
ptg999

From the Library of Melissa Nuno

ptg999

This page intentionally left blank

From the Library of Melissa Nuno

ptg999

THE ART OF

COMPUTER PROGRAMMING

-1

From the Library of Melissa Nuno

ptg999

DONALD E. KNUTH Stanford University

�
�� ADDISON–WESLEY

-2

From the Library of Melissa Nuno

ptg999

Volume 4B / Combinatorial Algorithms, Part 2

THE ART OF

COMPUTER PROGRAMMING

Boston · Columbus · New York · San Francisco ·Amsterdam · Cape Town
Dubai · London ·Madrid ·Milan ·Munich · Paris ·Montréal · Toronto ·Delhi ·Mexico City
São Paulo · Sydney ·Hong Kong · Seoul · Singapore · Taipei · Tokyo

-3

From the Library of Melissa Nuno

ptg999

Lyrics have been quoted on page 65 from the songs “Mississippi Mud,” written by
Harry Barris and James Cavanaugh, and “Pick Yourself Up,” written by Dorothy
Fields and Jerome Kern. Used by permission of Shapiro, Bernstein & Co, Inc.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For government sales inquiries, please contact governmentsales@pearsoned.com
For questions about sales outside the U.S., please contact intlcs@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Knuth, Donald Ervin, 1938-
The art of computer programming / Donald Ervin Knuth.
xviii,714 p. 24 cm.
Includes bibliographical references and index.
Contents: v. 1. Fundamental algorithms. -- v. 2. Seminumerical

algorithms. -- v. 3. Sorting and searching. -- v. 4a. Combinatorial
algorithms, part 1. -- v. 4b. Combinatorial algorithms, part 2.

Contents: v. 4b. Combinatorial algorithms, part 2.
ISBN 978-0-201-89683-1 (v. 1, 3rd ed.)
ISBN 978-0-201-89684-8 (v. 2, 3rd ed.)
ISBN 978-0-201-89685-5 (v. 3, 2nd ed.)
ISBN 978-0-201-03804-0 (v. 4a)
ISBN 978-0-201-03806-4 (v. 4b)
1. Electronic digital computers--Programming. 2. Computer

algorithms. I. Title.
QA76.6.K64 1997
005.1--DC21 97-2147

Internet page http://www-cs-faculty.stanford.edu/~knuth/taocp.html contains
current information about this book and related books.

See also http://www-cs-faculty.stanford.edu/~knuth/sgb.html for information
about The Stanford GraphBase, including downloadable software for dealing with
the graphs used in many of the examples.

And see http://www-cs-faculty.stanford.edu/~knuth/mmix.html for basic infor-
mation about the MMIX computer.

Copyright c© 2023 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. For information regarding permissions, request forms,
and the appropriate contacts with the Pearson Education Global Rights & Permissions
Department, please visit www.pearson.com/permissions/.
ISBN-13 978-0-201-03806-4
ISBN-10 0-201-03806-4

First printing, October 2022
First digital release, October 2022

-4

From the Library of Melissa Nuno

mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://www-cs-faculty.stanford.edu/~knuth/sgb.html
http://www-cs-faculty.stanford.edu/~knuth/mmix.html
http://www.pearson.com/permissions/

ptg999

PREFACE

Begin at the beginning, and do not allow yourself to gratify

a mere idle curiosity by dipping into the book, here and there.

This would very likely lead to your throwing it aside,

with the remark “This is much too hard for me!,”

and thus losing the chance of adding a very large item

to your stock of mental delights.

— LEWIS CARROLL, in Symbolic Logic (1896)

Combinatorial algorithms are the methods that allow us to cope with
problems that involve zillions of cases. The explosive growth in the knowledge
of such techniques has meant that several volumes are needed to describe them.
Thus my original plan to devote Volume 4 of The Art of Computer Programming

to combinatorial algorithms has morphed into a plan to prepare Volumes 4A,
4B, and so on. This book is the second of that series, a sequel to Volume 4A.

In the preface to Volume 4A I explained why I was captivated by combina-
torial algorithms soon after I fell in love with computers. “The art of writing
such programs is especially important and appealing because a single good idea
can save years or even centuries of computer time.”

Chapter 7 began in Volume 4A with a short review of graph theory and
a longer discussion of “Zeros and Ones” (Section 7.1). That volume concluded
with Section 7.2.1, “Generating Basic Combinatorial Patterns,” which was the
first part of Section 7.2, “Generating All Possibilities.” Now the story continues,
with the opening parts of Section 7.2.2, “Backtrack Programming.”

Backtracking is the name for an important body of techniques that have been
a mainstay of combinatorial algorithms since the beginning. More than a third
of this book is devoted to Section 7.2.2.1, which explores data structures whose
links perform delightful dances. Such structures are ideally suited to backtrack
programming in general, and to the “exact cover problem” (XC) in particular.
The XC problem, also known as “set partitioning,” essentially asks for all ways
to cover a set of items, by choosing appropriate subsets of items called options.
Dozens of important applications turn out to be special cases of XC, and the
method of choice for such problems is often to use dancing links.

While writing this material I learned to my surprise that an apparently
innocuous extension of the classical XC problem leads to an enormous increase
in the number of significant special cases. This extended problem, called XCC

(for “exact covering with colors”), allows some of the items to receive various
colors. Colored items are allowed to be covered by many different options, as
long as the colors are compatible.

v

-5

From the Library of Melissa Nuno

ptg999

vi PREFACE

Spoiler alert: With dancing links, we can solve XCC problems almost as
easily as XC problems! Therefore I believe that the study of XCC solvers, now
in its infancy, is destined to become quite important, and I’ve done my best to
introduce the subject here. There also are related methods for an even more
general class of problems called MCC (“multiple covering with colors”), and for
finding XCC solutions of minimum cost.

If you turn to a random page of Section 7.2.2.1, chances are good that you’ll
find some sort of puzzle being discussed. The reason is that puzzles are by far
the best means I know to illustrate the algorithms and techniques that are being
introduced here. The point of a puzzle is easily grasped; and the fact that an
extraordinary number of quite different puzzles all turn out to be special cases of
XCC andMCC is significant in itself. Indeed, it becomes clear that the same ideas
will solve many complex and harder-to-explain problems of the “real world.”

The new tools provided by dancing links allow me to emphasize the process
of creating new puzzles, rather than simply to explain how to resolve puzzles
that have already been posed. I’ve also tried my best to discuss the history
of each puzzle type, and to give credit to the brilliant innovators who created
them. As a result, I’m pleased that this book now contains, as a side-product of
my attempts to teach computer methods, a treasure trove of information about
recreational mathematics— from popular classics like edge-matching puzzles, or
queen placement, or polyominoes, or the Soma cube, or rectangle dissections,
or intriguing patterns of interlocking words, to more recent crazes like sudoku,
slitherlink, masyu, and hitori.

I’ve had loads of fun writing other parts of these volumes, but without
doubt Section 7.2.2.1 has been the funnest. And I know that my delight in good
puzzles is shared by a significant number of leading computer scientists and
mathematicians, who have told me that they chose their careers after having
been inspired by such intellectual challenges.

Knuth likes to include in those books [The Art of Computer Programming]

as much recreational material as he can cram in.

— MARTIN GARDNER, Undiluted Hocus-Pocus (2013)

The second half of this book is devoted to Section 7.2.2.2, “Satisfiability,”
which addresses one of the most fundamental problems in all of computer science:
Given a Boolean function, can its variables be set to at least one pattern of 0s
and 1s that will make the function true? This problem arises so often, people
have given it a nickname, ‘SAT’.

Satisfiability might seem like an abstract exercise in understanding formal
systems, but the truth is far different: Revolutionary methods for solving SAT

problems emerged at the beginning of the twenty-first century, and they’ve led to
game-changing applications in industry. These so-called “SAT solvers” can now
routinely find solutions to practical problems that involve millions of variables
and were thought until very recently to be hopelessly difficult.

Satisfiability is important chiefly because Boolean algebra is so versatile.
Almost any problem can be formulated in terms of basic logical operations, and

-6

From the Library of Melissa Nuno

ptg999

PREFACE vii

the formulation is particularly simple in a great many cases. Section 7.2.2.2
therefore begins with ten typical examples of widely different applications, and
closes with detailed empirical results for a hundred different benchmarks. The
great variety of these problems—all of which are special cases of SAT—is
illustrated on pages 300 and 301 (which are my favorite pages in this book).

The story of satisfiability is the tale of a triumph of software engineering,
blended with rich doses of beautiful mathematics. Section 7.2.2.2 explains how
such a miracle occurred, by presenting complete details of seven SAT solvers,
ranging from the small-footprint methods of Algorithms A and B to the indus-
trial strength, state-of-the-art methods of Algorithms W, L, and C. (Well I
have to hedge a little: New techniques are continually being discovered; hence
SAT technology is ever-growing and the story is ongoing. But I do think that
Algorithms W, L, and C compare reasonably well with the best algorithms of
their class that were known in 2010. They’re no longer at the cutting edge, but
they still are amazingly good.)

Wow—Sections 7.2.2.1 and 7.2.2.2 have turned out to be the longest sec-
tions, by far, in The Art of Computer Programming—especially Section 7.2.2.2.
The SAT problem is evidently a killer app, because it is key to the solution of so
many other problems. Consequently I can only hope that my lengthy treatment
does not also kill off my faithful readers! As I wrote this material, one topic
always seemed to flow naturally into another, so there was no neat way to break
either section up into separate subsections. (And anyway the format of TAOCP
doesn’t allow for a Section 7.2.2.1.3 or a Section 7.2.2.2.6.)

I’ve tried to ameliorate the reader’s navigation problem by adding sub-
headings at the top of each right-hand page. Furthermore, as always, the exer-
cises appear in an order that roughly parallels the order in which corresponding
topics are taken up in the text. Numerous cross-references are provided between
text, exercises, and illustrations, so that you have a fairly good chance of keeping
in sync. I’ve also tried to make the index as comprehensive as possible.

Look, for example, at a “random” page—say page 264, which is part of the
subsection about Monte Carlo algorithms. On that page you’ll see that exercises
302, 303, 299, and 306 are mentioned. So you can guess that the main exercises
about Monte Carlo algorithms are numbered in the early 300s. (Indeed, exer-
cise 306 deals with the important special case of “Las Vegas algorithms”; and the
next exercises explore a fascinating concept called “reluctant doubling.”) This
entire book is full of surprises and tie-ins to other aspects of computer science.

As in previous volumes, sections and subsections of the text are occasion-
ally preceded by an asterisk (∗), meaning that the topics discussed there are
“advanced” and skippable on a first reading.

You might think that a 700-page book has probably been padded with
peripheral material. But I constantly had to “cut, cut, cut” while writing it,
because a great deal more is known! I found that new and potentially interesting-
yet-unexplored topics kept popping up, more than enough to fill a lifetime; yet
I knew that I must move on. So I hope that I’ve selected for treatment here a
significant fraction of the concepts that will be the most important as time passes.

-7

From the Library of Melissa Nuno

ptg999

viii PREFACE

Every week I’ve been coming across fascinating new things

that simply cry out to be part of The Art.

— DONALD E. KNUTH (2008)

Most of this book is self-contained, although there are frequent tie-ins with
the topics discussed in previous volumes. Low-level details of machine language
programming have already been covered extensively; so the algorithms in the
present book are usually specified only at an abstract level, independent of
any machine. However, some aspects of combinatorial programming are heavily
dependent on low-level details that didn’t arise before; in such cases, all examples
in this book are based on the MMIX computer, which supersedes the MIX machine
that was defined in early editions of Volume 1. Details about MMIX appear in a
paperback supplement to that volume called The Art of Computer Programming,
Volume 1, Fascicle 1, containing Sections 1.3.1́ , 1.3.2́ , etc.; they’re also available
on the Internet, together with downloadable assemblers and simulators.

Another downloadable resource, a collection of programs and data calledThe
Stanford GraphBase, is cited extensively in the examples of this book. Readers
are encouraged to play with it, in order to learn about combinatorial algorithms
in what I think will be the most efficient and most enjoyable way.

I wrote nearly a thousand computer programs while preparing this material,
because I find that I don’t understand things unless I try to program them. Most
of those programs were quite short, of course; but several of them are rather
substantial, and possibly of interest to others. Therefore I’ve made a selection
available by listing some of them on the following webpage:

http://www-cs-faculty.stanford.edu/~knuth/programs.html

In particular you can download the programs DLX1, DLX2, DLX3, DLX5, DLX6,
and DLX-PRE, which are the experimental versions of Algorithms X, C, M, C$,
Z, and P, respectively, that were my constant companions while writing Section
7.2.2.1. Similarly, SAT0, SAT0W, SAT8, SAT9, SAT10, SAT11, SAT11K, SAT13
are the equivalents of Algorithms A, B, W, S, D, L, L′, C, respectively, in Section
7.2.2.2. Such programs will be useful for solving many of the exercises, if you
don’t have access to other XCC solvers or SAT solvers. You can also download
SATexamples.tgz from that page; it’s a collection of programs that generate data
for all 100 of the benchmark examples discussed in the text, and many more.

Several exercises involve the lists of English words that I’ve used in preparing
examples. You’ll need the data from

http://www-cs-faculty.stanford.edu/~knuth/wordlists.tgz

if you have the courage to work the exercises that use such lists.

Special Note: During the years that I’ve been preparing Volume 4, I’ve
often run across basic techniques of probability theory that I would have put
into Section 1.2 of Volume 1 if I’d been clairvoyant enough to anticipate them in
the 1960s. Finally I realized that I ought to collect most of them together in one
place, because the story of those developments is too interesting to be broken up
into little pieces scattered here and there.

-8

From the Library of Melissa Nuno

http://www-cs-faculty.stanford.edu/~knuth/programs.html
http://www-cs-faculty.stanford.edu/~knuth/wordlists.tgz

ptg999

PREFACE ix

Therefore this book begins with a special tutorial and review of probability
theory, in an unnumbered section entitled “Mathematical Preliminaries Redux.”
References to its equations and exercises use the abbreviation ‘MPR’. (Think of
the word “improvement.”)

Incidentally, just after the special MPR section, Section 7.2.2 begins inten-
tionally on a left-hand page; and its illustrations are numbered beginning with
Fig. 68. The reason is that Section 7.2.1 ended in Volume 4A on a right-hand
page, and its final illustration was Fig. 67. My editor has decided to treat Chap-
ter 7 as a single unit, even though it is being split into several physical volumes.

Special thanks are due to Nikolai Beluhov, Armin Biere, Niklas Eén, Mar-
ijn Heule, Holger Hoos, Wei-Hwa Huang, Svante Janson, Ernst Schulte-Geers,
George Sicherman, Filip Stappers, and Udo Wermuth, for their detailed com-
ments on my early attempts at exposition, as well as to dozens and dozens of
other correspondents who have contributed crucial corrections. My editor at
Addison–Wesley, Mark Taub, has expertly shepherded this series of books into
the 21st century; and Julie Nahil, as senior content producer, has meticulously
ensured that the highest publication standards have continued to be maintained.
Thanks also to Tomas Rokicki for keeping my Dell workstation in shipshape
order, as well as to Stanford’s InfoLab for providing extra computer power when
that machine had reached its limits.

I happily offer a “finder’s fee” of $2.56 for each error in this book when it is
first reported to me, whether that error be typographical, technical, or historical.
The same reward holds for items that I forgot to put in the index. And valuable
suggestions for improvements to the text are worth 32/c each. (Furthermore, if
you find a better solution to an exercise, I’ll actually do my best to give you
immortal glory, by publishing your name in subsequent printings:−)

Happy reading!

Stanford, California D. E. K.
June 2022

A note on references. Several oft-cited journals and conference proceedings
have special code names, which appear in the Index and Glossary at the close
of this book. But the various kinds of IEEE Transactions are cited by including
a letter code for the type of transactions, in boldface preceding the volume
number. For example, ‘IEEE Trans. C-35’ means the IEEE Transactions on

Computers, volume 35. The IEEE no longer uses these convenient letter codes,
but the codes aren’t too hard to decipher: ‘EC’ once stood for “Electronic
Computers,” ‘IT’ for “Information Theory,” ‘PAMI’ for “Pattern Analysis and
Machine Intelligence,” and ‘SE’ for “Software Engineering,” etc.; ‘CAD’ meant
“Computer-Aided Design of Integrated Circuits and Systems.”

A cross-reference such as ‘exercise 7.10–00’ points to a future exercise in
Section 7.10 whose number is not yet known.

-9

From the Library of Melissa Nuno

ptg999

x PREFACE

A note on notations. Simple and intuitive conventions for the algebraic rep-
resentation of mathematical concepts have always been a boon to progress, espe-
cially when most of the world’s researchers share a common symbolic language.
The current state of affairs in combinatorial mathematics is unfortunately a bit
of a mess in this regard, because the same symbols are occasionally used with
completely different meanings by different groups of people; some specialists who
work in comparatively narrow subfields have unintentionally spawned conflicting
symbolisms. Computer science—which interacts with large swaths of math-
ematics—needs to steer clear of this danger by adopting internally consistent
notations whenever possible. Therefore I’ve often had to choose among a number
of competing schemes, knowing that it will be impossible to please everyone.
I have tried my best to come up with notations that I believe will be best for the
future, often after many years of experimentation and discussion with colleagues,
often flip-flopping between alternatives until finding something that works well.
Usually it has been possible to find convenient conventions that other people
have not already coopted in contradictory ways.

Appendix B is a comprehensive index to all of the principal notations that
are used in the present book, inevitably including several that are not (yet?)
standard. If you run across a formula that looks weird and/or incomprehensible,
chances are fairly good that Appendix B will direct you to a page where my
intentions are clarified. But I might as well list here a few instances that you
might wish to watch for when you read this book for the first time:

• Hexadecimal constants are preceded by a number sign or hash mark. For
example, #123 means (123)16.

• The “monus” operation x
.− y, sometimes called dot-minus or saturating

subtraction, yields max(0, x− y).

• The median of three numbers {x, y, z} is denoted by 〈xyz〉.

• The “two dots” notations (x . . y), (x . . y], [x . . y), and [x . . y] are used to
denote intervals.

• A set such as {x}, which consists of a single element, is often denoted simply
by x in contexts such as X ∪ x or X \ x.

• If n is a nonnegative integer, the number of 1-bits in n’s binary representation
is νn. Furthermore, if n > 0, the leftmost and rightmost 1-bits of n are
respectively 2λn and 2ρn. For example, ν10 = 2, λ10 = 3, ρ10 = 1.

• The Cartesian product of graphs G andH is denoted by G H. For example,
Cm Cn denotes an m× n torus, because Cn denotes a cycle of n vertices.

-10

From the Library of Melissa Nuno

ptg999

NOTES ON THE EXERCISES

The exercises in this set of books have been designed for self-study as well
as for classroom study. It is difficult, if not impossible, for anyone to learn a
subject purely by reading about it, without applying the information to specific
problems and thereby being encouraged to think about what has been read.
Furthermore, we all learn best the things that we have discovered for ourselves.
Therefore the exercises form a major part of this work; a definite attempt has
been made to keep them as informative as possible and to select problems that
are enjoyable as well as instructive.

In many books, easy exercises are found mixed randomly among extremely
difficult ones. A motley mixture is, however, often unfortunate because readers
like to know in advance how long a problem ought to take—otherwise they
may just skip over all the problems. A classic example of such a situation is
the book Dynamic Programming by Richard Bellman; this is an important,
pioneering work in which a group of problems is collected together at the end
of some chapters under the heading “Exercises and Research Problems,” with
extremely trivial questions appearing in the midst of deep, unsolved problems.
It is rumored that someone once asked Dr. Bellman how to tell the exercises
apart from the research problems, and he replied, “If you can solve it, it is an
exercise; otherwise it’s a research problem.”

Good arguments can be made for including both research problems and
very easy exercises in a book of this kind; therefore, to save the reader from
the possible dilemma of determining which are which, rating numbers have been
provided to indicate the level of difficulty. These numbers have the following
general significance:

Rating Interpretation

00 An extremely easy exercise that can be answered immediately if the
material of the text has been understood; such an exercise can almost
always be worked “in your head,” unless you’re multitasking.

10 A simple problem that makes you think over the material just read, but
is by no means difficult. You should be able to do this in one minute at
most; pencil and paper may be useful in obtaining the solution.

20 An average problem that tests basic understanding of the text mate-
rial, but you may need about fifteen or twenty minutes to answer it
completely. Maybe even twenty-five.

xi

-11

From the Library of Melissa Nuno

ptg999

xii NOTES ON THE EXERCISES

30 A problem of moderate difficulty and/or complexity; this one may
involve more than two hours’ work to solve satisfactorily, or even more
if the TV is on.

40 Quite a difficult or lengthy problem that would be suitable for a term
project in classroom situations. A student should be able to solve the
problem in a reasonable amount of time, but the solution is not trivial.

50 A research problem that has not yet been solved satisfactorily, as far
as the author knew at the time of writing, although many people have
tried. If you have found an answer to such a problem, you ought to
write it up for publication; furthermore, the author of this book would
appreciate hearing about the solution as soon as possible (provided that
it is correct).

By interpolation in this “logarithmic” scale, the significance of other rating
numbers becomes clear. For example, a rating of 17 would indicate an exercise
that is a bit simpler than average. Problems with a rating of 50 that are subse-
quently solved by some reader may appear with a 40 rating in later editions of
the book, and in the errata posted on the Internet (see page iv).

The remainder of the rating number divided by 5 indicates the amount of
detailed work required. Thus, an exercise rated 24 may take longer to solve
than an exercise that is rated 25, but the latter will require more creativity. All
exercises with ratings of 46 or more are open problems for future research, rated
according to the number of different attacks that they’ve resisted so far.

The author has tried earnestly to assign accurate rating numbers, but it is
difficult for the person who makes up a problem to know just how formidable it
will be for someone else to find a solution; and everyone has more aptitude for
certain types of problems than for others. It is hoped that the rating numbers
represent a good guess at the level of difficulty, but they should be taken as
general guidelines, not as absolute indicators.

This book has been written for readers with varying degrees of mathematical
training and sophistication; as a result, some of the exercises are intended only for
the use of more mathematically inclined readers. The rating is preceded by an M

if the exercise involves mathematical concepts or motivation to a greater extent
than necessary for someone who is primarily interested only in programming
the algorithms themselves. An exercise is marked with the letters “HM ” if its
solution necessarily involves a knowledge of calculus or other higher mathematics
not developed in this book. An “HM ” designation does not necessarily imply
difficulty.

Some exercises are preceded by an arrowhead, “�”; this designates prob-
lems that are especially instructive and especially recommended. Of course, no
reader/student is expected to work all of the exercises, so those that seem to
be the most valuable have been singled out. (This distinction is not meant to
detract from the other exercises!) Each reader should at least make an attempt
to solve all of the problems whose rating is 10 or less; and the arrows may help
to indicate which of the problems with a higher rating should be given priority.

-12

From the Library of Melissa Nuno

ptg999

NOTES ON THE EXERCISES xiii

Several sections have more than 100 exercises. How can you find your way
among so many? In general the sequence of exercises tends to follow the sequence
of ideas in the main text. Adjacent exercises build on each other, as in the
pioneering problem books of Pólya and Szegő. The final exercises of a section
often involve the section as a whole, or introduce supplementary topics.

Solutions to most of the exercises appear in the answer section. Please use
them wisely; do not turn to the answer until you have made a genuine effort to
solve the problem by yourself, or unless you absolutely do not have time to work
this particular problem. After getting your own solution or giving the problem a
decent try, you may find the answer instructive and helpful. The solution given
will often be quite short, and it will sketch the details under the assumption
that you have earnestly tried to solve it by your own means first. Sometimes the
solution gives less information than was asked; often it gives more. It is quite
possible that you may have a better answer than the one published here, or you
may have found an error in the published solution; in such a case, the author
will be pleased to know the details. Later printings of this book will give the
improved solutions together with the solver’s name where appropriate.

When working an exercise you may generally use the answers to previous
exercises, unless specifically forbidden from doing so. The rating numbers have
been assigned with this in mind; thus it is possible for exercise n + 1 to have a
lower rating than exercise n, even though it includes the result of exercise n as
a special case.

Summary of codes:

� Recommended
M Mathematically oriented
HM Requiring “higher math”

00 Immediate
10 Simple (one minute)
20 Medium (quarter hour)
30 Moderately hard
40 Term project
50 Research problem

EXERCISES

� 1. [00] What does the rating “M15 ” mean?

2. [10] Of what value can the exercises in a textbook be to the reader?

3. [HM45] Prove that every simply connected, closed 3-dimensional manifold is topo-
logically equivalent to a 3-dimensional sphere.

The men that stood for office, noted for acknowledged worth,

And for manly deeds of honour, and for honourable birth;

Train’d in exercise and art, in sacred dances and in song,

All are ousted and supplanted by a base ignoble throng.

— ARISTOPHANES, The Frogs (405 B.C.)

-13

From the Library of Melissa Nuno

ptg999

xiv NOTES ON THE EXERCISES

Here mine aduice, shall be to those Artificers that will profite in this,

or any of my bookes nowe published, or that hereafter shall be,

firste confusely to reade them thorow; then with more iudgement,

and at the thirde readinge wittely to practise. So fewe thinges shall be vnknowen.

— LEONARDE DIGGES, A Boke named Tectonicon (1556)

Now I saw, tho’ too late, the Folly of

beginning a Work before we count the Cost,

and before we judge rightly of our own Strength to go through with it.

— DANIEL DEFOE, Robinson Crusoe (1719)

-14

From the Library of Melissa Nuno

ptg999

CONTENTS

Preface . v

Notes on the Exercises . xi

Mathematical Preliminaries Redux 1

Inequalities . 3

Martingales . 6

Tail inequalities from martingales 8

Applications . 9

Statements that are almost sure, or even quite sure 11

Exercises . 12

Chapter 7—Combinatorial Searching 0

7.2. Generating All Possibilities . 0

7.2.1. Generating Basic Combinatorial Patterns 0

7.2.2. Backtrack Programming 30

Data structures . 32

Walker’s method . 33

Permutations and Langford pairs 34

Word rectangles . 36

Commafree codes . 37

Dynamic ordering of choices 38

Sequential allocation redux 39

Lists for the commafree problem 41

A general mechanism for doing and undoing 43

Backtracking through commafree codes 44

Running time estimates 46

*Estimating the number of solutions 49

Factoring the problem 52

Historical notes . 53

Exercises . 55

7.2.2.1. Dancing links 65

Exact cover problems 66

Secondary items . 70

Progress reports . 73

Sudoku . 74

Polyominoes . 79

Polycubes . 82

Factoring an exact cover problem 83

xv

-15

From the Library of Melissa Nuno

ptg999

xvi CONTENTS

Color-controlled covering 87

Introducing multiplicity 92

*A new dance step . 95

*Analysis of Algorithm X 98

*Analysis of matching problems 102

*Maintaining a decent focus 104

Exploiting local equivalence 106

*Preprocessing the options 108

Minimum-cost solutions 111

*Implementing the min-cost cutoffs 116

*Dancing with ZDDs 119

Summary . 122

Historical notes . 123

Exercises—First set 124

Exercises—Second set 156

Exercises—Third set 174

7.2.2.2. Satisfiability . 185

Example applications 188

Backtracking algorithms 211

Random clauses . 231

Resolution of clauses 238

Clause-learning algorithms 244

Monte Carlo algorithms 261

The Local Lemma 265

*Message-passing algorithms 274

*Preprocessing of clauses 279

Encoding constraints into clauses 281

Unit propagation and forcing 287

Symmetry breaking 289

Satisfiability-preserving maps 291

One hundred test cases 297

Tuning the parameters 308

Exploiting parallelism 312

History . 313

Exercises . 317

-16

From the Library of Melissa Nuno

ptg999

CONTENTS xvii

Answers to Exercises . 370

Appendix A—Tables of Numerical Quantities 656

1. Fundamental Constants (decimal) 656

2. Fundamental Constants (hexadecimal) 657

3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers . . . 658

Appendix B— Index to Notations 660

Appendix C— Index to Algorithms and Theorems 666

Appendix D— Index to Combinatorial Problems 667

Appendix E—Answers to Puzzles in the Answers 671

Index and Glossary . 674

We—or the Black Chamber—have a little agreement with [Knuth];

he doesn’t publish the real Volume 4 of The Art of Computer Programming,

and they don’t render him metabolically challenged.

— CHARLES STROSS, The Atrocity Archive (2001)

In books of this nature I can only suggest you keep it

as simple as the subject will allow.

— KODE VICIOUS (2012)

-17

From the Library of Melissa Nuno

ptg999

-18

From the Library of Melissa Nuno

ptg999

MATHEMATICAL PRELIMINARIES REDUX

Many parts of this book deal with discrete probabilities, namely with a finite or
countably infinite set Ω of atomic events ω, each of which has a given probability
Pr(ω), where

0 ≤ Pr(ω) ≤ 1 and
∑
ω∈Ω

Pr(ω) = 1. (1)

This set Ω, together with the function Pr, is called a “probability space.” For
example, Ω might be the set of all ways to shuffle a pack of 52 playing cards,
with Pr(ω) = 1/52! for every such arrangement.

An event is, intuitively, a proposition that can be either true or false with
certain probability. It might, for instance, be the statement “the top card is an
ace,” with probability 1/13. Formally, an event A is a subset of Ω, namely the
set of all atomic events for which the corresponding proposition A is true; and

Pr(A) =
∑
ω∈A

Pr(ω) =
∑
ω∈Ω

Pr(ω)[ω ∈A]. (2)

A random variable is a function that assigns a value to every atomic event.
We typically use uppercase letters for random variables, and lowercase letters
for the values that they might assume; thus, we might say that the probability
of the event X = x is Pr(X = x) =

∑
ω∈Ω Pr(ω)[X(ω)=x]. In our playing card

example, the top card T is a random variable, and we have Pr(T = Q♠) = 1/52.
(Sometimes, as here, the lowercase-letter convention is ignored.)

The random variables X1, . . . , Xk are said to be independent if

Pr(X1 = x1 and · · · and Xk = xk) = Pr(X1 = x1) . . .Pr(Xk = xk) (3)

for all (x1, . . . , xk). For example, if F and S denote the face value and suit of
the top card T , clearly F and S are independent. Hence in particular we have
Pr(T = Q♠) = Pr(F = Q) Pr(S = ♠). But T is not independent of the bottom
card, B; indeed, we have Pr(T = t and B = b) �= 1/522 for any cards t and b.

A system of n random variables is called k-wise independent if no k of
its variables are dependent. With pairwise (2-wise) independence, for example,
we could have variable X independent of Y, variable Y independent of Z, and
variable Z independent of X; yet all three variables needn’t be independent
(see exercise 6). Similarly, k-wise independence does not imply (k + 1)-wise
independence. But (k + 1)-wise independence does imply k-wise independence.

The conditional probability of an event A, given an event B, is

Pr(A | B) =
Pr(A ∩B)

Pr(B)
=

Pr(A and B)

Pr(B)
, (4)

1

1

From the Library of Melissa Nuno

ptg999

2 MATHEMATICAL PRELIMINARIES REDUX

when Pr(B) > 0, otherwise it’s Pr(A). Imagine breaking the whole space Ω into
two parts, Ω′ = B and Ω′′ = B = Ω \ B, with Pr(Ω′) = Pr(B) and Pr(Ω′′) =
1− Pr(B). If 0 < Pr(B) < 1, and if we assign new probabilities by the rules

Pr ′(ω) = Pr(ω |Ω′) =
Pr(ω)[ω ∈Ω′]

Pr(Ω′)
, Pr ′′(ω) = Pr(ω |Ω′′) =

Pr(ω)[ω∈Ω′′]

Pr(Ω′′)
,

we obtain new probability spaces Ω′ and Ω′′, allowing us to contemplate a world
where B is always true and another world where B is always false. It’s like taking
two branches in a tree, each of which has its own logic. Conditional probability is
important for the analysis of algorithms because algorithms often get into differ-
ent states where different probabilities are relevant. Notice that we always have

Pr(A) = Pr(A |B) · Pr(B) + Pr(A |B) · Pr(B). (5)

The events A1, . . . , Ak are said to be independent if the random variables
[A1], . . . , [Ak] are independent. (Bracket notation applies in the usual way to
events-as-statements, not just to events-as-subsets: [A] = 1 ifA is true, otherwise
[A] = 0.) Exercise 20 proves that this happens if and only if

Pr
(⋂
j∈J

Aj

)
=
∏
j∈J

Pr(Aj), for all J ⊆ {1, . . . , k}. (6)

In particular, events A and B are independent if and only if Pr(A|B) = Pr(A).
When the values of a random variable X are real numbers or complex

numbers, we’ve defined its expected value EX in Section 1.2.10: We said that

EX =
∑
ω∈Ω

X(ω) Pr(ω) =
∑
x

xPr(X = x), (7)

provided that this definition makes sense when the sums are taken over infinitely
many nonzero values. (The sum should be absolutely convergent.) A simple but
extremely important case arises when A is any event, and when X = [A] is a
binary random variable representing the truth of that event; then

E[A] =
∑
ω∈Ω

[A](ω) Pr(ω) =
∑
ω∈Ω

[ω ∈A] Pr(ω) =
∑
ω∈A

Pr(ω) = Pr(A). (8)

We’ve also noted that the expectation of a sum, E(X1 + · · · +Xk), always
equals the sum of the expectations, (EX1) + · · · + (EXk), whether or not the
random variablesXj are independent. Furthermore the expectation of a product,
EX1 . . .Xk, is the product of the expectations, (EX1) . . . (EXk), if those vari-
ables do happen to be independent. In Section 3.3.2 we defined the covariance,

covar(X,Y) = E
(
(X − EX)(Y − EY)

)
= (EXY)− (EX)(EY), (9)

which tends to measure the way X and Y depend on each other. The variance,
var(X), is covar(X,X); the middle formula in (9) shows why it is nonnegative
whenever the random variable X takes on only real values.

All of these notions of expected value carry over to conditional expectation,

E(X |A) =
∑
ω∈A

X(ω)
Pr(ω)

Pr(A)
=
∑
x

x
Pr(X = x and A)

Pr(A)
, (10)

2

From the Library of Melissa Nuno

ptg999

MATHEMATICAL PRELIMINARIES REDUX 3

conditioned on any event A, when we want to work in the probability space for
which A is true. (If Pr(A) = 0, we define E(X |A) = EX.) One of the most
important formulas, analogous to (5), is

EX =
∑
y

E(X | Y = y) Pr(Y = y)

=
∑
y

∑
x

xPr(X =x | Y = y) Pr(Y = y). (11)

Furthermore there’s also another important kind of conditional expectation:
When X and Y are random variables, it’s often helpful to write ‘E(X | Y)’ for
“the expectation of X given Y.” Using that notation, Eq. (11) becomes simply

EX = E
(
E(X |Y)

)
. (12)

This is a truly marvelous identity, great for hand-waving and for impressing
outsiders—except that it can be confusing until you understand what it means.

In the first place, if Y is a Boolean variable, ‘E(X | Y)’ might look as if it
means ‘E(X |Y =1)’, thus asserting that Y is true, just as ‘E(X |A)’ asserts the
truth of A in (10). No; that interpretation is wrong, quite wrong. Be warned.

In the second place, you might think of E(X |Y) as a function of Y. Well,
yes; but the best way to understand E(X |Y) is to regard it as a random variable.
That’s why we’re allowed to compute its expected value in (12).

All random variables are functions of the atomic events ω. The value of
E(X |Y) at ω is the average of X(ω′) over all events ω′ such that Y (ω′) = Y (ω):

E(X |Y)(ω) =
∑
ω′∈Ω

X(ω′) Pr(ω′)[Y (ω′)=Y (ω)]/Pr(Y = Y (ω)). (13)

Similarly, E(X |Y1, . . . , Yr) averages over events withYj(ω
′)=Yj(ω) for 1≤j≤r.

For example, suppose X1 through Xn are binary random variables con-
strained by the condition that ν(X1 . . .Xn) = X1+· · ·+Xn = m, wherem and n
are constants with 0 ≤ m ≤ n; all

(
n
m

)
such bit vectors X1 . . .Xn are assumed to

be equally likely. Clearly EX1 = m/n. But what is E(X2 |X1)? If X1 = 0, the
expectation of X2 is m/(n − 1); otherwise that expectation is (m − 1)/(n− 1);
consequently E(X2 |X1) = (m−X1)/(n−1). And what is E(Xk |X1, . . . , Xk−1)?
The answer is easy, once you get used to the notation: If ν(X1 . . .Xk−1) = r,
then Xk . . . Xn is a random bit vector with ν(Xk . . . Xn) = m − r; hence the
average value of Xk will be (m− r)/(n+ 1− k) in that case. We conclude that

E(Xk |X1, . . . , Xk−1) =
m− ν(X1 . . . Xk−1)

n+ 1− k
, for 1 ≤ k ≤ n. (14)

The random variables on both sides of these equations are the same.

Inequalities. In practice we often want to prove that certain events are rare,
in the sense that they occur with very small probability. Conversely, our goal
is sometimes to show that an event is not rare. And we’re in luck, because
mathematicians have devised several fairly easy ways to derive upper bounds or
lower bounds on probabilities, even when the exact values are unknown.

3

From the Library of Melissa Nuno

ptg999

4 MATHEMATICAL PRELIMINARIES REDUX

We’ve already discussed the most important technique of this kind in Sec-
tion 1.2.10. Stated in highly general terms, the basic idea can be formulated as
follows: Let f be any nonnegative function such that f(x) ≥ s > 0 when x ∈ S.
Then

Pr(X ∈ S) ≤ E f(X)/s, (15)

provided that Pr(X ∈ S) and E f(X) both exist. For example, f(x) = |x| yields

Pr(|X| ≥ m) ≤ E |X|/m (16)

whenever m > 0. The proof is amazingly simple, because we obviously have

E f(X) ≥ Pr(X ∈ S) · s+ Pr(X /∈ S) · 0. (17)

Formula (15) is often calledMarkov’s inequality, because A. A. Markov discussed
the special case f(x) = |x|a in Izvıest̄ııa Imp. Akad. Nauk (6) 1 (1907), 707–716.
If we set f(x) = (x − EX)2, we get the famous 19th-century inequality of
Bienaymé and Chebyshev:

Pr
(
|X − EX| ≥ r

)
≤ var(X)/r2. (18)

The case f(x) = eax is also extremely useful.

Another fundamental estimate, known as Jensen’s inequality [Acta Mathe-

matica 30 (1906), 175–193], applies to convex functions f ; we’ve seen it so far
only as a “hint” to exercise 6.2.2–36(!). The real-valued function f is said to be
convex in an interval I of the real line, and −f is said to be concave in I, if

f(px+ qy) ≤ pf(x) + qf(y) for all x, y ∈ I, (19)

whenever p ≥ 0, q ≥ 0, and p+q = 1. This condition turns out to be equivalent to
saying that f ′′(x) ≥ 0 for all x ∈ I, if f has a second derivative f ′′. For example,
the functions eax and x2n are convex for all constants a and all nonnegative
integers n; and if we restrict consideration to positive values of x, then f(x) = xn

is convex for all integers n (notably f(x) = 1/x when n = −1). The functions
ln(1/x) and x lnx are also convex for x > 0. Jensen’s inequality states that

f(EX) ≤ E f(X) (20)

when f is convex in the interval I and the random variable X takes values only
in I. (See exercise 42 for a proof.) For example, we have 1/EX ≤ E(1/X) and
ln EX ≥ E lnX and (EX) ln EX ≤ E(X lnX), when X is positive, since the
function lnx is concave for x > 0. Notice that (20) actually reduces to the very
definition of convexity, (19), in the special case when X = x with probability p
and X = y with probability q = 1− p.

Next on our list of remarkably useful inequalities are two classical results
that apply to any random variable X whose values are nonnegative integers:

Pr(X > 0) ≤ EX; (“the first moment principle”) (21)

Pr(X > 0) ≥ (EX)2/ (EX2). (“the second moment principle”) (22)

Formula (21) is obvious, because the left side is p1+ p2+ p3+ · · · when pk is the
probability that X = k, while the right side is p1 + 2p2 + 3p3 + · · · .

4

From the Library of Melissa Nuno

ptg999

MATHEMATICAL PRELIMINARIES REDUX 5

Formula (22) isn’t quite so obvious; it is p1 + p2 + p3 + · · · on the left and
(p1 + 2p2 + 3p3 + · · ·)2/(p1 + 4p2 + 9p3 + · · ·) on the right. However, as we saw
with Markov’s inequality, there is a remarkably simple proof, once we happen to
discover it: If X is nonnegative but not always zero, we have

EX2 = E(X2 |X > 0)Pr(X > 0) + E(X2 |X = 0)Pr(X = 0)

= E(X2 |X > 0)Pr(X > 0)

≥
(
E(X |X > 0)

)2
Pr(X > 0) = (EX)2/Pr(X > 0). (23)

In fact this proof shows that the second moment principle is valid even when X is
not restricted to integer values (see exercise 46). Furthermore the argument can
be strengthened to show that (22) holds even when X can take arbitrary negative
values, provided only that EX ≥ 0 (see exercise 47). See also exercise 118.

Exercise 54 applies (21) and (22) to the study of random graphs.

Another important inequality, which applies in the special case where X =
X1 + · · ·+Xm is the sum of binary random variables Xj , was introduced more
recently by S. M. Ross [Probability, Statistics, and Optimization (New York:
Wiley, 1994), 185–190], who calls it the “conditional expectation inequality”:

Pr(X > 0) ≥
m∑
j=1

EXj

E(X |Xj=1)
. (24)

Ross showed that the right-hand side of this inequality is always at least as big
as the bound (EX)2/(EX2) that we get from the second moment principle (see
exercise 50). Furthermore, (24) is often easier to compute, even though it may
look more complicated at first glance.

For example, his method applies nicely to the problem of estimating a
reliability polynomial, f(p1, . . . , pn), when f is a monotone Boolean function;
here pj represents the probability that component j of a system is “up.” We ob-
served in Section 7.1.4 that reliability polynomials can be evaluated exactly, using
BDD methods, when n is reasonably small; but approximations are necessary
when f gets complicated. The simple example f(x1, . . . , x5) = x1x2x3∨x2x3x4∨
x4x5 illustrates Ross’s general method: Let (Y1, . . . , Y5) be independent binary
random variables, with EYj = pj ; and letX = X1+X2+X3, whereX1 = Y1Y2Y3,
X2 = Y2Y3Y4, and X3 = Y4Y5 correspond to the prime implicants of f . Then
Pr(X > 0) = Pr(f(Y1, . . . , Y5) = 1) = E f(Y1, . . . , Y5) = f(p1, . . . , p5), because
the Y ’s are independent. And we can evaluate the bound in (24) easily:

Pr(X > 0) ≥
p1p2p3

1 + p4 + p4p5
+

p2p3p4
p1 + 1 + p5

+
p4p5

p1p2p3 + p2p3 + 1
. (25)

If, for example, each pj is 0.9, this formula gives ≈ 0.848, while (EX)2/(EX2) ≈
0.847; the true value, p1p2p3 + p2p3p4 + p4p5 − p1p2p3p4 − p2p3p4p5, is 0.9558.

Many other important inequalities relating to expected values have been
discovered, of which the most significant for our purposes in this book is the
FKG inequality discussed in exercise 61. It yields easy proofs that certain events
are correlated, as illustrated in exercise 62.

5

From the Library of Melissa Nuno

ptg999

6 MATHEMATICAL PRELIMINARIES REDUX

Martingales. A sequence of dependent random variables can be difficult to
analyze, but if those variables obey invariant constraints we can often exploit
their structure. In particular, the “martingale” property, named after a classic
betting strategy (see exercise 67), proves to be amazingly useful when it applies.
Joseph L. Doob featured martingales in his pioneering book Stochastic Processes
(New York: Wiley, 1953), and developed their extensive theory.

The sequence 〈Zn〉 = Z0, Z1, Z2, . . . of real-valued random variables is
called a martingale if it satisfies the condition

E(Zn+1 |Z0, . . . , Zn) = Zn for all n ≥ 0. (26)

(We also implicitly assume, as usual, that the expectations EZn are well defined.)
For example, when n = 0, the random variable E(Z1 |Z0) must be the same as
the random variable Z0 (see exercise 63).

Figure P illustrates George Pólya’s famous “urn model” [F. Eggenberger
and G. Pólya, Zeitschrift für angewandte Math. und Mech. 3 (1923), 279–289],
which is associated with a particularly interesting martingale. Imagine an urn
that initially contains two balls, one red and one black. Repeatedly remove a
randomly chosen ball from the urn, then replace it and contribute a new ball of
the same color. The numbers (r, b) of red and black balls will follow a path in
the diagram, with the respective local probabilities indicated on each branch.

One can show without difficulty that all n+1 nodes on level n of Fig. P will
be reached with the same probability, 1/(n + 1). Furthermore, the probability
that a red ball is chosen when going from any level to the next is always 1/2. Thus
the urn scheme might seem at first glance to be rather tame and uniform. But
in fact the process turns out to be full of surprises, because any inequity between
red and black tends to perpetuate itself. For example, if the first ball chosen is
black, so that we go from (1, 1) to (1, 2), the probability is only 2 ln 2− 1 ≈ .386
that the red balls will ever overtake the black ones in the future (see exercise 88).

One good way to analyze Pólya’s process is to use the fact that the ratios
r/(r + b) form a martingale. Each visit to the urn changes this ratio either to
(r+1)/(r+b+1) (with probability r/(r+b)) or to r/(r+b+1) (with probability
b/(r+b)); so the expected new ratio is (rb+r2+r)/((r+b)(r+b+1)) = r/(r+b),
no different from what it was before. More formally, let X0 = 1, and for n > 0
let Xn be the random variable ‘[the nth ball chosen is red]’. Then there are
X0 + · · ·+Xn red balls and X0 + · · ·+Xn + 1 black balls at level n of Fig. P;
and the sequence 〈Zn〉 is a martingale if we define

Zn = (X0 + · · ·+Xn)/(n+ 2). (27)

In practice it’s usually most convenient to define martingales Z0, Z1, . . .
in terms of auxiliary random variables X0, X1, . . . , as we’ve just done. The
sequence 〈Zn〉 is said to be a martingale with respect to the sequence 〈Xn〉 if
Zn is a function of (X0, . . . , Xn) that satisfies

E(Zn+1 |X0, . . . , Xn) = Zn for all n ≥ 0. (28)

6

From the Library of Melissa Nuno

ptg999

MATHEMATICAL PRELIMINARIES REDUX 7

1,1

1,2 2,1

1,3 2,2 3,1

1,4 2,3 3,2 4,1

1/2 1/2

2/3 1/3 1/3 2/3

3/4 1/4 2/4 2/4 1/4 3/4

4/5 1/5 3/5 2/5 2/5 3/5 1/5 4/5

Level 0

Level 1

Level 2

Level 3

Fig. P. Pólya’s urn model. The probability of taking any downward path
from (1, 1) to (r, b) is the product of the probabilities shown on the branches.

Furthermore we say that a sequence 〈Yn〉 is fair with respect to the sequence 〈Xn〉
if Yn is a function of (X0, . . . , Xn) that satisfies the simpler condition

E(Yn+1 |X0, . . . , Xn) = 0 for all n ≥ 0; (29)

and we call 〈Yn〉 fair whenever

E(Yn+1 |Y0, . . . , Yn) = 0 for all n ≥ 0. (30)

Exercise 77 proves that (28) implies (26) and that (29) implies (30); thus an
auxiliary sequence 〈Xn〉 is sufficient but not necessary for defining martingales
and fair sequences.

Whenever 〈Zn〉 is a martingale, we obtain a fair sequence 〈Yn〉 by letting
Y0 = Z0 and Yn = Zn − Zn−1 for n > 0, because the identity E(Yn+1 |
Z0, . . . , Zn) = E(Zn+1 − Zn | Z0, . . . , Zn) = Zn − Zn shows that 〈Yn〉 is fair
with respect to 〈Zn〉. Conversely, whenever 〈Yn〉 is fair, we obtain a martingale
〈Zn〉 by letting Zn = Y0 + · · ·+ Yn, because the identity E(Zn+1 |Y0, . . . , Yn) =
E(Zn + Yn+1 | Y0, . . . , Yn) = Zn shows that 〈Zn〉 is a martingale with respect
to 〈Yn〉. In other words, fairness and martingaleness are essentially equivalent.
The Y ’s represent unbiased “tweaks” that change one Z to its successor.

It’s easy to construct fair sequences. For example, every sequence of inde-
pendent random variables with mean 0 is fair. And if 〈Yn〉 is fair with re-
spect to 〈Xn〉, so is the sequence 〈Y ′n〉 defined by Y ′n = fn(X0, . . . , Xn−1)Yn
when fn(X0, . . . , Xn−1) is almost any function whatsoever! (We need only
keep fn small enough that EY ′n is well defined.) In particular, we can let
fn(X0, . . . , Xn−1) = 0 for all large n, thereby making 〈Zn〉 eventually fixed.

A sequence of functions Nn(x0, . . . , xn−1) is called a stopping rule if each
value is either 0 or 1 and if Nn(x0, . . . , xn−1) = 0 implies Nn+1(x0, . . . , xn) = 0.
We can assume that N0 = 1. The number of steps before stopping, with respect
to a sequence of random variables 〈Xn〉, is then the random variable

N = N1(X0) +N2(X0, X1) +N3(X0, X1, X2) + · · · . (31)

(Intuitively, Nn(x0, . . . , xn−1) means [the values X0 = x0, . . . , Xn−1 = xn−1 do
not stop the process]; hence it’s really more about “going” than “stopping.”)
Any martingale Zn = Y0 + · · · + Yn with respect to 〈Xn〉 can be adapted to

7

From the Library of Melissa Nuno

ptg999

8 MATHEMATICAL PRELIMINARIES REDUX

stop with this strategy if we change it to Z ′n = Y ′0 + · · · + Y ′n, where Y ′n =
Nn(X0, . . . , Xn−1)Yn. Gamblers who wish to “quit when ahead” are using the
stopping rule Nn+1(X0, . . . , Xn) = [Z ′n≤ 0], when Z ′n is their current balance.

Notice that if the stopping rule always stops after at most m steps— in
other words, if the function Nm(x0, . . . , xm−1) is identically zero—then we have
Z ′m = Z ′N , because Z

′

n doesn’t change after the process has stopped. Therefore
EZ ′N = EZ ′m = EZ ′0 = EZ0: No stopping rule can change the expected outcome

of a martingale when the number of steps is bounded.

An amusing game of chance called Ace Now illustrates this optional stopping
principle. Take a deck of cards, shuffle it and place the cards face down; then
turn them face up one at a time as follows: Just before seeing the nth card, you
are supposed to say either “Stop” or “Deal,” based on the cards you’ve already
observed. (If n = 52 you must say “Stop.”) After you’ve decided to stop, you
win $12 if the next card is an ace; otherwise you lose $1. What is the best
strategy for playing this game? Should you hold back until you have a pretty
good chance at the $12? What is the worst strategy? Exercise 82 has the answer.

Tail inequalities from martingales. The essence of martingales is equality
of expectations. Yet martingales turn out to be important in the analysis of
algorithms because we can use them to derive inequalities, namely to show that
certain events occur with very small probability.

To begin our study, let’s introduce inequality into Eq. (26): A sequence 〈Zn〉
is called a submartingale if it satisfies

E(Zn+1 |Z0, . . . , Zn) ≥ Zn for all n ≥ 0. (32)

Similarly, it’s called a supermartingale if ‘≥’ is changed to ‘≤’ in the left-hand
part of this definition. (Thus a martingale is both sub- and super-.) In a
submartingale we have EZ0 ≤ EZ1 ≤ EZ2 ≤ · · · , by taking expectations in (32).
A supermartingale, similarly, has ever smaller expectations as n grows. One way
to remember the difference between submartingales and supermartingales is to
observe that their names are the reverse of what you might expect.

Submartingales are significant largely because of the fact that they’re quite
common. Indeed, if 〈Zn〉 is any martingale and if f is any convex function, then
〈f(Zn)〉 is a submartingale (see exercise 84). For example, the sequences 〈|Zn|〉
and 〈max(Zn, c)〉 and 〈Z2

n〉 and 〈eZn〉 all are submartingales whenever 〈Zn〉 is
known to be a martingale. If, furthermore, Zn is always positive, then 〈Z3

n〉 and
〈1/Zn〉 and 〈ln(1/Zn)〉 and 〈Zn lnZn〉, etc., are submartingales.

If we modify a submartingale by applying a stopping rule, it’s easy to see that
we get another submartingale. Furthermore, if that stopping rule is guaranteed
to quit within m steps, we’ll have EZm ≥ EZN = EZ ′N = EZ ′m. Therefore no
stopping rule can increase the expected outcome of a submartingale, when the

number of steps is bounded.

That comparatively simple observation has many important consequences.
For example, exercise 86 uses it to give a simple proof of the so-called “maximal

8

From the Library of Melissa Nuno

ptg999

MATHEMATICAL PRELIMINARIES REDUX 9

inequality”: If 〈Zn〉 is a nonnegative submartingale then

Pr
(
max(Z0, Z1, . . . , Zn) ≥ x

)
≤ EZn/x, for all x > 0. (33)

Special cases of this inequality are legion. For instance, martingales 〈Zn〉 satisfy

Pr
(
max

(
|Z0|, |Z1|, . . . , |Zn|

)
≥ x

)
≤ E |Zn|/x, for all x > 0; (34)

Pr
(
max(Z2

0 , Z
2
1 , . . . , Z

2
n) ≥ x

)
≤ EZ2

n/x, for all x > 0. (35)

Relation (35) is known as Kolmogorov’s inequality, because A. N. Kolmogorov
proved it when Zn = X1 + · · ·+Xn is the sum of independent random variables
with EXk = 0 and varXk = σ2k for 1 ≤ k ≤ n [Math. Annalen 99 (1928), 309–
311]. In that case varZn = σ21+ · · ·+σ2n = σ2, and the inequality can be written

Pr
(
|X1| < tσ, |X1 +X2| < tσ, . . . , |X1 + · · ·+Xn| < tσ

)
≥ 1− 1/t2. (36)

Chebyshev’s inequality gives only Pr
(
|X1 + · · ·+Xn| < tσ

)
≥ 1− 1/t2, which is

a considerably weaker result.

Another important inequality applies in the common case where we have
good bounds on the terms Y1, . . . , Yn that enter into the standard representation
Zn = Y0+Y1+ · · ·+Yn of a martingale. This one is called the Hoeffding–Azuma

inequality, after papers by W. Hoeffding [J. Amer. Statistical Association 58

(1963), 13–30] and K. Azuma [Tôhoku Math. Journal (2) 19 (1967), 357–367].
It reads as follows: If 〈Yn〉 is any fair sequence with an ≤ Yn ≤ bn when Y0, Y1,
. . . , Yn−1 are given, then

Pr(Y1 + · · ·+ Yn ≥ x) ≤ e−2x
2/((b1−a1)

2+···+(bn−an)
2). (37)

The same bound applies to Pr(Y1+ · · ·+Yn ≤ −x), since −bn ≤ −Yn ≤ −an; so

Pr(|Y1 + · · ·+ Yn | ≥ x) ≤ 2e−2x
2/((b1−a1)

2+···+(bn−an)
2). (38)

Exercise 90 breaks the proof of this result into small steps. In fact, the proof
even shows that an and bn may be functions of {Y0, . . . , Yn−1}.

Applications. The Hoeffding–Azuma inequality is useful in the analysis of
many algorithms because it applies to “Doob martingales,” a very general class
of martingales that J. L. Doob featured as Example 1 in his Stochastic Processes
(1953), page 92. (In fact, he had already considered them many years earlier,
in Trans. Amer. Math. Soc. 47 (1940), 486.) Doob martingales arise from any

sequence of random variables 〈Xn〉, independent or not, and from any other

random variable Q: We simply define

Zn = E(Q |X0, . . . , Xn). (39)

Then, as Doob pointed out, the resulting sequence is a martingale (see exercise
91). In our applications, Q is an aspect of some algorithm that we wish to study,
and the variables X0, X1, . . . reflect the inputs to the algorithm. For example,
in an algorithm that uses random bits, the X’s are those bits.

Consider a hashing algorithm in which t objects are placed into m random
lists, where the nth object goes into list Xn; thus 1 ≤ Xn ≤ m for 1 ≤ n ≤ t, and
we assume that each of the mt possibilities is equally likely. Let Q(x1, . . . , xt) be

9

From the Library of Melissa Nuno

ptg999

10 MATHEMATICAL PRELIMINARIES REDUX

the number of lists that remain empty after the objects have been placed into lists
x1, . . . , xt, and let Zn = E(Q |X1, . . . , Xn) be the associated Doob martingale.
Then Z0 = EQ is the average number of empty lists; and Zt = Q(X1, . . . , Xt)
is the actual number, in any particular run of the algorithm.

What fair sequence corresponds to this martingale? If 1 ≤ n ≤ t, the random
variable Yn = Zn − Zn−1 is fn(X1, . . . , Xn), where fn(x1, . . . , xn) is the average
of

Δ(x1, . . . , xt) =
m∑
x=1

Pr(Xn = x)
(
Q(x1, . . . , xn−1, xn, xn+1, . . . , xt)

−Q(x1, . . . , xn−1, x, xn+1, . . . , xt)
)

(40)

taken over all mt−n values of (xn+1, . . . , xt).

In our application the function Q(x1, . . . , xt) has the property that∣∣Q(x1, . . . , xn−1, x′, xn+1, . . . , xt)−Q(x1, . . . , xn−1, x, xn+1, . . . , xt)
∣∣ ≤ 1 (41)

for all x and x′, because a change to any one hash address always changes the
number of empty lists by either 1, 0, or −1. Consequently, for any fixed setting
of the variables (x1, . . . , xn−1, xn+1, . . . , xt), we have

max
xn

Δ(x1, . . . , xt) ≤ min
xn

Δ(x1, . . . , xt) + 1. (42)

The Hoeffding–Azuma inequality (37) therefore allows us to conclude that

Pr(Zt − Z0 ≥ x) = Pr(Y1 + · · ·+ Yt ≥ x) ≤ e−2x
2/t. (43)

Furthermore, Z0 in this example is m(m − 1)t/mt, because exactly (m − 1)t of
the mt possible hash sequences leave any particular list empty. And the random
variable Zt is the actual number of empty lists when the algorithm is run. Hence
we can, for example, set x =

√
t lnf(t) in (43), thereby proving that

Pr
(
Zt ≥ (m− 1)t/mt−1 +

√
t lnf(t)

)
≤ 1/f(t)2. (44)

The same upper bound applies to Pr
(
Zt ≤ (m− 1)t/mt−1 −

√
t lnf(t)

)
.

Notice that the inequality (41) was crucial in this analysis. Therefore
the strategy we’ve used to prove (43) is often called the “method of bounded
differences.” In general, a function Q(x1, . . . , xt) is said to satisfy a Lipschitz

condition in coordinate n if we have∣∣Q(x1, . . . , xn−1, x, xn+1, . . . , xt)−Q(x1, . . . , xn−1, x
′, xn+1, . . . , xt)

∣∣ ≤ cn (45)

for all x and x′. (This terminology mimics a well-known but only slightly
similar constraint that was introduced long ago into functional analysis by Rudolf
Lipschitz [Crelle 63 (1864), 296–308].) Whenever condition (45) holds, for a
function Q associated with a Doob martingale for independent random variables
X1, . . . , Xt, we can prove that Pr(Y1+ · · ·+Yt ≥ x) ≤ exp(−2x2/(c21+ · · ·+ c2t)).

Let’s work out one more example, due to Colin McDiarmid [London Math.

Soc. Lecture Notes 141 (1989), 148–188, §8(a)]: Again we consider independent
integer-valued random variables X1, . . . , Xt with 1 ≤ Xn ≤ m for 1 ≤ n ≤ t;

10

From the Library of Melissa Nuno

ptg999

MATHEMATICAL PRELIMINARIES REDUX 11

but this time we allow each Xn to have a different probability distribution.
Furthermore we define Q(x1, . . . , xt) to be the minimum number of bins into
which objects of sizes x1, . . . , xt can be packed, where each bin has capacity m.

This bin-packing problem sounds a lot harder than the hashing problem that
we just solved. Indeed, the task of evaluating Q(x1, . . . , xt) is well known to be
NP-complete [see M. R. Garey and D. S. Johnson, SICOMP 4 (1975), 397–411].
Yet Q obviously satisfies the condition (45) with cn = 1 for 1 ≤ n ≤ t. Therefore
the method of bounded differences tells us that inequality (43) is true, in spite
of the apparent difficulty of this problem!

The only difference between this bin-packing problem and the hashing prob-
lem is that we’re clueless about the value of Z0. Nobody knows how to compute
EQ(X1, . . . , Xt), except for very special distributions of the random variables.
However—and this is the magic of martingales—we do know that, whatever the
value is, the actual numbers Zt will be tightly concentrated around that average.

If all the X’s have the same distribution, the values βt = EQ(X1, . . . , Xt)
satisfy βt+t′ ≤ βt+βt′ , because we could always pack the t and t

′ items separately.
Therefore, by the subadditive law (see the answer to exercise 2.5–39), βt/t
approaches a limit β as t→∞. Still, however, random trials won’t give us decent
bounds on that limit, because we have no good way to compute the Q function.

If only he could have enjoyed Martingale for its beauty and its peace

without being chained to it by this band of responsibility and guilt!

— P. D. JAMES, Cover Her Face (1962)

Statements that are almost sure, or even quite sure. Probabilities that
depend on an integer n often have the property that they approach 0 or 1 as
n→∞, and special terminology simplifies the discussion of such phenomena. If,
say, An is an event for which limn→∞ Pr(An) = 1, it’s convenient to express this
fact in words by saying, “An occurs almost surely, when n is large.” (Indeed, we
usually don’t bother to state that n is large, if we already understand that n is
approaching infinity in the context of the current discussion.)

For example, if we toss a fair coin n times, we’ll find that the coin almost
surely comes up heads more than .49n times, but fewer than .51n times.

Furthermore, we’ll occasionally want to express this concept tersely in for-
mulas, by writing just ‘a.s.’ instead of spelling out the words “almost surely.”
For instance, the statement just made about n coin tosses can be formulated as

.49n < X1 + · · ·+Xn < .51n a.s., (46)

if X1, . . . , Xn are independent binary random variables, each with EXj = 1/2.
In general a statement such as “An a.s.” means that limn→∞ Pr(An) = 1; or,
equivalently, that limn→∞ Pr(An) = 0. It’s asymptotically almost sure.

If An and Bn are both a.s., then the combined event Cn = An ∩ Bn is
also a.s., regardless of whether those events are independent. The reason is that
Pr(Cn) = Pr(An ∪Bn) ≤ Pr(An) + Pr(Bn), which approaches 0 as n→∞.

Thus, to prove (46) we need only show that X1 + · · ·+Xn > .49n a.s. and
that X1+ · · ·+Xn < .51n a.s., or in other words that Pr(X1+ · · ·+Xn ≤ .49n)

11

From the Library of Melissa Nuno

ptg999

12 MATHEMATICAL PRELIMINARIES REDUX

and Pr(X1+ · · ·+Xn ≥ .51n) both approach 0. Those probabilities are actually
equal, by symmetry between heads and tails; so we need only show that pn =
Pr(X1 + · · ·+Xn ≤ .49n) approaches 0. And that’s no sweat, because we know
from exercise 1.2.10–21 that pn ≤ e−.0001n.

In fact, we’ve proved more: We’ve shown that pn is superpolynomially small,
namely that

pn = O(n−K) for all fixed numbers K. (47)

When the probability of an event An is superpolynomially small, we say that An

holds “quite surely,” and abbreviate that by ‘q.s.’. In other words, we’ve proved

.49n < X1 + · · ·+Xn < .51n q.s. (48)

We’ve seen that the combination of any two a.s. events is a.s.; hence the com-
bination of any finite number of a.s. events is also a.s. That’s nice, but q.s. events
are even nicer: The combination of any polynomial number of q.s. events is

also q.s. For example, if n4 different people each toss n coins, it is quite sure that
every one of them, without exception, will obtain between .49n and .51n heads!

(When making such asymptotic statements we ignore the inconvenient truth
that our bound on the failure of the assertion, 2n4e−.0001n in this case, becomes
negligible only when n is greater than 700,000 or so.)

EXERCISES

1. [M21] (Nontransitive dice.) Suppose three biased dice with the respective faces

A =
�
�
��

�
�

�
�
��

�

�
�
��

�
�

�
�
��

�

, B =
�

��

� �
�
�

�

��

�

�

��

� �
�
�

�
�
�

�
�
� , C =

�
�
�

�

�

�
�
�

�
�
�

�
�
�

�

�

�
�
�

�
�
�

are rolled independently at random.

a) Show that Pr(A>B) = Pr(B>C) = Pr(C>A) = 5/9.

b) Find dice with Pr(A>B), Pr(B>C), Pr(C>A) all greater than 5/9.

c) If Fibonacci dice have Fm faces instead of just six, show that we could have

Pr(A>B) = Pr(B>C) = Fm−1/Fm and Pr(C>A) = Fm−1/Fm ± 1/F 2
m.

2. [M32] Prove that the previous exercise is asymptotically optimum, in the sense
that min(Pr(A>B),Pr(B>C),Pr(C>A)) < 1/φ, regardless of the number of faces.

3. [22] (Lake Wobegon dice.) Continuing the previous exercises, find three dice such
that Pr(A> 1

3
(A+B+C)) ≥ Pr(B> 1

3
(A+B+C)) ≥ Pr(C> 1

3
(A+B+C)) ≥ 16/27.

Each face of each die should be � or �

�

or �
�
�

or �

��

� or �
�
��

� or �
�
�

�
�
�

.

4. [22] (Nontransitive Bingo.) Each player in the game of NanoBingo has a card
containing four numbers from the set S = {1, 2, 3, 4, 5, 6}, arranged in two rows. An
announcer calls out the elements of S, in random order; the first player whose card has
a horizontal row with both numbers called shouts “Bingo!” and wins. (Or victory is

12

From the Library of Melissa Nuno

ptg999

MATHEMATICAL PRELIMINARIES REDUX 13

shared when there are multiple Bingoes.) For example, consider the four cards

A =
1 2

3 5
, B =

2 3

4 6
, C =

3 4

1 5
, D =

1 4

2 6
.

If the announcer calls “6, 2, 5, 1” when A plays againstB, then A wins; but the sequence
“1, 3, 2” would yield a tie. One can show that Pr(A beats B) = 336

720
, Pr(B beats A) =

312
720 , and Pr(A and B tie) = 72

720 . Determine the probabilities of all possible outcomes
when there are (a) two (b) three (c) four different players using those cards.

� 5. [HM22] (T. M. Cover, 1989.) Common wisdom asserts that longer games favor
the stronger player, because they provide more evidence of the relative skills.

However, consider an n-round game in which Alice scores A1 + · · · + An points
while Bob scores B1+· · ·+Bn points. Here each of A1, . . . , An are independent random
variables with the same distribution, all representing Alice’s strength; similarly, each of
B1, . . . , Bn independently represent Bob’s strength (and are independent of the A’s).
Suppose Alice wins with probability Pn.

a) Show that it’s possible to have P1 = .99 but P1000 < .0001.

b) Let mk = 2k
3

, nk = 2k
2+k, and qk = 2−k

2

/D, where D = 2−0 +2−1+2−4 +2−9+
· · · ≈ 1.56447. Suppose the random variable A takes the values (m0,m2,m4, . . .)
with probabilities (q0, q2, q4, . . .); otherwise A = 0. Independently, the random
variable B takes the values (m1,m3,m5, . . .) with probabilities (q1, q3, q5, . . .);
otherwise B = 0. What are Pr(A > B), Pr(A < B), and Pr(A = B)?

c) With the distributions in (b), prove that Pnk → [k even] as k →∞.

� 6. [M22] Consider random Boolean (or binary) vectors X1 . . .Xn, where n ≥ 2, with
the following distribution: The vector x1 . . . xn occurs with probability 1/(n − 1)2 if
x1 + · · · + xn = 2, with probability (n − 2)/(2n − 2) if x1 + · · · + xn = 0, and with
probability 0 otherwise. Show that the components are pairwise independent (that is,
Xi is independent of Xj when i �= j); but they are not k-wise independent for k > 2.

Also find a joint distribution, depending only on νx = x1+ · · ·+xn, that is k-wise
independent for k = 2 and k = 3 but not k = 4.

7. [M30] (Ernst Schulte-Geers, 2012.) Generalizing exercise 6, construct a νx-based
distribution that has k-wise but not (k + 1)-wise independence, given k ≥ 1.

� 8. [M20] Suppose the Boolean vector x1 . . . xn occurs with probability (2+(−1)νx)/
2n+1, where νx = x1 + · · ·+ xn. For what k is this distribution k-wise independent?

9. [M20] Find a distribution of Boolean vectors x1 . . . xn such that any two compo-
nents are dependent; yet if we know the value of any xj , the remaining components are
(n−1)-wise independent. Hint: The answer is so simple, you might feel hornswoggled.

� 10. [M21] Let Y1, . . . , Ym be independent and uniformly distributed elements of
{0, 1, . . . , p− 1}, where p is prime. Also let Xj = (jm + Y1j

m−1 + · · ·+ Ym) mod p, for
1 ≤ j ≤ n. For what k are the X’s k-wise independent?

11. [M20] If X1, . . . , X2n are independent random variables with the same discrete
distribution, and if α is any real number whatsoever, prove that

Pr

(∣∣∣X1 + · · ·+X2n

2n
− α

∣∣∣ ≤
∣∣∣X1 + · · ·+Xn

n
− α

∣∣∣
)

>
1

2
.

12. [21] Which of the following four statements are equivalent to the statement that
Pr(A |B) > Pr(A)? (i) Pr(B |A) > Pr(B); (ii) Pr(A |B) > Pr(A | B̄); (iii) Pr(B |A) >
Pr(B |Ā); (iv) Pr(Ā |B̄) > Pr(Ā |B).
13. [15] True or false: Pr(A |C) > Pr(A) if Pr(A |B) > Pr(A) and Pr(B |C) > Pr(B).

13

From the Library of Melissa Nuno

ptg999

14 MATHEMATICAL PRELIMINARIES REDUX

14. [10] (Thomas Bayes, 1763.) Prove the “chain rule” for conditional probability:

Pr(A1 ∩ · · · ∩ An) = Pr(A1) Pr(A2 |A1) . . . Pr(An | A1 ∩ · · · ∩An−1).

15. [12] True or false: Pr(A | B ∩ C) Pr(B |C) = Pr(A ∩ B | C).

16. [M15] Under what circumstances is Pr(A |B) = Pr(A ∪ C | B)?
� 17. [15] Evaluate the conditional probability Pr(T is an ace | B = Q♠) in the playing
card example of the text, where T and B denote the top and bottom cards.

18. [20] Let M and m be the maximum and minimum values of the random vari-
able X. Prove that varX ≤ (M − EX)(EX −m).

� 19. [HM28] Let X be a random nonnegative integer, with Pr(X = x) = 1/2x+1, and
suppose that X = (. . .X2X1X0)2 and X + 1 = (. . . Y2Y1Y0)2 in binary notation.
a) What is EXn? Hint: Express this number in the binary number system.
b) Prove that the random variables {X0,X1, . . . , Xn−1} are independent.
c) Find the mean and variance of S = X0 +X1 +X2 + · · · .
d) Find the mean and variance of R = X0 ⊕X1 ⊕X2 ⊕ · · · .
e) Let π = (11.p0p1p2 . . .)2. What is the probability that Xn = pn for all n ≥ 0?
f) What is EYn? Show that Y0 and Y1 are not independent.
g) Find the mean and variance of T = Y0 + Y1 + Y2 + · · · .

20. [M18] Let X1, . . . , Xk be binary random variables for which we know that
E(
∏

j∈J Xj) =
∏

j∈J EXj for all J ⊆ {1, . . . , k}. Prove that the X’s are independent.

21. [M20] Find a small-as-possible example of random variables X and Y that satisfy
covar(X,Y) = 0, that is, EXY = (EX)(EY), although they aren’t independent.

� 22. [M20] Use Eq. (8) to prove the “union inequality”

Pr(A1 ∪ · · · ∪An) ≤ Pr(A1) + · · ·+ Pr(An).

� 23. [M21] If each Xk is an independent binary random variable with EXk = p, the
cumulative binomial distribution Bm,n(p) is the probability that X1 + · · · +Xn ≤ m.
Thus it’s easy to see that Bm,n(p) =

∑m
k=0

(
n
k

)
pk(1− p)n−k.

Show that Bm,n(p) is also equal to
∑m

k=0

(
n−m−1+k

k

)
pk(1−p)n−m, for 0 ≤ m ≤ n.

Hint: Consider the random variables J1, J2, . . . , and T defined by the rule that Xj = 0
if and only if j has one of the T values {J1, J2, . . . , JT }, where 1 ≤ J1 < J2 < · · · <
JT ≤ n. What is Pr(T ≥ r and Jr = s)?

� 24. [HM28] The cumulative binomial distribution also has many other properties.

a) Prove that Bm,n(p) = (n−m)
(
n
m

) ∫ 1
p
xm(1− x)n−1−mdx, for 0 ≤ m < n.

b) Use that formula to prove that Bm,n(m/n) > 1
2 , for 0 ≤ m < n/2. Hint: Show

that
∫m/n

0
xm(1− x)n−1−mdx <

∫ 1
m/n

xm(1− x)n−1−mdx.

c) Show furthermore that Bm,n(m/n) > 1
2 when n/2 ≤ m ≤ n. [Thus m is the

median value of X1 + · · ·+Xn, when p = m/n and m is an integer.]

25. [M25] Suppose X1, X2, . . . are independent random binary variables, with means

EXk = pk. Let
((
n
k

))
be the probability thatX1+· · ·+Xn = k; thus

((
n
k

))
= pn

((
n−1
k−1

))
+

qn
((
n−1
k

))
= [zk] (q1 + p1z) . . . (qn + pnz), where qk = 1− pk.

a) Prove that
((
n
k

)) ≥ ((n
k+1

))
, if pj ≤ (k + 1)/(n+ 1) for 1 ≤ j ≤ n.

b) Furthermore
((
n
k

)) ≤ (n
k

)
pkqn−k, if pj ≤ p ≤ k/n for 1 ≤ j ≤ n.

26. [M27] Continuing exercise 25, prove that
((
n
k

))
2 ≥ ((n

k−1

))((
n

k+1

))
(1+ 1

k)(1+
1

n−k)
for 0 < k < n. Hint: Consider rn,k =

((
n
k

))
/
(
n
k

)
.

14

From the Library of Melissa Nuno

ptg999

MATHEMATICAL PRELIMINARIES REDUX 15

27. [M22] Find an expression for the generalized cumulative binomial distribution∑m
k=0

((
n
k

))
that is analogous to the alternative formula in exercise 23.

28. [HM28] (W. Hoeffding, 1956.) Let X = X1 + · · ·+Xn and p1 + · · ·+ pn = np in
exercise 25, and suppose that E g(X) =

∑n
k=0 g(k)

((
n
k

))
for some function g.

a) Prove that E g(X) ≤∑n
k=0 g(k)

(
n
k

)
pk(1− p)n−k if g is convex in [0 . . n].

b) If g isn’t convex, show that the maximum of E g(X), over all choices of {p1, . . . , pn}
with p1 + · · ·+ pn = np can always be attained by a set of probabilities for which
at most three distinct values {0, a, 1} occur among the pj .

c) Furthermore
∑m

k=0

((
n
k

)) ≤ Bm,n(p), whenever p1 + · · ·+ pn = np ≥ m+ 1.

29. [HM29] (S. M. Samuels, 1965.) Continuing exercise 28, prove that we have
Bm,n(p) ≥ ((1− p)(m+ 1)/((1− p)m+ 1))n−m whenever np ≤ m+ 1.

30. [HM34] Let X1, . . . , Xn be independent random variables whose values are non-
negative integers, where EXk =1 for all k, and let p = Pr(X1 + · · · +Xn≤ n).

a) What is p, if each Xk takes only the values 0 and n+ 1?
b) Show that, in any set of distributions that minimize p, each Xk assumes only two

integer values, 0 and mk, where 1 ≤ mk ≤ n+ 1.
c) Furthermore we have p > 1/e, if each Xk has the same two-valued distribution.

� 31. [M20] Assume that A1, . . . , An are random events such that, for every subset
I ⊆ {1, . . . , n}, the probability Pr(

⋂
i∈I Ai) that all Ai for i ∈ I occur simultaneously

is πI ; here πI is a number with 0 ≤ πI ≤ 1, and π∅ = 1. Show that the probability of
any combination of the events, Pr(f([A1], . . . , [An])) for any Boolean function f , can be
found by expanding f ’s multilinear reliability polynomial f([A1], . . . , [An]) and replac-
ing each term

∏
i∈I [Ai] by πI . For example, the reliability polynomial of x1⊕x2⊕x3 is

x1 + x2 + x3 − 2x1x2 − 2x1x3 − 2x2x3 + 4x1x2x3; hence Pr([A1] ⊕ [A2] ⊕ [A3]) =
π1 + π2 + π3 − 2π12 − 2π13 − 2π23 + 4π123. (Here ‘π12’ is short for π{1,2}, etc.)

32. [M21] Not all sets of numbers πI in the preceding exercise can arise in an actual
probability distribution. For example, if I ⊆ J we must have πI ≥ πJ . What is a
necessary and sufficient condition for the 2n values of πI to be legitimate?

33. [M20] Suppose X and Y are binary random variables whose joint distribution is
defined by the probability generating function G(w, z) = E(wXzY) = pw + qz + rwz,
where p, q, r > 0 and p + q + r = 1. Use the definitions in the text to compute the
probability generating function E(zE(X|Y)) for the conditional expectation E(X |Y).
34. [M17] Write out an algebraic proof of (12), using the definitions (7) and (13).

� 35. [M22] True or false: (a) E(E(X |Y) |Y)=E(X |Y); (b) E(E(X |Y) |Z)=E(X |Z).
36. [M21] Simplify the formulas (a) E(f(X) |X); (b) E(f(Y) E(g(X) |Y)).

� 37. [M20] Suppose X1 . . .Xn is a random permutation of {1, . . . , n}, with every per-
mutation occurring with probability 1/n!. What is E(Xk |X1, . . . ,Xk−1)?

38. [M26] Let X1 . . . Xn be a random restricted growth string of length n, each with
probability 1/�n (see Section 7.2.1.5). What is E(Xk |X1, . . . ,Xk−1)?

� 39. [HM21] A hen lays N eggs, where Pr(N = n) = e−μμn/n! obeys the Poisson
distribution. Each egg hatches with probability p, independent of all other eggs. Let
K be the resulting number of chicks. Express (a) E(K |N), (b) EK, and (c) E(N |K)
in terms of N , K, μ, and p.

40. [M16] Suppose X is a random variable with X ≤M , and let m be any value with
m < M . Show that Pr(X > m) ≥ (EX −m)/(M −m).

15

From the Library of Melissa Nuno

ptg999

16 MATHEMATICAL PRELIMINARIES REDUX

41. [HM21] Which of the following functions are convex in the set of all real num-
bers x? (a) |x|a, where a is a constant; (b)

∑
k≥n x

k/k!, where n ≥ 0 is an integer;
(c) ee

|x|
; (d) f(x)[x∈ I] +∞[x /∈ I], where f is convex in the interval I.

42. [HM21] Prove Jensen’s inequality (20).

� 43. [M18] Use (12) and (20) to strengthen (20): If f is convex in I and if the random

variable X takes values in I, then f(EX) ≤ E(f(E(X |Y))) ≤ E f(X).

� 44. [M25] If f is convex on the real line and if EX = 0, prove that E f(aX) ≤ E f(bX)
whenever 0 ≤ a ≤ b.

45. [M18] Derive the first moment principle (21) from Markov’s inequality (15).

46. [M15] Explain why E(X2 |X > 0) ≥ (E(X |X > 0))2 in (23).

47. [M15] If X is random and Y = max(0,X), show that EY ≥ EX and EY 2≤ EX2.

� 48. [M20] Suppose X1, . . . , Xn are independent random variables with EXk = 0 and
EX2

k = σ2k for 1 ≤ k ≤ n. Chebyshev’s inequality tells us that Pr(|X1+· · ·+Xn| ≥ a) ≤
(σ21 + · · · + σ2n)/a

2; show that the second moment principle gives a somewhat better
one-sided estimate, Pr(X1+· · ·+Xn ≥ a) ≤ (σ21+· · ·+σ2n)/(a2+σ21+· · ·+σ2n), if a ≥ 0.

49. [M20] If X is random and ≥ 0, prove that Pr(X = 0) ≤ (EX2)/(EX)2 − 1.

� 50. [M27] Let X = X1 + · · · + Xm be the sum of binary random variables, with
EXj = pj . Let J be independent of the X’s, and uniformly distributed in {1, . . . ,m}.
a) Prove that Pr(X > 0) =

∑m
j=1 E(Xj/X | Xj>0) · Pr(Xj>0).

b) Therefore (24) holds. Hint: Use Jensen’s inequality with f(x) = 1/x.

c) What are Pr(XJ = 1) and Pr(J = j |XJ=1)?

d) Let tj = E(X |J = j and XJ = 1). Prove that EX2 =
∑m

j=1 pjtj .

e) Jensen’s inequality now implies that the right side of (24) is ≥ (EX)2/(EX2).

� 51. [M21] Show how to use the conditional expectation inequality (24) to obtain also
an upper bound on the value of a reliability polynomial, and apply your method to the
case illustrated in (25).

52. [M21] What lower bound does inequality (24) give for the reliability polynomial
of the symmetric function S≥k(x1, . . . , xn), when p1 = · · · = pn = p?

53. [M20] Use (24) to obtain a lower bound for the reliability polynomial of the non-
monotonic Boolean function f(x1, . . . , x6) = x1x2x̄3 ∨ x2x3x̄4 ∨ · · · ∨ x5x6x̄1 ∨ x6x1x̄2.

� 54. [M22] Suppose each edge of a random graph on the vertices {1, . . . , n} is present
with probability p, independent of every other edge. If u, v, w are distinct ver-
tices, let Xuvw be the binary random variable [{u, v, w} is a 3-clique]; thus Xuvw =
[u−−−v] [u−−−w] [v−−−w], and EXuvw = p3. Also let X =

∑
1≤u<v<w≤nXuvw be the

total number of 3-cliques. Use the (a) first and (b) second moment principle to derive
bounds on the probability that the graph contains at least one 3-clique.

55. [23] Evaluate the upper and lower bounds in the previous exercise numerically
in the case n = 10, and compare them to the true probability, when (a) p = 1/2;
(b) p = 1/10.

56. [HM20] Evaluate the upper and lower bounds of exercise 54 asymptotically when
p = λ/n and n→∞.

� 57. [M21] Obtain a lower bound for the probability in exercise 54(b) by using the
conditional expectation inequality (24) instead of the second moment principle (22).

16

From the Library of Melissa Nuno

ptg999

MATHEMATICAL PRELIMINARIES REDUX 17

58. [M22] Generalizing exercise 54, find bounds on the probability that a random
graph on n vertices has a k-clique, when each edge has probability p.

� 59. [HM30] (The four functions theorem.) The purpose of this exercise is to prove an
inequality that applies to four sequences 〈an〉, 〈bn〉, 〈cn〉, 〈dn〉 of nonnegative numbers:

aj bk ≤ cj |kdj&k for 0 ≤ j, k <∞ implies

∞∑
j=0

∞∑
k=0

ajbk ≤
∞∑
j=0

∞∑
k=0

cjdk. (∗)

(The sums will be ∞ if they don’t converge.) Although the inequality might appear at
first to be merely a curiosity, of interest only to a few lovers of esoteric formulas, we
shall see that it’s a fundamental result with many applications of great importance.

a) Prove the special case where aj = bj = cj = dj = 0 for j ≥ 2, namely that

a0b0 ≤ c0d0, a0b1 ≤ c1d0, a1b0 ≤ c1d0, and a1b1 ≤ c1d1

implies (a0 + a1)(b0 + b1) ≤ (c0 + c1)(d0 + d1).

Can equality hold in the first four relations but not in the last one? Can equality
hold in the last relation but not in the first four?

b) Use that result to prove (∗) when aj = bj = cj = dj = 0 for all j ≥ 2n, given n > 0.
c) Conclude that (∗) is true in general.

� 60. [M21] If F is a family of sets, and if α is a function that maps sets into real
numbers, let α(F) =∑S∈F α(S). Suppose F and G are finite families of sets for which
nonnegative set functions α, β, γ, and δ have been defined with the property that

α(S)β(T) ≤ γ(S ∪ T) δ(S ∩ T) for all S ∈ F and T ∈ G.
a) Use exercise 59 to prove that α(F)β(G) ≤ γ(F � G)δ(F � G).
b) In particular, |F| |G| ≤ |F � G| |F � G| for all families F and G.

� 61. [M28] Consider random sets in which S occurs with probability μ(S), where

μ(S) ≥ 0 and μ(S)μ(T) ≤ μ(S ∪ T)μ(S ∩ T) for all sets S and T . (∗∗)
Assume also that U =

⋃
μ(S)>0 S is a finite set.

a) Prove the FKG inequality (which is named for C. M. Fortuin, P. W. Kasteleyn,
and J. Ginibre): If f and g are real-valued set functions, then

f(S) ≤ f(T) and g(S) ≤ g(T) for all S ⊆ T implies E(fg) ≥ (E f)(E g).

Here, as usual, E f stands for
∑

S μ(S)f(S). The conclusion can also be written
‘covar(f, g) ≥ 0’, using the notation of (9); we say that f and g are “positively
correlated” when this is true. (The awkward term “nonnegatively correlated”
would be more accurate, because f and g might actually be independent.) Hint:

Prove the result first in the special case that both f and g are nonnegative.

b) Furthermore,

f(S) ≥ f(T) and g(S) ≥ g(T) for all S ⊆ T implies E(fg) ≥ (E f)(E g);

f(S) ≤ f(T) and g(S) ≥ g(T) for all S ⊆ T implies E(fg) ≤ (E f)(E g).

c) It isn’t necessary to verify condition (∗∗) for all sets, if (∗∗) is known to hold
for sufficiently many pairs of “neighboring” sets. Given μ, let’s say that set S is
supported if μ(S) �= 0. Prove that (∗∗) holds for all S and T whenever the following
three conditions are satisfied: (i) If S and T are supported, so are S∪T and S∩T .

17

From the Library of Melissa Nuno

ptg999

18 MATHEMATICAL PRELIMINARIES REDUX

(ii) If S and T are supported and S ⊆ T , the elements of T \ S can be labeled
t1, . . . , tk such that each of the intermediate sets S ∪ {t1, . . . , tj} is supported, for
1≤j≤k. (iii) Condition (∗∗) holds whenever S = R∪s and T = R∪ t and s, t /∈R.

d) The multivariate Bernoulli distribution B(p1, . . . , pm) on subsets of {1, . . . ,m} is

μ(S) =
(m∏
j=1

p
[j∈S]
j

)(m∏
j=1

(1− pj)
[j /∈S]

)
,

given 0 ≤ p1, . . . , pm ≤ 1. (Thus each element j is included independently with
probability pj , as in exercise 25.) Show that this distribution satisfies (∗∗).

e) Describe other simple distributions for which (∗∗) holds.
� 62. [M20] Suppose the m =

(
n
2

)
edges E of a random graph G on n vertices are

chosen with the Bernoulli distribution B(p1, . . . , pm). Let f(E) = [G is connected] and
g(E) = [G is 4-colorable]. Prove that f is negatively correlated with g.

63. [M17] Suppose Z0 and Z1 are random ternary variables with Pr(Z0 = a and
Z1 = b) = pab for 0 ≤ a, b ≤ 2, where p00 + p01 + · · · + p22 = 1. What can you say
about those nine probabilities pab when E(Z1 |Z0) = Z0?

� 64. [M22] (a) If E(Zn+1 |Zn) = Zn for all n ≥ 0, is 〈Zn〉 a martingale? (b) If 〈Zn〉 is
a martingale, is E(Zn+1 |Zn) = Zn for all n ≥ 0?

65. [M21] If 〈Zn〉 is any martingale, show that any subsequence 〈Zm(n)〉 is also a
martingale, where the nonnegative integers 〈m(n)〉 satisfy m(0) < m(1) < m(2) < · · · .

� 66. [M22] Find all martingales Z0, Z1, . . . such that each random variable Zn assumes
only the values ±n.
67. [M20] The Equitable Bank of El Dorado features a money machine such that, if
you insert k dollars, you receive 2k dollars back with probability exactly 1/2; otherwise
you get nothing. Thus you either gain $k or lose $k, and your expected profit is $0.
(Of course these transactions are all done electronically.)

a) Consider, however, the following scheme: Insert $1; if that loses, insert $2; if that
also loses, insert $4; then $8, etc. If you first succeed after inserting 2n dollars,
stop (and take the 2n+1 dollars). What’s your expected net profit at the end?

b) Continuing (a), what’s the expected total amount that you put into the machine?

c) If Zn is your net profit after n trials, show that 〈Zn〉 is a martingale.

68. [HM23] When J. H. Quick (a student) visited El Dorado, he decided to proceed
by making repeated bets of $1 each, and to stop when he first came out ahead. (He was
in no hurry, and was well aware of the perils of the high-stakes strategy in exercise 67.)

a) What martingale 〈Zn〉 corresponds to this more conservative strategy?

b) Let N be the number of bets that Quick made before stopping. What is the
probability that N = n?

c) What is the probability that N ≥ n?

d) What is EN?

e) What is the probability that min(Z0, Z1, . . .) = −m? (Possible “gambler’s ruin.”)

f) What is the expected number of indices n such that Zn = −m, given m ≥ 0?

69. [M20] Section 1.2.5 discusses two basic ways by which we can go from permuta-
tions of {1, . . . , n− 1} to permutations of {1, . . . , n}: “Method 1” inserts n among the
previous elements in all possible ways; “Method 2” puts a number k from 1 to n in the
final position, and adds 1 to each previous number that was ≥ k.

18

From the Library of Melissa Nuno

ptg999

MATHEMATICAL PRELIMINARIES REDUX 19

Show that, using either method, every permutation can be associated with a node
of Fig. P, using a rule that obeys the probability assumptions of Pólya’s urn model.

70. [M25] If Pólya’s urn model is generalized so that we start with c balls of different
colors, is there a martingale that generalizes Fig. P?

71. [M21] (G. Pólya.) What is the probability of going from node (r, b) to node (r′, b′)
in Fig. P, given r, r′, b, and b′ with r′ ≥ r and b′ ≥ b?

72. [M23] Let Xn be the red-ball indicator for Pólya’s urn, as discussed in the text.
What is E(Xn1Xn2 . . . Xnm) when 0 < n1 < n2 < · · · < nm?

73. [M24] The ratio Zn = r/(n+2) at node (r, n+2−r) of Fig. P is not the only mar-
tingale definable on Pólya’s urn. For example, r [n= r − 1] is another; so is r

(
n+1
r

)
/2n.

Find the most general martingale 〈Zn〉 for this model: Given any sequence a0, a1,
. . . , show that there’s exactly one suitable function Zn = f(r, n) such that f(1, k) = ak.

74. [M20] (Bernard Friedman’s urn.) Instead of contributing a ball of the same color,
as in Fig. P, suppose we use the opposite color. Then the process changes to

1,1

1,2 2,1

1,3 2,2 3,1

1,4 2,3 3,2 4,1

1/2 1/2

1/3 2/3 2/3 1/3

1/4 3/4 2/4 2/4 3/4 1/4

1/5 4/5 2/5 3/5 3/5 2/5 4/5 1/5

Level 0

Level 1

Level 2

Level 3

and the probabilities of reaching each node become quite different. What are they?

75. [M25] Find an interesting martingale for Bernard Friedman’s urn.

76. [M20] If 〈Zn〉 and 〈Z ′n〉 are martingales, is 〈Zn + Z ′n〉 a martingale?

77. [M21] Prove or disprove: If 〈Zn〉 is a martingale with respect to 〈Xn〉, then 〈Zn〉
is a martingale with respect to itself (that is, a martingale).

78. [M20] A sequence of random variables 〈Vn〉 for which E(Vn+1 | V0, . . . , Vn) = 1
is called “multiplicatively fair.” Show that Zn = V0V1 . . . Vn is a martingale in such
a case. Conversely, does every martingale lead to a multiplicatively fair sequence?

79. [M20] (De Moivre’s martingale.) Let X1, X2, . . . be a sequence of independent
coin tosses, with Pr([“heads” occurred on the nth toss]) = Pr(Xn = 1) = p for each n.
Show that Zn = (q/p)2(X1+···+Xn)−n defines a martingale, where q = 1− p.

80. [M20] Are the following statements true or false for every fair sequence 〈Yn〉?
(a) E(Y 2

3 Y5) = 0. (b) E(Y3Y
2
5) = 0. (c) E(Yn1Yn2 . . . Ynm) = 0 if n1 < n2 < · · · < nm.

81. [M21] Suppose E(Xn+1 |X0, . . . ,Xn) = Xn + Xn−1 for n ≥ 0, where X−1 = 0.
Find sequences an and bn of coefficients so that Zn = anXn + bnXn−1 is a martingale,
where Z0 = X0 and Z1 = 2X0 −X1. (We might call this a “Fibonacci martingale.”)

� 82. [M20] In the game of Ace Now, let Xn = [the nth card is an ace], with X0 = 0.

a) Show that Zn = (4−X1 − · · · −Xn)/(52− n) satisfies (28) for 0 ≤ n < 52.

b) Consequently EZN = 1/13, regardless of the stopping rule employed.

c) Hence all strategies are equally good (or bad); you win $0 on average.

19

From the Library of Melissa Nuno

ptg999

20 MATHEMATICAL PRELIMINARIES REDUX

� 83. [HM22] Given a sequence 〈Xn〉 of independent and nonnegative random variables,
let Sn = X1 + · · · +Xn. If Nn(x0, . . . , xn−1) is any stopping rule and if N is defined
by (31), prove that ESN = E

∑N
k=1 EXk. (In particular, if EXn = EX1 for all n > 0

we have “Wald’s equation,” which states that ESN = (EN)(EX1).)

84. [HM21] Let f(x) be a convex function for a ≤ x ≤ b, and assume that 〈Zn〉 is a
martingale such that a ≤ Zn ≤ b for all n ≥ 0. (Possibly a = −∞ and/or b = +∞.)
a) Prove that 〈f(Zn)〉 is a submartingale.
b) What can you say if the sequence 〈Zn〉 is assumed only to be a submartingale?

85. [M20] Suppose there are Rn red balls and Bn black balls at level n of Pólya’s urn
(Fig. P). Prove that the sequence 〈Rn/Bn〉 is a submartingale.

� 86. [M22] Prove (33) by inventing a suitable stopping rule Nn+1(Z0, . . . , Zn).

87. [M18] What does the maximal inequality (33) reveal about the chances that
Pólya’s urn will hold thrice as many red balls as black balls at some point?

� 88. [HM30] Let S = supZn be the least upper bound of Zn as n→∞ in Fig. P.
a) Prove that S > 1/2 with probability ln 2 ≈ .693.
b) Similarly, show that Pr(S > 2/3) = ln 3− π/

√
27 ≈ .494.

c) Generalize to Pr(S > (t− 1)/t), for all t ≥ 2. Hint: See exercise 7.2.1.6–36.

89. [M17] Let (X1, . . . ,Xn) be random variables that have the Bernoulli distribution
B(p1, . . . , pn), and suppose c1, . . . , cn are nonnegative. Use (37) to show that

Pr(c1X1 + · · ·+ cnXn ≥ c1p1 + · · ·+ cnpn + x) ≤ e−2x
2/(c2

1
+···+c2n).

90. [HM25] The Hoeffding–Azuma inequality (37) can be derived as follows:

a) Show first that Pr(Y1 + · · ·+ Yn ≥ x) ≤ E(e(Y1+···+Yn)t)/etx for all t > 0.
b) If 0 ≤ p ≤ 1 and q = 1 − p, show that eyt ≤ ef(t) + yeg(t) when −p ≤ y ≤ q and

t > 0, where f(t) = −pt + ln(q + pet) and g(t) = −pt+ ln(et − 1).
c) Prove that f(t) ≤ t2/8. Hint: Use Taylor’s formula, Eq. 1.2.11.3–(5).
d) Consequently a ≤ Y ≤ b implies eY t ≤ e(b−a)

2t2/8+ Y h(t), for some function h(t).

e) Let c = (c21+ · · ·+ c2n)/2, where ck = bk − ak. Prove that E(e(Y1+···+Yn)t) ≤ ect
2/4.

f) We obtain (37) by choosing the best value of t.

91. [M20] Prove that Doob’s general formula (39) always defines a martingale.

� 92. [M20] Let 〈Qn〉 be the Doob martingale that corresponds to Pólya’s urn (27)
when Q = Xm, for some fixed m > 0. Calculate Q0, Q1, Q2, etc.

93. [M20] Solve the text’s hashing problem under the more general model considered
in the bin-packing problem: Each variable Xn has probability pnk of being equal to k,
for 1 ≤ n ≤ t and 1 ≤ k ≤ m. What formula do you get instead of (44)?

� 94. [M22] Where is the fact that the variables {X1, . . . , Xt} are independent used in
the previous exercise?

95. [M20] True or false: “Pólya’s urn q.s. accumulates more than 100 red balls.”

96. [HM22] Let X be the number of heads seen in n flips of an unbiased coin. Decide
whether each of the following statements about X is a.s., q.s., or neither, as n→∞:

(i) |X − n/2| < √
n lnn; (ii) |X − n/2| <

√
n lnn;

(iii) |X − n/2| < √
n ln lnn; (iv) |X − n/2| < √

n.

� 97. [HM21] Suppose �n1+δ� items are hashed into n bins, where δ is a positive
constant. Prove that every bin q.s. gets between 1

2
nδ and 2nδ of them.

20

From the Library of Melissa Nuno

ptg999

MATHEMATICAL PRELIMINARIES REDUX 21

� 98. [M21] Many algorithms are governed by a loop of the form

X ← n; while X > 0, set X ← X − F (X)

where F (X) is a random integer in the range [1 . .X]. We assume that each integer
F (X) is completely independent of any previously generated values, subject only to
the requirement that EF (j) ≥ gj , where 0 < g1 ≤ g2 ≤ · · · ≤ gn.

Prove that the loop sets X ← X−F (X) at most 1/g1+1/g2+ · · ·+1/gn times, on
the average. (“If one step reduces by gn, then perhaps (1/gn)th of a step reduces by 1.”)

99. [HM30] Show that the result in the previous exercise holds even when the range
of F (X) is (−∞ . . X], given 0 < g1 ≤ · · · ≤ gn ≤ gn+1 ≤ · · · . (Thus X might increase.)

100. [HM17] A certain randomized algorithm takes T steps, where Pr(T = t) = pt for
1 ≤ t ≤ ∞. Prove that (a) limm→∞ Emin(m,T) = ET ; (b) ET <∞ implies p∞ = 0.

101. [HM22] Suppose X = X1 + · · · + Xm is the sum of independent geometrically
distributed random integers, with Pr(Xk = n) = pk(1− pk)

n−1 for n ≥ 1. Prove that
Pr(X ≥ rμ) ≤ re1−r for all r ≥ 1, where μ = EX =

∑m
k=1 1/pk.

102. [M20] Cora collects coupons, using a random process. After already owning
k − 1 of them, her chance of success when trying for the kth is at least one chance
in sk, independent of any previous successes or failures. Prove that she will a.s. own
m coupons before making (s1 + · · · + sm) lnn trials. And she will q.s. need at most
sk lnn ln lnn trials to obtain the kth coupon, for each k ≤ m, if m = O(n1000).

� 103. [M30] This exercise is based on two functions of the ternary digits {0, 1, 2}:
f0(x) = max(0, x− 1); f1(x) = min(2, x+ 1).

a) What is Pr(fX1
(fX2

(. . . (fXn(i)) . . .)) = j), for each i, j ∈ {0, 1, 2}, assuming that
X1, X2, . . . , Xn are independent, uniformly random bits?

b) Here’s an algorithm that computes fX1
(fX2

(. . . (fXn(i)) . . .)) for i ∈ {0, 1, 2}, and
stops when all three values have coalesced to a common value:

Set a0a1a2 ← 012 and n ← 0. Then while a0 �= a2, set n ← n + 1,
t0t1t2 ← (Xn? 122: 001), and a0a1a2 ← at0at1at2 . Output a0.

(Notice that a0 ≤ a1 ≤ a2 always holds.) What is the probability that this
algorithm outputs j? What are the mean and variance of N , the final value of n?

c) A similar algorithm computes fXn(. . . (fX2
(fX1

(i))) . . .), if we change ‘at0at1at2 ’
to ‘ta0ta1 ta2 ’. What’s the probability of output j in this algorithm?

d) Why on earth are the results of (b) and (c) so different?
e) The algorithm in (c) doesn’t really use a1. Therefore we might try to speed

up process (b) by cleverly evaluating the functions in the opposite direction.
Consider the following subroutine, called sub(T):

Set a0a2 ← 02 and n← 0. Then while n < T set n← n+1, X ← random
bit, and a0a2 ← (Xn? f1(a0)f1(a2): f0(a0)f0(a2)). If a0 = a2 output a0,
otherwise output −1.

Then the algorithm of (b) would seem to be equivalent to

Set T ← 1, a← −1; while a < 0 set T ← 2T and a← sub(T); output a.

Prove, however, that this fails. (Randomized algorithms can be quite delicate!)
f) Patch the algorithm of (e) and obtain a correct alternative to (b).

104. [M21] Solve exercise 103(b) and 103(c) when each Xk is 1 with probability p.

21

From the Library of Melissa Nuno

ptg999

22 MATHEMATICAL PRELIMINARIES REDUX

� 105. [M30] (Random walk on an n-cycle.) Given integers a and n, with 0 ≤ a ≤ n,
let N be minimum such that (a+ (−1)X1 + (−1)X2 + · · ·+ (−1)XN)mod n = 0, where
X1, X2, . . . is a sequence of independent random bits. Find the generating function
ga =

∑∞
k=0 Pr(N = k)zk. What are the mean and variance of N?

106. [M25] Consider the algorithm of exercise 103(b) when the digits are d-ary instead
of ternary; thus f0(x) = max(0, x − 1) and f1(x) = min(d − 1, x + 1). Find the
generating function, mean, and variance of the number N of steps required before
a0 = a1 = · · · = ad−1 is first reached in this more general situation.

� 107. [M22] (Coupling.) If X is a random variable on the probability space Ω′ and
Y is another random variable on another probability space Ω′′, we can study them
together by redefining them on a common probability space Ω. All conclusions about
X or Y are valid with respect to Ω, provided that we have Pr(X = x) = Pr′(X = x)
and Pr(Y = y) = Pr′′(Y = y) for all x and y.

Such “coupling” is obviously possible if we let Ω be the set Ω′ × Ω′′ of pairs
{ω′ω′′ | ω′ ∈ Ω′ and ω′′ ∈ Ω′′}, and if we define Pr(ω′ω′′) = Pr′(ω′) Pr′′(ω′′) for each
pair of events. But coupling can also be achieved in many other ways.

For example, suppose Ω′ and Ω′′ each contain only two events, {Q, K} and {♣,♠},
with Pr′(Q) = p, Pr′(K) = 1 − p, Pr′′(♣) = q, Pr′′(♠) = 1 − q. We could couple them
with a four-event space Ω = {Q♣, Q♠, K♣, K♠}, having Pr(Q♣) = pq, Pr(Q♠) = p(1−q),
Pr(K♣) = (1−p)q, Pr(K♠) = (1−p)(1− q). But if p < q we could also get by with just
three events, letting Pr(Q♣) = p, Pr(K♣) = q − p, Pr(K♠) = 1 − q. A similar scheme
works when p > q, omitting K♣. And if p = q we need only two events, Q♣ and K♠.
a) Show that if Ω′ and Ω′′ each have just three events, with respective probabilities
{p1, p2, p3} and {q1, q2, q3}, they can always be coupled in a five-event space Ω.

b) Also, four events suffice if {p1, p2, p3} = { 1
12
, 5
12
, 6
12
}, {q1, q2, q3} = { 2

12
, 3
12
, 7
12
}.

c) But some three-event distributions cannot be coupled with fewer than five.

108. [HM21] If X and Y are integer-valued random variables such that Pr′(X ≥ n) ≤
Pr′′(Y ≥ n) for all integers n, find a way to couple them so that X≤ Y always holds.

109. [M27] Suppose X and Y have values in a finite partially ordered set P , and that

Pr ′(X � a for some a ∈ A) ≤ Pr ′′(Y � a for some a ∈ A), for all A ⊆ P.

We will show that there’s a coupling in which X � Y always holds.
a) Write out exactly what needs to be proved, in the simple case where P = {1, 2, 3}

and the partial order has 1≺ 3, 2≺ 3. (Let pk = Pr′(X= k) and qk = Pr′′(Y = k)
for k ∈ P . When P = {1, . . . , n}, a coupling is an n×nmatrix (pij) of nonnegative
probabilities whose row sums are

∑
j pij = pi and column sums are

∑
i pij = qj .)

Compare this to the result proved in the preceding exercise.
b) Prove that Pr′(X� b for some b ∈ B) ≥ Pr′′(Y� b for some b ∈ B), for all B⊆P .
c) A coupling between n pairs of events can be viewed as a flow in a network that

has 2n + 2 vertices {s, x1, . . . , xn, y1, . . . , yn, t}, where there are pi units of flow
from s to xi, pij units of flow from xi to yj , and qj units of flow from yj to t. The
“max-flow min-cut theorem” [see Section 7.5.3] states that such a flow is possible
if and only if there are no subsets I, J ⊆ {1, . . . , n} such that (i) every path from
s to t goes through some arc s−−→xi for i ∈ I or some arc yj−−→ t for j ∈ J , and
(ii)

∑
i∈I pi +

∑
j∈J qj < 1. Use that theorem to prove the desired result.

110. [M25] IfX and Y take values in {1, . . . , n}, let pk = Pr′(X= k), qk = Pr′′(Y = k),
and rk = min(pk, qk) for 1 ≤ k ≤ n. The probability that X = Y in any coupling is
obviously at most r =

∑n
k=1 rk.

22

From the Library of Melissa Nuno

ptg999

MATHEMATICAL PRELIMINARIES REDUX 23

a) Show that there always is a coupling with Pr(X = Y) = r.
b) Can the result of the previous exercise be extended, so that we have not only

Pr(X � Y) = 1 but also Pr(X = Y) = r?

� 111. [M20] A family of N permutations of the numbers {1, . . . , n} is called minwise

independent if, whenever 1 ≤ j ≤ k ≤ n and {a1, . . . , ak} ⊆ {1, . . . , n}, exactly N/k of
the permutations π have min(a1π, . . . , akπ) = ajπ.

For example, the family F of N = 60 permutations obtained by cyclic shifts of

123456, 126345, 152346, 152634, 164235, 154263, 165324, 164523, 156342, 165432

can be shown to be minwise independent permutations of {1, 2, 3, 4, 5, 6}.
a) Verify the independence condition for F in the case k = 3, a1 = 1, a2 = 3, a3 = 4.
b) Suppose we choose a random π from a minwise independent family, and assign

the “sketch” SA = mina∈A aπ to every A ⊆ {1, . . . , n}. Prove that, if A and B
are arbitrary subsets, Pr(SA = SB) = |A ∩B| / |A ∪B|.

c) Given three subsets A, B, C, what is Pr(SA = SB = SC)?

112. [M25] The size of a family F of minwise independent permutations must be a
multiple of k for each k ≤ n, by definition. In this exercise we’ll see how to construct
such a family with the minimum possible size, namely N = lcm(1, 2, . . . , n).

The basic idea is that, if all elements of the permutations in F that exceed m are
replaced by∞, the “truncated” family is still minwise independent in the sense that, if
mina∈A aπ =∞, we can imagine that the minimum occurs at a random element of A.
(This can happen only if π takes all elements of A to ∞.)
a) Conversely, show that anm-truncated family can be lifted to an (m+1)-truncated

family if, for each subset B of size n−m, we insert m+1 equally often into each
of B’s n−m positions, within the permutations whose ∞’s are in B.

b) Use this principle to construct minimum-size families F .

113. [M25] Although minwise permutations are defined only in terms of the mini-
mum operation, a minwise independent family actually turns out to be also maxwise
independent—and even more is true!

a) Let E be the event that aiπ < k, bπ = k, and cjπ > k, for any disjoint sets
{a1, . . . , al}, {b}, {c1, . . . , cr} ⊆ {1, . . . , n}. Prove that, if π is chosen randomly
from a minwise independent set, Pr(E) is the same as the probability that E
occurs when π is chosen randomly from the set of all permutations. (For example,
Pr(5π<7, 2π=7, 1π>7, 8π>7) = 6(n− 7)(n− 8)(n− 4)!/n!, whenever n ≥ 8.)

b) Furthermore, if {a1, . . . , ak} ⊆ {1, . . . , n}, the probability that ajπ is the rth
largest element of {a1π, . . . , akπ} is 1/k, whenever 1 ≤ j, r ≤ k.

� 114. [M28] (The “combinatorial nullstellensatz.”) Let f(x1, . . . , xn) be a polynomial
in which the coefficient of xd11 . . . xdnn is nonzero and each term has degree ≤ d1+· · ·+dn.
Given subsets S1, . . . , Sn of the field of coefficients, with |Sj | > dj for 1 ≤ j ≤ n, choose
X1, . . . , Xn independently and uniformly, with each Xj ∈ Sj . Prove that

Pr(f(X1, . . . ,Xn) �= 0) ≥ |S1|+ · · ·+ |Sn| − (d1 + · · ·+ dn + n) + 1

|S1| . . . |Sn| .

Hint: See exercise 4.6.1–16.

115. [M21] Prove that an m × n grid cannot be fully covered by p horizontal lines,
q vertical lines, r diagonal lines of slope +1, and r diagonal lines of slope −1, if
m = p + 2�r/2� + 1 and n = q + 2�r/2� + 1. Hint: Apply exercise 114 to a suitable
polynomial f(x, y).

23

From the Library of Melissa Nuno

ptg999

24 MATHEMATICAL PRELIMINARIES REDUX

116. [HM25] Use exercise 114 to prove that, if p is prime, any multigraph G on n
vertices with more than (p − 1)n edges contains a nonempty subgraph in which the
degree of every vertex is a multiple of p. (In particular, if each vertex of G has fewer
than 2p neighbors, G contains a p-regular subgraph. A loop from v to itself adds two
to v’s degree.) Hint: Let the polynomial contain a variable xe for each edge e of G.

� 117. [HM25] Let X have the binomial distribution Bn(p), so that Pr(X = k) =(
n
k

)
pk(1− p)n−k for 0 ≤ k ≤ n. Prove that X modm is approximately uniform:∣∣∣Pr(X modm = r)− 1

m

∣∣∣ < 2

m

∞∑
j=1

e−8p(1−p)j
2n/m2

, for 0 ≤ r < m.

118. [M20] Use the second moment principle to prove the Paley–Zygmund inequality

Pr(X ≥ x) ≥ (EX − x)2

EX2
, if 0 ≤ x ≤ EX.

119. [HM24] Let x be a fixed value in [0 . . 1]. Prove that, if we independently and
uniformly choose U ∈ [0 . . x], V ∈ [x . . 1], W ∈ [0 . . 1], then the median 〈UVW 〉 is
uniformly distributed in [min(U, V,W) . .max(U, V,W)].

120. [M20] Consider random binary search trees Tn obtained by successively inserting
independent uniform deviates U1, U2, . . . into an initially empty tree. Let Tnk be the
number of external nodes on level k, and define Tn(z) =

∑∞
k=0 Tnkz

k/(n+1). Prove that
Zn = Tn(z)/gn+1(z) is a martingale, where gn(z) = (2z+n− 2)(2z+n− 3) . . . (2z)/n!
is the generating function for the cost of the nth insertion (exercise 6.2.2–6).

� 121. [M26] Let X and Y be random variables with the distributions Pr(X = t) = x(t)
and Pr(Y = t) = y(t). The ratio ρ(t) = y(t)/x(t), which may be infinity, is called the
probability density of Y with respect to X. We define the relative entropy of X with

respect to Y, also called the Kullback–Leibler divergence of X from Y, by the formulas

D(y ||x) = E(ρ(X) lg ρ(X)) = E lg ρ(Y) =
∑
t

y(t) lg
y(t)

x(t)
,

with 0 lg 0 and 0 lg(0/0) understood to mean 0. It can be viewed intuitively as the
number of bits of information that are lost when X is used to approximate Y.

a) Suppose X is a random six-sided die with the uniform distribution, but Y is
a “loaded” die in which Pr(Y = �) = 1

5
and Pr(Y = �

�
�

�
�
�) = 2

15
, instead of 1

6
.

Compute D(y ||x) and D(x||y).
b) Prove that D(y ||x) ≥ 0. When is it zero?
c) If p = Pr(X ∈ T) and q = Pr(Y ∈ T), show that E(lg ρ(Y) |Y ∈ T) ≥ lg(q/p).
d) Suppose x(t) = 1/m for all t in anm-element set S, and y(t) �= 0 only when t ∈ S.

Express D(y ||x) in terms of the entropy HY = E lg(1/Y) (see Eq. 6.2.2–(18)).
e) Let Z(u, v) = Pr(X = u andY = v) when X and Y have any joint distribution,

and letW (u, v) be that same probability under the assumption that X and Y are
independent. The joint entropy HX,Y is defined to be HZ , and the mutual infor-

mation IX,Y is defined to be D(z ||w). Prove that HW = HX +HY and IX,Y =
HW −HZ . (Consequently HX,Y ≤ HX +HY , and IX,Y measures the difference.)

f) Let HX|Y = HX − IX,Y = HX,Y −HY =
∑

t y(t)HX|t be the average uncertainty
of X, in bits, after Y has been revealed. Prove that HX|(Y,Z) ≤ HX|Y .

122. [HM24] Continuing exercise 121, compute D(y ||x) and D(x||y) when
a) x(t) = 1/2t+1 and y(t) = 3t/4t+1 for t = 0, 1, 2, . . . ;
b) x(t) = e−np(np)t/t! and y(t) =

(
n
t

)
pt(1 − p)n−t, for t ≥ 0 and 0 < p < 1. (Give

asymptotic answers with absolute error O(1/n), for fixed p as n→∞.)

24

From the Library of Melissa Nuno

ptg999

MATHEMATICAL PRELIMINARIES REDUX 25

� 123. [M20] Let X and Y be as in exercise 121. The random variable Z = A? Y : X
either has the distribution x(t) or y(t), but we don’t know whether A is true or false. If
we believe that the hypothesis Z = Y holds with the a priori probability Pr(A) = pk,
we assume that zk(t) = Prk(Z = t) = pkx(t) + (1 − pk)y(t). But after seeing a
new value of Z, say Z = Zk, we will believe the hypothesis with the a posteriori

probability pk+1 = Pr(A |Zk). Show thatD(y ||x) is the expected “information gained,”
lg(pk+1/(1− pk+1))− lg(pk/(1− pk)), averaged with respect to the distribution of Y.

124. [HM22] (Importance sampling.) In the setting of exercise 121, we have E f(Y) =
E(ρ(X)f(X)) for any function f ; thus ρ(t) measures the “importance” of the X-value t
with respect to the Y-value t. Many situations arise when it’s easy to generate random
variables with an approximate distribution x(t), but difficult to generate them with
the exact distribution y(t). In such cases we can estimate the average value E(f) =
E f(Y) by calculating En(f) = (ρ(X1)f(X1)+ · · ·+ ρ(Xn)f(Xn))/n, where the Xj are
independent random variables, each distributed as x(t).

Let n = c42D(y||x). Prove that if c > 1, this estimate En is relatively accurate:

|E(f)− En(f)| ≤ ‖f‖ (1/c+ 2
√
Δc), where Δc = Pr(ρ(Y) > c22D(y||x)).

(Here ‖f‖ denotes (E f(Y)2)1/2.) On the other hand if c < 1 the estimate is poor:

Pr(En(1) ≥ a) ≤ c2 + (1−Δc)/a. for 0 < a < 1,

Here ‘1’ denotes the constant function f(y) = 1 (hence E(1) = 1).

� 125. [M28] Let 〈an〉 = a0, a1, a2, . . . be a sequence of nonnegative numbers with no
“internal zeros” (no indices i < j < k such that ai > 0, aj = 0, ak > 0). We call it log-
convex if a2n ≤ an−1an+1 for all n ≥ 1, and log-concave if a2n ≥ an−1an+1 for all n ≥ 1.

a) What sequences are both log-convex and log-concave?

b) If 〈an〉 is log-convex or log-concave, so is its “left shift” 〈an+1〉 = a1, a2, a3,
What can be said about the “right shift” 〈an−1〉 = c, a0, a1, . . . , given c?

c) Show that a log-concave sequence has aman ≥ am−1an+1 whenever 1 ≤ m ≤ n.

d) If 〈an〉 and 〈bn〉 are log-convex, show that 〈an + bn〉 is also log-convex.
e) If 〈an〉 and 〈bn〉 are log-convex, show that 〈

∑
k

(
n
k

)
akbn−k〉 is also log-convex.

f) If 〈an〉 and 〈bn〉 are log-concave, is 〈
∑

k akbn−k〉 also log-concave?
g) If 〈an〉 and 〈bn〉 are log-concave, is 〈

∑
k

(
n
k

)
akbn−k〉 also log-concave?

126. [HM22] Suppose X1, . . . , Xn are independent binary random variables with
EXk = m/n for all k, where 0 ≤ m ≤ n. Prove that Pr(X1+· · ·+Xn = m) = Ω(n−1/2).

127. [HM30] Say that a binary vector x = x1 . . . xn is sparse if νx ≤ θn, where θ is a
given threshold parameter, 0 < θ < 1

2 . Let S(n, θ) be the number of sparse vectors.

a) Show that S(n, θ) ≤ 2H(θ)n, where H denotes entropy.

b) On the other hand, S(n, θ) is also Ω(2H(θ)n/
√
n).

c) Let X ′ and X ′′ be independent and uniformly distributed sparse vectors, and let
x be any binary vector, all of length n. Prove that x⊕X ′⊕X ′′ is q.s. not sparse.
[Hint: Both X ′ and X ′′ q.s. have nearly θn 1s. Furthermore exercise 126 can be
used to pretend that the individual bits of x⊕X ′ ⊕X ′′ are independent.]

� 128. [HM26] Consider n independent processors that are competing for access to a
shared database. They’re totally unable to communicate with each other, so they
agree to adopt the following protocol: During each unit of time, called a “round,”
each processor independently generates a random uniform deviate U and “pings” the

25

From the Library of Melissa Nuno

ptg999

26 MATHEMATICAL PRELIMINARIES REDUX

database (attempts an access) if U < 1/n. If exactly one processor pings, its attempt
succeeds; otherwise nobody gets access during that round.

a) What is the probability that some processor pings successfully, in a given round?

b) How many rounds does a particular processor have to wait, on average, before
being successful? (Give an asymptotic answer, correct to O(1/n).)

c) Let ε be any positive constant. Prove that the processors a.s. will all have at least
one success during the first (1 + ε)en lnn rounds. Hint: See exercise 3.3.2–10.

d) But prove also that they a.s. will not all succeed during (1− ε)en lnn rounds.

129. [HM28] (General rational summation.) Let r(x) = p(x)/q(x), where p and q are
polynomials, deg(q) ≥ deg(p) + 2, and q has no integer roots. Prove that

∞∑
k=−∞

p(k)

q(k)
= −π

t∑
j=1

(Residue of r(z) cotπz at zj),

where z1, . . . , zt are the roots of q. Hint: Show that 1
2πi

∮
r(z) cotπz dz = O(1/M),

when the integral is taken along the square path for which max(|�z|, | z|) = M + 1
2
.

Use this method to evaluate the following sums in “closed form”:

∞∑
k=−∞

1

(2k − 1)2
;

∞∑
k=−∞

1

k2 + 1
;

∞∑
k=−∞

1

k2 + k + 1
;

∞∑
k=−∞

1

(k2 + k + 1)(2k − 1)
.

130. [HM30] Many of the probability distributions that arise in modern computer
applications have “heavy tails,” in contrast to bell-shaped curves that are concentrated
near the mean. The simplest and most useful example—although it also is somewhat
paradoxical— is the Cauchy distribution, defined by

Pr(X ≤ x) =
1

π

∫ x

−∞

dt

1 + t2
.

a) If X is a Cauchy deviate, what are EX and EX2?

b) What are Pr(|X| ≤ 1), Pr(|X| ≤ √3), and Pr(|X| ≤ 2 +
√
3)?

c) If U is a uniform deviate, show that tan(π(U − 1/2)) is a Cauchy deviate.

d) Suggest other ways to generate Cauchy deviates.

e) Let Z = pX+qY where X and Y are independent Cauchy deviates and p+q = 1,
p, q > 0. Prove that Z has the Cauchy distribution.

f) Let X = (X1, . . . , Xn) be a vector of n independent Cauchy deviates, and let
c = (c1, . . . , cn) be any vector of real numbers. What is the distribution of the
dot product c ·X = (c1X1 + · · ·+ cnXn)?

g) What is the “characteristic function” E eitX , when X is a Cauchy deviate?

131. [HM30] An integer-valued analog of Cauchy deviates, which we shall call the
“iCauchy distribution” for convenience, has Pr(X = n) = c/(1+n2) for −∞ < n <∞.

a) What constant c makes this a valid probability distribution?

b) Compare the distribution of X + Y to the distribution of 2Z, when X, Y , and Z
are independent iCauchy deviates.

� 132. [HM26] Choose n balls from an urn that contains N balls, K of which are green.

a) What’s the probability pk that exactly k green balls are chosen?

b) What are the mean, modes, and variance? (A mode in a probability distribution
is a value of k that’s a local maximum: pk−1 ≤ pk ≥ pk+1 and pk > 0.)

26

From the Library of Melissa Nuno

ptg999

MATHEMATICAL PRELIMINARIES REDUX 27

c) Let Xj = [the jth ball is green], so that pk = Pr(X1 + · · · + Xn = k). Use a
Doob martingale to establish an exponentially small upper bound on the tail
probability Pr(X1 + · · ·+Xn ≥ nK/N + x).

133. [M25] Call t rows of a binary matrix shattered if all 2t possible columns occur.

a) Prove that any binary matrix with m rows and more than f(m, t) =
(
m
0

)
+
(
m
1

)
+

· · ·+ (m
t−1

)
distinct columns contains t shattered rows.

b) Construct a matrix with m rows and f(m, t) distinct columns, no t shattered.

134. [HM28] (V. N. Vapnik and A. Ya. Chervonenkis, 1971.) Many different events
A = {A1, . . . , An}, which depend on each other in complicated ways, might be of
interest simultaneously, and we often want to learn their probabilities pj = Pr(Aj) by
observing a sufficiently large sample. If X = {X1, . . . ,Xm} is a subset of the probability
space Ω, the probability of sampling X (with replacement) is Pr(X1) . . .Pr(Xm).

Consider the random m × n binary matrix whose entries are Xij = [Xi ∈Aj] =
[the atomic event Xi is an instance of Aj]. The empirical probability P̂ j(X) based on
sample X is then Mj(X)/m, where Mj(X) = X1j + · · ·+Xmj , for 1 ≤ j ≤ n.

Let Ej(X) = |P̂ j(X)−pj | be the difference between the empirical and actual prob-
abilities. We hope that the uniform sampling error E(X) = max1≤j≤nEj(X) is small.

a) For all ε > 0 and 1 ≤ j ≤ n, prove that Pr(Ej(X) > ε) ≤ 1/(4ε2m).

b) Given independent m-samples X and X ′, let Êj(X ,X ′) = |P̂ j(X) − P̂ j(X ′)|.
Show that Pr(Êj(X ,X ′) > ε) < 2e−2ε

2m. Hint: See exercise 132.

c) Let Δm(A) be the maximum number of distinct columns that can appear in any
of the m× n binary matrices obtainable from samples X of size m. If m ≥ 2/ε2,
use (a) and (b) to prove that Pr(E(X) > ε) ≤ 4Δ2m(A)e−ε2m/8.

[Note: The maximum d such that d atomic events of Ω can be shattered by the events
of A is called the Vapnik–Chervonenkis dimension of A. Exercise 133 shows that
Δm(A) has polynomial growth of degree d.]

135. [HM30] (Baxter permutations.) Let P = p1 . . . pn be a permutation of {1, . . . , n},
and let P− = q1 . . . qn be its inverse. These permutations are called Baxter permuta-
tions if and only if there are no indices k and l with 0 < k, l < n such that either (pk < l
and pk+1 > l and ql > k and ql+1 < k) or (qk < l and qk+1 > l and pl > k and pl+1 < k).

What’s a good way to count the number bn of n-element Baxter permutations?

136. [HM20] Let f(x)=[x> 0]x lnx be the fundamental convex function that under-
lies formulas for entropy. Prove or disprove: If 0≤x≤y≤1 then |f(y)−f(x)|≤|f(y−x)|.
137. [HM31] The median of a real-valued random variable X is a value m for which
Pr(X ≤ m) ≥ 1

2
and Pr(X ≥ m) ≥ 1

2
. For example, if X is a binary random variable

with EX = p, then 1 is a median ⇐⇒ p ≥ 1
2
; 0 is a median ⇐⇒ p ≤ 1

2
; and a value m

between 0 and 1 is a median ⇐⇒ p = 1
2 . Let medX be the set of all X’s medians.

a) Show that medX is always a closed interval [m. .m], for some real m ≤ m.
b) If m < m, then Pr(X ≤ m) = Pr(X ≥ m) = 1

2
. (Discretely, X is never actually

equal to any value of medX except for the two extreme elements m and m.)

c) True or false: If Pr(X ∈ [x . . y]) ≥ 1
2 then [x . . y] ⊇ medX.

d) Assuming that E |X − c| exists for all c, show that E |X −m| = minc E |X − c| if
and only if m ∈ medX.

e) True or false: If μ = EX and σ2 = varX and m ∈ medX then |μ−m| ≤ σ.
f) Prove an analog of Jensen’s inequality: If f is convex for all real values of x, then

f(medX)≤med f(X), assuming that we interpret this formula properly in cases
when medX and/or med f(X) aren’t unique.

27

From the Library of Melissa Nuno

ptg999

28 MATHEMATICAL PRELIMINARIES REDUX

� 138. [M21] (Law of total variance.) The “truly marvelous identity” (12), which is
often called the law of total expectation, has an even more marvelous counterpart:

var(X) = var(E(X |Y))+ E(var(X |Y)).

“The overall variance of a random variable X is the variance of its average plus the
average of its variance, with respect to any other random variable Y .” Prove it.

� 139. [HM33] (Frank Spitzer, 1956.) A random walk is defined by S0 = 0 and Sn =
Sn−1 + Xn for n > 0, where the integer-valued random variables X1, X2, . . . are
independent and have the same distribution. Let S+n = max(Sn, 0), S

−
n = max(−Sn, 0),

Rn = max(S0, S1, . . . , Sn), R
+
n = Rn − Sn, and define the generating functions

rn(w, z) =
∑
j,k

Pr(Rn=j,R
+
n=k)w

jzk, s+n (z) =
∑
k

Pr(S+n =k)z
k, s−n (z) =

∑
k

Pr(S−n =k)z
k.

Prove that these three basic quantities are related by the remarkable formula

∞∑
n=0

rn(w, z)t
n = exp

(∞∑
n=1

(s+n (w) + s−n (z)− 1)
tn

n

)
.

� 140. [HM34] (Smoothed analysis.) Algorithms are traditionally analyzed by either
studying their worst case or an “average” case. A nice compromise between these
extremes was introduced by D. A. Spielman and S.-H. Teng in JACM 51 (2004),
385–463: An adversary sets up the data for some particular case, and this data is
perturbed by some random process. Then we analyze the expected running time when
the algorithm is applied to the perturbed data, maximizing over all cases.

The purpose of this exercise is to carry out a smoothed analysis of Algorithm
1.2.10M, the very first algorithm that was analyzed in TAOCP: Given a sequence X =
x1 . . . xn of distinct numbers, let λ(X) be the number of left-to-right maxima, namely
the number of indices k with xk > xj for 1 ≤ j < k. When X is a random permutation,

we showed in Section 1.2.10 that Eλ(X) = Hn ≈ lnn and varλ(X) = Hn −H
(2)
n . On

the other hand, λ(X) can be as large as n.

Several natural models will give a smooth transition between lnn and n, when
we suppose that an arbitrary sequence X = x̄1 . . . x̄n is perturbed to get X = x1 . . . xn.

a) Given a permutation X of {1, . . . , n}, mark each x̄k with probability p (indepen-
dently); then permute the marked elements uniformly to get X. What is Eλ(X)
when X = 12 . . . n (the only case for which λ(X) = n), and 0 < p < 1 is fixed?

b) Continuing (a), explore Eλ(X) when X = (n−m+ 1) . . . n 1 . . . (n−m), p = 1
2
.

c) Continuing (a) and (b), show that Eλ(X) = O(
√
(n logn)/p) for all X.

d) A single swap in model (a) can reduce λ(X) from n to 1! So the following model
is better: Let 0 ≤ x̄k ≤ 1 for 1 ≤ k ≤ n, and set xk ← x̄k + δk, where δk is
uniformly random in [−ε . . ε]. Show that Eλ(X) is greatest when x̄1 ≤ · · · ≤ x̄n.

e) Continuing (d), show that in this model we have Eλ(X) = O(
√
n/ε+ logn).

141. [M20] (Arithmetic and geometric mean inequality). When xk, pk > 0, prove that

p1x1 + p2x2 + · · ·+ pnxn
p1 + p2 + · · ·+ pn

≥ (xp11 xp22 . . . xpnn)1/(p1+p2+···+pn).

(For integer pk, these are the means of the multiset {p1 · x1, p2 · x2, . . . , pn · xn}.)

28

From the Library of Melissa Nuno

ptg999

MATHEMATICAL PRELIMINARIES REDUX 29

� 142. [M30] (L. J. Rogers, 1887.) Let Mr = E |X|r be the rth absolute “moment” of
the random variable X. (In particular, Mr =∞ if r < 0 and Pr(X=0) > 0.)
a) Suppose q ≤ r ≤ s ≤ t and q+t = r+s. Set the values of (aj , bj , xj , yj) in Binet’s

identity, exercise 1.2.3–30, to (pj , pjx
s−q
j , xqj , x

r
j), where p1, p2, . . . are probabili-

ties that sum to 1. What inequality involving Mq , Mr, Ms, Mt do you get?
b) Deduce from exercise 141 thatMs−r

q Mq−s
r Mr−q

s ≥ 1 when q < r < s and Mr <∞.
Hint: What happens when pj and xj are replaced respectively by pjx

r
j and x

s−r
j ?

c) Let p > 1. Use the fact that M1/p ≤M
1/p
1 to prove Hölder’s inequality :

n∑
k=1

akbk ≤
(n∑
k=1

apk

)1
p
(n∑
k=1

bqk

)1
q

, if 1
p +

1
q = 1 and ak, bk ≥ 0.

d) Consequently |EXY | ≤ (E |X|p)1/p(E |Y |q)1/q.
143. [M22] For p > 1, use Hölder’s inequality to prove Minkowski’s inequality :

(E |X + Y |p)1/p ≤ (E |X|p)1/p + (E |Y |p)1/p.
144. [HM26] If EX exists and is finite, clearly E(X − EX) = 0.

a) If p ≥ 1 and EY = 0, then E |X|p ≤ E |X + Y |p when X and Y are independent.
b) The symmetrization of a random variable X is Xsym = X+−X−, where X+ and

X− are independent random variables, each with the same distribution as X.
Prove that p ≥ 1 and EX = 0 implies E |X|p ≤ E |Xsym|p.

c) Suppose X1, . . . , Xn are independent random variables that are symmetric
about 0, in the sense that Pr(Xj = x) = Pr(Xj = −x) for 1 ≤ j ≤ n and all x.
Prove that E |X1|p + · · · + E |Xn|p ≤ E |X1 + · · · + Xn|p, when p ≥ 2. Hint:

|x|p + |y|p ≤ 1
2 (|x+ y|p + |x− y|p).

d) Now suppose only that X1, . . . , Xn are independent with EX1 = · · · = EXn = 0.
Prove that E |X1|p+ · · · + E |Xn|p ≤ 2p E |X1 + · · · +Xn|p for p ≥ 2.

� 145. [M20] (Khinchin’s inequality.) Let a1, . . . , an be real numbers and let X1, . . . ,
Xn be random signs: Independently, eachXk is equally likely to be +1 or−1. Prove that

(a21 + · · ·+ a2n)
m ≤ E((a1X1 + · · ·+ anXn)

2m) ≤ (2m− 1)!! (a21 + · · ·+ a2n)
m

for all integers m ≥ 0, where (2m− 1)!! =
∏m

k=1(2k − 1) is a “semifactorial.”

146. [M25] (Marcinkiewicz and Zygmund’s inequality.) Let X1, . . . , Xn be indepen-
dent random variables, each with mean 0 but possibly with different distributions. Then

1

22m
E
((n∑

k=1

X2
k

)m)
≤ E
((n∑

k=1

Xk

)2m)
≤ 22m(2m− 1)!! E

((n∑
k=1

X2
k

)m)
.

147. [M34] (Rosenthal’s inequality.) Under the assumptions of exercise 146,

1

22m
B ≤ E

((n∑
k=1

Xk

)2m)
≤ 2m

2+2m(2m− 1)!!B, B = max
(n∑
k=1

EX2m
k ,
(n∑
k=1

EX2
k

)m)
.

Every man must judge for himself between conflicting vague probabilities.

— CHARLES DARWIN, letter to N. A. von Mengden (5 June 1879)

29

From the Library of Melissa Nuno

ptg999

30 COMBINATORIAL SEARCHING

Nowhere to go but out,

Nowhere to come but back.

— BEN KING, in The Sum of Life (c. 1893)

Lewis back-tracked the original route up the Missouri.

— LEWIS R. FREEMAN, in National Geographic Magazine (1928)

When you come to one legal road that’s blocked,

you back up and try another.

— PERRY MASON, in The Case of the Black-Eyed Blonde (1944)

7.2.2. Backtrack Programming

Now that we know how to generate simple combinatorial patterns such as tuples,
permutations, combinations, partitions, and trees, we’re ready to tackle more
exotic patterns that have subtler and less uniform structure. Instances of almost
any desired pattern can be generated systematically, at least in principle, if we
organize the search carefully. Such a method was christened “backtrack” by
R. J. Walker in the 1950s, because it is basically a way to examine all fruitful
possibilities while exiting gracefully from situations that have been fully explored.

Most of the patterns we shall deal with can be cast in a simple, gen-
eral framework: We seek all sequences x1x2 . . . xn for which some property
Pn(x1, x2, . . . , xn) holds, where each item xk belongs to some given domain Dk

of integers. The backtrack method, in its most elementary form, involves the
invention of intermediate “cutoff” properties Pl(x1, . . . , xl) for 1 ≤ l < n, such
that

Pl(x1, . . . , xl) is true whenever Pl+1(x1, . . . , xl+1) is true; (1)

Pl(x1, . . . , xl) is fairly easy to test, if Pl−1(x1, . . . , xl−1) holds. (2)

(We assume that P0() is always true. Exercise 1 shows that all of the basic
patterns studied in Section 7.2.1 can easily be formulated in terms of domainsDk

and cutoff properties Pl.) Then we can proceed lexicographically as follows:

Algorithm B (Basic backtrack). Given domains Dk and properties Pl as above,
this algorithm visits all sequences x1x2 . . . xn that satisfy Pn(x1, x2, . . . , xn).

B1. [Initialize.] Set l← 1, and initialize the data structures needed later.

B2. [Enter level l.] (Now Pl−1(x1, . . . , xl−1) holds.) If l > n, visit x1x2 . . . xn
and go to B5. Otherwise set xl ← minDl, the smallest element of Dl.

B3. [Try xl.] If Pl(x1, . . . , xl) holds, update the data structures to facilitate
testing Pl+1, set l← l + 1, and go to B2.

B4. [Try again.] If xl �= maxDl, set xl to the next larger element of Dl and
return to B3.

B5. [Backtrack.] Set l← l−1. If l > 0, downdate the data structures by undoing
the changes recently made in step B3, and return to B4. (Otherwise stop.)

The main point is that if Pl(x1, . . . , xl) is false in step B3, we needn’t waste time
trying to append any further values xl+1 . . . xn. Thus we can often rule out huge
regions of the space of all potential solutions. A second important point is that
very little memory is needed, although there may be many, many solutions.

30

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 31

For example, let’s consider the classic problem of n queens : In how many
ways can n queens be placed on an n× n board so that no two are in the same
row, column, or diagonal? We can suppose that one queen is in each row, and
that the queen in row k is in column xk, for 1 ≤ k ≤ n. Then each domain Dk

is {1, 2, . . . , n}; and Pn(x1, . . . , xn) is the condition that

xj �= xk and |xk − xj | �= k − j, for 1 ≤ j < k ≤ n. (3)

(If xj = xk and j < k, two queens are in the same column; if |xk − xj | = k − j,
they’re in the same diagonal.)

This problem is easy to set up for Algorithm B, because we can let property
Pl(x1, . . . , xl) be the same as (3) but restricted to 1 ≤ j < k ≤ l. Condition (1)
is clear; and so is condition (2), because Pl requires testing (3) only for k = l
when Pl−1 is known. Notice that P1(x1) is always true in this example.

One of the best ways to learn about backtracking is to execute Algorithm B
by hand in the special case n = 4 of the n queens problem: First we set x1 ← 1.
Then when l = 2 we find P2(1, 1) and P2(1, 2) false; hence we don’t get to l = 3
until trying x2 ← 3. Then, however, we’re stuck, because P3(1, 3, x) is false for
1 ≤ x ≤ 4. Backtracking to level 2, we now try x2 ← 4; and this allows us to
set x3 ← 2. However, we’re stuck again, at level 4; and this time we must back
up all the way to level 1, because there are no further valid choices at levels 3
and 2. The next choice x1 ← 2 does, happily, lead to a solution without much
further ado, namely x1x2x3x4 = 2413. And one more solution (3142) turns up
before the algorithm terminates.

The behavior of Algorithm B is nicely visualized as a tree structure, called a
search tree or backtrack tree. For example, the backtrack tree for the four queens
problem has just 17 nodes,

1 2 3 4

3 4

2

4

1

3 2

4

1

3

1 2

, (4)

corresponding to the 17 times step B2 is performed. Here xl is shown as the
label of an edge from level l − 1 to level l of the tree. (Level l of the algorithm
actually corresponds to the tree’s level l − 1, because we’ve chosen to represent
patterns using subscripts from 1 to n instead of from 0 to n−1 in this discussion.)
The profile (p0, p1, . . . , pn) of this particular tree— the number of nodes at each
level— is (1, 4, 6, 4, 2); and we see that the number of solutions, pn = p4, is 2.

Figure 68 shows the corresponding tree when n = 8. This tree has 2057
nodes, distributed according to the profile (1, 8, 42, 140, 344, 568, 550, 312, 92).
Thus the early cutoffs facilitated by backtracking have allowed us to find all 92
solutions by examining only 0.01% of the 88 = 16,777,216 possible sequences
x1 . . . x8. (And 88 is only 0.38% of the

(
64
8

)
= 4,426,165,368 ways to put eight

queens on the board.)

31

From the Library of Melissa Nuno

ptg999

32 COMBINATORIAL SEARCHING 7.2.2

Fig. 68. The problem of placing eight nonattacking queens has this backtrack tree.

Notice that, in this case, Algorithm B spends most of its time in the vicinity
of level 5 below the root. Such behavior is typical: The tree for n = 16 queens has
1,141,190,303 nodes, and its profile is (1, 16, 210, 2236, 19688, 141812, 838816,
3998456, 15324708, 46358876, 108478966, 193892860, 260303408, 253897632,
171158018, 72002088, 14772512), concentrated near level 12.

Data structures. Backtrack programming is often used when a huge tree of
possibilities needs to be examined. Thus we want to be able to test property Pl
as quickly as possible in step B3.

One way to implement Algorithm B for the n queens problem is to avoid
auxiliary data structures and simply to make a bunch of sequential comparisons
in that step: “Is xl−xj ∈ {j−l, 0, l−j} for some j < l?” Assuming that we must
access memory whenever referring to xj , given a trial value xl in a register, such
an implementation performs approximately 112 billion memory accesses when
n = 16; that’s about 98 mems per node.

We can do better by introducing three simple arrays. Property Pl in (3)
says essentially that the numbers xk are distinct, and so are the numbers xk+k,
and so are the numbers xk − k. Therefore we can use auxiliary Boolean arrays
a1 . . . an, b1 . . . b2n−1, and c1 . . . c2n−1, where aj means ‘some xk = j’, bj means
‘some xk + k − 1 = j’, and cj means ‘some xk − k + n = j’. Those arrays are
readily updated and downdated if we customize Algorithm B as follows:

B1*. [Initialize.] Set a1 . . . an ← 0 . . . 0, b1 . . . b2n−1 ← 0 . . . 0, c1 . . . c2n−1 ←
0 . . . 0, and l← 1.

B2*. [Enter level l.] (Now Pl−1(x1, . . . , xl−1) holds.) If l > n, visit x1x2 . . . xn
and go to B5*. Otherwise set t← 1.

B3*. [Try t.] If at = 1 or bt+l−1 = 1 or ct−l+n = 1, go to B4*. Otherwise set
at ← 1, bt+l−1 ← 1, ct−l+n ← 1, xl ← t, l← l + 1, and go to B2*.

B4*. [Try again.] If t < n, set t← t+ 1 and return to B3*.

B5*. [Backtrack.] Set l ← l − 1. If l > 0, set t ← xl, ct−l+n ← 0, bt+l−1 ← 0,
at ← 0, and return to B4*. (Otherwise stop.)

Notice how step B5* neatly undoes the updates that step B3* had made, in the
reverse order. Reverse order for downdating is typical of backtrack algorithms,

32

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 33

although there is some flexibility; we could, for example, have restored at before
bt+l−1 and ct−l+n, because those arrays are independent.

The auxiliary arrays a, b, c make it easy to test property Pl at the beginning
of step B3*, but we must also access memory when we update them and downdate
them. Does that cost us more than it saves? Fortunately, no: The running time
for n = 16 goes down to about 34 billion mems, roughly 30 mems per node.

Furthermore we could keep the bit vectors a, b, c entirely in registers, on a
machine with 64-bit registers, assuming that n ≤ 32. Then there would be just
two memory accesses per node, namely to store xl ← t and later to fetch t← xl.
However, quite a lot of in-register computation would become necessary.

Walker’s method. The 1950s-era programs of R. J. Walker organized back-
tracking in a somewhat different way. Instead of letting xl run through all
elements of Dl, he calculated and stored the set

Sl ←
{
x ∈ Dl

∣∣ Pl(x1, . . . , xl−1, x) holds} (5)

upon entry to each node at level l. This computation can often be done efficiently
all at once, instead of piecemeal, because some cutoff properties make it possible
to combine steps that would otherwise have to be repeated for each x ∈ Dl. In
essence, he used the following variant of Algorithm B:

AlgorithmW (Walker’s backtrack). Given domainsDk and cutoffs Pl as above,
this algorithm visits all sequences x1x2 . . . xn that satisfy Pn(x1, x2, . . . , xn).

W1. [Initialize.] Set l← 1, and initialize the data structures needed later.

W2. [Enter level l.] (Now Pl−1(x1, . . . , xl−1) holds.) If l > n, visit x1x2 . . . xn
and go to W4. Otherwise determine the set Sl as in (5).

W3. [Try to advance.] If Sl is nonempty, set xl ← minSl, update the data
structures to facilitate computing Sl+1, set l← l + 1, and go to W2.

W4. [Backtrack.] Set l ← l − 1. If l > 0, downdate the data structures by
undoing changes made in step W3, set Sl ← Sl \xl, and retreat to W3.

Walker applied this method to the n queens problem by computing Sl =
U \Al \Bl \ Cl, where U = Dl = {1, . . . , n} and
Al= {xj | 1≤ j < l}, Bl= {xj+j− l | 1≤ j < l}, Cl= {xj−j+ l | 1≤ j < l}. (6)

He represented these auxiliary sets by bit vectors a, b, c, analogous to (but
different from) the bit vectors of Algorithm B* above. Exercise 10 shows that
the updating in step W3 is easy, using bitwise operations on n-bit numbers;
furthermore, no downdating is needed in step W4. The corresponding run time
when n = 16 turns out to be just 9.1 gigamems, or 8 mems per node.

Let Q(n) be the number of solutions to the n queens problem. Then we have

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Q(n) = 1 1 0 0 2 10 4 40 92 352 724 2680 14200 73712 365596 2279184 14772512

and the values for n ≤ 11 were computed independently by several people during
the nineteenth century. Small cases were relatively easy; but when T. B. Sprague

33

From the Library of Melissa Nuno

ptg999

34 COMBINATORIAL SEARCHING 7.2.2

had finished computing Q(11) he remarked that “This was a very heavy piece of
work, and occupied most of my leisure time for several months. . . . It will, I imag-
ine, be scarcely possible to obtain results for larger boards, unless a number of
persons co-operate in the work.” [See Proc. Edinburgh Math. Soc. 17 (1899), 43–
68; Sprague was the leading actuary of his day.] Nevertheless, H. Onnen went on
to evaluate Q(12) = 14,200—an astonishing feat of hand calculation— in 1910.
[See W. Ahrens,Math. Unterhaltungen und Spiele 2, second edition (1918), 344.]

All of these hard-won results were confirmed in 1960 by R. J. Walker, using
the SWAC computer at UCLA and the method of exercise 10. Walker also
computed Q(13); but he couldn’t go any further with the machine available to
him at the time. The next step, Q(14), was computed by Michael D. Kennedy at
the University of Tennessee in 1963, commandeering an IBM 1620 for 120 hours.
S. R. Bunch evaluated Q(15) in 1974 at the University of Illinois, using about
two hours on an IBM System 360-75; then J. R. Bitner found Q(16) after about
three hours on the same computer, but with an improved method.

Computers and algorithms have continued to get better, of course, and such
results are now obtained almost instantly. Hence larger and larger values of n
lie at the frontier. The whopping value Q(27) = 234,907,967,154,122,528, found
in 2016 by Thomas B. Preußer and Matthias R. Engelhardt, probably won’t be
exceeded for awhile! [See J. Signal Processing Systems 88 (2017), 185–201. This
distributed computation occupied a dynamic cluster of diverse FPGA devices for
383 days; those devices provided a total peak of more than 7000 custom-designed
hardware solvers to handle 2,024,110,796 independent subproblems.]

Permutations and Langford pairs. Every solution x1 . . . xn to the n queens
problem is a permutation of {1, . . . , n}, and many other problems are permu-
tation-based. Indeed, we’ve already seen Algorithm 7.2.1.2X, which is an ele-
gant backtrack procedure specifically designed for special kinds of permutations.
When that algorithm begins to choose the value of xl, it makes all of the appropri-
ate elements {1, 2, . . . , n}\{x1, . . . , xl−1} conveniently accessible in a linked list.

We can get further insight into such data structures by returning to the
problem of Langford pairs, which was discussed at the very beginning of Chap-
ter 7. That problem can be reformulated as the task of finding all permutations
of {1, 2, . . . , n} ∪ {−1,−2, . . . ,−n} with the property that

xj = k implies xj+k+1 = −k, for 1 ≤ j ≤ 2n and 1 ≤ k ≤ n. (7)

For example, when n = 4 there are two solutions, namely 2342̄13̄1̄4̄ and 4131̄24̄3̄2̄.
(As usual we find it convenient to write 1̄ for −1, 2̄ for −2, etc.) Notice that if
x = x1x2 . . . x2n is a solution, so is its “dual” −xR = (−x2n) . . . (−x2)(−x1).

Here’s a Langford-inspired adaptation of Algorithm 7.2.1.2X, with the for-
mer notation modified slightly to match Algorithms B and W: We want to main-
tain pointers p0p1 . . . pn such that, if the positive integers not already present in
x1 . . . xl−1 are k1 < k2 < · · · < kt when we’re choosing xl, we have the linked list

p0 = k1, pk1 = k2, . . . , pkt−1 = kt, pkt = 0. (8)

Such a condition turns out to be easy to maintain.

34

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 35

Algorithm L (Langford pairs). This algorithm visits all solutions x1 . . . x2n
to (7) in lexicographic order, using pointers p0p1 . . . pn that satisfy (8), and also
using an auxiliary array y1 . . . y2n for backtracking.

L1. [Initialize.] Set x1 . . . x2n ← 0 . . . 0, pk ← k+1 for 0 ≤ k < n, pn ← 0, l← 1.

L2. [Enter level l.] Set k ← p0. If k = 0, visit x1x2 . . . x2n and go to L5.
Otherwise set j ← 0, and while xl < 0 set l← l + 1.

L3. [Try xl = k.] (At this point we have k = pj .) If l + k + 1 > 2n, go to L5.
Otherwise, if xl+k+1 = 0, set xl ← k, xl+k+1 ← −k, yl ← j, pj ← pk,
l← l + 1, and return to L2.

L4. [Try again.] (We’ve found all solutions that begin with x1 . . . xl−1k or
something smaller.) Set j ← k and k ← pj , then go to L3 if k �= 0.

L5. [Backtrack.] Set l ← l − 1. If l > 0 do the following: While xl < 0, set
l ← l − 1. Then set k ← xl, xl ← 0, xl+k+1 ← 0, j ← yl, pj ← k, and go
back to L4. Otherwise terminate the algorithm.

Careful study of these steps will reveal how everything fits together nicely. Notice
that, for example, step L3 removes k from the linked list (8) by simply setting
pj ← pk. That step also sets xl+k+1 ← −k, in accordance with (7), so that we
can skip over position l + k + 1 when we encounter it later in step L2.

The main point of Algorithm L is the somewhat subtle way in which step L5
undoes the deletion operation by setting pj ← k. The pointer pk still retains the
appropriate link to the next element in the list, because pk has not been changed

by any of the intervening updates. (Think about it.) This is the germ of an idea
called “dancing links” that we will explore in Section 7.2.2.1.

To draw the search tree corresponding to a run of Algorithm L, we can label
the edges with the positive choices of xl as we did in (4), while labeling the
nodes with any previously set negative values that are passed over in step L2.
For instance the tree for n = 4 is

1

2

1 1

213 2

314

21 132 13 1

432

1 2 3
4

2
3

4

3 2 3

3 4

1 4

1

1

1 4

2 4 2

1 2

3

2

3

. (9)

Solutions appear at depth n in this tree, even though they involve 2n values
x1x2 . . . x2n.

Algorithm L sometimes makes false starts and doesn’t realize the problem
until probing further than necessary. Notice that the value xl = k can appear
only when l + k + 1 ≤ 2n; hence if we haven’t seen k by the time l reaches
2n − k − 1, we’re forced to choose xl = k. For example, the branch 121̄ in (9)
needn’t be pursued, because 4 must appear in {x1, x2, x3}. Exercise 20 explains
how to incorporate this cutoff principle into Algorithm L. When n = 17, it
reduces the number of nodes in the search tree from 1.29 trillion to 330 billion,

35

From the Library of Melissa Nuno

ptg999

36 COMBINATORIAL SEARCHING 7.2.2

and reduces the running time from 25.0 teramems to 8.1 teramems. (The amount
of work has gone up from 19.4 mems per node to 24.4 mems per node, because
of the extra tests for cutoffs, yet there’s a significant overall reduction.)

Furthermore, we can “break the symmetry” by ensuring that we don’t
consider both a solution and its dual. This idea, exploited in exercise 21, reduces
the search tree to just 160 billion nodes and costs just 3.94 teramems—that’s
24.6 mems per node.

Word rectangles. Let’s look next at a problem where the search domains Dl

are much larger. An m× n word rectangle is an array of n-letter words* whose
columns are m-letter words. For example,

S T A T U S

L O W E S T

U T O P I A

M A K I N G

S L E D G E

(10)

is a 5×6 word rectangle whose columns all belong to WORDS(5757), the collection
of 5-letter words in the Stanford GraphBase. To find such patterns, we can sup-
pose that column l contains the xlth most common 5-letter word, where 1 ≤ xl ≤
5757 for 1 ≤ l ≤ 6; hence there are 57576 = 36,406,369,848,837,732,146,649 ways
to choose the columns. In (10) we have x1 . . . x6 = 1446 185 1021 2537 66 255.
Of course very few of those choices will yield suitable rows; but backtracking will
hopefully help us to find all solutions in a reasonable amount of time.

We can set this problem up for Algorithm B by storing the n-letter words
in a trie (see Section 6.3), with one trie node of size 26 for each l-letter prefix of
a legitimate word, 0 ≤ l ≤ n.

For example, such a trie for n = 6 represents 15727 words with 23667 nodes.
The prefix ST corresponds to node number 260, whose 26 entries are

(484,0,0,0,1589,0,0,0,2609,0,0,0,0,0,1280,0,0,251,0,0,563,0,0,0,1621,0); (11)

this means that STA is node 484, STE is node 1589, . . . , STY is node 1621, and
there are no 6-letter words beginning with STB, STC, . . . , STX, STZ. A slightly
different convention is used for prefixes of length n− 1; for example, the entries
for node 580, ‘CORNE’, are

(3879,0,0,3878,0,0,0,0,0,0,0,9602,0,0,0,0,0,171,0,5013,0,0,0,0,0,0), (12)

meaning that CORNEA, CORNED, CORNEL, CORNER, and CORNET are ranked 3879,
3878, 9602, 171, and 5013 in the list of 6-letter words.

* Whenever five-letter words are used in the examples of this book, they’re taken from the
5757 Stanford GraphBase words as explained at the beginning of Chapter 7. Words of other
lengths are taken from The Official SCRABBLE R© Players Dictionary, fourth edition (Hasbro,
2005), because those words have been incorporated into many widely available computer games.
Such words have been ranked according to the British National Corpus of 2007—where ‘the’
occurs 5,405,633 times and the next-most common word, ‘of’, occurs roughly half as often
(3,021,525). The OSPD4 list includes respectively (101, 1004, 4002, 8887, 15727, 23958, 29718,
29130, 22314, 16161, 11412) words of lengths (2, 3, . . . , 12), of which (97, 771, 2451, 4474, 6910,
8852, 9205, 8225, 6626, 4642, 3061) occur at least six times in the British National Corpus.

36

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 37

Suppose x1 and x2 specify the 5-letter column-words SLUMS and TOTAL as
in (10). Then the trie tells us that the next column-word x3 must have the form
c1c2c3c4c5 where c1 ∈ {A, E, I, O, R, U, Y}, c2 /∈ {E, H, J, K, Y, Z}, c3 ∈ {E, M, O, T},
c4 /∈ {A, B, O}, and c5 ∈ {A, E, I, O, U, Y}. (There are 221 such words.)

Let al1 . . . alm be the trie nodes corresponding to the prefixes of the first
l columns of a partial solution to the word rectangle problem. This auxiliary
array enables Algorithm B to find all solutions, as explained in exercise 24. It
turns out that there are exactly 625,415 valid 5 × 6 word rectangles, according
to our conventions; and the method of exercise 24 needs about 19 teramems of
computation to find them all. In fact, the profile of the search tree is

(1, 5757, 2458830, 360728099, 579940198, 29621728, 625415), (13)

indicating for example that just 360,728,099 of the 57573 = 190,804,533,093
choices for x1x2x3 will lead to valid prefixes of 6-letter words.

With care, exercise 24’s running time can be significantly decreased, once
we realize that every node of the search tree for 1 ≤ l ≤ n requires testing 5757
possibilities for xl in step B3. If we build a more elaborate data structure for the
5-letter words, so that it becomes easy to run though all words that have a specific
letter in a specific position, we can refine the algorithm so that the average
number of possibilities per level that need to be investigated becomes only

(5757.0, 1697.9, 844.1, 273.5, 153.5, 100.8); (14)

the total running time then drops to 1.15 teramems. Exercise 25 has the details.
And exercise 28 discusses a method that’s faster yet.

Commafree codes. Our next example deals entirely with four -letter words.
But it’s not obscene; it’s an intriguing question of coding theory. The problem
is to find a set of four-letter codewords that can be decoded even if we don’t put
spaces or other delimiters between them. If we take any message that’s formed
from strings of the set by simply concatenating them together, likethis, and
if we look at any seven consecutive letters . . . x1x2x3x4x5x6x7 . . . , exactly one
of the four-letter substrings x1x2x3x4, x2x3x4x5, x3x4x5x6, x4x5x6x7 will be a
codeword. Equivalently, if x1x2x3x4 and x5x6x7x8 are codewords, then x2x3x4x5
and x3x4x5x6 and x4x5x6x7 aren’t. (For example, iket isn’t.) Such a set is
called a “commafree code” or a “self-synchronizing block code” of length four.

Commafree codes were introduced by F. H. C. Crick, J. S. Griffith, and
L. E. Orgel [Proc. National Acad. Sci. 43 (1957), 416–421], and studied further
by S. W. Golomb, B. Gordon, and L. R. Welch [Canadian Journal of Mathematics

10 (1958), 202–209], who considered the general case ofm-letter alphabets and n-
letter words. They constructed optimum commafree codes for all m when n = 2,
3, 5, 7, 9, 11, 13, and 15; and optimum codes for all m were subsequently found
also for n = 17, 19, 21, . . . (see exercise 37). We will focus our attention on the
four-letter case here (n = 4), partly because that case is still very far from being
resolved, but mostly because the task of finding such codes is especially instruc-
tive. Indeed, our discussion will lead us naturally to an understanding of several
significant techniques that are important for backtrack programming in general.

37

From the Library of Melissa Nuno

ptg999

38 COMBINATORIAL SEARCHING 7.2.2

To begin, we can see immediately that a commafree codeword cannot be
“periodic,” like dodo or gaga. Such a string already appears within two adjacent
copies of itself. Thus we’re restricted to aperiodic strings like item, of which there
are m4 − m2. Notice further that if item has been chosen, we aren’t allowed
to include any of its cyclic shifts temi, emit, or mite, because they all appear
within itemitem. Hence the maximum number of codewords in our commafree
code cannot exceed (m4 −m2)/4.

For example, consider the binary case, m = 2, when this maximum is 3.
Can we choose three four-bit “words,” one from each of the cyclic classes

[0001] = {0001, 0010, 0100, 1000},
[0011] = {0011, 0110, 1100, 1001},
[0111] = {0111, 1110, 1101, 1011},

(15)

so that the resulting code is commafree? Yes: One solution in this case is simply
to choose the smallest word in each class, namely 0001, 0011, and 0111. (Alert
readers will recall that we studied the smallest word in the cyclic class of any
aperiodic string in Section 7.2.1.1, where such words were called prime strings

and where some of the remarkable properties of prime strings were proved.)
That trick doesn’t work when m = 3, however, when there are (81− 9)/4 =

18 cyclic classes. Then we cannot include 1112 after we’ve chosen 0001 and 0011.
Indeed, a code that contains 0001 and 1112 can’t contain either 0011 or 0111.

We could systematically backtrack through 18 levels, choosing x1 in [0001]
and x2 in [0011], etc., and rejecting each xl as in Algorithm B whenever we
discover that {x1, x2, . . . , xl} isn’t commafree. For example, if x1 = 0010 and
we try x2 = 1001, this approach would backtrack because x1 occurs inside x2x1.

But a näıve strategy of that kind, which recognizes failure only after a
bad choice has been made, can be vastly improved. If we had been clever
enough, we could have looked a little bit ahead, and never even considered the
choice x2 = 1001 in the first place. Indeed, after choosing x1 = 0010, we can
automatically exclude all further words of the form ∗001, such as 2001 when
m ≥ 3 and 3001 when m ≥ 4.

Even better pruning occurs if, for example, we’ve chosen x1 = 0001 and
x2 = 0011. Then we can immediately rule out all words of the forms 1∗∗∗ or
∗∗∗0, because x11∗∗∗ includes x2 and ∗∗∗0x2 includes x1. Already we could then
deduce, in the case m ≥ 3, that classes [0002], [0021], [0111], [0211], and [1112]
must be represented by 0002, 0021, 0111, 0211, and 2111, respectively; each of
the other three possibilities in those classes has been wiped out!

Thus we see the desirability of a lookahead mechanism.

Dynamic ordering of choices. Furthermore, we can see from this example
that it’s not always good to choose x1, then x2, then x3, and so on when trying
to satisfy a general property Pn(x1, x2, . . . , xn) in the setting of Algorithm B.
Maybe the search tree will be much smaller if we first choose x5, say, and then
turn next to some other xj , depending on the particular value of x5 that was
selected. Some orderings might have much better cutoff properties than others,
and every branch of the tree is free to choose its variables in any desired order.

38

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 39

Indeed, our commafree coding problem for ternary 4-tuples doesn’t dictate
any particular ordering of the 18 classes that would be likely to keep the search
tree small. Therefore, instead of calling those choices x1, x2, . . . , x18, it’s better
to identify them by the various class names, namely x0001, x0002, x0011, x0012,
x0021, x0022, x0102, x0111, x0112, x0121, x0122, x0211, x0212, x0221, x0222, x1112,
x1122, x1222. (Algorithm 7.2.1.1F is a good way to generate those names.) At
every node of the search tree we then can choose a convenient variable on which
to branch, based on previous choices. After beginning with x0001 ← 0001 at
level 1 we might decide to try x0011 ← 0011 at level 2; and then, as we’ve seen,
the choices x0002 ← 0002, x0021 ← 0021, x0111 ← 0111, x0211 ← 0211, and
x1112 ← 2111 are forced, so we should make them at levels 3 through 7.

Furthermore, after those forced moves are made, it turns out that they don’t
force any others. But only two choices for x0012 will remain, while x0122 will have
three. Therefore it will probably be wiser to branch on x0012 rather than on x0122
at level 8. (Incidentally, it also turns out that there is no commafree code of
length (m4 −m2)/4 with x0001 = 0001 and x0011 = 0011, except when m = 2.)

It’s easy to adapt Algorithms B and W to allow dynamic ordering. Every
node of the search tree can be given a “frame” in which we record the variable
being set and the choice that was made. This choice of variable and value can
be called a “move” made by the backtrack procedure.

Dynamic ordering can be helpful also after backtracking has taken place. If
we continue the example above, where x0001 = 0001 and we’ve explored all cases
in which x0011 = 0011, we aren’t obliged to continue by trying another value for
x0011. We do want to remember that 0011 should no longer be considered legal,
until x0001 changes; but we could decide to explore next a case such as x0002 ←
2000 at level 2. In fact, x0002 = 2000 is quickly seen to be impossible in the
presence of 0001 (see exercise 39). An even more efficient choice at level 2 turns
out to be x0012 ← 0012, because that branch immediately forces x0002 ← 0002,
x0022 ← 0022, x0122 ← 0122, x0222 ← 0222, x1222 ← 1222, and x0011 ← 1001.

Sequential allocation redux. The choice of a variable and value on which to
branch is a delicate tradeoff. We don’t want to devote more time to planning
than we’ll save by having a good plan.

If we’re going to benefit from dynamic ordering, we’ll need efficient data
structures that will lead to good decisions without much deliberation. On the
other hand, elaborate data structures need to be updated whenever we branch
to a new level, and they need to be downdated whenever we return from that
level. Algorithm L illustrates an efficient mechanism based on linked lists; but
sequentially allocated lists are often even more appealing, because they are cache-
friendly and they involve fewer accesses to memory.

Assume then that we wish to represent a set of items as an unordered
sequential list. The list begins in a cell of memory pointed to by HEAD, and
TAIL points just beyond the end of the list. For example,

3 9 1 4

HEAD TAIL

· · · · · ·
(16)

39

From the Library of Melissa Nuno

ptg999

40 COMBINATORIAL SEARCHING 7.2.2

is one way to represent the set {1, 3, 4, 9}. The number of items currently in the
set is TAIL− HEAD; thus TAIL = HEAD if and only if the list is empty. If we wish
to insert a new item x, knowing that x isn’t already present, we simply set

MEM[TAIL]← x, TAIL← TAIL+ 1. (17)

Conversely, if HEAD ≤ P < TAIL, we can easily delete MEM[P]:

TAIL← TAIL− 1; if P �= TAIL, set MEM[P]← MEM[TAIL]. (18)

(We’ve tacitly assumed in (17) that MEM[TAIL] is available for use whenever a
new item is inserted. Otherwise we would have had to test for memory overflow.)

We can’t delete an item from a list without knowing its MEM location. Thus
we will often want to maintain an “inverse list,” assuming that all items x lie in
the range 0 ≤ x < M. For example, (16) becomes the following, if M = 10:

3 9 1 4

HEAD TAIL

· · · · · ·

IHEAD

· · · · · ·

(19)

(Shaded cells have undefined contents.) With this setup, insertion (17) becomes

MEM[TAIL]← x, MEM[IHEAD+ x]← TAIL, TAIL← TAIL+ 1, (20)

and TAIL will never exceed HEAD+M. Similarly, deletion of x becomes

P← MEM[IHEAD+ x], TAIL← TAIL− 1;

if P �= TAIL, set y ← MEM[TAIL], MEM[P]← y, MEM[IHEAD+ y]← P. (21)

For example, after deleting ‘9’ from (19) we would obtain this:

3 4 1

HEAD TAIL

IHEAD

· · · · · ·

· · · · · ·

(22)

In more elaborate situations we also want to test whether or not a given
item x is present. If so, we can keep more information in the inverse list.
A particularly useful variation arises when the list that begins at IHEAD contains
a complete permutation of the values {HEAD, HEAD + 1, . . . , HEAD +M − 1}, and
the memory cells beginning at HEAD contain the inverse permutation—although
only the first TAIL− HEAD elements of that list are considered to be “active.”

For example, in our commafree code problem with m = 3, we can begin by
putting items representing the M = 18 cycle classes [0001], [0002], . . . , [1222]
into memory cells HEAD through HEAD + 17. Initially they’re all active, with
TAIL = HEAD + 18 and MEM[IHEAD+ c] = HEAD + c for 0 ≤ c < 18. Then
whenever we decide to choose a codeword for class c, we delete c from the active

40

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 41

list by using a souped-up version of (21) that maintains full permutations:

P← MEM[IHEAD+ c], TAIL← TAIL− 1;

if P �= TAIL, set y ← MEM[TAIL], MEM[TAIL]← c, MEM[P]← y,

MEM[IHEAD + c]← TAIL, MEM[IHEAD+ y]← P. (23)

Later on, after backtracking to a state where we once again want c to be consid-
ered active, we simply set TAIL ← TAIL + 1, because c will already be in place!
(This data-structuring technique has been called a sparse-set representation; see
P. Briggs and L. Torczon, ACM Letters Prog. Lang. and Syst. 2 (1993), 59–69.)

Lists for the commafree problem. The task of finding all four-letter comma-
free codes of maximum length is not difficult when m = 3 and only 18 cycle
classes are involved. But it already becomes challenging when m = 4, because
we must then deal with (44 − 42)/4 = 60 classes. Therefore we’ll want to give it
some careful thought as we try to set it up for backtracking.

The example scenarios for m = 3 considered above suggest that we’ll repeat-
edly want to know the answers to questions such as, “How many words of the
form 02∗∗ are still available for selection as codewords?” Redundant data struc-
tures, oriented to queries of that kind, appear to be needed. Fortunately, we shall
see that there’s a nice way to provide them, using sequential lists as in (19)–(23).

In Algorithm C below, each of the m4 four-letter words is given one of three
possible states during the search for commafree codes. A word is green if it’s part
of the current set of tentative codewords. It is red if it’s not currently a candidate
for such status, either because it is incompatible with the existing green words
or because the algorithm has already examined all scenarios in which it is green
in their presence. Every other word is blue, and sort of in limbo; the algorithm
might or might not decide to make it red or green. All words are initially blue—
except for the m2 periodic words, which are permanently red.

We’ll use the Greek letter α to stand for the integer value of a four-letter
word x in radix m. For example, if m = 3 and if x is the word 0102, then
α = (0102)3 = 11. The current state of word x is kept in MEM[α], using one of
the arbitrary internal codes 2 (GREEN), 0 (RED), or 1 (BLUE).

The most important feature of the algorithm is that every blue word x =
x1x2x3x4 is potentially present in seven different lists, called P1(x), P2(x),
P3(x), S1(x), S2(x), S3(x), and CL(x), where

• P1(x), P2(x), P3(x) are the blue words matching x1∗∗∗, x1x2∗∗, x1x2x3∗;
• S1(x), S2(x), S3(x) are the blue words matching ∗∗∗x4, ∗∗x3x4, ∗x2x3x4;
• CL(x) hosts the blue words in {x1x2x3x4, x2x3x4x1, x3x4x1x2, x4x1x2x3}.

These seven lists begin respectively in MEM locations P1OFF + p1(α), P2OFF +
p2(α), P3OFF+p3(α), S1OFF+s1(α), S2OFF+s2(α), S3OFF+s3(α), and CLOFF+
4cl(α); here (P1OFF, P2OFF, P3OFF, S1OFF, S2OFF, S3OFF, CLOFF) are respectively
(2m4, 5m4, 8m4, 11m4, 14m4, 17m4, 20m4). We define p1((x1x2x3x4)m) =
(x1000)m, p2((x1x2x3x4)m) = (x1x200)m, p3((x1x2x3x4)m) = (x1x2x30)m; and
s1((x1x2x3x4)m)= (x4000)m, s2((x1x2x3x4)m)= (x3x400)m, s3((x1x2x3x4)m)=
(x2x3x40)m; and finally cl((x1x2x3x4)m) is an internal number, between 0 and

41

From the Library of Melissa Nuno

ptg999

42 COMBINATORIAL SEARCHING 7.2.2

Table 1

LISTS USED BY ALGORITHM C (m = 2), ENTERING LEVEL 1

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 RED BLUE BLUE BLUE RED RED BLUE BLUE RED BLUE RED BLUE BLUE BLUE BLUE RED

10 20 21 22 23 24 29 2c 28 2b 2a

20 0001 0010 0011 0110 0111 1100 1001 1110 1101 1011 P1

30 25 2d

40 50 51 52 54 55 58 59 5c 5e 5d

50 0001 0010 0011 0110 0111 1001 1011 1100 1110 1101 P2

60 53 56 5a 5f

70 80 82 83 86 87 88 8a 8c 8d 8e

80 0001 0010 0011 0110 0111 1001 1011 1100 1101 1110 P3

90 81 84 84 88 89 8b 8e 8f

a0 b8 b0 b9 b1 bb ba bd b2 bc b3

b0 0010 0110 1100 1110 0001 0011 1001 0111 1101 1011 S1

c0 b4 be

d0 e4 e8 ec e9 ed e5 ee e0 e6 ea

e0 1100 0001 1001 1101 0010 0110 1110 0011 0111 1011 S2

f0 e1 e7 eb ef

100 112 114 116 11c 11e 113 117 118 11a 11d

110 0001 1001 0010 0011 1011 1100 1101 0110 1110 0111 S3

120 110 114 115 118 119 11b 11e 11f

130 140 141 144 145 148 147 14b 146 14a 149

140 0001 0010 0011 0110 1100 1001 0111 1110 1101 1011 CL

150 142 148 14c

This table shows MEM locations 0000 through 150f, using hexadecimal notation. (For
example, MEM[40d]=5e; see exercise 41.) Blank entries are unused by the algorithm.

(m4−m2)/4−1, assigned to each class. The seven MEM locations where x appears
in these seven lists are respectively kept in inverse lists that begin in MEM locations
P1OFF−m4 + α, P2OFF−m4 + α, . . . , CLOFF−m4 + α. And the TAIL pointers,
which indicate the current list sizes as in (19)–(23), are respectively kept in MEM

locations P1OFF + m4 + p1(α), P2OFF + m4 + p2(α), . . . , S3OFF + m4 + s3(α),
CLOFF+m4 + 4cl(α). (Whew; got that?)

This vast apparatus, which occupies 22m4 cells of MEM, is illustrated in
Table 1, at the beginning of the computation for the case m = 2. Fortunately
it’s not really as complicated as it may seem at first. Nor is it especially vast:
After all, 22m4 is only 13,750 when m = 5.

(A close inspection of Table 1 reveals incidentally that the words 0100 and
1000 have been colored red, not blue. That’s because we can assume without
loss of generality that class [0001] is represented either by 0001 or by 0010. The
other two cases are covered by left-right reflection of all codewords.)

Algorithm C finds these lists invaluable when it is deciding where next to
branch. But it has no further use for a list in which one of the items has become
green. Therefore it declares such lists “closed”; and it saves most of the work
of list maintenance by updating only the lists that remain open. A closed list is
represented internally by setting its TAIL pointer to HEAD− 1.

For example, Table 2 shows how the lists in MEM will have changed just
after x = 0010 has been chosen to be a tentative codeword. The elements
{0001, 0010, 0011, 0110, 0111} of P1(x) are effectively hidden, because the tail

42

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 43

Table 2

LISTS USED BY ALGORITHM C (m = 2), ENTERING LEVEL 2

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 RED RED GREEN BLUE RED RED BLUE BLUE RED RED RED BLUE BLUE BLUE BLUE RED

10 29 28 2b 2a

20 1100 1011 1110 1101 P1

30 1f 2c

40 54 55 58 5c 5e 5d

50 0110 0111 1011 1100 1110 1101 P2

60 4f 56 59 5f

70 86 87 8a 8c 8d 8e

80 0110 0111 1011 1100 1101 1110 P3

90 80 81 84 88 88 8b 8e 8f

a0 b9 bb b8 ba

b0 1011 0011 1101 0111 S1

c0 af bc

d0 ec ed ee e0 e4

e0 1100 1101 0011 0111 1011 S2

f0 e1 e5 e7 ef

100 116 11c 11e 117 118 11a 11d

110 0011 1011 1100 1101 0110 1110 0111 S3

120 110 112 113 118 119 11b 11e 11f

130 144 145 148 14b 146 14a 149

140 0011 0110 1100 0111 1110 1101 1011 CL

150 13f 147 14c

The word 0010 has become green, thus closing its seven lists and making 0001 red. The
logic of Algorithm C has also made 1001 red. Hence 0001 and 1001 have been deleted
from the open lists in which they formerly appeared (see exercise 42).

pointer MEM[30] = 1f = 20−1 marks that list as closed. (Those list elements ac-
tually do still appear in MEM locations 200 through 204, just as they did in Table 1.
But there’s no need to look at that list while any word of the form 0∗∗∗ is green.)

A general mechanism for doing and undoing. We’re almost ready to
finalize the details of Algorithm C and to get on with the search for commafree
codes, but a big problem still remains: The state of computation at every level
of the search involves all of the marvelous lists that we’ve just specified, and
those lists aren’t tiny. They occupy more than 5000 cells of MEM when m = 4,
and they can change substantially from level to level.

We could make a new copy of the entire state, whenever we advance to a
new node of the search tree. But that’s a bad idea, because we don’t want to
perform thousands of memory accesses per node. A much better strategy would
be to stick with a single instance of MEM, and to update and downdate the lists
as the search progresses, if we could only think of a simple way to do that.

And we’re in luck: There is such a way, first formulated by R. W. Floyd
in his classic paper “Nondeterministic algorithms” [JACM 14 (1967), 636–644].
Floyd’s original idea, which required a special compiler to generate forward and
backward versions of every program step, can in fact be greatly simplified when
all of the changes in state are confined to a single MEM array. All we need to
do is to replace every assignment operation of the form ‘MEM[a] ← v’ by the

43

From the Library of Melissa Nuno

ptg999

44 COMBINATORIAL SEARCHING 7.2.2

slightly more cumbersome operation

store(a, v) : Set UNDO[u]← (
a, MEM[a]

)
, MEM[a]← v, and u← u+ 1. (24)

Here UNDO is a sequential stack that holds (address, value) pairs; in our appli-
cation we could say ‘UNDO[u]← (a� 16) + MEM[a]’, because the cell addresses
and values never exceed 16 bits. Of course we’ll also need to check that the stack
pointer u doesn’t get too large, if the number of assignments has no a priori limit.

Later on, when we want to undo all changes to MEM that were made after
the time when u had reached a particular value u0, we simply do this:

unstore(u0) : While u > u0, set u← u− 1,

(a, v)← UNDO[u], and MEM[a]← v. (25)

In our application the unstacking operation ‘(a, v) ← UNDO[u]’ here could be
implemented by saying ‘a← UNDO[u]	 16, v ← UNDO[u]& #ffff’.

A useful refinement of this reversible-memory technique is often advanta-
geous, based on the idea of “stamping” that is part of the folklore of program-
ming. It puts only one item on the UNDO stack when the same memory address
is updated more than once in the same round.

store(a, v) : If STAMP[a] �= σ, set STAMP[a]← σ,

UNDO[u]← (
a, MEM[a]

)
, and u← u+ 1.

Then set MEM[a]← v. (26)

Here STAMP is an array with one entry for each address in MEM. It’s initially
all zero, and σ is initially 1. Whenever we come to a fallback point, where
the current stack pointer will be remembered as the value u0 for some future
undoing, we “bump” the current stamp by setting σ ← σ + 1. Then (26) will
continue to do the right thing. (In programs that run for a long time, we must
be careful when integer overflow causes σ to be bumped to zero; see exercise 43.)

Notice that the combination of (24) and (25) will perform five memory
accesses for each assignment and its undoing. The combination of (26) and (25)
will cost seven mems for the first assignment to MEM[a], but only two mems
for every subsequent assignment to the same address. So (26) wins, if multiple
assignments exceed one-time-only assignments.

Backtracking through commafree codes. OK, we’re now equipped with
enough basic knowhow to write a pretty good backtrack program for the problem
of generating all commafree four-letter codes.

