutine activations needed to get one top-level

digit of output?
97. [M29 ] The purpose of this exercise is to analyze the de Bruijn cycles constructed
by Algorithms R and D in the important special case m = 2. Let fn(k) be the (k+1)st
bit of the 2n-cycle, so that fn(k) = 0 for 0 ≤ k < n. Also let jn be the index such that
0 ≤ jn < 2n and fn(k) = 1 for jn ≤ k < jn + n.

a) Write out the cycles (fn(0) . . . fn(2n− 1)) for n = 2, 3, 4, and 5.
b) Prove that, for all even values of n, there is a number δn = ±1 such that we have

fn+1(k) ≡


Σfn(k), if 0 < k ≤ jn or 2n+ jn < k ≤ 2n+1,
1 + Σfn(k + δn), if jn < k ≤ 2n+ jn,

where the congruence is modulo 2. (In this formula Σf stands for the summation
function Σf(k) =

k−1
j=0 f(j).) Hence jn+1 = 2n− δn when n is even.

c) Let (cn(0)cn(1) . . . cn(22n− 5)) be the cycle produced when the simplified version
of Algorithm D in exercise 95(b) is applied to fn(). Where do the (2n− 1)-tuples
12n−1 and (01)n−10 occur in this cycle?

d) Use the results of (c) to express f2n(k) in terms of fn().
e) Find a (somewhat) simple formula for jn as a function of n.

98. [M34 ] Continuing the previous exercise, design an efficient algorithm to compute
fn(k), given n ≥ 2 and k ≥ 0.

x 99. [M23 ] Exploit the technology of the previous exercises to design an efficient
algorithm that locates any given n-bit string in the cycle (fn(0)fn(1) . . . fn(2n− 1)).
100. [40 ] Do the de Bruijn cycles of exercise 97 provide a useful source of pseudo-
random bits when n is large?

x 101. [M30 ] (Unique factorization of strings into nonincreasing primes.)
a) Prove that if λ and λ′ are prime, then λλ′ is prime if λ < λ′.
b) Consequently every string α can be written in the form

α = λ1λ2 . . . λt, λ1 ≥ λ2 ≥ · · · ≥ λt, where each λj is prime.

c) In fact, only one such factorization is possible. Hint: Show that λt must be the
lexicographically smallest nonempty suffix of α.

d) True or false: λ1 is the longest prime prefix of α.
e) What are the prime factors of 3141592653589793238462643383279502884197?

From the Library of Melissa Nuno



ptg999

318 COMBINATORIAL SEARCHING 7.2.1.1

102. [HM28 ] Deduce the number of m-ary primes of length n from the unique factor-
ization theorem in the previous exercise.
103. [M20 ] Use Eq. (59) to prove Fermat’s theorem that mp ≡ m (modulo p).
104. [17 ] According to formula (60), about 1/n of all n-letter words are prime. How
many of the 5757 five-letter GraphBase words are prime? Which of them is the smallest
nonprime? The largest prime?
105. [M31 ] Let α be a preprime string of length n on an infinite alphabet.

a) Show that if the final letter of α is increased, the resulting string is prime.
b) If α has been factored as in exercise 101, show that it is the n-extension of λ1.
c) Furthermore α cannot be the n-extension of two different primes.

x 106. [M30 ] By reverse-engineering Algorithm F, design an algorithm that visits all
m-ary primes and preprimes in decreasing order.
107. [HM30 ] Analyze the running time of Algorithm F, for fixed m as n→∞.
108. [M35 ] Let λ1 < · · · < λt be the m-ary prime strings whose lengths divide n, and
let a1 . . . an be any m-ary string. The object of this exercise is to prove that a1 . . . an
appears in λ1 . . . λtλ1λ2; hence λ1 . . . λt is a de Bruijn cycle (since it has length mn).
For convenience we may assume that m = 10 and that strings correspond to decimal
numbers; the same arguments will apply for arbitrary m ≥ 2.

a) Show that if a1 . . . an = αβ is distinct from all its cyclic shifts, and if βα = λk is
prime, then αβ is a substring of λkλk+1, unless α = 9j for some j ≥ 1.

b) Where does αβ appear in λ1 . . . λt if βα is prime and α consists of all 9s? Hint:
Show that if an+1−l . . . an = 9l in step F2 for some l > 0, and if j is not a divisor
of n, the previous step F2 had an−l . . . an = 9l+1.

c) Now consider n-tuples of the form (αβ)d, where d > 1 is a divisor of n and
βα = λk is prime.

d) Where do 899135, 997879, 913131, 090909, 909090, and 911911 occur when n=6?
e) Is λ1 . . . λt the lexicographically least m-ary de Bruijn cycle of length mn?

109. [M22 ] An m-ary de Bruijn torus of size m2 ×m2 for 2× 2 windows is a matrix
of m-ary digits dij such that each of the m4 submatrices

dij di(j+1)
d(i+1)j d(i+1)(j+1)


, 0 ≤ i, j < m2

is different, where subscripts wrap around modulo m2. Thus every possible m-ary 2×2
submatrix occurs exactly once; Ian Stewart [Game, Set, and Math (Oxford: Blackwell,
1989), Chapter 4] has therefore called it an m-ary ourotorus. For example,

0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1


is a binary ourotorus; indeed, it is essentially the only such matrix when m = 2, except
for shifting and/or transposition.

Consider the infinite matrix D whose entry in row i = (. . . a2a1a0)2 and column
j = (. . . b2b1b0)2 is dij = (. . . c2c1c0)2, where

c0 = (a0 ⊕ b0)(a1 ⊕ b1)⊕ b1;
ck = (a2ka0 ⊕ b2k)b0 ⊕ (a2k+1a0 ⊕ b2k+1)(b0 ⊕ 1), for k > 0.

Show that the upper left 22n × 22n submatrix of D is a 2n-ary ourotorus for all n ≥ 0.

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 319

110. [M25 ] Continuing the previous exercise, construct m-ary ourotoruses for all m.
111. [20 ] We can obtain the number 100 in twelve ways by inserting + and − signs
into the sequence 123456789; for example, 100 = 1 + 23 − 4 + 5 + 6 + 78 − 9 =
123− 45− 67 + 89 = −1 + 2− 3 + 4 + 5 + 6 + 78 + 9.

a) What is the smallest positive integer that cannot be represented in such a way?
b) Consider also inserting signs into the 10-digit sequence 9876543210.

x 112. [25 ] Continuing the previous exercise, how far can we go by inserting signs into
12345678987654321? For example, 100 = −1234− 5− 6 + 7898− 7− 6543− 2− 1.

7.2.1.2. Generating all permutations. After n-tuples, the next most im-
portant item on nearly everybody’s wish list for combinatorial generation is the
task of visiting all permutations of some given set or multiset. Many different
ways have been devised to solve this problem. In fact, almost as many different
algorithms have been published for unsorting as for sorting! We will study the
most important permutation generators in this section, beginning with a classical
method that is both simple and flexible:
Algorithm L (Lexicographic permutation generation). Given a sequence of n
elements a1a2 . . . an, initially sorted so that

a1 ≤ a2 ≤ · · · ≤ an, (1)

this algorithm generates all permutations of {a1, a2, . . . , an}, visiting them in
lexicographic order. (For example, the permutations of {1, 2, 2, 3} are

1223, 1232, 1322, 2123, 2132, 2213, 2231, 2312, 2321, 3122, 3212, 3221,

ordered lexicographically.) An auxiliary element a0 is assumed to be present for
convenience; a0 must be strictly less than the largest element an.
L1. [Visit.] Visit the permutation a1a2 . . . an.
L2. [Find j.] Set j ← n − 1. If aj ≥ aj+1, decrease j by 1 repeatedly until

aj < aj+1. Terminate the algorithm if j = 0. (At this point j is the smallest
subscript such that we’ve already visited all permutations beginning with
a1 . . . aj . So the lexicographically next permutation will make aj larger.)

L3. [Increase aj .] Set l← n. If aj ≥ al, decrease l by 1 repeatedly until aj < al.
Then interchange aj ↔ al. (Since aj+1 ≥ · · · ≥ an, element al is the
smallest element greater than aj that can legitimately follow a1 . . . aj−1 in a
permutation. Before the interchange we had aj+1 ≥ · · · ≥ al−1 ≥ al > aj ≥
al+1 ≥ · · · ≥ an; after the interchange, we have aj+1 ≥ · · · ≥ al−1 ≥ aj >
al ≥ al+1 ≥ · · · ≥ an.)

L4. [Reverse aj+1 . . . an.] Set k ← j + 1 and l ← n. Then, while k < l, inter-
change ak ↔ al and set k ← k + 1, l← l − 1. Return to L1.

This algorithm goes back to Nārāyan. a Pan.d. ita in 14th-century India (see Section
7.2.1.7); it also appeared in C. F. Hindenburg’s preface to Specimen Analyticum
de Lineis Curvis Secundi Ordinis by C. F. Rüdiger (Leipzig: 1784), xlvi–xlvii,
and it has been frequently rediscovered ever since. The parenthetical remarks in
steps L2 and L3 explain why it works.

From the Library of Melissa Nuno



ptg999

320 COMBINATORIAL SEARCHING 7.2.1.2

Tin tan din dan bim bam bom bo —
tan tin din dan bam bim bo bom —
tin tan dan din bim bam bom bo —
tan tin dan din bam bim bo bom —
tan dan tin bam din bo bim bom —

. . . . Tin tan din dan bim bam bom bo.
— DOROTHY L. SAYERS, The Nine Tailors (1934)

A permutation on the ten decimal digits is simply a 10 digit decimal number
in which all digits are distinct. Hence all we need to do is to produce

all 10 digit numbers and select only those whose digits are distinct.
Isn’t it wonderful how high speed computing saves us from

the drudgery of thinking! We simply program k + 1 → k
and examine the digits of k for undesirable equalities.

This gives us the permutations in dictionary order too!
On second sober thought . . . we do need to think of something else.

— D. H. LEHMER (1957)

In general, the lexicographic successor of any combinatorial pattern a1 . . . an
is obtainable by a three-step procedure:
1) Find the largest j such that aj can be increased.
2) Increase aj by the smallest feasible amount.
3) Find the lexicographically least way to extend the new a1 . . . aj to a complete

pattern.
Algorithm L follows this general procedure in the case of permutation generation,
just as Algorithm 7.2.1.1M followed it in the case of n-tuple generation; we will
see numerous further instances later, as we consider other kinds of combinatorial
patterns. Notice that we have aj+1 ≥ · · · ≥ an at the beginning of step L4.
Therefore the first permutation beginning with the current prefix a1 . . . aj is
a1 . . . ajan . . . aj+1, and step L4 produces it by doing ⌊(n− j)/2⌋ interchanges.

In practice, step L2 finds j = n− 1 half of the time when the elements are
distinct, because exactly n!/2 of the n! permutations have an−1 < an. Therefore
Algorithm L can be speeded up by recognizing this special case, without making
it significantly more complicated. (See exercise 1.) Similarly, the probability
that j ≤ n− t is only 1/t! when the a’s are distinct; hence the loops in steps L2–
L4 usually go very fast. Exercise 6 analyzes the running time in general, showing
that Algorithm L is reasonably efficient even when equal elements are present,
unless some values appear much more often than others do in the multiset
{a1, a2, . . . , an}.

Adjacent interchanges. We saw in Section 7.2.1.1 that Gray codes are ad-
vantageous for generating n-tuples, and similar considerations apply when we
want to generate permutations. The simplest possible change to a permutation
is to interchange adjacent elements, and we know from Chapter 5 that any
permutation can be sorted into order if we make a suitable sequence of such
interchanges. (For example, Algorithm 5.2.2B works in this way.) Hence we can

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 321

go backward and obtain any desired permutation, by starting with all elements
in order and then exchanging appropriate pairs of adjacent elements.

A natural question now arises: Is it possible to run through all permutations
of a given multiset in such a way that only two adjacent elements change places
at every step? If so, the overall program that is examining all permutations will
often be simpler and faster, because it will only need to calculate the effect of
an exchange instead of to reprocess an entirely new array a1 . . . an each time.

Alas, when the multiset has repeated elements, we can’t always find such
a Gray-like sequence. For example, the six permutations of {1, 1, 2, 2} are con-
nected to each other in the following way by adjacent interchanges:

1122 1212
2112

1221
2121 2211; (2)

this graph has no Hamiltonian path.
But most applications deal with permutations of distinct elements, and for

this case there is good news: A simple algorithm makes it possible to generate
all n! permutations by making just n! − 1 adjacent interchanges. Furthermore,
another such interchange returns to the starting point, so we have a Hamiltonian
cycle analogous to Gray binary code.

The idea is to take such a sequence for {1, . . . , n − 1} and to insert the
number n into each permutation in all ways. For example, if n = 4 the sequence
(123, 132, 312, 321, 231, 213) leads to the columns of the array

1234 1324 3124 3214 2314 2134
1243 1342 3142 3241 2341 2143
1423 1432 3412 3421 2431 2413
4123 4132 4312 4321 4231 4213

(3)

when 4 is inserted in all four possible positions. Now we obtain the desired
sequence by reading downwards in the first column, upwards in the second, down-
wards in the third, . . . , upwards in the last: (1234, 1243, 1423, 4123, 4132, 1432,
1342, 1324, 3124, 3142, . . . , 2143, 2134).

In Section 5.1.1 we studied the inversions of a permutation, namely the pairs
of elements (not necessarily adjacent) that are out of order. Every interchange
of adjacent elements changes the total number of inversions by ±1. In fact, when
we consider the so-called inversion table c1 . . . cn of exercise 5.1.1–7, where cj is
the number of elements lying to the right of j that are less than j, we find that
the permutations in (3) have the following inversion tables:

0000 0010 0020 0120 0110 0100
0001 0011 0021 0121 0111 0101
0002 0012 0022 0122 0112 0102
0003 0013 0023 0123 0113 0103

(4)

And if we read these columns alternately down and up as before, we obtain
precisely the reflected Gray code for mixed radices (1, 2, 3, 4), as in Eqs. (46)–(51)

From the Library of Melissa Nuno



ptg999

322 COMBINATORIAL SEARCHING 7.2.1.2

of Section 7.2.1.1. The same property holds for all n, as noticed by E. W. Dijkstra
[Acta Informatica 6 (1976), 357–359], and it leads us to the following formulation:

Algorithm P (Plain changes). Given a sequence a1a2 . . . an of n distinct
elements, this algorithm generates all of their permutations by repeatedly inter-
changing adjacent pairs. It uses an auxiliary array c1c2 . . . cn, which represents
inversions as described above, running through all sequences of integers such that

0 ≤ cj < j for 1 ≤ j ≤ n. (5)

Another array o1o2 . . . on governs the directions by which the entries cj change.
P1. [Initialize.] Set cj ← 0 and oj ← 1 for 1 ≤ j ≤ n.
P2. [Visit.] Visit the permutation a1a2 . . . an.
P3. [Prepare for change.] Set j ← n and s← 0. (The following steps determine

the coordinate j for which cj is about to change, preserving (5); variable s
is the number of indices k > j such that ck = k − 1.)

P4. [Ready to change?] Set q ← cj + oj . If q < 0, go to P7; if q = j, go to P6.
P5. [Change.] Interchange aj−cj+s ↔ aj−q+s. Then set cj ← q and return to P2.
P6. [Increase s.] Terminate if j = 1; otherwise set s← s+ 1.
P7. [Switch direction.] Set oj ← −oj , j ← j − 1, and go back to P4.
This procedure, which clearly works for all n ≥ 1, originated in 17th-century
England, when bell ringers began the delightful custom of ringing a set of bells
in all possible permutations. They called Algorithm P the method of plain
changes. Figure 38(a) illustrates the “Cambridge Forty-Eight,” an irregular
and ad hoc sequence of 48 permutations on 5 bells that had been used in
the early 1600s, before the plain-change principle revealed how to achieve all
5! = 120 possibilities. The venerable history of Algorithm P has been traced to
a manuscript by Peter Mundy now in the Bodleian Library, written about 1653
and transcribed by Ernest Morris in The History and Art of Change Ringing
(1931), 29–30. Shortly afterwards, a famous book called Tintinnalogia, published
anonymously in 1668 but now known to have been written by Richard Duckworth
and Fabian Stedman, devoted its first 60 pages to a detailed description of plain
changes, working up from n = 3 to the case of arbitrarily large n.

Cambridge Forty-eight, for many years,
was the greatest Peal that was Rang or invented; but now,

neither Forty-eight, nor a Hundred, nor Seven-hundred and twenty,
nor any Number can confine us; for we can Ring Changes, Ad infinitum.

. . . On four Bells, there are Twenty four several Changes,
in Ringing of which, there is one Bell called the Hunt,

and the other three are Extream Bells;
the Hunt moves, and hunts up and down continually . . . ;

two of the Extream Bells makes a Change
every time the Hunt comes before or behind them.

— R. DUCKWORTH and F. STEDMAN, Tintinnalogia (1668)

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 323

(incomplete)

(a) The Cambridge Forty-Eight.

(b) Plain Changes.

(c) Grandsire Doubles.

(d) Stedman Doubles.

Fig. 38. Four patterns that were used in 17th-century
England to ring permutations of five different church-
bells. Pattern (b) corresponds to Algorithm P.

British bellringing enthusiasts soon went on to develop more complicated
schemes in which two or more pairs of bells change places simultaneously. For
example, they devised the pattern in Fig. 38(c) known as Grandsire Doubles,
“the best and most ingenious Peal that ever was composed, to be rang on five
bells” [Tintinnalogia, page 95]. Such fancier methods are more interesting than
Algorithm P from a musical standpoint, but they are less useful in computer
applications, so we shall not dwell on them here. Interested readers can learn
more by reading W. G. Wilson’s book, Change Ringing (1965); see also A. T.
White, AMM 103 (1996), 771–778.

H. F. Trotter published the first computer implementation of plain changes
in CACM 5 (1962), 434–435. The algorithm is quite efficient, especially when it
is streamlined as in exercise 16, because n − 1 out of every n permutations are
generated without using steps P6 and P7. By contrast, Algorithm L enjoys its
best case only about half of the time.

The fact that Algorithm P does exactly one interchange per visit means that
the permutations it generates are alternately even and odd (see exercise 5.1.1–
13). Therefore we can generate all the even permutations by simply bypassing
the odd ones. In fact, the c and o tables make it easy to keep track of the current
total number of inversions, c1 + · · ·+ cn, as we go.

Many programs need to generate the same permutations repeatedly, and in
such cases we needn’t run through the steps of Algorithm P each time. We can
simply prepare a list of suitable transitions, using the following method:

Algorithm T (Plain change transitions). This algorithm computes a table
t[1], t[2], . . . , t[n!− 1] such that the actions of Algorithm P are equivalent to the
successive interchanges at[k] ↔ at[k]+1 for 1 ≤ k < n!. We assume that n ≥ 2.
T1. [Initialize.] Set N ← n!, d← N/2, t[d]← 1, and m← 2.

From the Library of Melissa Nuno



ptg999

324 COMBINATORIAL SEARCHING 7.2.1.2

T2. [Loop on m.] Terminate if m = n. Otherwise set m ← m + 1, d ← d/m,
and k ← 0. (We maintain the condition d = n!/m!.)

T3. [Hunt down.] Set k ← k+ d and j ← m− 1. Then while j > 0, set t[k]← j,
k ← k + d, and j ← j − 1.

T4. [Offset.] Set t[k]← t[k] + 1.
T5. [Hunt up.] Set k ← k + d, j ← 1. While j < m, set t[k] ← j, k ← k + d,

j ← j + 1. Then return to T3 if k < N , otherwise return to T2.
For example, if n = 4 we get the table (t[1], t[2], . . . , t[23]) = (3, 2, 1, 3, 1, 2, 3, 1,
3, 2, 1, 3, 1, 2, 3, 1, 3, 2, 1, 3, 1, 2, 3).
Alphametics. Now let’s consider a simple kind of puzzle in which permutations
are useful: How can the pattern

SEND
+ MORE
MONEY

(6)

represent a correct sum, if every letter stands for a different decimal digit?
[H. E. Dudeney, Strand 68 (1924), 97, 214.] Such puzzles are often called
“alphametics,” a word coined by J. A. H. Hunter [Globe and Mail (Toronto:
27 October 1955), 27]; another term, “cryptarithm,” has also been suggested by
S. Vatriquant [Sphinx 1 (May 1931), 50].

The classic alphametic (6) can easily be solved by hand (see exercise 21).
But let’s suppose we want to deal with a large set of complicated alphametics,
some of which may be unsolvable while others may have dozens of solutions.
Then we can save time by programming a computer to try out all permutations
of digits that match a given pattern, seeing which permutations yield a correct
sum. [Early computer programs for solving alphametics were published by R. M.
Burstall, Comp. J. 12 (1969), 48–51; John Beidler, Creative Computing 4, 6
(November–December 1978), 110–113.]

We might as well raise our sights slightly and consider additive alphametics
in general, dealing not only with simple sums like (6) but also with examples like

VIOLIN + VIOLIN + VIOLA = TRIO + SONATA.

Equivalently, we want to solve puzzles such as
2(VIOLIN) + VIOLA− TRIO− SONATA = 0, (7)

where a sum of terms with integer coefficients is given and the goal is to obtain
zero by substituting distinct decimal digits for the different letters. Each letter
in such a problem has a “signature” obtained by substituting 1 for that letter
and 0 for the others; for example, the signature for I in (7) is

2(010010) + 01000− 0010− 000000,
namely 21010. If we arbitrarily assign the codes (1, 2, . . . , 10) to the letters
(V, I, O, L, N, A, T, R, S, X), the respective signatures corresponding to (7) are

s1 = 210000, s2 = 21010, s3 = −7901, s4 = 210, s5 = −998,
s6 = −100, s7 = −1010, s8 = −100, s9 = −100000, s10 = 0. (8)

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 325

(An additional letter, X, has been added because we need ten of them.) The
problem now is to find all permutations a1 . . . a10 of {0, 1, . . . , 9} such that

a · s =
10
j=1

ajsj = 0. (9)

There also is a side condition, because the numbers in alphametics should not
have zero as a leading digit. For example, the sums

7316
+ 0823
08139

and
5731

+ 0647
06378

and
6524

+ 0735
07259

and
2817

+ 0368
03185

and numerous others are not considered to be valid solutions of (6). In general
there is a set F of first letters such that we must have

aj ̸= 0 for all j ∈ F ; (10)

the set F corresponding to (7) and (8) is {1, 7, 9}.
One way to tackle a family of additive alphametics is to start by using

Algorithm T to prepare a table of 10!−1 transitions t[k]. Then, for each problem
defined by a signature sequence (s1, . . . , s10) and a first-letter set F , we can
exhaustively look for solutions as follows:
A1. [Initialize.] Set a1a2 . . . a10 ← 01 . . . 9, v ←

10
j=1(j − 1)sj , k ← 1, and

δj ← sj+1 − sj for 1 ≤ j < 10.
A2. [Test.] If v = 0 and if (10) holds, output the solution a1 . . . a10.
A3. [Swap.] Stop if k = 10!. Otherwise set j ← t[k], v ← v − (aj+1 − aj)δj ,

aj+1 ↔ aj , k ← k + 1, and return to A2.
Step A3 is justified by the fact that swapping aj with aj+1 simply decreases a · s
by (aj+1 − aj)(sj+1 − sj). Even though 10! is 3,628,800, a fairly large number,
the operations in step A3 are so simple that the whole job takes only a fraction
of a second on a modern computer.

An alphametic is said to be pure if it has a unique solution. Unfortunately
(7) is not pure; the permutations 1764802539 and 3546281970 both solve (9) and
(10), hence we have both

176478 + 176478 + 17640 = 2576 + 368020

and
354652 + 354652 + 35468 = 1954 + 742818.

Furthermore s6 = s8 in (8), so we can obtain two more solutions by interchanging
the digits assigned to A and R.

On the other hand (6) is pure, yet the method we have described will find
two different permutations that solve it. The reason is that (6) involves only
eight distinct letters, hence we will set it up for solution by using two dummy
signatures s9 = s10 = 0. In general, an alphametic with m distinct letters will
have 10−m dummy signatures sm+1 = · · · = s10 = 0, and each of its solutions
will be found (10−m)! times unless we insist that, say, am+1 < · · · < a10.

From the Library of Melissa Nuno



ptg999

326 COMBINATORIAL SEARCHING 7.2.1.2

A general framework. A great many algorithms have been proposed for
generating permutations of distinct objects, and the best way to understand
them is to apply the multiplicative properties of permutations that we studied
in Section 1.3.3. For this purpose we will change our notation slightly, by using
0-origin indexing and writing a0a1 . . . an−1 for permutations of {0, 1, . . . , n− 1}
instead of writing a1a2 . . . an for permutations of {1, 2, . . . , n}. More importantly,
we will consider schemes for generating permutations in which most of the action
takes place at the left, so that all permutations of {0, 1, . . . , k − 1} will be
generated during the first k! steps, for 1 ≤ k ≤ n. For example, one such
scheme for n = 4 is

0123, 1023, 0213, 2013, 1203, 2103, 0132, 1032, 0312, 3012, 1302, 3102,
0231, 2031, 0321, 3021, 2301, 3201, 1230, 2130, 1320, 3120, 2310, 3210; (11)

this is called “reverse colex order,” because if we reflect the strings from right
to left we get 3210, 3201, 3120, . . . , 0123, the reverse of lexicographic order.
Another way to think of (11) is to view the entries as (n−an) . . . (n−a2)(n−a1),
where a1a2 . . . an runs lexicographically through the permutations of {1,2, . . . ,n}.

Let’s recall from Section 1.3.3 that a permutation like α = 250143 can be
written either in the two-line form

α =
012345

250143


or in the more compact cycle form

α = (0 2)(1 5 3),

with the meaning that α takes 0 →→ 2, 1 →→ 5, 2 →→ 0, 3 →→ 1, 4 →→ 4, and
5 →→ 3; a 1-cycle like ‘(4)’ need not be indicated. Since 4 is a fixed point of this
permutation we say that “α fixes 4.” We also write 0α = 2, 1α = 5, and so on,
saying that “jα is the image of j under α.” Multiplication of permutations, like
α times β where β = 543210, is readily carried out either in the two-line form

αβ =
012345

250143

012345
543210


=
012345

250143

250143
305412


=
012345

305412


or in the cycle form

αβ = (0 2)(1 5 3) · (0 5)(1 4)(2 3) = (0 3 4 1)(2 5).

Notice that the image of 1 under αβ is 1(αβ) = (1α)β = 5β = 0, etc. Warning:
About half of all books that deal with permutations multiply them the other way
(from right to left), imagining that αβ means that β should be applied before α.
The reason is that traditional functional notation, in which one writes α(1) = 5,
makes it natural to think that αβ(1) should mean α(β(1)) = α(4) = 4. However,
the present book subscribes to the other philosophy, and we shall always multiply
permutations from left to right.

The order of multiplication needs to be understood carefully when permu-
tations are represented by arrays of numbers. For example, if we “apply” the
reflection β = 543210 to the permutation α = 250143, the result 341052 is not αβ

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 327

but βα. In general, the operation of replacing a permutation α = a0a1 . . . an−1
by some rearrangement a0βa1β . . . a(n−1)β takes k →→ akβ = kβα. Permuting
the positions by β corresponds to premultiplication by β, changing α to βα;
permuting the values by β corresponds to postmultiplication by β, changing α
to αβ. Thus, for example, a permutation generator that interchanges a1 ↔ a2 is
premultiplying the current permutation by (1 2), postmultiplying it by (a1 a2).

Following a proposal made by Évariste Galois in 1830, a nonempty set G
of permutations is said to form a group if it is closed under multiplication, that
is, if the product αβ is in G whenever α and β are elements of G [see Écrits
et Mémoires Mathématiques d’Évariste Galois (Paris: 1962), 47]. Consider, for
example, the 4-cube represented as a 4× 4 torus

0 1 3 2
4 5 7 6
c d f e
8 9 b a

(12)

as in exercise 7.2.1.1–17, and let G be the set of all permutations of the vertices
{0, 1, . . . , f} that preserve adjacency: A permutation α is in G if and only if
u −−− v implies uα −−− vα in the 4-cube. (Here we are using hexadecimal
digits (0, 1, . . . , f) to stand for the integers (0, 1, . . . , 15). The labels in (12)
are chosen so that u−−−v if and only if u and v differ in only one bit position.)
This set G is obviously a group, and its elements are called the symmetries or
“automorphisms” of the 4-cube.

Groups of permutations G are conveniently represented inside a computer by
means of a Sims table, introduced by Charles C. Sims [Computational Problems
in Abstract Algebra (Oxford: Pergamon, 1970), 169–183], which is a family of
subsets S1, S2, . . . of G having the following property: Sk contains exactly one
permutation σkj that takes k →→ j and fixes the values of all elements greater
than k, whenever G contains such a permutation. We let σkk be the identity
permutation, which is always present in G; but when 0 ≤ j < k, any suitable
permutation can be selected to play the role of σkj . The main advantage of a
Sims table is that it provides a convenient representation of the entire group:

Lemma S. Let S1, S2, . . . , Sn−1 be a Sims table for a group G of permutations
on {0, 1, . . . , n− 1}. Then every element α of G has a unique representation

α = σ1σ2 . . . σn−1, where σk ∈ Sk for 1 ≤ k < n. (13)

Proof. If α has such a representation and if σn−1 is the permutation σ(n−1)j ∈
Sn−1, then α takes n − 1 →→ j, because all elements of S1 ∪ · · · ∪ Sn−2 fix the
value of n− 1. Conversely, if α takes n− 1 →→ j we have α = α′σ(n−1)j , where

α′ = ασ−
(n−1)j

is a permutation of G that fixes n − 1. (As in Section 1.3.3, σ− denotes the
inverse of σ.) The set G′ of all such permutations is a group, and S1, . . . , Sn−2
is a Sims table for G′; therefore the result follows by induction on n.

From the Library of Melissa Nuno



ptg999

328 COMBINATORIAL SEARCHING 7.2.1.2

For example, a bit of calculation shows that one possible Sims table for the
automorphism group of the 4-cube is

Sf = {(), (01)(23)(45)(67)(89)(ab)(cd)(ef), . . . ,
(0f)(1e)(2d)(3c)(4b)(5a)(69)(78)};

Se = {(), (12)(56)(9a)(de), (14)(36)(9c)(be), (18)(3a)(5c)(7e)};
Sd = {(), (24)(35)(ac)(bd), (28)(39)(6c)(7d)};
Sc = {()};
Sb = {(), (48)(59)(6a)(7b)};
Sa = S9 = · · · = S1 = {()};

(14)

here Sf contains 16 permutations σfj for 0 ≤ j ≤ 15, which respectively take
i →→ i ⊕ (15 − j) for 0 ≤ i ≤ 15. The set Se contains only four permutations,
because an automorphism that fixes f must take e into a neighbor of f; thus the
image of e must be either e or d or b or 7. The set Sc contains only the identity
permutation, because an automorphism that fixes f, e, and d must also fix c.
Most groups have Sk = {()} for all small values of k, as in this example; hence a
Sims table usually needs to contain only a fairly small number of permutations
although the group itself might be quite large.

The Sims representation (13) makes it easy to test if a given permutation α
lies in G: First we determine σn−1 = σ(n−1)j , where α takes n− 1 →→ j, and we
let α′ = ασ−

n−1; then we determine σn−2 = σ(n−2)j′ , where α′ takes n− 2 →→ j′,
and we let α′′ = α′σ−

n−2; and so on. If at any stage the required σkj does not
exist in Sk, the original permutation α does not belong to G. In the case of (14),
this process must reduce α to the identity after finding σf, σe, σd, σc, and σb.

For example, let α be the permutation (14)(28)(3c)(69)(7d)(be), which cor-
responds to transposing (12) about its main diagonal {0, 5, f, a}. Since α fixes f,
σf will be the identity permutation (), and α′ = α. Then σe is the member of Se
that takes e →→ b, namely (14)(36)(9c)(be), and we find α′′ = (28)(39)(6c)(7d).
This permutation belongs to Sd, so α is indeed an automorphism of the 4-cube.

Conversely, (13) also makes it easy to generate all elements of the corre-
sponding group. We simply run through all permutations of the form

σ(1, c1)σ(2, c2) . . . σ(n− 1, cn−1),

where σ(k, ck) is the (ck + 1)st element of Sk for 0 ≤ ck < sk = |Sk| and
1 ≤ k < n, using any algorithm of Section 7.2.1.1 that runs through all (n− 1)-
tuples (c1, . . . , cn−1) for the respective radices (s1, . . . , sn−1).

Using the general framework. Our chief concern is the group of all permuta-
tions on {0, 1, . . . , n−1}, and in this case every set Sk of a Sims table will contain
k+1 elements {σ(k, 0), σ(k, 1), . . . , σ(k, k)}, where σ(k, 0) is the identity and the
others take k to the values {0, . . . , k−1} in some order. (The permutation σ(k, j)
need not be the same as σkj , and it usually is different.) Every such Sims table
leads to a permutation generator, according to the following outline:

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 329

Algorithm G (General permutation generator). Given a Sims table (S1, S2,
. . . , Sn−1) where each Sk has k + 1 elements σ(k, j) as just described, this
algorithm generates all permutations a0a1 . . . an−1 of {0, 1, . . . , n − 1}, using
an auxiliary control table cn . . . c2c1.
G1. [Initialize.] Set aj ← j and cj+1 ← 0 for 0 ≤ j < n.
G2. [Visit.] (At this point the mixed-radix number


cn−1,
n,

...,

...,
c2,
3,

c1
2


is the number
of permutations visited so far.) Visit the permutation a0a1 . . . an−1.

G3. [Add 1 to cn . . . c2c1.] Set k ← 1. While ck = k, set ck ← 0 and k ← k + 1.
Terminate the algorithm if k = n; otherwise set ck ← ck + 1.

G4. [Permute.] Apply the permutation τ(k, ck)ω(k − 1)− to a0a1 . . . an−1, as
explained below, and return to G2.
Applying a permutation π to a0a1 . . . an−1 means replacing aj by ajπ for

0 ≤ j < n; this corresponds to premultiplication by π as explained earlier. Let
us define

τ(k, j) = σ(k, j)σ(k, j − 1)−, for 1 ≤ j ≤ k; (15)
ω(k) = σ(1, 1) . . . σ(k, k). (16)

Then steps G3 and G4 maintain the property that

a0a1 . . . an−1 is the permutation σ(1, c1)σ(2, c2) . . . σ(n− 1, cn−1), (17)

and Lemma S proves that every permutation is visited exactly once.

0

00

000 001

01

010 011

02

020 021

1

10

100 101

11

110 111

12

120 121

2

20

200 201

21

210 211

22

220 221

3

30

300 301

31

310 311

32

320 321

Fig. 39. Algorithm G implicitly traverses this tree when n = 4.

The tree in Fig. 39 illustrates Algorithm G in the case n = 4. According
to (17), every permutation a0a1a2a3 of {0, 1, 2, 3} corresponds to a three-digit
control string c3c2c1, with 0 ≤ c3 ≤ 3, 0 ≤ c2 ≤ 2, and 0 ≤ c1 ≤ 1. Some nodes
of the tree are labeled by a single digit c3; these correspond to the permutations
σ(3, c3) of the Sims table being used. Other nodes, labeled with two digits c3c2,
correspond to the permutations σ(2, c2)σ(3, c3). A heavy line connects node c3
to node c30 and node c3c2 to node c3c20, because σ(2, 0) and σ(1, 0) are the
identity permutation and these nodes are essentially equivalent. Adding 1 to the
mixed-radix number c3c2c1 in step G3 corresponds to moving from one node of
Fig. 39 to its successor in preorder, and the transformation in step G4 changes
the permutations accordingly. For example, when c3c2c1 changes from 121 to
200, step G4 premultiplies the current permutation by

τ(3, 2)ω(2)− = τ(3, 2)σ(2, 2)−σ(1, 1)−;

From the Library of Melissa Nuno



ptg999

330 COMBINATORIAL SEARCHING 7.2.1.2

premultiplying by σ(1, 1)− takes us from node 121 to node 12, premultiplying
by σ(2, 2)− takes us from node 12 to node 1, and premultiplying by τ(3, 2) =
σ(3, 2)σ(3, 1)− takes us from node 1 to node 2 ≡ 200, which is the preorder suc-
cessor of node 121. Stating this another way, premultiplication by τ(3, 2)ω(2)−
is exactly what is needed to change σ(1, 1)σ(2, 2)σ(3, 1) to σ(1, 0)σ(2, 0)σ(3, 2),
preserving (17).

Algorithm G defines a huge number of permutation generators (see exer-
cise 37), so it is no wonder that many of its special cases have appeared in the
literature. Of course some of its variants are much more efficient than others,
and we want to find examples where the operations are particularly well suited
to the computer we are using.

We can, for instance, obtain permutations in reverse colex order as a special
case of Algorithm G (see (11)), by letting σ(k, j) be the (j + 1)-cycle

σ(k, j) = (k−j k−j+1 . . . k). (18)

The reason is that σ(k, j) should be the permutation that corresponds to cn . . . c1
in reverse colex order when ck = j and ci = 0 for i ̸= k, and this permutation
a0a1 . . . an−1 is 01 . . . (k−j−1)(k−j+1) . . . (k)(k−j)(k+1) . . . (n−1). For exam-
ple, when n = 8 and cn . . . c1 = 00030000 the corresponding reverse colex
permutation is 01345267, which is (2 3 4 5) in cycle form. When σ(k, j) is given
by (18), Eqs. (15) and (16) lead to the formulas

τ(k, j) = (k−j k); (19)
ω(k) = (0 1)(0 1 2) . . . (0 1 . . . k) = (0 k)(1 k−1)(2 k−2) . . . = ϕ(k); (20)

here ϕ(k) is the “(k+1)-flip” that changes a0 . . . ak to ak . . . a0. In this case ω(k)
turns out to be the same as ω(k)−, because ϕ(k)2 = ().

Equations (19) and (20) are implicitly present behind the scenes in Algo-
rithm L and in its reverse colex equivalent (exercise 2), where step L3 essentially
applies a transposition and step L4 does a flip. Step G4 actually does the flip
first; but the identity

(k−j k)ϕ(k − 1) = ϕ(k − 1)(j−1 k) (21)

shows that a flip followed by a transposition is the same as a (different) trans-
position followed by the flip.

In fact, equation (21) is a special case of the important identity

π− (j1 j2 . . . jt)π = (j1π j2π . . . jtπ), (22)

which is valid for any permutation π and any t-cycle (j1 j2 . . . jt). On the
left of (22) we have, for example, j1π →→ j1 →→ j2 →→ j2π, in agreement with
the cycle on the right. Therefore if α and π are any permutations whatsoever,
the permutation π−απ (called the conjugate of α by π) has exactly the same
cycle structure as α; we simply replace each element j in each cycle by jπ.

Another significant special case of Algorithm G was introduced by R. J.
Ord-Smith [CACM 10 (1967), 452; 12 (1969), 638; see also Comp. J. 14 (1971),

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 331

136–139], whose algorithm is obtained by setting

σ(k, j) = (k . . . 1 0)j . (23)

Now it is clear from (15) that

τ(k, j) = (k . . . 1 0); (24)

and once again we have

ω(k) = (0 k)(1 k−1)(2 k−2) . . . = ϕ(k), (25)

because σ(k, k) = (0 1 . . . k) is the same as before. The nice thing about this
method is that the permutation needed in step G4, namely τ(k, ck)ω(k − 1)−,
does not depend on ck:

τ(k, j)ω(k − 1)− = (k . . . 1 0)ϕ(k − 1)− = ϕ(k). (26)

Thus, Ord-Smith’s algorithm is the special case of Algorithm G in which step G4
simply interchanges a0 ↔ ak, a1 ↔ ak−1, . . . ; this operation is usually quick,
because k is small, and it saves some of the work of Algorithm L. (See exercise 38
and the reference to G. S. Klügel in Section 7.2.1.7.)

We can do even better by rigging things so that step G4 needs to do only a
single transposition each time, somewhat as in Algorithm P but not necessarily
on adjacent elements. Many such schemes are possible. The best is probably
to let

τ(k, j)ω(k − 1)− =
 (k 0), if k is even,

(k j−1), if k is odd,
(27)

as suggested by B. R. Heap [Comp. J. 6 (1963), 293–294]. Notice that Heap’s
method always transposes ak ↔ a0 except when k = 3, 5, . . . ; and the value of k,
in 5 of every 6 steps, is either 1 or 2. Exercise 40 proves that Heap’s method
does indeed generate all permutations.
Bypassing unwanted blocks. One noteworthy advantage of Algorithm G is
that it runs through all permutations of a0 . . . ak−1 before touching ak; then it
performs another k! cycles before changing ak again, and so on. Therefore if at
any time we reach a setting of the final elements ak . . . an−1 that is unimportant
to the problem we’re working on, we can skip quickly over all permutations that
end with the undesirable suffix. More precisely, we could replace step G2 by the
following substeps:
G2.0. [Acceptable?] If ak . . . an−1 is not an acceptable suffix, go to G2.1. Oth-

erwise set k ← k− 1. Then if k > 0, repeat this step; if k = 0, proceed to
step G2.2.

G2.1. [Skip this suffix.] While ck = k, apply σ(k, k)− to a0 . . . an−1 and set
ck ← 0, k ← k + 1. Terminate if k = n; otherwise set ck ← ck + 1, apply
τ(k, ck) to a0 . . . an−1, and return to G2.0.

G2.2. [Visit.] Visit the permutation a0 . . . an−1.
Step G1 should also set k ← n − 1. Notice that the new steps are careful to
preserve condition (17). The algorithm has become more complicated, because

From the Library of Melissa Nuno



ptg999

332 COMBINATORIAL SEARCHING 7.2.1.2

we need to know the permutations τ(k, j) and σ(k, k) in addition to the permu-
tations τ(k, j)ω(k − 1)− that appear in G4. But the additional complications
are often worth the effort, because the resulting program might run significantly
faster.

0

00 01

010 011

02

020 021

1

10

100 101

11 12

120 121

2 3

30

300 301

31

310 311

32

320 321

Fig. 40. Unwanted branches can be pruned from the
tree of Fig. 39, if Algorithm G is suitably extended.

For example, Fig. 40 shows what happens to the tree of Fig. 39 when
the suffixes of a0a1a2a3 that correspond to nodes 00, 11, 121, and 2 are not
acceptable. (Each suffix ak . . . an−1 of the permutation a0 . . . an−1 corresponds
to a prefix cn . . . ck of the control string cn . . . c1, because the permutations
σ(1, c1) . . . σ(k − 1, ck−1) do not affect ak . . . an−1.) Step G2.1 premultiplies by
τ(k, j) to move from node cn−1 . . . ck+1(j−1) to its right sibling cn−1 . . . ck+1j,
and it premultiplies by σ(k, k)− to move up from node cn−1 . . . ck+1k to its
parent cn−1 . . . ck+1. Thus, to get from the rejected prefix 121 to its preorder
successor, the algorithm premultiplies by σ(1, 1)−, σ(2, 2)−, and τ(3, 2), thereby
moving from node 121 to 12 to 1 to 2. (This is a somewhat exceptional case,
because a prefix with k = 1 is rejected only if we don’t want to visit the unique
permutation a0a1 . . . an−1 that has suffix a1 . . . an−1.) After node 2 is rejected,
τ(3, 3) takes us to node 3, etc.

Notice, incidentally, that bypassing a suffix ak . . . an−1 in this extension
of Algorithm G is essentially the same as bypassing a prefix a1 . . . aj in our
original notation, if we go back to the idea of generating permutations a1 . . . an
of {1, . . . , n} and doing most of the work at the right-hand end. Our original
notation corresponds to choosing a1 first, then a2, . . . , then an; the notation
in Algorithm G essentially chooses an−1 first, then an−2, . . . , then a0. Algo-
rithm G’s conventions may seem backward, but they make the formulas for Sims
table manipulation a lot simpler. A good programmer soon learns to switch
without difficulty from one viewpoint to another.

We can apply these ideas to alphametics, because it is clear for example that
most choices of the values for the letters D, E, and Y will make it impossible for
SEND plus MORE to equal MONEY: We need to have (D+ E− Y) mod 10 = 0 in that
problem. Therefore many permutations can be eliminated from consideration.

In general, if rk is the maximum power of 10 that divides the signature
value sk, we can sort the letters and assign codes {0, 1, . . . , 9} so that r0 ≥
r1 ≥ · · · ≥ r9. For example, to solve the trio sonata problem (7), we could use
(0, 1, . . . , 9) respectively for (X, S, V, A, R, I, L, T, O, N), obtaining the signatures

s0 = 0, s1 = −100000, s2 = 210000, s3 = −100, s4 = −100,
s5 = 21010, s6 = 210, s7 = −1010, s8 = −7901, s9 = −998;

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 333

hence (r0, . . . , r9) = (∞, 5, 4, 2, 2, 1, 1, 1, 0, 0). Now if we get to step G2.0 for a
value of k with rk−1 ̸= rk, we can say that the suffix ak . . . a9 is unacceptable
unless aksk + · · ·+ a9s9 is a multiple of 10rk−1 . Also, (10) tells us that ak . . . a9
is unacceptable if ak = 0 and k ∈ F ; the first-letter set F is now {1, 2, 7}.

Our previous approach to alphametics with steps A1–A3 above used brute
force to run through 10! possibilities. It operated rather fast under the circum-
stances, since the adjacent-transposition method allowed it to get by with only
6 memory references per permutation; but still, 10! is 3,628,800, so the entire
process cost almost 22 megamems, regardless of the alphametic being solved.
By contrast, the extended Algorithm G with Heap’s method and the cutoffs just
described will find all four solutions to (7) with fewer than 128 kilomems! Thus
the suffix-skipping technique runs more than 170 times faster than the previous
method, which simply blasted away blindly.

Most of the 128 kilomems in the new approach are spent applying τ(k, ck)
in step G2.1. The other memory references come primarily from applications of
σ(k, k)− in that step, but τ is needed 7812 times while σ− is needed only 2162
times. The reason is easy to understand from Fig. 40, because the “shortcut
move” τ(k, ck)ω(k − 1)− in step G4 hardly ever applies; in this case it is used
only four times, once for each solution. Thus, preorder traversal of the tree is
accomplished almost entirely by τ steps that move to the right and σ− steps
that move upward. The τ steps dominate in a problem like this, where very
few complete permutations are actually visited, because each step σ(k, k)− is
preceded by k steps τ(k, 1), τ(k, 2), . . . , τ(k, k).

This analysis reveals that Heap’s method — which goes to great lengths to
optimize the permutations τ(k, j)ω(k − 1)− so that each transition in step G4
is a simple transposition — is not especially good for the extended Algorithm G
unless comparatively few suffixes are rejected in step G2.0. The simpler reverse
colex order, for which τ(k, j) itself is always a simple transposition, is now much
more attractive (see (19)). Indeed, Algorithm G with reverse colex order solves
the alphametic (7) with only 97 kilomems.

Similar results occur with respect to other alphametic problems. For ex-
ample, if we apply the extended Algorithm G to the alphametics in exercise 24,
parts (a) through (h), the computations involve respectively

(551, 110, 14, 8, 350, 84, 153, 1598) kilomems with Heap’s method;
(429, 84, 10, 5, 256, 63, 117, 1189) kilomems with reverse colex. (28)

The speedup factor for reverse colex in these examples, compared to brute force
with Algorithm T, ranges from 18 in case (h) to 4200 in case (d), and it is about
80 on the average; Heap’s method gives an average speedup of about 60.

We know from Algorithm L, however, that lexicographic order is easily han-
dled without the complication of the control table cn . . . c1 used by Algorithm G.
And a closer look at Algorithm L shows that we can improve its behavior when
permutations are frequently being skipped, by using a linked list instead of a
sequential array. The improved algorithm is well-suited to a wide variety of
algorithms that wish to generate restricted classes of permutations:

From the Library of Melissa Nuno



ptg999

334 COMBINATORIAL SEARCHING 7.2.1.2

Algorithm X (Lexicographic permutations with restricted prefixes). This al-
gorithm generates all permutations a1a2 . . . an of {1, 2, . . . , n} that pass a given
sequence of tests

t1(a1), t2(a1, a2), . . . , tn(a1, a2, . . . , an),

visiting them in lexicographic order. It uses an auxiliary table of links l0, l1,
. . . , ln to maintain a cyclic list of unused elements, so that if the currently
available elements are

{1, . . . , n} \ {a1, . . . , ak} = {b1, . . . , bn−k}, where b1 < · · · < bn−k, (29)

then we have

l0 = b1, lbj = bj+1 for 1 ≤ j < n− k, and lbn−k
= 0. (30)

It also uses an auxiliary table u1 . . . un to undo operations that have been
performed on the l array.
X1. [Initialize.] Set lk ← k + 1 for 0 ≤ k < n, and ln ← 0. Then set k ← 1.
X2. [Enter level k.] Set p← 0, q ← l0.
X3. [Test a1 . . . ak.] Set ak ← q. If tk(a1, . . . , ak) is false, go to X5. Otherwise,

if k = n, visit a1 . . . an and go to X6.
X4. [Increase k.] Set uk ← p, lp ← lq, k ← k + 1, and return to X2.
X5. [Increase ak.] Set p← q, q ← lp. If q ̸= 0 return to X3.
X6. [Decrease k.] Set k ← k− 1, and terminate if k = 0. Otherwise set p← uk,

q ← ak, lp ← q, and go to X5.
The basic idea of this elegant algorithm is due to M. C. Er [Comp. J. 30 (1987),
282]. We can apply it to alphametics by changing notation slightly, obtaining
permutations a0 . . . a9 of {0, . . . , 9} and letting l10 play the former role of l0. The
resulting algorithm needs only 49 kilomems to solve the trio-sonata problem (7),
and it solves the alphametics of exercise 24(a)–(h) in

(248, 38, 4, 3, 122, 30, 55, 553) kilomems, (31)

respectively. Thus it runs about 165 times faster than the brute-force approach.
Another way to apply Algorithm X to alphametics is often faster yet (see

exercise 49).

1

2

3

3

4

4

3

2

2

4

4

2 3

1

2 4

4

2

1

1

4

4

4

1

1

2

2

4

1

2

2

3

3

2

1

1

3

3

3

1

1

2

2

Fig. 41. The tree implicitly traversed by Algorithm X when n = 4, if all permu-
tations are visited except those beginning with 132, 14, 2, 314, or 4312.

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 335

*Dual methods. If S1, . . . , Sn−1 is a Sims table for a permutation group G,
we learned in Lemma S that every element of G can be expressed uniquely as
a product σ1 . . . σn−1, where σk ∈ Sk; see (13). Exercise 50 shows that every
element α can also be expressed uniquely in the dual form

α = σ−
n−1 . . . σ

−
2 σ

−
1 , where σk ∈ Sk for 1 ≤ k < n, (32)

and this fact leads to another large family of permutation generators. In par-
ticular, when G is the group of all n! permutations, every permutation can be
written

σ(n− 1, cn−1)− . . . σ(2, c2)−σ(1, c1)−, (33)
where 0 ≤ ck ≤ k for 1 ≤ k < n and the permutations σ(k, j) are the same as
in Algorithm G. Now, however, we want to vary cn−1 most rapidly and c1 least
rapidly, so we arrive at an algorithm of a different kind:

Algorithm H (Dual permutation generator). Given a Sims table as in Algo-
rithm G, this algorithm generates all permutations a0 . . . an−1 of {0, . . . , n− 1},
using an auxiliary table c0 . . . cn−1.
H1. [Initialize.] Set aj ← j and cj ← 0 for 0 ≤ j < n.
H2. [Visit.] (At this point the mixed-radix number


c1,
2,

c2,
3,

...,

...,
cn−1
n


is the number

of permutations visited so far.) Visit the permutation a0a1 . . . an−1.
H3. [Add 1 to c0c1 . . . cn−1.] Set k ← n−1. If ck = k, set ck ← 0, k ← k−1, and

repeat until k = 0 or ck < k. Terminate the algorithm if k = 0; otherwise
set ck ← ck + 1.

H4. [Permute.] Apply the permutation τ(k, ck)ω(k + 1)− to a0a1 . . . an−1, as
explained below, and return to H2.

Although this algorithm looks almost identical to Algorithm G, the permutations
τ and ω that it needs in step H4 are quite different from those needed in step G4.
The new rules, which replace (15) and (16), are

τ(k, j) = σ(k, j)−σ(k, j − 1), for 1 ≤ j ≤ k; (34)
ω(k) = σ(n− 1, n− 1)−σ(n− 2, n− 2)− . . . σ(k, k)−. (35)

The number of possibilities is just as vast as it was for Algorithm G, so we
will confine our attention to a few cases that have special merit. One natural
case to try is, of course, the Sims table that makes Algorithm G produce reverse
colex order, namely

σ(k, j) = (k−j k−j+1 . . . k) (36)

as in (18). The resulting permutation generator turns out to be very nearly the
same as the method of plain changes; so we can say that Algorithms L and P
are essentially dual to each other. (See exercise 52.)

Another natural idea is to construct a Sims table for which step H4 always
makes a single transposition of two elements, by analogy with the construction
of (27) that achieves maximum efficiency in step G4. But such a mission now
turns out to be impossible: We cannot achieve it even when n = 4. For if

From the Library of Melissa Nuno



ptg999

336 COMBINATORIAL SEARCHING 7.2.1.2

we start with the identity permutation a0a1a2a3 = 0123, the transitions that
take us from control table c0c1c2c3 = 0000 to 0001 to 0002 to 0003 must move
the 3; so, if they are transpositions, they must be (3 a), (a b), and (b c) for some
permutation abc of {0, 1, 2}. The permutation corresponding to c0c1c2c3 = 0003
is now σ(3, 3)− = (b c)(a b)(3 a) = (3 a b c); and the next permutation, which
corresponds to c0c1c2c3 = 0010, will be σ(2, 1)−, which must fix the element 3.
The only suitable transposition is (3 c), hence σ(2, 1)− must be (3 c)(3 a b c) =
(a b c). Similarly we find that σ(2, 2)− must be (a c b), and the permutation
corresponding to c0c1c2c3 = 0023 will be (3 a b c)(a c b) = (3 c). Step H4 is now
supposed to convert this to the permutation σ(1, 1)−, which corresponds to the
control table 0100 that follows 0023. But the only transposition that will convert
(3 c) into a permutation that fixes 2 and 3 is (3 c); and the resulting permutation
also fixes 1, so it cannot be σ(1, 1)−.

The proof in the preceding paragraph shows that we cannot use Algorithm H
to generate all permutations with the minimum number of transpositions. But it
also suggests a simple generation scheme that comes very close to the minimum,
and the resulting algorithm is quite attractive because it needs to do extra work
only once per n(n− 1) steps. (See exercise 53.)

Finally, let’s consider the dual of Ord-Smith’s method, when

σ(k, j) = (k . . . 1 0)j (37)

as in (23). Once again the value of τ(k, j) is independent of j,

τ(k, j) = (0 1 . . . k), (38)

and this fact is particularly advantageous in Algorithm H because it allows us
to dispense with the control table c0c1 . . . cn−1. The reason is that cn−1 = 0 in
step H3 if and only if an−1 = n − 1, because of (32); and indeed, when cj = 0
for k < j < n in step H3 we have ck = 0 if and only if ak = k. Therefore we can
reformulate this variant of Algorithm H as follows.

Algorithm C (Permutation generation by cyclic shifts). This algorithm visits
all permutations a1 . . . an of the distinct elements {x1, . . . , xn}.
C1. [Initialize.] Set aj ← xj for 1 ≤ j ≤ n.
C2. [Visit.] Visit the permutation a1 . . . an, and set k ← n.
C3. [Shift.] Replace a1a2 . . . ak by the cyclic shift a2 . . . aka1, and return to C2

if ak ̸= xk.
C4. [Decrease k.] Set k ← k− 1, and go back to C3 if k > 1; otherwise stop.
For example, the successive permutations of {1, 2, 3, 4} generated when n = 4 are

1234, 2341, 3412, 4123, (1234),
2314, 3142, 1423, 4231, (2314),
3124, 1243, 2431, 4312, (3124), (1234),
2134, 1342, 3421, 4213, (2134),
1324, 3241, 2413, 4132, (1324),
3214, 2143, 1432, 4321, (3214), (2134), (1234),

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 337

with unvisited intermediate permutations shown in parentheses. This algorithm
may well be the simplest permutation generator of all, in terms of minimum
program length. It is due to G. G. Langdon, Jr. [CACM 10 (1967), 298–299;
11 (1968), 392]; similar methods had been published previously by C. Tompkins
[Proc. Symp. Applied Math. 6 (1956), 202–205] and, more explicitly, by R. Seitz
[Unternehmensforschung 6 (1962), 2–15]. The procedure is particularly well
suited to applications in which cyclic shifting is efficient, for example when suc-
cessive permutations are being kept in a machine register instead of in an array.

The main disadvantage of dual methods is that they usually do not adapt
well to situations where large blocks of permutations need to be skipped, be-
cause the set of all permutations with a given value of the first control entries
c0c1 . . . ck−1 is usually not of importance. The special case (36) is, however,
sometimes an exception, because the n!/k! permutations with c0c1 . . . ck−1 =
00 . . . 0 in that case are precisely those a0a1 . . . an−1 in which 0 precedes 1,
1 precedes 2, . . . , and k − 2 precedes k − 1.

*Ehrlich’s swap method. Gideon Ehrlich has discovered a completely different
approach to permutation generation, based on yet another way to use a control
table c1 . . . cn−1. His method obtains each permutation from its predecessor by
interchanging the leftmost element with another:

Algorithm E (Ehrlich swaps). This algorithm generates all permutations of the
distinct elements a0 . . . an−1 by using auxiliary tables b0 . . . bn−1 and c1 . . . cn.
E1. [Initialize.] Set bj ← j and cj+1 ← 0 for 0 ≤ j < n.
E2. [Visit.] Visit the permutation a0 . . . an−1.
E3. [Find k.] Set k ← 1. Then while ck = k, set ck ← 0 and k ← k + 1.

Terminate if k = n, otherwise set ck ← ck + 1.
E4. [Swap.] Interchange a0 ↔ abk .
E5. [Flip.] Set j ← 1, k ← k − 1. While j < k, interchange bj ↔ bk and set

j ← j + 1, k ← k − 1. Return to E2.
Notice that steps E2 and E3 are identical to steps G2 and G3 of Algorithm G.
The most amazing thing about this algorithm, which Ehrlich communicated to
Martin Gardner in 1987, is that it works; exercise 55 contains a proof. A similar
method, which simplifies the operations of step E5, can be validated in the same
way (see exercise 56). The average number of interchanges performed in step E5
is less than 0.18 (see exercise 57).

As it stands, Algorithm E isn’t faster than other methods we have seen. But
it has the nice property that it changes each permutation in a minimal way, using
only n− 1 different kinds of transpositions. Whereas Algorithm P used adjacent
interchanges, at−1 ↔ at, Algorithm E uses first-element swaps, a0 ↔ at, also
called star transpositions, for some well-chosen sequence of indices t[1], t[2], . . . ,
t[n! − 1]. And if we are generating permutations repeatedly for the same fairly
small value of n, we can precompute this sequence, as we did in Algorithm T

From the Library of Melissa Nuno



ptg999

338 COMBINATORIAL SEARCHING 7.2.1.2

for the index sequence of Algorithm P. Notice that star transpositions have an
advantage over adjacent interchanges, because we always know the value of a0
from the previous swap; we need not read it from memory.

Let En be the sequence of n!− 1 indices t such that Algorithm E swaps a0
with at in step E4. Since En+1 begins with En, we can regard En as the first
n!− 1 elements of an infinite sequence

E∞ = 121213212123121213212124313132131312 . . . . (39)

For example, if n = 4 and a0a1a2a3 = 1234, the permutations visited by
Algorithm E are

1234, 2134, 3124, 1324, 2314, 3214,
4213, 1243, 2143, 4123, 1423, 2413,
3412, 4312, 1342, 3142, 4132, 1432,
2431, 3421, 4321, 2341, 3241, 4231.

(40)

*Using fewer generators. After seeing Algorithms P and E, we might naturally
ask whether all permutations can be obtained by using just two basic operations,
instead of n − 1. For example, Nijenhuis and Wilf [Combinatorial Algorithms
(1975), Exercise 6] noticed that all permutations can be generated for n = 4
if we replace a1a2a3 . . . an at each step by either a2a3 . . . ana1 or a2a1a3 . . . an,
and they wondered whether such a method exists for all n.

In general, if G is any group of permutations and if α1, . . . , αk are ele-
ments of G, the Cayley graph for G with generators (α1, . . . , αk) is the directed
graph whose vertices are the permutations π of G and whose arcs go from π
to α1π, . . . , αkπ. [Arthur Cayley, American J. Math. 1 (1878), 174–176.] The
question of Nijenhuis and Wilf is equivalent to asking whether the Cayley graph
for all permutations of {1, 2, . . . , n}, with generators σ and τ where σ is the cyclic
permutation (1 2 . . . n) and τ is the transposition (1 2), has a Hamiltonian path.

A basic theorem due to R. A. Rankin [Proc. Cambridge Philos. Soc. 44
(1948), 17–25] allows us to conclude in many cases that Cayley graphs with two
generators do not have a Hamiltonian cycle:

Theorem R. Let G be a group consisting of g permutations. If the Cayley graph
for G with generators (α, β) has a Hamiltonian cycle, and if the permutations
(α, β, αβ−) are respectively of order (a, b, c), then either c is even or g/a and g/b
are odd.

(The order of a permutation α is the least positive integer a such that αa is the
identity.)

Proof. See exercise 73.

In particular, when α = σ and β = τ as above, we have g = n!, a = n, b = 2, and
c = n−1, because στ− = (2 . . . n). Therefore we conclude that no Hamiltonian
cycle is possible when n ≥ 4 is even. However, a Hamiltonian path is easy to

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 339

construct when n = 4, because we can join up the 12-cycles
1234→ 2341→ 3412→ 4312→ 3124→ 1243→ 2431

→ 4231→ 2314→ 3142→ 1423→ 4123→ 1234,
2134→ 1342→ 3421→ 4321→ 3214→ 2143→ 1432

→ 4132→ 1324→ 3241→ 2413→ 4213→ 2134,

(41)

by starting at 2341 and jumping from 1234 to 2134, ending at 4213.
Ruskey, Jiang, and Weston [Discrete Applied Math. 57 (1995), 75–83] un-

dertook an exhaustive search in the σ–τ graph for n = 5 and discovered that
it has five essentially distinct Hamiltonian cycles, one of which (the “most
beautiful”) is illustrated in Fig. 42(a). They also found a Hamiltonian path
for n = 6; this was a difficult feat, because it is the outcome of a 720-stage
binary decision tree. Unfortunately the solution they discovered has no apparent
logical structure. A somewhat less complex path is described in exercise 70, but
even that path cannot be called simple. Therefore a σ–τ approach will probably
not be of practical interest for larger values of n unless a new construction
is discovered. R. C. Compton and S. G. Williamson [Linear and Multilinear
Algebra 35 (1993), 237–293] have proved that Hamiltonian cycles exist for all n
if the three generators σ, σ−, and τ are allowed instead of just σ and τ ; their
cycles have the interesting property that every nth transformation is τ , and the
intervening n− 1 transformations are either all σ or all σ−. But their method is
too complicated to explain in a short space.

Exercise 69 describes a general permutation algorithm that is reasonably
simple and needs only three generators, each of order 2. Figure 42(b) illustrates
the case n = 5 of this method, which was motivated by examples of bell-ringing.

(a) Using only transitions (1 2 3 4 5) and (1 2).

(b) Using only transitions (1 2)(3 4), (2 3)(4 5), and (3 4).

Fig. 42. Hamiltonian cycles for 5! permutations.

Faster, faster. What is the fastest way to generate permutations? This question
has often been raised in computer publications, because people who examine n!
possibilities want to keep the running time as small as possible. But the answers
have generally been contradictory, because there are many different ways to
formulate the question. Let’s try to understand the related issues by studying
how permutations might be generated most rapidly on the MMIX computer.

Suppose first that our goal is to produce permutations in an array of n
consecutive memory words (octabytes). The fastest way to do this, of all those
we’ve seen in this section, is to streamline Heap’s method (27), as suggested by
R. Sedgewick [Computing Surveys 9 (1977), 157–160].

From the Library of Melissa Nuno



ptg999

340 COMBINATORIAL SEARCHING 7.2.1.2

The key idea is to optimize the code for the most common cases of steps G2
and G3, namely the cases in which all activity occurs at the beginning of the
array. If registers u, v, and w contain the contents of the first three words, and
if the next six permutations to be generated involve permuting those words in
all six possible ways, we can clearly do the job as follows:

PUSHJ 0,Visit
STO v,A0; STO u,A1; PUSHJ 0,Visit
STO w,A0; STO v,A2; PUSHJ 0,Visit
STO u,A0; STO w,A1; PUSHJ 0,Visit
STO v,A0; STO u,A2; PUSHJ 0,Visit
STO w,A0; STO v,A1; PUSHJ 0,Visit

(42)

(Here A0 is the address of octabyte a0, etc.) A complete permutation program,
which takes care of getting the right things into u, v, and w, appears in exer-
cise 77, but the other instructions are less important because they need to be
performed only 1

6 of the time. The total cost per permutation, not counting the
4υ needed for PUSHJ and POP on each call to Visit, comes to approximately
2.77µ + 5.69υ with this approach. If we use four registers u, v, w, x, and if
we expand (42) to 24 calls on Visit, the running time per permutation drops
to about 2.19µ + 3.07υ. And with r registers and r! Visits, exercise 78 shows
that the cost is (2 + O(1/r!))(µ + υ), which is very nearly the cost of two STO
instructions.

The latter is, of course, the minimum possible time for any method that
generates all permutations in a sequential array. . . .Or is it? We have assumed
that the visiting routine wants to see permutations in consecutive locations, but
perhaps that routine is able to read the permutations from different starting
points. Then we can arrange to keep an−1 fixed and to keep two copies of the
other elements in its vicinity:

a0a1 . . . an−2an−1a0a1 . . . an−2. (43)
If we now let a0a1 . . . an−2 run through (n− 1)! permutations, always changing
both copies simultaneously by doing two STO commands instead of one, we can
let every call to Visit look at the n permutations

a0a1 . . . an−1, a1 . . . an−1a0, . . . , an−1a0 . . . an−2, (44)
which all appear consecutively. The cost per permutation is now reduced to the
cost of three simple instructions like ADD, CMP, PBNZ, plus O(1/n). [See Varol
and Rotem, Comp. J. 24 (1981), 173–176.]

Furthermore, we might not want to waste time storing permutations into
memory at all. Suppose, for example, that our goal is to generate all permuta-
tions of {0, 1, . . . , n − 1}. The value of n will probably be at most 16, because
16! = 20,922,789,888,000 and 17! = 355,687,428,096,000. Therefore an entire
permutation will fit in the 16 nybbles of an octabyte, and we can keep it in a
single register. This will be advantageous only if the visiting routine doesn’t
need to unpack the individual nybbles; but let’s suppose that it doesn’t. How
fast can we generate permutations in the nybbles of a 64-bit register?

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 341

One idea, suggested by a technique due to A. J. Goldstein [U.S. Patent
3383661 (14 May 1968)], is to precompute the table (t[1], . . . , t[5039]) of plain-
change transitions for seven elements, using Algorithm T. These numbers t[k] lie
between 1 and 6, so we can pack 20 of them into a 64-bit word. It is convenient
to put the number

∑20
k=1 23k−1t[20j + k] into word j of an auxiliary table, for

0 ≤ j < 252, with t[5040] = 1; for example, the table begins with the codeword

00|001|010|011|100|101|110|100|110|101|100|011|010|001|110|001|010|011|100|101|110|00.

The following program reads such codes efficiently:
Perm ⟨ Set register a to the first permutation ⟩
0H LDA p,T p← address of first codeword.

JMP 3F
1H ⟨Visit the permutation in register a ⟩

⟨ Swap the nybbles of a that lie t bits from the right ⟩
SRU c,c,3 c← c≫ 3.

2H AND t,c,#1c t← c& (11100)2.
PBNZ t,1B Branch if t ̸= 0.
ADD p,p,8

3H LDO c,p,0 c← next codeword.
PBNZ c,2B (The final codeword is followed by 0.)
⟨ If not done, advance the leading n− 7 nybbles and return to 0B ⟩

(45)

Exercise 79 shows how to ⟨Swap the nybbles . . . ⟩ with seven instructions, using
bit manipulation operations that are found on most computers. Therefore the
cost per permutation is just a bit more than 10υ. (The instructions that fetch
new codewords cost only (µ + 5υ)/20; and the instructions that advance the
leading n−7 nybbles are even more negligible since their cost is divided by 5040.)
Notice that there is now no need for PUSHJ and POP as there was with (42); we
ignored those instructions before, but they did cost 4υ.

We can, however, do even better by adapting Langdon’s cyclic-shift method,
Algorithm C. Suppose we start with the lexicographically largest permutation
and operate as follows:

GREG @
0H OCTA #fedcba9876543210&(1<<(4*N)-1)
Perm LDOU a,0B Set a← # . . . 3210.

JMP 2F
1H SRU a,a,4*(16-N) a← ⌊a/1616−n⌋.

OR a,a,t a← a | t.
2H ⟨Visit the permutation in register a ⟩

SRU t,a,4*(N-1) t← ⌊a/16n−1⌋.
SLU a,a,4*(17-N) a← 1617−namod 1616.
PBNZ t,1B To 1B if t ̸= 0.
⟨Continue with Langdon’s method ⟩

(46)

The running time per permutation is now only 5υ +O(1/n), again without the
need for PUSHJ and POP. See exercise 81 for an interesting way to extend (46) to
a complete program, obtaining a remarkably short and fast routine.

From the Library of Melissa Nuno



ptg999

342 COMBINATORIAL SEARCHING 7.2.1.2

Fast permutation generators are amusing, but in practice we can usually
save more time by streamlining the visiting routine than by speeding up the
generator.

Topological sorting. Instead of working with all n! permutations of {1, . . . , n},
we often want to look only at permutations that obey certain restrictions. For
example, we might be interested only in permutations for which 1 precedes 3,
2 precedes 3, and 2 precedes 4; there are five such permutations of {1, 2, 3, 4},
namely

1234, 1243, 2134, 2143, 2413. (47)

The problem of topological sorting, which we studied in Section 2.2.3 as a first
example of nontrivial data structures, is the general problem of finding a permu-
tation that satisfies m such conditions x1 ≺ y1, . . . , xm ≺ ym, where x ≺ y means
that x should precede y in the permutation. This problem arises frequently in
practice, so it has several different names; for example, it is often called the linear
embedding problem, because we want to arrange objects in a line while preserving
certain order relationships. It is also the problem of extending a partial ordering
to a total ordering (see exercise 2.2.3–14).

Our goal in Section 2.2.3 was to find a single permutation that satisfies
all the relations. But now we want rather to find all such permutations, all
topological sorts. Indeed, we will assume in the present section that the elements
x and y on which the relations are defined are integers between 1 and n, and
that we have x < y whenever x ≺ y. Consequently the permutation 12 . . . n
will always be topologically correct. (If this simplifying assumption is not met,
we can preprocess the data by using Algorithm 2.2.3T to rename the objects
appropriately.)

Many important classes of permutations are special cases of this topological
ordering problem. For example, the permutations of {1, . . . , 8} such that

1 ≺ 2, 2 ≺ 3, 3 ≺ 4, 6 ≺ 7, 7 ≺ 8

are equivalent to permutations of the multiset {1, 1, 1, 1, 2, 3, 3, 3}, because we
can map {1, 2, 3, 4} →→ 1, 5 →→ 2, and {6, 7, 8} →→ 3. We know how to generate
permutations of a multiset using Algorithm L, but now we will learn another way.

Notice that x precedes y in a permutation a1 . . . an if and only if a′x < a′y in
the inverse permutation a′1 . . . a′n. Therefore the algorithm we are about to study
will also find all permutations a′1 . . . a′n such that a′j < a′k whenever j ≺ k. For
example, we learned in Section 5.1.4 that a Young tableau is an arrangement of
{1, . . . , n} in rows and columns so that each row is increasing from left to right
and each column is increasing from top to bottom. The problem of generating all
3× 3 Young tableaux is therefore equivalent to generating all a′1 . . . a′9 such that

a′1 < a′2 < a′3, a′4 < a′5 < a′6, a′7 < a′8 < a′9,

a′1 < a′4 < a′7, a′2 < a′5 < a′8, a′3 < a′6 < a′9,
(48)

and this is a special kind of topological sorting.

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 343

We might also want to find all perfect matchings of 2n elements, namely all
ways to partition {1, . . . , 2n} into n pairs. There are (2n − 1)(2n − 3) . . . (1) =
(2n)!/(2nn!) ways to do this, and they correspond to permutations that satisfy

a′1 < a′2, a′3 < a′4, . . . , a′2n−1 < a′2n, a′1 < a′3 < · · · < a′2n−1. (49)

An elegant algorithm for exhaustive topological sorting was discovered by
Y. L. Varol and D. Rotem [Comp. J. 24 (1981), 83–84], who realized that a
method analogous to plain changes (Algorithm P) can be used. Suppose we
have found a way to arrange {1, . . . , n − 1} topologically, so that a1 . . . an−1
satisfies all the conditions that do not involve n. Then we can easily write down
all the allowable ways to insert the final element n without changing the relative
order of a1 . . . an−1: We simply start with a1 . . . an−1n, then shift n left one step
at a time, until it cannot move further. Applying this idea recursively yields the
following straightforward procedure.
Algorithm V (All topological sorts). Given a relation ≺ on {1, . . . , n} with the
property that x ≺ y implies x < y, this algorithm generates all permutations
a1 . . . an and their inverses a′1 . . . a′n with the property that a′j < a′k whenever
j ≺ k. We assume for convenience that a0 = a′0 = 0 and that 0 ≺ k for 1 ≤ k ≤ n.
V1. [Initialize.] Set aj ← j and a′j ← j for 0 ≤ j ≤ n.
V2. [Visit.] Visit the permutation a1 . . . an and its inverse a′1 . . . a′n. Then set

k ← n.
V3. [Can k move left?] Set j ← a′k and l← aj−1. If l ≺ k, go to V5.
V4. [Yes, move it.] Set aj−1 ← k, aj ← l, a′k ← j − 1, and a′l ← j. Go to V2.
V5. [No, put k back.] While j < k, set l← aj+1, aj ← l, a′l ← j, and j ← j+ 1.

Then set ak ← a′k ← k. Decrease k by 1 and return to V3 if k > 0.
For example, Theorem 5.1.4H tells us that there are exactly 42 Young tableaux
of size 3× 3. If we apply Algorithm V to the relations (48) and write the inverse
permutation in array form

a′1a
′
2a

′
3

a′4a
′
5a

′
6

a′7a
′
8a

′
9

, (50)

we get the following 42 results:

123
456
789

123
457
689

123
458
679

123
467
589

123
468
579

124
356
789

124
357
689

124
358
679

124
367
589

124
368
579

125
367
489

125
368
479

125
346
789

125
347
689

125
348
679

126
347
589

126
348
579

127
348
569

126
357
489

126
358
479

127
358
469

134
256
789

134
257
689

134
258
679

134
267
589

134
268
579

135
267
489

135
268
479

145
267
389

145
268
379

135
246
789

135
247
689

135
248
679

136
247
589

136
248
579

137
248
569

136
257
489

136
258
479

137
258
469

146
257
389

146
258
379

147
258
369

From the Library of Melissa Nuno



ptg999

344 COMBINATORIAL SEARCHING 7.2.1.2

Let tr be the number of topological sorts for which the final n− r elements
are in their initial position aj = j for r < j ≤ n. Equivalently, tr is the number
of topological sorts a1 . . . ar of {1, . . . , r}, when we ignore the relations involving
elements greater than r. Then the recursive mechanism underlying Algorithm V
shows that step V2 is performed N times and step V3 is performed M times,
where

M = tn + · · ·+ t1 and N = tn. (51)
Also, step V4 and the loop operations of V5 are performed N − 1 times; the rest
of step V5 is done M − N + 1 times. Therefore the total running time of the
algorithm is a linear combination of M , N , and n.

If the element labels are chosen poorly, M might be much larger than N .
For example, if the constraints input to Algorithm V are

2 ≺ 3, 3 ≺ 4, . . . , n− 1 ≺ n, (52)

then tj = j for 1 ≤ j ≤ n and we have M = 1
2 (n2 + n), N = n. But those

constraints are also equivalent to

1 ≺ 2, 2 ≺ 3, . . . , n− 2 ≺ n− 1, (53)

under renaming of the elements; then M is reduced to 2n− 1 = 2N − 1.
Exercise 89 shows that a simple preprocessing step will find element labels

so that a slight modification of Algorithm V is able to generate all topological
sorts in O(N +n) steps. Thus topological sorting can always be done efficiently.

Think twice before you permute. We have seen several attractive algorithms
for permutation generation in this section, but many algorithms are known by
which permutations that are optimum for particular purposes can be found
without running through all possibilities. For example, Theorem 6.1S showed
that we can find the best way to arrange records on a sequential storage simply
by sorting them with respect to a certain cost criterion, and this process takes
only O(n logn) steps. In Section 7.5.2 we will study the assignment problem,
which asks how to permute the columns of a square matrix so that the sum of
the diagonal elements is maximized. That problem can be solved in at most
O(n3) operations, so it would be foolish to use a method of order n! unless n
is extremely small. Even in cases like the traveling salesrep problem, when no
efficient algorithm is known, we can usually find a much better approach than
to examine every possible solution. Permutation generation is best used when
there is good reason to look at each permutation individually.

EXERCISES
x 1. [20 ] Explain how to make Algorithm L run faster, by streamlining its operations

when the value of j is near n.
2. [20 ] Rewrite Algorithm L so that it produces all permutations of a1 . . . an in

reverse colex order. (In other words, the values of the reflections an . . . a1 should be
lexicographically decreasing, as in (11). This form of the algorithm is often simpler
and faster than the original, because fewer calculations depend on the value of n.)

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 345

x 3. [M21 ] The rank of a combinatorial arrangement X with respect to a generation
algorithm is the number of other arrangements that the algorithm visits prior to X.
Explain how to compute the rank of a given permutation a1 . . . an with respect to
Algorithm L, if {a1, . . . , an} = {1, . . . , n}. What is the rank of 314592687?

4. [M23 ] Generalizing exercise 3, explain how to compute the rank of a1 . . . an with
respect to Algorithm L when {a1, . . . , an} is the multiset {n1 · x1, . . . , nt · xt}; here
n1 + · · ·+ nt = n and x1 < · · · < xt. (The total number of permutations is, of course,
the multinomial coefficient 

n

n1, . . . , nt


= n!
n1! . . . nt!

;

see Eq. 5.1.2–(3).) What is the rank of 314159265?
5. [HM25 ] Compute the mean and variance of the number of comparisons made by

Algorithm L in (a) step L2, (b) step L3, when the elements {a1, . . . , an} are distinct.
6. [HM34 ] Derive generating functions for the mean number of comparisons made

by Algorithm L in (a) step L2, (b) step L3, when {a1, . . . , an} is a general multiset
as in exercise 4. Also give the results in closed form when {a1, . . . , an} is the binary
multiset {s · 0, (n− s) · 1}.

7. [HM35 ] What is the limit as t → ∞ of the average number of comparisons
made per permutation in step L2 when Algorithm L is being applied to the multiset
(a) {2 · 1, 2 · 2, . . . , 2 · t}? (b) {1 · 1, 2 · 2, . . . , t · t}? (c) {2 · 1, 4 · 2, . . . , 2t · t}?

x 8. [21 ] The variations of a multiset are the permutations of all its submultisets. For
example, the variations of {1, 2, 2, 3} are

ϵ, 1, 12, 122, 1223, 123, 1232, 13, 132, 1322,
2, 21, 212, 2123, 213, 2132, 22, 221, 2213, 223, 2231, 23, 231, 2312, 232, 2321,
3, 31, 312, 3122, 32, 321, 3212, 322, 3221.

Show that simple changes to Algorithm L will generate all variations of a given multiset
{a1, a2, . . . , an}.

9. [22 ] Continuing the previous exercise, design an algorithm to generate all r-
variations of a given multiset {a1, a2, . . . , an}, also called its r-permutations, namely all
permutations of its r-element submultisets. (For example, the solution to an alphametic
with r distinct letters is an r-variation of {0, 1, . . . , 9}.)
10. [20 ] What are the values of a1a2 . . . an, c1c2 . . . cn, and o1o2 . . . on at the end of
Algorithm P, if a1a2 . . . an = 12 . . . n at the beginning?
11. [M22 ] How many times is each step of Algorithm P performed? (Assume that
n ≥ 2.)

x 12. [M23 ] What is the 1000000th permutation visited by (a) Algorithm L, (b) Algo-
rithm P, (c) Algorithm C, if {a1, . . . , an} = {0, . . . , 9}? Hint: In mixed-radix notation
we have 1000000 = [ 2,

10,
6,
9,

6,
8,

2,
7,

5,
6,

1,
5,

2,
4,

2,
3,

0,
2,

0
1 ] = [ 0,

1,
0,
2,

1,
3,

2,
4,

3,
5,

0,
6,

2,
7,

7,
8,

1,
9,

0
10 ].

13. [M21 ] (Martin Gardner, 1974.) True or false: If a1a2 . . . an is initially 12 . . . n,
Algorithm P begins by visiting all n!/2 permutations in which 1 precedes 2; then the
next permutation is n . . . 21.
14. [M22 ] True or false: If a1a2 . . . an is initially x1x2 . . . xn in Algorithm P, we always
have aj−cj+s = xj at the beginning of step P5.

From the Library of Melissa Nuno



ptg999

346 COMBINATORIAL SEARCHING 7.2.1.2

15. [M23 ] (Selmer Johnson, 1963.) Show that the offset variable s never exceeds 2 in
Algorithm P.
16. [21 ] Explain how to make Algorithm P run faster, by streamlining its operations
when the value of j is near n. (This problem is analogous to exercise 1.)

x 17. [20 ] Extend Algorithm P so that the inverse permutation a′1 . . . a
′
n is available for

processing when a1 . . . an is visited in step P2. (The inverse satisfies a′k = j if and only
if aj = k.)
18. [21 ] (Rosary permutations.) Devise an efficient way to generate (n−1)!/2 permu-
tations that represent all possible undirected cycles on the vertices {1, . . . , n}; that is,
no cyclic shift of a1 . . . an or an . . . a1 will be generated if a1 . . . an is generated. The
permutations (1234, 1324, 3124) could, for example, be used when n = 4.
19. [25 ] Construct an algorithm that generates all permutations of n distinct elements
looplessly in the spirit of Algorithm 7.2.1.1L.

x 20. [20 ] The n-cube has 2nn! symmetries, one for each way to permute and/or com-
plement the coordinates. Such a symmetry is conveniently represented as a signed
permutation, namely a permutation with optional signs attached to the elements. For
example, 231 is a signed permutation that transforms the vertices of the 3-cube by
changing x1x2x3 to x2x3x1, so that 000 →→ 001, 001 →→ 011, . . . , 111 →→ 110. Design
a simple algorithm that generates all signed permutations of {1, 2, . . . , n}, where each
step either interchanges two adjacent elements or negates the first element.
21. [M21 ] (E. P. McCravy, 1971.) How many solutions does the alphametic (6) have
in radix b?
22. [M15 ] True or false: If an alphametic has a solution in radix b, it has a solution
in radix b+ 1.
23. [M20 ] True or false: A pure alphametic cannot have two identical signatures
sj = sk ̸= 0 when j ̸= k.
24. [25 ] Solve the following alphametics by hand or by computer:

a) SEND + A + TAD + MORE = MONEY.
b) ZEROES + ONES = BINARY. (Peter MacDonald, 1977)
c) DCLIX + DLXVI = MCCXXV. (Willy Enggren, 1972)
d) COUPLE + COUPLE = QUARTET. (Michael R. W. Buckley, 1977)
e) FISH + N + CHIPS = SUPPER. (Bob Vinnicombe, 1978)
f) SATURN + URANUS + NEPTUNE + PLUTO = PLANETS. (Willy Enggren, 1968)
g) EARTH + AIR + FIRE + WATER = NATURE. (Herman Nijon, 1977)
h) AN + ACCELERATING + INFERENTIAL + ENGINEERING + TALE + ELITE + GRANT + FEE +

ET + CETERA = ARTIFICIAL + INTELLIGENCE.
i) HARDY + NESTS = NASTY + HERDS.

x 25. [M21 ] Devise a fast way to compute min(a · s) and max(a · s) over all valid
permutations a1 . . . a10 of {0, . . . , 9}, given the signature vector s = (s1, . . . , s10) and
the first-letter set F of an alphametic problem. (Such a procedure makes it possible
to rule out many cases quickly when a large family of alphametics is being considered,
as in several of the exercises that follow, because a solution can exist only when
min(a · s) ≤ 0 ≤ max(a · s).)
26. [25 ] What is the unique alphametic solution to

NIIHAU± KAUAI± OAHU± MOLOKAI± LANAI± MAUI± HAWAII = 0?

27. [30 ] Construct pure additive alphametics in which all words have five letters.

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 347

28. [M25 ] A partition of the integer n is an expression of the form n = n1+· · ·+nt with
n1 ≥ · · · ≥ nt > 0. Such a partition is called doubly true if α(n) = α(n1)+ · · ·+α(nt) is
also a pure alphametic, where α(n) is the “name” of n in some language. Doubly true
partitions were introduced by Alan Wayne in AMM 54 (1947), 38, 412–414, where he
suggested solving TWENTY = SEVEN + SEVEN + SIX and a few others.

a) Find all partitions that are doubly true in English when 1 ≤ n ≤ 20.
b) Wayne also gave the example EIGHTY = FIFTY + TWENTY + NINE + ONE. Find all

doubly true partitions for 1 ≤ n ≤ 100 in which the parts are distinct, using the
names ONE, TWO, . . . , NINETYNINE, ONEHUNDRED.

x 29. [M25 ] Continuing the previous exercise, find all equations of the form n1 + · · ·+
nt = n′

1 + · · · + n′
t′ that are both mathematically and alphametically true in English,

when {n1, . . . , nt, n
′
1, . . . , n

′
t′} are distinct positive integers less than 20. For example,

TWELVE + NINE + TWO = ELEVEN + SEVEN + FIVE ;

the alphametics should all be pure.
30. [25 ] Solve these multiplicative alphametics by hand or by computer:

a) TWO× TWO = SQUARE. (H. E. Dudeney, 1929)
b) HIP× HIP = HURRAY. (Willy Enggren, 1970)
c) PI× R× R = AREA. (Brian Barwell, 1981)
d) NORTH/SOUTH = EAST/WEST. (Nob Yoshigahara, 1995)
e) NAUGHT× NAUGHT = ZERO× ZERO× ZERO. (Alan Wayne, 2003)

31. [M22 ] (Nob Yoshigahara.) (a) What is the unique solution to A/BC+D/EF+G/HI =
1, when {A, . . . , I} = {1, . . . , 9}? (b) Similarly, make AB mod 2 = 0, ABC mod 3 = 0, etc.
32. [M25 ] (H. E. Dudeney, 1901.) Find all ways to represent 100 by inserting a
plus sign and a slash into a permutation of the digits {1, . . . , 9}. For example, 100 =
91 + 5742/638. The plus sign should precede the slash.
33. [25 ] Continuing the previous exercise, find all positive integers less than 150 that
(a) cannot be represented in such a fashion; (b) have a unique representation.
34. [M26 ] Make the equation EVEN + ODD + PRIME = x doubly true when (a) x is a
perfect 5th power; (b) x is a perfect 7th power.

x 35. [M20 ] The automorphisms of a 4-cube have many different Sims tables, only one
of which is shown in (14). How many different Sims tables are possible for that group,
when the vertices are numbered as in (12)?
36. [M23 ] Find a Sims table for the group of all automorphisms of the 4×4 tic-tac-toe
board

0 1 2 3
4 5 6 7
8 9 a b
c d e f

,

namely the permutations that take lines into lines, where a “line” is a set of four
elements that belong to a row, column, or diagonal.

x 37. [HM22 ] How many Sims tables can be used with Algorithms G or H? Estimate
the logarithm of this number as n→∞.
38. [HM21 ] Prove that the average number of transpositions per permutation when
using Ord-Smith’s algorithm (26) is approximately sinh 1 ≈ 1.175.

From the Library of Melissa Nuno



ptg999

348 COMBINATORIAL SEARCHING 7.2.1.2

39. [16 ] Write down the 24 permutations generated for n = 4 by (a) Ord-Smith’s
method (26); (b) Heap’s method (27).
40. [M23 ] Show that Heap’s method (27) corresponds to a valid Sims table.

x 41. [M33 ] Design an algorithm that generates all r-variations of {0, 1, . . . , n − 1} by
interchanging just two elements when going from one variation to the next. (See
exercise 9.) Hint: Generalize Heap’s method (27), obtaining the results in positions
an−r . . . an−1 of an array a0 . . . an−1. For example, one solution when n = 5 and r = 2
uses the final two elements of the respective permutations 01234, 31204, 30214, 30124,
40123, 20143, 24103, 24013, 34012, 14032, 13042, 13402, 23401, 03421, 02431, 02341,
12340, 42310, 41320, 41230.
42. [M20 ] Construct a Sims table for all permutations in which every σ(k, j) and
every τ(k, j) for 1 ≤ j ≤ k is a cycle of length ≤ 3.
43. [M24 ] Construct a Sims table for all permutations in which every σ(k, k), ω(k),
and τ(k, j)ω(k − 1)− for 1 ≤ j ≤ k is a cycle of length ≤ 3.
44. [20 ] When blocks of unwanted permutations are being skipped by the extended
Algorithm G, is the Sims table of Ord-Smith’s method (23) superior to the Sims table
of the reverse colex method (18)?
45. [20 ] (a) What are the indices u1 . . . u9 when Algorithm X visits the permutation
314592687? (b) What permutation is visited when u1 . . . u9 = 161800000?
46. [20 ] True or false: When Algorithm X visits a1 . . . an, we have uk > uk+1 if and
only if ak > ak+1, for 1 ≤ k < n.

x 47. [M21 ] Express the number of times that each step of Algorithm X is performed
in terms of the numbers N0, N1, . . . , Nn, where Nk is the number of prefixes a1 . . . ak
that satisfy tj(a1, . . . , aj) for 1 ≤ j ≤ k.

x 48. [M25 ] Compare the running times of Algorithm X and Algorithm L, in the case
when the tests t1(a1), t2(a1, a2), . . . , tn(a1, a2, . . . , an) always are true.

x 49. [28 ] The text’s suggested method for solving additive alphametics with Algo-
rithm X essentially chooses digits from right to left; in other words, it assigns tentative
values to the least significant digits before considering digits that correspond to higher
powers of 10.

Explore an alternative approach that chooses digits from left to right. For example,
such a method will deduce immediately that M = 1 when SEND + MORE = MONEY. Hint:
See exercise 25.
50. [M15 ] Explain why the dual formula (32) follows from (13).
51. [M16 ] True or false: If the sets Sk = {σ(k, 0), . . . , σ(k, k)} form a Sims table for
the group of all permutations, so also do the sets S−

k = {σ(k, 0)−, . . . , σ(k, k)−}.
x 52. [M22 ] What permutations τ(k, j) and ω(k) arise when Algorithm H is used with

the Sims table (36)? Compare the resulting generator with Algorithm P.
x 53. [M26 ] (F. M. Ives.) Construct a Sims table for which Algorithm H will generate

all permutations by making only n! +O((n− 2)!) transpositions.
54. [20 ] Would Algorithm C work properly if step C3 did a right-cyclic shift, setting
a1 . . . ak−1ak ← aka1 . . . ak−1, instead of a left-cyclic shift?
55. [M27 ] Consider the factorial ruler function

ρ!(m) = max{k | mmod k! = 0}.

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 349

Let σk and τk be permutations of the nonnegative integers such that σj τk = τkσj
whenever j ≤ k. Let α0 and β0 be the identity permutation, and for m > 0 define

αm = β−
m−1τρ!(m)βm−1αm−1, βm = σρ!(m)βm−1.

For example, if σk is the flip operation (1 k−1)(2 k−2) . . . = (0 k)ϕ(k) and if τk = (0 k),
and if Algorithm E is started with aj = j for 0 ≤ j < n, then αm and βm are the
contents of a0 . . . an−1 and b0 . . . bn−1 after step E5 has been performed m times.

a) Prove that β(n+1)!α(n+1)! = σn+1σ
−
n τn+1τ

−
n (βn!αn!)n+1.

b) Use the result of (a) to establish the validity of Algorithm E.
56. [M22 ] Prove that Algorithm E remains valid if step E5 is replaced by

E5′. [Transpose pairs.] If k > 2, interchange bj+1 ↔ bj for j = k − 2, k − 4, . . . ,
(2 or 1). Return to E2.

57. [HM22 ] What is the average number of interchanges made in step E5?
58. [M21 ] True or false: If Algorithm E begins with a0 . . . an−1 = x1 . . . xn then the
final permutation visited begins with a0 = xn.
59. [M20 ] Some authors define the arcs of a Cayley graph as running from π to παj
instead of from π to αjπ. Are the two definitions essentially different?

x 60. [21 ] A Gray cycle for permutations is a cycle (π0, π1, . . . , πn!−1) that includes
every permutation of {1, 2, . . . , n} and has the property that πk differs from π(k+1) mod n!
by an adjacent transposition. It can also be described as a Hamiltonian cycle on the
Cayley graph for the group of all permutations on {1, 2, . . . , n}, with the n−1 generators
((1 2), (2 3), . . . , (n−1 n)). The delta sequence of such a Gray cycle is the sequence of
integers δ0δ1 . . . δn!−1 such that

π(k+1) mod n! = (δk δk+1)πk.

(See 7.2.1.1–(24), which describes the analogous situation for binary n-tuples.) For
example, Fig. 43 illustrates the Gray cycle defined by plain changes when n = 4; its
delta sequence is (32131231)3.

a) Find all Gray cycles for permutations of {1, 2, 3, 4}.
b) Two Gray cycles are considered to be equivalent if their delta sequences can be

obtained from each other by cyclic shifting (δk . . . δn!−1δ0 . . . δk−1) and/or reversal
(δn!−1 . . . δ1δ0) and/or complementation ((n−δ0)(n−δ1) . . . (n−δn!−1)). Which of
the Gray cycles in (a) are equivalent?

Fig. 43. Algorithm P traces out
this Hamiltonian cycle on the
truncated octahedron of Fig. 5–1.

1234
2134

1243
2143

2314

3214
2341

3241

1324

3124 1342

3142

1423

1432

4132

4123

2413

2431

4231

4213

3421

3412

4321
4312

From the Library of Melissa Nuno



ptg999

350 COMBINATORIAL SEARCHING 7.2.1.2

61. [21 ] Continuing the previous exercise, a Gray code for permutations is like a Gray
cycle except that the final permutation πn!−1 is not required to be adjacent to the initial
permutation π0. Study the set of all Gray codes for n = 4 that start with 1234.

x 62. [M23 ] What permutations can be reached as the final element of a Gray code
that starts at 12 . . . n?
63. [M25 ] Estimate the total number of Gray cycles for permutations of {1, 2, 3, 4, 5}.
64. [23 ] A “doubly Gray” code for permutations is a Gray cycle with the additional
property that δk+1 = δk ± 1 for all k. Compton and Williamson have proved that such
codes exist for all n ≥ 3. How many doubly Gray codes exist for n = 5?
65. [M25 ] For which integers N is there a Gray path through the N lexicographically
smallest permutations of {1, . . . , n}? (Exercise 7.2.1.1–26 solves the analogous problem
for binary n-tuples.)
66. [22 ] Ehrlich’s swap method suggests another type of Gray cycle for permutations,
in which the n − 1 generators are the star transpositions (1 2), (1 3), . . . , (1 n). For
example, Fig. 44 shows the relevant graph when n = 4. Analyze the Hamiltonian cycles
of this graph.

1234 2431 1423 2143 1342 2314

1432 2413 1243 2341 1324 2134

4132 3412 4213 3241 4321 3124

4312 3214 4231 3421 4123 3142

4231 3421 4123 3142 4312 3214

1234

2134

4132

3142

1342 2314 1234 2431 1423 2143

Fig. 44. The Cayley graph for permutations of {1, 2, 3, 4}, generated by the
star transpositions (1 2), (1 3), and (1 4), drawn as a twisted torus.

67. [26 ] Continuing the previous exercise, find a first-element-swap Gray cycle for
n = 5 in which each star transposition (1 j) occurs 30 times, for 2 ≤ j ≤ 5.
68. [M30 ] (V. L. Kompel’makher and V. A. Liskovets, 1975.) Let G be the Cayley
graph for all permutations of {1, . . . , n}, with generators (α1, . . . , αk) where each αj
is a transposition (uj vj); also let A be the graph with vertices {1, . . . , n} and edges
uj −−− vj for 1 ≤ j ≤ k. Prove that G has a Hamiltonian cycle if and only if A is
connected. (Figure 43 is the special case when A is a path; Figure 44 is the special
case when A is a “star.”)

x 69. [28 ] If n ≥ 4, the following algorithm generates all permutations A1A2A3 . . . An
of {1, 2, 3, . . . , n} using only three transformations,

ρ = (1 2)(3 4)(5 6) . . . , σ = (2 3)(4 5)(6 7) . . . , τ = (3 4)(5 6)(7 8) . . . ,

never applying ρ and τ next to each other. Explain why it works.
Z1. [Initialize.] Set Aj ← j for 1 ≤ j ≤ n. Also set aj ← 2j for 1 ≤ j ≤ n/2 and

an−j ← 2j+1 for 1 ≤ j < n/2. Then invoke Algorithm P, but with parameter
n− 1 instead of n. We will treat that algorithm as a coroutine, which should

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 351

return control to us whenever it “visits” a1 . . . an−1 in step P2. We will also
share its variables (except n).

Z2. [Set x and y.] Invoke Algorithm P again, obtaining a new permutation
a1 . . . an−1 and a new value of j. If j = 2, interchange a1+s ↔ a2+s (thereby
undoing the effect of step P5) and repeat this step; in such a case we are at the
halfway point of Algorithm P. If j = 1 (so that Algorithm P has terminated),
set x← y ← 0 and go to Z3. Otherwise set

x← aj−cj+s+[oj=+1], y ← aj−cj+s−[oj=−1];

these are the two elements most recently interchanged in step P5.
Z3. [Visit.] Visit the permutation A1 . . . An. Then go to Z5 if A1 = x and A2 = y.
Z4. [Apply ρ, then σ.] Interchange A1 ↔ A2, A3 ↔ A4, A5 ↔ A6, . . . . Visit

A1 . . . An. Then interchange A2 ↔ A3, A4 ↔ A5, A6 ↔ A7, . . . . Terminate
if A1 . . . An = 1 . . . n, otherwise return to Z3.

Z5. [Apply τ , then σ.] Interchange A3 ↔ A4, A5 ↔ A6, A7 ↔ A8, . . . . Visit
A1 . . . An. Then interchange A2 ↔ A3, A4 ↔ A5, A6 ↔ A7, . . . , and return
to Z2.

Hint: Show first that the algorithm works if modified so that Aj ← n + 1 − j and
aj ← j in step Z1, and if the “flip” permutations

ρ′ = (1 n)(2 n−1) . . . , σ′ = (2 n)(3 n−1) . . . , τ ′ = (2 n−1)(3 n−2) . . .

are used instead of ρ, σ, τ in steps Z4 and Z5. In this modification, step Z3 should go
to Z5 if A1 = x and An = y; step Z4 should terminate when A1 . . . An = n . . . 1.

x 70. [M33 ] The two 12-cycles (41) can be regarded as σ–τ cycles for the twelve per-
mutations of {1, 1, 3, 4}:

1134→ 1341→ 3411→ 4311→ 3114→ 1143→ 1431
→ 4131→ 1314→ 3141→ 1413→ 4113→ 1134.

Replacing {1, 1} by {1, 2} yields disjoint cycles, and we obtained a Hamiltonian path by
jumping from one to the other. Can a σ–τ path for all permutations of 6 elements be
formed in a similar way, based on a 360-cycle for the permutations of {1, 1, 3, 4, 5, 6}?
71. [48 ] Does the Cayley graph with generators σ = (1 2 . . . n) and τ = (1 2) have a
Hamiltonian cycle whenever n ≥ 3 is odd?
72. [M21 ] Given a Cayley graph with generators (α1, . . . , αk), assume that each αj
takes x →→ y. (For example, both σ and τ in exercise 71 take 1 →→ 2.) Prove that any
Hamiltonian path starting at 12 . . . n in G must end at a permutation that takes y →→ x.

x 73. [M30 ] Let α, β, and σ be permutations of a set X, where X = A ∪ B. Assume
that xσ = xα when x ∈ A and xσ = xβ when x ∈ B, and that the order of αβ− is odd.

a) Prove that all three permutations α, β, σ have the same sign; that is, they are all
even or all odd. Hint: A permutation has odd order if and only if its cycles all
have odd length.

b) Derive Theorem R from part (a).
74. [M30 ] (R. A. Rankin.) Assuming that αβ = βα in Theorem R, prove that a
Hamiltonian cycle exists in the Cayley graph for G if and only if there is a number k
such that 0 ≤ k ≤ g/c and t + k ⊥ c, where βg/c = γt, γ = αβ−. Hint: Represent
elements of the group in the form βjγk.

From the Library of Melissa Nuno



ptg999

352 COMBINATORIAL SEARCHING 7.2.1.2

75. [M26 ] The directed torus Cm⃗×Cn⃗ hasmn vertices (x, y) for 0 ≤ x < m, 0 ≤ y < n,
and arcs (x, y)−−→ (x, y)α = ((x+ 1) modm, y), (x, y)−−→ (x, y)β = (x, (y + 1) mod n).
Prove that, if m > 1 and n > 1, the number of Hamiltonian cycles of this digraph is

d−1
k=1


d

k


[gcd((d− k)m, kn) = d ], d = gcd(m,n).

76. [M31 ] The cells numbered 0, 1, . . . , 63
in Fig. 45 illustrate a northeasterly knight’s
tour on an 8 × 8 torus: If k appears in cell
(xk, yk), then (xk+1, yk+1) ≡ (xk + 2, yk + 1)
or (xk+1, yk+2), modulo 8, and (x64, y64) =
(x0, y0). How many such tours are possible
on an m× n torus, when m,n ≥ 3?

Fig. 45. A northeasterly knight’s tour.

29 24 19 14 49 44 39 34
58 53 48 43 38 9 4 63
23 18 13 8 3 62 33 28
52 47 42 37 32 27 22 57
17 12 7 2 61 56 51 46
6 41 36 31 26 21 16 11
35 30 1 60 55 50 45 40
0 59 54 25 20 15 10 5

x 77. [22 ] Complete the MMIX program whose inner loop appears in (42), using Heap’s
method (27).
78. [M23 ] Analyze the running time of the program in exercise 77, generalizing it so
that the inner loop does r! visits (with a0 . . . ar−1 in global registers).
79. [20 ] What seven MMIX instructions will ⟨ Swap the nybbles . . . ⟩ as (45) requires?
For example, if register t contains the value 4 and register a contains the nybbles
#12345678, register a should change to #12345687.
80. [21 ] Solve the previous exercise with only five MMIX instructions. Hint: Use MXOR.

x 81. [22 ] Complete the MMIX program (46) by specifying how to ⟨Continue with Lang-
don’s method ⟩.
82. [M21 ] Analyze the running time of the program in exercise 81.
83. [22 ] Use the σ–τ path of exercise 70 to design an MMIX routine analogous to (42)
that generates all permutations of #123456 in register a.
84. [20 ] Suggest a good way to generate all n! permutations of {1, . . . , n} on p pro-
cessors that are running in parallel.

x 85. [25 ] Assume that n is small enough that n! fits in a computer word. What’s a
good way to convert a given permutation α = a1 . . . an of {1, . . . , n} into an integer
k = r(α) in the range 0 ≤ k < n!? Both functions k = r(α) and α = r[−1](k) should
be computable in only O(n) steps.
86. [20 ] A partial order relation is supposed to be transitive; that is, x ≺ y and y ≺ z
should imply x ≺ z. But Algorithm V does not require its input relation to satisfy this
condition.

Show that if x ≺ y and y ≺ z, Algorithm V will produce identical results whether
or not x ≺ z.
87. [20 ] (F. Ruskey.) Consider the inversion tables c1 . . . cn of the permutations vis-
ited by Algorithm V. What noteworthy property do they have? (Compare with the
inversion tables (4) in Algorithm P.)

From the Library of Melissa Nuno



ptg999

7.2.1.2 GENERATING ALL PERMUTATIONS 353

88. [21 ] Show that Algorithm V can be used to generate all ways to partition the
digits {0, 1, . . . , 9} into two 3-element sets and two 2-element sets.

x 89. [M30 ] Consider the numbers t0, t1, . . . , tn defined before (51). Clearly t0 = t1 = 1.
a) Say that index j is “trivial” if tj = tj−1. For example, 9 is trivial with respect to

the Young tableau relations (48). Explain how to modify Algorithm V so that the
variable k takes on only nontrivial values.

b) Analyze the running time of the modified algorithm. What formulas replace (51)?
c) Say that the interval [j . . k] is not a chain if there is an index l such that j ≤ l < k

and we do not have l ≺ l + 1. Prove that in such a case tk ≥ 2tj−1.
d) Every inverse topological sort a′1 . . . a

′
n defines a labeling that corresponds to

relations a′j1 ≺ a′k1 , . . . , a′jm ≺ a′km , which are equivalent to the original relations
j1 ≺ k1, . . . , jm ≺ km. Explain how to find a labeling such that [j . . k] is not a
chain when j and k are consecutive nontrivial indices.

e) Prove that with such a labeling, M < 4N in the formulas of part (b).
90. [M21 ] Algorithm V can be used to produce all permutations that are h-ordered
for all h in a given set, namely all a′1 . . . a′n such that a′j < a′j+h for 1 ≤ j ≤ n − h
(see Section 5.2.1). Analyze the running time of Algorithm V when it generates all
permutations that are both 2-ordered and 3-ordered.
91. [HM21 ] Analyze the running time of Algorithm V when it is used with the
relations (49) to find perfect matchings.
92. [M18 ] How many permutations is Algorithm V likely to visit, in a “random”
case? Let Pn be the number of partial orderings on {1, . . . , n}, namely the number
of relations that are reflexive, antisymmetric, and transitive. Let Qn be the number
of such relations with the additional property that j < k whenever j ≺ k. Express
the expected number of ways to sort n elements topologically, averaged over all partial
orderings, in terms of Pn and Qn.
93. [35 ] Prove that all topological sorts can be generated in such a way that only
one or two adjacent transpositions are made at each step. (The example 1 ≺ 2, 3 ≺ 4
shows that a single transposition per step cannot always be achieved, even if we allow
nonadjacent swaps, because only two of the six relevant permutations are odd.)

x 94. [25 ] Show that in the case of perfect matchings, using the relations in (49), all
topological sorts can be generated with just one transposition per step.
95. [21 ] Discuss how to generate all up-down permutations of {1, . . . , n}, namely those
a1 . . . an such that a1 < a2 > a3 < a4 > · · ·.
96. [21 ] Discuss how to generate all cyclic permutations of {1, . . . , n}, namely those
a1 . . . an whose cycle representation consists of a single n-cycle.
97. [21 ] Discuss how to generate all derangements of {1, . . . , n}, namely those a1 . . . an
such that a1 ̸= 1, a2 ̸= 2, a3 ̸= 3, . . . .
98. [HM23 ] Analyze the asymptotic running time of the method in the previous
exercise.
99. [M30 ] Given n ≥ 3, show that all derangements of {1, . . . , n} can be generated
by making at most two transpositions between visits.
100. [21 ] Discuss how to generate all of the indecomposable permutations of {1, . . . , n},
namely those a1 . . . an such that {a1, . . . , aj} ̸= {1, . . . , j} for 1 ≤ j < n.
101. [21 ] Discuss how to generate all involutions of {1, . . . , n}, namely those permu-
tations a1 . . . an with aa1 . . . aan = 1 . . . n.

From the Library of Melissa Nuno



ptg999

354 COMBINATORIAL SEARCHING 7.2.1.2

102. [M30 ] Show that all involutions of {1, . . . , n} can be generated by making at
most two transpositions between visits.
103. [M32 ] Show that all even permutations of {1, . . . , n} can be generated by suc-
cessive rotations of three consecutive elements.

x 104. [M22 ] A permutation a1 . . . an of {1, . . . , n} is well-balanced if
n
k=1

kak =
n
k=1

(n+ 1− k)ak.

For example, 3142 is well-balanced when n = 4.
a) Prove that no permutation is well-balanced when nmod 4 = 2.
b) Prove that if a1 . . . an is well-balanced, so are its reversal an . . . a1, its complement

(n+1−a1) . . . (n+1−an), and its inverse a′1 . . . a′n.
c) Determine the number of well-balanced permutations for small values of n.

x 105. [26 ] A weak order is a relation ⪯ that is transitive (x ⪯ y and y ⪯ z implies
x ⪯ z) and complete (x ⪯ y or y ⪯ x always holds). We can write x ≡ y if x ⪯ y and
y ⪯ x; x ≺ y if x ⪯ y and y ̸⪯ x. There are thirteen weak orders on three elements
{1, 2, 3}, namely

1 ≡ 2 ≡ 3, 1 ≡ 2 ≺ 3, 1 ≺ 2 ≡ 3, 1 ≺ 2 ≺ 3, 1 ≡ 3 ≺ 2, 1 ≺ 3 ≺ 2,
2 ≺ 1 ≡ 3, 2 ≺ 1 ≺ 3, 2 ≡ 3 ≺ 1, 2 ≺ 3 ≺ 1, 3 ≺ 1 ≡ 2, 3 ≺ 1 ≺ 2, 3 ≺ 2 ≺ 1.

a) Explain how to generate all weak orders of {1, . . . , n} systematically, as sequences
of digits separated by the symbols ≡ or ≺.

b) A weak order can also be represented as a sequence a1 . . . an where aj = k if j
is preceded by k ≺ signs. For example, the thirteen weak orders on {1, 2, 3} are
respectively 000, 001, 011, 012, 010, 021, 101, 102, 100, 201, 110, 120, 210 in this
form. Find a simple way to generate all such sequences of length n.

106. [M40 ] Can exercise 105(b) be solved with a Gray-like code?
x 107. [30 ] (John H. Conway, 1973.) To play the solitaire game of “topswops,” start by

shuffling a pack of n cards labeled {1, . . . , n} and place them face up in a pile. Then if
the top card is k > 1, deal out the top k cards and put them back on top of the pile,
thereby changing the permutation from a1 . . . an to ak . . . a1ak+1 . . . an. Continue until
the top card is 1. For example, the 7-step sequence

31452 → 41352 → 53142 → 24135 → 42135 → 31245 → 21345 → 12345

might occur when n = 5. What is the longest sequence possible when n = 13?
108. [M27 ] If the longest n-card game of topswops has length f(n), prove that f(n) ≤
Fn+1 − 1.
109. [M47 ] Find good upper and lower bounds on the topswops function f(n).

x 110. [25 ] Find all permutations a0 . . . a9 of {0, . . . , 9} such that

{a0, a2, a3, a7} = {2, 5, 7, 8},
{a1, a3, a7, a8} = {3, 4, 5, 7},

{a1, a4, a5} = {0, 3, 6},
{a0, a3, a4} = {0, 7, 8}.

Also suggest an algorithm for solving large problems of this type.
x 111. [M25 ] Several permutation-oriented analogs of de Bruijn cycles have been pro-

posed. The simplest and nicest of these is the notion of a universal cycle of permuta-
tions, introduced by B. W. Jackson in Discrete Math. 117 (1993), 141–150, namely a
cycle of n! digits such that each permutation of {1, . . . , n} occurs exactly once as a block

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 355

of n− 1 consecutive digits (with its redundant final element suppressed). For example,
(121323) is a universal cycle of permutations for n = 3, and it is essentially unique.

Prove that universal cycles of permutations exist for all n ≥ 2. What is the
lexicographically smallest one when n = 4?

x 112. [M30 ] (A. Williams, 2007.) Continuing exercise 111, construct explicit cycles:
a) Show that a universal cycle of permutations is equivalent to a Hamiltonian cycle

on the Cayley graph with two generators ρ = (1 2 . . . n−1) and σ = (1 2 . . . n).
b) Prove that any Hamiltonian path in that graph is actually a Hamiltonian cycle.
c) Find such a path of the form σ2ρn−3α1 . . . σ

2ρn−3α(n−1)!, αj ∈ {ρ, σ}, for n ≥ 3.
113. [HM43 ] Exactly how many universal cycles exist, for permutations of ≤9 objects?

7.2.1.3. Generating all combinations. Combinatorial mathematics is often
described as “the study of permutations, combinations, etc.,” so we turn our
attention now to combinations. A combination of n things, taken t at a time,
often called simply a t-combination of n things, is a way to select a subset of size t
from a given set of size n. We know from Eq. 1.2.6–(2) that there are exactly


n
t


ways to do this; and we learned in Section 3.4.2 how to choose t-combinations
at random.

Selecting t of n objects is equivalent to choosing the n − t elements not
selected. We will emphasize this symmetry by letting

n = s + t (1)

throughout our discussion, and we will often refer to a t-combination of n things
as an “(s, t)-combination.” Thus, an (s, t)-combination is a way to subdivide
s+ t objects into two collections of sizes s and t.

If I ask how many combinations of 21 can be taken out of 25,
I do in effect ask how many combinations of 4 may be taken.

For there are just as many ways of taking 21 as there are of leaving 4.
— AUGUSTUS DE MORGAN, An Essay on Probabilities (1838)

There are two main ways to represent (s, t)-combinations: We can list the
elements ct . . . c2c1 that have been selected, or we can work with binary strings
an−1 . . . a1a0 for which

an−1 + · · ·+ a1 + a0 = t. (2)

The string representation has s 0s and t 1s, corresponding to elements that are
unselected or selected. The list representation ct . . . c2c1 tends to work out best
if we let the elements be members of the set {0, 1, . . . , n− 1} and if we list them
in decreasing order:

n > ct > · · · > c2 > c1 ≥ 0. (3)
Binary notation connects these two representations nicely, because the item list
ct . . . c2c1 corresponds to the sum

2ct + · · ·+ 2c2 + 2c1 =
n−1
k=0

ak2k = (an−1 . . . a1a0)2. (4)

From the Library of Melissa Nuno



ptg999

356 COMBINATORIAL SEARCHING 7.2.1.3

Of course we could also list the positions bs . . . b2b1 of the 0s in an−1 . . . a1a0,
where

n > bs > · · · > b2 > b1 ≥ 0. (5)
Combinations are important not only because subsets are omnipresent in

mathematics but also because they are equivalent to many other configurations.
For example, every (s, t)-combination corresponds to a combination of s + 1
things taken t at a time with repetitions permitted, also called a multicombination
of s+ 1 things, namely a sequence of integers dt . . . d2d1 with

s ≥ dt ≥ · · · ≥ d2 ≥ d1 ≥ 0. (6)

One reason is that dt . . . d2d1 solves (6) if and only if ct . . . c2c1 solves (3), where

ct = dt + t− 1, . . . , c2 = d2 + 1, c1 = d1 (7)

(see exercise 1.2.6–60). And there is another useful way to relate combinations
with repetition to ordinary combinations, suggested by Solomon Golomb [AMM
75 (1968), 530–531], namely to define

ej =

cj , if cj ≤ s;
ecj−s, if cj > s. (8)

In this form the numbers et . . . e1 don’t necessarily appear in descending or-
der, but the multiset {e1, e2, . . . , et} is equal to {c1, c2, . . . , ct} if and only if
{e1, e2, . . . , et} is a set. (See Table 1 and exercise 1.)

An (s, t)-combination is also equivalent to a composition of n+ 1 into t+ 1
parts, namely an ordered sum

n+ 1 = pt + · · ·+ p1 + p0, where pt, . . . , p1, p0 ≥ 1. (9)

The connection with (3) is now

pt = n− ct, pt−1 = ct − ct−1, . . . , p1 = c2 − c1, p0 = c1 + 1. (10)

Equivalently, if qj = pj − 1, we have

s = qt + · · ·+ q1 + q0, where qt, . . . , q1, q0 ≥ 0, (11)

a composition of s into t+ 1 nonnegative parts, related to (6) by setting

qt = s− dt, qt−1 = dt − dt−1, . . . , q1 = d2 − d1, q0 = d1. (12)

Furthermore it is easy to see that an (s, t)-combination is equivalent to a
path of length s+ t from corner to corner of an s× t grid, because such a path
contains s vertical steps and t horizontal steps.

Thus, combinations can be studied in at least eight different guises. Table 1
illustrates all

6
3


= 20 possibilities in the case s = t = 3.
These cousins of combinations might seem rather bewildering at first glance,

but most of them can be understood directly from the binary representation
an−1 . . . a1a0. Consider, for example, the “random” bit string

a23 . . . a1a0 = 011001001000011111101101, (13)

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 357

Table 1
THE (3, 3)-COMBINATIONS AND THEIR EQUIVALENTS

a5a4a3a2a1a0 b3b2b1 c3c2c1 d3d2d1 e3e2e1 p3p2p1p0 q3q2q1q0 path
000111 543 210 000 210 4111 3000
001011 542 310 100 310 3211 2100
001101 541 320 110 320 3121 2010
001110 540 321 111 321 3112 2001
010011 532 410 200 010 2311 1200
010101 531 420 210 020 2221 1110
010110 530 421 211 121 2212 1101
011001 521 430 220 030 2131 1020
011010 520 431 221 131 2122 1011
011100 510 432 222 232 2113 1002
100011 432 510 300 110 1411 0300
100101 431 520 310 220 1321 0210
100110 430 521 311 221 1312 0201
101001 421 530 320 330 1231 0120
101010 420 531 321 331 1222 0111
101100 410 532 322 332 1213 0102
110001 321 540 330 000 1141 0030
110010 320 541 331 111 1132 0021
110100 310 542 332 222 1123 0012
111000 210 543 333 333 1114 0003

which has s = 11 zeros and t = 13 ones, hence n = 24. The dual combination
bs . . . b1 lists the positions of the zeros, namely

23 20 19 17 16 14 13 12 11 4 1,

because the leftmost position is n − 1 and the rightmost is 0. The primal
combination ct . . . c1 lists the positions of the ones, namely

22 21 18 15 10 9 8 7 6 5 3 2 0.

The corresponding multicombination dt . . . d1 lists the number of 0s to the right
of each 1:

10 10 8 6 2 2 2 2 2 2 1 1 0.
The composition pt . . . p0 lists the distances between consecutive 1s, if we imagine
additional 1s at the left and the right:

2 1 3 3 5 1 1 1 1 1 2 1 2 1.

And the nonnegative composition qt . . . q0 counts how many 0s appear between
“fenceposts” represented by 1s:

1 0 2 2 4 0 0 0 0 0 1 0 1 0;

thus we have
an−1 . . . a1a0 = 0qt10qt−11 . . . 10q110q0 . (14)

The paths in Table 1 also have a simple interpretation (see exercise 2).

From the Library of Melissa Nuno



ptg999

358 COMBINATORIAL SEARCHING 7.2.1.3

Lexicographic generation. Table 1 shows combinations an−1 . . . a1a0 and
ct . . . c1 in lexicographic order, which is also the lexicographic order of dt . . . d1.
Notice that the dual combinations bs . . . b1 and the corresponding compositions
pt . . . p0, qt . . . q0 then appear in reverse lexicographic order.

Lexicographic order usually suggests the most convenient way to generate
combinatorial configurations. Indeed, Algorithm 7.2.1.2L already solves the
problem for combinations in the form an−1 . . . a1a0, since (s, t)-combinations
in bitstring form are the same as permutations of the multiset {s · 0, t · 1}. That
general-purpose algorithm can be streamlined in obvious ways when it is applied
to this special case. (See also exercise 7.1.3–20, which presents a remarkable
sequence of seven bitwise operations that will convert any given binary number
(an−1 . . . a1a0)2 to the lexicographically next t-combination, assuming that n
does not exceed the computer’s word length.)

Let’s focus, however, on generating combinations in the other principal form
ct . . . c2c1, which is more directly relevant to the ways in which combinations are
often needed, and which is more compact than the bit strings when t is small
compared to n. In the first place we should keep in mind that a simple sequence
of nested loops will do the job nicely when t is very small. For example, when
t = 3 the following instructions suffice:

For c3 = 2, 3, . . . , n− 1 (in this order) do the following:
For c2 = 1, 2, . . . , c3 − 1 (in this order) do the following:
For c1 = 0, 1, . . . , c2 − 1 (in this order) do the following:

Visit the combination c3c2c1.

(15)

(See the analogous situation in 7.2.1.1–(3).)
On the other hand when t is variable or not so small, we can generate

combinations lexicographically by following the general recipe discussed after
Algorithm 7.2.1.2L, namely to find the rightmost element cj that can be increased
and then to set the subsequent elements cj−1 . . . c1 to their smallest possible
values:

Algorithm L (Lexicographic combinations). This algorithm generates all t-
combinations ct . . . c2c1 of the n numbers {0, 1, . . . , n − 1}, given n ≥ t ≥ 0.
Additional variables ct+1 and ct+2 are used as sentinels.
L1. [Initialize.] Set cj ← j − 1 for 1 ≤ j ≤ t; also set ct+1 ← n and ct+2 ← 0.
L2. [Visit.] Visit the combination ct . . . c2c1.
L3. [Find j.] Set j ← 1. Then, while cj +1 = cj+1, set cj ← j−1 and j ← j+1;

eventually the condition cj + 1 ̸= cj+1 will occur.
L4. [Done?] Terminate the algorithm if j > t.
L5. [Increase cj .] Set cj ← cj + 1 and return to L2.

The running time of this algorithm is not difficult to analyze: Step L3 sets
cj ← j − 1 just after visiting a combination for which cj+1 = c1 + j; and the
number of such combinations is the number of solutions to the inequalities

n > ct > · · · > cj+1 ≥ j. (16)

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 359

But this formula is equivalent to a (t − j)-combination of the n − j objects
{n−1, . . . , j}, so the assignment cj ← j−1 occurs exactly


n−j
t−j


times. Summing

for 1 ≤ j ≤ t tells us that the loop in step L3 is performed
n−1
t−1


+

n−2
t−2


+· · ·+


n−t

0


=

n−1
s


+

n−2
s


+· · ·+


s

s


=


n

s+1


(17)

times altogether, or an average of
n

s+ 1


n

t


= n!

(s+ 1)! (t− 1)!


n!
s! t! = t

s+ 1 (18)

times per visit. This ratio is less than 1 when t ≤ s, so Algorithm L is quite
efficient in such cases.

But the quantity t/(s + 1) can be embarrassingly large when t is near n
and s is small. Indeed, Algorithm L occasionally sets cj ← j − 1 needlessly, at
times when cj already equals j − 1. Further scrutiny reveals that we need not
always search for the index j that is needed in steps L4 and L5, since the correct
value of j can often be predicted from the actions just taken. For example,
after we have increased c4 and reset c3c2c1 to their starting values 210, the next
combination will inevitably increase c3. These observations lead to a tuned-up
version of the algorithm:

Algorithm T (Lexicographic combinations). This algorithm is like Algorithm L,
but faster. It also assumes, for convenience, that 0 < t < n.
T1. [Initialize.] Set cj ← j − 1 for 1 ≤ j ≤ t; then set ct+1 ← n, ct+2 ← 0, and

j ← t.
T2. [Visit.] (At this point j is the smallest index such that cj+1 > j.) Visit the

combination ct . . . c2c1. Then, if j > 0, set x← j and go to step T6.
T3. [Easy case?] If c1 + 1 < c2, set c1 ← c1 + 1 and return to T2. Otherwise set

j ← 2.
T4. [Find j.] Set cj−1 ← j − 2 and x ← cj + 1. If x = cj+1, set j ← j + 1 and

repeat step T4.
T5. [Done?] Terminate the algorithm if j > t.
T6. [Increase cj .] Set cj ← x, j ← j − 1, and return to T2.

Now j = 0 in step T2 if and only if c1 > 0, so the assignments in step T4 are
never redundant. Exercise 6 carries out a complete analysis of Algorithm T.

Notice that the parameter n appears only in the initialization steps L1
and T1, not in the principal parts of Algorithms L and T. Thus we can think
of the process as generating the first


n
t


combinations of an infinite list, which

depends only on t. This simplification arises because the list of t-combinations
for n+ 1 things begins with the list for n things, under our conventions; we have
been using lexicographic order on the decreasing sequences ct . . . c1 for this very
reason, instead of working with the increasing sequences c1 . . . ct.

Derrick Lehmer noticed another pleasant property of Algorithms L and T
[Applied Combinatorial Mathematics, edited by E. F. Beckenbach (1964), 27–30]:

From the Library of Melissa Nuno



ptg999

360 COMBINATORIAL SEARCHING 7.2.1.3

Theorem L. The combination ct . . . c2c1 is visited after exactly
ct
t


+ · · ·+


c2

2


+

c1

1


(19)

other combinations have been visited.

Proof. There are

ck
k


combinations c′t . . . c′2c′1 with c′j = cj for t ≥ j > k and

c′k < ck, namely ct . . . ck+1 followed by the k-combinations of {0, . . . , ck − 1}.

When t = 3, for example, the numbers2
3


+
1

2


+
0

1

,
3

3


+
1

2


+
0

1

,
3

3


+
2

2


+
0

1

, . . . ,

5
3


+
4

2


+
3

1


that correspond to the combinations c3c2c1 in Table 1 simply run through the
sequence 0, 1, 2, . . . , 19. Theorem L gives us a nice way to understand the
combinatorial number system of degree t, which represents every nonnegative
integer N uniquely in the form

N =

nt
t


+ · · ·+


n2

2


+

n1

1


, nt > · · · > n2 > n1 ≥ 0. (20)

[See Ernesto Pascal, Giornale di Matematiche 25 (1887), 45–49.]

Binomial trees. The family of trees Tn defined by

T0 = , Tn =
T0 T1 Tn−1. . .

0 1 n− 1 for n > 0, (21)

arises in several important contexts and sheds further light on combination
generation. For example, T4 is

0

0 0

0

0

0 0

0

1

1 1

1

2

2

3

; (22)

and T5, rendered more artistically, appears as the frontispiece to Volume 1 of
this series of books.

Notice that Tn is like Tn−1, except for an additional copy of Tn−1; therefore
Tn has 2n nodes altogether. Furthermore, the number of nodes on level t is the
binomial coefficient


n
t


; this fact accounts for the name “binomial tree.” Indeed,

the sequence of labels encountered on the path from the root to each node on
level t defines a combination ct . . . c1, and all combinations occur in lexicographic
order from left to right. Thus, Algorithms L and T can be regarded as procedures
to traverse the nodes on level t of the binomial tree Tn.

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 361

The infinite binomial tree T∞ is obtained by letting n→∞ in (21). The root
of this tree has infinitely many branches, but every node except for the overall
root at level 0 is the root of a finite binomial subtree. All possible t-combinations
appear in lexicographic order on level t of T∞.

Let’s get more familiar with binomial trees by considering all possible ways
to pack a rucksack. More precisely, suppose we have n items that take up
respectively wn−1, . . . , w1, w0 units of capacity, where

wn−1 ≥ · · · ≥ w1 ≥ w0 ≥ 0; (23)
we want to generate all binary vectors an−1 . . . a1a0 such that

a · w = an−1wn−1 + · · ·+ a1w1 + a0w0 ≤ N, (24)
where N is the total capacity of a rucksack. Equivalently, we want to find all
subsets C of {0, 1, . . . , n− 1} such that w(C) =


c∈C wc ≤ N ; such subsets will

be called feasible. We will write a feasible subset as c1 . . . ct, where c1 > · · · >
ct ≥ 0, numbering the subscripts differently from the convention of (3) above
because t is variable in this problem.

Every feasible subset corresponds to a node of Tn, and our goal is to visit
each feasible node. Clearly the parent of every feasible node is feasible, and so is
the left sibling, if any; therefore a simple tree exploration procedure works well:
Algorithm F (Filling a rucksack). This algorithm generates all feasible ways
c1 . . . ct to fill a rucksack, given wn−1, . . . , w1, w0, and N . We let δj = wj−wj−1
for 1 ≤ j < n.
F1. [Initialize.] Set t← 0, c0 ← n, and r ← N .
F2. [Visit.] Visit the combination c1 . . . ct, which uses N − r units of capacity.
F3. [Try to add w0.] If ct > 0 and r ≥ w0, set t ← t + 1, ct ← 0, r ← r − w0,

and return to F2.
F4. [Try to increase ct.] Terminate if t = 0. Otherwise, if ct−1 > ct + 1 and

r ≥ δct+1, set ct ← ct + 1, r ← r − δct , and return to F2.
F5. [Remove ct.] Set r ← r + wct , t← t− 1, and return to F4.
Notice that the algorithm implicitly visits nodes of Tn in preorder, skipping over
unfeasible subtrees. An element c > 0 is placed in the rucksack, if it fits, just
after the procedure has explored all possibilities using element c− 1 in its place.
The running time is proportional to the number of feasible combinations visited
(see exercise 20).

Incidentally, the classical “knapsack problem” of operations research is dif-
ferent: It asks for a feasible subset C such that v(C) =


c∈C v(c) is maximum,

where each item c has been assigned a value v(c). Algorithm F is not a particu-
larly good way to solve that problem, because it often considers cases that could
be ruled out. For example, if C and C ′ are subsets of {1, . . . , n−1} with w(C) ≤
w(C ′) ≤ N − w0 and v(C) ≥ v(C ′), Algorithm F will examine both C ∪ 0 and
C ′ ∪ 0, but the latter subset will never improve the maximum. We will consider
methods for the classical knapsack problem later; Algorithm F is intended only
for situations when all of the feasible possibilities are potentially relevant.

From the Library of Melissa Nuno



ptg999

362 COMBINATORIAL SEARCHING 7.2.1.3

Gray codes for combinations. Instead of merely generating all combinations,
we often prefer to visit them in such a way that each one is obtained by making
only a small change to its predecessor.

For example, we can ask for what Nijenhuis and
Wilf have called a “revolving door algorithm”: Imagine
two rooms that contain respectively s and t people, with
a revolving door between them. Whenever a person
goes into the opposite room, somebody else comes out. Can we devise a sequence
of moves so that each (s, t)-combination occurs exactly once?

The answer is yes, and in fact a huge number of such patterns exist. For
example, it turns out that if we examine all n-bit strings an−1 . . . a1a0 in the
well-known order of Gray binary code (Section 7.2.1.1), but select only those
that have exactly s 0s and t 1s, the resulting strings form a revolving-door code.

Here’s the proof: Gray binary code is defined by the recurrence Γn = 0Γn−1,
1ΓR

n−1 of 7.2.1.1–(5), so its (s, t) subsequence satisfies the recurrence

Γst = 0Γ(s−1)t, 1ΓR
s(t−1) (25)

when st > 0. We also have Γs0 = 0s and Γ0t = 1t. Therefore it is clear by
induction that Γst begins with 0s1t and ends with 10s1t−1 when st > 0. The
transition at the comma in (25) is from the last element of 0Γ(s−1)t to the
last element of 1Γs(t−1), namely from 010s−11t−1 = 010s−111t−2 to 110s1t−2 =
110s−101t−2 when t ≥ 2, and this satisfies the revolving-door constraint. The
case t = 1 also checks out. For example, Γ33 is given by the columns of

000111 011010 110001 101010
001101 011100 110010 101100
001110 010101 110100 100101
001011 010110 111000 100110
011001 010011 101001 100011

(26)

and Γ23 can be found in the first two columns of this array. One more turn
of the door takes the last element into the first. [These properties of Γst were
discovered by J. E. Miller in her Ph.D. thesis (Columbia University, 1971), then
independently by D. T. Tang and C. N. Liu, IEEE Trans. C-22 (1973), 176–180.
A loopless implementation was presented by J. R. Bitner, G. Ehrlich, and E. M.
Reingold, CACM 19 (1976), 517–521.]

When we convert the bit strings a5a4a3a2a1a0 in (26) to the corresponding
index-list forms c3c2c1, a striking pattern becomes evident:

210 431 540 531
320 432 541 532
321 420 542 520
310 421 543 521
430 410 530 510

(27)

The first components c3 occur in nondecreasing order; but for each fixed value
of c3, the values of c2 occur in nonincreasing order. And for fixed c3c2, the values
of c1 are again nondecreasing. The same is true in general: All combinations

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 363

ct . . . c2c1 appear in lexicographic order of

(ct, −ct−1, ct−2, . . . , (−1)t−1c1) (28)

in the revolving-door Gray code Γst. This property follows by induction, because
(25) becomes

Γst = Γ(s−1)t, (s+t−1)ΓR
s(t−1) (29)

for st > 0 when we use index-list notation instead of bitstring notation. Conse-
quently the sequence can be generated efficiently by the following algorithm due
to W. H. Payne [see ACM Trans. Math. Software 5 (1979), 163–172]:

Algorithm R (Revolving-door combinations). This algorithm generates all t-
combinations ct . . . c2c1 of {0, 1, . . . , n − 1} in lexicographic order of the alter-
nating sequence (28), assuming that n ≥ t > 1. An auxiliary variable ct+1 is
used. Step R3 has two variants, depending on whether t is even or odd.
R1. [Initialize.] Set cj ← j − 1 for t ≥ j ≥ 1, and ct+1 ← n.
R2. [Visit.] Visit the combination ct . . . c2c1.
R3. [Easy case?] If t is odd: If c1 + 1 < c2, increase c1 by 1 and return to R2,

otherwise set j ← 2 and go to R4. If t is even: If c1 > 0, decrease c1 by 1
and return to R2, otherwise set j ← 2 and go to R5.

R4. [Try to decrease cj .] (At this point cj = cj−1 + 1.) If cj ≥ j, set cj ← cj−1,
cj−1 ← j − 2, and return to R2. Otherwise increase j by 1.

R5. [Try to increase cj .] (At this point cj−1 = j − 2.) If cj + 1 < cj+1, set
cj−1 ← cj , cj ← cj + 1, and return to R2. Otherwise increase j by 1, and
go to R4 if j ≤ t. Otherwise the algorithm terminates.

Exercises 21–25 explore further properties of this interesting sequence. One of
them is a nice companion to Theorem L: The combination ctct−1 . . . c2c1 is visited
by Algorithm R after exactly

N =

ct+1
t


−

ct−1+1
t−1


+ · · ·+(−1)t


c2+1

2


− (−1)t


c1+1

1


− [t odd] (30)

other combinations have been visited. We may call this the representation of N
in the “alternating combinatorial number system” of degree t; one consequence,
for example, is that every positive integer has a unique representation of the
form N =


a
3

−

b
2


+

c
1


with a > b > c > 0. Algorithm R tells us how to add 1
to N in this system.

Although the strings of (26) and (27) are not in lexicographic order, they
are examples of a more general concept called genlex order, a name coined by
Timothy Walsh. A sequence of strings α1, . . . , αN is said to be in genlex order
when all strings with a common prefix occur consecutively. For example, all
3-combinations that begin with 53 appear together in (27).

Genlex order means that the strings can be arranged in a trie structure, as
in Fig. 31 of Section 6.3, but with the children of each node ordered arbitrarily.
When a trie is traversed in any order such that each node is visited just before or
just after its descendants, all nodes with a common prefix — that is, all nodes of

From the Library of Melissa Nuno



ptg999

364 COMBINATORIAL SEARCHING 7.2.1.3

a subtrie — appear consecutively. This principle corresponds to recursive genera-
tion schemes, so it makes genlex order convenient. Many of the algorithms we’ve
seen for generating n-tuples have therefore produced their results in some version
of genlex order; similarly, the method of “plain changes” (Algorithm 7.2.1.2P)
visits permutations in a genlex order of the corresponding inversion tables.

The revolving-door method of Algorithm R is a genlex routine that changes
only one element of the combination at each step. But it isn’t totally satisfactory,
because it frequently must change two of the indices cj simultaneously, in order
to preserve the condition ct > · · · > c2 > c1. For example, Algorithm R changes
210 into 320, and (27) includes nine such “crossing” moves.

The source of this defect can be traced to our proof that (25) satisfies the
revolving-door property: We observed that the string 010s−111t−2 is followed
by 110s−101t−2 when t ≥ 2. Hence the recursive construction Γst involves
transitions of the form 110a0 ↔ 010a1, when a substring like 11000 is changed
to 01001 or vice versa; the two 1s cross each other.

A Gray path for combinations is said to be homogeneous if it changes only
one of the indices cj at each step. A homogeneous scheme is characterized
in bitstring form by having only transitions of the forms 10a ↔ 0a1 within
strings, for a ≥ 1, when we pass from one string
to the next. With a homogeneous scheme we can,
for example, play all t-note chords on an n-note
keyboard by moving only one finger at a time.

A slight modification of (25) yields a genlex
scheme for (s, t)-combinations that is pleasantly
homogeneous. The basic idea is to construct a
sequence that begins with 0s1t and ends with 1t0s, and the following recursion
suggests itself almost immediately: Let Ks0 = 0s, K0t = 1t, Ks(−1) = ∅, and

Kst = 0K(s−1)t, 10KR
(s−1)(t−1), 11Ks(t−2) for st > 0. (31)

At the commas of this sequence we have 01t0s−1 followed by 101t−10s−1, and
10s1t−1 followed by 110s1t−2; both of these transitions are homogeneous, al-
though the second one requires the 1 to jump across s 0s. The combinations K33
for s = t = 3 are

000111 010101 101100 100011
001011 010011 101001 110001
001101 011001 101010 110010
001110 011010 100110 110100
010110 011100 100101 111000

(32)

in bitstring form, and the corresponding “finger patterns” are
210 420 532 510
310 410 530 540
320 430 531 541
321 431 521 542
421 432 520 543.

(33)

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 365

When a homogeneous scheme for ordinary combinations ct . . . c1 is converted
to the corresponding scheme (6) for combinations with repetitions dt . . . d1, it
retains the property that only one of the indices dj changes at each step. And
when it is converted to the corresponding schemes (9) or (11) for compositions
pt . . . p0 or qt . . . q0, only two (adjacent) parts change when cj changes.

Near-perfect schemes. But we can do even better! All (s, t)-combinations
can be generated by a sequence of strongly homogeneous transitions that are
either 01↔ 10 or 001↔ 100. In other words, we can insist that each step causes
a single index cj to change by at most 2. Let’s call such generation schemes
near-perfect.

Imposing such strong conditions actually makes it fairly easy to discover
near-perfect schemes, because comparatively few choices are available. Indeed,
if we restrict ourselves to genlex methods that are near-perfect on n-bit strings,
T. A. Jenkyns and D. McCarthy observed that all such methods can be easily
characterized [Ars Combinatoria 40 (1995), 153–159]:

Theorem N. If st > 0, there are exactly 2s near-perfect ways to list all (s, t)-
combinations in a genlex order. In fact, when 1 ≤ a ≤ s, there is exactly one
such listing, Nsta, that begins with 1t0s and ends with 0a1t0s−a; the other s
possibilities are the reverse lists, NR

sta.

Proof. The result certainly holds when s = t = 1; otherwise we use induction on
s+t. The listing Nsta, if it exists, must have the form 1Xs(t−1), 0Y(s−1)t for some
near-perfect genlex listings Xs(t−1) and Y(s−1)t. If t = 1, Xs(t−1) is the single
string 0s; hence Y(s−1)t must be N(s−1)1(a−1) if a > 1, and it must be NR

(s−1)11
if a = 1. On the other hand if t > 1, the near-perfect condition implies that the
last string of Xs(t−1) cannot begin with 1; hence Xs(t−1) = Ns(t−1)b for some b.
If a > 1, Y(s−1)t must be N(s−1)t(a−1), hence b must be 1; similarly, b must be 1
if s = 1. Otherwise we have a = 1 < s, and this forces Y(s−1)t = NR

(s−1)tc for
some c. The transition from 10b1t−10s−b to 0c+11t0s−1−c is near-perfect only if
c = 1 and b = 2.

The proof of Theorem N yields the following recursive formulas when st > 0:

Nsta =


1Ns(t−1)1, 0N(s−1)t(a−1), if 1 < a ≤ s;
1Ns(t−1)2, 0NR

(s−1)t1, if 1 = a < s;
1N1(t−1)1, 01t, if 1 = a = s.

(34)

Also, of course, Ns0a = 0s.
Let us set Ast = Nst1 and Bst = Nst2. These near-perfect listings, discovered

by Phillip J. Chase in 1976, have the net effect of shifting a leftmost block of 1s
to the right by one or two positions, respectively, and they satisfy the following
mutual recursions:

Ast = 1Bs(t−1), 0AR
(s−1)t; Bst = 1As(t−1), 0A(s−1)t. (35)

“To take one step forward, take two steps forward, then one step backward; to
take two steps forward, take one step forward, then another.” These equations

From the Library of Melissa Nuno



ptg999

366 COMBINATORIAL SEARCHING 7.2.1.3

Table 2
CHASE’S SEQUENCES FOR (3, 3)-COMBINATIONS

A33 = CR33

543 531 321 420
541 530 320 421
540 510 310 431
542 520 210 430
532 521 410 432

B33 = C33

543 520 432 410
542 510 430 210
540 530 431 310
541 531 421 320
521 532 420 321

hold for all integer values of s and t, if we define Ast and Bst to be ∅ when s or
t is negative, except that A00 = B00 = ϵ (the empty string). Thus Ast actually
takes min(s, 1) forward steps, and Bst actually takes min(s, 2). For example,
Table 2 shows the relevant listings for s = t = 3, using an equivalent index-list
form c3c2c1 instead of the bit strings a5a4a3a2a1a0.

Chase noticed that a computer implementation of these sequences becomes
simpler if we define

Cst =

Ast, if s+ t is odd;
Bst, if s+ t is even;

Cst =

AR

st, if s+ t is even;
BR

st, if s+ t is odd.
(36)

[See Congressus Numerantium 69 (1989), 215–242.] Then we have

Cst =


1Cs(t−1), 0 C(s−1)t, if s+ t is odd;
1Cs(t−1), 0C(s−1)t, if s+ t is even;

(37)

Cst =


0C(s−1)t, 1 Cs(t−1), if s+ t is even;

0 C(s−1)t, 1 Cs(t−1), if s+ t is odd.
(38)

When bit aj is ready to change, we can tell where we are in the recursion by
testing whether j is even or odd.

Indeed, the sequence Cst can be generated by a surprisingly simple algo-
rithm, based on general ideas that apply to any genlex scheme. Let us say that
bit aj is active in a genlex algorithm if it is supposed to change before anything to
its left is altered. (In other words, the node for an active bit in the corresponding
trie is not the rightmost child of its parent.) Suppose we have an auxiliary table
wn . . . w1w0, where wj = 1 if and only if either aj is active or j < r, where r is
the least subscript such that ar ̸= a0; we also let wn = 1. Then the following
method will find the successor of an−1 . . . a1a0:

Set j ← r. If wj = 0, set wj ← 1, j ← j + 1, and repeat until
wj = 1. Terminate if j = n; otherwise set wj ← 0. Change aj
to 1− aj , and make any other changes to aj−1 . . . a0 and r that
apply to the particular genlex scheme being used.

(39)

The beauty of this approach comes from the fact that the loop is guaranteed to
be efficient: We can prove that the operation j ← j + 1 will be performed less
than once per generation step, on the average (see exercise 36).

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 367

By analyzing the transitions that occur when bits change in (37) and (38),
we can readily flesh out the remaining details:

Algorithm C (Chase’s sequence). This algorithm visits all (s, t)-combinations
an−1 . . . a1a0, where n = s+ t, in the near-perfect order of Chase’s sequence Cst.
C1. [Initialize.] Set aj ← 0 for 0 ≤ j < s, aj ← 1 for s ≤ j < n, and wj ← 1

for 0 ≤ j ≤ n. If s > 0, set r ← s; otherwise set r ← t.
C2. [Visit.] Visit the combination an−1 . . . a1a0.
C3. [Find j and branch.] Set j ← r. While wj = 0, set wj ← 1 and j ← j + 1.

Terminate if j = n; otherwise set wj ← 0 and make a four-way branch: Go
to C4 if j is odd and aj ̸= 0, to C5 if j is even and aj ̸= 0, to C6 if j is even
and aj = 0, to C7 if j is odd and aj = 0.

C4. [Move right one.] Set aj−1 ← 1, aj ← 0. If r = j and j > 1, set r ← j − 1;
otherwise if r = j − 1 set r ← j. Return to C2.

C5. [Move right two.] If aj−2 ̸= 0, go to C4. Otherwise set aj−2 ← 1, aj ← 0.
If r = j, set r ← max(j− 2, 1); otherwise if r = j− 2, set r ← j− 1. Return
to C2.

C6. [Move left one.] Set aj ← 1, aj−1 ← 0. If r = j and j > 1, set r ← j − 1;
otherwise if r = j − 1 set r ← j. Return to C2.

C7. [Move left two.] If aj−1 ̸= 0, go to C6. Otherwise set aj ← 1, aj−2 ← 0. If
r = j− 2, set r ← j; otherwise if r = j− 1, set r ← j− 2. Return to C2.

*Analysis of Chase’s sequence. The magical properties of Algorithm C cry
out for further exploration, and a closer look turns out to be quite instructive.
Given a bit string an−1 . . . a1a0, let us define an = 1, un = nmod 2, and

uj = (1− uj+1)aj+1, vj = (uj + j) mod 2, wj = (vj + aj) mod 2, (40)

for n > j ≥ 0. For example, we might have n = 26 and

a25 . . . a1a0 = 11001001000011111101101010,
u25 . . . u1u0 = 10100100100001010100100101,
v25 . . . v1v0 = 00001110001011111110001111,

w25 . . . w1w0 = 11000111001000000011100101.

(41)

With these definitions we can prove by induction that vj = 0 if and only if bit
aj is being “controlled” by C rather than by C in the recursions (37)–(38) that
generate an−1 . . . a1a0, except when aj is part of the final run of 0s or 1s at the
right end. Therefore wj agrees with the value computed by Algorithm C at the
moment when an−1 . . . a1a0 is visited, for r ≤ j < n. These formulas can be used
to determine exactly where a given combination appears in Chase’s sequence (see
exercise 39).

If we want to work with the index-list form ct . . . c2c1 instead of the bit
strings an−1 . . . a1a0, it is convenient to change the notation slightly, writing

From the Library of Melissa Nuno



ptg999

368 COMBINATORIAL SEARCHING 7.2.1.3

Ct(n) for Cst and Ct(n) for Cst when s+ t = n. Then C0(n) = C0(n) = ϵ, and
the recursions for t ≥ 0 take the form

Ct+1(n+ 1) =

nCt(n), Ct+1(n), if n is even;
nCt(n), Ct+1(n), if n is odd;

(42)

Ct+1(n+ 1) =

Ct+1(n), n Ct(n), if n is odd;Ct+1(n), n Ct(n), if n is even.

(43)

These new equations can be expanded to tell us, for example, that

Ct+1(9) = 8Ct(8), 6Ct(6), 4Ct(4), . . . , 3Ct(3), 5Ct(5), 7Ct(7);

Ct+1(8) = 7Ct(7), 6Ct(6), 4Ct(4), . . . , 3Ct(3), 5Ct(5);Ct+1(9) = 6Ct(6), 4Ct(4), . . . , 3Ct(3), 5Ct(5), 7Ct(7), 8Ct(8);Ct+1(8) = 6Ct(6), 4Ct(4), . . . , 3Ct(3), 5Ct(5), 7Ct(7);

(44)

notice that the same pattern predominates in all four sequences. The meaning of
“. . .” in the middle depends on the value of t: We simply omit all terms nCt(n)
and n Ct(n) where n < t.

Except for edge effects at the very beginning or end, all of the expansions
in (44) are based on the infinite progression

. . . , 10, 8, 6, 4, 2, 0, 1, 3, 5, 7, 9, . . . , (45)

which is a natural way to arrange the nonnegative integers into a doubly infinite
sequence. If we omit all terms of (45) that are < t, given any integer t ≥ 0,
the remaining terms retain the property that adjacent elements differ by either
1 or 2. Richard Stanley has suggested the name endo-order for this sequence,
because we can remember it by thinking “even numbers decreasing, odd . . . ”.
(Notice that if we retain only the terms less than N and complement with respect
to N , endo-order becomes organ-pipe order; see exercise 6.1–18.)

We could program the recursions of (42) and (43) directly, but it is interest-
ing to unwind them using (44), thus obtaining an iterative algorithm analogous
to Algorithm C. The result needs only O(t) memory locations, and it is especially
efficient when t is relatively small compared to n. Exercise 45 contains the details.

*Near-perfect multiset permutations. Chase’s sequences lead in a natural
way to an algorithm that will generate permutations of any desired multiset
{s0 · 0, s1 · 1, . . . , sd · d} in a near-perfect manner, meaning that

i) every transition is either aj+1aj ↔ ajaj+1 or aj+1ajaj−1 ↔ aj−1ajaj+1;
ii) transitions of the second kind have aj = min(aj−1, aj+1).

Algorithm C tells us how to do this when d = 1, and we can extend it to larger
values of d by the following recursive construction [CACM 13 (1970), 368–369,
376]: Suppose

α0, α1, . . . , αN−1

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 369

is any near-perfect listing of the permutations of {s1 · 1, . . . , sd · d}. Then Algo-
rithm C, with s = s0 and t = s1 + · · ·+ sd, tells us how to generate a listing

Λj = αj0s, . . . , 0aαj0s−a (46)

in which all transitions are 0x↔ x0 or 00x↔ x00; the final entry has a = 1 or 2
leading zeros, depending on s and t. Therefore all transitions of the sequence

Λ0, ΛR
1 , Λ2, . . . , (ΛN−1 or ΛR

N−1) (47)

are near-perfect; and this list clearly contains all the permutations.
For example, the permutations of {0, 0, 0, 1, 1, 2} generated in this way are

211000, 210100, 210001, 210010, 200110, 200101, 200011, 201001, 201010, 201100,
021100, 021001, 021010, 020110, 020101, 020011, 000211, 002011, 002101, 002110,
001120, 001102, 001012, 000112, 010012, 010102, 010120, 011020, 011002, 011200,
101200, 101020, 101002, 100012, 100102, 100120, 110020, 110002, 110200, 112000,
121000, 120100, 120001, 120010, 100210, 100201, 100021, 102001, 102010, 102100,
012100, 012001, 012010, 010210, 010201, 010021, 000121, 001021, 001201, 001210.

*Perfect schemes. Why should we settle for a near-perfect generator like Cst,
instead of insisting that all transitions have the simplest possible form 01↔ 10?

One reason is that perfect schemes don’t always exist. For example, we
observed in 7.2.1.2–(2) that there is no way to generate all six permutations of
{1, 1, 2, 2} with adjacent interchanges; thus there is no perfect scheme for (2, 2)-
combinations. In fact, our chances of achieving perfection are only about 1 in 4:

Theorem P. The generation of all (s, t)-combinations as+t−1 . . . a1a0 by adja-
cent interchanges 01↔ 10 is possible if and only if s ≤ 1 or t ≤ 1 or st is odd.

Proof. Consider all permutations of the multiset {s · 0, t · 1}. We learned in
exercise 5.1.2–16 that the number mk of such permutations having k inversions
is the coefficient of zk in the z-nomial coefficient

s+ t

t


z

=
s+t

k=s+1
(1 + z + · · ·+ zk−1)

 t
k=1

(1 + z + · · ·+ zk−1). (48)

Every adjacent interchange changes the number of inversions by ±1, so a perfect
generation scheme is possible only if approximately half of all the permutations
have an odd number of inversions. More precisely, the value of


s+t
t


−1 =

m0 −m1 +m2 − · · · must be 0 or ±1. But exercise 49 shows that
s+ t

t


−1

=
⌊(s+ t)/2⌋

⌊t/2⌋


[st is even], (49)

and this quantity exceeds 1 unless s ≤ 1 or t ≤ 1 or st is odd.
Conversely, perfect schemes are easy with s ≤ 1 or t ≤ 1, and they turn

out to be possible also whenever st is odd. The first nontrivial case occurs
for s = t = 3, when there are four essentially different solutions; the most
symmetrical of these is

210−−−310−−−410−−−510−−−520−−−521−−−531−−−532−−−432−−−431−−−
421−−−321−−−320−−−420−−−430−−−530−−−540−−−541−−−542−−−543 (50)

From the Library of Melissa Nuno



ptg999

370 COMBINATORIAL SEARCHING 7.2.1.3

(see exercise 51). Several authors have constructed Hamiltonian paths in the
relevant graph for arbitrary odd numbers s and t; for example, the method
of Eades, Hickey, and Read [JACM 31 (1984), 19–29] makes an interesting
exercise in programming with recursive coroutines. Unfortunately, however, none
of the known constructions are sufficiently simple to describe in a short space,
or to implement with reasonable efficiency. Perfect combination generators have
therefore not yet proved to be of practical importance.

In summary, then, we have seen that the study of (s, t)-combinations leads
to many fascinating patterns, some of which are of great practical importance
and some of which are merely elegant and/or beautiful. Figure 46 illustrates the
principal options that are available in the case s = t = 5, when

10
5


= 252 combi-
nations arise. Lexicographic order (Algorithm L), the revolving-door Gray code
(Algorithm R), the homogeneous scheme K55 of (31), and Chase’s near-perfect
scheme (Algorithm C) are shown in parts (a), (b), (c), and (d) of the illustration.
Part (e) shows the near-perfect scheme that is as close to perfection as possible
while still being in genlex order of the c array (see exercise 34), while part (f) is
the perfect scheme of Eades, Hickey, and Read. Finally, Figs. 46(g) and 46(h)
are listings that proceed by rotating ajaj−1 . . . a0 ← aj−1 . . . a0aj or by swapping
aj ↔ a0, akin to Algorithms 7.2.1.2C and 7.2.1.2E (see exercises 55 and 56).

*Combinations of a multiset. If multisets can have permutations, they can
have combinations too. For example, consider the multiset {b, b, b, b, g, g, g, r, r, r,
w,w}, representing a sack that contains four blue balls and three that are green,
three red, two white. There are 37 ways to choose five balls from this sack; in
lexicographic order (but descending in each combination) they are
gbbbb, ggbbb, gggbb, rbbbb, rgbbb, rggbb, rgggb, rrbbb, rrgbb, rrggb,
rrggg, rrrbb, rrrgb, rrrgg, wbbbb, wgbbb, wggbb, wgggb, wrbbb, wrgbb,
wrggb, wrggg, wrrbb, wrrgb, wrrgg, wrrrb, wrrrg, wwbbb, wwgbb, wwggb,
wwggg, wwrbb, wwrgb, wwrgg, wwrrb, wwrrg, wwrrr. (51)

This fact might seem frivolous and/or esoteric, yet we will see in Theorem W
below that the lexicographic generation of multiset combinations yields optimal
solutions to significant combinatorial problems.

James Bernoulli observed in his Ars Conjectandi (1713), 119–123, that we
can enumerate such combinations by looking at the coefficient of z5 in the
product (1+z+z2)(1+z+z2 +z3)2(1+z+z2 +z3 +z4). Indeed, his observation
is easy to understand, because we get all possible selections from the sack if we
multiply out the polynomials

(1 + w + ww)(1 + r + rr + rrr)(1 + g + gg + ggg)(1 + b+ bb+ bbb+ bbbb).
Multiset combinations are also equivalent to bounded compositions, namely

to compositions in which the individual parts are bounded. For example, the 37
multicombinations listed in (51) correspond to 37 solutions of

5 = r3 + r2 + r1 + r0, 0 ≤ r3 ≤ 2, 0 ≤ r2, r1 ≤ 3, 0 ≤ r0 ≤ 4,
namely 5 = 0+0+1+4 = 0+0+2+3 = 0+0+3+2 = 0+1+0+4 = · · · = 2+3+0+0.

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 371

Fig. 46. Examples
of (5, 5)-combinations:

a) lexicographic;
b) revolving-door;
c) homogeneous;
d) near-perfect;
e) nearer-perfect;
f) perfect;
g) suffix-rotated;
h) right-swapped.

(a) (b) (c) (d) (e) (f) (g) (h)

From the Library of Melissa Nuno



ptg999

372 COMBINATORIAL SEARCHING 7.2.1.3

Bounded compositions, in turn, are special cases of contingency tables, which
are of great importance in statistics. And all of these combinatorial configura-
tions can be generated with Gray-like codes as well as in lexicographic order.
Exercises 60–63 explore some of the basic ideas involved.

*Shadows. Sets of combinations appear frequently in mathematics. For example,
a set of 2-combinations (namely a set of pairs) is essentially a graph, and a set of
t-combinations for general t is called a uniform hypergraph. If the vertices of a
convex polyhedron are perturbed slightly, so that no three are collinear, no four
lie in a plane, and in general no t + 1 lie in a (t − 1)-dimensional hyperplane,
the resulting (t− 1)-dimensional faces are “simplexes” whose vertices have great
significance in computer applications. Researchers have learned that such sets
of combinations have important properties related to lexicographic generation.

If α is any t-combination ct . . . c2c1, its shadow ∂α is the set of all its
(t − 1)-element subsets ct−1 . . . c2c1, . . . , ct . . . c3c1, ct . . . c3c2. For example,
∂5310 = {310, 510, 530, 531}. We can also represent a t-combination as a bit
string an−1 . . . a1a0, in which case ∂α is the set of all strings obtained by chang-
ing a 1 to a 0: ∂101011 = {001011, 100011, 101001, 101010}. If A is any set of
t-combinations, we define its shadow

∂A =

{ ∂α | α ∈ A } (52)

to be the set of all (t − 1)-combinations in the shadows of its members. For
example, ∂∂5310 = {10, 30, 31, 50, 51, 53}.

These definitions apply also to combinations with repetitions, namely to
multicombinations: ∂5330 = {330, 530, 533} and ∂∂5330 = {30, 33, 50, 53}. In
general, when A is a set of t-element multisets, ∂A is a set of (t − 1)-element
multisets. Notice, however, that ∂A never has repeated elements itself.

The upper shadow ∂α with respect to a universe U is defined similarly, but
it goes from t-combinations to (t+ 1)-combinations:

∂α = {β ⊆ U | α ∈ ∂β }, for α ∈ U ; (53)

∂A =

{ ∂α | α ∈ A }, for A ⊆ U. (54)

If, for example, U = {0, 1, 2, 3, 4, 5, 6}, we have ∂5310 = {53210, 54310, 65310};
on the other hand, if U = {∞·0,∞·1, . . . ,∞·6}, we have ∂5310 = {53100, 53110,
53210, 53310, 54310, 55310, 65310}.

The following fundamental theorems, which have many applications in var-
ious branches of mathematics and computer science, tell us how small a set’s
shadows can be:

Theorem K. If A is a set of N t-combinations contained in U = {0, 1, . . . , n−1},
then

|∂A| ≥ |∂PNt| and | ∂A| ≥ | ∂QNnt|, (55)
where PNt denotes the first N combinations generated by Algorithm L, namely
the N lexicographically smallest combinations ct . . . c2c1 that satisfy (3), and
QNnt denotes the N lexicographically largest.

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 373

Theorem M. If A is a set of N t-multicombinations contained in the multiset
U = {∞ · 0,∞ · 1, . . . ,∞ · s}, then

|∂A| ≥ |∂ PNt| and | ∂A| ≥ | ∂QNst|, (56)

where PNt denotes theN lexicographically smallest multicombinations dt . . . d2d1
that satisfy (6), and QNst denotes the N lexicographically largest.

Both of these theorems are consequences of a stronger result that we shall
prove later. Theorem K is generally called the Kruskal–Katona theorem, because
it was discovered by J. B. Kruskal [Math. Optimization Techniques, edited by
R. Bellman (1963), 251–278] and rediscovered by G. Katona [Theory of Graphs,
Tihany 1966, edited by Erdős and Katona (Academic Press, 1968), 187–207];
M. P. Schützenberger had previously stated it in a less-well-known publication,
with incomplete proof [RLE Quarterly Progress Report 55 (1959), 117–118].
Theorem M goes back to F. S. Macaulay, many years earlier [Proc. London
Math. Soc. (2) 26 (1927), 531–555].

Before proving (55) and (56), let’s take a closer look at what those formulas
mean. We know from Theorem L that the first N of all t-combinations visited
by Algorithm L are those that precede nt . . . n2n1, where

N =

nt
t


+ · · ·+


n2

2


+

n1

1


, nt > · · · > n2 > n1 ≥ 0

is the degree-t combinatorial representation of N . Sometimes this representation
has fewer than t nonzero terms, because nj can be equal to j − 1; let’s suppress
the zeros, and write

N =

nt
t


+

nt−1

t− 1


+ · · ·+


nv
v


, nt > nt−1 > · · · > nv ≥ v ≥ 1. (57)

Now the first

nt

t


combinations ct . . . c1 are the t-combinations of {0, . . . , nt−1};

the next

nt−1
t−1


are those in which ct = nt and ct−1 . . . c1 is a (t−1)-combination

of {0, . . . , nt−1−1}; and so on. For example, if t = 5 and N =
9

5


+
7

4


+
4

3

, the

first N combinations are

PN5 = {43210, . . . , 87654} ∪ {93210, . . . , 96543} ∪ {97210, . . . , 97321}. (58)

The shadow of this set PN5 is, fortunately, easy to understand: It is

∂PN5 = {3210, . . . , 8765} ∪ {9210, . . . , 9654} ∪ {9710, . . . , 9732}, (59)

namely the first
9

4


+
7

3


+
4

2


combinations in lexicographic order when t = 4.
In other words, if we define Kruskal’s function κt by the formula

κtN =


nt
t− 1


+

nt−1

t− 2


+ · · ·+


nv
v − 1


(60)

when N has the unique representation (57), with κt0 = 0, we have

∂PNt = P(κtN)(t−1) . (61)

From the Library of Melissa Nuno



ptg999

374 COMBINATORIAL SEARCHING 7.2.1.3

Theorem K tells us, for example, that a graph with a million edges can
contain at most 1414

3


+
1009

2


= 470,700,300

triangles, that is, at most 470,700,300 sets of vertices {u, v, w} with u−−− v−−−
w−−−u. The reason is that 1000000 =

1414
2

+
1009

1


by exercise 17, and the edges
P(1000000)2 do support

1414
3


+
1009

2


triangles; but if there were more, the graph
would necessarily have at least κ3470700301 =

1414
2


+
1009

1


+
1

0


= 1000001
edges in their shadow.

Kruskal defined the companion function

λtN =


nt
t+ 1


+

nt−1

t


+ · · ·+


nv
v + 1


(62)

to deal with questions such as this. The κ and λ functions are related by an
interesting law proved in exercise 72:

M +N =

s+ t

t


implies κsM + λtN =


s+ t

t+ 1


, if st > 0. (63)

Turning to Theorem M, the sizes of ∂ PNt and ∂QNst turn out to be

|∂ PNt| = µtN and | ∂QNst| = N + κsN (64)
(see exercise 81), where the function µt satisfies

µtN =

nt − 1
t− 1


+

nt−1 − 1
t− 2


+ · · ·+


nv − 1
v − 1


(65)

when N has the combinatorial representation (57).
Table 3 shows how these functions κtN , λtN , and µtN behave for small

values of t and N . When t and N are large, they can be well approximated
in terms of a remarkable function τ(x) introduced by Teiji Takagi in 1903; see
Fig. 47 and exercises 82–85.

Theorems K and M are corollaries of a much more general theorem of discrete
geometry, discovered by Da-Lun Wang and Ping Wang [SIAM J. Applied Math.
33 (1977), 55–59], which we shall now proceed to investigate. Consider the
discrete n-dimensional torus T (m1, . . . ,mn) whose elements are integer vectors
x = (x1, . . . , xn) with 0 ≤ x1 < m1, . . . , 0 ≤ xn < mn. We define the sum and
difference of two such vectors x and y as in Eqs. 4.3.2–(2) and 4.3.2–(3):

x+ y =

(x1 + y1) modm1, . . . , (xn + yn) modmn


, (66)

x− y =

(x1 − y1) modm1, . . . , (xn − yn) modmn


. (67)

We also define the so-called cross order on such vectors by saying that x ⪯ y if
and only if

νx < νy or (νx = νy and x ≥ y lexicographically); (68)
here, as usual, ν(x1, . . . , xn) = x1 + · · ·+ xn. For example, when m1 = m2 = 2
and m3 = 3, the 12 vectors x1x2x3 in increasing cross order are

000, 100, 010, 001, 110, 101, 011, 002, 111, 102, 012, 112, (69)

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 375

Table 3
EXAMPLES OF THE KRUSKAL–MACAULAY FUNCTIONS κ, λ, AND µ

N = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
κ1N = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
κ2N = 0 2 3 3 4 4 4 5 5 5 5 6 6 6 6 6 7 7 7 7 7
κ3N = 0 3 5 6 6 8 9 9 10 10 10 12 13 13 14 14 14 15 15 15 15
κ4N = 0 4 7 9 10 10 13 15 16 16 18 19 19 20 20 20 23 25 26 26 28
κ5N = 0 5 9 12 14 15 15 19 22 24 25 25 28 30 31 31 33 34 34 35 35

λ1N = 0 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105120136153171190
λ2N = 0 0 0 1 1 2 4 4 5 7 10 10 11 13 16 20 20 21 23 26 30
λ3N = 0 0 0 0 1 1 1 2 2 3 5 5 5 6 6 7 9 9 10 12 15
λ4N = 0 0 0 0 0 1 1 1 1 2 2 2 3 3 4 6 6 6 6 7 7
λ5N = 0 0 0 0 0 0 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5

µ1N = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
µ2N = 0 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5 6 6 6 6 6
µ3N = 0 1 2 3 3 4 5 5 6 6 6 7 8 8 9 9 9 10 10 10 10
µ4N = 0 1 2 3 4 4 5 6 7 7 8 9 9 10 10 10 11 12 13 13 14
µ5N = 0 1 2 3 4 5 5 6 7 8 9 9 10 11 12 12 13 14 14 15 15

0

22

14

7

0
(7
5

) (8
5

)

κ5N−N

(8
5

)
+
(7
4

) (9
5

) 0

2/3

1/2

1/4

0 1/4 1/2

τ(x)

3/4 1

Fig. 47. Approximating a Kruskal function with the Takagi function. (The
smooth curve in the left-hand graph is the lower bound κ5N−N of exercise 80.)

omitting parentheses and commas for convenience. The complement of a vector
in T (m1, . . . ,mn) is

x = (m1 − 1− x1, . . . ,mn − 1− xn). (70)

Notice that x ⪯ y holds if and only if x ⪰ y. Therefore we have

rank(x) + rank(x) = T − 1, where T = m1 . . .mn, (71)

if rank(x) denotes the number of vectors that precede x in cross order.
We will find it convenient to call the vectors “points” and to name the points

e0, e1, . . . , eT−1 in increasing cross order. Thus we have e7 = 002 in (69), and
er = eT−1−r in general. Notice that

e1 = 100 . . . 00, e2 = 010 . . . 00, . . . , en = 000 . . . 01; (72)

From the Library of Melissa Nuno



ptg999

376 COMBINATORIAL SEARCHING 7.2.1.3

these are the so-called unit vectors. The set

SN = {e0, e1, . . . , eN−1} (73)

consisting of the smallest N points is called a standard set, and in the special
case N = n+ 1 we write

E = {e0, e1, . . . , en} = {000 . . . 00, 100 . . . 00, 010 . . . 00, . . . , 000 . . . 01}. (74)

Any set of points X has a spread X+, a core X◦, and a dual X∼, defined
by the rules

X+ = {x ∈ ST | x ∈ X or x− e1 ∈ X or · · · or x− en ∈ X }; (75)
X◦ = {x ∈ ST | x ∈ X and x+ e1 ∈ X and · · · and x+ en ∈ X }; (76)
X∼ = {x ∈ ST | x /∈ X }. (77)

We can also define the spread of X algebraically, writing

X+ = X + E, (78)

where X + Y denotes {x+ y | x ∈ X and y ∈ Y }. Clearly

X+ ⊆ Y if and only if X ⊆ Y ◦. (79)

These notions can be illustrated in the two-dimensional case m1 = 4, m2 = 6, by
the more-or-less random toroidal arrangement X = {00, 12, 13, 14, 15, 21, 22, 25}
for which we have, pictorially,

•
•

• •
•
•
• •

•
•
•

•
•
• •

◦

+ +

+ +

+

+

+

+

• •
• • •
• • •
• •
• • •
• • •

•
•
•

•
• •
• •

◦
◦ ◦
◦ ◦

◦
◦

◦

+ +

+

+

+

+

+

; (80)

X X◦ and X+ X∼ X∼◦ and X∼+

here X in the first two diagrams consists of points marked • or ◦, X◦ comprises
just the ◦s, and X+ consists of +s plus •s plus ◦s. Notice that if we rotate the
diagram for X∼◦ and X∼+ by 180◦, we obtain the diagram for X◦ and X+, but
with (•, ◦, +, ) respectively changed to (+, , •, ◦); and in fact the identities

X◦ = X∼+∼, X+ = X∼◦∼ (81)

hold in general (see exercise 86).
Now we are ready to state the theorem of Wang and Wang:

Theorem W. Let X be any set of N points in the discrete torus T (m1, . . . ,mn),
where m1 ≤ · · · ≤ mn. Then |X+| ≥ |S+

N | and |X◦| ≤ |S◦
N |.

Proof. In other words, the standard sets SN have the smallest spread and largest
core, among all N -point sets. We will prove this result by following a general
approach first used by F. W. J. Whipple to prove Theorem M [Proc. London
Math. Soc. (2) 28 (1928), 431–437]. The first step is to prove that the spread
and the core of standard sets are standard:

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 377

Lemma S. There are functions α and β such that S+
N = SαN and S◦

N = SβN .

Proof. We may assume that N > 0. Let r be maximum with er ∈ S+
N , and let

αN = r + 1; we must prove that eq ∈ S+
N for 0 ≤ q < r. Suppose eq = x =

(x1, . . . , xn) and er = y = (y1, . . . , yn), and let k be the largest subscript with
xk > 0. Since y ∈ S+

N , there is a subscript j such that y− ej ∈ SN . It suffices to
prove that x− ek ⪯ y − ej , and exercise 88 does this.

The second part follows from (81), with βN = T − α(T − N), because
S∼
N = ST−N .

Theorem W is obviously true when n = 1, so we assume by induction that
it has been proved in n− 1 dimensions. The next step is to compress the given
set X in the kth coordinate position, by partitioning it into disjoint sets

Xk(a) = {x ∈ X | xk = a } (82)

for 0 ≤ a < mk and replacing each Xk(a) by

X ′
k(a) = { (s1, . . . , sk−1, a, sk, . . . , sn−1) | (s1, . . . , sn−1) ∈ S|Xk(a)| }, (83)

a set with the same number of elements. The sets S used in (83) are standard in
the (n − 1)-dimensional torus T (m1, . . . ,mk−1,mk+1, . . . ,mn). Notice that we
have (x1, . . . , xk−1, a, xk+1, . . . , xn) ⪯ (y1, . . . , yk−1, a, yk+1, . . . , yn) if and only
if (x1, . . . , xk−1, xk+1, . . . , xn) ⪯ (y1, . . . , yk−1, yk+1, . . . , yn); therefore X ′

k(a) =
Xk(a) if and only if the (n − 1)-dimensional points (x1, . . . , xk−1, xk+1, . . . , xn)
with (x1, . . . , xk−1, a, xk+1, . . . , xn) ∈ X are as small as possible when projected
onto the (n− 1)-dimensional torus. We let

CkX = X ′
k(0) ∪X ′

k(1) ∪ · · · ∪X ′
k(mk − 1) (84)

be the compression of X in position k. Exercise 90 proves the basic fact that
compression does not increase the size of the spread:

|X+| ≥ |(CkX)+|, for 1 ≤ k ≤ n. (85)

Furthermore, if compression changes X, it replaces some of the elements by other
elements of lower rank. Therefore we need to prove Theorem W only for sets X
that are totally compressed, having X = CkX for all k.

Consider, for example, the case n = 2. A totally compressed set in two
dimensions has all points moved to the left of their rows and the bottom of their
columns, as in the eleven-point sets

• • • •
• • •
•
•
•
•

+

+ +

+

+

+

or

• • • •
• • •
• •
•
•

+

+

+

+

+

or

• • • •
• • •
• •
• •

+

+

+

+ +

or

• • • •
• • •
• • •
•

+

+

+ +

+

or

• • • •
• • • •
• •
•

+ +

+

+

;

the rightmost of these is standard, and has the smallest spread. Exercise 91
completes the proof of Theorem W in two dimensions.

From the Library of Melissa Nuno



ptg999

378 COMBINATORIAL SEARCHING 7.2.1.3

When n > 2, suppose x = (x1, . . . , xn) ∈ X and xj > 0. The condition
CkX = X implies that, if 0 ≤ i < j and i ̸= k ̸= j, we have x + ei − ej ∈ X.
Applying this fact for three values of k tells us that x + ei − ej ∈ X whenever
0 ≤ i < j. Consequently

Xn(a) + En(0) ⊆ Xn(a− 1) + en for 0 < a < m, (86)

where m = mn and En(0) is a clever abbreviation for the set {e0, . . . , en−1}.
Let Xn(a) have Na elements, so that N = |X| = N0 +N1 + · · ·+Nm−1, and

let Y = X+. Then

Yn(a) =

Xn


(a− 1) modm


+ en


∪

Xn(a) + En(0)


is standard in n− 1 dimensions, and (86) tells us that

Nm−1 ≤ βNm−2 ≤ Nm−2 ≤ · · · ≤ N1 ≤ βN0 ≤ N0 ≤ αN0,

where α and β refer to coordinates 1 through n− 1. Therefore

|Y | = |Yn(0)|+ |Yn(1)|+ |Yn(2)|+ · · ·+ |Yn(m− 1)|
= αN0 +N0 +N1 + · · ·+Nm−2 = αN0 +N −Nm−1.

The proof of Theorem W now has a beautiful conclusion. Let Z = SN , and
suppose |Zn(a)| = Ma. We want to prove that |X+| ≥ |Z+|, namely that

αN0 +N −Nm−1 ≥ αM0 +N −Mm−1, (87)

because the arguments of the previous paragraph apply to Z as well as to X.
We will prove (87) by showing that Nm−1 ≤Mm−1 and N0 ≥M0.

Using the (n− 1)-dimensional α and β functions, let us define

N ′
m−1 = Nm−1, N

′
m−2 = αN ′

m−1, . . . , N
′
1 = αN ′

2, N
′
0 = αN ′

1; (88)
N ′′

0 = N0, N
′′
1 = βN ′′

0 , N
′′
2 = βN ′′

1 , . . . , N
′′
m−1 = βN ′′

m−2. (89)

Then we have N ′
a ≤ Na ≤ N ′′

a for 0 ≤ a < m, and it follows that

N ′ = N ′
0 +N ′

1 + · · ·+N ′
m−1 ≤ N ≤ N ′′ = N ′′

0 +N ′′
1 + · · ·+N ′′

m−1. (90)

Exercise 92 proves that the standard set Z ′ = SN ′ has exactly N ′
a elements with

nth coordinate equal to a, for each a; and by the duality between α and β, the
standard set Z ′′ = SN ′′ likewise has exactly N ′′

a elements with nth coordinate a.
Finally, therefore,

Mm−1 = |Zn(m− 1)| ≥ |Z ′
n(m− 1)| = Nm−1,

M0 = |Zn(0)| ≤ |Z ′′
n(0)| = N0,

because Z ′ ⊆ Z ⊆ Z ′′ by (90). By (81) we also have |X◦| ≤ |Z◦|.

Now we are ready to prove Theorems K and M, which are in fact special
cases of a substantially more general theorem of Clements and Lindström that
applies to arbitrary multisets [J. Combinatorial Theory 7 (1969), 230–238]:

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 379

Corollary C. If A is a set of N t-multicombinations contained in the multiset
U = {s0 · 0, s1 · 1, . . . , sd · d}, where s0 ≥ s1 ≥ · · · ≥ sd, then

|∂A| ≥ |∂PNt| and | ∂A| ≥ | ∂QNt|, (91)

where PNt denotes theN lexicographically smallest multicombinations dt . . . d2d1
of U , and QNt denotes the N lexicographically largest.

Proof. Multicombinations of U can be represented as points x1 . . . xn of the torus
T (m1, . . . ,mn), where n = d + 1 and mj = sn−j + 1; we let xj be the number
of occurrences of n− j. This correspondence preserves lexicographic order. For
example, if U = {0, 0, 0, 1, 1, 2, 3}, its 3-multicombinations are

000, 100, 110, 200, 210, 211, 300, 310, 311, 320, 321, (92)

in lexicographic order, and the corresponding points x1x2x3x4 are

0003, 0012, 0021, 0102, 0111, 0120, 1002, 1011, 1020, 1101, 1110. (93)

Let Tw be the points of the torus that have weight x1 + · · ·+ xn = w. Then
every allowable set A of t-multicombinations is a subset of Tt. Furthermore —
and this is the main point — the spread of T0 ∪ T1 ∪ · · · ∪ Tt−1 ∪A is

(T0 ∪ T1 ∪ · · · ∪ Tt−1 ∪A)+ = T+
0 ∪ T

+
1 ∪ · · · ∪ T

+
t−1 ∪A+

= T0 ∪ T1 ∪ · · · ∪ Tt ∪ ∂A. (94)

Thus the upper shadow ∂A is simply (T0 ∪ T1 ∪ · · · ∪ Tt−1 ∪ A)+ ∩ Tt+1, and
Theorem W tells us in essence that |A| = N implies | ∂A| ≥ | ∂(SM+N ∩ Tt)|,
where M = |T0 ∪ · · · ∪ Tt−1|. Hence, by the definition of cross order, SM+N ∩ Tt
consists of the lexicographically largest N t-multicombinations, namely QNt.

The proof that |∂A| ≥ |∂PNt| now follows by complementation (see exer-
cise 94).

EXERCISES
1. [M23 ] Explain why Golomb’s rule (8) makes all sets {c1, . . . , ct} ⊆ {0, . . . , n− 1}

correspond uniquely to multisets {e1, . . . , et} ⊆ {∞ · 0, . . . ,∞ · n− t}.
2. [16 ] What path in an 11× 13 grid corresponds to the bit string (13)?

x 3. [21 ] (R. R. Fenichel, 1968.) Show that the compositions qt+ · · ·+q1 +q0 of s into
t + 1 nonnegative parts can be generated in lexicographic order by a simple loopless
algorithm.

4. [16 ] Show that every composition qt . . . q0 of s into t+ 1 nonnegative parts corre-
sponds to a composition rs . . . r0 of t into s+ 1 nonnegative parts. What composition
corresponds to 10224000001010 under this correspondence?

x 5. [20 ] What is a good way to generate all of the integer solutions to the following
systems of inequalities?

a) n > xt ≥ xt−1 > xt−2 ≥ xt−3 > · · · > x1 ≥ 0, when t is odd.
b) n≫ xt ≫ xt−1 ≫ · · · ≫ x2 ≫ x1 ≫ 0, where a≫ b means a ≥ b+ 2.
6. [M22 ] How often is each step of Algorithm T performed?

From the Library of Melissa Nuno



ptg999

380 COMBINATORIAL SEARCHING 7.2.1.3

7. [22 ] Design an algorithm that runs through the “dual” combinations bs . . . b2b1 in
decreasing lexicographic order (see (5) and Table 1). Like Algorithm T, your algorithm
should avoid redundant assignments and unnecessary searching.

8. [M23 ] Design an algorithm that generates all (s, t)-combinations an−1 . . . a1a0
lexicographically in bitstring form. The total running time should be O(


n
t


), assuming

that st > 0.
9. [M26 ] When all (s, t)-combinations an−1 . . . a1a0 are listed in lexicographic order,

let 2Ast be the total number of bit changes between adjacent strings. For example,
A33 = 25 because there are respectively

2 + 2 + 2 + 4 + 2 + 2 + 4 + 2 + 2 + 6 + 2 + 2 + 4 + 2 + 2 + 4 + 2 + 2 + 2 = 50

bit changes between the 20 strings in Table 1.
a) Show that Ast = min(s, t) +A(s−1)t +As(t−1) when st > 0; Ast = 0 when st = 0.
b) Prove that Ast < 2


s+t
t


.

x 10. [21 ] The “World Series” of baseball is traditionally a competition in which the
American League champion (A) plays the National League champion (N) until one of
them has beaten the other four times. What is a good way to list all possible scenarios
AAAA, AAANA, AAANNA, . . . , NNNN? What is a simple way to assign consecutive
integers to those scenarios?
11. [19 ] Which of the scenarios in exercise 10 occurred most often during the 1900s?
Which of them never occurred? [Hint: World Series scores are easily found on the
Internet.]
12. [HM32 ] A set V of n-bit vectors that is closed under addition modulo 2 is called
a binary vector space.

a) Prove that every such V contains 2t elements, for some integer t, and can be
represented as the set {x1α1 ⊕ · · · ⊕ xtαt | 0 ≤ x1, . . . , xt ≤ 1} where the vectors
α1, . . . , αt form a “canonical basis” with the following property: There is a t-
combination ct . . . c2c1 of {0, 1, . . . , n − 1} such that, if αk is the binary vector
ak(n−1) . . . ak1ak0, we have

akcj = [j= k ] for 1 ≤ j, k ≤ t; akl = 0 for 0 ≤ l < ck, 1 ≤ k ≤ t.
For example, the canonical bases with n = 9, t = 4, and c4c3c2c1 = 7641 have the
general form

α1 = ∗ 0 0 ∗ 0 ∗ ∗ 1 0,
α2 = ∗ 0 0 ∗ 1 0 0 0 0,
α3 = ∗ 0 1 0 0 0 0 0 0,
α4 = ∗ 1 0 0 0 0 0 0 0;

there are 28 ways to replace the eight asterisks by 0s and/or 1s, and each of these
defines a canonical basis. We call t the dimension of V .

b) How many t-dimensional spaces are possible with n-bit vectors?
c) Design an algorithm to generate all canonical bases (α1, . . . , αt) of dimension t.

Hint: Let the associated combinations ct . . . c1 increase lexicographically as in
Algorithm L.

d) What is the 1000000th basis visited by your algorithm when n = 9 and t = 4?
13. [25 ] A one-dimensional Ising configuration of length n, weight t, and energy r,
is a binary string an−1 . . . a0 such that

n−1
j=0 aj = t and

n−1
j=1 bj = r, where bj =

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 381

aj ⊕ aj−1. For example, a12 . . . a0 = 1100100100011 has weight 6 and energy 6, since
b12 . . . b1 = 010110110010.

Design an algorithm to generate all such configurations, given n, t, and r.

14. [26 ] When the binary strings an−1 . . . a1a0 of (s, t)-combinations are generated
in lexicographic order, we sometimes need to change 2 min(s, t) bits to get from one
combination to the next. For example, 011100 is followed by 100011 in Table 1.
Therefore we apparently cannot hope to generate all combinations with a loopless
algorithm unless we visit them in some other order.

Show, however, that there actually is a way to compute the lexicographic successor
of a given combination in O(1) steps, if each combination is represented indirectly in a
doubly linked list as follows: There are arrays l[0], . . . , l[n] and r[0], . . . , r[n] such that
l[r[j]] = j for 0 ≤ j ≤ n. If x0 = l[0] and xj = l[xj−1] for 0 < j < n, then aj = [xj >s]
for 0 ≤ j < n.

15. [M22 ] Use the fact that dual combinations bs . . . b2b1 occur in reverse lexico-
graphic order to prove that the sum


bs
s


+ · · · +


b2
2


+

b1
1


has a simple relation
to the sum


ct
t


+ · · ·+


c2
2


+

c1
1

.

16. [M21 ] What is the millionth combination generated by Algorithm L when t is
(a) 2? (b) 3? (c) 4? (d) 5? (e) 1000000?

17. [HM25 ] Given N and t, what is a good way to compute the combinatorial repre-
sentation (20)?

x 18. [20 ] What binary tree do we get when the binomial tree Tn is represented by
“right child” and “left sibling” pointers as in exercise 2.3.2–5?

19. [21 ] Instead of labeling the branches of the binomial tree T4 as shown in (22), we
could label each node with the bit string of its corresponding combination:

0000

0001 0010

0011

0100

0101 0110

0111

1000

1001 1010

1011

1100

1101 1110

1111

If T∞ has been labeled in this way, suppressing leading zeros, preorder is the same as
the ordinary increasing order of binary notation; so the millionth node turns out to be
11110100001000111111. But what is the millionth node of T∞ in postorder?

20. [M20 ] Devise generating functions g and h such that Algorithm F finds exactly
[zN ] g(z) feasible combinations and sets t← t+ 1 exactly [zN ]h(z) times.

21. [M22 ] (Joan E. Miller, 1971.) Prove the alternating combination law (30).

22. [M23 ] What is the millionth revolving-door combination visited by Algorithm R
when t is (a) 2? (b) 3? (c) 4? (d) 5? (e) 1000000?

23. [M23 ] Suppose we augment Algorithm R by setting j ← t + 1 in step R1, and
j ← 1 if R3 goes directly to R2. Find the probability distribution of j, and its average
value. What does this imply about the running time of the algorithm?

From the Library of Melissa Nuno



ptg999

382 COMBINATORIAL SEARCHING 7.2.1.3

x 24. [M25 ] (W. H. Payne, 1974.) Continuing the previous exercise, let jk be the value
of j on the kth visit by Algorithm R. Show that |jk+1 − jk| ≤ 2, and explain how to
make the algorithm loopless by exploiting this property.
25. [M35 ] Let ct . . . c2c1 and c′t . . . c′2c′1 be the Nth and N ′th combinations generated
by the revolving-door method, Algorithm R. If the set C = {ct, . . . , c2, c1} has m > 0
elements not in C′ = {c′t, . . . , c′2, c′1}, prove that |N −N ′| >m−1

k=1
 2k
k−1

.

26. [26 ] Do elements of the ternary reflected Gray code have properties similar to the
revolving-door Gray code Γst, if we extract only the n-tuples an−1 . . . a1a0 such that
(a) an−1 + · · ·+ a1 + a0 = t? (b) {an−1, . . . , a1, a0} = {r · 0, s · 1, t · 2}?

x 27. [25 ] Show that there is a simple way to generate all combinations of at most t
elements of {0, 1, . . . , n− 1}, using only Gray-code-like transitions 0↔ 1 and 01↔ 10.
(In other words, each step should either insert a new element, delete an element, or
shift an element by ±1.) For example,

0000, 0001, 0011, 0010, 0110, 0101, 0100, 1100, 1010, 1001, 1000

is one such sequence when n = 4 and t = 2. Hint: Think of Chinese rings.
28. [M21 ] True or false: A listing of (s, t)-combinations an−1 . . . a1a0 in bitstring
form is in genlex order if and only if the corresponding index-form listings bs . . . b2b1
(for the 0s) and ct . . . c2c1 (for the 1s) are both in genlex order.

x 29. [M28 ] (P. J. Chase.) Given a string on the symbols +, -, and 0, say that an
R-block is a substring of the form -k+1 that is preceded by 0 and not followed by -; an
L-block is a substring of the form +-k that is followed by 0; in both cases k ≥ 0. For
example, the string +00++-+++-000- has two L-blocks and one R-block, shown in gray.
Notice that blocks cannot overlap.

We form the successor of such a string as follows, whenever at least one block is
present: Replace the rightmost 0-k+1 by -+k0, if the rightmost block is an R-block;
otherwise replace the rightmost +-k0 by 0+k+1. Also negate the first sign, if any, that
appears to the right of the block that has been changed. For example,

-+00++-→ -0+0-+-→ -0+-0--→ -0+--+0→ -0+--0+→ -00+++-,

where the notation α→ β means that β is the successor of α.
a) What strings have no blocks (and therefore no successor)?
b) Can there be a cycle of strings with α0 → α1 → · · · → αk−1 → α0?
c) Prove that if α → β then −β → −α, where “−” means “negate all the signs.”

(Therefore every string has at most one predecessor.)
d) Show that if α0 → α1 → · · · → αk and k > 0, the strings α0 and αk do not have

all their 0s in the same positions. (Therefore, if α0 has s signs and t zeros, k must
be less than


s+t
t


.)

e) Prove that every string α with s signs and t zeros belongs to exactly one chain
α0 → α1 → · · · → α(s+t

t )−1.

30. [M32 ] The previous exercise defines 2s ways to generate all combinations of s 0s
and t 1s, via the mapping + →→ 0, - →→ 0, and 0 →→ 1. Show that each of these ways
is a homogeneous genlex sequence, definable by an appropriate recurrence. Is Chase’s
sequence (37) a special case of this general construction?
31. [M23 ] How many genlex listings of (s, t)-combinations are possible in (a) bitstring
form an−1 . . . a1a0? (b) index-list form ct . . . c2c1?

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 383

x 32. [M32 ] How many of the genlex listings of (s, t)-combination strings an−1 . . . a1a0
(a) have the revolving-door property? (b) are homogeneous?
33. [HM33 ] How many of the genlex listings in exercise 31(b) are near-perfect?
34. [M32 ] Continuing exercise 33, explain how to find such schemes that are as near
as possible to perfection, in the sense that the number of “imperfect” transitions cj ←
cj ± 2 is minimized, when s and t are not too large.
35. [M26 ] How many steps of Chase’s sequence Cst use an imperfect transition?

x 36. [M21 ] Prove that method (39) performs the operation j ← j+1 a total of exactly
s+t
t


− 1 times as it generates all (s, t)-combinations an−1 . . . a1a0, given any genlex

scheme for combinations in bitstring form.
x 37. [27 ] What algorithm results when the general genlex method (39) is used to

produce (s, t)-combinations an−1 . . . a1a0 in (a) lexicographic order? (b) the revolving-
door order of Algorithm R? (c) the homogeneous order of (31)?
38. [26 ] Design a genlex algorithm like Algorithm C for the reverse sequence CRst.
39. [M21 ] When s = 12 and t = 14, how many combinations precede the bit string
11001001000011111101101010 in Chase’s sequence Cst? (See (41).)
40. [M22 ] What is the millionth combination in Chase’s sequence Cst, when s = 12
and t = 14?
41. [M27 ] Show that there is a permutation c(0), c(1), c(2), . . . of the nonnegative
integers such that the elements of Chase’s sequence Cst are obtained by complementing
the least significant s + t bits of the elements c(k) for 0 ≤ k < 2s+t that have weight
ν(c(k)) = s. (Thus the sequence c̄(0), . . . , c̄(2n − 1) contains, as subsequences, all of
the Cst for which s+ t = n, just as Gray binary code g(0), . . . , g(2n − 1) contains all
the revolving-door sequences Γst.) Explain how to compute the binary representation
c(k) = ( . . . a2a1a0)2 from the binary representation k = ( . . . b2b1b0)2.
42. [HM34 ] Use generating functions of the form


s,t gstw

szt to analyze each step of
Algorithm C.
43. [20 ] Prove or disprove: If s(x) and p(x) denote respectively the successor and
predecessor of x in endo-order, then s(x+ 1) = p(x) + 1.

x 44. [M21 ] Let Ct(n) − 1 denote the sequence obtained from Ct(n) by striking out
all combinations with c1 = 0, then replacing ct . . . c1 by (ct − 1) . . . (c1 − 1) in the
combinations that remain. Show that Ct(n)− 1 is near-perfect.
45. [32 ] Exploit endo-order and the expansions sketched in (44) to generate the
combinations ct . . . c2c1 of Chase’s sequence Ct(n) with a nonrecursive procedure.

x 46. [33 ] Construct a nonrecursive algorithm for the dual combinations bs . . . b2b1 of
Chase’s sequence Cst, namely for the positions of the zeros in an−1 . . . a1a0.
47. [26 ] Implement the near-perfect multiset permutation method of (46) and (47).
48. [M21 ] Suppose α0, α1, . . . , αN−1 is any listing of the permutations of the multiset
{s1 · 1, . . . , sd · d}, where αk differs from αk+1 by the interchange of two elements. Let
β0, . . . , βM−1 be any revolving-door listing for (s, t)-combinations, where s = s0, t =
s1 +· · ·+sd, and M =


s+t
t


. Then let Λj be the list of M elements obtained by starting

with αj ↑ β0 and applying the revolving-door exchanges; here α ↑ β denotes the string
obtained by substituting the elements of α for the 1s in β, preserving left-right order.
For example, if β0, . . . , βM−1 is 0110, 0101, 1100, 1001, 0011, 1010, and if αj = 12,
then Λj is 0120, 0102, 1200, 1002, 0012, 1020. (The revolving-door listing need not be
homogeneous.)

From the Library of Melissa Nuno



ptg999

384 COMBINATORIAL SEARCHING 7.2.1.3

Prove that the list (47) contains all permutations of {s0 · 0, s1 · 1, . . . , sd · d}, and
that adjacent permutations differ from each other by the interchange of two elements.
49. [HM23 ] If q is a primitive mth root of unity, such as e2πi/m, show that

n

k


q

=
⌊n/m⌋
⌊k/m⌋


nmodm
k modm


q
.

x 50. [HM25 ] Extend the formula of the previous exercise to q-multinomial coefficients
n1 + · · ·+ nt
n1, . . . , nt


q
.

51. [25 ] Find all Hamiltonian paths in the graph whose vertices are permutations of
{0, 0, 0, 1, 1, 1} related by adjacent transposition. Which of those paths are equivalent
under the operations of interchanging 0s with 1s and/or left-right reflection?
52. [M37 ] Generalizing Theorem P, find a necessary and sufficient condition that all
permutations of the multiset {s0 · 0, . . . , sd · d} can be generated by adjacent transpo-
sitions ajaj−1 ↔ aj−1aj .
53. [M46 ] (D. H. Lehmer, 1965.) Suppose the N permutations of {s0 · 0, . . . , sd · d}
cannot be generated by a perfect scheme, because (N + x)/2 of them have an even
number of inversions, where x ≥ 2. Is it possible to generate them all with a sequence
of N + x − 2 adjacent interchanges aδk ↔ aδk−1 for 1 ≤ k < N + x − 1, where
x − 1 cases are “spurs” with δk = δk−1 that take us back to the permutation we’ve
just seen? For example, a suitable sequence δ1 . . . δ94 for the 90 permutations of
{0, 0, 1, 1, 2, 2}, where x =

2+2+2
2,2,2


−1

= 6, is 234535432523451α42αR51α42αR51α4,
where α = 45352542345355, if we start with a5a4a3a2a1a0 = 221100.
54. [M40 ] For what values of s and t can all (s, t)-combinations be generated if we
allow end-around swaps an−1 ↔ a0 in addition to adjacent interchanges aj ↔ aj−1?

x 55. [33 ] (Frank Ruskey, 2004.) (a) Show that all (s, t)-combinations as+t−1 . . . a1a0
can be generated efficiently by doing successive rotations ajaj−1 . . . a0 ← aj−1 . . . a0aj .
(b) What MMIX instructions will take (as+t−1 . . . a1a0)2 to its successor, when s+t < 64?
56. [M49 ] (Buck and Wiedemann, 1984.) Can all (t, t)-combinations a2t−1 . . . a1a0
be generated by repeatedly swapping a0 with some other element?

x 57. [22 ] (Frank Ruskey.) Can a piano player run through all possible 4-note chords
that span at most one octave, changing only one finger at a time? This is the problem of
generating all combinations ct . . . c1 such that n > ct > · · · > c1 ≥ 0 and ct − c1 < m,
where t = 4 and (a) m = 8, n = 52 if we consider only the white notes of a piano
keyboard; (b) m = 13, n = 88 if we consider also the black notes.
58. [20 ] Consider the piano player’s problem of exercise 57 with the additional con-
dition that the chords don’t involve adjacent notes. (In other words, cj+1 > cj + 1 for
t > j ≥ 1. Such chords tend to be more harmonious.)
59. [M25 ] Is there a perfect solution to the 4-note piano player’s problem, in which
each step moves a finger to an adjacent key?
60. [23 ] Design an algorithm to generate all bounded compositions

t = rs + · · ·+ r1 + r0, where 0 ≤ rj ≤ mj for s ≥ j ≥ 0.

61. [32 ] Show that all bounded compositions can be generated by changing only two
of the parts at each step.

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 385

x 62. [M27 ] A contingency table is an m×n matrix of nonnegative integers (aij) having
given row sums ri =

n
j=1 aij and column sums cj =

m
i=1 aij , where r1 + · · ·+ rm =

c1 + · · ·+ cn.
a) Show that 2× n contingency tables are equivalent to bounded compositions.
b) What is the lexicographically largest contingency table for (r1, . . . , rm; c1, . . . , cn),

when matrix entries are read row-wise from left to right and top to bottom, namely
in the order (a11, a12, . . . , a1n, a21, a22, . . . , a2n, . . . , am1, am2, . . . , amn)?

c) What is the lexicographically largest contingency table for (r1, . . . , rm; c1, . . . , cn),
when matrix entries are read column-wise from top to bottom and left to right,
namely in the order (a11, a21, . . . , am1, a12, a22, . . . , am2, . . . , a1n, a2n, . . . , amn)?

d) What is the lexicographically smallest contingency table for (r1, . . . , rm; c1, . . . , cn),
in the row-wise and column-wise senses?

e) Explain how to generate all contingency tables for (r1, . . . , rm; c1, . . . , cn) in lex-
icographic order.

63. [M41 ] Show that all contingency tables for (r1, . . . , rm; c1, . . . , cn) can be gener-
ated by changing exactly four entries of the matrix at each step.

x 64. [M30 ] Construct a genlex Gray cycle for all of the 2s

s+t
t


subcubes that have

s digits and t asterisks, using only the transformations ∗0 ↔ 0∗, ∗1 ↔ 1∗, 0 ↔ 1.
For example, one such cycle when s = t = 2 is

(00∗∗, 01∗∗, 0∗1∗, 0∗∗1, 0∗∗0, 0∗0∗, ∗00∗, ∗01∗, ∗0∗1, ∗0∗0, ∗∗00, ∗∗01,
∗∗11, ∗∗10, ∗1∗0, ∗1∗1, ∗11∗, ∗10∗, 1∗0∗, 1∗∗0, 1∗∗1, 1∗1∗, 11∗∗, 10∗∗).

65. [M40 ] Enumerate the total number of genlex Gray paths on subcubes that use
only the transformations allowed in exercise 64. How many of those paths are cycles?

x 66. [22 ] Given n ≥ t ≥ 0, show that there is a Gray path through all of the canonical
bases (α1, . . . , αt) of exercise 12, changing just one bit at each step. For example, one
such path when n = 3 and t = 2 is

001
010 ,

101
010 ,

101
110 ,

001
110 ,

001
100 ,

011
100 ,

010
100 .

67. [46 ] Consider the Ising configurations of exercise 13 for which a0 = 0. Given n,
t, and r, is there a Gray cycle for these configurations in which all transitions have the
forms 0k1↔ 10k or 01k ↔ 1k0? For example, in the case n = 9, t = 5, r = 6, there is
a unique cycle

(010101110, 010110110, 011010110, 011011010, 011101010, 010111010).

68. [M01 ] If α is a t-combination, what is (a) ∂tα? (b) ∂t+1α?
x 69. [M22 ] How large is the smallest set A of t-combinations for which |∂A| < |A|?

70. [M25 ] What is the maximum value of κtN −N , for N ≥ 0?
71. [M20 ] How many t-cliques can a million-edge graph have?

x 72. [M22 ] Show that if N has the degree-t combinatorial representation (57), there
is an easy way to find the degree-s combinatorial representation of the complementary
number M =


s+t
t


−N , whenever N <


s+t
t


. Derive (63) as a consequence.

73. [M23 ] (A. J. W. Hilton, 1976.) Let A be a set of s-combinations and B a set of
t-combinations, both contained in U = {0, . . . , n− 1} where n ≥ s+ t. Show that if A
and B are cross-intersecting, in the sense that α∩ β ̸= ∅ for all α ∈ A and β ∈ B, then
so are the sets QMns and QNnt defined in Theorem K, where M = |A| and N = |B|.

From the Library of Melissa Nuno



ptg999

386 COMBINATORIAL SEARCHING 7.2.1.3

74. [M21 ] What are | ∂PNt| and | ∂QNnt| in Theorem K?
75. [M20 ] The right-hand side of (60) is not always the degree-(t− 1) combinatorial
representation of κtN , because v − 1 might be zero. Show, however, that a positive
integer N has at most two representations if we allow v = 0 in (57), and both of them
yield the same value κtN according to (60). Therefore

κkκk+1 . . . κtN =


nt
k − 1


+

nt−1

k − 2


+ · · ·+


nv

k − 1 + v − t


for 1 ≤ k ≤ t.

76. [M20 ] Find a simple formula for κt(N + 1)− κtN .
x 77. [M26 ] Prove the following properties of the κ functions by manipulating binomial

coefficients, without assuming Theorem K:
a) κt(M +N) ≤ κtM + κtN .
b) κt(M +N) ≤ max(κtM,N) + κt−1N .

Hint:

mt
t


+ · · · +


m1

1


+

nt
t


+ · · · +


n1
1


is equal to

mt∨nt

t


+ · · · +


m1∨n1

1


+
mt∧nt

t


+ · · ·+


m1∧n1

1

, where ∨ and ∧ denote max and min.

78. [M22 ] Show that Theorem K follows easily from inequality (b) in the previous
exercise. Conversely, both inequalities are simple consequences of Theorem K. Hint:
Any set A of t-combinations can be written A = A1 +A00, where A1 = {α ∈ A | 0 /∈ α}.
79. [M23 ] Prove that if t ≥ 2, we have M ≥ µtN if and only if M + λt−1M ≥ N .
80. [HM26 ] (L. Lovász, 1979.) The function


x
t


increases monotonically from 0 to∞

as x increases from t− 1 to ∞; hence we can define

κtN =


x

t− 1


, if N =


x

t


and x ≥ t− 1.

Prove that κtN ≥ κtN for all integers t ≥ 1 and N ≥ 0. Hint: Equality holds when x
is an integer.

x 81. [M27 ] Show that the minimum shadow sizes in Theorem M are given by (64).
82. [HM31 ] The Takagi function of Fig. 47 is defined for 0 ≤ x ≤ 1 by the formula

τ(x) =
∞
k=1

 x

0
rk(t) dt,

where rk(t) = (−1)⌊2kt⌋ is the Rademacher function of Eq. 7.2.1.1–(16).
a) Prove that τ(x) is continuous in the interval [0 . . 1], but its derivative does not

exist at any point.
b) Show that τ(x) is the only continuous function that satisfies

τ( 1
2x) = τ(1− 1

2x) = 1
2x+ 1

2τ(x) for 0 ≤ x ≤ 1.

c) What is the asymptotic value of τ(ϵ) when ϵ is small?
d) Prove that τ(x) is rational when x is rational.
e) Find all roots of the equation τ(x) = 1/2.
f) Find all roots of the equation τ(x) = max0≤x≤1 τ(x).

83. [HM46 ] Determine the set R of all rational numbers r such that the equation
τ(x) = r has uncountably many solutions. If τ(x) is rational and x is irrational, is it
true that τ(x) ∈ R? (Warning: This problem can be addictive.)
84. [HM27 ] If T =

2t−1
t


, prove the asymptotic formula

κtN −N = T

t


τ

N

T


+O

 (log t)3

t


for 0 ≤ N ≤ T .

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 387

85. [HM21 ] Relate the functions λtN and µtN to the Takagi function τ(x).
86. [M20 ] Prove the law of spread/core duality, X∼+ = X◦∼.
87. [M21 ] True or false: (a) X ⊆ Y ◦ if and only if Y ∼ ⊆ X∼◦; (b) X◦+◦ = X◦;
(c) αM ≤ N if and only if M ≤ βN .
88. [M20 ] Explain why cross order is useful, by completing the proof of Lemma S.
89. [16 ] Compute the α and β functions for the 2× 2× 3 torus (69).
90. [M22 ] Prove the basic compression lemma, (85).
91. [M24 ] Prove Theorem W for two-dimensional toruses T (l,m), l ≤ m.
92. [M28 ] Let x = x1 . . . xn−1 be the Nth element of the torus T (m1, . . . ,mn−1), and
let S be the set of all elements of T (m1, . . . ,mn−1,m) that are ⪯ x1 . . . xn−1(m−1)
in cross order. If Na elements of S have final component a, for 0 ≤ a < m, prove
that Nm−1 = N and Na−1 = αNa for 1 ≤ a < m, where α is the spread function for
standard sets in T (m1, . . . ,mn−1).
93. [M25 ] (a) Find an N for which the conclusion of Theorem W is false when the
parameters m1, m2, . . . , mn have not been sorted into nondecreasing order. (b) Where
does the proof of that theorem use the hypothesis that m1 ≤ m2 ≤ · · · ≤ mn?
94. [M20 ] Show that the ∂ half of Corollary C follows from the ∂half. Hint: The
complements of the multicombinations (92) with respect to U are 3211, 3210, 3200,
3110, 3100, 3000, 2110, 2100, 2000, 1100, 1000.
95. [17 ] Explain why Theorems K and M follow from Corollary C.

x 96. [M22 ] If S is an infinite sequence (s0, s1, s2, . . . ) of positive integers, let
S(n)
k


= [zk]

n−1
j=0

(1 + z + · · ·+ zsj );

thus

S(n)
k


is the ordinary binomial coefficient


n
k


if s0 = s1 = s2 = · · · = 1.

Generalizing the combinatorial number system, show that every nonnegative inte-
ger N has a unique representation

N =

S(nt)
t


+

S(nt−1)
t− 1


+ · · ·+


S(n1)

1


where nt ≥ nt−1 ≥ · · · ≥ n1 ≥ 0 and {nt, nt−1, . . . , n1} ⊆ {s0 · 0, s1 · 1, s2 · 2, . . . }. Use
this representation to give a simple formula for the numbers |∂PNt| in Corollary C.

x 97. [M26 ] The text remarked that the vertices of a convex polyhedron can be per-
turbed slightly so that all of its faces are simplexes. In general, any set of combinations
that contains the shadows of all its elements is called a simplicial complex; thus C is a
simplicial complex if and only if α ⊆ β and β ∈ C implies that α ∈ C, if and only if
C is an order ideal with respect to set inclusion.

The size vector of a simplicial complex C on n vertices is (N0, N1, . . . , Nn) when
C contains exactly Nt combinations of size t.

a) What are the size vectors of the five regular solids (the tetrahedron, cube, octa-
hedron, dodecahedron, and icosahedron), when their vertices are slightly tweaked?

b) Construct a simplicial complex with size vector (1, 4, 5, 2, 0).
c) Find a necessary and sufficient condition that a given size vector (N0, N1, . . . , Nn)

is feasible.
d) Prove that (N0, . . . , Nn) is feasible if and only its “dual” vector (N0, . . . , Nn) is

feasible, where we define N t =

n
t


−Nn−t.

From the Library of Melissa Nuno



ptg999

388 COMBINATORIAL SEARCHING 7.2.1.3

e) List all feasible size vectors (N0, N1, N2, N3, N4) and their duals. Which of them
are self-dual?

98. [30 ] Continuing exercise 97, find an efficient way to count the feasible size vectors
(N0, N1, . . . , Nn) when n ≤ 100.
99. [M25 ] A clutter is a set C of combinations that are incomparable, in the sense
that α ⊆ β and α, β ∈ C implies α = β. The size vector of a clutter is defined as in
exercise 97.

a) Find a necessary and sufficient condition that (M0,M1, . . . ,Mn) is the size vector
of a clutter.

b) List all such size vectors in the case n = 4.
x 100. [M30 ] (Clements and Lindström.) Let A be a “simplicial multicomplex,” a set

of submultisets of the multiset U in Corollary C with the property that ∂A ⊆ A. How
large can the total weight νA =

{|α| | α ∈ A} be when |A| = N?
101. [M25 ] If f(x1, . . . , xn) is a Boolean formula, let F (p) be the probability that
f(x1, . . . , xn) = 1 when each variable xj independently is 1 with probability p.

a) Calculate G(p) and H(p) for the Boolean formulas g(w, x, y, z) = wxz∨wyz∨xyz̄,
h(w, x, y, z) = w̄yz ∨ xyz.

b) Show that there is a monotone Boolean function f(w, x, y, z) such that F (p) =
G(p), but there is no such function with F (p) = H(p). Explain how to test this
condition in general.

102. [HM35 ] (F. S. Macaulay, 1927.) A polynomial ideal I in the variables {x1 . . . , xs}
is a set of polynomials closed under the operations of addition, multiplication by a
constant, and multiplication by any of the variables. It is called homogeneous if it
consists of all linear combinations of a set of homogeneous polynomials, namely of
polynomials like xy+z2 whose terms all have the same degree. Let Nt be the maximum
number of linearly independent elements of degree t in I. For example, if s = 2,
the set of all α(x0, x1, x2)(x0x

2
1 − 2x1x

2
2) + β(x0, x1, x2)x0x1x

2
2, where α and β run

through all possible polynomials in {x0, x1, x2}, is a homogeneous polynomial ideal
with N0 = N1 = N2 = 0, N3 = 1, N4 = 4, N5 = 9, N6 = 15, . . . .

a) Prove that for any such ideal I there is another ideal I ′ in which all homogeneous
polynomials of degree t are linear combinations of Nt independent monomials.
(A monomial is a product of variables, like x3

1x2x
4
5.)

b) Use Theorem M and (64) to prove that Nt+1 ≥ Nt + κsNt for all t ≥ 0.
c) Show that Nt+1 > Nt + κsNt occurs for only finitely many t. (This statement

is equivalent to “Hilbert’s basis theorem,” proved by David Hilbert in Göttinger
Nachrichten (1888), 450–457; Math. Annalen 36 (1890), 473–534.)

x 103. [M38 ] The shadow of a subcube a1 . . . an, where each aj is either 0 or 1 or ∗, is
obtained by replacing some ∗ by 0 or 1. For example,

∂0∗11∗0 = {0011∗0, 0111∗0, 0∗1100, 0∗1110}.
Find a set PNst such that, if A is any set of N subcubes a1 . . . an having s digits and
t asterisks, |∂A| ≥ |PNst|.
104. [M41 ] The shadow of a binary string a1 . . . an is obtained by deleting one of its
bits. For example,

∂110010010 = {10010010, 11010010, 11000010, 11001000, 11001010, 11001001}.
Find a set PNn such that, if A is any set of N binary strings a1 . . . an, |∂A| ≥ |PNn|.

From the Library of Melissa Nuno



ptg999

7.2.1.3 GENERATING ALL COMBINATIONS 389

105. [M20 ] A universal cycle of t-combinations for {0, 1, . . . , n − 1} is a cycle of
n
t


numbers whose blocks of t consecutive elements run through every t-combination

{c1, . . . , ct}. For example,

(02145061320516243152630425364103546)

is a universal cycle when t = 3 and n = 7.
Prove that no such cycle is possible unless


n
t


is a multiple of n.

106. [M21 ] (L. Poinsot, 1809.) Find a “nice” universal cycle of 2-combinations for
{0, 1, . . . , 2m}. Hint: Consider the differences of consecutive elements, mod (2m+ 1).
107. [22 ] (O. Terquem, 1849.) Poinsot’s theorem implies that all 28 dominoes of a
traditional “double-six” set can be arranged in a cycle so that the spots of adjacent
dominoes match each other:

<0>0<0>1<1>3<3>6<6>6<6>0<0>2<2>5<5>5<5>6<6>1<1>4<4>44̂
v50̂

v4<4>2<2>1<1>1<1>5<5>3<3>2<2>2<2>6<6>4<4>3<3>3<3>0<0>5

How many such cycles are possible?
108. [M31 ] Find universal cycles of 3-combinations for the sets {0, . . . , n − 1} when
nmod 3 ̸= 0.
109. [M31 ] Find universal cycles of 3-multicombinations for {0, 1, . . . , n − 1} when
nmod 3 ̸= 0 (namely for combinations d1d2d3 with repetitions permitted). For exam-
ple,

(00012241112330222344133340024440113)

is such a cycle when n = 5.
x 110. [26 ] Cribbage is a game played with 52 cards, where each card has a suit (♣, ♢,
♡, or ♠) and a face value (A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, or K). Its players must
become adept at computing the score of a 5-card combination C = {c1, c2, c3, c4, c5},
where one card ck is called the starter. The score is the sum of points computed as
follows, for each subset S of C and each choice of k: Let |S| = s.

i) Fifteens: If
{v(c) | c ∈ S} = 15, where (v(A), v(2), v(3), . . . , v(9), v(10), v(J),

v(Q), v(K)) = (1, 2, 3, . . . , 9, 10, 10, 10, 10), score two points.
ii) Pairs: If s = 2 and both cards have the same face value, score two points.

iii) Runs: If s ≥ 3 and the face values are consecutive, and if C does not contain a
run of length s+ 1, score s points.

iv) Flushes: If s = 4 and all cards of S have the same suit, and if ck /∈ S, score
4 + [ck has the same suit as the others].

v) Nobs: If s = 1 and ck /∈ S, score 1 if the card is J of the same suit as ck.
For example, if you hold {J♣, 5♣, 5♢, 6♡} and if 4♣ is the starter, you score 4× 2 for
fifteens, 2 for a pair, 2× 3 for runs, plus 1 for nobs, totalling 17.

Exactly how many combinations and starter choices lead to a score of x points,
for x = 0, 1, 2, . . . ?

x 111. [M26 ] (P. Erdős, C. Ko, and R. Rado.) Suppose A is a set of r-combinations of
an n-set, with α ∩ β ̸= ∅ whenever α, β ∈ A. Show that |A| ≤


n−1
r−1

, if r ≤ n/2. Hint:

Consider ∂n−2rB, where B is the set of complements of A.

From the Library of Melissa Nuno



ptg999

390 COMBINATORIAL SEARCHING 7.2.1.4

7.2.1.4. Generating all partitions. Richard Stanley’s magnificent book Enu-
merative Combinatorics (1986) begins by discussing The Twelvefold Way, a
2× 2× 3 array of basic combinatorial problems that arise frequently in practice
(see Table 1), based on a series of lectures by Gian-Carlo Rota. All twelve of
these basic problems can be described in terms of the ways that a given number
of balls can be placed into a given number of urns. For example, there are nine
ways to put 2 balls into 3 urns if the balls and urns are labeled:

A B C

1
2

A B C

1 2
A B C

1 2
A B C

12
A B C

1
2

A B C

1 2
A B C

12
A B C

12
A B C

1
2

(The order of balls within an urn is ignored.) But if the balls are unlabeled,
some of these arrangements are indistinguishable, so only six different ways are
possible:

A B C A B C A B C A B C A B C A B C
. (1)

If the urns are unlabeled, arrangements like 1 2 and 12 are essentially
the same, hence only two of the original nine arrangements are distinguishable.
And if we have three labeled balls, the only distinct ways to place them into
three unlabeled urns are

1
2
3

1
2

3 1
3

2 1 2
3

1 2 3 . (2)

Finally, if neither balls nor urns are labeled, these five possibilities reduce to only
three:

. (3)
The Twelvefold Way considers all arrangements that are possible when balls and
urns are labeled or unlabeled, and when the urns may optionally be required to
contain at least one ball or at most one ball.

Table 1
THE TWELVEFOLD WAY

balls per urn unrestricted ≤ 1 ≥ 1
n labeled balls,
m labeled urns

n-tuples
of m things

n-permutations
of m things

partitions of {1, . . . , n}
into m ordered parts

n unlabeled balls,
m labeled urns

n-multicombinations
of m things

n-combinations
of m things

compositions of n
into m parts

n labeled balls,
m unlabeled urns

partitions of {1, . . . , n}
into ≤ m parts

n pigeons
into m holes

partitions of {1, . . . , n}
into m parts

n unlabeled balls,
m unlabeled urns

partitions of n
into ≤ m parts

n pigeons
into m holes

partitions of n
into m parts

From the Library of Melissa Nuno



ptg999

7.2.1.4 GENERATING ALL PARTITIONS 391

We’ve learned about n-tuples, permutations, combinations, and composi-
tions in previous sections of this chapter; and two of the twelve entries in Table 1
are trivial (namely the ones related to “pigeons”). So we can complete our
study of classical combinatorial mathematics by learning about the remaining
five entries in the table, which all involve partitions.

Let us begin by acknowledging that the word “partition”
has numerous meanings in mathematics.

Any time a division of some object into subobjects is undertaken,
the word partition is likely to pop up.

— GEORGE ANDREWS, The Theory of Partitions (1976)

Two quite different concepts share the same name: The partitions of a set
are the ways to subdivide it into nonempty, disjoint subsets; thus (2) illustrates
the five partitions of {1, 2, 3}, namely

{1, 2, 3}, {1, 2}{3}, {1, 3}{2}, {1}{2, 3}, {1}{2}{3}. (4)

And the partitions of an integer are the ways to write it as a sum of positive
integers, disregarding order; thus (3) illustrates the three partitions of 3, namely

3, 2 + 1, 1 + 1 + 1. (5)

We shall follow the common practice of referring to integer partitions as simply
“partitions,” without any qualifying adjective; the other kind will be called
“set partitions” in what follows, to make the distinction clear. Both kinds of
partitions are important, so we’ll study each of them in turn.

Generating all partitions of an integer. A partition of n can be defined
formally as a sequence of nonnegative integers a1 ≥ a2 ≥ · · · such that n =
a1 + a2 + · · · ; for example, one partition of 7 has a1 = a2 = 3, a3 = 1, and
a4 = a5 = · · · = 0. The number of nonzero terms is called the number of parts,
and the zero terms are usually suppressed. Thus we write 7 = 3 + 3 + 1, or
simply 331 to save space when the context is clear.

The simplest way to generate all partitions, and one of the fastest, is to visit
them in reverse lexicographic order, starting with ‘n’ and ending with ‘11 . . . 1’.
For example, the partitions of 8 are

8, 71, 62, 611, 53, 521, 5111, 44, 431, 422, 4211, 41111, 332, 3311,
3221, 32111, 311111, 2222, 22211, 221111, 2111111, 11111111, (6)

when listed in this order.
If a partition isn’t all 1s, it ends with (x+1) followed by zero or more 1s,

for some x ≥ 1; therefore the next smallest partition in lexicographic order
is obtained by replacing the suffix (x+1)1 . . . 1 by x . . . xr for some appropri-
ate remainder r ≤ x. The process is quite efficient if we keep track of the
largest subscript q such that aq ̸= 1, as suggested by J. K. S. McKay [CACM
13 (1970), 52], and pad the array with 1s as suggested by A. Zoghbi and
I. Stojmenović [International Journal of Computer Math. 70 (1998), 319–332]:

From the Library of Melissa Nuno



ptg999

392 COMBINATORIAL SEARCHING 7.2.1.4

Algorithm P (Partitions of n in reverse lexicographic order). Given an integer
n ≥ 1, this algorithm generates all partitions a1 ≥ a2 ≥ · · · ≥ am ≥ 1 with
a1 + a2 + · · ·+ am = n and 1 ≤ m ≤ n. The value of a0 is also set to zero.
P1. [Initialize.] Set am ← 1 for n ≥ m > 1. Then set m← 1 and a0 ← 0.
P2. [Store the final part.] Set am ← n and q ← m− [n= 1].
P3. [Visit.] Visit the partition a1a2 . . . am. Then go to P5 if aq ̸= 2.
P4. [Change 2 to 1+1.] Set aq ← 1, q ← q − 1, m ← m + 1, and return to P3.

(At this point we have ak = 1 for q < k ≤ n.)
P5. [Decrease aq.] Terminate the algorithm if q = 0. Otherwise set x← aq − 1,

aq ← x, n← m− q + 1, and m← q + 1.
P6. [Copy x if necessary.] If n ≤ x, return to step P2. Otherwise set am ← x,

m← m+ 1, n← n− x, and repeat this step.

Notice that the operation of going from one partition to the next is particularly
easy if a 2 is present; then step P4 simply changes the rightmost 2 to a 1 and ap-
pends another 1 at the right. This happy situation is, fortunately, the most com-
mon case. For example, nearly 79% of all partitions contain a 2 when n = 100.

Another simple algorithm is available when we want to generate all partitions
of n into a fixed number of parts. The following method, which was featured
in C. F. Hindenburg’s 18th-century dissertation [Infinitinomii Dignitatum Ex-
ponentis Indeterminati (Göttingen, 1779), 73–91], visits the partitions in colex
order, namely in lexicographic order of the reflected sequence am . . . a2a1:

Algorithm H (Partitions of n into m parts). Given integers n ≥ m ≥ 2, this
algorithm generates all integer m-tuples a1 . . . am such that a1 ≥ · · · ≥ am ≥ 1
and a1 + · · ·+ am = n. A sentinel value is stored in am+1.
H1. [Initialize.] Set a1 ← n − m + 1 and aj ← 1 for 1 < j ≤ m. Also set

am+1 ← −1.
H2. [Visit.] Visit the partition a1 . . . am. Then go to H4 if a2 ≥ a1 − 1.
H3. [Tweak a1 and a2.] Set a1 ← a1 − 1, a2 ← a2 + 1, and return to H2.
H4. [Find j.] Set j ← 3 and s ← a1 + a2 − 1. Then, while aj ≥ a1 − 1, set

s← s+ aj and j ← j + 1. (Now s = a1 + · · ·+ aj−1 − 1 and aj < a1 − 1.)
H5. [Increase aj .] Terminate if j > m. Otherwise set x ← aj + 1, aj ← x,

j ← j − 1.
H6. [Tweak a1 . . . aj .] While j > 1, set aj ← x, s ← s − x, and j ← j − 1.

Finally set a1 ← s and return to H2.

For example, when n = 11 and m = 4 the successive partitions visited are

8111, 7211, 6311, 5411, 6221, 5321, 4421, 4331, 5222, 4322, 3332. (7)

The basic idea is that colex order goes from one partition a1 . . . am to the next by
finding the smallest j such that aj can be increased without changing aj+1 . . . am.
The new partition a′1 . . . a′m will have a′1 ≥ · · · ≥ a′j = aj + 1 and a′1 + · · ·+ a′j =

From the Library of Melissa Nuno



ptg999

7.2.1.4 GENERATING ALL PARTITIONS 393

a1 + · · · + aj , and these conditions are achievable if and only if aj < a1 − 1.
Furthermore, the smallest such partition a′1 . . . a

′
m in colex order has a′2 = · · · =

a′j = aj + 1.
Step H3 handles the simple case j = 2, which is by far the most common.

And indeed, the value of j almost always turns out to be quite small; we will
prove later that the total running time of Algorithm H is at most a small constant
times the number of partitions visited, plus O(m).

Other representations of partitions. We’ve defined a partition as a sequence
of nonnegative integers a1a2 . . . with a1 ≥ a2 ≥ · · · and a1 + a2 + · · · = n, but
we can also regard it as an n-tuple of nonnegative integers c1c2 . . . cn such that

c1 + 2c2 + · · ·+ ncn = n. (8)

Here cj is the number of times the integer j appears in the sequence a1a2 . . . ;
for example, the partition 331 corresponds to the counts c1 = 1, c2 = 0, c3 = 2,
c4 = c5 = c6 = c7 = 0. The number of parts is then c1+c2+· · ·+cn. A procedure
analogous to Algorithm P can readily be devised to generate partitions in part-
count form; see exercise 5.

We have already seen the part-count representation implicitly in formulas
like Eq. 1.2.9–(38), which expresses the symmetric function

hn =


N≥dn≥···≥d2≥d1≥1
xd1xd2 . . . xdn

(9)

as 
c1,c2,...,cn≥0

c1+2c2+···+ncn=n

Sc1
1

1c1c1!
Sc2

2
2c2c2! . . .

Scn
n

ncncn! , (10)

where Sj is the symmetric function xj
1 + xj

2 + · · · + xj
N . The sum in (9) is

essentially taken over all n-multicombinations of N things, while the sum in (10)
is taken over all partitions of n. Thus, for example, h3 = 1

6S
3
1 + 1

2S1S2 + 1
3S3,

and when N = 2 we have

x3 + x2y + xy2 + y3 = 1
6 (x+ y)3 + 1

2 (x+ y)(x2 + y2) + 1
3 (x3 + y3).

Other sums over partitions appear in exercises 1.2.5–21, 1.2.9–10, 1.2.9–11,
1.2.10–12, etc.; for this reason partitions are of central importance in the study of
symmetric functions, a class of functions that pervades mathematics in general.
[Chapter 7 of Richard Stanley’s Enumerative Combinatorics 2 (1999) is an
excellent introduction to advanced aspects of symmetric function theory.]

Partitions can be visualized in an appealing way by considering an array
of n dots, having a1 dots in the top row and a2 in the next row, etc. Such an
arrangement of dots is called the Ferrers diagram of the partition, in honor of
N. M. Ferrers [see Philosophical Mag. 5 (1853), 199–202]; and the largest square
subarray of dots that it contains is called the Durfee square, after W. P. Durfee
[see Johns Hopkins Univ. Circular 2 (December 1882), 23]. For example, the
Ferrers diagram of 8887211 is shown with its 4× 4 Durfee square in Fig. 48(a).

From the Library of Melissa Nuno



ptg999

394 COMBINATORIAL SEARCHING 7.2.1.4

(a) 8887211 (b) 75444443

Fig. 48. The Ferrers
diagrams and Durfee
squares of two conju-
gate partitions.

The Durfee square contains k2 dots when k is the largest subscript such that
ak ≥ k ; we may call k the trace of the partition.

If α is any partition a1a2 . . . , its conjugate αT = b1b2 . . . is obtained by
transposing its Ferrers diagram — that is, by reflecting the diagram about the
main diagonal. For example, Fig. 48(b) shows that (8887211)T = 75444443.
When β = αT we obviously have α = βT ; the partition β has a1 parts and α has
b1 parts. Indeed, there’s a simple relation between the part-count representation
c1 . . . cn of α and the conjugate partition b1b2 . . . , namely

bj − bj+1 = cj for all j ≥ 1. (11)

This relation makes it easy to compute the conjugate of a given partition, or to
write it down by inspection (see exercise 6).

The notion of conjugation often explains properties of partitions that would
otherwise be quite mysterious. For example, now that we know the definition
of αT , we can easily see that the value of j − 1 in step H5 of Algorithm H is
just the second-smallest part of the conjugate partition (a1 . . . am)T , if m < n.
Therefore the average amount of work that needs to be done in steps H4 and H6
is essentially proportional to the average size of the second-smallest part of a
random partition whose largest part is m. And we will see below that the
second-smallest part is almost always quite small.

Moreover, Algorithm H produces partitions in lexicographic order of their
conjugates. For example, the respective conjugates of (7) are

41111111, 4211111, 422111, 42221, 431111,
43211, 4322, 4331, 44111, 4421, 443; (12)

these are the partitions of n = 11 with largest part 4. One way to generate all
partitions of n is to start with the trivial partition ‘n’, then run Algorithm H for
m = 2, 3, . . . , n in turn; this process yields all α in lexicographic order of αT

(see exercise 7). Thus Algorithm H can be regarded as a dual of Algorithm P.
There is at least one more useful way to represent partitions, called the rim

representation [see S. Comét, Numer. Math. 1 (1959), 90–109]. Suppose we re-
place the dots of a Ferrers diagram by boxes, thereby obtaining a tableau shape as
we did in Section 5.1.4; for example, the partition 8887211 of Fig. 48(a) becomes

. (13)

From the Library of Melissa Nuno



ptg999

7.2.1.4 GENERATING ALL PARTITIONS 395

The right-hand boundary of this shape can be regarded as a path of length 2n
from the lower left corner to the upper right corner of an n× n square, and we
know from Table 7.2.1.3–1 that such a path corresponds to an (n, n)-combination.

For example, (13) corresponds to the 70-bit string

0 . . . 01001011111010001 . . . 1 = 0281102110115011103127, (14)

where we place enough 0s at the beginning and 1s at the end to make exactly
n of each. The 0s represent upward steps of the path, and the 1s represent
rightward steps. It is easy to see that the bit string defined in this way has
exactly n inversions; conversely, every permutation of the multiset {n · 0, n · 1}
that has exactly n inversions corresponds to a partition of n. When the number
of distinct parts of a partition is equal to t, its bit string can be written in the
form

0n−q1−q2−···−qt 1p1 0q1 1p2 0q2 . . . 1pt 0qt 1n−p1−p2−···−pt , (15)

where the exponents pj and qj are positive integers. Then the partition’s stan-
dard representation is

a1a2 . . . = (p1 + · · ·+ pt)qt (p1 + · · ·+ pt−1)qt−1 . . . (p1)q1 , (16)

namely (1+1+5+1)3(1+1+5)1(1+1)1(1)2 = 8887211 in our example.

The number of partitions. Inspired by a question that was posed to him
by Philippe Naudé in 1740, Leonhard Euler wrote two fundamental papers
in which he counted partitions of various kinds by studying their generating
functions [Commentarii Academiæ Scientiarum Petropolitanæ 13 (1741), 64–
93; Novi Comment. Acad. Sci. Pet. 3 (1750), 125–169]. He observed that the
coefficient of zn in the infinite product

(1+z+z2+· · ·+zj+· · · )(1+z2+z4+· · ·+z2k+· · · )(1+z3+z6+· · ·+z3l+· · · ) . . .

is the number of nonnegative integer solutions to the equation j+2k+3l+· · · = n;
and 1 + zm + z2m + · · · is 1/(1− zm). Therefore if we write

P (z) =
∞

m=1

1
1− zm =

∞
n=0

p(n)zn, (17)

the number of partitions of n is p(n). This function P (z) turns out to have an
amazing number of subtle mathematical properties.

For example, Euler discovered that massive cancellation occurs when the
denominator of P (z) is multiplied out:

(1−z)(1−z2)(1−z3) . . . = 1− z − z2 + z5 + z7 − z12 − z15 + z22 + z26 − · · ·
=


−∞<n<∞

(−1)nz(3n2+n)/2. (18)

A combinatorial proof of this remarkable identity, based on Ferrers diagrams,
appears in exercise 5.1.1–14; we can also prove it by setting u = z and v = z2 in

From the Library of Melissa Nuno



ptg999

396 COMBINATORIAL SEARCHING 7.2.1.4

the even more remarkable identity that Jacobi published in 1829,
∞
k=1

(1− ukvk−1)(1− uk−1vk)(1− ukvk) =
∞

n=−∞
(−1)nu(n

2)v(−n
2 ), (19)

because the left-hand side becomes
∞

k=1(1 − z3k−2)(1 − z3k−1)(1 − z3k); see
exercise 5.1.1–20. Euler pointed out that, because of (18), the partition numbers
for n > 0 satisfy the unusual recurrence

p(n) = p(n−1) + p(n−2)− p(n−5)− p(n−7) + p(n−12) + p(n−15)− · · · , (20)

with p(k) = 0 when k < 0; this recurrence allows us to compute their values
more rapidly than by performing the power series calculations in (17):

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
p(n) = 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176

We know from Section 1.2.8 that solutions to the Fibonacci recurrence
f(n) = f(n − 1) + f(n − 2) grow exponentially, with f(n) = Θ(ϕn) when f(0)
and f(1) are positive. The additional terms ‘− p(n−5)− p(n−7)’ in (20) have a
dampening effect on partition numbers, however; in fact, if we were to stop the
recurrence there, the resulting sequence would oscillate between positive and neg-
ative values. Further terms ‘+p(n−12)+p(n−15)’ reinstate exponential growth.

The actual growth rate of p(n) turns out to be of order A
√
n/n for a certain

constant A. For example, exercise 33 proves directly that p(n) grows at least as
fast as e2

√
n/n. And one fairly easy way to obtain a decent upper bound is to

take logarithms in (17),

lnP (z) =
∞

m=1
ln 1

1− zm =
∞

m=1

∞
n=1

zmn

n
, (21)

and then to look at the behavior near z = 1 by setting z = e−t with t > 0:

lnP (e−t) =


m,n≥1

e−mnt

n
=


n≥1

1
n

1
etn − 1 <


n≥1

1
n2t

= ζ(2)
t
. (22)

Consequently, since p(n) ≤ p(n+ 1) < p(n+ 2) < · · · and et > 1, we have

p(n)
1− e−t

=
∞

k=n

p(n)e(n−k)t <

∞
k=0

p(k)e(n−k)t = entP (e−t) < ent+ζ(2)/t (23)

for all t > 0. Setting t =

ζ(2)/n gives

p(n) < Ce2C
√
n/
√
n, where C =


ζ(2) = π/

√
6. (24)

We can obtain more accurate information about the size of lnP (e−t) by
using Euler’s summation formula (Section 1.2.11.2) or Mellin transforms (Sec-
tion 5.2.2); see exercise 25. But the methods we have seen so far aren’t powerful
enough to deduce the precise behavior of P (e−t), so it is time for us to add a
new weapon to our arsenal of techniques.

From the Library of Melissa Nuno



ptg999

7.2.1.4 GENERATING ALL PARTITIONS 397

Euler’s generating function P (z) is ideally suited to the Poisson summation
formula [J. École Royale Polytechnique 12 (1823), 404–509, §63], according to
which

∞
n=−∞

f(n+ θ) = lim
M→∞

M
m=−M

e2πmiθ

 ∞

−∞
e−2πmiyf(y) dy, (25)

whenever f is a “well-behaved” function. This formula is based on the fact
that the left-hand side is a periodic function of θ, and the right-hand side is the
expansion of that function as a Fourier series. The function f is sufficiently nice
if, for example,

 ∞
−∞

f(y)
 dy <∞ and either

i) f(n + θ) is an analytic function of the complex variable θ in the region
|ℑθ| ≤ ϵ for some ϵ > 0 and 0 ≤ ℜθ ≤ 1 and every n, and the left-hand side
of (25) converges uniformly for |ℑθ| ≤ ϵ; or

ii) f(θ) = 1
2 limϵ→0


f(θ − ϵ) + f(θ + ϵ)


= g(θ) − h(θ) for all real numbers θ,

where g and h are monotone increasing and g(±∞), h(±∞) are finite.
[See Peter Henrici, Applied and Computational Complex Analysis 2 (New York:
Wiley, 1977), Theorem 10.6e.] Poisson’s formula is not a panacea for summation
problems of every kind; but when it does apply the results can be spectacular,
as we will see.

Let us multiply Euler’s formula (18) by z1/24 in order to “complete the
square”:

z1/24

P (z) =
∞

n=−∞
(−1)n z 3

2 (n+ 1
6 )2
. (26)

Then for all t > 0 we have e−t/24/P (e−t) =
∞

n=−∞ f(n), where

f(y) = e−
3
2 t(y+ 1

6 )2+πiy; (27)

and this function f qualifies for Poisson’s summation formula under both of the
criteria (i) and (ii) stated above. Therefore we try to integrate e−2πmiyf(y), and
that integral turns out to be easy for all m (see exercise 27): ∞

−∞
e−a(y+b)2+2ciy dy =


π

a
e−c2/a−2bci when a > 0. (28)

Plugging in to (25), with θ = 0, a = 3
2 t, b = 1

6 , and c = ( 1
2 −m)π, yields

∞
n=−∞

f(n) =
∞

m=−∞
g(m), g(m) =


2π
3t e

−2(m− 1
2 )2π2/(3t)+ 1−2m

6 πi. (29)

These terms combine and cancel beautifully, as shown in exercise 27, giving

e−t/24

P (e−t) =


2π
t

∞
n=−∞

(−1)ne−6π2(n+ 1
6 )2/t =


2π
t

e−ζ(2)/t

P (e−4π2/t)
. (30)

Surprise! We have proved another remarkable fact about P (z):

From the Library of Melissa Nuno



ptg999

398 COMBINATORIAL SEARCHING 7.2.1.4

Theorem D. The generating function (17) for partitions satisfies the functional
relation

lnP (e−t) = ζ(2)
t

+ 1
2 ln t

2π −
t

24 + lnP (e−4π2/t) (31)

when ℜt > 0.
This theorem was discovered by Richard Dedekind [Crelle 83 (1877), 265–292,
§6], who wrote η(τ) for the function z1/24/P (z) when z = e2πiτ ; his proof was
based on a much more complicated theory of elliptic functions. Notice that when
t is a small positive number, lnP (e−4π2/t) is extremely tiny; for example, when
t = 0.1 we have exp(−4π2/t) ≈ 3.5 × 10−172. Therefore Theorem D tells us
essentially everything we need to know about the value of P (z) when z is near 1.

G. H. Hardy and S. Ramanujan used this knowledge to deduce the asymp-
totic behavior of p(n) for large n, and their work was extended many years later
by Hans Rademacher, who discovered a series that is not only asymptotic but
convergent [Proc. London Math. Soc. (2) 17 (1918), 75–115; 43 (1937), 241–
254]. The Hardy–Ramanujan–Rademacher formula for p(n) is surely one of the
most astonishing identities ever discovered; it states that

p(n) = π

25/433/4(n− 1/24)3/4

∞
k=1

Ak(n)
k

I3/2


2
3
π

k


n− 1/24


. (32)

Here I3/2 denotes the modified spherical Bessel function

I3/2(z) =

z

2

3/2 ∞
k=0

1
Γ(k + 5/2)

(z2/4)k

k! =


2z
π


cosh z
z
− sinh z

z2


; (33)

and the coefficient Ak(n) is defined by the formula

Ak(n) =
k−1
h=0

[h⊥ k ] exp


2πi

σ(h, k, 0)

24 − nh

k


(34)

where σ(h, k, 0) is the Dedekind sum defined in Eq. 3.3.3–(16). We have

A1(n) = 1, A2(n) = (−1)n, A3(n) = 2 cos (24n+ 1)π
18 , (35)

and in general Ak(n) lies between −k and k.
A proof of (32) would take us far afield, but the basic idea is to use the

“saddle point method” discussed in Section 7.2.1.5. The term for k = 1 is derived
from the behavior of P (z) when z is near 1; and the next term is derived from
the behavior when z is near −1, where a transformation similar to (31) can be
applied. In general, the kth term of (32) takes account of the way P (z) behaves
when z approaches e2πih/k for irreducible fractions h/k with denominator k;
every kth root of unity is a pole of each of the factors 1/(1 − zk), 1/(1 − z2k),
1/(1− z3k), . . . in the infinite product for P (z).

From the Library of Melissa Nuno



ptg999

7.2.1.4 GENERATING ALL PARTITIONS 399

The leading term of (32) can be simplified greatly, if we merely want a rough
approximation:

p(n) = eπ
√

2n/3

4n
√

3

1 +O(n−1/2)


. (36)

Or, if we choose to retain a few more details,

p(n) = eπ
√

2n′/3

4n′
√

3


1− 1

π


3

2n′


1 +O


e−π
√

n/6, n′ = n− 1
24 . (37)

For example, p(100) has the exact value 190,569,292; formula (36) tells us that
p(100) ≈ 1.993× 108, while (37) gives the far better estimate 190,568,944.783.

Andrew Odlyzko has observed that, when n is large, the Hardy–Ramanujan–
Rademacher formula actually gives a near-optimum way to compute the precise
value of p(n), because the arithmetic operations can be carried out in nearly
O

log p(n)


= O(n1/2) steps. [See Handbook of Combinatorics 2 (MIT Press,

1995), 1068–1069.] The first few terms of (32) give the main contribution;
then the series settles down to terms that are of order k−3/2 and usually of
order k−2. Furthermore, about half of the coefficients Ak(n) turn out to be
zero (see exercise 28). For example, when n = 106, the terms for k = 1, 2,
and 3 are ≈ 1.47 × 101107, 1.23 × 10550, and −1.23 × 10364, respectively. The
sum of the first 250 terms is ≈ 1471684986 . . . 73818.01, while the true value is
1471684986 . . . 73818; and 123 of those 250 terms are zero.
The number of parts. It is convenient to introduce the notation n

m

 (38)

for the number of partitions of n that have exactly m parts. Then the recurrence n
m

 =
 n− 1
m− 1

 +
n−m

m

 (39)

holds for all integers m and n, because
n−1
m−1

 counts the partitions whose smallest
part is 1 and

n−m
m

 counts the others. (If the smallest part is 2 or more, we can
subtract 1 from each part and get a partition of n−m into m parts.) By similar
reasoning we can conclude that

m+n
m

 is the number of partitions of n into at most
m parts, namely into m nonnegative summands. We also know, by transposing
Ferrers diagrams, that

n
m

 is the number of partitions of n whose largest part
is m. Thus

n
m

 is a good number to know. The boundary conditionsn0  = δn0 and
 n
m

 = 0 for m < 0 or n < 0 (40)

make it easy to tabulate
n
m

 for small values of the parameters, and we obtain
an array of numbers analogous to the familiar triangles for


n
m


,

n
m


,

n
m


, and

n
m


that we’ve seen before; see Table 2. The generating function is

n

 n
m

zn = zm

(1− z)(1− z2) . . . (1− zm) . (41)

From the Library of Melissa Nuno



ptg999

400 COMBINATORIAL SEARCHING 7.2.1.4

Table 2
PARTITION NUMBERS

n

n0  n1  n2  n3  n4  n5  n6  n7  n8  n9   n10

  n11


0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0 0 0 0
3 0 1 1 1 0 0 0 0 0 0 0 0
4 0 1 2 1 1 0 0 0 0 0 0 0
5 0 1 2 2 1 1 0 0 0 0 0 0
6 0 1 3 3 2 1 1 0 0 0 0 0
7 0 1 3 4 3 2 1 1 0 0 0 0
8 0 1 4 5 5 3 2 1 1 0 0 0
9 0 1 4 7 6 5 3 2 1 1 0 0
10 0 1 5 8 9 7 5 3 2 1 1 0
11 0 1 5 10 11 10 7 5 3 2 1 1

Almost all partitions of n have Θ(
√
n logn) parts. This fact, discovered by

P. Erdös and J. Lehner [Duke Math. J. 8 (1941), 335–345], has a very instructive
proof:
Theorem E. Let C = π/

√
6 and m = 1

2C
√
n lnn+ x

√
n+O(1). Then

1
p(n)

m+ n

m

 = F (x)

1 +O(n−1/2+ϵ)


(42)

for all ϵ > 0 and all fixed x as n→∞, where

F (x) = e−e−Cx/C . (43)

The function F (x) in (43) approaches 0 quite rapidly when x → −∞, and it
rapidly increases to 1 when x→ +∞; so it is a probability distribution function.
Figure 49(b) shows that the corresponding density function f(x) = F ′(x) is
largely concentrated in the region −2 ≤ x ≤ 4. (See exercise 35.)

The values of
n
m

 =
m+n

m

− m−1+n
m−1

 are shown in Fig. 49(a) for comparison
when n = 100; in this case 1

2C
√
n lnn ≈ 18.

Proof. We will use the fact that
m+n

m

 is the number of partitions of n whose
largest part is ≤ m. Then, by the principle of inclusion and exclusion, Eq. 1.3.3–
(29), we havem+n
m

 = p(n)−

j>m

p(n−j)+


j2>j1>m

p(n−j1−j2)−


j3>j2>j1>m

p(n−j1−j2−j3)+ · · · ,

because p(n− j1 − · · · − jr) is the number of partitions of n that use each of the
parts {j1, . . . , jr} at least once. Let us write this as

1
p(n)

m+n
m

 = 1−Σ1 + Σ2−Σ3 + · · · , Σr =


jr>···>j1>m

p(n−j1− · · · −jr)
p(n) . (44)

From the Library of Melissa Nuno



ptg999

7.2.1.4 GENERATING ALL PARTITIONS 401

a)
100
m

:

0 8 18 28 38 48 58 m

b) f(x):

−2 −1 0 1 2 3 4 x

Fig. 49. Partitions of n with m parts, when (a) n = 100; (b) n→∞. (See Theorem E.)

In order to evaluate Σr we need to have a good estimate of the ratio
p(n− t)/p(n). And we’re in luck, because Eq. (36) implies that

p(n− t)
p(n) = exp


2C
√
n− t− ln(n− t) +O


(n− t)−1/2− 2C

√
n+ lnn


= exp


−Ctn−1/2 +O(n−1/2+2ϵ)


if 0 ≤ t ≤ n1/2+ϵ. (45)

Furthermore, if t ≥ n1/2+ϵ we have p(n − t)/p(n) ≤ p(n − n1/2+ϵ)/p(n) ≈
exp(−Cnϵ), a value that is asymptotically smaller than any power of n. Therefore
we may safely use the approximation

p(n− t)
p(n) ≈ αt, α = exp(−Cn−1/2), (46)

for all values of t ≥ 0. For example, we have

Σ1 =

j>m

p(n− j)
p(n) = αm+1

1− α

1 +O(n−1/2+2ϵ)


+


n≥j>n1/2+ϵ

p(n− j)
p(n)

= e−Cx

C


1 +O(n−1/2+2ϵ)


+O(ne−Cnϵ

),

because α/(1 − α) = n1/2/C + O(1) and αm = n−1/2e−Cx + O(n−1). A similar
argument (see exercise 36) proves that, if r = O(logn),

Σr = e−Crx

Crr!

1 +O(n−1/2+2ϵ)


+O(e−nϵ/2

). (47)

Finally — and this is a wonderful property of the inclusion-exclusion princi-
ple in general — the partial sums of (44) always “bracket” the true value, in the
sense that

1−Σ1 +Σ2−· · ·−Σ2r−1 ≤
1

p(n)

m+n
m

 ≤ 1−Σ1 +Σ2−· · ·−Σ2r−1 +Σ2r (48)

for all r. (See exercise 37.) When 2r is near lnn and n is large, the term Σ2r is
extremely tiny; therefore we obtain (42), except with 2ϵ in place of ϵ.

From the Library of Melissa Nuno



ptg999

402 COMBINATORIAL SEARCHING 7.2.1.4

0
√
n 2

√
n

√
n

2
√
n

Fig. 50. Temperley’s curve (49) for the
limiting shape of a random partition.

Theorem E tells us that the largest part of a random partition almost
always is 1

2C
√
n lnn + O(

√
n log log logn), and when n is reasonably large the

other parts tend to be predictable as well. Suppose, for example, that we take
all the partitions of 25 and superimpose their Ferrers diagrams, changing dots
to boxes as in the rim representation. Which cells are occupied most often?
Figure 50 shows the result: A random partition tends to have a typical shape
that approaches a limiting curve as n→∞.

H. N. V. Temperley [Proc. Cambridge Philos. Soc. 48 (1952), 683–697]
gave heuristic reasons to believe that most parts ak of a large random partition
a1 . . . am will satisfy the approximate law

e−Ck/
√
n + e−Cak/

√
n ≈ 1, (49)

and his formula has subsequently been verified in a strong form. For example, a
theorem of Boris Pittel [Advances in Applied Math. 18 (1997), 432–488] allows
us to conclude that the trace of a random partition is almost always ln 2

C

√
n ≈

0.54
√
n, in accordance with (49), with an error of at most O(

√
n lnn)1/2; thus

about 29% of all the Ferrers dots tend to lie in the Durfee square.
If, on the other hand, we look only at partitions of n with m parts, where

m is fixed, the limiting shape is rather different: Almost all such partitions have

ak ≈
n

m
ln m

k
, (50)

if m and n are reasonably large. Figure 51 illustrates the case n = 50, m = 5.
In fact, the same limit holds when m grows with n, but at a slower rate than√
n [see Vershik and Yakubovich, Moscow Math. J. 1 (2001), 457–468].

0 n/m 2n/m

m

Fig. 51. The limiting shape (50) when there are m parts.

From the Library of Melissa Nuno



ptg999

7.2.1.4 GENERATING ALL PARTITIONS 403

The rim representation of partitions gives us further information about par-
titions that are doubly bounded, in the sense that we not only restrict the number
of parts but also the size of each part. A partition that has at most m parts,
each of size at most l, fits inside an m × l box. All such partitions correspond
to permutations of the multiset {m · 0, l · 1} that have exactly n inversions, and
we have studied the inversions of multiset permutations in exercise 5.1.2–16. In
particular, that exercise derives a nonobvious formula for the number of ways
n inversions can happen:
Theorem C. The number of partitions of n that have no more than m parts
and no part larger than l is

[zn]

l +m

m


z

= [zn] (1− zl+1)
(1− z)

(1− zl+2)
(1− z2) . . .

(1− zl+m)
(1− zm) . (51)

This result is due to A. Cauchy, Comptes Rendus Acad. Sci. 17 (Paris, 1843),
523–531. Notice that when l→∞ the numerator becomes simply 1. An interest-
ing combinatorial proof of a more general result appears in exercise 40 below.
Analysis of the algorithms. Now we know more than enough about the
quantitative aspects of partitions to deduce the behavior of Algorithm P quite
precisely. Suppose steps P1, . . . , P6 of that algorithm are executed respectively
T1(n), . . . , T6(n) times. We obviously have T1(n) = 1 and T3(n) = p(n); further-
more Kirchhoff’s law tells us that T2(n) = T5(n) and T4(n) +T5(n) = T3(n). We
get to step P4 once for each partition that contains a 2; and this is clearly p(n−2).

Thus the only possible mystery about the running time of Algorithm P is
the number of times we must perform step P6, which loops back to itself. A
moment’s thought, however, reveals that the algorithm stores a value ≥ 2 into
the array a1a2 . . . only in step P2 or when we’ll soon test n ≤ x in P6; and every
such value is eventually decreased by 1, either in step P4 or step P5. Therefore

T ′′
2 (n) + T6(n) = p(n)− 1, (52)

where T ′′
2 (n) is the number of times step P2 sets am to a value ≥ 2. Let T2(n) =

T ′
2(n) + T ′′

2 (n), so that T ′
2(n) is the number of times step P2 sets am ← 1. Then

T ′
2(n) + T4(n) is the number of partitions that end in 1, hence

T ′
2(n) + T4(n) = p(n− 1). (53)

Aha! We’ve found enough equations to determine all of the required quantities:
T1(n), . . . , T6(n)


=

1, p(n)− p(n−2), p(n), p(n−2), p(n)− p(n−2), p(n−1)− 1

. (54)

And from the asymptotics of p(n) we also know the average amount of compu-
tation per partition:

T1(n)
p(n) , . . . ,

T6(n)
p(n)


=


0, 2C√

n
, 1, 1− 2C√

n
,

2C√
n
, 1− C√

n


+ O

 1
n


, (55)

where C = π/
√

6 ≈ 1.283. (See exercise 45.) The total number of memory
accesses per partition therefore comes to only 3 + C/

√
n+O(1/n).

From the Library of Melissa Nuno



ptg999

404 COMBINATORIAL SEARCHING 7.2.1.4

Whoever wants to go about generating all partitions
not only immerses himself in immense labor,

but also must take pains to keep fully attentive,
so as not to be grossly deceived.

— LEONHARD EULER, De Partitione Numerorum (1750)

Algorithm H is more difficult to analyze, but we can at least prove a decent
upper bound on its running time. The key quantity is the value of j, the smallest
subscript for which aj < a1 − 1. The successive values of j when m = 4 and
n = 11 are (2, 2, 2, 3, 2, 2, 3, 4, 2, 3, 5), and we have observed that j = b l−1 + 1
when b1 . . . bl is the conjugate partition (a1 . . . am)T and m < n. (See (7) and
(12).) Step H3 singles out the case j = 2, because this case is not only the most
common, it is also especially easy to handle.

Let cm(n) be the accumulated total value of j − 1, summed over all of then
m

 partitions generated by Algorithm H. For example, c4(11) = 1 + 1 + 1 + 2 +
1 + 1 + 2 + 3 + 1 + 2 + 4 = 19. We can regard cm(n)/

n
m

 as a good indication
of the running time per partition, because the time to perform the most costly
steps, H4 and H6, is roughly proportional to j − 2. This ratio cm(n)/

n
m

 is not
bounded, because cm(m) = m while

m
m

 = 1. But the following theorem shows
that Algorithm H is efficient nonetheless:

Theorem H. The cost measure cm(n) for Algorithm H is at most 3
n
m

 +m.

Proof. We can readily verify that cm(n) satisfies the same recurrence as
n
m

,
namely

cm(n) = cm−1(n− 1) + cm(n−m), for m,n ≥ 1, (56)
if we artificially define cm(n) = 1 when 1 ≤ n < m; see (39). But the boundary
conditions are now different:

cm(0) = [m> 0]; c0(n) = 0. (57)

Table 3 shows how cm(n) behaves when m and n are small.
To prove the theorem, we will actually prove a stronger result,

cm(n) ≤ 3
 n
m

 + 2m− n− 1 for n ≥ m ≥ 2. (58)

Exercise 50 shows that this inequality holds when m ≤ n ≤ 2m, so the proof
will be complete if we can prove it when n > 2m. In the latter case we have

cm(n) = c1(n−m) + c2(n−m) + c3(n−m) + · · ·+ cm(n−m)
≤ 1 +


3
n−m

2
 + 3−n+m


+

3
n−m

3
 + 5−n+m


+ · · ·

+

3
n−m

m

 + 2m−1−n+m


= 3
n−m

1
 + 3

n−m
2

 + · · ·+ 3
n−m

m

− 3 +m2 − (m− 1)(n−m)

= 3
n
m

 + 2m2 −m− (m− 1)n− 3

by induction; and 2m2−m− (m−1)n−3 ≤ 2m−n−1 because n ≥ 2m+ 1.

From the Library of Melissa Nuno



ptg999

7.2.1.4 GENERATING ALL PARTITIONS 405

Table 3
COSTS IN ALGORITHM H

n c0(n) c1(n) c2(n) c3(n) c4(n) c5(n) c6(n) c7(n) c8(n) c9(n) c10(n) c11(n)

0 0 1 1 1 1 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1 1 1
2 0 1 2 1 1 1 1 1 1 1 1 1
3 0 1 2 3 1 1 1 1 1 1 1 1
4 0 1 3 3 4 1 1 1 1 1 1 1
5 0 1 3 4 4 5 1 1 1 1 1 1
6 0 1 4 6 5 5 6 1 1 1 1 1
7 0 1 4 7 7 6 6 7 1 1 1 1
8 0 1 5 8 11 8 7 7 8 1 1 1
9 0 1 5 11 12 12 9 8 8 9 1 1
10 0 1 6 12 16 17 13 10 9 9 10 1
11 0 1 6 14 19 21 18 14 11 10 10 11

*A Gray code for partitions. When partitions are generated in part-count
form c1 . . . cn as in exercise 5, at most four of the cj values change at each step.
But we might prefer to minimize the changes to the individual parts, generating
partitions in such a way that the successor of a1a2 . . . is always obtained by
simply setting aj ← aj + 1 and ak ← ak − 1 for some j and k, as in the
“revolving door” algorithms of Section 7.2.1.3. It turns out that this is always
possible; in fact, there is a unique way to do it when n = 6:

111111, 21111, 3111, 2211, 222, 321, 33, 42, 411, 51, 6. (59)

And in general, the
m+n

m

 partitions of n into at most m parts can always be
generated by a suitable Gray path.

Notice that α → β is an allowable transition from one partition to another
if and only if we get the Ferrers diagram for β by moving just one dot in the
Ferrers diagram for α. Therefore αT → βT is also an allowable transition. It
follows that every Gray code for partitions into at most m parts corresponds to
a Gray code for partitions into parts that do not exceed m. We shall work with
the latter constraint.

The total number of Gray codes for partitions is vast: There are 52 when
n = 7, and 652 when n = 8; there are 298,896 when n = 9, and 2,291,100,484
when n = 10. But no really simple construction is known. The reason is probably
that a few partitions have only two neighbors, namely the partitions dn/d when
1 < d < n and d is a divisor of n. Such partitions must be preceded and followed
by {(d+1)dn/d−2(d−1), dn/d−1(d−1)1}, and this requirement seems to rule out
any simple recursive approach.

Carla D. Savage [J. Algorithms 10 (1989), 577–595] found a way to surmount
the difficulties with only a modest amount of complexity. Let

µ(m,n) =

⌊n/m⌋  
m m . . . m (nmodm) (60)

From the Library of Melissa Nuno



ptg999

406 COMBINATORIAL SEARCHING 7.2.1.4

be the lexicographically largest partition of n with parts ≤ m; our goal will
be to construct recursively defined Gray paths L(m,n) and M(m,n) from the
partition 1n to µ(m,n), where L(m,n) runs through all partitions whose parts
are bounded by m while M(m,n) runs through those partitions and a few more:
M(m,n) also includes partitions whose largest part is m + 1, provided that
the other parts are all strictly less than m. For example, L(3, 8) is 11111111,
2111111, 311111, 221111, 22211, 2222, 3221, 32111, 3311, 332, while M(3, 8) is

11111111, 2111111, 221111, 22211, 2222, 3221,
3311, 32111, 311111, 41111, 4211, 422, 332; (61)

the additional partitions starting with 4 will give us “wiggle room” in other
parts of the recursion. We will define L(m,n) for all n ≥ 0, but M(m,n) only
for n > 2m.

The following construction, illustrated for m = 5 to simplify the notation,
almost works:

L(5) =

L(3)
4L(∞)R
5L(∞)

 if n ≤ 7;



L(3)
4L(2)R
5L(2)
431
44
53


if n = 8;

M(4)
54L(4)R
55L(5)

 if n ≥ 9;

(62)

M(5) =


L(4)
5L(4)R
6L(3)
64L(∞)R
55L(∞)

 if 11 ≤ n ≤ 13;


L(4)
5M(4)R
6L(4)
554L(4)R
555L(5)

 if n ≥ 14. (63)

Here the parameter n in L(m,n) and M(m,n) has been omitted because it can
be deduced from the context; each L or M is supposed to generate partitions of
whatever amount remains after previous parts have been subtracted. Thus, for
example, (63) specifies that

M(5, 14) = L(4, 14), 5M(4, 9)R, 6L(4, 8), 554L(4, 0)R, 555L(5,−1);

the sequence L(5,−1) is actually empty, and L(4, 0) is the empty string, so the
final partition of M(5, 14) is 554 = µ(5, 14) as it should be. The notation L(∞)
stands for L(∞, n) = L(n, n), the Gray path of all partitions of n, starting with
1n and ending with n1.

In general, L(m) and M(m) are defined for all m ≥ 3 by essentially the
same rules, if we replace the digits 2, 3, 4, 5, and 6 in (62) and (63) by m−3,
m−2, m−1, m, and m+1, respectively. The ranges n ≤ 7, n = 8, n ≥ 9 become
n ≤ 2m−3, n = 2m−2, n ≥ 2m−1; the ranges 11 ≤ n ≤ 13 and n ≥ 14 become
2m + 1 ≤ n ≤ 3m − 2 and n ≥ 3m − 1. The sequences L(0), L(1), L(2) have
obvious definitions because the paths are unique when m ≤ 2. The sequence
M(2) is 1n, 21n−2, 31n−3, 221n−4, 2221n−6, . . . , µ(2, n) for n ≥ 5.

From the Library of Melissa Nuno



ptg999

7.2.1.4 GENERATING ALL PARTITIONS 407

Theorem S. Gray paths L′(m,n) for m,n ≥ 0 and M ′(m,n) for n ≥ 2m+1 ≥ 5
exist for all partitions with the properties described above, except in the case
L′(4, 6). Furthermore, L′ and M ′ obey the mutual recursions (62) and (63)
except in a few cases.

Proof. We noted above that (62) and (63) almost work; the reader may verify
that the only glitch occurs in the case L(4, 6), when (62) gives

L(4, 6) = L(2, 6), 3L(1, 3)R, 4L(1, 2), 321, 33, 42
= 111111, 21111, 2211, 222, 3111, 411, 321, 33, 42. (64)

If m > 4, we’re OK because the transition from the end of L(m−2, 2m−2) to
the beginning of (m−1)L(m−3,m−1)R is from (m−2)(m−2)2 to (m−1)(m−3)2.
There is no satisfactory path L(4, 6), because all Gray codes through those nine
partitions must end with either 411, 33, 3111, 222, or 2211.

In order to neutralize this anomaly we need to patch the definitions of
L(m,n) and M(m,n) at eight places where the “buggy subroutine” L(4, 6) is
invoked. One simple way is to make the following definitions:

L′(4, 6) = 111111, 21111, 3111, 411, 321, 33, 42;
L′(3, 5) = 11111, 2111, 221, 311, 32.

(65)

Thus, we omit 222 and 2211 from L(4, 6); we also reprogram L(3, 5) so that 2111
is adjacent to 221. Then exercise 60 shows that it is always easy to “splice in”
the two partitions that are missing from L(4, 6).

EXERCISES
x 1. [M21 ] Give formulas for the total number of possibilities in each problem of The

Twelvefold Way. For example, the number of n-tuples of m things is mn. (Use the
notation (38) when appropriate, and be careful to make your formulas correct even
when m = 0 or n = 0.)

x 2. [20 ] Show that a small change to step H1 yields an algorithm that will generate
all partitions of n into at most m parts.

3. [M17 ] A partition a1 + · · · + am of n into m parts a1 ≥ · · · ≥ am is optimally
balanced if |ai−aj | ≤ 1 for 1 ≤ i, j ≤ m. Prove that there is exactly one such partition,
whenever n ≥ m ≥ 1, and give a simple formula that expresses the jth part aj as a
function of j, m, and n.

4. [M22 ] (Gideon Ehrlich, 1974.) What is the lexicographically smallest partition
of n in which all parts are ≥ r? For example, when n = 19 and r = 5 the answer is 766.

x 5. [23 ] Design an algorithm that generates all partitions of n in the part-count form
c1 . . . cn of (8). Generate them in colex order, namely in the lexicographic order of
cn . . . c1, which is equivalent to lexicographic order of the corresponding partitions
a1a2 . . . . For efficiency, maintain also a table of links l0 l1 . . . ln so that, if the distinct
values of k for which ck > 0 are k1 < · · · < kt, we have

l0 = k1, lk1 = k2, . . . , lkt−1 = kt, lkt = 0.

(Thus the partition 331 would be represented by c1 . . . c7 = 1020000, l0 = 1, l1 = 3,
and l3 = 0; the other links l2, l4, l5, l6, l7 can be set to any convenient values.)

From the Library of Melissa Nuno



ptg999

408 COMBINATORIAL SEARCHING 7.2.1.4

6. [20 ] Design an algorithm to compute b1b2 . . . = (a1a2 . . . )T , given a1a2 . . . .

7. [M20 ] Suppose a1 . . . an and a′1 . . . a
′
n are partitions of n with a1 ≥ · · · ≥ an ≥ 0

and a′1 ≥ · · · ≥ a′n ≥ 0, and let their respective conjugates be b1 . . . bn = (a1 . . . an)T ,
b′1 . . . b

′
n = (a′1 . . . a′n)T . Show that b1 . . . bn < b′1 . . . b

′
n if and only if an . . . a1 < a′n . . . a

′
1.

8. [15 ] When (p1 . . . pt, q1 . . . qt) yields the rim representation of a partition a1a2 . . .
as in (15) and (16), what’s the rim representation of the conjugate partition (a1a2 . . . )T ?

9. [22 ] If a1a2 . . . am and b1b2 . . . bm = (a1a2 . . . am)T are conjugate partitions, show
that the multisets {a1 +1, a2 +2, . . . , am+m} and {b1 +1, b2 +2, . . . , bm+m} are equal.

10. [21 ] Two simple kinds of binary trees are sometimes helpful for reasoning about
partitions: (a) a tree that includes all partitions of all integers, and (b) a tree that
includes all partitions of a given integer n, illustrated here for n = 8:

ε

1

11 2

111 21 3

1111 211 22 31 4

11111 2111 221 311 32 41 5

11111111

2111111

221111 311111

22211 32111 41111

2222 3221 3311 4211 5111

332 422 431 521 611

44 53 62 71

8(a) (b)

Deduce the general rules underlying these constructions. What order of tree traversal
corresponds to lexicographic order of the partitions?

11. [M22 ] How many ways are there to pay one euro, using coins worth 1, 2, 5, 10,
20, 50, and/or 100 cents? What if you are allowed to use at most two of each coin?

x 12. [M21 ] (L. Euler, 1750.) Use generating functions to prove that the number of
ways to partition n into distinct parts is the number of ways to partition n into odd
parts. For example, 5 = 4 + 1 = 3 + 2; 5 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1.

[Note: The next two exercises use combinatorial techniques to prove extensions of
this famous theorem.]

x 13. [M23 ] (F. Franklin, 1882.) Find a one-to-one correspondence α ↔ β between
partitions of n such that α has exactly k parts repeated more than once if and only if β
has exactly k even parts. (For example, the partition 64421111 has two repeated parts
{4, 1} and three even parts {6, 4, 2}. The case k = 0 corresponds to Euler’s result.)

x 14. [M28 ] (J. J. Sylvester, 1882.) Find a one-to-one correspondence between parti-
tions of n into distinct parts a1 > a2 > · · · > am that have exactly k “gaps” where
aj > aj+1 + 1, and partitions of n into odd parts that have exactly k + 1 different
values. (For example, when k = 0 this construction proves that the number of ways to
write n as a sum of consecutive integers is the number of odd divisors of n.)

15. [M20 ] (J. J. Sylvester.) Find a generating function for the number of partitions
that are self-conjugate (namely, partitions such that α = αT ).

16. [M21 ] Find a formula for

m,n p(k,m, n)wmzn, where p(k,m, n) is the number of

partitions of n that havem parts and trace k. Sum it on k to obtain a nontrivial identity.

From the Library of Melissa Nuno



ptg999

7.2.1.4 GENERATING ALL PARTITIONS 409

17. [M26 ] A joint partition of n is a pair of sequences (a1, . . . , ar; b1, . . . , bs) of
positive integers for which we have

a1 ≥ · · · ≥ ar, b1 > · · · > bs, and a1 + · · ·+ ar + b1 + · · ·+ bs = n.