Algorithm C below incorporates one more key idea, which is a lookahead
mechanism that is specific to commafree backtracking; we’ll call it the “poison
list.” Every item on the poison list is a pair, consisting of a suffix and a prefix
that the commafree rule forbids from occurring together. Every green word
x1x2x3x4—that is, every word that will be a final codeword in the current
branch of our backtrack search—contributes three items to the poison list,
namely

(∗x1x2x3, x4∗∗∗), (∗∗x1x2, x3x4∗∗), and (∗∗∗x1, x2x3x4∗). (27)

44

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 45

If there’s a green word on both sides of a poison list entry, we’re dead: The
commafree condition fails, and we mustn’t proceed. If there’s a green word on
one side but not the other, we can kill off all blue words on the other side by
making them red. And if either side of a poison list entry corresponds to an
empty list, we can remove this entry from the poison list because it will never
affect the outcome. (Blue words become red or green, but red words stay red.)

For example, consider the transition from Table 1 to Table 2. When word
0010 becomes green, the poison list receives its first three items:

(∗001, 0∗∗∗), (∗∗00, 10∗∗), (∗∗∗0, 010∗).
The first of these kills off the ∗001 list, because 0∗∗∗ contains the green word 0010.
That makes 1001 red. The last of these, similarly, kills off the 010∗ list; but
that list is empty when m = 2. The poison list now reduces to a single
item, (∗∗00, 10∗∗), which remains poisonous because list ∗∗00 contains the blue
word 1100 and 10∗∗ contains the blue word 1011.

We’ll maintain the poison list at the end of MEM, following the CL lists. It
obviously will contain at most 3(m4−m2)/4 entries, and in fact it usually turns
out to be quite small. No inverse list is required; so we shall adopt the simple
method of (17) and (18), but with two cells per entry so that TAIL will change
by ±2 instead of by ±1. The value of TAIL will be stored in MEM at key times so
that temporary changes to it can be undone.

The case m = 4, in which each codeword consists of four quaternary digits
{0, 1, 2, 3}, is particularly interesting, because an early backtrack program by Lee
Laxdal found that no such commafree code can make use of all 60 of the cycle
classes [0001], [0002], . . . , [2333]. [See B. H. Jiggs, Canadian Journal of Math. 15

(1963), 178–187.] Laxdal’s program also reportedly showed that at least three of
those classes must be omitted; and it found several valid 57-word sets. Further
details were never published, because the proof that 58 codewords are impossible
depended on what Jiggs called a “quite time-consuming” computation.

Because size 60 is impossible, our algorithm cannot simply assume that a
move such as 1001 is forced when the other words 0011, 0110, 1100 of its class
have been ruled out. We must also consider the possibility that class [0011] is
entirely absent from the code. Such considerations add an interesting further
twist to the problem, and Algorithm C describes one way to cope with it.

Algorithm C (Four-letter commafree codes). Given an alphabet size m ≤ 7
and a goal g in the range L−m(m− 1) ≤ g ≤ L, where L = (m4 −m2)/4, this
algorithm finds all sets of g four-letter words that are commafree and include
either 0001 or 0010. It uses an array MEM of M =
23.5m4� 16-bit numbers, as
well as several more auxiliary arrays: ALF of size 163m; STAMP of size M ; X, C,
S, and U of size L + 1; FREE and IFREE of size L; and a sufficiently large array
called UNDO whose maximum size is difficult to guess.

C1. [Initialize.] Set ALF[(abcd)16] ← (abcd)m for 0 ≤ a, b, c, d < m. Set
STAMP[k] ← 0 for 0 ≤ k < M and σ ← 0. Put the initial prefix, suffix,
and class lists into MEM, as in Table 1. Also create an empty poison list by

45

From the Library of Melissa Nuno

ptg999

46 COMBINATORIAL SEARCHING 7.2.2

setting MEM[PP] ← POISON, where POISON = 22m4 and PP = POISON − 1.
Set FREE[k]← IFREE[k] ← k for 0 ≤ k < L. Then set l ← 1, x← #0001,
c ← 0, s ← L − g, f ← L, u ← 0, and go to step C3. (Variable l is the
level, x is a trial word, c is its class, s is the “slack,” f is the number of free
classes, and u is the size of the UNDO stack.)

C2. [Enter level l.] If l > L, visit the solution x1 . . . xL and go to C6. Otherwise
choose a candidate word x and class c as described in exercise 44.

C3. [Try the candidate.] Set U[l]← u and σ ← σ+1. If x < 0, go to C6 if s = 0
or l = 1, otherwise set s ← s − 1. If x ≥ 0, update the data structures to
make x green, as described in exercise 45, escaping to C5 if trouble arises.

C4. [Make the move.] Set X[l] ← x, C[l] ← c, S[l] ← s, p ← IFREE[c], f ←
f−1. If p �= f , set y ← FREE[f], FREE[p]← y, IFREE[y]← p, FREE[f]←
c, IFREE[c]← f . (This is (23).) Then set l← l + 1 and go to C2.

C5. [Try again.] While u > U[l], set u ← u − 1 and MEM[UNDO[u]	 16] ←
UNDO[u]&#ffff. (Those operations restore the previous state, as in (25).)
Then σ ← σ + 1 and redden x (see exercise 45). Go to C2.

C6. [Backtrack.] Set l← l − 1, and terminate if l = 0. Otherwise set x← X[l],
c ← C[l], f ← f + 1. If x < 0, repeat this step (class c was omitted from
the code). Otherwise set s← S[l] and go back to C5.

Exercises 44 and 45 provide the instructive details that flesh out this skeleton.

Algorithm C needs just 13, 177, and 2380 megamems to prove that no solu-
tions exist for m = 4 when g is 60, 59, and 58. It needs about 22800 megamems
to find the 1152 solutions for g = 57; see exercise 47. There are roughly (14,
240, 3700, 38000) thousand nodes in the respective search trees, with most of
the activity taking place on levels 30 ± 10. The height of the UNDO stack never
exceeds 2804, and the poison list never contains more than 12 entries at a time.

Running time estimates. Backtrack programs are full of surprises. Sometimes
they produce instant answers to a supposedly difficult problem. But sometimes
they spin their wheels endlessly, trying to traverse an astronomically large search
tree. And sometimes they deliver results just about as fast as we might expect.

Fortunately, we needn’t sit in the dark. There’s a simple Monte Carlo algo-
rithm by which we can often tell in advance whether or not a given backtrack
strategy will be feasible. This method, based on random sampling, can actually
be worked out by hand before writing a program, in order to help decide whether
to invest further time while following a particular approach. In fact, the very act
of carrying out this pleasant pencil-and-paper method often suggests useful cutoff
strategies and/or data structures that will be valuable later when a program is
being written. For example, the author developed Algorithm C above after first
doing some armchair experiments with random choices of potential commafree
codewords; these dry runs revealed that a family of lists such as those in Tables
1 and 2 would be quite helpful when making further choices.

To illustrate the method, let’s consider the n queens problem again, as rep-
resented in Algorithm B* above. When n = 8, we can obtain a decent “ballpark

46

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 47

� 8

� 5

� 4

� 3

� 1

� 1

� 1
0

ˆ
001

ˆ
001

ˆ
00
ˆ
00
ˆ

(a)

� 8

� 5

� 3

� 3

� 2

� 1

� 1
0

ˆ
101

ˆ
101

ˆ
111

ˆ
110

ˆ
000

ˆ
10
ˆ
10
ˆ
1
ˆ

(b)

� 8

� 5

� 4

� 2

� 1

� 2
0

ˆ
100

ˆ
111

ˆ
100

ˆ
01
ˆ
1
ˆ
0
ˆ

(c)

� 8

� 5

� 4

� 3

� 2

� 1
0

ˆ
100

ˆ
100

ˆ
11
ˆ
11
ˆ
00
ˆ
0
ˆ

(d)

Fig. 69. Four random attempts to solve the 8 queens problem. Such experiments help
to estimate the size of the backtrack tree in Fig. 68. The branching degrees are shown at
the right of each diagram, while the random bits used for sampling appear below. Cells
have been shaded in gray if they are attacked by one or more queens in earlier rows.

estimate” of the size of Fig. 68 by examining only a few random paths in that
search tree. We start by writing down the number D1 ← 8, because there are
eight ways to place the queen in row 1. (In other words, the root node of the
search tree has degree 8.) Then we use a source of random numbers— say the
binary digits of π mod 1 = (.001001000011 . . .)2—to select one of those place-
ments. Eight choices are possible, so we look at three of those bits; we shall set
X1 ← 2, because 001 is the second of the eight possibilities (000, 001, . . . , 111).

Given X1 = 2, the queen in row 2 can’t go into columns 1, 2, or 3. Hence
five possibilities remain for X2, and we write down D2 ← 5. The next three bits
of π lead us to set X2 ← 5, since 5 is the second of the available columns (4, 5,
6, 7, 8) and 001 is the second value of (000, 001, . . . , 100). Incidentally, if π had
continued with 101 or 110 or 111 instead of 001, we would have used the “rejection
method” of Section 3.4.1 and moved to the next three bits; see exercise 49.

Continuing in this way leads to D3 ← 4, X3 ← 1; then D4 ← 3, X4 ← 4.
(Here we used the two bits 00 to selectX3, and the next two bits 00 to selectX4.)
The remaining branches are forced: D5 ← 1, X5 ← 7; D6 ← 1, X6 ← 3; D7 ← 1,
X7 ← 6; and we’re stuck when we reach level 8 and find D8 ← 0.

These sequential random choices are depicted in Fig. 69(a), where we’ve
used them to place each queen successively into an unshaded cell. Parts (b), (c),
and (d) of Fig. 69 correspond in the same way to choices based on the binary
digits of emod 1, φmod 1, and γ mod 1. Exactly 10 bits of π, 20 bits of e, 13 bits
of φ, and 13 bits of γ were used to generate these examples.

In this discussion the notation Dk stands for a branching degree, not for a
domain of values. We’ve used uppercase letters for the numbers D1, X1, D2,
etc., because those quantities are random variables. Once we’ve reached Dl = 0
at some level, we’re ready to estimate the overall cost, by implicitly assuming
that the path we’ve taken is representative of all root-to-leaf paths in the tree.

The cost of a backtrack program can be assessed by summing the individual
amounts of time spent at each node of the search tree. Notice that every node on
level l of that tree can be labeled uniquely by a sequence x1 . . . xl−1, which defines
the path from the root to that node. Thus our goal is to estimate the sum of all
c(x1 . . . xl−1), where c(x1 . . . xl−1) is the cost associated with node x1 . . . xl−1.

47

From the Library of Melissa Nuno

ptg999

48 COMBINATORIAL SEARCHING 7.2.2

For example, the four queens problem is represented by the search tree (4),
and its cost is the sum of 17 individual costs

c() + c(1) + c(13) + c(14) + c(142) + c(2) + c(24) + · · ·+ c(413) + c(42). (28)

If C(x1 . . . xl) denotes the total cost of the subtree rooted at x1 . . . xl, then

C(x1 . . . xl) = c(x1 . . . xl) + C(x1 . . . xlx
(1)
l+1) + · · ·+ C(x1 . . . xlx

(d)
l+1) (29)

when the choices for xl+1 at node x1 . . . xl are {x(1)l+1, . . . , x
(d)
l+1}. For instance

in (4) we have C(1) = c(1) + C(13) + C(14); C(13) = c(13); and C() = c() +
C(1) + C(2) + C(3) + C(4) is the overall cost (28).

In these terms a Monte Carlo estimate for C() is extremely easy to compute:

Theorem E. Given D1, X1, D2, X2, . . . as above, the cost of backtracking is

C() = E
(
c() +D1(c(X1) +D2(c(X1X2) +D3(c(X1X2X3) + · · ·)))). (30)

Proof. Node x1 . . . xl, with branch degrees d1, . . . , dl above it, is reached with
probability 1/d1 . . . dl; so it contributes d1 . . . dlc(x1 . . . xl)/d1 . . . dl = c(x1 . . . xl)
to the expected value in this formula.

For example, the tree (4) has six root-to-leaf paths, and they occur with
respective probabilities 1/8, 1/8, 1/4, 1/4, 1/8, 1/8. The first one contributes
1/8 times c()+4(c(1)+2(c(13))), namely c()/8+ c(1)/2+ c(13), to the expected
value. The second contributes c()/8 + c(1)/2 + c(14) + c(142); and so on.

A special case of Theorem E, with all c(x1 . . . xl) = 1, tells us how to estimate
the total size of the tree, which is often a crucial quantity:

Corollary E. The number of nodes in the search tree, given D1, D2, . . . , is

E(1 +D1 +D1D2 + · · ·) = E
(
1 +D1

(
1 +D2(1 +D3(1 + · · ·)))). (31)

For example, Fig. 69 gives us four estimates for the size of the tree in Fig. 68,
using the numbers Dj at the right of each 8 × 8 diagram. The estimate from
Fig. 69(a) is 1+8

(
1+5

(
1+4(1+3(1+1(1+1(1+1))))

))
= 2129; and the other

three are respectively 2689, 1489, 2609. None of them is extremely far from the
true number, 2057, although we can’t expect to be so lucky all the time.

The detailed study in exercise 53 shows that the estimate (31) in the case
of 8 queens turns out to be quite well behaved:

(
min 489, ave 2057, max 7409, dev

√
1146640 ≈ 1071

)
. (32)

The analogous problem for 16 queens has a much less homogeneous search tree:
(
min 2597105, ave 1141190303, max 131048318769, dev ≈ 1234000000

)
. (33)

Still, this standard deviation is roughly the same as the mean, so we’ll usually
guess the correct order of magnitude. (For example, ten independent experiments
predicted .632, .866, .237, 1.027, 4.006, .982, .143, .140, 3.402, and .510 billion
nodes, respectively. The mean of these is 1.195.) A thousand trials with n = 64
suggest that the problem of 64 queens will have about 3× 1065 nodes in its tree.

48

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 49

Let’s formulate this estimation procedure precisely, so that it can be per-
formed conveniently by machine as well as by hand:

Algorithm E (Estimated cost of backtrack). Given domains Dk and properties
Pl as in Algorithm B, together with node costs c(x1 . . . xl) as above, this algo-
rithm computes the quantity S whose expected value is the total cost C() in (30).
It uses an auxiliary array y0y1 . . . whose size should be ≥ max(|D1|, . . . , |Dn|).
E1. [Initialize.] Set l← D ← 1, S ← 0, and initialize any data structures needed.

E2. [Enter level l.] (At this point Pl−1(X1, . . . , Xl−1) holds.) Set S ← S +
D · c(X1 . . . Xl−1). If l > n, terminate the algorithm. Otherwise set d ← 0
and set x← minDl, the smallest element of Dl.

E3. [Test x.] If Pl(X1, . . . , Xl−1, x) holds, set yd ← x and d← d+ 1.

E4. [Try again.] If x �= maxDl, set x to the next larger element of Dl and return
to step E3.

E5. [Choose and try.] If d = 0, terminate. Otherwise set D ← D ·d and Xl ← yI ,
where I is a uniformly random integer in {0, . . . , d − 1}. Update the data
structures to facilitate testing Pl+1, set l← l + 1, and go back to E2.

Although Algorithm E looks rather like Algorithm B, it never backtracks.

Of course we can’t expect this algorithm to give decent estimates in cases
where the backtrack tree is wildly erratic. The expected value of S, namely ES,
is indeed the true cost; but the probable values of S might be quite different.

An extreme example of bad behavior occurs if property Pl is the simple con-
dition ‘x1 > · · · > xl’, and all domains are {1, . . . , n}. Then there’s only one so-
lution, x1 . . . xn = n . . . 1; and backtracking is a particularly stupid way to find it!

The search tree for this somewhat ridiculous problem is, nevertheless, quite
interesting. It is none other than the binomial tree Tn of Eq. 7.2.1.3–(21), which
has

(
n
l

)
nodes on level l + 1 and 2n nodes in total. If we set all costs to 1,

the expected value of S is therefore 2n = en ln 2. But exercise 52 proves that
S will almost always be much smaller, less than e(lnn)

2 ln lnn. Furthermore the
average value of l when Algorithm E terminates with respect to Tn is onlyHn+1.
When n = 100, for example, the probability that l ≥ 20 on termination is only
0.0000000027, while the vast majority of the nodes are near level 51.

Many refinements of Algorithm E are possible. For example, exercise 54
shows that the choices in step E5 need not be uniform. We shall discuss improved
estimation techniques in Section 7.2.2.9, after having seen numerous examples
of backtracking in practice.

*Estimating the number of solutions. Sometimes we know that a problem
has more solutions than we could ever hope to generate, yet we still want to
know roughly how many there are. Algorithm E will tell us the approximate
number, in cases where the backtrack process never reaches a dead end—that
is, if it never terminates with d = 0 in step E5. There may be another criterion
for successful termination in step E2 even though l might still be ≤ n. The
expected final value of D is exactly the total number of solutions, because every
solutionX1 . . .Xl constructed by the algorithm is obtained with probability 1/D.

49

From the Library of Melissa Nuno

ptg999

50 COMBINATORIAL SEARCHING 7.2.2

For example, suppose we want to know the number of different paths by
which a king can go from one corner of a chessboard to the opposite corner,
without revisiting any square. One such path, chosen at random using the bits
of π for guidance as we did in Fig. 69(a), is shown here. Starting in the upper left
corner, we have 3 choices for the first move.
Then, after moving to the right, there are
4 choices for the second move. And so on.
We never make a move that would discon-
nect us from the goal; in particular, two of
the moves are actually forced. (Exercise 58
explains one way to avoid fatal mistakes.)

�

3 4

6 6

2

6

7545

4

1

4

3

4

4

2

5

2

6

3 5

5

4

4

4

5

6

5

5

6

4

1

3

5

2

The probability of obtaining this partic-
ular path is exactly 1

3
1
4
1
6
1
6
1
2
1
6
1
7 . . .

1
2 = 1/D,

where D = 3×4×6×6×2×6×7×· · ·×2 =
12 · 24 · 34 · 410 · 59 · 66 · 71 ≈ 8.7× 1020. Thus
we can reasonably guess, at least tentatively,
that there are 1021 such paths, more or less.

Of course that guess, based on a single
random sample, rests on very shaky ground.
But we know that the average value MN = (D(1)+ · · ·+D(N))/N of N guesses,
in N independent experiments, will almost surely approach the correct number.

How large should N be, before we can have any confidence in the results?
The actual values of D obtained from random king paths tend to vary all over
the map. Figure 70 plots typical results, as N varies from 1 to 10000. For each
value of N we can follow the advice of statistics textbooks and calculate the
sample variance VN = SN/(N − 1) as in Eq. 4.2.2–(16); then MN ±√

VN/N is
the textbook estimate. The top diagram in Fig. 70 shows these “error bars” in
gray, surrounding black dots for MN . This sequence MN does appear to settle
down after N reaches 3000 or so, and to approach a value near 5× 1025. That’s
much higher than our first guess, but it has lots of evidence to back it up.

On the other hand, the bottom chart in Fig. 70 shows the distribution of
the logarithms of the 10000 values of D that were used to make the top chart.
Almost half of those values were totally negligible— less than 1020. About 75%
of them were less than 1024. But some of them* exceeded 1028. Can we really
rely on a result that’s based on such chaotic behavior? Is it really right to throw
away most of our data and to trust almost entirely on observations that were
obtained from comparatively few rare events?

Yes, we’re okay! Some of the justification appears in exercise MPR–124,
which is based on theoretical work by S. Chatterjee and P. Diaconis. In the
paper cited with that exercise, they defend a simple measure of quality,

χ̂N = max(D(1), . . . , D(N))/(NMN) =
max(D(1), . . . , D(N))

D(1) + · · ·+D(N)
, (34)

* Four of the actual values that led to Fig. 70 were larger than 1028; the largest, ≈ 2.1×1028,
came from a path of length 57. The smallest estimate, 19361664, came from a path of length 10.

50

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 51

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.0

0.5

2×1025

5×1025

8×1025

1025

≤1020

Fig. 70. Estimates of the number of king paths, based on up to 10000 random trials.
The middle graph shows the corresponding quality measures of Eq. (34). The lower
graph shows the logarithms of the individual estimates D(k), after they’ve been sorted.

arguing that a reasonable policy in most experiments such as these is to stop
sampling when χ̂N gets small. (Values of this statistic χ̂N have been plotted in
the middle of Fig. 70.)

Furthermore we can estimate other properties of the solutions to a backtrack
problem, instead of merely counting those solutions. For example, the expected
value of lD on termination of the random king’s path algorithm is the total
length of such paths. The data underlying Fig. 70 suggests that this total is
(2.66± .14)× 1027; hence the average path length appears to be about 53. The
samples also indicate that about 34% of the paths pass through the center; about
46% touch the upper right corner; about 22% touch both corners; and about 7%
pass through the center and both corners.

For this particular problem we don’t actually need to rely on estimates,
because the ZDD technology of Section 7.1.4 allows us to compute the true

values. (See exercise 59.) The total number of simple corner-to-corner king paths
on a chessboard is exactly 50,819,542,770,311,581,606,906,543; this value lies
almost within the error bars of Fig. 70 for all N ≥ 250, except for a brief interval
near N = 1400. And the total length of all these paths turns out to be exactly
2,700,911,171,651,251,701,712,099,831, which is a little higher than our estimate.
The true average length is therefore ≈ 53.15. The true probabilities of hitting the
center, a given corner, both corners, and all three of those spots are respectively
about 38.96%, 50.32%, 25.32%, and 9.86%.

The total number of corner-to-corner king paths of the maximum length, 63,
is 2,811,002,302,704,446,996,926. This is a number that can not be estimated
well by a method such as Algorithm E without additional heuristics.

The analogous problem for corner-to-corner knight paths, of any length, lies
a bit beyond ZDD technology because many more ZDD nodes are needed. Using
Algorithm E we can estimate that there are about (8.6± 1.2)× 1019 such paths.

51

From the Library of Melissa Nuno

ptg999

52 COMBINATORIAL SEARCHING 7.2.2

Factoring the problem. Imagine an instance of backtracking that is equivalent
to solving two independent subproblems. For example, we might be looking for
all sequences x = x1x2 . . . xn that satisfy Pn(x1, x2, . . . , xn) = F (x1, x2, . . . , xn),
where

F (x1, x2, . . . , xn) = G(x1, . . . , xk) ∧ H(xk+1, . . . , xn). (35)

Then the size of the backtrack tree is essentially the product of the tree sizes for
G and for H, even if we use dynamic ordering. Hence it’s obviously foolish to
apply the general setup of (1) and (2). We can do much better by finding all
solutions to G first, then finding all solutions to H, thereby reducing the amount
of computation to the sum of the tree sizes. Again we’ve divided and conquered,
by factoring the compound problem (35) into separate subproblems.

We discussed a less obvious application of problem factorization near the
beginning of Chapter 7, in connection with latin squares: Recall that E. T.
Parker sped up the solution of 7–(6) by more than a dozen orders of magnitude,
when he discovered 7–(7) by essentially factoring 7–(6) into ten subproblems
whose solutions could readily be combined.

In general, each solution x to some problem F often implies the existence of
solutions x(p) = φp(x) to various simpler problems Fp that are “homomorphic
images” of F . And if we’re lucky, the solutions to those simpler problems can
be combined and “lifted” to a solution of the overall problem. Thus it pays to
be on the lookout for such simplifications.

Let’s look at another example. F. A. Schossow invented a tantalizing puzzle
[U.S. Patent 646463 (3 April 1900)] that went viral in 1967 when a marketing
genius decided to rename it “Instant Insanity.” The problem is to take four cubes
such as

♣

♠
♦

♣

♠

♥

Cube 1

♣

♦♣

♥

♣

♠

Cube 2

♥ ♣

♠

♦

♥

♦

Cube 3

♦
♥♥

♠

♠

♣

Cube 4

(36)

where each face has been marked in one of four ways, and to arrange them in a
row so that all four markings appear on the top, bottom, front, and back sides.
The placement in (36) is incorrect, because there are two ♣s (and no ♠) on top.
But we get a solution if we rotate each cube by 90◦.

There are 24 ways to place each cube, because any of the six faces can be
on top and we can rotate four ways while keeping the top unchanged. So the
total number of placements is 244 = 331776. But this problem can be factored
in an ingenious way, so that all solutions can be found quickly by hand! [See
F. de Carteblanche, Eureka 9 (1947), 9–11.] The idea is that any solution to the
puzzle gives us two each of {♣,♦,♥,♠}, if we look only at the top and bottom
or only at the front and back. That’s a much easier problem to solve.

For this purpose a cube can be characterized by its three pairs of markings
on opposite faces; in (36) these face-pairs are respectively

{♣♠,♣♦,♠♥}, {♣♣,♣♥,♠♦}, {♥♥,♠♦,♣♦}, {♠♦,♠♥,♣♥}. (37)

52

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 53

Which of the 34 = 81 ways to choose one face-pair from each cube will give us
{♣,♣,♦,♦,♥,♥,♠,♠}? They can all be discovered in a minute or two, by list-
ing the nine possibilities for cubes (1, 2) and the nine for (3, 4). We get just three,

(♣♦,♣♥,♠♦,♠♥), (♠♥,♣♥,♣♦,♠♦), (♠♥,♠♦,♣♦,♣♥). (38)

Notice furthermore that each solution can be “halved” so that one each of
{♣,♦,♥,♠} appears on both sides, by swapping face-pairs; we can change (38) to

(♦♣,♣♥,♠♦,♥♠), (♥♠,♣♥,♦♣,♠♦), (♥♠,♠♦,♦♣,♣♥). (39)

Each of these solutions to the opposite-face subproblem can be regarded as a
2-regular graph, because every vertex of the multigraph whose edges are (say)
♦−−−♣, ♣−−−♥, ♠−−−♦, ♥−−−♠ has exactly two neighbors.

A solution to “Instant Insanity” will give us two such 2-regular factors, one
for top-and-bottom and one for front-and-back. Furthermore those two factors
will have disjoint edges: We can’t use the same face-pair in both. Therefore
problem (36) can be solved only by using the first and third factor in (39).

Conversely, whenever we have two disjoint 2-regular graphs, we can always
use them to position the cubes as desired, thus “lifting” the factors to a solution
of the full problem.

Exercise 67 illustrates another kind of problem factorization. We can con-
veniently think of each subproblem as a “relaxation” of constraints.

Historical notes. The origins of backtrack programming are obscure. Equiva-
lent ideas must have occurred to many people, yet there was hardly any reason to
write them down until computers existed. We can be reasonably sure that James
Bernoulli used such principles in the 17th century, when he successfully solved
the “Tot tibi sunt dotes” problem that had eluded so many others (see Section
7.2.1.7), because traces of the method exist in his exhaustive list of solutions.

Backtrack programs typically traverse the tree of possibilities by using what
is now called depth-first search, a general graph exploration procedure that
Édouard Lucas credited to a telegraph engineer named Trémaux [Récréations
Mathématiques 1 (Paris: Gauthier-Villars, 1882), 47–50].

The eight queens problem was first proposed by Max Bezzel [Schachzeitung
3 (1848), 363; 4 (1849), 40] and by Franz Nauck [Illustrirte Zeitung 14, 361
(1 June 1850), 352; 15, 377 (21 September 1850), 182], perhaps independently.
C. F. Gauss saw the latter publication, and wrote several letters about it to
his friend H. C. Schumacher. Gauss’s letter of 27 September 1850 is especially
interesting, because it explained how to find all the solutions by backtracking—
which he called ‘Tatonniren’, from a French term meaning “to feel one’s way.”
He also listed the lexicographically first solutions of each equivalence class under
reflection and rotation: 15863724, 16837425, 24683175, 25713864, 25741863,
26174835, 26831475, 27368514, 27581463, 35281746, 35841726, and 36258174.

Computers arrived a hundred years later, and people began to use them
for combinatorial problems. The time was therefore ripe for backtracking to
be described as a general technique, and Robert J. Walker rose to the occasion
[Proc. Symposia in Applied Math. 10 (1960), 91–94]. His brief note introduced

53

From the Library of Melissa Nuno

ptg999

54 COMBINATORIAL SEARCHING 7.2.2

Algorithm W in machine-oriented form, and mentioned that the procedure could
readily be extended to find variable-length patterns x1 . . . xn where n is not fixed.

The next milestone was a paper by Solomon W. Golomb and Leonard D.
Baumert [JACM 12 (1965), 516–524], who formulated the general problem care-
fully and presented a variety of examples. In particular, they discussed the search
for maximum commafree codes, and noted that backtracking can be used to find
successively better and better solutions to combinatorial optimization problems.
They introduced certain kinds of lookahead, as well as the important idea of
dynamic ordering by branching on variables with the fewest remaining choices.

Backtrack methods allow special cutoffs when applied to integer program-
ming problems [see E. Balas, Operations Research 13 (1965), 517–546]. A. M.
Geoffrion simplified and extended that work, calling it “implicit enumeration”
because many cases aren’t enumerated explicitly [SIAM Rev. 9 (1967), 178–190].

Other noteworthy early discussions of backtrack programming appear in
Mark Wells’s book Elements of Combinatorial Computing (1971), Chapter 4; in
a survey by J. R. Bitner and E. M. Reingold, CACM 18 (1975), 651–656; and
in the Ph.D. thesis of John Gaschnig [Report CMU-CS-79-124 (Carnegie Mellon
University, 1979), Chapter 4]. Gaschnig introduced techniques of “backmarking”
and “backjumping” that we shall discuss later.

Monte Carlo estimates of the cost of backtracking were first described briefly
by M. Hall, Jr., and D. E. Knuth in Computers and Computing, AMM 72, 2,
part 2, Slaught Memorial Papers No. 10 (February 1965), 21–28. Knuth gave a
much more detailed exposition a decade later, in Math. Comp. 29 (1975), 121–
136. Such methods can be considered as special cases of so-called “importance
sampling”; see J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods

(London: Methuen, 1964), 57–59. Studies of random self-avoiding walks such
as the king paths discussed above were inaugurated by M. N. Rosenbluth and
A. W. Rosenbluth, J. Chemical Physics 23 (1955), 356–359.

Backtrack applications are nicely adaptable to parallel programming, be-
cause different parts of the search tree are often completely independent of
each other; thus disjoint subtrees can be explored on different machines, with
a minimum of interprocess communication. Already in 1964, D. H. Lehmer
explained how to subdivide a problem so that two computers of different speeds
could work on it simultaneously and finish at the same time. The problem that
he considered had a search tree of known shape (see Theorem 7.2.1.3L); but
we can do essentially similar load balancing even in much more complicated
situations, by using Monte Carlo estimates of the subtree sizes. Although many
ideas for parallelizing combinatorial searches have been developed over the years,
such techniques are beyond the scope of this book. Readers can find a nice intro-
duction to a fairly general approach in the paper by R. Finkel and U. Manber,
ACM Transactions on Programming Languages and Systems 9 (1987), 235–256.

M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim, R. Impagliazzo, A. Ma-
gen, and T. Pitassi have defined priority branching trees, a general model of com-
putation with which they were able to prove rigorous bounds on what backtrack
programs can do, in Computational Complexity 20 (2011), 679–740.

54

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 55

EXERCISES

� 1. [22] Explain how the tasks of generating (i) n-tuples, (ii) permutations of distinct
items, (iii) combinations, (iv) integer partitions, (v) set partitions, and (vi) nested
parentheses can all be regarded as special cases of backtrack programming, by present-
ing suitable domains Dk and cutoff properties Pl(x1, . . . , xl) that satisfy (1) and (2).

2. [10] True or false: We can choose D1 so that P1(x1) is always true.

3. [20] Let T be any tree. Is it possible to define domains Dk and cutoff properties
Pl(x1, . . . , xl) so that T is the backtrack tree traversed by Algorithm B?

4. [16] Using a chessboard and eight coins to represent queens, one can follow the
steps of Algorithm B and essentially traverse the tree of Fig. 68 by hand in about three
hours. Invent a trick to save half of the work.

� 5. [20] Reformulate Algorithm B as a recursive procedure called try (l), having global
variables n and x1 . . . xn, to be invoked by saying ‘try (1)’. Can you imagine why the
author of this book decided not to present the algorithm in such a recursive form?

6. [20] Given r, with 1 ≤ r ≤ 8, in how many ways can 7 nonattacking queens be
placed on an 8× 8 chessboard, if no queen is placed in row r?

7. [20] (T. B. Sprague, 1890.) Are there any values n > 5 for which the n queens
problem has a “framed” solution with x1 = 2, x2 = n, xn−1 = 1, and xn = n− 1?

8. [20] Are there two 8-queen placements with the same x1x2x3x4x5x6?

9. [21] Can a 4m-queen placement have 3m queens on “white” squares?

� 10. [22] Adapt Algorithm W to the n queens problem, using bitwise operations on
n-bit numbers as suggested in the text.

11. [M25] (W. Ahrens, 1910.) Both solutions of the n queens problem
when n = 4 have quarterturn symmetry : Rotation by 90◦ leaves them
unchanged, but reflection doesn’t.
a) Can the n queens problem have a solution with reflection symmetry?
b) Show that quarterturn symmetry is impossible if nmod 4 ∈ {2, 3}.
c) Sometimes the solution to an n queens problem contains four queens

that form the corners of a tilted square, as shown here. Prove that we
can always get another solution by tilting the square the other way (but
leaving the other n− 4 queens in place).
d) Let Cn be the number of solutions with 90◦ symmetry, and suppose

cn of them have xk > k for 1 ≤ k ≤ n/2. Prove that Cn = 2�n/4�cn.

�
�

�
�

�
�

�
�

�
�

�

�
�
�

�
�

�
�

�
�
�

�

12. [M28] (Wraparound queens.) Replace (3) by the stronger conditions ‘xj �= xk,
(xk − xj) mod n �= k − j, (xj − xk) mod n �= k − j’. (The n× n grid becomes a torus.)
Prove that the resulting problem is solvable if and only if n is not divisible by 2 or 3.

13. [M30] For which n ≥ 0 does the n queens problem have at least one solution?

14. [M25] If exercise 12 has T (n) toroidal solutions, show that Q(mn) ≥ Q(m)nT (n).

15. [HM42] (M. Simkin, 2021.) Show that Q(n)≈σnn! as n→∞, where σ≈ 0.389068.

16. [21] Let H(n) be the number of ways that n queen bees can occupy
an n × n honeycomb so that no two are in the same line. (For example,
one of the H(4) = 7 ways is shown here.) Compute H(n) for small n. �

�

�

�

17. [15] J. H. Quick (a student) noticed that the loop in step L2 of Algorithm L can
be changed from ‘while xl < 0’ to ‘while xl �= 0’, because xl cannot be positive at

55

From the Library of Melissa Nuno

ptg999

56 COMBINATORIAL SEARCHING 7.2.2

that point of the algorithm. So he decided to eliminate the minus signs and just set
xl+k+1 ← k in step L3. Was it a good idea?

18. [17] Suppose that n = 4 and Algorithm L has reached step L2 with l = 4 and
x1x2x3 = 241. What are the current values of x4x5x6x7x8, p0p1p2p3p4, and y1y2y3?

19. [M10] What are the domains Dl in Langford’s problem (7)?

� 20. [21] Extend Algorithm L so that it forces xl ← k whenever k /∈ {x1, . . . , xl−1}
and l ≥ 2n− k − 1.

� 21. [M25] If x = x1x2 . . . x2n, let x
D = (−x2n) . . . (−x2)(−x1) = −xR be its dual.

a) Show that if n is odd and x solves Langford’s problem (7), we have xk = n for
some k ≤ 	n/2
 if and only if xDk = n for some k > 	n/2
.

b) Find a similar rule that distinguishes x from xD when n is even.

c) Consequently the algorithm of exercise 20 can be modified so that exactly one of
each dual pair of solutions {x, xD} is visited.

22. [M26] Explore “loose Langford pairs”: Replace ‘j + k+ 1’ in (7) by ‘j + 	3k/2
’.

23. [17] We can often obtain one word rectangle from another by changing only a
letter or two. Can you think of any 5× 6 word rectangles that almost match (10)?

24. [20] Customize Algorithm B so that it will find all 5× 6 word rectangles.

� 25. [25] Explain how to use orthogonal lists, as in Fig. 13 of Section 2.2.6, so that it’s
easy to visit all 5-letter words whose kth character is c, given 1 ≤ k ≤ 5 and a ≤ c ≤ z.
Use those sublists to speed up the algorithm of exercise 24.

26. [21] Can you find nice word rectangles of sizes 5× 7, 5× 8, 5× 9, 5× 10?

27. [22] What profile and average node costs replace (13) and (14) when we ask the
algorithm of exercise 25 for 6× 5 word rectangles instead of 5× 6?

� 28. [23] The method of exercises 24 and 25 does n levels of backtracking to fill the
cells of an m× n rectangle one column at a time, using a trie to detect illegal prefixes
in the rows. Devise a method that does mn levels of backtracking and fills just one
cell per level, using tries for both rows and columns.

29. [20] Do any 5× 6 word rectangles contain fewer than 11 different words?

30. [22] Symmetric word squares, whose columns are the same as their rows, were
popular in England during the 1850s. For example, A. De Morgan praised the square

L E A V E

E L L E N

A L O N E

V E N O M

E N E M Y

because it actually is “meaningful”! Determine the total number of symmetric 5 × 5
word squares, by adapting the method of exercise 28. How many belong to WORDS(500)?

31. [20] (Charles Babbage, 1864.) Do any of the symmetric 5× 5 word squares also
have valid words on both diagonals?

32. [22] How many symmetric word squares of sizes 2× 2, 3× 3, . . . , are supported
by The Official SCRABBLE R© Players Dictionary, fourth edition (Hasbro, 2005)?

33. [21] Puzzlers who tried to construct word squares by hand found long ago that
it was easiest to work from bottom to top. Therefore they used “reverse dictionaries,”
whose words appear in colex order. Does this idea speed up computer experiments?

56

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 57

34. [15] What’s the largest commafree subset of the following words?

aced babe bade bead beef cafe cede dada dead deaf face fade feed

� 35. [22] Let w1, w2, . . . , wn be four-letter words on an m-letter alphabet. Design an
algorithm that accepts or rejects each wj , according as wj is commafree or not with
respect to the accepted words of {w1, . . . , wj−1}.

36. [M22] A two-letter block code on an m-letter alphabet can be represented as a
digraph D on m vertices, with a→ b if and only if ab is a codeword.

a) Prove that the code is commafree ⇐⇒ D has no oriented paths of length 3.

b) How many arcs can be in an m-vertex digraph with no oriented paths of length r?

� 37. [M30] (W. L. Eastman, 1965.) The following elegant construction yields a comma-
free code of maximum size for any odd block length n, over any alphabet. Given a
sequence x = x0x1 . . . xn−1 of nonnegative integers, where x differs from each of its
other cyclic shifts xk . . . xn−1x0 . . . xk−1 for 0 < k < n, the procedure outputs a cyclic
shift σx with the property that the set of all such σx is commafree.

We regard x as an infinite periodic sequence 〈xn〉 with xk = xk−n for all k ≥ n.
Each cyclic shift then has the form xkxk+1 . . . xk+n−1. The simplest nontrivial example
occurs when n = 3, where x = x0x1x2x0x1x2x0 . . . and we don’t have x0 = x1 = x2.
In this case the algorithm outputs xkxk+1xk+2 where xk ≥ xk+1 < xk+2; and the set
of all such triples clearly satisfies the commafree condition.

One key idea is to think of x as partitioned into t substrings by boundary mark-
ers bj , where 0 ≤ b0 < b1 < · · · < bt−1 < n and bj = bj−t+ n for j ≥ t. Then substring
yj is xbjxbj+1 . . . xbj+1−1. The number t of substrings is always odd. Initially t = n
and bj = j for all j; ultimately t = 1, and σx = y0 is the desired output.

Eastman’s algorithm is based on comparison of adjacent substrings yj−1 and yj .
If those substrings have the same length, we use lexicographic comparison; otherwise
we declare that the longer substring is bigger.

The second key idea is the notion of “dips,” which are substrings of the form
z = z1 . . . zk where k ≥ 2 and z1 ≥ · · · ≥ zk−1 < zk. It’s easy to see that any string
y = y0y1 . . . in which we have yi < yi+1 for infinitely many i can be factored into a
sequence of dips, y = z(0)z(1) . . . , and this factorization is unique. For example,

3141592653589793238462643383 . . . = 314 15 926 535 89 79 323 846 26 4338 3

Furthermore, if y is a periodic sequence, its factorization into dips is also ultimately
periodic, although some of the initial factors may not occur in the period. For example,

123443550123443550123443550 . . . = 12 34 435 501 23 4435 501 23 4435

Given a periodic, nonconstant sequence y described by boundary markers as above,
where the period length t is odd, its periodic factorization will contain an odd number
of odd-length dips. Each round of Eastman’s algorithm simply retains the boundary
points at the left of those odd-length dips. Then t is reset to the number of retained
boundary points, and another round begins if t > 1.

a) Play through the algorithm by hand when n = 19 and x = 3141592653589793238.

b) Show that the number of rounds is at most 	log3 n
.

c) Exhibit a binary x that achieves this worst-case bound when n = 3e.

d) Implement the algorithm with full details. (It’s surprisingly short!)

e) Explain why the algorithm yields a commafree code.

57

From the Library of Melissa Nuno

ptg999

58 COMBINATORIAL SEARCHING 7.2.2

38. [HM28] What is the probability that Eastman’s algorithm finishes in one round?
(Assume that x is a random m-ary string of odd length n > 1, unequal to any of its
other cyclic shifts. Use a generating function to express the answer.)

39. [18] Why can’t a commafree code of length (m4 −m2)/4 contain 0001 and 2000?

� 40. [15] Why do you think sequential data structures such as (16)–(23) weren’t fea-
tured in Section 2.2.2 of this series of books (entitled “Sequential Allocation”)?

41. [17] What’s the significance of (a) MEM[40d]=5e and (b) MEM[904]=84 in Table 1?

42. [18] Why does Table 2 have (a) MEM[f8] = e7 and (b) MEM[a0d] = ba?

43. [20] Suppose you’re using the undoing scheme (26) and the operation σ ← σ + 1
has just bumped the current stamp σ to zero. What should you do?

� 44. [25] Spell out the low-level implementation details of the candidate selection
process in step C2 of Algorithm C. Use the routine store(a, v) of (26) whenever changing
the contents of MEM, and use the following selection strategy:

a) Find a class c with the least number r of blue words.

b) If r = 0, set x← −1; otherwise set x to a word in class c.

c) If r > 1, use the poison list to find an x that maximizes the number of blue words
that could be killed on the other side of the prefix or suffix list that contains x.

� 45. [28] Continuing exercise 44, spell out the details of step C3 when x ≥ 0.

a) What updates should be done to MEM when a blue word x becomes red?

b) What updates should be done to MEM when a blue word x becomes green?

c) Step C3 begins its job by making x green as in part (b). Explain how it should
finish its job by updating the poison list.

46. [M35] Is there a binary (m = 2) commafree code with one codeword in each of
the (

∑
d\n μ(d)2

n/d)/n cycle classes, for every word length n?

47. [HM29] A commafree code on m letters is equivalent to at most 2m! such codes
if we permute the letters and/or replace each codeword by its left-right reflection.

Determine all of the nonisomorphic commafree codes of length 4 onm letters when
m is (a) 2 (b) 3 (c) 4 and there are (a) 3 (b) 18 (c) 57 codewords.

48. [M42] Find a maximum-size commafree code of length 4 on m = 5 letters.

49. [20] Explain how the choices in Fig. 69 were determined from the “random” bits
that are displayed. For instance, why was X2 set to 1 in Fig. 69(b)?

50. [M15] Interpret the value E(D1 . . .Dl), in the text’s Monte Carlo algorithm.

51. [M22] What’s a simple martingale that corresponds to Theorem E?

� 52. [HM25] Elmo uses Algorithm E with Dk = {1, . . . , n}, Pl = [x1> · · ·>xl], c = 1.

a) Alice flips n coins independently, where coin k yields “heads” with probability 1/k.
True or false: She obtains exactly l heads with probability

[
n
l

]
/n!.

b) Let Y1, Y2, . . . , Yl be the numbers on the coins that come up heads. (Thus Y1 = 1,
and Y2 = 2 with probability 1/2.) Show that Pr(Alice obtains Y1, Y2, . . . , Yl) =
Pr(Elmo obtains X1 = Yl, X2 = Yl−1, . . . , Xl = Y1).

c) Prove that Alice q.s. obtains at most (lnn)(ln lnn) heads.

d) Consequently Elmo’s S is q.s. less than exp((lnn)2(ln lnn)).

� 53. [M30] Extend Algorithm B so that it also computes the minimum, maximum,
mean, and variance of the Monte Carlo estimates S produced by Algorithm E.

58

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 59

54. [M21] Instead of choosing each yi in step E5 with probability 1/d, we could use
a biased distribution where Pr(I = i |X1, . . . ,Xl−1) = pX1...Xl−1

(yi) > 0. How should
the estimate S be modified so that its expected value in this general scheme is still C()?

55. [M20] If all costs c(x1, . . . , xl) are positive, show that the biased probabilities of
exercise 54 can be chosen in such a way that the estimate S is always exact.

� 56. [M25] The commafree code search procedure in Algorithm C doesn’t actually
fit the mold of Algorithm E, because it incorporates lookahead, dynamic ordering,
reversible memory, and other enhancements to the basic backtrack paradigms. How
could its running time be reliably estimated with Monte Carlo methods?

57. [HM21] Algorithm E can potentially follow M different paths X1 . . . Xl−1 before
it terminates, where M is the number of leaves of the backtrack tree. Suppose the final

values of D at those leaves are D(1), . . . , D(M). Prove that (D(1) . . . D(M))1/M ≥M .

58. [27] The text’s king path problem is a special case of the general problem of
counting simple paths from vertex s to vertex t in a given graph.

We can generate such paths by random walks from s that don’t get stuck, if we
maintain a table of values DIST(v) for all vertices v not yet in the path, representing
the shortest distance from v to t through unused vertices. For with such a table we
can simply move at each step to a vertex for which DIST(v) <∞.

Devise a way to update the DIST table dynamically without unnecessary work.

59. [26] A ZDD with 3,174,197 nodes can be constructed for the family of all simple
corner-to-corner king paths on a chessboard, using the method of exercise 7.1.4–225.
Explain how to use this ZDD to compute (a) the total length of all paths; (b) the
number of paths that touch any given subset of the center and/or corner points.

� 60. [20] Experiment with biased random walks (see exercise 54), weighting each non-
dead-end king move to a new vertex v by 1 + DIST(v)2 instead of choosing every such
move with the same probability. Does this strategy improve on Fig. 70?

61. [HM26] Let Pn be the number of integer sequences x1 . . . xn such that x1 = 1 and
1 ≤ xk+1 ≤ 2xk for 1 ≤ k < n. (The first few values are 1, 2, 6, 26, 166, 1626, . . . ;
this sequence was introduced by A. Cayley in Philosophical Magazine (4) 13 (1857),
245–248, who showed that Pn enumerates the partitions of 2n − 1 into powers of 2.)
a) Show that Pn is the number of different profiles that are possible for a binary tree

of height n.
b) Find an efficient way to compute Pn for large n. Hint: Consider the more general

sequence P
(m)
n , defined similarly but with x1 = m.

c) Use the estimation procedure of Theorem E to prove that Pn ≥ 2(
n
2)/(n− 1)!.

� 62. [22] When the faces of four cubes are colored randomly with four colors, estimate
the probability that the corresponding “Instant Insanity” puzzle has a unique solution.
How many 2-regular graphs tend to appear during the “factored” solution process?

63. [20] Find five cubes, each of whose faces has one of five colors, and where every
color occurs at least five times, such that the corresponding puzzle has a unique solution.

64. [24] Assemble five cubes with uppercase letters on each face, using the patterns

P O E

Z
G
H

S G S
UR
Z

A R T

H I Z

D T E

U
W
C

U Y L

Z O H

By extending the principles of “Instant Insanity,” show that these cubes can be placed
in a row so that four 5-letter words are visible. (Each word’s letters should have a consis-
tent orientation. The letters C and U, H and I, N and Z are related by 90◦ rotation.)

59

From the Library of Melissa Nuno

ptg999

60 COMBINATORIAL SEARCHING 7.2.2

65. [25] Show that the generalized “Instant Insanity” problem, with n cubes and
n colors on their faces, is NP-complete, even though cases with small n are fairly easy.

� 66. [23] (The Fool’s Disk.) “Rotate the four disks of the left-hand illustration below so
that the four numbers on each ray sum to 12.” (The current sums are 4+3+2+4 = 13,
etc.) Show that this problem factors nicely, so that it can be solved readily by hand.

4

2

3

4

3
4

3
3

1355

4
1

4
1

3

2

3

5

2
3
1
4

3 1 2 2

5
5
2
3

The Fool’s Disk

2
5

1
5

1
1

5
3

2
7

4
5

4
5

4
2

7
2

5
4

7
5

5
7

8
3

7
4

3
4

5
4

5
7

3
5

The Royal Aquarium Thirteen Puzzle

� 67. [26] (The Royal Aquarium Thirteen Puzzle.) “Rearrange the nine cards of the
right-hand illustration above, optionally rotating some of them by 180◦, so that the six
horizontal sums of gray letters and the six vertical sums of black letters all equal 13.”
(The current sums are 1 + 5 + 4 = 10, . . . , 7 + 5 + 7 = 19.) The author of Hoffmann’s
Puzzles Old and New (1893) stated that “There is no royal road to the solution. The
proper order must be arrived at by successive transpositions until the conditions are
fulfilled.” Prove that he was wrong: “Factor” this problem and solve it by hand.

� 68. [28] (Johan de Ruiter, 14 March 2018.) Put a digit into each empty box, in such
a way that every box names the exact number of distinct digits that it points to.

3 1 4 1 5 9

2 6 5

3 5 8 9

7

9 3

2 3

8

4 6 2 6

4 3 3

8 3 2 7 9 5

69. [41] Is there a puzzle like exercise 68 whose clues contain more than 32 digits of π?

70. [HM40] (M. Bousquet-Mélou.) Consider self-avoiding paths from the upper left
corner of an m × n grid to the lower right, where each step is either up, down, or to
the right. If we generate such paths at random, making either 1 or 2 or 3 choices at
each step as in Algorithm E, the expected value EDmn is the total number of such
paths, mn−1. But the variance is considerably larger: Construct polynomials Pm(z)
and Qm(z) such that we have Gm(z) =

∑∞
n=1(ED2

mn)z
n = zPm(z)/Qm(z) for m ≥ 2.

For example, G3(z) = (z+ z2)/(1−9z−6z2) = z+10z2+96z3+924z4+8892z5+ · · · .
Prove furthermore that ED2

mn = Θ(ρnm), where ρm = 2m +O(1).

60

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 61

Table 666

TWENTY QUESTIONS (SEE EXERCISE 71)

1. The first question whose answer is A is:
(A) 1 (B) 2 (C) 3 (D) 4 (E) 5
2. The next question with the same answer as this one is:
(A) 4 (B) 6 (C) 8 (D) 10 (E) 12
3. The only two consecutive questions with identical answers are questions:
(A) 15 and 16 (B) 16 and 17 (C) 17 and 18 (D) 18 and 19 (E) 19 and 20
4. The answer to this question is the same as the answers to questions:
(A) 10 and 13 (B) 14 and 16 (C) 7 and 20 (D) 1 and 15 (E) 8 and 12
5. The answer to question 14 is:
(A) B (B) E (C) C (D) A (E) D
6. The answer to this question is:
(A) A (B) B (C) C (D) D (E) none of those
7. An answer that appears most often is:
(A) A (B) B (C) C (D) D (E) E
8. Ignoring answers that appear equally often, the least common answer is:
(A) A (B) B (C) C (D) D (E) E
9. The sum of all question numbers whose answers are correct and the same as this one is:
(A) ∈ [59 . . 62] (B) ∈ [52 . . 55] (C) ∈ [44 . . 49] (D) ∈ [59 . . 67] (E) ∈ [44 . . 53]

10. The answer to question 17 is:
(A) D (B) B (C) A (D) E (E) wrong

11. The number of questions whose answer is D is:
(A) 2 (B) 3 (C) 4 (D) 5 (E) 6

12. The number of other questions with the same answer as this one is the same as the number
of questions with answer:
(A) B (B) C (C) D (D) E (E) none of those

13. The number of questions whose answer is E is:
(A) 5 (B) 4 (C) 3 (D) 2 (E) 1

14. No answer appears exactly this many times:
(A) 2 (B) 3 (C) 4 (D) 5 (E) none of those

15. The set of odd-numbered questions with answer A is:
(A) {7} (B) {9} (C) not {11} (D) {13} (E) {15}

16. The answer to question 8 is the same as the answer to question:
(A) 3 (B) 2 (C) 13 (D) 18 (E) 20

17. The answer to question 10 is:
(A) C (B) D (C) B (D) A (E) correct

18. The number of prime-numbered questions whose answers are vowels is:
(A) prime (B) square (C) odd (D) even (E) zero

19. The last question whose answer is B is:
(A) 14 (B) 15 (C) 16 (D) 17 (E) 18

20. The maximum score that can be achieved on this test is:
(A) 18 (B) 19 (C) 20 (D) indeterminate

(E) achievable only by getting this question wrong

� 71. [M29] (Donald R. Woods, 2000.) Find all ways to maximize the number of correct
answers to the questionnaire in Table 666. Each question must be answered with a
letter from A to E. Hint: Begin by clarifying the exact meaning of this exercise. What
answers are best for the following two-question, two-letter “warmup problem”?

1. (A) Answer 2 is B. (B) Answer 1 is A.

2. (A) Answer 1 is correct. (B) Either answer 2 is wrong or answer 1 is A, but not both.

72. [HM28] Show that exercise 71 has a surprising, somewhat paradoxical answer if
two changes are made to Table 666: 9(E) becomes ‘∈ [39 . . 43]’; 15(C) becomes ‘{11}’.

61

From the Library of Melissa Nuno

ptg999

62 COMBINATORIAL SEARCHING 7.2.2

� 73. [30] (A clueless anacrostic.) The letters of 29 five-letter words

1 2 3 4 5

,
6 7 8 9 10

,
11 12 13 14 15

,
16 17 18 19 20

, . . . ,
141142143144145

,

all belonging to WORDS(1000), have been shuffled to form the following mystery text:

30 29 9 140 12 13 145 90 45 99 26 107 47 84 53 51 27 133 39 137139 66 112 69 14 8 20 91 129 70

16 7 93 19 85 101 76 78 44 10 106 60 118119 24 25 100 1 5 64 11 71 42 122123

103104 63 49 31 121 98 79 80 46 48 134135131 143 96 142120 50 132 33 43 34 40

. . . .

111 97 113105 38 102 62 65 114 74 82 81 83 136 37 21 61 88 86 55

(
32 35 117116 23 52

56 17 18 94 67 128 15 57 58 89 87 109 2 4 6 28 95 3 126 77 144 54 41

)
68 115

75 138 73 124 36 130127141 22 92 72 59 108125110

.

Furthermore, their initial letters
1

,
6

,
11

,
16

, . . . ,
141

identify the source of that

quotation, which consists entirely of common English words. What does it say?

74. [21] The fifteenth mystery word in exercise 73 is ‘
134135131

’. Why does its special

form lead to a partial factorization of that problem?

� 75. [30] (Connected subsets.) Let v be a vertex of some graph G, and let H be a
connected subset of G that contains v. The vertices of H can be listed in a canonical
way by starting with v0 ← v and then letting v1, v2, . . . be the neighbors of v0 that
lie in H, followed by the neighbors of v1 that haven’t yet been listed, and so on. (We
assume that the neighbors of each vertex are listed in some fixed order.)

For example, if G is the 3× 3 grid P3 P3, exactly 21 of its connected five-element
subsets contain the upper left corner element v. Their canonical orderings are

0 1

2

3

4

0 1

2

3

4

0 1

2

3

4

0 1

2 3

4

0 1

2 3 4

0 1

2 3

4

0 1

2

3 4

0 1 2

3 4

0 1 2

3

4

0 1 2

3

4

0 1

2 3

4

0 1

2 3

4

0 1

2

34

0 1

2

3 4

0

1 2

3

4

0

1 2

3 4

0

1 2 3

4

0

1 2 3

4 0

1 2 3

4

0

1 2

3 4

0

1

2 3 4

if we order the vertices top-to-bottom, left-to-right when listing their neighbors. (Ver-
tices labeled 0 , 1 , 2 , 3 , 4 indicate v0, v1, v2, v3, v4. Other vertices are not in H.)

Design a backtrack algorithm to generate all of the n-element connected subsets
that contain a specified vertex v, given a graph that is represented in SGB format
(which has ARCS, TIP, and NEXT fields, as described near the beginning of Chapter 7).

76. [23] Use the algorithm of exercise 75 to generate all of the connected n-element
subsets of a given graph G. How many such subsets does Pn Pn have, for 1 ≤ n ≤ 9?

77. [M22] A v-reachable subset of a directed graph G is a nonempty set of vertices H
with the property that every u ∈ H can be reached from v by at least one oriented
path in G |H. (In particular, v itself must be in H.)

a) The digraph P�3 P�3 is like P3 P3, except that all arcs between vertices are
directed downward or to the right. Which of the 21 connected subsets in exercise
75 are also v-reachable from the upper left corner element v of P�3 P�3 ?

62

From the Library of Melissa Nuno

ptg999

7.2.2 BACKTRACK PROGRAMMING 63

b) True or false: H is v-reachable if and only if G |H contains a dual oriented spanning
tree rooted at v. (An oriented tree has arcs u−−→pu, where pu is the parent of the
nonroot node u; in a dual oriented tree, the arcs are reversed: pu−−→u.)

c) True or false: If G is undirected, so that w−−→u whenever u−−→w, its v-reachable
subsets are the same as the connected subsets that contain v.

d) Modify the algorithm of exercise 75 so that it generates all of the n-element v-
reachable subsets of a digraph G, given n, v, and G.

78. [22] Extend the algorithm of exercise 77 to weighted graphs, in which every vertex
has a nonnegative weight: Generate all of the connected induced subgraphs whose total
weight w satisfies L ≤ w < U .

� 79. [M30] The author and his wife own a pipe organ that contains 812 pipes, each
of which is either playing or silent. Therefore 2812 different sounds (including silence)
can potentially be created. However, the pipes are controlled by a conventional organ
console, which has only 56+56+32 = 144 keys and pedals that can be played by hands
and feet, together with 20 on-off switches to define the connections between keys and
pipes. Therefore at most 2164 different sounds are actually playable! The purpose of
this exercise is to determine the exact number of n-pipe playable sounds, for small n.

The keys are binary vectors s = s0s1 . . . s55 and g = g0g1 . . . g55; the pedals are
p = p0p1 . . . p31; the console control switches are c = c0c1 . . . c19; and the pipes are ri,j
for 0 ≤ i < 16 and 0 ≤ j < 56. Here are the precise rules that define the pipe activity
ri,j in terms of the input vectors s, g, p, and c that are governed by the organist:

ri,j =

{
cipj ∨ ci+15pj−12, i ∈ {0, 1};
cipj , i ∈ {2};

ri,j =

⎧⎨
⎩
(ci ∨ ci+1[j < 12])s∗j , i ∈ {3};
ci[j≥ 12]s∗j , i ∈ {4, 8};
cis

∗
j , i ∈ {5, 6, 7};

ri,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ci ∨ ci+1[j < 12])g∗j , i ∈ {9};
ci[j≥ 12]g∗j , i ∈ {10};
cig

∗
j , i ∈ {11, 12};

(c13 ∨ c14)g
∗
j , i ∈ {13};

c14g
∗
j . i ∈ {14, 15}.

Here pj = 0 if j < 0 or j ≥ 32; s∗j = sj ∨ c17gj ∨ c18pj ; g
∗
j = gj ∨ c19pj . [In organ jargon,

the array of pipes has 16 “ranks”; ranks {0, 1, 2}, {3, . . . , 8}, {9, . . . , 15} constitute the
Pedal, Swell, and Great divisions. Ranks 3 and 4 share their lower 12 pipes, as do ranks
9 and 10. Ranks 13, 14, and 15 form a “mixture,” c14. Unit ranks c15 and c16 extend
ranks 0 and 1, twelve notes higher. Console switches c17, c18, c19 are “couplers” Swell→
Great, Swell→ Pedal, Great→ Pedal, which explain the formulas for s∗j and g∗j .]

A playable sound S is a set of pairs (i, j) such that we have ri,j = [(i, j)∈S] for
at least one choice of the input vectors s, g, p, c. For example, the first chord of Bach’s
Toccata in D minor is the 8-pipe sound {(3, 33), (3, 45), (4, 33), (4, 45), (5, 33), (5, 45),
(6, 33), (6, 45)}, which is achievable when s33 = s45 = c3 = c4 = c5 = c6 = 1 and all
other inputs are 0. We want to find the number Qn of playable sounds with ‖S‖ = n.
a) There are 16 × 56 variables ri,j but only 812 actual pipes, because some of the

ranks are incomplete. For which pairs (i, j) is ri,j always false?
b) True or false: If s ⊆ s′, g ⊆ g′, p ⊆ p′, and c ⊆ c′, then r ⊆ r′.
c) Show that every playable sound is achievable with c17 = c18 = c19 = 0.
d) Find a 5-pipe playable sound in which just five of the sj , gj , pj , cj are nonzero.
e) For which i and i′ are the 2-pipe sounds {(i, 40), (i′, 50)} playable?
f) Determine Q1 by hand, and explain why it is less than 812.
g) Determine Q811 by hand.
h) Determine Q2, . . . , Q10 by computer, and compare them to

(
812
2

)
, . . . ,

(
812
10

)
.

63

From the Library of Melissa Nuno

ptg999

64 COMBINATORIAL SEARCHING 7.2.2

We hold several threads in our hands,

and the odds are that one or other of them guides us to the truth.

We may waste time in following the wrong one,

but sooner or later we must come upon the right.

— SHERLOCK HOLMES, in The Hound of the Baskervilles (1901)

The following Receipts are not a mere marrow-less collection of

shreds, and patches, and cuttings, and pastings, from obsolete works,

but a bona fide register of practical facts . . .

the author submitting to a labour no preceding cookery-book-maker, perhaps,

ever attempted to encounter; and having not only dressed, but eaten

each Receipt before he set it down in his book.

— WILLIAM KITCHINER, Apicius Redivivus; Or, The Cook’s Oracle (1817)

Just as we hope you will learn from us, we have learned from you,

from the recipes and short cuts and tips and traditions

you have been kind enough to tell us about.

Without your help, truly, this book could not have been written.

— McCall’s Cook Book (1963)

64

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS 65

What a dance

do they do

Lordy, how I’m tellin’ you!

— HARRY BARRIS, Mississippi Mud (1927)

Don’t lose your confidence if you slip,

Be grateful for a pleasant trip,

And pick yourself up, dust yourself off, start all over again.

— DOROTHY FIELDS, Pick Yourself Up (1936)

7.2.2.1. Dancing links. One of the chief characteristics of backtrack algo-
rithms is the fact that they usually need to undo everything that they do to
their data structures. In this section we’ll study some extremely simple link-
manipulation techniques that modify and unmodify the structures with ease.
We’ll also see that these ideas have many, many practical applications.

Suppose we have a doubly linked list, in which each node X has a predecessor
and successor denoted respectively by LLINK(X) and RLINK(X). Then we know
that it’s easy to delete X from the list, by setting

RLINK(LLINK(X))← RLINK(X), LLINK(RLINK(X))← LLINK(X). (1)

At this point the conventional wisdom is to recycle node X, making it available for
reuse in another list. We might also want to tidy things up by clearing LLINK(X)
and RLINK(X) to Λ, so that stray pointers to nodes that are still active cannot
lead to trouble. (See, for example, Eq. 2.2.5–(4), which is the same as (1) except
that it also says ‘AVAIL ⇐ X’.) By contrast, the dancing-links trick resists any
urge to do garbage collection. In a backtrack application, we’re better off leaving

LLINK(X) and RLINK(X) unchanged. Then we can undo operation (1) by simply
setting

RLINK(LLINK(X))← X, LLINK(RLINK(X))← X. (2)

For example, we might have a 4-element list, as in 2.2.5–(2):

List head

. (3)

If we use (1) to delete the third element, (3) becomes

.

And if we now decide to delete the second element also, we get

.

65

From the Library of Melissa Nuno

ptg999

66 COMBINATORIAL SEARCHING 7.2.2.1

Subsequent deletion of the final element, then the first, will leave us with this:

(4)

The list is now empty, and its links have become rather tangled. (See exercise 1.)
But we know that if we proceed to backtrack at this point, using (2) to undelete
elements 1, 4, 2, and 3 in that order, we will magically restore the initial state (3).
The choreography that underlies the motions of these pointers is fun to watch,
and it explains the name “dancing links.”

Exact cover problems. We will be seeing many examples where links dance
happily and efficiently, as we study more and more examples of backtracking.
The beauty of the idea can perhaps be seen most naturally in an important
class of problems known as exact covering : We’re given an M ×N matrix A of
0s and 1s, and the problem is to find all subsets of rows whose sum is exactly 1
in every column. For example, consider the 6× 7 matrix

A =

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0 1 0 0
1 0 0 1 0 0 1
0 1 1 0 0 1 0
1 0 0 1 0 1 0
0 1 0 0 0 0 1
0 0 0 1 1 0 1

⎞⎟⎟⎟⎟⎟⎠ . (5)

Each row of A corresponds to a subset of a 7-element universe. A moment’s
thought shows that there’s only one way to cover all seven of these columns with
disjoint rows, namely by choosing rows 1, 4, and 5. We want to teach a computer
how to solve such problems, when there are many, many rows and many columns.

Matrices of 0s and 1s appear frequently in combinatorial problems, and
they help us to understand the relations between problems that are essentially
the same although they appear to be different (see exercise 5). But inside a
computer, we rarely want to represent an exact cover problem explicitly as a two-
dimensional array of bits, because the matrix tends to be extremely sparse: There
normally are very few 1s. Thus we’ll use a different representation, essentially
with one node in our data structure for each 1 in the matrix.

Furthermore, we won’t even talk about rows and columns! Some of the exact
cover problems we deal with already involve concepts that are called “rows” and
“columns” in their own areas of application. Instead we will speak of options
and items : Each option is a set of items; and the goal of an exact cover problem

is to find disjoint options that cover all the items.

For example, we shall regard (5) as the specification of six options involving
seven items. Let’s name the items a, b, c, d, e, f, g; then the options are

‘c e’; ‘a d g’; ‘b c f ’; ‘a d f ’; ‘b g’; ‘d e g’. (6)

The first, fourth, and fifth options give us each item exactly once.

66

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXACT COVER PROBLEMS 67

One of the nicest things about exact cover problems is that every tentative
choice we make leaves us with a residual exact cover problem that is smaller—
often substantially smaller. For example, suppose we try to cover item a in (6)
by choosing the option ‘a d g’: The residual problem has only two options,

‘c e’ and ‘b c f ’, (7)

because the other four involve the already-covered items. Now it’s easy to see
that (7) has no solution; therefore we can remove option ‘a d g’ from (6). That
leaves us with only one option for item a, namely ‘a d f ’. And its residual,

‘c e’ and ‘b g’, (8)

gives us the solution we were looking for.
Thus we’re led naturally to a recursive algorithm that’s based on the primi-

tive operation of “covering an item”: To cover item i, we delete all of the options
that involve i, from our database of currently active options, and we also delete i
from the list of items that need to be covered. The algorithm is then quite simple.

• Select an item i that needs to be covered; but terminate
successfully if none are left (we’ve found a solution).

• If no active options involve i, terminate unsuccessfully
(there’s no solution). Otherwise cover item i.

• For each just-deleted option O that involves i, one at a time, do this:
for each item j �= i in O, cover item j; then
recursively append O to each solution of the residual problem.

(9)

(Everything that’s covered must later be uncovered, of course, as we’ll see.)
Interesting details arise when we flesh out this algorithm and look at ap-

propriate low-level mechanisms. There’s a doubly linked “horizontal” list of all
items that need to be covered; and each item also has its own “vertical” list of all
the active options that involve it. For example, the data structures for (6) are:

a b c d e f g

0 1 2 3 4 5 6 7

9 10

12 13 14

16 17 18

20 21 22

24 25

27 28 29

8

11

15

19

23

26

11

15

19

23

26

30

(10)

(In this diagram, doubly linked pointers “wrap around” at the dotted lines.) The
horizontal list has LLINK and RLINK pointers; the vertical lists have ULINK and
DLINK. Nodes of each vertical list also point to their list header via TOP fields.

67

From the Library of Melissa Nuno

ptg999

68 COMBINATORIAL SEARCHING 7.2.2.1

The top row of diagram (10) shows the initial state of the horizontal item
list and its associated vertical headers. The other rows illustrate the six options
of (6), which are represented by sixteen nodes within the vertical lists. Those
options implicitly form horizontal lists, indicated by light gray lines; but their
nodes don’t need to be linked together with pointers, because the option lists
don’t change. We can therefore save time and space by allocating them sequen-
tially. On the other hand, our algorithm does require an ability to traverse each
option cyclically, in both directions. Therefore we insert spacer nodes between
options. A spacer node x is identified by the condition TOP(x) ≤ 0; it also has

ULINK(x) = address of the first node in the option before x;
DLINK(x) = address of the last node in the option after x.

(11)

These conventions lead to the internal memory layout shown in Table 1.
First come the records for individual items; those records have NAME, LLINK, and
RLINK fields, where NAME is used in printouts. Then come the nodes, which have
TOP, ULINK, and DLINK fields. The TOP field is, however, called LEN in the nodes
that serve as item headers, because Algorithm X below uses those fields to store
the lengths of the item lists. Nodes 8, 11, 15, 19, 23, 26, and 30 in this example
are the spacers. Fields marked ‘— ’ are unused and can contain anything.

Table 1

THE INITIAL CONTENTS OF MEMORY CORRESPONDING TO (6) AND (10)

i: 0 1 2 3 4 5 6 7
NAME(i): — a b c d e f g
LLINK(i): 7 0 1 2 3 4 5 6
RLINK(i): 1 2 3 4 5 6 7 0

x: 0 1 2 3 4 5 6 7
LEN(x): — 2 2 2 3 2 2 3

ULINK(x): — 20 24 17 27 28 22 29
DLINK(x): — 12 16 9 13 10 18 14

x: 8 9 10 11 12 13 14 15
TOP(x): 0 3 5 −1 1 4 7 −2

ULINK(x): — 3 5 9 1 4 7 12
DLINK(x): 10 17 28 14 20 21 25 18

x: 16 17 18 19 20 21 22 23
TOP(x): 2 3 6 −3 1 4 6 −4
ULINK(x): 2 9 6 16 12 13 18 20
DLINK(x): 24 3 22 22 1 27 6 25

x: 24 25 26 27 28 29 30
TOP(x): 2 7 −5 4 5 7 −6

ULINK(x): 16 14 24 21 10 25 27
DLINK(x): 2 29 29 4 5 7 —

OK, we’re ready now to spell out precisely what happens inside the com-
puter’s memory when Algorithm X wants to cover a given item i:

cover(i) =

⎧⎪⎨⎪⎩
Set p← DLINK(i). (Undeclared variables like p, l, r are local.)
While p �= i, hide(p), then set p← DLINK(p) and repeat.
Set l← LLINK(i), r ← RLINK(i),

RLINK(l)← r, LLINK(r)← l.

(12)

68

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXACT COVER PROBLEMS 69

hide(p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Set q ← p+ 1, and repeat the following while q �= p:
Set x← TOP(q), u← ULINK(q), d← DLINK(q);
if x ≤ 0, set q ← u (q was a spacer);
otherwise set DLINK(u)← d, ULINK(d)← u,

LEN(x)← LEN(x)− 1, q ← q + 1.

(13)

And—here’s the point— those operations can readily be undone:

uncover(i) =

⎧⎪⎨⎪⎩
Set l← LLINK(i), r ← RLINK(i),

RLINK(l)← i, LLINK(r)← i.
Set p← ULINK(i).
While p �= i, unhide(p), then set p← ULINK(p) and repeat.

(14)

unhide(p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Set q ← p− 1, and repeat the following while q �= p:
Set x← TOP(q), u← ULINK(q), d← DLINK(q);
if x ≤ 0, set q ← d (q was a spacer);
otherwise set DLINK(u)← q, ULINK(d)← q,

LEN(x)← LEN(x)+ 1, q ← q − 1.

(15)

We’re careful here to do everything backwards, using operation (2) inside (14)
and (15) to undelete in precisely the reverse order of the way that we’d previously
used operation (1) inside (12) and (13) to delete. Furthermore, we’re able to do
this in place, without copying, by waltzing through the data structure at the
same time as we’re modifying it.

Algorithm X (Exact cover via dancing links). This algorithm visits all solutions
to a given exact cover problem, using the data structures just described. It also
maintains a list x0, x1, . . . , xT of node pointers for backtracking, where T is
large enough to accommodate one entry for each option in a partial solution.

X1. [Initialize.] Set the problem up in memory, as in Table 1. (See exercise 8.)
Also set N to the number of items, Z to the last spacer address, and l← 0.

X2. [Enter level l.] If RLINK(0) = 0 (hence all items have been covered), visit the
solution that is specified by x0x1 . . . xl−1 and go to X8. (See exercise 13.)

X3. [Choose i.] At this point the items i1, . . . , it still need to be covered, where
i1 = RLINK(0), ij+1 = RLINK(ij), RLINK(it) = 0. Choose one of them, and
call it i. (The MRV heuristic of exercise 9 often works well in practice.)

X4. [Cover i.] Cover item i using (12), and set xl ← DLINK(i).

X5. [Try xl.] If xl = i, go to X7 (we’ve tried all options for i). Otherwise set
p ← xl + 1, and do the following while p �= xl: Set j ← TOP(p); if j ≤ 0,
set p ← ULINK(p); otherwise cover(j) and set p ← p + 1. (This covers the
items �= i in the option that contains xl.) Set l← l + 1 and return to X2.

X6. [Try again.] Set p ← xl − 1, and do the following while p �= xl: Set j ←
TOP(p); if j ≤ 0, set p← DLINK(p); otherwise uncover(j) and set p← p−1.
(This uncovers the items �= i in the option that contains xl, using the reverse
of the order in X5.) Set i← TOP(xl), xl ← DLINK(xl), and return to X5.

X7. [Backtrack.] Uncover item i using (14).

X8. [Leave level l.] Terminate if l = 0. Otherwise set l← l−1 and go to X6.

69

From the Library of Melissa Nuno

ptg999

70 COMBINATORIAL SEARCHING 7.2.2.1

The reader is strongly advised to work exercise 11 now—yes, now, really!—
in order to experience the dance steps of this instructive algorithm. When the
procedure terminates, all of the links will be restored to their original settings.

We’re going to see lots of applications of Algorithm X, and similar algo-
rithms, in this section. Let’s begin by fulfilling a promise that was made on
page 2 of Chapter 7, namely to solve the problem of Langford pairs efficiently
by means of dancing links.

The task is to put 2n numbers {1, 1, 2, 2, . . . , n, n} into 2n slots s1s2 . . . s2n,
in such a way that exactly i numbers fall between the two occurrences of i. It il-
lustrates exact covering nicely, because we can regard the n values of i and the 2n
slots sj as items to be covered. The allowable options for placing the i’s are then

‘i sj sk’, for 1 ≤ j < k ≤ 2n, k = i+ j + 1, 1 ≤ i ≤ n; (16)

for example, when n = 3 they’re

‘1 s1 s3’, ‘1 s2 s4’, ‘1 s3 s5’, ‘1 s4 s6’, ‘2 s1 s4’, ‘2 s2 s5’, ‘2 s3 s6’, ‘3 s1 s5’, ‘3 s2 s6’. (17)

An exact covering of all items is equivalent to placing each pair and filling each
slot. Algorithm X quickly determines that (17) has just two solutions,

‘3 s1 s5’, ‘2 s3 s6’, ‘1 s2 s4’ and ‘3 s2 s6’, ‘2 s1 s4’, ‘1 s3 s5’,

corresponding to the placements 3 1 2 1 3 2 and 2 3 1 2 1 3. Notice that those
placements are mirror images of each other; exercise 15 shows how to save a
factor of 2 and eliminate such symmetry, by omitting some of the options in (16).

With that change, there are exactly 326,721,800 solutions when n = 16, and
Algorithm X needs about 1.13 trillion memory accesses to visit them all. That’s
pretty good— it amounts to roughly 3460 mems per solution, as the links whirl.

Of course, we’ve already looked at a backtrack procedure that’s specifically
tuned to the Langford problem, namely Algorithm 7.2.2L near the beginning
of Section 7.2.2. With the enhancement of exercise 7.2.2–21, that one handles
the case n = 16 somewhat faster, finishing after about 400 billion mems. But
Algorithm X can be pleased that its general-purpose machinery isn’t way behind
the best custom-tailored method.

Secondary items. Can the classical problem of n queens also be formulated
as an exact cover problem? Yes, of course! But the construction isn’t quite so
obvious. Instead of setting the problem up as we did in 7.2.2–(3), where we chose
a queen placement for each row of the board, we shall now allow both rows and
columns to participate equally when making the necessary choices.

There are n2 options for placing queens, and we want exactly one queen in
every row and exactly one in every column. Furthermore, we want at most one
queen in every diagonal. More precisely, if xij is the binary variable that signifies
a queen in row i and column j, we want

n∑
i=1

xij = 1 for 1 ≤ j ≤ n;
n∑

j=1

xij = 1 for 1 ≤ i ≤ n; (18)

70

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: SECONDARY ITEMS 71∑{
xij

∣∣ 1 ≤ i, j ≤ n, i+ j = s
} ≤ 1 for 1 < s ≤ 2n; (19)∑{

xij
∣∣ 1 ≤ i, j ≤ n, i− j = d

} ≤ 1 for −n < d < n. (20)

The inequalities in (19) and (20) can be changed to equalities by introducing
“slack variables” u2, . . . , u2n, v−n+1, . . . , vn−1, each of which is 0 or 1:∑{

xij
∣∣ 1 ≤ i, j ≤ n, i+ j = s

}
+ us = 1 for 1 < s ≤ 2n; (21)∑{

xij
∣∣ 1 ≤ i, j ≤ n, i− j = d

}
+ vd = 1 for −n < d < n. (22)

Thus we’ve shown that the problem of n nonattacking queens is equivalent to
the problem of finding n2 + 4n− 2 binary variables xij , us, vd for which certain
subsets of the variables sum to 1, as specified in (18), (21), and (22).

And that is essentially an exact cover problem, whose options correspond to
the binary variables and whose items correspond to the subsets. The items are
ri, cj , as, and bd, representing respectively row i, column j, upward diagonal s,
and downward diagonal d. The options are ‘ri cj ai+j bi−j’ for queen placements,
together with trivial options ‘as’ and ‘bd’ to take up any slack.

For example, when n = 4 the n2 placement options are

‘r1 c1 a2 b0’;
‘r1 c2 a3 b−1’;
‘r1 c3 a4 b−2’;
‘r1 c4 a5 b−3’;

‘r2 c1 a3 b1’;
‘r2 c2 a4 b0’;
‘r2 c3 a5 b−1’;
‘r2 c4 a6 b−2’;

‘r3 c1 a4 b2’;
‘r3 c2 a5 b1’;
‘r3 c3 a6 b0’;
‘r3 c4 a7 b−1’;

‘r4 c1 a5 b3’;
‘r4 c2 a6 b2’;
‘r4 c3 a7 b1’;
‘r4 c4 a8 b0’;

(23)

and the 4n− 2 slack options (which contain just one item each) are

‘a2’; ‘a3’; ‘a4’; ‘a5’; ‘a6’; ‘a7’; ‘a8’; ‘b−3’; ‘b−2’; ‘b−1’; ‘b0’; ‘b1’; ‘b2’; ‘b3’. (24)

Algorithm X will solve this small problem easily, although its treatment of the
slacks is somewhat awkward (see exercise 16).

A closer look shows, however, that a slight change to Algorithm X will
allow us to avoid slack options entirely! Let’s divide the items of an exact cover
problem into two groups: primary items, which must be covered exactly once,
and secondary items, which must be covered at most once. If we simply modify
step X1 so that only the primary items appear in the active list, everything will
work like a charm. (Think about it.) In fact, the necessary changes to step X1
already appear in the answer to exercise 8.

Secondary items turn out to be extremely useful in applications. So let’s
redefine the exact cover problem, taking them into account: Henceforth we shall
assume that an exact cover problem involves N distinct items, of which N1 are
primary and N2 = N − N1 are secondary. It is defined by a family of options,
each of which is a subset of the items. Every option must include at least one

primary item. The task is to find all subsets of the options that (i) contain every
primary item exactly once, and (ii) contain every secondary item at most once.

(Options that are purely secondary are excluded from this new definition,
because they will never be chosen by Algorithm X as we’ve refined it. If for
some reason you don’t like that rule, you can always go back to the idea of slack
options. Exercise 19 discusses another interesting alternative.)

71

From the Library of Melissa Nuno

ptg999

72 COMBINATORIAL SEARCHING 7.2.2.1

The order in which primary items appear in Algorithm X’s active list can
have a significant effect on the running time, because the implementation of
step X3 in exercise 9 selects the first item of minimum length. For example, if
we consider the primary items of the n queens problem in the natural order r1, c1,
r2, c2, . . . , rn, cn, queens tend to be placed at the top and left before we try
to place them at the bottom and right. By contrast, if we use the “organ-pipe
order” r�n/2�+1, c�n/2�+1, r�n/2�, c�n/2�, r�n/2�+2, c�n/2�+2, r�n/2�−1, c�n/2�−1,

. . . , (r1 or rn), (c1 or cn), the queens are placed first in the center, where they
prune the remaining possibilities more effectively. For example, the time needed
to find all 14772512 ways to place 16 queens is 76 Gμ (gigamems) with the
natural order, but only 40 Gμ with the organ-pipe order.

These running times can be compared with 9 Gμ, which we obtained using
efficient bitwise operations with Algorithm 7.2.2W. Although that algorithm was
specially tuned, the general-purpose dancing links technique runs only five times
slower. Furthermore, the setup we’ve used here allows us to solve other problems
that wouldn’t be anywhere near as easy with ordinary backtrack. For example,
we can limit the solutions to those that contain queens on each of the 2 + 4l
longest diagonals, simply by regarding as and bd as primary items instead of
secondary, for |n+ 1− s| ≤ l and |d| ≤ l. (There are 18048 such solutions when
n = 16 and l = 4, found with organ-pipe order in 2.7 Gμ.)

We can also use secondary items to remove symmetry, so that most of the
solutions are found only once instead of eight times (see exercises 22 and 23).
The central idea is to use a pairwise ordering trick that works also in many other
situations. Consider the following family of 2m options:

αj = ‘a x0 . . . xj−1’ and βj = ‘b xj’ for 0 ≤ j < m, (25)

where a and b are primary while x0, x1, . . . , xm−1 are secondary. For example,
when m = 4 the options are

α0 = ‘a’;
α1 = ‘a x0’;
α2 = ‘a x0 x1’;
α3 = ‘a x0 x1 x2’;

β0 = ‘b x0’;
β1 = ‘b x1’;
β2 = ‘b x2’;
β3 = ‘b x3’.

It’s not hard to see that there are exactly
(
m+1
2

)
ways to cover both a and b,

namely to choose αj and βk with 0 ≤ j ≤ k < m. For if we choose αj , the
secondary items x0 through xj−1 knock out the options β0, . . . , βj−1.

This construction involves a total of
(
m+1
2

)
entries in the α options and

2m entries in the β options. But exercise 20 shows that it’s possible to achieve
pairwise ordering with only O(m logm) entries in both α’s and β’s. For example,
when m = 4 it produces the following elegant pattern:

α0 = ‘a’;
α1 = ‘a y1’;
α2 = ‘a y2’;
α3 = ‘a y3 y2’;

β0 = ‘b y1 y2’;
β1 = ‘b y2’;
β2 = ‘b y3’;
β3 = ‘b’.

(26)

72

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: PROGRESS REPORTS 73

Progress reports. Many of the applications of Algorithm X take a long time,
especially when we’re using it to solve a tough problem that is breaking new
ground. So we don’t want to just start it up and wait with our fingers crossed,
hoping that it will finish soon. We really want to watch it in action and see how
it’s doing. How many more hours will it probably run? Is it almost half done?

A simple amendment to step X2 will alleviate such worries. At the beginning
of that step, as we enter a new node of the search tree, we can test whether the
accumulated running time T has passed a certain threshold Θ, which is initially
set to Δ. If T ≥ Θ, we print a progress report and set Θ ← Θ + Δ. (Thus if
Δ =∞, we get no reports; if Δ = 0, we see a report at each node.)

The author’s experimental program measures time in mems, so that he
can obtain machine-independent results; and he usually takes Δ = 10Gμ. His
program has two main ways to show progress, namely a long form and a short
form. The long form gives full details about the current state of the search, based
on exercise 12. For example, here’s the first progress report that it displays when
finding all solutions to the 16 queens problem as described above:

Current state (level 15):

r8 c3 ab ba (4 of 16)
c8 a8 bn r0 (1 of 13)
r7 cb ai bj (7 of 10)
r6 c4 aa bd (2 of 7)
· · ·

3480159 solutions, 10000000071 mems, and max level 16 so far.

(The computer’s internal encoding for items is different from the conventions we
have used; for example, ‘r8 c3 ab ba’ stands for what we called ‘r9 c4 a13 b5’.
The first choice at level 0 was to cover item r8, meaning to put a queen into
row 9. The fourth of 16 options for that item has placed it in column 4. Then
at level 1 we tried the first of 13 ways to cover item c8, meaning to put a queen
into column 9. And so on. At each level, the leftmost item shown for the option
being tried is the one that was chosen in step X3 for branching.)

That’s the long form. The short form, which is the default, produces just
one line for each state report:

10000000071mu: 3480159 sols, 4g 1d 7a 27 36 24 23 13 12 12 22 1219048
20000000111mu: 6604373 sols, 7g cd 6a 88 36 35 44 44 24 11 12 22 .43074
30000000052mu: 9487419 sols, bg cd 9a 68 37 35 24 13 12 12 .68205
40000000586mu: 12890124 sols, fg 6d aa 68 46 35 23 33 23 .90370

Altogether 14772512 solutions, 62296+45565990457 mems, 193032021 nodes.

Two-character codes are used to indicate the current position in the tree; for
example, ‘4g’ means branch 4 of 16, then ‘1d’ means branch 1 of 13, etc. By
watching these steadily increasing codes— it’s fun!—we can monitor the action.

Each line in the short form ends with an estimate of how much of the tree
has been examined, assuming that the search tree structure is fairly consistent.
For instance, ‘.19048’ means that we’re roughly 19% done. If we’re currently
working at level l on choice cl of tl, this number is computed by the formula

c0 − 1

t0
+
c1 − 1

t0t1
+ · · ·+ cl − 1

t0t1 . . . tl
+

1

2t0t1 . . . tl
. (27)

73

From the Library of Melissa Nuno

ptg999

74 COMBINATORIAL SEARCHING 7.2.2.1

Sudoku. A “sudoku square” is a 9 × 9 array that has been divided into 3 × 3
boxes and filled with the digits {1, 2, 3, 4, 5, 6, 7, 8, 9} in such a way that

• every row contains each of the digits {1, 2, 3, 4, 5, 6, 7, 8, 9} exactly once;
• every column contains each of the digits {1, 2, 3, 4, 5, 6, 7, 8, 9} exactly once;
• every box contains each of the digits {1, 2, 3, 4, 5, 6, 7, 8, 9} exactly once.

(Since there are nine cells in each row, each column, and each box, the words
‘exactly once’ can be replaced by ‘at least once’ or ‘at most once’, anywhere in
this definition.) Here, for example, are three highly symmetrical sudoku squares:

(a)

1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6
2 3 4 5 6 7 8 9 1
5 6 7 8 9 1 2 3 4
8 9 1 2 3 4 5 6 7
3 4 5 6 7 8 9 1 2
6 7 8 9 1 2 3 4 5
9 1 2 3 4 5 6 7 8

; (b)

1 2 3 4 5 6 7 8 9
4 5 6 7 8 9 1 2 3
7 8 9 1 2 3 4 5 6
2 3 1 5 6 4 8 9 7
5 6 4 8 9 7 2 3 1
8 9 7 2 3 1 5 6 4
3 1 2 6 4 5 9 7 8
6 4 5 9 7 8 3 1 2
9 7 8 3 1 2 6 4 5

; (c)

1 2 3 4 5 6 7 8 9
5 6 4 8 9 7 2 3 1
9 7 8 3 1 2 6 4 5
6 4 5 9 7 8 3 1 2
7 8 9 1 2 3 4 5 6
2 3 1 5 6 4 8 9 7
8 9 7 2 3 1 5 6 4
3 1 2 6 4 5 9 7 8
4 5 6 7 8 9 1 2 3

. (28)

When the square has been only partially specified, the task of completing
it—by filling in the blank cells—often turns out to be a fascinating challenge.
Howard Garns used this idea as the basis for a series of puzzles that he called
Number Place, first published in Dell Pencil Puzzles & Word Games #16 (May
1979), 6. The concept soon spread to Japan, where Nikoli Inc. gave it the name
Su Doku

(
, “Unmarried Numbers”

)
in 1984; and eventually it went viral.

By the beginning of 2005, major newspapers had begun to feature daily sudoku
puzzles. Today, sudoku ranks among the most popular recreations of all time.

Every sudoku puzzle corresponds to an exact cover problem that has a
particularly nice form. Consider, for example, the following three instances:

(a)

3 1
4 1 5 9
2 6 5 3
5 8 9
7 9 3 2
3 8 4 6

2 6 4 3
3 8

3 2 7 9 5

; (b)

3
1 4

1 5
9

2 6
5 3

5 8
9 7

8 3 4

; (c)

3 1
4 1

5 9
2 6 4

3 5
1
4 6

5
9

. (29)

(The clues in (29a) match the first 32 digits of π; but the clues in (29b) and (29c)
disagree with π after awhile.) For convenience, let’s number the rows, columns,
and boxes from 0 to 8. Then every sudoku square S = (sij) corresponds naturally
to the solution of a master exact cover problem whose 9 · 9 · 9 = 729 options are

‘pij rik cjk bxk’ for 0 ≤ i, j < 9, 1 ≤ k ≤ 9, and x = 3�i/3�+ �j/3�, (30)

and whose 4 · 9 · 9 = 324 items are pij , rik, cjk, bxk. The reason is that option
(30) is chosen with parameters (i, j, k) if and only if sij = k. Item pij must be
covered by exactly one of the nine options that fill cell (i, j); item rik must be
covered by exactly one of the nine options that put k in row i; . . . ; item bxk
must be covered by exactly one of the nine options that put k in box x. Got it?

74

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: SUDOKU 75

My own motive for writing on the subject is partly to justify

the appalling number of hours I have squandered solving Sudoku.

— BRIAN HAYES, in American Scientist (2006)

To find all sudoku squares that contain a given partial specification, we
simply remove all of the items pij , rik, cjk, bxk that are already covered, as well
as all of the options that involve any of those items. For example, (29a) leads
to an exact cover problem with 4 · (81− 32) = 196 items p00, p01, p03, . . . , r02,
r04, r05, . . . , c01, c06, c07, . . . , b07, b08, b09, . . . ; it has 146 options, beginning
with ‘p00 r07 c07 b07’ and ending with ‘p88 r86 c86 b86’. These options can be
visualized by making a chart that shows every value that hasn’t been ruled out:

3 1

4 1 5 9

2 6 5 3

5 8 9

7 9 3 2

3 8 4 6

2 6 4 3

3 8

3 2 7 9 5

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

789 89
4 6
78

2
6

89

2
56

78

2
4
78

456
7

6
78

23

7

23
6

8

2
6

78
6

7

89
4
7 9 89

1
4
78

1
4
7

4 6
12
4

1
6

7

123
6

1

7

1
4
7

1
6

1
4 5

1
56

1
5
8

1

9

1

7

2
5

7

1
5

7

1
5

7

1

789
5
89

1

7 9

1
5
89

1

7

1
6

7 9
456

9

1
4
7 9

45
9

1
5
9

12
6

7

12

7

1
4

1
4
8

4
1

6

(31)

The active list for item p00, say, has options for values {7, 8, 9}; the active list for
item r02 has options for columns {5, 6, 7}; the active list for item c01 has options
for rows {4, 5, 6, 7}; and so on. (Indeed, sudoku experts tend to have charts like
this in mind, implicitly or explicitly, as they work.)

Aha! Look at the lonely ‘5’ in the middle! There’s only one option for p44; so
we can promote that ‘5’ to ‘5’. Hence we can also erase the other ‘5’s that appear
in row 4, column 4, or box 4. This operation is called “forcing a naked single.”

And there’s another naked single in cell (8, 4). Promoting this one from ‘4’
to ‘4’ produces others in cells (7, 4) and (8, 2). Indeed, if the items pij have been
placed first in step X1, Algorithm X will follow a merry path of forced moves
that lead immediately to a complete solution of (29a), entirely via naked singles.

Of course sudoku puzzles aren’t always this easy. For example, (29b) has
only 17 clues, not 32; that makes naked singles less likely. (Puzzle (29b) comes
from Gordon Royle’s online collection of approximately 50,000 17-clue sudokus—
all of which are essentially different, and all of which have a unique completion
despite the paucity of clues. Royle’s collection appears to be nearly complete:
Whenever a sudoku fanatic encounters a 17-clue puzzle nowadays, that puzzle
almost invariably turns out to be equivalent to one in Royle’s list.)

A massive computer calculation, supervised by Gary McGuire and com-
pleted in 2012, has shown that every uniquely solvable sudoku puzzle must

75

From the Library of Melissa Nuno

ptg999

76 COMBINATORIAL SEARCHING 7.2.2.1

contain at least 17 clues. We will see in Section 7.2.3 that exactly 5,472,730,538
nonisomorphic sudoku squares exist. McGuire’s program examined each of them,
and showed that comparatively few 16-clue subsets could possibly characterize it.
About 16,000 subsets typically survived this initial screening; but they too were
shown to fail. All this was determined in roughly 3.6 seconds per sudoku square,
thanks to nontrivial and highly optimized bitwise algorithms. [See G. McGuire,
B. Tugemann, and G. Civario, Experimental Mathematics 23 (2014), 190–217.]

The 17 clues of puzzle (29b) produce the following chart analogous to (31):

3

1 4

1 5

9

2 6

5 3

5 8

9 7

8 3 4

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

2
456
78

2
4 6
7 9

2
456
789

12
56

7

12
6

789

1
56

789

2
6

89

2
4 6
789

23
6

7 9

2
56

789

23
6

789
56

789

2

789

2
6

89

2
6

789

23
4 6
78

23
4 6
7 9

2
4 6
789

23
6

7

23
6

789
6

789

2
6

89

123
4 6
7

12
456
78

1
6

7

1
4 6
78

1
4 6
78

2
45
78

123
5
8

123
4
78

3
45
78

1 3
4
7

1
45
78

1

7

1
4
789

1 3
5
89

1 3
4
789

2
4 6
78

12
4 6
7

12
4 6
78

1
6

7

2
4
789

12

89

12
4
789

2
4 6
7

12
4 6
7 9

123
4 6
7

1
4 6
7

2

9

123
6
9

123
6
9

2
4 6

12
4 6

12
4 6

123
4 6

1
456

2
5
8

123
6

8

2
6

7

12
56

7

12
6

7

1
56

7

2
5
9

12
6
9

(32)

This one has 307 options remaining—more than twice as many as before. Also,
as we might have guessed, it has no naked singles. But it still reveals forced
moves, if we look more closely! For example, column 3 contains only one instance
of ‘3’; we can promote it to ‘3’, and kill all of the other ‘3’s in row 2 and box 1.
This operation is called “forcing a hidden single.”

Similarly, box 2 in (32) contains only one instance of ‘4’; and two other
hidden singles are also present (see exercise 47). These forced moves cause other
hidden singles to appear, and naked singles also arise soon. But after 16 forced
promotions have been made, the low-hanging fruit is all gone:

5 2 3 4

1 3 4 5

3 1 5

9

3 9 2 6

5 3

5 9 8 2

9 3 5 7 8

8 3 5 2 9 4

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

6
7 9

6
78

1
6

78

1
6

789
6

89

2
6

78
6

78 78

2
6

89

2
6

7 9

2
4 6
78

2
4 6
7 9

2
4 6
78

6
78

6
789

2
6

89

12
4 6
7

12
456
78

1
6

7

1
4 6
78

1
4 6
78

4
78

123
5
8

123

7

1
4
7

1
45
78

1

7

1
5
8

1

7

2
4 6
78

12
4 6
7

12
4 6
78

1
6

7
4
78

12

89

12

7 9

4 6
7

1
4 6
7

1
4 6
7

1 3
6

1 3
6

2
4 6

12
4 6

12
4 6

1
4 6

6
7

1
6

7

1
6

(33)

76

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: SUDOKU 77

AlgorithmX readily deduces (33) from (32), because it sees naked singles and
hidden singles whenever an item pij or rik or cjk or bxk has only one remaining
option, and because its data structures change easily as the links dance. But
when state (33) is reached, the algorithm resorts to two-way branching, in this
case looking first at case ‘7’ of p16, then backtracking later to consider case ‘8’.

A human sudoku expert would actually glance at (33) and notice that there’s
a more intelligent way to proceed, because (33) contains a “naked pair”: Cells
(4, 3) and (4, 8) both contain the same two choices; hence we’re allowed to delete
‘1’ and ‘7’ wherever they appear elsewhere in row 4; and this will produce a naked
‘4’ in column 1. Exercise 49 explores such higher-order deductions in detail.

Fancy logic that involves pairs and triples might well be preferable for earth-
lings, but simple backtracking works just fine for machines. In fact, Algorithm X
finds the solution to (29b) after exploring a search tree with just 89 nodes, the
first 16 of which led it directly to (33). (It spends about 250 kilomems initializing
the data structures in step X1, then 50 more kilomems to complete the task.
Much more time would have been needed if it had tried to look for complicated
patterns in step X3.) Here’s the solution that it discovers:

c33 b13 p23 r23 (1 of 1)
r13 c13 b03 p11 (1 of 1)

· · ·
c42 b72 p84 r82 (1 of 1)
p16 r18 c68 b28 (2 of 2)
b27 p18 r17 c87 (1 of 1)

· · ·
p85 r81 c51 b71 (1 of 1)

After it selects the correct value for column 6 of row 1, the rest is forced.
The dancing links method actually cruises to victory with amazing speed, on

almost every known sudoku puzzle. Among several dozen typical specimens—
seen by the author since 2005 in newspapers, magazines, books, and webpages
worldwide, and subsequently presented to Algorithm X—roughly 70% were
found to be solvable entirely by forced moves, based on naked or hidden singles,
even though many of those puzzles had been rated ‘diabolical’ or ‘fiendish’ or
‘torturous’ ! Only 10% of them led to a search tree exceeding 100 nodes, and
none of the trees had more than 282 nodes. (See, however, exercise 52.)

It’s interesting to consider what happens when the algorithm is weakened,
so that its forced moves come only from naked singles, which are the easiest
deductions for people to make. Suppose we classify the items rik, cjk, and bxk
as secondary, leaving only pij as primary. (In other words, the specification will
require at most one occurrence of each value k, in every row, every column, and
every box, but it won’t explicitly insist that every k should be covered.) The
search tree for puzzle (29b) then grows to a whopping 41,877 nodes.

Finally, what about puzzle (29c)? That one has only 16 clues, so we know
that it cannot have a unique solution. But those 16 clues specify only seven of the
nine digits; they give us no way to distinguish 7 from 8. Algorithm X deduces,
with a 129-node search tree, that only two solutions exist. (Of course those two
are essentially the same; they’re obtainable from each other by swapping 7↔ 8.)

77

From the Library of Melissa Nuno

ptg999

78 COMBINATORIAL SEARCHING 7.2.2.1

Puzzlists have invented many intriguing variations on the traditional sudoku
challenge, several of which are discussed in the exercises below. Among the best
are “jigsaw sudoku puzzles” (also known as “geometric sudoku,” “polyomino
sudoku,” “squiggly sudoku,” etc.), where the boxes have different shapes instead
of simply being 3× 3 subsquares. Consider, for example,

(a)

3 1
4 1
5 9
2 6
5 3
5 8
9 7
9 3
2

; (b)

N
I

T R
R E

A N
M D

R
A

G

; (c)

W V
K Y

W Y
F L

N V
A L

N Y
V A

T N

. (34)

In puzzle (34a), which the author designed in 2017 with the help of Bob Harris,
one can see for instance that there are only two places to put a ‘4’ in the top row,
because of the ‘4’ in the next row. This puzzle is an exact cover problem just
like (30), except that x is now a more complicated function of i and j. Similarly,
Harris’s classic puzzle (34b) [Mathematical Wizardry for a Gardner (2009), 55–
57] asks us to put the letters {G, R, A, N, D, T, I, M, E} into each row, column, and
irregularly shaped box. Again we use (30), but with the values of k running
through letters instead of digits. [Hint: Cell (0, 2) must contain ‘A’, because
column 2 needs an ‘A’ somewhere.] Puzzle (34c), The United States Jigsaw
Sudoku, is a masterpiece designed and posted online by Thomas Snyder in 2006.
It brilliantly uses boxes in the shapes of West Virginia, Kentucky, Wyoming,
Alabama, Florida, Nevada, Tennessee, New York (including Long Island), and
Virginia—and its clues are postal codes! (See exercise 59.)

Jigsaw sudoku was invented by J. Mark Thompson, who began to publish
such puzzles in 1996 [GAMES World of Puzzles, #14 (July 1996), 51, 67] under
the name Latin Squares. At that time he had not yet heard about sudoku; one
of the advantages of his puzzles over normal sudoku was the fact that they can
be of any size, not necessarily 9× 9. Thompson’s first examples were 6× 6.

The solutions to puzzles of this kind actually have an interesting prehistory:
Walter Behrens, a pioneer in the applications of mathematics to agriculture,
wrote an influential paper in 1956 that proposed using such patterns in empirical
studies of crops that have been treated with various fertilizers [Zeitschrift für
landwirtschaftliches Versuchs- und Untersuchungswesen 2 (1956), 176–193]. He
presented dozens of designs, ranging from 4× 4 to 10× 10, including

(a)

1 5 3
4
2

1 5 4 2 3
2 4 3 5 1
3 1 2 4 5
4 3 5 1 2
5 2 1 3 4

; (b)

1 3 8 7 9 5 2
2 6 9 5 3 8 4
3 8 2 4 6 7 1
4 7 6 9 1 3 8
5 1 3 8 7 6 9
6 9 7 1 4 2 6
7 5 4 2 8 9 6
8 2 1 3 5 4 7
9 4 5 6 2 1 3

; (c)

1 5 8 6 4 3 9 7 2
2 6 9 5 7 8 1 3 4
3 7 4 1 9 2 5 6 8
4 9 2 8 6 7 3 1 5
5 3 7 4 2 1 6 8 9
6 8 1 3 5 9 2 4 7
7 2 6 9 1 4 8 5 3
8 4 5 2 3 6 7 9 1
9 1 3 7 8 5 4 2 6

. (35)

78

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: POLYOMINOES 79

Notice that Behrens’s (35b) is actually 9 × 7, so its rows don’t exhibit all 9
possibilities. He required only that no treatment number be repeated in any row
or column. Notice also that his (35c) is actually a normal sudoku arrangement;
this is the earliest known publication of what is now called a sudoku solution.
Following a suggestion of F. Ragaller, Behrens called these designs “gerechte”
(“equitable”) latin squares or latin rectangles, because they assign neighborhood
groupings to tracts of land that have been subjected to all n treatments.

All of his designs were partitions of rectangles into connected regions, each
with n square cells. We’ll see next that that idea actually turns out to have its
own distinguished history of fascinating combinatorial patterns and recreations.

Polyominoes. A rookwise-connected region of n square cells is often called an
n-omino, following a suggestion by S. W. Golomb [AMM 61 (1954), 675–682].
When n = 1, 2, 3, . . . , Golomb’s definition gives us monominoes, dominoes,
trominoes, tetrominoes, pentominoes, hexominoes, and so on. In general, when
n is unspecified, Golomb called such regions polyominoes.

We’ve already encountered small polyominoes, together with their relation
to exact covering, in 7.1.4–(130). It’s clear that a domino has only one possible
shape. But there are two distinct species of trominoes, one of which is “straight”
(1×3) and the other is “bent,” occupying three cells of a 2×2 square. Similarly,
the tetrominoes can be classified into five distinct types. (Can you draw all five,
before looking at exercise 274? Tetris©R players will have no trouble doing this.)

The most piquant polyominoes, however, are almost certainly the pentom-

inoes, of which there are twelve. These twelve shapes have become the personal
friends of millions of people, because they can be put together in so many
elegant ways. Sets of pentominoes, made from finely crafted hardwoods or from
brilliantly colored plastic, are readily available at reasonable cost. Every home
really ought to have at least one such set—even though “virtual” pentominoes
can easily be manipulated in computer apps—because there’s no substitute for
the strangely fascinating tactile experience of arranging these delightful physical
objects by hand. Furthermore, we’ll see that pentominoes have much to teach
us about combinatorial computing.

If mounted on cardboard, [these pieces]

will form a source of perpetual amusement in the home.

— HENRY E. DUDENEY, The Canterbury Puzzles (1907)

Which English nouns ending in -o pluralize with -s and which with -es?

If the word is still felt as somewhat alien, it takes -s,

while if it has been fully naturalized into English, it takes -es.

Thus, echoes, potatoes, tomatoes, dingoes, embargoes, etc.,

whereas Italian musical terms are altos, bassos, cantos, pianos, solos, etc.,

and there are Spanish words like tangos, armadillos, etc.

I once held a trademark on ‘Pentomino(-es)’, but I now prefer

to let these words be my contribution to the language as public domain.

— SOLOMON W. GOLOMB, letter to Donald Knuth (16 February 1994)

79

From the Library of Melissa Nuno

ptg999

80 COMBINATORIAL SEARCHING 7.2.2.1

One of the first things we might try to do with twelve pieces of 5 cells each
is to pack them into a rectangular box, either 6 × 10 or 5 × 12 or 4 × 15 or
3× 20. The first three tasks are fairly easy; but a 3× 20 box presents more of a
challenge. Golomb posed this question in his article of 1954, without providing
any answer. At that time he was unaware that Frans Hansson had already given
a solution many years earlier, in an obscure publication called The Problemist:

Fairy Chess Supplement 2, 12 and 13 (June and August, 1935), problem 1844:

︸ ︷︷ ︸
︷ ︸︸ ︷

(36)

Hansson had in fact observed that the bracketed pieces “may also be rotated
through two right angles, to give the only other possible solution.”

This problem, and many others of a similar kind, can be formulated nicely in
terms of exact covering. But before we do this, we need names for the individual
pentomino shapes. Everybody agrees that seven of the pentominoes should be
named after seven consecutive letters of the alphabet:

T U V W X Y Z

But two different systems of nomenclature have been proposed for the other five:

F I L P N

or

O P Q R S

(S. W. Golomb) (J. H. Conway)

where Golomb liked to think of the word ‘Filipino’ while Conway preferred
to map the twelve pentominoes onto twelve consecutive letters from O to Z.
Conway’s scheme tends to work better in computer programs, so we’ll use it here.

The task of 3 × 20 pentomino packing is to arrange pentominoes in such a
way that every piece name {O, P, . . . , Z} is covered exactly once, and so is every
cell ij for 0 ≤ i < 3 and 0 ≤ j < 20. Thus there are 12 + 3 · 20 = 72 items; and
there’s an option for each way to place an individual pentomino, namely

‘O 00 01 02 03 04’
. . .

‘O 2f 2g 2h 2i 2j’
‘P 00 01 02 10 11’

. . .
‘Z 0j 1h 1i 1j 2h’

(37)

if we extend hexadecimal notation so that the “digits” (a, b, . . . , j) represent
(10, 11, . . . , 19). In this list, pieces (O, P, . . . , Z) contribute respectively (48, 220,

80

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: POLYOMINOES 81

136, 144, 136, 72, 110, 72, 72, 18, 136, 72) options, making 1236 altogether.
Exercise 266 explains how to generate all of the options for problems like this.

When Algorithm X is applied to (37), it finds eight solutions, because each
of Hansson’s arrangements is obtained with horizontal and/or vertical reflection.
We can remove that symmetry by insisting that the V pentomino must appear
in its ‘Γ-like’ orientation, as it does in (36), namely by removing all but 18 of its
72 options. (Do you see why? Think about it.) Without that simplification, a
32,644-node search tree finds 8 solutions in 146 megamems; with it, a 21,805-node
search tree finds 2 solutions in 103 megamems.

A closer look shows that we can actually do much better. For example, one
of the Γ-like options for V is ‘V 09 0a 0b 19 29’, representing

; (38)

but this placement could never be used, because it asks us to pack pentominoes
into the 27 cells at V’s left. Many of the options for other pieces are similarly
unusable, because (like (38)) they isolate a region whose area isn’t a multiple of 5.

In fact, if we remove all such options, only 728 of the original 1236 potential
placements remain; they include respectively (48, 156, 132, 28, 128, 16, 44, 16,
12, 4, 128, 16) placements of (O, P, . . . , Z). That gives us 716 options, when
we remove also the 12 surviving placements for V that make it non-‘Γ’. When
Algorithm X is applied to this reduced set, the search tree for finding all solutions
goes down to 1243 nodes, and the running time is only 4.5 megamems.

(There’s also a slightly better way to remove the symmetry: Instead of
insisting that piece V looks like ‘Γ’ we can insist that piece X lies in the left half,
and that piece Z hasn’t been “flipped over.” This implies that there are (16, 2,
8) potential placements for (V, X, Z), instead of (4, 4, 16). The resulting search
tree has just 1128 nodes, and the running time is 4.0 Mμ.)

Notice that we could have begun with a weaker formulation of this problem:
We could merely have asked for pentomino arrangements that use each piece at

most once, while covering each cell ij exactly once. That would be essentially the
same as saying that the piece names {O, P, . . . , Z} are secondary items instead of
primary. Then the original set of 1236 options in (37) would have led to a search
tree with 61,851 nodes, and a runtime of 291 Mμ. Dually, we could have kept
the piece names primary but made the cell names secondary; that would have
yielded a 1,086,521,921-node tree, with a runtime of 2.94 Tμ! These statistics
are curiously reversed, however, with respect to the reduced set of 716 options
obtained by discarding cases like (38): Then piece names secondary yields 19306
nodes (68 Mμ); cell names secondary yields 11656 nodes (37 Mμ).

In the early days of computing, pentomino problems served as useful bench-
marks for combinatorial calculations. Programmers didn’t have the luxury of
large random-access memory until much later; therefore techniques such as
dancing links, in which more than a thousand options are explicitly listed and
manipulated, were unthinkable at the time. Instead, the options for each piece
were implicitly generated on-the-fly as needed, and there was no incentive to use

81

From the Library of Melissa Nuno

ptg999

82 COMBINATORIAL SEARCHING 7.2.2.1

fancy heuristics while backtracking. Each branch of the search was essentially
based on the available ways to cover the first cell ij that hadn’t yet been occupied.

We can simulate the behavior of those historic methods by running Algo-
rithm X without the MRV heuristic and simply setting i← RLINK(0) in step X3.
An interesting phenomenon now arises: If the cells ij are considered in their
natural order—first 00, then 01, . . . , then 0j, then 10, . . . , finally 2j—the
search tree has 1.5 billion nodes. (There are 29 ways to cover 00; if we choose
‘00 01 02 03 04 O’ there are 49 ways to cover 05; and so on.) But if we consider
the 20 × 3 problem instead of 3 × 20, so that the cells ij for 0 ≤ i < 20 and
0 ≤ j < 3 are processed in order 00, 01, 02, 10, . . . , 2j, the search tree has just
71191 nodes, and all eight solutions are found very quickly. (This speedup is
mostly due to having a better “focus,” which we’ll discuss later.) Again we see
that a small change in problem setup can have enormous ramifications.

The best of these early programs were highly tuned, written in assembly lan-
guage with ingenious uses of macro instructions. Memwise, they were therefore
superior to Algorithm X on smallish problems. [See J. G. Fletcher, CACM 8, 10
(October 1965), cover and 621–623; N. G. de Bruijn, FGbook pages 465–466.]
But the MRV heuristic eventually wins, as problems get larger.

Exercises 268–323 discuss some of the many intriguing and instructive prob-
lems that arise when we explore the patterns that can be made with pentominoes
and similar families of planar shapes. Several of these problems are indeed
large—beyond the capabilities of today’s machines.

Polycubes. And if you think two-dimensional shapes are fun, you’ll probably
enjoy three dimensions even more! A polycube is a solid object formed by taking
one or more 1× 1× 1 cubes and joining them face-to-face. We call them mono-
cubes, dicubes, tricubes, tetracubes, pentacubes, etc.; but we don’t call them
“n-cubes” when they’re made from n unit cubies, because mathematicians have
reserved that term for n-dimensional objects.

A new situation arises when n = 4. In two dimensions we found it natural to
regard the tetromino ‘ ’ as identical to its mirror image ‘ ’, because we could
simply flip it over. But the tetracube ‘ ’ is noticeably different from its mirror
reflection ‘ ’, because we can’t change one into the other without going into
the fourth dimension. Polycubes that differ from their mirror images are called
chiral, a word coined by Lord Kelvin in 1893 when he studied chiral molecules.

The simplest polycubes are cuboids—also called “rectangular parallele-
pipeds” by people who like long names—which are like bricks of size l×m× n.
But things get particularly interesting when we consider noncuboidal shapes.
Piet Hein noticed in 1933 that the seven smallest shapes of that kind, namely

1: bent 2: ell 3: tee 4: skew 5: L-twist 6: R-twist 7: claw

, (39)

can be put together to form a 3 × 3 × 3 cube, and he liked the pieces so much
that he called them Soma. Notice that the first four pieces are essentially planar,
while the other three are inherently three-dimensional. The twists are chiral.

82

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: FACTORING AN EXACT COVER PROBLEM 83

Martin Gardner wrote about the joys of Soma in Scientific American 199, 3
(September 1958), 182–188, and it soon became wildly popular: More than two
million SOMA

R© cubes were sold in America alone, after Parker Brothers began
to market a well-made set together with an instruction booklet written by Hein.

A minimum number of blocks of simple form are employed. . . .

Experiments and calculations have shown that from the set of seven blocks

it is possible to construct approximately the same number of geometrical

figures as could be constructed from twenty-seven separate cubes.

— PIET HEIN, United Kingdom Patent Specification 420,349 (1934)

The task of packing these seven pieces into a cube is easy to formulate as an
exact cover problem, just as we did when packing pentominoes. But this time we
have 24 3D-rotations of the pieces to consider, instead of 8 2D-rotations and/or
3D-reflections; so exercise 324 is used instead of exercise 266 to generate the
options of the problem. It turns out that there are 688 options, involving 34 items
that we can call 1, 2, . . . , 7, 000, 001, . . . , 222. For example, the first option

‘ 1 000 001 010 ’ (40)

characterizes one of the 144 potential ways to place the “bent” piece 1.
Algorithm X needs just 407 megamems to find all 11,520 solutions to this

problem. Furthermore, we can save most of that time by taking advantage of
symmetry: Every solution can be rotated into a unique “canonical” solution
in which the “ell” piece 2 has not been rotated; hence we can restrict that
piece to only six placements, namely (000, 010, 020, 100), (001, 011, 021, 101),
. . . , (102, 112, 122, 202)—all shifts of each other. This restriction removes 138 =
23
24
· 144 options, and the algorithm now finds the 480 canonical solutions in just

20 megamems. (These canonical solutions form 240 mirror-image pairs.)

Factoring an exact cover problem. In fact, we can simplify the Soma cube
problem much further, so that all of its solutions can actually be found by hand
in a reasonable time, by factoring the problem in a clever way.

Let’s observe first that any solution to an exact cover problem automatically
solves infinitely many other problems. Going back to our original formulation
in terms of an m× n matrix A = (aij), the task is to find all sets of rows whose
sum is 1 in every column, namely to find all binary vectors x1 . . . xm such that∑m

i=1 xiaij = 1 for 1 ≤ j ≤ n. Therefore if we set bi = α1ai1 + · · · + αnain for
1 ≤ i ≤ m, where (α1, . . . , αn) is any n-tuple of coefficients, the vectors x1 . . . xm
will also satisfy

∑m
i=1 xibi = α1 + · · ·+ αn. By choosing the α’s intelligently we

may be able to learn a lot about the possibilities for x1 . . . xm.
For example, consider again the 6 × 7 matrix A in (5), and let α1 = · · · =

α7 = 1. The sum of the entries in each row of A is either 2 or 3; thus we’re
supposed to cover 7 things, by burying either 2 or 3 at a time. Without knowing
anything more about the detailed structure of A, we can conclude immediately
that there’s only one way to obtain a total of 7, namely by selecting 2 + 2 + 3!
Furthermore, only rows 1 and 5 have 2 as their sum; we must choose them.

83

From the Library of Melissa Nuno

ptg999

84 COMBINATORIAL SEARCHING 7.2.2.1

Now here’s a more interesting challenge: “Cover the 64 cells of a chessboard
with 21 straight trominoes and one monomino.” This problem corresponds to a
big matrix that has 96 + 64 rows and 1 + 64 columns,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M 00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17 20 21 22 23 24 74 75 76 77

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 . . . 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 . . . 0 0 0 0

. .
0 . . . 0 1 1 1
1 1 0 . . . 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0

. .
1 0 . . . 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (41)

where the first 96 rows specify all possible ways to place a tromino and the other
64 rows specify the possibilities for the monomino. Column ij represents cell
(i, j); column ‘M’ means “monomino.”

The three cells (i, j) covered by a straight tromino always lead to distinct
values of (i− j) mod 3. Therefore, if we add up the 22 columns of (41) for which
(i − j) mod 3 = 0, we get 1 in each of the first 96 rows, and 0 or 1 in the other
64 rows. We’re supposed to get a total of 22 in the chosen rows; hence the
monomino has to go into a cell (i, j) with i ≡ j (modulo 3).

A similar argument, using i + j instead of i − j, shows that the monomino
must also go into a cell with i + j ≡ 1 (modulo 3). Therefore i ≡ j ≡ 2. We’ve

proved that there are only four possibilities for (i, j), namely (2, 2), (2, 5), (5, 2),
(5, 5). [Golomb made this observation in his 1954 paper that introduced poly-
ominoes, after “coloring” the cells of a chessboard with three colors. The general
notion of factoring includes all such coloring arguments as special cases.]

Our proof that (38) is an impossible pentomino placement can also be
regarded as an instance of factorization. The residual problem, if (38) is chosen,
has a total of either 0 or 5 in the first 27 columns of each remaining row of the
associated matrix. Therefore we can’t achieve a total of 27 from those rows.

Consider now a three-dimensional problem [J. Slothouber and W. Graatsma,
Cubics (1970), 108–109]: Can six 1 × 2 × 2 cuboids be packed into a 3 × 3 × 3
box? This is the problem of choosing six rows of the 36× 27 matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

000 001 002 010 011 012 020 021 022 100 101 102 110 111 112 120 121 122 200 201 202 210 211 212 220 221 222

1 1 0 1 1 0
1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0
0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

. .
0 1 1 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (42)

in such a way that all of the column sums are ≤ 1.

84

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: FACTORING AN EXACT COVER PROBLEM 85

The 27 cubies (i, j, k) of a 3× 3× 3 cube fall into four classes, depending on
how many of its coordinates have the middle value 1:

A vertex cubie has no 1s.
((
3
0

)
23 = 8 cases.

)
An edge cubie has one 1.

((
3
1

)
22 = 12 cases.

)
A face cubie has two 1s.

((
3
2

)
21 = 6 cases.

)
A central cubie has three 1s.

((
3
3

)
20 = 1 case.

) (43)

Every symmetry of the cube preserves these classes.
Imagine placing four new columns v, e, f , c at the right of (42), representing

the number of vertex, edge, face, and central cubies of a placement. Then 24
of the rows will have (v, e, f, c) = (1, 2, 1, 0), and the other 12 rows will have
(v, e, f, c) = (0, 1, 2, 1). If we choose a rows of the first kind and b rows of the
second kind, this factorization tells us that we must have

a ≥ 0, b ≥ 0, a+ b = 6, a ≤ 8, 2a+ b ≤ 12, a+ 2b ≤ 6, b ≤ 1. (44)

That’s more than enough to prove that b = 0 and a = 6, and thus to find the
essentially unique way to pack those six cuboids.

(We could paraphrase this argument as follows, making it more impressive by
concealing the low-level algebra that inspired it: “Each 1×2×2 cuboid occupies
at least one face cubie. So each of them must be placed on a different face.”)

With these examples in mind, we’re ready now to apply factorization to the
Soma cube. The possible (v, e, f, c) values for pieces 1 through 7 in (39) are:

Piece 1: (0, 1, 1, 1), (0, 0, 2, 1), (0, 1, 2, 0), (0, 2, 1, 0), (1, 1, 1, 0), (1, 2, 0, 0).

Piece 2: (0, 1, 2, 1), (0, 2, 2, 0), (1, 2, 1, 0), (2, 2, 0, 0).

Piece 3: (0, 0, 3, 1), (0, 2, 1, 1), (0, 3, 1, 0), (2, 1, 1, 0).

Piece 4: (0, 1, 2, 1), (1, 2, 1, 0).

Piece 5: (0, 1, 2, 1), (0, 2, 2, 0), (1, 1, 1, 1), (1, 2, 1, 0).

Piece 6: (0, 1, 2, 1), (0, 2, 2, 0), (1, 1, 1, 1), (1, 2, 1, 0).

Piece 7: (0, 2, 1, 1), (0, 0, 3, 1), (1, 1, 2, 0), (1, 3, 0, 0).

(45)

(This is actually much more information than we need, but it doesn’t hurt.)
Looking only at the totals for v, we see that we must have

(0 or 1) + (0, 1, or 2) + (0 or 2) + (0 or 1) + (0 or 1) + (0 or 1) + (0 or 1) = 8;

and the only way to achieve this is via

(0 or 1) + (1 or 2) + 2 + (0 or 1) + (0 or 1) + (0 or 1) + (0 or 1) = 8,

thus eliminating several options for pieces 2 and 3. More precisely, piece 2 must
touch at least one vertex; piece 3 must be placed along an edge.

Looking next at the totals for v+f , which are the “black” cubies if we color
them alternately black and white with black in the corners, we must also have

(1 or 2) + 2 + 3 + 2 + 2 + 2 + (1 or 3) = 14;

85

From the Library of Melissa Nuno

ptg999

86 COMBINATORIAL SEARCHING 7.2.2.1

and the only way to achieve this is with two from piece 1 and one from piece 7:
Piece 1 must occupy two black cubies, and piece 7 must occupy just one.

We have therefore eliminated 200 of the 688 options in the list that begins
with (40). And we also know that exactly five of the pieces 1, 2, 4, 5, 6, 7 occupy
as many of the corner vertices as they individually can. This extra information
can be encoded by introducing 13 new primary items

*, 1+, 1-, 2+, 2-, 4+, 4-, 5+, 5-, 6+, 6-, 7+, 7- (46)

and six new options
‘* 1+ 2- 4- 5- 6- 7-’
‘* 1- 2+ 4- 5- 6- 7-’
‘* 1- 2- 4+ 5- 6- 7-’
‘* 1- 2- 4- 5+ 6- 7-’
‘* 1- 2- 4- 5- 6+ 7-’
‘* 1- 2- 4- 5- 6- 7+’

(47)

and by appending p+ or p- to each of piece p’s options that do or don’t touch
the most corners. For example, this new set of 6 + 488 options for the Soma
cube problem includes the following typical ways to place various pieces:

‘1 000 001 011 1+’
‘1 001 011 101 1-’
‘2 000 001 002 010 2+’
‘2 000 001 011 021 2-’
‘3 000 001 002 011’
‘4 000 001 011 012 4+’
‘4 001 011 111 121 4-’
‘5 000 001 010 110 5+’
‘5 001 010 011 101 5-’
‘6 000 001 010 101 6+’
‘6 001 010 011 110 6-’
‘7 000 001 010 100 7+’
‘7 001 010 011 111 7-’

As before, Algorithm X finds 11,520 solutions; but now it needs only 108
megamems to do so. Each of the new options is used in at least 21 of the solutions,
hence we’ve removed all of the “fat” in the original set. [This instructive analysis
of Soma is due to M. J. T. Guy, R. K. Guy, and J. H. Conway in 1961. See
Berlekamp, Conway, and Guy, Winning Ways, second edition (2004), 845–847.]

To reduce the number of solutions, using symmetry, we can force piece 3
to occupy the cells {000, 001, 002, 011} (thus saving a factor of 24), and we
can remove all options for piece 7 that use a cell ijk with k = 2 (saving an
additional factor of 2). From the remaining 455 options, Algorithm X needs just
2 megamems to generate all 240 of the essentially distinct solutions.

The seven Soma pieces are amazingly versatile, and so are the other poly-
cubes of small sizes. Exercises 324–350 explore some of their remarkable prop-
erties, together with historical references.

86

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: COLOR-CONTROLLED COVERING 87

Color-controlled covering. Take a break! Before reading any further, please
spend a minute or two solving the “word search” puzzle in Fig. 71. Compar-
atively mindless puzzles like this one provide a low-stress way to sharpen your
word-recognition skills. It can be solved easily— for instance, by making eight
passes over the array—and the solution can be found in Fig. 72 on the next page.

Fig. 71. Find the mathematicians*:

Put ovals around the following names
where they appear in the 15× 15 ar-
ray shown here, reading either for-
ward or backward or upward or down-
ward, or diagonally in any direction.
After you’ve finished, the leftover let-
ters will form a hidden message. (The
solution appears on the next page.)

ABEL HENSEL MELLIN
BERTRAND HERMITE MINKOWSKI
BOREL HILBERT NETTO
CANTOR HURWITZ PERRON
CATALAN JENSEN RUNGE
FROBENIUS KIRCHHOFF STERN
GLAISHER KNOPP STIELTJES
GRAM LANDAU SYLVESTER
HADAMARD MARKOFF WEIERSTRASS

O T H E S C A T A L A N D A U

T S E A P U S T H O R S R O F

T L S E E A Y R R L Y H A P A

E P E A R E L R G O U E M S I

N N A R R C V L T R T A A M A

I T H U O T E K W I A N D E M

L A N T N B S I M I C M A A W

L G D N A R T R E B L I H C E

E R E C I Z E C E P T N E D Y

M E A R S H R H L I P K A T H

E J E N S E N H R I E O N E T

H S U I N E B O R F E W N A R

T M A R K O F F O F C S O K M

P L U T E R P F R O E K G R A

G M M I N S E J T L E I T S G

Our goal in this section is not to discuss how to solve such puzzles; instead, we
shall consider how to create them. It’s by no means easy to pack those 27 names
into the box in such a way that their 184 characters occupy only 135 cells, with
eight directions well mixed. How can that be done with reasonable efficiency?

For this purpose we shall extend the idea of exact covering by introducing
color codes. Let’s imagine that each cell ij of the array is to be “colored” with
one of the letters {A, . . . , Z}. Then the task of creating such a puzzle is essentially
to choose from among a vast set of options

‘ABEL 00:A 01:B 02:E 03:L’
‘ABEL 00:A 10:B 20:E 30:L’
‘ABEL 00:A 11:B 22:E 33:L’
‘ABEL 00:L 01:E 02:B 03:A’

.
‘WEIERSTRASS e4:S e5:S e6:A e7:R e8:T e9:S ea:R eb:E ec:I ed:E ee:W’

(48)

in such a way that the following conditions are satisfied:

i) Exactly one option must be chosen for each of the 27 mathematicians’ names.
ii) The chosen options must give consistent colors to each of the 15×15 cells ij.

* The journal Acta Mathematica celebrated its 21st birthday by publishing a special Table
Générale des Tomes 1–35, edited by Marcel Riesz (Uppsala: 1913), 179 pp. It contained a
complete list of all papers published so far in that journal, together with portraits and brief
biographies of all the authors. The 27 mathematicians mentioned in Fig. 71 are those who
were subsequently mentioned in Volumes 1, 2, or 3 of The Art of Computer Programming—
except for people like MITTAG-LEFFLER or POINCARÉ, whose names contain special characters.

87

From the Library of Melissa Nuno

ptg999

88 COMBINATORIAL SEARCHING 7.2.2.1

Fig. 72. Solution to the puzzle of the
hidden mathematicians (Fig.71). No-
tice that the central letter R actually
participates in six different names:

BERTRAND
GLAISHER
HERMITE
HILBERT
KIRCHHOFF
WEIERSTRASS

The T to its left participates in five.

Here’s what the leftover letters say:

These authors of early papers
inActa Mathematica were cited
years later in The Art of Com-
puter Programming.

O T H E S C A T A L A N D A U

T S E A P U S T H O R S R O F

T L S E E A Y R R L Y H A P A

E P E A R E L R G O U E M S I

N N A R R C V L T R T A A M A

I T H U O T E K W I A N D E M

L A N T N B S I M I C M A A W

L G D N A R T R E B L I H C E

E R E C I Z E C E P T N E D Y

M E A R S H R H L I P K A T H

E J E N S E N H R I E O N E T

H S U I N E B O R F E W N A R

T M A R K O F F O F C S O K M

P L U T E R P F R O E K G R A

G M M I N S E J T L E I T S G

There also are informal constraints: It’s desirable to have many shared letters
between names, and to intermix the various directions, so that the puzzle has
plenty of variety and perhaps a few surprises. But conditions (i) and (ii) are
the important criteria for a computer to consider; the auxiliary informalities are
best handled interactively, with human guidance.

Notice that the color constraints (ii) are significantly different from the name
constraints (i). Several distinct options are allowed to specify the color of the
same cell, as long as those specifications don’t conflict with each other.

Let us therefore define a new problem, exact covering with colors, or XCC for
short. As before, we’re given a set of items, of which N1 are primary and N−N1

are secondary. We’re also given a family of M options, each of which includes at
least one primary item. The new rule is that a color is assigned to the secondary
items of each option. The new task is to find all choices of options such that

i) every primary item occurs exactly once; and
ii) every secondary item has been assigned at most one color.

The primary items are required; the secondary items are elective.

Color assignments are denoted by a colon; for example, ‘00:A’ in (48) means
that color A is assigned to the secondary item 00. When a secondary item of an
option is not followed by a colon, it is implicitly assigned a unique color, which
doesn’t match the color of any other option. Therefore the ordinary exact cover
problems that we’ve been studying so far, in which secondary items don’t explic-
itly receive colors but cannot be chosen in more than one option, are just special
cases of the XCC problem, even though nothing about color was mentioned.

A tremendous variety of combinatorial problems can be expressed readily in
the XCC framework. And there’s good news: The dancing links technique works
beautifully with such problems! Indeed, we will see that this considerably more
general problem can be solved with only a few small extensions to Algorithm X.

The nodes of Algorithm X have just three fields: TOP, ULINK, and DLINK.
We now add a fourth field, COLOR; this field is set to the positive value c when

88

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: COLOR-CONTROLLED COVERING 89

the node represents an item that has explicitly been assigned color c. Consider,
for example, the following toy problem with three primary items {p, q, r} and
two secondary items {x, y}, where the options are

‘p q x y:A’ ;
‘p r x:A y’ ;
‘p x:B’ ;
‘q x:A’ ;
‘r y:B’ .

(49)

Table 2 shows how it would be represented in memory, extending the conven-
tions of Table 1. Notice that COLOR = 0 when no color has been specified.
The COLOR fields of the header nodes (nodes 1–5 in this example) need not be
initialized because they’re never examined except in printouts (see the answer
to exercise 12). The COLOR fields of the spacer nodes (nodes 6, 11, 16, 19, 22,
25) are unimportant, except that they must be nonnegative.

Table 2

THE INITIAL CONTENTS OF MEMORY CORRESPONDING TO (49)

i: 0 1 2 3 4 5 6
NAME(i): — p q r x y —
LLINK(i): 3 0 1 2 6 4 5
RLINK(i): 1 2 3 0 5 6 4

x: 0 1 2 3 4 5 6
LEN(x), TOP(x): — 3 2 2 4 3 0

ULINK(x): — 17 20 23 21 24 —
DLINK(x): — 7 8 13 9 10 10
COLOR(x): — — — — — — 0

x: 7 8 9 10 11 12 13
TOP(x): 1 2 4 5 −1 1 3
ULINK(x): 1 2 4 5 7 7 3
DLINK(x): 12 20 14 15 15 17 23
COLOR(x): 0 0 0 A 0 0 0

x: 14 15 16 17 18 19 20
TOP(x): 4 5 −2 1 4 −3 2
ULINK(x): 9 10 12 12 14 17 8
DLINK(x): 18 24 18 1 21 21 2
COLOR(x): A 0 0 0 B 0 0

x: 21 22 23 24 25
TOP(x): 4 −4 3 5 −5
ULINK(x): 18 20 13 15 23
DLINK(x): 4 24 3 5 —
COLOR(x): A 0 0 B 0

It’s easy to see how these COLOR fields can be used to get the desired effect:
When an option is chosen, we “purify” any secondary items that it names, by
effectively removing all options that have conflicting colors. One slightly subtle
point arises, because we don’t want to waste time purifying a list that has already
been culled. The trick is to set COLOR(x) ← −1 in every node x that’s already
known to have the correct color, except in nodes that have already been hidden.

Thus we want to upgrade the original operations cover(i) and hide(p) in (12)
and (13), as well as their counterparts uncover(i) and unhide(p) in (14) and (15),

89

From the Library of Melissa Nuno

ptg999

90 COMBINATORIAL SEARCHING 7.2.2.1

in order to incorporate color controls. The changes are simple:

cover′(i) is like cover(i), but it calls hide′(p) instead of hide(p); (50)

hide′(p) is like hide(p), but it ignores node q when COLOR(q) < 0; (51)

uncover′(i) is like uncover(i), but it calls unhide′(p) instead of unhide(p); (52)

unhide′(p) is like unhide(p), but it ignores node q when COLOR(q) < 0. (53)

Our colorful algorithm also introduces two new operations and their inverses:

commit(p, j) =

{
If COLOR(p) = 0, cover′(j);
if COLOR(p) > 0, purify(p).

(54)

purify(p) =

⎧⎪⎨⎪⎩
Set c← COLOR(p), i← TOP(p), COLOR(i)← c, q ← DLINK(i).
While q �= i, do the following and set q ← DLINK(q):

if COLOR(q) = c, set COLOR(q)← −1;
otherwise hide′(q).

(55)

uncommit(p, j) =

{
If COLOR(p) = 0, uncover′(j);
if COLOR(p) > 0, unpurify(p).

(56)

unpurify(p) =

⎧⎪⎨⎪⎩
Set c← COLOR(p), i← TOP(p), q ← ULINK(i).
While q �= i, do the following and set q ← ULINK(q):

if COLOR(q) < 0, set COLOR(q)← c;
otherwise unhide′(q).

(57)

Otherwise Algorithm C is almost word-for-word identical to Algorithm X.

Algorithm C (Exact covering with colors). This algorithm visits all solutions
to a given XCC problem, using the same conventions as Algorithm X.

C1. [Initialize.] Set the problem up in memory, as in Table 2. (See exercise 8.)
Also set N to the number of items, Z to the last spacer address, and l← 0.

C2. [Enter level l.] If RLINK(0) = 0 (hence all items have been covered), visit the
solution that is specified by x0x1 . . . xl−1 and go to C8. (See exercise 13.)

C3. [Choose i.] At this point the items i1, . . . , it still need to be covered, where
i1 = RLINK(0), ij+1 = RLINK(ij), RLINK(it) = 0. Choose one of them, and
call it i. (The MRV heuristic of exercise 9 often works well in practice.)

C4. [Cover i.] Cover item i using (50), and set xl ← DLINK(i).

C5. [Try xl.] If xl = i, go to C7 (we’ve tried all options for i). Otherwise set
p← xl+1, and do the following while p �= xl: Set j ← TOP(p); if j ≤ 0, set
p ← ULINK(p); otherwise commit(p, j) and set p ← p + 1. (This commits
the items �= i in the option that contains xl.) Set l← l+1 and return to C2.

C6. [Try again.] Set p ← xl − 1, and do the following while p �= xl: Set j ←
TOP(p); if j ≤ 0, set p← DLINK(p); otherwise uncommit(p, j) and set p←
p− 1. (This uncommits the items �= i in the option that contains xl, using
the reverse order.) Set i← TOP(xl), xl ← DLINK(xl), and return to C5.

C7. [Backtrack.] Uncover item i using (52).

C8. [Leave level l.] Terminate if l = 0. Otherwise set l← l−1 and go to C6.

90

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: COLOR-CONTROLLED COVERING 91

Algorithm C applies directly to several problems that we’ve already dis-
cussed in previous sections. For example, it readily generates word rectangles,
as well as intriguing patterns of words that have more intricate structure (see
exercises 87–93). We can use it to find all de Bruijn cycles, and their two-
dimensional counterparts (see exercises 94–97). The extra generality of exact
covering options also invites us to impose additional constraints for special
applications. Furthermore, Algorithm C facilitates experiments with the tetrad
tiles that we studied in Section 2.3.4.3 (see exercises 120 and 121).

The great combinatorialist P. A. MacMahon introduced several families of
colorful geometric patterns that continued to fascinate him throughout his life.
For example, in U.K. Patent 3927 of 1892, written with J. R. J. Jocelyn, he con-
sidered the 24 different triangles that can be made with four colors on their edges,{

, , , , , , , , , , , ,

, , , , , , , , , , ,
}
,

(58)

and showed two ways in which they could be arranged to form a hexagon with
matching colors at adjacent edges and with solid colors on the outer boundary:

(a) (b) (59)

(Notice that chiral pairs, like and in (58), are considered to be distinct;
MacMahon’s tiles can be rotated, but they can’t be “flipped over.”)

Four suitable colours are black, white, red, and blue,

as they are readily distinguishable at night.

— P. A. MACMAHON, New Mathematical Pastimes (1921)

Let’s assume that the boundary is supposed to be all white, as in pattern
(59b). There are millions of ways to satisfy this condition; but every really dis-
tinct solution is counted 72 times, because the hexagon has 12 symmetries under
rotation and reflection, and because the three nonwhite colors can be permuted in
3! = 6 ways. We can remove the hexagon symmetries by fixing the position of the
all-white triangle (see exercise 119). And the color symmetries can be removed by
using an interesting extension of Algorithm C, which reduces the number of solu-
tions by a factor of d! when the options are symmetrical with respect to d colors
(see exercise 122). In this way all of the solutions—can you guess how many?—
can actually be found with only 5.2 Gμ of computation (see exercise 126).

MacMahon went on to study many other matching problems with these
triangles, as well as with similar sets of tiles that are based on squares, hexagons,
and other shapes. He also considered three-dimensional arrangements of colored
cubes, which are supposed to match where they touch. Exercises 127–148 are
devoted to some of the captivating questions that have arisen from this work.

91

From the Library of Melissa Nuno

ptg999

92 COMBINATORIAL SEARCHING 7.2.2.1

Introducing multiplicity. We’ve now seen from numerous examples that
Algorithm C—which extends AlgorithmX and solves arbitrary XCC problems—
is enormously versatile. In fact, there’s a sense in which every constraint satis-
faction problem is a special case of an XCC problem (see exercise 100).

But we can extend Algorithm C even further, again without substantial
changes, so that it goes well beyond the original notion of exact covering. For
example, let’s consider Robert Wainwright’s “partridge puzzle” (1981), which
was inspired by the well-known fact that the sum of the first n cubes is a perfect
square:

13 + 23 + · · ·+ n3 = N2, where N = 1 + 2 + · · ·+ n. (60)

Wainwright wondered if this relation could be verified geometrically, by taking
one square of size 1×1, two squares of size 2×2, . . . , n squares of size n×n, and
packing them all into a big square of size N×N . (We know from exercise 1.2.1–8
that 4k squares of each size k × k can be packed into a 2N × 2N square. But
Wainwright hoped for a more direct corroboration of (60).) He proved the task
impossible for 2 ≤ n ≤ 5, but found a perfect packing when n = 12; so he thought
of the 12 days of Christmas, and named his puzzle accordingly (see exercise 154).

This partridge puzzle is easily expressed in terms of options that involve n
items #k for 1 ≤ k ≤ n, as well as N2 items ij for 0 ≤ i, j < N . By analogy
with what we did with pentominoes in (37), the options are

‘#k ij i(j+1) . . . i(j+k−1) (i+1)j (i+1)(j+1) . . . (i+k−1)(j+k−1)’ (61)

for 1 ≤ k ≤ n and 0 ≤ i, j ≤ N − k. (Exactly (N + 1− k)2 options involve #k,
and each of them names 1+k2 items.) For example, the options when n = 2 are

‘#1 00’, ‘#1 01’, ‘#1 02’, ‘#1 10’, ‘#1 11’, ‘#1 12’, ‘#1 20’, ‘#1 21’, ‘#1 22’,

‘#2 00 01 10 11’, ‘#2 01 02 11 12’, ‘#2 10 11 20 21’, ‘#2 11 12 21 22’.

As before, we want to cover each of the N2 cells ij exactly once. But there’s a
difference: We now want to cover primary item #k exactly k times, not just once.

That’s a rather big difference. But in Algorithm M below, we’ll see that
the dancing links approach can handle it. For example, that algorithm can show
that the partridge puzzle has no perfect packings for n = 6 or n = 7; but it finds
thousands of surprising solutions when n = 8, such as

1

2 2

3

3 3

4 4

4 4

5 5

5 5 5

6 6

6 6

6

6

7

7

7

7 7 7 7

8 8 8

8 8

8 8

8

,

1

2

2
3

3

3

4 4

4 4

5

55

5

5

6 6

6

6

6

6

7

7

7

7

7

7 7

8 8 8

8

8

8 8

8

. (62)

92

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: INTRODUCING MULTIPLICITY 93

When we first defined exact cover problems, near the beginning of this
section, we consideredM×N matrices of 0s and 1s, such as (5). In matrix terms,
the task was to find all subsets of the rows whose sum is 11 . . . 1. Algorithm M is
going to do much more: It will find all subsets of rows whose sum is v1v2 . . . vN ,
where v1v2 . . . vN is any desired vector of multiplicities.

In fact, Algorithm M will go further yet, by allowing intervals [uj . . vj]
to be prescribed for each multiplicity. It will actually solve the general MCC

problem, “multiple covering with colors,” which is defined as follows: There are
N items, of which N1 are primary and N − N1 are secondary. Each primary
item j for 1 ≤ j ≤ N1 is assigned an interval [uj . . vj] of permissible values,
where 0 ≤ uj ≤ vj and vj > 0. There also are M options, each of which includes
at least one primary item. A color is assigned to the secondary items of each
option; a “blank” color is understood to represent a unique color that appears
nowhere else. The task is to find all subsets of options such that

i) each primary item j occurs at least uj times and at most vj times;

ii) every secondary item has been assigned at most one color.

Thus every XCC problem is the special case uj = vj = 1 of an MCC problem.

Indeed, the MCC problem is extremely general! For example, its special case
uj = 1 and vj = M , without secondary items, is the classical not-necessarily-
exact cover problem, in which we simply require each item to appear in at least

one option. Section 7.2.2.6 will be entirely devoted to the cover problem.

Let’s confine our attention here to a few more examples of theMCC problem,
in preparation for Algorithm M. In the first place, we can tackle a refined version
of Wainwright’s partridge puzzle: “Pack at most k squares of size k × k, for
1 ≤ k ≤ n, into an N × N square, without overlapping, so that as many as
possible of the N2 cells are covered.” (As before, N = 1+2+ · · ·+n.) We know
from (62) that the entire square can be covered when n = 8; but smaller cases
are another story. Solutions for 2 ≤ n ≤ 5 are readily found by hand:

1

2

1

2

3

3

3

1

2

2

3

3 3

44

4

1

2

3 3

4

4

4

4

5

5 5

5 5

(63)

And to prove that every packing for n = 5 must leave at least 13 cells vacant,
Algorithm M will show that the MCC problem (61) has no solutions when items
#1, #2, #3 are respectively given the multiplicities [0 . . 13], [0 . . 2], [0 . . 3] instead
of 1, 2, 3. Exercise 157 constructs optimum packings when n = 6 and n = 7,
thereby settling all small cases of the partridge puzzle.

Next, let’s consider an MCC problem of quite a different kind: “Place m
queens so that they control all cells of an n×n chessboard.” (The classic 5-queens
problem—which should be distinguished from the ‘5 queens problem’ considered
earlier— is the special case m = 5, n = 8.) Exercise 7.1.4–241 discusses the his-
tory of this problem, which goes back to a remarkable book by de Jaenisch (1863).

93

From the Library of Melissa Nuno

ptg999

94 COMBINATORIAL SEARCHING 7.2.2.1

We can solve it, MCC-wise, by introducing n2 + 1 primary items, namely
the pairs ij for 0 ≤ i, j < n and the special item #, together with n2 options:

‘# ij i1j1 i2j2 . . . itjt’ for 0 ≤ i, j < n, (64)

where i1j1, i2j2, . . . , itjt are the cells attacked by a queen on ij. Each cell ij is
assigned the multiplicity [1 . .m]; item # gets multiplicity m.

From this specification Algorithm M will readily find all 4860 solutions to
the 5-queens problem, after 13 gigamems of computation. For example, it begins
with 22 ways to cover the corner cell 00. If it puts a queen there, it has 22 ways
to cover cell 17; and so on. The branching factor at each step tends to decrease
rapidly after three queens have been placed.

The beauty of the MCC setup in (64) is that we can solve many related
problems by making simple changes to the specifications. For example, by
retaining only the 36 options for 1 ≤ i, j ≤ 6, we could find the 284 solutions that
place no queens at the edges of the board. Or by removing the 16 options for
2 ≤ i, j ≤ 5, we would discover that exactly 880 of the solutions place no queens
near the middle. Exactly 88 solutions avoid the central two rows and the central
two columns. Exactly 200 solutions put all five queens on “black” cells (with
i+ j even). Exactly 90 avoid the upper left and lower right quadrants. Exactly
2 solutions (can you find them?) place all five queens in the top half of the board.

By changing the multiplicities in the bottom row from [1 . . 5] to 1, we get
18 solutions for which every cell in that row is attacked just once. Or, changing
the central 16 multiplicities to [2 . . 5] yields 48 solutions for which every cell near
the center is attacked at least twice. Changing all the cell multiplicities to [1 . . 4]
reduces the number of solutions from 4860 to 3248; changing them all to [1 . . 3]
reduces it to 96. Exercise 161 illustrates several of the less obvious possibilities.

�
�

�

�
�

�

�
�

�
�

���
�

�

�

�
�

�

�

(65)

The examples of MCC problems that we’ve seen so far have involved primary
items only. Secondary items, and their color controls, add new dimensions and
extend the range of applications enormously. Consider, for example, the word

rectangles that we investigated briefly in Section 7.2.2. Here’s a 4 × 5 word
rectangle that uses only nine distinct letters of the alphabet:

L A B E L
A B I D E
S L A I N
T E S T S

.

Can we find one that uses only eight distinct letters, while sticking to common
words? (More precisely, is there such a rectangle whose columns are chosen from
the most common 1000 four-letter words of English, and whose rows belong to
WORDS(2000), the curated collection from the Stanford GraphBase?)

94

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: A NEW DANCE STEP 95

The answer is yes, and in fact there are six solutions:

S T R U T
T E A S E
E A T E N
P R E S S

E A S E D
A G I L E
S E N S E
E D G E D

W A D E D
A R E N A
S E E D S
H A R S H

R A D A R
A R E N A
S E A T S
H A R S H

L L A M A
E A G E R
S T E A M
T E S T S

S C A R S
C O C O A
A R R A Y
R E E D S

(66)

One way to find them is to set up an MCC problem in which the primary
items are A0, A1, A2, A3, D0, D1, D2, D3, D4, #A, #B, . . . , #Z, #; they all
have multiplicity 1 except that # has multiplicity 8. There also are secondary
items A, B, . . . , Z, and ij for 0 ≤ i < 4, 0 ≤ j < 5. The letter-counting is handled
by 2 · 26 short options:

‘#A A:0’, ‘#A A:1 #’; ‘#B B:0’, ‘#B B:1 #’; . . . ; ‘#Z Z:0’, ‘#Z Z:1 #’. (67)

Then each legal 5-letter word c1c2c3c4c5 yields four options, ‘Ai i0:c1 i1:c2 i2:c3
i3:c4 i4:c5 c1:1 c2:1 c3:1 c4:1 c5:1’, for 0 ≤ i < 4; each legal 4-letter word c1c2c3c4
yields five options, ‘Dj 0j:c1 1j:c2 2j:c3 3j:c4 c1:1 c2:1 c3:1 c4:1’, for 0 ≤ j < 5.
(Letters that occur more than once in a word are listed only once.)

For example, one of the options chosen for the first solution in (66) is ‘A3

30:P 31:R 32:E 33:S 34:S P:1 R:1 E:1 S:1’; it forces the options ‘#P P:1 #’, ‘#R

R:1 #’, ‘#E E:1 #’, ‘#S S:1 #’ to be chosen too, thus contributing four to the
number of chosen options that contain #.

By the way, when Algorithm M is applied to these options, it’s important to
use the “nonsharp preference heuristic” discussed in exercise 10 and its answer.
Otherwise the algorithm will foolishly make binary branches on the items #A,
. . . , #Z, before trying out actual words. A 1000-way branch on D0 is much
better than a 2-way branch on #Q, in this situation.

*A new dance step. In order to implement multiplicity, we need to update the
data structures in a new way. Suppose, for example, that there are five options
available for some primary item p, and suppose they are represented in nodes a,
b, c, d, and e. Then p’s vertical list of active options has the following links:

x: p a b c d e
ULINK(x): e p a b c d
DLINK(x): a b c d e p

(68)

If the multiplicity of p is 3, there are
(
5
3

)
= 10 ways to choose three of the five

options; but we do not want to make a 10-way branch! Instead, each branch of
Algorithm M below chooses only the first of the options that will appear in the
solution. Then it reduces the problem recursively; the reduced problem will have
a shorter list for p, from which two further options should be selected. Since we
must choose either a, b, or c as the first option, the algorithm will therefore begin
with a 3-way branch. For example, if b is chosen to be first, the reduced problem
will ask for two of options {c, d, e} to be chosen eventually.

The algorithm will recursively find all solutions to that reduced problem.
But it won’t necessarily begin by branching again on the same item, p; some
other item, q, might well have become more significant. For instance, the choice

95

From the Library of Melissa Nuno

ptg999

96 COMBINATORIAL SEARCHING 7.2.2.1

of b might have assigned color values that make LEN(q) ≤ 1. (The choice of b
might also have made c, d, and/or e illegal.)

The main point is that, after we’ve chosen the first of three options for p in
the original problem, we have not “covered” p as we did in Algorithms X and C.
Item p remains on an equal footing with all other active items of the reduced
problem, so we need to modify (68) accordingly.

The operation of reducing the problem by removing an option from an item
list, in the presence of multiplicity, is called “tweaking” that option. For example,
just after the algorithm has chosen b as the first option for p, it will have tweaked
both a and b. This operation is deceptively simple:

tweak(x, p) =

{
hide′(x) and set d← DLINK(x), DLINK(p)← d,
ULINK(d)← p, LEN(p)← LEN(p)− 1.

(69)

(See (51). We will tweak(x, p) only when x = DLINK(p) and p = ULINK(x).)
Notice that tweaking x does more than hiding x, but it does less than covering p.

Eventually the algorithm will have tried each of a, b, and c as p’s first option,
and it will want to backtrack and undo the tweaking. The actions tweak(a, p),
tweak(b, p), tweak(c, p) will have clobbered most of the original uplinks in (68):

x: p a b c d e
ULINK(x): e p p p p d
DLINK(x): d b c d e p

(70)

Unfortunately, this residual data isn’t sufficient for us to restore the original
state, because we’ve lost track of node a. But if we had recorded the value of a
when we began, we would be in good shape, because a pointer to node a together
with the DLINKs in (70) would now lead us to node b, then to c, and then to d.

Therefore the algorithmmaintains an array FT[l], to remember the locations
of the “first tweaks” that were made at every level l. And it adds a new dance
step, “untweaking,” to its repertoire of link manipulations:

untweak(l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Set a← FT[l], p← (

a ≤ N? a: TOP(a)
)
, x← a, y ← p;

set z ← DLINK(p), DLINK(p)← x, k ← 0;
while x �= z, set ULINK(x)← y and k ← k + 1,

unhide′(x), and set y ← x, x← DLINK(x);
finally set ULINK(z)← y and LEN(p)← LEN(p)+ k.

(71)

(See exercise 163. This computation relies on a surprising fact proved in exercise
2(a), namely that unhiding can safely be done in the same order as hiding.)

The same mechanism can be used when the specified multiplicity is an
interval instead of a single number. For example, suppose item p in the example
above is required to occur in either 2, 3, or 4 options, not exactly 3. Then the
first option chosen must be a, b, c, or d; and the reduced problem will ask p to
occur in either 1, 2, or 3 of the options that remain. Eventually the algorithm
will resort to untweaking, after a, b, c, and d have all been tweaked and explored.

Similarly, if p’s multiplicity has been specified to be either 0, 1, or 2, the
algorithm below will tweak each of a through e in turn. It will also run though all
solutions that omit all of p’s options, before finally untweaking and backtracking.

96

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: A NEW DANCE STEP 97

A special case arises, however, when p’s multiplicity has been specified to be
either 0 or 1. In such cases we’re not allowed to choose options b, c, d, or e after
option a has been chosen. Therefore it’s important to invoke cover′(p), as in
Algorithm C, instead of hiding one option at a time. (See (50).) The individual
options of p are then tweaked, to remove them one by one from the active list; this
tweaking uses the special operation tweak′(x, p), which is like tweak(x, p) in (69)
except that it omits the operation hide′(x), because hiding was already done
when p was covered. Finally, the case of 0-or-1 multiplicity eventually concludes
by invoking the routine untweak′(l), which is like untweak(l) in (71) except that
(i) it omits unhide′(x), and (ii) it calls uncover′(p) after restoring LEN(p).

We’re ready now to write Algorithm M, except that we need a way to rep-
resent the multiplicities in the data structures. For this purpose every primary
item has two new fields, SLACK and BOUND. Suppose the desired multiplicity of p
is in the interval [u . . v], where 0 ≤ u ≤ v and v �= 0; Algorithms X and C
correspond to the case u = v = 1. Then we set

SLACK(p) ← v − u, BOUND(p) ← v (72)

when the algorithm begins. The value of SLACK(p) will never be changed. But
BOUND(p) will decrease dynamically, as we reduce the problem, so that we will
never choose more options for p than its current bound.

Algorithm M (Covering with multiplicities and colors). This algorithm visits
all solutions to a given MCC problem, extending Algorithms X and C.

M1. [Initialize.] Set the problem up in memory as in step C1 of Algorithm C,
with the addition of multiplicity specifications (72). Also set N to the
number of items, N1 to the number of primary items, Z to the last spacer
address, and l← 0.

M2. [Enter level l.] If RLINK(0) = 0 (hence all items have been covered), visit the
solution that is specified by x0x1 . . . xl−1 and go to M9. (See exercise 164.)

M3. [Choose i.] At this point the items i1, . . . , it still need to be covered, where
i1 = RLINK(0), ij+1 = RLINK(ij), RLINK(it) = 0. Choose one of them, and
call it i. (The MRV heuristic of exercise 166 often works well in practice.)
If the branching degree θi is zero (see exercise 166), go to M9.

M4. [Prepare to branch on i.] Set xl ← DLINK(i) and BOUND(i)← BOUND(i)−1.
If BOUND(i) is now zero, cover item i using (50). If BOUND(i) �= 0 or
SLACK(i) �= 0, set FT[l]← xl.

M5. [Possibly tweak xl.] If BOUND(i) = SLACK(i) = 0, go to M6 if xl �= i, to M8
if xl = i. (That case is like AlgorithmC.) Otherwise if LEN(i) ≤ BOUND(i)−
SLACK(i), go to M8 (list i is too short). Otherwise if xl �= i, call tweak(xl, i)
(see (69)), or tweak′(xl, i) if BOUND(i) = 0. Otherwise if BOUND(i) �= 0, set
p← LLINK(i), q ← RLINK(i), RLINK(p)← q, LLINK(q)← p.

M6. [Try xl.] If xl �= i, set p ← xl + 1, and do the following while p �= xl:
Set j ← TOP(p); if j ≤ 0, set p ← ULINK(p); otherwise if j ≤ N1, set
BOUND(j)← BOUND(j)− 1, p← p+ 1, and cover′(j) if BOUND(j) is now 0;

97

From the Library of Melissa Nuno

ptg999

98 COMBINATORIAL SEARCHING 7.2.2.1

otherwise commit(p, j) and set p← p+1. (This loop covers or commits the
items �= i in the option that contains xl.) Set l← l + 1 and return to M2.

M7. [Try again.] Set p ← xl − 1, and do the following steps while p �= xl:
Set j ← TOP(p); if j ≤ 0, set p ← DLINK(p); otherwise if j ≤ N1, set
BOUND(j) ← BOUND(j) + 1, p ← p − 1, and uncover′(j) if BOUND(j) is
now 1; otherwise uncommit(p, j) and set p← p− 1. (This loop uncovers or
uncommits the items �= i in the option that contains xl, using the reverse
order.) Set xl ← DLINK(xl) and return to M5.

M8. [Restore i.] If BOUND(i) = SLACK(i) = 0, uncover item i using (52).
Otherwise call untweak(l) (see (71)), or untweak′(l) if BOUND(i) = 0. Set
BOUND(i)← BOUND(i)+ 1.

M9. [Leave level l.] Terminate if l = 0. Otherwise set l ← l − 1. If xl ≤ N , set
i ← xl, p ← LLINK(i), q ← RLINK(i), RLINK(p) ← LLINK(q) ← i, and go
to M8. (That reactivates i.) Otherwise set i← TOP(xl) and go to M7.

*Analysis of Algorithm X. Now let’s get quantitative, and see what we can
actually prove about the running time of these algorithms.

For simplicity, we’ll ignore color constraints and look only at Algorithm X,
as it finds all solutions to an exact cover problem, where the problem is specified
in terms of an M ×N matrix A of 0s and 1s such as (5).

We’ll assume that the problem is strict, in the sense that no two rows of
the matrix are identical, and no two columns of the matrix are identical. For if
two or more rows or columns are equal, we need keep only one of them; it’s easy
to relate all solutions of the original problem A to the solutions of this reduced
problem A′. (See exercise 179.)

Our first goal will be to find an upper bound on the number of nodes in the
search tree, as a function of the number of rows of A (the number of options).
This upper bound grows exponentially, because the exact cover problem can have
lots of solutions; but we’ll see that it can’t actually be extremely large.

For this purpose we’ll define the doomsday functionD(n), which will have the
property that the search tree for every strict exact cover problem with n options
has at most D(n) nodes, when Algorithm X uses the MRV heuristic in step X3.

The search tree has a root node labeled with the original matrix A, and its
other nodes are defined recursively: When a node at level l is labeled with a
subproblem for which step X3 makes a t-way branch, that node has t subtrees,
whose roots are labeled by the reduced problem that remains after step X4 has
covered item i and after step X5 has optionally covered one or more other items j,
for t different choices of xl.

Here, for example, is the complete search tree when A is the matrix of (5):

98

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: ANALYSIS OF ALGORITHM X 99

(Each matrix and submatrix in this diagram has been framed with a light-gray
border. The node at bottom left illustrates a 0×1 submatrix, where the algorithm
had to backtrack because it had no way to cover the remaining column. The
node at bottom right illustrates a 0×0 submatrix, which happens to be a solution
to the 1× 2 problem above it.) We can, if we like, reduce all of the submatrices
by eliminating repeated columns, although Algorithm X doesn’t do this; then
we get strict exact cover problems at every node of the search tree:

(73)

A t-way branch implies that the matrix A has a certain structure. We know
that there’s some column, say i1 = i, that has 1 in exactly t rows, say o1, . . . , ot,
and that every column contains at least t 1s. When we branch on row op, for 1 ≤
p ≤ t, the reduced problem that defines the pth subtree will retain all but sp of
the rows of A, where sp is the number of rows that intersect op. We can order the
rows so that s1 ≤ · · · ≤ st. For example, in (73) we have t = 2 and s1 = s2 = 4.

A nice thing now happens: There’s always a unique index 0 ≤ t′≤ t such that

sp = t+ p− 1, for 1 ≤ p ≤ t′. (74)

That is, either s1 > t and t′ = 0; or s1 = t and t′ = 1 and either (t = 1 or
s2 > t+ 1); or s1 = t and s2 = t+ 1 and t′ = 2 and either (t = 2 or s3 > t+ 2);
or . . . ; or s1 = t and s2 = t+ 1 and . . . and st = 2t− 1 and t′ = t.

Suppose, for example, that t = 4 and s1 = 4; we must prove that s2 ≥ 5.
Since s1 = 4, row o1 doesn’t intersect any rows except {o1, . . . , ot}; consequently
option o1 consists of the single item ‘i1’. Hence option o2 must contain at least
two items, ‘i1 i2 . . . ’, otherwise the problem wouldn’t be strict. This new item
appears in at least 4 options, however, one of which is different from o1. Option o2
therefore intersects 5 or more options (including itself). QED.

Similarly, if t = 4 and s1 = 4 and s2 = 5, exercise 180 proves that s3 ≥ 6,
and indeed it proves that even more is true. For example, if t = t′ = 4, so
that (s1, s2, s3, s4) = (4, 5, 6, 7) as demanded by (74), exercise 180 proves the
existence of options o5, o6, o7 that have a particularly simple form:

o1 = ‘i1’; o2 = ‘i1 i2’; o3 = ‘i1 i2 i3’; o4 = ‘i1 i2 i3 i4’;

o5 = ‘i2 i3 i4 . . . ’; o6 = ‘i3 i4 . . . ’; o7 = ‘i4 . . . ’. (75)

Okay, we’re ready now to construct the promised “doomsday function”D(n).
It starts out very tame,

D(0) = D(1) = 1; (76)

and for convenience we set D(n) = −∞ if n < 0. When n ≥ 2 the definition is

D(n) = max
{
d(n, t, t′)

∣∣ 1 ≤ t < n and 0 ≤ t′ ≤ t
}
, (77)

99

From the Library of Melissa Nuno

ptg999

100 COMBINATORIAL SEARCHING 7.2.2.1

where d(n, t, t′) is an upper bound for the size of the search tree over all n-option
strict exact cover problems whose parameters (74) are t and t′. One such bound,

d(n, t, 0) = 1 + t ·D(n− t− 1), (78)

handles the case t′ = 0, because the search tree in that case is a t-way branch

A

A1 A2 At· · ·
, (79)

and each subproblem Ap has at most n− t− 1 options.
The formula for t′ > 0 is more intricate, and less obvious:

d(n, t, t′) = t′+t′ ·D(n−t−t′+1)+(t−t′) ·D(n−t−t′−1), if 1 ≤ t′ ≤ t. (80)

It can be justified by the structure theory of exercise 180, using the fact that
each of the first t′ − 1 branches is immediately followed by a 1-way branch. For
example, the search tree looks like this when t = 5 and t′ = 3:

A

A1 A2 A3 A4 A5

A′1 A′2

(81)

Here A′1 is the only way to cover i2 in A1, and A′2 is the only way to cover i3 in
A2. The strict problems A

′
1, A

′
2, and A3 have at most n− 7 options; A4 and A5

have at most n−9. Therefore (81) has at most 3+3D(n−7)+2D(n−9) nodes.
With an easy computer program, (76), (78), and (80) lead to the values

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

D(n) = 1 1 2 4 5 6 10 13 17 22 31 41 53 69 94 125 165 213 283 377 501 661

and it turns out that the maximum is attained uniquely when t = 4 and t′ = 0,
for all n ≥ 19. Hence we have D(n) = 1 + 4D(n− 5) for all sufficiently large n;
and in fact exercise 181 exhibits a simple formula that expresses D(n) exactly.

Theorem E. The search tree of a strict exact cover problem with n options has

O(4n/5) = O(1.31951n) nodes; it might have as many as Ω(7n/8) = Ω(1.27537n).

Proof. The upper bound follows from exercise 181; the lower bound follows from
the family of problems in exercise 182.

[David Eppstein presented this theorem to the author as a birthday greeting(!);
see 11011110.github.io/blog/2008/01/10/analyzing-algorithm-x.html.]

100

From the Library of Melissa Nuno

http://11011110.github.io/blog/2008/01/10/analyzing-algorithm-x.html

ptg999

7.2.2.1 DANCING LINKS: ANALYSIS OF ALGORITHM X 101

So far we’ve simply been analyzing the number of nodes in Algorithm X’s
search tree. But some nodes might cost much more than others, because they
might remove unusually many options from the currently active lists.

Therefore let’s probe deeper, by studying the number of updates that Algo-
rithm X makes to its data structures, namely the number of times that it uses
operation (1) to remove an element from a doubly linked list. (This is also the
number of times that it will eventually use operation (2) to restore an element.)
More precisely, the number of updates is the number of times cover(i) is called,
plus the number of times that hide(p) sets LEN(x) ← LEN(x) − 1. (See (12)
and (13).) The total running time of Algorithm X, measured in mems, usually
turns out to be roughly 13 times the total number of updates that it makes.

It’s instructive to analyze the number of updates that are made when solving
the “extreme” exact cover problems, which arise when there are n items and
2n − 1 options: Such problems have the most solutions and the most data,
because every nonempty subset of the items is an option. The solutions to
these extreme problems are precisely the set partitions—the �n possible ways
to partition the items into disjoint blocks, which we studied in Section 7.2.1.5.
For example, when n = 3 the options are ‘1’, ‘2’, ‘1 2’, ‘3’, ‘1 3’, ‘2 3’, ‘1 2 3’,
and there are �3 = 5 solutions: ‘1’, ‘2’, ‘3’; ‘1’, ‘2 3’; ‘1 2’, ‘3’; ‘1 3’, ‘2’; ‘1 2 3’.

Any given item can be covered in 2n−1 ways; and if we cover it with an
option of size k, we’re left with the extreme problem on the remaining n − k
items. Algorithm X therefore advances 2n−1 times from level 0 to level 1, after
which it essentially calls itself recursively. And at level 0 it performs a certain
number of updates, say vn, regardless of what strategy is used in step X3 to
choose an item for branching. Therefore it makes a total of xn updates, where

xn = vn +
(
n−1
0

)
xn−1 +

(
n−1
1

)
xn−2 + · · ·+ (n−1

n−1

)
x0. (82)

The solution to this recurrence is x0 = v0, x1 = v0 + v1, x2 = 2v0 + v1 + v2,
and in general xn =

∑n
k=0 ankvk, where the matrix (ank) is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 . . .
2 1 1 0 0 0 0 . . .
5 3 1 1 0 0 0 . . .
15 9 4 1 1 0 0 . . .
52 31 14 5 1 1 0 . . .
203 121 54 20 6 1 1 . . .
· · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 . . .
−1 1 0 0 0 0 0 . . .
−1 −1 1 0 0 0 0 . . .
−1 −2 −1 1 0 0 0 . . .
−1 −3 −3 −1 1 0 0 . . .
−1 −4 −6 −4 −1 1 0 . . .
−1 −5 −10 −10 −5 −1 1 . . .
· · · · · · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

, (83)

with rows and columns numbered from 0. The numbers an0 in the left column,
which solve (82) when vn = δn0, are the familiar Bell numbers �n; they enumer-
ate the leaves in the search tree. The numbers an1 in the next column, which solve
(82) when vn = δn1, are the Gould numbers �̂n; they enumerate set partitions
whose last block or “tail” is a singleton, when the blocks of the partition are
ordered by their least elements. In general, ank for k > 0 is the number of set

101

From the Library of Melissa Nuno

ptg999

102 COMBINATORIAL SEARCHING 7.2.2.1

partitions whose tail has size k. [See H. W. Gould and J. Quaintance, Applicable
Analysis and Discrete Mathematics 1 (2007), 371–385.]

Exercise 186 proves that the actual number of updates at level 0 is

vn =
(
(9n− 27)4n − (8n− 32)3n + (36n− 36)2n + 72− 41δn0

)
/72; (84)

and exercise 187 exploits relationships between the sequences 〈ank〉 to show that

xn = 22�n + 12�̂n − (2
3
n− 1)3n − 5

2
n2n − 12n− 5− 12δn1 − 18δn0. (85)

Asymptotically, �̂n/�n converges rapidly to the “Euler–Gompertz constant”

ĝ =

∫ ∞

0

e−xdx

1 + x
= 0.59634 73623 23194 07434 10784 99369 27937 60741+ (86)

(see exercise 189). Thus xn ≈ (22+ 12ĝ)�n ≈ 29.156�n, and we’ve proved that
Algorithm X performs approximately 29.156 updates per solution to the extreme

exact cover problem, on average. That’s encouraging: One might suspect that
the list manipulations needed to deal with 2n options of average length n would
cost substantially more, but the dancing-links approach turns out to be within
a constant factor of Section 7.2.1.5’s highly tuned methods for set partitions.

*Analysis of matching problems. Among the simplest exact cover problems
are the ones whose options don’t contain many items. For example, a so-called
X2C problem (“exact cover with 2-sets”) is the special case where every option
has exactly 2 items; an X3C problem has 3 items per option; and so on. We’ve
seen in (30) that sudoku is an X4C problem.

Let’s take a close look at the simplest case, the X2C problems. Despite their
simplicity, we’ll see that such problems actually include many cases of interest.
Every X2C problem corresponds in an obvious way to a graph G, whose vertices v
are the items and whose edges u−−−v are the pairs of items that occur together
in an option ‘u v’. In these terms the X2C problem is the classical task of finding
a perfect matching, namely a set of edges that contains each vertex exactly once.

We shall study efficient algorithms for perfect matching in Section 7.5.5
below. But an interesting question faces us now, in the present section: How
well does our general-purpose Algorithm X compare to the highly tuned special-
purpose algorithms that have been developed especially for matching in graphs?

Suppose, for example, that G is the complete graph K2q+1. In other words,
suppose that there are n = 2q + 1 items {0, 1, . . . , 2q}, and that there are m =(
2q+1
2

)
= (2q + 1)q options ‘i j’ for 0 ≤ i < j ≤ 2q. This problem clearly has

no solution, because we can’t cover an odd number of points with 2-element
sets! But Algorithm X won’t know this (unless we give it a hint by factoring the
problem appropriately). Thus it’s interesting to see how long Algorithm X will
spin its wheels before giving up on this problem.

In fact the analysis is easy: No matter what item i is chosen in step X3,
the algorithm will split nicely into 2q branches, one for each option ‘i j’ with
j �= i. And each of those branches will be equivalent to the matching problem on
the remaining 2q − 1 items; the remaining options will, in fact, be equivalent to
the complete graph K2q−1. Thus the search tree will have 2q nodes at depth 1,

102

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: ANALYSIS OF MATCHING PROBLEMS 103

(2q)(2q − 2) nodes at depth 2, . . . , and (2q)(2q − 2) . . . (2) = 2qq! nodes at
depth q. Backtracking will occur at the latter nodes, which are leaves because
they correspond to impossible matching in the graph K1.

How long does this process take? A closer look (see exercise 193) shows that
the total number of updates to the data structure will satisfy the recurrence

U(2q + 1) = 1 + 2q + 4q2 + 2qU(2q − 1), for q > 0; U(1) = 1. (87)

Consequently (see exercise 194) the number of updates needed by Algorithm X
to discover that K2q+1 has no perfect matching turns out to be less than 8.244
times the number of leaves.

There’s better news when Algorithm X is presented with the complete
graph K2q, because this problem has solutions— lots of them. Indeed, it’s easy
to see that K2q has exactly (2q − 1)(2q − 3) . . . (3)(1) = (2q)!/(2qq!) perfect
matchings. For example, K8 has 7 · 5 · 3 · 1 = 105 of them. The total number of
updates in this case satisfies a recurrence similar to (87):

U(2q) = 1− 2q + 4q2 + (2q − 1)U(2q − 2), for q > 0; U(0) = 0. (88)

And exercise 194 proves that this is less than 10.054 updates per matching found.
Armed with these facts, we can work out what happens when the graph

K2q+1 K2r (89)

is presented to Algorithm X. (This graph has 2q + 2r + 2 vertices.) The result,
which is revealed in exercise 195, is both instructive and bizarre.

A 2D matching problem—also called bipartite matching, and 2DM for short—

is the special case of an X2C problem in which every option has the form ‘Xj Yk’,
where the items {X1, . . . , Xn} and {Y1, . . . , Yn} are disjoint sets. Higher-dimensional
matching is defined similarly; sudoku is actually a case of 4DM.

Let’s round out our analyses of matching by considering the bounded permuta-

tion problem : “Given a sequence of positive integers a1 . . . an, find all permutations

p1 . . . pn of {1, . . . , n} such that pj ≤ aj for 1 ≤ j ≤ n.” We can assume that

a1 ≤ · · · ≤ an, because p1 . . . pn is a permutation; we can also assume that aj ≥ j,
otherwise there are no solutions; and we can assume without loss of generality that

an ≤ n. This is easily seen to be a 2DM problem, having exactly a1 + · · · + an
options, namely ‘Xj Yk’ for 1 ≤ j ≤ n and 1 ≤ k ≤ aj .

Suppose we branch first on X1. Then each of the a1 subproblems is easily seen to

be essentially a bounded permutation problem with n decreased by 1, and with a1 . . . an
replaced by (a2 − 1) . . . (an− 1). Thus a recursive analysis applies, and again we find

that the dancing links algorithm does rather well. For example, if aj = min(j+1, n)
for 1 ≤ j ≤ n, there are 2n−1 solutions, and Algorithm X performs only about 12

updates per solution. If aj = min(2j, n) for 1 ≤ j ≤ n, there are �n+1
2
�! �n+2

2
�!

solutions, and Algorithm X needs only about 4e − 1 ≈ 9.87 updates per solution.

Exercise 196 has the details.

103

From the Library of Melissa Nuno

ptg999

104 COMBINATORIAL SEARCHING 7.2.2.1

*Maintaining a decent focus. Some backtrack algorithms waste time by trying
to solve two or more loosely related problems at once. Consider, for example,
the 2DM problem with 7 items {0, 1, . . . , 6} and the following 13 options:

‘0 1’, ‘0 2’, ‘1 4’, ‘1 5’, ‘1 6’, ‘2 4’, ‘2 5’, ‘2 6’, ‘3 4’, ‘3 5’, ‘3 6’, ‘4 5’, ‘4 6’. (90)

Algorithm X, using its MRV heuristic, will branch on item 0, choosing either ‘0 1’
or ‘0 2’; then it will be faced with a three-way branch; and it will eventually con-
clude that there’s no solution, after implicitly traversing a 19-node search tree,

. (91)

We get an extreme example of bad focus if we take n independent copies of
problem (90), with 7n items {k0, k1, . . . , k6} and 13n options ‘k0 k1’, ‘k0 k2’,
. . . , ‘k4 k6’, for 0 ≤ k < n: The algorithm will begin with 2-way branches
on each of 00, 10, . . . , (n−1)0; then it will show that each of the 2n resulting
subproblems is unsolvable, making 3-way branches as it begins to study each
one. Its search tree, before giving up, will have 10 · 2n − 1 nodes. By contrast,
if we had somehow forced the algorithm to keep its attention on the very first
copy of (90) (the case k = 0), instead of using the MRV heuristic, it would have
concluded that there are no solutions after backtracking through only 19 nodes.

Similarly, the simple exact cover problem on items {0, 1, . . . , 5} with options
‘0 1’, ‘0 2’, ‘1 3 4’, ‘1 3 5’, ‘1 4 5’, ‘2 3 4’, ‘2 3 4 5’, ‘2 4 5’, ‘3 4’, ‘3 5’, ‘4 5’, (92)

has a search tree with 9 nodes, one of which is a solution:

. (93)

Taking n independent copies of (92) gives us an exact cover problem with a
unique solution, whose search tree via Algorithm X and MRV has 8 · 2n − 7
nodes. But if the algorithm had been able to focus on one problem at a time, it
would have discovered the solution with a search tree of only 8n+ 1 nodes.

From a practical standpoint, it must be admitted that the exponential
behavior of these badly focused toy examples is worrisome only when n is larger
than 30 or so, because 2n is not scary for modern computers when n is small.
Still, we can see that a well-focused approach can give significant advantages.
So it will be useful to understand how Algorithm X and its cousins behave in
general, when the input actually consists of two independent problems.

Let’s pause a minute to define the search tree precisely. Given an m × n
matrix A of 0s and 1s, the search tree T of its associated exact cover problem is
simply a solution node ‘ ’ when n = 0; otherwise T is

T1 T2 · · · Td
, d ≥ 0, (94)

104

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: MAINTAINING A DECENT FOCUS 105

where the item chosen for branching in step X3 has d options, and Tk is the
search tree for the reduced problem after the items of the kth option have been
removed. (With the MRV heuristic, d is the minimum length of all active item
lists, and we choose the leftmost item having this value of d.)

The exact cover problem that we get when trying to solve two independent
problems given by matrices A and A′ is the problem that corresponds to the
direct sum A⊕A′ (see Eq. 7–(40)). Therefore if T and T ′ are the corresponding
search trees, we will write T ⊕ T ′ for the search tree of A⊕ A′, under the MRV

heuristic. (That tree depends only on T and T ′, not on any other aspects of A
or A′.) If either T or T ′ is simply a solution node, the rule is simple:

T ⊕ = T ; ⊕ T ′ = T ′. (95)

Otherwise T and T ′ have the form (94), and we have

T ⊕ T ′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
T1 ⊕ T ′ T2 ⊕ T ′ · · · Td ⊕ T ′

, if d ≤ d′;

T ⊕ T ′1 T ⊕ T ′2 · · · T ⊕ T ′d′
, if d > d′.

(96)

Dear reader, please work exercise 202—which is very easy!—before reading
further. That exercise will help you to understand the definition of T ⊕ T ′; and
you’ll also see that every node of T ⊕ T ′ is associated with an ordered pair αα′,
where α and α′ are nodes of T and T ′, respectively. These ordered pairs are the
key to the structure of T ⊕ T ′: If α and α′ appear at levels l > 0 and l′ > 0
of their trees, so that they are reached from the roots by the respective paths
α0−−−α1−−− · · ·−−−αl = α and α′0−−−α′1−−− · · ·−−−α′l′ = α′, then the parent of
αα′ in T⊕T ′ is either αl−1α′ or αα′l′−1. Consequently every ancestor αk of α in T ,
for 0 ≤ k ≤ l, occurs in an ancestor αkα

′
k′ of αα

′ in T ⊕T ′, for some 0 ≤ k′ ≤ l′.
Let deg(α) be the number of children that node α has in a search tree, except

that we define deg(α) = ∞ when α is a solution node. (Equivalently, deg(α) is
the minimum length of an item list, taken over all active items in the subproblem
that corresponds to node α. If α is a solution, there are no active items, hence the
minimum is infinite.) Let’s call α a dominant node if its degree exceeds the degree
of all its proper ancestors. The root node is always dominant, and so is every
solution node. For example, (91) has three dominant nodes, and (93) has four.

In these terms, exercise 205 proves a significant fact about direct sums:

Lemma D. Every node of T ⊕ T ′ corresponds to an ordered pair αα′ of nodes
belonging to T and T ′. Either α or α′ is dominant in its tree, or both are.

Lemma D is good news, focuswise, because the search trees that arise in
practice tend to have comparatively few dominant nodes. In such cases the MRV

heuristic manages to keep the search reasonably well focused, because T ⊕ T ′

isn’t too large. For example, the search trees for Langford pairs, or for the n
queens problem, are “minimally dominant”: Only their root nodes and their
solutions dominate; elsewhere the branching degrees don’t reach new heights.

105

From the Library of Melissa Nuno

ptg999

106 COMBINATORIAL SEARCHING 7.2.2.1

Fig. 73. A 15× 15 square can be tiled with
Y pentominoes, by setting up an exact cover
problem with one item for each cell and one
option for each placement of a Y. (To elimi-
nate the 8-fold symmetry, only 5 of the 40 op-
tions for occupying the center cell were per-
mitted.) Algorithm X’s first solution, shown
here, was found by branching successively on
the possible ways to fill the cells marked 0, 1,
. . . , 9, a, . . . , z, A, . . . , I.

0 1 23

4 5 6

7

8

9

a

b

c

d

e

f

g

h i j

k

l

m

n

o

p

q

r

s t

u

v

w

x

y

z

A

B

C

D

E F

G

H

I

Let’s look now at a non-contrived example. Figure 73 illustrates a somewhat
surprising way to pack 45 Y pentominoes into a 15 × 15 square. [Such tilings
were first found in 1973 by J. Haselgrove, at a time when perfect Y-packings were
known only for rectangles whose area was even. Her program first ruled out all
rectangles of odd area less than 225, as well as the case 9×25, before discovering a
15×15 solution. See JRM 7 (1974), 229.] Notice that the first eight pentominoes
in Fig. 73, those marked 0 through 7, were placed in or next to the four corners—
thus flirting dangerously with the possibility that the algorithm might be trying
to solve four independent problems at once! Luckily, the subsequent choices
were able to gain and retain focus, because hard-to-fill cells almost always kept
popping up near the recent activity. A five-way branch was needed only when
placing the pentominoes marked 8, b, e, g, h, and C in the solution shown.

Focus can sometimes be improved by explicitly preferring some items to
others, based on their names; see the “sharp preference” heuristic of exercise 10.

Exercise 207 discusses another approach, an experimental modification of
Algorithm X, which attempts to improve focus in situations like Fig. 73 by
allowing a user to specify the importance of recent activity. The ideas are
interesting, but so far they haven’t led to any spectacular successes.

Exploiting local equivalence. A close look at Fig. 73 reveals another phe-
nomenon that is often present in exact cover problems: The tiles marked 8 and b,
near the upper right corner, form an ‘H’ shape, which could be reflected left-right
to yield another valid tiling. In fact there are three other such H’s in the picture;
therefore Fig. 73 actually represents 24 = 16 different solutions to the problem,
although those solutions are “locally” equivalent.

It turns out that the 15 × 15 tiling problem in Fig. 73 has exactly 212
mutually incongruent solutions, each of which can be rotated and/or reflected to
make a set of eight that are congruent to each other; and each of those solutions
contains at least two H’s. Algorithm X needs just 92 Gμ to find them all. But we
can do even better, because of H-equivalence: A slight extension to the options
of the exact cover problem will produce only the solutions for which every ‘H’
has just one of its two forms—and so does every ‘

H
’, namely every 90◦ rotation

of an ‘H’. (See exercise 208.) This modified problem has just 16 solutions, which
are obtained with only 26 Gμ of computation and compactly represent all 212.

106

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXPLOITING LOCAL EQUIVALENCE 107

In general, an exact cover might contain four distinct options α, β, α′, β′

for which α and β are disjoint, α′ and β′ are disjoint, and

α+ β = α′ + β′. (97)

(The ‘+’ sign here is like ‘∪’; it stands for addition of binary vectors, when
options are rows of a 0–1 matrix.) In such cases we say that (α, β;α′, β′) is a
bipair. Whenever (α, β;α′, β′) is a bipair, every solution that contains both α
and β leads to another solution that contains both α′ and β′, and vice versa.
Thus we can avoid considering half of all such solutions if we exclude one of those
alternatives. And it’s easy to do that: For example, to exclude all cases that
contain both α′ and β′, we simply introduce a new secondary item, and append
it to options α′ and β′.

To illustrate this idea, let’s apply it to the unsolvable toy problem (90).
That problem has many bipairs, but we’ll consider only two of them,

(‘0 1’, ‘2 4’; ‘0 2’, ‘1 4’) and (‘0 1’, ‘2 5’; ‘0 2’, ‘1 5’). (98)

To avoid solutions that contain both ‘0 1’ and ‘2 4’, as well as those that contain
both ‘0 2’ and ‘1 5’, we introduce secondary items A and B, and we extend four
of the options (90) to

‘0 1 A’, ‘0 2 B’, ‘1 5 B’, ‘2 4 A’. (99)

Then the search tree (91) reduces to

, (100)

and the former focusing problems disappear.
But wait, you say. Both of the bipairs in (98) involve the options ‘0 1’ and

‘0 2’. Why is it legal to prefer different halves of those overlapping bipairs? Isn’t
it possible that we might “paint ourselves into a corner,” if we allow ourselves
to make arbitrary decisions about each of several interrelated bipairs?

That’s a good question. Indeed, bad decisions can lead to trouble. Consider,
for example, the problem of perfect matching on the complete bipartite graph
K3,3, which can be coded as an X2C with the nine options ‘xX’ for x ∈ {x, y, z}
and X ∈ {X, Y, Z}. (The problem of perfect matching on Kn,n is equivalent to
finding the permutations of n elements; thus K3,3 has 3! = 6 perfect matchings.)

Every bipair (‘t u’, ‘v w’; ‘t w’, ‘u v’) in a perfect matching problem is
equivalent to a 4-cycle t −−− u −−− v −−− w −−− t in the given graph. And if we
disallow the right halves of the six bipairs

(‘x Y’, ‘y X’; ‘x X’, ‘y Y’)
(‘y Y’, ‘z X’; ‘y X’, ‘z Y’)
(‘z Y’, ‘x X’; ‘z X’, ‘x Y’)

(‘x Y’, ‘y Z’; ‘x Z’, ‘y Y’)
(‘y Y’, ‘z Z’; ‘y Z’, ‘z Y’)
(‘z Y’, ‘x Z’; ‘z Z’, ‘x Y’)

we obtain nine options that have no solution:

‘x X A’,
‘x Y C D’,
‘x Z E’,

‘y X B’,
‘y Y A E’,
‘y Z F’,

‘z X C’,
‘z Y B F’,
‘z Z D’.

(101)

107

From the Library of Melissa Nuno

ptg999

108 COMBINATORIAL SEARCHING 7.2.2.1

Fortunately, however, there’s always a safe and easy way to proceed. We can
assign an arbitrary (but fixed) ordering to the set of all options. Then, if for every
bipair (α, β;α′, β′) we always choose the half that contains min(α, β, α′, β′), the
choices will be consistent.

More precisely, we can express every bipair in the canonical form

(α, β;α′, β′) α < β, α < α′, and α′ < β′, (102)

with respect to any fixed ordering of the options. An exact covering is called
strong, with respect to a set of such canonical bipairs, if its options don’t include
both α′ and β′ for any bipair in that set.

Theorem S. If an exact cover problem has a solution, it has a strong solution.

Proof. Every solution Σ corresponds to a binary vector x = x1 . . . xM , where
xj = [option j is in Σ]. If Σ isn’t strong, with respect to a given set of canonical
bipairs, it violates at least one of those bipairs, say (α, β;α′, β′). Thus there are
indices j, k, j′, k′ with j < k, j < j′, and j′ < k′ such that α, β, α′, β′

are respectively the jth, kth, j′th, k′th options, and such that xj′ = xk′ = 1.
By (97), xj = xk = 0; and we obtain another solutionΣ′ by setting x′j ← x′k ← 1,
x′j′ ← x′k′ ← 0, otherwise x′i = xi. This vector x′ is lexicographically greater
than x; so we’ll eventually obtain a strong solution by repeating the process.

In particular, we’re allowed to exclude both ‘0 1’ and ‘2 4’, as well as both
‘0 2’ and ‘1 5’, with respect to the bipairs (98), because we can choose an ordering
in which options ‘1 4’ and ‘2 5’ precede the other options ‘0 1’, ‘0 2’, ‘1 5’, ‘2 4’.

Another convenient way to make consistent choices among related bipairs is
based on ordering the primary items, instead of the options. (See exercise 212).

It’s interesting to apply this theory to the problem of perfect matching in
the complete graph K2q+1. We showed in (87) above that Algorithm X needs a
long time—Ω(2qq!) mems—to discover that this problem has no solution. But
bipairs come to the rescue.

Indeed, K2q+1 has lots of bipairs, Θ(q
4) of them. A straightforward appli-

cation of Theorem S, using the natural order ‘0 1’ < ‘0 2’ < · · · < ‘(2q−1) 2q’ on
the

(
2q+1
2

)
options, solves the problem in Θ(q4) mems, by using just Θ(q3) of the

bipairs. And a more clever way to order the options allows us to solve it in only
Θ(q2) mems, using just Θ(q2) well-chosen bipairs. The search tree can in fact
be reduced to just 2q + 1 nodes—which is optimum! Exercise 215 explains all.

*Preprocessing the options. Sometimes the input to an XCC problem can
be greatly simplified, because we can eliminate many of its options and/or
items. The general idea of “preprocessing,” which transforms one combinatorial
problem into an equivalent but hopefully simpler one, is an important paradigm,
which is often called kernelization for reasons that we shall discuss later.

Algorithm P below is a case in point. It takes any sequence of items and op-
tions that would be acceptable to Algorithm X or to Algorithm C, and produces
another such sequence with the same number of solutions. Any solution of the
new problem can in fact be converted to a solution of the original one, if desired.

108

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: PREPROCESSING THE OPTIONS 109

The algorithm is based entirely on two general principles, used repeatedly
until they no longer apply:

• An option can be removed if it blocks all uses of some primary item.

• An item can be removed if some primary item always forces it to appear.

More precisely, let o be a generic option ‘i1 i2[:c2] . . . it[:ct]’, where i1 is primary
and the other t − 1 items might have color controls. When Algorithm C deals
with option o, it covers i1 in step C4 and commits the other items in step C5,
thereby removing all options that aren’t compatible with o. If this process causes
some primary item p to lose its last remaining option, we say that p is “blocked”
by o. In such a case o is useless, and we can remove it. For example, ‘d e g’ can be
removed from (6), because it blocks a; ‘1 s4 s6’ can be removed from (17), because
it blocks s3; then ‘1 s1 s3’ and ‘2 s2 s5’ also go away, because they block s4.

That was the first principle mentioned above, the one that removes options.
The item-removing principle is similar, but more dramatic when it applies: Let p
be a primary item, and suppose that p’s options all contain an uncolored instance
of some other item, i. In such a case we say that p “forces” i; and we can remove
item i, because p must be covered in every solution and it carries i along. For
example, a forces d in (6). Hence we can remove item d, shortening the second
and fourth options to just ‘a g’ and ‘a f ’.

These two principles, blocking and forcing, are by no means a complete
catalog of transformations that could be used to preprocess exact cover problems.
For example, they are incapable of discovering the fact that (38) is a useless
option in the pentomino problem, nor do they discover the simplifications that
we deduced by factoring the Soma cube problem. (See the discussion before (46).)
Exercise 219 discusses yet another way to discard superfluous options.

A “perfect” and “complete” preprocessor would in fact be able to recognize
any problem that has at most one solution. We can’t hope to achieve that, so
we’ve got to stop somewhere. We shall limit ourselves to the removal of blocking
and forcing, because those transformations can be done in polynomial time, and
because no other easily recognizable simplifications are apparent.

Algorithm P discovers all such simplifications by systematically traversing
the given items and options, using the same data structures that were enjoyed by
Algorithm C. It cycles through all items i, trying first to remove i by studying
what happens when i is covered. If that fails, it studies what happens when the
items of options that begin with i are committed. It needs some small variations
of the former ‘cover’ and ‘hide’ operations (compare with (12)–(15), (50)–(53)):

cover′′(i) =

{
Set p← DLINK(i). While p �= i,
hide′′(i) unless COLOR(p) �= 0,
then set p← DLINK(p) and repeat.

(103)

hide′′(p) =

{
Do operation hide(p); but also set S ← x,
whenever LEN(x) has been set to 0 and x ≤ N1.

(104)

uncover′′(i) =

{
Set p← ULINK(i). While p �= i,
unhide(i) unless COLOR(p) �= 0,
then set p← ULINK(p) and repeat.

(105)

109

From the Library of Melissa Nuno

ptg999

110 COMBINATORIAL SEARCHING 7.2.2.1

Algorithm P (Preprocessing for exact covering). This algorithm reduces a
given XCC problem until no instances of blocking or forcing are present. It uses
the data structures of Algorithm C, together with new global variables C and S.

P1. [Initialize.] Set the problem up in memory, as in step C1 of Algorithm C.
(Again there are N items, of which N1 are primary.) Also set C ← 1. If
there’s an item i ≤ N1 with LEN(i) = 0, go to P9.

P2. [Begin a round.] If C = 0, go to P10. Otherwise set C ← 0, i← 1.

P3. [Is item i active?] If i = N , return to P2. Otherwise if LEN(i) = 0, go to P8.

P4. [Cover i.] Set S ← 0. Use (103) to cover item i. Then go to P7 if S �= 0;
otherwise set x← DLINK(i).

P5. [Try x.] If x isn’t the leftmost remaining node of its option, go to P6.
Otherwise use the method of exercise 220 to test whether this option blocks
some primary item. If so, set C ← 1, TOP(x)← S, and S ← x.

P6. [Try again.] Set x ← DLINK(x), and return to P5 if x �= i. Otherwise
uncover item i using (105); use the method of exercise 221 to delete all
options that were stacked in step P5; and go to P8.

P7. [Remove item i.] Uncover item i (which is forced by the primary item S).
Then use the method of exercise 222 to delete or shorten every option that
uses item i. Finally, set C ← 1, DLINK(i)← ULINK(i)← i, LEN(i)← 0.

P8. [Loop on i.] Set i← i+ 1 and return to P3.

P9. [Collapse.] Set N ← 1 and delete all options. (The problem is unsolvable.)

P10. [Finish.] Output the reduced problem, whose items are those for which
LEN(i) > 0 or i = N = 1, and terminate. (See exercise 223.)

How effective is Algorithm P? Well, sometimes it spins its wheels and
finds absolutely nothing to simplify. For example, the options (16) for n Langford
pairs contain no instances of blocking or forcing when n > 5. Neither do the
options for the n queens problem when n > 3. There’s no “excess fat” in those
specifications. In MacMahon’s triangle problem (exercise 126), Algorithm P
needs just 20 megamems to remove 576 of the 1537 options; but the options that
it removes don’t really matter, because Algorithm C traverses exactly the same
search tree, with or without them.

We do gain 10% when we try to pack pentominoes into a 6×10 box (exercise
271): Without preprocessing, Algorithm X needs 4.11 Gμ to discover all 2339
solutions to that classic task. But Algorithm P needs just 0.19 Gμ to remove 235
of the 2032 options, after which Algorithm X finds the same 2339 solutions in
3.52 Gμ; so the total time has been reduced to 3.71 Gμ. The similar problem of
packing the one-sided pentominoes into a 6× 15 box has an even bigger payoff:
It has 3308 options without preprocessing, and 15.5 Tμ are needed to process
them. But after preprocessing—which costs a mere 260 Mμ—there are 3157
options, and the running time has decreased to 13.1 Tμ.

The simplifications discovered by Algorithm P for those pentomino problems
involve only blocking (see exercise 225). But more subtle reductions occur in the

110

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: MINIMUM-COST SOLUTIONS 111

Y pentomino problem of Fig. 73. For example, cell 20 is forced by cell 10, in
that problem; and in round 2, cell 00 is forced by cell 22. In round 4, cell 61 is
blocked by the option ‘50 51 52 53 62’—a surprising discovery! Unfortunately,
however, those clever reductions have little effect on the overall running time.

Preprocessing really shines on the problem of exercise 114, which asks for
all sudoku solutions that are self-equivalent when reflected about their main
diagonal. In this case Algorithm P is presented with 5410 options that involve
intricate color controls, on 585 primary items and 90 secondary items. It rapidly
reduces them to just 2426 options, on 506 primaries and 90 secondaries; and
Algorithm C needs only 287 Gμ to process the reduced options and to discover
the 30,286,432 solutions. That’s 7.5 times faster than the 2162 Gμ it would have
needed without reduction.

Thus, preprocessing is a mixed bag. It might win big, or it might be a waste
of time. We can hedge our bets by allocating a fixed budget— for instance by
deciding that Algorithm P will be allowed to run at most a minute or so. Its
data structures are in a “safe” state at the beginning of step P3; therefore we
can jump from there directly to step P10 if we don’t want to run to completion.

Of course, preprocessing can also be applied to the subproblems that arise
in the midst of a longer computation. A careful balancing of different strategies
might be the key to solving problems that are especially tough.

Minimum-cost solutions. Many of the exact cover problems that we’ve been
studying have few solutions, if any. In such cases our joy is to discover the
rare gems. But in many other cases the problems have solutions galore; and for
such problems we’ve focused our attention so far on the task of minimizing the
amount of time per solution, assuming that all of the solutions are interesting.

A new perspective arises when each option of our problem has been assigned
a nonnegative cost. Then it becomes natural to seek solutions of minimum cost.
And ideally we’d like to do this without examining very many of the high-cost so-
lutions at all; they’re basically useless, but a low-cost solution might be priceless.

Fortunately there’s a reasonably simple way to modify our algorithms, so
that they will indeed find minimum-cost solutions rather quickly. But before we
look at the details of those modifications, it will be helpful to look at several
examples of what is possible.

Consider, for instance, the problem of Langford pairs from this point of
view. We observed near the very beginning of Chapter 7 that there are 2L16 =
653,443,600 ways to place the 32 numbers {1, 1, 2, 2, . . . , 16, 16} into an array
a1a2 . . . a32 so that exactly i entries lie between the two occurrences of i, for
1 ≤ i ≤ 16. And we claimed that the pairing displayed in 7–(3), namely

2 3 4 2 1 3 1 4 16 13 15 5 14 7 9 6 11 5 12 10 8 7 6 13 9 16 15 14 11 8 10 12, (106)

is one of 12,016 solutions that maximize the sum Σ1 =
∑32

k=1 kak. Consequently
the reverse of that pairing, namely

12 10 8 11 14 15 16 9 13 6 7 8 10 12 5 11 6 9 7 14 5 15 13 16 4 1 3 1 2 4 3 2, (107)

111

From the Library of Melissa Nuno

ptg999

112 COMBINATORIAL SEARCHING 7.2.2.1

is one of 12,016 solutions that minimize Σ1. We noted in (16) above that Lang-
ford pairs are the solutions to a simple exact cover problem, whose options ‘i sj sk’
represent the assignments aj = i and ak = i. Therefore, if we associate the cost
$(ji+ ki) with option ‘i sj sk’, the minimum-cost solutions will be precisely the
Langford pairings that minimize Σ1. (See exercise 226.)

One way to minimize the total cost is, of course, to visit all solutions and to
compute the individual sums. But there’s a better way: The min-cost variant
of Algorithm X below, which we shall call Algorithm X$, finds a solution of
cost $3708 and proves its minimality after only 60 gigamems of computation.
That’s more than 36 times faster than the use of plain vanilla Algorithm X,
which needs 2.2 teramems to run through the full set of solutions.

Moreover, Algorithm X$ doesn’t stop there. It actually will compute the K
solutions of least cost, for any given value of K. For example, if we take K =
12500, it needs just 70 gigamems to discover the 12,016 solutions of cost $3708,
together with 484 solutions of the next-lowest cost (which happens to be $3720).

The news is even better when we try to minimize Σ2 =
∑32

k=1 k
2ak instead of

Σ1. AlgorithmX$ needs just 28 Gμ to prove that the minimumΣ2 is $68880. And
better yet is the fact, obtained in only 10 Gμ, that the minimum of

∑32
k=1 ka

2
k

is $37552, obtainable uniquely by the remarkable pairing

16 14 15 9 6 13 5 7 12 10 11 6 5 9 8 7 14 16 15 13 10 12 11 8 4 1 3 1 2 4 3 2, (108)

which also happens to minimize both Σ1 and Σ2! (See exercise 229.)

Another classic combinatorial task, the 16 queens problem, provides another
instructive example. We know from previous discussions that there are exactly
14,772,512 ways to place 16 nonattacking queens on a 16 × 16 board. We also
know that Algorithm X needs about 40 Gμ of computation to visit them all,
when we give it options like (23).

Let’s suppose that the cost of placing a queen in cell (i, j) is the distance

from that cell to the center of the board. (If we number the rows and columns
from 1 to 16, that distance d(i, j) is

√
(i− 17/2)2 + (j − 17/2)2; it varies from

d(8, 8) = 1/
√
2 to d(1, 1) = 15/

√
2.) Thus we want to concentrate the queens

near the center as much as possible, although many of themmust lie at or near the
edges because there must be one queen in each row and one queen in each column.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(a)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(b)

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

(c)

Fig. 74. Optimum solutions to the 16 queens problem, placing them
(a) as close as possible to the center, or (b, c) as far as possible from it.

112

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: MINIMUM-COST SOLUTIONS 113

Figure 74(a) shows how to minimize the total cost—and this answer actually
turns out to be unique, except for rotation and reflection. Similarly, Figs. 74(b)
and 74(c) show the placements that maximize the cost. (Curiously, those solu-
tions are obtainable from each other by reflecting the middle eight rows, without
changing the top four or the bottom four.) Algorithm X$, with K = 9, discovers
and proves the optimality of those placements in just (a) 3.7 Gμ; (b, c) 0.8 Gμ.

The modifications that convert Algorithm X to Algorithm X$ also convert
Algorithm C into Algorithm C$. Therefore we can find minimum-cost solutions
to XCC problems, which go well beyond ordinary exact cover problems.

For example, here’s a toy problem that now becomes tractable: Put ten

different 5-digit prime numbers into the rows and columns of a 5 × 5 array, in

such a way that their product is as small as possible. (A 5-digit prime number
is one of the 8363 primes between 10007 and 99991, inclusive.) One such “prime
square,” made up entirely of primes that are less than 30000, is⎡⎢⎢⎣

2 1 2 1 1
2 0 1 0 1
1 1 0 0 3
1 1 0 6 9
1 1 1 1 3

⎤⎥⎥⎦ . (109)

To set this up as an XCC problem, introduce ten primary items {a1, a2, a3,
a4, a5} and {d1, d2, d3, d4, d5} that represent “across” and “down,” together with
25 secondary items ij for 1 ≤ i, j ≤ 5 that represent cells of the array, together
with 8363 additional secondary items p1p2p3p4p5, one for eligible prime p =
p1p2p3p4p5. The options for placing p in row i or column j are then

‘ai i1:p1 i2:p2 i3:p3 i4:p4 i5:p5 p1p2p3p4p5’;
‘dj 1j:p1 2j:p2 3j:p3 4j:p4 5j:p5 p1p2p3p4p5’.

(110)

For example, ‘a4 41:1 42:1 43:0 44:6 45:9 11069’ enables the prime 11069 in (109).

This is a good example where preprocessing is helpful, because the primes
that are usable in a1 and d1 must not contain a 0; furthermore, the primes that
are usable in a5 and d5 must contain only the digits {1, 3, 7, 9}. Algorithm P
discovers those facts on its own, without being told anything special about
number theory. It reduces the 83630 options of (110) to only 62900; and those
reductions provide useful clues for the choices of items on which to branch.

The Monte Carlo estimate of exercise 86 tells us that there are roughly
6× 1014 different ways to fit ten primes into a 5× 5 array—a vast number. We
probably don’t need to look at too many of those possibilities, yet it isn’t easy
to decide which of them can safely be left unexamined.

To minimize the product of the primes, we assign the cost $(ln p) to each of
the options in (110). (This works because the logarithm of a product is the sum
of the logarithms of the factors.) More precisely, we use the cost $�C ln p�, where
C is large enough to make truncation errors negligible, but not large enough to
cause arithmetic overflow, because Algorithm C$ wants all costs to be integers.

Every solution has the same cost as its transpose. Thus we can get the best
five prime squares by asking Algorithm C$ to compute the K = 10 least-cost

113

From the Library of Melissa Nuno

ptg999

114 COMBINATORIAL SEARCHING 7.2.2.1

solutions, each of which occurs twice. Here they are, with the best at the left:⎡⎢⎢⎣
1 1 1 1 3
1 0 1 0 3
1 1 0 0 3
3 1 7 6 9
1 1 1 7 1

⎤⎥⎥⎦
⎡⎢⎢⎣
1 1 1 1 3
1 0 1 0 3
1 1 0 0 3
3 1 7 7 1
1 1 1 9 7

⎤⎥⎥⎦
⎡⎢⎢⎣
1 1 1 1 3
1 0 0 0 7
1 1 0 0 3
3 1 6 9 9
1 1 1 1 7

⎤⎥⎥⎦
⎡⎢⎢⎣
1 1 1 1 3
1 0 0 0 7
1 1 0 0 3
3 1 6 6 3
1 1 1 7 7

⎤⎥⎥⎦
⎡⎢⎢⎣
1 1 1 1 3
1 0 0 0 7
1 1 0 0 3
3 1 6 6 3
1 1 1 9 7

⎤⎥⎥⎦. (111)

The running time, 440 Gμ, would have been 1270 Gμ without preprocessing; so
the 280 Gμ spent in preprocessing paid off. But the five greatest-cost solutions,⎡⎢⎢⎣

9 9 9 8 9
8 8 9 9 7
9 8 6 8 9
9 9 7 9 3
9 9 9 9 1

⎤⎥⎥⎦
⎡⎢⎢⎣
9 9 9 8 9
8 9 8 9 9
9 6 7 9 9
9 8 7 3 7
9 9 9 9 1

⎤⎥⎥⎦
⎡⎢⎢⎣
9 9 9 8 9
8 8 9 9 7
9 8 8 9 7
9 9 5 7 1
9 9 9 7 1

⎤⎥⎥⎦
⎡⎢⎢⎣
9 9 9 8 9
8 8 9 9 7
9 8 8 9 7
9 9 5 8 1
9 9 9 9 1

⎤⎥⎥⎦
⎡⎢⎢⎣
9 9 9 8 9
8 8 9 9 7
9 8 8 9 7
9 9 5 7 7
9 9 9 7 1

⎤⎥⎥⎦ (112)

(greatest at the right), can be found in just 22 Gμ, without preprocessing.

Let’s turn now from purely mathematical problems to some “organic” sce-
narios that are more typical of the real world. The USA’s 48 contiguous states

AL

AZ AR

CA CO

CT

DE

FL

GA

ID IL INIA

KS KY

LA

ME

MD

MAMIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

(113)

define an interesting planar graph that has already supplied us with a variety of
instructive examples. This graph G has 48 vertices and 105 edges. Suppose we
want to partition it into eight connected subgraphs of six vertices each. What’s
the minimum number of edges whose removal will do that?

Well, exercise 7.2.2–76 has told us how to list all of the connected subsets of
six states, and there happen to be 11505 of them. That gives us 11505 options for
an exact cover problem on 48 items, whose solutions are precisely the potential
partitions of interest. The total number of solutions turns out to be 4,536,539;
and Algorithm X is able to visit them all, at a cost of 807 gigamems.

But let’s try to do better, using Algorithm X$. Every induced subgraph G|U
has an exterior cost, which is the number of edges from U to vertices not in U .
When we partition a graph by removing edges, every such edge contributes to the
exterior cost of two of the components that remain; hence the number of removed
edges is exactly half the sum of the exterior costs. The best partition therefore
corresponds to the minimum-cost solution to our exact cover problem, if we
assign the exterior costs to each option. For example, one of the 11505 options is

‘ND SD NE KS OK TX’, (114)

and we assign a cost of $19 to that option.
Algorithm X$ now obligingly finds, in just 3.2 gigamems, that the optimum

solution costs $72. Hence we get the desired partition by removing only 36 edges.

114

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: MINIMUM-COST SOLUTIONS 115

Before we look at the answer, let’s stare at the problem a bit longer, because
we still haven’t discovered the best way to solve it! A closer examination
shows that option (114) is useless, because it could never actually appear in
any solution: It cuts the graph into two pieces, with 11 states to the left and
31 states to the right. (We encountered a similar situation earlier in (38).) In
fact, 4961 of the 11505 options turn out to be unusable, for essentially the same
reason. The state of Maine (ME), for example, belongs to 25 connected subgraphs
of order 6; but we can easily see that the only way to get ME into the final partition
is to group it with the other five states of New England (NH, VT, MA, CT, RI).
Exercise 242 explains how to detect and reject the useless options quickly.

The remaining problem, which has 6544 options, is solved by Algorithm X
in 327 Gμ and by Algorithm X$ in just 1046 Mμ.

Essentially the same methods will partition the graph nicely into six con-
nected clusters of order eight. This time the exact cover problem has 40520
options after reduction, and a total of 4,177,616 solutions. But Algorithm X$

needs less than 2 Gμ to determine the minimum cost, which is $54.
Here are examples of the optimum partitions found, 8× 6 and 6× 8:

AL

AZ AR

CA CO

CT

DE

FL

GA

ID IL INIA

KS KY

LA

ME

MD

MAMIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

AL

AZ AR

CA CO

CT

DE

FL

GA

ID IL INIA

KS KY

LA

ME

MD

MAMIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

(115)

In each case the optimum can actually be achieved in two ways: On the left, one
could swap the affiliations of VA and WV; on the right, a more complicated cyclic
shuffle (MI NE LA VA) could be used.

It’s also instructive to solve a different kind of problem, namely to use census
data and to partition G based on the population of each state. For example, let’s
try to find eight connected clusters that each contain nearly the same number
of people. The total population, P , of the 48 states was officially 306084180 in
2010. We want each cluster to represent P/8 people, or as close to P/8 as we
can get. That’s about 38 million people per cluster.

The algorithm of exercise 242 will find and reduce all connected subgraphs
whose total population x satisfies L ≤ x < U , for any given bounds L and U . If
we take L > �P/9� (which is about 34 million) and U ≤ �P/7� (which is about
44 million), those candidate subgraphs will define an exact cover problem for
which every solution uses exactly eight options, because 9x > P and 7x < P .

That algorithm proves that G contains 1,926,811 connected sets of states
whose population lies in [34009354 . . 43726312); and it prunes away 1,571,057 of
them, leaving 355,754. But that’s overkill. This problem has enough flexibility
that its final solution can be expected to contain only sets whose population is
quite close to 38 million. Therefore we might as well restrict ourselves to the
range [37000000 . . 39000000) instead. There are 34,111 such options; surely they
should be enough to solve our problem.

115

From the Library of Melissa Nuno

ptg999

116 COMBINATORIAL SEARCHING 7.2.2.1

Well, that’s very plausible, but unfortunately it doesn’t work: Those 34,111
options have no solution, because Algorithm X can’t use them to cover NY (New
York)! Notice that NY is an articulation point of G. The population of New
York is about 19.4 million, and the combined population of the six New England
states is about 14.3 million. Whatever option covers New York had better cover
all of New England too, otherwise New England is stranded. So that makes
19.4 + 14.3 = 33.7 million people. New York’s only other neighbors are New
Jersey (8.8 million) and Pennsylvania (12.7 million); adding either of them will
put us over 42 million.

So we’re clearly not going to be able to cover New York with a cluster that’s
close to the desired 38 million. We’ll either need a lightweight one (New York
plus New England) or a heavyweight one (with New Jersey too). Let’s throw
those two options in with the other 34,111.

Notice that this problem is quite different from the others we’ve been dis-
cussing, because its options vary greatly in size. One of the options contains just
one state, CA (California), whose population is the largest (37.3 million); others
contain up to fifteen states, almost spanning the continent from DE to NV.

Now we assign the cost $(x2) to each option with population x, because the
minimum-cost solutions will then minimize the squared deviations (x1−P/8)2+
· · ·+ (x8 − P/8)2. (See exercise 243.) This works well; and Algorithm X$ needs
only 3.3 gigamems to find the optimum solution below. The seven options not
involving New York all contain between 37.3 and 38.1 million people.

A similar analysis, partitioning into six equipopulated clusters instead of
eight, gives in 1.1 Gμ a minimum-cost solution whose six populations are all in
the range [50650000 . . 51150000]. Both solutions are illustrated here, with the
area of each vertex proportional to its population:

(116)

In both cases the solution is unique. (And in both cases, let’s face it, the solution
is also pretty weird. Partitions like this could only be concocted by a computer.
Exercise 246 discusses approximate solutions that are less eccentric.)

*Implementing the min-cost cutoffs. OK, we’ve now seen lots of reasons why
Algorithms X$ and C$ are desirable. But how exactly can we obtain those algo-
rithms by extending Algorithm X and C? It will suffice to describe Algorithm C$.

The mission of Algorithm C$ is to find the K min-cost solutions. More
precisely, it should discover K solutions whose total cost is as small as possible,
with the understanding that different solutions might have the same cost. Let’s
imagine, for example, a problem that has exactly ten solutions, and that their
costs are $3, $1, $4, $1, $5, $9, $2, $6, $5, $3, in the order that Algorithm C would

116

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: IMPLEMENTING THE MIN-COST CUTOFFS 117

discover them. Algorithm C$ won’t differ from Algorithm C until it has found K
solutions, because those K might turn out to be the best. After K are known,
however, it will be harder to please: It will accept a new solution only if that so-
lution is better than one of the best K it knows. Thus ifK = 3, say, the accepted
solutions will have costs $3, $1, $4, $1, $2; Algorithm C$ won’t find the other five.

To implement that behavior, we maintain a BEST table, which contains the
K least costs known so far. That table is “heap ordered,” with

BEST[�j/2�] ≥ BEST[j] for 1 ≤ �j/2� < j ≤ K (117)

(see Eq. 5.2.3–(3)). In particular, BEST[1] will be the greatest of the least K
costs, and we call it the cutoff value, T . Algorithm C$ will reject any solution
whose cost is T or more. Initially, BEST[j] =∞ for 1 ≤ j ≤ K; then every new
solution of cost c < T will be “sifted” into the BEST table as in Algorithm 5.2.3H.
The successive cutoff values in the example above, if K = 3, would therefore be
∞, ∞, 4, 3, 3, 3, 2, 2, 2, 2. If K = 4 they’d be ∞, ∞, ∞, 4, 4, 4, 3, 3, 3, 3.

Algorithm C$ adds a COST field to every node, thereby making each node
64 bits larger than before. Step C1$ stores the cost of every option, assumed to
be a nonnegative integer, in each node belonging to that option.

The costs in every list of options created by step C1$ are ordered, so that

COST(x) ≤ COST(y) if y = DLINK(x), (118)

whenever neither x nor y is a header node. Therefore, if p is primary and belongs
to t options, we have COST(x1) ≤ COST(x2) ≤ · · · ≤ COST(xt), where x1 =
DLINK(p), xj+1 = DLINK(xj) for 1 ≤ j < t, and p = DLINK(xt). This fact will
allow us to ignore options that are too expensive to be part of a min-cost solution.

For this purpose we generalize the basic operations of covering, purifying,
uncovering, and unpurifying (see (50)–(57)), by including a threshold parame-
ter ϑ: Their loops in Algorithm C$ now say ‘While q �= i and COST(q) < ϑ’
instead of simply ‘While q �= i’. We also change the uncovering and unpurifying
operations, so that they now go downward using DLINKs instead of upward using
ULINKs. Furthermore, we make the unhiding operation of (15) go from left to
right, with q increasing, just as hiding does in (13). (These conventions clearly
flout the rules by which we established the validity of dancing links in the first
place! But we’re lucky, because they’re justified by the theory in exercise 2.)

At level l of the search, Algorithm C$ has constructed a partial solution,
consisting of l options represented by nodes x0 . . . xl−1. Let Cl be their total
cost. In step C4$ we set xl ← DLINK(i), then cover item i using the threshold
value ϑ0 = T−Cl−COST(xl). (Item i will have been chosen so that ϑ0 > 0.) The
covering process will now proceed faster than before, if ϑ0 is fairly low, because
it won’t bother to hide options that could not be in an accepted solution. We
need to remember the value of ϑ0, so that exactly the same threshold will be
used when backtracking; therefore step C4$ sets TH0[l]← ϑ0, and step C7$ uses
TH0[l] as the threshold for uncovering item i, where TH0 is an auxiliary array.

The cutoff value T decreases as computation proceeds. Therefore the thresh-
old ϑ = T −Cl − COST(xl) used in step C5$ for covering and purification might

117

From the Library of Melissa Nuno

ptg999

118 COMBINATORIAL SEARCHING 7.2.2.1

be different each time. Step C5$ should go directly to C7$ if ϑ ≤ 0. Otherwise
it sets TH[l] ← ϑ in that step, and uses TH[l] for undoing in step C6$, where
TH is another auxiliary array.

Step C3$, which chooses the item on which to branch at level l, is of course
crucially important. If some primary item i has no options, or if the cost of its
least expensive option is so high that it can’t lead to a solution better than we’ve
already found, step C3$ should jump immediately to step C8$. Otherwise, many
strategies are worthy of investigation, and there’s room here to discuss only the
method that was used in the author’s experiments: Good results were obtained
by choosing an i with the fewest not-too-costly options, as in the MRV heuristic.
In case of ties, the author’s implementation chose an i whose least expensive
option cost the most. (That item must be covered sooner or later, so there’s no
way to avoid paying that much. We probably have a better chance of reaching a
cutoff quickly if we maximize our chances of failure.) Exercise 248 has full details.

Many applications of Algorithm C$ have special features that allow us to
prune unproductive branches from the search tree long before they would be cut
off by the methods discussed so far. For example, every option in our “square
of primes” problem has exactly one primary item (see (110)). In such cases, we
know that every solution obtained by extending x0 . . . xl−1 must cost at least

Cl + COST(DLINK(i1))+ · · ·+ COST(DLINK(it)), (119)

because of (118), where i1, . . . , it are the primary items still active. If this total
is T or more, step C3$ can proceed immediately to step C8$.

Similarly, in the n queens problem, every option has exactly two primary
items, one of the form Ri and one of the form Cj . The active items i1, . . . , it must
therefore contain t/2 of each. Let CR and CC be

∑
COST(DLINK(ij)), summed

over those types. If either Cl+CR or Cl+CC is ≥ T , step C3$ can jump to C8$.
In our first problem for the contiguous USA, every option has exactly 6

items. (See (114).) Hence the number of active items, t, is always a multiple
of 6. Exercise 249 presents a nice algorithm to find the least possible cost of t/6
future options; step C3$ of Algorithm C$ uses that method to find early cutoffs.

The Langford pair problem has options with three items, one of which is a
digit. The pentomino problems have options with six items, one of which is a
piece name. In both cases, Algorithm C$ can obtain suitable lower bounds for
early cutoffs by combining the strategies already mentioned. (See exercise 250.)

Finally, Algorithm C$ uses one other important technique: It gains traction
by preprocessing the costs. Notice that if p is a primary item, and if the cost

of every option that includes p is c or more, we could decrease the cost of all

those options by c, without changing the set of min-cost solutions. That’s true
because p is going to appear exactly once in every solution. We can think of c
as an unavoidable tax or “cover charge,” which must be paid “up front.”

In general there are many ways to preprocess the costs without changing the
underlying problem. Properly transformed costs can help the algorithm’s heuris-
tics to make much more intelligent choices. Exercise 247 discusses the simple
method that was used for step C1$ in the author’s experiments discussed earlier.

118

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: DANCING WITH ZDDS 119

*Dancing with ZDDs. The solutions visited by Algorithm X in step X2 can be
represented naturally in the form of a decision tree, as we discussed in Section
7.1.4. For example, here’s a decision tree for the solutions to the problem of
covering the eight cells of a 3 × 3 board with four dominoes, after the corner
cell 22 has been removed:

20 21

02 12

10 11

11 21

02 12

10 20

00 01

11 12

01 02

01 11

00 10

⊥
⊥ �

⊥ ⊥

∗
(120)

This diagram uses the standard ZDD conventions: Every branch node names an
option. A solid line means that the option is taken, while a broken line means
that it is not. The terminal nodes ⊥ and � represent failure and success. This
problem has four solutions, corresponding to the four paths from the root to �.

We learned in Section 7.1.4 that ZDDs can readily be manipulated, and
that a small ZDD can sometimes characterize a large family of solutions. If
we’re lucky, we can save a huge amount of time and energy by simply generating
an appropriate ZDD instead of visiting the solutions one by one.

Such economies arise when the same subproblem occurs repeatedly. For
example, two branches come together in (120) at the node marked ‘∗’; this
happens because the problem that remains after placing two dominoes ‘00 10’
and ‘01 11’ is the same as the residual problem after placing ‘00 01’ and ‘10 11’.
“We’ve been there and done that.” Hence we needn’t recapitulate our former
actions, if we’ve already built a subZDD to remember what we did. (Those two
pairs of domino placements form a “bipair,” as discussed earlier; but the ZDD
idea is considerably more general and powerful.)

Let’s look more closely at the underlying details. The exact cover problem
solved by (120) has eight items 00, 01, 10, 02, 11, 20, 12, 21, representing cells to
be covered; and it has the following ten options, representing domino placements:

1: 00 01

2: 00 10

3: 01 02

4: 01 11

5: 02 12

6: 10 11

7: 10 20

8: 11 12

9: 11 21

10: 20 21
(121)

The ZDD (120) is internally represented as a sequence of branching instructions,

I12 = (2̄? 8: 11),

I11 = (4̄? 10: 3),

I10 = (3̄? 0: 9),

I9 = (8̄? 0: 2),

I8 = (1̄? 0: 7),

I7 = (7̄? 4: 6),

I6 = (5̄? 0: 5),

I5 = (9̄? 0: 1),

I4 = (6̄? 0: 3),

I3 = (5̄? 0: 2),

I2 = (10? 0: 1),
(122)

where 0 and 1 stand for ⊥ and �. (See, for instance, 7.1.4–(8).) “If we don’t take
option 2, go to instruction 8; but if we do take it, continue with instruction 11.”

119

From the Library of Melissa Nuno

ptg999

120 COMBINATORIAL SEARCHING 7.2.2.1

A few modifications to Algorithm X will transform it from a solution-visiting
method into a constructor of ZDDs. In fact, color controls can be handled too:

Algorithm Z (Dancing with ZDDs). Given an XCC problem as in Algorithm C,
this algorithm outputs a free ZDD for the sets of options that satisfy it. The
ZDD instructions {I2, . . . , Is} have the form (ōj? lj : hj) illustrated in (122), and
Is is the root. (But if the problem has no solutions, the algorithm terminates
with s = 1, and the root is 0.) The data structures of Algorithm C are extended
by a “memo cache” consisting of signatures S[j] and ZDD pointers Z[j]. Algo-
rithm C’s table of choices x0x1 . . . is joined by two new auxiliary tables m0m1 . . .
and z0z1 . . ., indexed by the current level l.

Z1. [Initialize.] Set the problem up in memory, as in step C1 of Algorithm C.
Also set N to the number of items, Z to the last spacer address, l ← 0,
S[0]← 0, Z[0]← 1, m← 1, s← 1.

Z2. [Enter level l.] Form a “signature” σ that characterizes the current subprob-
lem (see below). If σ = S[t] for some t (this is a “cache hit”), set ζ ← Z[t]
and go to Z8. Otherwise set S[m]← σ, ml ← m, zl ← 0, and m← m+ 1.

Z3. [Choose i.] At this point items i1, . . . , it still need to be covered, as in
step C3 of Algorithm C. Choose one of them, and call it i.

Z4. [Cover i.] Cover item i using (12), and set xl ← DLINK(i).

Z5. [Try xl.] If xl = i, go to Z7. Otherwise set p← xl + 1, and do the following
while p �= xl: Set j ← TOP(p); if j ≤ 0, set p ← ULINK(p); otherwise
commit(p, j) and set p← p+ 1. Set l← l + 1 and return to Z2.

Z6. [Try again.] Set p ← xl − 1, and do the following while p �= xl: Set j ←
TOP(p); if j ≤ 0, set o←1−j and p← DLINK(p); otherwise uncommit(p, j)
and set p ← p − 1. If ζ �= 0, set s ← s + 1, output Is = (ō? zl: ζ), and set
zl ← s. Set i← TOP(xl), xl ← DLINK(xl), and return to Z5.

Z7. [Backtrack.] Uncover item i using (14). Then set Z[ml]← zl and ζ ← zl.

Z8. [Leave level l.] Terminate if l = 0. Otherwise set l← l− 1 and go to Z6.

Important: The ‘commit’ and ‘uncommit’ operations in steps Z5 and Z6 should
modify (54)–(57), by calling cover(j), hide(q), uncover(j), and unhide(q) in-
stead of cover′(j), hide′(q), uncover′(j), and unhide′(q). These changes cause
every step of Algorithm Z to be slightly different from the corresponding step of
Algorithm C. (Yet only step Z2 has changed substantially.)

Exercise 253 shows that a few more changes will make Algorithm Z compute
the total number of solutions, instead of (or in addition to) outputting a ZDD.

The keys to Algorithm Z’s success are the signatures computed in step Z2.
This computation is easy if there are no secondary items: The signature σ is then
simply a bit vector of length N , containing 1 in every position i where item i is
still active. The computation is, however, somewhat subtler in the presence of
secondary items; exercise 254 has the details.

It’s instructive to analyze some special cases. For example, suppose Algo-
rithm Z is asked to find the perfect matchings of the complete graph KN . This

120

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: DANCING WITH ZDDS 121

problem has N primary items {1, . . . , N}, and (N
2

)
options ‘j k’ for 1 ≤ j <

k ≤ N . We noted earlier, in the discussion preceding (87), that every item
list on level l has exactly N − 1 − 2l options, regardless of the choices made in
step Z3. If we always choose the smallest uncovered item, step Z2 will compute
exactly

(
N−l
l

)
different signatures on level l, namely the signatures in which items

{1, . . . , l} are covered and so are l of the other items {l + 1, . . . , N}. Hence the
total number of cache entries is

∑N
l=0

(
N−l
l

)
= FN+1, a Fibonacci number(!). (See

exercise 1.2.8–16.) Moreover, the main loops in steps Z5 and Z6 are executed
(N−1−2l)(N−ll) times at level l, since steps Z3 and Z4 are executed (N−ll) times.

In fact, when N is even, the ZDD that is output for all perfect matchings
of KN turns out to have exactly

∑N
l=0(N−1−2l)

(
N−l
l

)
+ 2 nodes, which is ap-

proximately N
5
FN+1. Exercise 255 shows that the total running time to compute

this ZDD is Θ(N2FN) = Θ(N2φN); and the same estimate holds also when N
is odd and the ZDD has only one node ‘⊥’. This is much smaller than the time
needed by Algorithm X, which is Θ

(
(N/e)N/2

)
.

More concretely, Algorithm X computes the 2,027,025 perfect matchings
of K16 in about 360 megamems, using about 6 kilobytes of memory. Algorithm Z
needs only about 2 megamems to characterize those matchings with a 10,228-
node ZDD; but it uses 2.5 megabytes of memory. For K32 there are 191,898,
783,962,510,625 perfect matchings, and the difference is even more dramatic:
Algorithm X costs about 34 thousand petamems and 25 kilobytes; Algorithm Z
costs about 16 gigamems and 85 megabytes, for a ZDD with 48 meganodes.

This example illustrates several important points: (1) Algorithm Z can
greatly reduce the running time of Algorithm X (or Algorithm C), trading time
for space. (2) These improvements can also be achieved for problems that have
no solutions, like matchings of K2q+1. (3) The number of nodes in the ZDD that
is output might greatly exceed the number of memos in Algorithm Z’s cache.

Let’s take a closer look at the ZDDs. The output for N = 8 is, schematically,

11111111

01111110

01111101

01111011

01110111

01101111

01011111

00111111

00111100

00111010

00111001

00110110

00110101

00110011

00101110

00101101

00101011

00100111

00011110

00011101

00011011

00010111

00001111

00011000

00010100

00010010

00010001

00001100

00001010

00001001

00000110

00000101

00000011

� ;

in this
diagram

α

β

γ
stands for
three
branch
nodes

⊥

α

β

γ

(123)

where, for example, ‘ 00101101 ’ represents nodes for the signature 00101101.

121

From the Library of Melissa Nuno

ptg999

122 COMBINATORIAL SEARCHING 7.2.2.1

A signature represents a subproblem. If that subproblem has at least one
solution, the ZDD for the full problem will have a subZDD that specifies all
solutions of the subproblem. And if the signature is in cache location S[t], the
root of the corresponding subZDD will be stored in Z[t], at the end of step Z7.

This subZDD has a very special structure, illustrated in (123). Suppose we
branch on item i when working on signature σ; and suppose solutions are found
for options o1, o2, . . . , ok in the list for item i. Then there will be subZDDs
rooted at ζ1, ζ2, . . . , ζk, associated with the subproblems whose signatures are
σ \ o1, σ \ o2, . . . , σ \ ok. The net effect of steps Z3–Z6 is to construct a subZDD
for σ that essentially begins with k conditional instructions:

ok? ζk: . . . o2? ζ2: o1? ζ1: ⊥ . (124)

(The ZDD is constructed from bottom to top, so it tests ok first.)
For example, ‘ 00101101 ’ in (123) is the root of the subZDD for the subproblem

that needs to cover {3, 5, 6, 8}. We branch on item 3, whose list has the three
options ‘3 5’, ‘3 6’, ‘3 8’. Three branch instructions are output,

Iθ = (3 5? 0: γ), Iη = (3 6? θ: β), Iζ = (3 8? η: α);

here γ, β, α are the subZDDs for signatures 00000101, 00001001, 00001100,
respectively. The subZDD for 00101101 begins at ζ.

Thus (123) illustrates a ZDD with 1 · 7+7 · 5+15 · 3+10 · 1+2 = 99 nodes.
Notice that the dotted links always go either to ⊥ or to an “invisible” node,
which is one of the k − 1 subsidiary nodes in a chain of branches such as (124).
Every invisible node has a single parent. But there is one visible node for each
successful signature, and a visible node may have many parents.

Exercises 256–262 discuss a number of examples where Algorithm Z gives
spectacular improvements over Algorithm X (and over Algorithm C when colors
are involved). Many additional examples could also be given. But most of the ex-
act cover problems we’ve been considering in our examples do not have an abun-
dance of common subproblems, so they reap little benefit from the memo cache.

For example, consider our old standby, the problem of Langford pairs.
Algorithm X needs 15 Gμ to show that there are no solutions when n = 14; Al-
gorithm Z reduces this slightly, to 11 Gμ. Algorithm X needs 1153 Gμ to list the
326,721,800 solutions for n = 16; Algorithm Z computes that number in 450 Gμ;
but it needs 20 gigabytes of memory, and produces a ZDD of 500 million nodes!

Similarly, Algorithm Z is not the method of choice for the n queens problem,
or for word-packing problems, although it does yield modest speedups more often
than one might suspect. Exercise 263 surveys some typical examples.

Summary. We began this section by observing that simple properties of linked
lists can enhance the efficiency of backtracking, especially when applied to exact
cover problems (XC). Then we noticed that a wide variety of combinatorial tasks,
going well beyond matching, turn out to be special cases of exact covering.

The most important “takeaway,” however, has been the fact that color

codes lead to a significant generalization of the classical exact cover problem.

122

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: HISTORICAL NOTES 123

Indeed, the general XCC problem, “exact covering with colors,” has a truly
extraordinary number of applications. The exercises below exhibit dozens and
dozens of instructive problems that are quite naturally describable in terms of
“options,” which involve “items” that may or may not be colored in certain
ways. We’ve discussed Algorithm X (for XC problems) and Algorithm C (for
XCC problems); and the good news is that those algorithms are almost identical.

Furthermore, we’ve seen how to extend Algorithm C in several directions:
AlgorithmM handles the generalMCC problem, which allows items to be covered
with different ranges of multiplicities. Algorithm C$ associates a cost with each
option, and finds XCC solutions of minimum total cost. Algorithm Z produces
XCC solutions as ZDDs, which can be manipulated and optimized in other ways.

Historical notes. The basic idea of (2) was introduced by H. Hitotumatu and
K. Noshita [Information Processing Letters 8 (1979), 174–175], who applied it
to the n queens problem. Algorithm 7.2.1.2X, which was published by J. S. Rohl
in 1983, can be regarded as a simplified version of dancing links, for cases when
singly linked lists suffice. (Indeed, as Rohl observed, the n queens problem is
such a case.) Its extension to exact cover problems in general, as in Algorithm X
above, was the subject of the author’s tribute to C. A. R. Hoare in Millennial

Perspectives in Computer Science (2000), 187–214, where numerous examples
were given. [That paper was subsequently reprinted with additions and correc-
tions as Chapter 38 of FGbook.] His original implementation, called DLX, used
a more complex data structure than (10), involving nodes with four-way links.

Knuth extended Algorithm X to Algorithm C in November 2000, while
thinking about two-dimensional de Bruijn sequences. A special case of Algo-
rithm M, in which all multiplicities are fixed, followed in August 2004, when he
was thinking about packing various sizes of bricks into boxes. The current form of
Algorithm M was developed in January 2017, after he’d studied an independent
generalization of Algorithm X that Wei-Hwa Huang had written in 2007.

The first computer programs for exact cover problems were developed in-
dependently by J. F. Pierce [Management Science 15 (1968), 191–209] and by
R. S. Garfinkel and G. L. Nemhauser [Operations Research 17 (1969), 848–856].
In both cases the given options each had an associated cost, and the goal was to
obtain minimum-cost solutions instead of arbitrary solutions. Both algorithms
were similar, although they used different ways to prune nonoptimum choices:
Items were chosen for branching according to a fixed, precomputed order, and
options were represented as bit vectors. An option was never removed from its
item list; it would repeatedly be rejected if its bits intersected with previously
chosen items. (Caution: Literature from the operations research community
traditionally reverses the roles of rows and columns in matrices like (5). For them,
items are rows and options are columns, even though bit vectors look like rows.)

The concept of “dancing with ZDDs” was introduced by M. Nishino, N. Ya-
suda, S. Minato, and M. Nagata, in the AAAI Conference on Artificial Intelli-

gence 31 (2017), 868–874, where they presented the special case of Algorithm Z
in which all items are primary.

123

From the Library of Melissa Nuno

ptg999

124 COMBINATORIAL SEARCHING 7.2.2.1

The history of XCC solving is clearly still in its infancy, and much more work
needs to be done. For example, many applications will benefit from improved
ways to choose an item for branching—especially in step M3 of Algorithm M,
where only a few strategies have been explored so far. It’s important to maintain
a good “focus”; furthermore, techniques of “factoring” can dramatically prune
away unproductive branches, as shown for example in exercise 343.

Algorithm M deserves to be extended to Algorithm M$, and perhaps also to
produce ZDD output. A further generalization would be to allow each item of
each option to have an associated weight. (Thus the associated matrix, analogous
to (5), would not consist merely of 0s and 1s.)

Hence we can expect to see many continued advances in XCC solving.

EXERCISES—First Set

� 1. [M25] A doubly linked list of n elements, with a list head at 0, begins with
LLINK(k) = k − 1 and RLINK(k − 1) = k for 1 ≤ k ≤ n; furthermore LLINK(0) = n
and RLINK(n) = 0, as in (3). But after we use operation (1) to delete elements a1, a2,
. . . , an, where a1a2 . . . an is a permutation of {1, 2, . . . , n}, the list will be empty and
the links will be entangled as in (4).

a) Show that the final settings of LLINK and RLINK can be described in terms of the
binary search tree that is obtained when the keys an, . . . , a2, a1 (in reverse order)
are inserted by Algorithm 6.2.2T into an initially empty tree.

b) Say that permutations a1a2 . . . an and b1b2 . . . bn are equivalent if they both yield
the same LLINK and RLINK values after deletion. How many distinct equivalence
classes arise, for a given value of n?

c) How many of those equivalence classes contain just one permutation?

2. [M30] Continuing exercise 1, we know that the original list will be restored if we
use (2) to undelete the elements an, . . . , a2, a1, reversing the order of deletion.

a) Prove that it’s restored also if we use the unreversed order a1, a2, . . . , an(!).
b) Is the original list restored if we undelete the elements in any order whatsoever?

c) What if we delete only k of the elements, say a1, . . . , ak, then undelete them in
exactly the same order a1, . . . , ak. Is the list always restored?

3. [20] An m × n matrix that’s supposed to be exactly covered can be regarded as
a set of n simultaneous equations in m unknowns. For example, (5) is equivalent to

x2 + x4 = x3 + x5 = x1 + x3 = x2 + x4 + x6 = x1 + x6 = x3 + x4 = x2 + x5 + x6 = 1,

where each xk = [choose row k] is either 0 or 1.

a) What is the general solution to those seven equations?
b) Why is this approach to exact cover problems almost never useful in practice?

4. [M20] Given a graph G, construct a matrix with one row for each vertex v and
one column for each edge e, putting the value [e touches v] into column e of row v.
What do the exact covers of this “incidence matrix” represent?

5. [18] Among the many combinatorial problems that can be formulated in terms of
0–1 matrices, some of the most important deal with families of sets: The columns
of the matrix represent elements of a given universe, and the rows represent subsets
of that universe. The exact cover problem is then to partition the universe into such
subsets. In geometric contexts, an exact cover is often called a tiling.

124

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 125

Equivalently, we can use the terminology of hypergraphs, speaking of hyperedges
(rows) that consist of vertices (columns); then the exact cover problem is to find
a perfect matching, also called a perfect packing, namely a set of nonoverlapping
hyperedges that hit every vertex.

Such problems generally have duals, which arise when we transpose the rows
and columns of the input matrix. What is the dual of the exact cover problem, in
hypergraph terminology?

6. [15] If an exact cover problem has N items andM options, and if the total length
of all options is L, how many nodes are in the data structures used by Algorithm X?

7. [16] Why is TOP(23) = −4 in Table 1? Why is DLINK(23) = 25?

8. [22] Design an algorithm to set up the initial memory contents of an exact cover
problem, as needed by Algorithm X and illustrated in Table 1. The input to your
algorithm should consist of a sequence of lines with the following format:
• The very first line lists the names of all items.
• Each remaining line specifies the items of a particular option, one option per line.

9. [18] Explain how to branch in step X3 on an item i for which LEN(i) is minimum.
If several items have that minimum length, i itself should also be minimum. (This
choice is often called the “minimum remaining values” (MRV) heuristic.)

10. [20] In some applications the MRV heuristic of exercise 9 leads the search astray,
because certain primary items have short lists yet convey little information about
desirable choices. Modify answer 9 so that an item p whose name does not begin
with the character ‘#’ will be chosen only if LEN(p) ≤ 1 or no other choices exist.
(This tactic is called the “sharp preference” heuristic.)

� 11. [19] Play through Algorithm X by hand, using exercise 9 in step X3 and the input
in Table 1, until first reaching step X7. What are the contents of memory at that time?

� 12. [21] Design an algorithm that prints the option associated with a given node x,
cyclically ordering the option so that TOP(x) is its first item. Also print the position of
that option in the vertical list for that item. (For example, if x = 21 in Table 1, your
algorithm should print ‘d f a’ and state that it’s option 2 of 3 in the list for item d.)

13. [16] When Algorithm X finds a solution in step X2, how can we use the values of
x0x1 . . . xl−1 to figure out what that solution is?

� 14. [20] (Problème des ménages.) “In how many ways can n male-female couples sit
at a circular table, with men and women alternating, and with no couples adjacent?”
a) Suppose the women have already been seated, and let the vacant seats be (S0, S1,

. . . , Sn−1). Let Mj be the spouse of the woman between seats Sj and S(j+1) mod n.
Formulate the ménage problem as an exact cover problem with items Sj and Mj .

b) Apply Algorithm X to find the solutions for n ≤ 10. Approximately how many
mems are needed per solution, with and without the MRV heuristic?

15. [20] The options in (16) give us every solution to the Langford pair problem twice,
because the left-right reversal of any solution is also a solution. Show that, if a few of
those options are removed, we’ll get only half as many solutions; the others will be the
reversals of the solutions found.

16. [16] What are the solutions to the four queens problem, as formulated in (23)
and (24)? What branches are taken at the top four levels of Algorithm X’s search tree?

17. [16] Repeat exercise 16, but consider aj and bj to be secondary items and omit
the slack options (24). Consider the primary items in order r3, c3, r2, c2, r4, c4, r1, c1.

125

From the Library of Melissa Nuno

ptg999

126 COMBINATORIAL SEARCHING 7.2.2.1

18. [10] What are the solutions to (6) if items e, f , and g are secondary?

� 19. [21] Modify Algorithm X so that it doesn’t require the presence of any primary
items in the options. A valid solution should not contain any purely secondary options;
but it must intersect every such option. (For example, if only items a and b of (6) were
primary, the only valid solution would be to choose options ‘a d g’ and ‘b c f ’.)

� 20. [25] Generalize (26) to a pairwise ordering of options (α0, . . . , αm−1;β0, . . . , βm−1)
that uses at most �lgm� of the secondary items y1, . . . , ym−1 in each option. Hint:

Think of binary notation, and use yj at most 2
ρj times within each of the α’s and β’s.

21. [22] Extend exercise 20 to k-wise ordering of km options αij , for 1 ≤ i ≤ k and
0 ≤ j < m. The solutions should be (α1j1 , . . . , α

k
jk) with 0 ≤ j1 ≤ · · · ≤ jk < m.

Again there should be at most �lgm� secondary items in each option.

� 22. [28] Most of the solutions to the n queens problem are unsymmetrical, hence they
lead to seven other solutions when rotated and/or reflected. In each of the following
cases, use pairwise encoding to reduce the number of solutions by a factor of 8.

a) No queen is in either diagonal, and n is odd.

b) Only one of the two diagonals contains a queen. (a)

�
�

�
�

�
�

�
�

�

(b)

�
�
�

�
�

�
�

�
�

(c)

�
�

�
�

�
�

�
�
�c) There are two queens in the two diagonals.

23. [28] Use pairwise encoding to reduce the number of solutions by nearly a factor
of 8 in the remaining cases not covered by exercise 22:

a) No queen is in either diagonal, and n is even.

b) A queen is in the center of the board, and n is odd.

24. [20] With Algorithm X, find all solutions to the n queens problem that are
unchanged when they’re rotated by (a) 180◦; (b) 90◦.

25. [20] By setting up an exact cover problem and solving it with Algorithm X, show
that the queen graph Q8 (exercise 7.1.4–241) cannot be colored with eight colors.

26. [21] In how many ways can the queen graphQ8 be colored in a “balanced” fashion,
using eight queens of color 0 and seven each of colors 1 to 8?

27. [22] Introduce secondary items cleverly into the options (16), so that only planar

solutions to Langford’s problem are obtained. (See exercise 7–8.)

28. [M22] For what integers c0, t0, c1, t1, . . . , cl, tl with 1 ≤ cj ≤ tj does the text’s
formula (27) for estimated completion ratio give the value (a) 1/2? (b) 1/3?

� 29. [26] Let T be any tree. Construct the 0–1 matrix of an unsolvable exact cover
problem for which T is the backtrack tree traversed by Algorithm X with the MRV

heuristic. (A unique item should have the minimum LEN value whenever step X3 is
encountered.) Illustrate your construction when T = .

30. [25] Continuing exercise 29, let T be a tree in which certain leaves have been
distinguished from the others and designated as “solutions.” Can all such trees arise
as backtrack trees in Algorithm X?

31. [M21] The running time of Algorithm X depends on the order of primary items
in the active list, as well as on the order of options in the individual item lists. Explain
how to randomize the algorithm so that (a) every item list is in random order after
step X1; (b) step X3 chooses randomly among items with the minimum LEN.

32. [M21] The solution to an exact cover problem withM options can be regarded as
a binary vector x = x1 . . . xM , with xk = [choose option k]. The distance between two

126

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 127

solutions x and x′ can then be defined as the Hamming distance d(x, x′) = ν(x⊕x′), the
number of places where x and x′ differ. The diversity of the problem is the minimum dis-
tance between two of its solutions. (If there’s at most one solution, the diversity is∞.)

a) Is it possible to have diversity 1?

b) Is it possible to have diversity 2?

c) Is it possible to have diversity 3?

d) Prove that the distance between solutions of a uniform exact cover problem—that
is, a problem having the same number of items in each option— is always even.

e) Most of the exact cover problems that arise in applications are at least quasi-

uniform, in the sense that they have a nonempty subset of primary items such
that the problem is uniform when restricted to only those items. (For example,
every polyomino or polycube packing problem is quasi-uniform, because every
option specifies exactly one piece name.) Can such problems have odd distances?

33. [M16] Given an exact cover problem, specified by a 0–1 matrix A, construct an
exact cover problem A′ that has exactly one more solution than A does. [Consequently
it is NP-hard to determine whether an exact cover problem with at least one solution
has more than one solution.] Assume that A contains no all-zero rows.

34. [M25] Given an exact cover problem A as in exercise 33, construct an exact cover
problem A′ such that (i) A′ has at most three 1s in every column; (ii) A′ and A have
exactly the same number of solutions.

35. [M21] Continuing exercise 34, construct A′ having exactly three 1s per column.

� 36. [25] Let ik = TOP(xk) be the item on which branching occurs at level k in Algo-
rithm X. Modify that algorithm so that it finds the solution for which i0x0i1x1i2x2 . . .
is smallest in lexicographic order. (It’s easy to do this by simply setting i← RLINK(0)
in step X3. But there’s a much faster way, by using theMRV heuristic most of the time.)

What is the lexicographically first solution to the 32 queens problem?

37. [M46] (N. J. A. Sloane, 2016.) Let 〈qn〉 be the lexicographically smallest solution
to the ∞ queens problem. (This sequence begins

1, 3, 5, 2, 4, 9, 11, 13, 15, 6, 8, 19, 7, 22, 10, 25, 27, 29, 31, 12, 14, 35, 37, 39, 41, 16, 18, 45, . . . ,

and it clearly has strange regularities and irregularities.)

a) Prove that every positive integer occurs in the sequence.

b) Prove that qn is either nφ+O(1) or n/φ+O(1).

� 38. [M25] Devise an efficient way to compute the sequence 〈qn〉 of exercise 37.
� 39. [M21] Experiment with exact cover problems that are defined by m random op-
tions on n items. (Each option is generated independently, with repetitions permitted.)

a) Use a fixed probability p that item i is included in any given option.

b) Let every option be a random sample of r distinct items.

� 40. [21] If we merely want to count the number of solutions to an exact cover problem,
without actually constructing them, a completely different approach based on bitwise
manipulation instead of list processing is sometimes useful.

The following näıve algorithm illustrates the idea: We’re given an m × n matrix
of 0s and 1s, represented as n-bit vectors r1, . . . , rm. The algorithm works with a
(potentially huge) database of pairs (sj , cj), where sj is an n-bit number representing
a set of items, and cj is a positive integer representing the number of ways to cover
that set exactly. Let p be the n-bit mask that represents the primary items.

127

From the Library of Melissa Nuno

ptg999

128 COMBINATORIAL SEARCHING 7.2.2.1

N1. [Initialize.] Set N ← 1, s1 ← 0, c1 ← 1, k ← 1.

N2. [Done?] If k > m, terminate; the answer is
∑N

j=1 cj [sj & p= p].

N3. [Append rk where possible.] Set t ← rk. For N ≥ j ≥ 1, if sj & t = 0, insert
(sj + t, cj) into the database (see below).

N4. [Loop on k.] Set k ← k + 1 and return to N2.

To insert (s, c) there are two cases: If s = si for some (si, ci) already present, we simply
set ci ← ci + c. Otherwise we set N ← N + 1, sN ← s, cN ← c.

Show that this algorithm can be significantly improved by using the following trick:
Set uk ← rk & f̄k, where fk = rk+1 | · · · | rm is the bitwise OR of all future rows. If
uk = 0, we can remove any entry from the database for which sj does not contain uk&p.
We can also exploit the nonprimary items of uk to compress the database further.

41. [25] Implement the improved algorithm of the previous exercise, and compare its
running time to that of Algorithm X when applied to the n queens problem.

42. [M21] Explain how the method of exercise 40 could be extended to give represen-
tations of all solutions, instead of simply counting them.

43. [M20] Give formulas for the entries aij , bij , cij of the sudoku squares in (28).

44. [M04] Could the clues of a sudoku puzzle be the first 33 digits of π? (See (29a).)

45. [14] List the sequence of naked single moves by which Algorithm X cruises to the
solution of (29a). (If several such pij are possible, choose the smallest ij at each step.)

46. [19] List all of the hidden single sudoku moves that are present in chart (31).

47. [19] What hidden singles are present in (32), after ‘3’ is placed in cell (2, 3)?

� 48. [24] Chart (33) essentially plots rows versus columns. Show that the same data
could be plotted as either (a) rows versus values; or (b) values versus columns.

� 49. [24] Any solution to an exact cover problem will also solve the “relaxed” subprob-
lems that are obtained by removing some of the items. For example, we might relax a
sudoku problem (30) by removing all items cjk and bxk, as well as rik with i = i0. Then
we’re left with a subproblem in which every option contains just two items, ‘pi0j ri0k’,
for certain pairs (j, k). In other words, we’re left with a 2D matching problem.

Consider the bipartite graph with uj −−− vk whenever a sudoku option contains
‘pi0j ri0k’. For example, the graph for i0 = 4 in (33) is illustrated below. A perfect
matching of this graph must take u3 and u8 to either v7 or v1, hence the edges from
other u’s to those v’s can be deleted; that’s called a “naked pair”
in row i0. Dually, v5 and v8 must be matched to either u2 or
u7, hence the edges from other v’s to those u’s can be deleted;
that’s called a “hidden pair” in row i0.

u3 u8 u1 u2 u7

v7 v1 v4 v5 v8

In general, q of the u’s form a naked q-tuple if their neighbors include only q of the
v’s; and q of the v’s form a hidden q-tuple if their neighbors include only q of the u’s.
a) These definitions have been given for rows. Show that naked and hidden q-tuples

can be defined analogously for (i) columns, (ii) boxes.
b) Prove that if the bipartite graph has r vertices in each part, it has a hidden q-tuple

if and only if it has a naked (r − q)-tuple.
c) Find all the naked and hidden q-tuples of (33). What options do they rule out?
d) Consider deleting items pij and bxk, as well as all rik and cjk for k = k0. Does

this lead to further reductions of (33)?

50. [20] How many uniquely solvable 17-clue puzzles contain the 16 clues of (29c)?

128

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 129

51. [22] In how many ways can (29c) be completed so that every row, every column,
and every box contains a permutation of the multiset {1, 2, 3, 4, 5, 6, 7, 7, 9}?
52. [40] Try to find a sudoku puzzle that’s as difficult as possible for Algorithm X.

53. [M26] Beginners to sudoku might want to cut their teeth on a miniature variant
called shidoku, which features 4× 4 squares divided into four 2× 2 boxes.

a) Prove that every uniquely solvable shidoku problem has at least four clues.

b) Two shidoku problems are equivalent if we can get from one to the other by
permuting rows and columns in such a way that boxes are preserved, and/or by
90◦ rotation, and/or by permuting the numbers. Show that exactly 13 essentially
different 4-clue shidoku problems have a unique solution.

� 54. [35] (Minimal clues.) Puzzle (29a) contains more clues than necessary to make
the sudoku solution unique. (For example, the final ‘95’ could be omitted.) Find all
subsets X of those 32 clues for which (i) the solution is unique, given X; yet also (ii) for
every x ∈ X, the solution is not unique, given X \ x.
55. [34] (G. McGuire.) Prove that at least 18 clues are necessary, in any sudoku
puzzle whose unique answer is (28a). Also find 18 clues that suffice. Hint: At least
two of the nine appearances of {1, 4, 7} in the top three rows must be among the clues.

Similarly, find a smallest-possible set of clues whose unique answer is (28b).

56. [47] What is the largest number of clues in a minimal sudoku puzzle?

57. [22] Every sudoku solution has at most 27 horizontal trios and 27 vertical trios,
namely the 3-digit sets that appear within a single row or column of a box. For example,
(28a) has nine horizontal trios {1, 2, 3}, {2, 3, 4}, . . . , {9, 1, 2} and three vertical trios
{1, 4, 7}, {2, 5, 8}, {3, 6, 9}; (28b) has just three of each. The solution to (29a) has 26
horizontal trios and 23 vertical trios; {3, 6, 8} occurs once horizontally, twice vertically.

Let T be the 27 trios {{A, B, C} | A ∈ {1, 2, 3}, B ∈ {4, 5, 6}, C ∈ {7, 8, 9}}. Find all
sudoku solutions whose horizontal trios and vertical trios are both equal to T .

� 58. [22] (A. Thoen and A. van de Wetering, 2019.) Find all sudoku solutions for
which the 1s, 2s, . . . , 7s also solve the nine queens problem.

59. [20] Solve the jigsaw sudokus in (34). How large is Algorithm X’s search tree?

60. [20] (The Puzzlium Sudoku ABC.) Complete these hexomino-shaped boxes:

(a)

5
4 3

6
5 2

1

; (b)

2 6
4

4
3

5
1

; (c)

4
5 1

2
3 1

5 4

.

61. [21] Turn Behrens’s 5 × 5 gerechte design (35a) into a jigsaw sudoku puzzle, by
erasing all but five of its 25 entries.

� 62. [34] For n ≤ 7, generate all of the ways in which an n×n square can be packed with
n nonstraight n-ominoes. (These are the possible arrangements of boxes in a square
jigsaw sudoku.) How many of them are symmetric? Hint: See exercise 7.2.2–76.

63. [29] In how many different ways can Behrens’s 9 × 9 array (35c) be regarded as
a gerechte latin square? (In other words, how many decompositions of that square
into nine boxes of size 9 have a complete “rainbow” {1, 2, 3, 4, 5, 6, 7, 8, 9} in each box?
None of the boxes should simply be an entire row or an entire column.)

129

From the Library of Melissa Nuno

ptg999

130 COMBINATORIAL SEARCHING 7.2.2.1

64. [23] (Clueless jigsaw sudoku.) A jigsaw sudoku puzzle can be called “clueless”
if its solution is uniquely determined by the entries in a single row or
column, because such clues merely assign names to the n individual
symbols that appear. For example, the first such puzzle to be pub-
lished, discovered in 2000 by Oriel Maxime, is shown here.

A B C D E F

a) Find all clueless sudoku jigsaw puzzles of order n ≤ 6.

b) Prove that such puzzles exist of all orders n ≥ 4.

65. [24] Find the unique solutions to the following examples of jigsaw sudoku:

D
A
N
C
I
N
G

L
I
N
K
S

C
O
M
P
U
T
E
R

A
L
G
O
R
I
T
H
M

S
O
L
V
I
N
G

S
U
D
O
K
U

P
U
Z
Z
L
E

� 66. [30] Arrange the following sets of nine cards in a 3× 3 array so that they define
a sudoku problem with a unique solution. (Don’t rotate them.)

i)
1
2
38

2
3
41

3
4
51

4
5
62

5
6
74

6
7
84

7
8
95

8
9
17

9
1
27

;

ii)
1
2
39

2
3
49

3
4
58

4
5
61

5
6
73

6
7
85

7
8
92

8
9
16

9
1
24

.

� 67. [22] Hypersudoku extends normal sudoku by adding four more (shaded) boxes in
which a complete “rainbow” {1, 2, 3, 4, 5, 6, 7, 8, 9} is required to appear:

(i)

3 1 4
1 5
9 2
6 5 3

5
8

9

7 9

; (ii)

3
1

4
1
5
4 2

8
9 7

9

.

(Such puzzles, introduced by P. Ritmeester in 2005, are featured by many newspapers.)

a) Show that a hypersudoku solution actually has 18 rainbow boxes, not only 13.

b) Use that observation to solve hypersudoku puzzles efficiently by extending (30).

c) How much does that observation help when solving (i) and (ii)?

d) True or false: A hypersudoku solution remains a hypersudoku solution if the four
4×4 blocks that touch its four corners are simultaneously rotated 180◦, while also
flipping the middle half-rows and middle half-columns (keeping the center fixed).

68. [28] A polyomino is called convex if it contains all of the cells between any two of
its cells that lie in the same row or the same column. (This happens if and only if it has
the same perimeter as its minimum bounding box does, because each row and column
contribute 2.) For example, all of the pentominoes (36) are convex, except for ‘U’.

a) Generate all ways to pack n convex n-ominoes into an n× n box, for n ≤ 7.

b) In how many ways can nine convex nonominoes be packed into a 9× 9 box, when
each of them is small enough to fit into a 4× 4? (Consider also the symmetries.)

130

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 131

� 69. [30] Diagram (i) below shows the 81 communities of Bitland, and their nine elec-
toral districts. The voters in each community are either Big-Endian (B) or Little-Endian
(L). Each district has a representative in Bitland’s parliament, based on a majority vote.

Notice that there are five Ls and four Bs in every district, hence the parliament is
100% Little-Endian. Everybody agrees that this is unfair. So you have been hired as
a computer consultant, to engineer the redistricting.

A rich bigwig secretly offers to pay you a truckload of money if you get the best
possible deal for his side. You could gerrymander the districts as in diagram (ii),
thereby obtaining seven Big-Endian seats. But that would be too blatantly biased.

(i)

B B L B L L L L B
L L L B L L L B L
B B L B L B B L B
L L L L L L L L L
B B B L L B L L B
L B L B B B B B B
B B L B B B B B L
L B L L L L B L L
L L B L L B B L L

; (ii)

B B L B L L L L B
L L L B L L L B L
B B L B L B B L B
L L L L L L L L L
B B B L L B L L B
L B L B B B B B B
B B L B B B B B L
L B L L L L B L L
L L B L L B B L L

.

Show that seven wins for B are actually obtainable with nine districts that do
respect the local neighborhoods of Bitland quite decently, because each of them is a
convex nonomino that fits in a 4× 4 square (see exercise 68).

70. [21] Dominosa is a solitaire game in which you “shuffle” the 28 pieces ����,

����, . . . ,���� of double-six dominoes and place them at random into a 7× 8 frame.
Then you write down the number of spots in each cell, put the dominoes away, and try
to reconstruct their positions based only on that 7× 8 array of numbers. For example,

�������	���
����
���
���������
�������������
�

�
�
�����	�	����
��������������
���������������
�������
�
����	

yields the array

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 6 5 2 1 4 1 2
1 4 5 3 5 3 3 6
1 1 5 6 0 0 4 4
4 4 5 6 2 2 2 3
0 0 5 6 1 3 3 6
6 6 2 0 3 2 5 1
1 5 0 4 4 0 3 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

a) Show that another placement of dominoes also yields the same matrix of numbers.
b) What domino placement yields the array⎛

⎜⎜⎜⎜⎜⎜⎜⎝

3 3 6 5 1 5 1 5
6 5 6 1 2 3 2 4
2 4 3 3 3 6 2 0
4 1 6 1 4 4 6 0
3 0 3 0 1 1 4 4
2 6 2 5 0 5 0 0
2 5 0 5 4 2 1 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
?

� 71. [20] Show that Dominosa reconstruction is a special case of 3DM (3D matching).

72. [M22] Generate random instances of Dominosa, and estimate the probability of
obtaining a 7×8 matrix with a unique solution. Use two models of randomness: (i) Each
matrix whose elements are permutations of the multiset {8×0, 8×1, . . . , 8×6} is equally
likely; (ii) each matrix obtained from a random shuffle of the dominoes is equally likely.

73. [46] What’s the maximum number of solutions to an instance of Dominosa?

131

From the Library of Melissa Nuno

ptg999

132 COMBINATORIAL SEARCHING 7.2.2.1

74. [22] (M. Keller, 1987.) Is there a uniquely solvable Dominosa array for which
every domino matches two adjacent cells of the array in either three or four places?

� 75. [M24] A grope is a set G together with a binary operation ◦, in which the identity
x ◦ (y ◦ x) = y is satisfied for all x ∈ G and y ∈ G.
a) Prove that the identity (x ◦ y) ◦ x = y also holds, in every grope.
b) Which of the following “multiplication tables” define a grope on {0, 1, 2, 3}?

0123
1032
2301
3210

;

0321
3210
2103
1032

;

0132
1023
3210
2301

;

0231
3102
1320
2013

;

0312
2130
3021
1203

.

(In the first example, x ◦ y = x ⊕ y; in the second, x ◦ y = (−x − y) mod 4. The
last two have x ◦ y = x⊕ f(x⊕ y) for certain functions f .)

c) For all n, construct a grope whose elements are {0, 1, . . . , n− 1}.
d) Consider the exact cover problem that has n2 items xy for 0 ≤ x, y < n and the

following n+ (n3 − n)/3 options:

i) ‘xx’, for 0 ≤ x < n;
ii) ‘xx xy yx’, for 0 ≤ x < y < n;
iii) ‘xy yz zx’, for 0 ≤ x < y, z < n.

Show that its solutions are in one-to-one correspondence with the multiplication
tables of gropes on the elements {0, 1, . . . , n− 1}.

e) Element x of a grope is idempotent if x ◦ x = x. If k elements are idempotent and
n− k are not, prove that k ≡ n2 (modulo 3).

76. [21] Modify the exact cover problem of exercise 75(d) in order to find the mul-
tiplication tables of (a) all idempotent gropes—gropes such that x ◦ x = x for all x;
(b) all commutative gropes—gropes such that x ◦ y = y ◦ x for all x and y; (c) all
gropes with the identity element 0—gropes such that x ◦ 0 = 0 ◦ x = x for all x.

77. [M21] Given graphs G and H, each with n vertices, use Algorithm X to decide
whether or not G is isomorphic to a subgraph of H. (In such a case we say that G is
embedded in H.)

78. [16] Show that it’s quite easy to pack the 27 mathematicians’ names of Fig. 71
into a 12×15 array, with all names reading correctly from left to right. (Of course that
would be a terrible word search puzzle.)

79. [M20] How many options are in (48), when they are completely listed?

80. [19] Play through Algorithm C by hand, using exercise 9 in step C3 and the input
in Table 2, until first reaching a solution. What are the contents of memory then?

81. [21] True or false: An exact cover problem that has no color assignments has
exactly the same running time on Algorithms X and C.

82. [21] True or false: It’s possible to save memory references in Algorithms X and C
by not updating the LEN fields in the hide/unhide operations when x > N1.

� 83. [20] Algorithm C can be extended in the following curious way: Let p be the
primary item that is covered first, and suppose that there are k ways to cover it.
Suppose further that the jth option for p ends with a secondary item sj , where
{s1, . . . , sk} are distinct. Modify the algorithm so that, whenever a solution contains
the jth option for p, it leaves items {s1, . . . , sj−1} uncovered. (In other words, the
modified algorithm will emulate the behavior of the unmodified algorithm on a much
larger instance, in which the jth option for p contains all of s1, s2, . . . , sj .)

132

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 133

� 84. [25] Number the options of an XCC problem from 1 to M . A minimax solution

is one whose maximum option number is as small as possible. Explain how to modify
Algorithm C so that it determines all of the minimax solutions (omitting any that are
known to be worse than a solution already found).

85. [22] Sharpen the algorithm of exercise 84 so that it produces exactly one minimax
solution—unless, of course, there are no solutions at all.

� 86. [M25] Modify Algorithm C so that, instead of finding all solutions to a given
XCC problem, it gives a Monte Carlo estimate of the number of solutions and the
time needed to find them, using Theorem 7.2.2E. (Thus the modified algorithm is to
Algorithm C as Algorithm 7.2.2E is to Algorithm 7.2.2B.)

87. [20] A double word square is an n× n array whose rows and columns contain 2n
different words. Encode this problem as an XCC problem. Can you save a factor of 2 by
not generating the transpose of previous solutions? Does Algorithm C compete with the
algorithm of exercise 7.2.2–28 (which was designed explicitly to handle such problems)?

88. [21] Instead of finding all of the double word squares, we usually are more inter-
ested in finding the best one, in the sense of using only words that are quite common.
For example, it turns out that a double word square can be made from the words of
WORDS(1720) but not from those of WORDS(1719). Show that it’s rather easy to find the
smallest W such that WORDS(W) supports a double word square, via dancing links.

89. [24] What are the best double word squares of sizes 2 × 2, 3 × 3, . . . , 7 × 7, in
the sense of exercise 88, with respect to The Official SCRABBLE R© Players Dictionary?
[Exercise 7.2.2–32 considered the analogous problem for symmetric word squares.]

� 90. [22] A word stair of period p is a cyclic arrangement of words, offset stepwise, that
contains 2p distinct words across and down. They exist in two varieties, left and right:

· · ·
S T A I R

S H A R P
S T E M S

S C R A P
S T A I R

S H A R P
S T E M S

S C R A P
S T A I R
· · ·

p = 4

· · ·
S T A I R
S L O O P
S T O O D
S T E E R
S T A I R
S L O O P
S T O O D
S T E E R
S T A I R

· · ·
What are the best five-letter word stairs, in the sense of exercise 88, for 1 ≤ p ≤ 10?
Hint: You can save a factor of 2p by assuming that the first word is the most common.

91. [40] For given W, find the largest p such that WORDS(W) supports a word stair of
period p. (There are two questions for each W, examining stairs to the {left, right}.)
92. [24] Some p-word cycles define two-way word stairs that have 3p distinct words:

· · ·
R A P I D

R A T E D
L A C E S

R O B E S
R A P I D

R A T E D
L A C E S

R O B E S
R A P I D
· · ·

p = 4

· · ·
R A P I D
R A T E D
L A C E S
R O B E S
R A P I D
R A T E D
L A C E S
R O B E S
R A P I D

· · ·
What are the best five-letter examples of this variety, for 1 ≤ p ≤ 10?

133

From the Library of Melissa Nuno

ptg999

134 COMBINATORIAL SEARCHING 7.2.2.1

93. [22] Another periodic arrangement of 3p words, per-
haps even nicer than that of exercise 92 and illustrated here
for p = 3, lets us read them diagonally up or down, as
well as across. What are the best five-letter examples of
this variety, for 1 ≤ p ≤ 10? (Notice that there is 2p-way
symmetry.)

· · ·
S L A N T
F L U N K
B L I N K
S L A N T
F L U N K
B L I N K
S L A N T
F L U N K
· · ·

F L I N TF L I N T()
S L U N KS L U N K()
B L A N KB L A N K()
F L I N TF L I N T()

S L I N KS L I N K()
F L A N KF L A N K()
B L U N TB L U N T()
S L I N KS L I N K()

94. [20] (É. Lucas.) Find a binary cycle (x0x1 . . . x15) for which the 16 quadruples
xkx(k+1) mod 16x(k+3) mod 16x(k+4) mod 16 for 0 ≤ k < 16 are distinct.

� 95. [20] Given 0 ≤ p < q ≤ n, explain how to use color controls and Algorithm C to
find all cycles (x0x1 . . . xm−1) of 0s and 1s, where m =

∑q
k=p

(
n
k

)
, with the property

that the m binary vectors {x0x1 . . . xn−1, x1x2 . . . xn, . . . , xm−1x0 . . . xn−2} are distinct
and have weight between p and q. (In other words, all n-bit binary vectors y = y1 . . . yn
with p ≤ νy ≤ q occur exactly once in the cycle. We studied the special case of de
Bruijn cycles, for which p = 0 and q = n, in Section 7.2.1.1.)

For example, when n = 7, p = 0, and q = 3, the cycle

(0000000100000110000101000101100010010101001001100100011010000111)

exhibits all binary 7-tuples with a majority of 0s. When n = 7, p = 3, q = 4, the cycle

(0000111000101100011010010101011010100110011011001011100100111010001111)

shows all 7-tuples obtainable by removing the first bit of an 8-tuple with four 0s, four 1s.
Exactly how many cycles exist, when (n, p, q) = (7, 0, 3) or (7, 3, 4)? How long

does it take for Algorithm C to find them?

96. [M20] Find an 8×8 binary torus whose sixty-four 2×3 subrectangles are distinct.

97. [M21] Find all 9× 9 ternary ourotoruses D = (di,j) that are symmetrical, in the
sense that d(i+3) mod 9,(j+3) mod 9 = (di,j + 1) mod 3. (See exercise 7.2.1.1–109.)

98. [25] Prove that the exact cover problem with color controls is NP-complete, even
if every option consists of only two items.

99. [20] True or false: Every XCC problem can be reformulated as an ordinary exact
cover problem with the same solutions and the same number of options.

� 100. [20] The general constraint satisfaction problem (CSP) is the task of finding all
n-tuples x1 . . . xn that satisfy a given system of constraints C1, . . . , Cm, where each
constraint is defined by a relation on a nonempty subset of the variables {x1, . . . , xn}.

For example, a unary constraint is a relation of the form xk ∈ Dk; a binary
constraint is a relation of the form (xj , xk) ∈ Djk; a ternary constraint is a relation of
the form (xi, xj , xk) ∈ Dijk; and so on.

a) Find all x1x2x3x4x5 for which 0≤x1≤x2≤x3≤x4≤x5≤ 2 and x1+x3+x5 = 3.
b) Formulate the problem of part (a) as an XCC problem.
c) Explain how to formulate any CSP as an XCC problem.

� 101. [25] (The zebra puzzle.) Formulate the following query as an XCC problem: “Five
people, from five different countries, have five different occupations, own five different
pets, drink five different beverages, and live in a row of five differently colored houses.

• The Englishman lives in a red house. • The painter comes from Japan.
• The yellow house hosts a diplomat. • The coffee-lover’s house is green.
• The Norwegian’s house is the leftmost. • The dog’s owner is from Spain.
• The milk drinker lives in the middle house. • The violinist drinks orange juice.

134

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 135

• The white house is just left of the green one. • The Ukrainian drinks tea.
• The Norwegian lives next to the blue house. • The sculptor breeds snails.
• The horse lives next to the diplomat. • The nurse lives next to the fox.

Who trains the zebra, and who prefers to drink just plain water?”

� 102. [25] Explain how to find all solutions to a Japanese arrow puzzle with Algo-
rithm C. (See exercise 7.2.2–68.)

� 103. [M28] Musical pitches in the Western system of “equal temperament” are the
notes whose frequency is 440 · 2n/12 cycles per second, for some integer n. The pitch

class of such a note is nmod 12, and seven of the twelve possible pitch classes are
conventionally designated by letters:

0 = A, 2 = B, 3 = C, 5 = D, 7 = E, 8 = F, 10 = G.

The other classes are named by appending sharp (�) or flat (�) signs, to go up or down
by 1; thus 1 = A� = B�, 4 = C� = D�, . . . , 11 = G� = A�.

Arnold Schoenberg popularized a composition technique that he called a twelve-
tone row, which is simply a permutation of the twelve pitch classes. For example, his
student Alban Berg featured the motif

� � � � � � � � �� �� �� �� �� � ,

which is the twelve-tone row 8 7 3 0 10 5 11 4 6 9 1 2, in the first movement of his
Lyric Suite (1926), and in another composition he had written in 1925.

In general we can say that an n-tone row x = x0x1 . . . xn−1 is a permutation of
{0, 1, . . . , n−1}. Two n-tone rows x and x′ are considered to be equivalent if they differ
only by a transposition—that is, if x′k = (xk + d) mod n for some d and for 0 ≤ k < n.
Thus, the number of inequivalent n-tone rows is exactly (n− 1)!.
a) Berg’s 12-tone row above has the additional property that the intervals between

adjacent notes, (xk − xk−1) mod n, are {1, . . . , n− 1}. Prove that an n-tone row
can have this all-interval property only if n is even and xn−1 = (x0+n/2) mod n.

b) Use Algorithm C to find n-tone rows with the all-interval property. How many
inequivalent solutions arise, when 2 ≤ n ≤ 12?

c) Any all-interval n-tone row leads easily to several others. For example, if x =
x0x1 . . . xn−1 is a solution, so is its reversal xR = xn−1 . . . x1x0; and so is cx =
(cx0 mod n)(cx1 mod n) . . . (cxn−1 mod n) whenever c ⊥ n. Prove that the cyclic
shift xQ = xk . . . xn−1x0 . . . xk−1 is also a solution, when xk − xk−1 = ±n/2.

d) True or false: In part (c) we always have xRQ = xQR.
e) The 12-tone row of Alban Berg shown above is symmetrical, because it is equiv-

alent to xR. Other kinds of symmetry are also possible; for example, the row
x = 01 3 7 2 5 11 10 8 4 9 6 is equivalent to −xQ. How many symmetrical all-
interval n-tone rows exist, for n ≤ 12?

104. [M28] Assume that n+ 1 = p is prime. Given an n-tone row x = x0x1 . . . xn−1,
define yk = x(k−1) mod p whenever k is not a multiple of p, and let x

(r) = yry2r . . . ynr be
the n-tone row consisting of “every rth element of x” (if xn is blank). For example, when
n = 12, every 5th element of x is the sequence x(5) = x4x9x1x6x11x3x8x0x5x10x2x7.

An n-tone row is called perfect if it is equivalent to x(r) for 1 ≤ r ≤ n. For
example, the amazing 12-tone row 0 1 4 2 9 5 11 3 8 10 7 6 is perfect.
a) Prove that a perfect n-tone row has the all-interval property.
b) Prove that a perfect n-tone row also satisfies x ≡ xR.

135

From the Library of Melissa Nuno

ptg999

136 COMBINATORIAL SEARCHING 7.2.2.1

105. [22] Using the “word search puzzle” conventions of Figs. 71 and 72, show that
the words ONE, TWO, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT, NINE, TEN, ELEVEN, and
TWELVE can all be packed into a 6× 6 square, leaving one cell untouched.

106. [22] Also pack two copies of ONE, TWO, THREE, FOUR, FIVE into a 5× 5 square.

� 107. [25] Pack as many of the following words as possible into a 9 × 9 array, simul-
taneously satisfying the rules of both word search and sudoku:

ACRE
ART

COMPARE
COMPUTER

CORPORATE
CROP

MACRO
META

MOTET
PARAMETER

ROAM
TAME

� 108. [32] The first 44 presidents of the U.S.A. had 38 distinct surnames: ADAMS,
ARTHUR, BUCHANAN, BUSH, CARTER, CLEVELAND, CLINTON, COOLIDGE, EISENHOWER, FILL-
MORE, FORD, GARFIELD, GRANT, HARDING, HARRISON, HAYES, HOOVER, JACKSON, JEFFERSON,
JOHNSON, KENNEDY, LINCOLN, MADISON, MCKINLEY, MONROE, NIXON, OBAMA, PIERCE, POLK,
REAGAN, ROOSEVELT, TAFT, TAYLOR, TRUMAN, TYLER, VANBUREN, WASHINGTON, WILSON.

a) What’s the smallest square into which all of these names can be packed, using
word search conventions, and requiring all words to be connected via overlaps?

b) What’s the smallest rectangle, under the same conditions?

� 109. [28] A “wordcross puzzle” is the challenge of packing a given set of words into
a rectangle under the following conditions: (i) All words must read either across or
down, as in a crossword puzzle. (ii) No letters are adjacent unless they
belong to one of the given words. (iii) The words are rookwise connected.
(iv) Words overlap only when one is vertical and the other is horizontal.
For example, the eleven words ZERO, ONE, . . . , TEN can be placed into an
8×8 square under constraints (i) and (ii) as shown; but (iii) is violated,
because there are three different components.

T H R E E F
W S I X
O N E V

S E V E N
Z I
E I G H T N
R E E

F O U R N

Explain how to encode a wordcross puzzle as an XCC problem. Use your encoding
to find a correct solution to the problem above. Do those eleven words fit into a smaller

rectangle, under conditions (i), (ii), and (iii)?

110. [30] What’s the smallest wordcross square that contains the surnames of the first
44 U.S. presidents? (Use the names in exercise 108, but change VANBUREN to VAN BUREN.)

111. [21] Find all 8×8 crossword puzzle diagrams that contain exactly (a) 12 3-letter
words, 12 4-letter words, and 4 5-letter words; (b) 12 5-letter words, 8 2-letter words,
and 4 8-letter words. They should have no words of other lengths.

� 112. [28] A popular word puzzle in Brazil, called ‘Torto’ (‘bent’), asks solvers
to find as many words as possible that can be traced by a noncrossing king path
in a given 6 × 3 array of letters. For example, each of the words THE, MATURE,
ART, OF, COMPUTER, and PROGRAMMING can be found in the array shown here.

O C G
F M N
M I P
A U R
T R O
E H G

a) Does that array contain other common words of eight or more letters?

b) Create a 6× 3 array that contains TORTO, WORDS, SOLVER, and many other inter-
esting English words of five or more letters. (Let your imagination fly.)

c) Is it possible to pack ONE, TWO, THREE, . . . , EIGHT, NINE, TEN into a Torto array?

� 113. [21] An ‘alphabet block’ is a cube whose six faces are marked with letters. Is
there a set of five alphabet blocks that are able to spell the 25 words TREES, NODES,
STACK, AVAIL, FIRST, RIGHT, ORDER, LISTS, GIVEN, LINKS, QUEUE, GRAPH, TIMES, BLOCK,
VALUE, TABLE, FIELD, EMPTY, ABOVE, POINT, THREE, UNTIL, HENCE, QUITE, DEQUE? (Each
of these words appears more than 50 times in Chapter 2.)

136

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 137

114. [M25] Let α be a permutation of the cells of a 9×9 array that takes any sudoku
solution into another sudoku solution. We say that α is an automorphism of the sudoku
solution S = (sij) if there’s a permutation π of {1, 2, . . . , 9} such that s(ij)α = sijπ for
0 ≤ i, j < 9. For example, the permutation that takes ij into (ij)α = ji, commonly
called transposition, is an automorphism of (28b), with respect to the permutation
π = (24)(37)(68); but it is not an automorphism of (28a) or (28c).

Show that Algorithm C can be used to find all sudoku solutions that have a given
automorphism α, by defining an appropriate XCC problem.

How many sudoku solutions have transposition as an automorphism?

115. [M25] Continuing exercise 114, how many hypersudoku solutions have auto-
morphisms of the following types? (a) transposition; (b) the transformation of ex-
ercise 67(d); (c) 90◦ rotation; (d) both (b) and (c).

� 116. [M25] Given a graph G on vertices V, let μ(G) be obtained by (i) adding new
vertices V ′ = {v′ | v ∈ V }, with u′ −−− v when u−−− v; and also (ii) adding another
vertex w, with w−−−v′ for all v′ ∈ V ′. (If G hasm edges and n vertices, μ(G) has 3m+n
edges and 2n+1 vertices.) The Mycielski graphsMc are defined for all c ≥ 2 by setting
M2 = K2 and Mc+1 = μ(Mc); they have 7

18
3c − 3

4
2c + 1

2
edges and 3

4
2c − 1 vertices:

M2 = ; M3 = ; M4 = ;

a) Prove that each Mc is triangle-free (contains no subgraph K3).
b) Prove that the chromatic number χ(Mc) = c.
c) Prove that each Mc is in fact “χ-critical”: Removing any edge decreases χ.

� 117. [24] (Graph coloring.) Suppose we want to find all possible ways to label the
vertices of graph G with d colors; adjacent vertices should have different colors.
a) Formulate this as an exact cover problem, with one primary item for each vertex

and with d secondary items for each edge.
b) Sometimes G’s edges are conveniently specified by giving a family {C1, . . . , Cr} of

cliques, where each Cj is a subset of vertices; then u−−−v if and only if u ∈ Cj and
v ∈ Cj for some j. (For example, the 728 edges of the queen graph Q8 can be spec-
ified by just 8+8+13+13 = 42 cliques—one clique for each row, column, and di-
agonal.) Modify the construction of (a) so that there are only rd secondary items.

c) In how many ways can Q8 be 9-colored? (Compare method (a) to method (b).)
d) Each solution to the coloring problem that uses k different colors is obtained

dk = d(d − 1) . . . (d − k + 1) times, because of the symmetry between colors.
Modify (a) and (b) so that each essentially different solution is obtained just
once, when the symmetry-breaking technique of exercise 122 is used.

e) In how many ways can the Mycielski graph Mc be c-colored, for 2 ≤ c ≤ 5?
f) Use Algorithm C to verify that Mc can’t be (c− 1)-colored, for 2 ≤ c ≤ 5.
g) Try (c− 1)-coloring Mc when a random edge is removed, for 2 ≤ c ≤ 5.

118. [21] (Hypergraph coloring.) Color the 64 cells of a chessboard with four colors,
so that no three cells of the same color lie in a straight line of any slope.

119. [21] Show that all solutions to the problem of placing MacMahon’s 24 trian-
gles (58) into a hexagon with all-white border can be rotated and reflected so that the
all-white triangle has the position that it occupies in (59b). Hint: Factorize.

137

From the Library of Melissa Nuno

ptg999

138 COMBINATORIAL SEARCHING 7.2.2.1

120. [M29] Section 2.3.4.3 discussed Hao Wang’s “tetrad tiles,” which are squares
that have specified colors on each side. Find all ways in which the entire plane can be
filled with tiles from the following families of tetrad types, always matching colors at the
edges where adjacent tiles meet [see Scientific American 231, 5 (Nov. 1965), 103, 106]:

a) ; ; ; ; ; ; ; ; ; .

b) ; ; ; ; ; ; ; ; ; .

(The tetrad tiles must not be rotated or flipped.) Hint: Algorithm C will help.

� 121. [M29] Exercise 2.3.4.3–5 discusses 92 types of tetrads that are able to tile the
plane, and proves that no such tiling is toroidal (periodic).
a) Show that the tile called βUS in that exercise can’t be part of any infinite tiling.

In fact, it can appear in only n+ 1 cells of an m× n array, when m,n ≥ 4.
b) Show that, for all k ≥ 1, there’s a unique (2k−1) × (2k−1) tiling for which the

middle tile is δRD. (Consequently, by the infinity lemma, there’s a unique tiling
of the entire plane in which δRD is placed at the origin.)

c) Similarly, show that there are exactly (2, 3, 3, 57) tilings of size (2k−1)× (2k−1)
whose middle tile is respectively (δRU , δLD, δLU , δSU), for all k ≥ 3.

d) How many tilings of the infinite plane have (δRU , δLD, δLU , δSU) at the origin?

� 122. [28] Extend Algorithm C so that it finds only 1/d! of the solutions, in cases
where the input options are totally symmetric with respect to d of the color values,
and where every solution contains each of those color values at least once. Assume that
those values are {v, v+1, . . . , v+d−1}, and that all other colors have values < v. Hint:
Modify the algorithm so that the first such color it assigns is always v, then v+1, etc.

123. [M20] Apply the algorithm of exercise 122 to the following toy problem with
parameters m and n: There are n primary items pk and n secondary items qk, for
1 ≤ k ≤ n; and there are mn options, ‘pk qk:j’ for 1 ≤ j ≤ m and 1 ≤ k ≤ n. (The
solutions to this problem are the mappings of {1, . . . , n} into {1, . . . ,m}, which may also
be regarded as the partitions of {1, . . . , n} into parts labeled {1, . . . ,m}.) Algorithm C
will obviously find mn =

{
n
1

}
m1 +

{
n
2

}
m2 + · · ·+ {n

m

}
mm solutions. But the modified

algorithm finds only the “unlabeled” partitions, of which there are
{
n
1

}
+
{
n
2

}
+· · ·+{n

m

}
.

� 124. [M22] Devise a system of coordinates for representing the positions of equilateral
triangles in patterns such as (59). Represent also the edges between them.

125. [M20] When a set of s triangles is magnified by an integer k, we obtain sk2

triangles. Describe the coordinates of those triangles, in term of the coordinates of the
originals, using the system of exercise 124.

126. [23] Find all solutions of MacMahon’s problem (59), by applying Algorithm C
to a suitable set of items and options based on the coordinate system in exercise 124.
How much time is saved by using the improved algorithm of exercise 122?

127. [M28] There are 412 ways to prescribe the border colors of a hexagon like those in
(59). Which of them can be completed to a color-matched placement of all 24 triangles?

� 128. [25] Eleven of MacMahon’s triangles (58) involve only the first three colors (not
black). Arrange them into a pleasant pattern that tiles the entire plane when replicated.

� 129. [M34] The most beautiful patterns that can be made with MacMahon’s triangles
are those with attractive symmetries, which can be of two kinds: strong symmetry (a
rotation or reflection that doesn’t change the pattern, except for permutation of colors)

138

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 139

or weak symmetry (a rotation or reflection that preserves the “color patches,” the set
of boundaries between different colors).

strong symmetry: ; weak symmetry: .

Exactly how many essentially different symmetrical patterns are possible, in a hexagon?

130. [21] Partition MacMahon’s triangles (58) into three sets of eight, each of
which can be placed on the faces of an octahedron, with matching edge colors.

131. [28] (P. A. MacMahon, 1921.) Instead of using the colored tiles of (58), which
yield (59), we can form hexagons from 24 different triangles in two other ways:

The left diagram shows a “jigsaw puzzle” whose pieces have four kinds of edges. The
right diagram shows “triple three triominoes,” which have zero, one, two, or three spots
at each edge; adjacent triominoes should have a total of three spots where they meet.

a) In how many ways can that jigsaw puzzle make a hexagon? (All pieces are white.)
b) How many triomino arrangements have that pattern of dots at the edges?

132. [40] (W. E. Philpott, 1971.) There are 4624 = 682 tiles in a set that’s like (58),
but it uses 24 different colors instead of 4. Can they be assembled into an equilateral
triangle of size 68, with constant color on the boundary and with matching edges inside?

133. [21] (P. A. MacMahon, 1921.) A set of 24 square tiles can be con-
structed, analogous to the triangular tiles of (58), if we restrict ourselves
to just three colors. For example, they can be arranged in a 4×6 rectangle
as shown, with all-white border. In how many ways can this be done?

134. [23] The nonwhite areas of the pattern in exercise 133 form polyominoes (rotated
45◦); in fact, the lighter color has an S pentomino, while the darker color has both P
and V. How often do each of the twelve pentominoes occur, among all of the solutions?

135. [23] (H. L. Nelson, 1970.) Show that MacMahon’s squares of exercise 133 can be
used to wrap around the faces of a 2× 2× 2 cube, matching colors wherever adjacent.

� 136. [HM28] (J. H. Conway, 1958.) There are twelve ways to label the edges of a pen-
tagon with {0, 1, 2, 3, 4}, if we don’t consider rotations and reflections to be different:

0
1

23

4
0

2

13

4
0

1

24

3
0

2

14

3
0

1

32

4
0

3

12

4
0

1

34

2
0

3

14

2
0

1

42

3
0

4

12

3
0

1

43

2
0

4

13

2

Cover a dodecahedron with these tiles, matching edge numbers. (Reflections are OK.)

139

From the Library of Melissa Nuno

ptg999

140 COMBINATORIAL SEARCHING 7.2.2.1

137. [22] A popular puzzle called Drive Ya Nuts consists of seven
“hex nuts” that have been decorated with permutations of the num-
bers {1, 2, 3, 4, 5, 6}. The object is to arrange them as shown, with
numbers matching at the edges.

3

16

2

4 5

4

25

3

1 6

54

3

2 1

6

3

5

1 4

6

2

4

1 6

5

32

6 5

2

14

3

2

3

45

6

1

a) Show that this puzzle has a unique solution, with that partic-
ular set of seven. (Reflections of the nuts are not OK!)

b) Can those seven nuts form the same shape, but with the label
numbers summing to 7 where they meet ({1, 6}, {2, 5}, or {3, 4})?

c) Hex nuts can be decorated with {1, 2, 3, 4, 5, 6} in 5! = 120 different ways. If
seven of them are chosen at random, what’s the approximate probability that
they define a puzzle with a unique solution, under matching condition (a)?

d) Find seven hex nuts that have a unique solution under both conditions (a) and (b).

138. [25] (Heads and tails.) Here’s a set of 24 square tiles that MacMahon missed(!):{
, , , , , , , , , , , ,

, , , , , , , , , , ,

}
.

They each show two “heads” and two “tails” of triangles, in four colors that exhibit all
possible permutations, with heads pointing to tails. The tiles can be rotated, but not
flipped over. We can match them properly in many ways, such as

or ,

where the 4 × 6 arrangement will tile the plane; the 5 × 5 arrangement has a special
“joker” tile in the middle, containing all four heads.

a) How many 4× 6 arrangements will tile the plane? (Consider symmetries.)

b) Notice that the half-objects at the top, bottom, left, and right of the 5×5 arrange-
ment match the heads in the middle. How many such arrangements are possible?

c) Devise a 5× 5 arrangement that will tile the plane, in conjunction with the 5× 5
pattern shown above. Hint: Use an “anti-joker” tile, which contains all four tails.

139. [M25] Excellent human-scale puzzles have been made by choosing nine of the
24 tiles in exercise 138, redrawing them with whimsical illustrations in place of the
triangles, and asking for a 3× 3 arrangement in which heads properly match tails.

a) How many of the
(
24
9

)
choices of 9 tiles lead to essentially different puzzles?

b) How many of those puzzles have exactly k solutions, for k = 0, 1, 2, . . . ?

140. [29] (C. D. Langford, 1959.) MacMahon colored the edges of his tiles, but we
can color the vertices instead. For example, we can make two parallelograms, or a

140

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 141

truncated triangle, by assembling the 24 vertex-colored analogs of (58):

.

Such arrangements are much rarer than those based on edge matching, because edges
are common to only two tiles but vertices might involve up to six.

a) In how many essentially distinct ways can those shapes be formed?

b) The first parallelogram is a scaled-up version of the “straight hexiamond” ,
with dimensions doubled. How many of the other eleven scaled-up hexiamond
shapes can be assembled from Langford’s tiles? (See exercises 125 and 309.)

c) Each of the seven tetrahexes also yields an interesting shape that consists of 24
triangles. (See exercise 316.) How do Langford’s tiles behave in those shapes?

141. [24] Combining exercises 133 and 140, we can also adapt MacMahon’s 24 tri-
colored squares to vertex matching instead of edge matching. Noteworthy solutions are

; ; .

a) In how many essentially different ways can those 24 tiles be properly packed into
rectangles of these sizes, leaving a hole in the middle of the 5× 5?

b) Discuss tiling the plane with such solutions.

� 142. [23] (Zdravko Zivkovic, 2008.) Edge and vertex matching can be combined into
a single design if we replace MacMahon’s 24 squares by 24 octagons. For example,

(i)

,

(ii)

,

(iii)

illustrate 4 × 6 arrangements in which there’s vertex matching in the (i) left half,
(ii) bottom half, or (iii) northwest and southeast quadrants, while edge matching occurs
elsewhere. (We get vertex matching when an octagon’s center is ‘ ’, edge matching
when it’s ‘ ’.) How many 4× 6 arrangements satisfy (i), (ii), and (iii), respectively?

� 143. [M25] The graph simplex(n, a, b, c, 0, 0, 0) in the Stanford GraphBase is the trun-
cated triangular grid consisting of all vertices xyz such that
x + y + z = n, 0 ≤ x ≤ a, 0 ≤ y ≤ b, and 0 ≤ z ≤ c.
Two vertices are adjacent if their coordinates all differ by at
most 1. The boundary edges always define a convex polygon.
For example, simplex(7, 7, 5, 3, 0, 0, 0) is illustrated here. 250 340 430 520 610 700

151 241 331 421 511 601

052 142 232 322 412 502

043 133 223 313 403

a) What simplex graphs correspond to the three shapes in exercise 140?

141

From the Library of Melissa Nuno

ptg999

142 COMBINATORIAL SEARCHING 7.2.2.1

b) The examples in (a) have 24 interior triangles, but simplex(7, 7, 5, 3, 0, 0, 0) has 29.
Can any other convex polygons be made from 24 triangles, connected edgewise?

c) Design an efficient algorithm that lists all possible convex polygons that can be
formed from exactly N triangles, given N . Hint: Every convex polygon in a
triangular grid can be characterized by the six numbers in its boundary path
x0x1x2x3x4x5, which moves xk steps in direction (60k)◦ for k = 0, 1, . . . , 5. For
example, the boundary of simplex(7, 7, 5, 3, 0, 0, 0) is 503412.

d) Can every convex polygon in a triangular grid be described by a simplex graph?

144. [24] The idea of exercise 142 applies also to triangles and hexagons, allowing us
to do both vertex and edge matching with yet another set of 24 tiles:

(i) , (ii) .

Here there’s vertex matching in the bottom five tiles of (i), and in the upper left five
and bottom five of (ii), with edge matching elsewhere. In how many ways can the big
hexagon be made from these 24 little hexagons, under constraints (i) and (ii)?

� 145. [M20] Many problems that involve an l ×m× n cuboid require a good internal
representation of its (l+1)(m+1)(n+1) vertices, its l(m+1)(n+1) + (l+1)m(n+1) +
(l+1)(m+1)n edges, and its lm(n+1)+l(m+1)n+(l+1)mn faces, in addition to its lmn
individual cells. Show that there’s a convenient way to do this with integer coordinates
(x, y, z) whose ranges are 0 ≤ x ≤ 2l, 0 ≤ y ≤ 2m, 0 ≤ z ≤ 2n.

� 146. [M30] There are 30 ways to paint the colors {a, b, c, d, e, f} on the faces of a cube:

e
c

a

b

d
f f

c

a

b

d
e f

d

a

c

e
b b

d

a

c

e
f b

e

a

d

f
c c

e

a

d

f
b c

f

a

e

b
d d

f

a

e

b
c d

b

a

f

c
e e

b

a

f

c
d

f
c

a

b

e
d d

c

a

b

e
f b

d

a

c

f
e e

d

a

c

f
b c

e

a

d

b
f f

e

a

d

b
c d

f

a

e

c
b b

f

a

e

c
d e

b

a

f

d
c c

b

a

f

d
e

d
c

a

b

f
e e

c

a

b

f
d e

d

a

c

b
f f

d

a

c

b
e f

e

a

d

c
b b

e

a

d

c
f b

f

a

e

d
c c

f

a

e

d
b c

b

a

f

e
d d

b

a

f

e
c

(If a is on top, there are five choices for the bottom color, then six cyclic permutations
of the remaining four.) Here’s one way to arrange six differently painted cubes in a row,
with distinct colors on top, bottom, front, and back (as in “Instant Insanity”), and with
the further proviso that adjacent cubes have matching colors where they share a face:

c
b

a

e

f
d d

c

b

f

a
e e

d

c

a

b
f f

e

d

b

c
a a

f

e

c

d
b b

a

f

d

e
c (∗)

a) Explain why any such arrangement also has the same color at the left and right.

142

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 143

b) Invent a way to name each cube, distinguishing it from the other 29.
c) How many essentially different arrangements like (∗) are possible?
d) Can all 30 cubes be used to make five such arrangements simultaneously?

147. [30] The 30 cubes of exercise 146 can be used to make “bricks”
of various sizes l×m×n, by assembling l ·m ·n of them into a cuboid
that has solid colors on each exterior face, as well as matching colors
on each interior face. For example, each cube naturally joins with its
mirror image to form a 1×1×2 brick. Two such bricks can then join
up to make a 1 × 2 × 2; the one illustrated here has a in front, b in
the back, c at the left and right, d at the top, and e at the bottom.

c
a

d

f

b
e e

a

d

f

b
c

c
a

f

e

b
d d

a

f

e

b
c

a) Assemble all 30 cubes into a magnificent brick of size 2× 3× 5.
b) Compile a catalog of all the essentially different bricks that can be made.

148. [24] Find all the distinct cubes whose faces are colored a, b, or c, when opposite
faces are required to have different colors. Then arrange them into a symmetric shape
(with matching colors wherever they are in contact).

149. [M22] (Vertex-colored tetrahedra.) The graph simplex(3, 3, 3, 3, 3, 0, 0) is a tetra-
hedron of side 3 with 20 vertices. It has 60 edges, which come from 10 unit tetrahedra.

There are ten ways to color the vertices of a unit tetrahedron with four of the five
colors {a, b, c, d, e}, because mirror reflections are distinct. Can those ten colored tetra-
hedra be packed into simplex(3, 3, 3, 3, 3, 0, 0), with matching colors at every vertex?

150. [23] Here’s a classic 19th century puzzle that was the first of its kind: “Arrange
all the pieces to fill the square . . . so that all the links of the Chain join together,
forming an Endless Chain. The Chain may be any shape, so long as all the links join
together, and all the pieces are used. This Puzzle can be done several different ways.”

(The desired square is 8× 8.) In exactly how many different ways can it be solved?

� 151. [30] (Path dominoes.) A domino has six natural attachment points on its bound-
ary, where we could draw part of a path that connects to neighboring dominoes. Thus(
6
2

)
= 15 different partial paths could potentially be drawn on it.

However, only 9 distinct domino patterns with one subpath actually
arise, because the 15 possibilities are reduced under 180◦ rotation to
six pairs, plus three patterns that have central symmetry. Similarly,
there are 27 distinct domino patterns that contain two partial paths
(where the paths might cross each other). An 8 × 9 arrangement,
which nicely illustrates all 36 of the possibilities, is shown; notice
that its path is a Hamiltonian cycle, consisting of a single loop.
a) Only two of the dominoes in the arrangement above are in horizontal position.

Find a single-loop 8× 9 arrangement that has 18 horizontals and 18 verticals.
b) Similarly, find an arrangement that has the maximum number of horizontals.

152. [30] The complete set of path dominoes includes also twelve more patterns:

Arrange all 48 of them in an 8× 12 array, forming a single loop.

143

From the Library of Melissa Nuno

ptg999

144 COMBINATORIAL SEARCHING 7.2.2.1

153. [25] Here are six of the path dominoes, plus a “start” piece and a “stop” piece:

+ .

a) Place them within a 4×5 array so that they define a path from “start” to “stop.”

b) How many distinct “start” or “stop” pieces are possible, if they’re each supposed
to contain a single subpath together with a single terminal point?

c) Design an eight-piece puzzle that’s like (a), but it involves four of the two-subpath
dominoes instead of only two. (Your puzzle should have a unique solution.)

154. [M30] (C. R. J. Singleton, 1996.) After twelve days of Christmas, the person
who sings a popular carol has received twelve partridges in pear trees, plus eleven pairs
of humming birds, . . . , plus one set of twelve drummers drumming, from his or her true
love. Therefore an “authentic” partridge puzzle should try to pack (n+1−k) squares of
size k×k, for 1 ≤ k ≤ n, into a box that contains P (n) = n ·12+(n−1) ·22+ · · ·+1 ·n2
cells. For which values of n is P (n) a perfect square?

155. [20] That “authentic” partridge puzzle has a square solution when n = 6.

a) Exactly how many different solutions does it have in that case?

b) The affinity score of a partridge packing is the number of internal edges that lie
on the boundary between two squares of the same size. (In (62) the scores are 165
and 67.) What solutions to (a) have the maximum and minimum affinity scores?

� 156. [30] Straightforward backtracking will solve the partridge puzzle for n = 8, using
bitwise techniques to represent a partially filled 36 × 36 square in just 36 octabytes,
instead of by treating it as the huge MCC problem (61) and applying a highly gen-
eral solver such as Algorithm M. Compare these two approaches, by implementing
them both. How many essentially different solutions does that partridge puzzle have?

157. [22] Complete the study of small partridges by extending (63) to n = 6 and 7.

158. [23] Another variation of the partridge puzzle when 2 ≤ n ≤ 7 asks for the
smallest rectangular area that will contain k nonoverlapping squares of size k × k for
1 ≤ k ≤ n. For example, here are solutions for n = 2, 3, and 4:

1
2 2

1

2 2
3 3 3

1

2

2

3 3 3
4 4 4 4

(To show optimality for n = 4 one must prove that rectangles of sizes 6 × 17, 8 × 13,
5× 21, and 7× 15 are too small.) Solve this puzzle for n = 5, 6, and 7.

� 159. [21] Suggest a way to speed up the text’s solution to the 5-queens problem, by
using the symmetries of a square to modify the items and options of (64).

160. [21] The 5-queens problem leads to an interesting graph, whose vertices are the
4860 solutions, with u−−− v when we can get from u to v by moving one queen. How
many connected components does this graph have? Is one of them a “giant”?

� 161. [23] Three restricted queen-domination problems are prominent in the literature:

i) No two queens of a solution attack each other.

ii) Each queen of a solution is attacked by at least one of the others.

iii) The queens of a solution form a clique.

(The third and fourth examples in (65) are instances of types (ii) and (i).)

Explain how to formulate each of these variants as an MCC problem, analogous
to (64). How many solutions of each type are present in the 5-queens problem?

144

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 145

162. [24] Say that a Qn is an n × n array of n nonattacking
queens. Sometimes a Qn contains a Qm for m < n; for example,
eight of the possible Q5’s contain a Q4, and the Q17 illustrated
here contains both a Q4 and a Q5.

What is the smallest n such that at least one Qn contains
(a) twoQ4’s? (b) three Q4’s? (c) four Q4’s? (d) five Q4’s? (e) two
Q5’s? (f) threeQ5’s? (g) fourQ5’s? (h) twoQ6’s? (i) threeQ6’s?

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�163. [20] Explain the peculiar rule for setting p in (71).

164. [17] When Algorithm M finds a solution x0x1 . . . xl−1 in step M2, some of the
nodes xj might represent the fact that some primary item will appear in no further
options. Explain how to handle this “null” case, by modifying answer 13.

165. [M30] Consider an MCC problem in which we must choose 2 of 4 options to cover
item 1, and 5 of 7 options to cover item 2; the options don’t interact.
a) What’s the size of the search tree if we branch first on item 1, then on item 2?

Would it better to branch first on item 2, then on item 1?
b) Generalize part (a) to the case when item 1 needs p of p+d options, while item 2

needs q of q + d options, where q > p and d > 0.

166. [21] Extend answer 9 to the more general situation that arises in Algorithm M:

a) Let θp be the number of different choices that will be explored at the current
position of the search tree if primary item p is selected for branching. Express θp
as a function of LEN(p), SLACK(p), and BOUND(p).

b) Suppose θp = θp′ and SLACK(p) = SLACK(p′) = 0, but LEN(p) < LEN(p′). Should
we prefer to branch on p or on p′, based on exercise 165?

167. [24] Let Mp be the number of options that involve the primary item p in a given
MCC problem, and suppose that the upper bound vp for p’s multiplicity is ≥Mp. Does
the precise value of this upper bound affect the behavior of Algorithm M? (In other
words, does vp =∞ lead to the same running time as vp =Mp?)

� 168. [15] An MCC problem might have two identical options α, whose items are
allowed to occur more than once. In such cases we might want the second copy of α to
be in the solution only if the first copy is also present. How can that be achieved?

� 169. [22] Let G be a graph with n vertices. Formulate the problem of finding all of
its t-element independent sets as an MCC problem with 1 + n items and n options.

170. [22] Continuing exercise 169, generate all of G’s t-element kernels—its maximal

independent sets. (Your formulation will now need additional items and options.)

171. [25] Label the vertices of the Petersen graph with ten 5-letter words, in such a
way that vertices are adjacent if and only if their labels have a common letter.

� 172. [29] A snake-in-the-box path in a graph G is a set U of vertices for which the
induced graph G |U is a path. (Thus there are start/stop vertices s ∈ U and t ∈ U that
each have exactly one neighbor in U ; every other vertex of U has exactly two neighbors
in U ; and G |U is connected.)

For example, let G = P4×P4 be the graph of king moves on a 4 × 4
board. The set of kings illustrated at the right is not a snake-in-the-box
path in G; but it becomes one if we remove the king in the corner.

�

���

�

�

�

a) Use Algorithm M to discover all of the longest snake-in-the-box paths that are
possible on an 8 × 8 chessboard, when G is the graph of all (i) king moves;
(ii) knight moves; (iii) bishop moves; (iv) rook moves; (v) queen moves.

145

From the Library of Melissa Nuno

ptg999

146 COMBINATORIAL SEARCHING 7.2.2.1

b) Similarly, a snake-in-the-box cycle is a set for which G |U is a cycle. (In other
words, that induced graph is connected and 2-regular.) What are the longest
possible snake-in-the-box cycles for those five chess pieces?

� 173. [30] (Knight and bishop sudoku.) Diagram (i) shows 27 knights, arranged with
three in each row, three in each column, and three in each 3×3 box. Each of them has
been labeled with the number of others that are a knight’s move away. Diagram (ii)
shows 8 of them, from which the positions of the other 19 can be deduced. Diagrams
(iii) and (iv) are analogous, but for bishops instead of knights: (iii) solves puzzle (iv).

(i)

�3 �1 �1

�2 �0 �4

�1 �1 �2

�1 �3 �1

�1 �3 �0

�5 �2 �3

�3 �2 �4

�3 �3 �3

�2 �1 �1

(ii)

�3 �1

�4

�1

�5

�3 �3 �3

(iii)

�3 �1 �4

�6 �0 �4

�3 �4 �1

�2 �2 �1

�9 �5 �4

�5 �3 �5

�5 �3 �9

�2 �6 �5

�4 �5 �5

(iv)

�3 �1 �4

�1

�5

�9

�2 �6 �5

a) Explain how to find all completions of such diagrams using Algorithm M.
b) Find the unique completions of the following puzzles:

�0 �0 �0

�0 �0

�6

�6

�6 �6

�0 �0

�0

�12

�12

�12

c) Compose additional puzzles like those of (b), in which all clues have the same
numerical labels. Try to use as few clues as possible.

d) Construct a uniquely solvable knight sudoku puzzle that has only three clues.

174. [35] (Nikolai Beluhov, 2019.) Find a uniquely solvable sudoku puzzle with nine
labeled knights that remains uniquely solvable when the knights are changed to bishops.

� 175. [M21] Given an M × N matrix A = (aij) of 0s and 1s, explain how to find all
vectors x = (x1 . . . xM) with 0 ≤ xi ≤ ai for 1 ≤ i ≤ M such that xA = (y1 . . . yN),
where uj ≤ yj ≤ vj for 1 ≤ j ≤ N . (This generalizes the MCC problem by allowing the
ith option to be repeated up to ai times.)

� 176. [M25] Given an M ×N matrix A = (aij) of 0s, 1s, and 2s, explain how to find
all subsets of its rows that sum to exactly (a) 2 (b) 3 (c) 4 (d) 11 in each column, by
formulating those tasks as MCC problems.

177. [M21] Algorithm 7.2.1.5M generates the p(n1, . . . , nm) partitions of the multiset
{n1 · x1, . . . , nm · xm} into submultisets. Consider the special cases where n1 = · · · =
ns = 1 and ns+1 = · · · = ns+t = 2 and s+ t = m.
a) Generate those partitions with Algorithm M, using the previous two exercises.
b) Also generate the q(n1, . . . , nm) multipartitions into distinct multisets.

178. [M22] (Factorizations of an integer.) Use AlgorithmM to find all representations
of 360 as a product n1 ·n2 · . . . ·nt, where (a) 1 < n1 < · · · < nt; (b) 2 ≤ n1 ≤ · · · ≤ nt.

146

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 147

179. [15] By removing duplicate rows and columns, matrix A reduces to A′:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 1 1 0 0
1 1 0 1 1 1
0 1 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1
1 0 1 0 0 0
0 1 0 1 1 1
1 1 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; A′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 1 0
1 1 0 1
0 0 0 1
1 0 1 0
0 1 0 1
1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Derive the exact covers of A from the exact covers of A′.

� 180. [M28] (D. Eppstein, 2008.) Prove that every strict exact cover problem with
parameters 1 ≤ t′≤ t, as defined in (74), contains t′ items i1, . . . , it′ and t+t

′−1 options
op = ‘i1 . . . ip’, for 1 ≤ p ≤ t′; op+q = ‘ . . . it′ . . . ’, for 1 ≤ q < t.

Furthermore, ir ∈ op+q if and only if 1 ≤ q < t− r − t′, for 1 ≤ r ≤ t′.

181. [M20] Find constants cr such that D(5n+r) = 4ncr− 1
3
for n ≥ 3 and 0 ≤ r < 5.

182. [21] (D. Eppstein, 2008.) Find a strict exact cover problem with 8 options, whose
search tree contains 16 nodes and 7 solutions.

183. [46] Let D̂(n) be the maximum number of nodes in Algorithm X’s search tree,

taken over all strict exact cover problems with n options. What is lim supn→∞ D̂(n)1/n?

� 184. [M22] Suppose 0 ≤ t ≤ �n. Is there a strict exact cover problem with n items
that has exactly t solutions? (For example, consider the case n = 9, t = 10000.)

185. [M23] What is the largest number of solutions to a strict exact cover problem
that has N1 primary items and N2 secondary items?

186. [M24] Consider l = 0 when Algorithm X is given the extreme problem of order n.
a) How many updates, un, does it perform when covering i in step X4?
b) How many does it perform in step X5, when the option containing x0 has size k?
c) Therefore derive (84).

187. [HM29] Let X(z) =
∑

n xnz
n/n! generate the sequence 〈xn〉 of (82).

a) Use (84) to prove that X(z) = ee
z∫ z

0
((2t− 1)e4t − (t− 1)e3t + 2te2t + et)e−e

t

dt.

b) Let Tr,s(z) = ee
z∫ z

0
treste−e

t

dt. Prove that Tr,0(z)/r! generates 〈an,r+1〉 in (83).

c) Show that Tr,0(z) = (Tr+1,1(z) + zr+1)/(r + 1); furthermore, when s > 0,

Tr,s(z) =

(r∑
k=0

(−1)krk
sk+1

(Tr−k,s+1(z) + zr−kesz)

)
− (−1)rr!

sr+1
ee
z−1.

d) Therefore X(z) = 22ee
z−1+12T0,0(z)−(2z−1)e3z−5ze2z−(12z+5)ez−12z−18.

� 188. [M21] Prove that the Gould numbers 〈�̂n〉 = 〈0, 1, 1, 3, 9, 31, 121, 523, 2469, . . . 〉
can be calculated rapidly by forming a triangle of numbers analogous to Peirce’s triangle
7.2.1.5–(12): 0

1 1
3 2 1
9 6 4 3
31 22 16 12 9
121 90 68 52 40 31

147

From the Library of Melissa Nuno

ptg999

148 COMBINATORIAL SEARCHING 7.2.2.1

Here the entries �̂n1, �̂n2, . . . , �̂nn of the nth row obey the simple recurrence

�̂nk = �̂(n−1)k+�̂n(k+1), if 1 ≤ k < n; �̂nn = �̂(n−1)1, if n > 2;

and initially �̂11 = 0, �̂22 = 1. Hint: Give a combinatorial interpretation of �̂nk.

189. [HM34] Let ρn = �̂n − ĝ�n (see (86)). We’ll prove that |ρn| = O(e−n/ln
2n�n),

by applying the saddle point method to R(z) =
∑

n ρnz
n/n! = ee

z∫∞
z

e−e
t

dt. The idea

is to show that |R(z)| is rather small when z = ξeiθ, where ξeξ = n as in 7.2.1.5–(24).

a) Express |eez | and |e−ez | in terms of x and y when z = x+ iy.
b) If 0 ≤ θ ≤ π

2
, y = ξ sin θ ≤ 3

2
, 0 < c1 < cos 3

2
, prove |R(ξeiθ)| = O(exp(eξ−c1eξ)).

c) If 0 ≤ θ ≤ π
2
, y = ξ sin θ ≥ 3

2
, 0 < c2 <

9
8
, prove |R(ξeiθ)| = O(exp(eξ − c2e

ξ/ξ)).

d) Consequently ρn−1/�n−1 = O(e−n/ln
2n), as desired.

190. [HM46] Study the signs of the residual quantities ρn = �̂n− ĝ�n in exercise 189.

191. [HM22] The length of the tail of a random set permutation is known to have a
probability distribution whose generating function is G(z) =

∫∞
0

e−x(1 + x)zdx− 1 =∑∞
k=1 ĝkz

k. (The first few probabilities in this distribution are

(ĝ1, ĝ2, . . . , ĝ9) ≈ (.59635, .26597, .09678, .03009, .00823, .00202, .00045, .00009, .00002);

see answer 189.) What is the average length? What is the variance?

192. [HM29] What’s the asymptotic value of ĝn when n is large?

193. [M21] Why do (87) and (88) count updates when matching in complete graphs?

194. [HM23] Consider recurrences of the form X(t+1) = at+tX(t−1). For example,
at = 1 yields the total number of nodes in the search tree for matching Kt+1.
a) Prove that 1 + 2q + (2q)(2q − 2) + · · ·+ (2q)(2q − 2) . . . (2) = �e1/22qq!�.
b) Find a similar “closed formula” for 1+(2q−1)+(2q−1)(2q−3)+ · · ·+(2q−1) ·

(2q− 3) . . . (3)(1). Hint: Use the fact that ex erf(
√
x) =

∑
n≥0 x

n+1/2/(n+1/2)!.
c) Estimate the solution U(2q + 1) of (87) to within O(1).
d) Similarly, give a good approximation to the solution U(2q) of (88).

� 195. [M22] Approximately how many updates does Algorithm X perform, when it is
asked to find all of the perfect matchings of the graph (89)?

� 196. [M29] Given a bounded permutation problem defined by a1 . . . an, consider the
“dual” problem defined by b1 . . . bn, where bk is the number of j such that 1 ≤ j ≤ n
and aj ≥ n + 1 − k. [Equivalently, bn . . . b1 is the conjugate of the integer partition
an . . . a1, in the sense of Section 7.2.1.4.]
a) What is the dual problem when n = 9 and a1 . . . a9 = 246677889?
b) Prove that the solutions to the dual problem are essentially the inverses of the

permutations that solve the original problem.
c) If Algorithm X begins with an a1-way branch on item X1, how many updates

does it perform while preparing for the subproblems at depth 1 of its search tree?
d) How many solutions does a bounded permutation problem have, given a1 . . . an?
e) Give a formula for the total number of updates, assuming that the algorithm

always branches on Xj at depth j − 1 of the search tree.
f) Evaluate the formula of (e) when aj = n for 1 ≤ j ≤ n (that is, all permutations).
g) Evaluate the formula of (e) when aj = min(j+1, n) for 1 ≤ j ≤ n.
h) Evaluate the formula of (e) when aj = min(2j, n) for 1 ≤ j ≤ n.
i) Show, however, that the assumption in (e) is not always correct. How can the

total updates be calculated correctly in general?

148

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 149

197. [M25] Let P (a1, . . . , an) be the set of all permutations p1 . . . pn that solve the
bounded permutation problem for a1 . . . an, given a1 ≤ a2 ≤ · · · ≤ an and aj ≥ j.
a) Prove that P (a1, . . . , an) = {(ntn) . . . (2t2)(1t1) | j ≤ tj ≤ an for 1 ≤ j ≤ n}.
b) Also prove that P (a1, . . . , an) = {σntn . . . σ2t2 σ1t1 | j ≤ tj ≤ an for 1 ≤ j ≤ n},

where σst is the (t+ 1− s)-cycle (t t−1 . . . s+1 s).
c) Let C(p) be the number of cycles in the permutation p, and let I(p) be the number

of inversions. Find the generating functions

C(a1, . . . , an) =
∑

p∈P (a1,...,an)

zC(p) and I(a1, . . . , an) =
∑

p∈P (a1,...,an)

zI(p).

198. [M25] Let πrs = Pr(pr = s), when p is a random element of P (a1, . . . , an).
a) Compute these probabilities when n = 9 and a1a2 . . . a9 = 255667999.
b) If r < r′ and s < s′, show that πrs/πrs′ = πr′s/πr′s′ , when πrs′πr′s′ = 0.

199. [M25] Analyze the behavior of Algorithm X on the 3D matching problem whose
options are ‘ai bj ck’ for 1 ≤ i, j ≤ n and 1 ≤ k ≤ (i ≤ m? m− 1: n).

� 200. [HM25] (A. Björklund, 2010.) We can use polynomial algebra, instead of back-
tracking, to decide whether or not a given 3D matching problem is solvable. Let the
items be {a1, . . . , an}, {b1, . . . , bn}, {c1, . . . , cn}, and assign a symbolic variable to each
option. If X is any subset of C, let Q(X) be the n × n matrix whose entry in row i
and column j is the sum of the variables for all options ‘ai bj ck’ with ck /∈ X.

For example, suppose n = 3. The seven options t: ‘a1 b1 c2’, u: ‘a1 b2 c1’, v: ‘a2
b3 c2’, w: ‘a2 b3 c3’, x: ‘a3 b1 c3’, y: ‘a3 b2 c1’, z: ‘a3 b2 c2’ yield the matrices

X = ∅ {c3} {c2} {c2, c3} {c1} {c1, c3} {c1, c2}

Q(X) =

(
t u 0
0 0 v+w
x y+z 0

)(
t u 0
0 0 v
0 y+z 0

)(
0 u 0
0 0 w
x y 0

)(
0 u 0
0 0 0
0 y 0

)(
t 0 0
0 0 v+w
x z 0

)(
t 0 0
0 0 v
0 z 0

)(
0 0 0
0 0 w
x 0 0

)

(and Q(C) is always zero). The determinant of Q(∅) is u(v+w)x− t(v+w)(y+z).
a) If the given problem has r solutions, prove that the polynomial

S =
∑
X⊂C

(−1)|X| detQ(X)

is the sum of r monomials, each with coefficient ±1. (In the given example it is
uvx− twy.) Hint: Consider the case where all possible options are present.

b) Use this fact to design a randomized algorithm that decides q.s.whether or not a
matching exists, in O(2nn4) steps.

� 201. [M30] Consider the bipartite matching problem that has 3n options, ‘Xj Yk’ for
1 ≤ j, k ≤ n and (j − k) mod n ∈ {0, 1, n− 1}. (Assume that n ≥ 3.)
a) What “natural, intuitively obvious” problem is equivalent to this one?
b) How many solutions does this problem have?
c) How many updates does Algorithm X make when finding all solutions, if the

items are ordered X1, Y1, . . . , Xn, Yn, and if exercise 9 is used in step X3?

202. [13] What is a

b c

d e f g h

i

⊕

A

B C

D E F

G

?

203. [M15] Equation (95) shows that the binary operation T ⊕T ′ on search trees has
an identity element, ‘ ’. Is that operation (a) associative? (b) commutative?

149

From the Library of Melissa Nuno

ptg999

150 COMBINATORIAL SEARCHING 7.2.2.1

204. [M25] True or false: Node αα′ is dominant in T ⊕T ′ if and only if α is dominant
in T and α′ is dominant in T ′. Hint: Express deg(αα′) in terms of deg(α) and deg(α′).

205. [M28] Prove Lemma D, about the structure of T ⊕ T ′.

206. [20] If T is minimally dominant and deg(root(T)) ≤ deg(root(T ′)), show that
it’s easy to describe the tree T ⊕ T ′.

207. [35] The principal SAT solver that we shall discuss later, Algorithm 7.2.2.2C,
maintains focus by computing “activity scores,” which measure recent changes to the
data structures. A similar idea can be applied to Algorithm X, by computing the score

αi = ρt1 + ρt2 + · · · , for each item i,

where ρ (typically 0.9) is a user-specified damping factor, and where i’s list of active
options was modified at times t− t1, t − t2, . . . ; here t denotes the current “time,” as
measured by some convenient clock. When step X3 chooses an item for branching, the
MRV heuristic of exercise 9 rates i by its degree λi = LEN(i); the new heuristic replaces
this by

λ′i =

{
λi, if λi ≤ 1;
1 + λi/(1 + μαi), if λi ≥ 2.

Here μ is another user-specified parameter. If μ = 0, decisions are made as before;
but larger and larger values of μ cause greater and greater attention to be given to the
recently active items, even if they have a somewhat large degree of branching.
a) For example, suppose αi = 1, αj = 1/2, and μ = 1. Which item will be preferable,

i or j, if LEN(i) = LEN(j)+ 1 and 0 ≤ LEN(j) ≤ 4?
b) What modifications to Algorithm X will implement this scheme?
c) What values of ρ and μ will avoid exponential growth, when applied to n inde-

pendent copies of the toy problems (90) and (92)?
d) Does this method save time in the Y pentomino problem of Fig. 73?

� 208. [21] Modify the exact cover problem of Fig. 73 so that none of the Y pentominoes
that occur in an ‘H’ or ‘

H
’ have been flipped over. Hint: To prevent the flipped-over

Y’s marked 8 and b from occurring simultaneously, use the options ‘1c 2c 3c 4c 3b V1b’
and ‘1a 2a 3a 4a 2b V1b’, where V1b is a secondary item.

209. [20] Improve the search tree (93) in the same way that (100) improves on (91),
by considering two bipairs of (92).

210. [21] A “bitriple” (α, β, γ;α′, β′, γ′) is analogous to a bipair, but with (97) re-
placed by α+β+ γ = α′+β′+ γ′. How can we modify an exact cover problem so that
it excludes all solutions in which options α′, β′, and γ′ are simultaneously present?

211. [20] Do the options of the text’s formulation of the Langford pair problem have
any bipairs? How about the n queens problem? And sudoku?

� 212. [M21] If the primary items of an exact cover problem have been linearly ordered,
we can say that the bipair (α, β;α′, β′) is canonical if (i) the smallest item in all
four options appears in α and α′; and (ii) option α is lexicographically smaller than
option α′, when their items have been listed in ascending order.
a) Prove that Theorem S applies to exact coverings that are strong according to this

definition of canonicity. Hint: Show that it’s a special case of the text’s definition.
b) Does such an ordering justify the choices made in (99)?

213. [M21] If π and π′ are two partitions of the same set, say that π < π′ if the
restricted growth string of π is lexicographically less than the restricted growth string

150

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 151

of π′. Let (α, β;α′, β′) be a canonical bipair in the sense of exercise 212. Also let π be
a partition of the items such that α and β are two of its parts, and let π′ be the same
partition but with α′ and β′ substituted. Is π < π′?

� 214. [21] Under the assumptions of Theorem S, how can the set of all solutions to an
exact cover problem be found from the set of all strong solutions?

� 215. [M30] The perfect matching problem on the complete graph K2q+1 is the X2C

problem with 2q+1 primary items {0, . . . , 2q} and (2q+1
2

)
options ‘i j’ for 0 ≤ i < j ≤ 2q.

a) How many bipairs are present in this problem?
b) Say that (i, j, k, l) is excluded if there’s a canonical bipair (α, β;α′, β′) for which

α′ = ‘i j’ and β′ = ‘k l’. Prove that, regardless of the ordering of the options,
the number of excluded quadruples is 2/3 of the number of bipairs.

c) What quadruples are excluded when the options are ordered lexicographically?
d) We reduce the amount of search by introducing a secondary item (i, j, k, l) for

each excluded quadruple, and appending it to the options for ‘i j’ and ‘k l’.
Describe the search tree when this has been done for the quadruples of (c).

e) Show that only Θ(q3) excluded quadruples suffice to obtain that search tree.
f) Order the options cleverly so that the search tree has only 2q + 1 nodes.
g) How many excluded quadruples suffice to obtain that search tree?

216. [25] Continuing exercise 215, experiment with the search trees that are obtained
by (i) choosing a random ordering of the options, and (ii) using onlym of the quadruples
that are excluded by that ordering (again chosen at random).

217. [M32] A bipair of pentominoes (α, β;α′, β′) is a configuration such as

≡
where two pentominoes occupy a 10-cell region in two different ways. In this example
we may write α = S + 00 + 01 + 11 + 12 + 13, β = Y + 02 + 03 + 04 + 05 + 14, α′ =
S+04+05+12+13+14, β′ = Y+00+01+02+03+11; hence α+β = α′+β′ as in (97).

Compile a complete catalog of all bipairs that are possible with distinct pentomi-
noes. In particular, show that each of the twelve pentominoes participates in at least
one such bipair. (It’s difficult to do this by hand without missing anything. One good
approach is to exploit the equation α− α′ = −(β − β′): First find all the delta values
±(α − α′) for each of the twelve pentominoes individually; then study all deltas that
are shared by two or more of them. For example, the S and Y pentominoes both have
00 + 01− 04− 05 + 11− 14 among their deltas.)

� 218. [20] Why must i be uncolored, in the definition of “forcing” for Algorithm P?

219. [20] Suppose p and q are primary items of an XCC problem, and that every option
containing p or q includes an uncolored instance of either i or j (or both), where i and
j are other items; yet p and q never occur in the same option. Prove that every option
that contains i or j, but neither p nor q, can be removed without changing the problem.

220. [28] Step P5 of Algorithm P needs to emulate step C5 of Algorithm C, to see if
some primary item will lose all of its options. Describe in detail what needs to be done.

221. [23] After all options that begin with item i have been examined in step P5, those
that were found to be blocked appear on a stack, starting at S. Explain how to delete
them. Caution: The problem might become unsolvable when an option goes away.

222. [22] Before item i is deleted in step P7, it should be removed from every option
that contains S, by changing the corresponding node into a spacer. All options that
involve i but not S should also be deleted. Spell out the low-level details of this process.

151

From the Library of Melissa Nuno

ptg999

152 COMBINATORIAL SEARCHING 7.2.2.1

223. [20] Implement the output phase of Algorithm P (step P10).

� 224. [M21] Construct an exact cover problem with O(n) options that causes Algo-
rithm P to perform n rounds of reduction (that is, it executes step P2 n times).

225. [21] Why does Algorithm P remove 235 options in the 6×10 pentomino problem,
but only 151 options in the “one-sided” 6× 15 case?

226. [M20] Assume that a1 . . . a2n is a Langford pairing, and let a′k = a2n+1−k so that
a′1 . . . a

′
2n is the reverse of a1 . . . a2n. Are there any obvious relations between the sums

Σ1 =
∑2n

k=1 kak, Σ′1 =
∑2n

k=1 ka
′
k, Σ2 =

∑2n
k=1 k

2ak, Σ′2 =
∑2n

k=1 k
2a′k?

What about the analogous sums S =
∑2n

k=1 ka
2
k and S′ =

∑2n
k=1 k(a

′
k)

2?

227. [10] What cost should be assigned to option (16), to minimize (a) Σ2? (b) S?

228. [M30] The Langford pairings for n = 16 that minimize Σ2 turn out to be precisely
the 12,016 pairings that minimize Σ1; and their reversals turn out to be precisely the
12,016 pairings that maximize both Σ2 and Σ1. Is this surprising, or what?

� 229. [25] What Langford pairings for n=16 are lexicographically smallest and largest?

230. [20] Explain how Algorithm X$, which minimizes the sum of option costs, can
also be used to maximize that sum, in problems like that of Fig. 74.

231. [21] What’s the maximum SCRABBLE©R -like score you can achieve by filling the
grid below with 4-letter and 5-letter words that all are among the (a) 1000 (b) 2000
(c) 3000 most common words of English having that many letters?

double word score

triple letter score

double letter score

triple word score

A1 B3 C3 D2 E1 F4 G2
H4 I1 J8 K5 L1 M3 N1
O1 P3 Q10 R1 S1 T1
U1 V4 W4 X8 Y4 Z10

For example, WATCH|AGILE|RADAR|TREND scores 26+10+7+18+14+9+5+7+24 points.

232. [20] The costs supplied to Algorithm X$must be nonnegative integers; but d(i, j)
in the 16 queens problem of Fig. 74 is never an integer. Is it OK to use $�d(i, j)� instead
of $d(i, j) for the cost of placing a queen in cell (i, j)?

233. [20] Minimize and maximize the product of the 16 queen distances, not the sum.

234. [M20] What is the minimum-cost placement of n nonattacking queens when the
cost of a queen in cell (i, j) is $d(i, j)2, the square of its distance from the center?

� 235. [21] Solve the problem of Fig. 74 using the (integer) costs $4d(i, j)4.

� 236. [M41] When the cost of a queen in cell (i, j) is $d(i, j)N,
for larger and larger values of N , the minimum-cost solutions
to the n queens problem eventually converge to a fixed pattern.
And those “ultimate” solutions turn out to be quite attractive—
indeed, this family of solutions is arguably the most beautiful of
all! For example, the case n = 16, illustrated here, can actually be
discovered by hand, with a few moments of concentrated thought.
Notice that it is doubly symmetric and nicely “rounded.”

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

Discover such optimum placements for as many n as you can (not by hand).

� 237. [M21] True or false: Two solutions to the text’s prime square problem cannot
have the same product unless they are transposes of each other.

152

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 153

238. [24] Find 3×n arrays filled with distinct 3-digit and n-digit primes, for 3 ≤ n ≤ 7,
having the minimum and maximum possible product.

� 239. [M27] Given a family {S1, . . . , Sm} of subsets of {1, . . . , n}, together with posi-
tive weights (w1, . . . , wm), the optimum set cover problem asks for a minimum-weight
way to cover {1, . . . , n} with a union of Sj ’s. Formulate this problem as an optimum

exact cover problem, suitable for solution by Algorithm X$. Hint: Maximize the weight
of all sets that do not participate in the cover.

240. [16] What usable 6-state options include MT and TX in the USA-partition problem?

241. [21] Does preprocessing by Algorithm P remove the useless option (114)?

� 242. [M23] Extend the algorithm of exercise 7.2.2–78 so that it visits only subgraphs
that don’t cut off connected regions whose size isn’t a sum of integers in [L . . U).

243. [M20] Assume that every item i of an XCC problem has been given a weight wi,
and that every solution to the problem involves exactly d options. If the cost of every
option is $(x2), where x is the sum of the option’s weights, prove that every minimum-
cost solution also minimizes

∑d
k=1(xk − r)2, for any given real number r.

244. [M21] The induced subgraphs G | U of a graph or digraph G have an interior

cost , defined to be the number of ordered pairs of vertices in U that are not adjacent.
For example, the interior cost of option (114) is 20, which is the maximum possible for
six connected vertices of an undirected graph.

Consider any exact cover problem whose items are the vertices of G, and whose
options all contain exactly t items. True or false: A solution that minimizes the sum of
the interior costs also minimizes the sum of the exterior costs, as defined in the text.

245. [23] Augment the USA graph by adding a 49th vertex, DC, adjacent to MD and VA.
Partition this graph into seven connected components, (a) all of size 7, removing as
few edges as possible; (b) of any size, equalizing their populations as much as possible.

246. [22] The left-hand graph partition in (116) has a bizarre component that con-
nects AZ with ND and OK, without going through NM, CO, or UT. Would we obtain more
reasonable-looking solutions if we kept the same options, but minimized the exterior
costs instead of the squared populations? (That is, on the left we’d consider the 34,111
options with population in [37 . . 39] million, plus two options that include New York,
New England, and possibly New Jersey. The options of the right-hand example would
again be the connected subsets with population in [50.5 . . 51.5] million.)

Consider also minimizing the interior costs, as defined in exercise 244.

247. [23] Specify step C1$, which takes the place of step C1 when Algorithm C is
extended to Algorithm C$. Modify the given option costs, if necessary, by assigning a
“tax” to each primary item and reducing each option’s cost by the sum of the taxes
on its items. These new costs should be nonnegative; and every primary item should
belong to at least one option whose cost is now zero. Be sure to obey condition (118).

248. [22] Let ϑ = T −Cl in step C3$, where T is the current cutoff threshold and Cl is
the cost of the current partial solution on levels less than l. Explain how to choose an
active item i that probably belongs to the fewest options of cost < ϑ. Instead of taking
the time to make a complete search, assume conservatively that there are LEN(i) such
items, after verifying that item i has at least L of them, where L is a parameter.

249. [21] A set of dk costs, with 0 ≤ c1 ≤ c2 ≤ · · · ≤ cdk, is said to be bad if
ck + c2k + · · · + cdk ≥ θ. Design an “online algorithm” that identifies a bad set as
quickly as possible, when the costs are learned one by one in arbitrary order.

153

From the Library of Melissa Nuno

ptg999

154 COMBINATORIAL SEARCHING 7.2.2.1

For example, suppose d = 6, k = 2, and θ = 16. If costs appear in the order
(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8), your algorithm should stop after seeing the 2.

250. [21] Users of Algorithm C$ are allowed to supply hints that speed up the com-
putation, by specifying (i) a set Z of characters, such that every element of Z is the
first character of exactly one primary item in every option; also (ii) a number z > 0,
meaning that every option contains exactly z primary items whose names don’t begin
with a character in Z. (For example, Z = {p, r, c, b} in the sudoku options (30); z = 1
in options (110). In the options (16) for Langford pairs, we could change the name of
each numeric item i to ‘!i’, then let Z = {!} and z = 2.) Explain how to use these hints
to supply an early-cutoff test at the beginning of step C3$, as explained in the text.

251. [18] If a given problem is solvable, when does Algorithm Z first discover that fact?

� 252. [20] Algorithm Z produces the ZDD (120) from the options (121) if step Z3
simply chooses the leftmost item i1 = RLINK(0) instead of using the MRV heuristic.
What ZDD would have been obtained if the method of exercise 9 had been used instead?

� 253. [21] Extend Algorithm Z so that it reports the total number of solutions.

� 254. [28] The signature σ computed by Algorithm Z in step Z2 is supposed to char-
acterize the current subproblem completely. It contains one bit for each primary item,
indicating whether or not that item still needs to be covered.

a) Explain why one bit isn’t sufficient for secondary items with colors.

b) Suggest a good way to implement the computation of σ.

c) Algorithm C uses the operations hide′ and unhide′ in (50)–(57), in order to
avoid unnecessary accesses to memory in nodes for secondary items. Explain
why Algorithm Z does not want to use those optimizations. Hint: Algorithm Z
needs to know whether the option list for a secondary item is empty.

d) When the list for item i is purified, its options of the wrong color are removed from
other lists. But they remain on list i, in order to be unpurified later. How then
can Algorithm Z know when list i is no longer relevant to the current subproblem?

255. [HM29] Express the exact number of updates made by Algorithm Z when it finds
the perfect matchings of KN , as well as the exact number of ZDD nodes produced, in
terms of Fibonacci numbers. Hint: See exercise 193.

� 256. [M23] What is the behavior of Algorithm Z when it is asked to find all perfect
matchings of the “bizarre” graph (89)?

� 257. [21] How does Algorithm Z do on the “extreme” exact cover problem, with n
items and 2n − 1 options? (See the discussion preceding (82).)

a) What signatures are formed in step Z2?

b) Draw the schematic ZDD, analogous to (123), when n = 4.

258. [HM21] How many updates does Algorithm Z perform, in that extreme problem?

259. [M25] Exercise 196 analyzes the behavior of Algorithm X on the bounded per-
mutation problem defined by a1 . . . an. Show that Algorithm Z is considerably faster,
by determining the number of memos, ZDD nodes, and updates when a1a2 . . . an−1an
is (a) nn . . . n n [with n! solutions]; (b) 2 3 . . . n n [with 2n−1 solutions]. Assume that
the items are X1, X2, . . . , Xn, Y1, Y2, . . . , Yn, in that order.

260. [M21] Exercises 14 and 201 are bipartite matching problems related to choosing
seats at a circular table. Test Algorithm Z empirically on those problems, and show
that it solves the latter in linear time (despite exponentially many solutions).

154

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—FIRST SET 155

� 261. [23] Let G be a directed acyclic graph, with source vertices S and sink vertices T .
a) Use Algorithm C (or Z) to find all sets of m vertex-disjoint paths from S to T .
b) Also find all such sets of paths from sk to tk for 1 ≤ k ≤ m, given sk and tk.
c) Apply (a) to find all sets of n− 1 disjoint paths that enter an n×n square at the

north or east edge, proceed by south and/or west steps, and exit at the south or
west edge, avoiding the corners. (A random 16× 16 example is shown.)

1 2 3 4 5 6 7 8
3 4 1 2 0 8 5 6
1 2 3 8 5 6 0 7
4 8 5 2 3 7 0 0
5 1 4 8 6 2 3 7
0 0 0 1 4 7 6 2
0 5 8 7 6 1 4 3
8 7 6 5 4 3 2 1

d) Apply (b) to find all vertex-disjoint, downward paths of eight knights that start
on the top row of a chessboard and end on the bottom row in reverse order.

� 262. [M23] One of the advantages of Algorithm Z is that a ZDD allows us to generate
uniformly random solutions. (See the remarks following 7.1.4–(13).)
a) Determine the number of ZDD nodes output by Algorithm Z for the set of all

domino tilings of Sn, where Sn is the shape obtained after right triangles of side 7
have been removed from each corner of a 16× n rectangle:

How many tilings are possible for S16 (the Aztec diamond of order 8)? For S32?
b) Similarly, determine the ZDD size for the family of all diamond tilings of Tn—

the grid simplex(n+16, n+8, 16, n+8, 0, 0, 0), a hexagon of sides (8, 8, n, 8, 8, n):

263. [24] Compare the time and space requirements of Algorithms C and Z when they
are applied to (a) the 16 queens problem; (b) pentominoes, as in exercises 271 and 274;
(c) MacMahon’s triangle problem, as in exercise 126; (d) the generalized de Bruijn
sequences of exercise 95; (e) the “right word stair” problem of exercise 90; (f) the 6× 6
“word search” problem of exercise 105; (g) the kakuro problem in exercise 431.

264. [M21] Suppose step Z3 always chooses the first active item i = RLINK(0), instead
of using the MRV heuristic, unless some other active item has LEN(i) = 0. Prove that
Algorithm Z will then output an ordered ZDD.

� 265. [22] Prove that Algorithm Z will never produce identical ZDD nodes (ōi? li: hi) =
(ōj? lj : hj) for i = j, if all items are primary. But secondary items can cause duplicates.

155

From the Library of Melissa Nuno

ptg999

156 COMBINATORIAL SEARCHING 7.2.2.1

EXERCISES—Second Set

Thousands of fascinating recreational problems have been based on polyominoes and
their polyform cousins (the polycubes, polyiamonds, polyhexes, polysticks, . . .). The
following exercises explore “the cream of the crop” of such classic puzzles, as well as a
few gems that were not discovered until recently.

In most cases the point of the exercise is to find a good way to discover all
solutions, usually by setting up an appropriate exact cover problem that can be solved
without taking an enormous amount of time.

� 266. [25] Sketch the design of a utility program that will create sets of options by
which an exact cover solver will fill a given shape with a given set of polyominoes.

267. [18] Using Conway’s piece names, pack five pentominoes into the shape
so that they spell a common English word when read from left to right.

� 268. [21] There are 1010 ways to pack the twelve pentominoes into a 5× 12 box, not
counting reflections. What’s a good way to find them all, using Algorithm X?

269. [21] How many of those 1010 packings decompose into 5× k and 5× (12−k)?
270. [21] In how many ways can the eleven nonstraight pentominoes be packed into
a 5× 11 box, not counting reflections as different? (Reduce symmetry cleverly.)

271. [20] There are 2339 ways to pack the twelve pentominoes into a 6× 10 box, not
counting reflections. What’s a good way to find them all, using Algorithm X?

272. [23] Continuing exercise 271, explain how to find special kinds of packings:
a) Those that decompose into 6× k and 6× (10−k).
b) Those that have all twelve pentominoes touching the outer boundary.
c) Those with all pentominoes touching that boundary except for V, which doesn’t.
d) Same as (c), with each of the other eleven pentominoes in place of V.
e) Those with the minimum number of pentominoes touching the outer boundary.
f) Those that are characterized by Arthur C. Clarke’s description, as quoted below.

That is, the X pentomino should touch only the F (aka R), the N (aka S), the U, and
the V—no others.

Very gently, he replaced the titanite cross

in its setting between the F, N, U, and V pentominoes.

— ARTHUR C. CLARKE, Imperial Earth (1976)

273. [25] All twelve pentominoes fit into a 3×20 box only in two ways, shown in (36).
a) How many ways are there to fit eleven of them into that box?
b) In how many solutions to (a) are the five holes nonadjacent, kingwise?
c) In how many ways can eleven pentominoes be packed into a 3× 19 box?

274. [21] There are five different tetrominoes, namely

square

;

straight

;

skew

;

ell

;

tee

.

In how many essentially different ways can each of them be packed into an 8×8 square
together with the twelve pentominoes?

275. [21] If an 8×8 checkerboard is cut up into thirteen pieces, representing the twelve
pentominoes together with one of the tetrominoes, some of the pentominoes will have
more black cells than white. Is it possible to do this in such a way that U, V, W, X,
Y, Z have a black majority while the others do not?

276. [18] Design a nice, simple tiling pattern that’s based on the five tetrominoes.

156

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—SECOND SET 157

277. [25] How many of the 6× 10 pentomino packings are strongly three-colorable, in
the sense that each individual piece could be colored red, white, or blue in such a way
that no pentominoes of the same color touch each other—not even at corner points?

� 278. [32] Use the catalog of bipairs in exercise 217 to reduce the number of 6×10 pen-
tomino packings, listing strong solutions only (see Theorem S). How much time is saved?

279. [40] (H. D. Benjamin, 1948.) Show that the twelve pentominoes can be wrapped
around a cube of size

√
10 ×√

10 ×√
10. For example, here are front and back views

of such a cube, made from twelve colorful fabrics by the author’s wife in 1993:

(Photos by
Héctor Garćıa)

What is the best way to do this, minimizing undesirable distortions at the corners?

� 280. [M26] Arrange the twelve pentominoes into a Möbius strip of width 4. The
pattern should be “faultfree”: Every straight line must intersect some piece.

� 281. [20] The white cells of a (2n+1)×(2n+1) checkerboard, with black corners, form
an interesting graph called the Aztec diamond of order n; and the black cells form the
Aztec diamond of order n+1/2. For example, the diamonds of orders 11/2 and 13/2 are

(i) and (ii) ,

except that (ii) has a “hole” of order 3/2. Thus (i) has 61 cells, and (ii) has 80.

a) Find all ways to pack (i) with the twelve pentominoes and one monomino.

b) Find all ways to pack (ii) with the 12 pentominoes and 5 tetrominoes.

Speed up the process by not producing solutions that are symmetric to each other.

� 282. [22] (Craig S. Kaplan.) A polyomino can sometimes be surrounded by non-
overlapping copies of itself that form a fence: Every cell that touches the polyomino—
even at a corner— is part of the fence; conversely, every piece of the fence touches the
inner polyomino. Furthermore, the pieces must not enclose any unoccupied “holes.”

Find the (a) smallest and (b) largest fences for each of the twelve pentominoes.
(Some of these patterns are unique, and quite pretty.)

283. [22] Solve exercise 282 for fences that satisfy the tatami condition of exercise
7.1.4–215: No four edges of the tiles should come together at any “crossroads.”

� 284. [27] Solomon Golomb discovered in 1965 that there’s only one placement
of two pentominoes in a 5×5 square that blocks the placement of all the others.

Place (a) {O,P,U,V} and (b) {P,R,T,U} into a 7 × 7 square in such a
way that none of the other eight will fit in the remaining spaces.

157

From the Library of Melissa Nuno

ptg999

158 COMBINATORIAL SEARCHING 7.2.2.1

285. [21] (T. H. O’Beirne, 1961.) The one-sided pentominoes are the eighteen distinct
5-cell pieces that can arise if we aren’t allowed to flip pieces over:

Notice that there now are two versions of P, Q, R, S, Y, and Z.
In how many ways can all eighteen of them be packed into rectangles?

286. [21] If you want to pack the twelve pentominoes into a 6×10 box without turning
any pieces over, 26 different problems arise, depending on the orientations of the one-
sided pieces. Which of those 64 problems has (a) the fewest (b) the most solutions?

� 287. [23] A princess asks you to pack an m×n box with pentominoes, rewarding you
with $c · (ni + j) if you’ve covered cell (i, j) with piece c, where c = (1, 2, . . . , 12) for
pieces (O,P, . . . ,Z). (The most valuable packing will be “closest to alphabetic order.”)

Use Algorithm X$ to maximize your bounty when packing boxes of sizes 4× 15,
5 × 12, 6 × 10, 10 × 6, 12 × 5, and 15 × 4. Consider also the princess’s circle-shaped
subset of a 9×9 box, where you are to cover only the 60 cells whose distances from the
center are between 1 and

√
18. How do the running times of Algorithm X$ compare to

the amounts of time that Algorithm X would take to find all solutions?

288. [21] Similarly, pack the one-sided pentominoes optimally into 9× 10 and 10× 9.

� 289. [29] (Pentominoes of pentominoes.) Magnify the 3× 20 pentomino packing (36)
by replacing each of its unit cells by (a) 3× 4 rectangles; (b) 4× 3 rectangles. In how
many ways can the resulting 720-cell shape be packed with twelve complete sets of
twelve pentominoes, using one set for each of the original pentomino regions?

(c) Also partition the 720-cell shape below into 3× 20 approximately square 12-
cell regions, by assigning each gray cell to an adjacent region. (This shape has been
superimposed on a grid whose

√
12×√

12 regions are perfectly square.) Minimize the
total perimeter of the 60 resulting regions, and try for a pleasantly symmetrical solution.

Use your partition to present a scaled-up version of (36), again with 12 complete sets.

290. [21] When tetrominoes are both checkered and one-sided (see exercises 275 and
285), ten possible pieces arise. In how many ways can all ten of them fill a rectangle?

291. [24] (A puzzle a day.) Using the two trominoes, the five tetrominoes, and three
of the pentominoes, one can cover up 11 of the 12 “months” and 30 of the 31 “days”
in the following pair of diagrams, thereby revealing the current month and day:

I II III IV

V VI VII VIII

IX X XI XII

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31

Which of the
(
12
3

)
sets of three pentominoes always allow this to be done?

158

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—SECOND SET 159

292. [20] There are 35 hexominoes, first enumerated in 1934
by the master puzzlist H. D. Benjamin. At Christmastime
that year, he offered ten shillings to the first person who
could pack them into a 14×15 rectangle—although he wasn’t
sure whether or not it could be done. The prize was won
by F. Kadner, but not as expected: Kadner proved that the
hexominoes actually can’t be packed into any rectangle! Nev-
ertheless, Benjamin continued to play with them, eventually
discovering that they fit nicely into the triangle shown here.

Prove Kadner’s theorem. Hint: See exercise 275.

293. [24] (Frans Hansson, 1947.) The fact that 35 = 12 + 32 + 52 suggests that we
might be able to pack the hexominoes into three boxes that represent a single hexomino
shape at three levels of magnification, such as

.

For which hexominoes can this be done?

� 294. [30] Show that the 35 hexominoes can be packed into five “castles”:

.

In how many ways can this be done?

295. [41] For which values of m can the hexominoes be packed into a box like this?

m

m

296. [41] Perhaps the nicest hexomino packing uses a 5× 45 rectangle with 15 holes

,

proposed by W. Stead in 1954. In how many ways can the 35 hexominoes fill it?

297. [24] (P. Torbijn, 1989.) Can the 35 hexominoes be packed into six 6×6 squares?

� 298. [22] In how many ways can the twelve pentominoes be placed into
an 8× 10 rectangle, leaving holes in the shapes of the five tetrominoes?
(The holes should not touch the boundary, nor should they touch each
other, even at corners; one example is shown at the right.) Explain how
to encode this puzzle as an XCC problem.

299. [39] If possible, solve the analog of exercise 298 for the case of 35 hexominoes in
a 5× 54 rectangle, leaving holes in the shapes of the twelve pentominoes.

� 300. [23] In how many ways can the twelve pentominoes be arranged in a 10 × 10
square, filling exactly six of the cells in every row and exactly six of the cells in every
column, if we also require that (a) the cells on both diagonals are completely empty?
(b) the cells on both diagonals are completely filled? (c) the design is really interesting?

159

From the Library of Melissa Nuno

ptg999

160 COMBINATORIAL SEARCHING 7.2.2.1

301. [25] Here’s one way to place the twelve pentominoes into a 5×5 square, covering
the cells of rows (1, 2, 3, 4, 5) exactly (2, 3, 2, 3, 2) times:

QY SX ST ST RT

QXY XYZ RXZ RST RSV

QY XZ UW RT UV

QYZ QWZ UVW PUV PUV

OW OW OP OP OP

a) How many such placements are possible?
b) Suppose we’ve placed O first, P next, Q next, . . . , Z last, when making the

arrangement above. Then Z is above W is above V is above U is above P is above O;
hence the pentominoes have been stacked up on six levels. Show that a different
order of placement would require only four levels.

c) Find a solution to (a) that needs only three levels.
d) Find a solution to (a) that can’t be achieved with only four levels.

302. [26] Say that an n-omino is “small” if it fits in a (
√
n+ 1)× (

√
n+ 1) box, and

“slim” if it contains no 2 × 2 tetromino. Thus, for example, pentominoes O, Q, S, Y
aren’t small; P isn’t slim.
a) How many nonominoes are both small and slim?
b) Fit nine different small-and-slim nonominoes into a 9× 9 box.
c) Use a solution to (b) as the basis of a jigsaw sudoku puzzle with a unique solution.

The clues of your puzzle should be the initial digits of π.

� 303. [HM35] A parallelogram polyomino, or “parallomino” for short, is a polyomino
whose boundary consists of two paths that each travel only north and/or east. (Equiva-
lently, it is a “staircase polygon,” “skew Young tableau,” or a “skew Ferrers board,” the
difference between the diagrams of two tableaux or partitions; see Sections 5.1.4 and
7.2.1.4.) For example, there are five parallominoes whose boundary paths have length 4:

NNNE
ENNN ; NNEE

ENEN ; NNEE
EENN ; NENE

EENN ; NEEE
EEEN .

a) Find a one-to-one correspondence that maps the set of ordered trees withm leaves
and n nodes into the set of parallominoes with width m and height n−m. The
area of each parallomino should be the path length of its corresponding tree.

b) Study the generating function G(w, x, y) =
∑

parallominoesw
areaxwidthyheight.

c) Prove that the parallominoes whose width-plus-height is n have total area 4n−2.
d) Part (c) suggests that we might be able to pack all of those parallominoes into a

2n−2×2n−2 square, without rotating them or flipping them over. Such a packing
is clearly impossible when n = 3 or n = 4; but is it possible when n = 5 or n = 6?

304. [M25] Prove that it’s NP-complete to decide whether or not n given polyominoes,
each of which fits in a Θ(logn)×Θ(logn) square, can be exactly packed into a square.

305. [25] When a square grid is scaled by 1/
√
2 and rotated 45◦, we can

place half of its vertices on top of the original ones; the other “odd-parity”
vertices then correspond to the centers of the original square cells.

Using this idea we can glue a small domino of area 1 over portions
of an ordinary domino of area 2, thereby obtaining ten distinct two-layer
pieces called the windmill dominoes:

160

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—SECOND SET 161

a) Arrange four windmill dominoes so that the upper layer resembles a windmill.
b) Place all ten windmill dominoes inside a 4× 5 box, without overlapping.
c) Similarly, pack them all into a 2× 10 box.
d) Place them so that the upper layer fills a (4/

√
2)× (5/

√
2) rectangle.

e) Similarly, fit the upper layer into a (2/
√
2)× (10/

√
2) rectangle.

In each case (a)–(e), use Algorithm X to count the total number of possible placements.
Also look at the output and choose arrangements that are especially pleasing.

� 306. [30] (S. Grabarchuk, 1996.) In how many ways can the ten windmill dominoes
be arranged so that the 20 large squares define a snake-in-the-box cycle, in the sense
of exercise 172(b), and so do the 20 small squares? (For example, arrangements like

satisfy one snake-in-the-box condition but not the other.)

307. [M21] If a (3m+1)×(3n+2) box is packed with 3mn+2m+n straight trominoes
and one domino, where must the domino be placed?

308. [22] A polyiamond is a connected set of triangles in a triangular grid, inspired by
the diamond — just as a polyomino is a connected set of squares in a square grid, in-
spired by the domino . Thus we can speak of moniamonds, diamonds, triamonds, etc.
a) Extend exercise 266 to the triangular grid, using the coordinate system of exer-

cise 124. How many base placements do each of the tetriamonds have?
b) Find all ways to pack the pentiamonds into a convex polygon (see exercise 143).
c) Similarly, find all such ways to pack the one-sided pentiamonds.

309. [24] The hexiamonds are particularly appealing, because— like pentominoes—
there are 12 of them. Here they are, with letter names suggested by J. H. Conway:

A B C D E F G H I J K L

a) How many base placements do they have?
b) In how many ways can they be packed into convex polygons, as in exercise 308?

310. [23] What’s the smallest m for which the 12 hexiamonds fit without overlap in

m

?

Find a pleasant way to place them inside of that smallest box.

161

From the Library of Melissa Nuno

ptg999

162 COMBINATORIAL SEARCHING 7.2.2.1

� 311. [30] (Hexiamond wallpaper.) Place the twelve hexiamonds into a region of N
triangles, so that (i) shifted copies of the region fill the plane; (ii) the hexiamonds of the
resulting infinite pattern do not touch each other, even at vertices; (iii) N is minimum.

312. [22] The following shape can be folded, to cover the faces of an octahedron:

Fill it with hexiamonds so that they cross the folded edges as little as possible.

� 313. [29] (Hexiamonds of hexiamonds.) A “whirl,” shown here, is an inter-
esting dodeciamond that tiles the plane in a remarkably beautiful way.

If each triangle ‘ ’ of a hexiamond is replaced by a whirl, in how many ways can
the resulting 72-triangle shape be packed with the full set of hexiamonds? (Exercise
289 discusses the analogous problem for pentominoes.)

Consider also using “flipped whirls,” the left-right reflections of each whirl.

� 314. [28] (G. Sicherman, 2008.) Can the four pentiamonds be used to make two
10-iamonds of the same shape? Formulate this question as an exact cover problem.

315. [20] A polyhex is a connected shape formed by pasting hexagons together at
their edges, just as polyominoes are made from squares and polyiamonds are made from
triangles. For example, there’s one monohex and one dihex, but there are three trihexes.
Chemists have studied polyhexes since the 19th century, and named the small ones:

benzene = ; naphthalene = ;

anthracene = , phenanthrene = , phenalene = ; etc.

(Groups of six carbon atoms can bond together in a nearly planar fashion, forming long
chains of hexagons, with hydrogen atoms attached. But the correspondence between
polyhexes and polycyclic aromatic hydrocarbons is not exact.)

Represent the individual hexagons of an infinite grid by Cartesian-like coordinates

· · ·
51 41 31 21 11 01 11 21 31 41

40 30 20 10 00 10 20 30 40

41 31 21 11 01 11 21 31 41 51

· · ·

where 1 = −1, 2 = −2, etc. Extending exercises 266 and 308(a), explain how to find the
base placements of a polyhex, given the coordinates of its cells when placed on this grid.

316. [20] Show that the complete set of trihexes and tetrahexes can be packed nicely
into a rosette that consists of 37 concentric hexagons. In how many ways can it be done?

317. [22] (Tetrahexes of tetrahexes.) If we replace each hexagon of a tetrahex by a
rosette of seven hexagons, we get a 28-hex. In how many ways can that scaled-up shape
be packed with the seven distinct tetrahexes? (See exercises 289 and 313.)

162

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—SECOND SET 163

� 318. [20] Let’s say that the T-grid is the set of all hexagons xy with x ≡ y (modulo 3):

51 41 31 21 11 01 11 21 31 41

50 40 30 20 10 00 10 20 30 40 50

41 31 21 11 01 11 21 31 41 51

Show that there’s a one-to-one correspondence between the hexagons of the T-grid and
the triangles of the infinite triangular grid, in which every polyiamond corresponds
to a polyhex. (Therefore the study of polyiamonds is a special case of the study of
polyhexes!) Hint: Exercise 124 discusses a coordinate system for representing triangles.

319. [21] After polyominoes, polyiamonds, and polyhexes, the next most popular
polyforms are the polyaboloes, originally proposed by S. J. Collins in 1961. These are
the shapes obtainable by attaching isosceles right triangles at their edges; for example,
there are three diaboloes: { , , }. Notice that any n-abolo corresponds to
a 2n-abolo, when it has been scaled up by

√
2.

The 14 tetraboloes can be named by using rough resemblances to hexiamonds:

A B C D E F G H I J K L M N

Show that the study of polyaboloes can be reduced to the study of (slightly
generalized) polyominoes, just as exercise 318 reduces polyiamonds to polyhexes.

� 320. [M28] Explain how to enumerate all of the N -aboloes that are convex. How
many of the convex 56-aboloes can be packed by the fourteen tetraboloes?

321. [24] (T. H. O’Beirne, 1962.) In how many ways can a square be formed from
the eight one-sided tetraboloes and their mirror images?

322. [23] The polysticks provide us with another intriguing family
of shapes that can be combined in interesting ways. An “n-stick”
is formed by joining n horizontal and/or vertical unit line segments
together near grid points. For example, there are two disticks and five
tristicks; and of course there’s only one monostick. They’re shown
here in white, surrounded by the sixteen tetrasticks in black.

Polysticks introduce yet another twist into polyform puzzles, because we must not
allow different pieces to cross each other when we pack them into a container. Extend
exercise 266 to polysticks, so that Algorithm X can deal with them conveniently.