Thus it is an ordinary partition if s = 0, and a partition into distinct parts if r = 0.
a) Find a simple formula for the generating function


ur+svszn, summed over all

joint partitions of n with r ordinary parts ai and s distinct parts bj .
b) Similarly, find a simple formula for


vszn when the sum is over all joint partitions

that have exactly r+s = t total parts, given the value of t. For example, the answer
when t = 2 is (1 + v)(1 + vz)z2/((1− z)(1− z2)).

c) What identity do you deduce?
x 18. [M23 ] (Doron Zeilberger.) Show that there is a one-to-one correspondence be-

tween pairs of integer sequences (a1, a2, . . . , ar; b1, b2, . . . , bs) such that

a1 ≥ a2 ≥ · · · ≥ ar, b1 > b2 > · · · > bs,

and pairs of integer sequences (c1, c2, . . . , cr+s; d1, d2, . . . , dr+s) such that

c1 ≥ c2 ≥ · · · ≥ cr+s, dj ∈ {0, 1} for 1 ≤ j ≤ r + s,

related by the multiset equations

{a1, a2, . . . , ar} = {cj | dj = 0} and {b1, b2, . . . , bs} = {cj + r + s− j | dj = 1}.
Consequently we obtain the interesting identity
a1≥···≥ar>0, r≥0
b1>···>bs>0, s≥0

ur+svsza1+···+ar+b1+···+bs =


c1≥···≥ct>0, t≥0
d1,...,dt∈{0,1}

utvd1+···+dtzc1+···+ct+(t−1)d1+···+dt−1 .

19. [M22 ] (E. Heine, 1847.) Prove the four-parameter identity
∞
m=1

(1−wxzm)(1−wyzm)
(1−wzm)(1−wxyzm) =

∞
k=0

wk(x−1)(x−z) . . . (x−zk−1)(y−1)(y−z) . . . (y−zk−1)zk

(1−z)(1−z2) . . . (1−zk)(1−wz)(1−wz2) . . . (1−wzk) .

Hint: Carry out the sum over either k or l in the formula
k,l≥0

ukvlzkl
(z − az)(z − az2) . . . (z − azk)

(1− z)(1− z2) . . . (1− zk)
(z − bz)(z − bz2) . . . (z − bzl)

(1− z)(1− z2) . . . (1− zl)

and consider the simplifications that occur when b = auz.
x 20. [M21 ] Approximately how long does it take to compute a table of the partition

numbers p(n) for 1 ≤ n ≤ N , using Euler’s recurrence (20)?
21. [M21 ] (L. Euler.) Let q(n) be the number of partitions of n into distinct parts.
What is a good way to compute q(n) if you already know the values of p(1), . . . , p(n)?
22. [HM21 ] (L. Euler.) Let σ(n) be the sum of all positive divisors of the positive
integer n. Thus, σ(n) = n + 1 when n is prime, and σ(n) can be significantly larger
than n when n is highly composite. Prove that, in spite of this rather chaotic behavior,
σ(n) satisfies almost the same recurrence (20) as the partition numbers:

σ(n) = σ(n−1) + σ(n−2)− σ(n−5)− σ(n−7) + σ(n−12) + σ(n−15)− · · ·
for n ≥ 1, except that when a term on the right is ‘σ(0)’ the value ‘n’ is used instead.
For example, σ(11) = 1 + 11 = σ(10) + σ(9) − σ(6) − σ(4) = 18 + 13 − 12 − 7;
σ(12) = 1 + 2 + 3 + 4 + 6 + 12 = σ(11) +σ(10)−σ(7)−σ(5) + 12 = 12 + 18−8−6 + 12.

From the Library of Melissa Nuno



ptg999

410 COMBINATORIAL SEARCHING 7.2.1.4

23. [HM25 ] Use Jacobi’s triple product identity (19) to prove another formula that
he discovered:

∞
k=1

(1− zk)3 = 1− 3z + 5z3 − 7z6 + 9z10 − · · · =
∞
n=0

(−1)n(2n+ 1)z(n+1
2 ).

24. [M26 ] (S. Ramanujan, 1919.) Let A(z) =
∞
k=1(1− zk)4.

a) Prove that [zn]A(z) is a multiple of 5 when nmod 5 = 4.
b) Prove that [zn]A(z)B(z)5 has the same property, if B is any power series with

integer coefficients.
c) Therefore p(n) is a multiple of 5 when nmod 5 = 4.

25. [HM27 ] Improve on (22) by using (a) Euler’s summation formula and (b) Mellin
transforms to estimate lnP (e−t). Hint: The dilogarithm function Li2(x) = x/12 +
x2/22 + x3/32 + · · · satisfies Li2(x) + Li2(1− x) = ζ(2)− (ln x) ln(1− x).
26. [HM22 ] In exercises 5.2.2–44 and 5.2.2–51 we studied two ways to prove that

∞
k=1

e−k
2/n = 1

2(
√
πn− 1) +O(n−M ) for all M > 0.

Show that Poisson’s summation formula gives a much stronger result.
27. [HM21 ] Prove (28) and complete the calculations leading to Theorem D.
28. [HM42 ] (D. H. Lehmer.) Show that the Hardy–Ramanujan–Rademacher coeffi-
cients Ak(n) defined in (34) have the following remarkable properties:

a) If k is odd, then A2k(km+ 4n+ (k2 − 1)/8) = A2(m)Ak(n).
b) If p is prime, pe > 2, and k ⊥ 2p, then

Apek(k2m+ p2en− (k2 + p2e − 1)/24) = (−1)[pe=4]Ape(m)Ak(n).

In this formula k2 + p2e − 1 is a multiple of 24 if p or k is divisible by 2 or 3;
otherwise division by 24 should be done modulo pek.

c) If p is prime, |Ape(n)| < 2[p>2]pe/2.
d) If p is prime, Ape(n) ̸= 0 if and only if 1 − 24n is a quadratic residue modulo p

and either e = 1 or 24nmod p ̸= 1.
e) The probability that Ak(n) = 0, when k is divisible by exactly t primes ≥ 5 and

n is a random integer, is approximately 1− 2−t.
x 29. [M16 ] Generalizing (41), evaluate the sum


a1≥a2≥···≥am≥1 z

a1
1 za2

2 . . . zamm .
30. [M17 ] Find closed forms for the sums

(a)

k≥0

n− km
m− 1

 and (b)

k≥0

 n

m− k


(which are finite, because the terms being summed are zero when k is large).
31. [M24 ] (A. De Morgan, 1843.) Show that

n
2

 = ⌊n/2⌋ and
n

3

 = ⌊(n2 + 6)/12⌋;
find a similar formula for

n
4

.
32. [M15 ] Prove that

n
m

 ≤ p(n−m) for all m,n ≥ 0. When does equality hold?
33. [HM20 ] Use the fact that there are exactly


n−1
m−1


compositions of n into m parts,

Eq. 7.2.1.3–(9), to prove a lower bound on
n
m

. Then set m = ⌊√n ⌋ to obtain an ele-
mentary lower bound on p(n).

From the Library of Melissa Nuno



ptg999

7.2.1.4 GENERATING ALL PARTITIONS 411

x 34. [HM21 ] Show that
n−m(m−1)/2

m

 is the number of partitions of n into m distinct
parts. Consequently n

m

 = nm−1

m! (m− 1)!


1 +O


m3

n


when m ≤ n1/3.

35. [HM21 ] In the Erdős–Lehner probability distribution (43), what value of x is
(a) most probable? (b) the median? (c) the mean? (d) What is the standard deviation?
36. [HM24 ] Prove the key estimate (47) that is needed in Theorem E.
37. [M22 ] Prove the inclusion-exclusion bracketing lemma (48), by analyzing how
many times a partition that has exactly q different parts exceeding m is counted in the
rth partial sum.
38. [M20 ] Given positive integers l and m, what generating function enumerates
partitions that have exactly m parts, and largest part l? (See Eq. (51).)
39. [M20 ] (A. Cauchy.) Continuing exercise 38, what is the generating function for
the number of partitions into m parts, all distinct and less than l?

x 40. [M25 ] (F. Franklin.) Generalizing Theorem C, show that, for 0 ≤ k ≤ m,

[zn] (1− zl+1) . . . (1− zl+k)
(1− z)(1− z2) . . . (1− zm)

is the number of partitions a1a2 . . . of n into m or fewer parts with the property that
a1 ≤ ak+1 + l.
41. [HM42 ] Extend the Hardy–Ramanujan–Rademacher formula (32) to obtain a
convergent series for partitions of n into at most m parts, with no part exceeding l.
42. [HM42 ] Find the limiting shape, analogous to (49), for random partitions of n
into at most θ

√
n parts, with no part exceeding φ

√
n, assuming that θφ > 1.

43. [M18 ] Given n and k, how many partitions of n have a1 > a2 > · · · > ak?
x 44. [M22 ] How many partitions of n have their two smallest parts equal?

45. [HM21 ] Compute the asymptotic value of p(n−1)/p(n), with relative errorO(n−2).
46. [M20 ] In the text’s analysis of Algorithm P, which is larger, T ′

2(n) or T ′′
2 (n)?

x 47. [HM22 ] (A. Nijenhuis and H. S. Wilf, 1975.) The following simple algorithm,
based on a table of the partition numbers p(0), p(1), . . . , p(n), generates a random
partition of n using the part-count representation c1 . . . cn of (8). Prove that it produces
each partition with equal probability.

N1. [Initialize.] Set m← n and c1 . . . cn ← 0 . . . 0.
N2. [Done?] Terminate if m = 0.
N3. [Generate.] Generate a random integer M in the range 0 ≤M < mp(m).
N4. [Choose parts.] Set s← 0. Then for j = 1, 2, . . . , and for k = 1, 2, . . . , ⌊m/j⌋,

repeatedly set s← s+ kp(m− jk) until s > M .
N5. [Update.] Set ck ← ck + j, m← m− jk, and return to N2.

Hint: Step N4, which is based on the identity
∞
j=1

⌊m/j⌋
k=1

kp(m− jk) = mp(m),

chooses each particular pair of values (j, k) with probability kp(m− jk)/(mp(m)).

From the Library of Melissa Nuno



ptg999

412 COMBINATORIAL SEARCHING 7.2.1.4

48. [HM40 ] Analyze the running time of the algorithm in the previous exercise.
x 49. [HM26 ] (a) What is the generating function F (z) for the sum of the smallest parts

of all partitions of n? (The series begins z + 3z2 + 5z3 + 9z4 + 12z5 + · · · .)
(b) Find the asymptotic value of [zn]F (z), with relative error O(n−1).

50. [HM33 ] Let c(m) = cm(2m) in the recurrence (56), (57).
a) Prove that cm(m+ k) = m− k + c(k) for 0 ≤ k ≤ m.
b) Consequently (58) holds for m ≤ n ≤ 2m, if c(m) < 3p(m) for all m ≥ 0.
c) Show that c(m)−m is the sum of the second-smallest parts of all partitions of m.
d) Find a one-to-one correspondence between all partitions of n with second-smallest

part k and all partitions of numbers ≤ n with smallest part k + 1.
e) Describe the generating function


m≥0 c(m)zm.

f) Conclude that c(m) < 3p(m) for all m ≥ 0.
51. [M46 ] Make a detailed analysis of Algorithm H.

x 52. [M21 ] What is the millionth partition generated by Algorithm P when n = 64?
Hint: p(64) = 1741630 = 1000000 +

77
13

+
60
10

+
47

8

+
35

5

+
27

3

+
22

2

+
18

1

+
15

0

.
x 53. [M21 ] What is the millionth partition generated by Algorithm H when m = 32

and n = 100? Hint: 999999 =
80
12

+
66
11

+
50

7

+
41

6

+
33

5

+
26

4

+
21

4

.
x 54. [M30 ] Let α = a1a2 . . . and β = b1b2 . . . be partitions of n. We say that α

majorizes β, written α ⪰ β or β ⪯ α, if a1 + · · ·+ ak ≥ b1 + · · ·+ bk for all k ≥ 0.
a) True or false: α ⪰ β implies α ≥ β (lexicographically).
b) True or false: α ⪰ β implies βT ⪰ αT .
c) Show that any two partitions of n have a greatest lower bound α ∧ β such that

α ⪰ γ and β ⪰ γ if and only if α ∧ β ⪰ γ. Explain how to compute α ∧ β.
d) Similarly, explain how to compute a least upper bound α∨β such that γ ⪰ α and

γ ⪰ β if and only if γ ⪰ α ∨ β.
e) If α has l parts and β has m parts, how many parts do α ∧ β and α ∨ β have?
f) True or false: If α has distinct parts and β has distinct parts, then so do α ∧ β

and α ∨ β.
x 55. [M37 ] Continuing the previous exercise, say that α covers β if α ⪰ β and α ̸= β,

and if α ⪰ γ ⪰ β implies that γ = α or γ = β. For example, Fig. 52 illustrates the
covering relations between partitions of the number 12.

a) Let us write α ≻ β if α = a1a2 . . . and β = b1b2 . . . are partitions for which
bk = ak − [k= l] + [k= l + 1] for all k ≥ 1 and some l ≥ 1. Prove that α covers β
if and only if α ≻ β or βT ≻ αT .

b) Show that there is an easy way to tell if α covers β by looking at the rim
representations of α and β.

c) Let n =

n2
2


+

n1
1


where n2 > n1 ≥ 0 and n2 > 2. Show that no partition of n
covers more than n2 − 2 partitions.

d) Say that the partition µ is minimal if there is no partition λ with µ ≻ λ. Prove
that µ is minimal if and only if µT has distinct parts.

e) Suppose α = α0 ≻ α1 ≻ · · · ≻ αk and α = α′
0 ≻ α′

1 ≻ · · · ≻ α′
k′ , where αk and

α′
k′ are minimal partitions. Prove that k = k′ and αk = α′

k′ .
f) Explain how to compute the lexicographically smallest partition into distinct parts

that majorizes a given partition α.
g) Describe λn, the lexicographically smallest partition of n into distinct parts. What

is the length of all paths n1 = α0 ≻ α1 ≻ · · · ≻ λTn?

From the Library of Melissa Nuno



ptg999

7.2.1.4 GENERATING ALL PARTITIONS 413

Fig. 52. The majorization
lattice for partitions of 12.
(See exercises 54–58.)

111111111111

21111111111

2211111111

222111111

22221111

222222

2222211

3111111111

321111111

32211111

3222111

322221

33111111

3321111

332211

33222333111

33321

3333

411111111

42111111

4221111

422211

42222

4311111

432111

43221

43311

4332

441111

44211

4422

4431

444

51111111

5211111

522111

52221531111

53211

5322

5331
54111

5421

5435511

552

6111111

621111

62211

622263111

6321

6336411

642

651

66

711111

72111

7221

7311

732

741

75

81111

8211

822

831

84

9111

921

9310 11

10 2

11 1

12

h) What are the lengths of the longest and shortest paths of the form n1 = α0, α1,
. . . , αl = 1n, where αj covers αj+1 for 0 ≤ j < l?

x 56. [M32 ] Design an algorithm to generate all partitions α such that λ ⪯ α ⪯ µ,
given partitions λ and µ with λ ⪯ µ.

Note: Such an algorithm has numerous applications. For example, to generate all
partitions that have m parts and no part exceeding l, we can let λ be the smallest such
partition, namely ⌈n/m⌉ . . . ⌊n/m⌋ as in exercise 3, and let µ be the largest, namely
((n−m+1)1m−1) ∧ (l⌊n/l⌋(nmod l)). Similarly, according to a well-known theorem of
H. G. Landau [Bull. Math. Biophysics 15 (1953), 143–148], the partitions of


m
2


such
that 

m

2

⌊m/2⌋m− 1
2

⌈m/2⌉
⪯ α ⪯ (m−1)(m−2) . . . 21

are the possible “score vectors” of a round-robin tournament, namely the partitions
a1 . . . am such that the jth strongest player wins aj games.

From the Library of Melissa Nuno



ptg999

414 COMBINATORIAL SEARCHING 7.2.1.4

57. [M22 ] Suppose a matrix (aij) of 0s and 1s has row sums ri =

j aij and column

sums cj =

i aij . By permuting rows and columns we can assume that r1 ≥ r2 ≥ · · ·

and c1 ≥ c2 ≥ · · · . Then λ = r1r2 . . . and µ = c1c2 . . . are partitions of n =

i,j aij .

Prove that such a matrix exists if and only if λ ⪯ µT .
58. [M23 ] (Symmetrical means.) Let α = a1 . . . am and β = b1 . . . bm be partitions
of n. Prove that the inequality

1
m!


xa1
p1 . . . x

am
pm ≥ 1

m!


xb1
p1 . . . x

bm
pm

holds for all nonnegative values of the variables (x1, . . . , xm), where the sums range over
all m! permutations of {1, . . . ,m}, if and only if α ⪰ β. (For example, this inequality
reduces to (y1 + · · · + yn)/n ≥ (y1 . . . yn)1/n in the special case m = n, α = n0 . . . 0,
β = 11 . . . 1, xj = y

1/n
j .)

59. [M22 ] The Gray path (59) is symmetrical in the sense that the reversed sequence
6, 51, . . . , 111111 is the same as the conjugate sequence (111111)T, (21111)T, . . . , (6)T.
Find all Gray paths α1, . . . , αp(n) that are symmetrical in this way.
60. [23 ] Complete the proof of Theorem S by modifying the definitions of L(m,n)
and M(m,n) in all places where L(4, 6) is called in (62) and (63).
61. [26 ] Implement a partition-generation scheme based on Theorem S, always speci-
fying the two parts that have changed between visits.
62. [46 ] Prove or disprove: For all sufficiently large integers n and 3 ≤ m < n such
that nmodm ̸= 0, and for all partitions α of n with a1 ≤ m, there is a Gray path
for all partitions with parts ≤ m, beginning at 1n and ending at α, unless α = 1n or
α = 21n−2.
63. [47 ] For which partitions λ and µ is there a Gray code through all partitions α
such that λ ⪯ α ⪯ µ?

x 64. [32 ] (Binary partitions.) Design a loopless algorithm that visits all partitions of n
into powers of 2, where each step replaces 2k + 2k by 2k+1 or vice versa.
65. [23 ] It is well known that every commutative group of m elements can be repre-
sented as a discrete torus T (m1, . . . ,mn) with the addition operation of 7.2.1.3–(66),
where m = m1 . . .mn and mj is a multiple of mj+1 for 1 ≤ j < n. For example, when
m = 360 = 23 · 32 · 51 there are six such groups, corresponding to the factorizations
(m1,m2,m3) = (30, 6, 2), (60, 6, 1), (90, 2, 2), (120, 3, 1), (180, 2, 1), and (360, 1, 1).

Explain how to generate all such factorizations systematically with an algorithm
that changes exactly two of the factors mj at each step.

x 66. [M25 ] (P-partitions.) Instead of insisting that a1 ≥ a2 ≥ · · · , suppose we want
to consider all nonnegative compositions of n that satisfy a given partial order. For
example, P. A. MacMahon observed that all solutions to the “up-down” inequalities
a4 ≤ a2 ≥ a3 ≤ a1 can be divided into five nonoverlapping types:

a1 ≥ a2 ≥ a3 ≥ a4; a1 ≥ a2 ≥ a4 > a3;
a2 > a1 ≥ a3 ≥ a4; a2 > a1 ≥ a4 > a3; a2 ≥ a4 > a1 ≥ a3.

Each of these types is easily enumerated since, for example, a2 > a1 ≥ a4 > a3 is
equivalent to a2 − 2 ≥ a1 − 1 ≥ a4 − 1 ≥ a3; the number of solutions with a3 ≥ 0 and
a1+a2+a3+a4 = n is the number of partitions of n−1−2−0−1 into at most four parts.

Explain how to solve a general problem of this kind: Given any partial order
relation ≺ on m elements, consider all m-tuples a1 . . . am with the property that aj ≥ ak

From the Library of Melissa Nuno



ptg999

7.2.1.5 GENERATING ALL SET PARTITIONS 415

when j ≺ k. Assuming that the subscripts have been chosen so that j ≺ k implies j ≤ k,
show that all of the desired m-tuples fall into exactly N classes, one for each of the out-
puts of the topological sorting algorithm 7.2.1.2V. What is the generating function for
all such a1 . . . am that are nonnegative and sum to n? How could you generate them all?
67. [M25 ] (P. A. MacMahon, 1886.) A perfect partition of n is a multiset that has
exactly n+1 submultisets, and these multisets are partitions of the integers 0, 1, . . . , n.
For example, the multisets {1,1,1,1,1}, {2,2,1}, and {3,1,1} are perfect partitions of 5.

Explain how to construct the perfect partitions of n that have fewest elements.
68. [M23 ] What partition of n into m parts has the largest product a1 . . . am, when
(a) m is given; (b) m is arbitrary?
69. [M30 ] Find all n < 109 such that the equation x1 + x2 + · · · + xn = x1x2 . . . xn
has only one solution in positive integers x1 ≥ x2 ≥ · · · ≥ xn. (There is, for example,
only one solution when n = 2, 3, or 4; but 5 + 2 + 1 + 1 + 1 = 5 · 2 · 1 · 1 · 1 and
3 + 3 + 1 + 1 + 1 = 3 · 3 · 1 · 1 · 1 and 2 + 2 + 2 + 1 + 1 = 2 · 2 · 2 · 1 · 1.)
70. [M30 ] (“Bulgarian solitaire.”) Take n cards and divide them arbitrarily into one
or more piles. Then repeatedly remove one card from each pile and form a new pile.

Show that if n = 1 + 2 + · · ·+m, this process always reaches a self-repeating state
with piles of sizes {m,m− 1, . . . , 1}. For example, if n = 10 and if we start with piles
whose sizes are {3, 3, 2, 2}, we get the sequence of partitions

3322→ 42211→ 5311→ 442→ 3331→ 4222→ 43111→ 532→ 4321→ 4321→ · · · .
What cycles of states are possible for other values of n?

71. [M46 ] Continuing the previous problem, what is the maximum number of steps
that can occur before n-card Bulgarian solitaire reaches a cyclic state?
72. [M30 ] How many partitions of n have no predecessor in Bulgarian solitaire?
73. [M25 ] Suppose we write down all partitions of n, for example

6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111

when n = 6, and change each jth occurrence of k to j in each one:

1, 11, 11, 112, 12, 111, 1123, 123, 1212, 11234, 123456.

a) Prove that this operation yields a permutation of the individual elements.
b) How many times does the element k appear altogether?

7.2.1.5. Generating all set partitions. Now let’s shift gears and concentrate
on a rather different kind of partition. The partitions of a set are the ways
to regard that set as a union of nonempty, disjoint subsets called blocks. For
example, we listed the five essentially different partitions of {1, 2, 3} at the
beginning of the previous section, in 7.2.1.4–(2) and 7.2.1.4–(4). Those five
partitions can also be written more compactly in the form

123, 12|3, 13|2, 1|23, 1|2|3, (1)

using a vertical line to separate one block from another. In this list the elements
of each block could have been written in any order, and so could the blocks
themselves, because ‘13|2’ and ‘31|2’ and ‘2|13’ and ‘2|31’ all represent the same
partition. But we can standardize the representation by agreeing, for example,

From the Library of Melissa Nuno



ptg999

416 COMBINATORIAL SEARCHING 7.2.1.5

to list the elements of each block in increasing order, and to arrange the blocks in
increasing order of their smallest elements. With this convention the partitions
of {1, 2, 3, 4} are

1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4,
14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4,

(2)

obtained by placing 4 among the blocks of (1) in all possible ways.
Set partitions arise in many different contexts. Political scientists and

economists, for example, often see them as “coalitions”; computer system de-
signers may consider them to be “cache hit patterns” for memory accesses;
poets know them as “rhyme schemes” (see exercises 34–37). We saw in Section
2.3.3 that any equivalence relation between objects — namely any binary relation
that is reflexive, symmetric, and transitive — defines a partition of those objects
into so-called “equivalence classes.” Conversely, every set partition defines an
equivalence relation: If Π is a partition of {1, 2, . . . , n} we can write

j ≡ k (modulo Π) (3)

whenever j and k belong to the same block of Π.
One of the most convenient ways to represent a set partition inside a com-

puter is to encode it as a restricted growth string, namely as a string a1a2 . . . an
of nonnegative integers in which we have

a1 = 0 and aj+1 ≤ 1 + max(a1, . . . , aj) for 1 ≤ j < n. (4)

The idea is to set aj = ak if and only if j ≡ k, and to choose the smallest
available number for aj whenever j is smallest in its block. For example, the
restricted growth strings for the fifteen partitions in (2) are respectively

0000, 0001, 0010, 0011, 0012, 0100, 0101, 0102,
0110, 0111, 0112, 0120, 0121, 0122, 0123.

(5)

This convention suggests the following simple generation scheme, due to George
Hutchinson [CACM 6 (1963), 613–614]:

Algorithm H (Restricted growth strings in lexicographic order). Given n ≥ 2,
this algorithm generates all partitions of {1, 2, . . . , n} by visiting all strings
a1a2 . . . an that satisfy the restricted growth condition (4). We maintain an
auxiliary array b1b2 . . . bn, where bj+1 = 1 + max(a1, . . . , aj); the value of bn is
actually kept in a separate variable, m, for efficiency.
H1. [Initialize.] Set a1 . . . an ← 0 . . . 0, b1 . . . bn−1 ← 1 . . . 1, and m← 1.
H2. [Visit.] Visit the restricted growth string a1 . . . an, which represents a

partition into m+ [an =m] blocks. Then go to H4 if an = m.
H3. [Increase an.] Set an ← an + 1 and return to H2.
H4. [Find j.] Set j ← n− 1; then, while aj = bj , set j ← j − 1.

From the Library of Melissa Nuno



ptg999

7.2.1.5 GENERATING ALL SET PARTITIONS 417

H5. [Increase aj .] Terminate if j = 1. Otherwise set aj ← aj + 1.
H6. [Zero out aj+1 . . . an.] Set m ← bj + [aj = bj ] and j ← j + 1. Then, while

j < n, set aj ← 0, bj ← m, and j ← j + 1. Finally set an ← 0 and go back
to H2.

Exercise 47 proves that steps H4–H6 are rarely necessary, and that the loops
in H4 and H6 are almost always short. A linked-list variant of this algorithm
appears in exercise 2.

Gray codes for set partitions. One way to pass quickly through all set
partitions is to change just one digit of the restricted growth string a1 . . . an at
each step, because a change to aj simply means that element j moves from one
block to another. An elegant way to arrange such a list was proposed by Gideon
Ehrlich [JACM 20 (1973), 507–508]: We can successively append the digits

0, m, m− 1, . . . , 1 or 1, . . . , m− 1, m, 0 (6)

to each string a1 . . . an−1 in the list for partitions of n − 1 elements, where
m = 1+max(a1, . . . , an−1), alternating between the two cases. Thus the list ‘00,
01’ for n = 2 becomes ‘000, 001, 011, 012, 010’ for n = 3; and that list becomes

0000, 0001, 0011, 0012, 0010, 0110, 0112, 0111,
0121, 0122, 0123, 0120, 0100, 0102, 0101

(7)

when we extend it to the case n = 4. Exercise 14 shows that Ehrlich’s scheme
leads to a simple algorithm that achieves this Gray-code order without doing
much more work than Algorithm H.

Suppose, however, that we aren’t interested in all of the partitions; we might
want only the ones that have exactly m blocks. Can we run through this smaller
collection of restricted growth strings, still changing only one digit at a time?
Yes; a very pretty way to generate such a list has been discovered by Frank
Ruskey [Lecture Notes in Comp. Sci. 762 (1993), 205–206]. He defined two
such sequences, Amn and A′

mn, both of which start with the lexicographically
smallest m-block string 0n−m01 . . . (m−1). The difference between them, if
n > m + 1, is that Amn ends with 01 . . . (m−1)0n−m while A′

mn ends with
0n−m−101 . . . (m−1)0. Here are Ruskey’s recursive rules, when 1 < m < n:

Am(n+1) =

A(m−1)n(m−1), AR

mn(m−1), . . . , AR
mn1, Amn0, if m is even;

A′
(m−1)n(m−1), Amn(m−1), . . . , AR

mn1, Amn0, if m is odd;
(8)

A′
m(n+1) =


A′

(m−1)n(m−1), Amn(m−1), . . . , Amn1, AR
mn0, if m is even;

A(m−1)n(m−1), AR
mn(m−1), . . . , Amn1, AR

mn0, if m is odd.
(9)

(In other words, we begin with either A(m−1)n(m−1) or A′
(m−1)n(m−1) and then

use either AR
mnj or Amnj, alternately, as j decreases from m−1 to 0.) Of course

the base cases are simply one-element lists,

A1n = A′
1n = {0n} and Ann = {01 . . . (n−1)}. (10)

From the Library of Melissa Nuno



ptg999

418 COMBINATORIAL SEARCHING 7.2.1.5

With these definitions the
5

3


= 25 partitions of {1, 2, 3, 4, 5} into three blocks
are

00012, 00112, 01112, 01012, 01002, 01102, 00102,
00122, 01122, 01022, 01222, 01212, 01202,
01201, 01211, 01221, 01021, 01121, 00121,
00120, 01120, 01020, 01220, 01210, 01200.

(11)

(See exercise 17 for an efficient implementation.)
In Ehrlich’s scheme (7) the rightmost digits of a1 . . . an vary most rapidly,

but in Ruskey’s scheme most of the changes occur near the left. In both cases,
however, each step affects just one digit aj , and the changes are quite simple:
Either aj changes by ±1, or it jumps between the two extreme values 0 and
1 + max(a1, . . . , aj−1). Under the same constraints, the sequence A′

1n, A′
2n, . . . ,

A′
nn runs through all partitions, in increasing order of the number of blocks.

The number of set partitions. We’ve seen that there are 5 partitions of
{1, 2, 3} and 15 of {1, 2, 3, 4}. A quick way to compute these counts was dis-
covered by C. S. Peirce, who presented the following triangle of numbers in the
American Journal of Mathematics 3 (1880), page 48:

1
2 1
5 3 2
15 10 7 5
52 37 27 20 15
203 151 114 87 67 52

(12)

Here the entries ϖn1, ϖn2, . . . , ϖnn of the nth row obey the simple recurrence

ϖnk = ϖ(n−1)k+ϖn(k+1) if 1 ≤ k < n; ϖnn = ϖ(n−1)1 if n > 1; (13)

and ϖ11 = 1. Peirce’s triangle has many remarkable properties, some of which
are surveyed in exercises 26–31. For example, ϖnk is the number of partitions
of {1, 2, . . . , n} in which k is the smallest of its block.

The entries on the diagonal and in the first column of Peirce’s triangle, which
tell us the total number of set partitions, are commonly known as Bell numbers,
because E. T. Bell wrote several influential papers about them [AMM 41 (1934),
411–419; Annals of Math. (2) 35 (1934), 258–277; 39 (1938), 539–557]. We shall
denote Bell numbers by ϖn, following the lead of Louis Comtet, in order to avoid
confusion with the Bernoulli numbers Bn. The first few cases are

n = 0 1 2 3 4 5 6 7 8 9 10 11 12
ϖn = 1 1 2 5 15 52 203 877 4140 21147 115975 678570 4213597

Notice that this sequence grows rapidly, but not as fast as n!; we will prove below
that ϖn = Θ(n/lnn)n.

The Bell numbers ϖn = ϖn1 for n ≥ 0 must satisfy the recurrence formula

ϖn+1 = ϖn +

n

1


ϖn−1 +


n

2


ϖn−2 + · · · =


k


n

k


ϖn−k, (14)

From the Library of Melissa Nuno



ptg999

7.2.1.5 GENERATING ALL SET PARTITIONS 419

because every partition of {1, . . . , n + 1} is obtained by choosing k elements of
{1, . . . , n} to put in the block containing n+1 and by partitioning the remaining
elements in ϖn−k ways, for some k. This recurrence, found by Yoshisuke Matsu-
naga in the 18th century (see Section 7.2.1.7), leads to a nice generating function,

Π(z) =
∞

n=0
ϖn

zn

n! = ee
z−1, (15)

discovered by W. A. Whitworth [Choice and Chance, 3rd edition (1878), 3.XXIV].
For if we multiply both sides of (14) by zn/n! and sum on n we get

Π ′(z) =
∞

n=0
ϖn+1

zn

n! =
 ∞
k=0

zk

k!

 ∞
m=0

ϖm
zm

m!


= ezΠ(z),

and (15) is the solution to this differential equation with Π(0) = 1.
The numbers ϖn had been studied for many years because of their curious

properties related to this formula, long before Whitworth pointed out their
combinatorial connection with set partitions. For example, we have

ϖn = n!
e

[zn] ee
z

= n!
e

[zn]
∞
k=0

ekz

k! = 1
e

∞
k=0

kn

k! (16)

[Mat. Sbornik 3 (1868), 62; 4 (1869), 39; G. Dobiński, Archiv der Math. und
Physik 61 (1877), 333–336; 63 (1879), 108–110]. Christian Kramp discussed
the expansion of eez in Der polynomische Lehrsatz, ed. by C. F. Hindenburg
(Leipzig: 1796), 112–113; he mentioned two ways to compute the coefficients,
namely either to use (14) or to use a summation of p(n) terms, one for each
ordinary partition of n. (See Arbogast’s formula, exercise 1.2.5–21. Kramp,
who came close to discovering that formula, seemed to prefer his partition-based
method, not realizing that it would require more than polynomial time as n got
larger and larger; and he computed 116015, not 115975, for the coefficient of z10.)

*Asymptotic estimates. We can learn how fast ϖn grows by using one of the
most basic principles of complex residue theory: If the power series

∞
k=0 akz

k

converges whenever |z| < r, then

an−1 = 1
2πi


a0 + a1z + a2z

2 + · · ·
zn

dz, (17)

if the integral is taken along a simple closed path that goes counterclockwise
around the origin and stays inside the circle |z| = r. Let f(z) =

∞
k=0 akz

k−n

be the integrand. We’re free to choose any such path, but special techniques
often apply when the path goes through a point z0 at which the derivative f ′(z0)
is zero, because we have

f(z0 + ϵeiθ) = f(z0) + f ′′(z0)
2 ϵ2e2iθ +O(ϵ3) (18)

in the vicinity of such a point. If, for example, f(z0) and f ′′(z0) are real and
positive, say f(z0) = u and f ′′(z0) = 2v, this formula says that the value of

From the Library of Melissa Nuno



ptg999

420 COMBINATORIAL SEARCHING 7.2.1.5

ℜf(z0)

z0 z0+ǫ

z0+iǫ
z0−ǫ

z0−iǫ

Fig. 53. The behavior of an analytic
function near a saddle point.

f(z0± ϵ) is approximately u+ vϵ2 while f(z0± iϵ) is approximately u− vϵ2. If z
moves from z0− iϵ to z0 + iϵ, the value of f(z) rises to a maximum value u, then
falls again; but the larger value u+vϵ2 occurs both to the left and to the right of
this path. In other words, a mountaineer who goes hiking on the complex plane,
when the altitude at point z is ℜf(z), encounters a “pass” at z0; the terrain
looks like a saddle at that point. The overall integral of f(z) will be the same
if taken around any path, but a path that doesn’t go through the pass won’t be
as nice because it will have to cancel out some higher values of f(z) that could
have been avoided. Therefore we tend to get best results by choosing a path that
goes through z0, in the direction of increasing imaginary part. This important
technique, due to P. Debye [Math. Annalen 67 (1909), 535–558], is called the
“saddle point method.”

Let’s get familiar with the saddle point method by starting with an example
for which we already know the answer:

1
(n− 1)! = 1

2πi


ez

zn
dz. (19)

Our goal is to find a good approximation for the value of the integral on the right
when n is large. It will be convenient to deal with f(z) = ez/zn by writing it as
eg(z) where g(z) = z−n ln z; then the saddle point occurs where g′(z0) = 1−n/z0
is zero, namely at z0 = n. If z = n+ it we have

g(z) = g(n) +
∞
k=2

g(k)(n)
k! (it)k

= n− n lnn− t2

2n + it3

3n2 + t4

4n3 −
it5

5n4 + · · ·

because g(k)(z) = (−1)k(k − 1)!n/zk when k ≥ 2. Let’s integrate f(z) on a
rectangular path from n− im to n+ im to −n+ im to −n− im to n− im:

1
2πi


ez

zn
dz = 1

2π

 m

−m

f(n+ it) dt+ 1
2πi

 −n

n

f(t+ im) dt

+ 1
2π

 −m

m

f(−n+ it) dt+ 1
2πi

 n

−n

f(t− im) dt.

From the Library of Melissa Nuno



ptg999

7.2.1.5 GENERATING ALL SET PARTITIONS 421

Clearly |f(z)| ≤ 2−nf(n) on the last three sides of this path if we choose m = 2n,
because |ez| = eℜz and |z| ≥ max


|ℜz|, |ℑz|


; so we’re left with

1
2πi


ez

zn
dz = 1

2π

 m

−m

eg(n+it) dt+O

nen

2nnn

.

Now we fall back on a technique that we’ve used several times before —
for example to derive Eq. 5.1.4–(53): If f̂(t) is a good approximation to f(t)
when t ∈ A, and if the sums


t∈B |f(t)| and


t∈C |f̂(t)| are both small, then

t∈A∪C f̂(t) is a good approximation to


t∈A∪B f(t). The same idea applies to
integrals as well as sums. [This general method, introduced by Laplace in 1782,
is often called “trading tails”; see CMath §9.4.] If |t| ≤ n1/2+ϵ we have

eg(n+it) = exp

g(n)− t2

2n + it3

3n2 + · · ·


= en

nn
exp


− t2

2n + it3

3n2 + t4

4n3 +O(n5ϵ−3/2)


= en

nn
e−t2/(2n)


1 + it3

3n2 + t4

4n3 −
t6

18n4 +O(n9ϵ−3/2)

.

And when |t| > n1/2+ϵ we have

|eg(n+it)| < |f(n+ in1/2+ϵ)| = en

nn
exp


−n2 ln(1 + n2ϵ−1)


= O


en−n2ϵ/2

nn


.

Furthermore the incomplete gamma function ∞

n1/2+ϵ

e−t2/(2n)tk dt = 2(k−1)/2n(k+1)/2 Γ

k + 1

2 ,
n2ϵ

2


= O(nO(1)e−n2ϵ/2)

is negligible. Thus we can trade tails and obtain the approximation
1

2πi


ez

zn
dz = en

2πnn

 ∞

−∞
e−t2/(2n)


1 + it3

3n2 + t4

4n3 −
t6

18n4 +O(n9ϵ−3/2)

dt

= en

2πnn

I0 + i

3n2 I3 + 1
4n3 I4 −

1
18n4 I6 +O(n9ϵ−3/2)


,

where Ik =
∞
−∞ e−t2/(2n)tk dt. Of course Ik = 0 when k is odd. Otherwise we

can evaluate Ik by using the well-known fact that ∞

−∞
e−at2

t2l dt =
Γ

(2l + 1)/2


a(2l+1)/2 =

√
2π

(2a)(2l+1)/2

l
j=1

(2j − 1) (20)

when a > 0; see exercise 39. Putting everything together gives us, for all ϵ > 0,
the asymptotic estimate

1
(n− 1)! = en√

2πnn−1/2


1 + 0 + 3

4n −
15

18n +O(n9ϵ−2)


; (21)

this result agrees perfectly with Stirling’s approximation, which we derived by
quite different methods in 1.2.11.2–(19). Further terms in the expansion of

From the Library of Melissa Nuno



ptg999

422 COMBINATORIAL SEARCHING 7.2.1.5

g(n + it) would allow us to prove that the true error in (21) is only O(n−2),
because the same procedure yields an asymptotic series of the general form
en/(
√

2πnn−1/2)

1 + c1/n+ c2/n

2 + · · ·+ cm/n
m +O(n−m−1)


for all m.

Our derivation of this result has glossed over an important technicality: The
function ln z is not single-valued along the path of integration, because it grows
by 2πi when we loop around the origin. Indeed, this fact underlies the basic
mechanism that makes the residue theorem work. But our reasoning was valid
because the ambiguity of the logarithm does not affect the integrand f(z) =
ez/zn when n is an integer. Furthermore, if n were not an integer, we could
have adapted the argument and kept it rigorous by choosing to carry out the
integral (19) along a path that starts at −∞, circles the origin counterclockwise
and returns to −∞. That would have given us Hankel’s integral for the gamma
function, Eq. 1.2.5–(17); we could thereby have derived the asymptotic formula

1
Γ(x) = 1

2πi


ez

zx
dz = ex√

2πxx−1/2


1− 1

12x +O(x−2)

, (22)

valid for all real x as x→∞.
So the saddle point method seems to work — although it isn’t the simplest

way to get this particular result. Let’s apply it now to deduce the approximate
size of the Bell numbers:

ϖn−1

(n− 1)! = 1
2πie


eg(z) dz, g(z) = ez − n ln z. (23)

A saddle point for the new integrand occurs at the point z0 = ξ > 0, where

ξeξ = n. (24)

(We should actually write ξ(n) to indicate that ξ depends on n; but that would
clutter up the formulas below.) Let’s assume for the moment that a little bird
has told us the value of ξ. Then we want to integrate on a path where z = ξ+ it,
and we have

g(ξ + it) = eξ − n


ln ξ − (it)2

2!
ξ + 1
ξ2 − (it)3

3!
ξ2 − 2!
ξ3 − (it)4

4!
ξ3 + 3!
ξ4 + · · ·


.

By integrating on a suitable rectangular path, we can prove as above that the
integral in (23) is well approximated by nϵ−1/2

−nϵ−1/2
eg(ξ)−na2t

2−nia3t
3+na4t

4+··· dt, ak = ξk−1+(−1)k(k−1)!
k! ξk ; (25)

see exercise 43. Noting that aktk is O(nkϵ−k/2) inside this integral, we obtain an
asymptotic expansion of the form

ϖn−1 = ee
ξ−1(n− 1)!

ξn−1


2πn(ξ + 1)


1 + b1

n
+ b2

n2 + · · ·+ bm
nm

+O
 logn

n

m+1
, (26)

From the Library of Melissa Nuno



ptg999

7.2.1.5 GENERATING ALL SET PARTITIONS 423

where (ξ + 1)3kbk is a polynomial of degree 4k in ξ. (See exercise 44.) For
example,

b1 = −2ξ4−3ξ3−20ξ2−18ξ+2
24(ξ+1)3 ; (27)

b2 = 4ξ8−156ξ7−695ξ6−696ξ5+1092ξ4+2916ξ3+1972ξ2−72ξ+4
1152(ξ+1)6 . (28)

Stirling’s approximation (21) can be used in (26) to prove that

ϖn−1 = exp

n

ξ − 1 + 1

ξ


− ξ − 1

2 ln(ξ + 1)− 1− ξ

12n +O
 logn

n

2
; (29)

and exercise 45 proves the similar formula

ϖn = exp

n

ξ − 1 + 1

ξ


− 1

2 ln(ξ + 1)− 1− ξ

12n +O
 logn

n

2
. (30)

Consequently we have ϖn/ϖn−1 ≈ eξ = n/ξ. More precisely,
ϖn−1

ϖn
= ξ

n


1 +O

 1
n


. (31)

But what is the asymptotic value of ξ? The definition (24) implies that

ξ = lnn− ln ξ = lnn− ln(lnn− ln ξ)

= lnn− ln lnn+O
 log logn

logn


; (32)

and we can go on in this vein, as shown in exercise 49. But the asymptotic
series for ξ developed in this way never gives better accuracy than O(1/(logn)m)
for larger and larger m; so it is hugely inaccurate when multiplied by n in
formula (29) for ϖn−1 or formula (30) for ϖn.

Thus if we want to use (29) or (30) to calculate good numerical approxima-
tions to Bell numbers, our best strategy is to start by computing a good numerical
value for ξ, without using a slowly convergent series. Newton’s rootfinding
method, discussed in the remarks preceding Algorithm 4.7N, yields the efficient
iterative scheme

ξ0 = lnn, ξk+1 = ξk
ξk + 1(1 + ξ0 − ln ξk), (33)

which converges rapidly to the correct value. For example, when n = 100 the
fifth iterate

ξ5 = 3.38563 01402 90050 18488 82443 64529 72686 74917− (34)

is already correct to 40 decimal places. Using this value in (29) gives us successive
approximations

(1.6176088053 . . . , 1.6187421339 . . . , 1.6187065391 . . . , 1.6187060254 . . . )× 10114

when we take terms up to 1, b1/n, b2/n
2, b3/n

3 into account; the true value
of ϖ99 is the 115-digit integer 16187060274460 . . . 20741.

From the Library of Melissa Nuno



ptg999

424 COMBINATORIAL SEARCHING 7.2.1.5

0 10 20 30 40 50 60 70 80 90 100m

5× 10114

Fig. 54. The Stirling numbers
100
m


are greatest near m = 28 and m = 29.

Now that we know the number of set partitions ϖn, let’s try to figure out
how many of them have exactly m blocks. It turns out that nearly all partitions
of {1, . . . , n} have roughly n/ξ = eξ blocks, with about ξ elements per block. For
example, Fig. 54 shows a histogram of the Stirling numbers


n
m


when n = 100;

in that case eξ ≈ 29.54.
We can investigate the size of


n
m


by applying the saddle point method to

formula 1.2.9–(23), which states that
n

m


= n!

m! [zn] (ez − 1)m = n!
m!

1
2πi


em ln(ez−1)−(n+1) ln z dz. (35)

Let α = (n+ 1)/m. The function g(z) = α−1 ln(ez − 1)− ln z has a saddle point
at σ > 0 when

σ

1− e−σ
= α. (36)

Notice that α > 1 for 1 ≤ m ≤ n. This special value σ is given by

σ = α− β, β = T (αe−α), (37)

where T is the tree function of Eq. 2.3.4.4–(30). Indeed, β is the value between
0 and 1 for which we have

βe−β = αe−α; (38)

the function xe−x increases from 0 to e−1 when x increases from 0 to 1, then it
decreases to 0 again. Therefore β is uniquely defined, and we have

eσ = α

β
. (39)

All such pairs α and β are obtainable by using the inverse formulas

α = σeσ

eσ − 1 , β = σ

eσ − 1 ; (40)

for example, the values α = ln 4 and β = ln 2 correspond to σ = ln 2.
We can show as above that the integral in (35) is asymptotically equivalent to

an integral of e(n+1)g(z) dz over the path z = σ+it. (See exercise 58.) Exercise 56

From the Library of Melissa Nuno



ptg999

7.2.1.5 GENERATING ALL SET PARTITIONS 425

proves that the Taylor series about z = σ,

g(σ + it) = g(σ)− t2(1− β)
2σ2 −

∞
k=3

(it)k

k! g(k)(σ), (41)

has the property that

|g(k)(σ)| < 2(k − 1)! (1− β)/σk for all k > 0. (42)

Therefore we can conveniently remove a factor of N = (n + 1)(1 − β) from the
power series (n+ 1)g(z), and the saddle point method leads to the formula

n

m


= n!
m!

1
(α− β)n−mβm

√
2πN


1 + b1

N
+ b2

N2 + · · ·+ bl
N l

+O
 1
N l+1


(43)

as N → ∞, where (1 − β)2kbk is a polynomial in α and β. (The quantity
(α − β)n−mβm in the denominator comes from the fact that (eσ − 1)m/σn =
(α/β − 1)m/(α− β)n, by (37) and (39).) For example,

b1 = 6− β3 − 4αβ2 − α2β

8(1− β) − 5(2− β2 − αβ)2

24(1− β)2 . (44)

Exercise 57 proves that N → ∞ if and only if n −m → ∞. An asymptotic ex-
pansion for


n
m


similar to (43), but somewhat more complicated, was first

obtained by Leo Moser and Max Wyman, Duke Math. J. 25 (1957), 29–43.
Formula (43) looks a bit scary because it is designed to apply over the

entire range of block counts m. Significant simplifications are possible when m
is relatively small or relatively large (see exercises 60 and 61); but the simplified
formulas don’t give accurate results in the important cases when


n
m


is largest.

Let’s look at those crucial cases more closely now, so that we can account for
the sharp peak illustrated in Fig. 54.

Let ξeξ = n as in (24), and suppose m = exp(ξ + r/
√
n) = ner/

√
n/ξ; we

will assume that |r| ≤ nϵ, so that m is near eξ. The leading term of (43) can be
rewritten
n!
m!

1
(α− β)n−mβm


2π(n+ 1)(1− β)

=

mn

m!
(n+ 1)!

(n+ 1)n+1
en+1

√
2π(n+ 1)


1− β

α

m−n e−βm

√
1− β

, (45)

and Stirling’s approximation for (n+ 1)! is evidently ripe for cancellation in the
midst of this expression. With the help of computer algebra we find

mn

m!
= 1√

2π
exp


n

ξ − 1 + 1

ξ


− 1

2


ξ + r2 + r2

ξ


−

r

2 + r3

6 + r3

3ξ

 1√
n

+O(n4ϵ−1)


;

From the Library of Melissa Nuno



ptg999

426 COMBINATORIAL SEARCHING 7.2.1.5

and the relevant quantities related to α and β are

β

α
= ξ

n
+ rξ2

n
√
n

+O(ξ3n2ϵ−2);

e−βm = exp

−ξ − rξ2

√
n

+O(ξ3n2ϵ−1)


;
1− β

α

m−n

= exp

ξ − 1 + r(ξ2 − ξ − 1)√

n
+O(ξ3n2ϵ−1)


.

Therefore the overall result is
n

eξ+r/
√
n


= 1√

2π
exp


n

ξ − 1 + 1

ξ


− ξ

2 − 1

− ξ + 1
2ξ


r + 3ξ(2ξ + 3) + (ξ + 2)r2

6(ξ + 1)
√
n

2
+O(ξ3n4ϵ−1)


. (46)

The squared expression on the last line is zero when

r = − ξ(2ξ + 3)
2(ξ + 1)

√
n

+O(ξ2n−3/2);

thus the maximum occurs when the number of blocks is

m = n

ξ
− 3 + 2ξ

2 + 2ξ +O

ξ

n


. (47)

By comparing (46) to (30) we see that the largest Stirling number

n
m


for a

given value of n is approximately equal to ξϖn/
√

2πn.
The saddle point method applies to problems that are considerably more

difficult than the ones we have considered here. Excellent expositions of advanced
techniques can be found in several books: N. G. de Bruijn, Asymptotic Methods
in Analysis (1958), Chapters 5 and 6; F. W. J. Olver, Asymptotics and Special
Functions (1974), Chapter 4; R. Wong, Asymptotic Approximations of Integrals
(2001), Chapters 2 and 7.

*Random set partitions. The sizes of blocks in a partition of {1, . . . , n}
constitute by themselves an ordinary partition of the number n. Therefore
we might wonder what sort of partition they are likely to be. Figure 50 in
Section 7.2.1.4 showed the result of superimposing the Ferrers diagrams of all
p(25) = 1958 partitions of 25; those partitions tended to follow the symmetrical
curve of Eq. 7.2.1.4–(49). By contrast, Fig. 55 shows what happens when we
superimpose the corresponding diagrams of all ϖ25 ≈ 4.6386 × 1018 partitions
of the set {1, . . . , 25}. Evidently the “shape” of a random set partition is quite
different from the shape of a random integer partition.

This change is due to the fact that some integer partitions occur only a few
times as block sizes of set partitions, while others are extremely common. For
example, the partition n = 1 + 1 + · · · + 1 arises in only one way, but if n is

From the Library of Melissa Nuno



ptg999

7.2.1.5 GENERATING ALL SET PARTITIONS 427

0 ξ eξ

ξ

eξ − 1

Fig. 55. The shape of a random
set partition when n = 25.

even the partition n = 2 + 2 + · · ·+ 2 arises in (n− 1)(n− 3) . . . (1) ways. When
n = 25, the integer partition

25 = 4 + 4 + 3 + 3 + 3 + 2 + 2 + 2 + 1 + 1

actually occurs in more than 2% of all possible set partitions. (This particular
partition turns out to be most common in the case n = 25. The answer to
exercise 1.2.5–21 explains that exactly

n!
c1! 1!c1 c2! 2!c2 . . . cn!n!cn (48)

set partitions correspond to the integer partition n = c1 · 1 + c2 · 2 + · · ·+ cn ·n.)
We can easily determine the average number of k-blocks in a random par-

tition of {1, . . . , n}: If we write out all ϖn of the possibilities, every particular
k-element block occurs exactly ϖn−k times. Therefore the average number is

n

k


ϖn−k

ϖn
. (49)

An extension of Eq. (31) above, proved in exercise 64, shows moreover that

ϖn−k

ϖn
=


ξ

n

k
1 + kξ(kξ + k + 1)

2(ξ + 1)2n
+O


k3

n2


if k ≤ n2/3, (50)

where ξ is defined in (24). Therefore if, say, k ≤ nϵ, formula (49) simplifies to

nk

k!


ξ

n

k
1 +O

 1
n


= ξk

k!

1 +O(n2ϵ−1)


. (51)

There are, on average, about ξ blocks of size 1, and ξ2/2! blocks of size 2, etc.
The variance of these quantities is small (see exercise 65), and it turns out

that a random partition behaves essentially as if the number of k-blocks were
a Poisson deviate with mean ξk/k!. The smooth curve shown in Fig. 55 runs
through the points


f(k), k


in Ferrers-like coordinates, where

f(k) = ξk+1/(k + 1)! + ξk+2/(k + 2)! + ξk+3/(k + 3)! + · · · (52)

From the Library of Melissa Nuno



ptg999

428 COMBINATORIAL SEARCHING 7.2.1.5

is the approximate distance from the top line corresponding to block size k ≥ 0.
(This curve becomes more nearly vertical when n is larger.)

The largest block tends to contain approximately eξ elements. Furthermore,
the probability that the block containing element 1 has size less than ξ + a

√
ξ

approaches the probability that a normal deviate is less than a. [See John
Haigh, J. Combinatorial Theory A13 (1972), 287–295; V. N. Sachkov, Prob-
abilistic Methods in Combinatorial Analysis (1997), Chapter 4, translated from
a Russian book published in 1978; Yu. Yakubovich, J. Mathematical Sciences 87
(1997), 4124–4137, translated from a Russian paper published in 1995; B. Pittel,
J. Combinatorial Theory A79 (1997), 326–359.]

A nice way to generate random partitions of {1, 2, . . . , n} was introduced by
A. J. Stam in the Journal of Combinatorial Theory A35 (1983), 231–240: Let
M be a random integer that takes the value m with probability

pm = mn

em!ϖn
; (53)

these probabilities sum to 1 because of (16). Once M has been chosen, generate
a random n-tuple X1X2 . . . Xn, where each Xj is uniformly and independently
distributed between 0 and M − 1. Then let i ≡ j in the partition if and only if
Xi = Xj . This procedure works because each set partition that has k blocks is
obtained with probability


m≥0(mk/mn)pm = 1/ϖn.

For example, if n = 25 we have
p4 ≈ .00000372
p5 ≈ .00019696
p6 ≈ .00313161
p7 ≈ .02110279
p8 ≈ .07431024

p9 ≈ .15689865
p10 ≈ .21855285
p11 ≈ .21526871
p12 ≈ .15794784
p13 ≈ .08987171

p14 ≈ .04093663
p15 ≈ .01531445
p16 ≈ .00480507
p17 ≈ .00128669
p18 ≈ .00029839

p19 ≈ .00006068
p20 ≈ .00001094
p21 ≈ .00000176
p22 ≈ .00000026
p23 ≈ .00000003

and the other probabilities are negligible. So we can usually get a random
partition of 25 elements by looking at a random 25-digit integer in radix 9,
10, 11, or 12. The number M can be generated using 3.4.1–(3); it tends to be
approximately n/ξ = eξ (see exercise 67).

*Partitions of a multiset. The partitions of an integer and the partitions of
a set are just the extreme cases of a far more general problem, the partitions of
a multiset. Indeed, the partitions of n are essentially the same as the partitions
of {1, 1, . . . , 1}, where there are n 1s.

From this standpoint there are essentially p(n) types of multisets with n el-
ements. For example, five different cases of multiset partitions arise when n = 4:
1234, 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 13|2|4,

14|23, 14|2|3, 1|234, 1|23|4, 1|24|3, 1|2|34, 1|2|3|4;
1123, 112|3, 113|2, 11|23, 11|2|3, 123|1, 12|13, 12|1|3, 13|1|2, 1|1|23, 1|1|2|3;

1122, 112|2, 11|22, 11|2|2, 122|1, 12|12, 12|1|2, 1|1|22, 1|1|2|2;
1112, 111|2, 112|1, 11|12, 11|1|2, 12|1|1, 1|1|1|2;

1111, 111|1, 11|11, 11|1|1, 1|1|1|1. (54)

From the Library of Melissa Nuno



ptg999

7.2.1.5 GENERATING ALL SET PARTITIONS 429

When the multiset contains m distinct elements, with n1 of one kind, n2 of
another, . . . , and nm of the last, we write p(n1, n2, . . . , nm) for the total number
of partitions. Thus the examples in (54) show that

p(1, 1, 1, 1) = 15, p(2, 1, 1) = 11, p(2, 2) = 9, p(3, 1) = 7, p(4) = 5. (55)

Partitions with m = 2 are often called “bipartitions”; those with m = 3 are
“tripartitions”; and in general these combinatorial objects are known as multi-
partitions. The study of multipartitions was inaugurated long ago by P. A.
MacMahon [Philosophical Transactions 181 (1890), 481–536; 217 (1917), 81–
113; Proc. Cambridge Philos. Soc. 22 (1925), 951–963]; but the subject is so vast
that many unsolved problems remain. In the remainder of this section and in
the exercises below we shall take a glimpse at some of the most interesting and
instructive aspects of the theory that have been discovered so far.

In the first place it is important to notice that multipartitions are essentially
the partitions of vectors with nonnegative integer components, namely the ways
to decompose such a vector as a sum of such vectors. For example, the nine
partitions of {1, 1, 2, 2} listed in (54) are the same as the nine partitions of the
bipartite column vector 2

2, namely
2
2 ,

2
1

0
1 ,

2
0

0
2 ,

2
0

0
1

0
1 ,

1
2

1
0 ,

1
1

1
1 ,

1
1

1
0

0
1 ,

1
0

1
0

0
2 ,

1
0

1
0

0
1

0
1 . (56)

(We drop the + signs for brevity, as in the case of one-dimensional integer
partitions.) Each partition can be written in canonical form if we list its parts
in nonincreasing lexicographic order.

A fairly simple algorithm suffices to generate the partitions of any given
multiset. In the following procedure we represent partitions on a stack that
contains triples of elements (c, u, v), where c denotes a component number, u > 0
denotes the yet-unpartitioned amount remaining in component c, and v denotes
the c component of the current part, where 0 ≤ v ≤ u. Triples are actually kept
in three arrays (c0, c1, . . . ), (u0, u1, . . . ), and (v0, v1, . . . ) for convenience, and a
“stack frame” array (f0, f1, . . . ) is also maintained so that the (l+ 1)st vector of
the partition consists of elements fl through fl+1 − 1 in the c, u, and v arrays.
For example, the following arrays would represent the bipartition 3

1
2
2

2
0

1
1

1
1

0
3

0
1:

j 0 1 2 3 4 5 6 7 8 9 10 11
cj 1 2 1 2 1 2 1 2 1 2 2 2
uj 9 9 6 8 4 6 2 6 1 5 4 1
vj 3 1 2 2 2 0 1 1 1 1 3 1

f 0
=

0

f 1
=

2

f 2
=

4

f 3
=

6

f 4
=

8

f 5
=

10

f 6
=

11

f 7
=

12

(57)

Algorithm M (Multipartitions in decreasing lexicographic order). Given a
multiset {n1 ·1, . . . , nm ·m}, this algorithm visits all of its partitions using arrays
f0f1 . . . fn, c0c1 . . . cmn, u0u1 . . . umn, and v0v1 . . . vmn as described above, where
n = n1 + · · ·+ nm. We assume that m > 0 and n1, . . . , nm > 0.

From the Library of Melissa Nuno



ptg999

430 COMBINATORIAL SEARCHING 7.2.1.5

M1. [Initialize.] Set cj ← j + 1 and uj ← vj ← nj+1 for 0 ≤ j < m; also set
f0 ← a ← l ← 0 and f1 ← b ← m. (In the following steps, the current
stack frame runs from a to b− 1, inclusive.)

M2. [Subtract v from u.] (At this point we want to find all partitions of the
vector u in the current frame, into parts that are lexicographically ≤ v.
First we will use v itself.) Set j ← a, k ← b, and x← 0. Then while j < b
do the following: Set uk ← uj−vj . If uk = 0, just set x← 1 and j ← j+1.
Otherwise if x = 0, set ck ← cj , vk ← min(vj , uk), x← [uk <vj ], k ← k+1,
j ← j + 1. Otherwise set ck ← cj , vk ← uk, k ← k + 1, j ← j + 1. (Notice
that x = [v has changed].)

M3. [Push if nonzero.] If k > b, set a ← b, b ← k, l ← l + 1, fl+1 ← b, and
return to M2.

M4. [Visit a partition.] Visit the partition represented by the l + 1 vectors
currently in the stack. (For 0 ≤ k ≤ l, the vector has vj in component cj ,
for fk ≤ j < fk+1.)

M5. [Decrease v.] Set j ← b− 1; while vj = 0, set j ← j − 1. Then if j = a and
vj = 1, go to M6. Otherwise set vj ← vj − 1, and vk ← uk for j < k < b.
Return to M2.

M6. [Backtrack.] Terminate if l = 0. Otherwise set l ← l − 1, b ← a, a ← fl,
and return to M5.

The key to this algorithm is step M2, which decreases the current residual vector,
u, by the largest permissible part, v; that step also decreases v, if necessary, to
the lexicographically largest vector ≤ v that is less than or equal to the new
residual amount in every component. (See exercise 68.)

Let us conclude this section by discussing an amusing connection between
multipartitions and the least-significant-digit-first procedure for radix sorting
(Algorithm 5.2.5R). The idea is best understood by considering an example. See
Table 1, where Step (0) shows nine 4-partite column vectors in lexicographic
order. Serial numbers 1⃝– 9⃝ have been attached at the bottom for identifica-
tion. Step (1) performs a stable sort of the vectors, bringing their fourth (least
significant) entries into decreasing order; similarly, Steps (2), (3), and (4) do a
stable sort on the third, second, and top rows. The theory of radix sorting tells
us that the original lexicographic order is thereby restored.

Suppose the serial number sequences after these stable sorting operations are
respectively α4, α3α4, α2α3α4, and α1α2α3α4, where the α’s are permutations;
Table 1 shows the values of α4, α3, α2, and α1 in parentheses. And now comes
the point: Wherever the permutation αj has a descent, the numbers in row j
after sorting must also have a descent, because the sorting is stable. (These
descents are indicated by caret marks in the table.) For example, where α3 has
8 followed by 7, we have 5 followed by 3 in row 3. Therefore the entries a1 . . . a9 in
row 3 after Step (2) are not an arbitrary partition of their sum; they must satisfy

a1 ≥ a2 ≥ a3 ≥ a4 > a5 ≥ a6 > a7 ≥ a8 ≥ a9. (58)

From the Library of Melissa Nuno



ptg999

7.2.1.5 GENERATING ALL SET PARTITIONS 431

Table 1
RADIX SORTING AND MULTIPARTITIONS

Step (0): Original partition
6
3
6
4
1⃝

5
2
6
2
2⃝

5
1
3
1
3⃝

4
0
1
3
4⃝

3
4
1
3
5⃝

2
5
5
1
6⃝

1
6
2
1
7⃝

0
4
0
2
8⃝

0
2
7
5
9⃝

α4 = (

Step (1): Sort row 4
0
2
7
5
9⃝
9

∧

∧

6
3
6
4
1⃝
1

4
0
1
3
4⃝
4

3
4
1
3
5⃝
5

∧

∧

5
2
6
2
2⃝
2

0
4
0
2
8⃝
8

∧

∧

5
1
3
1
3⃝
3

2
5
5
1
6⃝
6

1
6
2
1
7⃝
7 ) α3 = (

Step (2): Sort row 3
0
2
7
5
9⃝
1

6
3
6
4
1⃝
2

5
2
6
2
2⃝
5

2
5
5
1
6⃝
8

∧

∧

5
1
3
1
3⃝
7

1
6
2
1
7⃝
9

∧

∧

4
0
1
3
4⃝
3

3
4
1
3
5⃝
4

0
4
0
2
8⃝
6 )

α2 = (

Step (3): Sort row 2
1
6
2
1
7⃝
6

∧

∧

2
5
5
1
6⃝
4

3
4
1
3
5⃝
8

0
4
0
2
8⃝
9

∧

∧

6
3
6
4
1⃝
2

∧

∧

0
2
7
5
9⃝
1

5
2
6
2
2⃝
3

5
1
3
1
3⃝
5

4
0
1
3
4⃝
7 ) α1 = (

Step (4): Sort row 1
6
3
6
4
1⃝
5

5
2
6
2
2⃝
7

5
1
3
1
3⃝
8

4
0
1
3
4⃝
9

∧

∧

3
4
1
3
5⃝
3

∧

∧

2
5
5
1
6⃝
2

∧

∧

1
6
2
1
7⃝
1

0
4
0
2
8⃝
4

0
2
7
5
9⃝
6 )

But the numbers (a1−2, a2−2, a3−2, a4−2, a5−1, a6−1, a7, a8, a9) do form an
essentially arbitrary partition of the original sum, minus (4 + 6). The amount of
decrease, 4 + 6, is the sum of the indices where descents occur; this number is
what we called indα3, the “index” of α3, in Section 5.1.1.

Thus we see that any given partition of an m-partite number into at most r
parts, with extra zeros added so that the number of columns is exactly r, can
be encoded as a sequence of permutations α1, . . . , αm of {1, . . . , r} such that
the product α1 . . . αm is the identity, together with a sequence of ordinary one-
dimensional partitions of the numbers (n1 − indα1, . . . , nm − indαm) into at
most r parts. For example, the vectors in Table 1 represent a partition of
(26, 27, 31, 22) into 9 parts; the permutations α1, . . . , α4 appear in the table,
and we have (indα1, . . . , indα4) = (15, 10, 10, 11); the partitions are respectively

26−15 = (322111100), 27−10 = (332222210),
31−10 = (544321110), 22−11 = (221111111).

Conversely, any such permutations and partitions will yield a multipartition
of (n1, . . . , nm). If r and m are small, it can be helpful to consider these
r!m−1 sequences of one-dimensional partitions when listing or reasoning about
multipartitions, especially in the bipartite case. [This construction is due to
Basil Gordon, J. London Math. Soc. 38 (1963), 459–464.]

A good summary of early work on multipartitions, including studies of
partitions into distinct parts and/or strictly positive parts, appears in a paper
by M. S. Cheema and T. S. Motzkin, Proc. Symp. Pure Math. 19 (Amer. Math.
Soc., 1971), 39–70.

EXERCISES
1. [20 ] (G. Hutchinson.) Show that a simple modification to Algorithm H will

generate all partitions of {1, . . . , n} into at most r blocks, given n and r ≥ 2.

From the Library of Melissa Nuno



ptg999

432 COMBINATORIAL SEARCHING 7.2.1.5

x 2. [22 ] When set partitions are used in practice, we often want to link the elements
of each block together. Thus it is convenient to have an array of links l1 . . . ln and an
array of headers h1 . . . ht so that the elements of the jth block of a t-block partition
are i1 > · · · > ik, where

i1 = hj , i2 = li1 , . . . , ik = lik−1 , and lik = 0.

For example, the representation of 137|25|489|6 would have t = 4, l1 . . . l9 = 001020348,
and h1 . . . h4 = 7596.

Design a variant of Algorithm H that generates partitions using this representation.
3. [M23 ] What is the millionth partition of {1, . . . , 12} generated by Algorithm H?

x 4. [21 ] If x1 . . . xn is any string, let ρ(x1 . . . xn) be the restricted growth string that
corresponds to the equivalence relation j ≡ k ⇐⇒ xj = xk. Classify each of the
five-letter English words in the Stanford GraphBase by applying this ρ function; for
example, ρ(tooth) = 01102. How many of the 52 set partitions of five elements are rep-
resentable by English words in this way? What’s the most common word of each type?

5. [22 ] Guess the next elements of the following two sequences: (a) 0, 1, 1, 1, 12, 12,
12, 12, 12, 12, 100, 121, 122, 123, 123, . . . ; (b) 0, 1, 12, 100, 112, 121, 122, 123, . . . .

x 6. [25 ] Suggest an algorithm to generate all partitions of {1, . . . , n} in which there
are exactly c1 blocks of size 1, c2 blocks of size 2, etc.

7. [M20 ] How many permutations a1 . . . an of {1, . . . , n} have the property that
ak−1 > ak > aj implies j > k?

8. [20 ] Suggest a way to generate all permutations of {1, . . . , n} that have exactly
m left-to-right minima.

9. [M20 ] How many restricted growth strings a1 . . . an contain exactly kj occurrences
of j, given the integers k0, k1, . . . , kn−1?
10. [25 ] A semilabeled tree is an oriented tree in which the leaves are labeled with the
integers {1, . . . , k}, but the other nodes are unlabeled. Thus there are 15 semilabeled
trees with 5 vertices:

1
12

1
2 1

2 123 12
1

2 1

2 1
23

2
13

3
12

12
3

1
2
3

1
23 1234

Find a one-to-one correspondence between partitions of {1, . . . , n} and semilabeled
trees with n+ 1 vertices.

x 11. [28 ] We observed in Section 7.2.1.2 that Dudeney’s famous problem send+more =
money is a “pure” alphametic, namely an alphametic with a unique solution. His puzzle
corresponds to a set partition on 13 digit positions, for which the restricted growth
string ρ(sendmoremoney) is 0123456145217; and we might wonder how lucky he had to
be in order to come up with such a construction. How many restricted growth strings of
length 13 define pure alphametics of the form a1a2a3a4 + a5a6a7a8 = a9a10a11a12a13?
12. [M31 ] (The partition lattice.) If Π and Π ′ are partitions of the same set, we write
Π ⪯ Π ′ if x ≡ y (modulo Π) whenever x ≡ y (modulo Π ′). In other words, Π ⪯ Π ′

means that Π ′ is a “refinement” of Π, obtained by partitioning zero or more of the
latter’s blocks; and Π is a “crudification” or coalescence of Π ′, obtained by merging
zero or more blocks together. This partial ordering is easily seen to be a lattice, with

From the Library of Melissa Nuno



ptg999

7.2.1.5 GENERATING ALL SET PARTITIONS 433

Π ∨ Π ′ the greatest common refinement of Π and Π ′, and with Π ∧ Π ′ their least
common coalescence. For example, the lattice of partitions of {1, 2, 3, 4} is

0000

0001 0010 0011

0012

0100 0101

0102

0110 0111

0112 0120 0121 0122

0123

if we represent partitions by restricted growth strings a1a2a3a4; upward paths in this
diagram take each partition into its refinements. Partitions with t blocks appear on
level t from the bottom, and their descendants form the partition lattice of {1, . . . , t}.

a) Explain how to compute Π ∨Π ′, given a1 . . . an and a′1 . . . a
′
n.

b) Explain how to compute Π ∧Π ′, given a1 . . . an and a′1 . . . a
′
n.

c) When does Π ′ cover Π in this lattice? (See exercise 7.2.1.4–55.)
d) If Π has t blocks of sizes s1, . . . , st, how many partitions does it cover?
e) If Π has t blocks of sizes s1, . . . , st, how many partitions cover it?
f) True or false: If Π ∨Π ′ covers Π, then Π ′ covers Π ∧Π ′.
g) True or false: If Π ′ covers Π ∧Π ′, then Π ∨Π ′ covers Π.
h) Let b(Π) denote the number of blocks of Π. Prove that

b(Π) + b(Π ′) ≤ b(Π ∨Π ′) + b(Π ∧Π ′).

13. [M28 ] (Stephen C. Milne, 1977.) If A is a set of partitions of {1, . . . , n}, its
shadow ∂A is the set of all partitions Π ′ such that Π covers Π ′ for some Π ∈ A. (We
considered the analogous concept for the subset lattice in 7.2.1.3–(54).)

Let Π1, Π2, . . . be the partitions of {1, . . . , n} into t blocks, in lexicographic order
of their restricted growth strings; and let Π ′

1, Π ′
2, . . . be the (t − 1)-block partitions,

also in lexicographic order. Prove that there is a function fnt(N) such that

∂{Π1, . . . , ΠN} = {Π ′
1, . . . , Π

′
fnt(N)} for 0 ≤ N ≤


n

t


.

Hint: The diagram in exercise 12 shows that (f43(0), . . . , f43(6)) = (0, 3, 5, 7, 7, 7, 7).

14. [23 ] Design an algorithm to generate set partitions in Gray-code order like (7).

15. [M21 ] What is the final partition generated by the algorithm of exercise 14?

16. [16 ] The list (11) is Ruskey’s A35; what is A′
35?

17. [26 ] Implement Ruskey’s Gray code (8) for all m-block partitions of {1, . . . , n}.
18. [M46 ] For which n is it possible to generate all restricted growth strings a1 . . . an
in such a way that some aj changes by ±1 at each step?

19. [28 ] Prove that there’s a Gray code for restricted growth strings in which, at each
step, some aj changes by either ±1 or ±2, when (a) we want to generate all ϖn strings
a1 . . . an; or (b) we want to generate only the


n
m


cases with max(a1, . . . , an) = m−1.

From the Library of Melissa Nuno



ptg999

434 COMBINATORIAL SEARCHING 7.2.1.5

20. [17 ] If Π is a partition of {1, . . . , n}, its conjugate ΠT is defined by the rule

j ≡ k (modulo ΠT ) ⇐⇒ n+ 1− j ≡ n+ 1− k (modulo Π).

Suppose Π has the restricted growth string 001010202013; what is the restricted growth
string of ΠT ?
21. [M27 ] How many partitions of {1, . . . , n} are self-conjugate?
22. [M23 ] If X is a random variable with a given distribution, the expected value of
Xn is called the nth moment of that distribution. What is the nth moment when X is
(a) a Poisson deviate with mean 1 (Eq. 3.4.1–(40))? (b) the number of fixed points of
a random permutation of {1, . . . ,m}, when m ≥ n (Eq. 1.3.3–(27))?
23. [HM30 ] If f(x) =


akx

k is a polynomial, let f(ϖ) stand for

akϖk.

a) Prove the symbolic formula f(ϖ + 1) = ϖf(ϖ). (For example, if f(x) is the
polynomial x2, this formula states that ϖ2 + 2ϖ1 +ϖ0 = ϖ3.)

b) Similarly, prove that f(ϖ + k) = ϖkf(ϖ) for all positive integers k.
c) If p is prime, prove that ϖn+p ≡ ϖn + ϖn+1 (modulo p). Hint: Show first that

xp ≡ xp − x.
d) Consequently ϖn+N ≡ ϖn (modulo p) when N = pp−1 + pp−2 + · · ·+ p+ 1.

24. [HM35 ] Continuing the previous exercise, prove that the Bell numbers satisfy the
periodic law ϖn+pe−1N ≡ ϖn (modulo pe), if p is an odd prime. Hint: Show that

xp
e ≡ ge(x)+1 (modulo pe, pe−1g1(x), . . . , and pge−1(x)), where gj(x) = (xp−x−1)p

j

.

25. [M27 ] Prove that ϖn/ϖn−1 ≤ ϖn+1/ϖn ≤ ϖn/ϖn−1 + 1.
x 26. [M22 ] According to the recurrence equations (13), the numbers ϖnk in Peirce’s

triangle count the paths from nk to 11 in the infinite directed graph
11

21 22

31 32 33

41 42 43 44

Explain why each path from n1 to 11 corresponds to a partition of {1, . . . , n}.
x 27. [M35 ] A “vacillating tableau loop” of order n is a sequence of integer partitions
λk = ak1ak2ak3 . . . with ak1 ≥ ak2 ≥ ak3 ≥ · · · for 0 ≤ k ≤ 2n, such that λ0 = λ2n = e0
and λk = λk−1 + (−1)ketk for 1 ≤ k ≤ 2n and for some tk with 0 ≤ tk ≤ n; here
et denotes the unit vector 0t−110n−t when 0 < t ≤ n, and e0 is all zeros.

a) List all the vacillating tableau loops of order 4. [Hint: There are 15 altogether.]
b) Prove that exactly ϖnk vacillating tableau loops of order n have t2k−1 = 0.

x 28. [M25 ] (Generalized rook polynomials.) Consider an arrangement of a1 + · · ·+ am
square cells in rows and columns, where row k contains cells in columns 1, . . . , ak.
Place zero or more “rooks” into the cells, with at most one rook in each row and at
most one in each column. An empty cell is called “free” if there is no rook to its right
and no rook below. For example, Fig. 56 shows two such placements, one with four
rooks in rows of lengths (3,1,4,1,5,9,2,6,5), and another with nine on a 9 × 9 square
board. Rooks are indicated by solid circles; hollow circles have been placed above and

From the Library of Melissa Nuno



ptg999

7.2.1.5 GENERATING ALL SET PARTITIONS 435

to the left of each rook, thereby leaving the free cells blank.

•

•

•
•

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ ◦

◦ ◦
◦
◦ ◦

•
•

•
•

•
•

•
•

•

◦ ◦ ◦ ◦
◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Fig. 56. Rook placements
and free cells.

Let R(a1, . . . , am) be the polynomial in x and y obtained by summing xryf over all
legal rook placements, where r is the number of rooks and f is the number of free cells;
for example, the left-hand placement in Fig. 56 contributes x4y17 to the polynomial
R(3, 1, 4, 1, 5, 9, 2, 6, 5).

a) Prove that we have R(a1, . . . , am) = R(a1, . . . , aj−1, aj+1, aj , aj+2, . . . , am); in
other words, the order of the row lengths is irrelevant, and we can assume that
a1 ≥ · · · ≥ am as in a tableau shape like 7.2.1.4–(13).

b) If a1 ≥ · · · ≥ am and if b1 . . . bn = (a1 . . . am)T is the conjugate partition, prove
that R(a1, . . . , am) = R(b1, . . . , bn).

c) Find a recurrence for evaluating R(a1, . . . , am) and use it to compute R(3, 2, 1).
d) Generalize Peirce’s triangle (12) by changing the addition rule (13) to

ϖnk(x, y) = xϖ(n−1)k(x, y) + yϖn(k+1)(x, y), 1 ≤ k < n.

Thus ϖ21(x, y) = x+y, ϖ32(x, y) = x+xy+y2, ϖ31(x, y) = x2+2xy+xy2+y3, etc.
Prove that the resulting quantity ϖnk(x, y) is the rook polynomial R(a1, . . . , an−1)
where aj = n− j − [j <k ].

e) The polynomial ϖn1(x, y) in part (d) can be regarded as a generalized Bell number
ϖn(x, y), representing paths from n1 to 11 in the digraph of exercise 26 that have
a given number of “x steps” to the northeast and a given number of “y steps” to
the east. Prove that

ϖn(x, y) =


a1...an

xn−1−max(a1,...,an)ya1+···+an

summed over all restricted growth strings a1 . . . an of length n.
29. [M26 ] Continuing the previous exercise, let Rr(a1, . . . , am) = [xr]R(a1, . . . , am)
be the polynomial in y that enumerates free cells when r rooks are placed.

a) Show that the number of ways to place n rooks on an n× n board, leaving f cells
free, is the number of permutations of {1, . . . , n} that have f inversions. Thus, by
Eq. 5.1.1–(8) and exercise 5.1.2–16, we have

Rn(
n  

n, . . . , n) = n!y =
n
k=1

(1 + y + · · ·+ yk−1).

b) What is Rr(
m  

n, . . . , n), the generating function for r rooks on an m× n board?
c) If a1 ≥ · · · ≥ am ≥ 0 and t is a nonnegative integer, prove the general formula

m
j=1

1− yaj+j−m+t

1− y =
m
k=0

t!y
(t− k)!y

Rm−k(a1, . . . , am).

From the Library of Melissa Nuno



ptg999

436 COMBINATORIAL SEARCHING 7.2.1.5

[Note: The quantity t!y/(t−k)!y =
k−1
j=0 ((1−yt−j)/(1−y)) is zero when k > t ≥ 0.

Thus, for example, when t = 0 the right-hand side reduces to Rm(a1, . . . , am). We
can compute Rm, Rm−1, . . . , R0 by successively setting t = 0, 1, . . . , m.]

d) If a1 ≥ a2 ≥ · · · ≥ am ≥ 0 and a′1 ≥ a′2 ≥ · · · ≥ a′m ≥ 0, show that we
have R(a1, a2 . . . , am) = R(a′1, a′2, . . . , a′m) if and only if the associated multisets
{a1+1, a2+2, . . . , am+m} and {a′1+1, a′2+2, . . . , a′m+m} are the same.

30. [HM30 ] The generalized Stirling number

n
m


q

is defined by the recurrence
n+ 1
m


q

= (1 + q + · · ·+ qm−1)

n

m


q

+


n

m− 1


q
;

 0
m


q

= δm0 .

Thus

n
m


q

is a polynomial in q; and

n
m


1 is the ordinary Stirling number


n
m


, because

it satisfies the recurrence relation in Eq. 1.2.6–(46).
a) Prove that the generalized Bell number ϖn(x, y) = R(n−1, . . . , 1) of exercise 28(e)

has the explicit form

ϖn(x, y) =
n

m=0

xn−my(m2 )

n

m


y
.

b) Show that generalized Stirling numbers also obey the recurrence

qm

n+ 1
m+ 1


q

= qn

n

m


q

+

n

1


qn−1


n− 1
m


q

+ · · · =

k


n

k


qk

k

m


q
.

c) Find generating functions for

n
m


q
, generalizing 1.2.9–(23) and 1.2.9–(28).

31. [HM23 ] Generalizing (15), show that the elements of Peirce’s triangle have a
simple generating function, if we compute the sum

n,k

ϖnk
wn−k

(n− k)!
zk−1

(k − 1)! .

32. [M22 ] Let δn be the number of restricted growth strings a1 . . . an for which the
sum a1 + · · ·+ an is even minus the number for which a1 + · · ·+ an is odd. Prove that

δn = (1, 0,−1,−1, 0, 1) when nmod 6 = (1, 2, 3, 4, 5, 0).

Hint: See exercise 28(e).
33. [M21 ] How many partitions of {1, 2, . . . , n} have 1 ̸≡ 2, 2 ̸≡ 3, . . . , k − 1 ̸≡ k?
34. [14 ] Many poetic forms involve rhyme schemes, which are partitions of the lines
of a stanza with the property that j ≡ k if and only if line j rhymes with line k. For
example, a “limerick” is generally a 5-line poem with certain rhythmic constraints and
with a rhyme scheme described by the restricted growth string 00110.

What rhyme schemes were used in the classical sonnets by (a) Guittone d’Arezzo
(c. 1270)? (b) Petrarch (c. 1350)? (c) Spenser (1595)? (d) Shakespeare (1609)?
(e) Elizabeth Barrett Browning (1850)?
35. [M21 ] Let ϖ′

n be the number of schemes for n-line poems that are “completely
rhymed,” in the sense that every line rhymes with at least one other. Thus we have
⟨ϖ′

0, ϖ′
1, ϖ′

2, . . . ⟩ = ⟨1, 0, 1, 1, 4, 11, 41, . . . ⟩. Give a combinatorial proof of the fact
that ϖ′

n +ϖ′
n+1 = ϖn.

36. [M22 ] Continuing exercise 35, what is the generating function

nϖ

′
nz
n/n!?

From the Library of Melissa Nuno



ptg999

7.2.1.5 GENERATING ALL SET PARTITIONS 437

37. [M18 ] Alexander Pushkin adopted an elaborate structure in his poetic novel
Eugene Onegin (1833), based not only on “masculine” rhymes in which the sounds of
accented final syllables agree with each other (pain–gain, form–warm, pun–fun, bucks–
crux), but also on “feminine” rhymes in which one or two unstressed syllables also par-
ticipate (humor–tumor, tetrameter–pentameter, lecture–conjecture, iguana–piranha).
Every stanza of Eugene Onegin is a sonnet with the strict scheme 01012233455477,
where the rhyme is feminine or masculine according as the digit is even or odd. Several
modern translators of Pushkin’s novel have also succeeded in retaining the same form
in English and German.

How do I justify this stanza? / These feminine rhymes? My wrinkled muse?
This whole passé extravaganza? / How can I (careless of time) use

The dusty bread molds of Onegin / In the brave bakery of Reagan?
The loaves will surely fail to rise / Or else go stale before my eyes.
The truth is, I can’t justify it. / But as no shroud of critical terms

Can save my corpse from boring worms, / I may as well have fun and try it.
If it works, good; and if not, well, / A theory won’t postpone its knell.

— VIKRAM SETH, The Golden Gate (1986)

A 14-line poem might have any of ϖ′
14 = 24,011,157 complete rhyme schemes,

according to exercise 35. But how many schemes are possible if we are allowed to
specify, for each block, whether its rhyme is to be feminine or masculine?

x 38. [M30 ] Let σk be the cyclic permutation (1, 2, . . . , k). The object of this exercise
is to study the sequences k1k2 . . . kn, called σ-cycles, for which σk1σk2 . . . σkn is the
identity permutation. For example, when n = 4 there are exactly 15 σ-cycles, namely

1111, 1122, 1212, 1221, 1333, 2112, 2121, 2211, 2222, 2323, 3133, 3232, 3313, 3331, 4444.

a) Find a one-to-one correspondence between partitions of {1, 2, . . . , n} and σ-cycles
of length n.

b) How many σ-cycles of length n have 1 ≤ k1, . . . , kn ≤ m, given m and n?
c) How many σ-cycles of length n have ki = j, given i, j, and n?
d) How many σ-cycles of length n have k1, . . . , kn ≥ 2?
e) How many partitions of {1, . . . , n} have 1 ̸≡ 2, 2 ̸≡ 3, . . . , n− 1 ̸≡ n, and n ̸≡ 1?

39. [HM16 ] Evaluate
∞

0 e−t
p+1

tq dt when p and q are nonnegative integers. Hint:
See exercise 1.2.5–20.
40. [HM20 ] Suppose the saddle point method is used to estimate [zn−1] ecz. The
text’s derivation of (21) from (19) deals with the case c = 1; how should that derivation
change if c is an arbitrary positive constant?
41. [HM21 ] Solve the previous exercise when c = −1.
42. [HM23 ] Use the saddle point method to estimate [zn−1] ez

2
with relative error

O(1/n2).
43. [HM22 ] Justify replacing the integral in (23) by (25).
44. [HM22 ] Explain how to compute b1, b2, . . . in (26) from a2, a3, . . . in (25).

x 45. [HM23 ] Show that, in addition to (26), we also have the expansion

ϖn = ee
ξ−1n!

ξn


2πn(ξ + 1)


1 + b′1

n
+ b′2
n2 + · · ·+ b′m

nm
+O

 1
nm+1


,

where b′1 = −(2ξ4 + 9ξ3 + 16ξ2 + 6ξ + 2)/(24(ξ + 1)3).

From the Library of Melissa Nuno



ptg999

438 COMBINATORIAL SEARCHING 7.2.1.5

46. [HM25 ] Estimate the value of ϖnk in Peirce’s triangle when n→∞.
47. [M21 ] Analyze the running time of Algorithm H.
48. [HM25 ] If n is not an integer, the integral in (23) can be taken over a Hankel
contour to define a generalized Bell number ϖx for all real x > 0. Show that, as in (16),

ϖx = 1
e

∞
k=0

kx

k! .

x 49. [HM35 ] Prove that, for large n, the number ξ defined in Eq. (24) is equal to

lnn− ln lnn+

j,k≥0


j + k

j + 1


αj
βk

k! , α = − 1
lnn, β = ln lnn

lnn .

x 50. [HM21 ] If ξ(n)eξ(n) = n and ξ(n) > 0, how does ξ(n+ k) relate to ξ(n)?
51. [HM27 ] Use the saddle point method to estimate tn = n! [zn] ez+z2/2, the number
of involutions on n elements (aka partitions of {1, . . . , n} into blocks of sizes ≤ 2).
52. [HM22 ] The cumulants of a probability distribution are defined in Eq. 1.2.10–
(23). What are the cumulants, when the probability that a random integer equals k is
(a) e1−eξϖkξ

k/k!? (b)

j


k
j


ee

−1−1−j/k!?
x 53. [HM30 ] Let G(z) =

∞
k=0 pkz

k be the generating function for a discrete prob-
ability distribution, converging for |z| < 1 + δ; thus the coefficients pk are non-
negative, G(1) = 1, and the mean and variance are respectively µ = G′(1) and
σ2 = G′′(1) +G′(1)−G′(1)2. If X1, . . . , Xn are independent random variables having
this distribution, the probability that X1 + · · ·+ Xn = m is [zm]G(z)n, and we often
want to estimate this probability when m is near the mean value µn.

Assume that p0 ̸= 0 and that no integer d > 1 is a common divisor of all
subscripts k with pk ̸= 0; this assumption means that m does not have to satisfy
any special congruence conditions mod d when n is large. Prove that

[zµn+r]G(z)n = e−r
2/(2σ2n)

σ
√

2πn
+O

 1
n


as n→∞,

when µn+ r is an integer. Hint: Integrate G(z)n/zµn+r on the circle |z| = 1.
54. [HM20 ] If α and β are defined by (40), show that their arithmetic and geometric
means are respectively α+β

2 = s coth s and
√
αβ = s csch s, where s = σ/2.

55. [HM20 ] Suggest a good way to compute the number β needed in (43).
x 56. [HM26 ] Let g(z) = α−1 ln(ez − 1)− ln z and σ = α− β as in (37).

a) Prove that (−σ)n+1g(n+1)(σ) = n! −n
k=0


n
k


αkβn−k, where the Eulerian num-

bers

n
k


are defined in Section 5.1.3.

b) Prove that β
αn! <

n
k=0


n
k


αkβn−k < n! for all σ > 0. Hint: See exercise 5.1.3–25.

c) Now verify the inequality (42).
57. [HM22 ] In the notation of (43), prove that (a) n+1−m < 2N ; (b)N< 2(n+1−m).
58. [HM31 ] Complete the proof of (43) as follows.

a) Show that for all σ > 0 there is a number τ ≥ 2σ such that τ is a multiple of 2π
and |eσ+it − 1|/|σ + it| is monotone decreasing for 0 ≤ t ≤ τ .

b) Prove that
 τ
−τ exp((n+ 1)g(σ + it)) dt leads to (43).

c) Show that the corresponding integrals over the straight-line paths z = t ± iτ for
−n ≤ t ≤ σ and z = −n± it for −τ ≤ t ≤ τ are negligible.

From the Library of Melissa Nuno



ptg999

7.2.1.5 GENERATING ALL SET PARTITIONS 439

x 59. [HM23 ] What does (43) predict for the approximate value of

n
n


?

60. [HM25 ] (a) Show that the partial sums in the identity
n

m


= mn

m! −
(m− 1)n

1! (m− 1)! + (m− 2)n

2! (m− 2)! − · · ·+ (−1)m 0n

m! 0!
alternately overestimate and underestimate the final value. (b) Conclude that

n

m


= mn

m! (1−O(ne−n
ϵ

)) when m ≤ n1−ϵ.

(c) Derive a similar result from (43).
61. [HM26 ] Prove that if m = n− r where r ≤ nϵ and ϵ ≤ n1/2, Eq. (43) yields

n

n− r


= n2r

2rr!


1 +O(n2ϵ−1) +O

1
r


.

62. [HM40 ] Prove rigorously that if ξeξ = n, the maximum

n
m


occurs either when

m = ⌊eξ − 1⌋ or when m = ⌈eξ − 1⌉.
x 63. [M35 ] (J. Pitman.) Prove that there is an elementary way to locate the maximum

Stirling numbers, and many similar quantities, as follows: Suppose 0 ≤ pj ≤ 1.
a) Let f(z) = (1+p1(z−1)) . . . (1+pn(z−1)) and ak = [zk] f(z); thus ak is the proba-

bility that k heads turn up after n independent coin flips with the respective prob-
abilities p1, . . . , pn. Prove that ak−1 < ak whenever k ≤ µ = p1 + · · ·+pn, ak ̸= 0.

b) Similarly, prove that ak+1 < ak whenever k ≥ µ and ak ̸= 0.
c) If f(x) = a0 + a1x + · · · + anx

n is any nonzero polynomial with nonnegative
coefficients and with n real roots, prove that ak−1 < ak when k ≤ µ and ak+1 < ak
when k ≥ µ, where µ = f ′(1)/f(1). Therefore if am = max(a0, . . . , an) we must
have either m = ⌊µ⌋ or m = ⌈µ⌉.

d) Under the hypotheses of (c), and with aj = 0 when j < 0 or j > n, show that
there are indices s ≤ t, such that ak+1 − ak < ak − ak−1 if and only if s ≤ k ≤ t.
(Thus, a histogram of the sequence (a0, a1, . . . , an) is always “bell-shaped.”)

e) What do these results tell us about Stirling numbers?
64. [HM21 ] Prove the approximate ratio (50), using (30) and exercise 50.

x 65. [HM22 ] What is the variance of the number of blocks of size k in a random
partition of {1, . . . , n}?
66. [M46 ] What partition of n leads to the most partitions of {1, . . . , n}?
67. [HM20 ] What are the mean and variance of M in Stam’s method (53)?
68. [21 ] How large can variables l and b get in Algorithm M, when that algorithm is
generating all p(n1, . . . , nm) partitions of {n1 · 1, . . . , nm ·m}?

x 69. [22 ] Modify Algorithm M so that it produces only partitions into at most r parts.
x 70. [M22 ] Analyze the number of r-block partitions possible in the n-element multi-

sets (a) {0, . . . , 0, 1}; (b) {1, 2, . . . , n− 1, n− 1}. What is the total, summed over r?
71. [M20 ] How many partitions of {n1 · 1, . . . , nm ·m} have exactly 2 parts?
72. [M26 ] Can p(n, n) be evaluated in polynomial time?

x 73. [M32 ] Can p(2, . . . , 2) be evaluated in polynomial time when there are n 2s?
74. [M46 ] Can p(n, . . . , n) be evaluated in polynomial time when there are n ns?
75. [HM41 ] Find the asymptotic value of p(n, n).
76. [HM36 ] Find the asymptotic value of p(2, . . . , 2) when there are n 2s.
77. [HM46 ] Find the asymptotic value of p(n, . . . , n) when there are n ns.

From the Library of Melissa Nuno



ptg999

440 COMBINATORIAL SEARCHING 7.2.1.5

78. [20 ] What partition of (15, 10, 10, 11) leads to the permutations α1, α2, α3, and
α4 shown in Table 1?
79. [22 ] A sequence u1, u2, u3, . . . is called universal for partitions of {1, . . . , n} if
its subsequences (um+1, um+2, . . . , um+n) for 0 ≤ m < ϖn represent all possible set
partitions under the convention “j ≡ k if and only if um+j = um+k.” For example,
(0, 0, 0, 1, 0, 2, 2) is a universal sequence for partitions of {1, 2, 3}.

Write a program to find all universal sequences for partitions of {1, 2, 3, 4} with
the properties that (i) u1 = u2 = u3 = u4 = 0; (ii) the sequence has restricted growth;
(iii) 0 ≤ uj ≤ 3; and (iv) u16 = u17 = u18 = 0 (hence the sequence is essentially cyclic).
80. [M28 ] Prove that universal cycles for partitions of {1, 2, . . . , n} exist in the sense
of the previous exercise whenever n ≥ 4.
81. [29 ] Find a way to arrange an ordinary deck of 52 playing cards so that the fol-
lowing trick is possible: Five players each cut the deck (applying a cyclic permutation)
as often as they like. Then each player takes a card from the top. A magician tells
them to look at their cards and to form affinity groups, joining with others who hold
the same suit: Everybody with clubs gets together, everybody with diamonds forms
another group, and so on. (The Jack of Spades is, however, considered to be a “joker”;
its holder, if any, should remain aloof.)

Observing the affinity groups, but not being told any of the suits, the magician
can name all five cards, if the cards were suitably arranged in the first place.
82. [22 ] In how many ways can the following 15 dominoes, optionally rotated, be
partitioned into three sets of five having the same sum when regarded as fractions?

1
²

+1
³

+4
1

+1
5

+1
¶

= ²
³

+4
²

+²
5

+4
³

+4
5

= ²
¶

+5
³

+³
¶

+¶
4

+¶
5

Just as in a single body there are pairs of individual members,
called by the same name but distinguished as right and left,

so when my speeches had postulated the notion of madness,
as a single generic aspect of human nature,

the speech that divided the left-hand portion
repeatedly broke it down into smaller and smaller parts.

— SOCRATES, in Phædrus 266A (c. 370 B.C.)

7.2.1.6. Generating all trees. We’ve now completed our study of the classical
concepts of combinatorics: tuples, permutations, combinations, and partitions.
But computer scientists have added another fundamental class of patterns to
the traditional repertoire, namely the hierarchical arrangements known as trees.
Trees sprout up just about everywhere in computer science, as we’ve seen in
Section 2.3 and in nearly every subsequent section of The Art of Computer
Programming. Therefore we turn now to the study of simple algorithms by
which trees of various species can be explored exhaustively.

First let’s review the basic connection between nested parentheses and for-
ests of trees. For example,

(
1

(
2

)
1

)
2

(
3

(
4

(
5

)
3

)
4

(
6

(
7

(
8

)
5

(
9

(
a

)
6

)
7

)
8

(
b

)
9

)
a

(
c

(
d

)
b

(
e

(
f

)
c

)
d

)
e

)
f

(1)

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 441

illustrates a string containing fifteen left parens ‘(’ labeled 1, 2, . . . , f, and fifteen
right parens ‘)’ also labeled 1 through f; gray lines beneath the string show how
the parentheses match up to form fifteen pairs 12, 21, 3f, 44, 53, 6a, 78, 85, 97,
a6, b9, ce, db, ed, and fc. This string corresponds to the forest❦12❦21

❦3f❦44❦53
❦6a❦78❦85 ❦97❦a6

❦b9
❦ce❦db ❦ed❦fc (2)

in which the nodes are k12 , k21 , k3f , . . . , kfc in preorder (sorted by first coor-
dinates) and k21 , k12 , k53 , . . . , k3f in postorder (sorted by second coordinates).
If we imagine a worm that crawls around the periphery of the forest,❦❦ ❦❦❦ ❦❦❦ ❦❦

❦ ❦❦ ❦❦ (3)

seeing a ‘(’ whenever it passes the left edge of a node and a ‘)’ whenever it passes
a node’s right edge, that worm will have reconstructed the original string (1).

The forest in (2) corresponds, in turn, to the binary tree

❦
❦

❦ ❦❦ ❦❦
❦ ❦❦ ❦❦❦ ❦❦❦21 ❦12

❦53 ❦44
❦85

❦a6 ❦97
❦78 ❦b9

❦6a
❦db

❦fc ❦ed
❦ce

❦3f
(4)

via the “natural correspondence” discussed in Section 2.3.2; here the nodes arek21 , k12 , k53 , . . . , k3f in symmetric order, also known as inorder. The left
subtree of node kx in the binary tree is the leftmost child of kx in the forest,
or it is an “external node” if kx is childless. The right subtree of kx in the
binary tree is its right sibling in the forest, or if kx is the rightmost child in
its family. Roots of the trees in the forest are considered to be siblings, and the
leftmost root of the forest is the root of the binary tree.

From the Library of Melissa Nuno



ptg999

442 COMBINATORIAL SEARCHING 7.2.1.6

Table 1
NESTED PARENTHESES AND RELATED OBJECTS WHEN n = 4

a1a2 . . . a8 forest binary tree d1d2d3d4 z1z2z3z4 p1p2p3p4 c1c2c3c4 matching

()()()() 1111 1357 1234 0000

()()(()) 1102 1356 1243 0001

()(())() 1021 1347 1324 0010

()(()()) 1012 1346 1342 0011

()((())) 1003 1345 1432 0012

(())()() 0211 1257 2134 0100

(())(()) 0202 1256 2143 0101

(()())() 0121 1247 2314 0110

(()()()) 0112 1246 2341 0111

(()(())) 0103 1245 2431 0112

((()))() 0031 1237 3214 0120

((())()) 0022 1236 3241 0121

((()())) 0013 1235 3421 0122

(((()))) 0004 1234 4321 0123

A string a1a2 . . . a2n of parentheses is properly nested if and only if it
contains n occurrences of ‘(’ and n occurrences of ‘)’, where the kth ‘(’ precedes
the kth ‘)’ for 1 ≤ k ≤ n. The easiest way to explore all strings of nested paren-
theses is to visit them in lexicographic order. The following algorithm, which
considers ‘)’ to be lexicographically smaller than ‘(’, includes some refinements
for efficiency suggested by I. Semba [Inf. Processing Letters 12 (1981), 188–192]:

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 443

Algorithm P (Nested parentheses in lexicographic order). Given an integer
n ≥ 2, this algorithm generates all strings a1a2 . . . a2n of nested parentheses.
P1. [Initialize.] Set a2k−1 ← ‘(’ and a2k ← ‘)’ for 1 ≤ k ≤ n; also set a0 ← ‘)’

and m← 2n− 1. (We use a0 as a sentinel in step P4.)
P2. [Visit.] Visit the nested string a1a2 . . . a2n. (At this point am = ‘(’, and

ak = ‘)’ for m < k ≤ 2n.)
P3. [Easy case?] Set am ← ‘)’. Then if am−1 = ‘)’, set am−1 ← ‘(’, m← m−1,

and return to P2.
P4. [Find j.] Set j ← m − 1 and k ← 2n − 1. While aj = ‘(’, set aj ← ‘)’,

ak ← ‘(’, j ← j − 1, and k ← k − 2.
P5. [Increase aj .] Terminate the algorithm if j = 0. Otherwise set aj ← ‘(’,

m← 2n− 1, and go back to P2.
We will see later that the loop in step P4 is almost always short: The operation
aj ← ‘)’ is performed only about 1

3 times per nested string visited, on the average.
Why does Algorithm P work? Let Apq be the sequence of all strings α that

contain p left parentheses and q ≥ p right parentheses, where (q−pα is properly
nested, listed in lexicographic order. Then Algorithm P is supposed to generate
Ann, where it is easy to see that Apq obeys the recursive rules

Apq = )Ap(q−1), (A(p−1)q, if 0 ≤ p ≤ q ̸= 0; A00 = ϵ; (5)

also Apq is empty if p < 0 or p > q. The first element of Apq is )q−p() . . . (),
where there are p pairs ‘()’; the last element is (p)q. Thus the lexicographic
generation process consists of scanning from the right until finding a trailing
string of the form aj . . . a2n = )(p+1)q and replacing it by ()q+1−p() . . . ().
Steps P4 and P5 do this efficiently, while step P3 handles the simple case p = 0.

Table 1 illustrates the output of Algorithm P when n = 4, together with the
corresponding forest and binary tree as in (2) and (4). Several other equivalent
combinatorial objects also appear in Table 1: For example, a string of nested
parentheses can be run-length encoded as

()d1()d2 . . . ()dn , (6)
where the nonnegative integers d1d2 . . . dn are characterized by the constraints

d1 + d2 + · · ·+ dk ≤ k for 1 ≤ k < n; d1 + d2 + · · ·+ dn = n. (7)
We can also represent nested parentheses by the sequence z1z2 . . . zn, which
specifies the indices where the left parentheses appear. In essence, z1z2 . . . zn is
one of the

2n
n


combinations of n things from the set {1, 2, . . . , 2n}, subject to

the special constraints
zk−1 < zk < 2k for 1 ≤ k ≤ n, (8)

if we assume that z0 = 0. The z’s are of course related to the d’s:
dk = zk+1 − zk − 1 for 1 ≤ k < n. (9)

Algorithm P becomes particularly simple when it is rewritten to generate the
combinations z1z2 . . . zn instead of the strings a1a2 . . . a2n. (See exercise 2.)

From the Library of Melissa Nuno



ptg999

444 COMBINATORIAL SEARCHING 7.2.1.6

A parenthesis string can also be represented by the permutation p1p2 . . . pn,
where the kth right parenthesis matches the pkth left parenthesis; in other words,
the kth node of the associated forest in postorder is the pkth node in preorder.
By exercise 2.3.2–20, node j is a (proper) descendant of node k in the forest
if and only if j < k and pj > pk, when we label the nodes in postorder. The
inversion table c1c2 . . . cn characterizes this permutation by the rule that exactly
ck elements to the right of k are less than k (see exercise 5.1.1–7); allowable
inversion tables have c1 = 0 and

0 ≤ ck+1 ≤ ck + 1 for 1 ≤ k < n. (10)
Moreover, exercise 3 proves that ck is the level of the forest’s kth node in preorder
(the depth of the kth left parenthesis), a fact that is equivalent to the formula

ck = 2k − 1− zk. (11)
Table 1 and exercise 6 also illustrate a special kind of matching, by which 2n

people at a circular table can simultaneously shake hands without interference.
Thus Algorithm P can be useful indeed. But if our goal is to generate all

binary trees, represented by left links l1l2 . . . ln and right links r1r2 . . . rn, the
lexicographic sequence in Table 1 is rather awkward; the data we need to get
from one tree to its successor is not readily available. Fortunately, an ingenious
alternative scheme for direct generation of all linked binary trees is also available:
Algorithm B (Binary trees). Given n ≥ 1, this algorithm generates all binary
trees with n internal nodes, representing them via left links l1l2 . . . ln and right
links r1r2 . . . rn, with nodes labeled in preorder. (Thus, for example, node 1 is
always the root, and lk is either k + 1 or 0; if l1 = 0 and n > 1 then r1 = 2.)
B1. [Initialize.] Set lk ← k + 1 and rk ← 0 for 1 ≤ k < n; also set ln ← rn ← 0,

and set ln+1 ← 1 (for convenience in step B3).
B2. [Visit.] Visit the binary tree represented by l1l2 . . . ln and r1r2 . . . rn.
B3. [Find j.] Set j ← 1. While lj = 0, set rj ← 0, lj ← j + 1, and j ← j + 1.

Then terminate the algorithm if j > n.
B4. [Find k and y.] Set y ← lj and k ← 0. While ry > 0, set k ← y and y ← ry.
B5. [Promote y.] If k > 0, set rk ← 0; otherwise set lj ← 0. Then set ry ← rj ,

rj ← y, and return to B2.
[See W. Skarbek, Theoretical Computer Science 57 (1988), 153–159; step B3
uses an idea of J. Korsh.] Exercise 44 proves that the loops in steps B3 and B4
both tend to be very short. Indeed, fewer than 9 memory references are needed,
on the average, to transform a linked binary tree into its successor.

Table 2 shows the fourteen binary trees that are generated when n = 4,
together with their corresponding forests and with two related sequences: Arrays
e1e2 . . . en and s1s2 . . . sn are defined by the property that node k in preorder
has ek children and sk descendants in the associated forest. (Thus sk is the size
of k’s left subtree in the binary tree; also, sk +1 is the length of the SCOPE link in
the sense of 2.3.3–(5).) The next column repeats the fourteen forests of Table 1
in the lexicographic ordering of Algorithm P, but mirror-reversed from left to

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 445

Table 2
LINKED BINARY TREES AND RELATED OBJECTS WHEN n = 4

l1l2l3l4 r1r2r3r4 binary tree forest e1e2e3e4 s1s2s3s4 colex forest lsib/rchild

2340 0000 1110 3210

0340 2000 0110 0210

2040 0300 2010 3010

2040 3000 1010 1010

0040 2300 0010 0010

2300 0040 1200 3200

0300 2040 0200 0200

2300 0400 2100 3100

2300 4000 1100 2100

0300 2400 0100 0100

2000 0340 3000 3000

2000 4300 2000 2000

2000 3040 1000 1000

0000 2340 0000 0000

right. And the final column shows the binary tree that represents the colex
forest; it also happens to represent the forest in column 4, but by links to left
sibling and right child instead of to left child and right sibling. This final column
provides an interesting connection between nested parentheses and binary trees,
so it gives us some insight into why Algorithm B is valid (see exercise 19).

From the Library of Melissa Nuno



ptg999

446 COMBINATORIAL SEARCHING 7.2.1.6

*Gray codes for trees. Our previous experiences with other combinatorial
patterns suggest that we can probably generate parentheses and trees by making
only small perturbations to get from one instance to another. And indeed, there
are at least three very nice ways to achieve this goal.

Consider first the case of nested parentheses, which we can represent by
the sequences z1z2 . . . zn that satisfy condition (8). A “near-perfect” way to
generate all such combinations, in the sense of Section 7.2.1.3, is one in which
we run through all possibilities in such a way that some component zj changes
by ±1 or ±2 at each step; this means that we get from each string of parentheses
to its successor by simply changing either ()↔ )( or ())↔ ))( in the vicinity
of the jth left parenthesis. Here’s one way to do the job when n = 4:

1357, 1356, 1346, 1345, 1347, 1247, 1245, 1246, 1236, 1234, 1235, 1237, 1257, 1256.

And we can extend any solution for n − 1 to a solution for n, by taking each
pattern z1z2 . . . zn−1 and letting zn run through all of its legal values using endo-
order or its reverse as in 7.2.1.3–(45), proceeding downward from 2n−2 and then
up to 2n− 1 or vice versa, and omitting all elements that are ≤ zn−1.

Algorithm N (Near-perfect nested parentheses). This algorithm visits all n-
combinations z1 . . . zn of {1, . . . , 2n} that represent the indices of left parentheses
in a nested string, changing only one index at a time. The process is controlled
by an auxiliary array g1 . . . gn that represents temporary goals.
N1. [Initialize.] Set zj ← 2j − 1 and gj ← 2j − 2 for 1 ≤ j ≤ n.
N2. [Visit.] Visit the n-combination z1 . . . zn. Then set j ← n.
N3. [Find j.] If zj = gj , set gj ← gj ⊕ 1 (thereby complementing the least

significant bit), j ← j − 1, and repeat this step.
N4. [Home stretch?] If gj − zj is even, set zj ← zj + 2 and return to N2.
N5. [Decrease or turn.] Set t ← zj − 2. If t < 0, terminate the algorithm.

Otherwise, if t ≤ zj−1, set t ← t + 2[t< zj−1 ] + 1. Finally set zj ← t and
go back to N2.

[A somewhat similar algorithm was introduced by D. Rœlants van Baronaigien in
J. Algorithms 35 (2000), 100–107; see also Xiang, Ushijima, and Tang, Inf. Proc.
Letters 76 (2000), 169–174. F. Ruskey and A. Proskurowski, in J. Algorithms
11 (1990), 68–84, had previously shown how to construct perfect Gray codes
for all tables z1 . . . zn when n ≥ 4 is even, thus changing some zj by only ±1
at every step; but their construction was quite complex, and no known perfect
scheme is simple enough to be of practical use. Exercise 48 shows that perfection
is impossible when n ≥ 5 is odd.]

If our goal is to generate linked tree structures instead of strings of paren-
theses, perfection of the z-index changes is not good enough, because simple
swaps like ()↔ )( don’t necessarily correspond to simple link manipulations. A
far better approach can be based on the “rotation” algorithms by which we were

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 447

able to keep search trees balanced in Section 6.2.3. Rotation to the left changes
a binary tree

from α

µ ω

A

B to

α µ

ωA

B

; (12)

thus the corresponding forest is changed

from
· · ·

α µ

ωA B to
· · ·

α

µ

ω

A

B
. (13)

“Node A becomes the leftmost child of its right sibling.” Rotation to the right
is, of course, the opposite transformation: “The leftmost child of B becomes
its left sibling.” The vertical line in (12) stands for a connection to the overall
context, either a left link or a right link or the pointer to the root. Any or all
of the subtrees α, µ, or ω may be empty. The ‘ · · · ’ in (13), which represents
additional siblings at the left of the family containing B , might also be empty.

The nice thing about rotations is that only three links change: The right
link from A , the left link from B , and the pointer from above. Rotations
preserve inorder of the binary tree and postorder of the forest. (Notice also that
the binary-tree form of a rotation corresponds in a natural way to an application
of the associative law

(αµ)ω = α(µω) (14)
in the midst of an algebraic formula.)

A simple scheme very much like the classical reflected Gray code for n-tuples
(Algorithm 7.2.1.1H) and the method of plain changes for permutations (Algo-
rithm 7.2.1.2P) can be used to generate all binary trees or forests via rotations.
Consider any forest on n − 1 nodes, with k roots A1 , . . . , Ak . Then there are
k+1 forests on n nodes that have the same postorder sequence on the first n−1
nodes but with node n last; for example, when k = 3 they are

α1 α2 α3

A1 A2 A3 n

, α1 α2

α3

A1 A2

A3

n

, α1

α2 α3

A1

A2 A3

n

,

α1 α2 α3

A1 A2 A3

n

,

obtained by successively rotating A3 , A2 , and A1 to the left. Moreover, at
the extremes when n is either at the right or at the top, we can perform
any desired rotation on the other n − 1 nodes, because node n isn’t in the
way. Therefore, as observed by J. M. Lucas, D. Rœlants van Baronaigien, and
F. Ruskey [J. Algorithms 15 (1993), 343–366], we can extend any list of the
(n − 1)-node trees to a list of all n-node trees by simply letting node n roam

From the Library of Melissa Nuno



ptg999

448 COMBINATORIAL SEARCHING 7.2.1.6

back and forth. A careful attention to low-level details makes it possible in fact
to do the job with remarkable efficiency:

Algorithm L (Linked binary trees by rotations). This algorithm generates all
pairs of arrays l0 l1 . . . ln and r1 . . . rn that represent left links and right links of
n-node binary trees, where l0 is the root of the tree and the links (lk, rk) point
respectively to the left and right subtrees of the kth node in symmetric order.
Equivalently, it generates all n-node forests, where lk and rk denote the left child
and right sibling of the kth node in postorder. Each tree is obtained from its pre-
decessor by doing a single rotation. Two auxiliary arrays k1 . . . kn and o0o1 . . . on,
representing backpointers and directions, are used to control the process.
L1. [Initialize.] Set lj ← 0, rj ← j + 1, kj ← j − 1, and oj ← −1 for 1 ≤ j < n;

also set l0 ← o0 ← 1, ln ← rn ← 0, kn ← n− 1, and on ← −1.
L2. [Visit.] Visit the binary tree or forest represented by l0 l1 . . . ln and r1 . . . rn.

Then set j ← n and p← 0.
L3. [Find j.] If oj > 0, set m← lj and go to L5 if m ̸= 0. If oj < 0, set m← kj ;

then go to L4 if m ̸= 0, otherwise set p ← j. If m = 0 in either case, set
oj ← −oj , j ← j − 1, and repeat this step.

L4. [Rotate left.] Set rm ← lj , lj ← m, x ← km, and kj ← x. If x = 0, set
lp ← j, otherwise set rx ← j. Return to L2.

L5. [Rotate right.] Terminate if j = 0. Otherwise set lj ← rm, rm ← j, kj ← m,
x← km. If x = 0, set lp ← m, otherwise set rx ← m. Go back to L2.

Exercise 38 proves that Algorithm L needs only about 9 memory references per
tree generated; thus it is almost as fast as Algorithm B. (In fact, two memory
references per step could be saved by keeping the three quantities on, ln, and kn
in registers. But of course Algorithm B can be speeded up too.)

Table 3 shows the sequence of binary trees and forests visited by Algorithm L
when n = 4, with some auxiliary tables that shed further light on the process.
The permutation q1q2q3q4 lists the nodes in preorder, when they have been
numbered in postorder of the forest (symmetric order of the binary tree); it
is the inverse of the permutation p1p2p3p4 in Table 1. The “coforest” is the
conjugate (right-to-left reflection) of the forest; and the numbers u1u2u3u4 are
its scope coordinates, analogous to s1s2s3s4 in Table 2. A final column shows
the so-called “dual forest.” The significance of these associated quantities is
explored in exercises 11–13, 19, 24, 26, and 27.

The links l0 l1 . . . ln and r1 . . . rn in Algorithm L and Table 3 are not com-
parable to the links l1 . . . ln and r1 . . . rn in Algorithm B and Table 2, because
Algorithm L preserves inorder/postorder while Algorithm B preserves preorder.
Node k in Algorithm L is the kth node from left to right in the binary tree, so
l0 is needed to identify the root; but node k in Algorithm B is the kth node in
preorder, so the root is always node 1 in that case.

Algorithm L has the desired property that only three links change per step;
but we can actually do even better in this respect if we stick to the preorder
convention of Algorithm B. Exercise 25 presents an algorithm that generates

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 449

Table 3
BINARY TREES AND FORESTS GENERATED BY ROTATIONS WHEN n = 4

l0 l1l2l3l4 r1r2r3r4 k1k2k3k4 binary tree forest q1q2q3q4 coforest u1u2u3u4 dual

10000 2340 0123 1234 0000

10003 2400 0122 1243 1000

10002 4300 0121 1423 2000

40001 2300 0120 4123 3000

40021 3000 0110 4132 3100

10023 4000 0111 1432 2100

10020 3040 0113 1324 0100

30010 2040 0103 3124 0200

40013 2000 0100 4312 3200

40123 0000 0000 4321 3210

30120 0040 0003 3214 0210

20100 0340 0023 2134 0010

20103 0400 0022 2143 1010

40102 0300 0020 4213 3010

all linked binary trees or forests by changing just two links per step, preserving
preorder. One link becomes zero while another becomes nonzero. This prune-
and-graft algorithm, which is the third of the three “very nice Gray codes for
trees” promised above, has only one downside: Its controlling mechanism is a bit
trickier than that of Algorithm L, so it needs about 40% more time to do the cal-
culations when we include the cost of deciding what links to change at each step.

From the Library of Melissa Nuno



ptg999

450 COMBINATORIAL SEARCHING 7.2.1.6

The number of trees. There’s a simple formula for the total number of outputs
that are generated by Algorithms P, B, N, and L, namely

Cn = 1
n+ 1

2n
n


=

2n
n


−
 2n
n− 1


; (15)

we proved this fact in Eq. 2.3.4.4–(14). The first few values are

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Cn = 1 1 2 5 14 42 132 429 1430 4862 16796 58786 208012 742900

and they are called Catalan numbers because of some influential papers written
by Eugène Catalan [Journal de math. 3 (1838), 508–516; 4 (1839), 95–99].
Stirling’s approximation tells us the asymptotic value,

Cn = 4n√
π n3/2


1− 9

8n + 145
128n2 −

1155
1024n3 + 36939

32768n4 +O(n−5)


; (16)

in particular we can conclude that
Cn−k

Cn
= 1

4k


1 + 3k
2n +O


k2

n2


when |k| ≤ n

2 . (17)

(And of course Cn−1/Cn is equal to (n+1)/(4n−2), exactly, by (15).) In Section
2.3.4.4 we also derived the generating function

C(z) = C0 + C1z + C2z
2 + C3z

3 + · · · = 1−
√

1− 4z
2z (18)

and proved the important formula

[zn]C(z)r = r

n+ r

2n+ r − 1
n


=

2n+ r − 1
n


−
2n+ r − 1

n− 1


; (19)

see the answer to exercise 2.3.4.4–33, and CMath equation (5.70).
These facts give us more than enough information to analyze Algorithm P,

our algorithm for lexicographic generation of nested parentheses. Step P2 is
obviously performed Cn times; then P3 usually makes a simple change and goes
back to P2. How often do we need to go on to step P4? Easy: It’s the number
of times that step P2 finds m = 2n− 1. And m is the location of the rightmost
‘(’, so we have m = 2n − 1 in exactly Cn−1 cases. Thus the probability that
P3 sets m ← m − 1 and returns immediately to P2 is (Cn − Cn−1)/Cn ≈ 3/4,
by (17). On the other hand when we do get to step P4, suppose we need to set
aj ← ‘)’ and ak ← ‘(’ exactly h − 1 times in that step. The number of cases
with h > x is the number of nested strings of length 2n that end with x trivial
pairs () . . . (), namely Cn−x. Therefore the total number of times the algorithm
changes aj and ak in step P4 is

Cn−1 + Cn−2 + · · ·+ C1 = Cn


Cn−1

Cn
+ Cn−2

Cn
+ · · ·+ C1

Cn


= 1

3Cn


1 + 2

n
+O

 1
n2


, (20)

by (17); we have proved the claim for efficiency made earlier.

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 451

For a deeper understanding it is helpful to study the recursive structure
underlying Algorithm P, as expressed in (5). The sequences Apq in that formula
have Cpq elements, where

Cpq = Cp(q−1) + C(p−1)q , if 0 ≤ p ≤ q ̸= 0; C00 = 1; (21)

and Cpq = 0 if p < 0 or p > q. Thus we can form the triangular array

C00
C01 C11
C02 C12 C22
C03 C13 C23 C33
C04 C14 C24 C34 C44
C05 C15 C25 C35 C45 C55
C06 C16 C26 C36 C46 C56 C66

=

1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42
1 6 20 48 90 132 132

(22)

in which every entry is the sum of its nearest neighbors above and to the left;
the Catalan numbers Cn = Cnn appear on the diagonal. The elements of this
triangle, which themselves have a venerable pedigree going back to de Moivre
in 1711, are called “ballot numbers,” because they represent sequences of p + q
ballots for which a running tabulation never favors a candidate with p votes over
an opponent who receives q votes. The general formula

Cpq = q − p+ 1
q + 1


p+ q

p


=


p+ q

p


−

p+ q

p− 1


(23)

can be proved by induction or in a variety of more interesting ways; see exercise 39
and the answer to exercise 2.2.1–4. Notice that, because of (19), we have

Cpq = [zp]C(z)q−p+1. (24)

When n = 4, Algorithm P essentially describes the recursion tree
34

23 24

12 13 12 13 14

01 02 01 02 03 01 02 01 02 03 01 02 03 04

(25)

because the specification (5) implies that Ann = (A(n−1)n and that

Apq = )q−p(A(p−1)p, )q−p−1(A(p−1)(p+1), )q−p−2(A(p−1)(p+2),

. . . , (A(p−1)q when 0 ≤ p < q. (26)

The number of leaves below node pq in this recursion tree is Cpq, and node pq

appears exactly C(n−q)(n−1−p) times on level n− 1− p; therefore we must have
q

C(n−q)(n−1−p)Cpq = Cn, for 0 ≤ p < n. (27)

The fourteen leaves of (25), from left to right, correspond to the fourteen rows
of Table 1, from top to bottom. Notice that the entries in column c1c2c3c4 of
that table assign the respective numbers 0000, 0001, 0010, . . . , 0123 to the leaves

From the Library of Melissa Nuno



ptg999

452 COMBINATORIAL SEARCHING 7.2.1.6

of (25), in accord with “Dewey decimal notation” for tree nodes (but with indices
starting at 0 instead of 1, and with an extra 0 tacked on at the beginning).

A worm that crawls from one leaf to the next, around the bottom of the
recursion tree, will ascend and descend h levels when h of the coordinates c1 . . . cn
are changed, namely when Algorithm P resets the values of h (s and h )s.
This observation makes it easy to understand our previous conclusion that the
condition h > x occurs exactly Cn−x times during a complete crawl.

Yet another way to understand Algorithm P arises when we contemplate an
infinite directed graph that is suggested by the recursion (21):

00

01 11

02 12 22

03 13 23 33

04 14 24 34 44

(28)

Clearly Cpq is the number of paths from pq to 00 in this digraph, because
of (21). And indeed, every string of parentheses in Apq corresponds directly to
such a path, with ‘(’ signifying a step to the left and ‘)’ signifying a step upward.
Algorithm P explores all such paths systematically by trying first to go upward
when extending a partial path.

Therefore it is easy to determine the Nth string of nested parentheses that
is visited by Algorithm P, by starting at node nn and doing the following
calculation when at node pq : If p = q = 0, stop; otherwise, if N ≤ Cp(q−1),
emit ‘)’, set q ← q − 1, and continue; otherwise set N ← N − Cp(q−1), emit
‘(’, set p← p− 1, and continue. The following algorithm [Frank Ruskey, Ph.D.
thesis (University of California at San Diego, 1978), 16–24] avoids the need to
precompute the Catalan triangle by evaluating Cpq on the fly as it goes:

Algorithm U (Unrank a string of nested parentheses). Given n and N , where
1 ≤ N ≤ Cn, this algorithm computes the Nth output a1 . . . a2n of Algorithm P.
U1. [Initialize.] Set q ← n and m ← p ← c ← 1. While p < n, set p ← p + 1

and c← ((4p− 2)c)/(p+ 1).
U2. [Done?] Terminate the algorithm if q = 0.
U3. [Go up?] Set c′ ← ((q + 1)(q − p)c)/((q + p)(q − p+ 1)). (At this point we

have 1 ≤ N ≤ c = Cpq and c′ = Cp(q−1).) If N ≤ c′, set q ← q − 1, c← c′,
am ← ‘)’, m← m+ 1, and return to U2.

U4. [Go left.] Set p ← p − 1, c ← c − c′, N ← N − c′, am ← ‘(’, m ← m + 1,
and return to U3.

Random trees. We could choose a string a1a2 . . . a2n of nested parentheses
at random by simply applying Algorithm U to a random integer N between 1

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 453

and Cn. But that idea isn’t really very good, when n is bigger than 32 or so, be-
cause Cn can be quite large. A simpler and better way, proposed by D. B. Arnold
and M. R. Sleep [ACM Trans. Prog. Languages and Systems 2 (1980), 122–128],
is to generate a random “worm walk” by starting at nn in (28) and repeatedly
taking leftward or upward branches with the appropriate probabilities. The
resulting algorithm is almost the same as Algorithm U, but it deals only with
nonnegative integers less than n2 + n+ 1:

Algorithm W (Uniformly random strings of nested parentheses). This algo-
rithm generates a random string a1a2 . . . a2n of properly nested (s and )s.
W1. [Initialize.] Set p← q ← n and m← 1.
W2. [Done?] Terminate the algorithm if q = 0.
W3. [Go up?] Let X be a random integer in the range 0 ≤ X < (q+p)(q−p+1).

If X < (q + 1)(q − p), set q ← q − 1, am ← ‘)’, m ← m + 1, and return
to W2.

W4. [Go left.] Set p← p− 1, am ← ‘(’, m← m+ 1, and return to W3.

A worm’s walk can be regarded as a sequence w0w1 . . . w2n, where wm is the
worm’s current depth after m steps. Thus, w0 = 0; wm = wm−1 + 1 when am =
‘(’; wm = wm−1−1 when am = ‘)’; and we have wm ≥ 0, w2n = 0. The sequence
w0w1 . . . w30 corresponding to (1) and (2) is 0121012321234345432321232343210.
At step W3 of Algorithm W we have q + p = 2n+ 1−m and q − p = wm−1.

Let’s say that the outline of a forest is the path that runs through the points
(m,−wm) in the plane, for 0 ≤ m ≤ 2n, where w0w1 . . . w2n is the worm walk
corresponding to the associated string a1 . . . a2n of nested parentheses. Figure 57
shows what happens if we plot the outlines of all 50-node forests and darken each
point according to the number of forests that lie above it. For example, w1 is
always 1, so the triangular region at the upper left of Fig. 57 is solid black.
But w2 is either 0 or 2, and 0 occurs in C49 ≈ C50/4 cases; so the adjacent
diamond-shaped area is a 75% shade of gray. Thus Fig. 57 illustrates the shape
of a random forest, analogous to the shapes of random partitions that we’ve seen
in Figs. 50, 51, and 55 of Sections 7.2.1.4 and 7.2.1.5.

Fig. 57. The shape of a random 50-node forest.

Of course we can’t really draw the outlines of all those forests, since there
are C50 = 1,978,261,657,756,160,653,623,774,456 of them. But with the help of
mathematics we can pretend that we’ve done so. The probability that w2m = 2k
is C(m−k)(m+k)C(n−m−k)(n−m+k)/Cn, because there are C(m−k)(m+k) ways to
start with m + k (s and m − k )s, and C(n−m−k)(n−m+k) ways to finish with

From the Library of Melissa Nuno



ptg999

454 COMBINATORIAL SEARCHING 7.2.1.6

Fig. 58. Locations of the internal nodes in a random 50-node binary tree.

n − (m + k) (s and n − (m − k) )s. By (23) and Stirling’s approximation, this
probability is

(2k + 1)2(n+ 1)
(m+ k + 1)(n−m+ k + 1)

 2m
m− k

 2n− 2m
n−m+ k

2n
n


= (2k + 1)2
√
π

θ(1− θ)n


3/2 e

−k2/(θ(1−θ)n)


1 +O

k + 1
n


+O


k3

n2


(29)

when m = θn and n → ∞, for 0 < θ < 1. The average value of w2m is worked
out in exercise 57; it comes to

(4m(n−m) + n)
2m
m

2n−2m
n−m


n
2n
n

 − 1 = 4

θ(1− θ)n

π
− 1 +O

 1√
n


, (30)

and it is illustrated for n = 50 as a curved line in Fig. 57.
When n is large, worm walks approach the so-called “Brownian excur-

sion,” which is an important concept in probability theory. See, for example,
Paul Lévy, Processus Stochastiques et Mouvement Brownien (1948), 225–237;
Guy Louchard, J. Applied Prob. 21 (1984), 479–499, and BIT 26 (1986), 17–
34; David Aldous, Electronic Communications in Probability 3 (1998), 79–90;
Jon Warren, Electronic Communications in Probability 4 (1999), 25–29; J.-F.
Marckert, Random Structures & Algorithms 24 (2004), 118–132.

What is the shape of a random binary tree? This question was investigated
by Frank Ruskey in SIAM J. Algebraic and Discrete Methods 1 (1980), 43–50,
and the answer turns out to be quite interesting. Suppose we draw a binary tree

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 455

Fig. 59. Locations of the external nodes in a random 50-node binary tree.

as in (4), with the mth internal node at horizontal position m when the nodes
are numbered in symmetric order. If all of the 50-node binary trees are drawn
in this way and superimposed on each other, we get the distribution of node
positions shown in Fig. 58. Similarly, if we number the external nodes from 0
to n in symmetric order and place them at horizontal positions .5, 1.5, . . . , n+.5,
the “fringes” of all 50-node binary trees form the distribution shown in Fig. 59.
Notice that the root node is most likely to be either number 1 or number n, at
the extreme left or right; it is least likely to be either ⌊(n+ 1)/2⌋ or ⌈(n+ 1)/2⌉,
in the middle.

As in Fig. 57, the smooth curves in Figs. 58 and 59 show the average node
depths; exact formulas are derived in exercises 58 and 59. Asymptotically, the
average depth of external node m is

8

θ(1− θ)n

π
− 1 +O

 1√
n


, when m = θn and n→∞, (31)

for all fixed ratios θ with 0 < θ < 1, curiously like (30); and the average depth
of internal node m is asymptotically the same, but with ‘−1’ replaced by ‘−3’.
Thus we can say that the average shape of a random binary tree is approximately
the lower half of an ellipse, n units wide and 4


n/π levels deep.

Three other noteworthy ways to generate random encodings of forests are
discussed in exercises 60, 61, and 62. They are less direct than Algorithm W,
yet they have substantial combinatorial interest. The first one begins with an
arbitrary random string containing n (s and n )s, not necessarily nested; each
of the

2n
n


possibilities is equally likely. It then proceeds to convert every such

string into a sequence that is properly nested, in such a way that exactly n+ 1

From the Library of Melissa Nuno



ptg999

456 COMBINATORIAL SEARCHING 7.2.1.6

strings map into each final outcome. The second method is similar, but it starts
with a sequence of n+ 1 0s and n 2s, mapping them in such a way that exactly
2n + 1 original strings produce each possible result. And the third method
produces each output from exactly n of the bit strings that contain exactly
n− 1 1s and n+ 1 0s. In other words, the three methods provide combinatorial
proofs of the fact that Cn is simultaneously equal to

2n
n


/(n+1),

2n+1
n


/(2n+1),

and
 2n
n−1


/n. For example, when n = 4 we have 14 = 70/5 = 126/9 = 56/4.

If we want to generate random binary trees directly in linked form, we can
use a beautiful method suggested by J. L. Rémy [RAIRO Informatique Théorique
19 (1985), 179–195]. His approach is particularly instructive because it shows
how random Catalan trees might actually occur “in nature,” using a deliciously
simple mechanism based on a classical idea of Olinde Rodrigues [J. de Math.
3 (1838), 549]. Let us suppose that our goal is to obtain not only an ordinary
n-node binary tree, but a decorated binary tree, namely an extended binary tree
in which the external nodes have been labeled with the numbers 0 to n in some
order. There are (n + 1)! ways to decorate any given binary tree; so the total
number of decorated binary trees with n internal nodes is

Dn = (n+ 1)!Cn = (2n)!
n! = (4n− 2)Dn−1. (32)

Rémy observed that there are 4n− 2 easy ways to build a decorated tree of
order n from a given decorated tree of order n − 1: We simply choose any one
of the 2n− 1 nodes (internal or external) in the given tree, say x, and replace it
by either k

n x
or

k
nx

, (33)

thus inserting a new internal node and a new leaf while moving x and its
descendants (if any) down one level.

For example, here’s one way to construct a decorated tree of order 6:

0 ,
1 0

e
, 1

2 0

e e ,
1

2 0

3e e e
, 4

1

2 0

3e e e
e
, 4

1

2 0

3 5

e e e
e e

, 4

6 1 2 0

3 5

e e e e
e e

(34)
Notice that every decorated tree is obtained by this process in exactly one way,
because the predecessor of each tree must be the tree we get by striking out the
highest-numbered leaf. Therefore Rémy’s construction produces decorated trees
that are uniformly random; and if we ignore the external nodes, we get random
binary trees of the ordinary, undecorated variety.

One appealing way to implement Rémy’s procedure is to maintain a table
of links L0L1 . . . L2n where external (leaf) nodes have even numbers and internal
(branch) nodes have odd numbers. The root is node number L0; the left and
right children of branch node 2k−1 are respectively the nodes that are numbered
L2k−1 and L2k, for 1 ≤ k ≤ n. Then the program is short and sweet:

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 457

Algorithm R (Growing a random binary tree). This algorithm constructs the
linked representation L0L1 . . . L2N of a uniformly random binary tree with N
internal nodes, using the conventions explained above.
R1. [Initialize.] Set n← 0 and L0 ← 0.
R2. [Done?] (At this point the links L0L1 . . . L2n represent a random n-node

binary tree.) Terminate the algorithm if n = N .
R3. [Advance n.] Let X be a random integer between 0 and 4n + 1, inclusive.

Set n ← n + 1, b ← X mod 2, k ← ⌊X/2⌋, L2n−b ← 2n, L2n−1+b ← Lk,
Lk ← 2n− 1, and return to R2. (Here Lk corresponds to x in (33).)

*Chains of subsets. Now that we’ve got trees and parentheses firmly in mind,
it’s a good time to discuss the Christmas tree pattern,* which is a remarkable
way to arrange the set of all 2n bit strings of length n into


n

⌊n/2⌋


rows and n+1
columns, discovered by de Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk
[Nieuw Archief voor Wiskunde (2) 23 (1951), 191–193].

The Christmas tree pattern of order 1 is the single row ‘0 1’; and the pattern
of order 2 is

10
00 01 11 . (35)

In general we get the Christmas tree pattern of order n+ 1 by taking every row
‘σ1 σ2 . . . σs’ of the order-n pattern and replacing it by the two rows

σ20 . . . σs0
σ10 σ11 . . . σs−11 σs1

. (36)

(The first of these rows is omitted when s = 1.)
Proceeding in this way, we obtain for example the pattern of order 8 that

appears in Table 4 on the next page. It is easy to verify by induction that
i) Each of the 2n bit strings appears exactly once in the pattern.
ii) The bit strings with k 1s all appear in the same column.
iii) Within each row, consecutive bit strings differ by changing a 0 to a 1.
If we think of the bit strings as representing subsets of {1, . . . , n}, with 1-bits
to indicate the members of a set, property (iii) says that each row represents
a chain in which each subset is covered by its successor. In symbols, using the
notation of Section 7.1.3, every row σ1 σ2 . . . σs has the property that σj ⊆ σj+1
and ν(σj+1) = ν(σj) + 1 for 1 ≤ j < s.

Properties (i) and (ii) tell us that there are exactly

n
k


elements in column k,

if we number the columns from 0 to n. This observation, together with the fact
that each row is centered among the columns, proves that the total number of
rows is max0≤k≤n


n
k


=


n

⌊n/2⌋

, as claimed. Let us call this number Mn.

* This name was chosen for sentimental reasons, because the pattern has a general shape
not unlike that of a festive tree, and because it was the subject of the author’s ninth annual
“Christmas Tree Lecture” at Stanford University in December 2002.

From the Library of Melissa Nuno



ptg999

458 COMBINATORIAL SEARCHING 7.2.1.6

Table 4
THE CHRISTMAS TREE PATTERN OF ORDER 8

10101010
10101000 10101001 10101011

10101100
10100100 10100101 10101101
10100010 10100110 10101110

10100000 10100001 10100011 10100111 10101111
10110010

10110000 10110001 10110011
10110100

10010100 10010101 10110101
10010010 10010110 10110110

10010000 10010001 10010011 10010111 10110111
10111000

10011000 10011001 10111001
10001010 10011010 10111010

10001000 10001001 10001011 10011011 10111011
10001100 10011100 10111100

10000100 10000101 10001101 10011101 10111101
10000010 10000110 10001110 10011110 10111110

10000000 10000001 10000011 10000111 10001111 10011111 10111111
11001010

11001000 11001001 11001011
11001100

11000100 11000101 11001101
11000010 11000110 11001110

11000000 11000001 11000011 11000111 11001111
11010010

11010000 11010001 11010011
11010100

01010100 01010101 11010101
01010010 01010110 11010110

01010000 01010001 01010011 01010111 11010111
11011000

01011000 01011001 11011001
01001010 01011010 11011010

01001000 01001001 01001011 01011011 11011011
01001100 01011100 11011100

01000100 01000101 01001101 01011101 11011101
01000010 01000110 01001110 01011110 11011110

01000000 01000001 01000011 01000111 01001111 01011111 11011111
11100010

11100000 11100001 11100011
11100100

01100100 01100101 11100101
01100010 01100110 11100110

01100000 01100001 01100011 01100111 11100111
11101000

01101000 01101001 11101001
00101010 01101010 11101010

00101000 00101001 00101011 01101011 11101011
00101100 01101100 11101100

00100100 00100101 00101101 01101101 11101101
00100010 00100110 00101110 01101110 11101110

00100000 00100001 00100011 00100111 00101111 01101111 11101111
11110000

01110000 01110001 11110001
00110010 01110010 11110010

00110000 00110001 00110011 01110011 11110011
00110100 01110100 11110100

00010100 00010101 00110101 01110101 11110101
00010010 00010110 00110110 01110110 11110110

00010000 00010001 00010011 00010111 00110111 01110111 11110111
00111000 01111000 11111000

00011000 00011001 00111001 01111001 11111001
00001010 00011010 00111010 01111010 11111010

00001000 00001001 00001011 00011011 00111011 01111011 11111011
00001100 00011100 00111100 01111100 11111100

00000100 00000101 00001101 00011101 00111101 01111101 11111101
00000010 00000110 00001110 00011110 00111110 01111110 11111110

00000000 00000001 00000011 00000111 00001111 00011111 00111111 01111111 11111111

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 459

A set C of bit strings is called a clutter, or an “antichain of subsets,” if
its bit strings are incomparable in the sense that σ ̸⊆ τ whenever σ and τ are
distinct elements of C. A famous theorem of Emanuel Sperner [Math. Zeitschrift
27 (1928), 544–548] asserts that no clutter on {1, . . . , n} can have more than
Mn elements; and the Christmas tree pattern provides a simple proof, because
no clutter can contain more than one element of each row.

Indeed, the Christmas tree pattern can be used to show that much more
is true. Let’s note first that exactly


n
k


−


n

k−1


rows of length n + 1 − 2k are
present, for 0 ≤ k ≤ n/2, because there are exactly


n
k


elements in column k.

For example, Table 4 has one row of length 9, namely the bottom row; it also
has

8
1

−
8

0


= 7 rows of length 7,
8

2

−
8

1


= 20 rows of length 5,
8

3

−
8

2


= 28
of length 3, and

8
4

−
8

3


= 14 of length 1. Moreover, these numbers

n
k


−


n
k−1


appear in the Catalan triangle (22), because they’re equal to Ck(n−k) according
to Eq. (23).

Further study reveals that this Catalan connection is not simply a co-
incidence; nested parentheses are, in fact, the key to a deeper understanding
of the Christmas tree pattern, because the theory of parentheses tells us where
an arbitrary bit string fits into the array. Suppose we use the symbols ( and )
instead of 1 and 0, respectively. Any string of parentheses, nested or not, can be
written uniquely in the form

α0) . . . αp−1)αp(αp+1 . . . (αq (37)

for some p and q with 0 ≤ p ≤ q, where the substrings α0, . . . , αq are properly
nested and possibly empty; exactly p of the right parentheses and q − p of the
left parentheses are “free” in the sense that they have no mate. For example,
the string

) ( ( ) ) ( ) ) ( ) ) ) ) ( ( ( ( ( ( ) ( ( ) ( ) ( ( ( ) ) (38)
has p = 5, q = 12, α0 = ϵ, α1 = (())(), α2 = (), α3 = ϵ, . . . , α12 = (()). In
general, the string (37) is part of a chain of length q + 1,

α0) . . . αq−1)αq, α0) . . . αq−2)αq−1(αq, . . . , α0(α1 . . . (αq, (39)

in which we start with q free )s and change them one by one into free (s. Every
row of the Christmas tree pattern is obtained in exactly this manner, but using
1 and 0 instead of ( and ); for if the chain σ1 . . . σs corresponds to the nested
strings α0, . . . , αs−1, its successor chains in (36) correspond respectively to
α0, . . . , αs−3, αs−2(αs−1) and to α0, . . . , αs−3, αs−2, αs−1, ϵ. [See Curtis
Greene and Daniel J. Kleitman, J. Combinatorial Theory A20 (1976), 80–88.]

Notice furthermore that the rightmost elements in each row of the pattern —
such as 10101010, 10101011, 10101100, 10101101, . . . , 11111110, 11111111 in
the case n = 8 — are in lexicographic order. Thus, for example, the fourteen
rows of length 1 in Table 4 correspond precisely to the fourteen strings of
nested parentheses in Table 1. This observation makes it easy to generate the
rows of Table 4 sequentially from bottom to top, with a method analogous to
Algorithm P; see exercise 77.

From the Library of Melissa Nuno



ptg999

460 COMBINATORIAL SEARCHING 7.2.1.6

Let f(x1, . . . , xn) be any monotone Boolean function of n variables. If σ =
a1 . . . an is any bit string of length n, we can write f(σ) = f(a1, . . . , an) for
convenience. Any row σ1 . . . σs of the Christmas tree pattern forms a chain, so
we have

0 ≤ f(σ1) ≤ · · · ≤ f(σs) ≤ 1. (40)

In other words, there is an index t such that f(σj) = 0 for j < t and f(σj) = 1
for j ≥ t; we will know the value of f(σ) for all 2n bit strings σ if we know the
indices t for each row of the pattern.

Georges Hansel [Comptes Rendus Acad. Sci. (A) 262 (Paris, 1966), 1088–
1090] noticed that the Christmas tree pattern has another important property:
If σj−1, σj , and σj+1 are three consecutive entries of any row, the bit string

σ′
j = σj−1 ⊕ σj ⊕ σj+1 (41)

lies in a previous row. In fact, σ′
j lies in the same column as σj , and it satisfies

σj−1 ⊆ σ′
j ⊆ σj+1; (42)

it is called the relative complement of σj in the interval (σj−1 . . σj+1). Hansel’s
observation is easy to prove by induction, because of the recursive rule (36) that
defines the Christmas tree pattern. He used it to show that we can deduce the
values of f(σ) for all σ by actually evaluating the function at relatively few well-
chosen places; for if we know the value of f(σ′

j), we will know either f(σj−1) or
f(σj+1) because of relation (42).

Algorithm H (Learning a monotone Boolean function). Let f(x1, . . . , xn) be a
Boolean function that is nondecreasing in each Boolean variable, but otherwise
unknown. Given a bit string σ of length n, let r(σ) be the number of the row
in which σ appears in the Christmas tree pattern, where 1 ≤ r(σ) ≤ Mn. If
1 ≤ m ≤Mn, let s(m) be the number of bit strings in row m; also let χ(m, k) be
the bit string in column k of that row, for (n+1−s(m))/2 ≤ k ≤ (n−1+s(m))/2.
This algorithm determines the sequence of threshold values t(1), t(2), . . . , t(Mn)
such that

f(σ) = 1 ⇐⇒ ν(σ) ≥ t

r(σ)


, (43)

by evaluating f at no more than two points per row.
H1. [Loop on m.] Perform steps H2 through H4 for m = 1, . . . , Mn; then stop.
H2. [Begin row m.] Set a← (n+ 1− s(m))/2 and z ← (n− 1 + s(m))/2.
H3. [Do a binary search.] If z ≤ a+1, go to H4. Otherwise set k ←


(a+z)/2


,

and
σ ← χ(m, k − 1)⊕ χ(m, k)⊕ χ(m, k + 1). (44)

If k ≥ t

r(σ)


, set z ← k; otherwise set a← k. Repeat step H3.

H4. [Evaluate.] If f(χ(m, a)) = 1, set t(m) ← a; otherwise, if a = z, set
t(m)← a+ 1; otherwise set t(m)← z + 1− f(χ(m, z)).

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 461

Hansel’s algorithm is optimum, in the sense that it evaluates f at the fewest
possible points in the worst case. For if f happens to be the threshold function

f(σ) =

ν(σ) > n/2


, (45)

any valid algorithm that learns f on the first m rows of the Christmas tree
pattern must evaluate f(σ) in column ⌊n/2⌋ of each row, and in column ⌊n/2⌋+1
of each row that has size greater than 1. Otherwise we could not distinguish f
from a function that differs from it only at an unexamined point. [See V. K.
Korobkov, Problemy Kibernetiki 13 (1965), 5–28, Theorem 5.]

Oriented trees and forests. Let’s turn now to another kind of tree, in which
the parent-child relationship is important but the order of children in each family
is not. An oriented forest of n nodes can be defined by a sequence of pointers
p1 . . . pn, where pj is the parent of node j (or pj = 0 if j is a root); the directed
graph on vertices {0, 1, . . . , n} with arcs {j → pj | 1 ≤ j ≤ n} will have no
oriented cycles. An oriented tree is an oriented forest with exactly one root.
(See Section 2.3.4.2.) Every n-node oriented forest is equivalent to an (n + 1)-
node oriented tree, because the root of that tree can be regarded as the parent of
all the roots of the forest. We saw in Section 2.3.4.4 that there are An oriented
trees with n nodes, where the first few values are

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14
An = 1 1 2 4 9 20 48 115 286 719 1842 4766 12486 32973

; (46)

asymptotically, An = cαnn−3/2 +O(αnn−5/2) where α ≈ 2.9558 and c ≈ 0.4399.
Thus, for example, only 9 of the 14 forests in Table 1 are distinct when we ignore
the horizontal left-to-right ordering and consider only the vertical orientation.

Every oriented forest corresponds to a unique ordered forest if we sort the
members of each family appropriately, using an ordering on trees introduced
by H. I. Scoins [Machine Intelligence 3 (1968), 43–60]: Recall from (11) that
ordered forests can be characterized by their level codes c1 . . . cn, where node j
in preorder appears on level cj . An ordered forest is called canonical if the level
code sequences for the subtrees in each family are in nonincreasing lexicographic
order. For example, the canonical forests in Table 1 are those whose level codes
c1c2c3c4 are 0000, 0100, 0101, 0110, 0111, 0120, 0121, 0122, and 0123. The level
sequence 0112 is not canonical, because the subtrees of the root have respective
level codes 1 and 12; the string 1 is lexicographically less than 12. We can readily
verify by induction that the canonical level codes are lexicographically largest,
among all ways of reordering the subtrees of a given oriented forest.

T. Beyer and S. M. Hedetniemi [SICOMP 9 (1980), 706–712] noticed that
there is a remarkably simple way to generate oriented forests if we visit them in
decreasing lexicographic order of the canonical level codes. Suppose c1 . . . cn is
canonical, where ck > 0 and ck+1 = · · · = cn = 0. The next smallest sequence is
obtained by decreasing ck, then increasing ck+1 . . . cn to the largest levels consis-
tent with canonicity; and those levels are easy to compute. For if j = pk is the
parent of node k, we have cj = ck−1 < cl for j < l ≤ k, hence the levels cj . . . ck

From the Library of Melissa Nuno



ptg999

462 COMBINATORIAL SEARCHING 7.2.1.6

represent the subtree currently rooted at node j. To get the largest sequence of
levels less than c1 . . . cn we therefore replace ck . . . cn by the first n+1−k elements
of the infinite sequence (cj . . . ck−1)∞ = cj . . . ck−1cj . . . ck−1cj . . . . (The effect
is to remove k from its current position as the rightmost child of j, then to
append new subtrees that are siblings of j, by cloning j and its descendants
as often as possible. This cloning process may terminate in the midst of the
sequence cj . . . ck−1, but that causes no difficulty because every prefix of a
canonical level sequence is canonical.) For example, to obtain the successor of
any sequence of canonical codes that ends with 23443433000000000, we replace
the final 3000000000 by 2344343234.

Algorithm O (Oriented forests). This algorithm generates all oriented forests
on n nodes, by visiting all canonical n-node forests in decreasing lexicographic
order of their level codes c1 . . . cn. The level codes are not computed explicitly,
however; each canonical forest is represented directly by its sequence of parent
pointers p1 . . . pn, in preorder of the nodes. To generate all oriented trees on
n+1 nodes, we can imagine that node 0 is the root. The algorithm sets p0 ← −1.
O1. [Initialize.] Set pk ← k − 1 for 0 ≤ k ≤ n. (In particular, this step makes

p0 nonzero, for use in termination testing; see step O4.)
O2. [Visit.] Visit the forest represented by parent pointers p1 . . . pn.
O3. [Easy case?] If pn > 0, set pn ← ppn and return to step O2.
O4. [Find j and k.] Find the largest k < n such that pk ̸= 0. Terminate the

algorithm if k = 0; otherwise set j ← pk and d← k − j.
O5. [Clone.] If pk−d = pj , set pk ← pj ; otherwise set pk ← pk−d + d. Return to

step O2 if k = n; otherwise set k ← k + 1 and repeat this step.
As in other algorithms we’ve been seeing, the loops in steps O4 and O5 tend to
be quite short; see exercise 88. Exercise 90 proves that slight changes to this
algorithm suffice to generate all arrangements of edges that form free trees.

Spanning trees. Now let’s consider the minimal subgraphs that “span” a
given graph. If G is a connected graph on n vertices, the spanning trees of G
are the subsets of n− 1 edges that contain no cycles; equivalently, they are the
subsets of edges that form a free tree connecting all the vertices. Spanning trees
are important in many applications, especially in the study of networks, so the
problem of generating all spanning trees has been treated by many authors. In
fact, systematic ways to list them all were developed early in the 20th century
by Wilhelm Feussner [Annalen der Physik (4) 9 (1902), 1304–1329], long before
anybody thought about generating other kinds of trees.

In the following discussion we will allow graphs to have any number of edges
between two vertices; but we disallow loops from a vertex to itself, because
self-loops cannot be part of a tree. Feussner’s basic idea was very simple, yet
eminently suited for calculation: If e is any edge of G, a spanning tree either
contains e or it doesn’t. Suppose e joins vertex u to vertex v, and suppose it is
part of a spanning tree; then the other n − 2 edges of that tree span the graph

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 463

G / e that we obtain by regarding u and v as identical. In other words, the
spanning trees that contain e are essentially the same as the spanning trees of
the contracted graph G/e that results when we shrink e down to a single point.
On the other hand the spanning trees that do not contain e are spanning trees
of the reduced graph G \ e that results when we eliminate edge e. Symbolically,
therefore, the set S(G) of all spanning trees of G satisfies

S(G) = e S(G / e) ∪ S(G \ e). (47)

Malcolm J. Smith, in his Master’s thesis at the University of Victoria (1997),
introduced a nice way to carry out the recursion (47) by finding all spanning trees
in a “revolving-door Gray code” order: Each tree in his scheme is obtained from
its predecessor by simply removing one edge and substituting another. Such
orderings are not difficult to find, but the trick is to do the job efficiently.

The basic idea of Smith’s algorithm is to generate S(G) in such a way that
the first spanning tree includes a given near tree, namely a set of n − 2 edges
containing no cycle. This task is trivial if n = 2; we simply list all the edges.
If n > 2 and if the given near tree is {e1, . . . , en−2}, we proceed as follows:
Assume that G is connected; otherwise there are no spanning trees. Form G/e1
and append e1 to each of its spanning trees, beginning with one that contains
{e2, . . . , en−2}; notice that {e2, . . . , en−2} is a near tree of G/e1, so this recursion
makes sense. If the last spanning tree found in this way for G / e1 is f1 . . . fn−2,
complete the task by listing all spanning trees for G \ e1, beginning with one
that contains the near tree {f1, . . . , fn−2}.

For example, suppose G is the graph

G = 1
2

3
4

q
r

s

t

p

(48)

with four vertices and five edges {p, q, r, s, t}. Starting with the near tree {p, q},
Smith’s procedure first forms the contracted graph

G / p = q r
s

t

1,2

3
4 (49)

and lists its spanning trees, beginning with one that contains {q}. This list
might be qs, qt, ts, tr, rs; thus the trees pqs, pqt, pts, ptr, and prs span G. The
remaining task is to list the spanning trees of

G \ p = 1
2

3
4

q
r

s

t
, (50)

starting with one that contains {r, s}; they are rsq, rqt, qts.
A detailed implementation of Smith’s algorithm turns out to be quite in-

structive. As usual we represent the graph by letting two arcs u−−→v and v−−→u
correspond to each edge u−−−v, and we maintain lists of “arc nodes” to represent
the arcs that leave each vertex. We’ll need to shrink and unshrink the graph’s

From the Library of Melissa Nuno



ptg999

464 COMBINATORIAL SEARCHING 7.2.1.6

edges, so we will make these lists doubly linked. If a points to an arc node that
represents u−−→v, then

a⊕ 1 points to the “mate” of a, which represents v−−→u;
ta is the “tip” of a, namely v (hence ta⊕1 = u);
ia is an optional name that identifies this edge (and equals ia⊕1);
na points to the next element of u’s arc list;
pa points to the previous element of u’s arc list;

and la is a link used for undeleting arcs as explained below.

The vertices are represented by integers {1, . . . , n}; and arc number v − 1 is a
header node for vertex v’s doubly linked arc list. A header node a is recognizable
by the fact that its tip, ta, is 0. We let dv be the degree of vertex v. Thus, for
example, the graph (48) might be represented by (d1, d2, d3, d4) = (2, 3, 3, 2) and
by the following fourteen nodes of arc data:

a = 0 1 2 3 4 5 6 7 8 9 10 11 12 13
ta = 0 0 0 0 1 2 1 3 2 3 2 4 3 4
ia = p p q q r r s s t t

na = 5 4 6 10 9 7 8 0 13 11 12 1 3 2
pa = 7 11 13 12 1 0 2 5 6 4 3 9 10 8

The implicit recursion of Smith’s algorithm can be controlled conveniently
by using an array of arc pointers a1 . . . an−1. At level l of the process, arcs
a1 . . . al−1 denote edges that have been included in the current spanning tree; al
is ignored; and arcs al+1 . . . an−1 denote edges of a near tree on the contracted
graph ( . . . (G/a1) . . . )/al−1 that should be part of the next spanning tree visited.

There’s also another array of arc pointers s1 . . . sn−2, representing stacks
of arcs that have been temporarily removed from the current graph. The top
element of the stack for level l is sl, and each arc a links to its successor, la
(which is 0 at the bottom of the stack).

An edge whose removal would disconnect a connected graph is called a
bridge. One of the key points in the algorithm that follows is the fact that we
want to keep the current graph connected; therefore we don’t set G ← G \ e
when e is a bridge.

Algorithm S (All spanning trees). Given a connected graph represented with
the data structures explained above, this algorithm visits all of its spanning trees.

A technique called “dancing links,” which we will discuss extensively in
Section 7.2.2.1, is used here to remove and restore items from and to doubly
linked lists. The abbreviation “delete(a)” in the steps below is shorthand for the
pair of operations

npa
← na, pna

← pa ; (51)

similarly, “undelete(a)” stands for

pna ← a, npa ← a. (52)

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 465

S1. [Initialize.] Set a1 . . . an−1 to a spanning tree of the graph. (See exercise 94.)
Also set x← 0, l← 1, and s1 ← 0. If n = 2, set v ← 1, e← n0, and go to S5.

S2. [Enter level l.] Set e← al+1, u← te, and v ← te⊕1. If du > dv, interchange
v ↔ u and set e← e⊕ 1.

S3. [Shrink e.] (Now we will make u identical to v by inserting u’s adjacency list
into v’s. We also must delete all former edges between u and v, including e
itself, because such edges would otherwise become loops. Deleted edges are
linked together so that we can restore them later in step S7.) Set k ← du+dv,
f ← nu−1, and g ← 0. While tf ̸= 0, do the following: If tf = v, delete(f),
delete(f ⊕ 1), and set k ← k − 2, lf ← g, g ← f ; otherwise set tf⊕1 ← v.
Then set f ← nf and repeat these operations until tf = 0. Finally set le ← g,
dv ← k, g ← v − 1, npf ← ng, png ← pf , pnf

← g, ng ← nf , and al ← e.
S4. [Advance l.] Set l ← l + 1. If l < n − 1, set sl ← 0 and return to S2.

Otherwise set e← nv−1.
S5. [Visit.] (The current graph now has only two vertices, one of which is v.)

Set an−1 ← e and visit the spanning tree a1 . . . an−1. (If x = 0, this is the
first spanning tree to be visited; otherwise it differs from its predecessor by
deleting x and inserting e.) Set x← e and e← ne. Repeat step S5 if te ̸= 0.

S6. [Decrease l.] Set l ← l − 1. Terminate the algorithm if l = 0; otherwise set
e← al, u← te, and v ← te⊕1.

S7. [Unshrink e.] Set f ← u − 1, g ← v − 1, ng ← npf , png ← g, npf ← f ,
pnf
← f , and f ← pf . While tf ̸= 0, set tf⊕1 ← u and f ← pf . Then set

f ← le, k ← dv; while f ̸= 0 set k ← k + 2, undelete(f ⊕ 1), undelete(f),
and set f ← lf . Finally set dv ← k − du.

S8. [Test for bridge.] If e is a bridge, go to S9. (See exercise 95 for one way
to perform this test.) Otherwise set x ← e, le ← sl, sl ← e; delete(e) and
delete(e⊕ 1). Set du ← du − 1, dv ← dv − 1, and go to S2.

S9. [Undo level l deletions.] Set e ← sl. While e ̸= 0, set u ← te, v ← te⊕1,
du ← du + 1, dv ← dv + 1, undelete(e⊕ 1), undelete(e), and e← le. Return
to S6.

The reader is encouraged to play through the steps of this algorithm on a small
graph such as (48). Notice that a subtle case arises in steps S3 and S7, if u’s
adjacency list happens to become empty. Notice also that several shortcuts would
be possible, at the expense of a more complicated algorithm; we will discuss such
improvements later in this section.

*Series-parallel graphs. The task of finding all spanning trees becomes espe-
cially simple when the given graph has a serial and/or parallel decomposition. A
series-parallel graph between s and t is a graph G with two designated vertices,
s and t, whose edges can be built up recursively as follows: Either G consists of
a single edge, s−−− t; or G is a serial superedge consisting of k ≥ 2 series-parallel
subgraphs Gj between sj and tj , joined in series with s = s1 and tj = sj+1 for

From the Library of Melissa Nuno



ptg999

466 COMBINATORIAL SEARCHING 7.2.1.6

1 ≤ j < k and tk = t; or G is a parallel superedge consisting of k ≥ 2 series-
parallel subgraphs Gj between s and t joined in parallel. This decomposition is
essentially unique, given s and t, if we require that the subgraphs Gj for serial
superedges are not themselves serial superedges, and that the subgraphs Gj for
parallel superedges are not themselves parallel.

Any series-parallel graph can be represented conveniently as a tree, with no
nodes of degree 1. The leaf nodes of this tree represent edges, and the branch
nodes represent superedges, alternating between serial and parallel from level
to level. For example, the tree

A

a B D

b C e f g

c d

(53)

corresponds to the series-parallel graphs and subgraphs

A =
c

d
b e

a

f g
, B =

c

d
b e

, C =
c

d , D =
f g

, (54)

if the top node A is taken to be parallel. Edges are named in (54), but not
vertices, because edges are of prime importance with respect to spanning trees.

Let’s say that a near tree of a series-parallel graph between s and t is a set
of n − 2 cycle-free edges that do not connect s to t. The spanning trees and
near trees of a series-parallel graph are easy to describe recursively, as follows:
(1) A spanning tree of a serial superedge corresponds to spanning trees of all its
principal subgraphs Gj ; a near tree corresponds to spanning trees in all but one
of the Gj , and a near tree in the other. (2) A near tree of a parallel superedge
corresponds to near trees of all its principal subgraphs Gj ; a spanning tree cor-
responds to near trees in all but one of the Gj , and a spanning tree in the other.

Rules (1) and (2) suggest the following data structures for listing the span-
ning trees and/or near trees of series-parallel graphs. Let p point to a node in a
tree like (53). Then we define

tp = 1 for serial superedges, 0 otherwise (the “type” of p);
vp = 1 if we have a spanning tree for p, 0 if we have a near tree;
lp = pointer to p’s leftmost child, or 0 if p is a leaf;
rp = pointer to p’s right sibling, wrapping around cyclically;
dp = pointer to a designated child of p, or 0 if p is a leaf.

If q points to the rightmost child of p, its “right sibling” rq equals lp. And if q
points to any child of p, rules (1) and (2) state that

vq =

vp, if q = dp;
tp, if q ̸= dp.

(55)

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 467

(For example, if p is a branch node that represents a serial superedge, we must
have vq = 1 for all but one of p’s children; the only exception is the designated
child dp. Thus we must have a spanning tree for all of the subgraphs that were
joined serially to form p, except for one designated subgraph in the case that we
have a near tree for p.)

Given any setting of the designated-child pointers dp, and given any value
0 or 1 for vp at the root of the tree, Eq. (55) tells us how to propagate values
down to all of the leaves. For example, if we set vA ← 1 in the tree (53), and
if we designate the leftmost child of each branch node (so that dA = a, dB = b,
dC = c, and dD = f), we find successively
va = 1, vB = 0, vb = 0, vC = 1, vc = 1, vd = 0, ve = 1, vD = 0, vf = 0, vg = 1. (56)

A leaf node q is present in the spanning tree if and only if vq = 1; hence
(56) specifies the spanning tree aceg of the series-parallel graph A in (54).

For convenience, let’s say that the configs of p are its spanning trees if
vp = 1, its near trees if vp = 0. We would like to generate all configs of the
root. A branch node p is called “easy” if vp = tp; that is, a serial node is easy
if its configs are spanning trees, and a parallel node is easy if its configs are
near trees. If p is easy, its configs are the Cartesian product of the configs of its
children, namely all k-tuples of the children’s configs, varying independently; the
designated child dp is immaterial in the easy case. But if p is uneasy, its configs
are the union of such Cartesian k-tuples, taken over all possible choices of dp.

As luck would have it, easy nodes are relatively rare: At most one child of
an uneasy node (namely the designated child) can be easy, and all children of an
easy node are uneasy unless they are leaves.

Even so, the tree representation of a series-parallel graph makes the recursive
generation of all its spanning trees and/or near trees quite straightforward and
efficient. The operations of Algorithm S — shrinking and unshrinking, deleting
and undeleting, bridge detection — are not needed when we deal with series-
parallel graphs. Furthermore, exercise 99 shows that there is a pleasant way to
obtain the spanning trees or near trees in a revolving-door Gray code order, by
using focus pointers as in several algorithms that we’ve seen earlier.

*Refinements of Algorithm S. Although Algorithm S provides us with a simple
and reasonably effective way to visit all spanning trees of a general graph, its
author Malcolm Smith realized that the properties of series-parallel graphs can be
used to make it even better. For example, if a graph has two or more edges that
run between the same vertices u and v, we can combine them into a superedge;
the spanning trees of the original graph can then be obtained readily from those
of the simpler, reduced graph. And if a graph has a vertex v of degree 2, so that
the only edges touching v are u−−−v and v−−−w, we can eliminate v and replace
those edges by a single superedge between u and w. Furthermore, any vertex of
degree 1 can effectively be eliminated, together with its adjacent edge, by simply
including that edge in every spanning tree.

After the reductions in the preceding paragraph have been applied to a given
graph G, we obtain a reduced graph Ĝ having no parallel edges and no vertices

From the Library of Melissa Nuno



ptg999

468 COMBINATORIAL SEARCHING 7.2.1.6

of degrees 1 or 2, together with a set of m ≥ 0 series-parallel graphs S1, . . . , Sm,
representing edges (or superedges) that must be included in all spanning trees
of G. Every remaining edge u−−−v of Ĝ corresponds, in fact, to a series-parallel
graph Suv between vertices u and v. The spanning trees of G are then obtained
as the union, taken over all spanning trees T of Ĝ, of the Cartesian product
of the spanning trees of S1, . . . , Sm and the spanning trees of all Suv for edges
u−−−v in T , together with the near trees of all Suv for edges u−−−v that are in
Ĝ but not in T . And all spanning trees T of Ĝ can be obtained by using the
strategy of Algorithm S.

In fact, when Algorithm S is extended in this way, its operations of replacing
the current graph G by G/e or G\ e typically trigger further reductions, as new
parallel edges appear or as the degree of a vertex drops below 3. Therefore it
turns out that the “stopping state” of the implicit recursion in Algorithm S,
namely the case when only two vertices are left (step S5), never actually arises:
A reduced graph Ĝ either has only a single vertex and no edges, or it has at least
four vertices and six edges.

The resulting algorithm retains the desirable revolving-door property of
Algorithm S, and it is quite pretty (although about four times as long as the
original); see exercise 100. Smith proved that it has the best possible asymptotic
running time: If G has n vertices, m edges, and N spanning trees, the algorithm
visits them all in O(m+ n+N) steps.

The performance of Algorithm S and of its souped-up version Algorithm S′

can best be appreciated by considering the number of memory accesses that
those algorithms actually make when they generate the spanning trees of typical
graphs, as shown in Table 5. The bottom line of that table corresponds to
the graph plane miles (16, 0, 0, 1, 0, 0, 0) from the Stanford GraphBase, which
serves as an “organic” antidote to the purely mathematical examples on the
previous lines. The random multigraph on the penultimate line, also from
the Stanford GraphBase, can be described more precisely by its official name
random graph(16, 37, 1, 0, 0, 0, 0, 0, 0, 0). Although the 4 × 4 torus is isomorphic
to the 4-cube (see exercise 7.2.1.1–17), those isomorphic graphs yield slightly dif-
ferent running times because their vertices and edges are encountered differently
when the algorithms are run.

In general we can say that Algorithm S is not too bad on small examples,
except when the graph is quite sparse; but Algorithm S′ begins to shine when
many spanning trees are present. Once Algorithm S′ gets warmed up, it tends
to crank out a new tree after every 18 or 19 mems go by.

Table 5 also indicates that a mathematically-defined graph often has a
surprisingly “round” number of spanning trees. For example, D. M. Cvetković
[Srpska Akademija Nauka, Matematicheski Institut 11 (Belgrade: 1971), 135–
141] discovered, among other things, that the n-cube has exactly

22n−n−1 1(n
1) 2(n

2) . . . n(n
n) (57)

of them. Exercises 104–109 explore some of the reasons why that happens.

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 469

Table 5
RUNNING TIME IN MEMS NEEDED TO GENERATE ALL SPANNING TREES

m n N Algorithm S Algorithm S′ µ per tree
path P10 9 10 1 794 µ 473 µ 794.0 473.0

path P100 99 100 1 9,974 µ 5,063 µ 9974.0 5063.0
cycle C10 10 10 10 3,480 µ 998 µ 348.0 99.8

cycle C100 100 100 100 355,605 µ 10,538 µ 3556.1 105.4
complete graph K4 6 4 16 1,213 µ 1,336 µ 75.8 83.5

complete graph K10 45 10 100,000,000 3,759.58 Mµ 1,860.95 Mµ 37.6 18.6
complete bigraph K5,5 25 10 390,625 23.43 Mµ 8.88 Mµ 60.0 22.7

4×4 grid P4 P4 24 16 100,352 12.01 Mµ 1.87 Mµ 119.7 18.7
5×5 grid P5 P5 40 25 557,568,000 54.68 Gµ 10.20 Gµ 98.1 18.3

4×4 cylinder P4 C4 28 16 2,558,976 230.96 Mµ 49.09 Mµ 90.3 19.2
5×5 cylinder P5 C5 45 25 38,720,000,000 3,165.31 Gµ 711.69 Gµ 81.7 18.4

4×4 torus C4 C4 32 16 42,467,328 3,168.15 Mµ 823.08 Mµ 74.6 19.4
4-cube P2 P2 P2 P2 32 16 42,467,328 3,172.19 Mµ 823.38 Mµ 74.7 19.4

random multigraph 37 16 59,933,756 3,818.19 Mµ 995.91 Mµ 63.7 16.6
16 cities 37 16 179,678,881 11,772.11 Mµ 3,267.43 Mµ 65.5 18.2

A general quasi-Gray code. Let’s close this section by discussing something
completely different, yet still related to trees. Consider the following hybrid
variants of the two standard ways to traverse a nonempty forest:

Prepostorder traversal Postpreorder traversal
Visit the root of the first tree Traverse the subtrees of the first
Traverse the subtrees of the first tree, in prepostorder

tree, in postpreorder Visit the root of the first tree
Traverse the remaining trees, Traverse the remaining trees,

in prepostorder in postpreorder

In the first case, every tree of the forest is traversed in prepostorder, with its root
first; but the subtrees of those roots are traversed in postpreorder, with roots
coming last. The second variant is similar but with ‘pre’ and ‘post’ interchanged.
And in general, prepostorder visits roots first on every even-numbered level of
the forest, but visits them last on the odd-numbered levels. For example, the
forest in (2) becomes❦1❦2

❦3❦5❦4
❦11❦6❦7 ❦9❦8

❦10
❦15❦12 ❦13❦14 (58)

when we label its nodes in prepostorder.

From the Library of Melissa Nuno



ptg999

470 COMBINATORIAL SEARCHING 7.2.1.6

Prepostorder and postpreorder are not merely curiosities; they’re actually
useful. The reason is that adjacent nodes, in either of these orders, are always
near each other in the forest. For example, nodes k and k+1 are adjacent in (58)
for k = 1, 4, 6, 8, 10, 13; they are separated by only one node when k = 3, 12, 14;
and they’re three steps apart when k = 2, 5, 7, 9, 11 (if we imagine an invisible
super-parent at the top of the forest). A moment’s thought proves inductively
that at most two nodes can possibly intervene between prepostorder neighbors or
postpreorder neighbors — because postpreorder(F ) always begins with the root
of the first tree or its leftmost child, and prepostorder(F ) always ends with the
root of the last tree or its rightmost child.

Suppose we want to generate all combinatorial patterns of some kind, and
we want to visit them in a Gray-code-like manner so that consecutive patterns
are always “close” to each other. We can form, at least conceptually, the graph of
all possible patterns p, with edges p−−−q for all pairs of patterns that are close to
each other. The following theorem, due to Milan Sekanina [Spisy Přírodovědecké
Fakulty University v Brně, No. 412 (1960), 137–140], proves that a pretty good
Gray code is always possible, provided only that we can get from any pattern to
any other in a sequence of short steps:

Theorem S. The vertices of any connected graph can be listed in a cyclic order
(v0, v1, . . . , vn−1) so that the distance between vk and v(k+1) mod n is at most 3,
for 0 ≤ k < n.

Proof. Find a spanning tree in the graph, and traverse it in prepostorder.
Graph theorists traditionally say that the kth power of a graph G is the

graph Gk whose vertices are those of G, with u−−−v in Gk if and only if there’s a
path of length k or less from u to v in G. Thus they can state Theorem S much
more succinctly, when n > 2: The cube of a connected graph is Hamiltonian.

Prepostorder traversal is also useful when we want to visit the nodes of a
tree in loopless fashion, with a bounded number of steps between stops:

Algorithm Q (Prepostorder successor in a triply linked forest). If P points to a
node in a forest represented by links PARENT, CHILD, and SIB, corresponding to
each node’s parent, leftmost child, and right sibling, this algorithm computes P’s
successor node, Q, in prepostorder. We assume that we know the level L at which
P appears in the forest; the value of L is updated to be the level of Q. If P happens
to be the final node in prepostorder, the algorithm sets Q← Λ and L← −1.
Q1. [Pre or post?] If L is even, go to step Q4.
Q2. [Continue postpreorder.] Set Q← SIB(P). Go to Q6 if Q ̸= Λ.
Q3. [Move up.] Set P← PARENT(P) and L← L− 1. Go to Q7.
Q4. [Continue prepostorder.] If CHILD(P) = Λ, go to Q7.
Q5. [Move down.] Set Q← CHILD(P) and L← L + 1.
Q6. [Move down if possible.] If CHILD(Q) ̸= Λ, set Q← CHILD(Q) and L← L+1.

Terminate the algorithm.

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 471

Q7. [Move right or up.] If SIB(P) ̸= Λ, set Q ← SIB(P); otherwise set Q ←
PARENT(P) and L← L− 1. Terminate the algorithm.

Notice that, as in Algorithm 2.4C, the link PARENT(P) is examined only if
SIB(P) = Λ. A complete traversal is really a worm walk around the forest,
like (3): The worm “sees” the nodes on even-numbered levels when it passes
them on the left, and it sees the odd-level nodes when it passes them on the right.

EXERCISES
1. [15 ] If a worm crawls around the binary tree (4), how could it easily reconstruct

the parentheses of (1)?
2. [20 ] (S. Zaks, 1980.) Modify Algorithm P so that it produces the combinations
z1z2 . . . zn of (8) instead of the parenthesis strings a1a2 . . . a2n.

x 3. [23 ] Prove that (11) converts z1z2 . . . zn to the inversion table c1c2 . . . cn.
4. [20 ] True or false: If the strings a1 . . . a2n are generated in lexicographic order,

so are the corresponding strings d1 . . . dn, z1 . . . zn, p1 . . . pn, and c1 . . . cn.
5. [15 ] What tables d1 . . . dn, z1 . . . zn, p1 . . . pn, and c1 . . . cn correspond to the

nested parenthesis string (1)?
x 6. [20 ] What matching corresponds to (1)? (See the final column of Table 1.)

7. [16 ] (a) What is the state of the string a1a2 . . . a2n when Algorithm P terminates?
(b) What do the arrays l1l2 . . . ln and r1r2 . . . rn contain when Algorithm B terminates?

8. [15 ] What tables l1 . . . ln, r1 . . . rn, e1 . . . en, and s1 . . . sn correspond to the ex-
ample forest (2)?

9. [M20 ] Show that the tables c1 . . . cn and s1 . . . sn are related by the law

ck = [s1≥ k − 1] + [s2≥ k − 2] + · · ·+ [sk−1≥ 1].

10. [M20 ] (Worm walks.) Given a string of nested parentheses a1a2 . . . a2n, let wj
be the excess of left parentheses over right parentheses in a1a2 . . . aj , for 0 ≤ j ≤ 2n.
Prove that w0 + w1 + · · ·+ w2n = 2(c1 + · · ·+ cn) + n.
11. [11 ] If F is a forest, its conjugate FR is obtained by left-to-right mirror reflection.
For example, the fourteen forests in Table 1 are

, , , , , , , , , , , , ,

and their conjugates are respectively

, , , , , , , , , , , , ,

as in the colex forests of Table 2. If F corresponds to the nested parentheses a1a2 . . . a2n,
what string of parentheses corresponds to FR?
12. [15 ] If F is a forest, its transpose FT is the forest whose binary tree is obtained
by interchanging left and right links in the binary tree representing F . For example,
the transposes of the fourteen forests in Table 1 are respectively

, , , , , , , , , , , , , .

What is the transpose of the forest (2)?
13. [20 ] Continuing exercises 11 and 12, how do the preorder and postorder of a
labeled forest F relate to the preorder and postorder of (a) FR? (b) FT ?

From the Library of Melissa Nuno



ptg999

472 COMBINATORIAL SEARCHING 7.2.1.6

x 14. [21 ] Find all labeled forests F such that FRT = FTR.
15. [20 ] Suppose B is the binary tree obtained from a forest F by linking each node
to its left sibling and its rightmost child, as in exercise 2.3.2–5 and the last column of
Table 2. Let F ′ be the forest that corresponds to B in the normal way, via left-child
and right-sibling links. Prove that F ′ = FRT , in the notation of exercises 11 and 12.
16. [20 ] If F and G are forests, let FG be the forest obtained by placing the trees of F
to the left of the trees of G; also let F | G = (GTFT )T . Give an intuitive explanation
of the operator |, and prove that it is associative.
17. [M46 ] Characterize all unlabeled forests F such that FRT =FTR. (See exercise 14.)
18. [30 ] Two forests are said to be cognate if one can be obtained from the other by
repeated operations of taking the conjugate and/or the transpose. The examples in ex-
ercises 11 and 12 show that all forests on 4 nodes belong to one of three cognate classes:

≍ ; ≍ ≍ ≍ ≍ ≍ ;

≍ ≍ ≍ ≍ ≍ .

Study the set of all forests with 15 nodes. How many equivalence classes of cognate
forests do they form? What is the largest class? What is the smallest class? What is
the size of the class containing (2)?
19. [28 ] Let F1, F2, . . . , FN be the sequence of unlabeled forests that correspond
to the nested parentheses generated by Algorithm P, and let G1, G2, . . . , GN be
the sequence of unlabeled forests that correspond to the binary trees generated by
Algorithm B. Prove that Gk = F RTRk , in the notation of exercises 11 and 12. (The
forest FRTR is called the dual of F ; it is denoted by FD in several exercises below.)
20. [25 ] Recall from Section 2.3 that the degree of a node in a tree is the number of
children it has, and that an extended binary tree is characterized by the property that
every node has degree either 0 or 2. In the extended binary tree (4), the sequence of
node degrees is 2200222002220220002002202200000 in preorder; this string of 0s and 2s
is identical to the sequence of parentheses in (1), except that each ‘(’ has been replaced
by 2, each ‘)’ has been replaced by 0, and an additional 0 has been appended.

a) Prove that a sequence of nonnegative integers b1b2 . . . bN is the preorder degree
sequence of a forest if and only if it satisfies the following property for 1 ≤ k ≤ N :

b1 + b2 + · · ·+ bk + f > k if and only if k < N.

Here f = N − b1 − b2 − · · · − bN is the number of trees in the forest.
b) Recall from exercise 2.3.4.5–6 that an extended ternary tree is characterized by the

property that every node has degree 0 or 3; an extended ternary tree with n internal
nodes has 2n + 1 external nodes, hence N = 3n + 1 nodes altogether. Design an
algorithm to generate all ternary trees with n internal nodes, by generating the
associated sequences b1b2 . . . bN in lexicographic order.

x 21. [26 ] (S. Zaks and D. Richards, 1979.) Continuing exercise 20, explain how to
generate the preorder degree sequences of all forests that have N = n0 + · · ·+nt nodes,
with exactly nj nodes of degree j. Example: When n0 = 4, n1 = n2 = n3 = 1, and
t = 3, and the valid sequences b1b2b3b4b5b6b7 are

1203000, 1230000, 1300200, 1302000, 1320000, 2013000, 2030010, 2030100, 2031000, 2103000,
2130000, 2300010, 2300100, 2301000, 2310000, 3001200, 3002010, 3002100, 3010200, 3012000,
3020010, 3020100, 3021000, 3100200, 3102000, 3120000, 3200010, 3200100, 3201000, 3210000.

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 473

x 22. [30 ] (J. Korsh, 2004.) As an alternative to Algorithm B, show that binary trees
can also be generated directly and efficiently in linked form if we produce them in colex
order of the numbers d1 . . . dn−1 defined in (9). (The actual values of d1 . . . dn−1 should
not be computed explicitly; but the links l1 . . . ln and r1 . . . rn should be manipulated
in such a way that we get the binary trees corresponding successively to d1d2 . . . dn−1 =
000 . . . 0, 100 . . . 0, 010 . . . 0, 110 . . . 0, 020 . . . 0, 001 . . . 0, . . . , 000 . . . (n−1).)

x 23. [25 ] (a) What is the last string visited by Algorithm N? (b) What is the last
binary tree or forest visited by Algorithm L? Hint: See exercise 40 below.
24. [22 ] Using the notation of Table 3, what sequences l0 l1 . . . l15, r1 . . . r15, k1 . . . k15,
q1 . . . q15, and u1 . . . u15 correspond to the binary tree (4) and the forest (2)?

x 25. [30 ] (Pruning and grafting.) Representing binary trees as in Algorithm B, design
an algorithm that visits all link tables l1 . . . ln and r1 . . . rn in such a way that, between
visits, exactly one link changes from j to 0 and another from 0 to j, for some index j.
(In other words, every step removes some subtree j from the binary tree and places it
elsewhere, preserving preorder.)
26. [M31 ] (The Kreweras lattice.) Let F and F ′ be n-node forests with their nodes
numbered 1 to n in preorder. We write F < F ′ (“F coalesces F ′”) if j and k are
siblings in F whenever they are siblings in F ′, for 1 ≤ j < k ≤ n. Figure 60 illustrates
this partial ordering in the case n = 4; each forest is encoded by the sequence c1 . . . cn
of (10) and (11), which specifies the depth of each node. (With this encoding, j and k
are siblings if and only if cj = ck ≤ cj+1, . . . , ck−1.)

0000

0001 00100011

0012

0100

0101

01100111

0112 012001210122

0123

Fig. 60. The Kreweras lattice of order 4. Each forest is represented by
its sequence of node depths c1c2c3c4 in preorder. (See exercises 26–28.)

a) Let Π be a partition of {1, . . . , n}. Show that there exists a forest F , with nodes
labeled (1, . . . , n) in preorder and with

j ≡ k (modulo Π) ⇐⇒ j is a sibling of k in F ,

if and only if Π satisfies the noncrossing property

i<j<k<l and i≡k and j≡ l (modulo Π) implies i≡j≡k≡ l (modulo Π).

b) Given any two n-node forests F and F ′, explain how to compute their least upper
bound F ∨F ′, the element such that F < G and F ′ < G if and only if F ∨F ′ < G.

c) When does F ′ cover F with respect to the relation <? (See exercise 7.2.1.4–55.)
d) Show that if F ′ covers F , it has exactly one less leaf than F .
e) How many forests cover F , when node k has ek children for 1 ≤ k ≤ n?
f) Using the definition of duality in exercise 19, what is the dual of the forest (2)?

From the Library of Melissa Nuno



ptg999

474 COMBINATORIAL SEARCHING 7.2.1.6

g) Prove that F < F ′ holds if and only if F ′D < FD. (Because of this property, dual
elements have been placed symmetrically about the center of Fig. 60.)

h) Given any two n-node forests F and F ′, explain how to compute their greatest
lower bound F ∧ F ′; that is, G< F and G< F ′ if and only if G< F ∧ F ′.

i) Does this lattice satisfy a semimodular law analogous to exercise 7.2.1.5–12(f)?
x 27. [M33 ] (The Tamari lattice.) Continuing exercise 26, let us write F ⊣ F ′ if the
jth node in preorder has at least as many descendants in F ′ as it does in F , for all j.
In other words, if F and F ′ are characterized by their scope sequences s1 . . . sn and
s′1 . . . s

′
n as in Table 2, we have F ⊣ F ′ if and only sj ≤ s′j for 1 ≤ j ≤ n. (See Fig. 61.)

0123

0012

0112

0101

0001

0122

0011

0121

0111

0120

0010
0110

0100

0000

(a)

3210

0210

3010

1010

0010

3200

0200

3100

3000

2100

0100
2000

1000

0000

(b)

Fig. 61. The Tamari lattice of order 4. Each forest is represented by
its sequences of (a) node depths and (b) descendant counts, in preorder.
(See exercises 26–28.)

a) Show that the scope coordinates min(s1, s
′
1) min(s2, s

′
2) . . .min(sn, s′n) define a

forest that is the greatest lower bound of F and F ′. (We denote it by F ⊥ F ′.)
Hint: Prove that s1 . . . sn corresponds to a forest if and only if 0 ≤ k ≤ sj implies
sj+k + k ≤ sj , for 0 ≤ j ≤ n, if we define s0 = n.

b) When does F ′ cover F in this partial ordering?
c) Prove that F ⊣ F ′ if and only if F ′D ⊣ FD. (Compare with exercise 26(g).)
d) Explain how to compute a least upper bound, F ⊤ F ′, given F and F ′.
e) Prove that F < F ′ in the Kreweras lattice implies F ⊣ F ′ in the Tamari lattice.
f) True or false: F ∧ F ′ ⊣ F ⊥ F ′.
g) True or false: F ∨ F ′ < F ⊤ F ′.
h) What are the longest and shortest paths from the top of the Tamari lattice to the

bottom, when each forest of the path covers its successor? (Such paths are called
maximal chains in the lattice; compare with exercise 7.2.1.4–55(h).)

28. [M26 ] (The Stanley lattice.) Continuing exercises 26 and 27, let us define yet
another partial ordering on n-node forests, saying that F ⊆ F ′ whenever the depth
coordinates c1 . . . cn and c′1 . . . c

′
n satisfy cj ≤ c′j for 1 ≤ j ≤ n. (See Fig. 62.)

a) Prove that this partial ordering is a lattice, by explaining how to compute the
greatest lower bound F ∩F ′ and least upper bound F ∪F ′ of any two given forests.

b) Show that Stanley’s lattice satisfies the distributive laws

F ∩ (G ∪H) = (F ∩G) ∪ (F ∩H), F ∪ (G ∩H) = (F ∪G) ∩ (F ∪H).

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 475

0000

0001 0010

0011

0012

0100

0101 0110

0111

0112

0120

0121

0122

0123

Fig. 62. The Stanley lattice of order 4. Each
forest is represented by its sequence of node
depths in preorder. (See exercises 26–28.)

c) When does F ′ cover F in this lattice?
d) True or false: F ⊆ G if and only if FR ⊆ GR.
e) Prove that F ⊆ F ′ in the Stanley lattice whenever F ⊣ F ′ in the Tamari lattice.

29. [HM31 ] The covering graph of a Tamari lattice is sometimes known as an “associa-
hedron,” because of its connection with the associative law (14), proved in exercise
27(b). The associahedron of order 4, depicted in Fig. 61, looks like it has three square
faces and six faces that are regular pentagons. (Compare with Fig. 43 in exercise
7.2.1.2–60, which shows the “permutahedron” of order 4, a well-known Archimedean
solid.) Why doesn’t Fig. 61 show up in classical lists of uniform polyhedra?
30. [M26 ] The footprint of a forest is the bit string f1 . . . fn defined by

fj = [node j in preorder is not a leaf ].

a) If F has footprint f1 . . . fn, what is the footprint of FD? (See exercise 27.)
b) How many forests have the footprint 10101101111110000101010001011000?
c) Prove that fj = [dj = 0], for 1 ≤ j < n, in the notation of (6).
d) Two elements of a lattice are called complementary if their greatest lower bound is

the bottom element while their least upper bound is the top element. Show that
F and F ′ are complementary in the Tamari lattice if and only if their footprints
are complementary, in the sense that f ′

1 . . . f
′
n−1 = f̄1 . . . f̄n−1.

x 31. [M28 ] A binary tree with n internal nodes is called degenerate if it has height n.
a) How many n-node binary trees are degenerate?
b) We’ve seen in Tables 1, 2, and 3 that binary trees and forests can be encoded by

various n-tuples of numbers. For each of the encodings c1 . . . cn, d1 . . . dn, e1 . . . en,
k1 . . . kn, p1 . . . pn, s1 . . . sn, u1 . . . un, and z1 . . . zn, explain how to see at a glance
if the corresponding binary tree is degenerate.

c) True or false: If F is degenerate, so is FD.
d) Prove that if F and F ′ are degenerate, so are F ∧F ′ = F⊥F ′ and F ∨F ′ = F⊤F ′.

x 32. [M30 ] Prove that if F ⊣ F ′, there is a forest F ′′ such that for all G we have

F ′ ⊥G = F if and only if F ⊣ G ⊣ F ′′.

Consequently the semidistributive laws hold in the Tamari lattice:

F ⊥G = F ⊥H implies F ⊥ (G⊤H) = F ⊥G;
F ⊤G = F ⊤H implies F ⊤ (G⊥H) = F ⊤G.

From the Library of Melissa Nuno



ptg999

476 COMBINATORIAL SEARCHING 7.2.1.6

x 33. [M27 ] (Permutation representation of trees.) Let σ be the cycle (1 2 . . . n).
a) Given any binary tree whose nodes are numbered 1 to n in symmetric order, prove

that there is a unique permutation λ of {1, . . . , n} such that, for 1 ≤ k ≤ n,

LLINK[k] =

kλ, if kλ < k;
0, otherwise; RLINK[k] =


kσλ, if kσλ > k;
0, otherwise.

Thus λ neatly packs 2n link fields into a single n-element array.
b) Show that this permutation λ is particularly easy to describe in cycle form when

the binary tree is the left-sibling/right-child representation of a forest F . What is
the cycle form of λ(F ) when F is the forest in (2)?

c) Find a simple relation between λ(F ) and the dual permutation λ(FD).
d) Prove that, in exercise 26, F ′ covers F if and only if λ(F ′) = (j k)λ(F ), where

j and k are siblings in F .
e) Consequently the number of maximal chains in the Kreweras lattice of order n

is the number of ways to factor an n-cycle as a product of n − 1 transpositions.
Evaluate this number. Hint: See Eq. 1.2.6–(16).

34. [M25 ] (R. P. Stanley.) Show that the number of maximal chains in the Stanley
lattice of order n is (n(n− 1)/2)!/(1n−13n−2 . . . (2n− 5)2(2n− 3)1).
35. [HM37 ] (D. B. Tyler and D. R. Hickerson.) Explain why the denominators of the
asymptotic formula (16) are all powers of 2.

x 36. [M25 ] Analyze the ternary tree generation algorithm of exercise 20(b). Hint:
There are (2n+ 1)−13n

n


ternary trees with n internal nodes, by exercise 2.3.4.4–11.

x 37. [M40 ] Analyze the Zaks–Richards algorithm for generating all trees with a given
distribution n0, n1, n2, . . . , nt of degrees (exercise 21). Hint: See exercise 2.3.4.4–32.
38. [M22 ] What is the total number of memory references performed by Algorithm L,
as a function of n?
39. [22 ] Prove formula (23) by showing that the elements of Apq in (5) correspond to
Young tableaux with two rows.
40. [M22 ] (a) Prove that Cpq is odd if and only if p & (q + 1) = 0, in the sense that
the binary representations of p and q+ 1 have no bits in common. (b) Therefore Cn is
odd if and only if n+ 1 is a power of 2.
41. [M21 ] Show that the ballot numbers have a simple generating function


Cpqw

pzq.
x 42. [M22 ] How many unlabeled forests with n nodes are (a) self-conjugate? (b) self-

transpose? (c) self-dual? (See exercises 11, 12, 19, and 26.)
43. [M21 ] Express Cpq in terms of the Catalan numbers ⟨C0, C1, C2, . . . ⟩, aiming for
a formula that is simple when q − p is small. (For example, C(q−2)q = Cq − Cq−1.)

x 44. [M27 ] Prove that Algorithm B makes only 8 2
3 +O(n−1) references to memory per

binary tree visited.
45. [M26 ] Analyze the memory references made by the algorithm in exercise 22. How
does it compare to Algorithm B?
46. [M30 ] (Generalized Catalan numbers.) Generalize (21) by defining

Cpq(x) = Cp(q−1)(x) + xq−pC(p−1)q(x), if 0 ≤ p ≤ q ̸= 0; C00(x) = 1;

and Cpq(x) = 0 if p < 0 or p > q; thus Cpq = Cpq(1). Also let Cn(x) = Cnn(x), so that

⟨C0(x), C1(x), . . . ⟩ = ⟨1, 1, 1+x, 1+2x+x2 +x3, 1+3x+3x2 +3x3 +2x4 +x5 +x6, . . . ⟩.

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 477

a) Show that [xk]Cpq(x) is the number of paths from pq to 00 in (28) that have
area k, where the “area” of a path is the number of rectangular cells above it.
(Thus an L-shaped path has the maximum possible area, p(q − p) +


p
2

.)

b) Prove that Cn(x) =

F x

c1+···+cn =

F x

internal path length(F ), summed over all
n-node forests F .

c) If C(x, z) =
∞
n=0 Cn(x)zn, show that C(x, z) = 1 + zC(x, z)C(x, xz).

d) Furthermore, C(x, z)C(x, xz) . . . C(x, xrz) =
∞
p=0 Cp(p+r)(x)zp.

47. [M27 ] Continuing the previous exercise, generalize the identity (27).
48. [M28 ] (F. Ruskey and A. Proskurowski.) Evaluate Cpq(x) when x = −1, and use
this result to show that no “perfect” Gray code for nested parentheses is possible when
n ≥ 5 is odd.
49. [17 ] What is the lexicographically millionth string of 15 nested parenthesis pairs?
50. [20 ] Design the inverse of Algorithm U: Given a string a1 . . . a2n of nested paren-
theses, determine its rank N − 1 in lexicographic order. What is the rank of (1)?
51. [M22 ] Let z̄1z̄2 . . . z̄n be the complement of z1z2 . . . zn with respect to 2n; in other
words, z̄j = 2n− zj , where zj is defined in (8). Show that if z̄1z̄2 . . . z̄n is the (N + 1)st
n-combination of {0, 1, . . . , 2n − 1} generated by Algorithm 7.2.1.3L, then z1z2 . . . zn
is the (N − κnN + 1)st n-combination of {1, 2, . . . , 2n} generated by the algorithm of
exercise 2. (Here κn denotes the nth Kruskal function, defined in 7.2.1.3–(60).)
52. [M23 ] Find the mean and variance of the quantity dn in Table 1, when nested
parentheses a1 . . . a2n are chosen at random.
53. [M28 ] Let X be the distance from the root of an extended binary tree to the
leftmost external node. (a) What is the expected value of X, when all binary trees with
n nodes are equally likely? (b) What is the expected value of X in a random binary
search tree, constructed by Algorithm 6.2.2T from a random permutation K1 . . .Kn?
(c) What is the expected value of X in a random degenerate binary tree, in the sense
of exercise 31? (d) What is the expected value of 2X in all three cases?
54. [HM29 ] What are the mean and variance of c1 + · · ·+ cn? (See exercise 46.)
55. [HM33 ] Evaluate C′

pq(1), the total area of all the paths in exercise 46(a).
56. [M23 ] (Renzo Sprugnoli, 1990.) Prove the summation formula

m−1
k=0

CkCn−1−k = 1
2Cn + 2m− n

2n(n+ 1)

2m
m

2n− 2m
n−m


, for 0 ≤ m ≤ n.

57. [M28 ] Express the sums Sp(a, b) =

k≥0

 2a
a−k
 2b
b−k

kp in closed form for p = 0,

1, 2, 3, and use these formulas to prove (30).
58. [HM34 ] Let tlmn be the number of n-node binary trees in which external node m
appears at level l when the external nodes are numbered from 0 to n in symmetric
order. Also let tmn =

n
l=1 ltlmn, so that tmn/Cn is the average level of external

node m; and let t(w, z) be the super generating function
m,n

tmnw
mzn = (1+w)z + (3+4w+3w2)z2 + (9+13w+13w2+9w3)z3 + · · · .

Prove that t(w, z) = (C(z)− wC(wz))/(1− w)− 1 + zC(z)t(w, z) + wzC(wz)t(w, z),
and deduce a simple formula for the numbers tmn.

From the Library of Melissa Nuno



ptg999

478 COMBINATORIAL SEARCHING 7.2.1.6

59. [HM29 ] Similarly, let Tlmn count all n-node binary trees in which internal node m
appears at level l. Find a simple formula for Tmn =

n
l=1 lTlmn.

x 60. [M26 ] (Balanced strings.) A string α of nested parentheses is atomic if it has the
form (α′) where α′ is nested; every nested string can be represented uniquely as a
product of atoms α1 . . . αr. A string with equal numbers of left and right parentheses
is called balanced ; every balanced string can be represented uniquely as β1 . . . βr where
each βj is either an atom or a co-atom (the reverse of an atom). The defect of a
balanced string is half the length of its co-atoms. For example, the balanced string

( ( ) ) ) ( ( ( ) ) ) ) ) ) ( ( ) ( ( ( ) ) ( ( ( ) ) ( ( )

has the factored form β1β2β3β4β5β6β7β8 = α1α
R
2 α3α

R
4 α

R
5 α6α

R
7 α8, with four atoms

and four co-atoms; its defect is |α2α4α5α7|/2 = 9.
a) Prove that the defect of a balanced string is the number of indices k for which the

kth right parenthesis precedes the kth left parenthesis.
b) If β1 . . . βr is balanced, we can map it into a nested string by simply reversing

its co-atoms. But the following mapping is more interesting, because it produces
unbiased (uniformly random) nested strings from unbiased balanced strings: Let
there be s co-atoms βi1 = αRi1 , . . . , βis = αRis . Replace each co-atom by (; then
append the string )α′

is . . . )α
′
i1 , where αj = (α′

j). For example, the string above
is mapped into α1(α3((α6(α8)α′

7)α′
5)α′

4)α′
2, which just happens to equal the

string (1) illustrated at the beginning of this section.
Design an algorithm that applies this mapping to a given balanced string b1 . . . b2n.

c) Also design an algorithm for the inverse mapping: Given a nested string α =
a1 . . . a2n and an integer l with 0 ≤ l ≤ n, compute a balanced string β = b1 . . . b2n
of defect l for which β →→ α. What balanced string of defect 11 maps into (1)?

x 61. [M26 ] (Raney’s Cycle Lemma.) Let b1b2 . . . bN be a string of nonnegative integers
such that f = N − b1 − b2 − · · · − bN > 0.

a) Prove that exactly f of the cyclic shifts bj+1 . . . bNb1 . . . bj for 1 ≤ j ≤ N satisfy
the preorder degree sequence property in exercise 20.

b) Design an efficient algorithm to determine all such j, given b1b2 . . . bN .
c) Explain how to generate a random forest that has N = n0 + · · ·+ nt nodes, with

exactly nj nodes of degree j. (For example, we obtain random n-node t-ary trees
as a special case of this general procedure when N = tn + 1, n0 = (t − 1)n + 1,
n1 = · · · = nt−1 = 0, and nt = n.)

62. [22 ] A binary tree can also be represented by bit strings (l1 . . . ln, r1 . . . rn), where
lj and rj tell whether the left and right subtrees of node j in preorder are nonempty.
(See Theorem 2.3.1A.) Prove that if l1 . . . ln and r1 . . . rn are arbitrary bit strings
with l1 + · · · + ln + r1 + · · · + rn = n − 1, exactly one cyclic shift (lj+1 . . . ln l1 . . . lj ,
rj+1 . . . rnr1 . . . rj) yields a valid binary tree representation, and explain how to find it.

63. [16 ] If the first two iterations of Rémy’s algorithm have produced 1

2 0

e e , what
decorated binary trees are possible after the next iteration?

64. [20 ] What sequence of X values in Algorithm R corresponds to the decorated
trees of (34), and what are the final values of L0L1 . . . L12?

65. [38 ] Generalize Rémy’s algorithm (Algorithm R) to t-ary trees.

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 479

66. [21 ] A Schröder tree is a binary tree in which every nonnull right link is colored
either white or black. The number Sn of n-node Schröder trees is

n = 0 1 2 3 4 5 6 7 8 9 10 11 12
Sn = 1 1 3 11 45 197 903 4279 20793 103049 518859 2646723 13648869

for small n. For example, S3 = 11 because the possibilities are

.

(White links are “hollow”; external nodes have also been attached.)
a) Find a simple correspondence between Schröder trees with n internal nodes and

ordinary trees with n+ 1 leaves and no nodes of degree one.
b) Devise a Gray code for Schröder trees.

67. [M22 ] What is the generating function S(z) =

n Snz

n for Schröder numbers?
68. [10 ] What is the Christmas tree pattern of order 0?
69. [20 ] Are the Christmas tree patterns of orders 6 and 7 visible in Table 4, possibly
in slight disguise?

x 70. [20 ] Find a simple rule that defines, for every bit string σ, another bit string σ′

called its mate, with the following properties: (i) σ′′ = σ; (ii) |σ′| = |σ|; (iii) either
σ ⊆ σ′ or σ′ ⊆ σ; (iv) ν(σ) + ν(σ′) = |σ|.
71. [M21 ] Let Mtn be the size of the largest possible set S of n-bit strings with the
property that, if σ and τ are members of S with σ ⊆ τ , then ν(τ) < ν(σ) + t. (Thus,
for example, M1n = Mn by Sperner’s theorem.) Find a formula for Mtn.

x 72. [M28 ] If you start with a single row σ1 σ2 . . . σs of length s and apply the growth
rule (36) repeatedly n times, how many rows do you obtain?
73. [15 ] In the Christmas tree pattern of order 30, what are the first and last elements
of the row that contains the bit string 011001001000011111101101011100?
74. [M26 ] Continuing the previous exercise, how many rows precede that row?

x 75. [HM23 ] Let (r(n)
1 , r

(n)
2 , . . . , r

(n)
n−1) be the row numbers in which the Christmas tree

pattern of order n has n− 1 entries; for example, Table 4 tells us that (r(8)
1 , . . . , r

(8)
7 ) =

(20, 40, 54, 62, 66, 68, 69). Find formulas for r(n)
j+1 − r

(n)
j and for limn→∞ r

(n)
j /Mn.

76. [HM46 ] Study the limiting shape of the Christmas tree patterns as n→∞. Does
it, for example, have a fractal dimension under some appropriate scaling?
77. [21 ] Design an algorithm to generate the sequence of rightmost elements a1 . . . an
in the rows of the Christmas tree pattern, given n. Hint: These bit strings are
characterized by the property that a1 + · · ·+ ak ≥ k/2 for 0 ≤ k ≤ n.
78. [20 ] True or false: If σ1 . . . σs is a row of the Christmas tree pattern, so is
σ̄Rs . . . σ̄R1 (the reverse sequence of reverse complements).
79. [M26 ] The number of permutations p1 . . . pn that have exactly one “descent”
where pk > pk+1 is the Eulerian number


n
1


= 2n−n− 1, according to Eq. 5.1.3–(12).
The number of entries in the Christmas tree pattern, above the bottom row, is the same.

a) Find a combinatorial explanation of this coincidence, by giving a one-to-one cor-
respondence between one-descent permutations and unsorted bit strings.

b) Show that two unsorted bit strings belong to the same row of the Christmas tree
pattern if and only if they correspond to permutations that define the same P
tableau under the Robinson–Schensted correspondence (Theorem 5.1.4A).

From the Library of Melissa Nuno



ptg999

480 COMBINATORIAL SEARCHING 7.2.1.6

80. [30 ] Say that two bit strings are concordant if we can obtain one from the other
via the transformations 010 ↔ 100 or 101 ↔ 110 on substrings. For example, the
strings

011100↔ 011010↔ 010110↔ 010101↔ 011001
↕ ↕

100110↔ 100101↔ 101001↔ 110001
are mutually concordant, but no other string is concordant with any of them.

Prove that strings are concordant if and only if they belong to the same column
of the Christmas tree pattern and to rows of the same length in that pattern.

81. [M30 ] A biclutter of order (n, n′) is a family S of bit string pairs (σ, σ′), where
|σ| = n and |σ′| = n′, with the property that distinct members (σ, σ′) and (τ, τ ′) of S
are allowed to satisfy σ ⊆ τ and σ′ ⊆ τ ′ only if σ ̸= τ and σ′ ̸= τ ′.

Use Christmas tree patterns to prove that S contains at most Mn+n′ string pairs.

x 82. [M26 ] Let E(f) be the number of times Algorithm H evaluates the function f .
a) Show that Mn ≤ E(f) ≤Mn+1, with equality when f is constant.
b) Among all f such that E(f) = Mn, which one minimizes


σ f(σ)?

c) Among all f such that E(f) = Mn+1, which one maximizes

σ f(σ)?

83. [M20 ] (G. Hansel.) Show that there are at most 3Mn monotone Boolean functions
f(x1, . . . , xn) of n Boolean variables.

x 84. [HM27 ] (D. Kleitman.) Let A be an m×n matrix of real numbers in which every
column v has length ∥v∥ ≥ 1, and let b be an m-dimensional column vector. Prove that
at most Mn column vectors x = (a1, . . . , an)T , with components aj = 0 or 1, satisfy
∥Ax− b∥ < 1

2 . Hint: Use a construction analogous to the Christmas tree pattern.

85. [HM35 ] (Philippe Golle.) Let V be any vector space contained in the set of
all real n-dimensional vectors, but containing none of the unit vectors (1, 0, . . . , 0),
(0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1). Prove that V contains at most Mn vectors whose
components are all 0 or 1; furthermore the upper bound Mn is achievable.

86. [15 ] If (2) is regarded as an oriented forest instead of an ordered forest, what
canonical forest corresponds to it? Specify that forest both by its level codes c1 . . . c15
and its parent pointers p1 . . . p15.

87. [M20 ] Let F be an ordered forest in which the kth node in preorder appears on
level ck and has parent pk, where pk = 0 if that node is a root.

a) How many forests satisfy the condition ck = pk for 1 ≤ k ≤ n?
b) Suppose F and F ′ have level codes c1 . . . cn and c′1 . . . c

′
n, respectively, as well

as parent links p1 . . . pn and p′1 . . . p
′
n. Prove that, lexicographically, c1 . . . cn ≤

c′1 . . . c
′
n if and only if p1 . . . pn ≤ p′1 . . . p′n.

88. [M20 ] Analyze Algorithm O: How often is step O4 performed? What is the total
number of times pk is changed in step O5?

89. [M46 ] How often does step O5 set pk ← pj?

x 90. [M27 ] If p1 . . . pn is a canonical sequence of parent pointers for an oriented forest,
the graph with vertices {0, 1, . . . , n} and edges {k −−− pk | 1 ≤ k ≤ n} is a free tree,
namely a connected graph with no cycles. (See Theorem 2.3.4.1A.) Conversely, every
free tree corresponds to at least one oriented forest in this way. But the parent pointers
011 and 000 both yield the same free tree ; similarly, 012 and 010 both yield .

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 481

The purpose of this exercise is to restrict the sequences p1 . . . pn further so that
each free tree is obtained exactly once. We proved in 2.3.4.4–(9) that the number of
structurally different free trees on n+1 vertices has a fairly simple generating function,
by showing that a free tree always has at least one centroid.

a) Show that a canonical n-node forest corresponds to a free tree with a single centroid
if and only if no tree in the forest has more than ⌊n/2⌋ nodes.

b) Modify Algorithm O so that it generates all sequences p1 . . . pn that satisfy (a).
c) Explain how to find all p1 . . . pn for free trees that have two centroids.

91. [M37 ] (Nijenhuis and Wilf.) Show that a random oriented tree can be generated
with a procedure analogous to the random partition algorithm of exercise 7.2.1.4–47.
92. [15 ] Are the first and last spanning trees visited by Algorithm S adjacent, in the
sense that they have n− 2 edges in common?
93. [20 ] When Algorithm S terminates, has it restored the graph to its original state?
94. [22 ] Algorithm S needs to “prime the pump” by finding an initial spanning tree
in step S1. Explain how to do that task.
95. [26 ] Complete Algorithm S by implementing the bridge test in step S8.

x 96. [28 ] Analyze the approximate running time of Algorithm S when the given graph
is simply (a) a path Pn of length n− 1; (b) a cycle Cn of length n.
97. [15 ] Is (48) a series-parallel graph?
98. [16 ] What series-parallel graph corresponds to (53) if A is taken to be serial?

x 99. [30 ] Consider a series-parallel graph represented by a tree as in (53), together
with node values that satisfy (55). These values define a spanning tree or a near tree,
according as vp is 1 or 0 at the root p. Show that the following method will generate
all of the other configs of the root:

i) Begin with all uneasy nodes active, other nodes passive.
ii) Select the rightmost active node, p, in preorder; but terminate if all nodes are

passive.
iii) Change dp ← rdp , update all values in the tree, and visit the new config.
iv) Activate all uneasy nodes to the right of p.
v) If dp has run through all children of p since p last became active, make node p

passive. Return to (ii).
Also explain how to perform these steps efficiently. Hints: To implement step (v),
introduce a pointer zp; make node p passive when dp becomes equal to zp, and at such
times also reset zp to the previous value of dp. To implement steps (ii) and (iv), use
focus pointers fp analogous to those in Algorithms 7.2.1.1L and 7.2.1.1K.
100. [40 ] Implement the text’s “Algorithm S′” for revolving-door generation of all
spanning trees, by combining Algorithm S with the ideas of exercise 99.
101. [46 ] Is there a simple revolving-door way to list all nn−2 spanning trees of the
complete graph Kn? (The order produced by Algorithm S is quite complicated.)
102. [46 ] An oriented spanning tree of a directed graph D on n vertices, also known
as a “spanning arborescence,” is an oriented subtree of D containing n − 1 arcs. The
matrix tree theorem (exercise 2.3.4.2–19) tells us that the oriented subtrees having a
given root can readily be counted by evaluating an (n− 1)× (n− 1) determinant.

Can those oriented subtrees be listed in a revolving-door order, always removing
one arc and replacing it with another?

From the Library of Melissa Nuno



ptg999

482 COMBINATORIAL SEARCHING 7.2.1.6

x 103. [HM39 ] (Sandpiles.) Consider any digraph D on vertices V0, V1, . . . , Vn with eij
arcs from Vi to Vj , where eii = 0. Assume that D has at least one oriented spanning
tree rooted at V0; this assumption means that, if we number the vertices appropriately,
we have ei0 + · · · + ei(i−1) > 0 for 1 ≤ i ≤ n. Let di = ei0 + · · · + ein be the total
out-degree of Vi. Put xi grains of sand on vertex Vi for 0 ≤ i ≤ n, and play the
following game: If xi ≥ di for any i ≥ 1, decrease xi by di and set xj ← xj + eij for
all j ̸= i. (In other words, pass one grain of sand from Vi through each of its outgoing
arcs, whenever possible, except when i = 0. This operation is called “toppling” Vi,
and a sequence of topplings is called an “avalanche.” Vertex V0 is special; instead of
toppling, it collects particles of sand that essentially leave the system.) Continue until
xi < di for 1 ≤ i ≤ n. Such a state x = (x1, . . . , xn) is called stable.

a) Prove that every avalanche terminates in a stable state after a finite number of
topplings. Furthermore, the final state depends only on the initial state, not on
the order in which toppling is performed.

b) Let σ(x) be the stable state that results from initial state x. A stable state is
called recurrent if it is σ(x) for some x with xi ≥ di for 1 ≤ i ≤ n. (Recurrent
states correspond to sandpiles that have evolved over a long period of time, after
new grains of sand are repeatedly introduced at random.) Find the recurrent
states in the special case when n = 4 and when the only arcs of D are

V1 → V0, V1 → V2, V2 → V0, V2 → V1, V3 → V0, V3 → V4, V4 → V0, V4 → V3.

c) Let d = (d1, . . . , dn). Prove that x is recurrent if and only if x = σ(x+ t), where
t is the vector d− σ(d).

d) Let ai be the vector (−ei1, . . . ,−ei(i−1), di,−ei(i+1), . . . ,−ein), for 1 ≤ i ≤ n;
thus, toppling Vi corresponds to changing the state vector x = (x1, . . . , xn) to
x − ai. Say that two states x and x′ are congruent, written x ≡ x′, if x − x′ =
m1a1 + · · ·+mnan for some integers m1, . . . , mn. Prove that there are exactly as
many equivalence classes of congruent states as there are oriented spanning trees
in D, rooted at V0. Hint: See the matrix tree theorem, exercise 2.3.4.2–19.

e) If x ≡ x′ and if both x and x′ are recurrent, prove that x = x′.
f) Prove that every congruence class contains a unique recurrent state.
g) IfD is balanced, in the sense that the in-degree of each vertex equals its out-degree,

prove that x is recurrent if and only if x = σ(x+ a), where a = (e01, . . . , e0n).
h) Illustrate these concepts when D is a “wheel” with n spokes: Let there be 3n arcs,

Vj → V0 and Vj ↔ Vj+1 for 1 ≤ j ≤ n, regarding Vn+1 as identical to V1. Find
a one-to-one correspondence between the oriented spanning trees of this digraph
and the recurrent states of its sandpiles.

i) Similarly, analyze the recurrent sandpiles when D is the complete graph on n+ 1
vertices, namely when eij = [i ̸= j ] for 0 ≤ i, j ≤ n. Hint: See exercise 6.4–31.

x 104. [HM21 ] If G is a graph on n vertices {V1, . . . , Vn}, with eij edges between Vi and
Vj , let C(G) be the matrix with entries cij = −eij + δijdi, where di = ei1 + · · ·+ ein is
the degree of Vi. Let us say that the aspects of G are the eigenvalues of C(G), namely
the roots α0, . . . , αn−1 of the equation det(αI−C(G)) = 0. Since C(G) is a symmetric
matrix, its eigenvalues are real numbers, and we can assume that α0 ≤ α1 ≤ · · · ≤ αn−1.

a) Prove that α0 = 0.
b) Prove that G has exactly c(G) = α1 . . . αn−1/n spanning trees.
c) What are the aspects of the complete graph Kn?

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 483

105. [HM38 ] Continuing exercise 104, we wish to prove that there is often an easy
way to determine the aspects of G when G has been constructed from other graphs
whose aspects are known. Suppose G′ has aspects α′

0, . . . , α′
n′−1 and G′′ has aspects

α′′
0 , . . . , α′′

n′′−1; what are the aspects of G in the following cases?
a) G = G′ is the complement of G′. (Assume that e′ij ≤ [i ̸= j ] in this case.)
b) G = G′ ⊕G′′ is the direct sum (juxtaposition) of G′ and G′′.
c) G = G′−−−G′′ is the join of G′ and G′′.
d) G = G′ G′′ is the Cartesian product of G′ and G′′.
e) G = L(G′) is the line graph of G′, when G′ is a regular graph of degree d′ (namely

when all vertices of G′ have exactly d′ neighbors, and there are no self-loops).
f) G = G′⊗G′′ is the direct product (conjunction) of G′ and G′′, when G′ is regular

of degree d′ and G′′ is regular of degree d′′.
g) G = G′×G′′ is the strong product of regular graphs G′ and G′′.
h) G = G′ △G′′ is the odd product of regular graphs G′ and G′′.
i) G = G′ ◦G′′ is the lexicographic product of regular graphs G′ and G′′.

x 106. [HM37 ] Find the total number of spanning trees in (a) an m × n grid Pm Pn;
(b) an m × n cylinder Pm Cn; (c) an m × n torus Cm Cn. Why do these numbers
tend to have only small prime factors? Hint: Show that the aspects of Pn and Cn can
be expressed in terms of the numbers σkn = 4 sin2 kπ

2n .
107. [M24 ] Determine the aspects of all connected graphs that have n ≤ 5 vertices
and no self-loops or parallel edges.
108. [HM40 ] Extend the results of exercises 104–106 to directed graphs.
109. [M46 ] Find a combinatorial explanation for the fact that (57) is the number of
spanning trees in the n-cube.

x 110. [M27 ] Prove that if G is any connected multigraph without self-loops, it has

c(G) >


(d1 − 1) . . . (dn − 1)

spanning trees, where dj is the degree of vertex j.
111. [05 ] List the nodes of the tree (58) in postpreorder.
112. [15 ] If node p of a forest precedes node q in prepostorder and follows it in
postpreorder, what can you say about p and q?

x 113. [20 ] How do prepostorder and postpreorder of a forest F relate to prepostorder
and postpreorder of the conjugate forest FR? (See exercise 13.)
114. [15 ] If we want to traverse an entire forest in prepostorder using Algorithm Q,
how should we begin the process?
115. [20 ] Analyze Algorithm Q: How often is each step performed, during the com-
plete traversal of a forest?

x 116. [28 ] If the nodes of a forest F are labeled 1 to n in prepostorder, say that node k
is lucky if it is adjacent to node k + 1 in F , unlucky if it is three steps away, and
ordinary otherwise, for 1 ≤ k ≤ n; in this definition, node n + 1 is an imaginary
super-root considered to be the parent of each root.

a) Prove that lucky nodes occur only on even-numbered levels; unlucky nodes occur
only on odd-numbered levels.

b) Show that the number of lucky nodes is exactly one greater than the number of
unlucky nodes, unless n = 0.

From the Library of Melissa Nuno



ptg999

484 COMBINATORIAL SEARCHING 7.2.1.6

117. [21 ] Continuing exercise 116, how many n-node forests contain no unlucky nodes?
118. [M28 ] How many lucky nodes are present in (a) the complete t-ary tree with
(tk−1)/(t−1) internal nodes? (b) the Fibonacci tree of order k, with Fk+1−1 internal
nodes? (See 2.3.4.5–(6) and Fig. 8 in Section 6.2.1.)
119. [21 ] The twisted binomial tree T̃n of order n is defined recursively by the rules

T̃0 = , T̃n =
T̃R
0 T̃R

1 T̃R
n−1

. . .
0 1 n− 1 for n > 0.

(Compare with 7.2.1.3–(21); we reverse the order of children on alternate levels.) Show
that prepostorder traversal of T̃n has a simple connection with Gray binary code.
120. [22 ] True or false: The square of a graph is Hamiltonian if the graph is connected
and has no bridges.
121. [M34 ] (F. Neuman, 1964.) The derivative of a graph G is the graph G(′) obtained
by removing all vertices of degree 1 and the edges touching them. Prove that, when T
is a free tree, its square T 2 contains a Hamiltonian path if and only if its derivative has
no vertex of degree greater than 4 and the following two additional conditions hold:

i) All vertices of degree 3 or 4 in T (′) lie on a single path.
ii) Between any two vertices of degree 4 in T (′), there is at least one vertex that has

degree 2 in T .
x 122. [31 ] (Dudeney’s Digital Century puzzle.) There are many curious ways to obtain

the number 100 by inserting arithmetical operators and possibly also parentheses into
the sequence 123456789. For example,

100 = 1 + 2× 3 + 4× 5− 6 + 7 + 8× 9 = (1 + 2− 3− 4)× (5− 6− 7− 8− 9)
= ((1/((2 + 3)/4− 5 + 6))× 7 + 8)× 9 .

a) How many such representations of 100 are possible? To make this question
precise, in view of the associative law and other algebraic properties, assume
that expressions are written in canonical form according to the following syntax:

⟨ expression ⟩ → ⟨number ⟩ | ⟨ sum ⟩ | ⟨product ⟩ | ⟨ quotient ⟩
⟨ sum ⟩ → ⟨ term ⟩+ ⟨ term ⟩ | ⟨ term ⟩ − ⟨ term ⟩ | ⟨ sum ⟩+ ⟨ term ⟩ | ⟨ sum ⟩ − ⟨ term ⟩
⟨ term ⟩ → ⟨number ⟩ | ⟨product ⟩ | ⟨ quotient ⟩
⟨product ⟩ → ⟨ factor ⟩ × ⟨ factor ⟩ | ⟨product ⟩ × ⟨ factor ⟩ | (⟨ quotient ⟩)× ⟨ factor ⟩
⟨ quotient ⟩ → ⟨ factor ⟩/⟨ factor ⟩ | ⟨product ⟩/⟨ factor ⟩ | (⟨ quotient ⟩)/⟨ factor ⟩
⟨ factor ⟩ → ⟨number ⟩ | (⟨ sum ⟩)
⟨ number ⟩ → ⟨digit ⟩

The digits used must be 1 through 9, in that order.
b) Extend problem (a) by allowing multidigit numbers, with the syntax

⟨number ⟩ → ⟨digit ⟩ | ⟨number ⟩⟨digit ⟩
For example, 100 = (1/(2 − 3 + 4)) × 567 − 89. What is the shortest such
representation? What is the longest?

c) Extend problem (b) by also allowing decimal points:
⟨number ⟩ → ⟨digit string ⟩ | .⟨ digit string ⟩
⟨digit string ⟩ → ⟨digit ⟩ | ⟨digit string ⟩⟨digit ⟩

For example, 100 = (.1− 2− 34× .5)/(.6− .789), amazingly enough.

From the Library of Melissa Nuno



ptg999

7.2.1.6 GENERATING ALL TREES 485

123. [21 ] Continuing the previous exercise, what are the smallest positive integers
that cannot be represented using conventions (a), (b), (c)?

(a) (b)

(c)

(d)

Fig. 63. “Organic” illustrations of binary trees.

x 124. [40 ] Experiment with methods for drawing extended binary trees that are in-
spired by simple models from nature. For example, we can assign a value v(x) to each
node x, called its Horton–Strahler number, as follows: Each external (leaf) node has
v(x) = 0; an internal node with children (l, r) has v(x) = max(v(l), v(r))+[v(l) = v(r)].
The edge from internal node x to its parent can be drawn as a rectangle with height
h(v(x)) and width w(v(x)), and the edge rectangles with children (l, r) can be offset by
angles θ(v(l(x)), v(r(x))), −θ(v(r(x)), v(l(x))), for certain functions h, w, and θ. The
examples in Fig. 63 show typical results when we choose w(k) = 3 + k, h(k) = 18k,
θ(k, k) = 30◦, θ(j, k) = ((k+ 1)/j)× 20◦ for 0 ≤ k < j, and θ(j, k) = ((k− j)/k)× 30◦

for 0 ≤ j < k; the roots appear at the bottom. Part (a) of Fig. 63 is the binary tree (4);
part (b) is a random 100-node tree generated by Algorithm R; part (c) is the Fibonacci
tree of order 11, which has 143 nodes; and part (d) is a random 100-node binary search
tree. (The trees in parts (b), (c), and (d) clearly belong to different species.)

From the Library of Melissa Nuno



ptg999

486 COMBINATORIAL SEARCHING 7.2.1.7

[This subject] has a relation
to almost every species of useful knowledge

that the mind of man can be employed upon.

— JAMES BERNOULLI, Ars Conjectandi (1713)

7.2.1.7. History and further references. Early work on the generation of
combinatorial patterns began as civilization itself was taking shape. The story
is quite fascinating, and we will see that it spans many cultures in many parts of
the world, with ties to poetry, music, and religion. There is space here to discuss
only some of the principal highlights; but perhaps a few glimpses into the past
will stimulate the reader to dig deeper into the roots of the subject, as the world
gets ever smaller and as global scholarship continues to advance.

Lists of binary n-tuples can be traced back thousands of years to ancient
China, India, and Greece. The most notable source — because it still is a best-
selling book in modern translations — is the Chinese I Ching or Yijing, whose
name means “the Bible of Changes.” This book, which is one of the five classics
of Confucian wisdom, consists essentially of 26 = 64 chapters; and each chapter
is symbolized by a hexagram formed from six lines, each of which is either
(“yin”) or (“yang”). For example, hexagram 1 is pure yang, ; hexagram 2
is pure yin, ; and hexagram 64 intermixes yin and yang, with yang on top: .
Here is the complete list:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

(1)

This arrangement of the 64 possibilities is called King Wen’s ordering, because
the basic text of the I Ching has traditionally been ascribed to King Wen (c. 1100
B.C.), the legendary progenitor of the Chou dynasty. Ancient texts are, however,
notoriously difficult to date reliably, and modern historians have found no solid
evidence that anyone actually compiled such a list of hexagrams before the third
century B.C.

Notice that the hexagrams of (1) occur in pairs: Those with odd numbers are
immediately followed by their top-to-bottom reflections, except when reflection
would make no change; and the eight symmetrical diagrams are paired with
their complements (1 = 2, 27 = 28, 29 = 30, 61 = 62). Hexagrams that are
composed from two trigrams that represent the four basic elements heaven ( ),
earth ( ), fire ( ), and water ( ) have also been placed judiciously. Otherwise
the arrangement appears to be essentially random, as if a person untrained in
mathematics kept listing different possibilities until being unable to come up
with any more. A few intriguing patterns do exist between the pairs, but no
more than are present by coincidence in the digits of π (see 3.3–(1)).

From the Library of Melissa Nuno



ptg999

7.2.1.7 HISTORY AND FURTHER REFERENCES 487

Yin and yang represent complementary aspects of the elementary forces of
nature, always in tension, always changing. The I Ching is somewhat analogous
to a thesaurus in which the hexagrams serve as an index to accumulated wisdom
about fundamental concepts like giving ( ), receiving ( ), modesty ( ), joy
( ), fellowship ( ), withdrawal ( ), peace ( ), conflict ( ), organization
( ), corruption ( ), immaturity ( ), elegance ( ), etc. One can choose
a pair of hexagrams at random, obtaining the second from the first by, say,
independently changing each yin to yang (or vice versa) with probability 1/4;
this technique yields 4096 ways to ponder existential mysteries, as well as a
Markov process by which change itself might perhaps give meaning to life.

A strictly logical way to arrange the hexagrams was eventually introduced
about A.D. 1060 by Shao Yung. His ordering, which proceeded lexicographically
from to to to to to · · · to to (reading each hexagram from
bottom to top), was much more user-friendly than the King Wen order, because
a random pattern could now be found quickly. When G. W. Leibniz learned
about this sequence of hexagrams in 1702, he jumped to the erroneous conclusion
that Chinese mathematicians had once been familiar with binary arithmetic.
[See Frank Swetz, Mathematics Magazine 76 (2003), 276–291. Further details
about the I Ching can be found, for example, in Joseph Needham’s Science and
Civilisation in China 2 (Cambridge University Press, 1956), 304–345; R. J. Lynn,
The Classic of Changes (New York: Columbia University Press, 1994).]

Another ancient Chinese philosopher, Yang Hsiung, proposed a system based
on 81 ternary tetragrams instead of 64 binary hexagrams. His Canon of Supreme
Mystery, written c. 2 B.C., has recently been translated into English by Michael
Nylan (Albany, New York: 1993). Yang described a complete, hierarchical ter-
nary tree structure in which there are 3 regions, with 3 provinces in each region,
3 departments in each province, 3 families in each department, and 9 short poems
called “appraisals” for each family, hence 729 appraisals in all — making almost
exactly 2 appraisals for every day in the year. His tetragrams were arranged in
strict lexicographic order when read top-to-bottom: , , , , , , ,
. . . , . In fact, as explained on page 28 of Nylan’s book, Yang presented a simple
way to compute the rank of each tetragram, as if using a radix-3 number system.
Thus he would not have been surprised or impressed by Shao Yung’s systematic
ordering of binary hexagrams, although Shao lived more than 1000 years later.
Indian prosody. Binary n-tuples were studied in a completely different context
by pundits in ancient India, who investigated the poetic meters of sacred Vedic
chants. Syllables in Sanskrit are either short (। ) or long (_), and the study
of syllable patterns is called “prosody.” Modern writers use the symbols ⌣
and −− instead of । and _. A typical Vedic verse consists of four lines with
n syllables per line, for some n ≥ 8; prosodists therefore sought a way to classify
all 2n possibilities. The classic work Chandah. śāstra by Piṅgala, written before
A.D. 400 and probably much earlier (the exact date is quite uncertain), described
procedures by which one could readily find the index k of any given pattern of
⌣s and −−s, as well as to find the kth pattern, given k. In other words, Piṅgala
explained how to rank any given pattern as well as to unrank any given index;

From the Library of Melissa Nuno



ptg999

488 COMBINATORIAL SEARCHING 7.2.1.7

thus he went beyond the work of Yang Hsiung, who had considered ranking but
not unranking. Piṅgala’s methods were also related to exponentiation, as we
have noted earlier in connection with Algorithm 4.6.3A.

The next important step was taken by a prosodist named Kedāra in his
work Vr.ttaratnākara, thought to have been written in the 8th century. Kedāra
gave a step-by-step procedure for listing all the n-tuples from −−−−−− . . .−− to
⌣−−−− . . .−− to −−⌣−− . . .−− to ⌣⌣−− . . .−− to −−−−⌣. . .−− to ⌣−−⌣. . .−−
to · · · to ⌣⌣⌣. . .⌣, essentially Algorithm 7.2.1.1M in the case of radix 2. His
method may well have been the first-ever explicit algorithm for combinatorial
sequence generation. [See B. van Nooten, J. Indian Philos. 21 (1993), 31–50.]

Poetic meters can also be regarded as rhythms, with one beat for each ⌣
and two beats for each −−. An n-syllable pattern can involve between n and 2n
beats, but musical rhythms suitable for marching or dancing generally are based
on a fixed number of beats. Therefore it was natural to consider the set of all
sequences of ⌣s and −−s that have exactly m beats, for fixed m. Such patterns
are now called Morse code sequences of length m, and we know from exercise
4.5.3–32 that there are exactly Fm+1 of them. For example, the 21 sequences
when m = 7 are

⌣−−−−−−, −−⌣−−−−, ⌣⌣⌣−−−−, −−−−⌣−−, ⌣⌣−−⌣−−,
⌣−−⌣⌣−−, −−⌣⌣⌣−−, ⌣⌣⌣⌣⌣−−, −−−−−−⌣,
⌣⌣−−−−⌣, ⌣−−⌣−−⌣, −−⌣⌣−−⌣, ⌣⌣⌣⌣−−⌣,
⌣−−−−⌣⌣, −−⌣−−⌣⌣, ⌣⌣⌣−−⌣⌣, −−−−⌣⌣⌣,
⌣⌣−−⌣⌣⌣, ⌣−−⌣⌣⌣⌣, −−⌣⌣⌣⌣⌣, ⌣⌣⌣⌣⌣⌣⌣.

(2)

In this way Indian prosodists were led to discover the Fibonacci sequence, as we
have observed in Section 1.2.8.

Moreover, the anonymous author of Prākr.ta Paiṅgala (c. 1320) discovered
elegant algorithms for ranking and unranking with respect to m-beat rhythms.
To find the kth pattern, one starts by writing down m ⌣s, then expresses the
difference d = Fm+1− k as a sum of Fibonacci numbers Fj1 + · · ·+Fjt ; here Fj1

is the largest Fibonacci number that is ≤ d and Fj2 is the largest ≤ d−Fj1 , etc.,
continuing until the remainder is zero. Then beats j−1 and j are to be changed
from ⌣⌣ to −−, for j = j1, . . . , jt. For example, to get the 5th element of (2)
we compute 21− 5 = 16 = 13 + 3 = F7 + F4; the answer is ⌣⌣−−⌣−−.

A few years later, Nārāyan. a Pan.d. ita treated the more general problem of
finding all compositions of m whose parts are ≤ q, where q is any given posi-
tive integer. As a consequence he discovered the qth-order Fibonacci sequence
5.4.2–(4), which was destined to be used 600 years later in polyphase sorting;
he also developed the corresponding ranking and unranking algorithms. [See
Parmanand Singh, Historia Mathematica 12 (1985), 229–244, and exercise 16.]

Piṅgala gave special code names to all the three-syllable meters,

−−−−−− = m (m), −−−−⌣ = t (t),
⌣−−−− = y (y), ⌣−−⌣ = j (j),
−−⌣−− = r (r), −−⌣⌣ = B (bh),
⌣⌣−− = s (s), ⌣⌣⌣ = n (n),

(3)

From the Library of Melissa Nuno



ptg999

7.2.1.7 HISTORY AND FURTHER REFERENCES 489

and students of Sanskrit have been expected to memorize them ever since.
Somebody long ago devised a clever way to recall these codes, by inventing
the nonsense word yamātārājabhānasalagām (ymAtArAjBAnslgAm̂); the point
is that the ten syllables of this word can be written

ya
⌣

mā
−−

tā
−−

rā
−−

ja
⌣

bhā
−−

na
⌣

sa
⌣

la
⌣

gām
−− (4)

and each three-syllable pattern occurs just after its code name. The origin of
yamā . . . lagām is obscure, but Subhash Kak [Indian J. History of Science 35
(2000), 123–127] has traced it back at least to C. P. Brown’s Sanskrit Prosody
(1869), page 28; thus it qualifies as the earliest known appearance of a “de Bruijn
cycle” that encodes binary n-tuples.
Meanwhile, in Europe. In a similar way, classic Greek poetry was based on
groups of short and/or long syllables called “metrical feet,” analogous to bars of
music. Each basic type of foot acquired a Greek name; for example, two short
syllables ‘⌣⌣’ were called a pyrrhic, and two long syllables ‘−−−−’ were called a
spondee, because those rhythms were used respectively in a song of war (purrÐqh)
or a song of peace (spondaÐ). Greek names for metric feet were soon assimilated
into Latin and eventually into modern languages, including English:

⌣ arsis
−− thesis

⌣⌣ pyrrhic
⌣−− iambus
−−⌣ trochee
−−−− spondee

⌣⌣⌣ tribrach
⌣⌣−− anapest
⌣−−⌣ amphibrach
⌣−−−− bacchius
−−⌣⌣ dactyl
−−⌣−− amphimacer
−−−−⌣ palimbacchius
−−−−−− molossus

⌣⌣⌣⌣ proceleusmatic
⌣⌣⌣−− fourth pæon
⌣⌣−−⌣ third pæon
⌣⌣−−−− minor ionic
⌣−−⌣⌣ second pæon
⌣−−⌣−− diiambus
⌣−−−−⌣ antispast
⌣−−−−−− first epitrite
−−⌣⌣⌣ first pæon
−−⌣⌣−− choriambus
−−⌣−−⌣ ditrochee
−−⌣−−−− second epitrite
−−−−⌣⌣ major ionic
−−−−⌣−− third epitrite
−−−−−−⌣ fourth epitrite
−−−−−−−− dispondee

(5)

Alternative names, like “choree” instead of “trochee,” or “cretic” instead of
“amphimacer,” were also in common use. Moreover, by the time Diomedes wrote
his Latin grammar (approximately A.D. 375), each of the 32 five-syllable feet
had acquired at least one name. Diomedes also pointed out the relation between
complementary patterns; he stated for example that tribrach and molossus are
“contrarius,” as are amphibrach and amphimacer. But he also regarded dactyl
as the contrary of anapest, and bacchius as the contrary of palimbacchius, al-
though the literal meaning of palimbacchius is actually “reverse bacchius.” Greek
prosodists had no standard order in which to list the individual possibilities, and

From the Library of Melissa Nuno



ptg999

490 COMBINATORIAL SEARCHING 7.2.1.7

the form of the names makes it clear that no connection to a radix-two number
system was contemplated. [See H. Keil, Grammatici Latini 1 (1857), 474–482;
W. von Christ, Metrik der Griechen und Römer (1879), 78–79.]

Surviving fragments of a work by Aristoxenus called Elements of Rhythm
(c. 325 B.C.) show that the same terminology was applied also to music. And
indeed, the same traditions lived on after the Renaissance; for example, we find

on page 32 of Athanasius Kircher’s Musurgia Universalis 2 (Rome: 1650), and
Kircher went on to describe all of the three-note and four-note rhythms of (5).
Early lists of permutations. We’ve traced the history of formulas for counting
permutations in Section 5.1.2; but nontrivial lists of permutations were not
published until hundreds of years after the formula n! was discovered. The first
such tabulation currently known was compiled by the Italian physician Shabbetai
Donnolo in his commentary on the kabbalistic Sefer Yetzirah, written in A.D. 946.
Table 1 shows his list for n = 5 as it was subsequently printed in Warsaw (1884).
(The Hebrew letters in this table are typeset in a rabbinical font traditionally
used for commentaries; notice that the letter changes its shape to when it
appears at the left end of a word.) Donnolo went on to list 120 permutations
of the six-letter word , all beginning with shin ( ); then he noted that
120 more could be obtained with each of the other five letters in front, making
720 in all. His lists involved groupings of six permutations, but in a haphazard
fashion that led him into error (see exercise 4). Although he knew how many
permutations there were supposed to be, and how many should start with a given
letter, he evidently didn’t have an algorithm for generating them.

Table 1
A MEDIEVAL LIST OF PERMUTATIONS

A complete list of all 720 permutations of {a,b, c,d, e, f} appeared on pages
668–671 of Jeremias Drexel’s Orbis Phaëthon (Munich: 1629; also on pages 526–
531 of the Cologne edition in 1631). He offered it as proof that a man with six
guests could seat them differently at lunch and dinner every day for a year —

From the Library of Melissa Nuno



ptg999

7.2.1.7 HISTORY AND FURTHER REFERENCES 491

altogether 360 days, because there were five days of fasting during Holy Week.
Shortly afterwards, Marin Mersenne exhibited all 720 permutations of the six
tones {ut, re,mi, fa, sol, la}, on pages 111–115 of his Traitez de la Voix et des
Chants (Volume 2 of Harmonie Universelle, 1636); then on pages 117–128 he
presented the same data in musical notation:

Drexel’s table was organized lexicographically by columns; Mersenne’s tables
were lexicographic with respect to the order ut < re < mi < fa < sol < la, begin-
ning with “ut,re,mi,fa,sol,la” and ending with “la,sol,fa,mi,re,ut.” Mersenne also
prepared a “grand et immense” manuscript that listed all 40,320 permutations
of eight notes on 672 folio pages, followed by ranking and unranking algorithms
[Bibliothèque nationale de France, Fonds Français, no. 24256].

We saw in Section 7.2.1.2 that the important idea of plain changes, Algo-
rithm 7.2.1.2P, was invented in England a few years later.

Methods for listing all permutations of a multiset with repeated elements
were often misunderstood by early authors. For example, when Bhāskara exhib-
ited the permutations of {4, 5, 5, 5, 8} in section 271 of his L̄ılāvat̄ı (c. 1150), he
gave them in the following order:

48555 84555 54855 58455 55485
55845 55548 55584 45855 45585
45558 85455 85545 85554 54585
58545 55458 55854 54558 58554

(6)

Mersenne used a slightly more sensible but not completely systematic order on
page 131 of his book when he listed sixty anagrams of the Latin name IESVS.
When Athanasius Kircher wanted to illustrate the 30 permutations of a five-
note melody on pages 10 and 11 of Musurgia Universalis 2 (1650), this lack of a
system got him into trouble (see exercise 5):

(7)

But John Wallis knew better. On page 117 of his Discourse of Combinations
(1685) he correctly listed the 60 anagrams of “messes” in lexicographic order, if
we let m < e < s ; and on page 126 he recommended respecting alphabetic order
“that we may be the more sure, not to miss any.”

We will see later that the Indian pundits Śārṅgadeva and Nārāyan. a had
already developed a theory of permutation generation in the 13th and 14th
centuries, although their work was ahead of its time and remained obscure.

From the Library of Melissa Nuno



ptg999

492 COMBINATORIAL SEARCHING 7.2.1.7

Seki’s list. Takakazu Seki (1642–1708) was a charismatic teacher and researcher
who revolutionized the study of mathematics in 17th-century Japan. While he
was studying the elimination of variables from simultaneous homogeneous equa-
tions, he was led to expressions such as a1b2 − a2b1 and a1b2c3 − a1b3c2 +
a2b3c1 − a2b1c3 + a3b1c2 − a3b2c1, which we now recognize as determinants.
In 1683 he published a booklet about this discovery, introducing an ingenious
scheme for listing all permutations in such a way that half of them were “alive”
(even) and the other half were “dead” (odd). Starting with the case n = 2, when
‘12’ was alive and ‘21’ was dead, he formulated the following rules for n > 2:
1) Take every live permutation for n−1, increase all its elements by 1, and insert

1 in front. This rule produces (n−1)!/2 “basic permutations” of {1, . . . , n}.
2) From each basic permutation, form 2n others by rotation and reflection:

a1a2 . . . an−1an, a2 . . . an−1ana1, . . . , ana1a2 . . . an−1; (8)
anan−1 . . . a2a1, a1anan−1 . . . a2, . . . , an−1 . . . a2a1an. (9)

If n is odd, those in the first row are alive and those in the second are dead;
if n is even, those in each row are alternatively alive, dead, . . . , alive, dead.

For example, when n = 3 the only basic permutation is 123. Thus 123, 231,
312 are alive while 321, 132, 213 are dead, and we’ve successfully generated the
six terms of a 3 × 3 determinant. The basic permutations for n = 4 are 1234,
1342, 1423; and from, say, 1342 we get a set of eight, namely

+ 1342− 3421 + 4213− 2134 + 2431− 1243 + 3124− 4312, (10)
alternately alive (+) and dead (−). A 4× 4 determinant therefore includes the
terms a1b3c4d2 − a3b4c2d1 + · · · − a4b3c1d2 and sixteen others.

Seki’s rule for permutation generation is quite pretty, but unfortunately it
has a serious problem: It doesn’t work when n > 4. His error seems to have
gone unrecognized for hundreds of years. [See Y. Mikami, The Development of
Mathematics in China and Japan (1913), 191–199; Takakazu Seki’s Collected
Works (Osaka: 1974), 18–20, – ; and exercises 7–8.]
Lists of combinations. The earliest exhaustive list of combinations known to
have survived the ravages of time appears in the last book of Suśruta’s well-known
Sanskrit treatise on medicine, Chapter 63, written before A.D. 600 and perhaps
much earlier. Noting that medicine can be sweet, sour, salty, peppery, bitter,
and/or astringent, Suśruta’s book diligently listed the (15, 20, 15, 6, 1, 6) cases
that arise when those qualities occur two, three, four, five, six, and one at a time.

Bhāskara repeated this example in sections 110–114 of L̄ılāvat̄ı, and observed
that the same reasoning applies to six-syllable poetic meters with a given number
of long syllables. But he simply mentioned the totals, (6, 15, 20, 15, 6, 1), without
listing the combinations themselves. In sections 274 and 275, he observed that
the numbers (n(n− 1) . . . (n− k+ 1))/(k(k− 1) . . . (1)) enumerate compositions
(that is, ordered partitions) as well as combinations; again he gave no list.

To avoid prolixity this is treated in a brief manner;
for the science of calculation is an ocean without bounds.

— BHĀSKARA (c. 1150)

From the Library of Melissa Nuno



ptg999

7.2.1.7 HISTORY AND FURTHER REFERENCES 493

An isolated but interesting list of combinations appeared in the remarkable
algebra text Al-Bāhir fi’l-h. isāb (The Shining Book of Calculation), written by
al-Samaw’al of Baghdad when he was only 19 years old (1144). In the closing
part of that work he presented a list of

10
6


= 210 simultaneous linear equations
in 10 unknowns:
Al-Samaw’al’s Arabic original Equivalent modern notation

65 654321 m (1) x1 + x2 + x3 + x4 + x5 + x6 = 65
70 754321 o (2) x1 + x2 + x3 + x4 + x5 + x7 = 70
75 854321 ~ (3) x1 + x2 + x3 + x4 + x5 + x8 = 75

...
...

91 1098764 ¢ � (209) x4 + x6 + x7 + x8 + x9 + x10 = 91
100 1098765 Ý � (210) x5 + x6 + x7 + x8 + x9 + x10 = 100

(11)

Each combination of ten things taken six at a time yielded one of his equa-
tions. His purpose was evidently to demonstrate that over-determined equations
can still have a unique solution — which in this case was (x1, x2, . . . , x10) =
(1, 4, 9, 16, 25, 10, 15, 20, 25, 5). [Salah Ahmad and Roshdi Rashed, Al-Bāhir en
Algèbre d’As-Samaw’al (Damascus: 1972), 77–82, 248–231.]

Rolling dice. Some glimmerings of elementary combinatorics arose also in
medieval Europe, especially in connection with the question of listing all possible
outcomes when three dice are thrown. There are, of course,

8
3


= 56 ways to
choose 3 things from 6 when repetitions are allowed. Gambling was officially pro-
hibited; yet these 56 ways became rather well known. In about A.D. 965, Bishop
Wibold of Cambrai in northern France devised a game called Ludus Clericalis,
so that members of the clergy could enjoy rolling dice while remaining pious.
His idea was to associate each possible roll with one of 56 virtues, according to
the following table:q q q love q qqq qqq qqq perseverance q q qqq qqqq q hospitality qqq q qq q qqq qqq mortificationq q q q faith q q qq q q qq q kindness q q qqq qqq qqq economy qqq qqqq q qqqq q innocenceq q qqq hope q q qq q qqqq q modesty q q q qq q q qq q patience qqq qqqq q qqq qqq contritionq q q qq q justice q q qq q qqq qqq resignation q q q qq q qqqq q zeal qqq qqq qqq qqq qqq confessionq q qqqq q prudence q qqqq q qqqq q gentleness q q q qq q qqq qqq poverty q qq q q qq q q qq q maturityq q qqq qqq temperance q qqqq q qqq qqq generosity q q qqqq q qqqq q softness q qq q q qq q qqqq q solicitudeq q q q q courage q qqq qqq qqq qqq wisdom q q qqqq q qqq qqq virginity q qq q q qq q qqq qqq constancyq q q qqq peace q q q q q q remorse q q qqq qqq qqq qqq respect q qq q qqqq q qqqq q intelligenceq q q q qq q chastity q q q q qqq joy qqq qqq qqq piety q qq q qqqq q qqq qqq sighingq q q qqqq q mercy q q q q q qq q sobriety qqq qqq q qq q indulgence q qq q qqq qqq qqq qqq weepingq q q qqq qqq obedience q q q q qqqq q satisfaction qqq qqq qqqq q prayer qqqq q qqqq q qqqq q cheerfulnessq qqq qqq fear q q q q qqq qqq sweetness qqq qqq qqq qqq affection qqqq q qqqq q qqq qqq compassionq qqq q qq q foresight q q qqq qqq cleverness qqq q qq q q qq q judgment qqqq q qqq qqq qqq qqq self-controlq qqq qqqq q discretion q q qqq q qq q simplicity qqq q qq q qqqq q vigilance qqq qqq qqq qqq qqq qqq humility

Players took turns, and the first to roll each virtue acquired it. After all possibil-
ities had arisen, the most virtuous player won. Wibold noted that love (caritas)
is the best virtue of all. He gave a complicated scoring system by which two
virtues could be combined if the sum of pips on all six of their dice was 21; for

From the Library of Melissa Nuno



ptg999

494 COMBINATORIAL SEARCHING 7.2.1.7

example, love + humility or chastity + intelligence could be paired in this way,
and such combinations ranked above any individual virtue. He also considered
more complex variants of the game in which vowels appeared on the dice instead
of spots, so that virtues could be claimed if their vowels were thrown.

Wibold’s table of virtues was presented in lexicographic order, as above,
when it was first described by Baldéric in his Chronicon Cameracense, about
150 years later. [Patrologia Latina 134 (Paris: 1884), 1007–1016.] But another
medieval manuscript presented the possible dice rolls in quite a different order:

qqq qqq qqq qqq qqq qqq qqqq q qqqq q qqqq q q qq q q qq q q qq q qqq qqq qqq q q q q q q q q q qqq qqq qqq qqq qqqq qqqq qqq qqq qqq q qq q qqq qqq qqq qqq qqq qqq qqq qqq qqq q q qqq qqq qqq qqq q qqqq q qqqq q qqq qqq qqqq q qqqq q q qq q qqqq q qqqq q qqqqqqq q qqqq q q q qqqq q qqqq q q q qq q q qq q qqq qqq q qq q q qq q qqqq q q qq q q qq q qqq q qq q q qq q q q q qq q q qq q qqqq qqq qqq qqq qqq qqq qqqq q qqq qqq q qq q qqq qqq q q qqq qqq q q q q q qqq qqq q q q q qqqq qq q q q q qq q q q q q qqq q q q q q q q qqq qqq q q qqqq q q q q qq q q q qqqq q q q qqq qqq qqqq q q qq q qqqq q q qq q qqq q qq q qqq q q qqq q q q qqq qqq q qq q q q qqq qqq q qq q qqqq qqq qqq q qqqq q qqq q qqq qqq qqqq q qqq qqq qqq qqqq q q q qqq qqq qqqq q q qqq qqq q q q qqqq q q q qq qq q q q q qqqq q q qq q q q qqqq q q qq q q qqq qqq q qq q qqq q qq q qqq q qqq qqq qqq q q qqqq q qqq q q
(12)

In this case the author knew how to deal with repeated values, but had a very
complicated, ad hoc way to handle the cases in which all dice were different. [See
D. R. Bellhouse, International Statistical Review 68 (2000), 123–136.]

An amusing poem entitled “Chaunce of the Dyse,” attributed to John
Lydgate, was written in the early 1400s for use at parties. Its opening verses
invite each person to throw three dice; then the remaining verses, which are
indexed in decreasing lexicographic order from qqq qqq qqq qqq qqq qqq to qqq qqq qqq qqq qqqq q to · · · to q q q ,
give 56 character sketches that light-heartedly describe the thrower. [The full
text was published by E. P. Hammond in Englische Studien 59 (1925), 1–16;
a translation into modern English would be desirable.]

I pray to god that euery wight may caste
Vpon three dyse ryght as is in hys herte

Whether he be rechelesse or stedfaste
So moote he lawghen outher elles smerte

He that is gilty his lyfe to converte
They that in trouthe haue suffred many a throwe
Moote ther chaunce fal as they moote be knowe.

— The Chaunce of the Dyse (c. 1410)

Ramon Llull. Significant ripples of combinatorial concepts also emanated
from an energetic and quixotic Catalan poet, novelist, encyclopedist, educator,
mystic, and missionary named Ramon Llull (c. 1232–1316). Llull’s approach to
knowledge was essentially to identify basic principles and then to contemplate
combining them in all possible ways.

For example, one chapter in his Ars Compendiosa Inveniendi Veritatem
(c. 1274) began by enumerating sixteen attributes of God: Goodness, greatness,
eternity, power, wisdom, love, virtue, truth, glory, perfection, justice, generosity,
mercy, humility, sovereignty, and patience. Then Llull wrote

16
2


= 120 short
essays of about 80 words each, considering God’s goodness as related to greatness,

From the Library of Melissa Nuno



ptg999

7.2.1.7 HISTORY AND FURTHER REFERENCES 495

God’s goodness as related to eternity, and so on, ending with God’s sovereignty as
related to patience. In another chapter he considered seven virtues (faith, hope,
charity, justice, prudence, fortitude, temperance) and seven vices (gluttony, lust,
greed, sloth, pride, envy, anger), with

14
2


= 91 subchapters to deal with each
pair in turn. Other chapters were systematically divided in a similar way, into8

2


= 28,
15

2


= 105,
4

2


= 6, and
16

2


= 120 subsections. (One wonders what
might have happened if he had been familiar with Wibold’s list of 56 virtues;
would he have produced commentaries on all

56
2


= 1540 of their pairs?)

Fig. 64. Illustrations in a manuscript presented by Ramon Llull to
the doge of Venice in 1280. [From his Ars Demonstrativa, Biblioteca
Marciana, VI 200, folio 3v.]

Llull illustrated his methodology by drawing circular diagrams like those in
Figure 64. The left-hand circle in this illustration, Deus, names sixteen divine
attributes — essentially the same sixteen listed earlier, except that love (amor)
was now called will (voluntas), and the final four were now simplicity, rank,
mercy, and sovereignty, in that order. Each attribute was assigned a code
letter, and the illustration depicts their interrelations as the complete graph K16
on vertices (B,C,D,E,F,G,H, I,K,L,M,N,O,P,Q,R). The right-hand figure,
virtutes et vitia, shows the seven virtues (b, c, d, e, f, g, h) interleaved with the
seven vices (i, k, l,m, n, o, p); in the original manuscript virtues appeared in blue
ink while vices appeared in red. Notice that in this case his illustration depicted
two independent complete graphs K7, one of each color. (He no longer bothered
to compare each individual virtue with each individual vice, since every virtue
was clearly better than every vice.)

Llull used the same approach to write about medicine: Instead of juxta-
posing theological concepts, his Liber Principiorum Medicinæ (c. 1275) con-
sidered combinations of symptoms and treatments. And he also wrote books

From the Library of Melissa Nuno



ptg999

496 COMBINATORIAL SEARCHING 7.2.1.7

Fig. 65. Llullian illustrations
from a manuscript presented to
the queen of France, c. 1325.
[Badische Landesbibliothek Karls-
ruhe, Codex St. Peter perg. 92,
folios 28v and 39v.]

on philosophy, logic, jurisprudence, astrology, zoology, geometry, rhetoric, and
chivalry — more than 200 works in all. It must be admitted, however, that much
of this material was highly repetitive; modern data compression techniques would
probably reduce Llull’s output to a size much less than that of, say, Aristotle.

He eventually decided to simplify his system by working primarily with
groups of nine things. See, for example, Fig. 65, where circle A now lists only the
first nine of God’s attributes (B,C,D,E,F,G,H, I,K). The

9
2


= 36 associated
pairs (BC,BD, . . . , IK) appear in the stairstep chart at the right of that circle. By
adding two more virtues, namely patience and compassion — as well as two more
vices, namely lying and inconsistency — he could treat virtues vis-à-vis virtues
and vices vis-à-vis vices with the same chart. He also proposed using the same
chart to carry out an interesting scheme for voting, in an election with nine
candidates [see I. McLean and J. London, Studia Lulliana 32 (1992), 21–37].

The encircled triangles at the lower left of Fig. 65 illustrate another key
aspect of Llull’s approach. Triangle (B,C,D) stands for (difference, concordance,
contrariness); triangle (E,F,G) stands for (beginning, middle, ending); and trian-
gle (H, I,K) stands for (greater, equal, less). These three interleaved appearances
of K3 represent three kinds of three-valued logic. Llull had experimented earlier
with other such triplets, notably ‘(true, unknown, false)’. We can get an idea

From the Library of Melissa Nuno



ptg999

7.2.1.7 HISTORY AND FURTHER REFERENCES 497

of how he used the triangles by considering how he dealt with combinations of
the four basic elements (earth, air, fire, water): All four elements are different;
earth is concordant with fire, which concords with air, which concords with
water, which concords with earth; earth is contrary to air, and fire is contrary
to water; these considerations complete an analysis with respect to triangle
(B,C,D). Turning to triangle (E,F,G), he noted that various processes in nature
begin with one element dominating another; then a transition or middle state
occurs, until a goal is reached, like air becoming warm. For triangle (H, I,K) he
said that in general we have fire > air > water > earth with respect to their
“spheres,” their “velocities,” and their “nobilities”; nevertheless we also have,
for example, air > fire with respect to supporting life, while air and fire have
equal value when they are working together.

Llull provided the vertical table at the right of Fig. 65 as a further aid. (See
exercise 11 below.) He also introduced movable concentric wheels, labeled with
the letters (B,C,D,E,F,G,H, I,K) and with other names, so that many things
could be contemplated simultaneously. In this way a faithful practitioner of
the Llullian art could be sure to have all the bases covered. [Llull may have
seen similar wheels that were used in nearby Jewish communities; see M. Idel,
J. Warburg and Courtauld Institutes 51 (1988), 170–174 and plates 16–17.]

Several centuries later, Athanasius Kircher published an extension of Llull’s
system as part of a large tome entitled Ars Magna Sciendi sive Combinatoria
(Amsterdam: 1669), with five movable wheels accompanying page 173 of that
book. Kircher also extended Llull’s repertoire of complete graphs Kn by provid-
ing illustrations of complete bipartite graphs Km,n; for example, Fig. 66 is taken
from page 171 of Kircher’s book, and his page 170 contains a glorious picture
of K18,18.

Fig. 66. K9,9 as pre-
sented by Athanasius
Kircher in 1669.

It is an investigative and inventive art.
When ideas are combined in all possible ways,

the new combinations start the mind thinking along novel channels
and one is led to discover fresh truths and arguments.

— MARTIN GARDNER, Logic Machines and Diagrams (1958)

The most extensive modern development of Llull-like methods is perhaps
The Schillinger System of Musical Composition by Joseph Schillinger (New York:

From the Library of Melissa Nuno



ptg999

498 COMBINATORIAL SEARCHING 7.2.1.7

Carl Fischer, 1946), a remarkable two-volume work that presents theories of
rhythm, melody, harmony, counterpoint, composition, orchestration, etc., from
a combinatorial perspective. On page 56, for example, Schillinger lists the 24
permutations of {a, b, c, d} in the Gray-code order of plain changes (Algorithm
7.2.1.2P); then on page 57 he applies them not to pitches but rather to rhythms,
to the durations of notes. On page 364 he exhibits the symmetrical cycle

(2, 0, 3, 4, 2, 5, 6, 4, 0, 1, 6, 2, 3, 1, 4, 5, 3, 6, 0, 5, 1), (13)

a universal cycle of 2-combinations for the seven objects {0, 1, 2, 3, 4, 5, 6}; in
other words, (13) is an Eulerian trail in K7 : All

7
2


= 21 pairs of digits occur
exactly once. Such patterns are grist for a composer’s mill. But we can be
grateful that Schillinger’s better students (like George Gershwin) did not commit
themselves entirely to a strictly mathematical sense of aesthetics.
Tacquet, van Schooten, and Izquierdo. Three additional books related to
our story were published during the 1650s. André Tacquet wrote a popular text,
Arithmeticæ Theoria et Praxis (Louvain: 1656), that was reprinted and revised
often during the next fifty years. Near the end, on pages 376 and 377, he gave a
procedure for listing combinations two at a time, then three at a time, etc.

Frans van Schooten’s Exercitationes Mathematicæ (Leiden: 1657) was more
advanced. On page 373 he listed all combinations in an appealing layout

a
b. ab

c. ac. bc. abc
d. ad. bd. abd. cd. acd. bcd. abcd

(14)

and he proceeded on the next few pages to extend this pattern to the letters e,
f , g, h, i, k, “et sic in infinitum.” On page 376 he observed that one can replace
(a, b, c, d) by (2, 3, 5, 7) in (14) to get the divisors of 210 that exceed unity:

2
3 6

5 10 15 30
7 14 21 42 35 70 105 210

(15)

And on the following page he extended the idea to
a

a. aa
b. ab. aab

c. ac. aac. bc. abc. aabc

(16)

thereby allowing two a’s. He didn’t really understand this extension, though; his
next example

a
a. aa
a. aaa

b. ab. aab. aaab
b. bb. abb. aabb. aaabb

(17)

was botched, indicating the limits of his knowledge at the time. (See exercise 13.)

From the Library of Melissa Nuno



ptg999

7.2.1.7 HISTORY AND FURTHER REFERENCES 499

On page 411 van Schooten observed that the weights (a, b, c, d) = (1, 2, 4, 8)
could be assigned in (14), leading to

1
2 3

4 5 6 7
8 9 10 11 12 13 14 15

(18)

after addition. But he didn’t see the connection with radix-2 numbers.
Sebastián Izquierdo’s two-volume work Pharus Scientiarum (Lyon: 1659),

“The Lighthouse of Science,” included a nicely organized discussion of combina-
torics entitled Disputatio 29, De Combinatione. He gave a detailed discussion of
four key parts of Stanley’s Twelvefold Way, namely the n-tuples, n-variations,
n-multicombinations, and n-combinations of m objects that appear in the first
two rows and the first two columns of Table 7.2.1.4–1.

In Sections 81–84 of De Combinatione he listed all combinations of m letters
taken n at a time, for 2 ≤ n ≤ 5 and n ≤ m ≤ 9, always in lexicographic order;
he also tabulated them for m = 10 and 20 in the cases n = 2 and 3. But when
he listed the mn variations of m things taken n at a time, he chose a more
complicated ordering (see exercise 14).

Izquierdo was first to discover the formula

m+n−1

n


for combinations of m

things taken n at a time with unlimited repetition; this rule appeared in §48–§51
of his work. But in §105, when he attempted to list all such combinations in the
case n = 3, he didn’t know that there was a simple way to do it. In fact, his
listing of the 56 cases for m = 6 was rather like the old, awkward ordering of (12).

Combinations with repetition were not well understood until James Ber-
noulli’s Ars Conjectandi, “The Art of Guessing,” came out in 1713. In Part 2,
Chapter 5, Bernoulli simply listed the possibilities in lexicographic order, and
showed that the formula


m+n−1

n


follows by induction as an easy consequence.

[Niccolò Tartaglia had, incidentally, come close to discovering this formula in his
General trattato di numeri, et misure 2 (Venice: 1556), 17r and 69v; so had the
Maghrebi mathematician Ibn Mun‘im in his 13th-century Fiqh al-H. isāb.]

The null case. Before we conclude our discussion of early work on combinations,
we should not forget a small yet noble step taken by John Wallis on page 110
of his Discourse of Combinations (1685), where he specifically considered the
combination of m things taken 0 at a time: “It is manifest, That, if we would
take None, that is, if we would leave All; there can be but one case thereof, what
ever be the Number of things exposed.” Furthermore, on page 113, he knew that0

0


= 1: “(for, here, to take all, or to leave all, is but one and the same case).”
However, when he gave a table of n! for n ≤ 24, he did not go so far as to

point out that 0! = 1, or that there is exactly one permutation of the empty set.

The work of Nārāyan. a. A remarkable monograph entitled Gan. ita Kaumud̄ı
(“Lotus Delight of Calculation”), written by Nārāyan. a Pan.d. ita in 1356, has
recently become known in detail to scholars outside of India for the first time,
thanks to an English translation by Parmanand Singh [Gan. ita Bhārat̄ı 20 (1998),
25–82; 21 (1999), 10–73; 22 (2000), 19–85; 23 (2001), 18–82; 24 (2002), 35–98];

From the Library of Melissa Nuno



ptg999

500 COMBINATORIAL SEARCHING 7.2.1.7

see also the Ph.D. thesis of Takanori Kusuba, Brown University (1993). Chap-
ter 13 of Nārāyan. a’s work, subtitled Aṅka Pāśa (“Concatenation of Numbers”),
was devoted to combinatorial generation. Indeed, although the 97 “sutras” of this
chapter were rather cryptic, they presented a comprehensive theory of the subject
that anticipated developments in the rest of the world by several hundred years.

For example, Nārāyan. a dealt with permutation generation in sutras 49–55a,
where he gave algorithms to list all permutations of a set in decreasing colex
order, together with algorithms to rank a given permutation and to unrank
a given serial number. These algorithms had appeared more than a century
earlier in the well-known work Saṅḡıtaratnākara (“Jewel-Mine of Music”) by
Śārṅgadeva, §1.4.60–71, who thereby had essentially discovered the factorial
representation of positive integers. Nārāyan. a went on in sutras 57–60 to extend
Śārṅgadeva’s algorithms so that general multisets could readily be permuted; for
example, he listed the permutations of {1, 1, 2, 4} as

1124, 1214, 2114, 1142, 1412, 4112, 1241, 2141, 1421, 4121, 2411, 4211,

again in decreasing colex order.
Nārāyan. a’s sutras 88–92 dealt with systematic generation of combinations.

Besides illustrating the combinations of {1, . . . , 8} taken 3 at a time, namely

(678, 578, 478, . . . , 134, 124, 123),

he also considered a bit-string representation of these combinations in the reverse
order (increasing colex), extending a 10th-century method of Bhat.t.otpala:

(11100000, 11010000, 10110000, . . . , 00010011, 00001011, 00000111).

He almost, but not quite, discovered Theorem 7.2.1.3L.
Permutable poetry. Let’s turn now to a curious question that attracted
the attention of several prominent mathematicians in the seventeenth century,
because it sheds considerable light on the state of combinatorial knowledge in
Europe at that time. A Jesuit priest named Bernard Bauhuis had composed a
famous one-line tribute to the Virgin Mary, in Latin hexameter:

Tot tibi sunt dotes, Virgo, quot sidera cælo. (19)

[“Thou hast as many virtues, O Virgin, as there are stars in heaven”; see
his Epigrammatum Libri V (Cologne: 1615), 49.] His verse inspired Erycius
Puteanus, a professor at the University of Louvain, to write a book entitled
Pietatis Thaumata (Antwerp: 1617), presenting 1022 permutations of Bauhuis’s
words. For example, Puteanus wrote

107 Tot dotes tibi, quot cælo sunt sidera, Virgo.
270 Dotes tot, cælo sunt sidera quot, tibi Virgo.
329 Dotes, cælo sunt quot sidera, Virgo tibi tot.
384 Sidera quot cælo, tot sunt Virgo tibi dotes.
725 Quot cælo sunt sidera, tot Virgo tibi dotes.
949 Sunt dotes Virgo, quot sidera, tot tibi cælo.

1022 Sunt cælo tot Virgo tibi, quot sidera, dotes.

(20)

From the Library of Melissa Nuno



ptg999

7.2.1.7 HISTORY AND FURTHER REFERENCES 501

He stopped at 1022, because 1022 was the number of visible stars in Ptolemy’s
well-known catalog of the heavens.

The idea of permuting words in this way was well known at the time; such
wordplay was what Julius Scaliger had called “Proteus verses” in his Poetices
Libri Septem (Lyon: 1561), Book 2, Chapter 30. The Latin language lends itself
to permutations like (20), because Latin word endings tend to define the function
of each noun, making the relative word order much less important to the meaning
of a sentence than it is in English. Puteanus did state, however, that he had
specifically avoided unsuitable permutations such as

Sidera tot cælo, Virgo, quot sunt tibi dotes, (21)

because they would place an upper bound on the Virgin’s virtues rather than a
lower bound. [See pages 12 and 103 of his book.]

Of course there are 8! = 40,320 ways to permute the words of (19). But
that wasn’t the point; most of those ways don’t “scan.” Each of Puteanus’s 1022
verses obeyed the strict rules of classical hexameter, the rules that had been
followed by Greek and Latin poets since the days of Homer and Vergil, namely:

i) Each word consists of syllables that are either long (−−) or short (⌣).
ii) The syllables of each line belong to one of 32 patterns,

−−⌣⌣
−−−−

 
−−⌣⌣
−−−−

 
−−⌣⌣
−−−−

 
−−⌣⌣
−−−−


−−⌣⌣


−−⌣
−−−−


. (22)

In other words there are six metrical feet, where each of the first four is either a
dactyl or a spondee in the terminology of (5); the fifth foot should be a dactyl;
and the last is either trochee or spondee.