323. [M25] We’ve now seen polyominoes, polyiamonds, polyhexes, . . . , polysticks,
each of which have contributed new insights; and many other families of “polyforms”
have in fact been studied. Let’s close our survey with polyskews, a relatively new family
that seems worthy of further exploration. Polyskews are the shapes that arise when we
join squares alternately with rhombuses, in checkerboard fashion. For example, here
are the ten tetraskews:

163

From the Library of Melissa Nuno

ptg999

164 COMBINATORIAL SEARCHING 7.2.2.1

There are two monoskews, one diskew, and five triskews.

a) Explain how to draw such skewed pixel diagrams.

b) Show that polyskews, like polyaboloes, can be reduced to polyominoes.

c) In how many ways do the tetraskews make a skewed rectangle?

� 324. [20] Extend exercise 266 to three dimensions. How many base placements do
each of the seven Soma pieces have?

325. [27] The Somap is the graph whose vertices are the 240 distinct solutions to the
Soma cube problem, with u−−− v if and only if u can be obtained from an equivalent
of v by changing the positions of at most three pieces. The strong Somap is similar,
but it has u−−−v only when a change of just two pieces gets from one to the other.

a) What are the degree sequences of the Somap graphs?

b) How many connected components do they have? How many bicomponents?

� 326. [M25] Use factorization to prove that Fig. 75’s W-wall cannot be built.

327. [24] Figure 75(a) shows some of the many “low-rise” (2-level) shapes that can be
built from the seven Soma pieces. Which of them is hardest (has the fewest solutions)?
Which is easiest? Answer those questions also for the 3-level prism shapes in Fig. 75(b).

� 328. [M23] Generalizing the first four examples of Fig. 75, study the set of all shapes
obtainable by deleting three cubies from a 3× 5× 2 box. (Two
examples are shown here.) How many essentially different shapes
are possible? Which shape is easiest? Which shape is hardest?

329. [22] Similarly, consider (a) all shapes that consist of a
3 × 4 × 3 box with just three cubies in the top level; (b) all
3-level prisms that fit into a 3× 4× 3 box.

330. [25] How many of the 1285 nonominoes define a prism that can be realized by
the Soma pieces? Do any of those packing problems have a unique solution?

331. [M40] Make empirical tests of Piet Hein’s belief that the number of shapes
achievable with seven Soma pieces is approximately the number of 27-cubie polycubes.

332. [20] (B. L. Schwartz, 1969.) Show that the Soma pieces can make shapes that
appear to have more than 27 cubies, because of holes hidden inside or at the bottom:

staircase penthouse pyramid

In how many ways can each of these three trick shapes be constructed?

333. [22] Show that the seven Soma pieces can also make structures such as

casserole cot vulture mushroom cantilever

,

which are “self-supporting” via gravity. (You may need to place a small book on top.)

164

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—SECOND SET 165

(a) 2-level patterns

bathtub couch stepping stones canal bed

tower 1 tower 2 tower 3 tower 4

shift 0 shift 1 shift 2

bench 4× 4 coop 3× 6 corral 4× 5 corral

castle five-seat bench doorway piggybank lobster

grand piano piano gorilla face smile

(b) 3-level prisms based on nonominoes

fish goldfish stepping stones chair steps stile

tunnel underpass doorway canal bed clip

zigzag wall 1 zigzag wall 2 apartments 1 apartments 2 almost W-wall W-wall

Fig. 75. Gallery of noteworthy polycubes that contain 27 cubies. All of them can be
built from the seven Soma pieces, except for the W-wall. Many constructions are also
stable when tipped on edge and/or when turned upside down. (See exercises 326–334.)

165

From the Library of Melissa Nuno

ptg999

166 COMBINATORIAL SEARCHING 7.2.2.1

� 334. [M32] Impossible structures can be built, if we insist only that they look genuine
when viewed from the front (like façades in Hollywood movies)! Find all solutions to

W-wall X-wall cube

that are visually correct. (To solve this exercise, you need to know that the illustrations
here use the non-isometric projection (x, y, z) �→ (30x − 42y, 14x + 10y + 45z)u from
three dimensions to two, where u is a scale factor.) All seven Soma pieces must be used.

335. [30] The earliest known example of a polycube puzzle is the “Cube Diabolique,”
manufactured in late nineteenth century France by Charles Watilliaux; it contains six
flat pieces of sizes 2, 3, . . . , 7:

a) In how many ways do these pieces make a 3× 3× 3 cube?

b) Are there six polycubes, of sizes 2, 3, . . . , 7, that make a cube in just one way?

336. [21] (The L-bert Hall.) Take two cubies and drill three holes through each
of them; then glue them together and attach a solid cubie and dowel, as shown.
Prove that there’s only one way to pack nine such pieces into a 3× 3× 3 box.

337. [29] (Angus Lavery, 1989.) Design a puzzle that consists of nine bent tricubes,
whose face squares are either blank or colored with a red or green spot.
The goal is to assemble the pieces into a 3 × 3 × 3 cube in two ways:
(i) No green spots are visible, and the red spots match a left-handed die.
(ii) No red spots are visible, and the green spots match a right-handed die.

red green

338. [22] Show that there are exactly eight different tetracubes—polycubes of size 4.
Which of the following shapes can they make, respecting gravity? How many solutions
are possible?

twin towers double claw cannon up 3 up 4 up 5

339. [25] How many of the 369 octominoes define a 4-level prism that can be realized
by the tetracubes? Do any of those packing problems have a unique solution?

340. [30] There are 29 pentacubes, conveniently identified with one-letter codes:

a b c d e f

A B C D E F

j k l m n

166

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—SECOND SET 167

o p q r s t

u v w x y z

Pieces o through z are called, not surprisingly, the solid pentominoes or flat pentacubes.
a) What are the mirror images of a, b, c, d, e, f, A, B, C, D, E, F, j, k, l, . . . , z?
b) In how many ways can the solid pentominoes be packed into an a× b× c cuboid?
c) What “natural” set of 25 pentacubes is able to fill the 5× 5× 5 cube?

� 341. [25] The full set of 29 pentacubes can build an enormous vari-
ety of elegant structures, including a particularly stunning example
called “Dowler’s Box.” This 7× 7× 5 container, first considered by
R. W. M. Dowler in 1979, is constructed from five flat slabs. Yet
only 12 of the pentacubes lie flat; the other 17 must somehow be
worked into the edges and corners.

Despite these difficulties, Dowler’s Box has so many solutions that we can actually
impose many further conditions on its construction:

a) Build Dowler’s Box in such a way that the chiral pieces a, b, c, d, e, f and their
images A, B, C, D, E, F all appear in horizontally mirror-symmetric positions.

horizontally symmetric c and C diagonally symmetric c and C

b) Alternatively, build it so that those pairs are diagonally mirror-symmetric.
c) Alternatively, place piece x in the center, and build the remaining structure from

four congruent pieces that have seven pentacubes each.

342. [25] The 29 pentacubes can also be used to make the shape
shown here, exploiting the curious fact that 34 + 43 = 29 · 5. But
Algorithm X will take a long, long time before telling us how to
construct it, unless we’re lucky, because the space of possibilities is
huge. How can we find a solution quickly?

343. [40] (T. Sillke, 1995.) For each of the twelve pentomino shapes, build the tallest
possible tower whose walls are vertical and whose floors all have the given shape, using
distinct pentacubes. Hint: Judicious factorization will give tremendous speedup.

344. [20] In how many distinct ways can a 5 × 5 × 5 cube by packed with 25 solid
Y pentominoes? (See Fig. 73.) Discuss how to remove the 48 symmetries of this
problem.

345. [20] Pack twelve U-shaped dodecacubes into a 4 × 6 × 6 box
without letting any two of them form a “cross.”

346. [M30] An (l,m, n)-tripod is a cluster of l+m+ n+ 1 cubies in which
three “legs” of lengths l, m, and n are attached to a corner cubie, as in the
(1,2,3)-tripod shown here. A “pod” is the special case where the tripod is

(l,m, n) ∪ {(l′,m, n) | 0 ≤ l′< l} ∪ {(l,m′, n) | 0 ≤ m′< m} ∪ {(l,m, n′) | 0 ≤ n′< n}.
a) Prove that, for all m,n ≥ 0, shifted copies of nonoverlapping (1,m, n)-tripods are

able to fill all of 3-dimensional space, without rotation or reflection. Hint: Pack
N2 of them into an N ×N ×N torus, where N = m+ n+ 2.

167

From the Library of Melissa Nuno

ptg999

168 COMBINATORIAL SEARCHING 7.2.2.1

b) Show that 7/9 of 3-dimensional space can be packed with shifted (2, 2, 2)-tripods.
c) Similarly, at least 65/108 of 3D space can be packed with shifted (3, 3, 3)-tripods.
d) Let r(l,m, n) be the maximum number of pods that can be packed in an l×m×n

cuboid. Prove that at least (1+l+m+n)r(l,m, n)/(4lmn) of 3-dimensional space
can be packed with shifted (l,m, n)-tripods.

e) Use Algorithm M to evaluate r(l,m, n) for 4 ≤ l ≤ m ≤ n ≤ 6.

� 347. [M21] (N. G. de Bruijn, 1961.) Prove that an l ×m × n box can be completely
filled with 1× 1× k bricks only if k is a divisor of l, m, or n. (Consequently, it can be
completely filled with a× b× c bricks only if a, b, and c all satisfy this condition.)

348. [M41] Find the maximum number of “canonical bricks” (1× 2× 4) that can be
packed into an l ×m× n box, leaving as few empty cells as possible.

� 349. [M27] (D. Hoffman.) Show that 27 bricks of size a× b× c can always be packed
into an s× s× s cube, where s = a+ b+ c. But if s/4 < a < b < c, 28 bricks won’t fit.

350. [22] Can 28 bricks of size 3× 4× 5 be packed into a 12× 12× 12 cube?

351. [M46] Can 55 hypercuboids of size a × b × c × d × e always be packed into a
5-dimensional hypercube of size (a+ b+ c+ d+ e)× · · · × (a+ b+ c+ d+ e)?

352. [21] In how many ways can the 12 pentominoes be packed into a 2×2×3×5 box?
353. [20] A weak polycube is a set of cubies that are loosely connected via common
edges, not necessarily via common faces. In other words, we consider cubies to be
adjacent when their centers are at most

√
2 units apart; up to 18 neighbors are possible.

Find all the weak polycubes of size 3, and pack them into a symmetrical container.

� 354. [M30] A polysphere is a connected set of spherical cells that belong to the “face-
centered cubic lattice,” which is one of the two principal ways to pack cannonballs (or
oranges) with maximum efficiency. That lattice is conveniently regarded as the set S
of all quadruples (w, x, y, z) of integers for which w+ x+ y+ z = 0. Each cell of S has
12 neighbors, obtained by adding 1 to one coordinate and subtracting 1 from another.

It’s instructive to view S in two different ways, by slicing it into plane layers that
either have constant x+y+z (hence constant w) or constant y+z (hence constant w+x):

4 2

1 5

4 1

1 4

4 0

1 3

4 1

1 2

4 2

2 4

4 1

2 3

4 0

2 2

4 1

2 1

4 2

3 3

4 1

3 2

4 0

3 1

4 1

3 0

x+ y + z = 4 ;

3 1

1 3

4 0

1 3

5 1

1 3

6 2

1 3

3 1

2 2

4 0

2 2

5 1

2 2

6 2

2 2

3 1

3 1

4 0

3 1

5 1

3 1

6 2

3 1

y + z = 4 .

(Here w
y
x
z stands for (w, x, y, z).) If we include the layers above and below, we get

3 2

0 5

3 1

0 4

3 0

0 3

3 1

0 2

3 2

1 4

3 1

1 3

3 0

1 2

3 1

1 1

3 2

2 3

3 1

2 2

3 0

2 1

3 1

2 0

x+ y + z = 3
4 2

1 5

4 1

1 4

4 0

1 3

4 1

1 2

4 2

2 4

4 1

2 3

4 0

2 2

4 1

2 1

4 2

3 3

4 1

3 2

4 0

3 1

4 1

3 0

x+ y + z = 4
5 2

2 5

5 1

2 4

5 0

2 3

5 1

2 2

5 2

3 4

5 1

3 3

5 0

3 2

5 1

3 1

5 2

4 3

5 1

4 2

5 0

4 1

5 1

4 0

x+ y + z = 5

,

2 1

0 3

3 0

0 3

4 1

0 3

5 2

0 3

2 1

1 2

3 0

1 2

4 1

1 2

5 2

1 2

2 1

2 1

3 0

2 1

4 1

2 1

5 2

2 1

y + z = 3
3 1

1 3

4 0

1 3

5 1

1 3

6 2

1 3

3 1

2 2

4 0

2 2

5 1

2 2

6 2

2 2

3 1

3 1

4 0

3 1

5 1

3 1

6 2

3 1

y + z = 4
4 1

2 3

5 0

2 3

6 1

2 3

7 2

2 3

4 1

3 2

5 0

3 2

6 1

3 2

7 2

3 2

4 1

4 1

5 0

4 1

6 1

4 1

7 2

4 1

y + z = 5

,

with each sphere nestling in the gap between the three or four spheres below it. In
the “hex layers” on the left, (w, x, y, z) lies directly above (w + 3, x − 1, y − 1, z − 1),

168

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—SECOND SET 169

but doesn’t touch it; in the “quad layers” on the right, (w, x, y, z) lies directly above
(w + 1, x+ 1, y − 1, z − 1), but doesn’t touch it.

a) Show that every polyomino, and every polyhex, may be regarded as a polysphere:

←→ ; ←→ .

b) Conversely, every planar polysphere looks like either a polyomino or a polyhex.
c) Every polysphere {(w1, x1, y1, z1), . . . , (wn, xn, yn, zn)} has a unique base place-

ment {(w′1, x′1, y′1, z′1), . . . , (w′n, x′n, y′n, z′n)} obtained by subtracting (w′, x′, y′, z′)
from each (wk, xk, yk, zk), where x′ = min{x1, . . . , xn}, y′ = min{y1, . . . , yn},
z′ = min{z1, . . . , zn}, and w′ + x′ + y′ + z′ = 0. Prove that x′k + y′k + z′k < n.

d) As with polycubes, we say that polyspheres v and v′ are equivalent if the base
placement of v is also a base placement of some rotation of v′ in three dimensions.
(Reflections of “chiral” polyspheres are not considered to be equivalent.) Formally
speaking, a rotation of S about a line through the origin is an orthogonal 4 × 4
matrix that has determinant 1 and preserves w + x + y + z. Find such matrices
for (i) rotation of the hex layers by 120◦; (ii) rotation of the quad layers by 90◦.

e) A planar polysphere is equivalent to its reflection, because we can rotate by 180◦

around a line in its plane. Find suitable 4 × 4 matrices by which we can legally
reflect polyspheres that are equivalent to (i) polyominoes; (ii) polyhexes.

f) Prove that every rotation that takes a polysphere into another polysphere is
obtainable as a product of the matrices exhibited in (d) and (e).

355. [25] The theory in exercise 354 allows us to represent polysphere cells with three
integer coordinates xyz, because x, y, and z are nonnegative in base placements. The
other variable, w, is redundant (but worth keeping in mind); it always equals −x−y−z.
a) What’s a good way to find all the base placements of a given polysphere {x1y1z1,

x2y2z2, . . . , xnynzn}? Hint: Use exercise 354 to tweak the method of exercise 324.
b) Any three points of three-dimensional space lie in a plane. So exercise 354(b) tells

us that there are just four trispheres: a tromino, two trihexes, and one that’s both:

bent trisphere straight trisphere
(anthracene)

phenalene phenanthrene

What are their base placements?

c) According to exercise 354(c), every base placement of a tetrasphere occurs in
the SGB graph simplex(3, 3, 3, 3, 3, 0, 0). Use exercise 7.2.2–75 to find all of the
four-element connected subsets of that graph, and identify all of the distinct
tetraspheres. How many times does each tetrasphere occur in the graph?

356. [23] Polysphere puzzles often involve the construction of three kinds of shapes:

n-tetrahedron
(as seen from
the top, for
n = 4)

m× n roof
(shown for
m = 3,
n = 4)

stretched
m× n roof
(shown for
m=3, n=4)

(An n×n roof or stretched roof is called an “n-pyramid” or a “stretched n-pyramid.”)
a) Define each of these configurations by specifying a suitable base placement.
b) Each of the shapes illustrated is made from 20 spheres, and so is the stretched

4×3 roof. Find all multisets of five tetraspheres that suffice to make these shapes.

169

From the Library of Melissa Nuno

ptg999

170 COMBINATORIAL SEARCHING 7.2.2.1

c) The 4-pyramid and the stretched 4-pyramid involve 30 spheres. What multisets
of ten trispheres are able to make them?

d) The truncated octahedron, which represents all permutations of {1, 2, 3, 4}, is a
noteworthy 24-cell subset of S (see exercise 5.1.1–10). What multisets of six
tetraspheres can build it?

357. [M40] Investigate “polysplatts,” which are the sets of truncated octahedra that
can be built by pasting adjacent faces together (either square or hexagonal).

358. [HM41] Investigate “polyhexaspheres,” which are the connected sets of spheres in
the hexagonal close packing. (This packing differs from that of exercise 354 because each
sphere of a hexagonal layer is directly above a sphere that’s 2, not 3, layers below it.)

359. [29] Nick Baxter devised an innocuous-looking but maddeningly difficult “Square
Dissection” puzzle for the International Puzzle Party in 2014, asking that the nine pieces

20

1
7

20

1
7

20

1
8

20

1
8

23

1
8

23

1
8

25

1
8

25

1
8

23

2
1

23

2
1

25

2
0

25

2
0

24

2
2

24

2
2

25

2
2

25

2
2

25

2
4

25

2
4

be placed flat into a 65×65 square. One quickly checks that 17×20+18×20+· · ·+24×
25 = 652; yet nothing seems to work! Solve his puzzle with the help of Algorithm X.

� 360. [20] The next group of exercises is devoted to the decomposition of
rectangles into rectangles, as in the Mondrianesque pattern shown here.
The reduction of such a pattern is obtained by distorting it, if necessary,
so that it fits into an m × n grid, with each of the vertical coordinates
{0, 1, . . . ,m} used in at least one horizontal boundary and each of the hori-
zontal coordinates {0, 1, . . . , n} used in at least one vertical boundary. For
example, the illustrated pattern reduces to , where m = 3 and n = 5.
(Notice that the original rectangles needn’t have rational width or height.)

A pattern is called reduced if it is equal to its own reduction. Design an exact cover
problem by which Algorithm M will discover all of the reduced decompositions of an
m×n rectangle, given m and n. How many of them are possible when (m,n) = (3, 5)?

361. [M25] The maximum number of subrectangles in a reduced m × n pattern is
obviously mn. What is the minimum number?

362. [10] A reduced pattern is called strictly reduced if each of its subrectangles
[a . . b)×[c . . d) has (a, b) = (0,m) and (c, d) = (0, n)— in other words, if no subrectangle
“cuts all the way across.” Modify the construction of exercise 360 so that it produces
only strictly reduced solutions. How many 3× 5 patterns are strictly reduced?

363. [20] A rectangle decomposition is called faultfree if it cannot be split into two or
more rectangles. For example, is not faultfree, because it has a fault line between
rows 2 and 3. (It’s easy to see that every reduced faultfree pattern is strictly reduced,
unless m = n = 1.) Modify the construction of exercise 360 so that it produces only
faultfree solutions. How many reduced 3× 5 patterns are faultfree?

364. [23] True or false: Every faultfree packing of anm×n rectangle by 1×3 trominoes
is reduced, except in the trivial cases (m,n) = (1, 3) or (3, 1).

365. [22] (Motley dissections.) Many of the most interesting decompositions of an
m×n rectangle involve strictly reduced patterns whose subrectangles [ai . . bi)×[ci . . di)
satisfy the extra condition

(ai, bi) = (aj , bj) and (ci, di) = (cj , dj) when i = j.

170

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—SECOND SET 171

Thus no two subrectangles are cut off by the same pair of horizontal or vertical lines.
The smallest such “motley dissections” are the 3× 3 pinwheels, and , which are
considered to be essentially the same because they are mirror images of each other.
There are eight essentially distinct motley rectangles of size 4× n, namely

, ; , , , , , .

The two 4× 4s can each be drawn in 8 different ways, under rotations and reflections.
Similarly, most of the 4 × 5s can be drawn in 4 different ways. But the last two have
only two forms, because they’re symmetric under 180◦ rotation. (And the last two are
actually equivalent, if we swap the two x coordinates in the middle.)

Design an exact cover problem by which Algorithm M will discover all of the mot-
ley dissections of an m× n rectangle, given m and n. (When m = n = 4 the algorithm
should find 8+ 8 solutions; when m = 4 and n = 5 it should find 4+ 4+4+4+2+2.)

� 366. [25] Improve the construction of the previous exercise by taking advantage of
symmetry to cut the number of solutions in half. (When m = 4 there will now be 4+4
solutions when n = 4, and 2+2+2+2+1+1 when n = 5.) Hint: A motley dissection
is never identical to its left-right reflection, so we needn’t visit both.

367. [20] The order of a motley dissection is the number of subrectangles it has. There
are no motley dissections of order six. Show, however, that there are m ×m motley
dissections of order 2m−1 andm×(m+1) motley dissections of order 2m, for allm > 3.

368. [M21] (H. Postl, 2017.) Show that an m × n motley dissection of order t can
exist only if n < 2t/3. Hint: Consider adjacent subrectangles.

369. [21] An m× n motley dissection must have order less than
(
m+1
2

)
, because only(

m+1
2

)−1 intervals [ai . . bi) are permitted. What is the maximum order that’s actually
achievable by an m× n motley dissection, for m = 5, 6, and 7?

� 370. [23] Explain how to generate all of the m×n motley dissections that have 180◦-
rotational symmetry, as in the last two examples of exercise 365, by modifying the con-
struction of exercise 366. (In other words, if [a . . b) × [c . . d) is a subrectangle of the
dissection, its complement [m − b . .m − a) × [n − d . . n − c) must also be one of the
subrectangles, possibly the same one.) How many such dissections have size 8× 16?

371. [24] Further symmetry is possible when m = n (as in exercise 365’s pinwheel).

a) Explain how to generate all of the n×nmotley dissections that have 90◦-rotational
symmetry. This means that [a . . b)× [c . . d) implies [c . . d)× [n−b . . n−a).

b) Explain how to generate all of the n × n motley dissections that are symmetric
under reflection about both diagonals. This means that [a . . b) × [c . . d) implies
[c . . d)×[a . . b) and [n−d . . n−c)×[n−b . . n−a), hence [n−b . . n−a)×[n−d . . n−c).

c) What’s the smallest n for which symmetric solutions of type (b) exist?

� 372. [M35] (Floorplans.) If a rectangle decomposition satisfies the tatami condition—
“no four rectangles meet”— it’s often called a floorplan, and its subrectangles are called
rooms. The line segments that delimit rooms are called bounds. Four possibilities arise
when room r is adjacent to bound s: Either s ↓ r, r → s, r ↓ s, or s → r, meaning
respectively that the top, right, bottom, or left boundary of r is part of s.

For example, the floorplans shown on the next page have 10 rooms {A,B, . . . , J},
7 + 6 bounds {h0, . . . , h6, v0, . . . , v5}, and the following adjacencies: h0 ↓ A ↓ h3 ↓ D ↓
h5 ↓ E ↓ h6, h0 ↓ B ↓ h1 ↓ C ↓ h3 ↓ F ↓ h6, h1 ↓ G ↓ h2 ↓ H ↓ h4 ↓ I ↓ h6, h2 ↓ J ↓ h6;
v0 → A→ v1 → B→ v5, v1 → C→ v3 → H→ v4, v0 → D→ v2 → F→ v3 → G→ v5,
v0 → E→ v2, v3 → I→ v4 → J→ v5.

171

From the Library of Melissa Nuno

ptg999

172 COMBINATORIAL SEARCHING 7.2.2.1

h0
h1
h2
h3
h4
h5
h6

v0v1v2v3v4v5

A

B

C
G

H

JD
F

I
E

h0
h1
h3
h5
h2
h4
h6

v0v2v1v3v4v5

A
B

C

G

H
J

D

F

I

E

h0

h1
h3
h5

h2
h4

h6
v0v1 v2v3 v4v5

A

B

C

D

E

F

G

H

I

J

h0
h1
h2

h4

h3

h5
h6

v0 v2 v1v3 v4 v5

B

G

J

H

I

C

A

F

D

E

Two floorplans with the same adjacencies are considered to be equivalent. Thus,
all four of the floorplans above are essentially the same, even though they look rather
different: In particular, room C needn’t overlap room D; we require only C ↓ h3 ↓ D.
a) Let r ⇓ r′ mean that r = r0 ↓ s0 ↓ r1 ↓ · · · ↓ sk−1 ↓ rk = r′ for some k > 0; define

r ⇒ r′ similarly. Prove that [r ⇓ r′]+[r⇒ r′]+[r′ ⇓ r]+[r′⇒ r] = 1, when r = r′.
Hint: Every floorplan has unique diagonal and antidiagonal equivalents, as shown.

b) A twin tree is a data structure whose nodes v have four pointer fields, L0(v),
R0(v), L1(v), R1(v). It defines two binary trees T0 and T1 on the nodes,
where Tθ is rooted at ROOTθ and has child links (Lθ, Rθ). These two trees satisfy
inorder(T0) = inorder(T1) = v1 . . . vn; R0(vk)= Λ⇐⇒ R1(vk) = Λ, for 1≤ k < n.

For each room r, if r’s top left corner is a � junction, set L0(r)← Λ and
L1(r) ← r′, where r′ is the room opposite r in that corner; otherwise reverse
the roles of L0 and L1. Similarly, set R0(r) ← Λ and R1(r) ← r′ if the bottom
right corner of r is a � junction, or vice versa otherwise. (Use r′ = Λ at extreme
corners.) Also set ROOT0 and ROOT1 to the bottom-left and top-right rooms. Show
that a twin tree is created, convenient for representing this floorplan.

373. [26] A “perfectly decomposed rectangle” of order t is a faultfree dissection of a
rectangle into t subrectangles [ai . . bi) × [ci . . di) such that the 2t dimensions b1 − a1,
d1 − c1, . . . , bt − at, dt − ct are distinct. For example, five rectangles of sizes
1×2, 3×7, 4×6, 5×10, and 8×9 can be assembled to make the perfectly de-
composed 13×13 square shown here. What are the smallest possible perfectly
decomposed squares of orders 5, 6, 7, 8, 9, and 10, having integer dimensions?

374. [M28] An “incomparable dissection” of order t is a decomposition of a rectangle
into t subrectangles, none of which will fit inside another. In other words, if the heights
and widths of the subrectangles are respectively h1 ×w1, . . . , ht ×wt, we have neither
(hi ≤ hj and wi ≤ wj) nor (hi ≤ wj and wi ≤ hj) when i = j.

a) True or false: An incomparable dissection is perfectly decomposed.

b) True or false: The reduction of an incomparable dissection is motley.

c) True or false: The reduction of an incomparable dissection can’t be a pinwheel.

d) Prove that every incomparable dissection of order ≤ 7 reduces to the first
4×4 motley dissection in exercise 365; and its seven regions can be labeled
as shown, with h7 < h6 < · · · < h2 < h1 and w1 < w2 < · · · < w6 < w7.

1
2

3
4
5

6
7

e) Suppose the reduction of an incomparable dissection is m×n, and suppose its re-
gions have been labeled {1, . . . , t}. Then there are numbers x1, . . . , xn, y1, . . . , ym
such that the widths are sums of the x’s and the heights are sums of the y’s. (For
example, in (d) we have w2 = x1, h2 = y1 + y2 + y3, w7 = x2 + x3 + x4, h7 = y1,
etc.) Prove that such a dissection exists with w1 < w2 < · · · < wt if and only if the
linear inequalities w1 < w2 < · · · < wt have a positive solution (x1, . . . , xn) and
the linear inequalities h1 > h2 > · · · > ht have a positive solution (y1, . . . , ym).

172

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—SECOND SET 173

375. [M29] Among all the incomparable dissections of order (a) seven and (b) eight,
restricted to integer sizes, find the rectangles with the smallest possible semiperimeter
(height plus width). Also find the smallest possible squares that have incomparable dis-
sections in integers. Hint: Show that there are 2t potential ways to mix the h’s with the
w’s, preserving their order; and find the smallest semiperimeter for each of those cases.

� 376. [M25] Find seven different rectangles of area 1/7 that can be assembled into a
square of area 1, and prove that the answer is unique.

377. [M28] Two rectangles of shapes h×w and h′ ×w′ can be concatenated to form
a larger rectangle of size (h+ h′)× w if w = w′, or of size h× (w + w′) if h = h′.
a) Given a set S of rectangle shapes, let Λ(S) be the set of all shapes that can be

made from the elements of S by repeated concatenation. Describe Λ({1×2, 3×1}).
b) Find the smallest S ⊆ T such that T ⊆ Λ(S), where T = {h×w | 1 < h < w}.
c) What’s the smallest S with Λ(S) = {h×w | h,w > 1 and hw mod 8 = 0}?
d) Given m and n, solve (c) with Λ(S) = {h×w | h,w > m and hwmod n = 0}.

� 378. [M30] (A finite basis theorem.) Continuing exercise 377, prove that any set T of
rectangular shapes contains a finite subset S such that T ⊆ Λ(S).

� 379. [23] What h×w rectangles can be packed with copies of the Q pentomino? Hint:

It suffices to find a finite basis for all such rectangles, using the previous exercise.

380. [35] Solve exercise 379 for the Y pentomino.

381. [20] Show that 3n copies of the disconnected shape ‘ ’ can pack a
12× n rectangle for all sufficiently large values of n.

� 382. [18] There’s a natural way to extend the idea of motley dissection to three dimen-
sions, by subdividing an l×m×n cuboid into subcuboids [ai . . bi)× [ci . . di)× [ei . . fi)
that have no repeated intervals [ai . . bi) or [ci . . di) or [ei . . fi).

For example, Scott Kim has discovered a remarkable motley
7 × 7 × 7 cube consisting of 23 individual blocks, 11 of which are
illustrated here. (Two of them are hidden behind the others.) The
full cube is obtained by suitably placing a mirror image of these
pieces in front, together with a 1× 1× 1 cubie in the center.

By studying this picture, show that Kim’s construction can
be defined by coordinate intervals [ai . . bi)×[ci . . di)×[ei . . fi), with
0 ≤ ai, bi, ci, di, ei, fi ≤ 7 for 1 ≤ i ≤ 23, in such a way that the pattern is symmetrical
under the transformation xyz �→ ȳz̄x̄. In other words, if [a . . b)× [c . . d)× [e . .f) is one
of the subcuboids, so is [7− d . . 7− c)× [7− f . . 7− e)× [7− b . . 7− a).

383. [29] Use exercise 382 to construct a perfectly decomposed 92 × 92 × 92 cube,
consisting of 23 subcuboids that have 69 distinct integer dimensions. (See exercise 373.)

384. [24] By generalizing exercises 365 and 366, explain how to find every motley
dissection of an l ×m× n cuboid, using Algorithm M. Note: In three dimensions, the
strictness condition ‘(ai, bi) = (0,m) and (ci, di) = (0, n)’ of exercise 362 should become

[(ai, bi) = (0, l)]+ [(ci, di) = (0,m)]+ [(ei, fi) = (0, n)] ≤ 1.

What are the results when l = m = n = 7?

385. [M36] (H. Postl, 2017.) Arbitrarily large motley cuboids can be constructed by
repeatedly nesting one motley cuboid within another (see answer 367). Say that a
motley cuboid is primitive if it doesn’t contain a nested motley subcuboid.

Do primitive motley cuboids of size l ×m× n exist only when l = m = n = 7?

173

From the Library of Melissa Nuno

ptg999

174 COMBINATORIAL SEARCHING 7.2.2.1

� 386. [M34] A polyomino can have eight different types of symmetry:

(i)

;

full

(ii)

;

90◦

(iii)

;

180◦

(iv)

;

biaxial

(v)

;

bidiagonal

(vi)

;

axial

(vii)

;

diagonal

(viii)

.

none

(Case (i) is often called 8-fold symmetry; case (iii) is often called central symmetry;
case (vi) is often called left-right symmetry. Cases (ii), (iv), (v) are 4-fold symmetries;
cases (ii) and (iii) are rotation symmetries; cases (iv)–(vii) are reflection symmetries.)
In each case an n-omino of that symmetry type has been shown, where n is minimum.

How many symmetry types can a polyiamond or polyhex have? Give example
n-iamonds and n-hexes of each type, where n is minimum.

� 387. [M36] Continuing exercise 386, how many symmetry types can a polycube have?
Give an example of each type, using the minimum number of cubies. (Note that mirror
reflection is not a legal symmetry for a polycube; L-twist = R-twist!)

EXERCISES—Third Set

The following exercises are based on several intriguing logic puzzles that have recently
become popular: futoshiki, kenken, masyu, slitherlink, kakuro, etc. Like sudoku, these
puzzles typically involve a hidden pattern, for which only partial information has been
revealed. The point of each exercise is usually to set up an appropriate exact cover
problem, and to use it either to solve such a puzzle or to create new ones.

� 388. [21] The goal of a futoshiki puzzle is to deduce the entries of a secret latin square,
given only two kinds of hints: A “strong clue” is an explicit entry; a “weak clue” is a
greater-than relation between neighboring entries. The entries are the numbers 1 to n,
where n is usually 5 as in the following examples:

a)
>

>

>

>

>>
>

; b)

2

4

>

>
>

>

>
>

>

>

; c)

3

1

4

1

5

>

>

.

Solve these puzzles by hand, using sudoku-like principles.

389. [20] Sketch a simple algorithm that finds simple lower and upper bounds for each
entry that is part of a weak clue in a futoshiki puzzle, by repeatedly using the rule that
a ≤ x < y ≤ b implies x ≤ b− 1 and y ≥ a+ 1. (Your algorithm shouldn’t attempt to
give the best possible bounds; that would solve the puzzle! But it should deduce the
values of five entries in puzzle (a) of exercise 388, as well as entry (4, 2) of puzzle (b).)

� 390. [21] Show that every futoshiki puzzle is a special case of an exact cover problem.
In fact, show that every such puzzle can be formulated in at least two different ways:

a) Use a pairwise ordering trick analogous to (25) or (26), to encode the weak clues.
b) Use color controls to formulate an XCC problem suitable for Algorithm C.

391. [20] A futoshiki puzzle is said to be valid if it has exactly one solution. Use
Algorithm X to generate all possible 5 × 5 latin squares. Explain why many of them
can’t be the solution to a valid futoshiki puzzle unless it has at least one strong clue.

174

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—THIRD SET 175

� 392. [25] There are 26
(
40
6

)
= 245656320 ways to construct a 5 × 5 futoshiki puzzle

that has six weak clues and no strong ones. How many of them (a) are valid? (b) have
no solutions? (c) have more than one solution? Also refine those counts, by considering
how many such puzzles of types (a), (b), and (c) have at least one “long path” p < q <
r < s < t (like the path that’s present in exercise 388(a)). Give an example of each case.

393. [25] There are 56
(
25
6

)
= 2767187500 ways to construct a 5 × 5 futoshiki puzzle

that has six strong clues and no weak ones. How many of them (a) are valid? (b) have
no solutions? (c) have more than one solution? Give an example of each case.

394. [29] Show that every 5×5 futoshiki puzzle that has only five clues—strong, weak,
or a mixture of both—has at least four solutions. Which puzzles attain this minimum?

395. [25] Continuing exercise 391, find a 5×5 latin square that cannot be the solution
to a valid futoshiki puzzle unless at least three strong clues have been given.

� 396. [25] Inspired by exercise 388(c), construct a valid 9 × 9 futoshiki puzzle whose
diagonal contains the strong clues (3, 1, 4, 1, 5, 9, 2, 6, 5) in that order. Every other clue
should be a weak ‘<’—not a ‘>’, not a ‘∧’, not a ‘∨’.

� 397. [30] (Save the sheep.) Given a grid in which some of the cells are occupied by
sheep, the object of this puzzle is to construct a fence that keeps all the sheep on one
side. The fence must begin and end at the edge of the grid, and it must follow the grid
lines without visiting any point twice. Furthermore, exactly two edges of each sheep’s

square should be part of the fence. For example, consider the following 5× 5 grids:

The four sheep on the left can be “saved” only with the fence shown in the middle.
Once you understand why, you’ll be ready to save the four sheep on the right.

a) Explain how Algorithm C can help to solve puzzles like this, by showing that
every solution satisfies a certain XCC problem. Hint: Imagine “coloring” each
square with 0 or 1, with 1 indicating the cells on the sheep’s side of the fence.

b) Devise an interesting 8×8 puzzle that has a unique solution and at most 10 sheep.
398. [23] (KenKen©R .) A secret latin square whose entries are {1, 2, . . . , n} can often
be deduced by means of arithmetic. A kenken puzzle specifies the sum, difference,
product, or quotient of the entries in each of its “cages,” which are groups of cells
indicated by heavy lines, as in the following examples:

a)

3− 14+ 15×

9× 2÷

6+ 5+

3− 5+

5 7+

; b)

34560× 3−

5÷

10+

3+ 9+

2 1−

; c)

3− 14+ 15×

9× 2÷ 6+

5

3− 5+

8× 9+

.

(When the operation is ‘−’ or ‘÷’, the cage must have just two cells. A one-cell cage
simply states its contents, without any operation; hence its solution is a no-brainer.)

Cages look rather like the boxes of jigsaw sudoku (see (34)); but in fact the
rules are quite different: Two entries of the same cage can be equal, if they belong to

175

From the Library of Melissa Nuno

ptg999

176 COMBINATORIAL SEARCHING 7.2.2.1

different rows and different columns. For example, the ‘9×’ in (a) can be achieved only
by multiplying the three entries {1, 3, 3}; hence there’s exactly one way to fill that cage.

Solve (a), (b), (c) by hand. Show that one of them is actually not a valid puzzle.

� 399. [22] How can all solutions to a kenken puzzle be obtained with Algorithm C?

400. [21] Many clues of a kenken puzzle often turn out to be redundant, in the sense
that the contents of one cage might be fully determined by the clues from other cages.
For example, it turns out that any one of the clues in puzzle 398(a) could actually be
omitted, without permitting a new solution.

Find all subsets of those 11 clues that suffice to determine a unique latin square.

401. [22] Find all 4 × 4 kenken puzzles whose unique solution is the latin
square shown at the right, and whose cages all have two cells. Furthermore,
there should be exactly two cages for each of the four operations +, −, ×, ÷.

1234
2143
4312
3421

402. [24] Solve this 12× 12 kenken puzzle, using hexadecimal digits from 1 to C:

The five-cell cages of this puzzle have
multiplicative clues, associated with
the names of the twelve pentominoes:

O, 9240×
P, 5184×
Q, 3168×
R, 720×
S, 15840×
T, 19800×
U, 10560×
V, 4032×
W, 1620×
X, 5040×
Y, 576×
Z, 17248×

O P Q

R S

T

U

V

W

X

Y

Z

3÷

8÷

5÷

2÷

8÷

10÷

5÷

8÷

2÷

3÷

2÷2÷

4÷

7÷

1−

7−

1−

1−1−

3−

3−

1−

2−

4−

3−

1−

4−

4−

14+

15+

11+

14+

16+

8+

13+ 16+

21+

7+11+

8+

13+

15+

� 403. [31] Inspired by exercises 398(a) and 398(c), construct a valid 9×9 kenken puzzle
whose clues exactly match the decimal digits of π, for as many places as you can.

� 404. [25] (Hidato©R .) A “hidato solution” is an m × n matrix whose entries are a
permutation of {1, 2, . . . ,mn} for which the cells containing k and k + 1 are next to
each other, either horizontally, vertically, or diagonally, for 1 ≤ k < mn. (In other
words, it specifies a Hamiltonian path of king moves on an m × n board.) A “hidato
puzzle” is a subset of those numbers, which uniquely determines the others; the solver
is supposed to recreate the entire path from the given clues.

3 14 1

5 9

8

(i)

3 14 1

4 2

5 9

8

(ii)

3 14 1

4 2

5 9

6 8

(iii)

16 3 14 1

4 15 2 13

5 9 10 12

6 7 8 11

(iv)

For example, consider the 4×4 puzzle (i). There’s only one place to put ‘2’. Then
there are two choices for ‘4’; but one of them blocks the upper left corner (see (ii)), so
we must choose the other. Similarly, ‘6’ must not block any corner. Therefore (iii) is
forced; and it’s easy to fill in all of the remaining blanks, thereby obtaining solution (iv).

Explain how to encode such puzzles for solution by Algorithm C.

176

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—THIRD SET 177

405. [21] The preceding exercise needs a subroutine to determine the endpoints of all
simple paths of lengths 1, 2, . . . , L from a given vertex v in a given graph. That problem
is NP-hard; but sketch an algorithm that works well for small L in small graphs.

406. [16] Show that the following hidato puzzle isn’t as hard as it might look at first:

19 52 53 54 4 62 63 64

20 1

21 60

41 59

31 58

32 9

33 10

35 34 37 28 27 26 11 12

� 407. [20] Here’s a curious 4× 8 array that is consistent with 52 hidato solutions:

22 12

29 26 16 8 3

Change it to a valid hidato puzzle, by adding one more clue.

408. [28] (N. Beluhov.) Construct 6× 6 hidato puzzles that have (a) only five clues;
(b) at least eighteen clues, all of which are necessary.

� 409. [30] Can the first 10 clues of a 10× 10 hidato puzzle be the first 20 digits of π?

410. [22] (Slitherlink.) Another addictive class of puzzles is based on finding closed
paths or “loops” in a given graph, when the allowable cycles must satisfy certain
constraints. For instance, a slitherlink puzzle prescribes the number of loop edges that
surround particular cells of a rectangular grid, as in diagram (i) below.

The first step in solving puzzle (i) is to note where the secret edges are definitely
absent or definitely present. The 0s prohibit not only the edges immediately next to
them but also a few more, because the path can’t enter a dead end. Conversely, the 3

forces the path to go through the upper left corner; we arrive at situation (ii):

3 1

2 2

1 0

2 0

(i)

3 1

2 2

1 0

2 0

×

× ×

× ×

×

× ×

× ×

(ii)

3 1

2 2

1 0

2 0

(iii)

3 1

2 2

1 0

2 0

(iv)

3 1

2 2

1 0

2 0

(v)

Some experimentation now tells us which edge must go with the lower 1. We must not
form two loops, as in (iii) or (iv). And hurrah: There’s a unique solution, (v).

Which of the following 5× 5 slitherlink diagrams are valid puzzles? Solve them.

(a)

0 0 0

0 0

0 0

0 0

0 0 0

; (b)

1 1 1

1 1

1 1

1 1

1 1 1

; (c)

2 2 2

2 2

2 2

2 2

2 2 2

; (d)

3 3 3

3 3

3 3

3 3

3 3 3

.

411. [20] True or false: A slitherlink diagram with a numeric clue given in every cell
always has at most one solution. Hint: Consider the 2× 2 case.

177

From the Library of Melissa Nuno

ptg999

178 COMBINATORIAL SEARCHING 7.2.2.1

� 412. [22] A “weak solution” to a slitherlink diagram is a set of edges that obeys the
numeric constraints, and touches every vertex of the grid either twice or not at all; but
it may form arbitrarily many loops. For example, the diagram of exercise 410(i) has
six weak solutions, three of which are shown in 410(iii), (iv), and (v).

Show that there’s a nice way to obtain all the weak solutions of a given diagram,
by formulating a suitable XCC problem. Hint: Think of the edges as constructed from
tiles centered at the vertices, and use even/odd coordinates as in answer 133.

� 413. [30] Explain how to modify Algorithm C so that the construction of exercise 412
will produce only the true “single-loop” solutions. Your modified algorithm shouldn’t
be specific to slitherlink; it should apply also to masyu and other loop-discovery puzzles.

414. [25] The “strongest possible” answer to exercise 413 would cause the
modified Algorithm C to backtrack as soon as the current choice of edge colors
is incompatible with any single loop. Show that the algorithm in that answer is
not as strong as possible, by examining its behavior on the puzzle at the right.

1 0

2 3

3 0

� 415. [M33] Exactly 5 ·(225−1) nonempty slitherlink diagrams of size 5×5 are “homo-
geneous,” in the sense that all of their clues involve the same digit d ∈ {0, 1, 2, 3, 4}.
(See exercise 410(a)–(d).) How many of them are valid puzzles? What are the minimum
and maximum number of clues, for each d, in puzzles that contain no redundant clues?

416. [M30] For each d ∈ {0, 1, 2, 3, 4}, construct valid n×n slitherlink diagrams whose
nonblank clues are all equal to d, for infinitely many n.

417. [M46] (N. Beluhov, 2018.) Exercise 410(a, b, d) illustrates three homogeneous
slitherlink puzzles that are valid for exactly the same pattern of nonblank clues. Do
infinitely many such square puzzles exist?

418. [M29] An m × n slitherlink diagram is said to be symmetrical if cells (i, j) and
(m− 1− i, n− 1− j) are both blank or both nonblank, for 0 ≤ i < m and 0 ≤ j < n.
(Many grid-based puzzles obey this oft-unwritten rule.)
a) There are exactly 625 ≈ 2.8 × 1019 slitherlink diagrams of size 5 × 5, since each

of the 25 cells can contain either ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, or ‘ ’. How many of those
diagrams are symmetrical?

b) How many of the symmetric diagrams in (a) are valid puzzles?
c) How many of those valid puzzles are minimal, in the sense that the deletion of

nonblank clues in (i, j) and (4− i, 4− j) would make the solution nonunique?
d) What is the minimum number of clues in a valid 5× 5 symmetrical puzzle?
e) What is the maximum number of clues in a minimal 5× 5 symmetrical puzzle?

419. [30] What surprise is concealed in the following symmetrical slitherlink puzzle?

2 1 1 1 1 1 1

2 0 1 0 1 1 2

2 1 2 1 2 1 1 1

2 2 2 2 1 1 2

3 0 0 2 1 2 0 0 0 0

1 1 0 1 0

2 0 1 1 1 0

2 1 1 0 1 1

1 1 0 1 0

0 0 2 1 1 0 1 0 0 0

2 0 1 1 1 0 0

0 2 1 1 0 1 1 0

0 1 1 1 1 1 0

1 1 0 1 2 1 0

178

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—THIRD SET 179

420. [M22] Consider an m×n slitherlink with m and n odd, having 2s in the pattern

2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2

(and possibly other clues). Show that there’s no solution if mmod 4 = nmod 4 = 1.

� 421. [20] (Masyu.) A masyu (“evil influence”) puzzle, like slitherlink, conceals a
hidden loop of straight segments. But there are two important differences. First, the
loop passes through the centers of grid cells, instead of following the edges. Second,
no numerical quantities are involved; the clues are entirely visual and geometrical.

Clues appear in circles through which the loop must pass: (i) The path must turn
90◦ at every black circle; but it must travel straight through the two neighboring cells
just before and after turning. (ii) The path must not turn 90◦ when it goes through
a white circle; and it must not travel straight through the two neighboring cells just
before and after not turning. (Thus it must actually turn, at one or both of those cells.
We get at least one turn per clue, and at least one straight segment.)

Consider, for example, a 5 × 5 puzzle with a black clue in cell 02, and
with white clues in cells 13, 30, 32, and 43 as shown. The loop clearly will
have to include the subpaths 20−−−30−−−40−−−41 and 42−−−43−−−44−−−34
in some order. It also must include either 00−−−01−−−02−−−12−−−22 or 04−−−
03−−−02−−−12−−−22, because of the black clue. But the latter alternative is
impossible, because it leaves no way to go straight through the white clue in
13. Thus 10−−− 00−−− 01−−− 02−−− 12−−− 22 is forced; and also 23−−− 13−−−
03−−− 04−−− 14−−− 24−−− 34. (We couldn’t go 24−−− 23, because that would
close the loop prematurely.) The rest of the path now sort of falls into place.

Show that one of the clues in this example puzzle is actually redundant. But if
any of the other four clues are absent, show that alternative solutions are possible.

422. [21] Show that the “weak solutions” to any given masyu puzzle are the solutions
to an easily constructed XCC problem, by adapting the solution of exercise 412.

� 423. [M25] For each of the (m−1)n+m(n−1) potential edges e in the solution of an
m× n masyu puzzle, let xe be the Boolean variable ‘[e is present]’. The XCC problem
constructed in exercise 422 is essentially a set of constraints on those variables.

Explain how to improve that construction dramatically, by exploiting the follow-
ing special property that is enjoyed by masyu puzzles: Let N , S, E, and W be the
edges leading out of a cell that holds a clue. If the clue is black, we have N = ∼S and
E = ∼W ; if the clue is white, we have N = S, E = W , and E = ∼N . (Thus every
clue reduces the number of independent variables by at least 2.)

� 424. [36] Make an exhaustive study of 6 × 6 masyu, and gather whatever statistics
you think are particularly interesting. For example, how many of the 336 ≈ 1.5× 1017

ways to place white or black clues lead to a valid puzzle? Which of the valid puzzles
have the fewest clues? the most clues? the shortest loops? the longest loops? only
white clues? only black clues? How many of those puzzles are minimal, in the sense
that none of their clues can be removed without allowing a new solution?

How many of the 236 ≈ 6.9 × 1010 ways to occupy cells occur as the pattern of
white clues in a valid puzzle? How many of them occur as the pattern of black clues?
How many puzzles remain valid when white and black are interchanged? Which 6× 6
masyu puzzle do you think is most difficult to solve?

179

From the Library of Melissa Nuno

ptg999

180 COMBINATORIAL SEARCHING 7.2.2.1

425. [28] The solution to a masyu puzzle is composed of five kinds of “tiles”:
‘ ’, ‘ ’, ‘ ’, ‘ ’, and blank. For example, the 3× 3 solution shown here
contains two tiles of each nonblank type.

Find 4 × 4, 5 × 5, and 6 × 6 puzzles whose unique solutions have exactly k tiles
of each nonblank type, for every possible k.

� 426. [31] Obtain a valid masyu puzzle from diagram (i) below by changing each ‘ ’
clue into either ‘ ’ or ‘ ’.

(i) (ii)

� 427. [25] Design a 25× 25 masyu puzzle by adding white clues (only) to diagram (ii)
above. All of your clues should preserve the 8-fold symmetry of this pattern.

428. [M28] For infinitely many n, construct a valid n×nmasyu puzzle with O(n) clues
whose loop goes through all four corner cells, where all clues are (a) black; (b) white.

429. [21] A closed path on a triangular grid may have “sharp turns,” which change
the direction by 120◦, or “slack turns,” which change the direction by 60◦, or both.
Therefore triangular masyu has three flavors of clues: ‘ ’ for the sharp turns, ‘ ’ for
the slack turns, and of course ‘ ’ for the non-turns.
a) Solve the following homogeneous triangular masyu puzzles:

b) The following patterns for triangular masyu are clearly impossible to solve. But
show that each of them is solvable if the colors { , , } are suitably permuted:

� 430. [26] (Kakuro.) A kakuro puzzle is like a crossword puzzle, except that its “words”
are blocks of two or more nonzero digits {1, 2, . . . , 9}, not strings of letters. The digits
of each block must be distinct, and their sum is given as a clue. Every cell to be filled
belongs to exactly one horizontal block and one vertical block.

For example, the mini-kakuro shown here has just three horizontal
blocks and three vertical blocks. Notice that the desired sums are indicated
to the immediate left or above each block; thus the first horizontal block
is supposed to be filled with two digits that sum to 5, so there are four
possibilities: 14, 23, 32, 41. The first vertical block should sum to 6;
again there are four possibilities, this time 15, 24, 42, 51 (because 33 is
forbidden). The second horizontal block has three digits that should sum to 19; it
is considerably less constrained. Indeed, there are thirty ways to obtain 19-in-three,
namely the permutations of {2, 8, 9} or {3, 7, 9} or {4, 6, 9} or {4, 7, 8} or {5, 6, 8}.

6 10

5

14

19

6

180

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—THIRD SET 181

a) Solve the puzzle. Hint: There’s only one possibility for the lower right corner.
b) Sketch a simple way to build a table of all suitable combinations of n-in-k, for

2 ≤ k ≤ 9 and 2 ≤ n ≤ 45. Which n and k have the most? Hint: Use bitmaps.
c) Generalized kakuro is a related puzzle, for which each block of length k has a

specified set of combinations, chosen from among the
(
9
k

)
possibilities (regardless

of their sum). For example, suppose the three horizontal blocks of mini-kakuro
must be filled respectively with permutations of {1, 3}, {3, 5}, or {5, 7}; {1, 3, 5},
{1, 7, 9}, {2, 4, 6}, {6, 8, 9}, or {7, 8, 9}; {2, 4}, {4, 6}, or {6, 8}; and require the
same for the three vertical blocks. Find the unique solution to that puzzle.

d) It would be easy to formulate kakuro as an XCC problem, as we did word squares
in exercise 87, by simply giving one option for each possible placement of a block.
But the resulting problem might be gigantic: For example, long blocks are not
uncommon in kakuro, and each 9-digit block would have 9! = 362,880 options(!).
Show that generalized kakuro can be formulated efficiently as an XCC problem.

� 431. [30] The inventor of kakuro, Jacob E. Funk of Manitoba (who always called his
puzzles “Cross Sums”), published the following challenge on pages 50 and 66 of the
August/September 1950 issue of Dell Official Crossword Puzzles:

6 13 19 27 41 18 7 32 10 13 21

27 8 29

11 13

17

16

26

41 18

15

32

38

15 10 17 32

22 23

10

10

7

7

41

29

42

18 7

14

28

28

26 14

11 15

16

32

23 22

24

12 15

37

9 13 16

24 41

6

14 22 14

30 9 29

Many ingenious constructions are present here; but unfortunately, he failed to realize
that there is more than one solution. Find all solutions, and obtain a valid puzzle by
repairing some of his original clues.

� 432. [M25] We can’t simply design new kakuro puzzles by randomly filling the blanks
and using the resulting sums as the constraints, because the vast majority of feasible
sums yield nonunique solutions. Verify this experimentally for the generic diagrams

a)

∗ ∗

∗

∗

∗

∗

; b)

∗ ∗ ∗

∗

∗

∗

.

In each case determine the exact number of ways to fill the blanks, without repeated
digits in any row or column, as well as exactly how many of those filled-in diagrams
are uniquely reconstructible from their block sums. Consider also symmetry.

181

From the Library of Melissa Nuno

ptg999

182 COMBINATORIAL SEARCHING 7.2.2.1

433. [26] Six of the sum-clues in this little kakuro diagram are unspecified:

9 ∗ 24 6

16 4

∗

∗

∗

∗ 15

16

16 ∗

In how many ways can you obtain valid puzzles by specifying them?

434. [30] Exactly how many kakuro diagrams are possible in a 9×9 grid? (Every row
and every column should contain at least one block of empty cells, except that the top-
most row and leftmost column are completely black. All blocks must have length ≥ 2.
Empty cells needn’t be rookwise connected.) What is the maximum number of blocks?

435. [31] Design a rectangular kakuro puzzle for which the blocks at the top of the
solution are 31, 41, 59, 26, 53, 58, 97 (the first fourteen digits of π).

� 436. [20] (Hitori.) Let’s wind up this potpourri of examples by considering a com-
pletely different combinatorial challenge. A hitori puzzle (“alone”) is an m × n array
in which we’re supposed to cross elements out until three conditions are achieved:

i) No row or column contains repeated elements.

ii) Adjacent elements cannot be crossed out.

iii) The remaining elements are rookwise connected.

For example, consider the 4 × 5 word rectangle (α). Conditions (i) and (ii) can
be satisfied in sixteen ways, such as (β) and (γ). But only (δ) satisfies also (iii).

(α)

S K I F F
I N N E R
T I T L E
S T O L E

(β)

S K I F F
I N N E R
T I T L E
S T O L E

(γ)

S K I F F
I N N E R
T I T L E
S T O L E

(δ)

S K I F F
I N N E R
T I T L E
S T O L E

A crossed-out cell is said to be black; the other cells are white. While solving a
hitori, it’s helpful to circle an entry that is certain to become white. We can initially
circle all the “seeds”—the entries that don’t match any others in their row or column.

For example, puzzle (α) has eight seeds. If we decide to blacken a cell,
we immediately circle its neighbors (because they cannot also be black). Thus,
for instance, we shouldn’t cross out the E in cell (2, 4): That would circle the L
in (2, 3), forcing the other L to be black and cutting off the corner E as in (β).

S K I F F
I N N E R
T I T L E
S T O L E

The precise value of a seed is immaterial to the puzzle; it can be replaced by any
other symbol that differs from everything else in its row or column.

We say as usual that a hitori puzzle is valid if it has exactly one solution. Explain
why (a) a valid hitori puzzle has exactly one solution with all seeds white; (b) a hitori
puzzle that has a unique solution with all seeds white is valid if and only if all the seed
cells not adjacent to black in that solution are “articulation points” for the set of white
cells— that is, their removal would disconnect the whites. (See (3, 1) and (3, 2) in (δ).)

� 437. [21] A weak solution to a hitori puzzle is a solution for which all seeds are white,
and for which properties (i) and (ii) of exercise 436 hold. Given a hitori puzzle, define
an XCC problem whose solutions are precisely its weak solutions.

182

From the Library of Melissa Nuno

ptg999

7.2.2.1 DANCING LINKS: EXERCISES—THIRD SET 183

438. [30] Explain how to modify Algorithm C so that, when given an XCC problem
from the construction in answer 437, it will produce only solutions that satisfy also the
connectivity condition (iii). Hint: See exercise 413; also consider reachability.

439. [M20] Let G be a graph on the vertices V . A hitori cover of G is a set U ⊆ V
such that (i) G |U is connected; (ii) if v /∈ U and u−−−v then u ∈ U ; (iii) if u ∈ U and
if v ∈ U for all u−−−v, then G |(U \ u) is not connected.
a) Describe a hitori cover in terms of standard graph theory terminology.
b) Show that the solution of a valid hitori puzzle is a hitori cover of Pm Pn.

440. [21] True or false: If the letter A occurs exactly twice in the top row of a valid
hitori puzzle, exactly one of those occurrences will survive in the solution.

441. [18] Describe every valid hitori puzzle of size 1× n on a d-letter alphabet.

� 442. [M33] Enumerate all hitori covers of Pm Pn, for 1 ≤ m ≤ n ≤ 9.

� 443. [M30] Prove that an m× n hitori cover has at most (mn+ 2)/3 black cells.

444. [M27] Can a valid n×n hitori puzzle involve fewer than 2n/3 distinct elements?
Construct a valid puzzle of size 3k × 3k, using only the elements {0, 1, . . . , 2k}.

� 445. [M22] It’s surprisingly difficult to construct a valid hitori puzzle that has no
seeds. In fact, there are no n× n examples for n ≤ 9 except when n = 6. But it turns
out that quite a few seedless 6× 6 hitori puzzles do exist.

Consider the five hitori covers below. Determine, for each of them, the exact
number of valid hitori puzzles with no seeds, having that pattern of white and black
cells as the solution. Hint: In some cases the answer is zero.

(i) (ii) (iii) (iv) (v)

� 446. [24] The digits of e, 2.718281828459045. . . , are well known to have a curious
repeating pattern. In fact, the first 25 digits actually define a valid 5× 5 hitori puzzle!
What is the probability that a random 5 × 5 array of decimal digits will have that
property? And what about octal digits? Hexadecimal digits?

447. [22] (Johan de Ruiter.) Are there any values of m > 1 and n > 1 for which the
first mn digits of π define a valid m× n hitori puzzle?

448. [22] Do any of the 31344 double word squares formed from WORDS(3000) make
valid hitori puzzles? (See exercise 87.)

449. [40] (Hidden nuggets.) Johan de Ruiter noticed in 2017 that George Orwell had
included a valid hitori puzzle in his novel Nineteen Eighty-Four (part 2, chapter 9):

B E I N G I N A M I
N O R I T Y E V E N
A M I N O R I T Y O
F O N E D I D N O T
M A K E Y O U M A D

Did Homer, Shakespeare, Tolstoy, and others also create hitori puzzles accidentally?

450. [22] Use Algorithm X to solve the “tot tibi sunt dotes” problem of Section 7.2.1.7.

183

From the Library of Melissa Nuno

ptg999

184 COMBINATORIAL SEARCHING 7.2.2.1

We should “play up” the role of play.

— FRANCIS EDWARD SU, “Mathematics for Human Flourishing” (2017)

184

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY 185

He reaps no satisfaction but from low and sensual objects,

or from the indulgence of malignant passions.

— DAVID HUME, The Sceptic (1742)

I can’t get no . . .

— MICK JAGGER and KEITH RICHARDS, Satisfaction (1965)

7.2.2.2. Satisfiability. We turn now to one of the most fundamental problems
of computer science: Given a Boolean formula F (x1, . . . , xn), expressed in so-
called “conjunctive normal form” as an AND of ORs, can we “satisfy” F by
assigning values to its variables in such a way that F (x1, . . . , xn) = 1? For
example, the formula

F (x1, x2, x3) = (x1 ∨ x̄2) ∧ (x2 ∨ x3) ∧ (x̄1 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3) (1)

is satisfied when x1x2x3 = 001. But if we rule that solution out, by defining

G(x1, x2, x3) = F (x1, x2, x3) ∧ (x1 ∨ x2 ∨ x̄3), (2)

then G is unsatisfiable: It has no satisfying assignment.
Section 7.1.1 discussed the embarrassing fact that nobody has ever been

able to come up with an efficient algorithm to solve the general satisfiability
problem, in the sense that the satisfiability of any given formula of sizeN could be
decided in NO(1) steps. Indeed, the famous unsolved question “does P = NP?”
is equivalent to asking whether such an algorithm exists. We will see in Section
7.9 that satisfiability is a natural progenitor of every NP-complete problem.*

On the other hand enormous technical breakthroughs in recent years have
led to amazingly good ways to approach the satisfiability problem. We now
have algorithms that are much more efficient than anyone had dared to believe
possible before the year 2000. These so-called “SAT solvers” are able to handle
industrial-strength problems, involving millions of variables, with relative ease,
and they’ve had a profound impact on many areas of research and development
such as computer-aided verification. In this section we shall study the principles
that underlie modern SAT-solving procedures.

* At the present time very few people believe that P = NP [see SIGACT News 43, 2 (June
2012), 53–77]. In other words, almost everybody who has studied the subject thinks that
satisfiability cannot be decided in polynomial time. The author of this book, however, suspects
that NO(1)-step algorithms do exist, yet that they’re unknowable. Almost all polynomial time
algorithms are so complicated that they lie beyond human comprehension, and could never be
programmed for an actual computer in the real world. Existence is different from embodiment.

185

From the Library of Melissa Nuno

ptg999

186 COMBINATORIAL SEARCHING 7.2.2.2

To begin, let’s define the problem carefully and simplify the notation, so
that our discussion will be as efficient as the algorithms that we’ll be considering.
Throughout this section we shall deal with variables, which are elements of any
convenient set. Variables are often denoted by x1, x2, x3, . . . , as in (1); but any
other symbols can also be used, like a, b, c, or even d′′′74. We will in fact often use
the numerals 1, 2, 3, . . . to stand for variables; and in many cases we’ll find it
convenient to write just j instead of xj , because it takes less time and less space
if we don’t have to write so many x’s. Thus ‘2’ and ‘x2’ will mean the same
thing in many of the discussions below.

A literal is either a variable or the complement of a variable. In other words,
if v is a variable, both v and v̄ are literals. If there are n possible variables in
some problem, there are 2n possible literals. If l is the literal x̄2, which is also
written 2̄, then the complement of l, denoted by l̄, is x2, which is also written 2.

The variable that corresponds to a literal l is denoted by |l|; thus we have
|v| = |v̄| = v for every variable v. Sometimes we write ±v for a literal that is
either v or v̄. We might also denote such a literal by σv, where σ is ±1. The
literal l is called positive if |l| = l; otherwise |l| = l̄, and l is said to be negative.

Two literals l and l′ are distinct if l �= l′. They are strictly distinct if |l| �= |l′|.
A set of literals {l1, . . . , lk} is strictly distinct if |li| �= |lj | for 1 ≤ i < j ≤ k.

The satisfiability problem, like all good problems, can be understood in many
equivalent ways, and we will find it convenient to switch from one viewpoint to
another as we deal with different aspects of the problem. Example (1) is an AND

of clauses, where every clause is an OR of literals; but we might as well regard
every clause as simply a set of literals, and a formula as a set of clauses. With
that simplification, and with ‘xj ’ identical to ‘j’, Eq. (1) becomes

F =
{{1, 2̄}, {2, 3}, {1̄, 3̄}, {1̄, 2̄, 3}}.

And we needn’t bother to represent the clauses with braces and commas either;
we can simply write out the literals of each clause. With that shorthand we’re
able to perceive the real essence of (1) and (2):

F = {12̄, 23, 1̄3̄, 1̄2̄3}, G = F ∪ {123̄}. (3)

Here F is a set of four clauses, and G is a set of five.
In this guise, the satisfiability problem is equivalent to a covering problem,

analogous to the exact cover problems that we considered in Section 7.2.2.1: Let

Tn =
{{x1, x̄1}, {x2, x̄2}, . . . , {xn, x̄n}} = {11̄, 22̄, . . . , nn̄}. (4)

“Given a set F = {C1, . . . , Cm}, where each Ci is a clause and each clause
consists of literals based on the variables {x1, . . . , xn}, find a set L of n literals
that ‘covers’ F ∪Tn, in the sense that every clause contains at least one element
of L.” For example, the set F in (3) is covered by L = {1̄, 2̄, 3}, and so is the set
T3; hence F is satisfiable. The set G is covered by {1, 1̄, 2} or {1, 1̄, 3} or · · · or
{2̄, 3, 3̄}, but not by any three literals that also cover T3; so G is unsatisfiable.

Similarly, a family F of clauses is satisfiable if and only if it can be covered
by a set L of strictly distinct literals.

186

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY 187

If F ′ is any formula obtained from F by complementing one or more vari-
ables, it’s clear that F ′ is satisfiable if and only if F is satisfiable. For example,
if we replace 1 by 1̄ and 2 by 2̄ in (3) we obtain

F ′ = {1̄2, 2̄3, 13̄, 123}, G′ = F ′ ∪ {1̄2̄3̄}.
In this case F ′ is trivially satisfiable, because each of its clauses contains a
positive literal: Every such formula is satisfied by simply letting L be the set of
positive literals. Thus the satisfiability problem is the same as the problem of
switching signs (or “polarities”) so that no all-negative clauses remain.

Another problem equivalent to satisfiability is obtained by going back to the
Boolean interpretation in (1) and complementing both sides of the equation. By
De Morgan’s laws 7.1.1–(11) and (12) we have

F (x1, x2, x3) = (x̄1 ∧ x2) ∨ (x̄2 ∧ x̄3) ∨ (x1 ∧ x3) ∨ (x1 ∧ x2 ∧ x̄3); (5)

and F is unsatisfiable⇐⇒ F = 0⇐⇒ F = 1⇐⇒ F is a tautology. Consequently
F is satisfiable if and only if F is not a tautology: The tautology problem and
the satisfiability problem are essentially the same.*

Since the satisfiability problem is so important, we simply call it SAT. And
instances of the problem such as (1), in which there are no clauses of length
greater than 3, are called 3SAT. In general, kSAT is the satisfiability problem
restricted to instances where no clause has more than k literals.

Clauses of length 1 are called unit clauses, or unary clauses. Binary clauses,
similarly, have length 2; then come ternary clauses, quaternary clauses, and so
forth. Going the other way, the empty clause, or nullary clause, has length 0 and
is denoted by ε; it is always unsatisfiable. Short clauses are very important in al-
gorithms for SAT, because they are easier to deal with than long clauses. But long
clauses aren’t necessarily bad; they’re much easier to satisfy than the short ones.

A slight technicality arises when we consider clause length: The binary
clause (x1∨ x̄2) in (1) is equivalent to the ternary clause (x1∨x1∨ x̄2) as well as
to (x1∨ x̄2∨ x̄2) and to longer clauses such as (x1∨x1∨x1∨ x̄2); so we can regard
it as a clause of any length ≥ 2. But when we think of clauses as sets of literals
rather than ORs of literals, we usually rule out multisets such as 112̄ or 12̄2̄ that
aren’t sets; in that sense a binary clause is not a special case of a ternary clause.
On the other hand, every binary clause (x ∨ y) can be replaced by two ternary
clauses, (x ∨ y ∨ z) ∧ (x ∨ y ∨ z̄), if z is another variable; and every k-ary clause
is equivalent to the AND of two (k + 1)-ary clauses. Therefore we can assume,
if we like, that kSAT deals only with clauses whose length is exactly k.

A clause is tautological (always satisfied) if it contains both v and v̄ for some
variable v. Tautological clauses can be denoted by ℘ (see exercise 7.1.4–222).
They never affect a satisfiability problem; so we usually assume that the clauses
input to a SAT-solving algorithm consist of strictly distinct literals.

When we discussed the 3SAT problem briefly in Section 7.1.1, we took a look
at formula 7.1.1–(32), “the shortest interesting formula in 3CNF.” In our new

* Strictly speaking, TAUT is coNP-complete, while SAT is NP-complete; see Section 7.9.

187

From the Library of Melissa Nuno

ptg999

188 COMBINATORIAL SEARCHING 7.2.2.2

shorthand, it consists of the following eight unsatisfiable clauses:

R = {123̄, 234̄, 341, 41̄2, 1̄2̄3, 2̄3̄4, 3̄4̄1̄, 4̄12̄}. (6)

This set makes an excellent little test case, so we will refer to it frequently below.
(The letterR reminds us that it is based on R. L. Rivest’s associative block design
6.5–(13).) The first seven clauses of R, namely

R′ = {123̄, 234̄, 341, 41̄2, 1̄2̄3, 2̄3̄4, 3̄4̄1̄}, (7)

also make nice test data; they are satisfied only by choosing the complements of
the literals in the omitted clause, namely {4, 1̄, 2}. More precisely, the literals
4, 1̄, and 2 are necessary and sufficient to cover R′; we can also include either 3
or 3̄ in the solution. Notice that (6) is symmetric under the cyclic permutation
1 → 2 → 3 → 4 → 1̄ → 2̄ → 3̄ → 4̄ → 1 of literals; thus, omitting any clause
of (6) gives a satisfiability problem equivalent to (7).

A simple example. SAT solvers are important because an enormous variety
of problems can readily be formulated Booleanwise as ANDs of ORs. Let’s begin
with a little puzzle that leads to an instructive family of example problems:
Find a binary sequence x1 . . . x8 that has no three equally spaced 0s and no
three equally spaced 1s. For example, the sequence 01001011 almost works; but
it doesn’t qualify, because x2, x5, and x8 are equally spaced 1s.

If we try to solve this puzzle by backtracking manually through all 8-bit
sequences in lexicographic order, we see that x1x2 = 00 forces x3 = 1. Then
x1x2x3x4x5x6x7 = 0010011 leaves us with no choice for x8. A minute or two of
further hand calculation reveals that the puzzle has just six solutions, namely

00110011, 01011010, 01100110, 10011001, 10100101, 11001100. (8)

Furthermore it’s easy to see that none of these solutions can be extended to a
suitable binary sequence of length 9. We conclude that every binary sequence
x1 . . . x9 contains three equally spaced 0s or three equally spaced 1s.

Notice now that the condition x2x5x8 �= 111 is the same as the Boolean
clause (x̄2 ∨ x̄5 ∨ x̄8), namely 2̄5̄8̄. Similarly x2x5x8 �= 000 is the same as 258.
So we have just verified that the following 32 clauses are unsatisfiable:

123, 234, . . . , 789, 135, 246, . . . , 579, 147, 258, 369, 159,

1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.
(9)

This result is a special case of a general fact that holds for any given positive
integers j and k: If n is sufficiently large, every binary sequence x1 . . . xn contains
either j equally spaced 0s or k equally spaced 1s (or both). The smallest such n
is denoted by W (j, k) in honor of B. L. van der Waerden, who proved an even
more general result (see exercise 2.3.4.3–6): If n is sufficiently large, and if k0,
. . . , kb−1 are positive integers, every b-ary sequence x1 . . . xn contains ka equally
spaced a’s for some digit a, 0 ≤ a < b. The least such n is W (k0, . . . , kb−1).

Let us accordingly define the following set of clauses when j, k, n > 0:

waerden (j, k;n) =
{
(xi ∨ xi+d ∨ · · · ∨ xi+(j−1)d)

∣∣ 1 ≤ i ≤ n− (j−1)d, d ≥ 1
}

∪ {(x̄i ∨ x̄i+d ∨ · · · ∨ x̄i+(k−1)d)
∣∣ 1 ≤ i ≤ n− (k−1)d, d ≥ 1

}
. (10)

188

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 189

The 32 clauses in (9) are waerden(3, 3; 9); and in general waerden(j, k;n) is an
appealing instance of SAT, satisfiable if and only if n < W (j, k).

It’s obvious that W(1, k) = k and W(2, k) = 2k− [k even]; but when j and k
exceed 2 the numbers W(j, k) are quite mysterious. We’ve seen thatW (3, 3) = 9,
and the following nontrivial values are currently known:

k = 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

W(3, k) = 9 18 22 32 46 58 77 97 114 135 160 186 218 238 279 312 349

W(4, k) = 18 35 55 73 109 146 309 ? ? ? ? ? ? ? ? ? ?

W(5, k) = 22 55 178 206 260 ? ? ? ? ? ? ? ? ? ? ? ?

W(6, k) = 32 73 206 1132 ? ? ? ? ? ? ? ? ? ? ? ? ?

V. Chvátal inaugurated the study ofW(j, k) by computing the values for j+k ≤ 9
as well as W(3, 7) [Combinatorial Structures and Their Applications (1970), 31–
33]. Most of the large values in this table have been calculated by state-of-the-art
SAT solvers [see M. Kouril and J. L. Paul, Experimental Math. 17 (2008), 53–
61; M. Kouril, Integers 12 (2012), A46:1–A46:13]. The table entries for j = 3
suggest that we might have W(3, k) < k2 when k > 4, but that isn’t true: SAT
solvers have also been used to establish the lower bounds

k = 20 21 22 23 24 25 26 27 28 29 30

W(3, k) ≥ 389 416 464 516 593 656 727 770 827 868 903

(which might in fact be the true values for this range of k); see T. Ahmed,
O. Kullmann, and H. Snevily [Discrete Applied Math. 174 (2014), 27–51].

Notice that the literals in every clause of waerden (j, k;n) have the same
sign: They’re either all positive or all negative. Does this “monotonic” property
make the SAT problem any easier? Unfortunately, no: Exercise 10 proves that
any set of clauses can be converted to an equivalent set of monotonic clauses.

Exact covering. The exact cover problems that we solved with “dancing links”
in Section 7.2.2.1 can easily be reformulated as instances of SAT and handed off
to SAT solvers. For example, let’s look again at Langford pairs, the task of
placing two 1s, two 2s, . . . , two n’s into 2n slots so that exactly k slots intervene
between the two appearances of k, for each k. The corresponding exact cover
problem when n = 3 has nine items and eight options (see 7.2.2.1–(17)):

‘d1 s1 s3’, ‘d1 s2 s4’, ‘d1 s3 s5’, ‘d1 s4 s6’, ‘d2 s1 s4’, ‘d2 s2 s5’, ‘d2 s3 s6’, ‘d3 s1 s5’. (11)

The items are di for 1 ≤ i ≤ 3 and sj for 1 ≤ j ≤ 6; the option ‘di sj sk’ means
that digit i is placed in slots j and k. Left-right symmetry allows us to omit the
option ‘d3 s2 s6’ from this specification.

We want to select options of (11) so that each item appears just once. Let
the Boolean variable xj mean ‘select option j’, for 1 ≤ j ≤ 8; the problem is
then to satisfy the nine constraints

S1(x1, x2, x3, x4) ∧ S1(x5, x6, x7) ∧ S1(x8)

∧ S1(x1, x5, x8) ∧ S1(x2, x6) ∧ S1(x1, x3, x7)

∧ S1(x2, x4, x5) ∧ S1(x3, x6, x8) ∧ S1(x4, x7), (12)

189

From the Library of Melissa Nuno

ptg999

190 COMBINATORIAL SEARCHING 7.2.2.2

one for each item. (Here, as usual, S1(y1, . . . , yp) denotes the symmetric function
[y1 + · · ·+ yp=1].) For example, we must have x5+x6+x7 = 1, because item d2
appears in options 5, 6, and 7 of (11).

One of the simplest ways to express the symmetric Boolean function S1 as
an AND of ORs is to use 1 +

(
p
2

)
clauses:

S1(y1, . . . , yp) = (y1 ∨ · · · ∨ yp) ∧
∧

1≤j<k≤p
(ȳj ∨ ȳk). (13)

“At least one of the y’s is true, but not two.” Then (12) becomes, in shorthand,

{1234, 1̄2̄, 1̄3̄, 1̄4̄, 2̄3̄, 2̄4̄, 3̄4̄, 567, 5̄6̄, 5̄7̄, 6̄7̄, 8,
158, 1̄5̄, 1̄8̄, 5̄8̄, 26, 2̄6̄, 137, 1̄3̄, 1̄7̄, 3̄7̄,

245, 2̄4̄, 2̄5̄, 4̄5̄, 368, 3̄6̄, 3̄8̄, 6̄8̄, 47, 4̄7̄}; (14)

we shall call these clauses langford (3). (Notice that only 30 of them are actually
distinct, because 1̄3̄ and 2̄4̄ appear twice.) Exercise 13 defines langford (n); we
know from exercise 7–1 that langford (n) is satisfiable ⇐⇒ nmod 4 = 0 or 3.

The unary clause 8 in (14) tells us immediately that x8 = 1. Then from
the binary clauses 1̄8̄, 5̄8̄, 3̄8̄, 6̄8̄ we have x1 = x5 = x3 = x6 = 0. The ternary
clause 137 then implies x7 = 1; finally x4 = 0 (from 4̄7̄) and x2 = 1 (from 1234).
Options 8, 7, and 2 of (11) now give us the desired Langford pairing 3 1 2 1 3 2.

Incidentally, the function S1(y1, y2, y3, y4, y5) can also be expressed as

(y1 ∨ y2 ∨ y3 ∨ y4 ∨ y5) ∧ (ȳ1∨ ȳ2) ∧ (ȳ1∨ ȳ3) ∧ (ȳ1∨ t̄)

∧ (ȳ2∨ ȳ3) ∧ (ȳ2∨ t̄) ∧ (ȳ3∨ t̄) ∧ (t∨ ȳ4) ∧ (t∨ ȳ5) ∧ (ȳ4∨ ȳ5),

where t is a new variable. In general, if p gets big, it’s possible to express
S1(y1, . . . , yp) with only 3p−5 clauses instead of

(
p
2

)
+1, by using
(p−3)/2� new

variables as explained in exercise 12. When this alternative encoding is used to
represent Langford pairs of order n, we’ll call the resulting clauses langford ′(n).

Do SAT solvers do a better job with the clauses langford (n) or langford ′(n)?
Stay tuned: We’ll find out later.

Coloring a graph. The classical problem of coloring a graph with at most d
colors is another rich source of benchmark examples for SAT solvers. If the graph
has n vertices V , we can introduce nd variables vj , for v ∈ V and 1 ≤ j ≤ d,
signifying that v has color j; the resulting clauses are quite simple:

(v1 ∨ v2 ∨ · · · ∨ vd) for v ∈ V (“every vertex has at least one color”); (15)

(ūj ∨ v̄j) for u−−−v, 1 ≤ j ≤ d (“adjacent vertices have different colors”). (16)

We could also add n
(
d
2

)
additional so-called exclusion clauses

(v̄i ∨ v̄j) for v ∈V , 1≤ i < j≤ d (“every vertex has at most one color”); (17)

but they’re optional, because vertices with more than one color are harmless.
Indeed, if we find a solution with v1 = v2 = 1, we’ll be extra happy, because it
gives us two legal ways to color vertex v. (See exercise 14.)

190

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 191

Fig. 76. The McGregor graph
of order 10. Each region of this
“map” is identified by a two-
digit hexadecimal code. Can you
color the regions with four colors,
never using the same color for
two adjacent regions?

00 01 02 03 04 05 06 07 08 09

11 12 13 14 15 16 17 18 19

22 23 24 25 26 27 28 29

33 34 35 36 37 38 39

44 45 46 47 48 49

55 56 57 58 59

66 67 68 69

77 78 79

88 89

99

20 21

30 31 32

40 41 42 43

50 51 52 53 54

60 61 62 63 64 65

70 71 72 73 74 75 76

80 81 82 83 84 85 86 87

90 91 92 93 94 95 96 97 98

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

10

Martin Gardner astonished the world in 1975 when he reported [Scientific
American 232, 4 (April 1975), 126–130] that a proper coloring of the planar
map in Fig. 76 requires five distinct colors, thereby disproving the longstanding
four-color conjecture. (In that same column he also cited several other “facts”
supposedly discovered in 1974: (i) eπ

√
163 is an integer; (ii) pawn-to-king-rook-4

(‘h4’) is a winning first move in chess; (iii) the theory of special relativity is
fatally flawed; (iv) Leonardo da Vinci invented the flush toilet; and (v) Robert
Ripoff devised a motor that is powered entirely by psychic energy. Thousands
of readers failed to notice that they had been April Fooled!)

The map in Fig. 76 actually can be 4-colored; you are hereby challenged to
discover a suitable way to do this, before turning to the answer of exercise 18.
Indeed, the four-color conjecture became the Four Color Theorem in 1976, as
mentioned in Section 7. Fortunately that result was still unknown in April of
1975; otherwise this interesting graph would probably never have appeared in
print. McGregor’s graph has 110 vertices (regions) and 324 edges (adjacencies
between regions); hence (15) and (16) yield 110 + 1296 = 1406 clauses on 440
variables, which a modern SAT solver can polish off quickly.

We can also go much further and solve problems that would be extremely
difficult by hand. For example, we can add constraints to limit the number of
regions that receive a particular color. Randal Bryant exploited this idea in 2010
to discover that there’s a four-coloring of Fig. 76 that uses one of the colors only
7 times (see exercise 17). His coloring is, in fact, unique, and it leads to an
explicit way to 4-color the McGregor graphs of all orders n ≥ 3 (exercise 18).

Such additional constraints can be generated in many ways. We could,
for instance, append

(
110
8

)
clauses, one for every choice of 8 regions, specifying

that those 8 regions aren’t all colored 1. But no, we’d better scratch that idea:(
110
8

)
= 409,705,619,895. Even if we restricted ourselves to the 74,792,876,790

sets of 8 regions that are independent, we’d be dealing with far too many clauses.

191

From the Library of Melissa Nuno

ptg999

192 COMBINATORIAL SEARCHING 7.2.2.2

An interesting SAT-oriented way to ensure that x1 + · · · + xn is at most r,
which works well when n and r are rather large, was found by C. Sinz [LNCS
3709 (2005), 827–831]. His method introduces (n − r)r new variables skj for
1 ≤ j ≤ n− r and 1 ≤ k ≤ r. If F is any satisfiability problem and if we add the
(n− r − 1)r + (n− r)(r + 1) clauses

(s̄kj ∨ skj+1), for 1 ≤ j < n− r and 1 ≤ k ≤ r, (18)

(x̄j+k ∨ s̄kj ∨ sk+1j), for 1 ≤ j ≤ n− r and 0 ≤ k ≤ r, (19)

where s̄kj is omitted when k = 0 and sk+1j is omitted when k = r, then the new set
of clauses is satisfiable if and only ifF is satisfiable with x1+· · ·+xn ≤ r. (See ex-
ercise 26.) With this scheme we can limit the number of red-colored regions of
McGregor’s graph to at most 7 by appending 1538 clauses in 721 new variables.

Another way to achieve the same goal, which turns out to be even better,
has been proposed by O. Bailleux and Y. Boufkhad [LNCS 2833 (2003), 108–
122]. Their method is a bit more difficult to describe, but still easy to implement:
Consider a complete binary tree that has n−1 internal nodes numbered 1 through
n − 1, and n leaves numbered n through 2n − 1; the children of node k, for
1 ≤ k < n, are nodes 2k and 2k+1 (see 2.3.4.5–(5)). We form new variables bkj for
1 < k < n and 1 ≤ j ≤ tk, where tk is the minimum of r and the number of leaves
below node k. Then the following clauses, explained in exercise 27, do the job:

(b̄2ki ∨ b̄2k+1j ∨ bki+j), for 0≤ i≤ t2k, 0≤ j≤ t2k+1, 1≤ i+j≤ tk+1, 1<k<n; (20)

(b̄2i ∨ b̄3j), for 0≤ i≤ t2, 0≤ j≤ t3, i+ j= r + 1. (21)

In these formulas we let tk = 1 and bk1 = xk−n+1 for n ≤ k < 2n; all literals b̄k0
and bkr+1 are to be omitted. Applying (20) and (21) to McGregor’s graph, with
n = 110 and r = 7, yields just 1216 new clauses in 399 new variables.

The same ideas apply when we want to ensure that x1+ · · ·+xn is at least r,
because of the identity S≥r(x1, . . . , xn) = S≤n−r(x̄1, . . . , x̄n). And exercise 30
considers the case of equality, when our goal is to make x1 + · · ·+ xn = r. We’ll
discuss other encodings of such cardinality constraints below.

Factoring integers. Next on our agenda is a family of SAT instances with quite
a different flavor. Given an (m + n)-bit binary integer z = (zm+n . . . z2z1)2, do
there exist integers x = (xm . . . x1)2 and y = (yn . . . y1)2 such that z = x × y?
For example, if m = 2 and n = 3, we want to invert the binary multiplication

y3 y2 y1
× x2x1
a3 a2 a1

b3 b2 b1
c3 c2 c1
z5 z4 z3 z2 z1

(a3a2a1)2 = (y3y2y1)2 × x1
(b3 b2 b1)2 = (y3y2y1)2 × x2

z1 = a1
(c1z2)2 = a2 + b1
(c2z3)2 = a3 + b2 + c1
(c3z4)2 = b3 + c2

z5 = c3

(22)

when the z bits are given. This problem is satisfiable when z = 21 = (10101)2,
in the sense that suitable binary values x1, x2, y1, y2, y3, a1, a2, a3, b1, b2, b3, c1,
c2, c3 do satisfy these equations. But it’s unsatisfiable when z = 19 = (10011)2.

192

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 193

Arithmetical calculations like (22) are easily expressed in terms of clauses
that can be fed to a SAT solver: We first specify the computation by constructing
a Boolean chain, then we encode each step of the chain in terms of a few clauses.
One such chain, if we identify a1 with z1 and c3 with z5, is

z1←x1∧y1,

a2←x1∧y2,

a3←x1∧y3,

b1←x2∧y1,

b2←x2∧y2,

b3←x2∧y3,

z2←a2⊕b1,

c1←a2∧b1,

s←a3⊕b2,

p←a3∧b2,

z3←s⊕c1,

q←s∧c1,

c2←p∨q,

z4←b3⊕c2,

z5←b3∧c2,

(23)

using a “full adder” to compute c2z3 and “half adders” to compute c1z2 and c3z4
(see 7.1.2–(23) and (24)). And that chain is equivalent to the 49 clauses

(x1∨z̄1)∧(y1∨z̄1)∧(x̄1∨ȳ1∨z1)∧· · ·∧(b̄3∨c̄2∨z̄4)∧(b3∨z̄5)∧(c2∨z̄5)∧(b̄3∨c̄2∨z5)

obtained by expanding the elementary computations according to simple rules:

t ← u ∧ v becomes (u ∨ t̄) ∧ (v ∨ t̄) ∧ (ū ∨ v̄ ∨ t);

t ← u ∨ v becomes (ū ∨ t) ∧ (v̄ ∨ t) ∧ (u ∨ v ∨ t̄);

t ← u⊕ v becomes (ū ∨ v ∨ t) ∧ (u ∨ v̄ ∨ t) ∧ (u ∨ v ∨ t̄) ∧ (ū ∨ v̄ ∨ t̄).

(24)

To complete the specification of this factoring problem when, say, z = (10101)2,
we simply append the unary clauses (z5) ∧ (z̄4) ∧ (z3) ∧ (z̄2) ∧ (z1).

Logicians have known for a long time that computational steps can readily
be expressed as conjunctions of clauses. Rules such as (24) are now called Tseytin
encoding, after Gregory Tseytin (1966). Our representation of a small five-bit
factorization problem in 49+5 clauses may not seem very efficient; but we will see
shortly that m-bit by n-bit factorization corresponds to a satisfiability problem
with fewer than 6mn variables, and fewer than 20mn clauses of length 3 or less.

Even if the system has hundreds or thousands of formulas,

it can be put into the conjunctive normal form “piece by piece”,

without any “multiplying out.”

— MARTIN DAVIS and HILARY PUTNAM (1958)

Suppose m ≤ n. The easiest way to set up Boolean chains for multiplication
is probably to use a scheme that goes back to John Napier’s Rabdologiæ (Edin-
burgh, 1617), pages 137–143, as modernized by Luigi Dadda [Alta Frequenza
34 (1964), 349–356]: First we form all mn products xi ∧ yj , putting every such
bit into bin [i + j], which is one of m + n “bins” that hold bits to be added
for a particular power of 2 in the binary number system. The bins will contain
respectively (0, 1, 2, . . . , m, m, . . . , m, . . . , 2, 1) bits at this point, with n−m+1
occurrences of “m” in the middle. Now we look at bin [k] for k = 2, 3, If
bin [k] contains a single bit b, we simply set zk−1 ← b. If it contains two bits
{b, b′}, we use a half adder to compute zk−1 ← b⊕ b′, c ← b∧ b′, and we put the
carry bit c into bin [k + 1]. Otherwise bin [k] contains t ≥ 3 bits; we choose any
three of them, say {b, b′, b′′}, and remove them from the bin. With a full adder we
then compute r ← b⊕b′⊕b′′ and c ← 〈bb′b′′〉, so that b+b′+b′′ = r+2c; and we
put r into bin [k], c into bin [k+1]. This decreases t by 2, so eventually we will have
computed zk−1. Exercise 41 quantifies the exact amount of calculation involved.

193

From the Library of Melissa Nuno

ptg999

194 COMBINATORIAL SEARCHING 7.2.2.2

This method of encoding multiplication into clauses is quite flexible, since
we’re allowed to choose any three bits from bin [k] whenever four or more bits are
present. We could use a first-in-first-out strategy, always selecting bits from the
“rear” and placing their sum at the “front”; or we could work last-in-first-out,
essentially treating bin [k] as a stack instead of a queue. We could also select
the bits randomly, to see if this makes our SAT solver any happier. Later in this
section we’ll refer to the clauses that represent the factoring problem by calling
them factor fifo(m,n, z), factor lifo(m,n, z), or factor rand (m,n, z, s), respec-
tively, where s is a seed for the random number generator used to generate them.

It’s somewhat mind-boggling to realize that numbers can be factored without
using any number theory! No greatest common divisors, no applications of
Fermat’s theorems, etc., are anywhere in sight. We’re providing no hints to
the solver except for a bunch of Boolean formulas that operate almost blindly
at the bit level. Yet factors are found.

Of course we can’t expect this method to compete with the sophisticated
factorization algorithms of Section 4.5.4. But the problem of factoring does dem-
onstrate the great versatility of clauses. And its clauses can be combined with
other constraints that go well beyond any of the problems we’ve studied before.

Fault testing. Lots of things can go wrong when computer chips are manufac-
tured in the “real world,” so engineers have long been interested in constructing
test patterns to check the validity of a particular circuit. For example, suppose
that all but one of the logical elements are functioning properly in some chip; the
bad one, however, is stuck: Its output is constant, always the same regardless of
the inputs that it is given. Such a failure is called a single-stuck-at fault.

x1x2y1y2y3

z1z2z3z4z5

z1b1a2b2a3b3

z2c1sp

z3q

c2

z4z5

Fig. 77. A circuit that
corresponds to (23).

Figure 77 illustrates a typical digital circuit in
detail: It implements the 15 Boolean operations
of (23) as a network that produces five output sig-
nals z5z4z3z2z1 from the five inputs y3y2y1x2x1.
In addition to having 15 AND, OR, and XOR gates,
each of which transforms two inputs into one out-
put, it has 15 “fanout” gates (indicated by dots
at junction points), each of which splits one input
into two outputs. As a result it comprises 50
potentially distinct logical signals, one for each
internal “wire.” Exercise 47 shows that a circuit
with m outputs, n inputs, and g conventional 2-
to-1 gates will have g + m − n fanout gates and
3g+2m− n wires. A circuit with w wires has 2w
possible single-stuck-at faults, namely w faults in
which the signal on a wire is stuck at 0 and w
more on which it is stuck at 1.

Table 1 shows 101 scenarios that are possible
when the 50 wires of Fig. 77 are activated by one
particular sequence of inputs, assuming that at

194

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 195

Table 1

SINGLE-STUCK-AT FAULTS IN FIGURE 77 WHEN x2x1 = 11, y3y2y1 = 110

OKx1x
1
1x
2
1x
3
1x
4
1x2x

1
2x
2
2x
3
2x
4
2y1y

1
1y
2
1y2y

1
2y
2
2y3y

1
3y
2
3z1a2a

1
2a
2
2a3a

1
3a
2
3b1 b

1
1 b
2
1 b2 b

1
2 b
2
2 b3 b

1
3 b
2
3 z2 c1 c

1
1 c
2
1 s s1 s2 p z3 q c2 c

1
2 c
2
2 z4z5

x1←input 1 000111

x11←x1 1 01000111

x21←x1 1 0111000111

x31←x11 1 010111000111

x41←x11 1 01011111000111

x2←input 1 1111111111000111

x12←x2 1 111111111101000111

x22←x2 1 11111111110111000111

x32←x12 1 1111111111010111000111

x42←x12 1 111111111101011111000111

y1←input 0 0000000000000000000000011100

y11←y1 0 000000000000000000000100011100

y21←y1 0 00000000000000000000010000011100

y2←input 1 11111111111111111111111111000111

y12←y2 1 1111111111111111111111111101000111

y22←y2 1 111111111111111111111111110111000111

y3←input 1 11111111111111111111111111111111000111

y13←y3 1 1111111111111111111111111111111101000111

y23←y3 1 111111111111111111111111111111110111000111

z1←x21∧y11 0 0000000000000000000001010000000000000000011100

a2←x31∧y12 1 0101110111111111111111111101011111111111000111

a12←a2 1 010111011111111111111111110101111111111101000111

a22←a2 1 01011101111111111111111111010111111111110111000111

a3←x41∧y13 1 0101111101111111111111111111111101011111111111000111

a13←a3 1 010111110111111111111111111111110101111111111101000111

a23←a3 1 01011111011111111111111111111111010111111111110111000111

b1←x22∧y21 0 000000000000000000000100010000000000000000000000000000011100

b11←b1 0 00000000000000000000010001000000000000000000000000000100011100

b21←b1 0 0000000000000000000001000100000000000000000000000000010000011100

b2←x32∧y22 1 1111111111010111011111111101110111111111111111111111111111000111

b12←b2 1 111111111101011101111111110111011111111111111111111111111101000111

b22←b2 1 11111111110101110111111111011101111111111111111111111111110111000111111111111111111111111111111111111111

b3←x42∧y23 1 11111111110101111101111111111111011101111111111111111111111111110001111111111111111111111111111111111111

b13←b3 1 11111111110101111101111111111111011101111111111111111111111111110100011111111111111111111111111111111111

b23←b3 1 11111111110101111101111111111111011101111111111111111111111111110111000111111111111111111111111111111111

z2←a12⊕b11 1 01011101111111111111101110010111111111110101111111111010111111111111110001111111111111111111111111111111
c1←a22∧b21 0 00000000000000000000010001000000000000000000000000000100010000000000000000011100000000000000000000000000

c11←c1 0 00000000000000000000010001000000000000000000000000000100010000000000000001000111000000000000000000000000

c21←c1 0 00000000000000000000010001000000000000000000000000000100010000000000000001000001110000000000000000000000

s←a13⊕b12 0 10100000101010001000000000100010101000000000001010000000001010000000000000000000011100000000000000000000
s1←s 0 10100000101010001000000000100010101000000000001010000000001010000000000000000001000111000000000000000000

s2←s 0 10100000101010001000000000100010101000000000001010000000001010000000000000000001000001110000000000000000

p←a23∧b22 1 01011111010101110111111111011101010111111111110111011111110111011111111111111111111100011111111111111111

z3←s1⊕c11 0 10100000101010001000010001100010101000000000001010000100011010000000000001010001010000000111000000000000

q←s2∧c21 0 0001110000000000

c2←p∨q 1 01011111010101110111111111011101010111111111110111011111110111011111111111111111111101111100011111111111

c12←c2 1 01011111010101110111111111011101010111111111110111011111110111011111111111111111111101111101000111111111

c22←c2 1 01011111010101110111111111011101010111111111110111011111110111011111111111111111111101111101110001111111

z4←b13⊕c12 0 10100000100000001010000000100010001010000000001000100000001000101010000000000000000010000010100000011100

z5←b23∧c22 1 01011111010101110101111111011101010101111111110111011111110111010111011111111111111101111101110111000111

most one stuck-at fault is present. The column headed OK shows the correct
behavior of the Boolean chain (which nicely multiplies x = 3 by y = 6 and
obtains z = 18). We can call these the “default” values, because, well, they have
no faults. The other 100 columns show what happens if all but one of the 50
wires have error-free signals; the two columns under b12, for example, illustrate
the results when the rightmost wire that fans out from gate b2 is stuck at 0
or 1. Each row is obtained bitwise from previous rows or inputs, except that the
boldface digits are forced. When a boldface value agrees with the default, its
entire column is correct; otherwise errors might propagate. All values above the
bold diagonal match the defaults.

If we want to test a chip that has n inputs and m outputs, we’re allowed
to apply test patterns to the inputs and see what outputs are produced. Close

195

From the Library of Melissa Nuno

ptg999

196 COMBINATORIAL SEARCHING 7.2.2.2

inspection shows, for instance, that the pattern considered in Table 1 doesn’t
detect an error when q is stuck at 1, even though q should be 0, because all five
output bits z5z4z3z2z1 are correct in spite of that error. In fact, the value of
c2 ← p ∨ q is unaffected by a bad q, because p = 1 in this example. Similarly,
the fault “x21 stuck at 0” doesn’t propagate into z1 ← x21 ∧ y11 because y11 = 0.
Altogether 44 faults, not 50, are discovered by this particular test pattern.

All of the relevant repeatable faults, whether they’re single-stuck-at or wildly
complicated, could obviously be discovered by testing all 2n possible patterns.
But that’s out of the question unless n is quite small. Fortunately, testing isn’t
hopeless, because satisfactory results are usually obtained in practice if we do
have enough test patterns to detect all of the detectable single-stuck-at faults.
Exercise 49 shows that just five patterns suffice to certify Fig. 77 by this criterion.

The detailed analysis in exercise 49 also shows, surprisingly, that one of the
faults, namely “s2 stuck at 1,” cannot be detected! Indeed, an erroneous s2 can
propagate to an erroneous q only if c21 = 1, and that forces x1 = x2 = y1 = y2 = 1;
only two possibilities remain, and neither y3 = 0 nor y3 = 1 reveals the fault.
Consequently we can simplify the circuit by removing gate q ; the chain (23)
becomes shorter, with “q ← s ∧ c1, c2 ← p∨ q” replaced by “c2 ← p∨ c1.”

Of course Fig. 77 is just a tiny little circuit, intended only to introduce the
concept of stuck-at faults. Test patterns are needed for the much larger circuits
that arise in real computers; and we will see that SAT solvers can help us to find
them. Consider, for example, the generic multiplier circuit prod (m,n), which is
part of the Stanford GraphBase. It multiplies an m-bit number x by an n-bit
number y, producing an (m + n)-bit product z. Furthermore, it’s a so-called
“parallel multiplier,” with delay time O(log(m+n)); thus it’s much more suited
to hardware design than methods like the factor fifo schemes that we considered
above, because those circuits need Ω(m+ n) time for carries to propagate.

Let’s try to find test patterns that will smoke out all of the single-stuck-at
faults in prod (32, 32), which is a circuit of depth 33 that has 64 inputs, 64 out-
puts, 3660 AND gates, 1203 OR gates, 2145 XOR gates, and (therefore) 7008 fan-
out gates and 21,088 wires. How can we guard it against 42,176 different faults?

Before we construct clauses to facilitate that task, we should realize that
most of the single-stuck-at faults are easily detected by choosing patterns at
random, since faults usually cause big trouble and are hard to miss. Indeed,
choosing x = #3243F6A8 and y = #885A308D more-or-less at random already
eliminates 14,733 cases; and (x, y) = (#2B7E1516, #28AED2A6) eliminates 6,918
more. We might as well keep doing this, because bitwise operations such as those
in Table 1 are fast. Experience with the smaller multiplier in Fig. 77 suggests
that we get more effective tests if we bias the inputs, choosing each bit to be 1
with probability .9 instead of .5 (see exercise 49). A million such random inputs
will then generate, say, 243 patterns that detect all but 140 of the faults.

Our remaining job, then, is essentially to find 140 needles in a haystack of
size 264, after having picked 42,176 − 140 = 42,036 pieces of low-hanging fruit.
And that’s where a SAT solver is useful. Consider, for example, the analogous
but simpler problem of finding a test pattern for “q stuck at 0” in Fig. 77.

196

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 197

We can use the 49 clauses F derived from (23) to represent the well-behaved
circuit; and we can imagine corresponding clauses F ′ that represent the faulty
computation, using “primed” variables z′1, a′2, . . . , z′5. Thus F ′ begins with
(x1∨ z̄′1)∧(y1∨ z̄′1) and ends with (b̄

′
3∨ c̄′2∨z′5); it’s like F except that the clauses

representing q′ ← s′∧ c′1 in (23) are changed to simply q̄′ (meaning that q′ is
stuck at 0). Then the clauses of F and F ′, together with a few more clauses to
state that z1 �= z′1 or · · · or z5 �= z′5, will be satisfiable only by variables for which
(y3y2y1)2 × (x2x1)2 is a suitable test pattern for the given fault.

This construction of F ′ can obviously be simplified, because z′1 is identical
to z1; any signal that differs from the correct value must be located “downstream”
from the one-and-only fault. Let’s say that a wire is tarnished if it is the faulty
wire or if at least one of its input wires is tarnished. We introduce new variables
g′ only for wires g that are tarnished. Thus, in our example, the only clauses F ′

that are needed to extend F to a faulty companion circuit are q̄′ and the clauses
that correspond to c′2 ← p ∨ q′, z′4 ← b3 ⊕ c′2, z

′
5 ← b3 ∧ c′2.

Moreover, any fault that is revealed by a test pattern must have an active

path of wires, leading from the fault to an output; all wires on this path must
carry a faulty signal. Therefore Tracy Larrabee [IEEE Trans. CAD-11 (1992),
4–15] decided to introduce additional “sharped” variables g� for each tarnished
wire, meaning that g lies on the active path. The two clauses

(ḡ� ∨ g ∨ g′) ∧ (ḡ� ∨ ḡ ∨ ḡ′) (25)

ensure that g �= g′ whenever g is part of that path. Furthermore we have (v̄�∨g�)
whenever g is an AND, OR, or XOR gate with tarnished input v. Fanout gates
are slightly tricky in this regard: When wires g1 and g2 fan out from a tarnished
wire g, we need variables g1� and g2� as well as g�; and we introduce the clause

(ḡ� ∨ g1� ∨ g2�) (26)

to specify that the active path takes at least one of the two branches.
According to these rules, our example acquires the new variables q�, c�2, c

1�
2 ,

c2�2 , z
�
4, z

�
5, and the new clauses

(q̄�∨q∨q′)∧ (q̄�∨ q̄∨ q̄′)∧ (q̄�∨c�2)∧ (c̄�2∨c2∨c′2)∧ (c̄�2∨ c̄2∨ c̄′2)∧ (c̄�2∨c1�2 ∨c2�2)∧
(c̄1�2 ∨z�4)∧ (z̄�4∨z4∨z′4)∧ (z̄�4∨ z̄4∨ z̄′4)∧ (c̄2�2 ∨z�5)∧ (z̄�5∨z5∨z′5)∧ (z̄�5∨ z̄5∨ z̄′5).

The active path begins at q, so we assert the unit clause (q�); it ends at a

tarnished output, so we also assert (z�4 ∨ z�5). The resulting set of clauses will
find a test pattern for this fault if and only if the fault is detectable. Larrabee
found that such active-path variables provide important clues to a SAT solver
and significantly speed up the solution process.

Returning to the large circuit prod (32, 32), one of the 140 hard-to-test
faults is “W 26

21 stuck at 1,” where W 26
21 denotes the 26th extra wire that fans

out from the OR gate called W21 in §75 of the Stanford GraphBase program
GB GATES; W 26

21 is an input to gate b4040 ← d1940 ∧ W 26
21 in §80 of that program.

Test patterns for that fault can be characterized by a set of 23,194 clauses in
7,082 variables (of which only 4 variables are “primed” and 4 are “sharped”).

197

From the Library of Melissa Nuno

ptg999

198 COMBINATORIAL SEARCHING 7.2.2.2

Fortunately the solution (x, y) = (#7F13FEDD, #5FE57FFE) was found rather
quickly in the author’s experiments; and this pattern also killed off 13 of the
other cases, so the score was now “14 down and 126 to go”!

The next fault sought was “A36,2
5 stuck at 1,” where A36,2

5 is the second
extra wire to fan out from the AND gate A36

5 in §72 of GB GATES (an input
to R36

11 ← A36,2
5 ∧ R35,2

1). This fault corresponds to 26,131 clauses on 8,342
variables; but the SAT solver took a quick look at those clauses and decided
almost instantly that they are unsatisfiable. Therefore the fault is undetectable,
and the circuit prod (32, 32) can be simplified by setting R36

11 ← R35,2
1 . A closer

look showed, in fact, that clauses corresponding to the Boolean equations

x = y ∧ z, y = v ∧ w, z = t ∧ u, u = v ⊕ w
44 45 44

4 , w = A45
14, x = R46

23, y = R45
13,were present (where t = R13, u = A58, v = R

z = R19
45); these clauses force x = 0. Therefore it was not surprising to find

that the list of unresolved faults also included R23
46, R23

46,1, and R23
46,2 stuck at 0.

Altogether 26 of the 140 faults undetected by random inputs turned out to be
absolutely T; and only one of these, namely “Q46

26 stuck at 0,” required a nontrivial
proof of undetectability.

Some of the 126−26 = 100 faults remaining on the to-do list turned out to be
significant challenges for the SAT solver. While waiting, the author therefore had
time to take a look at a few of the previously found solutions, and noticed that
those patterns themselves were forming a pattern! Sure enough, the extreme por-
tions of this large and complicated circuit actually have a fairly simple structure,
stuck-at-fault-wise. Hence number theory came to the rescue: The factorization
#

87FBC059 × #F0F87817 = 263 − 1 solved many of the toughest challenges,
some of which occur with probability less than 2−34 when 32-bit numbers are
multiplied; and the “Aurifeuillian” factorization (231 − 216 +1)(231 +216 +1) =
262 + 1, which the author had known for more than forty years (see Eq. 4.5.4–
(15)), polished off most of the others.

The bottom line (see exercise 51) is that all 42,150 of the detectable single-
stuck-at faults of the parallel multiplication circuit prod (32, 32) can actually be
detected with at most 196 well-chosen test patterns.
Learning a Boolean function. Sometimes we’re given a “black box” that
evaluates a Boolean function f(x1, . . . , xN). We have no way to open the box,
but we suspect that the function is actually quite simple. By plugging in various
values for x = x1 . . . xN , we can observe the box’s behavior and possibly learn the
hidden rule that lies inside. For example, a secret function of N = 20 Boolean
variables might take on the values shown in Table 2, which lists 16 cases where
f(x) = 1 and 16 cases where f(x) = 0.

Suppose we assume that the function has a DNF (disjunctive normal form)
with only a few terms. We’ll see in a moment that it’s easy to express such an
assumption as a satisfiability problem. And when the author constructed clauses
corresponding to Table 2 and presented them to a SAT solver, he did in fact learn
almost immediately that a very simple formula is consistent with all of the data:

f(x1, . . . , x20) = x̄2x̄3x̄10 ∨ x̄6x̄10x̄12 ∨ x8x̄13x̄15 ∨ x̄8x10x̄12. (27)

198

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 199

T 2
VALUES TAKEN ON BY AN UNKNOWN FUNCTION

Cases where f(x) = 1

x1x2x3x4x5x6x7x8x9 . . . x20

1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1
1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1
0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 1
0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0
0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 0
0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0
1 1 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0
1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 0
0 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 0 1 1
1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 0 0 1 0 1
0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0
0 1 1 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1

Cases where f(x) = 0

x1x2x3x4x5x6x7x8x9 . . . x20

1 0 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 1
0 1 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 0 1 0
1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1 0 0 1
1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 1 1 0 0
0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0
0 1 1 1 0 0 1 1 1 1 0 1 0 0 1 1 1 1 0 0
1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 1
1 1 0 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1
0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 0 0 1
1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0
0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0
0 0 1 1 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 1 1 1 0 1
1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1
1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1

This formula was discovered by constructing clauses in 2MN variables pi,j
and qi,j for 1 ≤ i ≤ M and 1 ≤ j ≤ N , where M is the maximum number of
terms allowed in the DNF (here M = 4) and where

pi,j = [term i contains xj], qi,j = [term i contains x̄j]. (28)

If the function is constrained to equal 1 at P specified points, we also use auxiliary
variables zi,k for 1 ≤ i ≤ M and 1 ≤ k ≤ P , one for each term at every such point.

Table 2 says that f(1, 1, 0, 0, . . . , 1) = 1, and we can capture this specification
by constructing the clause

(z1,1 ∨ z2,1 ∨ · · · ∨ zM,1) (29)

together with the clauses

(z̄i,1∨ q̄i,1) ∧ (z̄i,1∨ q̄i,2) ∧ (z̄i,1∨ p̄i,3) ∧ (z̄i,1∨ p̄i,4) ∧ · · · ∧ (z̄i,1∨ q̄i,20) (30)

for 1 ≤ i ≤ M . Translation: (29) says that at least one of the terms in the DNF
must evaluate to true; and (30) says that, if term i is true at the point 1100 . . . 1,
it cannot contain x̄1 or x̄2 or x3 or x4 or · · · or x̄20.

Table 2 also tells us that f(1, 0, 1, 0, . . . , 1) = 0. This specification corre-
sponds to the clauses

(qi,1 ∨ pi,2 ∨ qi,3 ∨ pi,4 ∨ · · · ∨ qi,20) (31)

for 1 ≤ i ≤ M . (Each term of the DNF must be zero at the given point; thus
either x̄1 or x2 or x̄3 or x4 or · · · or x̄20 must be present for each value of i.)

In general, every case where f(x) = 1 yields one clause like (29) of length M,
plus MN clauses like (30) of length 2. Every case where f(x) = 0 yields M
clauses like (31) of length N . We use qi,j when xj = 1 at the point in question,
and pi,j when xj = 0, for both (30) and (31). This construction is due to A. P.
Kamath, N. K. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende [Math-
ematical Programming 57 (1992), 215–238], who presented numerous examples.

199

From the Library of Melissa Nuno

ptg999

200 COMBINATORIAL SEARCHING 7.2.2.2

From Table 2, with M = 4, N = 20, and P = 16, it generates 1360 clauses
of total length 3904 in 224 variables; a SAT solver then finds a solution with
p1,1 = q1,1 = p1,2 = 0, q1,2 = 1, . . . , leading to (27).

The simplicity of (27) makes it plausible that the SAT solver has indeed
psyched out the true nature of the hidden function f(x). The chance of agreeing
with the correct value 32 times out of 32 is only 1 in 232, so we seem to have
overwhelming evidence in favor of that equation.

But no: Such reasoning is fallacious. The numbers in Table 2 actually arose
in a completely different way, and Eq. (27) has essentially no credibility as a
predictor of f(x) for any other values of x! (See exercise 53.) The fallacy comes
from the fact that short-DNF Boolean functions of 20 variables are not at all
rare; there are many more than 232 of them.

D. Morgenstern has found a much simpler formula that also matches Table 2:

f(x1, . . . , x20) = x̄4x10x̄12 ∨ x̄6x̄10x̄12 ∨ x9x̄10x11.

But it’s actually further than (27) from the “true”f that’s revealed in exercise 53.

On the other hand, when we do know that the hidden function f(x) has
a DNF with at most M terms (although we know nothing else about it), the
clauses (29)–(31) give us a nice way to discover those terms, provided that we
also have a sufficiently large and unbiased “training set” of observed values.

For example, let’s assume that (27) actually is the function in the box. If
we examine f(x) at 32 random points x, we don’t have enough data to make
any deductions. But 100 random training points will almost always home in on
the correct solution (27). This calculation typically involves 3942 clauses in 344
variables; yet it goes quickly, needing only about 100 million accesses to memory.

One of the author’s experiments with a 100-element training set yielded

f̂(x1, . . . , x20) = x̄2x̄3x̄10 ∨ x3x̄6x̄10x̄12 ∨ x8x̄13x̄15 ∨ x̄8x10x̄12, (32)

which is close to the truth but not quite exact. (Exercise 59 proves that f̂(x)
is equal to f(x) more than 97% of the time.) Further study of this example
showed that another nine training points were enough to deduce f(x) uniquely,
thus obtaining 100% confidence (see exercise 61).

Bounded model checking. Some of the most important applications of SAT
solvers in practice are related to the verification of hardware or software, because
designers generally want some kind of assurance that particular implementations
correctly meet their specifications.

A typical design can usually be modeled as a transition relation between
Boolean vectors X = x1 . . . xn that represent the possible states of a system. We
write X → X ′ if state X at time t can be followed by state X ′ at time t + 1.
The task in general is to study sequences of state transitions

X0 → X1 → X2 → · · · → Xr, (33)

and to decide whether or not there are sequences that have special properties.
For example, we hope that there’s no such sequence for which X0 is an “initial
state” and Xr is an “error state”; otherwise there’d be a bug in the design.

200

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 201

→ → →

Fig. 78. Conway’s rule (35) defines these three successive transitions.

Questions like this are readily expressed as satisfiability problems: Each
state Xt is a vector of Boolean variables xt1 . . . xtn, and each transition relation
can be represented by a set of m clauses T (Xt, Xt+1) that must be satisfied.
These clauses T (X,X ′) involve 2n variables {x1, . . . , xn, x′1, . . . , x′n}, together
with q auxiliary variables {y1, . . . , yq} that might be needed to express Boolean
formulas in clause form as we did with the Tseytin encodings in (24). Then the
existence of sequence (33) is equivalent to the satisfiability of mr clauses

T (X0, X1) ∧ T (X1, X2) ∧ · · · ∧ T (Xr−1, Xr) (34)

in the n(r+1)+qr variables {xtj | 0≤ t≤r, 1≤j≤n}∪{ytk | 0≤t<r, 1≤k≤q}.
We’ve essentially “unrolled” the sequence (33) into r copies of the transition
relation, using variables xtj for state Xt and ytk for the auxiliary quantities
in T (Xt, Xt+1). Additional clauses can now be added to specify constraints on
the initial state X0 and/or the final state Xr, as well as any other conditions
that we want to impose on the sequence.

This general setup is called “bounded model checking,” because we’re using
it to check properties of a model (a transition relation), and because we’re
considering only sequences that have a bounded number of transitions, r.

John Conway’s fascinating Game of Life provides a particularly instructive
set of examples that illustrate basic principles of bounded model checking. The
states X of this game are two-dimensional bitmaps, corresponding to arrays of
square cells that are either alive (1) or dead (0). Every bitmap X has a unique
successor X ′, determined by the action of a simple 3 × 3 cellular automaton:
Suppose cell x has the eight neighbors {xNW, xN, xNE, xW, xE, xSW, xS, xSE}, and
let ν = xNW+xN+xNE+xW+xE+xSW+xS+xSE be the number of neighbors that
are alive at time t. Then x is alive at time t + 1 if and only if either (a) ν = 3,
or (b) ν = 2 and x is alive at time t. Equivalently, the transition rule

x′ = [2<xNW + xN + xNE + xW + 1
2x+ xE + xSW + xS + xSE< 4] (35)

holds at every cell x. (See, for example, Fig. 78, where the live cells are black.)
Conway called Life a “no-player game,” because it involves no strategy:

Once an initial state X0 has been set up, all subsequent states X1, X2, . . . are
completely determined. Yet, in spite of the simple rules, he also proved that Life
is inherently complicated and unpredictable, indeed beyond human comprehen-
sion, in the sense that it is universal: Every finite, discrete, deterministic system,
however complex, can be simulated faithfully by some finite initial state X0

of Life. [See Berlekamp, Conway, and Guy, Winning Ways (2004), Chapter 25.]
In exercises 7.1.4–160 through 162, we’ve already seen some of the amazing

Life histories that are possible, using BDD methods. And many further aspects
of Life can be explored with SAT methods, because SAT solvers can often deal

201

From the Library of Melissa Nuno

ptg999

202 COMBINATORIAL SEARCHING 7.2.2.2

with many more variables. For example, Fig. 78 was discovered by using 7×15 =
105 variables for each state X0, X1, X2, X3. The values of X3 were obviously
predetermined; but the other 105× 3 = 315 variables had to be computed, and
BDDs can’t handle that many. Moreover, additional variables were introduced
to ensure that the initial state X0 would have as few live cells as possible.

Here’s the story behind Fig. 78, in more detail: Since Life is two-dimensional,
we use variables xij instead of xj to indicate the states of individual cells, and xtij
instead of xtj to indicate the states of cells at time t. We generally assume that
xtij = 0 for all cells outside of a given finite region, although the transition rule
(35) can allow cells that are arbitrarily far away to become alive as Life goes on.
In Fig. 78 the region was specified to be a 7× 15 rectangle at each unit of time.
Furthermore, configurations with three consecutive live cells on a boundary edge
were forbidden, so that cells “outside the box” wouldn’t be activated.

The transitions T (Xt, Xt+1) can be encoded without introducing additional
variables, but only if we introduce 190 rather long clauses for each cell not on the
boundary. There’s a better way, based on the binary tree approach underlying
(20) and (21) above, which requires only about 63 clauses of size ≤ 3, together
with about 14 auxiliary variables per cell. This approach (see exercise 65) takes
advantage of the fact that many intermediate calculations can be shared. For
example, cells x and xW have four neighbors {xNW, xN, xSW, xS} in common; so
we need to compute xNW + xN + xSW + xS only once, not twice.

The clauses that correspond to a four-step sequence X0 → X1 → X2 →
X3 → X4 leading to X4 = turn out to be unsatisfiable without going
outside of the 7 × 15 frame. (Only 10 gigamems of calculation were needed to
establish this fact, using Algorithm C below, even though roughly 34000 clauses
in 9000 variables needed to be examined!) So the next step in the preparation
of Fig. 78 was to try X3 = ; and this trial succeeded. Additional clauses,
which permitted X0 to have at most 39 live cells, led to the solution shown, at a
cost of about 17 gigamems; and that solution is optimum, because a further run
(costing 12 gigamems) proved that there’s no solution with at most 38.

Let’s look for a moment at some of the patterns that can occur on a
chessboard, an 8×8 grid. Human beings will never be able to contemplate more
than a tiny fraction of the 264 states that are possible; so we can be fairly sure
that “Lifenthusiasts” haven’t already explored every tantalizing configuration
that exists, even on such a small playing field.

One nice way to look for a sequence of interesting Life transitions is to assert
that no cell stays alive more than four steps in a row. Let us therefore say that
a mobile Life path is a sequence of transitions X0 → X1 → · · · → Xr with the
additional property that we have

(x̄tij ∨ x̄(t+1)ij ∨ x̄(t+2)ij ∨ x̄(t+3)ij ∨ x̄(t+4)ij), for 0 ≤ t ≤ r − 4. (36)

To avoid trivial solutions we also insist thatXr is not entirely dead. For example,
if we impose rule (36) on a chessboard, with xtij permitted to be alive only if
1 ≤ i, j ≤ 8, and with the further condition that at most five cells are alive in each

202

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 203

generation, a SAT solver can quickly discover interesting mobile paths such as

→ → → → → → → → → · · · , (37)

which last quite awhile before leaving the board. And indeed, the five-celled
object that moves so gracefully in this path is R. K. Guy’s famous glider (1970),
which is surely the most interesting small creature in Life’s universe. The glider
moves diagonally, recreating a shifted copy of itself after every four steps.

Interesting mobile paths appear also if we restrict the population at each
time to {6, 7, 8, 9, 10} instead of {1, 2, 3, 4, 5}. For example, here are some of the
first such paths that the author’s solver came up with, having length r = 8:

→ → → → → → → → ;

→ → → → → → → → ;

→ → → → → → → → ;

→ → → → → → → → ;

→ → → → → → → → .

These paths illustrate the fact that symmetry can be gained, but never lost, as
Life evolves deterministically. Marvelous designs are spawned in the process.
In each of these sequences the next bitmap, X9, would break our ground rules:
The population immediately after X8 grows to 12 in the first and last examples,
but shrinks to 5 in the second-from-last; and the path becomes immobile in the
other two. Indeed, we have X5 = X7 in the second example, hence X6 = X8

and X7 = X9, etc. Such a repeating pattern is called an oscillator of period 2.
The third example ends with an oscillator of period 1, known as a “still life.”

What are the ultimate destinations of these paths? The first one becomes
still, with X69 = X70; and the fourth becomes very still, with X12 = 0! The
fifth is the most fascinating of the group, because it continues to produce ever
more elaborate valentine shapes, then proceeds to dance and sparkle, until finally
beginning to twinkle with period 2 starting at time 177. Thus its members X2

through X7 qualify as “Methuselahs,” defined by Martin Gardner as “Life pat-
terns of population less than 10 that do not become stable within 50 generations.”
(A repetitive pattern, like the glider or an oscillator, is called stable.)

SAT solvers are basically useless for the study of Methuselahs, because the
state space becomes too large. But they are quite helpful when we want to
illuminate many other aspects of Life, and exercises 66–85 discuss some notable
instances. We will consider one more instructive example before moving on,

203

From the Library of Melissa Nuno

ptg999

204 COMBINATORIAL SEARCHING 7.2.2.2

namely an application to “eaters.” Consider a Life path of the form

X0 = →
? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

→
? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

→
? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

→ → = X5, (38)

where the gray cells form a still life and the cells of X1, X2, X3 are unknown.
Thus X4 = X5 and X0 = X5 + glider. Furthermore we require that the still
life X5 does not interact with the glider’s parent, ; see exercise 77. The idea
is that a glider will be gobbled up if it happens to glide into this particular still
life, and the still life will rapidly reconstitute itself as if nothing had happened.

Algorithm C almost instantaneously (well, after about 100 megamems) finds

→ → → → → , (39)

the four-step eater that was first observed in action by R. W. Gosper in 1971.

Applications to mutual exclusion. Let’s look now at how bounded model
checking can help us to prove that algorithms are correct. (Or incorrect.) Some
of the most challenging issues of verification arise when we consider parallel
processes that need to synchronize their concurrent behavior. To simplify our
discussion it will be convenient to tell a little story about Alice and Bob.

Alice and Bob are casual friends who share an apartment. One of their joint
rooms is special: When they’re in that critical room, which has two doors, they
don’t want the other person to be present. Furthermore, being busy people, they
don’t want to interrupt each other needlessly. So they agree to control access to
the room by using an indicator light, which can be switched on or off.

The first protocol they tried can be characterized by symmetrical algorithms:

A0. Maybe go to A1.
A1. If l go to A1, else to A2.
A2. Set l← 1, go to A3.
A3. Critical, go to A4.
A4. Set l← 0, go to A0.

B0. Maybe go to B1.
B1. If l go to B1, else to B2.
B2. Set l← 1, go to B3.
B3. Critical, go to B4.
B4. Set l← 0, go to B0.

(40)

At any instant of time, Alice is in one of five states, {A0,A1,A2,A3,A4}, and
the rules of her program show how that state might change. In state A0 she isn’t
interested in the critical room; but she goes to A1 when she does wish to use it.
She reaches that objective in state A3. Similar remarks apply to Bob. When
the indicator light is on (l = 1), they wait until the other person has exited the
room and switched the light back off (l = 0).

Alice and Bob don’t necessarily operate at the same speed. But they’re
allowed to dawdle only when in the “maybe” state A0 or B0. More precisely, we
model the situation by converting every relevant scenario into a discrete sequence
of state transitions. At every time t = 0, 1, 2, . . . , either Alice or Bob (but not
both) will perform the command associated with their current state, thereby per-
haps changing to a different state at time t+1. This choice is nondeterministic.

Only four kinds of primitive commands are permitted in the procedures we
shall study, all of which are illustrated in (40): (1) “Maybe go to s”; (2) “Critical,

204

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 205

go to s”; (3) “Set v ← b, go to s”; and (4) “If v go to s1, else to s0”. Here s
denotes a state name, v denotes a shared Boolean variable, and b is 0 or 1.

Unfortunately, Alice and Bob soon learned that protocol (40) is unreliable:
One day she went from A1 to A2 and he went from B1 to B2, before either of
them had switched the indicator on. Embarrassment (A3 and B3) followed.

They could have discovered this problem in advance, if they’d converted the
state transitions of (40) into clauses for bounded model checking, as in (33), then
applied a SAT solver. In this case the vector Xt that corresponds to time t con-
sists of Boolean variables that encode each of their current states, as well as the
current value of l. We can, for example, have eleven variables A0t, A1t, A2t, A3t,
A4t, B0t, B1t, B2t, B3t, B4t, lt, together with ten binary exclusion clauses (A0t∨
A1t), (A0t ∨ A2t), . . . , (A3t ∨ A4t) to ensure that Alice is in at most one state,
and with ten similar clauses for Bob. There’s also a variable @t, which is true or
false depending on whether Alice or Bob executes their program step at time t.
(We say that Alice was “bumped” if @t = 1, and Bob was bumped if @t = 0.)

If we start with the initial state X0 defined by unit clauses

A00 ∧ A10 ∧ A20 ∧ A30 ∧ A40 ∧ B00 ∧ B10 ∧ B20 ∧ B30 ∧ B40 ∧ l̄0, (41)

the following clauses for 0 ≤ t < r (discussed in exercise 87) will emulate the
first r steps of every legitimate scenario defined by (40):

Tt ∨ A0t ∨ A0t+1)
(@t ∨ A1t ∨ A1t+1)
(@t ∨ A2t ∨ A2t+1)
(@t ∨ A3t ∨ A3t+1)
(@t ∨ A4t ∨ A4t+1)
(@t ∨ B0t ∨ B0t+1)
(@t ∨ B1t ∨ B1t+1)
(@t ∨ B2t ∨ B2t+1)
(@t ∨ B3t ∨ B3t+1)
(@t ∨ B4t ∨ B4t+1)

(@t ∨ A0t ∨ A0t+1 ∨ A1t+1)
(@t ∨ A1t ∨ l̄t ∨ A1t+1)
(@t ∨ A1t ∨ lt ∨ A2t+1)
(@t ∨ A2t ∨ A3t+1)
(@t ∨ A2t ∨ lt+1)
(@t ∨ A3t ∨ A4t+1)
(@t ∨ A4t ∨ A0t+1)
(@t ∨ A4t ∨ l̄t+1)
(@t ∨ lt ∨ A2t ∨ A4t ∨ l̄t+1)
(@t ∨ l̄t ∨ A2t ∨ A4t ∨ lt+1)

(@t ∨ B0t ∨ B0t+1 ∨ B1t+1)
(@t ∨ B1t ∨ l̄t ∨ B1t+1)
(@t ∨ B1t ∨ lt ∨ B2t+1)
(@t ∨ B2t ∨ B3t+1)
(@t ∨ B2t ∨ lt+1)
(@t ∨ B3t ∨ B4t+1)
(@t ∨ B4t ∨ B0t+1)
(@t ∨ B4t ∨ l̄t+1)
(@t ∨ lt ∨ B2t ∨ B4t ∨ l̄t+1)
(@t ∨ l̄t ∨ B2t ∨ B4t ∨ lt+1)

(42)

If we now add the unit clauses (A3r) and (B3r), the resulting set of 13 + 50r
clauses in 11+12r variables is readily satisfiable when r = 6, thereby proving that
the critical room might indeed be jointly occupied. (Incidentally, standard termi-
nology for mutual exclusion protocols would say that “two threads concurrently
execute a critical section”; but we shall continue with our roommate metaphor.)

Back at the drawing board, one idea is to modify (40) by letting Alice use
the room only when l = 1, but letting Bob in when l = 0:

A0. Maybe go to A1.
A1. If l go to A2, else to A1.
A2. Critical, go to A3.
A3. Set l← 0, go to A0.

B0. Maybe go to B1.
B1. If l go to B1, else to B2.
B2. Critical, go to B3.
B3. Set l← 1, go to B0.

(43)

Computer tests with r = 100 show that the corresponding clauses are unsatisfi-
able; thus mutual exclusion is apparently guaranteed by (43).

205

From the Library of Melissa Nuno

ptg999

206 COMBINATORIAL SEARCHING 7.2.2.2

But (43) is a nonstarter, because it imposes an intolerable cost: Alice can’t
use the room k times until Bob has already done so! Scrap that.

How about installing another light, so that each person controls one of them?

A0. Maybe go to A1.
A1. If b go to A1, else to A2.
A2. Set a← 1, go to A3.
A3. Critical, go to A4.
A4. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. If a go to B1, else to B2.
B2. Set b← 1, go to B3.
B3. Critical, go to B4.
B4. Set b← 0, go to B0.

(44)

No; this suffers from the same defect as (40). But maybe we can cleverly switch
the order of steps 1 and 2:

A0. Maybe go to A1.
A1. Set a← 1, go to A2.
A2. If b go to A2, else to A3.
A3. Critical, go to A4.
A4. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. Set b← 1, go to B2.
B2. If a go to B2, else to B3.
B3. Critical, go to B4.
B4. Set b← 0, go to B0.

(45)

Yes! Exercise 95 proves easily that this protocol does achieve mutual exclusion.
Alas, however, a new problem now arises, namely the problem known as

“deadlock” or “livelock.” Alice and Bob can get into states A2 and B2, after
which they’re stuck—each waiting for the other to go critical.

In such cases they could agree to “reboot” somehow. But that would be
a cop-out; they really seek a better solution. And they aren’t alone: Many
people have struggled with this surprisingly delicate problem over the years, and
several solutions (both good and bad) appear in the exercises below. Edsger
Dijkstra, in some pioneering lecture notes entitled Cooperating Sequential Pro-
cesses [Technological University Eindhoven (September 1965), §2.1], thought of
an instructive way to improve on (45):

A0. Maybe go to A1.
A1. Set a← 1, go to A2.
A2. If b go to A3, else to A4.
A3. Set a← 0, go to A1.
A4. Critical, go to A5.
A5. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. Set b← 1, go to B2.
B2. If a go to B3, else to B4.
B3. Set b← 0, go to B1.
B4. Critical, go to B5.
B5. Set b← 0, go to B0.

(46)

But he realized that this too is unsatisfactory, because it permits scenarios in
which Alice, say, might wait forever while Bob repeatedly uses the critical room.
(Indeed, if Alice and Bob are in states A1 and B2, she might go to A2, A3,
then A1, thereby letting him run to B4, B5, B0, B1, and B2; they’re back where
they started, yet she’s made no progress.)

The existence of this problem, called starvation, can also be detected via
bounded model checking. The basic idea (see exercise 91) is that starvation
occurs if and only if there is a loop of transitions

X0 → X1 → · · · → Xp → Xp+1 → · · · → Xr = Xp (47)

such that (i) Alice and Bob each are bumped at least once during the loop; and
(ii) at least one of them is never in a “maybe” or “critical” state during the loop.

206

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 207

And those conditions are easily encoded into clauses, because we can identify
the variables for time r with the variables for time p, and we can append the
clauses

(@p ∨@p+1 ∨ · · · ∨@r−1) ∧ (@p ∨@p+1 ∨ · · · ∨@r−1) (48)

to guarantee (i). Condition (ii) is simply a matter of appending unit clauses; for
example, to test whether Alice can be starved by (46), the relevant clauses are
A0p ∧ A0p+1 ∧ · · · ∧ A0r−1 ∧ A4p ∧ A4p+1 ∧ · · · ∧ A4r−1.

The deficiencies of (43), (45), and (46) can all be viewed as instances of
starvation, because (47) and (48) are satisfiable (see exercise 90). Thus we
can use bounded model checking to find counterexamples to any unsatisfactory
protocol for mutual exclusion, either by exhibiting a scenario in which Alice and
Bob are both in the critical room or by exhibiting a feasible starvation cycle (47).

Of course we’d like to go the other way, too: If a protocol has no coun-
terexamples for, say, r = 100, we still might not know that it is really reliable;
a counterexample might exist only when r is extremely large. Fortunately there
are ways to obtain decent upper bounds on r, so that bounded model checking
can be used to prove correctness as well as to demonstrate incorrectness. For
example, we can verify the simplest known correct solution to Alice and Bob’s
problem, a protocol by G. L. Peterson [Information Proc. Letters 12 (1981), 115–
116], who noticed that a careful combination of (43) and (45) actually suffices:

A0. Maybe go to A1.
A1. Set a← 1, go to A2.
A2. Set l← 0, go to A3.
A3. If b go to A4, else to A5.
A4. If l go to A5, else to A3.
A5. Critical, go to A6.
A6. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. Set b← 1, go to B2.
B2. Set l← 1, go to B3.
B3. If a go to B4, else to B5.
B4. If l go to B3, else to B5.
B5. Critical, go to B6.
B6. Set b← 0, go to B0.

(49)

Now there are three signal lights, a, b, and l—one controlled by Alice, one
controlled by Bob, and one switchable by both.

To show that states A5 and B5 can’t be concurrent, we can observe that the
shortest counterexample will not repeat any state twice; in other words, it will be
a simple path of transitions (33). Thus we can assume that r is at most the total
number of states. However, (49) has 7×7×2×2×2 = 392 states; that’s a finite
bound, not really out of reach for a good SAT solver on this particular problem,
but we can do much better. For example, it’s not hard to devise clauses that are
satisfiable if and only if there’s a simple path of length ≤ r (see exercise 92), and
in this particular case the longest simple path turns out to have only 54 steps.

We can in fact do better yet by using the important notion of invariants,
which we encountered in Section 1.2.1 and have seen repeatedly throughout this
series of books. Invariant assertions are the key to most proofs of correctness,
so it’s not surprising that they also give a significant boost to bounded model
checking. Formally speaking, if Φ(X) is a Boolean function of the state vectorX,
we say that Φ is invariant if Φ(X) implies Φ(X ′) wheneverX → X ′. For example,

207

From the Library of Melissa Nuno

ptg999

208 COMBINATORIAL SEARCHING 7.2.2.2

it’s not hard to see that the following clauses are invariant with respect to (49):

Φ(X) = (A0∨A1∨A2∨A3∨A4∨A5∨A6) ∧ (B0∨B1∨B2∨B3∨B4∨B5∨B6)

∧ (A0∨ ā)∧(A1∨ ā)∧(A2∨a)∧(A3∨a)∧(A4∨a)∧(A5∨a)∧(A6∨a)

∧ (B0∨ b̄)∧(B1∨ b̄)∧(B2∨b)∧(B3∨b)∧(B4∨b)∧(B5∨b)∧(B6∨b). (50)

(The clause A0 ∨ ā says that a = 0 when Alice is in state A0, etc.) And we can
use a SAT solver to prove that Φ is invariant, by showing that the clauses

Φ(X) ∧ (X → X ′) ∧ ¬Φ(X ′) (51)

are unsatisfiable. Furthermore Φ(X0) holds for the initial state X0, because
¬Φ(X0) is unsatisfiable. (See exercise 93.) Therefore Φ(Xt) is true for all t ≥ 0,
by induction, and we may add these helpful clauses to all of our formulas.

The invariant (50) reduces the total number of states by a factor of 4. And
the real clincher is the fact that the clauses

(X0 → X1 → · · · → Xr) ∧ Φ(X0) ∧ Φ(X1) ∧ · · · ∧ Φ(Xr) ∧ A5r ∧ B5r, (52)

where X0 is not required to be the initial state, turn out to be unsatisfiable
when r = 3. In other words, there’s no way to go back more than two steps
from a bad state, without violating the invariant. We can conclude that mutual
exclusion needs to be verified for (49) only by considering paths of length 2(!).
Furthermore, similar ideas (exercise 98) show that (49) is starvation-free.

Caveat: Although (49) is a correct protocol for mutual exclusion according to
Alice and Bob’s ground rules, it cannot be used safely on most modern computers
unless special care is taken to synchronize cache memories and write buffers. The
reason is that hardware designers use all sorts of trickery to gain speed, and those
tricks might allow one process to see a = 0 at time t + 1 even though another
process has set a ← 1 at time t. We have developed the algorithms above
by assuming a model of parallel computation that Leslie Lamport has called
sequential consistency [IEEE Trans. C-28 (1979), 690–691].

Digital tomography. Another set of appealing questions amenable to SAT

solving comes from the study of binary images for which partial information
is given. Consider, for example, Fig. 79, which shows the “Cheshire cat” of
Section 7.1.3 in a new light. This image is an m × n array of Boolean variables
(xi,j), with m = 25 rows and n = 30 columns: The upper left corner element,
x1,1, is 0, representing white; and x1,24 = 1 corresponds to the lone black pixel
in the top row. We are given the row sums ri =

∑n
j=1 xi,j for 1 ≤ i ≤ m and

the column sums cj =
∑m

i=1 xi,j for 1 ≤ j ≤ n, as well as both sets of sums in
the 45◦ diagonal directions, namely

ad =
∑

i+j=d+1

xi,j and bd =
∑

i−j=d−n
xi,j for 0 < d < m+ n. (53)

To what extent can such an image be reconstructed from its sums ri, cj ,
ad, and bd? Small examples are often uniquely determined by these Xray-like
projections (see exercise 103). But the discrete nature of pixel images makes
the reconstruction problem considerably more difficult than the corresponding

208

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXAMPLE APPLICATIONS 209

2 2 2 10 8 10 4 6 9 7 5 7 6 8 5 7 4 6 7 6 6 11 5 7 6 8 7 7 2 2

3

0

0

0

0

0

1

3

2

2

3

3

3

1

4

3

3

4

5

3

5

5

6

3

8

5

1

5

5

12

10

6

6

3

3

3

2

8

6

12

12

5

10

11

4

12

7

14

11

4

10

3 2 4 5 7 7 7 7 7 4 4 4 4 4 4 6 5 6 4 5 5 4 1 1 0 0 0 0 0

0

0

0

0

0

0

1

2

3

1

2

3

4

3

5

5

3

3

2

4

5

4

4

6

9834247767116645764645100000000

c1 = = c30

a1 =

a2 =

= r1
= r2

= b1
= b2

b54 =

= a54

Fig. 79. An array of black and white pixels together with its
row sums ri, column sums cj , and diagonal sums ad, bd.

continuous problem, in which projections from many different angles are avail-
able. Notice, for example, that the classical “8 queens problem”—to place eight
nonattacking queens on a chessboard— is equivalent to solving an 8× 8 digital
tomography problem with the constraints ri = 1, cj = 1, ad ≤ 1, and bd ≤ 1.

The constraints of Fig. 79 appear to be quite strict, so we might expect that
most of the pixels xi,j are determined uniquely by the given sums. For instance,
the fact that a1 = · · · = a5 = 0 tells us that xi,j = 0 whenever i + j ≤ 6;
and similar deductions are possible at all four corners of the image. A crude
“ballpark estimate” suggests that we’re given a few more than 150 sums, most
of which occupy 5 bits each; hence we have roughly 150× 5 = 750 bits of data,
from which we wish to reconstruct 25× 30 = 750 pixels xi,j . Actually, however,
this problem turns out to have many billions of solutions (see Fig. 80), most of
which aren’t catlike! Exercise 106 provides a less crude estimate, which shows
that this abundance of solutions isn’t really surprising.

(a) lexicographically first; (b) maximally different; (c) lexicographically last.

Fig. 80. Extreme solutions to the constraints of Fig. 79.

209

From the Library of Melissa Nuno

ptg999

210 COMBINATORIAL SEARCHING 7.2.2.2

A digital tomography problem such as Fig. 79 is readily represented as a
sequence of clauses to be satisfied, because each of the individual requirements
is just a special case of the cardinality constraints that we’ve already considered
in the clauses of (18)–(21). This problem differs from the other instances of SAT
that we’ve been discussing, primarily because it consists entirely of cardinality
constraints: It is a question of solving 25 + 30 + 54 + 54 = 163 simultaneous
linear equations in 750 variables xi,j , where each variable must be either 0 or 1.
So it’s essentially an instance of integer programming (IP), not an instance of
satisfiability (SAT). On the other hand, Bailleux and Boufkhad devised clauses
(20) and (21) precisely because they wanted to apply SAT solvers, not IP solvers,
to digital tomography. In the case of Fig. 79, their method yields approximately
40,000 clauses in 9,000 variables, containing about 100,000 literals altogether.

Figure 80(b) illustrates a solution that differs as much as possible from
Fig. 79. Thus it minimizes the sum x1,24 + x2,5 + x2,6 + · · · + x25,21 of the
182 variables that correspond to black pixels, over all 0-or-1-valued solutions
to the linear equations. If we use linear programming to minimize that sum
over 0 ≤ xi,j ≤ 1, without requiring the variables to be integers, we find almost
instantly that the minimum value is ≈ 31.38 under these relaxed conditions;
hence every black-and-white image must have at least 32 black pixels in common
with Fig. 79. Furthermore, Fig. 80(b)—which can be computed in a few seconds
by widely available IP solvers such as CPLEX—actually achieves this minimum.
By contrast, state-of-the-art SAT solvers as of 2013 had great difficulty finding
such an image, even when told that a 32-in-common solution is possible.

Parts (a) and (c) of Fig. 80 are, similarly, quite relevant to the current state
of the SAT-solving art: They represent hundreds of individual SAT instances,
where the first k variables are set to particular known values and we try to
find a solution with the next variable either 0 or 1, respectively. Several of the
subproblems that arose while computing rows 6 and 7 of Fig. 80(c) turned out to
be quite challenging, although resolvable in a few hours; and similar problems,
which correspond to different kinds of lexicographic order, apparently still lie
beyond the reach of contemporary SAT-oriented methods. Yet IP solvers polish
these problems off with ease. (See exercises 109 and 111.)

If we provide more information about an image, our chances of being able
to reconstruct it uniquely are naturally enhanced. For example, suppose we also
compute the numbers r′i, c

′
j , a

′
d, and b′d, which count the runs of 1s that occur

in each row, column, and diagonal. (We have r′1 = 1, r′2 = 2, r′3 = 4, and
so on.) Given this additional data, we can show that Fig. 79 is the only solution,
because a suitable set of clauses turns out to be unsatisfiable. Exercise 117
explains one way by which (20) and (21) can be modified so that they provide
constraints based on the run counts. Furthermore, it isn’t difficult to express
even more detailed constraints, such as the assertion that “column 4 contains
runs of respective lengths (6, 1, 3),” as a sequence of clauses; see exercise 438.

SAT examples— summary. We’ve now seen convincing evidence that simple
Boolean clauses—ANDs of ORs of literals—are enormously versatile. Among
other things, we’ve used them to encode problems of graph coloring, integer

210

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 211

factorization, hardware fault testing, machine learning, model checking, and
tomography. And indeed, Section 7.9 will demonstrate that 3SAT is the “poster
child” for NP-complete problems in general: Any problem in NP—which is
a huge class, essentially comprising all yes-or-no questions of size N whose
affirmative answers are verifiable in NO(1) steps—can be formulated as an
equivalent instance of 3SAT, without greatly increasing the problem size.

Backtracking for SAT. OK, we’ve seen a dizzying variety of intriguing and im-
portant examples of SAT that are begging to be solved. How shall we solve them?

Any instance of SAT that involves at least one variable can be solved sys-
tematically by choosing a variable and setting it to 0 or 1. Either of those choices
gives us a smaller instance of SAT; so we can continue until reaching either an
empty instance—which is trivially satisfiable, because no clauses need to be
satisfied—or an instance that contains an empty clause. In the latter case we
must back up and reconsider one of our earlier choices, proceeding in the same
fashion until we either succeed or exhaust all the possibilities.

For example, consider again the formula F in (1). If we set x1 = 0, F reduces
to x̄2 ∧ (x2∨x3), because the first clause (x1∨ x̄2) loses its x1, while the last two
clauses contain x̄1 and are satisfied. It will be convenient to have a notation for
this reduced problem; so let’s write

F | x̄1 = x̄2 ∧ (x2 ∨x3). (54)

Similarly, if we set x1 = 1, we obtain the reduced problem

F |x1 = (x2 ∨x3) ∧ x̄3 ∧ (x̄2 ∨ x3). (55)

F is satisfiable if and only if we can satisfy either (54) or (55).
In general if F is any set of clauses and if l is any literal, then F | l (read

“F given l” or “F conditioned on l”) is the set of clauses obtained from F by

• removing every clause that contains l; and

• removing l̄ from every clause that contains l̄.

This conditioning operation is commutative, in the sense that F | l | l′ = F | l′ | l
when l′ �= l̄. If L = {l1, . . . , lk} is any set of strictly distinct literals, we can also
write F |L = F | l1 | · · · | lk. In these terms, F is satisfiable if and only if F |L = ∅
for some such L, because the literals of L satisfy every clause of F when F |L = ∅.

The systematic strategy for SAT that was sketched above can therefore be
formulated as the following recursive procedure B(F), which returns the special
value ⊥ when F is unsatisfiable, otherwise it returns a set L that satisfies F :

B(F) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
If F = ∅, return ∅. (F is trivially satisfiable.)
Otherwise if ε ∈ F , return ⊥. (F is unsatisfiable.)
Otherwise let l be a literal in F and set L ← B(F | l).
If L �= ⊥, return L ∪ l. Otherwise set L ← B(F | l̄).
If L �= ⊥, return L ∪ l̄. Otherwise return ⊥.

(56)

Let’s try to flesh out this abstract algorithm by converting it to efficient
code at a lower level. From our previous experience with backtracking, we know
that it will be crucial to have data structures that allow us to go quickly from

211

From the Library of Melissa Nuno

ptg999

212 COMBINATORIAL SEARCHING 7.2.2.2

F to F | l, then back again to F if necessary, when F is a set of clauses and
l is a literal. In particular, we’ll want a good way to find all of the clauses that
contain a given literal.

A combination of sequential and linked structures suggests itself for this
purpose, based on our experience with exact cover problems: We can represent
each clause as a set of cells, where each cell p contains a literal l = L(p) together
with pointers F(p) and B(p) to other cells that contain l, in a doubly linked list.
We’ll also need C(p), the number of the clause to which p belongs. The cells of
clause Ci will be in consecutive locations START(i)+ j, for 0 ≤ j < SIZE(i).

We will find it convenient to represent the literals xk and x̄k, which involve
variable xk, by using the integers 2k and 2k + 1. With this convention we have

l̄ = l ⊕ 1 and |l| = xl�1. (57)

Our implementation of (56) will assume that the variables are x1, x2, . . . , xn;
thus the 2n possible literals will be in the range 2 ≤ l ≤ 2n+ 1.

Cells 0 through 2n + 1 are reserved for special purposes: Cell l is the head
of the list for the occurrences of l in other cells. Furthermore, if l is a literal
whose value has not yet been fixed, C(l) will be the length of that list, namely
the number of currently active clauses in which l appears.

For example, the m = 7 ternary clauses R′ of (7) might be represented
internally in 2n+ 2 + 3m = 31 cells as follows, using these conventions:

p = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

L(p)= – – – – – – – – – – 9 7 3 8 7 5 6 5 3 8 4 3 8 6 2 9 6 4 7 4 2
F(p)= – – 30 21 29 17 26 28 22 25 9 7 3 8 11 5 6 15 12 13 4 18 19 16 2 10 23 20 14 27 24
B(p)= – – 24 12 20 15 16 11 13 10 25 14 18 19 28 17 23 5 21 22 27 3 8 26 30 9 6 29 7 4 2
C(p)= – – 2 3 3 2 3 3 3 2 7 7 7 6 6 6 5 5 5 4 4 4 3 3 3 2 2 2 1 1 1

The literals of each clause appear in decreasing order here; for example, the
literals L(p) = (8, 4, 3) in cells 19 through 21 represent the clause x4 ∨ x2 ∨ x̄1,
which appears as the fourth clause, ‘41̄2’ in (7). This ordering turns out to be
quite useful, because we’ll always choose the smallest unset variable as the l or l̄
in (56); then l or l̄ will always appear at the right of its clauses, and we can
remove it or put it back by simply changing the relevant SIZE fields.

The clauses in this example have START(i) = 31 − 3i for 1 ≤ i ≤ 7, and
SIZE(i) = 3 when computation begins.

Algorithm A (Satisfiability by backtracking). Given nonempty clauses C1∧· · ·∧
Cm on n > 0 Boolean variables x1 . . . xn, represented as above, this algorithm
finds a solution if and only if the clauses are satisfiable. It records its current
progress in an array m1 . . .mn of “moves,” whose significance is explained below.

A1. [Initialize.] Set a ← m and d ← 1. (Here a represents the number of active
clauses, and d represents the depth-plus-one in an implicit search tree.)

A2. [Choose.] Set l ← 2d. If C(l) ≤ C(l + 1), set l ← l + 1. Then set md ←
(l & 1) + 4[C(l ⊕ 1)=0]. (See below.) Terminate successfully if C(l) = a.

A3. [Remove l̄.] Delete l̄ from all active clauses; but go to A5 if that would make
a clause empty. (We want to ignore l̄, because we’re making l true.)

212

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 213

0 1

0 1 0 1

1 0 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1

1

2 2

3 3 3 3

4 4 4 4 4 4123̄ 1̄2̄3

341 234̄ 341 4̄12̄ 2̄3̄4 4̄12̄ 41̄2 234̄ 41̄2 3̄4̄1̄ 2̄3̄4 3̄4̄1̄

Fig. 81. The search tree that is implicitly traversed by Algorithm A, when
that algorithm is applied to the eight unsatisfiable clauses R defined in (6).
Branch nodes are labeled with the variable being tested; leaf nodes are labeled
with a clause that is found to be contradicted.

A4. [Deactivate l’s clauses.] Suppress all clauses that contain l. (Those clauses
are now satisfied.) Then set a ← a− C(l), d ← d+ 1, and return to A2.

A5. [Try again.] If md < 2, set md ← 3−md, l ← 2d+ (md & 1), and go to A3.

A6. [Backtrack.] Terminate unsuccessfully if d = 1 (the clauses are unsatisfi-
able). Otherwise set d ← d− 1 and l ← 2d+ (md & 1).

A7. [Reactivate l’s clauses.] Set a ← a + C(l), and unsuppress all clauses that
contain l. (Those clauses are now unsatisfied, because l is no longer true.)

A8. [Unremove l̄.] Reinstate l̄ in all the active clauses that contain it. Then go
back to A5.

(See exercise 121 for details of the low-level list processing operations that are
needed to update the data structures in steps A3 and A4, and to downdate them
in A7 and A8.)

The move codes mj of Algorithm A are integers between 0 and 5 that encode
the state of the algorithm’s progress as follows:

• mj = 0 means we’re trying xj = 1 and haven’t yet tried xj = 0.
• mj = 1 means we’re trying xj = 0 and haven’t yet tried xj = 1.
• mj = 2 means we’re trying xj = 1 after xj = 0 has failed.
• mj = 3 means we’re trying xj = 0 after xj = 1 has failed.
• mj = 4 means we’re trying xj = 1 when x̄j doesn’t appear.
• mj = 5 means we’re trying xj = 0 when xj doesn’t appear.

Codes 4 and 5 refer to so-called “pure literals”: If no clause contains the literal l̄,
we can’t go wrong by assuming that l is true.

For example, when Algorithm A is presented with the clauses (7), it cruises
directly to a solution by setting m1m2m3m4 = 1014; the solution is x1x2x3x4 =
0101. But when the unsatisfiable clauses (6) are given, the successive code strings
m1 . . .md in step A2 are

1, 11, 110, 1131, 121, 1211, 1221, 21, 211, 2111, 2121, 221, 2221, (58)

before the algorithm gives up. (See Fig. 81.)

213

From the Library of Melissa Nuno

ptg999

214 COMBINATORIAL SEARCHING 7.2.2.2

It’s helpful to display the current string m1 . . .md now and then, as a
convenient indication of progress; this string increases lexicographically. Indeed,
fascinating patterns appear as the 2s and 3s gradually move to the left. (Try it!)

When the algorithm terminates successfully in step A2, a satisfying assign-
ment can be read off from the move table by setting xj ← 1 ⊕ (mj & 1) for
1 ≤ j ≤ d. Algorithm A stops after finding a single solution; see exercise 122 if
you want them all.

Lazy data structures. Instead of using the elaborate doubly linked machinery
that underlies Algorithm A, we can actually get by with a much simpler scheme
discovered by Cynthia A. Brown and Paul W. Purdom, Jr. [IEEE Trans. PAMI-

4 (1982), 309–316], who introduced the notion of watched literals. They observed
that we don’t really need to know all of the clauses that contain a given literal,
because only one literal per clause is actually relevant at any particular time.

Here’s the idea: When we work on clauses F |L, the variables that occur in L
have known values, but the other variables do not. For example, in Algorithm A,
variable xj is implicitly known to be either true or false when j ≤ d, but its value
is unknown when j > d. Such a situation is called a partial assignment. A partial
assignment is consistent with a set of clauses if no clause consists entirely of
false literals. Algorithms for SAT usually deal exclusively with consistent partial
assignments; the goal is to convert them to consistent total assignments, by
gradually eliminating the unknown values.

Thus every clause in a consistent partial assignment has at least one nonfalse
literal; and we can adjust the data so that such a literal appears first, when the
clause is represented in memory. Many nonfalse literals might be present, but
only one of them is designated as the clause’s “watchee.” When a watched literal
becomes false, we can find another nonfalse literal to swap into its place—unless
the clause has been reduced to a unit, a clause of size 1.

With such a scheme we need only maintain a relatively short list for every
literal l, namely a list Wl of all clauses that currently watch l. This list can
be singly linked. Hence we need only one link per clause; and we have a total
of only 2n + m links altogether, instead of the two links for each cell that are
required by Algorithm A.

Furthermore—and this is the best part!— no updates need to be made
to the watch lists when backtracking. The backtrack operations never falsify
a nonfalse literal, because they only change values from known to unknown.
Perhaps for this reason, data structures based on watched literals are called lazy,
in contrast with the “eager” data structures of Algorithm A.

Let us therefore redesign Algorithm A and make it more laid-back. Our
new data structure for each cell p has only one field, L(p); the other fields F(p),
B(p), C(p) are no longer necessary, nor do we need 2n + 2 special cells. As
before we will represent clauses sequentially, with the literals of Cj beginning at
START(j) for 1 ≤ j ≤ m. The watched literal will be the one in START(j); and a
new field, LINK(j), will be the number of another clause with the same watched
literal (or 0, if Cj is the last such clause). Moreover, our new algorithm won’t

214

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 215

need SIZE(j). Instead, we can assume that the final literal of Cj is in location
START(j − 1)− 1, provided that we define START(0) appropriately.

The resulting procedure is almost unbelievably short and sweet. It’s surely
the simplest SAT solver that can claim to be efficient on problems of modest size:

Algorithm B (Satisfiability by watching). Given nonempty clauses C1∧· · ·∧Cm

on n > 0 Boolean variables x1 . . . xn, represented as above, this algorithm finds
a solution if and only if the clauses are satisfiable. It records its current progress
in an array m1 . . .mn of “moves,” whose significance was explained above.

B1. [Initialize.] Set d ← 1.

B2. [Rejoice or choose.] If d > n, terminate successfully. Otherwise set md ←
[W2d=0 or W2d+1 �=0] and l ← 2d+md.

B3. [Remove l̄ if possible.] For all j such that l̄ is watched in Cj , watch another
literal of Cj . But go to B5 if that can’t be done. (See exercise 124.)

B4. [Advance.] Set Wl̄ ← 0, d ← d+ 1, and return to B2.

B5. [Try again.] If md < 2, set md ← 3−md, l ← 2d+ (md & 1), and go to B3.

B6. [Backtrack.] Terminate unsuccessfully if d = 1 (the clauses are unsatisfi-
able). Otherwise set d ← d − 1 and go back to B5.

Readers are strongly encouraged to work exercise 124, which spells out the
low-level operations that are needed in step B3. Those operations accomplish
essentially everything that Algorithm B needs to do.

This algorithm doesn’t use move codes 4 or 5, because lazy data structures
don’t have enough information to identify pure literals. Fortunately pure literals
are comparatively unimportant in practice; problems that are helped by the pure
literal shortcut can usually also be solved quickly without it.

Notice that steps A2 and B2 use different criteria for deciding whether to
try xd = 1 or xd = 0 first at each branch of the search tree. Algorithm A chooses
the alternative that satisfies the most clauses; Algorithm B chooses to make l
true instead of l̄ if the watch list for l̄ is empty but the watch list for l is not.
(All clauses in which l̄ is watched will have to change, but those containing l
are satisfied and in good shape.) In case of a tie, both algorithms set md ← 1,
which corresponds to xd = 0. The reason is that human-designed instances of
SAT tend to have solutions made up of mostly false literals.

Forced moves from unit clauses. The simple logic of Algorithm B works
well on many problems that aren’t too large. But its insistence on setting x1
first, then x2, etc., makes it quite inefficient on many other problems, because
it fails to take advantage of unit clauses. A unit clause (l) forces l to be true;
therefore two-way branching is unnecessary whenever a unit clause is present.
Furthermore, unit clauses aren’t rare: Far from it. Experience shows that they’re
almost ubiquitous in practice, so that the actual search trees often involve only
dozens of branch nodes instead of thousands or millions.

The importance of unit clauses was recognized already in the first computer
implementation of a SAT solver, designed by Martin Davis, George Logemann,

215

From the Library of Melissa Nuno

ptg999

216 COMBINATORIAL SEARCHING 7.2.2.2

and Donald Loveland [CACM 5 (1962), 394–397] and based on ideas that Davis
had developed earlier with Hilary Putnam [JACM 7 (1960), 201–215]. They
extended Algorithm A by introducing mechanisms that recognize when the size
of a clause decreases to 1, or when the number of unsatisfied clauses containing
a literal drops to 0. In such cases, they put variables onto a “ready list,” and
assigned those variables to fixed values before doing any further two-way branch-
ing. The resulting program was fairly complex; indeed, computer memory was
so limited in those days, they implemented branching by writing all the data for
the current node of the search tree onto magnetic tape, then backtracking when
necessary by restoring the data from the most recently written tape records! The
names of these four authors are now enshrined in the term “DPLL algorithm,”
which refers generally to SAT solving via partial assignment and backtracking.

Brown and Purdom, in the paper cited earlier, showed that unit clauses
can be detected more simply by using watched literals as in Algorithm B. We
can supplement the data structures of that algorithm by introducing indices
h1 . . . hn so that the variable whose value is being set at depth d is xhd instead
of xd. Furthermore we can arrange the not-yet-set variables whose watch lists
aren’t empty into a circular list called the “active ring”; the idea is to proceed
through the active ring, checking to see whether any of its variables are currently
in a unit clause. We resort to two-way branching only if we go all around the
ring without finding any such units.

For example, let’s consider the 32 unsatisfiable clauses of waerden (3, 3; 9)
in (9). The active ring is initially (1 2 3 4 5 6 7), because 8, 8̄, 9, and 9̄ aren’t
being watched anywhere. There are no unit clauses yet. The algorithm below will
decide to try 1̄ first; then it will change the clauses 123, 135, 147, and 159 to 213,
315, 417, and 519, respectively, so that nobody watches the false literal 1. The
active ring becomes (2 3 4 5 6 7) and the next choice is 2̄; so 213, 234, 246, and 258
morph respectively into 312, 324, 426, 528. Now, with active ring (3 4 5 6 7), the
unit clause ‘3’ is detected (because 1 and 2 are false in ‘312’). This precipitates
further changes, and the first steps of the computation can be summarized thus:

Active ring x1x2x3x4x5x6x7x8x9 Units Choice Changed clauses

(1 2 3 4 5 6 7) - - - - - - - - - 1̄ 213, 315, 417, 519
(2 3 4 5 6 7) 0 - - - - - - - - 2̄ 312, 324, 426, 528
(3 4 5 6 7) 0 0 - - - - - - - 3 3 4̄3̄5̄, 5̄3̄7̄, 6̄3̄9̄
(4 5 6 7) 0 0 1 - - - - - - 4̄ 624, 714, 546, 648
(5 6 7) 0 0 1 0 - - - - - 6 6 9̄3̄6̄, 7̄6̄8̄
(9 7 5) 0 0 1 0 - 1 - - - 9̄ 9̄
(7 5) 0 0 1 0 - 1 - - 0 7 7 8̄6̄7̄, 8̄7̄9̄
(8 5) 0 0 1 0 - 1 1 - 0 8̄ 8̄
(5) 0 0 1 0 - 1 1 0 0 5, 5̄ Backtrack

(6 9 7 8 5) 0 0 1 - - - - - - 4 5̄3̄4̄, 5̄4̄6̄, 6̄4̄8̄
(6 9 7 8 5) 0 0 1 1 - - - - - 5̄ 5̄ 456, 825, 915, 657, 759

(59)

When 6 is found, 7 is also a unit clause; but the algorithm doesn’t see it yet,
because variable x6 is tested first. The active ring changes first to (7 5) after 6

216

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: BACKTRACKING ALGORITHMS 217

0 1

0 1 0 1

0 1 0 1 1 0 1 0

0 1 0 1 0 1 0 1

1

2 2

3 4 4 3

4 3 3 4123̄ 4̄12̄ 41̄2 1̄2̄3

341 234̄ 341 2̄3̄4 234̄ 3̄4̄1̄ 2̄3̄4 3̄4̄1̄

Fig. 82. The search tree that is implicitly traversed by Algorithm D, when
that algorithm is applied to the eight unsatisfiable clauses R defined in (6).
Branch nodes are labeled with the variable being tested; leaf nodes are labeled
with a clause that is found to be contradicted. When the right child of a
branch node is a leaf, the left branch was forced by a conditional unary clause.

is found, because 5 is cyclically after 6; we want to look at 7 before 5, instead of
revisiting more-or-less the same clauses. After 6 has been chosen, 9 is inserted at
the left, because the watch list for 9̄ becomes nonempty. After backtracking, vari-
ables 8, 7, 9, 6 are successively inserted at the left as they lose their forced values.

The following algorithm represents the active ring by giving a NEXT field to
each variable, with xNEXT(k) the successor of xk. The ring is accessed via “head”
and “tail” pointers h and t at the left and right, with h = NEXT(t). If the ring
is empty, however, t = 0, and h is undefined.

Algorithm D (Satisfiability by cyclic DPLL). Given nonempty clauses C1∧· · ·∧
Cm on n > 0 Boolean variables x1 . . . xn, represented with lazy data structures
and an active ring as explained above, this algorithm finds a solution if and only
if the clauses are satisfiable. It records its current progress in an array h1 . . . hn of
indices and an arraym0 . . .mn of “moves,” whose significance is explained below.

D1. [Initialize.] Set m0 ← d ← h ← t ← 0, and do the following for k = n, n−1,
. . . , 1: Set xk ← −1 (denoting an unset value); if W2k �= 0 or W2k+1 �= 0,
set NEXT(k) ← h, h ← k, and if t = 0 also set t ← k. Finally, if t �= 0,
complete the active ring by setting NEXT(t) ← h.

D2. [Success?] Terminate if t = 0 (all clauses are satisfied). Otherwise set k ← t.

D3. [Look for unit clauses.] Set h ← NEXT(k) and use the subroutine in exer-
cise 129 to compute f ← [2h is a unit] + 2[2h+ 1 is a unit]. If f = 3, go
to D7. If f = 1 or 2, set md+1 ← f + 3, t ← k, and go to D5. Otherwise, if
h �= t, set k ← h and repeat this step.

D4. [Two-way branch.] Set h ← NEXT(t) and md+1 ← [W2h=0 or W2h+1 �=0].

D5. [Move on.] Set d ← d+1, hd ← k ← h. If t = k, set t ← 0; otherwise delete
variable k from the ring by setting NEXT(t) ← h ← NEXT(k).

D6. [Update watches.] Set b ← (md+1) mod 2, xk ← b, and clear the watch list
for x̄k (see exercise 130). Return to D2.

217

From the Library of Melissa Nuno

ptg999

218 COMBINATORIAL SEARCHING 7.2.2.2

D7. [Backtrack.] Set t ← k. While md ≥ 2, set k ← hd, xk ← −1; if W2k �= 0 or
W2k+1 �= 0, set NEXT(k) ← h, h ← k, NEXT(t) ← h; and set d ← d − 1.

D8. [Failure?] If d > 0, set md ← 3−md, k ← hd, and return to D6. Otherwise
terminate the algorithm (because the clauses aren’t satisfiable).

The move codes of this algorithm are slightly different from the earlier ones:

• mj = 0 means we’re trying xhj = 1 and haven’t yet tried xhj = 0.

• mj = 1 means we’re trying xhj = 0 and haven’t yet tried xhj = 1.

• mj = 2 means we’re trying xhj = 1 after xhj = 0 has failed.

• mj = 3 means we’re trying xhj = 0 after xhj = 1 has failed.

• mj = 4 means we’re trying xhj = 1 because it’s forced by a unit clause.

• mj = 5 means we’re trying xhj = 0 because it’s forced by a unit clause.

As before, the number of two-way branch nodes in the implicit search tree is the
number of times that mj is set to 0 or 1.

Comparison of the algorithms. OK, we’ve just seen three rudimentary SAT

solvers. How well do they actually do? Detailed performance statistics will be
given later in this section, after we’ve studied several more algorithms. But a
brief quantitative study of Algorithms A, B, and D now will give us some concrete
facts with which we can calibrate our expectations before moving on.

Consider, for example, langford (n), the problem of Langford pairs. This
problem is typical of SAT instances where many unit clauses arise during the
computation. For example, when Algorithm D is applied to langford (5), it
reaches a stage where the move codes are

m1m2 . . .md = 1255555555555555114545545, (60)

indicating only four two-way branches (the 1s and the 2) amongst a sea of forced
moves (the 4s and the 5s). We therefore expect Algorithm D to outperform
Algorithms A and B, which don’t capitalize on unit clauses.

Sure enough, Algorithm D wins (slightly), even on a small example such as
langford (5), which has 213 clauses, 480 cells, 28 variables. The detailed stats are

Algorithm A: 5379 + 108952 mems, 10552 bytes, 705 nodes.
Algorithm B: 1206 + 30789 mems, 4320 bytes, 771 nodes.
Algorithm D: 1417 + 28372 mems, 4589 bytes, 11 nodes.

(Here “5379+108952 mems” means that 5379 memory accesses were made while
initializing the data structures before the algorithm began; then the algorithm
itself accessed octabytes of memory 108,952 times.) Notice that Algorithm B
is more than thrice as fast as Algorithm A in this example, although it makes
771 two-way branches instead of 705. Algorithm A needs fewer nodes, because
it recognizes pure literals; but Algorithm B does much less work per node.
Algorithm D, on the other hand, works very hard at each node, yet comes out
ahead because its decision-making choices reduce the search to only a few nodes.

218

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: FASTER BACKTRACKING 219

These differences become more dramatic when we consider larger problems.
For instance, langford (9) has 1722 clauses, 3702 cells, 104 variables, and we find

Algorithm A: 332.0 megamems, 77216 bytes, 1,405,230 nodes.
Algorithm B: 53.4 megamems, 31104 bytes, 1,654,352 nodes.
Algorithm D: 23.4 megamems, 32057 bytes, 6093 nodes.

And with langford (13)’s 5875 clauses, 12356 cells, 228 variables, the results are

Algorithm A: 2699.1 gigamems, 253.9 kilobytes, 8.7 giganodes.
Algorithm B: 305.2 gigamems, 101.9 kilobytes, 10.6 giganodes.
Algorithm D: 71.7 gigamems, 104.0 kilobytes, 14.0 meganodes.

Mathematicians will recall that, at the beginning of Chapter 7, we used
elementary reasoning to prove the unsatisfiability of langford (4k + 1) for all k.
Evidently SAT solvers have great difficulty discovering this fact, even when k is
fairly small. We are using that problem here as a benchmark test, not because we
recommend replacing mathematics by brute force! Its unsatisfiability actually
enhances its utility as a benchmark, because algorithms for satisfiability are more
easily compared with respect to unsatisfiable instances: Extreme variations in
performance occur when clauses are satisfiable, because solutions can be found
purely by luck. Still, we might as well see what happens when our three algo-
rithms are set loose on the satisfiable problem langford (16), which turns out to be
“no sweat.” Its 11494 clauses, 23948 cells, and 352 variables lead to the statistics

Algorithm A: 11262.6 megamems, 489.2 kilobytes, 28.8 meganodes.
Algorithm B: 932.1 megamems, 196.2 kilobytes, 40.9 meganodes.
Algorithm D: 4.9 megamems, 199.4 kilobytes, 167 nodes.

Algorithm D is certainly our favorite so far, based on the langford data. But
it is far from a panacea, because it loses badly to the lightweight Algorithm B
on other problems. For example, the 2779 unsatisfiable clauses, 11662 cells, and
97 variables of waerden (3, 10; 97) yield

Algorithm A: 150.9 gigamems, 212.8 kilobytes, 106.7114 meganodes.
Algorithm B: 6.2 gigamems, 71.2 kilobytes, 106.7116 meganodes.
Algorithm D: 1430.4 gigamems, 72.1 kilobytes, 102.7 meganodes.

And waerden (3, 10; 96)’s 2721 satisfiable clauses, 11418 cells, 96 variables give us

Algorithm A: 96.9 megamems, 208.3 kilobytes, 72.9 kilonodes.
Algorithm B: 12.4 megamems, 69.8 kilobytes, 207.7 kilonodes.
Algorithm D: 57962.8 megamems, 70.6 kilobytes, 4447.7 kilonodes.

In such cases unit clauses don’t reduce the search tree size by very much, so we
aren’t justified in spending so much time per node.

*Speeding up by working harder. Algorithms A, B, and D are OK on smallish
problems, but they cannot really cope with the larger instances of SAT that have
arisen in our examples. Significant enhancements are possible if we are willing
to do more work and to develop more elaborate algorithms.

Mathematicians generally strive for nice, short, elegant proofs of theorems;
and computer scientists generally aim for nice, short, elegant sequences of steps

219

From the Library of Melissa Nuno

ptg999

220 COMBINATORIAL SEARCHING 7.2.2.2

with which a problem can quickly be solved. But some theorems have no short
proofs, and some problems cannot be solved efficiently with short programs.

Let us therefore adopt a new attitude, at least temporarily, by fearlessly
deciding to throw lots of code at SAT: Let’s look at the bottlenecks that hinder
Algorithm D on large problems, and let’s try to devise new methods that will
streamline the calculations even though the resulting program might be ten times
larger. In this subsection we shall examine an advanced SAT solver, Algorithm L,
which is able to outperform Algorithm D by many orders of magnitude on many
important problems. This algorithm cannot be described in just a few lines;
but it does consist of cooperating procedures that are individually nice, short,
elegant, and understandable by themselves.

The first important ingredient of Algorithm L is an improved mechanism
for unit propagation. Algorithm D needs only a few lines of code in step D3 to
discover whether or not the value of an unknown variable has been forced by
previous assignments; but that mechanism isn’t particularly fast, because it is
based on indirect inferences from a lazy data structure. We can do better by
using “eager” data structures that are specifically designed to recognize forced
values quickly, because high-speed propagation of the consequences of a newly
asserted value turns out to be extremely important in practice.

A literal l is forced true when it appears in a clause C whose other literals
have become false, namely when the set of currently assigned literals L has re-
duced C to the unit clause C |L = (l). Such unit clauses arise from the reduction
of binary clauses. Algorithm L therefore keeps track of the binary clauses (u∨v)
that are relevant to the current subproblem F | L. This information is kept
in a so-called “bimp table” BIMP(l) for every literal l, which is a list of other
literals l′ whose truth is implied by the truth of l. Indeed, instead of simply
including binary clauses within the whole list of given clauses, as Algorithms A,
B, and D do, Algorithm L stores the relevant facts about (u ∨ v) directly, in a
ready-to-use way, by listing u in BIMP(v̄) and v in BIMP(ū). Each of the 2n
tables BIMP(l) is represented internally as a sequential list of length BSIZE(l),
with memory allocated dynamically via the buddy system (see exercise 134).

Binary clauses, in turn, are spawned by ternary clauses. For simplicity,
Algorithm L assumes that all clauses have length 3 or less, because every instance
of general SAT can readily be converted to 3SAT form (see exercise 28). And for
speed, Algorithm L represents the ternary clauses by means of “timp tables,”
which are analogous to the bimp tables: Every literal l has a sequential list
TIMP(l) of length TSIZE(l), consisting of pairs p1 = (u1, v1), p2 = (u2, v2), . . . ,
such that the truth of l implies that each (ui ∨ vi) becomes a relevant binary
clause. If (u ∨ v ∨ w) is a ternary clause, there will be three pairs p = (v, w),
p′ = (w, u), and p′′ = (u, v), appearing in the respective lists TIMP(ū), TIMP(v̄),
and TIMP(w̄). Moreover, these three pairs are linked together cyclically, with

LINK(p) = p′, LINK(p′) = p′′, LINK(p′′) = p. (61)

Memory is allocated for the timp tables once and for all, as the clauses are input,
because Algorithm L does not generate new ternaries during its computations.

220

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: FASTER BACKTRACKING 221

Individual pairs p are, however, swapped around within these sequential tables,
so that the currently active ternary clauses containing u always appear in the
first TSIZE(ū) positions that have been allocated to TIMP(ū).

For example, let’s consider again the ternary clauses (9) of waerden (3, 3; 9).
Initially there are no binary clauses, so all BIMP tables are empty. Each of the
ternary clauses appears in three of the TIMP tables. At level 0 of the search
tree we might decide that x5 = 0; then TIMP(5̄) tells us that we gain eight
binary clauses, namely {13, 19, 28, 34, 37, 46, 67, 79}. These new binary clauses
are represented by sixteen entries in BIMP tables; BIMP(3̄), for instance, will now
be {1, 4, 7}. Furthermore, we’ll want all of the TIMP pairs that involve either
5 or 5̄ to become inactive, because the ternary clauses that contain 5 are weaker
than the new binary clauses, and the ternary clauses that contain 5̄ are now
satisfied. (See exercise 136.)

As in (57) above, we shall assume that the variables of a given formula are
numbered from 1 to n, and we represent the literals k and k̄ internally by the
numbers 2k and 2k+1. Algorithm L introduces a new twist, however, by allowing
variables to have many different degrees of truth [see M. Heule, M. Dufour, J. van
Zwieten, and H. van Maaren, LNCS 3542 (2005), 345–359]: We say that xk is
true with degree D if VAL[k] = D, and false with degree D if VAL[k] = D + 1,
where D is any even number.

The highest possible degree, typically 232 − 2 inside a computer, is called
RT for “real truth.” The next highest degree, typically 232 − 4, is called NT for
“near truth”; and then comes PT = 232−6, “proto truth.” Lower degrees PT−2,
PT− 4, . . . , 2 also turn out to be useful. A literal l is said to be fixed in context

T if and only if VAL[|l|] ≥ T ; it is fixed true if we also have VAL[|l|]&1 = l&1,
and it is fixed false if its complement l̄ is fixed true.

Suppose, for example, that VAL[2] = RT + 1 and VAL[7] = PT; hence x2 is
“really false” while x7 is “proto true.” Then the literal ‘7’, represented internally
by l = 14, is fixed true in context PT, but l is not fixed in contexts NT or RT. The
literal ‘2̄’, represented internally by l = 5, is fixed true in every context.

Algorithm L uses a sequential stack R0, R1, . . . , to record the names of
literals that have received values. The current stack size, E, satisfies 0 ≤ E ≤ n.
With those data structures we can use a simple breadth-first search procedure
to propagate the binary consequences of a literal l in context T at high speed:

Set H ← E; take account of l;
while H < E, set l ← RH , H ← H + 1, and

take account of l′ for all l′ in BIMP(l).
(62)

Here “take account of l” means “if l is fixed true in context T , do nothing; if l is
fixed false in context T , go to step CONFLICT; otherwise set VAL[|l|] ← T+(l&1),
RE ← l, and E ← E + 1.” The step called CONFLICT is changeable.

A literal’s BIMP table might grow repeatedly as computation proceeds. But
we can undo the consequences of bad decisions by simply resetting BSIZE(l)
to the value that it had before those decisions were made. A special variable
ISTAMP is increased whenever we begin a new round of decision-making, and each

221

From the Library of Melissa Nuno

ptg999

222 COMBINATORIAL SEARCHING 7.2.2.2

literal l has its private stamp IST(l). Whenever BSIZE(l) is about to increase,
we check if IST(l) = ISTAMP. If not, we set

IST(l) ← ISTAMP, ISTACK[I] ← (
l, BSIZE(l)

)
, I ← I + 1. (63)

Then the entries on ISTACK make it easy to downdate the BIMP tables when we
backtrack. (See step L13 in the algorithm below.)

We’re ready now to look at the detailed steps of Algorithm L, except that one
more member of its arsenal of data structures needs to be introduced: There’s
an array VAR, which contains a permutation of {1, . . . , n}, with VAR[k] = x if
and only if INX[x] = k. Furthermore VAR[k] is a “free variable”—not fixed
in context RT—if and only if 0 ≤ k < N . This setup makes it convenient to
keep track of the variables that are currently free: A variable becomes fixed by
swapping it to the end of the free list and decreasing N (see exercise 137); then
we can free it later by simply increasing N , without swapping.

Algorithm L (Satisfiability by DPLL with lookahead). Given nonempty clauses
C1 ∧ · · · ∧ Cm of size ≤ 3, on n > 0 Boolean variables x1 . . . xn, this algorithm
finds a solution if and only if the clauses are satisfiable. Its family of cooperating
data structures is discussed in the text.

L1. [Initialize.] Record all binary clauses in the BIMP array and all ternary
clauses in the TIMP array. Let U be the number of distinct variables in unit
clauses; terminate unsuccessfully if two unit clauses contradict each other,
otherwise record all distinct unit literals in FORCE[k] for 0 ≤ k < U . Set
VAR[k] ← k + 1 and INX[k + 1] ← k for 0 ≤ k < n; and d ← F ← I ←
ISTAMP ← 0. (Think d = depth, F = fixed variables, I = ISTACK size.)

L2. [New node.] Set BRANCH[d] ← −1. If U = 0, invoke Algorithm X below
(which looks ahead for simplifications and also gathers data about how to
make the next branch). Terminate happily if Algorithm X finds all clauses
satisfied; go to L15 if Algorithm X discovers a conflict; go to L5 if U > 0.

L3. [Choose l.] Select a literal l that’s desirable for branching (see exercise
168). If l = 0, set d ← d+ 1 and return to L2. Otherwise set DEC[d] ← l,
BACKF[d] ← F , BACKI[d] ← I, and BRANCH[d] ← 0.

L4. [Try l.] Set U ← 1, FORCE[0] ← l.

L5. [Accept near truths.] Set T ← NT, G ← E ← F , ISTAMP ← ISTAMP + 1,
and CONFLICT ← L11. Perform the binary propagation routine (62) for
l ← FORCE[0], . . . , l ← FORCE[U − 1]; then set U ← 0.

L6. [Choose a nearly true L.] (At this point the stacked literals Rk are “really
true” for 0 ≤ k < G, and “nearly true” for G ≤ k < E. We want them all
to be really true.) If G = E, go to L10. Otherwise set L ← RG, G ← G+1.

L7. [Promote L to real truth.] Set X ← |L| and VAL[X] ← RT+L&1. Remove
variable X from the free list and from all TIMP pairs (see exercise 137). Do
step L8 for all pairs (u, v) in TIMP(L), then return to L6.

L8. [Consider u ∨ v.] (We have deduced that u or v must be true; five cases
arise.) If either u or v is fixed true (in context T , which equals NT), do

222

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: LOOKING AHEAD 223

nothing. If both u and v are fixed false, go to CONFLICT. If u is fixed false
but v isn’t fixed, perform (62) with l ← v. If v is fixed false but u isn’t
fixed, perform (62) with l ← u. If neither u nor v is fixed, do step L9.

L9. [Exploit u ∨ v.] If v̄ ∈ BIMP(ū), perform (62) with l ← u (because ū
implies both v and v̄). Otherwise if v ∈ BIMP(ū), do nothing (because we
already have the clause u∨v). Otherwise if ū ∈ BIMP(v̄), perform (62) with
l ← v. Otherwise append v to BIMP(ū) and u to BIMP(v̄). (Each change
to BIMP means that (63) might be invoked. Exercise 139 explains how to
improve this step by deducing further implications called “compensation
resolvents.”)

L10. [Accept real truths.] Set F ← E. If BRANCH[d] ≥ 0, set d ← d+ 1 and go
to L2. Otherwise go to L3 if d > 0, to L2 if d = 0.

L11. [Unfix near truths.] While E > G, set E ← E − 1 and VAL[|RE |] ← 0.

L12. [Unfix real truths.] While E > F , do the following: Set E ← E − 1 and
X ← |RE |; reactivate the TIMP pairs that involve X and restore X to the
free list (see exercise 137); set VAL[X] ← 0.

L13. [Downdate BIMPs.] If BRANCH[d] ≥ 0, do the following while I > BACKI[d]:
Set I ← I − 1 and BSIZE(l) ← s, where ISTACK[I] = (l, s).

L14. [Try again?] (We’ve discovered that DEC[d] doesn’t work.) If BRANCH[d] =
0, set l ← DEC[d], DEC[d] ← l ← l̄, BRANCH[d] ← 1, and go back to L4.

L15. [Backtrack.] Terminate unsuccessfully if d = 0. Otherwise set d ← d − 1,
E ← F , F ← BACKF[d], and return to L12.

Exercise 143 extends this algorithm so that it will handle clauses of arbitrary size.

*Speeding up by looking ahead. Algorithm L as it stands is incomplete,
because step L2 relies on an as-yet-unspecified “Algorithm X” before it chooses
a literal for branching. If we use the simplest possible Algorithm X, by branching
on whatever literal happens to be first in the current list of free variables, the
streamlined methods for propagating forced moves in (62) and (63) will tend to
make Algorithm L run roughly three times as fast as Algorithm D, and that isn’t
a negligible improvement. But with a sophisticated Algorithm X we can often
gain another factor of 10 or more in speed, on significant problems.

For example, here are some typical empirical statistics:

Problem Algorithm D Algorithm L0 Algorithm L+

waerden (3, 10; 97) 1430 gigamems, 391 gigamems, 772 megamems,
103 meganodes 31 meganodes 4672 nodes

langford (13) 71.7 gigamems, 21.5 gigamems, 45.7 gigamems,
14.0 meganodes 10.9 meganodes 944 kilonodes

rand (3, 420, 100, 0) 184 megamems, 34 megamems, 626 kilomems,
34 kilonodes 7489 nodes 19 nodes

Here Algorithm L0 stands for Algorithm L with the simplest Algorithm X, while
Algorithm L+ uses all of the lookahead heuristics that we are about to discuss.
The first two problems involve rather large clauses, so they use the extended

223

From the Library of Melissa Nuno

ptg999

224 COMBINATORIAL SEARCHING 7.2.2.2

Algorithm L of exercise 143. The third problem consists of 420 random ternary
clauses on 100 variables. (Algorithm B, incidentally, needs 80.1 teramems, and
a search tree of 4.50 teranodes, to show that those clauses are unsatisfiable.)

The moral of this story is that it’s wise to do 100 times as much computation
at every node of a large search tree, if we can thereby decrease the size of the
tree by a factor of 1000.

How then can we distinguish a variable that’s good for branching from a
variable that isn’t? We shall consider a three-step approach:

• Preselecting, to identify free variables that appear to be good candidates;

• Nesting, to allow candidate literals to share implied computations;

• Exploring, to examine the immediate consequences of hypothetical decisions.

While carrying out these steps, Algorithm X might discover a contradiction (in
which case Algorithm L will take charge again at step L15); or the lookahead
process might discover that several of the free literals are forced to be true
(in which case it places them in the first U positions of the FORCE array). The
explorations might even discover a way to satisfy all of the clauses (in which case
Algorithm L will terminate and everybody will be happy). Thus, Algorithm X
might do much more than simply choose a good variable on which to branch.

The following recommendations for Algorithm X are based on Marijn Heule’s
lookahead solver called march, one of the world’s best, as it existed in 2013.

The first stage, preselection, is conceptually simplest, although it also in-
volves some “handwaving” because it depends on necessarily shaky assumptions.
Suppose there are N free variables. Experience has shown that we tend to get
a good heuristic score h(l) for each literal l, representing the relative amount by
which asserting l will reduce the current problem, if these scores approximately
satisfy the simultaneous nonlinear equations

h(l) = 0.1 + α
∑

u∈BIMP(l)
u not fixed

ĥ(u) +
∑

(u,v)∈TIMP(l)
ĥ(u)ĥ(v). (64)

Here α is a magic constant, typically 3.5; and ĥ(l) is a multiple of h(l) chosen
so that

∑
l ĥ(l) = 2N is the total number of free literals. (In other words, the h

scores on the right are “normalized” so that their average is 1.)
Any given set of scores h(l) can be used to derive a refined set h′(l) by letting

h′(l) = 0.1 + α
∑

u∈BIMP(l)
u not fixed

h(u)

have
+

∑
(u,v)∈TIMP(l)

h(u)

have

h(v)

have
, have =

1

2N

∑
l

h(l). (65)

Near the root of the search tree, when d ≤ 1, we start with h(l) = 1 for all l
and then refine it five times (say). At deeper levels we start with the h(l) values
from the parent node and refine them once. Exercise 145 contains an example.

We’ve computed h(l) for all of the free literals l, but we won’t have time to
explore them all. The next step is to select free variables CAND[j] for 0 ≤ j < C,
where C isn’t too large; we will insist that the number of candidates does not
exceed

Cmax = max(C0, C1/d), (66)

224

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: LOOKING AHEAD 225

using cutoff parameters that are typically C0 = 30, C1 = 600. (See exercise 148.)
We start by dividing the free variables into “participants” and “newbies”:

A participant is a variable such that either x or x̄ has played the role of u or v in
step L8, at some node above us in the search tree; a newbie is a nonparticipant.
When d = 0 every variable is a newbie, because we’re at the root of the tree.
But usually there is at least one participant, and we want to branch only on
participants whenever possible, in order to maintain focus while backtracking.

If we’ve got too many potential candidates, even after restricting consider-
ation to participants, we can winnow the list down by preferring the variables x
that have the largest combined score h(x)h(x̄). Step X3 below describes a fairly
fast way to come up with the desired selection of C ≤ Cmax candidates.

A simple lookahead algorithm can now proceed to compute a more accurate
heuristic score H(l), for each of the 2C literals l = CAND[j] or l = ¬CAND[j]
that we’ve selected for further scrutiny. The idea is to simulate what would
happen if l were used for branching, by mimicking steps L4–L9 (at least to a
first approximation): Unit literals are propagated as in the exact algorithm, but
whenever we get to the part of step L9 that changes the BIMP tables, we don’t
actually make such a change; we simply note that a branch on l would imply
u ∨ v, and we consider the value of that potential new clause to be h(u)h(v).
The heuristic score H(l) is then defined to be the sum of all such clause weights:

H(l) =
∑{

h(u)h(v)
∣∣ asserting l in L4 leads to asserting u ∨ v in L9

}
. (67)

For example, the problem waerden (3, 3; 9) of (9) has nine candidate variables
{1, 2, . . . , 9} at the root of the search tree, and exercise 145 finds their rough
heuristic scores h(l). The more discriminating scores H(l) turn out to be

H(1) = h(2̄)h(3̄) + h(3̄)h(5̄) + h(4̄)h(7̄) + h(5̄)h(9̄) ≈ 168.6;
H(2) = h(1̄)h(3̄) + h(3̄)h(4̄) + h(4̄)h(6̄) + h(5̄)h(8̄) ≈ 157.3;
H(3) = h(1̄)h(2̄) + h(2̄)h(4̄) + h(4̄)h(5̄) + · · ·+ h(6̄)h(9̄) ≈ 233.4;
H(4) = h(2̄)h(3̄) + h(3̄)h(5̄) + h(5̄)h(6̄) + · · ·+ h(1̄)h(7̄) ≈ 231.8;
H(5) = h(3̄)h(4̄) + h(4̄)h(6̄) + h(6̄)h(7̄) + · · ·+ h(1̄)h(9̄) ≈ 284.0.

This problem is symmetrical, so we also have H(6) = H(6̄) = H(4) = H(4̄), etc.
The best literal for branching, according to this estimate, is 5 or 5̄.

Suppose we set x5 false and proceed to look ahead at the reduced problem,
with d = 1. At this point there are eight candidates, {1, 2, 3, 4, 6, 7, 8, 9}; and
they’re now related also by binary implications, because the original clause ‘357’
has, for instance, been reduced to ‘37’. In fact, the BIMP tables now define the
dependency digraph

12 34 67 89

4̄3̄ 2̄1̄9̄8̄ 7̄6̄

(68)

because 3̄ −−→ 7, etc.; and in general the 2C candidate literals will define a
dependency digraph whose structure yields important clues about the current
subproblem. We can, for example, use Tarjan’s algorithm to find the strong

225

From the Library of Melissa Nuno

ptg999

226 COMBINATORIAL SEARCHING 7.2.2.2

components of that digraph, as mentioned after Theorem 7.1.1K. If some strong
component includes both l and l̄, the current subproblem is unsatisfiable. Other-
wise two literals of the same component are constrained to have the same value;
so we shall choose one literal from each of the S ≤ 2C strong components, and
use those choices as the actual candidates for lookahead.

Continuing our example, at this point we can use a nice trick to save
redundant computation, by extracting a subforest of the dependency digraph:

1 2 3 4 6 7 8 9

4̄ 3̄ 2̄ 1̄9̄8̄ 7̄6̄

(69)

The relation 8̄ −−→ 2 means that whatever happens after asserting the literal
‘2’ will also happen after asserting ‘8̄’; hence we need not repeat the steps for
‘2’ while studying ‘8̄’. And similarly, each of the other subordinate literals ‘1̄’,
. . . , ‘9̄’ inherits the assertions of its parent in this hierarchy. Tarjan’s algorithm
actually produces such a subforest with comparatively little extra work.

The nested structure of a forest also fits beautifully with “degrees of truth”
in our data structure, if we visit the S candidate literals in preorder of the
subforest, and if we successively assert each literal l at the truth degree that
corresponds to twice its position in postorder . For instance, (69) becomes the
following arrangement, which we shall call the “lookahead forest”:

preorder 1 2 8̄ 3 4 6 4̄ 7 3̄ 6̄ 9̄ 8 2̄ 9 1̄ 7̄

2·postorder 2 6 4 8 10 14 12 22 16 18 20 26 24 32 28 30
(70)

A simulation of steps L4–L9 with l ← 1 and T ← 2 makes x1 true at degree 2 (we
say that it’s “2fixed” or “2true”); it also computes the score H(1) ← h(2̄)h(3̄)+
h(4̄)h(7̄), but spawns no other activity if Algorithm Y below isn’t active. Sim-
ulation with l ← 2 and T ← 6 then 6fixes 2 and computes H(2) ← h(1̄)h(3̄) +
h(3̄)h(4̄) + h(4̄)h(6̄); during this process x1’s value isn’t seen, because it is less
than T . Things get interesting when l ← 8̄ and T ← 4: Now we 4fix 8̄, and we’re
still able to see that x2 is true because 6 > T . So we save a little computation
by inheriting H(2) and setting H(8̄) ← H(2) + h(4)h(6) + h(6)h(7) + h(7)h(9).

The real action begins to break through a few steps later, when we set l ← 4̄
and T ← 12. Then (62) will 12fix not only 4̄ but also 3, since 4̄−−→ 3; and the
12truth of 3 will soon take us to the simulated step L8 with u = 6̄ and v = 9̄.
Aha: We 12fix 9̄, because 6 is 14true. Then we also 12fix the literals 7, 1, . . . , and
reach a contradiction. This contradiction shows that branching on 4̄ will lead to
a conflict; hence the literal 4 must be true, if the current clauses are satisfiable.

Whenever the lookahead simulation of Algorithm X learns that some literal l
must be true, as in this example, it places l on the FORCE list and makes l proto
true (that is, true in context PT). A proto true literal will remain fixed true
throughout this round of lookahead, because all relevant values of T will be
less than PT. Later, Algorithm L will promote proto truth to near truth, and
ultimately to real truth—unless a contradiction arises. (And in the case of
waerden (3, 3; 9), such a contradiction does in fact arise; see exercise 150.)

226

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: LOOKING AHEAD 227

Why does the combination of preorder and postorder work so magically
in (70)? It’s because of a basic property of forests in general, which we noted
for example in exercise 2.3.2–20: If u and v are nodes of a forest, u is a proper
ancestor of v if and only if u precedes v in preorder and u follows v in postorder.
Moreover, when we look ahead at candidate literals in this way, an important
invariant relation is maintained on the R stack, namely that truth degrees never
increase as we move from the bottom to the top:

VAL[|Rj−1|] | 1 ≥ VAL[|Rj |], for 1 ≤ j < E. (71)

Real truths appear at the bottom, then near truths, then proto truths, etc. For
example, the stack at one point in the problem above contains seven literals,

j = 0 1 2 3 4 5 6

Rj = 5̄ 6 4̄ 3 9̄ 7 1
VAL[|Rj |] = RT+1 14 13 12 13 12 12

.

One consequence is that the current visibility of truth values matches the recur-
sive structure by which false literals are purged from ternary clauses.

The second phase of Algorithm X, after preselection of candidates, is called
“nesting,” because it constructs a lookahead forest analogous to (70). More
precisely, it constructs a sequence of literals LL[j] and corresponding truth
offsets LO[j], for 0 ≤ j < S. It also sets up PARENT pointers to indicate the forest
structure more directly; for example, with (69) we would have PARENT(8̄) = 2
and PARENT(2) = Λ.

The third phase, “exploration,” now does the real work. It uses the looka-
head forest to evaluate heuristics H(l) for the candidate literals—and also (if
it’s lucky) to discover literals whose values are forced.

The heart of the exploration phase is a breadth-first search based on steps L5,
L6, and L8. This routine propagates truth values of degree T and also computes
w, the weight of new binary clauses that would be spawned by branching on l:

Set l0 ← l, i ← w ← 0, and G ← E ← F ; perform (62);
while G < E, set L ← RG, G ← G+ 1, and

take account of (u, v) for all (u, v) in TIMP(L);
generate new binary clauses (l̄0 ∨Wk) for 0 ≤ k < i.

(72)

Here “take account of (u, v)” means “if either u or v is fixed true (in context T),
do nothing; if both u and v are fixed false, go to CONFLICT; if u is fixed false but
v isn’t fixed, set Wi ← v, i ← i + 1, and perform (62) with l ← v; if v is fixed
false but u isn’t fixed, set Wi ← u, i ← i + 1, and perform (62) with l ← u; if
neither u nor v is fixed, set w ← w + h(u)h(v).”

Explanation: A ternary clause of the form L̄ ∨ u ∨ v, where L is fixed true
and u is fixed false as a consequence of l0 being fixed true, is called a “windfall.”
Such clauses are good news, because they imply that the binary clause l̄0 ∨ v
must be satisfied in the current subproblem. Windfalls are recorded on a stack
called W, and appended to the BIMP database at the end of (72).

227

From the Library of Melissa Nuno

ptg999

228 COMBINATORIAL SEARCHING 7.2.2.2

The exploration phase also exploits an important fact called the autarky

principle, which generalizes the notion of “pure literal” that we discussed above
in connection with Algorithm A. An “autarky” for a SAT problem F is a set
of strictly distinct literals A = {a1, . . . , at} with the property that every clause
of F either contains at least one literal of A or contains none of the literals of
A = {ā1, . . . , āt}. In other words, A satisfies every clause that A or A “touches.”

An autarky is a self-sufficient system. Whenever A is an autarky, we can
assume without loss of generality that all of its literals are actually true; for if F
is satisfiable, the untouched clauses are satisfiable, and A tells us how to satisfy
the touched ones. Step X9 of the following algorithm shows that we can detect
certain autarkies easily while we’re looking ahead.

Algorithm X (Lookahead for Algorithm L). This algorithm, which is invoked
in step L2 of Algorithm L, uses the data structures of that algorithm together
with additional arrays of its own to explore properties of the current subproblem.
It discovers U ≥ 0 literals whose values are forced, and puts them in the FORCE
array. It terminates either by (i) satisfying all clauses; (ii) finding a contradiction;
or (iii) computing heuristic scores H(l) that will allow step L3 to choose a good
literal for branching. In case (iii) it might also discover new binary clauses.

X1. [Satisfied?] If F = n, terminate happily (no variables are free).

X2. [Compile rough heuristics.] Set N = n − F . For each free literal l, set
VAL[l] ← 0, and use (65) to compute a rough score h(l).

X3. [Preselect candidates.] Let C be the current number of free variables that
are “participants,” and put them into the CAND array. If C = 0, set
C ← N and put all free variables into CAND; terminate happily, however,
if all clauses are satisfied (see exercise 152). Give each variable x in CAND

the rating r(x) = h(x)h(x̄). Then while C > 2Cmax (see (66)), delete all
elements of CAND whose rating is less than the mean rating; but terminate
this loop if no elements are actually deleted. Finally, if C > Cmax, reduce
C to Cmax by retaining only top-ranked candidates. (See exercise 153.)

X4. [Nest the candidates.] Construct a lookahead forest, represented in LL[j]
and LO[j] for 0 ≤ j < S and by PARENT pointers (see exercise 155).

X5. [Prepare to explore.] Set U ′ ← j′ ← BASE ← j ← 0 and CONFLICT ← X13.

X6. [Choose l for lookahead.] Set l ← LL[j] and T ← BASE + LO[j]. Set
H(l) ← H(PARENT(l)), whereH(Λ) = 0. If l is not fixed in context T , go to
X8. Otherwise, if l is fixed false but not proto false, do step X12 with l ← l̄.

X7. [Move to next.] If U > U ′, set U ′ ← U and j′ ← j. Then set j ← j +1. If
j = S, set j ← 0 and BASE ← BASE+ 2S. Terminate normally if j = j′, or
if j = 0 and BASE+2S ≥ PT (beware of overflow). Otherwise return to X6.

X8. [Compute sharper heuristic.] Perform (72). Then if w > 0, set H(l0) ←
H(l0) + w and go to X10.

X9. [Exploit an autarky.] IfH(l0) = 0, do step X12 with l ← l0. Otherwise gen-
erate the new binary clause l0∨¬PARENT(l0). (Exercise 166 explains why.)

228

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: LOOKING FURTHER AHEAD 229

X10. [Optionally look deeper.] Perform Algorithm Y below.

X11. [Exploit necessary assignments.] Do step X12 for all literals l ∈ BIMP(l̄0)
that are fixed true but not proto true. Then go to X7. (See exercise 167.)

X12. [Force l.] Set FORCE[U] ← l, U ← U + 1, T ′ ← T , and perform (72) with
T ← PT. Then set T ← T ′. (This step is a subroutine, used by other steps.)

X13. [Recover from conflict.] If T < PT, do step X12 with l ← l̄0 and go to X7.
Otherwise terminate with a contradiction.

Notice that, in steps X5–X7, this algorithm proceeds cyclically through the
forest, continuing to look ahead until completing a pass in which no new forced
literals are found. The BASE address of truth values continues to grow, if
necessary, but it isn’t allowed to become too close to PT.

*Looking even further ahead. If it’s a good idea to look one step ahead,
maybe it’s a better idea to look two steps ahead. Of course that’s a somewhat
scary proposition, because our data structures are already pretty stretched; and
besides, double lookahead might take way too much time. Nevertheless, there’s
a way to pull it off, and to make Algorithm L run even faster on many problems.

Algorithm X looks at the immediate consequences of assuming that some
literal l0 is true. Algorithm Y, which is launched in step X10, goes further out
on that limb, and investigates what would happen if another literal, l̂0, were also
true. The goal is to detect branches that die off early, allowing us to discover
new implications of l0 or even to conclude that l0 must be false.

For this purpose Algorithm Y stakes out an area of truth space between the
current context T and a degree of truth called “double truth” or DT, which is
defined in step Y2. The size of this area is determined by a parameter Y, which
is typically less than 10. The same lookahead forest is used to give relative truth
degrees below DT. Double truth is less trustworthy than proto truth, PT; but
literals that are fixed at level DT are known to be conditionally true (“Dtrue”)
or conditionally false (“Dfalse”) under the hypothesis that l0 is true.

Going back to our example of waerden (3, 3; 9), the scenario described above
was based on the assumption that double lookahead was not done. Actually,
however, further activity by Algorithm Y will usually take place after H(1) has
been set to h(2̄)h(3̄) + h(4̄)h(7̄). The value of DT will be set to 130, assuming
that Y = 8, because S = 8. Literal 1 will become Dtrue. Looking then at 2 will
6fix 2; and that will 6fix 3̄ because of the clause 1̄2̄3̄. Then 3̄ will 6fix 4 and 7,
contradicting 1̄4̄7̄ and causing 2 to become Dfalse. Other literals also will soon
become Dtrue or Dfalse, leading to a contradiction; and that contradiction will
allow Algorithm Y to make literal 1 proto false before Algorithm X has even
begun to look ahead at literal 2.

The main loop of double lookahead is analogous to (72), but it’s simpler,
because we’re further removed from reality:

Set l̂0 ← l and G ← E ← F ; perform (62);
while G < E, set L ← RG, G ← G+ 1, and

take account of (u, v) for all (u, v) in TIMP(L).

(73)

229

From the Library of Melissa Nuno

ptg999

230 COMBINATORIAL SEARCHING 7.2.2.2

Now “take account of (u, v)” means “if either u or v is fixed true (in context T),
or if neither u nor v is fixed, do nothing; if both u and v are fixed false, go to
CONFLICT; if u is fixed false but v isn’t fixed, perform (62) with l ← v; if v is
fixed false but u isn’t fixed, perform (62) with l ← u.”

Since double-looking is costly, we want to try it only when there’s a fairly
good chance that it will be helpful, namely when H(l0) is large. But how large is
large enough? The proper threshold depends on the problem being solved: Some
sets of clauses are handled more quickly by double-looking, while others are im-
mune to such insights. Marijn Heule and Hans van Maaren [LNCS 4501 (2007),
258–271] have developed an elegant feedback mechanism that automatically
tunes itself to the characteristics of the problem at hand: Let τ be a “trigger,”
initially 0. Step Y1 allows double-look only ifH(l0) > τ ; otherwise τ is decreased
to βτ , where β is a damping factor (typically 0.999), so that double-looking
will become more attractive. On the other hand if double-look doesn’t find a
contradiction that makes l0 proto false, the trigger is raised to H(l0) in step Y6.

Algorithm Y (Double lookahead for Algorithm X). This algorithm, invoked in
step X10, uses the same data structures (and a few more) to look ahead more
deeply. Parameters β and Y are explained above. Initially DFAIL(l) = 0 for all l.

Y1. [Filter.] Terminate if DFAIL(l0) = ISTAMP, or if T + 2S(Y + 1) > PT.
Otherwise, if H(l0) ≤ τ , set τ ← βτ and terminate.

Y2. [Initialize.] Set BASE ← T − 2, LBASE ← BASE+2S ·Y , DT ← LBASE+LO[j],
i ← ĵ′ ← ĵ ← 0, E ← F , and CONFLICT ← Y8. Perform (62) with l ← l0
and T ← DT.

Y3. [Choose l for double look.] Set l ← LL[ĵ] and T ← BASE+LO[ĵ]. If l is not
fixed in context T , go to Y5. Otherwise, if l is fixed false but not Dfalse, do
step Y7 with l ← l̄.

Y4. [Move to next.] Set ĵ ← ĵ + 1. If ĵ = S, set ĵ ← 0 and BASE ← BASE + 2S.
Go to Y6 if ĵ′ = ĵ, or if ĵ = 0 and BASE = LBASE. Otherwise return to Y3.

Y5. [Look ahead.] Perform (73), and return to Y4 (if no conflict arises).

Y6. [Finish.] Generate new binary clauses (l̄0 ∨ Wk) for 0 ≤ k < i. Then set
BASE ← LBASE, T ← DT, τ ← H(l0), DFAIL(l0) ← ISTAMP, CONFLICT ←
X13, and terminate.

Y7. [Assume also l.] Set ĵ′ ← ĵ, T ′ ← T , and perform (73) with T ← DT. Then

set T ← T ′, Wi ← l̂0, i ← i+ 1. (This step is a subroutine.)

Y8. [Recover from conflict.] If T < DT, do step Y7 with l ← ¬LL[ĵ] and go to Y4.
Otherwise set BASE ← LBASE, CONFLICT ← X13, and exit to X13.

Some quantitative statistics will help to ground these algorithms in reality:
When Algorithm L was let loose on rand (3, 2062, 500, 314), a problem with 500
variables and 2062 random ternary clauses, it proved unsatisfiability after making
684,433,234,661 memory accesses and constructing a search tree of 9,530,489
nodes. Exercise 173 explains what would have happened if various parts of the
algorithm had been disabled. None of the other SAT solvers we shall discuss are
able to handle such large random problems in a reasonable amount of time.

230

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: RANDOM CLAUSES 231

Random satisfiability. There seems to be no easy way to analyze the satisfia-
bility problem under random conditions. In fact, the basic question “How many
random clauses of 3SAT on n variables do we need to consider, on the average,
before they can’t all be satisfied?” is a famous unsolved research problem.

From a practical standpoint this question isn’t as relevant as the analogous
questions were when we studied algorithms for sorting or searching, because real-
world instances of 3SAT tend to have highly nonrandom clauses. Deviations from
randomness in combinatorial algorithms often have a dramatic effect on running
time, while methods of sorting and searching generally stay reasonably close to
their expected behavior. Thus a focus on randomness can be misleading. On the
other hand, random SAT clauses do serve as a nice, clean model, so they give us
insights into what goes on in Boolean territory. Furthermore the mathematical
issues are of great interest in their own right. And fortunately, much of the basic
theory is in fact elementary and easy to understand. So let’s take a look at it.

Exercise 180 shows that random satisfiability can be analyzed exactly, when
there are at most five variables. We might as well start there, because the “tiny”
5-variable case is still large enough to shed some light on the bigger picture.
When there are n variables and k literals per clause, the number N of possible
clauses that involve k different variables is clearly 2k

(
n
k

)
: There are

(
n
k

)
ways to

choose the variables, and 2k ways to either complement or not. So we have, for
example, N = 23

(
5
3

)
= 80 possible clauses in a 3SAT problem on 5 variables.

Let qm be the probability that m of those clauses, distinct but otherwise
selected at random, are satisfiable. Thus qm = Qm/

(
N
m

)
, whereQm is the number

of ways to choose m of the N clauses so that at least one Boolean vector x =
x1 . . . xn satisfies them all. Figure 83 illustrates these probabilities when k = 3
and n = 5. Suppose we’re being given distinct random clauses one by one.
According to Fig. 83, the chances are better than 77% that we’ll still be able
to satisfy them after 20 different clauses have been received, because q20 ≈
0.776. But by the time we’ve accumulated 30 of the 80 clauses, the chance of
satisfiability has dropped to q30 ≈ 0.179; and after ten more we reach q40 ≈ 0.016.

1

0
0 10 20 30 40 50 60 70 80

Fig. 83. The probability qm that m distinct clauses of 3SAT
on 5 variables are simultaneously satisfiable, for 0 ≤ m ≤ 80.

The illustration makes it appear as if qm = 1 for m < 15, say, and as if
qm = 0 for m > 55. But q8 is actually less than 1, because of (6); exercise 179
gives the exact value. And q70 is greater than 0, because Q70 = 32; indeed, every
Boolean vector x satisfies exactly (2k − 1)

(
n
k

)
= (1 − 2−k)N of the N possible

k-clauses, so it’s no surprise that 70 noncontradictory 3-clauses on 5 variables
can be found. Of course those clauses will hardly ever be the first 70 received, in
a random situation. The actual value of q70 is 32/1646492110120 ≈ 2× 10−11.

231

From the Library of Melissa Nuno

ptg999

232 COMBINATORIAL SEARCHING 7.2.2.2

0

8

16

24

32

0 10 20 30 40 50 60 70 80

Fig. 84. The total number Tm of different Boolean vectors x = x1 . . . x5 that
simultaneously satisfy m distinct clauses of 3SAT on 5 variables, for 0 ≤ m ≤ 80.

Figure 84 portrays the same process from another standpoint: It shows in
how many ways a random set of m clauses can be satisfied. This value, Tm, is a
random variable whose mean is indicated in black, surrounded by a gray region
that shows the mean plus-or-minus the standard deviation. For example, T0 is
always 32, and T1 is always 28; but T2 is either 24, 25, or 26, and it takes these
values with the respective probabilities (2200, 480, 480)/3160. Thus the mean
for m = 2 is ≈ 24.5, and the standard deviation is ≈ 0.743.

When m = 20, we know from Fig. 83 that T20 is nonzero more than 77%
of the time; yet Fig. 84 shows that T20 ≈ 1.47± 1.17. (Here the notation μ ± σ
stands for the mean value μ with standard deviation σ.) It turns out, in fact,
that 20 random clauses are uniquely satisfiable, with T20 = 1, more than 33% of
the time; and the probability that T20 > 4 is only 0.013. With 30 clauses, satis-
fiability gets dicier and dicier: T30 ≈ 0.20± 0.45; indeed, T30 is less than 2, more
than 98% of the time—although it can be as high as 11 if the clause-provider is
being nice to us. By the time 40 clauses are reached, the odds that T40 exceeds 1
are less than 1 in 4700. Figure 85 shows the probability that Tm = 1 as m varies.

.5

0
0 10 20 30 40 50 60 70 80

Fig. 85. Pr(Tm = 1), the probability that m distinct clauses
of 3SAT on 5 variables are uniquely satisfiable, for 0 ≤ m ≤ 80.

Let P be the number of clauses that have been received when we’re first
unable to satisfy them all. Thus we have P = m with probability pm, where
pm = qm−1 − qm is the probability that m− 1 random clauses are satisfiable but
m are not. These probabilities are illustrated in Fig. 86. Is it surprising that
Figs. 85 and 86 look roughly the same? (See exercise 183.)

The expected “stopping time,” EP , is by definition equal to
∑

mmpm; and
it’s not difficult to see, for example by using the technique of summation by
parts (exercise 1.2.7–10), that we can compute it by summing the probabilities
in Fig. 83:

EP =
∑
m

qm. (74)

232

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: RANDOM CLAUSES 233

.1

0
0 10 20 30 40 50 60 70 80

Fig. 86. The stopping time probabilities, pm, that m distinct clauses
of 3SAT on 5 variables have just become unsatisfiable, for 0 ≤ m ≤ 80.

The variance of P , namely E(P − EP)2 = (EP 2) − (EP)2, also has a simple
expression in terms of the q’s, because

EP 2 =
∑
m

(2m+ 1)qm. (75)

In Figs. 83 and 86 we have EP ≈ 25.22, with variance ≈ 35.73.
So far we’ve been focusing our attention on 3SAT problems, but the same

ideas apply also to kSAT for other clause sizes k. Figure 87 shows exact results
for the probabilities when n = 5 and 1 ≤ k ≤ 4. Larger values of k give clauses
that are easier to satisfy, so they increase the stopping time. With five variables
the typical stopping times for random 1SAT, 2SAT, 3SAT, and 4SAT turn out
to be respectively 4.06 ± 1.19, 11.60 ± 3.04, 25.22 ± 5.98, and 43.39 ± 7.62. In
general if Pk,n is the stopping time for kSAT on n variables, we let

Sk,n = EPk,n (76)

be its expected value.

1

0
0 10 20 30 40 50 60 70 80

1SAT 2SAT 3SAT 4SAT

Fig. 87. Extension of Fig. 83 to clauses of other sizes.

Our discussions so far have been limited in another way too: We’ve been
assuming thatm distinct clauses are being presented to a SAT solver for solution.
In practice, however, it’s much easier to generate clauses by allowing repetitions,
so that every clause is chosen without any dependence on the past history. In
other words, there’s a more natural way to approach random satisfiability, by
assuming that Nm possible ordered sequences of clauses are equally likely after
m steps, not that we have

(
N
m

)
equally likely sets of clauses.

Let q̂m be the probability thatm random clauses C1∧· · ·∧Cm are satisfiable,
where each Cj is randomly chosen from among the N = 2k

(
n
k

)
possibilities in a

kSAT problem on n variables. Figure 88 illustrates these probabilities in the case
k = 3, n = 5; notice that we always have q̂m ≥ qm. If N is large while m is small,
it’s clear that q̂m will be very close to qm, because repeated clauses are unlikely
in such a case. Still, we must keep in mind that qN is always zero, while q̂m is
never zero. Furthermore, the “birthday paradox” discussed in Section 6.4 warns

233

From the Library of Melissa Nuno

ptg999

234 COMBINATORIAL SEARCHING 7.2.2.2

1

0
0 10 20 30 40 50 60 70 80

Fig. 88. Random 3SAT on 5 variables when the clauses are sampled
with replacement. The probabilities q̂m are shown with a black line;
the smaller probabilities qm of Fig. 83 are shown in gray.

us that repetitions aren’t as rare as we might expect. The deviations of q̂m from
qm are particularly noticeable in small cases such as the scenario of Fig. 88.

In any event, there’s a direct way to compute q̂m from the probabilities qt
and the value of N (see exercise 184):

q̂m =
N∑
t=0

{
m
t

}
t! qt

(
N
t

)/
Nm. (77)

And there are surprisingly simple formulas analogous to (74) and (75) for the

stopping time P̂ , where p̂m = q̂m−1 − q̂m, as shown in exercise 186:

E P̂ =
N−1∑
m=0

N

N −m
qm ; (78)

E P̂ 2 =
N−1∑
m=0

N

N −m
qm

(
1 + 2

(
N

N − 1
+ · · ·+ N

N − m

))
. (79)

These formulas prove that the expected behavior of P̂ is very much like that
of P , if qm is small whenever m/N isn’t small. In the case k = 3 and n = 5, the

typical stopping times P̂ = 30.58± 9.56 are significantly larger than those of P ;
but we are mostly interested in cases where n is large and where q̂m is essentially
indistinguishable from qm. In order to indicate plainly that the probability q̂m
depends on k and n as well as on m, we shall denote it henceforth by Sk(m,n):

Sk(m,n) = Pr(m random clauses of kSAT are satisfiable), (80)

where the m clauses are “sampled with replacement” (they needn’t be distinct).
Suitable pseudorandom clauses rand (k,m, n, seed) can easily be generated.

Exact formulas appear to be out of reach when n > 5, but we can make
empirical tests. For example, extensive experiments on random 3SAT problems
by B. Selman, D. G. Mitchell, and H. J. Levesque [Artificial Intelligence 81
(1996), 17–29] showed a dramatic drop in the chances of satisfiability when the
number of clauses exceeds about 4.27n. This “phase transition” becomes much
sharper as n grows (see Fig. 89).

Similar behavior occurs for random kSAT, and this phenomenon has spawned
an enormous amount of research aimed at evaluating the so-called satisfiability

thresholds

αk = lim
n→∞Sk,n/n. (81)

234

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: RANDOM CLAUSES 235

4.27n

n=500

n=50

n=5

1

0
0 2n 4n 6n 8n 10n 12n

Fig. 89. Empirical probability data shows that random 3SAT problems rapidly
become unsatisfiable when there are more than α3n clauses, if n is large enough.

Indeed, we can obtain quite difficult kSAT problems by generating approximately
αkn random k-clauses, using empirically observed estimates of αk. If n is large,
the running time for random 3SAT with 4.3n clauses is typically orders of mag-
nitude larger than it is when the number of clauses is 4n or 4.6n. (And still
tougher problems arise in rare instances when we have, say, 3.9n clauses that
happen to be unsatisfiable.)

Strictly speaking, however, nobody has been able to prove that the so-called
constants αk actually exist, for all k! The empirical evidence is overwhelming;
but rigorous proofs for k = 3 have so far only established the bounds

lim inf
n→∞

S3,n/n ≥ 3.52; lim sup
n→∞

S3,n/n ≤ 4.49. (82)

[See M. Hajiaghayi and G. B. Sorkin, arXiv:math/0310193 [math.CO] (2003),
8 pages; A. C. Kaporis, L. M. Kirousis, and E. G. Lalas, Random Struct. & Alg.
28 (2006), 444–480; J. Dı́az, L. Kirousis, D. Mitsche, and X. Pérez-Giménez,
Theoretical Comp. Sci. 410 (2009), 2920–2934.] A “sharp threshold” result has
been established by E. Friedgut [J. American Math. Soc. 12 (1999), 1017–1045,
1053–1054], who proved the existence for k ≥ 2 of functions αk(n) with

lim
n→∞Sk

(
(αk(n)− ε)n�, n) = 1, lim
n→∞Sk

(
(αk(n) + ε)n�, n) = 0, (83)

when ε is any positive number. But those functions might not approach a limit.
They might, for example, fluctuate periodically, like the “wobble function” that
we encountered in Eq. 5.2.2–(47).

The current best guess for α3, based on heuristics of the “survey propaga-
tion” technique to be discussed below, is that α3 = 4.26675±0.00015 [S. Mertens,
M. Mézard, and R. Zecchina, Random Structures & Algorithms 28 (2006), 340–
373]. Similarly, it appears reasonable to believe that α4 ≈ 9.931, α5 ≈ 21.12,
α6 ≈ 43.37, α7 ≈ 87.79. The α’s grow as Θ(2k) (see exercise 195); and they
are known to be constant when k is sufficiently large [see J. Ding, A. Sly, and
N. Sun, STOC 47 (2015), 59–68].

Analysis of random 2SAT. Although nobody knows how to prove that random
3SAT problems almost always become unsatisfiable when the number of clauses
reaches ≈ 4.27n, the corresponding question for 2SAT does have a nice answer:
The satisfiability threshold α2 equals 1. For example, when the author first tried
1000 random 2SAT problems with a million variables, 999 of them turned out to
be satisfiable when there were 960,000 clauses, while all were unsatisfiable when
the number of clauses rose to 1,040,000. Figure 90 shows how this transition
becomes sharper as n increases.

235

From the Library of Melissa Nuno

ptg999

236 COMBINATORIAL SEARCHING 7.2.2.2

Fig. 90. Empirical satisfaction
probabilities for 2SAT with ap-
proximately n random clauses.
(When n = 100, the probability
doesn’t become negligible until
more than roughly 180 clauses
have been generated.)

0.8n 0.9n 1.0n 1.1n 1.2n

n=1000000 n=10000 n=100

· · · · · ·

The fact that S2,n ≈ n was discovered in 1991 by V. Chvátal and B. Reed
[FOCS 33 (1992), 620–627], and the same result was obtained independently
at about the same time by A. Goerdt and by W. Fernandez de la Vega [see J.
Comp. Syst. Sci. 53 (1996), 469–486; Theor. Comp. Sci. 265 (2001), 131–146].

The study of this phenomenon is instructive, because it relies on properties
of the digraph that characterizes all instances of 2SAT. Furthermore, the proof
below provides an excellent illustration of the “first and second moment princi-
ples,” equations MPR–(21) and MPR–(22). Armed with those principles, we’re
ready to derive the 2SAT threshold:

Theorem C. Let c be a fixed constant. Then

lim
n→∞S2

(
cn�, n) =

{
1, if c < 1;
0, if c > 1.

(84)

Proof. Every 2SAT problem corresponds to an implication digraph on the literals,
with arcs l̄−−→ l′ and l̄ ′−−→ l for each clause l∨ l′. We know from Theorem 7.1.1K
that a set of 2SAT clauses is satisfiable if and only if no strong component of its
implication digraph contains both x and x̄ for some variable x. That digraph
has 2m = 2
cn� arcs and 2n vertices. If it were a random digraph, well-known
theorems of Karp (which we shall study in Section 7.4.4) would imply that only
O(logn) vertices are reachable from any given vertex when c < 1, but that there
is a unique “giant strong component” of size Ω(n) when c > 1.

The digraph that arises from random 2SAT isn’t truly random, because its
arcs come in pairs, u−−→v and v̄−−→ ū. But intuitively we can expect that similar
behavior will apply to digraphs that are just halfway random. For example, when
the author generated a random 2SAT problem with n = 1000000 and m = .99n,
the resulting digraph had only two complementary pairs of strong components
with more than one vertex, and their sizes were only 2, 2 and 7, 7; so the clauses
were easily satisfiable. Adding another .01n clauses didn’t increase the number of
nontrivial strong components, and the problem remained satisfiable. But another
experiment with m = n = 1000000 yielded a strong component of size 420,
containing 210 variables and their complements; that problem was unsatisfiable.

Based on a similar intuition into the underlying structure, Chvátal and
Reed introduced the following “snares and snakes” approach to the proof of
Theorem C: Let’s say that an s-chain is any sequence of s strictly distinct literals;
thus there are 2sns possible s-chains. Every s-chain C corresponds to clauses

(l̄1 ∨ l2), (l̄2 ∨ l3), . . . , (l̄s−1 ∨ ls), (85)

236

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: RANDOM CLAUSES 237

which in turn correspond to two paths

l1−−→ l2−−→ l3−−→ · · · −−→ ls and l̄s−−→ · · · −−→ l̄3−−→ l̄2−−→ l̄1 (86)

in the digraph. An s-snare (C; t, u) consists of an s-chain C and two indices t
and u, where 1 < t ≤ s and 1 ≤ |u| < s; it specifies the clauses (85) together with

(lt ∨ l1) and (l̄s ∨ lu) if u > 0, (l̄s ∨ l̄−u) if u < 0, (87)

representing l̄t −−→ l1 and either ls −−→ l|u| or ls −−→ l̄|u|. The number of possible
s-snares is 2s+1(s− 1)2ns . Their clauses are rarely all present when m is small.

Exercise 200 explains how to use these definitions to prove Theorem C in
the case c < 1. First we show that every unsatisfiable 2SAT formula contains all
the clauses of at least one snare. Then, if we define the binary random variable

X(C; t, u) = [all clauses of (C; t, u) are present], (88)

it isn’t difficult to prove that the snares of every s-chain C are unlikely:

EX(C; t, u) ≤ ms+1
/(
2n(n− 1)

)s+1
. (89)

Finally, letting X be the sum of X(C; t, u) over all snares, we obtain

EX =
∑

EX(C; t, u) ≤
∑
s≥0

2s+1s(s−1)ns
(

m

2n(n− 1)

)s+1
=

2

n

(
m

n− 1−m

)3

by Eq. 1.2.9–(20). This formula actually establishes a stronger form of (84),
because it shows that EX is only O(n−1/4) when m = n− n3/4 > cn. Thus

S2
(
n− n3/4�, n) ≥ Pr(X = 0) = 1− Pr(X > 0) ≥ 1−O(n−1/4) (90)

by the first moment principle.

The other half of Theorem C can be proved by using the concept of a t-
snake, which is the special case (C; t,−t) of a (2t − 1)-snare. In other words,
given any chain (l1, . . . , lt, . . . , l2t−1), with s = 2t − 1 and lt
in the middle, a t-snake generates the clauses (85) together
with (lt ∨ l1) and (l̄s ∨ l̄t). When t = 5, for example, and
(l1, . . . , l2t−1) = (x1, . . . , x9), the 2t = 10 clauses are

51, 1̄2, 2̄3, 3̄4, 4̄5, 5̄6, 6̄7, 7̄8, 8̄9, 9̄5̄,

and they correspond to 20 arcs that loop around to form a
strong component as shown here. We will prove that, when c > 1
in (84), the digraph almost always contains such impediments to satisfiability.

5̄

1

2 3

4

5

6

78

9

5̄

4̄ 3̄ 2̄ 1̄

5

9̄8̄7̄6̄

5̄

Given a (2t− 1)-chain C, where the parameter t will be chosen later, let

XC = [each clause of (C; t,−t) occurs exactly once]. (91)

The expected value EXC is clearly f(2t), where

f(r) = mr
(
2n(n− 1)− r

)m−r/(
2n(n− 1)

)m
(92)

237

From the Library of Melissa Nuno

ptg999

238 COMBINATORIAL SEARCHING 7.2.2.2

is the probability that r specific clauses occur once each. Notice that

f(r) =
(

m

2n(n− 1)

)r(
1 +O

(
r2

m

)
+O

(
rm

n2

))
; (93)

thus the relative error will be O(t2/n) if m = Θ(n) as n → ∞.

Now let X =
∑

XC , summed over all R = 22t−1n2t−1 possible t-snakes C;
thus EX = Rf(2t). We want to show that Pr(X > 0) is very nearly 1, using
the second moment principle; so we want to show that the expectation EX2 =
E
(∑

C XC

)(∑
D XD

)
=
∑

C

∑
D EXCXD is small. The key observation is that

EXCXD = f(4t− r) if C and D have exactly r clauses in common. (94)

Let pr be the probability that a randomly chosen t-snake has exactly r clauses
in common with the fixed snake (x1, . . . , x2t−1). Then

EX2

(EX)2
=

R2
∑2t

r=0 prf(4t− r)

R2f(2t)2

=
2t∑
r=0

pr
f(4t− r)

f(2t)2
=

2t∑
r=0

pr

(
2n(n− 1)

m

)r(
1 +O

(
t2

n

))
. (95)

By studying the interaction of snakes (see exercise 201) one can prove that

(2n)rpr = O(t4/n) +O(t)[r≥ t] +O(n)[r=2t], for 1 ≤ r ≤ 2t. (96)

Finally then, as explained in exercise 202, we can choose t =
n1/5� and m =

n+ n5/6�, to deduce a sharper form of (84) when c > 1:

S2
(
n+ n5/6�, n) = O(n−1/30). (97)

(Deep breath.) Theorem C is proved.

Much more precise results have been derived by B. Bollobás, C. Borgs, J. T.
Chayes, J. H. Kim, and D. B. Wilson, in Random Structures & Algorithms 18
(2001), 201–256. For example, they showed that

S2
(
n−n3/4�, n)= exp

(−Θ(n−1/4)); S2
(
n+n3/4�, n)= exp

(−Θ(n1/4)). (98)

Resolution. The backtracking process of Algorithms A, B, D, and L is closely
connected to a logical proof procedure called resolution. Starting with a family of
clauses called “axioms,” there’s a simple rule by which new clauses can be derived
from this given set: Whenever both x ∨A′ and x̄ ∨A′′ are in our repertoire of
clauses, we’re allowed to derive the “resolvent” clause A = A′ ∨A′′, denoted by
(x ∨A′) � (x̄ ∨A′′). (See exercises 218 and 219.)

A proof by resolution consists of a directed acyclic graph (dag) whose vertices
are labeled with clauses in the following way: (i) Every source vertex is labeled
with an axiom. (ii) Every other vertex has in-degree 2. (iii) If the predecessors
of vertex v are v′ and v′′, the label of v is C(v) = C(v′) � C(v′′).

When such a dag has a sink vertex labeled A, we call it a “resolution proof
of A”; and ifA is the empty clause, the dag is also called a “resolution refutation.”

238

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: RESOLUTION OF CLAUSES 239

The dag of a proof by resolution can be expanded to a binary tree, by
replicating any vertex that has out-degree greater than 1. Such a tree is said
to be regular if no path from the root to a leaf uses the same variable twice to
form a resolvent. For example, Fig. 91 is a regular resolution tree that refutes
Rivest’s unsatisfiable axioms (6). All arcs in this tree are directed upwards.

1 1̄

2 2̄ 2 2̄

3 3̄ 4 4̄ 4̄ 4 3̄ 3

4 4̄ 3 3̄ 3 3̄ 4 4̄

ε

1 1̄

12 12̄ 1̄2 1̄2̄

123 12̄4 1̄24̄ 1̄2̄3̄123̄ 4̄12̄ 41̄2 1̄2̄3

341 234̄ 341 2̄3̄4 234̄ 3̄4̄1̄ 2̄3̄4 3̄4̄1̄

Fig. 91. One way to derive ε by resolving the inconsistent clauses (6).

Notice that Fig. 91 is essentially identical to Fig. 82 on page 217, the
backtrack tree by which Algorithm D discovers that the clauses of (6) are unsatis-
fiable. In fact this similarity is no coincidence: Every backtrack tree that records
the behavior of Algorithm D on a set of unsatisfiable clauses corresponds to a
regular resolution tree that refutes those axioms, unless Algorithm D makes an
unnecessary branch. (An unnecessary branch occurs if the algorithm tries x ← 0
and x ← 1 without using their consequences to discover an unsatisfiable subset
of axioms.) Conversely, every regular refutation tree corresponds to a sequence
of choices by which a backtrack-based SAT solver could prove unsatisfiability.

The reason behind this correspondence isn’t hard to see. Suppose both
values of x need to be tried in order to prove unsatisfiability. When we set
x ← 0 in one branch of the backtrack tree, we replace the original clauses F
by F | x̄, as in (54). The key point is that we can prove the empty clause by
resolution from F | x̄ if and only if we can prove x by resolution from F without
resolving on x. (See exercise 224.) Similarly, setting x ← 1 corresponds to
changing the clauses from F to F |x.

Consequently, if F is an inconsistent set of clauses that has no short refuta-
tion tree, Algorithm D cannot conclude that those clauses are unsatisfiable unless
it runs for a long time. Neither can Algorithm L, in spite of enhanced lookahead.

R. Impagliazzo and P. Pudlák [SODA 11 (2000), 128–136] have introduced
an appealing Prover–Delayer game, with which it’s relatively easy to demon-
strate that certain sets of unsatisfiable clauses require large refutation trees.
The Prover names a variable x, and the Delayer responds by saying either x ← 0
or x ← 1 or x ← ∗. In the latter case the Prover gets to decide the value of x; but
the Delayer scores one point. The game ends when the current assignments have
falsified at least one clause. If the Delayer has a strategy that guarantees a score
of at least m points, exercise 226 shows that every refutation tree has at least 2m

239

From the Library of Melissa Nuno

ptg999

240 COMBINATORIAL SEARCHING 7.2.2.2

leaves; hence at least 2m−1 resolutions must be done, and every backtrack-based
solver needs Ω(2m) operations to declare the clauses unsatisfiable.

We can apply their game, for example, to the following interesting clauses:

(x̄jj), for 1 ≤ j ≤ m; (99)

(x̄ij ∨ x̄jk ∨ xik), for 1 ≤ i, j, k ≤ m; (100)

(xj1 ∨ xj2 ∨ · · · ∨ xjm), for 1 ≤ j ≤ m. (101)

There are m2 variables xjk, for 1 ≤ j, k ≤ m, which we can regard as the inci-
dence matrix for a binary relation ‘j ≺ k’. With this formulation, (99) says that
the relation is irreflexive, and (100) says that it’s transitive; thus, (99) and (100)
amount to saying that j ≺ k is a partial ordering. Finally, (101) says that, for ev-
ery j, there’s a k with j ≺ k. So these clauses state that there’s a partial ordering
on {1, . . . ,m} in which no element is maximal; and they can’t all be satisfied.

We can, however, always score m− 1 points if we’re playing Delayer in that
game, by using the following strategy suggested by Massimo Lauria: At every
step we know an ordered set S of elements, regarded as “small”; initially S = ∅,
and we’ll have S = {j1, . . . , js} when our score is s. Suppose the Prover queries
xjk, and s < m−2. If j = k, we naturally reply that xjk ← 0. Otherwise, if j /∈ S
and k /∈ S, we respond xjk ← ∗; then s ← s+1, and js ← j or k according as the
Prover specifies xjk ← 1 or xjk ← 0. Otherwise, if j ∈ S and k /∈ S, we respond
xjk ← 1; if j /∈ S and k ∈ S, we respond xjk ← 0. Finally, if j = ja ∈ S and k =
jb ∈ S, we respond xjk ← [a< b]. These responses always satisfy (99) and (100).
And no clause of (101) becomes false until the Delayer is finally asked a question
with s = m− 2. Then the response xjk ← ∗ gains another point. We’ve proved

Theorem R. Every refutation tree for the clauses (99), (100), (101) represents
at least 2m−1 − 1 resolution steps.

On the other hand, those clauses do have a refutation dag of size O(m3).
Let Ij and Tijk stand for the irreflexivity and transitivity axioms (99) and (100);
and let Mjk = xj1 ∨ · · · ∨ xjk, so that (101) is Mjm. Then we have

Mim � Timk = Mi(m−1) ∨ x̄mk, for 1 ≤ i, k < m. (102)

Calling this new clause M ′
imk, we can now derive

Mj(m−1) =
((· · · ((Mmm �M ′

jm1) �M ′
jm2

) � · · ·) �M ′
jm(m−1)

) � Im,

for 1 ≤ j < m. Hence (m− 1)2 + (m− 1)m resolutions have essentially reduced
m to m − 1. Eventually we can therefore derive M11; then M11 � I1 = ε. [This
elegant refutation is due to G. St̊almarck, Acta Informatica 33 (1996), 277–280.]

The method we’ve just used to obtain Mj(m−1) from Mmm is, incidentally,
a special case of a useful general formula called hyperresolution that is easily
proved by induction on r:(· · · ((C0 ∨ x1 ∨ · · · ∨ xr) � (C1 ∨ x̄1)

) � · · ·) � (Cr ∨ x̄r)

= C0 ∨ C1 ∨ · · · ∨ Cr. (103)

240

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: RESOLUTION OF CLAUSES 241

*Lower bounds for general resolution. Let’s change our perspective slightly:
Instead of visualizing a proof by resolution as a directed graph, we can think of it
as a “straight line” resolution chain, analogous to the addition chains of Section
4.6.3 and the Boolean chains of Section 7.1.2. A resolution chain based on m
axioms C1, . . . , Cm appends additional clauses Cm+1, . . . , Cm+r, each of which
is obtained by resolving two previous clauses of the chain. Formally, we have

Ci = Cj(i) � Ck(i), for m+ 1 ≤ i ≤ m+ r, (104)

where 1 ≤ j(i) < i and 1 ≤ k(i) < i. It’s a refutation chain for C1, . . . , Cm if
Cm+r = ε. The tree in Fig. 91, for example, yields the refutation chain

123̄, 234̄, 341, 41̄2, 1̄2̄3, 2̄3̄4, 3̄4̄1̄, 4̄12̄, 123, 12̄4, 1̄24̄, 1̄2̄3̄, 12, 12̄, 1̄2̄, 1̄2, 1, 1̄, ε

for the axioms (6); and there are many other ways to refute those axioms, such as

123̄,234̄,341,41̄2, 1̄2̄3, 2̄3̄4, 3̄4̄1̄, 4̄12̄,12̄3̄,13̄,14, 3̄4̄,24,24̄,2, 1̄3, 3̄4,14̄, 3̄,1, 1̄, ε. (105)

This chain is quite different from Fig. 91, and perhaps nicer: It has three more
steps, but after forming ‘12̄3̄’ it constructs only very short clauses.

We’ll see in a moment that short clauses are crucial if we want short chains.
That fact turns out to be important when we try to prove that certain easily
understood families of axioms are inherently more difficult than (99), (100),
and (101), in the sense that they can’t be refuted with a chain of polynomial size.

Consider, for example, the well known “pigeonhole principle,” which states
thatm+1 pigeons don’t fit inm pigeon-sized holes. If xjk means that pigeon j oc-
cupies hole k, for 0 ≤ j ≤ m and 1 ≤ k ≤ m, the relevant unsatisfiable clauses are

(xj1 ∨ xj2 ∨ · · · ∨ xjm), for 0 ≤ j ≤ m; (106)

(x̄ik ∨ x̄jk), for 0 ≤ i < j ≤ m and 1 ≤ k ≤ m. (107)

(“Every pigeon has a hole, but no hole hosts more than one pigeon.”) These
clauses increased the pigeonhole principle’s fame during the 1980s, when Armin
Haken [Theoretical Computer Science 39 (1985), 297–308] proved that they have
no short refutation chain. His result marked the first time that any set of clauses
had been shown to be intractable for resolution in general.

It is absolutely necessary that two people have equally many hairs.

— JEAN APPIER HANZELET, Recreation Mathematicque (1624)

Haken’s original proof was rather complicated. But simpler approaches were
eventually found, culminating in a method by E. Ben-Sasson and A. Wigderson
[JACM 48 (2001), 149–169], which is based on clause length and applies to
many other sets of axioms. If α is any sequence of clauses, let us say that its
width, written w(α), is the length of its longest clause or clauses. Furthermore,
if α0 = (C1, . . . , Cm), we write w(α0 � ε) for the minimum of w(α) over all
refutation chains α = (C1, . . . , Cm+r) for α0, and ‖α0 � ε‖ for the minimum
length r of all such chains. The following lemma is the key to proving lower
bounds with Ben-Sasson and Wigderson’s strategy:

241

From the Library of Melissa Nuno

ptg999

242 COMBINATORIAL SEARCHING 7.2.2.2

Lemma B. ‖α0 � ε‖ ≥ e(w(α0
ε)−1)
2/(8n)−2, for clauses in n ≥ w(α0)

2variables.

Thus there’s exponential growth if we have w(α0) = O(1) and w(α0 � ε) = Ω(n).

Proof. Let α = (C1, . . . , Cm+r) be a refutation of α0 with r = ‖α0 � ε‖. We
will say that a clause is “fat” if its length is W or more, where W ≥ w(α0) is a
parameter to be set later. If α \ α0 contains f fat clauses, those clauses contain
at least Wf literals; hence some literal l appears in at least Wf/(2n) of them.

Now α | l, the chain obtained by replacing each clause Cj by Cj | l, is a
refutation of α0 | l that contains at most
ρf� fat clauses, where ρ = 1−W/(2n).
(The clause Cj | l will be ℘ if l ∈ Cj , thus tautological and effectively absent.)

Suppose f < ρ−b for some integer b. We will prove, by induction on b and
secondarily on the total length of all clauses, that there’s a refutation β of α0
such that w(β) ≤ W + b. This assertion holds when b = 0, since W ≥ w(α0). If
b > 0, there’s a refutation β0 of α0 | l with w(β0) ≤ W+b−1, when we choose l as
above, because ρf < ρ1−b and α | l refutes α0 | l. Then we can form a resolution
chain β1 that derives l̄ from α0, by inserting l̄ appropriately into clauses of β0.
And there’s a simple chain β2 that derives the clauses of α0 | l̄ from α0 and l̄.
There’s also a refutation β3 of α0 | l̄ with w(β3) ≤ W + b, by induction, because
α | l̄ refutes α0 | l̄. Thus the combination β = {β1, β2, β3} refutes α0, with

w(β) = max(w(β0)+1, w(β2), w(β3)) ≤ max(W+b, w(α0),W+b) = W+b.

Finally, exercise 238 chooses W so that we get the claimed bound.

The pigeon axioms are too wide to be inserted directly into Lemma B. But
Ben-Sasson and Wigderson observed that a simplified version of those axioms,
involving only clauses of 5SAT, is already intractable.

Notice that we can regard the variable xjk as indicating the presence of an
edge between aj and bk in a bipartite graph on the vertices A = {a0, . . . , am}
and B = {b1, . . . , bm}. Condition (106) says that each aj has degree ≥ 1, while
condition (107) says that each bk has degree ≤ 1. There is, however, a bipartite
graph G0 on those vertices for which each aj has degree ≤ 5 and such that the
following strong “expansion” condition is satisfied:

Every subset A′ ⊆ A with |A′| ≤ m/3000 has |∂A′| ≥ |A′| in G0. (108)

Here ∂A′ denotes the bipartite boundary of A′, namely the set of all bk that have
exactly one neighbor in A′.

Given such a graph G0, whose existence is proved (nonconstructively) in
exercise 240, we can formulate a restricted pigeonhole principle, by which the pi-
geonhole clauses are unsatisfiable if we also require x̄jk whenever aj /−−−bk in G0.

Let α(G0) denote the resulting clauses, which are obtained when axioms
(106) and (107) are conditioned on all such literals x̄jk. Then w(α(G0)) ≤ 5,
and at most 5m + 5 unspecified variables xjk remain. Lemma B tells us that
all refutation chains for α(G0) have length expΩ(m) if we can prove that they
all have width Ω(m). Haken’s theorem, which asserts that all refutation chains
for (106) and (107) also have length expΩ(m), will follow, because any short
refutation would yield a short refutation of α(G0) after conditioning on the x̄jk.

242

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: RESOLUTION OF CLAUSES 243

Thus the following result gives our story a happy ending:

Theorem B. The restricted pigeonhole axioms α(G0) have refutation width

w(α(G0) � ε) ≥ m/6000. (109)

Proof. We can assign a complexity measure to every clause C by defining

μ(C) = min
{|A′| ∣∣ A′ ⊆ A and α(A′) � C

}
. (110)

Here α(A′) is the set of “pigeon axioms” (106) for aj ∈ A′, together with all
of the “hole axioms” (107); and α(A′) � C means that clause C can be proved
by resolution when starting with only those axioms. If C is one of the pigeon
axioms, this definition makes μ(C) = 1, because we can let A′ = {aj}. And if C
is a hole axiom, clearly μ(C) = 0. The subadditive law

μ(C ′ � C ′′) ≤ μ(C ′) + μ(C ′′) (111)

also holds, because a proof of C ′�C ′′ needs at most the axioms of α(A′)∪ α(A′′)
if C ′ follows from α(A′) and C ′′ follows from α(A′′).

We can assume that m ≥ 6000. And we must have μ(ε) > m/3000, because
of the strong expansion condition (108). (See exercise 241.) Therefore every refu-
tation of α(G0) must contain a clause C withm/6000 ≤ μ(C) < m/3000; indeed,
the first clause Cj with μ(Cj) ≥ m/6000 will satisfy this condition, by (111).

Let A′ be a set of vertices with |A′| = μ(C) and α(A′) � C. Also let bk be
any element of ∂A′, with aj its unique neighbor in A′. Since |A′ \ aj | < μ(C),
there must be an assignment of variables that satisfies all axioms of α(A′ \ aj),
but falsifies C and the pigeon axiom for j. That assignment puts no two pigeons
into the same hole, and it places every pigeon of A′ \ aj .

Now suppose C contains no literal of the form xj′k or x̄j′k, for any aj′ ∈ A.
Then we could set xj′k ← 0 for all j′, without falsifying any axiom of α(A′ \ aj);
and we could then make the axioms of α({aj}) true by setting xjk ← 1. But
that change to the assignment would leave C false, contradicting our assumption
that α(A′) � C. Thus C contains some ±xj′k for each bk ∈ ∂A′; and we must
have w(C) ≥ |∂A′| ≥ m/6000.

A similar proof establishes a linear lower bound on the refutation width,
hence an exponential lower bound on the refutation length, of almost all random
3SAT instances with n variables and
αn� clauses, for fixed α as n → ∞ (see exer-
cise 243), a theorem of V. Chvátal and E. Szemerédi [JACM 35 (1988), 759–768].

Historical notes: Proofs by resolution, in the more general setting of first-
order logic, were introduced by J. A. Robinson in JACM 12 (1965), 23–41.
[They’re also equivalent to G. Gentzen’s “cut rule for sequents,” Mathematische
Zeitschrift 39 (1935), 176–210, III.1.2 1.] Inspired by Robinson’s paper, Greg-
ory Tseytin developed the first nontrivial techniques to prove lower bounds on
the length of resolution proofs, based on unsatisfiable graph axioms that are
considered in exercise 245. His lectures of 1966 were published in Volume 8
of the Steklov Mathematical Institute Seminars in Mathematics (1968); see
A. O. Slisenko’s English translation, Studies in Constructive Mathematics and
Mathematical Logic, part 2 (1970), 115–125.

243

From the Library of Melissa Nuno

ptg999

244 COMBINATORIAL SEARCHING 7.2.2.2

Tseytin pointed out that there’s a simple way to get around the lower bounds
he had proved for his graph-oriented problems, by allowing new kinds of proof
steps: Given any set of axioms F , we can introduce a new variable z that doesn’t
appear anywhere in F , and add three new clauses G = {xz, yz, x̄ȳz̄}; here x
and y are arbitrary literals of F . It’s clear that F is satisfiable if and only if
F ∪ G is satisfiable, because G essentially says that z = NAND(x, y). Adding
new variables in this way is somewhat analogous to using lemmas when proving
a theorem, or to introducing a memo cache in a computer program.

His method, which is called extended resolution, can be much faster than
pure resolution. For example, it allows the pigeonhole clauses (106) and (107) to
be refuted in only O(m4) steps (see exercise 237). It doesn’t appear to help much
with certain other classes of problems such as random 3SAT; but who knows?

SAT solving via resolution. The concept of resolution also suggests alternative
ways to solve satisfiability problems. In the first place we can use it to eliminate
variables: If F is any set of clauses on n variables, and if x is one of those
variables, we can construct a set F ′ of clauses on the other n − 1 variables in
such a way that F is satisfiable if and only if F ′ is satisfiable. The idea is simply
to resolve every clause of the form x ∨A′ with every clause of the form x̄ ∨A′′,
and then to discard those clauses.

For example, consider the following six clauses in four variables:

1234, 12̄, 1̄2̄3̄, 1̄3, 23̄, 34̄. (112)

We can eliminate the variable x4 by forming 1234 � 34̄ = 123. Then we can
eliminate x3 by resolving 123 and 1̄3 with 1̄2̄3̄ and 23̄:

123 � 1̄2̄3̄ = ℘, 123 � 23̄ = 12, 1̄3 � 1̄2̄3̄ = 1̄2̄, 1̄3 � 23̄ = 1̄2.

Now we’re left with {12, 12̄, 1̄2, 1̄2̄}, because the tautology ℘ goes away. Elimi-
nating x2 gives {1, 1̄}, and eliminating x1 gives {ε}; hence (112) is unsatisfiable.

This method, which was originally proposed for hand calculation by E. W.
Samson and R. K. Mueller in 1955, works beautifully on small problems. But
why is it valid? There are (at least) two good ways to understand the reason.
First, it’s easy to see that F ′ is satisfiable whenever F is satisfiable, because
C ′ � C ′′ is true whenever C ′ and C ′′ are both true. Conversely, if F ′ is satisfied
by some setting of the other n− 1 variables, that setting must either satisfy A′

for all clauses of the form x ∨A′, or else it must satisfy A′′ for all clauses of the
form x̄ ∨A′′. (Otherwise neither A′ nor A′′ would be satisfied, for some A′ and
some A′′, and the clause A′ ∨A′′ in F ′ would be false.) Thus at least one of the
settings x ← 0 or x ← 1 will satisfy F .

Another good way to understand variable elimination is to notice that it
corresponds to the elimination of an existential quantifier (see exercise 248).

Suppose p clauses of F contain x and q clauses contain x̄. Then the elimina-
tion of x will give us at most pq new clauses, in the worst case; so F ′ will have no
more clauses than F did, whenever pq ≤ p+ q, namely when (p− 1)(q − 1) ≤ 1.
This condition clearly holds whenever p = 0 or q = 0; indeed, we called x a
“pure literal” when such cases arose in Algorithm A. The condition also holds
whenever p = 1 or q = 1, and even when p = q = 2.

244

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 245

Furthermore we don’t always get pq new clauses. Some of the resolvents
might turn out to be tautologous, as above; others might be subsumed by existing
clauses. (The clause C is said to subsume another clause C ′ if C ⊆ C ′, in the
sense that every literal of C appears also in C ′. In such cases we can safely
discard C ′.) And some of the resolvents might also subsume existing clauses.

Therefore repeated elimination of variables doesn’t always cause the set of
clauses to explode. In the worst case, however, it can be quite inefficient.

In January of 1972, Stephen Cook showed his students at the University of
Toronto a rather different way to employ resolution in SAT-solving. His elegant
procedure, which he called “Method I,” essentially learns new clauses by doing
resolution on demand:

Algorithm I (Satisfiability by clause learning). Given m nonempty clauses
C1∧· · ·∧Cm on n Boolean variables x1 . . . xn, this algorithm either proves them
unsatisfiable or finds strictly distinct literals l1 . . . ln that satisfy them all. In the
process, new clauses may be generated by resolution (and m will then increase).

I1. [Initialize.] Set d ← 0.

I2. [Advance.] If d = n, terminate successfully (the literals {l1, . . . , ld} satisfy
{C1, . . . , Cm}). Otherwise set d ← d+1, and let ld be a literal strictly distinct
from l1, . . . , ld−1.

I3. [Find falsified Ci.] If none of C1, . . . , Cm are falsified by {l1, . . . , ld}, go back
to I2. Otherwise let Ci be a falsified clause.

I4. [Find falsified Cj .] (At this point we have l̄d ∈ Ci ⊆ {l̄1, . . . , l̄d}, but no
clause is contained in {l̄1, . . . , l̄d−1}.) Set ld ← l̄d. If none of C1, . . . , Cm are
falsified by {l1, . . . , ld}, go back to I2. Otherwise let l̄d ∈ Cj ⊆ {l̄1, . . . , l̄d}.

I5. [Resolve.] Set m ← m+1, Cm ← Ci �Cj . Terminate unsuccessfully if Cm is
empty. Otherwise set d ← max{t | l̄t ∈ Cm}, i ← m, and return to I4.

In step I5 the new clause Cm cannot be subsumed by any previous clause Ck for
k < m, because Ci � Cj ⊆ {l̄1, . . . , l̄d−1}. Therefore, in particular, no clause is
generated twice, and the algorithm must terminate.

This description is intentionally vague when it uses the word “let” in steps
I2, I3, and I4: Any available literal ld can be selected in step I2, and any falsified
clauses Ci and Cj can be selected in steps I3 and I4, without making the method
fail. Thus Algorithm I really represents a family of algorithms, depending on
what heuristics are used to make those selections.

For example, Cook proposed the following way (“Method IA”) to select ld
in step I2: Choose a literal that occurs most frequently in the set of currently
unsatisfied clauses that have the fewest unspecified literals. When applied to the
six clauses (112), this rule would set l1 ← 3 and l2 ← 2 and l3 ← 1; then step I3
would find Ci = 1̄2̄3̄ false. So step I4 would set l3 ← 1̄ and find Cj = 12̄ false,
and step I5 would learn C7 = 2̄3̄. (See exercise 249 for the sequel.)

Cook’s main interest when introducing Algorithm I was to minimize the
number of resolution steps; he wasn’t particularly concerned with minimizing
the running time. Subsequent experiments by R. A. Reckhow [Ph.D. thesis

245

From the Library of Melissa Nuno

ptg999

246 COMBINATORIAL SEARCHING 7.2.2.2

(Univ. Toronto, 1976), 81–84] showed that, indeed, relatively short resolution
refutations are found with this approach. Furthermore, exercise 251 demon-
strates that Algorithm I can handle the anti-maximal-element clauses (99)–(101)
in polynomial time; thus it trounces the exponential behavior exhibited by all
backtrack-based algorithms for this problem (see Theorem R).

On the other hand, Algorithm I does tend to fill memory with a great many
new clauses when it is applied to large problems, and there’s no obvious way to
deal with those clauses efficiently. Therefore Cook’s method did not appear to be
of practical importance, and it remained unpublished for more than forty years.

Conflict driven clause learning. Algorithm I demonstrates the fact that
unsuccessful choices of literals can lead us to discover valuable new clauses,
thereby increasing our knowledge about the characteristics of a problem. When
that idea was rediscovered from another point of view in the 1990s, it proved to
be revolutionary: Significant industrial instances of SAT with many thousands
or even millions of variables suddenly became feasible for the first time.

The name CDCL solver is often given to these new methods, because they are
based on “conflict driven clause learning” rather than on classical backtracking.
A CDCL solver shares many concepts with the DPLL algorithms that we’ve
already seen; yet it is sufficiently different that we can understand it best by
developing the ideas from scratch. Instead of implicitly exploring a search tree
such as Fig. 82, a CDCL solver is built on the notion of a trail, which is a
sequence L0L1 . . . LF−1 of strictly distinct literals that do not falsify any clause.
We can start with F = 0 (the empty trail). As computation proceeds, our task
is to extend the current trail until F = n, thus solving the problem, or to prove
that no solution exists, by essentially learning that the empty clause is true.

Suppose there’s a clause c of the form l∨ ā1 ∨ · · · ∨ āk, where a1 through ak
are in the trail but l isn’t. Literals in the trail are tentatively assumed to
be true, and c must be satisfied; so we’re forced to make l true. In such
cases we therefore append l to the current trail and say that c is its “reason.”
(This operation is equivalent to what we called “unit propagation” in previous
algorithms; those algorithms effectively removed the literals ā1, . . . , āk when they
became false, thereby leaving l as a “unit” all by itself. But our new viewpoint
keeps each clause c intact, and knows all of its literals.) A conflict occurs if the
complementary literal l̄ is already in the trail, because l can’t be both true and
false; but let’s assume for now that no conflicts arise, so that l can legally be
appended by setting LF ← l and F ← F + 1.

If no such forcing clause exists, and if F < n, we choose a new distinct literal
in some heuristic way, and we append it to the current trail with a “reason”
of Λ. Such literals are called decisions. They partition the trail into a sequence
of decision levels, whose boundaries can be indicated by a sequence of indices
with 0 = i0 ≤ i1 < i2 < i3 < · · · ; literal Lt belongs to level d if and only if
id ≤ t < id+1. Level 0, at the beginning of the trail, is special: It contains literals
that are forced by clauses of length 1, if such clauses exist. Any such literals are
unconditionally true. Every other level begins with exactly one decision.

246

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 247

Consider, for example, the problem waerden (3, 3; 9) of (9). The first items
placed on the trail might be

t Lt level reason

0 6̄ 1 Λ (a decision)
1 9̄ 2 Λ (a decision)
2 3 2 396 (rearrangement of the clause 369)
3 4̄ 3 Λ (a decision)
4 5 3 546 (rearrangement of the clause 456)
5 8 3 846 (rearrangement of the clause 468)
6 2 3 246
7 7̄ 3 7̄5̄3̄ (rearrangement of the clause 3̄5̄7̄)
8 2̄ 3 2̄5̄8̄ (a conflict!)

(113)

Three decisions were made, and they started levels at i1 = 0, i2 = 1, i3 = 3.
Several clauses have been rearranged; we’ll soon see why. And propagations have
led to a conflict, because both 2 and 2̄ have been forced. (We don’t actually
consider the final entry L8 to be part of the trail, because it contradicts L6.)

If the reason for l includes the literal l̄ ′, we say “l depends directly on l′.”
And if there’s a chain of one or more direct dependencies, from l to l1 to · · · to
lk = l′, we say simply that “l depends on l′.” For example, 5 depends directly
on 4̄ and 6̄ in (113), and 2̄ depends directly on 5 and 8; hence 2̄ depends on 6̄.

Notice that a literal can depend only on literals that precede it in the trail.
Furthermore, every literal l that’s forced at level d > 0 depends directly on some
other literal on that same level d; otherwise l would already have been forced at
a previous level. Consequently l must necessarily depend on the dth decision.

The reason for reasons is that we need to deal with conflicts. We will see that
every conflict allows us to construct a new clause c that must be true whenever
the existing clauses are satisfiable, although c itself does not contain any existing
clause. Therefore we can “learn” c by adding it to the existing clauses, and we
can try again. This learning process can’t go on forever, because only finitely
many clauses are possible. Sooner or later we will therefore either find a solution
or learn the empty clause. That will be nice, especially if it happens sooner.

A conflict clause c on decision level d has the form l̄ ∨ ā1 ∨ · · · ∨ āk, where
l and all the a’s belong to the trail; furthermore l and at least one ai belong to
level d. We can assume that l is rightmost in the trail, of all the literals in c.
Hence l cannot be the dth decision; and it has a reason, say l ∨ ā′1 ∨ · · · ∨ ā′k′ .
Resolving c with this reason gives the clause c′ = ā1 ∨ · · · ∨ āk ∨ ā′1 ∨ · · · ∨ ā′k′ ,
which includes at least one literal belonging to level d. If more than one such
literal is present, then c′ is itself a conflict clause; we can set c ← c′ and repeat
the process. Eventually we are bound to obtain a new clause c′ of the form
l̄ ′∨ b̄1∨· · ·∨ b̄r, where l′ is on level d and where b1 through br are on lower levels.

Such a c′ is learnable, as desired, because it can’t contain any existing
clauses. (Every subclause of c′, including c′ itself, would otherwise have given us
something to force at a lower level.) We can now discard levels > d′ of the trail,
where d′ is the maximum level of b1 through br; and—this is the punch line—

247

From the Library of Melissa Nuno

ptg999

248 COMBINATORIAL SEARCHING 7.2.2.2

we can append l̄ ′ to the end of level d′, with c′ as its reason. The forcing process
now resumes at level d′, as if the learned clause had been present all along.

For example, after the conflict in (113), the initial conflict clause is c = 2̄5̄8̄,
our shorthand notation for x̄2∨x̄5∨x̄8; and its rightmost complemented literal in
the trail is 2, because 5 and 8 came earlier. So we resolve c with 246, the reason
for 2, and get c′ = 45̄68̄. This new clause contains complements of three literals
from level 3, namely 4̄, 5, and 8; so it’s still a conflict clause. We resolve it with
the reason for 8 and get c′ = 45̄6. Again c′ is a conflict clause. But the result
of resolving this conflict with the reason for 5 is c′ = 46, a clause that is falsified
by the literals currently on the trail but has only 4̄ at level 3. Good—we have
learned ‘46’: In every solution to waerden (3, 3; 9), either x4 or x6 must be true.

Thus the sequel to (113) is

t Lt level reason

0 6̄ 1 Λ (a decision)
1 4 1 46 (the newly learned clause)

(114)

and the next step will be to begin a new level 2, because nothing more is forced.
Notice that the former level 2 has gone away. We’ve learned that there was

no need to branch on the decision variable x9, because 6̄ already forces 4. This
improvement to the usual backtrack regimen is sometimes called “backjumping,”
because we’ve jumped back to a level that can be regarded as the root cause of
the conflict that was just discovered.

Exercise 253 explores a possible continuation of (114); dear reader, please
jump to it now. Incidentally, the clause ‘46’ that we learned in this example
involves the complements of former decisions 4̄ and 6̄; but exercise 255 shows
that newly learned clauses might not contain any decision variables whatsoever.

The process of constructing the learned clause from a conflict is not as
difficult as it may seem, because there’s an efficient way to perform all of the
necessary resolution steps. Suppose, as above, that the initial conflict clause is
l̄∨ ā1∨· · ·∨ āk. Then we “stamp” each of the literals ai with a unique number s;
and we also insert āi into an auxiliary array, which will eventually hold the literals
b̄1, . . . , b̄r, whenever ai is a literal that received its value on a level d′ with 0 <
d′ < d. We stamp l too; and we count how many literals of level d have thereby
been stamped. Then we repeatedly go back through the trail until coming to a
literal Lt whose stamp equals s. If the counter is bigger than 1 at this point, and if
Lt’s reason is Lt∨ā′1∨· · ·∨ā′k′ , we look at each a′i, stamping it and possibly putting
it into the b array if it had not already been stamped with s. Eventually the count
of unresolved literals will decrease to 1; the learned clause is then L̄t∨ b̄1∨· · ·∨ b̄r.

These new clauses might turn out to be quite large, even when we’re solving a
problem whose clauses were rather small to start with. For example, Table 3 gives
a glimpse of typical behavior in a medium-size problem. It shows the beginning
of the trail generated when a CDCL solver was applied to the 2779 clauses of
waerden (3, 10; 97), after about 10,000 clauses had been learned. (Recall that
this problem tries to find a binary vector x1x2 . . . x97 that has no three equally
spaced 0s and no ten equally spaced 1s.) Level 18 in the table has just been

248

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 249

Table 3

THE FIRST LEVELS OF A MODERATE-SIZE TRAIL

t Lt level reason

0 53 1 Λ
1 55 2 Λ
2 44 3 Λ
3 54 4 Λ
4 43 5 Λ
5 30 6 Λ
6 34 7 Λ
7 45 8 Λ
8 40 9 Λ
9 27 10 Λ
10 79 10 79 53 27
11 01 10 01 27 53
12 36 11 Λ
13 18 11 18 36 27
14 19 11 19 36 53

t Lt level reason

15 70 11 70 36 53
16 35 12 Λ
17 39 13 Λ
18 37 14 Λ
19 38 14 38 37 36
20 47 14 47 37 27
21 17 14 17 37 27
22 32 14 32 37 27
23 69 14 69 37 53
24 21 14 21 37 53
25 46 15 Λ
26 28 15 28 46 37
27 41 15 41 46 36
28 26 15 26 46 36
29 56 15 56 46 36

t Lt level reason

30 08 15 08 46 27
31 65 15 65 46 27
32 60 15 60 46 53
33 50 15 ∗∗
34 64 15 64 50 36
35 22 15 22 50 36
36 24 15 24 50 37
37 42 15 42 50 46
38 48 15 48 50 46
39 73 15 73 50 27
40 04 15 04 50 27
41 63 15 63 50 37
42 33 16 Λ
43 51 17 Λ
44 57 18 Λ

(Here ∗∗ denotes the previously learned clause 50 26 27 30 32 35 38 40 41 44 45 47 50 55 60 65 70.)

launched with the decision L44 = 57; and that decision will trigger the setting
of many more literals 15, 49, 61, 68, 77, 78, 87, 96, . . . , eventually leading to a
conflict when trying to set L67. The conflict clause turns out to have length 22:

53 27 36 70 35 37 69 21 46 28 56 65 60 50 64 24 42 73 63 33 51 57 . (115)

(Its literals are shown here in order of the appearance of their complements in
the trail.) When we see such a monster clause, we might well question whether
we really want to “learn” such an obscure fact!

A closer look, however, reveals that many of the literals in (115) are redun-
dant. For example, 70 can safely be deleted, because its reason is ‘70 36 53’; both
36 and 53 already appear in (115), hence (115)� (70 36 53) gets rid of 70. Indeed,
more than half of the literals in this example are redundant, and (115) can be
simplified to the much shorter and more memorable clause

53 27 36 35 37 46 50 33 51 57 . (116)

Exercise 257 explains how to discover such simplifications, which turn out to
be quite important in practice. For example, the clauses learned while proving
waerden (3, 10; 97) unsatisfiable had an average length of 19.9 before simplifica-
tion, but only 11.2 after; simplification made the algorithm run about 33% faster.

Most of the computation time of a CDCL solver is devoted to unit propa-
gation. Thus we need to know when the value of a literal has been forced by
previous assignments, and we hope to know it quickly. The idea of “lazy data
structures,” used above in AlgorithmD, works nicely for this purpose, in the pres-
ence of long clauses, provided that we extend it so that every clause now has two
watched literals instead of one. If we know that the first two literals of a clause are
not false, then we needn’t look at this clause until one of them becomes false, even

249

From the Library of Melissa Nuno

ptg999

250 COMBINATORIAL SEARCHING 7.2.2.2

though other literals in the clause might be repeatedly veering between transient
states of true, false, and undefined. And when a watchee does become false, we’ll
try to swap it with a nonfalse partner that can be watched instead. Propagations
or conflicts will arise only when all of the remaining literals are false.

Algorithm C below therefore represents clauses with the following data
structures: A monolithic array called MEM is assumed to be large enough to
hold all of the literals in all of the clauses, interspersed with control information.
Each clause c = l0 ∨ l1 ∨ · · · ∨ lk−1 with k > 1 is represented by its starting
position in MEM, with MEM[c+ j] = lj for 0 ≤ j < k. Its two watched literals are
l0 and l1, and its size k is stored in MEM[c− 1]. Unit clauses, for which k = 1,
are treated differently; they appear in level 0 of the trail, not in MEM.

A learned clause c can be distinguished from an initial clause because it has
a relatively high number, with MINL ≤ c < MAXL. Initially MAXL is set equal to
MINL, the smallest cell in MEM that is available for learned clauses; then MAXL

grows as new clauses are added to the repertoire. The set of learned clauses is
periodically culled, so that the less desirable ones don’t clutter up memory and
slow things down. Additional information about a learned clause c is kept in
MEM[c − 4] and MEM[c − 5], to help with this recycling process (see below).

Individual literals xk and x̄k, for 1 ≤ k ≤ n, are represented internally by
the numbers 2k and 2k + 1 as in (57) above. And each of these 2n literals l has
a list pointer Wl, which begins a linked list of the clauses in which l is watched.
We have Wl = 0 if there is no such clause; but if Wl = c > 0, the next link in
this “watch list” is in MEM[c − 2] if l = l0, in MEM[c − 3] if l = l1. [See Armin
Biere, Journal on Satisfiability, Boolean Modeling and Comp. 4 (2008), 75–97.]

For example, the first few cells of MEM might contain the following data when
we are representing the clauses (9) of waerden (3, 3; 9):

i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 . . .

MEM[i] = 9 45 3 2 4 6 15 51 3 4 6 8 21 45 3 6 8 10 . . .

(Clause 3 is ‘123’, clause 9 is ‘234’, clause 15 is ‘345’, . . . , clause 45 is ‘135’,
clause 51 is ‘246’, . . . ; the watch lists for literals x1, x2, x3, x4 begin respectively
at W2 = 3, W4 = 3, W6 = 9, W8 = 15.)

The other major data structures of Algorithm C are focused on variables, not
clauses. Each variable xk for 1 ≤ k ≤ n has six current attributes S(k), VAL(k),
OVAL(k), TLOC(k), HLOC(k), and ACT(k), which interact as follows: S(k) is the
“stamp” that’s used during clause formation. If neither xk nor x̄k appears in
the current trail, then VAL(k) = −1, and we say that xk and its two literals are
“free.” But if Lt = l is a literal of the trail, belonging to level d, we have

VAL(|l|) = 2d+ (l & 1) and TLOC(|l|) = t, where |l| = l � 1, (117)

and we say that l is “true” and l̄ is “false.” Thus a given literal l is false if and
only if VAL(|l|) is nonnegative and VAL(|l|)+ l is odd. In most cases a watched
literal is not false; but there are exceptions to this rule (see exercise 265). The
“reason” for literal l’s current value is kept in variable Rl.

250

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 251

The attributes ACT(k) and HLOC(k) tell the algorithm how to select the
next decision variable. Each variable xk has an activity score ACT(k), which
heuristically estimates its desirability for branching. All of the free variables,
and possibly others, are kept in an array called HEAP, which is arranged so that

ACT(HEAP[j]) ≤ ACT(HEAP[(j − 1)� 1]) for 0 < j < h (118)

when it contains h elements (see Section 5.2.3). Thus HEAP[0] will always be a
free variable of maximum activity, if it is free; so it’s the variable that will be
chosen to govern the decision when the trail starts to acquire a new level.

Activity scores help the algorithm to focus on recent conflicts. Suppose, for
example, that M = 100 conflicts have been resolved, hence 100 clauses have been
learned. Suppose further that xj or x̄j was stamped while resolving the conflicts
numbered 3, 47, 95, 99, and 100; but xk or x̄k was stamped during conflicts 41,
87, 94, 95, 96, and 97. We could express their recent activity by computing

ACT(j) = ρ0 + ρ1 + ρ5 + ρ53 + ρ97, ACT(k) = ρ3 + ρ4 + ρ5 + ρ6 + ρ13 + ρ59,

where ρ is a damping factor (say ρ = .95), because 100− 100 = 0, 100− 99 = 1,
100 − 95 = 5, . . . , 100 − 41 = 59. In this particular case j would be considered
to be less active than k unless ρ is less than about .8744.

In order to update the activity scores according to this measure, we would
have to do quite a bit of recomputation whenever a new conflict occurs: The new
scores would require us to multiply all n of the old scores by ρ, then to increase
the activity of every newly stamped variable by 1. But there’s a much better
way, namely to compute ρ−M = ρ−100 times the scores shown above:

ACT(j) = ρ−3+ρ−47+ρ−95+ρ−99+ρ−100, ACT(k) = ρ−41+ · · ·+ρ−96+ρ−97.

These newly scaled scores, suggested by Niklas Eén, give us the same information
about the relative activity of each variable; and they’re updated easily, because
we need to do only one addition per stamped variable when resolving conflicts.

The only problem is that the new scores can become really huge, because
ρ−M can cause floating point overflow after the number M of conflicts becomes
large. The remedy is to divide them all by 10100, say, whenever any variable gets
a score that exceeds 10100. The HEAP needn’t change, since (118) still holds.

During the algorithm the variable DEL holds the current scaling factor ρ−M ,
divided by 10100 each time all of the activities have been rescaled.

Finally, the parity of OVAL(k) is used to control the polarity of each new
decision in step C6. Algorithm C starts by simply making each OVAL(k) odd,
although other initialization schemes are possible. Afterwards it sets OVAL(k) ←
VAL(k) whenever xk leaves the trail and becomes free, as recommended by
D. Frost and R. Dechter [AAAI Conf. 12 (1994), 301–306] and independently
by K. Pipatsrisawat and A. Darwiche [LNCS 4501 (2007), 294–299], because
experience has shown that the recently forced polarities tend to remain good.
This technique is called “sticking” or “progress saving” or “phase saving.”

Algorithm C is based on the framework of a pioneering CDCL solver called
Chaff, and on an early descendant of Chaff called MiniSAT that was developed
by N. Eén and N. Sörensson [LNCS 2919 (2004), 502–518].

251

From the Library of Melissa Nuno

ptg999

252 COMBINATORIAL SEARCHING 7.2.2.2

Algorithm C (Satisfiability by CDCL). Given a set of clauses on n Boolean
variables, this algorithm finds a solution L0L1 . . . Ln−1 if and only if the clauses
are satisfiable, meanwhile discovering M new ones that are consequences of the
originals. After discovering Mp new clauses, it will purge some of them from its
memory and reset Mp; after discovering Mf of them, it will flush part of its trail,
reset Mf , and start over. (Details of purging and flushing will be discussed later.)

C1. [Initialize.] Set VAL(k)← OVAL(k)← TLOC(k)←−1, ACT(k)← S(k)← 0,
R2k←R2k+1 ←Λ, HLOC(k)← pk − 1, and HEAP[pk − 1]← k, for 1≤ k≤n,
where p1 . . . pn is a random permutation of {1, . . . , n}. Then input the
clauses into MEM and the watch lists, as described above. Put the distinct unit
clauses into L0L1 . . . LF−1; but terminate unsuccessfully if there are contra-
dictory clauses (l) and (l̄). Set MINL and MAXL to the first available position
in MEM. (See exercise 260.) Set i0 ← d← s←M ←G← 0, h←n, DEL← 1.

C2. [Level complete?] (The trail L0 . . . LF−1 now contains all of the literals that
are forced by L0 . . . LG−1.) Go to C5 if G = F .

C3. [Advance G.] Set l ← LG and G ← G+ 1. Then do step C4 for all c in the
watch list of l̄, unless that step detects a conflict and jumps to C7. If there
is no conflict, return to C2. (See exercise 261.)

C4. [Does c force a unit?] Let l0l1 . . . lk−1 be the literals of clause c, where l1 = l̄.
(Swap l0 ↔ l1 if necessary.) If l0 is true, do nothing. Otherwise look for a
literal lj with 1 < j < k that is not false. If such a literal is found, move c
to the watch list of lj . But if l2, . . . , lk−1 are all false, jump to C7 if l0 is
also false. On the other hand if l0 is free, make it true by setting LF ← l0,
TLOC(|l0|) ← F , VAL(|l0|) ← 2d+ (l0 & 1), Rl0 ← c, and F ← F + 1.

C5. [New level?] If F = n, terminate successfully. Otherwise if M ≥ Mp, pre-
pare to purge excess clauses (see below). Otherwise ifM ≥ Mf , flush literals
as explained below and return to C2. Otherwise set d ← d+ 1 and id ← F .

C6. [Make a decision.] Set k ← HEAP[0] and delete k from the heap (see exercises
262 and 266). If VAL(k) ≥ 0, repeat this step. Otherwise set l ← 2k +
(OVAL(k) & 1), VAL(k) ← 2d + (OVAL(k) & 1), LF ← l, TLOC(|l|) ← F ,
Rl ← Λ, and F ← F + 1. (At this point F = G+ 1.) Go to C3.

C7. [Resolve a conflict.] Terminate unsuccessfully if d = 0. Otherwise use the
conflict clause c to construct a new clause l̄ ′∨ b̄1∨· · ·∨ b̄r as described above.
Set ACT(|l|) ← ACT(|l|)+ DEL for all literals l stamped during this process;
also set d′ to the maximum level occupied by {b1, . . . , br} in the trail. (See
exercise 263. Increasing ACT(|l|) may also change HEAP.)

C8. [Backjump.] While F > id′+1, do the following: Set F ← F − 1, l ← LF ,
k ← |l|, OVAL(k) ← VAL(k), VAL(k) ← −1, Rl ← Λ; and if HLOC(|l|) < 0
insert k into HEAP (see exercise 262). Then set G ← F and d ← d′.

C9. [Learn.] If d > 0, set c ← MAXL, store the new clause in MEM at position c, and
advance MAXL to the next available position in MEM. (Exercise 263 gives full
details.) SetM ← M+1, LF ← l̄′, VAL(|l′|) ← 2d+(l̄′&1), TLOC(|l′|) ← F ,
Rl′ ← c, F ← F + 1, DEL ← DEL/ρ, and return to C3.

252

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 253

The high-level operations on data structures in this algorithm are spelled out
in terms of elementary low-level steps in exercises 260–263. Exercises 266–271
discuss simple enhancements that were made in the experiments reported below.

Reality check: Although detailed statistics about the performance of Algo-
rithm C on a wide variety of problems will be presented later, a few examples of
typical behavior will help now to clarify how the method actually works in prac-
tice. Random choices make the running time of this algorithmmore variable than
it was in Algorithms A, B, D, or L; sometimes we’re lucky, sometimes we’re not.

In the case of waerden (3, 10; 97), the modest 97-variable-and-2779-clause
problem that was considered in Table 3, nine test runs of Algorithm C established
unsatisfiability after making between 250 and 300 million memory accesses; the
median was 272 Mμ. (This is more than twice as fast as our best previous time,
which was obtained with Algorithm L.) The average number of decisions made—
namely the number of times LF ← l was done in step C6—was about 63 thou-
sand; this compares to 1701 “nodes” in Algorithm L, step L3, and 100 million
nodes in Algorithms A, B, D. About 53 thousand clauses were learned, having
an average size of 11.5 literals (after averaging about 19.9 before simplification).

Fig. 92. It is not
possible to color the
edges of the flower
snark graph Jq with
three colors, when q
is odd. Algorithm C
is able to prove this
with amazing speed:
Computation times
(in megamems) are
shown for nine trials
at each value of q. 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

0 Mμ

100 Mμ

200 Mμ

300 Mμ

400 Mμ

500 Mμ

Algorithm C often speeds things up much more dramatically, in fact. For
example, Fig. 92 shows how it whips through a sequence of three-coloring prob-
lems that are based on “flower snarks.” Exercise 176 defines fsnark (q), an
interesting set of 42q + 3 unsatisfiable clauses on 18q variables. The running
time of Algorithms A, B, D, and L on fsnark (q) is proportional to 2q, so it’s
way off the chart—well over a gigamem already when q = 19. But Algorithm C
polishes off the case q = 99 in that same amount of time (thus winning by 24
orders of magnitude)! On the other hand, no satisfactory theoretical explanation
for the apparently linear behavior in Fig. 92 is presently known.

Certificates of unsatisfiability. When a SAT solver reports that a given
instance is satisfiable, it also produces a set of distinct literals from which we can
easily check that every clause is satisfied. But if its report is negative—UNSAT—
how confident can we be that such a claim is true? Maybe the implementation
contains a subtle error; after all, large and complicated programs are notoriously
buggy, and computer hardware isn’t perfect either. A negative answer can there-
fore leave both programmers and users unsatisfied, as well as the problem.

253

From the Library of Melissa Nuno

ptg999

254 COMBINATORIAL SEARCHING 7.2.2.2

We’ve seen that unsatisfiability can be proved rigorously by constructing
a resolution refutation, namely a chain of resolution steps that ends with the
empty clause ε, as in Fig. 91. But such refutations amount to the construction
of a huge directed acyclic graph.

A much more compact characterization of unsatisfiability is possible. Let’s
say that the sequence of clauses (C1, C2, . . . , Ct) is a certificate of unsatisfiability
for a family of clauses F if Ct = ε, and if we have

F ∧ C1 ∧ · · · ∧ Ci−1 ∧ Ci �1 ε for 1 ≤ i ≤ t. (119)

Here the subscript 1 in ‘G �1 ε’ means that the clauses G lead to a contradiction
by unit propagation; and if Ci is the clause (a1 ∨ · · · ∨ ak), then Ci is an
abbreviation for the conjunction of unit clauses (ā1) ∧ · · · ∧ (āk).

For example, let F = R be Rivest’s clauses (6), which were proved unsatis-
fiable in Fig. 91. Then (12, 1, 2, ε) is a certificate of unsatisfiability, because

R ∧ 1̄ ∧ 2̄ �1 3̄ �1 4̄ �1 ε (using 123̄, 234̄, and 341);

R ∧ 12 ∧ 1̄ �1 2 �1 4̄ �1 3̄ �1 ε (using 12, 4̄12̄, 2̄3̄4, and 341);

R ∧ 12 ∧ 1 ∧ 2̄ �1 4 �1 3 �1 ε (using 41̄2, 234̄, and 3̄4̄1̄);

R ∧ 12 ∧ 1 ∧ 2 �1 3 �1 4 �1 ε (using 1̄2̄3, 2̄3̄4, and 3̄4̄1̄).

A certificate of unsatisfiability gives a convincing proof, since (119) implies
that each Ci must be true whenever F , C1, . . . , Ci−1 are true. And it’s easy to
check whether or not G �1 ε, for any given set of clauses G, because everything is
forced and no choices are involved. Unit propagation is analogous to water flow-
ing downhill; we can be pretty sure that it has been implemented correctly, even
if we don’t trust the CDCL solver that generated the certificate being checked.

E. Goldberg and Y. Novikov [Proceedings of DATE: Design, Automation
and Test in Europe 6,1 (2003), 886–891] have pointed out that CDCL solvers
actually produce such certificates as a natural byproduct of their operation:

Theorem G. If Algorithm C terminates unsuccessfully, the sequence (C1, C2,
. . . , Ct) of clauses that it has learned is a certificate of unsatisfiability.

Proof. It suffices to show that, whenever Algorithm C has learned the clause
C ′ = l̄ ′∨ b̄1∨· · ·∨ b̄r, unit propagation will deduce ε if we append the unit clauses
(l′) ∧ (b1) ∧ · · · ∧ (br) to the clauses that the algorithm already knows. The key
point is that C ′ has essentially been obtained by repeated resolution steps,

C ′ =
(
. . . ((C �Rl1) �Rl2) � · · ·) �Rls , (120)

where C is the original conflict clause and Rl1 , Rl2 , . . . , Rls are the reasons
for each literal that was removed while C ′ was constructed in step C7. More
precisely, we have C = A0 and Rli = li∨Ai, where all literals of A0∪A1∪· · ·∪As

are false (their complements appear in the trail); and

l̄i ∈ A0 ∪ · · · ∪Ai−1, for 1 ≤ i ≤ s;

A0 ∪A1 ∪ · · · ∪As = {l̄ ′, l̄1, . . . , l̄s, b̄1, . . . , b̄r}.
(121)

Thus the known clauses, plus b1, . . . , br, and l′, will force ls using clause Rls .
And ls−1 will then be forced, using Rls−1 . And so on.

254

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 255

Since the unit literals in this proof are propagated in reverse order ls, ls−1,
. . . , l1 from the resolution steps in (120), this certificate-checking procedure has
become known as “reverse unit propagation” [see A. Van Gelder, Proc. Int. Symp.
on Artificial Intelligence and Math. 10 (2008), 9 pages, online as ISAIM2008].

Notice that the proof of Theorem G doesn’t claim that reverse unit prop-
agation will reconstruct the precise reasoning by which Algorithm C learned a
clause. Many different downhill paths to ε, built from �1 steps, usually exist in
a typical situation. We merely have shown that every clause learnable from a
single conflict does imply the existence of at least one such downhill path.

Many of the clauses learned during a typical run of Algorithm C will be
“shots in the dark,” which turn out to have been aimed in unfruitful directions.
Thus the certificates in Theorem G will usually be longer than actually nec-
essary to demonstrate unsatisfiability. For example, Algorithm C learns about
53,000 clauses when refuting waerden (3, 10; 97), and about 135,000 when refuting
fsnark (99); but fewer than 50,000 of the former, and fewer than 47,000 of the
latter, were actually used in subsequent steps. Exercise 284 explains how to
shorten a certificate of unsatisfiability while checking its validity.

An unexpected difficulty arises, however: We might spend more time veri-
fying a certificate than we needed to generate it! For example, a certificate for
waerden (3, 10; 97) was found in 272 megamems, but the time needed to check it
with straightforward unit-propagations was actually 2.2 gigamems. Indeed, this
discrepancy becomes significantly worse in larger problems, because a simple
program for checking must keep all of the clauses active in its memory. If there
are a million active clauses, there are two million literals being watched; hence
every change to a literal will require many updates to the data structures.

The solution to this problem is to provide extra hints to the certificate
checker. As we are about to see, Algorithm C does not keep all of the learned
clauses in its memory; it systematically purges its collection, so that the total
number stays reasonable. At such times it can also inform the certificate checker
that the purged clauses will no longer be relevant to the proof.

Further improvements also allow annotated certificates to accommodate
stronger proof rules, such as Tseytin’s extended resolution and techniques based
on generalized autarkies; see N. Wetzler, M. J. H. Heule, and W. A. Hunt, Jr.,
LNCS 8561 (2014), 422–429.

Whenever a family of clauses has a certificate of unsatisfiability, a variant of
Algorithm C will actually find one that isn’t too much longer. (See exercise 386.)

*Purging unhelpful clauses. After thousands of conflicts have occurred, Algo-
rithm C has learned thousands of new clauses. New clauses guide the search
by steering us away from unproductive paths; but they also slow down the
propagation process, because we have to watch them.

We’ve seen that certificates can usually be shortened; therefore we know
that many of the learned clauses will probably never be needed again. For this
reason Algorithm C periodically attempts to weed out the ones that appear to
be more harmful than helpful, by ranking the clauses that have accumulated.

255

From the Library of Melissa Nuno

ptg999

256 COMBINATORIAL SEARCHING 7.2.2.2

I consider that a man’s brain originally is like a little empty attic, and

you have to stock it with such furniture as you choose. . . . the skilled workman

is very careful indeed as to what he takes into his brain-attic.

. . . It is a mistake to think that that little room has elastic walls

and can distend to any extent. . . . It is of the highest importance, therefore,

not to have useless facts elbowing out the useful ones.

— SHERLOCK HOLMES, in A Study in Scarlet (1887)

Algorithm C initiates a special clause-refinement process as soon as it has
learned M ≥ Mp clauses and arrived at a reasonably stable state (step C5).
Let’s continue our running example, waerden (3, 10; 97), in order to make the
issues concrete. If Mp is so huge that no clauses are ever thrown away, a typical
run will learn roughly 48 thousand clauses, and do roughly 800 megamems of
computation, before proving unsatisfiability. But if Mp = 10000, it will learn
roughly 50 thousand clauses, and the computation time will go down to about
500 megamems. In the latter case the total number of learned clauses in memory
will rarely exceed 10 thousand.

Indeed, let’s set Mp = 10000 and take a close look at exactly what happened
during the author’s first experiments. Algorithm C paused to reconnoiter the
situation after having learned 10002 clauses. At that point only 6252 of those
10002 clauses were actually present in memory, however, because of the clause-
discarding mechanism discussed in exercise 271. Some clauses had length 2, while
the maximum size was 24 and the median was 11; here’s a complete histogram:

2 9 49 126 216 371 542 719 882 1094 661 540 414 269 176 111 35 20 10 3 1 1 1.

Short clauses tend to be more useful, because they reduce more quickly to units.
A learned clause cannot be purged if it is the reason for one of the literals

on the trail. In our example, 12 of the 6252 fell into this category; for instance,
30 appeared on level 10 of the trail because ‘30 33 39 41 42 45 46 48 54 57’ had
been learned, and we may need to know that clause in a future resolution step.

The purging process will try to remove at least half of the existing learned
clauses, so that at most 3126 remain. We aren’t allowed to touch the 12 reason-
bound ones; hence we want to forget 3114 of the other 6240. Which of them
should we expel?

Among many heuristics that have been tried, the most successful in practice
are based on what Gilles Audemard and Laurent Simon have called “literal block
distance” [see Proc. Int. Joint Conference on Artificial Intelligence 21 (2009),
399–404]. They observed that each level of the trail can be considered to be a
block of more-or-less related variables; hence a long clause might turn out to be
more useful than a short clause, if the literals of the long one all lie on just one
or two levels while the literals of the short one belong to three or more.

Suppose all the literals of a clause C = l1∨· · ·∨ lr appear in the trail, either
positively as lj or negatively as l̄j . We can group them by level so that exactly
p+ q levels are represented, where p of the levels contain at least one positive lj
and the other q contain nothing but l̄j ’s. Then (p, q) is the signature of C with
respect to the trail, and p+ q is the literal block distance. For example, the very

256

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 257

first clause learned from waerden (3, 10; 97) in the author’s test run was

11 16 21 26 36 46 51 61 66 91; (122)

later, when it was time to rank clauses for purging, the values and trail levels of
those literals were specified by VAL(11), VAL(16), . . . , VAL(91), which were

20 21 21 21 20 15 16 8 14 20.

Thus 61 was true on level 8 � 1 = 4; 46 and 66 were true on level 15 � 1 =
14� 1 = 7; 51 was false on level 8; the others were a mixture of true and false
on level 10; hence (122) had p = 3 and q = 1 with respect to the current trail.

If C has signature (p, q) and C ′ has signature (p′, q′), where p ≤ p′ and q ≤ q′

and (p, q) �= (p′, q′), we can expect that C is more likely than C ′ to be useful in
future propagations. The same conclusion is plausible also when p+ q = p′ + q′

and p < p′, because C ′ won’t force anything until literals from at least p + 1
different levels change sign. These intuitive expectations are borne out by the
following detailed data obtained from waerden (3, 10; 97):
⎛
⎜⎜⎜⎜⎜⎜⎝

0 4 17 22 30 54 67 99 17
17 81 191 395 360 404 438 66 6
63 232 463 536 521 386 117 6 0
52 243 291 298 308 112 22 0 0
18 59 86 77 53 7 0 0 0
0 8 3 10 0 0 0 0 0
0 0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 9 15 21 16 15 3 0
7 26 74 107 82 57 16 1 0
20 74 104 86 61 21 9 0 0
13 40 37 16 14 4 0 0 0
6 10 9 4 1 1 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

The matrix on the left shows how many of the 6240 eligible clauses had a given
signature (p, q), for 1 ≤ p ≤ 7 and 0 ≤ q ≤ 8; the matrix on the right shows how
many would have been used to resolve future conflicts, if none of them had been
removed. There were, for example, 536 learned clauses with p = q = 3, of which
only 86 actually turned out to be useful. This data is illustrated graphically in
Fig. 93, which shows gray rectangles whose areas correspond to the left matrix,
overlaid by black rectangles whose areas correspond to the right matrix. We can’t
predict the future, but small (p, q) tends to increase the ratio of black to gray.

0 1 2 3 4 5 6 7 8

1
2
3
4
5
6
7

p

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

︷ ︸︸ ︷q

Fig. 93. Learned clauses that have
p positive and q all-negative levels.
The gray ones will never be used
again. Unfortunately, there’s no easy
way to distinguish gray from black
without being clairvoyant.

An alert reader will be wondering, however, how such signatures were found,
because we can’t compute them for all clauses until all variables appear in the
trail—and that doesn’t happen until all clauses are satisfied! The answer [see
A. Goultiaeva and F. Bacchus, LNCS 7317 (2012), 30–43] is that it’s quite
possible to carry out a “full run” in which every variable is assigned a value,
by making only a slight change to the normal behavior of Algorithm C: Instead

257

From the Library of Melissa Nuno

ptg999

258 COMBINATORIAL SEARCHING 7.2.2.2

of resolving conflicts immediately and backjumping, we can carry on after each
conflict until all propagations cease, and we can continue to build the trail in
the same way until every variable is present on some level. Conflicts may have
occurred on several different levels; but we can safely resolve them later, learning
new clauses at that time. Meanwhile, a full trail allows us to compute signatures
based on VAL fields. And those VAL fields go into the OVAL fields after backjump-
ing, so the variables in each block will tend to maintain their relationships.

The author’s implementation of Algorithm C assigns an eight-bit value

RANGE(c) ← min
(
16(p+ αq)�, 255) (123)

to each clause c; here α is a parameter, 0 ≤ α ≤ 1. We also set RANGE(c) ← 0
if c is the reason for some literal in the trail; RANGE(c) ← 256 if c is satisfied
at level 0. If there are mj clauses of range j, and if we want to keep at most T
clauses in memory, we find the largest j ≤ 256 such that

sj = m0 +m1 + · · ·+mj−1 ≤ T. (124)

Then we retain all clauses for which RANGE(c) < j, together with T − sj “tie-
breakers” that have RANGE(c) = j (unless j = 256). When α has the relatively
high value 15

16 = .9375, this rule essentially preserves as many clauses of small
literal block distance as it can; and for constant p+q it favors those with small p.

For example, with α = 15
16 and the data from Fig. 93, we save clauses that

have p = (1, 2, 3, 4, 5) when q ≤ (5, 4, 3, 2, 0), respectively. This gives us s95 =
12 + 3069 clauses, just 45 shy of our target T = 3126. So we also choose 45
tie-breakers from among the 59 clauses that have RANGE(c) = 95, (p, q) = (5, 1).

Tie-breaking can be done by using a secondary heuristic ACT(c), “clause
activity,” which is analogous to the activity score of a variable but it is more
easily maintained. If clause c has been used to resolve the conflicts numbered 3,
47, 95, 99, and 100, say, then

ACT(c) = �−3 + �−47 + �−95 + �−99 + �−100. (125)

This damping factor � (normally .999) is independent of the factor ρ that is used
for variable activities. In the case of Fig. 93, if the 59 clauses with (p, q) = (5, 1)
are arranged in order of increasing ACT scores, the gray-and-black pattern is

.

So if we retain the 45 with highest activity, we pick up 8 of the 10 that turn out
to be useful. (Clause activities are imperfect predictors, but they are usually
somewhat better than this example implies.)

Exercises 287 and 288 present full details of clause purging in accordance
with these ideas. One question remains: After we’ve completed a purge, when
should we schedule the next one? Successful results are obtained by having two
parameters, Δp and δp. Initially Mp = Δp; then after each purge, we set Δp ←
Δp+δp and Mp ← Mp+Δp. For example, if Δp = 10000 and δp = 100, purging

will occur after approximately 10000, 20100, 30300, 40600, . . . , kΔp +
(
k
2

)
δp,

258

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: CLAUSE-LEARNING ALGORITHMS 259

. . . clauses have been learned; and the number of clauses at the beginning of the
kth round will be approximately 20000+200k = 2Δp+2kδp. (See exercise 289.)

We’ve based this discussion on waerden (3, 10; 97), which is quite a simple
problem. Algorithm C’s gain from clause-purging on larger problems is naturally
much more substantial. For example, waerden (3, 13; 160) is only a bit larger than
waerden (3, 10; 97). With Δp = 10000 and δp = 100, it finishes in 132 gigamems,
after learning 9.5 million clauses and occupying only 503 thousand MEM cells.
Without purging, it proves unsatisfiability after learning only 7.1 million clauses,
yet at well over ten times the cost: 4307 gigamems, and 102 million cells of MEM.

*Flushing literals and restarting. Algorithm C interrupts itself in step C5 not
only to purge clauses but also to “flush literals” that may not have been the best
choices for decisions in the trail. The task of solving a tough satisfiability problem
is a delicate balancing act: We don’t want to get bogged down in the wrong part
of the search space; but we also don’t want to lose the fruits of hard work by
“throwing out the baby with the bath water.” A nice compromise has been found
by Peter van der Tak, Antonio Ramos, and Marijn Heule [J. Satisfiability, Bool.
Modeling and Comp. 7 (2011), 133–138], who devised a useful way to rejuvenate
the trail periodically by following trends in the activity scores ACT(k).

Let’s go back to Table 3, to illustrate their method. After learning the
clause (116), Algorithm C will update the trail by setting L44 ← 57 on level
17; that will force L45 ← 66, because 39, 42, . . . , 63 have all become true; and
further positive literals 6, 58, 82, 86, 95, 96 will also join the trail in some order.
Step C5 might then intervene to suggest that we should contemplate flushing
some or all of the F = 52 literals whose values are currently assigned.

The decision literals 53, 55, 44, . . . , 51 on levels 1, 2, 3, . . . , 17 each were
selected because they had the greatest current activity scores when their level be-
gan. But activity scores are continually being updated, so the old ones might be
considerably out of touch with present realities. For example, we’ve just boosted
ACT(53), ACT(27), ACT(36), ACT(70), . . . , in the process of learning (116)— see
(115). Thus it’s quite possible that several of the first 17 decisions no longer
seem wise, because those literals haven’t participated in any recent conflicts.

Let xk be a variable with maximum ACT(k), among all of the variables not
in the current trail. It’s easy to find such a k (see exercise 290). Now consider,
as a thought experiment, what would happen if we were to jump back all the
way to level 0 at this point and start over. Recall that our phase-saving strategy
dictates that we would set OVAL(j) ← VAL(j) just before setting VAL(j) ← −1,
as the variables become unassigned.

If we now restart at step C6 with d ← 1, all variables whose activity exceeds
ACT(k) will receive their former values (although not necessarily in the same
order), because the corresponding literals will enter the trail either as decisions
or as forced propagations. History will more-or-less repeat itself, because the old
assignments did not cause any conflicts, and because phases were saved.

Therefore we might as well avoid most of this back-and-forth unsetting and
resetting, by reusing the trail and jumping back only partway, to the first level

259

From the Library of Melissa Nuno

ptg999

260 COMBINATORIAL SEARCHING 7.2.2.2

where the current activity scores significantly change the picture:

Set d′ ← 0. While ACT(|Lid′+1 |) ≥ ACT(k), set d′ ← d′ + 1.

Then if d′ < d, jump back to level d′.
(126)

This is the technique called “literal flushing,” because it removes the literals on
levels d′+1 through d and leaves the others assigned. It effectively redirects the
search into new territory, without being as drastic as a full restart.

In Table 3, for example, ACT(49) might exceed the activity score of every
other unassigned variable; and it might also exceed ACT(46), the activity of
the decision literal 46 on level 15. If the previous 14 decision-oriented activities
ACT(53), ACT(55), . . . , ACT(37) are all ≥ ACT(49), we would flush all the literals
L25, L26, . . . above level d

′ = 14, and commence a new level 15.
Notice that some of the flushed literals other than 46 might actually have

the largest activities of all. In such cases they will re-insert themselves, before
49 ever enters the scene. Eventually, though, the literal 49 will inaugurate a new
level before a new conflict arises. (See exercise 291.)

Experience shows that flushing can indeed be extremely helpful. On the
other hand, it can be harmful if it causes us to abandon a fruitful line of attack.
When the solver is perking along and learning useful clauses by the dozen, we
don’t want to upset the applecart by rocking the boat. Armin Biere has therefore
introduced a useful statistic called agility, which tends to be correlated with the
desirability of flushing at any given moment. His idea [LNCS 4996 (2008), 28–
33] is beautifully simple: We maintain a 32-bit integer variable called AGILITY,
initially zero. Whenever a literal l is placed on the trail in steps C4, C6, or C9,
we update the agility by setting

AGILITY ← AGILITY−(AGILITY�13)+
(
((OVAL(|l|)−VAL(|l|))&1)�19

)
. (127)

In other words, the fraction AGILITY/232 is essentially multiplied by 1− δ, then
increased by δ if the new polarity of l differs from its previous polarity, where
δ = 2−13 ≈ .0001. High agility means that lots of the recent propagations are
flipping the values of variables and trying new possibilities; low agility means
that the algorithm is basically in a rut, spinning its wheels and getting nowhere.

Table 4

TO FLUSH OR NOT TO FLUSH?

Let a = AGILITY/232 when setting Mf ←M +Δf , and let ψ = 1/6, θ = 17/16.

If Δf is then flush if If Δf is then flush if If Δf is then flush if

1 a ≤ ψ ≈ .17 32 a ≤ θ5ψ ≈ .23 1024 a ≤ θ10ψ ≈ .31
2 a ≤ θψ ≈ .18 64 a ≤ θ6ψ ≈ .24 2048 a ≤ θ11ψ ≈ .32
4 a ≤ θ2ψ ≈ .19 128 a ≤ θ7ψ ≈ .25 4096 a ≤ θ12ψ ≈ .34
8 a ≤ θ3ψ ≈ .20 256 a ≤ θ8ψ ≈ .27 8192 a ≤ θ13ψ ≈ .37
16 a ≤ θ4ψ ≈ .21 512 a ≤ θ9ψ ≈ .29 16384 a ≤ θ14ψ ≈ .39

Armed with the notion of agility, we can finally state what Algorithm C
does when step C5 finds M ≥ Mf : First Mf is reset to M + Δf , where Δf is

260

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: MONTE CARLO ALGORITHMS 261

a power of two determined by the “reluctant doubling” sequence 〈1, 1, 2, 1, 1,
2, 4, 1, . . . 〉; that sequence is discussed below and in exercise 293. Then the
agility is compared to a threshold, depending on Δf , according to the schedule
in Table 4. (The parameter ψ in that table can be raised or lowered, if you want
to increase or decrease the amount of flushing.) If the agility is sufficiently small,
xk is found and (126) is performed. Nothing changes if the agility is large or if
d′ = d; otherwise (126) has flushed some literals, using the operations of step C8.

Monte Carlo algorithms. Let’s turn now to a completely different way to
approach satisfiability problems, based on finding solutions by totally heuristic
and randomized methods, often called stochastic local search. We often use such
methods in our daily lives, even though there’s no guarantee of success. The
simplest satisfiability-oriented technique of this kind was introduced by Jun Gu
[see SIGART Bulletin 3, 1 (January 1992), 8–12] and by Christos Papadimitriou
[FOCS 32 (1991), 163–169] as a byproduct of more general studies:

“Start with any truth assignment. While there are unsatisfied
clauses, pick any one, and flip a random literal in it.”

Some programmers are known to debug their code in a haphazard manner,
somewhat like this approach; and we know that such “blind” changes are foolish
because they usually introduce new bugs. Yet this idea does have merit when it
is applied to satisfiability, so we shall formulate it as an algorithm:

Algorithm P (Satisfiability by random walk). Given m nonempty clauses
C1 ∧ · · · ∧ Cm on n Boolean variables x1 . . . xn, this algorithm either finds a
solution or terminates unsuccessfully after making N trials.

P1. [Initialize.] Assign random Boolean values to x1 . . . xn. Set j ← 0, s ← 0,
and t ← 0. (We know that s clauses are satisfied after having made t flips.)

P2. [Success?] If s = m, terminate successfully with solution x1 . . . xn. Other-
wise set j ← (j modm)+1. If clause Cj is satisfied by x1 . . . xn, set s ← s+1
and repeat this step.

P3. [Done?] If t = N , terminate unsuccessfully.

P4. [Flip one bit.] Let clause Cj be (l1 ∨ · · · ∨ lk). Choose a random index
i ∈ {1, . . . , k}, and change variable |li| so that literal li becomes true. Set
s ← 1, t ← t+ 1, and return to P2.

Suppose, for example, that we’re given the seven clauses R′ of (7). Thus
m = 7, n = 4; and there are two solutions, 01∗1. In this case every nonsolution
violates a unique clause; for example, 1100 violates the clause 1̄2̄3, so step P4 is
equally likely to change 1100 to 0100, 1000, or 1110, only one of which is closer
to a solution. An exact analysis (see exercise 294) shows that Algorithm P will
find a solution after making 8.25 flips, on the average. That’s no improvement
over a brute-force search through all 2n = 16 possibilities; but a small example
like this doesn’t tell us much about what happens when n is large.

Papadimitriou observed that Algorithm P is reasonably effective when it’s
applied to 2SAT problems, because each flip has roughly a 50-50 chance of making

261

From the Library of Melissa Nuno

ptg999

262 COMBINATORIAL SEARCHING 7.2.2.2

progress in that case. Several years later, Uwe Schöning [Algorithmica 32 (2002),
615–623] discovered that the algorithm also does surprisingly well on instances of
3SAT, even though the flips when k > 2 in step P4 tend to go “the wrong way”:

Theorem U. If the given clauses are satisfiable, and if each clause has at
most three literals, Algorithm P will succeed with probability Ω

(
(3/4)n/n

)
after

making at most n flips.

Proof. By complementing variables, if necessary, we can assume that 0 . . . 0 is
a solution; under this assumption, every clause has at least one negative literal.
Let Xt = x1 + · · ·+ xn be the number of 1s after t flips have been made. Each
flip changes Xt by ±1, and we want to show that there’s a nontrivial chance that
Xt will become 0. After step P1, the random variable X0 will be equal to q with
probability

(
n
q

)
/2n.

A clause that contains three negative literals is good news for Algorithm P,
because it is violated only when all three variables are 1; a flip will always
decrease Xt in such a case. Similarly, a violated clause with two negatives
and one positive will invoke a flip that makes progress 2/3 of the time. The
worst case occurs only when a problematic clause has only one negative literal.
Unfortunately, every clause might belong to this worst case, for all we know.

Instead of studying Xt, which depends on the pattern of clauses, it’s much
easier to study another random variable Yt defined as follows: Initially Y0 = X0;
but Yt+1 = Yt − 1 only when step P4 flips the negative literal that has the
smallest subscript; otherwise Yt+1 = Yt + 1. For example, after taking care of a
violated clause such as x3∨x̄5∨x̄8, we have Xt+1 = Xt+(+1,−1,−1) but Yt+1 =
Yt+(+1,−1,+1) in the three possible cases. Furthermore, if the clause contains
fewer than three literals, we penalize Yt+1 even more, by allowing it to be Yt− 1
only with probability 1/3. (After a clause such as x4 ∨ x̄6, for instance, we put
Yt+1 = Yt−1 in only 2/3 of the cases when x6 is flipped; otherwise Yt+1 = Yt+1.)

We clearly have Xt ≤ Yt for all t. Therefore Pr(Xt = 0) ≥ Pr(Yt = 0),
after t flips have been made; and we’ve defined things so that it’s quite easy to
calculate Pr(Yt = 0), because Yt doesn’t depend on the current clause j:

Pr(Yt+1 = Yt − 1) = 1/3 and Pr(Yt+1 = Yt + 1) = 2/3 when Yt > 0.

Indeed, the theory of random walks developed in Section 7.2.1.6 tells us how to
count the number of scenarios that begin with Y0 = q and end with Yt = 0, after
Yt has increased p times and decreased p+ q times while remaining positive for
0 ≤ t < 2p+ q. It is the “ballot number” of Eq. 7.2.1.6–(23),

Cp,p+q−1 =
q

2p+ q

(
2p+ q

p

)
. (128)

The probability that Y0 = q and that Yt = 0 for the first time when t = 2p+ q
is therefore exactly

f(p, q) =
1

2n

(
n

q

)
q

2p+ q

(
2p+ q

p

)(
1

3

)p+q(2
3

)p
. (129)

262

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: MONTE CARLO ALGORITHMS 263

Every value of p and q gives a lower bound for the probability that Algorithm P
succeeds; and exercise 296 shows that we get the result claimed in Theorem U
by choosing p = q ≈ n/3.

Theorem U might seem pointless, because it predicts success only with
exponentially small probability when N = n. But if at first we don’t succeed, we
can try and try again, by repeating Algorithm P with different random choices.
And if we repeat it Kn(4/3)n times, for large enough K, we’re almost certain to
find a solution unless the clauses can’t all be satisfied.

In fact, even more is true, because the proof of Theorem U doesn’t exploit the
full power of Eq. (129). Exercise 297 carries the analysis further, in a particularly
instructive way, and proves a much sharper result:

Corollary W. When Algorithm P is applied K(4/3)n times with N = 2n to a
set of satisfiable ternary clauses, its success probability exceeds 1− e−K/2.

If the clauses C1∧· · ·∧Cm are unsatisfiable, Algorithm P will never demon-
strate that fact conclusively. But if we repeat it 100(4/3)n times and get no
solution, Corollary W tells us that the chances of satisfiability are incredibly
small (less than 10−21). So it’s a safe bet that no solution exists in such a case.

Thus Algorithm P has a surprisingly good chance of finding solutions “with
its eyes closed,” while walking at random in the gigantic space of all 2n binary
vectors; and we can well imagine that even better results are possible if we devise
randomized walking methods that proceed with eyes wide open. Therefore many
people have experimented with strategies that try to make intelligent choices
about which direction to take at each flip-step. One of the simplest and best of
these improvements, popularly known as WalkSAT, was devised by B. Selman,
H. A. Kautz, and B. Cohen [Nat. Conf. Artificial Intelligence 12 (1994), 337–343]:

Algorithm W (WalkSAT). Given m nonempty clauses C1 ∧ · · · ∧ Cm on n
Boolean variables x1 . . . xn, and a “greed-avoidance” parameter p, this algorithm
either finds a solution or terminates unsuccessfully after making N trials. It uses
auxiliary arrays c1 . . . cn, f0 . . . fm−1, k1 . . . km, and w1 . . . wm.

W1. [Initialize.] Assign random Boolean values to x1 . . . xn. Also set r ← t ← 0
and c1 . . . cn ← 0 . . . 0. Then, for 1 ≤ j ≤ m, set kj to the number of true
literals in Cj ; and if kj = 0, set fr ← j, wj ← r, and r ← r + 1; or if
kj = 1 and the only true literal of Cj is xi or x̄i, set ci ← ci +1. (Now r is
the number of unsatisfied clauses, and the f array lists them. The number
ci is the “cost” or “break count” for variable xi, namely the number of
additional clauses that will become false if xi is flipped.)

W2. [Done?] If r = 0, terminate successfully with solution x1 . . . xn. Otherwise,
if t = N , terminate unsuccessfully.

W3. [Choose j.] Set j ← fq, where q is uniformly random in {0, 1, . . . , r − 1}.
(In other words, choose an unsatisfied clause Cj at random, considering
every such clause to be equally likely; exercise 3.4.1–3 discusses the best
way to compute q.) Let clause Cj be (l1 ∨ · · · ∨ lk).

263

From the Library of Melissa Nuno

ptg999

264 COMBINATORIAL SEARCHING 7.2.2.2

W4. [Choose l.] Let c be the smallest cost among the literals {l1, . . . , lk}. If
c = 0, or if c ≥ 1 and U ≥ p where U is uniform in [0 . . 1), choose l randomly
from among the literals of cost c. (We call this a “greedy” choice, because
flipping l will minimize the number of newly false clauses.) Otherwise
choose l randomly in {l1, . . . , lk}.

W5. [Flip l.] Change the value of variable |l|, and update r, c1 . . . cn, f0 . . . fr−1,
k1 . . . km, w1 . . . wm to agree with this new value. (Exercise 302 explains
how to implement steps W4 and W5 efficiently, with computer-friendly
changes to the data structures.) Set t ← t+ 1 and return to W2.

If, for example, we try to satisfy the seven clauses of (7) with Algorithm W,
as we did earlier with Algorithm P, the choice x1x2x3x4 = 0110 violates 2̄3̄4;
and c1c2c3c4 turns out to be 0110 in this situation. So step W4 will choose to
flip x4, and we’ll have the solution 0111. (See exercise 303.)

Notice that step W3 focuses attention on clauses whose variables need to
change. Furthermore, a literal that appears in the most unsatisfied clauses is
most likely to appear in the chosen clause Cj .

If no cost-free flip is available, step W4 makes nongreedy choices with prob-
ability p. This policy keeps the algorithm from getting stuck in an unsatisfiable
region from which there’s no greedy exit. Extensive experiments by S. Seitz,
M. Alava, and P. Orponen [J. Statistical Mechanics (June 2005), P06006:1–27]
indicate that the best choice of p is .57 when large random 3SAT problems are
being tackled and when N = ∞. For example, with this setting of p, and with
m = 4.2n random 3-literal clauses, Algorithm W works fantastically well: It
tends to find solutions after making fewer than 10,000n flips when n = 104, and
fewer than 2500n flips when 105 ≤ n ≤ 106.

What about the parameter N? Should we set it equal to 2n (as recom-
mended for 3SAT problems with respect to Algorithm P), or perhaps to n2 (as
recommended for 2SAT in exercise 299), or to 2500n (as just mentioned for 3SAT
in AlgorithmW), or to something else? When we use an algorithm like WalkSAT,
whose behavior can vary wildly depending on random choices and on unknown
characteristics of the data, it’s often wise to “cut our losses” and to start afresh
with a brand new pattern of random numbers.

Exercise 306 proves that such an algorithm always has an optimum cutoff
value N = N∗, which minimizes the expected time to success when the algorithm
is restarted after each failure. Sometimes N∗ = ∞ is the best choice, meaning
that we should always keep plowing ahead; in other cases N∗ is quite small.

But N∗ exists only in theory, and the theory requires perfect knowledge of
the algorithm’s behavior. In practice we usually have little or no information
about how N should best be specified. Fortunately there’s still an effective way
to proceed, by using the notion of reluctant doubling introduced by M. Luby,
A. Sinclair, and D. Zuckerman [Information Proc. Letters 47 (1993), 173–180],
who defined the interesting sequence

S1, S2, . . . = 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, (130)

264

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 265

The elements of this sequence are all powers of 2. Furthermore we have Sn+1 =
2Sn if the number Sn has already occurred an even number of times, otherwise
Sn+1 = 1. A convenient way to generate this sequence is to work with two
integers (u, v), and to start with (u1, v1) = (1, 1); then

(un+1, vn+1) =
(
un &−un = vn? (un + 1, 1): (un, 2vn)

)
. (131)

The successive pairs are (1, 1), (2, 1), (2, 2), (3, 1), (4, 1), (4, 2), (4, 4), (5, 1), . . . ,
and we have Sn = vn for all n ≥ 1.

The reluctant doubling strategy is to run Algorithm W repeatedly with
N = cS1, cS2, cS3, . . . , until success is achieved, where c is some constant.
Exercise 308 proves that the expected running time X obtained in this way
exceeds the optimum by at most a factor of O(logX). Other sequences besides
〈Sn〉 also have this property, and they’re sometimes better (see exercise 311).
The best policy is probably to use 〈cSn〉, where c represents our best guess
about the value of N∗; in this way we hedge our bets in case c is too small.

The Local Lemma. The existence of particular combinatorial patterns is often
established by using a nonconstructive proof technique called the “probabilistic
method,” pioneered by Paul Erdős. If we can show that Pr(X) > 0, in some
probability space, then X must be true in at least one case. For example [Bull.
Amer. Math. Soc. 53 (1947), 292–294], Erdős famously observed that there is a
graph G on n vertices such that neither G nor G contains a k-clique, whenever(

n

k

)
< 2k(k−1)/2−1. (132)

For if we consider a random graph G, each of whose
(
n
2

)
edges is present with

probability 1/2, and if U is any particular subset of k vertices in G, the proba-
bility that either G |U or G |U is a complete graph is clearly 2/2k(k−1)/2. Hence
the probability that this doesn’t happen for any of the

(
n
k

)
subsets U is at least

1− (n
k

)
21−k(k−1)/2. This probability is positive; so such a graph must exist.

The proof just given does not provide any explicit construction. But it does
show that we can find such a graph by making at most 1

/(
1 − (n

k

)
21−k(k−1)/2

)
random trials, on the average, provided that n and k are small enough that we
are able to test all

(
n
k

)
subgraphs in a reasonable amount of time.

Probability calculations of this kind are often complicated by dependencies
between the random events being considered. For example, the presence of a
clique in one part of a graph affects the likelihood of many other cliques that
share some of the same vertices. But the interdependencies are often highly
localized, so that “remote” events are essentially independent of each other.
László Lovász introduced an important way to deal with such situations early in
the 1970s, and his approach has become known as the “Local Lemma” because it
has been used to establish many theorems. First published as a lemma on pages
616–617 of a longer paper [Erdős and Lovász, Infinite and Finite Sets, Colloquia
Math. Soc. János Bolyai 10 (1975), 609–627], and subsequently extended to a
“lopsided” form [P. Erdős and J. Spencer, Discrete Applied Math. 30 (1991),
151–154], it can be stated as follows:

265

From the Library of Melissa Nuno

ptg999

266 COMBINATORIAL SEARCHING 7.2.2.2

Lemma L. Let A1, . . . , Am be events in some probability space. Let G be a
graph on vertices {1, . . . ,m}, and let (p1, . . . , pm) be numbers such that

Pr(Ai | Aj1 ∩ · · · ∩Ajk) ≤ pi whenever k ≥ 0 and i /−−−j1, . . . , i /−−−jk. (133)

Then Pr(A1∩· · ·∩Am) > 0 whenever (p1, . . . , pm) lies in a certain set R(G).

In applications we think of the Aj as “bad” events, which are undesirable
conditions that interfere with whatever we’re trying to find. The graph G is
called a “lopsidependency graph” for our application; this name was coined as
an extension of Lovász’s original term “dependency graph,” for which the strict
condition ‘= pi’ was assumed in place of ‘≤ pi’ in (133).

The set R(G) of probability bounds for which we can guarantee that all bad
events can simultaneously be avoided, given (133), will be discussed further be-
low. If G is the complete graphKm, so that (133) simply states that Pr(Ai) ≤ pi,
R(G) is clearly {(p1, . . . , pm) | (p1, . . . , pm) ≥ (0, . . . , 0) and p1 + · · ·+ pm < 1};
this is the smallest possible R(G). At the other extreme, if G is the empty
graph Km, we get {(p1, . . . , pm) | 0 ≤ pj < 1 for 1 ≤ j ≤ m}, the largest possible
R(G). Adding an edge to G makes R(G) smaller. Notice that, if (p1, . . . , pm) is
in R(G) and 0 ≤ p′j ≤ pj for 1 ≤ j ≤ m, then also (p′1, . . . , p

′
m) ∈ R(G).

Lovász discovered an elegant local condition that suffices to make Lemma L
widely applicable [see J. Spencer, Discrete Math. 20 (1977), 69–76]:

Theorem L. The probability vector (p1, . . . , pm) is in R(G) when there are
numbers 0 ≤ θ1, . . . , θm < 1 such that

pi = θi
∏

i−−j inG
(1− θj). (134)

Proof. Exercise 344(e) proves that Pr(A1 ∩ · · · ∩Am) ≥ (1− θ1) . . . (1− θm).

James B. Shearer [Combinatorica 5 (1985), 241–245] went on to determine
the exact maximum extent of R(G) for all graphs G, as we’ll see later; and he
also established the following important special case:

Theorem J. Suppose every vertex of G has degree ≤ d, where d > 1. Then
(p, . . . , p) ∈ R(G) when p ≤ (d− 1)d−1/dd.

Proof. See the interesting inductive argument in exercise 317.

This condition on p holds whenever p ≤ 1/(ed) (see exercise 319).

Further study led to a big surprise: The Local Lemma proves only that
desirable combinatorial patterns exist, although they might be rare. But Robin
Moser and Gábor Tardos discovered [JACM 57 (2010), 11:1–11:15] that we can
efficiently compute a pattern that avoids all of the bad Aj , using an almost
unbelievably simple algorithm analogous to WalkSAT!

Algorithm M (Local resampling). Given m events {A1, . . . , Am} that depend
on n Boolean variables {x1, . . . , xn}, this algorithm either finds a vector x1 . . . xn
for which none of the events is true, or loops forever. We assume that Aj is a
function of the variables {xk | k ∈ Ξj} for some given subset Ξj ⊆ {1, . . . , n}.

266

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 267

Whenever the algorithm assigns a value to xk, it sets xk ← 1 with probability
ξk and xk ← 0 with probability 1− ξk, where ξk is another given parameter.

M1. [Initialize.] For 1 ≤ k ≤ n, set xk ← [U <ξk], where U is uniform in [0 . . 1).

M2. [Choose j.] Set j to the index of any event such that Aj is true. If no such j
exists, terminate successfully, having found a solution x1 . . . xn.

M3. [Resample for Aj .] For each k ∈ Ξj , set xk ← [U <ξk], where U is uniform
in [0 . . 1). Return to M2.

(We have stated Algorithm M in terms of binary variables xk purely for conve-
nience. The same ideas apply when each xk has a discrete probability distribution
on any set of values, possibly different for each k.)

To tie this algorithm to the Local Lemma, we assume that event Ai holds
with probability ≤ pi whenever the variables it depends on have the given
distribution. For example, if Ai is the event “x3 �= x5” then pi must be at
least ξ3(1− ξ5) + (1− ξ3)ξ5.

We also assume that there’s a graph G on vertices {1, . . . ,m} such that
condition (133) is true, and that i−−− j whenever i �= j and Ξi ∩ Ξj �= ∅. Then
G is a suitable dependency graph for {A1, . . . , Am}, because the events Aj1 ,
. . . , Ajk can’t possibly influence Ai when i /−−− j1, . . . , i /−−− jk. (Those events
share no common variables with Ai.) We can also sometimes get by with fewer
edges by making G a lopsidependency graph; see exercise 351.

Algorithm M might succeed with any given events, purely by chance. But
if the conditions of the Local Lemma are satisfied, success can be guaranteed:

Theorem M. If (133) holds with probabilities that satisfy condition (134) of
Theorem L, step M3 is performed for Aj at most θj/(1− θj) times, on average.

Proof. Exercise 352 shows that this result is a corollary of the more general
analysis that is carried out below. The stated upper bound is good news, because
θj is usually quite small.

Traces and pieces. The best way to understand why AlgorithmM is so efficient
is to view it algebraically in terms of “traces.” The theory of traces is a beautiful
area of mathematics in which amazingly simple proofs of profound results have
been discovered. Its basic ideas were first formulated by P. Cartier and D. Foata
[Lecture Notes in Math. 85 (1969)], then independently developed from another
point of view by R. M. Keller [JACM 20 (1973), 514–537, 696–710] and A.
Mazurkiewicz [“Concurrent program schemes and their interpretations,” DAIMI
Report PB 78 (Aarhus University, July 1977)]. Significant advances were made
by G. X. Viennot [Lecture Notes in Math. 1234 (1985), 321–350], who presented
many wide-ranging applications and explained how the theory could readily be
visualized in terms of what he called “heaps of pieces.”

Trace theory is the study of algebraic products whose variables are not
necessarily commutative. Thus it forms a bridge between the study of strings
(in which, for example, acbbaca is quite distinct from baccaab) and the study
of ordinary commutative algebra (in which both of those examples are equal to

267

From the Library of Melissa Nuno

ptg999

268 COMBINATORIAL SEARCHING 7.2.2.2

aaabbcc = a3b2c2). Each adjacent pair of letters {a, b} either commutes, meaning
that ab = ba, or clashes, meaning that ab is different from ba. If, for instance,
we specify that a commutes with c but that b clashes with both a and c, then
acbbaca is equal to cabbaac, and it has six variants altogether; similarly, there
are ten equally good ways to write baccaab.

Formally speaking, a trace is an equivalence class of strings that can be
converted to each other by repeatedly interchanging pairs of adjacent letters that
don’t clash. But we don’t need to fuss about the fact that equivalence classes
are present; we can simply represent a trace by any one of its equivalent strings,
just as we don’t distinguish between equivalent fractions such as 1/2 and 3/6.

Every graph whose vertices represent distinct letters defines a family of
traces on those letters, when we stipulate that two letters clash if and only
if they are adjacent in the graph. For example, the path graph a −−− b −−− c
corresponds to the rules stated above. The distinct traces for this graph are

ε, a, b, c, aa, ab, ac, ba, bb, bc, cb, cc, aaa, aab, . . . , ccb, ccc, aaaa, . . . (135)

if we list them first by size and then in lexicographic order. (Notice that ca
is absent, because ac has already appeared.) The complete graph Kn defines
traces that are the same as strings, when nothing commutes; the empty graph
Kn defines traces that are the same as monomials, when everything commutes. If
we use the path a−−−b−−−c−−−d−−−e−−−f to define clashes, the traces bcebafdc
and efbcdbca turn out to be the same.

Viennot observed that partial commutativity is actually a familiar concept,
if we regard the letters as “pieces” that occupy “territory.” Pieces clash if and
only if their territories overlap; pieces commute if and only if their territories are
disjoint. A trace corresponds to stacking the pieces on top of one another, from
left to right, letting each new piece “fall” until it either rests on the ground or on
another piece. In the latter case, it must rest on the most recent piece with which
it clashes. He called this configuration an empilement—a nice French word.

More precisely, each piece a is assigned a nonempty subset T (a) of some
universe, and we say that a clashes with b if and only if T (a) ∩ T (b) �= ∅. For
example, the constraints of the graph a−−−b−−−c−−−d−−−e−−−f arise when we let

T (a) = {1, 2}, T (b) = {2, 3}, T (c) = {3, 4}, . . . , T (f) = {6, 7};
then the traces bcebafdc and efbcdbca both have

b

c

e

b

a

f

d

c

(136)

as their empilement. (Readers who have played the game of Tetris©R will imme-
diately understand how such diagrams are formed, although the pieces in trace
theory differ from those of Tetris because they occupy only a single horizontal
level. Furthermore, each type of piece always falls in exactly the same place; and
a piece’s territory T (a) might have “holes”— it needn’t be connected.)

268

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 269

Two traces are the same if and only if they have the same empilement. In
fact, the diagram implicitly defines a partial ordering on the pieces that appear;
and the number of different strings that represent any given trace is the number
of ways to sort that ordering topologically (see exercise 324).

Every trace α has a length, denoted by |α|, which is the number of letters in
any of its equivalent strings. It also has a height, written h(α), which is the num-
ber of levels in its empilement. For example, |bcebafdc| = 8 and h(bcebafdc) = 4.

Arithmetic on traces. To multiply traces, we simply concatenate them. If,
for example, α = bcebafdc is the trace corresponding to (136), then ααR =
bcebafdccdfabecb has the following empilement:

c

d

fa

b

ec

b

×

b

c

e

b

a

f

d

c

=

b

c

e

b

a

f

d

c

c

d

f

a

b

ec

b

(137)

The algorithm in exercise 327 formulates this procedure precisely. A moment’s
thought shows that |αβ| = |α|+ |β|, h(αβ) ≤ h(α)+h(β), and h(ααR) = 2h(α).

Traces can also be divided, in the sense that α = (αβ)/β can be determined
uniquely when αβ and β are given. All we have to do is remove the pieces of β
from the pieces of αβ, one by one, working our way down from the top of the
empilements. Similarly, the value of β = α \ (αβ) can be computed from the
traces α and αβ. (See exercises 328 and 329.)

Notice that we could rotate diagrams like (136) and (137) by 90 degrees,
thereby letting the pieces “fall” to the left instead of downwards. (We’ve used a
left-to-right approach for similar purposes in Section 5.3.4, Fig. 50.) Or we could
let them fall upwards, or to the right. Different orientations are sometimes more
natural, depending on what we’re trying to do.

We can also add and subtract traces, thereby obtaining polynomials in vari-
ables that are only partially commutative. Such polynomials can be multiplied
in the normal way; for example, (α + β)(γ − δ) = αγ − αδ + βγ − βδ. Indeed,
we can even work with infinite sums, at least formally: The generating function
for all traces that belong to the graph a−−−b−−−c is

1+a+b+c+aa+ab+ac+ba+bb+bc+cb+cc+aaa+· · ·+ccc+aaaa+· · · . (138)
(Compare with (135); we now use 1, not ε, to stand for the empty string.)

The infinite sum (138) can actually be expressed in closed form: It equals

1

1− a− b− c+ ac
= 1 + (a+b+c−ac) + (a+b+c−ac)2 + · · · , (139)

269

From the Library of Melissa Nuno

ptg999

270 COMBINATORIAL SEARCHING 7.2.2.2

an identity that is correct not only when the variables are commutative, but also
in the algebra of traces, when variables commute only when they don’t clash.

In their original monograph of 1969, Cartier and Foata showed that the sum
of all traces with respect to any graph can be expressed in a remarkably simple
way that generalizes (139). Let’s define the Möbius function of a trace α with
respect to a graph G by the rule

μG(α) =

{
0, if hG(α) > 1;

(−1)|α|, otherwise.
(140)

(The classical Möbius function μ(n) for integers, defined in exercise 4.5.2–10, is
analogous.) Then the Möbius series for G is defined to be

MG =
∑
α

μG(α)α, (141)

where the sum is over all traces. This sum is a polynomial, when G is finite,
because it contains exactly one nonzero term for every independent set of vertices
in G; therefore we might call it the Möbius polynomial. For example, when G is
the path a−−−b−−−c, we have MG = 1−a− b− c+ac, the denominator in (139).
Cartier and Foata’s generalization of (139) has a remarkably simple proof:

Theorem F. The generating function TG for the sum of all traces, with respect
to any graph G, is 1/MG.

Proof. We want to show that MGTG = 1, in the (partially commutative) algebra
of traces. This infinite product is

∑
α,β μG(α)αβ =

∑
γ

∑
α,β μG(α)γ [γ=αβ].

Hence we want to show that the sum of μG(α), over all ways to factorize
γ = αβ as the product of two traces α and β, is zero whenever γ is nonempty.

But that’s easy. We can assume that the letters are ordered in some arbitrary
fashion. Let a be the smallest letter in the bottom level of γ’s empilement. We
can restrict attention to cases where α consists of independent (commuting) let-
ters (pieces), because μG(α) = 0 otherwise. Now if α = aα′ for some trace α′, let
β′ = aβ; otherwise we must have β = aβ′ for some trace β′, and we let α′ = aα.
In both cases αβ = α′β′, (α′)′ = α, (β′)′ = β, and μG(α)+μG(α

′) = 0. So we’ve
grouped all possible factorizations of γ into pairs that cancel out in the sum.

The Möbius series for any graph can be computed recursively via the formula

MG = MG\a − aMG\a∗ , a∗ = {a} ∪ {b | a−−−b}, (142)

where a is any letter (vertex) of G, because we have a /∈ I or a ∈ I whenever I
is independent. For example, if G is the path a−−− b−−− c−−− d−−− e−−− f , then
G \ a∗ = G | {c, d, e, f} is the path c−−−d−−−e−−−f ; repeated use of (142) yields

MG = 1− a− b− c− d− e− f + ac+ ad+ ae+ af
+ bd+ be+ bf + ce+ cf + df − ace− acf − adf − bdf (143)

in this case. Since MG is a polynomial, we can indicate its dependence on the
variables by writing MG(a, b, c, d, e, f). Notice that MG is always multilinear
(that is, linear in each variable); and MG\a(b, c, d, e, f) = MG(0, b, c, d, e, f).

270

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 271

In applications we often want to replace each letter in the polynomial by
a single variable, such as z, and write MG(z). The polynomial in (143) then
becomes MG(z) = 1−6z+10z2−4z3; and we can conclude from Theorem F that
the number of traces of length n with respect to G is [zn] 1/(1−6z+10z2−4z3) =
1
4 (2 +

√
2)n+2 + 1

4 (2−√
2)n+2 − 2n+1.

Although (142) is a simple recurrence for MG, we can’t conclude that MG

is easy to compute when G is a large and complicated graph. Indeed, the degree
of MG is the size of a maximum independent set in G; and it’s NP-hard to
determine that number! On the other hand, there are many classes of graphs,
such as interval graphs and forests, for whichMG can be computed in linear time.

If α is any trace, the letters that can occur first in a string that represents
it are called the sources of α; these are the pieces on the bottom level of α’s
empilement, also called its minimal pieces. Dually, the letters that can occur
last are the sinks of α, its maximal pieces. A trace that has only one source is
called a cone; in this case all pieces are ultimately supported by a single piece
at the bottom. A trace that has only one sink is, similarly, called a pyramid.
Viennot proved a nice generalization of Theorem F in his lecture notes:

MG\A/MG is the sum of all traces whose sources are contained in A. (144)

(See exercise 338; Theorem F is the special case where A is the set of all vertices.)
In particular, the cones for which a is the only source are generated by

MG\a/MG − 1 = aMG\a∗ /MG. (145)

*Traces and the Local Lemma. Now we’re ready to see why the theory of
traces is intimately connected with the Local Lemma. If G is any graph on
the vertices {1, . . . ,m}, we say that R(G) is the set of all nonnegative vectors
(p1, . . . , pm) such that MG(p

′
1, . . . , p

′
m) > 0 whenever 0 ≤ p′j ≤ pj for 1 ≤ j ≤ m.

This definition of R(G) is consistent with the implicit definition already given
in Lemma L, because of the following characterization found by J. B. Shearer:

Theorem S. Under condition (133) of Lemma L, (p1, . . . , pm) ∈ R(G) implies

Pr(A1 ∩ · · · ∩Am) ≥ MG(p1, . . . , pm) > 0. (146)

Conversely, if (p1, . . . , pm) /∈ R(G), there are events B1, . . . , Bm such that

Pr(Bi | Bj1 ∩ · · · ∩Bjk) = pi whenever k ≥ 0 and i /−−−j1, . . . , i /−−−jk, (147)

and Pr(B1 ∩ · · · ∩Bm) = 0.

Proof. When (p1, . . . , pm) ∈ R(G), exercise 344 proves that there’s a unique
distribution for events B1, . . . , Bm such that they satisfy (147) and also

Pr
(⋂
j∈J

Aj

)
≥ Pr

(⋂
j∈J

Bj

)
= MG

(
p1[1∈ J], . . . , pm[m∈ J]

)
(148)

for every subset J ⊆ {1, . . . ,m}. In this “extreme” worst-possible distribution,
Pr(Bi ∩Bj) = 0 whenever i−−−j in G. Exercise 345 proves the converse.

271

From the Library of Melissa Nuno

ptg999

272 COMBINATORIAL SEARCHING 7.2.2.2

Given a probability vector (p1, . . . , pm), let

M∗
G(z) = MG(p1z, . . . , pmz). (149)

Theorem F tells us that the coefficient of zn in the power series 1/M∗
G(z) is the

sum of all traces of length n for G. Since this coefficient is nonnegative, we know
by Pringsheim’s theorem (see exercise 348) that the power series converges for
all z < 1 + δ, where 1 + δ is the smallest real root of the polynomial equation
M∗

G(z) = 0; this number δ is called the slack of (p1, . . . , pm) with respect to G.
It’s easy to see that (p1, . . . , pm) ∈ R(G) if and only if the slack is positive.

For if δ ≤ 0, the probabilities (p′1, . . . , p
′
m) with p′j = (1 + δ)pj make MG = 0.

But if δ > 0, the power series converges when z = 1. And (since it represents
the sum of all traces) it also converges to the positive number 1/MG if any pj is
decreased; hence (p1, . . . , pm) lies in R(G) by definition. Indeed, this argument
shows that, when (p1, . . . , pm) ∈ R(G), we can actually increase the probabilities
to ((1 + ε)p1, . . . , (1 + ε)pm), and they will still lie in R(G) whenever ε < δ.

Let’s return now to Algorithm M. Suppose the successive bad events Aj

that step M3 tries to quench are X1, X2, . . . , XN , where N is the total number
of times step M3 is performed (possibly N = ∞). To prove that Algorithm M is
efficient, we shall show that this random variable N has a small expected value,
in the probability space of the independent uniform deviates U that appear in
steps M1 and M3. The main idea is that X1X2 . . . XN is essentially a trace for
the underlying graph; hence we can consider it as an empilement of pieces.

Some simple and concrete examples will help to develop our intuition; we
shall consider two case studies. In both cases there are m = 6 events A, B, C,
D, E, F , and there are n = 7 variables x1 . . . x7. Each variable is a random bit;
thus ξ1 = · · · = ξ7 = 1/2 in the algorithm. Event A depends on x1x2, while B
depends on x2x3, . . . , and F depends on x6x7. Furthermore, each event occurs
with probability 1/4. In Case 1, each event is true when its substring is ‘10’; thus
all events are false if and only if x1 . . . x7 is sorted—that is, x1 ≤ x2 ≤ · · · ≤ x7.
In Case 2, each event is true when its substring is ‘11’; thus all events are false
if and only if x1 . . . x7 has no two consecutive 1s.

What happens when we apply Algorithm M to those two cases? One
possible scenario is that step M3 is applied N = 8 times, with X1X2 . . .X8 =
BCEBAFDC . The actual changes to the bits x1 . . . x7 might then be

Case 1

1
1
0
0
1
0
0

1
1
1
0
0
1
0

1
1
0
1
0
1
1

1
0
1
0
0
1
1

0
0
0
0
0
1
1

;

Case 2

1
1
1
1
1
1
1

1
1
1
1
1
1
1

1
1
1
1
1
1
0

1
1
1
1
0
1
0

1
0
0
1
0
1
0

. (150)

(Read x1 . . . x7 from top to bottom in these diagrams, and scan from left to right.
Each module ‘ ’ means “replace the two bad bits at the left by two random bits

272

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: THE LOCAL LEMMA 273

at the right.” In examples such as this, any valid solution x1 . . . x7 can be placed
at the far right; all values to the left of the modules are then forced.)

Notice that these diagrams are like the empilement (136), except that they’ve
been rotated 90◦. We know from (136) that the same diagram applies to the
scenario EFBCDBCA as well as to BCEBAFDC , because they’re the same, as
traces. Well . . . , not quite! In truth, EFBCDBCA doesn’t give exactly the same
result as BCEBAFDC in Algorithm M, if we execute that algorithm as presently
written. But the results would be identical if we used separate streams of
independent random numbers Uk for each variable xk. Thus we can legitimately
equate equivalent traces, in the probability space of our random events.

The algorithm runs much faster in practice when it’s applied to Case 1 than
when it’s applied to Case 2. How can that be? Both of the diagrams in (150)
occur with the same probability, namely (1/2)7(1/4)8, as far as the random num-
bers are concerned. And every diagram for Case 1 has a corresponding diagram
for Case 2; so we can’t distinguish the cases by the number of different diagrams.
The real difference comes from the fact that, in Case 1, we never have two events
to choose from in step M2, unless they are disjoint and can be handled in either
order. In Case 2, by contrast, we are deluged at almost every step with events
that need to be snuffed out. Therefore the scenario at the right of (150) is actually
quite unlikely; why should the algorithm pick B as the first event to correct, and
then C, rather than A? Whatever method is used in step M2, we’ll find that
the diagrams for Case 2 will occur less frequently than dictated by the strict
probabilities, because of the decreasing likelihood that any particular event will
be worked on next, in the presence of competing choices. (See also exercise 353.)

Worst-case upper bounds on the running time of Algorithm M therefore
come from situations like Case 1. In general, the empilement BCEBAFDC

in (150) will occur in a run of Algorithm M with probability at most bcebafdc,
if we write ‘a’ for the probabilistic upper bound for event A that is denoted by
‘pi’ in (133) when A is Ai, and if ‘b’, . . . , ‘f ’ are similar for B, . . . , F . The
reason is that bcebafdc is clearly the probability that those events are produced
by the independent random variables xk set by the algorithm, if the layers of
the corresponding empilement are defined by dependencies between the variable
sets Ξj . And even if events in the same layer are dependent (by shared variables)
yet not lopsidependent (in the sense of exercise 351), such events are positively
correlated; so the FKG inequality of exercise MPR–61, which holds for the
Bernoulli-distributed variables of Algorithm M, shows that bcebafdc is an upper
bound. Furthermore the probability that step M2 actually chooses B, C, E, B,
A, F , D, and C to work on is at most 1.

Therefore, when (p1, . . . , pm) ∈ R(G), Algorithm M’s running time is max-
imized when it is applied to events B1, . . . , Bm that have the extreme distri-
bution (148) of exercise 344. And we can actually write down the generating

function for the running time with respect to those extreme events: We have∑
N≥0

Pr(Algorithm M on B1, . . . , Bm does N resamplings)zN =
M∗

G(1)

M∗
G(z)

, (151)

273

From the Library of Melissa Nuno

ptg999

274 COMBINATORIAL SEARCHING 7.2.2.2

where M∗
G(z) is defined in (149), because the coefficient of zN in 1/M∗

G(z) is the
sum of the probabilities of all the traces of length N . Theorem F describes the
meaning of 1/M∗

G(1) as a “formal” power series in the variables pi; we proved
it without considering whether or not the infinite sum converges when those
variables receive numerical values. But when (p1, . . . , pm) ∈ R(G), this series is
indeed convergent (it even has a positive “slack”).

This reasoning leads to the following theorem of K. Kolipaka and M. Szegedy
[STOC 43 (2011), 235–243]:

Theorem K. If (p1, . . . , pm) ∈ R(G), Algorithm M resamples Ξj at most

Ej = pjMG\A∗
j
(p1, . . . , pm)/MG(p1, . . . , pm) (152)

times, on the average. In particular, the expected number of iterations of step M3
is at most E1 + · · ·+ Em ≤ m/δ, where δ is the slack of (p1, . . . , pm).

Proof. The extreme distribution B1, . . . , Bm maximizes the number of times Ξj
is resampled, and the generating function for that number in the extreme case is

MG(p1, . . . , pj−1, pj , pj+1, . . . , pm)
MG(p1, . . . , pj−1, pjz, pj+1, . . . , pm)

. (153)

Differentiating with respect to z, then setting z ← 1, gives (152), because the
derivative of the denominator is −pjMG\A∗

j
(p1, . . . , pm) by (141).

The stated upper bound on E1 + · · ·+ Em is proved in exercise 355.

*Message passing. Physicists who study statistical mechanics have developed
a significantly different way to apply randomization to satisfiability problems,
based on their experience with the behavior of large systems of interacting
particles. From their perspective, a set of Boolean variables whose values are
0 or 1 is best viewed as an ensemble of particles that have positive or negative
“spin”; these particles affect each other and change their spins according to local
attractions and repulsions, analogous to laws of magnetism. A satisfiability
problem can be formulated as a joint probability distribution on spins for which
the states of minimum “energy” are achieved precisely when the spins satisfy as
many clauses as possible.

In essence, their approach amounts to considering a bipartite structure in
which each variable is connected to one or more clauses, and each clause is
connected to one or more variables. We can regard both variables and clauses
as active agents, who continually tweet to their neighbors in this social network.
A variable might inform its clauses that “I think I should probably be true”;
but several of those clauses might reply, “I really wish you were false.” By
carefully balancing these messages against each other, such local interactions
can propagate and build up more and more knowledge of distant connections,
often converging to a state where the whole network is reasonably happy.

A particular message-passing strategy called survey propagation [A. Braun-
stein, M. Mézard, and R. Zecchina, Random Structures & Algorithms 27 (2005),

274

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: MESSAGE-PASSING ALGORITHMS 275

201–226] has proved to be astonishingly good at solving random satisfiability
problems in the “hard” region just before the threshold of unsatisfiability.

Let C be a clause and let l be one of its literals. A “survey message” ηC→l is
a fraction between 0 and 1 that represents how urgently C wants l to be true. If
ηC→l = 1, the truth of l is desperately needed, lest C be false; but if ηC→l = 0,
clause C isn’t the least bit worried about the value of variable |l|. Initially we
set each ηC→l to a completely random fraction.

We shall consider an extension of the original survey propagation method
[see J. Chavas, C. Furtlehner, M. Mézard, and R. Zecchina, J. Statistical Me-
chanics (November 2005), P11016:1–25; A. Braunstein and R. Zecchina, Physical
Review Letters 96 (27 January 2006), 030201:1–4], which introduces additional
“reinforcement messages” ηl for each literal l. These new messages, which are
initially all zero, represent an external force that acts on l. They help to focus
the network activity by reinforcing decisions that have turned out to be fruitful.

Suppose v is a variable that appears in just three clauses: positively in A
and B, negatively in C. This variable will respond to its incoming messages
ηA→v , ηB→v , ηC→v̄ , ηv, and ηv̄ by computing two “flexibility coefficients,” πv
and πv̄, using the following formulas:

πv = (1− ηv)(1− ηA→v)(1− ηB→v), πv̄ = (1− ηv̄)(1− ηC→v̄).

If, for instance, ηv = ηv̄ = 0 while ηA→v = ηB→v = ηC→v̄ = 2/3, then πv =
1/9, πv̄ = 1/3. The π’s are essentially dual to the η’s, because high urgency
corresponds to low flexibility and vice versa. The general formula for each literal l
is

πl = (1− ηl)
∏
l∈C

(1− ηC→l). (154)

Survey propagation uses these coefficients to estimate variable v’s tendency
to be either 1 (true), 0 (false), or ∗ (wild), by computing three numbers

p =
(1− πv)πv̄

πv + πv̄ − πvπv̄
, q =

(1− πv̄)πv
πv + πv̄ − πvπv̄

, r =
πvπv̄

πv + πv̄ − πvπv̄
; (155)

then p + q + r = 1, and (p, q, r) is called the “field” of v, representing re-
spectively (truth, falsity, wildness). The
field turns out to be (8/11, 2/11, 1/11)
in our example above, indicating that v
should probably be assigned the value 1.
But if ηA→v and ηB→v had been only
1/3 instead of 2/3, the field would have
been (5/17, 8/17, 4/17), and we would
probably want v = 0 in order to sat-
isfy clause C. Figure 94 shows lines of
constant p − q as a function of πv and
πv̄; the most decisive cases (|p− q| ≈ 1)
occur at the lower right and upper left.

p−q = .8

p−q = .5

p−q = .2

q−p = .2

q−p = .5q−p = .8

πv̄

πv

0

1

1

Fig. 94. Lines of constant
bias in a variable’s “field.”

275

From the Library of Melissa Nuno

ptg999

276 COMBINATORIAL SEARCHING 7.2.2.2

If πv = πv̄ = 0, there’s no flexibility at all: Variable v is being asked to
be both true and false. The field is undefined in such cases, and the survey
propagation method hopes that this doesn’t happen.

After each literal l has computed its flexibility, the clauses that involve l or l̄
can use πl and π

l̄
to refine their survey messages. Suppose, for example, that C

is the clause u ∨ v̄ ∨ w. It will replace the former messages ηC→u, ηC→v̄ , ηC→w

by

η′C→u = γv̄→Cγw→C , η′C→v̄ = γu→Cγw→C , η′C→w = γu→Cγv̄→C ,

where each γl→C is a “bias message” received from literal l,

γl→C =
(1− π

l̄
)πl/(1− ηC→l)

π
l̄
+ (1− π

l̄
)πl/(1− ηC→l)

, (156)

reflecting l’s propensity to be false in clauses other than C. In general we have

η′C→l =
(∏
l′∈C

γl′→C

)/
γl→C . (157)

(Appropriate conventions must be used to avoid division by zero in formulas
(156) and (157); see exercise 359.)

New reinforcement messages η′l can also be computed periodically, using the
formula

η′l =
κ(πl̄

.− πl)

πl + πl̄ − πlπl̄
(158)

for each literal l; here x .− y denotes max(x − y, 0), and κ is a reinforcement
parameter specified by the algorithm. Notice that η′l > 0 only if η ′̄

l
= 0.

For example, here are messages that might be passed when we want to satisfy
the seven clauses of (7):

l1 l2 l3 ηC→l1 ηC→l2 ηC→l3 γl1→C γl2→C γl3→C

1 2 3̄ 0 0 0 3/5 0 0
1̄ 2̄ 3 1/5 0 0 0 3/5 1/3
2 3 4̄ 1/5 0 0 0 1/3 3/5
2̄ 3̄ 4 0 0 0 3/5 0 0
1 3 4 0 0 1/5 3/5 1/3 0
1̄ 3̄ 4̄ 0 0 0 0 0 3/5
1̄ 2 4 0 0 0 0 0 0

l πl ηl
1 1 0
1̄ 2/5 1/2
2 2/5 1/2
2̄ 1 0
3 1 0
3̄ 2/3 1/3
4 2/5 1/2
4̄ 1 0

(159)

(Recall that the only solutions to these clauses are 1̄ 2 3 4 and 1̄ 2 3̄ 4.) In this
case the reader may verify that the messages of (159) constitute a “fixed point”:
The η messages determine the π’s; conversely, we also have η′C→l = ηC→l for all
clauses C and all literals l, if the reinforcement messages ηl remain constant.

Exercise 361 proves that every solution to a satisfiable set of clauses yields a
fixed point of the simultaneous equations (154), (156), (157), with the property
that ηl = [l is true in the solution].

276

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: MESSAGE-PASSING ALGORITHMS 277

Experiments with this message-passing strategy have shown, however, that
the best results are obtained by using it only for preliminary screening, with the
goal of discovering variables whose settings are most critical; we needn’t continue
to transmit messages until every clause is fully satisfied. Once we’ve assigned
suitable values to the most delicate variables, we’re usually left with a residual
problem that can readily be solved by other algorithms such as WalkSAT.

The survey, reinforcement, and bias messages can be exchanged using a wide
variety of different protocols. The following procedure incorporates two ideas
from an implementation prepared by C. Baldassi in 2012: (1) The reinforcement
strength κ begins at zero, but approaches 1 exponentially. (2) Variables are rated
1, 0, or ∗ after each reinforcement, according as max(p, q, r) in their current field
is p, q, or r. If every clause then has at least one literal that is true or ∗, message
passing will cease even though some surveys might still be fluctuating.

Algorithm S (Survey propagation). Given m nonempty clauses on n variables,
this algorithm tries to assign values to most of the variables in such a way that
the still-unsatisfied clauses will be relatively easy to satisfy. It maintains arrays
πl and ηl of floating point numbers for each literal l, as well as ηC→l for each
clause C and each l ∈ C. It has a variety of parameters: ρ (the damping factor
for reinforcement), N0 and N (the minimum and maximum iteration limits),
ε (the tolerance for convergence), and ψ (the confidence level).

S1. [Initialize.] Set ηl ← πl ← 0 for all literals l, and ηC→l ← U for all clauses C
and l ∈ C, where U is uniformly random in [0 . . 1). Also set i ← 0, φ ← 1.

S2. [Done?] Terminate unsuccessfully if i ≥ N . If i is even or i < N0, go to S5.

S3. [Reinforce.] Set φ ← ρφ and κ ← 1 − φ. Replace ηl by η′l for all literals l,
using (158); but terminate unsuccessfully if πl = πl̄ = 0.

S4. [Test pseudo-satisfiability.] Go to S5 if there is at least one clause whose
literals l all appear to be false, in the sense that πl̄ < πl and πl̄ <

1
2 (see

exercise 358). Otherwise go happily to S8.

S5. [Compute the π’s.] Compute each πl, using (154); see also exercise 359.

S6. [Update the surveys.] Set δ ← 0. For all clauses C and literals l ∈ C, com-
pute η′C→l using (157), and set δ ← max

(
δ, |η′C→l − ηC→l|

)
, ηC→l ← η′C→l.

S7. [Loop on i.] If δ ≥ ε, set i ← i+ 1 and return to S2.

S8. [Reduce the problem.] Assign a value to each variable whose field satisfies
|p− q | ≥ ψ. (Exercise 362 has further details.)

Computational experience—otherwise known as trial and error—suggests
suitable parameter values. The defaults ρ = .995, N0 = 5, N = 1000, ε = .01,
and ψ = .50 seem to provide a decent starting point for problems of modest
size. They worked well, for instance, when the author first tried a random 3SAT

problem with 42,000 clauses and 10,000 variables: These clauses were pseudo-
satisfiable when i = 143 (although δ ≈ .43 was still rather large); then step S8
fixed the values of 8,282 variables with highly biased fields, and unit propagation
gave values to 57 variables more. This process needed only about 218 megamems
of calculation. The reduced problem had 1526 2-clauses and 196 3-clauses on

277

From the Library of Melissa Nuno

ptg999

278 COMBINATORIAL SEARCHING 7.2.2.2

1464 variables (because many other variables were no longer needed); 626 steps
of WalkSAT polished it off after an additional 42 kilomems. By contrast, when
WalkSAT was presented with the original problem (using p = .57), it needed
more than 31 million steps to find a solution after 3.4 gigamems of computation.

Similarly, the author’s first experience applying survey propagation to a ran-
dom 3SAT problem on n = 106 variables with m = 4.2n clauses was a smashing
success: More than 800,000 variables were eliminated after only 32.8 gigamems of
computation, and WalkSAT solved the residual clauses after 8.5 megamems more.
By contrast, pure WalkSAT needed 237 gigamems to perform 2.1 billion steps.

A million-variable problem with 4,250,000 clauses proved to be more chal-
lenging. These additional 50,000 clauses put the problem well beyond WalkSAT’s
capability; and Algorithm S failed too, with its default parameters. However,
the settings ρ = .9999 and N0 = 9 slowed the reinforcement down satisfactorily,
and produced some instructive behavior. Consider the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3988 3651 3071 2339 1741 1338 946 702 508 329
5649 5408 4304 3349 2541 2052 1448 1050 666 510
8497 7965 6386 4918 3897 3012 2248 1508 1075 718
11807 11005 8812 7019 5328 4135 3117 2171 1475 1063
15814 14789 11726 9134 7188 5425 4121 3024 2039 1372
20437 19342 15604 12183 9397 7263 5165 3791 2603 1781
26455 24545 19917 15807 12043 9161 6820 5019 3381 2263
33203 31153 25052 19644 15587 11802 8865 6309 4417 2919
39962 38097 31060 24826 18943 14707 10993 7924 5225 3637
40731 40426 32716 26561 20557 15739 11634 8327 5591 4035

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which shows the distribution of πv̄ versus πv (see Fig. 94); for example, ‘3988’ at
the upper left means that 3988 of the million variables had πv̄ between 0.0 and 0.1
and πv between 0.9 and 1.0. This distribution, which appeared after δ had been
reduced to ≈ 0.0098 by 110 iterations, is terrible—very few variables are biased
in a meaningful way. Therefore another run was made with ε reduced to .001;
but that failed to converge after 1000 iterations. Finally, with ε = .001 and
N = 2000, pseudo-satisfaction occurred at i = 1373, with the nice distribution

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

406678 1946 1045 979 842 714 687 803 1298 167649
338 2 2 3 0 3 1 4 2 1289
156 1 0 0 0 1 0 2 1 875
118 4 0 0 0 0 0 0 1 743
99 0 0 0 0 0 0 1 0 663
62 0 0 0 0 0 1 0 3 810
41 0 0 0 0 0 0 0 0 1015
55 0 0 0 1 0 1 1 0 1139
63 0 0 1 0 0 0 1 2 1949
116 61 72 41 61 103 120 162 327 406839

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(although δ was now ≈ 1!). The biases were now pronounced, yet not entirely
reliable; the ψ parameter had to be raised, in order to avoid a contradiction
when propagating unit literals in the reduced problem. Finally, with ψ = .99,
more than 800,000 variables could be set successfully. A solution was obtained
after 210 gigamems (including 21 megamems for WalkSAT to finish the job).

Even better results occur when step S8 is allowed to backtrack, resetting
less-biased variables when problems arise. See R. Marino, G. Parisi, and F. Ricci-
Tersenghi, Nature Communications 7, 12996 (2016), 1–8.

278

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: PREPROCESSING OF CLAUSES 279

Success with survey propagation isn’t guaranteed. But hey, when it works,
it’s sometimes the only known way to solve a particularly tough problem.

Algorithm S may be viewed as an extension of the “belief propagation”
messages used in the study of Bayesian networks [see J. Pearl, Probabilistic
Reasoning in Intelligent Systems (1988), Chapter 4]; it essentially goes beyond
Boolean logic on {0, 1} to a three-valued logic on {0, 1, ∗}. Analogous message-
passing heuristics had actually been considered much earlier by H. A. Bethe
and R. E. Peierls [Proc. Royal Society of London A150 (1935), 552–575], and
independently by R. G. Gallager [IRE Transactions IT-8 (1962), 21–28]. For
further information see M. Mézard and A. Montanari, Information, Physics, and
Computation (2009), Chapters 14–22.

*Preprocessing of clauses. A SAT-solving algorithm will often run consid-
erably faster if its input has been transformed into an equivalent but simpler
set of clauses. Such transformations and simplifications typically require data
structures that would be inappropriate for the main work of a solver, so they are
best considered separately.

Of course we can combine a preprocessor and a solver into a single program;
and “preprocessing” techniques can be applied again after new clauses have
been learned, if we reach a stage where we want to clean up and start afresh.
In the latter case the simplifications are called inprocessing. But the basic ideas
are most easily explained by assuming that we just want to preprocess a given
family of clauses F . Our goal is to produce nicer clauses F ′, which are satisfiable
if and only if F is satisfiable.

We shall view preprocessing as a sequence of elementary transformations

F = F0 → F1 → · · · → Fr = F ′, (160)

where each step Fj → Fj+1 “flows downhill” in the sense that it either (i) elim-
inates a variable without increasing the number of clauses, or (ii) retains all the
variables but decreases the number of literals in clauses. Many different downhill
transformations are known; and we can try to apply each of the gimmicks in our
repertoire, in some order, until none of them lead to any further progress.

Sometimes we’ll actually solve the given problem, by reaching an F ′ that
is either trivially satisfiable (∅) or trivially unsatisfiable (contains ε). But we
probably won’t be so lucky unless F was pretty easy to start with, because we’re
going to consider only downhill transformations that are quite simple.

Before discussing particular transformations, however, let’s think about the
endgame: Suppose F has n variables but F ′ has n′ < n. After we’ve fed the
clauses F ′ into a SAT solver and received back a solution, x′1 . . . x

′
n′ , how can

we convert it to a full solution x1 . . . xn of the original problem F? Here’s how:
For every transformation Fj → Fj+1 that eliminates a variable xk, we shall
specify an erp rule (so called because it reverses the effect of preprocessing). An
erp rule for elimination is simply an assignment ‘l ← E’, where l is xk or x̄k,
and E is a Boolean expression that involves only variables that have not been
eliminated. We undo the effect of elimination by assigning to xk the value that
makes l true if and only if E is true.

279

From the Library of Melissa Nuno

ptg999

280 COMBINATORIAL SEARCHING 7.2.2.2

For example, suppose two transformations remove x and y with the erp rules

x̄ ← ȳ ∨ z, y ← 1.

To reverse these eliminations, right to left, we would set y true, then x ← z̄.
As the preprocessor discovers how to eliminate variables, it can immediately

write the corresponding erp rules to a file, so that those rules don’t consume
memory space. Afterwards, given a reduced solution x′1 . . . x

′
n′ , a postprocessor

can read that file in reverse order and provide the unreduced solution x1 . . . xn.

Transformation 1. Unit conditioning. If a unit clause ‘(l)’ is present, we can
replace F by F | l and use the erp rule l ← 1. This elementary simplification will
be carried out naturally by most solvers; but it is perhaps even more important
in a preprocessor, since it often enables further transformations that the solver
would not readily see. Conversely, other transformations in the preprocessor
might enable unit conditionings that will continue to ripple down.

One consequence of unit conditioning is that all clauses of F ′ will have length
two or more, unless F ′ is trivially unsatisfiable.

Transformation 2. Subsumption. If every literal in clause C appears also
in another clause C ′, we can remove C ′. In particular, duplicate clauses will be
discarded. No erp rule is needed, because no variable goes away.

Transformation 3. Self-subsumption. If every literal in C except x̄ appears
also in another clause C ′, where C ′ contains x, we can delete x from C ′ because
C ′ \x = C �C ′. In other words, the fact that C almost subsumes C ′ allows us at
least to strengthen C ′, without actually removing it. Again there’s no erp rule.
[Self-subsumption was called “the replacement principle” by J. A. Robinson in
JACM 12 (1965), 39.]