The rules for long versus short syllables in Latin poetry are somewhat tricky
in general, but the eight words of Bauhuis’s verse can be characterized by the
following patterns:

tot = −−, tibi =

⌣⌣
⌣−−


, sunt = −−, dotes = −−−−,

Virgo =

−−⌣
−−−−


, quot = −−, sidera = −−⌣⌣, cælo = −−−−. (23)

Notice that poets had two choices when they used the words ‘tibi’ or ‘Virgo’.
Thus, for example, (19) fits the hexameter pattern

−−
Tot

⌣
ti-
⌣
bi

−−
sunt

−−
do-

−−
tes,

−−
Vir-

−−
go,

−−
quot

−−
si-
⌣
de-

⌣
ra

−−
cæ-
−−
lo. (24)

(Dactyl, spondee, spondee, spondee, dactyl, spondee; “dum-diddy dum-dum
dum, dum dum, dum dum-diddy dum-dum.” The commas represent slight
pauses, called “cæsuras,” when the words are read; they don’t concern us here,
although Puteanus inserted them carefully into each of his 1022 permutations.)

A natural question now arises: If we permute Bauhuis’s words at random,
what are the odds that they scan? In other words, how many of the permutations
obey rules (i) and (ii), given the syllable patterns in (23)? G. W. Leibniz raised

From the Library of Melissa Nuno



ptg999

502 COMBINATORIAL SEARCHING 7.2.1.7

this question, among others, in his Dissertatio de Arte Combinatoria (1666), a
work published when he was applying for a position at the University of Leipzig.
At this time Leibniz was just 19 years old, largely self-taught, and his under-
standing of combinatorics was quite limited; for example, he believed that there
are 600 permutations of {ut,ut, re,mi, fa, sol} and 480 of {ut,ut, re, re,mi, fa},
and he even stated that (22) represents 76 possibilities instead of 32. [See §5 and
§8 in his Problem 6.]

But Leibniz did realize that it would be worthwhile to develop general
methods for counting all permutations that are “useful,” in situations when
many permutations are “useless.” He considered several examples of Proteus
verses, enumerating some of the simpler ones correctly but making many errors
when the words were complicated. Although he mentioned Puteanus’s work, he
didn’t attempt to enumerate the scannable permutations of (19).

A much more successful approach was introduced a few years later by Jean
Prestet in his Élémens des Mathématiques (Paris: 1675), 342–438. Prestet gave
a clear exposition leading to the conclusion that exactly 2196 permutations of
Bauhuis’s verse would yield a proper hexameter. However, he soon realized that
he had forgotten to count quite a few cases — including those numbered 270,
384, and 725 in (20). So he completely rewrote this material when he published
Nouveaux Élémens des Mathématiques in 1689. Pages 127–133 of Prestet’s new
book were devoted to showing that the true number of scannable permutations
was 3276, almost 50% larger than his previous total.

Meanwhile John Wallis had treated the problem in his Discourse of Combi-
nations (London: 1685), 118–119, published as a supplement to his Treatise of
Algebra. After explaining why he believed the correct number to be 3096, Wallis
admitted that he may have overlooked some possibilities and/or counted some
cases more than once; “but I do not, at present, discern either the one and other.”

An anonymous reviewer of Wallis’s work remarked that the true number of
metrically correct permutations was actually 2580 — but he gave no proof [Acta
Eruditorum 5 (1686), 289]. The reviewer was almost certainly G. W. Leibniz
himself, although no clue to the reasoning behind the number 2580 has been
found among Leibniz’s voluminous unpublished notes.

Finally James Bernoulli entered the picture. In his inaugural lecture as
Dean of Philosophy at the University of Basel, 1692, he mentioned the tot-
tibi enumeration problem and stated that a careful analysis is necessary to
obtain the correct answer — which, he said, was 3312(!). His proof appeared
posthumously in the first edition of his Ars Conjectandi (1713), 79–81. [Bernoulli
didn’t actually intend to publish those pages in this now-famous book; but the
proofreader who found them among his notes decided to include the full details,
in order “to gratify curiosity.” See Die Werke von Jakob Bernoulli 3 (Basel:
Birkhäuser, 1975), 78, 98–106, 108, 154–155.]

So who was right? Are there 2196 scannable permutations, or 3276, or 3096,
or 2580, or 3312? W. A. Whitworth and W. E. Hartley considered the question
anew in The Mathematical Gazette 2 (1902), 227–228, where they each presented
elegant arguments and concluded that the true total was in fact none of the

From the Library of Melissa Nuno



ptg999

7.2.1.7 HISTORY AND FURTHER REFERENCES 503

above. Their joint answer, 2880, represented the first time that any two math-
ematicians had independently come to the same conclusion about this problem.

But exercises 21 and 22, below, reveal the truth: Bernoulli is vindicated,
and everybody else was wrong. Moreover, a study of Bernoulli’s systematic
and carefully indented 3-page derivation indicates that he was successful chiefly
because he adhered faithfully to a discipline that we now call the backtrack
method. We shall study the backtrack method thoroughly in Section 7.2.2, where
we will also see that the tot-tibi question is readily solved as a special case of
the exact cover problem.

Even the wisest and most prudent people often suffer from
what Logicians call insufficient enumeration of cases.

— JAMES BERNOULLI (1692)

Set partitions. The partitions of a set seem to have been studied first in Japan,
where a parlor game called genji-ko (“Genji incense”) became popular among
upperclass people about A.D. 1500. The host of a gathering would secretly select
five packets of incense, some of which might be identical, and he would burn
them one at a time. The guests would try to discern which of the scents were
the same and which were different; in other words, they would try to guess which
of the ϖ5 = 52 partitions of {1, 2, 3, 4, 5} had been chosen by their host.

Fig. 67. Diagrams used to represent set partitions
in 16th century Japan. [From a copy in the collec-
tion of Tamaki Yano at Saitama University.]

Soon it became customary to represent the 52 possible outcomes by diagrams
like those in Fig. 67. For example, the uppermost diagram of that illustration,
when read from right to left, would indicate that the first two scents are identical
and so are the last three; thus the partition is 12 |345. The other two diagrams,
similarly, are pictorial ways to represent the respective partitions 124 |35 and
1 |24 |35. As an aid to memory, each of the 52 patterns was named after a
chapter of Lady Murasaki’s famous 11th-century Tale of Genji, according to the
following sequence [Encyclopedia Japonicæ (Tokyo: Sanseido, 1910), 1299]:

(25)

(Once again, as we’ve seen in many other examples, the possibilities were not
arranged in any particularly logical order.)

From the Library of Melissa Nuno



ptg999

504 COMBINATORIAL SEARCHING 7.2.1.7

The appealing nature of these genji-ko patterns led many families to adopt
them as heraldic crests. For example, the following stylized variants of (25) were
found in standard catalogs of kimono patterns early in the 20th century:

[See Fumie Adachi, Japanese Design Motifs (New York: Dover, 1972), 150–153.]
Early in the 1700s, Takakazu Seki and his students began to investigate the

number of set partitions ϖn for arbitrary n, inspired by the known result that
ϖ5 = 52. Yoshisuke Matsunaga found formulas for the number of set partitions
when there are kj subsets of size nj for 1 ≤ j ≤ t, with k1n1 + · · · + ktnt = n
(see the answer to exercise 1.2.5–21). He also discovered the basic recurrence
relation 7.2.1.5–(14), namely

ϖn+1 =

n

0


ϖn +


n

1


ϖn−1 +


n

2


ϖn−2 + · · ·+


n

n


ϖ0, (26)

by which the values of ϖn can readily be computed.
Matsunaga’s discoveries remained unpublished until Yoriyuki Arima’s book

Shūki Sanpō came out in 1769. Problem 56 of that book asked the reader to
solve the equation “ϖn = 678570” for n; and Arima’s answer, worked out in
detail (with credit duly given to Matsunaga), was n = 11.

Shortly afterwards, Masanobu Saka studied the number

n
k


of ways that

an n-set can be partitioned into k subsets, in his work Sanpō-Gakkai (1782). He
discovered the recurrence formula

n+ 1
k


= k


n

k


+


n

k − 1


, (27)

and tabulated the results for n ≤ 11. James Stirling, in his Methodus Differen-
tialis (1730), had discovered the numbers


n
k


in a purely algebraic context; thus

Saka was the first person to realize their combinatorial significance.
An interesting algorithm for listing set partitions was subsequently devised

by Toshiaki Honda (see exercise 24). Further details about genji-ko and its rela-
tion to the history of mathematics can be found in Japanese articles by Tamaki
Yano, Sugaku Seminar 34, 11 (Nov. 1995), 58–61; 34, 12 (Dec. 1995), 56–60.

Set partitions remained virtually unknown in Europe until much later, ex-
cept for three isolated incidents. First, George and/or Richard Puttenham
published The Arte of English Poesie in 1589, and pages 70–72 of that book

From the Library of Melissa Nuno



ptg999

7.2.1.7 HISTORY AND FURTHER REFERENCES 505

contain diagrams similar to those of genji-ko. For example, the seven diagrams

(28)

were used to illustrate possible rhyme schemes for 5-line poems, “whereof some
of them be harsher and unpleasaunter to the eare then other some be.” But this
visually appealing list was incomplete (see exercise 25).

Second, an unpublished manuscript of G. W. Leibniz from the late 1600s
shows that he had tried to count the number of ways to partition {1, . . . , n}
into three or four subsets, but with almost no success. He enumerated


n
2


by
a very cumbersome method, which would not have led him to see readily that
n
2


= 2n−1 − 1. He attempted to compute

n
3


and

n
4


only for n ≤ 5, and
made several numerical slips leading to incorrect answers. [See E. Knobloch,
Studia Leibnitiana Supplementa 11 (1973), 229–233; 16 (1976), 316–321.]

The third European appearance of set partitions had a completely different
character. John Wallis devoted the third chapter of his Discourse of Combina-
tions (1685) to questions about “aliquot parts,” the proper divisors of numbers,
and in particular he studied the set of all ways to factorize a given integer. This
question is equivalent to the study of multiset partitions; for example, the factor-
izations of p3q2r are essentially the same as the partitions of {p, p, p, q, q, r}, when
p, q, and r are prime numbers. Wallis devised an excellent algorithm for listing
all factorizations of a given integer n, essentially anticipating Algorithm 7.2.1.5M
(see exercise 28). But he didn’t investigate the important special cases that arise
when n is the power of a prime (equivalent to integer partitions) or when n is
squarefree (equivalent to set partitions). Thus, although Wallis was able to solve
the more general problem, its complexities paradoxically deflected him from dis-
covering partition numbers, Bell numbers, or Stirling subset numbers, or from de-
vising simple algorithms that would generate integer partitions or set partitions.

Integer partitions. Partitions of integers arrived on the scene even more slowly.
We saw above that Bishop Wibold (c. 965) knew the partitions of n into exactly
three parts ≤ 6. So did Galileo, who wrote a memo about them (c. 1627) and also
studied their frequency of occurrence as rolls of three dice. [“Sopra le scoperte de
i dadi,” in Galileo’s Opere, Volume 8, 591–594; he listed partitions in decreasing
lexicographic order.] Thomas Harriot, in unpublished work a few years earlier,
had considered up to six dice [see J. Stedall, Historia Math. 34 (2007), 398].

Mersenne listed the partitions of 9 into any number of parts, on page 130 of
his Traitez de la Voix et des Chants (1636). With each partition 9 = a1 + · · ·+ak
he also computed the multinomial coefficient 9!/(a1! . . . ak!); as we’ve seen earlier,
he was interested in counting various melodies, and he knew for example that
there are 9!/(3!3!3!) = 1680 melodies on the nine notes {a, a, a, b, b, b, c, c, c}.
But he failed to mention the cases 8 + 1 and 3 + 2 + 1 + 1 + 1 + 1, probably
because he hadn’t listed the possibilities in any systematic way.

Leibniz considered two-part partitions in Problem 3 of his Dissertatio de
Arte Combinatoria (1666), and his unpublished notes show that he subsequently

From the Library of Melissa Nuno



ptg999

506 COMBINATORIAL SEARCHING 7.2.1.7

spent considerable time trying to enumerate the partitions that have three or
more summands. He called them “discerptions,” or (less frequently) “divul-
sions” — in Latin of course — or sometimes “sections” or “dispersions” or even
“partitions.” He was interested in them primarily because of their connection
with the monomial symmetric functions


xa1
i1
xa2
i2
. . . . But his many attempts

led to almost total failure, except in the case of three summands, when he almost
(but not quite) discovered the formula for

n
3
 in exercise 7.2.1.4–31. For example,

he carelessly counted only 21 partitions of 8, forgetting the case 2+2+2+1+1;
and he got only 26 for p(9), after missing 3 + 2 + 2 + 2, 3 + 2 + 2 + 1 + 1,
2 + 2 + 2 + 1 + 1 + 1, and 2 + 2 + 1 + 1 + 1 + 1 + 1 — in spite of the fact that
he was trying to list partitions systematically in decreasing lexicographic order.
[See E. Knobloch, Studia Leibnitiana Supplementa 11 (1973), 91–258; 16 (1976),
255–337; Historia Mathematica 1 (1974), 409–430.]

Abraham de Moivre had the first real success with partitions, in his paper
“A Method of Raising an infinite Multinomial to any given Power, or Extracting
any given Root of the same” [Philosophical Transactions 19 (1697), 619–625 and
Fig. 5]. He proved that the coefficient of zm+n in (az + bz2 + cz3 + · · · )m has
one term for each partition of n; for example, the coefficient of zm+6 is

m
6

am−6b6 + 5


m
5

am−5b4c+ 4


m
4

am−4b3d+ 6


m
4

am−4b2c2

+ 3

m
3

am−3b2e+ 6


m
3

am−3bcd+ 2


m
2

am−2bf +


m
3

am−3c3

+ 2

m
2

am−2ce+


m
2

am−2d2 +


m
1

am−1g. (29)

If we set a = 1, the term with exponents bicjdkel . . . corresponds to the partition
with i 1s, j 2s, k 3s, l 4s, etc. Thus, for example, when n = 6 he essentially
presented the partitions in the order

111111, 11112, 1113, 1122, 114, 123, 15, 222, 24, 33, 6. (30)
He explained how to list the partitions recursively, as follows (but in different
language related to his own notation): For k = 1, 2, . . . , n, start with k and
append the (previously listed) partitions of n− k whose smallest part is ≥ k.

[My solution] was ordered to be published in the Transactions,
not so much as a matter relating to Play,

but as containing some general Speculations
not unworthy to be considered by the Lovers of Truth.

— ABRAHAM DE MOIVRE (1717)

P. R. de Montmort tabulated all partitions of numbers ≤ 9 into ≤ 6 parts
in his Essay d’Analyse sur les Jeux de Hazard (1708), in connection with dice
problems. His partitions were listed in a different order from (30); for example,

111111, 21111, 2211, 222, 3111, 321, 33, 411, 42, 51, 6. (31)
He probably was unaware of de Moivre’s prior work.

So far almost none of the authors we’ve been discussing actually bothered
to describe the procedures by which they generated combinatorial patterns. We
can only infer their methods, or lack thereof, by studying the lists that they
actually published. Furthermore, in rare cases such as de Moivre’s paper where a

From the Library of Melissa Nuno



ptg999

7.2.1.7 HISTORY AND FURTHER REFERENCES 507

tabulation method was explicitly described, the author assumed that all patterns
for the first cases 1, 2, . . . , n − 1 had been listed before it was time to tackle
the case of order n. No method for generating patterns “on the fly,” moving
directly from one pattern to its successor without looking at auxiliary tables,
was actually explained by any of the authors we have encountered, except for
Kedāra and Nārāyan. a. Today’s computer programmers naturally prefer methods
that are more direct and need little memory.

Roger Joseph Boscovich published the first direct algorithm for partition
generation in Giornale de’ Letterati (Rome, 1747), on pages 393–404 together
with two foldout tables facing page 404. His method, which produces for n = 6
the respective outputs

111111, 11112, 1122, 222, 1113, 123, 33, 114, 24, 15, 6, (32)

generates partitions in precisely the reverse order from which they are visited by
Algorithm 7.2.1.4P; and his method would indeed have been featured in Section
7.2.1.4, except for the fact that the reverse order turns out to be slightly easier
and faster than the order that he had chosen.

Boscovich published sequels in Giornale de’ Letterati (Rome, 1748), 12–27
and 84–99, extending his algorithm in two ways. First, he considered generating
only partitions whose parts belong to a given set S, so that symbolic multinomials
with sparse coefficients could be raised to the mth power. (He said that the gcd
of all elements of S should be 1; in fact, however, his method could fail if 1 /∈ S.)
Second, he introduced an algorithm for generating partitions of n into m parts,
given m and n. Again he was unlucky: A slightly better way to do that task,
Algorithm 7.2.1.4H, was found subsequently, diminishing his chances for fame.

Hindenburg’s hype. The inventor of Algorithm 7.2.1.4H was Carl Friedrich
Hindenburg, who also rediscovered Nārāyan. a’s Algorithm 7.2.1.2L, a winning
technique for generating multiset permutations. Unfortunately, these small suc-
cesses led him to believe that he had made revolutionary advances in mathemat-
ics — although he did condescend to remark that other people such as de Moivre,
Euler, and Lambert had come close to making similar discoveries.

Hindenburg was a prototypical overachiever, extremely energetic if not in-
spired. He founded or cofounded Germany’s first professional journals of math-
ematics (published 1786–1789 and 1794–1800), and contributed long articles to
each. He served several times as academic dean at the University of Leipzig,
where he was also the Rector in 1792. If he had been a better mathematician,
German mathematics might well have flourished more in Leipzig than in Berlin
or Göttingen.

But his first mathematical work, Beschreibung einer ganz neuen Art, nach
einem bekannten Gesetze fortgehende Zahlen durch Abzählen oder Abmessen
bequem und sicher zu finden (Leipzig: 1776), amply foreshadowed what was to
come: His “ganz neue” (completely new) idea in that booklet was simply to give
combinatorial significance to the digits of numbers written in decimal notation.
Incredibly, he concluded his monograph with large foldout sheets that contained

From the Library of Melissa Nuno



ptg999

508 COMBINATORIAL SEARCHING 7.2.1.7

a table of the numbers 0000 through 9999 — followed by two other tables that
listed the even numbers and odd numbers separately(!).

Hindenburg published letters from people who praised his work, and invited
them to contribute to his journals. In 1796 he edited Sammlung combinatorisch-
analytischer Abhandlungen, whose subtitle stated (in German) that de Moivre’s
multinomial theorem was “the most important proposition in all of mathematical
analysis.” About a dozen people joined forces to form what became known as
Hindenburg’s Combinatorial School, and they published thousands of pages filled
with esoteric symbolism that must have impressed many nonmathematicians.

The work of this School was not completely trivial from the standpoint
of computer science. For example, H. A. Rothe, who was Hindenburg’s best
student, noticed that there is a simple way to go from a Morse code sequence to
its lexicographic successor or predecessor. Another student, J. K. Burckhardt,
observed that Morse code sequences of length n could also be generated easily
by first considering those with no dashes, then one dash, then two, etc. Their
motivation was not to tabulate poetic meters of n beats, as it had been in India,
but rather to list the terms of the continuant polynomials K(x1, x2, . . . , xn),
Eq. 4.5.3–(4). [See Archiv der reinen und angewandten Mathematik 1 (1794),
154–195.] Furthermore, on page 53 of Hindenburg’s 1796 Sammlung cited above,
G. S. Klügel introduced a way to list all permutations that has subsequently
become known as Ord-Smith’s algorithm; see Eqs. (23)–(26) in Section 7.2.1.2.

Hindenburg believed that his methods deserved equal time with algebra,
geometry, and calculus in the standard curriculum. But he and his disciples
were combinatorialists who only made combinatorial lists. Burying themselves
in formulas and formalisms, they rarely discovered any new mathematics of real
interest. Eugen Netto has admirably summarized their work in M. Cantor’s
Geschichte der Mathematik 4 (1908), 201–219: “For a while they controlled
the German market; however, most of what they dug up soon sank into a not-
entirely-deserved oblivion.”

The sad outcome was that combinatorial studies in general got a bad name.
Gösta Mittag-Leffler, who assembled a magnificent library of mathematical lit-
erature about 100 years after Hindenburg’s death, decided to place all such
work on a special shelf marked “Dekadenter.” And this category still persists
in the library of Sweden’s Institut Mittag-Leffler today, even as that institute
attracts world-class combinatorial mathematicians whose research is anything
but decadent.

Looking on the bright side, we may note that at least one good book did
emerge from all of this activity. Andreas von Ettingshausen’s Die combina-
torische Analysis (Vienna: 1826) is noteworthy as the first text to discuss com-
binatorial generation methods in a perspicuous way. He discussed the general
principles of lexicographic generation in §8, and applied them to construct good
ways to list all permutations (§11), combinations (§30), and partitions (§41–§44).

Where were the trees? We’ve now seen that lists of tuples, permutations,
combinations, and partitions were compiled rather early in human history, by

From the Library of Melissa Nuno



ptg999

7.2.1.7 HISTORY AND FURTHER REFERENCES 509

interested and interesting researchers. Thus we’ve accounted for the evolution
of the topics studied in Sections 7.2.1.1 through 7.2.1.5, and our story will be
complete if we can trace the origins of tree generation, Section 7.2.1.6.

But the historical record of that topic before the advent of computers is
virtually a blank page, with the exception of a few 19th-century papers by Arthur
Cayley. Cayley’s major work on trees, originally published in 1875 and reprinted
on pages 427–460 of his Collected Mathematical Papers, Volume 9, was climaxed
by a large foldout illustration that exhibited all the free trees with 9 or fewer
unlabeled vertices. Earlier in that paper he had also illustrated the nine oriented
trees with 5 vertices. The methods he used to produce those lists were quite
complicated, completely different from Algorithm 7.2.1.6O and exercise 7.2.1.6–
90. All free trees with up to 10 vertices were listed many years later by F. Harary
and G. Prins [Acta Math. 101 (1958), 158–162], who also went up to n = 12 in
the cases of free trees with no nodes of degree 2 or with no symmetries.

The trees most dearly beloved by computer scientists — binary trees or the
equivalent ordered forests or nested parentheses — are however strangely absent
from the literature. We saw in Section 2.3.4.5 that many mathematicians of the
1700s and 1800s had learned how to count binary trees, and we also know that
the Catalan numbers Cn enumerate dozens of different kinds of combinatorial
objects. Yet nobody seems to have published an actual list of the C4 = 14
objects of order 4 in any of these guises, much less the C5 = 42 objects of
order 5, before 1950. (Except indirectly: The 42 genji-ko diagrams in (25) that
have no intersecting lines turn out to be equivalent to the 5-node binary trees
and forests. But this fact was not learned until the 20th century.)

There are a few isolated instances where authors of yore did prepare lists of
C3 = 5 Catalan-related objects. Cayley, again, was first; he illustrated the binary
trees with 3 internal nodes and 4 leaves as follows in Philosophical Magazine 18
(1859), 374–378:

(33)

(That same paper also illustrated another species of tree, equivalent to so-called
weak orderings.) Then, in 1901, E. Netto listed the five ways to insert parentheses
into the expression ‘a+ b+ c+ d’:

(a+b)+(c+d), [(a+b)+c]+d, [a+(b+c)]+d, a+[(b+c)+d], a+[b+(c+d)]. (34)

[Lehrbuch der Combinatorik, §122.] And the five permutations of {+1,+1,+1,
−1,−1,−1} whose partial sums are nonnegative were listed in the following way
by Paul Erdös and Irving Kaplansky [Scripta Math. 12 (1946), 73–75]:

1+1+1−1−1−1, 1+1−1+1−1−1, 1+1−1−1+1−1,
1−1+1+1−1−1, 1−1+1−1+1−1. (35)

Even though only five objects are involved, we can see that the orderings in (33)
and (34) were basically catch-as-catch-can; only (35), which matches Algorithm
7.2.1.6P, was systematic and lexicographic.

From the Library of Melissa Nuno



ptg999

510 COMBINATORIAL SEARCHING 7.2.1.7

We should also note briefly the work of Walther von Dyck, since many recent
papers use the term “Dyck words” to refer to strings of nested parentheses. Dyck
was an educator known for co-founding the Deutsches Museum in Munich, among
other things. He wrote two pioneering papers about the theory of free groups
[Math. Annalen 20 (1882), 1–44; 22 (1883), 70–108]. Yet the so-called Dyck
words have at best a tenuous connection to his actual research: He studied the
words on {x1, x

−1
1 , . . . , xk, x

−1
k } that reduce to the empty string after repeatedly

erasing adjacent letter-pairs of the forms xix−1
i or x−1

i xi; the connection with
parentheses and trees arises only when we limit erasures to the first case, xix−1

i .
Thus we may conclude that, although an explosion of interest in binary trees

and their cousins occurred after 1950, such trees represent the only aspect of our
story whose historical roots are rather shallow.
After 1950. Of course the arrival of electronic computers changed everything.
The first computer-oriented publication about combinatorial generation methods
was a note by C. B. Tompkins, “Machine attacks on problems whose variables
are permutations” [Proc. Symp. Applied Math. 6 (1956), 202–205]. Thousands
more were destined to follow.

Several articles by D. H. Lehmer, especially his “Teaching combinatorial
tricks to a computer” in Proc. Symp. Applied Math. 10 (1960), 179–193, proved
to be extremely influential in the early days. [See also Proc. 1957 Canadian
Math. Congress (1959), 160–173; Proc. IBM Scientific Computing Symposium
on Combinatorial Problems (1964), 23–30; and Chapter 1 of Applied Combina-
torial Mathematics, edited by E. F. Beckenbach (Wiley, 1964), 5–31.] Lehmer
represented an important link to previous generations. For example, Stanford’s
library records show that he had checked out Netto’s Lehrbuch der Combinatorik
in January of 1932.

The main publications relevant to particular algorithms that we’ve studied
have already been cited in previous sections, so there is no need to repeat them
here. But textbooks and monographs that first put pieces of the subject together
in a coherent framework were also of great importance. Three books, in partic-
ular, were especially noteworthy with respect to establishing general principles:
• Elements of Combinatorial Computing by Mark B. Wells (Pergamon Press,

1971), especially Chapter 5.
• Combinatorial Algorithms by Albert Nijenhuis and Herbert S. Wilf (Aca-

demic Press, 1975). A second edition was published in 1978, containing
additional material, and Wilf subsequently wrote Combinatorial Algorithms:
An Update (Philadelphia: SIAM, 1989).

• Combinatorial Algorithms: Theory and Practice by Edward M. Reingold,
Jurg Nievergelt, and Narsingh Deo (Prentice–Hall, 1977), especially the
material in Chapter 5.

Robert Sedgewick compiled the first extensive survey of permutation generation
methods in Computing Surveys 9 (1977), 137–164, 314. Carla Savage’s survey
article about Gray codes in SIAM Review 39 (1997), 605–629, was another
milestone.

From the Library of Melissa Nuno



ptg999

7.2.1.7 HISTORY AND FURTHER REFERENCES 511

We noted above that algorithms to generate Catalan-counted objects were
not invented until computer programmers developed an appetite for them. The
first such algorithms to be published were not cited in Section 7.2.1.6 because
they have been superseded by better techniques; but it is appropriate to list
them here. First, H. I. Scoins gave two recursive algorithms for ordered tree
generation, in the same paper we have cited with respect to the generation of
oriented trees [Machine Intelligence 3 (1968), 43–60]. His algorithms dealt with
binary trees represented as bit strings that were essentially equivalent to Polish
prefix notation or to nested parentheses. Then Mark Wells, in Section 5.5.4 of his
book cited above, generated binary trees by representing them as noncrossing
set partitions. And Gary Knott [CACM 20 (1977), 113–115] gave recursive
ranking and unranking algorithms for binary trees, representing them via the
inorder-to-preorder permutations q1 . . . qn of Table 7.2.1.6–3.

Algorithms to generate all spanning trees of a given graph have been pub-
lished by numerous authors ever since the 1950s, motivated originally by the
study of electrical networks. Among the earliest such papers were works of
N. Nakagawa, IRE Trans. CT-5 (1958), 122–127; W. Mayeda, IRE Trans.
CT-6 (1959), 136–137, 394; H. Watanabe, IRE Trans. CT-7 (1960), 296–302;
S. Hakimi, J. Franklin Institute 272 (1961), 347–359.

A recent introduction to the entire subject can be found in Chapters 2
and 3 of Combinatorial Algorithms: Generation, Enumeration, and Search by
Donald L. Kreher and Douglas R. Stinson (CRC Press, 1999).

Frank Ruskey is preparing a book entitled Combinatorial Generation that
will contain a thorough treatment and a comprehensive bibliography. He has
made working drafts of several chapters available on the Internet.

EXERCISES
Many of the exercises below ask a modern reader to find and/or to correct errors in
the literature of bygone days. The point is not to gloat over how smart we are in the
21st century; the point is rather to understand that even the pioneers of a subject can
stumble. One good way to learn that a set of ideas is not really as simple as it might
seem to today’s computer scientists and mathematicians is to observe that some of the
world’s leading thinkers had to struggle with the concepts when they were new.

1. [15 ] Does the notion of “computing” arise in the I Ching?
x 2. [M30 ] (The genetic code.) DNA molecules are strings of “nucleotides” on the

4-letter alphabet {T, C, A, G}, and most protein molecules are strings of “amino acids” on
the 20-letter alphabet {A,C,D,E,F,G,H, I,K,L,M,N,P,Q,R, S,T,V,W,Y}. Three
consecutive nucleotides xyz form a “codon,” and a strand x1y1z1x2y2z2 . . . of DNA
specifies the protein f(x1, y1, z1)f(x2, y2, z2) . . . , where f(x, y, z) is the element in row z
and column y of matrix x in the arrayF S Y C

F S Y C
L S − −
L S − W


L P H R

L P H R
L P Q R
L P Q R


 I T N S

I T N S
I T K R

M T K R


V A D G

V A D G
V A E G
V A E G

 .

(Here (T, C, A, G) = (1, 2, 3, 4); for example, f(CAT) is the element in row 1 and column 3
of matrix 2, namely H.) Encoding proceeds until a codon leads to the stopper ‘−’.

From the Library of Melissa Nuno



ptg999

512 COMBINATORIAL SEARCHING 7.2.1.7

a) Show that there is a simple way to map each codon into a hexagram of the I Ching,
with the property that the 21 possible outcomes {A,C,D, . . . ,W,Y,−} correspond
to 21 consecutive hexagrams of the King Wen ordering (1).

b) Is that a sensational discovery?
3. [20 ] What is the millionth meter that has 30 beats, in colex ordering analogous

to (2)? What is the rank of ⌣⌣⌣−−⌣−−−−⌣⌣⌣⌣−−−−⌣⌣⌣⌣⌣⌣⌣−−⌣−−?
4. [19 ] Analyze the imperfections of Donnolo’s list of permutations in Table 1.
5. [16 ] What’s wrong with Kircher’s list of five-note permutations in (7)?
6. [25 ] Mersenne published a table of the first 64 factorials on pages 108–110 of his

Traitez de la Voix et des Chants (1636). His value for 64! was ≈ 2.2×1089; but it should
have been ≈ 1.3× 1089. Find a copy of his book and try to figure out where he erred.

7. [20 ] What permutations of {1, 2, 3, 4, 5} are “alive” and “dead” according to Seki’s
rules (8) and (9)?

x 8. [M27 ] Make a patch to (9) so that Seki’s procedure will be correct.
9. [15 ] From (11), deduce the Arabic way to write the Arabic numerals (0, 1, . . . , 9).

x 10. [HM27 ] In Ludus Clericalis, what is the expected number of times the three dice
are rolled before all possible virtues are acquired?
11. [21 ] Decipher Llull’s vertical table at the right of Fig. 65. What 20 combinatorial
objects does it represent? Hint: Don’t be misled by typographic errors.
12. [M20 ] Relate Schillinger’s universal cycle (13) to the universal cycle of Poinsot in
exercise 7.2.1.3–106.
13. [21 ] What should van Schooten have written, instead of (17)? Give also the
corresponding tableau for combinations of the multiset {a, a, a, b, b, c}.

x 14. [20 ] Complete the following sequence, from §95 of Izquierdo’s De Combinatione:

ABC ABD ABE ACD ACE ACB ADE ADB ADC AEB . . . .

15. [15 ] If all n-combinations x1 . . . xn of {1, . . . ,m} with repetition are listed in
lexicographic order, with x1 ≤ · · · ≤ xn, how many of them begin with the number j?
16. [20 ] (Nārāyan. a Pan. d. ita, 1356.) Design an algorithm to generate all compositions
of n into parts ≤ q, namely all ordered partitions n = a1 + · · ·+ at, where 1 ≤ aj ≤ q
for 1 ≤ j ≤ t and t is arbitrary. Illustrate your method when n = 7 and q = 3.
17. [HM27 ] Analyze the algorithm of exercise 16.
18. [10 ] Trick question: Leibniz published his Dissertatio de Arte Combinatoria in
1666. Why was that a particularly auspicious year, permutationwise?
19. [17 ] In which of Puteanus’s verses (20) is ‘tibi’ treated as ⌣−− instead of ⌣⌣?
20. [M25 ] To commemorate the visit of three illustrious noblemen to Dresden in 1617,
a poet published 1617 permutations of the hexameter verse

Dant tria jam Dresdæ, ceu sol dat, lumina lucem.

“Three give now to Dresden, as the sun gives, lights to light.” [Gregor Kleppis, Proteus
Poeticus (Leipzig: 1617).] How many permutations of those words would actually scan
properly? Hint: The verse has dactyls in the first and fifth feet, spondees elsewhere.

From the Library of Melissa Nuno



ptg999

7.2.1.7 HISTORY AND FURTHER REFERENCES 513

21. [HM30 ] Let f(p, q, r; s, t) be the number of ways to make (op, oq, or) by concate-
nating the strings {s · o, t · oo}, when p+ q+ r = s+ 2t. For example, f(2, 3, 2; 3, 2) = 5
because the five ways are

(oo, ooo, oo), (oo, ooo, oo), (oo, ooo, oo), (oo, ooo, oo), (oo, ooo, oo).

a) Show that f(p, q, r; s, t) = [upvqwrzs] 1/((1− zu− u2)(1− zv− v2)(1− zw−w2)).
b) Use the function f to enumerate the scannable permutations of (19), subject to

the additional condition that the fifth foot doesn’t begin in the middle of a word.
c) Now enumerate the remaining cases.

x 22. [M40 ] Look up the original discussions of the tot-tibi problem that were published
by Prestet, Wallis, Whitworth, and Hartley. What errors did they make?
23. [20 ] What order of the 52 genji-ko diagrams corresponds to Algorithm 7.2.1.5H?

x 24. [23 ] Early in the 1800s, Toshiaki Honda gave a recursive rule for generating all par-
titions of {1, . . . , n}. His algorithm produced them in the following order when n= 4:

Can you guess the corresponding order for n = 5? Hint: See (26).
25. [15 ] The 16th-century author of The Arte of English Poesie was interested only in
rhyme schemes that are “complete” in the sense of exercise 7.2.1.5–35; in other words,
every line should rhyme with at least one other. Furthermore, the scheme should
be “indecomposable” in the sense of exercise 7.2.1.2–100: A partition like 12 |345
decomposes into a 2-line poem followed by a 3-line poem. And the scheme shouldn’t
consist trivially of lines that all rhyme with each other. Under these conditions, is (28)
a complete list of 5-line rhyme schemes?

x 26. [HM25 ] How many n-line rhyme schemes satisfy the constraints of exercise 25?
x 27. [HM31 ] The set partition 14 |25 |36 can be represented by a genji-ko diagram such

as ; but every such diagram for this partition must have at least three places where
lines cross, and crossings are sometimes considered undesirable. How many partitions
of {1, . . . , n} have a genji-ko diagram in which the lines cross at most once?

x 28. [25 ] Let a, b, and c be prime numbers. John Wallis listed all possible factorizations
of a3b2c as follows: cbbaaa, cbbaa · a, cbaaa · b, bbaaa · c, cbba · aa, cbba · a · a, cbaa · ba,
cbaa · b · a, bbaa · ca, bbaa · c · a, caaa · bb, caaa · b · b, baaa · cb, baaa · c · b, cbb · aaa,
cbb · aa · a, cbb · a · a · a, cba · baa, cba · ba · a, cba · aa · b, cba · b · a · a, bba · caa, bba · ca · a,
bba ·aa · c, bba · c ·a ·a, caa · bb ·a, caa · ba · b, caa · b · b ·a, baa · cb ·a, baa · ca · b, baa · ba · c,
baa · c · b · a, aaa · cb · b, aaa · bb · c, aaa · c · b · b, cb · ba · aa, cb · ba · a · a, cb · aa · b · a,
cb · b · a · a · a, bb · ca · aa, bb · ca · a · a, bb · aa · c · a, bb · c · a · a · a, ca · ba · ba, ca · ba · b · a,
ca · aa · b · b, ca · b · b · a · a, ba · ba · c · a, ba · aa · c · b, ba · c · b · a · a, aa · c · b · b · a,
c · b · b · a · a · a. What algorithm did he use to generate them in this order?

x 29. [24 ] In what order would Wallis have generated all factorizations of the number
abcde = 5 · 7 · 11 · 13 · 17? Give your answer as a sequence of genji-ko diagrams.
30. [M20 ] What is the coefficient of ai11 a

i2
2 . . . zm+n in (a0z + a1z

2 + a2z
3 + · · · )m?

(See (29).)
31. [20 ] Compare de Moivre’s and de Montmort’s orders for partitions, (30) and (31),
with Algorithm 7.2.1.4P.
32. [21 ] (R. J. Boscovich, 1748.) List all partitions of 20 for which all parts are 1, 7,
or 10. Also design an algorithm that lists all such partitions of any given integer n > 0.

From the Library of Melissa Nuno



ptg999

ANSWERS TO EXERCISES

Answer not a fool according to his folly,
lest thou also be like unto him.

— Proverbs 26:4

NOTES ON THE EXERCISES
1. A moderately easy problem for a mathematically inclined reader.
2. The author will reward you if you are first to report an error in the statement of

an exercise or in its answer, assuming that he or she is suitably sagacious.
3. See H. Poincaré, Rendiconti Circ. Mat. Palermo 18 (1904), 45–110; R. H. Bing,

Annals of Math. (2) 68 (1958), 17–37; G. Perelman, arXiv:math/0211159 [math.DG],
arXiv:math/0303109 [math.DG], arXiv:math/0307245 [math.DG].

SECTION 7
1. Following the hint, we’ll want the second ‘4m−4’ to be immediately followed by the

first ‘2m−1’. The desired arrangements can be deduced from the first four examples,
given in hexadecimal notation: 231213, 46171435623725, 86a31b1368597a425b2479,
ca8e531f1358ac7db9e6427f2469bd. [R. O. Davies, Math. Gazette 43 (1959), 253–255.]

2. Such arrangements exist if and only if nmod 4 = 0 or 1. This condition is necessary
because there must be an even number of odd items. And it is sufficient because we
can place ‘00’ in front of the solutions in the previous exercise.

Notes: This question was first raised by Marshall Hall in 1951, and solved the
following year by F. T. Leahy, Jr., in unpublished work [Armed Forces Security Agency
report 343 (28 January 1952)]. It was independently posed and resolved by T. Skolem
and T. Bang, Math. Scandinavica 5 (1957), 57–58. For other intervals of numbers, see
the complete solution by J. E. Simpson, Discrete Math. 44 (1983), 97–104.

3. Yes. For example, the cycle (0072362435714165) can’t be broken up.
4. The kth occurrence of b is in position ⌊kϕ⌋ from the left, and the kth occurrence

of a is in position ⌊kϕ2⌋. Clearly ⌊kϕ2⌋ − ⌊kϕ⌋ = k, because ϕ2 = ϕ+ 1. (The integers
⌊kϕ⌋ form the “spectrum” of ϕ; see exercise 3.13 of CMath.)

5. 2n− k− 1 of the
2n

2


equally likely pairs of positions satisfy the stated condition.
If these probabilities were independent (but they aren’t), the value of 2Ln would be 2n

2, 2, . . . , 2

 n
k=1

((2n− 1− k)/
2n

2

) = (2n)!2n(n− 1)

n!(2n)n+1(2n− 1)n+1

= exp

n ln 4n

e3 + ln

πen

2 +O(n−1)

.

514

From the Library of Melissa Nuno

http://arxiv.org/abs/math/0211159
http://arxiv.org/abs/math/0303109
http://arxiv.org/abs/math/0307245


ptg999

7 ANSWERS TO EXERCISES 515

6. (a) When the products are expanded, we obtain a polynomial of (2n−2)!/(n−2)!
terms, each of degree 4n. There’s a term x2

1 . . . x
2
2n for each Langford pairing; every

other term has at least one variable of degree 1. Summing over x1, . . . , x2n ∈ {−1,+1}
therefore cancels out all the bad terms, but gives 22n for the good terms. An extra factor
of 2 arises because there are 2Ln Langford pairings (including left-right reversals).

(b) Let fk =
2n−k−1

j=1 xjxj+k+1 be the main part of the kth factor. We can run
through all 4n cases x1, . . . , x2n ∈ {−1,+1} in Gray-code order (Algorithm 7.2.1.1L),
negating only one of the xj each time. A change in xj causes at most two adjustments
to each fk ; so each Gray-code step costs O(n).

We needn’t compute the sum exactly; it suffices to work mod 2N , where 2N com-
fortably exceeds 22n+1Ln. Even better, when n = 24, would be to do the computations
mod 260 − 1, or mod both 230 − 1 and 230 + 1, because 249 ⊥ 260 − 1. One can also
save ⌈n/2⌉ bits of precision by exploiting the fact that fk ≡ k + 1 (modulo 2).

(c) The third equality is actually valid only when nmod 4 = 0 or 3; but those are
the interesting n’s. The sum can be carried out in n phases, where phase p for p < n
involves the cases where xn−1 = xn+2, xn−2 = xn+3, . . . , xn−p+1 = xn+p, xn−p = xn =
xn+1 = +1, and xn+p+1 = −1; it has an outer loop that chooses (xn−p+1, . . . , xn−1) in
all 2p−1 ways, and an inner loop that chooses (x1, . . . , xn−p−1, xn+p+2, . . . , x2n) in all
22n−2p−2 ways. (The inner loop uses Gray binary code, preferably with “organ-pipe
order” to prioritize the subscripts so that x1 and x2n vary most rapidly. The outer
loop need not be especially efficient.) Phase n covers the 2n−1 palindromic cases with
xj = x2n+1−j for 1 ≤ j < n and xn = xn+1 = +1. If sp denotes the sum in phase p,
then s1 + · · ·+ sn−1 + 1

2sn = 22n−2Ln.
A substantial fraction of the terms turn out be zero. For example, when n = 16,

zeros appear about 76% of the time (in 408,838,754 cases out of 229+214). This fact can
be used to avoid many multiplications in the inner loop. (Only f1, f3, . . . can be zero.)

7. Let dk be the number of incomplete pairs after k characters have been read; thus
d0 = d2n = 0, and dk = dk−1±1 for 1 ≤ k ≤ 2n. The largest such sequence in which dk
never exceeds 6 is (d0, d1, . . . , d2n) = (0, 1, 2, 3, 4, 5, 6, 5, 6, . . . , 5, 6, 5, 4, 3, 2, 1, 0), which
has

2n
k=1 dk = 11n − 30. But

2n
k=1 dk =

n
k=1(k + 1) =


n+1

2


+ n in any Langford
pairing. Hence


n+1

2


+ n ≤ 11n− 30, and n ≤ 15. (In fact, width 6 is also impossible
when n = 15. The largest and smallest possible width are unknown in general.)

8. There are no solutions when n = 4 or n = 7. When n = 8 there are four:

1 13 37 75 58 86 64 42 2 ; 1 14 48 86 63 37 75 52 2 ; 4 42 27 75 58 86 63 31 1 ; 5 52 28 86 63 37 74 41 1 .

(This problem makes a pleasant mechanical puzzle, using gadgets of width k + 1 and
height ⌈k/2⌉ for piece k. In his original note [Math. Gazette 42 (1958), 228], C. Dudley
Langford illustrated similar pieces, and exhibited a planar solution for n = 12. The
question can be cast as an exact cover problem, with nonprimary columns representing
places where two gadgets are not allowed to intersect; see exercise 7.2.2.1–00. Jean
Brette has devised a somewhat similar puzzle, based on Skolem’s variant of the problem
and using width instead of planarity; he gave a copy to David Singmaster in 1992.)

9. Just three ways: 181915267285296475384639743, 191218246279458634753968357,
191618257269258476354938743 (and their reversals). [First found in 1969 by G. Baron;
see Combinatorial Theory and Its Applications (Budapest: 1970), 81–92. The “dancing

From the Library of Melissa Nuno



ptg999

516 ANSWERS TO EXERCISES 7

links” method of Section 7.2.2.1 resolves this question by traversing a search tree that
has only 360 nodes, given an exact cover problem with 132 rows.]
10. For example, let A = 12, K = 8, Q = 4, J = 0, ♠ = 4, ♡ = 3, ♢ = 2, ♣ = 1; add.

[In this connection, orthogonal latin squares equivalent to Fig. 1 were implicitly
present already in medieval Islamic talismans illustrated by Ibn al-Hajj in his Kitab
Shumus al-Anwar (Cairo: 1322); he also gave a 5×5 example. See E. Doutté, Magie
et Religion dans l’Afrique du Nord (Algiers: 1909), 193–194, 214, 247; W. Ahrens,
Der Islam 7 (1917), 228–238. See also an article on the history of latin squares being
prepared by Lars D. Andersen.]

11.


dγ@ aδA bβB cαC
cβA bα@ aγC dδB
aαB dβC cδ@ bγA
bδC cγB dαA aβ@

.
[Joseph Sauveur presented the earliest known ex-
ample of such squares in Mémoires de l’Académie
Royale des Sciences (Paris, 1710), 92–138, §83.]

12. If n is odd, we can let Mij = (i − j) mod n. But if n is even, there are no
transversals: For if {(t0+0) mod n, . . . , (tn−1+n−1) mod n} is a transversal, we haven−1
k=0 tk ≡

n−1
k=0 (tk + k) (modulo n), hence

n−1
k=0 k = 1

2n(n− 1) is a multiple of n.
13. Replace each element l by ⌊l/5⌋ to get a matrix of 0s and 1s. Let the four quarters
be named (A

C
B
D

); then A and D each contain exactly k 1s, while B and C each contain
exactly k 0s. Suppose the original matrix has ten disjoint transversals. If k ≤ 2, at most
four of them go through a 1 in A or D, and at most four go through a 0 in B or C. Thus
at least two of them hit only 0s in A and D, only 1s in B and C. But such a transversal
has an even number of 0s (not five), because it intersects A and D equally often.

Similarly, a latin square of order 4m+ 2 with an orthogonal mate must have more
than m intruders in each of its (2m+ 1)× (2m+ 1) submatrices, under all renamings
of the elements. [H. B. Mann, Bull. Amer. Math. Soc. (2) 50 (1944), 249–257.]
14. Cases (b) and (d) have no mates. Cases (a), (c), and (e) have respectively 2, 6,
and 12265168(!), of which the lexicographically first and last are

(a)
0456987213
1305629847
2043798165
3289176504
4518263790
5167432089
6894015372
7920341658
8731504926
9672850431

,

(a)
0691534782
1308257964
2169340578
3250879416
4587902631
5412763890
6945081327
7836425109
8723196045
9074618253

;

(c)
0362498571
1408327695
2673519408
3521970846
4890253167
5736841920
6259784013
7915602384
8147036259
9084165732

,

(c)
0986271435
1354068792
2741853960
3572690814
4630789251
5218947306
6095324178
7869512043
8407136529
9123405687

;

(e)
0214365897
1025973468
2690587143
3857694201
4168730925
5473829016
6942158730
7309216584
8531402679
9786041352

,

(e)
0987645321
1795402638
2506913874
3154067289
4231850967
5348276190
6820394715
7069128543
8412739056
9673581402

.

Notes: Squares (a), (b), (c), and (d) were obtained from the decimal digits of π, e,
γ, and ϕ, by discarding each digit that is inconsistent with a completed latin square.
Although they aren’t truly random, they’re probably typical of 10 × 10 latin squares
in general, roughly half of which appear to have orthogonal mates. Parker constructed
square (e) in order to obtain an unusually large number of transversals; it has 5504 of
them. (Euler had studied a similar example of order 6, therefore “just missing” the
discovery of a 10× 10 pair.)
15. Parker was dismayed to discover that none of the mates of square 14(e) are
orthogonal to each other. With J. W. Brown and A. S. Hedayat [J. Combinatorics, Inf.
and System Sci. 18 (1993), 113–115], he later found two 10×10s that have four disjoint
common transversals (but not ten). [See also B. Ganter, R. Mathon, and A. Rosa,

From the Library of Melissa Nuno



ptg999

7 ANSWERS TO EXERCISES 517

Congressus Numerantium 20 (1978), 383–398; 22 (1979), 181–204.] While pursuing
an idea of L. Weisner [Canadian Math. Bull. 6 (1963), 61–63], the author accidentally
noticed some squares that come even closer to a mutually orthogonal trio: The square
below is orthogonal to its transpose; and it has five diagonally symmetric transver-
sals, in cells (0, p0), . . . , (9, p9) for p0 . . . p9 = 0132674598, 2301457689, 3210896745,
4897065312, and 6528410937, which are almost disjoint: They cover 49 cells.

L =



0234567891
3192708546
6528139407
8753241960
1689473025
4970852613
5047986132
9416320758
7361095284
2805614379


⊥



0368145972
2157690438
3925874160
4283907615
5712489306
6034758291
7891326054
8549061723
9406213587
1670532849


= LT .

Extensive computations by B. D. McKay, A. Meynert, and W. Myrvold [J. Comb.
Designs 15 (2007), 98–119] prove that no 10×10 latin square with nontrivial symmetry
has two mates orthogonal to each other. Three mutually orthogonal latin squares are
known to exist for all orders n > 10 [see S. M. P. Wang and R. M. Wilson, Congressus
Numerantium 21 (1978), 688; D. T. Todorov, Ars Combinatoria 20 (1985), 45–47].
16. See R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory (Cambridge
University Press, 1991), §8.2.
17. (a) Let there be 3n columns rj , cj , vj for 0 ≤ j < n, and n2 rows; row (i, j) has
1 in columns ri, cj , and vl, where l = Lij , for 0 ≤ i, j < n.

(b) Let there be 4n2 columns rij , cij , xij , yij for 0 ≤ i, j < n, and n3−n2 +n rows;
row (i, j, k) has 1 in columns rik, cjk, xij , and ylk, where l = Lij , for 0 ≤ i, j, k < n
and (i = k or j > 0).
18. Given an orthogonal array A with rows Ai for 1 ≤ i ≤ m, define latin square
Li = (Lijk) for 1 ≤ i ≤ m− 2 by setting Lijk = Aiq when A(m−1)q = j and Amq = k,
for 0 ≤ j, k < n. (The value of q is uniquely determined by the values of j and k.)
Permuting the columns of the array does not change the corresponding latin squares.

This construction can also be reversed, to produce orthogonal arrays of order n
from mutually orthogonal latin squares of order n. In exercise 11, for example, we can
let a = α = @ = 0, b = β = A = 1, c = γ = B = 2, and d = δ = C = 3, obtaining

A =


3012210303211230
2310102301323201
0123103223013210
0000111122223333
0123012301230123

 .

(The concept of an orthogonal array is mathematically “cleaner” than the concept
of orthogonal latin squares, because it accounts better for the underlying symmetries.
Notice, for example, that an n×n matrix L with entries in {1, 2, . . . , n} is a latin square
if and only if it is orthogonal to two particular non-latin squares, namely

L ⊥


1 1 . . . 1
2 2 . . . 2
...

...
. . .

...
n n . . . n

 and L ⊥


1 2 . . . n
1 2 . . . n
...

...
. . .

...
1 2 . . . n

 .

From the Library of Melissa Nuno



ptg999

518 ANSWERS TO EXERCISES 7

Therefore Latin squares, Græco-Latin squares, Hebraic-Græco-Latin squares, etc., are
equivalent to orthogonal arrays of depth 3, 4, 5, . . . . Moreover, the orthogonal arrays
considered here are merely the special case t = 2 and λ = 1 of a more general concept
of n-ary m × λnt arrays having “strength t” and “index λ,” introduced by C. R. Rao
in Proc. Edinburgh Math. Soc. 8 (1949), 119–125; see the book Orthogonal Arrays by
A. S. Hedayat, N. J. A. Sloane, and J. Stufken (Springer, 1999).)
19. We can rearrange the columns so that the first row is 0n1n . . . (n−1)n. Then we
can renumber the elements of the other rows so that they begin with 01 . . . (n−1). The
elements in each remaining column must then be distinct, in all rows but the first.

To achieve the upper bound when n = p, let each column be indexed by two
numbers x and y, where 0 ≤ x, y < p, and put the numbers y, x, (x + y) mod p,
(x+2y) mod p, . . . , (x+(p−1)y) mod p into that column. For example, when p = 5 we
get the following orthogonal array, equivalent to four mutually orthogonal latin squares:

0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
0 1 2 3 4 1 2 3 4 0 2 3 4 0 1 3 4 0 1 2 4 0 1 2 3
0 1 2 3 4 2 3 4 0 1 4 0 1 2 3 1 2 3 4 0 3 4 0 1 2
0 1 2 3 4 3 4 0 1 2 1 2 3 4 0 4 0 1 2 3 2 3 4 0 1
0 1 2 3 4 4 0 1 2 3 3 4 0 1 2 2 3 4 0 1 1 2 3 4 0

 .

[Essentially the same idea works when n is a prime power, using the finite field GF(pe);
see E. H. Moore, American Journal of Mathematics 18 (1896), 264–303, §15(l). These
arrays are equivalent to finite projective planes; see Marshall Hall, Jr., Combinatorial
Theory (Blaisdell, 1967), Chapters 12 and 13.]
20. Let ω = e2πi/n, and suppose a1 . . . an2 and b1 . . . bn2 are the vectors in different
rows. Then a1b1 + · · ·+ an2bn2 =


0≤j,k<n ω

j+k = 0 because
n−1
k=0 ω

k = 0.
21. (a) To show that equality-or-parallelism is an equivalence relation, we need to
verify the transitive law: If L ∥M and M ∥ N and L ̸= N , then we must have L ∥ N .
Otherwise there would be a point p with L ∩N = {p}, by (ii); and p would lie on two
different lines parallel to M , contradicting (iii).

(b) Let {L1, . . . , Ln} be a class of parallel lines, and assume that M is a line of
another class. Then each Lj intersects M in a unique point pj ; and every point of M
is encountered in this way, because every point of the geometry lies on exactly one line
of each class, by (iii). Thus M contains exactly n points.

(c) We’ve already observed that every point belongs to m lines when there are m
classes. If lines L, M , and N belong to three different classes, then M and N have the
same number of points as the number of lines in L’s class. So there’s a common line
size n, and in fact the total number of points is n2. (Of course n might be infinite.)
22. Given an orthogonal array A of order n and depth m, define a geometric net with
n2 points and m classes of parallel lines by regarding the columns of A as points; line j
of class k is the set of columns where symbol j appears in row k of A.

All finite geometric nets with m ≥ 3 classes arise in this way. But a geometric net
with only one class is trivially a partition of the points into disjoint subsets. A geometric
net with m = 2 classes has nn′ points (x, x′), where there are n lines ‘x = constant’ in
one class and n′ lines ‘x′ = constant’ in the other. [For further information, see R. H.
Bruck, Canadian J. Math. 3 (1951), 94–107; Pacific J. Math. 13 (1963), 421–457.]
23. (a) If d(x, y) ≤ t and d(x′, y) ≤ t and x ̸= x′, then d(x, x′) ≤ 2t. Thus a code with
distance > 2t between codewords allows the correction of up to t errors — at least in

From the Library of Melissa Nuno



ptg999

7 ANSWERS TO EXERCISES 519

principle, although the computations might be complex. Conversely, if d(x, x′) ≤ 2t
and x ̸= x′, there’s an element y with d(x, y) ≤ t and d(x′, y) ≤ t; hence we can’t
reconstruct x uniquely when y is received.

(b, c) Let m = r + 2, and observe that a set of b2 b-ary m-tuples has Hamming
distance ≥ m− 1 between all pairs of elements if and only if it forms the columns of a
b-ary orthogonal array of depth m. [See S. W. Golomb and E. C. Posner, IEEE Trans.
IT-10 (1964), 196–208. The literature of coding theory often denotes a code C(b, n, r)
of distance d by the symbol (n+ r, bn, d)b. Thus, a b-ary orthogonal array of depth m
is essentially an (m, b2,m− 1)b code.]
24. (a) Suppose xj ̸= x′j for 1 ≤ j ≤ l and xj = x′j for l < j ≤ N . We have x = x′

if l = 0. Otherwise consider the parity bits that correspond to the m lines through
point 1. At most l−1 of those bits correspond to lines that touch the points {2, . . . , l}.
Hence x′ has at least m− (l−1) parity changes, and d(x, x′) ≥ l+(m− (l−1)) = m+1.

(b) Let lp1, . . . , lpm be the index numbers of the lines through point p. After re-
ceiving a message y1 . . . yN+R, compute xp for 1 ≤ p ≤ N by taking the majority value
of the m+ 1 “witness bits” {yp0, . . . , ypm}, where yp0 = yp and

ypk = (yN+lpk +
{yj | j ̸= p and point j lies on line lpk}) mod 2, for 1 ≤ k ≤ m.

This method works because each received bit yj affects at most one of the witness bits.
For example, in the 25-point geometry of exercise 19, suppose the parity bit

x26+5i+j of each codeword corresponds to line j of row i, for 0 ≤ i ≤ 5 and 0 ≤
j < 5; thus x26 = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5, x27 = x6 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ x10, . . . ,
x55 = x5 ⊕ x6 ⊕ x12 ⊕ x18 ⊕ x24. Given message y1 . . . y55, we decode bit x1 (say) by
computing the majority of the seven bits y1, y26⊕y2⊕y3⊕y4⊕y5, y31⊕y6⊕y11⊕y16⊕y21,
y36 ⊕ y10 ⊕ y14 ⊕ y18 ⊕ y22, y41 ⊕ y9 ⊕ y12 ⊕ y20 ⊕ y23, y46 ⊕ y8 ⊕ y15 ⊕ y17 ⊕ y24,
y51 ⊕ y7 ⊕ y13 ⊕ y19 ⊕ y25. [Section 7.1.2 explains how to calculate majority functions
efficiently. Notice that we can eliminate the last 10 bits if we only wish to correct up to
two errors, and the last 20 if single-error correction is sufficient. See M. Y. Hsiao, D. C.
Bossen, and R. T. Chien, IBM J. Research and Development 14 (1970), 390–394.]
25. By considering anagrams of {l, e, a, s, t} (see exercise 5–21), we’re led to the square

stela
telas
elast
laste
astel

,

and the cyclic rotations of its rows. Here telas are Spanish fabrics; elast is a prefix
meaning flexible; and laste is an imperative Chaucerian verb. (Of course just about
every pronounceable combination of five letters has been used to spell or misspell
something somewhere, at some point in history.)
26. “every night, young video buffs catch rerun fever forty years after those
great shows first aired.” [Robert Leighton, GAMES 16, 6 (December 1992), 34, 47.]
27. (0, 4, 163, 1756, 3834) for k = (1, 2, 3, 4, 5); mamma and esses give a “full house.”
28. Yes, 38 pairs altogether. The “most common” solution is needs (rank 180) and
offer (rank 384). Only three cases differ consistently by +1 (adder beefs, sheer
tiffs, sneer toffs). Other memorable examples are ghost hints and strut rusts.
One word of the pair ends with the letter s except in four cases, such as robed spade.
[See Leonard J. Gordon, Word Ways 23 (1990), 59–61.]
29. There are 18 palindromes, from level (rank 184) to dewed (rank 5688). Some of
the 34 mirror pairs are ‘devil lived’, ‘knits stink’, ‘smart trams’, ‘faced decaf’.

From the Library of Melissa Nuno



ptg999

520 ANSWERS TO EXERCISES 7

30. Among 105 such words in the SGB, first, below, floor, begin, cells, empty,
and hills are the most common; abbey and pssst are lexicographically first and last.
(If you don’t like pssst, the next-to-last is mossy.) Only 37 words, from mecca to
zoned, have their letters in reverse order; but they are, of course, wrong answers.
31. The middle word is the average of the other two, so the extreme words must be
congruent mod 2; this observation reduces the number of dictionary lookups by a factor
of about 32. There are 119 such triples in WORDS(5757), but only two in WORDS(2000):
marry, photo, solve; risky, tempo, vague. [Word Ways 25 (1992), 13–15.]
32. The only reasonably common example seems to be peopleless.
33. chief, fight, right, which, ouija, jokes, ankle, films, hymns, known, crops,
pique, quart, first, first, study, mauve, vowel, waxes, proxy, crazy, pizza. (The
idea is to find the most common word in which x is followed by (x + 1) mod 26, for
x = a (0), x = b (1), . . . , x = z (25). We also minimize the intervening distance, thus
preferring bacon to the more common word black. In the one case where no such word
exists, crazy seems most rational. See OMNI 16, 8 (May 1994), 94.)
34. The top two (and total number) in each category are: pssst and pffft (2), schwa
and schmo (2), threw and throw (36), three and spree (5), which and think (709),
there and these (234), their and great (291), whooo and wheee (3), words and first
(628), large and since (376), water and never (1313), value and radio (84), would
and could (460), house and voice (101), quiet and queen (25), queue only (1), ahhhh
and ankhs (4), angle and extra (20), other and after (227), agree and issue (20),
along and using (124), above and alone (92), about and again (58), adieu and aquae
(2), earth and eight (16), eagle and ounce (8), outer and eaten (42), eerie and
audio (4), (0), ouija and aioli (2), (0), (0); years and every are the most common of
the 868 omitted words. [To fill the three holes, Internet usage suggests ooops, ooooh,
and ooooo. See P. M. Cohen, Word Ways 10 (1977), 221–223.]
35. Consider the collection WORDS(n) for n = 1, 2, . . . , 5757. The illustrated trie, rooted
at s, first becomes possible when n reaches 978 (the rank of stalk). The next root
letter to support such a trie is c, which acquires enough branching in its descendants
when n = 2503 (the rank of craze). Subsequent breakthroughs occur when n = 2730
(bulks), 3999 (ducky), 4230 (panty), 4459 (minis), 4709 (whooo), 4782 (lardy), 4824
(herem), 4840 (firma), 4924 (ridgy), 5343 (taxol).

(A breakthrough occurs when a top-level trie acquires Horton–Strahler number 4;
see exercise 7.2.1.6–124. Amusing sets of words, suggestive of a new kind of poetry, arise
also when the branching is right-to-left instead of left-to-right: black, slack, crack,
track, click, slick, brick, trick, blank, plank, crank, drank, blink, clink, brink,
drink. In fact, right-to-left branching yields a complete ternary trie with 81 leaves:
males, sales, tales, files, miles, piles, holes, . . . , tests, costs, hosts, posts.)
36. Denoting the elements of the cube by aijk for 1 ≤ i, j, k ≤ 5, the symmetry
condition is aijk = aikj = ajik = ajki = akij = akji. In general an n×n×n cube has
3n2 words, obtained by fixing two coordinates and letting the third range from 1 to n;
but the symmetry condition means that we need only


n+1

2


words. Hence when n = 5
the number of necessary words is reduced from 75 to 15. [Jeff Grant was able to find 75
suitable words in the Oxford English Dictionary; see Word Ways 11 (1978), 156–157.]

Changing (stove, event) to (store, erect) or (stole, elect) gives two more.
37. The densest part of the graph, which we might call its “bare core,” contains the
vertices named bares and cores, which each have degree 25.

From the Library of Melissa Nuno



ptg999

7 ANSWERS TO EXERCISES 521

38. tears→ raise→ aisle→ smile; the second word might also be reals. [Going
from tears to smile as in (11) was one of Lewis Carroll’s first five-letter examples. He
would have been delighted to learn that the directed rule makes it more difficult to go
from smile to tears, because four steps are needed in that direction.]
39. Always spanning, never induced.
40. (a) 2e, (b) 2n, one for each subset of E or V .
41. (a) n = 1 and n = 2; P0 is undefined. (b) n = 0 and n = 3.
42. G has 65/2 edges (hence it doesn’t exist).
43. Yes: The first three are isomorphic to Fig. 2(e). [The left-hand diagram is, in fact,
identical to the earliest known appearance of the Petersen graph in print: See A. B.
Kempe, Philosophical Transactions 177 (1886), 1–70, especially Fig. 13 in §59.] But
the right-hand graph is definitely different; it is planar, Hamiltonian, and has girth 3.
44. Any automorphism must take a corner point into a corner point, because three
distinct paths of length 2 can be found only between certain pairs of non-corner points.
Therefore the graph has only the eight symmetries of C4.
45. All edges of this graph connect vertices of the same row or adjacent rows. Therefore
we can use the colors 0 and 2 alternately in even-numbered rows, 1 and 3 alternately in
odd-numbered rows. The neighbors of NV form a 5-cycle, hence four colors are necessary.
46. (a) Every vertex has degree ≥ 2, and its neighbors have a well-defined cyclic order
corresponding to the incoming lines. If u−−−v and u−−−w, where v and w are cyclically
consecutive neighbors of u, we must have v−−−w. Thus all points in the vicinity of any
vertex u belong to a unique triangular region.

(b) The formula holds when n = 3. If n > 3, shrink any edge to a point; this
transformation removes one vertex and three edges. (If u−−−v shrinks, suppose it was
part of the triangles x−−− u−−− v −−− x and y −−− u−−− v −−− y. We lose vertex v and
edges {x−−−v, u−−−v, y−−−v}; all other edges of the form w−−−v become w−−−u.)
47. A planar diagram would divide the plane into regions, with either 4 or 6 vertices in
the boundary of each region (because K3,3 has no odd cycles). If there are f4 and f6 of
each kind, we must have 4f4 + 6f6 = 18, since there are 9 edges; hence (f4, f6) = (3, 1)
or (0, 3). We could also triangulate the graph by adding f4 + 3f6 more edges; but then
it would have at least 15 edges, contradicting exercise 46.

[The fact that K3,3 is nonplanar goes back to a puzzle about connecting three
houses to three utilities (water, gas, and electricity), without crossing pipes. Its origin
is unknown; H. E. Dudeney called it “ancient” in Strand 46 (1913), 110.]
48. If u, v, w are vertices and u−−− v, we must have d(w, u) ̸≡ d(w, v) (modulo 2);
otherwise shortest paths from w to u and from w to v would yield an odd cycle. After
w is colored 0, the procedure therefore assigns the color d(w, v) mod 2 to each new
uncolored vertex v that is adjacent to a colored vertex u; and every vertex v with
d(w, v) <∞ is colored before a new w is chosen.
49. There are only three: K4, K3,3, and (which is C6).
50. The graph must be connected, because the number of 3-colorings is divisible by 3r
when there are r components. It must also be contained in a complete bipartite graph
Km,n, which can be 3-colored in 3(2m+2n−2) ways. Deleting edges from Km,n does not
decrease the number of colorings; hence 2m + 2n− 2 ≤ 8, and we have {m,n} = {1, 1},
{1, 2}, {1, 3}, or {2, 2}. So only the claw K1,3 and the path P4 are possible.

From the Library of Melissa Nuno



ptg999

522 ANSWERS TO EXERCISES 7

51. A 4-cycle p1 −−− L1 −−− p2 −−− L2 −−− p1 would correspond to two distinct lines
{L1, L2} with two common points {p1, p2}, contradicting (ii). So the girth is at least 6.

If there’s only one class of parallel lines, the girth is ∞; if there are two classes,
with n ≤ n′ members, it is 8, or ∞ if n = 1. (See answer 22.) Otherwise we can find a
6-cycle by making a triangle from three lines that are chosen from different classes.
52. If the diameter is d and the girth is g, then d ≥ ⌊g/2⌋, unless g =∞.
53. happy (which is connected to tears and sweat, but not to world).
54. (a) It’s a single, highly connected component. (Incidentally, this graph is the
line graph of the bipartite graph in which one part corresponds to the initial letters
{A, C, D, F, G, . . . , W} and the other to the final letters {A, C, D, E, H, . . . , Z}.)

(b) Vertex WY is isolated. The other vertices with in-degree zero, namely FL, GA,
PA, UT, WA, WI, and WV, form strong components by themselves; they all precede a giant
strong component, which is followed by each of the remaining single-vertex strong
components with out-degree zero: AZ, DE, KY, ME, NE, NH, NJ, NY, OH, TX.

(c) Now the strong component {GU} precedes {UT}; NH, OH, PA, WA, WI, and WV join
the giant strong component; {FM} precedes it; {AE} and {WY} follow it.

[This digraph was first considered by Darryl Francis, Philip Cohen, and A. Ross
Eckler in Word Ways 19 (1976), 241; 20 (1977), 8.]
55.


N
2

−

n1
2

− · · · −


nk
2

, where N = n1 + · · ·+ nk.

56. True. Note that Jn is simple, but it doesn’t correspond to any multigraph.
57. False, in the connected digraph u−−→w←−−v. (But u and v are in the same strongly
connected component if and only if d(u, v) <∞ and d(v, u) <∞; see Section 2.3.4.2.)
58. Each component is a cycle whose order is at least (a) 3 (b) 1.
59. (a) By induction on n, we can use straight insertion sorting: Suppose v1−−→· · ·−−→
vn−1. Then either vn−−→ v1 or vn−1−−→ vn or vk−1−−→ vn−−→ vk, where k is minimum
such that vn−−→vk. [L. Rédei, Acta litterarum ac scientiarum 7 (Szeged, 1934), 39–43.]

(b) 15: 01234, 02341, 02413, and their cyclic shifts. [The number of such oriented
paths is always odd; see T. Szele, Matematikai és Fizikai Lapok 50 (1943), 223–256.]

(c) Yes. (By induction: If there’s only one place to insert vn as in part (a), the
tournament is transitive.)
60. Let A = {x | u−−→x}, B = {x | x−−→v}, C = {x | v−−→x}. If v /∈ A and A∩B = ∅
we have |A|+ |B| = |A∪B| ≤ n−2, because u /∈ A∪B and v /∈ A∪B. But |B|+ |C| =
n− 1; hence |A| < |C|. [H. G. Landau, Bull. Math. Biophysics 15 (1953), 148.]
61. 1−−→1, 1−−→2, 2−−→2; then A =

1 1
0 1


and Ak =
1 k

0 1


for all integers k.
62. (a) Suppose the vertices are {1, . . . , n}. Each of the n! terms a1p1 . . . anpn in the
expansion of the permanent is the number of spanning permutation digraphs that have
arcs j−−→pj . (b) A similar argument shows that detA is the number of even spanning
permutation digraphs minus the number of odd ones. [See F. Harary, SIAM Review 4
(1962), 202–210, where permutation digraphs are called “linear subgraphs.”]
63. Let v be any vertex. If g = 2t+1, at least d(d−1)k−1 vertices x satisfy d(v, x) = k,
for 1 ≤ k ≤ t. If g = 2t+ 2 and v′ is any neighbor of v, there also are at least (d− 1)t
vertices x for which d(v, x) = t+ 1 and d(v′, x) = t.
64. To achieve the lower bound in answer 63, every vertex v must have degree d, and
the d neighbors of v must all be adjacent to the remaining d − 1 vertices. This graph
is, in fact, Kd,d.

From the Library of Melissa Nuno



ptg999

7 ANSWERS TO EXERCISES 523

65. (a) By answer 63, G must be regular of degree d, and there must be exactly one
path of length ≤ 2 between any two distinct vertices.

(b) We may take λ1 = d, with x1 = (1 . . . 1)T . All other eigenvectors satisfy
Jxj = (0 . . . 0)T ; hence λ2

j + λj = d− 1 for 1 < j ≤ N .
(c) If λ2 = · · · = λm = (−1+

√
4d−3)/2 and λm+1 = · · · = λN = (−1−

√
4d−3)/2,

we must have m− 1 = N −m. With this value we find λ1 + · · ·+ λN = d− d2/2.
(d) If 4d− 3 = s2 and m is as in (c), the eigenvalues sum to

s2 + 3
4 + (m− 1)s− 1

2 −
 (s2 + 3)2

16 + 1−m

s+ 1

2 ,

which is 15/32 plus a multiple of s. Hence s must be a divisor of 15.
[These results are due to A. J. Hoffman and R. R. Singleton, IBM J. Research and

Development 4 (1960), 497–504, who also proved that the graph for d = 7 is unique.]
66. Denote the 50 vertices by [a, b] and (a, b) for 0 ≤ a, b < 5, and define three kinds
of edges, using arithmetic mod 5:

[a, b]−−− [a+ 1, b]; (a, b)−−−(a+ 2, b); (a, b)−−− [a+ bc, c] for 0 ≤ a, b, c < 5.

[See W. G. Brown, Canadian J. Math. 19 (1967), 644–648; J. London Math. Soc. 42
(1967), 514–520. Without the edges of the first two kinds, the graph has girth 6 and cor-
responds to a geometric net as in exercise 51, using the orthogonal array in answer 19.]
67. Certain possibilities have been ruled out by Michael Aschbacher in Journal of
Algebra 19 (1971), 538–540.
68. If G has s automorphisms, it has n!/s adjacency matrices, because there are s
permutation matrices P such that P−AP = A.
69. First set IDEG(v) ← 0 for all vertices v. Then perform (31) for all v, also setting
u← TIP(a) and IDEG(u)← IDEG(u) + 1 in the second line of that mini-algorithm.

To do something “for all v” using the SGB format, first set v ← VERTICES(g);
then while v < VERTICES(g) + N(g), do the operation and set v ← v + 1.
70. Step B1 is performed once (but it takes O(n) units of time). Steps (B2, B3, . . . ,
B8) are performed respectively (n+ 1, n, n,m+n,m,m, n) times, each with O(1) cost.
71. Many choices are possible. Here we use 32-bit pointers, all relative to a symbolic
address Pool, which lies in the Data_Segment. The following declarations provide one
way to establish conventions for dealing with basic SGB data structures.

VSIZE IS 32 ;ASIZE IS 20 Node sizes in bytes
ARCS IS 0 ;COLOR IS 8 ;LINK IS 12 Offsets of vertex fields
TIP IS 0 ;NEXT IS 4 Offsets of arc fields
arcs GREG Pool+ARCS ;color GREG Pool+COLOR ;link GREG Pool+LINK
tip GREG Pool+TIP ;next GREG Pool+NEXT
u GREG ;v GREG ;w GREG ;s GREG ;a GREG ;mone GREG -1

AlgB BZ n,Success Exit if the graph is null.
MUL $0,n,VSIZE B1. Initialize.
ADDU v,v0,$0 v ← v0 + n.
SET w,v0 w ← v0.

1H STT mone,color,w COLOR(w)← −1.
ADDU w,w,VSIZE w ← w + 1.
CMP $0,w,v
PBNZ $0,1B Repeat until w = v.

From the Library of Melissa Nuno



ptg999

524 ANSWERS TO EXERCISES 7

0H SUBU w,w,VSIZE w ← w − 1.
3H LDT $0,color,w B3. Color w if necessary.

PBNN $0,2F To B2 if COLOR(w) ≥ 0.
STCO 0,link,w COLOR(w)← 0, LINK(w)← Λ.
SET s,w s← w.

4H SET u,s B4. Stack⇒ u. Set u← s.
LDTU s,link,s s← LINK(s).
LDT $1,color,u
NEG $1,1,$1 $1← 1− COLOR(u).
LDTU a,arcs,u a← ARCS(u).

5H BZ a,8F B5. Done with u? To B8 if a = Λ.
5H LDTU v,tip,a v ← TIP(a).
6H LDT $0,color,v B6. Process v.

CMP $2,$0,$1 (Here the program is slightly clever)
PBZ $2,7F To B7 if COLOR(v) = 1− COLOR(u).
BNN $0,Failure Fail if COLOR(v) = COLOR(u).
STT $1,color,v COLOR(v)← 1− COLOR(u).
STTU s,link,v LINK(v)← s.
SET s,v s← v.

7H LDTU a,next,a B7. Loop on a. Set a← NEXT(a).
PBNZ a,5B To B5 if a ̸= Λ.

8H PBNZ s,4B B8. Stack nonempty? To B4 if s ̸= Λ.
2H CMP $0,w,v0 B2. Done?

PBNZ $0,0B If w ̸= v0, decrease w and go to B3.
Success LOC @ (Successful termination)

72. (a) This condition clearly remains invariant as vertices enter or leave the stack.
(b) Vertex v has been colored but not yet explored, because the neighbors of every

explored vertex have the proper color.
(c) Just before setting s ← v in step B6, set PARENT(v) ← u, where PARENT is

a new utility field. And just before terminating unsuccessfully in that step, do the
following: “Repeatedly output NAME(u) and set u← PARENT(u), until u = PARENT(v);
then output NAME(u) and NAME(v).”

73. K10. (And random graph(10, 100, 0, 1, 1, 0, 0, 0, 0, 0) is J10.)

74. badness has out-degree 22; no other vertices have out-degree > 20.

75. Let the parameters (n1, n2, n3, n4, p, w, o) be respectively (a) (n, 0, 0, 0,−1, 0, 0);
(b) (n, 0, 0, 0, 1, 0, 0); (c) (n, 0, 0, 0, 1, 1, 0); (d) (n, 0, 0, 0,−1, 0, 1); (e) (n, 0, 0, 0, 1, 0, 1);
(f) (n, 0, 0, 0, 1, 1, 1); (g) (m,n, 0, 0, 1, 0, 0); (h) (m,n, 0, 0, 1, 2, 0); (i) (m,n, 0, 0, 1, 3, 0);
(j) (m,n, 0, 0,−1, 0, 0); (k) (m,n, 0, 0, 1, 3, 1); (l) (n, 0, 0, 0, 2, 0, 0); (m) (2,−n, 0, 0,1, 0, 0).

76. Yes, for example from C1 and C2 in answer 75(c). (But no self-loops can occur
when p < 0, because arcs x−−→y = x+ kδ are generated for k = 1, 2, . . . until y is out
of range or y = x.)

77. Suppose x and y are vertices with d(x, y) > 2. Thus x /−−−y; and if v is any other
vertex we must have either v /−−− x or v /−−− y. These facts yield a path of length at
most 3 in G between any two vertices u and v.

78. (a) The number of edges,

n
2

/2, must be an integer. The smallest examples are

K0, K1, P4, C5, and (called the “bull”).

From the Library of Melissa Nuno



ptg999

7 ANSWERS TO EXERCISES 525

(b) If q is any odd number, we have u−−−v if and only if φq(u) /−−−φq(v). Therefore
φq cannot have two fixed points, nor can it contain a 2-cycle.

(c) Such a permutation of V also defines a permutation φ of the edges of Kn,
taking {u, v} →→ φ({u, v}) = {φ(u), φ(v)}, and it’s easy to see that the cycle lengths
of φ are all even. If φ has t cycles, we obtain 2t self-complementary graphs by painting
the edges of each cycle with alternating colors.

(d) In this case φ has a unique fixed point v, and G′ = G\v is self-complementary.
Suppose φ has r cycles in addition to (v); then φ has r cycles involving the edges that
touch vertex v, and there are 2r ways to extend G′ to a graph G.

[References: H. Sachs, Publicationes Mathematicæ 9 (Debrecen, 1962), 270–288;
G. Ringel, Archiv der Mathematik 14 (1963), 354–358.]
79. Solution 1, by H. Sachs, with φ = (1 2 . . . 4k): Let u−−− v when u > v > 0 and
u+ v mod 4 ≤ 1; also 0−−−v when v mod 2 = 0.

Solution 2, with φ = (a1 b1 c1 d1) . . . (ak bk ck dk), where aj = 4j − 3, bj = 4j − 2,
cj = 4j − 1, and dj = 4j: Let 0 −−− bj −−− aj −−− cj −−− dj −−− 0 for 1 ≤ j ≤ k, and
ai−−−aj−−−bi−−−dj−−−ci−−−cj−−−di−−−bj−−−ai, for 1 ≤ i < j ≤ k.
80. (Solution by G. Ringel.) Let φ be as in answer 79, solution 2. Let E0 be the 3k
edges bj−−−aj−−−cj−−−dj for 1 ≤ j ≤ k; let E1 be the 8


k
2


edges between {ai, bi, ci, di}
and {bj , dj} for 1 ≤ i < j ≤ k; let E2 be the 8


k
2


edges between {ai, bi, ci, di} and
{aj , cj} for 1 ≤ i < j ≤ k. In case (a), E0 ∪ E1 gives diameter 2; E0 ∪ E2 gives diam-
eter 3. Case (b) is similar, but we add 2k edges bj−−−0−−−dj to E1, aj−−−0−−−cj to E2.
81. C3⃗, K3⃗, D = , and DT = . (The converse DT of a digraph D
is obtained by reversing the direction of its arcs. There are 16 nonisomorphic simple
digraphs of order 3 without loops, 10 of which are self-converse, including C3⃗ and K3⃗.)
82. (a) True, by definition. (b) True: If every vertex has d neighbors, every edge
u−−−v has d− 1 neighbors u−−−w and d− 1 neighbors w−−−v. (c) True: {ai, bj} has
m+ n− 2 neighbors, for 0 ≤ i < m and 0 ≤ j < n. (d) False: L(K1,1,2) has 5 vertices
and 8 edges. (e) True. (f) True: The only nonadjacent edges are {0, 1} /−−− {2, 3},
{0, 2} /−−− {1, 3}, {0, 3} /−−− {1, 2}. (g) True, for all n > 0. (h) False, unless G has no
isolated vertices.
83. It is the Petersen graph. [A. Kowalewski, Sitzungsberichte der Akademie der
Wissenschaften in Wien, Mathematisch-Nat. Klasse, Abteilung IIa, 126 (1917), 67–90.]
84. Yes: Let φ({au, bv}) = {a(u+v) mod 3, b(u−v) mod 3} for 0 ≤ u, v < 3.
85. Let the vertex degrees be {d1, . . . , dn}. Then G has 1

2 (d1 + · · · + dn) edges, and
L(G) has 1

2 (d1(d1−1)+ · · ·+dn(dn−1)). Thus G and L(G) both have exactly n edges
if and only if (d1−2)2 + · · ·+(dn−2)2 = 0. Consequently exercise 58 gives the answer.
[See V. V. Menon, Canadian Math. Bull. 8 (1965), 7–15.]
86. If G = then G = = L(G).
87. (a) Yes, easily. [In fact, R. L. Brooks has proved that every connected graph with
maximum vertex degree d > 2 is d-colorable, except for the complete graph Kd+1; see
Proc. Cambridge Phil. Soc. 37 (1941), 194–197.]

(b) No. There’s essentially only one way to 3-color the edges of the outer 5-cycle
in Fig. 2(e); this forces a conflict on the inner 5-cycle. [Petersen proved this in 1898.]
88. One cycle doesn’t use the center vertex, and there are (n−1)(n−2) cycles that do
(namely, one for every ordered pair of distinct vertices on the rim). Just n are induced.

From the Library of Melissa Nuno



ptg999

526 ANSWERS TO EXERCISES 7

89. Both sides equal

A O O
O B O
O O C


,

A J J
J B J
J J C


,

A J J
O B J
O O C


,

A O O
J B O
J J C


, respectively.

90. K4 and K4; K1,1,2 and K1,1,2; K2,2 = C4 and K2,2; K1,3 and K1,3; K1 ⊕ K1,2
and its complement; all graphs Kα are cographs by (39). Missing is P4 = P4. (All
connected subgraphs of a cograph have diameter ≤ 2; W5 is a cograph, but not W6.)
91. (a) ; (b) ; (c) ; (d) ; (e) ; (f) ; (g) . (In general we
have K2 △H = (K2 H) ∪ (K2 ⊗H), and K2 ◦H = H−−−H. Thus the coincidences
K2 △H = K2 H and K2 ◦H = K2×H occur if and only if H is a complete graph.)

Mnemonics: Our notations G H and G×H nicely match diagrams (a) and (c),
as suggested by J. Nešetřil, Lecture Notes in Comp. Sci. 118 (1981), 94–102. His
analogous recommendation to write G × H for (b) is also tempting; but it wasn’t
adopted here, because hundreds of authors have used G×H to denote G H.
92. (a) ; (b) ; (c) ; (d) ; (e) .
93. Km×Kn = Km ◦Kn

∼= Kmn.
94. No; they’re induced subgraphs of K26 K26 K26 K26 K26.
95. (a) du+dv. (b) dudv. (c) dudv+du+dv. (d) du(n−dv)+(m−du)dv. (e) dun+dv.
96. (a) A B = A⊗I+I⊗B. (b) A×B = A B+A⊗B. (c) A△B = A⊗J+J⊗B−2A⊗B.
(d) A◦B = A⊗J+I⊗B. (Formulas (a), (b), and (d) define graph products of arbitrary
digraphs and multigraphs. Formula (c) is valid in general for simple digraphs; but
negative entries can occur when A and B contain values > 1.)

Historical notes: The direct product of matrices is often called the Kronecker prod-
uct, because K. Hensel [Crelle 105 (1889), 329–344] said he had heard it in Kronecker’s
lectures; however, Kronecker never actually published anything about it. Its first known
appearance was in a paper by J. G. Zehfuss [Zeitschrift für Math. und Physik 3 (1858),
298–301], who proved that det(A⊗ B) = (detA)n(detB)m when m = m′ and n = n′.
The basic formulas (A ⊗ B)T = AT ⊗ BT , (A ⊗ B)(A′ ⊗ B′) = AA′ ⊗ BB′, and
(A⊗B)−1 = A−1 ⊗B−1 are due to A. Hurwitz [Math. Annalen 45 (1894), 381–404].
97. Operations on adjacency matrices prove that (G⊕G′) H = (G H)⊕ (G′ H);
(G ⊕ G′)×H = (G×H) ⊕ (G′ ×H); (G ⊕ G′) ◦ H = (G ◦ H) ⊕ (G′ ◦ H). Since
G H ∼= H G, G⊗H ∼= H ⊗G, and G×H ∼= H×G, we also have right-distributive
laws G (H ⊕ H ′) ∼= (G H) ⊕ (G H ′); G ⊗ (H ⊕ H ′) ∼= (G ⊗ H) ⊕ (G ⊗ H ′);
G×(H⊕H ′) ∼= (G×H)⊕ (G×H ′). The lexicographic product satisfies G ◦H = G◦H;
also Km◦H = H−−−· · ·−−−H, hence Km◦Kn = Kn,...,n. Furthermore G◦Kn = G×Kn;
Km Kn = Km ⊗Kn = L(Km,n).
98. There are kl components (because of the distributive laws in the previous exercise,
and the facts that G H and G×H are connected when G and H are connected).
99. Every path from (u, v) to (u′, v′) in G H must use at least dG(u, u′) “G-steps”
and at least dH(v, v′) “H-steps”; and that minimum is achievable. Similar reasoning
shows that dG×H((u, v), (u′, v′)) = max(dG(u, u′), dH(v, v′)).
100. If G and H are connected, and if each of them has at least two vertices, G ⊗H
is disconnected if and only if G and H are bipartite. The “if” part is easy; conversely,
if there’s an odd cycle in G, we can get from (u, v) to (u′, v′) as follows: First go to
(u′′, v′), where u′′ is any vertex of G that happens to be expedient. Then walk an even
number of steps in G from u′′ to u′, while alternating in H between v′ and one of its
neighbors. [P. M. Weichsel, Proc. Amer. Math. Soc. 13 (1962), 47–52.]

From the Library of Melissa Nuno



ptg999

7 ANSWERS TO EXERCISES 527

101. Choose vertices u and v with maximum degree. Then du + dv = dudv by
exercise 95; so either G = H = K1, or du = dv = 2. In the latter case, G = Pm
or Cm, and H = Pn or Cn. But G H is connected, so G or H must be nonbipartite,
say G. Then G H is nonbipartite, so H must also be nonbipartite; thus G = Cm
and H = Cn, with m and n both odd. The shortest odd cycle in Cm Cn has
length min(m,n); in Cm ⊗ Cn it has length max(m,n); hence m = n. Conversely,
if n ≥ 3 is odd, we have Cn Cn ∼= Cn ⊗ Cn, under the isomorphism that takes
(u, v) →→ ((u + v) mod n, (u − v) mod n) for 0 ≤ u, v < n. [D. J. Miller, Canadian J.
Math. 20 (1968), 1511–1521.]
102. Pm×Pn. (It is planar only when min(m,n) ≤ 2 or m = n = 3.)
103. 1 2 3 4 5 7

2 1 3 4 6 8
3 1 2 5 6 8
4 1 2 5 6
5 3 4 1 7
6 2 3 4
7 5 1
8 2 3

1 2 3 4 5 6 7 8 9
2 1 3 4 6 8 9
3 1 2 5 6 8 9
4 1 2 5 7
5 3 4 1 7
6 2 3 1 7
7 4 5 6 1
8 2 3 1 9
9 8 2 3 1

104. Edges must be created in a somewhat circuitous order, to maintain the tableau
shape. Variables i and r delimit the available rows in column t. For example, the
second part of exercise 103 begins with i← 1, t← 8, r ← 1; then 9−−−1, i← 2, t← 6,
r ← 3; then 9−−−3, 9−−−2, i← 4, t← 4, r ← 8; then 9−−−8.
105. Notice that dk ≥ k if and only if ck ≥ k. When dk ≥ k we have

c1 + · · ·+ ck = k2 + min(k, dk+1) + min(k, dk+2) + · · ·+ min(k, dn);

therefore the condition d1 + · · ·+ dk ≤ c1 + · · ·+ ck − k is equivalent to

d1 + · · ·+ dk ≤ f(k), where f(k) = k(k−1) + min(k, dk+1) + · · ·+ min(k, dn). (∗)

If k ≥ s we have f(k + 1) − f(k) = 2k − dk+1 ≥ dk+1; hence (∗) holds for 1 ≤ k ≤ n
if and only if it holds for 1 ≤ k ≤ s. Condition (∗) was discovered by P. Erdős and
T. Gallai [Matematikai Lapok 11 (1960), 264–274]. It is obviously necessary, if we
consider the edges between {1, . . . , k} and {k+1, . . . , n}.

Let ak = d1 + · · ·+ dk − c1 − · · · − ck + k, and suppose that we reach ak > 0 in
step H2 for some k ≤ s. Let Aj , Cj , Dj , N , and S be the numbers that correspond to
aj , cj , dj , n, and s before steps H3 and H4; thus N = n + 1, Dj = dj + (0 or 1), etc.
We want to prove that AK > 0 for some K ≤ S.

Steps H3 and H4 have removed row N and the bottommost remaining q cells
in column t, for some t ≥ S and q > 0, together with the rightmost cells in rows 1
through p. If p > 0 we have Ct+1 = p. Let r = DN = p + q, and u = Ct. Notice that
Dj = t for p < j ≤ u, and Cj = N for 1 ≤ j ≤ r; also Aj = aj for 1 ≤ j ≤ p.

If k is minimal we have 1 ≤ ak ≤ dk − ck + 1, hence ck ≤ dk. If Dk > t then
k ≤ p and Ak = ak. If Dk < t it follows that Ak = ak + r −min(k, r) ≥ ak, because
k ≤ Dk. Thus we may assume that Dk = t.

Suppose t > S; hence u ≤ S. For k < j ≤ u we have dj ≥ Dj − 1 = t − 1 ≥
dk − 1 ≥ ck − 1 ≥ cj − 1. Thus au ≥ ak > 0. But Au = au, because r ≤ u ≤ S < t.
We may therefore assume that t = S. Suppose k < t; then ck = dk = t, because
S ≤ ck ≤ dk ≤ t. But r = t leads to ck = N − 1 and a contradiction; and r < t leads
to u = t, from which it follows that At > At−1 = at−1 − 1 ≥ 0.

From the Library of Melissa Nuno



ptg999

528 ANSWERS TO EXERCISES 7

(Deep breath.) OK; we’ve reduced the problem to cases with k = t = S. Hence
t = s ≤ ct ≤ dt ≤ Dt = t, and we have at = at−1 + 1. Consequently at−1 = 0.

In fact we can show by induction on t− j that aj = 0 for p ≤ j < t: If aj+1 = 0
then 0 ≥ aj = cj+1 − t− 1 ≥ q − 1 ≥ 0, because cj+1 ≥ t+ q when p ≤ j < t− 1.

If p < t−1, this argument proves that q = 1 and cr = N−1 = t+1. We conclude
that, regardless of p, we must have q = 1, N = t+ 2, Dj = t+ 1 for 1 ≤ j ≤ p, Dj = t
for p < j ≤ t + 1, and DN = p + 1. Algorithm H does actually change this “good”
sequence into a “bad” one; but D1 + · · ·+DN = 2p+ t(t+ 1) + 1 is odd.
106. False in the trivial cases when d ≤ 1 and n ≥ d+ 2. Otherwise true: In fact, the
first n− 1 edges generated in step H4 contain no cycles, so they form a spanning tree.
107. The permutation φ of exercise 78 takes a vertex of degree d into a vertex of degree
n−1−d. And φ2 is an automorphism that pairs up two vertices of equal degree, except
for a possible fixed point of degree (n− 1)/2.

(Conversely, a somewhat intricate extension of Algorithm H will construct a self-
complementary graph from every graphical sequence that satisfies these conditions,
provided that d(n−1)/2 = (n − 1)/2 when n is odd. See C. R. J. Clapham and D. J.
Kleitman, J. Combinatorial Theory B20 (1976), 67–74.)
108. We may assume that d+

1 ≥ · · · ≥ d+
n ; the in-degrees d−k need not be in any

particular order. Apply Algorithm H to the sequence d1 . . . dn = d+
1 . . . d

+
n , but with

the following changes: Step H2 becomes “[Done?] Terminate successfully if d1 = n = 0;
terminate unsuccessfully if d1 > n.” In step H3, change “j ← dn” to “j ← d−n ,” and
terminate unsuccessfully if j > c1. In step H4, change “Set . . . and set” to “If j > 0,
set m ← ct, create the arc m−−→n, and set”; and set n ← n − 1 just before returning
to H2. An argument like Lemma M and Corollary H justifies this approach.

(Exercise 7.2.1.4–57 proves that such digraphs exist if and only if d−1 + · · ·+d−n =
d+

1 + · · · + d+
n and d−1 . . . d

−
n = {d′1, . . . , d′n}, where d′1 ≥ · · · ≥ d′n and d′1 . . . d

′
n is

majorized by the conjugate partition c1 . . . cn = (d+
1 . . . d

+
n )T . The variant where loops

v−−→v are forbidden is harder; see D. R. Fulkerson, Pacific J. Math. 10 (1960), 831–836.)
109. It’s the same as exercise 108, if we put d+

k = dk [k≤m] and d−k = dk [k >m].
110. There are p vertices of degree d = d1 and q vertices of degree d−1, where p+q = n.

Case 1, d = 2k + 1. Make u −−− v whenever (u − v) mod n ∈ {2, 3, . . . , k + 1,
n− k − 1, . . . , n− 3, n− 2}; also add the p/2 edges 1−−−2, 3−−−4, . . . , (p−1)−−−p.

Case 2, d = 2k > 0. Make u−−− v whenever (u − v) mod n ∈ {2, 3, . . . , k, n − k,
. . . , n − 3, n − 2}; also add the edges 1−−− 2, . . . , (q−1)−−− q, as well as the path or
cycle (q = 0? n: q)−−− (q+1)−−−· · ·−−− (n−1)−−−n. [D. L. Wang and D. J. Kleitman,
in Networks 3 (1973), 225–239, have proved that such graphs are highly connected.]
111. Suppose N = n+n′ and V ′ = {n+ 1, . . . , N}. We want to construct ek = d− dk
edges between k and V ′, and additional edges within V ′, so that each vertex of V ′ has
degree d. Let s = e1 + · · ·+ en. This task is possible only if (i) n′ ≥ max(e1, . . . , en);
(ii) n′d ≥ s; (iii) n′d ≤ s+ n′(n′ − 1); and (iv) (n+ n′)d is even.

Such edges do exist whenever n′ satisfies (i)–(iv): First, s suitable edges be-
tween V and V ′ can be created by cyclically choosing endpoints (n+1, n+2, . . . , n+n′,
n+1, . . . ), because of (i). This process assigns either ⌊s/n′⌋ or ⌈s/n′⌉ edges to each
vertex of V ′; we have ⌈s/n′⌉ ≤ d by (ii), and d − ⌊s/n′⌋ ≤ n′ − 1 by (iii). Therefore
the additional edges needed inside V ′ are constructible by exercise 110 and (iv).

The choice n′ = n always works. Conversely, if G = Kn(V ) \ {1−−−2}, condition
(iii) requires n′ ≥ n when n ≥ 4. [P. Erdös and P. Kelly, AMM 70 (1963), 1074–1075.]

From the Library of Melissa Nuno



ptg999

7 ANSWERS TO EXERCISES 529

112. The uniquely best triangle in the miles data is
Saint Louis, MO

748
−−− Toronto, ON

746
−−− Winston-Salem, NC

748
−−− Saint Louis, MO.

113. By Murphy’s Law, it has n rows and m columns; so it’s n×m, not m× n.
114. A loop in a multigraph is an edge {a, a} with repeated vertices, and a multigraph
is a 2-uniform hypergraph. Thus we should allow the incidence matrix of a general
hypergraph to have entries greater than 1 when an edge contains a vertex more than
once. (A pedant would probably call this a “multihypergraph.”) With these consid-
erations in mind, the incidence matrix and bipartite multigraph corresponding to (26)
are  210000

011100
001122


; .

115. The element in row e and column f of BTB is

v bvebvf ; so BTB is 2I plus the

adjacency matrix of L(G). Similarly, BBT is D plus the adjacency matrix of G, where
D is the diagonal matrix with dvv = degree of v. (See exercises 2.3.4.2–18, 19, and 20.)

116. K
(r)
m,n = K

(r)
m ⊕K(r)

n , generalizing (38), for all r ≥ 1.
117. The nonisomorphic multisets of singleton edges for m = 4 and V = {0, 1, 2} are
{{0}, {0}, {0}, {0}}, {{0}, {0}, {0}, {1}}, {{0}, {0}, {1}, {1}}, and {{0}, {0}, {1}, {2}}.
The answer in general is the number of partitions of m into at most n parts, namelym+n
n

, using the notation explained in Section 7.2.1.4. (Of course, there’s little reason to
think of partitions as 1-uniform hypergraphs, except when answering strange exercises.)
118. Let d be the sum of the vertex degrees. The corresponding bipartite graph is
a forest with m + n vertices, d edges, and p components. Hence d = m + n − p, by
Theorem 2.3.4.1A.
119. Then there’s an additional edge, containing all seven vertices.
120. We could say that (hyper)arcs are arbitrary sequences of vertices, or sequences
of distinct vertices. But most authors seem to define hyperarcs to be A−−→v, where A
is an unordered set of vertices. When the best definition is found, it will probably be
the one that has the most important practical applications.
121. χ(H) = |F | − α(I(H)T ) is the size of a minimum cover of V by sets of F .
122. (a) One can verify that there are just seven 3-element covers, namely the vertices
of an edge; so there are seven 4-element independent sets, namely the complements of
an edge. We can’t two-color the hypergraph, because one color would need to be used
4 times and the other three vertices would be an edge. (Hypergraph (56) is essentially
the projective plane with seven points and seven lines.)

(b) Since we’re dualizing, let’s call the vertices and edges of the Petersen graph
“points” and “lines”; then the vertices and edges of the dual are lines and points,
respectively. Color red the five lines that join an outer point to an inner point. The
other ten lines are independent (they don’t contain all three of the lines touching any
point); so they can be colored green. No set of eleven lines can be independent, because
no four lines can touch all ten points. (Thus the Petersen dual is a bipartite hypergraph,
in spite of the fact that it contains cycles of length 5.)
123. They correspond to n× n latin squares, whose entries are the vertex colors.
124. Four colors easily suffice. If it were 3-colorable, there must be four vertices of
each color, since no five vertices are independent. Then two opposite corners must have
the same color, and a contradiction arises quickly.

From the Library of Melissa Nuno



ptg999

530 ANSWERS TO EXERCISES 7

125. The Chvátal graph is the smallest such graph with g = 4. G. Brinkmann found
the smallest with g = 5: It has 21 vertices aj , bj , cj for 0 ≤ j < 7, with edges
aj−−−aj+2, aj−−−bj , aj−−−bj+1, bj−−−cj , bj−−−cj+2, cj−−−cj+3 and subscripts mod 7.
M. Meringer showed that there must be at least 35 vertices if g > 5. B. Grünbaum
conjectured that g can be arbitrarily large; but no further constructions are known.
[See AMM 77 (1970), 1088–1092; Graph Theory Notes of New York 32 (1997), 40–41.]
126. When m and n are even, both Cm and Cn are bipartite, and 4-coloring is easy.
Otherwise a 4-coloring is impossible. When m = n = 3, a 9-coloring is optimum by
exercise 93. When m = 3 and n = 4 or 5, at most two vertices are independent; it’s
easy to find an optimum 6- or 8-coloring. Otherwise we obtain a 5-coloring by painting
vertex (j, k) with (aj + 2bk) mod 5, where periodic sequences ⟨aj⟩ and ⟨bk⟩ exist with
period lengths m and n, respectively, such that aj − aj+1 ≡ ±1 and bk − bk+1 ≡ ±1
for all j and k. [K. Vesztergombi, Acta Cybernetica 4 (1979), 207–212.]
127. (a) The result is true when n = 1. Otherwise let H = G\v, where v is any vertex.
Then H = G\v, and we have χ(H)+χ(H) ≤ n by induction. Clearly χ(G) ≤ χ(H)+1
and χ(G) ≤ χ(H) + 1; so there’s no problem unless equality holds in all three cases.
But that can’t happen; it implies that χ(H) ≤ d and χ(H) ≤ n− 1− d, where d is the
degree of v in G. [E. A. Nordhaus and J. W. Gaddum, AMM 63 (1956), 175–177.]

To get equality, let G = Ka⊕Kb, where ab > 0 and a+b = n. Then we have G =
Ka−−−Kb, χ(G) = a, and χ(G) = b+ 1. [All graphs for which equality holds have been
found by H.-J. Finck, Wiss. Zeit. der Tech. Hochschule Ilmenau 12 (1966), 243–246.]

(b) A k-coloring of G has at least ⌈n/k⌉ vertices of some color; those vertices form
a clique in G. Hence χ(G)χ(G) ≥ χ(G)⌈n/χ(G)⌉ ≥ n. Equality holds when G = Kn.

(From (a) and (b) we deduce that χ(G)+χ(G) ≥ 2
√
n and χ(G)χ(G) ≤ 1

4 (n+1)2.)
128. χ(G H) = max(χ(G), χ(H)). This many colors is clearly necessary. And if the
functions a(u) and b(v) color G and H with the colors {0, 1, . . . , k − 1}, we can color
G H with c(u, v) = (a(u) + b(v)) mod k.
129. A complete row or column (16 cases); a complete diagonal of length 4 or more
(18 cases); a 5-cell pattern {(x, y), (x−a, y−a), (x−a, y+a), (x+a, y−a), (x+a, y+a)}
for a ∈ {1, 2, 3} (36 + 16 + 4 cases); a 5-cell pattern {(x, y), (x−a, y), (x+a, y), (x, y−a),
(x, y+a)} for a ∈ {1, 2, 3} (36 + 16 + 4 cases); a pattern containing four of those
five cells, when the fifth lies off the board (24 + 32 + 24 cases); or a 4-cell pattern
{(x, y), (x+a, y), (x, y+a), (x+a, y+a)} for a ∈ {1, 3, 5, 7} (49 + 25 + 9 + 1 cases).
Altogether 310 maximal cliques, with respectively (168, 116, 4, 4, 18) of size (4, 5, 6, 7, 8).
130. If graph G has p maximal cliques and graph H has q, then the join G−−−H has
pq, because the cliques of G−−−H are simply the unions of cliques from G and H.
Furthermore, the empty graph Kn has n maximal cliques (namely its singleton sets).

Thus the complete k-partite graph with part sizes {n1, . . . , nk}, being the join of
empty graphs of those sizes, has n1 . . . nk maximal cliques.
131. Assume that n > 1. In a complete k-partite graph, the number n1 . . . nk is maxi-
mized when each part has size 3, except perhaps for one or two parts of size 2. (See exer-
cise 7.2.1.4–68(b).) So we must prove thatN(n) cannot be larger than this in any graph.

Let m(v) be the number of maximal cliques that contain vertex v. If u /−−−v and
m(u) ≤ m(v), construct the graph G′ that is like G except that u is now adjacent to
all the neighbors of v instead of to its former neighbors. Every maximal clique U in
either graph belongs to one of three classes:

i) u ∈ U ; there are m(u) of these in G and m(v) of them in G′.

From the Library of Melissa Nuno



ptg999

7 ANSWERS TO EXERCISES 531

ii) v ∈ U ; there are m(v) of these in G and also in G′.
iii) u /∈ U and v /∈ U ; such maximal cliques in G are also maximal in G′.

Therefore G′ has at least as many maximal cliques as G. And we can obtain a complete
k-partite graph by appropriately repeating the process.

[This argument, due to Paul Erdős, was presented by J. W. Moon and L. Moser
in Israel J. Math. 3 (1965), 23–25.]

132. The strong product of cliques in G and H is a clique in G×H, by exercise 93; hence
ω(G×H) ≥ ω(G)ω(H) = χ(G)χ(H). On the other hand, colorings a(u) and b(v) of G
and H lead to the coloring c(u, v) = (a(u), b(v)) of G×H; hence χ(G×H) ≤ χ(G)χ(H).
And ω(G×H) ≤ χ(G×H).

133. (a) 24; (b) 60; (c) 3; (d) 6; (e) 6; (f) 4; (g) 5; (h) 4; (i) K2×C12; (j) 18; (k) 12.
(l) Yes, of degree 5. (m) No. [In fact, Markus Chimani used branch-and-cut methods
in 2009 to prove that it cannot be drawn with fewer than 12 crossings.] (n) Yes; in fact,
it is 4-connected (see Section 7.4.1). (o) Yes; we consider every graph to be directed,
with two arcs for each edge. (p) Of course not. (q) Yes, easily.

[The musical graph represents simple modulations between key signatures. It
appears on page 73 of Graphs by R. J. Wilson and J. J. Watkins (1990).]

134. By rotating and/or swapping the inner and outer vertices, we can find an auto-
morphism that takes any vertex into C. If C is fixed, we can interchange the inner and
outer vertices of any subset of the remaining 11 pairs, and/or do a left-right reflection.
Therefore there are 24× 211 × 2 = 98,304 automorphisms altogether.

135. Let ω = e2πi/12, and define the matrices Q = (qij), S = (sij), where qij =
[j= (i+ 1) mod 12] and sij = ωij , for 0 ≤ i, j < 12. By exercise 96(b), the adjacency
matrix of the musical graph K2×C12 is A =

1 1
1 1

⊗(I+Q+Q−)−I. Let T be the matrix1 1

1 −1

⊗ S; then T−AT is a diagonal matrix D whose first 12 entries are 1 + 4 cos jπ6

for 0 ≤ j < 12, and whose other 12 entries are −1. Therefore A2m = TD2mT−, and it
follows that the number of 2m-step walks from C to (C,G,D,A,E,B,F♯) respectively is

Cm = 1
24 (25m + 2(13 + 4

√
3)m + 32m+1 + 2(13− 4

√
3)m + 16);

Gm = 1
24 (25m +

√
3(13 + 4

√
3)m −

√
3(13− 4

√
3)m − 1);

Dm = 1
24 (25m + (13 + 4

√
3)m + (13− 4

√
3)m − 3);

Am = 1
24 (25m − 32m+1 + 2);

Em = 1
24 (25m − (13 + 4

√
3)m − (13− 4

√
3)m + 1);

Bm = 1
24 (25m −

√
3(13 + 4

√
3)m +

√
3(13− 4

√
3)m − 1);

F♯m = 1
24 (25m − 2(13 + 4

√
3)m + 32m+1 − 2(13− 4

√
3)m);

also am= Cm−1, dm=Fm=em=Gm, etc. In particular, (C6,G6,D6,A6,E6,B6,F♯6)=
(15462617, 14689116, 12784356, 10106096, 7560696, 5655936, 5015296), so the desired
probability is 15462617/512 ≈ 6.33%. As m→∞, the probabilities are all 1

24 +O(0.8m).

136. No. Only two Cayley graphs of order 10 are cubic, namely K2 C5 (whose vertices
can be written {e, α, α2, α3, α4, β, βα, βα2, βα3, βα4} where α5 = β2 = (αβ)2 = e) and
the graph with vertices {0, 1, . . . , 9} and arcs v → (v±1) mod 10, v → (v+5) mod 10.
[See D. A. Holton and J. Sheehan, The Petersen Graph (1993), exercise 9.10. Inciden-
tally, the SGB graphs raman(p, q, t, 0) are Cayley graphs.]

From the Library of Melissa Nuno



ptg999

532 ANSWERS TO EXERCISES 7

137. Let [x, y] denote the label of (x, y); we want [x, y] = [x+ a, y + b] = [x+ c, y + d]
for all x and y. If A is the matrix (a

c
b
d
), the operation of adding t times the bottom

row of A to the top row changes A to the matrix A′ = ( 1
0
t
1 )A = (a′

c′
b′

d′ ), where
a′ = a + tc, b′ = b + td, c′ = c, d′ = d. The new condition [x, y] = [x + a′, y + b′] =
[x + c′, y + d′] is equivalent to the old; and gcd(a′, b′, c′, d′) = gcd(a, b, c, d). Similarly
we can premultiply A by ( 1

t
0
1 ) without really changing the problem.

We can also operate on columns, replacing A by A′′ = A( 1
0
t
1 ) = (a′′

c′′
b′′

d′′ ), where
a′′ = a, b′′ = ta+b, c′′ = c, d′′ = tc+d. This operation does alter the problem, but only
slightly: If we find a labeling that satisfies [[x, y]] = [[x+ a′′, y + b′′]] = [[x+ c′′, y + d′′]]
for all x and y, then we’ll have [x, y] = [x+a, y+b] = [x+c, x+d] if [x, y] = [[x, y+ tx]].
Similarly we can postmultiply A by ( 1

t
0
1 ); the problem remains almost the same.

A series of such row and column operations will reduce A to the simple form
UAV = ( 1

0
0
n

), where U and V are integer matrices with detU = detV = 1. Further-
more, if we have V = (α

γ
β
δ
), a labeling for the reduced problem that satisfies the simple

conditions [[x, y]] = [[x+1, y]] = [[x, y+n]] will provide a solution to the original labeling
problem if we define [x, y] = [[αx+ γy, βx+ δy]].

Finally, the reduced labeling problem is easy: We let [[x, y]] = y mod n. Thus the
desired answer is to set p = β, q = δ.
138. Proceeding as before, but with a k × k matrix A, row and column operations
will reduce the problem to a diagonal matrix UAV . The diagonal entries (d1, . . . , dk)
are characterized by the condition that d1 . . . dj is the greatest common divisor of
the determinants of all j × j submatrices of A. [This is “Smith normal form”; see
H. J. S. Smith, Philosophical Transactions 151 (1861), 293–326, §14.] If the labeling
[[x]] satisfies the reduced problem, the original problem is satisfied by [x] = [[xV ]]. The
number of elements in the generalized torus is n = detA = d1 . . . dk.

The reduced problem has a simple solution as before if d1 = · · · = dk−1 = 1. But
in general the reduced labeling will be an r-dimensional ordinary torus of dimensions
(dk−r+1, . . . , dk), where dk−r+1 > dk−r = 1. (Here d0 = 1; we might have r = k.)

In the requested example, we find d1 = 1, d2 = 2, d3 = 10, n = 20; indeed,

UAV =

 1 −2 0
0 1 −1
−1 −1 4

 3 1 1
1 3 1
1 1 3

 1 5 6
0 1 1
0 0 1

 =

 1 0 0
0 2 0
0 0 10

 .

Each point (x, y, z) now receives a two-dimensional label (u, v) = ((5x + y) mod 2,
(6x+ y+ z) mod 10). The six neighbors of (u, v) are ((u± 1) mod 2, v), ((u± 1) mod 2,
(v±1) mod 10), (u, (v±1) mod 10). It’s a multigraph, since the first two neighbors are
identical; but it’s not the same as the multigraph C2×C10, which has degree 8.

[Generalized toruses are essentially the Cayley graphs of Abelian groups; see
exercise 136. They have been proposed as convenient interconnection networks, in
which case it is desirable to minimize the diameter when k and n are given. See C. K.
Wong and D. Coppersmith, JACM 21 (1974), 392–402; C. M. Fiduccia, R. W. Forcade,
and J. S. Zito, SIAM J. Discrete Math. 11 (1998), 157–167.]
139. (This exercise helps clarify the distinction between labeled graphs G, in which the
vertices have definite names, and unlabeled graphs H such as those in Fig. 2.) If NH is
the number of labeled graphs on {1, 2, . . . , h} that are isomorphic to H, and if U is any
h-element subset of V , the probability that G | U is isomorphic to H is NH/2h(h−1)/2.
Therefore the answer is


n
h


NH/2h(h−1)/2. We need only figure out the value of NH ,

which is: (a) 1; (b) h!/2; (c) (h− 1)!/2; (d) h!/a, where H has a automorphisms.

From the Library of Melissa Nuno



ptg999

7 ANSWERS TO EXERCISES 533

140. (a) #(K3:Wn) = n−1 and #(P3:Wn) =

n−1

2


for n ≥ 5; also #(K3:W8) = 7.
(b) G is proportional if and only if #(K3:G) = #(K3:G) = 1

8

n
3


and #(P3:G) =
#(P3:G) = 3

8

n
3

. If G has e edges, we have (n−2)e = 3#(K3:G)+2#(P3:G)+#(P3:G),

because every pair of vertices appears in n−2 induced subgraphs. If G has degree
sequence d1 . . . dn, we have d1 + · · ·+dn = 2e,


d1
2


+ · · ·+

dn
2


= 3#(K3:G)+#(P3:G),
and d1(n−1−d1)+· · ·+dn(n−1−dn) = 2#(P3:G)+2#(P3:G). Therefore a proportional
graph satisfies (∗) — unless n = 2. (The exercise should have excluded that case.)

Conversely, if G satisfies (∗) and has the correct #(K3:G), it also has the correct
#(P3:G), #(P3:G), and #(K3:G).

[References: S. Janson and J. Kratochvíl, Random Structures & Algorithms 2
(1991), 209–224. In J. Combinatorial Theory B47 (1989), 125–145, A. D. Barbour,
M. Karoński, and A. Ruciński had shown that the variance of #(H:G) is proportional
to either n2h−2, n2h−3, or n2h−4, where the first case occurs when H does not have
1
2

h
2


edges, and the third case occurs when H is a proportional graph.]
141. Only 8 degree sequences d1 . . . d8 satisfy (∗): 73333333 (1/2), 65433322 (26/64),
64444222 (2/10), 64443331 (8/22), 55543222 (8/20), 55533331 (2/10), 55444321 (26/64),
and 44444440 (1/2). Each degree sequence is shown here with statistics (N1/N), where
N nonisomorphic graphs have that sequence and N1 of them are proportional. The last
three cases are complements of the first three. No graph of order 8 is both proportional
and self-complementary. Maximally symmetric examples of the first five cases are W8,

, , , and .

142. The hint follows as in answer 140; (n− 3)#(K3:G) and (n− 3)#(P3:G) can also
be expressed in terms of four-vertex counts. Furthermore, a graph with e edges has
e
2


= #(P3 ⊆ G)+#(K2⊕K2 ⊆ G), because any two edges form either P3 or K2⊕K2;
in this formula, #(P3 ⊆ G) counts not-necessarily-induced subgraphs.

We have #(P3 ⊆ G) = #(P3:G) + 3#(K3:G), and a similar formula expresses
#(K2 ⊕K2 ⊆ G) in terms of induced counts. Thus an extraproportional graph must
be proportional and satisfy e = 1

2

n
2

, #(P3 ⊆ G) = 3

4

n
3

, #(K2 ⊕K2 ⊆ G) = 3

4

n
4

.

But these values contradict the formula for

e
2

.

143. Consider the graph whose vertices are the rows of A, and whose edges u −−− v
signify that rows u and v agree except in one column, j. Label such an edge j.

If the graph contains a cycle, delete any edge of the cycle, and repeat the process
until no cycles remain. Notice that the label on every deleted edge appears elsewhere in
its cycle; hence the deletions don’t affect the set of edge labels. But we’re left with fewer
than m ≤ n edges, by Theorem 2.3.4.1A; so there are fewer than n different labels.
[See J. A. Bondy, J. Combinatorial Theory B12 (1972), 201–202.]
144. Let G be the graph on vertices {1, . . . ,m}, with edges i −−− j if and only if
∗ ≠ xil ̸= xjl ̸= ∗ for some l. This graph is k-colorable if and only if there is a completion
with at most k distinct rows. Conversely, if G is a graph on vertices {1, . . . , n}, with
adjacency matrix A, the n × n matrix X = A + ∗(J − I − A) has the property that
i−−− j if and only if ∗ ̸= xil ̸= xjl ̸= ∗ for some l. [See M. Sauerhoff and I. Wegener,
IEEE Trans. CAD-15 (1996), 1435–1437.]

From the Library of Melissa Nuno



ptg999

534 ANSWERS TO EXERCISES 7

145. Set c← 0 and repeat the following operations for 1 ≤ j ≤ n: If c = 0, set x← aj
and c ← 1; otherwise if x = aj , set c ← c + 1; otherwise set c ← c − 1. Then x is
the answer. The idea is to keep track of a possible majority element x, which occurs c
times in nondiscarded elements; we discard aj and one x whenever finding x ̸= aj . [See
Automated Reasoning (Kluwer, 1991), 105–117. Extensions to find all elements that
occur more than n/k times, in O(n log k) steps, have been discussed by J. Misra and
D. Gries, Science of Computer Programming 2 (1982), 143–152. See also the analysis
by Alonso and Reingold, Information Processing Letters 113 (2013), 495–497.]

SECTION 7.1.1
1. (Solution by C. Sartena.) He was describing the implication x ⇒ y, with “it”

standing respectively for y, x, x, y, y, x. (Other solutions are possible.)
2. The Earth operation corresponding to the Pincusian x ◦ y is x̄ ◦ ȳ; its truth table

is therefore the reverse of the complement of the truth table for ◦. Hence the respective
answers are ⊤, ∨, ⊂, , ⊃, , ≡, ∧, ∧, ⊕, , ⊃, , ⊂, ∨, ⊥. (Any identity involving the
16 operations of Table 1 implies a corresponding dual identity obtained by substituting
the Pincusian equivalents. For example, each of De Morgan’s laws (11) and (12) is the
dual of the other, as are the identities (3), (4) relating ≡ and ⊕. In this sense ≡ can
be considered to be just as useful as its dual, ⊕.)

3. (a) ∨; (b) ∧; (c) ; (d) ≡. [Many formulas actually work out better if we use −1
for truth and +1 for falsehood, even though this convention seems a bit immoral; then
x · y corresponds to ⊕. Notice that ⟨xyz⟩ = sign(x+ y + z), with either convention.]

4. [Trans. Amer. Math. Soc. 14 (1913), 481–488.] (a) Start with the truth tables for
and ; then compute truth table α ∧ β bitwise from each known pair of truth tables

α and β, generating the results in order of the length of each formula and writing down
a shortest formula that leads to each new 4-bit table:

⊥ : (x ∧ (x ∧ x)) ∧ (x ∧ (x ∧ x))
∧ : (x ∧ y) ∧ (x ∧ y)
⊃ : (x ∧ (x ∧ y)) ∧ (x ∧ (x ∧ y))

: x
⊂ : (y ∧ (x ∧ x)) ∧ (y ∧ (x ∧ x))

: y
⊕ : (y ∧ (x ∧ x)) ∧ (x ∧ (x ∧ y))
∨ : (y ∧ y) ∧ (x ∧ x)

∨ : (x ∧ (x ∧ x)) ∧ ((y ∧ y) ∧ (x ∧ x))
≡ : (x ∧ y) ∧ ((y ∧ y) ∧ (x ∧ x))

: y ∧ y
⊂ : y ∧ (x ∧ x)

: x ∧ x
⊃ : x ∧ (x ∧ y)
∧ : x ∧ y
⊤ : x ∧ (x ∧ x)

(b) In this case we start with four tables ⊥, ⊤, , , and we prefer formulas with fewer
occurrences of variables whenever there’s a choice between formulas of a given length:

⊥ : 0
∧ : (x ∧ y) ∧ 1
⊃ : ((y ∧ 1) ∧ x) ∧ 1

: x
⊂ : (y ∧ (x ∧ 1)) ∧ 1

: y
⊕ : (y ∧ (x ∧ 1)) ∧ ((y ∧ 1) ∧ x)
∨ : (y ∧ 1) ∧ (x ∧ 1)

∨ : 1 ∧ ((y ∧ 1) ∧ (x ∧ 1))
≡ : (x ∧ y) ∧ ((y ∧ 1) ∧ (x ∧ 1))

: y ∧ 1
⊂ : y ∧ (x ∧ 1)

: x ∧ 1
⊃ : (y ∧ 1) ∧ x
∧ : x ∧ y
⊤ : 1

From the Library of Melissa Nuno



ptg999

7.1.1 ANSWERS TO EXERCISES 535

5. (a) ⊥: x⊂x; ∧: (x⊂ y)⊂ y; ⊃: y⊂x; : x; ⊂: x⊂ y; : y; the other 10
cannot be expressed. (b) With constants, however, all 16 are possible:

⊥ : 0
∧ : (y⊂ 1)⊂x
⊃ : y⊂x

: x
⊂ : x⊂ y

: y
⊕ : ((y⊂x)⊂ ((x⊂ y)⊂ 1))⊂ 1
∨ : (y⊂ (x⊂ 1))⊂ 1

∨ : y⊂ (x⊂ 1)
≡ : (y⊂x)⊂ ((x⊂ y)⊂ 1)

: y⊂ 1
⊂ : (x⊂ y)⊂ 1

: x⊂ 1
⊃ : (y⊂x)⊂ 1
∧ : ((y⊂ 1)⊂x)⊂ 1
⊤ : 1

[B. A. Bernstein, University of California Publications in Mathematics 1 (1914), 87–96.]
6. (a) ⊥, ∧, , , ⊕, ∨, ≡, ⊤. (b) ⊥, , , ⊕, ≡, ⊤. [Notice that all of these operators

are associative. In fact, the stated identity implies the associative law in general: First
we have (i) (x ◦ y) ◦ ((z ◦ y) ◦ w) = ((x ◦ z) ◦ (z ◦ y)) ◦ ((z ◦ y) ◦ w) = (x ◦ z) ◦ w, and
similarly (ii) (x ◦ (y ◦ z)) ◦ (y ◦ w) = x ◦ (z ◦ w). Furthermore (iii) (x ◦ y) ◦ (z ◦ w) =
(x◦y)◦((z◦y)◦(y◦w)) = (x◦z)◦(y◦w) by (i). Thus (x◦z)◦w = (x◦z)◦((z◦z)◦w) =
(x ◦ (z ◦ z)) ◦ (z ◦ w) = x ◦ (z ◦ w) by (i), (iii), (ii). The free system generated by
{x1, . . . , xn} has exactly n + 2nn2 distinct elements, namely {xj | 1 ≤ j ≤ n} and
{xi ◦ xj1 ◦ · · · ◦ xjr ◦ xk | r ≥ 0 and 1 ≤ i, k ≤ n and 1 ≤ j1 < · · · < jr ≤ n}.]

7. Equivalently, we want the identity y ◦ (x ◦ y) = x, which holds only for ⊕ and ≡.
[Jevons noticed this property of ⊕ in Pure Logic §151, but he did not pursue the matter.
We will investigate general systems of this nature, called “gropes,” in Section 7.2.3.]

8. ({⊥,∧,⊂}, S0), ({⊤,∨,⊃}, S1), ({ , }, S0∩S1), ({⊕,≡, }, S2), ({⊃,∨}, S0∩S2),
({⊂,∧}, S1∩S2), and ( , any), where S0 = { | 0 0 = 0}, S1 = { | 1 1 = 1}, and S2 =
{ | x̄ ȳ = x y} = { , , , }. Thus 92 of the 256 pairs are left-distributive. [This
problem and those of exercise 6 were first treated by E. Schröder in §55 of his posthu-
mously published Vorlesungen über die Algebra der Logik 2, 2 (1905). He expressed the
answer by saying in essence that the respective truth tables (pqrs,wxyz) of (◦, ) must
satisfy the relation ((pq∨rs)∧ z̄)∨ ((p̄q̄∨ r̄s̄)∧w)∨ ((pq̄∨rs̄)∧ ((w≡z)∨ (x≡y))) = 0.]

9. (a) False; (x⊕y)∨z = (x∨z)⊕(y∨z)⊕z. (b) True, because the identity obviously
holds when z = 0 and when z = 1. (c) True; it’s also (x⊕ y)∨ (x⊕ z) = 1− [x= y= z ].
10. The first stage of decomposition (16) yields the functions with truth tables g =
10100011 and h = 10100011 ⊕ 10010011 = 00110000; and the process continues in a
similar way, yielding 1 + y + xz + w + wy + wx+ wxz (modulo 2).
11. The stated term is present if and only if f(x1, . . . , xn) is true an odd number of
times when x1 = x4 = x5 = x7 = x9 = x10 = · · · = 0. (There are 2k such cases when
we set all but k variables to zero.) In other words the multilinear representation can
be expressed in a suggestive notation like

f(x, y, z) = (f000 + f00∗z + f0∗0y+ f0∗∗yz + f∗00x+ f∗0∗xz + f∗∗0xy+ f∗∗∗xyz) mod 2

illustrated here for n = 3, where f∗∗0 = f(1, 1, 0)⊕f(1, 0, 0)⊕f(0, 1, 0)⊕f(0, 0, 0), etc.
12. (a) Substitute 1 − w for w̄, etc., in (23), getting 1 − y − xz + 2xyz − w + wy +
wx + wxz − 2wxyz. [Some authors have called this the “Zhegalkin polynomial”; but
I. I. Zhegalkin himself always worked modulo 2. Other names in the literature are
“availability polynomial,” “reliability polynomial,” “characteristic polynomial.”]

From the Library of Melissa Nuno



ptg999

536 ANSWERS TO EXERCISES 7.1.1

(b) The corresponding coefficients for an arbitrary n-ary function can be as large
as 2n−1 in absolute value (and this, by induction, is the maximum). For example, the
integer multilinear representation of x1 ⊕ · · · ⊕ xn over the integers turns out to be
e1 − 2e2 + 4e3 − · · · + (−2)n−1en, where ek is the kth elementary symmetric function
of {x1, . . . , xn}. The formula in the previous answer becomes

f(x, y, z) = f000 + f00∗z + f0∗0y + f0∗∗yz + f∗00x+ f∗0∗xz + f∗∗0xy + f∗∗∗xyz

over the integers, where we now have f∗∗0 = f(1, 1, 0)−f(1, 0, 0)−f(0, 1, 0)+f(0, 0, 0),
etc. The latter, with k ∗’s, is a k-variable Hadamard transform, Eq. 4.6.4–(38).

(c, d) The polynomial is the sum of its minterms like x1(1− x2)(1− x3)x4. Each
minterm is nonnegative for 0 ≤ x1, . . . , xn ≤ 1, and the sum of all minterms is 1.

(e) ∂f/∂xj = h(x)− g(x), where h(x) ≥ g(x) by (d). (See exercise 21.)
13. In fact, F is precisely the integer multilinear representation (see exercise 12).
14. Let rj = pj/(1 − pj). We want f(0, 0, 0) = 0 and f(1, 1, 1) = 1 ⇔ r1r2r3 > 1,
f(0, 0, 1) = 0 and f(1, 1, 0) = 1 ⇔ r1r2 > r3, f(0, 1, 0) = 0 and f(1, 0, 1) = 1 ⇔ r1r3 >
r2, f(0, 1, 1) = 0 and f(1, 0, 0) = 1⇔ r1 > r2r3. So we get (a) ⟨x1x2x3⟩; (b) x1; (c) x̄3.
15. Exercise 1.2.6–10 tells us that


x
k


mod 2 = [x& k= k ]. Hence, for example,


x
11

≡

x4 ∧ x2 ∧ x1 (modulo 2) when x = (xn . . . x1)2; and we can obtain every term in a
multilinear representation like (19) in this way. Moreover, we needn’t work mod 2,
because the interpolating polynomial


x
11
15−x

4


represents x4 ∧ x̄3 ∧ x2 ∧ x1 exactly.
16. Yes, or even by +, because different minterms can’t be simultaneously true. (But
we can’t do that in ordinary disjunctive normal forms like (25). See exercise 35.)
17. The binary operation ∧ is not associative, so an expression like x ∧ y ∧ z must be
interpreted as a ternary operation. Quick’s notation is fine if one understands NAND to
be an n-ary operation, being careful to note that the NAND of a single variable x is x̄.
18. If not, we could set u1 ← · · · ← us ← 1 and v1 ← · · · ← vt ← 0, making f both
true and false. (And if we consider applying the distributive law (2) repeatedly to a
DNF until it becomes a CNF, we find that the converse is also true: The disjunction
v1∨· · ·∨vt is implied by f if and only if it has a literal in common with every implicant
of f, if and only if it has a literal in common with every prime implicant of f, if and
only if it has a literal in common with every implicant of some DNF for f.)
19. The maximal subcubes contained in 0010, 0011, 0101, 0110, 1000, 1001, 1010, and
1011 are 0∗10, 0101, ∗01∗, and 10∗∗; so the answer is (w∨ȳ∨z)∧(w∨x̄∨y∨z̄)∧(x∨ȳ)∧
(w̄∨x). (This CNF is also shortest.)
20. True. The corresponding maximal subcube is contained in some maximal subcubes
f ′ and g′, and their intersection can’t be larger. (This observation is due to Samson
and Mills, whose paper is cited in answer 31 below.)
21. By Boole’s law (20), we see that an n-ary function f is monotone if and only if its
(n− 1)-ary projections g and h are monotone and satisfy g ≤ h. Therefore

f = (g ∧ x̄n) ∨ (h ∧ xn) = (g ∧ x̄n) ∨ (g ∧ xn) ∨ (h ∧ xn) = g ∨ (h ∧ xn),

so we can do without complementation. The constants 0 and 1 disappear unless the
function is identically constant. Conversely, any expression built up from ∧ and ∨ is
obviously monotone.

Note on terminology: Strictly speaking, we should say “monotone nondecreasing”
instead of simply “monotone,” if we want to preserve the language of classical math-
ematics, because a decreasing function of a real variable is also said to be monotonic.

From the Library of Melissa Nuno



ptg999

7.1.1 ANSWERS TO EXERCISES 537

(See, for example, the “run test” in Section 3.3.2G.) But “nondecreasing” is quite
a mouthful; so researchers who work extensively on Boolean functions have almost
unanimously opted to assume that “monotone” automatically implies nondecreasing,
in a Boolean context. Similarly, the mathematical term “positive function” normally
refers to a function whose value exceeds zero; but authors who write about “positive
Boolean functions” are referring to the functions that we are calling monotone. Since
a monotone function is order-preserving, some authors have adopted the term isotone;
but that word has already been coopted by physicists, chemists, and musicologists.

A Boolean function like x̄∨ y, which becomes monotone if some subset of its vari-
ables is complemented, is called unate. Theorem Q obviously applies to unate functions.
22. Both g and g ⊕ h must be monotone, and g(x) ∧ h(x) = 0.
23. x ∧ (v∨y) ∧ (v∨z) ∧ (w∨z). (Corollary Q applies also to conjunctive prime forms
of monotone functions. Therefore, to solve any problem of this kind, we need only
apply the distributive law (2) until no ∧ occurs within a ∨, then remove any clause
that contains all the variables of another.)
24. By induction on k, the similar tree with ∨ at the root gives a function with 22⌈k/2⌉−1

prime implicants of length 2⌊k/2⌋, while the tree with ∧ gives 42⌊k/2⌋−1 of length 2⌈k/2⌉.
When k = 6, for example, the 47 = 214 prime implicants in the ∧ case have the form

x(0t00t000t000)2 ∧ x(0t00t001t001)2 ∧ x(0t01t010t010)2 ∧ x(0t01t011t011)2

∧ x(1t10t100t100)2 ∧ x(1t10t101t101)2 ∧ x(1t11t110t110)2 ∧ x(1t11t111t111)2 ,

with the t’s either 0 or 1. [For further information about such Boolean functions, see
D. E. Knuth and R. W. Moore, Artificial Intelligence 6 (1975), 293–326; V. Gurvich
and L. Khachiyan, Discrete Mathematics 169 (1997), 245–248.]
25. Let an be the answer. Then a2 = a3 = 2, a4 = 3, and an = an−2 +an−3 for n > 4,
because the prime implicants when n > 4 are either pn−2∧xn−1 or pn−3∧xn−2∧xn for
some prime implicant pk in the k-variable case. (These prime implicants correspond to
minimal vertex covers of the path graph Pn. They are shellable, in the sense of exercise
35, when listed in lexicographic order. We have an = (7Pn + 10Pn+1 +Pn+2)/23 when
Pn is the Perrin number of exercise 7.1.4–15.)
26. (a) Let xj = [j ∈ J ]. Then f(x) = 0 and g(x) = 1. (This fact was exercise 18.)

(b) Suppose, for example, that k ∈ J ∈ G and k /∈ I∈F I, and assume that test
(a) has been passed. Let xj = [j ∈ J and j ̸= k]. Then f(x) = 1; and g(x) = 0, because
every J ′ ∈ G with J ′ ̸= J contains an element /∈ J .

(c) Again assume that condition (a) has been ruled out. If, say, |J | > |F|, let
xj = [j is the smallest element of I ∩ J , for some I ∈ F ]. Then f(x) = 1, g(x) = 0.

(d) Now we assume that

I∈F I =


J∈G J . Each I ∈ F stands for 2n−|I| vectors

where f(x) = 0; similarly, each J ∈ G stands for 2n−|J| vectors where g(x) = 1. If the
sum s is less than 2n, we can compute s = s0 + s1, where s0 counts the contributions
to s when xn = 0. If s0 < 2n−1, set xn ← 0; otherwise s1 < 2n−1, so we set xn ← 1.
Then we set n← n− 1; eventually all xj are known, and f(x) = 1, g(x) = 0.
27. Let m = min({|I| | I ∈ F} ∪ {|J | | J ∈ G}) be the length of the shortest prime
clause or implicant. Then N · 2n−m ≥ I∈F 2n−|I| +


J∈G 2n−|J| ≥ 2n; so we have

m ≤ lgN . If, say, |I| = m, some index k must appear in at least 1/m of the members
J ∈ G, because each J intersects I. This observation proves the hint.

Now let A(0) = A(1) = 1 and A(v) = 1 + A(v − 1) + A(⌊ρv⌋) for v > 1. Then
A(|F||G|) is an upper bound on the number of recursive calls (the number of times X1

From the Library of Melissa Nuno



ptg999

538 ANSWERS TO EXERCISES 7.1.1

is performed). Letting B(v) = A(v) + 1, we have B(v) = B(v− 1) +B(⌊ρv⌋) for v > 1,
hence B(v) ≤ B(v − k) + kB(⌊ρv⌋) for v > k. Taking k = v − ⌊ρv⌋ shows that B(v) ≤
((1−ρ)v+2)B(⌊ρv⌋); hence B(v) = O(((1−ρ)v+2)t) when ρtv ≤ 1, namely when t ≥
ln v/ ln(1/ρ) = Θ((log v)(logN)). Consequently A(|F||G|) ≤ A(N2/4) = NO(logN)2.

In practice the algorithm will run much faster than the pessimistic bounds just
derived. Since the prime clauses of a function are the prime implicants of its dual,
this problem is essentially the same as verifying that one given DNF is the dual of
another. Moreover, if we start with f(x) = 0 and repeatedly find minimal x’s where
f(x) = g(x̄) = 0, we can “grow” f until we’ve obtained the dual of g.

The ideas presented here are due to M. L. Fredman and L. Khachiyan, J. Algo-
rithms 21 (1996), 618–628, who also presented refinements that reduce the running
time to NO(logN/ log logN). No polynomial-time algorithm is known; yet the problem is
unlikely to be NP-complete, because we can solve it in less-than-exponential time.
28. This result is obvious once understood, but the notations and terminology can
make it confusing; so let’s consider a concrete example: If, say, y1 = y4 = y6 = 1 and
the other yk are zero, the function g is true if and only if the prime implicants p1, p4,
and p6 cover all the places where f is true. Thus we see that there is a one-to-one
correspondence between every implicant of g and every DNF for f that contains only
prime implicants pj . In this correspondence, the prime implicants of g correspond to
the “irredundant” DNFs in which no pj can be left out.

Numerous refinements of this principle have been discussed by R. B. Cutler and
S. Muroga, IEEE Transactions C-36 (1987), 277–292.
29. B1. [Initialize.] Set k ← k′ ← 0. (Similar methods are discussed in exercise 5–19.)

B2. [Find a zero.] Increase k zero or more times, until either k = m (terminate)
or vk & 2j = 0.

B3. [Make k′ > k.] If k′ ≤ k, set k′ ← k + 1.
B4. [Advance k′.] Increase k′ zero or more times, until either k′ = m (terminate)

or vk′ ≥ vk + 2j .
B5. [Skip past a big mismatch.] If vk ⊕ vk′ ≥ 2j+1, set k ← k′ and return to B2.
B6. [Record a match.] If vk′ = vk + 2j , output (k, k′).
B7. [Advance k.] Set k ← k + 1 and return to B2.

(Steps B3 and B5 are optional, but recommended.)
30. The following algorithm keeps variable-length, sorted lists in a stack S whose size
will never exceed 2m+ n. When the topmost entry of the stack is St = s, the topmost
list is the ordered set Ss < Ss+1 < · · · < St−1. Tag bits are maintained in another
stack T , having the same size as S (after the initialization step).

P1. [Initialize.] Set Tk ← 0 for 0 ≤ k < m. Then for 0 ≤ j < n, apply the j-buddy
scan algorithm of exercise 29, and set Tk ← Tk + 2j , Tk′ ← Tk′ + 2j for all
pairs (k, k′) found. Then set s ← t ← 0 and repeat the following operations
until s = m: If Ts = 0, output the subcube (0, vs) and set s← s+1; otherwise
set St ← vs, Tt ← Ts, t← t+ 1, s← s+ 1. Finally set A← 0 and St ← 0.

P2. [Advance A.] (At this point stack S contains ν(A) + 1 lists of subcubes.
Namely, if A = 2e1 + · · · + 2er with e1 > · · · > er ≥ 0, the stack contains
the b-values of all subcubes (a, b) ⊆ V whose a-values are respectively 0, 2e1 ,
2e1 +2e2 , . . . , A, except that subcubes whose tags are zero do not appear. All

From the Library of Melissa Nuno



ptg999

7.1.1 ANSWERS TO EXERCISES 539

of these lists are nonempty, except possibly the last. We will now increase A
to the next relevant value.) Set j ← 0. If St = t (that is, if the topmost list is
empty), increase j zero or more times until j ≥ n or A& 2j ̸= 0. Then while
j < n and A& 2j ̸= 0, set t← St − 1, A← A− 2j , and j ← j + 1. Terminate
the algorithm if j ≥ n; otherwise set A← A+ 2j .

P3. [Generate list A.] Set r ← t, s← St, and apply the j-buddy scan algorithm of
exercise 29 to the r − s numbers Ss < · · · < Sr−1. For all pairs (k, k′) found,
set x← (Tk & Tk′)− 2j ; and if x = 0, output the subcube (A,Sk), otherwise
set t ← t + 1, St ← Sk, Tt ← x. Finally set t ← t + 1, St ← r + 1, and go
back to step P2.

This algorithm is based in part on ideas of Eugenio Morreale [IEEE Trans. EC-16
(1967), 611–620; Proc. ACM Nat. Conf. 23 (1968), 355–365]. The running time is
at most proportional to mn (for step P1) plus n times the total number of subcubes
contained in V . If m ≤ 2n(1− ϵ), and if V is chosen at random with size m, exercise 34
shows that the average total number of subcubes is at most O(log logn/ log log logn)
times the average number of maximal subcubes; hence the average running time in
most cases will be nearly proportional to the average amount of output produced. On
the other hand, exercises 32 and 116 show that the amount of output might be huge.
31. (a) Let c = cn−1 . . . c0, c′ = c′n−1 . . . c

′
0, c′′ = c′′n−1 . . . c

′′
0 . There must be some j

with cj ̸= ∗ and cj ̸= c′′j ; otherwise c′′ ⊆ c. Similarly there must be some k with c′k ̸= ∗
and c′k ̸= c′′k . If j ̸= k, there would be a point xn−1 . . . x0 ∈ c′′ that is in neither c
nor c′, because we could let xj = c̄j and xk = c̄′k. Hence j = k, and the value of j is
uniquely determined. Furthermore it’s easy to see that c′j = c̄j . And if i ̸= j, we have
either ci = ∗ or ci = c′′i , and either c′i = ∗ or c′i = c′′i .

(b) This statement is an obvious consequence of (a).
(c) First we prove that the parenthesized remark in step E2 is true whenever that

step is encountered. It’s clearly true when j = 0. Otherwise, let c ⊆ V be a j-cube,
and suppose c = c0 ∪ c1 where c0 and c1 are (j− 1)-cubes. On the preceding execution
of step E2 we had c0 ⊆ c′0 ∈ C and c1 ⊆ c′1 ∈ C for some c′0 and c′1; hence either
c ⊆ c′0 ⊔ c′1 or c ⊆ c′0 or c ⊆ c′1. In each case, c is now contained in some element of C.

Secondly, we prove that the outputs in step E3 are precisely the maximal j-cubes
contained in V : Let c ⊆ V be any k-cube. If c is maximal, then c will be in C when
we reach step E3 with j = k, and it will be output. If c isn’t maximal, it has a buddy
c′ ⊆ V , which is a k-cube contained in some subcube c′′ ∈ C when we reach E3. Since
c ̸⊆ c′′, the consensus c ⊔ c′′ will be a (j + 1)-cube of C′, and c will not be output.

References: The notion of consensus was first defined (under the name “syllogistic
result”) by Archie Blake on page 25 of his Ph.D. dissertation, Canonical Expressions
in Boolean Algebra (University of Chicago, 1937); see J. Symbolic Logic 3 (1938), 93,
112–113. It was independently rediscovered by Edward W. Samson and Burton E. Mills
[Air Force Cambridge Research Center Tech. Report 54-21 (Cambridge, Mass.: April
1954), 54 pp.] and by W. V. Quine [AMM 62 (1955), 627–631]. The operation is also
sometimes called the resolvent, since J. A. Robinson used it in a more general form (but
with respect to clauses rather than implicants) as the basis of his “resolution principle”
for theorem proving [JACM 12 (1965), 23–41]. Algorithm E is due to Ann C. Ewing,
J. Paul Roth, and Eric G. Wagner, AIEE Transactions, Part 1, 80 (1961), 450–458.
32. (a) Change the definition of ⊔ in exercise 31 to the following associative and
commutative operation on the four symbols A = {0, 1, ∗, •}, for all a ∈ A and x ∈ {0, 1}:

∗ ⊔ a = a ⊔ ∗ = a, • ⊔ a = a ⊔ • = x ⊔ x̄ = •, and x ⊔ x = x.

From the Library of Melissa Nuno



ptg999

540 ANSWERS TO EXERCISES 7.1.1

Also let h(0) = 0, h(1) = 1, h(∗) = ∗, and h(•) = ∗. Then c = h(c1 ⊔ · · · ⊔ cm),
computed componentwise, is the only subcube that could possibly be a generalized
consensus. [See P. Tison, IEEE Transactions EC-16 (1967), 446–456.]

(b) For example, let cj = ∗j−11∗m−j1j−10∗m−j . [The final component is superflu-
ous. All solutions have been characterized by R. H. Sloan, B. Szörényi, and G. Turán,
in SIAM J. Discrete Math. 21 (2008), 987–998.]

(c) By (a), every prime implicant corresponds uniquely to the subset of implicants
that it “meets.” [A. K. Chandra and G. Markowsky, Discrete Math. 24 (1978), 7–11.]

(d) For example, (y1∧x̄1)∨ (y2∧x1∧x̄2)∨ · · · ∨ (ym∧x1∧ · · · ∧xm−1∧x̄m) as in (b).
[J.-M. Laborde, Discrete Math. 32 (1980), 209–212.]

33. (a)
2n−2n−k

m−2n−k


/
2n

m


. (b) We must exclude the cases when x1 ∧ · · · ∧ xj−1 ∧ x̄j ∧

xj+1 ∧ · · · ∧ xk is also an implicant. By the inclusion-exclusion principle, the answer is
l


k

l


(−1)l

2n − (l + 1)2n−k

m− (l + 1)2n−k
2n

m


.

It simplifies to
2n−n−1

m−1

/
2n

m


when k = n; see, for example, Eq. 1.2.6–(24).

34. (a) We have c(m,n) =

cj(m,n), where cj(m,n) = 2n−j


n
j

2n−2j

m−2j


/
2n

m


is the

average number of implicants with n − j literals (the average number of subcubes of
dimension j in the terminology of exercise 30). Clearly c0(m,n) = m, and

c1(m,n) = nm(m− 1)
2(2n − 1) ≤

mn

2


m

2n

≤ 1

2m;

similarly cj(m,n) ≤ m/(2jj!n2j−1−j). Also p(m,n) =

j pj(m,n), where we have

p0(m,n) = 2n
2n − n− 1

m− 1

2n

m


= m

(2n − n− 1)m−1

(2n − 1)m−1 ≥ m (2n − n−m)m−1

(2n −m)m−1

≥ m


1− n

2n −m
m
≥ m


1− n

2n − 2n/n

2n/n

= m exp
2n

n
ln


1− n2

2n(n− 1)


.

(b) Notice that t = ⌊lg lgn− lg lg(2n/m) + lg(4/3)⌋ ≤ lg lgn+O(1) is quite small.
We will repeatedly use the fact that

2n−j·2t

m−j·2t


/
2n

m


< αjmn, and indeed that2n − j · 2t

m− j · 2t
2n

m


= αjmn(1 +O(j222t/m))

is an extremely good approximation when j isn’t too large. To establish the hint,
note that


j<t cj(m,n)/ct(m,n) = O(tct−1(m,n)/ct(m,n)) = O(t2/(n√αmn)) =

O((log logn)2/n1/3); and ct+j(m,n)/ct(m,n) = O((n/(2t))jα2j−1
mn ). Consequently we

have c(m,n)/ct(m,n) ≈ 1 + 1
2 (n−t

t+1 )αmn, where the second term dominates when αmn
is in the upper part of its range. Furthermore
l


n− t
l


(−1)lαlmn


1 +O


l222t

m


= (1− αmn)n−t +O(n2αmn(1 + αmn)n22t/m)

has an exponentially small error term, because (1+αmn)n = O(en
1/3

)≪ m. Therefore
p(m,n)/ct(m,n) is asymptotically e−nαmn + 1

2 (n−t
t+1 )αmne−nα

2
mn .

From the Library of Melissa Nuno



ptg999

7.1.1 ANSWERS TO EXERCISES 541

(c) Here αmn = 2−2t ≈ n−1 ln(t/ ln t); so c(m,n)/ct(m,n) = 1 + O(t−1 log t),
p(m,n)/ct(m,n) = t−1 ln t+ 1

2 t
−1 ln t+O(t−1 log log t). We conclude that, in this case,

c(m,n)
p(m,n) = 2

3
lg lgn

ln lg lgn


1 +O

 log log log logn
log log logn


.

(d) If nαmn ≤ ln t−ln ln t, we have p(m,n)/c(m,n) ≥ pt(m,n)/c(m,n) ≥ t−1 ln t+
O(t−1 log t)2. On the other hand if nαmn ≥ ln t − ln ln t, we have p(m,n)/c(m,n) ≥
pt+1(m,n)/c(m,n) ≥ 1

2 t
−1 ln t+O(t−1 log log t).

[The means c(m,n) and p(m,n), and the variance of c(m,n), were first studied
by F. Mileto and G. Putzolu, IEEE Trans. EC-13 (1964), 87–92; JACM 12 (1965),
364–375. Detailed asymptotic information about implicants, prime implicants, and
irredundant DNFs of random Boolean functions, when each value f(x1, . . . , xn) is inde-
pendently equal to 1 with probability p(n), has been derived by Karl Weber, Elektro-
nische Informationsverarbeitung und Kybernetik 19 (1983), 365–374, 449–458, 529–534.]

35. (a) By rearranging coordinates we can assume that the pth subcube is 0k1u∗v, so
that Bp = 0k1u0v and Sp = 1k0u+v. Then all points of ∗k1u∗v are still covered, by
induction on p, because all points of ∗j−11∗k−j1u∗v have been covered for 1 ≤ j ≤ k.

(b) The jth and kth subcubes differ in every coordinate position where Bj & Sk
is nonzero. On the other hand if Bj & Sk is zero, the point S̄k of subcube k lies in a
previous subcube, by (a), because we have S̄k ⊇ Bj .

(c) From the list 1100, 1011, 0011 (with the bits of each Sk underlined) we obtain
the orthogonal DNF (x1∧x2) ∨ (x1∧x̄2∧x3∧x4) ∨ (x̄1∧x3∧x4).

(d) There are eight solutions; for example, (01100, 00110, 00011, 11010, 11000).
(e) (001100, 011000, 000110, 110010, 110000, 010011, 000011) is a symmetrical solu-

tion. And there are many more possibilities; for example, 42 permutations of the bit
codes {110000, 011000, 001100, 000110, 000011, 110010, 011010} are shellings.

[The concept of a shelling for monotone Boolean functions was introduced by
Michael O. Ball and J. Scott Provan, Operations Research 36 (1988), 703–715, who
discussed many significant applications.]

36. If j < k we have Bj = α1β and Bk = α0γ for some strings α, β, γ. Form the
sequence x0 = α1γ, x1 = x′0, . . . , xl = x′l−1, where xl = α00|γ|. We have f(x0) = 1
since x0 ⊇ Bk, but f(xl) = 0 since xl ⊆ B′

j . So the string xi, where f(xi) = 1 and
f(xi+1) = · · · = f(xl) = 0, is in B. It precedes Bk and proves that Bj &Sk ⊇ 0|α|10|β|.

[This construction and parts of exercise 35 are due to E. Boros, Y. Crama, O. Ekin,
P. L. Hammer, T. Ibaraki, and A. Kogan, SIAM J. Discrete Math. 13 (2000), 212–226.]

37. The shelling order (000011, 001101, 001100, 110101, 110100, 110001, 110000)
generalizes to all n. There also are interesting solutions not based on shelling, like
the cyclically symmetrical (110∗∗∗, 1110∗∗, ∗∗110∗, ∗∗1110, 0∗∗∗11, 10∗∗11, 111111).

For the lower bound, assign the weight wx = −n
j=1(x2j−1 + x2j − 3x2j−1x2j) to

each point x, and notice that the sum of wx over all x in any subcube is 0 or ±1. (It
suffices to verify this curious fact for each of the nine possible subcubes when n = 1.)
Now choose a set of disjoint subcubes that partition the set F = {x | f(x) = 1}; we
have 

C chosen

1 ≥


C chosen


x∈C

wx =

x∈F

wx


C chosen

[x∈C ] =

x∈F

wx.

From the Library of Melissa Nuno



ptg999

542 ANSWERS TO EXERCISES 7.1.1

There are

n
k


2n−k vectors x with exactly k pairs x2j−1x2j = 1 and nonzero weight.

Their weight is (−1)k−1, and they lie in F except when k = 0. Hence

x∈F wx =

k>0

n
k


2n−k(−1)k−1 = 2n − (2− 1)n.

[See M. O. Ball and G. L. Nemhauser, Mathematics of Operations Research 4
(1979), 132–143.]
38. Certainly not; a DNF is satisfiable if and only if it has at least one implicant. The
hard problem for a DNF is to decide whether or not it is a tautology (always true).
39. Associate variables y1, . . . , yN with each internal node in preorder, so that every
tree node corresponds to exactly one variable of F . For each internal node y, with
children (l, r) and labeled with the binary operator ◦, construct four 3CNF clauses
c00 ∧ c01 ∧ c10 ∧ c11, where

cpq = (y p◦qC ∨ lpC ∨ rqC)

and C denotes complementation (so that x0C = x and x1C = x̄). These clauses state in
effect that y = l ◦ r ; for example, if ◦ is ∧, the four clauses are (ȳ ∨ l ∨ r)∧ (ȳ ∨ l ∨ r̄)∧
(ȳ ∨ l̄ ∨ r) ∧ (y ∨ l̄ ∨ r̄). Finally, add one more clause, (y1 ∨ y1 ∨ y1), to force f = 1.

Every higher number can be formed by mere complications of threes.
. . . Take the quadruple fact that A sells B to C for the price D.

This is a compound of two facts:
first, that A makes with C a certain transaction, which we may name E;

and second, that this transaction E is a sale of B for the price D.

— CHARLES S. PEIRCE, A Guess at the Riddle (1887)

40. Following the hint, A says ‘u < v ⊕ v < u’ and B says ‘u < v ∧ v < w ⇒ u < w’.
So A∧B says that there’s a linear ordering of the vertices, u1 < u2 < · · · < un. (There
are n! ways to satisfy A ∧B.) Now C says that quvw is equivalent to u < v < w; so D
says that u and w are not consecutive in the ordering, when u /−−−w. Thus A∧B∧C∧D
is satisfiable if and only if there is a linear ordering in which all nonadjacent vertices
are nonconsecutive (that is, in which all consecutive vertices are adjacent).
41. Solution 0: ‘[m≤n]’ is such a formula, but it is not in the spirit of this exercise.

Solution 1: Let xjk mean that pigeon j occupies hole k. Then the clauses are
(xj1 ∨ · · · ∨ xjn) for 1 ≤ j ≤ m and (x̄ik ∨ x̄jk) for 1 ≤ i < j ≤ m and 1 ≤ k ≤ n.
[See S. A. Cook and R. A. Reckhow, J. Symbolic Logic 44 (1979), 36–50; A. Haken,
Theoretical Comp. Sci. 39 (1985), 297–308.]

Solution 2: Assume that n = 2t and let pigeon j occupy hole (xj1 . . . xjt)2. The
clauses ((xi1⊕ xj1)∨ · · · ∨ (xit⊕ xjt)) for 1 ≤ i < j ≤ m can be put into the CNF form
(yij1 ∨ · · · ∨ yijt) as in exercise 39, by introducing auxiliary clauses (ȳijk ∨ xik ∨ xjk) ∧
(yijk ∨xik ∨ x̄jk)∧ (yijk ∨ x̄ik ∨xjk)∧ (ȳijk ∨ x̄ik ∨ x̄jk). (Only the first and last of these
four clauses are actually needed.) The total size of this CNF is Θ(m2 logn), compared
to Θ(m2n) in Solution 1. If n is not a power of 2, O(m logn) additional clauses of size
O(logn) will rule out inappropriate values.
42. (x̄ ∨ y) ∧ (z̄ ∨ x) ∧ (ȳ ∨ z̄) ∧ (z ∨ z).
43. Probably not, because every 3SAT problem can be converted to this form. For
example, the clause (x1 ∨x2 ∨ x̄3) can be replaced by (x1 ∨ ȳ ∨ x̄3)∧ (ȳ ∨ x̄2)∧ (y ∨x2),
where y is a new variable (essentially equivalent to x̄2).

From the Library of Melissa Nuno



ptg999

7.1.1 ANSWERS TO EXERCISES 543

44. Suppose f(x) = f(y) = 1 implies f(x&y) = 1 and also that, say, c = x1∨x2∨x̄3∨x̄4
is a prime clause of f. Then c′ = x̄1 ∨ x2 ∨ x̄3 ∨ x̄4 is not a clause; otherwise c ∧ c′ =
x2 ∨ x̄3 ∨ x̄4 would also be a clause, contradicting primality. So there’s a vector y with
f(y) = 1 and y1 = 1, y2 = 0, y3 = y4 = 1. Similarly, there’s a z with f(z) = 1 and
z1 = 0, z2 = 1, z3 = z4 = 1. But then f(y & z) = 1, and c isn’t a clause. The same
argument works for a clause c that has a different number of literals, as long as at least
two of the literals aren’t complemented.

45. (a) A Horn function f(x1, . . . , xn) is indefinite if and only if it is unequal to the
definite Horn function g(x1, . . . , xn) = f(x1, . . . , xn) ∨ (x1 ∧ · · · ∧ xn). So f ↔ g is a
one-to-one correspondence between indefinite and definite Horn functions. (b) If f is
monotone, its complement f̄ is either identically 1 or an indefinite Horn function.

46. Algorithm C puts 88 pairs xy in the core: When x = a, b, c, 0, or 1, the following
character y can be anything but (. When x = (, *, /, +, -, we can have y = (, a, b, c,
0, 1; also y = - when x = (, +, or -. Finally, the legitimate pairs beginning with x = )
are )+, )-, )*, )/, )).

47. The order in which Algorithm C brings vertices into the core is a topological sort,
since all predecessors of k are asserted before the algorithm sets TRUTH(xk) ← 1. But
Algorithm 2.2.3T uses a queue instead of a stack, so the ordering it actually produces
is usually different from that of Algorithm C.

48. Let ⊥ be a new variable, and change every indefinite Horn clause to a definite
one by ORing in this new variable. (For example, ‘w̄ ∨ ȳ’ becomes ‘w̄ ∨ ȳ ∨⊥’, namely
‘w ∧ y ⇒ ⊥’; definite Horn clauses stay unchanged.) Then apply Algorithm C. The
original clauses are unsatisfiable if and only if ⊥ is in the core of the new clauses. The
algorithm can therefore be terminated as soon as it is about to set TRUTH(⊥)← 1.

(J. H. Quick thought of another solution: We could apply Algorithm C to the
function g constructed in the answer to exercise 45(a), because f is unsatisfiable if and
only if every variable xj is in the core of g. However, indefinite clauses of f such as w̄∨ȳ
become many different clauses (w̄∨ ȳ∨z)∧(w̄∨ ȳ∨x)∧(w̄∨ ȳ∨v)∧(w̄∨ ȳ∨u)∧ · · · of g,
one for each variable not in the original clause. So Quick’s suggestion, which might
sound elegant at first blush, could increase the number of clauses by a factor of Ω(n).)

49. We have f ≤ g if and only if f∧ ḡ is unsatisfiable, if and only if f∧ c̄ is unsatisfiable
for every clause c of g. But c̄ is an AND of literals, so we can apply exercise 48.
[See H. Kleine Büning and T. Lettmann, Aussagenlogik: Deduktion und Algorithmen
(1994), §5.6, for further results including an efficient way to test if g is a “renaming”
of f , namely to determine whether or not there exist constants (y1, . . . , yn) such that
f(x1, . . . , xn) = g(x1 ⊕ y1, . . . , xn ⊕ yn).]

50. See Gabriel Istrate, Random Structures & Algorithms 20 (2002), 483–506.

51. If vertex v is marked A, introduce the clauses ⇒ A+(v) and ⇒ B−(v); if it is
marked B, introduce ⇒ A−(v) and ⇒ B+(v). Otherwise let v have k outgoing arcs
v → u1, . . . , v → uk. Introduce the clauses A−(uj)⇒ B+(v) and B−(uj)⇒ A+(v) for
1 ≤ j ≤ k. Also, if v is not marked C, introduce the clauses A+(u1) ∧ · · · ∧A+(uk)⇒
B−(v) and B+(u1)∧ · · · ∧B+(uk)⇒ A−(v). All forcing strategies are consequences of
these clauses. Exercise 2.2.3–28 and its answer provide further information.

Notice that, in principle, Algorithm C can therefore be used to decide whether or
not the game of chess is a forced victory for the white pieces — except for the annoying
detail that the corresponding digraph is larger than the physical universe.

From the Library of Melissa Nuno



ptg999

544 ANSWERS TO EXERCISES 7.1.1

52. With best play, the results (see exercise 51) are:

n (a) (b) (c) (d)
2 0 wins second player wins 1 wins second player wins
3 0 wins first player wins first player wins first player wins
4 first player wins first player wins first player wins first player wins
5 second player wins draw draw 1 loses if first
6 second player wins second player wins 1 loses if first 1 loses if first
7 1 loses if first second player wins 1 loses if first 1 loses if first
8 draw draw draw 1 loses if first
9 draw draw draw 1 loses if first

(Here “1 loses if first” means that the game is a draw if player 0 plays first, otherwise
0 can win.) Comments: In (a), player 1 has a slight disadvantage, because f(x) = 0
when x1 . . . xn is a palindrome. This small difference affects the result even when n = 7.
Although player 1 would seem to be better off playing 0s in the left half of the board,
it turns out that his/her first move when n = 4 must be to ∗1∗∗; the alternative, ∗0∗∗,
draws. Game (b) is essentially a race to see who can eliminate the last ∗. In game (c),
a random choice of x1 . . . xn makes f(x) = 1 with probability Fn+2/2n = Θ((ϕ/2)n); in
game (d), this probability approaches zero more slowly, as Θ(1/ logn). Still, player 1
does better in (c) than in (d) when n = 2, 5, 8, and 9; no worse in the other cases.

53. (a) She should switch either day 1 or day 2 to day 3.
(b, f) Several possibilities; for example, change day 2 to day 3.
(c) This case is illustrated in Fig. 6; change either Desert or Excalibur to Aladdin.
(d) Change either Caesars or Excalibur to Aladdin.
(e) Change either Bellagio or Desert to Aladdin.
Of course Williams, who doesn’t appear in the cycle (42), bears no responsibility

whatever for the conflicts.

54. If x and x̄ are both in S, then u ∈ S ⇐⇒ ū ∈ S, because the existence of paths
from x to x̄ and x̄ to x and x to u and u to x implies the existence of paths from ū
to x̄ and x̄ to ū, hence from u to ū and ū to u.

55. (a) Necessary and sufficient conditions for successfully renaming a clause such as
x1 ∨ x̄2 ∨ x3 ∨ x̄4 are (y1 ∨ ȳ2) ∧ (y1 ∨ y3) ∧ (y1 ∨ ȳ4) ∧ (ȳ2 ∨ y3) ∧ (ȳ2 ∨ ȳ4) ∧ (y3 ∨ ȳ4).
A similar set of


k
2


clauses of length 2 in the variables {y1, . . . , yn} corresponds to any
clause of length k in {x1, . . . , xn}. [H. R. Lewis, JACM 25 (1978), 134–135.]

(b) A given clause of length k > 3 in {x1, . . . , xn} can be converted into 3(k − 2)
clauses of length 2, instead of the


k
2


clauses above, by introducing k−3 new variables
{t2, . . . , tk−2}, illustrated here for the clause x1 ∨ x2 ∨ x3 ∨ x4 ∨ x5:

(y1∨y2) ∧ (y1∨t2) ∧ (y2∨t2) ∧ (t̄2∨y3) ∧ (t̄2∨t3) ∧ (y3∨t3) ∧ (t̄3∨y4) ∧ (t̄3∨y5) ∧ (y4∨y5).

In general, the clauses from x1 ∨ · · · ∨ xk are (t̄j−1 ∨ yj) ∧ (t̄j−1 ∨ tj) ∧ (yj ∨ tj) for
1 < j < k, but with t1 replaced by ȳ1 and tk−1 replaced by yk; change yj to ȳj if x̄j
appears instead of xj . Do this for each given clause, using different auxiliary variables
tj for different clauses; the result is a formula in 2CNF that has length < 3m and is
satisfiable if and only if Horn renaming is possible. Now apply Theorem K.

From the Library of Melissa Nuno



ptg999

7.1.1 ANSWERS TO EXERCISES 545

[See B. Aspvall, J. Algorithms 1 (1980), 97–103. One consequence, noted by H.
Kleine Büning and T. Lettmann in Aussagenlogik: Deduktion und Algorithmen (1994),
Theorem 5.2.4, is that any satisfiable formula in 2CNF can be renamed to Horn clauses.
Notice that two CNFs for the same function may give different outcomes; for example,
(x ∨ y ∨ z) ∧ (x̄ ∨ ȳ ∨ z̄) ∧ (x̄ ∨ z) ∧ (ȳ ∨ z) is actually a Horn function, but the clauses
in this representation cannot be converted to Horn form by complementation.]
56. Here f(x, y, z) corresponds to the digraph shown below (analogous to Fig. 6), and
it can also be simplified to y ∧ (x̄ ∨ z). Each vertex is a strong component. So the
formula is true with respect to the quantifiers ∃∃∃, ∃∃∀, ∀∃∃ ;
false in the other cases ∀∃∀, (any)∀(any). In general the eight
possibilities can be arranged at the corners of a cube, with each
change from ∃ to ∀ making the formula more likely to be false.

ȳ z̄ x̄

x z y

57. Forming the digraph as in Theorem K, we can prove that the quantified formula
holds if and only if (i) no strong component contains both x and x̄; (ii) there is no path
from one universal variable x to another universal variable y or to its complement ȳ;
(iii) no strong component containing a universal variable x also contains an existential
variable v or its complement v̄, when ‘∃v’ appears to the left of ‘∀x’. These three
conditions are clearly necessary, and they are readily tested as the strong components
are being found.

To show that they are sufficient, notice first that if S is a strong component with
only existential literals, condition (i) allows us to set them all equal as in Theorem K.
Otherwise S has exactly one universal literal, uj = xj or uj = x̄j ; all other literals
in S are existential and declared to the right of xj , so we can equate them to uj . And
all paths into S in such a case come from purely existential strong components, whose
value can be set to 0 because the complements of such strong components cannot also
lead into S; for if v and v̄ imply uj , then ūj implies v̄ and v.

[Information Proc. Letters 8 (1979), 121–123. By contrast, M. Krom had proved
in J. Symbolic Logic 35 (1970), 210–216, that an analogous problem in first-order
predicate calculus (where parameterized predicates take the place of simple Boolean
variables, and quantification is over the parameters) is actually unsolvable in general.]
58. We can assume that each clause is definite, by introducing ‘⊥’ as in exercise 48 and
placing ‘∀⊥’ at the left. Call the universal variables x0, x1, . . . , xm (where x0 is ⊥) and
call the existential variables y1, . . . , yn. Let ‘u ≺ v’ mean that variable u appears to the
left of variable v in the list of quantifiers. Remove x̄j from any clause whose unbarred
literal is yk when yk ≺ xj . Then, for 0 ≤ j ≤ m, let Cj be the core of the Horn clauses
when the additional clauses (x0)∧ · · · ∧ (xj−1)∧ (xj+1)∧ · · · ∧ (xm)∧{(yk) | yk ≺ xj
and yk ∈ C0} are appended. (In other words, Cj tells us what can be deduced when
all the x’s except xj are assumed to be true.) We claim that the given formula is true
if and only if xj /∈ Cj , for 0 ≤ j ≤ m.

To prove this claim, note first that the formula is certainly false if xj ∈ Cj for
some j. (When yk ∈ C0 and yk ≺ xj and xi = 1 for i ̸= j we must set yk ← 1.)
Otherwise we can choose each yk to make the formula true, as follows: If yk /∈ C0, set
yk ← 0; otherwise set yk ←

{xj | yk /∈ Cj}. Notice that yk depends on xj only when
xj ≺ yk. Each clause c with unbarred literal xj is now true: For if xj = 0, some ȳk
appears in c for which yk /∈ Cj , because xj /∈ Cj ; hence yk = 0. And each clause c with
unbarred literal yk is also true: If yk = 0, we either have yk /∈ C0, in which case some
ȳl in c is /∈ C0, hence yl = 0; or yk ∈ C0 \ Cj for some j, in which case some xj = 0
and either x̄j appears in c or some ȳl appears in c where yl /∈ Cj , making yl = 0.

From the Library of Melissa Nuno



ptg999

546 ANSWERS TO EXERCISES 7.1.1

[This solution is due to T. Dahlheimer. See M. Karpinski, H. Kleine Büning, and
P. H. Schmitt, Lecture Notes in Comp. Sci. 329 (1988), 129–137; H. Kleine Büning,
K. Subramani, and X. Zhao, Lecture Notes in Comp. Sci. 2919 (2004), 93–104.]

59. By induction on n: Suppose f(0, x2, . . . , xn) leads to the quantified results y1, . . . ,
y2n−1 , while f(1, x2, . . . , xn) leads similarly to z1, . . . , z2n−1 . Then ∃x1f(x1, x2, . . . , xn)
leads to y1 ∨ z1, . . . , y2n−1 ∨ z2n−1 , and ∀x1f(x1, x2, . . . , xn) leads to y1 ∧ z1, . . . ,
y2n−1 ∧z2n−1 . Now use the fact that (y∨z)+(y∧z) = y+z. [See Proc. Mini-Workshop
on Quantified Boolean Formulas 2 (QBF-02) (Cincinnati: May 2002), 1–16.]

60. Both (a) and (b). But (c) is always 0; (d) is always 1; (e) is ⟨xyz⟩; (f) is x̄∨ ȳ ∨ z̄.

61. True — indeed obviously so, when w = 0, and when w = 1.

62. Since {x1, x2, x3} ⊆ {0, 1}, we can assume by symmetry that x1 equals x2. Then
either f(x1, x1, x3, x4, . . . , xn) = f(x1, x1, x1, x4, . . . , xn) or f(x1, x1, x3, x4, . . . , xn) =
f(x3, x1, x3, x4, . . . , xn), assuming only that f is monotone in its first three variables.

63. ⟨xyz⟩ = ⟨xxyyz⟩. Note: Emil Post proved, in fact, that a single subroutine for any
nontrivial monotone self-dual function will suffice to compute them all. (By induction
on n, at least one appropriate way to call such an n-ary subroutine will yield ⟨xyz⟩.)
64. [FOCS 3 (1962), 149–157.] (a) If f is monotone and self-dual, Theorem P says
that f(x) = xk or f(x) = ⟨f1(x)f2(x)f3(x)⟩. The condition therefore holds either
immediately or by induction. Conversely, if the condition holds it implies that f is
monotone (when x and y differ in just one bit) and self-dual (when they differ in all bits).

(b) We merely need to show that it is possible to define f at one new point
without introducing a conflict. Let x be the lexicographically smallest point where
f(x) is undefined. If f(x̄) is defined, set f(x) = f(x̄). Otherwise if f(x′) = 1 for some
x′ ⊆ x, set f(x) = 1; otherwise set f(x) = 0. Then the condition still holds.

65. If F is maximal intersecting, we have (i) X ∈ F =⇒ X /∈ F , where X is the
complementary set {1, 2, . . . , n} \ X ; (ii) X ∈ F and X ⊆ Y =⇒ Y ∈ F , because
F ∪ {Y } is intersecting; and (iii) X /∈ F =⇒ X ∈ F , because F ∪ {X} must contain
an element Y ⊆ X. Conversely, one can prove without difficulty that any family F
satisfying (i) and (ii) is intersecting, and maximal if it also satisfies (iii).

Punch line: All three statements are simple, in the language of Boolean functions:
(i) f(x) = 1 =⇒ f(x̄) = 0; (ii) x ⊆ y =⇒ f(x) ≤ f(y); (iii) f(x) = 0 =⇒ f(x̄) = 1.

66. [T. Ibaraki and T. Kameda, IEEE Transactions on Parallel and Distributed Sys-
tems 4 (1993), 779–794.] Every family with the property that Q ⊆ Q′ implies Q = Q′

clearly corresponds to the prime implicants of a monotone Boolean function f. The
further condition that Q ∩ Q′ ̸= ∅ corresponds to the further relation f(x̄) ≤ f(x),
because f(x̄) = f(x) = 1 holds if and only if x and x̄ both make prime implicants true.

If coteries C and C′ correspond in this way to functions f and f ′, then C dominates
C′ if and only if f ̸= f ′ and f ′(x) ≤ f(x) for all x. Then f ′ is not self-dual, because
there is an x with f ′(x̄) = 0, f(x̄) = 1; and we have f(x) = 0, hence f ′(x) = 0.

Conversely, if f ′ is not self-dual, there’s a y with f ′(y) = f ′(ȳ) = 0. If y = 0 . . . 0,
coterie C′ is empty, and dominated by every other coterie. Otherwise define f(x) =
f ′(x) ∨ [x⊇ y ]. Then f is monotone, and f(x̄) ≤ f(x) for all x; so it corresponds to a
coterie that dominates C′.
67. (a) A black Y in t forces a black Y in t∗, because adjacent black stones a−−−b−−−c
in t yield two adjacent black stones in t∗. Similarly, a black Y in t∗ forces a black Y in t.

From the Library of Melissa Nuno



ptg999

7.1.1 ANSWERS TO EXERCISES 547

(b) This formula follows from (a) and the fact that (tabc)def = t(a+d)(b+e)(c+f) =
(tdef)abc. [Schensted stated the results of this exercise, and those of exercises 62 and 69,
in a 28-page letter sent to Martin Gardner on 21 January 1979. Milnor had written to
Gardner on 26 March 1957 about a corresponding game called “Triangle.”]
68. Here is one of the 258,594 solutions for n = 15 that has 59 black stones: .
(The answers for 1 ≤ n ≤ 15 are respectively 2, 3, 4, 6, 8, 11, 14, 18, 23, 27,
33, 39, 45, 52, 59. The prime implicants for these functions can be
represented by fairly small ZDDs; see Section 7.1.4.)

69. The proof of Theorem P shows that we need only prove Y (T ) ≤ f(x). A Y in T
means that we’ve got at least one variable in each pj . Therefore f(x̄1, . . . , x̄n) = 0, and
f(x1, . . . , xn) = 1.
70. Self-duality of g is obvious for arbitrary t when f is self-dual: g(x̄) = (f(x̄) ∨
[ x̄= t ])∧[ x̄ ̸= t̄ ] = (f(x)∨[x= t̄ ])∧[x ̸= t ] = (f(x)∧[x ̸= t ])∨([x= t̄ ]∧[x ̸= t ]) = g(x).

Let x = x1 . . . xj−10xj+1 . . . xn and y = x1 . . . xj−11xj+1 . . . xn; for monotonicity
we must prove that g(x) ≤ g(y). If x = t or y = t, we have g(x) = 0; if x = t̄ or y = t̄,
we have g(y) = 1; otherwise g(x) = f(x) ≤ f(y) = g(y). [European J. Combinatorics
16 (1995), 491–501; discovered independently by J. C. Bioch and T. Ibaraki, IEEE
Transactions on Parallel and Distributed Systems 6 (1995), 905–914.]
71. ⟨⟨xyz⟩uv⟩ = ⟨⟨⟨xyz⟩uv⟩uv⟩ = ⟨⟨⟨yuv⟩x⟨zuv⟩⟩uv⟩ = ⟨⟨yuv⟩⟨xuv⟩⟨⟨zuv⟩uv⟩⟩ =
⟨⟨xuv⟩⟨yuv⟩⟨zuv⟩⟩.
72. For (58), v = ⟨uvu⟩ = u. For (59), ⟨uyv⟩ = ⟨vu⟨xuy⟩⟩ = ⟨⟨vux⟩uy⟩ = ⟨xuy⟩ = y.
And for (60), ⟨xyz⟩ = ⟨⟨xuv⟩yz⟩ = ⟨x⟨uyz⟩⟨vyz⟩⟩ = ⟨xyy⟩ = y.
73. (a) If d(u, v) = d(u, x) + d(x, v), we obviously obtain a shortest path of the form
u −−− · · · −−− x −−− · · · −−− v. Conversely, if [uxv], let u −−− · · · −−− x −−− · · · −−− v be a
shortest path, with l steps to x followed by m steps to v. Then d(u, v) = l + m ≥
d(u, x) + d(x, v) ≥ d(u, v).

(b) For all z, ⟨zxu⟩ = ⟨z⟨vux⟩⟨yux⟩⟩ = ⟨⟨zvy⟩ux⟩ ∈ {⟨yux⟩, ⟨vux⟩} = {u, x}.
(c) We can assume that d(x, u) ≥ d(x, v) > 0. Let u−−−· · ·−−−y−−−v be a shortest

path, and let w = ⟨xuy⟩. Then ⟨vxw⟩ = ⟨v⟨vux⟩⟨wux⟩⟩ = ⟨⟨vvw⟩ux⟩ = ⟨vux⟩ = x,
so x ∈ [w . . v]. We have [uwy], because d(u, y) < d(u, v) and w ∈ [u . . y]. If w ̸= u
we have d(w, v) < d(u, v); hence [wxv], hence [uxv]. If w = u we have x−−−u by (b).
But d(x, u) ≥ d(x, v); therefore x−−−v, and [uxv].

(d) Let y = ⟨uxv⟩. Since y ∈ [u . . x], we have d(u, x) = d(u, y) + d(y, x) by (a)
and (c). Similarly, d(u, v) = d(u, y) + d(y, v) and d(x, v) = d(x, y) + d(y, v). But these
three equations, together with d(u, v) = d(u, x) + d(x, v), yield d(x, y) = 0. [Proc.
Amer. Math. Soc. 12 (1961), 407–414.]
74. w = ⟨yxw⟩ = ⟨yx⟨zxw⟩⟩ = ⟨yx⟨zx⟨yzw⟩⟩⟩ = ⟨⟨yxz⟩x⟨yzw⟩⟩ = ⟨x⟨xyz⟩⟨wyz⟩⟩ =
⟨⟨xxw⟩yz⟩ = ⟨xyz⟩ by (55), (55), (55), (52), (51), (53), and (50).
75. (a) If w = ⟨xxy⟩ we have [xwx] by (iii), hence w = x by (i).

(b) Axiom (iii) and part (a) tell us that [xxy] is always true. So we can set y = x
in (ii) to conclude that [uxv] ⇐⇒ [vxu]. The definition of ⟨xyz⟩ in (iii) is therefore
perfectly symmetrical between x, y, and z.

(c) By the definition of ⟨uxv⟩ in (iii), we have x = ⟨uxv⟩ if and only if [uxx], [uxv],
and [xxv]. But we know that [uxx] and [xxv] are always true.

From the Library of Melissa Nuno



ptg999

548 ANSWERS TO EXERCISES 7.1.1

(d) In this step and subsequent steps, we will construct one or more auxiliary
points of M and then use Algorithm C to derive every consequence of the betweenness
relations that are known. (The axioms have the convenient form of Horn clauses.) For
example, here we define z = ⟨xyv⟩, so that we know [uxy], [uyv], [xzy], [xzv], and
[yzv]. From these hypotheses we deduce [uzy] and [uzv]. So z = ⟨uyv⟩ = y.

(e) The hinted construction implies, among other things, [utv], [utz], [vtz], [uwv],
[uwz], [vwz]; hence t = w. (A computer program is helpful here.) Adding the hypothe-
ses [rws], [rwz], [swz] now yields [xyz] as desired; it also turns out that r = p and s = q.

(f) Let r = ⟨yuv⟩, s = ⟨zuv⟩, t = ⟨xyz⟩, p = ⟨xrs⟩, q = ⟨tuv⟩; then [pqp] flows out.
[Proc. Amer. Math. Soc. 5 (1954), 801–807. For early studies of betweenness axioms,
see E. V. Huntington and J. R. Kline, Trans. Amer. Math. Soc. 18 (1917), 301–325.]

76. Axiom (i) obviously holds, and axiom (ii) follows from commutativity and (52).
The answer to exercise 74 derives (iii) from the identity ⟨xyz⟩ = ⟨x⟨xyz⟩⟨wyz⟩⟩; so we
need only verify that formula: ⟨x⟨xyz⟩⟨wyz⟩⟩ = ⟨⟨yxz⟩x⟨wyz⟩⟩= ⟨⟨⟨yxz⟩xz⟩x⟨wyz⟩⟩ =
⟨⟨yxz⟩x⟨zx⟨wyz⟩⟩⟩ = ⟨x⟨xyz⟩⟨z⟨xyz⟩w⟩⟩ = ⟨⟨x⟨xyz⟩z⟩⟨xyz⟩w⟩ = ⟨⟨xyz⟩⟨xyz⟩w⟩.

Notes: The original treatment of median algebra by Birkhoff and Kiss in Bull.
Amer. Math. Soc. 53 (1947), 749–752, assumed (50), (51), and the short distributive
law (53). The fact that associativity (52) actually implies distributivity was not realized
until many years later; M. Kolibiar and T. Marcisová, Matematický Časopis 24 (1974),
179–185, proved it via Sholander’s axioms as in this exercise. A mechanical derivation
of (53) from (50)–(52) was found in 2005 by R. Veroff and W. McCune, using an
extension of the Otter theorem prover.

77. (a) In coordinate r−−−s of the labels, suppose l(r) has a 0 and l(s) has a 1; then
the left vertices have 0 in that coordinate. If u−−−v−−−u′, where u and u′ are on the left
but v is on the right, ⟨uu′v⟩ lies on the left. But [u . . v] ∩ [u′ . . v] = {v}, unless u = u′.

(b) This statement is obvious, by Corollary C.
(c) Suppose u −−− v and u′ −−− v′, where u and u′ are on the left, v and v′ are

on the right. Let v = v0 −−− · · · −−− vk = v′ be a shortest path, and let u0 = u,
uk = u′. All vertices vj lie on the right, by (b). The left vertex u1 = ⟨u0v1uk⟩ must
be a common neighbor of u0 and v1, since the distance d(u0, v1) = 2. (We cannot have
u1 = u0, because that would imply the existence of a shortest path from v to v′ going
through the left vertex u.) Therefore v1 has rank 1; and so do v2, . . . , vk−1, by the
same argument. [L. Nebeský, Commentationes Mathematicæ Universitatis Carolinæ
12 (1971), 317–325; M. Mulder, Discrete Math. 24 (1978), 197–204.]

(d) These steps visit all vertices v of rank 1 in order of their distance d(v, s) from s.
If such a v has a late neighbor u not yet seen, the rank of u must be 1 or 2. If the
rank is 1, u will have at least two early neighbors, namely v and the future MATE(u).
Step I8 bases its decision on an arbitrary early neighbor w of u such that w ̸= v. The
vertex x = ⟨svw⟩ has rank 1 by (c). If x = v, then u has rank 2 unless w has rank 0.
Otherwise d(x, s) < d(v, s), and the rank of w was correctly determined when x was
visited. If w has rank 1, u lies on a shortest path from v to w; if w has rank 2, w lies
on a shortest path from u to s. In both cases u and w have the same rank, by (c).

(e) The algorithm removes all edges equivalent to r−−− s, by (a) and (d). Their
removal clearly disconnects the graph; the two pieces that remain are convex by (b),
so they are connected and in fact they are median graphs. Step I7 records all of
the relevant relations between the two pieces, because all 4-cycles that disappear are
examined there. By induction on the number of vertices, each piece is properly labeled.

From the Library of Melissa Nuno



ptg999

7.1.1 ANSWERS TO EXERCISES 549

78. Every time v appears in step I4, it loses one of its neighbors uj . Each of these
edges v −−− uj corresponds to a different coordinate of the labels, so we can assume
that l(v) has the form α1k for some binary string α. The labels for u1, u2, . . . , uk
are then α01k−1, α101k−2, . . . , α1k−10. By taking componentwise medians, we can
now prove that all 2k labels of the form αβ occur for vertices in the graph, since
⟨(αβ)(αβ′)(0 . . . 0)⟩ is the bit string α(β & β′).
79. (a) If l(v) = k, exactly ν(k) smaller vertices are neighbors of v.

(b) At most ⌊n/2⌋ 1s appear in bit position j, for 0 ≤ j < ⌈lgn⌉.
(c) Suppose exactly k vertices have labels beginning with 0. At most min(k, n−k)

edges correspond to that bit position, and at most f(k) + f(n − k) other edges are
present. But

f(n) = max
0≤k≤n

(min(k, n− k) + f(k) + f(n− k)),

because the function g(m,n) = f(m+ n)−m− f(m)− f(n) satisfies the recurrence

g(2m+ a, 2n+ b) = ab+ g(m+ a, n) + g(m,n+ b) for 0 ≤ a, b ≤ 1.

It follows by induction that g(m,m) = g(m,m + 1) = 0, and that g(m,n) ≥ 0 when
m ≤ n. [Annals of the New York Academy of Sciences 175 (1970), 170–186; D. E.
Knuth, Proc. IFIP Congress 1971 (1972), 24.]
80. (a) (Solution by W. Imrich.) The graph with vertex labels 0000, 0001, 0010, 0011,
0100, 0110, 0111, 1100, 1101, 1110, 1111 cannot be labeled in any essentially different
way; but the distance from 0001 to 1101 is 4, not 2.

(b) The cycle C2m is a partial cube, because its vertices can be labeled l(k) =
1k0m−k, l(m+ k) = 0k1m−k for 0 ≤ k < m. But the bitwise median of l(0), l(m− 1),
and l(m+ 1) is 01m−20; and indeed those vertices don’t have a median, when m > 2.
81. Yes. A median graph is an induced subgraph of a hypercube, which is bipartite.
82. The general case reduces to the simple case where G has only two vertices {0, 1},
because we can operate componentwise on the median labels, and because d(u, v) is
the Hamming distance between l(u) and l(v).

In the simple case, the stated rule sets uk ← vk except when uk−1 = vk−1 =
vk+1 ̸= vk, and it is readily proved optimum. (Other optimum possibilities do exist,
however; for example, if v0v1v2v3 = 0110, we could set u0u1u2u3 = 0000.)

[This problem was motivated by the study of self-organizing data structures. F. R.
K. Chung, R. L. Graham, and M. E. Saks, in Discrete Algorithms and Complexity (Aca-
demic Press, 1987), 351–387, have proved that median graphs are the only graphs for
which uk can always be chosen optimally as a function of (v0, v1, . . . , vk+1), regardless
of the subsequent values (vk+2, . . . , vt). They have also characterized all cases for which
a given finite amount of lookahead will suffice, in Combinatorica 9 (1989), 111–131.]
83. Consider first the Boolean (two-vertex) case, and let an optimum solution be
obtainable by the recursive rules u0 ← v0 and uj ← ft+2−j(uj−1, vj , . . . , vt) for 1 ≤
j ≤ t, where each fk is a suitable Boolean function of k variables. The first function
ft+1(v0, v1, . . . , vt) actually depends on its “most remote” variable vt, because we must
have f2k+1(0, 1, 1, 0, 1, 0, 1, . . . , 0, 1, 0, x) = x when ρ = 1− ϵ and k ≥ 2.

One suitable function ft+1 can be obtained as follows: Let ft+1(0, v1, . . . , vt) = 0
if v1 = 0. Otherwise let the “runs” of the input sequence be

v0v1 . . . vt = 01ak0ak−1 . . . 1a2 0a1 or 01ak0ak−1 . . . 1a3 0a2 1a1 ,

From the Library of Melissa Nuno



ptg999

550 ANSWERS TO EXERCISES 7.1.1

where ak, . . . , a1 ≥ 1, and let αj = 2 .− ajρ = max(0, 2− ajρ) for 1 ≤ j ≤ k. Then

ft+1(0, v1, . . . , vt) = [αk .− (αk−1
.− (· · · .− (α2

.− (1 .− a1ρ)) · · ·)) = 0].

Also let ft+1(1, v1, . . . , vt) = f̄t+1(0, v̄1, . . . , v̄t), so that ft+1 is self-dual.
With a somewhat delicate proof one can show that ft+1 is also monotone.
Therefore, by Theorem P, we can apply ft+1 componentwise to the labels of an

arbitrary median graph, always staying within the graph.
84. There are 81 such functions, each of which can be represented as the median of an
odd number of elements. Seven types of vertices occur:

Type Typical vertex Cases Adjacent to Degree
1 ⟨z⟩ 5 ⟨vwxyzzz⟩ 1
2 ⟨vwxyzzz⟩ 5 ⟨z⟩, ⟨wxyzz⟩ 5
3 ⟨wxyzz⟩ 20 ⟨vwxyzzz⟩, ⟨vwxxyyzzz⟩ 4
4 ⟨vwxxyyzzz⟩ 30 ⟨xyz⟩, ⟨wxyzz⟩, ⟨vwxyyzz⟩ 5
5 ⟨vwxyyzz⟩ 10 ⟨vwxxyyzzz⟩, ⟨vwxyz⟩ 7
6 ⟨vwxyz⟩ 1 ⟨vwxyyzz⟩ 10
7 ⟨xyz⟩ 10 ⟨vwxxyyzzz⟩ 3

[Von Neumann and Morgenstern enumerated these seven types in their book Theory
of Games and Economic Behavior (1944), §52.5, in connection with the study of an
equivalent problem about systems of winning coalitions that they called simple games.
The graph for six-variable functions, which has 2646 vertices of 30 types, appears in the
paper by Meyerowitz cited in exercise 70. Only 21 of those types can be represented as
a simple median-of-odd; a vertex like ⟨⟨abd⟩⟨ace⟩⟨bcf⟩⟩, for example, has no such repre-
sentation. Let the corresponding graph for n variables have Mn vertices; P. Erdös and
N. Hindman, in Discrete Math. 48 (1984), 61–65, showed that lgMn is asymptotic to
n−1
⌊n/2⌋


. D. Kleitman, in J. Combin. Theory 1 (1966), 153–155, showed that the vertices

for distinct projection functions like x and y are always furthest apart in this graph.]
85. Every strong component must consist of a single vertex; otherwise two coordinates
would always be equal, or always complementary. Thus the digraph must be acyclic.

Furthermore, there must be no path from a vertex to its
complement; otherwise a coordinate would be constant.

When these two conditions are satisfied, we can prove that
no vertex x is redundant, by assigning the value 0 to all vertices
that precede x or x̄, assigning 1 to all vertices that follow, and
giving appropriate values to all other vertices.

(Consequently we obtain a completely different way to rep-
resent a median graph. For example, the digraph shown corresponds to the median
graph whose labels are {0000, 0001, 0010, 0011, 0111, 1010}.)

w z̄ x̄

y ȳ

x z w̄

86. Yes. By Theorem P, any monotone self-dual function maps elements of X into X.
87. Here the topological ordering 7 6 5 4 3 2 1 1 2 3 4 5 6 7 can replace (72); we get

(Consecutive inverters on the same line can, of course, be canceled out.)

From the Library of Melissa Nuno



ptg999

7.1.1 ANSWERS TO EXERCISES 551

88. A given value of d contributes at most 6⌈t/d⌉ units of delay (for 2⌈t/d⌉ clusters).
(Actually O(t) delay suffices, as observed by Omid Etesami, if we rearrange clusters
having the same d, since those can each be done in ≤ 9 units.)
89. Suppose first that the new condition is i → j while the old was i′ → j′, where
i < j and i′ < j′ and there are no complemented literals. The new module changes
x1 . . . xt to y1 . . . yt, where yi = xi ∧ xj , yj = xi ∨ xj , and yk = xk otherwise. We
certainly have yi′ ≤ yj′ when {i′, j′} ∩ {i, j} = ∅. And there is no problem if i = i′,
since yi′ = yi ≤ xi = xi′ ≤ xj′ = yj′ . But the case i = j′ is trickier: Here the relations
i′ → i and i → j imply also i′ → j; and this relation has been enforced by previous
modules, because modules have been appended in order of decreasing distance d in the
topological ordering u1 . . . u2t. Therefore yi′ = xi′ ≤ xj and yi′ ≤ xj′ = xi, hence
yi′ ≤ xi ∧ xj = yi = yj′ . A similar proof works when j = i′ or j = j′.

Finally, with complemented literals, the construction cleverly reduces the general
case to the uncomplemented case by inverting and un-inverting the bits.
90. When t = 2, does the job. The general case follows recursively from this
building block by reducing t to ⌈t/2⌉.

[The study of CI-nets, and other networks of greater generality, was initiated by
E. W. Mayr and A. Subramanian, J. Computer and System Sci. 44 (1992), 302–323.]
91. The answer does not yet seem to be known even in the special case when the
median graph is a free tree (with t+ 1 vertices), or in the monotone case when it is a
distributive lattice as in Corollary F. In the latter case, inverters may be unnecessary.
93. Let dX(u, v) be the number of edges on a shortest path between u and v, when
the path lies entirely within X. Clearly dX(u, v) ≥ dG(u, v). And if u = u0−−−u1−−−
· · ·−−−uk = v is a shortest path in G, the path u = f(u0)−−−f(u1)−−−· · ·−−−f(uk) = v
lies in X when f is a retraction from G to X; hence dX(u, v) ≤ dG(u, v).
94. If f is a retraction of the t-cube onto X, two different coordinate positions cannot
always be equal or always complementary for all x ∈ X, unless they are constant.
For if, say, all elements of X have the forms 00∗ . . . ∗ or 11∗ . . . ∗, there would be no
path between vertices of those two types, contradicting the fact that X is an isometric
subgraph (hence connected).

Given x, y, z ∈ X, let w = ⟨xyz⟩ be their median in the t-cube. Then f(w) ∈
[x . . y]∩ [x . . z]∩ [y . . z], because (for example) f(w) lies on a shortest path from x to y
in X. So f(w) = w, and we have proved that w ∈ X. [This result and its considerably
more subtle converse are due to H. J. Bandelt, J. Graph Theory 8 (1984), 501–510.]
95. False (although the author was hoping otherwise); the network at the
right takes 0001 →→ 0000, 0010 →→ 0011, 1101 →→ 0110, but nothing →→ 0010.

(The set of all possible outputs appears to have no easy char-
acterization, even when no inverters are used. For example,
the pure-comparator network at the left, constructed by Tomás Feder,
takes 000000 →→ 000000, 010101 →→ 010101, and 101010 →→ 011001, but
nothing →→ 010001. See also exercises 5.3.4–50, 5.3.4–52.)

96. No. If f is a threshold function based on real parameters w = (w1, . . . , wn) and t,
let max{w · x | f(x) = 0} = t− ϵ. Then ϵ > 0, and f is defined by the 2n inequalities
w ·x− t ≥ 0 when f(x) = 1, t−w ·x− ϵ ≥ 0 when f(x) = 0. If A is any M ×N matrix
of integers for which the system of linear inequalities Av ≥ (0, . . . , 0)T has a real-valued
solution v = (v1, . . . , vN )T with vN > 0, there also is such a solution in integers. (Proof
by induction on N .) So we can assume that w1, . . . , wn, t, and ϵ are integers.

From the Library of Melissa Nuno



ptg999

552 ANSWERS TO EXERCISES 7.1.1

[A closer analysis using Hadamard’s inequality (see Eq. 4.6.1–(25)) proves in
fact that integer weights of magnitude at most (n + 1)(n+1)/2/2n will suffice; see
S. Muroga, I. Toda, and S. Takasu, J. Franklin Inst. 271 (1961), 376–418, Theorem 16.
Furthermore, exercise 112 shows that weights nearly that large are sometimes needed.]
97. ⟨11111x1x2⟩, ⟨111x1x2⟩, ⟨1x1x2⟩, ⟨0x1x2⟩, ⟨000x1x2⟩, ⟨00000x1x2⟩.
98. We may assume that f(x1, . . . , xn) = ⟨yw1

1 . . . ywn
n ⟩, with positive integer weights wj

and with w1 + · · · + wn odd. Let δ be the minimum positive value of the 2n sums
±w1 ± · · · ± wn, with n independently varying signs. Renumber all subscripts so that
w1 + · · ·+wk −wk+1 − · · · −wn = δ. Then w1y1 + · · ·+wnyn >

1
2 (w1 + · · ·+wn)⇐⇒

w1(y1 − 1
2 ) + · · · + wn(yn − 1

2 ) > 0 ⇐⇒ w1(y1 − 1
2 ) + · · · + wn(yn − 1

2 ) > −δ/2 ⇐⇒
w1y1 + · · ·+ wnyn >

1
2 (w1 + · · ·+ wn − (w1 + · · ·+ wk − wk+1 − · · · − wn)) = wk+1 +

· · ·+ wn ⇐⇒ w1y1 + · · ·+ wkyk − wk+1ȳk+1 − · · · − wnȳn > 0.
99. We have [x1 + · · ·+ x2s−1 + s(y1 + · · ·+ y2t−2)≥ st] = [⌊(x1 + · · ·+ x2s−1)/s⌋+
y1 + · · ·+ y2t−2≥ t]; and ⌊(x1 + · · ·+ x2s−1)/s⌋ = [x1 + · · ·+ x2s−1≥ s].

(For example, ⟨⟨xyz⟩uv⟩ = ⟨xyzu2v2⟩, a quantity that we also know is equal to
⟨x⟨yuv⟩⟨zuv⟩⟩ and ⟨⟨xuv⟩⟨yuv⟩⟨zuv⟩⟩ by Eqs. (53) and (54). Reference: C. C. Elgot,
FOCS 2 (1961), 238.)
100. True, because of the preceding exercise and (45).
101. (a) When n = 7 they are x7∧x6, x6∧x5, x7∧x5∧x4, x6∧x4∧x3, x7∧x5∧x3∧x2,
x6∧x4∧x2∧x1, x7∧x5∧x3∧x1; and in general there are n prime implicants, forming
a similar pattern. (We have either xn = xn−1 or xn = x̄n−1. In the first case,
xn∧xn−1 is obviously a prime implicant. In the second case, Fn(x1, . . . , xn−1, x̄n−1) =
Fn−1(x1, . . . , xn−1); so we use the prime implicants of the latter, and insert xn when
xn−1 does not appear.)

(b) The shelling pattern (0000011, 0000110, 0001101, 0011010, 0110101, 1101010,
1010101) for n = 7 works for all n.

(c) Two of several possibilities for n = 7 illustrate the general case:

F7(x1, . . . , x7) = Y


x6

x7 x5
x6 x6 x4

x7 x5 x7 x3
x6 x6 x4 x6 x2

x7 x5 x7 x3 x7 x1

 = Y


x6

x7 x5
x6 x6 x4

x7 x5 x5 x3
x6 x6 x4 x4 x2

x7 x5 x5 x3 x3 x1

 .

[The Fibonacci threshold functions were introduced by S. Muroga, who also discovered
the optimality result in exercise 105; see IEEE Transactions EC-14 (1965), 136–148.]
102. (a) By (11) and (12), f̂(x̄0, x̄1, . . . , x̄n) is the complement of f̂(x0, x1, . . . , xn).

(b) If f is given by (75), f̂ is [(w + 1− 2t)x0 + w1x1 + · · ·+ wnxn≥w + 1− t],
where w = w1 + · · ·+wn. Conversely, if f̂ is a threshold function, so is f(x1, . . . , xn) =
f̂(1, x1, . . . , xn). [E. Goto and H. Takahasi, Proc. IFIP Congress (1962), 747–752.]
103. [See R. C. Minnick, IRE Transactions EC-10 (1961), 6–16.] We want to minimize
w1 + · · ·+ wn subject to the constraints wj ≥ 0 for 1 ≤ j ≤ n and (2e1 − 1)w1 + · · ·+
(2en−1)wn ≥ 1 for each prime implicant xe1

1 ∧· · ·∧xenn . For example, if n = 6, the prime
implicant x2 ∧x5 ∧x6 would lead to the constraint −w1 +w2−w3−w4 +w5 +w6 ≥ 1.
If the minimum is +∞, the given function is not a threshold function. (The answer to
exercise 84 gives one of the simplest examples of such a case.) Otherwise, if the solution
(w1, . . . , wn) involves only integers, it minimizes the desired size. When noninteger

From the Library of Melissa Nuno



ptg999

7.1.1 ANSWERS TO EXERCISES 553

solutions arise, additional constraints must be added until the best solution is found,
as in part (c) of the following exercise.
104. First we need an algorithm to generate the prime implicants xe1

1 ∧ · · · ∧ xenn of a
given majority function ⟨xw1

1 . . . xwn
n ⟩, when w1 ≥ · · · ≥ wn and w1 + · · ·+ wn is odd:

K1. [Initialize.] Set t ← 0. Then for j = n, n − 1, . . . , 1 (in this order), set
aj ← t, t← t+ wj , ej ← 0. Finally set t← (t+ 1)/2, s1 ← 0, and l← 0.

K2. [Enter level l.] Set l← l + 1, el ← 1, sl+1 ← sl + wl.
K3. [Below threshold?] If sl+1 < t, return to K2.
K4. [Visit a prime implicant.] Visit the exponents (e1, . . . , en).
K5. [Downsize.] Set el ← 0. Then if sl + al ≥ t, set sl+1 ← sl and go to K2.
K6. [Backtrack.] Set l← l − 1. Terminate if l = 0; otherwise go to K5 if el = 1;

otherwise repeat this step.
(a) ⟨x1x

2
2x

3
3x

5
4x

6
5x

8
6x

10
7 x

12
8 ⟩ (21 prime implicants).

(b) The optimum weights for ⟨x16−2t
0 x8

1x
4
2x

2
3x4⟩ are w0w1w2w3w4 = 10000, 31111,

21110, 32211, 11100, 23211, 12110, 13111, 01000, for 0 ≤ t ≤ 8; the other cases are dual.
(c) Here the optimum weights (w1, . . . , w10) are (29, 25, 19, 15, 12, 8, 8, 3, 3, 0)/2;

so we learn that x10 is irrelevant, and we must deal with fractional weights. Constrain-
ing w8 ≥ 2 gives integer weights (15, 13, 10, 8, 6, 4, 4, 2, 1, 0), which must be optimum
because their sum exceeds the previous sum by 2. (Only two of the 175,428 self-dual
threshold functions on nine variables have nonintegral weights minimizing w1+· · ·+wn;
the other one is ⟨x17

1 x
15
2 x

11
3 x

9
4x

7
5x

5
6x

4
7x

2
8x9⟩. The largest w1 in a minimum representa-

tion occurs in ⟨x42
1 x

22
2 x

18
3 x

15
4 x

13
5 x

10
6 x

8
7x

4
8x

3
9⟩; the largest w1 + · · · + w9 occurs uniquely

in ⟨x34
1 x

32
2 x

28
3 x

27
4 x

24
5 x

20
6 x

18
7 x

15
8 x

11
9 ⟩, which is also an example of the largest w9. See

S. Muroga, T. Tsuboi, and C. R. Baugh, IEEE Transactions C-19 (1970), 818–825.)
105. When n = 7, the inequalities generated in exercise 103 are w7+w6−w5−w4−w3−
w2−w1 ≥ 1, −w7+w6+w5−w4−w3−w2−w1 ≥ 1, w7−w6+w5+w4−w3−w2−w1 ≥ 1,
−w7 + w6 − w5 + w4 + w3 − w2 − w1 ≥ 1, w7 − w6 + w5 − w4 + w3 + w2 − w1 ≥ 1,
−w7 +w6−w5 +w4−w3 +w2 +w1 ≥ 1, w7−w6 +w5−w4 +w3−w2 +w1 ≥ 1. Multiply
them respectively by 1, 1, 2, 3, 5, 8, 5 to get w1 + · · ·+w7 ≥ 1 + 1 + 2 + 3 + 5 + 8 + 5.
The same idea works for all n ≥ 3.

106. (a) ⟨x2n−1
1 x2n−2

2 . . . xn ȳ
2n−1
1 ȳ2n−2

2 . . . ȳnz̄⟩. (By exercise 99, we could also perform
n medians-of-three: ⟨⟨ . . . ⟨xnȳnz̄⟩ . . . x2ȳ2⟩x1ȳ1⟩.)

(b) If ⟨xu1
1 xu2

2 . . . xun
n ȳv1

1 ȳv2
2 . . . ȳvnn z̄w⟩ solves the problem, 2n+1−1 basic inequal-

ities need to hold; for example, when n = 2 they are u1 + u2 − v1 + v2 − w ≥ 1,
u1 + u2 − v1 − v2 + w ≥ 1, u1 − u2 + v1 − v2 − w ≥ 1, u1 − u2 − v1 + v2 + w ≥ 1,
−u1 + u2 + v1 + v2 −w ≥ 1, −u1 + u2 + v1 − v2 +w ≥ 1, −u1 − u2 + v1 + v2 +w ≥ 1.
Add them all up to get u1 + u2 + · · ·+ un + v1 + v2 + · · ·+ vn + w ≥ 2n+1 − 1.
107. f N(f) Σ(f)

⊥ 0 (0, 0)
∧ 1 (1, 1)
⊃ 1 (1, 0)

2 (2, 1)

f N(f) Σ(f)
⊂ 1 (0, 1)

2 (1, 2)
⊕ 2 (1, 1)
∨ 3 (2, 2)

f N(f) Σ(f)
∨ 1 (0, 0)
≡ 2 (1, 1)

2 (1, 0)
⊂ 3 (2, 1)

f N(f) Σ(f)
2 (0, 1)

⊃ 3 (1, 2)
∧ 3 (1, 1)
⊤ 4 (2, 2)

Notice that ⊕ and ≡ have the same parameters N(f) and Σ(f); they are the only
Boolean binary operations that aren’t threshold functions.

From the Library of Melissa Nuno



ptg999

554 ANSWERS TO EXERCISES 7.1.1

108. If Σ(g) = (s0, s1, . . . , sn), the value of g is 1 in s0 cases when x0 = 1 and in 2n−s0
cases when x0 = 0. We also have Σ(f0) + Σ(f1) = (s1, . . . , sn), and

Σ(f0) =
1

x1=0

. . .

1
xn=0

(x̄1, . . . , x̄n)g(0, x̄1, . . . , x̄n)

=
1

x1=0

. . .
1

xn=0

((1, . . . , 1)− (x1, . . . , xn))(1− g(1, x1, . . . , xn))

= (2n−1 − s0, . . . , 2n−1 − s0) + Σ(f1).

So the answers, for n > 0, are (a) N(f0) = 2n − s0, Σ(f0) = 1
2 (s1 − s0 + 2n−1, . . . ,

sn − s0 + 2n−1); (b) N(f1) = s0, Σ(f1) = 1
2 (s1 + s0 − 2n−1, . . . , sn + s0 − 2n−1).

[Equivalent results were presented by E. Goto in lectures at MIT in 1963.]
109. (a) a1 + · · ·+ ak ≥ b1 + · · ·+ bk if and only if k− a1− · · ·− ak ≤ k− b1− · · ·− bk.

(b) Let α+ = (a1, a1+a2, . . . , a1+ · · ·+an). Then the vector (c1, . . . , cn) obtained
by componentwise minimization of α+ and β+ is (α∧β)+. (Clearly cj = cj−1 +aj or bj .)

(c) Proceed as in (b) but with componentwise maximization; or take ᾱ ∧ β̄.
(d) True, because max and min satisfy these distributive laws. (In fact, we ob-

tain a distributive mixed-radix majorization lattice in a similar way from the set of
all n-tuples a1 . . . an with 0 ≤ aj < mj for 1 ≤ j ≤ n. R. P. Stanley has observed
that Fig. 8 is also the lattice of order ideals of the triangular grid shown here.)

(e) α1 covers α0 and α10β covers α01β. [This characterization is due to R. O.
Winder, IEEE Trans. EC-14 (1965), 315–325, but he didn’t prove the lattice property.
The lattice is often called M(n); see B. Lindström, Nordisk Mat. Tidskrift 17 (1969),
61–70; R. P. Stanley, SIAM J. Algebraic and Discrete Methods 1 (1980), 177–179.]

(f) Because of (e) we have r(α) = na1 + (n− 1)a2 + · · ·+ an.
(g) The point is that 0β ⪰ 0α if and only if β ⪰ α and that 1β ⪰ 0α if and only

if 1β ⪰ 10 . . . 0 ∨ 0α = 1α′.
(h) That is, how many a1 . . . an have the property that a1 . . . ak contains no more

1s than 0s? The answer is


n
⌊n/2⌋


; see, for example, exercise 2.2.1–4 or 7.2.1.6–42(a).

110. (a) If x ⊆ y then x ⪯ y, hence f(x) ≤ f(y); QED.
(b) No; a threshold function need not be monotone (see (79)). But we can show

that f is regular if we also require wn ≥ 0: For if f(x) = 1 and y covers x we then have
w · y ≥ w · x.

(c) Whenever f(x) = 1 and xj < xj+1, we have f(y) = 1 when y covers x with
xj ↔ xj+1; hence sj ≥ sj+1. (This argument holds even when wn < 0.)

(d) No; consider, for example, ⟨x1x
2
2x

2
3⟩, which equals ⟨x1x2x3⟩. Counterexamples

can arise even when the weights minimize w1 + · · · + wn, because the solution to the
linear program in exercise 103 is not always unique. One such case, found by Muroga,
Tsuboi, and Baugh, is ⟨x17

1 x
9
2x

8
3x

6
4x

7
5x

5
6x

3
7x

2
8x

2
9⟩, a function that is actually symmetric

in x4 and x5. But if sj > sj+1 we must have wj > wj+1, because of (c).
111. (a) Find an optimum self-dual function f pointwise as in exercise 14; in case of
ties, choose f(x1, . . . , xn) = x1. Thus f(x1, . . . , xn) = [rx1

1 . . . rxnn ≥
√
r1 . . . rn ], except

that ‘≥’ becomes ‘>’ when x1 = 0. This function is regular when r1 ≥ · · · ≥ rn ≥ 1.
(b) Let g be the regular, self-dual function constructed in (a). If f is a given

regular, self-dual function, we want to verify that f(x) ≤ g(x) for all vectors x; this
will imply that f = g, because both functions are self-dual.

From the Library of Melissa Nuno



ptg999

7.1.1 ANSWERS TO EXERCISES 555

Suppose f(x) = 1, and let y ⪯ x be minimal such that f(y) = 1. If we have
verified that g(y) = 1, then indeed g(x) = 1, as desired. [See K. Makino and T. Kameda,
SIAM Journal on Discrete Mathematics 14 (2001), 381–407.]

For example, there are only seven self-dual regular Boolean functions when n = 5,
generated by the following minimal elements in Fig. 8: 10000; 01111, 10001; 01110,
10010; 01101, 10011, 10100; 01100; 01011, 11000; 00111. So an optimum coterie can
be found by examining only a few function values.

(c) Suppose 1 > p1 ≥ · · · ≥ pr ≥ 1
2 > pr+1 ≥ · · · ≥ pn > 0. Let fk(x1, . . . , xn) be

the kth monotone, self-dual function and Fk(x1, . . . , xn) its integer multilinear represen-
tation. We want to find the optimum availability G(p1, . . . , pn) = maxk Fk(p1, . . . , pn).
If p1 ≤ p′1, . . . , pn ≤ p′n, we have Fk(p1, . . . , pn) ≤ Fk(p′1, . . . , p′n) by exercise 12(e);
hence G(p1, . . . , pn) ≤ G(p′1, . . . , p′n).

Therefore if 0 < r < n we have

G(p1, . . . , pn) ≤ G(p1, . . . , pr,
1
2 , . . . ,

1
2 ).

And the latter is F (p1, . . . , pr,
1
2 , . . . ,

1
2 ), derived from these larger probabilities as in

part (a). This function does not depend on (xr+1, . . . , xn), so it gives the optimum.
If r = 0 the problem seems to be deeper. We have G(p1, . . . , pn) ≤ G(p1, . . . , p1);

so we can conclude that the optimum coterie is f(x1, . . . , xn) = x1 in this case if we
can show that Fk(p, . . . , p) ≤ p for all k whenever p < 1

2 . In general Fk(p, . . . , p) =
m cmp

m(1 − p)n−m, where cm is the number of vectors x such that fk(x) = 1 and
νx = m. Since fk is self-dual we have cm + cn−m =


n
m


, for all k. And the Erdős–

Ko–Rado theorem (exercise 7.2.1.3–111) tells us that we have cm ≤

n−1
m−1


for any

intersecting family of m-sets when m ≤ n/2. The result follows.
[See Y. Amir and A. Wool, Information Processing Letters 65 (1998), 223–228.]

112. (a) The leading terms are respectively 0, +xy, −xy, +x, −xy, +y, −2xy, −xy,
+xy, +2xy, −y, +xy, −x, +xy, −xy, 1; so F (f) = 1 when f is ∧, , , ∨, ≡, ⊂, ⊃, ⊤.

(b) The coefficient corresponding to exponents 01101, say, is f0∗∗0∗ in the notation
of answer 12; it is a linear combination of truth table entries, always lying in the range
⌈−2k−1⌉ ≤ f0∗∗0∗ ≤ ⌈2k−1⌉ when there are k asterisks. Thus the leading coefficient is
positive if and only if the mixed-radix number

f∗∗...∗,

2m+1,
f0∗...∗,

2m−1+1,
. . . ,

. . . ,

f∗0...0,

21+1,
f00...0

20+1


is positive, where the f ’s are arranged in reverse order of Chase’s sequence and the
radix 2k + 1 corresponds to an f with k asterisks. For example, when m = 2 we have
F (f) = 1 if and only if the sum 18f∗∗ + 6f0∗ + 2f∗0 + f00 = 18(f11 − f01 − f10 + f00) +
6(f01 − f00) + 2(f10 − f00) + f00 = 18f11 − 12f01 − 16f10 + 11f00 is positive; so the
threshold function can be written ⟨f18

11 f̄
12
01 f̄

16
10 f

11
00 ⟩.

(In this particular case the much simpler expression ⟨f11f11f̄01f̄10f00⟩ is actually
valid. But part (c) will show that when m is large we can’t do a great deal better.)

(c) Suppose F (f) = [α vα(fα − 1
2 ) > 0], where the sum is over all n = 2m

binary strings α of length m and where each vα is an integer weight. Define

wα =

β

(−1)ν(α .−β)vβ and Fα =

β

(−1)ν(α .−β)fβ − 2m−1[α= 00 . . . 0];

thus, for example, w01 = −v00 + v01 − v10 + v11 and F11 = f00 − f01 − f10 + f11. One
can show that F1k0l = 2lf∗k0l , if Fα = 0 whenever ν(α) > k > 0; therefore the signs

From the Library of Melissa Nuno



ptg999

556 ANSWERS TO EXERCISES 7.1.1

of the transformed truth coefficients Fα determine the sign of the leading coefficient in
the multilinear representation. Furthermore, we now have F (f) = [α wαFα > 0].

The general idea of the proof is to choose test functions f from which we can derive
properties of the transformed weights wα. For example, if k ≥ 0 and f(x1, . . . , xm) =
x1 ⊕ · · · ⊕ xk ⊕ [k even], we find Fα = 0 for all α except that F1k0m−k = 2m−1. The
multilinear representation of that function has leading term ⌈2k−1⌉x1 . . . xk; hence we
can conclude that w1k0m−k > 0, and in a similar way that wα > 0 for all α. In general
if m changes to m+1 but f does not depend on xm+1, we have Fα0 = 2Fα and Fα1 = 0.

The test function x2 ⊕ · · · ⊕ xm ⊕ x1x̄2 . . . x̄m proves that

w1m > (2m−1−1)w01m−1 +
m−1
k=1

w1k01m−1−k + smaller terms,

where the smaller terms involve only wα with ν(α) ≤ m − 2. In particular, w11 >
w01 + w10 + w00. The test function x1 ⊕ · · · ⊕ xm−1 ⊕ x̄1 . . . x̄m−2(xm−1 ⊕ x̄m) proves

w1m−201 > (2m−2−1)w1m−210 +
m−3
k=0

(w1k01m−3−k10 + w1k01m−3−k01) + smaller terms,

where the smaller terms this time have ν(α) ≤ m − 3. In particular, w101 > w110 +
w010 + w001. By permuting subscripts, we obtain similar inequalities leading to

wαj
> (2ν(αj)−1 − 1)wαj−1 for 0 < j < 2m,

because the w’s begin to grow rapidly. But we have vα =

β(−1)ν(β .−α)wβ/n;

hence |vα| = w11...1/n + O(w11...1/n
2). [SIAM J. Discrete Math. 7 (1994), 484–492.

Important generalizations of this result have been obtained by N. Alon and V. H. Vũ,
J. Combinatorial Theory A79 (1997), 133–160.]
113. The stated g3 is S2,3,6,8,9 because the stated g2 is S2,3,4,5,8,9,10,11,12.

For the more difficult function S1,3,5,8, let g1 = [νx≥ 6]; g2 = [νx≥ 3]; g3 =
[νx− 5g1 − 2g2≥ 2] = S2,4,5,9,10,11,12; g4 = [2νx− 15g1 − 9g3≥ 1] = S1,3,5,8. [See
M. A. Fischler and M. Tannenbaum, IEEE Transactions C-17 (1968), 273–279.]
114. [4x+ 2y + z ∈{3, 6}] = (x̄∧y∧z) ∨ (x∧y∧z̄). In the same way, any Boolean
function of n variables is a special case of a symmetric function of 2n − 1 variables.
[See W. H. Kautz, IRE Transactions EC-10 (1961), 378.]
115. Both sides are self-dual, so we may assume that x0 = 0. Then

sj = [xj + · · ·+ xj+m−1 >xj+m + · · ·+ xj+2m−1 ].

If x1 + · · ·+x2m is odd, we have sj = s̄j+m; hence s1 + · · ·+s2m = m and the result is 1.
But if x1 + · · ·+ x2m is even, the difference xj + · · ·+ xj+m−1 − xj+m − · · · − xj+2m−1
will be zero for at least one j ≤ m; that makes sj = sj+m = 0, so we will have
s1 + · · ·+ s2m < m.
116. (a) It’s an implicant if and only if f(x) = 1 whenever j ≤ νx ≤ n− k + j. It’s a
prime implicant if and only if we also have f(x) = 0 when νx = j−1 or νx = n−k+j+1.

(b) Consider the string v = v0v1 . . . vn such that f(x) = vνx. By part (a), there
are


a+b+c
a,b,c


prime implicants when v = 0a1b+10c. In the stated case, a = b = c = 3, so

there are 1680 prime implicants.

From the Library of Melissa Nuno



ptg999

7.1.1 ANSWERS TO EXERCISES 557

(c) For a general symmetric function, we add together the prime implicants for
each run of 1s in v. Clearly there are more for v = 0a+11b+10c−1 than for v = 0a1b+10c
when a < c− 1; so v contains no two consecutive 0s when the maximum is reached.

Let b̂(m,n) be the maximum number of prime implicants possible when vm = 1
and vj = 0 for m < j ≤ n. Then when m ≤ 1

2n we have

b̂(m,n) = max
0≤k≤m


n

k,m− k, n−m


+ b̂(k − 2, n)


=


n

⌈m/2⌉, ⌊m/2⌋, n−m


+ b̂(⌈m/2⌉ − 2, n),

with b̂(−2, n) = b̂(−1, n) = 0. And the overall maximum is

b̂(n) =


n

n0, n1, n2


+ b̂(n1 − 2, n) + b̂(n2 − 2, n), nj =


n+ j

3


.

In particular we have b̂(9) = 1698, with the maximum occurring for v = 1101111011.
(d) By Stirling’s approximation, b̂(n) = 3n+3/2/(2πn) +O(3n/n2).
(e) In this case the appropriate recurrence for m < ⌈n/2⌉ is

b̃(m,n) = max
0≤k≤m


n

k,m− k, n−m


+


n

k − 1, 0, n− k + 1


+ b̃(k − 2, n)


=


n

⌈m/2⌉, ⌊m/2⌋, n−m


+


n

⌈m/2⌉ − 1


+ b̃(⌈m/2⌉ − 2, n)

and b̃(n) = b̃(⌈n/2⌉ − 1, n) maximizes min(prime implicants(f), prime implicants(f̄)).
We have (b̃(1), b̃(2), . . . ) = (1, 1, 4, 5, 21, 31, 113, 177, 766, 1271, 4687, 7999, 34412, . . . );
for example, b̃(9) = 766 corresponds to S0,2,3,4,8(x1, . . . , x9). Asymptotically, b̃(n) =
2(3n+3+(n mod 2))/2/(2πn) +O(23n/2/n2).

References: Summaries, Summer Inst. for Symbolic Logic (Dept. of Math., Cor-
nell Univ., 1957), 211–212; B. Dunham and R. Fridshal, J. Symbolic Logic 24 (1959),
17–19; A. P. Vikulin, Problemy Kibernetiki 29 (1974), 151–166, which reports on work
done in 1960; Y. Igarashi, Transactions of the IEICE of Japan E62 (1979), 389–394.
117. The maximum number of subcubes of the n-cube, with none contained in another,
is obtained when we choose all subcubes of dimension ⌊n/3⌋. (It is also obtained by
choosing all subcubes of dimension ⌊(n + 1)/3⌋; for example, when n = 2 we can
choose either {0∗, 1∗, ∗0, ∗1} or {00, 01, 10, 11}.) Hence b∗(n) =


n

⌊n/3⌋

2n−⌊n/3⌋ =

3n+1/
√

4πn+O(3n/n3/2). [See the paper of Vikulin in the previous answer, pages 164–
166; A. K. Chandra and G. Markowsky, Discrete Math. 24 (1978), 7–11; N. Metropolis
and G. C. Rota, SIAM J. Applied Math. 35 (1978), 689–694.]
118. Consider two functions equivalent if we can obtain one from the other by comple-
menting and/or permuting variables, but not complementing the function value itself.
Such functions clearly have the same number of prime implicants; this equivalence rela-
tion is studied further in answer 125 below. A computer program based on exercise 30
produces the following results:

m Classes Functions
0 1 1
1 5 81
2 18 1324
3 46 6608
4 87 14536

m Classes Functions
5 87 17472
6 70 12696
7 43 7408
8 24 3346
9 10 1296

m Classes Functions
10 7 632
11 1 96
12 2 24
13 1 16
14 0 0

From the Library of Melissa Nuno



ptg999

558 ANSWERS TO EXERCISES 7.1.1

And here are the corresponding statistics for functions of five variables:

m Classes Functions
0 1 1
1 6 243
2 37 14516
3 244 318520
4 1527 3319580
5 6997 19627904
6 23434 73795768
7 57048 190814016
8 105207 362973410
9 152763 538238660
10 183441 652555480

m Classes Functions
11 186447 666555696
12 165460 590192224
13 129381 459299440
14 91026 319496560
15 57612 199792832
16 33590 113183894
17 17948 58653984
18 8880 27429320
19 3986 11597760
20 1795 4548568
21 720 1633472

m Classes Functions
22 338 608240
23 130 197440
24 71 75720
25 37 28800
26 15 10560
27 6 2880
28 4 1040
29 2 640
30 2 48
31 2 64
32 1 16

119. Several authors have conjectured that b(n) = b̂(n); M. M. Gadzhiev has proved
that equality holds for n ≤ 6 [Diskretny̆ı Analiz 18 (1971), 3–24].
120. (a) Every prime implicant is a minterm, since no adjacent points of the n-cube
have the same parity. So the full disjunctive form is the only decent DNF in this case.

(b) Now all prime implicants consist of two adjacent points. We must include the
14 subcubes 0j∗06−j and 1j∗16−j for 0 ≤ j ≤ 6, in order to cover the points with νx = 1
and νx = 6. The other

7
3


+
7

4


= 70 points can be covered by 35 well-chosen prime
implicants (see, for example, exercise 6.5–1, or the “Christmas tree pattern” in Section
7.2.1.6). Thus the shortest DNF has length 49. [An ingeniously plausible but fallacious
argument that 70 prime implicants are necessary was presented by S. B. Yablonsky in
Problemy Kibernetiki 7 (1962), 229–230.]

(c) For each of 2n−1 choices of (x1, . . . , xn−1) we need at most one implicant to
account for the behavior of the function with respect to xn.

[Asymptotically, almost all Boolean functions of n variables have a shortest DNF
with Θ(2n/(logn log logn)) prime implicants. See R. G. Nigmatullin, Diskretny̆ı Analiz
10 (1967), 69–89; V. V. Glagolev, Problemy Kibernetiki 19 (1967), 75–94; A. D.
Korshunov, Metody Diskretnogo Analiza 37 (1981), 9–41; N. Pippenger, Random
Structures & Algorithms 22 (2003), 161–186.]
121. (a) Let x = x1 . . . xm and y = y1 . . . yn. Since f is a function of (νx, νy), there
are altogether 2(m+1)(n+1) possibilities.

(b) In this case νx ≤ νx′ and νy ≤ νy′ implies f(x, y) ≤ f(x′, y′). Every such
function corresponds to a zigzag path from a0 = (− 1

2 , n+ 1
2 ) to am+n+2 = (m+ 1

2 ,− 1
2 ),

with aj = aj−1 + (1, 0) or aj = aj−1− (0, 1) for 1 ≤ j ≤ m+n+ 2; we have f(x, y) = 1
if and only if the point (νx, νy) lies above the path. So the number of possibilities is
the number of such paths, namely


m+n+2
m+1


.

(c) Complementing x and y changes νx to m− νx and νy to n− νy. So there are
no such functions when m and n are both even; otherwise there are 2(m+1)(n+1)/2.

(d) The path in (b) must now satisfy aj+am+n+2−j = (m,n) for 0 ≤ j ≤ m+n+2.
Hence there are

⌈m/2⌉+⌈n/2⌉
⌈m/2⌉


[m odd or n odd] such functions. For example, the

following ten cases arise when m = 3 and n = 6:

From the Library of Melissa Nuno



ptg999

7.1.1 ANSWERS TO EXERCISES 559

122. A function of this kind is regular with the x’s to the left of the y’s if and only if
the zigzag path does not contain two points (x, y) and (x+ 2, y) with 0 < y < n; it is
regular with the y’s left of the x’s if and only if the zigzag path does not contain both
(x, y + 2) and (x, y) with 0 < x < m. It is a threshold function if and only if there is
a straight line through the point (m/2, n/2) with the property that (s, t) is above the
line if and only if (s, t) is above the path, for 0 ≤ s ≤ m and 0 ≤ t ≤ n. So cases 5
and 8, illustrated in the previous answer, fail to be regular; cases 1, 2, 3, 7, 9, and 10
are threshold functions. The regular non-threshold functions that remain can also be
expressed as follows: ((x1 ∨ x2 ∨ x3)∧ ⟨x1x2x3y1y2y3y4y5y6⟩)∨ (x1 ∧ x2 ∧ x3) (case 4);
⟨00x1x2x3y1y2y3y4y5y6⟩ ∨ (⟨x1x2x3⟩ ∧ ⟨11x1x2x3y1y2y3y4y5y6⟩) (case 6).
123. Self-dual regular functions are relatively easy to list, for small n, but the numbers
grow rapidly: When n = 9 there are 319,124 of them, found by Muroga, Tsuboi, and
Baugh in 1967, and when n = 10 there are 1,214,554,343 (see exercise 7.1.4–75). The
corresponding numbers for n ≤ 6 appear in Table 5, because all such functions are
threshold functions when n < 9; there are 135 when n = 7, and 2470 when n = 8.

The threshold condition can be tested quickly for any such function by improving
on the method of exercise 103, because constraints are needed only for the minimal
vectors x (with respect to majorization) such that f(x) = 1.

The number θn of n-variable threshold functions is known to satisfy lg θn =
n2−O(n2/logn); see Yu. A. Zuev, Matematicheskie Voprosy Kibernetiki 5 (1994), 5–61.
124. The 222 equivalence classes listed in Table 5 include 24 classes of size 2n+1n! =
768; so there are 24×768 = 18432 answers to this problem. One of them is the function
(w ∧ (x ∨ (y ∧ z)))⊕ z.
125. 0; x; x∧y; x∧y∧z; x∧ (y∨z); x∧ (y⊕z). (These functions are x∧f(y, z), where
f runs through the equivalence classes of two-variable functions under permutation
and/or complementation of variables but not of the function values. In general, let
f ≃ g mean that f is equivalent to g in that weaker sense, but write f ∼= g if they are
equivalent in the sense of Table 5. Then x∧f ∼= x∧g if and only if f ≃ g, assuming that
f and g are independent of the variable x. For it’s easy to see that (x ∧ f) ≃ (x̄ ∨ ḡ)
is impossible. And if (x ∧ f) ≃ (x ∧ g), we can prove that f ≃ g by showing that,
if σ is a signed permutation of {x0, . . . , xn} and if x = x1 . . . xn, then the identity
x0 ∧ f(x) = (x0σ) ∧ g(xσ) implies f(x) = g(xστ), where τ interchanges x0 ↔ x0σ.
Consequently the bottom line of Table 5 enumerates equivalence classes under ≃, but
with n increased by 1; there are, for example, 402 such classes of 4-variable functions.)
126. (a) The function is canalizing if and only if it has a prime implicant with at most
one literal, or a prime clause with at most one literal.

(b) The function is canalizing if and only if at least one of the components of
Σ(f) is equal to 0, 2n−1, N(f), or N(f) − 2n−1. [See I. Shmulevich, H. Lähdesmäki,
and K. Egiazarian, IEEE Signal Processing Letters 11 (2004), 289–292, Proposition 6.]

(c) If, say, ∨(f) = y1 . . . yn with yj = 0, then f(x) = 0 whenever xj = 1.
Therefore f is canalizing if and only if we don’t have ∨(f) = ∨(f̄) = 1 . . . 1 and ∧(f) =
∧(f̄) = 0 . . . 0. With this test one can prove that many functions are noncanalizing
when their value is known at only a few points.
127. (a) Since a self-dual function f(x1, . . . , xn) is true at exactly 2n−1 points, it is
canalizing with respect to the variable xj if and only if f(x1, . . . , xn) = xj or x̄j .

(b) A definite Horn function is clearly canalizing if (i) it contains any clause with
a single literal, or (ii) some literal occurs in every clause. Otherwise it is not canalizing.
For we have f(0, . . . , 0) = f(1, . . . , 1) = 1, because (i) is false; and if xj is any variable,

From the Library of Melissa Nuno



ptg999

560 ANSWERS TO EXERCISES 7.1.1

there is a clause C0 not containing x̄j and a clause C1 not containing xj , because (ii) is
false. By choosing appropriate values of the other variables, we can make C0 ∧C1 false
when xj = 0 and also when xj = 1.
128. For example, (x1 ∧ · · · ∧ xn) ∨ (x̄1 ∧ · · · ∧ x̄n).

129.
n
k=1(−1)k+1n

k


22n−k+k+1 − 2(n − 1) − 4(nmod 2) = n22n−1+2 + O(n222n−2

).
[See W. Just, I. Shmulevich, and J. Konvalina, Physica D197 (2004), 211–221.]
130. (a) If there are an functions of n or fewer variables, but bn functions of exactly n
variables, we have an =


k


n
k


bk. Therefore bn =


k(−1)n−k


n
k


ak. (This rule, noted

by C. E. Shannon in Trans. Amer. Inst. Electrical Engineers 57 (1938), 713–723, §4,
applies to all rows of Table 3, except for the case of symmetric functions.) In particular,
the answer sought here is 168− 4 · 20 + 6 · 6− 4 · 3 + 2 = 114.

(b) If there are a′n essentially distinct functions of n or fewer variables, and b′n of
exactly n variables, we have a′n =

n
k=0 b

′
k. Hence b′n = a′n − a′n−1, and the answer in

this case is 30− 10 = 20.
131. Let there be h(n) Horn functions and k(n) Krom functions. Clearly lg h(n) ≥

n
⌊n/2⌋


and lg k(n) ≥


n
2

. V. B. Alekseyev [Diskretna⁀ıa Matematika 1 (1989), 129–136]

has proved that lg h(n) =


n
⌊n/2⌋


(1 +O(n−1/4 logn)). B. Bollobás, G. Brightwell, and

I. Leader [Israel J. Math. 133 (2003), 45–60] have proved that lg k(n) ∼ 1
2n

2.
132. (a) The hint is true because


y s(y)s(y⊕z) =


w,x,y(−1)f(w)+w·y+f(x)+x·(y+z) =

2n

w,x(−1)f(w)+f(x)+x·z[x=w]. Now suppose that f(x) = g(x) for 2n−1 + k values

of x; then f(x) = g(x)⊕ 1 for 2n−1 − k values of x. But if |k| < 2n/2−1 for all affine g,
we would have |s(y)| < 2n/2 for all y, contradicting the hint when z = 0.

(b) Given y0, y1, . . . , yn, there are exactly 2n/2((y1y2 + y3y4 + · · ·+ yn−1yn + 1 +
+y0+h(y1, y3, . . . , yn−1)) mod 2) solutions to f(x) = (y0+x·y) mod 2 when x2k = y2k−1
for 1 ≤ k ≤ n/2, and there are 2n/2−1 solutions for each of the other 2n/2 − 1 values
of (x2, x4, . . . , xn). So there are 2n−1 ± 2n/2−1 solutions altogether. (This argument
proves, in fact, that (g(x1, x3, . . . , x2n−1) · (x2, x4, . . . , x2n) + h(x2, x4, . . . , x2n)) mod 2
is bent whenever g(x1, x3, . . . , x2n−1) is a permutation of all 2n/2-bit vectors.)

(c) The argument in part (a) proves that f(x) is bent if and only if s(y) =
2n/2(−1)g(y) for some Boolean function g(y). This function g, the Fourier/Hadamard
transform of f , is also bent, because


y(−1)g(y)+w·y = 2−n/2

x,y(−1)f(x)+x·y+w·y =
2n/2

x(−1)f(x)[x=w] = 2n/2(−1)f(w) for all w. The hint now tells us that we have
y(−1)g(y)+g(y⊕z) = 0 for all nonzero z, and the same holds for f .

Conversely, assume that f(x) satisfies the stated condition. Then we have

s(y)2 =

x,t

(−1)f(x)+x·y+f(x⊕t)+(x⊕t)·y =

t

(−1)t·y

x

(−1)f(x)+f(x⊕t) = 2n

for all y.
(d) By exercise 11, the term x1 . . . xr is present if and only if the equation

f(x1, . . . , xr, 0, . . . , 0) = 1 has an odd number of solutions, and an equivalent condition
is (x1,...,xr

(−1)f(x1,...,xr,0,...,0)) mod 4 = 2. We’ve seen in part (c) that this sum is

2−n 
x1,...,xr,y

s(y)(−1)x1y1+···+xryr = 2r−n


yr+1,...,yn

s(0, . . . , 0, yr+1, . . . , yn).

If r = n, the latter sum is ±2n/2; otherwise it contains an even number of summands,
each of which is ±2r−n/2. So the result is a multiple of 4.

From the Library of Melissa Nuno



ptg999

7.1.2 ANSWERS TO EXERCISES 561

[Bent functions were introduced by O. S. Rothaus in 1966; his privately circulated
paper was eventually published in J. Combinatorial Theory A20 (1976), 300–305. J. F.
Dillon, Congressus Numerantium 14 (1975), 237–249, discovered additional families
of bent functions, and many other examples have subsequently been found when
n ≥ 8 and n is even. Bent functions don’t exist when n is odd, but a function like
g(x1, . . . , xn−1)⊕xn∧h(x1, . . . , xn−1) has distance 2n−1−2(n−1)/2 from all affine func-
tions when g and g ⊕ h are bent. A better construction for the case n = 15 was found by
N. J. Patterson and D. H. Wiedemann, IEEE Transactions IT-29 (1983), 354–356, IT-
36 (1990), 443, achieving distance 214−108. S. Kavut and M. Diker Yücel, Information
and Computation 208 (2010), 341–350, have achieved distance 28 − 14 when n = 9.]

133. Let pk = 1/(22n−k

+1), so that p̄k = 22n−k

/(22n−k

+1). [Ph.D. thesis (MIT, 1994).]

SECTION 7.1.2
1. ((x1 ∨ x4) ∧ x2) ≡ (x1 ∨ x3).
2. (a) (w ⊕ (x ∧ y))⊕ ((x⊕ y) ∧ z); (b) (w ∧ (x ∨ y)) ∧ ((x ∧ y) ∨ z).
3. [Doklady Akademii Nauk SSSR 115 (1957), 247–248.] Construct a k × n matrix

whose rows are the vectors x where f(x) = 1. By permuting and/or complementing
variables, we may assume that the top row is 1 . . . 1 and that the columns are sorted.
Suppose there are l distinct columns. Then f = g ∧ h, where g is the AND of the
expressions (xj−1 ≡ xj) over all 1 < j ≤ n such that column j − 1 equals column j,
and h is the OR of k minterms of length l, using one variable from each group of equal
columns. For example, if n = 8 and if f is 1 at the k = 3 points 11111111, 00001111,
00110111, then l = 4 and f(x) equals (x1 ≡ x2) ∧ (x3 ≡ x4) ∧ (x6 ≡ x7) ∧ (x7 ≡ x8) ∧
((x1∧x3∧x5∧x6)∨ (x̄1∧ x̄3∧x5∧x6)∨ (x̄1∧x3∧ x̄5∧x6)). The length of this formula
in general is 2n+ (k − 2)l − 1, and we have l ≤ 2k−1.

Notice that, if k is large, we get shorter formulas by writing f(x) as a disjunction
f1(x) ∨ · · · ∨ fr(x), where each fj has at most ⌈k/r⌉ 1s. Thus

L(f) ≤ min
r≥1

(r − 1 + (2n+ ⌈k/r − 2⌉2⌈k/r−1⌉)r).

4. The first inequality is obvious, because a binary tree of depth d has at most
1 + 2 + · · ·+ 2d−1 = 2d − 1 internal nodes.

The hint follows when we let ft be the formula of size L(f)−L(g)− 1 that arises
when g is replaced by t. For 1 ≤ k < L(f) let gk be a minimal subformula of size ≥ k.
Then gk? fk1: fk0 is obtained from a tree that has gk, fk1, and fk0 on level 2.

Let dr = max{D(f) | L(f) = r }. Since the children of gk appear on level 3 and
have size < k, we have dr ≤ minr−1

k=1 max(3 + dk−1, 2 + dr−k−1) for r ≥ 3. By induction
on r it follows that dr ≤ l when r ≤ bl, where bl = l for 0 ≤ l ≤ 2 and bl = bl−2+bl−3+2
for l ≥ 3. We also have bl + 2 = (8Pl + 18Pl+1 + 11Pl+2)/23 = cχl +O(0.87l) in terms
of the Perrin numbers of exercise 7.1.4–15, where c = (2 + 4χ+ 3χ2)/(3 + 2χ) ≈ 2.224.
Hence dr < α lg r when r > 1. [See P. M. Spira, Hawaii Int. Conf. Syst. Sci. 4
(1971), 525–527; R. Brent, D. Kuck, and K. Maruyama, IEEE C-22 (1973), 532–
534. In JACM 23 (1976), 534–543, D. E. Muller and F. P. Preparata proved that
D(f) ≤ β lgL(f) +O(1), where β = 1/ lg z ≈ 2.0807, z4 = 2z + 1. Is β optimum?]

5. Let g0 = 0, g1 = x1, and gj = xj ∧ (xj−1 ∨ gj−2) for j ≥ 2. Then Fn = gn ∨ gn−1,
with cost 2n− 2 and depth n. [These functions gj also play a prominent role in binary
addition; see exercises 42 and 44 for ways to compute them with depth O(logn).]

6. True: Consider the cases y = 0 and y = 1.

From the Library of Melissa Nuno



ptg999

562 ANSWERS TO EXERCISES 7.1.2

7. x̂5 = x1∨x4, x̂6 = x2∧x̂5, x̂7 = x1∨x3, x̂8 = x̂6⊕x̂7. (The original chain computes
the “random” function (6); see exercise 1. The new chain computes the normalization
of that function, namely its complement.)

8. The desired truth table consists of blocks of 2n−k 0s alternating with blocks of
2n−k 1s, as in (7). Therefore, if we multiply by 22n−k

+ 1 we get xk + (xk ≪ 2n−k),
which is all 1s.

9. When finding L(f) = ∞ in step L6, we can store g and h in a record associated
with f . Then a recursive procedure will be able to construct a minimum-length formula
for f from the respective formulas for g and h.
10. In step L3, use k = r−1 instead of k = r−1− j. Also change L to D everywhere.
11. The only subtle point is that j should decrease in step U3; then we’ll never have
ϕ(g) &ϕ(h) ̸= 0 when j = 0, so all cases of cost r−1 will be discovered before we begin
to look at list r − 1.

U1. [Initialize.] Set U(0) ← ϕ(0) ← 0 and U(f) ← ∞ for 1 ≤ f < 22n−1. Then
set U(xk) ← ϕ(xk) ← 0 and put xk into list 0, as in step L1. Also set
U(xj ◦ xk)← 1, set ϕ(xj ◦ xk) to its unique footprint vector (which contains
exactly one 1), and put xj ◦ xk into list 1, for 1 ≤ j < k ≤ n and all five
normal operators ◦. Finally set c← 22n−1 − 5


n
2

− n− 1.

U2. [Loop on r.] Do step U3 for r = 2, 3, . . . , while c > 0.
U3. [Loop on j and k.] Do step U4 for j = ⌊(r − 1)/2⌋, ⌊(r − 1)/2⌋ − 1, . . . , and

k = r − 1− j, while j ≥ 0.
U4. [Loop on g and h.] Do step U5 for all g in list j and all h in list k; if j = k,

restrict h to functions that follow g in list k.
U5. [Loop on f .] If ϕ(g) &ϕ(h) ̸= 0, set u← r−1 and v ← ϕ(g) &ϕ(h); otherwise

set u ← r and v ← ϕ(g) | ϕ(h). Then do step U6 for f = g & h, f = ḡ & h,
f = g & h̄, f = g | h, and f = g ⊕ h.

U6. [Update U(f) and ϕ(f).] If U(f) = ∞, set c ← c − 1, ϕ(f) ← v, U(f) ← u,
and put f into list u. Otherwise if U(f) > u, move f from list U(f) to list u
and set ϕ(f)← v, U(f)← u. Otherwise if U(f) = u, set ϕ(f)← ϕ(f) | v.

12. x4 = x1 ⊕ x2, x5 = x3 ∧ x4, x6 = x2 ∧ x̄4, x7 = x5 ∨ x6.
13. f5 = 01010101 (x3); f4 = 01110111 (x2 ∨ x3); f3 = 01110101 ((x̄1 ∧ x2) ∨ x3);
f2 = 00110101 (x1? x3: x2); f1 = 00010111 (⟨x1x2x3⟩).
14. For 1 ≤ j ≤ n, first compute t ← (g ⊕ (g ≫ 2n−j)) & xj , t ← t ⊕ (t ≪ 2n−j),
where xj is the truth table (11); then for 1 ≤ k ≤ n and k ̸= j, the desired truth table
corresponding to xj ← xj ◦ xk is g ⊕ (t& ((xj ◦ xk)⊕ xj)).

(The 5n(n − 1) masks (xj ◦ xk) ⊕ xj are independent of g and can be computed
in advance. The same idea applies if we allow more general computations of the form
xj(i) ← xk(i) ◦i xl(i), with 5n2(n− 1) masks (xk ◦ xl)⊕ xj .)
15. Remarkably asymmetrical ways to compute symmetrical functions:
(a) x1 ← x1 ⊕ x2,

x1 ← x1 ⊕ x3,
x2 ← x2 ∧ x3,
x1 ← x1 ∧ x̄2.

(b) x1 ← x1 ⊕ x2,
x3 ← x3 ⊕ x4,
x1 ← x1 ⊕ x3,
x2 ← x2 ⊕ x4,
x3 ← x3 ∨ x2,
x3 ← x3 ∧ x̄1.

(c) x1 ← x1 ⊕ x2,
x2 ← x2 ∧ x̄1,
x3 ← x3 ⊕ x4,
x4 ← x4 ∧ x1,
x2 ← x̄2 ∧ x3,
x2 ← x2 ⊕ x1,
x2 ← x2 ∧ x̄4.

(d) x1 ← x1 ⊕ x2,
x2 ← x2 ⊕ x3,
x2 ← x2 ∨ x1,
x1 ← x1 ⊕ x4,
x1 ← x1 ∧ x3,
x2 ← x2 ∧ x̄1,
x2 ← x2 ⊕ x4.

From the Library of Melissa Nuno



ptg999

7.1.2 ANSWERS TO EXERCISES 563

16. A computation that uses only ⊕ and complementation produces nothing but
affine functions (see exercise 7.1.1–132). Suppose f(x) = f(x1, . . . , xn) is a non-affine
function computable in minimum memory. Then f(x) has the form g(Ax + c) where
g(y1, y2, . . . , yn) = g(y1 ∧ y2, y2, . . . , yn), for some nonsingular n × n matrix A of 0s
and 1s, where x and c are column vectors and the vector operations are performed
modulo 2; in this formula the matrix A and vector c account for all operations xi ←
xi⊕xj and/or permutations and complementations of coordinates that occur after the
most recent non-affine operation that was performed. (See (14).) We will exploit the
fact that g(0, 0, y3, . . . , yn) = g(1, 0, y3, . . . , yn).

Let α and β be the first two rows of A; also let a and b be the first two elements
of c. Then if Ax + c ≡ y (modulo 2) we have y1 = y2 = 0 if and only if α · x ≡ a and
β · x ≡ b. Exactly 2n−2 vectors x satisfy this condition, and for all such vectors we
have f(x) = f(x⊕ w), where Aw ≡ (1, 0, . . . , 0)T .

Given α, β, a, b, and w, with α ̸= (0, . . . , 0), β ̸= (0, . . . , 0), α ̸= β, and α · w ≡ 1
(modulo 2), there are 22n−2n−2 functions f with the property that f(x) = f(x ⊕ w)
whenever α · xmod 2 = a and β · xmod 2 = b. Therefore the total number of functions
computable in minimum memory is at most 2n+1 (for affine functions) plus

(2n − 1)(2n − 2)22(2n−1)(22n−2n−2
) < 22n−2n−2+3n+1.

17. Let f(x1, . . . , xn) = g(x1, . . . , xn−1) ⊕ (h(x1, . . . , xn−1) ∧ xn) as in 7.1.1–(16).
Representing h in CNF, form the clauses one by one in x0 and AND them into xn,
obtaining h∧xn. Representing g as a sum (mod 2) of conjunctions, form the successive
conjunctions in x0 and XOR them into xn when ready.

(It appears to be impossible to evaluate all functions inside of n+ 1 registers if we
disallow the non-canalizing operators ⊕ and ≡. But n + 2 registers clearly do suffice,
even if we restrict ourselves to the single operator ∧.)
18. As mentioned in answer 14, we should extend the text’s definition of minimum-
memory computation to allow also steps like xj(i) ← xk(i) ◦i xl(i), with k(i) ̸= j(i) and
l(i) ̸= j(i), because that will give better results for certain functions that depend on
only four of the five variables. Then we find Cm(f) = (0, 1, . . . , 13, 14) for respectively
(2, 2, 5, 20, 93, 389, 1960, 10459, 47604, 135990, 198092, 123590, 21540, 472, 0) classes
of functions . . . leaving 75,908 classes (and 575,963,136 functions) for which Cm(f) =∞
because they cannot be evaluated at all in minimum memory. The most interesting
function of that kind is probably

(x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x4) ∨ (x4 ∧ x5) ∨ (x5 ∧ x1),

which has C(f) = 7 but Cm(f) = ∞. Another interesting case is (((x1 ∨ x2) ⊕ x3) ∨
((x2 ∨ x̄4)∧x5))∧ ((x1≡x2)∨x3 ∨x4), for which C(f) = 8 and Cm(f) = 13. One way
to evaluate that function in eight steps is x6 = x1 ∨ x2, x7 = x1 ∨ x4, x8 = x2 ⊕ x7,
x9 = x3 ⊕ x6, x10 = x4 ⊕ x9, x11 = x5 ∨ x9, x12 = x8 ∧ x10, x13 = x11 ∧ x̄12.
19. If not, the left and right subtrees of the root must overlap, since case (i) fails.
Each variable must occur at least once as a leaf, by hypothesis. At least two variables
must occur at least twice as leaves, since case (ii) fails. But we can’t have n+ 2 leaves
with r ≤ n+ 1 internal nodes, unless the subtrees fail to overlap.
20. Now Algorithm L (with ‘f = g⊕ h’ omitted in step L5) shows that some formulas
must have length 15; and even the footprint method of exercise 11 does no better
than 14. To get truly minimum chains, the 25 special chains for r = 6 in the text must

From the Library of Melissa Nuno



ptg999

564 ANSWERS TO EXERCISES 7.1.2

be supplemented by five others that can no longer be ruled out, namely

1

1

2

23

4

1 12 2

3 4

1 12 2

3 4

1 12 2

3

4

1 12 2

3

4 ;

and when r = (7, 8, 9) we must also consider respectively (653, 12387, 225660) additional
potential chains that are not special cases of the top-down and bottom-up constructions.
Here are the resulting statistics, for comparison with Table 1:

Cc(f) Class-
es

Func-
tions Uc(f) Class-

es
Func-
tions Lc(f) Class-

es
Func-
tions Dc(f) Class-

es
Func-
tions

0 2 10 0 2 10 0 2 10 0 2 10
1 1 48 1 1 48 1 1 48 1 1 48
2 2 256 2 2 256 2 2 256 2 7 684
3 7 940 3 7 940 3 7 940 3 59 17064
4 9 2336 4 9 2336 4 7 2048 4 151 47634
5 24 6464 5 21 6112 5 20 5248 5 2 96
6 30 10616 6 28 9664 6 23 8672 6 0 0
7 61 18984 7 45 15128 7 37 11768 7 0 0
8 45 17680 8 40 14296 8 27 10592 8 0 0
9 37 7882 9 23 8568 9 33 11536 9 0 0

10 4 320 10 28 5920 10 16 5472 10 0 0
11 0 0 11 6 1504 11 30 6304 11 0 0
12 0 0 12 5 576 12 3 960 12 0 0
13 0 0 13 3 144 13 8 1472 13 0 0
14 0 0 14 2 34 14 2 96 14 0 0
15 0 0 15 0 0 15 4 114 15 0 0

The two function classes of depth 5 are represented by S2,4(x1, x2, x3, x4) and x1 ⊕
S2(x2, x3, x4); and those two functions, together with S2(x1, x2, x3, x4) and the parity
function S1,3(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x3 ⊕ x4, have length 15. Also Uc(S2,4) =
Uc(S1,3) = 14. The four classes of cost 10 are represented by S1,4(x1, x2, x3, x4),
S2,4(x1, x2, x3, x4), (x4? x1⊕x2⊕x3: ⟨x1x2x3⟩), and [(x1x2x3x4)2 ∈{0, 1, 4, 7, 10, 13}].
(The third of these, incidentally, is equivalent to (20), “Harvard’s hardest case.”)
21. (The authors stated that their table entries “should be regarded only as the most
economical operators known to the present writers.”) David Stevenson discovered in
2013 that 16 grids always suffice(!). In particular, V (f) ≤ 16 for the f in (20), because

f = AND(NOT(AND(NOT(g),NAND(w̄, z),NAND(x̄, z̄))),NAND(g, h))
where g = x⊕ y = AND(NAND(x, y),NAND(x̄, ȳ)) and h = w ⊕ z is similar. Although
they failed to find this particular construction, the Harvard researchers did remarkably
well, in some cases beating the footprint heuristic by as many as 6 grids.
22. ν(x1x2x3x4x5) = 3 if and only if ν(x1x2x3x4) ∈ {2, 3} and ν(x1x2x3x4x5) is odd.
Similarly, S2(x1, x2, x3, x4, x5) = S3(x̄1, x̄2, x̄3, x̄4, x̄5) incorporates S1,2(x1, x2, x3, x4):

+

+

∨

+

∨ ∧
+ +

+

1 2

3 3 4

1 2

4 5

S2 =

From the Library of Melissa Nuno



ptg999

7.1.2 ANSWERS TO EXERCISES 565

23. We need only consider the 32 normal cases, as in Fig. 9, since the complement of
a symmetric function is symmetric. Then we can use reflection, like S1,2(x) = S3,4(x̄),
possibly together with complementation, like S2,3,4,5(x) = S̄0,1(x) = S̄4,5(x̄), to deduce
most of the remaining cases. Of course S5, S1,3,5 , and S1,2,3,4,5 trivially have cost 4.
That leaves only S1,2,3,4(x1, x2, x3, x4, x5) = (x1⊕x2)∨(x2⊕x3)∨(x3⊕x4)∨(x4⊕x5),
which is discussed for general n in exercise 79.
24. As noted in the text, this conjecture holds for n ≤ 5.
25. It is 22n−1−n−1, the number of nontrivial normal functions. (In any normal chain
of length r that doesn’t include all of these functions, xj ◦ xk will be a new function
for some j and k in the range 1 ≤ j, k ≤ n+ r and some normal binary operator ◦; so
we can compute a new function with every new step, until we’ve got them all.)
26. False. For example, if g = S1,3(x1, x2, x3) and h = S2,3(x1, x2, x3), then C(gh) = 5
is the cost of a full adder; but f = S2,3(x0, x1, x2, x3) has cost 6 by Fig. 9.
27. Yes: The operations ‘x2 ← x2 ⊕ x1, x1 ← x1 ⊕ x3, x1 ← x1 ∧ x̄2, x1 ← x1 ⊕ x3,
x2 ← x2 ⊕ x3’ transform (x1, x2, x3) into (z1, z0, x3).
28. Let v′ = v′′ = v⊕ (x⊕ y); u′ = ((v⊕ y)⊃(x⊕ y))⊕u, u′′ = ((v⊕ y)∨ (x⊕ y))⊕u.
Thus we can set u0 ← 0, v0 ← x1, uj ← ((vj−1⊕x2j+1)∨(x2j⊕x2j+1))⊕uj−1 if j is odd,
uj ← ((vj−1⊕x2j+1)⊃(x2j⊕x2j+1))⊕uj−1 if j is even, and vj ← vj−1⊕ (x2j⊕x2j+1),
giving (ujvj)2 = (−1)j(x1 + · · ·+x2j+1) mod 4 for 0 ≤ j ≤ ⌊n/2⌋. Set xn+1 ← 0 if n is
even. Thus [(x1 + · · ·+ xn) mod 4 = 0] = ū⌊n/2⌋∧v̄⌊n/2⌋ is computed in ⌊5n/2⌋−2 steps.

This construction is due to L. J. Stockmeyer, who proved that it is nearly optimal.
In fact, the result of exercise 80 together with Figs. 9 and 10 shows that it is at most
one step longer than a best possible chain, for all n ≥ 5.

Incidentally, the analogous formula u′′′ = ((v ⊕ y) ∧ (x⊕ y))⊕ u yields (u′′′v′)2 =
((uv)2 +x−y) mod 4. The simpler-looking function ((uv)2 +x+y) mod 4 costs 6, not 5.
29. To get an upper bound, assume that each full adder or half adder increases the
depth by 3. If there are ajd bits of weight 2j and depth 3d, we schedule at most ⌈ajd/3⌉
subsequent bits of weights {2j , 2j+1} and depth 3(d+ 1). It follows by induction that
ajd ≤


d
j


3−dn+4. Hence ajd ≤ 4 when d ≥ l = ⌈log3/2 n⌉. It follows that aj(j+l+3) = 0

for 0 ≤ j ≤ lgn, giving total depth ≤ 3(l + lgn + 2). (The actual depth turns out to
be exactly 101 when n = 107, 118 when n = 108, 133 when n = 109.)
30. As usual, let νn denote the sideways addition of the bits in the binary represen-
tation of n itself. Then s(n) = 5n− 2νn− 3⌊lgn⌋ − 3.
31. After sideways addition in s(n) < 5n steps, any function of (z⌊lgn⌋, . . . , z0) can be
evaluated in ∼ 2n/lgn steps at most, by Theorem L. [See O. B. Lupanov, Doklady
Akademii Nauk SSSR 140 (1961), 322–325. Exercise 7.2.2.2–00 improves 5n to 4.5n.]
32. Bootstrap: First prove by induction on n that t(n) ≤ 2n+1.
33. False, on a technicality: If, say, N =

√
n, at least n steps are needed. A correct

asymptotic formula N + O(
√
N ) + O(n) can, however, be proved by first noting that

the text’s method gives N +O(
√
N ) when N ≥ 2n−1; otherwise, if ⌊lgN⌋ = n− k− 1,

we can use O(n) operations to AND the quantity x̄1 ∧ · · · ∧ x̄k to the other variables
xk+1, . . . , xn, then proceed with n reduced by k.

(One consequence is that we can compute the symmetric functions {S1, S2, . . . , Sn}
with cost s(n) + n+O(

√
n ) = 6n+O(

√
n ) and depth O(logn).)

34. Say that an extended priority encoder has n + 1 = 2m inputs x0x1 . . . xn and
m+ 1 outputs y0y1 . . . ym, where y0 = x0 ∨ x1 ∨ · · · ∨ xn. If Q′

m and Q′′
m are extended

encoders for x′0 . . . x′n and x′′0 . . . x′′n, then Qm+1 works for x′0 . . . x′nx′′0 . . . x′′n if we define

From the Library of Melissa Nuno



ptg999

566 ANSWERS TO EXERCISES 7.1.2

y0 = y′0 ∨ y′′0 , y1 = y′′0 , y2 = y1? y′′1 : y′1, . . . , ym+1 = y1? y′′m: y′m. If P ′
m is an ordinary

priority encoder for x′1 . . . x′n, we get Pm+1 for x′1 . . . x′nx′′0 . . . x′′n in a similar way.
Starting with m = 2 and y2 = x3 ∨ (x1 ∧ x̄2), y1 = x2 ∨ x3, y0 = x0 ∨ x1 ∨ y1,

this construction yields Pm and Qm of costs pm and qm, where p2 = 3, q2 = 5, and
pm+1 = 3m+ pm + qm, qm+1 = 3m+ 1 + 2qm for m ≥ 2. Consequently pm = qm −m
and qm = 15 · 2m−2 − 3m− 4 ≈ 3.75n.
35. If n = 2m, compute x1∧x2, . . . , xn−1∧xn, then recursively form x1∧· · ·∧x2k−2∧
x2k+1∧· · ·∧xn for 1 ≤ k ≤ m, and finish in n more steps. If n = 2m−1, use this chain
for n + 1 elements; three steps can be eliminated by setting xn+1 ← 1. [I. Wegener,
The Complexity of Boolean Functions (1987), exercise 3.25. The same idea can be used
with any associative and commutative operator in place of ∧.]
36. Recursively construct Pn(x1, . . . , xn) and Qn(x1, . . . , xn) as follows, where Pn has
D(yj) ≤ ⌈lgn⌉ for 1 ≤ j ≤ n and Qn has D(yj) ≤ ⌈lgn⌉ + [j ̸=n]: The case n = 1 is
trivial; otherwise Pn is obtained from Q′

r(x1, . . . , xr) and P ′′
s (xr+1, . . . , xn), where r =

⌈n/2⌉ and s= ⌊n/2⌋, by setting yj ← y′j for 1≤ j ≤ r, yj ← y′r∧y′′j−r for r < j ≤ n. And
Qn is obtained from either P ′

r(x1∧x2, . . . , xn−1∧xn) or P ′
r(x1∧x2, . . . , xn−2∧xn−1, xn)

by setting y1← x1, y2j ← y′j , y2j+1← y′j ∧ x2j+1 for 1≤ j < s, and y2s← y′s, yn← y′r.
These calculations can be performed in minimum memory, setting xk(i) ← xj(i) ∧

xk(i) at step i for some indices j(i) < k(i). Thus we can illustrate the construction
with diagrams analogous to the diagrams for sorting networks. For example,

P8 =

(delay 3)
(delay 3)
(delay 3)
(delay 3)
(delay 2)
(delay 2)
(delay 1)
(delay 0)

; Q8 =

(delay 3)
(delay 4)
(delay 3)
(delay 3)
(delay 2)
(delay 2)
(delay 1)
(delay 0)

.

The costs pn and qn satisfy pn = ⌊n/2⌋+ q⌈n/2⌉ + p⌊n/2⌋, qn = 2⌊n/2⌋− 1 + p⌈n/2⌉
when n > 1; for example, (p1, . . . , p7) = (q1, . . . , q7) = (0, 1, 2, 4, 5, 7, 9). Setting p̄n =
4n − pn and q̄n = 3n − qn leads to simpler formulas, which prove that pn < 4n and
qn < 3n: q̄n = p̄⌈n/2⌉ + [n even]; p̄4n = p̄2n + p̄n + 1, p̄4n+1 = p̄2n + p̄n+1 + 1, p̄4n+2 =
p̄2n+1 + p̄n+1, p̄4n+3 = p̄4n+2 +2. In particular, 1+ p̄2m = Fm+5 is a Fibonacci number.

[See JACM 27 (1980), 831–834. Slightly better chains are obtained if we replace
Q2n+1 by (Q2n and y2n+1 = y2n ∧ x2n+1) when n is a power of 2, if we replace P5 and
P6 by Q5 and Q6, and if we then replace (P9, P10, P11, P17) by (Q9, Q10, Q11, Q17).]

Notice that this construction works in general if we replace ‘∧’ by any associative
operator. In particular, the sequence of prefixes x1⊕ · · · ⊕xk for 1 ≤ k ≤ n defines the
conversion from Gray binary code to radix-2 integers, Eq. 7.2.1.1–(10).
37. The case m = 15, n = 16 is illustrated at the right.

(a) Let xi..j denote the original value of xi ∧ · · · ∧ xj . Whenever the
algorithm sets xk ← xj ∧ xk, one can show that the previous value of xk
was xj+1..k. After step S1, xk is xf(k)+1..k where f(k) = k & (k − 1) for
1 ≤ k < m and f(m) = 0. After step S2, xk is x1..k for 1 ≤ k ≤ m.

(b) The cost of S1 is m − 1, the cost of S2 is m − 1 − ⌈lgm⌉, and
the cost of S3 is n − m. The final delay of xk is ⌊lg k⌋ + ν k − 1 for
1 ≤ k < m, and it is ⌈lgm⌉ + k −m for m ≤ k ≤ n. So the maximum
delay for {x1, . . . , xm−1} turns out to be g(m) = m − 1 for m < 4,
g(m) = ⌊lgm⌋+⌊lg m

3 ⌋ for m ≥ 4. We have c(m,n) = m+n−2−⌈lgm⌉,
d(m,n) = max(g(m), ⌈lgm⌉+ n−m). Hence c(m,n) + d(m,n) = 2n− 2

From the Library of Melissa Nuno



ptg999

7.1.2 ANSWERS TO EXERCISES 567

whenever n ≥ m+ g(m)− ⌈lgm⌉.
(c) A table of values reveals that d(n) = ⌈lgn⌉ for n < 8, and d(n) = ⌊lg(n −

⌊lgn⌋ + 3)⌋ + ⌊lg 2
3 (n − ⌊lgn⌋ + 3)⌋ − 1 for n ≥ 8. Stating this another way, we have

d(n) > d(n− 1) and n > 2 if and only if n = 2k + k − 3 or 2k + 2k−1 + k − 3 for some
k > 1. The minimum with minimal cost occurs for m = n when n < 8; otherwise it
occurs for m = n− ⌊lg 2

3 (n− ⌊lgn⌋+ 3)⌋+ 2− [n = 2k + k − 3 for some k].
(d) Set m ← m(n, d), where m(n, d(n)) is defined in the previous sentence and

m(n, d) = m(n− 1, d− 1) when d > d(n). [See J. Algorithms 7 (1986), 185–201.]
38. (a) From top to bottom, fk(x1, . . . , xn) is an elementary symmetric function also
called the threshold function S≥k(x1, . . . , xn). (See exercise 5.3.4–28, Eq. 7.1.1–(90).)

(b) After calculating {S1, . . . , Sn} in ≈ 6n steps as in answer 33, we can apply the
method of exercise 37 to finish in 2n further steps.

But it is more interesting to design a Boolean chain specifically for the computation
of the 2m + 1 threshold functions gk(x1, . . . , xm) = [(x1 . . . xm)2≥ k ] for 0 ≤ k ≤ 2m.
Since [(x′x′′)2 ≥ (y′y′′)2] = [(x′)2≥ (y′)2+1] ∨ ([(x′)2≥ (y′)2 ] ∧ [(x′′)2≥ (y′′)2 ]), a
divide-and-conquer construction analogous to a binary decoder solves this problem
with a cost at most 2t(m).

Furthermore, if 2m−1 ≤ n < 2m, the cost u(n) of computing {g1, . . . , gn} by this
method turns out to be 2n+O(

√
n ), and it is quite reasonable when n is small:

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
u(n) = 0 1 2 4 7 7 8 12 15 17 19 19 20 21 22 27 32 34 36 36

Starting with sideways addition, we can sort n Boolean values in s(n) + u(n) ≈ 7n
steps. A sorting network, which costs 2Ŝ(n), is better when n = 4 but loses when
n ≥ 8. [See 5.3.4–(11); D. E. Muller and F. P. Preparata, JACM 22 (1975), 195–201.]
39. [IEEE Transactions C-29 (1980), 737–738.] The identity

Mr+s(x1, . . . , xr, xr+1, . . . , xr+s; y0, . . . , y2r+s−1) = Mr(x1, . . . , xr; y′0, . . . , y′2r−1),

where y′j =
2s−1
k=0 (dk ∧ y2sj+k) and dk is the kth output of an s-to-2s decoder applied

to (xr+1, . . . , xr+s), shows that C(Mr+s) ≤ C(Mr)+2r+s+2r(2s−1)+t(s), where t(s)
is the cost (30) of the decoder. The depth is D(Mr+s) = max(Dx(Mr+s), Dy(Mr+s)),
where Dx and Dy denote the maximum depth of the x and y variables; we have
Dx(Mr+s) ≤ max(Dx(Mr), 1 + s+ ⌈lg s⌉+Dy(Mr)) and Dy(Mr+s) ≤ 1 + s+Dy(Mr).

Taking r = ⌈m/2⌉ and s = ⌊m/2⌋ yields C(Mm) ≤ 2m+1 + O(2m/2), Dy(Mm) ≤
m+ 1 + ⌈lgm⌉, and Dx(Mm) ≤ Dy(Mm) + ⌈lgm⌉.
40. We can, for example, let fnk(x) =

n+1−k
j=1 (lj(x) ∧ rj+k−1(x)), where

lj(x) =

xj , if j mod k = 0,
xj ∧ lj+1(x), if j mod k ̸= 0, for 1 ≤ j ≤ n− (nmod k);

rj(x) =


1, if j mod k = 0,
xj ∧ rj−1(x), if j mod k ̸= 0, for k ≤ j ≤ n.

The cost is 4n− 3k − 3⌊n
k
⌋− ⌊n−1

k
⌋+ 2− (nmod k).

A recursive solution is preferable when n is small or k is small: Observe that

fnk(x) =


xn−k+1 ∧ · · · ∧ xk ∧

f(2n−2k)(n−k)(x1, . . . , xn−k, xk+1, . . . , xn), for k < n < 2k;
f⌊(n+k)/2⌋k(x1, . . . , x⌊(n+k)/2⌋) ∨

f⌊(n+k−1)/2⌋k(x⌊(n−k)/2⌋+1, . . . , xn), for n ≥ 2k.

From the Library of Melissa Nuno



ptg999

568 ANSWERS TO EXERCISES 7.1.2

The cost of this solution can be shown to equal n− 1 +
n−k
j=1 ⌊lg j⌋ when k ≤ n < 2k,

and it lies asymptotically between (m+αk−1)n+O(km) and (m+2−2/αk)n+O(km)
as n→∞, where m = ⌊lg k⌋ and 1 < αk = (k + 1)/2m ≤ 2.

A marriage of these methods is better yet; the optimum cost is unknown.

41. Let c(m) be the cost of computing both (x)2 + (y)2 and (x)2 + (y)2 + 1 by the
conditional-sum method when x and y have n = 2m bits, and let c′(m) be the cost of
the simpler problem of computing just (x)2 + (y)2. Then c(m+ 1) = 2c(m) + 6 ·2m+ 2,
c′(m + 1) = c(m) + c′(m) + 3 · 2m + 1. (Bit zn of the sum costs 1; but bits zk for
n < k ≤ 2n+ 1 cost 3, because they have the form c? ak: bk where c is a carry bit.) If
we start with n = 1 and c(0) = 3, c′(0) = 2, the solution is c(m) = (3m + 5)2m − 2,
c′(m) = (3m + 2)2m − m. But improved constructions for the case n = 2 allow us
to start with c(1) = 11 and c′(1) = 7; then the solution is c(m) = (3m + 7

2 )2m − 2,
c′(m) = (3m+ 1

2 )2m−m+ 1. In either case the depth is 2m+ 1. [See J. Sklansky, IRE
Transactions EC-9 (1960), 226–231.]

42. (a) Since ⟨xkykck⟩ = uk ∨ (vk ∧ ck), we can use (26) and induction.
(b) Notice that Uk+1

k = uk and V k+1
k = vk; use induction on j − i. [See A. Wein-

berger and J. L. Smith, IRE Transactions EC-5 (1956), 65–73; R. P. Brent and H. T.
Kung, IEEE Transactions C-31 (1982), 260–264.]

(c) First, for l = 1, 2, . . . , m−1, and for 1 ≤ k ≤ n, compute V ki for all multiples i
of h(l) in the range kl ≥ i ≥ kl+1, where kl = h(l)⌊(k − 1)/h(l)⌋ denotes the largest
multiple of h(l) that is less than k. For example, when l = 3 and k = 99, we compute
V 99

96 , V 99
88 = V 99

96 ∧ V 96
88 , V 99

80 = V 99
88 ∧ V 88

80 , . . . , V 99
64 = V 99

72 ∧ V 72
64 ; this is a prefix

computation using the values V 99
96 , V 96

88 , V 88
80 , . . . , V 72

64 that were computed when l = 2.
Using the method of exercise 36, step l adds at most l levels to the depth, and it
requires a total of (p1 + p2 + · · ·+ p2l)n/2l = O(2ln) gates.

Then, again for l = 1, 2, . . . , m− 1, and for 1 ≤ k ≤ n, compute Uki for i = kl+1,
using the “unrolled” formula

Ukkl+1 = Ukkl
∨


kl>j≥kl+1
h(l)\j

(V kj+h(l) ∧ U j+h(l)
j ).

For example, the unrolled formula when l = 3 and k = 99 is

U99
64 = U99

96 ∨ (V 99
96 ∧ U96

88 ) ∨ (V 99
88 ∧ U88

80 ) ∨ (V 99
80 ∧ U80

72 ) ∨ (V 99
72 ∧ U72

64 ).

Every such Uki is a union of at most 2l terms, so it can be computed with depth ≤ l
in addition to the depth of each term. The total cost of this phase for 1 ≤ k ≤ n is
(0 + 2 + 4 + · · ·+ (2l−2))n/2l = O(2ln).

The overall cost to compute all necessary U ’s and V ’s is therefore
m−1
l=1 O(2ln) =

O(2mn). (Furthermore the quantities V k0 aren’t actually needed, so we save the
cost of

m−1
l=1 h(l)p2l gates.) For example, when m = (2, 3, 4, 5) we obtain Boolean

chains for the addition of (2, 8, 64, 1024)-bit numbers, respectively, with overall depths
(3, 7, 11, 16) and costs (7, 64, 1254, 48470).

[This construction is due to V. M. Khrapchenko, Problemy Kibernetiki 19 (1967),
107–122, who also showed how to combine it with other methods so that the overall
cost will be O(n) while still achieving depth lgn+O(

√
logn ). However, his combined

method is purely of theoretical interest, because it requires n > 264 before the depth
becomes less than 2 lgn. Another way to achieve small depth using the recurrences

From the Library of Melissa Nuno



ptg999

7.1.2 ANSWERS TO EXERCISES 569

in (b) can be based on the Fibonacci numbers: The Fibonacci method computes the
carries with depth logϕ n+O(1) ≈ 1.44 lgn and cost O(n logn). For example, it yields
chains for binary addition with the following characteristics:

n = 4 8 16 32 64 128 256 512 1024
depth 6 7 9 10 12 13 15 16 18
cost 24 71 186 467 1125 2648 6102 13775 30861

See D. E. Knuth, The Stanford GraphBase (1994), 276–279.
Charles Babbage found an ingenious mechanical solution to the analogous problem

for addition in radix 10, claiming that his design would be able to add numbers of
arbitrary precision in constant time; for this to work he would have needed idealized,
rigid components with vanishing clearances. See H. P. Babbage, Babbage’s Calculating
Engines (1889), 334–335. Curiously, an equivalent idea works fine with physical tran-
sistors, although it cannot be expressed in terms of Boolean chains; see P. M. Fenwick,
Comp. J. 30 (1987), 77–79.]

43. (a) Let A = B = Q = {0, 1} and q0 = 0. Define c(q, a) = d(q, a) = q̄ ∧ a.
(b) The key idea is to construct the functions d1(q) . . . dn−1(q), where d1(q) =

d(q, a1) and dj(q) = d(dj−1(q), aj). In other words, d1 = d(a1) and dj = dj−1 ◦ d(aj),
where d(a) is the function that takes q →→ d(q, a) and where ◦ denotes composition of
functions. Each function dj can be encoded in binary notation, and ◦ is an associative
operation on these binary representations. Hence the functions d1d2 . . . dn−1 are the
prefixes d(a1), d(a1)◦d(a2), . . . , d(a1)◦· · ·◦d(an−1); and q1q2 . . . qn = q0d1(q0) . . . dn−1(q0).

(c) Represent a function f(q) by its truth table f0f1. Then the composition f0f1 ◦
g0g1 is h0h1, where the functions h0 = f0? g1: g0 and h1 = f1? g1: g0 are muxes that can
each be computed with cost 3 and depth 2. (The combined cost C(h0h1) is only 5, but
we are trying to keep the depth small.) The truth table for d(a) is a0. Using exercise 36,
we can therefore compute the truth tables d10d11d20d21 . . . d(n−1)0d(n−1)1 with cost
≤ 6pn−1 < 24n and depth ≤ 2⌈lg(n− 1)⌉; then b1 = a1, and bj = q̄j ∧ aj = d̄(j−1)0 ∧ aj
for j > 1. (These cost estimates are quite conservative; substantial simplifications
arise because of the 0s in the initial truth tables of d(aj) and because many of the
intermediate values dj1 are never used. For example, when n = 5 the actual cost is
only 10, not 6pn−1 +(n−1) = 28; the actual depth is 4, not 2⌈lg(n−1)⌉+1 = 5. Notice
that the straightforward chain bj = aj ∧ b̄j−1 for 1 < j ≤ n also solves problem (a);
it wins on cost, but has depth n− 1.)

44. The inputs may be regarded as the string x0y0 x1y1 . . . xn−1yn−1 whose elements
belong to the four-letter alphabet A = {00, 01, 10, 11}; there are two states Q = {0, 1},
representing a possible carry bit, with q0 = 0; the output alphabet is B = {0, 1}; and
we have c(q, xy) = q ⊕ x ⊕ y, d(q, xy) = ⟨qxy⟩. In this case, therefore, the finite state
transducer is essentially described by a full adder.

Only three of the four possible functions of q occur when we compose the mappings
d(xy). We can encode them as u∨ (q∧v). The initial functions d(xy) have u = x∧y, v =
x⊕y; and the composition (uv)◦(u′v′) is u′′v′′, where u′′ = u′∨(v′∧u) and v′′ = v∧v′.

When n = 4, for example, the chain has the following form, using the notation of
exercise 42: Uk+1

k = xk ∧ yk, V k+1
k = xk ⊕ yk, for 0 ≤ k < 4; U2

0 = U2
1 ∨ (V 2

1 ∧ U1
0),

U4
2 = U4

3 ∨ (V 4
3 ∧ U3

2 ), V 4
2 = V 3

2 ∧ V 4
3 ; U3

0 = U3
2 ∨ (V 3

2 ∧ U2
0), U4

0 = U4
2 ∨ (V 4

2 ∧ U2
0);

z0 = V 1
0 , z1 = U1

0 ⊕ V 2
1 , z2 = U2

0 ⊕ V 3
2 , z3 = U3

0 ⊕ V 4
3 , z4 = U4

0 . The total cost is 20;
the maximum depth, 6, occurs in the computation of z3.

From the Library of Melissa Nuno



ptg999

570 ANSWERS TO EXERCISES 7.1.2

In general the cost will be 2n+3pn in the notation of exercise 36, because we need
2n gates for the initial u’s and v’s, then 3pn gates for the prefix computation; the n−1
additional gates needed to form zj for 0 < j < n are compensated by the fact that we
need not compute V j0 for 1 < j ≤ n. Therefore the total cost is 14 · 2m − 3Fm+5 + 3,
superior to the conditional-sum method (which however has depth 2m+1, not 2m+2):

n = 2 4 8 16 32 64 128 256 512 1024
cost of conditional-sum chain 7 25 74 197 492 1179 2746 6265 14072 31223
cost of Ladner–Fischer chain 7 20 52 125 286 632 1363 2888 6040 12509
[George Boole introduced his Algebra in order to show that logic can be understood

in terms of arithmetic. Eventually logic became so well understood, the situation
was reversed: People like Shannon and Zuse began in the 1930s to design circuits for
arithmetic in terms of logic, and since then many approaches to the problem of parallel
addition have been discovered. The first Boolean chains of costO(n) and depthO(logn)
were devised by Yu. P. Ofman, Doklady Akademii Nauk SSSR 145 (1962), 48–51. His
chains were similar to the construction above, but the depth was approximately 4m.]
45. That argument would indeed be simpler, but it wouldn’t be strong enough to prove
the desired result. (Many chains with steps of fanout 0 inflate the simpler estimate.)
The text’s permutation-enhanced proof technique was introduced by J. E. Savage in
his book The Complexity of Computing (New York: Wiley, 1976), Theorem 3.4.1.
46. When r = 2n/n+O(1) we have ln(22r+1(n+r−1)2r/(r−1)!) = r ln r+(1+ ln 4)r+
O(n) = (2n/n)(n ln 2 − lnn + 1 + ln 4) + O(n). So α(n) ≤ (n/(4e))−2n/n+O(n/logn),
which approaches zero quite rapidly indeed when n > 4e.

(In fact, (32) gives α(11) < 7.6× 107, α(12) < 4.2× 10−6, α(13) < 1.2× 10−38.)
47. Restrict permutations to the (r − m)! cases where iπ = i for 1 ≤ i ≤ n and
(n+r+1−k)π is the kth output. Then we get (r −m)! c(m,n, r) ≤ 22r+1(n+r−1)2r in
place of (32). Hence, as in exercise 46, almost all such functions have cost exceeding
2nm/(n+ lgm) when m = O(2n/n2).
48. (a) Not surprisingly, this lower bound on C(n) is rather crude when n is small:

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
r(n) = 1 1 2 3 5 9 16 29 54 99 184 343 639 1196 2246 4229

(b) The bootstrap method (see Concrete Mathematics §9.4) yields

r(n) = 2n

n


1 + lgn− 2− 1/ln 2

n
+O

 logn
n2


.

49. The number of normal Boolean functions that can be represented by a formula of
length ≤ r is at most 5rnr+1gr, where gr is the number of oriented binary trees with
r internal nodes. Set r = 2n/ lgn − 2n+2/(lgn)2 in this formula and divide by 22n−1

to get an upper bound on the fraction of functions with L(f) ≤ r. The result rapidly
approaches zero, by exercise 2.3.4.4–7, because it is O((5α/16)2n/ lgn) where α ≈ 2.483.

[J. Riordan and C. E. Shannon obtained a similar lower bound for series-parallel
switching networks in J. Math. and Physics 21 (1942), 83–93; such networks are equiva-
lent to formulas in which only canalizing operators are used. R. E. Krichevsky obtained
more general results in Problemy Kibernetiki 2 (1959), 123–138, and O. B. Lupanov
gave an asymptotically matching upper bound in Prob. Kibernetiki 3 (1960), 61–80.]
50. (a) Using subcube notation as in exercise 7.1.1–30, the prime implicants are
00001∗, (0001∗1), 0100∗1, 0111∗1, 1010∗1, 101∗11, 00∗011, 00∗101, (01∗111), 11∗101,

From the Library of Melissa Nuno



ptg999

7.1.2 ANSWERS TO EXERCISES 571

(0∗1101), (1∗0101), 1∗1011, 0∗0∗11, ∗00101, (∗01011), (∗11101), where the parenthe-
sized subcubes are omitted in a shortest DNF. (b) Similarly, the prime clauses and a
shortest CNF are given by 00111∗, 01010∗, 10110∗, 0110∗∗, 00∗00∗, 11∗00∗, 11∗11∗,
(0∗100∗), (1∗00∗∗), 1∗0∗1∗, (1∗∗∗∗0), ∗0000∗, (∗1100∗), ∗1∗∗∗0, ∗∗1∗∗0, ∗∗∗1∗0, and
(∗∗∗∗00). (Thus the CNF is (x1∨x2∨x̄3∨x̄4∨x̄5)∧ (x1∨x̄2∨x3∨x̄4∨x5)∧ · · · ∧ (x̄4∨x6).)

51. f = ([x5x6 ∈{01}]∧ [(x1x2x3x4)2 ∈{1, 3, 4, 7, 9, 10, 13, 15}])∨ ([x5x6 ∈{10, 11}]∧
[x1x2x3x4 = 0000]) ∨ ([x5x6 ∈{11}] ∧ [(x1x2x3x4)2 ∈{1, 2, 4, 5, 7, 10, 11, 14}]).
52. The small-n results are quite different from those that work asymptotically:

n k l (38)
5 2 2 39
6 2 2 67
7 2 1 109

n k l (38)
8 3 2 175
9 3 2 279
10 4 4 471

n k l (38)
11 4 4 803
12 4 3 1329
13 5 6 2355

n k l (38)
14 5 5 4045
15 5 5 7141
16 5 4 12431

(These upper bounds are quite weak when n is small. For example, we know that
C(n) = (0, 1, 4, 7, 12) when n = (1, 2, 3, 4, 5); and Eq. 7.1.1–(16) gives C(n + 1) ≤
2C(n) + 2, so that C(6) ≤ 26, C(7) ≤ 54, etc.)
53. First note that 2k/l ≤ n − 3 lgn, hence mi ≤ n − 3 lgn + 1 and 2mi = O(2n/n3).
Also l = O(n) and t(n − k) = O(2n/n2). So (38) reduces to l · 2n−k + O(2n/n2) =
2n/(n− 3 lgn) +O(2n/n2).
54. The greedy-footprint heuristic gives a chain of length 14:

x5 = x1 ⊕ x3,

x6 = x2 ⊕ x3,

x7 = x1 ∧ x2,

x8 = x1 ∧ x̄6,

x9 = x4 ∧ x5,

x10 = x4 ∧ x̄5,

x11 = x4 ⊕ x5,

x12 = x6 ∧ x11,

f1 = x13 = x̄7 ∧ x12,

f2 = x14 = x̄6 ∧ x10,

f3 = x15 = x̄8 ∧ x9,

f4 = x16 = x4 ∧ x8,

f5 = x17 = x7 ∧ x9,

f6 = x19 = x6 ∧ x10.

The minterm-first method corresponds to a chain of length 22, after we remove steps
that are never used:

x5 = x̄1 ∧ x̄2,

x6 = x̄1 ∧ x2,

x7 = x1 ∧ x̄2,

x8 = x1 ∧ x2,

x9 = x̄3 ∧ x4,

x10 = x3 ∧ x̄4,

x11 = x3 ∧ x4,

x12 = x5 ∧ x9,

x13 = x5 ∧ x10,

x14 = x5 ∧ x11,

x15 = x6 ∧ x9,

x16 = x6 ∧ x11,

x17 = x7 ∧ x9,

x18 = x7 ∧ x11,

f5 = x19 = x8 ∧ x9,

x20 = x8 ∧ x11,

f6 = x21 = x15 ∨ x18,

f1 = x22 = x13 ∨ x21,

f2 = x23 = x12 ∨ x20,

x24 = x14 ∨ x16,

f3 = x25 = x24 ∨ x19,

f4 = x26 = x17 ∨ x20.

(The distributive law could replace the computation of x14, x16, and x24 by two steps.)
Incidentally, the three functions in the answer to exercise 51 can be computed in

only ten steps:

x5 = x2 ∨ x4,

x6 = x̄1 ∧ x5,

x7 = x2 ∧ x4,

x8 = x3 ∧ x̄7,

f3 = x9 = x6 ⊕ x8,

x10 = x1 ⊕ x8,

f̄2 = x11 = x9 ∨ x10,

x12 = x2 ⊕ x3,

x13 = x̄10 ∧ x12,

f1 = x14 = x4 ⊕ x13.

55. The optimum two-level DNF and CNF representations in answer 50 cost 53 and 43,
respectively. Formula (37) costs 29, when optimized as in exercise 54. The alternative

From the Library of Melissa Nuno



ptg999

572 ANSWERS TO EXERCISES 7.1.2

in exercise 51 costs only 17. But the catalog of optimum five-variable chains suggests
x7 = x̄1 ∧ x2,

x8 = x3 ⊕ x7,

x9 = x2 ∧ x8,

x10 = x1 ⊕ x9,

x11 = x5 ∧ x10,

x12 = x5 ∨ x10,

x13 = x4 ∧ x̄11,

x14 = x8 ∧ x12,

x15 = x13 ⊕ x14,

x16 = x5 ∧ x̄10,

x17 = x̄3 ∧ x16,

x18 = x̄4 ∧ x17,

x19 = x6 ∧ x15,

x20 = x18 ∨ x19,

for this six-variable function. Is there a better way?
56. If we care about at most two values, the function can be either constant or xj or x̄j .
57. The truth tables for x5 through x15, in hexadecimal notation, are respectively
0fff, 3ccc, 30c0, 75d5, 4919, 7000, 0606, 4808, 2000, 5d5d, 3ece. So we get

1010 →→ , 1011 →→ , 1100 →→ , 1101 →→ , 1110 →→ , 1111 →→ .

[Corey Plover, believing that it might be better to have a solution in which nondigits
never masquerade as digits, has discovered a 12-step chain (with non-greedy x7)

x5 = x1 ⊕ x2,

x6 = x3 ∧ x̄4,

x7 = x1 ⊕ x6,

x8 = x4 ∨ x7,

x9 = x2 ⊕ x3,

g = x10 = x7 ∨ x9,

d̄ = x11 = x8 ⊕ x10,

ā = x12 = x̄3 ∧ x11,

b̄ = x13 = x2 ∧ x̄11,

c̄ = x14 = x7 ∧ x9,

ē = x15 = x4 ∨ x12,

f̄ = x16 = x̄5 ∧ x8,

for which a, . . . , g have the truth tables b7ff, f9f0, dfe3, b6df, a2aa, 8ff2, 3efd, and

1010 →→ , 1011 →→ , 1100 →→ , 1101 →→ , 1110 →→ , 1111 →→ .

He has also shown that all 11-step solutions to (44) map the nondigits into either
( , , , , , ), ( , , , , , ), ( , , , , , ), ( , , , , , ), ( , , , , , ), or ( , , , , , ).]
58. The truth tables of all cost-7 functions with exactly eight 1s in their truth tables
are equivalent to either 0779, 169b, or 179a. Combining these in all possible ways
yields 9656 solutions that are distinct under permutation and/or complementation of
{x1, x2, x3, x4} as well as under permutation and/or complementation of {f1, f2, f3, f4}.
59. The greedy-footprint heuristic produces the following 17-step chain:

x5 = x2 ⊕ x3,

x6 = x1 ⊕ x4,

x7 = x1 ⊕ x3,

x8 = x4 ∨ x5,

x9 = x6 ∧ x8,

x10 = x7 ∨ x9,

x11 = x2 ∨ x7,

x12 = x2 ∧ x̄6,

x13 = x3 ∧ x4,

x14 = x4 ∧ x5,

x15 = x5 ∧ x10,

x16 = x2 ∧ x̄13,

x17 = x̄6 ∧ x8,

f1 = x18 = x11 ⊕ x17,

f2 = x19 = x10 ∧ x̄14,

f3 = x20 = x9 ⊕ x16,

f4 = x21 = x12 ⊕ x15.

The initial functions all have large footprints, so we can’t achieve C(f1f2f3f4) = 28;
but a slightly more difficult S-box probably does exist.
60. One way is u1 = x1 ⊕ y1, u2 = x2 ⊕ y2, v1 = y2 ⊕ u1, v2 = y1 ⊕ u2, z1 = v1 ∧ ū2,
z2 = v2 ∧ ū1.
61. The following 17-gate solution by David Stevenson generalizes to 8m + 1 gates
for addition mod 2m + 1: u0 = x0 ∧ y0, v0 = x0 ⊕ y0, u1 = x1 ∧ y1, v1 = x1 ⊕ y1,
t1 = v1 ∧ u0, t2 = v1 ⊕ u0, c2 = u1 ∨ t1; u2 = x2 ∧ y2, t3 = x2 ∨ y2, t4 = t3 ∨ c2;
t5 = t2∨v0, t6 = t5∧ t4, t7 = t6∨u2; t8 = t7∧ v̄0, z0 = t7⊕v0, z1 = t2⊕ t8; z2 = t4⊕ t7.
(Notice that (x2x1x0)2 + (y2y1y0)2 = (u2t4t2v0)2− 4[x= y= 4]. Gilbert Lee has found
another 17-step solution if the inputs are represented by 000, 001, 011, 101, and 111.)

From the Library of Melissa Nuno



ptg999

7.1.2 ANSWERS TO EXERCISES 573

62. There are
 2n

2nd


22nc such functions, at most

 2n

2nd


c(n, r) of which have cost ≤ r.

So we can argue as in exercise 46 to conclude from (32) that the fraction with cost
≤ r = ⌊2nc/n⌋ is at most 22r+1−2nc(n+ r − 1)2r/(r − 1)! = 2−r lgn+O(r).
63. [Problemy Kibernetiki 21 (1969), 215–226.] Put the truth table in a 2k×2n−k array
as in Lupanov’s method, and suppose there are cj cares in column j, for 0 ≤ j < 2n−k.
Break that column into ⌊cj/m⌋ subcolumns that each have m cares, plus a possibly
empty subcolumn at the bottom that contains fewer than m of them. The hint tells us
that at most 2m+k column vectors suffice to match the 0s and 1s of every subcolumn
that has a specified top row i0 and bottom row i1. With O(m2m+3k) operations
we can therefore construct O(2m+3k) functions gt(x1, . . . , xk) from the minterms of
{x1, . . . , xk}, so that every subcolumn matches some type t. And for every type t we can
construct functions ht(xk+1, . . . , xn) from the minterms of {xk+1, . . . , xn}, specifying
the columns that match t; the cost is at most


j(⌊cj/m⌋ + 1) ≤ 2nc/m + 2n−k.

Finally, f =

t(gt ∧ht) requires O(2m+3k) additional steps. Choosing k = ⌊2 lgn⌋ and

m = ⌈n− 9 lgn⌉ makes the total cost at most (2nc/n)(1 + 9n−1 lgn+O(n−1)).
Of course we need to prove the hint, which is due to E. I. Nechiporuk [Doklady

Akad. Nauk SSSR 163 (1965), 40–42]. In fact, 2m(1+⌈k ln 2⌉) vectors suffice (see S. K.
Stein, J. Combinatorial Theory A16 (1974), 391–397): If we choose q = 2m⌈k ln 2⌉
vectors at random, not necessarily distinct, the expected number of untouched subcubes
is

k
m


2m(1− 2−m)q <


k
m


2me−q2−m

< 2m. (An explicit construction would be nicer.)
For extensive generalizations — tolerating a percentage of errors and specifying the

density of 1s — see N. Pippenger, Mathematical Systems Theory 10 (1977), 129–167.
64. It’s exactly the game of tic-tac-toe, if we number the cells 6 1 8

7 5 3
2 9 4

as in an ancient Chi-
nese magic square. [Berlekamp, Conway, and Guy use this numbering scheme to present
a complete analysis of tic-tac-toe in their book Winning Ways 3 (2003), 732–736.]
65. One solution is to replace the “defending” moves dj by “attacking” moves aj and
“counterattacking” moves cj , and to include them only for corner cells j ∈ {1, 3, 9, 7}.
Let j · k = (jk) mod 10; then

j · 1 j · 2 j · 3
j · 4 j · 5 j · 6
j · 7 j · 8 j · 9

gives us another way to look at the tic-tac-toe diagram, when j is a corner, because
j ⊥ 10. The precise definition of aj and cj is then

aj = mj ∧ ((xj·3 ∧ β(j·8)(j·9) ∧ (oj·4⊕oj·6)) ∨ (xj·7 ∧ β(j·6)(j·9) ∧ (oj·2⊕oj·8))
∨ (mj·9 ∧ ((mj·8 ∧ xj·2 ∧ (oj·3⊕oj·6)) ∨ (mj·6 ∧ xj·4 ∧ (oj·7⊕oj·8)))));

cj = dj ∧ (xj·6 ∧ oj·7) ∧ (xj·8 ∧ oj·3) ∧ d̄j·9;

here dj = mj ∧ β(j·2)(j·3) ∧ β(j·4)(j·7) takes the place of (51). We also define

u = (x1 ⊕ x3)⊕ (x7 ⊕ x9),
v = (o1 ⊕ o3)⊕ (o7 ⊕ o9),
t = m2 ∧m6 ∧m8 ∧m4 ∧ (u ∨ v̄),

zj =


mj ∧ t̄, if j = 5,
mj ∧ d̄j·9, if j ∈ {1, 3, 9, 7},
mj , if j ∈ {2, 6, 8, 4},

in order to cover a few more exceptional cases. Finally the sequence of rank-ordered
moves d5d1d3d9d7d2d6d8d4m5m1m3m9m7m2m6m8m4 in (53) is replaced by the se-
quence a1a3a9a7c1c3c9c7z5z1z3z9z7z2z6z8z4; and we replace (dj∧ d̄′j)∨(mj∧ ¯̄m′

j) in (55)
by (aj∧ ā′j) ∨ (cj∧ c̄′j) ∨ (zj∧ z̄′j) when j is a corner cell, otherwise simply by (zj∧ z̄′j).

From the Library of Melissa Nuno



ptg999

574 ANSWERS TO EXERCISES 7.1.2

(Notice that this machine is required to move correctly from all legal positions,
even when those positions couldn’t arise after the machine had made X’s earlier moves.
We essentially allow humans to play the game until they ask the machine for advice.
Otherwise great simplifications would be possible. For example, if X always goes first,
it could grab the center cell and eliminate a huge number of future possibilities; fewer
than 8× 6× 4× 2 = 384 games could arise. Even if O goes first, there are fewer than
9 × 7 × 5 × 3 = 945 possible scenarios against a fixed strategy. In fact, the actual
number of different games with the strategy defined here turns out to be 76 + 457, of
which 72 + 328 are won by the machine and the rest belong to the cat.)
66. The Boolean chain in the previous answer fulfills its mission of making correct
moves from all 4520 legal positions, where correctness was essentially defined to mean
that the worst-case final outcome is maximized. But a truly great tic-tac-toe player
would do things differently. For example, from position O

X
the machine takes the center,

O
X
X

, and O probably draws by playing in a corner. But moving to X O

X
or O

X
X

would
give O only two chances to avoid defeat. [See Martin Gardner, Hexaflexagons and
Other Mathematical Diversions, Chapter 4.]

Furthermore the best move from a position like X
O X
O

is to X X
O X
O

instead of winning
immediately; then if the reply is X X O

O X
O

, move to X X O
O X X
O

. That way you still win, but without
humiliating your opponent so badly.

Finally, even the concept of a single “best move” is flawed, because a good player
will choose different moves in different games (as Babbage observed).

It might be thought that programing a digital computer to play ticktacktoe,
or designing special circuits for a ticktacktoe machine,

would be simple. This is true unless your aim is to construct a master robot
that will win the maximum number of games against inexperienced players.

— MARTIN GARDNER, The Scientific American Book of
Mathematical Puzzles & Diversions (1959)

67. The best solution known so far, due to David Stevenson in 2010, uses a total of
818 gates (472 AND, 327 OR, 13 NOR, 6 BUTNOT); see

http://www-cs-faculty.stanford.edu/~knuth/818-gate-solution

for the details. After taking care of moves such as wj and bj , and cleverly optimizing
don’t-cares, Stevenson essentially ORs together about 200 special positions (such as

* *
O

X X
) that make c = 1, about 200 others (such as O

*
O *

) that make s = 1, and about 50
(such as X O

* O

* O
) that make m = 1; then he saves gates by finding common subexpressions

among the ANDs that define special positions, and by using the distributive law, etc.
[This exercise was inspired by a discussion in John Wakerly’s book Digital Design

(Prentice–Hall, 3rd edition, 2000), §6.2.7. Incidentally, Babbage planned to choose
among k possible moves by looking at N mod k, where N was the number of games won
so far; he didn’t realize that successive moves would tend to be highly correlated until N
changed. Much better would have been to let N be the number of moves made so far.]
68. No. That method yields a “uniform” chain with a comprehensible structure, but
its cost is Ω(n2n). A circuit with approximately 2n/n gates, constructed by Theorem L,
exists but is more difficult to fabricate. (Incidentally, C(π5) = 10.)
69. (a) One can, for example, verify this result by trying all 64 cases.

(b) If xm lies in the same row or column as xi, and also in the same row or column
as xj , we have α111 = α101 = α011 = 0, so the pairs are good. Otherwise there are
essentially three different possibilities, all bad: If (i, j,m) = (1, 2, 4) then α101 = 0,

From the Library of Melissa Nuno

http://www-cs-faculty.stanford.edu/~knuth/818-gate-solution


ptg999

7.1.2 ANSWERS TO EXERCISES 575

α100 = x5x9 ⊕ x6x8, α011 = x9; if (i, j,m) = (1, 2, 6) then α010 = x4x9, α011 = x7,
α100 = x5x9, α101 = x8; if (i, j,m) = (1, 5, 9) then α111 = 1, α110 = 0, α010 = x3x7.

70. (a) x1∧((x5∧x9)⊕(x6∧x8))⊕ x2∧((x6∧x7)⊕(x4∧x9))⊕ x3∧((x4∧x8)⊕(x5∧x7)).
(b) x1∧((x5∧x9)∨(x6∧x8)) ∨ x2∧((x6∧x7)∨(x4∧x9)) ∨ x3∧((x4∧x8)∨(x5∧x7)).
(c) Let y1 = x1∧x5∧x9, y2 = x1∧x6∧x8, y3 = x2∧x6∧x7, y4 = x2∧x4∧x9, y5 =

x3∧x4∧x8, y6 = x3∧x5∧x7. The function f(y1, . . . , y6) = [y1 + y2 + y3 >y4 + y5 + y6 ]
can be evaluated in 15 further steps with two full adders and a comparator; but there is
a 14-step solution: Let z1 = (y1⊕y2)⊕y3, z2 = (y1⊕y2)∨(y1⊕y3), z3 = (y4⊕y5)⊕y6,
z4 = (y4⊕ y5)∨ (y4⊕ y6). Then f = (z1⊕ (z2∧(z̄4⊕(z1∨z3))))∧ (z̄3∨z4). Furthermore
y1y2y3 = 111⇐⇒ y4y5y6 = 111; so there are don’t-cares, leading to an 11-step solution:
f = ((z̄1∧z3)∨z̄4) ∧ z2. The total cost is 12 + 11 = 23.

(The author knows of no way by which a computer could discover such an efficient
chain in a reasonable amount of time, given only the truth table of f . But perhaps an
even better chain exists.)

71. (a) P (p) = 1 − 12p2 + 24p3 + 12p4 − 96p5 + 144p6 − 96p7 + 24p8, which is 11
32 +

9
2 ϵ

2 − 3ϵ4 − 24ϵ6 + 24ϵ8 when p = 1
2 + ϵ.

(b) There are N = 2n−3 sets of eight values (f0, . . . , f7), each of which yields good
pairs with probability P (p). So the answer is 1− P (p)N.

(c) The probability is

N
r


P (p)r(1− P (p))N−r that exactly r sets succeed; and in

such a case t trials will find good pairs with probability (r/N)t. The answer is therefore
1−N

r=0

N
r


P (p)r(1− P (p))N−r(r/N)t = 1− P (p)t +O(t2/N).

(d)
N
r=0


N
r


P (p)r(1−P (p))N−rt−1

j=0(r/N)j = (1−P (p)t)/(1−P (p))+O(t3/N).

72. The probability in exercise 71(a) becomes P (p) + (72p3− 264p4 + 432p5− 336p6 +
96p7)r+(60p2−240p3 +456p4−432p5 +144p6)r2 +(−48p2 +144p3−216p4 +96p5)r3 +
(−36p2 + 24p3 + 12p4)r4 + (48p2 − 24p3)r5 − 12p2r6. If p = q = (1 − r)/2, this is
(11 + 48r + 36r2 − 144r3 − 30r4 + 336r5 − 348r6 + 144r7 − 21r8)/32; for example, it’s
7739/8192 ≈ 0.94 when r = 1/2.

73. Consider the Horn clauses 1∧2⇒3, 1∧3⇒4, . . . , 1∧(n − 1)⇒n, 1∧n⇒2, and
i∧j⇒1 for 1 < i < j ≤ n. Suppose |Z| > 1 in a decomposition, and let i be minimum
such that xi ∈ Z. Also let j be minimum such that j > i and xj ∈ Z. We cannot have
i > 1, since i∧j⇒1 in that case. Thus i = 1, and xj ∈ Z for 2 ≤ j ≤ n.

74. Suppose we know that no nontrivial decomposition exists with x1 ∈ Z or · · · or
xi−1 ∈ Z; initially i = 1. We hope to rule out xi ∈ Z too, by choosing j and m
cleverly. The Horn clauses i∧j⇒m reduce to Krom clauses j⇒m when i is asserted.
So we essentially want to use Tarjan’s depth-first search for strong components, in a
digraph with arcs j⇒m that may or may not exist.

When exploring from vertex j, first try m = 1, . . . , m = i − 1; if any such
implication i∧j⇒m succeeds, we can eliminate j and all its predecessors from the
digraph for i. Otherwise, test if j⇒m for any such eliminated vertex m. Otherwise
test unexplored vertices m. Otherwise try vertices m that have already been seen,
favoring those near the root of the depth-first tree.

In the example f(x) = (detX) mod 2, we would successively find 1∧2 ̸⇒3, 1∧2⇒4,
1∧4⇒3, 1∧3⇒5, 1∧5⇒6, 1∧6⇒7, 1∧7⇒8, 1∧8⇒9, 1∧9⇒2 (now i ← 2); 2∧3 ̸⇒1,
2∧3⇒4, 2∧4 ̸⇒1, 2∧4 ̸⇒5, 2∧4⇒6, 2∧6⇒1 (now 3, 4, and 6 are eliminated from
the digraph for 2), 2∧5⇒1 (and 5 is eliminated), 2∧7 ̸⇒1, 2∧7⇒3 (7 is eliminated),
2∧8⇒1, 2∧9⇒1 (now i← 3); 3∧4 ̸⇒1, 3∧4⇒2, 3∧5⇒1, etc.

From the Library of Melissa Nuno



ptg999

576 ANSWERS TO EXERCISES 7.1.2

75. This function is 1 at only two points, which are complementary. So it is inde-
composable; yet the pairs (58) are never bad when n > 3. Every partition (Y,Z) will
therefore be a candidate for decomposition.

Similarly, if f is decomposable with respect to (Y,Z), the indecomposable func-
tion f(x) ⊕ S0,n(x) will act essentially like f in the tests. (A method to deal with
approximately decomposable functions should probably be provided in a general-purpose
decomposability tester.)
76. (a) Let al = [i≥ l] for 0 ≤ l ≤ 2m. The cost is ≤ 2t(m), as observed in answer
38(b); and in fact, the cost can be reduced to 2m+1 − 2m − 2 with Θ(m) depth.
Furthermore the function [i≤ j ] = (̄ı1 ∧ j1) ∨ ((i1 ≡ j1) ∧ [i2 . . . im≤ j2 . . . jm ]) can be
evaluated with 4m− 3 gates. After computing x⊕ y, each zl costs 2m+1 + 1 = O(n).

(b) Here the cost is at most C(g0) + · · ·+ C(g2m) ≤ (2m + 1)(22m
/(2m − O(m)))

by Theorem L, because each gl is a function of 2m inputs.
(c) If i ≤ j we have zl = x for l ≤ i and zl = y for l > i; hence fi(x) = c0⊕· · ·⊕ ci

and fj(y) = cj+1 ⊕ · · · ⊕ c2m . If i > j we have zl = y for l ≤ i and zl = x for l > i;
hence fj(y) = c0 ⊕ · · · ⊕ cj and fi(x) = ci+1 ⊕ · · · ⊕ c2m .

(d) The functions bl = [j < l] can be computed for 0 ≤ l ≤ 2m in O(2m) steps, as
in (a). So we can compute F from (c0, . . . , c2m) with O(2m) further gates. Step (b)
therefore dominates the cost, for large m.

(e) a0 = 1, a1 = i, a2 = 0; b0 = 0, b1 = j, b2 = 1; d = [i≤ j ] = ı̄ ∨ j; ml = al ⊕ d,
zl0 = x0 ⊕ (ml ∧ (x0 ⊕ y0)), zl1 = x1 ⊕ (ml ∧ (x1 ⊕ y1)), for l = 0, 1, 2; c0 = z01;
c1 = z10 ∧ z̄11; c2 = z20 ∨ z21; c′l = cl ∧ (d≡ al), c′′l = cl ∧ (d≡ bl), for l = 0, 1, 2; and
finally F = (c′0 ⊕ c′1 ⊕ c′2) ∨ (c′′0 ⊕ c′′1 ⊕ c′′2 ).

The net cost (29 after obvious simplifications) is, of course, outrageous in such
a small example. But one wonders if a state-of-the-art automatic optimizer would be
able to reduce this chain to just 5 gates.

[This result is a special case of more general theorems in Matematicheskie Zametki
15 (1974), 937–944; London Math. Soc. Lecture Note Series 169 (1992), 165–173.]
77. Given a shortest such chain for fn or f̄n, let Ul = {i | l = j(i) or l = k(i)} be the
“uses” of xl, and let ul = |Ul|. Let ti = 1 if xi = xj(i) ∨xk(i), otherwise ti = 0. We will
show that there’s a chain of length ≤ r−4 that computes either fn−1 or f̄n−1, by using
the following idea: If variable xm is set to 0 or 1, for any m, we can obtain a chain
for fn−1 or f̄n−1 by deleting all steps of Um and modifying other steps appropriately.
Furthermore, if xi = xj(i) ◦ xk(i) and if either xj(i) or xk(i) is known to equal ti when
xm has been set to 0 or 1, then we can also delete the steps Ui. (Throughout this
argument, the letter m will stand for an index in the range 1 ≤ m ≤ n.)

Case 1: um = 1 for some m. This case cannot occur in a shortest chain. For if the
only use of xm is xi = x̄m, eliminating this step would change fn ↔ f̄n; and otherwise
we could set the values of x1, . . . , xm−1, xm+1, . . . , xn to make xi independent of xm,
contradicting xn+r = fn or f̄n. Thus every variable must be used at least twice.

Case 2: xl = x̄m for some l and m, where um > 1. Then xi = xl ◦ xk for some i
and k, and we can set xm ← t̄i to make xi independent of xk. Eliminating steps Um,
Ul, and Ui then removes at least 4 steps, except when ul = ui = 1 and um = 2 and
xj = xm ◦ xi; but in that case we can also eliminate Uj .

Case 3: um ≥ 3 for some m, and not Case 2. If i, j, k ∈ Um and i < j < k, set
xm ← tk and remove steps i, j, k, Uk.

Case 4: u1 = u2 = · · · = un = 2, and not Case 2. We may assume that the first
step is xn+1 = x1 ◦ x2, and that xl = x1 ◦ xk for some k < l.

From the Library of Melissa Nuno



ptg999

7.1.2 ANSWERS TO EXERCISES 577

Case 4.1: k > n. Then k > n+1. If uk = 1, set x1 ← tl and remove steps n+1, k,
l, Ul. Otherwise set x2 ← tn+1; this forces xk = t̄l, and we can remove n+ 1, k, l, Uk.

Case 4.2: xl = x1 ◦ xm. Then we must have m = 2; for if m > 2 we could set
x2 ← tn+1, xm ← tl, and make xn+r independent of x1. Hence we may assume that
xn+1 = x1∧x2, xn+2 = x1∨x2. Setting x1 ← 0 allows us to remove U1 and Un+1; setting
x1 ← 1 allows us to remove U1 and Un+2. Thus we’re done unless un+1 = un+2 = 1.

If xp = x̄n+1, set x1 ← 0 and remove n+ 1, n+ 2, p, Up; if xq = x̄n+2, set x1 ← 1
and remove n+ 1, n+ 2, q, Uq. Otherwise xp = xn+1 ◦ xu and xq = xn+2 ◦ xv, where
xu and xv do not depend on x1 or x2. But that’s impossible; it would allow us to set
x3, . . . , xn to make xu = tp, then x2 ← 1 to make xn+r independent of x1.

[Problemy Kibernetiki 23 (1970), 83–101; 28 (1974), 4. With similar proofs,
Red’kin showed that the shortest AND-OR-NOT chains for the functions [x1 . . . xn <
y1 . . . yn] and [x1 . . . xn = y1 . . . yn] have lengths 5n− 3 and 5n− 1, respectively.]
78. [SICOMP 6 (1977), 427–430.] Say that yk is active if k ∈ S. We may assume that
the chain is normal and that |S| > 1; the proof is like Red’kin’s in answer 77:

Case 1: Some active yk is used more than once. Setting yk ← 0 saves at least two
steps and yields a chain for a function with |S| − 1 active values.

Case 2: Some active yk appears only in an AND gate. Setting yk ← 0 eliminates
at least two steps, unless this AND is the final step. But it can’t be the final step,
because yk = 0 makes the result independent of every other active yj .

Case 3: Like Case 2 but with an OR or NOTBUT or BUTNOT gate. Setting yk ← c
for some appropriate constant c has the desired effect.

Case 4: Like Case 2 but with XOR. The gate can’t be final, since the result should
be independent of yk when (x1 . . . xm)2 addresses a different active value yj . So we can
eliminate two steps by setting yk to the function defined by the other input to XOR.
79. (a) Suppose the cost is r < 2n − 2; then n > 1. If each variable is used exactly
once, two leaves must be mates. Therefore some variable is used at least twice. Pruning
it away produces a chain of cost ≤ r − 2 on n− 1 variables, having no mates.

(Incidentally, the cost is at least 2n − 1 if every variable is used at least twice,
because at least 2n uses of variables must be connected together in the chain.)

(b) Notice that S0,n =

u−−v(u ≡ v) whenever the edges u−−− v form a free tree

on {x1, . . . , xn}. So there are many ways to achieve cost 2n− 3.
Any chain of cost r < 2n−3 must have n > 2 and must contain mates u and v. By

renaming and possibly complementing intermediate results, we can assume that u = 1,
v = 2, and that f(x1, . . . , xn) = g(x1 ◦ h(x3, . . . , xn), x2, . . . , xn), where ◦ is ∧ or ⊕.

Case 1: ◦ is AND. We must have h(0, . . . , 0) = h(1, . . . , 1) = 1, for otherwise
f(x1, x2, y, . . . , y) wouldn’t depend on x1. Therefore f(x1, . . . , xn) = h(x3, . . . , xn) ∧
g(x1, x2, . . . , xn) can be computed by a chain of the same cost in which 1 and 2 are
mates and in which the path between them has gotten shorter.

Case 2: ◦ is XOR. Then f = f0∨f1, where f0(x1, . . . , xn) = (x1≡h(x3, . . . , xn))∧
g(0, x2, . . . , xn) and f1(x1, . . . , xn) = (x1 ⊕ h(x3, . . . , xn)) ∧ g(1, x2, . . . , xn). But f =
S0,n has only two prime implicants; so there are only four possibilities:

Case 2a: f0 = f . Then we can replace x1 ⊕ h by 0, to get a chain of cost ≤ r − 2
for the function g(0, x2, . . . , xn) = S0,n−1(x2, . . . , xn).

Case 2b: f1 = f . Similar to Case 2a.
Case 2c: f0(x) = x1 ∧ · · · ∧ xn and f1(x) = x̄1 ∧ · · · ∧ x̄n. In this case we must

have g(0, x2, . . . , xn) = x2 ∧ · · · ∧ xn and g(1, x2, . . . , xn) = x̄2 ∧ · · · ∧ x̄n. Replacing h
by 1 therefore yields a chain that computes f in < r steps.

From the Library of Melissa Nuno



ptg999

578 ANSWERS TO EXERCISES 7.1.2

Case 2d: f0(x) = x̄1 ∧ · · · ∧ x̄n and f1(x) = x1 ∧ · · · ∧ xn. Similar to Case 2c.
Applying these reductions repeatedly will lead to a contradiction. Similarly, one

can show that C(S0Sn) = 2n− 2. [Theoretical Computer Science 1 (1976), 289–295.]
80. (a) Without loss of generality, a0 = 0 and the chain is normal. Define Ul and ul
as in answer 77. We may assume by symmetry that u1 = max(u1, . . . , un).

We must have u1 ≥ 2. For if u1 = 1, we could assume further that xn+1 = x1 ◦x2;
hence two of the three functions Sα(0, 0, x3, . . . , xn) = Sα′′ , Sα(0, 1, x3, . . . , xn) = S′α′ ,
Sα(1, 1, x3, . . . , xn) = S′′α would be equal. But then Sα would be a parity function, or
S′α′ would be constant.

Therefore setting x1 ← 0 allows us to eliminate the gates of U1, giving a chain for
Sα′ with at least 2 fewer gates. It follows that C(Sα) ≥ C(Sα′) + 2. Similarly, setting
x1 ← 1 proves that C(Sα) ≥ C(S′α) + 2.

Three cases arise when we explore the situation further:
Case 1: u1 ≥ 3. Setting x1 ← 0 proves that C(Sα) ≥ C(Sα′) + 3.
Case 2: U1 = {i, j} and operator ◦j is canalizing (namely, AND, BUTNOT, NOT-

BUT, or OR). Setting x1 to an appropriate constant forces the value of xj and allows
us to eliminate U1 ∪ Uj ; notice that i /∈ Uj in an optimum chain. So either C(Sα) ≥
C(Sα′) + 3 or C(Sα) ≥ C(S′α) + 3.

Case 3: U1 = {i, j} and ◦i = ◦j = ⊕. We may assume that xi = x1 ⊕ x2 and
xj = x1 ⊕ xk. If uj = 1 and xl = xj ⊕ xp, we can restructure the chain by letting
xj = xk⊕xp, xl = x1⊕xj ; therefore we can assume that either uj ̸= 1 or xl = xj◦xp for
some canalizing operator ◦. If U2 = {i, j′}, we can assume similarly that xj′ = x2⊕xk′
and that either uj′ ̸= 1 or xl′ = xj′ ◦′ xp′ for some canalizing operator ◦′. Furthermore
we can assume by symmetry that xj does not depend on xj′ .

If xk does not depend on xi, let f(x3, . . . , xn) = xk; otherwise let f(x3, . . . , xn) be
the value of xk when xi = 1. By setting x1 ← f(x3, . . . , xn) and x2 ← f̄(x3, . . . , xn),
or vice versa, we make xi and xj constant, and we obtain a chain for the nonconstant
function S′α′ . We can, in fact, ensure that xl is constant in the case uj = 1. We claim
that at least five gates of this chain (including xi and xj) can be eliminated; hence
C(Sα) ≥ C(S′α′) + 5. The claim is clearly true if |Ui ∪ Uj | ≥ 3.

We must have |Ui∪Uj | > 1. Otherwise we’d have p = i, and xk would not depend
on xi, so Sα would be independent of x1 with our choice of x2. Therefore |Ui∪Uj | = 2.

Case 3a: Uj = {l}. Then xl is constant; we can eliminate xi, xj , and Ui∪Uj ∪Ul.
If the latter set contains only two elements, then xq = xi ◦ xl is also constant and we
eliminate Uq. Since S′α′ isn’t constant, we won’t eliminate the output gate.

Case 3b: Ui ⊆ Uj , |Uj | = 2. Then xq = xi ◦ xj for some q; we can eliminate xi,
xj , and Uj ∪ Uq. The claim has been proved.

(b) By induction, C(Sk) ≥ 2n + min(k, n − k) − 3 − [n = 2k], for 0 < k < n;
C(S≥k) ≥ 2n + min(k, n + 1 − k) − 4, for 1 < k < n. The easy cases are C(S0) =
C(Sn) = C(S≥1) = C(S≥n) = n− 1; C(S≥0) = 0.

Reference: Mathematical Systems Theory 10 (1977), 323–336.
(A nice unpublished idea of L. Adleman, circa 1978, proves that C(S≥2) = 2n +

O(
√
n): Given m2 elements xij , compute c∨ r, where c = S≥2(mi=1 xi1, . . . ,

m
i=1 xim)

and r = S≥2(mj=1 x1j , . . . ,
m
j=1 xmj) each cost < m2 + 3m using just ∨ and ∧.)

81. If some variable is used more than once, we can set it to a constant, decreasing n
by 1 and decreasing c by ≥ 2. Otherwise the first operation must involve x1, because
y1 = x1 is the only output that doesn’t need computation; making x1 constant decreases
n by 1, c by ≥ 1, and d by ≥ 1. [J. Algorithms 7 (1986), 185–201.]

From the Library of Melissa Nuno



ptg999

7.1.2 ANSWERS TO EXERCISES 579

82. (62) is false.
(63) reads, “For all numbers m there’s a number n such that m < n + 1”; it is

true because we can take m = n.
(64) fails when n = 0 or n = 1, because the numbers in these formulas are required

to be nonnegative integers.
(65) says that, if b exceeds a by 2 or more, there’s a number ab between them. Of

course it’s true, because we can let ab = a+ 1.
(66) was explained in the text, and it too is true. Notice that ‘∧’ takes precedence

over ‘∨’ and ‘≡’ takes precedence over ‘⇔’, just as ‘+’ takes precedence over ‘≥’ and
‘<’ over ‘∧’ in (65); these conventions reduce the need for parentheses in sentences of L.

(67) says that, if A contains at least one element n, it must contain a minimum
element m (an element that’s less than or equal to all of its elements). True.

(68) is similar, but m is now a maximum element. Again true, because all sets are
assumed to be finite.

(69) asks for a set P with the property that [0∈P ] = [3 /∈P ], [1∈P ] = [4 /∈P ],
. . . , [999∈P ] = [1002 /∈P ], [1000∈P ] ̸= [1003 /∈P ], [1001∈P ] ̸= [1004 /∈P ], etc. It’s
true if (and only if) P = {x | xmod 6 ∈ {1, 2, 3} and 0 ≤ x < 1000}.

Finally, the subformula ∀n (n ∈ C ⇔ n + 1 ∈ C) in (70) is another way of saying
that C = ∅, because C is finite. Hence the parenthesized formula after ∀A∀B is a
tricky way to say that A = ∅ and B ̸= ∅. (Stockmeyer and Meyer used this trick to
abbreviate statements in L that involve long subformulas more than once.) Statement
(70) is true because an empty set doesn’t equal a nonempty set.
83. We can assume that the chain is normal. Let the canalizing steps be y1, . . . , yp.
Then yk = αk ◦ βk and f = αp+1, where αk and βk are ⊕’s of some subsets of
{x1, . . . , xn, y1, . . . , yk−1}; at most n+k−2 ⊕’s are needed to compute them, combining
common terms first. Hence C(f) ≤ p+

p+1
k=1(n+ k − 2) = (p+ 1)(n+ p/2)− 1.

84. Argue as in the previous answer, with ∨ or ∧ in place of ⊕. [N. Alon and R. B.
Boppana, Combinatorica 7 (1987), 15–16.]
85. (a) A simple computer program shows that 13744 are legitimate and 19024 aren’t.
(An illegitimate family of this kind has at least 8 members; one such is {00, 0f, 33, 55,
ff, 15, 3f, 77}. Indeed, if the functions x1∨x2 (3f), x2∨x3 (77), and (x1∨x2)∧x3 (15)
are present in a legitimate family L, then x2 ⊔ 15 = 33 | 15 = 37 must also be in L.)

(b) The projection and constant functions are obviously present. Define A∗ = {B | B ⊇ A and B ∈ A}, or A∗ = ∞ if no such set B exists. Then we have
⌈A⌉ ⊓ ⌈B⌉ = ⌈A ∩B⌉ and ⌈A⌉ ⊔ ⌈B⌉ = ⌈(A ∪B)∗⌉.

(c) Abbreviate the formulas as x̂l ⊆ xl∨
 l
i=n+1 δi, xl ⊆ x̂l∨

 l
i=n+1 ϵi, and argue

by induction: If step l is an AND step, x̂l = x̂j ⊓ x̂k ⊆ x̂j ∧ x̂k ⊆ (xj ∨
 l
i=n+1 δi) ∧

(xk∨
 l
i=n+1 δi) = xl∨

 l
i=n+1 δi; xl = xj ∧xk ⊆ (x̂j ∨

 l−1
i=n+1 ϵi)∧ (x̂k∨

 l−1
i=n+1 ϵi) =

(x̂j ∧ x̂k) ∨ l−1
i=n+1 ϵi, and x̂j ∧ x̂k = x̂l ∨ ϵl. Argue similarly if step l is an OR step.

86. (a) If S is an r-family contained in the (r + 1)-family S′, clearly ∆(S) ⊆ ∆(S′).
(b) By the pigeonhole principle, ∆(S) contains elements u and v of each part,

whenever S is an r-family. And if ∆(S) = {u, v}, we certainly have u−−−v.
(c) The result is obvious when r = 1. There are at most r − 1 edges containing

any given vertex u, by the “strong” property. And if u−−− v, the edges disjoint from
{u, v} are strongly (r − 1)-closed; so there are at most (r − 2)2 of them, by induction.
Thus there are at most 1 + 2(r − 2) + (r − 2)2 edges altogether.

From the Library of Melissa Nuno



ptg999

580 ANSWERS TO EXERCISES 7.1.2

(d) Yes, by exercise 85(b), if r > 1, because strongly r-closed graphs are closed
under intersection. All graphs with ≤ 1 edges are strongly r-closed when r > 1, because
they have no r-families containing distinct edges.

(e) There are

n
3


triangles xij ∧xik ∧xjk, only n−2 of which are contained in any
term xuv of f̂ . Hence the minterms for at most (r− 1)2(n− 2) triangles are contained
in f̂ , and the others must be contained in the union of the terms ϵi = x̂i⊕ (x̂j(i)∧ x̂k(i))
for the p AND steps. Such a term has the form

T = (⌈G⌉ ⊓ ⌈H⌉)⊕ (⌈G⌉ ∧ ⌈H⌉) = (⌈G⌉ ∧ ⌈H⌉) ∧ ⌈G ∩H⌉,
where G and H are strongly r-closed; but T contains at most 2(r − 1)3 triangles.

Why? Because a triangle xij ∧ xik ∧ xjk in T must involve some variable (say xij)
of ⌈G⌉ and some variable (say xik) of ⌈H⌉, but no variable of ⌈G ∩H⌉. There are at
most (r− 1)2 choices for ij; and then there are at most 2(r− 1) choices for k, since H
has at most r − 1 edges touching i and at most r − 1 edges touching j.

(f) There are 2n−1 complete bigraphs obtained by coloring 1 red, coloring other
vertices either red or blue, and letting u −−− v if and only if u and v have opposite
colors. By the first formula in exercise 85(c), every such graph’s minterms B must be
contained within the terms

T = δi = x̂i ⊕ (x̂j(i) ∨ x̂k(i)) = ⌈(G ∪H)∗⌉ ∧ ⌈G ∪H⌉.
(For example, if n = 4 and if vertices (2, 3, 4) are (red, blue, blue), then B = x̄12∧x13∧
x14 ∧ x23 ∧ x24 ∧ x̄34.) A minterm B is contained in T if and only if, in the coloring
for B, some edge of (G∪H)∗ has vertices of opposite colors, but all edges of G∪H are
monochromatic. We will prove that each term T includes at most 2n−2−rr2 such B,
hence 2n−2−rr2q ≥ 2n−1.

We can compute G∗ = Gt from any given graph G by the following (inefficient)
algorithm: Set G0 ← G, t← 0. If Gt has an r-family S with |∆(S)| < 2, set t← t+ 1,
Gt ←∞, and stop. Otherwise, if ∆(S) = {u, v} and u /−−−v, set t← t+ 1, Gt ← (Gt−1
plus the edge u−−−v) and repeat. Otherwise stop.

There are 2n−1−r bipartite minterms B with monochromatic {uj , vj} for 1 ≤ j ≤ r
when |∆(S)| < 2. And when ∆(S) = {u, v} there are 2n−2−r with monochromatic
{uj , vj} and bichromatic {u, v}. Hence

T = ⌈G∗⌉ \ ⌈G⌉ = (⌈Gt⌉ \ ⌈Gt−1⌉) ∨ · · · ∨ (⌈G1⌉ \ ⌈G0⌉)
contains 2n−2−r(t+[G∗ =∞]) minterms B. And the algorithm stops with t ≤ (r−1)2.

(g) Exercise 84 tells us that q <

p
2


+(p+1)

n
2

. Thus we have either 2(r−1)3p ≥

n
3

− (r − 1)2(n− 2) or


p
2


+ (p+ 1)

n
2

> 2r+1/r2. Both lower bounds for p are

≥ 1
6


n

6 lgn

3
1 +O

 log logn
logn


when r =


lg


n6

746496(lgn)4


.

[Noga Alon and Ravi B. Boppana, Combinatorica 7 (1987), 1–22, proceeded in this
way to prove, among other things, the lower bound Ω(n/logn)s for the number of ∧’s
in any monotone chain that decides whether or not G has a clique of fixed size s ≥ 3.]
87. The entries of X3 are at most n2 when X is a 0–1 matrix. A Boolean chain
with O(nlg 7(logn)2) gates can implement Strassen’s matrix multiplication algorithm
4.6.4–(36), on integers modulo 2⌊lgn2⌋+1.
88. There are 1,422,564 such functions, in 716 classes with respect to permutation of
variables. Algorithm L and the other methods of this section extend readily to ternary

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 581

operations, and we obtain the following results for optimum median-only computation:

C(f) Class-
es

Func-
tions Cm(f) Class-

es
Func-
tions L(f) Class-

es
Func-
tions D(f) Class-

es
Func-
tions

0 1 7 0 1 7 0 1 7 0 1 7
1 1 35 1 1 35 1 1 35 1 1 35
2 2 350 2 2 350 2 2 350 2 13 5670
3 9 3885 3 9 3885 3 8 3745 3 700 1416822
4 48 42483 4 48 42483 4 38 35203 4 1 30
5 201 406945 5 188 391384 5 139 270830 5 0 0
6 353 798686 6 253 622909 6 313 699377 6 0 0
7 99 169891 7 69 134337 7 176 367542 7 0 0
8 2 282 8 2 2520 8 34 43135 8 0 0
9 0 0 9 0 0 9 3 2310 9 0 0

10 0 0 10 0 0 10 0 0 10 0 0
11 0 0 ∞ 143 224654 11 1 30 11 0 0

S. Amarel, G. E. Cooke, and R. O. Winder [IEEE Trans. EC-13 (1964), 4–13, Fig. 5b]
conjectured that the 9-operation formula

⟨x1x2x3x4x5x6x7⟩ = ⟨x1⟨⟨x2x3x5⟩⟨x2x4x6⟩⟨x3x4x7⟩⟩⟨⟨x2x5x6⟩⟨x3x5x7⟩⟨x4x6x7⟩⟩⟩
is the best way to compute medians-of-7 via medians-of-3. But the “magic” formula

⟨x1⟨x2⟨x3x4x5⟩⟨x3x6x7⟩⟩⟨x4⟨x2x6x7⟩⟨x3x5⟨x5x6x7⟩⟩⟩⟩
needs only 8 operations; and in fact the shortest chain needs just seven steps:

⟨x1x2x3x4x5x6x7⟩ = ⟨x1⟨x2⟨x5x6x7⟩⟨x3⟨x5x6x7⟩x4⟩⟩⟨x5⟨x2x3x4⟩⟨x6⟨x2x3x4⟩x7⟩⟩⟩.
The interesting function f(x1, . . . , x7) = (x1∧x2∧x4) ∨ (x2∧x3∧x5) ∨ (x3∧x4∧x6) ∨
(x4∧x5∧x7) ∨ (x5∧x6∧x1) ∨ (x6∧x7∧x2) ∨ (x7∧x1∧x3), whose prime implicants corre-
spond to the projective plane with 7 points, is the toughest of all: Its minimum length
L(f) = 11 and minimum depth D(f) = 4 are achieved by the remarkable formula

⟨⟨x1x4⟨x4x5x6⟩⟩⟨x3x6⟨x1⟨x2x3x7⟩⟨x2x5x6⟩⟩⟩⟨x2x7⟨x1⟨x5x2x4⟩⟨x5x3x7⟩⟩⟩⟩.
And the following even more astonishing chain computes it optimally:

x8 = ⟨x1x2x3⟩, x9 = ⟨x1x4x6⟩, x10 = ⟨x1x5x8⟩, x11 = ⟨x2x7x8⟩,
x12 = ⟨x3x9x10⟩, x13 = ⟨x4x5x12⟩, x14 = ⟨x6x11x12⟩, x15 = ⟨x7x13x14⟩.

SECTION 7.1.3
1. These operations interchange the bits of x and y in positions where m is 1. (In

particular, if m = −1, the step ‘y ← y ⊕ (x & m)’ becomes just ‘y ← y ⊕ x’, and the
three assignments will swap x↔ y without needing an auxiliary register. H. S. Warren,
Jr., has located this trick in vintage-1961 IBM programming course notes.)

2. All three hold when x and y are nonnegative, or if we regard x and y as “unsigned
2-adic integers” in which 0 < 1 < 2 < · · · < −3 < −2 < −1. But if negative integers
are less than nonnegative integers, (i) fails if and only if x < 0 and y < 0; (ii) and (iii)
fail if and only if x⊕ y < 0, namely, if and only if x < 0 and y ≥ 0 or x ≥ 0 and y < 0.

3. Note that x− y = (x⊕ y)− 2(x̄& y) (see exercise 93). By removing bits common
to x and y at the left, we may assume that xn−1 = 1 and yn−1 = 0. Then 2(x̄& y) ≤
2((x⊕ y)− 2n−1) = (x⊕ y)− (x⊕ y)M − 1.

4. xCN = x+ 1 = xS , by (16). Hence xNC = xNCSP = xNCCNP = xNNP = xP .

From the Library of Melissa Nuno



ptg999

582 ANSWERS TO EXERCISES 7.1.3

5. (a) Disproof: Let x = ( . . . x2x1x0)2. Then bit l of x≪ k is xl−k[l≥ k ]. So bit
l of the left-hand side is xl−k−j [l≥ k ][l − k≥ j ], while bit l of the right-hand side is
xl−j−k[l≥ j + k ]. These expressions agree if j ≥ 0 or k ≤ 0. But if j < 0 < k, they
differ when l = max(0, j + k) and xl−j−k = 1.

(We do, however, have (x≪ j)≪ k ⊆ x≪ (j + k) in all cases.)
(b) Proof: Bit l in all three formulas is xl+j [l≥−j ] ∧ yl−k[l≥ k ].

6. Since x≪ y ≥ 0 if and only if x ≥ 0, we must have x ≥ 0 if and only if y ≥ 0.
Obviously x = y is always a solution. The solutions with x > y are (a) x = −1 and
y = −2, or 2y > x > y > 0; (b) x = 2 and y = 1, or 2−x ≥ −y > −x > 0.

7. Set x′ ← (x+ µ̄0)⊕ µ̄0, where µ0 is the constant in (47). Then x′ = ( . . . x′2x′1x′0)2,
since (x′⊕µ̄0)−µ̄0 = ( . . . x̄′3x′2x̄′1x′0)2−( . . . 1010)2 = ( . . . 0x′20x′0)2−( . . . x′30x′10)2 = x.

[This is Hack 128 in HAKMEM; see answer 20 below. An alternative formula,
x′ ← (µ0−x)⊕µ0, has also been suggested by D. P. Agrawal, IEEE Trans. C-29 (1980),
1032–1035. The results are correct modulo 2n for all n, but overflow or underflow can
occur. For example, two’s complement binary numbers in an n-bit register range from
−2n−1 to 2n−1 − 1, inclusive, but negabinary numbers range from − 2

3 (2n − 1) to
1
3 (2n − 1) when n is even. In general the formula x′ ← (x + µ) ⊕ µ converts from
binary notation to the general number system with binary basis ⟨2n(−1)mn⟩ discussed
in exercise 4.1–30(c), when µ = ( . . .m2m1m0)2.]

8. First, x⊕y /∈ (S⊕y)∪(x⊕T ). Second, suppose that 0 ≤ k < x⊕y, and let x⊕y =
(α1α′)2, k = (α0α′′)2, where α, α′, and α′′ are strings of 0s and 1s with |α′| = |α′′|.
Assume by symmetry that x = (β1β′)2 and y = (γ0γ′)2, where |α′| = |β′| = |γ′|. Then
k⊕y = (β0γ′′)2 is less than x. Hence k⊕y ∈ S, and k = (k⊕y)⊕y ∈ S⊕y. [See R. P.
Sprague, Tôhoku Math. J. 41 (1936), 438–444; P. M. Grundy, Eureka 2 (1939), 6–8.]

9. The Sprague–Grundy theorem in the previous exercise shows that two piles of x
and y sticks are equivalent in play to a single pile of x⊕y sticks. (There is a nonnegative
integer k < x⊕ y if and only if there either is a nonnegative i < x with i⊕ y < x⊕ y or
a nonnegative j < y with x⊕ j < x⊕ y.) So the k piles are equivalent to a single pile
of size a1 ⊕ · · · ⊕ ak. [See C. L. Bouton, Annals of Math. (2) 3 (1901–1902), 35–39.]
10. For clarity and brevity we shall write simply xy for x⊗ y and x+ y for x⊕ y, in
parts (i) through (iv) of this answer only.

(i) Clearly 0y = 0 and x+ y = y+x and xy = yx. Also 1y = y, by induction on y.
(ii) If x ̸= x′ and y ̸= y′ then xy+xy′ +x′y+x′y′ ̸= 0, because the definition of xy

says that xy′ +x′y+x′y′ ̸= xy when 0 ≤ x′ < x and 0 ≤ y′ < y. In particular, if x ̸= 0
and y ̸= 0 then xy ̸= 0. Another consequence is that, if x = mex(S) and y = mex(T )
for arbitrary finite sets S and T , we have xy = mex{xj + iy + ij | i ∈ S, j ∈ T}.

(iii) Consequently, by induction on the (ordinary) sum of x, y, and z, (x+ y)z is

mex{(x+ y)z′ + (x′ + y)z + (x′ + y)z′, (x+ y)z′ + (x+ y′)z + (x+ y′)z′

| 0 ≤ x′ < x, 0 ≤ y′ < y, 0 ≤ z′ < z},

which is mex{xz′ + x′z + x′z′ + yz, xz + yz′ + y′z + y′z′} = xz + yz. In particular,
there’s a cancellation law: If xz = yz then (x+ y)z = 0, so x = y or z = 0.

(iv) By a similar induction, (xy)z = mex{(xy)z′ + (xy′ + x′y + x′y′)(z + z′)} =
mex{(xy)z′ + (xy′)z + (xy′)z′ + · · · } = mex{x(yz′) + x(y′z) + x(y′z′) + · · · } =
mex{(x+ x′)(yz′ + y′z + y′z′) + x′(yz)} = x(yz).

(v) If 0 ≤ x, y < 22n we shall prove that x ⊗ y < 22n, 22n ⊗ y = 22n
y, and

22n ⊗ 22n = 3
2 22n. By the distributive law (iii) it suffices to consider the case x = 2a

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 583

and y = 2b for 0 ≤ a, b < 2n. Let a = 2p + a′ and b = 2q + b′, where 0 ≤ a′ < 2p and
0 ≤ b′ < 2q; then x = 22p ⊗ 2a′ and y = 22q ⊗ 2b′, by induction on n.

If p < n−1 and q < n−1 we’ve already proved that x⊗y < 22n−1. If p < q = n−1,
then x ⊗ 2b′ < 22q, hence x ⊗ y < 22n. And if p = q = n − 1, we have x ⊗ y =
22p ⊗ 22p ⊗ 2a′ ⊗ 2b′ = ( 3

2 22p)⊗ z, where z < 22p. Thus x⊗ y < 22n in all cases.
By the cancellation law, the nonnegative integers less than 22n form a subfield.

Hence in the formula

22n ⊗ y = mex{22n
y′ ⊕ x′ ⊗ (y ⊕ y′) | 0 ≤ x′ < 22n

, 0 ≤ y′ < y}
we can choose x′ for each y′ to exclude all numbers between 22n

y′ and 22n(y′ + 1)− 1;
but 22n

y is never excluded.
Finally in 22n ⊗ 22n = mex{22n(x′ ⊕ y′) ⊕ (x′ ⊗ y′) | 0 ≤ x′, y′ < 22n}, choosing

x′ = y′ will exclude all numbers up to and including 22n − 1, since x ⊗ x = y ⊗ y
implies that (x⊕ y)⊗ (x⊕ y) = 0, hence x = y. Choosing x′ = y′⊕1 excludes numbers
from 22n to 3

2 22n−1, since (x⊗x)⊕x = (y⊗y)⊕y implies that x = y or x = y⊕1, and
since the most significant bit of x⊗ x is the same as that of x. This same observation
shows that 3

2 22n is not excluded. QED.
Consider, for example, the subfield {0, 1, . . . , 15}. By the distributive law we can

reduce x⊗y to a sum of x⊗1, x⊗2, x⊗4, and/or x⊗8. We have 2⊗2 = 3, 2⊗4 = 8,
4⊗ 4 = 6; and multiplication by 8 can be done by multiplying first by 2 and then by 4
or vice versa, because 8 = 2⊗ 4. Thus 2⊗ 8 = 12, 4⊗ 8 = 11, 8⊗ 8 = 13.

In general, for n > 0, let n = 2m + r where 0 ≤ r < 2m. There is a 2m+1 × 2m+1

matrix Qn such that multiplication by 2n is equivalent to applying Qn to blocks of
2m+1 bits and working mod 2. For example, Q1 =

1 1
1 0

, and ( . . . x4x3x2x1x0)2 ⊗ 21 =

( . . . y4y3y2y1y0)2, where y0 = x1, y1 = x1 ⊕ x0, y2 = x3, y3 = x3 ⊕ x2, y4 = x5, etc.
The matrices are formed recursively as follows: Let Q0 = R0 = (1) and

Q2m+r =

I Rm
I 0

Qr 0
. . .

0 Qr


, Rm+1 =


Rm R2

m

Rm 0


= Q2m+1−1,

where Qr is replicated enough times to make 2m+1 rows and columns. For example,

Q2 =


1 0 1 1
0 1 1 0
1 0 0 0
0 1 0 0

 ; Q3 = Q2


Q1 0
0 Q1


=


1 1 0 1
1 0 1 1
1 1 0 0
1 0 0 0

 = R2.

If register x holds any 64-bit number, and if 0 ≤ j ≤ 7, the MMIX instruction MXOR y,qj,x
will compute y = x⊗ 2j , given the hexadecimal matrix constants

q0 = 8040201008040201,
q1 = c08030200c080302,
q2 = b06080400b060804,

q3 = d0b0c0800d0b0c08,
q4 = 8d4b2c1880402010,
q5 = c68d342cc0803020,

q6 = b9678d4bb0608040,
q7 = deb9c68dd0b0c080.

[J. H. Conway, On Numbers and Games (1976), Chapter 6, shows that these definitions
actually yield an algebraically closed field over the ordinal numbers.]
11. Let m = 2as + · · · + 2a1 with as > · · · > a1 ≥ 0 and n = 2bt + · · · + 2b1 with
bt > · · · > b1 ≥ 0. Then m⊗ n = mn if and only if (as | · · · | a1) & (bt | · · · | b1) = 0.
12. If x = 22n

a+ b where 0 ≤ a, b < 22n

, let x′ = x⊗ (x⊕ a). Then

x′ = ((22n⊗ a)⊕ b)⊗ ((22n⊗ a)⊕ a⊕ b) = (22n−1 ⊗ a⊗ a)⊕ (b⊗ (a⊕ b)) < 22n

.

From the Library of Melissa Nuno



ptg999

584 ANSWERS TO EXERCISES 7.1.3

To nim-divide by x we can therefore nim-divide by x′ and multiply by x⊕a. [This algo-
rithm is due to H. W. Lenstra, Jr.; see Séminaire de Théorie des Nombres (Université
de Bordeaux, 1977–1978), exposé 11, exercise 5.]
13. If a2⊕· · ·⊕ak = a1⊕a3⊕· · ·⊕((k−2)⊗ak) = 0, every move breaks this condition;
we can’t have (a ⊗ x) ⊕ (b ⊗ y) = (a ⊗ x′) ⊕ (b ⊗ y′) when x ⊕ y = x′ ⊕ y′ and a ̸= b
unless (x, y) = (x′, y′).

Conversely, if a2 ⊕ · · · ⊕ ak ̸= 0 we can reduce some aj with j ≥ 2 to make this
sum zero; then a1 can be set to a3 ⊕ · · · ⊕ ((k − 2) ⊗ ak). If a2 ⊕ · · · ⊕ ak = 0 and
a1 ̸= a3⊕· · ·⊕ ((k−2)⊗ak), we simply reduce a1 if it is too large. Otherwise there’s a
j ≥ 3 such that equality will occur if (j − 2)⊗ aj is replaced by an appropriate smaller
value ((j− 2)⊗ a′j)⊕ ((i− 2)⊗ (aj ⊕ a′j)), for some 2 ≤ i < j and 0 ≤ a′j < aj , because
of the definition of nim multiplication; hence both of the desired equalities are achieved
by setting aj ← a′j and ai ← ai⊕aj⊕a′j . [This game was introduced in Winning Ways
by Berlekamp, Conway, and Guy, at the end of Chapter 14.]
14. (a) Each y = ( . . . y2y1y0)2 = xT determines x = ( . . . x2x1x0)2 uniquely, since
x0 = y0 ⊕ t and ⌊y/2⌋ = ⌊x/2⌋Tx0 .

(b) When k > 0, it is a branching function with labels tαaβ = a for |β| = k − 1,
and tα = 0 for |α| < k. But when k ≤ 0, the mapping is not a permutation; in fact, it
sends 2−k different 2-adic integers into 0, when k < 0.

[The case k = 1 is particularly interesting: Then xT takes nonnegative integers
into nonnegative integers of even parity, negative integers into nonnegative integers of
odd parity, and −1/3 →→ −1. Furthermore ⌊xT/2⌋ is “Gray binary code,” 7.2.1.1–(9).]

(c) If ρ(x ⊕ y) = k we have T (x) ≡ T (y) and x ≡ y + 2k (modulo 2k+1). Hence
ρ(xT ⊕ yT ) = ρ(x⊕ y⊕T (x)⊕T (y)) = k. Conversely, if ρ(xT ⊕ yT ) = k whenever y =
x+2k, we obtain a suitable bit labeling by letting tα=(xT≫|α|) mod 2 when x=(αR)2.

(d) This statement follows immediately from (a) and (c). For if we always have
ρ(x⊕ y) = ρ(xU⊕ yU) = ρ(xV⊕ yV ), then ρ(x⊕ y) = ρ(xU⊕ yU) = ρ(xUV⊕ yUV ). And
if xTU = x for all x, ρ(xU⊕ yU) = ρ(x⊕ y) is equivalent to ρ(x⊕ y) = ρ(xT⊕ yT).

We can also construct the labelings explicitly: If W = UV , note that when a, b, c ∈
{0, 1} we have Wa = UaVa′ , Wab = UabVa′b′ , and Wabc = UabcVa′b′c′ , where a′ = a⊕u,
b′ = b⊕ ua, c′ = c⊕ uab, and so on; hence w = u⊕ v, wa = ua⊕ va′ , wab = uab⊕ va′b′ ,
etc. The labeling T inverse to U is obtained by swapping left and right subtrees of all
nodes labeled 1; thus t = u, ta′ = ua, ta′b′ = uab, etc.

(e) The explicit constructions in (d) demonstrate that the balance condition is
preserved by compositions and inverses, because {0′, 1′} = {0, 1} at each level.

Notes: Hendrik Lenstra observes that branching functions can profitably be viewed
as the isometries (distance-preserving permutations) of the 2-adic integers, when we
use the formula 1/2ρ(x⊕y) to define the “distance” between 2-adic integers x and y.
Moreover, the branching functions mod 2d turn out to be the Sylow 2-subgroup of the
group of all permutations of {0, 1, . . . , 2d− 1}, namely the unique (up to isomorphism)
subgroup that has maximum power-of-2 order among all subgroups of that group. They
also are equivalent to the automorphisms of the complete binary tree with 2d leaves.
15. Equivalently, (x+ 2a)⊕ b = (x⊕ b) + 2a; so we might as well find all b and c such
that (x⊕ b) + c = (x+ c)⊕ b. Setting x = 0 and x = −c implies that b+ c = b⊕ c and
b−c = b⊕(−c); hence b&c = b&(−c) = 0 by (89), and we have b < 2ρc. This condition is
also sufficient. Thus 0 ≤ b < 2ρa+1 is necessary and sufficient for the original problem.
16. (a) If ρ(x ⊕ y) = k we have x ≡ y + 2k (modulo 2k+1); hence x + a ≡ y + a + 2k
and ρ((x+ a)⊕ (y + a)) = k. And ρ((x⊕ b)⊕ (y ⊕ b)) is obviously k.

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 585

(b) The hinted labeling, call it P (c), has 1s on the path corresponding to c, and
0s elsewhere; thus it is balanced. The general animating function can be written

xP (c0)−a1P (c1)−a2 ...P (cm−1)−am ⊕ cm, where cj = b1 ⊕ · · · ⊕ bj ;

so it is balanced if and only if cm = 0.
[Incidentally, the set S = {P (0)}∪{P (k)⊕P (k+2e) | k ≥ 0 and 2e > k} provides

an interesting basis for all possible balanced labelings: A labeling is balanced if and
only if it is

 {q | q ∈ Q} for some Q ⊆ S. This exclusive-or operation is well defined
even though Q might be infinite, because only finitely many 1s appear at each node.]

(c) The function P (c) in (b) has this form, because xP (c) = x ⊕ ⌊x ⊕ c⌉. Its
inverse, xS(c) = ((x ⊕ c) + 1) ⊕ c, is x ⊕ ⌊x ⊕ c̄⌉ = xP (c̄). Furthermore we have
xP (c)P (d) = xP (c)⊕⌊xP (c)⊕d⌉=x⊕⌊x⊕c⌉⊕⌊x⊕dS(c)⌉, because ⌊x⊕y⌉=⌊xT⊕yT ⌉ for any
branching function xT . Similarly xP (c)P (d)P (e) = x⊕⌊x⊕c⌉⊕⌊x⊕dS(c)⌉⊕⌊x⊕eS(d)S(c)⌉,
etc. After discarding equal terms we obtain the desired form. The resulting numbers
pj are unique because they are the only values of x at which the function changes sign.

(d) We have, for example, x⊕ ⌊x⊕ a⌉ ⊕ ⌊x⊕ b⌉ ⊕ ⌊x⊕ c⌉ = xP (a′)P (b′)P (c′) where
a′ = a, b′ = bP (a′), and c′ = cP (a′)P (b′).

[The theory of animating functions was developed by J. H. Conway in Chapter 13
of his book On Numbers and Games (1976), inspired by previous work of C. P. Welter
in Indagationes Math. 14 (1952), 304–314; 16 (1954), 194–200.]
17. (Solution by M. Slanina.) Such equations are decidable even if we also allow opera-
tions such as x&y, x̄, x≪1, x≫1, 2ρx, and 2λx, and even if we allow Boolean combina-
tions of statements and quantifications over integer variables, by translating them into
formulas of second-order monadic logic with one successor (S1S). Each 2-adic variable
x = ( . . . x2x1x0)2 corresponds to an S1S set variable X, where j ∈ X means xj = 1:

z = x̄ becomes ∀t(t ∈ Z ⇔ t /∈ X);
z = x& y becomes ∀t(t ∈ Z ⇔ (t ∈ X ∧ t ∈ Y ));
z = 2ρx becomes ∀t(t ∈ Z ⇔ (t ∈ X ∧ ∀s(s < t⇒ s /∈ X)));
z = x+ y becomes ∃C ∀t(0 /∈C ∧ (t ∈ Z ⇔ (t∈X)⊕ (t∈Y )⊕ (t∈C))

∧ (t+1 ∈ C ⇔ ⟨(t∈X)(t∈Y )(t∈C)⟩)).

An identity such as x& (−x) = 2ρx is equivalent to the translation of

∀X∀Y ∀Z((integer(X) ∧ 0 = x+ y ∧ z = x& y) ⇒ z = 2ρx),

where integer(X) stands for ∃t∀s(s > t ⇒ (s ∈ X ⇔ t ∈ X)). We can also include
2-adic constants if they are, say, ratios of integers; for example, z = µ0 is equivalent to
the formula 0 ∈ Z ∧ ∀t(t ∈ Z ⇔ t+ 1 /∈ Z). But of course we cannot include arbitrary
(uncomputable) constants.

J. R. Büchi proved that all formulas of S1S are decidable, in Logic, Methodology,
and Philosophy of Science: Proceedings (Stanford, 1960), 1–11. If we restrict attention
to equations, one can show in fact that exponential time suffices.

On the other hand M. Hamburg has shown that the problem would be unsolvable
if ρx, λx, or 1≪x were added to the repertoire; multiplication could then be encoded.

Incidentally, many nontrivial identities exist, even if we use only the operations
x⊕ y and x+ 1. For example, C. P. Welter noticed in 1952 that

((x⊕ (y + 1)) + 1)⊕ (x+ 1) = ((((x+ 1)⊕ y) + 1)⊕ x) + 1.

From the Library of Melissa Nuno



ptg999

586 ANSWERS TO EXERCISES 7.1.3

18. Of course row x is entirely blank when x is a multiple of 64. The fine details
of this image are apparently “chaotic” and complex, but there is a fairly easy way to
understand what happens near the points where the straight lines x = 64

√
j intersect

the hyperbolas xy = 211k, for integers j, k ≥ 1 that aren’t too large.
Indeed, when x and y are integers, the value of x2y ≫ 11 is odd if and only if

x2y/212 mod 1 ≥ 1
2 . Thus, if x = 64

√
j + δ and xy = 211(k + ϵ) we have

x2y

212 mod 1 =
128

√
jδ+δ2

4096


y mod 1 =

2δx−δ2

4096


y mod 1 =


(k+ ϵ)δ− δ2y

4096


mod 1,

and this quantity has a known relation to 1
2 when, say, δ is close to a small integer.

[See C. A. Pickover and A. Lakhtakia, J. Recreational Math. 21 (1989), 166–169.]
19. (a) When n = 1, f(A,B,C) has the same value under all arrangements except
when a0 ̸= a1, b0 ̸= b1, and c0 ̸= c1; and then it cannot exceed 1. For larger values of n
we argue by induction, assuming that n = 3 in order to avoid cumbersome notation. Let
A0 = (a0, a1, a2, a3), A1 = (a4, a5, a6, a7), . . . , C1 = (c4, c5, c6, c7). Then f(A,B,C) =
j⊕k⊕l=0 f(Aj , Bk, Cl) ≤


j⊕k⊕l=0 f(A∗

j , B
∗
k , C

∗
l ) by induction. Thus we can assume

that a0 ≥ a1 ≥ a2 ≥ a3, a4 ≥ a5 ≥ a6 ≥ a7, . . . , c4 ≥ c5 ≥ c6 ≥ c7. We can also
sort the subvectors A′

0 = (a0, a1, a4, a5), A′
1 = (a2, a3, a6, a7), . . . , C′

1 = (c2, c3, c6, c7)
in a similar way. Finally, we can sort A′′

0 = (a0, a1, a6, a7), A′′
1 = (a2, a3, a4, a5), . . . ,

C′′
1 = (c2, c3, c4, c5), because in each term ajbkcl the number of subscripts {j, k, l} with

leading bits 01, 10, and 11 must satisfy s01 ≡ s10 ≡ s11 (modulo 2). And these three
sorting operations leave A, B, C fully sorted, by exercise 5.3.4–48. (Exactly three sorts
on subvectors of length 2n−1 are needed, for all n ≥ 2.)

(b) Suppose A = A∗, B = B∗, and C = C∗. Then we have aj =
2n−1
t=0 αt[j≤ t],

where αj = aj − aj+1 ≥ 0 and we set a2n = 0; similar formulas hold for bk and cl. Let
A(p) denote the vector (ap(0), . . . , ap(2n−1)) when p is a permutation of {0, 1, . . . , 2n−1}.
Then by part (a) we have

f(A(p), B(q), C(r)) =

j⊕k⊕l=0


t,u,v αtβuγv[p(j)≤ t][q(k)≤u][r(l)≤ v ]

≤j⊕k⊕l=0

t,u,v αtβuγv[j≤ t][k≤u][l≤ v ] = f(A,B,C).

[This proof is due to Hardy, Littlewood, and Pólya, Inequalities (1934), §10.3.]
(c) The same proof technique extends to any number of vectors. [R. E. A. C.

Paley, Proc. London Math. Soc. (2) 34 (1932), 265–279, Theorem 15.]
20. The given steps compute the least integer y greater than x such that νy = νx.
They’re useful for generating all combinations of n objects, taken m at a time (that is,
all m-element subsets of an n-element set, with elements represented by 1 bits).

[This tidbit is Hack 175 in HAKMEM, Massachusetts Institute of Technology
Artificial Intelligence Laboratory Memo No. 239 (29 February 1972).]
21. Set t ← y + 1, u ← t⊕ y, v ← t & y, x ← v − (v &−v)/(u + 1). If y = 2m − 1 is
the first m-combination, these eight operations set x to zero. (The fact that x = f(ȳ)
does not seem to yield any shorter scheme.)
22. Sideways addition avoids the division: SUBU t,x,1; ANDN u,x,t; SADD k,t,x;
ADDU v,x,u; XOR t,v,x; ADDU k,k,2; SRU t,t,k; ADDU y,v,t. But we can actually
save a step by judiciously using the constant mone = −1: SUBU t,x,1; XOR u,t,x;
ADDU y,x,u; SADD k,t,y; ANDN y,y,u; SLU t,mone,k; ORN y,y,t.
23. (a) (0 . . . 01 . . . 1)2 = 2m − 1 and (0101 . . . 01)2 = (22m − 1)/3.

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 587

(b) This solution uses the 2-adic constant µ0 = ( . . . 010101)2 = −1/3:

t← x⊕ µ0, u← (t−1)⊕ t, v ← x | u, w ← v + 1, y ← w +

v & w√
u+ 1


.

If x = (22m − 1)/3, the operations produce a strange result because u = 22m+1 − 1.
(c) XOR t,x,m0; SUBU u,t,1; XOR u,t,u; OR v,x,u; SADD y,u,m0; ADDU w,v,1;

ANDN t,v,w; SRU y,t,y; ADDU y,w,y. [This exercise was inspired by Jörg Arndt.]
24. It’s expedient to “prime the pump” by initializing the array to the state that it
should have after all multiples of 3, 5, 7, and 11 have been sieved out. We can combine
3 with 11 and 5 with 7, as suggested by E. Wada:

LOC Data Segment
qbase GREG @ ;N IS 3584 ;n GREG N ;one GREG 1
Q OCTA #816d129a64b4cb6e Q0 (little-endian)

LOC Q+N/16
qtop GREG @ End of the Q table
Init OCTA #9249249249249249|#4008010020040080 Multiples of 3 or 11 in [129 . . 255]

OCTA #8421084210842108|#0408102040810204 Multiples of 5 or 7
t IS $255 ;x33 IS $0 ;x35 IS $1 ;j IS $4

LOC #100
Main LDOU x33,Init; LDOU x35,Init+8

LDA j,qbase,8; SUB j,j,qtop Prepare to set Q1.
1H NOR t,x33,x33; ANDN t,t,x35; STOU t,qtop,j Initialize 64 sieve bits.

SLU t,x33,2; SRU x33,x33,31; OR x33,x33,t Prepare for the next 64 values.
SLU t,x35,6; SRU x35,x35,29; OR x35,x35,t
ADD j,j,8; PBN j,1B Repeat until reaching qtop.

Then we cast out nonprimes p2, p2 + 2p, . . . , for p = 13, 17, . . . , until p2 > N :
p IS $0 ;pp IS $1 ;m IS $2 ;mm IS $3 ;q IS $4 ;s IS $5

LDOU q,qbase,0; LDA pp,qbase,8
SET p,13; NEG m,13*13,n; SRU q,q,6 Begin with p = 13.

1H SR m,m,1 m← ⌊(p2 −N)/2⌋.
2H SR mm,m,3; LDOU s,qtop,mm; AND t,m,#3f;

SLU t,one,t; ANDN s,s,t; STOU s,qtop,mm Zero out a bit.
ADD m,m,p; PBN m,2B Advance by p bits.
SRU q,q,1; PBNZ q,3F Move to next potential prime.

2H LDOU q,pp,0; INCL pp,8 Read in another batch
OR p,p,#7f; PBNZ q,3F of potential primes.
ADD p,p,2; JMP 2B Skip past 128 nonprimes.

2H SRU q,q,1
3H ADD p,p,2; PBEV q,2B Set p← p+ 2 until p is prime.

MUL m,p,p; SUB m,m,n; PBN m,1B Repeat until p2 > N .
The running time, 1172µ+5166υ, is of course much less than the time needed for steps
P1–P8 of Program 1.3.2́ P, namely 10037µ+ 641543υ (improved to 10096µ+ 215351υ
in exercise 1.3.2́ –14). [See P. Pritchard, Science of Computer Programming 9 (1987),
17–35, for several instructive variations. In practice, a program like this one tends
to slow down dramatically when the sieve is too big for the computer’s cache. Better
results are obtained by working with a segmented sieve, which contains bits for numbers
between N0 + kδ and N0 + (k + 1)δ, as suggested by L. J. Lander and T. R. Parkin,

From the Library of Melissa Nuno



ptg999

588 ANSWERS TO EXERCISES 7.1.3

Math. Comp. 21 (1967), 483–488; C. Bays and R. H. Hudson, BIT 17 (1977), 121–127.
Here N0 can be quite large, but δ is limited by the cache size; calculations are done
separately for k = 0, 1, . . . . Segmented sieves have become highly developed; see, for
example, T. R. Nicely, Math. Comp. 68 (1999), 1311–1315, and the references cited
there. The author used such a program in 2006 to discover an unusually large gap of
length 1370 between 418032645936712127 and the next larger prime.]
25. (1 + 1 + 25 + 1 + 1 + 25 + 1 + 1 = 56) mm; the worm never sees pages 2–500 of
Volume 1 or 1–499 of Volume 4. (Unless the books have been placed in little-endian
fashion on the bookshelf; then the answer would be 106 mm.) This classic brain-teaser
can be found in Sam Loyd’s Cyclopedia (New York: 1914), pages 327 and 383.
26. We could multiply by #aa...ab instead of dividing by 12 (see exercise 1.3.1́ –17);
but multiplication is slow too. Or we could deal with a “flat” sequence of 12000000× 5
consecutive bits (= 7.5 megabytes), ignoring the boundaries between words. Another
possibility is to use a scheme that is neither big-endian nor little-endian but transposed:
Put item k into octabyte 8(k mod 220), where it is shifted left by 5⌊k/220⌋. Since
k < 12000000, the amount of shift is always less than 60. The MMIX code to put item k
into register $1 is AND $0,k,[#fffff]; SLU $0,$0,3; LDOU $1,base,$0; SRU $0,k,20;
4ADDU $0,$0,$0; SRU $1,$1,$0; AND $1,$1,#1f.

[This solution uses 8 large megabytes (223 bytes). Any convenient scheme for con-
verting item numbers to octabyte addresses and shift amounts will work, as long as the
same method is used consistently. Of course, just ‘LDBU $1,base,k’ would be faster.]
27. (a) ((x−1)⊕ x) + x. [This exercise is based on an idea of Luther Woodrum, who
noticed that ((x−1) |x) + 1 = (x&−x) + x.]

(b) (y + x) |y, where y = (x−1)⊕ x.
(c, d, e) ((z⊕x)+x) & z, ((z⊕x)+x)⊕ z, and ((z⊕x)+x) & z, where z = x−1.
(f) x⊕ (a); alternatively, t⊕ (t+1), where t = x |(x−1). [The number (0∞01a11b)2

looks simpler, but it apparently requires five operations: ((t+ 1) & t̄)− 1.]
These constructions all give sensible results in the exceptional cases when x = −2b.

28. A 1 bit indicates x’s rightmost 0 (for example, (101011)2 →→ (000100)2); −1 →→ 0.
29. µk = µk+1 ⊕ (µk+1≪ 2k) [see STOC 6 (1974), 125]. This relation holds also for
the constants µd,k of (48), when 0 ≤ k < d, if we start with µd,d = 22d − 1. (There is,
however, no easy way to go from µk to µk+1, unless we use the “zip” operation; see (77).)
30. Append ‘CSZ rho,x,64’ to (50), thereby adding 1υ to its execution time; or replace
the last two lines by SRU t,y,rho; SLU t,t,2; SRU t,[#300020104],t; AND t,t,#f;
ADD rho,rho,t, saving 1υ. For (51), we simply need to make sure that rhotab[0] = 8.
31. In the first place, his code loops forever when x = 0. But even after that bug is
patched, his assumption that x is a random integer is highly questionable. In many
applications when we want to compute ρx for a nonzero 64-bit number x, a more
reasonable assumption would be that each of the outcomes {0, 1, . . . , 63} is equally
likely. The average and standard deviation then become 31.5 and ≈ 18.5.
32. ‘NEGU y,x; AND y,x,y; MULU y,debruijn,y; SRU y,y,58; LDB rho,decode,y’ has
estimated cost µ + 14υ, although multiplication by a power of 2 might well be faster
than a typical multiplication. Add 1υ for the correction in answer 30.
33. In fact, an exhaustive calculation shows that exactly 94727 suitable constants a
yield a “perfect hash function” for this problem, 90970 of which also identify the power-
of-two cases y = 2j ; 90918 of those also distinguish the case y = 0. The multiplier

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 589

#208b2430c8c82129 is uniquely best, in the sense that it doesn’t need to refer to table
entries above decode [32400] when y is known to be a valid input.

34. Identity (a) fails when x = 5, y = 6; but (b) is true, also when xy = 0. Proof
of (c): ρx = ρy if and only if x⊕ (x− 1) = y ⊕ (y − 1), by Eq. (41).

35. Let f(x) = x ⊕ 3x. Clearly f(2x) = 2f(x), and f(4x + 1) = 4f(x) + 2. We also
have f(4x− 1) = 4f(x) + 2, by exercise 34(c). The hinted identity follows.

Given n, set u ← n≫ 1, v ← u + n, t ← u ⊕ v, n+← v & t, and n−← u & t.
Clearly u = ⌊n/2⌋ and v = ⌊3n/2⌋, so n+ − n− = v − u = n. And this is Reitwiesner’s
representation, because n+ |n− has no consecutive 1s. [H. Prodinger, Integers 0 (2000),
A8:1–A8:14. Incidentally we also have f(−x) = f(x).]

36. (i) The commands x← x⊕(x≪1), x← x⊕(x≪2), x← x⊕(x≪4), x← x⊕(x≪8),
x← x⊕ (x≪ 16), x← x⊕ (x≪ 32) change x to x⊕. (ii) x& = x&∼(x+ 1).

(See exercises 66 and 70 for applications of x⊕; see also exercises 128 and 209.)

37. Insert ‘CSZ y,x,half’ after the FLOTU in (55), where half = #3fe0000000000000;
note that (55) says ‘SR’ (not ‘SRU’). No change is needed to (56), if lamtab[0] = −1.

38. ‘ SRU t,x,1; OR y,x,t; SRU t,y,2; OR y,y,t; SRU t,y,4; OR y,y,t; ...;
SRU t,y,32; OR y,y,t; SRU t,y,1; SUBU y,y,t’ takes 14υ.

39. (Solution by H. S. Warren, Jr.) Let σ(x) denote the result of smearing x to the
right, as in the first line of (57). Compute x& σ((x≫ 1) & x̄).

40. Suppose λx = λy = k. If x = y = 0, (58) certainly holds, regardless of how we
define λ0. Otherwise x = (1α)2 and y = (1β)2, for some binary strings α and β with
|α| = |β| = k; and x ⊕ y < 2k ≤ x & y. On the other hand if λx < λy = k, we have
x⊕y ≥ 2k > x&y. And H. S. Warren, Jr., notes that λx < λy if and only if x < y& x̄.

41. (a)
∞
n=1(ρn)zn =

∞
k=1 z

2k
/(1 − z2k) =

∞
k=1 kz

2k
/(1 − z2k+1) = z/(1 − z) −∞

k=0 z
2k
/(1 + z2k). The Dirichlet generating function is simpler:

∞
n=1(ρn)/nz =

ζ(z)/(2z − 1).
(b)

∞
n=1(λn)zn =

∞
k=1 z

2k
/(1− z).

(c)
∞
n=1(νn)zn =

∞
k=0 z

2k
/((1− z)(1 + z2k)) =

∞
k=0 z

2k
µk(z), where µk(z) =

(1 + z + · · ·+ z2k−1)/(1− z2k+1). (The “magic masks” of (47) correspond to µk(2).)
[See Automatic Sequences by J.-P. Allouche and J. Shallit (2003), Chapter 3, for

further information about the functions ρ and ν, which they denote by ν2 and s2.]

42. e12e1−1 +(e2 +2)2e2−1 + · · ·+(er +2r−2)2er−1, by induction on r. [D. E. Knuth,
Proc. IFIP Congress (1971), 1, 19–27. The fractal aspects of this sum are illustrated
in Figs. 3.1 and 3.2 of the book by Allouche and Shallit.] Consider also S′

n(1) where

Sn(z) =
n−1
k=0

zνk = (1 + z)e1 + z(1 + z)e2 + · · ·+ zr−1(1 + z)er .

43. The straightforward implementation of (63), ‘SET nu,0; SET y,x; BZ y,Done;
1H ADD nu,nu,1; SUBU t,y,1; AND y,y,t; PBNZ y,1B’ costs (5 + 4νx)υ; it beats the
implementation of (62) when νx < 4, ties when νx = 4, and loses when νx > 4.

But we can save 4υ from the implementation of (62) if we replace the final
multiplication-and-shift by ‘y ← y + (y ≫ 8), y ← y + (y ≫ 16), y ← y + (y ≫ 32),
ν ← y & #ff’. [Of course, MMIX’s single instruction ‘SADD nu,x,0’ is much better.]

From the Library of Melissa Nuno



ptg999

590 ANSWERS TO EXERCISES 7.1.3

44. Let this sum be ν(2)x. If we can solve the problem for 2d-bit numbers, we can
solve it for 2d+1-bit numbers, because ν(2)(22d

x+x′) = ν(2)x+ν(2)x′+2dνx. Therefore
a solution analogous to (62) suggests itself, on a 64-bit machine:

Set z ← (x≫ 1) & µ0 and y ← x− z.
Set z ← ((z + (z≫ 2)) & µ1) + ((y & µ̄1)≫ 1) and y ← (y & µ1) + ((y≫ 2) & µ1).
Set z ← ((z + (z≫ 4)) & µ2) + ((y & µ̄2)≫ 2) and y ← (y + (y≫ 4)) & µ2.
Finally ν(2) ← (((Az) mod 264)≫ 56) + ((((By) mod 264)≫ 56)≪ 3),

where A = (11111111)256 and B = (01234567)256.

But on MMIX, which has sideways addition built in, there’s a better solution by J. Dallos:
SADD nu2,x,m5
SADD t,x,m4
2ADDU nu2,nu2,t

SADD t,x,m3
2ADDU nu2,nu2,t
SADD t,x,m2

2ADDU nu2,nu2,t
SADD t,x,m1
2ADDU nu2,nu2,t

SADD t,x,m0
2ADDU nu2,nu2,t

[In general, ν(2)x =

k 2kν(x& µ̄k). See Dr. Dobb’s Journal 8, 4 (April 1983), 24–37.]

45. Let d = (x− y) & (y− x); test if d& y ̸= 0. [Rokicki found that this idea, which is
called colex ordering, can be used with node addresses to near-randomize binary search
trees or Cartesian trees as if they were treaps, without needing an additional random
“priority key” in each node. See U.S. Patent 6347318 (12 February 2002).]
46. SADD t,x,m; NXOR y,x,m; CSOD x,t,y; the mask m is ~(1<<i|1<<j). (In general,
these instructions complement the bits specified by m if those bits have odd parity.)
47. y ← (x≫ δ) & θ, z ← (x& θ)≪ δ, x← (x&m) | y | z, where m = θ | (θ≪ δ).
48. Given δ, there are sδ =

δ−1
j=0 F⌊(n+j)/δ⌋+1 different δ-swaps, including the identity

permutation. (See exercise 4.5.3–32.) Summing over δ gives 1+
n−1
δ=1 (sδ−1) altogether.

49. (a) The set S = {a1δ1+· · ·+amδm | {a1, . . . , am} ⊆ {−1, 0,+1}} for displacements
δ1, . . . , δm must contain {n−1, n−3, . . . , 1−n}, because the kth bit must be exchanged
with the (n + 1− k)th bit for 1 ≤ k ≤ n. Hence |S| ≥ n. And S contains at most 3m
numbers, at most 2 · 3m−1 of which are odd.

(b) Clearly s(mn) ≤ s(m) + s(n), because we can reverse m fields of n bits each.
Thus s(3m) ≤ m and s(2 · 3m) ≤ m + 1. Furthermore the reversal of 3m bits uses
only δ-swaps with even values of δ; the corresponding (δ/2)-swaps prove that we have
s((3m ± 1)/2) ≤ m. These upper bounds match the lower bounds of (a) when m > 1.

(c) The string αaβθψzω with |α| = |β| = |θ| = |ψ| = |ω| = n can be changed to
ωzψθβaα with a (3n+ 1)-swap followed by an (n+ 1)-swap. Then s(n) further swaps
reverse all. Hence s(32) ≤ s(6) + 2 = 4, and s(64) ≤ 5. Again, equality holds by (a).

Incidentally, s(63) = 4 because s(7) = s(9) = 2. The lower bound in (a) turns out
to be the exact value of s(n) for 1 ≤ n ≤ 22, except that s(16) = 4.
50. Express n = (tm . . . t1t0)3 in balanced ternary notation. Let nj = (tm . . . tj)3 and
δj = 2nj + tj−1, so that nj−1 − δj = nj and 2δj − nj−1 = nj + tj−1 for 1 ≤ j ≤ m.
Let E0 = {0} and Ej+1 = Ej ∪ {tj − x | x ∈ Ej} for 0 ≤ j < m. (Thus, for example,
E1 = {0, t0} and E2 = {0, t0, t1, t1 − t0}.) Notice that ε ∈ Ej implies |ε| ≤ j.

Assume by induction on j that δ-swaps for δ = δ1, . . . , δj have changed the n-bit
word α1 . . . α3j to α3j . . . α1, where each subword αk has length nj+εk for some εk ∈ Ej .
If nj+1 > j, a δj+1-swap within each subword will preserve this assumption. Otherwise
each subword αk has |αk| ≤ nj + j ≤ 3nj+1 + 1 + j ≤ 4j+ 1 < 4m. Therefore 2k-swaps
for ⌊lg 4m⌋ ≥ k ≥ 0 will reverse them all. (Note that a 2k-swap on a subword of size t,
where 2k < t ≤ 2k+1, reduces it to three subwords of sizes t− 2k, 2k+1 − t, t− 2k.)

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 591

51. (a) If c = (cd−1 . . . c0)2, we must have θd−1 = cd−1µd,d−1. But for 0 ≤ k < d − 1
we can take θk = ckµd,k ⊕ θ̂k, where θ̂k is any mask ⊆ µd,k.

(b) Let Θ(d, c) be the set of all such mask sequences. Clearly Θ(1, c) = {c}. When
d > 1 we will have, recursively,

Θ(d, c) = {(θ0, . . . , θd−2, θd−1, θ̂d−2, . . . , θ̂0) | θk = θ′k−1 ‡ θ′′k−1, θ̂k = θ̂′k−1 ‡ θ̂′′k−1},

by “zipping together” two sequences (θ′0, . . . , θ′d−3, θ
′
d−2, θ̂

′
d−3, . . . , θ̂

′
0) ∈ Θ(d−1, c′) and

(θ′′0 , . . . , θ′′d−3, θ
′′
d−2, θ̂

′′
d−3, . . . , θ̂

′′
0 ) ∈ Θ(d− 1, c′′) for some appropriate θ0, θ̂0, c′, and c′′.

When c is odd, the bigraph corresponding to (75) has only one cycle; so (θ0, θ̂0,
c′, c′′) is either (µd,0, 0, ⌈c/2⌉, ⌊c/2⌋) or (0, µd,0, ⌊c/2⌋, ⌈c/2⌉). But when c is even, the
bigraph has 2d−1 double bonds; so θ0 = θ̂0 is any mask ⊆ µd,0, and c′ = c′′ = c/2.
[Incidentally, lg |Θ(d, c)| = 2d−1(d− 1)−d−1

k=1(2d−k − 1)(2k−1− |2k−1− cmod 2k|).]
In both cases we can therefore let θ̂d−2 = · · · = θ̂0 = 0 and omit the second half

of (71) entirely. Of course in case (b) we would do the cyclic shift directly, instead of
using (71) at all. But exercise 58 proves that many other useful permutations, such as
selective reversal followed by cyclic shift, can also be handled by (71) with θ̂k = 0 for
all k. The inverses of those permutations can be handled with θk = 0 for 0 ≤ k < d−1.

52. The following solutions make θ̂j = 0 whenever possible. We shall express the
θ masks in terms of the µ’s, for example by writing µ6,5 & µ0 instead of stating the
requested hexadecimal form #55555555; the µ form is shorter and more instructive.

(a) θk = µ6,k & µ5 and θ̂k = µ6,k & (µk+1 ⊕ µk−1) for 0 ≤ k < 5; θ5 = θ4. (Here
µ−1 = 0. To get the “other” perfect shuffle, (x31x63 . . . x1x33x0x32)2, let θ̂0 = µ6,0&µ̄1.)

(b) θ0 = θ3 = θ̂0 = µ6,0 & µ3; θ1 = θ4 = θ̂1 = µ6,1 & µ4; θ2 = θ5 = θ̂2 = µ6,2 & µ5;
θ̂3 = θ̂4 = 0. [See J. Lenfant, IEEE Trans. C-27 (1978), 637–647, for a general theory.]

(c) θ0 = µ6,0 & µ4; θ1 = µ6,1 & µ5; θ2 = θ4 = µ6,2 & µ4; θ3 = θ5 = µ6,3 & µ5;
θ̂0 = µ6,0 & µ2; θ̂1 = µ6,1 & µ3; θ̂2 = θ̂0 ⊕ θ2; θ̂3 = θ̂1 ⊕ θ3; θ̂4 = 0.

(d) θk = µ6,k & µ5−k for 0 ≤ k ≤ 5; θ̂k = θk for 0 ≤ k ≤ 2; θ̂3 = θ̂4 = 0.

53. We can write ψ as a product of d − t transpositions, (u1v1) . . . (ud−tvd−t) (see
exercise 5.2.2–2). The permutation induced by a single transposition (uv) on the index
digits, when u < v, corresponds to a (2v − 2u)-swap with mask µd,v & µ̄u. We should
do such a swap for (u1v1) first, . . . , (ud−tvd−t) last.

In particular, the perfect shuffle in a 2d-bit register corresponds to the case where
ψ = (01 . . . (d− 1)) is a one-cycle; so it can be achieved by doing such (2v − 2u)-swaps
for (u, v) = (0, 1), . . . , (0, d − 1). For example, when d = 3 the two-step procedure is
12345678 →→ 13245768 →→ 15263748. [Guy Steele suggests an alternative (d − 1)-step
procedure: We can do a 2k-swap with mask µd,k+1 & µ̄k for d−1 > k ≥ 0. When d = 3
his method takes 12345678 →→ 12563478 →→ 15263748.]

The matrix transposition in exercise 52(b) corresponds to d = 6 and (u, v) = (0, 3),
(1, 4), (2, 5). These operations are the 7-swap, 14-swap, and 28-swap steps for 8 × 8
matrix transposition illustrated in the text; they can be done in any order.

For exercise 52(c), use d = 6 and (u, v) = (0, 2), (1, 3), (0, 4), (1, 5). Exercise 52(d)
is as easy as 52(b), with (u, v) = (0, 5), (1, 4), (2, 3).

54. Transposition amounts to reversing the bits of the minor diagonals. Successive
elements of those diagonals are m − 1 apart in the register. Simultaneous reversal of
all diagonals corresponds to simultaneous reversal of subwords of sizes 1, . . . , m, which
can be done with 2k-swaps for 0 ≤ k < ⌈lgm⌉ (because such transposition is easy

From the Library of Melissa Nuno



ptg999

592 ANSWERS TO EXERCISES 7.1.3

when m is a power of 2, as illustrated in the text). Here’s the procedure for m = 7:

Given
00 01 02 03 04 05 06
10 11 12 13 14 15 16
20 21 22 23 24 25 26
30 31 32 33 34 35 36
40 41 42 43 44 45 46
50 51 52 53 54 55 56
60 61 62 63 64 65 66

6-swap
00 10 02 12 04 14 06
01 11 03 13 05 15 25
20 30 22 32 24 16 26
21 31 23 33 43 35 45
40 50 42 34 44 36 46
41 51 61 53 63 55 65
60 52 62 54 64 56 66

12-swap
00 10 20 30 04 14 24
01 11 21 31 05 15 25
02 12 22 32 06 16 26
03 13 23 33 43 53 63
40 50 60 34 44 54 64
41 51 61 35 45 55 65
42 52 62 36 46 56 66

24-swap
00 10 20 30 40 50 60
01 11 21 31 41 51 61
02 12 22 32 42 52 62
03 13 23 33 43 53 63
04 14 24 34 44 54 64
05 15 25 35 45 55 65
06 16 26 36 46 56 66

55. Given x and y, first set x← x | (x≪2k) and y ← y | (y≪2k) for 2d ≤ k < 3d. Then
set x← (22d+k−2k)-swap of x with mask µ2d+k& µ̄k and y ← (22d+k−2d+k)-swap of y
with mask µ2d+k&µ̄d+k for 0 ≤ k < d. Finally set z ← x&y, then either z ← z |(z≫2k)
or z ← z ⊕ (z≫ 2k) for 2d ≤ k < 3d, and z ← z & (2n2− 1). [The idea is to form two
n × n × n arrays x = (x000 . . . x(n−1)(n−1)(n−1))2 and y = (y000 . . . y(n−1)(n−1)(n−1))2
with xijk = ajk and yijk = bjk, then transpose coordinates so that xijk = aji and
yijk = bik; now x&y does all n3 bitwise multiplications at once. This method is due to
V. R. Pratt and L. J. Stockmeyer, J. Computer and System Sci. 12 (1976), 210–213.]

56. Use (71) with θ0 = θ̂0 = 0, θ1 = #0010201122113231, θ2 = #00080e0400080c06,
θ3 = #00000092008100a2, θ4 = #0000000000000f16, θ5 = #0000000003199c26, θ̂4 =
#00000c9f0000901a, θ̂3 = #003a00b50015002b, θ̂2 = #000103080c0d0f0c, and θ̂1 =
#0020032033233333.

57. The two choices for each cycle when d > 1 have complementary settings. So we
can choose a setting in which at least half of the crossbars are inactive, except in the
middle column. (See exercise 5.3.4–55 for more about permutation networks.)

58. (a) Every different setting of the crossbars gives a different permutation, because
there is exactly one path from input line i to output line j for all 0 ≤ i, j < N . (A net-
work with that property is called a “banyan.”) The unique such path carries input i
on line l(i, j, k) = ((i≫ k)≪ k) + (j mod 2k) after k swapping steps have been made.

(b) We have l(iφ, i, k) = l(jφ, j, k) if and only if imod 2k = j mod 2k and iφ≫k =
jφ≫ k; so (∗) is necessary. And it is also sufficient, because a mapping φ that sat-
isfies (∗) can always be routed in such a way that jφ appears on line l = l(jφ, j, k)
after k steps: If k > 0, jφ will appear on line l(jφ, j, k − 1), which is one of the inputs
to l. Condition (∗) says that we can route it to l without conflict, even if l is l(iφ, i, k).

[In IEEE Transactions C-24 (1975), 1145–1155, Duncan Lawrie proved that condi-
tion (∗) is necessary and sufficient for an arbitrary mapping φ of the set {0, 1, . . . , N−1}
into itself, when the crossbar modules are allowed to be general 2×2 mapping modules
as in exercise 75. Furthermore the mapping φ might be only partially specified, with
jφ = ∗ (“wild card” or “don’t-care”) for some values of j. The proof that appears in
the previous paragraph actually demonstrates Lawrie’s more general theorem.]

(c) imod 2k = j mod 2k if and only if k ≤ ρ(i ⊕ j); i≫ k = j ≫ k if and only if
k > λ(i⊕ j); and iφ = jφ if and only if i = j, when φ is a permutation.

(d) λ(iφ⊕ jφ) ≥ ρ(i⊕ j) for all i ̸= j if and only if λ(iτφ⊕ jτφ) ≥ ρ(iτ ⊕ jτ) =
ρ(i ⊕ j) for all i ̸= j, because τ is a permutation. [Note that the notation can be
confusing: Bit jτφ appears in bit position j if permutation φ is applied first, then τ .
The Sylow group T includes many interesting and important permutations, including
bit reversal and cyclic shifts. It corresponds to settings of the Omega network where
crossbars of length 2j that are congruent mod 2j+1 all switch or all pass, as a unit.]

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 593

(e) Since l(j, j, k) = j for 0 ≤ k ≤ d, a permutation of Ω fixes j if and only if
each of its swaps fixes j. Thus the swaps performed by φ and by ψ operate on disjoint
elements. The union of these swaps gives φψ.

(f) Any setting of the crossbars corresponds to a permutation that makes Batcher’s
comparator modules do the equivalent switching.
59. It is 2Md(a,b), where Md(a, b) is the number of crossbars that have both endpoints
in [a . . b]. To count them, let k = λ(a⊕b), a′ = amod 2k, and b′ = bmod 2k; notice that
b−a = 2k+b′−a′, and Md(a, b) = Mk+1(a′, 2k+b′). Counting the crossbars in the top
half and bottom half, plus those that jump between halves, gives Mk+1(a′, 2k + b′) =
Mk(a′, 2k − 1) +Mk(0, b′) + ((b′ + 1) .− a′). Finally, we have Mk(0, b′) = S(b′ + 1); and
Mk(a′, 2k − 1) = Mk(0, 2k − 1− a′) = S(2k − a′) = k2k−1 − ka′ + S(a′), where S(n) is
evaluated in exercise 42.
60. A cycle of length 2l corresponds to a pattern u0 ← v0 ↔ v1 → u1 ↔ u2 ← v2 ↔
· · · ↔ v2l−1 → u2l−1 ↔ u2l, where u2l = u0 and ‘u ← v’ or ‘v → u’ means that the
permutation sends u to v, ‘x↔ y’ means that x = y ⊕ 1.

We can generate a random permutation as follows: Given u0, there are 2n choices
for v0, then 2n− 1 choices for u1 only one of which causes u2 = u0, then 2n− 2 choices
for v2, then 2n− 3 choices for u3 only one of which closes a cycle, etc.

Consequently the generating function is G(z) =
n
j=1

2n−2j+z
2n−2j+1 . The expected

number of cycles, k, is G′(1) = H2n − 1
2Hn = 1

2 lnn + ln 2 + 1
2γ + O(n−1). The mean

of 2k is
G(2) = (2nn!)2/(2n)! =

√
πn+O(n−1/2);

and the variance is G(4)−G(2)2 = (n+ 1−G(2))G(2) =
√
πn3/2 +O(n).

62. The crossbar settings in P (2d) can be stored in (2d−1)2d−1 = Nd− 1
2N bits. To get

the inverse permutation proceed from right to left. [See P. Heckel and R. Schroeppel,
Electronic Design 28, 8 (12 April 1980), 148–152. Note that any way to represent an
arbitrary permutation requires at least lgN ! > Nd − N/ln 2 bits of memory; so this
representation is nearly optimum, spacewise.]
63. (i) x = y. (ii) Either z is even or x⊕ y < 2max(0,(z−1)/2). (When z is odd we have
(x ‡ y)≫ z = (y≫⌈z/2⌉) ‡ (x≫⌊z/2⌋), even when z < 0.) (iii) This identity holds for
all w, x, y, and z (and also with any other bitwise Boolean operator in place of &).
64. (((z & µ0) + (z′ | µ̄0)) & µ0) | (((z & µ̄0) + (z′ | µ0)) & µ̄0). (See (86).)
65. xu(x2) + v(x2) = xu(x)2 + v(x)2.
66. (a) v(x) = (u(x)/(1+xδ)) mod xn; it’s the unique polynomial of degree less than n
such that (1+xδ)v(x) ≡ u(x) (modulo xn). (Equivalently, v is the unique n-bit integer
such that (v ⊕ (v≪ δ)) mod 2n = u.)

(b) We may as well assume that n = 64m, and that u = (um−1 . . . u1u0)264 ,
v = (vm−1 . . . v1v0)264 . Set c ← 0; then, using exercise 36, set vj ← u⊕

j ⊕ (−c) and
c← vj ≫ 63 for j = 0, 1, . . . , m− 1.

(c) Set c← v0 ← u0; then vj ← uj ⊕ c and c← vj , for j = 1, 2, . . . , m− 1.
(d) Start with c ← 0 and do the following for j = 0, 1, . . . , m − 1: Set t ← uj ,

t ← t⊕ (t≪ 3), t ← t⊕ (t≪ 6), t ← t⊕ (t≪ 12), t ← t⊕ (t≪ 24), t ← t⊕ (t≪ 48),
vj ← t⊕ c, c← (t≫ 61)× #9249249249249249.

(e) Start with v ← u. Then, for j = 1, 2, . . . , m− 1, set vj ← vj ⊕ (vj−1≪ 3) and
(if j < m− 1) vj+1 ← vj+1 ⊕ (vj−1≫ 61).

From the Library of Melissa Nuno



ptg999

594 ANSWERS TO EXERCISES 7.1.3

67. Let n = 2l− 1 and m = n− 2d. If 1
2n < k < n we have x2k ≡ xm+t + xt (modulo

xn+xm+1), where t = 2k−n is odd. Consequently, if v = (vn−1 . . . v1v0)2, the number

w = u⊕ (((u≫ d)⊕ (u≫ 2d)⊕ (u≫ 3d)⊕ · · · ) &−2l−d)

turns out to equal (vn−2 . . . v3v1vn−1 . . . v2v0)2. For example, when l = 4 and d = 2,
the square of u6x

6 + · · ·+u1x+u0 modulo (x7 +x3 + 1) is u6x
5 +u5x

3 + (u6⊕u4)x1 +
(u5 ⊕ u3)x6 + (u6 ⊕ u4 ⊕ u2)x4 + u1x

2 + u0. To compute v, we therefore do a perfect
shuffle, v = ⌊w/2l⌋ ‡ (w mod 2l). The number w can be calculated by methods like
those of the previous exercise. [See R. P. Brent, S. Larvala, and P. Zimmermann,
Math. Comp. 72 (2003), 1443–1452; 74 (2005), 1001–1002.]
68. SRU t,x,delta; PUT rM,theta; MUX x,t,x.
69. Notice that the procedure might fail if we attempt to do the 2d−1-shift first instead
of last. The key to proving that a small-shift-first strategy works correctly is to watch
the spaces between selected bits; we will prove that the lengths of these spaces are
multiples of 2k+1 after the 2k-shift.

Consider the infinite string χk = . . . 1t4 02k

1t3 02k

1t2 02k

1t1 02k

1t0 , which represents
the situation where tl ≥ 0 items need to move 2kl places to the right. A 2k-shift with
any mask of the form θk = . . . 0t4∗2k+1

1t3 0t2∗2k+1
1t1 0t0 leaves us with the situation

represented by the string χk+1 = . . . 1T2 02k+1
1T1 02k+1

1T0 , where exactly Tl = t2l +
t2l+1 items need to move right 2k+1l places. So the claim holds by induction on k.
70. Let ψk = θk ⊕ (θk≪ 1), so that θk = ψ⊕

k in the notation of exercise 36. If we take
∗2k+1 = 02k12k in the previous answer, we have ψ0 = χ̄ and ψk+1 = (ψk & θ̄k)≫ 2k.
Therefore we can proceed as follows:

Set ψ ← χ̄, k ← 0, and repeat the following steps while ψ ̸= 0: Set x ← ψ, then
x← x⊕ (x≪ 2l) for 0 ≤ l < d, then θk ← x, ψ ← (ψ & x̄)≫ 2k, and k ← k + 1.

The computation ends with k = λνχ̄+1; the remaining masks θk, . . . , θd−1, if any,
are zero and those steps can be omitted from (80). “Minimal” masks, for which ∗2k+1 =
02k+1 in answer 69, are obtained if the operations ‘θk ← x, ψ ← (ψ & x̄)≫ 2k’ are
replaced by ‘ψ ← (ψ & x̄)≫ 2k, θk ← x& (x+ ψ)’ in the loop above.

[See compress in H. S. Warren, Jr., Hacker’s Delight (Addison–Wesley, 2002), §7–4;
also G. L. Steele Jr., U.S. Patent 6715066 (30 March 2004). The BESM-6 computer, de-
signed in 1965, implemented compress under the name <sborka> (“gather” or “pack”).
Its <razborka> command (“scatter” or “unpack”) went the other way.]
71. Start with x← y. Do a (−2k)-shift of x with mask θk≪2k, for k = d−1, . . . , 1, 0,
using exercise 70’s masks. Finally set z ← x (or z ← x&χ, if you want a “clean” result).
72. Assume that the leftmost mask bit, χN−1, is zero, since it is immaterial. Then the
result (z(N−1)φ . . . z1φz0φ)2 of any gather-flip corresponds to a permutation with 0φ <
· · · < kφ > · · · > (N−1)φ, where k = νχ. For example, if N = 8 and χ = (00101100)2,
the result is (z0z1z4z6z7z5z3z2)2. So φ ∈ Ω by exercises 5.3.4–11 and 58(f).

Moreover, the masks θ0, θ1, . . . , θd−1 for the 1-swap, 2-swap, . . . , 2d−1-swap can
be computed as follows: The permutation ψ = φ− satisfies jψ = (N−1−j)χ̄j + sj ,
where sj = χj−1 + · · · + χ1 + χ0 counts the 1s following mask bit χj . Let ψ0 = ψ
and θk = (⌊ψk/2k⌋mod 2) & µk, where ψk+1 is the 2k-swap of ψk with mask θk. (In
our example, s7 . . . s1s0 = 33221000 and (0χ̄7) . . . (6χ̄1)(7χ̄0) = 01030067; hence ψ0 =
(7ψ) . . . (1ψ)(0ψ) = 33221000 + 01030067 = 34251067. Then θ0 = (10011001)2 & µ0 =
(00010001)2; ψ1 = 34521076; θ1 = (10010011)2 & µ1 = (00010011)2; ψ2 = 32547610;
θ2 = (00111100)2 & µ2 = (00001100)2. In general jψk ≡ j (modulo 2k).) Represent

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 595

each permutation ψk as a set of d bit vectors, namely as the “bit slices” ψk mod 2,
⌊ψk/2⌋mod 2, etc. Then O(d2) bitwise operations suffice for this computation.

The scatter-flip operation, which undoes the effect of gather-flip, is obtained via the
same crossbar network but from right to left (first a 2d−1-swap, ending with a 1-swap).

[See Journal of Signal Processing Systems 53 (2008), 145–169.]
73. (a) Equivalently, d sheep-and-goats operations must be able to transform the word
xπ = (x(2d−1)π . . . x1πx0π)2 into (x2d−1 . . . x1x0)2, for any permutation π of {0, 1, . . . ,
2d−1}. And this can be done by radix-2 sorting (Algorithm 5.2.5R): First bring the
odd numbered bits to the left, then bring the bits j for odd ⌊j/2⌋ left, and so on.
For example, when d = 3 and xπ = (x3x1x0x7x5x2x6x4)2, the three operations yield
successively (x3x1x7x5x0x2x6x4)2, (x3x7x2x6x1x5x0x4)2, (x7x6x5x4x3x2x1x0)2. [See
Z. Shi and R. Lee, Proc. IEEE Conf. ASAP’00 (IEEE CS Press, 2000), 138–148.]

(b) With gather-flip, the same strategy always yields (xg(2d−1) . . . xg(1)xg(0))2,
where g(k) is Gray binary code, 7.2.1.1–(9). For instance, the example of (a) is now
(x5x7x1x3x0x2x6x4)2, (x6x2x3x7x5x1x0x4)2, (x4x5x7x6x2x3x1x0)2.
74. If | c2l −


c2l+1| = 2∆ > 0, we must rob ∆ from the rich half and give it to

the poor. There’s a position l in the poor half with cl = 0; otherwise that half would
sum to at least 2d−1. A cyclic 1-shift that modifies positions l through (l + t) mod 2d
makes c′l+k = cl+k+1 for 0 ≤ k < t, c′l+t = cl+t+1 − δ, c′l+t+1 = δ, and c′l+k = cl+k
for all other k; here δ can be any desired value in the range 0 ≤ δ ≤ cl+t+1. (We’ve
treated all subscripts modulo 2d in these formulas.) So we can use the smallest even t
such that cl+1 + cl+3 + · · ·+ cl+t+1 = cl + cl+2 + · · ·+ cl+t + ∆ + δ for some δ ≥ 0.

(The 1-shift need not be cyclic, if we allow ourselves to shift left instead of right.
But the cyclic property may be needed in subsequent steps.)
75. Equivalently, given indices 0 ≤ i0 < i1 < · · · < is−1 < is = 2d and 0 = j0 <
j1 < · · · < js−1 < js = 2d, we want to map (x2d−1 . . . x1x0)2 →→ (x(2d−1)φ . . . x1φx0φ)2,
where jφ = ir for jr ≤ j < jr+1 and 0 ≤ r < s. If d = 1, a mapping module does this.

When d > 1, we can set the left-hand crossbars so that they route input ir to line
ir⊕ ((ir + r) mod 2). If s is even, we recursively ask one of the networks P (2d−1) inside
P (2d) to solve the problem for indices ⌊{i0, i2, . . . , is}/2⌋ and ⌊{j0, j2, . . . , js}/2⌋, while
the other solves it for ⌊{i1, i3, . . . , is−1, 2d}/2⌋ and ⌈{j0, j2, . . . , js}/2⌉. At the right of
P (2d), one can now check that when jr ≤ j < jr+1, the mapping module for lines j
and j⊕1 has input ir on line j if j ≡ r (modulo 2), otherwise ir is on line j⊕1. A similar
proof works when s is odd. For example, if (i0, . . . , i5) = (j0, . . . , j5) = (0, 1, 3, 5, 7, 8),
the subproblems have i = j = (0, 1, 3, 4) and (0, 2, 4); x7 . . . x0 →→ x6x7x5x4x2x3x1x0 →→
· · · →→ x5x7x5x3x1x3x1x0 →→ x7x5x5x3x3x1x1x0.

Notes: This network is a slight improvement over a construction by Yu. P. Ofman,
Trudy Mosk. Mat. Obshchestva 14 (1965), 186–199. We can implement the correspond-
ing network by substituting a “δ-map” for a δ-swap; instead of (69), we use two masks
and do seven operations instead of six: y ← x⊕(x≫δ), x← x⊕(y&θ)⊕((y&θ′)≪δ).
This extension of (71) therefore takes only d additional units of time.
76. When a mapping network realizes a permutation, all of its modules must act as
crossbars; hence G(n) ≥ lgn!. Ofman proved that G(n) ≤ 2.5n lgn, and remarked in
a footnote that the constant 2.5 could be improved (without giving any details). We
have seen that in fact G(n) ≤ 2n lgn. Note that G(3) = 3.
77. Represent an n-network by (x2n−1 . . . x1x0)2, where xk = [the binary representa-
tion of k is a possible configuration of 0s and 1s when the network has been applied to

From the Library of Melissa Nuno



ptg999

596 ANSWERS TO EXERCISES 7.1.3

all 2n sequences of 0s and 1s], for 0 ≤ k < 2n. Thus the empty network is represented
by 22n − 1, and a sorting network for n = 3 is represented by (10001011)2. In general,
x represents a sorting network for n elements if and only if it represents an n-network
and νx = n+ 1, if and only if x = 20 + 21 + 23 + 27 + · · ·+ 22n−1.

If x represents α according to these conventions, the representation of α[i:j] is
(x⊕ y) | (y≫ (2n−i − 2n−j)), where y = x& µ̄n−i & µn−j .

[See V. R. Pratt, M. O. Rabin, and L. J. Stockmeyer, STOC 6 (1974), 122–126.]
78. If k ≥ lg(m − 1) the test is valid, because we always have x1 + x2 + · · · + xm ≥
x1 | x2 | · · · | xm, with equality if and only if the sets are disjoint. Moreover, we have
(x1 + · · ·+ xm)− (x1 | · · · | xm) ≤ (m− 1)(2n−k−1 + · · ·+ 1) < (m− 1)2n−k ≤ 2n.

Conversely, if m ≥ 2k + 2 and n > 2k, the test is invalid. We might have, for
example, x1 + · · ·+xm = (2k + 1)(2n−k− 2n−2k−1) + 2n−k−1 = 2n + (2n−k− 2n−2k−1).

But if n ≤ 2k the test is still valid when m = 2k + 2, because our proof shows that
x1 + · · ·+ xm − (x1 | · · · | xm) ≤ (2k + 1)(2n−k − 1) < 2n in that case.
79. x′ = (x− 1) &χ. (And the formula x′ = ((x− b− 1) & a) + b corresponds to (85).)
These recipes for x′ and x′ are part of Jörg Arndt’s “bit wizardry” routines (2001);
their origin is unknown.
80. Perhaps the nicest way is to start with x← χ− 1 as a signed number; then while
x ≥ 0, set x ← x & χ, visit x, and set x ← 2x− χ. (The operation 2x− χ can in fact
be performed with a single MMIX instruction, ‘2ADDU x,x,minuschi’.)

But that trick fails if χ is so large as to be already “negative.” A slightly slower
but more general method starts with x ← χ and does the following while x ̸= 0: Set
t← x&−x, visit χ− t, and set x← x− t.
81. ((z & χ)− (z′ & χ)) & χ. (One way to verify this formula is to use (18).)
82. Yes, by letting z = z′ in (86): w | (z & χ̄), where w = ((z & χ) + (z | χ̄)) & χ.
83. (The following iteration propagates bits of y to the right, in the gaps of a scattered
accumulator t. Auxiliary variables u and v respectively mark the left and right of each
gap; they double in size until being wiped out by w.) Set t← z&χ, u′ ← (χ≫ 1) & χ̄,
v ← ((χ≪ 1) + 1) & χ̄, w ← 3(u′ & v), u ← 3u′, v ← 3v, and k ← 1. Then, while
u ̸= 0, do the following steps: t← t | ((t≫ k) & u′), k ← k≪ 1, u← u&w, v ← v&w,
w ← ((v & (u≫ 1) & ū)≪ (k + 1)) − ((u & (v ≪ 1) & v̄)≫ k), u′ ← (u & v̄)≫ k,
v ← v + ((v & ū)≪ k), u← u+ u′. Finally return the answer ((t≫ 1) & χ) | (z & χ̄).
84. z ↽χ = w − (z & χ), where w = (((z & χ)≪ 1) + χ̄) & χ appears in answer 82;
z ⇁χ is the quantity t computed (with more difficulty) in the answer to exercise 83.
85. (a) If x = LOC(a[i, j, k]) is the drum location corresponding to interleaved bits as
stated, then LOC(a[i+ 1, j, k]) = x⊕ ((x⊕ ((x&χ)−χ)) &χ) and LOC(a[i− 1, j, k]) =
x⊕ ((x⊕ ((x&χ)−1)) &χ), where χ = (11111)8, by (84) and answer 79. The formulas
for LOC(a[i, j ± 1, k]) and LOC(a[i, j, k ± 1]) are similar, with masks 2χ and 4χ.

(b) For random access, let’s hope there is room for a table of length 32 giving
f [(i4i3i2i1i0)2] = (i4i3i2i1i0)8. Then LOC(a[i, j, k]) = (((f [k]≪ 1) + f [j])≪ 1) + f [i].
(On a vintage machine, bitwise computation of f would be much worse than table
lookup, because register operations used to be as slow as fetches from memory.)

(c) Let p be the location of the page currently in fast memory, and let z = −128.
When accessing location x, if x & z ̸= p it is necessary to read 128 words from drum
location x & z (after saving the current data to drum location p if it has changed);
then set p← x& z. [See J. Royal Stat. Soc. B-16 (1954), 53–55. This scheme of array
allocation for external storage was devised independently by E. W. Dijkstra, circa 1960,

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 597

who called it the “zip-fastener” method. It has often been rediscovered, for example
in 1966 by G. M. Morton and later by developers of quadtrees; see Hanan Samet,
Applications of Spatial Data Structures (Addison–Wesley, 1990). See also R. Raman
and D. S. Wise, IEEE Trans. C57 (2008), 567–573, for a contemporary perspective.
Georg Cantor had considered interleaving the digits of decimal fractions in Crelle 84
(1878), 242–258, §7; but he observed that this idea does not lead to an easy one-to-one
correspondence between the unit interval [0 . . 1] and the unit square [0 . . 1]× [0 . . 1].]
86. If (p′, q′, r′) rightmost bits and (p′′, q′′, r′′) other bits of (i, j, k) are in the part of
the address that does not affect the page number, the total number of page faults is
2((2p−p

′−1)2q+r+(2q−q
′−1)2p+r+(2r−r

′−1)2p+q). Hence we want to minimize 2−p′ +
2−q′ + 2−r′ over nonnegative integers (p′, q′, r′, p′′, q′′, r′′) with p′ + p′′ ≤ p, q′ + q′′ ≤ q,
r′ +r′′ ≤ r, p′ +q′ +r′ +p′′ +q′′ +r′′ = s. Since 2a+2b > 2a−1 +2b+1 when a and b are
integers with a > b+1, the minimum (for all s) occurs when we select bits from right to
left cyclically until running out. For example, when (p, q, r) = (2, 6, 3) the addressing
function would be (j5j4j3k2j2k1j1i1k0j0i0)2. In particular, Tocher’s scheme is optimal.

[But such a mapping is not necessarily best when the page size isn’t a power of 2.
For example, consider a 16 × 16 matrix; the addressing function (j3i3i2i1i0j2j1j0)2 is
better than (j3i3j2i2j1i1j0i0)2 for all page sizes from 17 to 62, except for size 32 when
they are equally good.]
87. Set x← x&∼((x& "@@@@@@@@")≫1); each byte (a7 . . . a0)2 is thereby changed to
(a7a6(a5∧ā6)a4 . . . a0)2. The same transformation works also on 30 additional letters
in the Latin-1 supplement to ASCII (for example, æ →→ Æ); but there’s one glitch, ÿ →→ ß.

[Don Woods used this trick in his original program for the game of Adventure
(1976), uppercasing the user’s input words before looking them up in a dictionary.]
88. Set z ← (x⊕ ȳ) & h, then z ← ((x | h)− (y & h̄))⊕ z.
89. t← x | ȳ, t← t&(t≫1), z ← (x&ȳ&µ̄0) | (t&µ0). [From the “nasty” test program
for H. G. Dietz and R. J. Fisher’s SWARC compiler (1998), optimized by T. Dahlheimer.]
90. Insert ‘z ← z | ((x⊕ y) & l)’ either before or after ‘z ← (x& y) + z’. (The ordering
makes no difference, because x+y ≡ x⊕y (modulo 4) when x+y is odd. Therefore MMIX
can round to odd at no additional cost, using MOR. Rounding to even in the ambiguous
cases is more difficult, and with fixed point arithmetic it is not advantageous.)
91. If 1

2 [x, y] denotes the average as in (88), the desired result is obtained by repeating
the following operations seven times, then concluding with z ← 1

2 [x, y] once more:

z ← 1
2 [x, y], t← α& h, m← (t≪ 1)− (t≫ 7),

x← (m& z) | (m& x), y ← (m& z) | (m& y), α← α≪ 1.

Although rounding errors accumulate through eight levels, the resulting absolute error
never exceeds 807/255. Moreover, it is ≈ 1.13 if we average over all 2563 cases, and
it is less than 2 with probability ≈ 94.2%. If we round to odd as in exercise 90, the
maximum and average error are reduced to 616/255 and ≈ 0.58; the probability of error
< 2 rises to ≈ 99.9%. Therefore the following MMIX code uses such unbiased rounding:

x GREG ;y GREG ;z GREG
alf GREG ;m GREG ;t IS $255

repeat seven times:

rodd GREG #4020100804020101
ffhi GREG -1<<56

XOR t,x,y
MOR z,rodd,t
AND t,x,y
ADDU z,z,t

MOR m,ffhi,alf
PUT rM,m
MUX x,z,x

MUX y,y,z
SLU alf,alf,1

From the Library of Melissa Nuno



ptg999

598 ANSWERS TO EXERCISES 7.1.3

but omit the final SLU, then repeat the first four instructions again. The total time for
eight α-blends (66υ) is less than the cost of eight multiplications.
92. We get zj = ⌈(xj + yj)/2⌉ for each j. (This fact, noticed by H. S. Warren, Jr.,
follows from the identity x+ y = ((x | y)≪ 1)− (x⊕ y). See also the next exercise.)
93. x− y = (x⊕ y)− ((x̄& y)≪ 1). (“Borrows” instead of “carries.”)
94. (x− l)j = (xj − 1− bj) mod 256, where bj is the “borrow” from fields to the right.
So tj is nonzero if and only if (xj . . . x0)256 < (1 . . . 1)256 = (256j+1 − 1)/255. (The
answers to the stated questions are therefore “yes” and “no.”)

In general if the constant l is allowed to have any value (l7 . . . l1l0)256, opera-
tion (90) makes tj ̸= 0 if and only if (xj . . . x0)256 < (lj . . . l0)256 and xj < 128.
95. Use (90): Test if h& (t(x⊕ ((x≫ 8) + (x≪ 56))) | t(x⊕ ((x≫ 16) + (x≪ 48))) |
t(x⊕ ((x≫24)+(x≪40))) | t(x⊕ ((x≫32)+(x≪32)))) = 0, where t(x) = (x− l)& x̄.
(These 28 steps reduce to 20 if cyclic shift is available, or to 11 with MXOR and BDIF.)
96. Suppose 0 ≤ x, y < 256, xh = ⌊x/128⌋, xl = xmod 128, yh = ⌊y/128⌋, yl =
y mod 128. Then [x<y ] = ⟨x̄hyh[xl<yl ]⟩; see exercise 7.1.1–106. And [xl<yl ] =
[yl + 127− xl≥ 128]. Hence [x<y ] = ⌊⟨x̄yz⟩/128⌋, where z = (x̄& 127) + (y & 127).

It follows that t = h& ⟨x̄yz⟩ has the desired properties, when z = (x̄& h̄)+(y& h̄).
This formula can also be written t = h & ∼⟨xȳz̄⟩, where z̄ = ∼((x̄ & h̄) + (y & h̄)) =
(x | h)− (y & h̄) by (18).

To get a similar test function for [xj ≤ yj ] = 1−[yj <xj ], we just interchange x↔ y
and take the complement: t← h&∼⟨xȳz⟩ = h& ⟨x̄yz̄⟩, where z = (x& h̄) + (ȳ & h̄).
97. Set x′ ← x⊕"********", y′ ← x⊕y, t← h& (x | ((x | h)− l))& (y′ | ((y′ | h)− l)),
m← (t≪1)−(t≫7), t← t&(x′ |((x′ |h)−l)), z ← (m&"********")|(m&y). (20 steps.)
98. Set u← x⊕y, z← (x̄&h̄)+(y&h̄), t← h&(x⊕(u|(x⊕z))), v← ((t≪1)−(t≫7))&u,
z ← x ⊕ v, w ← y ⊕ v. [This 14-step procedure invokes answer 96 to compute t =
h & ⟨x̄yz⟩, using the footprint method of Section 7.1.2 to evaluate the median in only
three steps when x ⊕ y is known. Of course the MMIX solution is much quicker, if
available: BDIF t,x,y; ADDU z,y,t; SUBU w,x,t.]
99. In this potpourri, each of the eight bytes appears to be solving a different kind
of problem; we must recast the conditions so that they fit into a common framework:
f0 = [x0 ⊕ ’!’≤ 0], f1 = [x1 ⊕ ’*’> 0], f2 = [x2≤ ’A’− 1], f3 = [x3 > ’z’], f4 =
[x4 > ’a’− 1], f5 = [x5 ⊕ ’0’≤ 9], f6 = [x6 ⊕ 255> 86], f7 = [x7 ⊕ ’?’≤ 3]. Aha!
We can use the formulas in answer 96, adjusting d to switch between ≤ and > as needed:
a = (’?’(255)’0’000’*’’!’)256 = #3fff300000002a21; b = h̄ = #7f7f7f7f7f7f7f7f;
c = h̄&∼(3(86)9(’a’−1)’z’(’A’−1)00)256 = #7c29761f053f7f7f (the hardest one);
d = #8000800000800080; and e = h = #8080808080808080.
100. We want uj = xj+yj+cj−10cj+1 and vj = xj−yj−bj+10bj+1, where cj and bj are
the “carry” and “borrow” into digit position j. Set u′ ← (x+ y + (6 . . . 66)16) mod 264

and v′ ← (x − y) mod 264. Then we find u′
j = xj + yj + cj + 6 − 16cj+1 and v′j =

xj − yj − bj + 16bj+1 for 0 ≤ j < 16, by induction on j. Hence u′ and v′ have the
same pattern of carries and borrows as if we were working in radix 10, and we have
u = u′−6(c̄16 . . . c̄2c̄1)16, v = v′−6(b16 . . . b2b1)16. The following computation schemes
therefore provide the desired results (10 operations for addition, 9 for subtraction):

y′ ← y + (6 . . . 66)16, u
′ ← x+ y′,

t← ⟨x̄ȳ′u′⟩& (8 . . . 88)16,

u← u′ − t+ (t≫ 2);

v′ ← x− y,
t← ⟨x̄yv′⟩& (8 . . . 88)16,

v ← v′ − t+ (t≫ 2).

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 599

101. For subtraction, set z ← x− y; for addition, set z ← x+ y+ #e8c4c4fc18, where
this constant is built from 256 − 24 = #e8, 256 − 60 = #c4, and 65536 − 1000 =
#fc18. Borrows and carries will occur between fields as if mixed-radix subtraction or
addition were being performed. The remaining task is to correct for cases in which
borrows occurred or carries did not; we can do this easily by inspecting individual
digits, because the radices are less than half of the field sizes: Set t← z&#8080808000,
t← (t≪ 1)− (t≫ 7)− ((t≫ 15) & 1), z ← z− (t& #e8c4c4fc18). [See Stephen Soule,
CACM 18 (1975), 344–346. We’re lucky that the ‘c’ in ‘fc18’ is even.]
102. (a) We assume that x = (x15 . . . x0)16 and y = (y15 . . . y0)16, with 0 ≤ xj , yj < 5;
the goal is to compute u = (u15 . . . u0)16 and v = (v15 . . . v0)16, with components
uj = (xj + yj) mod 5 and vj = (xj − yj) mod 5. Here’s how:

u← x+ y,

t← (u+ 3l) & h,

u← u− ((t− (t≫ 3)) & 5l);

v ← x− y + 5l,
t← (v + 3l) & h,

v ← v − ((t− (t≫ 3)) & 5l).

Here l = (1 . . . 1)16 = (264−1)/15, h = 8l. (Addition in 7 operations, subtraction in 8.)
(b) Now x = (x20 . . . x0)8, etc., and we must be more careful to confine carries:

t← x+ h̄,

z ← (t& h̄) + (y & h̄),
t← (y | z) & t& h,

u← x+ y − (t+ (t≫ 2));

z ← (x | h)− (y & h̄),
t← (y | z̄) & x̄& h,

v ← x− y + t+ (t≫ 2).

Here h = (4 . . . 4)8 = (265 − 4)/7. (Addition in 11 operations, subtraction in 10.)
Similar procedures work, of course, for other moduli. In fact we can do multibyte

arithmetic on the coordinates of toruses in general, with different moduli in each
component (see 7.2.1.3–(66)).
103. Let h and l be the constants in (87) and (88). Addition is easy: u← x|((x&h̄)+y).
For subtraction, take away 1 and add xj&(1−yj): t← (x&l̄)≫1, v ← t|(t+(x&(y⊕l))).
104. Yes, in 19: Let a = (((1901≪ 4) + 1)≪ 5) + 1, b = (((2099≪ 4) + 12)≪ 5) + 28.
Set m ← (x≫ 5) & #f (the month), c ← #10 & ∼((x | (x≫ 1))≫ 5) (the leap year
correction), u← b+ #3 & ((#3bbeecc + c)≫ (m+m)) (the max day adjustment), and
t← ((x⊕ a⊕ (x− a)) | (x⊕ u⊕ (u− x))) & #1000220 (the test for unwanted carries).
105. Exercise 98 explains how to compute bytewise min and max; a simple modification
will compute min in some byte positions and max in others. Thus we can “sort by
perfect shuffles” as in Section 5.3.4, Fig. 57, if we can permute bytes between x and y
appropriately. And such permutation is easy, by exercise 1. [Of course there are much
simpler and faster ways to sort 16 bytes. But see S. Albers and T. Hagerup, Inf. and
Computation 136 (1997), 25–51, and M. Thorup, J. Algorithms 42 (2002), 205–230,
for asymptotic implications of this approach.]
106. The n bits are regarded as g fields of g bits each. First the nonzero fields are
detected (t1), and we form a word y that has (yg−1 . . . y0)2 in each g-bit field, where
yj = [field j of x is nonzero]. Then we compare each field with the constants 2g−1,
. . . , 20 (t2), and form a mask m that identifies the most significant nonzero field of x.
After putting g copies of that field into z, we test z as we tested y (t3). Finally an appro-
priate sideways addition of t2 and t3 (g-bit-wise) yields λ. (Try the case g = 4, n = 16.)

To compute 2λ without shifting left, replace ‘t2≪ 1’ by ‘t2 + t2’, and replace the
final line by w ← (((a · (t3 ⊕ (t3≫ g))) mod 2n)≫ (n− g)) · l; then w &m is 2λx.

From the Library of Melissa Nuno



ptg999

600 ANSWERS TO EXERCISES 7.1.3

107. h GREG #8000800080008000
ms GREG #00ff0f0f33335555
1H SRU q,x,32

ZSNZ lam,q,32
ADD t,lam,16
SRU q,x,t
CSNZ lam,q,t

2H SRU t,x,lam

SLU q,t,16
ADDU t,t,q
SLU q,t,32
ADDU t,t,q

3H ANDN y,t,ms
4H XOR t,t,y

OR q,y,h
SUBU t,q,t

OR t,t,y
AND t,t,h

5H SLU q,t,15
ADDU t,t,q
SLU q,t,30
ADDU t,t,q

6H SRU q,t,60
ADDU lam,lam,q

The total time is 22υ (and no mems). [There’s also a mem-less version of (56),
costing only 16υ, if its last line is replaced by ADD t,lam,4; SRU y,x,t; CSNZ lam,y,t;
SRU y,x,lam; SLU t,y,1; SRU t,[#ffffaa50],t; AND t,t,3; ADD lam,lam,t.]
108. For example, let e be minimum so that n ≤ 2e · 22e

. If n is a multiple of 2e, we
can use 2e fields of size n/2e, with e reductions in step B1; otherwise we can use 2e
fields of size 2⌈lgn⌉−e−1, with e + 1 reductions in step B1. In either case there are e
iterations in steps B2 and B5, so the total running time is O(e) = O(log logn).
109. Start with x ← x & −x and apply Algorithm B. (Step B4 of that algorithm can
be slightly simplified in this special case, using a constant l instead of x⊕ y.)
110. Let s = 2d where d = 2e − e. We will use s-bit fields in n-bit words.

K1. [Stretch xmod s.] Set y ← x& (s− 1). Then set t← y& µ̄j and y ← y⊕ t⊕
(t≪2j(s−1)) for e > j ≥ 0. Finally set y ← (y≪s)−y. [If x = (x2e−1 . . . x0)2
we now have y = (y2e−1 . . . y0)2s , where yj = (2s − 1)xj [j <d].]

K2. [Set up minterms.] Set y ← y⊕(a2e−1 . . . a0)2s , where aj = µd,j for 0 ≤ j < d
and aj = 2s − 1 for d ≤ j < 2e.

K3. [Compress.] Set y ← y & (y≫ 2js) for e > j ≥ 0. [Now y = 1≪ (xmod s).
This is the key point that makes the algorithm work.]

K4. [Finish.] Set y ← y | (y≪ 2js) for 0 ≤ j < e. Finally set y ← y & (µ2e,j ⊕
−((x≫ j) & 1)) for d ≤ j < 2e.

111. The n bits are divided into fields of s bits each, although the leftmost field might
be shorter. First y is set to flag the all-1 fields. Then t = ( . . . t1t0)2s contains candidate
bits for q, including “false drops” for certain patterns 01k with s ≤ k < r. We always
have νtj ≤ 1, and tj ̸= 0 implies tj−1 = 0. The bits of u and v subdivide t into two
parts so that we can safely compute m = (t≫ 1) | (t≫ 2) | · · · | (t≫ r), before making
a final test to eliminate the false drops.
112. Notice that if q = x & (x≪ 1) & · · · & (x≪ (r − 1)) & ∼(x≪ r) then we have
x& x+ q = x& (x≪ 1) & · · ·& (x≪ (r − 1)).

If we can solve the stated problem in O(1) steps, we can also extract the most
significant bit of an r-bit number in O(1) steps: Apply the case n = 2r to the number
2n−1−x. Conversely, a solution to the extraction problem can be shown to yield a solu-
tion to the 1r0 problem. Exercise 110 therefore implies a solution in O(log log r) steps.
113. Let 0′ = 0, x′0 = x0, and construct x′i′ = xi for 1 ≤ i ≤ r as follows: If
xi = a ◦i b and ◦i /∈ {+,−,≪}, let i′ = (i − 1)′ + 1 and x′i′ = a′ ◦i b′, where a′ = x′j′
if a = xj and a′ = a if a = ci. If xi = a≪ c, let i′ = (i − 1)′ + 2 and (x′i′−1, x

′
i′) =

(a′&(⌈2n−c⌉−1), x′i′−1≪c). If xi = a+b, let i′ = (i−1)′+6 and let (x′(i−1)′+1, . . . , x
′
i′)

compute ((a′ & h̄) + (b′ & h̄))⊕ ((a′ ⊕ b′) & h), where h = 2n−1. And if xi = a− b, do
the similar computation ((a′ | h)− (b′ & h̄))⊕ ((a′ ≡ b′) & h). Clearly r′ ≤ 6r.

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 601

114. Simply let Xi = Xj(i) ◦i Xk(i) when xi = xj(i) ◦i xk(i), Xi = Ci ◦i Xk(i) when
xi = ci ◦i xk(i), and Xi = Xj(i) ◦i Ci when xi = xj(i) ◦i ci, where Ci = ci when ci is a
shift amount, otherwise Ci = (ci . . . ci)2n = (2mn − 1)ci/(2n − 1). This construction is
possible thanks to the fact that variable-length shifts are prohibited.

[Notice that if m = 2d, we can use this idea to simulate 2d instances of f(x, yi);
then O(d) further operations allow “quantification.”]
115. (a) z ← (x̄≪ 1) & (x≪ 2), y ← x & (x + z). [This problem was posed to the
author by Vaughan Pratt in 1977.]

(b) First find xl ← (x≪ 1) & x̄ and xr ← x & (x̄≪ 1), the left and right ends
of x’s blocks; and set x′r ← xr & (xr − 1). Then ze ← x′r & (x′r − (xl & µ̄0)) and
zo ← x′r & (x′r − (xl & µ0)) are the right ends that are followed by a left end in even or
odd position, respectively. The answer is y ← x& (x+ (ze & µ̄0) + (zo &µ0)); it can be
simplified to y ← x& (x+ (ze ⊕ (x′r & µ0))).

(c) This case is impossible, by Corollary I.
116. The language L is well defined, by Lemma A (except that the presence or absence
of the empty string is irrelevant). A language is regular if and only if it can be defined by
a finite-state automaton, and a 2-adic integer is rational if and only if it can be defined
by a finite-state automaton that ignores its inputs. The identity function corresponds
to the language L = 1(0∪1)∗, and a simple construction will define an automaton that
corresponds to the sum, difference, or Boolean combination of the numbers defined by
any two given automata acting on the sequence x0x1x2 . . . . Hence L is regular.

In exercise 115, L is (a) 11∗(000∗1(0 ∪ 1)∗ ∪ 0∗); (b) 11∗(00(00)∗1(0 ∪ 1)∗ ∪ 0∗).
117. Incidentally, the stated language L corresponds to an inverse Gray binary code:
It defines a function with the property that f(2x) = ∼f(2x + 1), and g(f(2x)) =
g(f(2x+ 1)) = x, where g(x) = x⊕ (x≫ 1) (see Eq. 7.2.1.1–(9)).
118. If x = (xn−1 . . . x1x0)2 and 0 ≤ aj ≤ 2j for 0 ≤ j < n, we have

n−1
j=0 ajxj =n−1

j=0 (aj .− (x̄& 2j)). Take aj = ⌊2j−1⌋ to get x≫ 1.
Conversely, the following argument by M. S. Paterson proves that monus must be

used at least n− 1 times: Consider any chain for f(x) that uses addition, subtraction,
bitwise Booleans, and k occurrences of the “underflow” operation y ◁z = (2n−1)[y<z ].
If k < n−1 there must be two n-bit numbers x′ and x′′ such that x′ mod 2 = x′′ mod 2 =
0 and such that all k of the ◁’s yield the same result for both x′ and x′′. Then
f(x′) mod 2j = f(x′′) mod 2j when j = ρ(x′ ⊕ x′′). So f(x) is not the function x≫ 1.
119. z ← x⊕ y, f ← 2p & z̄ & (z − 1). (See (90).)
120. Generalizing Corollary W, these are the functions such that f(x1, . . . , xm) ≡
f(y1, . . . , ym) (modulo 2k) whenever xj ≡ yj (modulo 2k) for 1 ≤ j ≤ m, for 0 ≤ k ≤ n.
The least significant bit is a binary function of m variables, so it has 22m possibilities.
The next-to-least is a binary function of 2m variables, namely the bits of (x1 mod 4,
. . . , xm mod 4), so it has 222m; and so on. Thus the answer is 22m+22m+···+2nm.
121. (a) If f has a period of length pq, where q > 1 is odd, its p-fold iteration f [p] has a
period of length q, say y0 →→ y1 →→ · · · →→ yq = y0 where yj+1 = f [p](yj) and y1 ̸= y0. But
then, by Corollary W, we must have y0 mod 2n−1 →→ y1 mod 2n−1 →→ · · · →→ yq mod 2n−1

in the corresponding (n − 1)-bit chain. Consequently y1 ≡ y0 (modulo 2n−1), by
induction on n. Hence y1 = y0 ⊕ 2n−1, and y2 = y0, etc., a contradiction.

(b) x1 = x0 +x0, x2 = x0≫ (p− 1), x3 = x1 | x2; a period of length p starts with
the value x0 = (1 + 2p + 22p + · · · ) mod 2n.

From the Library of Melissa Nuno



ptg999

602 ANSWERS TO EXERCISES 7.1.3

122. Subtraction is analogous to addition; Boolean operations are even simpler; and
constants have only one bit pattern. The only remaining case is xr = xj≫ c, where we
have Sr = Sj + c; the shift goes left when c < 0. Then Vpqr = V(p+c)(q+c)j , and

xr & ⌊2p − 2q⌋ = ((xj & ⌊2p+c − 2q+c⌋)≫ c) & (2n − 1).

Hence |Xpqr| ≤ |X(p+c)(q+c)j | ≤ Bj = Br by induction.
123. If x = (xg−1 . . . x0)2, note first that t = 2g−1(x0 . . . xg−1)2g in (104); hence y =
(x0 . . . xg−1)2 as claimed. Theorem P now implies that ⌊ 1

3 lg g⌋ broadword steps are
needed to multiply by ag+1 and by ag−1. At least one of those multiplications must
require ⌊ 1

6 lg g⌋ or more steps.
124. Initially t ← 0, x0 = x, U0 = {20, 21, . . . , 2n−1}, and 1′ ← 0. When advancing
t← t+ 1, if the current instruction is ri ← rj ± rk we simply define xt = xj′ ± xk′ and
i′ ← t. The cases ri ← rj ◦ rk and ri ← c are similar.

If the current instruction branches when ri ≤ rj , define xt = xt−1 and let V1 =
{x ∈ Ut−1 | xi′ ≤ xj′}, V0 = Ut−1 \ V1. Let Ut be the larger of V0 and V1; branch if
Ut = V1. Notice that |Ut| ≥ |Ut−1|/2 in this case.

If the current instruction is ri ← rj≫rk, let W = {x ∈ Ut−1 | x&⌊2lgn+s−2s⌋ ≠ 0
for some s ∈ Sk′}, and note that |W | ≤ |Sk′ | lgn ≤ 2t−1+e+f . Let Vc = {x ∈ Ut−1\W |
xk′ = c} for |c| < n, and Vn = Ut−1 \W \


|c|<n Vc. Lemma B tells us that at most

Bk′ + 1 ≤ 22t−1−1 + 1 of the sets Vc are nonempty. Let Ut be the largest; and if it is Vc,
define xt = xj′ ≫ c, i′ ← t. In this case |Ut| ≥ (|Ut−1| − 2t−1+e+f )/(22t−1−1 + 1).

Similarly for ri ← M [rj mod 2m] or M [rj mod 2m] ← ri, let W = {x ∈ Ut−1 |
x & ⌊2m+s − 2s⌋ ̸= 0 for some s ∈ Sj′}, and Vz = {x ∈ Ut−1 \W | xj′ mod 2m = z},
for 0 ≤ z < 2m. By Lemma B, at most Bj′ ≤ 22t−1−1 of the sets Vz are nonempty; let
Ut = Vz be the largest. To write ri in M [z], define xt = xt−1, z′′ ← i′; to read ri from
M [z], set i′ ← t and put xt = xz′′ if z′′ is defined, otherwise let xt be the precomputed
constant M [z]. In both cases |Ut| ≥ (|Ut−1| − 2t−1m)/22t−1−1 is sufficiently large.

If t < f we cannot be sure that r1 = ρx. The reason is that the set W =
{x ∈ Ut | x & ⌊2lgn+s − 2s⌋ ≠ 0 for some s ∈ S1′} has size |W | ≤ |S1′ | lgn ≤ 2t+e+f ,
and |Ut \W | ≥ 22e+f−2t+1− 2t+e+f > 22t−1 ≥ |{x1′ & ⌊2lgn − 1⌋ | x0 ∈ Ut \W}|. Two
elements of Ut \W cannot have the same value of ρx = x1′ & ⌊2lgn − 1⌋.

[The same lower bound applies even if we allow the RAM to make arbitrary
22t−1-way branches based on the contents of (r1, . . . , rl) at time t.]
125. Start as in answer 124, but with U0 = [0 . . 2g). Simplifying that argument by
eliminating the sets W will yield sets such that |Ut| ≥ 2g/max(2m, 2n)t; for example,
at most 2n different shift instructions can occur.

Suppose we can stop at time t with t < ⌊lg(h + 1)⌋. The proof of Theorem P
yields p and q with xR & ⌊2p− 2q⌋ independent of x& ⌊2p+s− 2q+s⌋. Hence the hinted
extension of Lemma B shows that xR takes on at most 22t−1 ≤ 2(h−1)/2 different values,
for every setting of the other bits {x& ⌊2p+s − 2q+s⌋ | s ∈ St}. Consequently r1 = x1′

can be the correct value of xR for at most 2(h−1)/2+g−h values of x. But 2(h−1)/2+g−h

is less than |Ut|, by (106).
126. M. S. Paterson has proposed a related (but different) conjecture: For every 2-adic
chain with k addition-subtraction operations, there is a (possibly huge) integer x with
νx = k + 1 such that the chain does not calculate 2λx.
127. Johan Håstad [Advances in Computing Research 5 (1989), 143–170] has shown
that every polynomial-size circuit that computes the parity function from the inputs

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 603

{x1, . . . , xn, x̄1, . . . , x̄n} with AND and OR gates of unlimited fanin must have depth
Ω(logn/log logn).
128. (Note also that the suffix parity function x⊕ is considered in exercises 36 and 66.)
130. If the answer is “no,” the analogous question with variable a suggests itself.
131. This program does a typical “breadth-first search,” keeping LINK(q) = r. Regis-
ter u is the vertex currently being examined; v is one of its successors.
0H LDOU r,q,link 1 r← LINK(q).

SET u,r 1 u← r.
1H LDOU a,u,arcs |R| a← ARCS(u).

BZ a,4F |R| Is S[u] = ∅?
2H LDOU v,a,tip S v← TIP(a).

LDOU a,a,next S a← NEXT(a).
LDOU t,v,link S t← LINK(v).
PBNZ t,3F S Is v ∈ R?

STOU v,q,link |R|−|Q| LINK(q)← v.
STOU r,v,link |R|−|Q| LINK(v)← r.
SET q,v |R|−|Q| q← v.

3H PBNZ a,2B S Loop on a.
4H LDOU u,u,link |R| u← LINK(u).

CMPU t,u,r |R| Is u ̸= r?
PBNZ t,1B |R| If so, continue.

132. (a) We always have τ(U) ⊆ &u/∈U δu = σ(U). And equality holds if and only if
2u ⊆ ρ(u′) for all u ∈ U and u′ ∈ U .

(b) We’ve proved that τ(U) ⊆ σ(U); hence T ⊆ U . And if t ∈ T we have 2t ⊆ ρu
for all u ∈ U . Therefore σ(T ) ⊆ τ(T ).

(c) Parts (a) and (b) prove that the elements of Cn represent the cliques.
(d) If u ⊆ v then u&ρk ⊆ v&ρk and u&δk ⊆ v&δk; so we can work entirely with

maximal entries. The following algorithm uses cache-friendly sequential (rather than
linked) allocation, in a manner analogous to radix exchange sort (Algorithm 5.2.2R).

We assume that w1 . . . ws is a workspace of s unsigned words, bounded by w0 = 0
and ws+1 = 2n − 1. The elements of C+

k−1 appear initially in positions w1 . . . wm, and
our goal is to replace them by the elements of C+

k .
M1. [Initialize.] Terminate if ρk = 2n − 1. Otherwise set v ← 2k, i← 1, j ← m.
M2. [Partition on v.] While wi & v = 0, set i ← i + 1. While wj & v ̸= 0, set

j ← j − 1. Then if i > j, go to M3; otherwise swap wi ↔ wj , set i← i+ 1,
j ← j − 1, and repeat this step.

M3. [Split wi . . . wm.] Set l← j, p← s+ 1. While i ≤ m, do subroutine Q with
u = wi and set i← i+ 1.

M4. [Combine maximal elements.] Set m ← l. While p ≤ s, set m ← m + 1,
wm ← wp, and p← p+ 1.

Subroutine Q uses global variables j, k, l, p, and v. It essentially replaces the word u
by u′ = u& ρk and u′′ = u& δk, retaining them if they are still maximal. If so, u′ goes
into the upper workspace wp . . . ws but u′′ stays below.

Q1. [Examine u′.] Set w ← u& ρk and q ← s. If w = u, go to Q4.
Q2. [Is it comparable?] If q < p, go to Q3. Otherwise if w & wq = w, go to Q7.

Otherwise if w&wq = wq, go to Q4. Otherwise set q ← q−1 and repeat Q2.
Q3. [Tentatively accept u′.] Set p← p−1 and wp ← w. Memory overflow occurs

if p ≤ m+ 1. Otherwise go to Q7.
Q4. [Prepare for loop.] Set r ← p and wp−1 ← 0.
Q5. [Remove nonmaximals.] While w |wq ̸= w, set q ← q− 1. While w |wr = w,

set r ← r + 1. Then if q < r, go to Q6; otherwise set wq ← wr, wr ← 0,
q ← q − 1, r ← r + 1, and repeat this step.

From the Library of Melissa Nuno



ptg999

604 ANSWERS TO EXERCISES 7.1.3

Q6. [Reset p.] Set wq ← w and p← q. Terminate the subroutine if w = u.
Q7. [Examine u′′.] Set w ← u& v̄. If w = wq for some q in the range 1 ≤ q ≤ j,

do nothing. Otherwise set l← l + 1 and wl ← w.
In practice this algorithm performs reasonably well; for example, when it is applied to
the 8× 8 queen graph (exercise 7–129), it finds the 310 maximal cliques after 306,513
mems of computation, using 397 words of workspace. It finds the 10188 maximal
independent sets of that same graph after about 310 megamems, using 15090 words;
there are respectively (728, 6912, 2456, 92) such sets of sizes (5, 6, 7, 8), including the 92
famous solutions to the eight queens problem.

Reference: N. Jardine and R. Sibson, Mathematical Taxonomy (Wiley, 1971), Ap-
pendix 5. Many other algorithms for listing maximal cliques have also been published.
See, for example, W. Knödel, Computing 3 (1968), 239–240, 4 (1969), 75; C. Bron
and J. Kerbosch, CACM 16 (1973), 575–577; S. Tsukiyama, M. Ide, H. Ariyoshi, and
I. Shirakawa, SICOMP 6 (1977), 505–517; E. Loukakis, Computers and Math. with
Appl. 9 (1983), 583–589; D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou, Inf.
Proc. Letters 27 (1988), 119–123. See also exercise 5–23.
133. (a) An independent set is a clique of G; so complement G. (b) A vertex cover is
the complement of an independent set; so complement G, then complement the outputs.
134. a →→ 00, b →→ 01, c →→ 11 is the first mapping of class II.
135. The unary operators are simple: ¬(xlxr) = x̄rx̄l; ⋄(xlxr) = xrxr; (xlxr) = xlxl.
And xlxr⇔ ylyr = (zl ∧ zr)(zl ∨ zr), where zl = (xl ≡ yl) and zr = (xr ≡ yr).
136. (a) Classes II, III, IVa, and IVc all have the optimum cost 4. Curiously the
functions zl = xl∨yl∨(xr∧yr), zr = xr∨yr work for the mapping (a, b, c) →→ (00, 01, 11)
of class II as well as for the mapping (a, b, c) →→ (00, 01, 1∗) of class IVc. [This operation
is equivalent to saturating addition, when a = 0, b = 1, and c stands for “more than 1.”]

(b) The symmetry between a, b, and c implies that we need only try classes I,
IVa, and Va; and those classes turn out to cost 6, 7, and 8. One winner for class I, with
(a, b, c) →→ (00, 01, 10), is zl = vr ∧ ūl, zr = vl ∧ ūr, where ul = xl ⊕ yl, ur = xr ⊕ yr,
vl = yr ⊕ul, and vr = yl⊕ur. [See exercise 7.1.2–60, which gives the same answer but
with zl ↔ zr. The reason is that we have (x + y + z) mod 3 = 0 in this problem but
(x + y − z) mod 3 = 0 in that one; and zl ↔ zr is equivalent to negation. The binary
operation z = x ◦ y in this case can also be characterized by the fact that the elements
(x, y, z) are all the same or all different; thus it is familiar to people who play the game
of SET. It is the only binary operation on n-element sets that has n! automorphisms
and differs from the trivial examples x ◦ y = x or x ◦ y = y.]

(c) Cost 3 is achieved only with class I: Let (a, b, c) →→ (00, 01, 10) and zl =
(xl ∨ xr) ∧ yl, zr = x̄r ∧ yr.
137. In fact, z = (x+ 1) & y when (a, b, c) →→ (00, 01, 10). [It’s a contrived example.]
138. The simplest case known to the author requires the calculation of two binary
operations, such as 

a b b
a b b
c a a


and


a b a
a b a
c a c


;

each has cost 2 in class Va, but the costs are (3, 2) and (2, 3) in classes I and II.
139. The calculation of z2 is essentially equivalent to exercise 136(b); so the natural
representation (111) wins. Fortunately this representation also is good for z1, with
z1l = xl ∧ yl, z1r = xr ∧ yr.

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 605

140. With representation (111), first use full binary adders to compute (a1a0)2 =
xl + yl + zl and (b1b0)2 = xr + yr + zr in 5 + 5 = 10 steps. Now the “greedy footprint”
method shows how to compute the four desired functions of (a1, a0, b1, b0) in eight
further steps: ul = a1 ∧ b̄0, ur = a0 ∧ b̄1; t1 = a1 ⊕ b0, t2 = a0 ⊕ b1, t3 = a1 ⊕ t2,
t4 = a0 ⊕ t1, vl = t3 ∧ t̄1, vr = t4 ∧ t̄2. [Is this method optimum?]
141. Suppose we’ve computed bits a = a0a1 . . . a2m−1 and b = b0b1 . . . b2m−1 such that

as = [s= 1 or s= 2 or s is a sum of distinct Ulam numbers ≤m in exactly one way],
bs = [s is a sum of distinct Ulam numbers ≤m in more than one way],

for some integer m = Un ≥ 2. For example, when m = n = 2 we have a = 0111 and
b = 0000. Then {s | s ≤ m and as = 1} = {U1, . . . , Un}; and Un+1 = min{s | s > m
and as = 1}. (Notice that as = 1 when s = Un−1 + Un.) The following simple bitwise
operations preserve these conditions: n← n+ 1, m← Un, and

(am . . . a2m−1, bm . . . b2m−1)← ((am . . . a2m−1 ⊕ a0 . . . am−1) & bm . . . b2m−1,

(am . . . a2m−1 & a0 . . . am−1) | bm . . . b2m−1),

where as = bs = 0 for 2Un−1 ≤ s < 2Un on the right side of this assignment.
[See M. C. Wunderlich, BIT 11 (1971), 217–224; Computers in Number Theory

(1971), 249–257. These mysterious numbers, which were first defined by S. Ulam
in SIAM Review 6 (1964), 348, have baffled number theorists for many years. The
ratio Un/n appears to converge to a constant, ≈ 13.52; for example, U20000000 =
270371127 and U40000000 = 540752349. Furthermore, D. W. Wilson has observed
empirically that the numbers form quasi-periodic “clusters” whose centers differ by
multiples of another constant, ≈ 21.6016. Calculations by Jud McCranie for Un ≤ 109

indicate that the largest gap Un−Un−1 may occur between U71482877 = 966290117 and
U71482878 = 966291200; the smallest gap Un − Un−1 = 1 apparently occurs only when
Un ∈ {2, 3, 4, 48}. Certain small gaps like 6, 11, 14, and 16 have never been observed.]
142. Algorithm E in that exercise performs the following operations on subcubes:
(i) Count the ∗s in a given subcube c. (ii) Given c and c′, test if c ⊆ c′. (iii) Given
c and c′, compute c ⊔ c′ (if it exists). Operation (i) is simple with sideways addition;
let’s see which of the nine classes of two-bit encodings (119), (123), (124) works best
for (ii) and (iii). Suppose a = 0, b = 1, c = ∗; the symmetry between 0 and 1 means
that we need only examine classes I, III, IVa, IVc, Va, and Vc.

For the asterisks-and-bits mapping (0, 1, ∗) →→ (00, 01, 10), which belongs to
class I, the truth table for c ̸⊆ c′ is 010∗100∗110∗∗∗∗∗ in each component. (For example,
0 ⊆ ∗ and ∗ ̸⊆ 1. The ∗s in this truth table are don’t-cares for the unused codes 11.)
The methods of Section 7.1.2 tell us that the cheapest such functions have cost 3;
for example, c ⊆ c′ if and only if ((b ⊕ b′) | a) & ā′ = 0. Furthermore the consensus
c ⊔ c′ = c′′ exists if and only if νz = 1, where z = (b ⊕ b′) & ∼(a ⊕ a′). And in that
case, a′′ = (a⊕ b⊕ b′) &∼(a⊕ a′), b′′ = (b | b′) & z̄. [The asterisk and bit codes were
used for this purpose by M. A. Breuer in Proc. ACM Nat. Conf. 23 (1968), 241–250.]

But class III works out better, with (0, 1, ∗) →→ (01, 10, 00). Then c ⊆ c′ if and only
if (c̄l&c′l) |(c̄r&c′r) = 0; c⊔c′ = c′′ exists if and only if νz = 1 where z = x&y, x = cl | c′l,
y = cr | c′r; and c′′l = x ⊕ z, c′′r = y ⊕ z. We save two operations for each consensus,
with respect to class I, compensating for an extra step when counting asterisks.

Classes IVa, Va, and Vc turn out to be far inferior. Class IVc has some merit,
but class III is best.

From the Library of Melissa Nuno



ptg999

606 ANSWERS TO EXERCISES 7.1.3

143. f(x) = ((x&m1)≪17)|((x≫17)&m1)|((x&m2)≪15)|((x≫15)&m2)|((x&m3)≪
10) | ((x≫ 10) &m3) | ((x&m4)≪ 6) | ((x≫ 6) &m4), where m1 = #7f7f7f7f7f7f,
m2 = #fefefefefefe, m3 = #3f3f3f3f3f3f3f, m4 = #fcfcfcfcfcfcfc. [See, for
example, Chess Skill in Man and Machine, edited by Peter W. Frey (1977), page 59.
Five steps suffice to compute f(x) on MMIX (four MOR operations and one OR), since
f(x) = q · x · q′ | q′ · x · q with q = #40a05028140a0502 and q′ = #2010884422110804.]
144. Node j ⊕ (k≪ 1), where k = j &−j.
145. It names the ancestor of the leaf node j | 1 at height h.
146. By (136) we want to show that λ(j&−i) = ρl when l− 2ρl < i ≤ l ≤ j < l+ 2ρl.
The desired result follows from (35) because −l ≤ −i < −l + 2ρl.
147. (a) πvj = βvj = j, αvj = 1≪ ρj, and τj = Λ, for 1 ≤ j ≤ n.

(b) Suppose n = 2e1 +· · ·+2et where e1 > · · · > et ≥ 0, and let nk = 2e1 +· · ·+2ek
for 0 ≤ k ≤ t. Then πvj = j and βvj = αvj = nk for nk−1 < j ≤ nk. Also τ nk = vnk−1
for 1 ≤ k ≤ t, where v0 = Λ; all other τj = Λ.
148. Yes, if πy1 = 010000, πy2 = 010100, πx1 = 010101, πx2 = 010110, πx3 = 010111,
βx3 = 010111, βy2 = 010100, βx2 = 011000, βy1 = 010000, and βx1 = 100000.
149. We assume that CHILD(v) = SIB(v) = PARENT(v) = Λ initially for all vertices v
(including v = Λ), and that there is at least one nonnull vertex.

S1. [Make triply linked tree.] For each of the n arcs u−−→v (perhaps v = Λ), set
SIB(u)← CHILD(v), CHILD(v)← u, PARENT(u)← v. (See exercise 2.3.3–6.)

S2. [Begin first traversal.] Set p← CHILD(Λ), n← 0, and λ0← −1.
S3. [Compute β in the easy case.] Set n ← n + 1, πp ← n, τ n ← Λ, and

λn← 1 +λ(n≫1). If CHILD(p) ̸= Λ, set p← CHILD(p) and repeat this step;
otherwise set βp← n.

S4. [Compute τ , bottom-up.] Set τβp ← PARENT(p). Then if SIB(p) ̸= Λ, set
p← SIB(p) and return to S3; otherwise set p← PARENT(p).

S5. [Compute β in the hard case.] If p ̸= Λ, set h ← λ(n & −πp), then βp ←
((n≫ h) | 1)≪ h, and go back to S4.

S6. [Begin second traversal.] Set p← CHILD(Λ), λ0← λn, πΛ← βΛ← αΛ← 0.
S7. [Compute α, top-down.] Set αp ← α(PARENT(p)) | (βp & −βp). Then if

CHILD(p) ̸= Λ, set p← CHILD(p) and repeat this step.
S8. [Continue to traverse.] If SIB(p) ̸= Λ, set p ← SIB(p) and go to S7.

Otherwise set p← PARENT(p), and repeat step S8 if p ̸= Λ.
150. We may assume that the elements Aj are distinct, by regarding them as ordered
pairs (Aj , j). The hinted binary search tree, which is a special case of the “Cartesian
trees” introduced by Jean Vuillemin [CACM 23 (1980), 229–239], has the property that
k(i, j) is the nearest common ancestor of i and j. Indeed, the ancestors of any given
node j are precisely the nodes k such that Ak is a right-to-left minimum of A1 . . . Aj
or Ak is a left-to-right minimum of Aj . . . An.

The algorithm of the preceding answer does the desired preprocessing, except
that we need to set up a triply linked tree differently on the nodes {0, 1, . . . , n}. Start
as before with CHILD(v) = SIB(v) = PARENT(v) = 0 for 0 ≤ v ≤ n, and let Λ = 0.
Assume that A0 ≤ Aj for 1 ≤ j ≤ n. Set t ← 0 and do the following steps for v = n,
n− 1, . . . , 1: Set u ← 0; then while Av < At set u ← t and t ← PARENT(t). If u ̸= 0,

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 607

set SIB(v) ← SIB(u), SIB(u) ← 0, PARENT(u) ← v, CHILD(v) ← u; otherwise simply
set SIB(v)← CHILD(t). Also set CHILD(t)← v, PARENT(v)← t, t← v.

Continue with step S2 after the tree has been built. The running time is O(n),
because the operation t← PARENT(t) is performed at most once for each node t. [This
beautiful way to reduce the range minimum query problem to the nearest common
ancestor problem was discovered by H. N. Gabow, J. L. Bentley, and R. E. Tarjan,
STOC 16 (1984), 137–138, who also suggested the following exercise.]
151. For node v with k children u1, . . . , uk, define the node sequence S(v) = v if
k = 0; S(v) = vS(u1) if k = 1; and S(v) = S(u1)v . . . vS(uk) if k > 1. (Consequently
v appears exactly max(k−1, 1) times in S(v).) If there are k trees in the forest, rooted at
u1, . . . , uk, write down the node sequence S(u1)Λ . . . ΛS(uk) = V1 . . . VN . (The length
of this sequence will satisfy n ≤ N < 2n.) Let Aj be the depth of node Vj , for 1 ≤
j ≤ N , where Λ has depth 0. (For example, consider the forest (141), but add another
child K −−→D and an isolated node L. Then V1 . . . V15 = CFAGJDHDKΛBEIΛL
and A1 . . . A15 = 231342323012301.) The nearest common ancestor of u and v, when
u = Vi and v = Vj , is then Vk(i,j) in the range minimum query problem. [See J. Fischer
and V. Heun, Lecture Notes in Comp. Sci. 4009 (2006), 36–48.]
152. Step V1 finds the level above which αx and αy have bits that apply to both of
their ancestors. (See exercise 148.) Step V2 increases h, if necessary, to the level where
they have a common ancestor, or to the top level λn if they don’t (namely if k = 0).
If βx ̸= βz, step V4 finds the topmost level among x’s ancestors that leads to level h;
hence it knows the lowest ancestor x̂ for which βx̂ = βz (or x̂ = Λ). Finally in V5,
preorder tells us which of x̂ or ŷ is an ancestor of the other.
153. That pointer has ρj bits, so it ends after ρ1 + ρ2 + · · ·+ ρj = j − νj bits of the
packed string, by (61). [Here j is even. Navigation piles were introduced in Nordic
Journal of Computing 10 (2003), 238–262.]
154. The gray lines define 36◦-36◦-90◦ triangles, ten of which make a pentagon with
72◦ angles at each vertex. These pentagons tile the hyperbolic plane in such a way
that five of them meet at each vertex.
155. Observe first that 0 ≤ (α0)1/ϕ < ϕ−1 + ϕ−3 + ϕ−5 + · · · = 1, since there are no
consecutive 1s. Observe next that F−nϕ ≡ ϕ−n (modulo 1), by exercise 1.2.8–11. Now
add Fk1ϕ+· · ·+Fkrϕ. For example, (4ϕ) mod 1 = ϕ−5+ϕ−2; (−2ϕ) mod 1 = ϕ−4+ϕ−1.

This argument also proves the interesting formula ⌊N(α)ϕ⌋ = −N(α0).
156. (a) Start with y ← 0, and with k large enough that |x| < Fk+1. If x < 0, set
k ← (k − 1) | 1, and while x + Fk > 0 set k ← k − 2; then set y ← y + (1≪ k),
x ← x + Fk+1; repeat. Otherwise if x > 1, set k ← k & −2, and while x − Fk ≤ 0 set
k ← k − 2; then set y ← y + (1≪ k), x← x− Fk+1; repeat. Otherwise set y ← y + x
and terminate with y = (α)2.

(b) The operations x1 ← a1, y1 ← −a1, xk ← yk−1 + ak, yk ← xk−1 − xk
compute xk = N(a1 . . . ak) and yk = N(a1 . . . ak0). [Does every broadword chain for
N(a1 . . . an) require Ω(n) steps?]
157. The laws are obvious except for the two cases involving (α−). For those we have
N((α−)0k)= N(α0k) + F−k−2 for all k ≥ 0, because decrementation never “borrows”
at the right. (But the analogous formula N((α+)0k)= N(α0k)+F−k−1 does not hold.)
158. Incrementation satisfies the rules (α00)+ = α01, (α10)+ = (α+)00, (α1)+ =
(α+)0. It can be achieved with six 2-adic operations on the integer x = (α)2 by setting
y ← x | (x≫ 1), z ← y &∼(y + 1), x← (x | z) + 1.

From the Library of Melissa Nuno



ptg999

608 ANSWERS TO EXERCISES 7.1.3

Decrementation of a nonzero codeword is more difficult. It satisfies (α102k)− =
α0(10)k, (α102k+1)− = α(01)k+1; hence by Corollary I it cannot be computed by a
2-adic chain. Yet seven operations suffice, if we allow monus: y ← x − 1, z ← y & x̄,
w ← z & µ0, x← y − w + (w .− (z − w)).
159. Besides the Fibonacci number system (146) and the negaFibonacci number sys-
tem (147), there’s also an odd Fibonacci number system: Every positive integer x can
be written uniquely in the form

x = Fl1 + Fl2 + · · ·+ Fls , where l1 ≻≻ l2 ≻≻ · · · ≻≻ ls > 0 and ls is odd.

Given a negaFibonacci code α, the following 19-step 2-adic chain converts x = (α)2 to
y = (β)2 to z = (γ)2, where β is the odd codeword with N(α) = F (β) and γ is the
standard codeword with F (β) = F (γ0): x+ ← x & µ0, x− ← x ⊕ x+; d ← x+ − x−;
t ← d | x−, t ← t & ∼(t≪ 1); y ← (d & µ̄0) ⊕ t ⊕ ((t & x−)≫ 1); z ← (y + 1)≫ 1;
w ← z ⊕ (4µ0); t← w &∼(w+1); z ← (z | t)− (t≫ 1).

Corresponding negaFibonacci and odd representations satisfy the remarkable law

Fk1+m + · · ·+ Fkr+m = (−1)m(Fl1−m + · · ·+ Fls−m), for all integers m.

For example, if N(α) < 0 the steps above will convert x = (α0)2 to y = (β)2, where
F ((β≫ 2)0) = −N(α). Furthermore β is the odd code for negaFibonacci α if and only
if αR is the odd code for negaFibonacci βR, when |α| = |β| is odd and N(α) > 0.

No finite 2-adic chain will go the other way, by Corollary I, because the Fibonacci
code 10k corresponds to negaFibonacci 10k+1 when k is odd, (10)k/21 when k is even.
But if γ is a standard Fibonacci codeword we can compute y = (β)2 from z = (γ)2 by
setting y ← z≪ 1, t ← y & −y & µ̄0, y ← (t=0? y : y − 1 − ((t−1) & µ̄0)). And the
method above will compute αR from βR. The overall running time for conversion from
standard to negaFibonacci form will then be of order log |γ|, for two string reversals.
160. The text’s rules are actually incomplete: They should also define the orientation
of each neighbor. Let us stipulate that αsn = α; αen = α; (α0)wn = α0, (α1)wo = α1;
(α00)ns = α00, (α10)nw = α10, (α1)ne = α1; (α0)oo = α0, (α101)oo = α101,
(α1001)oo = α1001, (α0001)ow = α0001. Then a case analysis proves that all cells
within d steps of the starting cell have a consistent labeling and orientation, by induc-
tion on the graph distance d. (Note the identity α+ = ((α0)−)≫ 1.) Furthermore the
labeling remains consistent when we attach y coordinates and move when necessary
from one strip to another via the δ-rules of (153).
161. Yes, it is bipartite, because all of its edges are defined by the boundary lines.
(The hyperbolic cylinder can’t be bicolored; but two adjacent strips, y mod 2, can.)
162. It’s convenient to view the hyperbolic plane through another lens,
by mapping its points to the upper halfplane ℑz > 0. Then the “straight
lines” become semicircles centered on the x-axis, together with vertical
halflines as a limiting case. In this representation, the edges |z−1| =

√
2,

|z| = r, and ℜz = 0 define a 36◦-45◦-90◦ triangle if r2 = ϕ +
√
ϕ. Every

triangle ABC has three neighbors CBA′, ACB′, and BAC′, obtained
by “reflecting” two of its edges about the third, where the reflection of
|z− c′| = r′ about |z− c| = r is |z− c− 1

2 (x1 + x2)| = 1
2 |x1 − x2|, xj = r2/(c′ ± r′ − c).

A

CB

A′

C′

B′

90
90

90

45

45

4536

36

36

36

45

90

The mapping z →→ (z− z0)/(z− z̄0) takes the upper halfplane into the unit circle;
when z0 = 1

2 (
√
ϕ− 1/ϕ)(1 + 51/4i) the central pentagon will be symmetric. Repeated

reflections of the initial triangle, using breadth-first search until reaching triangles that

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 609

are invisible, will lead to Fig. 14. To get just the pentagons (without the gray lines),
one can begin with just the central cell and perform reflections about its edges, etc.

163. (This figure can be drawn as in exercise 162, starting with vertices that project to
the three points ir, irω, and irω2, where r2 = 1

2 (1 +
√

2)(4−
√

2−
√

6) and ω = e2πi/3.
Using a notation devised by L. Schläfli in 1852, it can be described as the infinite tiling
with parameters {3, 8}, meaning that eight triangles meet at every vertex; see Schläfli’s
Gesammelte Mathematische Abhandlungen 1 (1950), 212. Similarly, the pentagrid and
the tiling of exercise 154 have Schläfli symbols {5, 4} and {5, 5}, respectively.)

164. The original definition requires more computation, even though it can be factored:

custer′(X) = X &∼(YN & Y & YS), Y = XW &X &XE.

But the main reason for preferring (157) is that it produces a thinner, kingwise con-
nected border. The rookwise connected border that results from the 1957 definition is
less attractive, because it’s noticeably darker when the border travels diagonally than
when it travels horizontally or vertically. (Try some experiments and you’ll see.)

165. The first imageX(1) is the “outer” border of the original black pixels. Fingerprint-
like whorls are formed thereafter. For example, starting with Fig. 15(a) we get

, , , . . . , , ,

in a 120 × 120 bitmap, eventually alternating endlessly between two bizarre patterns.
(Does every nonempty M ×N bitmap lead to such a 2-cycle?)

166. IfX = custer(X), the sum of the elements ofX+(X

≪

1)+(X≪1)+(X≫1)+(X ≪1)
is at most 4MN + 2M + 2N , since it is at most 4 in each cell of the rectangle and at
most 1 in the adjacent cells. This sum is also five times the number of black pixels.
Hence f(M,N) ≤ 4

5MN + 2
5M + 2

5N . Conversely we get f(M,N) ≥ 4
5MN − 2

5 by
letting the pixel in row i and column j be black unless (i + 2j) mod 5 = 2. (This
problem is equivalent to finding a minimum dominating set of the M ×N grid.)

167. (a) With 17 steps we can construct a half adder and three full adders (see 7.1.2–
(23)) so that (z1z2)2 = xNW + xW + xSW, (z3z4)2 = xN + xS, (z5z6)2 = xNE + xE + xSE,
and (z7z8)2 = z2 + z4 + z6. Then f = S1(z1, z3, z5, z7)∧ (x∨ z8), where the symmetric
function S1 needs seven operations by Fig. 9 in Section 7.1.2. [This solution is based
on ideas of W. F. Mann and D. Sleator.]

(b) Given x− = X
(t)
j−1, x = X

(t)
j , and x+ = X

(t)
j+1, compute a← x− & x+ (= z3),

b← x−⊕x+ (= z4), c← x⊕b, d← c≫1 (= z6), c← c≪1 (= z2), e← c⊕d, c← c&d,
f ← b& e, f ← f | c (= z7), e← b⊕ e (= z8), c← x& b, c← c | a, b← c≪ 1 (= z5),
c ← c≫ 1 (= z1), d ← b & c, c ← b | c, b ← a & f , f ← a | f , f ← d | f , c ← b | c,
f ← f ⊕ c (= S1(z1, z3, z5, z7)), e← e | x, f ← f & e.

[For excellent summaries of the joys and passions of Life, including a proof that
any Turing machine can be simulated, see Martin Gardner, Wheels, Life and Other
Mathematical Amusements (1983), Chapters 20–22; E. R. Berlekamp, J. H. Conway,
and R. K. Guy, Winning Ways 4 (A. K. Peters, 2004), Chapter 25.]

From the Library of Melissa Nuno



ptg999

610 ANSWERS TO EXERCISES 7.1.3

At last I’ve got what I wanted — an apparently unpredictable law of genetics.
. . . Overpopulation, like underpopulation, tends to kill.

A healthy society is neither too dense nor too sparse.
— JOHN H. CONWAY, letter to Martin Gardner (March 1970)

168. The following algorithm, which uses four n-bit registers x−, x, x+, and y, works
properly even when M = 1 or N = 1. It needs only about two reads and two writes
per raster word to transform X(t) to X(t+1) in (158):

C1. [Loop on k.] Set Aj0 ← 0 for 0 ≤ j < M . Then do step C2 for k = 1, 2, . . . ,
N ′. Then go to C5.

C2. [Loop on j.] Set x ← A(M−1)k, x+ ← A0k, and AMk ← x+. Then perform
steps C3 and C4 for j = 0, 1, . . . , M − 1.

C3. [Move down.] Set x− ← x, x← x+, and x+ ← A(j+1)k. (Now x = Ajk, and
x− holds the former value of A(j−1)k.) Compute the bitwise function values
y ← f(x−≫ 1, x−, x−≪ 1, x≫ 1, x, x≪ 1, x+≫ 1, x+, x+≪ 1).

C4. [Update Ajk.] Set x− ← Aj(k−1) & −2, y ← y & (2n−1 − 1), Aj(k−1) ←
x− + (y≫ (n− 2)), Ajk ← y + (x−≪ (n− 2)).

C5. [Wrap around.] For 0 ≤ j < M , set x ← AjN′ & −2n−1−d, AjN′ ← x +
(Aj1≫ d), and Aj1 ← Aj1 + (x≪ d), where d = 1 + (N − 1) mod (n− 2).

[In many cases, like (157) and (159) and even (161), an M × N torus is equivalent
to an (M − 1) × (N − 1) array surrounded by zeros. For exercise 173 we can clean
an (M − 2) × (N − 2) array that is bordered by two rows and columns of zeros. But
Life images (exercise 167) can grow without bound; they can’t safely be confined to a
torus.]
169. It quickly morphs into a rabbit, which proceeds to explode. Beginning at time
278, all activity stabilizes to a two-cycle formed from a set of traffic lights and three
additional blinkers, together with three still lifes (tub, boat, and bee hive).
170. If M ≥ 2 and N ≥ 2, the first step blanks out the top row and the rightmost
column. Then if M ≥ 3 and N ≥ 3, the next step blanks out the bottom row and the
leftmost column. So in general we’re left after t = min(M,N) − 1 steps with a single
row or column of black pixels: The first ⌈t/2⌉ rows, the last ⌈t/2⌉ columns, the last
⌊t/2⌋ rows, and the first ⌊t/2⌋ columns have been set to zero. The automaton will stop
after making two more (nonproductive) cycles.
171. Without (160): x1 ← xSE & x̄N, x2 ← xN & x̄SE, x3 ← xE & x̄1, x4 ← xNE & x̄2,
x5 ← x3 | x4, x6 ← xW & x̄5, x7 ← x1 & x̄NE, x8 ← x7 & x̄NW, x9 ← xE | xSW,
x10 ← x8 & x9, x11 ← x10 | x6, x12 ← xS & x11, x13 ← x2 & x̄E, x14 ← x13 & xW,
x15 ← xN & xNE, x16 ← xSW & xW, x17 ← x15 | x16, x18 ← xNE & xSW, x19 ← x17 & x̄18,
x20 ← xE | xSE, x21 ← x20 | xS, x22 ← xNW & x̄21, x23 ← x22 & x19, x24 ← x12 | x14,
g ← x23 | x24. With (160), set x4 ← xNE & x̄N and leave everything else the same.
172. The statement isn’t quite true; consider the following examples:

The ‘I’ and ‘H’ at the left show that pixels are sometimes left intact where paths join,
and that rotating by 90◦ can make a difference. The next two examples illustrate
a quirky influence of left-right reflection. The diamond example demonstrates that
very thick images can be unthinnable; none of its black pixels can be removed without

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 611

changing the number of holes. The final examples, one of which was inspired by the
answer to exercise 166, were processed first without (160), in which case they are
unchanged by the transformation. But with (160) they’re thinned dramatically.
173. (a) The hint is readily verified. Notice that if X and Y are closed, X&Y is closed;
if X and Y are open, X | Y is open. Thus XD is closed and XL is open; XDD = XD

and XLL = XL. (In fact we have XL = ∼(∼X)D, because the definitions are dual,
obtained by swapping black with white.) Now XDL ⊆ XD, so XDLD ⊆ XDD = XD.
And dually, XL ⊆ XLDL. We conclude that there’s no reason to launder a clean
picture: XDLDL = (XDLD)L ⊆ XDL ⊆ (XD)LDL = XDLDL.

(b) We have XD = (X |XW |XNW |XN)&(X |XN |XNE |XE)&(X |XE |XSE |XS)&
(X |XS |XSW |XW). Furthermore, in analogy with answer 167(b), this function can be
computed from x−, x, and x+ in ten broadword steps: f ← x |(x≫1) |((x− |(x−≫1))&
(x+ | (x+≫ 1))), f ← f & (f ≪ 1). [This answer incorporates ideas of D. R. Fuchs.]

To get XL, just interchange | and &. [For further discussion, see C. Van Wyk
and D. E. Knuth, Report STAN-CS-79-707 (Stanford Univ., 1979), 15–36.]
174. Three-dimensional digital topology has been studied by R. Malgouyres, Theoret-
ical Computer Science 186 (1997), 1–41.
175. There are 25 in the outline, 2 + 3 in the eyes, 1 + 1 in the ears, 4 in the nose, and
1 in the smile, totalling 37. (All white pixels are connected kingwise to the background.)
176. (a) If v isn’t isolated, there are eight easy cases to consider, depending on what
kind of neighbor v has in G.

(b) Some w′ ∈ G′ is adjacent or equal to each vertex of Nu ∪Nv. (Four cases.)
(c) Yes. In fact, by definition (161), we always have |S′(v′)| ≥ 2.
(d) Let N ′

v′ = {v | v′ ∈ Nv}. If v′ is the east neighbor of u′, call it u′
E, either

u′ ∈ G or u′
S ∈ G; this element is equal-or-adjacent to every vertex of N ′

u′ ∪ N ′
v′ . A

similar argument applies when v′ = u′
N. If v′ = u′

NE, there’s no problem if u′ ∈ G.
Otherwise u′

W ∈ G, u′
S ∈ G, and either u′

N ∈ G or u′
E ∈ G; hence N ′

u′ ∪N ′
v′ is connected

in G. Finally if v′ = u′
SE, the proof is easy if u′

S ∈ G; otherwise u′ ∈ G and v′ ∈ G.
(e) Given a nontrivial component C of G, with v ∈ C and v′ ∈ S(v), let C′ be the

component of G′ that contains v′. This component C′ is well defined, by (a) and (b).
Given a component C′ of G′, with v′ ∈ C′ and v ∈ S′(v′), let C be the component of
G that contains v. This component C is nontrivial and well defined, by (c) and (d).
Finally, the correspondence C ↔ C′ is one-to-one.
177. Now the vertices of G are the white pixels, adjacent when they are rook-neighbors.
So we define N(i,j) = {(i, j), (i−1, j), (i, j+1)}. Arguments like those of answer 176,
but simpler, establish a one-to-one correspondence between the nontrivial components
of G and the components of G′.
178. Observe that in adjacent rows of X∗, two pixels of the same value are kingwise
neighbors only if they are rookwise connected.
179. The pixels x1 . . . xN of each row can be “runlength encoded” as a sequence of
integers 0 = c0 < c1 < · · · < c2m+1 = N + 2 so that xj = 0 for j ∈ [c0 . . c1)∪ [c2 . . c3)∪
· · · ∪ [c2m . . c2m+1) and xj = 1 for j ∈ [c1 . . c2) ∪ · · · ∪ [c2m−1 . . c2m). (The number of
runs per row tends to be reasonably small in most images. Notice that the background
condition x0 = xN+1 = 0 is implicitly assumed.)

The algorithm below uses a modified encoding with aj = 2cj − (j mod 2) for
0 ≤ j ≤ 2m+1. For example, the second row of the Cheshire cat has (c1, c2, c3, c4, c5) =
(5, 8, 23, 25, 32); we will use (a1, a2, a3, a4, a5) = (9, 16, 45, 50, 63) instead. The reason is

From the Library of Melissa Nuno



ptg999

612 ANSWERS TO EXERCISES 7.1.3

that white runs of adjacent rows are rookwise adjacent if and only if the corresponding
intervals [aj . . aj+1) and [bk . . bk+1) overlap, and exactly the same condition charac-
terizes when black runs of adjacent rows are kingwise adjacent. Thus the modified
encoding nicely unifies both cases (see exercise 178).

We construct a triply linked tree of current components, where each node has
several fields: CHILD, SIB, and PARENT (tree links); DORMANT (a circular list, via SIB
links, of all former children that aren’t connected to the current row); HEIR (a node
that has absorbed this one); ROW and COL (location of the first pixel); and AREA (the
total number of pixels in the component).

The algorithm traverses the tree in double order (see exercise 2.3.1–18), using
pairs of pointers (P, P′), where P′ = P when P is traversed the first time, P′ = PARENT(P)
when P is traversed the second time. The successor of (P, P′) is (Q, Q′) = next(P, P′),
determined as follows: If P = P′ and CHILD(P) ̸= Λ, then Q← Q′ ← CHILD(P); otherwise
Q ← P and Q′ ← PARENT(Q). If P ̸= P′ and SIB(P) ̸= Λ, then Q ← Q′ ← SIB(P);
otherwise Q← PARENT(P) and Q′ ← PARENT(Q).

When there are m black runs, the tree will have m+ 1 nodes, not counting nodes
that are dormant or have been absorbed. Moreover, the primed pointers P′

1, . . . , P′
2m+1

of the double traversal (P1, P
′
1), . . . , (P2m+1, P

′
2m+1) are precisely the components of

the current row, in left-to-right order. For example, in (163) we have m = 5; and
(P′

1, . . . , P
′
11) point respectively to 0 , B , 1 , B , 0 , C , 0 , A , 2 , A , 0 .

I1. [Initialize.] Set t ← 1, ROOT ← LOC(NODE(0)), CHILD(ROOT) ← SIB(ROOT) ←
PARENT(ROOT) ← DORMANT(ROOT) ← HEIR(ROOT) ← Λ. Also set ROW(ROOT) ←
COL(ROOT)← 0, AREA(ROOT)← N + 2, s← 0, a0 ← b0 ← 0, a1 ← 2N + 3.

I2. [Input a new row.] Terminate if s > M . Otherwise set bk ← ak for k = 1, 2,
. . . , until bk = 2N + 3; then set bk+1 ← bk as a “stopper.” Set s ← s + 1. If
s > M, set a1 ← 2N + 3; otherwise let a1, . . . , a2m+1 be the modified runlength
encoding of row s as discussed above. (This encoding can be obtained with the
help of the ρ function; see (43).) Set j ← k ← 1 and P← P′ ← ROOT.

I3. [Gobble up short b’s.] If bk+1 ≥ aj , go to I9. Otherwise set (Q, Q′)← next(P, P′),
(R, R′) ← next(Q, Q′), and do a four-way branch to (I4, I5, I6, I7) according as
2[Q ̸= Q′ ] + [R ̸= R′ ] = (0, 1, 2, 3).

I4. [Case 0.] (Now Q = Q′ is a child of P′, and R = R′ is the first child of Q′. Node Q
will remain a child of P′, but it will be preceded by any children of R.) Absorb
R into P′ (see below). Set CHILD(Q) ← SIB(R) and Q′ ← CHILD(R). If Q′ ̸= Λ,
set R← Q′, and while R ̸= Λ set PARENT(R)← P′, R← SIB(R); then SIB(R)←Q,
Q←Q′. If P=P′, set CHILD(P)←Q; otherwise SIB(P)←Q. Go to I8.

I5. [Case 1.] (Now component Q = R is surrounded by P′ = R′.) If P = P′, set
CHILD(P) ← SIB(Q); otherwise set SIB(P) ← SIB(Q). Set R ← DORMANT(R′).
Then if R = Λ, set DORMANT(R′)← SIB(Q)← Q; otherwise SIB(Q)← SIB(R) and
SIB(R)← Q. Go to I8.

I6. [Case 2.] (Now Q′ is the parent of both P′ and R. Either P = P′ is childless, or
P is the last child of P′.) Absorb R into P′ (see below). Set SIB(P′) ← SIB(R)
and R ← CHILD(R). If P = P′, set CHILD(P) ← R; otherwise SIB(P) ← R. While
R ̸= Λ, set PARENT(R)← P′ and R← SIB(R). Go to I8.

I7. [Case 3.] (Node P′ = Q is the last child of Q′ = R, which is a child of R′.) Absorb P′

into R′ (see below). If P = P′, set P← R. Otherwise set P′ ← CHILD(P′), and while
P′ ̸= Λ set PARENT(P′)← R′, P′ ← SIB(P′); also set SIB(P)← SIB(Q′), SIB(Q′)←

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 613

CHILD(Q). If Q = CHILD(R), set CHILD(R) ← Λ. Otherwise set R ← CHILD(R),
then R← SIB(R) until SIB(R) = Q, then SIB(R)← Λ. Finally set P′ ← R′.

I8. [Advance k.] Set k ← k + 2 and return to step I3.
I9. [Update the area.] Set AREA(P′)← AREA(P′) + ⌈aj/2⌉ − ⌈aj−1/2⌉. Then go back

to I2 if aj = 2N + 3.
I10. [Gobble up short a.] If aj+1 ≥ bk, go to I11. Otherwise set Q← LOC(NODE(t)) and

t ← t + 1. Set PARENT(Q) ← P′, DORMANT(Q) ← HEIR(Q) ← Λ; also ROW(Q) ← s,
COL(Q) ← ⌈aj/2⌉, AREA(Q) ← ⌈aj+1/2⌉ − ⌈aj/2⌉. If P = P′, set SIB(Q) ←
CHILD(P) and CHILD(P) ← Q; otherwise set SIB(Q) ← SIB(P) and SIB(P) ← Q.
Finally set P← Q, j ← j + 2, and return to I3.

I11. [Move on.] Set j ← j + 1, k ← k + 1, (P, P′)← next(P, P′), and go to I3.
To “absorb P into Q” means to do the following things: If (ROW(P), COL(P)) is less
than (ROW(Q), COL(Q)), set (ROW(Q), COL(Q)) ← (ROW(P), COL(P)). Set AREA(Q) ←
AREA(P) + AREA(Q). If DORMANT(Q) = Λ, set DORMANT(Q) ← DORMANT(P); otherwise if
DORMANT(P) ̸= Λ, swap SIB(DORMANT(P))↔ SIB(DORMANT(Q)). Finally, set HEIR(P)←
Q. (The HEIR links could be used on a second pass to identify the final component of
each pixel. Notice that the PARENT links of dormant nodes are not kept up to date.)

[A similar algorithm was given by R. K. Lutz in Comp. J. 23 (1980), 262–269.]
180. Let F (x, y) = x2 − y2 + 13 and Q(x, y) = F (x− 1

2 , y− 1
2 ) = x2 − y2 − x+ y+ 13.

Apply Algorithm T to digitize the hyperbola from (ξ, η) = (−6, 7) to (ξ′, η′) = (0,
√

13);
hence x = −6, y = 7, x′ = 0, y′ = 4. The resulting edges are (−6, 7)−−− (−5, 7)−−−
(−5, 6)−−−(−4, 6)−−−(−4, 5)−−−(−3, 5)−−−(−3, 4)−−−· · ·−−−(0, 4). Then apply it again
with ξ = 0, η =

√
13, ξ′ = 6, η′ = 7, x = 0, y = 4, x′ = 6, y′ = 7; the same edges are

found (in reverse order), but with negated x coordinates.
181. Subdivide at points (ξ, η) where Fx(ξ, η) = 0 or Fy(ξ, η) = 0, namely at the real
roots of {Q(−(b(η + 1

2 ) + d)/(2a), η + 1
2 ) = 0, ξ = −(b(η + 1

2 ) + d)/(2a) − 1
2} or of

{Q(ξ + 1
2 ,−(b(ξ + 1

2 ) + e)/(2c)) = 0, η = −(b(ξ + 1
2 ) + e)/(2c)− 1

2}, if they exist.
182. By induction on |x′ − x| + |y′ − y|. Consider, for example, the case x > x′

and y < y′. We know from (iii) that (ξ, η) lies in the box x − 1
2 ≤ ξ < x + 1

2 and
y− 1

2 ≤ η < y+ 1
2 , and from (ii) that the curve travels monotonically as it moves from

(ξ, η) to (ξ′, η′). It must therefore exit the box at the edge (x− 1
2 , y− 1

2 )−−−(x− 1
2 , y+ 1

2 )
or (x− 1

2 , y+ 1
2 )−−−(x+ 1

2 , y+ 1
2 ). The latter holds if and only if F (x− 1

2 , y+ 1
2 ) < 0,

because the curve can’t intersect that edge twice when x′ < x. And F (x− 1
2 , y + 1

2 ) is
the value Q(x, y+ 1) that is tested in step T4, because of the initialization in step T1.
(We assume that the curve doesn’t go exactly through (x − 1

2 , y + 1
2 ), by implicitly

adding a tiny positive amount to the function F behind the scenes.)
183. Consider, for example, the ellipse defined by F (x− 1

2 , y− 1
2 ) = Q(x, y) = 13x2 +

7xy + y2 − 2 = 0; this ellipse is a cigar-shaped curve that extends roughly between
(−2, 5) and (1,−6). Suppose we want to digitize its upper right boundary. Hypotheses
(i)–(iv) of Algorithm T hold with

ξ =


8
3 −

1
2 , η = −


98
3 −

1
2 , ξ′ = −


98
39 −

1
2 , η′ =


104
3 − 1

2 ,

x = 1, y = −6, x′ = −2, y′ = 5. Step T1 sets Q← Q(1,−5) = 1, which causes step T4
to move left (L); in fact, the resulting path is L3U11, while the correct digitization
according to (164) is U3LU4LU3LU. Failure occurred because Q(x, y) = 0 has two
roots on the edge (1,−5)−−− (2,−5), namely ((35 ± −

√
29)/26,−5), causing Q(1,−5)

From the Library of Melissa Nuno



ptg999

614 ANSWERS TO EXERCISES 7.1.3

to have the same sign as Q(2,−5). (One of those roots is on the boundary we are not
trying to draw, but it’s still there.) Similar failure occurs with the parabola defined
by Q(x, y) = 9x2 + 6xy + y2 − y = 0, ξ = −5/12, η = −1/4, ξ′ = −5/2, η′ = −19/2,
x = 0, y = 0, x′ = −2, y′ = 9. Hyperbolas can fail too (consider 6x2 + 5xy + y2 = 1).

Algorithms for discrete geometry are notoriously delicate; unusual cases tend to
drive them berserk. Algorithm T works properly for portions of any ellipse or parabola
whose maximum curvature is less than 2. The maximum curvature of an ellipse with
semiaxes α ≥ β is α/β2; the cigar-shaped example has maximum curvature ≈ 42.5.
The maximum curvature of the parabola y = αx2 is α/2; the anomalous parabola above
has maximum curvature ≈ 5.27. “Reasonable” conics don’t make such sharp turns.

To make Algorithm T work correctly without hypothesis (v), we need to slow it
down a bit, by changing the tests ‘Q < 0’ to ‘Q < 0 or X’, where X is a test on the
sign of a derivative. Namely, X is respectively ‘S > c’, ‘R > a’, ‘R < −a’, ‘S < −c’, in
steps T2, T3, T4, T5.
184. Let Q′(x, y) = −1 − Q(x, y). The key point is that Q(x, y) < 0 if and only if
Q′(x, y) ≥ 0. (Curiously the algorithm makes the same decisions, backwards, although
it probes the values of Q′ and Q in different places.)
185. Find a positive integer h so that d = (η− η′)h and e = (ξ′ − ξ)h are integers and
d+e is even. Then carry out Algorithm T with x = ⌊ξ+ 1

2⌋, y = ⌊η+ 1
2⌋, x′ = ⌊ξ′ + 1

2⌋,
y′ = ⌊η′ + 1

2⌋, and Q(x, y) = d(x− 1
2 ) + e(y − 1

2 ) + f , where
f = ⌊(η′ξ − ξ′η)h⌋ − [d> 0 and (η′ξ − ξ′η)h is an integer].

(The ‘d > 0’ term ensures that the opposite straight line, from (ξ′, η′) back to (ξ, η), will
have precisely the same edges; see exercise 184.) Steps T1 and T6–T9 become much
simpler than they were in the general case, because R = d and S = e are constant.

(F. G. Stockton [CACM 6 (1963), 161, 450] and J. E. Bresenham [IBM Systems
Journal 4 (1965), 25–30] gave similar algorithms, but with diagonal edges permitted.)
186. (a) B(ϵ) = z0 + 2ϵ(z1 − z0) +O(ϵ2); B(1− ϵ) = z2 − 2ϵ(z2 − z1) +O(ϵ2).

(b) Every point of S(z0, z1, z2) is a convex combination of z0, z1, and z2.
(c) Obviously true, since (1− t)2 + 2(1− t)t+ t2 = 1.
(d) The collinear condition follows from (b). Otherwise, by (c), we need only

consider the case z0 = 0 and z2 − 2z1 = 1, where z1 = x1 + iy1 and y1 ̸= 0. In that
case all points lie on the parabola 4x = (y/y1)2 + 4yx1/y1.

(e) Note that B(uθ) = (1−u)2z0+2u(1−u)((1−θ)z0+θz1)+u2B(θ) for 0 ≤ u ≤ 1.
[S. N. Bernshtĕın introduced Bn(z0, z1, . . . , zn; t) =


k


n
k


(1 − t)n−ktkzk in

Soobshcheni⁀ıa Khar’kovskoe matematicheskoe obshchestvo (2) 13 (1912), 1–2.]
187. We can assume that z0 = (x0, y0), z1 = (x1, y1), and z2 = (x2, y2), where the
coordinates are (say) fixed-point numbers represented as 16-bit integers divided by 32.

If z0, z1, and z2 are collinear, use the method of exercise 185 to draw a straight
line from z0 to z2. (If z1 doesn’t lie between z0 and z2, the other edges will cancel out,
because edges are implicitly XORed by a filling algorithm.) This case occurs if and
only if D = x0y1 + x1y2 + x2y0 − x1y0 − x2y1 − x0y2 = 0.

Otherwise the points (x, y) of S(z0, z1, z2) satisfy F (x, y) = 0, where
F (x, y) = ((x− x0)(y2 − 2y1 + y0)− (y − y0)(x2 − 2x1 + x0))2

− 4D((x1 − x0)(y − y0)− (y1 − y0)(x− x0))
and D is defined above. We multiply by 324 to obtain integer coefficients; then negate
this formula and subtract 1, if D < 0, to satisfy condition (iv) of Algorithm T and the
reverse-order condition. (See exercise 184.)

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 615

The monotonicity condition (ii) holds if and only if (x1 − x0)(x2 − x1) ≥ 0 and
(y1 − y0)(y2 − y1) ≥ 0. If necessary, we can use the recurrence of exercise 186(e)
to break S(z0, z1, z2) into at most three monotonic subsquines; for example, setting
θ = (x0 − x1)/(x0 − 2x1 + x2) will achieve monotonicity in x. (A slight rounding error
may occur during this fixed point arithmetic, but the recurrence can be performed in
such a way that the subsquines are definitely monotonic.)

Notes: When z0, z1, and z2 are near each other, a simpler and faster method based
on exercise 186(e) with θ = 1

2 is adequate for most practical purposes, if one doesn’t
care about making the exactly correct choice between local edge sequences like “up-
then-left” versus “left-then-up.” In the late 1980s, Sampo Kaasila chose to use squines
as the basic method of shape specification in the TrueType font format, because they
can be digitized so rapidly. The METAFONT system achieves greater flexibility with
cubic Bézier splines [see D. E. Knuth, 89:;<=>:: The Program (Addison–Wesley,
1986)], but at the cost of extra processing time. A fairly fast “six-register algorithm”
for the resulting cubic curves was, however, developed subsequently by John Hobby
[ACM Trans. on Graphics 9 (1990), 262–277]. Vaughan Pratt introduced conic splines,
which are sort of midway between squines and Bézier cubics, in Computer Graphics
19, 3 (July 1985), 151–159. Conic spline segments can be elliptical and hyperbolic as
well as parabolic, hence they require fewer intermediate points and control points than
squines; furthermore, they can be handled by Algorithm T.
188. The following big-endian program assumes that n ≤ 74880.

LOC Data Segment
BITMAP LOC @+M*N/8
base GREG @
GRAYMAP LOC @+M*N/64
GTAB BYTE 255,252,249,246,243

BYTE 240,236,233,230,227
BYTE 224,221,217,214,211
BYTE 208,204,201,198,194
BYTE 191,188,184,181,178
BYTE 174,171,167,164,160
BYTE 157,153,150,146,142
BYTE 139,135,131,128,124
BYTE 120,116,112,108,104
BYTE 100,96,92,88,84
BYTE 79,75,70,66,61
BYTE 56,52,46,41,36
BYTE 30,24,18,10,0

Initk OCTA BITMAP-GRAYMAP
corr GREG N-8
c1 GREG #4000100004000100
c2 GREG #2010000002010000
c3 GREG #0804020100000000
mu1 GREG #3333333333333333
mu2 GREG #0f0f0f0f0f0f0f0f
h GREG #8080808080808080
gtab GREG GTAB-#80

LOC #100
MakeGray LDA z,GRAYMAP

LDO k,Initk
0H SET s,N/64
1H SET a,h A trick (see below)

SET r,8
2H LDOU t,base,k

MOR u,c1,t
SUBU t,t,u (Nypwise sums)
MOR u,c2,t
AND t,t,mu1
ADDU t,t,u (Nybblewise sums)
MOR u,c3,t
AND t,t,mu2
ADDU t,t,u (Bytewise sums)
ADDU a,a,t
INCL k,N/8 Move to next row.
SUB r,r,1
PBNZ r,2B Repeat 8 times.

3H SRU t,a,56
LDBU t,gtab,t
SLU a,a,8
STBU t,z,0
INCL z,1
PBN a,3B (The trick)
SUB k,k,corr
SUB s,s,1
PBNZ s,1B Loop on columns.
INCL k,7*N/8 Loop on groups
PBN k,0B of 8 rows.

From the Library of Melissa Nuno



ptg999

616 ANSWERS TO EXERCISES 7.1.3

[Inspired by Neil Hunt’s DVIPAGE, the author used such graymaps extensively
when preparing new editions of The Art of Computer Programming in 1992–1998.]
189. If the rows of the bitmap are (X0, X1, . . . , X63), do the following operations for
k = 0, 1, . . . , 5: For all i such that 0 ≤ i < 64 and i& 2k = 0, let j = i+ 2k and either
(a) set t ← (Xi ⊕ (Xj ≫ 2k)) & µ6,k, Xi ← Xi ⊕ t, Xj ← Xj ⊕ (t≪ 2k); or (b) set
t← Xi& µ̄6,k, u← Xj &µ6,k, Xi ← ((Xi≪2k) & µ̄6,k) | u, Xj ← ((Xj≫2k) &µ6,k) | t.

[The basic idea is to transform 2k×2k submatrices for increasing k, as in exercise
5–12. Speedups are possible with MMIX, using MOR and MUX as in exercise 208, and
using LDTU/STTU when k = 5. See L. J. Guibas and J. Stolfi, ACM Transactions on
Graphics 1 (1982), 204–207; M. Thorup, J. Algorithms 42 (2002), 217. Incidentally,
Theorem P and answer 54 show that Ω(n logn) operations on n-bit numbers are needed
to transpose an n × n bit matrix. An application that needs frequent transpositions
might therefore be better off using a redundant representation, maintaining its matrices
in both normal and transposed form.]
190. (a) We must have αj+1 = f(αj) ⊕ αj−1 for j ≥ 1, where α0 = 0 . . . 0 and
f(α) = ((α≪ 1) & 1 . . . 1)⊕ α⊕ (α≫ 1). The elements of the bottom row αm satisfy
the parity condition if and only if this rule makes αm+1 entirely zero.

(b) True. The parity condition on matrix entries aij is aij = a(i−1)j ⊕ ai(j−1) ⊕
ai(j+1) ⊕ a(i+1)j , where aij = 0 if i = 0 or i = m + 1 or j = 0 or j = n + 1. If two
matrices (aij) and (bij) satisfy this condition, so does (cij) when cij = aij ⊕ bij .

(c) The upper left submatrix consisting of all rows that precede the first all-zero
row (if any) and all columns that precede the first all-zero column (if any) is perfect.
And this submatrix determines the entire matrix, because the pattern on the other side
of a row or column of zeros is the top/bottom or left/right reflection of its neighbor.
For example, if αm′+1 is zero, then αm′+1+j = αm′+1−j for 1 ≤ j ≤ m′.

(d) Starting with a given vector α1 and using the rule in (a) will always lead to
a row with αm+1 = 0 . . . 0. Proof: We must have (αj , αj+1) = (αk, αk+1) for some 0 ≤
j < k ≤ 22n, by the pigeonhole principle. If j > 0 we also have (αj−1, αj) = (αk−1, αk),
because αj−1 = f(αj) ⊕ αj+1 = f(αk) ⊕ αk+1 = αk−1. Therefore the first repeated
pair begins with a row αk of zeros. Furthermore we have αi = αk−i for 0 ≤ i ≤ k;
hence the first all-zero row αm+1 occurs when m is k − 1 or k/2− 1.

Rows α1, . . . , αm will form a perfect pattern unless there is a column of 0s. There
are t > 0 such columns if and only if t + 1 is a divisor of n + 1 and α1 has the form
α0αR0 . . . 0α (t even) or α0αR0 . . . 0αR (t odd), where |α|+ 1 = (n+ 1)/(t+ 1).

(e) This starting vector does not have the form forbidden in (d).
191. (a) The former is α1, α2, . . . if and only if the latter is 0α10αR1 , 0α20αR2 , . . . .

(b) Let the binary string a0a1 . . . aN−1 correspond to the polynomial a0 + a1x+
· · · + aN−1x

N−1, and let y = x−1+1+x. Then α0 = 0 . . . 0 corresponds to F0(y);
α1 = 10 . . . 0 corresponds to F1(y); and by induction αj corresponds to Fj(y), mod
xN + 1 and mod 2. For example, when N = 6 we have α2 = 110001 ↔ 1 + x + x5

because x−1 mod (x6 + 1) = x5, etc.
(c) Again, induction on j.
(d) The identity in the hint holds by induction on m, because it is clearly true

when m = 1 and m = 2. Working mod 2, this identity yields the simple equations

F2k(y) = yFk(y)2; F2k−1(y) = (Fk−1(y) + Fk(y))2.

So we can go from the pair Pk = (Fk−1(y) mod (xN+1), Fk(y) mod (xN+1)) to the pair
Pk+1 in O(n) steps, and to the pair P2k in O(n2) steps. We can therefore compute

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 617

Fj(y) mod (xN + 1) after O(log j) iterations. Multiplying by fα(x) + fα(x−1) and
reducing mod xN+ 1 then allows us to read off the value of αj .

Incidentally, Fn+1(x) is the special case Kn(x, x, . . . , x) of a continuant polyno-
mial; see Eq. 4.5.3–(4). We have Fn+1(x) =

n
k=0


n−k
k


xn−2k = i−nUn(ix/2), where

Un is the classical Chebyshev polynomial defined by Un(cos θ) = sin((n+ 1)θ)/sin θ.
192. (a) By exercise 191(c), c(q) is the least j > 0 such that (x+x−1)Fj(x−1+1+x) ≡ 0
(modulo x2q + 1), using polynomial arithmetic mod 2. Equivalently, it’s the smallest
positive j for which Fj(y) is a multiple of (x2q + 1)/(x2 + 1) = (1 + x + · · · + xq−1)2,
when y = x−1+1+x.

(b) Use the method of exercise 191(d) to evaluate ((x+x−1)Fj(y)) mod (x2q + 1)
when j = M/p, for all prime divisors p of M . If the result is zero, set M ← M/p and
repeat the process. If no such result is zero, c(q) = M .

(c) We want to show that c(2e) is a divisor of 3 · 2e−1 but not of 3 · 2e−2 or
2e−1. The latter holds because F2e−1(y) = y2e−1−1 is relatively prime to x2e+1 +1. The
former holds because

F3·2e−1(y) = y2e−1−1F3(y)2e−1
= y2e−1−1(1 + y)2e

= y2e−1−1(x−1+x)2e

,

which is ≡ 0 modulo x2e+1
+ 1 but not modulo x2e+2

+ 1.
(d) F2e−1(y) =

e
k=1 y

2e−2k. Since y = x−1(1+x+x2) is relatively prime to xq+1,
we have y−1 ≡ a0 +a1x+ · · ·+aq−1x

q−1 (modulo xq+1) for some coefficients ai; hence

y−2k ≡ a0 +a1x
2k

+ · · ·+aq−1x
2k(q−1) ≡ a0 +a1x

2k+e

+ · · ·+aq−1x
2k+e(q−1) ≡ y−2k+e

(modulo xq + 1) for 0 ≤ k < e, and it follows that F22e−1(y) is a multiple of x2q + 1.
(e) In this case c(q) divides 4(22e − 1). Proof: Let xq + 1 = f1(x)f2(x) . . . fr(x)

where f1(x) = x + 1, f2(x) = x2 + x + 1, and each fi(x) is irreducible mod 2. Since
q is odd, these factors are distinct. Therefore, in the finite field of polynomials mod
fj(x) for j ≥ 3, we have y−2k = y−2k+e as in (d). Consequently F22e−1(y) is a multiple
of f3(x) . . . fr(x) = (xq + 1)/(x3 + 1). So F4(22e−1)(y) = y3F22e−1(y)4 is a multiple of
(x2q + 1)/(x2 + 1) = f2(x)2f3(x)2 . . . fr(x)2 as desired.

(f) If Fc(q)(y) is a multiple of x2q+1, it’s easy to see that c(2q) = 2c(q). Otherwise
F3c(q)(y) is a multiple of F3(y) = (1 + y)2 = x−2(1 + x)4; hence F6c(q)(y) is a multiple
of x4q + 1 and c(2q) divides 6c(q). The latter case can happen only when q is odd.

Notes: Parity patterns are related to a popular puzzle called “Lights Out,” which
was invented in the early 1980s by Dario Uri, also invented independently about the
same time by László Mérő and called . [See David Singmaster’s Cubic Circular,
issues 7&8 (Summer 1985), 39–42; Dieter Gebhardt, Cubism For Fun 69 (March
2006), 23–25.] Klaus Sutner has pursued further aspects of this theory in Theoretical
Computer Science 230 (2000), 49–73.
193. Let b(2i)(2j) = aij , b(2i+1)(2j) = aij ⊕ a(i+1)j , b(2i)(2j+1) = aij ⊕ ai(j+1), and
b(2i+1)(2j+1) = 0, for 0 ≤ i ≤ m and 0 ≤ j ≤ n, where we regard aij = 0 when i = 0
or i = m + 1 or j = 0 or j = n + 1. We don’t have (b(2i)1, b(2i)2, . . . , b(2i)(2n+1)) =
(0, 0, . . . , 0) because (ai1, . . . , ain) ̸= (0, . . . , 0) for 1 ≤ i ≤ m. And we don’t have
(b(2i+1)1, b(2i+1)2, . . . , b(2i+1)(2n+1)) = (0, 0, . . . , 0) because adjacent rows (ai1, . . . , ain)
and (a(i+1)1, . . . , a(i+1)n) always differ for 0 ≤ i ≤ m when m is odd.
194. Set βi ← (1≪ (n−i)) | (1≪ (i−1)) for 1 ≤ i ≤ m, where m = ⌈n/2⌉. Also set
γi ← (β1 & αi1) + (β2 & αi2) + · · ·+ (βm & αim), where αij is the jth row of the parity

From the Library of Melissa Nuno



ptg999

618 ANSWERS TO EXERCISES 7.1.3

pattern that begins with βi; vector γi records the diagonal elements of such a matrix.
Then set r ← 0 and apply subroutine N of answer 195 for i = 1, 2, . . . , m. The resulting
vectors θ1, . . . , θr are a basis for all n× n parity patterns with 8-fold symmetry.

To test if any such pattern is perfect, let the pattern starting with θi first be zero
in row ci. If any ci = n + 1, the answer is yes. If lcm(c1, . . . , cr) ≤ n, the answer
is no. If neither of these conditions decides the matter, we can resort to brute-force
examination of 2r − 1 nonzero linear combinations of the θ vectors.

For example, when n = 9 we find γ1 = 111101111, γ2 = γ3 = 010101010, γ4 =
000000000, γ5 = 001010100; then r = 0, θ1 = 011000110, θ2 = 000101000, c1 = c2 = 5.
So there is no perfect solution.

In the author’s experiments for n ≤ 3000, “brute force” was needed only when
n = 1709. Then r = 21 and the values of ci were all equal to 171 or 855 except that
c21 = 342. The solution θ1 ⊕ θ21 was found immediately.

The answers for 1 ≤ n ≤ 383 are 4, 5, 11, 16, 23, 29, 30, 32, 47, 59, 62, 64, 65,
84, 95, 101, 119, 125, 126, 128, 131, 154, 164, 170, 185, 191, 203, 204, 239, 251, 254,
256, 257, 263, 314, 329, 340, 341, 371, 383.

[A fractal similar to Fig. 20, called the “mikado pattern,” appears in a paper by
H. Eriksson, K. Eriksson, and J. Sjöstrand, Advances in Applied Math. 27 (2001), 365.
See also S. Wolfram, A New Kind of Science (2002), rule 150R on page 439.]
195. Set βi ← 1≪ (m− i) and γi ← αi for 1 ≤ i ≤ m; also set r ← 0. Then perform
the following subroutine for i = 1, 2, . . . , m:

N1. [Extract low bit.] Set x← γi &−γi. If x = 0, go to N4.
N2. [Find j.] Find the smallest j ≥ 1 such that γj & x ̸= 0 and γj & (x− 1) = 0.
N3. [Dependent?] If j < i, set γi ← γi ⊕ γj , βi ← βi ⊕ βj , and return to N1.

(These operations preserve the matrix equation C = BA.) Otherwise termi-
nate the subroutine (because γi is linearly independent from γ1, . . . , γi−1).

N4. [Record a solution.] Set r ← r + 1 and θr ← βi.
At the conclusion, the m − r nonzero vectors γi are a basis for the vector space of all
linear combinations of α1, . . . , αm; they’re characterized by their low bits.
196. (a) #0a; #cea3; #e7ae97; #f09d8581.

(b) If λx = λx′, the result is clear because l = l′. Otherwise we have either
α1 < α′

1 or (α1 = α′
1 and α2 < α′

2); the latter case can occur only when x ≥ 216.
(c) Set j ← k; while αj ⊕#80 < #40, set j ← j−1. Then α(x(i)) begins with αj .

197. (a) #000a; #03a3; #7b97; #d834dd41.
(b) Lexicographic order is not preserved when, say, x = #ffff and x′ = #10000.
(c) To answer this question properly one needs to know that the 2048 integers

in the range #d800 ≤ x < #e000 are not legal codepoints of UCS; they are called
surrogates. With this understanding, β(x(i)) begins at βk if βk ⊕ #dc00 ≥ #0400,
otherwise it begins at βk−1.
198. a = #e50000, b = 3, c = #16. (We could let b = 0, but then a would be
huge. This trick was suggested by P. Raynaud-Richard in 1997. The stated constants,
suggested by R. Pournader in 2008, are the smallest possible.)
199. We want α1 >

#c1; 28α1 + α2 <
#f490; and either (α1 &−α1) + α1 <

#100 or
α1 + α2 >

#17f. These conditions hold if and only if

(#c1−α1)&(28α1 +α2−#f490)&(((α1 &−α1)+α1−#100) | (#17f−α1−α2)) < 0.

From the Library of Melissa Nuno



ptg999

7.1.3 ANSWERS TO EXERCISES 619

Markus Kuhn suggests adding the further clause ‘& (#20 − ((28α1 + α2) ⊕ #eda0))’,
to ensure that α1α2 doesn’t begin the encoding of a surrogate.

200. If $0 = (x7 . . . x1x0)256 then $3 is set to the symmetric function S2(x7, x4, x2).

201. MOR x,c,x, where c = #f0f0f0f00f0f0f0f.

202. MOR x,x,c, where c = #c0c030300c0c0303; then MOR x,mone,x. (See answer 209.)

203. a = #0008000400020001, b = #0f0f0f0f0f0f0f0f, c = #0606060606060606,
d = #0000002700000000, e = #2a2a2a2a2a2a2a2a. (The ASCII code for 0 is 6 + #2a;
the ASCII code for a is 6 + #2a + 10 + #27.)

204. p = #8008400420021001, q = #8020080240100401 (the transpose of p), r =
#4080102004080102 (a symmetric matrix), and m = #aa55aa55aa55aa55.

205. Shuffle, but with p↔ q, r = #0804020180402010, m = #f0f0f0f00f0f0f0f.

206. Just change p to #0880044002200110. (Incidentally, these shuffles can also be
defined as permutations on z = (z63 . . . z1z0)2 in another way: The outshuffle maps
zj →→ z(2j) mod 63, for 0 ≤ j < 63, while the inshuffle maps zj →→ z(2j+1) mod 65.)

207. Do MOR y,p,x; MOR y,y,p; MOR t,y,q; PUT rM,m1; MUX y,y,t; MOR t,t,q;
PUT rM,m2; MUX y,y,t. In both cases p = #2004801002400801; for triple zip,
q= #4020100804020180, m1 = #4949494949494949, m2 = #dbdbdbdbdbdbdbdb; for the
inverse, q= #0402018040201008, m1 = #0707070707070707, m2 = #3f3f3f3f3f3f3f3f.

208. (Solution by H. S. Warren, Jr.) The text’s 7-swap, 14-swap, 28-swap method can
be implemented with only 12 instructions:

MOR t,x,c1; MOR t,c1,t; PUT rM,m1; MUX y,x,t;
MOR t,y,c2; MOR t,c2,t; PUT rM,m2; MUX y,y,t;
MOR t,y,c3; MOR t,c3,t; PUT rM,m3; MUX y,y,t;

here c1 = #4080102004080102, c2 = #2010804002010804, c3 = #0804020180402010,
m1 = #aa55aa55aa55aa55, m2 = #cccc3333cccc3333, m3 = #f0f0f0f00f0f0f0f.

209. Four instructions suffice: MXOR y,p,x; MXOR x,mone,x; MXOR x,x,q; XOR x,x,y;
here p = #80c0e0f0f8fcfeff = q̄, and register mone = −1.

210. SLU x,one,x; MOR x,b,x; AND x,x,a; MOR x,x,#ff; here register one = 1.

211. In general, element ij of the Boolean matrix product AXB is
{xkl | aikblj = 1}.

For this problem we choose aik = [i⊇ k ] and blj = [l⊆ j ]; the answer is ‘MOR t,f,a;
MOR t,b,t’ where a = #80c0a0f088ccaaff and b = #ff5533110f050301 = aT .

(Notice that this trick gives a simple test [f = f̂ ] for monotonicity. Furthermore,
the 64-bit result (t63 . . . t1t0)2 gives the coefficients of the multilinear representation

f(x1, . . . , x6) = (t63 + t62x6 + · · ·+ t1x1x2x3x4x5 + t0x1x2x3x4x5x6) mod 2,

if we substitute MXOR for MOR, by the result of exercise 7.1.1–11.)

212. If · denotes MXOR as in (183) and b = (β7 . . . β1β0)256 has bytes βj , we can evaluate

c = (a·BL0 )⊕ ((a≪8)·(BL1 +BU0 ))⊕ ((a≪16)·(BL2 +BU1 ))⊕· · ·⊕ ((a≪56)·(BL7 +BU6 )),

where BUj = (qβj) & m, BLj = (((qβj)≪ 8) + βj) & m, q = #0080402010080402, and
m = #7f3f1f0f07030100. (Here qβj denotes ordinary multiplication of integers.)

From the Library of Melissa Nuno



ptg999

620 ANSWERS TO EXERCISES 7.1.3

213. In this big-endian computation, register nn holds −n, and register data points
to the octabyte following the given bytes αn−1 . . . α1α0 in memory (with αn−1 first).
The constants aa = #8381808080402010 and bb = #339bcf6530180c06 correspond to
matrices A and B, found by computing the remainders xk mod p(x) for 72 ≤ k < 80.

SET c,0 c← 0.
LDOU t,data,nn t← next octa.
ADD nn,nn,8 n← n− 8.
BZ nn,2F Done if n = 0.

1H MXOR u,aa,t u← t ·A.
MXOR v,bb,t v ← t ·B.
ADD nn,nn,8 n← n− 8.

LDOU t,data,nn t← next octa.
XOR u,u,c u← u⊕ c.
SLU c,v,56 c← v≪ 56.
SRU v,v,8 v ← v≫ 8.
XOR u,u,v u← u⊕ v.
XOR t,t,u t← t⊕ u.
PBN nn,1B Repeat if n > 0.

A similar method finishes the job, with no auxiliary table needed:
2H SET nn,8 n← 8.
3H AND x,t,ffooo x← high byte.

MXOR u,aaa,x u← x ·A′.
MXOR v,bbb,x v ← x ·B′.
SLU t,t,8 t← t≪ 8.
XOR t,t,u t← t⊕ u.

SRU v,v,8 v ← v≫ 8.
XOR t,t,v t← t⊕ v.
SUB nn,nn,1 n← n− 1.
PBP nn,3B Repeat if n > 0.
XOR t,t,c t← t⊕ c.
SRU crc,t,48 Return t≫ 48.

Here aaa = #8381808080808080, bbb = #0383c363331b0f05, and ffooo = #ff00...00.

The Books of the Big-Endians have been long forbidden.
— LEMUEL GULLIVER, Travels Into Several Remote Nations of the World (1726)

214. By considering the irreducible factors of the characteristic polynomial of X,
we must have Xn = I where n = 23 · 32 · 5 · 7 · 17 · 31 · 127 = 168661080. Neill
Clift has shown that l(n − 1) = 33 and found the following sequence of 33 MXOR
instructions to compute Y = X−1 = Xn−1: MXOR t,x,x; MXOR $1,t,x; MXOR $2,t,$1;
MXOR $3,$2,$2; MXOR t,$3,$3; S6; MXOR t,t,$2; S3; MXOR $1,t,$1; MXOR t,$1,$3;
S13; MXOR t,t,$1; S; MXOR y,t,x; here S stands for ‘MXOR t,t,t’. To test if X is
nonsingular, do MXOR t,y,x and compare t to the identity matrix #8040201008040201.
215. SADD $0,x,0; SADD $1,x,a; NEG $0,32,$0; 2ADDU $1,$1,$0; SLU $0,b,$1; then
BN $0,Yes; here a = #aaaaaaaaaaaaaaaa and b = #2492492492492492.
216. Start with sk ← 0 and tk ← −1 for 0 ≤ k < m. Then do the following for
1 ≤ k ≤ m: If xk ̸= 0 and xk < 2m, set l ← λxk and sl ← sl + xk; if tl < 0 or
tl > xk, also set tl ← xk. Finally, set y ← 1 and k ← 0; while y ≥ tk and k < m, set
y ← y+ sk and k ← k+ 1. Double-precision n-bit arithmetic is sufficient for y and sk.
[This pleasant algorithm appeared in D. Eppstein’s blog, 2008.03.22.]
217. See R. D. Cameron, U.S. Patent 7400271 (15 July 2008); Proc. ACM Symp.
Principles and Practice of Parallel Programming 13 (2008), 91–98.
218. Let b be any integer with bmod 8 = 5. Then x = bL(x) mod 2d for some integer
L(x), depending on b, whenever 0 < x < 2d and xmod 4 = 1 (see Section 3.2.1.2). The
following algorithm computes s = 4L(x), given a table of the numbers tk = −4L(2k+1)
for 1 < k < d, and assuming that tk = 2k for k ≥ d/2: Set s ← 0, j ← 1; then while
j < d/2− 1, set j ← j + 1, and if x & (1≪ j) ̸= 0 also set x ← (x + (x≪ j)) mod 2d,
s← (s+ tj) mod 2d. Finally set s← (s+ 1− x) mod 2d.

Now to compute a·xy we can proceed as follows (with all arithmetic done mod 2d):
If x & 2 ̸= 0, set x ← −x and a ← (−1)y&1a. (Now xmod 4 = 1.) Set s ← 4L(x) · y,

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 621

using the algorithm above, and j ← 1; then while s ̸= 0, set j ← j + 1, and if
s & (1≪ j) ̸= 0 also set s ← s + tj , a ← a + (a≪ j). The desired answer is then a.
(With another multiplication we could return (1− s)a as soon as j ≥ d/2.)

Suitable numbers tk can be computed by setting tk ← 1≪ k for d− 1 ≥ k ≥ d/2
and proceeding as follows for the remaining ks, in decreasing order: Set x← 1+(1≪k),
x← x+(x≪k), s← 0, j ← k; then while j < d/2−1 set j ← j+1, and if x&(1≪j) ̸= 0
also set x← x+(x≪j), s← s−tj ; finally tk ← (s+x−1)≫1. For example, when d = 32
we get t15 = #20008000, t14 = #18004000, t13 = #0e002000, t12 = #07801000, t11 =
#03e00800, t10 = #41f80400, t9 = #18fe0200, t8 = #0b7f8100, t7 = #319fe080, t6 =
#5e8bf840, t5 = #4a617e20, t4 = #17c26f90, t3 = #6119d1e8, t2 = #2c30267c. (This
procedure finds the L’s for some integer b, without revealing the actual value of b itself!)

[The methods of this exercise have interesting connections to the algorithms of
Briggs and Feynman for real-valued logarithm and exponential in exercises 1.2.2–25 and
1.2.2–28. Our broadword procedure for xy works also for calculating the inverse of x,
modulo 2d, when y = −1; but there’s a direct algorithm available for that: Set z ← 1,
j ← 0; while x ̸= 1 set j ← j+1, and if x&(1≪j) ̸= 0, also set z ← (z+(z≪j)) mod 2d,
x← (x+ (x≪ j)) mod 2d. The final z is the inverse of the original odd number x.]
219. It “sorts” the bits, changing x to 2νx − 1.

SECTION 7.1.4
1. Here are the BDDs for truth tables 0000, 0001, . . . , 1111, showing the sizes below:

⊥
1

⊥ ⊤
2

1

4
⊥ ⊤
2

1

4
⊥ ⊤

1

3
⊥ ⊤
2

1

4
⊥ ⊤
2

3
⊥ ⊤
2 2

1

5
⊥ ⊤
2

1

4
⊥ ⊤
2

1

4
⊥ ⊤
2 2

1

5
⊥ ⊤
2

3
⊥ ⊤
2

1

4
⊥ ⊤

1

3
⊥ ⊤
2

1

4
⊥ ⊤
2

1

4
⊤
1

2. (The ordering property determines the direction of each arc.)

⊥

>

1
1

1

1

2
1

1

1

1
2

1

1

1
1

3. There are two with size 1 (namely the two constant functions); none with size 2
(because two sinks cannot both be reachable unless there’s also a branch node); and
2n with size 3 (namely xj and x̄j for 1 ≤ j ≤ n).

4. Set y ← #0ffffffeffffffe&x̄+#20000002, y ← (y≫28)&#10000001, x′ ← x⊕y.
(See 7.1.3–(93).)

5. You get f(x̄1, . . . , x̄n) = fD(x1, . . . , xn), the dual of f (see exercise 7.1.1–2).
6. The largest subtables of 1011000110010011, namely 10110001, 10010011, 1011,

0001, 1001, 0011, are all distinct beads; squares and duplicates don’t appear until we
look at the subtables {10, 11, 00, 01} of length 2. So g has size 11.

7. (a) If the truth table of f is α0α1 . . . α2k−1, where each αj is a binary string of
length 2n−k, the truth table of gk is β0β2 . . . β2k−2, where β2j = α2jα2j+1α2j+1α2j+1.

From the Library of Melissa Nuno



ptg999

622 ANSWERS TO EXERCISES 7.1.4

(b) Thus the beads of f and gk are closely related. We get the BDD for gk from
the BDD for f by changing jj to

� �� �j−1 for 1 ≤ j < k, and replacing k

α α′

by k−1

k

α α′

.

8. (a) Now β2j = α2jα2j+1α2j+1α2j . (b) Again change jj to
� �� �j−1 for 1 ≤ j < k. If

k

α α′

is present in f but not k

αα′

, replace k

α α′

by k−1

k k

α α′

; otherwise replace k

α α′
k

αα′

by

k−1

k k

k−1

α α′

. [E. Dubrova and L. Macchiarulo, IEEE Trans. C-49 (2000), 1290–1292.]

9. There is no solution if s = 1. Otherwise set k ← s−1, j ← 1, and do the following
steps repeatedly: (i) While j < vk, set xj ← 1 and j ← j + 1; (ii) stop if k = 0; (iii) if
hk ̸= 1, set xj ← 1 and k ← hk, otherwise set xj ← 0 and k ← lk; (iv) set j ← j + 1.
10. Let Ik = (v̄k? lk:hk) for 0 ≤ k < s and I ′k = (v̄′k? l′k:h′

k) for 0 ≤ k < s′. We may
assume that s = s′; otherwise f ̸= f ′. The following algorithm either finds indices
(t0, . . . , ts−1) such that Ik corresponds to I ′tk , or concludes that f ̸= f ′:

I1. [Initialize and loop.] Set ts−1 ← s − 1, t1 ← 1, t0 ← 0, and tk ← −1 for
2 ≤ k ≤ s − 2. Do steps I2–I4 for k = s − 1, s − 2, . . . , 2 (in this order). If
those steps “quit” at any point, we have f ̸= f ′; otherwise f = f ′.

I2. [Test vk.] Set t ← tk. (Now t ≥ 0; otherwise Ik would have no predecessor.)
Quit if v′t ̸= vk.

I3. [Test lk.] Set l← lk. If tl < 0, set tl ← l′t; otherwise quit if l′t ̸= tl.
I4. [Test hk.] Set h← hk. If th < 0, set th ← h′

t; otherwise quit if h′
t ̸= th.

11. (a) Yes, since ck correctly counts the number of settings of xvk . . . xn that lead
from node k to node 1. (In fact, many BDD algorithms will run correctly — but more
slowly — in the presence of equivalent nodes or redundant branches. But reduction is
important when, say, we want to test quickly if f = f ′ as in exercise 10.)

(b) No. For example, suppose I3 = (1̄? 2: 1), I2 = (1̄? 0: 1), I1 = (2̄? 1: 1), I0 =
(2̄? 0: 0); then the algorithm sets c2 ← 1, c3 ← 3

2 . (But see exercise 35(b).)
12. (a) The first condition makes K independent; the second makes it maximally so.

(b) None when n is odd; otherwise there are two sets of alternate vertices.
(c) A vertex is in the kernel if and only if it is a sink vertex or in the kernel of the

graph obtained by deleting all sink vertices and their immediate predecessors.
[Kernels represent winning positions in nim-like games, and they also arise in

n-person games. See J. von Neumann and O. Morgenstern, Theory of Games and Eco-
nomic Behavior (1944), §30.1; C. Berge, Graphs and Hypergraphs (1973), Chapter 14.]
13. (a) A maximal clique of G is a kernel of G, and vice versa. (b) A minimal vertex
cover U is the complement V \W of a kernel W , and vice versa (see 7–(61)).
14. (a) The size is 4(n − 2) + 2[n= 3]. When n ≥ 6 these BDDs form a pattern in
which there are four branch nodes for variables 4, 5, . . . , n − 2, together with a fixed
pattern at the top and bottom. The four branches are essentially

(x1xj−1 = 00) (x1xj−1 = 01) (x1xj−1 = 10) (x1xj−1 = 11)

(x1xj = 00) (x1xj = 01) (x1xj = 10) (x1xj = 11)

j j j j

⊥ ⊥

.

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 623

(b) Here the numbers for 3 ≤ n ≤ 10 are (7, 9, 14, 17, 22, 30, 37, 45); then a fixed
pattern at the top and bottom develops as in (a), with nine branch nodes for each
variable in the middle, and the total size comes to 9(n − 5). The nine nodes on each
middle level fall into three groups of three,

(xj−2xj−1 = 00) (xj−2xj−1 = 10) (xj−1 = 1)

(xj−1xj = 00) (xj−1xj = 10) (xj = 1)

j j j

⊥ ⊥

,

with one group for x1x2 = 00, one for x1x2 = 01, and one for x1 = 1.
15. Both cases lead by induction to well known sequences of numbers: (a) The Lucas
numbers Ln = Fn+1 + Fn−1 = ϕn + ϕ n [see E. Lucas, Théorie des Nombres (1891),
Chapter 18]. (b) The Perrin numbers, defined by P3 = 3, P4 = 2, P5 = 5, Pn =
Pn−2 +Pn−3 = χn + χ̂n + χ̂n. [See E. Lucas, Association Française pour l’Avancement
des Sciences, Compte-rendu 5 (1876), 62; R. Perrin, L’Intermédiaire des Mathémati-
ciens 6 (1899), 76–77; Z. Füredi, Journal of Graph Theory 11 (1987), 463.]
16. When the BDD isn’t ⊥ , all solutions are generated by calling List(1, root), where
List(j, p) is the following recursive procedure: If v(p) > j, set xj ← 0, call List(j+1, p),
set xj ← 1, and call List(j + 1, p). Otherwise if p is the sink node ⊤ , visit the
solution x1 . . . xn. (The idea of “visiting” a combinatorial object while generating
them all is discussed at the beginning of Section 7.2.1.) Otherwise set xj ← 0; call
List(j+ 1,LO(p)) if LO(p) ̸= ⊥ ; set xj ← 1; and call List(j+ 1,HI(p)) if HI(p) ̸= ⊥ .

The solutions are generated in lexicographic order. Suppose there are N of them.
If the kth solution agrees with the (k−1)st solution in positions x1 . . . xj−1 but not in xj ,
let c(k) = n− j; and let c(1) = n. Then the running time is proportional to

N
k=1 c(k),

which is O(nN) in general. (This bound holds because every branch node of a BDD
leads to at least one solution. In fact, the running time is usually O(N) in practice.)
17. That mission is impossible, because there’s a function with N = 22k and B(f) =
O(22k) for which every two solutions differ in more than 2k−1 bit positions. The running
time for any algorithm that generates all solutions for such a function must be Ω(23k),
because Ω(2k) operations are needed between solutions. To construct f , first let

g(x1, . . . , xk, y0, . . . , y2k−1) = [y(t1...tk)2 =x1t1 ⊕ · · · ⊕ xktk for 0≤ t1, . . . , tk ≤ 1].

(In other words, g asserts that y0 . . . y2k−1 is row (x1 . . . xk)2 of an Hadamard matrix;
see Eq. 4.6.4–(38).) Now we let f(x1, . . . , xk, y0, . . . , y2k−1, x

′
1, . . . , x

′
k, y

′
0, . . . , y

′
2k−1) =

g(x1, . . . , xk, y0, . . . , y2k−1) ∧ g(x′1, . . . , x′k, y′0, . . . , y′2k−1). Clearly B(f) = O(22k) when
the variables are ordered in this way. Indeed, T. Dahlheimer observes that B(f) =
2B(g)− 2, where B(g) = 2k + 1 +

2k

j=1 2min(k,1+⌈lg j⌉) = 5
3 22k−1 + 2k + 5

3 .
18. First, (W1, . . . ,W5) = (5, 4, 4, 4, 0). Then m2 = w4 = 4 and t2 = 1; m3 = t3 = 0;
m4 = max(m3,m2 +w3) = 1, t4 = 1; m5 = W4−W5 = 4, t5 = 0; m6 = w2 +W3−W5 =
2, t6 = 1; m7 = max(m5,m4 + w2) = 4, t7 = 0; m8 = max(m7,m6 + w1) = 4, t8 = 0.
Solution x1x2x3x4 = 0001.
19.

n
j=1 min(wj , 0) ≤n

j=vk
min(wj , 0) ≤ mk ≤

n
j=vk

max(wj , 0) = Wvk ≤W1.
20. Set w1 ← −1, then w2j ← wj and w2j+1 ← −wj for 1 ≤ j ≤ n/2. [This method
may also compute wn+1. The sequence is named for works of A. Thue, Skrifter udgivne
af Videnskabs-Selskabet i Christiania, Mathematisk-Naturvidenskabelig Klasse (1912),
No. 1, §7, and H. M. Morse, Trans. Amer. Math. Soc. 22 (1921), 84–100, §14.]

From the Library of Melissa Nuno



ptg999

624 ANSWERS TO EXERCISES 7.1.4

21. Yes; we just have to change the sign of each weight wj . (Or we could reverse the
roles of LO and HI at each vertex.)
22. If f(x) = f(x′) = 1 when f represents a graph kernel, the Hamming distance
ν(x⊕ x′) cannot be 1. In such cases vl = v+ 1 when l ̸= 0 and vh = v+ 1 when h ̸= 0.
23. The BDD for the connectedness function of any connected graph will have exactly
n− 1 solid arcs on every root-to- ⊤ path, because that many edges are needed to con-
nect n vertices, and because a BDD has no redundant branches. (See also Theorem S.)
24. Apply Algorithm B with weights (w′

12, . . . , w
′
89) = (−w12−x, . . . ,−w89−x), where

x is large enough to make all of these new weights w′
uv negative. The maximum of

w′
uvxuv will then occur with


xuv = 8, and those edges will form a spanning tree

with minimum

wuvxuv. (We’ve seen a better algorithm for minimum spanning trees

in exercise 2.3.4.1–11, and other methods will be studied in Section 7.5.4. However, this
exercise indicates that a BDD can compactly represent the set of all spanning trees.)
25. The answer in step C1 becomes (1 + z)vs−1−1cs−1; the value of ck in step C2
becomes (1 + z)vl−vk−1cl + (1 + z)vh−vk−1zch.
26. In this case the answer in step C1 is simply cs−1; and the value of ck in step C2
is simply (1− pvk )cl + pvkch.
27. The multilinear polynomial H(x1, . . . , xn) = F (x1, . . . , xn) − G(x1, . . . , xn) is
nonzero modulo q, because it is ±1 for some choice of integers with each xk ∈ {0, 1}.
If it has degree d (modulo q), we can prove that there are at least (q − 1)dqn−d sets of
values (q1, . . . , qn) with 0 ≤ qk < q such that H(q1, . . . , qn) mod q ̸= 0. This statement
is clear when d = 0. And if xk is a variable that appears in a term of degree d > 0, the
coefficient of xk is a polynomial of degree d− 1, which by induction on d is nonzero for
at least (q − 1)d−1qn−d choices of (q1, . . . , qk−1, qk+1, . . . , qn); for each of those choices
there are q − 1 values of qk such that H(q1, . . . , qn) mod q ̸= 0.

Hence the stated probability is ≥ (1 − 1/q)d ≥ (1 − 1/q)n. [See M. Blum, A. K.
Chandra, and M. N. Wegman, Information Processing Letters 10 (1980), 80–82.]
28. F (p) = (1− p)nG(p/(1− p)). Similarly, G(z) = (1 + z)nF (z/(1 + z)).
29. In step C1, also set c′0 ← 0, c′1 ← 0; return cs−1 and c′s−1. In step C2, set
ck ← (1− p)cl + pch and c′k ← (1− p)c′l − cl + pc′h + ch.
30. The following analog of Algorithm B does the job (assuming exact arithmetic):

A1. [Initialize.] Set Pn+1 ← 1 and Pj ← Pj+1 max(1− pj , pj) for n ≥ j ≥ 1.
A2. [Loop on k.] Set m1 ← 1 and do step A3 for 2 ≤ k < s. Then do step A4.
A3. [Process Ik.] Set v ← vk, l ← lk, h ← hk, tk ← 0. If l ̸= 0, set mk ←

ml(1 − pv)Pv+1/Pvl . Then if h ̸= 0, compute m ← mhpvPv+1/Pvh ; and if
l = 0 or m > mk, set mk ← m and tk ← 1.

A4. [Compute the x’s.] Set j ← 0, k ← s − 1, and do the following operations
until j = n: While j < vk − 1, set j ← j + 1 and xj ← [pj > 1

2 ]; if k > 1, set
j ← j + 1 and xj ← tk and k ← (tk=0? lk: hk).

31. C1′. [Loop over k.] Set α0 ← ⊥, α1 ← ⊤, and do step C2′ for k = 2, 3, . . . , s− 1.
Then go to C3′.

C2′. [Compute αk.] Set v ← vk, l← lk, and h← hk. Set β ← αl and j ← vl − 1;
then while j > v set β ← (x̄j ◦ xj) • β and j ← j − 1. Set γ ← αh and
j ← vh − 1; then while j > v set γ ← (x̄j ◦ xj) • γ and j ← j − 1. Finally set
αk ← (x̄v • β) ◦ (xv • γ).

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 625

C3′. [Finish.] Set α← αs−1 and j ← vs−1−1; then while j > 0 set α← (x̄j◦xj)•α
and j ← j − 1. Return the answer α.

This algorithm performs ◦ and • operations at most O(nB(f)) times. The upper bound
can often be lowered to O(n) + O(B(f)); but shortcuts like the calculation of Wk in
step B1 aren’t always available. [See O. Coudert and J. C. Madre, Proc. Reliability and
Maint. Conf. (IEEE, 1993), 240–245, §4; O. Coudert, Integration 17 (1994), 126–127.]
32. For exercise 25, ‘◦’ is addition, ‘•’ is multiplication, ‘⊥’ is 0, ‘⊤’ is 1, ‘x̄j ’ is 1, ‘xj ’
is z. Exercise 26 is similar, but ‘x̄j ’ is 1− pj and ‘xj ’ is pj .

In exercise 29 the objects of the algebra are pairs (c, c′), and we have (a, a′) ◦
(b, b′) = (a + b, a′ + b′), (a, a′) • (b, b′) = (ab, ab′ + a′b). Also ‘⊥’ is (0, 0), ‘⊤’ is (1, 0),
‘x̄j ’ is (1−p,−1), and ‘xj ’ is (p, 1).

In exercise 30, ‘◦’ is max, ‘•’ is multiplication, ‘⊥’ is −∞, ‘⊤’ is 1, ‘x̄j ’ is 1 − pj ,
‘xj ’ is pj . Multiplication distributes over max in this case because the quantities are
either nonnegative or −∞; we must define 0 • (−∞) = −∞ in order to satisfy (22).

(Additional possibilities abound, because associative and distributive operators are
ubiquitous in mathematics. The algebraic objects need not be numbers or polynomials
or pairs; they can be strings, matrices, functions, sets of numbers, sets of strings, sets
or multisets of matrices of pairs of functions of strings, etc., etc. We will see many
further examples in Section 7.3. The min-plus algebra, with ◦ = min and • = +, is
particularly important, and we could have used it in exercise 21 or 24. It is often called
tropical, implicitly honoring the Brazilian mathematician Imre Simon.)
33. Operate on triples (c, c′, c′′), with (a, a′, a′′) ◦ (b, b′, b′′) = (a + b, a′ + b′, a′′ + b′′)
and (a, a′, a′′) • (b, b′, b′′) = (ab, a′b + b′a, a′′b + 2a′b′ + ab′′). Interpret ‘⊥’ as (0, 0, 0),
‘⊤’ as (1, 0, 0), ‘x̄j ’ as (1, 0, 0), and ‘xj ’ as (1, wj , w2

j ).
34. Let x∨ y = max(x, y). Operate on pairs (c, c′), with (a, a′)◦ (b, b′) = (a∨ b, a′ ∨ b′)
and (a, a′) • (b, b′) = (a + b, (a′ + b) ∨ (a + b′)). Interpret ‘⊥’ as (−∞,−∞), ‘⊤’ as
(0,−∞), ‘x̄j ’ as (0, w′′

j ), and ‘xj ’ as (wj , w′
j + w′′

j ). The first component of the result
will agree with Algorithm B; the second component is the desired maximum.
35. (a) The supposed FBDD can be represented by instructions Is−1, . . . , I0 as in
Algorithm C. Start with R0 ← R1 ← ∅, then do the following for k = 2, . . . , s − 1:
Report failure if vk ∈ Rlk ∪ Rhk ; otherwise set Rk ← {vk} ∪ Rlk ∪ Rhk . (The set Rk
identifies all variables that are reachable from Ik.)

(b) The reliability polynomial can be calculated just as in answer 26. To count
solutions, we essentially set p1 = · · · = pn = 1

2 and multiply by 2n: Start with c0 ← 0
and c1 ← 2n, then set ck ← (clk + chk )/2 for 1 < k < s. The answer is cs−1.
36. Compute the sets Rk as in answer 35(a). Instead of looping on j as stated in step
C2′ of answer 31, set β ← αl and then β ← (x̄j ◦ xj) • β for all j ∈ Rk \Rl \ {v}; treat
γ in the same manner. Similarly, in step C3′ set α← (x̄j ◦ xj) • α for all j /∈ Rs−1.
37. Given any FBDD for f, the function G(z) is the sum of (1+z)n−lengthPzsolid arcs inP

over all paths P from the root to ⊤ . [See Theoretical Comp. Sci. 3 (1976), 371–384.]
38. The key fact is that xj = 1 forces f = 1 if and only if we have (i) hk = 1 whenever
vk = j; (ii) vk = j in at least one step k; (iii) there are no steps with (vk < j < vlk and
lk ̸= 1) or (vk < j < vhk and hk ̸= 1).

K1. [Initialize.] Set tj ← 2 and pj ← 0 for 1 ≤ j ≤ n.
K2. [Examine all branches.] Do the following operations for 2 ≤ k < s: Set j ← vk

and q ← 0. If lk = 1, set q ← −1; otherwise set pj ← max(pj , vlk ). If hk = 1,

From the Library of Melissa Nuno



ptg999

626 ANSWERS TO EXERCISES 7.1.4

set q ← +1; otherwise set pj ← max(pj , vhk ). If tj = 2, set tj ← q; otherwise
if tj ̸= q set tj ← 0.

K3. [Finish up.] Set m← vs−1, and do the following for j = 1, 2, . . . , n: If j < m,
set tj ← 0; then if pj > m, set m← pj .

[See S.-W. Jeong and F. Somenzi, in Logic Synthesis and Optimization (1993), 154–156.]
39. k(n+ 1− k) + 2, for 1 ≤ k ≤ n. (See (26).)
40. (a) Suppose the BDDs for f and g have respectively aj and bj branch nodes jj ,
for 1 ≤ j ≤ n. Each subtable of f of order n + 1 − k has the form αβγδ, where α,
β, γ, and δ are subtables of order n − 1 − k. The corresponding subtables of g are
ααδδ; hence they are beads if and only if α ̸= δ, in which case either αβγδ is a bead or
αβ = γδ is a bead. Consequently bk ≤ ak + ak+1, and bk+1 = 0. We also have bj ≤ aj
for 1 ≤ j < k, because every bead of g of order > n+1−k is “condensed” from at least
one such bead of f . And bj ≤ aj for j > k+ 1, because the subtables on (xk+2, . . . , xn)
are identical although they might not appear in g.

(b) Not always, although B(h) < 2B(f). The simplest counterexample is f(x1, x2,
x3, x4) = x2∧(x3∨x4), h(x1, x2, x1, x4) = x2∧(x1∨x4), when B(f) = 5 and B(h) = 6.
41. (a) 3n − 3; (b) 2n. (The general pat-
terns are illustrated here for n = 6. One can
also show that the “organ-pipe ordering”
⟨xF1

n xF2
1 xF3

n−1x
F4
2 . . . xFn−1

⌊n/2⌋+[n even] x
Fn−2
⌈n/2⌉ ⟩

produces the profile 1, 2, 4, . . . , 2⌈n/2⌉−2,
2⌊n/2⌋ − 1, . . . , 5, 3, 1, 2, giving the total
BDD size


n
2


+ 3; this ordering appears to
be the worst for the Fibonacci weights.)

1

2 2

3 3 3

4 4 4

5 5 5

6⊥ >
⊥ >

1

2 2

3 3

4 4

5 5

6

⊥
⊥
⊥
⊥
⊥ >

>
>
>
>

The functions [Fnx1 + · · ·+ F1xn≥ t]
have been studied by J. T. Butler and T. Sasao, Fibonacci Quart. 34 (1996), 413–422.
42. (Compare with exercise 2.) The sixteen roots are the j1 nodes and the two sinks:

⊥ ⊤
1 1

1

1
1

1

1

1

1
1

1

1

1 1

2

2

2

2

2

2

3

3

0

0001 0010

0011

0100 0101

0110

0111

1000

1001

1010 1011

1100

1101 1110

1

001

010

011

100

101

110

01

10

43. (a) Since f(x1, . . . , x2n) is the symmetric function Sn(x1, . . . , xn, x̄n+1, . . . , x̄2n),
we have B(f) = 1 + 2 + · · ·+ (n+1) + · · ·+ 3 + 2 + 2 = n2 + 2n+ 2.

(b) By symmetry, the size is the same for [{xi | i ∈ I} =
{xi | i /∈ I}], |I| = n.

44. There are at most min(k, 2n+2−k − 2) nodes labeled jk , for 1 ≤ k ≤ n, because
there are 2n+2−k − 2 symmetric functions of (xk, . . . , xn) that aren’t constant. Thus
Σn is at most 2 +

n
k=1 min(k, 2n+2−k − 2), which can be expressed in closed form as

(n+2−bn)(n+1−bn)/2+2(2bn−bn), where bn = λ(n+4−λ(n+4)) and λn = ⌊lgn⌋.
A symmetric function that attains this worst-case bound can be constructed in

the following way (related to the de Bruijn cycles constructed in exercise 3.2.2–7):
Let p(x) = xd + a1x

d−1 + · · · + ad be a primitive polynomial modulo 2. Set tk ← 1

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 627

for 0 ≤ k < d; tk ← (a1tk−1 + · · · + adtk−d) mod 2 for d ≤ k < 2d + d − 2; tk ←
(1 +a1tk−1 + · · ·+adtk−d) mod 2 for 2d +d−2 ≤ k < 2d+1 +d−3; and t2d+1+d−3 ← 1.
For example, when p(x) = x3 + x+ 1 we get t0 . . . t16 = 11100101101000111.