Exercise 374 discusses data structures and algorithms by which subsump-
tions and self-subsumptions can be discovered with reasonable efficiency.

Transformation 4. Downhill resolution. Suppose x appears only in clauses
C1, . . . , Cp and x̄ appears only in C ′

1, . . . , C
′
q. We’ve observed (see (112)) that

variable x can be eliminated if we replace those p + q clauses by the pq clauses
{Ci �C ′

j | 1 ≤ i ≤ p, 1 ≤ j ≤ q}. The corresponding erp rule (see exercise 367) is

either x̄ ←
p∧
i=1

(Ci \ x) or x ←
q∧

j=1

(C ′
j \ x̄). (161)

Every variable can be eliminated in this way, but we might be flooded with
too many clauses. We can prevent this by limiting ourselves to “downhill” cases,
in which the new clauses don’t outnumber the old ones. The condition pq ≤ p+q
is equivalent to (p − 1)(q − 1) ≤ 1, as noted above following (112); the variable
is always removed in such cases. But the number of new clauses might be small
even when pq is large, because of tautologies or subsumption. Furthermore,
N. Eén and A. Biere wrote a fundamental paper on preprocessing [LNCS 3569
(2005), 61–75], which introduced important special cases that allow many of the
pq potential clauses to be omitted; see exercise 369. Therefore a preprocessor

280

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: ENCODING CONSTRAINTS INTO CLAUSES 281

typically tries to eliminate via resolution whenever min(p, q) ≤ 10, say, and
abandons the attempt only when more than p+q resolvents have been generated.

Many other transformations are possible, although the four listed above have
proved to be the most effective in practice. We could, for instance, look for failed
literals : If unit propagation leads to a contradiction when we assume that some
literal l is true (namely when F ∧ (l) �1 ε), then we’re allowed to assume that
l is false (because the unit clause (l̄) is certifiable). This observation and several
others related to it were exploited in the lookahead mechanisms of Algorithm Y
above. But Algorithm C generally has no trouble finding failed literals all by
itself, as a natural byproduct of its mechanism for resolving conflicts. Exercises
378–384 discuss other techniques that have been proposed for preprocessing.

Sometimes preprocessing turns out to be dramatically successful. For exam-
ple, the anti-maximal-element clauses of exercise 228 can be proved unsatisfiable
via transformations 1–4 after only about 400 megamems of work when m = 50.
Yet Algorithm C spends 3 gigamems on that untransformed problem when m is
only 14; and it needs 11 Gμ when m = 15, . . . , failing utterly before m = 20.

A more typical example arises in connection with Fig. 78 above: The problem
of showing that there’s no 4-step path to involves 8725 variables, 33769
clauses, and 84041 literals, and Algorithm C requires about 6 gigamems to
demonstrate that those clauses are unsatisfiable. Preprocessing needs less than
10 megamems to reduce that problem to just 3263 variables, 19778 clauses, and
56552 literals; then Algorithm C can handle those with 5 Gμ of further work.

On the other hand, preprocessing might take too long, or it might produce
clauses that are more difficult to deal with than the originals. It’s totally useless
on the waerden or langford problems. (Further examples are discussed below.)

Encoding constraints into clauses. Some problems, like waerden (j, k;n), are
inherently Boolean, and they’re essentially given to us as native-born ANDs of
ORs. But in most cases we can represent a combinatorial problem via clauses in
many different ways, not immediately obvious, and the particular encoding that
we choose can have an enormous effect on the speed with which a SAT solver is
able to crank out an answer. Thus the art of problem encoding turns out to be
just as important as the art of devising algorithms for satisfiability.

Our study of SAT instances has already introduced us to dozens of interesting
encodings; and new applications often lead to further ideas, because Boolean
algebra is so versatile. Each problem may seem at first to need its own special
tricks. But we’ll see that several general principles are available for guidance.

In the first place, different solvers tend to like different encodings: An
encoding that’s good for one algorithm might be bad for another.

Consider, for example, the at-most-one constraint, y1 + · · ·+ yp ≤ 1, which
arises in a great many applications. The obvious way to enforce this condition
is to assert

(
p
2

)
binary clauses (ȳi∨ ȳj), for 1 ≤ i < j ≤ p, so that yi = yj = 1 is

forbidden; but those clauses become unwieldy when p is large. The alternative
encoding in exercise 12, due to Marijn Heule, does the same job with only
3p − 6 binary constraints when p ≥ 3, by introducing a few auxiliary variables

281

From the Library of Melissa Nuno

ptg999

282 COMBINATORIAL SEARCHING 7.2.2.2

a1, . . . , a(p−3)/2�. When we formulated Langford’s problem in terms of clauses,
via (12), (13), and (14) above, we therefore considered two variants called
langford (n) and langford

′(n), where the former uses the obvious encoding of at-
most-one constraints and the latter uses Heule’s method. Furthermore, exercise
7.1.1–55(b) encoded at-most-one constraints in yet another way, having the same
number of binary clauses but about twice as many auxiliary variables; let’s give
the name langford ′′(n) to the clauses that we get from that scheme.

We weren’t ready to discuss which of the encodings works better in practice,
when we introduced langford (n) and langford ′(n) above, because we hadn’t yet
examined any SAT-solving algorithms. But now we’re ready to reveal the answer;
and the answer is: “It depends.” Sometimes langford ′(n) wins over langford (n);
sometimes it loses. It always seems to beat langford ′′(n). Here, for example, are
typical statistics, with runtimes rounded to megamems (Mμ) or kilomems (Kμ):

variables clauses Algorithm D Algorithm L Algorithm C

langford (9) 104 1722 23Mμ 16Mμ 15Mμ (UNSAT)

langford ′(9) 213 801 82Mμ 16Mμ 21Mμ (UNSAT)

langford
′′(9) 335 801 139Mμ 20Mμ 24Mμ (UNSAT)

langford (13) 228 5875 71685Mμ 45744Mμ 295571Mμ (UNSAT)

langford ′(13) 502 1857 492992Mμ 38589Mμ 677815Mμ (UNSAT)

langford ′′(13) 795 1857 950719Mμ 46398Mμ 792757Mμ (UNSAT)

langford (16) 352 11494 5Mμ 52Mμ 301Kμ (SAT)

langford ′(16) 796 2928 12Mμ 31Mμ 418Kμ (SAT)

langford
′′(16) 1264 2928 20Mμ 38Mμ 510Kμ (SAT)

langford (64) 6016 869650 (huge) (bigger) 35Mμ (SAT)

langford ′(64) 14704 53184 (huger) (big) 73Mμ (SAT)

langford ′′(64) 23488 53184 (hugest) (biggest) 304Mμ (SAT)

Algorithm D prefers langford to langford ′, because it doesn’t perform unit prop-
agations very efficiently. Algorithm L, which excels at unit propagation, likes
langford ′ better. Algorithm C also excels at unit propagation, but it exhibits
peculiar behavior: It prefers langford , and on satisfiable instances it zooms in
quickly to find a solution; but for some reason it runs very slowly on unsatisfiable
instances when n ≥ 10.

Another general principle is that short encodings—encodings with few vari-
ables and/or few clauses—are not necessarily better than longer encodings.
For example, we often need to use Boolean variables to encode the value of a
variable x that actually ranges over d > 2 different values, say 0 ≤ x < d. In
such cases it’s natural to use the binary representation x = (xl−1 . . . x0)2, where
l = lg d!, and to construct clauses based on the independent bits xj ; but that
representation, known as the log encoding, surprisingly turns out to be a bad idea
in many cases unless d is large. A direct encoding with d binary variables x0, x1,
. . . , xd−1, where xj = [x= j], is often much better. And the order encoding

with d − 1 binary variables x1, . . . , xd−1, where xj = [x≥ j], is often better
yet; this encoding was introduced in 1994 by J. M. Crawford and A. B. Baker
[AAAI Conf. 12 (1994), 1092–1097]. In fact, exercise 408 presents an important

282

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: ENCODING CONSTRAINTS INTO CLAUSES 283

application where the order encoding is the method of choice even when d is 1000
or more! The order encoding is exponentially larger than the log encoding, yet it
wins in this application because it allows the SAT solver to deduce consequences
rapidly via unit propagation.

Graph coloring problems illustrate this principle nicely. When we tried early
in this section to color a graph with d colors, we encoded the color of each vertex
with a direct representation, (15); but we could have used binary notation for
those colors. And we could also have used the order encoding, even though
the numerical ordering of colors is irrelevant in the problem itself. With a log
encoding, exercise 391 exhibits three distinct ways to enforce the constraint that
adjacent vertices have different colors. With the order encoding, exercise 395
explains that it’s easy to handle graph coloring. And there also are four ways
to work with the direct encoding, namely (a) to insist on one color per vertex
by including the at-most-one exclusion clauses (17); or (b) to allow multivalued
(multicolored) vertices by omitting those clauses; or (c) to actually welcome

multicolored vertices, by omitting (17) and forcing each color class to be a kernel,
as suggested in answer 14; or (d) to include (17) but to replace the “preclusion”
clauses (16) by so-called “support” clauses as explained in exercise 399.

These eight options can be compared empirically by trying to arrange 64
colored queens on a chessboard so that no queens of the same color appear in
the same row, column, or diagonal. That task is possible with 9 colors, but not
with 8. By symmetry we can prespecify the colors of all queens in the top row.

encoding colors variables clauses Algorithm L Algorithm C

univalued 8 512 7688 3333Mμ 9813Mμ (UNSAT)

multivalued 8 512 5896 1330Mμ 11997Mμ (UNSAT)

kernel 8 512 6408 4196Mμ 12601Mμ (UNSAT)

support 8 512 13512 16796Mμ 20990Mμ (UNSAT)

log(a) 8 2376 5120 (immense) 20577Mμ (UNSAT)

log(b) 8 192 5848 (enormous) 15033Mμ (UNSAT)

log(c) 8 192 5848 (enormous) 15033Mμ (UNSAT)

order 8 448 6215 43615Mμ 5122Mμ (UNSAT)

univalued 9 576 8928 2907Mμ 464Mμ (SAT)

multivalued 9 576 6624 104Mμ 401Mμ (SAT)

kernel 9 576 7200 93Mμ 87Mμ (SAT)

support 9 576 15480 2103Mμ 613Mμ (SAT)

log(a) 9 3168 6776 (gigantic) 1761Mμ (SAT)

log(b) 9 256 6776 (colossal) 1107Mμ (SAT)

log(c) 9 256 6584 (mammoth) 555Mμ (SAT)

order 9 512 7008 (monstrous) 213Mμ (SAT)

(Each running time shown here is the median of nine runs, made with different
random seeds.) It’s clear from this data that the log encodings are completely
unsuitable for Algorithm L; and even the order encoding confuses that algo-
rithm’s heuristics. But Algorithm L shines over Algorithm C with respect to
most of the direct encodings. On the other hand, Algorithm C loves the order
encoding, especially in the difficult unsatisfiable case.

283

From the Library of Melissa Nuno

ptg999

284 COMBINATORIAL SEARCHING 7.2.2.2

And that’s not the end of the story. H. Tajima [M.S. thesis, Kobe University
(2008)] and N. Tamura noticed that order encoding has another property, which
beats all other encodings with respect to graph coloring: Every k-clique of
vertices {v1, . . . , vk} in a graph allows us to append two additional “hint clauses”

(v̄d−k+11 ∨ · · · ∨ v̄d−k+1k) ∧ (vk−11 ∨ · · · ∨ vk−1k) (162)

to the clauses for d-coloring—because some vertex of the clique must have a
color ≤ d−k, and some vertex must have a color ≥ k−1. With these additional
clauses, the running time to prove unsatisfiability of the 8-coloring problem drops
drastically to just 60Mμ with Algorithm L, and to only 13Mμ with Algorithm C.
We can even reduce it to just 2Mμ(!) by using that idea twice (see exercise 396).

The order encoding has several other nice properties, so it deserves a closer
look. When we represent a value x in the range 0 ≤ x < d by the binary variables
xj = [x≥ j] for 1 ≤ j < d, we always have

x = x1 + x2 + · · ·+ xd−1; (163)

hence order encoding is often known as unary representation. The axiom clauses

(x̄j+1 ∨ xj) for 1 ≤ j < d− 1 (164)

are always included, representing the fact that x ≥ j+1 implies x ≥ j for each j;
these clauses force all the 1s to the left and all the 0s to the right. When d = 2
the unary representation reduces to a one-bit encoding equal to x itself; when
d = 3 it’s a two-bit encoding with 00, 10, and 11 representing 0, 1, and 2.

We might not know all of the bits xj of x’s unary encoding while a problem
is in the course of being solved. But if we do know that, say, x3 = 1 and x7 = 0,
then we know that x belongs to the interval [3 . . 7).

Suppose we know the unary representation of x. Then no calculation is
necessary if we want to know the unary representation of y = x+ a, when a is a
constant, because yj = xj−a. Similarly, z = a − x is equivalent to zj = x̄a+1−j ;
and w =
x/a� is equivalent to wj = xaj . Out-of-bounds superscripts are easy to
handle in formulas such as this, because xi = 1 when i ≤ 0 and xi = 0 when i ≥ d.
The special case x̄ = d− 1− x is obtained by left-right reflection of x̄1 . . . x̄j−1:

(d− 1− x)j = (x̄)j = xd−j . (165)

If we are using the order encoding for two independent variables x and y,
with 0 ≤ x, y < d, it’s similarly easy to encode the additional relation x ≤ y+ a:

x− y ≤ a ⇐⇒ x ≤ y + a ⇐⇒
min(d−1,d+a)∧
j=max(0,a+1)

(
x̄j ∨ yj−a

)
. (166)

And there are analogous ways to place bounds on the sum, x+ y:

x+ y ≤ a ⇐⇒ x ≤ ȳ + a+ 1− d ⇐⇒
min(d−1,a+1)∧

j=max(0,a+2−d)

(
x̄j ∨ ȳa+1−j

)
; (167)

284

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: ENCODING CONSTRAINTS INTO CLAUSES 285

x+ y ≥ a ⇐⇒ x̄ ≤ y − a− 1 + d ⇐⇒
min(d,a)∧

j=max(1,a+1−d)

(
xj ∨ ya+1−j

)
. (168)

In fact, exercise 405 shows that the general condition ax+by ≤ c can be enforced
with at most d binary clauses, when a, b, and c are constant. Any set of such rela-
tions, involving at most two variables per constraint, is therefore a 2SAT problem.

Relations between three or more order-encoded variables can also be handled
without difficulty, as long as d isn’t too large. For example, conditions such as
x + y ≤ z and x + y ≥ z can be expressed with O(d log d) clauses of length
≤ 3 (see exercise 407). Arbitrary linear inequalities can also be represented,
in principle. But of course we shouldn’t expect SAT solvers to compete with
algebraic methods on problems that are inherently numerical.

Another constraint of great importance in the encoding of combinatorial
problems is the relation of lexicographic order : Given two bit vectors x1 . . . xn
and y1 . . . yn, we want to encode the condition (x1 . . . xn)2 ≤ (y1 . . . yn)2 as a
conjunction of clauses. Fortunately there’s a nice way to do this with just 3n−2
ternary clauses involving n− 1 auxiliary variables a1, . . . , an−1, namely

n−1∧
k=1

(
(x̄k∨yk∨āk−1) ∧ (x̄k∨ak∨āk−1) ∧ (yk∨ak∨āk−1)

) ∧ (x̄n∨yn∨ān−1), (169)

where ‘ā0’ is omitted. For example, the clauses

(x̄1∨y1)∧(x̄1∨a1)∧(y1∨a1)∧(x̄2∨y2∨ā1)∧(x̄2∨a2∨ā1)∧(y2∨a2∨ā1)∧(x̄3∨y3∨ā2)
assert that x1x2x3 ≤ y1y2y3. And the same formula, but with the final term
(x̄n ∨ yn ∨ ān−1) replaced by (x̄n ∨ ān−1) ∧ (yn ∨ ān−1), works for the strict

comparison x1 . . . xn < y1 . . . yn. These formulas arise by considering the carries
that occur when (x̄1 . . . x̄n)2+(1 or 0) is added to (y1 . . . yn)2. (See exercise 415.)

The general problem of encoding a constraint on the Boolean variables
x1, . . . , xn is the question of finding a family of clauses F that are satisfiable
if and only if f(x1, . . . , xn) is true, where f is a given Boolean function. We
usually introduce auxiliary variables a1, . . . , am into the clauses of F , unless f
can be expressed directly with a short CNF formula; thus the encoding problem
is to find a “good” family F such that we have

f(x1, . . . , xn) = 1 ⇐⇒ ∃a1 . . .∃am
∧
C∈F

C, (170)

where each C is a clause on the variables {a1, . . . , am, x1, . . . , xn}. The variables
a1, . . . , am can be eliminated by resolution as in (112), at least in principle, leav-
ing us with a CNF for f —although that CNF might be huge. (See exercise 248.)

If there’s a simple circuit that computes f , we know from (24) and exercise 42
that there’s an equally simple “Tseytin encoding” F , with one auxiliary variable
for each gate in the circuit. For example, suppose we want to encode the
condition x1 . . . xn �= y1 . . . yn. The shortest CNF expression for this function
f(x1, . . . , xn, y1, . . . , yn) has 2

n clauses (see exercise 413); but there’s a simple

285

From the Library of Melissa Nuno

ptg999

286 COMBINATORIAL SEARCHING 7.2.2.2

circuit (Boolean chain) with just n+ 1 gates:

a1 ← x1 ⊕ y1, . . . , an ← xn ⊕ yn, f ← a1 ∨ · · · ∨ an.

Using (24) we get the 4n clauses

n∧
j=1

(
(x̄j ∨ yj ∨ aj) ∧ (xj ∨ ȳj ∨ aj) ∧ (xj ∨ yj ∨ āj) ∧ (x̄j ∨ ȳj ∨ āj)

)
, (171)

together with (a1 ∨ · · · ∨ an), as a representation of ‘x1 . . . xn �= y1 . . . yn’.
But this is overkill; D. A. Plaisted and S. Greenbaum have pointed out

[Journal of Symbolic Computation 2 (1986), 293–304] that we can often avoid
about half of the clauses in such situations. Indeed, only 2n of the clauses (171)
are necessary (and sufficient), namely the ones involving āj :

n∧
j=1

(
(xj ∨ yj ∨ āj) ∧ (x̄j ∨ ȳj ∨ āj)

)
. (172)

The other clauses are “blocked” (see exercise 378) and unhelpful. Thus it’s a
good idea to examine whether all of the clauses in a Tseytin encoding are really
needed. Exercise 416 illustrates another interesting case.

An efficient encoding is possible also when f has a small BDD, and in general
whenever f can be computed by a short branching program. Recall the example
“Pi function” introduced in 7.1.1–(22); we observed in 7.1.2–(6) that it can be
written

(
((x2 ∧ x̄4)⊕ x̄3) ∧ x̄1

)⊕ x2. Thus it has a 12-clause Tseytin encoding

(x2∨ ā1)∧ (x̄4∨ ā1)∧ (x̄2∨x4∨a1)∧ (x3∨a1∨a2)∧ (x̄3∨ ā1∨a2)∧ (x̄3∨a1∨ ā2)

∧ (x3∨ ā1∨ ā2)∧ (x̄1∨ ā3)∧ (a2∨ ā3)∧ (x1∨ ā2∨a3)∧ (x2∨a3)∧ (x̄2∨ ā3).

The Pi function also has a short branching program, 7.1.4–(8), namely

I8 = (1̄? 7: 6), I7 = (2̄? 5: 4), I6 = (2̄? 0: 1), I5 = (3̄? 1: 0),

I4 = (3̄? 3: 2), I3 = (4̄? 1: 0), I2 = (4̄? 0: 1),

where the instruction ‘(v̄? l:h)’ means “If xv = 0, go to Il, otherwise go to Ih,”
except that I0 and I1 unconditionally produce the values 0 and 1. We can
convert any such branching program into a sequence of clauses, by translating
‘Ij = (v̄? l:h)’ into

(āj ∨ xv ∨ al) ∧ (āj ∨ x̄v ∨ ah), (173)

where a0 is omitted, and where any clauses containing a1 are dropped. We
also omit āt, where It is the first instruction; in this example t = 8. (These
simplifications correspond to asserting the unit clauses (ā0) ∧ (a1) ∧ (at).) The
branching program above therefore yields ten clauses,

(x1∨ a7) ∧ (x̄1∨ a6) ∧ (ā7∨x2∨ a5) ∧ (ā7∨ x̄2∨ a4) ∧ (ā6∨x2)

∧ (ā5∨ x̄3) ∧ (ā4∨x3∨ a3) ∧ (ā4∨ x̄3∨ a2) ∧ (ā3∨ x̄4) ∧ (ā2∨x4).

We can readily eliminate a6, a5, a3, a2, thereby getting a six-clause equivalent

(x1∨a7)∧ (x̄1∨x2)∧ (ā7∨x2∨ x̄3)∧ (ā7∨ x̄2∨a4) ∧ (ā4∨x3∨ x̄4) ∧ (ā4∨ x̄3∨x4);

286

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: UNIT PROPAGATION AND FORCING 287

and a preprocessor will simplify this to the four-clause CNF

(x̄1∨x2) ∧ (x2∨ x̄3) ∧ (x1∨ x̄2∨x3∨ x̄4) ∧ (x1∨ x̄3∨x4), (174)

which appeared in exercise 7.1.1–19.
Exercise 417 explains why this translation scheme is valid. The method

applies to any branching program whatsoever: The x variables can be tested in
any order—that is, the v’s need not be decreasing as in a BDD; moreover, a
variable may be tested more than once.

Unit propagation and forcing. The effectiveness of an encoding depends
largely on how well that encoding avoids bad partial assignments to the vari-
ables. If we’re trying to encode a Boolean condition f(x1, x2, . . . , xn), and if the
tentative assignments x1 ← 1 and x2 ← 0 cause f to be false regardless of the
values of x3 through xn, we’d like the solver to deduce this fact without further
ado, ideally by unit propagation once x1 and x̄2 have been asserted. With a
CDCL solver like Algorithm C, a quickly recognized conflict means a relatively
short learned clause—and that’s a hallmark of progress. Even better would be
a situation in which unit propagation, after asserting x1, would already force x2
to be true; and furthermore if unit propagation after x̄2 would also force x̄1.

Such scenarios aren’t equivalent to each other. For example, consider the
clauses F = (x̄1∨x3)∧ (x̄1∨x2∨ x̄3). Then, using the notation ‘F �1 l’ to signify
that F leads to l via unit propagation, we have F | x1 �1 x2, but F | x̄2 ��1 x̄1.
And with the clauses G = (x̄1∨ x2∨ x3) ∧ (x̄1∨ x2∨ x̄3) we have G |x1 | x̄2 �1 ε
(see Eq. (119)), but G |x1 ��1 x2 and G | x̄2 ��1 x̄1.

Consider now the simple at-most-one constraint on just three variables:
f(x1, x2, x3) = [x1 + x2 + x3 ≤ 1]. We can try to represent f by proceeding
methodically using the methods suggested above, either by constructing a circuit
for f or by constructing f ’s BDD. The first alternative (see exercise 420) yields

F = (x1∨ x̄2∨ a1)∧ (x̄1∨x2∨ a1)∧ (x1∨x2∨ ā1)∧ (x̄1∨ x̄2)∧ (x̄3∨ ā1); (175)

the second approach (see exercise 421) leads to a somewhat different solution,

G = (x1∨a4)∧ (x̄1∨a3)∧ (ā4∨ x̄2∨a2)∧ (ā3∨x2∨a2)∧ (ā3∨ x̄2)∧ (ā2∨ x̄3). (176)

But neither of these encodings is actually very good, because F | x3 ��1 x̄1 and
G |x3 ��1 x̄1. Much better is the encoding that we get from the general scheme
of (18) and (19) in the case n = 3, r = 1, namely

S = (ā1∨ a2)∧ (x̄1∨ a1)∧ (x̄2∨ a2)∧ (x̄2∨ ā1)∧ (x̄3∨ ā2), (177)

where a1 and a2 stand for s11 and s12; or the one obtained from (20) and (21),

B = (x̄3∨ a1)∧ (x̄2∨ a1)∧ (x̄2∨ x̄3)∧ (ā1∨ x̄1), (178)

where a1 stands for b21. With either (177) or (178) we have S | xi �1 x̄j and
B | xi �1 x̄j by unit propagation whenever i �= j. And of course the obvious
encoding for this particular f is best of all, because n is so small:

O = (x̄1∨ x̄2)∧ (x̄1∨ x̄3)∧ (x̄2∨ x̄3). (179)

287

From the Library of Melissa Nuno

ptg999

288 COMBINATORIAL SEARCHING 7.2.2.2

Suppose f(x1, . . . , xn) is a Boolean function that’s represented by a family
of clauses F , possibly involving auxiliary variables {a1, . . . , am}, as in (170). We
say that F is a forcing representation if we have

F |L � l implies F |L �1 l (180)

whenever L ∪ l is a set of strictly distinct literals contained in {x1, . . . , xn,
x̄1, . . . , x̄n}. In other words, if the partial assignment represented by L logically
implies the truth of some other literal l, we insist that unit propagation alone
should be able to deduce l from F | L. The auxiliary variables {a1, . . . , am}
are exempt from this requirement; only the potential forcings between primary

variables {x1, . . . , xn} are supposed to be recognized easily when they occur.
(Technical point: If F | L � ε, meaning that F | L is unsatisfiable, we

implicitly have F | L � l for all literals l. In such a case (180) tells us that
F |L �1 l and F |L �1 l̄ both hold; hence F |L can then be proved unsatisfiable
by unit propagation alone.)

We’ve seen that the clauses S and B in (177) and (178) are forcing for the
constraint [x1 + x2 + x3 ≤ 1], but the clauses F and G in (175) and (176) are not.
In fact, the clauses of (18) and (19) that led to (177) are always forcing, for the
general cardinality constraint [x1 + · · ·+ xn≤ r]; and so are the clauses of (20)
and (21) that led to (178). (See exercises 429 and 430.) Moreover, the general
at-most-one constraint [x1 + · · ·+ xn≤ 1] can be represented more efficiently by
Heule’s 3(n−2) binary clauses and
(n−3)/2� auxiliary variables (exercise 12), or
with about n lgn binary clauses and only lgn! auxiliary variables (exercise 394);
both of those representations are forcing.

In general, we’re glad to know as soon as possible when a variable’s value has
been forced by other values, because the variables of a large problem typically
participate in many constraints simultaneously. If we know that x can’t be 0 in
constraint f , then we can often conclude that some other variable y can’t be 1 in
some other constraint g, if x appears in both f and g. There’s lots of feedback.

On the other hand it might be worse to use a large representation F that
is forcing than to use a small representation G that isn’t, because additional
clauses can make a SAT solver work harder. The tradeoffs are delicate, and
they’re difficult to predict in advance.

Every Boolean constraint f(x1, . . . , xn) has at least one forcing represen-
tation that involves no auxiliary variables. Indeed, it’s easy to see that the
conjunctive prime form F of f —the AND of all f ’s prime clauses— is forcing.

Smaller representations are also often forcing, even without auxiliaries. For
example, the simple constraint [x1 ≥x2 ≥ · · ·≥xn] has

(
n
2

)
prime clauses, namely

(xj ∨ x̄k) for 1 ≤ j < k ≤ n; but only n − 1 of those clauses, the cases when
k = j + 1 as in (164), are necessary and sufficient for forcing. Exercise 424
presents another, more-or-less random example.

In the worst case, all forcing representations of certain constraints are known
to be huge, even when auxiliary variables are introduced (see exercise 428).
But exercises 431–441 discuss many examples of useful and instructive forcing
representations that require relatively few clauses.

288

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: SYMMETRY BREAKING 289

We’ve glossed over an interesting technicality in definition (180), however:
A sneaky person might actually construct a representation F that is absolutely
useless in practice, even though it meets all of those criteria for forcing. For exam-
ple, let G(a1, . . . , am) be a family of clauses that are satisfiable—but only when
the auxiliary variables aj are set to extremely hard-to-find values. Then we might
have f(x1) = x1 and F = (x1)∧G(a1, . . . , am)(!). This defect in definition (180)
was first pointed out by M. Gwynne and O. Kullmann [arXiv:1406.7398 [cs.CC]
(2014), 67 pages], who have also traced the history of the subject.

To avoid such a glitch, we implicitly assume that F is an honest represen-
tation of f , in the following sense: Whenever L is a set of n literals that fully
characterizes a solution x1 . . . xn to the constraint f(x1, . . . , xn) = 1, the clauses
F |L must be easy to satisfy, using the SLUR algorithm of exercise 444. That
algorithm is efficient because it does not backtrack. All of the examples in exer-
cises 439–444 meet this test of honesty; indeed, the test is automatically passed
whenever every clause of F contains at most one negated auxiliary variable.

Some authors have suggested that a SAT solver should branch only on
primary variables xi, rather than on auxiliary variables aj , whenever possible.
But an extensive study by M. Järvisalo and I. Niemelä [LNCS 4741 (2007),
348–363; J. Algorithms 63 (2008), 90–113] has shown that such a restriction is
not advisable with Algorithm C, and it might lead to a severe slowdown.

Symmetry breaking. Sometimes we can achieve enormous speedup by exploit-
ing symmetries. Consider, for example, the clauses for placing m+1 pigeons into
m holes, (106)–(107). We’ve seen in Lemma B and Theorem B that Algorithm C
and other resolution-related methods cannot demonstrate the unsatisfiability of
those clauses without performing exponentially many steps asm grows. However,
the clauses are symmetrical with respect to pigeons; independently, they’re also
symmetrical with respect to holes: If π is any permutation of {0, 1, . . . ,m} and
if ρ is any permutation of {1, 2, . . . ,m}, the transformation xjk #→ x(jπ)(kρ) for
0 ≤ j ≤ m and 1 ≤ k ≤ m leaves the set of clauses (106)–(107) unchanged.
Thus the pigeonhole problem has (m+ 1)!m! symmetries.

We’ll prove below that the symmetries on the holes allow us to assume safely
that the hole-occupancy vectors are lexicographically ordered, namely that

x0kx1k . . . xmk ≤ x0(k+1)x1(k+1) . . . xm(k+1), for 1 ≤ k < m. (181)

These constraints preserve satisfiability; and we know from (169) that they are
readily expressed as clauses. Without the help of such additional clauses the
running time of Algorithm C rises from 19 megamems for m = 7 to 177Mμ for
m = 8, and then to 3.5 gigamems and 86Gμ for m = 9 and 10. But with (181),
the same algorithm shows unsatisfiability for m = 10 after only 1 megamem; and
for m = 20 and m = 30 after only 284 Mμ and 3.6 Gμ, respectively.

Even better results occur when we order the pigeon-occupancy vectors:

xj1xj2 . . . xjm ≤ x(j+1)1x(j+1)2 . . . x(j+1)m, for 0 ≤ j < m. (182)

With these constraints added to (106) and (107), Algorithm C polishes off the
case m = 10 in just 69 kilomems. It can even handle m = 100 in 133 Mμ. This

289

From the Library of Melissa Nuno

ptg999

290 COMBINATORIAL SEARCHING 7.2.2.2

remarkable improvement was achieved by adding only m2−m new variables and
3m2−2m new clauses to the originalm2+m variables and (m+1)+(m3+m2)/2
clauses of (106) and (107). (Moreover, the reasoning that justifies (182) doesn’t
“cheat” by invoking the mathematical pigeonhole principle behind the scenes.)

Actually that’s not all. The theory of columnwise symmetry (see exer-
cise 498) also tells us that we’re allowed to add the

(
m
2

)
simple binary clauses

(x(j−1)j ∨ x̄(j−1)k) for 1 ≤ j < k ≤ m (183)

to (106) and (107), instead of (182). This principle is rather weak in general; but
it turns out to be ideally suited to pigeons: It reduces the running time for m =
100 to just 21 megamems, although it needs no auxiliary variables whatsoever!

Of course the status of (106)–(107) has never been in doubt. Those clauses
serve merely as training wheels because of their simplicity; they illustrate the
fact that many symmetry-breaking strategies exist. Let’s turn now to a more
interesting problem, which has essentially the same symmetries, but with the
roles of pigeons and holes played by “points” and “lines” instead. Consider a set
of m points and n lines, where each line is a subset of points; we will require that
no two points appear together in more than one line. (Equivalently, no two lines
may intersect in more than one point.) Such a configuration may be called quad-
free, because it is equivalent to an m × n binary matrix (xij) that contains no
“quad,” namely no 2×2 submatrix of 1s; element xij means that point i belongs
to line j. Quad-free matrices are obviously characterized by

(
m
2

)(
n
2

)
clauses,

(x̄ij ∨ x̄ij′ ∨ x̄i′j ∨ x̄i′j′), for 1 ≤ i < i′ ≤ m and 1 ≤ j < j′ ≤ n. (184)

What is the maximum number of 1s in an m × n quad-free matrix? [This
question, when m = n, was posed by K. Zarankiewicz, ColloquiumMathematicæ
2 (1951), 301, who also considered how to avoid more general submatrices of 1s.]
Let’s call that value Z(m,n)− 1; then Z(m,n) is the smallest r such that every
m× n matrix with r nonzero entries contains a quad.

We’ve actually encountered examples of this problem before, but in a dis-
guised form. For example (see exercise 448), a Steiner triple system on v objects
exists if and only if v is odd and there is a quad-free matrix with m = v,
n = v(v − 1)/6, and r = v(v − 1)/2. Other combinatorial block designs have
similar characterizations.

Table 5 shows the values of Z(m,n) for small cases. These values were dis-
covered by delicate combinatorial reasoning, without computer assistance; so it’s
instructive to see how well a SAT solver can compete against real intelligence.

The first interesting case occurs when m = n = 8: One can place 24
markers on a chessboard without forming a quad, but Z(8, 8) = 25 markers is too
many. If we simply add the cardinality constraints

∑m
i=1

∑n
j=1 xij ≥ r to (184),

Algorithm C will quickly find a solution when m = n = 8 and r = 24. But it
bogs down when r = 25, requiring about 10 teramems to show unsatisfiability.

Fortunately we can take advantage of m!n! symmetries, which permute rows
and columns without affecting quads. Exercise 495 shows that those symmetries

290

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: SATISFIABILITY-PRESERVING MAPS 291

Table 5

Z(m,n), THE MINIMUM NUMBER OF 1S WITH (184) UNSATISFIABLE

n = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

m = 2: 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
m = 3: 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
m = 4: 6 8 10 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
m = 5: 7 9 11 13 15 16 18 19 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
m = 6: 8 10 13 15 17 19 20 22 23 25 26 28 29 31 32 33 34 35 36 37 38 39 40 41 42 43
m = 7: 9 11 14 16 19 22 23 25 26 28 29 31 32 34 35 37 38 40 41 43 44 45 46 47 48 49
m = 8: 10 12 15 18 20 23 25 27 29 31 33 34 36 37 39 40 42 43 45 46 48 49 51 52 54 55
m = 9: 11 13 16 19 22 25 27 30 32 34 37 38 40 41 43 44 46 47 49 50 52 53 55 56 58 59
m = 10: 12 14 17 21 23 26 29 32 35 37 40 41 43 45 47 48 50 52 53 55 56 58 59 61 62 64
m = 11: 13 15 18 22 25 28 31 34 37 40 43 45 46 48 51 52 54 56 58 60 61 63 64 66 67 69
m = 12: 14 16 19 23 26 29 33 37 40 43 46 49 50 52 54 56 58 61 62 64 66 67 69 71 73 74
m = 13: 15 17 20 24 28 31 34 38 41 45 49 53 54 56 58 60 62 65 67 68 80 72 74 76 79 80
m = 14: 16 18 21 25 29 32 36 40 43 46 50 54 57 59 61 64 66 69 71 73 74 76 79 81 83 85
m = 15: 17 19 22 26 31 34 37 41 45 48 52 56 59 62 65 68 70 73 76 78 79 81 83 86 87 89
m = 16: 18 20 23 27 32 35 39 43 47 51 54 58 61 65 68 71 74 77 81 82 84 86 88 91 92 94

[References: R. K. Guy, in Theory of Graphs, Tihany 1966, edited by Erdős and Katona (Aca-
demic Press, 1968), 119–150; R. J. Nowakowski, Ph.D. thesis (Univ. of Calgary, 1978), 202.]

allow us to add the lexicographic constraints

xi1xi2 . . . xin ≥ x(i+1)1x(i+1)2 . . . x(i+1)n, for 1 ≤ i < m; (185)

x1jx2j . . . xmj ≥ x1(j+1)x2(j+1) . . . xm(j+1), for 1 ≤ j < n. (186)

(Increasing order, with ‘≤’ in place of ‘≥’, could also have been used, but
decreasing order turns out to be better; see exercise 497.) The running time to
prove unsatisfiability when r = 25 now decreases dramatically, to only about 50
megamems. And it falls to 48 Mμ if the lexicographic constraints are shortened
to consider only the leading 4 elements of a row or column, instead of testing all 8.

The constraints of (185) and (186) are useful in satisfiable problems too—
not in the easy case m = n = 8, when they aren’t necessary, but for example in
the case m = n = 13 when r = 52: Then they lead Algorithm C to a solution
after about 200 gigamems, while it needs more than 18 teramems to find a
solution without such help. (See exercise 449.)

Satisfiability-preserving maps. Let’s proceed now to the promised theory of
symmetry breaking. In fact, we will do more: Symmetry is about permutations
that preserve structural properties, but we will consider arbitrary mappings

instead. Mappings are more general than permutations, because they needn’t be
invertible. If x = x1 . . . xn is any potential solution to a satisfiability problem,
our theory is based on transformations τ that map x #→ xτ = x′1 . . . x

′
n, where

xτ is required to be a solution whenever x is a solution.
In other words, if F is a family of clauses on n variables and if f(x) =

[x satisfies F], then we are interested in all mappings τ for which f(x) ≤ f(xτ).
Such a mapping is conventionally called an endomorphism of the solutions.* If an

* This word is a bit of a mouthful. But it’s easier to say “endomorphism” than to say
“satisfiability-preserving transformation,” and you can use it to impress your friends. The
term “conditional symmetry” has also been used by several authors in special cases.

291

From the Library of Melissa Nuno

ptg999

292 COMBINATORIAL SEARCHING 7.2.2.2

endomorphism τ is actually a permutation, it’s called an automorphism. Thus,
if there are K solutions to the problem, out of N = 2n possibilities, the total
number of mappings is NN ; the total number of endomorphisms is KKNN−K ;
and the total number of automorphisms is K! (N −K)!.

Notice that we don’t require f(x) to be exactly equal to f(xτ). An endomor-
phism is allowed to map a nonsolution into a solution, and only KK(N−K)N−K

mappings satisfy that stronger property. On the other hand, automorphisms
always do satisfy f(x) = f(xτ); see exercise 454.

Here, for instance, is a more-or-less random mapping when n = 4:

00000001 0010
0011

0100
0101 0110

0111
1000

1001
10101011

1100

1101 11101111
(187)

Exercises 455 and 456 discuss potential endomorphisms of this mapping.
In general there will be one or more cycles, and every element of a cycle is

the root of an oriented tree that leads to it. For example, the cycles of (187) are
(0011), (1010 0101 0110), and (1000).

Several different endomorphisms τ1, τ2, . . . , τp are often known. In such
cases it’s helpful to imagine the digraph with 2n vertices that has arcs from each
vertex x to its successors xτ1, xτ2, . . . , xτp. This digraph will have one or more
sink components, which are strongly connected components Y from which there
is no escape: If x ∈ Y then xτk ∈ Y for 1 ≤ k ≤ p. (In the special case where each
τk is an automorphism, the sink components are traditionally called orbits of the
automorphism group.) When p = 1, a sink component is the same as a cycle.

The clauses F are satisfiable if and only if f(x) = 1 for at least one x. Such
an x will lead to at least one sink component Y, all of whose elements will satisfy
f(y) = 1. Thus it suffices to test satisfiability by checking just one element y in
every sink component Y, to see if f(y) = 1.

Let’s consider a simple problem based on the “sweep” of anm×nmatrixX =
(xij), which is the largest diagonal sum of any t× t submatrix:

sweep(X) = max
1≤i1<i2<···<it≤m
1≤j1<j2<···<jt≤n

(xi1j1 + xi2j2 + · · ·+ xitjt). (188)

WhenX is binary, sweep(X) is the length of the longest downward-and-rightward
path that passes through its 1s. We can use satisfiability to decide whether such
a matrix exists having sweep(X) ≤ k and

∑m
i=1

∑n
j=1 xij ≥ r, given

m, n, k, and r; suitable clauses are exhibited in exercise 460. A
solution with m = n = 10, k = 3, and r = 51 appears at the right: It
has 51 1s, but no four of them lie in a monotonic southeasterly path.

0000111111
0000100011
0000100111
0001101101
0111111001
1111100001
1010000011
1010000010
1110111110
1111100000

This problem has 2mn candidate matrices X, and experiments
with small m and n suggest several endomorphisms that can be
applied to such candidates without increasing the sweep.

• τ1: If xij = 1 and xi(j+1) = 0, and if xi′j = 0 for 1 ≤ i′ < i, we can set
xij ← 0 and xi(j+1) ← 1.

• τ2: If xij = 1 and x(i+1)j = 0, and if xij′ = 0 for 1 ≤ j′ < j, we can set
xij ← 0 and x(i+1)j ← 1.

292

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: SATISFIABILITY-PRESERVING MAPS 293

• τ3: If the 2× 2 submatrix in rows {i, i+ 1} and columns {j, j + 1} is 11
10, we

can change it to 01
11.

These transformations are justified in exercise 462. They’re sometimes applicable
for several different i and j; for instance, τ3 could be used to change any of eight
different 2×2 submatrices in the example solution. In such cases we make an ar-
bitrary decision, by choosing (say) the lexicographically smallest possible i and j.

The clauses that encode this problem have auxiliary variables besides xij ;
but we can ignore the auxiliary variables when reasoning about endomorphisms.

Each of these endomorphisms either leaves X unchanged or replaces it by a
lexicographically smaller matrix. Therefore the sink components of {τ1, τ2, τ3}
consist of the matricesX that are fixed points of all three transformations. Hence
we’re allowed to append additional clauses, stating that neither τ1 nor τ2 nor τ3
is applicable. For instance, transformation τ3 is ruled out by the clauses

m−1∧
i=1

n−1∧
j=1

(x̄ij ∨ x̄i(j+1) ∨ x̄(i+1)j ∨ x(i+1)(j+1)), (189)

which state that the submatrix 11
10 doesn’t appear. The clauses for τ1 and τ2 are

only a bit more complicated (see exercise 461).
These additional clauses give interesting answers in satisfiable instances,

although they aren’t really helpful running-time-wise. On the other hand, they’re
spectacularly successful when the problem is unsatisfiable.

For example, we can show, without endomorphisms, that the case m = n =
10, k = 3, r = 52 is impossible, and hence that any solution for r = 51 is
optimum; Algorithm C proves this after about 16 gigamems of work. Adding
the clauses for τ1 and τ2, but not τ3, increases the running time to 23Gμ; on
the other hand the clauses for τ3 without τ1 or τ2 reduce it to 6Gμ. When we
use all three endomorphisms simultaneously, however, the running time to prove
unsatisfiability goes down to just 3.5 megamems, a speedup of more than 4500.

Even better is the fact that the fixed points of {τ1, τ2, τ3} actually have an
extremely simple form—see exercise 463— from which we can readily determine
the answer by hand, without running the machine at all! Computer experiments
have helped us to guess this result; but once we’ve proved it, we’ve solved
infinitely many cases in one fell swoop. Theory and practice are synergistic.

Another interesting example arises when we want to test whether or not
a given graph has a perfect matching, which is a set of nonoverlapping edges
that exactly touch each vertex. We’ll discuss beautiful, efficient algorithms for
this problem in Sections 7.5.1 and 7.5.5; but it’s interesting to see how well a
simple-minded SAT solver can compete with those methods.

Perfect matching is readily expressible as a SAT problem whose variables are
called ‘uv’, one for each edge u−−−v. Variables ‘uv’ and ‘vu’ are identical. When-
ever the graph contains a 4-cycle v0−−− v1 −−− v2 −−− v3−−− v0, we might include
two of its edges {v0v1, v2v3} in the matching; but we could equally well have in-
cluded {v1v2, v3v0} instead. Thus there’s an endomorphism that says, “If v0v1 =
v2v3 = 1 (hence v1v2 = v3v0 = 0), set v0v1 ← v2v3 ← 0 and v1v2 ← v3v0 ← 1.”

293

From the Library of Melissa Nuno

ptg999

294 COMBINATORIAL SEARCHING 7.2.2.2

And we can carry this idea further: Let the edges be totally ordered in some
arbitrary fashion, and for each edge uv consider all 4-cycles in which uv is the
largest edge. In other words, we consider all cycles of the form u−−− v−−−u′−−−
v′−−−u in which vu′, u′v′, v′u all precede uv in the ordering. If any such cycles
exist, choose one of them arbitrarily, and let τuv be one of two endomorphisms:

τ−uv: “If uv = u′v′ = 1, set uv ← u′v′ ← 0 and vu′ ← v′u ← 1.”

τ+uv: “If vu
′ = v′u = 1, set uv ← u′v′ ← 1 and vu′ ← v′u ← 0.”

Either τ−uv or τ+uv is stipulated, for each uv. Exercise 465 proves that a perfect
matching is in the sink component of any such family of endomorphisms if and
only if it is fixed by all of them. Therefore we need only search for fixed points.

For example, consider the problem of covering anm×n board with dominoes.
This is the problem of finding a perfect matching on the grid graph Pm Pn. The
graph has mn vertices (i, j), with m(n− 1) “horizontal” edges hij from (i, j) to
(i, j+1) and (m− 1)n “vertical” edges vij from (i, j) to (i+1, j). It has exactly
(m − 1)(n − 1) 4-cycles; and if we number the edges from left to right, no two
4-cycles have the same largest edge. Therefore we can construct (m− 1)(n− 1)
endomorphisms, in each of which we’re free to decide whether to allow a partic-
ular cycle to be filled by two horizontal dominoes or by two vertical ones.

Let’s stipulate that hij and h(i+1)j are allowed together only when i + j
is odd; vij and vi(j+1) are allowed together only when i + j is even. The nine
endomorphisms when m = n = 4 are then

�→ �→ �→ �→ �→ �→ �→ �→ �→
. (190)

And it’s not difficult to see that only one 4 × 4 domino covering is fixed by all
nine. Indeed (exercise 466), the solution turns out to be unique for all m and n.

The famous problem of the “mutilated chessboard” asks for a domino cov-
ering when two opposite corner cells have been removed. This problem is
unsatisfiable when m and n are both even, by exercise 7.1.4–213. But a SAT

solver can’t discover this fact quickly from the clauses alone, because there are
many ways to get quite close to a solution; see the discussion following 7.1.4–
(130). [S. Dantchev and S. Riis, in FOCS 42 (2001), 220–229, have proved in fact
that every resolution refutation of these clauses requires 2Ω(n) steps.]

When Algorithm C is presented with mutilated boards of sizes 6× 6, 8× 8,
10× 10, . . . , 16× 16, it needs respectively about 55Kμ, 1.4Mμ, 31Mμ, 668Mμ,
16.5Gμ, and .91Tμ (that’s teramems) to prove unsatisfiability. The even-odd
endomorphisms typified by (190) come to our rescue, however: They narrow the
search space spectacularly, reducing the respective running times to only 15Kμ,
60Kμ, 135Kμ, 250Kμ, 470Kμ, 690Kμ (that’s kilomems). They even can verify
the unsatisfiability of a mutilated 256×256 domino cover after fewer than 4.2Gμ
of calculation, exhibiting a growth rate of roughly O(n3).

294

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: SATISFIABILITY-PRESERVING MAPS 295

Endomorphisms can also speed up SAT solving in another important way:

Theorem E. Let p1p2 . . . pn be any permutation of {1, 2, . . . , n}. If the Bool-
ean function f(x1, x2, . . . , xn) is satisfiable, then it has a solution such that
xp1xp2 . . . xpn is lexicographically less than or equal to x′p1x

′
p2

. . . x′pn for every
endomorphism of f that takes x1x2 . . . xn #→ x′1x

′
2 . . . x

′
n.

Proof. The lexicographically smallest solution of f has this property.

Maybe we shouldn’t call this a “theorem”; it’s an obvious consequence of the
fact that endomorphisms always map solutions into solutions. But it deserves to
be remembered and placed on some sort of pedestal, because we will see that it
has many useful applications.

Theorem E is extremely good news, at least potentially, because every
Boolean function has a huge number of endomorphisms. (See exercise 457.)
On the other hand, there’s a catch: We almost never know any of those endo-
morphisms until after we’ve solved the problem! Still, whenever we do happen
to know one of the zillions of nontrivial endomorphisms that exist, we’re allowed
to add clauses that narrow the search. There’s always a “lex-leader” solution
that satisfies x1x2 . . . xn ≤ x′1x

′
2 . . . x

′
n, if there’s any solution at all.

A second difficulty that takes some of the shine away from Theorem E is
the fact that most endomorphisms are too complicated to express neatly as
clauses. What we really want is an endomorphism that’s nice and simple, so
that lexicographic ordering is equally simple.

Fortunately, such endomorphisms are often available; in fact, they’re usually
automorphisms—symmetries of the problem—defined by signed permutations

of the variables. A signed permutation represents the operation of permuting
variables and/or complementing them; for example, the signed permutation
‘4̄132̄’ stands for the mapping (x1, x2, x3, x4) #→ (x4̄, x1, x3, x2̄) = (x̄4, x1, x3, x̄2).
This operation transforms the states in a much more regular way than (187):

0000 0001 0010 0011 0100
0101

0110
0111

10001001 10101011
1100

1101
1110

1111

(191)

If σ takes the literal u into v, we write uσ = v; and in such cases σ also takes ū
into v̄. Thus we always have ūσ = uσ. We also write xσ for the result of applying
σ to a sequence x of literals; for example, (x1, x2, x3, x4)σ = (x̄4, x1, x3, x̄2). This
mapping is a symmetry or automorphism of f(x) if and only if f(x) = f(xσ)
for all x. Exercises 474 and 475 discuss basic properties of such symmetries; see
also exercise 7.2.1.2–20.

Notice that a signed permutation can be regarded as an unsigned permuta-
tion of the 2n literals {x1, . . . , xn, x̄1, . . . , x̄n}, and as such it can be written as
a product of cycles. For instance, the symmetry 4̄132̄ corresponds to the cycles
(14̄2)(1̄42̄)(3)(3̄). We can multiply signed permutations by multiplying these
cycles in the normal way, just as in Section 1.3.3.

The product στ of two symmetries σ and τ is always a symmetry. Thus in
particular, if σ is any symmetry, so are its powers σ2, σ3, etc. We say that σ has
order r if σ, σ2, . . . , σr are distinct and σr is the identity. A signed permutation

295

From the Library of Melissa Nuno

ptg999

296 COMBINATORIAL SEARCHING 7.2.2.2

of order 1 or 2 is called a signed involution; this important special case arises if
and only if σ is its own inverse (σ2 = 1).

It’s clearly easier to work with permutations of 2n literals than to work
with permutations of 2n states x1 . . . xn. The main advantage of a signed
permutation σ is that we can test whether or not σ preserves the family F
of clauses in a satisfiability problem. If it does, we can be sure that σ also is an
automorphism when it acts on all 2n states. (See exercise 492.)

Let’s go back to the example waerden (3, 10; 97) that we’ve often discussed
above. These clauses have an obvious symmetry, which takes x1x2 . . . x97 #→
x97x96 . . . x1. If we don’t break this symmetry, Algorithm C typically verifies
unsatisfiability after about 530 Mμ of computation. Now Theorem E tells us
that we can also assert that x1x2x3 ≤ x97x96x95, say; but that symmetry-breaker
doesn’t really help at all, because x1 has very little influence on x97. Fortunately,
however, Theorem E allows us to choose any permutation p1p2 . . . pn on which to
base lexicographic comparisons. For example, we can assert that x48x47x46 . . . ≤
x50x51x52 . . . —provided that we don’t also require x1x2x3 . . . ≤ x97x96x95
(One fixed global ordering must be used, but the endomorphs can be arbitrary.)

Even the simple assertion that x48 ≤ x50, which is the clause ‘48 50’, cuts
the running time down to about 410Mμ, because this new clause combines nicely
with the existing clauses 46 48 50, 48 49 50, 48 50 52 to yield the helpful binary
clauses 46 50, 49 50, 50 52. If we go further and assert that x48x47 ≤ x50x51, the
running time improves to 345Mμ. And the next steps x48x47x46 ≤ x50x51x52,
. . . , x48x47x46x45x44x43 ≤ x50x51x52x53x54x55 take us down to 290Mμ, then
260Mμ, 235Mμ, 220Mμ; we’ve saved more than half of the running time by ex-
ploiting a single reflection symmetry! Only 16 simple additional clauses, namely

48 50, 48 a1, 50 a1, 47 51 ā1, 47 a2 ā1, 51 a2 ā1, 46 52 ā2, . . . , 43 55 ā5

are needed to get this speedup, using the efficient encoding of lex order in (169).

Of course all good things come to an end, and we’ve now reached the point of
diminishing returns: Further clauses to assert that x48x47 . . . x42 ≤ x50x51 . . . x56
in the waerden (3, 10; 97) problem turn out to be counterproductive.

A wonderful simplification occurs when a symmetry σ is a signed involu-
tion that has comparatively few 2-cycles. Suppose, for example, that σ =
53̄2̄416̄9̄8̄7̄; in cycle form this is (15)(1̄5̄)(23̄)(2̄3)(4)(4̄)(66̄)(79̄)(7̄9)(88̄). Then the
lexicographic relation x = x1 . . . x9 ≤ x′1 . . . x

′
9 = xσ holds if and only if x1x2x6 ≤

x5x̄3x̄6. The reason is clear, once we look closer (see F. A. Aloul, A. Ramani, I. L.
Markov, and K. A. Sakallah, IEEE Trans. CAD-22 (2003), 1117–1137, §III.C):
The relation x1 . . . x9 ≤ x′1 . . . x

′
9 means, in this case, “x1 ≤ x5; if x1 = x5 then

x2 ≤ x̄3; if x1 = x5 and x2 = x̄3 then x3 ≤ x̄2; if x1 = x5, x2 = x̄3, and x3 = x̄2
then x4 ≤ x4; if x1 = x5, x2 = x̄3, x3 = x̄2, and x4 = x4 then x5 ≤ x1; if
x1 = x5, x2 = x̄3, x3 = x̄2, x4 = x4, and x5 = x1 then x6 ≤ x̄6; if x1 = x5,
x2 = x̄3, x3 = x̄2, x4 = x4, x5 = x1, and x6 = x̄6 then we’re done for.” With
this expanded description the simplifications are obvious.

In general this reasoning allows us to improve Theorem E as follows:

296

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 297

Corollary E. Let p1p2 . . . pn be any permutation of {1, 2, . . . , n}. For every
signed involution σ that is a symmetry of clauses F , we can write σ in cycle
form

(pi1 ±pj1)(p̄i1 ∓pj1)(pi2 ±pj2)(p̄i2 ∓pj2) . . . (pit ±pjt)(p̄it ∓pjt) (192)

with i1 ≤ j1, i2 ≤ j2, . . . , it ≤ jt, i1 < i2 < · · · < it, and with (p̄ik ∓pjk)
omitted when ik = jk; and we’re allowed to append clauses to F that assert the
lexicographic relation xpi1xpi2 . . . xpiq ≤ x±pj1x±pj2 . . . x±pjq , where q = t or q is
the smallest k with ik = jk.

In the common case when σ is an ordinary signless involution, all of the signs
can be eliminated here; we simply assert that xpi1 . . . xpit ≤ xpj1 . . . xpjt.

This involution principle justifies all of the symmetry-breaking techniques
that we used above in the pigeonhole and quad-free matrix problems. See, for
example, the details discussed in exercise 495.

The idea of breaking symmetry by appending clauses was pioneered by J.-F.
Puget [LNCS 689 (1993), 350–361], then by J. Crawford, M. Ginsberg, E. Luks,
and A. Roy [Int. Conf. Knowledge Representation and Reasoning 5 (1998), 148–
159], who considered unsigned permutations only. They also attempted to dis-
cover symmetries algorithmically from the clauses that were given as input. Ex-
perience has shown, however, that useful symmetries can almost always be better
supplied by a person who understands the structure of the underlying problem.

Indeed, symmetries are often “semantic” rather than “syntactic.” That is,
they are symmetries of the underlying Boolean function, but not of the clauses
themselves. In the Zarankiewicz problem about quad-free matrices, for example,
we appended efficient cardinality clauses to ensure that

∑
xij ≥ r; that condition

is symmetric under row and column swaps, but the clauses are not.
In this connection it may also be helpful to mention themonkey wrench prin-

ciple: All of the techniques by which we’ve proved quickly that the pigeonhole
clauses are unsatisfiable would have been useless if there had been one more
clause such as (x01∨x11 ∨ x̄22); that clause would have destroyed the symmetry!

We conclude that we’re allowed to remove clauses from F until reaching a
subset of clauses F0 for which symmetry-breakers S can be added. If F = F0∪F1,
and if F0 is satisfiable ⇐⇒ F0 ∪ S is satisfiable, then F0 ∪ S � ε =⇒ F � ε.

One hundred test cases. And now—ta da!— let’s get to the climax of this
long story, by looking at how our SAT solvers perform when presented with 100
moderately challenging instances of the satisfiability problem. The 100 sets of
clauses summarized on the next two pages come from a cornucopia of different
applications, many of which were discussed near the beginning of this section,
while others appear in the exercises below.

Every test case has a code name, consisting of a letter and a digit. Table 6
characterizes each problem and also shows exactly how many variables, clauses,
and total literals are involved. For example, the description of problem A1
ends with ‘2043|24772|55195|U’; this means that A1 consists of 24772 clauses on 2043
variables, having 55195 literals altogether, and those clauses are unsatisfiable.
Furthermore, since ‘24772’ is underlined, all of A1’s clauses have length 3 or less.

297

From the Library of Melissa Nuno

ptg999

298 COMBINATORIAL SEARCHING 7.2.2.2

Table 6

CAPSULE SUMMARIES OF THE HUNDRED TEST CASES

A1. Find x = x1x2 . . . x99 with νx = 27 and
no three equally spaced 1s. (See exercise 31.)

2043|24772|55195|U

A2. Like A1, but x1x2 . . . x100.
2071|25197|56147|S

B1. Cover a mutilated 10 × 10 board with
49 dominoes, without using extra clauses
to break symmetry. 176|572|1300|U

B2. Like B1, but a 12 × 12 board with
71 dominoes. 260|856|1948|U

C1. Find an 8-step Boolean chain that
computes (z2z1z0)2 = x1 + x2 + x3 + x4.
(See exercise 479(a).) 384|16944|66336|U

C2. Find a 7-step Boolean chain that
computes the modified full adder functions
z1, z2, z3 in exercise 481(b). 469|26637|100063|U

C3. Like C2, but with 8 steps.
572|33675|134868|S

C4. Find a 9-step Boolean chain that
computes zl and zr in the mod-3 addition
problem of exercise 480(b). 678|45098|183834|S

C5. Connect A to A, . . . , J to J in Dudeney’s
puzzle of exercise 392, (iv). 1980|22518|70356|S

C6. Like C5, but move the J in row 8 from
column 4 to column 5. 1980|22518|70356|U

C7. Given binary strings s1, . . . , s50 of
length 200, randomly generated at distances
≤ rj from some string x, find x (see
exercise 502). 65719|577368|1659623|S

C8. Given binary strings s1, . . . , s40 of
length 500, inspired by biological data, find
a string at distance ≤ 42 from each of them.

123540|909120|2569360|U

C9. Like C8, but at distance ≤ 43.
124100|926200|2620160|S

D1. Satisfy factor fifo(18, 19, 111111111111).
(See exercise 41.) 1940|6374|16498|U

D2. Like D1, but factor lifo . 1940|6374|16498|U

D3. Like D1, but (19, 19, 111111111111).
2052|6745|17461|S

D4. Like D2, but (19, 19, 111111111111).
2052|6745|17461|S

D5. Solve (x1 . . . x9)2 × (y1 . . . y9)2 �=
(x1 . . . x9)2 × (y1 . . . y9)2, with two copies
of the same Dadda multiplication circuit.

864|2791|7236|U

E0. Find an Erdős discrepancy pattern
x1 . . . x500 (see exercise 482). 1603|9157|27469|S

E1. Like E0, but x1 . . . x750.
2556|14949|44845|S

E2. Like E0, but x1 . . . x1000.
3546|21035|63103|S

F1. Satisfy fsnark (99). (See exercise 176.)
1782|4161|8913|U

F2. Like F1, but without the clauses
(ē1,3∨ f̄99,3) ∧ (f̄1,1∨ ē2,1). 1782|4159|8909|S

G1. Win Late Binding Solitaire with the
“most difficult winnable deal” in answer 486.

1242|22617|65593|S

G2. Like G1, but with the most difficult
unwinnable deal. 1242|22612|65588|U

G3. Find a test pattern for the fault “B43
43

stuck at 0” in prod (16, 32). 3498|11337|29097|S

G4. Like G3, but for the fault “D13,9
34 stuck

at 0.” 3502|11349|29127|S

G5. Find a 7 × 15 array X0 leading to
X3 = as in Fig. 78, having at most 38
live cells. 7150|28508|71873|U

G6. Like G5, but at most 39 live cells.
7152|28536|71956|S

G7. Like G5, but X4 = and X0 can
be arbitrary. 8725|33769|84041|U

G8. Find a configuration in the Game
of Life that proves f∗(7, 7) = 28 (see
exercise 83). 97909|401836|1020174|S

K0. Color the 8 × 8 queen graph with 8
colors, using the direct encoding (15) and
(16), also forcing the colors of all vertices
in the top row. 512|5896|12168|U

K1. Like K0, but with the exclusion clauses
(17) also. 512|7688|15752|U

K2. Like K1, but with kernel clauses instead
of (17) (see answer 14). 512|6408|24328|U

K3. Like K1, but with support clauses
instead of (16) (see exercise 399).

512|13512|97288|U

K4. Like K1, but using the order encoding
for colors. 448|6215|21159|U

K5. Like K4, but with the hint clauses
(162) appended. 448|6299|21663|U

K6. Like K5, but with double clique hints
(exercise 396). 896|8559|27927|U

K7. Like K1, but with the log encoding
of exercise 391(a). 2376|5120|15312|U

K8. Like K1, but with the log encoding
of exercise 391(b). 192|5848|34968|U

L1. Satisfy langford (10). 130|2437|5204|U

L2. Satisfy langford ′(10). 273|1020|2370|U

L3. Satisfy langford (13). 228|5875|12356|U

L4. Satisfy langford ′(13). 502|1857|4320|U

L5. Satisfy langford (32). 1472|102922|210068|S

L6. Satisfy langford ′(32). 3512|12768|29760|S

L7. Satisfy langford (64). 6016|869650|1756964|S

L8. Satisfy langford ′(64). 14704|53184|124032|S

M1. Color the McGregor graph of order
10 (Fig. 76) with 4 colors, using one color at
most 6 times, via the cardinality constraints
(18) and (19). 1064|2752|6244|U

298

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 299

M2. Like M1, but via (20) and (21).
814|2502|5744|U

M3. Like M1, but at most 7 times.
1161|2944|6726|S

M4. Like M2, but at most 7 times.
864|2647|6226|S

M5. Like M4, but order 16 and at most
11 times. 2256|7801|18756|U

M6. Like M5, but at most 12 times.
2288|8080|19564|S

M7. Color the McGregor graph of order 9
with 4 colors, and with at least 18 regions
doubly colored (see exercise 19).

952|4539|13875|S

M8. Like M7, but with at least 19 regions.
952|4540|13877|U

N1. Place 100 nonattacking queens on
a 100× 100 board. 10000|1151800|2313400|S

O1. Solve a random open shop scheduling
problem with 8 machines and 8 jobs, in
1058 units of time. 50846|557823|1621693|U

O2. Like O1, but in 1059 units.
50901|558534|1623771|S

P0. Satisfy (99), (100), and (101) for
m = 20, thereby exhibiting a poset of size
20 with no maximal element. 400|7260|22080|U

P1. Like P0, but with m = 14 and using
only the clauses of exercise 228. 196|847|2667|U

P2. Like P0, but with m = 12 and using
only the clauses of exercise 229. 144|530|1674|U

P3. Like P2, but omitting the clause
(x̄31∨ x̄16∨ x36). 144|529|1671|S

P4. Like P3, but with m = 20. 400|2509|7827|S

Q0. Like K0, but with 9 colors.
576|6624|13688|S

Q1. Like K1, but with 9 colors.
576|8928|18296|S

Q2. Like K2, but with 9 colors.
576|7200|27368|S

Q3. Like K3, but with 9 colors.
576|15480|123128|S

Q4. Like K4, but with 9 colors.
512|7008|24200|S

Q5. Like K5, but with 9 colors.
512|7092|24704|S

Q6. Like K6, but with 9 colors.
1024|9672|31864|S

Q7. Like K7, but with 9 colors.
3168|6776|20800|S

Q8. Like K8, but with 9 colors.
256|6776|52832|S

Q9. Like Q8, but with the log encoding
of exercise 391(c). 256|6584|42256|S

R1. Satisfy rand (3, 1061, 250, 314159).
250|1061|3183|S

R2. Satisfy rand (3, 1062, 250, 314159).
250|1062|3186|U

S1. Find a 4-term disjunctive normal form
on {x1, . . . , x20} that differs from (27) but
agrees with it at 108 random training points.

356|4229|16596|S

S2. Like S1, but at 109 points.
360|4310|16760|U

S3. Find a sorting network on nine
elements that begins with the comparators
[1:6][2:7][3:8][4:9] and finishes in five more
parallel rounds. (See exercise 64.)

5175|85768|255421|U

S4. Like S3, but in six more rounds.
6444|107800|326164|S

T1. Find a 24× 100 tatami tiling that spells
‘TATAMI’ as in exercise 118. 2874|10527|26112|S

T2. Like T1, but 24× 106 and the ‘I’ should
have serifs. 3048|11177|27724|U

T3. Solve the TAOCP problem of exercise
389 with only 4 knight moves.

3752|12069|27548|U

T4. Like T3, but with 5 knight moves.
3756|12086|27598|S

T5. Find the pixel in row 5, column
18 of Fig. 80(c), the lexicographically
last solution to the Cheshire Tom problem.

8837|39954|100314|S

T6. Like T5, but column 19.
8837|39955|100315|U

T7. Solve the run-count extension of the
Cheshire Tom problem (see exercise 117).

25734|65670|167263|S

T8. Like T7, but find a solution that differs
from Fig. 79. 25734|65671|167749|U

W1. Satisfy waerden (3, 10; 97).
97|2779|11662|U

W2. Satisfy waerden (3, 13; 159).
159|7216|31398|S

W3. Satisfy waerden (5, 5; 177).
177|7656|38280|S

W4. Satisfy waerden (5, 5; 178).
178|7744|38720|U

X1. Prove that the “taking turns”
protocol (43) gives mutual exclusion for
at least 100 steps. 1010|3612|10614|U

X2. Prove that assertions Φ for the four-bit
protocol of exercise 101, analogous to (50),
are invariant. 129|354|926|U

X3. Prove that Bob won’t starve in 36 steps,
assuming the Φ of X2. 1652|10552|28971|U

X4. Prove that there’s a simple 36-step
path with the four-bit protocol, assuming
the Φ of X2. 22199|50264|130404|S

X5. Like X4, but 37 steps. 23388|52822|137034|U

X6. Like X1, but with Peterson’s proto-
col (49) instead of (43). 2218|8020|23222|U

X7. Prove that there’s a simple 54-step
path with protocol (49). 26450|56312|147572|S

X8. Like X7, but 55 steps.
27407|58317|152807|U

299

From the Library of Melissa Nuno

ptg999

300 COMBINATORIAL SEARCHING 7.2.2.2

A1

G4

B2

K6

C5

300

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 301

M1

M2

S3

T3

X3

Fig. 95. The clauses of
these test cases bind
the variables together
in significantly different
ways. (Illustrations by
Carsten Sinz.)

301

From the Library of Melissa Nuno

ptg999

302 COMBINATORIAL SEARCHING 7.2.2.2

Of course we can’t distinguish hard problems from easy ones by simply
counting variables, clauses, and literals. The great versatility with which clauses
can capture logical relationships means that different sets of clauses can lead to
wildly different phenomena. Some of this immense variety is indicated in Fig. 95,
which depicts ten instructive “variable interaction graphs.” Each variable is
represented by a ball, and two variables are linked when they appear together
in at least one clause. (Some edges are darker than others; see exercise 506. For
further examples of such 3D visualizations, presented also in color, see Carsten
Sinz, Journal of Automated Reasoning 39 (2007), 219–243.)

A single SAT solver cannot be expected to excel on all of the many species of
problems. Furthermore, nearly all of the 100 instances in Table 6 are well beyond
the capabilities of the simple algorithms that we began with: Algorithms A, B,
and D are unable to crack any of those test cases without needing more than
fifty gigamems of computation, except for the simplest examples—L1, L2, L5,
P3, P4, and X2. Algorithm L, the souped-up refinement of Algorithm D, also
has a lot of difficulty with most of them. On the other hand, Algorithm C does
remarkably well. It polishes off 79 of the given problems in fewer than ten Gμ.

Thus the test cases of Table 6 are tough, yet they’re within reach. Almost all
of them can be solved in say two minutes, at most, with methods known today.

Complete details can be found in the file SATexamples.tgz on the author’s
website, together with many related problems both large and small.

Exactly 50 of these 100 cases are satisfiable. So we’re naturally led to wonder
whether Algorithm W (“WalkSAT”) will handle such cases well. The answer is
that Algorithm W sometimes succeeds brilliantly—especially on problems C7,
C9, L5, L7, M3, M4, M6, P3, P4, Q0, Q1, R1, S1, where it typically outperforms
all the other methods we’ve discussed. In particular it solved S1 in just 1Mμ,
in the author’s tests with N = 50n and p = .4, compared to 25Mμ by the next
best method, Algorithm C; it won by 15Mμ versus Algorithm C’s 83Mμ on M3,
by 83Mμ versus Algorithm L’s 104Mμ on Q0, by 95Mμ versus Algorithm C’s
464Mμ on Q1, and by a whopping 104Mμ versus Algorithm C’s 7036Mμ on C7.
That was a surprise. WalkSAT also was reasonably competitive on problem N1.
But in all other cases it was nowhere near the method of choice. Therefore we’ll
consider only Algorithms L and C in the remainder of this discussion.*

When does a lookahead algorithm like Algorithm L outperform a clause-
learning algorithm like Algorithm C? Figure 96 shows how they compare to
each other on our 100 test cases: Each problem is plotted with Algorithm C’s
running time on the vertical axis and Algorithm L’s on the horizontal axis.
Thus Algorithm L is the winner for problems that appear above the dotted line.
(This dotted line is “wavy” because times aren’t drawn to scale: The kth fastest
running time is shown as k units from the left of the page or from the bottom.)

* There actually are two variants of Algorithm L, because the alternative heuristics of
exercise 143 must be used for looking ahead when clauses of length 4 or more are present. We
could use exercise 143 even when given all-ternary clauses; but experience shows that we’d tend
to lose a factor of 2 or more by doing so. Our references to Algorithm L therefore implicitly
assume that exercise 143 is being applied only when necessary.

302

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 303

A1

A2

B1

B2

C1

C2

C3

C4

C5

C6

C7

C8

C9

D1

D2

D3

D4

D5

E0

E1

E2

F1

F2

G1

G2

G3

G4

G5

G6

G7

G8

K0

K1

K2

K3

K4

K5

K6

K7

K8

L1

L2

L3L4

L5

L6

L7

L8

M1

M2

M3

M4

M5

M6

M7

M8

N1

O1

O2

P0

P1

P2

P3

P4

Q0
Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

R1

R2

S1

S2
S3

S4

T1
T2

T3

T4

T5

T6

T7

T8

W1

W2

W3

W4

X1

X2

X3

X4
X5

X6

X7

X8
5
0
G
μ

2
0
G
μ

1
0
G
μ

5
G
μ

2
G
μ

1
G
μ

.5
G
μ

.2
G
μ

.1
G
μ

5
0
M
μ

2
0
M
μ

1
0
M
μ

0
M
μ

50Gμ

20Gμ

10Gμ

5Gμ

2Gμ

1Gμ

.5Gμ

.2Gμ

.1Gμ

50Mμ

20Mμ

10Mμ

0Mμ

←

R
u
n
n
in
g
ti
m
e
fo
r
A
lg
o
ri
th
m
C
→

← Running time for Algorithm L →

Fig. 96. Comparison of
Algorithms C and L on
100 moderately difficult
satisfiability problems.

303

From the Library of Melissa Nuno

ptg999

304 COMBINATORIAL SEARCHING 7.2.2.2

All of these experiments were aborted after 50Gμ, if necessary, since many
of these problems could potentially take centuries before running to completion.
Thus the test cases for which Algorithm L timed out appear at the right edge of
Fig. 96, and the tough cases for Algorithm C appear at the top. Only E2 and X8
were too hard for both algorithms to handle within the specified cutoff time.

Algorithm L is deterministic: It uses no random variables. However, a slight
change (see exercise 505) will randomize it, because the inputs can be shuffled
as they are in Algorithm C; and we might as well assume that this change has
been made. Then both Algorithms L and C have variable running times. They
will find solutions or prove unsatisfiability more quickly on some runs than on
others, as we’ve already seen for Algorithm C in Fig. 92.

To compensate for this variability, each of the runtimes reported in Fig. 96 is
themedian of nine independent trials. Figure 97 shows all 9×100 of the empirical
running times obtained with Algorithm C, sorted by their median values. We
can see that many of the problems have near-constant behavior; indeed, the ratio
max/min was less than 2 in 38 of the cases. But 10 cases turned out to be highly
erratic in these experiments, with max/min > 100; problem P4 was actually
solved once after only 323 kilomems, while another run lasted 339 gigamems!

One might expect satisfiable problems, such as P4, to benefit more from
lucky guesses than unsatisfiable problems do; and these experiments strongly
support that hypothesis: Of the 21 problems with max/min > 30, all but P0
are satisfiable, and all 32 of the problems with max/min < 1.7 are unsatisfiable.
One might also expect the mean running time (the arithmetic average) to exceed
the median running time, in problems like this—because bad luck can be signifi-
cantly bad, though hopefully rare. Yet the mean is actually smaller than the me-
dian in 30 cases, about equally distributed between satisfiable and unsatisfiable.

The median is a nice measure because it is meaningful even in the presence
of occasional timeouts. It’s also fair, because we are able to achieve the median
time, or better, more often than not.

We should point out that input/output has been excluded from these time
comparisons. Each satisfiability problem is supposed to appear within a com-
puter’s memory as a simple list of clauses, after which the counting of mems
actually begins. We include the cost of initializing the data structures and solving
the problem, but then we stop counting before actually outputting a solution.

Some of the test cases in Table 6 and Fig. 96 represent different encodings
of the same problem. For example, problems K0–K8 all demonstrate that the
8× 8 queen graph can’t be colored with 8 colors. Similarly, problems Q0–Q9 all
show that 9 colors will suffice. We’ve already discussed these examples above
when considering alternative encodings; and we noted that the best solutions,
K6 and Q5, are obtained with an extended order encoding and with Algorithm C.
Therefore the fact that Algorithm L beats Algorithm C on problems K0, K1,
K2, and K3 is somewhat irrelevant; those problems won’t occur in practice.

Problems L5 and L6 compare different ways to handle the at-most-one
constraint. L6 is slightly better for Algorithm L, but Algorithm C prefers L5.
Similarly, M1 and M2 compare different ways to deal with a more general

304

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 305

X2

K6

L5

P3

T1

T2

L6

P0

K5

X1

M4

S1

G4

N1

B1

M2

L7

E0

S4

L8

M3

Q2

X6

F2

X4

X5

M1

Q5

L1

S2

S3

Q4

L2

X3

G3

Q0

Q1

T4

Q9

Q3

W1

Q6

M6

B2

T6

D4

M5

R1

F1

O2

Q8

C5

D2

C3

D1

T5

Q7

D3

R2

O1

W3

P2

C6

E1

P1

G6

C9

C2

K4

C1

G7

C8

T7

C7

T8

W2

G5

G1

K1

X7

K0

K2

A2

K8

P4

A1

T3

K7

K3

W4

M8

G2

D5

M7

C4

G8

E2

X8

L3

L4

1Tμ
.5Tμ

.2Tμ

.1Tμ
50Gμ

20Gμ
10Gμ
5Gμ

2Gμ
1Gμ
.5Gμ

.2Gμ

.1Gμ
50Mμ

20Mμ
10Mμ

5Mμ

2Mμ
1Mμ

Fig. 97. Nine random running times of Algorithm C, sorted by their medians.
(Unsatisfiable cases have solid dots or squares; satisfiable cases are hollow.)

cardinality constraint. Here M2 turns out to be better, although both are quite
easy for Algorithm C and difficult for Algorithm L.

We’ve already noted that Algorithm L shines with respect to random prob-
lems such as R1 and R2, and it dominates all competitors even more when
unsatisfiable random 3SAT problems get even bigger. Lookahead methods are
also successful in waerden problems like W1–W4.

Unsatisfiable Langford problems such as L3 and L4 are definitely bêtes noires
for Algorithm C, although not so bad for Algorithm L. Even the world’s fastest
CDCL solver, “Treengeling,” was unable to refute the clauses of langford (17) in
2013 until it had learned 26.7 billion clauses; this process took more than a week,
using a cluster of 24 computers working together. By contrast, the backtrack
method of exercise 7.2.2–21 was able to prove unsatisfiability after fewer than
4Tμ of computation—that’s about 50 minutes on a single vintage-2013 CPU.

We’ve now discussed every case where Algorithm L trounces Algorithm C,
except for D5; and D5 is actually somewhat scandalous! It’s an inherently simple
problem that hardware designers call a “miter”: Imagine two identical circuits
that compute some function f(x1, . . . , xn), one with gates g1, . . . , gm and another
with corresponding gates g′1, . . . , g

′
m, all represented as in (24). The problem is

to find x1 . . . xn for which the final results gm and g′m aren’t equal. It’s obviously
unsatisfiable. Furthermore, there’s an obvious way to refute it, by successively
learning the clauses (ḡ1∨g′1), (ḡ′1∨g1), (ḡ2∨g′2), (ḡ′2∨g2), etc. In theory, therefore,
Algorithm C will almost surely finish in polynomial time (see exercise 386).
But in practice, the algorithm won’t discover those clauses without quite a lot
of flailing around, unless special-purpose techniques are introduced to help it
discover isomorphic gates.

305

From the Library of Melissa Nuno

ptg999

306 COMBINATORIAL SEARCHING 7.2.2.2

Thus Algorithm C does have an Achilles heel or two. On the other hand, it
is the clear method of choice in the vast majority of our test cases, and we can
expect it to be the major workhorse for most of the satisfiability problems that
we encounter in daily work. Therefore it behooves us to understand its behavior
in some detail, not just to look at its total cost as measured in mems.

Table 7

ALGORITHM C’S EMPIRICAL BEHAVIOR ON THE HUNDRED TEST CASES

name runtime bytes cells nodes learned of size triv disc sub flushes sat?

X2 0+2Mμ 57K 9K 2K 1K 32.0→ 12.0 50% 6% 1% 30 U

K6 0+2Mμ 314K 46K 1K 0K 15.8→ 11.8 22% 4% 3% 6 U

L5 1+1Mμ 1841K 210K 0K 0K 146.1→ 38.4 51% 23% 0% 0 S

P3 0+2Mμ 96K 19K 2K 1K 18.4→ 12.6 4% 11% 1% 45 S

T1 0+6Mμ 541K 35K 3K 1K 7.4→ 6.8 3% 2% 6% 9 S

T2 0+7Mμ 574K 37K 4K 1K 7.2→ 6.8 1% 2% 4% 6 U

L6 0+8Mμ 672K 39K 1K 0K 195.9→ 67.8 86% 0% 0% 0 S

P0 0+11Mμ 376K 81K 8K 4K 17.8→ 14.7 3% 10% 10% 28 U

K5 0+13Mμ 294K 55K 3K 2K 18.6→ 12.4 33% 1% 1% 14 U

X1 0+13Mμ 284K 38K 29K 4K 6.3→ 5.8 0% 3% 8% 53 U

M4 0+24Mμ 308K 47K 6K 4K 20.5→ 16.3 14% 2% 1% 3 S

S1 0+25Mμ 366K 72K 9K 4K 34.0→ 26.7 22% 4% 1% 14 S

G4 0+29Mμ 759K 76K 3K 2K 37.1→ 24.2 26% 0% 0% 1 S

N1 16+14Mμ 19644K 2314K 41K 0K 629.3→ 291.7 44% 6% 0% 15 S

B1 0+31Mμ 251K 55K 10K 7K 13.5→ 11.3 3% 5% 4% 14 U

M2 0+32Mμ 326K 53K 7K 5K 18.2→ 12.8 20% 1% 1% 6 U

L7 12+23Mμ 14695K 1758K 2K 1K 411.2→ 107.6 66% 4% 0% 0 S

E0 0+40Mμ 571K 95K 5K 3K 30.2→ 19.3 14% 11% 0% 6 S

S4 1+69Mμ 3291K 600K 6K 2K 17.2→ 12.6 19% 1% 1% 8 S

L8 1+72Mμ 3047K 224K 3K 2K 547.9→ 169.1 87% 0% 0% 0 S

M3 0+83Mμ 493K 84K 13K 9K 28.4→ 19.2 31% 0% 1% 1 S

Q2 0+87Mμ 885K 190K 11K 8K 61.7→ 45.8 36% 0% 0% 11 S

X6 0+93Mμ 775K 122K 86K 17K 13.5→ 11.4 0% 3% 3% 32 U

F2 0+95Mμ 714K 118K 42K 22K 14.3→ 13.1 0% 2% 4% 5 S

X4 1+98Mμ 3560K 158K 24K 3K 16.2→ 11.4 9% 2% 3% 623 S

X5 1+106Mμ 3747K 166K 23K 3K 16.5→ 11.0 11% 3% 3% 726 U

M1 0+131Mμ 483K 84K 16K 12K 23.2→ 13.4 33% 1% 0% 1 U

Q5 0+143Mμ 708K 157K 13K 11K 28.8→ 23.6 21% 2% 2% 6 S

L1 0+157Mμ 597K 139K 21K 18K 36.7→ 19.0 60% 3% 0% 30 U

S2 0+176Mμ 722K 161K 29K 17K 37.5→ 27.5 33% 3% 1% 8 U

S3 1+201Mμ 2624K 471K 12K 6K 14.5→ 9.8 21% 1% 2% 1 U

Q4 0+213Mμ 781K 175K 19K 16K 29.2→ 23.3 25% 3% 1% 6 S

L2 0+216Mμ 588K 136K 23K 20K 36.2→ 17.4 75% 1% 0% 6 U

X3 0+235Mμ 1000K 191K 61K 25K 37.7→ 19.3 34% 1% 2% 14 U

G3 0+251Mμ 1035K 145K 12K 9K 57.9→ 28.1 42% 1% 0% 0 S

Q0 0+401Mμ 1493K 342K 37K 28K 63.3→ 40.0 50% 0% 0% 14 S

Q1 0+464Mμ 1516K 343K 41K 33K 63.0→ 41.0 45% 0% 0% 14 S

T4 0+546Mμ 2716K 544K 202K 18K 218.3→ 61.5 83% 1% 0% 3018 S

Q9 0+555Mμ 1409K 343K 152K 71K 26.7→ 20.6 3% 5% 2% 99 S

Q3 0+613Mμ 1883K 448K 27K 22K 60.1→ 40.3 41% 1% 1% 7 S

W1 0+626Mμ 848K 208K 71K 63K 20.8→ 13.4 5% 14% 1% 28 U

Q6 0+646Mμ 1211K 266K 40K 35K 30.4→ 23.2 30% 1% 1% 2 S

M6 0+660Mμ 1378K 266K 80K 52K 34.0→ 22.2 33% 1% 1% 59 S

B2 0+668Mμ 906K 216K 96K 75K 17.1→ 13.2 4% 5% 2% 16 U

T6 1+668Mμ 2355K 291K 34K 25K 41.4→ 19.1 57% 0% 1% 11 U

D4 0+669Mμ 1009K 186K 35K 28K 55.7→ 15.9 70% 0% 0% 2 S

M5 0+677Mμ 1183K 219K 73K 48K 32.6→ 20.2 37% 1% 1% 139 U

R1 0+756Mμ 913K 220K 87K 74K 17.3→ 12.4 3% 8% 0% 9 S

F1 0+859Mμ 1485K 311K 218K 135K 17.6→ 15.1 1% 3% 3% 6 U

O2 7+1069Mμ 18951K 3144K 3K 2K 17.0→ 9.5 35% 0% 0% 1 S

Q8 0+1107Mμ 1786K 437K 184K 109K 29.4→ 20.2 6% 6% 1% 109 S

306

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: ONE HUNDRED TEST CASES 307

C5 0+1127Mμ 1987K 419K 159K 104K 24.4→ 16.5 12% 2% 1% 776 S

D2 0+1159Mμ 962K 177K 54K 45K 51.8→ 11.5 73% 0% 0% 2 U

C3 0+1578Mμ 2375K 571K 190K 96K 49.7→ 23.4 39% 3% 2% 11 S

D1 0+1707Mμ 1172K 230K 76K 62K 45.1→ 11.6 73% 0% 0% 2 U

T5 1+1735Mμ 3658K 617K 80K 59K 72.5→ 40.9 50% 0% 0% 43 S

Q7 0+1761Mμ 2055K 419K 515K 118K 33.9→ 20.3 9% 7% 0% 12 S

D3 0+1807Mμ 1283K 254K 77K 64K 57.3→ 14.0 80% 0% 0% 1 S

R2 0+1886Mμ 1220K 296K 173K 149K 17.0→ 11.8 3% 9% 0% 14 U

O1 7+2212Mμ 18928K 3140K 5K 3K 17.3→ 8.9 39% 0% 0% 4 U

W3 0+2422Mμ 1819K 448K 191K 174K 19.3→ 15.5 2% 12% 1% 18 S

P2 0+2435Mμ 2039K 504K 378K 301K 20.9→ 13.7 3% 11% 1% 45 U

C6 0+2792Mμ 2551K 560K 305K 217K 27.0→ 17.0 20% 2% 1% 492 U

E1 0+2902Mμ 2116K 453K 180K 144K 38.0→ 20.5 21% 18% 0% 2 S

P1 0+3280Mμ 2726K 674K 819K 549K 18.2→ 14.4 0% 9% 3% 45 U

G6 1+3941Mμ 3523K 647K 380K 253K 31.0→ 17.8 31% 0% 0% 0 S

C9 13+4220Mμ 35486K 4923K 116K 32K 11.8→ 9.9 5% 1% 1% 4986 S

C2 0+4625Mμ 2942K 712K 442K 255K 46.1→ 18.8 42% 4% 1% 15 U

K4 0+5122Mμ 1858K 446K 267K 241K 19.6→ 13.7 19% 2% 1% 5 U

C1 0+5178Mμ 2532K 613K 510K 311K 48.9→ 17.0 48% 6% 1% 20 U

G7 1+6070Mμ 4227K 771K 546K 369K 32.5→ 17.6 35% 0% 0% 0 U

C8 13+6081Mμ 35014K 4823K 151K 58K 15.3→ 10.7 15% 1% 1% 8067 U

T7 1+6467Mμ 5428K 544K 333K 108K 26.8→ 15.3 32% 1% 1% 14565 S

C7 8+7029Mμ 20971K 3174K 908K 32K 9.5→ 8.4 0% 3% 0% 4965 S

T8 1+7046Mμ 5322K 517K 356K 117K 26.9→ 15.0 33% 0% 1% 15026 U

W2 0+7785Mμ 3561K 884K 501K 432K 34.7→ 21.3 13% 17% 1% 28 S

G5 1+7799Mμ 4312K 844K 642K 446K 33.4→ 17.4 39% 0% 0% 0 U

G1 0+8681Mμ 5052K 1221K 631K 350K 61.1→ 34.1 38% 1% 2% 55 S

K1 0+9813Mμ 2864K 685K 405K 360K 36.2→ 18.4 53% 2% 0% 13 U

X7 1+11857Mμ 6235K 697K 1955K 224K 40.6→ 23.7 35% 0% 1% 31174 S

K0 0+11997Mμ 3034K 731K 493K 421K 35.6→ 19.4 45% 2% 0% 14 U

K2 0+12601Mμ 3028K 729K 500K 427K 34.8→ 18.0 46% 2% 0% 12 U

A2 0+13947Mμ 3766K 843K 645K 585K 34.4→ 15.9 32% 1% 0% 0 S

K8 0+15033Mμ 2748K 680K 821K 699K 21.2→ 13.1 8% 15% 1% 93 U

P4 0+16907Mμ 6936K 1721K 1676K 1314K 36.5→ 24.0 5% 11% 1% 33 S

A1 0+17073Mμ 3647K 815K 763K 701K 30.7→ 14.7 29% 2% 0% 0 U

T3 0+19266Mμ 10034K 2373K 2663K 323K 291.8→ 72.9 86% 1% 0% 34265 U

K7 0+20577Mμ 3168K 721K 1286K 828K 23.3→ 13.5 9% 15% 0% 9 U

K3 0+20990Mμ 3593K 878K 453K 407K 36.7→ 19.0 55% 2% 0% 6 U

W4 0+21295Mμ 3362K 834K 977K 899K 19.0→ 14.1 4% 15% 0% 21 U

M8 0+22281Mμ 4105K 994K 992K 785K 37.3→ 20.5 43% 1% 1% 6 U

G2 0+23424Mμ 6910K 1685K 1198K 701K 68.8→ 34.3 47% 1% 1% 120 U

D5 0+24141Mμ 3232K 779K 787K 654K 63.5→ 13.4 78% 0% 0% 2 U

M7 0+24435Mμ 4438K 1077K 1047K 819K 40.6→ 23.3 42% 1% 1% 6 S

C4 1+31898Mμ 8541K 2108K 1883K 1148K 60.6→ 25.7 42% 4% 1% 12 S

G8 7+35174Mμ 24854K 2992K 4350K 1101K 48.0→ 34.7 9% 0% 0% 1523 S

E2 0+53739Mμ 5454K 1258K 2020K 1658K 41.5→ 20.8 25% 21% 0% 3 S

X8 2+248789Mμ 12814K 2311K 17005K 3145K 56.4→ 22.5 63% 0% 0% 330557 U

L3 0+295571Mμ 19653K 4894K 7402K 6886K 70.7→ 31.0 63% 8% 0% 30 U

L4 0+677815Mμ 22733K 5664K 8545K 7931K 78.6→ 35.4 86% 0% 0% 5 U

name runtime bytes cells nodes learned of size triv disc sub flushes sat?

Table 7 summarizes the salient statistics, again listing all cases in order of
their median running time (exclusive of input and output). Each running time
is actually broken into two parts, ‘x+y’, where x is the time to initialize the
data structures in step C1 and y is the time for the other steps, both rounded
to megamems. For example, the exact median processing time for case L5
was 1,484,489μ to initialize, then 655,728μ to find a solution; this is shown
as ‘1+1Mμ’ in the third line of the table. The time for initialization is usually
negligible except when there are many clauses, as in problem N1.

307

From the Library of Melissa Nuno

ptg999

308 COMBINATORIAL SEARCHING 7.2.2.2

The median run of problem L5 also allocated 1,841,372 bytes of memory for
data; this total includes the space needed for 210,361 cells in the MEM array, at
4 bytes per cell, together with other arrays such as VAL, OVAL, HEAP, etc. The
implementation considered here keeps unlearned binary clauses in a separate
BIMP table, as explained in the answer to exercise 267.

This run of L5 found a solution after implicitly traversing a search tree with
138 “nodes.” The number of nodes, or “decisions,” is the number of times step C6
of the algorithm goes to step C3. It is shown as ‘0K’ in Table 7, because the
node counts, byte counts, and cell counts are rounded to the nearest thousand.

The number of nodes always exceeds or equals the number of learned clauses,
which is the number of conflicts detected at levels d > 0. (See step C7.) In the
case of problem L5, only 84 clauses were learned; so again the table reports ‘0K’.
These 84 clauses had average length r+1 = 146.1; then the simplification process
of exercise 257 reduced this average to just 38.4. Nevertheless, the resulting
simplified clauses were still sufficiently long that the “trivial” clauses discussed
in exercise 269 were sometimes used instead; this substitution happened 43
times (51%). Furthermore 19 of the learned clauses (23%) were immediately
discarded, using the method of exercise 271. These percentages show up in the
‘triv’ and ‘disc’ columns of the table.

Sometimes, as in problems D1–D5, a large majority of the learned clauses
were replaced by trivial ones; on the other hand, 27 of the 100 cases turned out
to be less than 10% trivial in this sense. Table 7 also shows that the discard
rate was 5% or more in 26 cases. The ‘sub’ column refers to learned clauses that
were “subsumed on the fly” by the technique of exercise 270; this optimization
is less common, yet it occurs often enough to be worthwhile.

The great variety in our examples is reflected in the variety of behaviors ex-
hibited in Table 7, although several interesting trends can also be perceived. For
example, the number of nodes is naturally correlated with the number of learned
clauses, and both statistics tend to grow as the total running time increases. But
there are significant exceptions: Two outliers, O1 and O2, have a remarkably
high ratio of mems per learned clause, because of their voluminous data.

The penultimate column of Table 7 counts how often Algorithm C decided
to restart itself after flushing unproductive literals from its current trail. This
quantity does not simply represent the number of times step C5 discovers that
M ≥ Mf ; it depends also on the current agility level (see (127)) and on the
parameter ψ in Table 4. Some problems, like A1 and A2, had such high agility
that they were solved satisfactorily with no restarts whatsoever; but another
one, T4, finished in about 500 megamems after restarting more than 3000 times.

The number of “purges” (recycling phases) is not shown, but it can be
estimated from the number of learned clauses (see exercise 508). An aggressive
purging policy has kept the total number of memory cells comfortably small.

Tuning up the parameters. Table 7 shows that the hardest problem of all for
Algorithm C in these experiments, L4, found itself substituting trivial clauses
86% of the time but making only 5 restarts. That test case would probably have

308

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: TUNING THE PARAMETERS 309

been solved much more quickly if the algorithm’s parameters had been specially
adjusted for instances of the Langford problem.

Algorithm C, as implemented in the experiments above, has ten major
parameters that can be modified by the user on each run:

α, tradeoff between p and q in clause RANGE scores (see Eq. (123));

ρ, damping factor in variable ACT scores (see after (118));

�, damping factor in clause ACT scores (see Eq. (125));

Δp, initial value of the purging threshold Mp (see after (125));

δp, amount of gradual increase in Mp (see after (125));

τ, threshold used to prefer trivial clauses (see answer to exercise 269);

w, full “warmup” runs done after a restart (see answer to exercise 287);

p, probability of choosing a decision variable at random (see exercise 266);

P, probability that OVAL(k) is initially even;

ψ, agility threshold for flushing (see Table 4).

The values for these parameters initially came from seat-of-the-pants guesses

α = 0.2, ρ = 0.95, � = 0.999, Δp = 20000, δp = 500,

τ = 1, w = 0, p = 0.02, P = 0, ψ = 0.166667; (193)

and those defaults gave reasonably good results, so they were used happily for
many months (although there was no good reason to believe that they couldn’t be
improved). Then finally, after the author had assembled the set of 100 test cases
in Table 6, it was time to decide whether to recommend the default values (193)
or to come up with a better set of numbers.

Parameter optimization for general broad-spectrum use is a daunting task,
not only because of significant differences between species of SAT instances but
also because of the variability due to random choices when solving any specific
instance. It’s hard to know whether a change of parameter will be beneficial or
harmful, when running times are so highly erratic. Ouch—Fig. 97 illustrates
dramatic variations even when all ten parameters are held fixed, and only the
seed for random numbers is changed! Furthermore the ten parameters are not
at all independent: An increase in ρ, say, might be a good thing, but only if the
other nine parameters are also modified appropriately. How then could any set
of defaults be recommended, without an enormous expense of time and money?

Fortunately there’s a way out of this dilemma, thanks to advances in the
theory of learning. F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle have
developed a tool called ParamILS intended specifically for making such tuneups
[J. Artificial Intelligence Research 36 (2009), 267–306]; the ‘ILS’ in this name
stands for “iterated local search.” The basic idea is to start with a representative
training set of not-too-hard problems, and to carry out random walks in the 10-
dimensional parameter space using sophisticated refinements of WalkSAT-like
principles. The best parameters discovered during this training session are then
evaluated on more difficult problems outside the training set.

309

From the Library of Melissa Nuno

ptg999

310 COMBINATORIAL SEARCHING 7.2.2.2

In March 2015, Holger Hoos helped the author to tune Algorithm C using
ParamILS. The resulting parameters then yielded Fig. 97, and Table 7, and many
other runtime values discussed above and below. Our training set consisted
of 17 problems that usually cost less than 200Mμ with the original parame-
ters (193), namely {K5,K6,M2,M4,N1, S1, S4,X4,X6} together with stripped-
down versions of {A1,C2,C3,D1,D2,D3,D4,K0}. For example, instead of the
vector x1 . . . x100 required by problem A1, we looked only for a shorter vector
x = x1 . . . x62, now with νx = 20; instead of D1 and D2 we sought 13-bit factors
of 31415926; instead of K0 we tried to 9-color the SGB graph jean.

Ten independent training runs with ParamILS gave ten potential parameter
settings (αi, ρi, . . . , ψi). We evaluated them on our original 17 benchmarks,
together with 25 others that were a bit more difficult: {F1,F2, S2, S3,T4,X5},
plus less-stripped-down variants of {A1,A2,A2,C7,C7,D3,D4,F1,F2,G1,G1,
G2,G2,G8,K0,O1,O2,Q0,Q2}. For each of the ten shortlisted parameter set-
tings, we ran each of these 17 + 25 problems with each of the random seeds
{1, 2, . . . , 25}. Finally, hurrah, we had a winner: The parameters (α, ρ, . . . , ψ)
with minimum total running time in this experiment were

α = 0.4, ρ = 0.9, � = 0.9995, Δp = 1000, δp = 500,

τ = 10, w = 0, p = 0.02, P = 0.5, ψ = 0.05. (194)

And these are now the recommended defaults for general-purpose use.
How much have we thereby gained? Figure 98 compares the running times of

our 100 examples, before and after tuning. It shows that the vast majority—77
of them—now run faster; these are the cases to the right of the dotted line from
(1Mμ, 1Mμ) to (1Tμ, 1Tμ). Half of the cases experience a speedup exceeding
1.455; 27 of them now run more than twice as fast as they previously did.

Of course every rule has exceptions. The behavior of case P4 has gotten
spectacularly worse, almost three orders of magnitude slower! Indeed, we saw
earlier in Fig. 97 that this case has an amazingly unstable running time; further
peculiarities of P4 are discussed in exercise 511.

Our other major SAT solver, Algorithm L, also has parameters, notably

α, magic tradeoff coefficient in heuristic scores (see Eq. (64));

β, damping factor for double-look triggering (see step Y1);

γ, clause weight per literal in heuristic scores (see exercise 175);

ε, offset in heuristic scores (see answer to exercise 146);

Θ, maximum heuristic score threshold (see answer to exercise 145);

Y, maximum depth of double-lookahead (see step Y1).

ParamILS suggests the following default values, which have been used in Fig. 96:

α = 3.5, β = 0.9998, γ = 0.2, ε = 0.001, Θ = 20.0, Y = 1. (195)

Returning to Fig. 98, notice that the change from (193) to (194) has substan-
tially hindered cases G3 and G4, which are examples of test pattern generation.
Evidently such clauses have special characteristics that make them prefer special

310

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: TUNING THE PARAMETERS 311

←

Im
p
ro
v
ed
ru
n
n
in
g
ti
m
e
fr
o
m
p
a
ra
m
et
er
s
(1
9
4
)
→

← Original running time from parameters (193) →

A1
A2

B1

B2

C1C2

C3

C4

C5

C6

C7
C8

C9

D1

D2

D3

D4

D5

E0

E1

E2

F1

F2

G1

G2

G3

G4

G5

G6

G7

G8

K0
K1
K2

K3

K4

K5

K6

K7
K8

L1
L2

L3

L4

L5

L6

L7

L8

M1

M2

M3

M4

M5M6

M7 M8

N1

O1

O2

P0

P1
P2

P3

P4

Q0
Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9
R1

R2

S1

S2
S3

S4

T1
T2

T3

T4

T5

T6

T7T8

W1

W2

W3

W4

X1

X2

X3

X4X5X6

X7

X8

5
T
μ

2
T
μ

1
T
μ

.5
T
μ

.2
T
μ

.1
T
μ

5
0
G
μ

2
0
G
μ

1
0
G
μ

5
G
μ

2
G
μ

1
G
μ

.5
G
μ

.2
G
μ

.1
G
μ

5
0
M
μ

2
0
M
μ

1
0
M
μ

5
M
μ

2
M
μ

1
M
μ

1Tμ

.5Tμ

.2Tμ

.1Tμ

50Gμ

20Gμ

10Gμ

5Gμ

2Gμ

1Gμ

.5Gμ

.2Gμ

.1Gμ

50Mμ

20Mμ

10Mμ

5Mμ

2Mμ

1Mμ

Fig. 98. Median running times
of Algorithm C, before and after
its parameters were tuned.

settings of the parameters. Our main reason for introducing parameters in the
first place was, of course, to allow tweaking for different families of clauses.

Instead of finding values of (α, ρ, . . . , ψ) that give good results in a broad
spectrum of applications, we can clearly use a system like ParamILS to find
values that are specifically tailored to a particular class of problems. In fact,
this task is easier. For example, Hoos and the author asked for settings of the
ten parameters that will tend to make Algorithm C do its best on problems of
the form waerden (3, k;n). A pair of ParamILS runs, based solely on the easy
training cases waerden (3, 9; 77) and waerden (3, 10; 95), suggested the parameters

α = 0.5, ρ = 0.9995, � = 0.99, Δp = 100, δp = 10,

τ = 10, w = 8, p = 0.01, P = 0.5, ψ = 0.15, (196)

and this set indeed works very well. Figure 99 shows typical details, with 7 ≤
k ≤ 14 and with nine independent sample runs for every choice of k and n.
Each unsatisfiable instance has n = W (3, k), as given in the table following (10)
above; each satisfiable instance has n = W (3, k)−1. The fastest run using default

311

From the Library of Melissa Nuno

ptg999

312 COMBINATORIAL SEARCHING 7.2.2.2

←

R
u
n
n
in
g
ti
m
e
fr
o
m
w
a
e
rd
e
n
p
a
ra
m
et
er
s
(1
9
6
)
→

← Running time from default parameters (194) →

k=7 k=7

k=8 k=8

k=9

k=9

k=10

k=10

k=11 k=11

k=12

k=12

k=13

k=13

k=14

k=14
1
0
T
μ

5
T
μ

2
T
μ

1
T
μ

.5
T
μ

.2
T
μ

.1
T
μ

5
0
G
μ

2
0
G
μ

1
0
G
μ

5
G
μ

2
G
μ

1
G
μ

.5
G
μ

.2
G
μ

.1
G
μ

5
0
M
μ

2
0
M
μ

1
0
M
μ

5
M
μ

2
M
μ

1
M
μ

.5
M
μ

.2
M
μ

.1
M
μ

2Tμ

1Tμ

.5Tμ

.2Tμ

.1Tμ

50Gμ

20Gμ

10Gμ

5Gμ

2Gμ

1Gμ

.5Gμ

.2Gμ

.1Gμ

50Mμ

20Mμ

10Mμ

5Mμ

2Mμ

1Mμ

.5Mμ

.2Mμ

Fig. 99. Running times of Algo-
rithm C on clauses waerden (3, k;n),
with and without special tuning.

SAT UNSAT

parameters (194) has been paired in Fig. 99 with the fastest run using waerden -
tuned parameters (196); similarly, the second-fastest, . . . , second-slowest, and
slowest runs have also been paired. Notice that satisfiable instances tend to take
an unpredictable amount of time, as in Fig. 97. In spite of the fact that the new
parameters (196) were found by a careful study of just two simple instances, they
clearly yield substantial savings when applied to much, much harder problems
of a similar nature. (See exercise 512 for another instructive example.)

Exploiting parallelism. Our focus in the present book is almost entirely on
sequential algorithms, but we should be aware that the really tough instances of
SAT are best solved by parallel methods.

Problems that are amenable to backtracking can readily be decomposed into
subproblems that partition the space of solutions. For example, if we have 16
processors available, we can start them off on independent SAT instances in which
variables x1x2x3x4 have been forced to equal 0000, 0001, . . . , 1111.

A näıve decomposition of that kind is rarely the best strategy, however.
Perhaps only one of those sixteen cases is really challenging. Perhaps some of

312

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: HISTORY 313

the processors are slower than others. Perhaps several processors will learn new
clauses that the other processors ought to know. Furthermore, the splitting into
subproblems need not occur only at the root of the search tree. Careful load-
balancing and sharing of information will do much better. These challenges were
addressed by a pioneering system called PSATO [H. Zhang, M. P. Bonacina, and
J. Hsiang, Journal of Symbolic Computation 21 (1996), 543–560].

A much simpler approach should also be mentioned: We can start up many
different solvers, or many copies of the same solver, with different sources of
random numbers. As soon as one has finished, we can then terminate the others.

The best parallelized SAT solvers currently available are based on the “cube
and conquer” paradigm, which combines conflict driven clause learning with
lookahead techniques that choose branch variables for partitioning; see M. J. H.
Heule, O. Kullmann, S. Wieringa, and A. Biere, LNCS 7261 (2012), 50–65. In
particular, this approach is excellent for the waerden problems.

Today has proved to be an epoch in my Logical work.

. . . I think of calling it the ‘Genealogical Method.’

— CHARLES L. DODGSON, Diary (16 July 1894)

The method of showing a statement to be tautologous

consists merely of constructing a table under it in the usual way

and observing that the column under the main connective

is composed entirely of ‘T’s.

— W. V. O. QUINE, Mathematical Logic (1940)

A brief history. The classic syllogism “All men are mortal; Socrates is a man;
hence Socrates is mortal” shows that the notion of resolution is quite ancient:

¬Man ∨ Mortal; ¬Socrates ∨ Man; ... ¬Socrates ∨ Mortal.

Of course, algebraic demonstrations that (¬x∨y)∧(¬z∨x) implies (¬z∨y), when
x, y, and z are arbitrary Boolean expressions, had to wait until Boole and his
19th-century followers brought mathematics to bear on the subject. The most
notable contributor, resolutionwise, was perhaps C. L. Dodgson, who spent the
last years of his life working out theories of inference by which complex chains of
reasoning could be analyzed by hand. He published Symbolic Logic, Part I, in
1896, addressing it to children and to the young-in-heart by using his famous pen
name Lewis Carroll. Section VII.II.§3 of that book explains and illustrates how
to eliminate variables by resolution, which he called the Method of Underscoring.

When Dodgson died unexpectedly at the beginning of 1898, his nearly com-
plete manuscript for Symbolic Logic, Part II, vanished until W. W. Bartley III
was able to resurrect it in 1977. Part II was found to contain surprisingly novel
ideas—especially its Method of Trees, which would have completely changed
the history of mechanical theorem proving if it had come to light earlier. In this
method, which Carroll documented at length in a remarkably clear and enter-
taining way, he constructed search trees essentially like Fig. 82, then converted
them into proofs by resolution. Instead of backtracking as in Algorithm D,

313

From the Library of Melissa Nuno

ptg999

314 COMBINATORIAL SEARCHING 7.2.2.2

which is a recursive depth-first method, he worked breadth-first: Starting at the
root, he exploited unit clauses when possible, and branched on binary (or even
ternary) clauses when necessary, successively filling out all unfinished branches
level-by-level in hopes of being able to reuse computations.

Logicians of the 20th century took a different tack. They basically dealt with
the satisfiability problem in its equivalent dual form as the tautology problem,
namely to decide when a Boolean formula is always true. But they dismissed
tautology-checking as a triviality, because it could always be solved in a finite
number of steps by just looking at the truth table. Logicians were far more
interested in problems that were provably unsolvable in finite time, such as
the halting problem—the question of whether or not an algorithm terminates.
Nobody was bothered by the fact that an n-variable function has a truth table
of length 2n, which exceeds the size of the universe even when n is rather small.

Practical computations with disjunctive normal forms were pioneered by
Archie Blake in 1937, who introduced the “consensus” of two implicants, which
is dual to the resolvent of two clauses. Blake’s work was, however, soon forgotten;
E. W. Samson, B. E. Mills, and (independently) W. V. O. Quine rediscovered
the consensus operation in the 1950s, as discussed in exercise 7.1.1–31.

The next important step was taken by E. W. Samson and R. K. Mueller
[Report AFCRC-TR-55-118 (Cambridge, Mass.: Air Force Cambridge Research
Center, 1955), 16 pages], who presented an algorithm for the tautology problem
that uses consensus to eliminate variables one by one. Their algorithm therefore
was equivalent to SAT solving by successively eliminating variables via resolu-
tion. Samson and Mueller demonstrated their algorithm by applying it to the
unsatisfiable clauses that we considered in (112) above.

Independently, Martin Davis and Hilary Putnam had begun to work on the
satisfiability problem, motivated by the search for algorithms to deduce formulas
in first-order logic—unlike Samson, Mills, and Mueller, who were chiefly inter-
ested in synthesizing efficient circuits. Davis and Putnam wrote an unpublished
62-page report “Feasible computational methods in the propositional calculus”
(Rensselaer Polytechnic Institute, October 1958) in which a variety of different
approaches were considered, such as the removal of unit clauses and pure literals,
as well as “case analysis,” that is, backtracking with respect to the subproblems
F |x and F | x̄. As an alternative to case analysis, they also discussed eliminating
the variable x by resolution. The account of this work that was eventually pub-
lished [JACM 7 (1960), 201–215] concentrated on hand calculation, and omitted
case analysis in favor of resolution; but when the process was later implemented
on a computer, jointly with George Logemann and Donald Loveland [CACM 5

(1962), 394–397], the method of backtracking through different cases was found
to work better with respect to memory requirements. (See Davis’s account of
these developments in Handbook of Automated Reasoning (2001), 3–15.)

This early work didn’t actually cause the satisfiability problem to appear
on many people’s mental radar screens, however. Far from it; ten years went
by before SAT became an important buzzword. The picture changed in 1971,
when Stephen A. Cook showed that satisfiability is the key to solving NP-

314

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: HISTORY 315

complete problems: He proved that any algorithm to solve a decision problem in
nondeterministic polynomial time can be represented efficiently as a conjunction
of ternary clauses to be satisfied. (See STOC 3 (1971), 151–158. We’ll study NP-
completeness in Section 7.9.) Thus, a great multitude of hugely important prob-
lems could all be solved rather quickly, if we could only devise a decent algorithm
for a single problem, 3SAT; and 3SAT seemed almost absurdly simple to solve.

A year of heady optimism following the publication of Cook’s paper soon
gave way to the realization that, alas, 3SAT might not be so easy after all.
Ideas that looked promising in small cases didn’t scale well, as the problem
size was increased. Hence the central focus of work on satisfiability largely
retreated into theoretical realms, unrelated to programming practice, except
for occasional studies that used SAT as a simple model for the behavior of
backtracking algorithms in general. Examples of such investigations, pioneered
by A. T. Goldberg, P. W. Purdom, Jr., C. A. Brown, J. V. Franco, and others,
appear in exercises 213–216. See P. W. Purdom, Jr., and G. N. Haven, SICOMP
26 (1997), 456–483, for a survey of subsequent progress on questions of that kind.

The state of SAT art in the early 90s was well represented by an international
programming competition held in 1992 [see M. Buro and H. Kleine Büning,
Bulletin EATCS 49 (February 1993), 143–151]. The winning programs in that
contest can be regarded as the first successful lookahead solvers on the path from
Algorithm A to Algorithm L. Max Böhm “took the gold” by choosing the next
branch variable based on lexicographically maximal (H1(x), . . . , Hn(x)), where

Hk(x) = hk(x)+hk(x̄)+min
(
hk(x),hk(x̄)

)
, hk(x) =

∣∣{C ∈ F | x ∈ C, |C| = k}∣∣.
[See M. Böhm and E. Speckenmeyer, Ann. Math. Artif. Intelligence 17 (1996),
381–400. A. Rauzy had independently proposed a somewhat similar branching
criterion in 1988; see Revue d’intelligence artificielle 2 (1988), 41–60.] The silver
medal went to Hermann Stamm, who used strong components of the dependency
digraph to narrow the search at each branch node.

Advances in practical algorithms for satisfiability now began to take off.
The benchmark problems of 1992 had been chosen at random, but the DIMACS
Implementation Challenge of 1993 featured also a large number of structured in-
stances of SAT. The main purpose of this “challenge” was not to crown a winner,
but to bring more than 100 researchers together for a three-day workshop, at
which they could compare and share results. In retrospect, the best overall
performance at that time was arguably achieved by an elaborate lookahead
solver called C-SAT, which introduced techniques for detailed exploration of the
first-order effects of candidate literals [see O. Dubois, P. Andre, Y. Boufkhad,
and J. Carlier, DIMACS 26 (1996), 415–436]. Further refinements leading
towards the ideas in Algorithm L appeared in a Ph.D. thesis by Jon W. Freeman
(Univ. of Pennsylvania, 1995), and in the work of Chu Min Li, who introduced
double lookahead [see Information Processing Letters 71 (1999), 75–80]. The
weighted binary heuristic (67) was proposed by O. Dubois and G. Dequen, Proc.
International Joint Conference on Artificial Intelligence 17 (2001), 248–253.

315

From the Library of Melissa Nuno

ptg999

316 COMBINATORIAL SEARCHING 7.2.2.2

Meanwhile the ideas underlying Algorithm C began to emerge. Matthew L.
Ginsberg [J. Artificial Intelligence Research 1 (1993), 25–46] showed that efficient
backjumping was possible while remembering only at most two learned clauses
for each variable. João P. Marques-Silva, in his 1995 thesis directed by Karem A.
Sakallah, discovered how to turn unit-propagation conflicts into one or more
clauses learned at “unique implication points,” thus enhancing the potential for
backjumping past decisions that didn’t affect the conflict. [See IEEE Trans. C48
(1999), 506–521.] Similar methods were developed independently by Roberto J.
Bayardo, Jr., and Robert C. Schrag [AAAI Conf. 14 (1997), 203–208], who
considered only the special case of new clauses that include the current decision
literal, but introduced techniques for purging a learned clause when one of its
literals was forced to flip its value. These new methods gave significant speedups
on benchmark problems related to industrial applications.

The existence of fast SAT solvers, coupled with Gunnar St̊almarck’s new
ideas about applying logic to computer design [see Swedish patent 467076 (1992)],
led to the introduction of bounded model checking techniques by Armin Biere,
Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu [LNCS 1579 (1999),
193–207]. Satisfiability techniques had also been introduced to solve classical
planning problems in artificial intelligence [Henry Kautz and Bart Selman, Proc.
European Conf. Artificial Intelligence 10 (1992), 359–363]. Designers could now
verify much larger models than had been possible with BDD methods.

The major breakthroughs appeared in a solver called Chaff [M. W. Moske-
wicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, ACM/IEEE Design
Automation Conf. 38 (2001), 530–535], which had two especially noteworthy
innovations: (i) “VSIDS” (the Variable State Independent Decaying Sum heuris-
tic), a surprisingly effective way to select decision literals, which also worked well
with restarts, and which suggested the even better ACT heuristic of Algorithm C
that soon replaced it; also (ii) lazy data structures with two watched literals
per clause, which made unit propagation much faster with respect to large
learned clauses. (A somewhat similar watching scheme, introduced earlier by
H. Zhang and M. Stickel [J. Automated Reasoning 24 (2000), 277–296], had the
disadvantage that it needed to be downdated while backtracking.)

These exciting developments sparked a revival of international SAT compe-
titions, which have been held annually since 2002. The winner in 2002, BerkMin
by E. Goldberg and Y. Novikov, has been described well in Discrete Applied
Mathematics 155 (2007), 1549–1561. And year after year, these challenging con-
tests have continued to spawn further progress. By 2010, more than twice as
many benchmarks could be solved in a given period of time as in 2002, using
the programs of 2002 and 2010 on the computers of 2010 [see M. Järvisalo,
D. Le Berre, O. Roussel, and L. Simon, AI Magazine 33,1 (Spring 2012), 89–94].

The overall champion in 2007 was SATzilla, which was actually not a
separate SAT solver but rather a program that knew how to choose intelligently
between other solvers on any given instance. SATzilla would first take a few sec-
onds to compute basic features of a problem: the distribution of literals per clause
and clauses per literal, the balance between positive and negative occurrences of

316

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 317

variables, the proximity to Horn clauses, etc. Samples could quickly be taken to
estimate how many unit propagations occur at levels 1, 4, 16, 64, 256, and how
many decisions are needed before reaching a conflict. Based on these numbers,
and experience with the performance of the other solvers on the previous year’s
benchmarks, SATzilla was trained to select the algorithm that appeared most
likely to succeed. This “portfolio” approach, which tunes itself nicely to the
characteristics of vastly different sets of clauses, has continued to dominate the
international competitions ever since. Of course portfolio solvers rely on the
existence of “real” solvers, invented independently and bug-free, which shine with
respect to particular classes of problems. And of course the winner of competi-
tions may not be the best actual system for practical use. [See L. Xu, F. Hutter,
H. H. Hoos, and K. Leyton-Brown, J. Artificial Intelligence Research 32 (2008),
565–606; LNCS 7317 (2012), 228–241; CACM 57, 5 (May 2014), 98–107.]

Historical notes about details of the algorithms, and about important related
techniques such as preprocessing and encoding, have already been discussed
above as the algorithms and techniques were described.

One recurring theme appears to be that the behavior of SAT solvers is full of
surprises: Some of the most important improvements have been introduced for
what has turned out to be the wrong reasons, and a theoretical understanding
is still far from adequate.

[The next future breakthrough might come from “variable learning,” as
suggested by Tseytin’s idea of extended resolution: Just as clause learning
increases the number of clauses, m, we might find good ways to increase the
number of variables, n. The subject seems to be far from fully explored.]

EXERCISES

1. [10] What are the shortest (a) satisfiable (b) unsatisfiable sets of clauses?

2. [20] Travelers to the remote planet Pincus have reported that all the healthy
natives like to dance, unless they’re lazy. The lazy nondancers are happy, and so are
the healthy dancers. The happy nondancers are healthy; but natives who are lazy and
healthy aren’t happy. Although the unhappy, unhealthy ones are always lazy, the lazy
dancers are healthy. What can we conclude about Pincusians, based on these reports?

3. [M21] Exactly how many clauses are in waerden (j, k;n)?

4. [22] Show that the 32 constraints of waerden (3, 3; 9) in (9) remain unsatisfiable
even if up to four of them are removed.

5. [M46] Is W (3, k) = Θ(k2)?

� 6. [HM37] Use the Local Lemma to show that W (3, k) = Ω(k2/(log k)3).

7. [21] Can one satisfy the clauses {(xi∨xi+2d ∨xi+2d+1) | 1 ≤ i ≤ n−2d+1, d ≥ 0}∪
{(x̄i ∨ x̄i+2d ∨ x̄i+2d+1) | 1 ≤ i ≤ n− 2d+1, d ≥ 0}?

� 8. [20] Define clauses waerden (k0, k1, . . . , kb−1;n) that are satisfiable if and only if
n < W (k0, k1, . . . , kb−1).

9. [24] Determine the value of W (2, 2, k) for all k ≥ 0. Hint: Consider k mod 6.

� 10. [21] Show that every satisfiability problem with m clauses and n variables can be
transformed into an equivalent monotonic problem withm+n clauses and 2n variables,

317

From the Library of Melissa Nuno

ptg999

318 COMBINATORIAL SEARCHING 7.2.2.2

in which the firstm clauses have only negative literals, and the last n clauses are binary
with two positive literals.

11. [27] (M. Tsimelzon, 1994.) Show that a general 3SAT problem with clauses
{C1, . . . , Cm} and variables {1, . . . , n} can be reduced to a 3D matching problem of
size 10m that involves the following cleverly designed triples:

Each clause Cj corresponds to 3×10 vertices, namely lj, l̄j, |l|j′, and |l|j′′ for each
l ∈ Cj , together with wj, xj, yj, and zj, and also j′k and j′′k for 1 ≤ k ≤ 7. If i or ı̄ oc-
curs in t clauses Cj1 , . . . , Cjt , there are t “true” triples {ijk, ij′k, ij′′k} and t “false” triples
{ı̄jk, ij′k, ij′′1+(kmod t)}, for 1 ≤ k ≤ t. Each clause Cj = (l1 ∨ l2 ∨ l3) also spawns three

“satisfiability” triples {l̄1j, j′1, j′′1}, {l̄2j, j′1, j′′2}, {l̄3j, j′1, j′′3}; six “filler” triples
{l1j, j′2, j′′1}, {l̄1j, j′3, j′′1}, {l2j, j′4, j′′2}, {l̄2j, j′5, j′′2}, {l3j, j′6, j′′3}, {l̄3j, j′7, j′′3};
and twelve “gadget” triples {wj, j′2, j′′4}, {wj, j′4, j′′4}, {wj, j′6, j′′4}, {xj, j′2, j′′5},
{xj, j′5, j′′5}, {xj, j′7, j′′5}, {yj, j′3, j′′6}, {yj, j′4, j′′6}, {yj, j′7, j′′6}, {zj, j′3, j′′7},
{zj, j′5, j′′7}, {zj, j′6, j′′7}. Thus there are 27m triples altogether.

For example, Rivest’s satisfiability problem (6) leads to a 3D matching prob-
lem with 216 triples on 240 vertices; the triples that involve vertices 18 and 1̄8 are
{18, 18′, 18′′}, {1̄8, 18′, 11′′}, {1̄8, 8′1, 8′′2}, {18, 8′4, 8′′2}, {1̄8, 8′5, 8′′2}.
12. [21] (M. J. H. Heule.) Simplify (13) by exploiting the identity

S≤1(y1, . . . , yp) = ∃t (S≤1(y1, . . . , yj , t) ∧ S≤1(t̄, yj+1, . . . , yp)).

13. [24] Exercise 7.2.2.1–15 defines an exact cover problem that corresponds to Lang-
ford pairs of order n.

a) What are the constraints analogous to (12) when n = 4?

b) Show that there’s a simple way to avoid duplicate binary clauses such as those
in (14), whenever an exact cover problem is converted to clauses using (13).

c) Describe the corresponding clauses langford (4) and langford ′(4).

14. [22] Explain why the clauses (17) might help a SAT solver to color a graph.

15. [24] By comparing the McGregor graph of order 10 in Fig. 76
with the McGregor graph of order 3 shown here, give a precise
definition of the vertices and edges of the McGregor graph whose
order is a given number n ≥ 3. Exactly how many vertices and
edges are present in this graph, as a function of n?

00 01 02

11 12

22

20 21

30 31 32

1016. [21] Do McGregor graphs have cliques of size 4?

17. [26] Let f(n) and g(n) be the smallest and largest values of r such that Mc-
Gregor’s graph of order n can be 4-colored, and such that some color appears exactly
r times. Use a SAT solver to find as many values of f(n) and g(n) as you can.

� 18. [28] By examining the colorings found in exercise 17, define an explicit way to
4-color a McGregor graph of arbitrary order n, in such a way that one of the colors is
used at most 5

6n times. Hint: The construction depends on the value of nmod 6.

� 19. [29] Continuing exercise 17, let h(n) be the largest number of regions that can be
given two colors simultaneously (without using the clauses (17)). Investigate h(n).

20. [40] In exactly how many ways can McGregor’s map (Fig. 76) be four-colored?

21. [22] Use a SAT solver to find a minimum-size kernel in the graph of Fig. 76.

22. [20] Color the graph C5×C5 with the fewest colors. (Two vertices of this graph
can receive the same color if and only if they are a king move apart in a 5× 5 torus.)

318

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 319

23. [20] Compare the clauses (18) and (19) to (20) and (21) in the case n = 7, r = 4.

� 24. [M34] The clauses obtained from (20) and (21) in the previous exercise can be
simplified, because we can remove the two that contain the pure literal b21.
a) Prove that the literal b21 is always pure in (20) and (21), when r > n/2.
b) Show that b21 might also be pure in some cases when r < n/2.
c) The clauses obtained from (20) and (21) have many pure literals bkj when r has its

maximum value n−1. Furthermore, their removal makes other literals pure. How
many clauses will remain in this case after all pure literals have been eliminated?

d) Show that the complete binary tree with n ≥ 2 leaves is obtained from complete
binary trees with n′ and n′′ = n− n′ leaves, where either n′ or n′′ is a power of 2.

e) Let a(n, r) and c(n, r) be respectively the number of auxiliary variables bkj and
the total number of clauses that remain after all of the pure auxiliary literals have
been removed from (20) and (21). What are a(2k, 2k−1) and c(2k, 2k−1)?

f) Prove that a(n, r) = a(n, n′′) = a(n, n′) for n′′ ≤ r ≤ n′, and this common value is
max1≤r<n a(n, r). Also a(n, r) = a(n, n− r); and c(n, r) ≥ c(n, n− r) if r ≤ n/2.

25. [21] Show that (18)–(19) and (20)–(21) are equally effective when r = 2.

26. [22] Prove that Sinz’s clauses (18) and (19) enforce the cardinality constraint
x1+ · · ·+xn ≤ r. Hint: Show that they imply skj = 1 whenever x1+ · · ·+xj+k−1 ≥ k.

27. [20] Similarly, prove the correctness of Bailleux and Boufkhad’s (20) and (21).
Hint: They imply bkj = 1 whenever the leaves below node k contain j or more 1s.

� 28. [20] What clauses result from (18) and (19) when we want to ensure that x1 +
· · ·+ xn ≥ 1? (This special case converts arbitrary clauses into 3SAT clauses.)

� 29. [20] Instead of the single constraint x1+ · · ·+xn ≤ r, suppose we wish to impose
a sequence of constraints x1+ · · ·+xi ≤ ri for 1 ≤ i ≤ n. Can this be done nicely with
additional clauses and auxiliary variables?

� 30. [22] If auxiliary variables skj are used as in (18) and (19) to make x1+· · ·+xn ≤ r,

while s′kj are used to make x̄1 + · · · + x̄n ≤ n − r, show that we may unify them by

taking s′jk = skj , for 1 ≤ j ≤ n− r, 1 ≤ k ≤ r. Can (20) and (21) be similarly unified?

� 31. [28] Let Ft(r) be the smallest n for which there is a bit vector x1 . . . xn with
x1 + · · ·+ xn = r and with no t equally spaced 1s. For example, F3(12) = 30 because
of the unique solution 101100011010000000010110001101. Discuss how Ft(r) might be
computed efficiently with the help of a SAT solver.

32. [15] A list coloring is a graph coloring in which v’s color belongs to a given
set L(v), for each vertex v. Represent list coloring as a SAT problem.

33. [21] A double coloring of a graph is an assignment of two distinct colors to every
vertex in such a way that neighboring vertices share no common colors. Similarly, a q-
tuple coloring assigns q distinct colors to each vertex. Find double and triple colorings
of the cycle graphs C5, C7, C9, . . . , using as few colors as possible.

34. [HM26] The fractional coloring number χ∗(G) of a graph G is defined to be the
minimum ratio p/q for which G has a q-tuple coloring that uses p colors.
a) Prove that χ∗(G) ≤ χ(G), and show that equality holds in McGregor’s graphs.
b) Let S1, . . . , SN be all the independent subsets of G’s vertices. Show that

χ∗(G) = min
λ
1
,...,λ

N
≥0

{λ1 + · · ·+ λN |∑N
j=1 λj [v∈Sj] = 1 for all vertices v}.

(This is a fractional exact cover problem.)

319

From the Library of Melissa Nuno

ptg999

320 COMBINATORIAL SEARCHING 7.2.2.2

c) What is the fractional coloring number χ∗(Cn) of the cycle graph Cn?

d) Consider the following greedy algorithm for coloring G: Set k ← 0 and G0 ← G;
while Gk is nonempty, set k ← k+1 and Gk ← Gk−1\Ck, where Ck is a maximum
independent set ofGk−1. Prove that k ≤ Hα(G)χ

∗(G), where α(G) is the size ofG’s
largest independent set; hence χ(G)/χ∗(G) ≤ Hα(G) = O(logn). Hint: Let tv =
1/|Ci| if v ∈ Ci, and show that

∑
v∈S tv ≤ H|S| whenever S is an independent set.

35. [22] Determine χ∗(G) when G is (a) the graph of the contiguous United States
(see 7.2.2.1–(113)); (b) the graph of exercise 22.

� 36. [22] A radio coloring of a graph, also known as an L(2, 1) labeling, is an assign-
ment of integer colors to vertices so that the colors of u and v differ by at least 2
when u−−−v, and by at least 1 when u and v have a common neighbor. (This notion,
introduced by Fred Roberts in 1988, was motivated by the problem of assigning channels
to radio transmitters, without interference from “close” transmitters and without strong
interference from “very close” transmitters.) Find a radio coloring of McGregor’s graph,
Fig. 76, that uses only 16 consecutive colors.

37. [20] Find an optimum radio coloring of the contiguous USA graph, 7.2.2.1–(113).

38. [M25] How many consecutive colors are needed for a radio coloring of (a) the
n×n square grid Pn Pn? (b) the vertices {(x, y, z) | x, y, z ≥ 0, x+ y+ z = n}, which
form a triangular grid with n+ 1 vertices on each side?

39. [M46] Find an optimum radio coloring of the n-cube, for some value of n > 6.

40. [01] Is the factorization problem (22) unsatisfiable whenever z is a prime number?

41. [M21] Determine the number of Boolean operations ∧, ∨, ⊕ needed to multiply
m-bit numbers by n-bit numbers with Dadda’s scheme, when 2 ≤ m ≤ n.

42. [21] Tseytin encoding analogous to (24) can be devised also for ternary opera-
tions, without introducing any additional variables besides those of the function being
encoded. Illustrate this principle by encoding the basic operations x ← t ⊕ u ⊕ v and
y ← 〈tuv〉 of a full adder directly, instead of composing them from ⊕, ∧, and ∨.

� 43. [21] For which integers n ≥ 2 do there exist odd palindromic binary numbers
x = (xn . . . x1)2 = (x1 . . . xn)2 and y = (yn . . . y1)2 = (y1 . . . yn)2 such that their
product xy = (z2n . . . z1)2 = (z1 . . . z2n)2 is also palindromic?

� 44. [30] (Maximum ones.) Find the largest possible value of νx+ νy+ ν(xy), namely
the greatest total number of 1 bits, over all multiplications of 32-bit binary x and y.

45. [20] Specify clauses that constrain (zt . . . z1)2 to be a perfect square.

46. [30] Find the largest perfect square less than 2100 that is a binary palindrome.

� 47. [20] Suppose a circuit such as Fig. 77 has m outputs and n inputs, with g gates
that transform two signals into one and h gates that transform one signal into two.
Find a relation between g and h, by expressing the total number of wires in two ways.

48. [20] The small circuit shown here has three inputs, three XOR gates,
one fanout gate, eight wires, and one output. Which single-stuck-at faults are
detected by each of the eight test patterns pqr?

p q r

x y

z

z

49. [24] Write a program that determines exactly which of the 100 single-
stuck-at faults of the circuit in Fig. 77 are detected by each of the 32 possible
input patterns. Also find all the minimum sets of test patterns that will
discover every such fault (unless it’s not detectable).

320

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 321

50. [24] Demonstrate Larrabee’s method of representing stuck-at faults by describing
the clauses that characterize test patterns for the fault “x12 stuck at 1” in Fig. 77. (This
is the wire that splits off of x2 and feeds into x32 and x42, then to b2 and b3; see Table 1.)

51. [40] Study the behavior of SAT solvers on the problem of finding a small number of
test patterns for all of the detectable single-stuck-at faults of the circuit prod (32, 32).
Can a complete set of patterns for this large circuit be discovered “automatically”
(without relying on number theory)?

52. [15] What clauses correspond to (29) and (30) when the second case on the left
of Table 2, f(1, 0, 1, 0, . . . , 1) = 1, is taken into account?

� 53. [M20] The numbers in Table 2 are definitely nonrandom. Can you see why?

� 54. [23] Extend Table 2 using the rule in the previous exercise. How many rows are
needed before f(x) has no M -term representation in DNF, when M = 3, 4, and 5?

55. [21] Find an equation analogous to (27) that is consistent with Table 2 and has
every variable complemented. (Thus the resulting function is monotone decreasing.)

� 56. [22] Equation (27) exhibits a function matching Table 2 that depends on only 8
of the 20 variables. Use a SAT solver to show that we can actually find a suitable f
that depends on only five of the xj .

� 57. [29] Combining the previous exercise with the methods of Section 7.1.2, exhibit
a function f for Table 2 that can be evaluated with only six Boolean operations(!).

� 58. [20] Discuss adding the clauses p̄i,j ∨ q̄i,j to (29), (30), and (31).

59. [M20] Compute the exact probability that f̂(x) in (32) differs from f(x) in (27).

60. [24] Experiment with the problem of learning f(x) in (27) from training sets of
sizes 32 and 64. Use a SAT solver to find a conjectured function, f̂(x); then use BDD
methods to determine the probability that this f̂(x) differs from f(x) for random x.

61. [20] Explain how to test when a set of clauses generated from a training set via
(29)–(31) is satisfiable only by the function f(x) in (27).

62. [23] Try to learn a secret small-DNF function with N -bit training sets x(0), x(1),
x(2), . . . , where x(0) is random but each bit of x(k) ⊕ x(k−1) for k > 0 is 1 with
probability p. (Thus, if p is small, successive data points will tend to be near each
other.) Do such sets turn out to be more efficient in practice than the purely random
ones that arise for p = 1/2?

� 63. [20] Given an n-network α = [i1 : j1][i2 : j2] . . . [ir : jr], as defined in the exercises
for Section 5.3.4, explain how to use a SAT solver to test whether or not α is a sorting
network. Hint: Use Theorem 5.3.4Z.

64. [26] The exact minimum time T̂ (n) of a sorting network for n elements is a famous
unsolved problem, and the fact that T̂ (9) = 7 was first established in 1987 by running a
highly optimized program for many hours on a Cray 2 supercomputer.

Show that this result can now be proved with a SAT solver in less than a second(!).

� 65. [28] Describe encodings of the Life transition function (35) into clauses.

a) Use only the variables x′ij and xij .
b) Use auxiliary variables as in the Bailleux and Boufkhad encoding (20)–(21), shar-

ing intermediate results between neighboring cells as discussed in the text.

66. [24] Use a SAT solver to find short counterparts to Fig. 78 in which (a) X1 = ;
(b) X2 = . In each case X0 should have the smallest possible number of live cells.

321

From the Library of Melissa Nuno

ptg999

322 COMBINATORIAL SEARCHING 7.2.2.2

67. [24] Find a mobile chessboard pathX0 → X1 → . . .→ X21 with no more than five
cells alive in each Xt. (The glider in (37) leaves the board after X20.) How about X22?

68. [39] Find a maximum-length mobile path in which 6 to 10 cells are always alive.

69. [23] Find all (a) still lifes and (b) oscillators of period > 1 that live in a 4×4 board.
70. [21] The live cells of an oscillator are divided into a rotor (those that change) and
a stator (those that stay alive).

a) Show that the rotor cannot be just a single cell.

b) Find the smallest example of an oscillator whose rotor is ↔ .

c) Similarly, find the smallest oscillators of period 3 whose rotors have the following
forms: → → → ; → → → ; → → → .

� 71. [22] When looking for sequences of Life transition on a square grid, an asymmet-
rical solution will appear in eight different forms, because the grid has eight different
symmetries. Furthermore, an asymmetrical periodic solution will appear in 8r different
forms, if r is the length of the period.

Explain how to add further clauses so that essentially equivalent solutions will
occur only once: Only “canonical forms” will satisfy the conditions.

72. [28] Oscillators of period 3 are particularly intriguing, because Life seems so
inherently binary.

a) What are the smallest such oscillators (in terms of bounding box)?

b) Find period-3 oscillators of sizes 9×n and 10×n, with n odd, that have “fourfold
symmetry”: The patterns are unchanged after left-right and/or up-down reflection.
(Such patterns are not only pleasant to look at, they also are much easier to find,
because we need only consider about one-fourth as many variables.)

c) What period-3 oscillators with fourfold symmetry have the most possible live cells,
on grids of sizes 15× 15, 15× 16, and 16× 16?

d) The period-3 oscillator shown here has another kind of four-way sym-
metry, because it’s unchanged after 90◦ rotation. (It was discovered in
1972 by Robert Wainwright, who called it “snake dance” because its
stator involves four snakes.) What period-3 oscillators with 90◦ symmetry have
the most possible live cells, on grids of sizes 15× 15 and 16× 16?

� 73. [21] (Mobile flipflops.) An oscillator of period 2 is called a flipflop, and the Life
patterns of mobile flipflops are particularly appealing: Each cell is either blank (dead
at every time t) or type A (alive when t is even) or type B (alive when t is odd). Every
nonblank cell (i) has exactly three neighbors of the other type, and (ii) doesn’t have
exactly two or three neighbors of the same type.

a) The blank cells of a mobile flipflop also satisfy a special condition. What is it?

b) Find a mobile flipflop on an 8× 8 grid, with top row BA

ABAB .

c) Find patterns that are mobile flipflops on m × n toruses for various m and n.
(Thus, if replicated indefinitely, each one will tile the plane with an infinite mobile
flipflop.) Hint: One solution has no blank cells whatsoever; another has blank
cells like a checkerboard.

74. [M28] Continuing the previous exercise, prove that no nonblank cell of a finite
mobile flipflop has more than one neighbor of its own type. (This fact greatly speeds
up the search for finite mobile flipflops.) Can two type A cells be diagonally adjacent?

75. [M22] (Stephen Silver, 2000.) Show that a finite, mobile oscillator of period p ≥ 3
must have some cell that is alive more than once during the cycle.

322

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 323

76. [41] Construct a mobile Life oscillator of period 3.

77. [20] “StepX−1,” which precedesX0 in (38), has the glider configuration instead
of . What conditions on the still life X5 will ensure that state X0 is indeed reached?
(We don’t want digestion to begin prematurely.)

78. [21] Find a solution to the four-step eater problem in (38) that works on a 7× n
grid, for some n, instead of 8× 8.

79. [23] What happens if the glider meets the eater of (39) in its opposite phase
(namely instead of)?

80. [21] To counteract the problem in the previous exercise, find an eater that is
symmetrical when reflected about a diagonal, so that it eats both and . (You’ll
have to go larger than 8× 8, and you’ll have to wait longer for digestion.)

81. [21] Conway discovered a remarkable “spaceship,” where X4 is X0 shifted up 2:

X0 = → → → → = X4 .

Is there a left-right symmetrical still life that will eat such spaceships?

� 82. [22] (Light speed.) Imagine Life on an infinite plane, with all cells dead at time 0
except in the lower left quadrant. More precisely, suppose Xt = (xtij) is defined for all
t ≥ 0 and all integers −∞ < i, j < +∞, and that x0ij = 0 whenever i > 0 or j > 0.

a) Prove that xtij = 0 whenever 0 ≤ t < max(i, j).
b) Furthermore xtij = 0 when 0 ≤ −i ≤ j and 0 ≤ t < i+ 2j.
c) And xtij = 0 for 0 ≤ t < 2i + 2j, if i ≥ 0 and j ≥ 0. Hint: If xtij = 0 whenever

i ≥ −j, prove that xtij = 0 whenever i > −j.
83. [21] According to the previous exercise, the earliest possible time that cell (i, j)
can become alive, if all initial life is confined to the lower left quadrant of the plane, is
at least

f(i, j) = i[i≥ 0] + j [j≥ 0] + (i+ j)[i+ j≥ 0].

For example, when |i| ≤ 5 and |j| ≤ 5 the values of f(i, j)
are shown at the right.

Let f∗(i, j) be the actual minimum time at which cell
(i, j) can be alive, for some such initial state. Devise a set
of clauses by which a SAT solver can test whether or not
f∗(i0, j0) = f(i0, j0), given i0 and j0. (Such clauses make
interesting benchmark tests.)

5 6 7 8 9 10 12 14 16 18 20
4 4 5 6 7 8 10 12 14 16 18
3 3 3 4 5 6 8 10 12 14 16
2 2 2 2 3 4 6 8 10 12 14
1 1 1 1 1 2 4 6 8 10 12
0 0 0 0 0 0 2 4 6 8 10
0 0 0 0 0 0 1 3 5 7 9
0 0 0 0 0 0 1 2 4 6 8
0 0 0 0 0 0 1 2 3 5 7
0 0 0 0 0 0 1 2 3 4 6
0 0 0 0 0 0 1 2 3 4 5

84. [33] Prove that f∗(i, j) = f(i, j) in the following cases when j > 0: (a) i = j,
i = j + 1, and i = j − 1. (b) i = 0 and i = −1. (c) i = 1− j. (d) i = j − 2. (e) i = −2.

� 85. [39] A Garden of Eden is a state of Life that has no predecessor.

a) If the pattern of 92 cells illustrated here occurs anywhere within a
bitmap X, verify that X is a Garden of Eden. (The gray cells can be
either dead or alive.)

b) This “orphan” pattern, found with a SAT solver’s help, is the smallest
that is currently known. Can you imagine how it was discovered?

86. [M23] How many Life predecessors does a random10×10 bitmap have, on average?
87. [21] Explain why the clauses (42) represent Alice and Bob’s programs (40), and
give a general recipe for converting such programs into equivalent sets of clauses.

323

From the Library of Melissa Nuno

ptg999

324 COMBINATORIAL SEARCHING 7.2.2.2

88. [18] Satisfy (41) and (42) for 0 ≤ t < 6, and the 20× 6 additional binary clauses
that exclude multiple states, along with the “embarrassing” unit clauses (A36)∧ (B36).
89. [21] Here’s a mutual-exclusion protocol once recommended in 1966. Does it work?

A0. Maybe go to A1.
A1. Set a← 1, go to A2.
A2. If l go to A3, else to A5.
A3. If b go to A3, else to A4.
A4. Set l← 0, go to A2.
A5. Critical, go to A6.
A6. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. Set b← 1, go to B2.
B2. If l go to B5, else to B3.
B3. If a go to B3, else to B4.
B4. Set l← 1, go to B2.
B5. Critical, go to B6.
B6. Set b← 0, go to B0.

90. [20] Show that (43), (45), and (46) permit starvation, by satisfying (47) and (48).

91. [M21] Formally speaking, Alice is said to “starve” if there is (i) an infinite se-
quence of transitions X0 → X1 → · · · starting from the initial state X0, and (ii) an in-
finite sequence @0, @1, . . . of Boolean “bumps” that changes infinitely often, such that
(iii) Alice is in a “maybe” or “critical” state only a finite number of times. Prove that
this can happen if and only if there is a starvation cycle (47) as discussed in the text.

92. [20] Suggest O(r2) clauses with which we can determine whether or not a mutual
exclusion protocol permits a path X0 → X1 → · · · → Xr of distinct states.

93. [20] What clauses correspond to the term ¬Φ(X ′) in (51)?

� 94. [21] Suppose we know that (X0 → X1 → · · · → Xr)∧¬Φ(Xr) is unsatisfiable for
0 ≤ r ≤ k. What clauses will guarantee that Φ is invariant? (The case k = 1 is (51).)

95. [20] Using invariants like (50), prove that (45) and (46) provide mutual exclusion.

96. [22] Find all solutions to (52) when r = 2. Also illustrate the fact that invariants
are extremely helpful, by finding a solution with distinct states X0, X1, . . . , Xr and
with r substantially greater than 2, if the clauses involving Φ are removed.

97. [20] Can states A6 and B6 occur simultaneously in Peterson’s protocol (49)?

� 98. [M23] This exercise is about proving the nonexistence of starvation cycles (47).

a) A cycle of states is called “pure” if one of the players is never bumped, and “simple”
if no state is repeated. Prove that the shortest impure cycle, if any, is either simple
or consists of two simple pure cycles that share a common state.

b) If Alice is starved by some cycle with protocol (49), we know that she is never in
states A0 or A5 within the cycle. Show that she can’t be in A1, A2, or A6 either.

c) Construct clauses to test whether there exist states X0 → X1 → · · · → Xr, with
X0 arbitrary, such that (X0X1 . . .Xk−1) is a starvation cycle for some k ≤ r.

d) Therefore we can conclude that (49) is starvation-free without much extra work.

99. [25] Th.Dekker devised the first correct mutual-exclusion protocol in 1965:

A0. Maybe go to A1.
A1. Set a← 1, go to A2.
A2. If b go to A3, else to A6.
A3. If l go to A4, else to A2.
A4. Set a← 0, go to A5.
A5. If l go to A5, else to A1.
A6. Critical, go to A7.
A7. Set l← 1, go to A8.
A8. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. Set b← 1, go to B2.
B2. If a go to B3, else to B6.
B3. If l go to B2, else to B4.
B4. Set b← 0, go to B5.
B5. If l go to B1, else to B5.
B6. Critical, go to B7.
B7. Set l← 0, go to B8.
B8. Set b← 0, go to B0.

Use bounded model checking to verify its correctness.

324

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 325

100. [22] Show that the following protocol can starve one player but not the other:

A0. Maybe go to A1.
A1. Set a← 1, go to A2.
A2. If b go to A2, else to A3.
A3. Critical, go to A4.
A4. Set a← 0, go to A0.

B0. Maybe go to B1.
B1. Set b← 1, go to B2.
B2. If a go to B3, else to B5.
B3. Set b← 0, go to B4.
B4. If a go to B4, else to B1.
B5. Critical, go to B6.
B6. Set b← 0, go to B0.

� 101. [31] Protocol (49) has the potential defect that Alice and Bob might both be
trying to set the value of l at the same time. Design a mutual-exclusion protocol in
which each of them controls two binary signals, visible to the other. Hint: The method
of the previous exercise can be enclosed in another protocol.

102. [22] If Alice is setting a variable at the same time that Bob is trying to read
it, we might want to consider a more stringent model under which he sees either 0
or 1, nondeterministically. (And if he looks k times before she moves to the next
step, he might see 2k possible sequences of bits.) Explain how to handle this model of
“flickering” variables by modifying the clauses of exercise 87.

103. [18] (Do this exercise by hand, it’s fun!) Find the 7×21 image whose tomographic
sums are (r1, . . . , r7) = (1, 0, 13, 6, 12, 7, 19); (c1, . . . , c21) = (4, 3, 3, 4, 1, 6, 1, 3, 3, 3, 5, 1,
1, 5, 1, 5, 1, 5, 1, 1, 1); (a1, . . . , a27) = (0, 0, 1, 2, 2, 3, 2, 3, 3, 2, 3, 3, 4, 3, 2, 3, 3, 3, 4, 3, 2, 2, 1,
1, 1, 1, 1); (b1, . . . , b27) = (0, 0, 0, 0, 0, 1, 3, 3, 4, 3, 2, 2, 2, 3, 3, 4, 2, 3, 3, 3, 3, 3, 4, 3, 2, 1, 1).

104. [M21] For which m and n is it possible to satisfy the digital tomography problem
with ad = bd = 1 for 0 < d < m+ n? (Equivalently, when can m+ n− 1 nonattacking
bishops be placed on an m× n board?)

� 105. [M28] A matrix whose entries are {−1, 0,+1} is tomographically balanced if its
row, column, and diagonal sums are all zero. Two binary images X = (xij) and
X ′ = (x′ij) clearly have the same row, column, and diagonal sums if and only if X−X ′

is tomographically balanced.
a) Suppose Y is tomographically balanced and has m rows, n columns, and t occur-

rences of +1. How many m× n binary matrices X and X ′ satisfy X −X ′ = Y ?
b) Express the condition “Y is tomographically balanced” in terms of clauses, with

the values {−1, 0,+1} represented respectively by the 2-bit codes {10, 00, 01}.
c) Count the number T (m,n) of tomographically balanced matrices, for m,n ≤ 8.
d) How many such matrices have exactly four occurrences of +1?
e) At most how many +1s can a 2n× 2n tomographically balanced matrix have?
f) True or false: The positions of the +1s determine the positions of the −1s.

106. [M20] Determine a generous upper bound on the possible number of different
sets of input data {ri, cj , ad, bd} that might be given to a 25 × 30 digital tomography
problem, by assuming that each of those sums independently has any of its possible
values. How does this bound compare to 2750?

� 107. [22] Basket weavers from the Tonga culture of Inhambane, Mozambique, have
developed appealing periodic designs called “gipatsi patterns” such as this:

· · · · · ·

(Notice that an ordinary pixel grid has been rotated by 45◦.) Formally speaking, a
gipatsi pattern of period p and width n is a p×n binary matrix (xi,j) in which we have

325

From the Library of Melissa Nuno

ptg999

326 COMBINATORIAL SEARCHING 7.2.2.2

xi,1 = xi,n = 1 for 1 ≤ i ≤ p. Row i of the matrix is to be shifted right by i− 1 places
in the actual pattern. The example above has p = 6, n = 13, and the first row of its
matrix is 1111101111101. Such a pattern has row sums ri =

∑n
j=1 xi,j for 1 ≤ i ≤ p and

column sums cj =
∑p

i=1 xi,j for 1 ≤ j ≤ n, as usual. By analogy with (53), it also has

ad =
∑

i+j≡d (modulo p)

xi,j , 1 ≤ d ≤ p; bd =
∑

2i+j≡d (modulo 2p)

xi,j , 1 ≤ d ≤ 2p.

a) What are the tomographic parameters ri, cj , ad, and bd in the example pattern?

b) Do any other gipatsi patterns have the same parameters?

108. [23] The column sums cj in the previous exercise are somewhat artificial, because
they count black pixels in only a small part of an infinite line. If we rotate the grid at
a different angle, however, we can obtain infinite periodic patterns for which each of
Fig. 79’s four directions encounters only a finite number of pixels.

Design a pattern of period 6 in which parallel lines always have equal tomographic
projections, by changing each of the gray pixels in the following diagram to either white
or black:

· · ·

6 6 6 6 6 6 444444444 12 12 12121212

· · ·

� 109. [20] Explain how to find the lexicographically smallest solution x1 . . . xn to a
satisfiability problem, using a SAT solver repeatedly. (See Fig. 80(a).)

110. [19] What are the lexicographically (first, last) solutions to waerden (3, 10; 96)?

111. [40] The lexicographically first and last solutions to the “Cheshire Tom” problem
in Fig. 80 are based on the top-to-bottom-and-left-to-right ordering of pixels. Experi-
ment with other pixel orderings— for example, try bottom-to-top-and-right-to-left.

112. [46] Exactly how many solutions does the tomography problem of Fig. 79 have?

� 113. [30] Prove that the digital tomography problem is NP-complete, even if the
marginal sums r, c, a, b are binary: Show that an efficient algorithm to decide whether
or not an n × n pixel image (xij) exists, having given 0–1 values of ri =

∑
j xij ,

cj =
∑

i xij , ad =
∑

i+j=d+1 xij , and bd =
∑

i−j=d−n xij , could be used to solve the
binary tensor contingency problem of exercise 212(a).

114. [27] Each cell (i, j) of a given rectangular grid either contains a land mine
(xi,j= 1) or is safe (xi,j= 0). In the game of Minesweeper, you are supposed to identify
all of the hidden mines, by probing locations that you hope are safe: If you decide to
probe a cell with xi,j = 1, the mine explodes and you die (at least virtually). But if
xi,j= 0 you’re told the number ni,j of neighboring cells that contain mines, 0 ≤ ni,j≤ 8,
and you live to make another probe. By carefully considering these numeric clues, you
can often continue with completely safe probes, eventually touching every mine-free cell.

For example, suppose the hidden mines happen to match the 25× 30 pattern of
the Cheshire cat (Fig. 79), and you start by probing the upper right corner. That cell
turns out to be safe, and you learn that n1,30 = 0; hence it’s safe to probe all three
neighbors of (1, 30). Continuing in this vein soon leads to illustration (α) below, which
depicts information about cells (i, j) for 1 ≤ i ≤ 9 and 21 ≤ j ≤ 30; unprobed cells are

326

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 327

shown in gray, otherwise the value of ni,j appears. From this data it’s easy to deduce
that x1,24 = x2,24 = x3,25 = x4,25 = · · · = x9,26 = 1; you’ll never want to probe in those
places, so you can mark such cells with X, arriving at state (β) since n3,24 = n5,25 = 4.
Further progress downward to row 17, then leftward and up, leads without difficulty to
state (γ). (Notice that this process is analogous to digital tomography, because you’re
trying to reconstruct a binary array from information about partial sums.)

(α) =

200000
310000
20000
31000
2000
3000
3000
3000
3100

; (β) =

X200000
X310000
4X20000
X31000
4X2000
X3000
X3000
X3000
X3100

; (γ) =

01 X200000
12 X310000
2X 4X20000
5X X31000
XX 4X2000
5X X3000
3X X3000
2X424X3000
12X23X3100

.

a) Now find safe probes for all thirteen of the cells that remain gray in (γ).

b) Exactly how much of the Cheshire cat can be revealed without making any unsafe
guesses, if you’re told in advance that (i) x1,1 = 0? (ii) x1,30 = 0? (iii) x25,1 = 0?
(iv) x25,30 = 0? (v) all four corners are safe? Hint: A SAT solver can help.

115. [25] Empirically estimate the probability that a 9×9 game of Minesweeper, with
10 randomly placed mines, can be won with entirely safe probes after the first guess.

116. [22] Find examples of Life flipflops for which X and X ′ are tomographically
equal.

117. [23] Given a sequence x = x1 . . . xn, let ν(2)x = x1x2 + x2x3 + · · · + xn−1xn.
(A similar sum appears in the serial correlation coefficient, 3.3.2–(23).)

a) Show that, when x is a binary sequence, the number of runs of 1s in x can be
expressed in terms of νx and ν(2)x.

b) Explain how to encode the condition ν(2)x ≤ r as a set of clauses, by modifying
the cardinality constraints (20)–(21) of Bailleux and Boufkhad.

c) Similarly, encode the condition ν(2)x ≥ r.

118. [20] A tatami tiling is a covering by dominoes in which no three share a corner:

(Notice that is disallowed, but would be fine.) Explain how to use a SAT solver
to find a tatami tiling that covers a given set of pixels, unless no such tiling exists.

119. [18] Let F = waerden (3, 3; 9) be the 32 clauses in (9). For which literal l is the
reduced formula F | l smallest? Exhibit the resulting clauses.

120. [M20] True or false: F |L = {C \ L | C ∈ F and C ∩ L = ∅}, if L = {l̄ | l ∈ L}.
121. [21] Spell out the changes to the link fields in the data structures, by expanding
the higher-level descriptions that appear in steps A3, A4, A7, and A8 of Algorithm A.

� 122. [21] Modify Algorithm A so that it finds all satisfying assignments of the clauses.

123. [17] Show the contents of the internal data structures L, START, and LINK when
Algorithm B or Algorithm D begins to process the seven clauses R′ of (7).

327

From the Library of Melissa Nuno

ptg999

328 COMBINATORIAL SEARCHING 7.2.2.2

� 124. [21] Spell out the low-level link field operations that are sketched in step B3.

� 125. [20] Modify Algorithm B so that it finds all satisfying assignments of the clauses.

126. [20] Extend the computation in (59) by one more step.

127. [17] What move codesm1 . . .md correspond to the computation sketched in (59),
just before and after backtracking occurs?

128. [19] Describe the entire computation by which Algorithm D proves that Rivest’s
clauses (6) are unsatisfiable, using a format like (59). (See Fig. 82.)

129. [20] In the context of Algorithm D, design a subroutine that, given a literal l,
returns 1 or 0 according as l is or is not being watched in some clause whose other
literals are entirely false.

130. [22] What low-level list processing operations are needed to “clear the watch list
for x̄k” in step D6?

� 131. [30] After Algorithm D exits step D3 without finding any unit clauses, it has
examined the watch lists of every free variable. Therefore it could have computed the
lengths of those watch lists, with little additional cost; and information about those
lengths could be used to make a more informed decision about the variable that’s chosen
for branching in step D4. Experiment with different branching heuristics of this kind.

� 132. [22] Theorem 7.1.1K tells us that every 2SAT problem can be solved in linear
time. Is there a sequence of 2SAT clauses for which Algorithm D takes exponential time?

� 133. [25] The size of a backtrack tree such as Fig. 82 can depend greatly on the choice
of branching variable that is made at every node.

a) Find a backtrack tree for waerden (3, 3; 9) that has the fewest possible nodes.

b) What’s the largest backtrack tree for that problem?

134. [22] The BIMP tables used by Algorithm L are sequential lists of dynamically
varying size. One attractive way to implement them is to begin with every list having
capacity 4 (say); then when a list needs to become larger, its capacity can be doubled.

Adapt the buddy system (Algorithm 2.5R) to this situation. (Lists that shrink
when backtracking needn’t free their memory, since they’re likely to grow again later.)

� 135. [16] The literals l′ in BIMP(l) are those for which l −−→ l′ in the “implication
digraph” of a given satisfiability problem. How can we easily find all of the literals l′′

such that l′′−−→ l, given l?

136. [15] What pairs will be in TIMP(3̄), before and after x5 is set to zero with respect
to the clauses (9) of waerden (3, 3; 9), assuming that we are on decision level d = 0?

137. [24] Spell out in detail the processes of (a) removing a variable X from the free
list and from all pairs in TIMP lists (step L7 of Algorithm L), and of (b) restoring it
again later (step L12). Exactly how do the data structures change?

� 138. [20] Discuss what happens in step L9 of Algorithm L if we happen to have both
v̄ ∈ BIMP(ū) and ū ∈ BIMP(v̄).

139. [25] (Compensation resolvents.) If w ∈ BIMP(v), the binary clause u ∨ v implies
the binary clause u ∨ w, because we can resolve u ∨ v with v̄ ∨ w. Thus step L9 could
exploit each new binary clause further, by appending w as well as v to BIMP(ū), for all
such w. Discuss how to do this efficiently.

328

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 329

140. [21] The FORCE, BRANCH, BACKF, and BACKI arrays in Algorithm L will obviously
never contain more than n items each. Is there a fairly small upper bound on the
maximum possible size of ISTACK?

141. [18] Algorithm L might increase ISTAMP so often that it overflows the size of the
IST(l) fields. How can the mechanism of (63) avoid bugs in such a case?

142. [24] Algorithms A, B, and D can display their current progress by exhibiting
a sequence of move codes m1 . . .md such as (58) and (60); but Algorithm L has no
such codes. Show that an analogous sequence m1 . . .mF could be printed in step L2,
if desired. Use the codes of Algorithm D; but extend them to show mj = 6 (or 7) if
Rj−1 is a true (or false) literal whose value was found to be forced by Algorithm X, or
forced by being a unit clause in the input.

� 143. [30] Modify Algorithm L so that it will apply to nonempty clauses of any size.
Call a clause big if its size is greater than 2. Instead of TIMP tables, represent every big
clause by ‘KINX’ and ‘CINX’ tables: Every literal l has a sequential list KINX(l) of big
clause numbers; every big clause c has a sequential list CINX(c) of literals; c is in KINX(l)
if and only if l is in CINX(c). The current number of active clauses containing l is indi-
cated by KSIZE(l); the current number of active literals in c is indicated by CSIZE(c).

144. [15] True or false: If l doesn’t appear in any clause, h′(l) = 0.1 in (65).

145. [23] Starting with h(l) = 1 for each of the 18 literals l in waerden (3, 3; 9), find
successively refined estimates h′(l), h′′(l), . . . , using (65) with respect to the 32 ternary
clauses (9). Then, assuming that x5 has been set false as in exercise 136, and that the
resulting binary clauses 13, 19, 28, 34, 37, 46, 67, 79 have been included in the BIMP

tables, do the same for the 16 literals that remain at depth d = 1.

146. [25] Suggest an alternative to (64) and (65) for use when Algorithm L has been
extended to nonternary clauses as in exercise 143. (Strive for simplicity.)

147. [05] Evaluate Cmax in (66) for d = 0, 1, 10, 20, 30, using the default C0 and C1.

148. [21] Equation (66) bounds the maximum number of candidates using a formula
that depends on the current depth d, but not on the total number of free variables.
The same cutoffs are used in problems with any number of variables. Why is that a
reasonable strategy?

� 149. [26] Devise a data structure that makes it convenient to tell whether a given
variable x is a “participant” in Algorithm L.

150. [24] Continue the text’s story of lookahead in waerden (3, 3; 9): What happens at
depth d = 1 when l← 7 and T ← 22 (see (70)), after literal 4 has become proto true?
(Assume that no double-lookahead is done.)

� 151. [26] The dependency digraph (68) has 16 arcs, only 8 of which are captured in the
subforest (69). Show that, instead of (70), we could actually list the literals l and give
them offsets o(l) in such a way that u appears before v in the list and has o(u) > o(v) if
and only if v−−→u in (68). Thus we could capture all 16 dependencies via levels of truth.

152. [22] Give an instance of 3SAT for which no free “participants” are found in
step X3, yet all clauses are satisfied. Also describe an efficient way to verify satisfaction.

153. [17] What’s a good way to weed out unwanted candidates in step X3, if C>Cmax?

154. [20] Suppose we’re looking ahead with just four candidate variables, {a, b, c, d},
and that they’re related by three binary clauses (a∨b̄)∧(a∨c̄)∧(c∨d̄). Find a subforest
and a sequence of truth levels to facilitate lookaheads, analogous to (69) and (70).

329

From the Library of Melissa Nuno

ptg999

330 COMBINATORIAL SEARCHING 7.2.2.2

155. [32] Sketch an efficient way to construct the lookahead forest in step X4.

156. [05] Why is a pure literal a special case of an autarky?

157. [10] Give an example of an autarky that is not a pure literal.

158. [15] If l is a pure literal, will Algorithm X discover it?

159. [M17] True or false: (a) A is an autarky for F if and only if F |A ⊆ F . (b) If
A is an autarky for F and A′ ⊆ A, then A \A′ is an autarky for F |A′.
160. [18] (Black and white principle.) Consider any rule by which literals have been
colored white, black, or gray in such a way that l is white if and only if l̄ is black. (For
example, we might say that l is white if it appears in fewer clauses than l̄.)
a) Suppose every clause of F that contains a white literal also contains a black

literal. Prove that F is satisfiable if and only if its all-gray clauses are satisfiable.
b) Explain why this metaphor is another way to describe the notion of an autarky.

� 161. [21] (Black and blue principle.) Now consider coloring literals either white, black,
orange, blue, or gray, in such a way that l is white if and only if l̄ is black, and l is
orange if and only if l̄ is blue. (Hence l is gray if and only if l̄ is gray.) Suppose further
that F is a set of clauses in which every clause containing a white literal also contains
either a black literal or a blue literal (or both). Let A = {a1, . . . , ap} be the black
literals and let L = {l1, . . . , lq} be the blue literals. Also let F ′ be the set of clauses
obtained by adding p additional clauses (l̄1 ∨ · · · ∨ l̄q ∨ aj) to F , for 1 ≤ j ≤ p.
a) Prove that F is satisfiable if and only if F ′ is satisfiable.
b) Restate and simplify that result in the case that p = 1.
c) Restate and simplify that result in the case that q = 1.

d) Restate and simplify that result in the case that p = q = 1. (In this special case,
(l̄ ∨ a) is called a blocked binary clause.)

162. [21] Devise an efficient way to discover all of the (a) blocked binary clauses (l̄∨a)
and (b) size-two autarkies A = {a, a′} of a given kSAT problem F .

� 163. [M25] Prove that the following recursive procedure R(F) will solve any n-variable
3SAT problem F with at most O(φn) executions of steps R1, R2, or R3:

R1. [Check easy cases.] If F = ∅, return true. If ∅ ∈ F , return false. Otherwise let
{l1, . . . , ls} ∈ F be a clause of minimum size s.

R2. [Check autarkies.] If s = 1 or if {ls} is an autarky, set F ← F | ls and return to R1.
Otherwise if {l̄s, ls−1} is an autarky, set F ← F | l̄s, ls−1 and return to R1.

R3. [Recurse.] If R(F | ls) is true, return true. Otherwise set F ← F | l̄s, s ← s − 1,
and go back to R2.

164. [M30] Continuing exercise 163, bound the running time when F is kSAT.

� 165. [26] Design an algorithm to find the largest positive autarky A for a given F ,
namely an autarky that contains only positive literals. Hint: Warm up by finding the
largest positive autarky for the clauses {123̄, 125̄, 1̄3̄4̄, 136̄, 14̄5, 156, 2̄35, 24̄6, 345, 3̄56}.
166. [30] Justify the operations of step X9. Hint: Prove that an autarky can be con-
structed, if w = 0 after (72) has been performed.

� 167. [21] Justify step X11 and the similar use of X12 in step X6.

168. [26] Suggest a way to choose the branch literal l in step L3, based on the heuristic
scores H(l) that were compiled by Algorithm X in step L2. Hint: Experience shows
that it’s good to have both H(l) and H(l̄) large.

330

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 331

� 169. [HM30] (T. Ahmed, O. Kullmann.) Excellent results have been obtained in
some problems when the branch variable in step L3 is chosen to minimize the quantity
τ(H(l),H(l̄)), where τ(a, b) is the positive solution to τ−a + τ−b = 1. (For example,

τ(1, 2) = φ ≈ 1.62 and τ(
√
2,
√
2) = 21/

√
2 ≈ 1.63, so we prefer (1, 2) to (

√
2,
√
2).)

Given a list of pairs of positive numbers (a1, b1), . . . , (as, bs), what’s an efficient way
to determine an index j that minimizes τ(aj , bj), without computing logarithms?

170. [25] (Marijn Heule, 2013.) Show that Algorithm L solves 2SAT in linear time.

171. [20] What is the purpose of DFAIL in Algorithm Y?

172. [21] Explain why ‘+LO[j]’ appears in step Y2’s formula for DT.

173. [40] Use an implementation of Algorithm L to experiment with random 3SAT

problems such as rand (3, 2062, 500, 314). Examine the effects of such things as (i) dis-
abling double lookahead; (ii) disabling “wraparound,” by changing the cases j = S and
ĵ = S in X7 and Y4 so that they simply go to X6 and Y3; (iii) disabling the lookahead
forest, by letting all candidate literals have null PARENT; (iv) disabling compensation
resolvents in step L9; (v) disabling “windfalls” in (72); (vi) branching on a random free
candidate l in L3, instead of using the H scores as in exercise 168; or (vii) disabling all
lookahead entirely as in “Algorithm L0.”

174. [15] What’s an easy way to accomplish (i) in the previous exercise?

175. [32] When Algorithm L is extended to nonternary clauses as in exercise 143, how
should Algorithms X and Y also change? (Instead of using (64) and (65) to compute a
heuristic for preselection, use the much simpler formula in answer 146. And instead of
using h(u)h(v) in (67) to estimate the weight of a ternary clause that will be reduced
to binary, consider a simulated reduced clause of size s ≥ 2 to have weight Ks ≈ γs−2,
where γ is a constant (typically 0.2).)

176. [M25] The “flower snark” Jq is a cubic graph with 4q vertices tj , uj , vj , wj , and
6q edges tj−−− tj+1, tj−−−uj , uj−−−vj , uj−−−wj , vj−−−wj+1, wj−−−vj+1, for 1 ≤ j ≤ q,
with subscripts treated modulo q. Here, for example, are J5 and its line graph L(J5):

J5 = ; L(J5) = .

a) Give labels aj , bj , cj , dj , ej , and fj to the edges of Jq, for 1 ≤ j ≤ q. (Thus aj
denotes tj−−− tj+1 and bj denotes tj−−−uj , etc.) What are the edges of L(Jq)?

b) Show that χ(Jq) = 2 and χ(L(Jq)) = 3 when q is even.

c) Show that χ(Jq) = 3 and χ(L(Jq)) = 4 when q is odd. Note: Let fsnark (q)
denote the clauses (15) and (16) that correspond to 3-coloring L(Jq), together
with (b1,1)∧ (c1,2)∧ (d1,3) to set the colors of (b1, c1, d1) to (1, 2, 3). These clauses
make excellent benchmark tests for SAT solvers.

177. [HM26] Let Iq be the number of independent sets of the flower snark line graph
L(Jq). Compute Iq for 1 ≤ q ≤ 8, and determine the asymptotic growth rate.

� 178. [M23] When Algorithm B is presented with the unsatisfiable clauses fsnark (q)
of exercise 176, with q odd, its speed depends critically on the ordering of the variables.

331

From the Library of Melissa Nuno

ptg999

332 COMBINATORIAL SEARCHING 7.2.2.2

Show that the running time is Θ(2q) when the variables are considered in the order

a1,1a1,2a1,3b1,1b1,2b1,3c1,1c1,2c1,3d1,1d1,2d1,3e1,1e1,2e1,3f1,1f1,2f1,3a2,1a2,2a2,3 . . . ;

but much, much more time is needed when the order is

a1,1b1,1c1,1d1,1e1,1f1,1a2,1b2,1c2,1d2,1e2,1f2,1 . . . aq,1bq,1cq,1dq,1eq,1fq,1a1,2b1,2c1,2

179. [25] Show that there are exactly 4380 ways to fill the 32 cells of the 5-cube with
eight 4-element subcubes. For example, one such way is to use the subcubes 000∗∗,
001∗∗, . . . , 111∗∗, in the notation of 7.1.1–(29); a more interesting way is to use

0∗0∗0, 1∗0∗0, ∗∗001, ∗∗110, ∗010∗, ∗110∗, 0∗∗11, 1∗∗11.
What does this fact tell you about the value of q8 in Fig. 83?

� 180. [25] Explain how to use BDDs to compute the numbers Qm that underlie Fig. 83.
What is max0≤m≤80Qm?

� 181. [25] Extend the idea of the previous exercise so that it is possible to determine
the probability distributions Tm of Fig. 84.

182. [M16] For which values of m in Fig. 84 does Tm have a constant value?

183. [M30] Discuss the relation between Figs. 85 and 86.

184. [M20] Why does (77) characterize the relation between q̂m and qm?

185. [M20] Use (77) to prove the intuitively obvious fact that q̂m ≥ qm.

186. [M21] Use (77) to reduce
∑

m q̂m and
∑

m(2m+ 1)q̂m to (78) and (79).

187. [M20] Analyze random satisfiability in the case k = n: What are Sn,n and Ŝn,n?

� 188. [HM25] Analyze random 1SAT, the case k = 1: What are S1,n and Ŝ1,n?

189. [27] Apply BDD methods to random 3SAT problems on 50 variables. What is the
approximate BDD size after m distinct clauses have been ANDed together, asm grows?

190. [M20] Exhibit a Boolean function of 4 variables that can’t be expressed in 3CNF.
(No auxiliary variables are allowed: Only x1, x2, x3, and x4 may appear.)

191. [M25] How many Boolean functions of 4 variables can be expressed in 3CNF?

� 192. [HM21] Another way to model satisfiability when there are N equally likely
clauses is to study S(p), the probability of satisfiability when each clause is indepen-
dently present with probability p.
a) Express S(p) in terms of the numbers Qm =

(
N
m

)
qm.

b) Assign uniform random numbers in [0 . . 1) to each clause; then at time t, for
0 ≤ t ≤ N , consider all clauses that have been assigned a number less than t/N .
(Approximately t clauses will therefore be selected, when N is large.) Show that

Sk,n =
∫ N
0

Sk,n(t/N) dt, the expected amount of time during which the chosen
clauses remain satisfiable, is very similar to the satisfiability threshold Sk,n of (76).

193. [HM48] Determine the satisfiability threshold (81) of random 3SAT. Is it true
that lim infn→∞ S3,n/n = limsupn→∞ S3,n/n? If so, is the limit ≈ 4.2667?

194. [HM49] If α < lim infn→∞ S3,n/n, is there a polynomial-time algorithm that is
able to satisfy �αn� random 3SAT clauses with probability ≥ δ, for some δ > 0?

195. [HM21] (J. Franco and M. Paull, 1983.) Use the first moment principle MPR–(21)
to prove that �(2k ln 2)n� random kSAT clauses are almost always unsatisfiable. Hint:
Let X =

∑
x [x satisfies all clauses], summed over all 2n binary vectors x = x1 . . . xn.

332

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 333

� 196. [HM25] (D. B. Wilson.) A clause of a satisfiability problem is “easy” if it
contains one or more variables that don’t appear in any other clauses. Prove that,
with probability 1 − O(n−2ε), a kSAT problem that has m = �αn� random clauses
contains (1− (1− e−kα)k)m+O(n1/2+ε) easy ones. (For example, about 0.000035n of
the 4.27n clauses in a random 3SAT problem near the threshold will be easy.)

197. [HM21] Prove that the quotient q(a, b,A,B, n) =
(
(a+b)n
an

)(
(A+B)n

An

)
/
(
(a+b+A+B)n

(a+A)n

)
is O(n−1/2) as n→∞, if a, b,A,B > 0.

� 198. [HM30] Use exercises 196 and 197 to show that the phase transition in Fig. 89 is
not extremely abrupt: If S3(m,n) > 2

3
and S3(m

′, n) < 1
3
, prove thatm′ = m+Ω(

√
n).

199. [M21] Let p(t,m,N) be the probability that t specified letters each occur at least
once within a random m-letter word on an N -letter alphabet.

a) Prove that p(t,m,N) ≤ mt/N t.

b) Derive the exact formula p(t,m,N) =
∑

k

(
t
k

)
(−1)k(N − k)m/Nm.

c) And p(t,m,N)/t! =
{
t
t

}(
m
t

)
/N t − {t+1

t

}(
m
t+1

)
/N t+1 +

{
t+2
t

}(
m
t+2

)
/N t+2 − · · · .

� 200. [M21] Complete the text’s proof of (84) when c < 1:

a) Show that every unsatisfiable 2SAT formula contains clauses of a snare.

b) Conversely, are the clauses of a snare always unsatisfiable?

c) Verify the inequality (89). Hint: See exercise 199.

201. [HM29] The t-snake clauses specified by a chain (l1, . . . , l2t−1) can be written
(l̄i ∨ li+1) for 0 ≤ i < 2t, where l0 = l̄t and subscripts are treated mod 2t.

a) Describe all ways to set two of the l’s so that (x̄1 ∨ x2) is one of those 2t clauses.

b) Similarly, set three l’s in order to obtain (x̄1 ∨ x2) and (x̄2 ∨ x3).

c) Also set three to obtain both (x̄0 ∨ x1) and (x̄t−1 ∨ xt); here x̄0 ≡ xt and t > 2.

d) How can the clauses (x̄i∨xi+1) for 0 ≤ i < t all be obtained by setting t of the l’s?

e) In general, let N(q, r) be the number of ways to choose r of the standard clauses
(x̄i ∨ xi+1), which involve exactly q of the variables {x1, . . . , x2t−1}, and to set q
values of {l1, . . . , l2t−1} in order to obtain the r chosen clauses. Evaluate N(2, 1).

f) Similarly, evaluate N(3, 2), N(t, t), and N(2t− 1, 2t).

g) Show that the probability pr in (95) is ≤∑q N(q, r)/(2qnq).

h) Therefore the upper bound (96) is valid.

202. [HM21] This exercise amplifies the text’s proof of Theorem C when c > 1.

a) Explain the right-hand side of Eq. (93).

b) Why does (97) follow from (95), (96), and the stated choices of t and m?

� 203. [HM33] (K. Xu and W. Li, 2000.) Beginning with the n graph-coloring clauses
(15), and optionally the n

(
d
2

)
exclusion clauses (17), consider using randomly generated

binary clauses instead of (16). There are mq random binary clauses, obtained as m
independent sets of q clauses each, where every such set is selected by choosing distinct
vertices u and v, then choosing q distinct binary clauses (ūi ∨ v̄j) for 1 ≤ i, j ≤ d.
(The number of different possible sequences of random clauses is therefore exactly

(
(
n
2

)(
d2

q

)
)m and each sequence is equally likely.) This method of clause generation is

known as “Model RB”; it generalizes random 2SAT, which is the case d = 2 and q = 1.

Suppose d = nα and q = pd2, where we require 1
2 < α < 1 and 0 ≤ p ≤ 1

2 .
Also let m = rn ln d. For this range of the parameters, we will prove that there is
a sharp threshold of satisfiability: The clauses are unsatisfiable q.s., as n → ∞, if
r ln(1− p) + 1 < 0; but they are satisfiable a.s. if r ln(1− p) + 1 > 0.

333

From the Library of Melissa Nuno

ptg999

334 COMBINATORIAL SEARCHING 7.2.2.2

Let X(j1, . . . , jn) = [all clauses are satisfied when each ith variable v has vji = 1];
here 1 ≤ j1, . . . , jn ≤ d. Also let X =

∑
1≤j1,...,jn≤dX(j1, . . . , jn). Then X = 0 if and

only if the clauses are unsatisfiable.

a) Use the first moment principle to prove that X = 0 q.s. when r ln(1− p) + 1 < 0.
b) Find a formula for ps = Pr(X(j1, . . . , jn) = 1 | X(1, . . . , 1) = 1), given that

exactly s of the colors {j1, . . . , jn} are equal to 1.
c) Use (b) and the conditional expectation inequality MPR–(24) to prove that X > 0

a.s. if n∑
s=0

(
n

s

)(
1

d

)s(
1− 1

d

)n−s(
1 +

p

1− p

s2

n2

)m
→ 1 as n→∞.

d) Letting ts denote the term for s in that sum, prove that
∑3n/d

s=0 ts ≈ 1.
e) Suppose r ln(1 − p) + 1 = ε > 0, where ε is small. Show that the terms ts first

increase, then decrease, then increase, then decrease again, as s grows from 0
to n. Hint: Consider the ratio xs = ts+1/ts.

f) Finally, prove that ts is exponentially small for 3n/d ≤ s ≤ n.