Then (i) the sequence t1 . . . t2d+d−3 contains all d-tuples except 0d and 1d as
substrings; (ii) the sequence t2d+d−2 . . . t2d+1+d−4 is a cyclic shift of t̄0 . . . t̄2d−2; and
(iii) tk = 1 for 2d−1 ≤ k ≤ 2d+d−3 and 2d+1−2 ≤ k ≤ 2d+1 +d−3. Consequently the
sequence t0 . . . t2d+1+d−3 contains all (d+1)-tuples except 0d+1 and 1d+1 as substrings.
Set f(x) = tνx to maximize B(f) when 2d + d− 4 < n ≤ 2d+1 + d− 3.

Asymptotically, Σn = 1
2n

2 − n lgn + O(n). [See I. Wegener, Information and
Control 62 (1984), 129–143; M. Heap, J. Electronic Testing 4 (1993), 191–195.]
45. Module M1 has only three inputs (x1, y1, z1), and only three outputs u2 = x1, v2 =
y1x1, w2 = z1x1. Module Mn−1 is almost normal, but it has no input port for zn−1,
and it doesn’t output un; it sets zn−2 = xn−1yn−1. Module Mn has only three inputs
(vn, wn, xn), and one output yn−1 = xn together with the main output, wn ∨ vnxn.
With these definitions the dependencies between ports form an acyclic digraph.

(Modules could be constructed with all bk = 0 and ak ≤ 5, or even with ak ≤ 4 as
we’ll see in exercise 47. But (33) and (34) are intended to illustrate backward signals
in a simple example, not to demonstrate the tightest possible construction.)
46. For 6 ≤ k ≤ n − 3 there are nine branches on jk , corresponding to three cases
(x̄1, x1x̄2, x1x2) times three cases (x̄k−1, x̄k−2xk−1, x̄k−3xk−2xk−1). The total BDD
size turns out to be exactly 9n− 38, if n ≥ 6.
47. Suppose f has qk subtables of order n−k, so that its QDD has qk nodes that branch
on xk+1. We can encode them in ak = ⌈lg qk⌉ bits, and construct a module Mk+1 with
bk = bk+1 = 0 that mimics the behavior of those qk branch nodes. Thus by (86),

n
k=0

2ak2bk =
n
k=0

2⌈lg qk⌉ ≤
n
k=0

(2qk − 1) = 2Q(f)− (n+ 1) ≤ (n+ 1)B(f).

(The 2m-way multiplexer shows that the additional factor of (n+1) is necessary; indeed,
Theorem M actually gives an upper bound on Q(f).)
48. The sums uk = x1 + · · ·+xk and vk = xk+1 + · · ·+xn can be represented on 1+λk
and 1 +λ(n− k) wires, respectively. Let tk = xk ∧ [uk + vk = k ] and wk = t1 ∨ · · · ∨ tk.
We can construct modules Mk having inputs uk−1 and wk−1 from Mk−1 together with
inputs vk from Mk+1; module Mk outputs uk = uk−1 +xk and wk = wk−1∨ tk to Mk+1
as well as vk−1 = vk + xk to Mk−1.

If p is a polynomial,
n
k=0 2p(ak,bk) = 2(logn)O(1)

is asymptotically less than 2Ω(n).
[See K. L. McMillan, Symbolic Model Checking (1993), §3.5, where Theorem M was
introduced, with extensions to nonlinear layouts. The special case b1 = · · · = bn = 0
had been noted previously by C. L. Berman, IEEE Trans. CAD-10 (1991), 1059–1066.]
49.

(a)

1111

222

33

4

>

>

>

>⊥

⊥

⊥

⊥

S≥1S≥2S≥3S≥4

; (b)

11111

2222

333

44

⊥

⊥

⊥

⊥>⊥

⊥

⊥

⊥

S0S1S2S3S4

.

[See I. Semba and S. Yajima, Trans. Inf. Proc. Soc. Japan 35 (1994), 1663–1665.]

From the Library of Melissa Nuno



ptg999

628 ANSWERS TO EXERCISES 7.1.4

50.
1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

4 4

> >

> ⊥

⊥ > ⊥ >

a bcd e fg

51. In this case B(fj) = 3j+ 2 for 1 ≤ j ≤ n, and B(fn+1) = 3n+ 1; so the individual
BDDs are only about 1/3 as big as they are within (36). But almost no nodes are
shared — only the sinks and one branch. So the total BDD size comes to (3n2 + 9n)/2.
52. If the BDD base for {f1, . . . , fm} has s nodes, then B(f) = s+m+ 1 + [s= 1].
53. Call the branch nodes a, b, c, d, e, f , g, with ROOT = a. After step R1 we
have HEAD[1] = ∼a, AUX(a) = ∼0; HEAD[2] = ∼b, AUX(b) = ∼c, AUX(c) = ∼0;
HEAD[3] = ∼d, AUX(d) = ∼e, AUX(e) = ∼f , AUX(f) = ∼g, AUX(g) = ∼0.

After R3 with v = 3 we have s = ∼0, AUX(0) = ∼e, AUX(e) = f , AUX(f) = 0; also
AVAIL = g, LO(g) = ∼1, HI(g) = d, LO(d) = ∼0, and HI(d) = α, where α was the
initial value of AVAIL. (Nodes g and d have been recycled in favor of 1 and 0.) Then R4
sets s← e and AUX(0)← 0. (The remaining nodes with V = v start at s, linked via AUX.)

Now R7, starting with p = q = e and s = 0, sets AUX(1) ← ∼e, LO(f) ← ∼e,
HI(f)← g, AVAIL← f ; and R8 resets AUX(1)← 0.

Then step R3 with v = 2 sets LO(b) ← 0, LO(c) ← e, and HI(c) ← 1. No
further changes of importance take place, although some AUX fields temporarily become
negative. We end up with Fig. 21.
54. Create nodes j for 1 < j ≤ 2n−1 by setting V(j) ← ⌈lg j⌉, LO(j) ← 2j − 1, and
HI(j) ← 2j; also for 2n−1 < j ≤ 2n by setting V(j) ← n, LO(j) ← f(x1, . . . , xn−1, 0),
and HI(j)← f(x1, . . . , xn−1, 1) when j = (1x1 . . . xn−1)2 +1. Then apply Algorithm R
with ROOT = 2. (We can bypass step R1 by first setting AUX(j) ← −j for 4 ≤ j ≤ 2n,
then HEAD[k]← ∼(2k) and AUX(2k−1 + 1)← −1 for 1 ≤ k ≤ n.)
55. It suffices to construct an unreduced diagram, since Algorithm R will then finish
the job. Number the vertices 1, . . . , n in such a way that no vertex except 1 appears
before all of its neighbors. Represent the edges by arcs a1, . . . , ae, where ak is uk−−→vk
for some uk < vk, and where the arcs having uk = j are consecutive, with sj ≤ k < sj+1
and 1 = s1 ≤ · · · ≤ sn = sn+1 = e + 1. Define the “frontier” Vk = {1, v1, . . . , vk} ∩
{uk, . . . , n} for 1 ≤ k ≤ e, and let V0 = {1}. The unreduced decision diagram will have
branches on arc ak for all partitions of Vk−1 that correspond to connectedness relations
that have arisen because of previous branches.

For example, consider P3 P3, where (s1, . . . , s10) = (1, 3, 5, 7, 8, 10, 11, 12, 13, 13)
and V0 = {1}, V1 = {1, 2}, V2 = {1, 2, 3}, V3 = {2, 3, 4}, . . . , V12 = {8, 9}. The branch
on a1 goes from the trivial partition 1 of V0 to the partition 1|2 of V1 if 1 /−−− 2, or to
the partition 12 if 1−−− 2. (The notation ‘1|2’ stands for the set partition {1} ∪ {2},
as in Section 7.2.1.5.) From 1|2, the branch on a2 goes to the partition 1|2|3 of V2 if
1 /−−−3, otherwise to 13|2; from 12, the branches go respectively to partitions 12|3 and
123. Then from 1|2|3, both branches on a3 go to ⊥ , because vertex 1 can no longer
be connected to the others. And so on. Eventually the partitions of Ve = V12 are all
identified with ⊥ , except for the trivial one-set partition, which corresponds to ⊤ .

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 629

56. Start with m← 2 in step R1, and v0 ← v1 ← vmax + 1, l0 ← h0 ← 0, l1 ← h1 ← 1
as in (8). Assume that HI(0) = 0 and HI(1) = 1. Omit the assignments that involve
AVAIL in steps R3 and R7. After setting AUX(HI(p))← 0 in step R8, also set vm ← v,
lm ← HI(LO(p)), hm ← HI(HI(p)), HI(p) ← m, and m ← m + 1. At the end of
step R9, set s← m− [ROOT = 0].

57. Set LO(ROOT)← ∼LO(ROOT). (We briefly complement the LO field of nodes that are
still accessible after restriction.) Then for v = V(ROOT), . . . , vmax, set p← ∼HEAD[v],
HEAD[v]← ∼0, and do the following while p ̸= 0: (i) Set p′ ← ∼AUX(p). (ii) If LO(p) ≥
0, set HI(p)← AVAIL, AUX(p)← 0, and AVAIL← p (node p can no longer be reached).
Otherwise set LO(p) ← ∼LO(p); if FIX[v] = 0, set HI(p) ← LO(p); if FIX[v] = 1, set
LO(p) ← HI(p); if LO(LO(p)) ≥ 0, set LO(LO(p)) ← ∼LO(LO(p)); if LO(HI(p)) ≥ 0,
set LO(HI(p)) ← ∼LO(HI(p)); and set AUX(p) ← HEAD[v], HEAD[v] ← ∼p. (iii) Set
p← p′. Finally, after finishing the loop on v, restore LO(0)← 0, LO(1)← 1.

58. Since l ̸= h and l′ ̸= h′, we have l ⋄ l′ ̸= h ⋄ h′, l ⋄ α′ ̸= h ⋄ α′, and α ⋄ l′ ̸= α ⋄ h′.
Suppose α ⋄ α′ = β ⋄ β′, where β = (v′′, l′′, h′′) and β′ = (v′′′, l′′′, h′′′). If v′′ = v′′′

we have v = v′′, l ⋄ l′ = l′′ ⋄ l′′′, and h ⋄ h′ = h′′ ⋄ h′′′. If v′′ < v′′′ we have v = v′′,
l ⋄ α′ = l′′ ⋄ β′, and h ⋄ α′ = h′′ ⋄ β′. Otherwise we have v′ = v′′′, α ⋄ l′ = β ⋄ l′′′, and
α ⋄ h′ = β ⋄ h′′′. By induction, therefore, we have α = β and α′ = β′ in all cases.

59. (a) If h isn’t constant we have B(f ⋄g) = 3B(h)−2, essentially obtained by taking
a copy of the BDD for h and replacing its sink nodes by two other copies.

(b) Suppose the profile and quasi-profile of h are (b0, . . . , bn) and (q0, . . . , qn),
where bn = qn = 2. Then there are bkqk branches on x2k+1 in f ⋄ g, and qkbk−1
branches on x2k, corresponding to ordered pairs of beads and subtables of h. When
the BDD for h contains a branch from α to β and from α′ to β′, where V(α) = j,
V(β) = k, V(α′) = j′, and V(β′) = k′, the BDD for f ⋄ g contains a corresponding
branch with V(α ⋄ α′) = 2j − 1 from α ⋄ α′ to β ⋄ α′ when j ≤ j′ < k, and with
V(α ⋄ α′) = 2j′ from α ⋄ α′ to α ⋄ β′ when j′ < j ≤ k′.
60. Every bead of order n−j of the ordered pair (f, g) is either one of the bjb′j ordered
pairs of beads of f and g, or one of the bj(q′j − b′j) + (qj − bj)b′j ordered pairs that have
the form (bead, nonbead) or (nonbead, bead). [This upper bound is achieved in the
examples of exercises 59(b) and 63.]

61. Assume that v = V (α) ≤ V (β). Let α1, . . . , αk be the nodes that point to α,
and let β1, . . . , βl be the nodes with V (βj) < v that point to β; an imaginary node is
assumed to point to each root. (Thus k = in-degree(α) and l ≤ in-degree(β).) Then
the melded nodes that point to α⋄β are of three types: (i) αi⋄βj , where V (αi) = V (βj)
and either (LO(αi) = α and LO(βj) = β) or (HI(αi) = α and HI(βj) = β); (ii) α ⋄ βj ,
where V (αi) < V (βj) for some i; or (iii) αi ⋄ β, where V (αi) > V (βj) for some j.

62. The BDD for f has one node on each level, and the BDD for g has two, except at
the top and bottom. The BDD for f∨g has four nodes on nearly every level, by exercise
14(a). The BDD for f ⋄ g has seven nodes jj when 5 ≤ j ≤ n − 3, corresponding
to ordered pairs of subtables of (f, g) that depend on xj when (x1, . . . , xj−1) have
fixed values. Thus B(f) = n + O(1), B(g) = 2n + O(1), B(f ⋄ g) = 7n + O(1), and
B(f ∨ g) = 4n+O(1). (Also B(f ∧ g) = 7n+O(1), B(f ⊕ g) = 7n+O(1).)

63. The profiles of f and g are respectively (1, 2, 2, . . . , 2m−1, 2m−1, 2m, 1, 1, . . . , 1, 2)
and (0, 1, 2, 2, . . . , 2m−1, 2m−1, 1, 1, . . . , 1, 2); so B(f) = 2m+2 − 1 ≈ 4n and B(g) =
2m+1 +2m−1 ≈ 3n. The profile of f ∧g begins with (1, 2, 4, . . . , 22m−2, 22m−1−2m−1),

From the Library of Melissa Nuno



ptg999

630 ANSWERS TO EXERCISES 7.1.4

because there’s a unique solution x1 . . . x2m to the equations

((x1 ⊕ x2)(x3 ⊕ x4) . . . (x2m−1 ⊕ x2m))2 = p, ((x2 ⊕ x3) . . . (x2m−2 ⊕ x2m−1)x2m)2 = q

for 0 ≤ p, q < 2m, and p = q if and only if x1 = x3 = · · · = x2m−1 = 0. After that the
profile continues (2m+1 − 2, 2m+1 − 2, 2m+1 − 4, 2m+1 − 6, . . . , 4, 2, 2); the subfunctions
are x2m+j ∧ x̄2m+k or x̄2m+j ∧ x2m+k for 1 ≤ j < k ≤ 2m, together with x2m+j and
x̄2m+j for 2 ≤ j ≤ 2m. All in all, we have B(f ∧ g) = 22m+1 + 2m−1 − 1 ≈ 2n2.
64. The BDD for any Boolean combination of f1, f2, and f3 is contained in the meld
f1 ⋄ f2 ⋄ f3, whose size is at most B(f1)B(f2)B(f3).
65. h = g? f1: f0, where fc is the restriction of f obtained by setting xj ← c. The
first upper bound follows as in answer 64, because B(fc) ≤ B(f). The second bound
fails when, for example, n = 2m + 3m and h = Mm(x; y)? Mm(x′; y): Mm(x′′; y),
where x = (x1, . . . , xm), x′ = (x′1, . . . , x′m), x′′ = (x′′1 , . . . , x′′m), and y = (y0, . . . , y2m−1);
but such failures appear to be rare. [See R. E. Bryant, IEEE Trans. C-35 (1986), 685;
J. Jain, K. Mohanram, D. Moundanos, I. Wegener, and Y. Lu, ACM/IEEE Design
Automation Conf. 37 (2000), 681–686.]
66. Set NTOP← f0 + 1− l and terminate the algorithm.
67. Let tk denote template location POOLSIZE − 2k. Step S1 sets LEFT(t1) ← 5,
RIGHT(t1) ← 7, l ← 1. Step S2 for l = 1 puts t1 into both LLIST[2] and HLIST[2].
Step S5 for l = 2 sets LEFT(t2) ← 4, RIGHT(t2) ← 5, L(t1) ← t2; LEFT(t3) ←
3, RIGHT(t3) ← 6, H(t1) ← t3. Step S2 for l = 2 sets L(t2) ← 0 and puts t2 in
HLIST[3]; then it puts t3 into LLIST[3] and HLIST[3]. And so on. Phase 1 ends with
(LSTART[0], . . . , LSTART[4]) = (t0, t1, t3, t5, t8) and

k LEFT(tk) RIGHT(tk) L(tk) H(tk)
1 5 [α] 7 [ω] t2 t3
2 4 [β] 5 [χ] 0 t4
3 3 [γ] 6 [ψ] t4 t5
4 3 [γ] 1 [⊤] t7 1

k LEFT(tk) RIGHT(tk) L(tk) H(tk)
5 3 [γ] 4 [φ] t6 t8
6 2 [δ] 2 [τ ] 0 1
7 2 [δ] 1 [⊤] 0 1
8 1 [⊤] 3 [υ] 1 0

representing the meld α ⋄ ω in Fig. 24 but with ⊥ ⋄ x = x ⋄ ⊥ = ⊥ and ⊤ ⋄ ⊤ = ⊤.
Let fk = f0 + k. In phase 2, step S7 for l = 4 sets LEFT(t6)← ∼0, LEFT(t7)← t6,

LEFT(t8)← ∼1, and RIGHT(t6)← RIGHT(t7)← RIGHT(t8)← −1. Step S8 undoes the
changes made to LEFT(0) and LEFT(1). Step S11 with s = t8 sets LEFT(t8) ← ∼2,
RIGHT(t8) ← t8, V(f2) ← 4, LO(f2) ← 1, HI(f2) ← 0. With s = t7 that step sets
LEFT(t7) ← ∼3, RIGHT(t7) ← t7, V(f3) ← 4, LO(f3) ← 0, HI(f3) ← 1; meanwhile
step S10 has set RIGHT(t6)← t7. Eventually the templates will be transformed to

k LEFT(tk) RIGHT(tk) L(tk) H(tk)
1 ∼8 t1 t2 t3
2 ∼7 t2 0 t4
3 ∼6 t3 t4 t5
4 ∼5 t4 t7 1

k LEFT(tk) RIGHT(tk) L(tk) H(tk)
5 ∼4 t5 t7 t8
6 ∼0 t7 0 1
7 ∼3 t7 0 1
8 ∼2 t8 1 0

(but they can then be discarded). The resulting BDD for f ∧ g is

k V(fk) LO(fk) HI(fk)
2 4 1 0
3 4 0 1
4 3 3 2
5 3 3 1

k V(fk) LO(fk) HI(fk)
6 2 5 4
7 2 0 5
8 1 7 6.

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 631

68. If LEFT(t) < 0 at the beginning of step S10, set RIGHT(t)← t, q ← NTOP, NTOP←
q + 1, LEFT(t)← ∼(q − f0), LO(q)← ∼LEFT(L(t)), HI(q)← ∼LEFT(H(t)), V(q)← l,
and return to S9.
69. Make sure that NTOP ≤ TBOT at the end of step S1 and when going from S11 to
S9. (It’s not necessary to make this test inside the loop of S11.) Also make sure that
NTOP ≤ HBASE just after setting HBASE in step S4.
70. This choice would make the hash table a bit smaller; memory overflow would
therefore be slightly less likely, at the expense of slightly more collisions. But it also
would slow down the action, because make template would have to check that NTOP ≤
TBOT whenever TBOT decreases.
71. Add a new field, EXTRA(t) = α′′, to each template t (see (43)).
72. In place of steps S4 and S5, use the approach of Algorithm R to bucket-sort the
elements of the linked lists that begin at LLIST[l] and HLIST[l]. This is possible if an
extra one-bit hint is used within the pointers to distinguish links in the L fields from
links in the H fields, because we can then determine the LO and HI parameters of t’s
descendants as a function of t and its “parity.”
73. If the BDD profile is (b0, . . . , bn), we can assign pj = ⌈bj−1/2e⌉ pages to branches
on xj . Auxiliary tables of p1 + · · · + pn+1 ≤ ⌈B(f)/2e⌉ + n short integers allow us to
compute V (p) = T [π(p)], LO(p) = LO(M [π(p)] + σ(p)), HI(p) = HI(M [π(p)] + σ(p)).

For example, if e = 12 and n < 216, we can represent arbitrary BDDs of up to
232 − 228 + 216 + 212 nodes with 32-bit virtual LO and HI pointers. Each BDD requires
appropriate auxiliary T and M tables of size ≤ 220, constructible from its profile.

[This method can significantly improve caching behavior. It was inspired by the
paper of P. Ashar and M. Cheong, IEEE/ACM Internat. Conf. Computer-Aided Design
CAD-94 (1994), 622–627, which also introduced algorithms similar to Algorithm S.]
74. The required condition is now µn(x1, . . . , x2n)∧[x̄1 =x2n ]∧· · ·∧[x̄2n−1 =x2n−1+1 ].
If we set y1 = x1, y2 = x3, . . . , y2n−2 = x2n−1−1, y2n−2+1 = x̄2n−1 , y2n−2+2 =
x̄2n−1−2, . . . , y2n−1 = x̄2, (49) yields the equivalent condition µn−1(y1, . . . , y2n−1 ) ∧
[y2n−2 ≤ ȳ2n−2+1 ]∧ [y2n−2−1≤ ȳ2n−2+2 ]∧· · ·∧ [y1≤ ȳ2n−1 ], which is eminently suitable
for evaluation by Algorithm S. (The evaluation should be from left to right; right-to-left
would generate enormous intermediate results.)

With this approach we find that there are respectively 1, 2, 4, 12, 81, 2646,
1422564, 229809982112 monotone self-dual functions of 1, 2, . . . , 8 variables. (See
Table 7.1.1–3 and answer 7.1.2–88.) The 8-variable functions are characterized by a
BDD of 130,305,082 nodes; Algorithm S needs about 204 gigamems to compute it.
75. Begin with ρ1(x1, x2) = [x1≤x2 ], and replace G2n(x1, . . . , x2n) in (49) by the
function H2n(x1, . . . , x2n) = [x1≤x2≤x3≤x4 ] ∧ · · · ∧ [x2n−3≤x2n−2≤x2n−1≤x2n ].

(It turns out that B(ρ9) = 3,683,424; about 170 megamems suffice to compute
that BDD, and ρ10 is almost within reach. Algorithm C now quickly yields the exact
numbers of regular n-variable Boolean functions for 1 ≤ n ≤ 9, namely 3, 5, 10, 27,
119, 1173, 44315, 16175190, 284432730176. Similarly, we can count the self-dual ones,
as in exercise 74; those numbers, whose early history is discussed in answer 7.1.1–123,
are 1, 1, 2, 3, 7, 21, 135, 2470, 319124, 1214554343, for 1 ≤ n ≤ 10.)
76. Say that x0 . . . xj−1 forces xj if xi = 1 for some i ⊆ j with 0 ≤ i < j. Then
x0x1 . . . x2n−1 corresponds to a clutter if and only if xj = 0 whenever x0 . . . xj−1 forces
xj , for 0 ≤ j < 2n. And µn(x0, . . . , x2n−1) = 1 if and only if xj = 1 whenever x0 . . . xj−1
forces xj . So we get the desired BDD from that of µn(x1, . . . , x2n) by (i) changing each

From the Library of Melissa Nuno



ptg999

632 ANSWERS TO EXERCISES 7.1.4

branch jj to
� �� �j−1 , and (ii) interchanging the LO and HI branches at every branch

node that has LO = ⊥ . (Notice that, by Corollary 7.1.1Q, the prime implicants of
every monotone Boolean function correspond to clutters.)
77. Continuing the previous answer, say that the bit vector x0 . . . xk−1 is consistent
if we have xj = 1 whenever x0 . . . xj−1 forces xj , for 0 < j < k. Let bk be the
number of consistent vectors of length k. For example, b4 = 6 because of the vectors
{0000, 0001, 0011, 0101, 0111, 1111}. Notice that exactly ck = bk+1− bk clutters S have
the property that k represents their “largest” set, max{s | s represents a set of S}. We
have (c0, c1, c2, . . . ) = (1, 1, 2, 1, 5, 3, 5, 1, 19, 14, 25, 6, 50, 14, 19, 1, 167, 148, 282, 84, . . . ).

The BDD for µn(x1, . . . , x2n) has bk−1 branch nodes jk when 1 ≤ k ≤ 2n−1.
Proof: Every subfunction defined by x1, . . . , xk−1 is either identically false or defines
a consistent vector x1 . . . xk−1. In the latter case the subfunction is a bead, because
it takes different values under certain settings of xk+1, . . . , x2n . Indeed, if x1 . . . xk−1
forces xk, we set xk+1 ← · · · ← x2n ← 1; otherwise we set xj ← yj for k < j ≤ 2n,
where

yj+1 = [xi+1 =1 for some i ⊆ j with i+ 1 < k],
noting that y2n−1+k = 0.

On the other hand there are bk′ branches jk when k = 2n−k′ and 0 ≤ k′ < 2n−1.
In this case the nonconstant subfunctions arising from x1, . . . , xk−1 lead to values yj
as above, where the vector ȳ0′ ȳ1′ . . . ȳk′ is consistent. (Here 0′ = 2n, 1′ = 2n − 1,
etc.) Conversely, every such consistent vector describes such a subfunction; we can, for
example, set xj ← 0 when j < k−2n−1 or 2n−1 ≤ j < k, otherwise xj ← y2n−1+j . This
subfunction is a bead if and only if yk′ = 1 or ȳ0′ . . . ȳ(k−1)′ forces ȳk′ . Thus the beads
correspond to consistent vectors of length k′; and different vectors define different beads.

This argument shows that there are bk−1−ck−1 branches jk with LO = ⊥ when
1 ≤ k ≤ 2n−1 and c2n−k such branches when 2n−1 < k ≤ 2n. Hence exactly half of the
B(µn)− 2 branch nodes have LO = ⊥ .
78. To count graphs on n labeled vertices with maximum degree ≤ d, construct the
Boolean function of the


n
2


variables in its adjacency matrix, namely
n
k=1 S≤d(Xk),

where Xk is the set of variables in row k of the matrix. For example, when n = 5
there are 10 variables, and the function is S≤d(x1, x2, x3, x4) ∧ S≤d(x1, x5, x6, x7) ∧
S≤d(x2, x5, x8, x9)∧S≤d(x3, x6, x8, x10)∧S≤d(x4, x7, x9, x10). When n = 12 the BDDs
for d = (1, 2, . . . , 10) have respectively (5960, 137477, 1255813, 5295204, 10159484,
11885884, 9190884, 4117151, 771673, 28666) nodes, so they are readily computed with
Algorithm S. To count solutions with maximum degree d, subtract the number of solu-
tions for degree ≤ d−1 from the number for degree ≤ d; the answers for 0 ≤ d ≤ 11 are:

1
140151

3568119351
8616774658305

3038643940889754
211677202624318662

3617003021179405538
17884378201906645374

29271277569846191555
17880057008325613629
4489497643961740521
430038382710483623

[In general there are tn−1 graphs on n labeled vertices with maximum degree 1, where
tn is the number of involutions, Eq. 5.1.4–(40).]

The methods of Section 7.2.3 are superior to BDDs for enumerations such as these,
when n is large, because labeled graphs have n! symmetries. But when n has a moderate
size, BDDs produce answers quickly, and nicely characterize all the solutions.
79. In the following counts, obtained from the BDDs in the previous answer, each
graph with k edges is weighted by 266−k. Divide by 366 to get probabilities.

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 633

73786976294838206464
553156749930805290074112

598535502868315236548476928
68379835220584550117167595520

1380358927564577683479233298432
7024096376298397076969081536512

11646725483430295546484263747584
7767741687870924305547518803968
2514457534558975918608668688384
452733615636089939218193403904
45968637738881805341545676736
2093195580480313818292294985

80. If the original functions f and g have no BDD nodes in common, both algorithms
encounter almost exactly the same subproblems: Algorithm S deals with all nodes of
f ⋄ g that aren’t descended from nodes of the forms α ⋄ ⊥ or ⊥ ⋄ β, while (55) also
avoids nodes that descend from the forms α ⋄ ⊤ or ⊤ ⋄ β. Furthermore, (55) takes
shortcuts when it meets nontrivial subproblems AND(f ′, g′) with f ′ = g′; Algorithm S
cannot recognize the fact that such cases are easy. And (55) can also win if it happens
to stumble across a relevant memo left over from a previous computation.
81. Just change ‘AND’ to ‘XOR’ and ‘∧’ to ‘⊕’ throughout. The simple cases are now
f ⊕ 0 = f , 0⊕ g = g, and f ⊕ g = 0 if f = g. We should also swap f ↔ g if f > g ̸= 0.

Notes: The author experimentally inserted further memos ‘f ⊕r = g’ and ‘g⊕r =
f ’ in the bottom line; but these additional cache entries seemed to do more harm
than good. Considering other binary operators, there’s no need to implement both
BUTNOT(f, g) = f ∧ ḡ and NOTBUT(f, g) = f̄ ∧ g, since the latter is BUTNOT(g, f).
Also, XOR(1,OR(f, g)) may be better than an implementation of NOR(f, g) = ¬(f∨g).
82. A top-level computation of F ← AND(f, g) begins with f and g in computer
registers, but REF(f) and REF(g) do not include “references” such as those. (We do,
however, assume that f and g are both alive.)

If (55) discovers that f ∧ g is obviously r, it increases REF(r) by 1.
If (55) finds f ∧ g = r in the memo cache, it increases REF(r), and recursively

increases REF(LO(r)) and REF(HI(r)) in the same way if r was dead.
If step U1 finds p = q, it decreases REF(p) by 1 (believe it or not); this won’t kill p.
If step U2 finds r, there are two cases: If r was alive, it sets REF(r)← REF(r) + 1,

REF(p)← REF(p)− 1, REF(q)← REF(q)− 1. Otherwise it simply sets REF(r)← 1.
When step U3 creates a new node r, it sets REF(r)← 1.
Finally, after the top-level AND returns a value r that we wish to assign to F ,

we must first dereference F , if F ̸= Λ; this means setting REF(F) ← REF(F) − 1,
and recursively dereferencing LO(F) and HI(F) if REF(F) has become 0. Then we set
F ← r (without adjusting REF(r)).

[Furthermore, in a quantification routine such as (65) or in the composition rou-
tine (72), both rl and rh should be dereferenced after the OR or MUX has computed r.]
83. Exercise 61 shows that the subproblem f ∧ g occurs at most once per top-level
call, when REF(f) = REF(g) = 1. [This idea is due to F. Somenzi; see the paper
cited in answer 84. Many nodes have reference count 1, because the average count
is approximately 2, and because the sinks usually have large counts. However, such
cache-avoidance did not improve the overall performance in the author’s experiments,
possibly because of the examples investigated, or possibly because “accidental” cache
hits in other top-level operations can be useful.]
84. Many possibilities exist, and no simple technique appears to be a clear winner.
The cache and table sizes should be powers of 2, to facilitate calculating the hash
functions. The size of the unique table for xv should be roughly proportional to the
number of nodes that currently branch on xv (alive or dead). It’s necessary to rehash
everything when a table is downsized or upsized.

From the Library of Melissa Nuno



ptg999

634 ANSWERS TO EXERCISES 7.1.4

In the author’s experiments while writing this section, the cache size was doubled
whenever the number of insertions since the beginning of the most recent top-level
command exceeded ln 2 times the current cache size. (At that point a random hash
function will have filled about half of the slots.) After garbage collection, the cache
was downsized, if necessary, so that it either had 256 slots or was at least 1/4 full.

It’s easy to keep track of the current number of dead nodes; hence we know at
all times how much memory a garbage collection will reclaim. The author obtained
satisfactory results by inserting a new step U2 1

2 between U2 and U3: “Increase C by 1,
where C is a global counter. If C mod 1024 = 0, and if at least 1/8 of all current
nodes are dead, collect garbage.”

[See F. Somenzi, Software Tools for Technology Transfer 3 (2001), 171–181 for
numerous further suggestions based on extensive experience.]
85. The complete table would have 232 entries of 32 bits each, for a total of 234

bytes (≈ 17.2 gigabytes). The BDD base discussed after (58), with about 136 million
nodes using zip-ordered bits, can be stored in about 1.1 gigabyte; the one discussed in
Corollary Y, which ranks all of the multiplier bits first, needs only about 400 megabytes.
86. If f = 0 or g = h, return g. If f = 1, return h. If g = 0 or f = g, return AND(f, h).
If h = 1 or f = h, return OR(f, g). If g = 1, return IMPLIES(f, h); if h = 0, return
BUTNOT(g, f). (If binary IMPLIES and/or BUTNOT aren’t implemented directly, it’s
OK to let the corresponding cases propagate in ternary guise.)
87. Sort the given pointer values f , g, h so that f ≤ g ≤ h. If f = 0, return AND(g, h).
If f = 1, return OR(g, h). If f = g or g = h, return g.
88. The trio of functions (f, g, h) = (R0, R1, R2) makes an amusing example, when

Ra(x1, . . . , xn) = [(xn . . . x1)2 mod 3 ̸= a] = R(2a+x1) mod 3(x2, . . . , xn).

Thanks to the memos, the ternary recursion finds f ∧ g ∧ h = 0 by examining only one
case at each level; the binary computation of, say, f ∧ g = h̄ definitely takes longer.

More dramatically, let f = x1 ∧ (x2? F : G), g = x2 ∧ (x1? G: F ), and h =
x1? x̄2 ∧F : x2 ∧G, where F and G are functions of (x3, . . . , xn) such that B(F ∧G) =
Θ(B(F )B(G)) as in exercise 63. Then f ∧ g, g ∧ h, and h∧ f all have large BDDs, but
the ternary recursion immediately discovers that f ∧ g ∧ h = 0.
89. (a) True; the left side is (f00∨f01)∨(f10∨f11), the right side is (f00∨f10)∨(f01∨f11).

(b) Similarly true. (And ’s are commutative too.)
(c) Usually false; see part (d).
(d) ∀x1∃x2f = (f00 ∨ f01) ∧ (f10 ∨ f11) = (∃x2∀x1f) ∨ (f00 ∧ f11) ∨ (f01 ∧ f10).

90. Change ∃j1 . . .∃jm to j1 . . . jm.
91. (a) f ↓ 1 = f , f ↓ xj = f1, and f ↓ x̄j = f0, in the notation of (63).

(b) This distributive law is obvious, by the definition of ↓. (Also true for ∨, ⊕, etc.)
(c) True if and only if g is not identically zero. (Consequently the value of

f(x1, . . . , xn) ↓ g for g ̸= 0 is determined solely by the values of xj ↓ g for 1 ≤ j ≤ n.)
(d) f(x1, 1, 0, x4, 0, 1, x7, . . . , xn). This is the restriction of f with respect to

x2 = 1, x3 = 0, x5 = 0, x6 = 1 (see exercise 57), also called the cofactor of f with
respect to the subcube g. (A similar result holds when g is any product of literals.)

(e) f(x1, . . . , xn−1, x1⊕· · ·⊕xn−1⊕1). (Consider the case f = xj , for 1 ≤ j ≤ n.)
(f) x1? f(1, . . . , 1): f(0, . . . , 0).
(g) f(1, x2, . . . , xn) ↓ g(x2, . . . , xn).
(h) If f = x2 and g = x1 ∨ x2 we have f ↓ g = x̄1 ∨ x2.

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 635

(i) CONSTRAIN(f, g) = “If f ↓ g has an obvious value, return it. Otherwise, if
f ↓ g = r is in the memo cache, return r. Otherwise represent f and g as in (52);
set r ← CONSTRAIN(fh, gh) if gl = 0, r ← CONSTRAIN(fl, gl) if gh = 0, otherwise
r ← UNIQUE(v,CONSTRAIN(fl, gl),CONSTRAIN(fh, gh)); put ‘f ↓ g = r’ into the
memo cache, and return r.” Here the obvious values are f ↓ 0 = 0 ↓ g = 0; f ↓ 1 = f ;
1 ↓ g = g ↓ g = [g ̸= 0].

[The operator f ↓ g was introduced in 1989 by O. Coudert, C. Berthet, and J. C.
Madre. Examples such as the functions in (h) led them to propose also the modified
operator f ⇓ g, “f restricted to g,” which has a similar recursion except that it uses
f ⇓(∃xvg) instead of (x̄v? fl⇓gl: fh⇓gh) when fl = fh. See Lecture Notes in Computer
Science 407 (1989), 365–373.]
92. See answer 91(d) for the “if” part. Notice also that (i) x1 ↓ g = x1 if and only if
g0 ̸= 0 and g1 ̸= 0, where gc = g(c, x2, . . . , xn); (ii) xn ↓ g = xn if and only if xng = 0
and g ̸= 0.

Suppose fπ↓gπ = (f↓g)π for all f and π. If g ̸= 0 isn’t a subcube, there’s an index j
such that g0 ̸= 0 and g1 ̸= 0 and xj g ̸= 0, where gc = g(x1, . . . , xj−1, c, xj+1, . . . , xn).
By the previous paragraph, we have (i) xj ↓g = xj and (ii) xj ↓g ̸= xj , a contradiction.
93. Let f = J(x1, . . . , xn; f1, . . . , fn) and g = J(x1, . . . , xn; g1, . . . , gn), where

fv = xn+1 ∨ · · · ∨ x5n ∨ J(x5n+1, . . . , x6n; [v−−1], . . . , [v−−n]),
gv = xn+1 ∨ · · · ∨ x5n ∨ J(x5n+1, . . . , x6n; [v= 1]+[v−−1], . . . , [v=n]+[v−−n]),

and J is the junction function of exercise 52.
If G can be 3-colored, let f̂ = J(x1, . . . , xn; f̂1, . . . , f̂n), where

f̂v = xn+1 ∨ · · · ∨ x5n ∨ J(x5n+1, . . . , x6n; f̂v1, . . . , f̂vn),

and f̂vw = [v and w have different colors]. Then B(f̂) < n+ 3(5n) + 2.
Conversely, suppose there’s an approximating f̂ such that B(f̂) < 16n + 2, and

let f̂v be the subfunction with x1 = [v= 1], . . . , xn = [v=n]. At most three of
these subfunctions are distinct, because every distinct f̂v must branch on each of xn+1,
. . . , x5n. Color the vertices so that u and v get the same color if and only if f̂u = f̂v;
this can happen only if u /−−−v, so the coloring is legitimate.

[M. Sauerhoff and I. Wegener, IEEE Transactions CAD-15 (1996), 1435–1437.]
94. Case 1: v ̸= gv. Then we aren’t quantifying over xv; hence g = gh, and f E g =
x̄v? fl E g : fh E g.

Case 2: v = gv. Then g = xv ∧ gh and f E g = (fl E gh) ∨ (fh E gh) = rl ∨ rh. In
the subcase v ̸= fv, we have fl = fh = f ; hence rl = rh, and we can directly reduce
f E g to f E gh (an instance of “tail recursion”).

[Rudell observes that the order of quantification in (65) corresponds to bottom-
up order of the variables. That order is convenient, but not always best; sometimes
it’s better to remove the ∃s one by one in another order, based on knowledge of the
functions involved.]
95. If rl = 1 and v = gv, we can set r ← 1 and forget about rh. (This change led to a
100-fold speedup in some of the author’s experiments.)
96. For ∀, just change E to A and OR to AND. For , change E to D and OR to XOR;
also, if v ̸= fv, return 0. [Routines for the yes/no quantifiers and are analogous to .
Yes/no quantifiers should be used only when m = 1; otherwise they make little sense.]

From the Library of Melissa Nuno



ptg999

636 ANSWERS TO EXERCISES 7.1.4

97. Proceeding bottom-up, the amount of work on each level is at worst proportional
to the number of nodes on that level.
98. The function NOTEND(x) = ∃y∃z(ADJ(x, y) ∧ ADJ(x, z) ∧ [y ̸= z ]) identifies all
vertices of degree ≥ 2. Hence ENDPT(x) = KER(x)∧¬NOTEND(x). And PAIR(x, y) =
ENDPT(x) ∧ ENDPT(y) ∧ ADJ(x, y).

[For example, when G is the contiguous-USA graph, with the states ordered as
in (104), we have B(NOTEND) = 992, B(ENDPT) = 264, and B(PAIR) = 203. Before
applying ∃y∃z the BDD size is 50511. There are exactly 49 kernels of degree 1. The
nine components of size 2 are obtained by mixing the following three solutions:

The total cost of this calculation, using the stated algorithms, is about 14 megamems,
in 6.3 megabytes of memory — only about 52 memory references per kernel.]
99. Find a triangle of mutually adjacent states, and fix their colors. The BDD size
also decreases substantially if we choose states of high degree in the “middle” levels.
For example, by setting aMO = bMO = aTN = b̄TN = āAR = bAR = 1 we reduce the 25579
nodes to only 4642 (and the total execution time also drops below 2 megamems).

[Bryant’s original manuscript about BDDs discussed graph coloring in detail, but
he decided to substitute other material when his paper was published in 1986.]

100. Replace IND(xME, . . . , xCA) by IND(xME, . . . , xCA) ∧ S12(xME, . . . , xCA), to get the
12-node independent sets; this BDD has size 1964. Then use (73) as before, and the
trick of answer 99, getting a COLOR function with 184,260 nodes and 12,554,677,864
solutions. (The running time is approximately 26 megamems.)
101. If a state’s weight is w, assign 2w and w as the
respective weights of its a and b variables, and use
Algorithm B. (For example, variable aWY gets weight
2(23 + 25) = 96.) The solution, shown here with
color codes 1 2 3 4 , is unique.

CA

ID

NM

ND

IA

AR

AL

OH

NC

DE

MA

ME

WA

AZ

CO

SD

MO

LA

IN

VA

GA

PA

NH

CTOR

UT

MT

NE

OK

WI

MS

KY

FL

MD

SC

NY

NV

WY

KS

TX

MN

IL

MI

TN

WV

VT

NJ RI

102. The main idea is that, when gj changes, all results in the cache for functions
with fv > j remain valid. To exploit this principle we can maintain an array of “time
stamps” G1 ≥ G2 ≥ · · · ≥ Gn ≥ 0, one for each variable. There’s a master clock time
G ≥ G1, representing the number of distinct compositions done or prepared; another
variable G′ records whether G has changed since COMPOSE was last invoked. Initially
G = G′ = G1 = · · · = Gn = 0. The subroutine NEWG(j, g) is implemented as follows:

N1. [Easy case?] If gj = g, exit the subroutine. Otherwise set gj ← g.
N2. [Can we reset?] If g ̸= xj , or if j < n and Gj+1 > 0, go to N4.
N3. [Reset stamps.] While j > 0 and gj = xj , set Gj ← 0 and j ← j − 1. Then

if j = 0, set G← G−G′, G′ ← 0, and exit.
N4. [Update G?] If G′ = 0, set G← G+ 1 and G′ ← 1.
N5. [New stamps.] While j > 0 and Gj ̸= G, set Gj ← G and j ← j − 1.

Exit.

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 637

(Reference counts also need to be maintained appropriately.) Before launching a top-
level call of COMPOSE, set G′ ← 0. Change the COMPOSE routine (72) to use f [Gv]
in references to the cache, where v = fv ; the test ‘v > m’ becomes ‘Gv = 0’.
103. The equivalent formula g(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) can be implemented
with the COMPOSE operation (72). (However, Dull was vindicated when it turned out
that his formula could be evaluated more than a hundred times faster than Quick’s, in
spite of the fact that it uses twice as many variables! In his application, the computation
of (y1 = f1(x1, . . . , xn))∧ · · · ∧ (ym = fm(x1, . . . , xn))∧ g(y1, . . . , ym) turned out to be
much easier than COMPOSE’s computation of gj(f1, . . . , fm) for every subfunction gj
of g ; see, for example, exercise 162.)
104. The following recursive algorithm COMPARE(f, g) needs at most O(B(f)B(g))
steps when used with a memo cache: If f = g, return ‘=’. Otherwise, if f = 0 or
g = 1, return ‘<’; if f = 1 or g = 0, return ‘>’. Otherwise represent f and g as
in (52); compute rl ← COMPARE(fl, gl). If rl is ‘∥’, return ‘∥’; otherwise compute
rh ← COMPARE(fh, gh). If rh is ‘∥’, return ‘∥’. Otherwise if rl is ‘=’, return rh; if rh
is ‘=’, return rl; if rl = rh, return rl. Otherwise return ‘∥’.
105. (a) A unate function with polarities (y1, . . . , yn) has xjf = 0 when yj = 1 and
xjf = 0 when yj = 0, for 1 ≤ j ≤ n. Conversely, f is unate if these conditions hold

for all j. (Notice that xjf = xjf = 0 if and only if xjf = 0, if and only if f doesn’t
depend on xj . In such cases yj is irrelevant; otherwise yj is uniquely determined.)

(b) The following algorithm maintains global variables (p1, . . . , pn), initially zero,
with the property that pj = +1 if yj must be 0 and pj = −1 if yj must be 1; pj will
remain zero if f doesn’t depend on xj . With this understanding, UNATE(f) is defined as
follows: If f is constant, return true. Otherwise represent f as in (50). Return false if ei-
ther UNATE(fl) or UNATE(fh) is false; otherwise set r ← COMPARE(fl, fh) using exer-
cise 104. If r is ‘∥’, return false. If r is ‘<’, return false if pv < 0, otherwise set pv ← +1
and return true. If r is ‘>’, return false if pv > 0, otherwise set pv ← −1 and return true.

This algorithm often terminates quickly. It relies on the fact that f(x) ≤ g(x) for
all x if and only if f(x⊕y) ≤ g(x⊕y) for all x, when y is fixed. If we simply want to test
whether or not f is monotone, the p variables should be initialized to +1 instead of 0.
106. Define HORN(f, g, h) thus: If f > g, interchange f ↔ g. Then if f = 0 or h = 1,
return true. Otherwise if g = 1 or h = 0, return false. Otherwise represent f , g,
and h as in (59). Return true if HORN(fl, gl, hl), HORN(fl, gh, hl), HORN(fh, gl, hl),
and HORN(fh, gh, hh) are all true; otherwise return false. [This algorithm is due to
T. Horiyama and T. Ibaraki, Artificial Intelligence 136 (2002), 189–213, who also
introduced an algorithm similar to that of answer 105(b).]
107. Let e$f $g$h mean that e(x) = f(y) = g(z) = 1 implies h(⟨xyz⟩) = 1. Then f is a
Krom function if and only if f $f $f $f , and we can use the following recursive algorithm
KROM(e, f, g, h): Rearrange {e, f, g} so that e ≤ f ≤ g. Then if e = 0 or h = 1, return
true. Otherwise if f = 1 or h = 0, return false. Otherwise represent e, f , g, h with the
quaternary analog of (59). Return true if KROM(el, fl, gl, hl), KROM(el, fl, gh, hl),
KROM(el, fh, gl, hl), KROM(el, fh, gh, hh), KROM(eh, fl, gl, hl), KROM(eh, fl, gh, hh),
KROM(eh, fh, gl, hh), and KROM(eh, fh, gh, hh) are all true; otherwise return false.
108. Label the nodes {1, . . . , s} with root 1 and sinks {s−1, s}; then (s−3)! permuta-
tions of the other labels give different dags for the same function. The stated inequality
follows because each instruction (v̄k? lk: hk) has at most n(s − 1)2 possibilities, for
1 ≤ k ≤ s − 2. (In fact, it holds also for arbitrary branching programs, namely for
binary decision diagrams in general, whether or not they are ordered and/or reduced.)

From the Library of Melissa Nuno



ptg999

638 ANSWERS TO EXERCISES 7.1.4

Since 1/(s − 3)! < (s − 1)3/s! and s! > (s/e)s, we have (generously) b(n, s) <
(nse)s. Let sn = 2n/(n + θ), where θ = lg e = 1/ln 2; then lg b(n, sn) < sn lg(nsne) =
2n(1 − (lg(1 + θ/n))/(n + θ)) = 2n − Ω(2n/n2). So the probability that a random n-
variable Boolean function has B(f) ≤ sn is at most 1/2Ω(2n/n2). And that is really tiny.
109. 1/2Ω(2n/n2) is really tiny even when multiplied by n!.
110. Let fn = Mm(xn−m+1, . . . , xn; 0, . . . , 0, x1, . . . , xn−m) ∨ (x̄n−m+1 ∧ · · · ∧ x̄n ∧
[0 . . . 0x1 . . . xn−m is a square]), when 2m−1 + m − 1 < n < 2m + m. Each term of
this formula has 2m +m− n zeros; the second term destroys all of the 2m-bit squares.
[See H.-T. Liaw and C.-S. Lin, IEEE Transactions C-41 (1992), 661–664; Y. Breitbart,
H. Hunt III, and D. Rosenkrantz, Theoretical Comp. Sci. 145 (1995), 45–69.]
111. Let µn = λ(n − λn), and notice that µn = m if and only if 2m + m ≤ n <
2m+1 +m+ 1. The sum for 0 ≤ k < n−µn is 2n−µn− 1; the other terms sum to 22µn.
112. Suppose k = n− lgn+ lgα. Then

(22n−k− 1)2k

22n = exp
2nα

n
ln


1− 1
2n/α


= exp


−2n−n/αα

n


1 +O

 1
2n/α


.

If α ≤ 1
2 we have 2n−n/αα/n ≤ 1/(n2n+1); hence b̂k = (2n/α− 2n/(2α))(2n−n/αα/n)×

(1 +O(2−n/α)) = 2k(1−O(2−n/(2α))). And if α ≥ 2 we have 2n−n/αα/n ≥ 2n/2+1/n;
thus b̂k = (22n−k− 22n−k−1)(1 +O(exp(−2n/2/n))).

[For the variance of bk, see I. Wegener, IEEE Trans. C-43 (1994), 1262–1269.]
113. The idea looks attractive at first glance, but loses its luster when examined closely.
Comparatively few nodes of a BDD base appear on the lower levels, by Theorem U;
and algorithms like Algorithm S spend comparatively little of their time dealing with
those levels. Furthermore, nonconstant sink nodes would make several algorithms more
complicated, especially those for reordering.
114. For example, the truth table might be 01010101 00110011 00001111 00001111.
115. Let Nk = b0 + · · ·+bk−1 be the number of nodes jj of the BDD for which j ≤ k.
The sum of the in-degrees of those nodes is at least Nk; the sum of the out-degrees is
2Nk; and there’s an external pointer to the root. Thus at most Nk + 1 branches can
cross from the upper k levels to lower levels. Every subtable of order n−k corresponds
to some such branch. Therefore qk ≤ Nk + 1.

Moreover, we must have qk ≤ bk + · · ·+ bn, because every subtable of order n− k
corresponds to a unique bead of order ≤ n− k.

For (124), change ‘BDD’ to ‘ZDD’, ‘bk’ to ‘zk’, ‘bead’ to ‘zead’, and ‘qk’ to ‘q′k’.

116. (a) Let vk = 22k

+ 22k−1
+ · · ·+ 220

. Then Q(f) ≤n+1
k=1 min(2k−1, 22n+1−k

) =
Un + vλ(n−λn)−1. Examples like (78) show that this upper bound cannot be improved.

(b) q̂k/b̂k = 22n−k
/(22n−k − 22n−k−1) for 0 ≤ k < n; q̂n = b̂n.

117. qk = 2k for 0 ≤ k ≤ m, and qm+k = 2m + 2 − k for 1 ≤ k ≤ 2m. Hence
Q(f) = 22m−1+7·2m−1−1 ≈ B(f)2/8. (Such f ’s make QDDs unattractive in practice.)
118. If n = 2m − 1 we have hn(x1, . . . , xn) = Mm(zm−1, . . . , z0; 0, x1, . . . , xn), where
(zm−1 . . . z0)2 = x1 + · · · + xn is computable in 5n − 5m steps by exercise 7.1.2–30,
and Mm takes another 2n + O(

√
n ) by exercise 7.1.2–39. Since hn(x1, . . . , xn) =

hn+k(x1, . . . , xn, 0, . . . , 0), we have C(hn) ≤ 14n + O(
√
n ) for all n. (A little more

work will bring this down to 7n+O(
√
n logn); can the reader do better?)

The cost of h4 is 6 = L(h4), and x2 ⊕ ((x1 ⊕ (x2 ∧ x̄4)) ∧ (x̄3 ⊕ (x̄2 ∧ x4))) is a
formula of shortest length. (Also C(h5) = 10 and L(h5) = 11.)

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 639

119. True. For example, S2,3,5(x1, . . . , x6) = h13(x1, x2, 0, 0, 1, 1, 0, 1, 0, x3, x4, x5, x6).

120. We have hπn(x1, . . . , xn) = hn(y1, . . . , yn), where yj = xjπ for 1 ≤ j ≤ n. And
hn(y1, . . . , yn) = yy1+···+yn = yx1+···+xn = x(x1+···+xn)π.

121. (a) If yk = x̄n+1−k we have hn(y1, . . . , yn) = yνy = yn−νx = x̄n+1−(n−νx) = x̄νx+1.
(b) If x= (x1, . . . , xn) and t ∈ {0, 1} we have hn+1(x, t) = (t? xνx+1: xνx).
(c) No. For example, ψ sends 0k11 →→ 0k−1101 →→ 0k−21021 →→ · · · →→ 10k1 →→ 0k11.

(In spite of its simple definition, ψ has remarkable properties, including fixed points
such as 10011010000101011000111001011 and 11101111011001011101111101111.)

(d) In fact, ĥn(x1 . . . xn) = x1(!), by induction using recurrence (b).
(If f(x1, . . . , xn) is any Boolean function and τ is any permutation of the binary

vectors x1 . . . xn, we can write f(x) = f̂(xτ), and the transformed function f̂ may well
be much easier to work with. Since f(x) ∧ g(x) = f̂(xτ) ∧ ĝ(xτ), the transform of the
AND of two functions is the AND of their transforms, etc. The vector permutations
(x1 . . . xn)π = x1π . . . xnπ that merely transform the indices, as considered in the text,
are a simple special case of this general principle. But the principle is, in a sense, too
general, because every function f trivially has at least one τ for which f̂ is skinny
in the sense of exercise 170; all the complexity of f can be transferred to τ . Even
simple transformations like ψ have limited utility, because they don’t compose well;
for example, ψψ is not a transformation of the same type. But linear transformations,
which take x →→ xT for some nonsingular binary matrix T , have proved to be useful
ways to simplify BDDs. [See S. Aborhey, IEEE Trans. C-37 (1988), 1461–1465; J. Bern,
C. Meinel, and A. Slobodová, ACM/IEEE Design Automation Conf. 32 (1995), 408–
413; C. Meinel, F. Somenzi, and T. Theobald, IEEE Trans. CAD-19 (2000), 521–533.])

122. For example, when n = 7 the recurrence in answer 121(b) gives

7

6

5 6

4 5 6

3 4 5 6

1

1

1 2

1 2 3

1 2 3 4

62 3 4 5

⊥ ⊥ ⊥ ⊥ ⊥ ⊥> > > > > >

,

where shaded nodes compute the subfunction hDR on the variables that haven’t yet been
tested. Simplifications occur at the bottom, because h2(x1, x2) = x1 and hDR2 (x1, x2) =
x2. [See D. Sieling and I. Wegener, Theoretical Comp. Sci. 141 (1995), 283–310.]

123. Let t = k − s = x̄1 + · · ·+ x̄k. There’s a slate for every combination of s′ 1s and
t′ 0s such that s′ + t′ = w, s′ ≤ s, and t′ ≤ t. The sum of


w
s′


=

w
t′


over all such

(s′, t′) is (97). (Notice furthermore that it equals 2w if and only if w ≤ min(s, t).)

124. Let m = n−k. Each slate [r0, . . . , rm] corresponds to a function of (xk+1, . . . , xn),
whose truth table is a bead except in four cases: (i) [0, . . . , 0] = 0; (ii) [1, . . . , 1] = 1;
(iii) [0, xn, 1] = xn (which doesn’t depend on xn−1); (iv) [1, . . . , 1, xk+1, 0, . . . , 0], where
there are p 1s so that xk+1 = rp, is S<p(xk+2, . . . , xn).

From the Library of Melissa Nuno



ptg999

640 ANSWERS TO EXERCISES 7.1.4

The following polynomial-time algorithm computes qk = q and bk = q − q′ by
counting all slates. A subtle aspect arises when the entries of [r0, . . . , rm] are all 0 or 1,
because such slates can occur for different values of s; we don’t want to count them
twice. The solution is to maintain four sets

Cab = {r1 + · · ·+ rm−1 | r0 = a and rm = b in some slate}.
The value of 0π should be artificially set to n+ 1, not 0. Assume that 0 ≤ k < n.

H1. [Initialize.] Set m← n− k, q ← q′ ← s← 0, C00 ← C01 ← C10 ← C11 ← ∅.
H2. [Find v and w.] Set v ← m−1

j=1 [(s+ j)π≤ k ] and w ← v + [sπ≤ k ] +
[(s+m)π≤ k ]. If v = m− 1, go to step H5.

H3. [Check for nonbeads.] Set p ← −1. If v ̸= m − 2, go to H4. Otherwise, if
m = 2 and (s + 1)π = n, set p ← [(s+ 2)π≤ k ]. Otherwise, if w = m and
(s+ j)π = k + 1 for some j ∈ [1 . .m−1], set p← j.

H4. [Add binomials.] For all s′ and t′ such that s′ + t′ = w, 0 ≤ s′ ≤ s, and
0 ≤ t′ ≤ k − s, set q ← q +


w
s′


and q′ ← q′ + [s′ = p]. Then go to H6.

H5. [Remember 0–1 slates.] Do the following for all s′ and t′ as in step H4: If
(s + m)π ≤ k, set C00 ← C00 ∪ s′ and C01 ← C01 ∪ (s′−1); otherwise set
C01 ← C01 ∪ s′. If sπ ≤ k and (s + m)π ≤ k, set C10 ← C10 ∪ (s′−1) and
C11 ← C11 ∪ (s′−2). If sπ ≤ k and (s+m)π > k, set C11 ← C11 ∪ (s′−1).

H6. [Loop on s.] If s < k, set s← s+ 1 and return to H2.
H7. [Finish.] For ab = 00, 01, 10, and 11, set q ← q+


m−1
r


for all r ∈ Cab. Also

set q′ ← q′ + [0∈C00 ] + [m−1∈C11 ].
125. Let S(n,m) =


n
0


+ · · ·+

n
m


. There are S(k + 1− s, s)− 1 nonconstant slates

when 0 < s ≤ k and s ≥ 2k − n + 2. The only other nonconstant slates, one each,
arise when s = 0 and k < (n − 1)/2. The constant slates are trickier to count, but
there usually are S(n + 1 − k, 2k + 1 − n) of them, appearing when s = 2k − n or
s = 2k+ 1−n. Taking account of nitpicky boundary conditions and nonbeads, we find

bk = S(n− k, 2k − n) +
n−k
s=0

S(n−k−s, 2k+1−n+s)

−min(k, n− k)− [n= 2k ]− [3k≥ 2n− 1]− 1

for 0 ≤ k < n. Although S(n,m) has no simple form, we can express
n−1
k=0 bk as

Bn/2 +


0≤m≤n−2k≤n(n + 3 −m − 2k)

k
m


+ (small change) when n is even, and the

same expression works when n is odd if we replace Bn/2 by A(n+1)/2. The double sum
can be reduced by summing first on k, since (k + 1)


k
m


= (m+ 1)


k+1
m+1


:

n
m=0


(n+ 5−m)

⌊(n−m+ 2)/2⌋
m+ 1


− (2m+ 2)

⌊(n−m+ 4)/2⌋
m+ 2


.

And the remaining sum can be tackled by breaking it into four parts, depending on
whetherm and/or n is odd. Generating functions are helpful: LetA(z) =


k≤n

n−k

2k

zn

and B(z) =

k≤n


n−k
2k+1


zn. Then A(z) = 1 +


k<n


n−k−1

2k

zn +


k<n


n−k−1

2k−1

zn =

1 +

k≤n


n−k

2k

zn+1 +


k≤n


n−k
2k+1


zn+2 = 1 + zA(z) + z2B(z). A similar derivation

proves that B(z) = zB(z) + zA(z). Consequently

A(z) = 1−z
1−2z+z2−z3 = 1−z2

1−z−z2−z4 , B(z) = z

1−2z+z2−z3 = z+z2

1−z−z2−z4 .

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 641

Thus An = 2An−1 − An−2 + An−3 = An−1 + An−2 + An−4 for n ≥ 4, and Bn
satisfies the same recurrences. In fact, we have An = (3P2n+1 + 7P2n − 2P2n−1)/23
and Bn = (3P2n+2 + 7P2n+1 − 2P2n)/23, using the Perrin numbers of exercise 15.

Furthermore, setting A∗(z) =

k≤n k


n−k

2k

zn and B∗(z) =


k≤n k


n−k
2k+1


zn, we

find A∗(z) = z2A(z)B(z) and B∗(z) = z2B(z)2. Putting it all together now yields the
remarkable exact formula

B(hn) = 56Pn+2 + 77Pn+1 + 47Pn
23 −


n2

4


−
7n+ 1

3


+ (nmod 2)− 10.

Historical notes: The sequence ⟨An⟩ was apparently first studied by R. Austin
and R. K. Guy, Fibonacci Quarterly 16 (1978), 84–86; it counts binary x1 . . . xn−1 with
each 1 next to another. The plastic constant χ was shown by C. L. Siegel to be the
smallest “Pisot number,” namely the smallest algebraic integer > 1 whose conjugates
all lie inside the unit circle; see Duke Math. J. 11 (1944), 597–602.
126. When n ≥ 6, we have bk = F⌊(k+7)/2⌋ + F⌈(k+7)/2⌉ − 4 for 1 ≤ k < 2n/3, and
bk = 2n−k+2 − 6− [k=n− 2] for 4n/5 ≤ k < n. But the main contributions to B(hπn)
come from the 2n/15 profile elements between those two regions, and the methods of
answer 125 can be extended to deal with them. The interesting sequences

An =
⌊n/2⌋
k=0


n− 2k

3k


, Bn =

⌊n/2⌋
k=0


n− 2k
3k + 1


, Cn =

⌊n/2⌋
k=0


n− 2k
3k + 2


have respective generating functions (1− z)2/p(z), (1− z)z/p(z), z2/p(z), where p(z) =
(1− z)3 − z5. These sequences arise in this problem because

n
k=0
⌊n−2k/3⌋

k


= An +

Bn−1 + Cn−2. They grow as αn, where α ≈ 1.7016 is the real root of (α−1)3α2 = 1.
The BDD size can’t be expressed in closed form, but there is a closed form in terms

of A⌊n/3⌋ through A⌊n/3⌋+4 that is accurate to O(2n/4/
√
n). Thus B(hπn) = Θ(αn/3).

127. (The permutation π = (3, 5, 7, . . . , 2n′ − 1, n, n − 1, n − 2, . . . , 2n′, 2n′ − 2,
. . . , 4, 2, 1), n′ = ⌊2n/5⌋, turns out to be optimum for hn when 12 < n ≤ 24; but it
gives B(hπ100) = 1,366,282,025. Sifting does much better, as shown in answer 152; but
still better permutations almost surely exist.)
128. Consider, for example, M3(x4, x2, x7;x6, x1, x8, x3, x9, x11, x5, x10). The first m
variables {x4, x2, x7} are called “address bits”; the other 2m are called “targets.” The
subfunctions corresponding to x1 = c1, . . . , xk = ck can be described by slates of
options analogous to (96). For example, when k = 2 there are three slates [x6, 0, x9, x11],
[x6, 1, x9, x11], [x8, x3, x5, x10], where the result is obtained by using (x4x7)2 to select
the appropriate component. Only the third of these depends on x3; hence q2 = 3 and
b2 = 1. When k = 6 the slates are [0, 0], [0, 1], [1, 0], [1, 1], [x8, 0], [x8, 1], [x9, x11],
[0, x10], and [1, x10], with components selected by x7; hence q6 = 9 and b6 = 7.

In general, if the variables {x1, . . . , xk} include a address bits and t targets, the
slates will have A = 2m−a entries. Divide the set of all 2m targets into 2a subsets,
depending on the known address bits, and suppose sj of those subsets contain j known
targets. (Thus s0 + s1 + · · · + sA = 2a and s1 + 2s2 + · · · + AsA = t. We have
(s0, . . . , s4) = (1, 1, 0, 0, 0) when k = 2 and a = t = 1 in the example above; and
(s0, s1, s2) = (1, 2, 1) when k = 6, a = 2, t = 4.) Then the total number of slates, qk,
is 20s0 + 21s1 + · · · + 2A−1sA−1 + 2A[sA> 0]. If xk+1 is an address bit, the number
bk of slates that depend on xk+1 is qk − 2A/2[sA> 0]. Otherwise bk = 2c, where c is
the number of constants that appear in the slates containing target xk+1.

From the Library of Melissa Nuno



ptg999

642 ANSWERS TO EXERCISES 7.1.4

129. (Solution by M. Sauerhoff; see I. Wegener, Branching Programs (2000), Theorem
6.2.13.) Since Pm(x1, . . . , xm2 ) = Qm(x1, . . . , xm2 ) ∧ Sm(x1, . . . , xm2 ) and B(Sm) =
m3 + 2, we have B(Pπm) ≤ (m3 + 2)B(Qπm). Apply Theorem K.

(A stronger lower bound should be possible, because Qm seems to have larger
BDDs than Pm. For example, when m = 5 the permutation (1π, . . . , 25π) = (3, 1, 5,
7, 9, 2, 4, 6, 8, 10, 11, 12, 13, 14, 15, 16, 20, 23, 17, 21, 19, 18, 22, 24, 25) is optimum
for Q5; but B(Qπ5 ) = 535, while B(P5) = 229.)
130. (a) Each path that starts at the root of the BDD and takes s HI branches and t
LO branches defines a subfunction that corresponds to graphs in which s adjacencies
are forced and t are forbidden. We shall show that these


s+t
s


subfunctions are distinct.

If subfunctions g and h correspond to different paths, we can find k vertices W
with the following properties: (i) W contains vertices w and w′ with w−−−w′ forced
in g and forbidden in h. (ii) No adjacencies between vertices of W are forced in h or
forbidden in g. (iii) If u ∈ W and v /∈ W and u−−− v is forced in h, then u = w or
u = w′. (These conditions make at most 2s+ t = m− k vertices ineligible to be in W .)

We can set the remaining variables so that u−−−v if and only if {u, v} ⊆W , when-
ever adjacency is neither forced nor forbidden. This assignment makes g = 1, h = 0.

(b) Consider the subfunction of Cm,⌈m/2⌉ in which vertices {1, . . . , k} are required
to be isolated, but u −−− v whenever k < u ≤ ⌈m/2⌉ < v ≤ m. Then a k-clique on
the ⌊m/2⌋ vertices {⌈m/2⌉+ 1, . . . ,m} is equivalent to an ⌈m/2⌉-clique on {1, . . . ,m}.
In other words, this subfunction of Cm,⌈m/2⌉ is C⌊m/2⌋,k.

Now chose k ≈

m/3 and apply (a). [I. Wegener, JACM 35 (1988), 461–471.]

131. (a) The profile can be shown to be (1, 1, 2, 4, . . . , 2q−1, (p−2)×(2q−1, q×2q−1),
2q − 1, 2q−1, . . . , 4, 2, 1, 2), where r × b denotes the r-fold repetition of b. Hence the
total size is (pq + 2p− 2q + 2)2q−1 − p+ 2.

(b) With the ordering x1, x2, . . . , xp, y11, y21, . . . , yp1, . . . , y1q, y2q, . . . , ypq,
the profile comes to (1, 2, 4, . . . , 2p−1, (q−1)p× (2p−1), 2p−1, . . . , 4, 2, 1, 2), making
the total size (pq − p+ 4)2p−1.

(c) Suppose exactly m = ⌊min(p, q)/2⌋ x’s occur among the first k variables in
some ordering; we may assume that they are {x1, . . . , xm}. Consider the 2m paths in
the QDD for C such that xj = x̄m+j for 1 ≤ j ≤ p −m and yij = [i= j or i= j+m
or j >m]. These paths must pass through distinct nodes on level k. Hence qk ≥ 2m;
use (85). [See M. Nikolskaia and L. Nikolskaia, Theor. Comp. Sci. 255 (2001), 615–625.]

Optimum orderings for (p, q) = (4, 4), (4, 5), and (5, 4), via exercise 138, are:
x1y11x2y21x3y31y41y12y22y32y42y13y23y33y43y14y24y34y44x4 (size 108);

x1y11x2y21x3y31y41y12y22y32y42y13y23y33y43y14y24y34y44y15y25y35y45x4 (size 140);
x1y11x2y21y12y22y13y23y14y24x3y31y32y33y34x4y41y42y51y52y43y53y44y54x5 (size 167).

132. There are 616,126 essentially different classes of 5-variable functions, by Table
7.1.1–5. The maximum Bmin(f), 17, is attained by 38 of those classes. Three classes
have the property that B(fπ) = 17 for all permutations π; one such example, ((x2 ⊕
x4 ⊕ (x1 ∧ (x3 ∨ x̄4))) ∧ ((x2 ⊕ x5) ∨ (x3 ⊕ x4))) ⊕ (x5 ∧ (x3 ⊕ (x1 ∨ x̄2))), has the
interesting symmetries f(x1, x2, x3, x4, x5) = f(x̄2, x̄3, x̄4, x̄1, x̄5) = f(x2, x̄5, x1, x3, x̄4).

Incidentally, the maximum difference Bmax(f)−Bmin(f) = 10 occurs only in the
“junction function” class x1? x2: x3? x4: x5, when Bmin = 7 and Bmax = 17.

(When n = 4 there are 222 classes; and Bmin(f) = 10 in 25 of them, including S2
and S2,4. The class exemplified by truth table 16ad is uniquely hardest, in the sense
that Bmin(f) = 10 and most of the 24 permutations give B(fπ) = 11.)

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 643

133. Represent each subset X ⊆ {1, . . . , n} by the n-bit integer i(X) =

x∈X 2x−1,

and let bi(X),x be the weight of the edge between X and X ∪ x. Set c0 ← 0, and for
1 ≤ i < 2n set ci ← min{ci⊕j + bi⊕j,x | 1 ≤ x ≤ n, j = 2x−1, and i & j ̸= 0}. Then
Bmin(f) = c2n−1 + 2, and an optimum ordering can be found by remembering which
x = x(i) minimizes each ci. For Bmax, replace ‘min’ by ‘max’ in this recipe.

134. ∅

{1} {2}

{1, 2}

{3}

{1, 3} {2, 3}

{1, 2, 3}

{4}

{1, 4} {2, 4}

{1, 2, 4}

{3, 4}

{1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

The maximum profile, (1, 2, 4, 2, 2), occurs on paths such as ∅ → {2} → {2, 3} →
{2, 3, 4} → {1, 2, 3, 4}. The minimum profile, (1, 2, 2, 1, 2), occurs only on the paths
∅ → ({3} or {4}) → {3, 4} → {1, 3, 4} → {1, 2, 3, 4}. (Five of the 24 possible paths
have the profile (1, 2, 3, 2, 2) and are unimprovable by sifting on any variable.)

135. Let θ0 = 1, θ1 = x1, θ2 = x1 ∧ x2, and θn = xn? θn−1: θn−3 for n ≥ 3. One can
prove that, when n ≥ 4, B(θπn) = n+2 if and only if (nπ, . . . , 1π) = (1, . . . , n). The key
fact is that if k < n and n ≥ 5, the subfunctions obtained by setting xk ← 0 or xk ←
1 are distinct, and they both depend on the variables {x1, . . . , xk−1, xk+1, . . . , xn},
except that the subfunction for xn−1 ← 0 does not depend on xn−2. Thus the weights
{xk} → {xk, xl} in the master profile chart are 2 except when k = n or (k, l) =
(n−1, n−2). Below {xn−1, xn−2} there are three subfunctions, namely xn? θn−4: θn−3,
xn? θn−5: θn−3, and θn−3; all of them depend on {x1, . . . , xn−3}, and two of them on xn.

136. Let n = 2n′ − 1 and m = 2m′ − 1. The inputs form an m× n matrix, and we’re
computing the median of m row-medians. Let Vi be the variables in row i. If X is
a subset of the mn variables, let Xi = X ∩ Vi and ri = |Xi|. Subfunctions of type
(s1, . . . , sm) arise when exactly si elements of Xi are set to 1; these subfunctions are

⟨S1S2 . . . Sm⟩, where Si = S≥n′−si(Vi\Xi) and 0 ≤ si ≤ ri for 1 ≤ i ≤ m.

When x /∈ X, we want to count how many of these subfunctions depend on x. By
symmetry we may assume that x = xmn. Notice that the symmetric threshold function
S≥t(x1, . . . , xn) equals 0 if t > n, or 1 if t ≤ 0; it depends on all n variables if 1 ≤ t ≤ n.
In particular, Sm depends on x for exactly rm$n = min(rm + 1, n− rm) choices of sm.

Let aj =
m−1
i=1 [ri = j ] for 0 ≤ j ≤ n. Then an of the functions {S1, . . . , Sm−1}

are constant, and an−1 + · · ·+ an′ of them might or might not be constant. Choosing
ci to be nonconstant gives us (rm$n)((an+an−1 + · · ·+an′−cn−1−· · ·−cn′)$m) times

an−1

cn−1


· · ·


an′

cn′


1a0 2a1 . . . (n′)an′−1 (n′ − 1)cn′ (n′ − 2)cn′+1 . . . 1cn−1

distinct subfunctions that depend on x. Summing over {cn−1, . . . , cn′} gives the answer.

From the Library of Melissa Nuno



ptg999

644 ANSWERS TO EXERCISES 7.1.4

When variables have the natural row-by-row order, these formulas apply with
rm = k mod n, an = ⌊k/n⌋, a0 = m− 1− an. The profile element bk for 0 ≤ k < mn is
therefore (⌊k/n⌋$m)((k mod n)$n), and we have

mn
k=0 bk = (m′n′)2 + 2. This ordering

is optimum, although no easy proof is apparent; for example, some orderings can
decrease bn+2 or b2n−2 from 4 to 3 while increasing bk for other k.

Every path from top to bottom of the master chart can be represented as α0 →
α1 → · · · → αmn, where each αj is a string rj1 . . . rjm with 0 ≤ rj1 ≤ · · · ≤ rjm ≤ n,
rj1 + · · ·+rjm = j, one coordinate increasing at each step. For example, one path when
m = 5 and n = 3 is 00000 → 00001 → 00011 → 00111 → 00112 → 00122 → 00123 →
01123 → 11123 → 11223 → 12223 → 12233 → 12333 → 22333 → 23333 → 33333. We
can convert this path to the “natural” path by a series of steps that don’t increase the
total edge weight, as follows: In the initial segment up to the first time rjm = n, do
all transitions on the rightmost coordinate first. (Thus the first steps of the example
path would become 00000 → 00001 → 00002 → 00003 → 00013 → 00113 → 00123.)
Then in the final segment after the last time rj1 = 0, do all transitions on the leftmost
coordinate last. (The final steps would thereby become 01123 → 01223 → 02223 →
02233 → 02333 → 03333 → 13333 → 23333 → 33333.) Then, after the first n steps,
normalize the second-last coordinates in a similar fashion (00003→ 00013→ 00023→
00033→ 00133→ 01133→ 01233→ 02233); and before the last n steps, normalize the
second coordinates (00133→ 00233→ 00333→ 01333→ 02333→ 03333). Et cetera.

[This back-and-forth proof technique was inspired by the paper of Bollig and
Wegener cited below. Can every nonoptimal ordering be improved by merely sifting?]

137. If we add a clique of c new vertices and

c
2


new edges, the cost of the opti-
mum arrangement increases by


c+1

3

. So we may assume that the given graph has

m edges and n vertices {1, . . . , n}, where m and n are odd and sufficiently large. The
corresponding function f, which depends on mn + m + 1 variables xij and sk for
1 ≤ i ≤ m, 1 ≤ j ≤ n, and 0 ≤ k ≤ m, is J(s0, s1, . . . , sm;h, g1, . . . , gm), where
gi = (xiui ⊕ xivi) ∧

{xiw | w /∈ {ui, vi}} when the ith edge is ui −−− vi, and where
h = ⟨⟨x11 . . . xm1⟩ . . . ⟨x1n . . . xmn⟩⟩ is the transpose of the function in exercise 136.

One can show that Bmin(f) = minπ

u−−v |uπ−vπ|+(m+1

2 )2(n+1
2 )2+mn+m+2;

the optimum ordering uses (m+1
2 )2(n+1

2 )2 nodes for h, n+ |uiπ− viπ| nodes for gi, one
node for each sk, and two sink nodes, minus one node that is shared between h and
some gi. [See B. Bollig and I. Wegener, IEEE Trans. C-45 (1996), 993–1002.]

138. (a) Let Xk = {x1, . . . , xk}. The QDD nodes at depth k represent the subfunctions
that can arise when constants replace the variables of Xk. We can add an n-bit field
DEP to each node, to specify exactly which variables of Xn \ Xk it depends on. For
example, the QDD for f in (92) has the following subfunctions and DEPs:

depth 0: 0011001001110010 [1111];
depth 1: 00110010 [0111], 01110010 [0111];
depth 2: 0010 [0011], 0011 [0010], 0111 [0011];
depth 3: 00 [0000], 01 [0001], 10 [0001], 11 [0000].

An examination of all DEP fields at depth k tells us the master profile weights between
Xk and Xk ∪ xl, for 0 ≤ k < l ≤ n.

(b) Represent the nodes at depth k as triples Nkp = (lkp, hkp, dkp) for 0 ≤ p < qk,
where (lkp, hkp) are the (LO, HI) pointers and dkp records the DEP bits. If k < n,
these nodes branch on xk+1, so we have 0 ≤ lkp, hkp < qk+1; but if k = n, we have

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 645

ln0 = hn0 = 0 and ln1 = hn1 = 1 to represent ⊥ and ⊤ . We define

dkp =

{2t−k−1 | Nkp depends on xt};

hence 0 ≤ dkp < 2n−k. For example, the QDD (82) is equivalent to N00 = (0, 1, 7);
N10 = (0, 1, 3), N11 = (1, 2, 3); N20 = (0, 0, 0), N21 = (0, 1, 1), N22 = (1, 1, 0); N30 =
(0, 0, 0), N31 = (1, 1, 0).

To jump up from depth b to depth a, we essentially make two copies of the nodes
at depths b− 1, b− 2, . . . , a, one for the case xb+1 = 0 and one for the case xb+1 = 1.
Those copies are moved down to depths b, b − 1, . . . , a + 1, and reduced to eliminate
duplicates. Then every original node at depth a is replaced by a node that branches on
xb+1; its LO and HI fields point respectively to the 0-copy and the 1-copy of the original.

This process involves some simple (but cool) list processing to update DEPs while
bucket sorting: Nodes are unpacked into a work area consisting of auxiliary arrays r, s,
t, u, and v, initially zero. Instead of using lkp and hkp for LO and HI, we store HI in cell
up of the work area, and we let vp link to the previous node (if any) with the same LO
field; furthermore we make sl point to the last node (if any) for which LO = l. The algo-
rithm below uses UNPACK(p, l, h) as an abbreviation for “up ← h, vp ← sl, sl ← p+1.”

When nodes of depth k have been unpacked in this way to arrays s, u, and v,
the following subroutine ELIM(k) packs them back into the main QDD structure with
duplicates eliminated. It also sets rp to the new address of node p.

E1. [Loop on l.] Set q ← 0 and th ← 0 for 0 ≤ h < qk+1. Do step E2 for 0 ≤ l < qk+1.
Then set qk ← q and terminate.

E2. [Loop on p.] Set p← sl and sl ← 0. While p > 0, do step E3 and set p← vp−1.
Then resume step E1.

E3. [Pack node p− 1.] Set h ← up−1. (The unpacked node has (LO,HI) = (l, h).) If
th ̸= 0 and lk(th−1) = l, set rp−1 ← th−1. Otherwise set lkq ← l, hkq ← h, dkq ←
((d(k+1)l |d(k+1)h)≪1)+[l ̸=h], rp−1 ← q, q ← q+1, th ← q. Resume step E2.
We can now use ELIM to jump up from b to a. (i) For k = b − 1, b − 2, . . . , a,

do the following steps: For 0 ≤ p < qk, set l ← lkp, h ← hkp; if k = b − 1,
UNPACK(2p, lbl, hbl) and UNPACK(2p+1, lbh, hbh), otherwise UNPACK(2p, r2l, r2h) and
UNPACK(2p + 1, r2l+1, r2h+1) (thereby making two copies of Nkp in the work area).
Then ELIM(k + 1). (ii) For 0 ≤ p < qa, UNPACK(p, r2p, r2p+1). Then ELIM(a).
(iii) If a > 0, set l← l(a−1)p, h← h(a−1)p, l(a−1)p ← rl, h(a−1)p ← rh, for 0 ≤ p < qa−1.

This jump-up procedure garbles the DEP fields above depth a, because the vari-
ables have been reordered. But we’ll use it only when those fields are no longer needed.

(c) By induction, the first 2n−2 steps account for all subsets that do not contain n;
then comes a jump-up from n− 1 to 0, and the remaining steps account for all subsets
that do contain n.

(d) Start by setting yk ← k and wk ← 2k − 1 for 0 ≤ k < n. In the following
algorithm, the y array represents the current variable ordering, and the bitmap wk ={2yj | 0 ≤ j < k} represents the set of variables on the top k levels.

We augment the subroutine ELIM(k) so that it also computes the desired edge
weights of the master profile: Counters cj are initially 0 for 0 ≤ j < n − k; after
setting dkq in step E3, we set cj ← cj + 1 for each j such that 2j ⊆ dkq; finally we set
bwk,yk+j+1 ← cj for 0 ≤ j < n−k, using the notation of answer 133. [To speed this up,
we could count bytes not bits, increasing cj,(dkq≫8j)&#ff by 1 for 0 ≤ j < (n− k)/8.]

From the Library of Melissa Nuno



ptg999

646 ANSWERS TO EXERCISES 7.1.4

We initialize the DEP fields by doing the following for k = n − 1, n − 2, . . . , 0:
UNPACK(p, lkp, hkp) for 0 ≤ p < qk; ELIM(k); if k > 0, set l ← l(k−1)p, h ← h(k−1)p,
l(k−1)p ← rl, and h(k−1)p ← rh, for 0 ≤ p < qk−1.

The main loop of the algorithm now does the following for 1 ≤ i < 2n−1: Set
a← νi− 1 and b← νi+ ρi. Set (ya, . . . , yb)← (yb, ya, . . . , yb−1) and (wa+1, . . . , wb)←
(2yb + wa, . . . , 2yb + wb−1). Jump up from b to a with the procedure of part (b); but
use the original (non-augmented) ELIM routine for ELIM(a) in step (ii).

(e) The space required for nodes at depth k is at most Qk = min(2k, 22n−k

); we
also need space for 2 max(Q1, . . . , Qn) elements in arrays r, u, v, plus max(Q1, . . . , Qn)
elements in arrays s and t. So the total is dominated by O(2nn) for the outputs bw,x.

Subroutine ELIM(k) is called

n
k


times in augmented form, for 0 ≤ k < n, and

n−1
k+1


times non-augmented. Its running time in either case is O(qk(n− k)). Thus the
total comes to O(k


n
k


2k(n − k)) = O(3nn), and it will be substantially less if the

QDD never gets large. (For example, it’s O((1 +
√

2)nn) for the function hn.)
[The first exact algorithm to determine optimum variable ordering in a BDD was

introduced by S. J. Friedman and K. J. Supowit, IEEE Trans. C-39 (1990), 710–713.
They used extended truth tables instead of QDDs, obtaining a method that required
Θ(3n/

√
n) space and Θ(3nn2) time, improvable to Θ(3nn).]

139. The same algorithm applies, almost unchanged: Consider all QDD nodes that
branch on xa to be at level 0, and all nodes that branch on xb+1 to be sinks. Thus
we do 2b−a jump-ups, not 2n−1. (The algorithm doesn’t rely on the assumptions that
q0 = 1 and qn = 2, except in the space and time analyses of part (e).)

140. We can find shortest paths in a network without knowing the network in advance,
by generating vertices and arcs “on the fly” as needed. Section 7.3 points out that the
distance d(X,Y ) of each arc X → Y can be changed to d′(X,Y ) = d(X,Y )−l(X)+l(Y )
for any function l(X), without changing the shortest paths. If the revised distances d′
are nonnegative, l(X) is a lower bound on the distance from X to the goal; the trick is
to find a good lower bound that focuses the search yet isn’t difficult to compute.

If |X| = l, and if a QDD for f with X on its top l levels has q nonconstant
nodes on the next level, then l(X) = max(q, n − l) is a suitable lower bound for the
Bmin problem. [See R. Drechsler, N. Drechsler, and W. Günther, ACM/IEEE Design
Automation Conf. 35 (1998), 200–205.] However, a stronger lower bound is needed
to make this approach competitive with the algorithm of exercise 138, unless f has a
relatively short BDD that cannot be attained in very many ways.

141. False. Consider g(x1 ∨ · · · ∨ x6, x7 ∨ · · · ∨ x12, (x13 ∨ · · · ∨ x16)⊕ x18, x17, x19 ∨
· · · ∨ x22), where g(y1, . . . , y5) = ((((ȳ1 ∨ y5) ∧ y4) ⊕ y3) ∧ ((y1 ∧ y2) ⊕ y4 ⊕ y5)) ⊕ y5.
Then B(g) = 40 = Bmin(g) can’t be achieved with {x13, . . . , x16, x18} consecutive.
[M. Teslenko, A. Martinelli, and E. Dubrova, IEEE Trans. C-54 (2005), 236–237.]

142. (a) Suppose m is odd. The subfunctions that arise after (x1, . . . , xm+1) are known
are [wm+2xm+2 + · · ·+ wnxn> 2m−1m− 2m−2− t], where 0 ≤ t ≤ 2m. The subcases
xm+2 + · · ·+ xn = (m− 1)/2 show that at least


m−1

(m−1)/2


of these subfunctions differ.

But organ-pipe order, ⟨x1x
2m−1
2 x1

3x
2m−2
4 x2

5 . . . x
2m−2m−2
n−2 x2m−2

n−1 x2m−1
n ⟩, is much

better: Let tk = x1+(2m−1)x2+x3+· · ·+(2m−2k−1)x2k+2k−1x2k+1, for 1 ≤ k < m−1.
The remaining subfunction depends on at most 2k + 2 different values, ⌈tk/2k⌉.

(b) Let n = 1 + 4m2. The variables are x0 and xij for 0 ≤ i, j < 2m; the weights
are w0 = 1 and wij = 2i + 22m+1+jm. Let Xl be the first l variables in some ordering,

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 647

and suppose Xl includes elements in il rows and jl columns of the matrix (xij). If
max(il, jl) = m, we will prove that ql ≥ 2m; hence B(f) > 2m by (85).

Let I and J be subsets of {1, . . . , 2m} with |I| = |J | = m and Xl ⊆ x0 ∪ {xij |
i ∈ I, j ∈ J}; let I ′ and J ′ be the complementary subsets. Choose m elements
X ′ ⊆ Xl \ x0, in different rows (or, if il < m, in different columns). Consider 2m
paths in the QDD defined as follows: x0 = 0, and xij = 0 if xij ∈ Xl \ X ′; also
xi′j = xij′ = x̄i′j′ = x̄ij for i ∈ I, j ∈ J , where i ↔ i′ and j ↔ j′ are matchings
between I ↔ I ′ and J ↔ J ′. Then there are 2m distinct values t =


i∈I,j∈J wijxij ;

but


0≤i,j<2m wijxij = (22m−1)(1+22m+1m) on each path. The paths must pass
through distinct nodes on level l. Otherwise, if t ̸= t′, one of the lower subpaths would
lead to ⊥ , the other to ⊤ .

[These results are due to K. Hosaka, Y. Takenaga, T. Kaneda, and S. Yajima,
Theoretical Comp. Sci. 180 (1997), 47–60, who also proved that |Q(f)−Q(fR)| < n.
Do self-dual threshold functions always satisfy also |B(f)−B(fR)| < n?]
143. In fact, the algorithm of exercises 133 and 138 proves that organ-pipe order is
best for these weights: (1, 1023, 1, 1022, 2, 1020, 4, 1016, 8, 1008, 16, 992, 32, 960, 64,
896, 128, 768, 256, 512) gives the profile (1, 2, 2, 4, 3, 6, 4, 8, 5, 10, 4, 8, 3, 6, 2, 4,
1, 2, 2, 1, 2) and B(f) = 80. The worst ordering, (1022, 896, 512, 64, 8, 1, 4, 32, 1008,
1020, 768, 992, 1016, 1023, 960, 256, 128, 16, 2, 1), makes B(f) = 1913.

(One might think that properties of binary notation are crucial to this example.
But ⟨x1x2x

2
3x

4
4x

8
5x

16
6 x

31
7 x

60
8 x

116
9 x224

10 x
224
11 x

448
12 x

564
13 x

620
14 x

649
15 x

664
16 x

672
17 x

676
18 x

678
19 x

679
20 ⟩ is actu-

ally the same function, by exercise 7.1.1–103(!).)
144. (5, 7, 7, 10, 6, 9, 5, 4, 2); the QDD-not-BDD nodes correspond to f1, f2, f3, 0, 1.
145. Bmin = 31 is attained in (36). The worst ordering for (x3x2x1x0)2 + (y3y2y1y0)2
is y0, y1, y2, y3, x2, x1, x0, x3, making Bmax = 107. Incidentally, the worst ordering
for the 24 inputs of 12-bit addition, (x11 . . . x0)2 + (y11 . . . y0)2, turns out to be y0, y1,
. . . , y11, x10, x8, x6, x4, x3, x5, x2, x7, x1, x9, x0, x11, yielding Bmax = 39111.

[B. Bollig, N. Range, and I. Wegener, Lecture Notes in Comp. Sci. 4910 (2008),
174–185, have proved that Bmin = 9n− 5 for addition of two n-bit numbers whenever
n > 1, and also that Bmin(Mm) = 2n− 2m+ 1 for the 2m-way multiplexer.]
146. (a) Obviously b0 ≤ q0; and if q0 = b0 + a0, then b1 ≤ 2b0 + a0 = b0 + q0. Also
q0−b0 = a0 ≤ b1+q2 ≤ q2

2 , the number of strings of length 2 on a q2-letter alphabet; sim-
ilarly b0 +b1 +q2 ≤ (b1 +q2)2. (The same relations hold between qk, qk+2, bk, and bk+1.)

(b) Let the subfunctions at level 2 have truth tables αj for 1 ≤ j ≤ q2, and use
them to construct beads β1, . . . , βb1 at level 1. Let (γ1, . . . , γq2+b1 ) be the truth tables
(α1α1, . . . , αq2αq2 , β1, . . . , βb1 ). If b0 ≤ b1/2, let the functions at level 0 have truth
tables {β2i−1β2i | 1 ≤ i ≤ b0} ∪ {βjβj | 2b0 < j ≤ b1} ∪ {γjγj | 1 ≤ j ≤ b0 + q0 − b1}.
Otherwise it’s not difficult to define b0 beads that include all the β’s, and use them at
level 0 together with the nonbeads {γjγj | 1 ≤ j ≤ q0 − b0}.
147. Before doing any reordering, we clear the cache and collect all garbage. The
following algorithm interchanges levels ju ↔ jv when v = u+1. It works by creating
linked lists of solitary, tangled, and hidden nodes, pointed to by variables S, T , and
H (initially Λ), using auxiliary LINK fields that can be borrowed temporarily from the
hash-table algorithm of the unique lists as they are being rebuilt.
T1. [Build S and T .] For each ju -node p, set q ← LO(p), r ← HI(p), and delete p

from its hash table. If V(q) ̸= v and V(r) ̸= v (p is solitary), set LINK(p)← S and

From the Library of Melissa Nuno



ptg999

648 ANSWERS TO EXERCISES 7.1.4

S ← p. Otherwise (p is tangled), set REF(q)← REF(q)−1, REF(r)← REF(r)−1,
LINK(p)← T , and T ← p.

T2. [Build H and move the visible nodes.] For each jv -node p, set q ← LO(p),
r ← HI(p), and delete p from its hash table. If REF(p) = 0 (p is hidden), set
REF(q)← REF(q)−1, REF(r)← REF(r)−1, LINK(p)← H, and H ← p; otherwise
(p is visible) set V(p)← u and INSERT(u, p).

T3. [Move the solitary nodes.] While S ̸= Λ, set p ← S, S ← LINK(p), V(p) ← v,
and INSERT(v, p).

T4. [Transmogrify the tangled nodes.] While T ̸= Λ, set p ← T , T ← LINK(p), and
do the following: Set q ← LO(p), r ← HI(p). If V(q) > v, set q0 ← q1 ← q;
otherwise set q0 ← LO(q) and q1 ← HI(q). If V(r) > v, set r0 ← r1 ← r;
otherwise set r0 ← LO(r) and r1 ← HI(r). Then set LO(p)← UNIQUE(v, q0, r0),
HI(p)← UNIQUE(v, q1, r1), and INSERT(u, p).

T5. [Kill the hidden nodes.] While H ̸= Λ, set p ← H, H ← LINK(p), and recycle
node p. (All of the remaining nodes are alive.)

The subroutine INSERT(v, p) simply puts node p into xv’s unique table, using the key
(LO(p), HI(p)); this key will not already be present. The subroutine UNIQUE in step
T4 is like Algorithm U, but instead of using answer 82 it treats reference counts quite
differently in steps U1 and U2: If U1 finds p = q, it increases REF(p) by 1; if U2 finds r,
it simply sets REF(r)← REF(r) + 1.

Internally, the branch variables retain their natural order 1, 2, . . . , n from top to
bottom. Mapping tables ρ and π represent the current permutation from the external
user’s point of view, with ρ = π−; thus the user’s variable xv appears on level vπ − 1,
and node UNIQUE(v, p, q) on level v − 1 represents the user’s function (x̄vρ? p: q). To
maintain these mappings, set j ← uρ, k ← vρ, uρ← k, vρ← j, jπ ← v, kπ ← u.
148. False. For example, consider six sinks and nine source functions, with extended
truth tables 1156, 2256, 3356, 4456, 5611, 5622, 5633, 5644, 5656. Eight of the nodes
are tangled and one is visible, but none are hidden or solitary. There are 16 newbies:
15, 16, 25, 26, 35, 36, 45, 46, 51, 61, 52, 62, 53, 63, 54, 64. So the swap takes 15 nodes
into 31. (We can use the nodes of B(x3 ⊕ x4, x3 ⊕ x̄4) for the sinks.)
149. The successive profiles are bounded by (b0, b1, . . . , bn), (b0 + b1, 2b0, b2, . . . , bn),
(b0 + b1, 2b0 + b2, 4b0, b3, . . . , bn), . . . , (20b0 + b1, . . . , 2k−2b0 + bk−1, 2k−1b0, bk, . . . , bn).

Similarly, we also have B(fπ1 , . . . , fπm) ≤ B(f1, . . . , fm)+2(b0 +· · ·+bk−1) in addi-
tion to Theorem J+, because swaps contribute at most 2bk−1, 2bk−2, . . . , 2b0 new nodes.
150. We may assume that m = 1, as in exercise 52. Suppose we want to jump xk to
the position that is jth in the ordering, where j ̸= k. First compute the restrictions
of f when xk = 0 and xk = 1 (see exercise 57); call them g and h. Then renumber
the remaining variables: If j < k, change (xj , . . . , xk−1) to (xj+1, . . . , xk); otherwise
change (xk+1, . . . , xj) to (xk, . . . , xj−1). Then compute f ← (x̄j ∧ g) ∨ (xj ∧ h), using
the linear-time variant of Algorithm S in exercise 72.

To show that this method has the desired running time, it suffices to prove the
following: Let g(x1, . . . , xn) and h(x1, . . . , xn) be functions such that g(x) = 1 implies
xj = 0 and h(x) = 1 implies xj = 1. Then the meld g ⋄ h has at most twice as many
nodes as g ∨ h. But this is almost obvious, when truth tables are considered: For
example, if n = 3 and j = 2, the truth tables for g and h have the respective forms
ab00cd00 and 00st00uv. The beads β of g ∨ h on levels < j correspond uniquely to the
beads β′ ⋄ β′′ of g ⋄ h on those levels, because β = β′ ∨ β′′ can be “factored” in only

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 649

one way by putting 0s in the appropriate places. And the beads β of g ∨ h on levels
≥ j correspond to at most two beads of g ⋄ h, namely to β ⋄ ⊥ and/or ⊥ ⋄ β.

[See P. Savický and I. Wegener, Acta Informatica 34 (1997), 245–256, Theorem 1.]
151. Set tk ← 0 for 1 ≤ k ≤ n, and make the swapping operation xj−1↔ xj also swap
tj−1↔ tj . Then set k ← 1 and do the following until k > n: If tk = 1 set k ← k + 1;
otherwise set tk ← 1 and sift xk.

(This method repeatedly sifts on the topmost variable that hasn’t yet been sifted.
Researchers have tried fancier strategies, such as to sift the largest level first; but no
such method has turned out to dominate the simple-minded approach proposed here.)
152. Applying Algorithm J as in answer 151 yields B(hπ100) = 1,382,685,050 after
17,179 swaps, which is almost as good as the result of the “hand-tuned” permuta-
tion (95). Another sift brings the size down to 300,451,396; and further repetitions
converge down to just 231,376,264 nodes, after a total of 232,951 swaps.

If the loops of steps J2 and J5 are aborted when S > 1.05s, the results are even
better(!), although fewer swaps are made: 1,342,191,700 nodes after one sift reduce
eventually to 208,478,228 after 139,245 total swaps. Moreover, Filip Stappers used
sifting together with random swapping in September 2010 to get the value of B(hπ100)
down to only 198,961,868, with the following “current champion” permutation π:

3 4 6 8 10 12 14 16 18 20 22 24 27 28 30 32 35 37 39 41
43 45 47 49 51 53 54 83 85 98 99 100 79 77 81 75 73 95 71 97
69 96 57 91 67 59 65 60 63 62 64 61 66 87 58 68 56 94 93 70
92 72 90 74 76 78 80 89 88 86 84 82 55 52 50 48 46 44 42 40
38 36 34 33 31 29 26 25 23 21 19 17 15 13 11 9 7 5 1 2

Incidentally, if we sift the variables of h100 in order of profile size, so that x60 is
sifted first, then x59, x61, x58, x57, x62, x56, etc. (wherever they currently happen to
be), the resulting BDD turns out to have 2,196,768,534 nodes.

Simple “downhill swapping” instead of full sifting is of no use whatever for h100:
The

100
2


swaps x1 ↔ x2, x3 ↔ x1, x3 ↔ x2, . . . , x100 ↔ x1, . . . , x100 ↔ x99
completely reverse the order of all variables without changing the BDD size at any step.
153. Each gate is easily synthesized using recursions like (55). About 1 megabyte of
memory and 3.5 megamems of computation suffice to construct the entire BDD base of
8242 nodes. Using exercise 138 we may conclude that the ordering x7, x3, x9, x1, o9, o1,
o3, o7, x4, x6, o6, o4, o2, o8, x2, x8, o5, x5 is optimum, and that Bmin(y1, . . . , y9) = 5308.

Reordering of variables is not advisable for a problem such as this, since there are
only 18 variables. For example, autosifting whenever the size doubles would require
more than 100 megamems of work, just to reduce 8242 nodes to about 6400.
154. Yes: CA was moved between ID and OR at the last sifting step, and we can work
backwards all the way to deduce that the first sift moved ME between MA and RI.
155. The author’s best attempt for (a) is

ME NH VT MA CT RI NY DE NJ MD PA DC VA OH WV KY NC SC GA FL AL IN MI IA
IL MO TN AR MS TX LA CO WI KS SD ND NE OK WY MN ID MT NM AZ OR CA WA UT NV

giving B(fπ1 ) = 403, B(fπ2 ) = 677, B(fπ1 , fπ2 ) = 1073; and for (b) the ordering
NH ME MA VT CT RI NY DE NJ MD PA VA DC OH WV KY TN NC SC GA FL AL IN MI

IL IA AR MO MS TX LA CO KS OK WI SD NE ND MN WY ID MT AZ NM UT OR CA WA NV

gives B(fπ1 ) = 352, B(fπ2 ) = 702, B(fπ1 , fπ2 ) = 1046.

From the Library of Melissa Nuno



ptg999

650 ANSWERS TO EXERCISES 7.1.4

156. One might expect two “siftups” to be at least as good as a single sifting process
that goes both up and down. But in fact, benchmark tests by R. Rudell show that siftup
alone is definitely unsatisfactory. Occasional jump-downs are needed to compensate for
variables that temporarily jump up, although their optimum final position lies below.
157. A careful study of answer 128 shows that we always improve the size when the first
address bit that follows a target bit is jumped up past all targets. [But simple swaps
are too weak. For example, M2(x1, x6;x2, x3, x4, x5) and M3(x1, x10, x11;x2, x3, . . . , x9)
are locally optimal under the swapping of xj−1↔ xj for any j.]
158. Consider first the case when m = 1 and n = 3t − 1 ≥ 5. Then if nπ = k, the
number of nodes that branch on j is aj if jπ < k, bj if jπ = k, and an+2−j if jπ > k,
where

aj = j − 3 max(j − 2t, 0), bj = min(j, t, n+ 1− j).
The cases with {x1, . . . , xn−1} consecutive are k = 1 and B(fπ) = 3t2 + 2; k = n and
B(fπ) = 3t2+1. But when k = ⌈n/2⌉ we have B(fπ) = ⌊3t/2⌋(⌈3t/2⌉−1)+n−⌊t/2⌋+2.

Similar calculations apply when m > 1: We have B(fπ) > 6

p/3

2


+ B(gπ) when
π makes {x1, . . . , xp} consecutive, but

B(fπ) ≈ 2

p/2

2


+ p
3B(gπ)

when π puts {xp+1, . . . , xp+m} in the middle. Since g is fixed, pB(gπ) = O(n) as
n→∞.

[If g is a function of the same kind, we obtain examples where symmetric variables
within g are best split up, and so on. But no Boolean functions are known for which
the optimum B(fπ) is less than 3/4 of the best that is obtainable under the constraint
that no blocks of symmetric variables are split. See D. Sieling, Random Structures &
Algorithms 13 (1998), 49–70.]
159. The function is almost symmetric, so there are only nine possibilities. When
the center element x is placed in position (1, 2, . . . , 9) from the top, the BDD size is
respectively (43, 43, 42, 39, 36, 33, 30, 28, 28).
160. (a) Compute

9
i=0
9
j=0(¬Lij(X)), a Boolean function of 64 variables — for ex-

ample, by applying COMPOSE to the relatively simple L function of exercise 159,
100 times. With the author’s experimental programs, about 320 megamems and 35
megabytes are needed to find this BDD, which has 251,873 nodes with the normal
ordering. Then Algorithm C quickly finds the desired answer: 21,929,490,122. (The
number of 11×11 solutions, 5,530,201,631,127,973,447, can be found in the same way.)

(b) The generating function is 1+64z+2016z2 +39740z3 + · · ·+80z45 +8z46, and
Algorithm B rapidly finds the eight solutions of weight 46. Three of them are distinct
under chessboard symmetry; the most symmetric solution is shown as (A0) below.

(c) The BDD for
8
i=1
8
j=1(¬Lij(X)) has 305,507 nodes and 21,942,036,750

solutions. So there must be 12,546,628 wild ones.
(d) Now the generating function is 40z14 + 936z15 + 10500z16 + · · ·+ 16z55 + z56;

examples of weight 14 and 56 appear below as (A1) and (A2).
(e) Exactly 28 of weight 27 and 54 of weight 28, all tame; see (A3).
(f) There are respectively (26260, 5, 347, 0, 122216) solutions, found with about

(228, 3, 32, 1, 283) megamems of calculation. Among the lightest and heaviest solutions
to (1) are (A4) and (A5); the nicest solution to (2) is (A6); (A7) and (A9) solve (3)
lightly and (5) heavily. Pattern (4), which is based on the binary representation of π,

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 651

has no 8× 8 predecessor; but it does, for example, have the 9× 10 in (A8):

(A0) (A1) (A2) (A3) (A4) (A5) (A6) (A7) (A8) (A9)

161. (a) With the normal row-by-row ordering (x11, x12, . . . , xn(n−1), xnn), the BDD
has 380,727 nodes and characterizes 4,782,725 solutions. The computational cost is
about 2 gigamems, in 100 megabytes. (Similarly, the 29,305,144,137 still Lifes of size
10× 10 can be enumerated with 14,492,923 nodes, after fewer than 50 gigamems.)

(b) This solution is essentially unique; see (B1) below. There’s also a unique (and
obvious) solution of weight 36.

(c) Now the BDD has 128 variables, with the ordering (x11, y11, . . . , xnn, ynn).
We could first set up BDDs for [L(X) =Y ] and [L(Y ) =X ], then intersect them; but
that turns out to be a bad idea, requiring some 36 million nodes even in the 7 × 7
case. Much better is to apply the constraints Lij(X) = yij and Lij(Y ) = xij row by
row, and also to add the lexicographic constraint X < Y so that still Lifes are ruled
out early. The computation can then be completed with about 20 gigamems and 1.6
gigabytes; there are 978,563 nodes and 582,769 solutions.

(d) Again the solution is unique, up to rotation; see the “spark plug” (B2)↔ (B3).
(And (B4)↔ (B5) is the unique 7×7 flip-flop of constant weight 26. Life is astonishing.)

(B1) (B2) (B3) (B4) (B5) (B6)

162. Let T (X) = [X is tame] and Ek(X) = [X escapes after k steps]. We can compute
the BDD for each Ek by using the recurrence

E1(X) = ¬T (X); Ek+1(X) = ∃Y (T (X) ∧ [L(X) =Y ] ∧ Ek(Y )).

(Here ∃Y stands for ∃y11 ∃y12 · · · ∃y66. As noted in answer 103, this recurrence turns
out to be much more efficient than the rule Ek+1 = T (X) ∧ Ek(L11(X), . . . , L66(X)),
although the latter looks more “elegant.”) The number of solutions, |Ek|, is found
to be (806544 · 216, 657527179 · 24, 2105885159, 763710262, 331054880, 201618308,
126169394, 86820176, 63027572, 41338572, 30298840, 17474640, 9797472, 5258660,
3058696, 1416132, 523776, 204192, 176520, 62456, 13648, 2776, 2256, 440, 104, 0)
for k = (1, 2, . . . , 26); thus

25
k=1 |Ek| = 67,166,017,379 of the 236 = 68,719,476,736

possible configurations eventually escape from the 6× 6 cage. (One of the 104 procras-
tinators in E25 is shown in (B6) above.)

BDD techniques are excellent for this problem when k is small; for example,
B(E1) = 101 andB(E2) = 14441. But Ek eventually becomes a complicated “nonlocal”
function: The size peaks at B(E6) = 28,696,866, after which the number of solutions
gets small enough to keep the size down. More than 80 million nodes are present in the
formula T (X)∧[L(X) =Y ]∧E5(Y ) before quantification; this stretches memory limits.
Indeed, the BDD for

25
k=1 Ek(X) takes up more space than its 233-byte truth table.

Therefore a “forward” method for this exercise would be preferable to the use of BDDs.
(Cages larger than 6×6 appear to be impossibly difficult, by any known method.)

163. Suppose first that ◦ is ∧. We obtain the BDD for f = g ∧ h by taking the BDD
for g and replacing its ⊤ sink by the root of the BDD for h. To represent also f̄ , make

From the Library of Melissa Nuno



ptg999

652 ANSWERS TO EXERCISES 7.1.4

a separate copy of the BDD for g, and use a BDD base for both h and h̄; replace the
⊥ in the copy by ⊤ , and replace the ⊤ in the copy by the root of the BDD for h̄.

This decision diagram is reduced because h isn’t constant.
Similarly, if ◦ is ⊕, we obtain a BDD for f = g⊕h (and possibly f̄) from the BDD

for g (and possibly ḡ) after replacing ⊥ and ⊤ by the roots of BDDs for h and h̄.
The other binary operations ◦ are essentially the same, because B(f) = B(f̄). For

example, if f = g⊃h = g∧h̄, we have B(f) = B(f̄) = B(g)+B(h̄)−2 = B(g)+B(h)−2.
164. Let U1(x1) = V1(x1) = x1, Un+1(x1, . . . , xn+1) = x1 ⊕ Vn(x2, . . . , xn+1), and
Vn+1(x1, . . . , xn+1) = Un(x1, . . . , xn) ∧ xn+1. Then one can show by induction that
B(f) ≤ B(Un) = 2⌈(n+1)/2⌉ +2⌊(n+1)/2⌋−1 for all read-once f , and also that we always
have B(f, f̄) ≤ B(Vn, Vn) = 2⌈n/2⌉+1 +2⌊n/2⌋+1−2. (But an optimum ordering reduces
these sizes dramatically, to B(Uπn ) = ⌊ 3

2n+ 2⌋ and B(V πn , Vnπ) = 2n+ 2.)
165. By induction, we prove also thatB(u2m, ū2m) = 2mF2m+3+2, B(u2m+1, ū2m+1) =
2m+1F2m+3 + 2, B(v2m, v̄2m) = 2m+1F2m+1 + 2, B(v2m+1, v̄2m+1) = 2m+1F2m+3 + 2.
166. We may assume as in answer 163 that ◦ is either ∧ or ⊕. By renumbering,
we can also assume that jσ = j for 1 ≤ j ≤ n, hence fσ = f . Let (b0, . . . , bn)
be the profile of f , and (b′0, . . . , b′n) the profile of (f, f̄); let (c1π, . . . , c(n+1)π) and
(c′1π, . . . , c′(n+1)π) be the profiles of fπ and (fπ, f̄π), where (n + 1)π = n + 1. Then
cjπ is the number of subfunctions of fπ = gπ ◦ hπ that depend on xjπ after setting
the variables {x1π, . . . , x(j−1)π} to fixed values. Similarly, c′jπ is the number of such
subfunctions of fπ or f̄π. We will try to prove that bjπ−1 ≤ cjπ and b′jπ−1 ≤ c′jπ for all j.

Case 1: ◦ is ∧. We may assume that nπ = n, since ∧ is commutative. Case
1a: 1 ≤ jπ ≤ k. Then bjπ−1 and b′jπ−1 count subfunctions in which only the variables
xiπ with 1 ≤ i < j and 1 ≤ iπ ≤ k are specified. These subfunctions of g ∧ h or
ḡ ∨ h̄ have counterparts that are counted in cjπ and c′jπ, because hπ is not constant
in any subfunction when nπ = n. Case 1b: k < jπ ≤ n. Then bjπ−1 and b′jπ−1 count
subfunctions of h or h̄, which have counterparts counted in cjπ and c′jπ.

Case 2: ◦ is ⊕. We may assume that 1π = 1, since ⊕ is commutative. Then an
argument analogous to Case 1 applies. [Discrete Applied Math. 103 (2000), 237–258.]
167. Let f = f1n; proceed recursively to compute cij = Bmin(fij), c′ij = Bmin(fij , f̄ij),
and a permutation πij of {i, . . . , j} for each subfunction fij(xi, . . . , xj) as follows: If
i = j, we have fij(xi) = xi; let cij = 3, c′ij = 4, πij = i. Otherwise i < j, and
we have fij(xi, . . . , xj) = fik(xi, . . . , xk) ◦ f(k+1)j(xk+1, . . . , xj) for some k and some
operator ◦. If ◦ is like ∧, let cij = cik + c(k+1)j − 2, and either (c′ij = 2cik + c′(k+1)j − 4,
πij = πikπ(k+1)j) or (c′ij = 2c(k+1)j + c′ik − 4, πij = π(k+1)jπik), whichever minimizes
c′ij . If ◦ is like ⊕, let c′ij = c′ik + c′(k+1)j − 2, and either (cij = cik + c′(k+1)j − 2,
πij = πikπ(k+1)j) or (cij = c(k+1)j+c′ik−2, πij = π(k+1)jπik), whichever minimizes cij .

(The permutations πij represented as strings in this description would be repre-
sented as linked lists inside a computer. We could also construct an optimum BDD
for f recursively in O(Bmin(f)) steps, using answer 163.)
168. (a) This statement transforms and simplifies the recurrences (112) and (113).

(b) True by induction; also x ≥ n.
(c) Easily verified. Notice that T is a reflection about the 22 1

2
◦ line y = (

√
2−1)x.

(d) If z ∈ Sk and z′ ∈ Sn−k we have |z| = qβ and |z′| = q′β , where q ≤ k and
q′ ≤ n−k by induction. By symmetry we may let q = (1− δ)t and q′ = (1 + δ)t, where
t = 1

2 (q + q′) ≤ 1
2n. Then if the first hint is true, we have |z •z′| ≤ (2t)β ≤ nβ . And we

also will have |z ◦ z′| ≤ nβ , by (c), since |zT | = |z|.

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 653

To prove the first hint, we note that the maximum |z • z′| occurs when y = y′.
For when y ≥ y′ we have |z •z′|2 = (x+x′ +y′)2 +y2 = r2 +2(x′ +y′)x+(x′ +y′)2; the
largest value, given z′, occurs when y = y′. A similar argument applies when y′ ≥ y.

Now when y = y′ we have y =
√
rr′ sin θ for some θ; and one can show that

x+x′ ≤ (r+ r′) cos θ. Thus z • z′ = (x+x′ + y, y) lies in the ellipse of the second hint.
On that ellipse we have (a cos θ+ b sin θ)2 + (b sin θ)2 = a2/2 + b2 +u sin 2θ+ v cos 2θ =
a2/2 + b2 +w sin(2θ + τ), where u = ab, v = 1

2a
2 − b2, w2 = u2 + v2, and cos τ = u/w.

Hence |z•z′|2 ≤ 1
2a

2+b2+w. And 4w2 = (r+r′)4+4(rr′)2 ≤ (r2+(2
√

5−2)rr′+r′2)2, so

|z • z′|2 ≤ r2 + (
√

5 + 1)rr′ + r′2, r = (1− δ)β , r′ = (1 + δ)β .

The remaining task is to prove that this quantity is at most 22β = 2ϕ2; equivalently,
ft(2) ≤ ft(2β), where ft(α) = (et/α + e−t/α)α − 2α and t = β ln((1 − δ)/(1 + δ)).
One can show, in fact, that ft is an increasing function of α when α ≥ 2. [See G.
Bennett, AMM 117 (2010), 334–351. The O(nβ) bound on Sn seems to require a
delicate analysis; an earlier attempt by Sauerhoff, Wegener, and Werchner was flawed.
The proof given here is due to A. X. Chang and V. I. Spitkovsky in 2007.]
169. This conjecture has been verified for m ≤ 7. [Many other curious properties also
remain unexplained. A paper that describes what is known so far is currently being
prepared by members of the “curious research group.”]
170. (a) 22n−1. There are four choices at jj when 1 ≤ j < n, namely LO = ⊥ or
LO = ⊤ or HI = ⊥ or HI = ⊤ ; and there are two choices for jn .

(b) 2n−1, since half the choices at each branch are ruled out.
(c) Indeed, if t = (t1 . . . tn)2 we have LO = ⊥ at jj when tj = 1 and HI = ⊤ atjj when tj = 0. (This idea was applied to random bit generation in exercise 3.4.1–25.

Since there are 2n−1 such values of t, we’ve shown that every monotone, skinny function
is a threshold function, with weights {2n−1, . . . , 2, 1}. The other skinny functions are
obtained by complementing individual variables.)

(d) f̄t(x̄) = [(x̄)2 <t] = [(x)2 > t̄ ] = [(x)2 > 2n − 1− t] = f2n−t(x).
(e) By Theorem 7.1.1Q, the shortest DNF is the OR of the prime implicants, and

its general pattern is exhibited by the case n = 10 and t = (1100010111)2: (x1∧x2∧x3)∨
(x1∧x2∧x4)∨ (x1∧x2∧x5)∨ (x1∧x2∧x6∧x7)∨ (x1∧x2∧x6∧x8∧x9∧x10). (One term for
each 0 in t, and one more.) The shortest CNF is the dual of the shortest DNF of the
dual, which corresponds to 2n − t = (0011101001)2: (x1) ∧ (x2) ∧ (x3∨x4∨x5∨x6) ∧
(x3∨x4∨x5∨x7∨x8) ∧ (x3∨x4∨x5∨x7∨x9) ∧ (x3∨x4∨x5∨x7∨x10).
171. Note that the classes of read-once, regular, skinny, and monotone functions are
each closed under the operations of taking duals and restrictions. A skinny function is
clearly read-once; a monotone threshold function with w1 ≥ · · · ≥ wn is regular; and a
regular function is monotone. We must show that a regular read-once function is skinny.

Suppose f(x1, . . . , xn) = g(xi1 , . . . , xik ) ◦h(xj1 , . . . , xjl), where g and h are read-
once and regular and ◦ is a nontrivial binary operator, and where we have i1 < · · · < ik,
j1 < · · · < jl, k + l = n, and {i1, . . . , ik, j1, . . . , jl} = {1, . . . , n}. (This condition is
weaker than being “read-once.”) We can assume that i1 = 1. By taking restrictions and
using induction, both g and h are skinny and monotone; thus their prime implicants
have the special form in exercise 170(e). The operator ◦ must be monotone, so it is
either ∨ or ∧. By duality we can assume that ◦ is ∨.

Case 1: f has a prime implicant of length 1. Then x1 is a prime implicant of f ,
by regularity. Hence f(x1, . . . , xn) = x1 ∨ f(0, x2, . . . , xn), and we can use induction.

From the Library of Melissa Nuno



ptg999

654 ANSWERS TO EXERCISES 7.1.4

Case 2: All prime implicants of g and h have length > 1. Then xj1∧ · · · ∧xjp is a
prime implicant, for some p ≥ 2, but xj1−1∧xj2∧ · · · ∧xjp is not, contradicting regular-
ity. [See T. Eiter, T. Ibaraki, and K. Makino, Theor. Comp. Sci. 270 (2002), 493–524.]
172. By examining the CNF for ft in exercise 170(e), we see that when t = (t1 . . . tn)2
the number of Horn functions obtainable by complementing variables is one more than
the number for (t2 . . . tn)2 when t1 = 0, but twice that number when t1 = 1. Thus the
example t = (1100010111)2 corresponds to 2×(2×(1+(1+(1+(2×(1+(2×(2×2))))))))
Horn functions. Summing over all t gives sn where sn = (2n−2 + sn−1) + 2sn−1, where
s1 = 2; and the solution to this recurrence is 3n − 2n−1.

To make both f and f̄ Horn functions, assume (by duality) that tmod 4 = 3.
Then we must complement xj if and only if tj = 0, except for the string of 1s at the
right of t. For example, when t = (1100010111)2, we should complement x3, x4, x5,
x7, and then at most one of {x8, x9, x10}. This gives ρ(t + 1) + 1 ≥ 3 choices related
to ft. Summing over all t with tmod 4 = 3 gives 2n − 1; so the answer is 2n+1 − 2.
173. Consider monotone functions first. We can write t = (0a1 1a2 . . . 0a2k−1 1a2k )2,
where a1 + · · ·+a2k = n, a1 ≥ 0, aj ≥ 1 for 1 < j < 2k, and a2k ≥ 2 when tmod 4 = 3.
When tmod 4 = 1, 2n− t has this form. Then ft has a1! a2! . . . a2k! automorphisms, so
it is equivalent to n!/(a1! a2! . . . a2k!) − 1 others, none of which are skinny. Summing
over all t gives 2(Pn − nPn−1) monotone Boolean functions that are reorderable to
skinny form, when n ≥ 2, where Pn is the number of weak orderings (exercise 5.3.1–3).
[See J. S. Beissinger and U. N. Peled, Graphs and Combinatorics 3 (1987), 213–219.]

Every such monotone function corresponds to 2n different unate functions that
are equally skinny, when variables are complemented. (These are the functions with the
property that all of their restrictions are canalizing, known also as “unate cascades,”
“1-decision list functions,” or “generalized read-once threshold functions.”)
174. (a) Assign the numbers 0, . . . , n−1, n, n+1 to nodes j1 , . . . , jn , ⊤ , ⊥ ; and
let the (LO,HI) branches from node k go to nodes (a2k+1, a2k+2) for 0 ≤ k < n. Then
define pk as follows, for 1 ≤ k ≤ 2n: Let l = ⌊(k − 1)/2⌋ and Pl = {p1, . . . , p2l}. Set
pk ← ak if ak /∈ Pl; otherwise, if ak is the mth smallest element of Pl∩{l+1, . . . , n+1},
set pk to the mth smallest element of {n+ 2, . . . , n+ l+ 1} \ Pl. (This construction is
due to T. Dahlheimer.)

(b) The inverse p−1
1 . . . p−1

2n of a Dellac permutation satisfies 2(k−n)− 1 ≤ p−1
k ≤

2k. It corresponds to a Genocchi derangement q1 . . . q2n+2 when q2 = 1, q2n+1 = 2n+2,
and q2k+2 = 1 + p−1

k , q2k−1 = 1 + p−1
k+n for 1 ≤ k ≤ n.

(c) Given a permutation q1 . . . q2n+2, let rk be the first element of the sequence
q−1
k , q−1

q−1
k

, . . . that is ≥ k. This transformation takes Genocchi permutations into
Dumont pistols, and has the property that qk = k if and only if rk = k /∈ {r1, . . . , rk−1}.

(d) Each node (j, k) represents a set of strings r1 . . . rj , where (1, 0) = {1} and the
other sets are defined by the following transition rules: Suppose r1 . . . rj ∈ (j, k), and let
l = 2k. If k = 0 then (j + 1, k) contains 1r+

1 . . . r
+
j when j is even, 2r+

1 . . . r
+
j when j is

odd, where r+ denotes r+ 1. If k > 0 then (j + 1, k) contains r+
1 . . . r

+
l (l+1)r+

l+1 . . . r
+
j

when j is even, r±1 . . . r±l−1(l)r±l . . . r±j when j is odd, where r± denotes r + 1 when
r ≥ l, r − 1 when r < l. Going vertically, if l ≤ j − 3 and j is odd, (j, k + 1)
contains r1 . . . rlrl+2rl+3(l+3)rl+4 . . . rj . On the other hand if k = 1 and j is even,
(j, 0) contains r2r1r3 . . . rj . Finally if k > 1 and j is even, (j, k − 1) contains the
string r′1 . . . r′l−3(l−2)r′l−2r

′
l−1r

′
l+1 . . . r

′
j , where r′ denotes l when r = l − 2, otherwise

r′ = r. (One can show that the elements of (2j, k) are the Dumont pistols for Genocchi
permutations of order 2j whose largest fixed point is 2k.)

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 655

All of these constructions are invertible. For example, the path (1,0)→ (2,0)→
(3,0) → (3,1) → (4,1) → (5,1) → (6,1) → (7,1) → (7,2) → (7,3) → (8,3) → (8,2) →
(8,1) → (8,0) corresponds to the pistols 1 → 22 → 133 → 333 → 4244 → 53355 →
624466 → 7335577 → 7355577 → 7355777 → 82448688 → 82646888 → 82466888 →
28466888. The latter pistol, which can be represented by the diagram , cor-
responds to the Genocchi derangement q1 . . . q8 = 61537482. And this derangement
corresponds to p−1

1 . . . p−1
6 = 231546 and the Dellac permutation p1 . . . p6 = 312546.

That permutation, in turn, corresponds to a1 . . . a6 = 312343, which stands for the
thin BDD

1 2 3 > ⊥ .

Let djk be the number of pistols in (j, k), which is also the number of directed
paths from (1, 0) to (j, k). These numbers are readily found by addition, beginning with

38227 38227 · · ·
2073 2073 38227 76454 · · ·

155 155 2073 4146 36154 112608 · · ·
17 17 155 310 1918 6064 32008 144616 · · ·

3 3 17 34 138 448 1608 7672 25944 170560 · · ·
1 1 3 6 14 48 104 552 1160 8832 18272 188832 · · ·

1 1 1 2 2 8 8 56 56 608 608 9440 9440 198272 · · · ;

and the column totals Dj =

k djk are (D1, D2, . . . ) = (1, 1, 2, 3, 8, 17, 56, 155, 608,

2073, 9440, 38227, 198272, 929569, . . . ). The even-numbered elements of this sequence,
D2n, have long been known as the Genocchi numbers G2n+2. The odd-numbered
elements, D2n+1, have therefore been called “median Genocchi numbers.” The number
Sn of thin BDDs is d(2n+2)0 = D2n+1.

References: L. Euler discussed the Genocchi numbers in the second volume of
his Institutiones Calculi Differentialis (1755), Chapter 7, where he showed that the
odd integers G2n are expressible in terms of the Bernoulli numbers: In fact, G2n =
(22n+1 − 2)|B2n|, and z tan z

2 =
∞
n=1 G2nz

2n/(2n)!. A. Genocchi examined these
numbers further in Annali di Scienze Matematiche e Fisiche 3 (1852), 395–405; and
L. Seidel, in Sitzungsberichte math.-phys. Classe, Akademie Wissen. München 7 (1877),
157–187, discovered that they could be computed additively via the numbers djk. Their
combinatorial significance was not discovered until much later; see D. Dumont, Duke
Math. J. 41 (1974), 305–318; D. Dumont and A. Randrianarivony, Discrete Math. 132
(1994), 37–49. Meanwhile H. Dellac had proposed an apparently unrelated problem,
equivalent to enumerating what we have called Dellac permutations; see L’Intermédiaire
des Math. 7 (1900), 9–10, 328; Annales de la Faculté sci. Marseille 11 (1901), 141–164.

There’s also a direct connection between thin BDDs and the paths of (d), discov-
ered in 2007 by Thorsten Dahlheimer. Notice first that unrestricted Dumont pistols of
order 2n + 2 correspond to thin BDDs that are ordered but not necessarily reduced,
because we can let r1 . . . r2nr2n+1r2n+2 = (2a1) . . . (2a2n)(2n+2)(2n+2). The number
of such pistols in which min{i | r2i−1 = r2i} = l turns out to be d(2n+2)(n+1−l).

To prove this, we can use new transition rules instead of those in answer (d):
Suppose r1 . . . rj ∈ (j, k), and let l = j− 2k. Then (j+ 1, k) contains r+

1 . . . r
+
l r

+
l . . . r

+
j

when j is odd, r±1 . . . r±l−1(l−1)r±l . . . r±j when j is even. If j is odd, (j, k + 1) contains
1r1r3 . . . rj when l = 3, and when l > 3 it contains r′1 . . . r′l−4(l−4)r′l−3r

′
l−2r

′
l . . . r

′
j ,

where r′ = r + 2[r= l−4]. Finally, if j is even and k > 0, (j, k − 1) contains
r1 . . . rl−1qrl+2rl+2 . . . rj , where q = l if rl = rl+1, otherwise q = rl+1.

From the Library of Melissa Nuno



ptg999

656 ANSWERS TO EXERCISES 7.1.4

With these magic transitions the path above corresponds to 1 → 22 → 313 →
133 → 2244 → 31355 → 424466 → 5153577 → 5135577 → 1535577 → 22646688 →
26446688→ 26466688→ 26466888; so a1 . . . a6 = 132334.
175. This problem seems to require a different approach from the methods that worked
when b0 = · · · = bn−1 = 1. Suppose we have a BDD base of N nodes including the two
sinks ⊥ and ⊤ together with various branches labeled j2 , . . . , jn , and assume that
exactly s of the nodes are sources (having in-degree zero). Let c(b, s, t,N) be the number
of ways to introduce b additional nodes labeled j1 , in such a way that exactly s+ b− t
source nodes remain. (Thus 0 ≤ t ≤ 2b; exactly t of the old source nodes are now
reachable from a j1 branch.) Then the number of nonconstant Boolean functions
f(x1, . . . , xn) having the BDD profile (b0, . . . , bn) is equal to T (b0, . . . , bn−1; 1), where

T (b0; s) = 2[s= b0 = 1] + [s= 2][b0 = 0] + [s= 2][b0 = 2];

T (b0, . . . , bn−1; s) =
2b0

t=max(0,b0−s)

c(b0, s+t−b0, t, b1+ · · ·+bn−1+2)T (b1, . . . , bn−1; s+t−b0).

One can show that c(b, s, t,N) =
2b
r=0 arbptr(s,N)/b!, where we have (N(N − 1))b =2b

r=0 arbN
r and ptr(s,N) =


k


r
k


k
t


st(N − s)r−k =


k


r
k


k
t


st(N − s)k−t =

r! [wtzr] e(N−s)z(wez − w + 1)s.
176. (a) If p ̸= p′ we have


a∈A,b∈B [ha,b(p) =ha,b(p′)] ≤ |A||B|/2l, by the definition

of universal hashing. Let ri(a, b) be the number of p ∈ P such that ha,b(p) = i. Then
a∈A,b∈B


0≤i<2l

ri(a, b)2 =


a∈A,b∈B


p∈P


p′∈P

[ha,b(p) =ha,b(p′)]

≤ |P ||A||B|+

p∈P


p′∈P

[p ̸= p′ ] |A||B|2l = 2t|A||B|


1 + 2t−1
2l


.

On the other hand
2l−1

i=0 ri(a, b)2 =
2l−1

i=0 (ri(a, b) − 2t/|I|)2 + 22t/|I| ≥ 22t/|I|, for
any a and b. Similar formulas apply when there are sj(a, b) solutions to ha,b(q) = j.
So there must be a ∈ A and b ∈ B such that

22t

|I| + 22t

|J | ≤

i∈I

ri(a, b)2 +

j∈J

sj(a, b)2 ≤ 2t+1


1 + 2t−1
2l


≤ 22t

2l + 22t

(1− ϵ)2l .

(b) The middle l bits of aqk + b and aqk+2 + b differ by at least 2, so the middle
l − 1 bits of aqk and aqk+2 must be different.

(c) Let q and q′ be different elements of Q∗ with (g(q′)− g(q)) mod 2l−1 ≥ 2l−2.
(Otherwise we can swap q ↔ q′.) If l ≥ 3, the condition g(p)+g(q) = 2l−1 implies that
fq(p) = 0. Now we have (g(p)+g(q′)) mod 2l−1 = (g(q′)−g(q)) mod 2l−1; furthermore
g(q′) and g(p) are both even. Therefore no carry can propagate to change the middle
bit, and we have fq′(p) = 1.

(d) The set Q′′ has at least (1−ϵ)2l−1 elements, and so does the analogous set P ′′.
At most 2l−2 elements of Q′′ have g(q) odd; and at most 2l−1 +1−|P ′′| of the elements
with g(q) even are not in Q∗. Thus |Q∗| ≥ (1− ϵ)2l−1−2l−2−2l−1−1 + (1− ϵ)2l−1 =
(1− 4ϵ)2l−2 − 1, and we have Bmin(Zn,a) ≥ (1− 4ϵ)2l−1 − 2 by (85).

Finally, choose l = t− 4 and ϵ = 1/9. The theorem is obvious when n < 14.
177. Suppose k ≥ n/2 and x = 2k+1xh + xl, y = 2kyh + yl. Then (xy≫ k) mod 2n−k
depends on 2xhyl, xlyh, and xlyl≫ k, modulo 2n−k, so q2k+1 ≤ 2n−k−1+n−k+n−k.

Summing up, we get
2n
k=0 qk ≤


0≤k≤6n/5 2k +


6n/5<k≤2n 23n−2⌊k/2⌋−⌈k/2⌉.

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 657

If n = 5t+ (0, 1, 2, 3, 4) the total comes to exactly (2⌈6n/5⌉ · (19, 10, 12, 13, 17)− 12)/7.
[M. Sauerhoff, in Discrete Applied Math. 158 (2010), 1195–1204, has proved the lower
bound Ω(26n/5) for this ordering.]
178. We can write x = 2kxh + xl as in the proof of Theorem A; but now xl = x̂l +
(xmod 2), where x̂l is even and xmod 2 is not yet known. Similarly y = 2kyh + yl =
2kyh + ŷl + (y mod 2). Let ẑl = x̂lŷl mod 2k. At level 2k− 2, for n/2 ≤ k < n, we need
only “remember” three (n− k)-bit numbers x̂l mod 2n−k, ŷl mod 2n−k, (x̂lŷl≫ k) mod
2n−k, and three “carries” c1 = (x̂l + ẑl)≫ k, c2 = (ŷl + ẑl)≫ k, c3 = (x̂l + ŷl + ẑl)≫ k.
These six quantities tell us the middle bit, once xh, yh, xmod 2, and y mod 2 are known.

There are only six possibilities for the carries: c1c2c3 = 000, 001, 011, 101, 111,
or 112. Thus q2k−2 ≤ 6 · 2(n−k−1)+(n−k−1)+(n−k). Similarly, when n/2 ≤ k < n− 1, we
have q2k−1 ≤ 6 · 2(n−k−2)+(n−k−1)+(n−k). With these estimates, together with qk ≤ 2k,
we get

2n−4
k=0 qk ≤ (26t · (37, 86, 184, 464, 1024)− 268)/28 when n = 5t+ (0, 1, 2, 3, 4).

The actual BDD sizes, for the function f of Theorem A and the function g of this
exercise, are B(f) = (169, 381, 928, 2188, 5248, 12373, 29400, 68777, 162768, 377359,
879709) and B(g) = (165, 352, 806, 1802, 4195, 9774, 22454, 52714, 121198, 278223,
650188) for 6 ≤ n ≤ 16; so this variant appears to save about 25%. A slightly better
ordering is obtained by testing (lo-bit(x), hi-bit(y), hi-bit(x), lo-bit(y)) on the last four
levels, giving B(h) = B(g)−20 for n ≥ 6. Then B(h)/Bmin(f) ≈ (1.07, 1.05, 1.04, 1.04,
1.04, 1.01, 1.02) for 6 ≤ n ≤ 12, so this ordering may be close to optimal as n→∞.
180. By letting am+1 = am+2 = · · · = 0, we may assume that m ≥ p. Let a =
(ap . . . a1)2, and write x = 2kxh + xl as in the proof of Theorem A. If p ≤ n, we have
qk ≤ 2p−k for 0 ≤ k < p, because the given function f = Z

(p)
m,n(a;x) depends only on

a, xh, and (axl≫ k) mod 2p−k. We may therefore assume that p > n.
Consider the multiset A = {2kxhamod 2p−1 | 0 ≤ xh < 2n−k}. Write A =

{2p−1 − α1, . . . , 2p−1 − αs}, where s = 2n−k and 0 < α1 ≤ · · · ≤ αs = 2p−1, and let
αs+i = αi + 2p−1 for 0 ≤ i ≤ s. Then qk ≤ 2s, because f depends only on a, xh, and
the index i ∈ [0 . . 2s) such that αi ≤ axl mod 2p < αi+1.

Consequently
n
k=0 qk ≤

n
k=0 min(2k, 2n+1−k) = 2⌊n/2⌋+1 + 2⌈n/2⌉+1 − 3.

181. For every (x1, . . . , xm) only O(n) further nodes are needed, by exercise 170.
182. Yes; B. Bollig [Lecture Notes in Comp. Sci. 4978 (2008), 306–317] has shown
that it is Ω(2n/432). Incidentally, Bmin(L12,12) = 1158 is obtained with the strange or-
dering L12,12(x18, x17, x16, x15, x14, x12, x10, x8, x6, x4, x2, x1; x19, x20, x21, x22, x23, x13,
x11, x9, x7, x5, x3, x24); and Bmax(L12,12) = 9302 arises with L12,12(x24, x23, x20, x19,
x22, x11, x6, x7, x8, x9, x10, x13; x1, x2, x3, x4, x5, x21, x18, x17, x16, x15, x14, x12). Simi-
larly Bmin(L8,16) = 606 and Bmax(L8,16) = 3415 aren’t terribly far apart. Could
Bmin(Lm,n) and Bmax(Lm,n) both conceivably be Θ(2min(m,n))?
183. The profile (b0, b1, . . . ) begins (1, 1, 1, 2, 3,
5, 7, 11, 15, 23, 31, 47, 63, 95, . . . ). When k > 1
there’s a node on level 2k for every pair of inte-
gers (a, b) such that 2k−1 ≤ a, b < 2k and ab <
22k−1 < (a + 1)(b + 1); this node represents the
function [((a + x)/2k)((b + y)/2k) ≥ 1

2 ]. When
b is given, in the appropriate range, there are
⌈22k−1/b⌉ − ⌊22k−1/(b + 1)⌋ choices for a; hence
b2k =


2k−1≤b<2k(⌈22k−1/b⌉ − ⌊22k−1/(b+ 1)⌋),

which telescopes to 2k − 1. A similar argument shows that b2k+1 = 2k + 2k−1 − 1.

1

2

3

4 4

5 5 5

6 6 6 6 6

⊥
⊥

>
⊥

From the Library of Melissa Nuno



ptg999

658 ANSWERS TO EXERCISES 7.1.4

184. Two kinds of beads contribute to bm(i−1)+j−1: One for every choice of i columns,
at least one of which is <j; and one for every choice of i−1 columns, missing at least one
element ≥ j. Thus bm(i−1)+j−1 = (


m
i


−

m+1−j

i


)+ (


m
i−1

−


j−1
m+1−i


). Summing over

1 ≤ i, j ≤ m gives B(Pm) = (2m−3)2m+5. (Incidentally, qk = bk+1 for 2 ≤ k < m2.)
The ZDD has simply zm(i−1)+j−1 =


m−1
i−1


for 1 ≤ i, j ≤ m, one for every choice
of i − 1 columns ̸= j; hence Z(Pm) = m2m−1 + 2 ≈ 1

4B(Pm). (The lower bound of
Theorem K applies also to ZDD nodes, because only such nodes get tickets; therefore
the natural ordering of variables is optimum for ZDDs. The natural ordering might be
optimum also for BDDs; this conjecture is known to be true for m ≤ 5.)
185. Suppose f(x) = tνx for some binary vector t0 . . . tn. Then the subfunctions
of order d > 0 correspond to the distinct substrings ti . . . ti+d. Such substrings τ
correspond to beads if and only if τ ̸= 0d+1 and τ ̸= 1d+1; they correspond to zeads if
and only if τ ̸= 0d+1 and τ ̸= 10d.

Thus the maximum Z(f) is the function Sn of answer 44. To attain this worst
case we need a binary vector of length 2d+1 +d−2 that contains all (d+1)-tuples except
0d+1 and 10d as substrings; such vectors can be characterized as the first 2d+1+d−2
elements of any de Bruijn cycle of period 2d+1, beginning with 0d1.
186. x̄1 ∧ x̄2 ∧ x3 ∧ x̄4 ∧ x̄5 ∧ x̄6.
187. (These diagrams should be compared with the answer to exercise 1.)

⊥
1

⊥ ⊤
2

1

4
⊥ ⊤

1

3
⊥ ⊤

2

1

4
⊥ ⊤
2

3
⊥ ⊤
2

1

4
⊥ ⊤
2

1

4
⊥ ⊤
2 2

1

5
⊤
1

⊥ ⊤
2

1

4
⊤

1

2
⊤
2

1

3
⊤
2

2
⊥ ⊤
2 2

1

5
⊤
2

1

3
⊤
2

1

3
188. To avoid nested braces, let ϵ, a, b, and ab stand for the subsets ∅, {1}, {2},
and {1, 2}. The families are then ∅, {ab}, {a}, {a, ab}, {b}, {b, ab}, {a, b}, {a, b, ab},
{ϵ}, {ϵ, ab}, {ϵ, a}, {ϵ, a, ab}, {ϵ, b}, {ϵ, b, ab}, {ϵ, a, b}, {ϵ, a, b, ab}, in truth-table order.
189. When n = 0, only the constant functions; when n > 0, only 0 and x1 ∧ · · · ∧ xn.
(But there are many functions, such as x2 ∧ (x1∨ x̄3), with (b0, . . . , bn) = (z0, . . . , zn).)
190. (a) Only x1 ⊕ · · · ⊕ xn and 1⊕ x1 ⊕ · · · ⊕ xn, for n ≥ 0. (b) This condition holds
if and only if all subtables of order 1 are either 01 or 11. So there are 22n−1 solutions
when n > 0, namely all functions such that f(x1, . . . , xn−1, 1) = 1.
191. The language Ln of truth tables for all such functions has the context-free gram-
mar L0 → 1; Ln+1 → LnLn | Ln02n. The desired number ln = |Ln| therefore satisfies
l0 = 1, ln+1 = ln(ln + 1); so (l0, l1, l2, . . . ) is the sequence (1, 2, 6, 42, 1806, 3263442,
10650056950806, . . . ). Asymptotically, ln = θ2n − 1

2 − ϵ, where 0 < ϵ < θ−2n
/8 and

θ = 1.59791 02180 31873 17833 80701 18157 45531 23622+.

[See CMath exercises 4.37 and 4.59, where ln+1 is called en+1 (a “Euclid number”) and
θ is called E2. The numbers ln+1 were introduced by J. J. Sylvester in connection with
his study of Egyptian fractions, Amer. J. Math. 3 (1880), 388. Notice that a monotone
decreasing function, like a function representing independent sets, always has zn = 1.]
192. (a) 10101101000010110.

(b) True, by induction on |τ |, because α ̸= β ̸= 0n if and only if αZ ̸= βZ ̸= 0n.
(c) The beads of f of order k are the zeads of fZ of order k, for 0 < k ≤ n.

Hence the beads of fZ are also the zeads of (fZ)Z = f . Therefore, if (b0, . . . , bn) and

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 659

(z0, . . . , zn) are the profile and z-profile of f while (b′0, . . . , b′n) and (z′0, . . . , z′n) are the
profile and z-profile of fZ , we have bk = z′k and zk = b′k for 0 ≤ k < n.

(We also have zn = z′n, but they might both be 1 instead of 2. The quasi-profiles
of f and fZ may differ, but only by at most 1 at each level, because of all-0 subtables.)
193. S≥k(x1, . . . , xn), by induction on n. (Hence we also have SZ≥k(x1, . . . , xn) =
Sk(x1, . . . , xn). Exercise 249 gives similar examples.)
194. Define a1 . . . a2n as in answer 174, but use the ZDD instead of the BDD. Then
(1, . . . , 1) is the z-profile if and only if (2a1) . . . (2a2n) is an unrestricted Dumont pistol
of order 2n. So the answer is the Genocchi number G2n+2.
195. The z-profile is (1, 2, 4, 4, 3, 2, 2). We get an optimum z-profile (1, 2, 3, 2, 3, 2, 2)
from M2(x4, x2;x5, x6, x3, x1), and a pessimum z-profile (1, 2, 4, 8, 12, 2, 2) comes from
M2(x5, x6;x1, x2, x3, x4) as in (78). (Incidentally, the algorithm of exercise 197 can be
used to show that Zmin(M4) = 116 is obtained with the strikingly peculiar ordering
M4(x8, x5, x17, x2;x20, x19, x18, x16, x15, x13, x14, x12, x11, x9, x10, x4, x7, x6, x3, x1)!)
196. For example, Mm(x1, . . . , xm; em+1, . . . , en), where n = m + 2m and ej is the
elementary function of exercise 203. Then we have Z(f) = 2(n −m) + 1 and Z(f̄) =
(n−m+ 7)(n−m)/2− 2.
197. The key idea is to change the significance of the DEP fields so that dkp is now{2t−k−1 | Nkp supports xt}, where we say that g(x1, . . . , xm) supports xj if there is
a solution to g(x1, . . . , xm) = 1 with xj = 1.

To implement this change, we introduce an auxiliary array (ζ0, . . . , ζn), where we
will have ζk = q if Nkq denotes the subfunction 0 and ζk = −1 if that subfunction
does not appear on level k. Initially ζn ← 0, and we set ζk ← −1 at the beginning
of step E1. In step E3, the operation of setting dkq should become the following: “If
d(k+1)h ̸= ζk+1, set dkq ← ((d(k+1)l | d(k+1)h)≪ 1) + 1; otherwise set dkq ← d(k+1)l≪ 1.
Also set ζk ← q if d(k+1)l = d(k+1)h = ζk+1.”

(The master z-profile chart can be used as before to minimize z0 + · · · + zn−1;
but additional work is needed to consider zn if the absolute minimum is important.)
198. Reinterpreting (50), we represent an arbitrary family of sets f as (x̄v? fl: fh),
where v = fv indexes the first variable that f supports; see answer 197. Thus fl is the
subfamily of f that doesn’t support xv, and fh is the subfamily that does (but with xv
deleted). We also let fv =∞ if f has no support (i.e., if f is either ∅ or {∅}, represented
internally by ⊥ or ⊤ ; see answer 200). In (52), v = min(fv, gv) now indexes the
first variable supported by either f or g; thus fh = ∅ if fv > gv, and gh = ∅ if fv < gv.

Subroutine AND(f, g), ZDD-style, is now the following instead of (55): “Repre-
sent f and g as in (52). While fv ̸= gv, return ∅ if either f = ∅ or g = ∅; otherwise
set f ← fl if fv < gv, set g ← gl if fv > gv. Swap f ↔ g if f > g. Return f if
f = g or f = ∅. Otherwise, if f ∧ g = r is in the memo cache, return r. Otherwise
compute rl ← AND(fl, gl) and rh ← AND(fh, gh); set r ← ZUNIQUE(v, rl, rh), using
an algorithm like Algorithm U except that the first step returns p when q = ∅ instead
of when q = p; put ‘f ∧ g = r’ into the memo cache, and return r.” (See also the
suggestion in answer 200.)

Reference counts are updated as in exercise 82, with slight changes; for example,
step U1 will now decrease the reference count of ⊥ (and only of this node), when
q = ∅. It is important to write a “sanity check” routine that double-checks all reference
counts and other redundancies in the entire BDD/ZDD base, so that subtle errors are
nipped in the bud. The sanity checker should be invoked frequently until all subroutines
have been thoroughly tested.

From the Library of Melissa Nuno



ptg999

660 ANSWERS TO EXERCISES 7.1.4

199. (a) If f = g, return f . If f > g, swap f ↔ g. If f = ∅, return g. If f ∨ g = r is in
the memo cache, return r. Otherwise

set v ← fv, rl ← OR(fl, gl), rh ← OR(fh, gh), if fv = gv;
set v ← fv, rl ← OR(fl, g), rh ← fh, increase REF(fh) by 1, if fv < gv;
set v ← gv, rl ← OR(f, gl), rh ← gh, increase REF(gh) by 1, if fv > gv.

Then set r ← ZUNIQUE(v, rl, rh); cache it and return it as in answer 198.
(b) If f = g, return ∅. Otherwise proceed as in (a), but use (⊕,XOR) not (∨,OR).
(c) If f = ∅ or f = g, return ∅. If g = ∅, return f . Otherwise, if gv < fv, set

g ← gl and begin again. Otherwise
set rl ← BUTNOT(fl, gl), rh ← BUTNOT(fh, gh), if fv = gv;
set rl ← BUTNOT(fl, g), rh ← fh, increase REF(fh) by 1, if fv < gv.

Then set r ← ZUNIQUE(fv, rl, rh) and finish as usual.
200. If f = ∅, return g. If f = h, return OR(f, g). If g = h, return g. If g = ∅ or
f = g, return AND(f, h). If h = ∅, return BUTNOT(g, f). If fv < gv and fv < hv, set
f ← fl and start over. If hv < fv and hv < gv, set h ← hl and start over. Otherwise
check the cache and proceed recursively as usual.
201. In applications of ZDDs where projection functions and/or the complementation
operation are permitted, it’s best to fix the set of Boolean variables at the beginning,
when everything is being initialized. Otherwise, every external function in a ZDD base
must change whenever a new variable enters the fray.

Suppose therefore that we’ve decided to deal with functions of (x1, . . . , xN ), where
N is prespecified. In answer 198, we let fv = N + 1, not ∞, when f = ∅ or f = {∅}.
Then the tautology function 1 = ℘ has the (N + 1)-node ZDD 1 2 N >. . . ,
which we construct as soon as N is known. Let tj be node j of this structure, with
tN+1 = > . The ZDD for xj is now 1 j ⊥. . . tj+1 ; thus the ZDD base for the
set of all xj will occupy


N+1

2


nodes in addition to the representations of ∅ and ℘.
If N is small, all N projection functions can be prepared in advance. But N is

large in many applications of ZDDs; and projection functions are rarely needed when
“family algebra” is used to build the structures as in exercises 203–207. So it’s generally
best to wait until a projection function is actually required, before creating it.

Incidentally, the partial-tautology functions tj can be used to speed up the synthe-
sis operations of exercises 198–199: If v = fv ≤ gv and f = tv, we have AND(f, g) = g,
OR(f, g) = f , and (if v ≤ hv) also MUX(f, g, h) = h, MUX(g, h, f) = OR(g, h).
202. In the transmogrification step T4, change ‘q0 ← q1 ← q’ to ‘q0 ← q, q1 ← ∅’ and
‘r0 ← r1 ← r’ to ‘r0 ← r, r1 ← ∅’. Also use ZUNIQUE instead of UNIQUE; within T4,
this subroutine increases REF(p) by 1 if step U1 finds q = ∅.

A subtler change is needed to keep the partial-tautology functions of answer 201
up to date, because of their special meaning. Correct behavior is to keep tu unchanged
and set tv ← LO(tu).
203. (a) f ⊔ g = {{1, 2}, {1, 3}, {1, 2, 3}, {3}} = (e1 ⊔ ((e2 ⊔ (e3 ∪ ϵ)) ∪ e3)) ∪ e3; the
other is (e1 ⊔ e2) ∪ ϵ, because f ⊓ g = (e1 ⊔ (e2 ∪ ϵ)) ∪ e3 ∪ ϵ and f e1 = e1 ∪ e2 ∪ e3.

(b) (f ⊔ g)(z) = ∃x∃y (f(x) ∧ g(y) ∧ (z ≡ x ∨ y)); (f ⊓ g)(z) = ∃x ∃y (f(x) ∧
g(y) ∧ (z ≡ x ∧ y)); (f g)(z) = ∃x∃y (f(x) ∧ g(y) ∧ (z ≡ x⊕ y)). Another formula is
(f g)(z) =

{f(z ⊕ y) | g(y) = 1} =
{g(z ⊕ x) | f(x) = 1}.

(c) Both (i) and (ii) are true; also f (g ∪ h) = (f g) ∪ (f h). Formula (iii)
fails in general, although we do have f ⊔ (g⊓h) ⊆ (f ⊔ g)⊓ (f ⊔h). Formula (iv) makes

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 661

little sense; the right-hand side is (f ⊔ f) ∪ (f ⊔ h) ∪ (g ⊔ f) ∪ (g ⊔ h), by (i). Formula
(v) is true because all three parts are ∅. And (vi) is true if and only if f ̸= ∅.

(d) Only (ii) is always true. For (i), the condition should be f ⊓ g ⊆ ϵ, since
f ⊓ g = ∅ implies f ⊥ g. For (iii), notice that |f ⊔ g| = |f ⊓ g| = |f g| = 1 whenever
|f | = |g| = 1. Finally, in statement (iv), we do have f ⊥ g =⇒ f ⊔ g = f g; but the
converse fails when, say, f = g = e1 ∪ ϵ.

(e) f = ∅ in (i) and f = ϵ in (ii); also ϵ g = g for all g. There’s no solution
to (iii), because f would have to be {{1, 2, 3, . . . }} and we are considering only finite
sets. But in the finite universe of answer 201 we have f = {{1, . . . , N}}. (This family U
has the property that (f U) ⊔ (g U) = (f ⊓ g) U .) The general solution to (iv)
is f = e1 ⊔ e2 ⊔ f ′, where f ′ is an arbitrary family; similarly, the general solution
to (v) is f = (e1 ⊔ f ′) ∪ (e2 ⊔ f ′′) ∪ (e1 ⊔ e2 ⊔ (f ′ ∪ f ′′ ∪ f ′′′)), where f ′, f ′′, and f ′′′

are arbitrary. In (vi), f = ((((e1 ⊔ e2) ∪ ϵ) ⊔ f ′) ∪ ((e1 ∪ e2) ⊔ f ′′)) ⊔ (e3 ∪ ϵ), where
f ′ ∪ f ′′ ⊥ e1 ∪ e2 ∪ e3; this representation follows from exercise 204(f). In (vii), |f | = 1.
Finally, (viii) characterizes Horn functions (Theorem 7.1.1H).

204. (a) This relation is obvious from the definition. (Also (f ∪g)/h ⊇ (f/h)∪ (g/h).)
(b) f/e2 = {{1}, ∅} = e1 ∪ ϵ; f/e1 = e2 ∪ e3; f/ϵ = f ; hence f/(e1 ∪ ϵ) = e2 ∪ e3.
(c) Division by ∅ gives trouble, because all sets α belong to f/∅. (But if we

restrict consideration to families of subsets of {1, . . . , N}, as in exercises 201 and 207,
we have f/∅ = ℘; also ℘/℘ = ϵ, and f/℘ = ∅ when f ̸= ℘.) Clearly f/ϵ = f . And
f/f = ϵ when f ̸= ∅. Finally, (f mod g)/g = ∅ when g ̸= ∅, because α ∈ (f mod g)/g
and β ∈ g implies that α ∪ β ∈ f , α ∈ f/g, and α ∪ β /∈ (f/g) ⊔ g— a contradiction.

(d) If β ∈ g, we have β ∪ α ∈ f and β ∩ α = ∅ for all α ∈ f/g; this proves the
hint. Hence f/g ⊆ f/(f/(f/g)). Also f/h ⊆ f/g when h ⊇ g, by (a); let h = f/(f/g).

(e) Let f//g be the family in the new definition. Then f/g ⊆ f//g, because
g ⊔ (f/g) ⊆ f and g ⊥ (f/g). Conversely, if α ∈ f//g and β ∈ g, we have α ∈ h for
some h with g ⊔ h ⊆ f and g ⊥ h; consequently α ∪ β ∈ f and α ∩ β = ∅.

(f) If f has such a representation, we must have g = f/ej and h = f mod ej .
Conversely, those families satisfy ej ⊥ g ∪ h. (This law is the fundamental recursive
principle underlying ZDDs — just as the unique representation f = (xj? g: h), with g
and h independent of xj , underlies BDDs.)

(g) Both true. (To prove them, represent f and g as in part (f).)
[R. K. Brayton and C. McMullen introduced the quotient and remainder opera-

tions in Proc. Int. Symp. Circuits and Systems (IEEE, 1982), 49–54, but in a slightly
different context: They dealt with families of incomparable sets of subcubes.]

205. In all cases we construct a recursion based on exercise 204(f). For example, if
fv = gv = v, we have f ⊔ g = (v̄? fl ⊔ gl: (fl ⊔ gh) ∪ (fh ⊔ gl) ∪ (fh ⊔ gh)); f ⊓ g =
(v̄? (fl⊓gl)∪(fl⊓gh)∪(fh⊓gl): fh⊓gh); f g = (v̄? (fl gl)∪(fh gh): (fh gl)∪(fl gh)).

(a) If fv < gv or (fv = gv and f > g), swap f ↔ g. If f = ∅, return f ; if f = ϵ,
return g. If f ⊔ g = r is in the memo cache, return r. If fv > gv, set rl ← JOIN(f, gl)
and rh ← JOIN(f, gh); otherwise set rl ← JOIN(fl, gl), rlh ← JOIN(fl, gh), rhl ←
JOIN(fh, gl), rhh ← JOIN(fh, gh), rh ← OROR(rlh, rhl, rhh), and dereference rlh, rhl,
rhh. Finish with r ← ZUNIQUE(gv, rl, rh); cache it and return it as in exercise 198.

(We could also compute rh via the formula OR(rlh, JOIN(fh,OR(gl, gh))), or via
OR(rhl, JOIN(OR(fl, fh), gh)). Sometimes one way is much better than the other two.)

The DISJOIN operation, which produces the family of disjoint unions {α ∪ β |
α ∈ f , β ∈ g, α ∩ β = ∅}, is similar but with rhh omitted.

From the Library of Melissa Nuno



ptg999

662 ANSWERS TO EXERCISES 7.1.4

(b) If fv < gv or (fv = gv and f > g), swap f ↔ g. If f ≤ ϵ, return f . (We
consider ∅ < ϵ and ϵ < all others.) Otherwise, if MEET(f, g) hasn’t been cached, there
are two cases. If fv > gv, set rh ← OR(gl, gh), r ← MEET(f, rh), and dereference rh;
otherwise proceed analogously to (a) but with l↔ h. Cache and return r as usual.

(c) This operation is similar to (a), but rl ← OR(rll, rhh) and rh ← OR(rlh, rhl).
(d) First we implement the important simple cases f/ev and f mod ev:

EZDIV(f, v) =


If fv = v, return fh; if fv > v, return ∅. Otherwise look for
f/ev = r in the cache; if it isn’t present, compute it via
r ← ZUNIQUE(fv,EZDIV(fl, v),EZDIV(fh, v)).

EZMOD(f, v) =


If fv = v, return fl; if fv > v, return f . Otherwise look for
f mod ev = r in the cache; if it isn’t present, compute it via
r ← ZUNIQUE(fv,EZMOD(fl, v),EZMOD(fh, v)).

Now DIV(f, g) = “If g = ∅, see below; if g = ϵ, return f . Otherwise, if f ≤ ϵ, return ∅;
if f = g, return ϵ. If gl = ∅ and gh = ϵ, return EZDIV(f, gv). Otherwise, if f/g = r is
in the memo cache, return r. Otherwise set rl ← EZDIV(f, gv), r ← DIV(rl, gh), and
dereference rl. If r ̸= ∅ and gl ̸= ∅, set rh ← EZMOD(f, gv) and rl ← DIV(rh, gl), deref-
erence rh, set rh ← r and r ← AND(rl, rh), dereference rl and rh. Insert ‘f/g = r’ in the
memo cache and return r.” Division by ∅ returns ℘ if there is a fixed universe {1, . . . , N}
as in exercise 201. Otherwise it’s an error (because the universal family ℘ doesn’t exist).

(e) If g = ∅, return f . If g = ϵ, return ∅. If (gl, gh) = (∅, ϵ), return EZMOD(f, gv).
If f mod g = r is cached, return it. Otherwise set r ← DIV(f, g) and rh ← JOIN(r, g),
dereference r, set r ← BUTNOT(f, rh), and dereference rh. Cache and return r.

[S. Minato gave EZDIV(f, v), EZREM(f, v), and DELTA(f, ev) in his original
paper on ZDDs. His algorithms for JOIN(f, g) and DIV(f, g) appeared in the sequel,
ACM/IEEE Design Automation Conf. 31 (1994), 420–424.]

206. The upper bound O(Z(f)3Z(g)3) is not difficult to prove for cases (a) and (b),
as well as O(Z(f)2Z(g)2) for case (c). But are there examples that take such a long
time? And can the running time for (d) be exponential? All five routines seem to be
reasonably fast in practice.

207. If f = ei1 ∪ · · · ∪ eil and k ≥ 0, let SYM(f, v, k) be the Boolean function that is
true if and only if exactly k of the variables {xi1 , . . . , xil} ∩ {xv, xv+1, . . . } are 1 and
x1 = · · · = xv−1 = 0. We compute (ei1 ∪ · · · ∪ eil) § k by calling SYM(f, 1, k).

SYM(f, v, k) = “While fv < v, set f ← fl. If fv = N + 1 and k > 0, return ∅.
If fv = N + 1 and k = 0, return the partial-tautology function tv (see answer 201). If
f §v §k = r is in the cache, return r. Otherwise set r ← SYM(f, fv + 1, k). If k > 0, set
q ← SYM(fl, fv + 1, k− 1) and r ← ZUNIQUE(fv, r, q). While fv > v, set fv ← fv − 1,
increase REF(r) by 1, and set r ← ZUNIQUE(fv, r, r). Put ‘f § v § k = r’ in the cache,
and return r.” The running time is O((k + 1)N). Notice that ∅ § 0 = ℘.

208. Just omit the factors 2vs−1−1, 2vl−vk−1, and 2vh−vk−1 from steps C1 and C2.
(And we get the generating function by setting ck ← cl+zch in step C2; see exercise 25.)
The number of solutions equals the number of paths in the ZDD from the root to ⊤ .

209. Initially compute δn ← ⊥ and δj ← (x̄j+1 ◦ xj+1) • δj+1 for n > j ≥ 1. Then,
where answer 31 says ‘α ← (x̄j ◦ xj) • α’, change it to ‘α ← (x̄j • α) ◦ (xj • δj)’. Also
make the analogous changes with β and γ in place of α.

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 663

210. In fact, when x = x1 . . . xn we can replace νx in the definition of g by any linear
function c(x) = c1x1 + · · · + cnxn, thus characterizing all of the optimal solutions to
the general Boolean programming problem treated by Algorithm B.

For each branch node x of the ZDD, with fields V(x), LO(x), HI(x), we can com-
pute its optimum value M(x) and new links L(x), H(x) as follows: Let ml = M(LO(x))
andmh = cV(x)+M(HI(x)), where M( ⊥ ) = −∞ and M( ⊤ ) = 0. Then L(x)← LO(x)
if ml ≥ mh, otherwise L(x)← ⊥ ; H(x)← HI(x) if ml ≤ mh, otherwise H(x)← ⊥ .
The ZDD for g is obtained by reducing the L and H links accessible from the root.
Notice that Z(g) ≤ Z(f), and the entire computation takes O(Z(f)) steps. (This nice
property of ZDDs was pointed out by O. Coudert; see answer 237.)
211. Yes, unless the matrix has all-zero rows. Without such rows, in fact, the profile
and z-profile of f satisfy bk ≥ qk − 1 ≥ zk for 0 ≤ k < n, because the only level-k
subfunction independent of xk+1 is the constant 0.
212. The best alternative in the author’s experiments was to make ZDDs for each
term Tj = S1(Xj) in (129), using the algorithm of exercise 207, and then to AND them
together. For example, in problem (128) we have X1 = {x1, x2}, X2 = {x1, x3, x4},
. . . , X64 = {x105, x112}; to make the term S1(X2) = S1(x1, x3, x4), whose ZDD has 115
nodes, just form the 5-node ZDD for e1 ∪ (e3 ∪ e4) and compute T2 ← (e1 ∪ e3 ∪ e4) § 1.

But in what order should the ANDs be done, after we’ve got the individual terms
T1, . . . , Tn of (129)? Consider problem (128). Method 1: T1 ← T1 ∧ T2, T1 ← T1 ∧ T3,
. . . , T1 ← T1 ∧ T64. This “top-down” method fills in the upper levels first, and takes
about 6.2 megamems. Method 2: T64 ← T64 ∧ T63, T64 ← T64 ∧ T62, . . . , T64 ←
T64 ∧ T1. By filling in the lower levels first (“bottom-up”), the time goes down to
about 1.75 megamems. Method 3: T2 ← T2 ∧ T1, T4 ← T4 ∧ T3, . . . , T64 ← T64 ∧ T63;
T4 ← T4 ∧ T2, T8 ← T8 ∧ T6, . . . , T64 ← T64 ∧ T62; T8 ← T8 ∧ T4, T16 ← T16 ∧ T12, . . . ,
T64 ← T64 ∧T60; . . . ; T64 ← T64 ∧T32. This “balanced” approach also takes about 1.75
megamems. Method 4: T33 ← T33 ∧ T1, T34 ← T34 ∧ T2, . . . , T64 ← T64 ∧ T32; T49 ←
T49 ∧T33, T50 ← T50 ∧T34, . . . , T64 ← T64 ∧T48; T57 ← T57 ∧T49, T58 ← T58 ∧T50, . . . ,
T64 ← T64 ∧ T56; . . . ; T64 ← T64 ∧ T63. This is a much better way to balance the work,
needing only about 850 kilomems. Method 5: An analogous balancing strategy that uses
the ternary ANDAND operation turns out to be still better, costing just 675 kilomems.
(In all five cases, add 190 kilomems for the time to form the 64 initial terms Tj .)

Incidentally, we can reduce the ZDD size from 2300 to 1995 by insisting that
x1 = 0 and x2 = 1 in (128) and (129), because the “transpose” of every covering is
another covering. This idea does not, however, reduce the running time substantially.

The rows of (128) appear in decreasing lexicographic order, and that may not be
ideal. But dynamic variable ordering is unhelpful when so many variables are present.
(Sifting reduces the size from 2300 to 1887, but takes a long time.)

Further study, with a variety of exact cover problems, would clearly be desirable.
213. It is a bipartite graph with 30 vertices in one part and 32 in the other. (Think of
a chessboard as a checkerboard: Every domino joins a white square to a black square,
and we’ve removed two black squares.) A row sum of (1, . . . , 1, 1, ∗, ∗) has 1s in at least
31 “white” positions, so its last two coordinates must be either (2, 1) or (3, 2).
214. Add further constraints to the covering condition (128), namely

14
j=1 S≥1(Yj),

where Yj is the set of xi that cross the jth potential fault line. (For example, Y1 =
{x2, x4, x6, x8, x10, x12, x14, x15} is the set of ways to place a domino vertically in the
top two rows of the board; each |Yj | = 8.) The resulting ZDD has 9812 nodes, and
characterizes 25,506 solutions. Incidentally, the BDD size is 26,622. [Faultfree domino

From the Library of Melissa Nuno



ptg999

664 ANSWERS TO EXERCISES 7.1.4

tilings of m × n boards exist if and only if mn is even, m ≥ 5, n ≥ 5, and (m,n) ̸=
(6, 6); see R. L. Graham, The Mathematical Gardner (Wadsworth International, 1981),
120–126. The solution in (127) is the only 8× 8 example that is symmetric under both
horizontal and vertical reflection; see Fig. 29(b) for symmetry under 90◦ rotation.]
215. This time we add the constraints

49
j=1 S≥1(Zj), where Zj is the set of four place-

ments xi that surround an internal corner point. (For example, Z1 = {x1, x2, x4, x16}.)
These constraints reduce the ZDD size to 66. There are just two solutions, one the
transpose of the other, and they can readily be found by hand. [See Y. Kotani,
Puzzlers’ Tribute (A. K. Peters, 2002), 413–420. The set of all tatami tilings has
been characterized by Dean Hickerson; the corresponding generating functions have
been obtained by Frank Ruskey and Jennifer Woodcock, Electronic J. Combinatorics
16, 1 (2009), #R126.]
216. (a) Assign three variables (ai, bi, ci) to each row of (128), corresponding to the
domino’s color if row i is chosen. Every branch node of the ZDD for f in (129) now
becomes three branch nodes. We can take advantage of symmetry under transposition
by replacing f by f ∧ x2; this reduces the ZDD size from 2300 to 1995, which grows to
5981 when each branch node is triplicated.

Now we AND in the adjacency constraints, for all 682 cases {i, i′} where rows i
and i′ are adjacent domino positions. Such constraints have the form ¬((ai ∧ ai′) ∨
(bi ∧ bi′) ∨ (ci ∧ ci′)), and we apply them bottom-up as in Method 2 of answer 212.
This computation inflates the ZDD until it reaches more than 800 thousand nodes; but
eventually it settles down and ends up with size 584,205.

The desired answer turns out to be 13,343,246,232 (which, of course, is a multiple
of 3! = 6, because each permutation of the three colors yields a different solution).

(b) This question is distinct from part (a), because many coverings (including
Fig. 29(b)) can be 3-colored in several ways; we want to count them only once.

Suppose f(a1, b1, c1, . . . , am, bm, cm) = f(x1, . . . , x3m) is a function with ai =
x3i−2, bi = x3i−1, and ci = x3i, such that f(x1, . . . , x3m) = 1 implies ai + bi + ci ≤ 1
for 1 ≤ i ≤ m. Let’s define the uncoloring $f of f to be

$f(x1, . . . , xm) = ∃y1 · · · ∃y3m(f(y1, . . . , y3m)
∧ (x1 = y1 + y2 + y3) ∧ · · · ∧ (xm = y3m−2 + y3m−1 + y3m)).

A straightforward recursive subroutine will compute the ZDD for $f from the ZDD
for f . This process transforms the 584,205 nodes obtained in part (a) into a ZDD of
size 33,731, from which we deduce the answer: 3,272,232.

(The running time is 1.2 gigamems for part (a), plus 1.3 gigamems to uncolor;
the total memory requirement is about 44 megabytes. A similar computation based on
BDDs instead of ZDDs cost 13.6 + 1.5 gigamems and occupied 185 megabytes.)
217. The separation condition adds 4198 further constraints of the form ¬(xi ∧ xi′),
where rows i and i′ specify adjacent placements of congruent pieces. Applying these
constraints while also evaluating the conjunction

468
j=1 S1(Xj) turned out to be a bad

idea, in the author’s experiments; even worse was an attempt to construct a separate
ZDD for the new constraints alone. Much better was to build the 512,227-node ZDD
as before, then to incorporate the new constraints one by one, first constraining the
variables at the lowest levels. The resulting ZDD of size 31,300,699 was finally com-
pleted after 286 gigamems of work, proving that exactly 7,099,053,234,102 separated
solutions exist.

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 665

We might also ask for strongly separated solutions, where congruent
pieces are not allowed to touch even at their corners; this requirement
adds 1948 more constraints. There are 554,626,216 strongly separated
coverings, findable after 245 gigamems with a ZDD of size 4,785,236. (But
standard backtracking finds them faster and uses negligible memory.)

218. This is an exact cover problem. For example, the matrix when n = 3 is

001001010 (––2––2)
010001001 (–3–––3)
010010010 (–2––2–)
010100100 (–1–1––)
100010001 (3–––3–)
100100010 (2––2––)
101000100 (1–1–––)

and in general there are 3n columns and
2n−1

2

−

n
2


rows. Consider the case n = 12:
The ZDD on 187 variables has 192,636 nodes. It can be found with a cost of 300
megamems, using Method 4 of answer 212 (binary balancing); Method 5 turns out to
be 25% slower than Method 4 in this case. The BDD is much larger (2,198,195 nodes)
and it costs more than 900 megamems.

Thus the ZDD is clearly preferable to the BDD for this problem, and it identifies
the L12 = 108,144 solutions with reasonable efficiency. (However, the “dancing links”
technique of Section 7.2.2 is about four times faster, and it needs far less memory.)

219. (a) 1267; (b) 2174; (c) 2958; (d) 3721; (e) 4502. (To form the ZDD for WORDS(n)
we do n−1 ORs of the 7-node ZDDs for w1⊔h2⊔i3⊔c4⊔h5, t1⊔h2⊔e3⊔r4⊔e5, etc.)

220. (a) There is one a2 node for the descendants of each initial letter that can be
followed by a in the second position (aargh, babel, . . . , zappy); 23 letters qualify,
all except q, u, and x. And there’s one b2 node for each initial letter that can be followed
by b (abbey, ebony, oboes). However, the actual rule isn’t so simple; for example, there
are three z2 nodes, not four, because of sharing between czars and tzars.

(b) There’s no v5 because no five-letter word ends with v. (The SGB collection
doesn’t include arxiv or webtv.) The three nodes for w5 arise because one stands for
cases where the letters < w5 must be followed by w (aglo and many others); another
node stands for cases where either w or y must follow (stra, or resa, or when we’ve
seen allo but not allot); and there’s also a w5 node for the case when unse is not
followed by e or t, because it must then be followed by either w or x. Similarly, the
two nodes for x5 represent the cases where x is forced, or where the last letter must be
either x or y (following rela). There’s only one y5 node, because no four letters can
be followed by both y and z. Of course there’s just one z5 node, and two sinks.

221. We compute, for every possible zead ζ, the probability that ζ will occur, and
sum over all ζ. For definiteness, consider a zead that corresponds to branching on r3,
and suppose it represents a subfamily of 10 three-letter suffixes. There are exactly6084

10

−
5408

10

≈ 1.3× 1031 such zeads, and by the principle of inclusion and exclusion

they each arise with probability

k≥1

676
k


(−1)k+111881376−6084k

5757−10k

/
11881376

5757

≈ 2.5×

10−32. [Hint: |{r, s, t, u, v, w, x, y, z}| = 9, 676 = 262, and 6084 = 9× 262.] Thus such
zeads contribute about 0.33 to the total. The r3-zeads for subfamilies of sizes 1, 2, 3, 4,
5, . . . , contribute approximately 11.5, 32.3, 45.1, 41.9, 29.3, . . . , by a similar analysis;

From the Library of Melissa Nuno



ptg999

666 ANSWERS TO EXERCISES 7.1.4

so we expect about 188.8 branches on r3 altogether, on average. The grand total
5
l=1

26
j=1

5757
s=1

265−l(27−j)
s


−
265−l(26−j)

s


×

∞
k=1

26l−1

k


(−1)k+1

265 − 265−l(27−j)k
5757− sk

 265

5757


,

plus 2 for the sinks, comes to ≈ 7151.986. The average z-profile is ≈ (1.00, . . . , 1.00;
25.99, . . . , 25.99; 188.86, . . . , 171.43; 86.31, . . . , 27.32; 3.53, . . . , 1.00; 2.00).
222. (a) It’s the set of all subsets of the words of F . (There are 50,569 such subwords,
out of 275 = 14,348,907 possibilities. They are described by a ZDD of size 18,784,
constructed from F and ℘ via answer 205(b) at a cost of about 15 megamems.)

(b) This formula gives the same result as F ⊓ ℘, because every member of F
contains exactly one element of each Xj . But the computation turns out to be much
slower — about 370 megamems — in spite of the fact that Z(X) = 132 is almost as
small as Z(℘) = 131. (Notice that |℘| = 2130 while |X| = 265 ≈ 223.5.)

(c) (F/P ) ⊔ P , where P = t1 ⊔ u3 ⊔ h5 is the pattern. (The words are touch,
tough, truth. This computation costs about 3000 mems with the algorithms of answer
205.) Other contenders for simple formulas are F ∩Q, where Q describes the admissible
words. If we set Q = t1 ⊔ X2 ⊔ u3 ⊔ X4 ⊔ h5, we have Z(Q) = 57 and the cost once
again is ≈ 3000µ. With Q = (t1 ∪ u3 ∪ h5) § 3, on the other hand, we have Z(Q) = 132
and the cost rises to about 9000 mems. (Here |Q| is 262 in the first case, but 2127 in
the second — reversing any intuition gained from (a) and (b)! Go figure.)

(d) F∩((V1∪ · · · ∪V5)§k). The number of such words is (24, 1974, 3307, 443, 9, 0)
for k = (0, . . . , 5), respectively, from ZDDs of sizes (70, 1888, 3048, 686, 34, 1). (“See
exercise 7–34 for the words F mod y1 mod y2 mod · · · mod y5,” said the author wryly.)

(e) The desired patterns satisfy P = (F ⊓℘)∩Q, where Q = ((X1∪· · ·∪X5) §3).
We have Z(Q) = 386, Z(P ) = 14221, and |P | = 19907.

(f) The formula for this case is trickier. First, P2 = F ⊓ F gives F together with
all patterns satisfied by two distinct words; we have Z(P2) = 11289, |P2| = 21234, and
|P2∩Q| = 7753. But P2∩Q is not the answer; for example, it omits the pattern *atc*,
which occurs eight times but only in the context *atch. The correct answer is given by
P ′

2∩Q, where P ′
2 = (P2\F )⊓℘. Then Z(P ′

2) = 8947, Z(P ′
2∩Q) = 7525, |P ′

2∩Q| = 10472.
(g) G1 ∪ · · · ∪G5, where Gj = (F/(bj ∪ oj))⊔ bj . The answers are bared, bases,

basis, baths, bobby, bring, busts, herbs, limbs, tribs.
(h) Patterns that admit all vowels in second place: b*lls, b*nds, m*tes, p*cks.
(i) The first gives all words whose middle three letters are vowels. The second

gives all patterns with first and last letter specified, for which there’s at least one
match with three vowels inserted. There are 30 solutions to the first, but only 27 to
the second (because, e.g., louis and luaus yield the same pattern). Incidentally, the
complementary family ℘ \ F has 2130 − 5757 members, and 46316 nodes in its ZDD.
223. (a) d(α, µ) + d(β, µ) + d(γ, µ) = 5, since d(α, µ) = [α1 ̸=µ1 ] + · · ·+ [α5 ̸=µ5 ].

(b) Given families f , g, h, the family {µ | µ = ⟨αβγ⟩ for some α ∈ f , β ∈ g,
γ ∈ h with α ̸= µ, β ̸= µ, γ ̸= µ, and α ∩ β ∩ γ = ∅} can be defined recursively to
allow ZDD computation, if we consider eight variants in which subsets of the inequality
constraints are relaxed. In the author’s experimental system, the ZDDs for medians
of WORDS(n) for n = (100, 1000, 5757) have respectively (595, 14389, 71261) nodes
and characterize (47, 7310, 86153) five-letter solutions. Among the 86153 medians

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 667

when n = 5757 are chads, stent, blogs, ditzy, phish, bling, and tetch; in fact,
tetch = ⟨fetch teach total⟩ arises already when n = 1000. (The running times of
about (.01, 2, 700) gigamems, respectively, were not especially impressive; ZDDs are
probably not the best tool for this problem. Still, the programming was instructive.)

(c) When n = 100, exactly (1, 14, 47) medians of WORDS(n) belong to WORDS(100),
WORDS(1000), WORDS(5757), respectively; the solution with most common words is
while = ⟨white whole still⟩. When n = 1000, the corresponding numbers are (38,
365, 1276); and when n = 5757 they are (78, 655, 4480). The most common English
words that aren’t medians of three other English words are their, first, and right.
224. Every arc u−−→ v of the dag corresponds to a vertex v of the forest. The ZDD
has exactly one branch node for every arc. The LO pointer of that node leads to the
right sibling of the corresponding vertex v, or to ⊥ if v has no right sibling. The HI
pointer leads to the left child of v, or to ⊤ if v is a leaf. The arcs can be ordered in
many ways (e.g., preorder, postorder, level order), without changing this ZDD.
225. As in exercise 55, we try to number the vertices in such a way that the “frontier”
between early and late vertices remains fairly small; then we needn’t remember too
much about what decisions were made on the early vertices. In the present case we
also want the source vertex s to be number 1.

In answer 55, the relevant state from previous branches corresponded to an
equivalence relation (a set partition); but now we express it by a table mate[i] for
j ≤ i ≤ l, where j = uk is the smaller vertex of the current edge uk−−− vk and where
l = max{v1, . . . , vk−1}. Let mate[i] = i if vertex i is untouched so far; let mate[i] = 0
if vertex i has been touched twice already. Otherwise mate[i] = r and mate[r] = i, if
previous edges form a simple path with endpoints {i, r}. Initially we set mate[i]← i for
1 ≤ i ≤ n, except that mate[1]← t and mate[t]← 1. (If t > l, the value of mate[t] need
not be stored, because it can be determined from the values of mate[i] for j ≤ i ≤ l.)

Let j′ = uk+1 and l′ = max{v1, . . . , vk} be the values of j and l after edge k
has been considered; and suppose uk = j, vk = m, mate[j] = ȷ̂, mate[m] = m̂. We
cannot choose edge j−−−m if ȷ̂ = 0 or m̂ = 0. Otherwise, if ȷ̂ ̸= m, the new mate table
after choosing edge j −−−m can be computed by doing the assignments mate[j] ← 0,
mate[m]← 0, mate[ȷ̂]← m̂, mate[m̂]← ȷ̂ (in that order).

Otherwise we have ȷ̂ = m and m̂ = j; we must contemplate the endgame. Let
i be the smallest integer such that i > j, i ̸= m, and either i > l′ or mate[i] ̸= 0 and
mate[i] ̸= i. The new state after choosing edge j−−−m is ∅ if i ≤ l′, otherwise it is ϵ.

Whether or not the edge is chosen, the new state will be ∅ if mate[i] ̸= 0 and
mate[i] ̸= i for some i in the range j ≤ i < j′.

For example, here are the first steps for paths from 1 to 9 in a 3×3 grid (see (132)):

k j l m mate[1] . . .mate[9] ȷ̂ m̂ mate ′[1] . . .mate ′[9]
1 1 1 2 9 2 3 4 5 6 7 8 1 9 2 0 9 3 4 5 6 7 8 2
2 1 2 3 9 2 3 4 5 6 7 8 1 9 3 0 2 9 4 5 6 7 8 3
2 1 2 3 0 9 3 4 5 6 7 8 2 0 3 —
3 2 3 4 0 2 9 4 5 6 7 8 3 2 4 0 4 9 2 5 6 7 8 3
3 2 3 4 0 9 3 4 5 6 7 8 2 9 4 0 0 3 9 5 6 7 8 4

where mate ′ describes the next state if edge j −−−m is chosen. The state transitions
matej..l →→ mate ′

j′..l′ are 9 →→ (12? 92: 09); 92 →→ (13? ∅: 29); 09 →→ (13? 93: ∅);
29 →→ (24? 294: 492); 93 →→ (24? 934: 039).

After all reachable states have been found, the ZDD can be obtained by reducing
equivalent states, using a procedure like Algorithm R. (In the 3 × 3 grid problem,

From the Library of Melissa Nuno



ptg999

668 ANSWERS TO EXERCISES 7.1.4

57 branch nodes are reduced to 28, plus two sinks. The 22-branch ZDD illustrated in
the text was obtained by subsequently optimizing with exercise 197.)
226. Just omit the initial assignments ‘mate[1]← t, mate[t]← 1.’
227. Change the test ‘mate[i] ̸= 0 and mate[i] ̸= i’ to just ‘mate[i] ̸= 0’ in two places.
Also, change ‘i ≤ l′’ to ‘i ≤ n’.
228. Use the previous answer with the following further changes: Add a dummy vertex
d = n+ 1, with new edges v−−−d for all v ̸= s; accepting this new edge will mean “end
at v.” Initialize the mate table with mate[1] ← d, mate[d] ← 1. Leave d out of the
maximization when calculating l and l′. When beginning to examine a stored mate
table, start with mate[d]← 0 and then, if encountering mate[i] = d, set mate[d]← i.
229. 149,692,648,904 of the latter paths go from VA to MD; graph (133) omits DC.
(However, the graphs of (18) have fewer Hamiltonian paths than (133), because (133)
has 1,782,199 Hamiltonian paths from CA to ME that do not go from VA to MD.)
230. The unique minimum and maximum routes from ME both end at WA:

11698 miles; 18040 miles.

Let g(z) =

zmiles(r), summed over all routes r. The average cost, g′(1)/g(1) =

1022014257375/68656026 ≈ 14886.01, can be computed rapidly as in answer 29.
(Similarly, g′′(1) = 15243164303013274, so the standard deviation is ≈ 666.2.)

231. The algorithm of answer 225 gives a proto-ZDD with 8,062,831 branch nodes; it
reduces to a ZDD with 3,024,214 branches. The number of solutions, via answer 208,
is 50,819,542,770,311,581,606,906,543.
232. With answer 227 we find h = 721,613,446,615,109,970,767 Hamiltonian paths
from a corner to its horizontal neighbor, and d = 480,257,285,722,344,701,834 of them
to its diagonal neighbor; in both cases the relevant ZDD has about 1.3 million nodes.
The number of oriented Hamiltonian cycles is 2h+ d = 1,923,484,178,952,564,643,368.
(Divide by 2 to get the number of undirected Hamiltonian cycles.)

Essentially only two king’s tours achieve the maximal length 8 + 56
√

2:

.

233. A similar procedure can be used but with mate[i] = r and mate[r] = −i when
the previous choices define an oriented path from i to r. Process all arcs uk−−→vk and
uk←−−vk consecutively when uk = j < vk = m. Define ȷ̂ = −j if mate[j] = j, otherwise
ȷ̂ = mate[j]. Choosing j−−→m is illegal if ȷ̂ ≥ 0 or m̂ ≤ 0. The updating rule for that
choice, when legal, is: mate[j]← 0, mate[m]← 0, mate[−ȷ̂]← m̂, mate[m̂]← ȷ̂.
234. The 437 oriented cycles can be represented by a ZDD of ≈ 800 nodes. The short-
est are, of course, AL−−→LA−−→AL and MN−−→NM−−→MN. There are 37 of length 17 (the
maximum), such as (ALARINVTNMIDCOKSC) — i.e., AL−−→LA−−→ · · · −−→SC−−→CA−−→AL.

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 669

Incidentally, the directed graph in question is the arc digraph D∗ of the digraph D
on 26 vertices {A, B, . . . , Z} whose 49 arcs are A−−→L, A−−→R, . . . , W−−→Y. Every oriented
walk of D∗ is an oriented walk of D, and conversely (see exercise 2.3.4.2–21); but the
oriented cycles of D∗ are not necessarily simple in D. In fact, D has only 37 oriented
cycles, the longest of which is unique: (ARINMOKSDC).

If we extend consideration to the 62 postal codes in exercise 7–54(c), the number
of oriented cycles rises to 38336, including the unique 1-cycle (A), as well as 192 that
have length 23, such as (APRIALASCTNMNVINCOKSDCA). About 17000 ZDD nodes suffice
to characterize the entire family of oriented cycles in this case.
235. The digraph has 7912 arcs; but we can prune them dramatically by removing
arcs from vertices of in-degree zero, or arcs to vertices of out-degree zero. For example,
owner−−→nerdy goes away, because nerdy is a dead end; in fact, all successors of owner
are likewise eliminated, so crown is out too. Eventually we’re left with only 112 arcs
among 85 words, and the problem can basically be done by hand.

There are just 74 oriented cycles. The unique shortest one, slant−−→ antes−−→
tesla−−→slant, can be abbreviated to ‘(slante)’ as in the previous answer. The two
longest are (αω) and (βω), where α = picastepsomaso, β = pointrotherema, and
ω = nicadrearedidoserumoreliciteslabsitaresetuplenactoricedarerunichesto.
236. (a) Suppose α ∈ f and β ∈ g. If α ⊆ β, then α ∈ f ⊓ g. If α ∩ β ∈ f, then
α∩β /∈ f↗g. A similar argument, or the use of part (b), shows that f↘g = f \ (f ⊔g).

Notes: The complementary operations “f ↖ g = f \ (f ↘ g) = {α ∈ f | α ⊇ β
for some β ∈ g}” for supersets, and “f ↙ g = f \ (f ↗ g) = {α ∈ f | α ⊆ β for some
β ∈ g}” for subsets, are also important in applications. They were omitted from this
exercise only because five operations are already rather intimidating. The superset
operation was introduced by O. Coudert, J. C. Madre, and H. Fraisse [ACM/IEEE
Design Automation Conference 30 (1993), 625–630]. The identity f ↖ g = f ∩ (f ⊔ g)
was noted by H. G. Okuno, S. Minato, and H. Isozaki [Information Processing Letters
66 (1998), 195–199], who also listed several of the laws in (d).

(b) Elementary set theory suffices. (The first six identities appear in pairs, each
of which is equivalent to its mate. Strictly speaking, fC involves infinite sets, and U
is the AND of infinitely many variables; but the formulas hold in any finite universe.
Notice that, when cast in the language of Boolean functions, fC(x) = f(x̄) is the
complement of fD, the Boolean dual; see exercise 7.1.1–2. Is there any use for the dual
of f ♯, namely {α | β ∈ f implies α ∪ β ̸= U}↑? If so, we might denote it by f ♭.)

(c) All true except (ii), which should have said that x↑1 = xC↓C
1 = x̄↓C1 = ϵC = U .

(d) The “identities” to cross out here are (ii), (viii), (ix), (xiv), and (xvi); the
others are worth remembering. Regarding (ii)–(vi), notice that f = f↑ if and only if
f = f↓, if and only if f is a clutter. Formula (xiv) should be f ↘ g↓ = f ↘ g, the dual
of (xiii). Formula (xvi) is almost right; it fails only when f = ∅ or g = ∅. Formula (ix)
is perhaps the most interesting: We actually have f ♯♯ = f if and only if f is a clutter.

(e) Assuming that the universe of all vertices is finite, we have (i) f = ℘↘ g and
(ii) g = (℘ \ f)↓, where ℘ is the universal family of exercises 201 and 222, because g is
the family of minimal dependent sets. (Purists should substitute ℘V =


v∈V (ϵ ∪ ev)

for ℘ in these formulas. The same relations hold in any hypergraph for which no edge
is contained in another.)
237. MAXMAL(f) = “If f = ∅ or f = ϵ, return f . If f↑ = r is cached, return r. Oth-
erwise set r ← MAXMAL(fl), rh ← MAXMAL(fh), rl ← NONSUB(r, rh), dereference r,
and r ← ZUNIQUE(fv, rl, rh); cache and return r.”

From the Library of Melissa Nuno



ptg999

670 ANSWERS TO EXERCISES 7.1.4

MINMAL(f) = “If f = ∅ or f = ϵ, return f . If f↓ = r is cached, return r. Oth-
erwise set rl ← MINMAL(fl), r ← MINMAL(fh), rh ← NONSUP(r, rl), dereference r,
and r ← ZUNIQUE(fv, rl, rh); cache and return r.”

NONSUB(f, g) = “If g = ∅, return f . If f = ∅ or f = ϵ or f = g, return ∅. If
f↗ g = r is cached, return r. Otherwise represent f and g as explained in answer 198.
If v < gv, set rl ← NONSUB(fl, g), rh ← fh, and increase REF(fh) by 1; otherwise set
rh ← NONSUB(fl, gl), r ← NONSUB(fl, gh), rl ← AND(r, rh), dereference r and rh,
and set rh ← NONSUB(fh, gh). Finally r ← ZUNIQUE(v, rl, rh); cache and return r.”

NONSUP(f, g) = “If g = ∅, return f . If f = ∅ or g = ϵ or f = g, return ∅.
If fv > gv, return NONSUP(f, gl). If f ↘ g = r is cached, return r. Otherwise set
v = fv. If v < gv, set rl ← NONSUP(fl, g) and rh ← NONSUP(fh, g); otherwise set
rl ← NONSUP(fh, gh), r ← NONSUP(fh, gl), rh ← AND(r, rl), dereference r and rl,
and set rl ← NONSUP(fl, gl). Finally r ← ZUNIQUE(v, rl, rh); cache and return r.”

MINHIT(f) = “If f = ∅, return ϵ. If f = ϵ, return ∅. If f ♯ = r is cached, return r.
Otherwise set r ← OR(fl, fh), rl ← MINHIT(r), dereference r, r ← MINHIT(fl),
rh ← NONSUP(r, rl), dereference r, and r ← ZUNIQUE(fv, rl, rh); cache and return r.”

As in exercise 206, the worst-case running times of these routines are unknown.
Although NONSUB and NONSUP can be computed via JOIN or MEET and BUTNOT,
by exercise 236(a), this direct implementation tends to be faster. It may be preferable
to replace ‘f = ϵ’ by ‘ϵ ∈ f ’ in MINMAL and MINHIT; also ‘g = ϵ’ by ‘ϵ ∈ g’ in NONSUP.

[Olivier Coudert introduced and implemented the operators f↑, f↗ g, and f ↘ g
in Proc. Europ. Design and Test Conf. (IEEE, 1997), 224–228. He also gave a recursive
implementation of the interesting operator f ⊙ g = (f ⊔ g)↑; however, in the author’s
experiments, much better results have been obtained without it. For example, if f is
the 177-node ZDD for the independent sets of the contiguous USA, the operation g ←
JOIN(f, f) costs about 350 kilomems and h← MAXMAL(g) costs about 3.6 megamems;
but more than 69 gigamems are needed to compute h ← MAXJOIN(f, f) all at once.
Improved caching and garbage-collection strategies may, of course, change the picture.]
238. We can compute the 177-node ZDD for the family f of independent sets, using
the ordering (104), in two ways: With Boolean algebra (67), f = ¬u−−v(xu ∧ xv);
the cost is about 1.1 megamems with the algorithms of answers 198–201. With family
algebra, on the other hand, we have f = ℘ ↘


u−−v(eu ⊔ ev) by exercise 236(e); the

cost, via answer 237, is less than 175 kilomems.
The subsets that give 2-colorable and 3-colorable subgraphs are g = f ⊔ f and

h = g ⊔ f , respectively; the maximal ones are g↑ and h↑. We have Z(g) = 1009,
Z(g↑) = 3040, Z(h) = 179, Z(h↑) = 183, |g| = 9,028,058,789,780, |g↑| = 2,949,441,
|h| = 543,871,144,820,736, and |h↑| = 384. The successive costs of computing g, g↑,
h, and h↑ are approximately 350 Kµ (kilomems), 3.6 Mµ, 1.1 Mµ, and 230 Kµ. (We
could compute h↑ by, say, (g↑ ⊔ f)↑; but that turns out to be a bad idea.)

The maximal induced bipartite and tripartite subgraphs have the respective
generating functions 7654z25 + · · · + 9040z33 + 689z34 and 128z43 + 84z44 + 112z45 +
36z46 + 24z47. Here are typical examples of the smallest and largest:

(Compare with the smallest and largest “1-partite” subgraphs in 7–(61) and 7–(62).)

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 671

Notice that the families g and h tell us exactly which induced subgraphs can be
2-colored and 3-colored, but they don’t tell us how to color them.

239. Since h = ((e1 ∪ · · · ∪ e49) § 2) \ g is the set of nonedges of G, the cliques are
f = ℘↘ h, and the maximal cliques are f↑. For example, we have Z(f) = 144 for the
214 cliques of the USA graph, and Z(f↑) = 130 for the 60 maximal ones. In this case
the maximal cliques consist of 57 triangles (which are easily visible in (18)), together
with three edges that aren’t part of any triangle: AZ−−−NM, WI−−−MI, NH−−−ME.

Let fk describe the sets coverable by k cliques. Then f1 = f, and fk+1 = fk ⊔ f
for k ≥ 1. (It’s not a good idea to compute f16 as f8 ⊔ f8; much faster is to do each
join separately, even if the intermediate results are not of interest.)

The maximum elements of fk in the USA graph have sizes 3, 6, 9, . . . , 36, 39,
41, 43, 45, 47, 48, 49 for 1 ≤ k ≤ 19; these maxima can readily be determined by hand,
in a small graph such as this. But the question of maximal elements is much more
subtle, and ZDDs are probably the best tool for investigating them. The ZDDs for
f1, . . . , f19 are quickly found after about 30 megamems of calculation, and they aren’t
large: maxZ(fk) = Z(f11) = 9547. Another 400 megamems produces the ZDDs for
f↑

1 , . . . , f↑
19, which likewise are small: maxZ(f↑

k ) = Z(f↑
11) = 9458.

We find, for example, that the generating function for f↑
18

is 12z47 + 13z48; eighteen cliques suffice to cover all but one of
the 49 vertices, if we leave out CA, DC, FL, IL, LA, MI, MN, MT,
SC, TN, UT, WA, or WV. There also are twelve cases where we can
maximally cover 47 vertices; for example, if all but NE and NM are
covered by 18 cliques, then neither of those states are covered. An unusual example of
maximal clique covering is illustrated here: If the 29 “black” states are covered by 12
cliques, none of the “white” states will also be covered.

240. (a) In fact, the subformula f(x) =

v(xv ∨


u−−v xu) of (68) precisely character-

izes the dominating sets x. And if any element of a kernel is removed, it isn’t dominated
by the others. [C. Berge, Théorie des graphes et ses applications (1958), 44.]

(b) The Boolean formula of part (a) yields a ZDD with Z(f) = 888 after about
1.5 Mµ of computation; then another 1.5 Mµ with the MINMAL algorithm of answer
237 gives the minimal elements, with Z(f↓) = 2082.

A more clever way is to start with h =

v(ev ⊔


u−−v eu), and then to compute

h♯, because h♯ = f↓. However, cleverness doesn’t pay in this case: About 80 Kµ suffice
to compute h, but the computation of h♯ by the MINHIT algorithm costs about 350 Mµ.

Either way, we deduce that there are exactly 7,798,658 minimal dominating sets.
More precisely, the generating function has the form 192z11 +58855z12 +· · ·+4170z18 +
40z19 (which can be compared to 80z11 + 7851z12 + · · ·+ 441z18 + 18z19 for kernels).

(c) Proceeding as in answer 239, we can determine the sets of vertices dk that are
dominated by subsets of size k = 1, 2, 3, . . . , because dk+1 = dk ⊔ d1. Here it’s much
faster to start with d1 = ℘ ⊓ h instead of d1 = h, even though
Z(℘⊓h) = 313 while Z(h) = 213, because we aren’t interested in
details about the small-cardinality members of dk. Using the fact
that the generating function for d7 is · · ·+61z42+z43, one can ver-
ify that the illustrated solution is unique. (Total cost ≈ 300 Mµ.)

241. Let g be the family of all 728 edges. Then, as in previous exercises, f = ℘↘ g is
the family of independent sets, and the cliques are c = ℘↘ (((


v ev) § 2) \ g). We have

Z(g) = 699, Z(f) = 20244, Z(c) = 1882.

From the Library of Melissa Nuno



ptg999

672 ANSWERS TO EXERCISES 7.1.4

(a) Among |f | = 118969 independent sets, there are |f↑| = 10188 kernels, with
Z(f↑) = 8577 and generating function 728z5+6912z6+2456z7+92z8. The 92 maximum
independent sets are the famous solutions to the classic 8-queens problem, which we
shall study in Section 7.2.2; example (C1) is the only solution with no three queens in a
straight line, as noted by Sam Loyd in the Brooklyn Daily Eagle (20 December 1896).
The 728 = 91×8 minimum kernels were first listed by C. F. de Jaenisch, Traité des ap-
plications de l’analyse math. au jeu des échecs 3 (1863), 255–259, who ascribed them to
“Mr de R∗∗∗.” The upper left queen in (C0) can be replaced by king, bishop, or pawn,
still dominating every open square [H. E. Dudeney, The Weekly Dispatch (3 Dec 1899)].

Q
Q

Q

Q
Q

(C0)

Q Q

Q Q
(C2)

Q
Q

Q

Q
Q

(C4)

Q

Q
Q

Q

Q
(C6)

Q
Q

Q
Q

Q

q
q

q
q

q

(C8)

Q
Q

Q
Q

Q
Q

Q
Q

(C1)

QQQQQQQQ

(C3)

Q QQ Q
Q QQ Q
Q Q Q

(C5)

QQQQQQ Q

(C7)

Q
Q

Q
Q

Q
Q

Q
Q

q
q

q
q

q
q

q
q
(C9)

(b) Here Z(c↑) = 866; the 310 maximal cliques are described in exercise 7–129.
(c) These subsets are computationally more difficult: The ZDD for all dominating

sets d has Z(d) = 12,663,505, |d| = 18,446,595,708,474,987,957; the minimal ones have
Z(d↓) = 11,363,849, |d↓| = 28,281,838, and generating function 4860z5 + 1075580z6 +
14338028z7+11978518z8+873200z9+11616z10+36z11. One can compute the ZDD for d
in 1.5 Gµ by Boolean algebra, and then the ZDD for d↓ in another 680 Gµ; alternatively,
the “clever” approach of answer 240 obtains d↓ in 775 Gµ without computing d. The
11-queen arrangement in (C5) is the only such minimal dominating set that is confined
to three rows. H. E. Dudeney presented (C4), the only 5-queen solution that avoids the
central diamond, in Tit Bits (1 Jan 1898), 257. The set of all 4860 minimum solutions
was first enumerated by K. von Szily [Deutsche Schachzeitung 57 (1902), 199]; his com-
plete list appears in W. Ahrens, Math. Unterhaltungen und Spiele 1 (1910), 313–318.

(d) Here it suffices to compute (c ∩ d)↓ instead of c ∩ (d↓), if we don’t already
know d↓, because c⊓℘ = c. We have Z(c∩d↓) = 342 and |c∩d↓| = 92, with generating
function 20z5 + 56z6 + 16z7. Once again, Dudeney was first to discover all 20 of the
5-queen solutions [The Weekly Dispatch (30 July 1899)].

(e) We have Z(f ⊔ f) = 91,780,989 at a cost of 24 Gµ; then Z((f ⊔ f)↑) =
11,808,436 after another 290 Gµ. There are 27,567,390 maximal induced bipartite sub-
graphs, with generating function 109894z10 +2561492z11 +13833474z12 +9162232z13 +
1799264z14+99408z15+1626z16. Any 8 independent
queens can be combined with their mirror reflection
to obtain a 16-queen solution, as (C1) yields (C9).
But the disjoint union of minimum kernels is not al-
ways a maximal induced bipartite subgraph; for ex-
ample, consider the union of (C0) with its reflection:

Q
Q

Q

Q
Q

q
q

q

q
q

⊆
Q

Q
Q

Q
Q

Q
Q

q
q

q
q

q
q

q

.

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 673

Parts (a), (b), (d), and possibly (c) can be solved just as well without the use
of ZDDs; see, for example, exercise 7.1.3–132 for (a) and (b). But the ZDD approach
seems best for (e). And the computation of all the maximal tripartite subgraphs of Q8
may be beyond the reach of any feasible algorithm.

[In larger queen graphs Qn, the smallest kernels and the minimum dominating
sets are each known to have sizes either ⌈n/2⌉ or ⌈n/2⌉ + 1 for 12 ≤ n ≤ 120. See
P. R. J. Östergård and W. D. Weakley, Electronic J. Combinatorics 8 (2001), #R29;
D. Finozhenok and W. D. Weakley, Australasian J. Combinatorics 37 (2007), 295–300.
The largest minimal dominating sets have been investigated by A. P. Burger, E. J.
Cockayne, and C. M. Mynhardt, Discrete Mathematics 163 (1997), 47–66.]

242. These are the kernels of an interesting 3-regular hypergraph with 1544 edges. Its
4,113,975,079 independent subsets f (that is, its subsets with no three collinear points)
have Z(f) = 52,322,105, computable with about 12 gigamems using family algebra
as in answer 236(e). Another 575 Gµ will compute the kernels f↑, for which we have
Z(f↑) = 31,438,750 and |f↑| = 66,509,584; the generating function is 228z8 + 8240z9 +
728956z10 +9888900z11 +32215908z12 +20739920z13 +2853164z14 +73888z15 +380z16.

[The problem of finding an independent set of size 16 was first posed by H. E. Dudeney
in The Weekly Dispatch (29 Apr 1900 and 13 May 1900), where he gave the leftmost
pattern shown above. Later, in the London Tribune (7 Nov 1906), Dudeney asked
puzzlists to find the second pattern, which has two points in the center. The full set of
maximum kernels, including 57 that are distinct under symmetry, was found by M. A.
Adena, D. A. Holton, and P. A. Kelly, Lecture Notes in Math. 403 (1974), 6–17, who
also noted the existence of an 8-point kernel. The middle pattern above is the only such
kernel with all points in the central 4 × 4. The other two patterns yield kernels that
have respectively (8, 8, 10, 10, 12, 12, 12) points in n×n grids for n = (8, 9, . . . , 14); they
were found by S. Ainley and described in a letter to Martin Gardner, 27 Oct 1976.]

243. (a) This result is readily verified even for infinite sets. (Notice that, as a Boolean
function, f∩ is the least Horn function that is ⊇ f , by Theorem 7.1.1H.)

(b) We could form f (2) = f ⊓f , then f (4) = f (2)⊓f (2), . . . , until f (2k+1) = f (2k),
using exercise 205. But it’s faster to devise a recurrence that goes to the limit all at
once. If f = f0 ∪ (e1 ⊔ f1) we have f∩ = f ′ ∪ (e1 ⊔ f∩

1 ), where f ′ = f∩
0 ∪ (f∩

0 ⊓ f∩
1 ).

[An alternative formula is f ′ = (f0 ∪ f1)∩ \ (f∩
1 ↗ f0); see S. Minato and H. Arimura,

Transactions of the Japanese Society for Artificial Intelligence 22 (2007), 165–172.]
(c) With the first suggestion of (b), the computation of F (2), F (4), and F (8) =

F (4) costs about (610 + 450 + 460) megamems. In this example it turns out that
F (4) = F (3), and that just three patterns belong to F (3) \ F (2), namely c***f, *k*t*,
and ***sp. (The words that match ***sp are clasp, crisp, and grasp.) A direct
computation of F∩ using the recurrence based on f∩

0 ⊓ f∩
1 costs only 320 Mµ; and

in this example the alternative recurrence based on (f0 ∪ f1)∩ costs 470 Mµ. The
generating function is 1 + 124z + 2782z2 + 7753z3 + 4820z4 + 5757z5.

244. To convert Fig. 22 from a BDD to a ZDD, we add appropriate nodes with LO = HI
where links jump levels, obtaining the z-profile (1, 2, 2, 4, 4, 5, 5, 5, 5, 5, 2, 2, 2).

From the Library of Melissa Nuno



ptg999

674 ANSWERS TO EXERCISES 7.1.4

To convert it from a ZDD to a BDD, we add nodes in the same places, but with
HI = ⊥ , obtaining the profile (1, 2, 2, 4, 4, 5, 5, 5, 5, 5, 2, 2, 2). (In fact, the
connectedness function and the spanning tree function are Z-transforms of each other;
see exercise 192.)

245. See exercise 7.1.1–26. (It should be interesting to compare the performance of
the Fredman–Khachiyan algorithm in exercise 7.1.1–27 with the ZDD-based algorithm
MINHIT in answer 237, on a variety of different functions.)

246. If a nonconstant function doesn’t depend on x1, we can replace x1 in the formulas
by xv, as in (50). Let P and Q be the prime implicants of functions p and q. (For
example, if P = e2 ∪ (e3 ⊔ e4) then p = x2 ∨ (x3 ∧ x4).) By (137) and induction on |f |,
the function f described in the theorem is sweet if and only if p and q are sweet and
PI(f0) ∩ PI(f1) = ∅. The latter equality holds if and only if p ⊆ q.
247. We can characterize them with BDDs as in (49) and exercise 75; but this time

σn(x1, . . . , x2n) = σn−1(x1, . . . , x2n−1) ∧
(x̄2 ∧ · · · ∧ x̄2n) ∨


σn−1(x2, . . . , x2n) ∧

2k−1
j=0


x̄2j+1 ∨


i⊂j

x2i+2


.

The answers |σn| for 0 ≤ n ≤ 7 are (2, 3, 6, 18, 106, 2102, 456774, 7108935325). (This
computation builds a BDD of size B(σ7) = 7,701,683, using about 900 megamems and
725 megabytes altogether.)

248. False; for example, (x1∨x2)∧(x2∨x3) isn’t sweet. (But the conjunction is sweet
if f and g depend on disjoint sets of variables, or if x1 is the only variable on which
they both depend.)

249. (Solution by Shaddin Dughmi and Ian Post.) A nonzero monotone Boolean
function is ultrasweet if and only if its prime implicants are the bases of a matroid; see
Section 7.6.1. By extending answer 247 we can determine the number of ultrasweet
functions f(x1, . . . , xn) for 0 ≤ n ≤ 7: (2, 3, 6, 17, 69, 407, 3808, 75165).

250. Exhaustive analysis shows that ave B(f) = 76726/7581 ≈ 10.1; ave Z(PI(f)) =
71513/7581 ≈ 9.4; Pr(Z(PI(f)) > B(f)) = 151/7581 ≈ .02; and max Z(PI(f))/B(f) =
8/7 occurs uniquely when f is (x1∧x4) ∨ (x1∧x5) ∨ (x2∧x3∧x4) ∨ (x2∧x5).

251. More strongly, could it be that lim supZ(PI(f))/B(f) = 1?

252. The ZDD should describe all words on {e1, e
′
1, . . . , en, e

′
n} that have exactly j

unprimed letters and k− j primed letters, and no occurrences of both ei and e′i in the
same word, for some set of pairs (j, k). For example, if n = 9 and f(x) = vνx, where
v = 110111011, the pairs are (0, 8), (3, 6), and (8, 8). Regardless of the set of pairs, the
z-profile elements will all be O(n2), hence Z(PI(f)) = O(n3). (We order the variables
so that xi and x′i are adjacent.) And f(x) = S⌊n/3⌋,...,⌊2n/3⌋(x) has Z(PI(f)) = Ω(n3).

253. Let I(f) be the family of all implicants of f ; then PI(f) = I(f)↓. The formula
I(f) = I(f0 ∧ f1) ∪ (e′1⊔I(f0)) ∪ (e1⊔I(f1)) is easy to verify. Thus I(f)↓ = A ∪ (e′1 ⊔
(PI(f0) ↘ A)) ∪ (e1 ⊔ (PI(f1) ↘ A)), as in exercise 237. But PI(f0) ↘ A = PI(f0) \ A,
since A ⊆ I(f).

[This recurrence for prime implicants is due to O. Coudert and J. C. Madre,
ACM/IEEE Design Automation Conf. 29 (1992), 36–39. Partial results had previously
been formulated by B. Reusch, IEEE Trans. C-24 (1975), 924–930.]

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 675

254. By (53) and (137), we need to show that PI(gh) \PI(fh ∪ gl) = (PI(gh)\PI(gl)) \
(PI(fh)\PI(fl)). But both of these are equal to PI(gh) \ (PI(fh) ∪ PI(gl)), because
fl ⊆ fh ⊆ gh and fl ⊆ gl ⊆ gh.

[This recurrence produces a ZDD directly from the BDDs for f and g, and it
yields PI(g) when f = 0. Thus it is easier to implement than (137), which requires also
the set-difference operator on ZDDs. And it sometimes runs much faster in practice.]

255. (a) A typical item α like e2 ⊔ e5 ⊔ e6 has a very simple ZDD. We can readily
devise a BUMP routine that sets g ← g ⊕ α and returns [α∈ g ], given ZDDs g and α.

To insert α into the multifamily f , start with k ← c ← 0; then while c = 0, set
c ← BUMP(fk) and k ← k + 1. To delete α, assuming that it is present, start with
k ← 0 and c← 1; while c = 1, set c← BUMP(fk) and k ← k + 1.

(b) Suppose fk and gk are ∅ for k ≥ m. Set k ← 0 and t ← ∅ (the ZDD ⊥ ).
While k < m, set hk ← fk ⊕ gk ⊕ t and t← ⟨fkgk t⟩. Finally set hm ← t.

[This representation and its insertion algorithm are due to S. Minato and H. Ari-
mura, Proc. Workshop, Web Information Retrieval and Integration (IEEE, 2005), 4–11.]

256. (a) Reflect the binary representation from left to right, and append 0s until the
number of bits is 2n for some n. The result is the truth table of the corresponding
Boolean function f(x1, . . . , xn), with xk corresponding to 22n−k ∈ U . When x = 41,
for example, 10010100 is the truth table of (x1∧x̄2∧x3) ∨ (x̄1∧x2∧x3) ∨ (x̄1∧x̄2∧x̄3).

(b) If x < 22n

, we have Z(x) ≤ Un = O(2n/n), by (79) and exercise 192.
(c) There’s a simple recursive routine ADD(x, y, c), which takes a “carry bit” c

and pointers to the ZDDs for x and y and returns a pointer to the ZDD for x+ y + c.
This routine is invoked at most 4Z(x)Z(y) times.

(d) We cannot claim that Z(x .− y) = O(Z(x)Z(y)), because Z(x .− y) = n + 1
and Z(x) = 3 and Z(y) = 1 when x = 22n

and y = 1. But by computing x
.− y =

(x + 1 + ((22n − 1) ⊕ y)) − 22n

when y ≤ x < 22n

, we can show that Z(x .− y) =
O(Z(x)Z(y) log log x). (See the ZDD nodes tj in answer 201.) So the answer is “yes.”

(e) No. For example, if x = (222k+k − 1)/(22k − 1), we have Z(x) = 2k + 1 but
Z(x2) = 3 · (22k − 1) = U2k+k+1 − 2, where U2k+k+1 is the largest possible ZDD size
for numbers with lg lg x2 < 2k + k + 1 (see part (b)).

[This exercise was inspired by Jean Vuillemin, who began to experiment with
such sparse integers about 1993. Unfortunately the numbers that are of greatest im-
portance in combinatorial calculations, such as Fibonacci numbers, factorials, binomial
coefficients, etc., rarely turn out to be sparse in practice.]

257. See Proc. Europ. Design and Test Conf. (IEEE, 1995), 449–454. With signed coef-
ficients one can use {−2, 4,−8, . . . } instead of {2, 4, 8, . . . }, as in negabinary arithmetic.

[In the special case where the degree is at most 1 in each variable and where
addition is done modulo 2, the polynomials of this exercise are equivalent to the
multilinear representations of Boolean functions (see 7.1.1–(19)), and the ZDDs are
equivalent to “binary moment diagrams” (BMDs). See R. E. Bryant and Y.-A. Chen,
ACM/IEEE Design Automation Conf. 32 (1995), 535–541.]

258. If n is odd, the BDD must depend on all its variables, and there must be at least
⌈lgn⌉ of them. Thus B(f) ≥ ⌈lgn⌉+2 when n > 1, and the skinny functions of exercise
170(c) achieve this bound. If n is even, add an unused variable to the solution for n/2.

The ZDD question is easily seen to be equivalent to finding a shortest addition
chain, as in Section 4.6.3. Thus the smallest Z(f) for |f | = n is l(n) + 1, including ⊤ .

From the Library of Melissa Nuno



ptg999

676 ANSWERS TO EXERCISES 7.1.4

259. The theory of nested parentheses (see, for example, exercise 2.2.1–3) tells us that
Nn(x) = 1 if and only if x̄1 + · · · + x̄k ≥ x1 + · · · + xk for 0 ≤ k ≤ 2n, with equality
when k = 2n. Equivalently, k − n ≤ x1 + · · · + xk ≤ k/2 for 0 ≤ k ≤ 2n. So the
BDD for Nn is rather like the BDD for Sn(x), but simpler; in fact, the profile elements
are bk = ⌊k/2⌋ + 1 for 0 ≤ k ≤ n and bk = n + 1 − ⌈k/2⌉ for n ≤ k < 2n. Hence
B(Nn) = b0 + · · · + b2n−1 + 2 =


n+2

2


+ 1. The z-profile has zk = bk − [k even] for
0 ≤ k < 2n, because of HI branches to ⊥ on even levels; hence Z(Nn) = B(Nn)− n.

[An interesting BDD base for the n+1 Boolean functions that correspond to Cnn,
C(n−1)(n+1), . . . , C0(2n) in 7.2.1.6–(21) can be constructed by analogy with exercise 49.]
260. (a, b) Arrange the variables xn,0, xn,1, . . . , xn,n−1, xn−1,0, . . . , x1,0, from top
to bottom. Then the HI branch from the ZDD root of Rn is the ZDD root of Rn−1.
(This ordering actually turns out to minimize Z(Rn) for n ≤ 6, probably also for
all n.) The z-profile is 1, . . . , 1; n − 2, . . . , 2, 1, 1; n − 3, . . . , 2, 1, 1; . . . ; hence
Z(Rn) =


n
3


+ 2n + 1 ≈ 1
6n

3 and Z(R100) = 161,901. The ordinary profile is 1, 2, 2,
3, 4, . . . , n−1; n−1, 2n−4, 2n−5, . . . , n−1; n−2, 2n−6, . . . , n−2; . . . ; altogether
B(Rn) = 3


n
3


+

n+1

2


+ 3 for n ≥ 2, and B(R100) = 490,153.
[See I. Semba and S. Yajima, Trans. Inf. Proc. Soc. Japan 35 (1994), 1666–1667.

Incidentally, the method of exercise 7.2.1.5–26 leads to a ZDD for set partitions that has
only


n
2


variables and

n
2


+ 1 nodes. But the connection between that representation
and the partitions themselves is less direct, thus harder to restrict in a natural way.]

(c) Now there are 573 variables instead of 5050 when n = 100; the number of
variables in general is nl − 2l + 1, where l = ⌈lgn⌉, by Eq. 5.3.1–(3). We examine the
bits of an, an−1, . . . , with the most significant bit first. Then B(R′

100) = 31,861, and
one can show that B(R′

n) =

n
2

l− 1

6 4l− 1
2 2l−ν(n−1)+ l+ 8

3 for n > 2. The ZDD size
is more complicated, and appears to be roughly 60% larger; we have Z(R′

100) = 50,154.
261. Given a Boolean function f(x1, . . . , xn), the set of all binary strings x1 . . . xn
such that f(x1, . . . , xn) = 1 is a finite language, so it is regular. The minimum-state
deterministic automaton A for this language is the QDD for f . (In general, when L is
regular, the state ofA after reading x1 . . . xk accepts the language {α | x1 . . . xkα ∈ L}.)

[The quoted theorem was discovered in a more general context by D. A. Huffman,
Journal of the Franklin Institute 257 (1954), 161–190, and independently by E. F.
Moore, Annals of Mathematics Studies 34 (1956), 129–153.]

An interesting example of the connection between this theory and the theory of
BDDs can be found in early work by Yuri Breitbart that is summarized in Doklady
Akad. Nauk SSSR 180 (1968), 1053–1055. Lemma 7 of Breitbart’s paper states, in es-
sence, that Bmin(ψ) = Ω(2n/4), where ψ is the function of 2n variables x = (x1, . . . , xn)
and y = (y1, . . . , yn) defined by ψ(x, y) = xνy ⊕ yνx, with the understanding that
x0 = y0 = 0. (Notice that ψ is sort of a “two-sided” hidden weighted bit function.)
262. (a) If a denotes the function or subfunction f , we can for example let C(a) =
a ⊕ 1 denote f̄ , assuming that each node occupies an even number of bytes. Then
C(C(a)) = a, and a link to a denotes a nonnormal function if and only if a is odd;
a&−2 always points to a node, which always represents a normal function.

The LO pointer of every node is even, because a normal function remains normal
when we replace any variable by 0. But the HI pointer of any node might be comple-
mented, and an external root pointer to any function of a normalized BDD base might
also be complemented. Notice that the ⊤ sink is now impossible.

(b) Uniqueness is obvious because of the relation to truth tables: A bead is either
normal (i.e., begins with 0) or the complement of a normal bead.

From the Library of Melissa Nuno



ptg999

7.1.4 ANSWERS TO EXERCISES 677

(c) In diagrams, each complement link is conveniently indicated by a dot:

⊥
1

⊥

2

1

3
⊥

2

1

3
⊥

1

2
⊥

2

1

3
⊥

2

2
⊥

2

1

3
⊥

2

1

3
⊥

2

1

3
⊥

2

1

3
⊥

2

2
⊥

2

1

3
⊥

1

2
⊥

2

1

3
⊥

2

1

3
⊥
1

(d) There are 22m−1−22m−1−1 normal beads of order m. The worst case, B0(f) ≤
B0(fn) = 1 +

n−1
k=0 min(2k, 22n−k−1− 22n−k−1−1) = (Un+1 − 1)/2, occurs with the

functions of answer 110. For the average normalized profile, change 22n−k − 1 in (80)
to 22n−k − 2, and divide the whole formula by 2; again the average case is very close
to the worst case. For example, instead of (81) we have

(1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 127.3, 103.9, 6.0, 1.0, 1.0).

(e) We save ⊤ , one j6 , two j5 s, and three j4 s, leaving 45 normalized nodes.
(f) It’s probably best to have subroutines AND, OR, BUTNOT for the case where

f and g are known to be normal, together with a subroutine GAND for the general case.
The routine GAND(f, g) returns AND(f, g) if f and g are even, BUTNOT(f, C(g)) if f
is even but g is odd, BUTNOT(g, C(f)) if g is even but f is odd, C(OR(C(f), C(g))) if
f and g are odd. The routine AND(f, g) is like (55) except that rh ← GAND(fh, gh);
only the cases f = 0, g = 0, and f = g need be tested as “obvious” values.

Notes: Complement links were proposed by S. Akers in 1978, and independently
by J. P. Billon in 1987. Although such links are used by all the major BDD packages,
they are hard to recommend because the computer programs become much more
complicated. The memory saving is usually negligible, and never better than a factor
of 2; furthermore, the author’s experiments show little gain in running time.

With ZDDs instead of BDDs, a “normal family” of functions is a family that
doesn’t contain the empty set. Shin-ichi Minato has suggested using C(a) to denote
the family f ⊕ ϵ, instead of f̄ , in ZDD work.

263. (a) If Hx = 0 and x ̸= 0, we can’t have νx = 1 or 2 because the columns of H
are nonzero and distinct. [R. W. Hamming, Bell System Tech. J. 29 (1950), 147–160.]

(b) Let rk be the rank of the first k columns of H, and sk the rank of the last k
columns. Then bk = 2rk+sn−k−rn for 0 ≤ k < n, because this is the number of elements
in the intersection of the vector spaces spanned by the first k and last n− k columns.
In the Hamming code, rk = 1 +λk and sk = min(m, 2 +λ(k− 1)) for k > 1; so we find
B(f) = (n2 + 5)/2. [See G. D. Forney, Jr., IEEE Trans. IT-34 (1988), 1184–1187.]

(c) Let qk = 1−pk. Maximizing
n
k=1 p

[xk=yk]
k q

[xk ̸=yk]
k is the same as maximizingn

k=1 wkxk, where wk = (2yk − 1) log(pk/qk), so we can use Algorithm B.
Notes: Coding theorists, beginning with unpublished work of Forney in 1967,

have developed the idea of a code’s so-called trellis. In the binary case, the trellis is the
same as the QDD for f , but with all nodes for the constant subfunction 0 eliminated.
(Useful codes have distance > 1; then the trellis is also the BDD for f , but with ⊥
eliminated.) Forney’s original motivation was to show that the decoding algorithm of
A. Viterbi [IEEE Trans. IT-13 (1967), 260–269] is optimum for convolutional codes.
A few years later, L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv [IEEE Trans. IT-20
(1974), 284–287] extended trellis structure to linear block codes and presented further
optimization algorithms. See also the papers of G. B. Horn and F. R. Kschischang
[IEEE Trans. IT-42 (1996), 2042–2048]; J. Lafferty and A. Vardy [IEEE Trans. C-48
(1999), 971–986].

From the Library of Melissa Nuno



ptg999

678 ANSWERS TO EXERCISES 7.1.4

264. Procedures that combine the “bottom-up” methods of Algorithm B with “top-
down” methods that optimize over predecessors of a node might be more efficient than
methods that go strictly in one direction.
265. Compute counts cj bottom-up as in Algorithm C, using n-bit arithmetic. Then
proceed top-down, by starting with k ← s − 1, j ← 1, m ← m − 1, and repeating
the following steps (during which we will have 0 ≤ m < 2vk−jck): If vk > j, set
xj ← ⌊m/2vk−j−1ck⌋, m← mmod 2vk−j−1ck, j ← j+1; otherwise if k = 1, terminate;
otherwise set l ← lk, h ← hk, and if m < 2vl−vk−1cl set xj ← 0, k ← l, j ← j + 1;
otherwise set xj ← 1, m← m− 2vl−vk−1cl, k ← h, j ← j + 1.
266. In fact, the ZDD is obtained directly from the standard “left child, right sibling”
binary tree for F (see 7.2.1.6–(4)) if we use the left child link for HI and the right sibling
link for LO; null links are changed to point to ⊤ , except that the LO link of the root
of the rightmost tree (the final node in postorder) should point to ⊥ .
267. The ZDD size of d(F ) can be computed as follows, using an auxiliary function
ζ(T ) defined recursively on trees: If |T | = 1 (that is, if T has only one node), ζ(T ) = 1.
Otherwise T consists of a root together with k ≥ 1 subtrees, T1, . . . , Tk, and we define
ζ(T ) = 1 + ζ(T1) + · · ·+ ζ(Tk) + |T | − |Tk|. Then if F consists of k ≥ 1 trees T1, . . . ,
Tk, we have Z(d(F )) = 1 + ζ(T1) + · · ·+ ζ(Tk) + [|Tk| = 1].

The minimum size, n, clearly occurs when F consists of n one-node trees. The
maximum size, ⌊n2/4⌋+ 2n+ 1, occurs for n = 2m− 1 in a tree for which node k has
two children, k + 1 and k +m for 1 ≤ k < m; the case n = 2m is similar.

For the average size, consider the generating function Z(w, z) =

wζ(T )z|T |,

summed over all trees T . The definition of ζ yields the functional equation Z(w, z) =
wz+w2zZ(w, z)/(1−Z(w,wz)). Differentiation with respect to w and to z, then setting
w = 1, tells us that Z(1, z) = (1−s)/2, Zw(1, z) = z/s+z/s2, and Zz(1, z) = 1/s, where
s =

√
1− 4z. The generating function


F w

Z(d(F ))z|F |, summed over all nonempty
forests F , is (wZ(w, z) + w3z − w2z)/(1− Z(w, z)). Differentiating with respect to w
and setting w ← 1, we obtain z/(1−4z)+2z/

√
1− 4z; hence the average of Z(d(F )) is

(4n−1 + 2nCn−1)/Cn = 1
4
√
πn3/2 + n

2 +O(n1/2),

where Cn is the Catalan number 7.2.1.6–(15).

SECTION 7.2.1.1
1. Let mj = uj − lj + 1, and visit (a1 + l1, . . . , an+ ln) instead of visiting (a1, . . . , an)

in Algorithm M. Or, change ‘aj ← 0’ to ‘aj ← lj ’ and ‘aj = mj − 1’ to ‘aj = uj ’ in
that algorithm, and set l0 ← 0, u0 ← 1 in step M1.

2. (0, 0, 1, 2, 3, 0, 2, 7, 0, 9).
3. Step M4 is performed m1m2 . . .mk times when j = k; therefore the total isn
k=0

k
j=1 mj = m1 . . .mn(1 + 1/mn + 1/mnmn−1 + · · · + 1/mn . . .m1). If all mj

are 2 or more, this is less than 2m1 . . .mn. [Thus, we should keep in mind that fancy
Gray-code methods, which change only one digit per visit, actually reduce the total
number of digit changes by at most a factor of 2.]

4. N1. [Initialize.] Set aj ← mj − 1 for 0 ≤ j ≤ n, where m0 = 2.
N2. [Visit.] Visit the n-tuple (a1, . . . , an).
N3. [Prepare to subtract one.] Set j ← n.
N4. [Borrow if necessary.] If aj = 0, set aj ← mj − 1, j ← j − 1, and repeat this

step.

From the Library of Melissa Nuno



ptg999

7.2.1.1 ANSWERS TO EXERCISES 679

N5. [Decrease, unless done.] If j = 0, terminate the algorithm. Otherwise set
aj ← aj − 1 and go back to step N2.

5. Bit reflection is easy on a machine like MMIX, but on other computers we can
proceed as follows:

Z1. [Initialize.] Set j ← k ← 0.
Z2. [Swap.] Interchange A[j + 1] ↔ A[k + 2n−1]. Also, if j < k, interchange

A[j]↔ A[k] and A[j + 2n−1 + 1]↔ A[k + 2n−1 + 1].
Z3. [Advance k.] Set k ← k + 2, and terminate if k ≥ 2n−1.
Z4. [Advance j.] Set h ← 2n−2. If j ≥ h, repeatedly set j ← j − h and h ← h/2

until j < h. Then set j ← j+h. (Now j = (b0 . . . bn−1)2 if k = (bn−1 . . . b0)2.)
Return to Z2.

6. If g((0bn−1 . . . b1b0)2) = (0(bn−1) . . . (b2⊕b1)(b1⊕b0))2 then g((1bn−1 . . . b1b0)2) =
2n + g((0bn−1 . . . b1b0)2) = (1(bn−1) . . . (b2 ⊕ b1)(b1 ⊕ b0))2, where b = b⊕ 1.

7. To accommodate 2r sectors one can use g(k) for 2n − r ≤ k < 2n + r, where
n = ⌈lg r⌉, because g(2n − r) ⊕ g(2n + r − 1) = 2n by (5). [G. C. Tootill, Proc. IEE
103, Part B Supplement (1956), 434.] See also exercise 26.

8. Use Algorithm G with n← n−1 and include the parity bit a∞ at the right. (This
yields g(0), g(2), g(4), . . . .)

9. Replace the rightmost ring, since ν(1011000) is odd.
10. An +Bn = g[−1](2n − 1) = ⌊2n+1/3⌋ and An = Bn + n. Hence An = ⌊2n/3 + n/2⌋
and Bn = ⌊2n/3− n/2⌋.

Historical notes: The early Japanese mathematician Yoriyuki Arima (1714–1783)
treated this problem in his Shūki Sanpō (1769), Problem 44, observing that the n-
ring puzzle reduces to an (n − 1)-ring puzzle after a certain number of steps. Let
Cn = An − An−1 = Bn − Bn−1 + 1 be the number of rings removed during this
reduction. Arima noticed that Cn = 2Cn−1 − [n even]; thus he could compute An =
C1 + C2 + · · ·+ Cn for n = 9 without actually knowing the formula Cn = ⌈2n−1/3⌉.

More than two centuries earlier, Cardano had already mentioned the “complicati
annuli” in his De Subtilitate Libri XXI (Nuremberg: 1550), Book 15. He wrote that
they are “useless yet admirably subtle,” stating erroneously that 95 moves are needed
to remove seven rings and 95 more to put them back. John Wallis devoted seven
pages to this puzzle in the Latin edition of his Algebra 2 (Oxford: 1693), Chapter 111,
presenting detailed but nonoptimum methods for the nine-ring case. He included the
operation of sliding a ring through the bar as well as putting it on or off, and he hinted
that shortcuts were available, but he did not attempt to find a shortest solution.
11. The solution to Sn = Sn−2 + 1 + Sn−2 + Sn−1 when S1 = S2 = 1 is Sn =
2n−1 − [n even]. [Math. Quest. Educational Times 3 (1865), 66–67.]
12. (a) The theory of n − 1 Chinese rings proves that Gray binary code yields the
compositions in a convenient order (4, 31, 211, 22, 112, 1111, 121, 13):

C1. [Initialize.] Set t← 0, j ← 1, s1 ← n. (We assume that n > 1.)
C2. [Visit.] Visit s1 . . . sj . Then set t← 1− t, and go to C4 if t = 0.
C3. [Odd step.] If sj > 1, set sj ← sj − 1, sj+1 ← 1, j ← j + 1; otherwise set

j ← j − 1 and sj ← sj + 1. Return to C2.
C4. [Even step.] If sj−1 > 1, set sj−1 ← sj−1 − 1, sj+1 ← sj , sj ← 1, j ← j + 1;

otherwise set j ← j − 1, sj ← sj+1, sj−1 ← sj−1 + 1 (but terminate if
j − 1 = 0). Return to C2.

From the Library of Melissa Nuno



ptg999

680 ANSWERS TO EXERCISES 7.2.1.1

(b) Now q1, . . . , qt−1 represent rings on the bar:
B1. [Initialize.] Set t← 1, q0 ← n. (We assume that n > 1.)
B2. [Visit.] Set qt ← 0 and visit (q0 − q1) . . . (qt−1 − qt). Go to B4 if t is even.
B3. [Odd step.] If qt−1 = 1, set t ← t − 1; otherwise set qt ← 1 and t ← t + 1.

Return to step B2.
B4. [Even step.] If qt−2 = qt−1 + 1, set qt−2 ← qt−1 and t← t− 1 (but terminate

if t = 2); otherwise set qt ← qt−1, qt−1 ← qt + 1, t← t+ 1. Return to B2.

These algorithms [see J. Misra, ACM Trans. Math. Software 1 (1975), 285] are loopless
even in their initialization steps.
13. In step C1, also set C ← 1. In step C3, set C ← sjC if sj > 1, otherwise
C ← C/(sj−1 +1). In step C4, set C ← sj−1C if sj−1 > 1, otherwise C ← C/(sj−2 +1).
Similar modifications apply to steps B1, B3, B4. Sufficient precision is needed to
accommodate the value C = n! for the composition 1 . . . 1; we are stretching the
definition of looplessness by assuming that arithmetic operations take unit time.
14. V1. [Initialize.] Set j ← 0.

V2. [Visit.] Visit the string a1 . . . aj .
V3. [Lengthen.] If j < n, set j ← j + 1, aj ← 0, and return to V2.
V4. [Increase.] If aj < mj − 1, set aj ← aj + 1 and return to V2.
V5. [Shorten.] Set j ← j − 1, and return to V4 if j > 0.

15. J1. [Initialize.] Set j ← 0.
J2. [Even visit.] If j is even, visit the string a1 . . . aj .
J3. [Lengthen.] If j < n, set j ← j + 1, aj ← 0, and return to J2.
J4. [Odd visit.] If j is odd, visit the string a1 . . . aj .
J5. [Increase.] If aj < mj − 1, set aj ← aj + 1 and return to J2.
J6. [Shorten.] Set j ← j − 1, and return to J4 if j > 0.

This algorithm is loopless, although it may appear at first glance to contain loops; at
most four steps separate consecutive visits. The basic idea is related to exercise 2.3.1–5
and to “prepostorder” traversal (Algorithm 7.2.1.6Q).
16. Suppose LINK(j − 1) = j + nbj for 1 ≤ j ≤ n and LINK(j − 1 + n) = j + n(1− bj)
for 1 < j ≤ n. These links represent (a1, . . . , an) if and only if g(a1 . . . an) = b1 . . . bn,
so we can use a loopless Gray binary generator to achieve the desired result.
17. Put the concatenation of 3-bit codes (g(j), g(k)) in row j and column k, for 0 ≤
j, k < 8. [It is not difficult to prove that this is essentially the only solution, except for
permuting and/or complementing coordinate positions and/or rotating rows, because
the coordinate that changes when moving north or south depends only on the row,
and a similar statement applies to columns. Karnaugh’s isomorphism between the
4-cube and the 4 × 4 torus can be traced back to The Design of Switching Circuits
by W. Keister, A. E. Ritchie, and S. H. Washburn (1951), page 174. Incidentally,
Keister went on to design an ingenious variant of Chinese rings called SpinOut, and a
generalization called The Hexadecimal Puzzle, U.S. Patents 3637215–3637216 (1972).]
18. Use 2-bit Gray code to represent the digits uj = (0, 1, 2, 3) respectively as the bit
pairs u′

2j−1u
′
2j = (00, 01, 11, 10). [C. Y. Lee introduced his metric in IRE Trans. IT-4

(1958), 77–82. A similar m/2-bit encoding works for even values of m; for example,

From the Library of Melissa Nuno



ptg999

7.2.1.1 ANSWERS TO EXERCISES 681

when m = 8 we can represent (0, 1, 2, 3, 4, 5, 6, 7) by (0000, 0001, 0011, 0111, 1111, 1110,
1100, 1000). But such a scheme leaves out some of the binary patterns when m > 4.]
19. (a) A modular Gray quaternary algorithm needs slightly less computation than
Algorithm M, but it doesn’t matter because 256 is so small. The result is z8

0 + z8
1 +

z8
2 + z8

3 + 14(z4
0z

4
2 + z4

1z
4
3) + 56z0z1z2z3(z2

0 + z2
2)(z2

1 + z2
3).

(b) Replacing (z0, z1, z2, z3) by (1, z, z2, z) gives 1 + 112z6 + 30z8 + 112z10 + z16;
thus all of the nonzero Lee weights are ≥ 6. Now use the construction in the previous
exercise to convert each (u0, u1, u2, u3, u4, u5, u6, u∞) into a 16-bit number.
20. Recover the quaternary vector (u0, u1, u2, u3, u4, u5, u6, u∞) from u′, and use Al-
gorithm 4.6.1D to find the remainder of u0 + u1x+ · · ·+ u6x

6 divided by g(x), mod 4;
that algorithm can be used in spite of the fact that the coefficients do not belong to a
field, because g(x) is monic. Express the remainder as xj + 2xk (modulo g(x) and 4),
and let d = (k − j) mod 7, s = (u0 + · · ·+ u6 + u∞) mod 4.

Case 1: s = 1. If k =∞, the error was xj (in other words, the correct vector has
uj ← (uj − 1) mod 4); otherwise there were three or more errors.

Case 2: s = 3. If j = k the error was −xj ; otherwise ≥ 3 errors occurred.
Case 3: s = 0. If j = k = ∞, no errors were made; if j = ∞ and k < ∞,

at least four errors were made. Otherwise the errors were xa − xb, where a = (j +
(∞,6,5,2,3,1,4,0)) mod 7 according as d = (0,1,2,3,4,5,6,∞), and b = (j+2d) mod 7.

Case 4: s = 2. If j =∞ the errors were 2xk. Otherwise the errors were

xj + x∞, if k =∞;
−xj − x∞, if d = 0;
xa + xb, if d ∈ {1, 2, 4}, a = (j − 3d) mod 7, b = (j − 2d) mod 7;
−xa − xb, if d ∈ {3, 5, 6}, a = (j − 3d) mod 7, b = (j − d) mod 7.

Given u′ = (1100100100001111)2, we have u = (2, 0, 3, 1, 0, 0, 2, 2) and 2 + 3x2 +
x3 + 2x6 ≡ 1 + 3x + 3x2 ≡ x5 + 2x6; also s = 2. Thus the errors are x2 + x3, and
the nearest errorfree codeword is (2, 0, 2, 0, 0, 0, 2, 2). Algorithm 4.6.1D tells us that
2+2x2 +2x6 ≡ (2+2x+2x3)g(x) (modulo 4); so the eight information bits correspond
to (v0, v1, v2, v3) = (2, 2, 0, 2). [A more intelligent algorithm would also say, “Aha: The
first 16 bits of π.”]

For generalizations to other efficient coding schemes based on quaternary vectors,
see the classic paper by Hammons, Kumar, Calderbank, Sloane, and Solé, IEEE Trans.
IT-40 (1994), 301–319.
21. (a) C(ϵ) = 1, C(0α) = C(1α) = C(α), and C(∗α) = 2C(α) − [10 . . . 0∈α].
Iterating this recurrence gives C(α) = 2t − 2t−1et − 2t−2et−1 − · · · − 20e1, where
ej = [10 . . . 0∈αj ] and αj is the suffix of α following the jth asterisk. In the example
we have α1 = ∗10∗∗0∗, α2 = 10∗∗0∗, . . . , α5 = ϵ; thus e1 = 0, e2 = 1, e3 = 1, e4 = 0,
and e5 = 1 (by convention), hence C(∗∗10∗∗0∗) = 25 − 24 − 22 − 21 = 10.

(b) We may remove trailing asterisks so that t = t′. Then et = 1 implies et−1 =
· · · = e1 = 0. [The case C(α) = 2t′−1 occurs if and only if α ends in 10j∗k.]

(c) To compute the sum of C(α) over all t-subcubes, note that

n
t


clusters begin at

the n-tuple 0 . . . 0, and

n−1
t


begin at each succeeding n-tuple (namely one cluster for

each t-subcube containing that n-tuple and specifying the bit that changed). Thus the
average is (


n
t


+(2n−1)


n−1
t


)/2n−t


n
t


= 2t(1− t/n)+2t−n(t/n). [The formula in (c)

holds for any n-bit Gray path, but (a) and (b) are specific to the reflected Gray binary
code. These results are due to C. Faloutsos, IEEE Trans. SE-14 (1988), 1381–1393.]

From the Library of Melissa Nuno



ptg999

682 ANSWERS TO EXERCISES 7.2.1.1

22. Let α∗j and β∗k be consecutive lieves of a Gray binary trie, where α and β are
binary strings and j ≤ k. Then the last k − j bits of α are a string α′ such that α
and βα′ are consecutive elements of Gray binary code, hence adjacent. [Interesting
applications of this property to cube-connected message-passing concurrent computers
are discussed in A VLSI Architecture for Concurrent Data Structures by William J.
Dally (Kluwer, 1987), Chapter 3.]
23. 2j = g(k) ⊕ g(l) = g(k ⊕ l) implies that l = k ⊕ g[−1](2j) = k ⊕ (2j+1 − 1). In
other words, if k = (bn−1 . . . b0)2 we have l = (bn−1 . . . bj+1bj . . . b0)2.
24. Defining g(k) = k⊕⌊k/2⌋ as usual, we find g(k) = g(−1− k); hence there are two
2-adic integers k such that g(k) has a given 2-adic value l. One of them is even, the
other is odd. We can conveniently define g[−1] to be the solution that is even; then
(8) is replaced by bj = aj−1 ⊕ · · · ⊕ a0, for j ≥ 0. For example, g[−1](1) = −2 by this
definition; when l is a normal integer, the “sign” of g[−1](l) is the parity of l.
25. Let p = k ⊕ l; exercise 7.1.3–3 tells us that 2⌊lg p⌋+1 − p ≤ |k − l| ≤ p. We
have ν(g(p)) = ν(g(k) ⊕ g(l)) = t if and only if there are positive integers j1, . . . , jt
such that p = (1j1 0j2 1j3 . . . (0 or 1)jt)2. The largest possible p < 2n occurs when
j1 = n + 1 − t and j2 = · · · = jt = 1, yielding p = 2n − ⌈2t/3⌉. The smallest
possible q = 2⌊lg p⌋+1 − p = (1j2 0j3 . . . (1 or 0)jt)2 + 1 occurs when j2 = · · · = jt = 1,
yielding q = ⌈2t/3⌉. [C. K. Yuen, IEEE Trans. IT-20 (1974), 668; S. R. Cavior, IEEE
Trans. IT-21 (1975), 596. The analogous bound for the modular m-ary Gray code is
⌈mt/(m2 − 1)⌉, and this formula holds also for the reflected m-ary Gray code when m
is even; see van Zanten and Suparta, IEEE Trans. IT-49 (2003), 485–487; Proc. South
East Asian Math. Soc. Conf. (Yogyakarta: Gadjah Mada University, 2003), 98–105.]
26. Let N = 2nt + · · · + 2n1 where nt > · · · > n1 ≥ 0; also, let Γn be any Gray code
for {0, 1, . . . , 2n− 1} that begins at 0 and ends at 1, except that Γ0 is simply 0. Use

ΓRnt
, 2nt +Γnt−1 , . . . , 2nt + · · ·+2n3 +ΓRn2 , 2nt + · · ·+2n2 +Γn1 , if t is even;

Γnt
, 2nt +ΓRnt−1 , . . . , 2nt + · · ·+2n3 +ΓRn2 , 2nt + · · ·+2n2 +Γn1 , if t is odd.

27. In general, if k = (bn−1 . . . b0)2, the (k + 1)st largest element of Sn is equal to

1/(2− (−1)an−1/(2− · · · /(2− (−1)a1/(2− (−1)a0 )) . . .)),

corresponding to the sign pattern g(k) = (an−1 . . . a0)2. Thus we can compute any
element of Sn in O(n) steps, given its rank. Setting k = 2100 − 1010 and n = 100
yields the answer 373065177/1113604409. [Whenever f(x) is a positive and monotonic
function, the 2n elements f(±f(. . .±f(±x) . . .)) are ordered according to Gray binary
code, as observed by H. E. Salzer, CACM 16 (1973), 180. In this particular case there
is, however, another way to get the answer, because we also have

Sn = //2,±2, . . . ,±2,±1//

using the notation of Section 4.5.3; continued fractions in this form are ordered by
complementing alternate bits of k.]
28. (a) As t = 1, 2, . . . , bit aj of median(Gt) runs through the periodic sequence

0, . . . , 0, ∗, 1, . . . , 1, ∗, 0, . . . , 0, ∗, . . .

with asterisks at every 21+jth step. Thus the strings that correspond to the binary
representations of ⌊(t − 1)/2⌋ and ⌊t/2⌋ are medians. And those strings are in fact
“extreme” cases, in the sense that all medians agree with the common bits of ⌊(t−1)/2⌋

From the Library of Melissa Nuno



ptg999

7.2.1.1 ANSWERS TO EXERCISES 683

and ⌊t/2⌋, hence asterisks appear where they disagree. For example, when t = 100 =
(01100100)2 and n = 8, we have median(G100) = 001100∗∗.

(b) Since G2t = 2Gt ∪ (2Gt + 1), we may assume that t = (an−2 . . . a1a01)2 is
odd. If α is g(p) and β is g(q) in Gray binary, we have p = (pn−1 . . . p0)2 and q =
(pn−1 . . . pj+1pj . . . p0)2; and an−1an−2 = 01 = pn−1pn−2. We cannot have p < t ≤ q,
because this would imply that j = n − 1 and pn−3 = pn−4 = · · · = p0 = 1. [See A. J.
Bernstein, K. Steiglitz, and J. E. Hopcroft, IEEE Trans. IT-12 (1966), 425–430.]
29. Assuming that p ̸= 0, let l = ⌊lg p⌋ and Sa = {s | 2la ≤ s < 2l(a + 1)} for
0 ≤ a < 2n−l. Then (k ⊕ p)− k has a constant sign for all k ∈ Sa, and

k∈Sa

(k ⊕ p)− k = 2l |Sa| = 22l.

Also g[−1](g(k)⊕ p) = k ⊕ g[−1](p), and ⌊lg g[−1](p)⌋ = ⌊lg p⌋. Therefore

1
2n

2n−1
k=0

g[−1](g(k)⊕ p)− k
 = 1

2n
2n−l−1
a=0


k∈Sa

(k⊕ g[−1](p))− k
 = 1

2n
2n−l−1
a=0

22l = 2l.

[See Morgan M. Buchner, Jr., Bell System Tech. J. 48 (1969), 3113–3130.]
30. The cycle containing k > 1 has length 2⌊lg lg k⌋+1, because it is easy to show from
Eq. (7) that if k = (bn−1 . . . b0)2 we have

g[2l](k) = (cn−1 . . . c0)2, where cj = bj ⊕ bj+2l .

To permute all elements k such that ⌊lg k⌋ = t, there are two cases: If t is a power of 2,
the cycle containing 2⌊k/2⌋ also contains 2⌊k/2⌋+1, so we must double the cycle leaders
for t − 1. Otherwise the cycle containing 2⌊k/2⌋ is disjoint from the cycle containing
2⌊k/2⌋ + 1, so Lt = (2Lt−1) ∪ (2Lt−1 + 1) = (Lt−1∗)2. This argument, discovered by
Jörg Arndt in 2001, establishes the hint and yields the following algorithm:

P1. [Initialize.] Set t← 1, m← 0. (We may assume that n ≥ 2.)
P2. [Loop through leaders.] Set r ← m. Perform Algorithm Q with k = 2t + r;

then if r > 0, set r ← (r−1)&m and repeat until r = 0. [See exercise 7.1.3–79.]
P3. [Increase lg k.] Set t← t+ 1. Terminate if t is now equal to n; otherwise set

m← 2m+ [t& (t− 1) ̸= 0] and return to P2.
Q1. [Begin a cycle.] Set s← Xk, l← k, j ← l ⊕ ⌊l/2⌋.
Q2. [Follow the cycle.] While j ̸= k, set Xl ← Xj , l← j, and j ← l⊕⌊l/2⌋. Then

set Xl ← s.
31. We get a field from fn if and only if we get one from f

[2]
n , which takes (an−1 . . . a0)2

to ((an−1 ⊕ an−2)(an−1 ⊕ an−3)(an−2 ⊕ an−4) . . . (a2 ⊕ a0)(a1))2. Let cn(x) be the
characteristic polynomial of the matrix A defining this transformation, mod 2; then
c1(x) = x+ 1, c2(x) = x2 + x+ 1, and cj+1(x) = xcj(x) + cj−1(x). Since cn(A) is the
zero matrix, by the Cayley–Hamilton theorem, a field is obtained if and only if cn(x) is
a primitive polynomial, and this condition can be tested as in Section 3.2.2. The first
such values of n are 1, 2, 3, 5, 6, 9, 11, 14, 23, 26, 29, 30, 33, 35, 39, 41, 51, 53, 65, 69,
74, 81, 83, 86, 89, 90, 95.

[Running the recurrence backwards shows that c−j−1(x) = cj(x), hence cj(x)
divides c(2j+1)k+j(x); for example, c3k+1(x) is always a multiple of x+1. All numbers n
of the form 2jk+ j+ k are therefore excluded when j > 0 and k > 0. The polynomials
c18(x), c50(x), c98(x), and c99(x) are irreducible but not primitive.]

From the Library of Melissa Nuno



ptg999

684 ANSWERS TO EXERCISES 7.2.1.1

32. Mostly true, but false at the points where wk(x) changes sign. (Walsh originally
suggested that wk(x) should be zero at such points; but the convention adopted here
is better, because it makes simple formulas like (15)–(19) valid for all x.)
33. By induction on k, we have

wk(x) = w⌊k/2⌋(2x) = r1(2x)b1+b2r2(2x)b2+b3 . . . = r1(x)b0+b1r2(x)b1+b2r3(x)b2+b3 . . .

for 0 ≤ x < 1
2 , because r1(x) = 1 in this range and rj(2x) = rj+1(x) for all x. On the

other hand when 1
2 ≤ x < 1,

wk(x) = (−1)⌈k/2⌉w⌊k/2⌋(2x) = (−1)⌈k/2⌉r1(2x)b1+b2r2(2x)b2+b3 . . .

= r1(x)b0+b1r2(x)b1+b2r3(x)b2+b3 . . .

because ⌈k/2⌉ ≡ b0 + b1 (modulo 2) and r1(x) = −1 in this range.

34. pk(x) =

j≥0 r

bj
j+1(x); hence wk(x) = pk(x)p⌊k/2⌋(x) = pg(k)(x). [R. E. A. C.

Paley, Proc. London Math. Soc. (2) 34 (1932), 241–279.]
35. If j = (an−1 . . . a0)2 and k = (bn−1 . . . b0)2, the element in row j and column k is
(−1)f(j,k), where f(j, k) is the sum of all arbs such that: r = s (Hadamard); r+s = n−1
(Paley); r + s = n or n− 1 (Walsh).

Let Rn, Fn, and Gn be permutation matrices for the permutations that take
j = (an−1 . . . a0)2 to k = (a0 . . . an−1)2, k = 2n − 1 − j = (an−1 . . . a0)2, and k =
g[−1](j) = ((an−1) . . . (an−1 ⊕ · · · ⊕ a0))2, respectively. Then, using the direct product
of matrices, we have the recursive formulas

Rn+1 =

Rn ⊗ (1 0)
Rn ⊗ (0 1)


, Fn+1 = Fn ⊗


0 1
1 0


, Gn+1 =


Gn 0
0 GnFn


,

Hn+1 = Hn ⊗


1 1
1 1


, Pn+1 =


Pn ⊗ (1 1)
Pn ⊗ (1 1)


, Wn+1 =


Wn ⊗ (1 1)
FnWn ⊗ (1 1)


.

Thus Wn = GTnPn = PnGn; Hn = PnRn = RnPn; and Pn = WnG
T
n = GnWn =

HnRn = RnHn.
36. T1. [Hadamard transform.] For k = 0, 1, . . . , n− 1, replace the pair (Xj , Xj+2k )

by (Xj +Xj+2k , Xj −Xj+2k ) for all j with ⌊j/2k⌋ even, 0 ≤ j < 2n. (These
operations effectively set XT ← HnX

T.)
T2. [Bit reversal.] Apply the algorithm of exercise 5 to the vector X. (These

operations effectively set XT ← RnX
T, in the notation of exercise 35.)

T3. [Gray binary permutation.] Apply the algorithm of exercise 30 to the vec-
tor X. (These operations effectively set XT ← GTnX

T.)
If n has one of the special values in exercise 31, it may be faster to combine steps T2
and T3 into a single permutation step.
37. If k = 2e1 +· · ·+2et with e1 > · · · > et ≥ 0, the sign changes occur at Se1∪· · ·∪Set ,
where

S0 =
1

2


, S1 =

1
4 ,

3
4


, . . . , Se =

2j + 1
2e+1

 0 ≤ j < 2e

.

Therefore the number of sign changes in (0 . . x) is
t
j=1⌊2ejx+ 1

2⌋. Setting x = l/(k+1)
gives l+O(t) changes; so the lth is at a distance of at most O(ν(k))/2⌊lg k⌋ from l/(k+1).

From the Library of Melissa Nuno



ptg999

7.2.1.1 ANSWERS TO EXERCISES 685

[This argument makes it plausible that infinitely many pairs (k, l) exist with
|zkl − l/(k + 1)| = Ω((log k)/k). But no explicit construction of such “bad” pairs
is immediately apparent.]
38. Let t0(x) = 1 and tk(x) = ω⌊3x⌋⌈2k/3⌉t⌊k/3⌋(3x), where ω = e2πi/3. Then tk(x)
winds around the origin 2

3k times as x increases from 0 to 1. If sk(x) = ω⌊3kx⌋ is the
ternary analog of the Rademacher function rk(x), we have tk(x) =


j≥0 sj+1(x)bj−bj+1

when k = (bn−1 . . . b0)3, as in the modular ternary Gray code.
39. (a) Let’s call the symbols {x0, x1, . . . , x7} instead of {a, b, c, d, e, f, g, h}. We want
to find a permutation p of {0, 1, . . . , 7} such that the matrix with (−1)j·kxp(j)⊕k in
row j and column k has orthogonal rows; this condition is equivalent to requiring that

(j ⊕ j′) · (p(j)⊕ p(j′)) ≡ 1 (modulo 2), for 0 ≤ j < j′ < 8.

One solution is p(0) . . . p(7) = 0 1 7 2 5 6 3 4, yielding the identity (a2 + b2 + c2 + d2 +
e2 + f2 + g2 + h2)(A2 +B2 +C2 +D2 +E2 + F 2 +G2 +H2) = A2 + B2 + C2 +D2 +
E2 + F2 + G2 +H2, where

A
B
C
D
E
F
G
H


=



a b c d e f g h
b −a d −c f −e h −g
h g −f −e d c −b −a
c −d −a b g −h −e f
f e h g −b −a −d −c
g −h e −f −c d −a b
d c −b −a −h −g f e
e −f −g h −a b c −d





A
B
C
D
E
F
G
H


.

[This identity was discovered by C. F. Degen, Mémoires de l’Acad. Sci. St. Petersbourg
(5) 8 (1818), 207–219. The related octonions are discussed in an interesting survey by
J. C. Baez, Bull. Amer. Math. Soc. 39 (2002), 145–205; 42 (2005), 213, 229–243. See
also J. H. Conway and D. A. Smith, On Quaternions and Octonions (2003).]

(b) There is no 16× 16 solution. The closest one can come is

p(0) . . . p(15) = 0 1 11 2 14 15 13 4 9 10 7 12 5 6 3 8,

which fails if and only if j ⊕ j′ = 5. (See Philos. Mag. 34 (1867), 461–475. In §9, §10,
§11, and §13 of this paper, Sylvester stated and proved the basic results about what
has somehow come to be known as the Hadamard transform — although Hadamard
himself gave credit to Sylvester [Bull. des Sciences Mathématiques (2) 17 (1893), 240–
246]. Moreover, Sylvester introduced transforms of mn elements in §14, using mth
roots of unity.)
40. Yes; this change would in fact run through the swapped subsets in lexicographic
binary order rather than in Gray binary order. (Any 5 × 5 matrix of 0s and 1s that
is nonsingular mod 2 will generate all 32 possibilities when we run through all linear
combinations of its rows.) The most important thing is the appearance of the ruler
function, or some other Gray code delta sequence, not the fact that only one aj changes
per step, in cases like this where any number of the aj can be changed simultaneously
at the same cost.
41. At most 16; for example, fired, fires, finds, fines, fined, fares, fared, wares,
wards, wands, wanes, waned, wines, winds, wires, wired. We also get 16 from paced/
links and paled/mints; perhaps also from a word mixed with an antipodal nonword.

From the Library of Melissa Nuno



ptg999

686 ANSWERS TO EXERCISES 7.2.1.1

42. Suppose n ≤ 22r

+ r+ 1, and let s = 2r. We use an auxiliary table of 2r+s bits fjk
for 0 ≤ j < 2s and 0 ≤ k < s, representing focus pointers as in Algorithm L, together
with an auxiliary s-bit “register” j = (js−1 . . . j0)2 and an (r+2)-bit “program counter”
p = (pr+1 . . . p0)2. At each step we examine the program counter and possibly the j
register and one of the f bits; then, based on the bits seen, we complement a bit of the
Gray code, complement a bit of the program counter, and possibly change a j or f bit,
thereby emulating step L3 with respect to the most significant n− r − 2 bits.

For example, here is the construction when r = 1:
p2p1p0 Change Set
0 0 0 a0, p0 j0 ← f00
0 0 1 a1, p1 j1 ← f01


j ← f0

0 1 1 a0, p0 f00 ← 0
0 1 0 a2, p2 f01 ← 0


f0 ← 0

p2p1p0 Change Set
1 1 0 a0, p0 fj0 ← f(j+1)0
1 1 1 a1, p1 fj1 ← f(j+1)1


fj ← fj+1

1 0 1 a0, p0 f(j+1)0 ← (j+1)0
1 0 0 aj+3, p2 f(j+1)1 ← (j+1)1


fj+1 ← j+1

The process stops when it attempts to change bit an.
[In fact, we need change only one auxiliary bit per step if we allow ourselves to

examine some Gray binary bits as well as the auxiliary bits, because pr . . . p0 = ar . . . a0,
and we can set f0 ← 0 in a more clever way when j doesn’t have its final value 2s − 1.
This construction, suggested by Fredman in 2001, improves on another that he had
published in SICOMP 7 (1978), 134–146. With a more elaborate construction it is
possible to reduce the number of auxiliary bits to O(n).]
43. This number was estimated by Silverman, Vickers, and Sampson [IEEE Trans.
IT-29 (1983), 894–901] to be about 7 × 1022. And indeed, H. Haanpää and P. R. J.
Östergård found the exact value d(6) = 71,676,427,445,141,767,741,440 in 2011, by
using symmetry and “gluing together” disjoint paths whose endpoints x have νx = 3
and whose interior vertices have νx ≤ 3. [To appear.]
44. Every n-bit Gray cycle defines a pair of perfect matchings (see exercise 55).
45. (a) (000 002 012 010 090 094 0b4 . . . 112 102 100), in hexadecimal, 32 elements in
all. Notice that the signatures of elements in each cycle run through the Gray code Γ4.

(b) A ground vertex v is preceded in its cycle by its sibling v⊕ 2. If v is a ground
vertex in a different cycle from its sibling u = v⊕ 1, we can join the cycles by deleting
{u⊕2−−−u, v⊕2−−−v} and inserting {u−−−v, u⊕2−−−v⊕2}. Repeat for all ground v.

(c) Consider the multigraph G′ whose vertices are the cycles and whose edges go
from the cycle of v to the cycle of v + 1 for all even ground vertices v. Every vertex of
G′ has even degree, so the edges are a union of cycles in G′. Thus any edge of G′ can
be deleted without changing the connected components.

(d) It’s not difficult to construct a path P = v(0) −−− v(1) −−− v(2) −−− · · · through
vertices of G with v0 = v−1 = 0 that passes through all such v with σ(v) ≤ 1, and such
that σ(v(i)) ∈ {0, 1, 2, 4, 8} for all i. Take the cycle from (b) that contains v(0) and call
it the “working cycle” W ; then do the following for i = 1, 2, . . . , until W includes all
vertices: If v = v(i) /∈W , suppose u = v(i−1) has ul ̸= vl. Case 1: u⊕c−−−u is an edge
of W , for c = 1 or c = 2. Take a cycle for the equivalence class of v that has the edge
v⊕c−−− v. Delete those edges and insert {u−−− v, u⊕c−−− v⊕c}. Case 2: Otherwise
Case 1 must have applied to w = v(i−2) and u on the previous step. If c = 1 then W
contains the edge u⊕2−−− u⊕3. We can find a cycle with v⊕2−−− v⊕3, and replace
those edges by {u⊕2−−−v⊕3, u⊕3−−−v⊕3}. A similar edge-swap works when c = 2.

(e) The final cycle W allows us to reconstruct Ml(v)(v). When l(v) ̸= 0 the
functionMl(v) is equivalent to t = 23r−1 independent matchings of the r-cube, because

From the Library of Melissa Nuno



ptg999

7.2.1.1 ANSWERS TO EXERCISES 687

there are t ways to choose the vi for i ̸= l having the correct signature. So the number
of different cycles is at least M(r)12t (see exercise 44).
46. There are k-bit signatures σ(v). When σ(v) = g(j) in Gray binary code, l(v) =
(ρ(j + 1) + [j ̸= 2k − 1])[j + 2 is not a power of 2]. At least M(r)(2k−k)t cycles arise,
where t = 2(k−1)(r−1)+2. [Information Processing Letters 109 (2009), 267–272.]
47. The bounds ( r

e
)2r−1

< 2r−1!/(2r−1/r)2r−1 ≤M(r) ≤ r!2r−1/r = ( r
e

+O(log r))2r−1

are proved in Section 7.5.1. Hence d(n)1/2n ≤ n/e+O(logn) by exercise 44.
The lower bound from exercise 46, if we let Gj be an rj-cube, is

(M(r1)2n−r1−k+1)2k−1−k · (M(r2)2n−r2−k+1)2k−2
· (M(r3)2n−r3−k+1)2k−3

· . . . · (M(rk−1)2n−rk−1−k+1
)2 · (M(rk)2n−rk−k+1)2 ;

and it’s better to choose rj ≈ (n − 2)/2j−[j=k] for 1 ≤ j ≤ k instead of using cubes
of roughly the same size. Let αj = rj/e be a lower bound on M(rj)21−rj . The lower
bound on d(n)1/2n simplifies to

α
1/2−k/2k

1 α
1/4
2 α

1/8
3 . . . α

1/2k−1

k−1 α
1/2k−1

k = 2−2+(k−4)/2k

n− 2
e

1−k/2k
1 +O


k

n


,

and this is n/(4e) +O(logn)2 when k = lgn+O(1).
49. Take any Hamiltonian path P from 0 . . . 0 to 1 . . . 1 in the (2n − 1)-cube, such
as the Savage–Winkler code, and use 0P , 1P . (All such cycles are obtained by this
construction when n = 1 or n = 2, but many more possibilities exist when n > 2.)
50. α1(n+1)αR1 nα1j1α2nα

R
2 (n+1)α2 . . . jl−1αlnα

R
l (n+1)αlnαRl jl−1 . . . j1α

R
1 n.

51. Let cj = 2⌊(2n−1 +j)/n⌋ and c′j = 2⌊(2n+1 +j)/(n+2)⌋. If n ̸= 3, it is not difficult
to verify that 4cj ≥ 8⌊2n−1/n⌋ > 2⌈2n+1/(n+2)⌉ ≥ c′k for 0 ≤ j < n and 0 ≤ k < n+2.
Therefore we can apply Theorem D to any n-bit Gray cycle with transition counts cj ,
underlining bj copies of j and putting an underlined digit 0 last, where bj = 2cj −
1
2c

′
(j+2+d) mod (n+2)− [j= 0] and d is chosen so that c′d = c′d+1. This construction works

because l = b0 + · · ·+ bn−1 = 2(c0 + · · ·+ cn−1)− 1
2 (c′0 + · · ·+ c′n+1 − c′d − c′d+1)− 1 =

c′d − 1 is odd. [Corollary B was discovered by T. Bakos in the 1950s, and proved in
detail by A. Ádám in Truth Functions (Budapest: 1968), 28–37. Ádám’s book also
presents a proof by G. Pollák that, in fact, c′0 = c′1 for all n; hence we may take d = 0.
See also J. P. Robinson and M. Cohn, IEEE Trans. C-30 (1981), 17–23.]
52. The number of different code patterns in the smallest j coordinate positions is at
most c0 + · · ·+ cj−1.
53. Theorem D produces only cycles with cj = cj+1 for some j, so it can’t produce
the counts (2, 4, 6, 8, 12). The extension in exercise 50 gives also cj = cj+1 − 2, but it
can’t produce (6, 10, 14, 18, 22, 26, 32). The sets of numbers satisfying the conditions
of exercise 52 are precisely those obtainable by starting with {2, 2, 4, . . . , 2n−1} and
repeatedly replacing some pair {cj , ck} for which cj < ck by the pair {cj + 2, ck − 2}.
54. Suppose the values are {p1, . . . , pn}, and let xjk be the number of times pj occurs
in (a1, . . . , ak). We must have (x1k, . . . , xnk) ≡ (x1l, . . . , xnl) (modulo 2) for some k < l.
But if the p’s are prime numbers, varying as the delta sequence of an n-bit Gray cycle,
the only solution is k = 0 and l = 2n. [AMM 60 (1953), 418; 83 (1976), 54.]
55. In fact, given any perfect matching Q of K2n , one can find in O(2n) steps a perfect
matching R of the n-cube such that Q∪R is a Hamiltonian cycle of K2n . [See J. Fink,
J. Comb. Theory B97 (2007), 1074–1076; Elect. Notes Disc. Math. 29 (2007), 345–351.]

From the Library of Melissa Nuno



ptg999

688 ANSWERS TO EXERCISES 7.2.1.1

56. [Bell System Tech. J. 37 (1958), 815–826.] The 112 canonical delta sequences yield

Class Example t

A 0102101302012023 2
B 0102303132101232 2
C 0102030130321013 2

Class Example t

D 0102013201020132 4
E 0102032021202302 4
F 0102013102010232 4

Class Example t

G 0102030201020302 8
H 0102101301021013 8
I 0102013121012132 1

Here B is the balanced code (Fig. 33(b)), G is standard Gray binary (Fig. 30(b)), and
H is the complementary code (Fig. 33(a)). Class H is also equivalent to the modular
(4, 4) Gray code under the correspondence of exercise 18. A class with t automorphisms
corresponds to 32× 24/t of the 2688 different delta sequences δ0δ1 . . . δ15.

Similarly (see exercise 7.2.3–00), the 5-bit Gray cycles fall into 237,675 different
equivalence classes.
57. With Type 1 only, 480 vertices are isolated, namely those of classes D, F , G in the
previous answer. With Type 2 only, the graph has 384 components, 288 of which are
isolated vertices of classes F and G. There are 64 components of size 9, each containing
3 vertices from E and 6 from A; 16 components of size 30, each with 6 from H and 24
from C; and 16 components of size 84, each with 12 from D, 24 from B, 48 from I. With
Type 3 (or Type 4) only, the entire graph is connected. [Similarly, all 91,392 of the 4-bit
Gray paths are connected if path αβ is considered adjacent to path αRβ. Vickers and
Silverman, IEEE Trans. C-29 (1980), 329–331, have conjectured that Type 3 changes
will suffice to connect the graph of n-bit Gray cycles for all n ≥ 3.]
58. If some nonempty substring of ββ involves each coordinate an even number of
times, that substring cannot have length |β|, so some cyclic shift of β has a prefix γ
with the same evenness property. But then α doesn’t define a Gray cycle, because we
could change each n of γ back to 0.
59. If α is nonlocal in exercise 58, so is ββ, provided that q > 1 and that 0 occurs
more than q + 1 times in α. Therefore, starting with the α of (30) but with 0 and 1
interchanged, we obtain nonlocal cycles for n ≥ 5 in which coordinate 0 changes exactly
6 times. [Mark Ramras, Discrete Math. 85 (1990), 329–331.] On the other hand, a 4-
bit Gray cycle cannot be nonlocal because it always has a run of length 2; if δk = δk+2,
elements {vk, vk+1, vk+2, vk+3} form a 2-subcube.
60. Use the construction of exercise 58 with q = 1.
61. The idea is to interleave an m-bit cycle U = (u0, u1, u2, . . . ) with an n-bit cycle
V = (v0, v1, v2, . . . ), by forming concatenations

W = (ui0vj0 , ui1vj1 , ui2vj2 , . . . ), ik = a0 + · · ·+ ak−1, jk = a0 + · · ·+ ak−1,

where a0a1a2 . . . is a periodic string of control bits ααα . . . ; we advance to the next
element of U when ak = 0, otherwise to the next element of V .

If α is any string of length 2m ≤ 2n, containing s bits that are 0 and t = 2m − s
bits that are 1, W will be an (m + n)-bit Gray cycle if s and t are odd. For we have
ik+l ≡ ik (modulo 2m) and jk+l ≡ jk (modulo 2n) only if l is a multiple of 2m, since
ik + jk = k. Suppose l = 2mc; then jk+l = jk + tc, so c is a multiple of 2n.

(a) Let α = 0111; then runs of length 8 occur in the left 2 bits and runs of length
≥ ⌊ 4

3r(n)⌋ occur in the right n bits.
(b) Let s be the largest odd number ≤ 2mr(m)/(r(m) + r(n)). Also let t = 2m− s

and ak = ⌊(k + 1)t/2m⌋ − ⌊kt/2m⌋, so that ik = ⌈ks/2m⌉ and jk = ⌊kt/2m⌋. If
a run of length l occurs in the left m bits, we have ik+l+1 ≥ ik + r(m) + 1, hence

From the Library of Melissa Nuno



ptg999

7.2.1.1 ANSWERS TO EXERCISES 689

l+ 1 > 2mr(m)/s ≥ r(m) + r(n). And if it occurs in the right n bits we have jk+l+1 ≥
jk + r(n) + 1, hence

l + 1 > 2mr(n)/t > 2mr(n)/(2mr(n)/(r(m) + r(n)) + 2)

= r(m) + r(n)− 2(r(m) + r(n))2

2mr(n) + 2(r(m) + r(n)) > r(m) + r(n)− 1

because r(m) ≤ r(n).
The construction often works also in less restricted cases. See the paper that

introduced the study of Gray-code runs: L. Goddyn, G. M. Lawrence, and E. Nemeth,
Utilitas Math. 34 (1988), 179–192.
63. Set ak ← k mod 4 for 0 ≤ k < 210, except that ak = 4 when k mod 16 = 15 or
k mod 64 = 42 or k mod 256 = 133. Also set (j0, j1, j2, j3, j4) ← (0, 2, 4, 6, 8). Then
for k = 0, 1, . . . , 1023, set δk ← jak and jak ← 1 + 4ak − jak . (This construction
generalizes the method of exercise 61.)
64. (a) Each element uk appears together with {vk, vk+2m , . . . , vk+2m(2n−1−1)} and
{vk+1, vk+1+2m , . . . , vk+1+2m(2n−1−1)}. Thus the permutation σ0 . . . σ2m−1 must be a
2n−1-cycle containing the n-bit vertices of even parity, times an arbitrary permutation
of the other vertices. This condition is also sufficient.

(b) Let τj be the permutation that takes v →→ v ⊕ 2j , and let πj(u,w) be the
permutation (uw)τj . If u⊕w = 2i+2j then πj(u,w) takes u →→ u⊕2i and w →→ w⊕2i,
while v →→ v ⊕ 2j for all other vertices v, so it takes each vertex to a neighbor.

If S is any set ⊆ {0, . . . , n− 1}, let σ(S) be the stream of all permutations τj for
all j ∈ {0, . . . , n− 1} \S, in increasing order of j, repeated twice; for example, if n = 5
we have σ({1, 2}) = τ0τ3τ4τ0τ3τ4. Then the Gray stream

Σ(i, j, u) = σ({i, j})πj(u, u⊕2i⊕2j)σ({i, j})τjσ({j})

consists of 6n − 8 permutations whose product is the transposition (u u⊕2i⊕2j).
Moreover, when this stream is applied to any n-bit vertex v, its runs all have length
n− 2 or more.

We may assume that n ≥ 5. Let δ0 . . . δ2n−1 be the delta sequence for an n-bit
Gray cycle (v0, v1, . . . , v2n−1) with all runs of length 3 or more. Then the product of
all permutations in

Σ =
2n−1−1
k=1

(Σ(δ2k−1, δ2k, v2k−1) Σ(δ2k, δ2k+1, v2k))

is (v1 v3)(v2 v4) . . . (v2n−3 v2n−1)(v2n−2 v0) = (v2n−1 . . . v1)(v2n−2 . . . v0), so it satisfies
the cycle condition of (a).

Moreover, all powers (σ(∅)Σ)t produce runs of length ≥ n − 2 when applied to
any vertex v. By repeating individual factors σ({i, j}) or σ({j}) in Σ as many times
as we wish, we can adjust the length of σ(∅)Σ, obtaining 2n+ (2n−1 − 1)(12n− 16) +
2(n−2)a+2(n−1)b for any integers a, b ≥ 0; thus we can increase its length to exactly
2m, provided that 2m ≥ 2n+(2n−1−1)(12n−16)+2(n2−5n+6), by exercise 5.2.1– 21.

(c) The bound r(n) ≥ n − 4 lgn + 8 can be proved for n ≥ 5 as follows. First
we observe that it holds for 5 ≤ n < 33 by the methods of exercises 60–63. Then we
observe that every integer N ≥ 33 can be written as N = m+n or N = m+n+ 1, for
some m ≥ 20, where

n = m− ⌊4 lgm⌋+ 10.

From the Library of Melissa Nuno



ptg999

690 ANSWERS TO EXERCISES 7.2.1.1

If m ≥ 20, 2m is sufficiently large for the construction in part (b) to be valid; hence

r(N) ≥ r(m+ n) ≥ 2 min(r(m), n− 2) ≥ 2(m− ⌊4 lgm⌋+ 8)
= m+ n+ 1− ⌊4 lgN − 1 + ϵ⌋+ 8
≥ N − 4 lgN + 8

where ϵ = 4 lg(2m/N) < 1 + [N =m+ n]. [Electronic Journal of Combinatorics 10
(2003), #R27, 1–10.] Recursive use of (b) gives, in fact, r(1024) ≥ 1000.
65. A computer search reveals that eight essentially different patterns (and their
reverses) are possible. One of them has the delta sequence 01020314203024041234
214103234103, and it is close to two of the others.
66. (Solution by Mark Cooke.) One suitable delta sequence is 012345607012132435
65760710213534626701537412362567017314262065701342146560573102464537
57102043537614073630464273703564027132750541210275641502403654250136
02541615604312576032572043157624321760452041751635476703564757062543
7242132624161523417514367143164314. (Solutions for n > 8 are still unknown.)
67. Let v2k+1 = v2k and v2k = 0uk, where (u0, u1, . . . , u2n−1−1) is any (n−1)-bit Gray
cycle. [See Robinson and Cohn, IEEE Trans. C-30 (1981), 17–23.]
68. Yes. The simplest way is probably to take (n− 1)-trit modular Gray ternary code
and add 0 . . . 0, 1 . . . 1, 2 . . . 2 to each string (modulo 3). For example, when n = 3 the
code is 000, 111, 222, 001, 112, 220, 002, 110, 221, 012, 120, 201, . . . , 020, 101, 212.
69. (a) We need only verify the change in h when bits bj−1 . . . b0 are simultaneously
complemented, for j = 1, 2, . . . ; and these changes are respectively (1110)2, (1101)2,
(0111)2, (1011)2, (10011)2, (100011)2, . . . . To prove that every n-tuple occurs, note
that 0 ≤ h(k) < 2n when 0 ≤ k < 2n and n > 3; also h[−1]((an−1 . . . a0)2) =
(bn−1 . . . b0)2, where b0 = a0 ⊕ a1 ⊕ a2 ⊕ · · · , b1 = a0, b2 = a2 ⊕ a3 ⊕ a4 ⊕ · · · ,
b3 = a0 ⊕ a1 ⊕ a3 ⊕ · · · , and bj = aj ⊕ aj+1 ⊕ · · · for j ≥ 4.

(b) Let h(k) = (. . . a2a1a0)2 where aj = bj ⊕ bj+1 ⊕ b0[j≤ t]⊕ bt−1[t− 1≤ j≤ t].
70. As in (32) and (33), we can remove a factor of n! by assuming that the strings of
weight 1 occur in order. Then there are 14 solutions for n = 5 starting with 00000, and
21 starting with 00001. When n = 6 there are 46,935 of each type (related by reversal
and complementation). When n = 7 the number is much, much larger, yet very small
by comparison with the total number of 7-bit Gray codes.
71. Suppose that αn(j+1) differs from αnj in coordinate tj , for 0 ≤ j < n − 1. Then
tj = jπn, by (44) and (38). Now Eq. (34) tells us that t0 = n− 1; and if 0 < j < n− 1
we have tj = ((j − 1)πn−1)πn−1 by (40). Thus tj = jσnπ

2
n−1 for 0 ≤ j < n − 1, and

the value of (n− 1)πn is whatever is left. (Notations for permutations are notoriously
confusing, so it is always wise to check a few small cases carefully.)
72. The delta sequence is 0102132430201234012313041021323.
73. Let Qnj = PRnj and denote the sequences (41), (42) by Sn and Tn. Thus Sn =
Pn0Qn1Pn2 . . . and Tn = Qn0Pn1Qn2 . . . , if we omit the commas; and we have

Sn+1 = 0Pn0 0Qn1 1Qπn0 1Pπn1 0Pn2 0Qn3 1Qπn2 1Pπn3 0Pn4 . . . ,

Tn+1 = 0Qn0 1Pπn0 0Pn1 0Qn2 1Qπn1 1Pπn2 0Pn3 0Qn4 1Qπn3 . . . ,

where π = πn, revealing a reasonably simple joint recursion between the delta sequences
∆n and En of Sn and Tn. Namely, if we write

∆n = ϕ1 a1 ϕ2 a2 . . . ϕn−1 an−1 ϕn, En = ψ1 b1 ψ2 b2 . . . ψn−1 bn−1 ψn,

From the Library of Melissa Nuno



ptg999

7.2.1.1 ANSWERS TO EXERCISES 691

where each ϕj and ψj is a string of length 2

n−1
j−1

− 1, the next sequences are

∆n+1 = ϕ1 a1 ϕ2 n ψ1π b1π ψ2π n ϕ3 a3 ϕ4 n ψ3π b3π ψ4π n . . .

En+1 = ψ1 n ϕ1π n ψ2 b2 ψ3 n ϕ2π a2π ϕ3π n ψ4 b4 ψ5 n ϕ4π a4π ϕ5π n . . .

For example, we have ∆3 = 0 1 0 2 1 0 1 and E3 = 0 2 1 2 0 2 1, if we underline the a’s
and b’s to distinguish them from the ϕ’s and ψ’s; and

∆4 = 0 1 0 2 1 3 0π 2π 1π 2π 0π 3 1 3 1π = 0 1 0 2 1 3 2 1 0 1 2 3 1 3 0,
E4 = 0 3 0π 3 1 2 0 2 1 3 0π 2π 1π 0π 1π = 0 3 2 3 1 2 0 2 1 3 2 1 0 2 0;

here a3ϕ4 and b3ψ4 are empty. Elements have been underlined for the next step.
Thus we can compute the delta sequences in memory as follows. Here p[j] = jπn

for 1 ≤ j < n; sk = δk, tk = εk, and uk = [δk and εk are underlined], for 0 ≤ k < 2n−1.
X1. [Initialize.] Set n← 1, p[0]← 0, s0 ← t0 ← u0 ← 0.
X2. [Advance n.] Perform Algorithm Y below, which computes the arrays s′, t′,

and u′ for the next value of n; then set n← n+ 1.
X3. [Ready?] If n is sufficiently large, the desired delta sequence ∆n is in array s′;

terminate. Otherwise keep going.
X4. [Compute πn.] Set p′[0] = n− 1, and p′[j] = p[p[j − 1]] for 1 ≤ j < n.
X5. [Prepare to advance.] Set p[j] ← p′[j] for 0 ≤ j < n; set sk ← s′k, tk ← t′k,

and uk ← u′
k for 0 ≤ k < 2n− 1. Return to X2.

In the following steps, “Transmit stuff(l, j) while uj = 0” is an abbreviation for “If
uj = 0, repeatedly stuff(l, j), l← l + 1, j ← j + 1, until uj ̸= 0.”

Y1. [Prepare to compute ∆n+1.] Set j ← k ← l← 0 and u2n−1 ← −1.
Y2. [Advance j.] Transmit s′l ← sj and u′

l ← 0 while uj = 0. Then go to Y5 if
uj < 0.

Y3. [Advance j and k.] Set s′l ← sj , u′
l ← 1, l← l+ 1, j ← j + 1. Then transmit

s′l ← sj and u′
l ← 0 while uj = 0. Then set s′l ← n, u′

l ← 0, l ← l + 1. Then
transmit s′l ← p[tk] and u′

l ← 0 while uk = 0. Then set s′l ← p[tk], u′
l ← 1,

l ← l + 1, k ← k + 1. And once again transmit s′l ← p[tk] and u′
l ← 0 while

uk = 0.
Y4. [Done with ∆n+1?] If uk < 0, go to Y6. Otherwise set s′l ← n, u′

l ← 0,
l← l + 1, j ← j + 1, k ← k + 1, and return to Y2.

Y5. [Finish ∆n+1.] Set s′l ← n, u′
l ← 1, l← l+ 1. Then transmit s′l ← p[t[k]] and

u′
l ← 0 while uk = 0.

Y6. [Prepare to compute En+1.] Set j ← k ← l ← 0. Transmit t′l ← tk while
uk = 0. Then set t′l ← n, l← l + 1.

Y7. [Advance j.] Transmit t′l ← p[sj ] while uj = 0. Then terminate if uj < 0;
otherwise set t′l ← n, l← l + 1, j ← j + 1, k ← k + 1.

Y8. [Advance k.] Transmit t′l ← tk while uk = 0. Then go to Y10 if uk < 0.
Y9. [Advance k and j.] Set t′l ← tk, l← l + 1, k ← k + 1. Then transmit t′l ← tk

while uk = 0. Then set t′l ← n, l ← l + 1. Then transmit t′l ← p[sj ] while
uj = 0. Then set t′l ← p[sj ], l← l + 1, j ← j + 1. Return to Y7.

Y10. [Finish En+1.] Set t′l ← n, l← l+1. Then transmit t′l ← p[sj ] while uj = 0.

From the Library of Melissa Nuno



ptg999

692 ANSWERS TO EXERCISES 7.2.1.1

To generate the monotonic Savage–Winkler code for fairly large n, one can first generate
∆10 and E10, say, or even ∆20 and E20. Using these tables, a suitable recursive pro-
cedure will then be able to reach higher values of n with very little computational
overhead per step, on the average.
74. If the monotonic path is v0, . . . , v2n−1 and if vk has weight j, we have

2

t>0


n

j − 2t


+ ((j + ν(v0)) mod 2) ≤ k ≤ 2


t≥0


n

j − 2t


+ ((j + ν(v0)) mod 2)− 2.

Therefore the maximum distance between vertices of respective weights j and j + 1 is
≤ 2(


n−1
j−1


+

n−1
j


+

n−1
j+1

) − 1. The maximum value, approximately 3 · 2n+1/

√
2πn,

occurs when j is approximately n/2. [This is only about three times the smallest value
achievable in any ordering of the vertices, which is

n−1
j=0


j

⌊j/2⌋


by exercise 7.5.6–00.]

75. The trend-free canonical delta sequences all turn out to yield Gray cycles:

0 1 2 3 0 1 2 4 2 1 0 3 2 1 0 1 2 1 0 3 2 1 0 4 0 1 2 3 0 1 2 (1)
0 1 2 3 0 1 2 4 2 1 0 3 2 1 0 1 3 0 1 2 3 0 1 4 1 0 3 2 1 0 3 (1)
0 1 2 3 0 1 2 4 2 1 0 3 2 1 0 2 0 3 2 1 0 3 2 4 2 3 0 1 2 3 0 (2)
0 1 2 3 0 1 2 4 2 1 0 3 2 1 0 2 1 2 3 0 1 2 3 4 3 2 1 0 3 2 1 (2)
0 1 2 3 0 1 2 4 2 3 0 1 2 3 0 2 0 1 2 3 0 1 2 4 2 3 0 1 2 3 0 (2)
0 1 2 3 4 1 0 1 2 1 0 3 0 1 4 3 2 1 0 3 0 1 4 1 0 1 2 3 4 1 0 (3)

(The second and fourth of these are cyclically equivalent.)
76. If v0, . . . , v2n−1 is trend-free, so is the (n+1)-bit cycle 0v0, 1v0, 1v1, 0v1, 0v2, 1v2,
. . . , 1v2n−1, 0v2n−1. Figure 34(g) shows a somewhat more interesting construction,
which generalizes the first solution of exercise 75 to an (n+ 2)-bit cycle

00Γ′′R, 01Γ′R, 11Γ′, 10Γ′′, 10Γ, 11Γ′′′, 01Γ′′′R, 00ΓR

where Γ is the n-bit sequence g(1), . . . , g(2n−1) and Γ′ = Γ⊕ g(1), Γ′′ = Γ⊕ g(2n−1),
Γ′′′ = Γ⊕ g(2n−1 + 1). [An n-bit trend-free design that is almost a Gray code, having
just four steps in which ν(vk ⊕ vk+1) = 2, was found for all n ≥ 3 by C. S. Cheng,
Proc. Berkeley Conf. Neyman and Kiefer 2 (Hayward, Calif.: Inst. of Math. Statistics,
1985), 619–633.]
77. Replace the array (on−1, . . . , o0) by an array of sentinel values (sn−1, . . . , s0), with
sj ← mj − 1 in step H1. Set aj ← (aj + 1) modmj in step H4. If aj = sj in step H5,
set sj ← (sj − 1) modmj , fj ← fj+1, fj+1 ← j + 1.
78. For (50), notice that Bj+1 is the number of times reflection has occurred in
coordinate j, because we bypass coordinate j on steps that are multiples of mj . . .m0.
Hence, if bj < mj − 1, an increase of bj by 1 causes aj to increase or decrease by 1 as
appropriate. Furthermore, if bi = mi − 1 for 0 ≤ i < j, changing all these bi to 0 when
incrementing bj will increase each of B0, . . . , Bj by 1, thereby leaving the values a0,
. . . , aj−1 unchanged in (50).

For (51), note that Bj = mjBj+1 + bj ≡ mjBj+1 +aj + (mj−1)Bj+1 ≡ aj +Bj+1
(modulo 2); hence Bj ≡ aj + aj+1 + · · · , and (51) is obviously equivalent to (50).

In the modular Gray code for general radices (mn−1, . . . ,m0), let

ḡ(k) =

an−1,

mn−1,

. . . ,

. . . ,

a2,

m2,

a1,

m1,

a0

m0



From the Library of Melissa Nuno



ptg999

7.2.1.1 ANSWERS TO EXERCISES 693

when k is given by (46). Then aj = (bj − Bj+1) modmj , because coordinate j has
increased modulo mj exactly Bj − Bj+1 times if we start at (0, . . . , 0). The inverse
function, which determines the b’s from the modular Gray a’s, is bj = (aj + aj+1 +
aj+2 + · · · ) modmj in the special case that each mj is a divisor of mj+1 (for example,
if all mj are equal). But the inverse has no simple form in general; it can be computed
by using the recurrences bj = (aj + Bj+1) modmj , Bj = mjBj+1 + bj for j = n − 1,
. . . , 0, starting with Bn = 0.

[Reflected Gray codes for radix m > 2 were introduced by Ivan Flores in IRE
Trans. EC-5 (1956), 79–82; he derived (50) and (51) in the case that all mj are
equal. Modular Gray codes with general mixed radices were implicitly discussed by
Joseph Rosenbaum in AMM 45 (1938), 694–696, but without the conversion formulas;
conversion formulas when all mj have a common value m were published by Martin
Cohn, Information and Control 6 (1963), 70–78.]

79. (a) The last n-tuple always has an−1 = mn−1 − 1, so it is one step from (0, . . . , 0)
only if mn−1 = 2. And this condition suffices to make the final n-tuple (1, 0, . . . , 0).
[Similarly, the final subforest output by Algorithm K is adjacent to the initial one if
and only if the leftmost tree is an isolated vertex.]

(b) The last n-tuple is (mn−1−1, 0, . . . , 0) if and only if mn−1 . . .mj+1 modmj = 0
for 0 ≤ j < n− 1, because bj = mj − 1 and Bj = mn−1 . . .mj − 1.

80. Run through pa1
1 . . . patt using reflected Gray code with radices mj = ej + 1.

81. The first cycle contains the edge from (x, y) to (x, (y + 1) modm) if and only if
(x+ y) modm ̸= m− 1 if and only if the second cycle contains the edge from (x, y) to
((x+ 1) modm, y).

82. There are two 4-bit Gray cycles (u0, . . . , u15) and (v0, . . . , v15) that cover all edges
of the 4-cube. (Indeed, the non-edges of classes A, B, D, H, and I in exercise 56 form
Gray cycles, in the same classes as their complements.) Therefore with 16-ary modular
Gray code we can form the four desired cycles (u0u0, u0u1, . . . , u0u15, u1u15, . . . , u15u0),
(u0u0, u1u0, . . . , u15u0, u15u1, . . . , u0u15), (v0v0, . . . , v15v0), (v0v0, . . . , v0v15).

In a similar way we can show that n/2 edge-disjoint n-bit Gray cycles exist when
n is 16, 32, 64, etc. [Abhandlungen Math. Sem. Hamburg 20 (1956), 13–16.] J. Aubert
and B. Schneider [Discrete Math. 38 (1982), 7–16] have proved that the same property
holds for all even values of n ≥ 4, but no simple construction is known.

83. Mark Cooke found the following totally unsymmetric solution in December, 2002:

(1) 2737465057320265612316546743610525106052042416314372145101421737
2506246064173213107351607103156205713172463452102434643207054702
4147356146737625047350745130620656415073123731427376432561240264
3016735467532402524637475217640270736065105215106073575463253105;

(2) 0616713417232175171671540460247164742473202531621673531632736052
6710141503047313570615453627623241426465272021632075363710750740
3157674761545652756510451024023107353424651230406545306213710537
2620501752453406703437343531502602463045627674152752406021610434;

(3) 3701063751507131236243765735103012042353747207410473621617247324
6505132565057121565024570473247421427640231034362703262764130574
0560620341745613151756314702721725205613212604053506260460173642
6717641743513401245360241730636545061563027414535676432625745051;

From the Library of Melissa Nuno



ptg999

694 ANSWERS TO EXERCISES 7.2.1.1

(4) 6706546435672147236210405432054510737405170532145431636430504673
4560621206416201320742373627204506473140171020514126107452343672
1320452752353410515426370601363567307105420163151210535061731236
4272537165617217542510760215462375452674257037346403647376271657.

(Each of these delta sequences should start from the same vertex of the cube.) Is there
a symmetrical way to do the job?
84. Calling the initial position (2, 2), the 8-step solution in Fig. A–1 shows how the
sequence progresses down to (0, 0). In the first move, for example, the front half of the
cord passes around and behind the right comb, then through the large right loop. The
middle line should be read from right to left. The generalization to n pairs of loops
would, similarly, take 3n − 1 steps.

Step 0: (2, 2) Step 1: (2, 1) Step 2: (2, 0)

Step 5: (1, 2) Step 4: (1, 1) Step 3: (1, 0)

Step 6: (0, 2) Step 7: (0, 1) Step 8: (0, 0)
Fig. A–1. Freeing the Loony Loop.

[The origin of this delightful puzzle is obscure. The Book of Ingenious & Diabolical
Puzzles by Jerry Slocum and Jack Botermans (1994) shows a 2-loop version carved from
horn, probably made in China about 1850 [page 101], and a modern 6-loop version
made in Malaysia about 1988 [page 93]. Slocum also owns a 4-loop version made from
bamboo in England about 1884. He has found it listed in Henry Novra’s Catalogue of
Conjuring Tricks and Puzzles (1858 or 1859) and W. H. Cremer’s Games, Amusements,
Pastimes and Magic (1867), as well as in Hamley’s catalog of 1895, under the name
“Marvellous Canoe Puzzle.” See also U.S. Patents 2091191 (1937), D172310 (1954),
3758114 (1973), D406866 (1999). Dyckman noted its connection to reflected Gray
ternary in a letter to Martin Gardner, dated 2 August 1972.]
85. By (50), element [ b,

t,
b′

t′ ] of Γ ≀Γ′ is αaα′
a′ if ĝ([ b,

t,
b′

t′ ]) = [ a,
t,
a′

t′ ] in the reflected Gray
code for radices (t, t′). We can now show that element [ b,

t,
b′,
t′,

b′′

t′′ ] of both (Γ ≀ Γ′) ≀ Γ′′

From the Library of Melissa Nuno



ptg999

7.2.1.1 ANSWERS TO EXERCISES 695

and Γ ≀ (Γ′ ≀ Γ′′) is αaα′
a′α

′′
a′′ if ĝ([ b,

t,
b′,
t′,

b′′

t′′ ]) = [ a,
t,
a′,
t′,

a′′

t′′ ] in the reflected Gray code for
radices (t, t′, t′′). See exercise 4.1–10, and note also the mixed-radix law

m1 . . .mn − 1−

x1,

m1,

. . . ,

. . . ,

xn
mn


=

m1 − 1− x1,

m1,

. . . ,

. . . ,

mn − 1− xn
mn


.

In general, the reflected Gray code for radices (m1, . . . ,mn) is (0, . . . ,m1 − 1) ≀ · · · ≀
(0, . . . ,mn − 1). [Information Processing Letters 22 (1986), 201–205.]
86. Let Γmn be the reflected m-ary Gray code, which can be defined by Γm0 = ϵ and

Γm(n+1) = (0, 1, . . . ,m− 1) ≀ Γmn, n ≥ 0.

This path runs from (0, 0, . . . , 0) to (m−1, 0, . . . , 0) when m is even. Consider the Gray
path Πmn defined by Πm0 = ∅ and

Πm(n+1) =


(0, 1, . . . ,m− 1) ≀Πmn, mΓR(m+1)n, if m is odd;

(0, 1, . . . ,m) ≀Πmn, mΓRmn, if m is even.

This path traverses all of the (m + 1)n − mn nonnegative integer n-tuples for which
max(a1, . . . , an) = m, starting with (0, . . . , 0,m) and ending with (m, 0, . . . , 0). The
desired infinite Gray path is Π0n, ΠR

1n, Π2n, ΠR
3n, . . . .

87. This is impossible when n is odd, because the n-tuples with max(|a1|, . . . , |an|) = 1
include 1

2 (3n + 1) with odd parity and 1
2 (3n − 3) with even parity. When n = 2 we

can use a spiral Σ0, Σ1, Σ2, . . . , where Σm winds counterclockwise from (m, 1 −m)
to (m,−m) when m > 0. For even values of n ≥ 2, if Tm is a path of n-tuples from
(m, 1−m,m− 1, 1−m, . . . ,m− 1, 1−m) to (m,−m,m,−m, . . . ,m,−m), we can use
Σm ≀ (T0, . . . , Tm−1)R, (Σ0, . . . ,Σm)R ≀ Tm for (n + 2)-tuples with the same property,
where ≀ is the dual operation

Γ ≀ Γ′ = (α0α
′
0, . . . , αt−1α

′
0, αt−1α

′
1, . . . , α0α

′
1, α0α

′
2, . . . , αt−1α

′
2, αt−1α

′
3, . . . ).

[Infinite n-dimensional Gray codes without the magnitude constraint were first
constructed by E. Vázsonyi, Acta Litterarum ac Scientiarum, sectio Scientiarum Mathe-
maticarum 9 (Szeged: 1938), 163–173.]
88. It would visit all the subforests again, but in reverse order, ending with (0, . . . , 0)
and returning to the state it had after the initialization step K1. (This reflection
principle is, in fact, the key to understanding how Algorithm K works.)
89. (a) Let M0 = ϵ, M1 = q, and Mn+2 = qMR

n+1, MR
n . This construction works

because the last element of MR
n+1 is the first element of Mn+1, namely a dot followed

by the first element of MR
n .

(b) Given a string d1 . . . dl where each dj is q or , we can find its successor by
letting k = l− [dl = q ] and proceeding as follows: If k is odd and dk = q, change dkdk+1
to ; if k is even and dk = , change dk to q q; otherwise decrease k by 1 and repeat
until either making a change or reaching k = 0. The successor of the given word isq q q q q q q.
90. A cycle can exist only when the number of code words is even, since the number
of dashes changes by ±1 at each step. Thus we must have nmod 3 = 2. The Gray
paths Mn of exercise 89 are not suitable; they begin with ( q )⌊n/3⌋ qn mod 3 and end
with ( q)⌊n/3⌋ q[n mod 3=1] [n mod 3=2]. But M3k+1 q, MR

3k is a Hamiltonian cycle in
the Morse code graph when n = 3k + 2.

From the Library of Melissa Nuno



ptg999

696 ANSWERS TO EXERCISES 7.2.1.1

91. Equivalently, the n-tuples a1ā2a3ā4 . . . have no two consecutive 1s. Such n-tuples
correspond to Morse code sequences of length n+ 1, if we append 0 and then representq and respectively by 0 and 10. Under this correspondence we can convert the path
Mn+1 of exercise 89 into a procedure like Algorithm K, with the fringe containing the
indices where each dot or dash begins (except for a final dot):

U1. [Initialize.] Set aj ← ⌊((j − 1) mod 6)/3⌋ and fj ← j for 1 ≤ j ≤ n. Also set
f0 ← 0, r0 ← 1, l1 ← 0, rj ← j+(j mod 3) and lj+(j mod 3) ← j for 1 ≤ j ≤ n,
except if j+(j mod 3) > n set rj ← 0 and l0 ← j. (The “fringe” now contains
1, 2, 4, 5, 7, 8, . . . .)

U2. [Visit.] Visit the n-tuple (a1, . . . , an).
U3. [Choose p.] Set q ← l0, p← fq, fq ← q.
U4. [Check ap.] Terminate the algorithm if p = 0. Otherwise set ap ← 1− ap and

go to U6 if ap + p is now even.
U5. [Insert p+1.] If p < n, set q ← rp, lq ← p+1, rp+1 ← q, rp ← p+1, lp+1 ← p.

Go to U7.
U6. [Delete p+ 1.] If p < n, set q ← rp+1, rp ← q, lq ← p.
U7. [Make p passive.] Set fp ← f lp and f lp ← lp. Return to U2.

This algorithm can also be derived as a special case of a considerably more general
method due to Gang Li, Frank Ruskey, and D. E. Knuth, which extends Algorithm K
by allowing the user to specify either ap ≥ aq or ap ≤ aq for each (parent, child) pair
(p, q). [See Knuth and Ruskey, Lecture Notes in Computer Science 2635 (2004), 183–
204.] A generalization in another direction, which produces all strings of length n that
do not contain certain substrings, has been discovered by M. B. Squire, Electronic J.
Combinatorics 3 (1996), #R17, 1–29.

Incidentally, it is amusing to note that the mapping k →→ g(2k) is a one-to-one
correspondence between all binary n-tuples with no consecutive 1s and all binary (n+1)-
tuples with no odd-length runs.
92. Yes, because the digraph of all (n−1)-tuples (x1, . . . , xn−1) with x1, . . . , xn−1 ≤ m
and with arcs (x1, . . . , xn−1) → (x2, . . . , xn) whenever max(x1, . . . , xn) = m is con-
nected and balanced; see Theorem 2.3.4.2G. Indeed, we get such a sequence from
Algorithm F if we note that the final kn elements of the prime strings of length
dividing n, when subtracted from m− 1, are the same for all m ≥ k. When n = 4, for
example, the first 81 digits of the sequence Φ4 are 2 − αR = 0 0001 01 0011 . . . , where
α is the string (62). [There also are infinite m-ary sequences whose first mn elements
are de Bruijn cycles for all n, given any fixed m ≥ 3. See L. J. Cummings and D.
Wiedemann, Cong. Numerantium 53 (1986), 155–160.]
93. The cycle generated by f() is a cyclic permutation of α1, where α has length mn−1
and ends with 1n−1. The cycle generated by Algorithm R is a cyclic permutation of γ =
c0 . . . cmn+1−1, where ck = (c0+b0+· · ·+bk−1) modm and b0 . . . bmn+1−1 = β = αm1m.

If x0 . . . xn occurs in γ, say xj = ck+j for 0 ≤ j ≤ n, then yj = bk+j for 0 ≤ j < n,
where yj = (xj+1−xj) modm. [This is the connection with modular m-ary Gray code;
see exercise 78.] Now if y0 . . . yn−1 = 1n we have mn+1 − m − n < k ≤ mn+1 − n;
otherwise there is an index k′ such that −n < k′ < mn − n and y0 . . . yn−1 occurs in
β at positions k = (k′ + r(mn − 1)) modmn+1 for 0 ≤ r < m. In both cases the m
choices of k have different values of x0, because the sum of all elements in α is m − 1
(modulo m) when n ≥ 2. [Algorithm R is valid also for n = 1 if mmod 4 ̸= 2, because
m ⊥α in that case.]

From the Library of Melissa Nuno



ptg999

7.2.1.1 ANSWERS TO EXERCISES 697

94. 0010203041121314223243344. (The underlined digits are effectively inserted
into the interleaving of 00112234 with 34 as in answer 95. Algorithm D can be used
in general when n = 1 and r = m− 2 ≥ 0; but it is pointless to do so, in view of (54).)

95. (a) Let c0c1c2 . . . have period r. If r is odd we have p = q = r, so r = pq only in
the trivial case when p = q = 1 and a0 = b0. Otherwise r/2 = lcm(p, q) = pq/gcd(p, q)
by 4.5.2–(10), hence gcd(p, q) = 2. In the latter case the 2n-tuples clcl+1 . . . cl+2n−1
that occur are ajbk . . . aj+n−1bk+n−1 for 0 ≤ j < p, 0 ≤ k < q, j ≡ k (modulo 2), and
bkaj . . . bk+n−1aj+n−1 for 0 ≤ j < p, 0 ≤ k < q, j ̸≡ k (modulo 2).

(b) The output would interleave two sequences a0a1 . . . and b0b1 . . . whose periods
are respectively mn+r and mn−r; the a’s are the cycle of f() and f ′() with xn changed
to xn+1 and the b’s are the same cycle with xn changed to xn−1, for 0 ≤ x < r. Hence
we have bk . . . bk+n−1 = ak+δk . . . ak+n−1+δk for all k, where δk is even. By (58) and
part (a), the period length is m2n − r2, and every 2n-tuple occurs with the exception
of (xy)n for 0 ≤ x, y < r.

(c) The real step D6 alters the behavior of (b) by going to D3 when t ≥ n, t′ = n,
and 0 ≤ x′ = x < r; this change emits an extra x at the time when x2n−1 has just
been output and b is about to be emitted, where b is the digit following xn in the cycle.
D6 also allows control to pass to D7 and then D3 with t′ = n in the case that t ≥ n and
x < x′ < r; this behavior emits an extra x′x at the time when (xx′)n−1x has just been
output and b will be next. These r2 extra digits provide the r2 missing 2n-tuples of (b).

96. (a) For example, when n = 5 the top-level coroutine of type R invokes a coroutine
of type D for n = 4, which invokes two of type S for n = 2; hence R5 = D5 = 1
and S5 = 2. The recurrences R2 = 0, R2n+1 = 1 + R2n, R2n = 2Rn, D2 = 0,
D2n+1 = D2n = 1 + 2Dn, S2 = 1, S2n+1 = S2n = 2Sn have the solution Rn = n− 2Sn,
Dn = Sn − 1, Sn = 2⌊lgn⌋−1. Thus Rn +Dn + Sn = n− 1.

(b) Each top-level output usually involves ⌊lgn⌋ − 1 D-activations and ν(n) − 1
R-activations, plus one basic activation at the bottom level. But there are exceptions:
Algorithm R might invoke its f() twice, if the first activation completed a sequence 1n;
and sometimes Algorithm R doesn’t need to invoke f() at all. Algorithm D might
invoke its f ′() twice, if the first activation completed a sequence (x′)n for x′ < r; but
sometimes Algorithm D doesn’t need to invoke either f() or f ′().

Algorithm R completes a sequence xn+1 if and only if its child f() has just
completed a sequence 0n. Algorithm D completes a sequence x2n for x < r if and
only if it has just jumped from D6 to D3 without invoking any child.

From these observations we can conclude that no exceptions arise at any level
when the coroutine for an mn-cycle produces the final digit of a run xn, or the first
digit following such a run. Hence the worst case occurs when the top-level coroutine
activates a subcoroutine twice, making 2⌊lgn⌋+ 2ν(n)− 3 activations altogether.

97. (a) (0011), (00011101), (0000101001111011), and (00000110001011011111
001110101001). Thus j2 = 2, j3 = 3, j4 = 9, j5 = 15.

(b) We obviously have fn+1(k) = Σfn(k) mod 2 for 0 ≤ k < jn + n. The next
value, fn+1(jn + n), depends on whether step R4 jumps to R2 after computing y =
fn(jn + n − 1). If it does (namely, if fn+1(jn + n − 1) ̸= 0), we have fn+1(k) ≡
1+Σfn(k+1) for jn+n ≤ k < 2n+jn+n; otherwise we have fn+1(k) ≡ 1+Σfn(k−1)
for those values of k. In particular, fn+1(k) = 1 when 2n ≤ k+δn ≤ 2n+n. The stated
formula, which has simpler ranges for the index k, holds because 1+Σfn(k±1) ≡ Σfn(k)
when jn < k < jn + n or 2n+ jn < k < 2n+ jn + n.

From the Library of Melissa Nuno



ptg999

698 ANSWERS TO EXERCISES 7.2.1.1

(c) The interleaved cycle has cn(2k) = f+
n (k) and cn(2k + 1) = f−

n (k), where

f+
n (k) =


fn(k−1), if 0 < k ≤ jn+1;
fn(k−2), if jn+1 < k ≤ 2n+2;

f−
n (k) =


fn(k+1), if 0 ≤ k < jn;
fn(k+2), if jn ≤ k < 2n−2;

f+
n (k) = f+

n (k mod (2n+ 2)), f−
n (k) = f−

n (k mod (2n− 2)). Therefore the subsequence
12n−1 begins at position kn = (2n−1 − 2)(2n+ 2) + 2jn + 2 in the cn cycle; this will
make j2n odd. The subsequence (01)n−10 begins at position ln = (2n−1 + 1)(jn − 1) if
jn mod 4 = 1, at ln = (2n−1 + 1)(2n+ jn − 3) if jn mod 4 = 3. Also k2 = 6, l2 = 2.

(d) Algorithm D inserts four elements into the cn cycle; hence

when jn mod 4<3 (ln<kn):

f2n(k)=


cn(k−1), if 0<k≤ln+2;
cn(k−3), if ln+2<k≤kn+3;
cn(k−4), if kn+3<k≤22n;

when jn mod 4=3 (kn<ln):

=


cn(k−1), if 0<k≤kn+1;
cn(k−2), if kn+1<k≤ln+3;
cn(k−4), if ln+3<k≤22n.

(e) Consequently j2n = kn + 1 + 2[jn mod 4< 3]. Indeed, the elements preceding
12n consist of 2n−2 − 1 complete periods of f+

n () interleaved with 2n−2 complete
periods of f−

n (), with one 0 inserted and also with 10 inserted if ln < kn, followed
by fn(1)fn(1)fn(2)fn(2) . . . fn(jn−1)fn(jn−1). The sum of all these elements is odd,
unless ln < kn; therefore δ2n = 1− 2[jn mod 4 = 3].

Let n = 2tq , where q is odd and n > 2. The recurrences imply that, if q = 1, we
have jn = 2n−1+ bt where bt = 2t/3− (−1)t/3. And if q > 1 we have jn = 2n−1± bt+2,
where the + sign is chosen if and only if ⌊lg q⌋+ [⌊4q/2⌊lg q⌋⌋= 5] is even.
98. If f(k) = g(k) when k lies in a certain range, there’s a constant C such that
Σf(k) = C + Σg(k) for k in that range. We can therefore continue almost mindlessly
to derive additional recurrences: If n > 1 we have

Σf2n(k), when jn mod 4< 3 (ln < kn):

≡


Σcn(k−1), if 0< k ≤ ln+2;
1+Σcn(k−3), if ln+2< k ≤ kn+3;
Σcn(k−4), if kn+3< k ≤ 22n;

when jn mod 4 = 3 (kn < ln):

≡


Σcn(k−1), if 0< k ≤ kn+1;
1+Σcn(k−2), if kn+1< k ≤ ln+3;
Σcn(k−4), if ln+3< k ≤ 22n.

Σcn(k) ≡ Σf+
n (⌈k/2⌉) + Σf−

n (⌊k/2⌋).

Σf+
n (k)≡

Σfn(k−1), if 0<k≤jn+1;
1+Σfn(k−2), if jn+1<k≤2n+2;

Σf−
n (k)≡

Σfn(k+1), if 0≤k<jn;
1+Σfn(k+2), if jn≤k<2n−2;

Σf±
n (k) ≡ ⌊k/(2n ± 2)⌋+ Σf±

n (k mod (2n ± 2)); Σfn(k) ≡ Σfn(k mod 2n).

Σf2n+1(k) ≡


ΣΣf2n(k), if 0 < k ≤ j2n or 22n + j2n < k ≤ 22n+1;
1 + k + ΣΣf2n(k + δ2n), if j2n < k ≤ 22n + j2n.

ΣΣf2n(k), when jn mod 4<3 (ln<kn):

≡


ΣΣcn(k−1), if 0<k≤ln+2;
1+k+ΣΣcn(k−3), if ln+2<k≤kn+3;
ΣΣcn(k−4), if kn+3<k≤22n;

when jn mod 4=3 (kn<ln):

≡


ΣΣcn(k−1), if 0<k≤kn+1;
1+k+ΣΣcn(k−2), if kn+1<k≤ln+3;
1+ΣΣcn(k−4), if ln+3<k≤22n.

ΣΣf2n(k) ≡ [jn mod 4 < 3]⌊k/22n⌋+ ΣΣf2n(k mod 22n).
And then, aha, there is closure:

ΣΣcn(2k) = Σf+
n (k), ΣΣcn(2k + 1) = Σf−

n (k).

From the Library of Melissa Nuno



ptg999

7.2.1.1 ANSWERS TO EXERCISES 699

If n = 2tq where q is odd, the running time to evaluate fn(k) by this system of
recursive formulas is O(t+S(q)), where S(1) = 1, S(2k) = 1 + 2S(k), and S(2k+ 1) =
1+S(k). Clearly S(k) < 2k, so the evaluations involve at most O(n) simple operations
on n-bit numbers. In fact, the method is often significantly faster: If we average S(k)
over all k with ⌊lg k⌋ = s we get (3s+1− 2s+1)/2s, which is less than 3klg(3/2) < 3k0.59.
(Incidentally, if k = 2s+1 − 1− (2s−e1 + 2s−e2 + · · ·+ 2s−et) where 0 < e1 < · · · < et,
we have S(k) = s+ 1 + et + 2et−1 + 4et−2 + · · ·+ 2t−1e1.)
99. A string that starts at position k in fn() starts at position k+ = k+ 1 + [k > jn ] in
f+
n () and at position k− = k− 1− [k > jn ] in f−

n (), except that 0n and 1n occur twice
in f+

n () but not at all in f−
n ().

To find γ = a0b0 . . . an−1bn−1 in the cycle f2n(), let α = a0 . . . an−1 and β =
b0 . . . bn−1. Suppose α starts at position j and β at position k in fn(), and assume
that neither α nor β is 0n or 1n. If j+ ≡ k− (modulo 2), let l/2 be a solution to the
equation j+ +(2n+2)x = k−+(2n−2)y; we may take l/2 = k−+(2n−2)(2n−3(j+−k−)
mod (2n−1+1)) if j+ ≥ k−, otherwise l/2 = j++(2n+2)(2n−3(k−−j+) mod (2n−1−1)).
Otherwise let (l+ 1)/2 = k+ + (2n+ 2)x = j− + 1 + (2n− 2)y in a similar way. Then γ
starts at position l in the cycle cn(); hence it starts at position l+1+[l≥ kn ]+2[l≥ ln ]
in the cycle f2n(). Similar formulas hold when α ∈ {0n, 1n} or β ∈ {0n, 1n} (but
not both). Finally, 02n, 12n, (01)n, and (10)n start respectively in positions 0, j2n,
ln + 1 + [kn< ln ], and ln + 2 + [kn< ln ].

To find β = b0b1 . . . bn in fn+1() when n is even, suppose that the n-bit string
(b0 ⊕ b1) . . . (bn−1 ⊕ bn) starts at position j in fn(). Then β starts at position k =
j − δn[j≥ jn ] + 2n[j= jn ][δn = 1] if fn+1(k) = b0, otherwise at position k + (2n− δn,
δn, 2n+ δn) according as (j<jn, j=jn, j>jn).

The running time of this recursion satisfies T (n) = O(n) + 2T (⌊n/2⌋), so it is
O(n logn). [Exercises 97–99 are based on the work of J. Tuliani, who also has developed
methods for certain larger values of m; see Discrete Math. 226 (2001), 313–336.]
100. No obvious defects are apparent, but extensive testing should be done before any
sequence can be recommended. By contrast, the de Bruijn cycle produced implicitly
by Algorithm F is a terrible source of supposedly random bits, even though it is n-
distributed in the sense of Definition 3.5D, because 0s predominate at the beginning.
Indeed, when n is prime, bits tn+ 1 of that sequence are zero for 0 ≤ t < (2n− 2)/n.
101. (a) Let β be a proper suffix of λλ′ with β ≤ λλ′. Either β is a suffix of λ′, whence
λ < λ′ ≤ β, or β = αλ′ and we have λ < α < β.

Now λ < β ≤ λλ′ implies that β = λγ for some γ ≤ λ′. But γ is a suffix of β with
1 ≤ |γ| = |β| − |λ| < |λ′|; hence γ is a proper suffix of λ′, and λ′ < γ. Contradiction.

(b) Any string of length 1 is prime. Combine adjacent primes by (a), in any
order, until no further combination is possible. [See the more general results of M. P.
Schützenberger, Proc. Amer. Math. Soc. 16 (1965), 21–24.]

(c) If t ̸= 0, let λ be the smallest suffix of λ1 . . . λt. Then λ is prime by definition,
and it has the form βγ where β is a nonempty suffix of some λj . Therefore λt ≤ λj ≤
β ≤ βγ = λ ≤ λt, so we must have λ = λt. Remove λt and repeat until t = 0.

(d) True. For if we had α = λβ for some prime λ with |λ| > |λ1|, we could append
the factors of β to obtain another factorization of α.

(e) 3 · 1415926535897932384626433832795 · 02884197. (An efficient algorithm
appears in exercise 106. Knowing more digits of π would not change the first two
factors. The infinite decimal expansion of any number that is “normal” in the sense of
Borel (see Section 3.5) factors into primes of finite length.)

From the Library of Melissa Nuno



ptg999

700 ANSWERS TO EXERCISES 7.2.1.1

102. We must have 1/(1 − mz) = 1/
∞
n=1(1 − zn)Lm(n). This implies (60) as in

exercise 4.6.2–4.

103. When n = p is prime, (59) tells us that Lm(1) + pLm(p) = mp, and we also
have Lm(1) = m. [This combinatorial proof provides an interesting contrast to the
traditional algebraic proof of Theorem 1.2.4F.]

104. The 4483 nonprimes are abaca, agora, ahead, . . . ; the 1274 primes are . . . , rusts,
rusty, rutty. (Since prime isn’t prime, we should perhaps call prime strings lowly.)

105. (a) Let α′ be α with its last letter increased, and suppose α′ = βγ′ where α = βγ
and β ̸= ϵ, γ ̸= ϵ. Let θ be the prefix of α with |θ| = |γ|. By hypothesis there is a string
ω such that αω is prime; hence θ ≤ αω < γω, so we must have θ ≤ γ. Consequently
θ < γ′, and we have α′ < γ′.

(b) Let α = λ1β = a1 . . . an where λ1βω is prime and |λ1| = r. If aj ̸= aj+r for
some j, we must have aj < aj+r for the smallest such j, because λ1βω < βω. But then
α would begin with a prime longer than λ1, contradicting exercise 101(d).

(c) If α is the n-extension of both λ and λ′, where |λ| > |λ′|, we must have
λ = (λ′)qθ where θ is a nonempty prefix of λ′. But then θ ≤ λ′ < λ < θ.

106. E1. [Initialize.] Set a1 ← · · · ← an ← m− 1, an+1 ← −1, and j ← 1.

E2. [Visit.] Visit (a1, . . . , an) with index j.

E3. [Subtract one.] Terminate if aj = 0. Otherwise set aj ← aj − 1, and
ak ← m− 1 for j < k ≤ n.

E4. [Prepare to factor.] (According to exercise 105(b), we now want to find the
first prime factor λ1 of a1 . . . an.) Set j ← 1 and k ← 2.

E5. [Find the new j.] (Now a1 . . . ak−1 is the (k − 1)-extension of the prime
a1 . . . aj .) If ak−j > ak, return to E2. Otherwise, if ak−j < ak, set j ← k.
Then increase k by 1 and repeat this step.

The efficient factoring algorithm in steps E4 and E5 is due to J. P. Duval, J. Algorithms
4 (1983), 363–381. For further information, see Cattell, Ruskey, Sawada, Serra, and
Miers, J. Algorithms 37 (2000), 267–282.

107. The number of n-tuples visited is Pm(n) =
n
j=1 Lm(j). Since Lm(n) = 1

n
mn +

O(mn/2/n), we have Pm(n) = Q(m,n) +O(Q(

m,n)), where

Q(m,n) =
n
k=1

mk

k
= mn

n
R(m,n);

R(m,n) =
n−1
k=0

m−k

1− k/n =
n/2
k=0

m−k

1− k/n +O(nm−n/2)

= m

m− 1

t−1
j=0

1
nj


l


j

l


l!

(m− 1)l +O(n−t), for all t.

Thus Pm(n) ∼ mn+1/((m − 1)n). The main contributions to the running time come
from the loops in steps F3 and F5, which cost n− j for each prime of length j, hence
a total of nPm(n)−n

j=1 jLm(j) = mn+1(1/((m− 1)2n) +O(1/(mn2))). This is less
than the time needed to output the mn individual digits of the de Bruijn cycle.

From the Library of Melissa Nuno



ptg999

7.2.1.1 ANSWERS TO EXERCISES 701

108. (a) If α ̸= 9 . . . 9, we have βα < λk+1 ≤ β9|α|, because the latter is prime.
(b) We can assume that β is not all 0s, since 9j0n−j is a substring of λt−1λtλ1λ2 =

89n0n1. Let k be minimal with β ≤ λk; then λk ≤ βα, so β is a prefix of λk. Since β
is a preprime, it is the |β|-extension of some prime β′ ≤ β. The preprime visited by
Algorithm F just before β′ is (β′ − 1)9n−|β′|, by exercise 106, where β′ − 1 denotes the
decimal number that is one less than β′. Thus, if β′ is not λk−1, the hint (which also
follows from exercise 106) implies that λk−1 ends with at least n − |β′| ≥ n − |β| 9s,
and α is a suffix of λk−1. On the other hand if β′ = λk−1, α is a suffix of λk−2 because
|β′| ≤ n/2, and β is a prefix of λk−1λk.

(c) If α ̸= 9 . . . 9, we have λk+1 ≤ (βα)d−1β9|α|, because the latter is prime.
Otherwise λk−1 ends with at least (d − 1)|βα| 9s, and λk+1 ≤ (βα)d−19|βα|, so (αβ)d
is a substring of λk−1λkλk+1.

(d) Within the primes 135899135914, 787899787979, 12999913131314, 09090911,
089999 09 090911, 118999 119 119122.

(e) Yes: In all cases, the position of a1 . . . an precedes the position of the substring
a1 . . . an−1(an + 1), if 0 ≤ an < 9 (and if we assume that strings like 9j0n−j occur at
the beginning). Furthermore 9j0n−j−1 occurs only after 9j−10n−ja has appeared for
1 ≤ a ≤ 9, so we must not place 0 after 9j0n−j−1.
109. Suppose we want to locate the submatrix

(wn−1 . . . w1w0)2 (xn−1 . . . x1x0)2
(yn−1 . . . y1y0)2 (zn−1 . . . z1z0)2


.

The binary case n = 1 is the given example, and if n > 1 we can assume by induction
that we only need to determine the leading bits a2n−1, a2n−2, b2n−1, and b2n−2. The
case n = 3 is typical: We must solve

b5 = w2, b4 = x2, a5 ⊕ b5 = y2, a4 ⊕ b4 = z2, if a0 = 0, b0 = 0;
b4 = w2, b′5 = x2, a4 ⊕ b4 = y2, a5 ⊕ b′5 = z2, if a0 = 0, b0 = 1;

a5 ⊕ b5 = w2, a4 ⊕ b4 = x2, b5 = y2, b4 = z2, if a0 = 1, b0 = 0;
a4 ⊕ b4 = w2, a5 ⊕ b′5 = x2, b4 = y2, b′5 = z2, if a0 = 1, b0 = 1;

here b′5 = b5 ⊕ b4b3b2b1 takes account of carrying when j becomes j + 1.
110. Let a0a1 . . . am2−1 be an m-ary de Bruijn cycle, such as the first m2 elements of
(54). If m is odd, let dij = aj when i is even, dij = a(j+(i+1)/2) mod m2 when i is odd,
for 0 ≤ i, j < m2. [The first of many people to discover this construction seems to have
been John C. Cock, who also constructed de Bruijn toruses of other shapes and sizes
in Discrete Math. 70 (1988), 209–210.]

If m = m′m′′ where m′ ⊥ m′′, we use the Chinese remainder algorithm to define

dij ≡ d ′
ij (modulo m′) and dij ≡ d ′′

ij (modulo m′′)

in terms of matrices that solve the problem for m′ and m′′. Thus the previous exercise
leads to a solution for arbitrary m.

Another interesting solution for even values of m was found by Antal Iványi and
Zoltán Tóth [2nd Conf. Automata, Languages, and Programming Systems (1988), 165–
172; see also Hurlbert and Isaak, Contemp. Math. 178 (1994), 153–160]. The first m2

elements aj of the infinite sequence

0011 021331203223 04152435534251405445 0617263746577564 . . . 07667 08 . . .

From the Library of Melissa Nuno



ptg999

702 ANSWERS TO EXERCISES 7.2.1.1

define a de Bruijn cycle with the property that the distance between the appearances
of ab and ba is always even. Then we can let dij = aj if i+ j is even, dij = ai if i+ j
is odd. For example, when m = 4 we have

0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2
0 0 0 1 0 2 0 3 2 0 2 1 2 2 2 3
0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3
1 0 1 1 1 2 1 3 3 0 3 1 3 2 3 3
0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2
0 2 0 3 0 0 0 1 2 2 2 3 2 0 2 1
0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3
1 2 1 3 1 0 1 1 3 2 3 3 3 0 3 1
0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2
2 0 2 1 2 2 2 3 0 0 0 1 0 2 0 3
0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3
3 0 3 1 3 2 3 3 1 0 1 1 1 2 1 3
0 0 1 0 0 2 1 2 2 0 3 0 2 2 3 2
2 2 2 3 2 0 2 1 0 2 0 3 0 0 0 1
0 1 1 1 0 3 1 3 2 1 3 1 2 3 3 3
3 2 3 3 3 0 3 1 1 2 1 3 1 0 1 1



(exercise 109);



0 0 1 0 0 0 1 0 3 0 2 0 3 0 2 0
0 0 0 1 0 2 0 3 0 1 0 0 0 2 0 3
0 1 1 1 0 1 1 1 3 1 2 1 3 1 2 1
1 0 1 1 1 2 1 3 1 1 1 0 1 2 1 3
0 0 1 0 0 0 1 0 3 0 2 0 3 0 2 0
2 0 2 1 2 2 2 3 2 1 2 0 2 2 2 3
0 1 1 1 0 1 1 1 3 1 2 1 3 1 2 1
3 0 3 1 3 2 3 3 3 1 3 0 3 2 3 3
0 3 1 3 0 3 1 3 3 3 2 3 3 3 2 3
1 0 1 1 1 2 1 3 1 1 1 0 1 2 1 3
0 2 1 2 0 2 1 2 3 2 2 2 3 2 2 2
0 0 0 1 0 2 0 3 0 1 0 0 0 2 0 3
0 3 1 3 0 3 1 3 3 3 2 3 3 3 2 3
2 0 2 1 2 2 2 3 2 1 2 0 2 2 2 3
0 2 1 2 0 2 1 2 3 2 2 2 3 2 2 2
3 0 3 1 3 2 3 3 3 1 3 0 3 2 3 3



(Tóth).

111. (a) Let dj = j and 0 ≤ aj < 3 for 1 ≤ j ≤ 9, a9 ̸= 0. Form sequences sj , tj by the
rules s1 = 0, t1 = d1; tj+1 = dj+1 + 10tj [aj = 0] for 1 ≤ j < 9; sj+1 = sj + (0, tj ,−tj)
for aj = (0, 1, 2) and 1 ≤ j ≤ 9. Then s10 is a possible result; we need only remember
the smallish values that occur. More than half the work is saved by disallowing ak = 2
when sk = 0, then using |s10| instead of s10. Since fewer than 38 = 6561 possibilities
need to be tried, brute force via the ternary version of Algorithm M works well; fewer
than 24,000 mems and 1600 multiplications are needed to deduce that all integers less
than 211 are representable, but 211 is not.

Another approach, using Gray code to vary the signs after breaking the digits
into blocks in 28 possible ways, reduces the number of multiplications to 255, but at
the cost of about 500 additional mems. Therefore Gray code is not advantageous in
this application.

(b) Now (with 73,000 mems and 4900 multiplications) we can reach all numbers
less than 241, but not 241. There are 46 ways to represent 100, including the remarkable
9− 87 + 6 + 5− 43 + 210.

[H. E. Dudeney introduced his “century” problem in The Weekly Dispatch (4 and
18 June 1899). See also The Numerology of Dr. Matrix by Martin Gardner, Chapter 6;
Steven Kahan, J. Recreational Math. 23 (1991), 19–25; and exercise 7.2.1.6–122.]
112. The method of exercise 111 now needs more than 167 million mems and 10 million
multiplications, because 316 is so much larger than 38. We can do much better (10.4
million mems, 1100 mults) by first tabulating the possibilities obtainable from the first
k and last k digits, for 1 ≤ k < 9, then considering all blocks of digits that use the 9.
There are 60,318 ways to represent 100, and the first unreachable number is 16,040.

SECTION 7.2.1.2
1. [J. P. N. Phillips, Comp. J. 10 (1967), 311.] Assuming that n ≥ 3, we can replace

steps L2–L4 by:
L2′. [Easiest case?] Set y ← an−1 and z ← an. If y < z, set an−1 ← z, an ← y,

and return to L1.

From the Library of Melissa Nuno



ptg999

7.2.1.2 ANSWERS TO EXERCISES 703

L2.1′. [Next easiest case?] Set x ← an−2. If x ≥ y, go on to step L2.2′. Otherwise
set (an−2, an−1, an)← (z, x, y) if x < z, (y, z, x) if x ≥ z. Return to L1.

L2.2′. [Find j.] Set j ← n− 3 and y ← aj . While y ≥ x, set j ← j − 1, x← y, and
y ← aj . Terminate if j = 0.

L3′. [Easy increase?] If y < z, set aj ← z, aj+1 ← y, an ← x, and go to L4.1′.
L3.1′. [Increase aj .] Set l← n−1; if y ≥ al, repeatedly decrease l by 1 until y < al.

Then set aj ← al and al ← y.
L4′. [Begin to reverse.] Set an ← aj+1 and aj+1 ← z.

L4.1′. [Reverse aj+2 . . . an−1.] Set k ← j + 2 and l ← n − 1. Then, while k < l,
interchange ak ↔ al and set k ← k + 1, l← l − 1. Return to L1.

The program might run still faster if at is stored in memory location A[n − t] for
0 ≤ t ≤ n, or if reverse colex order is used as in the following exercise.

2. Again we assume that a1 ≤ a2 ≤ · · · ≤ an initially; the permutations generated
from {1, 2, 2, 3} will, however, be 1223, 2123, 2213, . . . , 2321, 3221. Let an+1 be an
auxiliary element, larger than an.

M1. [Visit.] Visit the permutation a1a2 . . . an.
M2. [Find j.] Set j ← 2. If aj−1 ≥ aj , increase j by 1 until aj−1 < aj . Terminate

if j > n.
M3. [Decrease aj .] Set l ← 1. If al ≥ aj , increase l until al < aj . Then swap

al ↔ aj .
M4. [Reverse a1 . . . aj−1.] Set k ← 1 and l← j− 1. Then, if k < l, swap ak ↔ al,

set k ← k + 1, l← l − 1, and repeat until k ≥ l. Return to M1.
3. Let C1 . . . Cn = ca1 . . . can be the inversion table, as in exercise 5.1.1–7. Then

rank(a1 . . . an) is the mixed-radix number [C1,
n,

...,

...,
Cn−1,

2,
Cn
1 ]. [See H. A. Rothe, Samm-

lung combinatorisch-analytischer Abhandlungen 2 (1800), 263–264; and see also the
pioneering work of Śārṅgadeva and Nārāyan. a cited in Section 7.2.1.7.] For example,
314592687 has rank [ 2,

9,
0,
8,

1,
7,

1,
6,

4,
5,

0,
4,

0,
3,

1,
2,

0
1 ] = 2 · 8! + 6! + 5! + 4 · 4! + 1! = 81577; this is

the factorial number system featured in Eq. 4.1–(10).
4. Use the recurrence rank(a1 . . . an) = 1

n

t
j=1 nj [xj <a1 ]


n

n1,...,nt


+rank(a2 . . . an).

For example, rank(314159265) is
3
9
 9

2,1,1,1,2,1,1


+ 0 + 2
7
 7

1,1,1,2,1,1


+ 0 + 1
5
 5

1,2,1,1


+ 3
4
 4

1,1,1,1


+ 0 + 1
2
 2

1,1


= 30991.

5. (a) Step L2 is performed n! times. The probability that exactly k comparisons are
made is qk−qk+1, where qt is the probability that an−t+1 > · · · > an, namely [t≤n]/t!.
Therefore the mean is


k(qk − qk+1) = q1 + · · ·+ qn = ⌊n! e⌋/n!− 1 ≈ e− 1 ≈ 1.718,

and the variance is
k2(qk−qk+1)−mean2 = q1+3q2+· · ·+(2n−1)qn−(q1+· · ·+qn)2 ≈ e(3−e) ≈ 0.766.

[For higher moments, see R. Kemp, Acta Informatica 35 (1998), 17–89, Theorem 4.]
Incidentally, the average number of interchange operations in step L4 is therefore⌊k/2⌋(qk − qk+1) = q2 + q4 + · · · ≈ cosh 1− 1 = (e+ e−1 − 2)/2 ≈ 0.543, a result due

to R. J. Ord-Smith [Comp. J. 13 (1970), 152–155].
(b) Step L3 is performed only n! − 1 times, but we will assume for convenience

that it occurs once more (with 0 comparisons). Then the probability that exactly k

From the Library of Melissa Nuno



ptg999

704 ANSWERS TO EXERCISES 7.2.1.2

comparisons are made is
n
j=k+1 1/j! for 1 ≤ k < n and 1/n! for k = 0. Hence the

mean is 1
2
n−2
j=0 1/j! ≈ e/2 ≈ 1.359; exercise 1 reduces this number by 2

3 . The variance
is 1

3
n−3
j=0 1/j! + 1

2
n−2
j=0 1/j!−mean2 ≈ 5

6e− 1
4e

2 ≈ 0.418.
6. (a) Let en(z) =

n
k=0 z

k/k!; then the number of different prefixes a1 . . . aj is
j! [zj ] en1 (z) . . . ent(z). This is N =


n

n1,...,nt


times the probability qn−j that at least

n−j comparisons are made in step L2. Therefore the mean is 1
N
w(en1 (z) . . . ent(z))−1,

where w(xkz
k/k!) =


xk. In the binary case the mean is M/


n
s


− 1, where M =s

l=0
n−s+l
k=l


k
l


=
s
l=0

n−s+l+1
l+1


=

n+2
s+1

− 1 =


n
s


(2 + s

n−s+1 + n−s
s+1 )− 1.

(b) If {a1, . . . , aj} = {n′
1 ·x1, . . . , n

′
t ·xt}, the prefix a1 . . . aj contributes altogether

1≤k<l≤t(nk−n′
k)[nl>n′

l ] to the total number of comparisons made in step L3. Thus
the mean is 1

N


1≤k<l≤t w(fkl(z)), where

fkl(z) =
 

1≤m≤t
m ̸=k, m̸=l

enm(z)
 nk

r=0

(nk − r)z
r

r!


enl−1(z)

= en1 (z) . . . ent(z)(nk − z rk(z))rl(z), where rk(z) = enk−1(z)
enk (z) .

In the two-valued case this formula reduces to 1
N
w((ses(z) − zes−1(z))en−s−1(z)) =

s
N

(

n+1
s+1

− 1)− 1

N
(

n+1
s+1

(s− s+1

n−s+1 ) + 1) = 1
N

(−s− 1 +

n+1
s


) = n+1

n−s+1 − s+1
N

.
7. In the notation of the previous answer, the quantity 1

N
w(en1 (z) . . . ent(z))− 1 is

n1 + · · ·+ nt
n

+ (n1n2 + n1n3 + · · ·+ nt−1nt) + n1(n1−1) + · · ·+ nt(nt−1)
n(n− 1) + · · · .

One can show using Eq. 1.2.9–(38) that the limit is −1 + exp

k≥1 rk/k, where rk =

limt→∞(nk1 + · · · + nkt )/(n1 + · · · + nt)k. In cases (a) and (b) we have rk = [k= 1],
so the limit is e − 1 ≈ 1.71828. In case (c) we have rk = 1/(2k − 1), so the limit is
−1 + exp


k≥1 1/(k(2k − 1)) ≈ 2.46275.

8. Assume that j is initially zero, and change step L1 to
L1′. [Visit.] Visit the variation a1 . . . aj . If j < n, set j ← j + 1 and repeat this

step.
This algorithm is due to L. J. Fischer and K. C. Krause, Lehrbuch der Combinations-
lehre und der Arithmetik (Dresden: 1812), 55–57.

Incidentally, the total number of variations is w(en1 (z) . . . ent(z)) in the notation
of answer 6. This counting problem was first treated by James Bernoulli in Ars
Conjectandi (1713), Part 2, Chapter 9.

9. Assume that r > 0 and that we begin with a0 < a1 ≤ a2 ≤ · · · ≤ an.
R1. [Visit.] Visit the variation a1 . . . ar. (At this point ar+1 ≤ · · · ≤ an.)
R2. [Easy case?] If ar < an, interchange ar ↔ aj where j is the smallest subscript

such that j > r and aj > ar, and return to R1.
R3. [Reverse.] Set (ar+1, . . . , an)← (an, . . . , ar+1) as in step L4.
R4. [Find j.] Set j ← r − 1. If aj ≥ aj+1, decrease j by 1 repeatedly until

aj < aj+1. Terminate if j = 0.
R5. [Increase aj .] Set l ← n. If aj ≥ al, decrease l by 1 repeatedly until aj < al.

Then interchange aj ↔ al.

From the Library of Melissa Nuno



ptg999

7.2.1.2 ANSWERS TO EXERCISES 705

R6. [Reverse again.] Set (aj+1, . . . , an)← (an, . . . , aj+1) as in step L4, and return
to R1.

The number of outputs is r! [zr] en1 (z) . . . ent(z); this is, of course, nr when the elements
are distinct.
10. a1a2 . . . an = 213 . . . n, c1c2 . . . cn = 010 . . . 0, o1o2 . . . on = 1(−1)1 . . . 1, if n ≥ 2.
11. Step (P1, . . . , P7) is performed (1, n!, n!, n! + xn, n! − 1, (xn + 3)/2, xn) times,
where xn =

n−1
k=1 k!, because P7 is performed (j − 1)! times when 2 ≤ j ≤ n.

12. We want the permutation of rank 999999. The answers are (a) 2783915460, by
exercise 3; (b) 8750426319, because the reflected mixed-radix number corresponding
to [ 0,

1,
0,
2,

1,
3,

2,
4,

3,
5,

0,
6,

2,
7,

7,
8,

0,
9,

9
10 ] is [ 0,

1,
0,
2,

1,
3,

3−2,
4,

3,
5,

5−0,
6,

2,
7,

7,
8,

8−0,
9,

9−9
10 ] by 7.2.1.1–(50); (c) the

product (0 1 . . . 9)9(0 1 . . . 8)0(0 1 . . . 7)7(0 1 . . . 6)2 . . . (0 1 2)1, namely 9703156248.
13. The first statement is true for all n ≥ 2. But when 2 crosses 1, namely when
c2 changes from 0 to 1, we have c3 = 2, c4 = 3, c5 = · · · = cn = 0, and the next
permutation when n ≥ 5 is 432156 . . . n. [See Time Travel (1988), page 74.]
14. True at the beginning of steps P4, P5, and P6, because exactly j−1−cj+s elements
lie to the left of xj , namely j − 1− cj from {x1, . . . , xj−1} and s from {xj+1, . . . , xn}.
(In a sense, this formula is the main point of Algorithm P.)
15. If [ bn−1,

1,
...,
...,

b0
n

] corresponds to the reflected Gray code [ c1,
1,

...,

...,
cn
n

], we get to step P6
if and only if bn−k = k − 1 for j ≤ k ≤ n and Bn−j+1 is even, by 7.2.1.1–(50). But
bn−k = k − 1 for j ≤ k ≤ n implies that Bn−k is odd for j < k ≤ n. Therefore
s = [cj+1 = j ] + [cj+2 = j + 1] = [oj+1 < 0] + [oj+2 < 0] in step P5. [See Math. Comp.
17 (1963), 282–285.]
16. P1′. [Initialize.] Set cj ← j and oj ← −1 for 1 ≤ j < n; also set z ← an.

P2′. [Visit.] Visit a1 . . . an. Then go to P3.5′ if a1 = z.
P3′. [Hunt down.] For j ← n − 1, n − 2, . . . , 1 (in this order), set aj+1 ← aj ,

aj ← z, and visit a1 . . . an. Then set j ← n− 1, s← 1, and go to P4′.
P3.5′. [Hunt up.] For j ← 1, 2, . . . , n− 1 (in this order), set aj ← aj+1, aj+1 ← z,

and visit a1 . . . an. Then set j ← n− 1, s← 0.
P4′. [Ready to change?] Set q ← cj + oj . If q = 0, go to P6′; if q > j, go to P7′.
P5′. [Change.] Interchange acj+s ↔ aq+s. Then set cj ← q and return to P2′.
P6′. [Increase s.] Terminate if j = 1; otherwise set s← s+ 1.
P7′. [Switch direction.] Set oj ← −oj , j ← j − 1, and go back to P4′.

17. Initially aj ← a′j ← j for 1 ≤ j ≤ n. Step P5 should now set t ← j − cj + s,
u← j − q + s, v ← au, at ← v, a′v ← t, au ← j, a′j ← u, cj ← q. (See exercise 14.)

But with the inverse required and available we can actually simplify the algorithm
significantly, avoiding the offset variable s and letting the control table c1 . . . cn count
only downwards, as noted by G. Ehrlich [JACM 20 (1973), 505–506]:

Q1. [Initialize.] Set aj ← a′j ← j, cj ← j − 1, and oj ← −1 for 1 ≤ j ≤ n. Also
set c0 = −1.

Q2. [Visit.] Visit the permutation a1 . . . an and its inverse a′1 . . . a′n.
Q3. [Find k.] Set k ← n. Then, while ck = 0, set ck ← k − 1, ok ← −ok, and

k ← k − 1. Terminate if k = 0.
Q4. [Change.] Set ck ← ck − 1, j ← a′k, and i = j + ok. Then set t← ai, ai ← k,

aj ← t, a′t ← j, a′k ← i, and return to Q2.

From the Library of Melissa Nuno



ptg999

706 ANSWERS TO EXERCISES 7.2.1.2

18. Set an ← n, and use (n− 1)!/2 iterations of Algorithm P to generate all permuta-
tions of {1, . . . , n− 1} such that 1 precedes 2. [M. K. Roy, CACM 16 (1973), 312–313;
see also exercise 13.]
19. For example, we can use the idea of Algorithm P, with the n-tuples c1 . . . cn
changing as in Algorithm 7.2.1.1H with respect to the radices (1, 2, . . . , n). That
algorithm maintains the directions correctly, although it numbers subscripts differently.
The offset s needed by Algorithm P can be computed as in the answer to exercise 15, or
the inverse permutation can be maintained as in exercise 17. [See G. Ehrlich, CACM
16 (1973), 690–691.] Other algorithms, like that of Heap, can also be implemented
looplessly.

(Note: In most applications of permutation generation we are interested in mini-
mizing the total running time, not the maximum time between successive visits; from
this standpoint looplessness is usually undesirable, except on a parallel computer. Yet
there’s something intellectually satisfying about the fact that a loopless algorithm
exists, whether practical or not.)
20. For example, when n = 3 we can begin 123, 132, 312, 312, 132, 123, 213, . . . ,
213, 213, . . . . If the delta sequence for n is (δ1δ2 . . . δ2nn!), the corresponding sequence
for n + 1 is (∆nδ1∆nδ2 . . .∆nδ2nn!), where ∆n is the sequence of 2n + 1 operations
n n−1 . . . 1 − 1 . . . n−1 n; here δk = j means aj ↔ aj+1 and δk = − means
a1 ← −a1.

(Signed permutations appear in another guise in exercises 5.1.4–43 and 44. The
set of all signed permutations is called the octahedral group.)
21. Clearly M = 1, hence O must be 0 and S must be b− 1. Then N = E + 1, R = b− 2,
and D + E = b+ Y. This leaves exactly max(0, b− 7− k) choices for E when Y = k ≥ 2,
hence a total of

b−7
k=2(b−7−k) =


b−8

2


solutions when b ≥ 8. [Math. Mag. 45 (1972),
48–49. Incidentally, D. Eppstein has proved that the task of solving alphametics with
a given radix is NP-complete; see SIGACT News 18, 3 (1987), 38–40.]
22. (X)b + (X)b = (XY)b is solvable only when b = 2.
23. Almost true, because the number of solutions will be even, unless [j ∈F ] ̸= [k∈F ].
(Consider the ternary alphametic X + (XX)3 + (YY)3 + (XZ)3 = (XYX)3.)
24. (a) 9283 + 7 + 473 + 1062 = 10825. (b) 698392 + 3192 = 701584. (c) 63952 +
69275 = 133227. (d) 653924 + 653924 = 1307848. (e) 5718 + 3 + 98741 = 104462. (f)
127503+502351+3947539+46578 = 4623971. (g) 67432+704+8046+97364 = 173546.
(h) 59 + 577404251698 + 69342491650 + 49869442698 + 1504 + 40614 + 82591 + 344 +
41 + 741425 = 5216367650 + 691400684974. [All solutions are unique. References for
(b)–(g): J. Recreational Math. 10 (1977), 115; 5 (1972), 296; 10 (1977), 41; 10 (1978),
274; 12 (1979), 133–134; 9 (1977), 207.]

(i) In this case there are 8
10 10! = 2903040 solutions, because every permutation of

{0, 1, . . . , 9} works except those that assign H or N to 0. (A well-written general additive
alphametic solver will be careful to reduce the amount of output in such cases.)
25. We may assume that s1 ≤ · · · ≤ s10. Let i be the least index /∈ F , and set
ai ← 0; then set the remaining elements aj in order of increasing j. A proof like that
of Theorem 6.1S shows that this procedure maximizes a · s. A similar procedure yields
the minimum, because min(a · s) = −max(a · (−s)).
26. 400739 + 63930− 2379− 1252630 + 53430− 1390 + 738300.
27. Readers can probably improve upon the following examples: BLOOD + SWEAT +
TEARS = LATER; EARTH + WATER + WRATH = HELLO + WORLD; AWAIT + ROBOT + ERROR =

From the Library of Melissa Nuno



ptg999

7.2.1.2 ANSWERS TO EXERCISES 707

SOBER + WORDS; CHILD + THEME + PEACE + ETHIC = IDEAL + ALPHA + METIC. (This
exercise was inspired by WHERE + SEDGE + GRASS + GROWS = MARSH [A. W. Johnson,
Jr., J. Recr. Math. 15 (1982), 51], which would be marvelously pure except that D
and O have the same signature.) J. A. Brown, J. Szabó, and T. J. Trowbridge suggest
GREAT + GREAT = LARGE and GREAT + GREAT = SMALL.
28. (a) 11 = 3 + 3 + 2 + 2 + 1, 20 = 11 + 3 + 3 + 3, 20 = 11 + 3 + 3 + 2 + 1,
20 = 11 + 3 + 3 + 1 + 1 + 1, 20 = 8 + 8 + 2 + 1 + 1, 20 = 7 + 7 + 6, 20 = 7 + 7 + 2 + 2 + 2,
20 = 7 + 7 + 2 + 1 + 1 + 1 + 1, 20 = 7 + 5 + 5 + 2 + 1, 20 = 7 + 5 + 2 + 2 + 2 + 1 + 1, 20 =
7+5+2+2+1+1+1+1, 20 = 7+3+3+2+2+1+1+1, 20 = 7+3+3+1+1+1+1+1+1+1,
20 = 5 + 3 + 3 + 3 + 3 + 3. [These fourteen solutions were first computed by Roy Childs
in 1999. The next doubly partitionable values of n are 30 (in 20 ways), then 40 (in 94
ways), 41 (in 67), 42 (in 57), 50 (in 190 ways, including 50 = 2 + 2 + · · ·+ 2), etc.]

(b) 51 = 20 + 15 + 14 + 2, 51 = 15 + 14 + 10 + 9 + 3, 61 = 19 + 16 + 11 + 9 + 6,
65 = 17 + 16 + 15 + 9 + 7 + 1, 66 = 20 + 19 + 16 + 6 + 5, 69 = 18 + 17 + 16 + 10 + 8,
70 = 30 + 20 + 10 + 7 + 3, 70 = 20 + 16 + 12 + 9 + 7 + 6, 70 = 20 + 15 + 12 + 11 + 7 + 5,
80 = 50+20+9+1, 90 = 50+12+11+9+5+2+1, 91 = 45+19+11+10+5+1. [The
two 51s are due to Steven Kahan; see his book Have Some Sums To Solve (Farmingdale,
New York: Baywood, 1978), 36–37, 84, 112. Amazing examples with seventeen distinct
terms in Italian and fifty-eight distinct terms in Roman numerals have been found by
Giulio Cesare, J. Recr. Math. 30 (1999), 63.]

Notes: The beautiful example THREE = TWO+ONE+ZERO [Richard L. Breisch, Recre-
ational Math. Magazine 12 (December 1962), 24] is unfortunately ruled out by our con-
ventions. The total number of doubly true partitions into distinct parts is probably fi-
nite, in English, although nomenclature for arbitrarily large integers is not standard. Is
there an example bigger than NINETYNINENONILLIONNINETYNINESEXTILLIONSIXTYONE =
NINETYNINENONILLIONNINETYNINESEXTILLIONNINETEEN+SIXTEEN+ELEVEN+NINE+SIX
(suggested by G. González-Morris)?
29. 10 + 7 + 1 = 9 + 6 + 3, 11 + 10 = 8 + 7 + 6, 12 + 7 + 6 + 5 = 11 + 10 + 9, . . . ,
19 + 10 + 3 = 14 + 13 + 4 + 1 (31 examples in all).
30. (a) 5672 = 321489, 8072 = 651249, or 8542 = 729316. (b) 9582 = 917764.
(c) 96 × 72 = 4704. (d) 51304/61904 = 7260/8760. (e) 3285092 = 47613. [Strand 78
(1929), 91, 208; J. Recr. Math 3 (1970), 43; 13 (1981), 212; 27 (1995), 137; 31 (2003),
133. The solutions to (b), (c), (d), and (e) are unique. With a right-to-left approach
based on Algorithm X, the answers are found in (14, 13, 11, 3423, 42) kilomems,
respectively. Nob also noticed that NORTH/SOUTH = WEST/EAST has the unique solution
67104/27504 = 9320/3820.]
31. (a) 5/34 + 7/68 + 9/12(!). One can verify uniqueness with Algorithm X using the
side condition A < D < G, in about 265 Kµ. [Quark Visual Science Magazine, No. 136
(Tokyo: Kodansha, October 1993).] Curiously, a similar puzzle also has a unique solu-
tion: 1/(3×6)+5/(8×9)+7/(2×4) = 1 [Scot Morris, Omni 17, 4 (January 1995), 97].

(b) ABCDEFGHI = 381654729, via Algorithm X in 10 Kµ.
32. There are eleven ways, of which the most surprising is 3 + 69258/714. [See The
Weekly Dispatch (9 and 23 June 1901); Amusements in Mathematics (1917), 158–159.]
33. (a) 1, 2, 3, 4, 15, 18, 118, 146. (b) 6, 9, 16, 20, 27, 126, 127, 129, 136, 145. [The
Weekly Dispatch (11 and 30 November, 1902); Amusements in Math. (1917), 159.]

In this case one suitable strategy is to find all variations where ak . . . al−1/al . . . a9
is an integer, then to record solutions for all permutations of a1 . . . ak−1. There are

From the Library of Melissa Nuno



ptg999

708 ANSWERS TO EXERCISES 7.2.1.2

exactly 164959 integers with a unique solution, the largest being 9876533. There are
solutions for all years in the 21st century except 2091. The most solutions (389) occur
when n = 12221; the longest stretch of representable n’s is 5109 < n < 7060. Dudeney
was able to get the correct answers by hand for small n by “casting out nines.”
34. (a) x = 105, 7378 + 155 + 92467 = 7178 + 355 + 92467 = 1016 + 733 + 98251 =
1014 + 255 + 98731 = 100000.

(b) x = 47, 3036 + 455 + 12893 = 16384 is unique. The fastest way to resolve this
problem is probably to start with a list of the 2529 primes that consist of five distinct
digits (namely 10243, 10247, . . . , 98731) and to permute the five remaining digits.

Incidentally, the unrestricted alphametic EVEN + ODD = PRIME has ten solutions;
both ODD and PRIME are prime in just one of them. [See M. Arisawa, J. Recr. Math. 8
(1975), 153.]
35. In general, if sk = |Sk| for 1 ≤ k < n, there are s1 . . . sk−1 ways to choose each of
the nonidentity elements of Sk. Hence the answer is

n−1
k=1 (k−1

j=1 s
sk−1
j ), which in this

case is 22 · 63 · 2415 = 436196692474023836123136.
(But if the vertices are renumbered, the sk values may change. For example,

if vertices (0, 3, 5) of (12) are interchanged with (e, d, c), we have s14 = 1, s13 = 6,
s12 = 4, s11 = 1, and 45 · 2415 Sims tables.)
36. Since each of {0, 3, 5, 6, 9, a, c, f} lies on three lines, but every other element lies
on only two, it is clear that we may let Sf = {(), σ, σ2, σ3, α, ασ, ασ2, ασ3}, where σ =
(03fc)(17e8)(2bd4)(56a9) is a 90◦ rotation and α = (05)(14)(27)(36)(8d)(9c)(af)(be)
is an inside-out twist. Also Se = {(), β, γ, βγ}, where β = (14)(28)(3c)(69)(7d)(be) is a
transposition and γ = (12)(48)(5a)(69)(7b)(de) is another twist; Sd = · · · = S1 = {()}.
(There are 47 − 1 alternative answers.)
37. The set Sk can be chosen in k!k ways (see exercise 35), and its nonidentity elements
can be assigned to σ(k, 1), . . . , σ(k, k) in k! further ways. So the answer is An =n−1
k=1 k!k+1 = n!(

n+1
2 )/

n
k=1 k

(k+1
2 ). For example, A10 ≈ 1.148× 10170. We have

n−1
k=1


k

2


ln k = 1

2

 n

1
x(x− 1) ln x dx+O(n2 logn) = 1

6n
3 lnn+O(n3)

by Euler’s summation formula; thus lnAn = 1
3n

3 lnn+O(n3).
38. The probability that ϕ(k) is needed in step G4 is 1/k! − 1/(k + 1)!, for 1 ≤
k < n; the probability is 1/n! that we don’t get to step G4 at all. Since ϕ(k) does
⌈k/2⌉ transpositions, the average is

n−1
k=1 (1/k! − 1/(k + 1)!)⌈k/2⌉ =

n−1
k=1 (⌈k/2⌉ −

⌈(k − 1)/2⌉)/k!− ⌈(n− 1)/2⌉/n! =

k odd 1/k! +O(1/(n− 1)!).

39. (a) 0123, 1023, 2013, 0213, 1203, 2103, 3012, 0312, 1302, 3102, 0132, 1032, 2301,
3201, 0231, 2031, 3021, 0321, 1230, 2130, 3120, 1320, 2310, 3210; (b) 0123, 1023, 2013,
0213, 1203, 2103, 3102, 1302, 0312, 3012, 1032, 0132, 0231, 2031, 3021, 0321, 2301,
3201, 3210, 2310, 1320, 3120, 2130, 1230.
40. By induction we find σ(1, 1) = (0 1), σ(2, 2) = (0 1 2),

σ(k, k) =
 (0 k)(k−1 k−2 . . . 1), if k ≥ 3 is odd,

(0 k−1 k−2 1 . . . k−3 k), if k ≥ 4 is even;

also ω(k) = (0 k) when k is even, ω(k) = (0 k−2 . . . 1 k−1 k) when k ≥ 3 is odd.
Thus when k ≥ 3 is odd, σ(k, 1) = (k k−1 0) and σ(k, j) takes k →→ j−1 for 1 < j < k;
when k ≥ 4 is even, σ(k, j) = (0 k k−3 . . . 1 k−2 k−1)j for 1 ≤ j ≤ k.

From the Library of Melissa Nuno



ptg999

7.2.1.2 ANSWERS TO EXERCISES 709

Notes: The first scheme that causes Algorithm G to generate all permutations by
single transpositions was devised by Mark Wells [Math. Comp. 15 (1961), 192–195],
but it was considerably more complicated. W. Lipski, Jr., studied such schemes in
general and found a variety of additional methods [Computing 23 (1979), 357–365].
41. We may assume that r < n. Algorithm G will generate r-variations for any Sims
table if we simply change ‘k ← 1’ to ‘k ← n− r’ in step G3, provided that we redefine
ω(k) to be σ(n− r, n− r) . . . σ(k, k) instead of using (16).

If n−r is odd, the method of (27) is still valid, although the formulas in answer 40
need to be revised when k < n− r+ 2. The new formulas are σ(k, j) = (k j−1 . . . 1 0)
and ω(k) = (k . . . 1 0) when k = n− r; σ(k, j) = (k . . . 1 0)j when k = n− r + 1.

If n− r is even, we can use (27) with even and odd reversed, if r ≤ 3. But when
r ≥ 4 a more complex scheme is needed, because a fixed transposition like (k 0) can
be used for odd k only if ω(k − 1) is a k-cycle, which means that ω(k − 1) must be an
even permutation; but ω(k) is odd for k ≥ n− r + 2.

The following scheme works when n− r is even: Let τ(k, j)ω(k − 1)− = (k k−j)
for 1 ≤ j ≤ k = n− r, and use (27) when k > n− r. Then, when k = n− r+1, we have
ω(k − 1) = (0 1 . . . k−1), hence σ(k, j) takes k →→ (2j − 1) mod k for 1 ≤ j ≤ k, and
σ(k, k) = (k k−1 k−3 . . . 0 k−2 . . . 1), ω(k) = (k . . . 1 0), σ(k+1, j) = (k+1 . . . 0)j .
42. If σ(k, j) = (k j−1) we have τ(k, 1) = (k 0) and τ(k, j) = (k j−1)(k j−2) =
(k j−1 j−2) for 2 ≤ j ≤ k.
43. Of course ω(1) = σ(1, 1) = τ(1, 1) = (0 1). The following construction makes
ω(k) = (k−2 k−1 k) for all k ≥ 2: Let α(k, j) = τ(k, j)ω(k−1)−, where α(2, 1) = (2 0),
α(2, 2) = (2 0 1), α(3, 1) = α(3, 3) = (3 1), α(3, 2) = (3 1 0); this makes σ(2, 2) = (0 2),
σ(3, 3) = (0 3 1). Then for k ≥ 4, let α(k, 1) = (k k−4), α(k, j) = (k k−3−j k−2−j)
for 1 < j < k − 2, and

k mod 3 = 0 k mod 3 = 1 k mod 3 = 2
α(k, k−2) = (k k−2 0) or (k k−3 0) or (k k−1 0),
α(k, k−1) = (k k−2 k−3) or (k k−3) or (k k−1 k−3),
α(k, k) = (k k−2) or (k k−3 k−2) or (k k−2);

this makes σ(k, k) = (k−3 k k−2) as required.
44. No, because τ(k, j) is a (k + 1)-cycle, not a transposition. (See (19) and (24).)
45. (a) 202280070, since uk = max ({0, 1, . . . , ak−1}\{a1, . . . , ak−1}). (Actually un is
never set by the algorithm, but we can assume that it is zero.) (b) 273914568.
46. True (assuming that un = 0). If either uk > uk+1 or ak > ak+1 we must have
ak > uk ≥ ak+1 > uk+1.
47. Steps (X1,X2, . . . ,X6) are performed respectively (1, A,B,A−1, B−Nn, A) times,
where A = N0 + · · ·+Nn−1 and B = nN0 + (n− 1)N1 + · · ·+ 1Nn−1.
48. Steps (X2,X3,X4,X5,X6) are performed respectively An + (1, n!, 0, 0, 1) times,
where An =

n−1
k=1 n

k = n!
n−1
k=1 1/k! ≈ n! (e − 1). Assuming that they cost respec-

tively (1, 1, 3, 1, 3) mems, for operations involving aj , lj , or uj , the total cost is about
9e− 8 ≈ 16.46 mems per permutation.

Algorithm L uses approximately (e, 2 + e/2, 2e+ 2e−1− 4) mems per permutation
in steps (L2,L3,L4), for a total of 3.5e+ 2e−1 − 2 ≈ 8.25 (see exercise 5).

Algorithm X could be tuned up for this case by streamlining the code when k is
near n. But so can Algorithm L, as shown in exercise 1.

From the Library of Melissa Nuno



ptg999

710 ANSWERS TO EXERCISES 7.2.1.2

49. Order the signatures so that |s0| ≥ · · · ≥ |s9|; also prepare tables w0 . . . w9,
x0 . . . x9, y0 . . . y9, so that the signatures {sk, . . . , s9} are wxk ≤ · · · ≤ wyk . For
example, when SEND + MORE = MONEY we have (s0, . . . , s9) = (−9000, 1000,−900, 91,
−90, 10, 1,−1, 0, 0) for the respective letters (M, S, O, E, N, R, D, Y, A, B); also (w0, . . . , w9) =
(−9000,−900,−90,−1, 0, 0, 1, 10, 91, 1000), and x0 . . . x9 = 0112233344, y0 . . . y9 =
9988776554. Yet another table f0 . . . f9 has fj = 1 if the digit corresponding to wj
cannot be zero; in this case f0 . . . f9 = 1000000001. These tables make it easy to
compute the largest and smallest values of

skak + · · ·+ s9a9

over all choices ak . . . a9 of the remaining digits, using the method of exercise 25, since
the links lj tell us those digits in increasing order.

This method requires a rather expensive computation at each node of the search
tree, but it often succeeds in keeping that tree small. For example, it solves the first
eight alphametics of exercise 24 with costs of only 7, 13, 7, 9, 5, 343, 44, and 89
kilomems; this is a substantial improvement in cases (a), (b), (e), and (h), although
case (f) comes out significantly worse. Another bad case is the ‘CHILD’ example of
answer 27, where left-to-right needs 2947 kilomems compared to 588 for the right-to-
left approach. Left-to-right does, however, fare better on BLOOD + SWEAT + TEARS (73
versus 360) and HELLO + WORLD (340 versus 410).
50. If α is in a permutation group, so are all its powers α2, α3, . . . , including αm−1 =
α−, where m is the order of α (the least common multiple of its cycle lengths). And
(32) is equivalent to α− = σ1σ2 . . . σn−1.
51. False. For example, σ(k, i)− and σ(k, j)− might both take k →→ 0.
52. τ(k, j) = (k−j k−j+1) is an adjacent interchange, and

ω(k) = (n−1 . . . 0)(n−2 . . . 0) . . . (k . . . 0) = ϕ(n− 1)ϕ(k − 1)

is a k-flip followed by an n-flip. The permutation corresponding to control table
c0 . . . cn−1 in Algorithm H has cj elements to the right of j that are less than j,
for 0 ≤ j < n; so it is the same as the permutation corresponding to c1 . . . cn in
Algorithm P, except that subscripts are shifted by 1.

The only essential difference between Algorithm P and this version of Algorithm H
is that Algorithm P uses a reflected Gray code to run through all possibilities of its
control table, while Algorithm H runs through those mixed-radix numbers in ascending
(lexicographic) order.

Indeed, Gray code can be used with any Sims table, by modifying either Algo-
rithm G or Algorithm H. Then all transitions are by τ(k, j) or by τ(k, j)−, and the
permutations ω(k) are irrelevant.
53. The text’s proof that n!−1 transpositions cannot be achieved for n = 4 also shows
that we can reduce the problem from n to n − 2 at the cost of a single transposition
(n−1 n−2), which was called ‘(3 c)’ in the notation of that proof.

Thus we can generate all permutations by making the following transformation
in step H4: If k = n − 1 or k = n − 2, transpose aj mod n ↔ a(j−1) mod n, where
j = cn−1−1. If k = n−3 or k = n−4, transpose an−1 ↔ an−2 and also aj mod (n−2) ↔
a(j−1) mod (n−2), where j = cn−3− 1. And in general if k = n− 2t− 1 or k = n− 2t− 2,
transpose an−2i+1 ↔ an−2i for 1 ≤ i ≤ t and also aj mod (n−2t) ↔ a(j−1) mod (n−2t),
where j = cn−2t−1 − 1. [See CACM 19 (1976), 68–72.]

From the Library of Melissa Nuno



ptg999

7.2.1.2 ANSWERS TO EXERCISES 711

The corresponding Sims table permutations can be written down as follows, al-
though they don’t appear explicitly in the algorithm itself:

σ(k, j)− =
 (0 1 . . . j−1 k), if n− k is odd;

(0 1 . . . k)j , if n− k is even.

The value of aj mod (n−2t) will be n − 2t − 1 after the interchange. For efficiency we
can also use the fact that k usually equals n − 1. The total number of transpositions
is
⌊n/2⌋
t=0 (n− 2t)!− ⌊n/2⌋ − 1.

54. Yes; the transformation can be any k-cycle on positions {1, . . . , k}.
55. (a) Since ρ!(m) = ρ!(mmod n!) when n > ρ!(m), we have ρ!(n! + m) = ρ!(m)
for 0 < m < n · n! = (n + 1)! − n!. Therefore βn!+m = σρ!(n!+m) . . . σρ!(n!+1)βn! =
σρ!(m) . . . σρ!(1)βn! = βmβn! for 0 ≤ m < n · n!, and we have in particular

β(n+1)! = σn+1β(n+1)!−1 = σn+1βn!−1β
n
n! = σn+1σ

−
n β

n+1
n! .

Similarly αn!+m = β−
n!αmβn!αn! for 0 ≤ m < n · n!.

Since βn! commutes with τn and τn+1 we find αn! = τnαn!−1, and

α(n+1)! = τn+1α(n+1)!−1 = τn+1β
−
n!α(n+1)!−1−n!βn!αn! = · · ·

= τn+1β
−n
n! αn!−1(βn!αn!)n

= β−n−1
n! τn+1τ

−
n (βn!αn!)n+1

= β−
(n+1)!σn+1σ

−
n τn+1τ

−
n (βn!αn!)n+1.

(b) In this case σn+1σ
−
n = (n n−1 . . . 1) and τn+1τ

−
n = (n+1 n 0), and we have

β(n+1)!α(n+1)! = (n+1 n . . . 0) by induction. Therefore αjn!+m = β−j
n! αm(n . . . 0)j

for 0 ≤ j ≤ n and 0 ≤ m < n!. All permutations of {0, . . . , n} are achieved because
β−j
n! αm fixes n and (n . . . 0)j takes n →→ n− j.

56. If we set σk = (k−1 k−2)(k−3 k−4) . . . in the previous exercise, we find by induc-
tion that βn!αn! is the (n+ 1)-cycle (0 n n−1 n−3 . . . (2 or 1) (1 or 2) . . . n−4 n−2).
57. Arguing as in answer 5, we obtain

n−1
k=2 [k odd]/k!− (⌊n/2⌋−1)/n! = sinh 1−1−

O(1/(n− 1)!).
58. True. By the formulas of exercise 55 we have αn!−1 = (0 n)β−

n!(n . . . 0), and
this takes 0 →→ n − 1 because βn! fixes n. (Consequently Algorithm E will define a
Hamiltonian cycle on the graph of exercise 66 if and only if βn! = (n−1 . . . 2 1), and
this holds if and only if the length of every cycle of β(n−1)! is a divisor of n. The latter
is true for n = 2, 3, 4, 6, 12, 20, and 40, but for no other n ≤ 250,000.)
59. The Cayley graph with generators (α1, . . . , αk) in the text’s definition is isomorphic
to the Cayley graph with generators (α−

1 , . . . , α
−
k ) in the alternative definition, since

π → αjπ in the former if and only if π− → π−α−
j in the latter.

60. (a, b) There are 88 delta sequences, which reduce to four classes: P = (32131231)3

(plain changes, represented by 8 different delta sequences); Q = (32121232)3 (a doubly
Gray variant of plain changes, with 8 representatives); R = (121232321232)2 (a doubly
Gray code with 24 representatives); S = 2α3αR, α = 12321312121 (48 representatives).
Classes P and Q are cyclic shifts of their complements; classes P , Q, and S are shifts of
their reversals; class R is a shifted reversal of its complement. [See A. L. Leigh Silver,
Math. Gazette 48 (1964), 1–16.]

From the Library of Melissa Nuno



ptg999

712 ANSWERS TO EXERCISES 7.2.1.2

61. There are respectively (26, 36, 20, 26, 28, 40, 40, 20, 26, 28, 28, 26) such paths ending
at (1243, 1324, 1432, 2134, 2341, 2413, 3142, 3214, 3421, 4123, 4231, 4312).
62. There are only two paths when n = 3, ending respectively at 132 and 213.
But when n ≥ 4 there are Gray codes leading from 12 . . . n to any odd permuta-
tion a1a2 . . . an. Exercise 61 establishes this when n = 4, and we can prove it by
induction for n > 4 as follows.

Let A(j) be the set of all permutations that begin with j, and let A(j, k) be
those that begin with jk. If (α0, α1, . . . , αn) are any odd permutations such that
αj ∈ A(xj , xj+1), then (1 2)αj is an even permutation in A(xj+1, xj). Consequently, if
x1x2 . . . xn is a permutation of {1, 2, . . . , n}, there is at least one Hamiltonian path of
the form

(1 2)α0−−−· · ·−−−α1−−−(1 2)α1−−−· · ·−−−α2−−−· · ·−−−(1 2)αn−1−−−· · ·−−−αn;

the subpath from (1 2)αj−1 to αj includes all elements of A(xj).
This construction solves the problem in at least (n−2)!n/2n−1 distinct ways when

a1 ̸= 1, because we can take α0 = 2 1 . . . n and αn = a1a2 . . . an; there are (n−2)! ways
to choose x2 . . . xn−1, and (n− 2)!/2 ways to choose each of α1, . . . , αn−1.

Finally, if a1 = 1, take any path 12 . . . n−−− · · · −−− a1a2 . . . an that runs through
all of A(1), and choose any step α−−−α′ with α ∈ A(1, j) and α′ ∈ A(1, j′) for some
j ̸= j′. Replace that step by

α−−−(1 2)α1−−−· · ·−−−α2−−−· · ·−−−(1 2)αn−1−−−· · ·−−−αn−−−α′,

using a construction like the Hamiltonian path above but now with α1 = α, αn =
(1 2)α′, x1 = 1, x2 = j, xn = j′, and xn+1 = 1. (In this case the permutations α1,
. . . , αn might all be even.)
63. Monte Carlo estimates using the techniques of Section 7.2.3 suggest that the total
number of equivalence classes will be roughly 1.2 × 1021; most of those classes will
contain 480 Gray cycles.
64. Exactly 2,005,200 delta sequences have the doubly Gray property; they belong to
4206 equivalence classes under cyclic shift, reversal, and/or complementation. Nine
classes, such as the code 2α2αR where

α = 12343234321232121232321232121234343212123432123432121232321,

are shifts of their reversal; 48 classes are composed of repeated 60-cycles. One of the
most interesting of the latter type is αα where

α = β2β4β4β4β4, β = 32121232123.

65. Such a path exists for any given N ≤ n!: Let the Nth permutation be α = a1 . . . an,
and let j = a1. Also let Πk be the set of all permutations β = b1 . . . bn for which b1 = k
and β ≤ α. By induction on N there is a Gray path P1 for Πj . We can then construct
Gray paths Pk for Πj ∪ Π1 ∪ · · · ∪ Πk−1 for 2 ≤ k ≤ j, successively combining Pk−1
with a Gray cycle for Πk−1. (See the “absorption” construction of answer 62. In fact,
Pj will be a Gray cycle when N is a multiple of 6.)
66. Defining the delta sequence by the rule π(k+1) mod n! = (1 δk)πk, we find exactly 36
such sequences, all of which are cyclic shifts of a pattern like (xyzyzyxzyzyz)2. (The
next case, n = 5, probably has about 1018 solutions that are inequivalent with respect
to cyclic shifting, reversal, and permutation of coordinates, thus about 6×1021 different

From the Library of Melissa Nuno



ptg999

7.2.1.2 ANSWERS TO EXERCISES 713

delta sequences.) Incidentally, Igor Pak has shown that the Cayley graph generated by
star transpositions is an (n− 2)-dimensional torus in general.

67. If we let π be equivalent to π(12345), we get a reduced graph on 24 vertices that has
40768 Hamiltonian cycles, 240 of which lead to delta sequences of the form α5 in which
α uses each transposition 6 times (for example, α = 354232534234532454352452). The
total number of solutions to this problem is probably about 1016.

68. If A isn’t connected, neither is G. If A is connected, we can assume that it is a free
tree. Moreover, in this case we can prove a generalization of the result in exercise 62:
For n ≥ 4 there is a Hamiltonian path in G from the identity permutation to any odd
permutation. For we can assume without loss of generality that A contains the edge
1−−−2 where 1 is a leaf of the tree, and a proof like that of exercise 62 applies.

[This elegant construction is due to M. Tchuente, Ars Combinatoria 14 (1982),
115–122. Extensive generalizations have been discussed by Ruskey and Savage in SIAM
J. Discrete Math. 6 (1993), 152–166. See also the original Russian publication in
Kibernetika 11, 3 (1975), 17–21; English translation, Cybernetics 11 (1975), 362–366.]

69. Following the hint, the modified algorithm behaves like this when n = 5:

12⌣34 1⌣243 ⌣1423 41⌣23 ⌣4132 1⌣432 13⌣42 ⌣1324 31⌣24 3⌣142 ⌣3412 4312
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

54321 24351 24153 54123 14523 14325 24315 24513 54213 14253 14352 54312
12345 15342 35142 32145 32541 52341 51342 31542 31245 35241 25341 21345
15432 12435 32415 35412←31452 51432 52431 32451←35421 31425 21435 25431
23451 53421 51423 21453→25413 23415 13425 15423→12453 52413 53412 13452
21543 51243 53241 23541 23145 25143 15243 13245 13542 53142 52143 12543
34512 34215 14235 14532 54132 34152 34251 54231 24531 24135 34125 34521
32154→35124 15324→12354 52314 32514←31524 51324 21354→25314 35214→31254
45123←42153 42351←45321 41325 41523→42513 42315 45312←41352 41253←45213
43215 43512←41532 41235 45231→43251 43152→45132 42135 42531←43521 43125
51234 21534→23514 53214 13254←15234 25134←23154 53124 13524→12534 52134
↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

Here the columns represent sets of permutations that are cyclically rotated and/or
reflected in all 2n ways; therefore each column contains exactly one “rosary permuta-
tion” (exercise 18). We can use Algorithm P to run through the rosary permutations
systematically, knowing that the pair xy will occur before yx in its column, at which
time τ ′ instead of ρ′ will move us to the right or to the left. Step Z2 omits the
interchange a1 ↔ a2, thereby causing the permutations a1 . . . an−1 to repeat themselves
going backwards. (We implicitly use the fact that t[k] = t[n! − k] in the output of
Algorithm T.)

Now if we replace 1 . . . n by 24 . . . 31 and change A1 . . . An to A1AnA2An−1 . . . ,
we get the unmodified algorithm whose results are shown in Fig. 42(b).

This method was inspired by a (nonconstructive) theorem of E. S. Rapaport,
Scripta Math. 24 (1959), 51–58. It illustrates a more general fact observed by Carla
Savage in 1989, namely that the Cayley graph for any group generated by three
involutions ρ, σ, τ has a Hamiltonian cycle when ρτ = τρ. [See I. Pak and R. Radoičić,
Discrete Math. 309 (2009), 5501–5508.]

70. No; the longest cycle in that digraph has length 358. But there do exist pairs of
disjoint 180-cycles from which a Hamiltonian path of length 720 can be derived. For

From the Library of Melissa Nuno



ptg999

714 ANSWERS TO EXERCISES 7.2.1.2

example, consider the cycles ασβσ and γσσ where

α = τσ5τσ5τσ3τσ2τσ5τσ3τσ2τσ5τσ5τσ2τσ3τσ1τσ5τσ5τσ5τσ3τσ1τσ1τσ3τσ2τσ1τσ1;
β = σ3τσ5τσ2τσ2τσ5τσ2τσ3τσ1τσ1τσ5τσ1τσ3τσ5τσ5τσ3τσ2τσ1τσ2τσ3τσ1τσ1τσ3τσ2τσ4;
γ = στσ5τσ5τσ3τσ1τσ1τσ3τσ2τσ5τσ2τσ3τσ5τσ1τσ5τσ3τσ2τσ1τσ2τσ3τσ1τσ1τσ3τσ2

τσ5τσ5τσ5τσ3τσ5τσ2τσ5τσ2τσ3τσ1τσ1τσ5τσ1τσ3τσ3τσ5τσ5τσ1τσ5τσ2τσ3τσ1τσ2.

If we start with 134526 and follow ασβτ we reach 163452; then follow γστ and reach
126345; then follow σγτ and reach 152634; then follow βσα, ending at 415263.
71. Brendan McKay and Frank Ruskey have found such cycles by computer when
n = 7, 9, and 11, but no nice structure was apparent.
72. Any Hamiltonian path includes (n−1)! vertices that take y →→ x, each of which (if
not the last) is followed by a vertex that takes x →→ x. So one must be last; otherwise
(n− 1)! + 1 vertices would take x →→ x.
73. (a) Assume first that β is the identity permutation (). Then every cycle of α that
contains an element of A lies entirely within A. Hence the cycles of σ are obtained by
omitting all cycles of α that contain no element of A. All remaining cycles have odd
length, so σ is an even permutation.

If β is not the identity, we apply this argument to α′ = αβ−, β′ = (), and σ′ = σβ−,
concluding that σ′ is an even permutation; thus σ and β have the same sign.

Similarly, σ and α have the same sign, because βα− = (αβ−)− has the same order
as αβ−.

(b) Let X be the vertices of the Cayley graph in Theorem R, and let α̂ be the
permutation of X that takes a vertex π into απ; this permutation has g/a cycles of
length a. Define the permutation β̂ similarly. Then α̂β̂− has g/c cycles of length c.
If c is odd, any Hamiltonian cycle in the graph defines a cycle σ̂ that contains all the
vertices and satisfies the hypotheses of (a). Therefore α̂ and β̂ have an odd number of
cycles, because the sign of a permutation on n elements with r cycles is (−1)n−r (see
exercise 5.2.2–2).

[This proof, which shows that X cannot be the union of any odd number of cycles,
was presented by Rankin in Proc. Cambridge Phil. Soc. 62 (1966), 15–16.]
74. The representation βjγk is unique if we require 0 ≤ j < g/c and 0 ≤ k < c. For
if we had βj = γk for some j with 0 < j < g/c, the group would have at most jc
elements. It follows that βg/c = γt for some t.

Let σ̂ be a Hamiltonian cycle, as in the previous answer, and let γ̂ = α̂β̂−. If
πσ̂ = πα̂ then πγ̂σ̂ must be πγ̂α̂, because πγ̂β̂ = πα̂. And if πσ̂ = πβ̂ then πγ̂σ̂ cannot
be πγ̂α̂, because that would imply πγ̂2σ̂ = πγ̂2α̂, . . . , πγ̂cσ̂ = πγ̂cα̂. Thus the elements
π, πγ̂, πγ̂2, . . . , all have equivalent behavior with respect to their successors in σ̂.

When the path π−−→ πσ̂−−→ · · · −−→ πσ̂j has k(j) steps of type α̂, we have πσ̂j =
πβ̂j γ̂k(j). Thus πσ̂g/c = πγ̂t+k(g/c), and we have k(j+ g/c) = k(j) for j ≥ 0. The path
returns to π for the first time in g steps if and only if t+k(g/c) is relatively prime to c.
75. Apply the previous exercise with g = mn, a = m, b = n, c = mn/d. The number t
satisfies t ≡ 0 (modulo m), t + d ≡ 0 (modulo n); and it follows that k + t ⊥ c if and
only if (d− k)m/d ⊥ kn/d.

Notes: The modular Gray code of exercise 7.2.1.1–78 is a Hamiltonian path from
(0, 0) to (m−1, (−m) mod n), so it is a Hamiltonian cycle if and only if m is a multiple
of n. It is natural to conjecture (falsely) that at least one Hamiltonian cycle exists
whenever d > 1. But P. Erdös and W. T. Trotter have observed [J. Graph Theory 2

From the Library of Melissa Nuno



ptg999

7.2.1.2 ANSWERS TO EXERCISES 715

(1978), 137–142] that if p and 2p+ 1 are odd prime numbers, no suitable k exists when
m = p(2p+ 1)(3p+ 1) and n = (3p+ 1)

3p
q=1 q

[q is prime][q ̸=p][q ̸=2p+1].
See J. A. Gallian, Mathematical Intelligencer 13, 3 (Summer 1991), 40–43, for

interesting facts about other kinds of cycles in Cm⃗ × Cn⃗.
76. We may assume that the tour begins in the lower left corner. There are no solutions
when m and n are both divisible by 3, because 2/3 of the cells are unreachable in that
case. Otherwise, letting d = gcd(m,n) and arguing as in the previous exercise but with
(x, y)α = ((x+ 2) modm, (y+ 1) mod n) and (x, y)β = ((x+ 1) modm, (y+ 2) mod n),
we find the answer
d
k=0


d

k


[gcd((2d−k)m, (k+d)n) = d or (mn ⊥ 3 and gcd((2d−k)m, (k+d)n) = 3d)].

77. 01 * Permutation generator \‘a la Heap
02 N IS 10 The value of n (3 or more, not large)
03 t IS $255
04 j IS $0 8j
05 k IS $1 8k
06 ak IS $2
07 aj IS $3

08 LOC Data_Segment
09 a GREG @ Base address for a0 . . . an−1
10 A0 IS @
11 A1 IS @+8
12 A2 IS @+16
13 LOC @+8*N Space for a0 . . . an−1
14 c GREG @-8*3 Location of 8c0
15 LOC @-8*3+8*N 8c3 . . . 8cn−1, initially zero
16 OCTA -1 8cn = −1, a convenient sentinel
17 u GREG 0 Contents of a0, except in inner loop
18 v GREG 0 Contents of a1, except in inner loop
19 w GREG 0 Contents of a2, except in inner loop
20 LOC #100
21 1H STCO 0,c,k B −A ck ← 0.
22 INCL k,8 B −A k ← k + 1.
23 0H LDO j,c,k B j ← ck.
24 CMP t,j,k B
25 BZ t,1B B Loop if ck = k.
26 BN j,Done A Terminate if ck < 0 (k = n).
27 LDO ak,a,k A− 1 Fetch ak.
28 ADD t,j,8 A− 1
29 STO t,c,k A− 1 ck ← j + 1.
30 AND t,k,#8 A− 1
31 CSZ j,t,0 A− 1 Set j ← 0 if k is even.
32 LDO aj,a,j A− 1 Fetch aj .
33 STO ak,a,j A− 1 Replace it by ak.
34 CSZ u,j,ak A− 1 Set u← ak if j = 0.
35 SUB j,j,8 A− 1 j ← j − 1.
36 CSZ v,j,ak A− 1 Set v ← ak if j = 0.

From the Library of Melissa Nuno



ptg999

716 ANSWERS TO EXERCISES 7.2.1.2

37 SUB j,j,8 A− 1 j ← j − 1.
38 CSZ w,j,ak A− 1 Set w ← ak if j = 0.
39 STO aj,a,k A− 1 Replace ak by what was aj .
40 Inner PUSHJ 0,Visit A

... (See (42))
55 PUSHJ 0,Visit A
56 SET t,u A Swap u↔ w.
57 SET u,w A
58 SET w,t A
59 SET k,8*3 A k ← 3.
60 JMP 0B A
61 Main LDO u,A0 1
62 LDO v,A1 1
63 LDO w,A2 1
64 JMP Inner 1

78. Lines 31–38 become 2r − 1 instructions, lines 61–63 become r, and lines 56–58
become 3 + (r− 2)[r even] instructions (see ω(r− 1) in answer 40). The total running
time is therefore ((2r!+2)A+2B+r−5)µ+((2r!+2r+7+(r−2)[r even])A+7B−r−4)υ,
where A = n!/r! and B = n!(1/r! + · · ·+ 1/n!).
79. SLU u,[#f],t; SLU t,a,4; XOR t,t,a; AND t,t,u; SRU u,t,4; OR t,t,u;
XOR a,a,t; here, as in the answer to exercise 1.3.1́ –34, the notation ‘[#f]’ denotes a
register that contains the constant value #f. (See the similar code in 7.1.3–(69).)
80. SLU u,a,t; MXOR u,[#8844221188442211],u; AND u,u,[#ff000000]; SRU u,u,t;
XOR a,a,u. This cheats, since it transforms #12345678 to #13245678 when t = 4, but
(45) still works.

Even faster and trickier would be a routine analogous to (42): Consider

PUSHJ 0,Visit; MXOR a,a,c1; PUSHJ 0,Visit; . . . MXOR a,a,c5; PUSHJ 0,Visit

where c1, . . . , c5 are constants that would cause #12345678 to become successively
#12783456, #12567834, #12563478, #12785634, #12347856. Other instructions, exe-
cuted only 1/6 or 1/24 as often, can take care of shuffling nybbles within and between
bytes. Very clever, but it doesn’t beat (46) in view of the PUSHJ/POP overhead.
81. k IS $0 ;kk IS $1 ;c IS $2 ;d IS $3

SET k,1 k ← 1.
3H SRU d,a,60 d← leftmost nybble.

SLU a,a,4 a← 16amod 1616.
CMP c,d,k
SLU kk,k,2
SLU d,d,kk
OR t,t,d t← t+ 16kd.
PBNZ c,1B Return to main loop if d ̸= k.
INCL k,1 k ← k + 1.
PBNZ a,3B Return to second loop if k < n.

82. µ+ (5n! + 11A− (n−1)! + 6)υ = ((5 + 10/n)υ+O(n−2))n!, plus the visiting time,
where A =

n−1
k=1 k! is the number of times the loop at 3H is used.

83. With suitable initialization and a 13-octabyte table, only about a dozen MMIX
instructions are needed:

From the Library of Melissa Nuno



ptg999

7.2.1.2 ANSWERS TO EXERCISES 717

magic GREG #8844221188442211
0H ⟨Visit the permutation in register a ⟩

PBN c,Sigma
Tau MXOR t,magic,a; ANDNL t,#ffff; JMP 1F
Sigma SRU t,a,20; SLU a,a,4; ANDNML a,#f00
1H XOR a,a,t; SLU c,c,1
2H PBNZ c,0B; INCL p,8
3H LDOU c,p,0; PBNZ c,0B

84. Assuming that the processors all have essentially the same speed, we can let the
kth processor generate all permutations of rank r for (k − 1)n!/p ≤ r < kn!/p, using
any method based on control tables c1 . . . cn. The starting and ending control tables
are easily computed by converting their ranks to mixed-radix notation (exercise 12).
85. We can use a technique like that of Algorithm 3.4.2P: To compute k = r(α), first
set a′aj ← j for 1 ≤ j ≤ n (the inverse permutation). Then set k ← 0, and for j = n,
n − 1, . . . , 2 (in this order) set t ← a′j , k ← kj + t − 1, at ← aj , a′aj ← t. To
compute r[−1](k), start with a1 ← 1. Then for j = 2, . . . , n − 1, n (in this order) set
t← (k mod j) + 1, aj ← at, at ← j, k ← ⌊k/j⌋. [See S. Pleszczyński, Inf. Proc. Letters
3 (1975), 180–183; W. Myrvold and F. Ruskey, Inf. Proc. Letters 79 (2001), 281–284.]

Another method is preferable if we want to rank and unrank only the nm variations
a1 . . . am of {1, . . . , n}: To compute k = r(a1 . . . am), start with b1 . . . bn ← b′1 . . . b

′
n ←

1 . . . n; then for j = 1, . . . , m (in this order) set t ← b′aj , bt ← bn+1−j , and b′bt ← t;
finally set k ← 0 and for j = m, . . . , 1 (in this order) set k ← k× (n+ 1− j) + b′aj − 1.
To compute r[−1](k), start with b1 . . . bn ← 1 . . . n; then for j = 1, . . . , m (in this order)
set t ← (k mod (n + 1 − j)) + 1, aj ← bt, bt ← bn+1−j , k ← ⌊k/(n + 1 − j)⌋. (See
exercise 3.4.2–15 for cases with large n and small m.)
86. If x ≺ y and y ≺ z, the algorithm will never move y to the left of x, nor z to the
left of y, so it will never test x versus z.
87. They appear in lexicographic order; Algorithm P used a reflected Gray order.
88. Generate inverse permutations with a′0 < a′1 < a′2, a′3 < a′4 < a′5, a′6 < a′7, a′8 < a′9,
a′0 < a′3, a′6 < a′8.
89. (a) Let dk = max{j | 0 ≤ j ≤ k and j is nontrivial}, where 0 is considered
nontrivial. This table is easily precomputed, because j is trivial if and only if it must
follow {1, . . . , j−1}. Set k ← dn in step V2 and k ← dk−1 in step V5. (Assume dn > 0.)

(b) Now M =
n
j=1 tj [j is nontrivial].

(c) There are at least two topological sorts aj . . . ak of the set {j, . . . , k}, and either
of them can be placed after any topological sort a1 . . . aj−1 of {1, . . . , j − 1}.

(d) Algorithm 2.2.3T repeatedly outputs minimal elements (elements with no
predecessors), removing them from the relation graph. We use it in reverse, repeatedly
removing and giving the highest labels to maximal elements (elements with no succes-
sors). If only one maximal element exists, it is trivial. If k and l are both maximal,
they both are output before any element x with x ≺ k or x ≺ l, because steps T5
and T7 keep maximal elements in a queue (not a stack). Thus if k is nontrivial and
output first, element l might become trivial, but the next nontrivial element j will not
be output before l; and k is unrelated to l.

(e) Let the nontrivial t’s be s1 < s2 < · · · < sr = N . Then we have sj ≥ 2sj−2,
by (c). Consequently M = s2+· · ·+sr ≤ sr(1+ 1

2 + 1
4 +· · · )+sr−1(1+ 1

2 + 1
4 +· · · ) < 4sr.

From the Library of Melissa Nuno



ptg999

718 ANSWERS TO EXERCISES 7.2.1.2

(A sharper estimate is in fact true, as observed by M. Peczarski: Let s0 = 1, let
the nontrivial indices be 0 = k1 < k2 < · · · < kr, and let k′j = max{k | 1 ≤ k < kj ,
k ̸≺ kj} for j > 1. Then k′j+1 ≥ kj . There are sj topological sorts of {1, . . . , kj+1} that
end with kj+1; and there are at least sj−1 that end with k′j+1, since each of the sj−1
topological sorts of {1, . . . , kj − 1} can be extended. Hence

sj+1 ≥ sj + sj−1 for 1 ≤ j < r.

Now let y0 = 0, y1 = F2 + · · ·+ Fr, and yj = yj−2 + yj−1 − Fr+1 for 1 < j < r. Then

Fr+1(s1 + · · ·+ sr) +
r−1
j=1

yj (sr+1−j − sr−j − sr−1−j) = (F2 + · · ·+ Fr+1)sr,

and each yj = Fr+1 − 2Fj − (−1)jFr+1−j is nonnegative. Hence s1 + · · · + sr ≤
((F2 + · · · + Fr+1)/Fr+1)sr ≈ 2.6sr. The following exercise shows that this bound is
best possible.)
90. The number N of such permutations is Fn+1 by exercise 5.2.1–25. Therefore
M = Fn+1 + · · ·+F2 = Fn+3−2 ≈ ϕ2N . Notice incidentally that all such permutations
satisfy a1 . . . an = a′1 . . . a

′
n. They can be arranged in a Gray path (exercise 7.2.1.1–89).

91. Since tj = (j − 1)(j − 3) . . . (2 or 1), we find M = (1 + 2/
√
πn+O(1/n))N .

Note: The inversion tables c1 . . . c2n for permutations satisfying (49) are charac-
terized by the conditions c1 = 0, 0 ≤ c2k ≤ c2k−1, 0 ≤ c2k+1 ≤ c2k−1 + 1.
92. The total number of pairs (R,S), where R is a partial ordering and S is a linear
ordering that includes R, is equal to Pn times the expected number of topological sorts;
it is also Qn times n!. So the answer is n!Qn/Pn.

We will discuss the computation of Pn and Qn in Section 7.2.3. For 1 ≤ n ≤ 12
the expectation turns out to be approximately

(1, 1.33, 2.21, 4.38, 10.1, 26.7, 79.3, 262, 950, 3760, 16200, 74800).

Asymptotic values as n → ∞ have been deduced by Brightwell, Prömel, and Steger
[J. Combinatorial Theory A73 (1996), 193–206], but the limiting behavior is quite
different from what happens when n is in a practical range. The values of Qn were first
determined for n ≤ 5 by S. P. Avann [Æquationes Math. 8 (1972), 95–102].
93. The basic idea is to introduce dummy elements n + 1 and n + 2 with j ≺ n + 1
and j ≺ n + 2 for 1 ≤ j ≤ n, and to find all topological sorts of such an extended
relation via adjacent interchanges; then take every second permutation, suppressing
the dummy elements. An algorithm similar to Algorithm V can be used, but with a
recursion that reduces n to n − 2 by inserting n − 1 and n among a1 . . . an−2 in all
possible ways, assuming that n− 1 ̸≺ n, occasionally swapping n+ 1 with n+ 2. [See
G. Pruesse and F. Ruskey, SICOMP 23 (1994), 373–386. A loopless implementation
has been described by Canfield and Williamson, Order 12 (1995), 57–75.]
94. The case n = 3 illustrates the general idea of a pattern that begins with 1 . . . (2n)
and ends with 1(2n)2(2n−1) . . . n(n+1): 123456, 123546, 123645, 132645, 132546,
132456, 142356, 142536, 142635, 152634, 152436, 152346, 162345, 162435, 162534.

Perfect matchings can also be regarded as involutions of {1, . . . , 2n} that have n
cycles. With that representation this pattern involves two transpositions per step.

Notice that the C inversion tables of the permutations just listed are respectively
000000, 000100, 000200, 010200, 010100, 010000, 020000, 020100, 020200, 030200,
030100, 030000, 040000, 040100, 040200. In general, C1 = C3 = · · · = C2n−1 = 0

From the Library of Melissa Nuno



ptg999

7.2.1.2 ANSWERS TO EXERCISES 719

and the n-tuples (C2, C4, . . . , C2n) run through a reflected Gray code on the radices
(2n − 1, 2n − 3, . . . , 1). Thus the generation process can easily be made loopless if
desired. [See Timothy Walsh, J. Combinatorial Math. and Combinatorial Computing
36 (2001), 95–118, Section 1.]

Note: Algorithms to generate all perfect matchings go back to J. F. Pfaff [Abhand-
lungen Akad. Wissenschaften (Berlin: 1814–1815), 124–125], who described two such
procedures: His first method was lexicographic, which also corresponds to lexicographic
order of the C inversion tables; his second method corresponds to colex order of those
tables. Even and odd permutations alternate in both cases.
95. Generate inverse permutations with a′1 < a′n > a′2 < a′n−1 > · · · , using Algo-
rithm V. (See exercise 5.1.4–23 for the number of solutions.)
96. For example, we can start with a1 . . . an−1an = 2 . . . n1 and b1b2 . . . bnbn+1 =
12 . . . n1, and use Algorithm P to generate the (n − 1)! permutations b2 . . . bn of
{2, . . . , n}. Just after that algorithm swaps bi ↔ bi+1, we set abi−1 ← bi, abi ← bi+1,
abi+1 ← bi+2, and visit a1 . . . an.
97. Use Algorithm X, with tk(a1, . . . , ak) = ‘ak ̸= k’.
98. Using the notation of exercise 47, we have Nk =


k
j


(−1)j(n − j)k−j by the

method of inclusion and exclusion (exercise 1.3.3–26). If k = O(logn) then Nn−k =
(n!e−1/k!)(1 + O(logn)2/n); hence A/n! ≈ (e − 1)/e and B/n! ≈ 1. The number of
memory references, under the assumptions of answer 48, is therefore ≈ A+B + 3A+
B −Nn + 3A ≈ n! (9− 8

e
) ≈ 6.06n!, about 16.5 per derangement. [See S. G. Akl, BIT

20 (1980), 2–7, for a similar method.]
99. Suppose Ln generates Dn∪Dn−1, beginning with (1 2 . . . n), then (2 1 . . . n), and
ending with (1 . . . n−1); for example, L3 = (1 2 3), (2 1 3), (1 2). Then we can generate
Dn+1 as Knn, . . . , Kn2, Kn1, where Knk = (1 2 . . . n)−k(n n+1)Ln(1 2 . . . n)k; for
example, D4 is

(1 2 3 4), (2 1 3 4), (1 2)(3 4), (3 1 2 4), (1 3 2 4), (3 1)(2 4), (2 3 1 4), (3 2 1 4), (2 3)(1 4).

Notice that Knk begins with the cycle (k+1 . . . n 1 . . . k n+1) and ends with
(k+1 . . . n 1 . . . k−1)(k n+1); so premultiplication by (k−1 k) takes us from Knk

to Kn(k−1). Also, premultiplication by (1 n) will return from the last element of Dn+1
to the first. Premultiplication by (1 2 n+1) takes us from the last element of Dn+1 to
(2 1 3 . . . n), from which we can return to (1 2 . . . n) by following the cycle for Dn
backwards, thereby completing the list Ln+1 as desired.
100. Use Algorithm X, with tk(a1, . . . , ak) = ‘p > 0 or l[q] ̸= k + 1’.

Notes: The number of indecomposable permutations is [zn] (1 − 1/
∞
k=0 k!zk);

see L. Comtet, Comptes Rendus Acad. Sci. A275 (Paris, 1972), 569–572.
A. D. King [Discrete Math. 306 (2006), 508–516] has shown that indecomposable

permutations can be generated efficiently by making only a single transposition at each
step. In fact, adjacent transpositions may well suffice; for example, when n = 4 the
indecomposable permutations are 3142, 3412, 3421, 3241, 2341, 2431, 4231, 4321, 4312,
4132, 4123, 4213, 2413.
101. Here is a lexicographic involution generator analogous to Algorithm X.

Y1. [Initialize.] Set ak ← k and lk−1 ← k for 1 ≤ k ≤ n. Then set ln ← 0, k ← 1.
Y2. [Enter level k.] If k > n, visit a1 . . . an and go to Y3. Otherwise set p ← l0,

uk ← p, l0 ← lp, k ← k + 1, and repeat this step. (We have decided to let
ap = p.)

From the Library of Melissa Nuno



ptg999

720 ANSWERS TO EXERCISES 7.2.1.2

Y3. [Decrease k.] Set k ← k − 1, and terminate if k = 0. Otherwise set q ← uk,
p ← aq, and r ← lq. If p = q, set q ← 0 and k ← k + 1 (preparing to make
ap > p). Otherwise set luk−1 ← q (preparing to make ap > q).

Y4. [Increase ap.] If r = 0 go to Y5. Otherwise set lq ← lr, uk−1 ← q, uk ← r,
ap ← r, aq ← q, ar ← p, k ← k + 1, and go to Y2.

Y5. [Restore ap.] Set l0 ← p, ap ← p, aq ← q, k ← k − 1, and return to Y3.
Let tn+1 = tn + ntn−1, an+1 = 1 + an + nan−1, t0 = t1 = 1, a0 = 0, a1 = 1. (See
Eq. 5.1.4–(40).) Step Y2 is performed tn times with k > n and an times with k ≤ n.
Step Y3 is performed an times with p = q and an + tn times altogether. Step Y4
is performed tn − 1 times; step Y5, an times. The total number of mems for all tn
outputs is therefore approximately 9an + 12tn. It can be shown that

∑
anz

n/n! =
ez(z/1 + z3/(1·3) + z5/(1·3·5) + · · · ), and that an ∼

√
π/2 tn.

102. We construct a list Ln that begins with () and ends with (n−1 n), starting with
L3 = (), (1 2), (1 3), (2 3). If n is odd, Ln+1 is Ln, KR

n1, Kn2, . . . , KR
nn, where

Knk = (k . . . n)−Ln−1(k . . . n)(k n+1). For example,
L4 = (), (1 2), (1 3), (2 3), (2 3)(1 4), (1 4), (2 4), (1 3)(2 4), (1 2)(3 4), (3 4).

If n is even, Ln+1 is Ln, Kn(n−1), KR
n(n−2), . . . , Kn1, (1 n−2)LRn−1(1 n−2)(n n+1).

For further developments, see the article by Walsh cited in answer 94.
103. The following elegant solution by Carla Savage needs only n − 2 different oper-
ations ρj , for 1 < j < n, where ρj replaces aj−1ajaj+1 by aj+1aj−1aj when j is even,
ajaj+1aj−1 when j is odd. We may assume that n ≥ 4; let A4 = (ρ3ρ2ρ2ρ3)3. In
general An will begin and end with ρn−1, and it will contain 2n−2 occurrences of ρn−1
altogether. To get An+1, replace the kth ρn−1 of An by ρnA′

nρn, where k = 1, 2, 4, . . . ,
2n−2 if n is even and k = 1, 3, . . . , 2n−3, 2n−2 if n is odd, and where A′

n is An with its
first or last element deleted. Then, if we begin with a1 . . . an = 1 . . . n, the operations
ρn−1 of An will cause position an to run through the successive values n→ p1 → n→
p2 → · · · → pn−1 → n, where p1 . . . pn−1 = (n−1−[n even]) . . . 4213 . . . (n−1−[n odd]);
the final permutation will again be 1 . . . n.
104. (a) A well-balanced permutation has

∑n
k=1 kak = n(n+ 1)2/4, an integer.

(b) Replace k by ak when summing over k.
(c) A fairly fast way to count, when n is not too large, can be based on the

streamlined plain-change algorithm of exercise 16, because the quantity
∑
kak changes

in a simple way with each adjacent interchange, and because n − 1 of every n steps
are “hunts” that can be done rapidly. We can save half the work by considering only
permutations in which 1 precedes 2. The values for 1 ≤ n ≤ 15 are 0, 0, 0, 2, 6, 0, 184,
936, 6688, 0, 420480, 4298664, 44405142, 0, 6732621476.
105. (a) For each permutation a1 . . . an, insert ≺ between aj and aj+1 if aj > aj+1;
insert either ≡ or ≺ between them if aj < aj+1. (A permutation with k “ascents”
therefore yields 2k weak orders. Weak orders are sometimes called “preferential arrange-
ments”; exercise 5.3.1–4 shows that there are approximately n!/(2(ln 2)n+1) of them.
A Gray code for weak orders, in which each step changes ≺ ↔ ≡ and/or aj↔ aj+1,
can be obtained by combining Algorithm P with Gray binary code at the ascents.

(b) Start with a1 . . . anan+1 = 0 . . . 00 and a0 = −1. Perform Algorithm L until
it stops with j = 0. Find k such that a1 > · · · > ak = ak+1, and terminate if
k = n. Otherwise set al ← ak+1 + 1 for 1 ≤ l ≤ k and go to step L4. [See M. Mor
and A. S. Fraenkel, Discrete Math. 48 (1984), 101–112. Weak ordering sequences are
characterized by the property that, if k appears and k > 0, then k − 1 also appears.]

From the Library of Melissa Nuno



ptg999

7.2.1.2 ANSWERS TO EXERCISES 721

106. All weak ordering sequences can be obtained by a sequence of elementary oper-
ations ai ↔ aj or ai ← aj . (Perhaps one could actually restrict the transformations
further, allowing only aj ↔ aj+1 or aj ← aj+1 for 1 ≤ j < n.)
107. Every step increases the quantity

∑n
k=1 2k[ak = k ], as noted by H. S. Wilf, so the

game must terminate. At least three approaches to the solution are plausible: one bad,
one good, and one better.

The bad one is to play the game on all 13! shuffles and to record the longest. This
method does produce the correct answer; but 13! is 6,227,020,800, and the average game
lasts ≈ 8.728 steps.

The good one [A. Pepperdine, Math. Gazette 73 (1989), 131–133] is to play
backwards, starting with the final position 1∗ . . . ∗ where ∗ denotes a card that is face
down; we will turn a card up only when its value becomes relevant. To move backward
from a given position a1 . . . an, consider all k > 1 such that either ak = k or ak = ∗ and
k has not yet turned up. Thus the next-to-last positions are 21∗ . . . ∗, 3∗1∗ . . . ∗, . . . ,
n∗ . . . ∗1. Some positions (like 6∗∗213 for n = 6) have no predecessors, even though we
haven’t turned all the cards up. It is easy to explore the tree of potential backwards
games systematically, and one can in fact show that the number of nodes with t ∗’s is
exactly (n− 1)!/t!. Hence the total number of nodes considered is exactly ⌊(n− 1)! e⌋.
When n = 13 this is 1,302,061,345.

The better one is to play forwards, starting with initial position ∗ . . . ∗ and turning
over the top card when it is face down, running through all (n − 1)! permutations of
{2, . . . , n} as cards are turned. If the bottom n − m cards are known to be equal
to (m+1)(m+2) . . . n, in that order, at most f(m) further moves are possible; thus we
need not pursue a line of play any further if it cannot last long enough to be interesting.
A permutation generator like Algorithm X allows us to share the computation for all
permutations with the same prefix and to reject unimportant prefixes. The card in posi-
tion j need not take the value j when it is turned. When n = 13 this method needs to
consider only respectively (1, 11, 940, 6960, 44745, 245083, 1118216, 4112676, 11798207,
26541611, 44380227, 37417359) branches at levels (1, 2, . . . , 12) and to make a total of
only 482,663,902 forward moves. Although it repeats some lines of play, the early cutoffs
of unprofitable branches make it run more than 11 times faster than the backward
method when n = 13.

The unique way to attain length 80 is to start with 2 9 4 5 11 12 10 1 8 13 3 6 7.
108. This result holds for any game in which

a1 . . . an → akap(k,2) . . . ap(k,k−1)a1ak+1 . . . an

when a1 = k, where p(k, 2) . . . p(k, k− 1) is an arbitrary permutation of {2, . . . , k− 1}.
Suppose a1 takes on exactly m distinct values d(1) < · · · < d(m) during a play of
the game; we will prove that at most Fm+1 permutations occur, including the initial
shuffle. This assertion is obvious when m = 1.

Let d(j) be the initial value of ad(m), where j < m, and suppose ad(m) changes on
step r. If d(j) = 1, there are r+1 ≤ Fm+1 ≤ Fm+1 permutations. Otherwise r ≤ Fm−1,
and at most Fm further permutations follow step r. [SIAM Review 19 (1977), 739–741.]

The values of f(n) for 1 ≤ n ≤ 16 are (0, 1, 2, 4, 7, 10, 16, 22, 30, 38, 51, 65, 80,
101, 113, 139), and they are attainable in respectively (1, 1, 2, 2, 1, 5, 2, 1, 1, 1, 1, 1,
1, 4, 6, 1) ways. The unique longest-winded permutation for n = 16 is

9 12 6 7 2 14 8 1 11 13 5 4 15 16 10 3.

From the Library of Melissa Nuno



ptg999

722 ANSWERS TO EXERCISES 7.2.1.2

109. An ingenious construction by I. H. Sudborough and L. Morales [Theoretical
Comp. Sci. 411 (2010), 3965–3970] proves that f(n) ≥ 19

128n
2 +O(1).

110. For 0 ≤ j ≤ 9 construct the bit vectors Aj = [aj ∈S1 ] . . . [aj ∈Sm ] and Bj =
[j ∈S1 ] . . . [j ∈Sm ]. Then the number of j such that Aj = v must equal the number
of k such that Bk = v, for all bit vectors v. And if so, the values {aj | Aj = v} should
be assigned to permutations of {k | Bk = v} in all possible ways.

For example, the bit vectors in the given problem are

(A0, . . . , A9) = (9, 6, 8, b, 5, 4, 0, a, 2, 0), (B0, . . . , B9) = (5, 0, 8, 6, 2, a, 4, b, 9, 0),

in hexadecimal notation; hence a0 . . . a9 = 8327061549 or 8327069541.
In a larger problem we would keep the bit vectors in a hash table. It would be

better to give the answer in terms of equivalence classes, not permutations; indeed, this
problem has comparatively little to do with permutations.
111. In the directed graph with n!/2 vertices a1 . . . an−2 and n! arcs a1 . . . an−2 →
a2 . . . an−1 (one for each permutation a1 . . . an), each vertex has in-degree 2 and out-
degree 2. Furthermore, from paths like a1 . . . an−2 → a2 . . . an−1 → a3 . . . an →
a4 . . . ana2 → a5 . . . ana2a1 → · · · → a2a1a3 . . . an−2, we can see that any vertex is
reachable from any other. Therefore an Eulerian trail exists by Theorem 2.3.4.2G, and
such a trail clearly is equivalent to a universal cycle of permutations. The lexicograph-
ically smallest example when n = 4 is (123124132134214324314234).

[Notes: C. Bachet presented a similar idea for n = 4 already in his Problemes
plaisans et delectables (Lyon: 1612), 123, but with two half-cycles instead of a full
cycle. G. Hurlbert and G. Isaak, in Discrete Math. 149 (1996), 123–129, have suggested
another appealing approach: Let’s say that a modular universal cycle of permutations
is a cycle of n! digits {0, . . . , n} with the property that each permutation a1 . . . an of
{1, . . . , n} arises from consecutive digits u1 . . . un by letting aj = (uj − c) mod (n+ 1),
where c is the “missing” digit in {u1, . . . , un}. For example, the modular universal cycle
(012032) is essentially unique for n = 3; and the lexicographically smallest for n = 4 is
(012301420132014321430243). If vertices a1 . . . an−2 and a′1 . . . a

′
n−2 in the digraph

of the previous paragraph are considered equivalent when a1− a′1 ≡ · · · ≡ an−2− a′n−2
(modulo n), we get a digraph of (n − 1)!/2 vertices whose Eulerian trails correspond
to the modular universal cycles of permutations for {1, . . . , n− 1}.]
112. (a) If the cycle is a1a2 . . . , use σ at step j if the subsequence ajaj+1 . . . aj+n−1 is
a permutation; otherwise use ρ.

(b) This statement follows immediately from exercise 72.
(c) Let Ω2 = σ2, and obtain Ωn+1 from Ωn by substituting σ ↦→ σ2ρn−1 and ρ ↦→

σ2ρn−2σ. For example, Ω3 = (σ2ρ)2 and Ω4 = ((σ2ρ2)2σ2ρσ)2. Generate permutations
by starting with n . . . 21 and applying the successive elements of Ωn; for example, the
sequence when n = 4 is

4321, 3214, 2143, 1423, 4213, 2134, 1342, 3412, 4132, 1324, 3241, 2431,
4312, 3124, 1243, 2413, 4123, 1234, 2341, 3421, 4231, 2314, 3142, 1432,

and the corresponding universal cycle is (432142134132431241234231). Notice that n
moves cyclically in this sequence of permutations; and the permutations that begin
with n correspond to the sequence obtained from Ωn−1.

[See F. Ruskey and A. Williams, ACM Transactions on Algorithms 6 (2010),
45:1–45:12. Similar methods are said to be known to bell-ringers. Universal cycles can

From the Library of Melissa Nuno



ptg999

7.2.1.2 ANSWERS TO EXERCISES 723

also be constructed explicitly for permutations of an arbitrary multiset, with a method
analogous to 7.2.1.1–(62); see A. Williams, Ph.D. thesis (Univ. of Victoria, 2009).]
113. By exercise 2.3.4.2–22 it suffices to count the oriented trees rooted at 12 . . . (n−2),
in the digraph of the preceding answer; and those trees can be counted by exercise
2.3.4.2–19. For n ≤ 6 the numbers Un turn out to be tantalizingly simple: U2 = 1,
U3 = 3, U4 = 27 · 3, U5 = 233 · 38 · 53, U6 = 2190 · 349 · 533. (Here we consider (121323)
to be the same cycle as (213231), but different from (131232).)

Mark Cooke has discovered the following instructive way to compute these values
efficiently: Consider the n!× n! matrix M = 2I − R − S, where Rππ′ = [π′ =πρ] and
Sππ′ = [π′ =πσ ]. There is a matrix H such that H−RH and H−SH each have block
diagonal form consisting of kλ copies of kλ×kλ matrices Rλ and Sλ, for each partition λ
of n, where kλ is n! divided by the product of the hook lengths of shape λ (Theorem
5.1.4H), and where Rλ and Sλ are matrix representations of ρ and σ based on Young
tableaux. [A proof can be found in Bruce Sagan, The Symmetric Group (Pacific Grove,
Calif.: Wadsworth & Brooks/Cole, 1991).] For example, when n = 3 we have

R =


0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0

 , S =


0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

 , H =


1 1 1 −1 1 0
1 1 −1 0 0 −1
1 1 0 1 −1 1
1 −1 −1 1 0 1
1 −1 1 0 1 −1
1 −1 0 −1 −1 0

 ,

H−RH =


1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 , H−SH =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 −1 0 0
0 0 1 −1 0 0
0 0 0 0 0 −1
0 0 0 0 1 −1


when rows and columns are indexed by the respective permutations 1, σ, σ2, ρ, ρσ,
ρσ2; here k3 = k111 = 1 and k21 = 2. Therefore the eigenvalues of M are the union,
over λ, of kλ-fold repeated eigenvalues of the kλ × kλ matrices 2I − Rλ − Sλ. In the
example, the eigenvalues of (0), (2), and ( 2

−2
0
3 ) twice are {0}, {2}, and {2, 3} twice.

The eigenvalues of M are directly related to those of the matrix A in exercise
2.3.4.2–19. Indeed, each eigenvector of A yields an eigenvector of M , if we equate the
components for permutations π and πρσ−, because rows π and πρσ− of R + S are
equal. For example,

A =
 2 −1 −1
−1 2 −1
−1 −1 2


has eigenvectors

 1
1
1


,

 1
−1
0


,

 1
0
−1


for eigenvalues 0, 3, 3,

yielding the eigenvectors (1, 1, 1, 1, 1, 1)T , (1,−1, 0, 0,−1, 1)T , (1, 0,−1,−1, 0, 1)T of M
for the same eigenvalues. And M has n!/2 additional eigenvectors, with all components
zero except those indexed by π and πσ−ρ for some π, because only rows πρ− and πσ−

of R+S have nonzero entries in columns π and πσ−ρ; such vectors yield n!/2 additional
eigenvalues, all equal to 2.

Therefore Un, which is 2/n! times the product of the nonzero eigenvalues of A, is
21−n!/2/n! times the product of the nonzero eigenvalues of M .

Unfortunately the small-prime-factor phenomenon does not continue; U7 equals
212173123511975112843357320792110935, and U9 is divisible by 59229013196333168.

From the Library of Melissa Nuno



ptg999

724 ANSWERS TO EXERCISES 7.2.1.3

SECTION 7.2.1.3
1. Given a multiset, form the sequence et . . . e2e1 from right to left by listing the

distinct elements first, then those that appear twice, then those that appear thrice,
etc. Let us set e−j ← s− j for 0 ≤ j ≤ s = n− t, so that every element ej for 1 ≤ j ≤ t
is equal to some element to its right in the sequence et . . . e1e0 . . . e−s. If the first such
element is ecj−s, we obtain a solution to (3). Conversely, every solution to (3) yields a
unique multiset {e1, . . . , et}, because cj < s+ j for 1 ≤ j ≤ t.

[A similar correspondence was proposed by E. Catalan: If 0 ≤ e1 ≤ · · · ≤ et ≤ s, let

{c1, . . . , ct} = {e1, . . . , et} ∪ {s+ j | 1 ≤ j < t and ej = ej+1}.

See Mémoires de la Soc. roy. des Sciences de Liège (2) 12 (1885), Mélanges Math., 3.]
2. Start at the bottom left corner; then go up for each 0, go right for each 1. The

result is . Conversely, we can easily “read off” the representations ai, bi, ci,
di, pi, or qi of (2)–(11) from any given path from (0, 0) to (s, t).

3. In this algorithm, variable r is the least positive index such that qr > 0.
N1. [Initialize.] Set qj ← 0 for 1 ≤ j ≤ t, and q0 ← s. (We assume that st > 0.)
N2. [Visit.] Visit the composition qt . . . q0. Go to N4 if q0 = 0.
N3. [Easy case.] Set q0 ← q0 − 1, r ← 1, and go to N5.
N4. [Tricky case.] Terminate if r = t. Otherwise set q0 ← qr−1, qr ← 0, r ← r+1.
N5. [Increase qr.] Set qr ← qr + 1 and return to N2.

[See CACM 11 (1968), 430; 12 (1969), 187. The task of generating such compositions
in decreasing lexicographic order is more difficult.]

4. We can reverse the roles of 0 and 1 in (14), so that 0qt10qt−1 1 . . . 10q1 10q0 =
1rs01rs−1 0 . . . 01r1 01r0 . This gives 01100102102104100100100100100101100101100 =
10012010011010011010010010016012011. Lexicographic order of an−1 . . . a1a0 corre-
sponds to lexicographic order of rs . . . r1r0.

Incidentally, there’s also a multiset connection: {dt, . . . , d1} = {rs · s, . . . , r0 · 0}.
For example, {10, 10, 8, 6, 2, 2, 2, 2, 2, 2, 1, 1, 0} = {0 · 11, 2 · 10, 0 · 9, 1 · 8, 0 · 7, 1 · 6, 0 · 5,
0 · 4, 0 · 3, 6 · 2, 2 · 1, 1 · 0}.

5. (a) Set xj = cj−⌊(j−1)/2⌋ in each t-combination of n+⌊t/2⌋. (b) Set xj = cj+j+1
in each t-combination of n− t− 2.

(A similar approach finds all solutions (xt, . . . , x1) to the inequalities xj+1 ≥ xj+δj
for 0 ≤ j ≤ t, given the values of xt+1, (δt, . . . , δ0), and x0.)

6. Assume that t > 0. We get to T3 when c1 > 0; to T5 when c2 = c1 + 1 > 1; to T4
for 2 ≤ j ≤ t+1 when cj = c1 +j−1 ≥ j. So the counts are: T1, 1; T2,


n
t


; T3,


n−1
t


;

T4,

n−2
t−1


+

n−3
t−2


+ · · ·+

n−t−1

0


=

n−1
t−1

; T5,


n−2
t−1

; T6,


n−1
t−1


+

n−2
t−1

− 1.

7. A procedure slightly simpler than Algorithm T suffices: Assume that s < n.
S1. [Initialize.] Set bj ← j + n− s− 1 for 1 ≤ j ≤ s; then set j ← 1.
S2. [Visit.] Visit the combination bs . . . b2b1. Terminate if j > s.
S3. [Decrease bj .] Set bj ← bj − 1. If bj < j, set j ← j + 1 and return to S2.
S4. [Reset bj−1 . . . b1.] While j > 1, set bj−1 ← bj−1 and j ← j−1. Go to S2.

From the Library of Melissa Nuno



ptg999

7.2.1.3 ANSWERS TO EXERCISES 725

(See S. Dvořák, Comp. J. 33 (1990), 188. Notice that if xk = n − bk for 1 ≤ k ≤ s,
this algorithm runs through all combinations xs . . . x2x1 of {1, 2, . . . , n} with 1 ≤ xs <
· · · < x2 < x1 ≤ n, in increasing lexicographic order.)

8. A1. [Initialize.] Set an . . . a0 ← 0s+11t, q ← t, r ← 0. (We assume that 0 < t < n.)
A2. [Visit.] Visit the combination an−1 . . . a1a0. Go to A4 if q = 0.
A3. [Replace . . . 01q by . . . 101q−1.] Set aq ← 1, aq−1 ← 0, q ← q − 1; then if

q = 0, set r ← 1. Return to A2.
A4. [Shift block of 1s.] Set ar ← 0 and r ← r + 1. Then if ar = 1, set aq ← 1,

q ← q + 1, and repeat step A4.
A5. [Carry to left.] Terminate if r = n; otherwise set ar ← 1.
A6. [Odd?] If q > 0, set r ← 0. Return to A2.

In step A2, q and r point respectively to the rightmost 0 and 1 in an−1 . . . a0. Steps
A1, . . . , A6 are executed with frequency 1,


n
t


,

n−1
t−1

,

n
t


− 1,


n−1
t


,

n−1
t


− 1.

9. (a) The first

n−1
t


strings begin with 0 and have 2A(s−1)t bit changes; the other

n−1
t−1


begin with 1 and have 2As(t−1). And ν(01t0s−1 ⊕ 10s1t−1) = 2 min(s, t).
(b) Solution 1 (direct): Let Bst = Ast + min(s, t) + 1. Then

Bst = B(s−1)t +Bs(t−1) + [s= t] when st > 0; Bst = 1 when st = 0.

Consequently Bst =
min(s,t)
k=0


s+t−2k
s−k


. If s ≤ t this is ≤ s

k=0

s+t−k
s−k


=

s+t+1
s


=

s+t
s


s+t+1
t+1 < 2


s+t
t


.

Solution 2 (indirect): The algorithm in answer 8 makes 2(x+ y) bit changes when
steps (A3,A4) are executed (x, y) times. Thus Ast ≤


n−1
t−1


+

n
t


− 1 < 2


n
t


.

[The comment in answer 7.2.1.1–3 therefore applies to combinations as well.]
10. Each scenario corresponds to a (4, 4)-combination b4b3b2b1 or c4c3c2c1 in which
A wins games {8−b4, 8−b3, 8−b2, 8−b1} and N wins games {8−c4, 8−c3, 8−c2, 8−c1},
because we can assume that the losing team wins the remaining games in a series of 8.
(Equivalently, we can generate all permutations of {A,A,A,A,N,N,N,N} and omit
the trailing run of As or Ns.) The American League wins if and only if b1 ̸= 0, if and
only if c1 = 0. The formula


c4
4


+

c3
3


+

c2
2


+

c1
1


assigns a unique integer between
0 and 69 to each scenario.

For example, ANANAA ⇐⇒ a7 . . . a1a0 = 01010011 ⇐⇒ b4b3b2b1 = 7532 ⇐⇒
c4c3c2c1 = 6410, and this is the scenario of rank

6
4

+
4

3

+
1

2

+
0

1


= 19 in lexicographic
order. (The term


cj
j


will be zero if and only if it corresponds to a trailing N.)

11. AAAA (9 times), NNNN (8), and ANAAA (7) were most common. Exactly 27
of the 70 failed to occur, including all four beginning with NNNA. (We disregard the
games that were tied because of darkness, in 1907, 1912, and 1922. The case ANNAAA
should perhaps be excluded too, because it occurred only in 1920 as part of ANNAAAA
in a best-of-nine series. The scenario NNAAANN occurred for the first time in 2001.)
12. (a) Let Vj be the subspace {an−1 . . . a0 ∈ V | ak = 0 for 0 ≤ k < j}, so that
{0 . . . 0} = Vn ⊆ Vn−1 ⊆ · · · ⊆ V0 = V . Then {c1, . . . , ct} = {c | Vc ̸= Vc+1}, and αk is
the unique element an−1 . . . a0 of V with acj = [j= k ] for 1 ≤ j ≤ t.

Incidentally, the t × n matrix corresponding to a canonical basis is said to be in
reduced row-echelon form. It can be found by a standard “triangulation” algorithm
(see exercise 4.6.1–19 and Algorithm 4.6.2N).

From the Library of Melissa Nuno



ptg999

726 ANSWERS TO EXERCISES 7.2.1.3

(b) The 2-nomial coefficient

n
t


2 = 2t


n−1
t


2 +


n−1
t−1


2
of exercise 1.2.6–58 has the

right properties, because 2t

n−1
t


2 binary vector spaces have ct < n−1 and


n−1
t−1


2
have

ct = n− 1. [In general the number of canonical bases with r asterisks is the number of
partitions of r into at most t parts, with no part exceeding n− t, and this is [zr]


n
t


z

by Eq. 7.2.1.4–(51). See D. E. Knuth, J. Combinatorial Theory A10 (1971), 178–180.]
(c) The following algorithm assumes that n > t > 0 and that a(t+1)j = 0 for

t ≤ j ≤ n.
V1. [Initialize.] Set akj ← [j= k − 1] for 1 ≤ k ≤ t and 0 ≤ j < n. Also set q ← t,

r ← 0.
V2. [Visit.] (At this point we have ak(k−1) = 1 for 1 ≤ k ≤ q, a(q+1)q = 0, and

a1r = 1.) Visit the canonical basis (a1(n−1) . . . a11a10, . . . , at(n−1) . . . at1at0).
Go to V4 if q > 0.

V3. [Find block of 1s.] Set q ← 1, 2, . . . , until a(q+1)(q+r) = 0. Terminate if
q + r = n.

V4. [Add 1 to column q + r.] Set k ← 1. While ak(q+r) = 1, set ak(q+r) ← 0
and k ← k + 1. Then if k ≤ q, set ak(q+r) ← 1; otherwise set aq(q+r) ← 1,
aq(q+r−1) ← 0, q ← q − 1.

V5. [Shift block right.] If q = 0, set r ← r+1. Otherwise, if r > 0, set ak(k−1) ← 1
and ak(r+k−1) ← 0 for 1 ≤ k ≤ q, then set r ← 0. Go to V2.

Step V2 finds q > 0 with probability 1 − (2n−t − 1)/(2n − 1) ≈ 1 − 2−t, so we could
save time by treating this case separately.

(d) Since 999999 = 4
8

4


2 +16
7

4


2 +5
6

3


2 +5
5

3


2 +8
4

3


2 +0
3

2


2 +4
2

2


2 +1
1

1


2 +
2
0

1


2, the millionth output has binary columns 4, 16/2, 5, 5, 8/2, 0, 4/2, 1, 2/2, namely

α1 = 0 0 1 1 0 0 0 1 1,
α2 = 0 0 0 0 0 0 1 0 0,
α3 = 1 0 1 1 1 0 0 0 0,
α4 = 0 1 0 0 0 0 0 0 0.

[Reference: E. Calabi and H. S. Wilf, J. Combinatorial Theory A22 (1977), 107–109.]
13. Let n = s + t. There are


s−1

⌈(r−1)/2⌉


t−1
⌊(r−1)/2⌋


configurations beginning with 0

and


s−1
⌊(r−1)/2⌋


t−1

⌈(r−1)/2⌉


beginning with 1, because an Ising configuration that begins
with 0 corresponds to a composition of s 0s into ⌈(r+ 1)/2⌉ parts and a composition of
t 1s into ⌊(r + 1)/2⌋ parts. We can generate all such pairs of compositions and weave
them into configurations. [See E. Ising, Zeitschrift für Physik 31 (1925), 253–258;
J. M. S. Simões Pereira, CACM 12 (1969), 562.]
14. Start with l[j]← j − 1 and r[j − 1]← j for 1 ≤ j ≤ n; l[0]← n, r[n]← 0. To get
the next combination, assuming that t > 0, set p← s if l[0] > s, otherwise p← r[n]−1.
Terminate if p ≤ 0; otherwise set q ← r[p], l[q]← l[p], and r[l[p]]← q. Then if r[q] > s
and p < s, set r[p] ← r[n], l[r[n]] ← p, r[s] ← r[q], l[r[q]] ← s, r[n] ← 0, l[0] ← n;
otherwise set r[p]← r[q], l[r[q]]← p. Finally set r[q]← p and l[p]← q.

[See Korsh and Lipschutz, J. Algorithms 25 (1997), 321–335, where the idea is
extended to a loopless algorithm for multiset permutations. Caution: This exercise,
like exercise 7.2.1.1–16, is more academic than practical, because the routine that visits
the linked list might need a loop that nullifies any advantage of loopless generation.]

From the Library of Melissa Nuno



ptg999

7.2.1.3 ANSWERS TO EXERCISES 727

15. (The stated fact is true because lexicographic order of ct . . . c1 corresponds to
lexicographic order of an−1 . . . a0, which is reverse lexicographic order of the comple-
mentary sequence 1 . . . 1 ⊕ an−1 . . . a0.) By Theorem L, the combination ct . . . c1 is
visited before exactly


bs
s


+ · · ·+


b2
2


+

b1
1


others have been visited, and we must have
bs
s


+ · · ·+


b1

1


+

ct
t


+ · · ·+


c1

1


=


s+ t

t


− 1.

This general identity can be written
n−1
j=0

xj


j

x0 + · · ·+ xj


+
n−1
j=0

x̄j


j

x̄0 + · · ·+ x̄j


=


n

x0 + · · ·+ xn−1


− 1

when each xj is 0 or 1, and x̄j = 1− xj ; it follows also from the equation

xn


n

x0 + · · ·+ xn


+ x̄n


n

x̄0 + · · ·+ x̄n


=


n+ 1

x0 + · · ·+ xn


−


n

x0 + · · ·+ xn−1


.

16. Since 999999 =
1414

2


+
1008

1


=
182

3


+
153

2


+
111

1


=
71

4


+
56

3


+
36

2


+
14

1


=43
5


+
32

4


+
21

3


+
15

2


+
6

1

, the answers are (a) 1414 1008; (b) 182 153 111; (c) 71

56 36 14; (d) 43 32 21 15 6; (e) 1000000 999999 . . . 2 0.
17. By Theorem L, nt is the largest integer such that N ≥


nt
t


; the remaining terms

are the degree-(t− 1) representation of N −

nt
t


.

A simple sequential method for t > 1 starts with x = 1, c = t, and sets c← c+ 1,
x ← xc/(c − t) zero or more times until x > N ; then we complete the first phase by
setting x ← x(c − t)/c, c ← c − 1, at which point we have x =


c
t


≤ N <


c+1
t


. Set

nt ← c, N ← N−x; terminate with n1 ← N if t = 2; otherwise set x← xt/c, t← t−1,
c ← c − 1; while x > N set x ← x(c − t)/c, c ← c − 1; repeat. This method requires
O(n) arithmetic operations if N <


n
t


, so it is suitable unless t is small and N is large.

When t = 2, exercise 1.2.4–41 tells us that n2 = ⌊
√

2N + 2 + 1
2 ⌋. In general,

nt is ⌊x⌋ where x is the largest root of xt = t!N ; this root can be approximated
by reverting the series y = (xt)1/t = x − 1

2 (t − 1) + 1
24 (t2 − 1)x−1 + · · · to get x =

y+ 1
2 (t− 1) + 1

24 (t2− 1)/y+O(y−3). Setting y = (t!N)1/t in this formula gives a good
approximation, after which we can check that

⌊x⌋
t


≤ N <

⌊x⌋+1
t


or make a final

adjustment. [See A. S. Fraenkel and M. Mor, Comp. J. 26 (1983), 336–343.]
18. A complete binary tree of 2n − 1 nodes is obtained, with an extra node at the
top, like the “tree of losers” in replacement selection sorting (Fig. 63 in Section 5.4.1).
Therefore explicit links aren’t necessary; the right child of node k is node 2k + 1, and
the left sibling is node 2k, for 1 ≤ k < 2n−1.

This representation of a binomial tree has the curious property that node k =
(0a1α)2 corresponds to the combination whose binary string is 0a1αR.
19. It is 11110100001001000100, the binary representation of post(1000000), where
post(2k+1−1) = 2k, and post(n) = 2k+post(n−2k+1) if 2k ≤ n < 2k+1−1, for k ≥ 0.
[Incidentally, the left-child/right-sibling representation of T∞ is the sideways heap.]
20. f(z) = (1 + zwn−1 ) . . . (1 + zw1 )/(1− z), g(z) = (1 + zw0 )f(z), h(z) = zw0f(z).
21. The rank of ct . . . c2c1 is


ct+1
t


− 1 minus the rank of ct−1 . . . c2c1. [Page 40 of

Miller’s thesis; see also H. Lüneburg, Abh. Math. Sem. Hamburg 52 (1982), 208–227.]
22. Since 999999 =

1415
2

−
406

1


=
183

3

−
98

2


+
21

1


=
72

4

−
57

3


+
32

2

−
27

1


=44
5

−
40

4


+
33

3

−
13

2


+
3

1

, the answers are (a) 1414 405; (b) 182 97 21; (c) 71 56

31 26; (d) 43 39 32 12 3; (e) 1000000 999999 999998 999996 . . . 0.

From the Library of Melissa Nuno



ptg999

728 ANSWERS TO EXERCISES 7.2.1.3

23. There are

n−r
t−r


combinations with j > r, for r = 1, 2, . . . , t. (If r = 1 we have
c2 = c1 +1; if r = 2 we have c1 = 0, c2 = 1; if r = 3 we have c1 = 0, c2 = 1, c4 = c3 +1;
etc.) Thus the mean is (


n
t


+

n−1
t−1

+· · ·+


n−t

0

)/

n
t


=

n+1
t


/

n
t


= (n+1)/(n+1−t).

The average running time per step is approximately proportional to this quantity; thus
the algorithm is quite fast when t is small, but slow if t is near n.
24. In fact jk − 2 ≤ jk+1 ≤ jk + 1 when jk ≡ t (modulo 2) and jk − 1 ≤ jk+1 ≤ jk + 2
when jk ̸≡ t, because R5 is performed only when ci = i− 1 for 1 ≤ i < j.

Thus we could say, “If j ≥ 4, set j ← j−1−[j odd] and go to R5” at the end of R2,
if t is odd; “If j ≥ 3, set j ← j − 1− [j even] and go to R5” if t is even. The algorithm
will then be loopless, since R4 and R5 will be performed at most twice per visit.
25. Assume that N > N ′ and N − N ′ is minimum; furthermore let t and ct be
minimum, subject to those assumptions. Then ct > c′t.

If there is an element x /∈ C ∪ C′ with 0 ≤ x < ct, map each t-combination of
C ∪C′ by changing j →→ j− 1 for j > x; or, if there is an element x ∈ C ∩C′, map each
t-combination that contains x into a (t − 1)-combination by omitting x and changing
j →→ x − j for j < x. In either case the mapping preserves alternating lexicographic
order; hence N − N ′ must exceed the number of combinations between the images
of C and C′. But ct is minimum, so no such x can exist. Consequently t = m and
ct = 2m− 1.

Now if c′m < cm − 1, we could decrease N −N ′ by increasing c′m. Therefore c′m =
2m−2, and the problem has been reduced to finding the maximum of rank(cm−1 . . . c1)−
rank(c′m−1 . . . c

′
1), where rank is calculated as in (30).

Let f(s, t) = max(rank(bs . . . b1)− rank(ct . . . c1)) over all {bs, . . . , b1, ct, . . . , c1} =
{0, . . . , s+ t− 1}. Then f(s, t) satisfies the curious recurrence

f(s, 0) = f(0, t) = 0; f(1, t) = t;
f(s, t) =


s+t−1
s


+ max(f(t− 1, s− 1), f(s− 2, t)) if st > 0 and s > 1.

When s+ t = 2u+ 2 the solution turns out to be

f(s, t) =
2u+ 1
t− 1


+
u−r
j=1

2u+ 1− 2j
r


+
r−1
j=0

2j + 1
j


, r = min(s− 2, t− 1),

with the maximum occurring at f(t−1, s−1) when s ≤ t and at f(s−2, t) when s ≥ t+2.
Therefore the minimum N −N ′ occurs for

C = {2m− 1} ∪ {2m− 2− x | 1 ≤ x ≤ 2m− 2, xmod 4 ≤ 1},
C′ = {2m− 2} ∪ {2m− 2− x | 1 ≤ x ≤ 2m− 2, xmod 4 ≥ 2};

and it equals
2m−1
m−1


−m−2

k=0
2k+1

k


= 1 +

m−1
k=1

 2k
k−1

. [See A. J. van Zanten, IEEE

Trans. IT-37 (1991), 1229–1233.]
26. (a) Yes: The first is 0n−⌈t/2⌉1t mod 22⌊t/2⌋ and the last is 2⌊t/2⌋1t mod 20n−⌈t/2⌉;
transitions are substrings of the forms 02a1 ↔ 12a0, 02a2 ↔ 12a1, 10a1 ↔ 20a0,
10a2↔ 20a1.

(b) No: If s = 0 there is a big jump from 02t0r−1 to 20r2t−1.
27. The following procedure extracts all combinations c1 . . . ck of Γn that have weight
≤ t: Begin with k ← 0 and c0 ← n. Visit c1 . . . ck. If k is even and ck = 0, set
k ← k − 1; if k is even and ck > 0, set ck ← ck − 1 if k = t, otherwise k ← k + 1
and ck ← 0. On the other hand if k is odd and ck + 1 = ck−1, set k ← k − 1 and

From the Library of Melissa Nuno



ptg999

7.2.1.3 ANSWERS TO EXERCISES 729

ck ← ck+1 (but terminate if k = 0); if k is odd and ck + 1 < ck−1, set ck ← ck + 1 if
k = t, otherwise k ← k + 1, ck ← ck−1, ck−1 ← ck + 1. Repeat.

(This loopless algorithm reduces to that of exercise 7.2.1.1–12(b) when t = n, with
slight changes of notation.)
28. True. Bit strings an−1 . . . a0 = αβ and a′n−1 . . . a

′
0 = αβ′ correspond to index lists

(bs . . . b1 = θχ, ct . . . c1 = ϕψ) and (b′s . . . b′1 = θχ′, c′t . . . c′1 = ϕψ′) such that everything
between αβ and αβ′ begins with α if and only if everything between θχ and θχ′ begins
with θ and everything between ϕψ and ϕψ′ begins with ϕ. For example, if n = 10, the
prefix α = 01101 corresponds to prefixes θ = 96 and ϕ = 875.

(But just having ct . . . c1 in genlex order is a much weaker condition. For example,
every such sequence is genlex when t = 1.)
29. (a) -k0l+1 or -k0l+1+±m or ±k, for k, l,m ≥ 0.

(b) No; the successor is always smaller in balanced ternary notation.
(c) For all α and all k, l,m ≥ 0 we have α0-k+10l+±m → α-+k0l+1-±m and

α+-k0l+1+±m → α0+k+10l-±m; also α0-k+10l → α-+k0l+1 and α+-k0l+1 → α0+k+10l.
(d) Let the jth sign of αi be (−1)aij , and let it be in position bij . Then we have

(−1)aij+bi(j−1) = (−1)a(i+1)j+b(i+1)(j−1) for 0 ≤ i < k and 1 ≤ j ≤ s, if we let bi0 = 0.
(e) By parts (a), (b), and (c), α belongs to some chain α0 → · · · → αk, where αk

is final (has no successor) and α0 is initial (has no predecessor). By part (d), every
such chain has at most


s+t
t


elements. But there are 2s final strings, by (a), and there

are 2s

s+t
t


strings with s signs and t zeros; so k must be


s+t
t


− 1.

Reference: SICOMP 2 (1973), 128–133.
30. Assume that t > 0. Initial strings are the negatives of final strings. Let σj be the
initial string 0t-τj for 0 ≤ j < 2s−1, where the kth character of τj for 1 ≤ k < s is the
sign of (−1)ak when j is the binary number (as−1 . . . a1)2; thus σ0 = 0t-++ . . . +, σ1 =
0t--+ . . . +, . . . , σ2s−1−1 = 0t--- . . . -. Let ρj be the final string obtained by inserting
-0t after the first (possibly empty) run of minus signs in τj ; thus ρ0 = -0t++ . . . +,
ρ1 = --0t+ . . . +, . . . , ρ2s−1−1 = -- . . . -0t. We also let σ2s−1 = σ0 and ρ2s−1 = ρ0.
Then we can prove by induction that the chain beginning with σj ends with ρj when t
is even, with ρj−1 when t is odd, for 1 ≤ j ≤ 2s−1. Therefore the chain beginning with
−ρj ends with −σj or −σj+1.

Let Aj(s, t) be the sequence of (s, t)-combinations derived by mapping the chain
that starts with σj , and let Bj(s, t) be the analogous sequence derived from −ρj . Then,
for 1 ≤ j ≤ 2s−1, the reverse sequence Aj(s, t)R is Bj(s, t) when t is even, Bj−1(s, t)
when t is odd. The corresponding recurrences when st > 0 are

Aj(s, t) =


1Aj(s, t− 1), 0A⌊(2s−1−1−j)/2⌋(s− 1, t)R, if j + t is even;
1Aj(s, t− 1), 0A⌊j/2⌋(s− 1, t), if j + t is odd;

and when st > 0 all 2s−1 of these sequences are distinct.
Chase’s sequence Cst is A⌊2s/3⌋(s, t), and Cst is A⌊2s−1/3⌋(s, t)R. Incidentally, the

homogeneous sequence Kst of (31) is A2s−1−[t even](s, t)R.

31. (a) 2(s+t
t )−1 solves the recurrence f(s, t) = 2f(s − 1, t)f(s, t − 1) when f(s, 0) =

f(0, t) = 1. (b) Now f(s, t) = (s+ 1)!f(s, t− 1) . . . f(0, t− 1) has the solution

(s+ 1)!ts!(
t
2)(s− 1)!(

t+1
3 ) . . . 2!(

s+t−2
s ) =

s
r=1

(r + 1)!(
s+t−1−r

t−2 )+[r=s].

From the Library of Melissa Nuno



ptg999

730 ANSWERS TO EXERCISES 7.2.1.3

32. (a) No simple formula seems to exist, but the listings can be counted for small s
and t by systematically computing the number of genlex paths that run through all
weight-t strings from a given starting point to a given ending point via revolving-door
moves. The totals for s+ t ≤ 6 are

1
1 1

1 2 1
1 4 4 1

1 8 20 8 1
1 16 160 160 16 1

1 32 2264 17152 2264 32 1

and f(4, 4) = 95,304,112,865,280; f(5, 5) ≈ 5.92646× 1048. [This class of combination
generators was first studied by G. Ehrlich, JACM 20 (1973), 500–513, but he did not
attempt to enumerate them.]

(b) By extending the proof of Theorem N, one can show that all such listings or
their reversals must run from 1t0s to 0a1t0s−a for some a, 1 ≤ a ≤ s. Moreover, the
number nsta of possibilities, given s, t, and a with st > 0, satisfies n1t1 = 1 and

nsta =

ns(t−1)1n(s−1)t(a−1), if a > 1;
ns(t−1)2n(s−1)t1 + · · ·+ ns(t−1)sn(s−1)t(s−1), if a = 1 < s.

This recurrence has the remarkable solution nsta = 2m(s,t,a), where

m(s, t, a) =


s+t−3
t


+

s+t−5
t−2


+ · · ·+


s−1

2

, if t is even;

s+t−3
t


+

s+t−5
t−2


+ · · ·+


s
3


+ s− a− [a<s], if t is odd.

33. Consider first the case t = 1: The number of near-perfect paths from i to j > i is
f(j− i− [i> 0]− [j <n− 1]), where


j f(j)zj = 1/(1− z− z3). (By coincidence, the

same sequence f(j) arises in Caron’s polyphase merge on 6 tapes, Table 5.4.2–2.) The
sum over 0 ≤ i < j < n is 3f(n) + f(n−1) + f(n−2) + 2− n; and we must double this,
to cover cases with j > i.

When t > 1 we can construct

n
t


×

n
t


matrices that tell how many genlex listings

begin and end with particular combinations. The entries of these matrices are sums of
products of matrices for the case t − 1, summed over all paths of the type considered
for t = 1. The totals for s+ t ≤ 6 turn out to be

1
1 1

1 2 1
1 6 2 1

1 12 10 2 1
1 20 44 10 2 1

1 34 238 68 10 2 1

1
1 1

1 2 1
1 2 0 1

1 2 2 0 1
1 2 0 0 0 1

1 2 6 0 0 0 1

where the right-hand triangle shows the number of cycles, g(s, t). Further values include
f(4, 4) = 17736; f(5, 5) = 9,900,888,879,984; g(4, 4) = 96; g(5, 5) = 30,961,456,320.

There are exactly 10 such schemes when s = 2 and n ≥ 4. For example, when
n = 7 they run from 43210 to 65431 or 65432, or from 54321 to 65420 or 65430 or
65432, or the reverse.

From the Library of Melissa Nuno



ptg999

7.2.1.3 ANSWERS TO EXERCISES 731

34. The minimum can be computed as in the previous answer, but using min-plus
matrix multiplication cij = mink(aik + bkj) instead of ordinary matrix multiplication
cij =


k aikbkj . (When s = t = 5, the genlex path in Fig. 46(e) with only 49 imperfect

transitions is essentially unique. There is a genlex cycle for s = t = 5 that has only 55
imperfections.)
35. From the recurrences (35) we have ast = bs(t−1) + [s> 1][t> 0] + a(s−1)t, bst =
as(t−1) + a(s−1)t; consequently ast = bst + [s> 1][t odd] and ast = as(t−1) + a(s−1)t +
[s> 1][t odd]. The solution is

ast =
t/2
k=0


s+ t− 2− 2k

s− 2


− [s> 1][t even];

this sum is approximately s/(s+ 2t) times

s+t
t


.

36. Consider the binary tree with root node (s, t) and with recursively defined subtrees
rooted at (s−1, t) and (s, t−1) whenever st > 0; the node (s, t) is a leaf if st = 0. Then
the subtree rooted at (s, t) has


s+t
t


leaves, corresponding to all (s, t)-combinations

an−1 . . . a1a0. Nodes on level l correspond to prefixes an−1 . . . an−l, and leaves on
level l are combinations with r = n− l.

Any genlex algorithm for combinations an−1 . . . a1a0 corresponds to preorder tra-
versal of such a tree, after the children of the


s+t
t


− 1 branch nodes have been

ordered in any desired way; that, in fact, is why there are 2(s+t
t )−1 such genlex schemes

(exercise 31(a)). And the operation j ← j + 1 is performed exactly once per branch
node, namely after both children have been processed.

Incidentally, exercise 7.2.1.2–6(a) implies that the average value of r is s/(t+ 1) +
t/(s+1), which can be Ω(n); thus the extra time needed to keep track of r is worthwhile.
37. (a) In the lexicographic case we needn’t maintain the wj table, since aj is active
for j ≥ r if and only if aj = 0. After setting aj ← 1 and aj−1 ← 0 there are two cases
to consider if j > 1: If r = j, set r ← j − 1; otherwise set aj−2 . . . a0 ← 0r1j−1−r and
r ← j − 1− r (or r ← j if r was j − 1).

(b) Now the transitions to be handled when j > 1 are to change aj . . . a0 as follows:
01r → 1101r−2, 010r → 10r+1, 010a1r → 110a+11r−1, 10r → 010r−1, 110r → 010r−11,
10a1r → 0a1r+1; these six cases are easily distinguished. The value of r should change
appropriately.

(c) Again the case j = 1 is trivial. Otherwise 01a0r → 101a−10r; 0a1r → 10a1r−1;
101a0r → 01a+10r; 10a1r → 0a1r+1; and there is also an ambiguous case, which can
occur only if an−1 . . . aj+1 contains at least one 0: Let k > j be minimal with ak = 0.
Then 10r → 010r−1 if k is odd, 10r → 0r1 if k is even.
38. The same algorithm works, except that (i) step C1 sets an−1 . . . a0 ← 01t0s−1 if
n is odd or s = 1, an−1 . . . a0 ← 001t0s−2 if n is even and s > 1, with an appropriate
value of r; (ii) step C3 interchanges the roles of even and odd; (iii) step C5 goes to C4
also if j = 1.
39. In general, start with r ← 0, j ← s + t − 1, and repeat the following steps until
st = 0:

r ← r + [wj = 0]


j

s− aj


, s← s− [aj = 0], t← t− [aj = 1], j ← j − 1.

Then r is the rank of an−1 . . . a1a0. So the rank of 11001001000011111101101010 is23
12

+
22

11

+
21

9

+
17

8

+
16

7

+
14

5

+
13

3

+
12

3

+
11

3

+
10

3

+
9

3

+
8

3

+
4

3

+
3

1

+
1

0


=
2390131.

From the Library of Melissa Nuno



ptg999

732 ANSWERS TO EXERCISES 7.2.1.3

40. We start with N ← 999999, v ← 0, and repeat the following steps until st = 0: If
v = 0, set t ← t − 1 and as+t ← 1 if N <


s+t−1
s


, otherwise set N ← N −


s+t−1
s


,

v ← (s + t) mod 2, s ← s − 1, as+t ← 0. If v = 1, set v ← (s + t) mod 2, s ← s − 1,
and as+t ← 0 if N <


s+t−1
t


, otherwise set N ← N −


s+t−1
t


, t ← t − 1, as+t ← 1.

Finally if s = 0, set at−1 . . . a0 ← 1t; if t = 0, set as−1 . . . a0 ← 0s. The answer is
a25 . . . a0 = 11101001111110101001000001.
41. Let c(0), . . . , c(2n − 1) = Cn where C2n = 0C2n−1, 1C2n−1; C2n+1 = 0C2n,
1 C2n; C2n = 1C2n−1, 0 C2n−1; C2n+1 = 1 C2n, 0 C2n; C0 = C0 = ϵ. Then aj ⊕ bj =
bj+1&(bj+2 |(bj+3&(bj+4 | · · · ))) if j is even, bj+1 |(bj+2&(bj+3 |(bj+4&· · · ))) if j is odd.
Curiously we also have the inverse relation c(( . . . a4ā3a2ā1a0)2) = ( . . . b4b̄3b2b̄1b0)2.
42. Equation (40) shows that the left context an−1 . . . al+1 does not affect the behavior
of the algorithm on al−1 . . . a0 if al = 0 and l > r. Therefore we can analyze
Algorithm C by counting combinations that end with certain bit patterns, and it
follows that the number of times each operation is performed can be represented as
[wszt] p(w, z)/(1− w2)2(1− z2)2(1− w − z) for an appropriate polynomial p(w, z).

For example, the algorithm goes from C5 to C4 once for each combination that ends
with 012a+1012b+1 or has the form 1a+1012b+1, for integers a, b ≥ 0; the corresponding
generating functions are w2z2/(1− z2)2(1− w − z) and w(z2 + z3)/(1− z2)2.

Here are the polynomials p(w, z) for key operations. Let W = 1−w2, Z = 1− z2.

C3→ C4: wzW (1+wz)(1−w−z2);
C3→ C5: wzW (w+z)(1−wz−z2);
C3→ C6: w2z2W (w+z);
C3→ C7: w2zW (1+wz);
C4(j = 1): wzW 2Z(1−w−z2);
C4(r ← j−1): w3zWZ(1−w−z2);
C4(r ← j): wz2W 2(1+z−2wz−z2−z3);
C5→ C4: wz2W 2(1−wz−z2);
C5(r ← j−2): w4zWZ(1−wz−z2);

C5(r ← 1): w2zW 2Z(1−wz−z2);
C5(r ← j−1): w2z3W 2(1−wz−z2);
C6(j = 1): w2zW 2Z;
C6(r ← j−1): w2z3W 2;
C6(r ← j): w3z2WZ;
C7→ C6: w2zW 2;
C7(r ← j): w4zWZ;
C7(r ← j−2): w3z2W 2.

The asymptotic value is

s+t
t


(p(1 − x, x)/(2x − x2)2(1 − x2)2 + O(n−1)), for fixed

0 < x < 1, if t = xn + O(1) as n → ∞. Thus we find, for example, that the four-way
branching in step C3 takes place with relative frequencies x+x2−x3 : 1 : x : 1+x−x2.

Incidentally, the number of cases with j odd exceeds the number of cases with
j even by 

k,l≥1


s+ t− 2k − 2l

s− 2k


[2k + 2l≤ s+ t] + [s odd][t odd],

in any genlex scheme that uses (39). This quantity has the interesting generating
function wz/(1 + w)(1 + z)(1− w − z).
43. The identity is true for all nonnegative integers x, except when x = 1. (Inciden-
tally, s(x) = f(x)⊕ 1 and p(x) = f(x⊕ 1), where f(x) = (x .− 1) + ((x& 1)≪ 1).)
44. In fact, Ct(n)− 1 = Ct(n− 1)R, and Ct(n)− 1 = Ct(n− 1)R. (Hence Ct(n)− 2 =
Ct(n− 2), etc.)
45. In the following algorithm, r is the least subscript with cr ≥ r.

CC1. [Initialize.] Set cj ← n − t − 1 + j and zj ← 0 for 1 ≤ j ≤ t + 1. Also set
r ← 1. (We assume that 0 < t < n.)

CC2. [Visit.] Visit the combination ct . . . c2c1. Then set j ← r.
CC3. [Branch.] Go to CC5 if zj ̸= 0.

From the Library of Melissa Nuno



ptg999

7.2.1.3 ANSWERS TO EXERCISES 733

CC4. [Try to decrease cj .] Set x ← cj + (cj mod 2) − 2. If x ≥ j, set cj ← x,
r ← 1; otherwise if cj = j, set cj ← j − 1, zj ← cj+1 − ((cj+1 + 1) mod 2),
r ← j; otherwise if cj < j, set cj ← j, zj ← cj+1 − ((cj+1 + 1) mod 2),
r ← max(1, j − 1); otherwise set cj ← x, r ← j. Return to CC2.

CC5. [Try to increase cj .] Set x ← cj + 2. If x < zj , set cj ← x; otherwise if
x = zj and zj+1 ̸= 0, set cj ← x − (cj+1 mod 2); otherwise set zj ← 0,
j ← j + 1, and go to CC3 (but terminate if j > t). If c1 > 0, set r ← 1;
otherwise set r ← j − 1. Return to CC2.

46. Equation (40) implies that uk = (bj +k+ 1) mod 2 when j is minimal with bj > k.
Then (37) and (38) yield the following algorithm, where we assume for convenience
that 3 ≤ s < n.

CB1. [Initialize.] Set bj ← j − 1 for 1 ≤ j ≤ s; also set z ← s+ 1, bz ← 1. (When
subsequent steps examine the value of z, it is the smallest index such that
bz ̸= z − 1.)

CB2. [Visit.] Visit the dual combination bs . . . b2b1.
CB3. [Branch.] If b2 is odd: Go to CB4 if b2 ̸= b1 + 1, otherwise to CB5 if b1 > 0,

otherwise to CB6 if bz is odd. Go to CB9 if b2 is even and b1 > 0. Otherwise
go to CB8 if bz+1 = bz + 1, otherwise to CB7.

CB4. [Increase b1.] Set b1 ← b1 + 1 and return to CB2.
CB5. [Slide b1 and b2.] If b3 is odd, set b1 ← b1 + 1 and b2 ← b2 + 1; otherwise

set b1 ← b1 − 1, b2 ← b2 − 1, z ← 3. Go to CB2.
CB6. [Slide left.] If z is odd, set z ← z − 2, bz+1 ← z + 1, bz ← z; otherwise set

z ← z − 1, bz ← z. Go to CB2.
CB7. [Slide bz.] If bz+1 is odd, set bz ← bz + 1 and terminate if bz ≥ n; otherwise

set bz ← bz − 1, then if bz < z set z ← z + 1. Go to CB2.
CB8. [Slide bz and bz+1.] If bz+2 is odd, set bz ← bz+1, bz+1 ← bz + 1, and

terminate if bz+1 ≥ n. Otherwise set bz+1 ← bz, bz ← bz − 1, then if bz < z
set z ← z + 2. Go to CB2.

CB9. [Decrease b1.] Set b1 ← b1 − 1, z ← 2, and return to CB2.
Notice that this algorithm is loopless. Chase gave a similar procedure for the sequenceCRst in Cong. Num. 69 (1989), 233–237. It is truly amazing that this algorithm defines
precisely the complements of the indices ct . . . c1 produced by the algorithm in the
previous exercise.
47. We can, for example, use Algorithm C and its reverse (exercise 38), with wj
replaced by a d-bit number whose bits represent activity at different levels of the
recursion. Separate pointers r0, r1, . . . , rd−1 are needed to keep track of the r-values
on each level. (Many other solutions are possible.)
48. There are permutations π1, . . . , πM such that the kth element of Λj is πkαj↑βk−1.
And πkαj runs through all permutations of {s1 ·1, . . . , sd ·d} as j varies from 0 to N−1.

Historical note: The first publication of a homogeneous revolving-door scheme
for (s, t)-combinations was by Éva Török, Matematikai Lapok 19 (1968), 143–146,
who was motivated by the generation of multiset permutations. Many authors have
subsequently relied on the homogeneity condition for similar constructions, but this
exercise shows that homogeneity is not necessary.

From the Library of Melissa Nuno



ptg999

734 ANSWERS TO EXERCISES 7.2.1.3

49. We have limz→q(zkm+r − 1)/(zlm+r − 1) = 1 when 0 < r < m, and k/l when
r = 0. So we can pair up factors of the numerator

∏
n−k<a≤n(za − 1) with factors

of the denominator
∏

0<b≤k(zb − 1) when a ≡ b (modulo m).
Notes: This formula was discovered by G. Olive, AMM 72 (1965), 619. In the

special case m = 2, q = −1, the second factor vanishes only when n is even and k is odd.
The formula

(
n
k

)
q

=
(
n

n−k

)
q

holds for all n ≥ 0, but
(⌊n/m⌋
⌊k/m⌋

)
is not always equal to( ⌊n/m⌋

⌊(n−k)/m⌋

)
. The reason is that the second factor is zero unless nmodm ≥ k modm,

and in that case we do have ⌊k/m⌋+ ⌊(n− k)/m⌋ = ⌊n/m⌋.
50. The stated coefficient is zero when n1 modm+ · · ·+nt modm ≥ m. Otherwise it’s( ⌊(n1 + · · ·+ nt)/m⌋

⌊n1/m⌋, . . . , ⌊nt/m⌋

)( (n1 + · · ·+ nt) modm
n1 modm, . . . , nt modm

)
q
,

by Eq. 1.2.6–(43); here each upper index is the sum of the lower indices.
51. All paths clearly run between 000111 and 111000, since those vertices have de-
gree 1. Fourteen total paths reduce to four under the stated equivalences. The path
in (50), which is equivalent to itself under reflection-and-reversal, can be described
by the delta sequence A = 3452132523414354123; the other three classes are B =
3452541453414512543, C = 3452541453252154123, D = 3452134145341432543. D. H.
Lehmer found path C [AMM 72 (1965), Part II, 36–46]; D is essentially the path
constructed by Eades, Hickey, and Read.

(Incidentally, perfect schemes aren’t really rare, although they seem to be difficult
to construct systematically. The case (s, t) = (3, 5) has 4,050,046 of them.)
52. We may assume that each sj is nonzero and that d > 1. Then the difference
between permutations with an even and odd number of inversions is

(⌊(s0+···+sd)/2⌋
⌊s0/2⌋,...,⌊sd/2⌋

)
≥

2, by exercise 50, unless at least two of the multiplicities sj are odd.
Conversely, if at least two multiplicities are odd, a general construction by G. Sta-

chowiak [SIAM J. Discrete Math. 5 (1992), 199–206] shows that a perfect scheme
exists. Indeed, his construction applies to a variety of topological sorting problems; in
the special case of multisets it gives a Hamiltonian cycle in all cases with d > 1 and
s0s1 odd, except when d = 2, s0 = s1 = 1, and s2 is even.
53. See AMM 72 (1965), Part II, 36–46, for solutions to some small cases. T. Verhoeff
[Designs, Codes and Cryptography, to appear] has found important structural infor-
mation, which yields a general solution for d = 1 and probably for all d.
54. Assuming that st ̸= 0, a Hamiltonian path exists if and only if s and t are not
both even; a Hamiltonian cycle exists if and only if, in addition, (s ̸= 2 and t ̸= 2) or
n = 5. [T. C. Enns, Discrete Math. 122 (1993), 153–165.]
55. (a) [Solution by Aaron Williams.] The sequence 0s1t, Wst has the right properties if

Wst = 0W(s−1)t, 1Ws(t−1), 10s1t−1, for st > 0; W0t = Ws0 = ∅.

And there is an amazingly efficient, loopless implementation: Assume that t > 0.
W1. [Initialize.] Set n ← s + t, aj ← 1 for 0 ≤ j < t, and aj ← 0 for t ≤ j ≤ n.

Then set j ← k ← t− 1. (This is tricky, but it works.)
W2. [Visit.] Visit the (s, t)-combination an−1 . . . a1a0.
W3. [Zero out aj .] Set aj ← 0 and j ← j + 1.
W4. [Easy case?] If aj = 1, set ak ← 1, k ← k + 1, and return to W2.
W5. [Wrap around.] Terminate if j = n. Otherwise set aj ← 1. Then if k > 0,

set ak ← 1, a0 ← 0, j ← 1, and k ← 0. Return to W2.

From the Library of Melissa Nuno



ptg999

7.2.1.3 ANSWERS TO EXERCISES 735

After the second visit, j is the smallest index with ajaj−1 = 10, and k is smallest
with ak = 0. The easy case occurs exactly


s+t−1
s


− 1 times; the condition k = 0

occurs in step W5 exactly

s+t−2
t


+ δt1 times. Curiously, if N has the combinatorial

representation (57), the combination of rank N in Algorithm L has rank N−t+

nv
v−1

+

v − 1 in Algorithm W. [Lecture Notes in Comp. Sci. 3595 (2005), 570–576; see also
A. Williams, SODA 20 (2009), 987–996, for a significant generalization by which the
permutations of an arbitrary multiset can be generated looplessly by prefix rotations.]

(b) SET bits,(1<<t)-1 (This program assumes that s > 0 and t > 0.)
1H PUSHJ $0,Visit Visit bits = (as+t−1 . . . a1a0)2.

ADDU $0,bits,1; AND $0,$0,bits Set $0← bits & (bits + 1).
SUBU $1,$0,1; XOR $1,$0,$1 Set $1← $0⊕ ($0− 1).
ADDU $0,$1,1; AND $1,$1,bits Set $0← $1 + 1, $1← $1 & bits.
AND $0,$0,bits; ODIF $0,$0,1 Set $0← ($0 & bits) .− 1.
SUBU $1,$1,$0; ADDU bits,bits,$1 Set bits← bits + $1− $0.
SRU $0,bits,s+t; PBZ $0,1B Repeat unless as+t = 1.

56. [Discrete Math. 48 (1984), 163–171.] This problem is equivalent to the “middle
levels conjecture,” which states that there is a Gray path through all binary strings
of length 2t − 1 and weights {t − 1, t}. In fact, such strings can almost certainly be
generated by a delta sequence of the special form α0α1 . . . α2t−2 where the elements of
αk are those of α0 shifted by k, modulo 2t− 1. For example, when t = 3 we can start
with a5a4a3a2a1a0 = 000111 and repeatedly swap a0 ↔ aδ, where δ runs through the
cycle (4134 5245 1351 2412 3523). The middle levels conjecture is known to be true for
t ≤ 15 [see I. Shields and C. D. Savage, Cong. Num. 140 (1999), 161–178].
57. Yes; there is a near-perfect genlex solution for all m, n, and t when n ≥ m > t.
One such scheme, in bitstring notation, is 1A(m−t)(t−1)0n−m, 01A(m−t)(t−1)0n−m−1,
. . . , 0n−m1A(m−t)(t−1), 0n−m+11A(m−1−t)(t−1), . . . , 0n−t1A0(t−1), using the sequences
Ast of (35).
58. Solve the previous problem with m and n reduced by t − 1, then add j − 1 to
each cj . (Case (a), which is particularly simple, was probably known to Czerny.)
59. The generating function Gmnt(z) =


gmntkz

k for the number gmntk of chords
reachable in k steps from 0n−t1t satisfiesGmmt(z) =


m
t


z

andGm(n+1)t(z) = Gmnt(z)+
ztn−(t−1)mm−1

t−1

z
, because the latter term accounts for cases with ct = n and c1 >

n −m. A perfect scheme is possible only if |Gmnt(−1)| ≤ 1. But if n ≥ m > t ≥ 2,
this condition holds only when m = t + 1 or (n − t)t is odd, by (49). So there is no
perfect solution when t = 4 and m > 5. (Many chords have only two neighbors when
n = t + 2, so one can easily rule out that case. All cases with n ≥ m > 5 and t = 3
apparently do have perfect paths when n is even.)
60. The following solution uses lexicographic order, taking care to ensure that the aver-
age amount of computation per visit is bounded. We may assume that stms . . .m0 ̸= 0
and t ≤ ms + · · ·+m1 +m0.

Q1. [Initialize.] Set qj ← 0 for s ≥ j ≥ 1, and x← t.
Q2. [Distribute.] Set j ← 0. Then while x > mj , set qj ← mj , x ← x−mj , and

j ← j + 1. Finally set qj ← x.
Q3. [Visit.] Visit the bounded composition qs + · · ·+ q1 + q0.
Q4. [Pick up the rightmost units.] If j = 0, set x ← q0 − 1, j ← 1. Otherwise if

q0 = 0, set x← qj − 1, qj ← 0, and j ← j + 1. Otherwise go to Q7.

From the Library of Melissa Nuno



ptg999

736 ANSWERS TO EXERCISES 7.2.1.3

Q5. [Full?] Terminate if j > s. Otherwise if qj = mj , set x ← x + mj , qj ← 0,
j ← j + 1, and repeat this step.

Q6. [Increase qj .] Set qj ← qj + 1. Then if x = 0, set q0 ← 0 and return to Q3.
(In that case qj−1 = · · · = q0 = 0.) Otherwise go to Q2.

Q7. [Increase and decrease.] (Now qi = mi for j > i ≥ 0.) While qj = mj , set
j ← j + 1 and repeat until qj < mj (but terminate if j > s). Then set
qj ← qj + 1, j ← j − 1, qj ← qj − 1. If q0 = 0, set j ← 1. Return to Q3.

For example, if ms = · · · = m0 = 9, the successors of the composition 3+9+9+7+0+0
are 4+0+0+6+9+9, 4+0+0+7+8+9, 4+0+0+7+9+8, 4+0+0+8+7+9, . . . .
61. Let Fs(t) = ∅ if t < 0 or t > ms + · · ·+m0; otherwise let F0(t) = t, and

Fs(t) = 0+Fs−1(t), 1+Fs−1(t− 1)R, 2+Fs−1(t− 2), . . . , ms+Fs−1(t−ms)R
ms

when s > 0. This sequence can be shown to have the required properties; it is, in
fact, equivalent to the compositions defined by the homogeneous sequence Kst of (31)
under the correspondence of exercise 4, when restricted to the subsequence defined by
the bounds ms, . . . , m0. [See T. Walsh, J. Combinatorial Math. and Combinatorial
Computing 33 (2000), 323–345, who has implemented it looplessly.]
62. (a) A 2× n contingency table with row sums r and c1 + · · ·+ cn − r is equivalent
to solving r = a1 + · · ·+ an with 0 ≤ a1 ≤ c1, . . . , 0 ≤ an ≤ cn.

(b) We can compute it sequentially by setting aij ← min(ri − ai1 − · · · − ai(j−1),
cj − a1j − · · ·− a(i−1)j) for j = 1, . . . , n, for i = 1, . . . , m. Alternatively, if r1 ≤ c1, set
a11 ← r1, a12 ← · · · ← a1n ← 0, and do the remaining rows with c1 decreased by r1; if
r1 > c1, set a11 ← c1, a21 ← · · · ← am1 ← 0, and do the remaining columns with r1
decreased by c1. The second approach shows that at most m+ n− 1 of the entries are
nonzero. We can also write down the explicit formula

aij = max(0,min(ri, cj , r1 + · · ·+ ri − c1 − · · · − cj−1, c1 + · · ·+ cj − r1 − · · · − ri−1)).
(c) The same matrix is obtained as in (b).
(d) Reverse left and right in (b) and (c); in both cases the answer is

aij = max(0,min(ri, cj , r1 + · · ·+ ri − cj+1 − · · · − cn, cj + · · ·+ cn − r1 − · · · − ri−1)).

(e) Here we choose, say, row-wise order: Generate the first row just as for bounded
compositions of r1, with bounds (c1, . . . , cn); and for each row (a11, . . . , a1n), gen-
erate the remaining rows recursively in the same way, but with the column sums
(c1 − a11, . . . , cn − a1n). Most of the action takes place on the bottom two rows,
but when a change is made to an earlier row the later rows must be re-initialized.
63. If aij and akl are positive, we obtain another contingency table by setting aij ←
aij − 1, ail ← ail + 1, akj ← akj + 1, akl ← akl− 1. We want to show that the graph G
whose vertices are the contingency tables for (r1, . . . , rm; c1, . . . , cn), adjacent if they
can be obtained from each other by such a transformation, has a Hamiltonian path.

When m = n = 2, G is a simple path. When m = 2 and n = 3, G has a two-
dimensional structure from which we can see that every vertex is the starting point of at
least two Hamiltonian paths, having distinct endpoints. When m = 2 and n ≥ 4 we can
show, inductively, that G actually has Hamiltonian paths from any vertex to any other.

When m ≥ 3 and n ≥ 3, we can reduce the problem from m to m− 1 as in answer
62(e), if we are careful not to “paint ourselves into a corner.” Namely, we must avoid
reaching a state where the nonzero entries of the bottom two rows have the form ( 1

0
a
b

0
c
)

From the Library of Melissa Nuno



ptg999

7.2.1.3 ANSWERS TO EXERCISES 737

for some a, b, c > 0 and a change to row m − 2 forces this to become ( 0
0
a
b

1
c
). The

previous round of changes to rows m− 1 and m can avoid such a trap unless c = 1 and
it begins with ( 0

1
a+1
b−1

0
1 ) or ( 1

0
a−1
b+1

1
0 ). But that situation can be avoided too.

(A genlex method based on exercise 61 would be considerably simpler, and it
almost always would make only four changes per step. But it would occasionally need
to update 2 min(m,n) entries at a time.)
64. When x1 . . . xs is a binary string and A is a list of subcubes, let A ⊕ x1 . . . xs
denote replacing the digits (a1, . . . , as) in each subcube of A by (a1 ⊕ x1, . . . , as ⊕ xs),
from left to right. For example, 0∗1∗∗10⊕ 1010 = 1∗1∗∗00. Then the following mutual
recursions define a Gray cycle, because Ast gives a Gray path from 0s∗t to 10s−1∗t and
Bst gives a Gray path from 0s∗t to ∗01s−1∗t−1, when st > 0:

Ast = 0B(s−1)t, ∗As(t−1) ⊕ 001s−2, 1BR(s−1)t;
Bst = 0A(s−1)t, 1B(s−1)t ⊕ 010s−2, ∗As(t−1) ⊕ 1s.

The strings 001s−2 and 010s−2 are simply 0s when s < 2; As0 is Gray binary code;
A0t = B0t = ∗t. (Incidentally, the somewhat simpler construction

Gst = ∗Gs(t−1), atG(s−1)t, at−1G
R
(s−1)t, at = tmod 2,

defines a pleasant Gray path from ∗t0s to at−1∗t0s−1.)
65. If a path P is considered equivalent to PR and to P ⊕ x1 . . . xs, the total number
can be computed systematically as in exercise 33, with the following results for s+t ≤ 6:

paths
1

1 1
1 2 1

1 3 3 1
1 5 10 4 1

1 6 36 35 5 1
1 9 310 4630 218 6 1

cycles
1

1 1
1 1 1

1 1 1 1
1 2 1 1 1

1 2 3 1 1 1
1 3 46 4 1 1 1

In general there are t+ 1 paths when s = 1 and
⌈s/2⌉+2

2

− (smod 2) when t = 1. The

cycles for s ≤ 2 are unique. When s = t = 5 there are approximately 6.869 × 10170

paths and 2.495× 1070 cycles.
66. Let G(n, 0) = ϵ; G(n, t) = ∅ when n < t; and for 1 ≤ t ≤ n, let G(n, t) be

ĝ(0)G(n− 1, t), ĝ(1)G(n− 1, t)R, . . . , ĝ(2t − 1)G(n− 1, t)R, ĝ(2t − 1)G(n− 1, t− 1),

where ĝ(k) is a t-bit column containing the Gray binary number g(k) with its least
significant bit at the top. In this general formula we implicitly add a row of zeros
below the bases of G(n− 1, t− 1).

This remarkable rule gives ordinary Gray binary code when t = 1, omitting 0 . . . 00.
A cyclic Gray code is impossible because


n
t


2 is odd.

67. A Gray path for compositions corresponding to Algorithm C implies that there is
a path in which all transitions are 0k1l ↔ 1l0k with min(k, l) ≤ 2. Perhaps there is, in
fact, a cycle with min(k, l) = 1 in each transition.
68. (a) {∅}; (b) ∅.
69. The least N with κtN < N is

2t−1
t


+
2t−3
t−1


+ · · ·+
1

1


+ 1 = 1
2 (
2t
t


+
2t−2
t−1


+
· · ·+

0
0


+ 1), because

n
t−1

≤

n
t


if and only if n ≥ 2t− 1.

From the Library of Melissa Nuno



ptg999

738 ANSWERS TO EXERCISES 7.2.1.3

70. Using the facts that t ≥ 3 implies

κt(
2t−3

t


+N ′)−(

2t−3
t


+N ′) = κt(

2t−2
t


+N ′)−(

2t−2
t


+N ′) =

2t−2
t

 1
t−1 +κt−1N

′−N ′

when N ′ <
2t−3

t


, we conclude that the maximum is

2t−2
t

 1
t−1 +

2t−4
t−1
 1
t−2 +· · ·+

2
2
 1

1 ,
and it occurs at 2t−1 values of N when t > 1.
71. Let Ct be the t-cliques. The first

1414
t


+
1009
t−1

t-combinations visited by Al-

gorithm L define a graph on 1415 vertices with 1000000 edges. If |Ct| were larger,
|∂t−2Ct| would exceed 1000000. Thus the single graph defined by P(1000000)2 has the
maximum number of t-cliques for all t ≥ 2.
72. M =


ms
s


+ · · · +


mu
u


for ms > · · · > mu ≥ u ≥ 1, where {ms, . . . ,mu} =

{s+t−1, . . . , nv}\{nt, . . . , nv+1}. (Compare with exercise 15, which gives

s+t
t


−1−N .)

If α = an−1 . . . a0 is the bit string corresponding to the combination nt . . . n1, then
v is 1 plus the number of trailing 1s in α, and u is the length of the rightmost run
of 0s. For example, when α = 1010001111 we have s = 4, t = 6, M =

8
4


+
7

3

, u = 3,

N =
9

6


+
7

5

, v = 5.

73. A and B are cross-intersecting ⇐⇒ α ̸⊆ U \ β for all α ∈ A and β ∈ B ⇐⇒
A∩∂n−s−tB− = ∅, where B− = {U \β | β ∈ B} is a set of (n− t)-combinations. Since
Q−
Nnt = PN(n−t), we have |∂n−s−tB−| ≥ |∂n−s−tPN(n−t)|, and ∂n−s−tPN(n−t) = PN′s

where N ′ = κs+1 . . . κn−tN . Thus if A and B are cross-intersecting we have M +N ′ ≤
|A|+ |∂n−s−tB−| ≤


n
s


, and QMns ∩ PN′s = ∅.

Conversely, if QMns ∩ PN′s ̸= ∅ we have

n
s


< M +N ′ ≤ |A|+ |∂n−s−tB−|, so A

and B cannot be cross-intersecting.
74. | ∂QNnt| = κn−tN (see exercise 94). Also, arguing as in (58) and (59), we find

∂PN5 = (n−1)PN5 ∪ · · · ∪ 10PN5 ∪ {543210, . . . , 987654} in that particular case; and
| ∂PNt| = (n+ 1− nt)N +


nt+1
t+1


in general.

75. The identity

n+1
k


=

n
k


+

n−1
k−1


+ · · · +

n−k

0

, Eq. 1.2.6–(10), gives another

representation if nv > v. But (60) is unaffected, since we have

n+1
k−1


=

n
k−1


+

n−1
k−2


+
· · ·+


n−k+1

0

.

76. Represent N + 1 by adding

v−1
v−1


to (57); then use the previous exercise to deduce
that κt(N + 1)− κtN =


v−1
v−2


= v − 1.
77. [D. E. Daykin, Nanta Math. 8, 2 (1975), 78–83.] We work with extended repre-
sentations M =


mt
t


+ · · ·+


mu
u


and N =


nt
t


+ · · ·+


nv
v


as in exercise 75, calling

them improper if the final index u or v is zero. Call N flexible if it has both proper
and improper representations, that is, if nv > v > 0.

(a) Given an integer S, find M + N such that M + N = S and κtM + κtN is
minimum, with M as large as possible. If N = 0, we’re done. Otherwise the max-min
operation preserves both M +N and κtM + κtN , so we can assume that v ≥ u ≥ 1 in
the proper representations of M and N . If N is inflexible, κt(M + 1) + κt(N − 1) =
(κtM +u− 1) + (κtN − v) < κtM +κtN , by exercise 76; therefore N must be flexible.
But then we can apply the max-min operation to M and the improper representation
of N , increasing M : Contradiction.

This proof shows that equality holds if and only if MN = 0, a fact that was noted
in 1927 by F. S. Macaulay.

(b) Now we try to minimize max(κtM,N) + κt−1N when M + N = S, this time
representing N as


nt−1
t−1


+ · · · +

nv
v


. The max-min operation can still be used if

nt−1 < mt; leaving mt unchanged, it preserves M +N and κtM +κt−1N as well as the

From the Library of Melissa Nuno



ptg999

7.2.1.3 ANSWERS TO EXERCISES 739

relation κtM > N . We arrive at a contradiction as in (a) if N ̸= 0, so we can assume
that nt−1 ≥ mt.

If nt−1 > mt we have N > κtM and also λtN > M ; hence M +N < λtN +N =
nt−1+1

t


+ · · ·+


nv+1
v+1


, and we have κt(M +N) ≤ κt(λtN +N) = N + κt−1N .

Finally if nt−1 = mt = a, letM =

a
t


+M ′ andN =


a
t−1

+N ′. Then κt(M+N) =

a+1
t−1


+ κt−1(M ′ + N ′), κtM =

a
t−1


+ κt−1M
′, and κt−1N =


a
t−2


+ κt−2N
′; the

result follows by induction on t.
78. [J. Eckhoff and G. Wegner, Periodica Math. Hung. 6 (1975), 137–142; A. J. W.
Hilton, Periodica Math. Hung. 10 (1979), 25–30.] Let M = |A1| and N = |A0|; we can
assume that t > 0 and N > 0. Then |∂A| = |∂A1 ∪ A0|+ |∂A0| ≥ max(|∂A1|, |A0|) +
|∂A0| ≥ max(κtM,N) + κt−1N ≥ κt(M +N) = |P |A|t|, by induction on m+ n+ t.

Conversely, let A1 = PMt + 1 and A0 = PN(t−1) + 1; this notation means, for
example, that {210, 320} + 1 = {321, 431}. Then κt(M + N) ≤ |∂A| = |∂A1 ∪ A0| +
|(∂A0)0| = max(κtM,N) + κt−1N , because ∂A1 = P(κtM)(t−1) + 1. [Schützenberger
observed in 1959 that κt(M +N) ≤ κtM + κt−1N if and only if κtM ≥ N .]

For the first inequality, letA andB be disjoint sets of t-combinations with |A| = M ,
|∂A| = κtM , |B| = N , |∂B| = κtN . Then κt(M + N) = κt|A ∪ B| ≤ |∂(A ∪ B)| =
|∂A ∪ ∂B| = |∂A|+ |∂B| = κtM + κtN .
79. In fact, µt(M + λt−1M) = M , and µtN + λt−1µtN = N + (n2 − n1)[v= 1] when
N is given by (57).
80. If N > 0 and t > 1, represent N as in (57) and let N = N0 +N1, where

N0 =

nt − 1
t


+ · · ·+


nv − 1
v


, N1 =


nt − 1
t− 1


+ · · ·+


nv − 1
v − 1


.

Let N0 =

y
t


and N1 =


z
t−1

. Then, by induction on t and ⌊x⌋, we have


x
t


=

N0 + κtN0 ≥

y
t


+

y
t−1


=

y+1
t


; N1 =


x
t


−

y
t


≥

x
t


−

x−1
t


=

x−1
t−1

; and

κtN = N1 + κt−1N1 ≥

z
t−1


+

z
t−2


=

z+1
t−1

≥

x
t−1

.

[Lovász actually proved a stronger result; see exercise 1.2.6–66. We have, similarly,
µtN ≥


x−1
t−1

; see Björner, Frankl, and Stanley, Combinatorica 7 (1987), 27–28.]

81. For example, if the largest element of PN5 is 66433, we havePN5 = {00000, . . . , 55555}∪{60000, . . . , 65555}∪{66000, . . . , 66333}∪{66400, . . . , 66433}
so N =

10
5


+
9

4


+
6

3


+
5

2

. Its lower shadow is

∂ PN5 = {0000, . . . , 5555} ∪ {6000, . . . , 6555} ∪ {6600, . . . , 6633} ∪ {6640, . . . , 6643},
of size

9
4


+
8

3


+
5

2


+
4

1

.

If the smallest element of QN95 is 66433, we haveQN95 = {99999, . . . , 70000} ∪ {66666, . . . , 66500} ∪ {66444, . . . , 66440} ∪ {66433}
so N = (

13
9

+
12

8

+
11

7

) + (

8
6

+
7

5

) +

5
4


+
3

3

. Its upper shadow is

∂QN95 = {999999, . . . , 700000} ∪ {666666, . . . , 665000}
∪ {664444, . . . , 664400} ∪ {664333, . . . , 664330},

of size (
14

9

+
13

8

+
12

7

) + (

9
6

+
8

5

) +

6
4


+
4

3


= N + κ9N . The size, t, of each
combination is essentially irrelevant, as long as N ≤


s+t
t


; for example, the smallest

element of QN98 is 99966433 in the case we have considered.

From the Library of Melissa Nuno



ptg999

740 ANSWERS TO EXERCISES 7.2.1.3

82. (a) The derivative would have to be

k>0 rk(x), but that series diverges.

[Informally, the graph of τ(x) shows “pits” of relative magnitude 2−k at all odd
multiples of 2−k. Takagi’s original publication, in Proc. Physico-Math. Soc. Japan (2)
1 (1903), 176–177, has been translated into English in his Collected Papers (Iwanami
Shoten, 1973).]

(b) Since rk(1−t) = (−1)⌈2kt⌉when k > 0, we have
 1−x

0 rk(t) dt =
 1
x
rk(1−u) du =

−
 1
x
rk(u) du =

 x
0 rk(u) du. The second equation follows from the fact that rk( 1

2 t) =
rk−1(t). Part (d) shows that these two equations suffice to define τ(x) when x is
rational.

(c) Since τ(2−ax) = a2−ax + 2−aτ(x) for 0 ≤ x ≤ 1, we have τ(ϵ) = aϵ + O(ϵ)
when 2−a−1 ≤ ϵ ≤ 2−a. Therefore τ(ϵ) = ϵ lg 1

ϵ
+O(ϵ) for 0 < ϵ ≤ 1.

(d) Suppose 0 ≤ p/q ≤ 1. If p/q ≤ 1/2 we have τ(p/q) = p/q + τ(2p/q)/2;
otherwise τ(p/q) = (q − p)/q + τ(2(q − p)/q)/2. Therefore we can assume that q is
odd. When q is odd, let p′ = p/2 when p is even, p′ = (q − p)/2 when p is odd. Then
τ(p/q) = 2τ(p′/q) − 2p′/q for 0 < p < q; this system of q − 1 equations has a unique
solution. For example, the values for q = 3, 4, 5, 6, 7 are 2/3, 2/3; 1/2, 1/2, 1/2; 8/15,
2/3, 2/3, 8/15; 1/2, 2/3, 1/2, 2/3, 1/2; 22/49, 30/49, 32/49, 32/49, 30/49, 22/49.

(e) The solutions < 1
2 are x = 1

4 , 1
4 − 1

16 , 1
4 − 1

16 − 1
64 , 1

4 − 1
16 − 1

64 − 1
256 , . . . , 1

6 .
(f) The value 2

3 is achieved for x = 1
2 ± 1

8 ± 1
32 ± 1

128 ± · · · , an uncountable set.
83. Given any integers q > p > 0, consider paths starting from 0 in the digraph

0 ← 1 ← 2 ← 3 ← 4 ← 5 ← · · ·
↕ ↕ ↕ ↕ ↕ ↕
1 → 2 → 3 → 4 → 5 → 6 → · · ·

Compute an associated value v, starting with v ← −p; horizontal moves change v ← 2v,
vertical moves from node a change v ← 2(qa − v). The path stops if we reach a node
twice with the same value v. Transitions are not allowed to upper node a if v ≤ −q or
v ≥ qa at that node; they are not allowed to lower node a with v ≤ 0 or v ≥ q(a+ 1).
These restrictions force most steps of the path. (Node a in the upper row means, “Solve
τ(x) = ax − v/q”; in the lower row it means, “Solve τ(x) = v/q − ax.”) Empirical
tests suggest that all such paths are finite. The equation τ(x) = p/q then has solutions
x = x0 defined by the sequence x0, x1, x2, . . . where xk = 1

2xk+1 on a horizontal step
and xk = 1− 1

2xk+1 on a vertical step; eventually xk = xj for some j < k. If j > 0 and
if q is not a power of 2, these are all the solutions to τ(x) = p/q when x > 1/2.

For example, this procedure establishes that τ(x) = 1/5 and x > 1/2 only when
x is 83581/87040; the only path yields x0 = 1 − 1

2x1, x1 = 1
2x2, . . . , x18 = 1

2x19, and
x19 = x11. There are, similarly, just two values x > 1/2 with τ(x) = 3/5, having
denominator 246(256 − 1)/3.

Moreover, it appears that all cycles in the digraph that pass through node 0 define
values of p and q such that τ(x) = p/q has uncountably many solutions. Such values
are, for example, 2/3, 8/15, 8/21, corresponding to the cycles (01), (0121), (012321).
The value 32/63 corresponds to (012121) and also to (012101234545454321), as well as
to two other paths that do not return to 0.
84. [Frankl, Matsumoto, Ruzsa, and Tokushige, J. Combinatorial Theory A69 (1995),
125–148.] If a ≤ b we have2t− 1− b

t− a


T = ta(t− 1)b−a/(2t− 1)b = 2−b(1 + f(a, b)t−1 +O(b4/t2)),

From the Library of Melissa Nuno



ptg999

7.2.1.3 ANSWERS TO EXERCISES 741

where f(a, b) = a(1 + b) − a2 − b(1 + b)/4 = f(a + 1, b) − b + 2a. Therefore if N has
the combinatorial representation (57), and if we set nj = 2t− 1− bj , we have

t

T


κtN −N


= bt

2bt + bt−1 − 2
2bt−1

+ bt−2 − 4
2bt−2

+ · · ·+ O(log t)3

t
,

the terms being negligible when bj exceeds 2 lg t. And one can show that

τ
 l
j=0

2−ej


=
l

j=0

(ej − 2j)2−ej .

85. N−λt−1N has the same asymptotic form as κtN−N , by (63), since τ(x) = τ(1−x).
So does 2µtN −N , up to O(T (log t)3/t2), because

2t−1−b
t−a


= 2
2t−2−b

t−a

(1 +O(log t)/t)

when b < 2 lg t.
86. x ∈ X◦∼ ⇐⇒ x̄ /∈ X◦ ⇐⇒ x̄ /∈ X or x̄ /∈ X + e1 or · · · or x̄ /∈ X + en ⇐⇒ x ∈ X∼

or x ∈ X∼ − e1 or · · · or x ∈ X∼ − en ⇐⇒ x ∈ X∼+.
87. All three are true, using the fact that X ⊆ Y ◦ if and only if X+ ⊆ Y : (a) X ⊆ Y ◦

⇐⇒ X∼ ⊇ Y ◦∼ = Y ∼+ ⇐⇒ Y ∼ ⊆ X∼◦. (b) X+ ⊆ X+ =⇒ X ⊆ X+◦; hence
X◦ ⊆ X◦+◦. Also X◦ ⊆ X◦ =⇒ X◦+ ⊆ X; hence X◦+◦ ⊆ X◦. (c) αM ≤ N ⇐⇒
S+
M ⊆ SN ⇐⇒ SM ⊆ S◦

N ⇐⇒ M ≤ βN .
88. If νx < νy then ν(x − ek) < ν(y − ej), so we can assume that νx = νy and that
x > y in lexicographic order. We must have yj > 0; otherwise ν(y − ej) would exceed
ν(x− ek). If xi = yi for 1 ≤ i ≤ j, clearly k > j and x− ek ≺ y− ej . Otherwise xi > yi
for some i ≤ j; again we have x− ek ≺ y − ej , unless x− ek = y − ej .
89. From the table

j = 0 1 2 3 4 5 6 7 8 9 10 11
ej + e1 = e1 e0 e4 e5 e2 e3 e8 e9 e6 e7 e11 e10
ej + e2 = e2 e4 e0 e6 e1 e8 e3 e10 e5 e11 e7 e9
ej + e3 = e3 e5 e6 e7 e8 e9 e10 e0 e11 e1 e2 e4

we find (α0, α1, . . . , α12) = (0, 4, 6, 7, 8, 9, 10, 11, 11, 12, 12, 12, 12); (β0, β1, . . . , β12) =
(0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 12).
90. Let Y = X+ and Z = CkX, and let Na = |Xk(a)| for 0 ≤ a < mk. Then

|Y | =
mk−1
a=0

|Yk(a)| =
mk−1
a=0

|(Xk(a− 1) + ek) ∪ (Xk(a) + Ek(0))|

≥
mk−1
a=0

max(Na−1, αNa),

where a − 1 stands for (a − 1) modmk and the α function comes from the (n − 1)-
dimensional torus, because |Xk(a) + Ek(0)| ≥ αNa by induction. Also

|Z+| =
mk−1
a=0

|Z+
k (a)| =

mk−1
a=0

|(Zk(a− 1) + ek) ∪ (Zk(a) + Ek(0))|

=
mk−1
a=0

max(Na−1, αNa),

because both Zk(a− 1) + ek and Zk(a) + Ek(0) are standard in n− 1 dimensions.

From the Library of Melissa Nuno



ptg999

742 ANSWERS TO EXERCISES 7.2.1.3

91. Let there be Na points in row a of a totally compressed array, where row 0 is
at the bottom; thus l = N−1 ≥ N0 ≥ · · · ≥ Nm−1 ≥ Nm = 0. We show first
that there is an optimum X for which the “bad” condition Na = Na+1 never occurs
except when Na = 0 or Na = l. For if a is the smallest bad subscript, suppose
Na−1 > Na = Na+1 = · · · = Na+k > Na+k+1. Then we can always decrease Na+k
by 1 and add 1 to some Nb for b ≤ a without increasing |X+|, except in cases where
k = 1 and Na+2 = Na+1 − 1 and Nb = Na + a − b < l for 0 ≤ b ≤ a. Exploring such
cases further, if Nc+1 < Nc = Nc−1 for some c > a + 1, we can set Nc ← Nc − 1 and
Na ← Na + 1, thereby either decreasing a or increasing N0. Otherwise we can find
a subscript d such that Nc = Na+1 + a+ 1− c > 0 for a < c < d, and either Nd = 0 or
Nd < Nd−1 − 1. Then it is OK to decrease Nc by 1 for a < c < d and subsequently to
increase Nb by 1 for 0 ≤ b < d− a− 1. (It is important to note that if Nd = 0 we have
N0 ≥ d− 1; hence d = m implies l = m.)

Repeating such transformations until Na > Na+1 whenever Na ̸= l and Na+1 ̸= 0,
we reach situation (86), and the proof can be completed as in the text.
92. Let x + k denote the lexicographically smallest element of T (m1, . . . ,mn−1) that
exceeds x and has weight νx+k, if any such element exists. For example, if m1 = m2 =
m3 = 4 and x = 211, we have x+1 = 212, x+2 = 213, x+3 = 223, x+4 = 233, x+5 =
333, and x+ 6 does not exist; in general, x+ k+ 1 is obtained from x+ k by increasing
the rightmost component that can be increased. If x+ k = (m1− 1, . . . ,mn−1− 1), let
us set x + k + 1 = x + k. Then if S(k) is the set of all elements of T (m1, . . . ,mn−1)
that are ⪯ x+ k, we have S(k + 1) = S(k)+. Furthermore, the elements of S that end
in a are those whose first n− 1 components are in S(m− 1− a).

The result of this exercise can be stated more intuitively: As we generate n-
dimensional standard sets S1, S2, . . . , the (n − 1)-dimensional standard sets on each
layer become spreads of each other just after each point is added to layer m − 1.
Similarly, they become cores of each other just before each point is added to layer 0.
93. (a) Suppose the parameters are 2 ≤ m′

1 ≤ m′
2 ≤ · · · ≤ m′

n when sorted properly,
and let k be minimal with mk ̸= m′

k. Then take N = 1+rank(0, . . . , 0,m′
k−1, 0, . . . , 0).

(We must assume that min(m1, . . . ,mn) ≥ 2, since parameters equal to 1 can be placed
anywhere.)

(b) Only in the proof for n = 2, buried inside the answer to exercise 91. That
proof is incorporated by induction when n is larger.
94. Complementation reverses lexicographic order and changes ∂to ∂.
95. For Theorem K, let d = n − 1 and s0 = · · · = sd = 1. For Theorem M, let d = s
and s0 = · · · = sd = t+ 1.
96. In such a representation, N is the number of t-multicombinations of {s0 · 0, s1 · 1,
s2 · 2, . . . } that precede ntnt−1 . . . n1 in lexicographic order, because the generalized
coefficient


S(n)
t


counts the multicombinations whose leftmost component is < n.

If we truncate the representation by stopping at the rightmost nonzero term
S(nv)
v


, we obtain a nice generalization of (60):

|∂PNt| =

S(nt)
t− 1


+

S(nt−1)
t− 2


+ · · ·+


S(nv)
v − 1


.

[See G. F. Clements, J. Combinatorial Theory A37 (1984), 91–97. The inequalities
s0 ≥ s1 ≥ · · · ≥ sd are needed for the validity of Corollary C, but not for the calculation
of |∂PNt|. Some terms


S(nk)
k


for t ≥ k > v may be zero. For example, when N = 1,

t = 4, s0 = 3, and s1 = 2, we have N =

S(1)

4


+

S(1)

3


= 0 + 1.]

From the Library of Melissa Nuno



ptg999

7.2.1.3 ANSWERS TO EXERCISES 743

97. (a) The tetrahedron has four vertices, six edges, four faces: (N0, . . . , N4) =
(1, 4, 6, 4, 1). The octahedron, similarly, has (N0, . . . , N6) = (1, 6, 8, 8, 0, 0, 0), and
the icosahedron has (N0, . . . , N12) = (1, 12, 30, 20, 0, . . . , 0). The hexahedron, aka the
3-cube, has eight vertices, 12 edges, and six square faces; perturbation breaks each
square face into two triangles and introduces new edges, so we have (N0, . . . , N8) =
(1, 8, 18, 12, 0, . . . , 0). Finally, the perturbed pentagonal faces of the dodecahedron lead
to (N0, . . . , N20) = (1, 20, 54, 36, 0, . . . , 0).

(b) {210, 310} ∪ {10, 20, 21, 30, 31} ∪ {0, 1, 2, 3} ∪ {ϵ}.
(c) 0 ≤ Nt ≤


n
t


for 0 ≤ t ≤ n and Nt−1 ≥ κtNt for 1 ≤ t ≤ n. The second

condition is equivalent to λt−1Nt−1 ≥ Nt for 1 ≤ t ≤ n, if we define λ01 = ∞. These
conditions are necessary for Theorem K, and sufficient if A =


PNtt.

(d) The complements of the elements not in a simplicial complex, namely the sets
{ {0, . . . , n − 1} \ α | α /∈ C }, form a simplicial complex. (We can also verify that
the necessary and sufficient condition holds: Nt−1 ≥ κtNt ⇐⇒ λt−1Nt−1 ≥ Nt ⇐⇒
κn−t+1Nn−t+1 ≤ Nn−t, because κn−tNn−t+1 =


n
t


− λt−1Nt−1 by exercise 94.)

(e) 00000 ↔ 14641; 10000 ↔ 14640; 11000 ↔ 14630; 12000 ↔ 14620; 13000 ↔
14610; 14000 ↔ 14600; 12100 ↔ 14520; 13100 ↔ 14510; 14100 ↔ 14500; 13200 ↔
14410; 14200↔ 14400; 13300↔ 14310; and the self-dual cases 14300, 13310.
98. The following procedure by S. Linusson [Combinatorica 19 (1999), 255–266], who
considered also the more general problem for multisets, is considerably faster than a
more obvious approach. Let L(n, h, l) count feasible vectors with Nt =


n
t


for 0 ≤ t ≤ l,

Nt+1 <

n
t+1

, and Nt = 0 for t > h. Then L(n, h, l) = 0 unless −1 ≤ l ≤ h ≤ n;

also L(n, h, h) = L(n, h,−1) = 1, and L(n, n, l) = L(n, n − 1, l) for l < n. When
n > h ≥ l ≥ 0 we can compute L(n, h, l) =

h
j=l L(n − 1, h, j)L(n − 1, j − 1, l − 1), a

recurrence that follows from Theorem K. (Each size vector corresponds to the complex
PNtt, with L(n−1, h, j) representing combinations that do not contain the maximum

element n− 1 and L(n− 1, j − 1, l− 1) representing those that do.) Finally the grand
total is L(n) =

n
l=1 L(n, n, l).

We have L(0), L(1), L(2), . . . = 2, 3, 5, 10, 26, 96, 553, 5461, 100709, 3718354,
289725509, . . . ; L(100) ≈ 3.2299× 101842.
99. The maximal elements of a simplicial complex form a clutter; conversely, the
combinations contained in elements of a clutter form a simplicial complex. Thus the
two concepts are essentially equivalent.

(a) If (M0,M1, . . . ,Mn) is the size vector of a clutter, then (N0, N1, . . . , Nn) is
the size vector of a simplicial complex if Nn = Mn and Nt = Mt + κt+1Nt+1 for
0 ≤ t < n. Conversely, every such (N0, . . . , Nn) yields an (M0, . . . ,Mn) if we use
the lexicographically first Nt t-combinations. [G. F. Clements extended this result to
general multisets in Discrete Math. 4 (1973), 123–128.]

(b) In the order of answer 97(e) they are 00000, 00001, 10000, 00040, 01000, 00030,
02000, 00120, 03000, 00310, 04000, 00600, 00100, 00020, 01100, 00210, 02100, 00500,
00200, 00110, 01200, 00400, 00300, 01010, 01300, 00010. Notice that (M0, . . . ,Mn) is
feasible if and only if (Mn, . . . ,M0) is feasible, so we have a different sort of duality in
this interpretation.
100. Represent A as a subset of T (m1, . . . ,mn) as in the proof of Corollary C. Then the
maximum value of νA is obtained when A consists of the N lexicographically smallest
points x1 . . . xn.

The proof starts by reducing to the case that A is compressed, in the sense that
its t-multicombinations are P|A∩Tt|t for each t. Then if y is the largest element ∈ A

From the Library of Melissa Nuno



ptg999

744 ANSWERS TO EXERCISES 7.2.1.3

and if x is the smallest element /∈ A, we prove that x < y implies νx > νy, hence
ν(A \ y ∪ x) > νA. For if νx = νy − k we could find an element of ∂ky that is greater
than x, contradicting the assumption that A is compressed.
101. (a) In general, F (p) = N0p

n+N1p
n−1(1−p)+· · ·+Nn(1−p)n when f(x1, . . . , xn)

is satisfied by exactly Nt binary strings x1 . . . xn of weight t. Thus we find G(p) =
p4 + 3p3(1− p) + p2(1− p)2; H(p) = p4 + p3(1− p) + p2(1− p)2.

(b) A monotone formula f is equivalent to a simplicial complex C under the corre-
spondence f(x1, . . . , xn) = 1⇐⇒ {j− 1 | xj = 0} ∈ C. Therefore the functions f(p) of
monotone Boolean functions are those that satisfy the condition of exercise 97(c), and
we obtain a suitable function by choosing the lexicographically lastNn−t t-combinations
(which are complements of the first Ns s-combinations): {3210}, {321, 320, 310}, {32}
gives f(w, x, y, z) = wxyz ∨ xyz ∨ wyz ∨ wxz ∨ yz = wxz ∨ yz.

M. P. Schützenberger observed that we can find the parameters Nt easily from
f(p) by noting that f(1/(1 + u)) = (N0 +N1u+ · · ·+Nnu

n)/(1 + u)n. One can show
that H(p) is not equivalent to a monotone formula in any number of variables, because
(1 + u + u2)/(1 + u)4 = (N0 + N1u + · · · + Nnu

n)/(1 + u)n implies that N1 = n − 3,
N2 =


n−3

2


+ 1, and κ2N2 = n− 2.
But the task of deciding this question is not so simple in general. For example,

the function (1 + 5u + 5u2 + 5u3)/(1 + u)5 does not match any monotone formula in
five variables, because κ35 = 7; but it equals (1 + 6u + 10u2 + 10u3 + 5u4)/(1 + u)6,
which works fine with six.
102. (a) Choose Nt linearly independent polynomials of degree t in I; order their terms
lexicographically, and take linear combinations so that the lexicographically smallest
terms are distinct monomials. Let I ′ consist of all multiples of those monomials.

(b) Each monomial of degree t in I ′ is essentially a t-multicombination; for
example, x3

1x2x
4
5 corresponds to 55552111. If Mt is the set of independent monomials

for degree t, the ideal property is equivalent to saying that Mt+1 ⊇ ∂Mt.
In the given example, M3 = {x0x

2
1}; M4 = ∂M3∪{x0x1x

2
2}; M5 = ∂M4∪{x1x

4
2},

since x2
2(x0x

2
1 − 2x1x

2
2)− x1(x0x1x

2
2) = −2x1x

4
2; and Mt+1 = ∂Mt thereafter.

(c) By Theorem M we can assume that Mt = QMst. Let Nt =

nts
s


+ · · · +

nt2
2


+

nt1

1

, where s + t ≥ nts > · · · > nt2 > nt1 ≥ 0; then nts = s + t if and only if

nt(s−1) = s− 2, . . . , nt1 = 0. Furthermore we have

Nt+1 ≥ Nt + κsNt =

nts + [nts≥ s]

s


+ · · ·+


nt2 + [nt2≥ 2]

2


+

nt1 + [nt1≥ 1]

1


.

Therefore the sequence (nts−t−∞[nts<s], . . . , nt2−t−∞[nt2 < 2], nt1−t−∞[nt1 < 1])
is lexicographically nondecreasing as t increases, where we insert ‘−∞’ in components
that have ntj = j − 1. Such a sequence cannot increase infinitely many times without
exceeding the maximum value (s,−∞, . . . ,−∞), by exercise 1.2.1–15(d).
103. Let PNst be the first N elements of a sequence determined as follows: For each
binary string x = xs+t−1 . . . x0, in lexicographic order, write down


νx
t


subcubes by

changing t of the 1s to ∗s in all possible ways, in lexicographic order (considering 1 < ∗).
For example, if x = 0101101 and t = 2, we generate the subcubes 0101∗0∗, 010∗10∗,
010∗∗01, 0∗0110∗, 0∗01∗01, 0∗0∗101.

[See B. Lindström, Arkiv för Mat. 8 (1971), 245–257; a generalization analogous
to Corollary C appears in K. Engel, Sperner Theory (Cambridge Univ. Press, 1997),
Theorem 8.1.1.]

From the Library of Melissa Nuno



ptg999

7.2.1.3 ANSWERS TO EXERCISES 745

104. The first N strings in cross order have the desired property. [T. N. Danh and
D. E. Daykin, J. London Math. Soc. (2) 55 (1997), 417–426.]

Notes: Beginning with the observation that the “1-shadow” of the N lexico-
graphically first strings of weight t (namely the strings obtained by deleting 1 bits
only) consists of the first µtN strings of weight t, R. Ahlswede and N. Cai extended
the Danh–Daykin theorem to allow insertion, deletion, and/or transposition of bits
[Combinatorica 17 (1997), 11–29; Applied Math. Letters 11, 5 (1998), 121–126]. Uwe
Leck has proved that no total ordering of ternary strings has the analogous minimum-
shadow property [Preprint 98/6 (Univ. Rostock, 1998), 6 pages].
105. Every number must occur the same number of times in the cycle. Equivalently,
n−1
t−1


must be a multiple of t. This necessary condition appears to be sufficient as
well, provided that n is not too small with respect to t; but such a result may well be
true yet impossible to prove. [See Chung, Graham, and Diaconis, Discrete Math. 110
(1992), 55–57.]

The next few exercises consider the cases t = 2 and t = 3, for which elegant
results are known. Similar but more complicated results have been derived for t = 4
and t = 5, and the case t = 6 has been partially resolved. The case (n, t) = (12, 6) is
currently the smallest for which the existence of a universal cycle is unknown.
106. Let the differences mod (2m+1) be 1, 2, . . . , m, 1, 2, . . . , m, . . . , repeated 2m+1
times; for example, the cycle for m = 3 is (013602561450346235124). This works
because 1 + · · ·+m =


m+1

2


is relatively prime to 2m+ 1. [J. École Polytechnique 4,
Cahier 10 (1810), 16–48.]
107. The seven doubles <0>0 , <1>1 , . . . , <6>6 can be inserted in 37 ways into any
universal cycle of 2-combinations for {0, 1, 2, 3, 4, 5, 6}. The number of such universal
cycles is the number of Eulerian trails of the complete graph K7, which can be shown
to be 129,976,320 if we regard (a0a1 . . . a20) as equivalent to (a1 . . . a20a0) but not to
the reverse-order cycle (a20 . . . a1a0). So the answer is 284,258,211,840.

[This problem was first solved in 1859 by M. Reiss, whose method was so com-
plicated that people doubted the result; see Nouvelles Annales de Mathématiques 8
(1849), 74; 11 (1852), 115; Annali di Matematica Pura ed Applicata (2) 5 (1871–
1873), 63–120. A considerably simpler solution, confirming Reiss’s claim, was found by
P. Jolivald and G. Tarry, who also enumerated the Eulerian trails of K9; see Comptes
Rendus Association Française pour l’Avancement des Sciences 15, part 2 (1886), 49–
53; É. Lucas, Récréations Mathématiques 4 (1894), 123–151. Brendan D. McKay and
Robert W. Robinson found an approach that is better still, enabling them to continue
the enumeration through K21 by using the fact that the number of trails is

(m− 1)!2m+1 [z2m
0 z2m−2

1 . . . z2m−2
2m ] det(ajk)


1≤j<k≤2m

(z2
j + z2

k),

where ajk = −1/(z2
j + z2

k) when j ̸= k; ajj = −1/(2z2
j ) +


0≤k≤2m 1/(z2

j + z2
k); see

Combinatorics, Probability, and Computing 7 (1998), 437–449.]
C. Flye Sainte-Marie, in L’Intermédiaire des Mathématiciens 1 (1894), 164–165,

noted that the Eulerian trails of K7 include 2× 720 that have 7-fold symmetry under
permutation of {0, 1, . . . , 6} (namely Poinsot’s cycle and its reverse), plus 32 × 1680
with 3-fold symmetry, plus 25778× 5040 cycles that are asymmetric.
108. No solution is possible for n < 7, except in the trivial case n = 4. When n =
7 there are 12,255,208 × 7! universal cycles, not considering (a0a1 . . . a34) to be the

From the Library of Melissa Nuno



ptg999

746 ANSWERS TO EXERCISES 7.2.1.3

same as (a1 . . . a34a0), including cases with 5-fold symmetry like the example cycle in
exercise 105.

When n ≥ 8 we can proceed systematically as suggested by B. Jackson in Discrete
Math. 117 (1993), 141–150; see also G. Hurlbert, SIAM J. Disc. Math. 7 (1994),
598–604: Put each 3-combination into the “standard cyclic order” c1c2c3 where c2 =
(c1 + δ) mod n, c3 = (c2 + δ′) mod n, 0 < δ, δ′ < n/2, and either δ = δ′ or max(δ, δ′) <
n − δ − δ′ ̸= (n − 1)/2 or (1 < δ < n/4 and δ′ = (n − 1)/2) or (δ = (n − 1)/2 and
1 < δ′ < n/4). For example, when n = 8 the allowable values of (δ, δ′) are (1, 1),
(1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 3); when n = 11 they are (1, 1), (1, 2), (1, 3),
(1, 4), (2, 1), (2, 2), (2, 3), (2, 5), (3, 1), (3, 2), (3, 3), (4, 1), (4, 4), (5, 2), (5, 5). Then
construct the digraph with vertices (c, δ) for 0 ≤ c < n and 1 ≤ δ < n/2, and with arcs
(c1, δ)→ (c2, δ

′) for every combination c1c2c3 in standard cyclic order. This digraph is
connected and balanced, so it has an Eulerian trail by Theorem 2.3.4.2D. (The peculiar
rules about (n − 1)/2 make the digraph connected when n is odd. The Eulerian trail
can be chosen to have n-fold symmetry when n = 8, but not when n = 12.)
109. When n = 1 the cycle (000) is trivial; when n = 2 there is no cycle; and there
are essentially only two when n = 4, namely

(00011122233302021313) and(00011120203332221313).

When n ≥ 5, let the multicombination d1d2d3 be in standard cyclic order if d2 =
(d1 + δ − 1) mod n, d3 = (d2 + δ′ − 1) mod n, and (δ, δ′) is allowable for n + 3 in
the previous answer. Construct the digraph with vertices (d, δ) for 0 ≤ d < n and
1 ≤ δ < (n + 3)/2, and with arcs (d1, δ) → (d2, δ

′) for every multicombination d1d2d3
in standard cyclic order; then find an Eulerian trail.

Perhaps a universal cycle of t-multicombinations exists for {0, 1, . . . , n−1} if and
only if a universal cycle of t-combinations exists for {0, 1, . . . , n+ t− 1}.
110. A nice way to check for runs is to compute the numbers

b(S) =

{2p(c) | c ∈ S}

where (p(A), . . . , p(K)) = (1, . . . , 13); then set l← b(S)&−b(S) and check that b(S)+l =
l ≪ s, and also that ((l ≪ s) | (l ≫ 1)) & a = 0, where a = 2p(c1) | · · · | 2p(c5). The
values of b(S) and

{v(c) | c ∈ S} are easily maintained as S runs through all 31
nonempty subsets in Gray-code order. The answers are (1009008, 99792, 2813796,
505008, 2855676, 697508, 1800268, 751324, 1137236, 361224, 388740, 51680, 317340,
19656, 90100, 9168, 58248, 11196, 2708, 0, 8068, 2496, 444, 356, 3680, 0, 0, 0, 76, 4)
for x = (0, . . . , 29); thus the mean score is ≈ 4.769 and the variance is ≈ 9.768.

Hands without points are sometimes facetiously called nineteen,
as that number cannot be made by the cards.

— G. H. DAVIDSON, Dee’s Hand-Book of Cribbage (1839)

Note: A four-card flush is not allowed in the “crib.” Then the distribution is a bit
easier to compute, and it turns out to be (1022208, 99792, 2839800, 508908, 2868960,
703496, 1787176, 755320, 1118336, 358368, 378240, 43880, 310956, 16548, 88132, 9072,
57288, 11196, 2264, 0, 7828, 2472, 444, 356, 3680, 0, 0, 0, 76, 4); the mean and variance
decrease to approximately 4.735 and 9.667.
111. ∂n−2rB is the set of all r-subsets of B; these subsets must not be in A. If |A| =
|B| =


x

n−r


for some real x > n−1, we would have

n
r


≥ |A|+|∂n−2rB| ≥


x

n−r

+

x
r


>

n−1
n−r


+

n−1
r


=

n
r


, by exercise 80. [See Quart. J. Math. Oxford 12 (1961), 313–320.]

From the Library of Melissa Nuno



ptg999

7.2.1.4 ANSWERS TO EXERCISES 747

SECTION 7.2.1.4
1.

mn mn m!

n
m


m+n−1

n

 
m
n

 
n−1
n−m


n
0


+ · · ·+

n
m


[m≥n]


n
m

m+n
m

 [m≥n]
n
m


2. In general, given any integers x1 ≥ · · · ≥ xm, we obtain all integer m-tuples
a1 . . . am such that a1 ≥ · · · ≥ am, a1+· · ·+am = x1+· · ·+xm, and am . . . a1 ≥ xm . . . x1
by initializing a1 . . . am ← x1 . . . xm and am+1 ← xm − 2. In particular, if c is any
integer constant, we obtain all integer m-tuples such that a1 ≥ · · · ≥ am ≥ c and
a1 + · · · + am = n by initializing a1 ← n − mc + c, aj ← c for 1 < j ≤ m, and
am+1 ← c− 2, assuming that n ≥ cm.

3. aj = ⌊(n+m− j)/m⌋ = ⌈(n+ 1− j)/m⌉, for 1 ≤ j ≤ m; see CMath §3.4.
4. Assume that 1 ≤ r ≤ n. We must have am ≥ a1−1; therefore aj = ⌊(n+m−j)/m⌋

for 1 ≤ j ≤ m, where m is the largest integer with ⌊n/m⌋ ≥ r, namely m = ⌊n/r⌋.
5. [See Eugene M. Klimko, BIT 13 (1973), 38–49.]

C1. [Initialize.] Set c0 ← 1, c1 ← n, c2 . . . cn ← 0 . . . 0, l0 ← 1, l1 ← 0. (We
assume that n > 0.)

C2. [Visit.] Visit the partition represented by part counts c1 . . . cn and links
l0l1 . . . ln.

C3. [Branch.] Set j ← l0 and k ← lj . If cj = 1, go to C6; otherwise, if j > 1, go
to C5.

C4. [Change 1+1 to 2.] Set c1 ← c1 − 2, c2 ← c2 + 1, and l[c1>0] ← 2. If k ̸= 2,
also set l2 ← k. Return to C2.

C5. [Change j · cj to (j+1) + 1 + · · ·+ 1.] Set c1 ← j(cj − 1)− 1 and go to C7.
C6. [Change k · ck + j to (k+1) + 1 + · · ·+ 1.] Terminate if k = 0. Otherwise set

cj ← 0; then set c1 ← k(ck − 1) + j − 1, j ← k, and k ← lk.
C7. [Adjust links.] If c1 > 0, set l0 ← 1, l1 ← j + 1; otherwise set l0 ← j + 1.

Then set cj ← 0 and cj+1 ← cj+1 + 1. If k ̸= j + 1, set lj+1 ← k. Return
to C2.

Notice that this algorithm is loopless; but it isn’t really faster than Algorithm P. Steps
C4, C5, and C6 are performed respectively p(n− 2), 2p(n)− p(n+ 1)− p(n− 2), and
p(n + 1) − p(n) times; thus step C4 is most important when n is large. (See exercise
45 and the detailed analysis by Fenner and Loizou in Acta Inf. 16 (1981), 237–252.)

6. Assume that each partition is followed by 0. Set j ← 0, k ← a1, and bk+1 ← 0.
Then, while k > 0, set j ← j + 1 and, while k > aj+1, set bk ← j and k ← k − 1.
(We have used (11) in the dual form aj − aj+1 = dj , where d1 . . . dn is the part-count
representation of b1b2 . . . . This algorithm essentially walks along the rim of the Ferrers
diagram; so its running time is roughly proportional to a1 + b1, the number of parts in
the output plus the number of parts in the input.)

7. We have b1 . . . bn = nan(n−1)an−1−an . . . 1a1−a2 0n−a1 , by the dual of (11).
8. Transposing the Ferrers diagram corresponds to reflecting and complementing the

bit string (15). So we simply interchange and reverse the p’s and q’s, getting the
partition (a1a2 . . . )T = (qt + · · ·+ q1)p1 (qt + · · ·+ q2)p2 . . . (qt)pt .

From the Library of Melissa Nuno



ptg999

748 ANSWERS TO EXERCISES 7.2.1.4

9. By induction: If ak = l− 1 and bl = k− 1, increasing ak and bl preserves equality.
10. (a) The left child of each node is obtained by appending ‘1’. The right child is
obtained by increasing the rightmost digit; this child exists if and only if the parent node
ends with unequal digits. All partitions of n appear on level n in lexicographic order.

(b) The left child is obtained by changing ‘11’ to ‘2’; it exists if and only if the
parent node contains at least two 1s. The right child is obtained by deleting a 1 and
increasing the smallest part that exceeds 1; it exists if and only if there is at least one 1
and the smallest larger part appears exactly once. All partitions of n into m parts ap-
pear on level n−m in lexicographic order; preorder of the entire tree gives lexicographic
order of the whole. [T. I. Fenner and G. Loizou, Comp. J. 23 (1980), 332–337.]
11. [z100] 1/((1− z)(1− z2)(1− z5)(1− z10)(1− z20)(1− z50)(1− z100)) = 4563; and
[z100] (1 + z+ z2)(1 + z2 + z4) . . . (1 + z100 + z200) = 7. [See G. Pólya, AMM 63 (1956),
689–697.] In the infinite product


k≥0


r∈{10k,2·10k,5·10k}(1+zr+z2r), the coefficient

of z10n is 2n+1 − 1, and the coefficient of z10n−1 is 2n.
12. To prove that (1 + z)(1 + z2)(1 + z3) . . . = 1/((1 − z)(1 − z3)(1 − z5) . . . ), write
the left-hand side as

(1− z2)
(1− z)

(1− z4)
(1− z2)

(1− z6)
(1− z3) . . .

and cancel common factors from numerator and denominator. Alternatively, replace z
by z1, z3, z5, . . . in the identity (1 + z)(1 + z2)(1 + z4)(1 + z8) . . . = 1/(1 − z) and
multiply the results together. [Novi Comment. Acad. Sci. Pet. 3 (1750), 125–169, §47.]
13. Map the partition c1·1+c2·2+c3·3+· · · into r1·1+⌊c1/2⌋·2+r3·3+⌊c2/2⌋·4+r5·5+
⌊c3/2⌋·6+ · · · , where rm = (cm mod 2)+2(c2m mod 2)+4(c4m mod 2)+8(c8m mod 2)+
· · · ; 433222211 →→ 64421111 →→ 8332211. [Johns Hopkins Univ. Circular 2 (1882), 72.]
14. Sylvester’s correspondence is best understood as a diagram in which the dots of
the odd parts are centered and the partition is divided into disjoint hooks. For example,
the partition 17 + 15 + 15 + 9 + 9 + 9 + 9 + 5 + 5 + 3 + 3, having five different odd parts,
corresponds via the diagram

to the all-distinct partition 19 + 18 + 16 + 13 + 12 + 9 + 5 + 4 + 3 with four gaps.
In general, when the “Durfee rectangle” (shown in the diagram) has t rows, suppose

there are a1, . . . , at extra dots at the right and bt, . . . , b1, . . . , bt extra dots below,
where a1 ≥ · · · ≥ at ≥ 0 and b1 ≥ · · · ≥ bt ≥ 0. Then the distinct parts obtained are
2t − 1 + a1 + b1, 2t − 2 + a1 + b2, . . . , 2 + at−1 + bt, 1 + at + bt, and (if it’s nonzero)
0 + at. Conversely, any partition with 2t distinct nonnegative parts can uniquely be
written in this form.

The relevant odd-parts partitions when n = 10 are 9 + 1, 7 + 3, 7 + 1 + 1 + 1, 5 + 5,
5 + 3 + 1 + 1, 5 + 1 + 1 + 1 + 1 + 1, 3 + 3 + 3 + 1, 3 + 3 + 1 + 1 + 1 + 1, 3 + 1 + · · ·+ 1,
1 + · · ·+ 1, corresponding respectively to the distinct-parts partitions 6 + 4, 5 + 4 + 1,

From the Library of Melissa Nuno



ptg999

7.2.1.4 ANSWERS TO EXERCISES 749

7 + 3, 4 + 3 + 2 + 1, 6 + 3 + 1, 8 + 2, 5 + 3 + 2, 7 + 2 + 1, 9 + 1, 10. [See Sylvester’s
remarkable paper in Amer. J. Math. 5 (1882), 251–330; 6 (1883), 334–336.]
15. Every self-conjugate partition of trace k corresponds to a partition of n into k
distinct odd parts (“hooks”). Therefore we can write the generating function either as
the product (1+z)(1+z3)(1+z5) . . . or as the sum 1+z1/(1−z2)+z4/((1−z2)(1−z4))+
z9/((1−z2)(1−z4)(1−z6)) + · · · . [Johns Hopkins Univ. Circular 3 (1883), 42–43.]
16. The Durfee square contains k2 dots, and the remaining dots correspond to two
independent partitions with largest part ≤ k. Thus, if we use w to count parts and
z to count dots, we find

∞
m=1

1
1− wzm =

∞
k=0

wkzk
2

(1− z)(1− z2) . . . (1− zk)(1− wz)(1− wz2) . . . (1− wzk) .

[This impressive-looking formula turns out to be just the special case x = y = 0 of the
even more impressive identity of exercise 19.]
17. (a) ((1 + uvz)(1 + uvz2)(1 + uvz3) . . . )/((1− uz)(1− uz2)(1− uz3) . . . ).

• • • • • • • •+•
• • • • • • • •
• • • • • • • •
• • • • • •+•
• • • • •
• • • •+•
•+•

(b) A joint partition can be represented by a generalized Ferrers
diagram in which all of the parts are merged together, with ai above
bj if ai ≥ bj , and with a mark on the rightmost dot of each bj .
For example, the joint partition (8, 8, 5; 9, 7, 5, 2) has the diagram
illustrated here, with marked dots shown as ‘+• ’. Marks appear only
in corners; thus the transposed diagram corresponds to another joint partition, which
in this case is (7, 6, 6, 4, 3; 7, 6, 4, 1). [See J. T. Joichi and D. Stanton, Pacific J. Math.
127 (1987), 103–120; S. Corteel and J. Lovejoy, Trans. Amer. Math. Soc. 356 (2004),
1623–1635; Igor Pak, The Ramanujan Journal 12 (2006), 5–75.]

Every joint partition with t > 0 parts corresponds in this way to a “conjugate”
in which the largest part is t. And the generating function for such joint partitions is
((1 + vz) . . . (1 + vzt−1))/((1− z) . . . (1− zt)) times (vzt + zt), where vzt corresponds
to the case that b1 = t, and zt corresponds to the case that s = 0 or b1 < t.

(c) Thus we obtain a form of the general z-nomial theorem in answer 1.2.6–58:

(1 + uvz)
(1− uz)

(1 + uvz2)
(1− uz2)

(1 + uvz3)
(1− uz3) . . . =

∞
t=0

(1 + v)
(1− z)

(1 + vz)
(1− z2) . . .

(1 + vzt−1)
(1− zt) utzt.

18. The equations obviously determine the a’s and b’s when the c’s and d’s are given,
so we want to show that the c’s and d’s are uniquely determined from the a’s and b’s.
The following algorithm determines the c’s and d’s from right to left:

A1. [Initialize.] Set i← r, j ← s, k ← 0, and a0 ← b0 ←∞.
A2. [Branch.] Stop if i+ j = 0. Otherwise go to A4 if ai ≥ bj − k.
A3. [Absorb ai.] Set ci+j ← ai, di+j ← 0, i← i− 1, k ← k+ 1, and return to A2.
A4. [Absorb bj .] Set ci+j ← bj − k, di+j ← 1, j ← j − 1, k ← k + 1, and return

to A2.
There’s also a left-to-right method:

B1. [Initialize.] Set i← 1, j ← 1, k ← r + s, and ar+1 ← bs+1 ← −∞.
B2. [Branch.] Stop if k = 0. Otherwise set k ← k−1, then go to B4 if ai ≤ bj−k.
B3. [Absorb ai.] Set ci+j−1 ← ai, di+j−1 ← 0, i← i+ 1, and return to B2.
B4. [Absorb bj .] Set ci+j−1 ← bj−k, di+j−1 ← 1, j ← j+1, and return to B2.

From the Library of Melissa Nuno



ptg999

750 ANSWERS TO EXERCISES 7.2.1.4

In both cases the branching is forced and the resulting sequence satisfies c1 ≥ · · · ≥ cr+s.
Notice that cr+s = min(ar, bs) and c1 = max(a1, b1−r−s+1).

We have thereby proved the identity of exercise 17(c) in a different way. Extensions
of this idea lead to a combinatorial proof of Ramanujan’s “remarkable formula with
many parameters,”

∞
n=−∞

wn
∞
k=0

1− bzk+n

1− azk+n =
∞
k=0

(1−a−1bzk)(1−a−1w−1zk+1)(1−awzk)(1−zk+1)
(1−a−1bw−1zk)(1−a−1zk+1)(1−azk)(1−wzk) .

[References: G. H. Hardy, Ramanujan (1940), Eq. (12.12.2); D. Zeilberger, Europ. J.
Combinatorics 8 (1987), 461–463; A. J. Yee, J. Comb. Theory A105 (2004), 63–77.]

19. [Crelle 34 (1847), 285–328.] By exercise 17(c), the hinted sum over k is
l≥0

v l
(z − bz) . . . (z − bz l)
(1− z) . . . (1− z l)

(1− uz) . . . (1− uz l)
(1− auz) . . . (1− auz l)


·

∞
m=1

1− auzm
1− uzm ;

and the sum over l is similar but with u↔ v, a↔ b, k ↔ l. Furthermore the sum over
both k and l reduces to

∞
m=1

(1− uvzm+1)(1− auzm)
(1− uzm)(1− vzm)

when b = auz. Now let u = wxy, v = 1/(yz), a = 1/x, and b = wyz; equate this
infinite product to the sum over l.

20. To get p(n) we need to add or subtract approximately


8n/3 of the previous
entries, and most of those entries are Θ(

√
n ) bits long. Therefore p(n) is computed in

Θ(n) steps and the total time is Θ(n2).
(A straightforward use of (17) would take Θ(n5/2) steps.)

21. Since
∞
n=0 q(n)zn = (1 + z)(1 + z2) . . . is equal to (1 − z2)(1 − z4) . . . P (z) =

(1− z2 − z4 + z10 + z14 − z24 − · · · )P (z), we have

q(n) = p(n)− p(n− 2)− p(n− 4) + p(n− 10) + p(n− 14)− p(n− 24)− · · · .

[There is also a “pure recurrence” in the q’s alone, analogous to the recurrence for σ(n)
in the next exercise.]

22. From (21) we have
∞
n=1 σ(n)zn =


m,n≥1 mz

mn = z d
dz

lnP (z) = (z+2z2−5z5−
7z7 + · · · )/(1− z − z2 + z5 + z7 + · · · ). [Bibliothèque Impartiale 3 (1751), 10–31.]

23. (Solution by Marc van Leeuwen.) Divide (19) by 1− v, to get

∞
k=1

(1− ukvk−1)(1− ukvk)(1− ukvk+1) =
∞
n=0

(−1)nu(n+1
2 )


v(n2) − v(n+2

2 )
1− v


=

∞
n=0

(−1)nu(n+1
2 )

2n
k=0

vk;

now set u = z and v = 1.
[See §57 of Sylvester’s paper cited in answer 14. Jacobi’s proof is in §66 of his

monograph Fundamenta Nova Theoriæ Functionum Ellipticarum (1829).]

From the Library of Melissa Nuno



ptg999

7.2.1.4 ANSWERS TO EXERCISES 751

24. (a) By (18) and exercise 23, [zn]A(z) =


(−1)j+k(2k+1)[3j2 + j + k2 + k= 2n],
summed over all integers j and all nonnegative integers k. When nmod 5 = 4, the
contributions all have j mod 5 = 4 and k mod 5 = 2; but then (2k + 1) mod 5 = 0.

(b) B(z)p ≡ B(zp) (modulo p) when p is prime, by Eq. 4.6.2–(5).
(c) Take B(z) = P (z), since A(z) = P (z)−4. [Proc. Cambridge Philos. Soc. 19

(1919), 207–210. A similar proof shows that p(n) is a multiple of 7 when nmod 7 = 5.
Ramanujan went on to obtain the beautiful formulas p(5n+ 4)/5 = [zn]P (z)6/P (z5)5;
p(7n + 5)/7 = [zn] (P (z)4/P (z7)3 + 7zP (z)8/P (z7)7). Atkin and Swinnerton-Dyer, in
Proc. London Math. Soc. (3) 4 (1953), 84–106, showed that the partitions of 5n + 4
and 7n + 5 can be divided into equal-size classes according to the respective values
of (largest part − number of parts) mod 5 or mod 7, as conjectured by F. Dyson.
A slightly more complicated combinatorial statistic proves also that p(n) mod 11 = 0
when nmod 11 = 6; see F. G. Garvan, Trans. Amer. Math. Soc. 305 (1988), 47–77.]
25. [The hint can be proved by differentiating both sides of the stated identity. It is
the special case y = 1− x of a beautiful formula discovered by N. H. Abel in 1826:

Li2(x) + Li2(y) = Li2


x

1−y


+ Li2


y

1−x

− Li2


xy

(1−x)(1−y)


− ln(1−x) ln(1−y).

See Abel’s Œuvres Complètes 2 (Christiania: Grøndahl, 1881), 189–193.]
(a) Let f(x) = ln(1/(1 − e−xt)). Then

 x
1 f(x) dx = −Li2(e−tx)/t and f (n)(x) =

(−t)netxk


n−1
k


ektx/(etx − 1)n, so Euler’s summation formula gives Li2(e−t)/t +

1
2 ln(1/(1 − e−t)) + O(1) = (ζ(2) + t ln(1 − e−t) − Li2(1 − e−t))/t − 1

2 ln t + O(1) =
ζ(2)/t+ 1

2 ln t+O(1), as t→ 0.
(b) We have


m,n≥1 e

−mnt/n = 1
2πi

m,n≥1

 1+i∞
1−i∞ (mnt)−zΓ(z) dz/n, which sums

to 1
2πi
 1+i∞

1−i∞ ζ(z + 1)ζ(z)t−zΓ(z) dz. The pole at z = 1 gives ζ(2)/t; the double
pole at z = 0 gives −ζ(0) ln t + ζ′(0) = 1

2 ln t − 1
2 ln 2π; the pole at z = −1 gives

−ζ(−1)ζ(0)t = B2B1t = −t/24. Zeros of ζ(z + 1)ζ(z) cancel the other poles of Γ(z),
so the result is lnP (e−t) = ζ(2)/t+ 1

2 ln(t/2π)− t/24 +O(tM ) for arbitrarily large M .

26. Let F (n) =
∞
k=1 e

−k2/n. We can use (25) either with f(x) = e−x
2/n[x> 0]+ 1

2δx0,
or with f(x) = e−x

2/n for all x because 2F (n) + 1 =
∞
k=−∞ e−k

2/n. Let’s choose the
latter alternative; then the right-hand side of (25), for θ = 0, is the rapidly convergent

lim
M→∞

M
m=−M

 ∞

−∞
e−2πmiy−y2/n dy =

∞
m=−∞

e−π
2m2n

 ∞

−∞
e−u

2/n du

if we substitute u = y+ πmni; and the integral is
√
πn. [This result is formula (15) on

page 420 of Poisson’s original paper.]

27. First,
∞
−∞ e−a(y+b)2+2ciy dy = e−c

2/a−2bci ∞
−∞ e−au

2
du, by the substitution u =

y + b − ci/a. And
∞
−∞ e−au

2
du =

∞
0 e−t dt/

√
at = Γ( 1

2 )/
√
a =


π/a, by the

substitution t = au2 and exercises 1.2.5–20, 1.2.6–43.
Now (30) follows from (29) because we have, for all integers m,

g(3m+ 1) + g(−3m) =


2π
t

(−1)me−6π2(m+ 1
6 )2/t ; g(3m+ 2) + g(−3m− 1) = 0.

[See M. I. Knopp, Modular Functions in Analytic Number Theory (1970), Chapter 3.]

From the Library of Melissa Nuno



ptg999

752 ANSWERS TO EXERCISES 7.2.1.4

28. (a, b, c, d) See Trans. Amer. Math. Soc. 43 (1938), 271–295. In fact, Lehmer found
explicit formulas for Ape(n), in terms of the Jacobi symbol of exercise 4.5.4–23:

A2e(n) = (−1)e
−1
m


2e/2 sin 4πm

2e+3 , if (3m)2 ≡ 1− 24n (modulo 2e+3);

A3e(n) = (−1)e+1

m

3

 2√
3

3e/2 sin 4πm
3e+1 , if (8m)2 ≡ 1− 24n (modulo 3e+1);

2
 3
pe


pe/2 cos 4πm

pe
, if (24m)2 ≡ 1− 24n (modulo pe), p ≥ 5,

and 24nmod p ̸= 1;
Ape(n) =

 3
pe


pe/2 [e= 1], if 24nmod p = 1 and p ≥ 5.

(e) If k = 2a3bpe1
1 . . . pett for 3 < p1 < · · · < pt and e1 . . . et ̸= 0, the probability

that Ak(n) ̸= 0 is 2−t(1 + (−1)[e1>1]/p1) . . . (1 + (−1)[et>1]/pt).
29. z1z2 . . . zm/((1− z1)(1− z1z2) . . . (1− z1z2 . . . zm)).
30. (a)

n+1
m

 and (b)
m+n
m

, by (39).
31. First solution [Marshall Hall, Jr., Combinatorial Theory (1967), §4.1]: From the
recurrence (39), we can show directly that, for 0 ≤ r < k!, there is a polynomial
fk,r(n) = nk−1/(k! (k−1)!) +O(nk−2) such that

n
k

 = fn,n mod k!(n).
Second solution: Since (1 − z) . . . (1 − zm) =


p⊥q(1 − e2πip/qz)⌊m/q⌋, where

the product is over all reduced fractions p/q with 0 ≤ p < q, the coefficient of zn
in (41) can be expressed as a sum of roots of unity times polynomials in n, namely as
p⊥q e

2πipn/qfp,q(n) where fp,q(n) is a polynomial of degree less than ⌊m/q⌋. Thus
there exist constants such that

n
2

 = a1n + a2 + (−1)na3;
n

3

 = b1n
2 + b2n + b3 +

(−1)nb4 + ωnb5 + ω−nb6, where ω = e2πi/3; etc. The constants are determined by the
values for small n, and the first two cases aren2  = 1

2n−
1
4 + 1

4(−1)n;
n3  = 1

12n
2 − 7

72 −
1
8(−1)n + 1

9ω
n + 1

9ω
−n.

It follows that
n

3

 is the nearest integer to n2/12. Similarly,
n

4

 is the nearest integer
to (n3 + 3n2 − 9n [n odd])/144.

[Exact formulas for
n

2

, n3, and
n

4

, without the simplification of floor functions,
were first found by G. F. Malfatti, Memorie di Mat. e Fis. Società Italiana 3 (1786),
571–663. W. J. A. Colman, in Fibonacci Quarterly 21 (1983), 272–284, showed thatn

5

 is the nearest integer to (n4 +10n3 +10n2−75n−45n(−1)n)/2880, and gave similar
formulas for

n
6

 and
n

7

.]
32. Since

m+n
m

 ≤ p(n), with equality if and only if m ≥ n, we have
n
m

 ≤ p(n −m)
with equality if and only if 2m ≥ n.
33. A partition into m parts corresponds to at most m! compositions; hence


n−1
m−1


≤

m!
n
m

. Consequently p(n) ≥ (n − 1)!/((n − m)!m! (m − 1)!), and when m = ⌊√n⌋
Stirling’s approximation proves that ln p(n) ≥ 2

√
n− lnn− 1

2 − ln 2π.
34. a1 > a2 > · · · > am > 0 if and only if a1−m+1 ≥ a2−m+2 ≥ · · · ≥ am ≥ 1. And
partitions into m distinct parts correspond to m! compositions. Thus, by the previous
answer, we have

1
m!


n− 1
m− 1


≤

 n
m

 ≤ 1
m!


n+m(m− 1)/2

m− 1


.

From the Library of Melissa Nuno



ptg999

7.2.1.4 ANSWERS TO EXERCISES 753

[See H. Gupta, Proc. Indian Acad. Sci. A16 (1942), 101–102. A detailed asymptotic
formula for

n
m

 when n = Θ(m3) appears in exercise 3.3.2–30.]
35. (a) x = 1

C
ln 1

C
≈ −0.194.

(b) x = 1
C

ln 1
C
− 1

C
ln ln 2 ≈ 0.092; in general we have x = 1

C
(ln 1

C
− ln ln 1

F (x) ).