� 204. [28] Figure 89 might suggest that 3SAT problems on n variables are always easy
when there are fewer than 2n clauses. We shall prove, however, that any set of m
ternary clauses on n variables can be transformed mechanically into another set of
ternary clauses on N = O(m) variables in which no variable occurs more than four
times. The transformed problem has the same number of solutions as the original one;
thus it isn’t any simpler, although (with at most 4N literals) it has at most 4

3
N clauses.

a) First replace the originalm clauses bym new clauses (X1∨X2∨X3), . . . , (X3m−2∨
X3m−1 ∨X3m), on 3m new variables, and show how to add 3m clauses of size 2
so that the resulting 4m clauses have exactly as many solutions as the original.

b) Construct ternary clauses that have a unique solution, yet no variable occurs
more than four times.

c) Use (a) and (b) to prove the N -variable result claimed above.

205. [26] If F and F ′ are sets of clauses, let F � F ′ stand for any other set obtained
from F ∪F ′ by replacing one or more clauses C of F by x∨C and one or more clauses C ′

of F ′ by x̄ ∨ C ′, where x is a new variable. Then F � F ′ is unsatisfiable whenever F
and F ′ are both unsatisfiable. For example, if F = {ε} and F ′ = {1, 1̄}, then F �F ′ is
either {2, 12̄, 1̄2̄} or {2, 1, 1̄2̄} or {2, 12̄, 1̄}.
a) Construct 16 unsatisfiable ternary clauses on 15 variables, where each variable

occurs at most four times.
b) Construct an unsatisfiable 4SAT problem in which every variable occurs at most

five times.

206. [M22] A set of clauses is minimally unsatisfiable if it is unsatisfiable, yet becomes
satisfiable if any clause is deleted. Show that, if F and F ′ have no variables in common,
then F�F ′ is minimally unsatisfiable if and only if F and F ′ are minimally unsatisfiable.

207. [25] Each of the literals {1, 1̄, 2, 2̄, 3, 3̄, 4, 4̄} occurs exactly thrice in the eight
unsatisfiable clauses (6). Construct an unsatisfiable 3SAT problem with 15 variables in
which each of the 30 literals occurs exactly twice. Hint: Consider {1̄2, 2̄3, 3̄1, 123, 1̄2̄3̄}.
208. [25] Via exercises 204(a) and 207, show that any 3SAT problem can be trans-
formed into an equivalent set of ternary clauses where every literal occurs just twice.

209. [25] (C. A. Tovey.) Prove that every kSAT formula in which no variable occurs
more than k times is satisfiable. (Thus the limits on occurrences in exercises 204–208
cannot be lowered, when k = 3 and k = 4.) Hint: Use the theory of bipartite matching.

334

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 335

210. [M36] But the result in the previous exercise can be improved when k is large.
Use the Local Lemma to show that every 7SAT problem with at most 13 occurrences
of each variable is satisfiable.

211. [30] (R. W. Irving and M. Jerrum, 1994.) Use exercise 208 to reduce 3SAT to the
problem of list coloring a grid graph of the form KN K3. (Hence the latter problem,
which is also called latin rectangle construction, is NP-complete.)

212. [32] Continuing the previous exercise, we shall reduce grid list coloring to another
interesting problem called partial latin square construction. Given three n × n binary
matrices (rik), (cjk), (pij), the task is to construct an n× n array (Xij) such that Xij

is blank when pij = 0, otherwise Xij = k for some k with rik = cjk = 1; furthermore
the nonblank entries must be distinct in each row and column.

a) Show that this problem is symmetrical in all three coordinates: It’s equivalent to
constructing a binary n × n × n tensor (xijk) such that x∗jk = cjk, xi∗k = rik,
and xij∗ = pij , for 1 ≤ i, j, k ≤ n, where ‘∗’ denotes summing an index from 1
to n. (Therefore it is also known as the binary n × n × n contingency problem,
given n2 row sums, n2 column sums, and n2 pile sums.)

b) A necessary condition for solution is that c∗k = r∗k, cj∗ = p∗j , and ri∗ = pi∗.
Exhibit a small example where this condition is not sufficient.

c) If M < N , reduce KM KN list coloring to the problem of KN KN list coloring.
d) Finally, explain how to reduceKN KN list coloring to the problem of constructing

an n × n partial latin square, where n = N +
∑

I,J |L(I, J)|. Hint: Instead of
considering integers 1 ≤ i, j, k ≤ n, let i, j, k range over a set of n elements.
Define pij = 0 for most values of i and j; also make rik = cik for all i and k.

� 213. [M20] Experience with the analyses of sorting algorithms in Chapter 5 suggests
that random satisfiability problems might be modeled nicely if we assume that, in each
of m independent clauses, the literals xj and x̄j occur with respective probabilities p
and q, independently for 1 ≤ j ≤ n, where p + q ≤ 1. Why is this not an interesting
model as n → ∞, when p and q are constant? Hint: What is the probability that
x1 . . . xn = b1 . . . bn satisfies all of the clauses, when b1 . . . bn is a given binary vector?

214. [HM38] Although the random model in the preceding exercise doesn’t teach us
how to solve SAT problems, it does lead to interesting mathematics: Let 0 < p < 1 and
consider the recurrence

T0 = 0; Tn = n+ 2

n−1∑
k=0

(
n

k

)
pk(1− p)n−kTk, for n > 0.

a) Find a functional relation satisfied by T (z) =
∑∞

n=0 Tnz
n/n!.

b) Deduce that we have T (z) = zez
∑∞

m=0(2p)
m∏m−1

k=0 (1− e−p
k(1−p)z).

c) Hence, if p �= 1/2, we can use Mellin transforms (as in the derivation of 5.2.2–(50))
to show that Tn = Cpn

α(1 + δ(n) +O(1/n))+ n/(1− 2p), where α = 1/lg(1/p),
Cp is a constant, and δ is a small “wobble” with δ(n) = δ(pn).

� 215. [HM28] What is the expected profile of the search tree when a simple backtrack
procedure is used to find all solutions to a random 3SAT problem with m independent
clauses on n variables? (There is a node on level l for every partial solution x1 . . . xl
that doesn’t contradict any of the clauses.) Compute these values when m = 200 and
n = 50. Also estimate the total tree size when m = αn, for fixed α as n→∞.

216. [HM38] (P. W. Purdom, Jr., and C. A. Brown.) Extend the previous exercise to
a more sophisticated kind of backtracking, where all choices forced by unit clauses are

335

From the Library of Melissa Nuno

ptg999

336 COMBINATORIAL SEARCHING 7.2.2.2

pursued before two-way branching is done. (The “pure literal rule” is not exploited,
however, because it doesn’t find all solutions.) Prove that the expected tree size is
greatly reduced when m = 200 and n = 50. (An upper bound is sufficient.)

217. [20] True or false: If A and B are arbitrary clauses that are simultaneously
satisfiable, and if l is any literal, then the clause C = (A∪B) \ {l, l̄} is also satisfiable.
(We’re thinking here of A, B, and C as sets of literals, not as disjunctions of literals.)

218. [20] Express the formula (x∨A)∧(x̄∨B) in terms of the ternary operator u? v:w.
� 219. [M20] Formulate a general definition of the resolution operator C = C ′�C ′′ that
(i) agrees with the text’s definition when C ′ = x ∨A′ and C ′′ = x̄ ∨A′′; (ii) applies to
arbitrary clauses C ′ and C ′′; (iii) has the property that C ′ ∧ C ′′ implies C ′ �C ′′.
220. [M24] We say that clause C subsumes clause C ′, written C ⊆ C ′, if C ′ = ℘ or if
C ′ �= ℘ and every literal of C appears in C ′.
a) True or false: C ⊆ C ′ and C ′ ⊆ C ′′ implies C ⊆ C ′′.
b) True or false: (C ∨ α) � (C ′ ∨ α′) ⊆ (C � C ′) ∨ α ∨ α′, with � as in exercise 219.

c) True or false: C ′ ⊆ C ′′ implies C � C ′ ⊆ C �C ′′.
d) The notation C1, . . . , Cm � C means that a resolution chain C1, . . . , Cm+r exists

with Cm+r ⊆ C, for some r ≥ 0. Show that we might have C1, . . . , Cm � C even
though C cannot be obtained from {C1, . . . , Cm} by successive resolutions (104).

e) Prove that if C1 ⊆ C ′1, . . . , Cm ⊆ C ′m, and C ′1, . . . , C
′
m � C, then C1, . . . , Cm � C.

f) Furthermore C1, . . . , Cm � C implies C1∨ α1, . . . , Cm∨ αm � C ∨ α1 ∨ · · · ∨ αm.

221. [16] Draw the search tree analogous to Fig. 81 that is implicitly traversed when
Algorithm A is applied to the unsatisfiable clauses {12, 2, 2̄}. Explain why it does not
correspond to a resolution refutation that is analogous to Fig. 91.

222. [M30] (Oliver Kullmann, 2000.) Prove that, for every clause C in a satisfiability
problem F , there is an autarky satisfying C if and only if C cannot be used as the label
of a source vertex in any resolution refutation of F .

223. [HM40] Step X9 deduces a binary clause that cannot be derived by resolution
(see exercise 166). Prove that, nevertheless, the running time of Algorithm L on un-
satisfiable input will never be less than the length of a shortest treelike refutation.

224. [M20] Given a resolution tree that refutes the axioms F | x̄, show how to construct
a resolution tree of the same size that either refutes the axioms F or derives the clause
{x} from F without resolving on the variable x.

� 225. [M31] (G. S. Tseytin, 1966.) If T is any resolution tree that refutes a set of
axioms F , show how to convert it to a regular resolution tree Tr that refutes F , where
Tr is no larger than T .

226. [M20] If α is a node in a refutation tree, let C(α) be its label, and let ‖α‖ denote
the number of leaves in its subtree. Show that, given a refutation tree with N leaves,
the Prover can find a node with ‖α‖ ≤ N/2s for which the current assignment falsifies
C(α), whenever the Delayer has scored s points in the Prover–Delayer game.

227. [M27] Given an extended binary tree, exercise 7.2.1.6–124 explains how to label
each node with its Horton–Strahler number. For example, the nodes at depth 2 in
Fig. 91 are labeled 1, because their children have the labels 1 and 0; the root is labeled 3.

Prove that the maximum score that the Delayer can guarantee, when playing
the Prover–Delayer game for a set of unsatisfiable clauses F , is equal to the minimum
possible Horton–Strahler root label in a tree refutation of F .

336

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 337

� 228. [M21] St̊almarck’s refutation of (99)–(101) actually obtains ε without using all of
the axioms! Show that only about 1/3 of those clauses are sufficient for unsatisfiability.

� 229. [M21] Continuing exercise 228, prove also that the set of clauses (99), (100′),
(101) is unsatisfiable, where (100′) denotes (100) restricted to the cases i ≤ k and j < k.

230. [M22] Show that the clauses with i �= j in the previous exercise form a minimal

unsatisfiable set: Removing any one of them leaves a satisfiable remainder.

231. [M30] (Sam Buss.) Refute the clauses of exercise 229 with a resolution chain of
length O(m3). Hint: Derive the clausesGij = (xij∨xi(j+1)∨· · ·∨xim) for 1 ≤ i ≤ j ≤ m.

� 232. [M28] Prove that the clauses fsnark (q) of exercise 176 can be refuted by treelike
resolution in O(q6) steps.

233. [16] Explain why (105) satisfies (104), by exhibiting j(i) and k(i) for 9 ≤ i ≤ 22.

234. [20] Show that the Delayer can score at least m points against any Prover who
tries to refute the pigeonhole clauses (106) and (107).

� 235. [30] Refute those pigeonhole clauses with a chain of length m(m+3)2m−2.

236. [48] Is the chain in the previous exercise as short as possible?

� 237. [28] Show that a polynomial number of steps suffice to refute the pigeonhole
clauses (106), (107), if the extended resolution trick is used to append new clauses.

238. [HM21] Complete the proof of Lemma B. Hint: Make r ≤ ρ−b when W = b.

� 239. [M21] What clauses α0 on n variables make ‖α0 � ε‖ as large as possible?
� 240. [HM23] Choose integers fij ∈ {1, . . . ,m} uniformly at random, for 1 ≤ i ≤ 5
and 0 ≤ j ≤ m, and let G0 be the bipartite graph with edges aj−−−bk if and only if k ∈
{f1j , . . . , f5j}. Show that Pr(G0 satisfies the strong expansion condition (108)) ≥ 1/2.

241. [20] Prove that any set of at most m/3000 pigeons can be matched to distinct
holes, under the restricted pigeonhole constraints G0 of Theorem B.

242. [M20] The pigeonhole axioms (106) and (107) are equivalent to the clauses (15)
and (16) that arise if we try to color the complete graph Km+1 with m colors.

Suppose we include further axioms corresponding to (17), namely

(x̄jk ∨ x̄jk′), for 0 ≤ j ≤ m and 1 ≤ k < k′ ≤ m.

Does Theorem B still hold, or do these additional axioms decrease the refutation width?

243. [HM31] (E. Ben-Sasson and A. Wigderson.) Let F be a set of �αn� random
3SAT clauses on n variables, where α > 1/e is a given constant. For any clause C on
those variables, define μ(C) = min{ |F ′| | F ′ ⊆ F and F ′ � C}. Also let V (F ′) denote
the variables that occur in a given family of clauses F ′.
a) Prove that |V (F ′)| ≥ |F ′| a.s., when F ′ ⊆ F and |F ′| ≤ n/(2αe2).
b) Therefore either F is satisfiable or μ(ε) > n/(2αe2), a.s.
c) Let n′ = n/(1000000α4), and assume that n′ ≥ 2. Prove that 2|V (F ′)| − 3|F ′| ≥

n′/4 q.s., when F ′ ⊆ F and n′/2 ≤ |F ′| < n′.
d) Consequently either F is satisfiable or w(F � ε) ≥ n′/4, a.s.

244. [M20] If A is a set of variables, let [A]0 or [A]1 stand for the set of all clauses
that can be formed from A with an even or odd number of negative literals, respec-
tively; each clause should involve all of the variables. (For example, [{1, 2, 3}]1 =
{123̄, 12̄3, 1̄23, 1̄2̄3̄}.) If A and B are disjoint, express [A ∪ B]0 in terms of the sets
[A]0, [A]1, [B]0, [B]1.

337

From the Library of Melissa Nuno

ptg999

338 COMBINATORIAL SEARCHING 7.2.2.2

� 245. [M27] Let G be a connected graph whose vertices v ∈ V have each been labeled
0 or 1, where the sum of all labels is odd. We will construct clauses on the set of
variables euv , one for each edge u−−− v in G. The axioms are α(v) = [E(v)]l(v)⊕1 for
each v ∈ V (see exercise 244), where E(v) = {euv | u−−−v} and l(v) is the label of v.

For example, vertex 1 of the graph below is shown as a black dot in order to
indicate that l(1) = 1, while the other vertices appear as white dots and are labeled
l(2) = · · · = l(6) = 0. The graph and its axioms are

G = 1

2 3

4

56

a
b

c

d
e

f

g h ,

α(1) = {af, āf̄},
α(2) = {abḡ, ab̄g, ābg, āb̄ḡ},
α(3) = {bch̄, bc̄h, b̄ch, b̄c̄h̄},

α(4) = {cd̄, c̄d},
α(5) = {deh̄, dēh, d̄eh, d̄ēh̄},
α(6) = {efḡ, ef̄g, ēfg, ēf̄ḡ}.

Notice that, when v has d > 0 neighbors in G, the set α(v) consists of 2d−1 clauses of
size d. Furthermore, the axioms of α(v) are all satisfied if and only if⊕

euv∈E(v)
euv = l(v).

If we sum this equation over all vertices v, mod 2, we get 0 on the left, because each
edge euv occurs exactly twice (once in E(u) and once in E(v)). But we get 1 on the
right. Therefore the clauses α(G) =

⋃
v α(v) are unsatisfiable.

a) The axioms α(G) |b and α(G) | b̄ in this example turn out to be α(G′) and α(G′′),
where G′ = and G′′ = . Explain what happens in general.

b) Let μ(C) = min{ |V ′| | V ′ ⊆ V and
⋃
v∈V ′ α(v) � C}, for every clause C involv-

ing the variables euv . Show that μ(C)=1 for every axiom C∈α(G). What is μ(ε)?
c) If V ′ ⊆ V , let ∂V ′ = { euv | u ∈ V ′ and v /∈ V ′}. Prove that, if ⋃v∈V ′ α(v) � C

and |V ′| = μ(C), every variable of ∂V ′ appears in C.
d) A nonbipartite cubic Ramanujan graphG onm vertices V has three edges v−−−vρ,

v−−−vσ, v−−−vτ touching each vertex, where ρ, σ, and τ are permutations with
the following properties: (i) ρ = ρ− and τ = σ−; (ii) G is connected; (iii) If V ′ is
any subset of s vertices, and if there are t edges between V ′ and V \ V ′, then we
have s/(s+ t) ≤ (s/m+ 8)/9. Prove that w(α(G) � ε) > m/78.

� 246. [M28] (G. S. Tseytin.) Given a labeled graph G with m edges, n vertices, and
N unsatisfiable clauses α(G) as in the previous exercise, explain how to refute those
clauses with O(mn+N) steps of extended resolution.

247. [18] Apply variable elimination to just five of the six clauses (112), omitting ‘12̄’.

248. [M20] Formally speaking, SAT is the problem of evaluating the quantified for-
mula

∃x1 . . . ∃xn−1 ∃xn F (x1, . . . , xn−1, xn),
where F is a Boolean function given in CNF as a conjunction of clauses. Explain how
to transform the CNF for F into the CNF for F ′ in the reduced problem

∃x1 . . . ∃xn−1F ′(x1, . . . , xn−1), F ′(x1, . . . , xn−1) = F (x1, . . . , xn−1, 0)∨F (x1, . . . , xn−1, 1).
249. [18] Apply Algorithm I to (112) using Cook’s Method IA.

250. [25] Since the clauses R′ in (7) are satisfiable, Algorithm I might discover a
solution without ever reaching step I4. Try, however, to make the choices in steps I2,
I3, and I4 so that the algorithm takes as long as possible to discover a solution.

338

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 339

� 251. [30] Show that Algorithm I can prove the unsatisfiability of the anti-maximal-
element clauses (99)–(101) by making O(m3) resolutions, if suitably clairvoyant choices
are made in steps I2, I3, and I4.

252. [M26] Can the unsatisfiability of (99)–(101) be proved in polynomial time by
repeatedly performing variable elimination and subsumption?

� 253. [18] What are the next two clauses learned if decision ‘5’ follows next after (114)?

254. [16] Given the binary clauses {12, 1̄3, 23̄, 2̄4̄, 3̄4}, what clause will a CDCL solver
learn first if it begins by deciding that 1 is true?

� 255. [20] Construct a satisfiability problem with ternary clauses, for which a CDCL
solver that is started with decision literals ‘1’, ‘2’, ‘3’ on levels 1, 2, and 3 will learn
the clause ‘45’ after a conflict on level 3.

256. [20] How might the clause ‘∗∗’ in Table 3 have been easily learned?

� 257. [30] (Niklas Sörensson.) A literal l̄ is said to be redundant, with respect to a given
clause c and the current trail, if l is in the trail and either (i) l is defined at level 0, or (ii) l
is not a decision literal and every false literal in l’s reason is either in c or (recursively)
redundant. (This definition is stronger than the special cases by which (115) reduces
to (116), because l̄ itself needn’t belong to c.) If, for example, c = (l̄′∨ b̄1∨ b̄2∨ b̄3∨ b̄4),
let the reason for b4 be (b4 ∨ b̄1 ∨ ā1), where the reason for a1 is (a1 ∨ b̄2 ∨ ā2) and the
reason for a2 is (a2 ∨ b̄1 ∨ b̄3). Then b̄4 is redundant, because ā2 and ā1 are redundant.

a) Suppose c = (l̄′ ∨ b̄1 ∨ · · · ∨ b̄r) is a newly learned clause. Prove that if b̄j ∈ c is
redundant, some other b̄i ∈ c became false on the same level of the trail as b̄j did.

b) Devise an efficient algorithm that discovers all of the redundant literals b̄i in a
given newly learned clause c = (l̄ ′ ∨ b̄1 ∨ · · · ∨ b̄r). Hint: Use stamps.

258. [21] A non-decision literal l in Algorithm C’s trail always has a reason Rl =
(l0 ∨ l1 ∨ · · · ∨ lk−1), where l0 = l and l̄1, . . . , l̄k−1 precede l in the trail. Furthermore,
the algorithm discovered this clause while looking at the watch list of l1. True or false:
l̄2, . . . , l̄k−1 precede l̄1 in the trail. Hint: Consider Table 3 and its sequel.

259. [M20] Can ACT(j) exceed ACT(k) for values of ρ near 0 or 1, but not for all ρ?

260. [18] Describe in detail step C1’s setting-up of MEM, the watch lists, and the trail.

261. [21] The main loop of Algorithm C is the unit-propagation process of steps C3
and C4. Describe the low-level details of link adjustment, etc., to be done in those steps.

262. [20] What low-level operations underlie changes to the heap in steps C6–C8?

263. [21] Write out the gory details by which step C7 constructs a new clause and
step C9 puts it into the data structures of Algorithm C.

264. [20] Suggest a way by which Algorithm C could indicate progress by displaying
“move codes” analogous to those of Algorithms A, B, D, and L. (See exercise 142.)

265. [21] Describe several circumstances in which the watched literals l0 and/or l1 of
a clause c actually become false during the execution of Algorithm C.

266. [20] In order to keep from getting into a rut, CDCL solvers are often designed to
make decisions at random, with a small probability p (say p = .02), instead of always
choosing a variable of maximum activity. How would this policy change step C6?

� 267. [25] Instances of SAT often contain numerous binary clauses, which are handled
efficiently by the unit-propagation loop (62) of Algorithm L but not by the correspond-
ing loop in step C3 of Algorithm C. (The technique of watched literals is great for long

339

From the Library of Melissa Nuno

ptg999

340 COMBINATORIAL SEARCHING 7.2.2.2

clauses, but it is comparatively cumbersome for short ones.) What additional data
structures will speed up Algorithm C’s inner loop, when binary clauses are abundant?

268. [21] When Algorithm C makes a literal false at level 0 of the trail, we can remove
it from all of the clauses. Such updating might take a long time, if we did it “eagerly”;
but there’s a lazy way out: We can delete a permanently false literal if we happen to
encounter it in step C3 while looking for a new literal to watch (see exercise 261).

Explain how to adapt the MEM data structure conventions so that such deletions
can be done in situ, without copying clauses from one location into another.

269. [23] Suppose Algorithm C reaches a conflict at level d of the trail, after having
chosen the decision literals u1, u2, . . . , ud. Then the “trivial clause” (l̄

′∨ ū1 ∨ · · ·∨ ūd′)
must be true if the given clauses are satisfiable, where l′ and d′ are defined in step C7.

a) Show that, if we start with the clause (l̄′ ∨ b̄1 ∨ · · · ∨ b̄r) that is obtained in
step C7 and then resolve it somehow with zero or more known clauses, we can
always reach a clause that subsumes the trivial clause.

b) Sometimes, as in (115), the clause that is slated to be learned in step C9 is much
longer than the trivial clause. Construct an example in which d = 3, d′ = 1, and
r = 10, yet none of b̄1, . . . , b̄r are redundant in the sense of exercise 257.

c) Suggest a way to improve Algorithm C accordingly.

270. [25] (On-the-fly subsumption.) The intermediate clauses that arise in step C7,
immediately after resolving with a reason Rl, occasionally turn out to be equal to the
shorter clause Rl \ l. In such cases we have an opportunity to strengthen that clause
by deleting l from it, thus making it potentially more useful in the future.

a) Construct an example where two clauses can each be subsumed in this way while
resolving a single conflict. The subsumed clauses should both contain two literals
assigned at the current level in the trail, as well as one literal from a lower level.

b) Show that it’s easy to recognize such opportunities, and to strengthen such clauses
efficiently, by modifying the steps of answer 263.

� 271. [25] The sequence of learned clauses C1, C2, . . . often includes cases where Ci

subsumes its immediate predecessor, Ci−1. In such cases we might as well discard
Ci−1, which appears at the very end of MEM, and store Ci in its place, unless Ci−1 is
still in use as a reason for some literal on the trail. (For example, more than 8,600
of the 52,000 clauses typically learned from waerden (3, 10; 97) by Algorithm C can be
discarded in this way. Such discards are different from the on-the-fly subsumptions
considered in exercise 270, because the subsumed Ci−1 includes only one literal from
its original conflict level; furthermore, learned clauses have usually been significantly
simplified by the procedure of exercise 257, unless they’re trivial.)

Design an efficient way to discover when Ci−1 can be safely discarded.

272. [30] Experiment with the following idea: The clauses of waerden (j, k;n) are
symmetrical under reflection, in the sense that they remain unchanged overall if we
replace xk by xRk = xn+1−k for 1 ≤ k ≤ n. Therefore, whenever Algorithm C learns
a clause C = (l̄ ′ ∨ b̄1 ∨ · · · ∨ b̄r), it is also entitled to learn the reflected clause CR =
(l̄ ′R ∨ b̄R1 ∨ · · · ∨ b̄Rr).

273. [27] A clause C that is learned from waerden (j, k;n) is valid also with respect
to waerden (j, k;n′) when n′ > n; and so are the clauses C + i that are obtained by
adding i to each literal of C, for 1 ≤ i ≤ n′ − n. For example, the fact that ‘35’ follows
from waerden (3, 3; 7) allows us to add the clauses 35, 46, 57 to waerden (3, 3; 9).

a) Exploit this idea to speed up the calculation of van der Waerden numbers.

340

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 341

b) Explain how to apply it also to bounded model checking.

274. [35] Algorithm C sets the “reason” for a literal l as soon as it notices a clause
that forces l to be true. Later on, other clauses that force l are often encountered, in
practice; but Algorithm C ignores them, even though one of them might be a “better
reason.” (For example, another forcing clause might be significantly shorter.) Explore
a modification of Algorithm C that tries to improve the reasons of non-decision literals.

� 275. [22] Adapt Algorithm C to the problem of finding the lexicographically smallest
solution to a satisfiability problem, by incorporating the ideas of exercise 109.

276. [M15] True or false: If F is a family of clauses and L is a set of strictly distinct
literals, then F ∧ L �1 ε if and only if (F |L) �1 ε.
277. [M18] If (C1, . . . , Ct) is a certificate of unsatisfiability for F , and if all clauses
of F have length ≥ 2, prove that some Ci is a unit clause.

278. [22] Find a six-step certificate of unsatisfiability for waerden (3, 3; 9).

279. [M20] True or false: Every unsatisfiable 2SAT problem has a certificate ‘(l, ε)’.

� 280. [M26] The problem cook (j, k) consists of all
(
n
j

)
positive j-clauses and all

(
n
k

)
negative k-clauses on {1, . . . , n}, where n = j + k − 1. For example, cook (2, 3) is

{12, 13, 14, 23, 24, 34, 1̄2̄3̄, 1̄2̄4̄, 1̄3̄4̄, 2̄3̄4̄}.
a) Why are these clauses obviously unsatisfiable?
b) Find a totally positive certificate for cook (j, k), of length

(
n−1
j−1
)
.

c) Prove in fact that Algorithm C always learns exactly
(
n−1
j−1
)
clauses when it proves

the unsatisfiability of cook (j, k), if Mp = Mf =∞ (no purging or flushing).

281. [21] Construct a certificate of unsatisfiability that refutes (99), (100), (101).

� 282. [M33] Construct a certificate of unsatisfiability for the clauses fsnark (q) of exer-
cise 176 when q ≥ 3 is odd, using O(q) clauses, all having length ≤ 4. Hint: Include the
clauses (āj,p∨ēj,p), (āj,p∨f̄j,p), (ēj,p∨f̄j,p), and (aj,p∨ej,p∨fj,p) for 1 ≤ j ≤ q, 1 ≤ p ≤ 3.

283. [HM46] Does Algorithm C solve the flower snark problem in linear time? More
precisely, let pq(M) be the probability that the algorithm refutes fsnark (q) while mak-
ing at most M references to MEM. Is there a constant N such that pq(Nq) > 1

2
for all q?

284. [23] Given F and (C1, . . . , Ct), a certificate-checking program tests condition
(119) by verifying that F and clauses C1, . . . , Ci−1 will force a conflict when they
are augmented by the unit literals of Ci. While doing this, it can mark each clause
of F ∪ {C1, . . . , Ci−1} that was reduced to a unit during the forcing process; then the
truth of Ci does not depend on the truth of any unmarked clause.

In practice, many clauses of F are never marked at all, hence F will remain
unsatisfiable even if we leave them out. Furthermore, many clauses Ci are not marked
during the verification of any of their successors, {Ci+1, . . . , Ct}; such clauses Ci needn’t
be verified, nor need we mark any of the clauses on which they depend.

Therefore we can save work by checking the certificate backwards: Start by
marking the final clause Ct, which is ε and always needs to be verified. Then, for
i = t, t− 1, . . . , check Ci only if it has been marked.

The unit propagations can all be done without recording the “reason” Rl that
has caused any literal l to be forced. In practice, however, many of the forced literals
don’t actually contribute to the conflicts that arise, and we don’t want to mark any
clauses that aren’t really involved.

Explain how to use reasons, as in Algorithm C, so that clauses are marked by the
verifier only if they actually participate in the proof of a marked clause Ci.

341

From the Library of Melissa Nuno

ptg999

342 COMBINATORIAL SEARCHING 7.2.2.2

285. [19] Using the data in Fig. 93, the text observes that Eq. (124) gives j = 95,
sj = 3081, and mj = 59 when α = 15

16
. What are j, sj , and mj when (a) α = 9

16
?

(b) α = 1
2? (c) α = 7

16? Also compare the effectiveness of different α’s by computing the
number bj of “black” clauses (those with 0 < RANGE(c) < j that proved to be useful).

286. [M24] What choice of signatures-to-keep in Fig. 93 is optimum, in the sense that
it maximizes

∑
bpqxpq subject to the conditions

∑
apqxpq ≤ 3114, xpq ∈ {0, 1}, and

xpq ≥ xp′q′ for 1 ≤ p ≤ p′ ≤ 7, 0 ≤ q ≤ q′ ≤ 8? Here apq and bpq are the areas of the
gray and black clauses that have signature (p, q), as given by the matrices in the text.
[This is a special case of the “knapsack problem with a partial ordering.”]

287. [25] What changes to Algorithm C are necessary to make it do a “full run,” and
later to learn from all of the conflicts that arose during that run?

288. [28] Spell out the details of computing RANGE scores and then compressing the
database of learned clauses, during a round of purging.

289. [M20] Assume that the kth round of purging begins with yk clauses in memory
after kΔ +

(
k
2

)
δ clauses have been learned, and that purging removes 1

2yk of those
clauses. Find a closed formula for yk as a function of k.

290. [17] Explain how to find xk, the unassigned variable of maximum activity that
is used for flushing literals. Hint: It’s in the HEAP array.

291. [20] In the text’s hypothetical scenario about flushing Table 3 back to level 15,
why will 49 soon appear on the trail, instead of 49?

292. [M21] How large can AGILITY get after repeatedly executing (127)?

293. [21] Spell out the details of updatingMf toM+Δf when deciding whether or not
to flush. Also compute the agility threshold that’s specified in Table 4. Hint: See (131).

294. [HM21] For each binary vector α = x1x2x3x4, find the generating function
gα(z) =

∑∞
j=0 pα,jz

j, where pα,j is the probability that Algorithm P will solve the
seven clauses of (7) after making exactly j flips, given the initial values α in step P1.
Deduce the mean and variance of the number of steps needed to find a solution.

295. [M23] Algorithm P often finds solutions much more quickly than predicted by
Corollary W. But show that some 3SAT clauses will indeed require Ω((4/3)n) trials.

296. [HM20] Complete the proof of Theorem U by (approximately) maximizing the
quantity f(p, q) in (129). Hint: Consider f(p+ 1, q)/f(p, q).

� 297. [HM26] (Emo Welzl.) Let Gq(z) =
∑

p Cp,p+q−1(z/3)p+q(2z/3)p be the generat-
ing function for stopping time t = 2p+ q when Y0 = q in the proof of Theorem U.

a) Find a closed form for Gq(z), using formulas from Section 7.2.1.6.
b) Explain why Gq(1) is less than 1.

c) Evaluate and interpret the quantity G′q(1)/Gq(1).

d) Use Markov’s inequality to bound the probability that Yt = 0 for some t ≤ N .
e) Show that Corollary W follows from this analysis.

298. [HM22] Generalize Theorem U and Corollary W to the case where each clause
has at most k literals, where k ≥ 3.

299. [HM23] Continuing the previous exercise, investigate the case k = 2.

� 300. [25] Modify Algorithm P so that it can be implemented with bitwise operations,
thereby running (say) 64 independent trials simultaneously.

� 301. [25] Discuss implementing the algorithm of exercise 300 efficiently on MMIX.

342

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 343

302. [26] Expand the text’s high-level description of steps W4 and W5, by providing
low-level details about exactly what the computer should do.

303. [HM20] Solve exercise 294 with Algorithm W in place of Algorithm P.

304. [HM34] Consider the 2SAT problem with n(n− 1) clauses (x̄j ∨xk) for all j �= k.
Find the generating functions for the number of flips taken by Algorithms P and W.
Hint: Exercises 1.2.6–68 and MPR–105 are helpful for finding the exact formulas.

� 305. [HM29] Add one more clause, (x̄1 ∨ x̄2), to the previous exercise and find the
resulting generating functions when n = 4. What happens when p = 0 in AlgorithmW?

� 306. [HM32] (Luby, Sinclair, and Zuckerman, 1993.) Consider a “Las Vegas algo-
rithm” that succeeds or fails; it succeeds at step t with probability pt, and fails with
probability p∞ < 1. Let qt = p1 + p2 + · · ·+ pt and Et = p1 + 2p2 + · · ·+ tpt; also let
E∞ =∞ if p∞ > 0, otherwise E∞ =

∑
ttpt. (The latter sum might be ∞.)

a) Suppose we abort the algorithm and restart it again, whenever the first N steps
have not succeeded. Show that if qN > 0, this strategy will succeed after per-
forming an average of l(N) <∞ steps. What is l(N)?

b) Compute l(N) when pm = m
n
, p∞ = n−m

n
, otherwise pt = 0, where 1 ≤ m ≤ n.

c) Given the uniform distribution, pt =
1
n for 1 ≤ t ≤ n, what is l(N)?

d) Find all probability distributions such that l(N) = l(1) for all N ≥ 1.
e) Find all probability distributions such that l(N) = l(n) for all N ≥ n.
f) Find all probability distributions such that qn+1 = 1 and l(n) ≤ l(n+ 1).
g) Find all probability distributions such that q3 = 1 and l(1) < l(3) < l(2).
h) Let l = infN≥1 l(N), and let N∗ be the least positive integer such that l(N∗) = l,

or ∞ if no such integer exists. Prove that N∗ =∞ implies l = E∞ <∞.
i) Find N∗ for the probability distribution pt=[t>n]/((t−n)(t+1−n)), given n≥0.
j) Exhibit a simple example of a probability distribution for which N∗ =∞.
k) Let L = mint≥1 t/qt. Prove that l ≤ L ≤ 2l − 1.

307. [HM28] Continuing exercise 306, consider a more general strategy defined by an
infinite sequence of positive integers (N1, N2, . . .): “Set j ← 0; then, while success has
not yet been achieved, set j ← j+1 and run the algorithm with cutoff parameter Nj .”

a) Explain how to compute EX, where X is the number of steps taken before this
strategy succeeds.

b) Let Tj = N1 + · · · + Nj . Prove that EX =
∑∞

j=1Pr(Tj−1<X≤Tj) l(Nj), if we
have qNj

> 0 for all j.
c) Consequently the steady strategy (N∗, N∗, . . .) is best: EX ≥ l(N∗) = l.

d) Given n, exercise 306(b) defines n simple probability distributions p(m) that have
l(N∗) = n, but the value of N∗ = m is different in each case. Prove that any
sequence (N1, N2, . . .) must have EX > 1

4
nHn − 1

2
n = 1

4
lHl − 1

2
l on at least one

of those p(m). Hint: Consider the smallest r such that, for eachm, the probability
is ≥ 1

2
that r trial runs suffice; show that ≥ n/(2m) of {N1, . . . , Nr} are ≥ m.

308. [M29] This exercise explores the “reluctant doubling” sequence (130).
a) What is the smallest n such that Sn = 2a, given a ≥ 0?
b) Show that {n | Sn = 1} = {2k + 1 − νk | k ≥ 0}; hence the generating function∑

nz
n[Sn=1] is the infinite product z(1 + z)(1 + z3)(1 + z7)(1 + z15)

c) Find similar expressions for {n | Sn = 2a} and ∑nz
n[Sn=2a].

d) Let Σ(a, b, k) =
∑r(a,b,k)

n=1 Sn, where Sr(a,b,k) is the 2
bkth occurrence of 2a in 〈Sn〉.

For example, Σ(1, 0, 3) = S1 + · · ·+ S10 = 16. Evaluate Σ(a, b, 1) in closed form.
e) Show that Σ(a, b, k+1)− Σ(a, b, k) ≤ (a+ b+ 2k − 1)2a+b, for all k ≥ 1.

343

From the Library of Melissa Nuno

ptg999

344 COMBINATORIAL SEARCHING 7.2.2.2

f) Given any probability distribution as in exercise 306(k), let a = �lg t� and b =
�lg 1/qt�, where t/qt = L; thus L ≤ 2a+b < 4L. Prove that if the strategy of
exercise 307 is used with Nj = Sj , we have

EX ≤ Σ(a, b, 1) +
∑
k≥1

Qk(Σ(a, b, k+1)− Σ(a, b, k)), where Q = (1− q2a)2
b
.

g) Therefore 〈Sn〉 gives EX < 13l lg l + 49l, for every probability distribution.

309. [20] Exercise 293 explains how to use the reluctant doubling sequence with
Algorithm C. Is Algorithm C a Las Vegas algorithm?

310. [M25] Explain how to compute the “reluctant Fibonacci sequence”

1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 5, 1, 1, 2, 1, 2, 3, 5, 8, 1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 5, 8, 13, 1, . . . ,

which is somewhat like (130) and useful as in exercise 308, but its elements are Fibonacci
numbers instead of powers of 2.

311. [21] Compute approximate values of EX for the 100 probability distributions of
exercise 306(b) when n = l = 100, using the method of exercise 307 with the sequences
〈Sn〉 of exercise 308 and 〈S′n〉 of exercise 310. Also consider the more easily generated
“ruler doubling” sequence 〈Rn〉, where Rn = n&−n = 2ρn. Which sequence is best?

312. [HM24] Let T (m,n) = EX when the reluctant doubling method is applied to
the probability distribution defined in exercise 306(b). Express T (m,n) in terms of the
generating functions in exercise 308(c).

� 313. [22] Algorithm W always flips a cost-free literal if one is present in Cj , without
considering its parameter p. Show that such a flip always decreases the number of
unsatisfied clauses, r; but it might increase the distance from x to the nearest solution.

� 314. [36] (H. H. Hoos, 1998.) If the given clauses are satisfiable, and if p > 0, can
there be an initial x for which Algorithm W always loops forever?

315. [M18] What value of p is appropriate in Theorem J when d = 1?

316. [HM20] Is Theorem J a consequence of Theorem L?

� 317. [M26] Let α(G) = Pr(A1 ∩ · · · ∩Am) under the assumptions of (133), when pi =
p = (d−1)d−1/dd for 1 ≤ i ≤ m and every vertex of G has degree at most d > 1. Prove,
by induction onm, that α(G) > 0 and that α(G) > d−1

d
α(G\v) when v has degree < d.

318. [HM27] (J. B. Shearer.) Prove that Theorem J is the best possible result of its
kind: If p > (d − 1)d−1/dd and d > 1, there is a graph G of maximum degree d for
which (p, . . . , p) /∈ R(G). Hint: Consider complete t-ary trees, where t = d− 1.

319. [HM20] Show that pde < 1 implies p ≤ (d− 1)d−1/dd.

320. [M24] Given a lopsidependency graph G, the occurrence threshold ρ(G) is the
smallest value p such that it’s sometimes impossible to avoid all events when each
event occurs with probability p. For example, the Möbius polynomial for the path P3 is
1−p1−p2−p3+p1p3; so the occurrence threshold is φ

−2, the least p with 1−3p+p2 ≤ 0.

a) Prove that the occurrence threshold for Pm is 1/(4 cos2 π
m+2).

b) What is the occurrence threshold for the cycle graph Cm?

321. [M24] Suppose each of four random events A, B, C, D occurs with probability p,
where {A,C} and {B,D} are independent. According to exercise 320(b) with m = 4,
there’s a joint distribution of (A,B,C,D) such that at least one of the events always
occurs, whenever p ≥ (2−√2)/2 ≈ 0.293. Exhibit such a distribution when p = 3/10.

344

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 345

� 322. [HM35] (K. Kolipaka and M. Szegedy, 2011.) Surprisingly, the previous exercise
cannot be solved in the setting of Algorithm M! Suppose we have independent random
variables (W,X, Y,Z) such that A depends on W and X, B depends on X and Y,
C depends on Y and Z, D depends on Z and W. Here W equals j with probability wj

for all integers j; X, Y, and Z are similar. This exercise will prove that the constraint
A ∩B ∩ C ∩D is always satisfiable, even when p is as large as 0.333.

a) Express the probability Pr(A ∩ B ∩ C ∩D) in a convenient way.
b) Suppose there’s a distribution of W, X, Y, Z with Pr(A) = Pr(B) = Pr(C) =

Pr(D) = p and Pr(A∩B ∩C ∩D) = 0. Show that there are ten values such that

0 ≤ a, b, c, d, a′, b′, c′, d′ ≤ 1, 0 < μ, ν < 1,

μa+ (1− μ)a′ ≤ p, μb+ (1− μ)b′ ≤ p,

νc+ (1− ν)c′ ≤ p, νd+ (1− ν)d′ ≤ p,

a+ d ≥ 1 or b+ c ≥ 1, a+ d′ ≥ 1 or b+ c′ ≥ 1,

a′ + d ≥ 1 or b′ + c ≥ 1, a′ + d′ ≥ 1 or b′ + c′ ≥ 1.

c) Find all solutions to those constraints when p = 1/3.

d) Convert those solutions to distributions that have Pr(A ∩ B ∩ C ∩D) = 0.

323. [10] What trace precedes ccb in the list (135)?

� 324. [22] Given a trace α = x1x2 . . . xn for a graph G, explain how to find all strings β
that are equivalent to α, using Algorithm 7.2.1.2V. How many strings yield (136)?

� 325. [20] An acyclic orientation of a graph G is an assignment of directions to each of
its edges so that the resulting digraph has no oriented cycles. Show that the number of
traces for G that are permutations of the vertices (with each vertex appearing exactly
once in the trace) is the number of acyclic orientations of G.

326. [20] True or false: If α and β are traces with α = β, then αR = βR. (See (137).)

� 327. [22] Design an algorithm to multiply two traces α and β, when clashing is defined
by territory sets T (a) in some universe U . Assume that U is small (say |U | ≤ 64), so
that bitwise operations can be used to represent the territories.

328. [20] Continuing exercise 327, design an algorithm that computes α/β. More
precisely, if β is a right factor of α, in the sense that α = γβ for some trace γ, your
algorithm should compute γ; otherwise it should report that β is not a right factor.

329. [21] Similarly, design an algorithm that either computes α \ β or reports that
α isn’t a left factor of β.

� 330. [21] Given any graph G, explain how to define territory sets T (a) for its vertices a
in such a way that we have a = b or a−−−b if and only if T (a)∩T (b) �= ∅. (Thus traces
can always be modeled by empilements of pieces.) Under what circumstances is it
possible to do this with |T (a)| = 2 for all a, as in the text’s example (136)?

331. [M20] What happens if the right-hand side of (139) is expanded without allowing
any of the variables to commute with each other?

332. [20] When a trace is represented by its lexicographically smallest string, no letter
in that representative string is followed by a smaller letter with which it commutes.
(For example, no c is followed by a in (135), because we could get an equivalent smaller
string by changing ca to ac.)

Conversely, given any ordered set of letters, some of which commute, consider all
strings having no letter followed by a smaller letter with which it commutes. Is every
such string the lexicographically smallest of its trace?

345

From the Library of Melissa Nuno

ptg999

346 COMBINATORIAL SEARCHING 7.2.2.2

� 333. [M20] (Carlitz, Scoville, and Vaughan, 1976.) Let D be a digraph on {1, . . . ,m},
and let A be the set of all strings aj1 . . . ajn such that ji−−→ ji+1 in D for 1 ≤ i < n.
Similarly let B be the set of all strings aj1 . . . ajn such that ji �−−→ ji+1 for 1 ≤ i < n.
Prove that ∑

α∈A
α = 1

/∑
β∈B

(−1)|β|β =
∑
k≥0

(
1−

∑
β∈B

(−1)|β|β
)k

is an identity in the noncommutative variables {a1, . . . , am}. (For example, we have
1 + a+ b+ ab+ ba+ aba+ bab+ · · · =

∑
k≥0

(a+ b− aa− bb+ aaa+ bbb− · · ·)k

in the case m = 2, 1 �−−→1, 1−−→2, 2−−→1, 2 �−−→2.)

� 334. [25] Design an algorithm to generate all traces of length n that correspond to a
given graph on the alphabet {1, . . . ,m}, representing each trace by its lexicographically
smallest string.

335. [HM26] If the vertices of G can be ordered in such a way that x < y < z and
x /−−−y and y /−−−z implies x /−−−z, show that the Möbius series MG can be expressed as
a determinant. For example,

if G =
a b
c d
e f

then MG = det

⎛⎜⎜⎜⎜⎜⎝
1− a −b −c 0 0 0
−a 1− b 0 −d 0 0
−a −b 1− c −d −e 0
−a −b −c 1− d 0 −f
−a −b −c −d 1− e −f
−a −b −c −d −e 1− f

⎞⎟⎟⎟⎟⎟⎠ .

� 336. [M20] If graphsG andH on distinct vertices have the Möbius seriesMG andMH ,
what are the Möbius series for (a) G⊕H and (b) G−−−H?

337. [M20] Suppose we obtain the graph G′ from G by substituting a clique of vertices
{a1, . . . , ak} for some vertex a, then including edges from aj to each neighbor of a for
1 ≤ j ≤ k. Describe the relation between MG′ and MG.

338. [M21] Prove Viennot’s general identity (144) for source-constrained traces.

� 339. [HM26] (G. Viennot.) This exercise explores factorization of traces into pyramids.
a) Each letter xj of a given trace α = x1 . . . xn lies at the top of a unique pyramid βj

such that βj is a left factor of α. For example, in the trace bcebafdc of (136), the
pyramids β1, . . . , β8 are respectively b, bc, e, bcb, bcba, ef, bced, and bcebdc.
Explain intuitively how to find these pyramidal left factors from α’s empilement.

b) A labeled trace is an assignment of distinct numbers to the letters of a trace; for
example, abca might become a4b7c6a3. A labeled pyramid is the special case when
the pyramid’s top element is required to have the smallest label. Prove that every
labeled trace is uniquely factorizable into labeled pyramids whose topmost labels
are in ascending order. (For example, b6c2e4b7a8f5d1c3 = b6c2e4d1 · b7a8c3 · f5.)

c) Suppose there are tn traces of length n, and pn pyramids. Then there are Tn =
n! tn labeled traces and Pn = (n − 1)! pn labeled pyramids (because only the
relative order of the labels is significant). Letting T (z) =

∑
n≥0 Tnz

n/n! and
P (z) =

∑
n≥1 Pnz

n/n!, prove that the number of labeled traces of length n whose
factorization in part (b) has exactly l pyramids is n! [zn]P (z)l/l!.

d) Consequently T (z) = eP (z).

e) Therefore (and this is the punch line!) lnMG(z) = −
∑

n≥1 pnz
n/n.

346

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 347

� 340. [M20] If we assign a weight w(σ) to every cyclic permutation σ, then every per-
mutation π has a weight w(π) that is the product of the weights of its cycles. For
example, if π =

(
1 2 3 4 5 6 7
3 1 4 2 7 6 5

)
= (1 3 4 2)(5 7)(6) then w(π) = w((1 3 4 2))w((5 7))w((6)).

The permutation polynomial of a set S is the sum of w(π) over all permutations
of S. Given any n× n matrix A = (aij), show that it’s possible to define appropriate
cycle weights so that the permutation polynomial of {1, . . . , n} is the determinant of A.
341. [M25] The involution polynomial of a set S is the special case of the permuta-
tion polynomial when the cycle weights have the form wjjx for the 1-cycle (j) and
−wij for the 2-cycle (i j), otherwise w(σ) = 0. For example, the involution polyno-
mial of {1, 2, 3, 4} is w11w22w33w44x

4−w11w22w34x
2−w11w23w44x

2−w11w24w33x
2−

w12w33w44x
2 − w13w22w44x

2 − w14w22w33x
2 + w12w34 + w13w24 + w14w23.

Prove that, if wij > 0 for 1 ≤ i ≤ j ≤ n, the involution polynomial of {1, . . . , n}
has n distinct real roots. Hint: Show also that, if the roots for {1, . . . , n − 1} are
q1 < · · · < qn−1, then the roots rk for {1, . . . , n} satisfy r1 < q1 < r2 < · · · < qn−1 < rn.

342. [HM25] (Cartier and Foata, 1969.) Let Gn be the graph whose vertices are the∑n
k=1

(
n
k

)
(k− 1)! cyclic permutations of subsets of {1, . . . , n}, with σ−−−τ when σ and

τ intersect. For example, the vertices of G3 are (1), (2), (3), (12), (13), (23), (123),
(132); and they’re mutually adjacent except that (1) /−−− (2), (1) /−−− (3), (1) /−−− (23),
(2) /−−− (3), (2) /−−− (13), (12) /−−− (3). Find a beautiful relation between MGn and the
characteristic polynomial of an n× n matrix.

� 343. [M25] If G is any cograph, show that (p1, . . . , pm) ∈ R(G) if and only if we have
MG(p1, . . . , pm) > 0. Exhibit a non-cograph for which the latter statement is not true.

344. [M33] Given a graph G as in Theorem S, let B1, . . . , Bm have the joint probabil-
ity distribution of exercise MPR–31, with πI = 0 whenever I contains distinct vertices
{i, j} with i−−−j, otherwise πI =

∏
i∈I pi.

a) Show that this distribution is legal (see exercise MPR–32) if (p1, . . . , pm) ∈ R(G).
b) Show that this “extreme distribution” also satisfies condition (147).

c) Let β(G) = Pr(B1∩· · ·∩Bm). If J ⊆ {1, . . . ,m}, express β(G|J) in terms ofMG.

d) Defining α(G) as in exercise 317, with events Aj satisfying (133) and probabilities
(p1, . . . , pm) ∈ R(G), show that α(G | J) ≥ β(G | J) for all J ⊆ {1, . . . ,m}.

e) If pi satisfies (134), show that β(G|J) ≥∏j∈J(1− θj).

345. [M30] Construct unavoidable events that satisfy (147) when (p1, . . . , pm) /∈ R(G).
� 346. [HM28] Write (142) as MG = MG\a(1− aKa,G) where Ka,G = MG\a∗/MG\a.

a) If (p1, . . . , pm) ∈ R(G), prove that Ka,G is monotonic in all of its parameters: It
does not increase if any of p1, . . . , pm are decreased.

b) Exploit this fact to design an algorithm that computes MG(p1, . . . , pm) and
decides whether or not (p1, . . . , pm) ∈ R(G), given a graph G and probabilities
(p1, . . . , pm). Illustrate your algorithm on the graph G = P3 P2 of exercise 335.

� 347. [M28] A graph is called chordal when it has no induced cycle Ck for k > 3.
Equivalently (see Section 7.4.2), a graph is chordal if and only if its edges can be
defined by territory sets T (a) that induce connected subgraphs of some tree. For
example, interval graphs and forests are chordal.

a) Say that a graph is tree-ordered if its vertices can be arranged as nodes of a forest
in such a way that

a−−−b implies a � b or b � a;
a � b � c and a−−−c implies a−−−b.

(∗)

347

From the Library of Melissa Nuno

ptg999

348 COMBINATORIAL SEARCHING 7.2.2.2

(Here ‘a � b’ means that a is a proper ancestor of b in the forest.) Prove that
every tree-ordered graph is chordal.

b) Conversely, show that every chordal graph can be tree-ordered.
c) Show that the algorithm in the previous exercise becomes quite simple when it

is applied to a tree-ordered graph, if a is eliminated before b whenever a � b.
d) Consequently Theorem L can be substantially strengthened when G is a chordal

graph: When G is tree-ordered by �, the probability vector (p1, . . . , pm) is in
R(G) if and only if there are numbers 0 ≤ θ1, . . . , θm < 1 such that

pi = θi
∏

i−−j inG, i�j
(1− θj).

348. [HM26] (A. Pringsheim, 1894.) Show that any power series f(z) =
∑∞

n=0 anz
n

with an ≥ 0 and radius of convergence ρ, where 0 < ρ <∞, has a singularity at z = ρ.

� 349. [M24] Analyze Algorithm M exactly in the two examples considered in the text
(see (150)): For each binary vector x = x1 . . . x7, compute the generating function
gx(z) =

∑
t px,tz

t, where px,t is the probability that step M3 will be executed exactly
t times after step M1 produces x. Assume that step M2 always chooses the smallest
possible value of j. (Thus the ‘Case 2’ scenario in (150) will never occur.)

What are the mean and variance of the running times, in (i) Case 1? (ii) Case 2?

� 350. [HM26] (W. Pegden.) Suppose Algorithm M is applied to the m = n+ 1 events

Aj = xj for 1 ≤ j ≤ n; Am = x1 ∨ · · · ∨ xn.

Thus Am is true whenever any of the other Aj is true; so we could implement step M2
by never setting j ← m. Alternatively, we could decide to set j ← m whenever possible.
Let (Ni, Nii, Niii, Niv, Nv) be the number of resamplings performed when parameter ξk
of the algorithm is (i) 1/2; (ii) 1/(2n); (iii) 1/2n; (iv) 1/(n+ k); (v) 1/(n+ k)2.

a) Find the asymptotic mean and variance of each N , if j is never equal to m.
b) Find the asymptotic mean and variance of each N , if j is never less than m.
c) Let G be the graph on {1, . . . , n+ 1} with edges j−−−(n+ 1) for 1 ≤ j ≤ n, and

let pj = Pr(Aj). For which of the five choices of ξk is (p1, . . . , pn+1) ∈ R(G)?
� 351. [25] The Local Lemma can be applied to the satisfiability problem for m clauses
on n variables if we let Aj be the event “Cj is not satisfied.” The dependency graph G
then has i−−− j whenever two clauses Ci and Cj share at least one common variable.
If, say, Ci is (x3∨ x̄5∨x6), then (133) holds whenever pi ≥ (1− ξ3)ξ5(1− ξ6), assuming
that each xk is true with probability ξk, independent of the other x’s.

But if, say, Cj is (x̄2 ∨ x3 ∨ x7), condition (133) remains true even if we don’t
stipulate that i−−− j. Variable x3 appears in both clauses, yet the cases when Cj is
satisfied are never bad news for Ci. We need to require that i−−− j in condition (133)
only when Ci and Cj are “resolvable” clauses, namely when some variable occurs
positively in one and negatively in the other.

Extend this reasoning to the general setting of Algorithm M, where we have
arbitrary events Aj that depend on variables Ξj : Define a lopsidependency graph G for
which (133) holds even though we might have i /−−−j in some cases when Ξi ∩ Ξj �= ∅.
352. [M21] Show that Ej ≤ θj/(1− θj) in (152), when (134) holds.

353. [M21] Consider Case 1 and Case 2 of Algorithm M as illustrated in (150).
a) How many solutions x1 . . . xn are possible? (Generalize from n = 7 to any n.)
b) How many solutions are predicted by Theorem S?

348

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 349

c) Show that in Case 2 the lopsidependency graph is much smaller than the depend-
ency graph. How many solutions are predicted when the smaller graph is used?

354. [HM20] Show that the expected number EN of resampling steps in Algorithm M
is at most −M∗′

G (1)/M
∗
G(1).

355. [HM21] In (152), prove that Ej ≤ 1/δ when (p1, . . . , pm) has positive slack δ.
Hint: Consider replacing pj by pj + δpj .

� 356. [M33] (The Clique Local Lemma.) Let G be a graph on {1, . . . ,m}, and let
G | U1, . . . , G | Ut be cliques that cover all the edges of G. Assign numbers θij ≥ 0 to
the vertices of each Uj , such that Σj =

∑
i∈Uj θij < 1. Assume that

Pr(Ai) = pi ≤ θij
∏

k �=j, i∈Uk
(1 + θik −Σk) whenever 1 ≤ i ≤ m and i ∈ Uj .

a) Prove that (p1, . . . , pm) ∈ R(G). Hint: Letting AS denote
⋂
i∈S Ai, show that

Pr(Ai | AS) ≤ θij whenever 1 ≤ i ≤ m and i ∈ Uj and S ∩ Uj = ∅.
b) Also Ei in (152) is at most mini−−−j inG θij/(1−Σj). (See Theorems M and S.)

c) Improve Theorem L by showing that, if 0≤θj<
1
2
, then (p1, . . . , pm)∈R(G) when

pi = θi

(∏
i−−−j inG

(1− θj)
)/

max
i−−−j inG

(1− θj).

� 357. [M20] Let x = πv̄ and y = πv in (155), and suppose the field of variable v is
(p, q, r). Express x and y as functions of p, q, and r.

358. [M20] Continuing exercise 357, prove that r = max(p, q, r) if and only if x, y ≥ 1
2
.

359. [20] Equations (156) and (157) should actually have been written

γl→C =
(1− πl̄)(1− ηl)

∏
l∈C′ �=C(1− ηC→l)

π
l̄
+ (1− π

l̄
)(1− ηl)

∏
l∈C′ �=C(1− ηC→l)

and η′C→l =
∏

C�l′ �=l
γl′→C ,

to avoid division by zero. Suggest an efficient way to implement these calculations.

360. [M23] Find all fixed points of the seven-clause system illustrated in (159), given
that π1 = π2̄ = π4̄ = 1. Assume also that ηlη l̄ = 0 for all l.

� 361. [M22] Describe all fixed points ηC→l = η′C→l of the equations (154), (156), (157),
for which each ηC→l and each ηl is either 0 or 1.

362. [20] Spell out the computations needed to finish Algorithm S in step S8.

� 363. [M30] (Lattices of partial assignments.) A partial assignment to the variables
of a satisfiability problem is called stable (or “valid”) if it is consistent and cannot be
extended by unit propagation. In other words, it’s stable if and only if no clause is
entirely false, or entirely false except for at most one unassigned literal. Variable xk of
a partial assignment is called constrained if it appears in a clause where ±xk is true
but all the other literals are false (thus its value has a “reason”).

The 3n partial assignments of an n-variable problem can be represented either as
strings x = x1 . . . xn on the alphabet {0, 1, ∗} or as sets L of strictly distinct literals. For
example, the string x = ∗1∗01∗ corresponds to the set L = {2, 4̄, 5}. We write x ≺ x′

if x′ is equal to x except that xk = ∗ and x′k ∈ {0, 1}; equivalently L ≺ L′ if L′ = L∪ k
or L′ = L ∪ k̄. Also x ! x′ if there are t ≥ 0 stable partial assignments x(j) with

x = x(0) ≺ x(1) ≺ · · · ≺ x(t) = x′.

349

From the Library of Melissa Nuno

ptg999

350 COMBINATORIAL SEARCHING 7.2.2.2

Let p1, . . . , pn, q1, . . . , qn be probabilities, with pk+qk = 1 for 1 ≤ k ≤ n. Define
the weight W (x) of a partial assignment to be 0 if x is unstable, otherwise

W (x) =
∏
{pk | xk = ∗} ·

∏
{qk | xk �= ∗ and xk is unconstrained}.

[E. Maneva, E. Mossel, and M. J. Wainwright, in JACM 54 (2007), 17:1–17:41, studied
general message-passing algorithms on partial assignments that are distributed with
probability proportional to their weights, in the case p1 = · · · = pn = p, showing that
survey propagation (Algorithm S) corresponds to the limit as p→ 1.]
a) True or false: The partial assignment specified by the literals currently on the

trail in step C5 of Algorithm C is stable.
b) What weights W (x) correspond to the clauses F in (1)?
c) Let x be a stable partial assignment with xk = 1, and let x′ and x′′ be obtained

from x by setting x′k ← 0, x′′k ← ∗. True or false: xk is unconstrained in x if and
only if (i) x′ is consistent; (ii) x′ is stable; (iii) x′′ is stable.

d) If the only clause is 123 = (x1 ∨ x2 ∨ x3), find all sets L such that L ! {1, 2̄, 3̄}.
e) What are the weights when there’s only a single clause 123 = (x1 ∨ x2 ∨ x3)?
f) Find clauses such that the sets L with L ! {1, 2, 3, 4, 5} are ∅, {4}, {5}, {1, 4},
{2, 5}, {4, 5}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5}, {1, 2, 3, 4, 5}.

g) Let L be a family of sets⊆ {1, . . . , n}, closed under intersection, with the property
that L ∈ L implies L = L(0) ≺ L(1) ≺ · · · ≺ L(t) = {1, . . . , n} for some L(j) ∈ L.
(The sets in (f) form one such family, with n = 5.) Construct strict Horn clauses
with the property that L ∈ L if and only if L ! {1, . . . , n}.

h) True or false: If L, L′, L′′ are stable and L′ ≺ L, L′′ ≺ L, then L′ ∩L′′ is stable.
i) If L′ ! L and L′′ ! L, prove that L′ ∩ L′′ ! L.
j) Prove that

∑
x′�xW (x′) =

∏{pk | xk = ∗} whenever x is stable.

� 364. [M21] A covering assignment is a stable partial assignment in which every as-
signed variable is constrained. A core assignment is a covering assignment L that
satisfies L ! L′ for some total assignment L′.
a) True or false: The empty partial assignment L = ∅ is always covering.
b) Find all the covering and core assignments of the clauses F in (1).
c) Find all the covering and core assignments of the clauses R′ in (7).
d) Show that every satisfying assignment L′ has a unique core.
e) The satisfying assignments form a graph, if two of them are adjacent when they

differ by complementing just one literal. The connected components of this graph
are called clusters. Prove that the elements of each cluster have the same core.

f) If L′ and L′′ have the same core, do they belong to the same cluster?

365. [M27] Prove that the clauses waerden (3, 3;n) have a nontrivial (i.e., nonempty)
covering assignment for all sufficiently large n (although they’re unsatisfiable).

� 366. [18] Preprocess the clauses R′ of (7). What erp rules are generated?

� 367. [20] Justify the erp rule (161) for elimination by resolution.

368. [16] Show that subsumption and downhill resolution imply unit conditioning:
Any preprocessor that does transformations 2 and 4 will also do transformation 1.

� 369. [21] (N. Eén and A. Biere.) Suppose l appears only in clauses C1, . . . , Cp and l̄
appears only in clauses C ′1, . . . , C

′
q, where we have C1 = (l∨l1∨· · ·∨lr) and C ′j = (l̄∨ l̄j)

for 1 ≤ j ≤ r. Prove that we can eliminate |l| by using the erp rule l̄ ← (l1 ∨ · · · ∨ lr)
and replacing those p+ q clauses by only (p− 2)r + q others, namely

{C1 � C ′j | r < j ≤ q} ∪ {Ci �C ′j | 1 < i ≤ p, 1 ≤ j ≤ r}.

350

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 351

(The case r = 1 is especially important. In many applications— for example in the
examples of fault testing, tomography, and the “Life in 4” problem about extending
Fig. 78—more than half of all variable eliminations admit this simplification.)

370. [20] The clauses obtained by resolution might be needlessly complex even when
exercise 369 doesn’t apply. For example, suppose that variable x appears only in the
clauses (x∨ a)∧ (x∨ ā∨ c)∧ (x̄∨ b)∧ (x̄∨ b̄∨ c̄). Resolution replaces those four clauses
by three others: (a∨ b)∧ (a∨ b̄∨ c̄)∧ (ā∨ b∨ c). Show, however, that only two clauses,
both binary, would actually suffice in this particular case.

371. [24] By preprocessing repeatedly with transformations 1–4, and using exercise
369, prove that the 32 clauses (9) of waerden (3, 3; 9) are unsatisfiable.

372. [30] Find a “small” set of clauses that cannot by solved entirely via transforma-
tions 1–4 and the use of exercise 369.

373. [25] The answer to exercise 228 defines 2m +
∑m

j=1(j − 1)2 ≈ m3/3 clauses

in m2 variables that suffice to refute the anti-maximal-element axioms of (99)–(101).
Algorithm L needs exponential time to handle these clauses, according to Theorem R;
and experiments show that they are bad news for Algorithm C too. Show, however,
that preprocessing with transformations 1–4 will rapidly prove them unsatisfiable.

� 374. [32] Design data structures for the efficient representation of clauses within a SAT
preprocessor. Also design algorithms that (a) resolve clauses C and C ′ with respect to
a variable x; (b) find all clauses C ′ that are subsumed by a given clause C; (c) find all
clauses C ′ that are self-subsumed by a given clause C and a literal x̄ ∈ C.

375. [21] Given |l|, how can one test efficiently whether or not the special situation in
exercise 369 applies, using (and slightly extending) the data structures of exercise 374?

� 376. [36] After a preprocessor has found a transformation that reduces the current set
of clauses, it is supposed to try again and look for further simplifications. (See (160).)
Suggest methods that will avoid unnecessary repetition of previous work, by using (and
slightly extending) the data structures of exercise 374.

377. [22] (V. Vassilevska Williams.) If G is a graph with n vertices and m edges,
construct a 2SAT problem F with 3n variables and 6m clauses, such that G contains a
triangle (a 3-clique) if and only if F has a failed literal.

378. [20] (Blocked clause elimination.) Clause C = (l ∨ l1 ∨ · · · ∨ lq) is said to be
blocked by the literal l if every clause that contains l̄ also contains either l̄1 or · · · or l̄q.
Exercise 161(b) proves that clause C can be removed without making an unsatisfiable
problem satisfiable. Show that this transformation requires an erp rule, even though it
doesn’t eliminate any of the variables. What erp rule works?

� 379. [20] (Blocked self-subsumption.) Consider the clause (a∨ b∨ c∨ d), and suppose
that every clause containing ā but not b̄ nor c̄ also contains d. Show that we can then
shorten the clause to (a ∨ b ∨ c) without affecting satisfiability. Is an erp rule needed?

380. [21] Sometimes we can use self-subsumption backwards, for example by weaken-
ing the clause (l1∨l2∨l3) to (l1∨· · ·∨lk) if each intermediate replacement of (l1∨· · ·∨lj)
by (l1∨· · ·∨lj−1) is justifiable for 3 < j ≤ k. Then, if we’re lucky, the clause (l1∨· · ·∨lk)
is weak enough to be eliminated; in such cases we are allowed to eliminate (l1 ∨ l2 ∨ l3).
a) Show that (a ∨ b ∨ c) can be eliminated if it is accompanied by the additional

clauses (a ∨ b ∨ d̄), (a ∨ d ∨ e), (b ∨ d ∨ ē).
b) Show that (a ∨ b ∨ c) can also be eliminated when accompanied by (a ∨ b ∨ d̄),

(a ∨ c̄ ∨ d̄), (b ∨ d ∨ ē), (b ∨ c̄ ∨ ē), provided that no other clauses contain c̄.

351

From the Library of Melissa Nuno

ptg999

352 COMBINATORIAL SEARCHING 7.2.2.2

c) What erp rules, if any, are needed for those eliminations?

381. [22] Combining exercises 379 and 380, show that any one of the clauses in

(x̄1 ∨ x2) ∧ (x̄2 ∨ x3) ∧ · · · ∧ (x̄n−1 ∨ xn) ∧ (x̄n ∨ x1)

can be removed if there are no other clauses with negative literals. State the erp rules.

382. [30] Although the techniques in the preceding exercises are computationally
difficult to apply, show that a lookahead forest based on the dependency digraph can
be used to discover some of those simplifications efficiently.

� 383. [23] (Inprocessing.) A SAT solver can partition its database of current clauses
into two parts, the “hard” clauses Φ and the “soft” clauses Ψ. Initially Ψ is empty, while
Φ is F , the set of all input clauses. Four kinds of changes are subsequently allowed:

• Learning. We can append a new soft clause C, provided that Φ ∪ Ψ ∪ C is
satisfiable whenever Φ ∪Ψ is satisfiable.

• Forgetting. We can discard (purge) any soft clause.

• Hardening. We can reclassify any soft clause and call it hard.

• Softening. We can reclassify any hard clause C and call it soft, provided that
Φ is satisfiable whenever Φ \ C is satisfiable. In this case we also should output any
necessary erp rules, which change the settings of variables in such a way that any
solution to Φ \ C becomes a solution to Φ.

a) Prove that, throughout any such procedure, F is satisfiable ⇐⇒ Φ is satisfiable
⇐⇒ Φ ∪Ψ is satisfiable.

b) Furthermore, given any solution to Φ, we obtain a solution to F by applying the
erp rules in reverse order.

c) What is wrong with the following scenario? Start with one hard clause, (x), and
no soft clauses. Reclassify (x) as soft, using the erp rule x← 1. Then append a
new soft clause (x̄).

d) If C is certifiable for Φ (see exercise 385), can we safely learn C?

e) If C is certifiable for Φ \ C, can we safely forget C?

f) In what cases is it legitimate to discard a clause, hard or soft, that is subsumed
by another clause, hard or soft?

g) In what cases is self-subsumption permissible?

h) Explain how to eliminate all clauses that involve a particular variable x.

i) Show that, if z is a new variable, we can safely learn the three new soft clauses
(x ∨ z), (y ∨ z), (x̄ ∨ ȳ ∨ z̄) in Tseytin’s concept of extended resolution.

384. [25] Continuing the previous exercise, show that we can always safely forget any
clause C that contains a literal l for which C � C ′ is certifiable for Φ \ C whenever
C ′ ∈ Φ contains l̄. What erp rule is appropriate?

385. [22] Clause C is called certifiable for a set of clauses F if F ∧C �1 ε, as in (119).
It is said to be absorbed by F if it is nonempty and F ∧C \ l �1 l for every l ∈ C, or if
it is empty and F �1 ε. (Every clause of F is obviously absorbed by F .)

a) True or false: If C is absorbed by F , it is certifiable for F .

b) Which of {1̄, 1̄2, 1̄23} are implied by, certifiable for, or absorbed by R′ in (7)?

c) If C is certifiable for F and if all clauses of F are absorbed by F ′, prove that C
is certifiable for F ′.

d) If C is absorbed by F and if all clauses of F are absorbed by F ′, prove that C is
absorbed by F ′.

352

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 353

� 386. [M31] Let Algorithm C0 be a variant of Algorithm C that (i) makes all decisions
at random; (ii) never forgets a learned clause; and (iii) restarts whenever a new clause
has been learned. (Thus, step C5 ignores Mp and Mf ; step C6 chooses l uniformly at
random from among the 2(n−F) currently unassigned literals; step C8 backjumps while
F > i1, instead of while F > id′+1; and after step C9 has stored a new clause, with
d > 0, it simply sets d← 0 and returns to C5. The data structures HEAP, HLOC, OVAL, ACT
are no longer used.) We will prove that Algorithm C0 is, nevertheless, quite powerful.

In the remainder of this exercise, F denotes the set of clauses known by Algo-
rithm C0, both original and learned; in particular, the unit clauses of F will be the
first literals L0, L1, . . . , Li1−1 on the trail. If C is any clause and if l ∈ C, we define

score(F,C, l) =

{
∞, if F ∧ C \ l �1 l;
|{l′ | F ∧ C \ l �1 l′}|, otherwise.

Thus score(F,C, l) represents the total number of literals on the trail after making all
the unforced decisions of C \ l̄, if no conflict arises. We say that Algorithm C0 performs
a “helpful round” for C and l if (i) every decision literal belongs to C; and (ii) l̄ is
chosen as a decision literal only if the other elements of C are already in the trail.

a) Let C be certifiable for F , and suppose that score(F,C, l) < ∞ for some l ∈ C.
Prove that if F ′ denotes F together with a clause learned on a round that’s helpful
for C and l, then score(F ′, C, l) > score(F,C, l).

b) Furthermore score(F ′, C, l) ≥ score(F,C, l) after an unhelpful round.

c) Therefore C will be absorbed by the set F ′ of known clauses after at most |C|n
helpful rounds have occurred.

d) If |C| = k, show that Pr(helpful round) ≥ (k − 1)!/(2n)k ≥ 1/(4nk).

e) Consequently, by exercise 385(c), if there exists a certificate of unsatisfiability
(C1, . . . , Ct) for a family of clauses F with n variables, Algorithm C0 will prove
F unsatisfiable after learning an average of μ ≤ 4

∑t
i=1 |Ci|n1+|Ci| clauses. (And

it will q.s. need to learn at most μn lnn clauses, by exercise MPR–102.)

� 387. [21] Graph G is said to be embedded in graph G′ if every vertex v of G corre-
sponds to a distinct vertex v′ of G′, where u′−−−v′ in G′ whenever u−−−v in G. Explain
how to construct clauses that are satisfiable if and only if G can be embedded in G′.

388. [20] Show that the problems of deciding whether or not a given graph G (a) con-
tains a k-clique, (b) can be k-colored, or (c) has a Hamiltonian cycle can all be regarded
as graph embedding problems.

� 389. [22] In this 4 × 4 diagram, it’s possible to trace out the phrase
‘THE�ART�OF�COMPUTER�PROGRAMMING’ by making only king moves and
knight moves, except for the final step from N to G.

Rearrange the letters so that the entire phrase can be traced.

N T E F

H I R �

U P O A

M M C G

� 390. [23] Let G be a graph with vertices V, edges E, |E| = m, |V | = n, and s, t ∈ V .

a) Construct O(kn) clauses that are satisfiable if and only if there’s a path of length
k or less from s to t, given k.

b) Construct O(m) clauses that are satisfiable if and only if there’s at least one path
from s to t.

c) Construct O(n2) clauses that are satisfiable if and only if G is connected.

d) Construct O(km) clauses that are unsatisfiable if and only if there’s a path of
length k or less from s to t, given k.

353

From the Library of Melissa Nuno

ptg999

354 COMBINATORIAL SEARCHING 7.2.2.2

e) Construct O(m) clauses that are unsatisfiable if and only if there’s at least one
path from s to t.

f) Construct O(m) clauses that are unsatisfiable if and only if G is connected. (This
construction is much better than (c), in a sparse graph.)

391. [M25] The values of two integer variables satisfy 0 ≤ x, y < d, and they are to
be represented as l-bit quantities xl−1 . . . x0, yl−1 . . . y0, where l = �lg d�. Specify three
different ways to encode the relation x �= y:
a) Let x = (xl−1 . . . x0)2 and y = (yl−1 . . . y0)2; and let the encoding enforce the

conditions (xl−1 . . . x0)2 < d, and (yl−1 . . . y0)2 < d, as well as ensuring that
x �= y by introducing 2l + 1 additional clauses in l auxiliary variables.

b) Like (a), but there are d additional clauses (not 2l + 1), and no auxiliaries.
c) All bit patterns xl−1 . . . x0 and yl−1 . . . y0 are valid, but some values might have

two different patterns. The encoding has d clauses and no auxiliary variables.

392. [22] The blank spaces in the following diagrams can be filled with letters in such
a way that all occurrences of the same letter are rookwise connected:

A

B B

C C

A

A

D E

C D

B B

E

C A

A B B

C C

A B

D C E

F D E

A

D B

F F E

H A

B C D C

E E

G G

F J F

J

I H I A

B D

A

B C

D

E

F A E D

C B F

(i) (ii) (iii) (iv) (v)

a) Demonstrate how to do it. (Puzzle (i) is easy; the others less so.)
b) Similarly, solve the following puzzles—but use kingwise connectedness instead.

A H

B G

C F

D E

E D

F C

G B

H A

A

B G

C F

D E

E D

F C

G B

A

A B C D A

D B

C

C

B D

A D C B A

(vi) (vii) (viii)

c) Construct clauses with which a SAT solver can solve general puzzles of this kind:
Given a graph G and disjoint sets of vertices T1, T2, . . . , Tt, a solution should ex-
hibit disjoint connected sets of vertices S1, S2, . . . , St, with Tj ⊆ Sj for 1 ≤ j ≤ t.

393. [25] (T. R. Dawson, 1911.) Show that it’s possible for each white
piece in the accompanying chess diagram to capture the corresponding
black piece, via a path that doesn’t intersect any of the other paths. How
can SAT help to solve this problem?

��������
��������
��������
��������
��������
�����	��
�������

��������

394. [25] One way to encode the at-most-one constraint S≤1(y1, . . . , yp)
is to introduce l = �lg p� auxiliary variables together with the following nl + n − 2l

clauses, which essentially “broadcast” the value of j when yj becomes true:

(ȳj ∨ (−1)btat) for 1 ≤ j ≤ p, 1 ≤ t ≤ q = �lg(2p− j)�, where 2p− j = (1b1 . . . bq)2.

For example, the clauses when p = 3 are (ȳ1∨a1)∧(ȳ1∨ā2)∧(ȳ2∨a1)∧(ȳ2∨a2)∧(ȳ3∨ā1).
Experiment with this encoding by applying it to Langford’s problem, using it in

place of (13) whenever p ≥ 7.

395. [20] What clauses should replace (15), (16), and (17) if we want to use the order
encoding for a graph coloring problem?

354

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 355

� 396. [23] (Double clique hints.) If x has one of the d values {0, 1, . . . , d − 1}, we can
represent it binarywise with respect to two different orderings by letting xj = [x≥ j]
and x̂j = [xπ≥ j] for 1 ≤ j < d, where π is any given permutation. For example, if
d = 4 and (0π, 1π, 2π, 3π) = (2, 3, 0, 1), the representations x1x2x3:x̂1x̂2x̂3 of 0, 1, 2,
and 3 are respectively 000:110, 100:111, 110:000, and 111:100. This double ordering
allows us to encode graph coloring problems by including not only the hints (162) but
also

(v̂d−k+11 ∨ · · · ∨ v̂d−k+1k) ∧ (v̂k−11 ∨ · · · ∨ v̂k−1k),

whenever the vertices {v1, . . . , vk} form a k-clique.
Explain how to construct clauses for this encoding, and experiment with coloring

the n × n queens graph when (0π, 1π, 2π, 3π, 4π, . . .) = (0, d−1, 1, d−2, 2, . . .) is the
inverse of the organ-pipe permutation.

� 397. [22] (N. Tamura, 2014.) Suppose x0, x1, . . . , xp−1 are integer variables with the
range 0 ≤ xi < d, represented in order encoding by Boolean variables xji = [xi≥ j]
for 0 ≤ i < p and 1 ≤ j < d. Show that the all-different constraint, “xi �= xj for
0 ≤ i < j < p,” can be nicely encoded by introducing auxiliary integer variables y0,
y1, . . . , yd−1 with the range 0 ≤ yj < p, represented in order encoding by Boolean
variables yij = [yj ≥ i] for 1 ≤ i < p and 0 ≤ j < d, and by devising clauses to enforce
the condition xi = j =⇒ yj = i. Furthermore, hints analogous to (162) can be given.

398. [18] Continuing exercise 397, what’s an appropriate way to enforce the all-
different constraint when x0, . . . , xp−1 are represented in the direct encoding?

� 399. [23] If the variables u and v range over d values {1, . . . , d}, it’s natural to encode
them directly as sequences u1 . . . ud and v1 . . . vd, where ui = [u= i] and vj = [v= j],
using the at-least-one clauses (15) and the at-most-one clauses (17). A binary constraint

tells us which pairs (i, j) are legal; for example, the graph-coloring constraint says that
i �= j when i and j are the colors of adjacent vertices in some graph.

One way to specify such a constraint is to assert the preclusion clauses (ūi ∨ v̄j)
for all illegal pairs (i, j), as we did for graph coloring in (16). But there’s also another
general way: We can assert the support clauses

d∧
i=1

(
ūi ∨

∨{vj | (i, j) is legal}) ∧ d∧
j=1

(
v̄j ∨

∨{ui | (i, j) is legal})
instead. Graph coloring with d colors would then be represented by clauses such as
(ū3 ∨ v1 ∨ v2 ∨ v4 ∨ · · · ∨ vd), when u and v are adjacent.
a) Suppose t of the d2 pairs (i, j) are legal. How many preclusion clauses are needed?

How many support clauses?
b) Prove that the support clauses are always at least as strong as the preclusion

clauses, in the sense that all consequences of the preclusion clauses under unit
propagation are also consequences of the support clauses under unit propagation,
given any partial assignment to the binary variables {u1, . . . , ud, v1, . . . , vd}.

c) Conversely, in the case of the graph-coloring constraint, the preclusion clauses
are also at least as strong as the support clauses (hence equally strong).

d) However, exhibit a binary constraint for which the support clauses are strictly
stronger than the preclusion clauses.

400. [25] Experiment with preclusion clauses versus support clauses by applying them
to the n queens problem. Use Algorithms L, C, and W for comparison.

401. [16] If x has the unary representation x1x2 . . . xd−1, what is the unary represen-
tation of (a) y = �x/2�? (b) z = �(x+ 1)/3�?

355

From the Library of Melissa Nuno

ptg999

356 COMBINATORIAL SEARCHING 7.2.2.2

402. [18] If x has the unary representation x1x2 . . . xd−1, encode the further condition
that x is (a) even; (b) odd.

403. [20] Suppose x, y, z have the order encoding, with 0 ≤ x, y, z < d. What clauses
enforce (a) min(x, y) ≤ z? (b) max(x, y) ≤ z? (c) min(x, y) ≥ z? (d) max(x, y) ≥ z?

� 404. [21] Continuing exercise 403, encode the condition |x − y| ≥ a, for a given
constant a ≥ 1, using d+ 1− a clauses of length ≤ 4 and no auxiliary variables.

� 405. [M23] The purpose of this exercise is to encode the constraint ax+ by ≤ c, when
a, b, c are integer constants, assuming that x, y are order-encoded with range [0 . . d).
a) Prove that it suffices to consider cases where a, b, c > 0.
b) Exhibit a suitable encoding for the special case 13x− 8y ≤ 7, d = 8.
c) Exhibit a suitable encoding for the special case 13x− 8y ≥ 1, d = 8.
d) Specify an encoding that works for general a, b, c, d.

406. [M24] Order-encode (a) xy ≤ a and (b) xy ≥ a, when a is an integer constant.

� 407. [M22] If x, y, z are order-encoded, with 0≤x, y<d and 0≤z<2d−1, the clauses
2d−2∧
k=1

k∧
j=max(0,k+1−d)

(x̄j ∨ ȳk−j ∨ zk)

are satisfiable if and only if x+y ≤ z; this is the basic idea underlying (20). Another way
to encode the same relation is to introduce new order-encoded variables u and v, and to
construct clauses for the relations �x/2�+�y/2� ≤ u and �x/2�+�y/2� ≤ v, recursively
using methods for numbers less than �d/2� and �d/2�+ 1. Then we can finish the job
by letting z1 = v1, z2d−2 = vd (d even) or ud−1 (d odd), and appending the clauses

(ūj ∨ z2j) ∧ (v̄j+1 ∨ z2j) ∧ (ūj ∨ v̄j+1 ∨ z2j+1), for 1 ≤ j ≤ d− 2.

a) Explain why the alternative method is valid.
b) For what values of d does that method produce fewer clauses?
c) Consider analogous methods for the relation x+ y ≥ z.

� 408. [25] (Open shop scheduling.) Consider a system of m machines and n jobs,
together with an m×n matrix of nonnegative integer weightsW = (wij) that represent
the amount of uninterrupted time on machine i that is needed by job j.

The open shop scheduling problem seeks a way to get all the work done in t units
of time, without assigning two jobs simultaneously to the same machine and without
having two machines simultaneously assigned to the same job. We want to minimize t,
which is called the “makespan” of the schedule.

For example, suppose m = n = 3 and W =
(
703
172
235

)
. A “greedy” algorithm, which

repeatedly fills the lexicographically smallest time slot (t, i, j) such that wij > 0 but
neither machine i nor job j have yet been scheduled at time t, achieves a makespan
of 12 with the following schedule:

M1:

M2:

M3:

J1 J3

J2 J1 J3

J3 J2 J1

a) Is 12 the optimum makespan for this W?
b) Prove that the greedy algorithm always produces a schedule whose makespan is

less than (maxmi=1
∑n

j=1 wij)+ (maxnj=1
∑m

i=1 wij), unless W is entirely zero.

356

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 357

c) Suppose machine i begins to work on job j at time sij , when wij > 0. What
conditions should these starting times satisfy, in order to achieve the makespan t?

d) Show that the order encoding of these variables sij yields SAT clauses that nicely
represent any open shop scheduling problem.

e) Let �W/k� be the matrix obtained by replacing each element wij ofW by �wij/k�.
Prove that if the open shop scheduling problem for �W/k� and t is unsatisfiable,
so is the problem for W and kt.

� 409. [M26] Continuing exercise 408, find the best makespans in the following cases:

a) m = 3, n = 3r + 1; w1j = w2(r+j) = w3(2r+j) = aj for 1 ≤ j ≤ r; w1n = w2n =
w3n = �(a1+ · · ·+ar)/2�; otherwise wij = 0. (The positive integers aj are given.)

b) m = 4, n = r + 2; w1j = (r + 1)aj and w2j = 1 for 1 ≤ j ≤ r; w2(n−1) = w2n =
(r + 1)�(a1 + · · ·+ ar)/2�; w3(n−1) = w4n = w2n + r ; otherwise wij = 0.

c) m = n; wjj = n− 2, wjn = wnj = 1 for 1 ≤ j < n; otherwise wij = 0.

d) m = 2; w1j = aj and w2j = bj for 1 ≤ j ≤ n, where a1+· · ·+an = b1+· · ·+bn = s
and aj + bj ≤ s for 1 ≤ j ≤ n.

410. [24] Exhibit clauses for the constraint 13x−8y ≤ 7 when x and y are log-encoded
as 3-bit integers x = (x2x1x0)2 and y = (y2y1y0)2. (Compare with exercise 405(b).)

� 411. [25] If x = (xm . . . x1)2, y = (yn . . . y1)2, and z = (zm+n . . . z1)2 stand for
binary numbers, the text explains how to encode the relation xy = z with fewer than
20mn clauses, using Napier–Dadda multiplication. Explain how to encode the relations
xy ≤ z and xy ≥ z with fewer than 9mn and 11mn clauses, respectively.

412. [40] Experiment with the encoding of somewhat large numbers by using a radix-d
representation in which each digit has the order encoding.

413. [M22] Find all CNF formulas for the function (x1 ⊕ y1) ∨ · · · ∨ (xn ⊕ yn).

414. [M20] How many clauses will remain after the auxiliary variables a1, . . . , an−1
of (169) have been eliminated by resolution?

� 415. [M22] Generalize (169) to an encoding of lexicographic order on d-ary vectors,
(x1 . . . xn)d ≤ (y1 . . . yn)d, where each xk = x1k + · · · + xd−1k and yk = y1k + · · · + yd−1k

has the order encoding. What modifications to your construction will encode the strict
relation x1 . . . xn < y1 . . . yn?

416. [20] Encode the condition ‘if x1 . . . xn = y1 . . . yn then u1 . . . um = v1 . . . vm’, us-
ing 2m+2n+1 clauses and n+1 auxiliary variables. Hint: 2n of the clauses are in (172).

417. [21] Continuing exercise 42, what is the Tseytin encoding of the ternary mux op-
eration ‘s← t?u: v’? Use it to justify the translation of branching programs via (173).

418. [23] Use a branching program to construct clauses that are satisfiable if and
only if (xij) is an m × n Boolean matrix whose rows satisfy the hidden weighted bit
function hn and whose columns satisfy the complementary function h̄m. In other words,

ri =

n∑
j=1

xij , cj =

m∑
i=1

xij , and xiri = 1, xcjj = 0, assuming that xi0 = x0j = 0.

419. [M21] If m,n ≥ 3, find (by hand) all solutions to the problem of exercise 418
such that (a)

∑
xij = m+1 (the minimum); (b)

∑
xij = mn− n− 1 (the maximum).

420. [18] Derive (175) mechanically (that is, “without thinking”) from the Boolean
chain s← x1 ⊕ x2, c← x1 ∧ x2, t← s⊕ x3, c

′ ← s ∧ x3, requiring c = c′ = 0.

357

From the Library of Melissa Nuno

ptg999

358 COMBINATORIAL SEARCHING 7.2.2.2

421. [18] Derive (176) mechanically from the branching program I5 = (1̄? 4: 3), I4 =
(2̄? 1: 2), I3 = (2̄? 2: 0), I2 = (3̄? 1: 0), beginning at I5.

422. [11] What does unit propagation deduce when the additional clause (x1) or (x2)
is appended to (a) F in (175)? (b) G in (176)?

423. [22] A representation F that satisfies a condition like (180) but with l replaced
by ε can be called “weakly forcing.” Exercise 422 shows that (175) and (176) are weakly
forcing. Does the BDD of every function define a weakly forcing encoding, via (173)?

� 424. [20] The dual of the Pi function has the prime clauses {1̄2̄3̄, 1̄3̄4̄, 23̄4̄, 234, 12}
(see 7.1.1–(30)). Can any of them be omitted from a forcing representation?

425. [18] A clause with exactly one positive literal is called a definite Horn clause,
and Algorithm 7.1.1C computes the “core” of such clauses. If F consists of definite
Horn clauses, prove that x is in the core if and only if F �1 x, if and only if F ∧(x̄) �1 ε.

� 426. [M20] Suppose F is a set of clauses that represent f(x1, . . . , xn) using auxiliary
variables {a1, . . . , am} as in (170), where m > 0. Let G be the clauses that result after
variable am has been eliminated as in (112).
a) True or false: If F is forcing then G is forcing.
b) True or false: If F is not forcing then G is not forcing.

427. [M30] Exhibit a function f(x1, . . . , xn) for which every set of forcing clauses that
uses no auxiliary variables has size Ω(3n/n2), although f can actually be represented
by a polynomial number of forcing clauses when auxiliary variables are introduced.
Hint: See exercise 7.1.1–116.

428. [M27] A generic graph G on vertices {1, . . . , n} can be characterized by
(
n
2

)
Boolean variables X = {xij | 1 ≤ i < j ≤ n}, where xij = [i−−−j in G]. Properties
of G can therefore be regarded as Boolean functions, f(X).
a) Let fnd(X) = [χ(G)≤ d]; that is, fnd is true if and only if G has a d-coloring.

Construct clauses Fnd that represent the function fnd(X) ∨ y, using auxiliary
variables Z = {zjk | 1 ≤ j ≤ n, 1 ≤ k ≤ d} that mean “vertex j has color k.”

b) Let Gnd be a forcing representation of the Boolean function Fnd(X, y, Z), and
suppose that Gnd has M clauses in N variables. (These N variables should
include the

(
n
2

)
+ 1 + nd variables of Fnd, along with an arbitrary number of

additional auxiliaries.) Explain how to construct a monotone Boolean chain of
costO(MN2) for the function f̄nd (see exercise 7.1.2–84), given the clauses ofGnd.

Note: Noga Alon and Ravi B. Boppana, Combinatorica 7 (1987), 1–22, proved that
every monotone chain for this function has length expΩ((n/ logn)1/3) when d + 1 =
�(n/ lg n)2/3/4�. Hence M and N cannot both be of polynomial size.

429. [22] Prove that Bailleux and Boufkhad’s clauses (20), (21) are forcing: If any r
of the x’s have been set to 1, then unit propagation will force all the others to 0.

430. [25] Similarly, Sinz’s clauses (18) and (19) are forcing.

� 431. [20] Construct efficient, forcing clauses for the relation x1+· · ·+xm≤y1+· · ·+yn.

432. [24] Exercise 404 gives clauses for the relation |x− y| ≥ a. Are they forcing?

� 433. [25] Are the lexicographic-constraint clauses in (169) forcing?

434. [21] Let Ll be the language defined by the regular expression 0∗1l0∗; in other
words, the binary string x1 . . . xn is in Ll if and only if it consists of zero or more 0s
followed by exactly l 1s followed by zero or more 0s.
a) Explain why the following clauses are satisfiable if and only if x1 . . . xn ∈ Ll:

(i) (p̄k∨x̄k), (p̄k∨pk−1), and (p̄k−1∨xk∨pk) for 1 ≤ k ≤ n, also (p0); (ii) (q̄k∨x̄k),

358

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 359

(q̄k ∨ qk+1), and (q̄k+1 ∨ xk ∨ qk) for 1 ≤ k ≤ n, also (qn+1); (iii) (r̄k ∨ pk−1) ∧∧
0≤d<l(r̄k ∨ xk+d) ∧ (r̄k ∨ qk+l) for 1 ≤ k ≤ n+ 1− l, also (r1 ∨ · · · ∨ rn+1−l).

b) Show that those clauses are forcing when l = 1 but not when l = 2.

� 435. [28] Given l ≥ 2, construct a set of O(n log l) clauses that characterize the
language Ll of exercise 434 and are forcing.

436. [M32] (Nondeterministic finite-state automata.) A regular language L on the
alphabet A can be defined in the following well-known way: Let Q be a finite set of
“states,” and let I ⊆ Q and O ⊆ Q be designated “input states” and “output states.”
Also let T ⊆ Q×A×Q be a set of “transition rules.” Then the string x1 . . . xn is in L if
and only if there’s a sequence of states q0, q1, . . . , qn such that q0 ∈ I, (qk−1, xk, qk) ∈ T
for 1 ≤ k ≤ n, and qn ∈ O.

Given such a definition, where A = {0, 1}, use auxiliary variables to construct
clauses that are satisfiable if and only if x1 . . . xn ∈ L. The clauses should be forcing,
and there should be at most O(n|T |) of them.

As an example, write out the clauses for the language L2 = 0∗120∗ of exercise 434.

437. [M21] Extend exercise 436 to the general case where A has more than two letters.

438. [21] Construct a set of forcing clauses that are satisfiable if and only if a given
binary string x1 . . . xn contains exactly t runs of 1s, having lengths (l1, l2, . . . , lt) from
left to right. (Equivalently, the string x1 . . . xn should belong to the language defined
by the regular expression 0∗1l10+1l20+. . . 0+1lt0∗.)

� 439. [30] Find efficient forcing clauses for the constraint that x1 + · · · + xn = t and
that there are no two consecutive 1s. (This is the special case l1 = · · · = lt = 1 of the
previous exercise, but a much simpler construction is possible.)

440. [M33] Extend exercise 436 to context free languages, which can be defined by
a set S ⊆ N and by production rules U and W of the following well-known forms:
U ⊆ {P → a | P ∈ N, a ∈ A} and W ⊆ {P → QR | P,Q,R ∈ N}, where N is a set of
“nonterminal symbols.” A string x1 . . . xn with each xj ∈ A belongs to the language if
and only if it can be produced from a nonterminal symbol P ∈ S.

441. [M35] Show that any threshold function f(x1, . . . , xn) = [w1x1 + · · ·+ wnxn≥ t]
has a forcing representation whose size is polynomial in log |w1|+ · · ·+ log |wn|.

� 442. [M27] The unit propagation relation �1 can be generalized to kth order propa-
gation �k as follows: Let F be a family of clauses and let l be a literal. If (l1, l2, . . . , lp)
is a sequence of literals, we write L−q = {l1, . . . , lq−1, l̄q} for 1 ≤ q ≤ p. Then

F �0 l ⇐⇒ ε ∈ F ;

F �k+1 l ⇐⇒ F |L−1 �k ε, F |L−2 �k ε, . . . , and F |L−p �k ε

for some strictly distinct literals l1, l2, . . . , lp with lp = l;

F �k ε ⇐⇒ F �k l and F �k l̄ for some literal l.

a) Verify that �1 corresponds to unit propagation according to this definition.
b) Describe �2 informally, using the concept of “failed literals.”
c) Prove that F �k ε or F �k l̄ implies F | l �k ε for all literals l, and furthermore

that F �k ε implies F �k+1 ε, for all k ≥ 0.
d) True or false: F �k l implies F �k+1 l.
e) Let Lk(F) = {l | F �k l}. What is Lk(R

′), where R′ appears in (7) and k ≥ 0?

f) Given k ≥ 1, explain how to compute Lk(F) and F |Lk(F) in O(n2k−1m) steps,
when F has m clauses in n variables.

359

From the Library of Melissa Nuno

ptg999

360 COMBINATORIAL SEARCHING 7.2.2.2

443. [M24] (A hierarchy of hardness.) Continuing the previous exercise, a family of
clauses F is said to belong to class UCk if it has the property that

F |L � ε implies F |L �k ε for all sets of strictly distinct literals L.

(“Whenever a partial assignment yields unsatisfiable clauses, the inconsistency can be
detected by kth order propagation.”) And F is said to belong to class PCk if

F |L � l implies F |L �k l for all sets of strictly distinct literals L ∪ l.

a) Prove that PC0 ⊂ UC0 ⊂ PC1 ⊂ UC1 ⊂ PC2 ⊂ UC2 ⊂ · · · , where the set
inclusions are strict (each class is contained in but unequal to its successor).

b) Describe all families F that belong to the smallest class, PC0.
c) Give interesting examples of families in the next smallest class, UC0.
d) True or false: If F contains n variables, F ∈ PCn.
e) True or false: If F contains n variables, F ∈ UCn−1.
f) Where do the clauses R′ of (7) fall in the hierarchy?

444. [M26] The following single lookahead unit resolution algorithm, called SLUR,
returns either ‘sat’, ‘unsat’, or ‘maybe’, depending on whether a given set F of clauses
is satisfiable, unsatisfiable, or beyond its ability to decide via easy propagations:

E1. [Propagate.] If F �1 ε, terminate (‘unsat’). Otherwise set F ← F |{l | F �1 l}.
E2. [Satisfied?] If F = ∅, terminate (‘sat’). Otherwise set l to any literal within F .

E3. [Lookahead and propagate.] If F | l ��1 ε, set F ← F | l | {l′ | F | l �1 l′} and
return to E2. Otherwise if F | l̄ ��1 ε, F ← F | l̄ | {l′ | F | l̄ �1 l′} and return to E2.
Otherwise terminate (‘maybe’).

Notice that this algorithm doesn’t backtrack after committing itself in E2 to either l or l̄.

a) If F consists of Horn clauses, possibly renamed (see exercise 7.1.1–55), prove that
SLUR will never return ‘maybe’, regardless of how it chooses l in step E2.

b) Find four clauses F on three variables such that SLUR always returns ‘sat’,
although F is not a set of possibly renamed Horn clauses.

c) Prove that SLUR never returns ‘maybe’ if and only if F ∈ UC1 (see exercise 443).
d) Explain how to implement SLUR in linear time with respect to total clause length.

� 445. [22] Find short certificates of unsatisfiability for the pigeonhole clauses (106)–
(107), when they are supplemented by (a) (181); (b) (182); (c) (183).

446. [M10] What’s the maximum number of edges in a subgraph of Km,n that has
girth ≥ 6? (Express your answer in terms of Z(m,n).)

� 447. [22] Determine the maximum number of edges in a girth-8 subgraph of K8,8.

448. [M25] What is Z(m,n) when m is odd and n = m(m−1)/6? Hint: See 6.5–(16).

449. [21] Exhibit n × n quad-free matrices that contain the maximum number of 1s
and obey the lexicographic constraints (185), (186), for 8 ≤ n ≤ 16.

450. [25] Prove that there is essentially only one 10 × 10 quad-free system of points
and lines with 34 incidences. Hint: First show that every line must contain either 3
points or 4 points; hence every point must belong to either 3 lines or 4 lines.

� 451. [28] Find a way to color the squares of a 10×10 board with three colors, so that
no rectangle has four corners of the same color. Prove furthermore that every such
“nonchromatic rectangle” board has the color distribution {34, 34, 32}, not {34, 33, 33}.
But show that if any square of the board is removed, a nonchromatic rectangle is
possible with 33 squares of each color.

360

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 361

452. [34] Find a nonchromatic rectangle with four colors on an 18× 18 board.

453. [M23] An m×n matrix X = (xij) is said to be decomposable if it has row indices
R ⊆ {1, . . . ,m} and column indices C ⊆ {1, . . . , n} such that 0 < |R| + |C| < m + n,
with xij = 0 whenever (i ∈ R and j /∈ C) or (i /∈ R and j ∈ C). It represents a
bipartite graph on the vertices {u1, . . . , um} and {v1, . . . , vn}, if [ui−−−vj] = [xij �=0].

a) Prove that X is indecomposable if and only if its bipartite graph is connected.

b) The direct sum X ′ ⊕X ′′ of matrices X ′ and X ′′, where X ′ is m′ × n′ and X ′′ is
m′′ × n′′, is the (m′ +m′′) × (n′ + n′′) “block diagonal” matrix X that has X ′

in its upper left corner, X ′′ in the lower right corner, and zeros elsewhere (see
7–(40)). True or false: If the rows and columns of X ′ and X ′′ are nonnegative and
lexicographically ordered as in (185) and (186), so are the rows and columns of X.

c) Let X be any nonnegative matrix whose rows and columns are lexicographically
nonincreasing, as in (185) and (186). True or false: X is decomposable if and
only if X is a direct sum of smaller matrices X ′ and X ′′.

454. [15] If τ is an endomorphism for the solutions of f , show that f(x) = f(xτ) for
every cyclic element x (every element that’s in a cycle of τ).

455. [M20] Suppose we know that (187) is an endomorphism of some given clauses F
on the variables {x1, x2, x3, x4}. Can we be sure that F is satisfiable if and only if F ∧C
is satisfiable, when (a) C = 1̄24̄, i.e., C = (x̄1∨ x2∨ x̄4)? (b) C = 23̄4̄? (c) C = 123?
(d) C = 13̄4?

456. [M21] For how many functions f(x1, x2, x3, x4) is (187) an endomorphism?

457. [HM19] Show that every Boolean f(x1, x2, x3, x4) has more than 51 quadrillion
endomorphisms, and an n-variable function has more than 22

n(n−1).

458. [20] The simplification of clauses by removing an autarky can be regarded as the
exploitation of an endomorphism. Explain why.

� 459. [20] Let Xij denote the submatrix of X consisting of the first i rows and the
first j columns. Show that the numbers sweep(Xij) satisfy a simple recurrence, from
which it’s easy to compute sweep(X) = sweep(Xmn).

460. [21] Given m, n, k, and r, construct clauses that are satisfied by an m×n binary
matrix X = (xij) if and only if sweep(X) ≤ k and

∑
i,j xij ≥ r.

461. [20] What additional clauses will rule out non-fixed points of τ1 and τ2?

462. [M22] Explain why τ1, τ2, and τ3 preserve satisfiability in the sweep problem.

� 463. [M21] Show that X is a fixed point of τ1, τ2, and τ3 if and only if its rows and
columns are nondecreasing. Therefore the maximum of νX =

∑
i,j xij over all binary

matrices of sweep k is a simple function of m, n, and k.

� 464. [M25] Transformations τ1 and τ2 don’t change the text’s example 10×10 matrix.
Prove that they will never change any 10× 10 matrix of sweep 3 that has νX = 51.

465. [M21] Justify the text’s rule for simultaneous endomorphisms in the perfect
matching problem: Any perfect matching must lead to one that’s fixed by every τuv.

466. [M23] Prove that when mn is even, the text’s even-odd rule (190) for endomor-
phisms of m× n domino coverings has exactly one fixed point.

467. [20] Mutilate the 7×8 and 8×7 boards by removing the upper right and lower left
cells. What domino coverings are fixed by all the even-odd endomorphisms like (190)?

361

From the Library of Melissa Nuno

ptg999

362 COMBINATORIAL SEARCHING 7.2.2.2

468. [20] Experiment with the mutilated chessboard problem when the even-odd
endomorphisms are modified so that (a) they use the same rule for all i and j; or
(b) they each make an independent random choice between horizontal and vertical.

� 469. [M25] Find a certificate of unsatisfiability (C1, C2, . . . , Ct) for the fact that an
8×8 chessboard minus cells (1, 8) and (8, 1) cannot be exactly covered by dominoes hij
and vij that are fixed under all of the even-odd endomorphisms. Each Ck for 1 ≤ k < t
should be a single positive literal. (Therefore the clauses for this problem belong to
the relatively simple class PC2 in the hierarchy of exercise 443.)

� 470. [M22] Another class of endomorphisms, one for every 4-cycle, can also be used in
perfect matching problems: Let the vertices (instead of the edges) be totally ordered
in some fashion. Every 4-cycle can be written v0 −−− v1 −−− v2 −−− v3 −−− v0, with
v0 > v1 > v3 and v0 > v2; the corresponding endomorphism changes any solution for
which v0v1 = v2v3 = 1 by setting v0v1 ← v2v3 ← 0 and v1v2 ← v3v0 ← 1. Prove that
every perfect matching leads to a fixed point of all these transformations.

471. [16] Find all fixed points of the mappings in exercise 470 when the graph is K2n.

472. [M25] Prove that even-odd endomorphisms such as (190) in the domino covering
problem can be regarded as instances of the endomorphisms in exercise 470.

� 473. [M23] Generalize exercise 470 to endomorphisms for the unsatisfiable clauses of
Tseytin’s graph parity problems in exercise 245.

474. [M20] A signed permutation σ is a symmetry of f(x) if and only if f(x) = f(xσ)
for all x, and it is an antisymmetry if and only if we have f(x) = f̄(xσ) for all x.

a) How many signed permutations of n elements are possible?

b) Write 751̄4̄2̄63̄ in cycle form, as an unsigned permutation of {1, . . . , 7, 1̄, . . . , 7̄}.
c) For how many functions f of four variables is 4̄132̄ a symmetry?

d) For how many functions f of four variables is 4̄132̄ an antisymmetry?

e) For how many f(x1, . . . , x7) is 751̄4̄2̄63̄ a symmetry or antisymmetry?

475. [M22] Continuing exercise 474, a Boolean function is called asymmetric if the
identity is its only symmetry; it is totally asymmetric if it is asymmetric and has no
antisymmetries.

a) If f is totally asymmetric, how many functions are equivalent to f under the op-
erations of permuting variables, complementing variables, and/or complementing
the function?

b) According to (a) and 7.1.1–(95), the function (x ∨ y) ∧ (x ⊕ z) is not totally
asymmetric. What is its nontrivial symmetry?

c) Prove that if f is not asymmetric, it has an automorphism of prime order p.

d) Show that if (uvw)(ūv̄w̄) is a symmetry of f , so is (uv)(ūv̄).

e) Make a similar statement if f has a symmetry of the form (uvwxy)(ūv̄w̄x̄ȳ).

f) Conclude that, if n ≤ 5, the Boolean function f(x1, . . . , xn) is totally asymmetric
if and only if no signed involution is a symmetry or antisymmetry of f .

g) However, exhibit a counterexample to that statement when n = 6.

476. [M23] For n ≤ 5, find Boolean functions of n variables that are (a) asymmetric
but not totally asymmetric; (b) totally asymmetric. Furthermore, your functions should
be the easiest to evaluate (in the sense of having a smallest possible Boolean chain),
among all functions that qualify. Hint: Combine exercises 475 and 477.

� 477. [23] (Optimum Boolean evaluation.) Construct clauses that are satisfiable if and
only if there is an r-step normal Boolean chain that computes m given functions g1,

362

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 363

. . . , gm on n variables. (For example, if n = 3 and g1 = 〈x1x2x3〉, g2 = x1 ⊕ x2 ⊕ x3,
such clauses with r = 4 and 5 enable a SAT solver to discover a “full adder” of minimum
cost; see 7.1.2–(1) and 7.1.2–(22).) Hint: Represent each bit of the truth tables.

� 478. [23] Suggest ways to break symmetry in the clauses of exercise 477.

� 479. [25] Use SAT technology to find optimum circuits for the following problems:

a) Compute z2, z1, and z0, when x1 + x2 + x3 + x4 = (z2z1z0)2 (see 7.1.2–(27)).

b) Compute z2, z1, and z0, when x1 + x2 + x3 + x4 + x5 = (z2z1z0)2.

c) Compute all four symmetric functions S0, S1, S2, S3 of {x1, x2, x3}.
d) Compute all five symmetric functions S0, S1, S2, S3, S4 of {x1, x2, x3, x4}.
e) Compute the symmetric function S3(x1, x2, x3, x4, x5, x6).

f) Compute the symmetric function S0,4(x1, . . . , x6) = [(x1 + · · ·+ x6) mod 4 = 0].
g) Compute all eight minterms of {x1, x2, x3} (see 7.1.2–(30)).

480. [25] Suppose the values 0, 1, 2 are encoded by the two-bit codes xlxr = 00, 01,
and 1∗, respectively, where 10 and 11 both represent 2. (See Eq. 7.1.3–(120).)

a) Find an optimum circuit for mod 3 addition: zlzr = (xlxr + ylyr) mod 3.

b) Find an optimum circuit that computes zlzr = (x1 + x2 + x3 + ylyr) mod 3.

c) Conclude that [x1 + · · ·+ xn ≡ a (modulo 3)] can be computed in < 3n steps.

� 481. [28] An ordered bit pair xy can be encoded by another ordered bit pair [[xy]] =
(x⊕y) y without loss of information, because [[xy]] = uv implies [[uv]] = xy.

a) Find an optimum circuit that computes ([[zz′]])2 = x1 + x2 + x3.

b) Let ν[[uv]] = (u ⊕ v) + v, and note that ν[[00]] = 0, ν[[01]] = 2, ν[[1∗]] = 1. Find
an optimum circuit that, given x1 . . . x5, computes z1z2z3 such that we have
ν[[x1x2]] + ν[[x3x4]] + x5 = 2ν[[z1z2]] + z3.

c) Use that circuit to prove by induction that the “sideways sum” (z�lgn� . . . z1z0)2 =
x1 + x2 + · · ·+ xn can always be computed with fewer than 4.5n gates.

� 482. [26] (Erdős discrepancy patterns.) The binary sequence y1 . . . yt is called strongly
balanced if we have |∑k

j=1(2yj − 1)| ≤ 2 for 1 ≤ k ≤ t.

a) Show that this balance condition needs to be checked only for odd k ≥ 3.

b) Describe clauses that efficiently characterize a strongly balanced sequence.

c) Construct clauses that are satisfied by x1x2 . . . xn if and only if xdx2d . . . x�n/d�d
is strongly balanced for 1 ≤ d ≤ n.

483. [21] Symmetry between colors was broken in the coloring problems of Table 6
by assigning fixed colors to a large clique in each graph. But many graphs have no
large clique, so a different strategy is necessary. Explain how to encode the “restricted
growth string” principle (see Section 7.2.1.5) with appropriate clauses, given an ordering
v1v2 . . . vn of the vertices: The color of vj must be at most one greater than the largest
color assigned to {v1, . . . , vj−1}. (In particular, v1 always has color 1.)

Experiment with this scheme by applying it to the Mycielski graphs of exercise
7.2.2.1–116.

484. [22] (Graph quenching.) A graph with vertices (v1, . . . , vn) is called “quenchable”
if either (i) n = 1; or (ii) there’s a k such that vk −−− vk+1 and the graph on
(v1, . . . , vk−1, vk+1, . . . , vn) can be quenched; or (iii) there’s an l such that vl −−− vl+3
and the graph on (v1, . . . , vl−1, vl+3, vl+1, vl+2, vl+4, . . . , vn) can be quenched.

a) Find a 4-element graph that is quenchable although v3 /−−−v4.

b) Construct clauses that are satisfiable if and only if a given graph is quenchable.
Hint: Use the following three kinds of variables for this model-checking problem:

363

From the Library of Melissa Nuno

ptg999

364 COMBINATORIAL SEARCHING 7.2.2.2

xt,i,j = [vi−−−vj at time t], for 1 ≤ i < j ≤ n−t; qt,k = [a quenching move of type
(ii) leads to time t+1]; st,l = [a quenching move of type (iii) leads to time t+1].

� 485. [23] Sometimes successive transitions in the previous exercise are commutative:
For example, the effect of qt,k and qt+1,k+1 is the same as qt,k+2 and qt+1,k. Explain
how to break symmetry in such cases, by allowing only one of the two possibilities.

486. [21] (Late Binding Solitaire.) Shuffle a deck and deal out 18 cards; then try to
reduce these 18 piles to a single pile, using a sequence of “captures” in which one pile is
placed on top of another pile. A pile can capture only the pile to its immediate left, or
the pile found by skipping left over two other piles. Furthermore a capture is permitted
only if the top card in the capturing pile has the same suit or the same rank as the top
card in the captured pile. For example, consider the following deal:

J♥ 5♥ 10♣ 8♦ J♣ A♣ K♠ A♥ 4♣ 8♠ 5♠ 5♦ 2♦ 10♠ A♠ 6♥ 3♥ 10♦
Ten captures are initially possible, including 5♥×J♥, A♣××10♣, and 5♦×5♠. Some
captures then make others possible, as in 8♠×× K♠×× 8♦.

If captures must be made “greedily” from left to right as soon as possible, this
game is the same as the first 18 steps of a classic one-player game called “Idle Year,”
and we wind up with five piles [see Dick’s Games of Patience (1883), 50–52]. But if we
cleverly hold back until all 18 cards have been dealt, we can do much better.

Show that one can win from this position, but not if the first move is A♣× J♣.
� 487. [27] There are

(
64
8

)
= 4426165368 ways to place eight queens on a chessboard.

Long ago, W. H. Turton asked which of them causes the maximum number of vacant
squares to remain unattacked. [See W. W. Rouse Ball, Mathematical Recreations and

Problems, third edition (London: Macmillan, 1896), 109–110.]

Every subset S of the vertices of a graph has three boundary sets defined thus:

∂S = the set of all edges with exactly one endpoint ∈ S;

∂outS = the set of all vertices /∈ S with at least one neighbor ∈ S;

∂inS = the set of all vertices ∈ S with at least one neighbor /∈ S.

Find the minimum and maximum sizes of ∂S, ∂outS, and ∂inS, over all 8-element sets S
in the queen graph Q8 (exercise 7.1.4–241). Which set answers Turton’s question?

� 488. [24] (Peaceable armies of queens.) Prove that armies of nine white queens and
nine black queens can coexist on a chessboard without attacking each other, but armies
of size 10 cannot, by devising appropriate sets of clauses and applying Algorithm C.
Also examine the effects of symmetry breaking. (This problem has sixteen symmetries,
because we can swap colors and/or rotate and/or reflect the board.) How large can
coexisting armies of queens be on n× n boards, for n ≤ 11?

489. [M21] Find a recurrence for Tn, the number of signed involutions on n elements.

� 490. [15] Does Theorem E hold also when p1p2 . . . pn is any signed permutation?

� 491. [22] The unsatisfiable clauses R in (6) have the signed permutation 2341̄ as an
automorphism. How can this fact help us to verify their unsatisfiability?

492. [M20] Let τ be a signed mapping of the variables {x1, . . . , xn}; for example,
the signed mapping ‘4̄133̄’ stands for the operation (x1, x2, x3, x4))→ (x4̄, x1, x3, x3̄) =
(x̄4, x1, x3, x̄3). When a signed mapping is applied to a clause, some of the resulting lit-
erals might coincide; or two literals might become complementary, making a tautology.
When τ = 4̄133̄, for instance, we have (123)τ = 4̄13, (134̄)τ = 4̄3, (13̄4̄)τ = ℘.

364

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 365

A family F of clauses is said to be “closed” under a signed mapping τ if Cτ is
subsumed by some clause of F whenever C ∈ F . Prove that τ is an endomorphism
of F in such a case.

493. [20] The problem waerden (3, 3; 9) has four symmetries, because we can reflect
and/or complement all the variables. How can we speed up the proof of unsatisfiability
by adding clauses to break those symmetries?

494. [21] Show that if (uvw)(ūv̄w̄) is a symmetry of some clauses F , we’re allowed to
break symmetries as if (uv)(ūv̄), (uw)(ūw̄), and (vw)(v̄w̄) were also symmetries. For
example, if i < j < k and if (ijk)(̄ij̄k̄) is a symmetry, we can assert (x̄i∨xj)∧ (x̄j ∨xk)
with respect to the global ordering p1 . . . pn = 1 . . . n. What are the corresponding
binary clauses when the symmetry is (i) (ijk̄)(̄ij̄k)? (ii) (ij̄k)(̄ijk̄)? (iii) (ij̄k̄)(̄ij̄k)?

495. [M22] Spell out the details of how we can justify appending clauses to assert (185)
and (186), using Corollary E, whenever we have an m×n problem whose variables xij
possess both row and column symmetry. (In other words we assume that xij)→ x(iπ)(jρ)
is an automorphism for all permutations π of {1, . . . ,m} and ρ of {1, . . . , n}.)

� 496. [M20] B. C. Dull reasoned as follows: “The pigeonhole clauses have row and col-
umn symmetry. Therefore we can assume that the rows are lexicographically increasing
from top to bottom, and the columns are lexicographically increasing from right to left.
Consequently the problem is easily seen to be unsatisfiable.” Was he correct?

497. [22] Use BDD methods to determine the number of 8 × 8 binary matrices that
have both rows and columns in nondecreasing lexicographic order. How many of them
have exactly r 1s, for r = 24, r = 25, r = 64− 25 = 39, and r = 64− 24 = 40?

498. [22] Justify adding the symmetry-breakers (183) to the pigeonhole clauses.

499. [21] In the pigeonhole problem, is it legitimate to include the clauses (183)
together with clauses that enforce lexicographic row and column order?

500. [16] The precocious student J. H. Quick decided to extend the monkey wrench
principle, arguing that if F0 ∪S � l then the original clauses F can be replaced by F | l.
But he soon realized his mistake. What was it?

501. [22] Martin Gardner introduced an interesting queen placement problem in Sci-

entific American 235, 4 (October 1976), 134–137: “Place r queens on an m× n chess-
board so that (i) no three are in the same row, column, or diagonal; (ii) no empty square
can be occupied without breaking rule (i); and (iii) r is as small as possible.” Construct
clauses that are satisfiable if and only if there’s a solution to conditions (i) and (ii) with
at most r queens. (A similar problem was considered in exercise 7.1.4–242.)

502. [16] (Closest strings.) Given binary strings s1, . . . , sm of length n, and threshold
parameters r1, . . . , rm, construct clauses that are satisfiable by x = x1 . . . xn if and
only if x differs from sj in at most rj positions, for 1 ≤ j ≤ m.

503. [M20] (Covering strings.) Given sj and rj as in exercise 502, show that every
string of length n is within rj bits of some sj if and only if the closest string problem
has no solution with parameters r′j = n− 1− rj .

� 504. [M21] The problem in exercise 502 can be proved NP-complete as follows:
a) Let wj be the string of length 2n that is entirely 0 except for 1s in positions 2j−1

and 2j, and let wn+j = w̄j , for 1 ≤ j ≤ n. Describe all binary strings of length 2n
that differ from each of w1, . . . , w2n in at most n bit positions.

b) Given a clause (l1∨ l2∨ l3) with strictly distinct literals l1, l2, l3 ∈ {x1, . . . , xn,
x̄1, . . . , x̄n}, let y be the string of length 2n that is entirely zero except that it has

365

From the Library of Melissa Nuno

ptg999

366 COMBINATORIAL SEARCHING 7.2.2.2

1 in position 2k − 1 when some li is x̄k, and 1 in position 2k when some li is xk.
In how many bit positions does a string that satisfies (a) differ from y?

c) Given a 3SAT problem F with m clauses and n variables, use (a) and (b) to
construct strings s1, . . . , sm+2n of length 2n such that F is satisfiable if and only
if the closest string problem is satisfiable with rj = n+ [j > 2n].

d) Illustrate your construction in (c) by exhibiting the closest string problems that
correspond to the simple 3SAT problems R and R′ in (6) and (7).

505. [21] Experiment with making Algorithm L nondeterministic, by randomizing the
initial order of VAR in step L1 just as HEAP is initialized randomly in step C1. How does
the modified algorithm perform on, say, problems D3, K0, and W2 of Table 6?

506. [22] The weighted variable interaction graph of a family of clauses has one vertex
for each variable and the weight

∑
2/(|c|(|c| − 1)) between vertices u and v, where the

sum is over all clauses c that contain both ±u and ±v. Figure 95 indicates these weights
indirectly, by making the heavier edges darker.
a) True or false: The sum of all edge weights is the total number of clauses.
b) Explain why the graph for test case B2 has exactly 6 edges of weight 2. What

are the weights of the other edges in that graph?

� 507. [21] (Marijn Heule.) Explain why “windfalls” (see (72)) help Algorithm L to
deal with miter problems such as D5.

508. [M20] According to Table 7, Algorithm C proved problem T3 to be unsatisfiable
after learning about 323 thousand clauses. About how many times did it enter a purging
phase in step C7?

509. [20] Several of the “training set” tasks used when tuning Algorithm C’s param-
eters were taken from the 100 test cases of Table 6. Why didn’t this lead to a problem
of “overfitting” (namely, of choosing parameters that are too closely associated with
the trainees)?

510. [18] When the data points A1, A2, . . . , X8 were plotted in Fig. 98, one by one,
they sometimes covered parts of previously plotted points, because of overlaps. What
test cases are partially hidden by (a) T2? (b) X6? (c) X7?

511. [22] Problem P4 in Table 6 is a strange set of clauses that lead to extreme behav-
ior of Algorithm C in Figs. 97 and 98; and it causes Algorithm L to “time out” in Fig. 96.
a) The preprocessing algorithm of the text needs about 1.5 megamems to convert

those 2509 clauses in 400 variables into just 2414 clauses in 339 variables. Show
empirically that Algorithm L makes short work of the resulting 2414 clauses.

b) How efficient is Algorithm C on those preprocessed clauses?
c) What is the behavior of WalkSAT on P4, with and without preprocessing?

512. [29] Find parameters for Algorithm C that will find an Erdős discrepancy pattern
x1x2 . . . xn rapidly when n = 500. (This is problem E0 in Table 6.) Then compare
the running times of nine random runs with your parameters versus nine random runs
with (194), when n = 400, 500, 600, . . . , 1100, 1160, and 1161.

513. [24] Find parameters for Algorithm L that tune it for rand (3,m, n, seed).

514. [24] The timings quoted in the text for Algorithm W, for problems in Table 6,
are based on the median of nine runs using the parameters p = .4 and N = 50n,
restarting from scratch if necessary until a solution is found. Those parameters worked
fine in most cases, unless Algorithm W was unsuited to the task. But problem C9 was
solved more quickly with p = .6 and N = 2500n (943Mμ versus 9.1Gμ).

Find values of p and N/n that give near-optimum performance for problem C9.

366

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 367

� 515. [23] (Hard sudoku.) Specify SAT clauses with which a designer of sudoku puzzles
can meet the following specifications: (i) If cell (i, j) of the puzzle is blank, so is
cell (10−i, 10−j), for 1 ≤ i, j ≤ 9. (ii) Every row, every column, and every box contains
at least one blank. (Here “box” means one of sudoku’s nine special 3 × 3 subarrays.)
(iii) No box contains an all-blank row or an all-blank column. (iv) There are at least
two ways to fill every blank cell, without conflicting with nonblank entries in the same
row, column, or box. (v) If a row, column, or box doesn’t already contain k, there are
at least two places to put k into that row, column, or box, without conflict. (vi) If the
solution has a 2× 2 subarray of the form k l

l k
, those four cells must not all be blank.

(Condition (i) is a feature of “classic” sudoku puzzles. Conditions (iv) and (v)
ensure that the corresponding exact cover problem has no forced moves; see Section
7.2.2.1. Condition (vi) rules out common cases with non-unique solutions.)

516. [M49] Prove or disprove the strong exponential time hypothesis: “If τ < 2, there
is an integer k such that no randomized algorithm can solve every kSAT problem in
fewer than τn steps, where n is the number of variables.”

517. [25] Given clauses C1, . . . , Cm, the one-per-clause satisfiability problem asks if
there is a Boolean assignment x1 . . . xn such that every clause is satisfied by a unique

literal. In other words, we want to solve the simultaneous equations ΣCj = 1 for
1 ≤ j ≤ m, where ΣC is the sum of the literals of clause C.
a) Prove that this problem is NP-complete, by reducing 3SAT to it.
b) Prove that this problem, in turn, can be reduced to its special case “one-in-three

satisfiability,” where every given clause is required to be ternary.

518. [M32] Given a 3SAT problem with m clauses and
n variables, we shall construct a (6m + n) × (6m + n)
matrix M of integers such that the permanent, perM ,
is zero if and only if the clauses are unsatisfiable. For
example, the solvable problem (7) corresponds to the
46× 46 matrix indicated here; each shaded box stands
for a fixed 6× 6 matrix A that corresponds to a clause.

Each A has three “inputs” in columns 1, 3, 5 and
three “outputs” in rows 2, 4, 6. The first n rows and the
last n columns correspond to variables. Outside of the
As, all entries are either 0 or 2; and the 2s link variables
to clauses, according to a scheme much like the data
structures in several of the algorithms in this section:
Let Iij andOij denote the jth input and output of clause i, for 1 ≤ i ≤ m and 1 ≤ j ≤ 3.
Then, if literal l appears in t ≥ 0 clauses i1 < · · · < it, as element j1, . . . , jt, we put ‘2’
in column Iik+1jk+1 of row Oikjk for 0 ≤ k ≤ t (Oi0j is row |l|, Iit+1j is column 6m+|l|).

2000000000000000000020000000000000000000000000
0020000000000000000000000020000000000000000000
0000200020000000000000000000000000000000000000
0000000000200020000000000000000000000000000000

00
0000000000200000000000000000000000000000
00
2000000000000000000000000000000000000000
00
0000000000000000000000000020000000000000

000000 0000000000000000000000000000000000
000000 0000000000200000000000000000000000
000000 0000000000000000000000000000000000
000000 2000000000000000000000000000000000
000000 0000000000000000000000000000000000
000000 0000000000000000000000000020000000
000000000000 0000000000000000000000000000
000000000000 0000000000200000000000000000
000000000000 0000000000000000000000000000
000000000000 2000000000000000000000000000
000000000000 0000000000000000000000000000
000000000000 0000000000000000000000002000
000000000000000000 0000000000000000000000
000000000000000000 0000000000200000000000
000000000000000000 0000000000000000000000
000000000000000000 2000000000000000000000
000000000000000000 0000000000000000000000
000000000000000000 0000000000000000000200
000000000000000000000000 0000000000000000
000000000000000000000000 0000000000200000
000000000000000000000000 0000000000000000
000000000000000000000000 2000000000000000
000000000000000000000000 0000000000000000
000000000000000000000000 0000000000000020
000000000000000000000000000000 0000000000
000000000000000000000000000000 0000000200
000000000000000000000000000000 0000000000
000000000000000000000000000000 2000000000
000000000000000000000000000000 0000000000
000000000000000000000000000000 0000000002
000000000000000000000000000000000000 0000
000000000000000000000000000000000000 0020
000000000000000000000000000000000000 0000
000000000000000000000000000000000000 0002
000000000000000000000000000000000000 0000
000000000000000000000000000000000000 2000

123̄

234̄

341

41̄2

1̄2̄3

2̄3̄4

3̄4̄1̄

a) Find a 6× 6 matrix A = (aij), whose elements are either 0, 1, or −1, such that

per

⎛⎜⎜⎜⎜⎜⎝
a11 a12 a13 a14 a15 a16

a21+2p a22 a23+2q a24 a25+2r a26
a31 a32 a33 a34 a35 a36

a41+2u a42 a43+2v a44 a45+2w a46
a51 a52 a53 a54 a55 a56

a61+2x a62 a63+2y a64 a65+2z a66

⎞⎟⎟⎟⎟⎟⎠ = 16

(
per

⎛⎝ p+1 q r
u v+1 w
x y z+1

⎞⎠ − 1

)
.

Hint: There’s a solution with lots of symmetry.
b) In which of the rows and columns of M does ‘2’ occur twice? once? not at all?
c) Conclude that perM = 24m+ns, when the 3SAT problem has exactly s solutions.

367

From the Library of Melissa Nuno

ptg999

368 COMBINATORIAL SEARCHING 7.2.2.2

519. [20] Table 7 shows inconclusive results in a race for factoring between factor fifo

and factor lifo . What is the comparable performance of factor rand (m,n, z, 314159)?

� 520. [24] Every instance of SAT corresponds in a natural way to an integer program-

ming feasibility problem: To find, if possible, integers x1, . . . , xn that satisfy the linear
inequalities 0 ≤ xj ≤ 1 for 1 ≤ j ≤ n and

l1 + l2 + · · ·+ lk ≥ 1 for each clause C = (l1 ∨ l2 ∨ · · · ∨ lk).

For example, the inequality that corresponds to the clause (x1 ∨ x̄3 ∨ x̄4 ∨ x7) is
x1 + (1−x3) + (1−x4) + x7 ≥ 1; i.e., x1 − x3 − x4 + x7 ≥ −1.

Sophisticated “IP solvers” have been developed by numerous researchers for solv-
ing general systems of integer linear inequalities, based on techniques of “cutting
planes” in high-dimensional geometry. Thus we can solve any satisfiability problem
by using such general-purpose software, as an alternative to trying a SAT solver.

Study the performance of the best available IP solvers, with respect to the 100
sets of clauses in Table 6, and compare it to the performance of Algorithm C in Table 7.

521. [30] Experiment with the following idea, which is much simpler than the clause-
purging method described in the text: “Forget a learned clause of length k with
probability pk,” where p1 ≥ p2 ≥ p3 ≥ · · · is a tunable sequence of probabilities.

� 522. [26] (Loopless shadows.) A cyclic path within the
cube P3 P3 P3 is shown here, together with the three
“shadows” that appear when it is projected onto each co-
ordinate plane. Notice that the shadow at the bottom
contains a loop, but the other two shadows do not. Does
this cube contain a cycle whose three shadows are entirely
without loops? Use SAT technology to find out.

523. [30] Prove that, for any m or n, no cycle of
the graph Pm Pn P2 has loopless shadows.

� 524. [22] Find all Hamiltonian paths of the cube
P3 P3 P3 that have loopless shadows.

� 525. [40] Find the most difficult 3SAT problem you can that has at most 100 variables.

526. [M25] (David S. Johnson, 1974.) If F has m clauses, all of size ≥ k, prove that
some assignment leaves at most m/2k clauses unsatisfied.

368

From the Library of Melissa Nuno

ptg999

7.2.2.2 SATISFIABILITY: EXERCISES 369

Behold once more with serious labor here

Haue I refurnisht out this little frame,

Repaird some parts, defectiue here and there,

And passages new added to the same.

— SAMUEL DANIEL, Certaine small Workes Heretofore Divulged (1607)

369

From the Library of Melissa Nuno

ptg999

ANSWERS TO EXERCISES

It isn’t that they can’t see the solution.

It is that they can’t see the problem.

— G. K. CHESTERTON, The Scandal of Father Brown (1935)

NOTES ON THE EXERCISES

1. A moderately easy problem for a mathematically inclined reader.

2. The author will reward you if you are first to report an error in the statement of
an exercise or in its answer, assuming that he or she is suitably sagacious.

3. See H. Poincaré, Rendiconti del Circolo Matematico di Palermo 18 (1904), 45–110;
R. H. Bing, Annals of Math. (2) 68 (1958), 17–37; G. Perelman, arXiv:math/0211159
[math.DG] (2002), 39 pages; 0303109 and 0307245 [math.DG] (2003), 22+7 pages.

MATHEMATICAL PRELIMINARIES REDUX

1. (a) A beats B in 5+0+5+5+0+5 cases out of 36; B beats C in 4+2+4+4+2+4;
C beats A in 2 + 2 + 2 + 6 + 2 + 6.

(b) The unique solution, without going to more than six spots per face, is

A =
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
� , B =

�

�

�

�

�

�

�
�
��

� �
�
��

� �
�
��

�

, C =
�

�

��

� �

��

�

�

��

� �

��

� �

��

�

.

(c) A = {Fm−2 × 1, Fm−1 × 4}, B = {Fm × 3}, C = {Fm−1 × 2, Fm−2 × 5}
makes Pr(C > A) = Fm−2Fm+1/F

2
m; and we have Fm−2Fm+1 = Fm−1Fm − (−1)m.

[Similarly, with n faces and A = {�n/φ2� × 1, �n/φ� × 4}, etc., the probabilities are
1/φ−O(1/n). See R. P. Savage, Jr., AMM 101 (1994), 429–436. Additional properties
of nontransitive dice have been explored by J. Buhler, R. Graham, and A. Hales, AMM

125 (2018), 387–399.]

2. Let Pr(A>B) = A, Pr(B>C) = B, Pr(C >A) = C. We can assume that no x
appears on more than one die; if it did, we could replace it by x+ ε in A and x− ε in C
(for small enough ε) without decreasing A, B, or C. So we can list the face elements in
nondecreasing order and replace each one by the name of its die; for example, the pre-
vious answer (b) yields CBBBAAAAACCCCCBBBA. Clearly AB, BC, and CA are
never consecutive in an optimal arrangement of this kind: BA is always better than AB.

Suppose the sequence is Cc1Bb1Aa1 . . . CckBbkAak where ci > 0 for 1 ≤ i ≤ k
and bi, ai > 0 for 1 ≤ i < k. Let αi = ai/(a1 + · · · + ak), βi = bi/(b1 + · · · + bk),
γi = ci/(c1+ · · ·+ck); then A = α1β1+α2(β1+β2)+ · · · , B = β1γ1+β2(γ1+γ2)+ · · · ,
C = γ2α1 + γ3(α1 + α2) + · · · . We will show that min(A,B, C) ≤ 1/φ when the α’s,
β’s, and γ’s are nonnegative real numbers; then it is < 1/φ when they are rational.

370

370

From the Library of Melissa Nuno

ptg999

MPR ANSWERS TO EXERCISES 371

The key idea is that we can assume k ≤ 2 and α2 = 0. Otherwise the following
transformation leads to a shorter array without decreasing A, B, or C:
γ′2 = λγ2, γ

′
1 = γ1+γ2−γ′2, β′2 = λβ2, β

′
1 = β1+β2−β′2, α′1 = α1/λ, α

′
2 = α1+α2−α′1.

Indeed, A′ = A, C′ = C, and B′ −B = (1− λ)(β1 − λβ2)γ2, and we can choose λ thus:
Case 1: β1 ≥ β2. Choose λ = α1/(α1 + α2), making α

′
2 = 0.

Case 2: β1 < β2 and γ1/γ2 ≤ β1/β2. Choose λ = 1 + γ1/γ2, making γ
′
1 = 0.

Case 3: β1 < β2 and γ1/γ2 > β1/β2. Choose λ = 1 + β1/β2, making β
′
1 = 0.

Finally, then, A = β1, B = 1− β1γ2, C = γ2; they can’t all be greater than 1/φ.
[Similarly, with n dice, the asymptotic optimum probability pn satisfies pn =

α
(n)
2 = 1− α

(n−1)
1 α

(n)
2 = · · · = 1− α

(2)
1 α

(3)
2 = α

(2)
1 . One can show that fn(1− pn) = 0,

where fn+1(x) = fn(x)−xfn−1(x), f0(x) = 1, f1(x) = 1−x. Then fn(x2) is expressible
as the Chebyshev polynomial xn+1Un+1(

1
2x
); and we have pn = 1−1/(4 cos2 π/(n+2)).

See Z. Usiskin, Annals of Mathematical Statistics 35 (1964), 857–862; S. Trybu�la, Za-
stosowania Matematyki 8 (1965), 143–156; A. Komisarski, AMM 128 (2021), 423–434.]

3. Brute force (namely a program) finds eight solutions, of which the simplest is

A =
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
��

�

, B = C =
�

��

�
�

�

��

�

�

��

�
�

�

��

�

,

all with respective probabilities 17
27 ,

16
27 ,

16
27 . [If �

�
�
�
�
�
�

is also allowed, the unique solution

A =
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
� , B =

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
� , C =

�

��

� �

��

� �

��

�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

has the property that every roll has exactly one die below the average and two above,
with each of A, B, C equally likely to be below; hence all three probabilities are 2/3.
See J. Moraleda and D. G. Stork, College Mathematics Journal 43 (2012), 152–159.]

4. (a) The permutation (1 2 3 4)(5 6) takes A → B → C → D → A. So B versus C
is like A versus B, etc. Also Pr(A beats C) = Pr(C beats A) = Pr(B beats D) =
Pr(D beats B) = 288

720
; Pr(A and C tie) = Pr(B and D tie) = 144

720
.

(b) Assume by symmetry the players are A, B, C. Then the bingoers are (A,B,C,
AB,AC,BC,ABC) with respective probabilities (168, 216, 168, 48, 72, 36, 12)/720.

(c) It’s (A,AB,AC,ABC,ABCD) with probabilities (120, 24, 48, 12, 0)/720.

5. (a) If Ak = 1001 with probability .99, otherwise Ak = 0, but Bk = 1000 always,
then P1000 = .991000 ≈ .000043. (This example gives the smallest possible P1000,
because Pr((A1 − B1) + · · ·+ (An − Bn) > 0) ≥ Pr([A1>B1] . . . [An>Bn]) = Pn

1 .)
(b) Let E = q0 + q2 + q4 + · · · ≈ 0.67915 be the probability that B = 0. Then

Pr(A > B) =
∑∞

k=0 q2k(E +
∑k−1

j=0 q2j+1) ≈ .47402; Pr(A < B) =
∑∞

k=0 q2k+1(1−E +∑k
j=0 q2j) ≈ .30807; and Pr(A = B) = Pr(A = B = 0) = E(1−E) ≈ .21790 is also the

probability that AB > 0.
(c) During the first nk rounds, the probability that either Alice or Bob has scored

more than mk is at most nk(qk+1 + qk+2 + · · ·) = O(2−k); and the probability that
neither has ever scored mk is (1 − qk)

nk < exp(−qknk) = exp(−2k/D). Also mk >
nkmk−1 when k > 1. Thus Alice “quite surely” wins when k is even, but loses when k
is odd, as k →∞. [The American Statistician 43 (1989), 277–278.]

6. The probability that Xj = 1 is clearly p1 = 1/(n−1); hence Xj = 0 with probabil-
ity p0 = (n−2)/(n−1). And the probability that Xi = Xj = 1 when i < j is p21. Thus

371

From the Library of Melissa Nuno

ptg999

372 ANSWERS TO EXERCISES MPR

(see exercise 20), (Xi,Xj) will equal (0, 1), (1, 0), or (0, 0) with the correct probabilities
p0p1, p1p0, p0p0. But Xi = Xj = Xk = 1 with probability 0 when i < j < k.

For 3-wise independence let Pr(X1 . . . Xn = x1 . . . xn) = ax1+···+xn/(n−2)3, where
a0 = 2

(
n−2
3

)
, a1 =

(
n−2
2

)
, a3 = 1, otherwise aj = 0.

7. Let fm(n) =
∑m

j=0

(
n
j

)
(−1)j(n + 1 − m)m−j , and define probabilities via aj =

fk−j(n−j) as in answer 6. (In particular, we have f0(n) = 1, f1(n) = 0, f2(n) =
(
n−1
2

)
,

f3(n) = 2
(
n−2
3

)
, f4(n) = 3

(
n−3
4

)
+
(
n−3
2

)
2.) This definition is valid if we can prove that

fm(n) ≥ 0 for n ≥ m, because of the identity
∑

j

(
n
j

)
fm−j(n− j) = (n+ 1−m)m.

To prove that inequality, Schulte-Geers notes (see CMath (5.19)) that fm(n) =∑m
k=0

(
m−n
k

)
(n − m)m−k =

∑m
k=0

(
n−m−1+k

k

)
(−1)k(n − m)m−k; these terms pair up

nicely to yield
∑m−1

k=0 k
(
n−m−1+k

k+1

)
(n−m)m−k−1[k even] +

(
n−1
m

)
[m even].

8. If 0 < k < n, the probability that k of the components have any particular setting
is 1/2k, because the remaining components have even parity as often as odd parity. So
there’s (n− 1)-wise independence, but not n-wise.

9. Give probability 1/2 to 0 . . . 0 and 1 . . . 1; all other vectors have probability 0.

10. If n > p we have Xp+1 = X1, so there’s no independence. Otherwise, ifm < n ≤ p,
there’s m-wise independence because any m vectors (1, j, . . . , jm−1) are linearly inde-
pendent modulo p (they’re columns of Vandermonde’s matrix, exercise 1.2.3–37); but
the X’s are dependent (m + 1)-wise, because a polynomial of degree m cannot have
m+ 1 different roots. If m ≥ n and n ≤ p there is complete independence.

Instead of working mod p, we could use any finite field in this construction.

11. We can assume that n = 1, because (X1 + · · ·+Xn)/n and (Xn+1 + · · ·+X2n)/n
are independent random variables with the same discrete distribution. Then Pr(|X1 +
X2 − 2α| ≤ 2|X1 − α|) ≥ Pr(|X1 − α| + |X2 − α| ≤ 2|X1 − α|) = Pr(|X2 − α| ≤
|X1−α|) = (1+Pr(X1 = X2))/2 > 1/2. [This exercise was suggested by T. M. Cover.]

12. Let w = Pr(A andB), x = Pr(A and B̄), y = Pr(Ā andB), z = Pr(Ā and B̄). All
five statements are equivalent to wz > xy, or to |w

y
x
z
| > 0, or to “A and B are strictly

positively correlated” (see exercise 61). [This exercise was suggested by E. Georgiadis.]

13. False in many cases. For example, take Pr(Ā and B̄ and C̄) = Pr(Ā andB and C̄) =
0, Pr(A andB andC) = 2/7, and all other joint probabilities 1/7.

14. Induction on n. [Philosophical Transactions 53 (1763), 370–418, proof of Prop. 6.]

15. If Pr(C) > 0, this is the chain rule, conditional on C. But if Pr(C) = 0, it’s false
by our conventions, unless A and B are independent.

16. If and only if Pr(A ∩B ∩ C) = 0 �= Pr(B) or Pr(A ∩ C) = 0.

17. 4/51, because four of the cards other than Q♠ are aces.

18. Since (M − X)(X −m) ≥ 0, we have (M EX) − (EX2) + (mEX) −mM ≥ 0.
[See C. Davis and R. Bhatia, AMM 107 (2000), 353–356, for generalizations.]

19. (a) The binary values of Pr(Xn = 1) = EXn for n = 0, 1, 2, . . . , are respec-
tively (.0101010101010101 . . .)2, (.0011001100110011 . . .)2, (.0000111100001111 . . .)2,
. . . ; thus they’re the complemented reflections of the “magic masks” 7.1.3–(47). The
answer is therefore (22

n− 1)/(22
n+1− 1) = 1/(22

n
+ 1).

(b) Pr(X0X1 . . . Xn−1 = x0x1 . . . xn−1) = 2(x̄n−1...x̄1x̄0)2/(22
n−1) can be “read off”

from the magic masks by ANDing and complementing. [See E. Lukacs, Characteristic
Functions (1960), 119, for related theory.]

372

From the Library of Melissa Nuno

ptg999

MPR ANSWERS TO EXERCISES 373

(c) The infinite sum S is well defined because Pr(S = ∞) = 0. Its expectation
ES =

∑∞
n=0 1/(2

2n+ 1) ≈ 0.59606 corresponds to the case z = 1/2 in answer 7.1.3–
41(c). By independence, var(S) =

∑∞
n=0 var(Xn) =

∑∞
n=0 2

2n/(22
n
+ 1)2 ≈ 0.44148.

(d) The parity number ER = (.0110100110010110 . . .)2 has the decimal value

0.41245 40336 40107 59778 33613 68258 45528 30895−,
and can be shown to equal 1

2
− 1

4
P where P =

∏∞
k=0(1 − 1/22

k
) [R. W. Gosper and

R. Schroeppel, MIT AI Laboratory Memo 239 (29 February 1972), Hack 122], which is
transcendental [K. Mahler, Mathematische Annalen 101 (1929), 342–366; 103 (1930),
532]. (Furthermore it turns out that 1/P − 1/2 =

∑∞
k=0 1/

∏k−1
j=0 (2

2j− 1).) Since R is
binary, var(R) = (ER)(1− ER) ≈ 0.242336.

(e) Zero (because π is irrational, hence p0+ p1+ · · · =∞). However, if we ask the
analogous question for Euler’s constant γ instead of π, nobody knows the answer.

(f) EYn = 2EXn; in fact, Pr(Y0Y1Y2 . . . = x0x1x2 . . .), for any infinite string
x0x1x2 . . . , is equal to 2Pr(X0X1X2 . . . = x0x1x2 . . .) mod 1, because we shift the
binary representation one place to the left (and drop any carry). Thus in particular,
EYmYn = 2EXmXn = 1

2
EYm EYn when m �= n; Ym and Yn are negatively correlated

because covar(Ym, Yn) = − 1
2
EYm EYn.

(g) Clearly ET = 2ES. Also ET 2 = 2ES2, because EYmYn = 2EXmXn for all
m and n. So var(T) = 2(var(S) + (ES)2)− (2ES)2 = 2var(S)− 2(ES)2 ≈ 0.17237.

20. Let pj = EXj . We must prove, for example, that E(X1(1 − X2)(1 − X3)X4) =
p1(1 − p2)(1 − p3)p4 when k ≥ 4. But this is E(X1X4 − X1X2X4 − X1X3X4 +
X1X2X3X4) = p1p4 − p1p2p4 − p1p3p4 + p1p2p3p4.

21. From the previous exercise we know that they can’t both be binary. Let X be bi-
nary and Y ternary, taking each of the values (0, 0), (0, 2), (1, 0), (1, 1), (1, 2) with prob-
ability 1/5. Then EXY = EX = 3/5 and EY = 1; Pr(X = 0) Pr(Y = 1) = 2/25 �= 0.

22. By (8) we have Pr(A1 ∪ · · · ∪ An) = E [A1 ∪ · · · ∪An] = Emax([A1], . . . , [An]) ≤
E([A1] + · · ·+ [An]) = E[A1] + · · ·+ E[An] = Pr(A1) + · · ·+ Pr(An).

23. The hinted probability is Pr(Xs = 0 and X1 + · · ·+Xs−1 = s− r), so it equals(
s−1
s−r

)
ps−r(1− p)r. To get Bm,n(p), sum it for r = n−m and n−m ≤ s ≤ n. [For an

algebraic rather than probabilistic/combinatorial proof, see CMath, exercise 8.17.]

24. (a) The derivative of Bm,n(x) =
∑m

k=0

(
n
k

)
xk(1− x)n−k is

B′
m,n(x) =

m∑
k=1

(
n

k

)
kxk−1(1− x)n−k −

m∑
k=0

(
n

k

)
(n− k)xk(1− x)n−1−k

= n
(m−1∑
k=0

(
n−1
k

)
xk(1− x)n−1−k −

m∑
k=0

(
n−1
k

)
xk(1− x)n−1−k

)

= −n
(
n−1
m

)
xm(1− x)n−1−m.

[See Karl Pearson, Biometrika 16 (1924), 202–203.]

(b) The hint, which says that
∫ a/(a+b+1)
0

xa(1 − x)bdx <
∫ 1
a/(a+b+1)

xa(1 − x)bdx

when 0 ≤ a ≤ b, will prove that 1 − Bm,n(m/n) < Bm,n(m/n). If a > 0 it suffices to

show that
∫ a/(a+b)
0

xa(1−x)bdx ≤ ∫ 1
a/(a+b)

xa(1−x)bdx, because we have ∫ a/(a+b+1)
0

<∫ a/(a+b)
0

≤ ∫ 1
a/(a+b)

<
∫ 1
a/(a+b+1)

. Let x = (a−ε)/(a+b), and observe that (a−ε)a(b+ε)b

373

From the Library of Melissa Nuno

ptg999

374 ANSWERS TO EXERCISES MPR

is less than or equal to (a+ ε)a(b− ε)b for 0 ≤ ε ≤ a, because the quantity(
a− ε

a+ ε

)a
= ea(ln(1−ε/a)−ln(1+ε/a)) = exp

(
−2ε

(
1 +

ε2

3a2
+

ε4

5a4
+ · · ·

))
is nondecreasing when a increases.

(c) Let tk =
(
n
k

)
mk(n−m)n−k. Whenm ≥ n/2 we can show that 1−Bm,n(m/n) =∑

k>m tk/n
n < Bm,n(m/n) =

∑m
k=0 tk/n

n, because tm+d < tm+1−d for 1 ≤ d ≤ n−m.
For if rd = tm+d/tm+1−d, we have r1 = m/(m+ 1) < 1; also

rd+1
rd

=
(n−m+ d)(n−m− d)m2

(m+ 1 + d)(m+ 1− d)(n−m)2
< 1,

because ((m+1)2−d2)(n−m)2 − ((n−m)2−d2)m2 = (2m+1)(n−m)2+(2m−n)nd2.
[Peter Neumann proved in Wissenschaftliche Zeitschrift der Technischen Univer-

sität Dresden 15 (1966), 223–226, that m is the median. The argument in part (c) is
due to Nick Lord, in The Mathematical Gazette 94 (2010), 331–332. See also S. Janson,
Statistics and Probability Letters 171 (2021) 109020, 10 pages.]

25. (a)
((
n
k

))− ((
n

k+1

))
is
∑
pIqJ(qt/(n− k)− pt/(k + 1)), summed over all partitions

of {1, . . . , n} into disjoint sets I ∪ J ∪ {t}, where |I| = k, |J | = n− k− 1, pI =
∏

i∈I pi,
qJ =

∏
j∈J qj . And qt/(n− k)− pt/(k + 1) ≥ 0 ⇐⇒ pt ≤ (k + 1)/(n+ 1).

(b) Given p1, . . . , pn−1, the quantity
((
n
k

))
is maximized when pn = p, by (a). The

same argument applies symmetrically to all indices j.

26. The inequality is equivalent to r2n,k ≥ rn,k−1rn,k+1, which was stated without
proof on pages 242–245 of Newton’s Arithmetica Universalis (1707), then finally proved
by Sylvester many years later [Proc. London Math. Soc. 1 (1865), 1–16]. We have
nrn,k = kpnrn−1,k−1+(n−k)qnrn−1,k; hence n2(r2n,k− rn,k−1rn,k+1) = (pnrn−1,k−1−
qnrn−1,k)2 + (k2 − 1)p2nA+ (k − 1)(n− 1− k)pnqnB + ((n− k)2 − 1)q2nC, where A =
r2n−1,k−1 − rn−1,k−2rn−1,k, B = rn−1,k−1rn−1,k − rn−1,k−2rn−1,k+1, and C = r2n−1,k −
rn−1,k−1rn−1,k+1 are nonnegative, by induction on n.

27.
∑m

k=0

((
n
k

))
=
∑m

k=0

((
n−m−1+k

k

))
(1− pn−m+k), by the same argument as before.

28. (a)
((
n
k

))
=
((
n−2
k

))
A+

((
n−2
k−1

))
B +

((
n−2
k−2

))
C and E g(X) =

∑n−2
k=0

((
n−2
k

))
hk, where

A = (1− pn−1)(1− pn), C = pn−1pn, B = 1− A− C, and hk = Ag(k) + Bg(k + 1) +
Cg(k + 2). If the pj ’s aren’t all equal, we may assume that pn−1 < p < pn. Setting
p′n−1 = pn−1 + ε and p′n = pn − ε, where ε = min(pn − p, p − pn−1), changes A, B,
C to A′ = A + δ, B′ = B − 2δ, C ′ = C + δ, where δ = (pn − p)(p − pn−1); hence
hk changes to h′k = hk + δ(g(k) − 2g(k + 1) + g(k + 2)). Convex functions satisfy
g(k) − 2g(k + 1) + g(k + 2) ≥ 0, by (19) with x = k and y = k + 2; hence we can
permute the p’s and repeat this transformation until pj = p for 1 ≤ j ≤ n.

(b) Suppose E g(X) is maximum, and that r of the p’s are 0 and s of them are 1.
Let a satisfy (n − r − s)a + s = np and assume that 0 < pn−1 < a < pn < 1. As in
part (a) we can write E g(X) = αA+ βB + γC for some coefficients α, β, γ.

If α−2β+γ > 0, the transformation in (a) (but with a in place of p) would increase
E g(X). And if α − 2β + γ < 0, we could increase it with a similar transformation,
using δ = −min(pn−1, 1 − pn). Therefore α − 2β + γ = 0; and we can repeat the
transformation of (a) until every pj is 0, 1, or a.

(c) Since
∑m

k=0

((
n
k

))
= 0 when s > m, we may assume that s ≤ m, hence r+s < n.

For this function g(k) = [0≤ k≤m] we have α − 2β + γ =
((
n−2
m

)) − ((
n−2
m−1

))
. This

difference cannot be positive if the choice of {p1, . . . , pn} is optimum; in particular we

374

From the Library of Melissa Nuno

ptg999

MPR ANSWERS TO EXERCISES 375

cannot have s = m. If r > 0 we can make pn−1 = 0 and pn = a, so that
((
n−2
m

))
=(

n−r−s−1
m−s

)
am−s(1 − a)n−r−1−m and

((
n−2
m−1

))
=

(
n−r−s−1
m−1−s

)
am−1−s(1 − a)n−r−m. But

then the ratio
((
n−2
m

))
/
((
n−2
m−1

))
= (n− r−m)a/((m− s)(1− a)) exceeds 1; hence r = 0.

Similarly if s > 0 we can set (pn−1, pn) = (a, 1), getting the ratio
((
n−2
m

))
/
((
n−2
m−1

))
=

(n − 1 −m)a/((m − s + 1)(1 − a)) ≥ 1. In this case
((
n−2
m

))
=
((
n−2
m−1

))
if and only if

np = m+ 1; we can transform without changing E g(X), until s = 0 and each pj = p.
[Reference: Annals of Mathematical Statistics 27 (1956), 713–721. The coefficients((

n
k

))
also have many other important properties; see exercise 7.2.1.5–63 and the survey

by J. Pitman in J. Combinatorial Theory A77 (1997), 279–303.]

29. The result is obvious when m = 0 or n; and there’s a direct proof when m = n−1:
Bn−1,n(p) = 1 − pn ≥ (1 − p)n/((1 − p)n + p) because p − npn + (n − 1)pn+1 =
p(1− p)(1 + p+ · · ·+ pn−1 − pn−1n) ≥ 0. The result is also clear when p = 0 or 1.

If p = (m + 1)/n we have Rm,n(p) = ((1 − p)(m + 1)/((1 − p)m + 1))n−m =
((n−m−1)/(n−m))n−m. So if m > 0 and p̂ = m/(n−1), we can apply exercise 28(c)
with p1 = · · · = pn−1 = p̂ and pn = 1:

Bm,n(p) ≥
∑m

k=0

((
n
k

))
=
∑m

k=0

(
n−1
k−1

)
p̂k−1(1− p̂)n−k = Bm−1,n−1(p̂).

When 1 ≤ m < n− 1, let Qm,n(p) = Bm,n(p)− Rm,n(p). The derivative

Q′
m,n(p) = (n−m)

(
n
m

)
(1− p)n−m−1(A− F (p))/((1− p)m+ 1)n−m+1,

where A = (m+ 1)n−m/
(
n
m

)
> 1 and F (p) = pm((1− p)m+ 1)n−m+1, begins positive

at p = 0, eventually becomes negative but then is positive again at p = 1. (Notice that
F (0) = 0, and F (p) increases dramatically until p = (m+ 1)/(n+1); then it decreases
to F (1) = 1.) The facts that Qm,n(

m+1
n) ≥ 0 = Qm,n(0) = Qm,n(1) now complete the

proof, because Q′
m,n(p) changes sign only once in [0 . . m+1

n
]. [Annals of Mathematical

Statistics 36 (1965), 1272–1278.]

30. (a) Pr(Xk = 0) = n/(n+ 1); hence p = nn/(n+ 1)n > 1/e ≈ 0.368.

(b) (Solution by J. H. Elton.) Let pkm = Pr(Xk = m). Assume that these
probabilities are fixed for 1 ≤ k < n, and let xm = pnm. Then x0 = x2+2x3+3x4+· · · ;
we want to minimize p =

∑∞
m=1(Am + (m− 1)A0)xm in nonnegative variables x1, x2,

. . . , where Am = Pr(X1+· · ·+Xn−1 ≤ n−m), subject to the condition
∑∞

m=1mxm = 1.
Since all coefficients of p are nonnegative, the minimum is achieved when all xm for
m ≥ 1 are zero except for one value m = mn, which minimizes (Am + (m− 1)A0)/m.
And mn ≤ n+1, because Am = 0 whenever m > n. Similarlym1, . . . , mn−1 also exist.

(c) (Solution by E. Schulte-Geers.) Letting m1 = · · · = mn = t ≤ n+ 1, we want
to minimize B�n/t�,n(1/t). The inequality of Samuels in exercise 29 implies that

Bm,n(p) ≥
(
1− 1

f(m,n, p) + 1

)n
for p ≤ m+ 1

n
, where f(m,n, p) =

(m+ 1)(1− p)n

(n−m)p
,

because we can set x = ((1 − p)m + 1)/((1 − p)(m + 1)) in the arithmetic–geometric
mean inequality xn−m ≤ ((n − m)x + m)n/nn. Now 1/t ≤ (�n/t� + 1)/(n + 1) and
f(�n/t�, n, 1/t) ≥ n; hence B�n/t�,n(1/t) ≥ nn/(n+ 1)n.

[Peter Winkler called this the “gumball machine problem” in CACM 52, 8 (August
2009), 104–105. J. H. Elton has verified that the joint distributions in (a) are optimum
when n ≤ 20; see arXiv:0908.3528 [math.PR] (2009), 7 pages. Do those distributions
in fact minimize p for all n? Uriel Feige has conjectured more generally that we have
Pr(X1 + · · · + Xn < n + 1/(e−1)) ≥ 1/e whenever X1, . . . , Xn are independent
nonnegative random variables with EXk ≤ 1; see SICOMP 35 (2006), 964–984.]

375

From the Library of Melissa Nuno

ptg999

376 ANSWERS TO EXERCISES MPR

31. This result is immediate because Pr(f([A1], . . . , [An])) = E f([A1], . . . , [An]). But
a more detailed, lower-level proof will be helpful with respect to exercise 32.

Suppose, for example, that n = 4. The reliability polynomial is the sum of the
reliability polynomials for the minterms of f ; so it suffices to show that the result is
true for functions like x1 ∧ x̄2 ∧ x̄3 ∧ x4 = x1(1 − x2)(1 − x3)x4. And it’s clear that
Pr(A1∩A2∩A3∩A4) = Pr(A1∩A2∩A4)−Pr(A1∩A2∩A3∩A4) = π14−π124−π134+π1234.
(See exercise 7.1.1–12; also recall the inclusion-exclusion principle.)

32. The 2n minterm probabilities in the previous answer must all be nonnegative, and
they must sum to 1. We’ve already stipulated that π∅ = 1, so the sum-to-1 condition is
automatically satisfied. (The condition stated in the exercise when I ⊆ J is necessary
but not sufficient; for example, π12 must be ≥ π1 + π2 − 1.)

33. The three events (X,Y) = (1, 0), (0, 1), (1, 1) occur with probabilities p, q, r,
respectively. The value of E(X |Y) is 1, r/(q + r), r/(q + r) in those cases. Hence the
answer is pz + (q + r)zr/(q+r). (This example demonstrates why univariate generating
functions are not used in the study of conditional random variables such as E(X |Y).
But we do have the simple formula E(X |Y =k) = ([zk] ∂

∂wG(1, z))/([z
k]G(1, z)).)

34. The right-hand side is∑
ω

E(X |Y) Pr(ω) =
∑
ω

Pr(ω)
∑
ω′

X(ω′) Pr(ω′)[Y (ω′)=Y (ω)]/Pr(Y =Y (ω))

=
∑
ω

Pr(ω)
∑
ω′

X(ω′) Pr(ω′)[Y (ω′)=Y (ω)]/Pr(Y =Y (ω′))

=
∑
ω′

X(ω′) Pr(ω′)
∑
ω

Pr(ω)[Y (ω)= Y (ω′)]/Pr(Y =Y (ω′)).

35. Part (b) is false. If, for instance, X and Y are independent random bits and
Z = X, we have E(X |Y) = 1

2 and E(12 |Z) = 1
2 �= X = E(X |Z). The correct formula

instead of (b) is

E(E(X |Y,Z) |Z) = E(X |Z). (∗)
This is (12) in the probability spaces conditioned by Z, and it is the crucial identity
that underlies exercise 91. Part (a) is true because it is the case Y = Z of (∗).
36. (a) f(X); (b) E(f(Y)g(X)), generalizing (12). Proof: E(f(Y) E(g(X) | Y)) =∑

y f(y) E(g(X) |Y =y) Pr(Y =y) =
∑

x,y f(y)g(x) Pr(X=x, Y =y) = E(f(Y)g(X)).

37. If we’re given the values of X1, . . . , Xk−1, the value of Xk is equally likely to be
any of the n+ 1 − k values in {1, . . . , n} \ {X1, . . . ,Xk−1}. Hence its average value is
(1+ · · ·+ n−X1 − · · · −Xk−1)/(n+1− k). We conclude that E(Xk |X1, . . . ,Xk−1) =
(n(n + 1)/2 −X1 − · · · − Xk−1)/(n + 1 − k). [Incidentally, the sequence Z0, Z1, . . . ,
defined by Zj = (n+ j)X1 + (n+ j − 2)X2 + · · ·+ (n− j)Xj+1 − (j + 1)n(n+ 1)/2 for
0 ≤ j < n and Zj = Zn−1 for j ≥ n, is therefore a martingale.]

38. Let tm,n be the number of restricted growth strings of length m + n that begin
with 01 . . . (m−1). (This is the number of set partitions of {1, . . . ,m+n} in which each
of {1, . . . ,m} appears in a different block.) The generating function

∑
n≥0 tm,nz

n/n!
turns out to be exp(ez − 1 +mz); hence tm,n =

∑
k�k

(
n
k

)
mn−k.

Suppose M = max(X1, . . . ,Xk−1) + 1. Then Pr(Xk = j) = tM,n−k/tM,n+1−k
for 0 ≤ j < M , and tM+1,n−k/tM,n+1−k for j = M . Hence E(Xk |X0, . . . ,Xk−1) =
(
(
M
2

)
tM,n−k +MtM+1,n−k)/tM,n+1−k.

376

From the Library of Melissa Nuno

ptg999

MPR ANSWERS TO EXERCISES 377

39. (a) Since E(K |N=n) = pn we have E(K |N) = pN .

(b) Hence EK = E(E(K |N)) = E pN = pμ.

(c) Let pnk = Pr(N=n,K =k) = (e−μμn/n!)× (
n
k

)
pk(1− p)n−k = (e−μμkpk/k!)×

f(n− k), where f(n) = (1 − p)nμn/n!. Then E(N |K=k) =
∑

n npnk/
∑

n pnk. Since
nf(n − k) = kf(n − k) + (n − k)f(n − k) and nf(n) = (1 − p)μf(n − 1), the answer
is k + (1 − p)μ; hence E(N | K) = K + (1 − p)μ. [G. Grimmett and D. Stirzaker,
Probability and Random Processes (Oxford: 1982), §3.7.]
40. If p = Pr(X > m), clearly EX ≤ (1 − p)m + pM . [We also get this result from
(15), by taking S = {x | x ≤ m}, f(x) =M − x, s =M −m.]

41. (a) Convex when a ≥ 1 or a = 0; otherwise neither convex nor concave. (However,
xa is concave when 0 < a < 1 and convex when a < 0, if we consider only positive
values of x.) (b) Convex when n is even or n = 1; otherwise neither convex nor concave.
(This function is

∫ x
0
tn−1ex−tdt/(n−1)!, according to 1.2.11.3–(5); so f ′′(x)/x > 0 when

n ≥ 3 is odd.) (c) Convex. (In fact f(|x|) is convex whenever f(z) has a power series
with nonnegative coefficients, convergent for all z.) (d) Convex, provided of course that
we allow f to be infinite in the definition (19).

42. We can show by induction on n that f(p1x1+· · ·+pnxn) ≤ p1f(x1)+· · ·+pnf(xn),
when p1, . . . , pn ≥ 0 and p1 + · · ·+ pn = 1, as in exercise 6.2.2–36. The general result
follows by taking limits as n→∞. [The quantity p1x1+ · · ·+ pnxn is called a “convex
combination” of {x1, . . . , xn}; similarly, EX is a convex combination of X values.
Jensen actually began his study by assuming only the case p = q = 1

2 of (19).]

43. f(EX) = f(E(E(X | Y))) ≤ E(f(E(X | Y))) ≤ E(E f(X) | Y) = E f(X). [S. M.
Ross, Probability Models for Computer Science (2002), Lemma 3.2.1.]

44. The function f(xy) is convex in y for any fixed x. Therefore g(y) = E f(Xy) is
convex in y: It’s a convex combination of convex functions. Also g(y) ≥ f(EXy) =
f(0) = g(0) by (20). Hence 0 ≤ a ≤ b implies g(0) ≤ g(a) ≤ g(b) by convexity of g.
[S. Boyd and L. Vandenberghe, Convex Optimization (2004), exercise 3.10.]

45. Pr(X > 0) = Pr(|X| ≥ 1); set m = 1 in (16).

46. EX2 ≥ (EX)2 in any probability distribution, by Jensen’s inequality, because
squaring is convex. We can also prove it directly, since EX2− (EX)2 = E(X −EX)2.

47. We always have Y ≥ X and Y 2 ≤ X2. (Consequently (22) yields Pr(X > 0) =
Pr(Y > 0) ≥ (EY)2/(EY 2) ≥ (EX)2/(EX2) when EX ≥ 0.)

48. Pr(a−X1−· · ·−Xn > 0) ≥ a2/(a2+σ21+ · · ·+σ2n), by exercise 47. [This inequality
was also known to Chebyshev; see J. Math. Pures et Appl. (2) 19 (1874), 157–160. In
the special case n = 1 it is equivalent to “Cantelli’s inequality,”

Pr(X ≥ EX + a) ≤ var(X)/(var(X) + a2), for a ≥ 0;

see Atti del Congresso Internazionale dei Matematici 6 (Bologna: 1928), 47–59, §6–§7.]
49. Pr(X = 0) = 1−Pr(X > 0) ≤ (EX2−(EX)2)/EX2 ≤ (EX2−(EX)2)/(EX)2 =
(EX2)/(EX)2 − 1. [Some authors call this inequality the “second moment principle,”
but it is strictly weaker than (22).]

50. (a) Let Yj = Xj/X if Xj > 0, otherwise Yj = 0. Then Y1 + · · · + Ym = [X> 0].
Hence Pr(X > 0) =

∑m
j=1 EYj ; and EYj = E(Xj/X | Xj>0) · Pr(Xj>0). [This iden-

tity, which requires only that Xj ≥ 0, is elementary yet nonlinear, so it apparently lay
undiscovered for many years. See D. Aldous, Discrete Math. 76 (1989), 168.]

377

From the Library of Melissa Nuno

ptg999

378 ANSWERS TO EXERCISES MPR

(b) Since Xj ∈ {0, 1}, we have Pr(Xj > 0) = EXj = pj ; and E(Xj/X |Xj>0) =
E(Xj/X |Xj=1) = E(1/X |Xj=1) ≥ 1/E(X |Xj=1).

(c) Pr(XJ = 1) =
∑m

j=1 Pr(J = j and Xj = 1) =
∑m

j=1 pj/m = EX/m. Hence
Pr(J = j |XJ =1) = Pr(J = j and Xj =1)/Pr(XJ =1) = (pj/m)/(EX/m) = pj/EX.

(d) Since J is independent we have tj = E(X |J = j and Xj = 1) = E(X |Xj = 1).

(e) The right side is (EX)
∑m

j=1(pj/EX)/tj ≥ (EX)/
∑m

j=1(pj/EX)tj .

51. If g(q1, . . . , qm) = 1 − f(p1, . . . , pm) is the dual of f , where qj = 1 − pj , a lower
bound on g gives an upper bound on f . For example, when f is x1x2x3∨x2x3x4∨x4x5,
f̄ is x̄1x̄4 + x̄2x̄4 + x̄3x̄4 + x̄2x̄5 + x̄3x̄5. So the inequality (24) gives g(q1, . . . , q5) ≥
q1q4/(1+q2+q3+q2q5+q3q5)+q2q4/(q1+1+q3+q5+q3q5)+q3q4/(q1+q2+1+q2q5+
q5) + q2q5/(q1q4 + q4 + q3q4 + 1+ q3) + q3q5/(q1q4 + q2q4 + q4 + q2 + 1). In particular,
g(.1, . . . , .1) > 0.039 and f(.9, . . . , .9) < 0.961.

52.
(
n
k

)
pk/

∑k
j=0

(
k
j

)(
n−k
j

)
pj .

53. f(p1, . . . , p6) ≥ p1p2(1−p3)/(1+p4p5(1−p6))+· · ·+p6p1(1−p2)/(1+p3p4(1−p5)).
Monotonicity is not required when applying this method, nor need the implicants be
prime. The result is exact when the implicants are disjoint.

54. (a) Pr(X > 0) ≤ EX =
(
n
3

)
p3, because EXuvw = p3 for all u < v < w.

(b) Pr(X > 0) ≥ (EX)2/(EX2), where the numerator is the square of (a) and the
denominator can be shown to be

(
n
3

)
p3 + 12

(
n
4

)
p5 + 30

(
n
5

)
p6 + 20

(
n
6

)
p6. For example,

the expansion of X2 contains 12 terms of the form XuvwXuvw′ with u < v < w < w′,
and each of those terms has expected value p5.

55. A BDD for the corresponding Boolean function of
(
10
2

)
= 45 variables has about

1.4 million nodes, and allows us to evaluate the true probability (1− p)45G(p/(1− p))
exactly, where G(z) is the corresponding generating function (see exercise 7.1.4–25).
The results are: (a) 30/37 ≈ .811 < 35165158461687/245 ≈ .999 < 15; (b) 10/109 ≈
.092 < 4180246784470862526910349589019919032987399/(4× 1043) ≈ .105 < .12.

56. The upper bound is μ = λ3/6; the lower bound divides this by 1 + μ. [The exact
asymptotic value can be obtained using the principle of inclusion and exclusion and its
“bracketing” property, as in Eq. 7.2.1.4–(48); the result is 1 − e−μ. See P. Erdős and
A. Rényi, Magyar Tudományos Akadémia Mat. Kut. Int. Közl. 5 (1960), 17–61, §3.]
57. To compute E(X |Xuvw = 1) we sum Pr(Xu′v′w′ |Xuvw = 1) over all

(
n
3

)
choices

of u′ < v′ < w′. If {u′, v′, w′} ∩ {u, v, w} has t elements, this probability is p3−t(t−1)/2;
and there are

(
3
t

)(
n−3
3−t

)
such cases. Consequently we get

Pr(X > 0) ≥ (
n
3

)
p3/(

(
n−3
3

)
p3 + 3

(
n−3
2

)
p3 + 3

(
n−3
1

)
p2 +

(
n−3
0

)
p0).

[In this problem the lower bound turns out to be the same using either inequality; but
the derivation here was easier.]

58. Pr(X > 0) ≤ (
n
k

)
pk(k−1)/2. The lower bound, using the conditional expectation

inequality as in the previous answer, divides this by
∑k

t=0

(
k
t

)(
n−k
k−t

)
pk(k−1)/2−t(t−1)/2.

59. (a) It suffices to prove that a0b1+ a1b0 ≤ c0d1+ c1d0. The key observation is that
c1d0(c0d1 + c1d0 − a0b1 − a1b0) = (c1d0 − a0b1)(c1d0 − a1b0) + (c0c1d0d1 − a0a1b0b1).
Thus the result holds when c1d0 �= 0; and if c1d0 = 0 we have a0b1 + a1b0 = 0.

All four hypotheses hold with equality when a0 = b0 = d0 = 0 and the other
variables are 1, yet the conclusion is that 1 ≤ 2. Conversely, when b1 = c1 = 2 and the
other variables are 1, we have a1b0 < c1d0 but conclude only that 6 ≤ 6.

378

From the Library of Melissa Nuno

ptg999

MPR ANSWERS TO EXERCISES 379

(b) Let Al =
∑{a2j+l | 0 ≤ j < 2n−1} for l = 0 and l = 1, and define Bl, Cl, Dl

similarly from b2j+l, c2j+l, d2j+l. The hypotheses for j mod 2 = l and kmod 2 = m
prove that AlBm ≤ Cl|mDl&m, by induction on n. Hence, by part (a), we have the
desired inequality (A0 + A1)(B0 + B1) ≤ (C0 + C1)(D0 + D1). [This result is due
to R. Ahlswede and D. E. Daykin, Zeitschrift für Wahrscheinlichkeitstheorie und ver-

wandte Gebiete 43 (1978), 183–185, who stated it in the language of the next exercise.]
(c) Now let An = a0 + · · ·+ a2n−1, and define Bn, Cn, Dn similarly. If A∞B∞ >

C∞D∞, we’ll have AnBn > C∞D∞ for some n. But C∞D∞ ≥ CnDn, contra (b).
[In fact much more is true: We have

∑
νj+νk=n ajbk ≤

∑
νj+νk=n cjdk, for all n.

See A. Björner, Combinatorica 31 (2011), 151–164; D. Christofides, arXiv:0909.5137
[math.CO] (2009), 6 pages.]

60. (a) We can consider each set to be a subset of the nonnegative integers. Let α(S) =
α(S)[S ∈F], β(S) = β(S)[S ∈G], γ(S) = γ(S)[S ∈F � G], δ(S) = δ(S)[S ∈F � G];
then α(℘) = α(F), β(℘) = β(G), γ(℘) = γ(F �G), and δ(℘) = δ(F �G), where ℘ is the
family of all possible subsets. Since any set S of nonnegative integers can be encoded
in the usual way as the binary number s =

∑
j∈S 2

j , the desired result follows from the
four functions theorem if we let as = α(S), bs = β(S), cs = γ(S), ds = δ(S).

(b) Let α(S) = β(S) = γ(S) = δ(S) = 1 for all sets S.

61. (a) In the hinted case we can let α(S) = f(S)μ(S), β(S) = g(S)μ(S), γ(S) =
f(S)g(S)μ(S), δ(S) = μ(S); the four functions theorem yields the result. The general
case follows because we have E(fg) − E(f) E(g) = E(f̂ ĝ) − E(f̂) E(ĝ), where f̂(S) =
f(S)− f(∅) and ĝ(S) = g(S)− g(∅). [See Commun. Math. Physics 22 (1971), 89–103.]

(b) Changing f(S) to θf(S) and g(S) to φg(S) changes E(fg) − E(f) E(g) to
θφ(E(fg)− E(f) E(g)), for all real numbers θ and φ.

(c) If S and T are supported, then R = S ∩ T and U = S ∪ T are supported.
Furthermore we can write S = R ∪ {s1, . . . , sk} and T = R ∪ {t1, . . . , tl} where the
sets Si = R ∪ {s1, . . . , si} and Tj = R ∪ {t1, . . . , tj} are supported, as are their unions
Ui,j = Si ∪ Tj , for 0 ≤ i ≤ k and 0 ≤ j ≤ l. By (iii) we know that μ(Ui+1,j)/μ(Ui,j) ≤
μ(Ui+1,j+1)/μ(Ui,j+1) when 0 ≤ i < k and 0 ≤ j < l. Multiplying these inequalities
for 0 ≤ i < k, we obtain μ(Uk,j)/μ(U0,j) ≤ μ(Uk,j+1)/μ(U0,j+1). Hence μ(S)/μ(R) =
μ(Uk,0)/μ(U0,0) ≤ μ(Uk,l)/μ(U0,l) = μ(U)/μ(T).

(d) In fact, equality holds, because [j ∈S] + [j ∈T] = [j ∈S ∪ T] + [j ∈S ∩ T].
[Note: Random variables with this distribution are often confusingly called “Poisson tri-
als,” a term that conflicts with the (quite different) Poisson distribution of exercise 39.]

(e) Choose c in the following examples so that
∑

S μ(S) = 1. In each case the
supported sets are subsets of U = {1, . . . ,m}. (i) Let μ(S) = cr1r2 . . . r|S|, where
0 < r1 ≤ · · · ≤ rm. (ii) Let μ(S) = cpj when S = {1, . . . , j} and 1 ≤ j ≤ m, otherwise
μ(S) = 0. (If p1 = · · · = pm in this case, the FKG inequality reduces to Chebyshev’s
monotonic inequality of exercise 1.2.3–31.) (iii) Let

μ(S) = cμ1(S ∩ U1)μ2(S ∩ U2) . . . μk(S ∩ Uk),
where each μj is a distribution on the subsets of Uj ⊆ U that satisfies (∗∗). The
subuniverses U1, . . . , Uk needn’t be disjoint. (iv) Let μ(S) = ce−f(S), where f is
a submodular set function on the supported subsets of U : f(S ∪ T) + f(S ∩ T) ≤
f(S) + f(T) whenever f(S) and f(T) are defined. (See Section 7.6.)

62. A Boolean function is essentially a set function whose values are 0 or 1. In
general, under the Bernoulli distribution or any other distribution that satisfies the
condition of exercise 61, the FKG inequality implies that any monotone increasing

379

From the Library of Melissa Nuno

ptg999

380 ANSWERS TO EXERCISES MPR

Boolean function is positively correlated with any other monotone increasing Boolean
function, but negatively correlated with any monotone decreasing Boolean function.
In this case, f is monotone increasing but g is monotone decreasing: Adding an edge
doesn’t disconnect a graph; deleting an edge doesn’t invalidate a 4-coloring.