(c)
 ∞
−∞ x dF (x) =

 ∞
0 (Cu)−2(lnu)e−1/(Cu) du = − 1

C

 ∞
0 (lnC + ln v)e−v dv =

(γ − lnC)/C ≈ 0.256.
(d) Similarly,

 ∞
−∞ x2e−Cx exp(−e−Cx/C)dx = (γ2 +ζ(2)−2γ lnC+(lnC)2)/C2 ≈

1.0656. So the variance is ζ(2)/C2 = 1, exactly(!).
[The probability distribution e−e

(a−x)/b is commonly called the Fisher–Tippett
distribution; see Proc. Cambridge Phil. Soc. 24 (1928), 180–190.]
36. The sum over jr − (m+ r − 1) ≥ · · · ≥ j2 − (m+ 1) ≥ j1 −m ≥ 1 gives

Σr =

t

 t− rm− r(r − 1)/2
r

p(n− t)
p(n)

= α

1− α
α2

1− α2 . . .
αr

1− αr α
rm(1 +O(n−1/2+2ϵ)) + E

= n−1/2

α−1 − 1
n−1/2

α−2 − 1 . . .
n−1/2

α−r − 1 exp(−Crx+O(rn−1/2+2ϵ)) + E,

where E is an error term that accounts for the cases t > n1/2+ϵ. The leading factor
n−1/2/(α−j−1) is 1

jC
(1+O(jn−1/2)). And it is easy to verify that E = O(nlogne−Cn

ϵ

),
even if we use the crude upper bound

t−rm−r(r−1)/2
r

 ≤ tr, because
t≥xN

tre−t/N = O
 ∞

xN

tre−t/N dt


= O(Nr+1xre−x/(1− r/x)),

where N = Θ(
√
n), x = Θ(nϵ), r = O(logn).

37. Such a partition is counted once in Σ0, q times in Σ1,

q
2


times in Σ2, . . . ; so
it is counted exactly

r
j=0(−1)j


q
j


= (−1)r


q−1
r


times in the partial sum that ends

with (−1)rΣr. This count is at most δq0 when r is odd, at least δq0 when r is even.
[A similar argument shows that the generalized principle of exercise 1.3.3–26 also has
this bracketing property. Reference: C. Bonferroni, Pubblicazioni del Reale Istituto
Superiore di Scienze Economiche e Commerciali di Firenze 8 (1936), 3–62.]
38. zl+m−1l+m−2

m−1

z

= zl+m−1(1− zl) . . . (1− zl+m−2)/((1− z) . . . (1− zm−1)).

39. [xm] (1 + zx)(1 + z2x) . . . (1 + zl−1x) = zm(m+1)/2l−1
m


z
, by exercise 1.2.6–58; this

is (z−zl)(z2−zl) . . . (zm−zl)/((1−z)(1−z2) . . . (1−zm)). The answer also follows from
Theorem C: Replacing a1 . . . am by (a1 −m) . . . (am − 1) gives an equivalent partition
of n−m(m+ 1)/2 into at most m parts, not exceeding l − 1−m.
40. If α = a1 . . . am is a partition with at most m parts, let f(α) = ∞ if a1 ≤ l,
otherwise f(α) = min{j | a1 > l + aj+1}. Let gk be the generating function for
partitions with f(α) > k. Partitions with f(α) = k < ∞ are characterized by the
inequalities

a1 ≥ a2 ≥ · · · ≥ ak ≥ a1 − l > ak+1 ≥ · · · ≥ am+1 = 0.
Thus a1a2 . . . am = (bk+l+1)(b1+1) . . . (bk−1+1)bk+1 . . . bm, where f(b1 . . . bm) ≥ k;
and the converse is also true. It follows that gk = gk−1 − zl+kgk−1.

[See American J. Math. 5 (1882), 254–257.]

From the Library of Melissa Nuno



ptg999

754 ANSWERS TO EXERCISES 7.2.1.4

41. See G. Almkvist and G. E. Andrews, J. Number Theory 38 (1991), 135–144.
42. A. Vershik [Functional Anal. Applic. 30 (1996), 90–105, Theorem 4.7] has stated
the formula

1− e−cφ
1− e−c(θ+φ) e

−ck/√n + 1− e−cθ
1− e−c(θ+φ) e

−cak/
√
n ≈ 1,

where the constant c must be chosen as a function of θ and φ so that the area of the
shape is n. This constant c is negative if θφ < 2, positive if θφ > 2; the shape reduces
to a straight line

k

θ
√
n

+ ak
φ
√
n
≈ 1

when θφ = 2. If φ =∞ we have c =
√

Li2(t) where t satisfies θ = (ln 1
1−t )/

√
Li2(t).

43. p(n− k(k− 1)/2). (Change a1a2 . . . ak to (a1 − k + 1)(a2 − k + 2) . . . ak to get an
equivalent partition of n− k(k − 1)/2.)
44. Assume that n > 0. The number with smallest parts unequal (or with only one
part) is p(n+ 1)− p(n), the number of partitions of n+ 1 that don’t end in 1, because
we get the former from the latter by changing the smallest part. Therefore the answer
is 2p(n)− p(n+ 1). [See R. J. Boscovich, Giornale de’ Letterati (Rome, 1748), 15. The
number of partitions whose smallest three parts are equal is 3p(n)−p(n+1)−2p(n+2)+
p(n+ 3); similar formulas can be derived for other constraints on the smallest parts.]
45. By Eq. (37) we have p(n− j)/p(n) = 1−Cjn−1/2 + (C2j2 + 2j)/(2n)− (8C3j3 +
60Cj2 + Cj + 12C−1j)/(48n3/2) +O(j4n−2).
46. If n > 1, T ′

2(n) = p(n − 1) − p(n − 2) ≤ p(n) − p(n − 1) = T ′′
2 (n), because

p(n)−p(n−1) is the number of partitions of n that don’t end in 1; every such partition
of n − 1 yields one for n if we increase the largest part. But the difference is rather
small: (T ′′

2 (n)− T ′
2(n))/p(n) = C2/n+O(n−3/2).

47. The identity in the hint follows by differentiating (21); see exercise 22. The
probability of obtaining the part-counts c1 . . . cn when c1 + 2c2 + · · ·+ ncn = n is

Pr(c1 . . . cn) =
n
k=1

ck
j=1

kp(n− jk)
np(n) Pr(c1 . . . ck−1(ck−j)ck+1 . . . cn)

=
n
k=1

ck
j=1

k

np(n) = 1
p(n) ,

by induction on n. [Combinatorial Algorithms (Academic Press, 1975), Chapter 10.]
48. The probability that j has a particular fixed value in step N5 is 6/(π2j2) +
O(n−1/2), and the average value of jk is order

√
n. The average time spent in step N4

is Θ(n), so the average running time is of order n3/2. (A more precise analysis would
be desirable.)
49. (a) We have F (z) =

∞
k=1 Fk(z), where Fk(z) is the generating function for all

partitions whose smallest part is ≥ k, namely 1/((1− zk)(1− zk+1) . . . )− 1.
(b) Let fk(n) = [zn]Fk(z)/p(n). Then f1(n) = 1; f2(n) = 1 − p(n−1)/p(n) =

Cn−1/2 + O(n−1); f3(n) = (p(n) − p(n − 1) − p(n − 2) + p(n − 3))/p(n) = 2C2n−1 +
O(n−3/2); and f4(n) = 6C3n−3/2 + O(n−2). (See exercise 45.) It turns out that
fk+1(n) = k!Ckn−k/2 + O(n−(k+1)/2); in particular, f5(n) = O(n−2). Hence f5(n) +
· · ·+ fn(n) = O(n−1), because fk+1(n) ≤ fk(n).

Adding everything up yields [zn]F (z) = p(n)(1 + C/
√
n+O(n−1)).

From the Library of Melissa Nuno



ptg999

7.2.1.4 ANSWERS TO EXERCISES 755

50. (a) cm(m + k) = cm−1(m − 1 + k) + cm(k) = m − 1 − k + c(k) + 1 by induction
when 0 ≤ k < m.

(b) Because
m+k
m

 = p(k) for 0 ≤ k ≤ m.
(c) When n = 2m, Algorithm H essentially generates the partitions of m, and

we know that j − 1 is the second-smallest part in the conjugate of the partition just
generated — except when j−1 = m, just after the partition 1 . . . 1 whose conjugate has
only one part.

(d) If all parts of α exceed k, let αkq+1j correspond to α (k+1).
(e) Continuing the previous exercise and its answer, the generating function Gk(z)

for all partitions whose second-smallest part is ≥ k is Fk+1(z)/(1 − z) by (d). Conse-
quently C(z) = (F (z)− F1(z))/(1− z) + z/(1− z)2.

(f) We can show as in the previous exercise that [zn]Gk(n)/p(n) = O(n−k/2) for
k ≤ 5; hence c(m)/p(m) = 1 + O(m−1/2). The ratios (c(m) + 1)/p(m), which are
readily computed for small m, reach a maximum of 2.6 at m = 7 and decrease steadily
thereafter. So a rigorous attention to asymptotic error bounds will complete the proof.

Note: B. Fristedt [Trans. Amer. Math. Soc. 337 (1993), 703–735] has proved,
among other things, that the number of k’s in a random partition of n is greater than
Cx
√
n with asymptotic probability e−x.

52. In lexicographic order,
64+13

13

 partitions of 64 have a1 ≤ 13;
50+10

10

 of them have
a1 = 14 and a2 ≤ 10; etc. Therefore, by the hint, the partition 14 11 9 6 4 3 2 115 is
preceded by exactly p(64) − 1000000 partitions in lexicographic order, making it the
millionth in reverse lexicographic order.
53. As in the previous answer,

80
12

 partitions of 100 have a1 = 32 and a2 ≤ 12, etc.;
so the lexicographically millionth partition in which a1 = 32 is 32 13 12 8 7 6 5 5 112.
Algorithm H produces its conjugate, namely 20 8 8 8 8 6 5 4 3 3 3 3 2 119.
54. (a) Obviously true. This question was just a warmup.

(b) True, but not so obvious. The Ferrers diagram shows us that

a′1 + · · ·+ a′k =
∞
j=1 min(k, aj);

thus we want to show that α ⪰ β implies
∞
j=1 min(k, aj) ≤

∞
j=1 min(k, bj) for

all k ≥ 0. This inequality is clear when k ≥ b1; and if bl ≥ k ≥ bl+1 we have∞
j=1 min(k, aj) ≤

l
j=1 k +

∞
j=l+1 aj ≤ kl +

∞
j=l+1 bj =

∞
j=1 min(k, bj).

(c) The recurrence ck = min(a1 + · · ·+ak, b1 + · · ·+ bk)− (c1 + · · ·+ ck−1) clearly
defines a greatest lower bound, if c1c2 . . . is a partition. And it is; for if c1 + · · ·+ ck =
a1 +· · ·+ak we have 0≤min(ak+1, bk+1)≤min(ak+1, bk+1 +b1 +· · ·+bk−a1−· · ·−ak)=
ck+1 ≤ ak+1 ≤ ak = ck + (c1 + · · ·+ ck−1)− (a1 + · · ·+ ak−1) ≤ ck.

(d) α ∨ β = (αT ∧ βT )T . (Double conjugation is needed because a max-oriented
recurrence analogous to the one in part (c) can fail.)

(e) α ∧ β has max(l,m) parts and α ∨ β has min(l,m) parts. (Consider the first
components of their conjugates.)

(f) True for α ∧ β, by the derivation in part (c). False for α ∨ β ; for example,
6321 ∨ 543 = 633 in Fig. 52.

Reference: T. Brylawski, Discrete Mathematics 6 (1973), 201–219.
55. (a) If α ≻ β and α ⪰ γ ⪰ β, where γ = c1c2 . . . , we have a1 + · · · + ak =
c1 + · · · + ck = b1 + · · · + bk for all k except k = l and k = l + 1; thus α covers β.
Therefore βT covers αT .

Conversely, if α ⪰ β and α ̸= β we can find γ ⪰ β such that α ≻ γ or γT ≻ αT ,
as follows: Find the smallest k with ak > bk, the smallest l with ak > al+1, and the

From the Library of Melissa Nuno



ptg999

756 ANSWERS TO EXERCISES 7.2.1.4

smallest m with ak − 1 > am+1. (Note that bk > 0.) If am > am+1 + 1, define γ =
c1c2 . . . by ck = ak− [k=m] + [k=m+1]. Otherwise let ck = ak− [k= l] + [k=m+1].

(b) Consider α and β to be strings of n 0s and n 1s, as in (15). Then α ≻ β if
and only if α → β, and βT ≻ αT if and only if α ⇒ β, where ‘→’ denotes replacing a
substring of the form 011q10 by 101q01 and ‘⇒’ denotes replacing a substring of the
form 010q10 by 100q01, for some q ≥ 0.

(c) A partition covers at most [a1 >a2 ] + · · · + [am−1 >am ] + [am≥ 2] others.
The partition α = (n2+n1−1)(n2−2)(n2−3) . . . 21 maximizes this quantity in the case
am = 1; cases with am ≥ 2 give no improvement. (The conjugate partition, namely
(n2−1)(n2−2) . . . 21n1+1, is just as good. Therefore both α and αT are also covered by
the maximum number of others.)

(d) Equivalently, consecutive parts of µ differ by at most 1, and the smallest part
is 1; the rim representation has no consecutive 1s.

(e) Use rim representations and replace ≻ by the relation →. If α → α1 and
α→ α′

1 we can easily show the existence of a string β such that α1 → β and α′
1 → β;

for example,
101q0111r10↗ ↘

011q1011r10 101q1011r01.
↘ ↗011q1101r01

Let β = β2 ≻ · · · ≻ βm where βm is minimal. Then, by induction on max(k, k′), we
have k = m and αk = βm; also k′ = m and α′

k′ = βm.
(f) Set β ← αT ; then repeatedly set β ← β′ until β is minimal, using any

convenient partition β′ such that β ≻ β′. The desired partition is βT .
Proof: Let µ(α) be the common value αk = α′

k′ in part (e); we must prove that
α ⪰ β implies µ(α) ⪰ µ(β). There is a sequence α = α0, . . . , αk = β where αj → αj+1
or αj ⇒ αj+1 for 0 ≤ j < k. If α0 → α1 we have µ(α) = µ(α1); thus it suffices to prove
that α⇒ β and α→ α′ implies α′ ⪰ µ(β). But we have, for example,

100q0111r10
=⇒ ↘

010q1011r10 100q1011r01
↘ =⇒010q1101r01→ 010q−110011r01

because we may assume that q > 0; and the other cases are similar.
(g) The parts of λn are ak = n2 + [k≤n1 ]− k for 1 ≤ k < n2; the parts of λTn are

bk = n2 − k + [n2 − k <n1 ] for 1 ≤ k ≤ n2. The algorithm of (f) reaches λTn from n1

after

n2+1

3

−

n2−n1

2


steps, because each step increases

kbk =


ak+1

2


by 1.
(h) The path n, (n−1)1, (n−2)2, (n−2)11, (n−3)21, . . . , 321n−5, 31n−3, 221n−4,

21n−2, 1n, of length 2n− 4 when n ≥ 3, is shortest.
It can be shown that the longest path has m = 2


n2
3


+n1(n2−1) steps. One such
path has the form α0, . . . , αk, . . . , αl, . . . , αm where α0 = n1; αk = λn; αl = λTn ;
αj ≻ αj+1 for 0 ≤ j < l; and αTj+1 ≻ αTj for k ≤ j < m.

Reference: C. Greene and D. J. Kleitman, Europ. J. Combinatorics 7 (1986), 1–10.
56. Suppose λ = u1 . . . um and µ = v1 . . . vm. The following (unoptimized) algo-
rithm applies the theory of exercise 54 to generate the partitions in colex order,
maintaining α = a1a2 . . . am ⪯ µ as well as αT = b1b2 . . . bl ⪯ λT . To find the
successor of α, we first find the largest j such that bj can be increased. Then we have
β = b1 . . . bj−1(bj+1)1 . . . 1 ⪯ λT , hence the desired successor is βT ∧µ. The algorithm

From the Library of Melissa Nuno



ptg999

7.2.1.4 ANSWERS TO EXERCISES 757

maintains auxiliary tables rj = bj+ · · ·+bl, sj = v1 + · · ·+vj , and tj = wj+wj+1 + · · · ,
where λT = w1w2 . . . .

M1. [Initialize.] Set q ← 0, k ← u1. For j = 1, . . . , m, while uj+1 < k set
tk ← q ← q + j and k ← k − 1. Then set q ← 0 again, and for j = 1, . . . , m
set aj ← vj , sj ← q ← q + aj . Then set q ← 0 yet again, and k ← l ← a1.
For j = 1, . . . , m, while aj+1 < k set bk ← j, rk ← q ← q+ j, and k ← k−1.
Finally, set t1 ← 0, b0 ← 0, b−1 ← −1.

M2. [Visit.] Visit the partition a1 . . . am and/or its conjugate b1 . . . bl.
M3. [Find j.] Let j be the largest integer < l such that rj+1 > tj+1 and bj ̸= bj−1.

Terminate the algorithm if j = 0.
M4. [Increase bj .] Set x ← rj+1 − 1, k ← bj , bj ← k + 1, and ak+1 ← j. (The

previous value of ak+1 was j − 1. Now we’re going to update a1 . . . ak using
essentially the method of exercise 54(c) to distribute x dots into columns
j + 1, j + 2, . . . .)

M5. [Majorize.] Set z ← 0 and then do the following for i = 1, . . . , k: Set
x ← x + j, y ← min(x, si), ai ← y − z, z ← y; if i = 1, set l ← p ← a1 and
q ← 0; if i > 1, while p > ai set bp ← i − 1, rp ← q ← q + i − 1, p ← p − 1.
Finally, while p > j set bp ← k, rp ← q ← q+k, p← p−1. Return to M2.

57. If λ = µT there obviously is only one such matrix, essentially the Ferrers diagram
of λ. And the condition λ ⪯ µT is necessary, for if µT = b1b2 . . . we have b1 + · · ·+bk =
min(c1, k) + min(c2, k) + · · · , and this quantity must not be less than the number of 1s
in the first k rows. Finally, if there is a matrix for λ and µ and if λ covers α, we can
readily construct a matrix for α and µ by moving a 1 from any specified row to another
that has fewer 1s.

Notes: This result is often called the Gale–Ryser theorem, because of well-known
papers by D. Gale [Pacific J. Math. 7 (1957), 1073–1082] and H. J. Ryser [Canadian
J. Math. 9 (1957), 371–377]. But the number of 0–1 matrices with row sums λ and
column sums µ is the coefficient of the monomial symmetric function


xc1
i1
xc2
i2
. . . in

the product of elementary symmetric functions er1er2 . . . , where

er = [zr] (1 + x1z)(1 + x2z)(1 + x3z) . . . .

In this context the result has been known at least since the 1930s; see D. E. Littlewood’s
formula for


m,n≥0(1 + xmyn) in Proc. London Math. Soc. (2) 40 (1936), 49–70.

[Cayley had shown much earlier, in Philosophical Trans. 147 (1857), 489–499, that the
lexicographic condition λ ≤ µT is necessary.] See also the algorithm in exercise 7–108.
58. [R. F. Muirhead, Proc. Edinburgh Math. Soc. 21 (1903), 144–157.] The condition
α ⪰ β is necessary, because we can set x1 = · · · = xk = x and xk+1 = · · · = xn = 1
and let x → ∞. It is sufficient because we need only prove it when α covers β. Then
if, say, parts (a1, a2) become (a1 − 1, a2 + 1), the left-hand side is the right-hand side
plus the nonnegative quantity

1
2m!


xa2
p1x

a2
p2 . . . x

am
pm (xa1−a2−1

p1 − xa1−a2−1
p2 )(xp1 − xp2 ).

[Historical notes: Muirhead’s paper is the earliest known appearance of the concept
now known as majorization; shortly afterward, an equivalent definition was given
by M. O. Lorenz, Quarterly Publ. Amer. Stat. Assoc. 9 (1905), 209–219, who was
interested in measuring nonuniform distribution of wealth. Yet another equivalent

From the Library of Melissa Nuno



ptg999

758 ANSWERS TO EXERCISES 7.2.1.4

concept was formulated by I. Schur in Sitzungsberichte Berliner Math. Gesellschaft
22 (1923), 9–20. “Majorization” was named by Hardy, Littlewood, and Pólya, who
established its most basic properties in Messenger of Math. 58 (1929), 145–152; see
exercise 2.3.4.5–17. An excellent book, Inequalities by A. W. Marshall and I. Olkin
(Academic Press, 1979), is entirely devoted to the subject.]
59. The unique paths for n = 0, 1, 2, 3, 4, and 6 must have the stated symmetry.
There is one such path for n = 5, namely 11111, 2111, 221, 311, 32, 41, 5. And there
are four for n = 7:

1111111, 211111, 22111, 2221, 322, 3211, 31111, 4111, 511, 421, 331, 43, 52, 61, 7;
1111111, 211111, 22111, 2221, 322, 421, 511, 4111, 31111, 3211, 331, 43, 52, 61, 7;
1111111, 211111, 31111, 22111, 2221, 322, 3211, 4111, 421, 331, 43, 52, 511, 61, 7;
1111111, 211111, 31111, 22111, 2221, 322, 421, 4111, 3211, 331, 43, 52, 511, 61, 7.

There are no others, because at least two self-conjugate partitions exist for all n ≥ 8
(see exercise 15).
60. For L(6, 6), use (59); otherwise use L′(4, 6) and L′(3, 5) everywhere.

In M(4, 18), insert 444222, 4442211 between 443322 and 4432221.
In M(5, 11), insert 52211, 5222 between 62111 and 6221.
In M(5, 20), insert 5542211, 554222 between 5552111 and 555221.
In M(6, 13), insert 72211, 7222 between 62221 and 6322.
In L(4, 14), insert 44222, 442211 between 43322 and 432221.
In L(5, 15), insert 542211, 54222 between 552111 and 55221.
In L(7, 12), insert 62211, 6222 between 72111 and 7221.

62. The statement holds for n = 7, 8, and 9, except in two cases: n = 8, m = 3,
α = 3221; n = 9, m = 4, α = 432.
64. If n = 2kq where q is odd, let ωn denote the partition (2k)q, namely q parts equal
to 2k. The recursive rule

B(n) = B(n− 1)R1, 2×B(n/2)

for n > 0, where 2×B(n/2) denotes doubling all parts of B(n/2) (or the empty sequence
if n is odd), defines a pleasant Gray path that begins with ωn−11 and ends with ωn, if
we let B(0) be the unique partition of 0. Thus,

B(1) = 1; B(2) = 11, 2; B(3) = 21, 111; B(4) = 1111, 211, 22, 4.

Among the remarkable properties satisfied by this sequence is the fact that

B(n) = (2×B(0))1n, (2×B(1))1n−2, (2×B(2))1n−4, . . . , (2×B(n/2))10,

when n is even; for example,

B(8) = 11111111, 2111111, 221111, 41111, 4211, 22211, 2222, 422, 44, 8.

The following algorithm generates B(n) looplessly when n ≥ 2:
K1. [Initialize.] Set c0 ← p0 ← 0, p1 ← 1. If n is even, set c1 ← n, t ← 1; other-

wise let n− 1 = 2kq where q is odd and set c1 ← 1, c2 ← q, p2 ← 2k, t← 2.
K2. [Even visit.] Visit the partition pctt . . . p

c1
1 . (Now ct + · · ·+ c1 is even.)

K3. [Change the largest part.] If ct = 1, split the largest part: If pt ̸= 2pt−1, set
ct ← 2, pt ← pt/2, otherwise set ct−1 ← ct−1 + 2, t ← t − 1. But if ct > 1,
merge two of the largest parts: If ct = 2, set ct ← 1, pt ← 2pt, otherwise set
ct ← ct − 2, ct+1 ← 1, pt+1 ← 2pt, t← t+ 1.

From the Library of Melissa Nuno



ptg999

7.2.1.4 ANSWERS TO EXERCISES 759

K4. [Odd visit.] Visit the partition pctt . . . p
c1
1 . (Now ct + · · ·+ c1 is odd.)

K5. [Change the next-largest part.] Now we wish to apply the following transfor-
mation: “Remove ct − [t is even] of the largest parts temporarily, then apply
step K3, then restore the removed parts.” More precisely, there are nine
cases: (1a) If ct is odd and t = 1, terminate. (1b1) If ct is odd, ct−1 = 1, and
pt−1 = 2pt−2, set ct−2 ← ct−2 + 2, ct−1 ← ct, pt−1 ← pt, t ← t− 1. (1b2) If
ct is odd, ct−1 = 1, and pt−1 ̸= 2pt−2, set ct−1 ← 2, pt−1 ← pt−1/2. (1c1) If
ct is odd, ct−1 = 2, and pt = 2pt−1, set ct−1 ← ct + 1, pt−1 ← pt, t ← t− 1.
(1c2) If ct is odd, ct−1 = 2, and pt ̸= 2pt−1, set ct−1 ← 1, pt−1 ← 2pt−1.
(1d1) If ct is odd, ct−1 > 2, and pt = 2pt−1, set ct−1 ← ct−1 − 2, ct ← ct + 1.
(1d2) If ct is odd, ct−1 > 2, and pt ̸= 2pt−1, set ct+1 ← ct, pt+1 ← pt, ct ← 1,
pt ← 2pt−1, ct−1 ← ct−1 − 2, t ← t + 1. (2a) If ct is even and pt = 2pt−1,
set ct ← ct − 1, ct−1 ← ct−1 + 2. (2b) If ct is even and pt ̸= 2pt−1, set
ct+1 ← ct − 1, pt+1 ← pt, ct ← 2, pt ← pt/2, t← t+ 1. Return to K2.

[The transformations in K3 and K5 undo themselves when performed twice in a row.
This construction is due to T. Colthurst and M. Kleber, “A Gray path on binary
partitions,” http://arxiv.org/abs/0907.3873 . Euler considered the number of such
partitions in §50 of his paper in 1750.]
65. If pe1

1 . . . perr is the prime factorization of m, the number of such factorizations is
p(e1) . . . p(er), and we can let n = max(e1, . . . , er). Indeed, for each r-tuple (x1, . . . , xr)
with 0 ≤ xk < p(ek) we can let mj = pa1j

1 . . . parjr , where ak1 . . . akn is the (xk + 1)st
partition of ek. Thus we can use a reflected Gray code for r-tuples together with a
Gray code for partitions.
66. Let a1 . . . am be an m-tuple that satisfies the specified inequalities. We can sort it
into nonincreasing order ax1 ≥ · · · ≥ axm , where the permutation x1 . . . xm is uniquely
determined if we require the sorting to be stable; see Eq. 5–(2).

If j ≺ k, we have aj ≥ ak, hence j appears to the left of k in the permutation
x1 . . . xm. Therefore x1 . . . xm is one of the permutations output by Algorithm 7.2.1.2V.
Moreover, j will be left of k also when aj = ak and j < k, by stability. Hence axi is
strictly greater than axi+1 when xi > xi+1 is a “descent.”

To generate all the relevant partitions of n, take each topological permutation
x1 . . . xm and generate the partitions y1 . . . ym of n− t where t is the index of x1 . . . xm
(see Section 5.1.1). For 1 ≤ j ≤ m set axj ← yj + tj , where tj is the number of descents
to the right of xj in x1 . . . xm.

For example, if x1 . . . xm = 314592687 we want to generate all cases with a3 >
a1 ≥ a4 ≥ a5 ≥ a9 > a2 ≥ a6 ≥ a8 > a7. In this case t = 1 + 5 + 8 = 14; so we set
a1 ← y2 + 2, a2 ← y6 + 1, a3 ← y1 + 3, a4 ← y3 + 2, a5 ← y4 + 2, a6 ← y7 + 1, a7 ← y9,
a8 ← y8 + 1, and a9 ← y5 + 2. The generalized generating function


za1

1 . . . za9
9 in the

sense of exercise 29 is
z2

1z2z
3
3z

2
4z

2
5z6z8z

2
9

(1− z3)(1− z3z1)(1− z3z1z4)(1− z3z1z4z5) . . . (1− z3z1z4z5z9z2z6z8z7) .

When ≺ is any given partial ordering, the ordinary generating function for the
number of all such partitions of n is therefore


zindα/((1 − z)(1 − z2) . . . (1 − zm)),

where the sum is over all outputs α of Algorithm 7.2.1.2V.
[See R. P. Stanley, Memoirs Amer. Math. Soc. 119 (1972), for significant extensions

and applications of these ideas. See also L. Carlitz, Studies in Foundations and
Combinatorics (New York: Academic Press, 1978), 101–129, for information about
up-down partitions.]

From the Library of Melissa Nuno

http://arxiv.org/abs/0907.3873


ptg999

760 ANSWERS TO EXERCISES 7.2.1.4

67. If n + 1 = q1 . . . qr, where the factors q1, . . . , qr are all ≥ 2, we get a perfect
partition {(q1−1) · 1, (q2−1) · q1, (q3−1) · q1q2, . . . , (qr−1) · q1 . . . qr−1} that corresponds
in an obvious way to mixed radix notation. (The order of the factors qj is significant.)

Conversely, all perfect partitions arise in this way. Suppose the multiset M =
{k1 · p1, . . . , km · pm} is a perfect partition, where p1 < · · · < pm; then we must have
pj = (k1+1) . . . (kj−1+1) for 1 ≤ j ≤ m, because pj is the smallest sum of a submultiset
of M that is not a submultiset of {k1 · p1, . . . , kj−1 · pj−1}.

The perfect partitions of n with fewest elements occur if and only if the qj are all
prime, because pq − 1 > (p−1) + (q−1) whenever p > 1 and q > 1. Thus, for example,
the minimal perfect partitions of 11 correspond to the ordered factorizations 2 · 2 · 3,
2 · 3 · 2, and 3 · 2 · 2. Reference: Quarterly Journal of Mathematics 21 (1886), 367–373.
68. (a) If ai + 1 ≤ aj − 1 for some i and j we can change {ai, aj} to {ai+1, aj−1},
thereby increasing the product by aj − ai − 1 > 0. Thus the optimum occurs only in
the optimally balanced partition of exercise 3. [L. Oettinger and J. Derbès, Nouv. Ann.
Math. 18 (1859), 442; 19 (1860), 117–118.]

(b) Assume that n > 1. Then no part is 1; and if aj ≥ 4 we can change it
to 2 + (aj−2) without decreasing the product. Thus we can assume that all parts
are 2 or 3. We get an improvement by changing 2 + 2 + 2 to 3 + 3, hence there are
at most two 2s. The optimum therefore is 3n/3 when nmod 3 is 0; 4 · 3(n−4)/3 =
3(n−4)/3 · 2 · 2 = (4/34/3)3n/3 when nmod 3 is 1; 3(n−2)/3 · 2 = (2/32/3)3n/3 when
nmod 3 is 2. [O. Meißner, Mathematisch-naturwissenschaftliche Blätter 4 (1907), 85.]
69. All n > 2 have the solution (n, 2, 1, . . . , 1). We can “sieve out” the other cases ≤ N
by starting with s2 . . . sN ← 1 . . . 1 and then setting sak−b ← 0 whenever ak − b ≤ N ,
where a = x1 . . . xt− 1, b = x1 + · · ·+xt− t− 1, k ≥ x1 ≥ · · · ≥ xt, and a > 1, because
k + x1 + · · ·+ xt + (ak − b− t− 1) = kx1 . . . xt. The sequence (x1, . . . , xt) needs to be
considered only when (x1 . . . xt−1)x1− (x1 + · · ·+xt) < N − t; we can also continue to
decrease N so that sN = 1. In this way only (32766, 1486539, 254887, 1511, 937, 478, 4)
sequences (x1, . . . , xt) need to be tried when N is initially 230, and the only survivors
turn out to be 2, 3, 4, 6, 24, 114, 174, and 444. [See E. Trost, Elemente der Math. 11
(1956), 135; M. Misiurewicz, Elemente der Math. 21 (1966), 90.]

Notes: No new survivors are likely as N →∞, but a new idea will be needed to rule
them out. The simplest sequences (x1, . . . , xt) = (3) and (2, 2) already exclude all n > 5
with nmod 6 ̸= 0; this fact can be used to speed up the computation by a factor of 6.
The sequences (6) and (3, 2) exclude 40% of the remainder (namely all n of the forms
5k− 4 and 5k− 2); the sequences (8), (4, 2), and (2, 2, 2) exclude 3/7 of the remainder;
the sequences with t = 1 imply that n − 1 must be prime; the sequences in which
x1 . . . xt = 2r exclude about p(r) residues of nmod (2r−1); sequences in which x1 . . . xt
is the product of r distinct primes will exclude about ϖr residues of nmod (x1 . . . xt−1).
70. Each step takes one partition of n into another, so we must eventually reach a
repeating cycle. Many partitions simply perform a cyclic shift on each northeast-to-
southwest diagonal of the Ferrers diagram, changing it

from

x1 x2 x4 x7 x11 x16 . . .
x3 x5 x8 x12 x17 x23 . . .
x6 x9 x13 x18 x24 x31 . . .
x10 x14 x19 x25 x32 x40 . . .
x15 x20 x26 x33 x41 x50 . . .
x21 x27 x34 x42 x51 x61 . . ....

...
...

...
...

...

to

x1 x3 x6 x10 x15 x21 . . .
x2 x4 x7 x11 x16 x22 . . .
x5 x8 x12 x17 x23 x30 . . .
x9 x13 x18 x24 x31 x39 . . .
x14 x19 x25 x32 x40 x49 . . .
x20 x26 x33 x41 x50 x60 . . ....

...
...

...
...

...

;

From the Library of Melissa Nuno



ptg999

7.2.1.5 ANSWERS TO EXERCISES 761

in other words, they apply the permutation ρ = (1)(2 3)(4 5 6)(7 8 9 10) . . . to the cells.
Exceptions occur only when ρ introduces an empty cell above a dot; for example, x10
might be empty when x11 isn’t. But we can get the correct new diagram by moving
the top row down, sorting it into its proper place after applying ρ in such cases. Such a
move always reduces the number of occupied diagonals, so it cannot be part of a cycle.
Thus every cycle consists entirely of permutations by ρ.

If any element of a diagonal is empty in a cyclic partition, all elements of the next
diagonal must be empty. For if, say, x5 is empty, repeated application of ρ will make
x5 adjacent to each of the cells x7, x8, x9, x10 of the next diagonal. Therefore if n =
n2
2


+

n1
1


with n2 > n1 ≥ 0 the cyclic states are precisely those with n2−1 completely
filled diagonals and n1 dots in the next. [This result is due to J. Brandt, Proc. Amer.
Math. Soc. 85 (1982), 483–486. The problem reportedly stems from Russia via Bulgaria
and Sweden. See also Martin Gardner, The Last Recreations (1997), Chapter 2.]
71. When n = 1 + · · · + m > 1, the starting partition (m−1)(m−1)(m−2) . . . 211
has distance m(m − 1) from the cyclic state, and this is maximum. [K. Igusa, Math.
Magazine 58 (1985), 259–271; G. Etienne, J. Combin. Theory A58 (1991), 181–197.]
In the general case, Griggs and Ho [Advances in Appl. Math. 21 (1998), 205–227] have
conjectured that the maximum distance to a cycle is max(2n+2−n1(n2 +1), n+n2 +1,
n1(n2 +1))−2n2 for all n > 1; their conjecture has been verified for n ≤ 100. Moreover,
the worst-case starting partition appears to be unique when n2 = 2n1 + {−1, 0, 2}.
72. Thus a1 < m−1 [B. Hopkins and J. A. Sellers, Integers 7, 2 (2007), A19:1–A19:5].
73. (a) [R. Stanley, 1972 (unpublished).] Swap the jth occurrence of k in the partition
n = j · k + α with the kth occurrence of j in k · j + α, for every partition α of n− jk.
For example, when n = 6 the swaps are

6
a
, 5

b
1
1
, 4

f
2
g
, 4

c
1
1
1
g
, 3

h
3
i
, 3

j
2
k
1
1
, 3

d
1
1
1
k
1
h
, 2

n
2
2
2
i
, 2

m
2
2
1
1
1
n
, 2

e
1
1
1
m
1
j
1
f
, 1

1
1
e
1
d
1
c
1
b
1
a
.

(b) p(n−k) + p(n−2k) + p(n−3k) + · · · . [A. H. M. Hoare, AMM 93 (1986), 475–476.]

SECTION 7.2.1.5
1. Whenever m is set equal to r in step H6, change it back to r − 1.
2. L1. [Initialize.] Set lj ← j − 1 and aj ← 0 for 1 ≤ j ≤ n. Also set h1 ← n, t← 1,

and set l0 to any convenient nonzero value.
L2. [Visit.] Visit the t-block partition represented by l1 . . . ln and h1 . . . ht. (The

restricted growth string corresponding to this partition is a1 . . . an.)
L3. [Find j.] Set j ← n; then, while lj = 0, set j ← j − 1 and t← t− 1.
L4. [Move j to the next block.] Terminate if j = 0. Otherwise set k ← aj + 1,

hk ← lj , aj ← k. If k = t, set t← t+ 1 and lj ← 0; otherwise set lj ← hk+1.
Finally set hk+1 ← j.

L5. [Move j + 1, . . . , n to block 1.] While j < n, set j ← j + 1, lj ← h1, aj ← 0,
and h1 ← j. Return to L2.

3. Let τ(k, n) be the number of strings a1 . . . an that satisfy the condition 0 ≤ aj ≤
1+max(k−1, a1, . . . , aj−1) for 1 ≤ j ≤ n; thus τ(k, 0) = 1, τ(0, n) = ϖn, and τ(k, n) =
kτ(k, n−1)+τ(k+1, n−1). [S. G. Williamson has called τ(k, n) a “tail coefficient”; see
SICOMP 5 (1976), 602–617.] The number of strings that are generated by Algorithm H
before a given restricted growth string a1 . . . an is

n
j=1 ajτ(bj , n − j), where bj =

1+max(a1, . . . , aj−1). Working backwards with the help of a precomputed table of the
tail coefficients, we find that this formula yields 999999 when a1 . . . a12 = 010220345041.

From the Library of Melissa Nuno



ptg999

762 ANSWERS TO EXERCISES 7.2.1.5

4. The most common representatives of each type, subscripted by the number of
corresponding occurrences in the GraphBase, are zzzzz0, ooooh0, xxxix0, xxxii0,
ooops0, llull0, llala0, eeler0, iitti0, xxiii0, ccxxv0, eerie1, llama1, xxvii0,
oozed5, uhuuu0, mamma1, puppy28, anana0, hehee0, vivid15, rarer3, etext1, amass2,
again137, ahhaa0, esses1, teeth25, yaaay0, ahhhh2, pssst2, seems7, added6, lxxii0,
books184, swiss3, sense10, ended3, check160, level18, tepee4, slyly5, never154,
sells6, motto21, whooo2, trees384, going307, which151, there174, three100, their3834.
(See S. Golomb, Math. Mag. 53 (1980), 219–221. Words with only two distinct letters
are, of course, rare. The 18 representatives listed here with subscript 0 can be found
in larger dictionaries or in English-language pages of the Internet.)

5. (a) 112 = ρ(0225). The sequence is r(0), r(1), r(4), r(9), r(16), . . . , where r(n) is
obtained by expressing n in decimal notation (with one or more leading zeros), applying
the ρ function of exercise 4, then deleting the leading zeros. Notice that n/9 ≤ r(n) ≤ n.

(b) 1012 = r(452). The sequence is the same as (a), but sorted into order and with
duplicates removed. (Who knew that 882 = 7744, 2122 = 44944, and 2642 = 69696?)

6. Use the topological sorting approach of Algorithm 7.2.1.2V, with an appropriate
partial ordering: Include cj chains of length j, with their least elements ordered. For
example, if n = 20, c2 = 3, and c3 = c4 = 2, we use that algorithm to find all
permutations a1 . . . a20 of {1, . . . , 20} such that 1 ≺ 2, 3 ≺ 4, 5 ≺ 6, 1 ≺ 3 ≺ 5,
7 ≺ 8 ≺ 9, 10 ≺ 11 ≺ 12, 7 ≺ 10, 13 ≺ 14 ≺ 15 ≺ 16, 17 ≺ 18 ≺ 19 ≺ 20,
13 ≺ 17, forming the restricted growth strings ρ(f(a1) . . . f(a20)), where ρ is defined
in exercise 4 and (f(1), . . . , f(20)) = (1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7). The
total number of outputs is, of course, given by (48).

7. Exactly ϖn. They are the permutations we get by reversing the left-right order of
the blocks in (2) and dropping the ‘|’ symbols: 1234, 4123, 3124, 3412, . . . , 4321. [See
A. Claesson, European J. Combinatorics 22 (2001), 961–971. S. Kitaev, in Discrete
Math. 298 (2005), 212–229, has discovered a far-reaching generalization: Let π be a
permutation of {0, . . . , r}, let gn be the number of permutations a1 . . . an of {1, . . . , n}
such that ak−0π > ak−1π > · · · > ak−rπ > aj implies j > k, and let fn be the number
of permutations a1 . . . an for which the pattern ak−0π > ak−1π > · · · > ak−rπ is avoided
altogether for r < k ≤ n. Then


n≥0 gnz

n/n! = exp(n≥1 fn−1z
n/n!).]

8. For each partition of {1, . . . , n} into m blocks, arrange the blocks in decreasing
order of their smallest elements, and permute the non-smallest block elements in all
possible ways. If n = 9 and m = 3, for example, the partition 126|38|4579 would yield
457938126 and eleven other cases obtained by permuting {5, 7, 9} and {2, 6} among
themselves. (Essentially the same method generates all permutations that have exactly
k cycles; see the “unusual correspondence” of Section 1.3.3.)

9. Among the permutations of the multiset {k0 · 0, k1 · 1, . . . , kn−1 · (n−1)}, exactly
k0 + k1 + · · ·+ kn−1

k0, k1, . . . , kn−1


k0

(k0 + k1 + · · ·+ kn−1)
k1

(k1 + · · ·+ kn−1) . . .
kn−1

kn−1

have restricted growth, since kj/(kj + · · · + kn−1) is the probability that j precedes
{j + 1, . . . , n− 1}.

The average number of 0s, if n > 0, is 1 + (n − 1)ϖn−1/ϖn = Θ(logn), because
the total number of 0s among all ϖn cases is

n
k=1 k


n−1
k−1

ϖn−k = ϖn + (n− 1)ϖn−1.

10. Given a partition of {1, . . . , n}, construct an oriented tree on {0, 1, . . . , n} by letting
j − 1 be the parent of all members of a block whose least member is j. Then relabel

From the Library of Melissa Nuno



ptg999

7.2.1.5 ANSWERS TO EXERCISES 763

the leaves, preserving order, and erase the other labels. For example, the 15 partitions
in (2) correspond respectively to

1234 12
3

1
2
3 1

23
1

2
1
23 2

13 12
3

12 123 1
2 1

2

1
2

12
1

To reverse the process, take a semilabeled tree and assign new numbers to its nodes
by considering the nodes first encountered on the path from the root to the smallest
leaf, then on the path from the root to the second-smallest leaf, etc. The number of
leaves is n + 1 minus the number of blocks. [This construction is closely related to
exercise 2.3.4.4–18 and to many enumerations in that section. See P. L. Erdős and
L. A. Székely, Advances in Applied Math. 10 (1989), 488–496.]
11. We get pure alphametics from 900 of the 64855 set partitions into at most 10
blocks for which ρ(a1 . . . a13) = ρ(a5 . . . a8a1 . . . a4a9 . . . a13), and from 563,527 of the
13,788,536 for which ρ(a1 . . . a13) < ρ(a5 . . . a8a1 . . . a4a9 . . . a13). The first examples
are aaaa + aaaa = baaac, aaaa + aaaa = bbbbc, and aaaa + aaab = baaac; the
last are abcd + efgd = dceab (goat + newt = tango) and abcd + efgd = dceaf
(clad + nerd = dance). [The idea of hooking a partition generator to an alphametic
solver is due to Alan Sutcliffe.]
12. (a) Form ρ((a1a

′
1) . . . (ana′n)), where ρ is defined in exercise 4, since we have x ≡ y

(modulo Π ∨Π ′) if and only if x ≡ y (modulo Π) and x ≡ y (modulo Π ′).
(b) Represent Π by links as in exercise 2; represent Π ′ as in Algorithm 2.3.3E;

and use that algorithm to make j ≡ lj whenever lj ̸= 0. (For efficiency, we can assume
that Π has at least as many blocks as Π ′.)

(c) When one block of Π has been split into two parts; that is, when two blocks
of Π ′ have been merged together.

(d)

t
2

; (e) (2s1−1 − 1) + · · ·+ (2st−1 − 1).

(f) True: Let Π∨Π ′ have blocks B1|B2| · · · |Bt, where Π = B1B2|B3| · · · |Bt. Then
Π ′ is essentially a partition of {B1, . . . , Bt} with B1 ̸≡ B2, and Π ∧Π ′ is obtained by
merging the block of Π ′ that contains B1 with the block that contains B2. [A finite
lattice that satisfies this condition is called lower semimodular ; see G. Birkhoff, Lattice
Theory (1940), §I.8. The majorization lattice of exercise 7.2.1.4–54 does not have this
property when, for example, α = 4111 and α′ = 331.]

(g) False: For example, let Π = 0011, Π ′ = 0101.
(h) The blocks of Π and Π ′ are unions of the blocks of Π ∨Π ′, so we can assume

that Π ∨Π ′ = {1, . . . , t}. As in part (b), merge j with lj to get Π in r steps, when Π
has t− r blocks. These merges applied to Π ′ will each reduce the number of blocks by
0 or 1. Hence b(Π ′)− b(Π ∧Π ′) ≤ r = b(Π ∨Π ′)− b(Π).

[In Algebra Universalis 10 (1980), 74–95, P. Pudlák and J. T uma proved that every
finite lattice is a sublattice of the partition lattice of {1, . . . , n}, for suitably large n.]
13. [See Advances in Math. 26 (1977), 290–305.] If the j largest elements of a t-block
partition appear in singleton blocks, but the next element n − j does not, let us say
that the partition has order t− j. Define the “Stirling string” Σnt to be the sequence
of orders of the t-block partitions Π1, Π2, . . . ; for example, Σ43 = 122333. Then
Σtt = 0, and we get Σ(n+1)t from Σnt by replacing each digit d in the latter by the
string dd(d+1)d+1 . . . tt of length


t+1

2

−

d
2

; for example,

Σ53 = 122333
∧
22333

∧
22333

∧
333

∧
333

∧
333.

From the Library of Melissa Nuno



ptg999

764 ANSWERS TO EXERCISES 7.2.1.5

The basic idea is to consider the lexicographic generation process of Algorithm H.
Suppose Π = a1 . . . an is a t-block partition of order j; then it is the lexicographically
smallest t-block partition whose restricted growth string begins with a1 . . . an−t+j . The
partitions covered by Π are, in lexicographic order, Π12, Π13, Π23, Π14, Π24, Π34,
. . . , Π(t−1)t, where Πrs means “coalesce blocks r and s of Π” (that is, “change all
occurrences of s − 1 to r − 1 and then apply ρ to get a restricted growth string”). If
Π ′ is any of the last


t
2

−

j
2


of these, from Π1(j+1) onwards, then Π is the smallest
t-block partition following Π ′. For example, if Π = 001012034, then n = 9, t = 5,
j = 3, and the relevant partitions Π ′ are ρ(001012004), ρ(001012014), ρ(001012024),
ρ(001012030), ρ(001012031), ρ(001012032), ρ(001012033).

Therefore fnt(N) = fnt(N − 1) +

t
2

−

j
2

, where j is the Nth digit of Σnt.

14. E1. [Initialize.] Set aj ← 0 and bj ← dj ← 1 for 1 ≤ j ≤ n.
E2. [Visit.] Visit the restricted growth string a1 . . . an.
E3. [Find j.] Set j ← n; then, while aj = dj , set dj ← 1− dj and j ← j − 1.
E4. [Done?] Terminate if j = 1. Otherwise go to E6 if dj = 0.
E5. [Move down.] If aj = 0, set aj ← bj , m← aj + 1, and go to E7. Otherwise if

aj = bj , set aj ← bj − 1, m ← bj , and go to E7. Otherwise set aj ← aj − 1
and return to E2.

E6. [Move up.] If aj = bj − 1, set aj ← bj , m← aj + 1, and go to E7. Otherwise
if aj = bj , set aj ← 0, m← bj , and go to E7. Otherwise set aj ← aj + 1 and
return to E2.

E7. [Fix bj+1 . . . bn.] Set bk ← m for k = j + 1, . . . , n. Return to E2.
[This algorithm can be extensively optimized because, as in Algorithm H, j is almost
always equal to n.]
15. It corresponds to the first n digits of the infinite binary string 01011011011 . . . ,
because ϖn−1 is even if and only if nmod 3 = 0 (see exercise 23).
16. 00012, 01012, 01112, 00112, 00102, 01102, 01002, 01202, 01212, 01222, 01022,
01122, 00122, 00121, 01121, 01021, 01221, 01211, 01201, 01200, 01210, 01220, 01020,
01120, 00120.
17. The following solution uses two mutually recursive procedures, f(µ, ν, σ) and
b(µ, ν, σ), for “forward” and “backward” generation of Aµν when σ = 0 and of A′

µν

when σ = 1. To start the process, assuming that 1 < m < n, first set aj ← 0 for
1 ≤ j ≤ n−m and an−m+j ← j − 1 for 1 ≤ j ≤ m, then call f(m,n, 0).

Procedure f(µ, ν, σ): If µ = 2, visit a1 . . . an; otherwise call f(µ − 1, ν − 1,
(µ+σ) mod 2). Then, if ν = µ + 1, do the following: Change aµ from 0 to µ − 1,
and visit a1 . . . an; repeatedly set aν ← aν − 1 and visit a1 . . . an, until aν = 0. But if
ν > µ + 1, change aν−1 (if µ+σ is odd) or aµ (if µ+σ is even) from 0 to µ − 1; then
call b(µ, ν−1, 0) if aν + σ is odd, f(µ, ν−1, 0) if aν + σ is even; and while aν > 0, set
aν ← aν − 1 and call b(µ, ν−1, 0) or f(µ, ν−1, 0) again in the same way until aν = 0.

Procedure b(µ, ν, σ): If ν = µ+ 1, first do the following: Repeatedly visit a1 . . . an
and set aν ← aν + 1, until aν = µ − 1; then visit a1 . . . an and change aµ from µ − 1
to 0. But if ν > µ+ 1, call f(µ, ν−1, 0) if aν + σ is odd, b(µ, ν−1, 0) if aν + σ is even;
then while aν < µ − 1, set aν ← aν + 1 and call f(µ, ν−1, 0) or b(µ, ν−1, 0) again in
the same way until aν = µ − 1; finally change aν−1 (if µ+σ is odd) or aµ (if µ+σ is
even) from µ− 1 to 0. And finally, in both cases, if µ = 2 visit a1 . . . an, otherwise call
b(µ− 1, ν − 1, (µ+σ) mod 2).

From the Library of Melissa Nuno



ptg999

7.2.1.5 ANSWERS TO EXERCISES 765

Most of the running time is actually spent handing the case µ = 2; faster routines
based on Gray binary code (and deviating from Ruskey’s actual sequences) could be
substituted for this case. A streamlined procedure could also be used when µ = ν − 1.

18. The sequence must begin (or end) with 01 . . . (n−1). By exercise 32, no such Gray
code can exist when 0 ̸= δn ̸= (1)0+1+···+(n−1), namely when nmod 12 is 4, 6, 7, or 9.

The cases n = 1, 2, 3, are easily solved; and 1,927,683,326 solutions exist when
n = 5. Thus there probably are zillions of solutions for all n ≥ 8 except for the cases
already excluded. Indeed, we can probably find such a Gray path through all ϖnk of the
strings considered in answer 28(e) below, except when n ≡ 2k+(2, 4, 5, 7) (modulo 12).

Note: The generalized Stirling number

n
m


−1 in exercise 30 exceeds 1 for 2 < m <

n, so there can be no such Gray code for the partitions of {1, . . . , n} into m blocks.

19. (a) Change (6) to the pattern 0, 2, . . . , m, . . . , 3, 1 or its reverse, as in endo-order
(7.2.1.3–(45)).

(b) We can generalize (8) and (9) to obtain sequences Amnα and A′
mna that

begin with 0n−m01 . . . (m−1) and end with 01 . . . (m−1)α and 0n−m−101 . . . (m−1)a,
respectively, where 0 ≤ a ≤ m−2 and α is any string a1 . . . an−m with 0 ≤ aj ≤ m−2.
When 2 < m < n the new rules are

Am(n+1)(αa) =

A(m−1)n(bβ)x1, A

R
mnβx1, Amnαx2, . . . , Amnαxm, if m is even;

A′
(m−1)nbx1, Amnαx1, A

R
mnαx2, . . . , Amnαxm, if m is odd;

A′
m(n+1)a =


A′

(m−1)nbx1, Amnβx1, A
R
mnβx2, . . . , A

R
mnβxm, if m is even;

A(m−1)n(bβ)x1, A
R
mnβx1, Amnβx2, . . . , A

R
mnβxm, if m is odd;

here b = m− 3, β = bn−m, and (x1, . . . , xm) is a path from x1 = m− 1 to xm = a.

20. 012323212122; in general (a1 . . . an)T = ρ(an . . . a1), in the notation of exercise 4.

21. The numbers ⟨s0, s1, s2, . . . ⟩ = ⟨1, 1, 2, 3, 7, 12, 31, 59, 164, 339, 999, . . . ⟩ satisfy the
recurrences s2n+1 =


k


n
k


s2n−2k, s2n+2 =


k


n
k


(2k + 1)s2n−2k, because of the way

the middle elements relate to the others. Therefore s2n = n! [zn] exp((e2z−1)/2+ez−1)
and s2n+1 = n! [zn] exp((e2z − 1)/2 + ez + z − 1). By considering set partitions on the
first half we also have s2n =


k


n
k


xk and s2n+1 =


k


n+1
k


xk−1, where xn =

2xn−1 + (n− 1)xn−2 = n! [zn] exp(2z + z2/2). [T. S. Motzkin considered the sequence
⟨s2n⟩ in Proc. Symp. Pure Math. 19 (1971), 173.]

22. (a)
∞
k=0 k

n Pr(X=k) = e−1∞
k=0 k

n/k! = ϖn by (16).
(b)

∞
k=0 k

n Pr(X = k) =
∞
k=0 k

nm
j=0


j
k


(−1)j−k/j!, and we can extend the

inner sum to j = ∞ because

k


j
k


(−1)kkn = 0 when j > n. Thus the nth moment

turns out to be
∞
k=0(kn/k!)

∞
l=0(−1)l/l! = ϖn. [See J. O. Irwin, J. Royal Stat. Soc.

A118 (1955), 389–404; J. Pitman, AMM 104 (1997), 201–209.]

23. (a) The formula holds whenever f(x) = xn, by (14), so it holds in general. (Thus
we also have

∞
k=0 f(k)/k! = ef(ϖ), by (16).)

(b) Suppose we have proved the relation for k, and let h(x) = (x−1)kf(x), g(x) =
f(x+1). Then f(ϖ+k+1) = g(ϖ+k) = ϖkg(ϖ) = h(ϖ+1) = ϖh(ϖ) = ϖk+1f(ϖ).
[See J. Touchard, Ann. Soc. Sci. Bruxelles 53 (1933), 21–31. This symbolic “umbral
calculus,” invented by John Blissard in Quart. J. Pure and Applied Math. 4 (1861),

From the Library of Melissa Nuno



ptg999

766 ANSWERS TO EXERCISES 7.2.1.5

279–305, is quite useful; but it must be handled carefully because f(ϖ) = g(ϖ) does
not imply that f(ϖ)h(ϖ) = g(ϖ)h(ϖ).]

(c) The hint is a special case of exercise 4.6.2–16(c). Setting f(x) = xn and k = p
in (b) then yields ϖn ≡ ϖp+n −ϖ1+n.

(d) Modulo p, the polynomial xN − 1 is divisible by g(x) = xp − x − 1, because
xp

k ≡ x + k and xN ≡ xp ≡ xp ≡ xp − x ≡ 1 (modulo g(x) and p). Thus if h(x) =
(xN − 1)xn/g(x) we have h(ϖ) ≡ h(ϖ + p) = ϖph(ϖ) ≡ (ϖp − ϖ)h(ϖ); and 0 ≡
g(ϖ)h(ϖ) = ϖN+n −ϖn (modulo p).

24. The hint follows by induction on e, because xp
e

=
p−1
k=0(x− kpe−1)p

e−1
. We can

also prove by induction on n that xn ≡ rn(x) (modulo g1(x) and p) implies

xp
e−1n ≡ rn(x)p

e−1 (modulo ge(x), pge−1(x), . . . , pe−1g1(x), and pe).

Hence xp
e−1N = 1 +h0(x)ge(x) +ph1(x)ge−1(x) + · · ·+pe−1he−1(x)g1(x) +pehe(x) for

certain polynomials hk(x) with integer coefficients. Modulo pe we have h0(ϖ)ϖn ≡
h0(ϖ + pe)(ϖ + pe)n = ϖpeh0(ϖ)ϖn ≡ (ge(ϖ) + 1)h0(ϖ)ϖn; hence

ϖpe−1N+n = ϖn + h0(ϖ)ge(ϖ)ϖn + ph1(ϖ)ge−1(ϖ)ϖn + · · · ≡ ϖn.

[A similar derivation applies when p = 2, but we let gj+1(x) = gj(x)2 + 2[j= 2], and
we obtain ϖn ≡ ϖn+3·2e (modulo 2e). These results are due to Marshall Hall; see Bull.
Amer. Math. Soc. 40 (1934), 387; Amer. J. Math. 70 (1948), 387–388. For further
information see W. F. Lunnon, P. A. B. Pleasants, and N. M. Stephens, Acta Arith.
35 (1979), 1–16.]

25. The first inequality follows by applying a much more general principle to the tree
of restricted growth strings: In any tree for which degree(p) ≥ degree(parent(p)) for
all non-root nodes p, we have wk/wk−1 ≤ wk+1/wk when wk is the total number
of nodes on level k. For if the m = wk−1 nodes on level k − 1 have respectively
a1, . . . , am children, they have at least a2

1 + · · ·+a2
m grandchildren; hence wk−1wk+1 ≥

m(a2
1 + · · ·+ a2

m) ≥ (a1 + · · ·+ am)2 = w2
k.

For the second inequality, note that ϖn+1 −ϖn =
n
k=0(


n
k


−

n−1
k−1

)ϖn−k; thus

ϖn+1

ϖn
− 1 =

n−1
k=0


n− 1
k


ϖn−k
ϖn

≤
n−1
k=0


n− 1
k


ϖn−k−1

ϖn−1
= ϖn

ϖn−1

because, for example, ϖn−3/ϖn = (ϖn−3/ϖn−2)(ϖn−2/ϖn−1)(ϖn−1/ϖn) is less than
or equal to (ϖn−4/ϖn−3)(ϖn−3/ϖn−2)(ϖn−2/ϖn−1) = ϖn−4/ϖn−1.

26. There are

n−1
n−t


rightward paths from n1 to tt ; we can represent them by 0s and
1s, where 0 means “go right,” 1 means “go up,” and the positions of the 1s tell us which
n−t of the elements are in the block with 1. The next step, if t > 1, is to another vertex
at the far left; so we continue with a path that defines a partition on the remaining t−1
elements. For example, the partition 14|2|3 corresponds to the path 0010 under these
conventions, where the respective bits mean that 1 ̸≡ 2, 1 ̸≡ 3, 1 ≡ 4, 2 ̸≡ 3. [Many
other interpretations are possible. The convention suggested here shows that ϖnk

enumerates partitions with 1 ̸≡ 2, . . . , 1 ̸≡ k, a combinatorial property discovered by
H. W. Becker; see AMM 51 (1944), 47, and Mathematics Magazine 22 (1948), 23–26.]

From the Library of Melissa Nuno



ptg999

7.2.1.5 ANSWERS TO EXERCISES 767

27. (a) In general, λ0 = λ1 = λ2n−1 = λ2n = 0. The following list shows also the
restricted growth strings that correspond to each loop via the algorithm of part (b):

0,0,0,0,0,0,0,0,0 0123
0,0,0,0,0,0,1,0,0 0122
0,0,0,0,1,0,0,0,0 0112
0,0,0,0,1,0,1,0,0 0111
0,0,0,0,1,1,1,0,0 0121

0,0,1,0,0,0,0,0,0 0012
0,0,1,0,0,0,1,0,0 0011
0,0,1,0,1,0,0,0,0 0001
0,0,1,0,1,0,1,0,0 0000
0,0,1,0,1,1,1,0,0 0010

0,0,1,1,1,0,0,0,0 0102
0,0,1,1,1,0,1,0,0 0100
0,0,1,1,1,1,1,0,0 0120
0,0,1,1,11,1,1,0,0 0101
0,0,1,1,2,1,1,0,0 0110

(b) The name “tableau” suggests a connection to Section 5.1.4, and indeed the
theory developed there leads to an interesting one-to-one correspondence. We can
represent set partitions on a triangular chessboard by putting
a rook in column lj of row n + 1 − j whenever lj ̸= 0 in the
linked list representation of exercise 2 (see the answer to exercise
5.1.3–19). For example, the rook representation of 135|27|489|6
is shown here. Equivalently, the nonzero links can be specified in
a two-line array, such as

1 2 3 4 8
3 7 5 8 9


; see 5.1.4–(11).

•

•

•

•
•

0

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

1
2

3
4

5
6

7
8

9

Consider the path of length 2n that begins at the lower left
corner of this triangular diagram and follows the right boundary
edges, ending at the upper right corner: The points of this path
are zk = (⌊k/2⌋, ⌈k/2⌉) for 0 ≤ k ≤ 2n. Moreover, the rectangle above and to the left
of zk contains precisely the rooks that contribute coordinate pairs i

j to the two-line
array when i ≤ ⌊k/2⌋ and j > ⌈k/2⌉; in our example, there are just two such rooks
when 9 ≤ k ≤ 12, namely

2 4
7 8

. Theorem 5.1.4A tells us that such two-line arrays

are equivalent to tableaux (Pk, Qk), where the elements of Pk come from the lower line
and the elements of Qk come from the upper line, and where both Pk and Qk have the
same shape. It is advantageous to use decreasing order in the P tableaux but increasing
order in the Q tableaux, so that in our example they are respectively

k Pk Qk

2 3 1

3 3 1

4 7
3

1
2

5 7 2

6 7 5 2 3

k Pk Qk

7 7 5 2 3

8 8 5
7

2 3
4

9 8
7

2
4

10 8
7

2
4

11 8
7

2
4

k Pk Qk

12 8
7

2
4

13 8 4

14 8 4

15 · ·

16 9 8

while Pk and Qk are empty for k = 0, 1, 17, and 18.
In this way every set partition leads to a vacillating tableau loop λ0, λ1, . . . , λ2n,

if we let λk be the integer partition that specifies the common shape of Pk and Qk.
(The loop is 0, 0, 1, 1, 11, 1, 2, 2, 21, 11, 11, 11, 11, 1, 1, 0, 1, 0, 0 in our example.)
Moreover, t2k−1 = 0 if and only if row n + 1 − k contains no rook, if and only if k is
smallest in its block.

Conversely, the elements of Pk and Qk can be uniquely reconstructed from the
sequence of shapes λk. Namely, Qk = Qk−1 if tk = 0. Otherwise, if k is even, Qk isQk−1
with the number k/2 placed in a new cell at the right of row tk; if k is odd, Qk is obtained

From the Library of Melissa Nuno



ptg999

768 ANSWERS TO EXERCISES 7.2.1.5

from Qk−1 by using Algorithm 5.1.4D to delete the rightmost entry of row tk. A similar
procedure defines Pk from the values of Pk+1 and tk+1, so we can work back from P2n
to P0. Thus the sequence of shapes λk is enough to tell us where to place the rooks.

Vacillating tableau loops were introduced in a paper by W. Y. C. Chen, E. Y. P.
Deng, R. R. X. Du, R. P. Stanley, and C. H. Yan [Transactions of the Amer. Math.
Soc. 359 (2007), 1555–1575], who showed that the construction has significant (and
surprising) consequences. For example, if the set partition Π corresponds to the
vacillating tableau loop λ0, λ1, . . . , λ2n, let’s say that its dual ΠD is the set partition
that corresponds to the sequence of transposed shapes λT0 , λT1 , . . . , λT2n. Then, by
exercise 5.1.4–7, Π contains a “k-crossing at l,” namely a sequence of indices with
i1 < · · · < ik ≤ l < j1 < · · · < jk and i1 ≡ j1, . . . , ik ≡ jk (modulo Π),
if and only if ΠD contains a “k-nesting at l,” which is a sequence of indices with
i′1 < · · · < i′k ≤ l < j′k < · · · < j′1 and i′1 ≡ j′1, . . . , i′k ≡ j′k (modulo ΠD). Notice also
that an involution is essentially a set partition in which all blocks have size 1 or 2; the
dual of an involution is an involution having the same singleton sets. In particular, the
dual of a perfect matching (when there are no singleton sets) is a perfect matching.

Furthermore, an analogous construction applies to rook placements in any Ferrers
diagram, not only in the stairstep shapes that correspond to set partitions. Given a
Ferrers diagram that has at most m parts, all of size ≤ n, we simply consider the path
z0 = (0, 0), z1, . . . , zm+n = (n,m) that hugs the right edge of the diagram, and stipulate
that λk = λk−1 + etk when zk = zk−1 + (1, 0), λk = λk−1− etk when zk = zk−1 + (0, 1).
The proof we gave for stairstep shapes shows also that every placement of rooks in the
Ferrers diagram, with at most one rook in each row and at most one in each column,
corresponds to a unique tableau loop of this kind.

[And much more is true, besides! See A. Berele, J. Combinatorial Theory A43
(1986), 320–328; S. Fomin, J. Combinatorial Theory A72 (1995), 277–292; M. van
Leeuwen, Electronic J. Combinatorics 3, 2 (1996), paper #R15.]
28. (a) Define a one-to-one correspondence between rook placements, by interchanging
the positions of rooks in rows j and j+1 if and only if there’s a rook in the “panhandle”
of the longer row:

•
•

◦◦
◦◦◦◦◦◦◦ ⇐⇒ •

•
◦◦

◦◦◦◦◦◦◦ ,

•
•
◦◦◦
◦◦ ⇐⇒ •

•
◦◦◦
◦◦

.

(b) This relation is obvious from the definition, by transposing all the rooks.
(c) Suppose a1 ≥ a2 ≥ · · · and ak > ak+1. Then we have

R(a1, a2, . . . ) = xR(a1−1, . . . , ak−1−1, ak+1, . . . ) + yR(a1, . . . , ak−1, ak−1, ak+1, . . . )

because the first term counts cases where a rook is in row k and column ak. Also
R(0) = 1 because of the empty placement. From these recurrences we find

R(1) = x+ y; R(2) = R(1, 1) = x+ xy + y2; R(3) = R(1, 1, 1) = x+ xy + xy2 + y3;
R(2, 1) = x2 + 2xy + xy2 + y3;
R(3, 1) = R(2, 2) = R(2, 1, 1) = x2 + x2y + xy + 2xy2 + xy3 + y4;
R(3, 1, 1) = R(3, 2) = R(2, 2, 1) = x2 + 2x2y + x2y2 + 2xy2 + 2xy3 + xy4 + y5;
R(3, 2, 1) = x3 + 3x2y + 3x2y2 + x2y3 + 3xy3 + 2xy4 + xy5 + y6.

From the Library of Melissa Nuno



ptg999

7.2.1.5 ANSWERS TO EXERCISES 769

(d) For example, the formula ϖ73(x, y) = xϖ63(x, y) + yϖ74(x, y) is equivalent
to R(5, 4, 4, 3, 2, 1) = xR(4, 3, 3, 2, 1) + yR(5, 4, 3, 3, 2, 1), a special case of (c); and
ϖnn(x, y) = R(n− 2, . . . , 0) is obviously equal to ϖ(n−1)1(x, y) = R(n− 2, . . . , 1).

(e) In fact yk−1ϖnk(x, y) is the stated sum over all restricted growth strings
a1 . . . an for which a2 > 0, . . . , ak > 0.
29. (a) If the rooks are respectively in columns (c1, . . . , cn), the number of free cells
is the number of inversions of the permutation (n+1−c1) . . . (n+1−cn). [Rotate the
right-hand example of Fig. 56 by 180◦ and compare the result to the illustration that
follows Eq. 5.1.1–(5).]

(b) Each r× r configuration can be placed in, say, rows i1 < · · · < ir and columns
j1 < · · · < jr, yielding (m−r)(n−r) free cells in the unchosen rows and columns; there
are (i2−i1+1) + 2(i3−i2−1) + · · ·+ (r−1)(ir−ir−1−1) + r(m−ir) in the unchosen rows
and chosen columns, and a similar number in the chosen rows and unchosen columns.
Furthermore 

1≤i1<···<ir≤m
y(i2−i1+1)+2(i3−i2−1)+···+(r−1)(ir−ir−1−1)+r(m−ir)

may be regarded as the sum of ya1+a2+···+am−r over all partitions r ≥ a1 ≥ a2 ≥ · · · ≥
am−r ≥ 0, so it is


m
r


y

by Theorem C. The polynomial r!y generates free cells for the
chosen rows and columns, by (a). Therefore the answer is y(m−r)(n−r)m

r


y


n
r


y
r!y =

y(m−r)(n−r)m!yn!y/((m− r)!y(n− r)!yr!y).
(c) The left-hand side is the generating function Rm(t + a1, . . . , t + am) for the

Ferrers diagram with t additional columns of height m. For there are t + am ways to
put a rook in row m, yielding 1+y+ · · ·+yt+am−1 = (1−yt+am)/(1−y) free cells with
respect to those choices; then there are t+ am−1 − 1 available cells in row m− 1, etc.

The right-hand side, likewise, equals Rm(t + a1, . . . , t + am). For if m − k rooks
are placed into columns > t, we must put k rooks into columns ≤ t of the k unused
rows; and we have seen that t!y/(t− k)!y is the generating function for free cells when
k rooks are placed on a k × t board.

Notes: The formula proved here can be regarded as a polynomial identity in the
variables y and yt; therefore it is valid for arbitrary t, although our proof assumed that
t is a nonnegative integer. This result was discovered in the case y = 1 by J. Goldman,
J. Joichi, and D. White, Proc. Amer. Math. Soc. 52 (1975), 485–492. The general case
was established by A. M. Garsia and J. B. Remmel, J. Combinatorial Theory A41
(1986), 246–275, who used a similar argument to prove the additional formula

∞
t=0

zt
m
j=1

1− yaj+m−j+t

1− y =
n
k=0

k!y


z

1− yz

. . .


z

1− ykz

Rm−k(a1, . . . , am).

(d) This statement, which follows immediately from (c), also implies that we have
R(a1, . . . , am) = R(a′1, . . . , a′m) if and only if equality holds for all x and for any nonzero
value of y. The Peirce polynomial ϖnk(x, y) of exercise 28(d) is the rook polynomial for
n−1
k−1


different Ferrers diagrams; for example, ϖ63(x, y) enumerates rook placements
for the shapes 43321, 44221, 44311, 4432, 53221, 53311, 5332, 54211, 5422, and 5431.
30. (a) We have ϖn(x, y) =


m x

n−mAmn, where Amn = Rn−m(n−1, . . . , 1) satisfies
a simple law: If we don’t place a rook in row 1 of the shape (n − 1, . . . , 1), that row
has m− 1 free cells because of the n−m rooks in other rows. But if we do put a rook

From the Library of Melissa Nuno



ptg999

770 ANSWERS TO EXERCISES 7.2.1.5

there, we leave 0 or 1 or · · · or m−1 of its cells free. Hence Amn = ym−1A(m−1)(n−1) +
(1 + y+ · · ·+ ym−1)Am(n−1), and it follows by induction that Amn = ym(m−1)/2n

m


y

.
(b) The formula ϖn+1(x, y) =


k


n
k


xn−kykϖk(x, y) yields

Am(n+1) =

k


n

k


ykA(m−1)k.

(c) From (a) and (b) we have

zn

(1− z)(1− (1 + q)z) . . . (1− (1 + q + · · ·+ qn−1)z) =

k


k

n


q
zk;


k


n

k


q
(−1)kq(

k
2)e(1+q+···+qn−k−1)z = q(

n
2) n!q


k


k

n


q

zk

k! .

[The second formula is proved by induction on n, because both sides satisfy the
differential equation G′

n+1(z) = (1 + q + · · · + qn)ezGn(qz); exercise 1.2.6–58 proves
equality when z = 0.]

Historical note: Leonard Carlitz introduced q-Stirling numbers in Transactions of
the Amer. Math. Soc. 33 (1933), 127–129. Then in Duke Math. J. 15 (1948), 987–1000,
he derived (among other things) an appropriate generalization of Eq. 1.2.6–(45):

(1 + q + · · ·+ qm−1)n =

k


n

k


q
q(

k
2) m!q

(m− k)!q
.

31. exp(ew+z +w− 1); therefore ϖnk = (ϖ+ 1)n−kϖk−1 = ϖn+1−k(ϖ− 1)k−1 in the
umbral notation of exercise 23. [L. Moser and M. Wyman, Trans. Royal Soc. Canada
(3) 43 (1954), Section 3, 31–37.] In fact, the numbers ϖnk(x, 1) of exercise 28(d) are
generated by exp((exw+xz − 1)/x+ xw).
32. We have δn = ϖn(1,−1), and a simple pattern is easily perceived in the generalized
Peirce triangle of exercise 28(d) when x = 1 and y = −1: We have |ϖnk(1,−1)| ≤ 1
and ϖn(k+1)(1,−1) ≡ ϖnk(1,−1) + (−1)n (modulo 3) for 1 ≤ k < n. [In JACM 20
(1973), 512–513, Gideon Ehrlich gave a combinatorial proof of an equivalent result.]
33. Representing set partitions by rook placements as in answer 27 leads to the answer
ϖnk, by setting x = y = 1 in exercise 28(d). [The case k = n was discovered by
H. Prodinger, Fibonacci Quarterly 19 (1981), 463–465.]
34. (a) Guittone’s Sonetti included 149 of scheme 01010101232323, 64 of scheme
01010101234234, two of scheme 01010101234342, seven with schemes used only once
(like 01100110234432), and 29 poems that we would no longer consider to be sonnets
because they do not have 14 lines.

(b) Petrarch’s Canzoniere included 115 sonnets of scheme 01100110234234, 109 of
scheme 01100110232323, 66 of scheme 01100110234324, 7 of scheme 01100110232232,
and 20 others of schemes like 01010101232323 used at most four times each.

(c) In Spenser’s Amoretti, 88 of 89 sonnets used the scheme 01011212232344; the
exception (number 8) was “Shakespearean.”

(d) Shakespeare’s 154 sonnets all used coalescences of the rather easy scheme
01012323454566, except that two of them (99 and 126) didn’t have 14 lines.

(e) Browning’s 44 Sonnets From the Portuguese obeyed the Petrarchan scheme
01100110232323.

From the Library of Melissa Nuno



ptg999

7.2.1.5 ANSWERS TO EXERCISES 771

Sometimes the lines would rhyme (by chance?) even when they didn’t need to; for
example, Browning’s final sonnet actually had the scheme 01100110121212.

Incidentally, the lengthy cantos in Dante’s Divine Comedy used an interlocking
scheme of rhymes in which 1 ≡ 3 and 3n− 1 ≡ 3n+ 1 ≡ 3n+ 3 for n = 1, 2, . . . .
35. Every incomplete n-line rhyme scheme Π corresponds to a singleton-free partition
of {1, . . . , n+1} in which (n+1) is grouped with all of Π’s singletons. [H. W. Becker
gave an algebraic proof in AMM 48 (1941), 702. Notice that ϖ′

n =

k


n
k


(−1)n−kϖk,

by the principle of inclusion and exclusion, and ϖn =

k


n
k


ϖ′
k; we can in fact write

ϖ′ = ϖ−1 in the umbral notation of exercise 23. J. O. Shallit has suggested extending
Peirce’s triangle by setting ϖn(n+1) = ϖ′

n; see exercises 38(e) and 33. In fact, ϖnk

is the number of partitions of {1, . . . , n} with the property that 1, . . . , k − 1 are not
singletons; see H. W. Becker, Bull. Amer. Math. Soc. 58 (1952), 63.]
36. exp(ez − 1 − z). (In general, if ϑn is the number of partitions of {1, . . . , n}
into subsets of allowable sizes s1 < s2 < · · · , the exponential generating function
n ϑnz

n/n! is exp(zs1/s1! + zs2/s2! + · · · ), because (zs1/s1! + zs2/s2! + · · · )k is the
exponential generating function for partitions into exactly k parts.)
37. There are


k


n
k


ϖ′
kϖ

′
n−k possibilities of length n, hence 784,071,966 when n = 14.

(But Pushkin’s scheme is hard to beat.)
38. (a) Imagine starting with x1x2 . . . xn = 01 . . . (n−1), then successively removing
some element bj and placing it at the left, for j = 1, 2, . . . , n. Then xk will be the
kth most recently moved element, for 1 ≤ k ≤ |{b1, . . . , bn}|; see exercise 5.2.3–36.
Consequently the array x1 . . . xn will return to its original state if and only if bn . . . b1
is a restricted growth string. [Robbins and Bolker, Æquat. Math. 22 (1981), 281–282.]

In other words, let a1 . . . an be a restricted growth string. Set b−j ← j and
bj+1 ← an−j for 0 ≤ j < n. Then for 1 ≤ j ≤ n, define kj by the rule that bj is the kjth
distinct element of the sequence bj−1, bj−2, . . . . For example, the string a1 . . . a16 =
0123032303456745 corresponds in this way to the σ-cycle 6688448628232384.

(b) Such paths correspond to restricted growth strings with max(a1, . . . , an) ≤ m,
so the answer is


n
0


+

n
1


+ · · ·+

n
m


.

(c) We may assume that i = 1, because the sequence k2 . . . knk1 is a σ-cycle
whenever k1k2 . . . kn is. Thus the answer is the number of restricted growth strings
with an = j − 1, namely


n−1
j−1


+

n−1
j


+

n−1
j+1


+ · · · .
(d) If the answer is fn we must have


k


n
k


fk = ϖn, since σ1 is the identity

permutation. Therefore fn = ϖ′
n, the number of set partitions without singletons

(exercise 35).
(e) Again ϖ′

n, by (a) and (d). [Consequently ϖ′
p mod p = 1 when p is prime.]

39. Set u = tp+1 to obtain 1
p+1

∞
0 e−uu(q−p)/(p+1) du = 1

p+1 Γ( q+1
p+1 ).

40. We have g(z) = cz−n ln z, so the saddle point occurs at n/c. The rectangular path
now has corners at ±n/c ± mi/c; and exp g(n/c + it) = (encn/nn) exp(−t2c2/(2n) +
it3c3/(3n2) + · · · ). The final result is en(c/n)n−1/

√
2πn times 1 + n/12 +O(n−2).

(Of course we could have obtained this result more quickly by letting w = cz in
the integral. But the answer given here applies the saddle point method mechanically,
without attempting to be clever.)
41. Again the net result is just to multiply (21) by cn−1; but in this case the left edge
of the rectangular path is significant instead of the right edge. (Incidentally, when
c = −1 we cannot derive an analog of (22) using Hankel’s contour when x is real and

From the Library of Melissa Nuno



ptg999

772 ANSWERS TO EXERCISES 7.2.1.5

positive, because the integral on that path diverges. But with the usual definition of zx,
a suitable path of integration does yield the formula −(cosπx)/Γ(x) when n = x > 0.)

42. We have

ez

2
dz/zn = 0 when n is even. Otherwise both left and right edges of

the rectangle with corners ±

n/2± in contribute approximately

en/2

2π(n/2)n/2

 ∞

−∞
exp


−2t2 − (−it)3

3
23/2

n1/2 + (it)4

n
− · · ·


dt,

when n is large. We can restrict |t| ≤ nϵ to show that this integral is I0 + (I4− 4
9I6)/n

with relative error O(n9ϵ−3/2), where Ik =
∞
−∞ e−2t2tk dt. As before, the relative error

is actually O(n−2); we deduce the answer

1
((n− 1)/2)!

= en/2
√

2π(n/2)n/2


1 + 1

12n +O
 1
n2


, n odd.

(The analog of (22) is (sin πx
2 )2/Γ((x− 1)/2) when n = x > 0.)

43. Let f(z) = ee
z

/zn. When z = −n+ it we have |f(z)| < en−n; when z = t+ 2πin+
iπ/2 we have |f(z)| = |z|−n < (2πn)−n. So the integral is negligible except on a path
z = ξ + it; and on that path |f | decreases as |t| increases from 0 to π. Already when
t = nϵ−1/2 we have |f(z)|/f(ξ) = O(exp(−n2ϵ/(logn)2)). And when |t| > π we have
|f(z)|/f(ξ) < 1/|1 + iπ/ξ|n = exp(−n2 ln(1 + π2/ξ2)).

44. Set u = na2t
2 in (25) to obtain ℜ

∞
0 e−u exp(n−1/2c3(−u)3/2 + n−1c4(−u)2 +

n−3/2c5(−u)5/2 + · · · ) du/
√
na2u where ck = (2/(ξ+ 1))k/2(ξk−1 + (−1)k(k−1)!)/k! =

ak/a
k/2
2 . This expression leads to

bl =


k1+2k2+3k3+···=2l
k1+k2+k3+···=m
k1,k2,k3,...≥0


−1

2

l+m ck1
3
k1!

ck2
4
k2!

ck3
5
k3! . . . ,

a sum over partitions of 2l. For example, b1 = 3
4c4 − 15

16c
2
3.

45. To get ϖn/n! we replace g(z) by ez − (n + 1) ln z in the derivation of (26).
This change multiplies the integrand in the previous answer by 1/(1 + it/ξ), which
is 1/(1− n−1/2a(−u)1/2) where a = −


2/(ξ + 1). Thus we get

b′l =


k+k1+2k2+3k3+···=2l
k1+k2+k3+···=m
k,k1,k2,k3,...≥0


−1

2

l+m
ak

ck1
3
k1!

ck2
4
k2!

ck3
5
k3! . . . ,

a sum of p(2l) + p(2l − 1) + · · · + p(0) terms; b′1 = 3
4c4 − 15

16c
2
3 + 3

4ac3 − 1
2a

2. [The
coefficient b′1 was obtained in a different way by L. Moser and M. Wyman, Trans.
Royal Soc. Canada (3) 49, Section 3 (1955), 49–54, who were the first to deduce an
asymptotic series for ϖn. Their approximation is slightly less accurate than the result
of (26) with n changed to n + 1, because it doesn’t pass exactly through the saddle
point. Formula (26) is due to I. J. Good, Iranian J. Science and Tech. 4 (1975), 77–83.]
46. Equations (13) and (31) show that ϖnk = (1 − ξ/n)kϖn(1 + O(n−1)) for fixed k
as n → ∞. And this approximation also holds when k = n, but with relative error
O((logn)2/n).

From the Library of Melissa Nuno



ptg999

7.2.1.5 ANSWERS TO EXERCISES 773

47. Steps (H1,H2, . . . ,H6) are performed respectively (1, ϖn, ϖn−ϖn−1, ϖn−1, ϖn−1,
ϖn−1 − 1) times. The loop in H4 sets j ← j − 1 a total of ϖn−2 + ϖn−3 + · · · + ϖ1
times; the loop in H6 sets bj ← m a total of (ϖn−2 − 1) + · · · + (ϖ1 − 1) times. The
ratio ϖn−1/ϖn is approximately (lnn)/n, and (ϖn−2 + · · ·+ϖ1)/ϖn ≈ (lnn)2/n2.
48. We can easily verify the interchange of summation and integration in

eϖx

Γ(x+ 1) = 1
2πi


ee

z

zx+1 dz = 1
2πi

 ∞
k=0

ekx

k! zx+1 dz

=
∞
k=0

1
k!

1
2πi


ekz

zx+1 dz =
∞
k=0

1
k!

kx

Γ(x+ 1) .

49. If ξ = lnn − ln lnn + x, we have β = 1 − e−x − αx. Therefore by Lagrange’s
inversion formula (exercise 4.7–8),

x =
∞
k=1

βk

k
[tk−1]


f(t)

1− αf(t)

k
=

∞
k=1

∞
j=0

βk

k
αj

k + j − 1

j


[tk−1] f(t)j+k,

where f(t) = t/(1− e−t). So the result follows from the handy identity
z

1− e−z
m

=
∞
n=0


m

m− n


zn

(m− 1)(m− 2) . . . (m− n) .

(This identity should be interpreted carefully when n ≥ m; the coefficient of zn is a
polynomial in m of degree n, as explained in CMath equation (7.59).)

The formula in this exercise is due to L. Comtet, Comptes Rendus Acad. Sci.
(A) 270 (Paris, 1970), 1085–1088, who identified the coefficients previously computed
by N. G. de Bruijn, Asymptotic Methods in Analysis (1958), 25–28. Convergence for
n ≥ e was shown by Jeffrey, Corless, Hare, and Knuth, Comptes Rendus Acad. Sci. (I)
320 (1995), 1449–1452, who also derived a formula that converges somewhat faster.

(The equation ξeξ = n has complex roots as well. We can obtain them all by
using lnn + 2πim in place of lnn in the formula of this exercise; the sum converges
rapidly when m ̸= 0. See Corless, Gonnet, Hare, Jeffrey, and Knuth, Advances in
Computational Math. 5 (1996), 347–350.)
50. Let ξ = ξ(n). Then ξ′(n) = ξ/((ξ + 1)n), and the Taylor series

ξ(n+ k) = ξ + kξ′(n) + k2

2 ξ
′′(n) + · · ·

can be shown to converge for |k| < n+ 1/e.
Indeed, much more is true, because the function ξ(n) = −T (−n) is obtained from

the tree function T (z) by analytic continuation to the negative real axis. (The tree
function has a quadratic singularity at z = e−1; after going around this singularity
we encounter a logarithmic singularity at z = 0, as part of an interesting multi-level
Riemann surface on which the quadratic singularity appears only at level 0.) The
derivatives of the tree function satisfy zkT (k)(z) = R(z)k pk(R(z)), where R(z) =
T (z)/(1 − T (z)) and pk(x) is the polynomial of degree k − 1 defined by pk+1(x) =
(1 + x)2p′k(x) + k(2 + x)pk(x). For example,

p1(x) = 1, p2(x) = 2 + x, p3(x) = 9 + 10x+ 3x2, p4(x) = 64 + 113x+ 70x2 + 15x3.

From the Library of Melissa Nuno



ptg999

774 ANSWERS TO EXERCISES 7.2.1.5

(The coefficients of pk(x), incidentally, enumerate certain phylogenetic trees called
Greg trees: [xj ] pk(x) is the number of oriented trees with j unlabeled nodes and
k labeled nodes, where leaves must be labeled and unlabeled nodes must have at
least two children. See J. Felsenstein, Systematic Zoology 27 (1978), 27–33; L. R.
Foulds and R. W. Robinson, Lecture Notes in Math. 829 (1980), 110–126; C. Flight,
Manuscripta 34 (1990), 122–128.) If qk(x) = pk(−x), we can prove by induction that
(−1)mq(m)

k (x) ≥ 0 for 0 ≤ x ≤ 1. Therefore qk(x) decreases monotonically from kk−1

to (k − 1)! as x goes from 0 to 1, for all k,m ≥ 1. It follows that

ξ(n+ k) = ξ + kx

n
−

kx

n

2 q2(x)
2! +


kx

n

3 q3(x)
3! − · · · , x = ξ

ξ + 1 ,

where the partial sums alternately overshoot and undershoot the correct value if k > 0.
51. There are two saddle points, σ =


n+5/4−1/2 and σ′ = −1−σ. Integration on a

rectangular path with corners at σ±im and σ′±im shows that only σ is relevant as n→
∞ (although σ′ contributes a relative error of roughly e−

√
n, which can be significant

when n is small). Arguing almost as in (25), but with g(z) = z + z2/2 − (n + 1) ln z,
we find that tn is well approximated by

n!
2π

 nϵ

−nϵ

eg(σ)−a2t
2+a3it

3+···+al(−it)l+O(n(l+1)ϵ−(l−1)/2)dt, ak = σ + 1
kσk−1 + [k= 2]

2 .

The integral expands as in exercise 44 to

n! e(n+σ)/2

2σn+1√πa2
(1 + b1 + b2 + · · ·+ bm +O(n−m−1)).

This time ck = (σ + 1)σ1−k(1 + 1/(2σ))−k/2/k for k ≥ 3, hence (2σ + 1)3kσkbk is a
polynomial in σ of degree 2k; for example,

b1 = 3
4c4 −

15
16c

2
3 = 8σ2 + 7σ − 1

12σ(2σ + 1)3 .

In particular, Stirling’s approximation and the b1 term yield

tn = 1√
2
nn/2e−n/2+

√
n−1/4


1 + 7

24n
−1/2 − 119

1152n
−1 − 7933

414720n
−3/2 +O(n−2)


after we plug in the formula for σ— a result substantially more accurate than equation
5.1.4–(53), and obtained with considerably less labor.
52. Let G(z) =


k Pr(X = k)zk, so that the jth cumulant κj is j! [tj ] lnG(et). In

case (a) we have G(z) = ee
ξz−eξ; hence

lnG(et) = eξe
t−eξ = eξ(eξ(et−1)−1) = eξ

∞
k=1

(et−1)k ξ
k

k! , κj = eξ

k


k

j


ξk[j ̸= 0].

Case (b) is sort of a dual situation: Here κ = j = ϖj [j ̸= 0] because

G(z) = ee
−1−1


j,k


k

j


e−j

zk

k! = ee
−1−1


j

(ez−1 − e−1)j

j! = ee
z−1−1.

[If ξeξ = 1 in case (a) we have κj = eϖ [j ̸= 0]. But if ξeξ = n in that case, the
mean is κ1 = n and the variance σ2 is (ξ+ 1)n. Thus, the formula in exercise 45 states
that the mean value n occurs with approximate probability 1/

√
2πσ and relative error

O(1/n). This observation leads to another way to prove that formula.]

From the Library of Melissa Nuno



ptg999

7.2.1.5 ANSWERS TO EXERCISES 775

53. We can write lnG(et) = µt + σ2t2/2 + κ3t
3/3! + · · · as in Eq. 1.2.10–(23), and

there is a positive constant δ such that
∞
j=3 |κj | tj/j! < σ2t2/6 when |t| ≤ δ. Hence, if

0 < ϵ < 1/2, we can prove that

[zµn+r]G(z)n = 1
2π

 π

−π

G(eit)n dt
eit(µn+r)

= 1
2π

 nϵ−1/2

−nϵ−1/2
exp


−irt− σ2t2n

2 +O(n3ϵ−1/2)

dt+O(e−cn

2ϵ
)

as n → ∞, for some constant c > 0: The integrand for nϵ−1/2 ≤ |t| ≤ δ is bounded in
absolute value by exp(−σ2n2ϵ/3); and when δ ≤ |t| ≤ π its magnitude is at most αn,
where α = max |G(eit)| is less than 1 because the individual terms pkekit don’t all lie
on a straight line by our assumption. Thus

[zµn+r]G(z)n = 1
2π

 ∞

−∞
exp


−irt− σ2t2n

2 +O(n3ϵ−1/2)

dt+O(e−cn

2ϵ
)

= 1
2π

 ∞

−∞
exp


−σ

2n

2


t+ ir

σ2n

2
− r2

2σ2n
+O(n3ϵ−1/2)


dt+O(e−cn

2ϵ
)

= e−r
2/(2σ2n)

σ
√

2πn
+O(n3ϵ−1).

By taking account of κ3, κ4, . . . in a similar way we can refine the estimate to O(n−m)
for arbitrarily large m; thus the result is valid also for ϵ = 0. [In fact, such refinements
lead to the “Edgeworth expansion,” according to which [zµn+r]G(z)n is asymptotic to

e−r
2/(2σ2n)

σ
√

2πn


k1+2k2+3k3+···=m
k1+k2+k3+···=l
k1,k2,k3,...≥0
0≤s≤l+m/2

(−1)s(2l +m)2s

σ4l+2m−2s2ss!
r2l+m−2s

nl+m−s
1

k1! k2! . . .


κ3

3!

k1κ4

4!

k2
. . . ;

the absolute error is O(n−p/2), where the constant hidden in the O depends only on p
and G but not on r or n, if we restrict the sum to cases with m < p− 1. For example,
when p = 3 we get

[zµn+r]G(z)n = e−r
2/(2σ2n)

σ
√

2πn


1− κ3

2σ4


r

n


+ κ3

6σ6


r3

n2


+O

 1
n3/2


,

and there are seven more terms when p = 4. See P. L. Chebyshev, Zapiski Imp.
Akad. Nauk 55 (1887), No. 6, 1–16; Acta Math. 14 (1890), 305–315; F. Y. Edgeworth,
Trans. Cambridge Phil. Soc. 20 (1905), 36–65, 113–141; H. Cramér, Skandinavisk
Aktuarietidsskrift 11 (1928), 13–74, 141–180.]
54. Formula (40) is equivalent to α = s coth s+ s, β = s coth s− s.
55. Let c = αe−α. The Newtonian iteration β0 = c, βk+1 = (1− βk)ceβk/(1− ce−βk )
rises rapidly to the correct value, unless α is extremely close to 1. For example, β7
differs from ln 2 by less than 10−75 when α = ln 4.

56. (a) By induction on n, g(n+1)(z) = (−1)n
n

k=0

n
k


e(n−k)z

α(ez − 1)n+1 − n!
zn+1


.

From the Library of Melissa Nuno



ptg999

776 ANSWERS TO EXERCISES 7.2.1.5

(b)
n
k=0


n
k


ekσ/n! =

 1
0 . . .

 1
0 exp(⌊u1 + · · ·+ un⌋σ) du1 . . . dun

<
 1

0 . . .
 1

0 exp((u1 + · · ·+ un)σ) du1 . . . dun = (eσ−1)n/σn.
The lower bound is similar, since ⌊u1 + · · ·+ un⌋ > u1 + · · ·+ un − 1.

(c) Thus n! (1−β/α) < (−σ)ng(n+1)(σ) < 0, and we need only verify that 1−β/α <
2(1− β), namely that 2αβ < α+ β. But αβ < 1 and α+ β > 2, by exercise 54.
57. (a) n + 1 −m = (n + 1)(1 − 1/α) < (n + 1)(1 − β/α) = (n + 1)σ/α ≤ 2N as in
answer 56(c). (b) The quantity α+ αβ increases as α increases, because its derivative
with respect to α is 1 + β + β(1 − α)/(1 − β) = (1 − αβ)/(1 − β) + β > 0. Therefore
1− β < 2(1− 1/α).
58. (a) The derivative of |eσ+it − 1|2/|σ + it|2 = (eσ+it − 1)(eσ−it − 1)/(σ2 + t2) with
respect to t is (σ2 + t2) sin t− t(2 sin t

2 )2− (2 sinh σ
2 )2 t times a positive function. This

derivative is always negative for 0 < t ≤ 2π, because it is less than t2 sin t−t(2 sin t
2 )2 =

8u sinu cosu(u− tanu) where t = 2u.
Let s = 2 sinh σ

2 . When σ ≥ π and 2π ≤ t ≤ 4π, the derivative is still negative,
because we have t ≤ 4π ≤ s2 − σ2/(2π) ≤ s2 − σ2/t. Similarly, when σ ≥ 2π the
derivative remains negative for 4π ≤ t ≤ 168π; the proof gets easier and easier.

(b) Let t = uσ/
√
N . Then (41) and (42) prove that τ

−τ
e(n+1)g(σ+it) dt =

(eσ − 1)m

σn
√
N

 Nϵ

−Nϵ

exp

−u

2

2 + (−iu)3a3

N 1/2 + · · ·+ (−iu)lal
N l/2−1 +O(N (l+1)ϵ−(l−1)/2)


du,

where (1 − β)ak is a polynomial of degree k − 1 in α and β, with 0 ≤ ak ≤ 2/k. (For
example, 6a3 = (2 − β(α + β))/(1 − β) and 24a4 = (6 − β(α2 + 4αβ + β2))/(1 − β).)
The monotonicity of the integrand shows that the integral over the rest of the range is
negligible. Now trade tails, extend the integral over −∞ < u <∞, and use the formula
of answer 44 with ck = 2k/2ak to define b1, b2, . . . .

(c) We will prove that |ez − 1|mσn+1/((eσ − 1)m|z|n+1) is exponentially small on
those three paths. If σ ≤ 1, this quantity is less than 1/(2π)n+1 (because, for example,
eσ − 1 > σ). If σ > 1, we have σ < 2|z| and |ez − 1| ≤ eσ − 1.
59. In this extreme case, α = 1 + n−1 and β = 1− n−1 + 2

3n
−2 +O(n−3); hence N =

1 + 1
3n

−1 +O(n−2). The leading term β−n/
√

2πN is e/
√

2π times 1− 1
3n

−1 +O(n−2).
(Notice that e/

√
2π ≈ 1.0844.) The quantity ak in answer 58(b) turns out to be

1/k +O(n−1). So the correction terms, to first order, are

bj
N j

= [zj ] exp

−

∞
k=1

B2kz
2k−1

2k(2k − 1)


+O

 1
n


,

namely the terms in the (divergent) series corresponding to Stirling’s approximation

1
1! ∼

e√
2π


1− 1

12 + 1
288 + 139

51840 −
571

2488320 − · · ·

.

60. (a) The number of m-ary strings of length n in which all m digits appear is m!

n
m


,

and the inclusion-exclusion principle expresses this quantity as

m
0

mn−


m
1

(m−1)n+

· · · . Now see exercise 7.2.1.4–37.

From the Library of Melissa Nuno



ptg999

7.2.1.5 ANSWERS TO EXERCISES 777

(b) We have (m− 1)n/(m− 1)! = (mn/m!)m exp(n ln(1− 1/m)), and ln(1− 1/m)
is less than −nϵ−1.

(c) In this case α > nϵ and β = αe−αeβ < αe1−α. Therefore 1 < (1−β/α)m−n <
exp(nO(e−α)); and 1 > e−βm = e−(n+1)β/α > exp(−nO(e−α)). So (45) becomes
(mn/m!)(1 +O(n−1) +O(ne−nϵ)).
61. Now α = 1 + r

n
+ O(n2ϵ−2) and β = 1− r

n
+ O(n2ϵ−2). Thus N = r + O(n2ϵ−1),

and the case l = 0 of Eq. (43) reduces to

nr
(
n

2

)r er

rr
√

2πr

(
1 +O(n2ϵ−1) +O

(1
r

))
.

(This approximation meshes well with identities such as
{

n
n−1
}

=
(
n
2
)

and
{

n
n−2
}

=
2
(
n
4
)

+
(
n+1

4
)
; indeed, we have{

n

n− r

}
= n2r

2rr!

(
1 +O

( 1
n

))
as n→∞

when r is constant, according to formulas (6.42) and (6.43) of CMath.)
62. The assertion is true for 1 ≤ n ≤ 10000 (with m = ⌊eξ − 1⌋ in 5648 of those
cases). E. R. Canfield and C. Pomerance, in a paper that nicely surveys previous work
on related problems, have shown that the statement holds for all sufficiently large n,
and that the maximum occurs in both cases only if eξ mod 1 is extremely close to 1

2 .
[Integers 2 (2002), A1:1–A1:13; 5 (2005), A9:1.]
63. (a) The result holds when p1 = · · · = pn = p, because ak−1/ak = (k/(n+1−k))×
((n− µ)/µ) ≤ (n− µ)/(n+ 1− µ) < 1. It is also true by induction when pn = 0 or 1.
For the general case, consider the minimum of ak−ak−1 over all choices of (p1, . . . , pn)
with p1 + · · ·+ pn = µ: If 0 < p1 < p2 < 1, let p′1 = p1 − δ and p′2 = p2 + δ, and notice
that a′k−a′k−1 = ak−ak−1 + δ(p1− p2− δ)α for some α depending only on p3, . . . , pn.
At a minimum point we must have α = 0; thus we can choose δ so that either p′1 = 0
or p′2=1. The minimum can therefore be achieved when all pj have one of three values
{0, 1, p}. But we have proved that ak − ak−1 > 0 in such cases.

(b) Changing each pj to 1− pj changes µ to n− µ and ak to an−k.
(c) No roots of f(x) are positive. Hence f(z)/f(1) has the form in (a) and (b).
(d) Let C(f) be the number of sign changes in the sequence of coefficients of f ;

we want to show that C((1 − x)2f) = 2. In fact, C((1 − x)mf) = m for all m ≥ 0.
For C((1 − x)m) = m, and C((a + bx)f) ≤ C(f) when a and b are positive; hence
C((1− x)mf) ≤ m. And if f(x) is any nonzero polynomial whatsoever, C((1− x)f) >
C(f); hence C((1− x)mf) ≥ m.

(e) Since
∑
k

[
n
k

]
xk = x(x+1) . . . (x+n−1), part (c) applies directly with µ = Hn.

And for the polynomials fn(x) =
∑
k

{
n
k

}
xk, we can use part (c) with µ = ϖn+1/ϖn−1,

if fn(x) has n real roots. The latter statement follows by induction because fn+1(x) =
x(fn(x) + f ′

n(x)): If a > 0 and if f(x) has n real roots, so does the function g(x) =
eaxf(x). And g(x) → 0 as x → −∞; hence g′(x) = eax(af(x) + f ′(x)) also has n real
roots (namely, one at the far left, and n− 1 between the roots of g(x)).

[See E. Laguerre, J. de Math. (3) 9 (1883), 99–146; W. Hoeffding, Annals Math.
Stat. 27 (1956), 713–721; J. N. Darroch, Annals Math. Stat. 35 (1964), 1317–1321;
J. Pitman, J. Combinatorial Theory A77 (1997), 297–303.]
64. We need only use computer algebra to subtract lnϖn from lnϖn−k.

From the Library of Melissa Nuno



ptg999

778 ANSWERS TO EXERCISES 7.2.1.5

65. It is ϖ−1
n times the number of occurrences of k-blocks plus the number of occur-

rences of ordered pairs of k-blocks in the list of all set partitions, namely (

n
k


ϖn−k +

n
k


n−k
k


ϖn−2k)/ϖn, minus the square of (49). Asymptotically, (ξk/k!)(1 +O(n4ϵ−1)).

66. (The maximum of (48) when n = 100 is achieved only for the three partitions
71625446372614, 71625446382513, 71625447362613.)
67. The expected value of Mk is ϖn+k/ϖn. By (50), the mean is therefore ϖn+1/ϖn =
n/ξ + ξ/(2(ξ + 1)2) +O(n−1), and the variance is

ϖn+2

ϖn
− ϖ

2
n+1

ϖ2
n

=

n

ξ

2
1+ ξ(2ξ + 1)

(ξ + 1)2n
−1− ξ2

(ξ + 1)2n
+O

 1
n2


= n

ξ(ξ + 1) +O(1).

68. The maximum number of nonzero components in all parts of a partition is n =
n1 + · · ·+ nm; it occurs if and only if all component parts are 0 or 1. Then the values
of l+ 1 = n and b = mn1 + (m− 1)n2 + · · ·+nm reach their maximum. [Thus it’s best
to choose names of the multiset elements so that n1 ≤ n2 ≤ · · · ≤ nm.]
69. At the beginning of step M3, if k > b and l = r−1, go to M5. In step M5, if j = a
and (vj − 1)(r − l) < uj , go to M6 instead of decreasing vj .
70. (a)

n−1
r−1

+ n−2
r−1

+ · · ·+ r−1
r−1

, since
n−k
r−1

 contain the block {0, . . . , 0, 1} with k 0s.
The total, also known as p(n− 1, 1), is p(n− 1) + · · ·+ p(1) + p(0).

(b) Exactly N =

n−1
r


+

n−2
r−2


of the r-block partitions of {1, . . . , n−1, n} are the
same if we interchange n−1↔ n. So the answer is N+ 1

2 (

n
r


−N) = 1

2 (

n
r


+N), which

is also the number of restricted growth strings a1 . . . an with max(a1, . . . , an) = r − 1
and an−1 ≤ an. And the total is 1

2 (ϖn +ϖn−1 +ϖn−2).
71. ⌊ 1

2 (n1 +1) . . . (nm+1)− 1
2⌋, because there are (n1 +1) . . . (nm+1)−2 compositions

into two parts, and half of those compositions fail to be in lexicographic order unless
all nj are even. (See exercise 7.2.1.4–31. Formulas for up to 5 parts have been worked
out by E. M. Wright, Proc. London Math. Soc. (3) 11 (1961), 499–510.)
72. Yes. The following algorithm computes ajk = p(j, k) for 0 ≤ j, k ≤ n in Θ(n4)
steps: Start with ajk ← 1 for all j and k. Then for l = 0, 1, . . . , n and m = 0,
1, . . . , n (in any order), if l +m > 1 set ajk ← ajk + a(j−l)(k−m) for j = l, . . . , n and
k = m, . . . , n (in increasing order).

(See Table ??. A similar method computes p(n1, . . . , nm) in O(n1 . . . nm)2 steps.
Cheema and Motzkin, in the cited paper, have derived the recurrence relation

n1p(n1, . . . , nm) =
∞
l=1


k1,...,km≥0

k1p(n1 − k1l, . . . , nm − kml),

but this interesting formula is helpful for computation only in certain cases.)

Table A–1
MULTIPARTITION NUMBERS

n 0 1 2 3 4 5 6
p(0, n) 1 1 2 3 5 7 11
p(1, n) 1 2 4 7 12 19 30
p(2, n) 2 4 9 16 29 47 77
p(3, n) 3 7 16 31 57 97 162
p(4, n) 5 12 29 57 109 189 323
p(5, n) 7 19 47 97 189 339 589

n 0 1 2 3 4 5
P (0, n) 1 2 9 66 712 10457
P (1, n) 1 4 26 249 3274 56135
P (2, n) 2 11 92 1075 16601 325269
P (3, n) 5 36 371 5133 91226 2014321
P (4, n) 15 135 1663 26683 537813 13241402
P (5, n) 52 566 8155 149410 3376696 91914202

From the Library of Melissa Nuno



ptg999

7.2.1.5 ANSWERS TO EXERCISES 779

73. Yes. Let P (m,n) = p(1, . . . , 1, 2, . . . , 2) when there are m 1s and n 2s; then
P (m, 0) = ϖm, and we can use the recurrence

2P (m,n+ 1) = P (m+ 2, n) + P (m+ 1, n) +

k


n

k


P (m, k).

This recurrence can be proved by considering what happens when we replace a pair
of x’s in the multiset for P (m,n + 1) by two distinct elements x and x′. We get
2P (m,n + 1) partitions, representing P (m + 2, n), except in the P (m + 1, n) cases
where x and x′ belong to the same block, or in


n
k


P (m,n− k) cases where the blocks

containing x and x′ are identical and have k additional elements.
Notes: See Table A–1. Another recurrence, less useful for computation, is

P (m+ 1, n) =

j,k


n

k


n− k +m

j


P (j, k).

The sequence P (0, n) was first investigated by E. K. Lloyd, Proc. Cambridge Philos.
Soc. 103 (1988), 277–284, and by G. Labelle, Discrete Math. 217 (2000), 237–248, who
computed it by completely different methods. Exercise 70(b) showed that P (m, 1) =
(ϖm + ϖm+1 + ϖm+2)/2; in general P (m,n) can be written in the umbral notation
ϖmqn(ϖ), where qn(x) is a polynomial of degree 2n defined by the generating function∞
n=0 qn(x)zn/n! = exp((ez + (x+ x2)z − 1)/2). Thus, by exercise 31,

∞
n=0

P (m,n)z
n

n! = e(ez−1)/2
∞
k=0

ϖ(2k+m+1)(k+m+1)

2k
zk

k! .

Labelle proved, as a special case of much more general results, that the number of
partitions of {1, 1, . . . , n, n} into exactly r blocks is

n! [xrzn] e−x+x2(ez−1)/2
∞
k=0

ezk(k+1)/2 x
k

k! .

75. The saddle point method yields CeAn
2/3+Bn1/3

/n55/36, where A = 3ζ(3)1/3, B =
π2ζ(3)−1/3/2, and C = ζ(3)19/36(2π)−5/63−1/2 exp(1/3 + B2/4 + ζ′(2)/(2π2) − γ/12).
[F. C. Auluck, Proc. Cambridge Philos. Soc. 49 (1953), 72–83; E. M. Wright, American
J. Math. 80 (1958), 643–658.]
76. Using the fact that p(n1, n2, n3, . . . ) ≥ p(n1 + n2, n3, . . . ), hence P (m + 2, n) ≥
P (m,n+ 1), one can prove by induction that P (m,n+ 1) ≥ (m+n+ 1)P (m,n). Thus

2P (m,n) ≤ P (m+ 2, n− 1) + P (m+ 1, n− 1) + eP (m,n− 1).

Iterating this inequality shows that 2nP (0, n) = (ϖ2 + ϖ)n + O(n(ϖ2 + ϖ)n−1) =
(nϖ2n−1+ϖ2n)(1+O((logn)3/n)). (A more precise asymptotic formula can be obtained
from the generating function in the answer to exercise 73.)
78. 3 3 3 3 2 1 0 0 0

1 0 0 0 2 2 3 2 0 (because the encoded partitions
2 2 1 0 0 2 1 0 2 must all be (000000000))
2 1 0 2 2 0 0 1 3

79. There are 432 such cycles. But they yield only 304 different cycles of set partitions,
since different cycles might describe the same sequence of partitions. For example,
(000012022332321) and (000012022112123) are partitionwise equivalent.

From the Library of Melissa Nuno



ptg999

780 ANSWERS TO EXERCISES 7.2.1.5

80. [See F. Chung, P. Diaconis, and R. Graham, Discrete Mathematics 110 (1992),
52–55.] Construct a digraph with ϖn−1 vertices and ϖn arcs; each restricted growth
string a1 . . . an defines an arc from vertex a1 . . . an−1 to vertex ρ(a2 . . . an), where ρ is
the function of exercise 4. (For example, arc 01001213 runs from 0100121 to 0110203.)
Every universal cycle defines an Eulerian trail in this digraph; conversely, every Eulerian
trail can be used to define one or more universal sequences of restricted growth on the
elements {0, 1, . . . , n− 1}.

An Eulerian trail exists by the method of Section 2.3.4.2, if we let the last exit
from every nonzero vertex a1 . . . an−1 be through arc a1 . . . an−1an−1. The sequence
might not be cyclic, however. For example, no universal cycle exists when n < 4; and
when n = 4 the universal sequence 000012030110100222 defines a cycle of set partitions
that does not correspond to any universal cycle.

The existence of a cycle can be proved for n ≥ 6 if we start with an Eulerian
trail that begins 0nxyxn−3u(uv)⌊(n−2)/2⌋u[n odd] for some distinct elements {u, v, x, y}.
This pattern is possible if we alter the last exit of 0k121n−3−k from 0k−1121n−2−k to
0k−1121n−3−k2 for 2 ≤ k ≤ n−4, and let the last exits of 0121n−4 and 01n−32 be respec-
tively 010n−41 and 0n−310. Now if we choose numbers of the cycle backwards, thereby
determining u and v, we can let x and y be the smallest elements distinct from {0, u, v}.

We can conclude in fact that the number of universal cycles having this extremely
special type is huge — at least(n−1∏

k=2

(k! (n− k)){
n−1
k }

)
/((n− 1)! (n− 2)332n−522), when n ≥ 6.

Yet none of them are known to be readily decodable. See below for the case n = 5.
81. Noting that ϖ5 = 52, we use a universal cycle for {1, 2, 3, 4, 5} in which the
elements are 13 clubs, 13 diamonds, 13 hearts, 12 spades, and a joker. One such cycle,
found by trial and error using Eulerian trails as in the previous answer, is

(�����|}~J|~}~�||}~|}|~}}|~|~|�||}|}}|}��}~~~�~~~��}}).

(In fact, there are essentially 114,056 such cycles if we branch to ak = ak−1 as a last
resort and if we introduce the joker as soon as possible.) The trick still works with
probability 47

52 if we call the joker a spade.
82. There are 13644 solutions, although this number reduces to 1981 if we regard

1
²
≡ ²
4
≡ ³
¶
, 1
³
≡ ²
¶
, ²
³
≡ 4
¶
.

The smallest common sum is 5/2, and the largest is 25/2; the remarkable solution

²
1

+1
5

+4
²

+5
³

+¶
³

= 1
³

+¶
1

+²
5

+²
¶

+4
5

= 4
1

+²
³

+4
³

+4
¶

+¶
5

is one of only two essentially distinct ways to get the common sum 118/15. [The
special cases with common sums 5/2 and 10 had been noticed earlier by H. E. Dudeney
in Strand 68 (1924), 422, 530.]

SECTION 7.2.1.6
1. It could “see” a left parenthesis at the left of every internal node and a right

parenthesis at the bottom of every internal node. Alternatively, it could associate right

From the Library of Melissa Nuno



ptg999

7.2.1.6 ANSWERS TO EXERCISES 781

parentheses with the external nodes that it encounters — except for the very last ;
see exercise 20.

2. Z1. [Initialize.] Set zk ← 2k − 1 for 0 ≤ k ≤ n. (Assume that n ≥ 2.)
Z2. [Visit.] Visit the tree-combination z1z2 . . . zn.
Z3. [Easy case?] If zn−1 < zn − 1, set zn ← zn − 1 and return to Z2.
Z4. [Find j.] Set j ← n−1 and zn ← 2n−1. While zj−1 = zj−1, set zj ← 2j−1

and j ← j − 1.
Z5. [Decrease zj ]. Terminate the algorithm if j = 1. Otherwise set zj ← zj − 1

and go back to Z2.
3. Label the nodes of the forest in preorder. The first zk − 1 elements of a1 . . . a2n

contain k − 1 left parentheses and zk − k right parentheses. So there is an excess of
2k−1−zk left parentheses over right parentheses when the “worm” first reaches node k ;
and 2k − 1− zk is the level (or depth) of that node.

Let q1 . . . qn be the inverse of p1 . . . pn, so that node k is the qkth node in postorder.
Since k occurs to the left of j in p1 . . . pn if and only if qk < qj , we see that ck is the
number of nodes j that precede k in preorder but follow it in postorder, namely the
number of proper ancestors of k; again, this is the level of k.

Alternative proof: We can also show that both sequences z1 . . . zn and c1 . . . cn have
essentially the same recursive structure as (5): Zpq = (Zp(q−1) + 1p), 1(Z(p−1)q + 1p−1)
when 0 ≤ p ≤ q; and Cpq = Cp(q−1), (q−p)C(p−1)q. (Consider the mate of the last,
next-to-last, etc., left parenthesis.)

Incidentally, the formula ‘ck+1 + dk = ck + 1’ is equivalent to (11).
4. Almost true; but d1 . . . dn and z1 . . . zn occur in decreasing order, while p1 . . . pn

and c1 . . . cn are increasing. (This lexicographic property for a sequence of permutations
p1 . . . pn is not automatically inherited from lexicographic order of the corresponding
inversion tables c1 . . . cn; but the result does hold for this particular class of p1 . . . pn.)

5. d1 . . . d15 = 0 2 0 0 2 0 0 1 0 3 2 0 1 0 4; z1 . . . z15 = 1 2 5 6 7 10 11 12 14 15 19 22 23 25 26;
p1 . . . p15 = 2 1 5 4 8 10 9 7 11 6 13 15 14 12 3; c1 . . . c15 = 0 1 0 1 2 1 2 3 3 4 2 1 2 2 3.

6. Match up the parentheses as usual; then simply curl the string up
and around until a2n becomes adjacent to a1, and notice that the
distinction between left and right parentheses can be reconstructed
from the context. Letting a1 correspond to the bottom of the circle,
as in Table 1, yields the diagram shown. [A. Errera, Mémoires de
la Classe Sci. 8◦, Acad. Royale de Belgique (2) 11, 6 (1931), 26 pp.]

7. (a) It equals ))() . . . (); setting a1 ← ‘(’ will restore the initial
string. (b) The initial binary tree (from step B1) will have been restored,
except that ln = n+ 1.

8. l1 . . . l15 = 2 0 4 5 0 7 8 0 10 0 0 13 0 15 0; r1 . . . r15 = 3 0 0 6 0 12 11 9 0 0 0 0 14 0 0;
e1 . . . e15 = 1 0 3 1 0 2 2 0 1 0 0 2 0 1 0; s1 . . . s15 = 1 0 12 1 0 5 3 0 1 0 0 3 0 1 0.

9. Node j is a (proper) ancestor of node k if and only if j < k and sj + j ≥ k. (As a
consequence, we have c1 + · · ·+ cn = s1 + · · ·+ sn.)
10. If j is the index zk of the kth left parenthesis, we have wj = ck + 1 and wj′ = ck,
where j′ is the index of the matching right parenthesis.
11. Swap left and right parentheses in a2n . . . a1 to get the mirror image of a1 . . . a2n.

From the Library of Melissa Nuno



ptg999

782 ANSWERS TO EXERCISES 7.2.1.6

12. The mirror reflection of (4) corresponds to the forest❦12 ❦21❦3f ❦44 ❦53❦6a ❦78 ❦85❦97 ❦a6❦b9❦ce ❦db❦ed ❦fc
;

but the significance of transposition is clearer, forest-wise, if we draw right-sibling and
left-child links horizontally and vertically, then do a matrix-like transposition:❦12❦21 ❦3f❦44❦53 ❦6a❦78❦85 ❦97❦a6

❦b9 ❦ce❦db ❦ed❦fc

❦12 ❦21❦3f ❦44 ❦53❦6a ❦78 ❦85❦97 ❦a6❦b9❦ce ❦db❦ed ❦fc
13. (a) By induction on the number of nodes, we have preorder(FR) = postorder(F )R
and postorder(FR) = preorder(F )R.

(b) Let F correspond to the binary tree B; then preorder(F ) = preorder(B)
and postorder(F ) = inorder(B), as noted after 2.3.2–(6). Therefore preorder(FT ) =
preorder(BR) = postorder(B)R has no simple relationship to either preorder(F ) or
postorder(F ). But postorder(FT ) = inorder(BR) = inorder(B)R = postorder(F )R.
14. According to answer 13, postorder(FRT ) = preorder(F ) = preorder(B) when F
corresponds naturally to B; and postorder(FTR) = preorder(FT )R = postorder(B).
Therefore the equation FRT = FTR holds if and only if F has at most one node.
15. If FR corresponds naturally to the binary tree B′, the root of B′ is the root of F ’s
rightmost tree. The left link of node x in B′ is to the leftmost child of x in FR, which
is the rightmost child of x in F ; similarly, the right link is to x’s left sibling in F .

Note: Since B corresponds naturally to FRT, answer 13 tells us that inorder(B) =
postorder(FRT ) = postorder(FR)R = preorder(F ).
16. The forest F |G is obtained by placing the trees of F below the first node of G in
postorder. Associativity follows because F |(G|H) = (HTGTFT )T = (F |G)|H. Notice,
incidentally, that postorder(F |G) = postorder(F )postorder(G), and that F | (GH) =
(F |G)H when G is nonnull.
17. Any nonnull forest can be written F = (G | ·)H, where · denotes the 1-node forest;
then FR = HR(GR | ·) and FT = (HT | ·)GT . In particular we cannot have FR = FT

unless H is the null forest Λ, since the first tree of HR can’t be HT | · ; and G must
then also be Λ. Furthermore F = FT if and only if G = HT . In that case we cannot
also have FR = FRT unless G = Λ; the first tree of GTR would otherwise have more
nodes than G itself.

From the Library of Melissa Nuno



ptg999

7.2.1.6 ANSWERS TO EXERCISES 783

It appears to be true that we cannot have FRT = FTR unless F = FR. Under
that assumption, FRT = FTR if and only if F and FT are both self-conjugate. David
Callan has discovered two infinite families of such forests, with parameters i, j, k ≥ 0:

F =
i i

i

j ,

FT =
i

i i
j

;

or F =

i i

i i

i i

i i

k

j

j j

j

, FT =

i

i
i

i

i i

i i

j j

k

j j

.

(In these examples, i = 2, j = 3, and k = 5.) Are there any other cases?
18. The C15 = 9,694,845 forests are partitioned into 20,982 classes. The largest is
a cycle of length 58,968, one of whose elements is ((()(()))())()((()(())())())().
The shortest are six two-element classes (corresponding to exercise 17), consisting of

()()()()()()()()()()()()()()(), ()()()()((()()()()()))()()()(),
()()()(((((()()()())))))()()(), ()()((((((((()()()))))))))()(),
()((()())((()(())()))(()()))(), ()(((((((((((()())))))))))))(),

and their transposes. The somewhat strange strings (((((((())))))))()()()()()()(),
()()()()()()()(((((((()))))))), and (((((((()()()()()()()()))))))) each have
wedge-shaped binary trees and form a unique class of size 3. The path that runs from
()((()(()()))(())((()())()))() to ((()())(()())(())(()())(()())) has 3120 el-
ements, one of which is (2). According to the conjecture in answer 19, the shortest
possible cycle has length 6; when n = 15 there are 66 such cycles. (The next-shortest
cycle, which is unique, has length 10 and includes ()(()()())()((((())()))((()))).)
19. The transformation from Fj to Fj+1 by Algorithm P can be paraphrased as follows:
“Find the last node in preorder, say x, that has a left sibling, say y. Remove x from
its family and make it the new rightmost child of y. And if x < n, change all of x’s
descendants x+ 1, . . . , n into trivial one-node trees.”

The transformation that takes FRj into FRj+1 can therefore be stated as follows,
if we recall that the kth node of Fj in preorder is the kth-from-last node of FRj in
postorder: “Find the first node in postorder, say x, that has a right sibling, say y.
Remove x from its family and make it the new leftmost child of y. And if x > 1,
change all of x’s descendants x− 1, . . . , 1 into trivial one-node trees.”

Similarly, we can paraphrase the transformation from Gj to Gj+1 that is specified
by Algorithm B: “Find j, the root of the leftmost nontrivial tree; then find k, its
rightmost child. Remove k and its descendants from j’s family, and insert them between
j and j’s right sibling. Finally, if j > 1, make j and its right siblings all children of
j − 1, and j − 1 a child of j − 2, etc.”

When this transformation changes the left-sibling/right-child representation from
GRT
j to GRT

j+1 (see exercise 15), it turns out to be identical to the transformation that
takes FRj to FRj+1 in the left-child/right-sibling representation. Therefore GRT

j = FRj ,
because this identity clearly holds when j = 1.

From the Library of Melissa Nuno



ptg999

784 ANSWERS TO EXERCISES 7.2.1.6

(It follows that the sequence of tables e1 . . . en−1 for the binary trees generated
by Algorithm B is exactly the sequence of tables dn−1 . . . d1 for the parenthesis strings
generated by Algorithm P; this phenomenon is illustrated in Tables 1 and 2.)

Several symmetries between lists of forests have been explored by M. C. Er in
Comp. J. 32 (1989), 76–85.
20. (a) This assertion, which generalizes Lemma 2.3.1P, is readily proved by induction.

(b) The following procedure is, in fact, almost identical to Algorithm P:
T1. [Initialize.] Set b3k−2 ← 3 and b3k−1 ← b3k ← 0 for 1 ≤ k ≤ n; also set b0 ←

bN ← 0 and m← N − 3, where N = 3n+ 1.
T2. [Visit.] Visit b1 . . . bN . (Now bm = 3 and bm+1 . . . bN = 0 . . . 0.)
T3. [Easy case?] Set bm ← 0. If bm−1 = 0, set bm−1 ← 3, m← m− 1, and go to T2.
T4. [Find j.] Set j ← m − 1 and k ← N − 3. While bj = 3, set bj ← 0, bk ← 3,

j ← j − 1, and k ← k − 3.
T5. [Increase bj .] Terminate the algorithm if j = 0. Otherwise set bj ← 3, m← N −3,

and return to T2.
[See S. Zaks, Theoretical Comp. Sci. 10 (1980), 63–82. In that article, Zaks pointed
out that it is even easier to generate the sequence z1 . . . zn of indices j such that bj = 3,
using an algorithm virtually identical to the answer to exercise 2, because a valid ternary
tree combination z1 . . . zn is characterized by the inequalities zk−1 < zk ≤ 3k − 2.]
21. For this problem we can essentially combine Algorithm P with Algorithm 7.2.1.2L.
We shall assume for convenience that nt > 0 and n1 + · · ·+ nt > 1.
G1. [Initialize.] Set l ← N . Then for j = t, . . . , 2, 1 (in this order), do the following

operations nj times: Set bl−j ← j, bl−j+1 ← · · · ← bl−1 ← 0, and l ← l − j.
Finally set b0 ← bN ← c0 ← 0 and m← N − t.

G2. [Visit.] Visit b1 . . . bN . (At this point bm > 0 and bm+1 = · · · = bN = 0.)
G3. [Easy case?] If bm−1 = 0, set bm−1 ← bm, bm ← 0, m← m− 1, and return to G2.
G4. [Find j.] Set c1 ← bm, bm ← 0, j ← m − 1, and k ← 1. While bj ≥ ck, set

k ← k + 1, ck ← bj , bj ← 0, and j ← j − 1.
G5. [Increase bj .] If bj > 0, find the smallest l ≥ 1 such that bj < cl, and interchange

bj ↔ cl. Otherwise, if j > 0, set bj ← c1 and c1 ← 0. Otherwise terminate.
G6. [Reverse and spread out.] Set j ← k and l ← N . While cj > 0, set b l−cj ← cj ,

l← l − cj , and j ← j − 1. Then set m← N − ck and go back to G2.
This algorithm assumes that N > n1 + 2n2 + · · ·+ tnt. [See SICOMP 8 (1979), 73–81.]
22. Note first that d1 can be increased if and only if r1 = 0 in the linked representation.
Otherwise the successor of d1 . . . dn−1 is obtained by finding the smallest j with dj > 0
and setting dj ← 0, dj+1 ← dj+1 + 1. We may assume that n > 2.
K1. [Initialize.] Set lk ← k + 1 and rk ← 0 for 1 ≤ k < n; also set ln ← rn ← 0.
K2. [Visit.] Visit the binary tree represented by l1l2 . . . ln and r1r2 . . . rn.
K3. [Easy cases?] Set y ← r1. If y = 0, set r1 ← 2, l1 ← 0, and return to K2.

Otherwise if l1 = 0, set l1 ← 2, r1 ← r2, r2 ← l2, l2 ← 0, and return to K2.
Otherwise set j ← 2 and k ← 1.

K4. [Find j and k.] If rj > 0, set k ← j and y ← rj . Then if j ̸= y − 1, set j ← j + 1
and repeat this step.

From the Library of Melissa Nuno



ptg999

7.2.1.6 ANSWERS TO EXERCISES 785

K5. [Shuffle subtrees.] Set lj ← y, rj ← ry, ry ← ly, and ly ← 0. If j = k, go to K2.
K6. [Shift subtrees.] Terminate if y = n. Otherwise, while k > 1, set k ← k − 1, j ←

j−1, and rj ← rk. Then while j > 1, set j ← j−1 and rj ← 0. Return to K2.
(See the analysis in exercise 45. Korsh [Comp. J. 48 (2005), 488–497; 49 (2006), 351–
357; 54 (2011), 776–785] has shown that this algorithm, Algorithm P, and Algorithm B
can all be extended to t-ary trees in interesting ways.)
23. (a) Since zn begins at 2n − 1 and goes back and forth Cn−1 times, it ends at
2n − 1 − (Cn−1 mod 2), when n > 1. Furthermore the final value of zj is constant for
all n ≥ j. Thus the final string z1z2 . . . is 1 2 5 6 9 11 13 14 17 19 . . . , containing all
odd numbers < 2n except 3, 7, 15, 31, . . . .

(b) Similarly, the preorder permutation that characterizes the final tree is 2k 2k−1

. . . 1 3 5 6 7 9 10 . . . , where k = ⌊lgn⌋. Forestwise, node 2j is the parent of 2j−1 nodes
{2j−1, 2j−1 + 1, . . . , 2j − 1}, for 1 < j ≤ k, and the trees {2k + 1, . . . , n} are trivial.

Note: If Algorithm N is restarted at step N2 after it has terminated, it will generate
the same sequence, but backwards. Algorithm L has the same property.
24. l0 l1 . . . l15 = 2 0 1 0 3 0 0 6 5 0 8 0 0 12 11 4; r1 . . . r15 = 0 15 0 10 7 0 0 9 0 14 13 0 0 0 0;
k1 . . . k15 = 0 0 2 2 4 5 5 4 8 4 10 11 11 10 2; q1 . . . q15 = 2 1 15 4 3 10 8 5 7 6 9 14 11 13 12; and
u1 . . . u15 = 12 3 1 0 0 5 0 3 1 0 0 1 0 1 0. (If nodes of the forest F are numbered in post-
order, kj is the left sibling of j; or, if j is the leftmost child of p, kj = kp. Stated
another way, kj is the parent of j in the forest FTR. And kj is also j− 1−un+1−j , the
number of elements to the left of j in q1 . . . qn that are less than j.)
25. Taking a cue from Algorithms N and L, we want to extend each (n− 1)-node tree
to a list of two or more n-node trees. The idea in this case is to make n a child of
n− 1 in the binary tree at the beginning and the end of every such list. The following
algorithm uses additional link fields pj and sj , where pj points to the parent of j in the
forest, and sj points to j’s left sibling or to j’s rightmost sibling if j is the leftmost in
its family. (These pointers pj and sj are, of course, not the same as the permutations
p1 . . . pn in Table 1 or the scope coordinates s1 . . . sn in Table 2. In fact s1 . . . sn is the
permutation λ of exercise 33 below.)
M1. [Initialize.] Set lj ← j+1, rj ← 0, sj ← j, pj ← j−1, and oj ← −1 for 1 ≤ j ≤ n,

except that ln ← 0.
M2. [Visit.] Visit l1 . . . ln and r1 . . . rn. Then set j ← n.
M3. [Find j.] If oj > 0, set k ← pj and go to M5 if k ̸= j − 1. If oj < 0, set k ← sj

and go to M4 if k ̸= j − 1. If k = j − 1 in either case, set oj ← −oj , j ← j − 1,
and repeat this step.

M4. [Transfer down.] (At this point k is j’s left sibling, or the rightmost member of
j’s family.) If k ≥ j, terminate if j = 1, otherwise set x← pj , lx ← 0, z ← k, and
k ← 0 (thereby detaching node j from its parent and heading for the top level).
But if k < j, set x ← pj + 1, z ← sx, rk ← 0, and sx ← k (thereby detaching
node j from k and going down a level). Then set x ← k + 1, y ← sx, sx ← z,
sj ← y, ry ← j, and x← j. While x ̸= 0, set px ← k and x← rx. Return to M2.

M5. [Transfer up.] (At this point k is j’s parent.) Set x ← k + 1, y ← sj , z ← sx,
sx ← y, and ry ← 0. If k ̸= 0, set y ← pk, rk ← j, sj ← k, sy+1 ← z, and x← j;
otherwise set y ← j− 1, ly ← j, sj ← z, and x← j. While x ̸= 0, set px ← y and
x← rx. Return to M2.

From the Library of Melissa Nuno



ptg999

786 ANSWERS TO EXERCISES 7.2.1.6

Running time notes: We can argue as in exercise 44 that step M3 costs 2Cn+3(Cn−1 +
· · ·+C1) mems, and that steps M4 and M5 together cost 8Cn−2(Cn−1 + · · ·+C1), plus
twice the number of times x← rx. The latter quantity is difficult to analyze precisely;
for example, when n = 15 and j = 6, the algorithm sets x← rx exactly (1, 2, 3, 4, 5, 6)
times in respectively (45, 23, 7, 9, 2, 4) cases. But heuristically the average number of
times x ← rx should be approximately 2 − 2j−n when j is given, therefore about
(2Cn − (Cn − Cn−1)− (Cn−1 − Cn−2)/2− (Cn−2 − Cn−3)/4− · · · )/Cn ≈ 8/7 overall.
Empirical tests confirm this predicted behavior, showing that the total cost per tree
approaches 265/21 ≈ 12.6 mems as n→∞.
26. (a) The condition is clearly necessary. And if it holds, we can uniquely construct F :
Node 1 and its siblings are the roots of the forest, and their descendants are defined
inductively by noncrossing partitions. (In fact, we can compute the depth coordinates
c1 . . . cn directly from Π’s restricted growth string a1 . . . an: Set c1 ← 0 and i0 ← 0.
For 2 ≤ j ≤ n, if aj > max(a1, . . . , aj−1), set cj ← cj−1 + 1 and iaj ← cj , otherwise
set cj ← iaj .)

(b) If Π and Π ′ satisfy the noncrossing condition, so does their greatest common
refinement Π ∨Π ′, so we can proceed as in exercise 7.2.1.5–12(a).

(c) Let x1, . . . , xm be the children of some node in F , and let 1 ≤ j < k ≤ m.
Form F ′ by removing xj+1, . . . , xk from their family and reattaching them as children
of xj+1 − 1, the rightmost descendant of xj .

(d) Obvious, by (c). Thus the forests are ranked from bottom to top by the number
of nonleaf nodes they contain (which is one less than the number of blocks in Π).

(e) Exactly
n
k=0 ek(ek−1)/2, where e0 = n−e1−· · ·−en is the number of roots.

(f) Dualization is similar to the transposition operation in exercise 12, but we use
left-sibling and right-child links instead of left-child and right-sibling, and we transpose
about the minor diagonal:❦12❦21 ❦3f❦44❦53 ❦6a❦78❦85 ❦97❦a6

❦b9 ❦ce❦db ❦ed❦fc
❦12❦21

❦3f

❦44❦53
❦6a❦78❦85❦97❦a6 ❦b9
❦ce❦db❦ed❦fc

(“Right” links now point downward. Notice that j is the rightmost child of k in F if
and only if j is the left sibling of k in FD. Preorder of FD reverses the preorder of F ,
just as postorder of FT reverses postorder of F .)

(g) From (f) we can see that F ′ covers F if and only if FD covers F ′D. (Therefore
FD has n+ 1− k leaves if F has k.)

(h) F ∧ F ′ = (FD ∨ F ′D)D.
(i) No. If it did, equality would necessarily hold, by duality. But, for example,

0101 ∧ 0121 = 0000 and 0101 ∨ 0121 = 0123, while leaves(0101) + leaves(0121) ̸=
leaves(0000) + leaves(0123).

[Noncrossing partitions were first considered by H. W. Becker in Math. Mag. 22
(1948), 23–26. G. Kreweras proved in 1971 that they form a lattice; see the references
in answer 2.3.4.6–3.]

From the Library of Melissa Nuno



ptg999

7.2.1.6 ANSWERS TO EXERCISES 787

27. (a) This assertion is equivalent to exercise 2.3.3–19.
(b) If we represent a forest by right-child and left-sibling links, preorder cor-

responds to inorder of the binary tree (see exercise 2.3.2–5), and sj is the size of
node j’s right subtree. Rotation to the left at any nonleaf of this binary tree decreases
exactly one of the scope coordinates, and the amount of decrease is as small as possible
consistent with a valid table s1 . . . sn. Therefore F ′ covers F if and only if F is obtained
from F ′ by such a rotation. (Rotation in the left-child/right-sibling representation is
similar, but with respect to postorder.)

(c) Dualization preserves the covering relation but exchanges left with right.
(d) F ⊤ F ′ = (FD ⊥ F ′D)D. Equivalently, as noted in exercise 6.2.3–32, we can

independently minimize the left-subtree sizes.
(e) The covering transformation in answer 26(c) obviously makes sj ≤ s′j for all j.
(f) True, because F ∧ F ′ < F ⊣ F ⊥ F ′ and F ∧ F ′ < F ′ ⊣ F ⊥ F ′.
(g) False; for example, 0121 ∨ 0122 = 0123 and 0121 ⊤ 0122 = 0122. (But we do

have F ⊤ F ′ ⊣ F ∨ F ′, by taking duals in (f).)
(h) The longest path, of length


n
2

, repeatedly decreases the rightmost nonzero sj

by 1. The shortest, of length n− 1, repeatedly sets the leftmost nonzero sj to 0.
Answer 6.2.3–32 gives many references to the literature of Tamari lattices.

28. (a) Just compute min(c1, c
′
1) . . .min(cn, c′n) and max(c1, c

′
1) . . .max(cn, c′n), be-

cause c1 . . . cn is a valid sequence if and only if c1 = 0 and cj ≤ cj−1 + 1 for 1 < j ≤ n.
(b) Obvious because of (a). Note: The elements of any distributive lattice can be

represented as the order ideals of some partial ordering. In the case of Fig. 62,
that partial ordering is shown at the right, and a similar triangular grid with
sides of length n− 2 yields Stanley’s lattice of order n.

(c) Take a node k of F that has a left sibling, j. Remove k from its family and
place it as a new right child of j, followed by its former children as new children of j;
the former children of k retain their own descendants. (This operation corresponds
to changing )( to () in a nested parenthesis string. Thus a “perfect” Gray code
for parentheses corresponds to a Hamiltonian path in the cover graph of Stanley’s
lattice. Exactly 38 such paths exist when n = 4, namely (8, 6, 6, 8, 4, 6) from 0123 to
(0001, 0010, 0012, 0100, 0111, 0120) respectively.)

(d) True, because the cover relation in (c) is left-right symmetric. (We have
F ⊆ F ′ if and only if wj ≤ w′

j for 0 ≤ j ≤ 2n, where the worm depths wj are defined
in exercise 10. If w0 . . . w2n is the worm walk of F , its reverse w2n . . . w0 is the worm
walk of FR. Notice that the cover relation changes just one coordinate wj . One can
compute F ∩ F ′ and F ∪ F ′ by taking min and max of the w’s instead of the c’s.)

(e) See exercise 9. (Thus F ⊥ F ′ ⊆ F ∩ F ′, etc., as in exercise 27(f).)
Notes: Stanley introduced this lattice in Fibonacci Quarterly 13 (1975), 222–223.

Since three important lattices are defined on the same elements, we need three notations
for the different orderings; the symbols <, ⊣ , and ⊆ adopted here are intended to be
reminiscent of the names of Kreweras, Tamari, and Stanley (who is Stenli in Russia).
29. If we paste six regular pentagons together, we get 14 vertices whose coordinates
after suitable rotation and scaling are respectively

p1010 = p−0000 = p∗3000 = p∗−2100 = (−1,
√

3, 2/ϕ);
p0010 = p∗3100 = (ϕ−2,

√
3ϕ, 0); p3010 = p−0100 = (0, 0, 2); p3210 = p−0200 = (2, 0, 2/ϕ);

p0210 = p∗3200 = (
√

5,
√

3, 0); p1000 = p∗2000 = (−ϕ2,
√

3/ϕ, 0);

From the Library of Melissa Nuno



ptg999

788 ANSWERS TO EXERCISES 7.2.1.6

here (x, y, z)∗ means (x,−y, z) and (x, y, z)− means (x, y,−z). But then the three
4-edged “faces” are not squares; in fact, they don’t even lie in a plane.

(One can however get a similar-looking solid, with true squares but irregular
pentagons, by gluing together two suitable tetrahedra and lopping off the three glued-
together corners. Alternative sets of coordinates for the associahedron, of substantial
mathematical interest but less appealing to the eye, are discussed by Günter Ziegler in
his Lectures on Polytopes (New York: Springer, 1995), example 9.11.)
30. (a) f̄n−1 . . . f̄1 0, because internal node j in symmetric order has a nonempty right
subtree if and only if internal node j+ 1 in symmetric order has an empty left subtree.

(b) In general if the footprint were 1p1 0q1+11p2+10q2+1 . . . 1pk+10qk+1, we would
want to count all binary trees whose nodes in symmetric order have the specification
Rp1NLq1BRp2NLq2B . . . RpkNLqk , where B means “both subtrees are nonempty,”
R means “the right subtree is nonempty but not the left,” L means “the left subtree
is nonempty but not the right,” and N means “neither subtree is nonempty.” This
number in general is 

p1 + q1

p1


p2 + q2

p2


. . .


pk + qk
pk


Ck−1,

and in particular it is
1+0

1
0+0

0
1+0

1
5+3

5
0+0

0
0+0

0
0+2

0
0+0

0
1+2

1

C8 = 240240.

(c) dj = 0 if and only if cj+1 > cj , by exercise 3.
(d) In general, the footprint of F ⊥F ′ is f1 . . . fn ∧ f ′

1 . . . f
′
n, by exercise 27(a); the

footprint of F ⊤ F ′ is f1 . . . fn ∨ f ′
1 . . . f

′
n, by (a) and exercise 27(d).

[The fact that complements always exist in the Tamari lattice is due to H. Lakser;
see G. Grätzer, General Lattice Theory (1978), exercise I.6.30.]
31. (a) 2n−1; see exercise 6.2.2–5.

(b) c1 ≤ · · · ≤ cn; d1, . . . , dn−1 ≤ 1; ej > 0 implies ej + · · · + en = n − j;
kj+1 ≤ kj + 1; p1 ≤ · · · ≤ pj ≥ · · · ≥ pn for some j; sj > 0 implies sj = n − j;
u1 ≥ · · · ≥ un; zj+1 ≤ zj + 2. (Other constraints, which apply in general, whittle down
the number of possibilities to 2n−1 in each case. For example, u1 . . . un must be a valid
sequence of scope coordinates.)

(c) True in only n cases out of 2n−1. (But FT is degenerate.)
(d) The degenerate forest with footprint f1 . . . fn has cj+1 = cj + fj . Elements

j < k are siblings if and only if fj = fj+1 = · · · = fk−1 = 0. Thus if F ′′ is the
degenerate forest with footprint f1 . . . fn ∧ f ′

1 . . . f
′
n, then F ′′ < F and F ′′ < F ′; hence

F ′′ < F ∧ F ′ ⊣ F ⊥ F ′. And we also have F ⊥ F ′ ⊣ F ′′ by (b). A similar argument
proves that F ∨F ′ = F ⊤F ′ is the degenerate forest with footprint f1 . . . fn ∨ f ′

1 . . . f
′
n.

Thus, when the Kreweras and Tamari lattices are restricted to degenerate forests,
they become identical to the Boolean lattice of subsets of {1, . . . , n− 1}. [This result,
in the case of Tamari lattices, is due to George Markowsky, Order 9 (1992), 265–290,
whose paper also shows that Tamari lattices enjoy many further properties.]
32. Suppose F and F ′ have scope coordinates s1 . . . sn and s′1 . . . s

′
n. Call index j

frozen if sj < s′j or j = 0. We want to specify the values of the frozen coordinates and
maximize the others. Let s0 = n, and for 0 ≤ k ≤ n let

s′′k = sj − k + j, where j = max{i | 0 ≤ i ≤ k, i is frozen, and i+ si ≥ k}.

Since sk ≤ sj − (k − j) whenever 0 ≤ k − j ≤ sj , we have s′′k ≥ sk, with equality when
k is frozen.

From the Library of Melissa Nuno



ptg999

7.2.1.6 ANSWERS TO EXERCISES 789

The scopes s′′0s′′1 . . . s′′n correspond to a valid forest according to the condition of
exercise 27(a). For if k ≥ 0 and 0 ≤ l ≤ s′′k = sj − k + j and s′′k+l = sj′ − k− l+ j′, we
have s′′k+l + l ≤ s′′k if 0 ≤ j′ − j ≤ sj , because sj′ + j′ − j ≤ sj in that case. And we
can’t have j > j′ or j′ > j + sj , because j + sj ≥ k + l ≥ j′.

Let F ′′′ be a forest with scopes satisfying sk ≤ s′′′k ≤ s′′k . Then min(s′k, s′′′k ) = sk,
because sk = s′′k when k is frozen, otherwise sk = s′k.

Conversely, if F ′′′ is a forest with F ′ ⊥ F ′′′ = F , we must have sk ≤ s′′′k ≤ s′′k .
For s′′′k < sk would imply s′′′k < s′k. And if k is minimal with s′′′k > s′′k , we have
s′′k = sj − k+ j for some frozen j with 0 ≤ j ≤ k and j+ sj ≥ k. Then s′′′j ≥ sj implies
k − j ≤ s′′′j , hence s′′′k + k − j ≤ s′′′j . If j < k we have s′′′j ≤ s′′j = sj , a contradiction.
But j = k implies min(s′′′k , s′k) > sk.

To get the first semidistributive law, apply this principle with F replaced by F ⊥G
and F ′ replaced by F ; then the hypotheses F ⊣ G ⊣ F ′′ and F ⊣ H ⊣ F ′′ imply that
F ⊣ G⊤H ⊣ F ′′. The second semidistributive law follows by taking duals in the first.

(Ralph Freese suggests calling F ′′ the pseudo-complement of F ′ over F .)

33. (a) Let kλ = LLINK[k] if LLINK[k] ̸= 0, otherwise RLINK[k − 1] if k ̸= 1, otherwise
the root of the binary tree. This rule defines a permutation because kλ = j if and only
if k = parent(j) + [j is a right child], or k = 1 and j is the root. Also kλ ≥ k when
LLINK[k] = 0 and kσλ ≤ k when RLINK[k] = 0. [For a generalization to t-ary trees,
see P. H. Edelman, Discrete Math. 40 (1982), 171–179.]

(b) Using the representation of (2) in answer 26(f), we see that λ(F ) is (3 1)(2)
(12 6 4)(5)(11 7)(14 13)(9 8)(15)(10) in that case. In general the cycles are the families
of the forest, in decreasing order within each cycle; nodes are numbered in preorder.
[See Dershowitz and Zaks, Discrete Math. 62 (1986), 215–218.]

(c) λ(FD) = ρσλ(F )ρ, where ρ is the “flip” permutation (1n)(2n−1) . . . , because
the dual forest interchanges LLINK↔ RLINK and flips the preorder numbering.

(d) The cycle breakup (xj xk)(x1 . . . xm) = (x1 . . . xjxk+1 . . . xm)(xj+1 . . . xk) cor-
responds to answer 26(c).

(e) By (d), each covering path corresponds to a factorization of (n . . . 2 1). Let
qn denote the number of such factorizations. Then we have the recurrence q1 = 1 and
qn =

n−1
l=1 (n− l)


n−2
l−1

qlqn−l, because there are n− l choices with k − j = l by which

the first transposition breaks the cycle into parts of sizes l and n− l, then

n−2
l−1


ways
to interleave the subsequent factors. The solution is qn = nn−2, because

n−1
l=1


n− 1
l


l l−1(y − l)n−1−l = lim

x→0

n−1
l=1


n− 1
l


(x+ l)l−1(y − l)n−1−l

= lim
x→0

(x+ y)n−1 − yn−1

x
= (n− 1)yn−1.

[See J. Dénes, Magyar Tudományos Akadémia Matematikai Kutató Intézetének
Közleményei 4 (1959), 63–70. It is natural to seek a correspondence between factoriza-
tions and labeled free trees, since there also happen to be nn−2 of the latter. Perhaps
the simplest is the following, given (1 2 . . . n) = (x1 y1) . . . (xn−1 yn−1) where xj < yj :
Suppose the cycle containing xj and yj in (xj yj) . . . (xn−1 yn−1) is (z1 . . . zm), where
z1 < · · · < zm. If yj = zm, let aj = z1, otherwise let aj = min{zi | zi > xj}. Then one
can show that a1 . . . an−1 is a “wake-up sequence” for parking n− 1 cars, and exercise
6.4–31 connects it to free trees.]

From the Library of Melissa Nuno



ptg999

790 ANSWERS TO EXERCISES 7.2.1.6

34. Each covering path from bottom to top is equivalent to a Young tableau of shape
(n− 1, n− 2, . . . , 1), so we can use Theorem 5.1.4H. (See exercise 5.3.4–38.)

[The enumeration of such paths in Tamari lattices remains mysterious; the relevant
sequence is 1, 1, 2, 9, 98, 2981, 340549, . . . .]
35. Multiply by n+ 1, then see AMM 97 (1990), 626–630.
36. We might as well generalize to t-ary trees for arbitrary t ≥ 1, by making obvious
amendments to steps T1–T5. Let C(t)

n be the number of t-ary trees with n internal
nodes; thus Cn = C

(2)
n and C

(t)
n = ((t − 1)n + 1)−1tn

n


. If h of the degrees bj are

changed between visits, we have h ≥ x in C
(t)
n−x cases. So the easy case occurs with

probability 1−C(t)
n−1/C

(t)
n ≈ 1− (t− 1)t−1/tt, and the average number of times bj ← 0

in step T4 is (C(t)
n−1 + · · ·+C

(t)
1 )/C(t)

n ≈ (t−1)t−1/(tt− (t−1)t−1), or 4/23 when t = 3.
Indeed, we can also study the t-ary recursive structure A(t)

pq = 0A(t)
p(q−1), tA

(t)
(p−1)q

when 0 ≤ (t − 1)p ≤ q ̸= 0, generalizing (5). The number of such degree sequences,
C

(t)
pq , satisfies the recurrence (21) except that C(t)

pq = 0 when p < 0 or (t−1)p > q. The
general solution is

C(t)
pq = q − (t−1)p+ 1

q + 1


p+ q

p


=


p+ q

p


− (t−1)


p+ q

p− 1


,

and we have C(t)
n = C

(t)
n((t−1)n). The triangle for t = 3 begins as

shown at the right.

1
1
1 1
1 2
1 3 3
1 4 7
1 5 12 12
1 6 18 30
1 7 25 55 55
1 8 33 88 143

[The “Fuss–Catalan numbers” C
(t)
n were first studied by

N. Fuss, Nova acta acad. scient. imp. Pet. 9 (1791), 243–251.]
37. The basic lexicographic recursion for all such forests is

A(n0, n1, . . . , nt) = 0A(n0 − 1, n1, . . . , nt),
1A(n0, n1 − 1, . . . , nt), . . . , t A(n0, n1, . . . , nt − 1)

when n0 > n2 + 2n3 + · · ·+ (t−1)nt and n1, . . . , nt ≥ 0; otherwise A(n0, n1, . . . , nt) is
empty, except that A(0, . . . , 0) = ϵ is the sequence consisting of the empty string alone.
Step G1 computes the first entry of A(n0, . . . , nt). We want to analyze five quantities:

C, the number of times G2 is executed (the total number of forests);
E, the number of times G3 goes to G2 (the number of easy cases);
K, the number of times G4 moves some bi into list c;
L, the number of times G5 compares bj with some ci;
Z, the number of times G5 sets c1 ← 0.

Then the loop in step G6 sets bl−cj ← cj a total of K − Z − n1 − · · · − nt times.
Let n be the vector (n0, n1, . . . , nt), and let ej be the unit vector with 1 in

coordinate position j. Let |n| = n0 + n1 + · · · + nt and ∥n∥ = n1 + 2n2 + · · · + tnt.
Using this notation we can rewrite the basic recurrence above in the convenient form

A(n) = 0A(n− e0), 1A(n− e1), . . . , t A(n− et) when |n| > ∥n∥.

Consider the general recurrence relation

F (n) = f(n) +
 t
j=0

F (n− ej)


[|n| > ∥n∥],

From the Library of Melissa Nuno



ptg999

7.2.1.6 ANSWERS TO EXERCISES 791

with F (n) = 0 whenever the vector n has a negative component. If f(n) = [|n|= 0],
then F (n) = C(n) is the total number of forests. Answer 2.3.4.4–32 tells us that

C(n) =
(|n| − 1)! (|n| − ∥n∥)

n0!n1! . . . nt!
=

t
j=0

(1− j)
 |n| − 1
n0, . . . , nj−1, nj − 1, nj+1, . . . , nt


,

generalizing the formula for C(t)
pq in answer 36 (which is the case n0 = (t− 1)q + 1 and

nt = p). Similarly, we obtain recurrences for the other quantities E(n), K(n), L(n),
and Z(n) needed in our analysis by choosing other kernel functions f(n):

f(n) = [|n| = n0 + 1 and n0 > ∥n∥] yields F (n) = E(n);
f(n) = [|n| > n0 ] yields F (n) = E(n) +K(n);
f(n) = [|n| = ∥n∥+ 1] yields F (n) = C(n) +K(n)− Z(n);
f(n) =


1≤j<k≤t nj [nk > 0] yields F (n) = L(n).

The symbolic methods of exercise 2.3.4.4–32 do not seem to yield quick solutions
to these more general recurrences, but we can readily establish the value of C − E by
noting that bm +m < N in step G2 if and only if the previous step was G3. Therefore

C(n)− E(n) =
t

j=1

C(n− fj), where fj = ej − (j−1)e0 ;

this sum counts the subforests in which n1 + · · ·+ nt, the number of internal (nonleaf)
nodes, has decreased by 1. Similarly we can let

C(x)(n) =

{C(n− i1f1 − · · · − itft) | i1 + · · ·+ it = x}

be the number of subforests having n1 + · · ·+ nt − x internal nodes. Then we have

K(n)− Z(n) =
|n|
x=1

C(x)(n),

a formula analogous to (20), because k − [bj = 0] ≥ x ≥ 1 in step G5 if and only
if bm−x > 0 and bm−x+1 ≥ · · · ≥ bm. Such preorder degree strings are in one-to-
one correspondence with the forests of C(x)(n) if we remove bm−x+1 . . . bm and an
appropriate number of trailing 0s from the string b1 . . . bN .

From these formulas we can conclude that the Zaks–Richards algorithm needs
only O(1) operations per forest visited, whenever n1 = n2 + · · · + nt + O(1), because
C(n− fj)/C(n) = njn

j−1
0 /(|n| − 1) j ≤ 1/4 +O(|n|−1) when j > 1. Indeed, the value

of K is quite small in nearly all cases of practical interest. However, the algorithm can
be slow when n1 is large. For example, if t = 1, n0 = m + r + 1, and n1 = m, the
algorithm essentially computes all r-combinations of m+ r things; then C(n) =


m+r
r


and K(n) − Z(n) =


m+r
r+1


= Ω(mC(n)) when r is fixed. [To ensure efficiency in
all cases, we can keep track of trailing 1s; see Ruskey and Rœlants van Baronaigien,
Congressus Numerantium 41 (1984), 53–62.]

Exact formulas for K, Z, and (especially) L do not seem to be simple, but we can
compute those quantities as follows. Say that the “active block” of a forest is the right-
most substring of nonzero degrees; for example, the active block of 302102021230000000
is 2123. All permutations of the active block occur equally often. Indeed, let D(n)
denote the sum of “trailing zeros(β)− 1” over all preorder degree strings β for forests

From the Library of Melissa Nuno



ptg999

792 ANSWERS TO EXERCISES 7.2.1.6

of specification n. Then a block with n′
j occurrences of j for 1 ≤ j ≤ t is active in

exactly D(n− n′
1f1 − · · · − n′

tft) + [n′
1 + · · ·+ n′

t =n1 + · · ·+ nt ] cases. For example,
given the string 3021020000, we can insert 21230000 in three places to obtain a forest
with active block 2123. The contributions to K and L when the active block is flush
left (not preceded by any 0s) can be computed as in exercise 7.2.1.2–6, namely

k(n) = w(en1 (z) . . . ent(z)), l(n) = w

en1 (z) . . . ent(z)


1≤i<j≤t

(ni − zri(z))rj(z)


in the notation of that answer. Analogous contributions occur in general; therefore

K(n) = k(n)+


D(n−n′)k(n′), L(n) = l(n)+


D(n−n′)l(n′), Z(n) =


D(n−n′),

summed over all vectors n′ such that n′
j ≤ nj for 1 ≤ j ≤ t and |n′| − ∥n′∥ = |n| − ∥n∥

and n′
1 + · · ·+ n′

t ≤ n1 + · · ·+ nt − 2.
It remains to determine D(n). Let C(n; j) be the number of forests of specification

n = (n0, . . . , nt) in which the last internal node in preorder has degree j. Then we have

C(n) =
t

j=1

C(n; j) and C(n+e1; 1) = C(n+e2; 2) = · · · = C(n+et; t) = C(n) +D(n).

From this infinite system of linear equations we can deduce that C(n) +D(n) is
n2
i2=0

. . .

nt
it=0

(−1)i2+···+it

i2 + · · ·+ it
i2, . . . , it


C(n+ (1+i2+ · · · +it)e1 − i2f2 − · · · − itft).

Simpler expressions would of course be desirable, if they exist.
38. Step L1 obviously uses 4n+ 2 mems. Step L3 exits to L4 or L5 exactly Cj −Cj−1
times with a particular value of j; therefore it costs 2Cn + 3

n
j=0(n− j)(Cj −Cj−1) =

2Cn + 3(Cn−1 + · · ·+C1 +C0) mems. Steps L4 and L5 jointly cost a total of 6Cn − 6.
Therefore the entire process involves 9 +O(n−1/2) mems per visit.
39. A Young tableau of shape (q, p) and entries yij corresponds to an element of Apq
that has left parens in positions p + q + 1− y21, . . . , p + q + 1− y2p and right parens
in positions p+ q + 1− y11, . . . , p+ q + 1− y1q. The hook lengths are {q + 1, q, . . . , 1,
p, p−1, . . . , 1}\{q−p+1}; so Cpq = (p+q)!(q−p+1)/(p!(q+1)!) by Theorem 5.1.4H.
40. (a) Cpq =


p+q
p


−

p+q
p−1

≡

p+q
p


+

p+q
p−1


=

p+q+1
p


(modulo 2); now use exercise

1.2.6–11. (b) By Eq. 7.1.3–(36) we know that ν(n& (n+ 1)) = ν(n+ 1)− 1.
41. It equals C(wz)/(1−zC(wz)) = 1/(1−z−wzC(wz)) = (1−wC(wz))/(1−w−z),
where C(z) is the Catalan generating function (18). The first of these formulas, C(wz)+
zC(wz)2+z2C(wz)3+· · · , is easily seen to be equivalent to (24). [See P. A. MacMahon,
Combinatory Analysis 1 (Cambridge Univ. Press, 1915), 128–130.]
42. (a) Elements a1 . . . an determine an entire self-conjugate nested string a1 . . . a2n,
and there are Cq(n−q) possibilities for a1 . . . an having exactly q right parentheses. So
the answer is

⌊n/2⌋
q=0

Cq(n−q) =
⌊n/2⌋
q=0


n

q


−


n

q − 1


=


n

⌊n/2⌋

.

(b) Exactly C(n−1)/2 [n odd], because a self-transpose binary tree is determined by its
left subtree. And (c) has the same answer, because F is self-dual if and only if FR is
self-transpose.

From the Library of Melissa Nuno



ptg999

7.2.1.6 ANSWERS TO EXERCISES 793

43. Cpq = Cq −

q−p−1

1

Cq−1 + · · · = q−p

r=0(−1)r

q−p−r
r


Cq−r, by induction on q − p.

44. The number of mems between visits is 3j − 2 in step B3, h+ 1 in step B4, and 4
in step B5, where h is the number of times y ← ry. The number of binary trees with
h ≥ x, given j and x, is [zn−j−x−1]C(z)x+3 when j < n, because we get such trees by
attaching x+3 subtrees below j+x+1 internal nodes. Setting x = 0 tells us that a given
value of j occurs C(n−j−1)(n−j+1) = Cn+1−j − Cn−j times, using (24) and exercise 43.
Thus


j over all binary trees is n+

n
j=1(Cn+1−j −Cn−j)j = Cn +Cn−1 + · · ·+C1.

Similarly,


(h + 1) is
n−1
j=1

n−j−1
x=0 C(n−j−x−1)(n−j+1) =

n−1
j=1 C(n−j−1)(n−j+2) =n

j=1(Cn−j+2− 2Cn−j+1) = Cn+1− (Cn +Cn−1 + · · ·+C0). So overall, the algorithm
costs Cn+1 + 4Cn + 2(Cn−1 + · · ·+C1) +O(n) = (26/3− 10/(3n) +O(n−2))Cn mems.
45. Each of the easy cases in step K3 occurs Cn−1 times, so the total cost of that step is
3Cn−1 +8Cn−1 +2(Cn−2Cn−1) mems. Step K4 fetches ri a total of [zn−i−1]C(z)i+2 =
C(n−i−1)n times; summing for i ≥ 2 gives C(n−3)(n+1) = Cn+1 − 3Cn + Cn−1 mems
altogether in that loop. Step K5 costs 6Cn−12Cn−1. Step K6 is a bit more complicated,
but one can show that the operation rj ← rk is performed Cn− 3Cn−1 + 1 times when
n > 2, while the operation rj ← 0 is performed Cn−1 − n+ 1 times. The total number
of mems therefore comes to Cn+1 +7Cn−9Cn−1 +n+3 = (8.75−9.375/n+O(n−2))Cn.

Although this total is asymptotically worse than that of Algorithm B in answer 44,
the large negative coefficient of n−1 means that Algorithm B actually wins only when
n ≥ 58; and n won’t ever be that big.

Skarbek has, however, improved Algorithm B to the following Algorithm B*, which
generates the trees in reverse order and uses an auxiliary table c1 . . . cn:
B1*. [Initialize.] Set lk ← ck ← 0 and rk ← k+ 1 for 1 ≤ k < n; also set ln ← rn ← 0,

and set rn+1 ← 1 (for convenience in step B3*).
B2*. [Visit.] Visit the binary tree represented by l1l2 . . . ln and r1r2 . . . rn.
B3*. [Find j.] Set j ← 1. While rj = 0, set lj ← cj ← 0, rj ← j + 1, and j ← j + 1.

Then terminate the algorithm if j > n.
B4*. [Demote rj .] Set x← rj , rj ← rx, rx ← 0, z ← cj , cj ← x. If z > 0, set rz ← x;

otherwise set lj ← x. Return to B2*.
If the values of r1 and c1 are maintained in registers, this algorithm needs only 4Cn +
Cn−1 + 4(Cn−1 +Cn−2 + · · ·+C0) + 3n−6 = (67/12 + 73/(24n) +O(n−2))Cn mems to
generate all Cn trees. [See W. Skarbek, Fundamenta Informaticæ 75 (2007), 505–536.]
46. (a) Going to the left from pq increases the area by q − p.

(b) The leftward steps on a path from nn to 00 correspond to the left parentheses
in a1 . . . a2n, and we have q − p = ck at the kth such step.

(c) Equivalently, Cn+1(x) =
n
k=0 x

kCk(x)Cn−k(x). This recurrence holds be-
cause an (n + 1)-node forest F consists of the root of the leftmost tree together with
a k-node forest Fl (the descendants of that root) and an (n − k)-node forest Fr (the
remaining trees), and because we have

internal path length(F ) = k + internal path length(Fl) + internal path length(Fr).

(d) The strings of Ap(p+r) have the form α0)α1) . . . αr−1)αr where each αj is
properly nested. The area of such a string is the sum over j of the area of αj plus r− j
times the number of left parens in αj .

Notes: The polynomials Cpq(x) were introduced by L. Carlitz and J. Riordan in
Duke Math. J. 31 (1964), 371–388; the identity in part (d) is equivalent to their formula

From the Library of Melissa Nuno



ptg999

794 ANSWERS TO EXERCISES 7.2.1.6

(10.12). They also proved that

Cpq(x) =

r

(−1)rxr(r−1)−(q−p
2 )


q − p− r

r


x
Cq−r(x),

generalizing the result of exercise 43. From part (c) we have the infinite continued
fraction C(x, z) = 1/(1− z/(1− xz/(1− x2z/(1− · · · )))), which G. N. Watson proved
is equal to F (x, z)/F (x, z/x), where

F (x, z) =
∞
n=0

(−1)n xn
2
zn

(1− x)(1− x2) . . . (1− xn) ;

see J. London Math. Soc. 4 (1929), 39–48. We have already encountered the same
generating function, slightly disguised, in exercise 5.2.1–15.

The internal path length of a forest is the “left path length” of the corresponding
binary tree, namely the sum over all internal nodes of the number of left branches on
the path from the root. The more general polynomial

Cn(x, y) =


xleft path length(T )yright path length(T ),

summed over all n-node binary trees T , seems to obey no simple additive recurrence like
the one for Cnn(x) = Cn(x, 1) studied in this exercise; but we do have Cn+1(x, y) =
k x

kCk(x, y)yn−kCn−k(x, y). Therefore the super generating function C(x, y, z) =
n Cn(x, y)zn satisfies the functional equation C(x, y, z) = 1+zC(x, y, xz)C(x, y, yz).

(The case x = y was considered in exercise 2.3.4.5–5.)

47. Cn(x) =

q x

(q−p
2 )Cpq(x)C(n−q)(n−1−p)(x) for 0 ≤ p < n.

48. Let C̄(z) = C(−1, z) in the notation of exercise 46, and let C̄(z)C̄(−z) = F (z2).
Then C̄(z) = 1 + zF (z2) and C̄(−z) = 1 − zF (z2); so F (z) = 1 − zF (z)2, and
F (z) = C(−z). It follows that Cpq(−1) = [zp]C(−z2)⌈(q−p)/2⌉(1 + zC(−z2))[q−p even],
which is (−1)(p/2)C(p/2)(q/2−1)[p even] when q is even, (−1)⌊p/2⌋C⌊p/2⌋⌊q/2⌋ when q is
odd. A perfect Gray code through the strings of Apq can exist only if |Cpq(−1)| ≤ 1,
because the associated graph is bipartite (see Fig. 62); |Cpq(−1)| is the difference
between the sizes of the parts, because each perfect transposition changes c1 + · · ·+ cn
by ±1.

49. By Algorithm U with n=15 and N=106, it is ()(()())(((()())))((((())()))).

50. Make the following changes to Algorithm U: In step U1, also set r ← 0. In step
U3, test if am = ‘)’ instead of testing if N ≤ c′. In step U4, set r ← r + c′ instead of
N ← N − c′. And omit the assignments to am in steps U3 and U4.

The string in (1) turns out to have rank 3141592. (Who knew?)

51. By Theorem 7.2.1.3L, N =

z̄1
n


+

z̄2
n−1


+ · · ·+

z̄n
1

; hence κnN =


z̄1
n−1


+

z̄2
n−2


+
· · ·+


z̄n
0

, since z̄n ≥ 1. Now note that N − κnN is the rank of z1z2 . . . zn, because of

(23) and exercise 50. (For example, let z1 . . . z4 = 1256, which has rank 6 in Table 1.
Then z̄1 . . . z̄4 = 7632, N = 60, and κ460 = 54. Notice that N is fairly large, because
z̄1 = 2n− 1; Fig. 47 shows that κnN usually exceeds N when N is smaller.)

52. The number of trailing right parentheses has the same distribution as the number
of leading left parentheses, and the sequence of nested strings that begin with ‘(k)’ is

From the Library of Melissa Nuno



ptg999

7.2.1.6 ANSWERS TO EXERCISES 795

(k)A(n−k)(n−1). Therefore the probability that dn = k is C(n−k)(n−1)/Cn. We find
n
k=0


k

t


C(n−k)(n−1) =

n
k=0

2n− 1− k
n− 1


−
2n− 1− k

n


k

t


=
 2n
n+ t


−
 2n
n+ t+ 1


= C(n−t)(n+t)

using Eq. 1.2.6–(25), and it follows that the mean and variance are respectively equal
to 3n/(n+2) = 3−6/(n+2) and 2n(2n2−n−1)/((n+2)2(n+3)) = 4+O(n−1). [The
moments of this distribution were first calculated by R. Kemp in Acta Informatica 35
(1998), 17–89, Theorem 9. Notice that cn = dn − 1 has essentially the same behavior.]
53. (a) 3n/(n+2), by exercise 52. (b)Hn, by exercise 6.2.2–7. (c) 2−2−n, by induction.

(d) Any particular (but fixed) sequence of left or right branches has the same
distribution of steps before a leaf is encountered. (In other words, the probability that
a node with Dewey binary notation 01101 occurs is the same as the probability that
00000 occurs.) Thus if X = k with probability pk, each of the 2k potential nodes on
level k is external with probability pk. The expected value


k 2kpk is therefore the

expected number of external nodes, namely n+ 1 in all three cases. (One can of course
also verify this result directly, with pk = C(n−k)(n−1)/Cn in case (a), pk =


n
k


/n! in

case (b), and pk = 2−k+[k=n] in case (c).)
Notes: The average level of a leaf turns out to be Θ(

√
n ), Θ(logn), and Θ(n) in

these three cases; thus it is longer when the expected time to hit the leftmost leaf
is shorter! The reason is that ubiquitous “holes” near the root force other paths
to be long. Case (a) has an interesting generalization to t-ary trees, when pk =
C

(t)
(n−k)((t−1)n−1)/C

(t)
n in the notation of answer 36. Then the mean distance to the left-

most leaf is (t+1)n/((t−1)n+2), and it is instructive to prove via telescoping series that
k

tkC
(t)
(n−k)((t−1)n−1) =


tn

n


.

54. Differentiating with respect to x we have
C′(x, z) = zC′(x, z)C(x, xz) + zC(x, z)(C′(x, xz) + zC′(x, xz)),

where C′(x, z) denotes the derivative of C(x, z) with respect to z. Thus C′(1, z) =
2zC′(1, z)C(z)+z2C(z)C′(z); and since C′(z) = C(z)2 +2zC(z)C′(z) we can solve for
C′(1, z), obtaining z2C(z)3/(1−2zC(z))2. Therefore


(c1 + · · ·+ cn) = [zn]C′(1, z) =

22n−1 − 1
2 (3n+ 1)Cn, in agreement with exercise 2.3.4.5–5. Similarly we find
(c1 + · · ·+ cn)2 = [zn]C′′(1, z) =

5n2 + 19n+ 6
6

2n
n


−


1 + 3n
2


4n.

Thus the mean and variance are 1
2
√
πn3/2 +O(n) and ( 5

6 − π
4 )n3/2 +O(n), respectively.

55. Differentiating as in answer 54, and using the formulas of exercises 46(d) and
5.2.1–14 together with [zn]C(z)r/(1− 4z) = 22n+r −r

j=1 2r−j
2n+j

n


, yields

C′
p(p+r)(1) = [zp]


(r+1)z

2C(z)r+3

1− 4z +

r+1

2


zC(z)r+2
√

1− 4z


= [zp]


(r+1)C(z)r+1−2C(z)r+C(z)r−1

1− 4z +

r+1

2


C(z)r+1−C(z)r√

1− 4z


= (r+1)


22p+r−1−

2p+r+1
p


−
r−1
j=1

2r−1−j
2p+j

p


+

r+1

2

2p+r
p−1


.

From the Library of Melissa Nuno



ptg999

796 ANSWERS TO EXERCISES 7.2.1.6

56. Use 1.2.6–53(b). [See BIT 30 (1990), 67–68.]
57. 2S0(a, b) =

2a
a

2b
b


+
2a+2b
a+b


by 1.2.6–(21). Exercise 1.2.6–53 tells us that

a
k=a−m

 2a
a− k

 2b
b− k


k = (m+ 1)(a+ b−m)

 2a
m+ 1

 2b
a+ b−m


;

therefore 2S1(a, b) =
2a
a

2b
b


ab
a+b . And since b2Sp(a, b)− Sp+2(a, b) = Sp(a, b− 1), we

find 2S2(a, b) =
2a+2b
a+b


ab

2a+2b−1 ; 2S3(a, b) =
2a
a

2b
b


a2b2/(a+b)2. Formula (30) follows

by setting a = m, b = n−m, and C(x−k)(x+k) =
 2x
x−k

−
 2x
x−k−1


.

Similarly, the average of w2m−1 is

k≥0(2k−1)C(m−k)(m+k−1)C(n−m−k+1)(n−m+k)

divided by Cn, namely

2S3(m,n+1−m)− S2(m,n+1−m)
m(n+1−m)Cn

= m(n+1−m)
n

2m
m

2n+2−2m
n+1−m

2n
n


− 1.

[R. Kemp, BIT 20 (1980), 157–163; H. Prodinger, Soochow J. Math. 9 (1983), 193–196.]
58. Summing over cases in which the left subtree has k internal nodes, we have

tlmn = [l=m=n= 0] +
m−1
k=0

Ckt(l−1)(m−k−1)(n−k−1) +
n−1
k=m

Cn−1−kt(l−1)mk.

Thus the triple generating function t(v, w, z) =

l,m,n tlmnv

lwmzn satisfies

t(v, w, z) = 1 + vwzC(wz)t(v, w, z) + vzC(z)t(v, w, z);

and the analogous linear relation for t(w, z) = ∂t(v, w, z)/∂v |v=1 follows, because
t(1, w, z) =

∞
n=0

n
m=0 Cnw

mzn = (C(z)−wC(wz))/(1−w) and zC(z)2 = C(z)− 1.
Algebraic manipulation now yields

t(w, z) = C(z) + wC(wz)− (1 + w)
(1− w)2z

− 2wC(z)C(wz)
(1− w)2 − C(z)− wC(wz)

1− w ,

and we obtain the formula tmn = (m+ 1)Cn+1 − 2
m
k=0(m− k)CkCn−k − Cn. Now

m−1
k=0

(k + 1)CkCn−1−k = m

2n

2m
m

2n− 2m
n−m


can be proved as in exercise 56, and it follows that

tmn = 2
2m
m

2n− 2m
n−m

 (2m+ 1)(2n− 2m+ 1)
(n+ 1)(n+ 2) − Cn, for 0 ≤ m ≤ n.

[P. Kirschenhofer, J. Combinatorics, Information and System Sciences 8 (1983), 44–60.
For higher moments and generalizations, see W. J. Gutjahr, Random Structures &
Algorithms 3 (1992), 361–374; A. Panholzer and H. Prodinger, J. Statistical Planning
and Inference 101 (2002), 267–279. Note that the generating function t(v, w, z) yields

tlmn =

k


l

k


C(m−k)(m−1)C(n−m−l+k)(n−m−1).

Using the fact that

k


k
r


C(n−k)(m−1) = C(n−r)(m+r) when m ≥ 1, we obtain the

formula tmn+Cn =

k(k+1)C(m−k)(m−1)C(n−m)(n−m+k+1), a sum that can therefore

(surprisingly) be expressed in closed form.]

From the Library of Melissa Nuno



ptg999

7.2.1.6 ANSWERS TO EXERCISES 797

59. T (w, z) = w(C(z)−C(wz))
(1− w) − wzC(z)C(wz)+zC(z)T (w, z) + wzC(wz)T (wz)

= w((C(z)+C(wz)−2)/z − (1+w)C(z)C(wz)− (1−w)(C(z)−C(wz)))
(1− w)2 .

Hence Tmn = tmn −
n
k=m CkCn−k. [Is there a combinatorial proof?] And

Tmn =
2m
m

2n+2−2m
n+1−m

4m(n+1−m) + n+ 1
2(n+ 1)(n+ 2) − 1

2Cn+1 − Cn, for 1 ≤ m ≤ n.

60. (a) It is the number of right parentheses in co-atoms. (Therefore it is also the
number of k for which w2k−1 < 0 in the associated “worm walk.”)

(b) For convenience let d(‘(’) = +1 and d(‘)’) = −1.
A1. [Initialize.] Set i← j ← 1 and k ← 2n.
A2. [Done?] Terminate the algorithm if j > k. Otherwise set aj ← ‘(’, j ← j + 1.
A3. [Atom?] If bi = ‘)’, set s ← −1, i ← i + 1, and go to A4. Otherwise set s ← 1,

i← i+ 1, and while s > 0 set aj ← bi, j ← j+ 1, s← s+ d(bi), i← i+ 1. Return
to A2.

A4. [Co-atom.] Set s← s+d(bi). Then if s < 0, set ak ← bi, k ← k−1, i← i+ 1, and
repeat step A4. Otherwise set ak ← ‘)’, k ← k−1, i← i+1, and return to A2.
(c) The defect-11 inverse of (1) is (()))((())))))(()((())(()))(((. In general

we find it by locating the subscript m just before the lth-from-last right parenthesis, and
the indices (u0, v0), . . . , (us−1, vs−1) of matching parentheses such that uj ≤ m < vj .
I1. [Initialize.] Set c← j ← s← 0, k ← m← 2n, and u0 ← 2n+ 1.
I2. [Scan right to left.] If k = 0, go to I5; if ak = ‘)’, go to I3; if ak = ‘(’, go to I4.
I3. [Process a ‘)’.] Set rj ← k, j ← j + 1, c ← c + 1. If c = l, set m ← k − 1, s ← j,

and us ← k. Then decrease k by 1 and return to I2.
I4. [Process a ‘(’.] (At this point the left parenthesis ak matches the right parenthesis

arj−1 .) Set j ← j − 1. If rj > m, set uj ← k and vj ← rj . Then decrease k by 1
and return to I2.

I5. [Prepare to permute.] Set i← j ← 1, k ← 2n, and c← 0.
I6. [Permute.] While j ̸= uc, set bi ← aj , i← i+1, j ← j+1. Then terminate if c = s;

otherwise set bi ← ‘)’, i← i+ 1, j ← j + 1. While k ̸= vc, set bi ← ak, i← i+ 1,
k ← k−1. Then set bi ← ‘(’, i← i+1, k ← k−1, c← c+1, and repeat step I6.
Notes: The fact that exactly Cn balanced strings of length 2n have defect l, for

0 ≤ l ≤ n, was discovered by P. A. MacMahon [Philosophical Transactions 209 (1909),
153–175, §20], then rediscovered by K. L. Chung and W. Feller [Proc. Nat. Acad. Sci.
35 (1949), 605–608], using generating functions. A simple combinatorial explanation
was found subsequently by J. L. Hodges, Jr. [Biometrika 42 (1955), 261–262], who
observed that if β1 . . . βr has defect l > 0 and if βk = αRk is its rightmost co-atom, the
balanced string β1 . . . βk−1(βk+1 . . . βr)α

′R
k has defect l− 1 (and this transformation is

reversible). The efficient mapping in the present exercise is similar to a construction of
M. D. Atkinson and J.-R. Sack [Information Processing Letters 41 (1992), 21–23].
61. (a) Let cj = 1− bj ; thus cj ≤ 1, c1 + · · ·+ cN = f , and we must prove that

c1 + c2 + · · ·+ ck < f if and only if k < N

From the Library of Melissa Nuno



ptg999

798 ANSWERS TO EXERCISES 7.2.1.6

holds for exactly f cyclic shifts. We can define cj for all integers j by letting cj±N = cj .
Let us also define Σj for all j by letting Σ0 = 0 and Σj = Σj−1 + cj ; then Σj+Nt =
Σj +ft, and Σj+1 ≤ Σj +1. It follows that for each integer x there is a smallest integer
j = j(x) such that Σj = x. Moreover, j(x) < j(x+ 1); and j(x+ f) = j(x) +N . Thus
the desired condition holds if and only if we shift by j(x) modN for x = 1, 2, . . . , or f .
(The history of this important lemma is discussed in answer 2.3.4.4–32.)

(b) Start with l ← m ← s ← 0. Then for k = 1, 2, . . . , N (in this order) do the
following: Set s← s+ 1− bk; and if s > m, set m← s, jl ← k, and l← (l+ 1) mod f .
The answers are j0, . . . , jf−1, by the proof in part (a).

(c) Start with any string b1b2 . . . bN containing nj occurrences of j for 0 ≤ j ≤ t.
Apply a random permutation to this string, then apply the algorithm of part (b).
Choose randomly between (j0, . . . , jf−1) and use the resulting cyclic shift as a preorder
sequence to define the forest.

[See L. Alonso, J. L. Rémy, and R. Schott, Algorithmica 17 (1997), 162–182, for
an even more general algorithm.]

62. Bit strings (l1 . . . ln, r1 . . . rn) are valid if and only if b1 . . . bn is valid in exercise 20,
where bj = lj + rj . Therefore we can use exercise 61. [See J. F. Korsh, Information
Processing Letters 45 (1993), 291–294.]

63. 3

1

2 0

❡ ❡ ❡ 1

2 0

3❡ ❡ ❡
3 1 2 0

❡ ❡ ❡
1 3 2 0

❡ ❡ ❡ 1

3

2 0

❡ ❡ ❡ 1

2 0

3

❡ ❡ ❡ 1

3 2

0

❡ ❡ ❡ 1

2 3

0

❡ ❡ ❡ 1

2

3 0

❡ ❡ ❡ 1

2

0 3

❡ ❡ ❡
64. X = 2k + b where (k, b) = (0, 1), (2, 1), (0, 0), (5, 1), (6, 0), (1, 1); eventually
L0L1 . . . L12 = 5 11 3 4 0 7 9 8 1 6 10 12 2.

65. See A. Panholzer and H. Prodinger, Discrete Mathematics 250 (2002), 181–195;
M. Luczak and P. Winkler, Random Structures & Algorithms 24 (2004), 420–443.

66. (a) “Shrink” the white edges, merging the nodes that they connect. For example,

are the ordinary trees that correspond to the eleven Schröder trees depicted for n = 3.
Under this correspondence a left link means, “here is a child”; a white right link means,
“look here for more children”; a black right link means, “here’s the last child.”

(b) Mimic Algorithm L, but between rotations use an ordinary Gray binary code
to run through all color patterns of whatever right links are present. (The case n = 3
has, in fact, been illustrated in the example.)

Note that Schröder trees also correspond to series-parallel graphs, as in (53). They
do, however, impose an order on the edges and/or superedges that are joined in parallel;
so they correspond more precisely to series-parallel graphs as embedded in the plane
(and with edges and vertices unlabeled, except for s and t).

67. S(z) = 1 + zS(z)(1 + 2(S(z)− 1)), because 1 + 2(S(z)− 1) enumerates the right
subtrees; therefore S(z) = (1 + z −

√
1− 6z + z2 )/(4z).

Notes: We’ve seen Schröder numbers in exercise 2.3.4.4–31, where G(z) = zS(z);
and in exercise 2.2.1–11, where bn = 2Sn−1 for n ≥ 2 and where we found the recurrence
(n − 1)Sn = (6n − 3)Sn−1 − (n − 2)Sn−2. They grow asymptotically as explored in
exercise 2.2.1–12. A triangle of numbers Spq, analogous to (22), can be used to generate

From the Library of Melissa Nuno



ptg999

7.2.1.6 ANSWERS TO EXERCISES 799

random Schröder trees. These numbers satisfy

Spq = Sp(q−1) + S(p−1)q + S(p−2)q + · · ·+ S0q = Sp(q−1) + 2S(p−1)q − S(p−1)(q−1)

= q−p+1
q+1

p
k=0


q+1
p−k


p−1
k


2k =

p
k=0


q

p−k


p−1
k


−


q

p−k−1


p−1
k−1


2k

= [wpzq]S(wz)/(1− zS(wz));

the double generating function on the last line is due to Emeric Deutsch. Many
other properties of Schröder trees are discussed in Richard Stanley’s Enumerative
Combinatorics 2 (1999), exercise 6.39.

68. A single row that contains only the empty string ϵ. (The general rule (36) for
going from n− 1 to n converts this row into ‘0 1’, the pattern of order 1.)

69. The first
6

3


= 20 rows are the Christmas tree pattern of order 6, if we ignore the
‘10’ at the beginning of each string. The pattern of order 7 is a bit more difficult to see;
but there are

7
3


= 35 rows in which the leftmost entry begins with 0. Disregard the
rightmost string in all such rows, and ignore the 0 at the beginning of each remaining
string. (Other answers are also possible.)

70. If σ appears in column k of the Christmas tree pattern, let σ′ be the string in
column n − k of the same row. (If we think of parentheses instead of bits, this rule
takes the mirror reflection of the free parentheses in the sense of answer 11, by (39).)

71. Mtn is the sum of the t largest binomial coefficients

n
k


, because each row of the

Christmas tree pattern can contain at most t elements of S, and because we do get
such a set S by choosing all strings σ with (n − t)/2 ≤ ν(σ) ≤ (n + t − 1)/2. (The
formula

Mtn =


n−t≤2k≤n+t−1


n

k


is about as simple as possible; however, special formulas like M(2)n = Mn+1 hold for
small t, and we also have Mtn = 2n for t > n.)

72. You get Msn, the same number as in the previous exercise. In fact, one can prove
by induction that there are exactly


n

n−k

−

n
k−s


rows of length s+ n− 2k ≥ 0.

73. 011001001000000000100101001100, 111001011011111111101101011100; see (38).

74. By the lexicographic property, we want to count the number of rows whose right-
most elements have the respective forms 0∗29, 10∗28, 110∗27, 111000∗24, 11100100∗22,
111001010∗21, 11100101100∗19, 111001011010∗18, 1110010110110∗17, . . . , namely all
30-bit strings that precede τ = 111001011011111111101101011100.

If θ has p more 1s than 0s, the number of Christmas tree rows ending with θ∗n is
the same as the number of rows ending with 1p∗n; and this is M(p+1)n, by exercise 71,
because all such rows are the n-step descendants of the starting row ‘0p 0p−11 . . . 1p ’.

Consequently the answer is M0(29) + M1(28) + M2(27) + M1(24) + · · · + M(12)3 +
M(13)2 =

21
k=1 M(2k−1−zk)(n−zk) = 0+

28
14


+
27

14


+
27

13


+
24

12


+ · · ·+8+4 = 84867708,
where (z1, . . . , z21) = (1, 2, 3, 6, . . . , 27, 28) is the sequence of places where 1s occur in τ .

75. We have r
(n)
1 = Mn−2, because row r

(n)
1 is the bottom descendant of the first

row in (33). We also have r(n)
j+1 − r

(n)
j = Mj(n−1−j) −M(j−1)(n−2−j) = M(j+1)(n−2−j)

From the Library of Melissa Nuno



ptg999

800 ANSWERS TO EXERCISES 7.2.1.6

by the formula in answer 74, because the relevant sequence z1 . . . zn−1 for row r
(n)
j is

1j01n−1−j . Therefore, since Mjn/Mn → j for fixed j as n→∞, we have

lim
n→∞

r
(n)
j

Mn
=

j
k=1

k

2k+1 = 1− j + 2
2j+1 .

And we’ve also implicitly proved that
n
k=0 Mk(n−k) = Mn+1 − 1.

76. The first
2n
n


elements of the infinite sequence

Q = 1313351313351335355713133513133513353557131335133535571335355735575779 . . .

are the row sizes in the pattern of order 2n; this sequence Q = q1q2q3 . . . is the unique
fixed point of the transformation that maps 1 →→ 13 and n →→ (n−2)nn(n+2) for odd
n > 1, representing two steps of (36).

Let f(x) = lim supn→∞ s(⌈xMn⌉)/n for 0 < x ≤ 1. This function apparently
vanishes almost everywhere; but it equals 1 when x has the form (q1 + · · · + qj)/2n,
because of answer 72. On the other hand if we define g(x) = limn→∞ s(⌈xMn⌉)/

√
n,

the function g(x) appears to be measurable, with
 1

0 g(x) dx =
√
π, although g(x) is

infinite when f(x) > 0. (Rigorous proofs or disproofs of these conjectures are solicited.)
77. The hint follows from (39), by considering worm walks; so we can proceed thus:
X1. [Initialize.] Set aj ← 0 for 0 ≤ j ≤ n; also set x ← 1. (In the following steps we

will have x = 1 + 2(a1 + · · ·+ an).)
X2. [Correct the tail.] While x ≤ n, set ax ← 1 and x← x+ 2.
X3. [Visit.] Visit the bit string a1 . . . an.
X4. [Easy case?] If an = 0, set an ← 1, x← x+ 2, and return to X3.
X5. [Find and advance aj .] Set an ← 0 and j ← n− 1. Then while aj = 1, set aj ← 0,

x← x−2, and j ← j−1. Stop if j = 0; otherwise set aj ← 1 and go back to X2.
78. True, by (39) and exercise 11.
79. (a) List the indices of the 0s, then the indices of the 1s; for instance, the bit string
in exercise 73 corresponds to the permutation 1 4 5 7 8 10 11 12 13 20 23 25 29 30 2 3
6 9 14 15 16 17 18 19 21 22 24 26 27 28.

(b) Using the conventions of (39), the P tableau has the indices of left parentheses
and free parentheses in its top row, other indices in the second row. Thus, from (38),

P = 1 2 3 6 8 9 11 12 13 14 15 16 17 18 19 21 22 24 26 27 28
4 5 7 10 20 23 25 29 30

.

[See K.-P. Vo, SIAM J. Algebraic and Discrete Methods 2 (1981), 324–332, for a
generalization to chains of submultisets.]
80. This curious fact is a consequence of exercise 79 together with Theorem 6 in the
author’s paper on tableaux; see Pacific J. Math. 34 (1970), 709–727.
81. Suppose σ and σ′ belong respectively to chains of length s and s′ in the Christmas
tree patterns of order n and n′. At most min(s, s′) of the ss′ pairs of strings in those
chains can be in the biclutter. Furthermore, because of (39), those ss′ pairs of strings
actually constitute exactly min(s, s′) chains in the Christmas tree pattern of order
n + n′, when they are concatenated. Therefore the sum of min(s, s′) over all pairs of

From the Library of Melissa Nuno



ptg999

7.2.1.6 ANSWERS TO EXERCISES 801

chains is Mn+n′ , and the result follows. We have incidentally proved the nonobvious
identity 

j, k

min(m+ 1− 2j, n+ 1− 2k)Cj(m−j)Ck(n−k) = Mm+n.

Notes: This extension of Sperner’s theorem was proved independently by G. Katona
[Studia Sci. Math. Hungar. 1 (1966), 59–63] and D. J. Kleitman [Math. Zeitschrift 90
(1965), 251–259]. See Greene and Kleitman, J. Combinatorial Theory A20 (1976),
80–88, for the proof given here and for further results.
82. (a) There is at least one evaluation in each row m; there are two if and only
if s(m) > 1 and the first evaluation yields 0. Thus if f is identically 1, we get the
minimum, Mn; if f is identically 0, we get the maximum, Mn+


m[s(m)> 1] = Mn+1.

(b) Let f(χ(m,n/2)) = 0 in the Cn/2 cases where s(m) = 1; otherwise let
f(χ(m,a)) = 1, where a is defined by the algorithm. When n is odd, this rule implies
that f(σ) is always 1; but when n is even, f(σ) = 0 if and only if σ is first in its row.
(To see why, use the fact that the row containing σ′

j in (41) always has size s − 2.)
This function f is indeed monotonic; for if σ ≤ τ and if σ has a free left parenthesis,
so does τ . For example, in the case n = 8 we have

f(x1, . . . , x8) = x8 ∨ x6x7 ∨ x4x5(x6 ∨ x7) ∨ x2x3(x4(x5 ∨ x6 ∨ x7) ∨ x5(x6 ∨ x7)).

(c) In these circumstances (45) is the solution for all n.
83. At most 3 outcomes are possible in step H4 — in fact, at most 2 when s(m) = 1.
[See exercise 5.3.4–31 for sharper bounds; in the notation of that exercise, there are
exactly δn + 2 monotone Boolean functions of n Boolean variables.]
84. For this problem we partition the 2n bit strings into Mn blocks instead of chains,
where the strings {σ1, . . . , σs} of each block satisfy ∥AσTi − AσTj ∥ ≥ 1 for i ̸= j; then
at most one bit string per block can satisfy ∥AσT − b∥ < 1

2 .
Let A′ denote the first n− 1 columns of A, and let v be the nth column. Suppose

{σ1, . . . , σs} is a block for A′, and number the subscripts so that vTA′σT1 is the
minimum of vTA′σTj . Then rule (36) defines appropriate blocks for A, because we have
∥A(σi0)T −A(σj0)T∥ = ∥A(σi1)T −A(σj1)T∥ = ∥A′σTi −A′σTj ∥ and

∥A(σj1)T −A(σ10)T ∥2 = ∥A′σTj + v −A′σT1 ∥2

= ∥A′(σj − σ1)T ∥2 + ∥v∥2 + 2vTA′(σj − σ1)T ≥ ∥v∥2 ≥ 1.

[And more is true; see Advances in Math. 5 (1970), 155–157. This result extends a
theorem of J. E. Littlewood and A. C. Offord, Mat. Sbornik 54 (1943), 277–285, who
considered the case m = 2.]
85. If V has dimension n−m, we can renumber the coordinates so that

(1, 0, . . . , 0, x11, . . . , x1m)
(0, 1, . . . , 0, x21, . . . , x2m)

...
...

. . .
...

...
...

(0, 0, . . . , 1, x(n−m)1, . . . , x(n−m)m)

is a basis, with none of the row vectors vj = (xj1, . . . , xjm) entirely zero. Let vn−m+1 =
(−1, 0, . . . , 0), . . . , vn = (0, 0, . . . ,−1). Then the number of 0–1 vectors in V is the num-
ber of 0–1 solutions to Ax = 0, where A is the m× n matrix with columns v1, . . . , vn.
But this quantity is at most the number of solutions to ∥Ax∥ < 1

2 min(∥v1∥, . . . , ∥vn∥),
which is at most Mn by exercise 84.

From the Library of Melissa Nuno



ptg999

802 ANSWERS TO EXERCISES 7.2.1.6

Conversely, the basis with m = 1 and xj1 = (−1)j−1 yields Mn solutions. [This
result has application to electronic voting; see Golle’s Ph.D. thesis (Stanford, 2004).]
86. First reorder the 4-node subtrees so that their level codes are 0121 (plus a con-
stant); then sort larger and larger subtrees until everything is canonical. The re-
sulting level codes are 0 1 2 3 4 3 2 1 2 3 2 1 2 0 1, and the parent pointers are
0 1 2 3 4 3 2 1 8 9 8 1 12 0 14.
87. (a) The condition holds if and only if c1 < · · · < ck ≥ ck+1 ≥ · · · ≥ cn for some k,
so the total number of cases is


k


n−1
n−k


= 2n−1.
(b) Note that c1 . . . ck = c′1 . . . c

′
k if and only if p1 . . . pk = p′1 . . . p

′
k; and in such

cases, ck+1 < c′k+1 if and only if pk+1 < p′k+1.
88. Exactly An+1 forests are visited, and Ak of them have pk = · · · = pn = 0.
Therefore O4 is performed An times; and pk is changed Ak+1 − 1 times in step O5, for
1 ≤ k < n. Step O5 also changes pn a total of An − 1 times. The average number of
mems per visit is therefore only 2+3/(α−1)+O(1/n) ≈ 3.534, if we keep pn in a register.
[See E. Kubicka, Combinatorics, Probability and Computing 5 (1996), 403–417.]
89. If step O5 sets pn ← pj exactly Qn times, it sets pk ← pj exactly Qk + Ak+1 −
Ak times, for 1 < k < n, because every prefix of a canonical p1 . . . pn is canonical.
We have (Q1, Q2, . . . ) = (0, 0, 1, 2, 5, 9, 22, 48, 118, 288, . . . ); and one can show that
Qn =


d≥1


1≤c<n/d−1 a(n−cd)(n−cd−d), where ank is the number of canonical parent

sequences p1 . . . pn with pn = k. But these numbers ank remain mysterious.
90. (a) This property is equivalent to 2.3.4.4–(7); vertex 0 is the centroid.

(b) Let m = ⌊n/2⌋. At the end of step O1, set pm+1 ← 0, and also p2m+1 ← 0 if
n is odd. At the end of step O4, set i← j and while pi ̸= 0 set i← pi. (Then i is the
root of the tree containing j and k.) At the beginning of step O5, if k = i + m and
i < j, set j ← i and d← m.

(c) If n is even, there are no bicentroidal trees with n+ 1 vertices. Otherwise find
all pairs (p′1 . . . p′m, p′′1 . . . p′′m) of canonical forests on m = ⌊n/2⌋ nodes, with p′1 . . . p′m ≥
p′′1 . . . p

′′
m; let p1 = 0, pj+1 = p′j + 1, and pm+j+1 = (p′′j +m+ 1)[p′′j > 0] for 1 ≤ j ≤ m.

(Two incarnations of Algorithm O will generate all such sequences. This algorithm for
free trees is due to F. Ruskey and G. Li; see SODA 10 (1999), S939–S940.)
91. Use the following recursive procedure W (n): If n ≤ 2, return the unique n-node
oriented tree. Otherwise choose positive integers j and d so that a given pair (j, d)
is obtained with probability dAdAn−jd/((n − 1)An). Compute random oriented trees
T ′ ←W (n−jd) and T ′′ ←W (d). Return the tree T obtained by linking j clones of T ′′

to the root of T ′. [Combinatorial Algorithms (Academic Press, 1975), Chapter 25.]
92. Not always. [R. L. Cummins, in IEEE Trans. CT-13 (1966), 82–90, proved that
the graph of S(G) always contains a cycle; see also C. A. Holzmann and F. Harary,
SIAM J. Applied Math. 22 (1972), 187–193. But their constructions are unsuitable for
efficient computation, because they require foreknowledge of the parity of the sizes of
intermediate results.]
93. Yes. Step S7 undoes step S3; step S9 undoes the deletions of step S8.
94. For example, we can use depth-first search, with an auxiliary table b1 . . . bn:

i) Set b1 . . . bn ← 0 . . . 0, then v ← 1, w ← 1, b1 ← 1, and k ← n− 1.
ii) Set e← nv−1. While te ̸= 0, do the following substeps:

a) Set u← te. If bu ̸= 0, go to substep (c).
b) Set bu ← w, w ← u, ak ← e, k ← k − 1. Terminate if k = 0.
c) Set e← ne.

From the Library of Melissa Nuno



ptg999

7.2.1.6 ANSWERS TO EXERCISES 803

iii) If w ̸= 1, set v ← w, w ← bw, and return to (ii). Otherwise report an error: The
given graph was not connected.

We could actually terminate as soon as substep (b) reduces k to 1, since Algorithm S
never looks at the initial value of a1. But we might as well test for connectivity.
95. The following steps perform a breadth-first search from u, to see if v is reachable
without using edge e. An auxiliary array b1 . . . bn of arc pointers is used, which should
be initialized to 0 . . . 0 at the end of step S1; we will reset it to 0 . . . 0 again.

i) Set w ← u and bw ← v.
ii) Set f ← nu−1. While tf ̸= 0, do the following substeps:

a) Set v′ ← tf . If bv′ ̸= 0, go to substep (d).
b) If v′ ̸= v, set bv′ ← v, bw ← v′, w ← v′, and go to substep (d).
c) If f ̸= e⊕ 1, go to step (v).
d) Set f ← nf .

iii) Set u← bu. If u ̸= v, return to step (ii).
iv) Set u← te. While u ̸= v, set w ← bu, bu ← 0, u← w. Go to S9 (e is a bridge).
v) Set u← te. While u ̸= v, set w ← bu, bu ← 0, u← w. Then set u← te again and

continue step S8 (e is not a bridge).
Two quick heuristics can be used before starting this calculation: If du = 1, then e is
obviously a bridge; and if lle ̸= 0, then e is obviously a nonbridge (because there’s an-
other edge between u and v). Such special cases are detected readily by the breadth-first
search, yet experiments by the author indicate that both heuristics are definitely worth-
while. For example, the test on lle typically saves 3% or so of the total running time.
96. (a) Let ek be the arc k − 1 → k. The steps in answer 94 set ak ← en+1−k for
n > k ≥ 1. Then at level k we shrink en−k, for 1 ≤ k < n − 1. After visiting the
(unique) spanning tree en−1 . . . e2en, we unshrink en−k and discover quickly that it is
a bridge, for n − 1 > k ≥ 1. Thus the running time is linear in n; in the author’s
implementation it turns out to be exactly 102n− 226 mems for n ≥ 3.

However, this result depends critically on the order of the edges in the initial
spanning tree. If step S1 had produced “organ-pipe order” such as

en/2+1 en/2 en/2+2 en/2−1 . . . en−1 e2

in positions a2 . . . an−1 when n is even, the running time would have been Ω(n2),
because Ω(n) of the bridge tests would each have taken Ω(n) steps.

(b) Now ak is initially en−k for n > k ≥ 1, where e1 is the arc n → 1. The
spanning trees visited, when n ≥ 4, are respectively en−2 . . . e1en, en−2 . . . e1en−1,
en−2 . . . e2en−1en, en−2 . . . e3en−1ene1, . . . , en−1ene1 . . . en−3. Following the tree
en−2 . . . ek+2en−1ene1 . . . ek the computations move down to level n − k − 3 and up
again, for 0 ≤ k ≤ n− 4; the bridge tests are all efficient. Thus the total running time
is quadratic (in the author’s version, exactly 35.5n2 + 7.5n− 145 mems, for n ≥ 5).

Incidentally, Pn is board (n, 0, 0, 0, 1, 0, 0) in the notation of the Stanford Graph-
Base, and Cn is board (n, 0, 0, 0, 1, 1, 0); the SGB vertices are named 0 through n− 1.
97. Yes, when {s, t} is {1, 2}, {1, 3}, {2, 3}, {2, 4}, or {3, 4}, but not {1, 4}.

98. A′ = a

b

c d

e

f

g
; this is the “dual planar graph” of the planar graph A.

(The near trees of A′ are complements of the spanning trees of A, and vice versa.)

From the Library of Melissa Nuno



ptg999

804 ANSWERS TO EXERCISES 7.2.1.6

99. The stated method works, by induction on the size of the tree, for essentially the
same reasons that it worked for n-tuples in Section 7.2.1.1 — but with the additional
proviso that we must successively designate each child of an uneasy node.

Leaf nodes are always passive, and they are neither easy nor uneasy; so we will
assume that the branch nodes are numbered 1 to m in preorder. Let fp = p for all
branch nodes, except when p is a passive uneasy node for which the nearest uneasy node
to its right is active; in the latter case, fp should point to the nearest active uneasy
node to its left. (For purposes of this definition, we imagine that artificial nodes 0
and m+ 1 are present at the left and right, both of which are uneasy and active.)
F1. [Initialize.] Set fp ← p for 0 ≤ p ≤ m; also set t0 ← 1, v0 ← 0, and set each zp so

that rzp = dp.
F2. [Select node p.] Set q ← m; then while tq = vq set q ← q − 1. Set p ← fq and

fq ← q; terminate the algorithm if p = 0.
F3. [Change dp.] Set s← dp, s′ ← rs, k ← vp, and dp ← s′. (Now k = vs ̸= vs′ .)
F4. [Update the values.] Set q ← s and vq ← k ⊕ 1. While dq ̸= 0, set q ← dq and

vq ← k ⊕ 1. (Now q is a leaf that has entered the config if k = 0, left it if k = 1.)
Similarly, set q ← s′ and vq ← k. While dq ̸= 0, set q ← dq and vq ← k. (Now q is
a leaf that has left the config if k = 0, entered it if k = 1.)

F5. [Visit.] Visit the current config, represented by all the leaf values.
F6. [Passivate p?] (All uneasy nodes to p’s right are now active.) If dp ̸= zp, return

to step F2. Otherwise set zp ← s, q ← p − 1; while tq = vq, set q ← q − 1. (Now
q is the first uneasy node to the left of p; we will make p passive.) Set fp ← fq,
fq ← q, and return to F2.

Although step F4 may change uneasy nodes to easy nodes and vice versa, the focus
pointers need not be updated, because they’re still set correctly.
100. A complete program, called GRAYSPSPAN, appears on the author’s website. Its
asymptotic efficiency can be proved by using the result of exercise 110 below.
102. If so, ordinary spanning trees can be listed in a strong revolving-door order, where
the edges that enter and leave at each step are adjacent.

Interesting algorithms to generate all the oriented spanning trees with a given
root have been developed by Harold N. Gabow and Eugene W. Myers, SICOMP 7
(1978), 280–287; S. Kapoor and H. Ramesh, Algorithmica 27 (2000), 120–130.
103. (a) Toppling increases (x0, x1, . . . , xn) lexicographically, but does not change x0 +
· · ·+ xn. If we can topple at both Vi and Vj , either order gives the same result.

(b) Adding a grain of sand changes the 16 stable states as follows:

Given 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
+ 0001 0001 0010 0011 0001 0101 0110 0111 0101 1001 1010 1011 1001 1101 1110 1111 1101
+ 0010 0010 0011 0001 0010 0110 0111 0101 0110 1010 1011 1001 1010 1110 1111 1101 1110
+ 0100 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 0100 0101 0110 0111
+ 1000 1000 1001 1010 1011 1100 1101 1110 1111 0100 0101 0110 0111 1000 1001 1010 1011

The recurrent states are the nine cases with x1 + x2 > 0 and x3 + x4 > 0. Notice that
repeated addition of 0001 leads to the infinite cycle 0000 → 0001 → 0010 → 0011 →
0001→ 0010→ · · · ; but the states 0001, 0010, and 0011 are not recurrent.

(c) If x = σ(x + t) then also x = σ(x + kt) for all k ≥ 0. All components
of t are positive; thus x = σ(x + max(d1, . . . , dn)t) is recurrent. Conversely, suppose

From the Library of Melissa Nuno



ptg999

7.2.1.6 ANSWERS TO EXERCISES 805

x = σ(d + y), where all yi ≥ 0; then d + y + t topples to x + t and it also topples to
σ(d) + y + t = d+ y. Therefore σ(x+ t) = σ(d+ y) = x.

(d) There are N = det(aij) classes, because elementary row operations (exercise
4.6.1–19) triangularize the matrix while preserving congruence.

(e) There are nonnegative integers m1, . . . , mn, m′
1, . . . , m′

n such that

x+m1a1 + · · ·+mnan = x′ +m′
1a1 + · · ·+m′

nan = y, say.

For sufficiently large k, the vector y+ kt topples in m1 + · · ·+mn steps to x+ kt, and
in m′

1 + · · ·+m′
n steps to x′ + kt. Therefore x = σ(x+ kt) = σ(x′ + kt) = x′.

(f) The triangularization in (d) shows that x ≡ x + Ny for arbitrary vectors y.
And toppling preserves congruence; hence every class contains a recurrent state.

(g) Since a = a1 + · · · + an in a balanced digraph, we have x ≡ x + a. If x is
recurrent, we see in fact that every vertex topples exactly once when x+a reduces to x,
because the vectors {a1, . . . , an} are linearly independent.

Conversely, if σ(x+ a) = x we must prove that x is recurrent. Let zm = σ(ma);
there must be some positive k and m with zm+k = zm. Then every vertex topples
k times when zm + ka reduces to zm; hence there are vectors yj = (yj1, . . . , yjn) with
yjj ≥ dj such that (m + k)a topples to yj . It follows that x + n(m + k)a topples to
x+ y1 + · · ·+ yn, and σ(x+ y1 + · · ·+ yn) = σ(x+ n(m+ k)a) = x.

(h) Treating subscripts cyclically, the spanning trees with arcs Vj → V0 for j = i1,
. . . , ik have n − k other arcs: Vj → Vj−1 for il < j ≤ il + ql and Vj → Vj+1 for
il + ql < j < il+1. The recurrent states, similarly, have xj = 2 for j = i1, . . . , ik, and
xj = 1 for il < j < il+1, except that xj = 0 when j = il + ql and ql > 0.

(i) In this case state x = (x1, . . . , xn) is recurrent if and only if (n−x1, . . . , n−xn)
solves the parking problem in the hint, because t = (1, . . . , 1), and a sequence that
doesn’t get parked leaves a “hole” that stops x+ t from toppling to x.

Notes: This sandpile model, introduced by Deepak Dhar [Phys. Review Letters
64 (1990), 1613–1616], has led to many papers in the physics literature. Dhar noted
that, if M grains of sand are introduced at random, each recurrent state is equally
probable as M → ∞. The present exercise was inspired by the work of R. Cori and
D. Rossin, European J. Combinatorics 21 (2000), 447–459.

Sandpile theory proves that every digraph D yields an abelian group whose
elements correspond somehow to the oriented spanning trees of D with root V0. In
particular, the same is true when D is an ordinary graph, with arcs u→ v and v → u
whenever u and v are adjacent. Thus, for example, we can “add” two spanning trees;
and some spanning tree can be regarded as “zero.” An elegant correspondence between
spanning trees and recurrent states, in the special case when D is an ordinary graph,
has been found by R. Cori and Y. Le Borgne, Advances in Applied Math. 30 (2003),
44–52. But no simple correspondence is known for general digraphs D. For example,
suppose n = 2 and (e10, e12, e20, e21) = (p, q, r, s); then there are pr + ps+ qr oriented
trees, and the recurrent states correspond to generalized two-dimensional toruses as in
exercise 7–137. Yet even in the “balanced” case, when p+ q ≥ s and r+ s ≥ q, no easy
mapping between spanning trees and recurrent states is apparent.

104. (a) If det(αI − C) = 0, there is a vector x = (x1, . . . , xn)T such that Cx = αx
and max(x1, . . . , xn) = xm = 1 for some m. Then α = αxm = cmm −


j ̸=m emjxj ≥

cmm −

j ̸=m emj = 0. (Incidentally, a real symmetric matrix whose eigenvalues are

nonnegative is called positive semidefinite. Our proof establishes the well-known fact

From the Library of Melissa Nuno



ptg999

806 ANSWERS TO EXERCISES 7.2.1.6

that any real symmetric matrix with cmm ≥ |

j ̸=m cmj | for 1 ≤ m ≤ n has this

property.) Thus α0 ≥ 0; and α0 = 0 because C(1, . . . , 1)T = (0, . . . , 0)T .
(b) det(xI−C(G)) = x(x−α1) . . . (x−αn−1); and the coefficient of x is (−1)n−1n

times the number of spanning trees, by the matrix tree theorem.
(c) det(αI − C(Kn)) = det((α − n)I + J) = (α − n)n−1α by exercise 1.2.3–36;

here J is the matrix of all 1s. The aspects are therefore 0, n, . . . , n.
105. (a) If eij = a+ be′ij we have C(G) = naI − aJ + bC(G′). And if C is any matrix
whose row sums are zero, the identity

det(xI + yJ − zC) = x+ ny

x
zn det((x/z)I − C)

can be proved by adding columns 2 through n to column 1, factoring out (x + ny)/x,
subtracting y/x times column 1 from columns 2 through n, then subtracting columns
2 through n from column 1. Therefore, by setting x = α−na, y = a, z = b, a = 1, and
b = −1, we find that G has the aspects 0, n − αn−1, . . . , n − α1. (In particular, this
result agrees with exercise 104(c) when G′ is the empty graph Kn.)

(b) Sort {α′
0, . . . , α

′
n′−1, α

′′
0 , . . . , α

′′
n′′−1} into order. (An easy case, for variety.)

(c) Here G = G′ ⊕ G′′, so G’s aspects are {0, n′ + n′′, n′′ + α′
1, . . . , n

′′ + α′
n′−1,

n′ +α′′
1 , . . . , n

′ +α′′
n′′−1} by (a) and (b). (In particular, G is Km,n when G′ = Km and

G′′ = Kn, hence the aspects of Km,n are {0, (n− 1) ·m, (m− 1) · n, m+ n}.)
(d) C(G) = In′⊗C(G′′)+C(G′)⊗In′′ , where In denotes the n×n identity matrix

and ⊗ denotes the direct product of matrices. The aspects of C(G) are {α′
j + α′′

k |
0 ≤ j < n′, 0 ≤ k < n′′}; for if A and B are arbitrary matrices whose eigenvalues
are {λ1, . . . , λm} and {µ1, . . . , µn}, respectively, the eigenvalues of A ⊗ In + Im ⊗ B
are the mn sums λj + µk. Proof: Choose S and T so that S−AS and T−BT are
triangular. Then use the matrix identity (A ⊗ B)(C ⊗ D) = AC ⊗ BD to show that
(S⊗T )−(A⊗In+Im⊗B)(S⊗T ) = (S−AS)⊗In+Im⊗(T−BT ). (In particular, repeated
use of this formula shows that the aspects of the n-cube are {


n
0

·0,

n
1

·2, . . . ,


n
n


·2n},

and Eq. (57) follows from exercise 104(b).)
(e) When G is a regular graph of degree d, its aspects are αj = d− λj+1, where

λ1 ≥ · · · ≥ λn are the eigenvalues of the adjacency matrix A = (aij). The adjacency
matrix of G′ is A′ = BTB − d′In′ , where B = (bij) is the n× n′ incidence matrix with
entries bij = [edge i touches vertex j], and where n = n′d′/2 is the number of edges.
The adjacency matrix of G is A = BBT − 2In. Now we have

xn det(xIn′ −BTB) = xn
′
det(xIn −BBT );

this identity follows from the fact that the coefficients of det(xI−A) can be expressed in
terms of trace(Ak) for k = 1, 2, . . . , via Newton’s identities (exercise 1.2.9–10). So the
aspects of G are the same as those of G′, plus n− n′ aspects equal to 2d′. [This result
is due to E. B. Vakhovsky, Sibirskĭı Mat. Zhurnal 6 (1965), 44–49; see also H. Sachs,
Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau 13 (1967), 405–412.]

(f) A = A′⊗A′′, so the aspects are {d′′α′
j+d′α′′

k−α′
jα

′′
k | 0 ≤ j < n′, 0 ≤ k < n′′}.

(g) A(G) = In′ ⊗A′′ +A′ ⊗ In′′ +A′ ⊗A′′ = (In′ +A′)⊗ (In′′ +A′′)− In yields
the aspects {(d′′ + 1)α′

j + (d′ + 1)α′′
k − α′

jα
′′
k | 0 ≤ j < n′, 0 ≤ k < n′′}.

(h) When G′ is regular, we can make S−A′S a diagonal matrix with entries d′−α′
j ,

while simultaneously S−Jn′S is a diagonal matrix with entries (n′, 0, . . . , 0), because
(1, . . . , 1)T is an eigenvector of both A′ and Jn′ . Thus, by the formula of answer 7–96(c),
the aspects turn out to be {d+(d′−α′

jn
′[j= 0])(d′′−α′′

k)+(d′−α′
j)(d′′−α′′

k−n′′[k= 0]) |
0 ≤ j < n′, 0 ≤ k < n′′}, where d = d′(n′′ − d′′) + (n′ − d′)d′′.

From the Library of Melissa Nuno



ptg999

7.2.1.6 ANSWERS TO EXERCISES 807

(i) A similar argument yields the scaled aspects {n′′α′
j | 0 ≤ j < n′} of G′,

together with n′ copies of shifted aspects {d′n′′ + α′′
k | 1 ≤ k < n′′} of G′′.

106. (a) If α is an aspect of the path Pn, there’s a nonzero solution (x0, x1, . . . , xn+1)
to the equations αxk = 2xk−xk−1−xk+1 for 1 ≤ k ≤ n, with x0 = x1 and xn = xn+1.
If we set xk = cos(2k−1)θ, we find x0 = x1 and 2xk−xk−1−xk+1 = 2xk−(2 cos 2θ)xk;
hence 2− 2 cos 2θ = 4 sin2θ will be an aspect if we choose θ so that xn = xn+1 and so
that the x’s are not all zero. Thus the aspects of Pn turn out to be σ0n, . . . , σ(n−1)n.

We must have α1 . . . αn−1 = n, by exercise 104(b), since c(Pn) = 1; therefore

c(Pm Pn) =
m−1
j=1

n−1
k=1

(σjm + σkn).

(b, c) Similarly, if α is an aspect of the cycle Cn, there’s a nonzero solution to the
stated equations with xn = x0. For this case we try xk = cos 2kθ and find solutions
when θ = jπ/n for 0 ≤ j < ⌈n/2⌉. And xk = sin kθ gives further, linearly independent
solutions for ⌈n/2⌉ ≤ j < n. The aspects of Cn are therefore σ0n, σ2n, . . . , σ(2n−2)n;
and we have

c(Pm Cn) = n

m−1
j=1

n−1
k=1

(σjm+σ(2k)n), c(Cm Cn) = mn

m−1
j=1

n−1
k=1

(σ(2j)m+σ(2k)n).

Let fn(x) = (x+ σ1n) . . . (x+ σ(n−1)n) and gn(x) = (x+ σ2n) . . . (x+ σ(2n−2)n).
These polynomials have integer coefficients; indeed, fn(x) = Un−1(x/2+1) and gn(x) =
2(Tn(x/2 + 1)− 1)/x, where Tn(x) and Un(x) are the Chebyshev polynomials defined
by Tn(cos θ) = cosnθ and Un(cos θ) = (sin(n+1)θ)/sin θ. The calculation of c(Pm Pn)
can be reduced to the evaluation of an m×m determinant, because it is the resultant
of fm(x) with fn(−x); see exercise 4.6.1–12. Similarly, 1

n
c(Pm Cn) and 1

mn
c(Cm Cn)

are the respective resultants of fm(x) with gn(−x) and of gm(x) with gn(−x).
Let αn(x) =


d\n fd(x)µ(n/d); thus α1(x) = 1, α2(x) = x+ 2, α3(x) = (x+ 3)×

(x+ 1), α4(x) = x2 + 4x+ 2, α5(x) = (x2 + 5x+ 5)(x2 + 3x+ 1), α6(x) = x2 + 4x+ 1,
etc. By considering so-called field polynomials one can show that αn(x) is irreducible
over the integers when n is even, otherwise it is the product of two irreducible factors
of the same degree. Similarly, if βn(x) =


d\n gd(x)µ(n/d), it turns out that βn(x)

is the square of an irreducible polynomial when n ≥ 3. These facts account for the
presence of fairly small prime factors in the results. For example, the largest prime
factor in c(Pm Pn) for m ≤ n ≤ 10 is 1009; it occurs only in the resultant of α6(x)
with α9(−x), which is 662913 = 32 · 73 · 1009.
107. There are (1, 1, 2, 6, 21) nonisomorphic graphs for n = (1, . . . , 5); but we need
consider only cases with ≤ 1

2

n
2


edges, because of exercise 105(a). The surviving cases
when n = 4 are free trees: The star is the complement of K1 ⊕K3, with aspects 0, 1,
1, 4; and P4 has aspects 0, 2−

√
2, 2, 2 +

√
2 by exercise 106. There are three free trees

when n = 5: The star has aspects 0, 1, 1, 1, 5; P5’s aspects are 0, 2− ϕ, 3− ϕ, 1 + ϕ,
2+ϕ; and the aspects of are 0, r1, 1, r2, r3, where (r1, r2, r3) ≈ (0.52, 2.31, 4.17)
are the roots of x3 − 7x2 + 13x− 5 = 0.

Finally, there are five cases with a single cycle: is K1−−−(K2 ⊕K2), so its
aspects are 0, 1, 1, 3, 5; C5 has aspects 0, 3−ϕ, 3−ϕ, 2 +ϕ, 2 +ϕ; has aspects
0, r1, r2, 3, r3; its complement has aspects 0, 5− r3, 2, 5− r2, 5− r1; and the
aspects of turn out to be 0, (5−

√
13)/2, 3− ϕ, 2 + ϕ, (5 +

√
13)/2.

From the Library of Melissa Nuno



ptg999

808 ANSWERS TO EXERCISES 7.2.1.6

108. Given a digraph D on vertices {V1, . . . , Vn}, let eij be the number of arcs from Vi
to Vj . Define C(D) and its aspects as before. Since C(D) is not necessarily symmetric,
the aspects are no longer guaranteed to be real. But if α is an aspect, so is its complex
conjugate ᾱ; and if we order the aspects by their real parts, again we find α0 = 0. The
formula c(D) = α1 . . . αn−1/n remains valid if we now interpret c(D) as the average
number of oriented spanning trees, taken over all n possible roots Vj . The aspects of
the transitive tournament Kn⃗, whose arcs are Vi → Vj for 1 ≤ i < j ≤ n, are obviously
0, 1, . . . , n− 1; and those of its subgraphs are equally obvious.

The derivations in parts (a)–(d) of answer 105 carry over without change. For
example, consider K1−−−K 3⃗, which has aspects 0, 2, 3, 4; this digraph D has (2, 4, 6, 12)
oriented spanning trees with the four possible roots, and c(D) is indeed equal to
2·3·4/4. Notice also that the digraph is its own complement, and that it
has the same aspects as K 3⃗.

Directed graphs also admit another family of interesting operations: If D′ and
D′′ are digraphs on disjoint sets of vertices V ′ and V ′′, consider adding a arcs v′ → v′′

and b arcs v′′ → v′ whenever v′ ∈ V ′ and v′′ ∈ V ′′. By manipulating determinants
as in answer 105(a), we can show that the resulting digraph has aspects {0, an′′ + bn′,
an′′ + α′

1, . . . , an
′′ + α′

n′−1, bn
′ + α′′

1 , . . . , bn
′ + α′′

n′′−1}. In the special case a = 1 and
b = 0, we can conveniently denote the new digraph by D′ → D′′; thus, for example,
Kn⃗ = K1 → Kn⃗−1. The digraph Kn1 → Kn2 → · · · → Knm on n1 + n2 + · · · + nm
vertices has aspects {0, nm · sm, . . . , n2 · s2, (n1−1) · s1}, where sk = nk + · · ·+ nm.

The aspects of the oriented path Pn⃗ from V1 to Vn are obviously 0, 1, . . . , 1. The
oriented cycle Cn⃗ has aspects {0, 1− ω, . . . , 1− ωn−1}, where ω = e2πi/n.

There is also a nice result for arc digraphs: The aspects of D∗ are obtained from
those of D by simply adding τk − 1 copies of the number σk, for 1 ≤ k ≤ n, where τk
is the in-degree of Vk and σk is its out-degree. (If τk = 0, we remove one aspect equal
to σk.) The proof is similar to, but simpler than, the derivation in answer 2.3.4.2–21.

Historical remarks: The results in exercises 104(b) and 105(a) are due to A. K.
Kelmans, Avtomatika i Telemekhanika 26 (1965), 2194–2204; 27, 2 (February 1966),
56–65; English translation in Automation and Remote Control 26 (1965), 2118–2129;
27 (1966), 233–241. Miroslav Fiedler [Czech. Math. J. 23 (1973), 298–305] introduced
exercise 105(d), and proved interesting results about the aspect α1, which he called
the “algebraic connectivity” of G. Germain Kreweras, in J. Combinatorial Theory
B24 (1978), 202–212, enumerated spanning trees on grids, cylinders, and toruses, as
well as oriented spanning trees on directed toruses such as Cm⃗ Cn⃗. An excellent
survey of graph aspects was published by Bojan Mohar in Graph Theory, Combinatorics
and Applications (Wiley, 1991), 871–898; Discrete Math. 109 (1992), 171–183. For a
thorough discussion of important families of graph eigenvalues and their properties,
including a comprehensive bibliography, see Spectra of Graphs by D. M. Cvetković,
M. Doob, and H. Sachs, third edition (1995).
109. Perhaps there is also a sandpile-related reason; see exercise 103.
110. By induction: Suppose there are k ≥ 1 parallel edges between u and v. Then
c(G) = kc(G1) + c(G2), where G1 is G with u and v identified, and G2 is G with those
k edges removed. Let du = k + a and dv = k + b.

Case 1: G2 is connected. Then ab > 0, so we can write a = x+ 1 and b = y + 1.
We have c(G1) > α

√
x+ y + 1 and c(G2) > α

√
xy, where α is a product over the other

n− 2 vertices; and it is easy to verify that

k

x+ y + 1 +


xy ≥


(x+ k)(y + k).

From the Library of Melissa Nuno



ptg999

7.2.1.6 ANSWERS TO EXERCISES 809

Case 2: There are no such u and v for which G2 is connected. Then every multi-
edge of G is a bridge; in other words, G is a free tree except for parallel edges. In
this case the result is trivial if there’s a vertex of degree 1. Otherwise suppose u is an
endpoint, with du = k edges u−−− v. If dv > k + 1, we have c(G) = kc(G1) > αk

√
x

where dv = k+ 1 +x, and it is easy to check that k
√
x >


(k − 1)(k + x) when x > 0.

If dv = k we have c(G) = k >


(k − 1)2. Finally if dv = k+ 1, let v0 = u, v1 = v, and
consider the unique path v1−−−v2−−−· · ·−−−vr where r > 1 and vr has degree greater
than 2; only one edge joins vj to vj+1 for 1 ≤ j < r. Again the induction goes through.

[Other lower bounds on the number of spanning trees have been derived by A. V.
Kostochka, Random Structures & Algorithms 6 (1995), 269–274.]
111. 2 1 5 4 11 7 9 8 6 10 15 12 14 13 3.
112. Either p appears on an even level and is an ancestor of q, or q appears on an odd
level and is an ancestor of p.
113. prepostorder(FR)=postpreorder(F )R and postpreorder(FR)=prepostorder(F )R.
114. The most elegant approach, considering that the forest might be empty, is to set
things up so that CHILD(Λ) points to the root of the leftmost tree, if any. Then initiate
the first visit by setting Q← Λ, L← −1, and going to step Q6.
115. Suppose there are ne nodes on even levels and no nodes on odd levels, and
that n′

e of the even-level nodes are nonleaves. Then steps (Q1, . . . ,Q7) are performed
respectively (ne + no, no, n′

e, ne, n′
e, no + 1, ne) times, including one execution of Q6

because of answer 114.
116. (a) This result follows from Algorithm Q.

(b) In fact, non-ordinary nodes strictly alternate between lucky and unlucky,
beginning and ending with a lucky one. Proof: Consider the forest F ′ obtained by
deleting the leftmost leaf of F , and use induction on n.
117. Such forests are precisely those whose left-child/right-sibling representation is a
degenerate binary tree (exercise 31). So the answer is 2n−1.
118. (a) tk−2, for k > 1; luckiness occurs only near extreme leaves.

(b) An interesting recurrence leads to the solution (Fk + 1− (k + 1) mod 3)/2.
119. Label each node x with the value v(x) =

{ 2k | k is an arc label on the path
from the root to x}. Then the node values in prepostorder are exactly the Gray binary
code Γn, because exercise 113 shows that they satisfy recurrence 7.2.1.1–(5).

(If we apply the same value labeling to the ordinary binomial tree Tn and traverse
it in preorder, we simply get the integers 0, 1, . . . , 2n − 1.)
120. False: Only four of the “hollow” vertices in the illustration can appear
next to the two “square” vertices, in a Hamiltonian cycle; one hollow pair is
therefore out of luck. [See H. Fleischner and H. V. Kronk, Monatshefte für
Mathematik 76 (1972), 112–117.]
121. Furthermore, there is a Hamiltonian path from u to v in T 2 if and only if similar
conditions hold; but we retain u and/or v in T (′) if they have degree 1, and we require
that the path in (i) be inside the path from u to v (excluding u and v themselves).
Condition (ii) is also strengthened by changing ‘vertices of degree 4’ to ‘dangerous
vertices’, where a vertex of T (′) is called dangerous if it either has degree 4 or has
degree 2 and equals u or v. The smallest impossible case is T = P4, with u and v chosen
to be the non-endpoints. [Časopis pro Pěstování Matematiky 89 (1964), 323–338.]

From the Library of Melissa Nuno



ptg999

810 ANSWERS TO EXERCISES 7.2.1.6

Consequently T 2 contains a Hamiltonian cycle if and only if T is a caterpillar,
namely a free tree whose derivative is a path. [See Frank Harary and A. J. Schwenk,
Mathematika 18 (1971), 138–140.]
122. (a) We can represent an expression by a binary tree, with operators at the internal
nodes and digits at the external nodes. If binary trees are implemented as in Algo-
rithm B, the essential constraint imposed by the given grammar is that, if rj = k > 0,
then the operator at node j is + or − if and only if the operator at node k is × or /.
Therefore the total number of possibilities for a tree with n leaves is 2nSn−1, where Sn
is a Schröder number; namely 10,646,016 when n = 9. (See exercise 66, but interchange
left with right.) We can rather quickly generate them all, encountering exactly 1641
solutions. Only one expression, namely 1 + 2/((3−4)/(5 + 6)− (7−8)/9), does the job
with no multiplications; twenty of them, such as (((1− 2)/((3/4)× 5− 6))× 7 + 8)× 9,
require five pairs of parentheses; only 15 require no parentheses whatever.

(b) Now there are 1 +
8
k=1
8
k


2k+1Sk = 23,463,169 cases, and 3366 solutions.

The shortest, of length 12, was found by Dudeney [The Weekly Dispatch (18 June
1899)], namely 123−45−67 + 89; but he wasn’t sure at the time that it was best. The
longest solutions have length 27; there are twenty of them, as mentioned above.

(c) The number of cases rises dramatically to 2+
8
k=1
8
k


4k+1Sk = 8,157,017,474,

and there now are 97,221 solutions. The longest, which is unique, has length 40:
((((.1/(.2 + .3))/.4)/.5)/(.6 − .7))/(.8 − .9). There are five amusing examples such as
.1 + (2 + 3 + 4 + 5) × 6 + 7 + 8 + .9, with seven +’s; furthermore, there are ten like
(1− .2− .3− 4− .5− 6)× (7− 8− 9), with seven −’s.

There is in fact very little principle in the thing,
and there is no certain way of demonstrating
that we have got the best possible solution.

— HENRY E. DUDENEY (1899)

Notes: Marie Leske’s Illustriertes Spielbuch für Mädchen, first published in 1864,
contained the earliest known appearance of such a problem; in the eleventh edition
(1889), the fact that 100 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8× 9 was the solution to puzzle
16 in section 553. See also the references in exercise 7.2.1.1–111.

Richard Bellman explained in AMM 69 (1962), 640–643, how to handle the
special case of part (a) in which the operators are restricted to be either + and ×,
without parentheses. His technique of dynamic programming can be used also in
this more general problem to reduce the number of cases being considered. The idea
is to determine the rational numbers obtainable from every subinterval of the digits
{1, . . . , n}, having a given operator at the root of the tree. We can also save a good
deal of computation by discarding cases for the subintervals {1, . . . , 8} and {2, . . . , 9}
that cannot lead to integer solutions. In this way the number of essentially different
trees to consider is reduced to (a) 2,735,136 cases; (b) 6,813,760; (c) 739,361,319.

Floating point arithmetic is unreliable in this application. But the exact rational
arithmetic routines of Section 4.5.1 do the job nicely, never needing to work with an
integer greater than 109 in absolute value.
123. (a) 2284; but 2284 = (1 + 2 × 3) × (4 + 5 × 67) − 89. (b) 6964; but 6964 =
(1/.2)× 34 + 5 + 6789. (c) 14786; but 14786 = −1 + 2× (.3 + 4 + 5)× (6 + 789). [If we
allow also a minus sign at the left of the expression, as Dudeney did, we actually obtain
1362, 2759, and 85597 additional solutions to problems 122(a), (b), and (c), including
nineteen longer expressions in case (a) such as −(1−2)×((3+4)×(5−(6−7)×8)+9).

From the Library of Melissa Nuno



ptg999

7.2.1.7 ANSWERS TO EXERCISES 811

With such an extension, the smallest unreachable numbers in the present problem
become (a) 3802, (b) 8312, and (c) 17722.] The total number of representable integers
(positive, negative, or zero) turns out to be (a) 27,666; (b) 136,607; (c) 200,765.
124. Horton–Strahler numbers originated in studies of river flows: R. E. Horton, Bull.
Geol. Soc. Amer. 56 (1945), 275–370; A. N. Strahler, Bull. Geol. Soc. Amer. 63 (1952),
1117–1142. Many tree-drawing ideas are explored and illustrated in a classic paper by
Viennot, Eyrolles, Janey, and Arquès, Computer Graphics 23, 3 (July 1989), 31–40.

SECTION 7.2.1.7
1. Perhaps under hexagram 21, “crunching” ( ); however, the ancient commentators

related this hexagram more to law enforcement than to the interaction of electrons.
2. (a) For the first nucleotide in the codon, let (T, C, A, G) be respectively represented

by (. .. .. .. ., . .. .. .. ., . .. .. .. ., . .. .. .. .); represent the second nucleotide, similarly, by (. .. .. .. .,
. .. .. .. .,

. .. .. .. .,
. .. .. .. .); repre-

sent the third by (. .. .. .. .,
. .. .. .. .,

. .. .. .. .,
. .. .. .. .); and superimpose those three representations. Thus,

for example, hexagram number 34 is = . .. .. .. . + . .. .. .. . + . .. .. .. . ; it represents the codon TTC,
which maps to the amino acid F. Under this correspondence, hexagrams 34 through 54
inclusive map into the respective values (F,G,L,Q,W,D, S,−,P,Y,K,A, I,T,N,H,M,
R,V,E,C). Moreover, the three hexagrams that map to ‘−’ are numbers 1, 9, and 41,
namely , , and , which mean “creation,” “taming,” and “removal of excess” in
the I Ching — all quite appropriate for the notion of completing a protein.

(b) Consider the
 64

6,6,6,4,4,4,4,4,3,3,2,2,2,2,2,2,2,2,2,1,1

≈ 2.3 × 1069 ways to permute

the elements of the 4× 4× 4 genetic code array. Exactly

2402880402175789790003993681964551328451668718750185553920000000 ≈ 2.4× 1063

of them contain at least one run of 21 distinct consecutive elements. [Using the principle
of inclusion and exclusion one can show that any multiset {(n1+1) ·x1, . . . , (nr+1) ·xr}
with r distinct elements and nr = 0 has exactly

(n+ 1)


n

n1, . . . , nr


r!−

r
k=1

(n+ 1−k)k!(r−k)! ak


0≤d1,...,dr≤1
d1+···+dr=k


n− k

n1 − d1, . . . , nr − dr


such permutations, where n = n1 + · · · + nr and ak is the number of indecomposable
permutations with k elements (exercise 7.2.1.2–100).] Thus only about one out of every
million permutations has the stated property.

But there are 4!3
 6

2,2,2


= 1244160 ways to represent codons as in part (a), and
most of them correspond to different permutations of the amino acids (except for
interchanging the representations of T and C in third position).

Empirically, in fact, about 31% of all permutations of the 64 hexagrams turn out
to have suitable codon mappings. Thus the construction in part (a) gives no reason to
believe that the authors of the I Ching anticipated the genetic code in any way.

3. Since F31 − 106 = F28 + F22 + F20 + F18 + F16 + F14 + F9, the millionth is

⌣⌣⌣⌣⌣⌣⌣−−⌣⌣⌣−−−−−−−−−−⌣⌣⌣⌣−−⌣⌣.

Going the other way is easier: F31− (F5 +F8 +F10 +F16 +F18 +F27 +F30) = 314159.
4. One of the two appearances of on line 4 should be ; similarly, one

on line 8 should be . And the six cases with rightmost letters appear
twice, in lines 3 and 4, while the cases with rightmost are missing. These glitches
are probably typographical and/or scribal errors, not made by Donnolo himself.

From the Library of Melissa Nuno



ptg999

812 ANSWERS TO EXERCISES 7.2.1.7

5. The last one should have been , not .

6. The nth value mn in Mersenne’s list agrees with n! only for 1 ≤ n ≤ 13 and
15 ≤ n ≤ 38. Mersenne knew that 14! = 87178291200 ̸= m14 = 8778291200, because he
inserted the missing ‘1’ in his personal copy of the book (now owned by the Bibliothèque
Nationale; a facsimile was published in 1963). But the other errors in his table were not
merely typographical, because they propagated into subsequent entries, except in the
case of m50: m39 = 39! + 1026− 1010; m40 = 40m39; m41 = 41m40− 4 · 1025− 14 · 1011;
mn = nmn−1 for n = 42, 43, 44, 46, 47, 48, 49, 55, 60, and 62; m50 = 50m49 + 1066;
m51 = 51 · 50 ·m49. When he computed m45 = 9 · 45 ·m44− 1040 + 1029, he apparently
decided to take a shortcut, because it’s easy to multiply by 5 or by 9; but he multiplied
twice by 9. Most of his errors indicate an unreliable multiplication technique, which
may have depended on an abacus: m52 = 52m51 + 5 · 1056 − 2 · 1047 + 1034; m53 =
53m52 − 4 · 1029; m54 = 54m53 + 1016; m57 = 57m56 + 1033 + 1024; m58 = 58m57 +
1067−1035 +1032 +11 ·1026; m59 = 59m58 +1066 +1049−1028; m61 = 61m60−5 ·1081;
m63 = 63m62 + 1082 − 1074; m64 = 64m63 + 3 · 1081 + 1067 + 2 · 1038 − 2 · 1033 − 1023.

The remaining case, m56 ≈ 10.912m55 is baffling; it is ≡ 56m55 (modulo 1017), but
its other digits seem to satisfy neither rhyme nor reason. Can they be easily explained?

Notes: Athanasius Kircher must have copied from Mersenne when he tabulated n!
for 1 ≤ n ≤ 50 on page 157 of his Ars Magna Sciendi (1669), because he repeated all of
Mersenne’s mistakes. Kircher did, however, list the values 10m14, m45/10, and 10m49
instead of m14, m45, and m49; perhaps he was trying to make the sequence grow more
steadily. It is not clear who first calculated the correct value of 39!; exercise 1.2.5–4
tells the story of 1000!.

7. The basic permutations are 12345, 13254, 14523, 15432, 12453, 14235, 15324,
13542, 12534, 15243, 13425, 14352. But then we find that all 60 of the even
permutations are both alive and dead, because (9) differs by an even permutation
from (8). (Moreover, if we somehow repair the case n = 5, half of the live permutations
for n = 6 will turn out to be odd.)

8. For example, we can replace (9) by

ana3 . . . an−1a2a1, a1a4 . . . ana3a2, . . . , an−1a2 . . . an−2a1an,

thus flipping the ends and cyclically shifting the other elements in the permutations
of (8). This modification works because all permutations have the correct parity, and
because the live and dead ones both have a1 in every possible position. (We essentially
have a dual Sims table for the alternating group, as in Eq. 7.2.1.2–(32); but our elements
are named (n, n− 1, . . . , 1) instead of (0, 1, . . . , n− 1).)

A simpler way to generate permutations with the proper signs was published by
É. Bézout [Mémoires Acad. Royale des Sciences (Paris, 1764), 292]: Each permutation
±a1 . . . an−1 of {1, . . . , n−1} yields n others, ±a1 . . . an−1an∓a1 . . . an−2anan−1±· · · .
G. W. Leibniz had in fact discovered this rule in an unpublished manuscript dated 12
January 1684; see E. Knobloch, Archive for Hist. Exact Sciences 12 (1974), 142–173.

9. (0,1,2,3,4,5,6,7,8,9); or perhaps we should say (9,8,7,6,5,4,3,2,1,0). Notes:
A different system was used for the index numbers of the equations; for example, ‘�’
stood for 200. Moreover, it should be noted that (11) is actually a transcription of al-
Samaw’al’s work into modern Arabic; Ahmad and Rashed based their work on a 14th-
century copy that used similar but older forms of the digits: (5,1,2,3,:,;,6,7,8,9).
Al-Samaw’al himself may well have used numerals of an even earlier vintage.

From the Library of Melissa Nuno



ptg999

7.2.1.7 ANSWERS TO EXERCISES 813

10. If the 56 cases were equally likely, the answer would be 56H56 ≈ 258.2, as in
the coupon collector’s problem (exercise 3.3.2–8). But (6, 30, 20) cases occur with the
respective probabilities (1/216, 1/72, 1/36); so the correct answer turns out to be ∞

0
(1− (1− e−t/216)6(1− e−t/72)30(1− e−t/36)20) dt ≈ 546.6,

about 42% of the upper bound 216H216. [See P. Flajolet, D. Gardy, and L. Thimonier,
Discrete Applied Math. 39 (1992), 207–229.]
11. It tabulates the

6
3


= 20 combinations of (b, c, d,B,C,D) taken three at a time;
furthermore, they appear in lexicographic order if we regard b < c < d < B < C < D.
The letter t ( ) means “shift from lowercase to uppercase.” [See A. Bonner, Selected
Works of Ramon Llull (Princeton: 1985), 596–597.] There are two typos: ‘d’ should
be ‘b’ at the beginning of line 6; ‘c’ should be ‘d’ at the end of line 18. Line 1 would
have been more consistent with the others if Llull had presented it as

;

but in that line, of course, no case shift was needed.
12. Multiply Poinsot’s cycle by 5 and add 2 (mod 7).
13. It’s best to have just n lines when there are n different letters:

a. aa. aaa

b. ab. aab. aaab. bb. abb. aabb. aaabb

Then, assigning the weights (a, b) = (1, 4) gives the numbers 1 through 11 as in (18).
(The first line of (16) should also be omitted.) Similarly, for {a, a, a, b, b, c} we would
implicitly give c the weight 12 and add the additional line

c. ac. aac. aaac. bc. abc. aabc. aaabc. bbc. abbc. aabbc. aaabbc.

[J. Bernoulli almost did it right in Ars Conjectandi, Part 2, Chapter 6.]
14. ABC ABD ABE ACD ACE ACB ADE ADB ADC AEB AEC AED BCD BCE BCA BDE
BDA BDC BEA BEC BED BAC BAD BAE CDE CDA CDB CEA CEB CED CAB CAD
CAE CBD CBE CBA DEA DEB DEC DAB DAC DAE DBC DBE DBA DCE DCA DCB
EAB EAC EAD EBC EBD EBA ECD ECA ECB EDA EDB EDC. It’s a genlex ordering
(see Algorithm 7.2.1.3R), proceeding cyclically through the letters not yet used.

[A similar ordering had been used to form all 120 permutations of five letters in a
kabbalistic work entitled Sha‘ari Tzedeq, ascribed to the 13th-century author Natan ben
Sa‘adyah Har’ar of Messina, Sicily; see Le Porte della Giustizia (Milan: Adelphi, 2001).]
15. After j we place the (n − 1)-combinations of {j, . . . ,m} with repetition, so the
answer is

(m+1−j)+(n−1)−1
n−1


=

m+n−j−1

n−1

. [Jean Borrel, also known as Buteonis,

pointed this out on pages 305–309 of his early book Logistica (Lyon: 1560). He
tabulated all throws of n dice for 1 ≤ n ≤ 4, then used a sum over j to deduce that
there are 56 + 35 + 20 + 10 + 4 + 1 = 252 distinct throws for n = 5, and 462 for n = 6.]
16. N1. [Initialize.] Set r ← n, t← 0, and a0 ← 0.

N2. [Advance.] While r ≥ q, set t← t+ 1, at ← q, and r ← r − q. Then if r > 0,
set t← t+ 1 and at ← r.

N3. [Visit.] Visit the composition a1 . . . at.
N4. [Find j.] Set j ← t, t− 1, . . . , until aj ̸= 1. Terminate the algorithm if j = 0.
N5. [Decrease aj .] Set aj ← aj − 1, r ← t− j + 1, t← j; return to N2.

From the Library of Melissa Nuno



ptg999

814 ANSWERS TO EXERCISES 7.2.1.7

For example, the compositions for n = 7 and q = 3 are 331, 322, 3211, 313, 3121, 3112,
31111, 232, 2311, 223, 2221, 2212, 22111, 2131, 2122, 21211, 2113, 21121, 21112, 211111,
133, 1321, 1312, 13111, 1231, 1222, 12211, 1213, 12121, 12112, 121111, 1132, 11311,
1123, 11221, 11212, 112111, 11131, 11122, 111211, 11113, 111121, 111112, 1111111.

Nārāyan. a’s sutras 79 and 80 gave essentially this procedure, but with the strings
reversed (133, 223, 1123, . . . ), because he preferred decreasing colex order. [Śārṅgadeva,
in Saṅḡıtaratnākara §5.316–375, had previously developed an elaborate theory for the
set of all compositions (rhythms) that can be formed from the basic parts {1, 2, 4, 6}.]
17. The number Vn of visits is F (q)

n+q−1 = Θ(αnq ); see exercise 5.4.2–7. The number
Xn of times step N4 tests aj = 1 satisfies Xn = Xn−1 + · · · + Xn−q + 1, and we find
Xn = V0 + · · · + Vn = (qVn + (q − 1)Vn−1 + · · · + Vn−q+1 − 1)/(q − 1) = Θ(Vn). The
number Yn of times step N2 sets at ← q satisfies the same recurrence, and we find
Yn = Xn−q. And the number of times step N2 finds r = 0 turns out to be Vn−q.

18. It was MDCLXVI in Roman numerals, where M > D > C > L > X > V > I.

19. Lines 329 and 1022. (Puteanus included 139 such verses among his list of 1022.)

20. With ‘tria’ preceding ‘lumina’, there are 5! × 2! × (11, 12, 12, 16) ways having a
dactyl in the (1st, 2nd, 3rd, 4th) foot, respectively; with ‘lumina’ preceding ‘tria’ there
are 5! × 2! × (16, 12, 12, 11). So the total is 24480. [Leibniz considered this problem
near the end of his Dissertatio de Arte Combinatoria, and came up with the answer
45870; but his argument was riddled with errors.]

21. (a) The generating function 1/((1 − zu − yu2)(1 − zv − yv2)(1 − zw − yw2)) is
clearly equal to


p,q,r,s,t≥0 f(p, q, r; s, t)upvqwrzsyt.

(b) If ‘tibi’ is ⌣⌣ and ‘Virgo’ is −−−−, the number is 3! 3! times
3
k=0(f(2k + 1,

6− 2k, 2; 3, 3) + f(2k, 6− 2k, 2; 2, 3)), namely 36((7+7) + (9+5) + (10+5) + (14+7)) =
2304. Otherwise ‘tibi’ is ⌣−−, ‘Virgo’ is −−⌣, and the number is 2! 3! times

3
k=0(f(2k,

5−2k, 2; 3, 2)+f(2k, 6−2k, 1; 3, 2)), namely 12((7+6)+(5+4)+(4+4)+(0+6)) = 432.
(c) The fifth foot begins with the second syllable of ‘cælo’, ‘dotes’, or ‘Virgo’.

Hence the additional number is 3! 3!
2
k=0 f(2k, 5− 2k, 2; 3, 2) = 36(7 + 5 + 4) = 576,

and the grand total is 2304 + 432 + 576 = 3312.

22. Let α ∈ {quot, sunt, tot}, β ∈ {cælo, dotes,Virgo}, σ = sidera, and τ = tibi.
Prestet’s analysis was essentially equivalent to that of Bernoulli, but he forgot to include
the 36 cases ααατββσβ. (In his favor one can say that those cases are poetically sterile;
Puteanus found no use for them.) The 1675 edition of Prestet’s book had also omitted
all permutations that end with τβ.

Wallis divided the possibilities into 23 types, T1 ∪ T2 ∪ · · · ∪ T23. He claimed that
his types 6 and 7 each yielded 324 verses; but actually |T6| = |T7| = 252, because his
variable i should be 7, not 9. He also counted many solutions twice: |T3 ∩ T5| = 72,
|T2 ∩ T7| = |T5 ∩ T7| = |T3 ∩ T6| = |T6 ∩ T10| = 36, and |T11 ∩ T12| = |T12 ∩ T13| =
|T14 ∩ T15| = 12. He missed the 36 possibilities αββασατβ (19 of which were used by
Puteanus). And he also missed all the permutations of exercise 21(c); Puteanus had
used 250 of those 576. The Latin edition of Wallis’s book, published in 1693, corrected
several typographic errors in this section, but none of the mathematical mistakes.

Whitworth and Hartley omitted all cases with ‘tibi’ = ⌣−− (see exercise 19),
possibly because people’s knowledge of classical hexameter was beginning to fade.

[Speaking of errors, Puteanus actually published only 1020 distinct permutations,
not 1022, because lines 592 and 593 in his list were identical to lines 601 and 602. But

From the Library of Melissa Nuno



ptg999

7.2.1.7 ANSWERS TO EXERCISES 815

he would have had no trouble finding two more cases — for example, by changing ‘tot
sunt’ to ‘sunt tot’ in lines 252, 345, 511, 548, 659, 663, 678, 693, or 797.]
23. Reading each diagram left-to-right, so that 12 |345↔ , we get

24. His rule was: For k = 0, 1, . . . , n − 1, and for each combination 0 < j1 < · · · <
jk < n of n−1 things taken k at a time, visit all partitions of {1, . . . , n−1}\{j1, . . . , jk}
together with the block {j1, . . . , jk, n}. His order for n = 5 was:

But strictly speaking, the answer to this exercise is “No” — because Honda’s rule is not
complete until the order of the combinations is specified. He generated combinations
in colex order (lexicographic on jt . . . j1). Lexicographic order on j1 . . . jt would also be
consistent with the list given for n = 4, but it would put before . Reference:
T. Hayashi, Tôhoku Math. J. 33 (1931), 332–337.
25. No; (28) misses 14 |235 (the top-bottom reflection of its second pattern).
26. Let an be the number of indecomposable partitions of {1, . . . , n}, and let a′n
be the number that are both indecomposable and complete. These sequences begin
⟨a1, a2, . . . ⟩ = ⟨1, 1, 2, 6, 22, 92, 426, . . . ⟩, ⟨a′1, a′2, . . . ⟩ = ⟨0, 1, 1, 3, 9, 33, 135, . . . ⟩; and
the answer to this exercise is a′n−1 for n ≥ 2. It turns out that an is also the number of
symmetric polynomials of degree n in noncommuting variables. [See M. C. Wolf, Duke
Math. J. 2 (1936), 626–637, who also tabulated indecomposable partitions into k parts.]

If A(z) =

n anz

n, and if B(z) =

nϖnz

n is the non-exponential generating
function for Bell numbers, we have A(z)B(z) = B(z) − 1, hence A(z) = 1 − 1/B(z).
And the result of exercise 7.2.1.5–35 implies that


n a

′
nz
n = zA(z)/(1 + z − A(z)) =

z(B(z) − 1)/(1 + zB(z)). Unfortunately B(z) has no especially nice closed form,
although it does satisfy the interesting functional relation 1 + zB(z) = B(z/(1 + z)).
Notice that indecomposable set partitions with n > 1 correspond to vacillating tableau
loops with no three consecutive λs equal to zero (see exercise 7.2.1.5–27).
27. The problem is ambiguous because genji-ko diagrams are not well defined. Let’s
require all vertical lines of a block to have the same height; then, for example, 145 |236
has no single-crossing diagram because is not allowed.

The number of partitions with no crossing is Cn (see exercise 7.2.1.6–26). For one
crossing, the elements of the two blocks that cross must appear within the restricted
growth string as either xiyxjyk or xiyj+1xyk or xiyjxykxl, where i, j, k, l > 0.

Suppose the pattern is xiyxjyk. There are t = i + j + k + 2 “slots” between the
i + 1 + j + k elements of this pattern, and the number of ways to fill these slots with

From the Library of Melissa Nuno



ptg999

816 ANSWERS TO EXERCISES 7.2.1.7

noncrossing partitions is

i1+···+it=n−i−j−k−1 Ci1 . . . Cit . We can express this number

as
[zn−i−j−k−1]C(z)i+j+k+2 = C(n−i−j−k−1)n

by Eq. 7.2.1.6–(24). Summing on k gives C(n−i−j−2)(n+1); then summing on j and i
gives C(n−4)(n+3).

Similarly, the other two patterns contribute C(n−5)(n+3) and C(n−5)(n+4). The
total number of single-crossing partitions is therefore C(n−5)(n+3) + C(n−4)(n+4).
28. Order the divisors of cbbaaa by their number of prime factors and then colexico-
graphically: 1 ≺ a ≺ b ≺ c ≺ aa ≺ ba ≺ ca ≺ bb ≺ cb ≺ aaa ≺ baa ≺ caa ≺ bba ≺
cba ≺ cbb ≺ baaa ≺ caaa ≺ bbaa ≺ cbaa ≺ cbba ≺ bbaaa ≺ cbaaa ≺ cbbaa ≺ cbbaaa.
For every such divisor d, in decreasing order, let d be the first factor; recursively append
all factorizations of cbbaaa/d whose first factor is ⪯ d.

If the divisors had been ordered lexicographically (namely 1 < a < aa < aaa <
b < ba < · · · < cbbaa < cbbaaa), Wallis’s algorithm would have been equivalent to
Algorithm 7.2.1.5M with (n1, n2, n3) = (1, 2, 3). He probably chose his more compli-
cated ordering of the divisors because it tends to agree more closely with ordinary
numerical order when a ≈ b ≈ c; for example, his ordering is precisely numerical when
(a, b, c) = (7, 11, 13). By generating the divisors according to his somewhat complex
scheme, Wallis was essentially generating multiset combinations, which we noted in
Section 7.2.1.3 are equivalent to bounded compositions. [Reference: A Discourse of
Combinations (1685), 126–128, with two typographic errors corrected.]
29. The factorizations edcba, edcb ·a, edca ·b, . . . , e ·d ·c ·b ·a correspond respectively to

30. The coefficient is zero unless i1 + 2i2 + · · · = n; in that case it is

m
k


am−k

0


k
i1,i2,...


where k = i1 + i2 + · · · . (Consider (a0z)m times (1 + (a1/a0)z + (a2/a0)z2 + · · · )m.)
31. The order produced by that algorithm is decreasing lexicographic, the reverse
of (31), if we assume that partitions a1 . . . ak have a1 ≥ · · · ≥ ak; de Moivre’s was
increasing colexicographic.
32. 20 · 1 = 7 + 13 · 1 = 2 · 7 + 6 · 1 = 10 + 10 · 1 = 10 + 7 + 3 · 1 = 2 · 10. In general,
Boscovich suggested starting with n ·1 and computing the successor of a ·10+b ·7+c ·1
as follows: If c ≥ 7, the successor is a ·10+(b+1) ·7+(c−7) ·1; otherwise if c+7b ≥ 10,
the successor is (a+ 1) · 10 + (c+ 7b− 10) · 1; otherwise stop.

“I may,” said Poirot in a completely unconvinced tone, “be wrong.”
— AGATHA CHRISTIE, After the Funeral (1953)

From the Library of Melissa Nuno



ptg999

7.2.1.7 ANSWERS TO EXERCISES 817

— HARPO MARX, The Cocoanuts (1925)
— MARCEL MARCEAU, Baptiste (1946)

From the Library of Melissa Nuno



ptg999

APPENDIX A

TABLES OF NUMERICAL QUANTITIES

Table 1
QUANTITIES THAT ARE FREQUENTLY USED IN STANDARD SUBROUTINES

AND IN ANALYSIS OF COMPUTER PROGRAMS (40 DECIMAL PLACES)
√

2 = 1.41421 35623 73095 04880 16887 24209 69807 85697−√
3 = 1.73205 08075 68877 29352 74463 41505 87236 69428+√
5 = 2.23606 79774 99789 69640 91736 68731 27623 54406+√

10 = 3.16227 76601 68379 33199 88935 44432 71853 37196−
3√2 = 1.25992 10498 94873 16476 72106 07278 22835 05703−
3√3 = 1.44224 95703 07408 38232 16383 10780 10958 83919−
4√2 = 1.18920 71150 02721 06671 74999 70560 47591 52930−

ln 2 = 0.69314 71805 59945 30941 72321 21458 17656 80755+
ln 3 = 1.09861 22886 68109 69139 52452 36922 52570 46475−

ln 10 = 2.30258 50929 94045 68401 79914 54684 36420 76011+
1/ln 2 = 1.44269 50408 88963 40735 99246 81001 89213 74266+

1/ln 10 = 0.43429 44819 03251 82765 11289 18916 60508 22944−
π = 3.14159 26535 89793 23846 26433 83279 50288 41972−

1◦ = π/180 = 0.01745 32925 19943 29576 92369 07684 88612 71344+
1/π = 0.31830 98861 83790 67153 77675 26745 02872 40689+
π2 = 9.86960 44010 89358 61883 44909 99876 15113 53137−√

π = Γ(1/2) = 1.77245 38509 05516 02729 81674 83341 14518 27975+
Γ(1/3) = 2.67893 85347 07747 63365 56929 40974 67764 41287−
Γ(2/3) = 1.35411 79394 26400 41694 52880 28154 51378 55193+

e = 2.71828 18284 59045 23536 02874 71352 66249 77572+
1/e = 0.36787 94411 71442 32159 55237 70161 46086 74458+
e2 = 7.38905 60989 30650 22723 04274 60575 00781 31803+
γ = 0.57721 56649 01532 86060 65120 90082 40243 10422−

lnπ = 1.14472 98858 49400 17414 34273 51353 05871 16473−
ϕ = 1.61803 39887 49894 84820 45868 34365 63811 77203+
eγ = 1.78107 24179 90197 98523 65041 03107 17954 91696+

eπ/4 = 2.19328 00507 38015 45655 97696 59278 73822 34616+
sin 1 = 0.84147 09848 07896 50665 25023 21630 29899 96226−
cos 1 = 0.54030 23058 68139 71740 09366 07442 97660 37323+
−ζ′(2) = 0.93754 82543 15843 75370 25740 94567 86497 78979−
ζ(3) = 1.20205 69031 59594 28539 97381 61511 44999 07650−
lnϕ = 0.48121 18250 59603 44749 77589 13424 36842 31352−

1/lnϕ = 2.07808 69212 35027 53760 13226 06117 79576 77422−
−ln ln 2 = 0.36651 29205 81664 32701 24391 58232 66946 94543−

818

From the Library of Melissa Nuno



ptg999

TABLES OF NUMERICAL QUANTITIES 819

Table 2
QUANTITIES THAT ARE FREQUENTLY USED IN STANDARD SUBROUTINES

AND IN ANALYSIS OF COMPUTER PROGRAMS (40 HEXADECIMAL PLACES)

The names at the left of the “=” signs are given in decimal notation.

0.1 = 0.1999 9999 9999 9999 9999 9999 9999 9999 9999 999A−
0.01 = 0.028F 5C28 F5C2 8F5C 28F5 C28F 5C28 F5C2 8F5C 28F6−

0.001 = 0.0041 8937 4BC6 A7EF 9DB2 2D0E 5604 1893 74BC 6A7F−
0.0001 = 0.0006 8DB8 BAC7 10CB 295E 9E1B 089A 0275 2546 0AA6+

0.00001 = 0.0000 A7C5 AC47 1B47 8423 0FCF 80DC 3372 1D53 CDDD+
0.000001 = 0.0000 10C6 F7A0 B5ED 8D36 B4C7 F349 3858 3621 FAFD−

0.0000001 = 0.0000 01AD 7F29 ABCA F485 787A 6520 EC08 D236 9919+
0.00000001 = 0.0000 002A F31D C461 1873 BF3F 7083 4ACD AE9F 0F4F+

0.000000001 = 0.0000 0004 4B82 FA09 B5A5 2CB9 8B40 5447 C4A9 8188−
0.0000000001 = 0.0000 0000 6DF3 7F67 5EF6 EADF 5AB9 A207 2D44 268E−√

2 = 1.6A09 E667 F3BC C908 B2FB 1366 EA95 7D3E 3ADE C175+√
3 = 1.BB67 AE85 84CA A73B 2574 2D70 78B8 3B89 25D8 34CC+√
5 = 2.3C6E F372 FE94 F82B E739 80C0 B9DB 9068 2104 4ED8−√

10 = 3.298B 075B 4B6A 5240 9457 9061 9B37 FD4A B4E0 ABB0−
3√2 = 1.428A 2F98 D728 AE22 3DDA B715 BE25 0D0C 288F 1029+
3√3 = 1.7137 4491 23EF 65CD DE7F 16C5 6E32 67C0 A189 4C2B−
4√2 = 1.306F E0A3 1B71 52DE 8D5A 4630 5C85 EDEC BC27 3436+

ln 2 = 0.B172 17F7 D1CF 79AB C9E3 B398 03F2 F6AF 40F3 4326+
ln 3 = 1.193E A7AA D030 A976 A419 8D55 053B 7CB5 BE14 42DA−

ln 10 = 2.4D76 3776 AAA2 B05B A95B 58AE 0B4C 28A3 8A3F B3E7+
1/ln 2 = 1.7154 7652 B82F E177 7D0F FDA0 D23A 7D11 D6AE F552−

1/ln 10 = 0.6F2D EC54 9B94 38CA 9AAD D557 D699 EE19 1F71 A301+
π = 3.243F 6A88 85A3 08D3 1319 8A2E 0370 7344 A409 3822+

1◦ = π/180 = 0.0477 D1A8 94A7 4E45 7076 2FB3 74A4 2E26 C805 BD78−
1/π = 0.517C C1B7 2722 0A94 FE13 ABE8 FA9A 6EE0 6DB1 4ACD−
π2 = 9.DE9E 64DF 22EF 2D25 6E26 CD98 08C1 AC70 8566 A3FE+√

π = Γ(1/2) = 1.C5BF 891B 4EF6 AA79 C3B0 520D 5DB9 383F E392 1547−
Γ(1/3) = 2.ADCE EA72 905E 2CEE C8D3 E92C D580 46D8 4B46 A6B3−
Γ(2/3) = 1.5AA7 7928 C367 8CAB 2F4F EB70 2B26 990A 54F7 EDBC+

e = 2.B7E1 5162 8AED 2A6A BF71 5880 9CF4 F3C7 62E7 160F+
1/e = 0.5E2D 58D8 B3BC DF1A BADE C782 9054 F90D DA98 05AB−
e2 = 7.6399 2E35 376B 730C E8EE 881A DA2A EEA1 1EB9 EBD9+
γ = 0.93C4 67E3 7DB0 C7A4 D1BE 3F81 0152 CB56 A1CE CC3B−

lnπ = 1.250D 048E 7A1B D0BD 5F95 6C6A 843F 4998 5E6D DBF4−
ϕ = 1.9E37 79B9 7F4A 7C15 F39C C060 5CED C834 1082 276C−
eγ = 1.C7F4 5CAB 1356 BF14 A7EF 5AEB 6B9F 6C45 60A9 1932+

eπ/4 = 2.317A CD28 E395 4F87 6B04 B8AB AAC8 C708 F1C0 3C4A+
sin 1 = 0.D76A A478 4867 7020 C6E9 E909 C50F 3C32 89E5 1113+
cos 1 = 0.8A51 407D A834 5C91 C246 6D97 6871 BD29 A237 3A89+
−ζ′(2) = 0.F003 2992 B55C 4F28 88E9 BA28 1E4C 405F 8CBE 9FEE+
ζ(3) = 1.33BA 004F 0062 1383 7171 5C59 E690 7F1B 180B 7DB1+
lnϕ = 0.7B30 B2BB 1458 2652 F810 812A 5A31 C083 4C9E B233+

1/lnϕ = 2.13FD 8124 F324 34A2 63C7 5F40 76C7 9883 5224 4685−
−ln ln 2 = 0.5DD3 CA6F 75AE 7A83 E037 67D6 6E33 2DBC 09DF AA82−

From the Library of Melissa Nuno



ptg999

820 APPENDIX A

Several interesting constants with less common names have arisen in connec-
tion with the analyses in the present book. Those constants have been evaluated
to 40 decimal places in Eqs. 7.1.4–(90) and 7.2.1.5–(34), and in the answer to
exercise 7.1.4–191.

Table 3
VALUES OF HARMONIC NUMBERS, BERNOULLI NUMBERS,

AND FIBONACCI NUMBERS, FOR SMALL VALUES OF n

n Hn Bn Fn n

0 0 1 0 0
1 1 −1/2 1 1
2 3/2 1/6 1 2
3 11/6 0 2 3
4 25/12 −1/30 3 4
5 137/60 0 5 5
6 49/20 1/42 8 6
7 363/140 0 13 7
8 761/280 −1/30 21 8
9 7129/2520 0 34 9

10 7381/2520 5/66 55 10
11 83711/27720 0 89 11
12 86021/27720 −691/2730 144 12
13 1145993/360360 0 233 13
14 1171733/360360 7/6 377 14
15 1195757/360360 0 610 15
16 2436559/720720 −3617/510 987 16
17 42142223/12252240 0 1597 17
18 14274301/4084080 43867/798 2584 18
19 275295799/77597520 0 4181 19
20 55835135/15519504 −174611/330 6765 20
21 18858053/5173168 0 10946 21
22 19093197/5173168 854513/138 17711 22
23 444316699/118982864 0 28657 23
24 1347822955/356948592 −236364091/2730 46368 24
25 34052522467/8923714800 0 75025 25
26 34395742267/8923714800 8553103/6 121393 26
27 312536252003/80313433200 0 196418 27
28 315404588903/80313433200 −23749461029/870 317811 28
29 9227046511387/2329089562800 0 514229 29
30 9304682830147/2329089562800 8615841276005/14322 832040 30

From the Library of Melissa Nuno



ptg999

TABLES OF NUMERICAL QUANTITIES 821

For any x, let Hx =

n≥1

 1
n
− 1
n+ x


. Then

H1/2 = 2− 2 ln 2,

H1/3 = 3− 1
2π/
√

3− 3
2 ln 3,

H2/3 = 3
2 + 1

2π/
√

3− 3
2 ln 3,

H1/4 = 4− 1
2π − 3 ln 2,

H3/4 = 4
3 + 1

2π − 3 ln 2,

H1/5 = 5− 1
2πϕ

3/25−1/4 − 5
4 ln 5− 1

2
√

5 lnϕ,

H2/5 = 5
2 −

1
2πϕ

−3/25−1/4 − 5
4 ln 5 + 1

2
√

5 lnϕ,

H3/5 = 5
3 + 1

2πϕ
−3/25−1/4 − 5

4 ln 5 + 1
2
√

5 lnϕ,

H4/5 = 5
4 + 1

2πϕ
3/25−1/4 − 5

4 ln 5− 1
2
√

5 lnϕ,

H1/6 = 6− 1
2π
√

3− 2 ln 2− 3
2 ln 3,

H5/6 = 6
5 + 1

2π
√

3− 2 ln 2− 3
2 ln 3,

and, in general, when 0 < p < q (see exercise 1.2.9–19),

Hp/q = q

p
− π

2 cot p
q
π − ln 2q + 2


1≤n<q/2

cos 2pn
q
π · ln sin n

q
π.

Reader, if you ever have to start a computing laboratory,
be warned by me and do not take as a computer an accountant,

no matter how honest and efficient. Your computer must work
to so and so many significant figures, whether the significance

of the digits begins six places before or six places after the
decimal point. Your accountant works to cents, and he will work to cents

until hell freezes over. Whatever numbers our accountant computed
he kept at all stages to exactly two places after the decimal point . . .
This was his conscience, that he should be accurate to the last cent;

and he simply could not understand that physical quantities are not
measured in cents but on a sliding scale of values in which
the cents of one problem might be the dollars of another.

— NORBERT WIENER, I am a Mathematician (1956)

From the Library of Melissa Nuno



ptg999

APPENDIX B

INDEX TO NOTATIONS

In the following formulas, letters that are not further qualified have the following
significance:

j, k integer-valued arithmetic expression
m,n nonnegative integer-valued arithmetic expression
p, q binary-valued arithmetic expression (0 or 1)
x, y real-valued arithmetic expression
z complex-valued arithmetic expression
f integer-valued, real-valued, or complex-valued function

G,H graph
S, T set or multiset
F ,G family of sets
u, v vertex of a graph
α, β string of symbols

The place of definition is either a page number in the present volume or a section
number in a previous volume. Many other notations, such as Kn for the complete
graph on n vertices, appear in the main index at the close of this book.

Formal Where
symbolism Meaning defined

V ← E give variable V the value of expression E §1.1
U ↔ V interchange the values of variables U and V §1.1

An or A[n] the nth element of linear array A §1.1
Amn or A[m,n] the element in row m and column n of

rectangular array A §1.1
(R? a: b) conditional expression: denotes

a if relation R is true, b if R is false 96
[R] characteristic function of relation R: (R? 1: 0) §1.2.3
δjk Kronecker delta: [j= k ] §1.2.3

[zn] f(z) coefficient of zn in power series f(z) §1.2.9
z1 + z2 + · · ·+ zn sum of n numbers (even when n is 0 or 1) §1.2.3

a1a2 . . . an product or string or vector of n elements
(x1, . . . , xn) vector of n elements

⟨x1x2 . . . x2k−1⟩ median value (middle value after sorting) 75
822

From the Library of Melissa Nuno



ptg999

INDEX TO NOTATIONS 823

Formal Where
symbolism Meaning defined

R(k) f(k) sum of all f(k) such that relation R(k) is true §1.2.3
R(k) f(k) product of all f(k) such that relation R(k) is true §1.2.3

minR(k) f(k) minimum of all f(k) such that relation R(k) is true §1.2.3
maxR(k) f(k) maximum of all f(k) such that relation R(k) is true §1.2.3

R(k) S(k) union of all S(k) such that relation R(k) is trueb
k=a f(k) shorthand for


a≤k≤b f(k) §1.2.3

{a | R(a)} set of all a such that relation R(a) is true
{f(k) | R(k)} another way to write


R(k) f(k)

{a1, a2, . . . , an} the set or multiset {ak | 1 ≤ k ≤ n}
[x . . y] closed interval: {a | x ≤ a ≤ y} §1.2.2
(x . . y) open interval: {a | x < a < y} §1.2.2
[x . . y) half-open interval: {a | x ≤ a < y} §1.2.2
(x . . y] half-closed interval: {a | x < a ≤ y} §1.2.2
|S| cardinality: the number of elements in S

|f | number of solutions (when f is Boolean):


x f(x) 207
|x| absolute value of x: (x ≥ 0? x: −x)
|z| absolute value of z:

√
zz̄ §1.2.2

|α| length of α: m if α = a1a2 . . . am

⌊x⌋ floor of x, greatest integer function: maxk≤x k §1.2.4
⌈x⌉ ceiling of x, least integer function: mink≥x k §1.2.4

xmod y mod function:

y = 0? x: x− y⌊x/y⌋


§1.2.4

{x} fractional part (used in contexts where
a real value, not a set, is implied): xmod 1 §1.2.11.2

x ≡ x′ (modulo y) relation of congruence: xmod y = x′ mod y §1.2.4
j\k j divides k: k mod j = 0 and j > 0 §1.2.4

S \ T set difference: {s | s in S and s not in T}
S \ t shorthand for S \ {t}
G \ U G with vertices of the set U removed 13
G \ v G with vertex v removed 13
G \ e G with edge e removed 13
G / e G with edge e shrunk to a point 463
S ∪ t shorthand for S ∪ {t}
S ⊎ T multiset sum; e.g., {a, b} ⊎ {a, c} = {a, a, b, c} §4.6.3

gcd(j, k) greatest common divisor: (j=k=0? 0: maxd\j,d\k d) §1.1
j ⊥ k j is relatively prime to k: gcd(j, k) = 1 §1.2.4

From the Library of Melissa Nuno



ptg999

824 APPENDIX B

Formal Where
symbolism Meaning defined

AT transpose of rectangular array A: AT [j, k] = A[k, j]
αR left-right reversal of string α
αT conjugate of partition α 394
xy x to the y power (when x > 0): ey ln x §1.2.2
xk x to the k power:


k ≥ 0?

k−1
j=0 x: 1/x−k


§1.2.2

x− inverse (or reciprocal) of x: x−1 §1.3.3
xk x to the k rising: Γ(x+ k)/Γ(k) =

k ≥ 0?
k−1

j=0 (x+ j): 1/(x+ k)−k

§1.2.5

xk x to the k falling: x!/(x− k)! =
k ≥ 0?

k−1
j=0 (x− j): 1/(x− k)−k


§1.2.5

n! n factorial: Γ(n+ 1) = nn §1.2.5
x
k


binomial coefficient: (k < 0? 0: xk/k!) §1.2.6

n
n1,...,nm


multinomial coefficient (when n = n1 + · · ·+ nm) §1.2.6

n
m


Stirling cycle number:


0<k1<···<kn−m<n k1 . . . kn−m §1.2.6

n
m


Stirling subset number:


1≤k1≤···≤kn−m≤m k1 . . . kn−m §1.2.6

n
m


Eulerian number:

m
k=0(−1)k


n+1
k


(m+ 1− k)n §5.1.3n

m

 m-part partitions of n:


1≤k1≤···≤km
[k1 + · · ·+ km =n] 399

(. . . a1a0.a−1 . . . )b radix-b positional notation:


k akb
k §4.1

ℜz real part of z §1.2.2
ℑz imaginary part of z §1.2.2
z complex conjugate: ℜz − iℑz §1.2.2

¬p or ∼p or p complement: 1− p 49
∼x or x bitwise complement 135

p ∧ q Boolean conjunction (and): pq 49
x ∧ y minimum: min{x, y} 63
x& y bitwise AND 134
p ∨ q Boolean disjunction (or): p̄ q̄ 49
x ∨ y maximum: max{x, y} 63
x | y bitwise OR 134
p⊕ q Boolean exclusive disjunction (xor): (p+ q) mod 2 50
x⊕ y bitwise XOR 134
x .− y saturated subtraction, x monus y: max{0, x− y} §1.3.1́
x≪ k bitwise left shift: ⌊2kx⌋ 135
x≫ k bitwise right shift: x≪ (−k) 135
x ‡ y “zipper function” for interleaving bits, x zip y 147

From the Library of Melissa Nuno



ptg999

INDEX TO NOTATIONS 825

Formal Where
symbolism Meaning defined

logb x logarithm, base b, of x (defined when x > 0,
b > 0, and b ̸= 1): the y such that x = by §1.2.2

ln x natural logarithm: loge x §1.2.2
lg x binary logarithm: log2 x §1.2.2
λn binary logsize (when n > 0): ⌊lgn⌋ 142

expx exponential of x: ex =
∞

k=0 x
k/k! §1.2.9

ρn ruler function (when n > 0): max2m\nm 140
νn sideways sum (when n ≥ 0):


k≥0


(n≫ k) & 1


143

⟨Xn⟩ the infinite sequence X0, X1, X2, . . .
(here the letter n is part of the symbolism) §1.2.9

f ′(x) derivative of f at x §1.2.9
f ′′(x) second derivative of f at x §1.2.10
H

(x)
n harmonic number of order x:

n
k=1 1/kx §1.2.7

Hn harmonic number: H(1)
n §1.2.7

Fn Fibonacci number: (n ≤ 1? n: Fn−1 + Fn−2) §1.2.8
Bn Bernoulli number: n! [zn] z/(ez − 1) §1.2.11.2

det(A) determinant of square matrix A §1.2.3
sign(x) sign of x: [x> 0]− [x< 0]
ζ(x) zeta function: limn→∞H

(x)
n (when x > 1) §1.2.7

Γ(x) gamma function: (x− 1)! = γ(x,∞) §1.2.5
γ(x, y) incomplete gamma function:

 y

0 e
−ttx−1dt §1.2.11.3

γ Euler’s constant: −Γ′(1) = limn→∞(Hn − lnn) §1.2.7
e base of natural logarithms:


n≥0 1/n! §1.2.2

π circle ratio: 4


n≥0(−1)n/(2n+ 1) §1.2.2
∞ infinity: larger than any number
Λ null link (pointer to no address) §2.1
∅ empty set (set with no elements)
ϵ empty string (string of length zero)
ϵ unit family: {∅} 273
ϕ golden ratio:


1 +
√

5

/2 §1.2.8

φ(n) Euler’s totient function:
n−1

k=0 [k⊥n] §1.2.4
x ≈ y x is approximately equal to y §1.2.5
G ∼= H G is isomorphic to H 14
O

f(n)


big-oh of f(n), as the variable n→∞ §1.2.11.1

O

f(z)


big-oh of f(z), as the variable z → 0 §1.2.11.1

Ω

f(n)


big-omega of f(n), as the variable n→∞ §1.2.11.1

Θ

f(n)


big-theta of f(n), as the variable n→∞ §1.2.11.1

From the Library of Melissa Nuno



ptg999

826 APPENDIX B

Formal Where
symbolism Meaning defined

G complement of graph (or uniform hypergraph) G 26
G | U G restricted to the vertices of set U 13
u−−−v u is adjacent to v 13
u /−−−v u is not adjacent to v 13
u−−→v there is an arc from u to v 18
u−−→∗ v transitive closure: v is reachable from u 159
d(u, v) distance from u to v 16
G ∪H union of G and H 26
G⊕H direct sum (juxtaposition) of G and H 26
G−−−H join of G and H 26
G−−→H directed join of G and H 26
G H Cartesian product of G and H 27
G⊗H direct product (conjunction) of G and H 28
G×H strong product of G and H 28
G△H odd product of G and H 28
G ◦H lexicographic product (composition) of G and H 28

ej elementary family: {{j}} 273
℘ universal family: all subsets of a given universe 275

F ∪ G union of families: {S | S ∈ F or S ∈ G} 273
F ∩ G intersection of families: {S | S ∈ F and S ∈ G} 273
F \ G difference of families: {S | S ∈ F and S /∈ G} 273
F ⊕ G symmetric difference of families: (F \ G) ∪ (G \ F) 273
F ⊔ G join of families: {S ∪ T | S ∈ F , T ∈ G} 273
F ⊓ G meet of families: {S ∩ T | S ∈ F , T ∈ G} 273
F G delta of families: {S ⊕ T | S ∈ F , T ∈ G} 273
F/G quotient (cofactor) of families 273

F mod G remainder of families: F \ (G ⊔ (F/G)) 273
F § k symmetrized family, if F = ej1 ∪ ej2 ∪ · · · ∪ ejn 274
F↑ maximal elements of F :

{S ∈ F | T ∈ F and S ⊆ T implies S = T} 276
F↓ minimal elements of F :

{S ∈ F | T ∈ F and S ⊇ T implies S = T} 276
F ↗ G nonsubsets: {S ∈ F | T ∈ G implies S ̸⊆ T} 276
F ↘ G nonsupersets: {S ∈ F | T ∈ G implies S ̸⊇ T} 276
F ↙ G subsets: {S ∈ F | T ∈ G implies S ⊆ T} = F \ (F ↗ G) 669
F ↖ G supersets: {S ∈ F | T ∈ G implies S ⊇ T} = F \ (F ↘ G) 669

From the Library of Melissa Nuno



ptg999

INDEX TO NOTATIONS 827

Formal Where
symbolism Meaning defined

X · Y dot product of vectors: x1y1 + x2y2 + · · ·+ xnyn,
if X = x1x2 . . . xn and Y = y1y2 . . . yn 12

X ⊆ Y containment of vectors: xk ≤ yk for 1 ≤ k ≤ n,
if X = x1x2 . . . xn and Y = y1y2 . . . yn 135

α ⋄ β melding of truth tables 218
α(G) independence number of G 35
γ(G) domination number of G 673
κ(G) vertex connectivity of G §7.4.1
λ(G) edge connectivity of G §7.4.1
ν(G) matching number of G §7.5.5
χ(G) chromatic number of G 35
ω(G) clique number of G 35
c(G) number of spanning trees of G 482

end of algorithm, program, or proof §1.1

And to auoide the tediouse repetition of these woordes : is equalle to :
I will sette as I doe often in woorke use, a paire of paralleles,

or Gemowe lines of one lengthe, thus: ==== ,
bicause noe .2. thynges, can be moare equalle.

— ROBERT RECORDE, The Whetstone of Witte (1557)

Prof. Le Gendre, in the treatise that we shall often have occasion to cite,
used the same sign for both equality and congruence.

To avoid ambiguity we have made a distinction.
— C. F. GAUSS, Disquisitiones Arithmeticæ (1801)

Someone told me that each equation I included in the book
would halve the sales.

— STEPHEN HAWKING, A Brief History of Time (1987)

From the Library of Melissa Nuno



ptg999

APPENDIX C

INDEX TO ALGORITHMS AND THEOREMS

Algorithm 7B, 22–23.
Program 7B, 523–524.
Theorem 7B, 17.
Algorithm 7H, 30.
Corollary 7H, 30–31.
Lemma 7M, 30.
Algorithm 7.1.1B, 538.
Algorithm 7.1.1C, 59–60.
Corollary 7.1.1C, 69.
Theorem 7.1.1C, 68.
Algorithm 7.1.1E, 83.
Corollary 7.1.1F, 74.
Theorem 7.1.1F, 73–74.
Theorem 7.1.1G, 66.
Algorithm 7.1.1H, 69.
Theorem 7.1.1H, 57.
Subroutine 7.1.1I, 70.
Algorithm 7.1.1K, 553.
Theorem 7.1.1K, 62.
Lemma 7.1.1M, 65.
Algorithm 7.1.1P, 538–539.
Theorem 7.1.1P, 63–64.
Corollary 7.1.1Q, 55.
Theorem 7.1.1Q, 55.
Theorem 7.1.1S, 72.
Theorem 7.1.1T, 77.
Algorithm 7.1.1X, 82.
Algorithm 7.1.2L, 100.
Theorem 7.1.2L, 111–112.
Algorithm 7.1.2S, 127.
Theorem 7.1.2S, 109–110.
Algorithm 7.1.2T, 128.
Algorithm 7.1.2U, 562.
Lemma 7.1.3A, 156.
Algorithm 7.1.3B, 154.
Lemma 7.1.3B, 157.
Algorithm 7.1.3C, 610.
Algorithm 7.1.3I, 612–613.

Corollary 7.1.3I, 156.
Algorithm 7.1.3K, 600.
Corollary 7.1.3L, 157.
Algorithm 7.1.3M, 603.
Corollary 7.1.3M, 158.
Algorithm 7.1.3N, 618.
Theorem 7.1.3P, 157–158.
Theorem 7.1.3P′, 159.
Algorithm 7.1.3Q, 603–604.
Algorithm 7.1.3R, 159.
Program 7.1.3R, 160.
Program 7.1.3R′, 603.
Theorem 7.1.3R, 157.
Theorem 7.1.3R′, 158.
Algorithm 7.1.3S, 606.
Algorithm 7.1.3T, 178–179.
Algorithm 7.1.3V, 166–167.
Corollary 7.1.3W, 156–157.
Algorithm 7.1.4A, 624.
Theorem 7.1.4A, 248.
Algorithm 7.1.4B, 209.
Theorem 7.1.4B, 237–238.
Algorithm 7.1.4C, 207.
Algorithm 7.1.4C′, 624.
Algorithm 7.1.4E, 645.
Algorithm 7.1.4H, 640.
Algorithm 7.1.4I, 622.
Algorithm 7.1.4J, 243–244.
Theorem 7.1.4J+, 242.
Theorem 7.1.4J−, 242.
Algorithm 7.1.4K, 625–626.
Theorem 7.1.4K, 238.
Theorem 7.1.4M, 214–215.
Algorithm 7.1.4N, 636.
Algorithm 7.1.4R, 216–217.
Algorithm 7.1.4S, 222–223.
Corollary 7.1.4S, 256.
Theorem 7.1.4S, 256.

Algorithm 7.1.4T, 647–648.
Algorithm 7.1.4U, 227.
Theorem 7.1.4U, 234.
Theorem 7.1.4W, 246–247.
Theorem 7.1.4X, 247.
Corollary 7.1.4Y, 249.
Theorem 7.1.4Y, 248.
Algorithm 7.2.1.1A, 303.
Algorithm 7.2.1.1B, 680.
Corollary 7.2.1.1B, 294–295.
Algorithm 7.2.1.1C, 679.
Algorithm 7.2.1.1D, 304–305.
Theorem 7.2.1.1D, 294.
Algorithm 7.2.1.1E, 700.
Algorithm 7.2.1.1F, 307.
Algorithm 7.2.1.1G, 286.
Algorithm 7.2.1.1H, 300.
Algorithm 7.2.1.1J, 680.
Algorithm 7.2.1.1K, 301.
Algorithm 7.2.1.1L, 290.
Algorithm 7.2.1.1M, 282.
Algorithm 7.2.1.1N, 678–679.
Algorithm 7.2.1.1P, 683.
Definition 7.2.1.1P, 305.
Theorem 7.2.1.1P, 306.
Algorithm 7.2.1.1Q, 683.
Definition 7.2.1.1Q, 306.
Theorem 7.2.1.1Q, 306.
Algorithm 7.2.1.1R, 304.
Algorithm 7.2.1.1S, 302.
Algorithm 7.2.1.1T, 684.
Algorithm 7.2.1.1U, 696.
Algorithm 7.2.1.1V, 680.
Algorithm 7.2.1.1W, 291.
Algorithm 7.2.1.1X, 691.
Algorithm 7.2.1.1Y, 691.
Algorithm 7.2.1.1Z, 679.
Algorithm 7.2.1.2A, 325.

828

From the Library of Melissa Nuno



ptg999

INDEX TO ALGORITHMS AND THEOREMS 829

Algorithm 7.2.1.2C, 336.
Algorithm 7.2.1.2E, 337.
Algorithm 7.2.1.2E′, 349.
Algorithm 7.2.1.2G, 329, 331.
Algorithm 7.2.1.2H, 335.
Algorithm 7.2.1.2L, 319.
Algorithm 7.2.1.2L′, 702–704.
Algorithm 7.2.1.2M, 703.
Algorithm 7.2.1.2P, 322.
Algorithm 7.2.1.2P′, 705.
Algorithm 7.2.1.2Q, 705.
Algorithm 7.2.1.2R, 704–705.
Theorem 7.2.1.2R, 338.
Lemma 7.2.1.2S, 327.
Algorithm 7.2.1.2T, 323–324.
Algorithm 7.2.1.2V, 343.
Algorithm 7.2.1.2X, 334.
Algorithm 7.2.1.2Y, 719–720.
Algorithm 7.2.1.2Z, 350–351.
Algorithm 7.2.1.3A, 725.
Algorithm 7.2.1.3C, 367.
Corollary 7.2.1.3C, 379.
Algorithm 7.2.1.3CB, 733.
Algorithm 7.2.1.3CC, 732–733.
Algorithm 7.2.1.3F, 361.
Theorem 7.2.1.3K, 372.
Algorithm 7.2.1.3L, 358.

Theorem 7.2.1.3L, 360.
Theorem 7.2.1.3M, 373.
Algorithm 7.2.1.3N, 724.
Theorem 7.2.1.3N, 365.
Theorem 7.2.1.3P, 369–370.
Algorithm 7.2.1.3Q, 735–736.
Algorithm 7.2.1.3R, 363.
Algorithm 7.2.1.3S, 724.
Lemma 7.2.1.3S, 377.
Algorithm 7.2.1.3T, 359.
Algorithm 7.2.1.3V, 726.
Algorithm 7.2.1.3W, 734.
Theorem 7.2.1.3W, 376–378.
Algorithm 7.2.1.4A, 749.
Algorithm 7.2.1.4B, 749.
Algorithm 7.2.1.4C, 747.
Theorem 7.2.1.4C, 403.
Theorem 7.2.1.4D, 398.
Theorem 7.2.1.4E, 400–401.
Algorithm 7.2.1.4H, 392.
Theorem 7.2.1.4H, 404.
Algorithm 7.2.1.4K, 758–759.
Algorithm 7.2.1.4M, 757.
Algorithm 7.2.1.4N, 411.
Algorithm 7.2.1.4P, 392.
Theorem 7.2.1.4S, 407.
Algorithm 7.2.1.5E, 764.

Algorithm 7.2.1.5H, 416–417.
Algorithm 7.2.1.5L, 761.
Algorithm 7.2.1.5M, 429–430.
Algorithm 7.2.1.6A, 797.
Algorithm 7.2.1.6B, 444.
Algorithm 7.2.1.6B*, 793.
Algorithm 7.2.1.6F, 804.
Algorithm 7.2.1.6G, 784.
Algorithm 7.2.1.6H, 460.
Algorithm 7.2.1.6I, 797.
Algorithm 7.2.1.6K, 784–785.
Algorithm 7.2.1.6L, 448.
Algorithm 7.2.1.6M, 785.
Algorithm 7.2.1.6N, 446.
Algorithm 7.2.1.6O, 462.
Algorithm 7.2.1.6P, 443.
Algorithm 7.2.1.6Q, 470–471.
Algorithm 7.2.1.6R, 457.
Algorithm 7.2.1.6S, 464–465.
Theorem 7.2.1.6S, 470.
Algorithm 7.2.1.6T, 784.
Algorithm 7.2.1.6U, 452.
Algorithm 7.2.1.6W, 453.
Algorithm 7.2.1.6X, 800.
Algorithm 7.2.1.6Z, 781.
Algorithm 7.2.1.7N, 813.

[An inverted list] provides duplicate, redundant information
in order to speed up secondary key retrieval.

— DONALD E. KNUTH, Sorting and Searching (1973)

From the Library of Melissa Nuno



ptg999

APPENDIX D

INDEX TO COMBINATORIAL PROBLEMS

The purpose of this appendix is to present concise descriptions of the major problems
treated in the present book, and to associate each problem description with the name
under which it can be found in the main index. Some of these problems can be solved
efficiently, while others appear to be very difficult in general although special cases
might be easy. No indication of problem complexity is given here.

Combinatorial problems have a chameleon-like tendency to assume many forms.
For example, certain properties of graphs and hypergraphs are equivalent to other
properties of 0–1 matrices; and an m×n matrix of 0s and 1s can itself be regarded as a
Boolean function of mn Boolean variables, with 0 representing TRUE and 1 representing
FALSE. Each problem also has many flavors: We sometimes ask only whether a solution
to certain constraints exists at all; but usually we ask to see at least one explicit solution,
or we try to count the number of solutions, or to visit them all. Often we require a
solution that is optimum in some sense.

In the following list — which is intended to be helpful but by no means complete —
each problem is presented in more-or-less formal terms as the task of “finding” some
desired objective. This characterization is then followed by an informal paraphrase (in
parentheses and quotation marks), and perhaps also by further comments.

Any problem that is stated in terms of directed graphs is automatically applicable
also to undirected graphs, unless the digraph must be acyclic, because an undirected
edge u−−−v is equivalent to the two directed arcs u−−→v and v−−→u.
• Satisfiability: Given a Boolean function f of n Boolean variables, find Boolean values
x1, . . . , xn such that f(x1, . . . , xn) = 1. (“If possible, show that f can be true.”)
• kSAT: The satisfiability problem when f is the conjunction of clauses, where each
clause is a disjunction of at most k literals xj or x̄j . (“Can all the clauses be true?”)
The cases 2SAT and 3SAT are most important. Another significant special case arises
when f is a conjunction of Horn clauses, each having at most one negated literal x̄j .
• Boolean chain: Given one or more Boolean functions of n Boolean values x1, . . . , xn,
find xn+1, . . . , xN such that each xk for n < k ≤ N is a Boolean function of xi and xj
for some i < k and j < k, and such that each of the given functions is either constant
or equal to xl for some l ≤ N . (“Construct a straight-line program to evaluate a given
set of functions, sharing intermediate values.”) (“Build a circuit to compute a given
collection of outputs from the inputs 0, 1, x1, . . . , xn, using 2-input Boolean gates with
unlimited fanout.”) The goal is usually to minimize N .
• Broadword chain: Like a Boolean chain, but using bitwise and/or arithmetic opera-
tions on integers modulo 2d instead of Boolean operations on Boolean values; the given
value of d can be arbitrarily large. (“Work on several related problems at once.”)
• Boolean programming: Given a Boolean function f of n Boolean variables, to-
gether with given weights w1, . . . , wn, find Boolean values x1, . . . , xn such that
f(x1, . . . , xn) = 1 and w1x1 + · · · + wnxn is as large as possible. (“How can f be
satisfied with maximum payoff?”)

830

From the Library of Melissa Nuno



ptg999

INDEX TO COMBINATORIAL PROBLEMS 831

• Matching: Given a graph G, find a set of disjoint edges. (“Pair up the vertices so
that each vertex has at most one partner.”) The goal is usually to find as many edges
as possible; a “perfect matching” includes all the vertices. In a bipartite graph with m
vertices in one part and n vertices in the other, matching is equivalent to selecting a
set of 1s in an m × n matrix of 0s and 1s, with at most one selected in each row and
at most one selected in each column.

• Assignment problem: A generalization of bipartite matching, with weights associated
with each edge; the total weight of the matching should be maximized. (“What
assignment of people to jobs is best?”) Equivalently, we wish to select elements of
an m×n matrix, at most one per row and at most one per column, so that the sum of
selected elements is as large as possible.

• Covering: Given a matrix Ajk of 0s and 1s, find a set of rows R such that we have
j∈RAjk > 0 for all k. (“Mark a 1 in each column and select all rows that have been

marked.”) The goal is usually to minimize |R|.
• Exact cover: Given a matrix Ajk of 0s and 1s, find a set of rows R such that
j∈RAjk = 1 for all k. (“Cover with mutually orthogonal rows.”) The perfect

matching problem is equivalent to finding an exact cover of the transposed incidence
matrix.

• Independent set: Given a graph or hypergraph G, find a set of vertices U such that
the induced graph G | U has no edges. (“Choose unrelated vertices.”) The goal is
usually to maximize |U |. Classical special cases include the 8-queens problem, when G
is the graph of queen moves on a chessboard, and the no-three-on-a-line problem.

• Clique: Given a graph G, find a set of vertices U such that the induced graph G |U
is complete. (“Choose mutually adjacent vertices.”) Equivalently, find an independent
set in ∼G. The goal is usually to maximize |U |.
• Vertex cover: Given a graph or hypergraph, find a set of vertices U such that
every edge includes at least one vertex of U . (“Mark some vertices so that no edge
remains unmarked.”) Equivalently, find a covering of the transposed incidence matrix.
Equivalently, find U such that V \ U is independent, where V is the set of all vertices.
The goal is usually to minimize |U |.
• Dominating set: Given a graph, find a set of vertices U such that every vertex not
in U is adjacent to some vertex of U . (“What vertices are within one step of them
all?”) The classic 5-queens problem is the special case when G is the graph of queen
moves on a chessboard.

• Kernel: Given a directed graph, find an independent set of vertices U such that
every vertex not in U is the predecessor of some vertex of U . (“In what independent
positions of a 2-player game can your opponent force you to remain?”) If the graph is
undirected, a kernel is equivalent to a maximal independent set, and to a dominating
set that is both minimal and independent.

• Coloring: Given a graph, find a way to partition its vertices into k independent sets.
(“Color the vertices with k colors, never giving the same color to adjacent points.”)
The goal is usually to minimize k.

• Shortest path: Given vertices u and v of a directed graph in which weights are
associated with every arc, find the smallest total weight of an oriented path from u
to v. (“Determine the best route.”)

From the Library of Melissa Nuno



ptg999

832 APPENDIX D

• Longest path: Given vertices u and v of a directed graph in which weights are
associated with every arc, find the largest total weight of a simple oriented path from
u to v. (“What route meanders the most?”)
• Reachability: Given a set of vertices U in a directed graph G, find all vertices v such
that u−−→∗ v for some u ∈ U . (“What vertices occur on paths that start in U?”)
• Spanning tree: Given a graph G, find a free tree F on the same vertices, such that
every edge of F is an edge of G. (“Choose just enough edges to connect up all the
vertices.”) If weights are associated with each edge, a minimum spanning tree is a
spanning tree of smallest total weight.
• Hamiltonian path: Given a graph G, find a path P on the same vertices, such that
every edge of P is an edge of G. (“Discover a path that encounters every vertex exactly
once.”) This is the classic knight’s tour problem when G is the graph of knight moves
on a chessboard. When the vertices of G are combinatorial objects — for example,
tuples, permutations, combinations, partitions, or trees — that are adjacent when they
are “close” to each other, a Hamiltonian path is often called a Gray code.
• Hamiltonian cycle: Given a graph G, find a cycle C on the same vertices, such that
every edge of C is an edge of G. (“Discover a path that encounters every vertex exactly
once and returns to the starting point.”)
• Traveling Salesrep Problem: Find a Hamiltonian cycle of smallest total weight, when
weights are associated with each edge of the given graph. (“What’s the cheapest way to
visit everything?”) If the graph has no Hamiltonian cycle, we extend it to a complete
graph by assigning a very large weight W to every nonexistent edge.
• Topological sorting: Given a directed graph, find a way to label each vertex x with a
distinct number l(x) in such a way that x−−→y implies l(x) < l(y). (“Place the vertices
in a row, with each vertex to the left of all its successors.”) Such a labeling is possible
if and only if the given digraph is acyclic.
• Optimum linear arrangement: Given a graph, find a way to label each vertex x with
a distinct integer l(x), such that


u−−−v |l(u)− l(v)| is as small as possible. (“Place the

vertices in a row, minimizing the sum of the resulting edge lengths.”)
• Knapsack problem: Given a sequence of weights w1, . . . , wn, a threshold W, and
a sequence of values v1, . . . , vn, find K ⊆ {1, . . . , n} such that


k∈K wk ≤ W and

k∈K vk is maximum. (“How much value can be carried?”)
• Orthogonal array: Given positive integers m and n, find an m × n2 array with
entries Ajk ∈ {0, 1, . . . , n − 1} and with the property that j ̸= j′ and k ̸= k′ implies
(Ajk, Aj′k) ̸= (Ajk′ , Aj′k′). (“Construct m different n × n matrices of n-ary digits in
such a way that all n2 possible digit pairs occur when any two of the matrices are
superimposed.”) The case m = 3 corresponds to a latin square, and the case m > 3
corresponds to m− 2 mutually orthogonal latin squares.
• Nearest common ancestor: Given nodes u and v of a forest, find w such that every
inclusive ancestor of u and of v is also an inclusive ancestor of w. (“Where does the
shortest path from u to v change direction?”)
• Range minimum query: Given a sequence of numbers a1, . . . , an, find the minimum
elements of each subinterval ai, . . . , aj for 1 ≤ i < j ≤ n. (“Solve all possible queries
concerning the minimum value in any given range.”) Exercises 150 and 151 of Section
7.1.3 show that this problem is equivalent to finding nearest common ancestors.

From the Library of Melissa Nuno



ptg999

INDEX TO COMBINATORIAL PROBLEMS 833

• Universal cycle: Given b, k, and N , find a cyclic sequence of elements x0, x1, . . . ,
xN−1, x0, . . . of b-ary digits {0, 1, . . . , b−1} with the property that all combinatorial
arrangements of a particular kind are given by the consecutive k-tuples x0x1 . . . xk−1,
x1x2 . . . xk, . . . , xN−1x0 . . . xk−2. (“Exhibit all possibilities in a circular fashion.”)
The result is called a de Bruijn cycle if N = bk and all possible k-tuples appear; it’s a
universal cycle of combinations if N =


b
k


and if all k-combinations of b things appear;

and it’s a universal cycle of permutations if N = b!, k = b−1, and if all (b−1)-variations
appear as k-tuples.

In most cases we have been able to give a set-theoretic definition
that describes the problem completely, although the need for conciseness

has often led to some obscuring of the intuition behind the problem.
— M. R. GAREY and D. S. JOHNSON, A List of NP-Complete Problems (1979)

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY
Indexes need not necessarily be dry.

— HENRY B. WHEATLEY, How to Make an Index (1902)

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

⌣, see smile.
# (number sign or hash mark), x.
∂ (shadow), 372.

∂(upper shadow), 372.
⊥ (FALSE), 202–208, 249, 250, 253–254,

259, 272, 273, 676–677.
⊤ (TRUE), 202–209, 250, 259, 273,

676–677.
−1 (the constant ( · · · 111)2), 135, 140,

141, 182, 581, 586, 619.
0-origin indexing, 326.
0-preserving functions, see Normal

Boolean functions.
0–1 matrices, see Matrices of 0s and 1s.
0–1 principle, 68, 186.
0–1 vectors, 480.
1-decision list functions, 654.
2-adic chains, 155–159, 169, 193, 602, 608.
2-adic fractions, 141, 193, 585, see also

Magic masks.
2-adic integers: Infinite binary strings

(. . . x2x1x0)2 subject to arithmetic
and bitwise operations, 134, 140, 147,
153, 185, 187, 193, 311.

as a metric space, 584.
with unsigned ordering, 581.

2-bit encoding for 3-state data,
160–163, 195.

2-coloring problem, 17, 22–23, 41.
2-cube equivalence, 161–162.
2-dimensional data allocation, 147–148.
2-level redundancies function, see

Covering function.
2-monotonic functions, see Regular

Boolean functions.
2-nomial coefficients, 726.
2-partite graphs (2-colorable graphs),

see Bipartite graphs.
2-variable functions, 47–50, 79–80,

259, 272, 279.
table, 49.

2ADDU (times 2 and add unsigned),
590, 596, 620.

2CNF, 57, 72, 86–87, 91, 545, see also
Krom functions.

2SAT functions, see 2CNF, Krom clauses.
2SAT problem, 57, 60–62, 72, 86, 830.

2m-way multiplexer (Mm(x; y)), 109,
127, 131, 214, 243, 263, 266, 272,
627, 630, 638, 647, 659.

permuted, 235, 239, 267, 269.
3-colorable tilings, 274.
3-colored tilings, 634.
3-coloring problem, 39, 42, 529.
3-cube, 14, 346, 387, 532.
3-partite graphs (3-colorable graphs),

265, 277.
3-regular graphs, 14, 15, 39, 531.
3-state encodings, 160–163, 195.
3-uniform hypergraphs, 32–33, 672.
3-valued logic, 163, 195.
3-variable functions, 63, 99, 104–105, 126.

table, 78.
3CNF, 56, 85.
3SAT problem, 56, 85, 542, 830.
4-colored graphs, 233, 246, 258, 265.
4-coloring problem, 17, 39, 530.
4-cube, 90, 327–328, 347, 468–469, 680, 693.
4-cycles, 69, 522.
4-neighbors, 172, see Rook-neighbors.
4-variable functions, 79, 98–105, 112–114,

122, 126, 129, 641.
5-queens problem, 672, 831.
5-variable functions, 79, 105–106, 126,

267, 277, 572.
8-cube, 297, 315.
8-neighbors, 172, see King-neighbors.
8-queens problem, 604, 672, 831.
∞ (infinity), 63, 140, 187.
α(H) (independence number of a graph

or hypergraph), 35, 44.
γ (Euler’s constant), 818–819.

source of “random” data, 516.
Γn, see Gray binary code.
δ-maps, 595.
δ-shifts, 148, 189.

cyclic, 149, 190.
δ-swaps, 145–148, 182, 187–188, 619.
ϵ (the empty string), 266, 272.
ϵ (the unit family {∅}), 273, 658, 662,

669–670.
κt(n) (Kruskal’s lower function), 373–375,

385–388, 477, 739.
Λ (the null link), 21, 222–223, 647–648.
λx (⌊lg x⌋), x, see Binary logsize function.

834

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 835

λt(n) (Kruskal’s upper function),
374–375, 386–387.

µ (average memory access time), 340,
see Mems.

µ(n) (Möbius function), 306.
µk and µd,k, see Magic masks.
µt(n) (Macaulay function), 374–375,

386–387, 739.
νx (1s count), see Sideways sum.
ν2 (2-adic valuation), 589, see Ruler

function.
π (circle ratio), see Pi.
ϖn, 418, see Bell numbers.
ϖ′
n (singleton-free partitions), 436.

ϖnk, 418, see Peirce triangle.
ρx (ruler function), x, see Ruler function.
ρ(σ): restricted growth string function, 432.
σ(n): sum of divisors, 409.
σ–τ path, 338–339, 351.
σ-cycles, 437.
Σ(f) (true-vector sum), 76–77, 92, 95.
τ(x) (Takagi function), 374–375, 386–387.
υ (MMIX instruction cycle time), 340.
ϕ (golden ratio), 196, 236, 246, 270,

514, 623, 818–819.
as source of “random” data, 348, 516.

ϕ(k) (flip permutation), 330–331, 349.
χ (plastic constant), 125, 236, 623, 641.
χ(H) (chromatic number of a graph or

hypergraph), 35, 39, 44, 46.
ω(G) (clique number of a graph), 35, 44.

∀ (universal quantification), 87, 230, 265.
a-codes, 82, see Asterisk codes for subcubes.
Abacus, 812.
Abel, Niels Henrik, 751.
Abelian (commutative) groups, 414,

532, 805.
Aborhey, Samuel Edmund Nii Sai, 639.
Absorbent sets, see Dominating sets.
Absorption laws, 50, 135, 255–256.
Abstract algebra, 212–213, see also

Family algebra.
Abstract RISC (reduced-instruction-set

computer) model, 158.
AC0 complexity class, 194.
Ackland, Bryan David, 176.
Acronyms, 203–204.
Active bits, 366.
Acyclic: Containing no cycles, 15.
Acyclic digraphs, 31–32, 165, 203, 215,

253, 257, 259, 550, 830.
Adachi, Fumie ( ), 504.
Ádám, András, 687.
Addition, 135.

binary (radix 2), 107–108, 127–128,
151, 215–216, 262.

bytewise, 151, 599.
modulo 3, 129.

modulo 4, 126.
modulo 5, 129, 192.
of sparse integers, 278.
scattered, 150, 189.
sideways, see Sideways addition.
unary (radix 1), 192.

Addition chains, 675.
Addition table modulo n, 36.
Additive alphametics, 324–325,

332–333, 348.
Address bits, 641, 650.
Adena, Michael Anthony, 673.
Adjacency lists, 21–22, 70, 194.
Adjacency matrices of graphs, 19–20, 26,

27, 40–41, 43, 123, 133, 160, 194,
267, 529, 533, 632, 806.

Adjacent interchanges, 240–246, 320–325,
349, 353, 369–371, 384, 650, 719, 720.

Adjacent subsets of vertices, 231–232, 636.
Adjacent vertices, 13.
Adleman, Leonard Max, 578.
Adventure game, 597.
Ælfric Grammaticus, abbot of Eynsham,

280.
Affine Boolean functions, 96, 563.
Affirmation function (⊤), 49.
Agrawal, Dharma Prakash (Dm þkAf

ag}vAl), 582.
Ahlswede, Rudolph, 745.
Ahmad, Salah (�Ì�c �É�), 493, 812.
Ahrens, Wilhelm Ernst Martin Georg,

516, 672.
Aiken, Howard Hathaway, 104.
Ainley, Stephen, 673.
Ajtai, Miklós, 91.
Akers, Sheldon Buckingham, Jr., 87,

257, 677.
Akl, Selim George (Á¸« }�Ø~ ÍÛÀ�), 719.
al-Samaw’al (= as-Samaw’al),

ibn Yah. yā ibn Yahūda al-Maghribı
(Á«ØÌ�¿m Þp�°Ì¿m m�ØÔÚ Ñp ÜÛ�Ú Ñpm),
493, 812.

Albers, Susanne, 599.
Aldous, David John, 454.
Alekseyev, Valery Borisovich (Alekseev,

Valeri� Borisoviq), 560.
Algebraic connectivity, 808.
Algebraic normal form, see Multilinear

representation of a Boolean function.
Aliquot parts, 505.
All-0s matrix, 27, 526.
All-1s matrix, 26, 27, 526.
All-equal function (S0,n), 131.
All-zero rows or columns, 267.
Allouche, Jean-Paul, 589.
Almkvist, Gert Einar Torsten, 754.
Almost linear recurrence, 303.
Almost symmetric Boolean functions, 650.
Alon, Noga (OEL@ DBEP), 556, 579, 580.

From the Library of Melissa Nuno



ptg999

836 INDEX AND GLOSSARY

Alonso, Laurent, 534, 798.
Alpha channels, 191.
Alphabetic data, 152, 191.
Alphabetic order, 38.
Alphametics, 324, 432.

additive, 324–325, 332–333, 348.
doubly true, 347.
multiplicative, 347.
pure, 325, 346–347, 432.

Alternating combinatorial number
system, 363, 381.

Alternating group, 323, 354, 812.
Amano, Kazuyuki ( ), 248, 271.
Amarel, Saul, 581.
Amino acids, 511.
Amir, Yair (XINR XI@I), 555.
AMM: The American Mathematical

Monthly, published by the Mathemat-
ical Association of America since 1894.

Anagrams, 491, 519.
Analog-to-digital conversion, 283–284, 295.
Analysis of algorithms, 41, 82–84, 130,

187, 233–235, 242–243, 246–250, 263,
267–270, 274, 308, 317, 318, 344–349,
352–353, 358–359, 379, 381, 383,
403–405, 412, 438, 450, 476, 480,
483, 512, 596, 638, 786.

Ancestors in a forest, 165, 444, 781, 809.
nearest common, 165–167, 196, 832.

AND (bitwise conjunction, &), 22, 58,
74, 82, 84, 134–136, 538.

AND function (∧), 48–51, 53, 57, 63, 81.
AND gates (∧), 32, 33, 97.

with vacuum tubes, 104.
AND-OR chains, 125, 132–133.
AND-OR-NOT chains, 131, see Canalizing

chains.
AND subroutine, 225–227, 229–230, 264,

272, 273, 279, 660, 663.
ANDAND subroutine, 229–230, 264, 663.
Andersen, Lars Døvling, 516.
Andrews, George W. Eyre, 391, 754.
Animating functions, 185, 189.
Anti-Gray code, 315.
Antichains of subsets, see Clutters.
Antipodal words, 291.
Antisymmetric digraphs, 62, 91.
Appel, Kenneth Ira, 17.
Applying a permutation, 326–328.
Apportionment, 8.
Approximately decomposable functions, 576.
Approximating functions, 264–265.
Arabic mathematics, 493, 499, 516.
Arabic numerals, 493, 512.
Arbogast, Louis François Antoine, 419.
Arborescences, see Oriented trees.
Arc digraph of a digraph, 669, 808.
Arc lists, 21–22, 194.
Arc variables, 21, 23.

Archimedes of Syracuse (>Arqim dhc
å SurakoÔsioc), solids, 475.

Arcs in a graph, 18–23.
as edges, 18.

ARCS(v) (first arc of vertex v), 21, 194.
Arima, Yoriyuki ( ), 504, 679.
Arimura, Hiroki ( ), 673, 675.
Arisawa, Makoto ( ), 708.
Aristotle of Stagira, son of Nicomachus

(>Aristotèlhc Nikom�qou å StagirÐthc),
496.

Aristoxenus (>Aristìxenoc), 490.
Arithmetic mean, 414, 438.
Arithmetic progressions, 38.
Ariyoshi, Hiromu ( ), 604.
Arndt, Jörg Uwe, 587, 596, 683.
Arnold, David Bryan, 453.
Arquès, Didier, 811.
Array storage allocation, 147–148,

154, 186, 191.
Articulation points, 255.
Artificial intelligence, 346, 681.
Ascents of a permutation, 720.
Aschbacher, Michael George, 523.
ASCII: American Standard Code for

Information Interchange, 191, 201.
Ashar, Pranav Navinchandra

(þZv nvFnc�}d aAfr), 631.
Ashenhurst, Robert Lovett, 117, 120.
Aspects of a graph, 482–483.
Aspvall, Bengt Ingemar, 87, 545.
Assignment problem, 344, 831.
Associahedron, 475.
Associative block designs, 56.
Associative laws, 27, 28, 42, 50, 65, 68, 80,

135, 212, 261, 270, 273, 447, 472, 475,
484, 536, 539, 566, 569, 584, 634.

Asterisk codes for subcubes, 54, 82–84,
150, 195, 535.

Asymptotic methods, 109–112, 128–129,
234, 236, 263, 267, 313, 353, 396–402,
410–412, 419–426, 437–439, 450,
461, 538, 540, 550, 555, 558–559,
627, 641, 653, 658, 699, 708, 711,
719, 741, 776–777, 793.

Atkin, Arthur Oliver Lonsdale, 751.
Atkinson, Michael David, 797.
Atomic strings of parentheses, 478.
Attributed edges, see Complement links.
Attributes of God, 494–496.
Aubert, Jacques, 693.
Auluck, Faqir Chand ('kFr c�d

aOlk), 779.
Austin, Richard Bruce, 641.
Automata theory, 257, 279, 601.

cellular, 172–175, 197–198.
Automated deduction, 548.
Automorphisms, 14–15, 39, 45, 327–328, 346,

347, 523, 528, 532–533, 654, 688.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 837

Autosifting, 245, 649.
AVAIL stack, 216–217, 262.
Availability polynomial of a Boolean

function, see Reliability polynomials.
Avalanches, 482.
Avann, Sherwin Parker, 89, 718.
Average nodes on level k, 234, 272, 677.
Average weight of a solution, 276.
Averages, bytewise, 151, 191, 598.

b-ary codewords, 38.
b-codes, 82, see Bit codes for subcubes.
B-schemes, free, 257.
B(f) (the BDD size of f), 205, 233–235.
B(f1, . . . , fm) (the BDD size of

{f1, . . . , fm}), 216, 229, 240.
Bmax(f1, . . . , fm), 239–240, 268.
Bmin(f1, . . . , fm), 239–240, 268–269.
Babbage, Charles, 116, 569, 574.
Babbage, Henry Provost, 569.
Bach, Johann Sebastian, xvi.
Bachet, Claude Gaspard, sieur de

Méziriac, 722.
Background of an image, 174–175.
Backtrack method, viii, 295, 334, 430,

503, 553, 665.
Backward-computation principle, 102.
Bad pairs, 118–120, 130–131.
Baez, John Carlos, 685.
Bahl, Lalit Rai (lElt rAy bhl), 677.
Bakos, Tibor, 687.
Balanced ANDing, 663, 665.
Balanced branching functions, 185.
Balanced digraphs, 482.
Balanced Gray codes, 294–297, 313,

315, 688.
Balanced partitions, 407.
Balanced permutations, 354.
Balanced strings, 478.
Balanced ternary notation, 195, 590, 729.
Baldéric, 494.
Ball, Michael Owen, 541, 542.
Ballot numbers Cpq , 451–452, 459,

476, 676, 816.
generalized, 476–477.
table, 451.

Balls in urns, 390.
Bandelt, Hans-Jürgen, 551.
Bandwidth of n-cube, 315.
Bang, Thøger Sophus Vilhelm, 514.
Banyan networks, 592.
Barbará Millá, Daniel, 88.
Barbour, Andrew David, 533.
Barnard, Robert, 10.
Baron, Gerd, 515.
Baronaigien, see Rœlants van Baronaigien.
Barwell, Brian Robert, 347.
Barycentric coordinates, 25, 88.
Baseball, 380.

Bases of a matroid, 674.
Bases of vector spaces, canonical, 380, 385.
Basic RAM (random-access machine)

model, 158–159, 194, 602.
Basis theorem, 388.
Bassanio of Venice, 1.
Batcher, Kenneth Edward, 189.
baud: One transmission unit (e.g., one

bit) per second, 284.
Baudot, Jean Maurice Émile, 284–285.
Baugh, Charles Richmond, 553, 554, 559.
Bauhuis, Bernard (= Bauhusius,

Bernardus), 500–502.
Baumgart, Bruce Guenther, 144.
Bays, John Carter, 588.
BDD: A reduced, ordered binary decision

diagram, 202, 203.
BDD base: One or more BDDs having no

duplicate nodes, 215–216, 257, 259,
261, 262, 264, 279, 656.

BDIF (byte difference/monus), 152, 598.
Beads, 204–205, 215, 219, 233–235, 240, 250,

259, 261, 266, 629, 638, 676–677.
Bears, California Golden, 31.
Beckenbach, Edwin Ford, 359, 510.
Becker, Harold William, 766, 771, 786.
Beckett, Samuel Barclay, 314–315.
Beidler, John Anthony, 324.
Beissinger, Janet Simpson, 654.
Bell, Eric Temple, 418.

numbers, 418–419, 434–438, 505,
760, 763, 815.

numbers, asymptotic value, 422–423,
437–438.

Bell ringing, 319, 322–323, 339, 722.
Bell-shaped curve, 424, 428, 438.
Bell-shaped sequence, 439.
Bell Telephone Laboratories, 115.
Bellhouse, David Richard, 494.
Bellman, Richard Ernest, xi, 373, 810.
Beneš, Václav Edvard, 145.
Bennett, Grahame, 653.
Bennett, William Ralph, 284.
Bent functions, 96.
Bentley, Jon Louis, 607.
Berele, Allan, 768.
Berge, Claude Jacques Roger, 34, 622, 671.
Berlekamp, Elwyn Ralph, 153, 573, 584, 610.
Berman, Charles Leonard, 627.
Bern, Jochen, 639.
Bernays, Paul Issak, 53.
Bernoulli, Jacques (= Jakob = James), 370,

486, 499, 502–503, 704, 813, 814.
distribution, multivariate, 439.
numbers, 418, 655, 751, 820.

Bernshtĕın, Sergĕı Natanovich (Bernxte�n,
Serge� Natanoviq), 614.

Bernstein, Arthur Jay, 683.
Bernstein, Benjamin Abram, 535.
Berthet, Christian, 635.

From the Library of Melissa Nuno



ptg999

838 INDEX AND GLOSSARY

BESM-6 (B�SM-6) computer, 594.
Bessel, Friedrich Wilhelm, function, 398.
Betweenness, 65, 89–90.
Beyer, Wendell Terry, 174, 461.
Bézier, Pierre Etienne, splines, 180,

198–199, 615.
Bézout, Étienne, 812.
Bhāskara II, Ācārya, son of Maheśvara

(BA-krAcAy, mh��rp� /), 491, 492.
Bhat.t.otpala (= Utpala, BÓo(pl), 500.
bi book graphs, 23.
bi lisa graphs, 24.
Biclutters, 480.
Big-endian convention, 138–140, 144,

152, 588, 615, 620.
Biggs, Norman Linstead, 15.
Bigraphs, 17, see Bipartite graphs.
Bijunctive clauses, see Krom clauses.
Billon, Jean-Paul, 677.
Binary arithmetic, 487.

addition, 107–108, 127–128, 215–216, 262.
comparison, 92, 120, 575–577.
multiplication, 228–229, 247–249,

264, 271–272, 278.
subtraction, 135.

Binary basis, 582.
Binary Boolean operations, see Synthesis of

BDDs, Two-variable functions.
Binary-coded decimal digits, 114, 192.
Binary decision dags, 203.
Binary decision diagrams, 202–280.

compared to ZDDs, 250–253, 272,
273, 663–665.

history, 257–258.
mixed with ZDDs, 256.
toolkits for, 220, 224, 257, 677.

Binary decoder, 109, 567.
Binary Gray codes, 292–297, 313–315.

enumeration of, 293, 313.
Binary logsize function (λx = ⌊lg x⌋),

x, 134, 142–143, 153–154, 157, 165–167,
187–188, 192–194, 196, 202, 234,
262, 585, 626, 638, 677.

Binary majorization lattices, 92–93.
Binary moment diagrams, 675.
Binary number system, 47, 75–76, 80,

82, 90, 92, 281, 284.
Binary operator: A function of two

variables, 49.
Binary partitions, 414.
Binary recurrence relations, 108, 109, 126,

140, 142, 143, 187, 549, 566, 681, 699.
Binary relation: A Boolean function of two

not necessarily Boolean variables, 416.
Binary search, 460.
Binary search trees, 196, 221, 477, 485, 590.
Binary strings, 54, 67, 90, 92–93.

Binary trees, 85, 97, 98, 164, 185, 203, 275,
441–449, 471–479, 509–511, 570.

as representations of general trees and
forests, 381, 441–442.

complete, 81.
decorated, 456, 478.
degenerate, 475, 477, 809.
drawings of, 441, 454, 455, 485,

509, 782, 786.
extended, 441, 456, 472, 477, 485.
Gray codes for, 446–449, 473.
linked, 444–449, 473.
random, 456–457, 478, 485.
representation of, 444, 448, 456,

476, 478, 511.
rotations in, 447–449, 787.

Binary tries, 310.
complete, 38–39.

Binary valuation, see Ruler function.
Binary vector spaces, 380, 385.
Binate covering problem, see Boolean

programming problem.
Bing, R. H., 514.
Binomial coefficients, 355, 386.

generalized, 387, see also q-nomial
coefficients.

identities between, 477.
summation techniques for, 640–641.

Binomial number system, see Combinatorial
number system.

Binomial trees, 360–361, 381, 484, 809.
Bioch, Jan Corstiaan, 547.
Bipartite graphs, 17, 22–25, 35, 39, 41,

43, 120, 133, 146–147, 252, 277,
522, 529, 608, 663.

corresponding to hypergraphs, 33, 44.
Bipartite hypergraphs, 529.
Bipartite matching problem, 125, 831.
Bipartite subgraphs, 119, 277.
Bipartiteness testing, 22–23.
Bipartitions (two-dimensional partitions),

429–431, 778–779.
Birkhoff, Garrett, 548, 763.
Bishop moves on a chessboard, 25, 26, 31.
Bit, defined, 47.
Bit boards, 164, 195.
Bit codes for subcubes, 82, 84–85, 150, 195.
Bit permutations, 145–149, 157, 182.
Bit reversal, 144–145, 149, 157, 159, 187,

188, 308, 311, 592, 608.
Bit slices, 151, 202, 595.
Bit stuffing, 216.
Bitburger Brauerei, xiv.
Bitmaps, 171–180, 196–200.

cleaning, 197.
drawing on, 180.
filling contours in, 176–180, 198–199.
rotation and transposition of, 199.

Bitner, James Richard, 289, 362.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 839

Bitonic sorting, 189, 594.
Bitstring notation: Data represented as a

string of 0s and 1s, 355–356, 380, 382.
Bitwise operations, 47, 74, 82, 100–102, 126,

133–202, 259, 284, 291–292, 312, 341,
358, 534, 562, 621, 683, 732, 735, 746.

AND (&), 22, 58, 74, 82, 84, 134–136, 538.
complementation, 134, 135, 184, 217, 604.
medians, 67, 71, 72, 91, 549.
OR (|), 50, 74, 84, 134–135.
XOR (⊕), 90, 134–136, 538.

Björner, Anders, 739.
Black, Max, 252.
Black pixels, 136, 172–173, 179–180, 199.
Blake, Archie, 539.
Blissard, John, 766.
Block codes, 279.
Blocks of a set partition, 415.
Blum, Manuel, 624.
Blum, Norbert Karl, 122.
BMD: A binary moment diagram, 675.
board graphs, 25, 26, 31, 41.
Boas, Peter van Emde, 164.
Bocheński, Józef (= Innocenty) Maria, 49.
Bolker, Ethan David, 771.
Bollig, Beate Barbara, 238, 243, 269,

644, 647, 657.
Bollobás, Béla, 560.
Bolyai, János, 168.
Bondy, John Adrian, 14, 533.
Bonferroni, Carlo Emilio, 753.
Bonner, Anthony Edmonde, 813.
book graphs, 23.
Bookworm problem, 186.
Boole, George, 48, 52, 211, 536, 570.
Boolean binary operators, 47–51, 80, 87, 92.

table, 49.
Boolean chains, 96–133, 197, 279, 830.

AND-OR, 125, 132–133.
AND-OR–NOT, 126, 131, 132, 570.
canalizing, 126, 131, 132, 570.
definition of, 96, 830.
median, 133.
monotone, 125, 132–133.
of 3 variables, 99, 104–105.
of 4 variables, 98–105, 112–114,

122, 126, 129.
of 5 variables, 105–106, 126, 572.
of many variables, 109–112, 117–133.
optimization of, 121–122, 576.
optimum, 101–106, 126, 133.
with several outputs, 107–109, 112–117,

121–122, 126–130.
Boolean difference quantifier ( ), 231,

265, 634–635, 637.
Boolean function calculator, 220.
Boolean functions, 33, 47–96, 388, 460,

480, see also Boolean chains.
affine, 96, 563.

bent, 96.
canalizing, 78, 79, 95, 261, 654.
duals of, 534, 538, 552.
enumeration of, 79, 559.
Horn, 58, 79, 87, 95, 266, 271, 661, 673.
Krom, 60, 72, 79, 81, 95, 266, see

also 2CNF.
majority, 63, 68, 76, 550, see Medians.
monotone, 536–537, see Monotone

Boolean functions.
normal, 100, 102, 110, 113, 125,

279, 565, 577.
of 2 variables, 47–50, 79–80.
of 3 variables, 63, 78, 99, 104–105, 126.
of 4 variables, 79, 98–105, 112–114,

122, 126, 129, 641.
of 5 variables, 79, 105–106, 126,

267, 277, 572.
random, 56, 83, 541.
regular, 93, 263, 271, 559.
self-dual, see Self-dual Boolean functions.
symmetric, see Symmetric Boolean

functions.
threshold, see Threshold functions.
unate, 265, 537.
versus families of sets, 250, 253,

273–276, 669.
Boolean games, 86.
Boolean lattices, 788.
Boolean matrices, 182, 201, see also

0–1 matrices, Bitmaps.
multiplication of, 182–183, 188,

230, 264, 619.
Boolean programming problem, 206,

209–211, 258, 261, 663, 830.
generalized, 261, 280.

Boolean values, 32.
Bootstrapping, 565, 570.
Boppana, Ravi Babu, 579, 580.
Borel, Émile Félix Édouard Justin, 699.
Borkowski, Ludwik Stefan, 163.
Boros, Endre, 120, 541.
Borrel, Jean (= Buteonis, Ioannes), 813.
Borrows, 598–599, 607, 678.
Bošković, Ruder Josip (Boxkovi�,

Ru�er Josip = Boscovich, Ruggiero
Giuseppe = Boscovich, Roger Joseph),
507, 513, 754.

Bose, Raj Chandra (r;j cNd̈ bsu), 5.
Bossen, Douglas Craig, 519.
Boswell, James, xiv.
Botermans, Jacobus (= Jack) Petrus

Hermana, 694.
Bottom-up algorithms, 207, 209, 212,

257, 636, 663–664, 678.
Bottom-up synthesis, 103–105, 126, 563–564.
Boundary curves, digitized, 176–180.
Bounded compositions, 370, 384, 385, 816.
Bourgogne-Artois, Jeanne de, 496.
Boustrophedon product, 316, 695.

From the Library of Melissa Nuno



ptg999

840 INDEX AND GLOSSARY

Bouton, Charles Leonard, 582.
Boyer, Robert Stephen, 46.
Brace, Karl Steven, 257.
Bracketing property, see Enveloping series.
Branch instructions, 158, 602, see also

Branchless computation.
Branch nodes: Nonleaves, 202, 209,

249, 280, 466–467.
Branch-and-cut methods, 531.
Branching functions, 185, 188.
Branching programs, 206–207, 257, 637.
Branchless computation, 142, 155–159,

180–181, 193, 201, 202.
Brandt, Jørgen, 761.
Braymore, Caroline, 133.
Brayton, Robert King, 122, 661.
Breadth-first search, 70, 603, 608, 803.
Breadth-first synthesis, 222–223, 264.

compared to depth-first, 227–229.
Breisch, Richard Lewis, 707.
Breitbart, Yuri (Bre�tbart, �ri�

�kovleviq), 638, 676.
Brent, Richard Peirce, 561, 568, 594.
Bresenham, Jack Elton, 614.
Brette, Jean, 515.
Breuer, Melvin Allen, 605.
Brewster, George, 9.
Bridges of a graph, 464–465, 481, 484,

803, 809.
Briggs, Henry, 621.
Brightwell, Graham Richard, 560, 718.
Brinkmann, Gunnar, 530.
Broadword chains, 155–159, 192–194,

197, 259, 607, 830.
strong, 193.

Broadword computations, 153–159,
192–194, 197, 611.

Brodal, Gerth Stølting, 154.
Brodnik, Andrej, 159.
Bron, Coenraad, 604.
Brooker, Ralph Anthony, 134.
Brooks, Rowland Leonard, 525.
Brown, Charles Philip, 489.
Brown, David Trent, 183.
Brown, John Wesley, 516.
Brown, Joseph Alexander, 707.
Brown, Robert, see Brownian excursion.
Brown, William Gordon, 523.
Brownian excursion, 454.
Browning, Elizabeth Barrett, 436.
Brualdi, Richard Anthony, 517.
Bruck, Richard Hubert, 518.
Bruijn, Nicolaas Govert de, 302, 426,

457, 773.
cycles, 142, 302–307, 316–318, 354,

489, 626, 658, 702, 833.
toruses, 318.

Bryant, Randal Everitt, 235, 237, 254–255,
257, 265, 630, 636, 675.

Brylawski, Thomas Henry, 755.
Bubble sort, 321.
Büchi, Julius Richard, 124, 585.
Buchner, Morgan Mallory, Jr., 683.
Buck, Marshall Wilbert, 384.
Bucket sort, 217, 222–223, 631, 645.
Buckley, Michael Robert Warren, 346.
Buddies, 82.
Bui, Alain, 2.
Bulgarian solitaire, 415.
Bull, 524.
Burckhardt, Johann Karl (= Jean

Charles), 508.
Burger, Alewyn Petrus, 673.
Burley (= Burleigh), Walter, 51.
Burstall, Rodney Martineau, 324.
Buteonis, Ioannes (= Borrel, Jean), 813.
Butler, Jon Terry, 626.
BUTNOT gates (⊃), 97, 100, 110, 574.
BUTNOT subroutine, 272, 273, 633,

634, 660, 662, 677.
Butterfly networks, 188–189, 595.
Bypassing blocks of permutations, 331–334,

348, 719–720.
Byte: An 8-bit quantity, 139–140, 615.
Byte permutations, 182.
Bytes, parallel operations on, see Multibyte

processing.

C language, 22, 50.
c(G): The number of spanning trees

of G, 482.
C(f): Length of shortest Boolean chain

for f , 97, 111–112, 266, see Cost of
a Boolean function.

C(f1 . . . fm), 107.
C+(f): Length of shortest AND-OR

chain for f , 132, 133.
Cm(f): Length of shortest

minimum-memory chain for f ,
102–103, 126, 581.

Cn (Catalan number), 450–453, 456,
476–477, 509, 511, 797, 815–816.

Cn (cycle graph of order n), x, 13, 28,
39, 41, 481, 803, 807.

Cn⃗ (oriented cycle digraph of order n),
18, 41, 259.

Cpq (ballot number), 451–452, 459,
476–477, 676, 816.

Cache hit patterns, 416.
Cache memory, 137, 167, 181, 226,

587, 603, 631.
Cache memos, 226–230, 232–233, 256, 264,

265, 636, 647, 659–660, 670.
Cache-oblivious array addressing, see Zip.
CACM: Communications of the ACM,

a publication of the Association for
Computing Machinery since 1958.

Caged Life, 270.
Cahn, Leonard, 172.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 841

Cai, Ning ( ), 745.
Calabi, Eugenio, 726.
Calderbank, Arthur Robert, 681.
Calendar dates, packed, 136, 192.
California Golden Bears, 31.
Callan, Columcille David, 783.
Cambridge Forty-Eight, 322, 323.
Cameron, Robert Douglas, 620.
Camion, Paul Frédéric Roger, 258.
Canalizing chains, 126, 131, 132, 570.
Canalizing functions, 78, 79, 95, 261, 654.
Canalizing operators, 123, 126, 563, 578.
Cancellation laws, 76, 80, 582–583.
Canfield, Earl Rodney, 718, 777.
Canoe puzzle, 694.
Canonical bases of vector spaces, 380, 385.
Canonical delta sequences, 293, 688.
Canonical forms, 484, see Full conjunctive

normal form, Full disjunctive normal
form, Integer multilinear representation,
Multilinear representation of a
Boolean function.

Canonical ordered forests, 461–462, 480–481.
Cantor, Georg Ferdinand Ludwig

Philipp, 597.
Cantor, Moritz Benedikt, 508.
Capitol, Montana, 254.
Caplin, Alfred Gerald (= Al Capp), 79.
Cardano, Girolamo (= Hieronymus

Cardanus), 679.
Cardinal, Stanford, 31.
Cardinality of a set, 143.
Cares, 129, 264, see also Don’t-cares.
Carlitz, Leonard, 759, 770, 793–794.
Caron, Jacques, 730.
Carroll, Lewis (= Dodgson, Charles

Lutwidge), 10–12, 48, 79, 521.
Carry bits, 107, 127, 128, 150–151, 157, 216,

282, 569, 598–599, 657, 675, 701.
Cartesian coordinates, 176.
Cartesian product of graphs, x, 27–28,

42–44, 67, 467, 483, 526.
Cartesian trees, 590, 606.
Casting out nines, 708.
Castown, Rudolph William, 291.
Catalan, Eugène Charles, 450, 724.
Catalan numbers, 278, 450–453, 456,

476–477, 509, 511, 678, 738, 797,
815–816.

generalized, 476–477, 790.
tables, 450–451.

Catalan triangle, 451–452, 459, 476–477.
t-ary, 790, 795.

Categorical product of graphs, 28, see
Direct product of graphs.

Caterpillar graphs, 810.
Cat’s game, 86, 115, 117, 574.
Cattell, Kevin Michael, 700.
Cauchy, Augustin Louis, 403, 411.

Cavior, Stephan Robert, 682.
Cayley, Arthur, 338, 509, 757.

digraphs, 45.
graphs, 45, 338, 349–352, 355, 532, 713.
Hamilton theorem, 683.

Cellular automata, 172–175, 197–198.
Censorship, 10–11.
Center of gravity, 297.
Centroid of an oriented tree, 481.
Century puzzle, 484.
Cesare, Giulio (pen name of Dani Ferrari,

Luigi Rafaiani, Luigi Morelli, and
Dario Uri), 707.

Chain in a partial order, 353.
Chaining with separate lists, 222.
Chains of submultisets, 800.
Chains of subsets, 457–461.
Chambers, Ephraim, v.
Chandra, Ashok Kumar (afok k� mAr

c�}dA), 540, 557, 624.
Chang, Angel Xuan ( ), 653.
Change ringing, 319, 322–323, 339.
Changing coins, 408.
Characteristic polynomial of a Boolean

function, see Reliability polynomials.
Characteristic polynomial of a matrix,

482, 620, 683, 806.
Chase, Phillip John, 365–366, 382, 733.

sequence, 94, 365–367, 370, 382–383.
Chaucer, Geoffrey, 519.
Chebyshev (= Tschebyscheff), Pafnutii

Lvovich (Qebyxev�, Pafnut��
L~voviq� = Qebyxev, Pafnuti�
L~voviq), 775.

polynomials, 617, 807.
Checkerboard, 663.
Cheema, Mohindar Singh (moEh�dr Es�h

cFmA), 431, 778.
Chen, Kuo-Tsai ( ), 306.
Chen, William Yong-Chuan ( ), 768.
Chen, Yirng-An ( ), 675.
Cheng, Ching-Shui ( ), 692.
Cheong, Matthew Chao ( ), 631.
Cheshire cat, 174–175, 197, 198, 611.
Chess, 543.
Chessboard-like graphs,

bishop moves, 25, 26, 31.
generalized piece moves, 41.
king moves, 43.
knight moves, 15, 25.
queen moves, 26, 44.
rook moves, 26, 41.

Chessboards, 164, 195, 251–252, 269–270,
274, 276, 277.

Chien, Robert Tien Wen ( ), 519.
Childs, Roy Sydney, 707.
Chimani, Markus, 531.
Chinese mathematics, 486–487.
Chinese remainder algorithm, 207, 701.

From the Library of Melissa Nuno



ptg999

842 INDEX AND GLOSSARY

Chinese ring puzzle, 285–286, 308,
382, 679–680.

Chip firing, see Sandpiles.
Chords, 364, 384.
Chorees, 489–490.
Chow, Chao Kong ( ), 76.

parameters N(f) and Σ(f), 76–77, 92, 95.
Christ, Wilhelm von, 490.
Christian mathematics, 493–503, 512.
Christie Mallowan, Agatha Mary Clarissa

Miller, 18–19, 816.
Christmas tree pattern, 457–461,

479–480, 558, 799.
Chromatic index, see Edge-chromatic

number.
Chromatic number χ(G), 35, 39, 44, 46.
Chung, Kai Lai ( ), 797.
Chung, Kin-Man ( ), 149, 190.
Chung Graham, Fan Rong King ( ),

549, 745, 780.
Chvátal, Václav (= Vašek), 14.

graph, 14, 39, 44, 530.
CI-nets, 72–74, 91.
Cigar-shaped curves, 613–614.
Circles, digitized, 176, 179.
Circuit complexity, 194.
Circuits, Boolean, 97, see Boolean chains.
Circular lists, 194, 612.
Claesson, Anders Karl, 762.
Clapham, Christopher Robert Jasper, 528.
Clause: A disjunction of literals, 54, 81.
Clausen, Thomas, 5.
Claw graph (K1,3), 522.
Cleaning images, 197, 610.
Clearing the cache, 647.
Clements, George Francis, 378–379,

388, 742, 743.
Clift, Neill Michael, 620.
Clique number ω(G), 35, 44.
Cliques, 35, 44, 267, 277, 385, 580, 644, 831.

covering by, 35, 277.
maximal, 194–195, 259, 277.

Clone of a node, 221, 223.
Closed bitmaps, 197.
Closed item sets, see Closure of a family.
Closure of a family (f∩), 277.
Closure under intersections, 57, 132.
Closure under medians, 72.
Clustering, vii.
Clutters, 263, 388, 459, 631–632, 661, 669.
CMath: Concrete Mathematics, a book

by R. L. Graham, D. E. Knuth, and
O. Patashnik, 514, 658.

CNF, 53, see Conjunctive normal form.
Co-atoms, 478.
Coalescence, 432, 770.
Coalitions, 416, 550.
Cobham, Alan, 257.
Cock, John Crowle, 701.

Cockayne, Ernest James, 673.
Cocke, John, 677.
Cocliques, see Independent vertices.
Codes for difficulty of exercises, xi–xiii.
Codewords, 310.
b-ary, 38.

Coding theory, 519, 677.
Codons, 511.
Cofactors, 273, 634.
Coforests, 448–449, 471–472, 476, 483.
Cognate forests, 472.
Cographs, 42.
Cohen, Philip Michael, 520, 522.
Cohn, Martin, 687, 690, 693.
Coincidences, 811.
Coins, 408.

biased, 96.
unbiased, 209.

Colex order: Lexicographic from right
to left, 359, 392, 407, 445, 473, 488,
500, 512, 719, 756, 814–816, see also
Reverse colex order.

of integers, 238, 590.
Collation of bits, 134.
Colleges, 31.
Collinear points, 277.
Collisions in a hash table, 222, 226.
Colman, George, the younger, 133.
Colman, Walter John Alexander, 752.
Coloring of graphs, 17, 22–23, 35, 39, 41,

42, 44, 46, 120–121, 233, 246, 258,
265, 274, 277, 529, 530, 831.

Coloring of hypergraphs, 32, 35, 44.
Colthurst, Thomas Wallace, 759.
Column sums, 414.
Combination generation, 355–372,

379–385, 389.
Gray codes for, 362–372.
homogeneous, 364–365, 370–371,

382–383, 729, 733, 736.
near-perfect, 365–371, 383.
perfect, 369–371, 384.
revolving-door, 362–364, 370–371,

381–383.
Combinational complexity, 97, 111–112, see

Cost of a Boolean function.
Combinations: Subsets of a given size,

355–390, 439, 443, 446, 492–500, 508,
512, 586, 784, 791, 813, 815.

dual, 356–358, 380–381, 383.
null, 499.
of a multiset, 370, 372, 379, 387,

498, 512, 816.
with repetitions, 356–357, 365, 370–373,

379, 387, 390, 393, 493–494, 499, 512.
Combinatorial explosion, v, 224, 673.
Combinatorial number system, 360, 381,

385–386, 412, 725, 735, 761.
alternating, 363, 381.
generalized, 387.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 843

Combinatorics, 1–7, see also Graphs.
Comedy festival, 60–62, 86.
Comét, Stig, 394.
Common subfunctions, 216, 224, 229,

627, 628.
Commutative groups, 414, 532, 805.
Commutative laws, 28, 50, 65, 90, 135, 227,

261, 270, 273, 539, 566, 582, 634, 652.
Comp. J.: The Computer Journal, a

publication of the British Computer
Society since 1958.

Comparator-inverter networks, 72–74, 91.
Comparator modules, 72–74, 91, 127,

190, 551.
Comparison function, binary, 92, 120,

575–577.
Comparison of bytes, 153, 192.
Compiler technology, 58.
Complement in a torus, 375.
Complement links, 279.
Complements, 486, 489.

laws of, 50–51.
of Boolean functions, 49, 55, 57, 78–79,

99–100, 107, 246–247, 279, 534.
of families of sets represented by

ZDDs, 272, 660, 666.
of graphs, 26, 27, 35, 41, 42, 483, 526, 807.
of r-uniform hypergraphs, 32.
of simple digraphs without loops, 42.

Complementary elements of a lattice, 475.
Complementary Gray codes, 293,

296–297, 313, 688.
Complementation, bitwise, 134, 135,

184, 217, 604.
Complete bigraphs (Km,n), 17, 26, 39, 42,

133, 497, 522, 580, 806.
Complete binary relations, 354.
Complete binary trees, 81, 165, 214,

584, 727.
infinite, 185.

Complete binary tries, 38–39.
Complete bipartite graphs (Km,n), 17, 26,

39, 42, 133, 497, 522, 580, 806.
Complete digraphs (Jn), 18, 522, 524.
Complete graphs (Kn), 13, 26–27, 39, 41–43,

481, 482, 495–498, 525, 687, 745.
Complete k-partite graphs (Kn1,...,nk ),

17, 26–27, 40, 44.
Complete r-uniform hypergraphs, 32.

bipartite, 44.
Complete rhyme schemes, 513.
Complete t-ary trees, 484.
Complete ternary trees, 487, 520.
Complete tripartite graphs (Km,n,r), 17, 42.
Completing the square, 397, 775.
Completion of a matrix, 46.
Complex conjugates, 808.
Complexity theory, 194.

Components, connected, 16, 18, 26, 40,
42, 43, 314, 686.

of size two, 265.
COMPOSE subroutine, 232, 265, 633.
Composition of Boolean functions, 232–233,

263, 265, 569, 637.
Composition of graphs, 28, 483, see

Lexicographic product of graphs.
Composition of permutations, 185, 188–189.
Compositions: Ordered partitions of an

integer, 25, 308–309, 356–358, 365, 379,
390, 410, 488, 492, 512, 726, 778, 816.

bounded, 370, 384, 385.
Compression of a set, 377, 387, 743.
Compression of data, 204, 233, 496.
Compression of scattered bits, 148–149,

189, 594.
Compton, Robert Christopher, 339, 350.
Computed table, see Memo cache.
Comtet, Louis, 418, 719, 773.
Concatenation, 305, 315.
Concentric wheels, 497.
Concordant bit strings, 480.
Concurrent computing, vii, 352, 682, 706.
Condensation of variables, 213, 261.
Condensation principle, 89.
Conditional expression, see If-then-else

function.
Conditional-set instructions, 141–142,

180–181, 588–590, 600.
Conditional-sum adders, 127–128.
Configs of a node, 467, 481.
Confucius ( = = ), 486.
Conic sections, digitizing, 176–180, 198–199.
Conic splines, 615.
Conjugate of a forest, 448–449, 471–472,

476, 483.
Conjugate of a partition, 29–30, 43, 394,

408, 412, 414, 528, 755.
of a joint partition, 749.
of a set partition, 434.

Conjugate of one permutation by
another, 330.

Conjunction (∧), 49, 219, see AND.
in 3-valued logic, 163.

Conjunction of graphs, 28, 483, see Direct
product of graphs.

Conjunctive normal form (CNF), 53,
56–57, 62, 72, 81, 85, 87, 97, 271,
277, 563, 571.

full, 53.
monotone, 81, 538.
relation to DNF, 538.

Conjunctive prime form, 54, 81.
Connected components, 16, 18, 26, 40,

42, 43, 314, 686.
of size two, 265.

Connected digraphs, 18.
Connected graphs, 16, 33, 43, 44, 464,

470, 484.

From the Library of Melissa Nuno



ptg999

844 INDEX AND GLOSSARY

Connected hypergraphs, 33.
Connectedness function, 211–212, 256,

262, 277, 624.
Connectivity of a graph, viii, 531.
Connectivity structure of an image,

173–175, 197–198.
Connectivity test, 803.
Consecutive 1s, 84, 86, 127, 128; see

also Runs of 1s.
forbidden, 208, 259, 263.
required, 641.

Consecutive arcs, 19.
Consecutive integers, 408.
Consensus of subcubes, 83, 195.
Consonants, 38.
Constants, fundamental, 818–820.
Constrained-by operation (f ↓ g), 264–265.
Context-free grammars, 85, 484, 658.
Contiguous United States of America,

15, 34, 39–40, 210–211, 231–233,
244–246, 250, 254–255, 265, 269,
276, 277, 636, 670.

Contingency tables, 372, 385, 414.
Continuant polynomials, 508, 617.
Contour integration, 419–424.
Contraction of a graph, 463–465, 798.
Contradiction (⊥), 49.
Contrapositive, 61.
Control grids, 104.
Control points, 180.
Converse implication (⊂), 49.
Converse nonimplication (⊂), 49, 80.
Converse of a digraph, 525.
Convex hull of points, 24, 68–69.
Convex optimization, 597.
Convex sets, 68–69, 90.
Conway, John Horton, 172, 269, 354, 573,

583–585, 609–610, 685.
field of nimbers, 184.

Cook, Stephen Arthur, 542.
Cooke, George Erskine, 581.
Cooke, Raymond Mark, 690, 693, 723.
Coolean algebra: An undiscovered sequel

to Boolean algebra.
Coordinates, 293.
Coppersmith, Don, 532.
Core of a Horn function, 58–60, 86, 543, 545.
Core set in a torus, 376–377, 387.
Cori, Robert, 805.
Corless, Robert Malcolm, 773.
Coroutines, 350–351.

recursive, 304–305, 316–317.
Corteel, Sylvie Marie-Claude, 749.
Cost of a Boolean function, 97, 107,

111–112, 126–132.
statistics, 101, 105, 563–564, 581.

Coteries, 88, 93.
Coudert, Olivier René Raymond, 258, 625,

635, 663, 669, 670, 674.

Counting the number of solutions, 206–207,
251, 257, 259.

Coupon collector’s problem, 813.
Cover, Thomas Merrill, 13.
Covering function (C(x; y)), 267.
Covering in a lattice, 93, 412, 433,

457, 473–476.
Covering problems, 11, 831.

exact, 2, 7, 8, 35, 37, 251–252, 274,
503, 515–516, 665, 831.

minimum, 34–35, 44, 258.
Crama, Yves Jean-Marie Mathieu

Franz, 541.
Cramér, Carl Harald, 775.
CRC (cyclic redundancy check), 183, 202.
Crelle: Journal für die reine und angewandte

Mathematik, an international journal
founded by A. L. Crelle in 1826.

Cremer, William Henry, Jr., 694.
Crests, Japanese heraldic, 504.
Cretté de Palluel, François, 8.
Cribbage, 389.
Cross-intersecting sets, 385.
Cross order, 374–379, 387, 745.
Crossbar modules, 146–147, 190.
Crossings in a diagram, 14, 531.
Crossings in a set partition, 473, 513, 768.
Cryptarithms, 324.
CSNZ (conditional set if nonzero), 142,

180–181, 600.
CSOD (conditional set if odd), 590.
CSZ (conditional set if zero), 141, 588, 589.
Cube-connected computers, 682.
Cube of a graph, 470.
Cubes, 66, see Hypercubes, n-cube, Partial

cubes, Subcubes.
Cubic graphs (3-regular, trivalent),

14, 15, 39, 531.
Cummings, Larry Jean, 696.
Cummins, Richard Lee, 802.
Cumulants of a distribution, 438, 775.
Curious properties, 653.
Curtis, Herbert Allen, 96, 120–121.
Curvature: Reciprocal of the radius, 614.
Custering, 171–172, 176, 196–197.
Cutler, Robert Brian, 538.
Cvetković, Dragoš Mladen (Cvetkovi�,

Dragox Mladen), 468, 808.
Cycle graph (Cn), x, 13, 28, 39, 41, 42, 44,

208, 249, 259, 481, 803, 807.
Cycle leaders, 311.
Cycle Lemma, 478.
Cycle structure of a permutation, 40,

42, 326, 330, 762.
Cycles, see also Universal cycles.

in a graph, 147, 254, 275.
in a hypergraph, 33.
oriented, 18, 19, 32, 40, 41.
undirected, 346.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 845

Cyclic permutations, 353, 437, 476.
Cyclic redundancy checking, 183, 202.
Cyclic shifts, 149, 188, 306, 336, 338, 341,

348, 478, 592, 595, 598.
Cylinder graphs, 28, 41, 469, 483, 808.
Cylinders, hyperbolic, 171, 608.
Czerny, Carl, 735.

(differential quantification), 231, 265,
634–635, 637.

D(f), 99, see Depth of a Boolean function.
d(u, v) (distance in a graph), 16, 19, 43.

generalized, 16–17.
d+(v) (out-degree of v), 18.
d−(v) (in-degree of v), 18.
da Vinci, Leonardo di ser Piero, 9, 24.
Dactyls, 489, 501, 512.
Dags (directed acyclic graphs), 31–32, 203,

215, 253, 257, 259, 830.
Dahlheimer, Thorsten, ix, 546, 597,

623, 654, 655.
Dallos, József, 141, 590.
Dally, William James, 682.
Dancing links method, 2, 7, 8, 11, 464,

515–516, 664.
Danh, Tran-Ngoc, 745.
Dante Alighieri, 771.
Darroch, John Newton, 777.
Dashed lines in BDD diagrams, 202.
Dashed lines in ZDD diagrams, 249.
Data replication, 88.
Data structures for graphs, 21–23,

464–466, 523–524.
Dates of the calendar, packed, 136, 192.
Davidson, George Henry (= Dee, G.), 746.
Davies, Roy Osborne, 2, 514.
Daykin, David Edward, 738, 745.
de Bruijn, Nicolaas Govert, 302, 426,

457, 773.
cycles, 142, 302–307, 316–318, 354,

489, 625, 657, 702, 833.
toruses, 318.

de Jaenisch, Carl Friedrich Andreevitch
(�nix�, Karl� Andreeviq�), 672.

De Micheli, Giovanni, 122.
de Moivre, Abraham, 451, 506–508, 513.
de Montmort, Pierre Rémond, 506, 513.
De Morgan, Augustus, 51, 355, 410.

laws, 51, 81, 534.
de Palluel, François Cretté, 8.
de Polignac, Camille Armand Jules

Marie, 15.
Dead nodes, 228, 633.
Debugging, 659.
Debye, Peter Joseph William (= Debije,

Petrus Josephus Wilhelmus), 420.
Decimal number system, 282, 298–299,

319, 324–325, 346–347, 762.
Decoder, binary, 109, 567.

Decomposition of functions, 117–121,
130–131, 268.

Decomposition of partial functions, 120–121.
Decomposition or development laws, 51, 52.
Decorated binary trees, 456, 478.
Dedekind, Julius Wilhelm Richard, 398.

numbers (δn), 224.
sums, 398.

Defect of a balanced string, 478.
Definite Horn clauses, 58–60, 86.
Definite Horn functions, 58, 85, 95.
Degen, Carl Ferdinand, 685.
Degenerate binary trees, 475, 477, 809.
Degree of a node in a tree, 472.
Degree of a vertex in a graph, 14, 19, 39,

43, 44, 264, 464, 483, 529.
Degree one, nodes of, 466, 479.
Degree one, vertices of, 467, 484, 809.
Degree sequences, 29–31, 43, 46, 533.
Delaunay, Boris Nikolaevich (Delone, Boris

Nikolaeviq), triangulation, 24.
Dellac, Hippolyte, 655.

permutations, 271.
Delta operation (f g), 273.
Delta sequences, 293, 349, 734, 735.
Dénes, József, 789.
Deng, Eva Yu-Ping ( ), 768.
Deo, Narsingh (nrEs�h d�v), 510.
Dependency on a variable, 204, 225, 231,

629, 637, 644–645, 674, 675.
Depth coordinates ck, 444, 461–462, 471,

473, 477, 480, 786.
Depth of a Boolean function, 99, 100,

124–128, 132, 145.
statistics, 101, 105, 563–564, 581.

Depth-first search, 23, 41, 60, 217,
575, 802–803.

Depth-first synthesis, 225–233, 264.
Derangements, 271, 353.
Derbès, Joseph, 760.
Dereferencing, 632, 660–661, 668–669.
Derivative of a function, 386.
Derivative of a graph, 484.
Derivative of a reliability polynomial,

212, 260.
Dershowitz, Nachum (UIAEYXC MEGP), 789.
Descartes, René, coordinates, 176;

see also Cartesian product.
Descendant, in a tree structure, 444,

781, 809.
Descents of a permutation, 430, 479, 759.
Determinants, 40, 121, 130, 492, 526,

532, 806–807.
Deutsch, Emeric, 798.
Dewey, Melville (= Melvil) Louis Kossuth,

notation for binary trees (due to
Galton), 795.

notation for trees, 452.
Dhar, Deepak (dFpk Dr), 805.
Diaconis, Persi Warren, 745, 780.

From the Library of Melissa Nuno



ptg999

846 INDEX AND GLOSSARY

Diagonal matrices, 532.
Diagonalization, 124.
Diagonally dominant matrix, 806.
Diagrams for digraphs, 18–19, 42.
Diagrams for graphs, 14–15, 26–28, 39, 42.
Diameter of a free median graph, 550.
Diameter of a graph, 16, 24, 39, 41,

42, 44, 526.
Diamond lemma, 756.
Dice, 493–494, 505, 506, 512, 813.
Dictator functions, 49, see Projection

functions.
Dictionaries, data structures for, 226,

252–253.
Dictionaries of English, v, 10, 34, 38,

47, 48, 520.
Dietz, Henry Gordon, 151, 597.
Difference operation (f \ g), 273.
Differential quantification ( ), 231,

265, 633–634, 636.
Digital Century puzzle, 484.
Digitization of contours, 24, 176–180,

198–199.
Digraphs, 18, see Directed graphs.
Dijkstra, Edsger Wybe, 322, 596–597.
Diker Yücel, Melek, 561.
Dilated numbers, see Scattered

arithmetic, Zip.
Dilation of an embedded graph, 315.
Dillon, John Francis, 561.
Dilogarithm function, 410, 751, 754.
Dimension of a vector space, 380.
Diomedes (Diom dhc), 489.
Direct product of graphs, 28, 42–43, 483.
Direct product of matrices, 43, 684, 806.
Direct sum of graphs, 26–27, 42, 43, 483.
Direct sum of matrices, 27, 43.
Directed acyclic graphs, 31–32, 203, 215,

253, 257, 259, 830.
Directed distance d(u, v), 19.
Directed graphs, 12, 18–22, 40, 42,

482–483, 526.
complete, 18, 522, 524.
components of, 18.
converse of, 525.
degree sequences of, 43, 414.
diagrams for, 18–19, 42.
isomorphisms between, 18.
random, 25.
representation of, 19–22.
simple, 18, 19, 40, 43, 525, 526.
strong components of, 40, 61–62, 86,

522, 545, 575.
Directed hypergraphs, 44.
Directed join of digraphs, 26–27.
Directed torus graphs, 41, 352, 808.
Dirichlet, Johann Peter Gustav Lejeune,

generating function, 589.
Discrete Fourier transform, 94, 289,

308, 536, 560, 685.

Discrete logarithm, see Binary logsize
function.

Discrete torus, 414.
Disjoint decomposition, 117–120, 268.
Disjoint graphs, 26.
Disjoint sets: Sets with no common

elements, 25.
Disjoint unions, family of, 661.
Disjointness testing, 190.
Disjunction (∨), 49, see OR.

in 3-valued logic, 163.
Disjunctive normal form (DNF), 53–55,

81, 85, 97, 571.
full, 53–54, 81, 84, 558.
irredundant, 95, 538, 541.
monotone, 81, 82, 538.
orthogonal, 84–85, 92.
relation to CNF, 538.
shortest, 55, 82, 83, 95, 258, 271.

Disjunctive prime form, 54–55, 64, 71, 255.
Distance between 2-adic integers, 584.
Distance d(u, v) in a graph, 16, 19, 43.

generalized, 16–17.
Distance of a code, 38.
Distinct bytes, testing for, 191.
Distinct columns, 33.
Distinct parts, 408, 409, 411, 412, 431.
Distinct rows, 46.
Distributed systems, 88.
Distribution networks, see Mapping

networks.
Distributive lattices, 92, 551, 554.
Distributive laws, 43, 48, 50, 80, 87, 93,

125, 135, 212–213, 261, 273, 474, 526,
536–537, 582–583, 634.

for medians, 65, 67, 87, 90, 548.
Divide and conquer paradigm, 109,

144, 148, 566–568.
Divisibility by 3, 202.
Division, 186.

avoiding, 136, 186.
by 10, 156.
by powers of 2, 135–136.
in Conway’s field of nimbers, 184.
of 2-bit numbers, 191.

Divisors of a number, 315, 498, 505.
sum of, 409.

DNA, 511.
DNF, 53, see Disjunctive normal form.
Dobiński, Gustaw, 419.
Dodecahedron, 15.
Dodgson, Charles Lutwidge (= Lewis

Carroll), 10–12, 48, 79, 521.
Dominance order, see Majorization lattices.
Dominated coteries, 88.
Dominating sets, 277, 831.

minimal, 258, 277.
minimum, 609.

Dominoes, 251–252, 274, 389, 440.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 847

Donnolo, Shabbetai ben Avraham
(ELEPEC MDXA@ OA IZAY), 490, 512.

Don’t-cares, 46, 114, 116, 120–122, 129, 131,
150, 161–162, 264, 574–575, 592, 605.

Doob, Michael, 808.
Dot-minus (x .−y), see Monus operation.
Dot product of vectors, 12, 34, 37.
Double order for traversing trees, 612–613.
Doublets game, 11.
Doubly bounded partitions, 403, 411, 413.
Doubly Gray code, 350.
Doubly linked lists, 70, 301, 464–465, 696.
Doubly true alphametics, 347.
Doutté, Edmond, 515.
Dovetailing, see Interleaving.
Dowling, William Francis, 60.
Doyle, Arthur Ignatius Conan, 1.
Drawing a binary tree, 441, 454, 455,

485, 782, 786.
Drawing on a bitmap, 180.
Drechsler, Nicole, 646.
Drechsler, Rolf, 646.
Drexel (= Drechsel = Drexelius), Jeremias

(= Hieremias), 490–491.
Du, Rosena Ruo-Xia ( ), 768.
Dual boustrophedon product, 695.
Dual identities, 534.
Dual of a Boolean function: FD(x) = F̄ (x̄),

266, 271, 534, 538, 552, 621, 653, 669,
see also Self-dual Boolean functions.

computing monotone CNF from DNF, 538.
Dual of a combination, 356–358,

380–381, 383.
Dual of a forest, 448–449, 472–474.
Dual of a hypergraph, 33, 35, 44.
Dual of a planar graph, 803.
Dual of a set partition, 768.
Dual permutation generation, 335–337, 348.
Dual set in a torus, 376–377.
Dual size vector, 388.
Duality, 34, 276, 387, 611, 743.
Dubrova, Elena Vladimirovna (Dubrova,

Elena Vladimirovna), 622, 646.
Duckworth, Richard, 322.
Dudeney, Henry Ernest, 285, 324, 347, 432,

484, 521, 672, 673, 702, 708, 780, 810.
Dughmi, Shaddin Faris

(ÞÌ¯�¿c ��n³ Î�n�), 674.
Duguid, Andrew Melville, 145.
Dull, Brutus Cyclops, 265.
Dumont, Dominique, 655.

pistols, 271, 659.
Dunham, Bradford, 94, 557.
Durfee, William Pitt, 393.

rectangle, 748.
square, 393–394, 402, 749.

Duval, Jean-Pierre, 700.
DVIPAGE program, 616.
Dvořák, Stanislav, 725.

Dyck, Walther Franz Anton von, 510.
paths, see Nested parentheses.
words, 510.

Dyckman, Howard Lloyd, 316, 694.
Dynamic programming, xi, 534, 810.
Dynamic reordering of variables, 243–246,

251, 268–269, 663.
Dynamic storage allocation, 227–228, 264.
Dyson, Freeman John, 751.

∃ (existential quantification), 85, 87,
230, 265.

e (base of natural logarithms), 818–819.
as source of “random” data, 475, 516, 771.

ek (an elementary family), 273–275, 659.
Eades, Peter Dennis, 370, 734.
Early neighbors, 69, 90.
Easy nodes, 467, 481.
Ebbenhorst Tengbergen, Cornelia van, 457.
econ graphs, 31.
Eckhoff, Jürgen, 739.
Eckler, Albert Ross, Jr., 522.
Edelman, Paul Henry, 789.
Edge-chromatic number χ(L(G)), 44.
Edge covering by cycles, 315.
Edges between pixels, 176–180, 198–199.
Edges in a graph, 11, 13.

as arcs, 19, 21–22.
Edges in a hypergraph, 32–35.
Edgeworth, Francis Ysidro, expansion, 775.
EDSAC computer, 134, 143.
Egiazarian, Karen, 559.
Egyptian fractions, 658.
Ehrlich, Gideon (JILX@ OERCB), 289, 337, 350,

362, 407, 417, 418, 705, 706, 730, 770.
swap method, 337–338, 349–350.

Eigenvalues and eigenvectors of a matrix,
40, 482–483, 723, 806, 808.

Eight queens problem, 604, 672.
Eiter, Thomas Robert, 654.
Ekin, Oya, 541.
Elaborated truth tables, 212–213,

260–261, 274.
Electoral college (median of medians),

268, 644.
Electoral districts, 8.
Electrical engineers, 96, 97, 105, 107,

109, 114, 122.
Elementary families (ek), 273–275, 659.
Elementary symmetric functions, 536, 757.
Elements (earth, air, fire, water), 486, 497.
Elgot, Calvin Creston, 124, 552.
Ellipses, 176–179, 455, 613–615.
Elliptic functions, 398.
Elusive functions, see Evasive functions.
Embedding of partial order into linear order,

342, see Topological sorting.
Emde Boas, Peter van, 164.
Empty family, 250, 273.

From the Library of Melissa Nuno



ptg999

848 INDEX AND GLOSSARY

Empty graphs (Kn), 26, 27, 41–43,
46, 530, 806.

Empty quotation, 817.
Empty set, 499.
Empty string, 799.
Encoding of ternary data, 160–163, 195.
End-around swaps, 384.
Endo-order, 368, 383, 446, 765.
Endpoint of a graph, 484, 809.
Engel, Konrad Wolfgang, 744.
Enggren, Willy, 346, 347.
English language, v, 9–10, 38–39.
Enns, Theodore Christian, 734.
Enumeration, 1, 281.
Enumeration of Boolean functions, 79, 559.

asymptotic, 558.
Enumeration of solutions, 206–207,

251, 257, 259.
Enveloping series, 401, 411, 439, 774.
Eofill (even/odd filling), 179.
Eötvös de Vásárosnamény, Loránd, 765.
Eppstein, David Arthur, 620, 706.
Equality of bytes, 152, 191, 192.
Equality testing of Boolean functions,

225, 257, 259.
probabilistic, 260.

Equidistant cities, 44.
Equivalence, in 3-valued logic, 195.
Equivalence classes, 37, 69–70, 78–79,

101, 105, 161–162, 313, 472, 482,
557–558, 581, 688, 712, 722.

Equivalence operator (≡), 49–50,
534–535, 553.

Equivalence relations, 45–46, 416,
432, 518, 827.

Equivalence under permutations, 78–79.
and complementations, 78–79, 104, 559.

Equivalent Gray codes, 314.
Er, Meng Chiau ( ), 334, 784.
Eratosthenes of Cyrene (>Eratosjènhc

å KurhnaØoc), sieve (kìskinon), 137, 186.
Erdős, Pál (= Paul), 373, 389, 400, 411, 509,

527, 528, 531, 550, 555, 714–715.
Erdős, Péter L., 763.
Eriksson, Henrik, 618.
Eriksson, Kimmo, 618.
Errera, Alfred, 781.
Error-correcting codes, 37–38, 279, 310.
Errors, ix, 487, 490–492, 498, 502–503,

505, 511–513, 814, 816.
Escher, Giorgio Arnaldo (= George

Arnold), 169.
Escher, Maurits Cornelis, 169.
Etesami, Omid (ÜËn�w«m �ÛËm), 551.
Etienne, Gwihen, 761.
Ettingshausen, Andreas von, 508.
Etzion, Tuvi (OEIVR IAEH, born XVLED

IAEH), 305.
Euclid (EÎkleÐdhc), 168.

numbers, 658.

Euclidean distance, 10, 12.
Euclidean plane, 17.
Euler, Leonhard (E�ler�, Leonard� =

��ler, Leonard), 3–7, 36, 395, 404,
408, 409, 507, 516, 655, 759.

summation formula, 396, 410, 708.
trails in a digraph, 498, 722, 745, 746, 780.

Eulerian numbers, 438, 479, 751.
Evaluation of Boolean functions, 96–133,

206, 261, see Boolean chains.
Evasive functions, 261.
EVBDD, 204.
Even permutations, 40, 323, 354, 492,

512, 812.
Evolution of random graphs, 25.
Evolutionary trees, 774.
Ewing, Ann Catherine, 539.
Exact cover problems, 2, 7, 8, 35, 37,

251–252, 274, 503, 515–516, 665, 831.
Exclusive disjunction (⊕), 49, see XOR.
Exclusive normal form, 52, see Multilinear

representation of a Boolean function.
Exercises, notes on, xi–xiii.
Exhaustive functions, see Evasive functions.
Existential quantification (∃), 85, 87,

230, 265.
EXISTS subroutine, 230, 265, 633.
Expander graphs, 24.
Exponential generating functions, 419,

436, 771, 779.
Exponential growth: 2Θ(n), 225, 236,

238, 242, 268, 396.
Exponential series, partial sums of, 704.
Exponential time, 538.
Exponentiation mod 2n, 202.
Extended binary trees, 441, 456, 472,

477, 485.
Extended real numbers: Real numbers

together with −∞ and +∞, 63.
Extended ternary trees, 472.
Extended truth tables, 241, 648.
Extending a partial order, 342.
Extension of a string, 306.
External nodes, 441, 455, 456, 472, 477,

485, 781, 795.
Extracting bits, 134, 136, 140, 151.

and compressing them, 148–149, 189, 594.
the least significant only (2ρx),

140–142, 150, 153.
the most significant only (2λx), 143,

192–194, 600.
Eyrolles, Georges, 811.

f -vectors, see Size vectors.
f∩: Closure of family f , 277.
f↑: Maximal elements of family f , 276, 717.
f ↓: Minimal elements of family f , 276, 717.
f♯: Minimal hitting sets of family f ,

276, 671, 674.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 849

fπ : f with variables permuted by π,
236–237, 266.

fC (family of complements), 276.
fD (dual of f), 266, 271, 621, 653, 669.
fR (reflection of f), 266, 647.
fZ(x1, . . . , xn) (Z-transform of f), 272.
fo, fl, fh, 225.
Factorial number system, 500, 703.
Factorial ruler function, 348.
Factorials, tables of, 499, 512.
Factorization of a graph, 28.
Factorization of an n-cycle, 476.
Factorization of strings, 317.

algorithm for, 700.
Factorizations of an integer, 505, 513.
Failing units, 80.
Faloutsos, Christos (FaloÔtsoc,

Qr stoc), 681.
FALSE, 202.
Falsehood (⊥), 49, 63, 79.
Families of sets, 32, 250, 253, 263, 272–278,

659, 669, see also Hypergraphs.
elementary (ek), 273–275, 659.
generating functions for, 662, 668,

670, 671.
unit (ϵ), 273, 658, 662, 669–670.
universal (℘), 275, 660–662, 666, 669.

Families of subsets, 87–88.
Family algebra, 253, 255, 273, 275–277,

660, 673.
Fanin: The number of inputs to a gate,

97, 104, 124.
Fanout: The number of uses of a gate,

97, 104, 570.
Fast Fourier transform, 188, 308.
Fast Walsh transform, 312.
Fault-tolerant systems, 267.
Faultfree tilings, 274.
FBDDs: Free BDDs, 204, 257, 261, 266.
Feder Bermann, Tomás, 73, 313, 551.
Feller, Willibald (= Vilim = Willy =

William) Srećko, 797.
Felsenstein, Joseph, 774.
Fenichel, Robert Ross, 379.
Fenner, Trevor Ian, 747, 748.
Fenwick, Peter McAulay, 569.
Fermat, Pierre de, theorem, 318.
Ferranti Mercury computer, 134.
Ferrari, Dani, 841.
Ferrers, Norman Macleod, 393.

diagrams, 393–394, 399, 402, 405, 426,
747, 755, 757, 760, 768.

diagrams, generalized, 749.
Feussner, Friedrich Wilhelm, 462.
Feynman, Richard Phillips, 621.
Fibonacci, Leonardo, of Pisa (= Leonardo

filio Bonacii Pisano), numbers, 168, 236,
246, 270, 316, 354, 396, 488, 544, 566,
569, 623, 675, 718, 811, 820.

generalized, 488, 814.

Fibonacci number system, 168, 196, see also
NegaFibonacci number system.

odd, 608.
Fibonacci polynomials, 199–200.
Fibonacci strings, 36.
Fibonacci threshold functions, 92, 125, 261.
Fibonacci trees, 484, 485.
Fiduccia, Charles Michael, 532.
Fiedler, Miroslav, 808.
Field polynomials, 807.
Fields, algebraic, 182, 184, 617.
Fields, finite, 50, 182, 184, 311–312,

518, 617.
Fields of data, see Packing of data.

fragmented, 150, 201.
Filling a contour in a bitmap, 176–180,

198–199.
Final vertex of an arc, 18.
Finck, Hans-Joachim, 530.
Fine, Nathan Jacob, 761.
Fingerprints, 172.
Finikov, Boris Ivanovich (Finikov, Boris

Ivanoviq), 125.
Finite fields, 50, 182, 184, 311–312, 518, 617.
Finite-state automata, 279, 601.
Finite-state transducers, 128.
Fink, Jiří, 687.
Finozhenok, Dmitriy Nikolaevich (Fino-

�enok, Dmitri� Nikolaeviq), 673.
First-element swaps, 337–338, 350,

370–371, 384.
First-order predicate calculus, 545.
Fischer, Johannes Christian, 607.
Fischer, Ludwig Joseph, 704.
Fischer, Michael John, 127, 128, 570.
Fischler, Martin Alvin, 556.
Fišer, Petr, 55.
Fisher, Randall James, 151, 597.
Fisher, Ronald Aylmer, 753.
Five-letter English words, 9–12, 16,

38–39, 43, 252–253, 275–277, 291,
312, 318, 346, 432.

Five-variable Boolean functions, 79,
105–106, 126, 267, 277, 572.

Fixed point arithmetic, 614–615.
Fixed points of a permutation, 434.
Flag: A 1-bit indicator, 152, 191, 192.
Flajolet, Philippe Patrick Michel, 813.
Flavors, 492.
Fleischner, Herbert, 809.
Flight, Colin, 774.
Flip-flops in Life, 270.
Flip operation/permutation, 330–331,

349, 351, 354, 710, 789.
Floating point arithmetic, 142, 207,

589, 810.
Flores, Ivan, 693.
Flows of money, 31.
Floyd, Robert W, 190.

Lemma, vi.

From the Library of Melissa Nuno



ptg999

850 INDEX AND GLOSSARY

Flye Sainte-Marie, Camille, 745.
FOCS: Proceedings of the IEEE Symposia

on Foundations of Computer Science
(1975–), formerly called the Symposia
on Switching Circuit Theory and
Logic Design (1960–1965), Symposia
on Switching and Automata Theory
(1966–1974).

Focus pointers, 290–291, 300–301,
467, 481, 696.

Folland, Gerald Budge, v.
Fomin, Sergey Vladimirovich (Fomin,

Serge� Vladimiroviq), 768.
Fontana Tartaglia, Niccolò, 499.
Football scores, 31.
Footprints of a Boolean function,

100–101, 113, 114, 122, 125, 126,
564, 571–572, 605.

Footprints of a forest, 475, 788.
Forcade, Rodney Warring, 532.
Forcing functions, 78.
Forests, 275, 278, 300–301, 440–485, 509.

canonical, 461–462, 480–481.
cognate, 472.
conjugate of, 448, 471–472, 476, 483.
dual of, 448–449, 472–474.
Gray codes for, 446–449, 473.
oriented, 165–167, 461–462, 480.
outline of, 453.
random, 453–454, 478.
representation of, see

Left-child/right-sibling
links, Nested parentheses,
Right-child/left-sibling links.

roots of, 441.
shape of, 453–454.
super-root of, 470, 483.
transpose of, 471–472, 476.
triply linked, 470–471, 480, 606–607,

612, 785.
Formula complexity, see Length of a

Boolean function.
Forney, George David, Jr., 677.
Fortet, Robert Marie, 258.
Fortune, Steven Jonathon, 257.
Foulds, Leslie Richard, 774.
Four Color Theorem, 17.
Four-letter words, 10.
Four-variable Boolean functions, 79, 98–105,

112–114, 122, 126, 129, 642.
Fourier, Jean Baptiste Joseph,

series, 287, 397.
transform, discrete, 94, 289, 308,

536, 560, 685.
Fox, Ralph Hartzler, 306.
Fractal dimension, 479.
Fractals, 200, 589.
Fractional precision, 136, 201.
Fraenkel, Aviezri S (LWPXT IXFRIA@), 720, 727.
Fraer, Ranan (XIIXT OPRX), 87.

Fragmented fields, 150, 190.
Fraisse, Henri, 669.
France, queen of, 496.
Francis, Darryl, 522.
Frankl, Péter, 739, 740–741.
Franklin, Fabian, 408, 411.
Fredman, Michael Lawrence, 154, 192,

313, 538, 674, 686.
Fredricksen, Harold Marvin, 306, 307.
Free binary decision diagrams, 257, 261, 266.
Free groups, 510.
Free median algebras, 70–71, 91.
Free parentheses, 459, 800, 801.
Free systems, 535.
Free trees, 17, 44, 67, 91, 462, 480–481,

484, 509, 577, 789, 807, 809.
Freed, Edwin Earl, 187.
Freese, Ralph Stanley, 789.
Frequency of usage in English, 10.
Frey, Peter William, 606.
Fridshal, Richard, 94, 557.
Friedman, Steven Jeffrey, 646.
Fringe, 301, 696.
Fristedt, Bert, 755.
Frontiers, 628, 667.
Fuchs, David Raymond, 611.
Fulkerson, Delbert Ray, 528.
Full adders, 107–108, 126, 565, 569–570,

575, 609.
for balanced ternary numbers, 195.

Full conjunctive normal form, 53.
Full disjunctive normal form, 53–54,

81, 84, 558.
Fully elaborated truth tables, 212–213,

260–261, 274.
Functional composition, 232–233,

263, 265, 637.
Functional decomposition, 117–121, 130–131.
Fundamental constants, 818–820.
Funk, Isaac Kauffman, 48.
Füredi, Zoltán, 623.
Fuss, Nikolai Ivanovich (Fuss, Nikola�

Ivanoviq), 790.

Gµ: One gigamem (one billion memory
accesses), 672–673.

Gabow, Harold Neil, 607, 804.
Gaddum, Jerry William, 530.
Gadzhiev, Makhach Mamaevich (Gad�iev,

Mahaq Mamaeviq), 558.
Gale, David, 757.
Galen, Claudius (KlaÔdioc Galhnìc), 49.
Galilei, Galileo, 505.
Gallai (= Grünwald), Tibor, 527.
Gallian, Joseph Anthony, 715.
Gallier, Jean Henri, 60.
Galois, Évariste, 327.
Galton, Francis, 845.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 851

Games, 58, 86, 172, 184, 195, 197,
493–494, 503, 512, 597, 604, 622,
see also Tic-tac-toe.

games graphs, 31.
Gamma function, 421–422, 751.
Ganter, Bernhard, 516–517.
Gaps, 408.

between prime numbers, 588.
between Ulam numbers, 605.
in a scattered accumulator, 596.

Garbage collection, 159, 227–229, 264,
268, 647, 670.

García-Molina, Héctor, 88.
Gardner, Martin, 9, 11, 172, 337, 345, 497,

547, 574, 609–610, 673, 694, 702, 761.
Gardy, Danièle, 813.
Garey, Michael Randolph, 833.
Garsia, Adriano Mario, 769.
Garvan, Francis Gerard, 751.
Gates, networks of, 32, 97, 104.
Gather-flip operation, 149, 189, 190.
Gathering bits, 149, 189, 190, 594.
Gauß (= Gauss), Johann Friderich Carl

(= Carl Friedrich), 5, 168, 827.
Gebhardt, Dieter, 617.
Geek art, xvi, 24, 136, 169, 174–175, 179,

185, 200, 296, 339, 371, 458, 485,
495–497, 504, 694.

Gégalkine (= Zhegalkin), Jean Jean
(�egalkin, Ivan Ivanoviq), 51, 535.

General permutation generator, 328–331,
340–341, 347–348.

Generalization, sweeping, 212–213,
260–261, 280.

Generalized Bell numbers, 435, 438.
Generalized Binomial coefficients, 387, see

also q-nomial coefficients.
Generalized Catalan numbers, 476–477.
Generalized chess pieces, 41.
Generalized consensus, 83, 120.
Generalized distance d(v1, . . . , vk), 16–17.
Generalized Fibonacci numbers, 488, 814.
Generalized Stirling numbers, 436, 765.
Generalized toruses, 45–46.
Generating all solutions to a Boolean

equation, 206, 259.
Generating functions, techniques for using,

187, 189, 345, 383, 395, 399, 408–409,
411, 415, 419, 436, 450, 476, 477,
479, 481, 513, 640–641, 655, 678,
700, 704–705, 719, 735, 771, 779,
793–795, 799, 815, 816.

computed from BDDs, 206, 211, 255,
260, 261, 650.

computed from ZDDs, 662, 668, 670, 671.
Dirichlet, 589.

Generation of combinatorial patterns, 1, 281.
constant amortized time, 678.
history, 486–513.

loopless, 289–292, 300, 308, 309, 316,
346, 680, 706, 719.

Generation of simple cycles, 254, 275.
Generator routines for graphs and digraphs,

23–26, 30–32, 41, 43.
Genetic code, 511.
Genji-ko ( ), 503–505, 509, 513.
Genlex order, 363–367, 370–371, 382–383,

732, 737, 813.
for Gray codes, 385.

Genocchi, Angelo, 655.
derangements, 271.
numbers, 655, 659.

Geometric mean, 414, 438.
Geometric nets, 37–39.
Gergonne, Joseph Diaz, 17.
Gershwin, George, 498.
Gherardini, Lisa, see Mona Lisa.
Giant component of a graph, 16, 25, 39, 522.
Gibbs, Philip Edward, 605.
Gigamem (Gµ): One billion memory

accesses, 229, 256, 672–673.
Gilbert, Edgar Nelson, 314.
Gilbert, Rebekah Ann, 761.
Gilbert, William Schwenck, 281.
Gill, Stanley, 143.
Gillies, Donald Bruce, 143.
Girth of a graph, 15, 24, 39–41, 44, 521.
Gladwin, Harmon Timothy, 140.
Glagolev, Valery Vladimirovich (Glagolev,

Valeri� Vladimiroviq), 558.
Global variables, 220, 221, 634, 637.
Globally optimum solutions, 34–35.
God, 494–496.
Goddyn de la Vega, Luis Armando,

314, 689.
Godfrey, Michael John, 36.
Golden Bears, California, 31.
Golden ratio (ϕ), 196, 236, 246, 270,

514, 623, 818–819.
Goldman, Jay Robert, 769.
Goldstein, Alan Jay, 341.
Golle, Philippe, 480, 801.
Golomb, Solomon Wolf, 356, 379, 519, 762.
Gomes, Peter John, xiv.
Gonnet Haas, Gaston Henry, 773.
González-Morris, Germán Antonio, 707.
Good, Irving John, 772.
Good pairs, 118, 130–131.
Gordian Knot puzzle, 315.
Gordon, Basil, 431.
Gordon, Leonard Joseph, 519.
Gosper, Ralph William, Jr., 188, 202.

hack, 136, 186, 358.
GOST cipher, 129.
Goto, Eiichi ( ), 552, 554.
Gradenigo, Pietro, 495.
Græco-Latin squares, 4–5, 8, 36, 518.
Graham, Ronald Lewis ( ), 90,

549, 664, 745, 780, 842.

From the Library of Melissa Nuno



ptg999

852 INDEX AND GLOSSARY

Grammar, context-free, 58, 484.
Grandsire Doubles, 323.
Grant, Jeffrey Lloydd Jagton, 520.
Graph homomorphisms, 73.
Graph-paper graphs, 28.
Graph theory, introduction to, 13–19.
Graphical degree sequences, 29–31,

43, 46, 533.
Graphs, 11–35, 39–45, 146–147, 264,

462–470, 481–484, 830–832.
algebra of, 26–28, 42–45.
algorithms on, 159–160, 194–195, 258.
bipartite, see Bipartite graphs.
complete, 13, 26–27, 39, 41–43, 525.
connectivity of, viii, 531.
diagrams for, 14–15, 26–28, 39, 42.
empty (null), 26, 27, 41–43, 46, 530.
generators for, 23–26, 30–32, 41, 43.
isomorphisms between, 13–15, 28,

39, 532–533.
kth power of, 470, 484.
labeled versus unlabeled, 15, 16, 532.
median, 67–74, 90, 550.
of orders 3 and 4, 42, 46.
planar, 14, 15, 17, 24, 39, 44, 233,

521, 527.
products of, 27–28, 42–44, 483, 526.
random, 25, 41, 46.
regarded as digraphs, 19–22.
regular, 14, 24–26, 33, 40–44, 483.
representation of, 19–22.

Grätzer, György (= George), 788.
Gray, Elisha, 285.
Gray, Frank, 284.
Gray binary code (Γn), 282–292, 296,

308–313, 316, 321, 362, 484, 515,
566, 584, 595, 601, 687, 696, 737,
746, 765, 798.

as a permutation, 283, 311.
restricted to combinations, 362–363,

381–382.
Gray binary trie, 310.
Gray code: A sequence of adjacent

objects, 510, 832.
quasi-, 469–471.

Gray code for binary partitions, 758.
Gray code for binary trees, 446–449, 473.
Gray code for combinations, 362–372,

381–384, 446.
homogeneous, 364–365, 370–371,

382–383, 729, 733, 736.
revolving-door, 362–364, 370–371,

381–383.
Gray code for forests, 446–449, 473.
Gray code for partitions, 405–407, 414, 759.
Gray code for matchings, 718–719.
Gray code for mixed radices, 321, 705,

710, 714, 719.

Gray code for n-tuples, 292, 295, 298.
advantages of, 286, 291–292.
binary, see Binary Gray codes, Gray

binary code.
limitations of, 678, 702.
modular, 299–300, 315, 481.
reflected, 299–300, 315, 316, 321, 382, 447,

682, 693, 695, 705, 710, 719, 759.
Gray code for nested parentheses, 446,

473, 477, 787.
Gray code for permutations, 349–350,

498, 710, 718–720.
Gray code for Schröder trees, 479.
Gray code for set partitions, 417–418, 433.
Gray code for spanning trees, 463.
Gray code for trees, 446–449, 473.
Gray code for weak orders, 720–721.
Gray cycle: A cyclic Gray code, 292, 295.
Gray fields, 311–312.
Gray levels in image data, 191, 199.
Gray path, 295, see Gray code.
Gray stream, 314.
Gray ternary code, 299, 316.
Greatest lower bounds, see Lattices.
Greedy algorithm, 113–114, 488, 572.
Greedy-footprint heuristic, 113–114, 122,

571–572, 598, 604–605.
Greek logic, 48–49.
Greek poetry, 489, 501.
Greene, Curtis, 459, 756, 801.
Greg, Walter Wilson, trees, 774.
GREG (global register definition), 141, 144.
Grid graphs, 28, 41, 211–212, 252, 254,

256, 260, 277, 469, 483, 609, 628,
808, see also Pentagrid.

triangular, 25, 525, 554, 787.
Grid paths, 356–357, 379.
Gries, David Joseph, 534.
Griggs, Jerrold Robinson, 761.
Gropes, 535.
Gros, Luc Agathon Louis, 285.
Groth, Edward John, Jr., 8.
Grouping bits, see Gather-flip operation,

Sheep-and-goats operation.
Groupoids, multiplication tables for,

163, 195.
Groups, commutative, 414.
Groups of functions, 185.
Groups of permutations, 327–328, 338, 710.
Grünbaum, Branko, 530.
Grundy, Patrick Michael, 582.
Gualterus Burleus (= Walter Burley), 51.
Guibas, Leonidas John (GkÐmpac, LewnÐdac

Iw�nnou), 616.
Guilielmus ab Occam (= William of

Ockham), 51.
Guittone d’Arezzo, 436.
Gulliver, Lemuel (= Jonathan Swift), 620.
Gumbel, Emil Julius, distribution, see

Fisher, Ronald Aylmer.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 853

gunion (union of SGB graphs), 26.
Günther, Wolfgang Albrecht, 646.
Guo, Zicheng Charles ( ), 173, 197.
Gupta, Hansraj (h�srAj g� =tA), 753.
Gurvich, Vladimir Alexander (Gurviq,

Vladimir Aleksandroviq), 120, 537.
Guthrie, Francis, 17.
Gutjahr, Walter Josef, 796.
Guy, Richard Kenneth, 573, 584, 610, 641.
Gvozdjak, Pavol, 314.

h-ordered permutation, 353.
hn, see Hidden weighted bit function.
Haanpää, Harri Timo, 686.
Hachtel, Gary Deane, 122.
Hacks, 133–202, 735.
Hadamard, Jacques Salomon, 685.

inequality, 552.
matrices, 623.
transform, 289, 312, 536, 560, 684, 685.

Hagauer, Johann (= Hans), 69.
Hagerup, Torben, 599.
Haigh, John, 428.
Haken, Armin, 542.
Haken, Wolfgang, 17.
Hakimi, Seifollah Louis, 511.
HAKMEM, 158, 582, 586.
Half adders, 107–108, 609.

for balanced ternary numbers, 195.
Hall, Marshall, Jr., ix, 514, 518, 752, 766.
Hall, Richard Wesley, Jr., 173, 197.
Hamburg, Michael Alexander, 585.
Hamilton, William Rowan, 15, see

also Cayley.
cycles, 15, 276, 293, 313–314, 321,

338–339, 349–352, 355, 687, 713,
734, 810, 832.

paths, 15, 85, 254–255, 275–276, 295, 313,
321, 338–339, 350–351, 355, 370, 384,
484, 668, 712–714, 734, 736, 787, 832.

Hamiltonian graph: A graph that contains a
Hamiltonian cycle, 15, 44, 470, 484, 521.

Hamley, William, and sons, 694.
Hammer, Péter László (= Peter Leslie

= Ivănescu, Petru Ladislav), 120,
258, 541.

Hamming, Richard Wesley, 677.
code, 279.
distance, 12, 28, 37–38, 90, 275, 549, 624.

Hammond, Eleanor Prescott, 494.
Hammons, Arthur Roger, Jr., 681.
Handshaking at a circular table, 444, 471.
Handy identity, 773.
Hankel, Hermann, 422, 771.

contour, 438.
Hansel, Georges, 460–461, 480.
Haralambous, Yannis (Qaral�mpouc,

>Iw�nnhc), 883.
Har’ar, Natan ben Sa‘adyah

(XXD DICRQ OA OZP), 813.

Harary, Frank, xiv, 18, 509, 522, 802, 810.
Hardware versus software, 97, 569.
Hardy, Godfrey Harold, 398, 399, 410,

411, 586, 750, 758.
Hare, David Edwin George, 773.
Harel, Dov (L@XD AC), 165.
Hariharan, Ramesh (�U�q ����h),

804.
Harmonic numbers, 820–821, 825.
Harmuth, Henning Friedolf, 287.
Harriot, Thomas, 505.
Hartley, William Ernest, 502–503, 513.
Harvard University Computation

Laboratory, 104, 126, 564.
Hash tables, 221–223, 226–227, 253, 268,

see also Universal hashing.
Hash values, 260.
Håstad, Johan Torkel, 94, 602–603.
Hausdorff, Felix, 684.
Havel, Ivan, 735.
Havel, Václav (mathematician), 29.
Havel, Václav (playwright and statesman),

8–9.
Hawaii, 346.
Hawking, Stephen William, 827.
Hayashi, Tsuruichi ( ), 815.
Heap, Brian Richard, 331, 333, 339,

348, 352, 706.
Heap, Mark Andrew, 627.
Heaps, 164–167, 195–196, 727.
Hebraic-Græco-Latin squares, 36, 518.
Hebrew letters, 36, 490, 497, 811, 813.
Heckel, Paul Charles, 593.
Hedayat, Samad (= Abdossamad,

xÚm�Ó �Ì�¿m�q«), 516, 518.
Hedetniemi, Sarah Lee Mitchell, 461.
Heine, Heinrich Eduard, 409.
Hell, Pavol, 74.
Hellerman, Leo, 104–105.
Henrici, Peter Karl Eugen, 397.
Hensel, Kurt Wilhelm Sebastian, 526.
Herrmann, Francine, 168.
Heun, Volker, 607.
Hexadecimal constants, x, 819.
Hexadecimal digits, 201, 327, 722.
Hexadecimal notation for truth tables,

105, 132, 572.
Hexadecimal puzzle, 680.
Hexagrams, 486–487, 511, 811.
Hexameter, 500–503, 512.
HI field in a decision diagram, 202–203, 216,

221, 226, 241, 249, 250, 259, 263.
Hickerson, Dean Robert, 476, 664.
Hickey, Michael, 370, 734.
Hidden nodes, 240–242, 648.
Hidden weighted bit function (hn), 235–238,

240, 262, 266–267, 269, 646.
two-way, 676.

Hight, Stuart Lee, 120.

From the Library of Melissa Nuno



ptg999

854 INDEX AND GLOSSARY

Highways, 31.
Hilbert, David, basis theorem, 388.
Hilewitz, Yedidya, 189.
Hilton, Anthony John William, 385, 739.
Hindenburg, Carl Friedrich, 319, 392,

419, 507–508.
Hindman, Neil Bruce, 550.
Hindu mathematics, 487–489, 491–492,

499–500, 507, 512.
Hinz, Andreas Michael, 679.
Hitting sets of a family, see Vertex covers.

minimal (f♯), 276, 671, 674.
Hlavička, Jan, 55.
Ho, Chih-Chang Daniel ( ), 761.
Hoare, Arthur Howard Malortie, 761.
Hobby, John Douglas, 180, 615, 883.
Hodges, Joseph Lawson, Jr., 797.
Hoeffding, Wassily, 777.
Hoffman, Alan Jerome, 523.
Holes in images, 174–175.
Hollis, Jeffrey John, 194.
Holmes, Thomas Sherlock Scott, 1.
Holton, Derek Allan, 531, 673.
Holzmann Poisson, Carlos Alfonso, 802.
Homer (�Omhroc), 9, 501.
Homogeneous generation of combinations,

364–365, 382–384, 733.
scheme Kst, 364, 370–371, 383, 729, 736.

Homogeneous polynomials, 388.
Homomorphisms in median algebras, 67.
Homomorphisms of graphs, 73–74.
Honda, Toshiaki ( ), 504, 513.
Hook lengths, 723.
Hooks, 748, 749.
Hopcroft, John Edward, 257, 683.
Horiyama, Takashi ( ), 637.
Horn, Alfred, 57.

clauses, 57–60, 85, 86, 119, 548, 575.
core, 58–60, 86, 543, 545.
functions, 58, 79, 95, 266, 271, 661, 673.
functions, renamed, 87.
satisfiability, 60, 85–87, 830.

Horn, Gavin Bernard, 677.
Horton, Robert Elmer, 811.
Horton–Strahler numbers, 485, 520.
Hosaka, Kazuhisa ( ), 647.
Hotels and comedians, 60–62, 86.
HP Compaq 2510p Notebook PC, 883.
Hsiao, Ben Mu-Yue ( = ), 519.
Hudson, Richard Howard, 588.
Huffman, David Albert, 94, 676.
Hugo, Victor Marie, 23.
Hunt, Harry Bowen, III, 638.
Hunt, Neil, 616.
Hunter, James Alston Hope, 324.
Huntington, Edward Vermilye, 548.
Hurlbert, Glenn Howland, 701, 722, 746.
Hurwitz, Adolf, 526.
Hutchinson, George Allen, 416, 431.

Hyperarcs, 529.
Hyperbolas, 176, 198, 586, 614, 615.
Hyperbolic functions, 438.
Hyperbolic plane geometry, 167–171,

179, 196, 608.
Hypercubes, 54, 74, see n-cube.

retracts of, 74, 91.
subgraphs of, 90.

Hyperedges, 32.
Hyperfloor function (2λx), 143, 192–194,

585, 600.
Hyperforests, 44.
Hypergraphs, 32–35, 44, 252, 372, 669,

see also Families of sets.
3-uniform, 32–33, 673.
dual, 33.
r-uniform, 32–33, 44.

Hyperrectangles (Pn1 · · · Pnm ), 28, 67.
Hypotheses, 59–60.

I (identity matrix), 26, 526, 620, 806.
I Ching ( ), 486–487, 511–512.
Iambuses, 489–490, 501, 512.
Ibaraki, Toshihide ( ), 120, 541,

546, 547, 637, 654.
IBDD, 204.
IBM Type 650 computer, v.
Ibn al-H. ājj, Muh. ammad ibn Muh. ammad

(}n�¿m Ñp �Ì�Ë Ñp �Ì�Ë), 516.
Ibn Mun‘im, Ah. mad al-‘Abdarı

(Í¬ÐË Ñp Ý��q¬¿m �Ì�c), 499.
ID(g), the id of the SGB graph g, 12, 22.
Ide, Mikio ( ), 604.
Ideals in a median algebra, 65, 68.
Idel, Moshe (LCI@ DYN), 497.
Identities for bitwise operations, 135, 136,

184, 185, 187, 585, 588, 598.
Identity matrix, 26, 526, 620, 806.
Identity permutation, 327.
IEEE Transactions, citations from, ix.
If-then-else function (f? g: h), 96, 206–207,

229, 561, 566, 568, 569, see also
MUX subroutine.

nested, see Junction function.
Igarashi, Yoshihide ( ), 557.
Igusa, Kiyoshi ( ), 761.
ILLIAC I computer, 143.
Image, digitized, 24.
Image of an element under a mapping or

permutation, 149, 236, 326.
Implicants, 53–54, 81, 674, see also Prime

implicants of Boolean functions.
Implicate, see Clause.
Implication (⊃), 48–49.

in 3-valued logic, 163.
Implicit data structures, 21–22, 164–171,

195–196.
Implicit graphs, 232.
IMPLIES subroutine, 634.
Imrich, Wilfried, 28, 69, 549.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 855

In-degree of a vertex, 18, 19, 41, 43,
262, 482, 808.

in situ permutation, 308, 311.
in situ transformation, 289.
Incidence matrix of a graph or hypergraph,

33, 35, 44, 806.
Inclusion and exclusion principle, 286, 400,

411, 540, 665, 719, 771, 776, 811.
Inclusive ancestors of a node: The

node itself together with its proper
ancestors, 41, 165.

Inclusive disjunction (∨), 49, see OR.
Incompatible columns, 120.
Incomplete gamma function, 421.
Incremental changes, 90.
ind α: the index of α, 431.
Indecomposable partitions, 513.
Indecomposable permutations, 353, 811.
Independence number α(H) of a graph

or hypergraph, 35, 44.
Independent-set function, 231–233, 244, 269.
Independent sets, 34, 35, 44, 208, 210–211,

231–232, 249, 250, 658, 831.
maximal, see Kernels of a graph.
of a hypergraph, 34, 35, 673.

Index of a permutation, 431, 759.
Indian mathematics, 15, 487–489, 491–492,

499–500, 507, 512.
Indian numerals, 491.
Induced k-partite subgraphs, 277.
Induced subgraphs, 13, 18, 39, 42, 43, 46.
Induced subhypergraphs, 32.
Infinite binary trees, 164, 185.
Infinite exclusive-or operation, 585.
Infinite-precision numbers, 134, 136, 184.
Infinite sets, 673.
Infinity, the projective point at, 24.
Initial vertex of an arc, 18.
Inline expansion, 291–292.
Inorder (symmetric order of nodes),

165, 441, 447, 448, 455, 476, 477,
511, 782, 787, 788.

Inshuffles, 201, 591.
Inside of a curve, 176.
Integer multilinear representation, 80,

84, 94, 211, 536, 555, see Reliability
polynomials.

Integer partitions, 391–415, 428–431,
434, 505–508, 513, 767.

Integer programming problems, vii, 258.
Integer variables represented as several

Boolean variables, 258.
Interchanging adjacent variables,

240–246, 650.
Interchanging selected bits of two

registers, 581.
Interchanging two bits of a register, 187.
Interleaving, 38, 191, 231, 317, 634,

688, see also Zip.

Internal path length, 477.
Internet, iv, viii, ix, xii, 10, 380, 511,

520, 762, 804.
Interpolating polynomials, 536.
Intersecting family: A family containing

no disjoint sets, 88, 555.
Intersecting two families of sets, 273.
Intersection operation (f ∩ g), 273, see

also AND subroutine.
Intervals in graphs, 66, 67, 89.
Intervals in median algebras, 65–66.
Intervals of the majorization lattice,

403, 411, 413.
Intruders, 36.
Inverse function of Gray binary code,

284, 311.
Inverse of a binary matrix, 202.
Inverse of a permutation, 20, 182, 342–343,

346, 448, 591, 717.
Inverse of an odd integer mod 2n, 621.
Inversion tables, 321, 352, 444, 471,

703, 718, 781.
Inversions of a permutation, 321, 323,

395, 435.
Inverter gates, 32, see Complements of

Boolean functions.
Inverter modules, 72–74, 91, 550–551.
Involutions: Self-inverse permutations, 266,

353–354, 438, 632, 713, 718–720, 768.
Irredundant DNFs, 95, 538, 541.
Irwin, Joseph Oscar, 765.
Isaak, Garth Timothy, 701, 722.
Ising, Ernst, configurations, 380–381,

385, 726.
Islamic mathematics, 493, 499, 516.
Isolated vertices: Vertices of degree 0, 25,

231–232, 522, 525, 642.
Isometric: Distance-preserving, 90, 584.

subgraphs, 90, 91, 551.
Isomorphic graphs, 13–15, 28, 39, 532–533.

directed, 18.
Isomorphic Gray cycles, 314.
Isomorphism of BDDs, 259.
Isotone functions, 537.
Isozaki, Hideki ( ), 669.
Isthmuses, see Bridges of a graph.
Istrate, Gabriel, 543.
ITE, see If-then-else function.
Iteration of functions, 312, 683.
Iteration versus recursion, 366–368, 383.
Ivănescu, Petru Ladislav (= Hammer,

Peter Leslie), 120, 258, 541.
Iványi, Antal Miklós, 701.
Ives, Frederick Malcolm, 348.
Izquierdo, Sebastián, 498–499, 512.

J (all-ones matrix), 26, 27, 526.
Jn (complete digraph of order n),

18, 522, 524.

From the Library of Melissa Nuno



ptg999

856 INDEX AND GLOSSARY

J(x; f) function, 262, 635, 642.
Jackson, Bradley Warren, 354, 746.
JACM: Journal of the ACM, a publication

of the Association for Computing
Machinery since 1954.

Jacobi, Carl Gustav Jacob, 396, 410.
symbol, 752.

Jaenisch, Carl Friedrich Andreevitch de
(�nix�, Karl� Andreeviq�), 672.

James, Henry, xiii.
Jaillet, Christophe André Georges, 2.
Jain, Jawahar (jvAhr j{n), 630.
Janey, Nicolas, 811.
Janson, Carl Svante, 46, 533.
Japanese mathematics, 492, 503–505,

513, 679.
Jardine, Nicholas, 604.
Jeffrey, David John, 773.
Jelinek, Frederick, 677.
Jenkyns, Thomas Arnold, 365.
Jeong, Seh-Woong ( ), 626.
Jesus of Nazareth, son of Joseph

(ZXVP OA SQEI OA REYI, >IhsoÜc
uÊäc toÜ >Iws�f å �pä Nazarèj), 491.

Jevons, William Stanley, 48, 51, 535.
Jewish mathematics, 490, 497, 813.
Jha, Pranava Kumar (þZv k� mAr JA), 69.
Jiang, Ming ( ), 339.
Johnson, Allan William, Jr., 707.
Johnson, David Stifler, 604, 833.
Johnson, Samuel, v, xiv.
Johnson, Selmer Martin, 346.
Joichi, James Tomei ( ), 749, 769.
Join of graphs, 26–27, 483, 530.
Join operation (f ⊔ g), 273, 275–278.
Joint partitions, 409.
Joke, 666.
Jolivald, Philippe (= Paul de Hijo), 745.
Jordan, Marie Ennemond Camille, curve

theorem, 176.
Juffa, Norbert, 153, 598.
Jump-down, 242–243, 269.
Jump-up, 242–243, 269.
Junction function (J(x; f)), 262, 635, 642.
Just, Winfried, 560.
Juxtaposition of forests, 472.
Juxtaposition of graphs, 26, 483, see

Direct sum of graphs.

k-ary trees, 124.
k-colorable graphs or hypergraphs, 17,

32, 35, 42, 44, 831.
k-edge-colorable graphs, 26, 42, 44.
k-in-a-row function, 127.
k-partite graphs or hypergraphs, 17,

32, 35, 42, 44.
complete, 17, 26–27, 40, 44.

Kµ: One kilomem (one thousand memory
accesses), 707.

K5 (pentacle graph), 14, 42.
Kn (complete graph of order n), 13,

26–27, 41–43, 525.
Kn⃗ (transitive tournament of order n),

18, 27, 40, 41, 808.
K

(r)
n (complete r-uniform hypergraph), 32.

K1,3 (claw graph), 522.
K3,3 (utilities graph), 17, 39, 42, 521.
Km,n (complete bipartite graph), 17, 26,

39, 42, 133, 497, 522, 580, 806.
K

(r)
m,n (complete r-uniform bipartite

hypergraph), 44.
Kn1,...,nk (complete k-partite graph),

17, 26–27, 40, 44.
Kaas, Robert, 164.
Kaasila, Sampo Juhani, 615.
Kabbalah, 490, 497, 813.
Kahan, Steven Jay, 702, 707.
Kak, Subhash Chandra (s� BAq c�dý

kAk), 489.
Kameda, Tiko (= Tsunehiko) ( ),

546, 555.
Kaneda, Takayuki ( ), 647.
Kaplansky, Irving, 509.
Kapoor, Sanjiv (s\jFv kp�r), 804.
Karnaugh, Maurice, 309.
Karoński, Michał, 533.
Karp, Richard Manning, 121.
Karpiński (= Karpinski), Marek

Mieczysław, 546.
Katajainen, Jyrki Juhani, 167.
Katona, Gyula (Optimális Halmaz),

373, 801.
Kauffman, Stuart Alan, 78.
Kautz, William Hall, 556.
Kavut, Selçuk, 561.
Ke Zhao (= Chao Ko, ), 555.
Kedāra Bhat.t.a (k�dAr BÓ), 488, 507.
Keil, Heinrich, 490.
Keister, William, 115, 680.
Kelly, Patrick Arthur, 673.
Kelly, Paul Joseph, 528.
Kelmans, Alexander Kolmanovich

(Kel~mans, Aleksandr Kol~manoviq),
808.

Kemp, Rainer, 703, 795, 796.
Kempe, Alfred Bray, 521.
Kent Treble Bob Major, 320.
Kerbosch, Joseph (= Joep) Auguste

Gérard Marie, 604.
Kernels of a digraph, 259, 831.
Kernels of a graph (maximal independent

sets), 34, 44, 195, 208–211, 231–232,
249, 250, 258–260, 269, 277, 604,
671, 673, 831.

Keyboard, 364, 384.
Khachiyan, Leonid Genrikhovich (Haqi�n,

Leonid Genrihoviq), 537–538, 674.
Khrapchenko, Valerii Mikhailovich (Hrap-

qenko, Valeri� Miha�loviq), 568.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 857

Kiefer, Jack Carl, 692.
Kilomem (Kµ): One thousand memory

accesses, 333.
Kimono, 504.
King, Andrew Douglas, 719.
King moves on a chessboard, 43.
King-neighbors, 172, 197, 611–612.
King Wen of Chou ( = ),

486–487, 512.
King’s tours, 276.
Kingwise connected components, 173–175,

197–198, 609.
Kingwise torus, 44.
Kircher, Athanasius, 490, 491, 497, 512, 812.
Kirchhoff, Gustav Robert, law, 403.
Kirkman, Thomas Penyngton, 15.
Kirsch, Russell Andrew, 172, 197.
Kirschenhofer, Peter, 796.
Kiss, Stephen Anthony, 548.
Kitaev, Sergey Vladimirovich (Kitaev,

Serge� Vladimiroviq), 762.
Klavžar, Sandi, 28, 69.
Kleber, Michael Steven, 759.
Klee, Victor LaRue, Jr., ix.
Klein, Peter, 127.
Kleine Büning, Hans Gerhard, 543, 545, 546.
Kleitman, Daniel J (Isaiah Solomon), 459,

480, 528, 550, 756, 801.
Kleppis, Gregor (= Kleppisius,

Gregorius), 512.
Klimko, Eugene Martin, 747.
Kline, John Robert, 548.
Klügel, Georg Simon, 331, 508.
Knapsack problem, 75, 361, 832.
Knight moves on a chessboard, 15, 25, 195.
Knight’s tour, northeasterly, 352.
Knobloch, Eberhard Heinrich, 505, 506, 812.
Knödel, Walter, 604.
Knopp, Marvin Isadore, 751.
Knott, Gary Don, 511.
Knuth, Donald Ervin ( ), ii, iv, ix,

xvi, 7, 9–10, 12, 32, 62, 105, 115, 154,
254, 457, 517, 537, 549, 569, 588, 589,
611, 615, 616, 618, 633–635, 649–650,
663–666, 670, 677, 696, 726, 773,
800, 803, 804, 829, 842.

Knuth, John Martin ( ), see Truth.
Ko, Chao (= Ke Zhao, ), 389, 555.
Koch, John Allen, 17.
Koda, Yasunori ( ), 300–301.
Kogan, Alexander (Kogan, Aleksandr

�r~eviq), 120, 541.
Kolibiar, Milan, 548.
Komlós, János, 91.
Kompel’makher, Vladimir Leont’evich

(Kompel~maher, Vladimir
Leont~eviq), 350.

Kőnig, Dénes, 17.
Konvalina, John, 560.

Korobkov, Vitaly Konstantinovich
(Korobkov, Vitali�
Konstantinoviq), 461.

Korsh, James F., 444, 473, 726, 785, 798.
Korshunov, Aleksey Dmitrievich

(Korxunov, Alekse� Dmitrieviq),
558.

Kostochka, Alexandr Vasilievich (Kostoqka,
Aleksandr Vasil~eviq), 809.

Kotani, Yoshiyuki ( ), 664.
Kowalewski, Arnold Christian Felix, 525.
Krajecki, Michaël, 2.
Kramp, Christian, 419.
Kratochvíl, Jan, 46, 533.
Krause, Karl Christian Friedrich, 704.
Kreher, Donald Lawson, 511.
Kreweras, Germain, 786, 787, 808.

lattice, 473–476, 788.
Krichevsky, Rafail Evseevich (Kriqevski�,

Rafail Evseeviq), 570.
Krom, Melven Robert, 62, 545.

clauses, 57, 72, 85, 87, 575.
functions, 60, 72, 79, 81, 95, 266,

see also 2CNF.
satisfiability, 57, 60–62, 72, 86.

Kronecker, Leopold, product, 526.
Kronk, Hudson Van Etten, 809.
Kruskal, Joseph Bernard, Jr., 373–374.

function κt, 373–375, 385–388, 477, 739.
function λt, 374–375, 386–387.

Kruskal–Katona theorem, 373.
Kruyswijk, Dirk, 457.
Kschischang, Frank Robert, 677.
Kubicka, Ewa, 802.
Kuck, David Jerome, 561.
Kuhn, Markus Günther, 619.
Kumar, Panganamala Vijay

(�a��Z�Z ��e i ãN �f ¸ ��e �g), 681.
Kung, Hsiang Tsung ( ), 568.
Kürschák, József, 765.
Kusuba, Takanori ( ), 500.

L(f), 99, see Length of a Boolean function.
L(G) (line graph of G), 26, 35, 42, 483,

522, 526, 529.
Labeled graphs, 15, 532.
Labeled objects, 390, 432, 774.
Labelle, Gilbert, 779.
Labels of graph vertices, 67–74, 90.
Laborde, Jean-Marie, 540.
LADDERS program, 32.
Ladner, Richard Emil, 127, 128, 570.
Lafferty, John David, 677.
Lagrange (= de la Grange), Joseph Louis,

Comte, inversion formula, 773.
Laguerre, Edmond Nicolas, 777.
Lähdesmäki, Harri, 559.
Lakhtakia, Akhlesh (aEKl�f lKVEkyA),

586.
Lakser, Harry, 788.

From the Library of Melissa Nuno



ptg999

858 INDEX AND GLOSSARY

Lalescu, Gheorghe Liviu, 589.
Lambert, Johann Heinrich, 507.
Lamport, Leslie B., 88, 151, 152, 192.
Landau, Hyman Garshin, 413, 522.
Lander, Leon Joseph, 587–588.
Langdon, Glen George, Jr., 337, 341, 352.
Langford, Charles Dudley, 7, 9, 515.

pairs, 1–3, 8, 36, 274.
triples, 36.

Lapko, Olga Georgievna (Lapko, Ol~ga
Georgievna), 883.

Laplace (= de la Place), Pierre Simon,
Marquis de, 421.

Large megabytes: 220 bytes, 588.
Large numbers, names for, 707.
Largest element of a set, 143.
Larrivee, Jules Alphonse, 286.
Larvala, Samuli Kristian, 594.
Las Vegas hotels, 60–62, 86.
Latch gates, 32.
Late neighbors, 69.
Latin-1 supplement to ASCII, 597.
Latin poetry, 500–503, 512.
Latin squares, 3–8, 36–38, 516–518, 529.
Lattice paths, 356–357, 379, 395.
Lattices, see also Majorization lattices.

distributive, 92, 551, 554.
of partitions, 412–413, 432–433.
of trees, 473–476.

Law of large numbers, 438.
Lawrence, George Melvin, 295, 689.
Lawrie, Duncan Hamish, 592.
LDTU (load tetra unsigned), 616.
Le Borgne, Yvan Franccoise André, 805.
Le Corre, Jean Pierre, 145.
Leader, Imre, 560.
Leading bit of a product, 247, 272.
Leading zeros, see Binary logsize function.
Leaf nodes, 466, 473, 475, 786.
Leahy, Francis Theodore, Jr. (= Ted), 514.
Leap year, 599.
Least common ancestors, see Nearest

common ancestors.
Least recently used replacement, 771.
Least significant 1 bit (2ρx), 140–141, 153.
Least upper bounds, see Lattices.
Leck, Uwe, 745.
Lee, Chester Chi Yuan ( ) = Chi

Lee ( ), 257, 680.
distance, 309.
weight, 309.

Lee, Gilbert Ching Jye ( ), 572.
Lee, Ruby Bei-Loh ( ), 151, 189, 595.
Leeuwen, Marcus Aurelius Augustinus

van, ix, 750, 768.
Left-child/right-sibling links, 441, 445,

447, 470, 667, 678, 727, 782, 783,
786–787, 809.

Left complementation ( ), 49, 80.

Left path length, 794.
Left projection ( ), 49, 63, 80, 534–535.
Left-sibling/right-child links, 445, 472,

476, 783, 786–787.
Left-to-right minima, 432, 606.
Leftmost bits, 142–143, 154, 187.
Legendre (= Le Gendre), Adrien Marie, 827.
Legitimate lattices of functions, 132, 133.
Lehmer, Derrick Henry, 39, 136, 320, 359,

384, 410, 510, 734, 752.
Lehner, Joseph, 400, 411.
Leibniz, Gottfried Wilhelm, Freiherr von,

487, 501–502, 505–506, 512, 812, 814.
Leighton, Robert Eric, 519.
Leiserson, Charles Eric, 142, 187.
Lempel, Abraham (LTNL MDXA@), 305.
Lenfant, Jacques, 591.
Length of a Boolean function, 99,

103, 125, 129.
statistics, 101, 105, 563–564, 581.

Lenin, Vladimir Ilyich (Lenin,
Vladimir Il~iq), 86, 365.

Lenstra, Hendrik Willem, Jr., 184, 584.
Leonardo di ser Piero da Vinci, 9, 24.
Leske, Marie, 810.
Lettmann, Theodor August, 543, 545.
Level coordinates ck, 442, 444, 452, 461–462,

471, 473, 474, 477, 480, 786.
Level order of nodes, 748.
Level set method, 177–180, 198.
Levialdi Ghiron, Stefano, 174–175.
Lévy, Paul, 454.
Lewis, Harry Roy, 544.
Lexicographic generation, 319, 330, 333, 334,

344–345, 358–361, 370–373, 379–381,
383, 385, 391–392, 394, 407–408, 416,
429–431, 433, 508, 719–720, 735, 755.

Lexicographic order, 3, 38, 41, 75, 85, 86,
150, 200, 214, 282–283, 305, 309, 319,
326, 442–443, 459, 461, 471, 477, 480,
487, 491, 493, 494, 499, 505, 506, 508,
509, 512, 546, 623, 663, 685, 813, 816.

Lexicographic product of graphs, 28,
42–43, 483, 526.

Lexicographic successor, 320.
Lexicographically largest solution, 259.
Lexicographically mth smallest

solution, 280.
Lexicographically smallest solution, 206, 257.
lg (base 2 logarithm), see also Binary

logsize function.
Li, Gang (= Kenny) ( ), 696, 802.
Li2 (dilogarithm), 410, 751, 754.
Liang, Franklin Mark, 105.
Liaw, Heh-Tyan ( ), 638.
Lichtenberg, Georg Christoph, 679.
Lieves, 310.
Life game, 172, 197, 269–270.
Lights Out puzzle, 617.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 859

Lillywaite, Peregrine, 10.
Limericks, 436.
Lin, Bill Chi Wah ( = ), 258.
Lin, Chen-Shang ( ), 638.
Lindström, Bernt Lennart Daniel, 378–379,

388, 554, 744.
Line graph of a graph, 26, 35, 42, 483,

522, 526, 529.
Linear block codes, 279.
Linear Boolean programming, 206,

209–211, 258, 261, 663.
Linear extensions, 342, see Topological

sorting.
Linear inequalities, 258, 551–553.
Linear ordering, 542.
Linear polynomials, 52.
Linear programming, vii, 92.
Linear subgraphs, 522.
Linear time, 57, 82.
Linear transformations, 639.
Linked allocation, 21, 60, 308, 309,

333–334, 719.
Linked binary trees, generation of,

444–449, 473.
random, 456–457, 478.

Linked lists, 381, 407, 432, 603, 631,
647–648, 652, 727, see also Linked
allocation.

Linusson, Hans Svante, 743.
Lipschutz, Seymour Saul, 726.
Lipski, Witold, Jr., 709.
Liskovets, Valery Anisimovich (Liskovec,

Valeri� Anisimoviq), 350.
Listing versus generating, 281.
Literals, 53, 212, 634.
Little-endian convention, 138–140, 144,

152, 160, 587, 588.
Littlewood, Dudley Ernest, 757.
Littlewood, John Edensor, 586, 758, 801.
Liu, Chao-Ning ( ), 362.
Lloyd, Edward Keith, 15, 779.
Llull, Ramon (= Lullus, Raimundus),

494–497, 512.
LO field in a decision diagram, 202–203, 216,

220–221, 226, 241, 249, 250, 259, 263.
Lo Shu magic square, 573.
Lobachevsky, Nikolai Ivanovich

(Lobaqevsk��, Nikola�
Ivanoviq�), 168.

Löbbing, Martin, 238, 243, 269.
LOC (memory location), 22.
Local optimizations, 121.
Locality of reference, 222, 263.
Locally optimal solutions, 34–35.
Logarithm, as a multivalued function,

422, 773.
Logic, 48–51, 123–124, 132.
Loizou, Georghios (= George; Loòzou,

Ge¸rgioc), 747, 748.

London, John, 496.
Long distributive law, 65, 67, 89.
Longest paths and cycles, 255, 276, 832.
Loony Loop puzzle, 316.
Loopless generation, 289–292, 300, 308, 309,

316, 346, 362, 379, 381, 382, 470, 680,
706, 718, 719, 729, 733–735, 747.

Loops from a vertex to itself, 13, 18,
19, 41, 462, 465, 529.

Lorenz, Max Otto, 757.
Louchard, Guy, 454.
Loukakis, Emmanuel (Louk�khc,

Man¸lhc), 604.
Lovász, László, 386, 739.
Lovejoy, Jeremy Kenneth, 749.
Lower bounds on broadword computation,

155–159, 193–194, 616.
Lower bounds on combinational complexity,

103–104, 109–112, 122–124, 131–132.
Lowercase letters, 191.
Lowest common ancestors, see Nearest

common ancestors.
Loyd, Samuel, xiv, 588, 672.
Loyd, Walter (= “Sam Loyd, Jr.”), 1.
Lu, Yuan ( ), 630.
Lucas, François Édouard Anatole, 745.

numbers, 623.
Lucas, Joan Marie, 447.
Lucky nodes, 483–484.
Luczak (= Łuczak), Malwina Joanna, 798.
Ludus Clericalis, 493, 512.
Łukasiewicz, Jan, 163, 195.
Lüneburg, Heinz, 727.
Lunnon, William Frederick, 766.
Lupanov, Oleg Borisovich (Lupanov,

Oleg Borisoviq), 110, 112, 129,
565, 570, 573.

Lutz, Rüdiger Karl (= Rudi), 613.
Lydgate, John, 494.
Lynch, William Charles, 143.
Lyndon, Roger Conant, 306.

words, 306, see Prime strings.
Lynn, Richard John, 487.

m-ary digit: An integer between 0 and
m − 1, inclusive, 282, 302.

Mµ: One megamem (one million memory
accesses), 232, 245.

M(g) (the number of arcs in the SGB
graph g), 22.

M(n) (binary majorization lattice), 554.
Mm(x; y) (2m-way multiplexer), 214, 235,

239, 243, 263, 266, 267, 269, 272,
627, 630, 638, 647, 659.

Mn (middle binomial coefficient),
457, 479–480.

m×n cylinders, 28, 41.
m×n grids, 28, 41.
m×n rook graphs, 26, 41.

From the Library of Melissa Nuno



ptg999

860 INDEX AND GLOSSARY

m×n toruses, x, 28, 41.
directed, 41.

Macaulay, Francis Sowerby, 373, 388, 738.
function µt, 374–375, 386–387, 739.

Macchiarulo, Luca, 622.
MacDonald, Peter Sherwood, 346.
MacMahon, Percy Alexander, 414, 415,

429, 792, 797.
MacNeish, Harris Franklin, 5.
Macro-processor, 291.
Madre, Jean Christophe, 625, 635, 669, 674.
Maghout, Khāled (¢Ø¯nË �¿n�), 258.
Magic Fifteen, 129.
Magic masks (µk and µd,k), 141, 143–145,

148, 154, 169, 186, 582, 585, 587,
589–597, 600, 601, 608, 616.

Magic squares, 36, 573.
Magic trick, 440.
Magmas, multiplication tables for, 163, 195.
Maiorana, James Anthony, 306, 307.
Majority element, 46.
Majority functions, 63, 68, 104, 159,

519, see Medians.
Majority law, 65, 89.
Majority of odd, see Median of odd.
Majorization, 757–758.
Majorization lattices, of binary vectors,

92–94.
of n-tuples, 30, 528, 554.
of partitions, 412–414, 763.

Makino, Kazuhisa ( ), 555, 654.
Malfatti, Giovanni Francesco Giuseppe, 752.
Malgouyres, Rémy, 611.
Manchester Mark I computer, 134.
Mann, Henry Berthold, 516.
Mann, William Fredrick, 609.
Mantel, Willem, 303.
Mapping modules, 190, 592.
Mapping networks, 190, 592.
Mapping three items into two-bit codes,

160–163, 195.
Mappings of bits, 149, 190, 592.
Marceau (= Mangel), Marcel, 817.
Marcisová, Tamara, 548.
Marckert, Jean-François, 454.
Margenstern, Maurice, 168.
Mark II computer (Manchester/Ferranti),

134.
Markov (= Markoff), Andrei Andreevich

(Markov, Andre� Andreeviq), the
elder, process, 487.

Markowsky, George, 540, 557, 788.
Marshall, Albert Waldron, 758.
Martin, Monroe Harnish, 142, 307–308.
Martinelli, Andrés, 646.
Maruoka, Akira ( ), 248, 271.
Maruyama, Kiyoshi ( ), 561.
Marx, Adolph (= Arthur = Harpo), 817.
Mary, Saint (�Agia MarÐa Jeotìkoc,

PanagÐa, Parjènoc), 500–501.

Mask: A bit pattern with 1s in key
positions, 141, 144–145, 148–150,
152, 181, 182, 201.

Masked integers, see Scattered arithmetic.
Masking: ANDing with a mask, 163.
Master profile chart, 239, 240, 245,

267–268, 643.
Master z-profile chart, 272.
Matchings in a graph: Sets of disjoint

edges, 35, 44, 831.
perfect, 119, 252, 313–314, 343, 353, 442,

444, 471, 686–687, 718–719, 768, 831.
MATE (the converse arc), 21–22, 464.
Mate of a bit string, 479.
Mates in a Boolean chain, 131.
Math. Comp.: Mathematics of Computation

(1960– ), a publication of the American
Mathematical Society since 1965;
founded by the National Research
Council of the National Academy
of Sciences under the original title
Mathematical Tables and Other Aids
to Computation (1943–1959).

Mathews, Edwin Lee (= 41), 278.
Mathon, Rudolf Anton, 516–517.
Matrices of 0s and 1s, 20, 32–35, 44, 46,

125, 130, 199–202, 230, 238, 251,
264, 267, 269–270, 279, 580, 623,
632, 643, 665, 757, 830–831, see also
Adjacency matrices of graphs, Bitmaps,
Permutation matrices.

multiplication of, 182–183, 188,
230, 264, 619.

transposing, 33, 147, 188, 199, 201,
591–592, 878.

triangularizing, 200, 725.
Matrix (Bush), Irving Joshua, 702.
Matrix multiplication, 20, 182–183, 188,

230, 264, 526, 580, 619, 731.
Matrix transposition, 147, 188, 199,

201, 591–592.
Matrix tree theorem, 481, 482, 723, 806.
Matroids, 674.
Matsumoto, Makoto ( ), 740–741.
Matsunaga, Yoshisuke ( ), 419, 504.
max (maximum) function, 63–64, 134,

163, 192, 213.
Maximal chains, 474, 476.
Maximal cliques, 44, 194–195, 259, 277.
Maximal elements (f↑), 276, 717.
Maximal independent sets, see Kernels

of a graph.
Maximal induced bipartite subgraphs, 277.
Maximal intersecting families, 88.
Maximal planar graphs, 39.
Maximal proper subsets, 190.
Maximal subcubes, 54–55, 82–83.
Maximal versus maximum, 34–35, 671.
Maximization, 206, 209–211, 258,

261, 279, 663.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 861

Maximum independent sets, 34–35, 44, 831.
Maximum likelihood, 279.
Maximum operator (max(x, y) or

max{x, y}), 63, 64, 134, 163, 192, 213.
Maxterms, see Minclauses.
Maybe, 163.
Mayeda, Wataru ( ), 511.
Mayr, Ernst Wilhelm, 551.
McCarthy, David, 365.
McClintock, William Edward, 295.
McCluskey, Edward Joseph, Jr., 55.
McCranie, Judson Shasta, 605.
McCravy, Edwin Parker, Jr., 346.
McCulloch, Warren Sturgis, 75.
McCune, William Walker, Jr., 548.
McKay, Brendan Damien, 517, 714, 745.
McKay, John Keith Stuart, 391.
McKellar, Archie Charles, 118, 120, 131.
McLean, Iain Sinclair, 496.
McManus, Christopher DeCormis, 38.
McMillan, Kenneth Lauchlin, 214, 627.
McMullen, Curtis Tracy, 661.
Mean values, 276, 414, 438.
Median algebras, 64–67, 89.
Median chains, 133.
Median expansion formula, 87.
Median Genocchi numbers, 655.
Median graphs, 67–74, 89–90, 550.
Median labels, 67–74, 549.
Median sets, 72–74, 91.
Median words, 275.
Medians (⟨xyz⟩), x, 62–74, 87–91, 102,

125, 133, 202–205, 212, 229, 235, 255,
263, 264, 311, 585, 598, 637.

bitwise, 67, 71, 72, 91, 549.
of any odd number, 64, 75–76, 91–92, 94.
of five, 64, 68, 71, 76, 77, 87, 91.
of medians, 268, 644.
of seven, 133.

Medicine, 492, 495.
Meet operation (f ⊓ g), 273, 275,

276, 671–673.
Megamem (Mµ): One million memory

accesses, 232, 245.
Meinel, Christoph, 639.
Meißner, Otto, 760.
Melding operation (f ⋄ g), 218–219, 225,

231, 242, 262–263, 630, 648–649.
Mellin, Robert Hjalmar, transforms,

396, 410.
Melodies, 491, 498, 505.
Memo cache, 226–230, 232–233, 256, 264,

265, 637, 647, 659–660, 670.
Memoization technique, 226, 233.
Mems (µ): Memory accesses (usually

to 64-bit numbers), 2, 6, 224, 403,
468–469, 476, 786, 802, 803.

Menon, Vairelil Vishwanath (ttetcdo²
eof|\nY uau\n°), 525.

Merge sorting, 181.
Meringer, Markus Reinhard, 530.
Mérő, László, 617.
Mersenne, Marin, 491, 505, 512.
METAFONT, 12, 615, 883.
METAPOST, 883.
Meters, poetic, 487–490, 492, 500–503,

508, 512–513.
Metrical feet, 489, 501, 512–513.
Metropolis, Nicholas Constantine

(Mhtrìpolhc, Nikìlaoc KwnstantÐnou),
557.

mex (minimal excludant) function, 184.
Meyer, Albert Ronald da Silva, viii,

123, 124, 579.
Meyerowitz, Aaron David, 89, 550.
Meynert, Alison, 517.
Mezei, Jorge Esteban (= György István), 92.
Middle bit of a product, 229, 247–249,

271–272.
Middle levels conjecture, 735.
Midpoint, bytewise, 151, 191.
Miers, Charles Robert, 700.
Miiller, Henry Sedwick, 64.
Mikado pattern, 618.
Mikami, Yoshio ( ), 492.
miles graphs, 31, 44.
Mileto, Franco, 541.
Military sayings, 281.
Miller, Donald John, 527.
Miller, Jeffrey Charles Percy, 143.
Miller, Joan Elizabeth, 362, 381.
Mills, Burton Everett, 536, 539.
Milne, Stephen Carl, 433.
Milnor, John Willard, 88, 547.
Miltersen, Peter Bro, 159.
min (minimum) function, 63–64, 134,

163, 192.
Min-plus algebra, 625.
Min-plus matrix multiplication, 731.
Minato, Shin-ichi ( ), 249, 258, 278,

662, 669, 673, 675, 677.
Minclauses, 53.
Minimal dominating sets, 258, 277.
Minimal elements (f ↓), 276, 717.
Minimal excludant, 184.
Minimal hitting sets of a family (f♯),

276, 671, 674.
Minimal partitions, 412.
Minimal solutions, 255.
Minimal versus minimum, 34–35.
Minimal vertex covers, 34–35, 195, 259,

276, 537, 671, 674.
Minimization reduced to maximization, 260.
Minimum element in subarray, 196.
Minimum-memory evaluation, 101–103,

106, 125, 126, 566–567.
Minimum operator (min(x, y) or min{x, y}),

63, 64, 134, 163, 192.

From the Library of Melissa Nuno



ptg999

862 INDEX AND GLOSSARY

Minimum spanning trees, 260, 277, 832.
Minimum vertex covers, 34–35, 44, 831.
Minnick, Robert Charles, 77, 552.
Minsky, Marvin Lee, 198.
Minterms, 52–54, 109, 111, 126, 253,

260, 536.
MIP-years, 2.
Mirror images, 444, 471, 782, 786, 799.
Mirror pairs, 38.
Misiurewicz, Michał, 760.
Misra, Jayadev (jYedb miS[), 534, 680.
Missing subset sum, 202.
Mitchell, Christopher John, 305.
Mittag-Leffler, Magnus Gösta

(= Gustaf), 508.
Mixed-radix majorization lattices, 554.
Mixed-radix number systems, 192, 282,

299–301, 315, 335, 345, 555, 693,
695, 703, 760, 813.

MMIX computer, iv, viii, 41, 137, 139–142,
144, 151, 152, 160, 180–183, 186, 187,
189, 191, 192, 194, 199, 201, 202,
216, 339–341, 352, 384, 583, 588, 590,
596–598, 606, 616, 679.

MMIXAL assembly language, 41.
Mnemonics, 526.
Möbius, August Ferdinand, function, 306.
Mod 2 canonical form, see Multilinear

representation of a Boolean function.
Mod 4 parity, 126.
Mod-5 arithmetic, 192.
mod (remainder) function, 136.

for families of sets, 273, 661, 666.
Modal logic, 163, 195.
Modular arithmetic, 207, 260, 515.
Modular Gray codes for tuples, 299–300,

315, 481.
decimal, 299.
m-ary, 304, 682, 690–693, 696.
mixed-radix, 692–693, 714.
quaternary, 681, 688.
ternary, 685, 690.

Modular universal cycles, 722.
Modules in a network, 214–215, 262.
modulo Π (equivalence modulo a

partition), 416.
Mohanram, Kartik (E� Ç�E� �d� �oX�§ �d), 219.
Mohar, Bojan, 808.
Moivre, Abraham de, 451, 506–508, 513.
Moments of a distribution, 434, 778.
Mona Lisa, 9, 24, 31.
Monadic logic: Logic with only unary

operators, 123–124, 132.
mone, 586, see −1.
Monic polynomial, 681.
Monomial symmetric functions, 506, 757.
Monomials, 388.
Monominoes, 252, 274.
Monotone Boolean chains, 125, 132–133.

Monotone Boolean functions, 55, 63, 79,
80–82, 85, 87, 95, 202, 223–224, 231,
255, 256, 258, 263, 265, 270–271, 277,
278, 388, 460, 480, 536–537.

computing CNF from DNF, 537–538.
decreasing, 658.
prime implicants of, 255–256, 631–632,

653–654, 674.
self-dual, 63–64, 70, 79, 87–89, 92–93, 133,

256, 263, 268, 546, 550, 631, 647.
shellability of, 84–85, 537, 541, 552.
threshold, 75–76, 92.

Monotone complexity, 106, 125, 132–133.
Monotone-function function (µn), 223–224,

228, 263, 631.
Monotonic binary Gray codes, 295–298, 315.
Monotonic portions of curves, 177–179, 198.
Monte Carlo estimates, 712.
Montmort, Pierre Rémond de, 506, 513.
Monus operation (x .−y = max{0, x−y}),

x, 49, 84, 152, 156, 193, 278, 550,
593, 598, 608, 735.

Moody, John Kenneth Montague
(= Ken), 194.

Moon, John Wesley, 531.
Moore, Edward Forrest, 676.
Moore, Eliakim Hastings, 518.
Moore, J Strother, 46.
Moore, Ronald Williams, 537.
Mor, Moshe (XEN DYN), 720–721, 727.
MOR (multiple or), 144, 151, 182–183, 188,

201–202, 264, 597, 606, 616, 619.
Morales, Linda, 722.
Morelli, Luigi, 841.
Moreno Araya, Eduardo Enrique, 701.
Morgenstern, Oskar, 550, 622.
Morphic sequence, 800.
Morphology, mathematical, 611.
Morreale, Eugenio, 539.
Morris, Ernest, 322.
Morris, Scot Anderson, 38, 707.
Morse, Harold Calvin Marston, 623.

sequence, 209–210, 260.
Morse, Samuel Finley Breese, code,

316, 488, 508, 696.
Morton, Guy Macdonald, 597.
Moser, Leo, 425, 531, 770, 772.
Most recently used replacement, 771.
Most significant 1 bit (2λx), 134, 143,

192–194, 600.
Motzkin, Theodor (= Theodore) Samuel

(OIWVEN L@ENY XECE@IZ), 431, 765, 778.
Moundanos, Konstantinos (= Dinos;

Mound�noc, KwnstantÐnoc), 630.
Mountain passes, 420.
MP3 (MPEG-1 Audio Layer III), 183.
Muirhead, Robert Franklin, 757.
Mulder, Henry Martyn, 548.
Muller, David Eugene, 143, 561, 567.
Multibyte encoding, 200–201.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 863

Multibyte processing, 151–155, 191–193.
addition, 151, 192, 599.
comparison, 152–153.
max and min, 192, 599.
modulo 5, 192.
potpourri, 598.
subtraction, 191, 192, 599.

Multicombinations: Combinations with
repetitions permitted, 356–357,
365, 370–373, 379, 387, 390, 393,
493–494, 499, 512.

Multifamily of sets, 278.
Multigraphs, 13, 19–21, 40, 41, 44, 526.
Multihypergraphs, 529.
Multilevel logic synthesis, 122, see

Boolean chains.
Multilinear representation of a Boolean

function, 52, 80, 96, 130, 231, 536,
563, 619, 675, see also Reliability
polynomials.

Multinomial coefficients, 309, 345, 505.
Multinomial theorem, 506, 508, 513.
Multipairs, 19.
Multipartition numbers p(n1, . . . , nk),

429, 439.
table, 778–779.

Multipartitions: Partitions of a multiset or
vector, 429–431, 439–440, 505, 513, 780.

Multiple outputs, 107–109, 112–117,
121–122, 126–130.

Multiple-precision arithmetic, 138.
Multiple-precision constants, 236, 423,

658, 818–819.
Multiplexer, 2-way (f? g: h), see If-then-else

function, Mux operation.
2m-way (Mm(x; y)), 109, 127, 131, 214,

235, 239, 243, 263, 266, 267, 269, 272,
627, 630, 638, 647, 659.

Multiplication, 8, 136, 142–143, 154,
193, 588.

avoiding, 153, 154, 191, 597–598.
binary, 228–229, 247–249, 264,

271–272, 278.
by powers of 2, 135, 588.
in Conway’s field of nimbers, 184.
in groupoids or magmas, 163, 195.
lower bounds for, 154, 158, 194.
of 0–1 matrices, 188, see also MOR, MXOR.
of permutations, 326.
of polynomials mod 2, 202.
of signed bits, 161–162.
of sparse integers, 278.

Multiplicative alphametics, 347.
Multiprecision arithmetic, 207.
Multiset combinations: Submultisets

of a given size, 370, 372, 379, 387,
498, 512, 816.

Multiset union (f ⊎ g), 278.

Multisets: Sets with repetitions permitted,
12, 18, 19, 356, 724.

combinations of, 370, 372, 379, 387,
498, 512, 816.

permutations of, 319–321, 342, 345, 351,
358, 368–369, 383, 384, 395, 491, 500,
502, 507, 723, 726, 735, 760.

Multivariate Bernoulli distribution, 439.
Mundy, Peter, 322.
Munro, James Ian, 159.
Murasaki Shikibu (= Lady Murasaki,

), 503.
Muroga, Saburo ( ), 77, 538,

552–554, 559.
Murphy’s Law, 529.
Museum of Science and Industry, 115.
Music, 488–491, 497–498, 505.

notation, 490–491.
rhythm, 488–490, 498.

Musical graph, 44, 45.
Mutilated chessboard, 252, 274.
Mutual exclusion, 88.
Mutually incomparable sets, 263.
Mutually orthogonal latin squares, 37–38.
Mütze, Torsten, 735.
MUX (multiplex), 182, 594, 597, 616, 619.
Mux (multiplex) operation, 96, 125, 566,

568, 569, see also If-then-else function.
MUX subroutine, 229, 232, 264, 272,

630, 660.
MXOR (multiple xor), 182–183, 188, 201–202,

264, 352, 583, 598, 619–620.
Mycroft, Alan, 152.
Myers, Eugene Wimberly, Jr., 804.
Mynhardt, Christina (Kieka) Magdalena,

673.
Myrvold, Wendy Joanne, 517, 717.

n-ary Boolean functions, 51–55, 78–79, 95.
n-ary strings, 37.
n-cube: The graph of n-bit strings, adjacent

when they differ in only one position,
28, 41, 73, 129, 240, 257, 293, 295,
313–314, 327–328, 346, 468–469, 483,
806; see also 3-cube, 4-cube, 8-cube.

bandwidth of, 315.
perfect matchings of, 313, 686–687.
subcubes of, 54, 82–84, 310–311, 535,

541, 557, 570–571.
symmetries of, 327–328, 346, 347, see

also Octahedral groups.
n-extension of a string, 306.
n-tuple: A sequence or string of length n,

281–282, 390.
N(g) (the number of vertices in the SGB

graph g), 22, 523.
Nakagawa, Noriyuki, 511.
Name servers, 88.
NAME(v) (the name of a vertex), 21.

From the Library of Melissa Nuno



ptg999

864 INDEX AND GLOSSARY

NAND (∧), 49–51, 80–81, 104, 563.
Nanocomputer simulation, 32.
Nārāyan. a Pan. d. ita, son of Nr.siṁha

(nArAyZ pE�Xt, n� Es\h-y p� /,), 319, 488,
491, 499–500, 507, 512, 703.

Natural correspondence between forests
and binary trees, 275, 441, 472, see
Left-child/right-sibling links.

Naudé, Philippe, junior, 395.
Navigation piles, 167, 196.
Near-perfect combination generation,

365–371, 383.
Near-perfect Gray code for nested

parentheses, 446.
Near-perfect permutation generation,

369, 383.
Near trees, 463–468, 481, 803.
Nearest common ancestors, 165–167,

196, 832.
Nebeský, Ladislav, 548.
Necessity, in 3-valued logic, 195.
Nechiporuk, Eduard Ivanovich

(Neqiporuk, �duard Ivanoviq), 573.
Necklaces, 215.
Needham, Noel Joseph Terence Montgomery

( ), 487.
NEG (negation), 181, 587, 620.
Negabinary number system, 184, 675.
Negadecimal number system, 169.
NegaFibonacci number system,

168–171, 196.
Negation, 135, 184, 195.
Negative literals, 277–278.
Neighboring vertices, 13.
Nemeth, Evelyn (= Evi) Hollister

Pratt, 689.
Nemhauser, George Lann, 542.
Nešetřil, Jaroslav, 526.
Nested parentheses, 186, 278, 440–446,

450–453, 455–456, 459, 471–472, 477,
478, 509–511, 781, 787.

Nestings in a set partition, 768.
Netto, Otto Erwin Johannes Eugen,

508–510.
Network model of computation,

214–215, 262.
Networks: Graphs or digraphs together

with auxiliary data, 31–32, 44.
Neuman, František, 484.
Neumann, John von (= Neumann

János Lajos = Margittai Neumann
János), 550, 622.

Neural networks, 75.
New England, 210, 255.
Newbies, 240–242, 648.
Newline symbol, 152.
Newton, Isaac, identities, 806.

rootfinding method, 423, 775.

NEXT(a) (the next arc with the same
initial vertex), 21, 194.

Neyman, Jerzy, 692.
Nicely, Thomas Ray, 588.
Nievergelt, Jürg, 510.
Nigmatullin, Roshal’ Gabdulkhaevich

(Nigmatullin, Roxal~
Gabdulhaeviq), 558.

Nijenhuis, Albert, 338, 362, 411, 481, 510.
Nijon, Herman, 346.
Nikolskaia, Ludmila Nikolaievna

(Nikol~ska�, L�dmila Nikolaevna),
642.

Nikolskaia, Maria (= Macha) Nikolaievna
(Nikol~ska�, Mari� Nikolaevna),
642.

Nim and nimbers, 134, 184, 622.
addition, 134, 184.
division, 184.
multiplication, 184, 584.
second-order, 184.

No-three-on-a-line problem, 277, 831.
with no two queens attacking, 672.

Nodes in SGB format, 21–23, 523.
Noisy data, 197.
Non-Euclidean geometry, 167–168, 608.
Nonbinary Gray codes, see Modular Gray

codes for tuples, Reflected Gray
codes for tuples.

Noncommuting variables, 815.
Nonconjunction (∧), 49, see NAND.
Noncrossing chords, 444, 471.
Noncrossing partitions, 473, 511, 513.
Nondisjunction (∨), 49, see NOR.
Nonimplication (⊃), 49.
Nonlocal Gray codes, 296–297, 314.
Nonnegative coefficients, 439.
Nonstandard ordering of variables, 236,

see Reordering of variables.
Nonsubsets (f ↗ g), 276, 673.
Nonsupersets (f ↘ g), 276, 670–671, 674.
Nonuniform Turing machines, 257.
Nonzero bytes, testing for, 152–153.
Nonzero register, converted to mask, 181.
Nooten, Barend Adrian Anske Johannes

van, 488.
NOR (∨), 49–51, 104–105.
Nordhaus, Edward Alfred, 530.
Nordstrom, Alan Wayne, 310.
Normal Boolean functions, 100, 102, 110,

113, 125, 279, 565, 577.
Normal distribution, 428.
Normal families of sets, 677.
Normal forms, see Full conjunctive normal

form, Full disjunctive normal form,
Integer multilinear representation,
Multilinear representation of a
Boolean function.

Normal numbers, 699.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 865

Normalization of a Boolean function,
100, 561.

Normalized BDDs, 279.
Northeasterly knight’s tour, 352.
NOT (bitwise complementation), 134,

135, 184, 217, 604.
NOT gates, 32, 33, 104.
Notations, x, 26, 48, 132, 526, 535, 589,

592, 669, 787.
for Boolean binary operators, 48–50.
index to, 822–826.

NOTBUT gates (⊂), 97, 100.
NOTBUT subroutine, 633.
Noughts and crosses, see Tic-tac-toe.
Novels, 9, 23.
Novra, Henry, 694.
Nowhere differentiable function, 386.
NP-complete problems, viii, 35, 55, 189,

240, 265, 538, 706.
Nucleotides, 511.
Null case, 499, 799, 817.
Null graphs (Kn), 26, 27, 41–43, 46,

530, 806.
Null link (Λ), 21, 222–223, 647–648.
Null spaces, 200.
Numbers, Catalan, 440.
Numerals, Arabic, 493, 512.

Roman, 707, 814.
Sanskrit, 491.

NXOR (not xor), 590.
Nybble: A 4-bit quantity, 144, 340–341, 615.
Nylan, Michael, 487.
Nyp: A 2-bit quantity, 144, 615.

O (all-zeros matrix), 27.
O-notation, 238.
OBDD, 204.
Objects in images, 174.
Oblivious sorting, 72.
Ockham, William of (= Guilielmus

ab Occam), 51.
Octabyte or octa: A 64-bit quantity,

139–140.
Octacode, 310.
Octahedral groups, 706.
Octonions, 685.
Odd Fibonacci number system, 608.
Odd length runs, 696.
Odd parity bit, 286.
Odd permutations, 40, 323, 492, 512,

712, 713.
Odd product of graphs, 28, 42–43, 483, 526.
Odlyzko, Andrew Michael, 399.
ODNFs, 84–85, 92.
Oettinger, Ludwig, 760.
OFDD, 204.
Offord, Albert Cyril, 801.
Ofman, Yuri Petrovich (Ofman, �ri�

Petroviq), 570, 595.

OKFDD, 204.
Okuno, Hiroshi “Gitchang” ( ), 669.
Olive, Gloria, 734.
Olkin, Ingram, 758.
Olver, Frank William John, 426.
Omega network for routing, 188–189, 595.
Omphaloskepsis, 235.
One-to-many mapping, 149, 162.
Onegin, Eugene (On+gin�, Evgen��), 437.
Ones counting, see Sideways sum.
Online algorithms, 174–175, 198.
op: Four-bit binary operation code, 220–221.
Open bitmaps, 197.
Optical character recognition, 172, 197.
Optimal versus optimum, 34–35, 246.
Optimization of Boolean chains,

121–122, 576.
Optimizing the order of variables, 239–240,

245, 246, 267–269, 644.
for ZDDs, 272.

Optimum algorithm, 461.
Optimum Boolean evaluation, 101–106,

126, 133.
Optimum coteries, 93.
Optimum linear arrangement problem,

268, 832.
Optimum solutions to Boolean equations,

206, 209–211, 251, 258, 261, 279, 663.
OR (bitwise disjunction, |), 50, 74,

84, 134–135.
OR function (inclusive or, ∨), 48–51,

53, 63, 81.
OR gates (∨), 32, 33, 97.

with vacuum tubes, 104.
OR subroutine, 272, 273, 660, 677.
Ord-Smith, Richard Albert James

(= Jimmy), 330, 331, 336, 347,
348, 508, 703.

Order ideals, 387, 554, 787.
Order of a digraph, 18.
Order of a graph, 13, 44.
Order of a group element, 338, 710.
Order of a latin square, 37.
Order of a set partition, 763.
Order of an orthogonal array, 37.
Ordered BDDs, 202, 203, 216, 257,

259, 637, 655.
Ordered factorizations, 760.
Ordered forests, 509.
Ordered pair of two Boolean functions, 219.
Ordered partitions (compositions), 25,

308–309, 356–358, 365, 379, 390, 410,
488, 492, 512, 726, 778, 816.

bounded, 370, 384, 385.
Ordered trees, 509, 511.
Ordering of variables, 216, 236, 271,

279, 626.
by local transformations, 240–246, 649.
optimum, 239–240, 245, 248, 267–270,

272, 644, 657, 659.

From the Library of Melissa Nuno



ptg999

866 INDEX AND GLOSSARY

Ordinal numbers, 583.
Ore, Øystein, ix, 42.
Organ-pipe order, 239, 267, 368, 515, 626,

646–647, 713, 720, 803.
Organic illustrations, 485.
Oriented binary trees, 570.
Oriented cycles, 18, 19, 32, 40, 41, 259, 276.
Oriented forests and trees, 165–167,

174–175, 461–462, 480.
Oriented paths, 18, 19, 41, 159, 196, 253.
Oriented spanning paths, 40.
Oriented spanning trees, 481–482, 808.
Oriented tree numbers, table, 461.
Oriented trees, 432, 461–462, 480–482,

509, 511, 774.
OROR, 661, see ANDAND subroutine.
Orthogonal arrays, 37, 519, 832.

generalized, 518.
Orthogonal DNFs, 84–85, 92.
Orthogonal families of sets, 273.
Orthogonal latin squares, 3–8, 36–38, 516.
Orthogonal strings, 37.
Orthogonal vectors, 34, 37, 288, 312.
Östergård, Patric Ralf Johan, 673, 686.
Otter theorem-proving program, 548.
Ourotoruses, 318–319.
Out-degree of a vertex, 18, 19, 21, 40,

41, 43, 482, 808.
Outline of a forest, 453.
Outshuffles, 188, 201.
Outside of a curve, 176.
Overflowing memory, 603.
Overlapping subtrees, 97, 203, 257.
Overpartitions, see Joint partitions.
Ozanam, Jacques, 3, 7, 9.

℘ (power set, the family of all subsets),
275, 660–662, 666, 669.

P = NP(?), 55.
P -partitions, 414.
Pm (permutation function), 238, 272.
Pn (path of order n), 13, 28, 39, 41, 469,

481, 483, 537, 803, 807, 809.
Pn⃗ (oriented path of order n), 18, 41.
Packages for BDD operations, 224, 257, 677.
Packages for ZDD operations, 272,

273, 276, 677.
Packed data, operating on, 136, 151–153,

163, 191–192, 195, 201.
Packing of data, 136–138, 147–148, 163,

186, 196, 201, 202, 594.
Padovan, Richard, numbers, 537, 561, 641.
Page faults, 191.
Page in a virtual address, 263.
Paige, Lowell J., 5–7.
Pak, Igor Markovich (Pak, Igor~

Markoviq), 713, 749.
Paley, Raymond Edward Alan Christopher,

186, 586, 684.
functions, 312.

Palindromes, 38, 515, 544.
Palluel, François Cretté de, 8.
Pan-digital puzzles, 319, 347, 484–485.
Panholzer, Alois, 796, 798.
Papadimitriou, Christos Harilaos

(PapadhmhtrÐou, QrÐstoc Qaril�ou),
ix, 604.

Papert, Seymour Aubrey, 198.
Parabolas, 176, 198, 614.
Parallel addition, 108, 127–128, 569, 570.
Parallel computation, vii, 91, 108, 124,

352, 682, 706.
Parallel edges of a multigraph, 19, 41.
Parallel lines, 37.
Parallel processing of subwords, 151–155,

191–193, 202.
Parent pointers, 461–462, 470–471, 480.
Parentheses, 278, 440–446, 450–453,

455–456, 459, 471–472, 477, 478,
509–511, 781, 787.

Parenthesis traces, 186.
Parity bits, 38, 286, 308, 309.
Parity check matrix, 279.
Parity function, 51, 77, 94–95, 98, 105, 131,

132, 159, 194, 210, 564, 584, 590.
suffix, 187, 201, 603.

Parity patterns, 199–200.
Parker, Ernest Tilden, 5–7, 516.
Parkin, Thomas Randall, 587–588.
Parking problem, 789, 805.
Part-count form, 393, 407, 432.
Partial cubes, 90; see also Subcubes.
Partial functions, 113–114, 131.
Partial ordering, 342, 352, 353, 414.
Partial-tautology functions (tj),

660–662, 675.
Partially symmetric Boolean functions,

95, 269, 642, 650.
Partition lattice, 432–433.
Partition numbers p(n), 395–401, 409–411.

tables, 396, 400, 778.
Partitions, 390–440.

of a multiset, 428–431, 439, 505, 513, 780.
of a set, see Set partitions.

Partitions of an integer, 25, 30, 347,
391–415, 428–431, 434, 439, 505–508,
513, 529, 726, 767, 769.

balanced, 407.
doubly bounded, 403, 411, 413, 723.
ordered, see Compositions.
random, 400–402, 411, 426–428.
sums over, 393, 419, 772, 775.
with distinct parts, 408, 409, 411,

412, 431.
without singletons, 399, 436, 754,

768, 771.
parts graphs, 25.
Party games, 494, 503.
Pascal, Ernesto, 360.
Patashnik, Oren, 842.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 867

Patents, 112, 284, 341, 590, 594, 620,
680, 694.

Paterson, Kenneth Graham, 305.
Paterson, Michael Stewart, 126, 127,

154, 601, 602.
Path graph (Pn), 13, 28, 39, 41, 469, 481,

483, 537, 803, 807, 809.
Paths in a graph, 13, 41.

oriented, 18, 19, 41.
shortest, viii, 12, 16, 32, 66, 646.
simple, 253–255, 275–276.

Paths on a grid, 356–357, 379, 395.
Patricia, 257.
Pattern recognition, 172.
Patterns in permutations, 762.
Patterns of bits, searching for, 152–154, 193.
Patterson, Nicholas James, 561.
Paul, Wolfgang Jakob, 131.
Payne, William Harris, 363, 382.
PBDD, 204.
Peczarski, Marcin Piotr, 718.
Pehoushek, Joseph Daniel, 87.
Peirce, Charles Santiago Sanders, 48,

50, 53, 418, 542.
triangle, 418, 434–436, 438, 769, 771, 779.

Peled, Uri Natan (CLT OZP IXE@), 654.
Pendant vertex, see Endpoint of a graph.
Pentagonal numbers, 395, 409.
Pentagons, 168–169, 475.
Pentagrid, 168–171, 196, 608–609.
Pepperdine, Andrew Howard, 721.
Perelman, Grigori Yakovlevich (Perel~man,

Grigori� �kovleviq), 514.
Perez, Aram, 183.
Perfect combination generation,

369–371, 384.
Perfect Gray code for nested parentheses,

446, 477, 787.
Perfect hash functions, 588–589.
Perfect matchings, 252, 313–314, 686–687,

768, 831.
Perfect parity patterns, 199–200.
Perfect partitions, 415.
Perfect shuffles, 38, see also Zip.
Period length, 194, 317, 530.
Permanent of a matrix, 40, 119, 125.
Permutahedron, 475.
Permutation digraphs, 40.
Permutation function (Pm), 238, 272.
Permutation generation, 319–355.

bypassing blocks, 331–334, 348, 719–720.
cyclic shift method, 336, 338, 341, 348.
dual, 335–337, 348.
Ehrlich swap method, 337–338, 349–350.
fastest, 339–342.
general, 328–331, 340–341, 347–348.
lexicographic, 319, 330, 333, 334,

344–345, 508.
lexicographic with restricted prefixes,

334, 348, 718–719.

plain changes, 322–325, 335, 341, 343,
345–346, 351, 719–720.

when to use, 344, 722.
Permutation matrices, 20, 182, 238, 523.
Permutation networks, 145–147,

188–190, 592.
Permutation of variables, 216, 236,

271, 279, 626.
by local transformations, 240–246,

273, 649.
optimum, 239–240, 245, 267–269, 272, 644.

Permutation representation of binary
trees, 476.

Permutations: Arrangements in a row,
271, 319–355, 390, 432, 439, 448,
490–492, 500.

applying, 326–328.
balanced, 354.
conjugate, 330.
cycles of, 326, 330.
cyclic, 353, 476.
derangements, 353.
descents of, 479.
even, 40, 323, 354, 492, 512, 812.
flip, 789.
Gray codes for, 349–350, 718–720.
groups of, 327–328, 338, 710.
h-ordered, 353.
indecomposable, 353, 811.
induced by index digits, 188.
inverse, 342–343, 346, 448, 717.
inversions of, 321, 323.
involutions, 353–354, 718.
multiplication of, 326.
notations for, 326.
null, 499.
odd, 40, 323, 492, 512, 712, 713.
of a Latin verse, 500–503, 512–513.
of a multiset, 319–321, 342, 345, 351,

358, 368–369, 383, 384, 395, 491, 500,
502, 507, 723, 726, 735, 760.

of bits within a word, 145–149, 157, 182.
of bytes within a word, 182.
of the 2-adic integers, 185.
Omega-routable, 188–189.
order of, 338, 710.
partial, 345, see Variations.
r-element, 345, 348.
rank of, 345, 352, 717.
representation of, 327, 335.
restricted, 501–503, 512–513.
sign of, 323, 351.
signed, 346.
universal cycles of, 354–355.
up-down, 353.
well-balanced, 354.

Permuted 2m-way multiplexer, 235,
239, 267, 272.

Permuting and/or complementing, 346.
Perpendicular lines, 168.

From the Library of Melissa Nuno



ptg999

868 INDEX AND GLOSSARY

Perrin, Dominique Pierre, 701.
Perrin, François Olivier Raoul, numbers,

537, 561, 623, 641.
Perverse, Rufus Quentin, 315.
Petersen, Julius Peter Christian, 5, 14, 525.

graph, 14, 15, 25, 39, 42, 44, 45, 525.
Peterson, William Wesley, 183.
Petrarca, Francesco (= Petrarch), 436.
Pfaff, Johann Friedrich, 719.
Phi (ϕ), 196, 236, 246, 270, 514, 818–819.

as source of “random” data, 348, 516.
Phillips, John Patrick Norman, 702.
Philo of Megara (= Philo the Dialectician,

FÐlwn å MegarÐthc), 48.
Phylogenetic trees, 774.
Pi (π), 818–819.

as source of “random” data, 76, 98,
118, 128, 149, 205, 247, 272, 310, 317,
345, 348, 354, 356, 367, 381–383, 388,
434–435, 459, 479, 486, 516, 641, 650,
681, 759, 794, 811, see also Pi function.

Pi function, 52, 54, 80–82, 118, 125,
130, 205–207, 562.

PI(f): The prime implicants of f ,
255–256, 277–278.

Piṅgala, Ācārya (aAcAy Ep½l), 487–488.
Piano, 364, 384.
Pickover, Clifford Alan, 586.
Pigeonhole principle, 85, 390–391, 579, 616.
Pincusian mathematics, 79.
Pipelined machine, 180–181.
Pippenger, Nicholas John, 558, 573.
Pisot, Charles, number, 641.
Pistols, 271, 659.
Pitman, James William, 439, 765, 777.
Pittel, Boris Gershon (Pittel~, Boris

Gersonoviq), 428.
Pitteway, Michael Lloyd Victor, 177.
Pitts, Walter Harry, Jr., 75.
Pixel algebra, 172.
Pixel patterns, 136, 185.
Pixels, 24, 31, 171–180, 196–200.

gray, 191, 199.
Plain changes, 322–325, 335, 341,

343, 345–346, 351, 364, 447, 491,
498, 719–720.

Planar graphs, 14, 15, 17, 24, 39, 44,
233, 521, 527.

Planar Langford pairings, 36.
plane lisa graphs, 24, 31.
plane miles graphs, 24, 31.
PLAs, 53.
Plass, Michael Frederick, 87.
Plastic constant (χ), 125, 236, 623, 641.
Plato = Aristocles, son of Ariston

(Pl�twn = >Aristokl¨c >ArÐstwnoc), 440.
Playing cards, 3–4, 389, 440.
Pleasants, Peter Arthur Barry, 766.
Pleszczyński, Stefan, 717.

Plover, Corey Michael, 114, 572.
Poetry, 436–437, 494, 505, 520.

meters for, 487–490, 492, 500–503,
508, 512–513.

rhyme schemes, 505, 513.
Pohl, Ira Sheldon, 3.
Poincaré, Jules Henri, 514.
Poinsot, Louis, 389, 512, 745.
Poirot, Hercule, 18–19, 816.
Poisson, Siméon Denis, 751.

distribution, 427, 434.
summation formula, 397, 410.

Polignac, Camille Armand Jules Marie
de, 15.

Polish prefix notation, 63, 472, 511.
Pollák, György, 687.
Pólya, György (= George), xiii, 18,

586, 748, 758.
Polyhedra, 372, 387, 475.
Polyhedral combinatorics, vii.
Polynomial ideal, 388.
Polynomials, see Integer multilinear

representation, Interpolating
polynomials, Multilinear representation
of a Boolean function, Reliability
polynomials.

computed from BDDs, 211–212, 260.
represented by ZDDs, 278.

Polynomials modulo 2, 183, 189, 675.
multiplication of, 202.
remainders of, 183, 189, 199–200.

Polynomials modulo 5, 192.
Polynomials modulo a prime, 260.
Polyominoes, 252, 274.
Polyphase sorting, 488.
Pomerance, Carl Bernard, 777.
Pool of available memory, 220.
Population count, 143, see Sideways sum.
Portability, 139–140.
Portable programs, 22.
Positive Boolean functions, 55, 537, see

Monotone Boolean functions.
Positive normal form, see Multilinear

representation of a Boolean function.
Positive semidefinite matrices, 805–806.
Positive threshold functions, 75–76, 92.
Posner, Edward Charles, 519.
Possibility, in 3-valued logic, 195.
Post, Emil Leon, 63, 68, 546.
Post, Ian Thomas, 674.
Postal codes, 15, 40, 276.
Postmultiplication, 327.
Postorder of nodes, 381, 441, 444, 447,

448, 471, 781, 782, 786.
Postpreorder of nodes, 469–471, 483.
Pournader, Roozbeh (��nÏ�Ø) Öp�×�), 618.
Power set (℘), 275, 660–662, 666, 669.
Powers of 2, division by, 135–136.

multiplication by, 135, 588.
partitions into, 414.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 869

Powers of a graph, 470, 484.
Prākr.ta Paiṅgala (þAk� t p{½l), 488, 512.
Pratt, Vaughan Ronald, 125, 186, 190,

593, 596, 601, 615.
Precedence of operators, 51.
Preferential arrangements, see Weak

orderings.
Prefix problem, 127–128, 132.
Prefixes of strings, 132, 305.
Premultiplication, 327, 329–330, 332, 719.
Preorder degree sequence, 472.
Preorder of nodes, 165–167, 329, 332,

361, 381, 441, 444, 448–449, 461,
462, 471–475, 478, 480, 511, 731,
748, 781, 786, 787, 804.

Preparata, Franco Paolo, 561, 567.
Prepostorder of nodes, 469–471,

483–484, 680.
Preprime strings, 306–308, 317.
Prestet, Jean, 502, 513.
Presume, Livingstone Irving, 187.
Prime clauses, 54, 81, 95, 129, 277.
Prime forms, 54, 64, 71, 81.
Prime graphs, 28.
Prime implicants of Boolean functions, 54,

64, 71, 81–84, 89, 94, 95, 129, 195,
258, 277–278, 577, 581.

monotone, 255–256, 631–632,
653–654, 674.

of a majority function, 92, 553.
Prime-number function, 110, 129.
Prime numbers, 137, 186.
Prime strings, 305–308, 317.

factorization into, 317, 700.
Primitive polynomials modulo 2, 626–627.
Primitive polynomials modulo p, 303, 683.
Primitive strings: Not a power of shorter

strings, 204.
Principal subforests, 300–301.
Prins, Geert Caleb Ernst, 509.
Printing machines, 171.
Priority encoders, 127.
Priority queues, 167.
Pritchard, Paul Andrew, 587.
Probability distribution functions, 400,

428, 434, 438.
Prodinger, Helmut, 589, 770, 796, 798.
Product of binary numbers, 228–229,

247–249, 271–272, 278.
Products of digraphs and multigraphs,

42, 526.
Products of graphs, 27–28, 42–44, 483, 526.
Product-of-sums expression, see Conjunctive

normal form.
Profile (b0, . . . , bn) of a function, 233–236,

240, 262, 263, 266, 271, 279, 629,
631, 663.

Program counter, 158.
Programmable logic arrays, 53.

Programming languages, 58.
Projection functions (xk), 49, 63, 80, 141,

265, 272, 274, 534–535, 550.
Projections in a median algebra, 67, 69.
Projective planes, finite, 518, 529, 581.
Prokop, Harald, 142, 187.
Prolog language, 57.
Prömel, Hans Jürgen, 718.
Proper prefixes or suffixes, 305.
Proportional graphs, 46.
Proskurowski, Andrzej, 446, 477.
Prosody, 487, see Poetry, meters for.
Proteins, 511.
Proteus verses, 501, 502, 512.
Provan, John Scott, 541.
Pruesse, Gara, 718.
Prune-and-graft algorithm, 449, 473.
Pseudo-complement in a lattice, 789.
Pseudorandom numbers, 12, 25, 96, 317.
Ptolemy, Claudius, of Alexandria

(PtolemaØoc KlaÔdioc å >Alexandrinìc),
501.

Pudlák, Pavel, 763.
Pulse code modulation, 284.
Pun resisted, 62, 470.
Pure alphametics, 325, 346–347, 432.
Pure majority functions, 76, 93, 550.
Purkiss, Henry John, 308.
PUSHJ (push registers and jump), 716.
Pushkin, Alexander Sergeevich (Puxkin�,

Aleksandr� Serg+eviq�), 437.
Puteanus, Erycius (= de Putte, Eerrijk),

500–502, 512, 814–815.
Puttenham, George and/or Richard,

504–505, 513.
Putzolu, Gianfranco Raimondo, 541.
Puzzles, xiv, 1, 3–4, 7–9, 15, 316, 515, 521,

617, 680, 694, see also Alphametics,
Chinese ring puzzle, Pan-digital puzzles.

Pyramids, tetrahedral, 89.
Pyrrhics, 489–490, 501, 512.

q-ballot numbers, 476–477.
q-Catalan numbers, 476–477.
q-multinomial coefficients, 384.
q-nomial coefficients, 369, 384, 403,

726, 735, 769, 793.
q-nomial theorem, 749, 753.
q-Stirling numbers, 436, 765.
Q(f) (the QDD size of f), 235, 248,

272, 627.
QDD: A quasi-BDD, 234.
Quadratic forms, 177–179, 198–199.
Quadtrees, 597.
Quantified formulas, 87, 123–124, 230–232,

264–265, 579, 585, 601, 651.
Quasi-BDDs, 234–235, 248, 268, 627,

638, 642, 676, 677.
Quasi-Gray codes, 469–471.

From the Library of Melissa Nuno



ptg999

870 INDEX AND GLOSSARY

Quasi-profile (q0, . . . , qn) of a function,
235, 237, 240, 250, 262, 266, 268,
271, 629, 659.

Quaternary n-tuples, 309, 688.
Quaternions and octonions, 312.
Queen graphs (Qn), 26, 44, 277, 604.
Queen moves on a chessboard, 26, 44, 277.
Queues, 543, 717.
Quick, Jonathan Horatio, 81, 185,

190, 265, 543.
Quilt, 136.
Quine, Willard Van Orman, 54, 55, 82, 539.
Quorums, 88.
Quotient operation on families of sets

(f/g), 273.

R&D method, 305, 317.
r-closed graphs, 133.
r-families of edges, 133.
r-uniform hypergraphs, 32–33, 44.
Rabbinic script, 490.
Rabin, Michael Oser (OIAX XFER L@KIN), 596.
Rademacher, Hans, 288, 398, 399, 410, 411.

functions, 288, 312, 386, 684, 685.
Radix −2, see Negabinary number system.
Radix-2 number systems, historic,

487, 490, 499.
Radix-3 number system, historic, 487.
Radix conversion, 192.
Radix exchange sort, 603.
Radix sorting, 430–431, 677.
Radó, Richard, 389, 555.
Radoičić, Radoš, 713.
Rafaiani, Luigi, 841.
RainBones puzzle, 515.
RAM (random-access machine), 158–159,

194, 602.
Raman, Rajeev, 597.
raman graphs, 24, 531.
Ramanujan Iyengar, Srinivasa

(ÿ��W��W�WÈ{h I�axWm),
graphs, 24, 398, 399, 410, 411,
531, 750, 751.

Ramesh, Hariharan (�U�q ����h),
804.

Ramras, Mark Bernard, 688.
Ramshaw, Lyle Harold, 153.
Randall, Keith Harold, 142, 187.
Random binary tree, 454–457, 478, 485.
Random bit generation, 653.
Random Boolean functions, 56, 83, 541.
Random forests, 453–454, 478.
random graph graphs, 25, 41.
Random graphs, 25, 41, 46.
Random number generation, 12, 25, 96, 317.
Random oriented trees, 481.
Random partitions, 400–402.

generating, 411.
Random Schröder trees, 798–799.

Random set partitions, 426–428.
generating, 428.

Random solutions to Boolean equations,
206, 208–209, 233.

Random walks, 45.
Randomization, 118, 130.
Randomized data structures, 590.
Randomness, true, 516.
Randrianarivony, Arthur, 655.
Raney, George Neal, 478.
Range, Niko, 647.
Range checking, 192.
Range minimum query problem, 196, 832.
Rank of a binary matrix, 200, 279.
Rankin, Robert Alexander, 338, 351, 714.
Ranking, 487–488, 500, 512.

combinations, 360, 363, 373, 383,
491, 727, 728, 735.

n-tuples, 284, 299, 315, 487–488, 512.
other combinatorial objects, 477, 479, 511.
permutations, 345, 352, 500, 717.

Rao, Calyampudi Radhakrishna
(�Gi®	a�Ô �S g�Y�G��ç£� g�k�Ò), 518.

Rapaport, Elvira Strasser, 713.
Rashed, Roshdi (= Rashid, Rushdi)

(��m� Ý���), 493, 812.
Rasters, 171, see Bitmaps.
Rational 2-adic numbers, 141, 193, 585,

see also Magic masks.
Rational arithmetic, 810.
Raviv, Josef (AIAX SQEI), 677.
Ray, Louis Charles, 172.
Raynaud-Richard, Pierre, 618.
Razborov, Alexander Alexandrovich

(Razborov, Aleksandr
Aleksandroviq), 125.

Reachability problem, 159–160, 165,
217, 803, 832.

Read, Ronald Cedric, 370, 734.
Read-once branching programs, see FBDDs.
Read-once functions, 246–247, 270, 271.

generalized, 653.
Read-once threshold functions, 654.
Reagan, Ronald Wilson, 437.
Real numbers, 91.

extended, 63.
Real roots, 439.
Rearrangeable networks, see Permutation

networks.
Reciprocal of an odd integer mod 2n, 621.
Reckhow, Robert Allen, 542.
Recorde, Robert, 827.
Recreations, 1, 3–4, 7–9, see Carroll, Dice,

Dominoes, Dudeney, Games, Puzzles.
Recurrence relations, 71, 140, 142, 143,

169, 183, 187, 199, 211, 224, 228,
246, 266, 270, 303, 380, 396, 404,
409, 537–538, 566, 567, 623, 641, 643,
651, 654, 669, 673, 681, 683, 693,

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 871

697–699, 703, 728–730, 778, 789–791,
796, 798, 809, 814.

binary, 108, 109, 126, 140, 142, 143,
187, 549, 566, 681, 699.

Recurrent states, 482.
Recursion, 364–366, 463–464.

versus iteration, 366–368, 383.
Recursion tree, 451–452.
Recursive algorithms, 147, 149, 164, 184,

225–233, 256, 264–266, 272–273,
276–277, 506–507, 511, 513, 583,
591, 595, 623, 652, 678.

Recursive coroutines, 304–305, 317, 370.
Recursive principle underlying BDDs,

225, 229.
Recursive principle underlying ZDDs,

659–661.
Recursive procedures, 70, 82, 562,

566, 764, 802.
Recursive structure, 443, 451, 781, 790.
Rédei, László, 522.
Red’kin, Nikolai Petrovich

(Red~kin, Nikola� Petroviq),
107, 122, 131, 577.

Reduced BDDs, 202–203, 225, 226, 235,
257, 259, 262, 637, 655.

Reduced median sets, 72, 91.
Reduction to a BDD, 216–218.
Redundant coordinates, 72.
Redundant implicants, 94, 538, 541.
Redundant representations, 616.
REF field, see Reference counters.
Reference counters, 227–228, 264, 268,

633, 637, 659, 661, 669–670.
Refinement, 432.
Reflected Gray codes for tuples, 299–300,

315, 382, 447, 693, 759.
decimal, 299.
m-ary, 682, 693, 695.
mixed-radix, 299–301, 321, 705, 710, 719.
ternary, 299–300, 316.

Reflection of a Boolean function, 266, 647.
Reflection of a forest, 448–449, 471–472,

476, 483.
Reflection of bits, 144–145, 157, 159, 187,

188, 308, 311, 592, 608, 675.
Registers, 101–103, 126.
Regular Boolean functions, 93, 263,

271, 559.
enumeration of, 631.

Regular graphs, 14, 24–26, 33, 40–44, 483.
Regular languages, 193, 279.
Regular polygons, 168–169, 475.
Regular solids, 387.
Reingold, Edward Martin (CLEBPIIX,

MIIG OA DYN WGVI), 289, 362, 510, 534.
Reiss, Michel, 745.
Reitwiesner, George Walter, 187.
Relative complement, 460.

Relay-contact networks, 257.
Reliability polynomials, 80, 81, 84, 93, 206,

211–212, 260, 261, 267, 388, 535.
Remainder operation on families of sets

(f mod g), 273, 661, 666.
Remainders mod 2n, 136.
Remainders mod 2n−1, 143.
Remainders mod 3, 634.
Remainders of polynomials mod 2, 183,

189, 199–200.
Remmel, Jeffrey Brian, 769.
Rémond de Montmort, Pierre, 506, 513.
Removal of bits, 140.
Rémy, Jean-Luc, 456, 478, 798.
Renaming (selectively complementing)

Boolean variables, 87, 536, 543, 544.
Reordering of variables, 216, 236, 271,

279, 626.
by local transformations, 240–246,

273, 649.
optimum, 239–240, 245, 267–269, 272, 644.

Replacement functions, 265.
Replacement of variables by constants,

218, 262, 634.
Replacement of variables by functions, 263.
Replacement selection sorting, 727.
Replication of bits, 149, 190, 599.
Representation of graphs and digraphs,

19–22, 159, 194.
Representation of permutations, 189,

327, 335.
Representation of sets as integers, 143, 150,

160, 190, 194–195, 278, 585–586.
Representation of three states with two

bits, 160–163, 195.
Residue theorem, 419, 422.
Resolution principle, 539.
Restricted growth strings, 279, 416–418, 432,

766, 767, 771, 778, 786, 815.
Restricted-to operation (f ⇓ g), 635.
Restriction of a Boolean function, 218,

262, 630, 634, 653–654, see also
Subfunctions.

Restriction of a graph, 13.
Resultants, 807.
Retraction mappings and retracts, 74, 91.
Reusch, Bernd, 674.
Reversal of bits, 144–145, 157, 159, 187,

188, 308, 311, 592, 608, 675.
Reverse colex order, 326, 330, 333, 335,

344, 500, 703, 814.
Reverse lexicographic order, 494, 505,

506, 816.
Reversing a string, 319, 349, 354, 703, 705,

see also Flip operation/permutation.
Reversion of power series, 727.
Revolving-door Gray codes, 362, 383, 405,

463, 467, 468, 481, 804.
near-perfect, 365–371, 383, 446.
scheme Γst, 362–364, 370–371, 381–383.

From the Library of Melissa Nuno



ptg999

872 INDEX AND GLOSSARY

Rhyme schemes, 416, 436–437, 505, 513.
Rhythms, 488–490, 498.
Richards, Dana Scott, 316, 472, 476.
Riemann, Georg Friedrich Bernhard,

surface, 773.
Right-child/left-sibling links, 445, 472,

476, 783, 786–787.
Right complementation ( ), 49.
Right path length, 795.
Right projection ( ), 49, 63, 534–535.
Right-sibling/left-child links, 441, 445, 447,

470, 667, 678, 782, 783, 786–787, 809.
Right subcube, 310.
Right-to-left minima, 606.
Rightmost bits, 140–142, 186.
Rim representation, 394–395, 402,

408, 412, 747.
Ring sum expansion, see Multilinear

representation of a Boolean function.
Ringel, Gerhard, 315, 525.
Riordan, John, 570, 793–794.
RISC: Reduced Instruction Set Computer,

32, see also MMIX computer.
risc graphs, 31–32.
Ritchie, Alistair English, 680.
River flows, 811.
Rivest, Ronald Linn, 56, 261.
Robbins, David Peter, 771.
ROBDD: A reduced, ordered binary

decision diagram, 202.
Robertson, George Neil, 17.
Robinson, Gilbert de Beauregard, 479.
Robinson, John Alan, 539.
Robinson, John Paul, 310, 687, 690.
Robinson, Robert William, 745, 774.
Rochdale, Simon, 133.
Rodrigues, Benjamin Olinde, 456.
Rœlants van Baronaigien, Dominique,

446, 447, 791.
Roget, John Lewis, 23.
Roget, Peter Mark, 9, 23.
roget graphs, 23, 41.
Rokicki, Tomas Gerhard, 187, 590.
Roman numerals, 707, 814.
Rook moves on a chessboard, 26, 41.
Rook-neighbors, 172, 611–612.
Rook polynomials, 434–435.
Rooks, nonattacking, 434–435, 767–768.
Rookwise connected components, 24,

173–175, 198, 252, 609.
Root of a BDD, 202–204, 207, 215, 227,

280, 638, 676.
Rooted unlabeled trees, see Oriented trees.
Roots of a forest, 441.
Roots of a polynomial, 439.
Roots of unity, 384, 398, 752.
Rosa, Alexander, 516–517.
Rosary permutations, 346, 713.
Rosenbaum, Joseph, 693.

Rosenfeld, Azriel (CLTPFEX L@IXFR), 173.
Rosenkrantz, Daniel Jay, 638.
Rossin, Dominique Gilles, 805.
Rota, Gian-Carlo, 390, 557.
Rotation lattice, see Tamari lattice.
Rotation of square bitmaps, 199.
Rotations in a binary tree, 446–449, 787.
Rote, Günter (= Rothe, Günther Alfred

Heinrich), 198, 286, 801.
Rotem, Doron (MZEX OEXEC), 340, 343.
Roth, John Paul, 539.
Rothaus, Oscar Seymour, 561.
Rothe, Heinrich August, 508, 703.
Round-robin tournaments, 413.
Rounding, 165, 597, 598.

to an odd number, 134, 191, 597.
Row-echelon form, 725.
Row sums, 414.
Roy, Mohit Kumar (Ûm;iht k(m;r r;Y), 706.
Ruciński, Andrzej, 533.
Rucksack filling, 361, 381.
Rudeanu, Sergiu, 258.
Rudell, Richard Lyle, 230, 241, 243, 244,

257, 268, 635, 650.
Rüdiger, Christian Friedrich, 319.
Ruler function (ρx), x, 140, 152, 153, 157,

158, 160, 164, 165, 167, 185, 187,
188, 193, 196, 268, 286, 288, 292,
293, 585, 589, 612, 685.

decimal, 299.
factorial, 348.
summed, 607.

Run-length coordinates dk, 442, 443,
471, 477, 781, 784.

Run lengths, 295–297, 314, 688, 696.
Runlength encoding, 611–612, see also

Edges between pixels.
Runs of 0s or 1s, 549–550.
Runs of 1s, 140, 143, 154–155, 187, 193;

see also Consecutive 1s.
Ruskey, Frank, 129, 300, 301, 308, 311,

313, 339, 352, 384, 417, 433, 446, 447,
452, 454, 477, 511, 664, 696, 700, 713,
714, 717, 718, 722, 791, 802.

Rutovitz, Denis, 172.
Ruzsa, Imre Zoltán, 740–741.
Ryser, Herbert John, 37, 517, 757.

S, the letter, 180.
S-boxes, 129.
s2 (sum of binary digits), 589, see

Sideways sum.
Sm (a symmetric Boolean function), 77,

262, 272, 274, 626, 636, 642.
S≥m (a symmetric threshold function),

77, 262, 643, 659, 663–664.
Sk1,...,kt (x), 77, see Symmetric Boolean

functions.
S1S, 585.
Saccheri, Giovanni Girolamo, 168.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 873

Sachkov, Vladimir Nikolaevich (Saqkov,
Vladimir Nikolaeviq), 428.

Sachs, Horst, 525, 806, 808.
Sack, Jörg-Rüdiger Wolfgang, 797.
SADD (sideways addition), 141, 160, 587,

589, 590, 620.
Saddle point method, 398, 419–426,

437–439, 779.
Sagan, Bruce Eli, 723.
Saka, Masanobu ( ), 504.
Saks, Michael Ezra, 549.
Salzer, Herbert Ellis, 682.
Samet, Hanan (HNQ OPG), 597.
Sampson, John Laurence, 686.
Samson, Edward Walter, 536, 539.
Sanders, Daniel Preston, 17.
Sandpiles, 482, 808.
Sangiovanni-Vincentelli, Alberto Luigi, 122.
Sanity check routine, 659.
Sanskrit, 487–489, 491, 492.

numerals, 491.
Śārṅgadeva, son of Sod. haladeva (fA³�d�v,

soYld�v p� /,), 491, 500, 703, 814.
Sartena, Christian, 534.
Sasaki, Fukashi ( ), 77.
Sasao, Tsutomu ( ), 626.
SAT-counting, see Enumeration of solutions.
Satisfiability problem, 55–62, 85–87, 830.

for Horn clauses, 60, 85–86, 830.
for Krom clauses, 57, 60–62, 72, 85–86.

Saturating addition, 604.
Saturating subtraction, see Monus operation.
Sauerhoff, Martin Paul, 238, 246, 533,

635, 642, 653, 657.
Sauveur, Joseph, 516.
Savage, Carla Diane, 297–298, 308, 313, 315,

405, 510, 687, 692, 713, 720, 735.
Savage, John Edmund, 570.
Savický, Petr, 649.
Sawada, Joseph James, 700.
Sayers, Dorothy Leigh, 320.
Scaligero, Giulio (= Scaliger, Julius

Caesar), 501.
Scandalous fact, 26.
Scatter-flip operation, 595.
Scattered arithmetic, 150, 190.

addition, 150, 189.
shifting, 190.
subtraction, 190.

Scattering bits, 594.
Schaefer, Thomas Jerome, 72.
Schäffler, Theodor Heinrich Otto, 285.
Scheduling, 60–62, 86.
Schensted, Craige Eugene (= Ea Ea),

87–89, 479, 547.
Schieber, Baruch Menachem

(XAIY MGPN JEXA), 165.

Schillinger, Joseph Moiseyevich
(Xillinger, Iosif Moiseeviq),
497–498, 512.

Schläfli, Ludwig, 609.
Schmidt, Erik Meineche, 257.
Schmitt, Peter Hans, 546.
Schneider, Bernadette, 693.
Schnorr, Claus-Peter, 131.
Schooten, Frans van, the younger,

498–499, 512.
Schott, René Pierre, 798.
Schröder, Friedrich Wilhelm Karl

Ernst, 80, 535.
numbers, 479, 810.
trees, 479, 798–799.
triangle, 798–799.

Schroeppel, Richard Crabtree, 126,
158, 184, 593.

Schumacher, Heinrich Christian, 5.
Schur, Issai, 758.
Schützenberger, Marcel-Paul, 373,

699, 739, 744.
Schwarz, Karl Hermann Amandus, 169.
Schwenk, Allen John, 810.
Scoins, Hubert Ian, 461, 511.
Scope coordinates, 448, 474.
SCOPE links, 444.
Score vectors, 413.
SCRABBLE R⃝, 10.
Scutellà, Maria Grazia, 60.
Search trees, 6.
Second-order logic, 124, 585.
Second-smallest parts, 412.
Security holes, 201.
Sedgewick, Robert, 339, 510.
Seed value for pseudorandom numbers,

12, 25.
Sefer Yetzirah (DXIVI XTQ), 490.
Segmented broadcasting, see Stretching bits.
Segmented sieves, 587.
Seidel, Philipp Ludwig von, 655.
Seitz, Richard, 337.
Sekanina, Milan, 470.
Seki, Takakazu ( ), 492, 504, 512.
Selasky, Hans Petter William Sirevaag, 202.
Selection function, see J(x; f) function,

Multiplexer.
Self-avoiding walks, 254.
Self-complementary graphs, 42, 43, 533.
Self-conjugate forests, 476, 783.
Self-conjugate partitions, 408, 434, 758.
Self-converse graphs, 525.
Self-dual Boolean functions, 63, 79,

80, 92, 95.
monotone, 63–64, 70, 79, 87–89, 92–93,

133, 256, 263, 268, 546, 550, 631, 647.
threshold, 79, 92.

Self-dual forests, 476.
Self-dualization, 92.

From the Library of Melissa Nuno



ptg999

874 INDEX AND GLOSSARY

Self-loops, 13, 18, 19, 41, 462, 465, 529.
Self-organizing data structures, 549.
Self-transpose forests, 476.
Self-reference, 124, 874.
Semba, Ichiro ( ), 442, 627, 676.
Semidefinite programming, vii.
Semidistributive laws, 475.
Semilabeled trees, 432.
Semimodular lattices, 763.
Semimodular law, 474.
Separable functions, see Threshold functions.
Separated tilings, 274.
Sequences, totally useless, 432.
Sequency, 287.
Sequential algorithms, vii.
Sequential allocation, 21, 60, 220, 227, 603.
Sequential representation of BDDs,

206–207, 259, 261, 262.
Series-parallel graphs, 465–468, 481, 798.
Series-parallel switching networks, 570.
Serra, Jean Paul Frédéric, 611.
Serra, Micaela, 700.
Server locations, 91.
SET R⃝, the game, 604.
Set partitions, 279, 391, 415–440, 473,

503–505, 511, 513, 628.
conjugate of, 434.
dual of, 768.
Gray codes for, 417–418, 433.
indecomposable, 513.
noncrossing, 473, 511, 513.
order of, 763.
random, 426–428.
shadow of, 433.
universal sequences for, 440.

Set systems, see Families of sets.
Seth, Vikram (Evk} m s�W), iv, 437.
Sets, represented as integers, 143, 150, 160,

190, 194–195, 278, 585–586.
maximal proper subsets of, 190.

Sets of combinations, see Families of sets.
Seven deadly sins, 495–496.
Seven-segment display, 112–114, 129, 262.
Seymour, Paul Douglas, 17.
SGB, 9, see Stanford GraphBase.
SGB word: A word in WORDS(5757),

9–12, 275.
Sha‘ari Tzedeq (WCV IXRY), 813.
Shades of gray, 199.
Shadows, combinatorial, 372–379, 385–388.

of binary strings, 388.
of set partitions, 433.
of subcubes, 388.

Shadows of bit codes, 84.
Shakespeare (= Shakspere), William, 1, 436.
Shallit, Jeffrey Outlaw, 589, 771.
Shannon, Claude Elwood, Jr., 47, 110,

257, 560, 570.
Shao Yung ( ), 487.

Shape of a random binary tree, 454–455.
Shape of a random forest, 453–454.
Shape of a random partition, 402, 411.
Shape of a random set partition, 426–427.
Shapiro, Harold Seymour, 313.
Shared BDDs, 215, 257, see BDD base.
Shared subtrees, 203, 257.
Sheehan, John, 531.
Sheep, 8, 38.
Sheep-and-goats operation, 149–150, 190.
Sheffer, Henry Maurice, 50, 80.
Shelling a monotone Boolean function,

84–85, 537, 541, 552.
Shen, Vincent Yun-Shen ( ),

118, 120, 131.
Shi, Zhi-Jie Jerry ( ), 595.
Shields, Ian Beaumont, 735.
Shift instructions, 135, 151, 153, 184, 193.

signed, 142, 181, 585, 589.
table lookup via, 137, 155, 201, 588,

599–600, 620.
Shift register sequences, 302–308, 316–318.
Shift sets, 156–157.
Shirakawa, Isao ( ), 604.
Shmulevich, Ilya Vladimir (Xmuleviq,

Il~� Vladimiroviq), 559, 560.
Sholander, Marlow Canon, 89, 548.
Sholomov, Lev Abramovich (Xolomov,

Lev Abramoviq), 129.
Shortest normal forms, 55, 82, 83, 95, 536.
Shortest paths in a graph, viii, 12, 16,

32, 66, 89, 646, 831.
Shorthand universal cycles, see Universal

cycles of permutations.
Shrikhande, Sharadchandra Shankar

(frdc�}d f�kr �FK�X�), 5.
Shrinking an edge, 463–465, 521, 798.
Shrinking an image, 174–175, 198.
Shuffle network for routing, 188.
Sibling links, 164, 195, 381.
Sibson, Robin, 604.
SICOMP: SIAM Journal on Computing,

published by the Society for Industrial
and Applied Mathematics since 1972.

Sideways addition, 134, 143–144, 187,
194, 590, 605.

bytewise, 143, 599.
function νx, x, see Sideways sum.
in MMIX, see SADD.
summed, 187, 593.

Sideways heaps, 164–167, 195–196, 727.
Sideways sum (νx): Sum of binary digits,

x, 77, 143, 295, 374, 383, 621, 682, 725.
Siegel, Carl Ludwig, 641.
Sieling, Detlef Hermann, 216, 639, 650.
Sieve method, 760.
Sieve of Eratosthenes, 137, 186.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 875

Sifting, 243–246, 250, 251, 269, 641,
643, 644, 663.

automatic, 245, 649.
partial, 245.

Sign of a permutation, 323, 351.
Signature of an alphametic, 324.
Signed bits, representation of, 161, 187.
Signed permutations, 346, 559.
Signed right shifts, 142, 181, 585, 589.
Silver, Alfred Lindsey Leigh, 711.
Silverman, Jerry, 686, 688.
SIMD (single instruction, multiple data)

architecture, 151.
Simões Pereira, José Manuel dos

Santos, 726.
Simon, Imre, 625.
Simple digraphs, 18, 19, 40, 42, 43, 525, 526.
Simple games, 550.
Simple graphs, 29, see Graphs.
Simple paths, 253–255, 275–276.
simplex graphs, 25.
Simplexes, 372, 387.
Simplicial complexes, 387–388, 744.
Simplicial multicomplexes, 388.
Simply connected components, 175.
Simpson, James Edward, 514.
Sims, Charles Coffin, 327.

tables, 327–333, 335–336, 347–348, 812.
Singh, Parmanand (prmAn�d Es�h), 488, 499.
Single-faced functions, see Canalizing

functions.
Singleton, Robert Richmond, 523.
Singmaster, David Breyer, 515, 617.
Sink nodes, 202–203, 207, 219, 241.
⊥ , 202–208, 249, 250, 253–254, 259,

272, 273, 676–677.
more than two, 266.
⊤ , 202–209, 250, 259, 273, 676–677.

Sink vertices, 18, 62, 253, 621, 622, 626.
Six-register algorithm, 615.
Size of a BDD (B(f)), 205, 233–235.
Size of a BDD base (B(f1, . . . , fm)),

216, 229, 240.
Size of a digraph, 18.
Size of a graph, 13, 44.
Size vectors, 387, 388.
Sjöstrand, Jonas Erik, 618.
Skarbek, Władysław Kazimierz, 444, 793.
Skinny Boolean functions, 270–271, 675.
Skipping blocks of permutations, 331–334,

348, 719–720.
Sklansky, Jack, 568.
Skolem, Thoralf Albert, ix, 8, 36, 514.
Slanina, Matteo, 585.
Slates of options, 237, 266, 641.
Sleator, Daniel Dominic Kaplan, 136, 609.
Sleep, Michael Ronan, 453.
Slepian, David, 145.
Sloan, Robert Hal, 540.

Sloane, Neil James Alexander, 518, 681.
Slobodová, Anna Miklášová, 639.
Slocum, Gerald Kenneth (= Jerry), 694.
Slot in a virtual address, 263.
SLU (shift left unsigned), 137, 619.
Slutzki, Giora (IWVELQ @XEIB), 69.
Smallest element of a set, 143.
Smallest parts, 411, 412.
Smearing bits to the right, 140, 143, 589.
smile, 11, 16, 24, 39.
Smith, Derek Alan, 685.
Smith, Henry John Stephen, normal

form, 532.
Smith, John Lynn, 568.
Smith, Malcolm James, 463, 464, 467, 468.
Smith, Mark Andrew, 96.
Snir, Marc (XIPY WXN), 127, 132.
Socrates, son of Sophroniscus of

Alopece (Swkr�thc SwfronÐskou
>Alwpek¨jen), 440.

SODA: Proceedings of the ACM–SIAM
Symposia on Discrete Algorithms,
inaugurated in 1990.

Solé, Patrick, 681.
Solid lines in BDD diagrams, 202.
Solid lines in ZDD diagrams, 249.
Solitary nodes, 240–242, 648.
Solutions to Boolean equations, 206,

251, 278, 662.
average weight of, 276.
computing the generating functions for,

206, 211, 255, 260, 261, 650.
enumerating, 206–207, 251, 257, 259.
generating all, 206, 259.
lexicographically greatest, 259.
lexicographically least, 206, 257.
minimal, 255.
optimum, 206, 209–211, 251, 258,

261, 663.
random, 206, 208–209, 233.
weighted, 209–211, 259–261.

Somenzi, Fabio, 258, 626, 633–634, 639.
Sonnets, 436.
Sorcerer’s apprentice, 225.
Sorted data, 186.
Sorting, 192, 242, 586, 595, 621.

networks for, 91, 127, 189, 190, 566–567.
Soule, Stephen Parke, 599.
Source vertices, 18, 62, 253.
Space complexity, 257.
Space versus time, 220.
Spanning arborescences, 481, see Oriented

spanning trees.
Spanning cycles, see Hamiltonian cycles.
Spanning paths, see Hamiltonian paths.
Spanning subgraphs, 13, 15, 18, 39, 211.
Spanning tree function, 277.
Spanning trees, 211, 256, 260, 462–469,

481–483, 511, 832.
enumeration of, 482–483.

From the Library of Melissa Nuno



ptg999

876 INDEX AND GLOSSARY

Spark plug, 651.
Sparse Boolean functions, 251, 253.
Sparse graphs, 20, 23.
Sparse integers, 278.
Spectrum of a graph, 806, 808.
Spectrum of an irrational number, 514.
Spenser, Edmund, 436.
Sperner, Emanuel, 459.

theory, 459, 479, 744, 801.
Spheres, vii.
SpinOut puzzle, 680.
Spira, Philip Martin, 561.
Spitkovsky, Valentin Ilyich (Spitkovski�,

Valentin Il~iq), 653.
Spondees, 489–490, 501, 512.
Sprague, Roland Percival, 582.
Spread set in a torus, 376–379, 387.
Sprugnoli, Renzo, 477.
Square of a graph, 470, 484.
Square routes, 254, 276.
Square strings, 204–205.
Squarefree integers, 505.
Squaring a polynomial, 189.
Squines, 180, 198, 615.
Squire, Matthew Blaze, 696.
SR (shift right, preserving the sign),

142, 181, 587, 589.
SRU (shift right unsigned), 137, 141, 589.
Stability number α(H) of a graph or

hypergraph, 35.
Stable sets, 34, see Independent sets.
Stable sorting, 430–431, 759.
Stable states, 482.
Stachowiak, Grzegorz, 734.
Stack structures, 23, 41, 59, 220–222, 227,

429, 538–539, 543, see also AVAIL stack.
Stahnke, Wayne Lee, 303.
Stam, Aart Johannes, 428, 439.
Stamping, 636.
Standard deviation (square root of variance),

189, 533, 638, 668.
Standard fields in SGB format, 21.
Standard networks of comparators, 190.
Standard sequences, 306.
Standard sets in a torus, 376–378, 387.
Stanford Cardinal, 31.
Stanford GraphBase, iv, ix, 9–12, 20,

23–26, 31, 62, 252, 291, 312, 318,
432, 468, 569, 803.

complete guide to, iv, 32.
format for digraphs and graphs, 21–22, 41.

Stanford University, ii, iv, 457, 510.
Stanley, Richard Peter, 13, 368, 390, 393,

439, 440, 476, 499, 554, 739, 759,
761, 768, 787, 799.

lattice, 474–476.
Stanton, Dennis Warren, 749.
Stappers, Filip Jan Jos, 649.
Star graphs (K1,n), 17, 350, 522, 807.

Star transpositions, 337–338, 350,
370–371, 384.

State capitols, 254–255, 276.
Stedall, Jacqueline Anne, 505.
Stedman, Fabian, 322.

Doubles, 323.
Steele, Guy Lewis, Jr., 148, 189, 591, 594.
Steger, Angelika, 718.
Steiglitz, Kenneth, 683.
Stein, Sherman Kopald, 573.
Steiner, Jacob, 17.

trees, vii, 17.
triple systems, 8.

Steinerberger, Stefan, 605.
Stephens, Nelson Malcolm, 766.
Stevens, Brett, 314.
Stevenson, David Ian, 113, 564, 572, 574.
Stewart, Ian Nicholas, 318.
Stibitz, George Robert, 284, 286.
Still Life, 270.
Stinson, Douglas Robert, 511.
Stirling, James, 504.

approximation, 421, 423, 425, 776.
cycle numbers, 777, 824.
strings, 763–764.
subset numbers, 439, 504–505, 777, 824.
subset numbers, asymptotic value,

424–426.
subset numbers, generalized, 82, 765.

STOC: Proceedings of the ACM
Symposia on Theory of Computing,
inaugurated in 1969.

Stockmeyer, Larry Joseph, viii, 123, 124,
132, 565, 578, 592, 596.

Stockton, Fred Grant, 614.
Stojmenović, Ivan Danča (Stojmenovi�,

Ivan Danqa), 391.
Stolfi, Jorge, 616.
Stone representation, 88–89.
Storage access function, 109, see 2m-way

multiplexer.
Storage allocation, 147–148, 154, 186, 191.
Strachey, Christopher, 144.
Strahler, Arthur Newell, 811, see

Horton–Strahler numbers.
Straight insertion sorting, 522.
Straight-line computations, 830, see

Boolean chains.
Straight lines, digitizing, 198.
Strassen, Volker, 580.
Stretching bits, 190, 600.
Stringology, 204, 305–308, 317–318.
Strings, searching for special bytes

in, 152, 202.
Strong broadword chains, 193.
Strong components: Strongly connected

components, 40, 61–62, 86, 522,
545, 575.

Strong product of graphs (G × H), 28,
42–44, 276, 483, 526, 531.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 877

Strong revolving-door order, 804.
STTU (store tetra unsigned), 616.
Stufken, John, 518.
Subcubes, 54, 82–84, 129, 150, 195, 257,

265, 277, 310–311, 385, 388, 535,
541, 557, 570–571, 661.

maximal, 54–55, 82–83.
Subforests, 300–301, 316.
Subfunctions, 204–205, 214, 215, 257.
Subgraphs, 13, 17.

induced, 13, 18, 39, 42, 43, 46.
of a hypercube, 90.
spanning, 13, 15, 18, 39, 211.

Subi, Carlos Samuel, 313.
Subramani, Krishnamurthy

(�Íq~ëmg� Âj���), 546.
Subramanian, Ashok, 551.
Subset function, 239.
Subset sum, first missing, 202.
Subsets, 143, 159–160, 194–195, 281,

286, 585–586.
generating all, 150.
maximal proper, 190.

subsets graphs, 25.
Substituting an expression for a

variable, 259.
Substituting one variable for another, 261.
Substitution of constants for variables,

218, 262, 634.
Substitution of functions for variables,

259, 263.
Subtables of a truth table, 204–205,

219, 234, 235, 240, 261, 627, 629,
638, 658–659.

Subtraction, 135, 184, 191.
bytewise, 191, 599.
modulo 5, 192.
of sparse integers, 278.
saturating, see Monus operation.
scattered, 190.
unary, 192.

Subword parallelism, 151–155, 191–193.
Subwords, 12.
Sudborough, Ivan Hal, 722.
Suffix parity function, 187, 201, 594, 603.
Suffixes of strings, 132, 305.
Sum of bits, see Sideways sum.

weighted, 187.
Sum-of-products expression, Boolean, see

Disjunctive normal form.
Sum of sparse integers, 278.
Summation of binomial coefficients, 640–641.
Sums of squares, 260, 312.
Sums over all partitions, 393, 419, 772, 775.
Suparta, I Nengah, 682.
Super-root of a forest, 470, 483.
Superedge of a graph, 465–468, 798.
Supowit, Kenneth Jay, 646.
Support of a family, 659.

Surrogates, 618.
Surroundedness tree, 175, 198.
Suśruta (s� �� t), 492.
Sutcliffe, Alan, 763.
Sutherland, Norman Stuart, ix.
Sutner, Klaus, 617.
SWAC computer, 5–6.
Swap-in-place algorithm, 240–242, 268, 273.
Swapping adjacent levels, 240–246, 650.
Swapping bits, 144–147, 187–188, 619.

between variables, 581.
Swapping with the first element, 337–338,

350, 370–371, 384.
SWAR methods, 151–155, 191–193.
SWARC compiler, 597.
Sweet Boolean functions, 256, 277.
Swetz, Frank Joseph, 487.
Swift, Jonathan (= Lemuel Gulliver),

47, 620.
Swinnerton-Dyer, Henry Peter Francis, 751.
Sylow, Peter Ludvig Mejdell, 2-subgroup,

584, 592.
Sylvester, James Joseph, 312, 408,

658, 685, 750.
Symmetric Boolean functions, 77–79, 94–95,

98–99, 104–106, 108, 109, 116, 126,
131, 132, 194, 213, 219, 231, 257,
261, 262, 266, 272, 274, 278, 564, 565,
619, 626, 636, 642, 643.

partially, 95, 269, 642, 650.
Sm, 262, 272, 274, 626, 636, 642.
S≥m, 262, 643, 659, 663–664.

Symmetric difference operation (f ⊕ g), 273.
Symmetric functions, 393, 506, 536,

757, 815.
Symmetric group, 584.
Symmetric matrices, 40, 44.
Symmetric order (inorder) of nodes,

165, 441, 447, 448, 455, 476, 477,
782, 787, 788.

Symmetric polynomials, 393, 506,
536, 757, 815.

Symmetrical mean values, 414.
Symmetries, 327, see Automorphisms.

of a Boolean function, 269, 642.
of a chessboard, 650, 664, 673.
of a graph, 14–15, 39, 45, 528, 532–533.

Symmetrizing operation (a § k), 274.
Symmetry breaking, 265, 663.
Syntax, context-free, 58, 484.
Synthesis of BDDs, 218–233, 257.

breadth-first versus depth-first, 227–229.
Synthesis of Boolean functions, 96–133,

206, 261, see Boolean chains.
Synthesis of ZDDs, 251, 272, 273, 276, 677.
Szabó, József, 707.
Szegő, Gábor, xiii.
Székely, László Aladár, 763.
Szele, Tibor, 522.

From the Library of Melissa Nuno



ptg999

878 INDEX AND GLOSSARY

Szemerédi, Endre, 91.
Szily, Koloman von, 672.
Szörényi, Balázs, 540.

t-ary trees, 472, 476, 478, 790, 795.
complete, 484.
random, 478.

Table lookup, 141, 142, 596.
by shifting, 137, 155, 201, 588,

599–600, 620.
Tableau shapes, 394, 435, see Ferrers

diagrams.
Tableaux, 29–30, 43, 342–343, 476, 479,

723, 790, 800.
Tables of Boolean function statistics, 79.
Tables of numerical quantities, 818–819.

ballot numbers (Cmn), 451.
Bell numbers (ϖn), 418.
Bernoulli numbers (Bn), 820.
Catalan numbers (Cn), 450–451.
Fibonacci numbers, 820.
Genocchi numbers, 655.
harmonic numbers, 820.
oriented tree numbers, 461.
partition numbers, 396, 400, 778.
Schröder numbers, 479.

Tacquet, André, 498.
Tags, 82.
Tail coefficients, 761.
Tail recursion, 635.
Takagi, Teiji ( ), 374, 740.

function, 374–375, 386–387.
Takahasi, Hidetosi ( ), 552.
Takasu, Satoru ( ), 552.
Takenaga, Yasuhiko ( ), 647.
TAKE RISC program, 32.
Tamari, Dov (IXNZ AC), born Bernhard

Teitler, 787.
lattice, 474–475, 788, 790.

Tame configurations of Life, 269–270.
Tang, Changjie ( ), 446.
Tang, Donald Tao-Nan ( ), 362.
Tangle puzzle, see Loony Loop puzzle.
Tangled nodes, 240–242, 648.
Tannenbaum, Meyer, 556.
Target bits, 641, 650.
Tarjan, Robert Endre, 1, 62, 87, 165,

575, 607.
Tarry, Gaston, 5, 745.
Tartaglia, Niccolò Fontana, 499.
Tastes, 492.
Tatami tilings, 274.
Tautology function (⊤), 49, 542, 660.
Taylor, Brook, series, 13, 425, 773.
Taylor, Lloyd William, 285.
Tchuente, Maurice, 713.
Telephone, 285.
Television, 284.
Temperley, Harold Neville Vazeille, 402.

Templates, 220–223, 630.
Tengbergen, Cornelia van Ebbenhorst, 457.
Tensor product of graphs, see

Direct product of graphs.
Terminology, 13, 536–537.
Ternary Boolean functions, 104–105.
Ternary Boolean operations, 63, 536,

580–581.
table, 78.

Ternary n-tuples, 299, 306–307, 315,
316, 685, 690, 702.

Ternary operations, 229–230, 263–264, 272.
ANDAND, 229–230, 264, 663.
MUX, 229, 232, 264, 272, 630, 660.
OROR, 661.

Ternary strings, 382, 745.
Ternary trees, 472, 476, 487, 790, see

also t-ary trees.
Ternary tries, complete, 520.
Ternary vectors, 163.
Terquem, Olry, 389.
Teslenko, Maxim Vasilyevich (Teslenko,

Maksim Vasil~eviq), 646.
Tessellation, 168, 179, 196.
Tetrabyte or tetra: A 32-bit quantity,

139–140.
Tetragrams, 487.
Tetrahedra, 25.
Tetrahedral pyramids, 88–89.
TEX, 12, 883.
Text processing, 151–153, 191–192, 201–202.
Theobald, Thorsten, 639.
Theorem proving, 59, 539, 548.
Theory meets practice, vii, 13, 153–154.
Thimonier, Loÿs, 813.
Thin BDDs, 267, 271.
Thin ZDDs, 272.
Thinning an image, 172–173, 197.
Thomas, Herbert Christopher (= Ivo), 49.
Thomas, Robin, 17.
Thompson, Kenneth Lane, 200.
Thoreau, David Henry (= Henry

David), 96, 280.
Thorup, Mikkel, 599, 616.
Three-in-a-row function, 215, 262.
Three-register algorithm, 177–180, 198–199.
Three-state encodings, 160–163, 195.
Three-valued logic, 163, 195, 496.
Three-variable Boolean functions,

63, 104–105.
table, 78.

Threshold functions, 75–77, 79, 92–95,
213–214, 261, 262, 268, 461, 567,
653, 801.

of threshold functions, 77, 92, 553.
Thue, Axel, ix, 623.

sequence, 209–210, 260.
Tic-tac-toe, 114–117, 129–130, 269, 347, 573.
Tightly colorable graphs, 44.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 879

Tilings, 168, 179, 196, 274, 532, see also
Exact cover problems.

of the plane, 45.
Time, mixed-radix representation of, 192.
Time stamps, 636.
Time versus space, 220.
Tip of an arc, 18.
TIP(a) (final vertex of arc a), 21, 194.
Tippett, Leonard Henry Caleb, 753.
Tiring irons, 285.
Tison, Pierre Louis Joseph, 540.
Tocher, Keith Douglas, 134, 191, 597.
Toda, Iwao ( ), 552.
Todorov, Dobromir Todorov (Todorov,

Dobromir Todorov), 517.
Tokushige, Norihide ( ), 740–741.
Tolstoy, Leo Nikolaevich, (Tolsto�, Lev

Nikolaeviq), 9.
Tomlin, Mary Jean (= Lily), 60, 62, 86.
Tompkins, Charles Brown, 5–7, 337, 510.
Toolkits for BDD operations, 220,

224, 257, 677.
Toolkits for ZDD operations, 272, 273, 276,

677, see also Family algebra.
Tootill, Geoffrey Colin, 294, 679.
Top-down algorithms, 228, 257, 663, 678.
Top-down synthesis, 103–105, 126, 564.
Topological sorting, 60, 73, 85, 97, 207, 253,

342–344, 352–353, 415, 734, 762, 832.
Toppling, 482.
Topswops, 354.
Török, Éva, 733.
Torture test, 315.
Toruses, x, 28, 41, 197, 309, 318, 327, 468,

469, 483, 680, 805, 808.
directed, 41, 352, 808.
generalized, 45–46.
kingwise, 44.
n-dimensional, 374–379, 387, 599.
twisted, 350.

Tot tibi . . . , 500–503, 512–513.
Total ordering, 342.
Tóth, Zoltán, 701.
Touchard, Jacques, 765.
Tournament digraphs, 40, 413, 808.

transitive, 18, 27, 40, 41, 808.
Trace of a partition, 394, 402, 408, 749.
Trading tails, 421, 776.
Trailing zeros, 140, see Ruler function.
Transaction database, see Multifamily

of sets.
Transdichotomous methods, see Broadword

computations.
Transducers, finite-state, 128.
Transformed BDDs, 639.
Transition counts, 294, 313.
Transitive closure, 159, 165.
Transitive laws, 518.
Transitive relations, 352, 354, 416.

Transitive tournament (Kn⃗), 18, 27,
40, 41, 808.

Translation, tiling by, 45–46.
Transmogrification, 240–241, 648, 660.
Transpose of a forest, 471–472, 476.
Transpose of a tiling, 663.
Transposed allocation, 202, 588.
Transposing a 0–1 matrix, 33, 147, 188,

199, 201, 591–592.
Transposing adjacent elements, 320–325,

349, 353, 719, 720.
Transpositions: Cyclic permutations

of order 2, 476.
Transversals of a graph or hypergraph,

see Vertex covers.
Transversals of a latin square, 6–7, 37, 516.
Traveling Salesrep Problem, viii, 254–255,

276, 344, 832.
Traversal in postorder, 606, 612–613.
Traversal in preorder, 606, 612–613.
Treaps, 590.
Tree function, 424, 773.
Tree of losers, 727.
Tree representation of a series-parallel

graph, 466, 481.
Trees, 67, 81, 85, 91, 440–485, 508–511.

binary, see Binary trees.
binomial, 360–361, 381, 484, 809.
Fibonacci, 484, 485.
free, 17, 44, 67, 91, 462, 480–481, 484,

509, 577, 789, 807, 809.
Greg, 774.
Gray codes for, 446–449, 473.
lattices of, 473–476.
of partitions, 408.
of restricted growth strings, 417, 766.
oriented, 432, 461–462, 480–482,

509, 511, 774.
random, 452–457, 478, 481, 485, 798–799.
Schröder, 479, 798–799.
spanning, 211, 256, 260, 462–469,

481–483, 511, 832.
Steiner, vii, 17.
t-ary, 472, 476, 478, 790, 795.
traversal of, 469–471, 606, 612–613.

Trellis of a code, 677.
Trend-free Gray codes, 296–297, 315.
Triangle function, 133.
Triangle inequality, 16, 19.
Triangles (3-cliques), 133, 374.
Triangular grids, 25, 88, 525, 554, 787.
Triangularizing a matrix, 200, 725, 805.
Tribonacci sequence, 488, 814.
Trick, magic, 440.
Tricks versus techniques, 134, 616.

sneaky, 221.
Tries, 38–39, 202, 253, 257, 310.

traversal of, 363–364.
Trinomials, 189.
Tripartite subgraphs, maximal induced, 277.

From the Library of Melissa Nuno



ptg999

880 INDEX AND GLOSSARY

Tripartitions, 429.
Triple product identity, 396, 410.
Triple systems, 8, 32, 44.
Triple zipper function, 201, 596.
Triply linked forests, 470–471, 480,

606–607, 612, 785.
Trivalent graphs, 14, 15, 39, 531.
Trivial functions, 49, 63, 64, 565.
Trivial trees, 783.
Trochees, 489, 501.
Trominoes, 252, 274.
Tropical algebra, 625.
Trost, Ernst, 760.
Trotter, Hale Freeman, 323.
Trotter, William Thomas, 714–715.
Trowbridge, Terry Jay, 707.
TRUE, 202.
TrueType, 615.
Truth, 47, 63, 79.
Truth tables, 47, 49, 51–53, 71, 94–96,

98, 100, 102, 105, 141, 161–162, 202,
204–206, 212, 215, 219–221, 223,
233–235, 250, 257, 259, 262, 263, 278,
534, 569, 621, 646, 647, 651, 676.

extended, 241–242, 648.
fully elaborated, 212–213, 260–261, 274.
in hexadecimal notation, 105, 132, 572.
of partial functions, 114–116.
two-dimensional, 110–111, 117–121.

Tsuboi, Teiìchi ( ), 553, 554, 559.
Tsukiyama, Shuji ( ), 604.
Tukey, John Wilder, 47.
Tuliani, Jonathan Roshan, 699.
T uma, Jiří, 763.
Tuple: A sequence containing a given

number of elements, 439, 486–490, 499.
Turán, György, 540.
Turing, Alan Mathison, 134.

machines, 257, 609.
Tweedledee, 48, 79.
Twelvefold Way, 390, 407, 439, 499.
Twisted binomial trees, 484.
Twisted toruses, 350.
Two-in-a-row function, 208, 259, 263.
Two-level representations of Boolean

functions, see Conjunctive normal form,
Disjunctive normal form.

Two-line arrays, 767–768.
Two-line form of permutation, 326.
Two-variable Boolean functions, 47–50,

79–80, 259, 272, 279.
table, 49.

Two’s complement notation, 134, 158, 582.
Tyler, Douglas Blaine, 476.
Typesetting, 171, 883.

U (universal set), 276.
UCS (Universal Character Set), 201.
Uhlig, Dietmar, 131.

Ulam, Stanisław Marcin, 605.
numbers, 195.

Ultraparallel lines, 168.
Ultrasweet Boolean functions, 277.
Ulyanov, Vladimir Ilyich (Ul~�nov,

Vladimir Il~iq), 86, 365.
Umbral notation, 766, 770, 771, 779.
Unary notation (radix 1), 192.
Unary operator: A function of one variable.
Unate Boolean functions, 265, 537.
Unate cascades, 654.
Unate cube set algebra, see Family algebra.
Unbiased rounding, 191, 597.
Uncoloring, 664.
Uncompressing bits, 189.
Underflow mask, 601.
Undirected cycles, 346.
Undirected graphs as a special case of

directed graphs, 19, 830.
Undoing, 334, 719.
Uneasy nodes, 467, 481.
Unger, Stephen Herbert, 151.
Unicode, 201.
Uniform hypergraphs, 32–33, 44, 673.
Unimodal sequences, 439.
Union-find algorithm, 69, 763.
Union of graphs, 26, see also Direct

sum of graphs.
Union operation (f ∪ g), 273, see also

OR subroutine.
UNIQUE subroutine, 226–227, 648.
Unique tables, 226–229, 264.
Uniquely thin BDDs, 267.
Unit family (ϵ), 273, 658, 662, 669–670.
Unit vectors, 376, 480.
United States of America graph, 15, 34,

39–40, 210–211, 231–233, 244–246,
250, 254–255, 265, 269, 276, 277, 636,
670; see also miles graphs.

UNIVAC 1206 Military Computer, 5.
Universal algebras, 535.
Universal Character Set, 201.
Universal cycles of combinations, 389,

498, 512, 833.
Universal cycles of n-tuples, 833, see

de Bruijn cycles.
Universal cycles of permutations,

354–355, 833.
modular, 722.

Universal cycles of set partitions, 440.
Universal family (℘), 275, 660–662, 666, 669.
Universal hashing, 271.
Universal quantification (∀), 87, 230, 265.
Universal set (U), 276.
Universe, protons in the, 124.
Universities, 31.
Unlabeled free trees, 462, 480.
Unlabeled graphs, 14, 532.
Unlabeled objects, 390, 432, 774.
Unlabeled rooted trees, see Oriented trees.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 881

Unlucky nodes, 483.
Unpacking of data, 134, 136–138, 189, 594.
Unranking, 487–488, 500, 512.

combinations, 381, 383.
integer partitions, 412.
n-tuples, 283–284, 299, 308, 315,

487–488, 512.
other combinatorial objects, 452, 477, 511.
permutations, 345, 352, 491, 500, 717.
set partitions, 432.

Unrooted trees, see Free trees.
Unsigned 2-adic integers, 581.
Unsolvable problems, 545, 585.
Unusual correspondence, 762.
Up-down partitions, 414, 759.
Up-down permutations, 353.
Up-down sequences, 316.
Upper bounds on combinational complexity,

110–112, 129, see also Footprints
of a Boolean function.

Upper halfplane, 608.
Upper shadow, 372.
Uppercase letters, 191.
Urban, Genevie Hawkins, 172.
Uri, Dario, 617, 841.
Urns and balls, 390.
Useless sequences, 432.
Ushijima, Kazuo ( ), 446.
UTF-8: 8-bit UCS Transformation

Format, 201.
UTF-16: 16-bit UCS Transformation

Format, 201.
Utilities graph (K3,3), 17, 39, 42, 521.
Utility fields in SGB format, 21, 524.

V field in a decision diagram, 202–203,
216, 220–221, 226, 259, 263.

Vacillating tableau loops, 434, 815.
Vacuum-tube circuits, 104, 126.
Vakhovsky, Evgenii Borisovich (Vahovski�,

Evgeni� Borisoviq), 806.
Valency, see Degree of a vertex.
Validity function (⊤), 49.
van Baronaigien, see Rœlants van

Baronaigien.
van Ebbenhorst Tengbergen, Cornelia, 457.
van Emde Boas, Peter, 164.
van Leeuwen, Marcus Aurelius Augustinus,

ix, 750, 768.
van Nooten, Barend Adrian Anske

Johannes, 488.
van Schooten, Frans, the younger,

498–499, 512.
Van Wyk, Christopher John, 611.
van Zanten, Arend Jan, 682, 728.
Vardy, Alexander (ICXE XCPQKL@), 677.
Variance, 189, 533, 638, 668.
Variations: Permutations of combinations,

345, 348, 499, 512, 707, 709, 717.

Varol, Yaakov Leon (LEXE OE@L AWRI),
340, 343.

Vatriquant, Simon, 324.
Vázsonyi (Weiszfeld), Endre (=

Andrew), 695.
Veblen, Oswald, 176.
Vector partitions, 429–431, 439.
Vector spaces, 380, 385, 480.

binary, 677.
basis for, 200, 585, 618.

Vector-valued Boolean functions, 107, 121.
Vedic chants, 487.
Velthuis, Frans Jozef, 883.
Venice, doge of, 495.
Vergil (= Publius Vergilius Maro), 501.
Verhoeff, Tom, 734.
Veroff, Robert Louis, 548.
Vershik, Anatoly Moiseevich (Verxik,

Anatoli� Moiseeviq), 402, 754.
Vertex connectivity, 528.
Vertex covers, 34–35, 831.

minimal, 34–35, 195, 259, 276, 537,
671, 674.

minimum, 34–35, 44, 831.
Vertex degree, 14, 19, 39, 43, 44, 264,

464, 483, 529.
Vertex variables, 21, 23.
Vertices in a graph, 11, 13.
VERTICES(g) (the first vertex node), 22, 523.
Vesztergombi, Katalin, 530.
Vices, 495–496.
Vickers, Virgil Eugene, 686, 688.
Viennot, Gérard Michel François

Xavier, 811.
Vikulin, Anatoly Petrovich (Vikulin,

Anatoli� Petroviq), 557.
Vinci, Leonardo di ser Piero da, 9, 24.
Vinnicombe, Robert Ian James, 346.
Virgin, 500–501.
Virtual addresses, 263.
Virtues, 493–496, 500–501, 512.
Vishkin, Uzi Yehoshua (OIWYIE RYEDI

IFER), 165.
Visible nodes, 240–242, 648.
Visiting an object, 281, 623.
Vitale, Fabio, 167.
Viterbi, Andrew (= Andrea) James, 677.
Vo, Kiem-Phong, 800.
von Christ, Wilhelm, 490.
von Dyck, Walther Franz Anton, 510.
von Ettingshausen, Andreas, 508.
von Neumann, John (= Neumann

János Lajos = Margittai Neumann
János), 550, 622.

von Seidel, Philipp Ludwig, 655.
von Szily, Koloman, 672.
Voting, 451, 496, 801.
Vowels, 38, 275.
Vũ, Văn Hà, 556.
Vuillemin, Jean Etienne, 261, 606, 675.

From the Library of Melissa Nuno



ptg999

882 INDEX AND GLOSSARY

Wn (wheel graph with n spokes), 42,
46, 482, 526, 533.

Wada, Eiiti ( ), 587.
Wagnalls, Adam Willis, 48.
Wagner, Eric Gerhardt, 539.
Wakerly, John Francis, 574.
Walks in a graph, 19–20, 40, 45.
Wallis, John, 286, 491, 499, 502, 505,

513, 679.
Walsh, Joseph Leonard, 287, 288, 684.

functions, 287–289, 312.
transform, 288–289, 312.

Walsh, Timothy Robert Stephen, 363,
719, 720, 736.

Walter of Burley (= Burleigh = Gualterus
Burleus), 51.

Wang, Da-Lun ( ), 374, 376, 528.
Wang, Ping Yang ( , née ), 374, 376.
Wang, Shinmin Patrick ( ), 517.
Wang, Terry Min Yih ( ), 308.
Warren, Henry Stanley, Jr., 140, 143, 144,

157, 183, 184, 581, 589, 594, 598, 619.
Warren, Jon, 454.
Washburn, Seth Harwood, 680.
Watanabe, Hitoshi ( ), 511.
Watanabe, Masatoshi ( ), 883.
Watkins, John Jaeger, 531.
Watson, George Neville, 794.
Wayne, Alan, 347.
Weak orderings, 354, 509, 654, 720.
Weak second-order logic, 123–124, 132.
Weakley, William Douglas, 673.
Weber, Karl, 541.
Wegener, Ingo Werner, 124, 216, 238, 243,

246, 258, 269, 272, 533, 566, 627, 630,
635, 638, 639, 642, 644, 647, 649, 653.

Wegman, Mark N, 624.
Wegner, Gerd, 739.
Wegner, Peter (= Weiden, Puttilo

Leonovich = Ve�den, Puttilo
Leonoviq), 140, 144.

Weichsel, Paul Morris, 526.
Weight enumeration, 681.
Weighted solutions, 209–211, 259–261, 279.
Weighted sum of bits, 187.
Weinberger, Arnold, 568.
Weiner, Peter Gallegos, 118, 120, 131.
Weisner, Louis, 517.
Well-balanced Langford pairings, 2–3, 36.
Well-balanced permutations, 354.
Wells, Mark Brimhall, 510, 511, 709.
Welter, Cornelis Petrus, 585.
Wen, King of Chou ( = ),

486–487, 512.
Werchner, Ralph, 246, 653.
Wermuth, Udo Wilhelm Emil, ix.
Wernicke, August Ludwig Paul, 5.
Weste, Neil Harry Earle, 176.
Weston, Andrew, 339.

Wheatley, Henry Benjamin, 834.
Wheel graphs (Wn), 42, 46, 482, 526, 533.
Wheeler, David John, 143.
Wheels, concentric, 497.
Whipple, Francis John Welsh, 376.
White, Arthur Thomas, II, 323.
White, Dennis Edward, 769.
White pixels, 136, 172, 199.
Whitworth, William Allen, 419,

502–503, 513.
Wibold, bishop of Cambrai (= Wiboldus,

Cameracensis episcopus), 493–495, 505.
Width of a Langford pairing, 3, 515.
Wiedemann, Douglas Henry, 73, 384,

561, 696.
Wiener, Norbert, 821.
Wikipedia, 202.
Wild configurations of Life, 269.
Wilf, Herbert Saul, 338, 362, 411, 481,

510, 721, 726.
Wilkes, Maurice Vincent, 143.
Willard, Dan Edward, 154, 192.
William of Ockham (= Guilielmus ab

Occam), 51.
Williams, Aaron Michael, 355, 722–723,

734–735.
Williams, Robin McLaurim, 60, 62, 544.
Williamson, Stanley Gill, 339, 350, 718, 761.
Wilson, David Whitaker, 605.
Wilson, Richard Michael, 517.
Wilson, Robin James, 15, 42, 531.
Wilson, Wilfrid George, 323.
Winder, Robert Owen, 64, 554, 581.
Window optimization, 245–246.
Winker, Steven Karl, 686.
Winkler, Peter Mann, 297–298, 315,

687, 692, 798.
Wise, David Stephen, 597.
Witness bits, 519.
Wolf, Margarete Caroline, 815.
Wölfel (= Woelfel), Peter Philipp, 247.
Wolfram, Stephen, 618.
Wong, Chak-Kuen ( ), 149, 190, 532.
Wong, Roderick Sue-Chuen ( ), 426.
Wood, Frank Washington, 112.
Woodcock, Jennifer Roselynn, 664.
Woodrum, Luther Jay, 142, 588.
Woods, Donald Roy, 597.
Wool, Avishai (LEE IYIA@), 555.
Word cubes, 11, 39.
Word ladders, 11–12, 32.
Word problems, 68.
Word squares, 11, 38.
words graphs, 12–13, 31, 39, 42, 43.
WORDS(n), the n most common five-letter

words of English, 10–12.
Wordsize scalability, see Broadword

computations.
Working units, 80.

From the Library of Melissa Nuno



ptg999

INDEX AND GLOSSARY 883

Worm’s walk, 441, 452–454, 471, 781,
787, 797, 800.

Wraparound parity patterns, 199.
Wrapping around, 41, 299, 309, 318.
Wright, Edward Maitland, 778, 779.
WS1S, 124.
Wunderlich, Charles Marvin, 605.
Wyde: A 16-bit quantity, 139–140.
Wyman, Max, 425, 770, 772.

Xiang, Limin ( ), 446.
XL25 game, 617.
XOR (bitwise exclusive-or), 716.
XOR (bitwise exclusive-or, ⊕), 90,

134–136, 538.
identities involving, 135, 185, 187, 585.

XOR function (exclusive or, ⊕), 49–52,
77, 80, 81, 534–535, 553.

XOR gates (⊕), 32, 33, 97.
XOR subroutine, 272, 273, 633.

Y functions, 88–89, 92, 256.
Yablonsky, Sergei Vsevolodovich

(�blonski�, Serge� Vsevolodoviq),
558.

Yajima, Shuzo ( ), 627, 647, 676.
Yakubovich, Yuri Vladimirovich (�kuboviq,

�ri� Vladimiroviq), 402, 428.
Yan, Catherine Huafei ( ), 768.
Yang Hsiung ( or ), 487–488.
Yannakakis, Mihalis (Giannak�khc,

Miq�lhc), 604.
Yano, Tamaki ( ), 503, 504.
Yates, Frank, 289.
Yee, Ae Ja ( ), 750.
Yes/no quantifiers ( , ), 231, 265, 635.
Yijing, see I Ching.
Yin and yang, 486–487.
Yoshida, Mitsuyoshi ( ), 274.
Yoshigahara, Nobuyuki (= Nob)

( ), 347, 707.
Young, Alfred, tableaux, 342–343, 476,

479, 723, 790, 800.
Yücel, Melek Diker, 561.
Yuen, Chung Kwong ( ), 682.

Z order, see Zip.
z-nomial coefficients, 369, 384, 726, 735, 769.
z-nomial theorem, 749, 753.
z-profile (z0, . . . , zn) of a function, 250,

272, 275, 663.

Z-transform of a function, 272, 674.
Z(f) (the ZDD size of f), 250, 272, 278.
Zn(x; y) (bit n of xy), 247.
Zn,a(x) (middle bit of ax), 247.
Zaks, Shmuel (QWF L@ENY), 471, 472,

476, 784, 789.
Zanten, Arend Jan van, 682, 728.
ZDD: A zero-suppressed BDD, 204, 249.
Zeads, 250, 638, 658, 665–666.
Zehfuss, Johann Georg, 526.
Zeilberger, Doron (XBXALIIV OEXEC), 409, 750.
Zero-byte test, 152–153, 191.
Zero-one principle, 68, 186.
Zero-or-set instructions, 141, 142, 600.
Zero-suppressed BDDs, 249–256, 258,

272–279, 547, 677.
compared to BDDs, 250–253, 272,

273, 663–665.
family algebra for, 253, 255, 273,

275–277, 660, 673.
mixed with BDDs, 256.
profiles of, 250, 272, 275, 663.
toolkits for, 272, 273, 276, 677.

Zeta function, 396, 589, 751, 779.
Zhang, Linbo ( ), 883.
Zhao, Xishun ( ), 546.
Zhegalkin (= Gégalkine), Ivan Ivanovich

(�egalkin, Ivan Ivanoviq), 51, 535.
Zhou Wenwang, see King Wen of Chou.
Ziegler, Günter Matthias, 788.
Zigzag paths, 558.
Zijlstra, Erik, 164.
Zimmermann, Paul Vincent Marie, 594.
Zip: The zipper function (x ‡ y),

147–148, 182, 188, 189, 198, 201,
242, 588, 591, 594.

triple (three-way), 201, 596.
Zip-fastener method, 597.
Zito, Jennifer Snyder, 532.
Zoghbi, Antoine Chaiban

(Þq¯�¿m ÎnqÛ� ÎØ¤Ïc), 391.
ZSNZ (zero or set if nonzero), 142, 600.
ZSZ (zero or set if zero), 141.
Zuev, Yuri Anatol’evich

(Zuev, �ri� Anatol~eviq), 559.
ZUNIQUE subroutine, 659.
Zuse, Konrad, 570.
Zykov, Aleksander Aleksandrovich (Zykov,

Aleksandr Aleksandroviq), 26.

THIS BOOK was composed on an HP Compaq 2510p with Computer Modern typefaces, using
the TEX and METAFONT software as described in the author’s books Computers & Typesetting
(Reading, Mass.: Addison–Wesley, 1986), Volumes A–E. The illustrations were produced with
John Hobby’s METAPOST system. Some names in the index were typeset with additional
fonts developed by Yannis Haralambous (Greek, Hebrew, Arabic), Olga G. Lapko (Cyrillic),
Frans J. Velthuis (Devanagari), Masatoshi Watanabe (Japanese), and Linbo Zhang (Chinese).

From the Library of Melissa Nuno



ptg999

ASCII CHARACTERS
#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #a #b #c #d #e #f

#2x ! " # $ % & ’ ( ) * + , - . / #2x
#3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ? #3x
#4x @ A B C D E F G H I J K L M N O #4x
#5x P Q R S T U V W X Y Z [ \ ] ^ _ #5x
#6x ‘ a b c d e f g h i j k l m n o #6x
#7x p q r s t u v w x y z { | } ~ #7x

#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #a #b #c #d #e #f

MMIX OPERATION CODES
#0 #1 #2 #3 #4 #5 #6 #7

TRAP 5υ FCMP υ FUN υ FEQL υ FADD 4υ FIX 4υ FSUB 4υ FIXU 4υ
#0x #0x

FLOT[I] 4υ FLOTU[I] 4υ SFLOT[I] 4υ SFLOTU[I] 4υ

FMUL 4υ FCMPE 4υ FUNE υ FEQLE 4υ FDIV 40υ FSQRT 40υ FREM 4υ FINT 4υ
#1x #1x

MUL[I] 10υ MULU[I] 10υ DIV[I] 60υ DIVU[I] 60υ

ADD[I] υ ADDU[I] υ SUB[I] υ SUBU[I] υ
#2x #2x

2ADDU[I] υ 4ADDU[I] υ 8ADDU[I] υ 16ADDU[I] υ

CMP[I] υ CMPU[I] υ NEG[I] υ NEGU[I] υ
#3x #3x

SL[I] υ SLU[I] υ SR[I] υ SRU[I] υ

BN[B] υ+π BZ[B] υ+π BP[B] υ+π BOD[B] υ+π
#4x #4x

BNN[B] υ+π BNZ[B] υ+π BNP[B] υ+π BEV[B] υ+π

PBN[B] 3υ−π PBZ[B] 3υ−π PBP[B] 3υ−π PBOD[B] 3υ−π
#5x #5x

PBNN[B] 3υ−π PBNZ[B] 3υ−π PBNP[B] 3υ−π PBEV[B] 3υ−π

CSN[I] υ CSZ[I] υ CSP[I] υ CSOD[I] υ
#6x #6x

CSNN[I] υ CSNZ[I] υ CSNP[I] υ CSEV[I] υ

ZSN[I] υ ZSZ[I] υ ZSP[I] υ ZSOD[I] υ
#7x #7x

ZSNN[I] υ ZSNZ[I] υ ZSNP[I] υ ZSEV[I] υ

LDB[I] µ+υ LDBU[I] µ+υ LDW[I] µ+υ LDWU[I] µ+υ
#8x #8x

LDT[I] µ+υ LDTU[I] µ+υ LDO[I] µ+υ LDOU[I] µ+υ

LDSF[I] µ+υ LDHT[I] µ+υ CSWAP[I] 2µ+2υ LDUNC[I] µ+υ
#9x #9x

LDVTS[I] υ PRELD[I] υ PREGO[I] υ GO[I] 3υ

STB[I] µ+υ STBU[I] µ+υ STW[I] µ+υ STWU[I] µ+υ
#Ax #Ax

STT[I] µ+υ STTU[I] µ+υ STO[I] µ+υ STOU[I] µ+υ

STSF[I] µ+υ STHT[I] µ+υ STCO[I] µ+υ STUNC[I] µ+υ
#Bx #Bx

SYNCD[I] υ PREST[I] υ SYNCID[I] υ PUSHGO[I] 3υ

OR[I] υ ORN[I] υ NOR[I] υ XOR[I] υ
#Cx #Cx

AND[I] υ ANDN[I] υ NAND[I] υ NXOR[I] υ

BDIF[I] υ WDIF[I] υ TDIF[I] υ ODIF[I] υ
#Dx #Dx

MUX[I] υ SADD[I] υ MOR[I] υ MXOR[I] υ

SETH υ SETMH υ SETML υ SETL υ INCH υ INCMH υ INCML υ INCL υ
#Ex #Ex

ORH υ ORMH υ ORML υ ORL υ ANDNH υ ANDNMH υ ANDNML υ ANDNL υ

JMP[B] υ PUSHJ[B] υ GETA[B] υ PUT[I] υ
#Fx #Fx

POP 3υ RESUME 5υ [UN]SAVE 20µ+υ SYNC υ SWYM υ GET υ TRIP 5υ

#8 #9 #A #B #C #D #E #F

π = 2υ if the branch is taken, π = 0 if the branch is not taken

From the Library of Melissa Nuno


	Cover
	Title Page
	Copyright Page
	Preface
	NOTES ON THE EXERCISES
	Contents
	Chapter 7—Combinatorial Searching
	7.1. Zeros and Ones
	7.1.1. Boolean Basics
	7.1.2. Boolean Evaluation
	7.1.3. Bitwise Tricks and Techniques
	7.1.4. Binary Decision Diagrams

	7.2. Generating All Possibilities
	7.2.1. Generating Basic Combinatorial Patterns
	7.2.1.1. Generating all n-tuples
	7.2.1.2. Generating all permutations
	7.2.1.3. Generating all combinations
	7.2.1.4. Generating all partitions
	7.2.1.5. Generating all set partitions
	7.2.1.6. Generating all trees
	7.2.1.7. History and further references


	Answers to Exercises
	Appendix A—Tables of Numerical Quantities
	1. Fundamental Constants (decimal)
	2. Fundamental Constants (hexadecimal)
	3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers

	Appendix B—Index to Notations
	Appendix C—Index to Algorithms and Theorems
	Appendix D—Index to Combinatorial Problems
	Index and Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z