(Notice that when f is a Boolean function, E f is the probability that f is true
under the given distribution. The fact that covar(f, g) ≤ 0 in such a case is equivalent
to saying that the conditional probability Pr(f | g) is ≤ Pr(f).)

63. If ω is the event ‘Z0 = a and Z1 = b’, we have Z0(ω) = a and E(Z1 | Z0)(ω) =
(pa1+2pa2)/(pa0+ pa1+ pa2). Hence p01 = p02 = p20 = p21 = 0, and p10 = p12. Those
conditions are necessary and sufficient for E(Z1 |Z0) = Z0.

64. (a) No. Consider the probability space consisting of just three events (Z0, Z1, Z2) =
(0, 0,−2), (1, 0, 2), (1, 2, 2), each with probability 1/3. Call those events a, b, c. Then
E(Z1 | Z0)(a) = 0 = Z0(a); E(Z1 | Z0)(b, c) = 1

2
(0 + 2) = Z0(b, c); E(Z2 | Z1)(a, b) =

1
2
(−2 + 2) = Z1(a, b); E(Z2 |Z1)(c) = 2 = Z1(c). But E(Z2 |Z0, Z1)(a) = −2 �= Z1(a).

(b) Yes. We have
∑

zn+1
(zn+1 − zn) Pr(Z0 = z0, . . . , Zn+1 = zn+1) = 0 for all

fixed (z0, . . . , zn). Sum these to get
∑

zn+1
(zn+1 − zn) Pr(Zn = zn, Zn+1 = zn+1) = 0.

65. Observe first that E(Zn+1 | Z0, . . . , Zk) = E(E(Zn+1 | Z0, . . . , Zn) | Z0, . . . , Zk) =
E(Zn |Z0, . . . , Zk) whenever k < n. Thus E(Zm(n+1) |Z0, . . . , Zm(n)) = Zm(n) for all
n ≥ 0. Hence E(Zm(n+1) |Zm(0), . . . , Zm(n)) = Zm(n), as in the previous exercise.

66. We need to specify the joint distribution of {Z0, . . . , Zn}, and it’s not difficult to see
that there is only one solution. Let p(σ1, . . . , σn) = Pr(Z1 = σ1, . . . , Zn = σnn) when
σ1, . . . , σn are each ±1. The martingale law p(σ1 . . . σn1)(n+1)−p(σ1 . . . σn1̄)(n+1) =
σnp(σ1 . . . σn)n = σn(p(σ1 . . . σn1)+p(σ1 . . . σn1̄))n gives p(σ1 . . . σn+1)/p(σ1 . . . σn) =
(1 + 2n[σnσn+1> 0])/(2n + 2). Hence we find that Pr(Z1 = z1, . . . , Zn = zn) =
(
∏n−1

k=1 (1+ 2k[zkzk+1> 0]))/(2nn!). When n = 3, for example, the eight possible cases
z1z2z3 = 123, 123̄, . . . , 1̄2̄3̄ occur with probabilities (15, 3, 1, 5, 5, 1, 3, 15)/48.

67. (a) You “always” (with probability 1) make 2n+1− (1 + 2 + · · ·+ 2n) = 1 dollar.
(b) Your total payments are X = X0 + X1 + · · · dollars, where Xn = 2n with

probability 2−n, otherwise Xn = 0. So EXn = 1, and EX = EX0 + EX1 + · · · =∞.
(c) Let 〈Tn〉 be a sequence of uniformly random bits; and define the fair sequence

Yn = (−1)Tn2nT0 . . . Tn−1, or Yn = 0 if there is no nth bet. Then Zn = Y0 + · · ·+ Yn.
[The famous adventurer Casanova lost a fortune in 1754 using this strategy, which

he called “the martingale” in his autobiography Histoire de ma vie. A similar bet-
ting scheme had been proposed by Nicolas Bernoulli (see P. R. de Montmort, Essay
d’Analyse sur les Jeux de Hazard, second edition (1713), page 402); and the perplexities
of (a) and (b) were studied by his cousin Daniel Bernoulli, whose important paper in
Commentarii Academiæ Scientiarum Imperialis Petropolitanæ 5 (1731), 175–192, has
caused this scenario to become known as the St. Petersburg paradox.]

68. (a) Now Zn = Y1 + · · ·+ Yn, where Yn = (−1)Tn [N ≥n]. Again Pr(ZN = 1) = 1.
(b) The generating function g(z) equals z(1 + g(z)2)/2, since he must win $2

if the first bet loses. Hence g(z) = (1 − √1− z2)/z; and the desired probability is
[zn] g(z) = C(n−1)/2[n odd]/2

n, where Ck is the Catalan number
(
2k
k

)
/(k + 1).

(c) Pr(N ≥ n) = [zn] (1− zg(z))/(1− z) = [zn] (1+ z)/
√
1− z2 =

(
2�n/2�
�n/2�

)
/2�n/2�.

(d) EN = g′(1) =∞. (It’s also
∑∞

n=1 Pr(N ≥ n), where Pr(N ≥ n) ∼ 1/
√
πn.)

(e) Let pm = Pr(Zn ≥ −m) for all n ≥ 0. Clearly p0 = 1/2 and pm = (1 +
pm−1pm)/2 for m > 0; this recurrence has the solution pm = (m+ 1)/(m+ 2). So the
answer is 1/((m+ 1)(m+ 2)); it’s another probability distribution with infinite mean.

380

From the Library of Melissa Nuno

ptg999

MPR ANSWERS TO EXERCISES 381

(f) The generating function gm(z) for the number of times −m is hit satisfies
g0(z) = z/(2−z), gm(z) = (1+gm−1(z)gm(z))/2 form > 0. So gm(z) = hm(z)/hm+1(z)
for m ≥ 0, where hm(z) = 2m− (2m− 1)z, and g′m(1) = 2. [A distribution with finite

mean! See W. Feller, An Intro. to Probability Theory 2, second edition (1971), XII.2.]

69. Each permutation of n elements corresponds to a configuration of n + 1 balls in
the urn. For Method 1, the number of corresponding “red balls” is the position of
element 1; for Method 2, it is the value in position 1. For example, we’d put 3 1 2 4
into node (2, 3) with respect to Method 1 but into (3, 2) with respect to Method 2. (In
fact, Methods 1 and 2 construct permutations that are inverses of each other.)

70. Start with the permutation 1 2 . . . (c − 1) at the root, and use Method 1 of the
previous exercise to generate all n!/(c−1)! permutations in which these elements retain
that order. A permutation with j in position Pj for 1 ≤ j < c stands for Pj − Pj−1
balls of color j, where P0 = 0 and Pc = n + 1; for example, if c = 3, the permutation
3 1 4 2 would correspond to node (2, 2, 1). The resulting tuples (A1, . . . , Ac)/(n + 1)
then form a martingale for n = c, c+ 1, . . . , uniformly distributed (for each n) among
all

(
n
c−1

)
compositions of n+ 1 into c positive parts.

[We can also use this setup to deal with Pólya’s two-color model when there are
r red balls and b black balls at the beginning: Imagine r + b colors, then identify the
first r of them with red. This model was first studied by D. Blackwell and D. Kendall,
J. Applied Probability 1 (1964), 284–296.]

71. If m = r′− r and n = b′− b we must move m times to the right and n times to the
left; there are

(
m+n
n

)
such paths. Every path occurs with the same probability, because

the numerators of the fractions are r ·(r+1) · . . . ·(r′−1) ·b ·(b+1) · . . . ·(b′−1) = rmbn in

some order, and the denominators are (r+ b) · (r+ b+1) · . . . · (r′+ b′−1) = (r+ b)m+n.

The answer,
(
m+n
n

)
rmbn/(r + b)m+n, reduces to 1/(r′ + b′ − 1) when r = b = 1.

72. Since all paths to (r, b) have the same probability, this expected value is the same as
E(X1X2 . . .Xm), which is obviously 1/(m+1). (Thus theX’s are very highly correlated:
This expected value would be 1/2m if they were independent. Notice that the proba-
bility of an event such as (X2 = 1,X5 = 0,X6 = 1) is E(X2(1−X5)X6) = 1/3− 1/4.)

[The far-reaching ramifications of such exchangeable random variables are surveyed
in O. Kallenberg’s book Probabilistic Symmetries and Invariance Principles (2005).]

73. f(r, n)=r
(
n+1
r

)∑
k

(
r−1
k

)
(−1)kqn+1−r+k, where qk = ak/(k+1), by induction on r.

74. Node (r, n+2− r) on level n is reached with probability
〈
n
r−1

〉
/n!, proportional to

an Eulerian number (see Section 5.1.3). (Indeed, we can associate the permutations of
{1, . . . , n+1} that have exactly r runs with this node, using Method 1 as in exercise 69.)

Reference: Communications on Pure and Applied Mathematics 2 (1949), 59–70.

75. As before, let Rn = X0+· · ·+Xn be the number of red balls at level n. Now we have
E(Xn+1 |X0, . . . , Xn) = 1−Rn/(n+ 2). Hence E(Rn+1 |Rn) = (n+ 1)Rn/(n+ 2) + 1,
and the definition Zn = (n+ 1)Rn − (n+ 2)(n+ 1)/2 is a natural choice.

76. No. For example, let Z0 = X, Z ′0 = Y , and Z1 = Z ′1 = X + Y , where X and Y
are independent with EX = EY = 0. Then E(Z1 |Z0) = Z0 and E(Z ′1 |Z ′0) = Z ′0, but
E(Z1 + Z ′1 | Z0 + Z ′0) = 2(Z0 + Z ′0). (On the other hand, if 〈Zn〉 and 〈Z ′n〉 are both
martingales with respect to some common sequence 〈Xn〉, then 〈Zn + Z ′n〉 is also.)
77. E(Zn+1 | Z0, . . . , Zn) = E(E(Zn+1 | Z0, . . . , Zn,X0, . . . ,Xn) | Z0, . . . , Zn), which
equals E(E(Zn+1 |X0, . . . ,Xn) |Z0, . . . , Zn) because Zn is a function of X0, . . . , Xn;

381

From the Library of Melissa Nuno

ptg999

382 ANSWERS TO EXERCISES MPR

and that equals E(Zn | Z0, . . . , Zn) = Zn. (Furthermore 〈Zn〉 is a martingale with
respect to, say, a constant sequence. But not with respect to every sequence.)

A similar proof shows that any sequence 〈Yn〉 that is fair with respect to 〈Xn〉
is also fair with respect to itself.

78. E(Zn+1 |V0, . . . , Vn) = E(ZnVn+1 |V0, . . . , Vn) = Zn.
The converse holds with V0 = Z0 and Vn = Zn/Zn−1 for n > 0, provided that

Zn−1 = 0 implies Zn = 0, and that we define Vn = 1 when that happens.

79. Zn = V0V1 . . . Vn, where V0 = 1 and each Vn for n > 0 is independently equal to
q/p (with probability p) or to p/q (with probability q). Since EVn = q+ p = 1, 〈Vn〉 is
multiplicatively fair. [See A. de Moivre, The Doctrine of Chances (1718), 102–154.]

80. (a) True; in fact E(fn(Y0 . . . Yn−1)Yn) = 0 for any function fn.
(b) False: For example, let Y5 = ±1 if Y3 > 0, otherwise Y5 = 0. (Hence

permutations of a fair sequence needn’t be fair. The statement is, however, true if
the Y ’s are independent with mean zero.)

(c) False if n1 = 0 and m = 1 (or if m = 0); otherwise true. (Sequences that
satisfy E((Yn1 − EYn1) . . . (Ynm − EYnm)) = E(Yn1 − EYn1) . . .E(Ynm − EYnm) are
called totally uncorrelated. Such sequences, with EYn = 0 for all n, are not always fair;
but fair sequences are always totally uncorrelated.)

81. Assuming that X0, . . . , Xn can be deduced from Z0, . . . , Zn, we have anXn +
bnXn−1 = Zn = E(Zn+1 | Z0, . . . , Zn) = E(an+1Xn+1 + bn+1Xn | X0, . . . ,Xn) =
an+1(Xn+Xn−1)+bn+1Xn for n ≥ 1. Hence an+1 = bn, bn+1 = an−an+1 = bn−1−bn;
and we have an = F−n−1, bn = F−n−2 by induction, verifying the assumption.

[See J. B. MacQueen, Annals of Probability 1 (1973), 263–271.]

82. (a) Zn = An/Cn, where An = 4 − X1 − · · · − Xn is the number of aces and
Cn is the number of cards remaining after you’ve seen n cards. Hence EZn+1 =
(An/Cn)(An−1)/(Cn−1)+(1−An/Cn)An/(Cn−1) = An/Cn. (In every generalization
of Pólya’s urn for which the nth step adds kn balls of the chosen color, the ratio
red/(red + black) is always a martingale, even when kn is negative, as long as enough
balls of the chosen color remain. This exercise represents the case kn = −1.)

(b) This is the optional stopping principle in a bounded-time martingale.
(c) ZN = AN/CN is the probability that an ace will be next. [“Ace Now” is a

variant of R. Connelly’s game “Say Red”; see Pallbearers Review 9 (1974), 702.]

83. Zn =
∑n

k=1(Xn−EXn) is a martingale, for which we can study the bounded stop-
ping rules N ′

n(x0, . . . , xn−1) = [n<m]·Nn(x0, . . . , xn−1) for anym. But Svante Janson
suggests a direct computation, beginning with the formula SN =

∑∞
n=1Xn[N ≥n]

where N might be ∞: We have E(Xn[N ≥n]) = (EXn)(E[N ≥n]), because [N ≥n] is
a function of {X0, . . . ,Xn−1}, hence independent of Xn. And since Xn ≥ 0, we have
ESN =

∑∞
n=1 E(Xn[N ≥n]) =

∑∞
n=1(EXn) E[N ≥n] =

∑∞
n=1 E((EXn)[N ≥n]) =

E
∑∞

n=1(EXn)[N ≥n], which is E
∑N

n=1 EXn. (The equation might be ‘∞ =∞’.)

[Wald’s original papers, in Annals of Mathematical Statistics 15 (1944), 283–296,
16 (1945), 287–293, solved a somewhat different problem and proved more.]

84. (a) We have f(Zn) = f(E(Zn+1 | Z0, . . . , Zn)) ≤ E(f(Zn+1) | Z0, . . . , Zn) by
Jensen’s inequality. And the latter is E(f(Zn+1) | f(Z0), . . . , f(Zn)) as in answer 77.
[Incidentally, D. Gilat has shown that every nonnegative submartingale is 〈|Zn|〉 for
some martingale 〈Zn〉; see Annals of Probability 5 (1977), 475–481.]

(b) Again we get a submartingale, provided that we also have f(x) ≤ f(y) for
a ≤ x ≤ y ≤ b. [J. L. Doob, Stochastic Processes (1953), 295–296.]

382

From the Library of Melissa Nuno

ptg999

MPR ANSWERS TO EXERCISES 383

85. Since 〈Bn/(Rn + Bn)〉 = 〈1 − Rn/(Rn + Bn)〉 is a martingale by (27), and since
f(x) = 1/x is convex for positive x, 〈(Rn+Bn)/Bn〉 = 〈Rn/Bn+1〉 is a submartingale
by exercise 84. (A direct proof could also be given.)

86. The rule Nn+1(Z0, . . . , Zn) = [max(Z0, . . . , Zn)<x and n+ 1 < m] is bounded.
If max(Z0, . . . , Zm−1) < x then we have ZN < x, where N is defined by (31); similarly,
if max(Z0, . . . , Zm−1) ≥ x then ZN ≥ x. Hence Pr(max(Z0, . . . , Zn) ≥ x) ≤ (EZN)/x
by Markov’s inequality; and EZN ≤ EZn in a submartingale.

87. This is the probability that Zn becomes 3/4, which also is Pr(max(Z0, . . . , Zn) ≥
3/4). But EZn = 1/2 for all n, hence (33) tells us that it is at most (1/2)/(3/4) = 2/3.

(The exact value can be calculated as in the following exercise. It turns out to be∑∞
k=0

2
(4k+2)(4k+3)

= 1
2
H3/4 − 1

2
H1/2 +

1
3
= 1

4
π − 1

2
ln 2 ≈ .439.)

88. (a) We have S > 1/2 if and only if there comes a time when there are more red
balls than black balls. Since that happens if and only if the process passes through one
of the nodes (2, 1), (3, 2), (4, 3), . . . , the desired probability is p1 + p2 + · · · , where pk
is the probability that node (k + 1, k) is hit before any of (j + 1, j) for j < k.

All paths from the root to (k+1, k) are equally likely, and the paths that meet our
restrictions are equivalent to the paths in 7.2.1.6–(28). Thus we can use Eq. 7.2.1.6–(23)
to show that pk = 1/(2k − 1)− 1/(2k); and 1− 1/2 + 1/3− 1/4 + · · · = ln 2.

(b, c) If pk is the probability of hitting node ((t− 1)k + 1, k) before any previous

((t − 1)j + 1, j), a similar calculation using the t-ary ballot numbers C
(t)
pq yields pk =

(t− 1)(1/(tk − 1)− 1/(tk)). Then
∑∞

k=1 pk = 1− (1− 1/t)H1−1/t (see Appendix A).

Notes: We have Pr(S = 1/2) = 1 − ln 2, since S is always ≥ 1/2. But we cannot

claim that Pr(S ≥ 2/3) is the sum of cases that pass through (2, 1), (4, 2), (6, 3), etc.,
because the supremum might be 2/3 even though the value 2/3 is never reached. Those
cases occur with probability π/

√
27; hence Pr(S = 2/3) ≥ 2π/

√
27− ln 3 ≈ .111. A de-

termination of the exact value of Pr(S = 2/3) is beyond the scope of this book, because
we’ve avoided the complications of measure theory by defining probability only in dis-
crete spaces; we can’t consider a limiting quantity such as S to be a random variable, by
our definitions! But we can assign a probability to the event that max(Z0, Z1, . . . , Zn) >
x, for any given n and x, and we can reason about the limits of such probabilities.

With the help of deeper methods, E. Schulte-Geers and W. Stadje have proved
that the supremum is reached within n steps, a.s. Hence Pr(S = 2/3) = 2π/

√
27− ln 3;

indeed, Pr(S is rational) = 1, since only rationals are reached; and Pr(S = (t− 1)/t) =
(2−3/t)H1−1/t−(1−2/t)H1−2/t−(t−2)/(t−1). [J. Applied Prob. 52 (2015), 180–190.]
89. Set Yn = cn(Xn − pn), an = −cnpn, bn = cn(1 − pn). (Incidentally, when c1 =
· · · = cn = 1, exercise 1.2.10–22 gives an upper bound that has quite a different form.)

90. (a) Apply Markov’s inequality to Pr(e(Y1+···+Yn)t ≥ etx).
(b) eyt ≤ e−pt(q−y)+eqt(y+p) = ef(t)+yeg(t) because the function eyt is convex.
(c) We have f ′(t) = −p+ pet/(q + pet) and f ′′(t) = pqet/(q + pet)2; hence f(0) =

f ′(0) = 0. And f ′′(t) ≤ 1/4, because the geometric mean of q and pet, (pqet)1/2, is less
than or equal to the arithmetic mean, (q + pet)/2.

(d) Set c = b− a, p = −a/c, q = b/c, Y = Y/c, t = ct, h(t) = eg(ct)/c.

(e) In E((ec
2
1t
2/4 + Y1h1(t)) . . . (ec

2
nt

2/4 + Ynhn(t))) the terms involving hk(t) all
drop out, because 〈Yn〉 is fair. So we’re left with the constant term, ect

2/4.
(f) Let t = 2x/c, to make ct2/4− xt = −x2/c.

91. E(Zn+1 |X0, . . . , Xn) = E(E(Q |X0, . . . , Xn,Xn+1) |X0, . . . , Xn), and this is equal
to E(Q |X0, . . . , Xn) by formula (∗) in answer 35. Apply exercise 77.

383

From the Library of Melissa Nuno

ptg999

384 ANSWERS TO EXERCISES MPR

92. Q0 = EXm = 1/2. If n < m we have Qn = E(Xm |X0, . . . ,Xn), which is the
same as E(Xn+1 |X0, . . . , Xn) (see exercise 72); and this is (1+X1+ · · ·+Xn)/(n+2),
which is the same as Zn in (27). If n ≥ m, however, we have Qn = Xm.

93. Everything goes through exactly as before, except that we must replace the quan-
tity (m− 1)t/mt−1 by the generalized expected value, which is

∑m
k=1

∏t
n=1(1− pnk).

94. If the X’s are dependent, the Doob martingale still is well defined; but when
we write its fair sequence as an average of Δ(x1, . . . , xt) there is no longer a nice
formula such as (40). In any formula for Δ that has the form

∑
x px(Q(. . . xn . . .) −

Q(. . . x . . .)), Pr(Xn = xn,Xn+1 = xn+1, . . .)/(Pr(Xn = xn) Pr(Xn+1 = xn+1, . . .))
must equal

∑
x px, so it must be independent of xn. Thus (41) can’t be used.

95. False; the probability of only one red ball at level n is 1/(n+1) = Ω(n−1). But there
are a.s. more than 100 red balls, because that happens with probability (n−99)/(n+1).
96. Exercise 1.2.10–21, with εn equal to the bound on |X − n/2|, tells us that (i) is
q.s. and that (i), (ii), (iii) are a.s. To prove that (iv) isn’t a.s., we can use Stirling’s
approximation to show that

(
n

n/2±k
)
/2n is Θ(n−1/2) when k =

√
n; consequently

Pr(|X| < √n) = Θ(1). A similar calculation shows that (ii) isn’t q.s.

97. We need to show only that a single bin q.s. receives that many. The probability
generating function for the number of items H that appear in any particular bin is
G(z) = ((n− 1 + z)/n)N , where N = �n1+δ�. If r = 1

2
nδ, we have

Pr(H ≤ r) ≤
(
1

2

)−r
G
(
1

2

)
= 2r

(
1− 1

2n

)�2nr�
≤ 2r

(
1− 1

2n

)2nr−1
≤ 2r+1e−r,

by 1.2.10–(24). And if r = 2nδ we have

Pr(H ≥ r) ≤ 2−rG(2) = 2−r
(
1 +

1

n

)�nr/2�
≤ 2−r

(
1 +

1

n

)nr/2
≤ 2−rer/2,

by 1.2.10–(25). Both are exponentially small. [See Knuth, Motwani, and Pittel,
Random Structures & Algorithms 1 (1990), 1–14, Lemma 1.]

98. Let En = ER, where R is the number of reduction steps; and suppose F (n) = k
with probability pk, where

∑n
k=1 pk = 1 and

∑n
k=1 kpk = g ≥ gn. (The values of p1,

. . . , pn, and g might be different, in general, every time we compute F (n).)

Let Σba =
∑b

j=a 1/gj . Clearly E0 = 0. And if n > 0, we have by induction

En = 1 +
n∑

k=1

pkEn−k ≤ 1 +
n∑

k=1

pkΣ
n−k
1 = 1 +

n∑
k=1

pk(Σ
n
1 − Σnn−k+1)

= Σn1 + 1−
n∑

k=1

pkΣ
n
n−k+1 ≤ Σn1 + 1−

n∑
k=1

pk
k

gn
≤ Σn1 .

[See R. M. Karp, E. Upfal, and A. Wigderson, J. Comp. and Syst. Sci. 36 (1988), 252.]

99. The same proof would work, provided that induction could be justified, if we were
to do the sums from k = −∞ to n and define Σba = −

∑a−1
j=b+1 1/gj when a > b. (For

example, that definition gives −Σnn+3 = 1/gn+1 + 1/gn+2 ≤ 2/gn.)

And in fact it does become a proof, by induction on m, that we have Em,n ≤ Σn1
for all m,n ≥ 0, where Em,n = Emin(m,R). Indeed, we have E0,n = Em+1,0 = 0;
and Em+1,n = 1 +

∑n
k=−∞ pkEm,n−k when n > 0. [This problem is exercise 1.6 in

Randomized Algorithms by Motwani and Raghavan (1995). Svante Janson observes
that the random variable Zm = ΣXm1 +min(m,R) is a supermartingale, where Xm is
the value of X after m iterations, as a consequence of this proof.]

384

From the Library of Melissa Nuno

ptg999

MPR ANSWERS TO EXERCISES 385

100. (a)
∑m

k=1 kpk ≤ Emin(m,T) = p1+2p2+ · · ·+mpm+mpm+1+ · · ·+mp∞ ≤ ET .

(b) Emin(m,T) ≥ mp∞ for all m. (We assume that ∞ · p = (p > 0? ∞: 0).

101. (Solution by Svante Janson.) If 0 < t < min(p1, . . . , pm) = p, we have E etX =∏m
k=1 E e

tXk =
∏m

k=1 pk/(e
−t−1+pk) <

∏m
k=1 pk/(pk−t), because e−t−1 > −t. Set t =

θ/μ, and note that pk ln(1−t/pk) ≥ p ln(1−t/p) ≥ 1
μ
ln(1−tμ) = t

θ
ln(1−θ). By 1.2.10–

(25), therefore, Pr(X ≥ rμ) ≤ e−rtμ
∏m

k=1 pk/(pk−t) = exp(−rθ−∑m
k=1 ln(1−t/pk)) ≤

exp(−rθ −∑m
k=1(t/pk)(ln(1− θ))/θ) = exp(−rθ − ln(1− θ)). Choose θ = (r− 1)/r to

get the desired bound re1−r. (The bound is nearly sharp when m = 1 and p is small,
since Pr(X ≥ r/p) = (1− p)
r/p�−1 ≈ e−r.)

102. Applying exercise 101 with μ ≤ s1 + · · · + sm and r = lnn gives probability
O(n−1 logn) that (s1 + · · · + sm)r trials aren’t enough. And if r = f(n) lnn, where
f(n) is any increasing function that is unbounded as n→∞, the probability that skr
trials don’t obtain coupon k is superpolynomially small. So is the probability that any
one of a polynomial number of such failures will occur.

103. (a) The recurrence p0ij = [i= j], p(n+1)ij =
∑2

k=0 pnik([f0(k)= j]+[f1(k)= j])/2
leads to generating functions gij =

∑∞
n=0 pnijz

n that satisfy gi0 = [i=0]+(gi0+gi1)z/2,
gi1 = [i=1] + (gi0 + gi2)z/2, gi2 = [i=2] + (gi1 + gi2)z/2. From the solution gi0 =
A+B+C, gi1 = A−2B, gi2 = A+B−C, A = 1

3
/(1−z), B = 1

6
(1−3[i=1])/(1+z/2),

and C = 1
2
([i=0]− [i=2])/(1− z/2), we conclude that the probability is 1

3
+O(2−n);

in fact it is always either �2n/3�/2n or �2n/3�/2n. The former occurs if and only if
i �= j and n is even, or i+ j = 2 and n is odd.

(b) Letting g012 = z
2
(g001 + g112), g001 = z

2
([j=0] + g011), etc., yields the

generating function g012 = ([j �=1] + [j=1]z)z2/(4 − z2). Hence each j occurs with
probability 1/3, and the generating function for N is z2/(2−z); mean = 3, variance = 2.

(c) Now g001 =
z
2
([j=0] + g112), etc.; the output is never 1; 0 and 2 are equally

likely; and N has the same distribution as before.

(d) Functional composition isn’t commutative, so the stopping criterion is differ-
ent: In the second case, 111 cannot occur unless the previous step had 000 or 222. The
crucial difference is that, without stopping, process (b) becomes fixed at coalescence;
process (c) continues to change a0a1a2 as n increases (although all three remain equal).

(e) If T is even, sub(T) returns (−1, 0, 1, 2) with probability (2, (2T − 1)/3,
(2T − 4)/3, (2T − 1)/3)/2T . Thus the supposed alternative to (b) will output 0 with

probability 1
4
+ 5

32
+ 85

4096
+ · · · = 1

3

∑∞
k=1 2

k+1(22
k− 1)/22

k+1 ≈ 0.427, not 1/3.

(f) Change sub(T) to use consistent bits XT , XT−1, . . . , X1 instead of generating
new random bits X each time; then the method of (b) is faithfully simulated. (The
necessary consistency can be achieved by carefully resetting the seed of a suitable
random number generator at appropriate times.)

[The technique of (f) is called “coupling from the past” in a monotone Monte Carlo
simulation. It can be used to generate uniformly random objects of many important
kinds, and it runs substantially faster than method (b) when there are thousands or
millions of possible states instead of just three. See J. G. Propp and D. B. Wilson,
Random Structures & Algorithms 9 (1996), 223–252.]

104. Let q = 1− p. The probability of output (0, 1, 2) in (b) is (q2, 2pq, p2); in (c) it is
(p2+pq2, 0, q2+qp2). In both casesN has generating function (1−pq(2−z))z2/(1−pqz2),
mean 3/(1− pq)− 1, variance (5− 2pq)pq/(1− pq)2.

105. We have g0 = 1 and ga = z(ga−1 + ga+1)/2 for 0 < a < n/2.

385

From the Library of Melissa Nuno

ptg999

386 ANSWERS TO EXERCISES MPR

If n = 2m is even, let ga = zatm−a/tm for 0 ≤ a ≤ m. The polynomials tk
defined by t0 = t1 = 1, tk+1 = 2tk − z2tk−1 fill the bill, because they make gm =
zgm−1. The generating function T (w) =

∑∞
m=0 tmw

m = (1 − w)/(1 − 2w + w2z2)
now shows, after differentiation by z, that we have t′m(1) = −m(m − 1) and t′′m(1) =
(m2 − 5m + 3)m(m − 1)/3; hence t′′m(1) + t′m(1) − t′m(1)

2 = 2
3
(m2 −m4). The mean

and variance, given a, are therefore a− (m− a)(m− a− 1)+m(m− 1) = a(n− a) and
2
3
((m− a)2 − (m− a)4 −m2 +m4) = 1

3
((n− a)2 + a2 − 2)a(n− a), respectively.

When n = 2m − 1 we can write ga = zaum−a/um for 0 ≤ a ≤ m, with um+1 =
2um − z2um−1. In this case we want u0 = 1 and u1 = z, so that gm = gm−1. From
U(w) =

∑∞
m=0 umw

m = (1+(z−2)w)/(1−2w+w2z2) we deduce u′m(1) = −m(m−2)
and u′′m(1) = m(m − 1)(m2 − 7m + 7)/3. It follows that, also in this case, the mean
number of steps in the walk is a(n−a) and the variance is 1

3
((n−a)2+a2−2)a(n−a).

[The polynomials tm and um in this analysis are disguised relatives of the classical
Chebyshev polynomials defined by Tm(cos θ) = cosmθ, Um(cos θ) = sin(m+ 1)θ/sin θ.
Let us also write Vm(cos θ) = cos(m − 1

2
)θ/cos 1

2
θ. Then Vm(x) = (2 − 1/x)Tm(x) +

(1/x− 1)Um(x); and we have tm = zmTm(1/z), um = zmVm(1/z).]

106. Before coalescing, the array a0a1 . . . ad−1 always has the form ar(a+1) . . . (b−1)bs
for some 0 ≤ a < b < d, r > 0, and s > 0, where r + s+ b− a = d+ 1. Initially a = 0,
b = d−1, r = s = 1. The behavior of the algorithm while r+s = t is like a random walk
on the t-cycle, as in the previous exercise, starting at a = 1. Let Gt be the generating
function for that problem, which has mean t− 1 and variance 2

(
t
3

)
. Then this problem

has the generating function G2G3 . . . Gd; so its mean is
∑d

k=2(k − 1) =
(
d
2

)
, and the

variance is
∑d

k=2 2
(
k
3

)
= 2

(
d+1
4

)
.

107. (a) If the probabilities can be renumbered so that p1 ≤ q1 and p2 ≤ q2, the
five events of Ω can have probabilities p1, p2, q1 − p1, q2 − p2, and q3, because p3 =
(q1 − p1) + (q2 − p2) + q3. But if that doesn’t work, we can suppose that p1 < q1 ≤
q2 ≤ q3 < p2 ≤ p3. Then p1, q1 − p1, p1 + p2 − q1, p3 − q3, and q3 are nonnegative.

(b) Give Ω’s events the probabilities 1
12 ,

2
12 ,

3
12 ,

6
12 .

(c) For example, let p1 =
1
9
, p2 = p3 =

4
9
, q1 = q2 = q3 =

1
3
.

108. Let pk = Pr′(X = k) and qk = Pr′′(Y = k). The set
⋃
n{
∑

k≤n pk,
∑

k≤n qk}
divides the unit interval [0 . . 1) into countably many subintervals, which we take as the
set Ω of atomic events ω. Let X(ω) = n if and only if ω ⊆ [

∑
k<n pk . .

∑
k≤n pk); a

similar definition works for Y (ω). And X(ω) ≤ Y (ω) for all ω.

109. (a) We’re given that p1 + p3 ≤ q1 + q3, p2 + p3 ≤ q2 + q3, and p3 ≤ q3. (Also
that 0 ≤ 0 and p1 + p2 + p3 ≤ q1 + q2 + q3; but those inequalities always hold.) We
must find a coupling with p12 = p21 = p31 = p32 = 0, because 1 �� 2, 2 �� 1, 3 �� 1, and
3 �� 2. In the previous problem we were given that p2 + p3 ≤ q2 + q3 and p3 ≤ q3, and
we had to find a coupling with p21 = p31 = p32 = 0.

(b) Let A↑ = {x | x � a for some a ∈ A} and B↓ = {x | x � b for some b ∈ B}.
We’re given that Pr′(X∈A↑) ≤ Pr′′(Y ∈A↑) for all A. Let A = {1, . . . , n}\B↓, so that
Pr′(X ∈ B↓) = 1− Pr′(X ∈ A). The result follows because A = A↑.

(c) Remove all arcs xi −−→ xj from the network when i �� j. Then a blocking
pair (I, J) has the property that i � j implies i ∈ I or j ∈ J . Let A = {x | x � a
for some a /∈ J} and B = {1, . . . , n} \ A. Then A ⊆ I, B ⊆ J , and B = B↓. Hence∑

i∈I pi +
∑

j∈J qj ≥
∑

i∈A pi +
∑

j∈B qj ≥
∑

i∈A qi +
∑

j∈B qj = 1.

[See K. Nawrotzki, Mathematische Nachrichten 24 (1962), 193–200; V. Strassen,
Annals of Mathematical Statistics 36 (1965), 423–439.]

386

From the Library of Melissa Nuno

ptg999

MPR ANSWERS TO EXERCISES 387

110. (a) The result is trivial if r = 1. Otherwise consider the probability distributions
p′k = (pk − rk)/(1− r) and q′k = (qk − rk)/(1− r); use the coupling pij = (1− r)p′iq′j +
rj [i= j]. [See W. Doeblin, Revue mathématique de l’Union Interbalkanique 2 (1938),
77–105; R. L. Dobrushin, Teoriya Veroyatnostĕı i ee Primeneni�ıa 15 (1970), 469–497.]

(b) Yes, because the (p′, q′) distribution satisfies the hypotheses of that exercise.

111. (a) Here are the 60 triples 1π 3π 4π, with the minima in bold type:

134 163 123 126 142 142 153 145 163 154 245 234 534 563 623 526 632 652 534 643
356 645 246 234 435 463 524 423 642 532 461 351 361 641 251 231 341 531 321 421
512 412 415 315 316 615 216 216 415 316 623 526 652 452 564 354 465 364 256 265

(b) Both SA and SB lie in A∪B. Each element of A∪B is equally likely to have
the minimum value aπ; exactly |A∩B| of those elements have that value as their sketch.

(c) |A ∩ B ∩ C|/|A ∪B ∪ C|.
Notes: The ratio |A∩B|/|A∪B| is a useful measure of similarity, called the

“Jaccard index” because Paul Jaccard used it to compare different Swiss ecological
sites according to the sets of plant species seen at each place [Bulletin de la Société

Vaudoise des Sciences Naturelles 37 (1901), 249]. It is commonly used today to rank
the similarity between web pages, based on a certain set of words in each page.

Minwise independence was introduced by Andrei Broder for that application in
1997, using n = 264 and a method of identifying roughly 1000 words A on a typical
web page. By calculating, say, independent sketches S1(A), . . . , S100(A) for each
page, the number of j such that Sj(A) = Sj(B) gives a highly reliable and quickly
computable estimate of the Jaccard index. A perfectly minwise independent family is
impossible in practice when n is huge, but the associated theory has led to approximate
“minhash” algorithms that work well. See A. Z. Broder, M. Charikar, A. M. Frieze,
and M. Mitzenmacher, J. Computer and System Sciences 60 (2000), 630–659. See also
the related, independent work by K. Mulmuley, Algorithmica 16 (1996), 450–463.

112. (a) Such a rule breaks ties properly, provided that the number of π with∞’s in B
is a multiple of n−m. Each B can have its own rule.

(b) In fact we can produce families whose permutations are all obtained from
N/n = d “seeds” by cyclic shifts, as in exercise 111. Begin with m = 1 and a table
of N = lcm(1, 2, . . . , n) partial permutations whose entries πij for 1 ≤ i ≤ N and
1 ≤ j ≤ n are entirely blank, except that πij = 1 for each pair ij with (j−1)d < i ≤ jd
and 1 ≤ j ≤ n. When n = 4, for instance, the initial tableau

1��� 1��� 1��� �1�� �1�� �1�� ��1� ��1� ��1� ���1 ���1 ���1

represents N = 12 truncated permutations with m = 1. We’ll insert some 2s next.

Let A be a subset of size n − m that is all blank, in some π. Each A oc-
curs equally often (as in uniform probing, Section 6.4); so the number of such π is
N/

(
n

n−m
)
. Fortunately this is a multiple of n − m, because exercise 1.2.6–48 tells us

that N/((n−m)
(

n
n−m

)
) = N

∑m
k=0(−1)k

(
m
k

)
/(n−m+ k).

Take n−m such π and insertm+1 into different positions within them. Then find
another such A, if possible, and repeat the process until no blank subsets of size n−m
remain. Then set m← m+ 1, and continue in the same way until m = n.

It’s not hard to see that the insertions can be done so that πj , πd+j , . . . , π(n−1)d+j
are maintained as cyclic shifts of each other. When n = 4 the 2s are essentially forced:

12�� 1�2� 1��2 �12� �1�2 21�� ��12 2�1� �21� 2��1 �2�1 ��21

387

From the Library of Melissa Nuno

ptg999

388 ANSWERS TO EXERCISES MPR

But then there are two ways to fill the two cases with A = {3, 4}:
123� 1�2� 13�2 �123 �1�2 21�3 3�12 2�1� �213 23�1 �2�1 3�21
12�3 1�2� 13�2 312� �1�2 213� �312 2�1� �213 2�31 �2�1 3�21

Adopting the first of these leads to two ways to fill A = {2, 4}:
123� 132� 13�2 �123 �132 21�3 3�12 2�13 �213 23�1 32�1 3�21
123� 1�23 13�2 �123 31�2 21�3 3�12 231� �213 23�1 �231 3�21

Here A is a cyclic shift of itself, but consistent placement is always possible.

[See Yoshinori Takei, Toshiya Itoh, and Takahiro Shinozaki, IEICE Transactions

on Fundamentals E83-A (2000), 646–655, 747–755.]

113. (a) The probability is zero if l ≥ k or r > n−k. Otherwise the result follows if we
can prove it in the “complete” case when l = k− 1 and r = n− k, because we can sum
the probabilities of complete cases over all ways to specify which of the unconstrained
elements are < k and which are > k.

To prove the complete case, we may assume that ai = i, b = k, and cj = k + j
for 1 ≤ i ≤ l = k − 1 and 1 ≤ j ≤ r = n − k. The probability can be computed
via the principle of inclusion and exclusion, because we know Pr(mina∈A aπ = kπ) =
1/(n − k + t) = PB whenever A = {k, . . . , n} ∪ B and B consists of t elements less
than k. For example, if k = 4 the probability that 4π = 4 and {1π, 2π, 3π} = {1, 2, 3}
is P∅−P{1}−P{2}−P{3}+P{1,2}+P{1,3}+P{2,3}−P{1,2,3}; each of those probabilities
is correct for truly random π.

(b) This event is the disjoint union of complete events of type (a). [See A. Z.
Broder and M. Mitzenmacher, Random Structures & Algorithms 18 (2001), 18–30.]

Notes: The function ψ(n) = ln(lcm(1, 2, . . . , n)) =
∑

pk≤n[pprime] ln p was
introduced by P. L. Chebyshev [see J. de mathématiques pures et appliquées 17 (1852),
366–390], who proved that it is Θ(n). Refinements by Ch.-J. de la Vallée Poussin
[Annales de la Société Scientifique de Bruxelles 20 (1896), 183–256] showed that in fact
ψ(n) = n + O(ne−C logn) for some positive constant C. Thus lcm(1, 2, . . . , n) grows
roughly as en, and we cannot hope to generate a list of minwise independent permuta-
tions when n is large; the length of such a list is 232,792,560 already for 19 ≤ n ≤ 22.

114. First assume that |Sj | = dj + 1 for all j, and let gj(x) =
∏

s∈Sj (x − s). We

can replace x
dj+1

j by x
dj+1

j − gj(xj), without changing the value of f(x1, . . . , xn) when
xj ∈ Sj . Doing this repeatedly until every term of f has degree ≤ dj in each variable xj
will produce a polynomial that has at least one nonroot in S1 × · · · × Sn, according to
exercise 4.6.1–16. [See N. Alon, Combinatorics, Probab. and Comput. 8 (1999), 7–29.]

Now in general, if there were at most |S1|+· · ·+|Sn|−(d1+· · ·+dn+n) nonroots,
we could eliminate them one (or more) at a time, by removing an element from any Sj
for which |Sj | > dj + 1. Contradiction.

(This inequality also implies stronger lower bounds when the sets Sj are large.
If, for example, d1 = · · · = dn = d and if each |Sj | ≥ s, where s = d+ 1 + �d/(n− 1)�,
we can decrease each |Sj | to s and increase the right-hand side. For further asymptotic
improvements see Béla Bollobás, Extremal Graph Theory (1978), §6.2 and §6.3.)
115. Representing the vertex in row x and column y by (x, y), if all points could be
covered we’d have f(x, y) =

∏p
j=1(x−aj)

∏q
j=1(y−bj)

∏r
j=1(x+y+cj)(x−y+dj) = 0,

for all 1 ≤ x ≤ m and 1 ≤ y ≤ n and for some choices of aj , bj , cj , dj . But f has
degree p+ q + 2r = m+ n− 2, and the coefficient of xm−1yn−1 is ±(r

�r/2�
) �= 0.

388

From the Library of Melissa Nuno

ptg999

MPR ANSWERS TO EXERCISES 389

116. Let gv =
∑{xe | v ∈ e} for each vertex v, including xe twice if e is a loop from

v to itself. Apply the nullstellensatz with f =
∏

v(1 − gp−1v) −∏
e(1 − xe) and with

each Sj = {0, 1}, using mod p arithmetic. This polynomial has degree m, the number
of edges and variables, because the first product has degree (p − 1)n < m; and the
coefficient of

∏
e xe is (−1)m �= 0. Hence there is a solution x that makes f(x) nonzero.

The subgraph consisting of all edges with xe = 1 in this solution is nonempty and
satisfies the desired condition, because gv(x) mod p = 0 for all v.

(This proof works also if we consider that a loop contributes just 1 to the degree.
See N. Alon, S. Friedland, and G. Kalai, J. Combinatorial Theory B37 (1984), 79–91.)

117. If ω = e2πi/m, we have EωjX =
∑n

k=0

(
n
k

)
pk(1 − p)n−kωjk = (ωjp + 1 − p)n.

Also |ωjp + 1 − p|2 = p2 + (1 − p)2 + p(1 − p)(ωj + ω−j) = 1 − 4p(1 − p) sin2(πj/m).
Now sinπt ≥ 2t for 0 ≤ t ≤ 1/2. Hence, if 0 ≤ j ≤ m/2 we have |ωjp + 1 − p|2 ≤
1 − 16p(1− p)j2/m2 ≤ exp(−16p(1− p)j2/m2); if m/2 ≤ j ≤ m we have sin(πj/m) =
sin(π(m− j)/m). Thus

∑m−1
j=1 |EωjX | ≤ 2

∑m−1
j=1 exp(−8p(1− p)j2n/m2).

The result follows, since Pr(X modm = r) = 1
m

∑m−1
j=0 ω−jr EωjX . [S. Janson

and D. E. Knuth, Random Structures & Algorithms 10 (1997), 130–131.]

118. Indeed, (22) with Y = X − x yields more (when we also apply exercise 47):

Pr(X ≥ x) ≥ Pr(X > x) ≥ (EX − x)2

E(X − x)2
=

(EX − x)2

EX2 − x(2EX − x)

≥ (EX − x)2

EX2 − xEX
≥ (EX − x)2

EX2 − x2
.

(The attribution of this result to Paley and Zygmund is somewhat dubious. They did,
however, write an important series of papers [Proc.Cambridge Philosophical Society 26
(1930), 337–357, 458–474; 28 (1932), 190–205] in which a related inequality appeared
in the proof of Lemma 19.)

119. Let f(x, t) = Pr(U ≤ V ≤W and V ≤ (1− t)U + tW), g(x, t) = Pr(U ≤W ≤ V
and W ≤ (1− t)U + tV), h(x, t) = Pr(W ≤ U ≤ V and U ≤ (1− t)W + tV). We want
to prove that f(x, t) + g(x, t) + h(x, t) = t. Notice that, if U = 1 − U , V = 1 − V ,
W = 1−W , we have Pr(W ≤ U ≤ V and U ≥ (1− t)W + tV) = Pr(V ≤ U ≤ W and
U ≤ tV +(1− t)W). Hence x

2 −h(x, t) = f(1−x, 1− t), and we may assume that t ≤ x.

Clearly g(x, t) =
∫ x
0

du
x

∫ 1
x

dv
1−x t(v − u) = t

2 . And t ≤ x implies that

f(x, t) =
∫ x
(x−t)/(1−t)

du
x

∫ (1−t)u+t
x

dv
1−x (1− (v − (1− t)u)/t) = t2(1− x)2/(6(1− t)x);

h(x, t) =
∫ 1
x

dv
1−x

(∫ vt
0

du
x
u+

∫ x
vt

du
x

t
1−t (v − u)

)
= t

2
− f(x, t).

Instead of this elaborate calculation, Tamás Terpai has found a much simpler
proof: Let A = min(U, V,W), M = 〈UVW 〉, and Z = max(U, V,W). Then the
conditional distribution of M , given A and Z, is a mixture of three distributions:
Either A = U , Z = V , and M is uniform in [A . . Z]; or A = U , Z = W , and M is
uniform in [x . . Z]; or A =W , Z = V , and M is uniform in [A . . x]. (These three cases
occur with respective probabilities (Z−A,Z −x, x−A)/(2Z − 2A), but we don’t need
to know that detail.) The overall distribution of M , being an average of conditional
uniform distributions over all A ≤ x and Z ≥ x, is therefore uniform.

[See S. Volkov, Random Struct. & Algorithms 43 (2013), 115–130, Theorem 5.]

120. See J. Jabbour-Hattab, Random Structures & Algorithms 19 (2001), 112–127.

389

From the Library of Melissa Nuno

ptg999

390 ANSWERS TO EXERCISES MPR

121. (a) D(y ||x) = 1
5
lg 6

5
+ 2

15
lg 4

5
≈ .0097; D(x||y) = 1

6
lg 5

6
+ 1

6
lg 5

4
≈ .0098.

(b) We have E(ρ(X) lg ρ(X)) ≥ (E ρ(X)) lg E ρ(X) by Jensen’s inequality (20);
and E ρ(X) =

∑
t y(t) = 1, so the logarithm evaluates to 0.

The question about zero is the hard part of this exercise. We need to observe that
the function f(x) = x lg x is strictly convex, in the sense that equality holds in (19) only
when x = y. Thus we have (EZ) lg EZ = E(Z lgZ) for a positive random variable Z
only when Z is constant. Consequently D(y ||x) = 0 if and only if x(t) = y(t) for all t.

(c) Let x̂(t) = x(t)/p and ŷ(t) = y(t)/q be the distributions of X and Y within T .
Then 0 ≤ D(ŷ ||x̂) =∑

t∈T ŷ(t) lg(ŷ(t)/x̂(t)) = E(lg ρ(Y) |Y ∈ T) + lg(p/q).

(d) D(y ||x) = (E lgm)−HY = lgm−HY . (Hence, by (b), the maximum entropy
of any such random variable Y is lgm, attainable only with the uniform distribution.
Intuitively, HY is the number of bits that we learn when Y is revealed.)

(e) IX,Y = −HZ −
∑

u,v z(u, v)(lg x(u) + lg y(v)) = −HZ +
∑

u x(u) lg(1/x(u)) +∑
v y(v) lg(1/y(v)), because

∑
v z(u, v) = x(u) and

∑
u z(u, v) = y(v).

(f) Conditioning IX,Z = HX + HZ − HX,Z on Y gives 0 ≤ I(X,Z)|Y = HX|Y +
HZ|Y −H(X,Z)|Y = HX|Y + (HY,Z −HY)− (HX,Y,Z −HY).

122. (a) D(y ||x) =∑∞
t=0(3

t/4t+1) lg(3t/2t+1) = lg 27
16 ≈ 0.755; D(x||y) = lg 4

3 ≈ 0.415.

(b) Let q = 1− p and t = pn+ u
√
n. Then we have

y(t) =
e−u

2/(2pq)√
2πpqn

exp

((
u

2q
− u

2p
+

u3

6p2
− u3

6q2

)
1√
n
+O

(
1

n

))
;

ln ρ(t) = −u
2

2q
− 1

2
ln q +

(
u

2q
− u3

6q2

)
1√
n
+O

(
1

n

)
.

By restricting |u| ≤ nε and trading tails (see 7.2.1.5–(20)), we obtain

D(y ||x) = 1√
2πpqn

∫ ∞

−∞
e−u

2/(2pq)
(
− u2

2q ln 2
− 1

2
lg q
)
du
√
n+O

(
1

n

)
=

1

2 ln 2

(
ln

1

1− p
− p
)
+O

(
1

n

)
.

In this case D(x||y) is trivially ∞, because x(n+ 1) > 0 but y(n+ 1) = 0.

123. Since pk+1 = pky(t)/zk(t) we have ρ(t) = (1 − pk)pk+1/(pk(1 − pk+1)). [This
relation was the original motivation that led S. Kullback and R. A. Leibler to define
D(y ||x), in Annals of Mathematical Statistics 22 (1951), 79–86.]

124. Let m = c22D(y||x) and g(t) = f(t)[ρ(t)≤m]; thus g(t) = f(t) except with prob-
ability Δc. We have |E(f)−En(f)| = (E(f)−E(g))+|E(g)−En(g)|+(En(f)−En(g)).
The Cauchy–Schwarz inequality (exercise 1.2.3–30) implies that the first and last are
bounded by ‖f‖√Δc, because f(t)− g(t) = f(t)[ρ(t)>m].

Now var(ρ(X)g(X)) ≤ E(ρ(X)2g(X)2) ≤ mE(ρ(X)f(X)2) = mE(f(Y)2) =

m‖f‖2. Hence (E(g)− En(g))
2
= varEn(g) = var(ρ(X)g(X))/n ≤ ‖f‖2/c2.

Consider now the case c < 1. From Markov’s inequality we have Pr(ρ(X) > m) ≤
(E ρ(X))/m = 1/m. Also E(ρ(X)[ρ(X)≤m]) = E[ρ(Y)≤m] = 1−Δc. Consequently
Pr(En(1) ≥ a) ≤ Pr(max1≤k≤n ρ(Xk) > m) + Pr(

∑n
k=1 ρ(Xk)[ρ(Xk)≤m] ≥ na) ≤

n/m+ E(
∑n

k=1 ρ(Xk)[ρ(Xk)≤m])/(na) = c2 + (1−Δc)/a.

[S. Chatterjee and P. Diaconis, Annals of Applied Prob. 28 (2018), 1099–1135.]

390

From the Library of Melissa Nuno

ptg999

MPR ANSWERS TO EXERCISES 391

125. (a) From a2n = an−1an+1 we deduce that an = cxn for some c ≥ 0 and x ≥ 0.

(b) It remains log-convex ⇐⇒ ca1 ≥ a20; it remains log-concave ⇐⇒ ca1 ≤ a20.
(The latter condition always holds in the important case c = 0.)

(c) If am−1an+1 > 0 we have am/am−1 ≥ am+1/am ≥ · · · ≥ an+1/an, because
there are no internal zeros. (And the analogous result holds for log-convexity.)

(d) If xz ≥ y2 and XZ ≥ Y 2 and x, y, z,X, Y, Z > 0, we have (x+X)(z + Z)−
(y+Y)2 ≥ (x+X)(y2/x+Y 2/X)− (y+Y)2 = (x/X)(Y −Xy/x)2 ≥ 0. [L. L. Liu and
Y. Wang, Advances in Applied Mathematics 39 (2007), 455.]

(e) Let cn =
∑

k

(
n
k

)
akbn−k. Clearly c21 ≤ c0c2. And cn =

∑
k

(
n−1
k

)
an−1−kbk+1 +∑

k

(
n−1
k

)
ak+1bn−1−k, so we can apply (c) and induction on n to the shifted sequences.

[H. Davenport and G. Pólya, Canadian Journal of Mathematics 1 (1949), 2–3.]

(f) Yes: Let ak = bk = 0 when k < 0, and cn =
∑

k akbn−k. Then we have

c2n − cn−1cn+1 =
∑

0≤j≤k
(ajak − aj−1ak+1)(bn−jbn−k − bn+1−jbn−1−k),

which is a special case of the Binet–Cauchy identity (exercise 1.2.3–46) with m = 2.

(g) Yes, but a more intricate proof seems to be needed. We have cn = t00,
cn+1 = t01 + t10, and cn+2 = t02 + 2t11 + t20, where tij =

∑
k

(
n
k

)
ak+ibn−k+j ; hence

c2n+1 − cncn+2 = (t201 − t00t02) + (t210 − t00t20) + 2(t01t10 − t00t11). We will show that
each of these parenthesized terms is nonnegative.

Let b′j =
(
n
j

)
bj . Then the sequence 〈b′j〉 is log-concave; and ti0 is the (n + i)th

term of the sequence
∑

k akb
′
n−k, which is log-concave by (f). Therefore t210 ≥ t00t20.

A similar argument shows that t201 ≥ t00t02. Finally, Binet–Cauchy gives the identity

t01t10 − t00t11 =
∑
p<q

(
n

p

)(
n

q

)
(ap+1aq − apaq+1)(bn−pbn−q+1 − bn−p+1bn−q)

from the matrix product T = AXB, where Aij = ai+j , Xij =
(
n
j

)
[i+ j=n], Bij = bi+j .

[D. W. Walkup, Journal of Applied Probability 13 (1976), 79–80.]

126. The stated probability is pm =
(
n
m

)
mm(n − m)n−m/nn. We have pm/pm+1 =

fm/fn−m−1, where fm = (m/(m + 1))m. Since f0 > f1 > · · · , the minimum occurs

when m = �n/2�. And p�n/2� = (1 +O(1/n))/
√
πn/2, by exercise 1.2.11.2–9.

127. (a) Random binary vectors have Pr(X1 + · · ·+Xn ≤ θn) ≤ x−θn((1+ x)/2)n for
0 < x ≤ 1, by the tail inequality 1.2.10–(24). Set x = θ/(1− θ) and multiply by 2n.

(b) We have lg
(

n
�θn�

)
= H(θ)n− lg

√
2πθ(1− θ)n+O(1/n) by 1.2.11.2–(18).

(c) Let pm′m′′ = Pr(x⊕X ′ ⊕X ′′ is sparse and νX ′ = m′, νX ′′ = m′′). We will
prove that each pm′m′′ is exponentially small, using several instructive methods.

First, let ε = θ(1− 2θ)/3. We can assume that (θ − ε)n < m′,m′′ ≤ θn, because
Pr(νX ′ ≤ (θ − ε)n) = O(

√
n 2(H(θ−ε)−H(θ))n) is exponentially small.

Second, let Y ′ and Y ′′ be random binary vectors whose bits are independently 1
with probabilities m′/n and m′′/n. Each bit of x ⊕ Y ′ ⊕ Y ′′ is 1 with probability
m′/n(1 −m′′/n) + (1 −m′/n)m′′/n ≥ 2(θ − ε)(1 − θ) ≥ θ + ε when x has a 0 bit, or
(m′/n)(m′′/n) + (1 − m′/n)(1 − m′′/n) ≥ (θ − ε)2 + (1 − θ)2 ≥ θ + ε when x has a
1 bit. Therefore, by the tail inequality, we have Pr(x⊕ Y ′⊕ Y ′′ is sparse) ≤ αn, where
α = (1 + ε/θ)θ(1− ε/(1− θ))1−θ. This is exponentially small, since α < 1.

Finally, let Z ′ and Z ′′ be independent random bit vectors with νZ ′ = m′ and
νZ ′′ = m′′. Then pm′m′′ = (

(
n
m′

)(
n
m′′

)
/S(n, θ)2)Pm′m′′ , where Pm′m′′ is the probability

391

From the Library of Melissa Nuno

ptg999

392 ANSWERS TO EXERCISES MPR

that x⊕Z ′ ⊕Z ′′ is sparse. Then Pr(x⊕ Y ′⊕ Y ′′ is sparse) ≥ Pr(x⊕ Y ′⊕ Y ′′ is sparse
and νY ′ = m′ and νY ′′ = m′′) = Ω(Pm′m′′/n) by exercise 126. (Study this!)

[V. Guruswami, J. H̊astad, and S. Kopparty, IEEE Trans. IT-57 (2011), 718–725,
used this result to prove the existence of efficient linear list-decodable codes.]

128. (a) Pr(k pings) =
(
n
k

)
(1
n
)k(1− 1

n
)n−k is binomial, hence Pr(1 ping) = (1− 1

n
)n−1.

(b) It waits T rounds, where Pr(T = k) = (1 − p)k−1p has the geometric
distribution with p = 1

n
(1− 1

n
)n−1. Hence, for example by exercise 3.4.1–17, we have

ET = 1/p = nn/(n−1)n−1 = (n−1) exp(n ln(1/(1−1/n))) = en− 1
2
e+O(1/n). (The

standard deviation, en− 1
2
e− 1

2
+O(1/n), is approximately the same as the mean.)

(c) The hint suggests that we study the “coupon collector’s distribution”: If each
box of cereal randomly contains one of n different coupons, how many boxes must we
buy before we’ve got every coupon? The generating function for this distribution is

C(z) =
nz

n

(n−1)z
n− z

. . .
z

n− (n−1)z =
n

n/z − 0

n−1
n/z − 1

. . .
1

n/z − (n−1) =
(
n/z

n

)−1
,

because the time to acquire the next coupon, after we’ve already got k of them, is a
geometric distribution with generating function (n− k)z/(n− kz).

Let B be the number of boxes purchased. The upper tail inequality 1.2.10–(25)
tells us that Pr(B ≥ (1 + ε)n lnn) ≤ (n/(n− 1/2))−(1+ε)n lnnC(n/(n− 1/2)), which is

e(1+ε)n lnn ln(1−1/(2n))(
n−1/2
n

) =
e−

1+ε
2

lnn+O(logn
n

)4n(
2n
n

) =
√
π n−ε/2

(
1 +O

(
logn

n

))

by exercise 1.2.6–47. Thus B is a.s. less than (1 + ε)n lnn.

Now let S be the number of successful accesses in r = �(1 + ε)en lnn� rounds.
Then S is equivalent to r tosses of a biased coin for which the probability of success
is p = (1 − 1

n
)n−1 = 1/e + O(1/n), by (a). So S has the binomial distribution, and

Pr(S ≤ (1− ε/2)rp) ≤ e−ε
2rp/8 by exercise 1.2.10–22(b). This argument proves that S

is q.s. greater than (1− ε/2)rp = (1 + ε/2− ε2/2)n lnn+O(logn).

Consequently S attempts at coupon collecting will a.s. succeed.

(d) An argument similar to (c) applies, with ε !→ −ε and n− 1/2 !→ n+ 1/2.

[This exercise is based on a protocol analyzed in Jon Kleinberg and Éva Tardos’s
book Algorithm Design (Addison–Wesley, 2006), §13.1. See Uriel Feige and Jan Von-
drák, Theory of Computing 6 (2010), 247–290, §3.1, for optimum contention resolution
with a related (but different) model.]

129. The hint follows because | cotπz| ≤ (eπ+1)/(eπ−1) and |r(z)| = O(1/M2) on the
path of integration. The function π cotπz has no finite singularities except for simple
poles at k for all integers k. Furthermore its residue is 1 at each of its poles. Therefore∑∞

k=−∞ r(k) +
∑t

j=1(Residue of r(z)π cotπz at zj) = limM→∞O(1/M) = 0.

Let the sums be S1, S2, S3, S4. We have S1 = π2/4, because the residue
of (cotπz)/(2z − 1)2 at 1/2 is −π/4. And S2 = π cothπ, because the residue of
(cotπz)/(z2 + 1) at ±i is −(cothπ)/2. Similarly, the residue of (cotπz)/(z2 + z + 1)
at (−1 ± i

√
3)/2 is −α, where α = tanh(

√
3π/2)/

√
3; hence S3 = 2πα. Finally,

the residues of (cotπz)/((z2 + z + 1)(2z − 1)) at its poles are 2
7
α(1 ± i

√
3/2) and 0;

hence S4 = − 2
7
S3. (With hindsight, we can explain this “coincidence” by noting that

7/((k2+k+1)(2k−1)) = 4
2k−1− 2k+3

k2+k+1
and that

∑n+1
k=−n

1
2k−1 =

∑n−1
k=−n

2k+1

k2+k+1
= 0.)

392

From the Library of Melissa Nuno

ptg999

MPR ANSWERS TO EXERCISES 393

130. (a) Clearly EX2 = 1
π

∫∞
−∞ t2dt/(1 + t2) > 2

π

∫∞
1
dt, so EX2 = ∞. But EX =

1
π

∫∞
−∞ t dt/(1+ t2) = 1

2π
(ln(1+∞2)− ln(1+ (−∞)2)) =∞−∞ is undefined. Thus X

has no mean (although it does have the median value 0).

(b) 1/2, 2/3, and 5/6, because Pr(|X| ≤ x) = 1
π

∫ x
−x

dt

1+t2
= 2

π
arctanx when x≥ 0.

(c) This follows directly from the fact that Pr(X ≤ x) = (arctanx)/π + 1/2.
(d) In step P4 of Algorithm 3.4.1P, V1/V2 is a random tangent, so it is a Cauchy

deviate. Furthermore, by the theory underlying that algorithm, V1/V2 is the ratio
of independent normal deviates; thus, Z ← X/Y is Cauchy whenever X and Y are
independently normal. The Cauchy distribution is also Student’s t distribution with
1 degree of freedom; Section 3.4.1’s recipe for generating it is to compute Z ← X/|Y |.

(e) We have z ≤ Z ≤ z + dz ⇐⇒ (z − qY)/p ≤ X ≤ (z + dz − qY)/p. Hence

Pr(z ≤ Z ≤ z + dz and y ≤ Y ≤ y + dy) =
1

π

dz

p

1

(1 + (z − qy/p)2)
1

π

dy

1 + y2
,

and we want to integrate this for −∞ < y <∞. The integrand has poles at y = ±i and
y = (z± ip)/q, and it is O(1/M4) when |y| =M . So we can integrate on a semicircular
path, y = t for −M ≤ t ≤M followed by y =Meit for 0 ≤ t ≤ π, obtaining∫ ∞

−∞

dy

(p2 + (z−qy)2)(1+y2) = 2πi((Residue at i) + (Residue at z+pi
q)) =

1

p(1+z2)
.

Thus Pr(z ≤ Z ≤ z + dz) = 1
πdz/(1 + z2) as desired.

It follows by induction (see answer 42) that any convex combination of indepen-

dent Cauchy deviates is a Cauchy deviate. In particular, the average of n independent
Cauchy deviates is no more concentrated than a single deviate is; the “law of large
numbers” doesn’t always hold. [S. D. Poisson proved this special case in Connaissance

des Tems pour l’an 1827 (1824), 273–302. The distribution is named after A. L. Cauchy,
not Poisson, because Cauchy clarified matters by publishing seven notes about it—one
note per week!— in Comptes Rendus Acad. Sci. 37 (Paris, 1853), 64–68, . . . , 381–385.]

(f) By (e), c ·X is |c1|+ · · ·+ |cn| = ‖c‖1 times a Cauchy deviate. [This fact has
important applications to dimension reduction and data streams; see P. Indyk, JACM
53 (2006), 307–323.]

(g) If t ≥ 0 we get e−t, using the residue of eitz/(1 + z2) at z = i and the
semicircular path of part (e), because the integrand is O(1/M2) when |z| = M . If
t ≤ 0 we can integrate in the opposite direction, getting e+t. Hence the answer is e−|t|.

131. (a) By exercise 129, c = 1/(π cothπ). [Notice that cothπ ≈ 1.0037 is nearly 1.]
(b) When n �= 0, the method of exercise 129 tells us, somewhat surprisingly, that∑∞

k=−∞ 1/((1 + k2)(1 + (n − k)2)) = (2π cothπ)/(n2 + 4). Thus Pr(X + Y = n) =

2c/(n2 + 4). When n is even, this is exactly 1
2
Pr(2Z = n).

When n = 0, there’s a double pole and the calculations are trickier. We can more
easily compute Pr(X + Y �= 0) =

∑∞
n=1

4c

n2+4
= c(π coth 2π − 1

2) ≈ .837717. Thus

Pr(X + Y = 0) ≈ .162283.

132. (a)
(
K
k

)(
N−K
n−k

)
/
(
N
n

)
. [Hence the probability generating function g(z) =

∑
k pkz

k

is a hypergeometric function,
(
N−K
n

)
F (−K,−N

N−K−n+1 |z)/
(
N
n

)
; see Eq. 1.2.6–(39).]

(b) g′(1) = nK/N ; {�((n+1)(K +1)− 1)/(N +2)�, �(n+1)(K +1))/(N +2)�};
n(N − n)(N −K)/(N3 −N2). (Note that g′′(1) = n(n− 1)K(K − 1)/(N(N − 1)).)

(c) Let Q = X1 + · · · +Xn and Zm = E(Q |X1, . . . ,Xm). Then we have Zm =
(K −X1 − · · · −Xm)(n−m)/(N −m) +X1 + · · ·+Xm. The associated fair sequence
is Ym = Zm − Zm−1 = Δm(X1 + · · · + Xm−1 − K) + cmXm for 1 ≤ m ≤ n, where

393

From the Library of Melissa Nuno

ptg999

394 ANSWERS TO EXERCISES MPR

cm = (N − n)/(N −m) and Δm = cm − cm−1. Since Ym changes by at most cm when
{X1, . . . , Xm−1} are given and Xm varies, (37) tells us that Pr(Q ≥ nK/N + x) =
Pr(Zn − Z0 ≥ x) = Pr(Y1 + · · ·+ Yn ≥ x) ≤ e−2x2/(c21+···+c2n) ≤ e−2x2/n.

133. (a) By induction on m: Suppose m > 1 and no t rows are shattered. Discard
duplicate columns, and let 2b of the remaining ones have a “mate” whose bit in the
bottom row is complemented. Let a of them have no mate. Then the first m− 1 rows
contain a + b ≤ f(m − 1, t) distinct columns, by induction; and b ≤ f(m − 1, t − 1).
Hence there are a+ 2b ≤ f(m− 1, t) + f(m− 1, t− 1) = f(m, t) distinct columns.

(b) For example, let the columns be all length-m vectors that have at most t−1 1s.
[N. Sauer, Journal of Combinatorial Theory A13 (1972), 143–145.]

134. (a) Use Chebyshev’s inequality (18), because the variance is pj(1− pj) ≤ 1/4.
(b) Consider the

(
2m
m

)
equally likely ways we could have gotten two samples

(X ,X ′) from the same 2m atomic events. If Aj occurs K =Mj(X) +Mj(X ′) times,

Pr(Êj(X ,X ′) > ε) = Pr
(∑

{
(
K
k

)(
2m−K
m−k

)
/
(
2m
m

)
| |k −K/2| > εm}

)
≤ 2e−2(εm)2/m.

(c) Δ2m(A)Pr(Êj(X ,X ′) > ε/2) ≥ Pr(maxj Êj(X ,X ′) ≥ ε/2 and E(X) > ε) ≥
Pr(Ej(X ′) ≤ ε/2 and Ej(X) > ε and E(X) > ε) ≥ 1

2 Pr(Ej(X) > ε and E(X) > ε).
[Teoriya Veroyatnostĕı i ee Primeneni�ıa 16 (1971), 264–279.]

135. (Notice that the smallest non-Baxter permutations are 3142 and its inverse, 2413.)
If P is a Baxter permutation, so are PR = pn . . . p1 and PC = p̄1 . . . p̄n, where

x̄ = n + 1 − x. So is the permutation P \ n obtained by deleting n; and so are the
permutations P \ x obtained by deleting x and subtracting 1 from each element that
exceeds x, if x = pn or x = 1 or x = p1. (Consider, for example, deleting n from P−.)

Let’s look at the n+1 permutations obtained by inserting n+1 into an n-element
Baxter permutation. For example, when n = 8 and P = 21836745 the nine extensions
are 921836745, 291836745, 219836745, 218936745, 218396745, 218369745, 218367945,
218367495, 218367459. Only four of these fail Baxter’s property, namely 291836745,
218396745, 218369745, and 218367495; and we soon discover the general rule: n + 1
can be Baxterly inserted if and only if it’s placed just before a left-to-right maximum,

or just after a right-to-left maximum. (In our example, the left-to-right maxima are 2
and 8; the right-to-left maxima are 5, 7, and 8.)

Let Bn(i, j, k) be the number of (n+1)-element Baxter permutations with exactly
i + 1 left-to-right maxima, j + 1 left-to-right minima, k ascents, and n − k descents.
Such permutations correspond to floorplans with n+1 rooms, i+1 rooms touching the
bottom of the frame, j +1 rooms touching the left of the frame, k+2 vertical bounds,
and n− k+2 horizontal bounds (see exercise 7.2.2.1–372). The reasoning above yields
the interesting recurrence

B1(i, j, k) = [i= j= k=0], Bn+1(i+1, j+1, k) =
∑
i′>i

Bn(i
′, j, k) +

∑
j′>j

Bn(i, j
′, k−1);

and the solution can be expressed as a determinant of binomial coefficients:

Bn(i, j, k) = det

⎛⎝
(
n−j−1
k−1

) (
n

k−1
) (

n−i−1
n−k+1

)(
n−j−1

k

) (
n
k

) (
n−i−1
n−k

)(
n−j−1
k+1

) (
n

k+1

) (
n−i−1
n−k−1

)
⎞⎠ , unless

⎧⎨⎩
i = 0 and j = n
or

i = n and j = 0.

Summing on i and j now gives the simpler formula

bn(k) = tn+1(k + 1)/tn+1(1), where tn(k) =
(

n
k−1

)(
n
k

)(
n

k+1

)
,

for the number of n-element Baxter permutations with exactly k ascents.

394

From the Library of Melissa Nuno

ptg999

MPR ANSWERS TO EXERCISES 395

Since the terms with k ≈ n/2 dominate the sum bn =
∑

k bn(k), we obtain the
asymptotic value

bn =
8n+2√
12πn4

(
1− 22

3n
+O(n−2)

)
,

due to A. M. Odlyzko. [See G. Baxter, Proc. American Math. Soc. 15 (1964), 851–
855; F. R. K. Chung, R. L. Graham, V. E. Hoggatt, Jr., and M. Kleiman, Journal
of Combinatorial Theory A24 (1978), 382–394; W. M. Boyce, Houston J. Math. 7

(1981), 175–189; S. Dulucq and O. Guibert, Discrete Math. 180 (1998), 143–156.]
R. L. Ollerton has found the recurrence (n + 2)(n + 3)bn = (7n2 + 7n − 2)bn−1 +
8(n−1)(n−2)bn−2, with b1 = 1, as well as the closed form bn = F (1−n,−n,−1−n

2,3
| −1).

The initial terms are (b0, b1, . . .) = (1, 1, 2, 6, 22, 92, 422, 2074, 10754, 58202, . . .).

136. It’s true if y ≤ x+ 1
2
, because f(x+ t)− f(x) increases from f(t) to −f(1− t) as

x increases from 0 to 1− t. But it fails when x < 1
2
and y = 1.

137. (a) The sets U = {x | Pr(X≤x) ≥ 1
2
} and L = {x | Pr(X<x) ≤ 1

2
} are

intervals. Let m = inf U and m = supL; then U ∩L = [m. .m]. Since the distribution
function Pr(X≤x) is right-continuous, m ∈ U ; similarly, m ∈ L, because Pr(X<x) is
left-continuous. Also m ≤ m; for if m < x < m then Pr(X ≤ x) < 1

2
< Pr(X < x).

(b) If m < m then Pr(X ≤m) ≤ Pr(X<m) = 1−Pr(X ≥m) ≤ 1
2
≤ Pr(X ≤m).

(c) Pr(X≤y) ≥ 1
2
implies y ≥ m; Pr(X<x) ≤ 1

2
implies x ≤ m; so it’s true if

m = m. But we might have x > m or y < m.
(d) Suppose m ∈ medX and c < m. (A similar argument applies when c > m.)

Let Δx = |x − c| − |x −m|. If x ≥ m we have Δx = m − c. If x < m we have Δx =
c−m+2(x

.−c); hence E(ΔX |X < m) ≥ c−m. Therefore E(ΔX) ≥ (c−m) Pr(X<m)+
(m − c) Pr(X≥m) = (m − c)(2Pr(X≥m) − 1) ≥ 0. Equality holds if and only if
Pr(X≥m) = 1

2
and Pr(c<X<m) = 0; the latter is the same as Pr(X≤c) = Pr(X<m).

[See M. Mitzenmacher and E. Upfal, Probability and Computing (2017), Theorem 3.9.]
(e) True by Cantelli’s inequality, answer 48: If m ≥ μ then 1

2
≤ Pr(X≥m) ≤

σ2/(σ2+ (m− μ)2). If m ≤ μ then 1
2
≤ Pr(−X≥−m) ≤ σ2/(σ2+ (μ−m)2).

(f) Call f a “C-function” if It = {x | f(x) ≤ t} is connected and closed for all t.
Every convex f is a C-function; for if a ∈ It and b ∈ It, we have pa + (1 − p)b ∈ It
for 0 ≤ p ≤ 1; also It is closed because f is continuous. (There also are rather wild
C-functions, such as f(x) = (x < 0? 3: x < 1? 2− x: x ≤ 2? x− 1: x ≤ 3?

√
x: x).).

Given a C-function f and a random variable X, let medX = [m. .m] and
med f(X) = [M . .M]. If M ≤M ≤M , then IM is a closed interval and Pr(X∈IM) =
Pr(f(X)≤M) ≥ 1

2 . Thus by (c), either f(m) ≤ M or f(m) ≤ M . (For example, if

f(x) = −x we have m = −M and m = −M .) [See M. Merkle, Statistics & Probability

Letters 71 (2005), 277–281.]

138. Working in the slices of probability space where Y is constant, we have (by

definition) var(X |Y) = E(X2 |Y) − (E(X |Y))2 and var(E(X |Y)) = E(E(X |Y))2 −
(E(E(X |Y)))2. Hence E(var(X |Y)) = E(E(X2 |Y))−E(E(X |Y))2. The complicated
term E(E(X | Y))2 fortuitously cancels out, giving var(E(X | Y)) + E(var(X | Y)) =
E(E(X2 |Y))− (E(E(X |Y)))2 = EX2 − (EX)2. [See CMath, pages 423–425.]

139. Let x(z) =
∑

k Pr(Xn=k)z
k, gn(w, z) =

∑
j,k Pr(Rn=j, Sn=k)w

jzk, hn(w, z) =∑
j,k Pr(S

+
n =j, Sn=k)w

jzk; these generating functions involve negative values of k, so
we treat them as “formal series.” We shall prove that g = h, where

g =

∞∑
n=0

gn(w, z)t
n and h = exp

(∞∑
n=1

hn(w, z)
tn

n

)
;

395

From the Library of Melissa Nuno

ptg999

396 ANSWERS TO EXERCISES MPR

that will suffice because gn(w, z) = rn(wz, z
−1) and hn(w, z) = s+n (wz) + s−n (z

−1)− 1.
Let X be the operation that multiplies a formal series by x(z), and let P be the

operation that replaces wjzk by wmax(j,k)zk. Notice that hn(w, z) = P (x(z)n); further-
more we have g0(w, z) = 1, gn(w, z) = PXgn−1 for n > 0. It follows that g is the unique
formal series that satisfies g = 1 + tPXg. To finish the proof, we have (1 − tX)h =
exp((1− P) ln(1− tx(z))) = 1 +

∑∞
n=1((1− P) ln(1− tx(z)))n/n!; hence h− tPXh =

P ((1− tX)h) = 1. [J. G. Wendel, Proc. Amer. Math. Soc. 9 (1958), 905–908.]

140. (a) Let q = 1−p. The expected number of marked elements that remain a max is∑
k

(
n
k

)
pkqn−kHk = Hn+ln p+O(qn/n), by Theorem 1.2.7A. To this we add

∑n
m=1 tm,

where tm = Pr(xm unmarked and still a max) =
∑

j,k

(
m−1
j

)(
n−m
k

)
pj+kqn−j−k/

(
j+k
j

)
.

(For example, t1 = q; t2 = q2 + (q − qn)/(n − 1); tm = tn+1−m.) The identity∑
k

(
n
k

)
pkqn−k/

(
k+j
j

)
=
(
1−∑j−1

k=0

(
n+j
k

)
pkqn+j−k

)
/
(
pj
(
n+j
j

))
shows that, for fixed m,

tm =
∑m−1

j=0 qm−j(m− 1)j/(n−m+ j)j +O(qn/n). Summing on m, and trading tails,
yields t1 + · · ·+ tn = 2q/p+O(qn/n). [For this result, as well as those of parts (b) and
(c), see C. Banderier, R. Beier, and K. Mehlhorn, LNCS 2747 (2003), 198–207.]

(b) Saym = �√n�. If a of the firstm elements are marked, and b of the last n−m,
the probability that all a leave the first m positions is q = ba/(a+ b)a > ((b− a)/b)a;
and in this case λ(X) ≥ m − a. We q.s. have a ≤ 3

4
m and b ≥ 1

4
n +m; consequently

q ≥ exp(a ln(1− a/b)) ≥ exp(−a2/(b− a)) ≥ exp(−9/4) and λ(X) = Ω(
√
n).

(c) Let m = �√8(n/p) lnn� and ignore all xk with k ≤ m or xk ≥ n−m; at most
2m maxs are ignored. At most about ln pn of the marked elements are maxs. And if xk
is neither ignored nor marked, it’s a max with probability O(1/n); the reason is that
q.s. at most 2pn are marked, of which ≥ pm/2 precede xk and ≥ pm/2 exceed xk.

(d) If x̄k > x̄k+1, swapping x̄k ↔ x̄k+1 and δk ↔ δk+1 doesn’t decrease Eλ(X).
(e) Let m = �√εn� and Δk = x̄k − x̄k−m, where x̄k = 0 for k < 0. If xk is a max

then either (∗) ε < Δk+δk or (∗∗) (ε ≥ Δk+δk > max{δk−1, . . . , δk−m}. One can show
that Pr(∗) ≤ Pr(∗∗); hence Pr(xk is a max) ≤ Δk/(2ε) + 1/(m+ 1) + 1/k. Sum on k.

See V. Damerow, B. Manthey, F. Meyer auf der Heide, H. Räcke, C. Scheideler,
C. Sohler, and T. Tantau, ACM Transactions on Algorithms 8 (2012), 30:1–30:28,
where a matching lower bound is also proved. Similarly, if each δk is a normal deviate
with standard deviation σ, they showed that Eλ(X) = O(logn(1 + σ−1

√
logn)).

141. We can assume that p1 + · · ·+ pn = 1. Then eln(EX) ≥ eE lnX (ln is concave).

142. (a) Let pj = Pr(|X|=xj). Since every term in the difference MqMt −MrMs =∑
j<k pjpkx

q
jx

q
k(x

s−q
k − xs−qj)(xr−qk − xr−qj) is nonnegative, we have MqMt ≥MrMs.

(b) The hint gives (Ms/Mr)
Mr/(s−r) ≥ x

p1x
r
1

1 . . . x
pnx

r
n

n . Similarly, but reversing

the inequality because q < r, (Mq/Mr)
Mr/(q−r) ≤ x

p1x
r
1

1 . . . x
pnx

r
n

n . Take theMrth root.
(c) The “fact” follows when (q, r, s) = (0, 1/p, 1) in (b). Let c = 1/

∑
bqk, and set

pk = cbqk, xk = apk/b
q
k; then M1/p = c

∑
akbk, M1 = c

∑
apk. (When 0 < p < 1 and

q < 0, the same relation holds but with ≤ changed to ≥ and bk = 0 forbidden.)

(d) |EXY | ≤ E(|X| |Y |) =
∑

i,j p
1/p+1/q
ij xiyj ≤ (E |X|p)1/p(E |Y |q)1/q, where

pij = Pr(|X|=xi and |Y |=yj) is the joint distribution of |X| and |Y |.
Historical notes: This inequality and Jensen’s inequality evolved in concert.

The fact that E |X|r ≤ (E |X|)r for 0 < r < 1, while E |X|r ≥ (E |X|)r for other
values of r, was already implicit on page 155 of Reynaud and Duhamel’s Problèmes et

développemens (Paris: 1823). Rogers published his contributions inMessenger of Math.

17 (1887), 145–150 (with a few typographic errors). That inspired O. Hölder [Göttinger
Nachrichten (1889), 38–47] to prove (20) for all f with f ′′(x) ≥ 0, obtaining Rogers’s

396

From the Library of Melissa Nuno

ptg999

MPR ANSWERS TO EXERCISES 397

identities as corollaries. Many related results are detailed in Hardy, Littlewood, and
Pólya’s book Inequalities (1934), Chapter 2. For example, if pj , aij ≥ 0 for 1 ≤ i ≤ m
and 1 ≤ j ≤ n, with

∑
pj = 1, their Theorem 10 states that

m∑
i=1

(n∏
j=1

a
pj
ij

)
≤

n∏
j=1

(m∑
i=1

aij

)pj

. [The case n = 2, p1 =
1
p
, p2 =

1
q
, is (c).]

143. Let M = (E(|X| + |Y |)p)1/p = (
∑

i,j(pij(xi + yj)
p))

1/p
, with the pij of answer

142(d). Then we have M = Σ(x)+Σ(y), where Σ(x) =
∑

i,j pijxi(xi+ yj)p−1/Mp−1 =∑
i,j(p

1/p
ij xi)(p

1/p
ij (xi+yj))

p−1/Mp−1 ≤ (
∑

i,j pijx
p
i)
1/p

(
∑

i,j(pij(xi+yj)
p))

1/q
/Mp−1 =

(E |X|p)1/p. Add Σ(y). [H. Minkowski, Geometrie der Zahlen (Leipzig, 1896), §40(I).]
144. (a) By convexity, |x|p = |E(x+Y)|p ≤ E |x+Y |p for any x. Take E of both sides.

(b) By (a), E |X|p = E |X+|p ≤ E |X+ −X−|p.
(c) The hint follows because (1 + x)p + (1 − x)p − 2xp ≥ 2 for 0 ≤ x ≤ 1.

Consequently E |X|p + E |Y |p ≤ E |X + Y |p when E |X + Y |p = E |X − Y |p. Now use
induction on n. [See J. A. Clarkson, Trans. Amer. Math. Soc. 40 (1936), 396–414.]

(d) E |X1|p+· · ·+E |Xn|p ≤ E |Xsym
1 |p+· · ·+E |Xsym

n |p ≤ E |Xsym
1 +· · ·+Xsym

n |p =
E|(X+

1 · · ·+X+
n)− (X−

1 + · · ·+X−
n)|

p ≤ E(2p−1|X+
1 + · · ·+X+

n |p)+E(2p−1|−(X−
1 +

· · · + X−
n)|p) = 2p E |X1 + · · · + Xn|p. [See A. Gut, Probability: A Graduate Course

(Springer, 2013), Theorem 3.6.1. We’ve used the fact that |x+ y|p ≤ 2p−1(|x|p + |y|p),
which actually holds for p ≥ 1 because the mapping x !→ |x|p is convex.]
145. We have (a21+· · ·+a2n)m =

∑
k1,...,kn

c(k1, . . . , kn)a
2k1
1 . . . a2knn by the multinomial

theorem, Eq. 1.2.6–(42), where c(k1, . . . , kn) =
(

m
k1,...,kn

)
; E((a1X1+ · · ·+anXn)

2m) =∑
k1,...,kn

c′(k1, . . . , kn)a
k1
1 . . . aknn , where c′(k1, . . . , kn) =

(
2m

k1,...,kn

)
when each kj is

even, otherwise c′(k1, . . . , kn) = 0. And c′(2k1, . . . , 2kn)/c(k1, . . . , kn) = (2m − 1)!!/∏m
j=1(2kj−1)!!. [A. Khintchine, Math. Zeitschrift 18 (1923), 109–116. More generally,

(a21 + · · ·+ a2n)
p/2 ≤ E |a1X1 + · · ·+ anXn|p ≤ 2p/2π−1/2Γ(p+12) (a21 + · · ·+ a2n)

p/2,

for all p ≥ 2; see U. Haagerup, Studia Mathematica 70 (1981–1982), 231–283.]

146. For every binary vector t = t1 . . . tn, let Tn(t) =
∑n

k=1(−1)tkXk. Also let Sn =∑n
k=1Xk, S

sym
n =

∑n
k=1X

sym
k , T sym

n (t) =
∑n

k=1(−1)tkXsym
k . By exercise 144 we have

2−2m ETn(t)
2m ≤ 2−2m ET sym

n (t)2m = 2−2m E(S symn)2m ≤ ES2mn

≤ E(S symn)2m = ET sym
n (t)2m ≤ 22m ETn(t)

2m

for all t, because S symn and T sym
n (t) have the same distribution. Exercise 145 tells us that(n∑

k=1

x2k

)m
≤ 1

2n

∑
t

(n∑
k=1

(−1)tkxk
)2m

≤ (2m− 1)!!
(n∑
k=1

x2k

)m
for all sequences x1 . . . xn of atomic values. So the result follows by applying E.
[Fundamenta Mathematicæ 29 (1937), 60–90; Studia Mathematica 7 (1938), 104–120.]

147. This is an application of the previous several exercises; see A. Gut, Probability
(2013), Theorem 3.9.1. [H. P. Rosenthal, Israel J. Mathematics 8 (1970), 273–303.]

As to volume 4, well, I’m making progress

but it is the toughest of the lot.

— DONALD E. KNUTH, letter to Michael F. Yoder (19 November 1973)

397

From the Library of Melissa Nuno

ptg999

398 ANSWERS TO EXERCISES 7.2.2

SECTION 7.2.2

1. Although many formulations are possible, the following may be the nicest: (i) Dk

is arbitrary (but hopefully finite), and Pl is always true. (ii) Dk = {1, 2, . . . , n} and
Pl = ‘xj �= xk for 1 ≤ j < k ≤ l’. (iii) For combinations of n things from N ,
Dk = {1, . . . , N + 1 − k} and Pl = ‘x1 > · · · > xl’. (iv) Dk = {0, 1, . . . , �n/k�}; Pl =
‘x1 ≥ · · · ≥ xl and n− (n− l)xl ≤ x1+ · · ·+xl ≤ n’. (v) For restricted growth strings,
Dk = {0, . . . , k−1} and Pl = ‘xj+1 ≤ 1+max(x1, . . . , xj) for 1 ≤ j < l’. (vi) For indices
of left parentheses (see 7.2.1.6–(8)), Dk = {1, . . . , 2k − 1} and Pl = ‘x1 < · · · < xl’.

2. True. (If not, set D1 ← D1 ∩ {x | P1(x)}.)
3. Let Dk = {1, . . . ,max degree on level k − 1}, and let Pl(x1, . . . , xl) = ‘x1. · · · .xl

is a label in T ’s Dewey decimal notation’ (see Section 2.3).

4. We can restrict D1 to {1, 2, 3, 4}, because the reflection (9−x1) . . . (9−x8) of every
solution x1 . . . x8 is also a solution. (H. C. Schumacher made this observation in a letter
to C. F. Gauss, 24 September 1850.) Notice that Fig. 68 is left-right symmetric.

5. try (l) = “If l > n, visit x1 . . . xn. Otherwise, for xl ← minDl, minDl + 1, . . . ,
maxDl, if Pl(x1, . . . , xl) call try (l + 1).”

This formulation is elegant, and fine for simple problems. But it doesn’t give any
clue about why the method is called “backtrack”! Nor does it yield efficient code for
important problems whose inner loop is performed billions of times. We will see that
the key to efficient backtracking is to provide good ways to update and downdate the
data structures that speed up the testing of property Pl. The overhead of recursion can
get in the way, and the actual iterative structure of Algorithm B isn’t difficult to grasp.

6. Excluding cases with j = r or k = r from (3) yields respectively (312, 396, 430,
458, 458, 430, 396, 312) solutions. (With column r also omitted there are just (40, 46,
42, 80, 80, 42, 46, 40).)

7. Yes, almost surely for all n > 16. One such is x1x2 . . . x17 = 2 17 12 10 7 14 3
5 9 13 15 4 11 8 6 1 16. [See Proc. Edinburgh Math. Soc. 8 (1890), 43 and Fig. 52.]
Preußer and Engelhardt found 34,651,355,392 solutions when n = 27.

8. Yes: (42736815,42736851); also therefore (57263148, 57263184).

9. Yes, at least when m = 4; e.g., x1 . . . x16 = 5 8 13 16 3 7 15 11 6 2 10 14 1 4
9 12. There are no solutions when m = 5, but 7 10 13 20 17 24 3 6 23 11 16 21 4 9
14 2 19 22 1 8 5 12 15 18 works for m = 6. (Are there solutions for all even m ≥ 4?
C. F. de Jaenisch, Traité des applications de l’analyse mathématique au jeu des échecs

2 (1862), 132–133, noted that all 8-queen solutions have four of each color. He proved
that the number of white queens must be even, because

∑4m
k=1(xk + k) is even.)

10. Let bit vectors al, bl, cl represent the “useful” elements of the sets in (6), with al =∑{2x−1 | x ∈ Al}, bl =
∑{2x−1 | x ∈ Bl ∩ [1 . . n]}, cl =

∑{2x−1 | x ∈ Cl ∩ [1 . . n]}.
Then step W2 sets bit vector sl ← μ& āl & b̄l & c̄l, where μ is the mask 2n − 1.

In step W3 we can set t ← sl & (−sl), al+1 ← al + t, bl+1 ← (bl + t) # 1,
cl+1 ← ((cl+ t)$1)&μ; and it’s also convenient to set sl ← sl− t at this time, instead
of deferring this change to step W4.

(There’s no need to store xl in memory, or even to compute xl in step W3 as an
integer in [1 . . n], because xl can be deduced from al − al−1 when a solution is found.)

11. (a) Only when n = 1, because reflected queens can capture each other.
(b) Queens not in the center must appear in groups of four.
(c) The four queens occupy the same rows, columns, and diagonals in both cases.

398

From the Library of Melissa Nuno

ptg999

7.2.2 ANSWERS TO EXERCISES 399

(d) In each solution counted by cn we can independently tilt (or not) each of the
�n/4� groups of four. [Mathematische Unterhaltungen und Spiele 1, second edition
(Leipzig: Teubner, 1910), 249–258.]

12. With distinct xk,
∑n

k=1(xk + k) = 2
(
n+1
2

) ≡ 0 (modulo n). If the (xk + k) mod n

are also distinct, the same sum is also ≡ (
n+1
2

)
. But that’s impossible when n is even.

Now suppose further that the numbers (xk − k) mod n are distinct. Then we
have

∑n
k=1(xk + k)2 ≡ ∑n

k=1(xk − k)2 ≡ ∑n
k=1 k

2 = n(n + 1)(2n + 1)/6. And we

also have
∑n

k=1(xk + k)2 +
∑n

k=1(xk − k)2 = 4n(n + 1)(2n + 1)/6 ≡ 2n/3, which is
impossible when n is a multiple of 3. [See W. Ahrens, Mathematische Unterhaltungen

und Spiele 2, second edition (1918), 364–366, where G. Pólya cites a more general
result of A. Hurwitz that applies to wraparound diagonals of other slopes.]

Conversely, if n isn’t divisible by 2 or 3, we can let xn = n and xk = (2k) mod n
for 1 ≤ k < n. [The rule xk = (3k) mod n also works. See Édouard Lucas, Récréations
Mathématiques 1 (1882), 84–86.]

13. The (n+ 1) queens problem clearly has a solution with a queen in a corner if and
only if the n queens problem has a solution with a queen-free main diagonal. Hence by
the previous answer there’s always a solution when nmod 6 ∈ {0, 1, 4, 5}.

Another nice solution was found by J. Franel [L’Intermédiaire des Mathématiciens

1 (1894), 140–141] when nmod 6 ∈ {2, 4}: Let xk = (n/2+ 2k− 3[2k≤n])mod n+ 1,
for 1 ≤ k ≤ n. With this setup we find that xk − xj = ±(k − j) and 1 ≤ j < k ≤ n
implies (1 or 3)(k − j) + (0 or 3) ≡ 0 (modulo n); hence k − j = n− (1 or 3). But the
values of x1, x2, x3, xn−2, xn−1, xn give no attacking queens except when n = 2.

Franel’s solution has empty diagonals, so it provides solutions also for nmod 6 ∈
{3, 5}. We conclude that only n = 2 and n = 3 are impossible.

[A more complicated construction for all n > 3 had been given earlier by E. Pauls,
in Deutsche Schachzeitung 29 (1874), 129–134, 257–267. Pauls also explained how to
find all solutions, in principle, by building the tree level by level (not backtracking).]

14. For 1 ≤ j ≤ n, let x
(j)
1 . . . x

(j)
m be a solution for m queens, and let y1 . . . yn be a

solution for n toroidal queens. Then X(i−1)n+j = (x
(j)
i − 1)n+ yj (for 1 ≤ i ≤ m and

1 ≤ j ≤ n) is a solution for mn queens. [I. Rivin, I. Vardi, and P. Zimmermann, AMM

101 (1994), 629–639, Theorem 2.]

15. More precisely, there’s a constant σ = e1−α such that, for any fixed ε with
0 < ε < σ, Q(n)/n! is q.s. between ((1 − ε)σ)n and ((1 + ε)σ)n. In fact, a subtle
analysis [arXiv:2107.13460 [math.CO] (2021), 51 pages] shows that the average of all
solutions approaches a fascinating probability distribution. P. Nobel, A. Agrawal, and
S. Boyd have computed α accurately [arXiv:2112.03336 [math.CO] (2021), 14 pages].

16. Let the queen in row k be in cell k. Then we have a “relaxation” of the n queens
problem, with |xk − xj | becoming just xk − xj in (3); so we can ignore the b vector in
Algorithm B* or in exercise 10. We get

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

H(n) = 1 1 1 3 7 23 83 405 2113 12657 82297 596483 4698655 40071743 367854835

[N. J. Cavenagh and I. M. Wanless, Discr. Appl. Math. 158 (2010), 136–146, Table 2.]

17. It fails spectacularly in step L5. The minus signs, which mark decisions that were
previously forced, are crucial tags for backtracking.

18. x4 . . . x8 = 2̄1̄04̄0, p0 . . . p4 = 33300, and y1y2y3 = 130. (If xi ≤ 0 the algorithm
will never look at yi; hence the current state of y4 . . . y8 is irrelevant. But y4y5 happens
to be 20, because of past history; y6, y7, and y8 haven’t yet been touched.)

399

From the Library of Melissa Nuno

ptg999

400 ANSWERS TO EXERCISES 7.2.2

19. We could say Dl is {−n, . . . ,−2,−1, 1, 2, . . . , n}, or {k | k �= 0 and 2 − l ≤ k ≤
2n− l − 1}, or anything in between. (But this observation isn’t very useful.)

20. First we add a Boolean array a1 . . . an, where ak means “k has appeared,” as in
Algorithm B*. It’s 0 . . . 0 in step L1; we set ak ← 1 in step L3, ak ← 0 in step L5.

The loop in step L2 becomes “while xl < 0, go to L5 if l ≥ n− 1 and a2n−l−1 = 0,
otherwise set l← l+ 1.” After finding l+ k + 1 ≤ 2n in L3, and before testing xl+k+1
for 0, insert this: “If l ≥ n−1 and a2n−l−1 = 0, while l+k+1 �= 2n set j ← k, k ← pk.”

21. (a) In any solution xk = n ⇐⇒ xk+n+1 = −n ⇐⇒ xDn−k = n.
(b) xk = n− 1 for some k ≤ n/2 if and only if xDk = n− 1 for some k > n/2.
(c) Let n′ = n− [n is even]. Change ‘l ≥ n− 1 and a2n−l−1 = 0’ in the modified

step L2 to ‘(l = �n/2� and an′ = 0) or (l ≥ n−1 and a2n−l−1 = 0)’. Insert the following
before the other insertion into step L3: “If l = �n/2� and an′ = 0, while k �= n′ set
j ← k, k ← pk.” And in step L5—this subtle detail is needed when n is even—go to
L5 instead of L4 if l = �n/2� and k = n′.

22. The solutions 11̄ and 211̄2̄ for n = 1 and n = 2 are self-dual; the solutions for n = 4
and n = 5 are 4311̄23̄4̄2̄, 2452̄311̄4̄3̄5̄, 4511̄234̄2̄5̄3̄, and their duals. The total number
of solutions for n = 1, 2, . . . is 1, 1, 0, 2, 4, 20, 0, 156, 516, 2008, 0, 52536, 297800,
1767792, 0, 75678864, . . . ; there are none when nmod 4 = 3, by a parity argument.

Algorithm L needs only obvious changes. To compute solutions by a streamlined
method like exercise 21, use n′ = n− (0, 1, 2, 0) and substitute ‘l = �n/4�+ (0, 1, 2, 1)’
for ‘l = �n/2�’, when nmod 4 = (0, 1, 2, 3); also replace ‘l ≥ n − 1 and a2n−l−1 = 0’
by ‘l ≥ �n/2� and a�(4n+2−2l)/3� = 0’. The case n = 15 is proved impossible with 397
million nodes and 9.93 gigamems.

23. slums → sluff, slump, slurs, slurp, or sluts; (slums, total)→ (slams, tonal).

24. Build the list of 5-letter words and the trie of 6-letter words in step B1; also set
a01a02a03a04a05 ← 00000. Use minDl = 1 in step B2 and maxDl = 5757 in step B4. To
test Pl in step B3, if word xl is c1c2c3c4c5, form al1 . . . al5, where alk = trie [a(l−1)k, ck]
for 1 ≤ k ≤ 5; but jump to B4 if any alk is zero.

25. There are 5 × 26 singly linked lists, accessed from pointers hkc, all initially zero.
The xth word cx1cx2cx3cx4cx5, for 1 ≤ x ≤ 5757, belongs to 5 lists and has five pointers
lx1lx2lx3lx4lx5. To insert it, set lxk ← hkcxk , hkcxk ← x, and skcxk ← skcxk + 1, for
1 ≤ k ≤ 5. (Thus skc will be the length of the list accessed from hkc.)

We can store a “signature”
∑26

c=1 2
c−1[trie [a, c] �= 0] with each node a of the trie.

For example, the signature for node 260 is 20+24+28+214+217+220+224 = #1124111,
according to (11); here A↔ 1, . . . , Z↔ 26.

The process of running through all x that match a given signature y with respect
to position z, as needed in steps B2 and B4, now takes the following form: (i) Set
i ← 0. (ii) While 2i & y = 0, set i ← i + 1. (iii) Set x ← hz(i+1); go to (vi) if x = 0.
(iv) Visit x. (v) Set x← lxz; go to (iv) if x �= 0. (vi) Set i← i+ 1; go to (ii) if 2i ≤ y.

Let trie [a, 0] be the signature of node a. We choose z and y = trie [a(l−1)z, 0] in
step B2 so that the number of nodes to visit,

∑26
c=1 szc[2

c−1 & y �=0], is minimum for
1 ≤ z ≤ 5. For example, when l = 3, x1 = 1446, and x2 = 185 as in (10), that sum for
z = 1 is s11+s15+s19+s1(15)+s1(18)+s1(21)+s1(25) = 296+129+74+108+268+75+47 =
997; and the sums for z = 2, 3, 4, 5 are 4722, 1370, 5057, and 1646. Hence we choose
z = 1 and y = #1124111; only 997 words, not 5757, need be tested for x3.

The values yl and zl are maintained for use in backtracking. (In practice we keep
x, y, and z in registers during most of the computation. Then we set xl ← x, yl ← y,

400

From the Library of Melissa Nuno

ptg999

7.2.2 ANSWERS TO EXERCISES 401

zl ← z before increasing l ← l + 1 in step B3; and we set x ← xl, y ← yl, z ← zl in
step B5. We also keep i in a register, while traversing the sublists as above; this value
is restored in step B5 by setting it to the zth letter of word x, decreased by ’A’.)

26. Here are the author’s favorite 5× 7 and 5× 8, and the only 5× 9’s:

S M A S H E S
P A R T I A L
I M M E N S E
E M E R G E D
S A D N E S S

G R A N D E S T
R E N O U N C E
E P I S O D E S
B A S E M E N T
E Y E S O R E S

P A S T E L I S T
A C C I D E N C E
M O R T G A G O R
P R O R E F O R M
A N D E S Y T E S

V A R I S T O R S
A G E N T I V A L
C O E L O M A T E
U N D E L E T E D
O Y S T E R E R S

No 5× 10 word rectangles exist, according to our ground rules.

27. (1, 15727, 8072679, 630967290, 90962081, 625415) and (15727.0, 4321.6, 1749.7,
450.4, 286.0). Total time ≈ 18.3 teramems.

28. Build a separate trie for the m-letter words; but instead of having trie nodes
of size 26 as in (11), it’s better to convert this trie into a compressed representation
that omits the zeros. For example, the compressed representation of the node for prefix
‘CORNE’ in (12) consists of five consecutively stored pairs of entries (‘T’, 5013), (‘R’, 171),
(‘L’, 9602), (‘D’, 3878), (‘A’, 3879), followed by (0, 0). Similarly, each shorter prefix with
c descendants is represented by c consecutive pairs (character, link), followed by (0, 0)
to mark the end of the node. Steps B3 and B4 are now very convenient.

Level l corresponds to row il = 1+(l−1) modm and column jl = 1+ �(l−1)/m�.
For backtracking we store the n-trie pointer ail,jl as before, together with an index xl
into the compressed m-trie.

This method was used by M. D. McIlroy in 1975 (see answer 32). It finds all 5× 6
word rectangles in just 400 gigamems; and its running time for “transposed” 6 × 5
rectangles turns out to be slightly less (380 gigamems). Notice that only one mem is
needed to access each (character, link) pair in the compressed trie.

29. Yes, exactly 1618 of the 625415 solutions have repeated words. For example:

A C C E S S
M O O L A H
I M M U N E
N E E D E D
O T T E R S

A S S E R T
J A I L E R
U G L I F Y
G E O D E S
A S S E R T

B E G G E D
R E A L E R
A R T E R Y
W I E N I E
L E S S E R

M A G M A S
O N L I N E
D I O X I N
A S S E S S
L E S S E E

T R A D E S
R E V I S E
O T I O S E
T R A D E S
H O N E S T

30. The use of a single compressed trie both horizontally and vertically leads to a very
pretty algorithm, which needs only 120 Mμ to find all 541,968 solutions. De Morgan’s
example isn’t among them, because the proper name ‘ELLEN’ doesn’t qualify as a word
by our conventions. But some of the squares might be “meaningful,” at least poetically:

B L A S T
L U N C H
A N G E R
S C E N E
T H R E E

W E E K S
E V E N T
E E R I E
K N I F E
S T E E L

T R A D E
R U L E D
A L O N G
D E N S E
E D G E S

S A F E R
A G I L E
F I X E S
E L E C T
R E S T S

A D M I T
D R O N E
M O V E S
I N E P T
T E S T S

Y A R D S
A P A R T
R A D I I
D R I L L
S T I L L

Just six of the solutions belong to the restricted vocabulary WORDS(500); three of them
actually belong to WORDS(372), namely **ASS|*IGHT|AGREE|SHEEP|STEPS, where *** is
either CLL or GLL or GRR. (And *** = GRL gives an unsymmetric 5 × 5 in WORDS(372).
There are (1787056− 541968)/2 = 622544 unsymmetric squares in WORDS(5757).)

31. Yes, 27 of them. The search is greatly facilitated by noting that the NE-to-SW
diagonal word must be one of the 18 palindromes in WORDS(5757). ‘SCABS|CANAL|ANGLE|
BALED|SLEDS’, which belongs to WORDS(3025), has the most common words. [See the end
of Chapter 18 in Babbage’s Passages from The Life of a Philosopher (London: 1864).]

401

From the Library of Melissa Nuno

ptg999

402 ANSWERS TO EXERCISES 7.2.2

32. There are (717, 120386, 2784632, 6571160, 1117161, 13077, 6) of sizes 2 × 2, . . . ,
8× 8, and none larger than this. Each of these runs needed fewer than 6 gigamems of
computation. Example solutions with words as common as possible are

T O
O F

I T S
T H E
S E E

A W A Y
W E R E
A R E A
Y E A R

H E A R T
E R R O R
A R G U E
R O U T E
T R E E S

E S T A T E
S L A V E S
T A L E N T
A V E N U E
T E N U R E
E S T E E M

C U R T A I L
U T E R I N E
R E V E R T S
T R E B L E S
A I R L I N E
I N T E N S E
L E S S E E S

N E R E I D E S
E T E R N I S E
R E L O C A T E
E R O T I Z E D
I N C I T E R S
D I A Z E P A M
E S T E R A S E
S E E D S M E N

with the following numeric ranks of “minimax rarity” within their lists: TO = 2, SEE =
25, AREA = 86, ERROR = 438, ESTEEM = 1607, TREBLES = 5696, ETERNISE = 23623.

[Word squares go back thousands of years; ‘SATOR|AREPO|TENET|OPERA|ROTAS’,
a famous 5 × 5 example that is found in many places including the ruins of Pom-
peii, actually has fourfold symmetry. But 6 × 6 squares appear to have been un-
known until WilliamWinthrop, the U.S. consul in Malta(!), published ‘CIRCLE|ICARUS|
RAREST|CREATE|LUSTRE|ESTEEM’ in Notes & Queries (2) 8 (2 July 1859), page 8, claim-
ing to have thereby “squared the circle.” (If he had been told not to use a proper name
like Icarus, he could have said ‘CIRCLE|INURES|RUDEST|CREASE|LESSER|ESTERS’.)]

The conclusion to be drawn about exercises of this kind

is that four letters are nothing at all; that five letters are so easy

that nothing is worth notice unless the combination have meaning;

that six letters, done in any way, are respectable;

and that seven letters would be a triumph.

— AUGUSTUS DE MORGAN, in Notes & Queries (3 September 1859)

Henry Dudeney constructed several 7×7 examples and used them in clever puzzles,
beginning with ‘PALATED|ANEMONE|LEVANTS|AMASSES|TONSIRE|ENTERER|DESSERT’ [The
Weekly Dispatch (25 October and 8 November 1896)] and ‘BOASTER|OBSCENE|ASSERTS|
SCEPTRE|TERTIAN|ENTRANT|RESENTS’ [The Weekly Dispatch (21 November and 5 De-
cember 1897)]. Years later he was particularly pleased to have found ‘NESTLES|ENTRANT|
STRANGE|TRAITOR|LANTERN|ENGORGE|STERNER’ [Strand 55 (1918), 488; 56 (1919), 74;
The World’s Best Word Puzzles (1925), Puzzles 142 and 145]. M. Douglas McIlroy was
the first to apply computers to this task [Word Ways 8 (1975), 195–197], discovering
52 examples such as ‘WRESTLE|RENEWAL|ENPLANE|SELFDOM|TWADDLE|LANOLIN|ELEMENT’.
Then he turned to the more difficult problem of double word squares, which are un-
symmetric and contain 2n distinct words: He presented 117 double squares, such as
‘REPAST|AVESTA|CIRCUS|INSECT|SCONCE|MENTOR’, inWord Ways 9 (1976), 80–84. (His
experiments allowed proper names, but avoided plurals and other derived word forms.)

For an excellent history of word squares and word cubes, chronicling the subsequent
computer developments as well as extensive searches for 10 × 10 examples using vast
dictionaries, see Ross Eckler, Making the Alphabet Dance (New York: St. Martin’s
Griffin, 1997), 188–203; Tribute to a Mathemagician (A K Peters, 2005), 85–91.

33. Working from bottom to top and right to left is equivalent to working from top to
bottom and left to right on the word reversals. This idea does make the tries smaller;
but unfortunately it makes the programs slower. For example, the 6×5 computation of
answer 28 involves a 6347-node trie for the 6-letter words and a 63060-node compressed
trie for the 5-letter words. Those sizes go down to 5188 and 56064, respectively, when
we reverse the words; but the running time goes up from 380 Gμ to 825 Gμ.

402

From the Library of Melissa Nuno

ptg999

7.2.2 ANSWERS TO EXERCISES 403

34. Leave out face and (of course) dada; the remaining eleven are fine.

35. Keep tables pi, p
′
ij , p

′′
ijk, si, s

′
ij , s

′′
ijk, for 0 ≤ i, j, k < m, each capable of storing a

ternary digit, and initially zero. Also keep a table x0, x1, . . . of tentatively accepted
words. Begin with g ← 0. Then for each input wj = abcd, where 0 ≤ a, b, c, d < m, set
xg ← abcd and also do the following: Set pa ← pa +̇ 1, p′ab ← p′ab +̇ 1, p′′abc ← p′′abc +̇ 1,
sd ← sd+̇1, s

′
cd ← s′cd+̇1, s

′′
bcd ← s′′bcd+̇1, where x+̇y = min(2, x+y) denotes saturating

ternary addition. Then if sa′ p
′′
b′c′d′ + s′a′b′ p

′
c′d′ + s′′a′b′c′ pd′ = 0 for all xk = a′b′c′d′,

where 0 ≤ k ≤ g, set g ← g+1. Otherwise reject wj and set pa ← pa−1, p′ab ← p′ab−1,
p′′abc ← p′′abc − 1, sd ← sd − 1, s′cd ← s′cd − 1, s′′bcd ← s′′bcd − 1.

36. (a) The word bc appears in message abcd if and only if a→ b, b→ c, and c→ d.

(b) For 0 ≤ k < r, put vertex v into class k if the longest path from v has
length k. Given any such partition, we can include all arcs from class k to class j < k
without increasing the path lengths. So it’s a question of finding the maximum of∑

0≤j<k<r pjpk subject to p0+p1+· · ·+pr−1 = m. The values pj = �(m+j)/r� achieve
this (see exercise 7.2.1.4–68(a)). When r = 3 the maximum simplifies to �m2/3�.
37. (a) The factors of the period, 15 926 535 89 79 323 8314, begin at the respective
boundary points 3, 5, 8, 11, 13, 15, 18 (and then 3 + 19 = 22, etc.). Thus round 1
retains boundaries 5, 8, and 15. The second-round substrings y0 = 926, y1 = 5358979,
y2 = 323831415 have different lengths, so lexicographic comparison is unnecessary; the
answer is y2y0y1 = x15 . . . x33.

(b) Each substring consists of at least three substrings of the previous round.

(c) Let a0 = 0, b0 = 1, ae+1 = aeaebe, be+1 = beaebe; use ae or be when n = 3e.

(d) We use an auxiliary subroutine ‘less(i)’, which returns [yi−1<yi], given i > 0:
If bi−bi−1 �= bi+1−bi, return [bi − bi−1<bi+1 − bi]. Otherwise, for j = 0, 1, . . . , while
bi + j < bi+1, if xbi−1+j �= xbi+j return [xbi−1+j <xbi+j]. Otherwise return 0.

The tricky part of the algorithm is to discard initial factors that aren’t periodic.
The secret is to let i0 be the smallest index such that yi−3 ≥ yi−2 < yi−1; then we can
be sure that a factor begins with yi.

O1. [Initialize.] Set xj ← xj−n for n ≤ j < 2n, bj ← j for 0 ≤ j < 2n, and t← n.

O2. [Begin a round.] Set t′ ← 0. Find the smallest i > 0 such that less(i) = 0.
Then find the smallest j ≥ i+ 2 such that less(j − 1) = 1 and j ≤ t + 2. (If
no such j exists, report an error: The input x was equal to one of its cyclic
shifts.) Set i← i0 ← j mod t. (Now a dip of the period begins at i0.)

O3. [Find the next factor.] Find the smallest j ≥ i+ 2 such that less(j − 1) = 1.
If j − i is even, go to O5.

O4. [Retain a boundary.] If i < t, set b′t′ ← bi; otherwise set b′k ← b′k−1 for
t′ ≥ k > 0 and b′0 ← bi−t. Finally set t′ ← t′ + 1.

O5. [Done with round?] If j < i0 + t, set i ← j and return to O3. Otherwise, if
t′ = 1, terminate; σx begins at item xb′

0
. Otherwise set t ← t′, bk ← b′k for

0 ≤ k < t, and bk ← bk−t + n for k ≥ t while bk−t < 2n. Return to O2.

(e) Say that a “superdip” is a dip of odd length followed by zero or more dips of
even length. Any infinite sequence y that begins with an odd-length dip has a unique
factorization into superdips. Those superdips can, in turn, be regarded as atomic
elements of a higher-level string that can be factored into dips. The result σx of Algo-
rithm O is an infinite periodic sequence that allows repeated factorization into infinite
periodic sequences of superdips at higher and higher levels, until becoming constant.

403

From the Library of Melissa Nuno

ptg999

404 ANSWERS TO EXERCISES 7.2.2

Notice that the first dip of σx ends at position i0 in the algorithm, because its
length isn’t 2. Therefore we can prove the commafree property by observing that, if
codeword σx′′ appears within the concatenation σxσx′ of two codewords, its superdip
factors are also superdip factors of those codewords. This yields a contradiction if any
of σx, σx′, or σx′′ is a superdip. Otherwise the same observation applies to the superdip
factors at the next level. [Eastman’s original algorithm was essentially the same, but
presented in a more complicated way; see IEEE Trans. IT-11 (1965), 263–267. R. A.
Scholtz subsequently discovered an interesting and totally different way to define the
set of codewords produced by Algorithm O, in IEEE Trans. IT-15 (1969), 300–306.]

38. Let fk(m) be the number of dips of length k for which m > z1 and zk < m. The
number of such sequences with zk−1 = j is (m− j− 1)

(
m−j+k−3

k−2
)
= (k− 1)

(
m−j+k−3

k−1
)
;

summing for 0 ≤ j < m gives fk(m) = (k−1)(m+k−2
k

)
. Thus Fm(z) =

∑∞
k=0 fk(m)zk =

(mz−1)/(1−z)m. (The fact that f0(m) = −1 in these formulas turns out to be useful!)
Algorithm O finishes in one round if and only if some cyclic shift of x is a superdip.

The number of aperiodic x that finish in one round is therefore n[zn]Gm(z), where

Gm(z) =
Fm(−z)− Fm(z)

Fm(−z) + Fm(z)
=

(1 +mz)(1− z)m − (1−mz)(1 + z)m

(1 +mz)(1− z)m + (1−mz)(1 + z)m
.

To get the stated probability, divide by
∑

d\n μ(d)m
n/d, the number of aperiodic x.

(See Eq. 7.2.1.1–(60). For n = 3, 5, 7, 9 these probabilities are 1, 1, 1, and 1−3/(m3−1
3

)
.)

39. If so, it couldn’t have 0011, 0110, 1100, or 1001.

40. That section considered such representations of stacks and queues, but not of
unordered sets, because large blocks of sequential memory were either nonexistent or
ultra-expensive in olden days. Linked lists were the only decent option for families of
variable-size sets, because they could more readily fit in a limited high-speed memory.

41. (a) The blue word x with α = d (namely 1101) appears in its P2 list at location 5e.
(b) The P3 list for words of the form 010∗ is empty. (Both 0100 and 0101 are red.)

42. (a) The S2 list of 0010 has become closed (hence 0110 and 1110 are hidden).
(b) Word 1101 moved to the former position of 1001 in its S1 list, when 1001

became red. (Previously 1011 had moved to the former position of 0001.)

43. In this case, which of course happens rarely, it’s safe to set all elements of STAMP
to zero and set σ ← 1. (Do not be tempted to save one line of code by setting all STAMP
elements to −1 and leaving σ = 0. That might fail when σ reaches the value −1!)
44. (a) Set r ← 5. Then for k ← 0, 1, . . . , f − 1, set t← FREE[k], j ← MEM[CLOFF +
4t+m4]− (CLOFF + 4t), and if j < r set r ← j, c← t; break out of the loop if r = 0.

(b) If r > 0 set x← MEM[CLOFF + 4cl(ALF[x])].
(c) If r > 1 set q ← 0, p′ ← MEM[PP], and p ← POISON. While p < p′ do the

following steps: Set y ← MEM[p], z ← MEM[p + 1], y′ ← MEM[y +m4], and z′ ←
MEM[z +m4]. (Here y and z point to the heads of prefix or suffix lists; y′ and z′ point
to the tails.) If y = y′ or z = z′, delete entry p from the poison list; this means, as
in (18), to set p′ ← p′−2, and if p �= p′ to store(p, MEM[p′]) and store(p+1, MEM[p′ + 1]).
Otherwise set p← p+2; if y′−y ≥ z′−z and y′−y > q, set q ← y′−y and x← MEM[z];
if y′ − y < z′ − z and z′ − z > q, set q ← z′ − z and x← MEM[y]. Finally, after p has
become equal to p′, store(PP, p′) and set c← cl(ALF[x]). (Experiments show that this
“max kill” strategy for r > 1 slightly outperforms a selection strategy based on r alone.)

45. (a) First there’s a routine rem(α, δ, o) that removes an item from a list, following
the protocol (21): Set p ← δ + o and q ← MEM[p +m4] − 1. If q ≥ p (meaning that

404

From the Library of Melissa Nuno

ptg999

7.2.2 ANSWERS TO EXERCISES 405

list p isn’t closed or being killed), store(p + m4, q), set t ← MEM[α + o−m4]; and if
t �= q also set y ← MEM[q], store(t, y), and store(ALF[y]+ o−m4, t).

Now, to redden x we set α ← ALF[x], store(α, RED); then rem(α, p1(α), P1OFF),
rem(α, p2(α), P2OFF), . . . , rem(α, s3(α), S3OFF), and rem(α, 4cl(α), CLOFF).

(b) A simple routine close(δ, o) closes list δ+o: Set p← δ+o and q ← MEM[p +m4];
if q �= p− 1, store(p+m4, p− 1).

Now, to green x we set α ← ALF[x], store(α, GREEN); then close(p1(α), P1OFF),
close(p2(α), P2OFF), . . . , close(s3(α), S3OFF), and close(4cl(α), CLOFF). Finally, for p ≤
r < q (using the p and q that were just set within ‘close’), if MEM[r] �= x redden MEM[r].

(c) First set p′ ← MEM[PP]+6, and store(p′−6, p1(α)+S1OFF), store(p′−5, s3(α)+
P3OFF), store(p′ − 4, p2(α) + S2OFF), store(p′ − 3, s2(α) + P2OFF), store(p′ − 2, p3(α) +
S3OFF), store(p′ − 1, s1(α) + P1OFF); this adds the three poison items (27).

Then set p ← POISON and do the following while p < p′: Set y, z, y′, z′ as in
answer 44(c), and delete poison entry p if y = y′ or z = z′. Otherwise if y′ < y and
z′ < z, go to C5 (a poisoned suffix-prefix pair is present). Otherwise if y′ > y and
z′ > z, set p← p+ 2. Otherwise if y′ < y and z′ > z, store(z +m4, z), redden MEM[r]
for z ≤ r < z′, and delete poison entry p. Otherwise (namely if y′ > y and z′ < z),
store(y +m4, y), redden MEM[r] for y ≤ r < y′, and delete poison entry p.

Finally, after p has become equal to p′, store(PP, p′).

46. Exercise 37 exhibits such codes explicitly for all odd n. The earliest papers on
the subject gave solutions for n = 2, 4, 6, 8. Yoji Niho subsequently found a code for
n = 10 but was unable to resolve the case n = 12 [IEEE Trans. IT-19 (1973), 580–581].

This problem can readily be encoded in CNF and given to a SAT solver. The
case n = 10 involves 990 variables and 8.6 million clauses, and is solved by Algo-
rithm 7.2.2.2C in 10.5 gigamems. The case n = 12 involves 4020 variables and 175
million clauses. After being split into seven independent subproblems (by appending
mutually exclusive unit clauses), it was proved unsatisfiable by that algorithm after
about 86 teramems of computation.

So the answer is “No.” But we can come close: Aaron Windsor used a SAT solver
in 2021 to discover a binary commafree code for n = 12 that contains a representative
of every cycle class except [000011001011].

47. (a) There are 28 commafree binary codes of size 3 and length 4; Algorithm C
produces half of them, because it assumes that cycle class [0001] is represented by
0001 or 0010. They form eight equivalence classes, two of which are symmetric under
the operation of complementation-and-reflection; representatives are {0001, 0011, 0111}
and {0010, 0011, 1011}. The other six are represented by {0001, 0110, 0111 or 1110},
{0001, 1001, 1011 or 1101}, {0001, 1100, 1101}, {0010, 0011, 1101}.

(b) Algorithm C produces half of the 144 solutions, which form twelve equivalence
classes. Eight are represented by {0001, 0002, 1001, 1002, 1102, 2001, 2002, 2011,
2012, 2102, 2112, 2122 or 2212} and ({0102, 1011, 1012} or {2010, 1101, 2101}) and
({1202, 2202, 2111} or {2021, 2022, 1112}); four are represented by {0001, 0020, 0021,
0022, 1001, 1020, 1021, 1022, 1121 or 1211, 1201, 1202, 1221, 2001, 2201, 2202} and
({1011, 1012, 2221} or {1101, 2101, 1222}).

(c) Algorithm C yields half of the 2304 solutions, which form 48 equivalence classes.
Twelve classes have unique representatives that omit cycle classes [0123], [0103], [1213],
one such being the code {0010, 0020, 0030, 0110, 0112, 0113, 0120, 0121, 0122, 0130,
0131, 0132, 0133, 0210, 0212, 0213, 0220, 0222, 0230, 0310, 0312, 0313, 0320, 0322,
0330, 0332, 0333, 1110, 1112, 1113, 2010, 2030, 2110, 2112, 2113, 2210, 2212, 2213,

405

From the Library of Melissa Nuno

ptg999

406 ANSWERS TO EXERCISES 7.2.2

2230, 2310, 2312, 2313, 2320, 2322, 2330, 2332, 2333, 3110, 3112, 3113, 3210, 3212,
3213, 3230, 3310, 3312, 3313}. The others each have two representatives that omit
classes [0123], [0103], [0121], one such pair being the code {0001, 0002, 0003, 0201,
0203, 1001, 1002, 1003, 1011, 1013, 1021, 1022, 1023, 1031, 1032, 1033, 1201, 1203,
1211, 1213, 1221, 1223, 1231, 1232, 1233, 1311, 1321, 1323, 1331, 2001, 2002, 2003,
2021, 2022, 2023, 2201, 2203, 2221, 2223, 3001, 3002, 3003, 3011, 3013, 3021, 3022,
3023, 3031, 3032, 3033, 3201, 3203, 3221, 3223, 3321, 3323, 3331} and its isomorphic
image under reflection and (01)(23).

48. Algorithm C isn’t fast enough to solve this problem. But Aaron Windsor used a
SAT solver in 2021 to find such a code of size 139 = (54 − 52)/4 − 11, and to prove
that no such code of size 140 exists. (He also found, rather quickly, that an optimum
ternary commafree code for n = 6 contains (36− 33− 32+31)/6− 3 = 113 codewords.)

49. The 3-bit sequences 101, 111, 110 were rejected before seeing 000. In general, to
make a uniformly random choice from q possibilities, the text suggests looking at the
next t = �lg q� bits b1 . . . bt. If (b1 . . . bt)2 < q, we use choice (b1 . . . bt)2 + 1; otherwise
we reject b1 . . . bt and try again. [This simple method is optimum when q ≤ 4, and the
best possible running time for other values of q uses more than half as many bits. But a
better scheme is available for q = 5, using only 3 1

3
bits per choice instead of 4 4

5
; and for

q = 6, one random bit reduces to the case q = 3. See D. E. Knuth and A. C. Yao, Al-
gorithms and Complexity , edited by J. F. Traub (Academic Press, 1976), 357–428, §2.]
50. It’s the number of nodes on level l+1 (depth l) of the search tree. (Hence we can
estimate the profile. Notice that D = D1 . . . Dl−1 in step E2 of Algorithm E.)

51. Z0 = C(), Zl+1 = c() +D1c(X1) +D1D2c(X1X2) + · · · +D1 . . .Dlc(X1 . . .Xl) +
D1 . . . Dl+1C(X1 . . .Xl+1).

52. (a) True: The generating function is z(z+1) . . . (z+n− 1)/n!; see Eq. 1.2.10–(9).
(b) For instance, suppose Y1Y2 . . . Yl = 1457 and n = 9. Alice’s probability is

1
1
1
2
2
3
1
4
1
5
5
6
1
7
7
8
8
9
= 1

3
1
4
1
6
1
9
. Elmo obtains X1X2 . . . Xl = 7541 with probability 1

9
1
6
1
4
1
3
.

(c) The upper tail inequality (see exercise 1.2.10–22 with μ = Hn) tells us that
Pr(l ≥ (lnn)(ln lnn)) ≤ exp(−(lnn)(ln lnn)(ln ln lnn) +O(lnn)(ln lnn)).

(d) If k ≤ n/3 we have
∑k

j=0

(
n
j

) ≤ 2
(
n
k

)
. By exercise 1.2.6–67, the number of nodes

on the first (lnn)(ln lnn) levels is therefore at most 2(ne/((lnn)(ln lnn)))(lnn)(ln lnn).

53. The key idea is to introduce recursive formulas analogous to (29):

m(x1 . . . xl) = c(x1 . . . xl) + min(m(x1 . . . xlx
(1)
l+1)d, . . . ,m(x1 . . . xlx

(d)
l+1)d);

M(x1 . . . xl) = c(x1 . . . xl) + max(M(x1 . . . xlx
(1)
l+1)d, . . . ,M(x1 . . . xlx

(d)
l+1)d);

Ĉ(x1 . . . xl) = c(x1 . . . xl)
2 +

d∑
i=1

(Ĉ(x1 . . . xlx
(i)
l+1)d+ 2c(x1 . . . xl)C(x1 . . . xlx

(i)
l+1)).

They can be computed via auxiliary arrays MIN, MAX, KIDS, COST, and CHAT as follows:
At the beginning of step B2, set MIN[l] ← ∞, MAX[l] ← KIDS[l] ← COST[l] ←

CHAT[l]← 0. Set KIDS[l]← KIDS[l] + 1 just before l← l + 1 in step B3.
At the beginning of step B5, set m ← c(x1 . . . xl−1) + KIDS[l] × MIN[l], M ←

c(x1 . . . xl−1) + KIDS[l] × MAX[l], C ← c(x1 . . . xl−1) + COST[l], Ĉ ← c(x1 . . . xl−1)2 +
KIDS[l] × CHAT[l] + 2 × COST[l]. Then, after l ← l − 1 is positive, set MIN[l] ←
min(m, MIN[l]), MAX[l] ← max(M, MAX[l]), COST[l] ← COST[l] + C, CHAT[l] ←
CHAT[l] + Ĉ. But when l reaches zero in step B5, return the values m, M, C, Ĉ − C2.

406

From the Library of Melissa Nuno

ptg999

7.2.2 ANSWERS TO EXERCISES 407

54. Let p(i) = pX1...Xl−1(yi), and simply set D ← D/p(I) instead of D ← Dd. Then
node x1 . . . xl is reached with probability Π(x1 . . . xl) = p(x1)px1(x2) . . . px1...xl(xl),
and c(x1 . . . xl) has weight 1/Π(x1 . . . xl) in S; the proof of Theorem E goes through
as before. Notice that p(I) is the a posteriori probability of having taken branch I.

(The formulas of answer 53 should now use ‘/p(i)’ instead of ‘d’; and that algorithm
should be modified appropriately, no longer needing the KIDS array.)

55. Let pX1...Xl−1(yi) = C(x1 . . . xl−1yi)/(C(x1 . . . xl−1)− c(x1 . . . xl−1)). (Of course
we generally need to know the cost of the tree before we know the exact values of these
ideal probabilities, so we cannot achieve zero variance in practice. But the form of this
solution shows what kinds of bias are likely to reduce the variance.)

56. The effects of lookahead, dynamic ordering, and reversible memory are all captured
easily by a well-designed cost function at each node. But there’s a fundamental
difference in step C2, because different codeword classes can be selected for branching
at the same node (that is, with the same ancestors x1 . . . xl−1) after C5 has undone
the effects of a prior choice. The level l never surpasses L + 1, but in fact the search
tree involves hidden levels of branching that are implicitly combined into single nodes.

Thus it’s best to view Algorithm C’s search tree as a sequence of binary branches:
Should x be one of the codewords or not? (At least this is true when the “max kill”
strategy of answer 44 has selected the branching variable x. But if r > 1 and the poison
list is empty, an r-way branch is reasonable (or an (r + 1)-way branch when the slack
is positive), because r will be reduced by 1 and the same class c will be chosen after x
has been explored.)

If x has been selected because it kills many other potential codewords, we probably
should bias the branch probability as in exercise 54, giving smaller weight to the “yes”
branch because the branch that includes x is less likely to lead to a large subtree.

57. Let pk = 1/D(k) be the probability that Algorithm E terminates at the kth leaf.
Then

∑M
k=1(1/M) lg(1/(Mpk)) is the Kullback–Leibler divergence D(q ||p), where q is

the uniform distribution (see exercise MPR–121). Hence 1
M

∑M
k=1 lgD

(k) ≥ lgM . (The
result of this exercise is essentially true in any probability distribution.)

58. Let ∞ be any convenient value ≥ n. When vertex v becomes part of the path we
will perform a two-phase algorithm. The first phase identifies all “tarnished” vertices,
whose DIST must change; these are the vertices u from which every path to t passes
through v. It also forms a queue of “resource” vertices, which are untarnished but
adjacent to tarnished ones. The second phase updates the DISTs of all tarnished vertices
that are still connected to t. Each vertex has LINK and STAMP fields in addition to DIST.

For the first phase, set d← DIST(v), DIST(v)←∞+1, R← Λ, T← v, LINK(v)←
Λ, then do the following while T �= Λ: (∗) Set u← T, T ← S ← Λ. For each w−−−u, if
DIST(w) < d do nothing (this happens only when u = v); if DIST(w) ≥ ∞ do nothing
(w is gone or already known to be tarnished); if DIST(w) = d, make w a resource (see
below); otherwise DIST(w) = d+1. If w has no neighbor at distance d, w is tarnished:
Set LINK(w) ← T, DIST(w) ← ∞, T ← w. Otherwise make w a resource (see below).
Then set u← LINK(u), and return to (∗) if u �= Λ.

The queue of resources will start at R. We will stamp each resource with v so
that nothing is added twice to that queue. To make w a resource when DIST(w) = d,
do the following (unless u = v or STAMP(w) = v): Set STAMP(w) ← v; if R = Λ, set
R ← RT ← w; otherwise set LINK(RT) ← w and RT ← w. To make w a resource when
DIST(w) = d+ 1 and u �= v and STAMP(w) �= v, put it first on stack S as follows: Set
STAMP(w)← v; if S = Λ, set S← SB← w; otherwise set LINK(w)← S, S← w.

407

From the Library of Melissa Nuno

ptg999

408 ANSWERS TO EXERCISES 7.2.2

Finally, when u = Λ, we append S to R: Nothing needs to be done if S = Λ.
Otherwise, if R = Λ, set R ← S and RT ← SB; but if R �= Λ, set LINK(RT) ← S and
RT← SB. (These shenanigans keep the resource queue in order by DIST.)

Phase 2 operates as follows: Nothing needs to be done if R = Λ. Otherwise we set
LINK(RT) ← Λ, S ← Λ, and do the following while R �= Λ or S �= Λ: (i) If S = Λ, set
d ← DIST(R). Otherwise set u ← S, d ← DIST(u), S ← Λ; while u �= Λ, update the
neighbors of u and set u ← LINK(u). (ii) While R �= Λ and DIST(R) = d, set u ← R,
R ← LINK(u), and update the neighbors of u. In both cases “update the neighbors
of u” means to look at all w −−− u, and if DIST(w) = ∞ to set DIST(w) ← d + 1,
STAMP(w)← v, LINK(w)← S, and S← w. (It works!)

59. (a) Compute the generating function g(z) (see exercise 7.1.4–209) and then g′(1).
(b) Let (A,B,C) denote paths that touch (center, NE corner, SW corner). Re-

cursively compute eight counts (c0, . . . , c7) at each node, where cj counts paths π
with j = 4[π∈A] + 2[π∈B] + [π∈C]. At the sink node & we have c0 = 1,
c1 = · · · = c7 = 0. Other nodes have the form x = (ē? xl: xh) where e is an edge.
Two edges go across the center and affect A; three edges affect each of B and C. Say
that those edges have types 4, 2, 1, respectively; other edges have type 0. Suppose the
counts for xl and xh are (c′0, . . . , c

′
7) and (c′′0 , . . . , c

′′
7), and e has type t. Then count cj

for node x is c′j + [t=0]c′′j + [t& j �= 0](c′′j + c′′j−t).
(This procedure yields the following exact “Venn diagram” set counts at the root:

c0 = |A ∩ B ∩ C| = 7653685384889019648091604; c1 = c2 = |A ∩ B ∩ C| = |A ∩ B ∩
C| = 7755019053779199171839134; c3 = |A ∩ B ∩ C| = 7857706970503366819944024;
c4 = |A∩B∩C| = 4888524166534573765995071; c5 = c6 = |A∩B∩C| = |A∩B∩C| =
4949318991771252110605148; c7 = |A ∩B ∩ C| = 5010950157283718807987280.)

60. Yes, the paths are less chaotic and the estimates are better:

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.0

0.5

2×1025

5×1025

8×1025

1025

≤1020

61. (a) Let xk be the number of nodes at distance k − 1 from the root.

(b) Let Q
(m)
n = P

(1)
n + · · · + P

(m)
n . Then we have the joint recurrence P

(m)
1 = 1,

P
(m)
n+1 = Q

(2m)
n ; in particular, Q

(m)
1 = m. And for n ≥ 2, we have Q

(m)
n =

∑n
k=1 ank

(
m
k

)
for certain constants ank that can be computed as follows: Set tk ← P

(k)
n for 1 ≤ k ≤ n.

Then for k = 2, . . . , n set tn ← tn − tn−1, . . . , tk ← tk − tk−1. Finally ank ← tk for
1 ≤ k ≤ n. For example, a21 = a22 = 2; a31 = 6, a32 = 14, a33 = 8. The numbers P

(m)
n

have O(n2 + n logm) bits, so this method needs O(n5) bit operations to compute Pn.

408

From the Library of Melissa Nuno

ptg999

7.2.2 ANSWERS TO EXERCISES 409

(c) P
(m)
n corresponds to random paths withX1 = m,Dk = 2Xk,Xk+1 = �2UkXk�,

where each Uk is an independent uniform deviate. Therefore P
(m)
n = E(D1 . . .Dn−1)

is the number of nodes on level n of an infinite tree. We have Xk+1 ≥ 2kU1 . . . Ukm,

by induction; hence P
(m)
n ≥ E(2(

n
2)Un−2

1 Un−3
2 . . . U1

n−2m
n−1) = 2(

n
2)mn−1/(n− 1)!.

[M. Cook and M. Kleber have discussed similar sequences in Electronic Journal

of Combinatorics 7 (2000), #R44, 1–16. See also K. Mahler’s asymptotic formula for
binary partitions, in J. London Math. Society 15 (1940), 115–123, which shows that
lgPn =

(
n
2

)− lg(n− 1)! +
(
lgn
2

)
+O(1).]

62. Random trials indicate that the expected number of 2-regular graphs is ≈ 3.115,
and that the number of disjoint pairs is (0, 1, . . . , 9, and ≥10) approximately (74.4,
4.3, 8.7, 1.3, 6.2, 0.2, 1.5, 0.1, 2.0, 0.0, and 12.2) percent of the time. If the cubes are
restricted to cases where each color occurs at least five times, these numbers change to
≈ 4.89 and (37.3, 6.6, 17.5, 4.1, 16.3, 0.9, 5.3, 0.3, 6.7, 0.2, 5.0).

However, the concept of “unique solution” is tricky, because a 2-regular graph with
k cycles yields 2k ways to position the cubes. Let’s say that a set of cubes has a strongly
unique solution if (i) it has a unique disjoint pair of 2-regular graphs, and furthermore
(ii) both elements of that pair are n-cycles. Such sets occur with probability only about
0.3% in the first case, and 0.4% in the second.

[N. T. Gridgeman, in Mathematics Magazine 44 (1971), 243–252, showed that
puzzles with four cubes and four colors have exactly 434 “types” of solutions.]

63. It’s easy to find such examples at random, as in the second part of the previous
answer, since strongly unique sets occur about 0.5% of the time (and weakly unique
sets occur with probability ≈ 8.4%). For example, the pairs of opposite faces might be
(12, 13, 34), (02, 03, 14), (01, 14, 24), (04, 13, 23), (01, 12, 34).

(Incidentally, if we require each color to occur exactly six times, every set of cubes
that has at least one solution will have at least three solutions, because the “hidden”
pairs can be chosen in three ways.)

64. Each of these cubes can be placed in 16 different ways that contribute legitimate
letters to all four of the visible words. (A cube whose faces contain only letters in
{C,H,I,N,O,U,X,Z} can be placed in 24 ways. A cube with a pattern like B

A
D

cannot be placed at all.) We can restrict the first cube to just two placements; thus
there are 2 · 16 · 16 · 16 · 16 = 131072 ways to place those cubes without changing their
order. Of these, only 6144 are “compatible,” in the sense that no right-side-up-only
letter appears together with an upside-down-only letter in the same word.

The 6144 compatible placements can then each be reordered in 5! = 120 ways. One
of them, whose words before reordering are GRHTI, NCICY,

NWRGO
,

OUNNI
,

leads to the unique solution. (There’s a partial solution with three words out of four.
There also are 39 ways to get two valid words, including one that has UNTIL adjacent
to HOURS, and several with SYRUP opposite ECHOS.)

65. E. Robertson and I. Munro, in Utilitas Mathematica 13 (1978), 99–116, have
reduced the exact cover problem to this problem.

66. Call the rays N, NE, E, SE, S, SW, W, NW; call the disks 1, 2, 3, 4 from inside
to outside. We can keep disk 1 fixed. The sum of rays N, S, E, W must be 48. It is
16 (on disk 1) plus 13 or 10 (on disk 2) plus 8 or 13 (on disk 3) plus 11 or 14. So it
is attained either as shown, or after rotating disks 2 and 4 clockwise by 45◦. (Or we
could rotate any disk by a multiple of 90◦, since that keeps the desired sum invariant.)

409

From the Library of Melissa Nuno

ptg999

410 ANSWERS TO EXERCISES 7.2.2

Next, with optional 90◦ rotations, we must make the sum of rays N + S equal to
24. In the first solution above it is 9 plus (6 or 7) plus (4 or 4) plus (7 or 4), hence
never 24. But in the other solution it’s 9 plus (4 or 6) plus (4 or 4) plus (5 or 9); hence
we must rotate disk 2 clockwise by 90◦, and possibly also disk 3. However, 90◦ rotation
of disk 3 would make the NE + SW sum equal to 25, so we musn’t move it.

Finally, to get NE’s sum to be 12, via optional rotations by 180◦, we have 1 plus
(2 or 5) plus (1 or 5) plus (3 or 4); we must shift disks 3 and 4. Hurrah: That makes
all eight rays correct. Factoring twice has reduced 83 trials to 23 + 23 + 23.

[See George W. Ernst and Michael M. Goldstein, JACM 29 (1982), 1–23. Such
puzzles go back to the 1800s; three early examples are illustrated on pages 28 of Slocum
and Botermans’s New Book of Puzzles (1992). One of them, with six rings and six rays,
factors from 65 trials to 25 + 35. A five-ray puzzle would have defeated factorization.]

67. Call the cards 1525, 5113, . . . , 3755. The key observation is that all 12 sums
must be odd, so we can first solve the problem mod 2. For this purpose we may call
the cards 1101, 1111, . . . , 1111; only three cards now change under rotation, namely
1101, 0100, and 1100 (which are the mod 2 images of 1525, 4542, and 7384).

A second observation is that each solution gives 6 × 6 × 2 others, by permuting
rows and/or columns and/or by rotating all nine cards. Hence we can assume that
the upper left card is 0011 (8473). Then 0100 (4542) must be in the first column,
possibly rotated to 0001 (4245), to preserve parity in the left two black sums. We can
assume that it’s in row 2. In fact, after retreating from 13 mod 2 to 13, we see that it
must be rotated. Hence the bottom left card must be either 4725, 7755, or 3755.

Similarly we see that 1101 (1525) must be in the first row, possibly rotated to
0111 (2515); we can put it in column 2. It must be rotated, and the top right card
must be 3454 or 3755. This leaves just six scenarios to consider, and we soon obtain
the solution: 8473, 2515, 3454; 4245, 2547, 7452; 7755, 1351, 5537.

68. In general, let’s say that a vertex labeling of a digraph is stable if v’s label is the
number of distinct labels among {w | v −−→ w}, for all v. We wish to find all stable
labelings that extend a given partial labeling. We may assume that no vertex is a sink.

Let Λ(v) be a set of digits that includes every label that v could possibly have, in
a solution to this extension problem. Initially, Λ(v) = {d} if v’s label is supposed to
be d; otherwise Λ(v) = {1, . . . , d+(v)}. These sets are conveniently represented as the
binary numbers L(v) =

∑{2k−1 | k ∈ Λ(v)}. Our goal is to reduce each L(v) to a 1-bit
number. A nice backtrack routine called “refine(v)” proves to be helpful in this regard.

Let v0 = v and let v1, . . . , vn be v’s successors. Let aj = L(vj). Following the
outline of Algorithm B, we let xl ⊆ al be a 1-bit number, accepted in step B3 only if
2νsl−1 ⊆ gl, where sl = x1 | · · · | xl and where the goal sets gl are defined by gn = a0,
gl = (gl+1 | gl+1#1)&(2l−1). We start with all bj ← 0; then when visiting a solution
x1 . . . xn, we set bj ← bj | xj for 1 ≤ j ≤ n, and b0 ← b0 | 2νsn−1. After finding all
solutions we’ll have bj ⊆ aj for all j; and whenever bj �= aj we can reduce L(vj)← bj .

Operate in rounds, where all vertices are refined in round 1;
subsequent rounds refine only the vertices whose parameters aj
have changed. In each round we first refine the vertices with small-
est product (νa1) . . . (νan), because they have the fewest potential
solutions x1 . . . xn. This method isn’t guaranteed to succeed; but
fortunately it does solve the stated problem, after 301 refinements
in 6 rounds. [Such “Japanese arrow puzzles” were introduced by
Masanori Natsuhara on page 75 of Puzuraa 128 (July 1992).]

3 1 4 3 1 3 5 5 9 5

7 4 2 6 1 3 5 7 1 5

9 4 7 6 1 2 3 5 8 9

7 6 3 2 1 3 5 4 7 7

9 8 3 4 1 2 6 7 5 9

4 4 4 1 1 3 4 2 4 3

9 8 3 5 1 2 4 7 6 9

4 6 2 6 1 3 2 5 2 4

4 3 3 3 1 3 3 3 3 5

9 8 4 3 1 2 6 7 9 5

410

From the Library of Melissa Nuno

ptg999

7.2.2 ANSWERS TO EXERCISES 411

69. (The 33rd boxed clue will, of course, have to point outside the 10 × 10 array.
Maybe there’s even a puzzle whose empty boxes are symmetrical, as in exercise 68.)

70. An extremely instructive analysis [Combinatorics, Probability and Computing

23 (2014), 725–748] leads to the recurrences Pm = (5 + 9z)Pm−2 − 4Pm−4, Qm =
(5 + 9z)Qm−2 − 4Qm−4, for m ≥ 6, where the initial values are (P2, P3, P4, P5) =
(1, 1+ z, 1+ 3z, 1+ 10z+9z2); (Q2, Q3, Q4, Q5) = (1− 4z, 1− 9z− 6z2, 1− 19z− 18z2,
1−36z−99z2−54z3). The denominator Qm(z) has all real roots, exactly one of which
is positive, namely 1/ρm.

71. Suppose there are n questions, whose answers each lie in a given set S. A student

supplies an answer list α = a1 . . . an, with each aj ∈ S; a grader supplies a Boolean
vector β = x1 . . . xn. There is a Boolean function fjs(α, β) for each j ∈ {1, . . . , n} and
each s ∈ S. A graded answer list (α, β) is valid if and only if F (α, β) is true, where

F (α, β) = F (a1 . . . an, x1 . . . xn) =
n∧
j=1

∧
s∈S

([aj = s] ⇒ xj ≡ fjs(α, β)).

The maximum score is the largest value of x1 + · · · + xn over all graded answer lists
(α, β) that are valid. A perfect score is achieved if and only if F (α, 1 . . . 1) holds.

Thus, in the warmup problem we have n = 2, S = {A,B}; f1A = [a2=B];
f1B = [a1=A]; f2A = x1; f2B = x̄2 ⊕ [a1=A]. The four possible answer lists are:

AA: F = (x1 ≡ [A=B]) ∧ (x2 ≡ x1)
AB: F = (x1 ≡ [B=B]) ∧ (x2 ≡ x̄2 ⊕ [A=A])
BA: F = (x1 ≡ [B=A]) ∧ (x2 ≡ x1)
BB: F = (x1 ≡ [B=A]) ∧ (x2 ≡ x̄2 ⊕ [B=A])

Thus AA and BA must be graded 00; AB can be graded either 10 or 11; and BB has
no valid grading. Only AB can achieve the maximum score, 2; but 2 isn’t guaranteed.

In Table 666 we have, for example, f1C = [a2 �=A] ∧ [a3=A]; f4D = [a1=D] ∧
[a15=D]; f12A = [ΣA − 1=ΣB], where Σs =

∑
1≤j≤20[aj = s]. It’s amusing to note

that f14E = [{ΣA, . . . ,ΣE}= {2, 3, 4, 5, 6}].
The other cases are similar (although often more complicated) Boolean functions—

except for 20D and 20E, which are discussed further in exercise 72.

Notice that an answer list that contains both 10E and 17E must be discarded: It
can’t be graded, because 10E says ‘x10 ≡ x̄17’ while 17E says ‘x17 ≡ x10’.

By suitable backtrack programming, we can prove first that no perfect score is
possible. Indeed, if we consider the answers in the order (3, 15, 20, 19, 2, 1, 17, 10, 5,
4, 16, 11, 13, 14, 7, 18, 6, 8, 12, 9), many cases can quickly be ruled out. For example,
suppose a3 = C. Then we must have a1 �= a2 �= · · · �= a16 �= a17 = a18 �= a19 �= a20,
and early cutoffs are often possible. (We might reach a node where the remaining
choices for answers 5, 6, 7, 8, 9 are respectively {C,D}, {A,C}, {B,D}, {A,B,E},
{B,C,D}, say. Then if answer 8 is forced to be B, answer 7 can only be D; hence
answer 6 is also forced to be A. Also answer 9 can no longer be B.) An instructive little
propagation algorithm will make such deductions nicely at every node of the search
tree. On the other hand, difficult questions like 7, 8, 9, are best not handled with
complicated mechanisms; it’s better just to wait until all twenty answers have been
tentatively selected, and to check such hard cases only when the checking is easy and
fast. In this way the author’s program showed the impossibility of a perfect score by
exploring just 52859 nodes, after only 3.4 megamems of computation.

411

From the Library of Melissa Nuno

ptg999

412 ANSWERS TO EXERCISES 7.2.2

The next task was to try for score 19 by asserting that only xj is false. This turned
out to be impossible for 1 ≤ j ≤ 18, based on very little computation whatsoever
(especially, of course, when j = 6). The hardest case, j = 15, needed just 56 nodes and
fewer than 5 kilomems. But then, ta da, three solutions were found: One for j = 19 (185
kilonodes, 11 megamems) and two for j = 20 (131 kilonodes, 8 megamems), namely

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D C E A B E B C E A B E A E D B D A b B
A E D C A B C D C A C E D B C A D A A c
D C E A B A D C D A E D A E D B D B E e

(i)
(ii)
(iii)

(The incorrect answers are shown here as lowercase letters. The first two solutions
establish the truth of 20B and the falsity of 20E.)

72. Now there’s only one list of answers with score ≥ 19, namely (iii). But that is
paradoxical—because it claims 20E is false; hence the maximum score cannot be 19!

Paradoxical situations are indeed possible when the global function F of answer 71
is used recursively within one or more of the local functions fjs. Let’s explore a bit of
recursive territory by considering the following two-question, two-letter example:

1. (A) Answer 1 is incorrect. (B) Answer 2 is incorrect.

2. (A) Some answers can’t be graded consistently. (B) No answers achieve a perfect score.

Here we have f1A = x̄1; f1B = x̄2; f2A = ∃a1∃a2∀x1∀x2¬F (a1a2, x1x2); f2B =
∀a1∀a2¬F (a1a2, 11). (Formulas quantified by ∃a or ∀a expand into |S| terms, while ∃x
or ∀x expand into two; for example, ∃a∀xg(a, x) = (g(A, 0)∧g(A, 1))∨(g(B, 0)∧g(B, 1))
when S = {A,B}.) Sometimes the expansion is undefined, because it has more than
one “fixed point”; but in this case there’s no problem because f2A is true: Answer AA
can’t be graded, since 1A implies x1 ≡ x̄1. Also f2B is true, because both BA and BB
imply x1 ≡ x̄2. Thus we get the maximum score 1 with either BA or BB and grades 01.

On the other hand the simple one-question, one-letter questionnaire ‘1. (A) The
maximum score is 1’ has an indeterminate maximum score. For in this case f1A =
F (A, 1). We find that if F (A, 1) = 0, only (A, 0) is a valid grading, so the only possible
score is 0; similarly, if F (A, 1) = 1, the only possible score is 1.

OK, suppose that the maximum score for the modified Table 666 is m. We know
that m < 19; hence (iii) isn’t a valid grading. It follows that 20E is true, which means
that every valid graded list of score m has x20 false. And we can conclude that m = 18,
because of the following two solutions (which are the only possibilities with 20C false):

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B A d A B E D C D A E D A E D E D B E c
A E D C A B C D C A C E D B a C D A A c

But wait: If m = 18, we can score 18 with 20A true and two errors, using (say)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D e D A B E D e C A E D A E D B D C C A

or 47 other answer lists. This contradicts m = 18, because x20 is true.

End of story? No. This argument has implicitly been predicated on the assumption
that 20D is false. What if m is indeterminate? Then a new solution arises

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D C E A B E D C E A E B A E D B D A d D

412

From the Library of Melissa Nuno

ptg999

7.2.2 ANSWERS TO EXERCISES 413

of score 19. With (iii) it yields m = 19! If m is determinate, we’ve shown that m
cannot actually be defined consistently; but if m is indeterminate, it’s definitely 19.

Question 20 was designed to create difficulties. [:-)]

— DONALD R. WOODS (2001)

73. The 29 words spark, often, lucky, other, month, ought, names, water, games,
offer, lying, opens, magic, brick, lamps, empty, organ, noise, after, raise, drink,
draft, backs, among, under, match, earth, roofs, topic yield this: “The success or
failure of backtrack often depends on the skill and ingenuity of the programmer. . . .
Backtrack programming (as many other types of programming) is somewhat of an art.”
— Solomon W. Golomb, Leonard D. Baumert.

That solution can be found interactively, using inspired guesses based on a knowl-
edge of English and its common two-letter and three-letter words. But could a computer
that knows common English words discover it without understanding their meanings?

We can formulate that question as follows: Let w1, . . . , w29 be the unknown words
from WORDS(1000), and let q1, . . . , q29 be the unknown words of the quotation. (By
coincidence there happen to be just 29 of each.) We can restrict the q’s to words that
appear, say, 32 times or more in the British National Corpus. That gives respectively
(85, 562, 1863, 3199, 4650, 5631, 5417, 4724, 3657, 2448) choices for words of (2, 3, . . . ,
11) letters; in particular, we allow 3199 possibilities for the five-letter words q7, q11, q21,
q22, because they aren’t required to lie in WORDS(1000). Is there a unique combination
of words wi and qj that meets the given anacrostic constraints?

This is a challenging problem, whose answer turns out (surprisingly?) to be no.
In fact, here is the first solution found by the author’s machine(!): “The success or
failure of backtrack often depends on roe skill and ingenuity at the programmer. . . .
Backtrack programming (as lacy offal types of programming) as somewhat al an art.”
(The OSPD4 includes ‘al’ as the name of the Indian mulberry tree; the BNC has ‘al’
3515 times, mostly in unsuitable contexts, but that corpus is a blunt instrument.)
Altogether 720 solutions satisfy the stated constraints; they differ from the “truth”
only in words of at most five letters.

Anacrostic puzzles, which are also known by other names such as double-crostics,
were invented in 1933 by E. S. Kingsley. See E. S. Spiegelthal, Proceedings of the

Eastern Joint Computer Conference 18 (1960), 39–56, for an interesting early attempt
to solve them—without backtracking—on an IBM 704 computer.

74. Instead of considering 1000 possibilities for
131132133134135

, it suffices to consider

the 43 pairs xy such that cxyab is in WORDS(1000) and abc is a common three-letter
word. (Of these pairs ab, ag, . . . , ve, only ar leads to a solution. And indeed, the
720 solutions factor into three sets of 240, corresponding to choosing earth, harsh,
or large as the keyword for

131132133134135
.) Similar reductions, but not so dramatic,

occur with respect to
137139

,
118119

,
46 48

, and
32 35

.

75. The following algorithm uses an integer utility field TAG(u) in the representation of
each vertex u, representing the number of times u has been “tagged.” The operations
“tag u” and “untag u” stand respectively for TAG(u) ← TAG(u) + 1 and TAG(u) ←
TAG(u)−1. Vertices shown as ‘ ’ in the 21 examples have a nonzero TAG field, indicating
that the algorithm has decided not to include them in this particular H.

State variables vl (a vertex), il (an index), and al (an arc) are used at level l for
0 ≤ l < n. We assume that n > 1.

413

From the Library of Melissa Nuno

ptg999

414 ANSWERS TO EXERCISES 7.2.2

R1. [Initialize.] Set TAG(u) ← 0 for all vertices u. Then set v0 ← v, i ← i0 ← 0,
a← a0 ← ARCS(v), TAG(v)← 1, l← 1, and go to R4.

R2. [Enter level l.] (At this point i = il−1, v = vi, and a = al−1 is an arc from v
to vl−1.) If l = n, visit the solution v0v1 . . . vn−1 and set l← n− 1.

R3. [Advance a.] Set a← NEXT(a), the next neighbor of v.

R4. [Done with level?] If a �= Λ, go to R5. Otherwise if i = l − 1, go to R6.
Otherwise set i← i+ 1, v ← vi, a← ARCS(v).

R5. [Try a.] Set u ← TIP(a) and tag u. If TAG(u) > 1, return to R3. Otherwise
set il ← i, al ← a, vl ← u, l← l + 1, and go to R2.

R6. [Backtrack.] Set l ← l − 1, and stop if l = 0. Otherwise set i ← il, v ← vi.
Untag all neighbors of vk, for l ≥ k > i. Then set a← NEXT(al); while a �= Λ,
untag TIP(a) and set a← NEXT(a). Finally set a← al and return to R3.

This instructive algorithm differs subtly from the conventional structure ofAlgorithm B.
Notice in particular that TIP(al) is not untagged in step R6; that vertex won’t be
untagged and chosen again until some previous decision has been reconsidered.

76. Let G have N vertices. For 1 ≤ k ≤ N , perform Algorithm R on the kth vertex v
of G, except that step R1 should tag the first k− 1 vertices so that they are excluded.
(You’ll need to make it work when n = 1. A tricky shortcut can be used: If we untag
all neighbors of v = v0 after Algorithm R stops, the net effect will be to tag only v.)

The n-omino placement counts 1, 4, 22, 113, 571, 2816, 13616, 64678, 302574 are
computed almost instantly, for small n. (Larger n are discussed in Section 7.2.3.)

77. (a) All but the 13th and 18th, which require an upward or leftward step.
(b) True. If u ∈ H and u �= v, let pu be any node of H that’s one step closer to v.
(c) Again true: The oriented spanning trees are also ordinary spanning trees.
(d) The same algorithm works, except that step R4 must return to itself after

setting a← ARCS(v). (We can no longer be sure that ARCS(v) �= Λ.)

78. Extend Algorithm R to terminate immediately if WT(v) ≥ U , otherwise to visit
the singleton solution v. Also set w← WT(v) in step R1. Replace steps R2 and R5 by

R2′. [Enter level l]. If w ≥ L, visit the solution v0v1 . . . vl−1.

R5′. [Try a.] Set u← TIP(a) and tag u. If TAG(u) > 1 or w+ WT(u) ≥ U , return
to R3. Otherwise set il ← i, al ← a, vl ← u, w ← w + WT(u), l← l+ 1, and
go to R2.

In step R6, set w ← w − WT(vl) just before setting i← il.

79. (a) (0, j) and (1, j) for j ≥ 44; (2, j) for j ≥ 32; (4, j), (8, j), (10, j) for j < 12.
(b) True, each of the Boolean functions ri,j is clearly monotone.
(c) The “couplers” can be simulated by playing s∗j and g

∗
j instead of sj and gj (as

if the organist had assistants). Therefore the problem can be factored into independent
subproblems for the Pedal, Swell, and Great separately: Let there be Pn, Sn, Gn

playable sounds on the Pedal, Swell, and Great, and define P (z) =
∑

n Pnz
n, S(z) =∑

n Snz
n, G(z) =

∑
nGnz

n; then Q(z) =
∑

nQnz
n is the convolution P (z)S(z)G(z).

(d) p0 = p12 = c0 = c1 = c15 = 1 gives (0, 0), (0, 12), (0, 24), (1, 0), (1, 12); s0 =
s19 = s28 = c3 = c4 = 1 gives (the beautiful) (3, 0), (3, 19), (3, 28), (4, 19), (4, 28); etc.

(e) It’s unplayable if and only if i ∈ {2, 14, 15} or i′ ∈ {0, 1, 2, 14, 15} or (i �= i′

and either 3 ≤ i, i′ ≤ 8 or 9 ≤ i, i′ ≤ 15).
(f) Q1 = 812− 112 = 700, because we can’t have (14, j) or (15, j) without (13, j).

414

From the Library of Melissa Nuno

ptg999

7.2.2 ANSWERS TO EXERCISES 415

(g) Q811 = 12 sounds lack only one pipe: With all inputs 1 except pj , for 12 ≤ j <
24, only r2,j is 0. (Thankfully there isn’t enough wind pressure to actually play this.)

(h) Brute-force backtrack programs can be written, using the monotonicity prop-
erty (b) for cutoffs, in order to check small values and to list the actual sounds. But
the best way to compute Pn, Sn, Gn, and Qn is to use generating functions.

For example, let G(z) = G0(z) + G1(z) + · · · + G63(z), where Gk(z) for k =
(c14c13c12c11c10c9)2 enumerates the sounds for a given setting of console switches,
excluding sounds already enumerated by Gj(z) for j < k. Then G0(z) = 1; Gk(z) = 0
if c13c14 = 1; otherwise Gk(z) = f(c9 + c11 + c12 + c13 + 3c14) when c10 = 0, and
Gk(z) = g(c9+1+ c11+ c12+ c13+3c14, 1+ c11+ c12+ c13+3c14) when c10 = 1, where

f(n) = (1 + zn)56 − 1, g(m,n) = (1 + zn)12((1 + zm)44 − 1).

Thus G(z) = 1+268z+8146z2+139452z3+ · · ·+178087336020z10+ · · ·+12z374+ z380.
Similarly, with S(z) =

∑63
k=0 Sk(z) and k = (c8c7c6c5c4c3)2, we have S0(z) = 1;

S32(z) = (1 + z)44 − 1; otherwise Sk(z) = f(c3 + c5 + c6 + c7) when c4 = c8 = 0,
Sk(z) = g(c3 + c4 + c5 + c6 + c7 + c8,max(c3, c4) + c5 + c6 + c7) when c4 + c8 > 0.
Thus S(z) = 1+312z+9312z2+155720z3+ · · ·+180657383126z10+ · · ·+12z308+ z312.
[Curiously we have Sn > Gn for 1 ≤ n ≤ 107.]

The generating functions for P (z) =
∑31

k=0 Pk(z), with k = (c16c15c2c1c0)2, are

trickier. Let h(w, z) = (1+3wz2+2w2z3+w2z4+w3z4)8((1+2wz2+w2z3)4−1). Then
P31(z) = h(z, z2), and there are three main cases when 0 < k < 31: If c0c15 = c1c16 = 0,
then Pk(z) = (1 + zc15+c16)32 − (1 + zc15+c16)20 if c0 + c1 + c2 = 0, otherwise Pk(z) =
(1 + zc0+c1+c2+c15+c16)32 − 1. If c0 = c15, c1 = c16, c2 = 0, then Pk(z) = q(zc0+c1),

q(z) = (1 + 3z2 + 2z3 + z4)8(1 + 2z2 + z3)4 − 2(1 + 2z2 + z3)8(1 + z2)4 + (1 + z2)8.

Otherwise we have Pk(z) = h(zc0+c1+c2+c15+c16−2, z). Thus P (z) = 1+120z+2336z2+
22848z3+ · · ·+ 324113168z10+ · · ·+ 8z119+ z120. And Q(z) = 1 + 700z + 173010z2+
18838948z3+ 1054376915z4+ 38386611728z5+ 1039287557076z6+ 22560539157160z7+
410723052356833z8+6457608682396156z9+89490036797524716z10+ · · ·+12z811+z812.
So (Q2/

(
812
2

)
, . . . , Q10/

(
812
10

)
) ≈ (.5, .2, .06, .01, .003, .0005, .00009, .00002, .000003).

415

From the Library of Melissa Nuno

ptg999

416 ANSWERS TO EXERCISES 7.2.2.1

Dr Pell was wont to say, that in the Resolution of Questiones,

the main matter is the well stating them:

which requires a good mother-witt & Logick: as well as Algebra:

for let the Question be but well-stated, and it will worke of it selfe:

. . . By this way, an man cannot intangle his notions, & make a false Steppe.

— JOHN AUBREY, An Idea of Education of Young Gentlemen (c. 1684)

SECTION 7.2.2.1

1. (a) Note first that Algorithm 6.2.2T has its own LLINK and RLINK fields, for left
and right children; they shouldn’t be confused with the links of the doubly linked list.
After all deletions are done, LLINK(k) will be the largest search-tree ancestor of k that’s
less than k; RLINK(k) will be the smallest ancestor of k that’s greater than k; but if
there’s no such ancestor, the link will be 0. (For example, in Fig. 10 of Section 6.2.2,
RLINK(LEO) would be PISCES and LLINK(AQUARIUS) would be the list head.)

(b) There are Cn=
(
2n
n

)
1

n+1
classes (the Catalan number), one for each binary tree.

(c) The size of each class is the number of topological sortings of the partial order
generated by the relations k ≺ LLINK(k), k ≺ RLINK(k). And this number equals 1
only in the 2n−1 “degenerate” trees of height n (see exercise 6.2.2–5).

2. (a) (Solution by X. Lou.) We can prove that LLINK(ak) = ak−1 and RLINK(ak) =
(ak+1) mod (n+1) when ak is undeleted; hence that undeletion sets RLINK(ak − 1) and
LLINK((ak + 1) mod (n+ 1)) to the correct value ak. (If ak − 1 wasn’t deleted before

ak, LLINK(ak) never changed. Otherwise LLINK(ak) became ak − 1 when ak − 1 was
undeleted, by induction on k. A similar argument works for RLINK.) Notice that each
LLINK and RLINK is reset exactly once, except that LLINK(1) and RLINK(n) remain 0.

(Programmers are advised to use this amazing fact only with great care, because
the lists are malformed during the process and fully reconstructed only at the end.)

(b) No. For example, delete 1, 2, 3; then undelete 1, 3, 2.
(c) Yes. The argument of (a) applies to each maximal interval of affected elements.

3. (a) (x1, . . . , x6) = (1, 0, 0, 1, 1, 0). (In general the solutions to linear equations
won’t always be 0 or 1. For example, the equations x1+x2 = x2+x3 = x1+x3 = 1 imply
that x1 = x2 = x3 =

1
2
; hence the corresponding exact cover problem is unsolvable.)

(b) In practice, m is much larger than n. Example (5) is just a “toy problem”!
The best we can hope to achieve from n simultaneous equations is to express n of the
variables in terms of the other m− n; that leaves 2m−n cases to try.

4. If G is bipartite, the exact covers are the ways to choose the vertices of one part.
(Hence there are 2k solutions, if G has k components.) Otherwise there are no solutions.
(Algorithm X will discover that fact quickly, although Algorithm 7B is faster.)

5. Given a hypergraph, find a set of vertices that hits each hyperedge exactly once.
(In an ordinary graph this is the scenario of exercise 4.)

Similarly, the so-called hitting set problem is dual to the vertex cover problem.

6. The header nodes, numbered 1 through N , are followed by L ordinary nodes and
M +1 spacers; hence the final node Z is number L+M +N +1. (There also are N +1
records for the horizontal list of items; those “records” aren’t true “nodes.”)

7. Node 23 is a spacer; ‘−4’ indicates that it follows the 4th option. (Any nonpositive
number would work, but this convention aids debugging.) Option 5 ends at node 25.

8. (Secondary items, which are introduced in the text after (24), are also handled
by the steps below. Such items should occur after all of the primary items have been
listed on the first line, and separated from them by some distinguishing mark.)

416

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 417

I1. [Read the first line.] Set N1 ← −1, i← 0. Then, for each item name α on the first
line, set i← i+ 1, NAME(i) ← α, LLINK(i) ← i − 1, RLINK(i − 1)← i. If α names
the first secondary item, also set N1 ← i− 1. (In practice α is limited to at most 8
characters, say. One should report an error if α = NAME(j) for some j < i.)

I2. [Finish the horizontal list.] Set N ← i. If N1 < 0 (there were no secondary items),
set N1 ← N . Then set LLINK(N + 1)← N , RLINK(N)← N+1, LLINK(N1 + 1)←
N + 1, RLINK(N + 1) ← N1 + 1, LLINK(0) ← N1, RLINK(N1) ← 0. (The active
secondary items, if any, are accessible from record N + 1.)

I3. [Prepare for options.] Set LEN(i)← 0 and ULINK(i)← DLINK(i)← i for 1 ≤ i ≤ N .
(These are the header nodes for the N item lists, which are initially empty.) Then
set M ← 0, p← N + 1, TOP(p)← 0. (Node p is the first spacer.)

I4. [Read an option.] Terminate with Z ← p if no input remains. Otherwise let the next
line of input contain the item names α1 . . . αk, and do the following for 1 ≤ j ≤ k:
Use an algorithm from Chapter 6 to find the index ij for which NAME(ij) = αj .
(Report an error if unsuccessful. Complain also if an item name appears more
than once in the same option, because a duplicate might make Algorithm X fail
spectacularly.) Set LEN(ij) ← LEN(ij) + 1, q ← ULINK(ij), ULINK(p + j) ← q,
DLINK(q)← p+ j, DLINK(p + j)← ij , ULINK(ij)← p+ j, TOP(p + j)← ij .

I5. [Finish an option.] SetM ←M+1, DLINK(p)← p+k, p← p+k+1, TOP(p)← −M ,
ULINK(p)← p− k, and return to step I4. (Node p is the next spacer.)

9. Set θ ←∞, p← RLINK(0). While p �= 0, do the following: Set λ← LEN(p); if λ<θ
set θ ← λ, i← p; and set p← RLINK(p). (We could exit the loop immediately if θ = 0.)

10. If LEN(p) > 1 and NAME(p) doesn’t begin with ‘#’, set λ ← M + LEN(p) instead
of LEN(p). (Similarly, the “nonsharp preference” heuristic favors nonsharp items.)

11. Item a is selected at level 0, trying option x0 = 12, ‘a d g’, and leading to (7). Then
item b is selected at level 1, trying x1 = 16, ‘b c f ’. Hence, when the remaining item e
is selected at level 2, it has no options in its list, and backtracking becomes necessary.
Here are the current memory contents—substantially changed from Table 1:

i: 0 1 2 3 4 5 6 7
NAME(i): — a b c d e f g
LLINK(i): 0 0 0 0 3 0 5 6
RLINK(i): 0 2 3 5 5 0 0 0

x: 0 1 2 3 4 5 6 7
LEN(x): — 2 1 1 1 0 0 1

ULINK(x): — 20 16 9 27 5 6 25
DLINK(x): — 12 16 9 27 5 6 25

x: 8 9 10 11 12 13 14 15
TOP(x): 0 3 5 −1 1 4 7 −2

ULINK(x): — 3 5 9 1 4 7 12
DLINK(x): 10 3 5 14 20 21 25 18

x: 16 17 18 19 20 21 22 23
TOP(x): 2 3 6 −3 1 4 6 −4

ULINK(x): 2 9 6 16 12 4 18 20
DLINK(x): 2 3 6 22 1 27 6 25

x: 24 25 26 27 28 29 30
TOP(x): 2 7 −5 4 5 7 −6

ULINK(x): 16 7 24 4 10 25 27
DLINK(x): 2 7 29 4 5 7 —

417

From the Library of Melissa Nuno

ptg999

418 ANSWERS TO EXERCISES 7.2.2.1

12. Report that x is out of range if x ≤ N or x > Z or TOP(x) ≤ 0. Otherwise set
q ← x and do “print ‘NAME(TOP(q))’ and set q ← q+1; if TOP(q) ≤ 0 set q ← ULINK(q)”
until q = x. Then set i← TOP(x), q ← DLINK(i), and k ← 1. While q �= x and q �= i,
set q ← DLINK(q) and k ← k + 1. If q �= i, report that the option containing x is
‘k of LEN(i)’ in item i’s list; otherwise report that it’s not in that list.

[Algorithm C extends Algorithm X to colors. If COLOR(q) �= 0, also print ‘:c’
where c = COLOR(q) if COLOR(q) > 0, otherwise c = COLOR(TOP(q)).]

13. For 0 ≤ j < l, node xj is part of an option in the solution. By setting r ← xj and
then r ← r + 1 until TOP(r) < 0, we’ll know exactly what that option is: It’s option
number −TOP(r), which begins at node ULINK(r). (Many applications of Algorithm X
have a custom-made output routine, to convert x0 . . . xl−1 into an appropriate format—
presenting it directly as a sudoku solution or a box packing, etc.)

Exercise 12 explains how to provide further information, not only identifying the
option of xj but also showing its position in the search tree.

14. (a) The options are ‘SjMk’, for all 0 ≤ j, k < n except j = k or j = (k+1) mod n.
(b) There are (u3, . . . , u10) = (1, 2, 13, 80, 579, 4738, 43387, 439792) solutions. The

running time for n = 10 is about 180 (or 275) mems per solution with (or without) MRV.
[This problem has a rich history: E. Lucas presented and named it in his Théorie

des Nombres (1891), 215, 491–495. An equivalent problem had, however, already been
posed by P. G. Tait, and solved by A. Cayley and T. Muir; see Trans. Royal Soc.

Edinburgh 28 (1877), 159, and Proc. Royal Soc. Edinburgh 9 (1878), 338–342, 382–
391, 11 (1880), 187–190. In particular, Muir found the recurrence relation

(n− 1)un+1 = (n2 − 1)un + (n+ 1)un−1 + (−1)n · 4, for n > 1.

Clearly u2 = 0; a careful consideration of initial values shows that the choices u0 = 1
and u1 = −1 give mathematically clean expressions, such as the explicit formula

un =

n∑
k=0

(−1)k 2n

2n− k

(
2n− k

k

)
(n− k)!.

(See J. Touchard, Comptes Rendus Acad. Sci. 198 (Paris, 1934), 631–633; I. Kaplansky,
Bull. Amer. Math. Soc. 49 (1943), 784–785.) The kth term of this formula can also be
written n!

∑
j(−1)j+k2k−2j/((k − 2j)! j! (n− 1)j); hence we have the curious identity

un
n!

=

n/2∑
j=0

(−1)j
j!

Tn−2j
(n− 1)j

= Tn − Tn−1
n−1 +

Tn−2/2!
(n−1)(n−2) −

Tn−3/3!
(n−1)(n−2)(n−3) + · · · ,

where Tn =
∑n

k=0(−2)k/k! is the sum of the first n+1 terms of the power series for e−2.
The ménage numbers therefore satisfy the interesting asymptotic formula

un =
n!

e2

(
1− 1

n−1 +
1/2!

(n−1)(n−2) + · · ·+
(−1)k/k!

(n−1) . . . (n−k) +O(n−k−1)
)

for all fixed k ≥ 0, discovered by I. Kaplansky and J. Riordan (Scripta Mathematica

12 (1946), 113–124). In fact, M. Wyman and L. Moser proved that the sum of this
series for 0 ≤ k < n differs from un by less than 1/2 (Canadian J. Math. 10 (1958),
468–480). Among many other things, they also found a (complicated) expression for
the exponential generating function

∑
n unz

n/n!. The ordinary generating function∑
n unz

n has the surprisingly nice form ((1− z)/(1 + z))F (z/(1 + z)2), where F (z) =∑
n≥0 n!z

n; see P. Flajolet and R. Sedgewick, Analytic Combinatorics (2009), 368–372.]

418

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 419

15. Omit the options with i = n− [n even] and j > n/2.

(Other solutions are possible. For example, we could omit the options with i = 1
and j ≥ n; that would omit n−1 options instead of only �n/2�. However, the suggested
rule turns out to make Algorithm X run about 10% faster.)

16. The two solutions are ‘r1 c2 a3 b−1’ ‘r2 c4 a6 b−2’ ‘r3 c1 a4 b2’ ‘r4 c3 a7 b1’ ‘a2’
‘a5’ ‘a8’ ‘b−3’ ‘b0’ ‘b3’; ‘r1 c3 a4 b−2’ ‘r2 c1 a3 b1’ ‘r3 c4 a7 b−1’ ‘r4 c2 a6 b2’ ‘a2’ ‘a5’ ‘a8’
‘b−3’ ‘b0’ ‘b3’. At the top levels, the MRV heuristic causes Algorithm X to branch first
on the slack variables a2, a8, b−3, and b3, which each have at most two possibilities.
(And that’s actually a pretty strange way to tackle the four queens problem!)

17. Branch first on r3, which has four options. If ‘r3 c1 a4 b2’, there’s just one option
for c2, then c3, then r2, so we get the first solution: ‘r3 c1 a4 b2’ ‘r1 c2 a3 b−1’ ‘r4 c3 a7
b1’ ‘r2 c4 a6 b−2’. If ‘r3 c2 a5 b1’, c3 is forced, then r2 can’t be covered. If ‘r3 c3 a6 b0’,
r2 is forced, then c2 can’t be covered. If ‘r3 c4 a7 b−1’, we cruise to the second solution:
‘r3 c4 a7 b−1’ ‘r1 c3 a4 b−2’ ‘r2 c1 a3 b1’ ‘r4 c2 a6 b2’. (And that’s a good way.)

18. ‘c e’ ‘a d f ’ ‘b g’ (as before) and ‘b c f ’ ‘a d g’ (new).

19. When all primary items have been covered in step X2, accept a solution only if
LEN(i) = 0 for all of the active secondary items, namely the items accessible from
RLINK(N + 1). [This algorithm is called the “second death” method, because it checks
that all of the purely secondary options have been killed off by primary covering.]

20. For 1 ≤ k < m, set t ← k & (−k); include secondary item yk in option αj for
k ≤ j < min(m,k + t) and in option βj for k − t ≤ j < k.

Equivalently, to set up option αj , include a and set t ← j; while t > 0, include
yt and set t ← t & (t − 1). To set up option βj , include b and set t ← −1 − j; while
t > −m, include y−t and set t← t& (t− 1).

If j > k, options αj and βk both contain yj&−2�lg(j−k)� .

21. The options αij will contain the primary item ai. Simply do k−1 pairwise orderings,
with secondary items yik to ensure that jk ≤ jk+1. If m is a power of 2, it turns out
that the options for 1 < i < k each have exactly lgm secondary items. For example, if
m = 4 and k > 2, the options α2j are ‘a2 y

1
1 y

1
2 ’, ‘a2 y

1
2 y

2
1 ’, ‘a2 y

1
3 y

2
2 ’, ‘a2 y

2
3 y

2
2 ’.

(The author attempted to knock out options for αi
′

with i′ < i− 1 or i′ > i + 1,
by adding additional secondary items, but that turned out to be a bad idea.)

Of course, this method doesn’t compete with the lightning-quick methods for
combination generation in Section 7.2.1.3. For instance, when m = 20 and k = 8 it
needs 1.1 Gμ to crank out the

(
27
8

)
= 2220075 coverings, about 500 mems per solution.

22. (a) Let n′ = �n/2�+1. By rotation/reflection we can assume that the queen in col-
umn n′ (the middle column) is in row i and the queen in row n′ is in column j, where 1 ≤
i < j < n′. We obtain a suitable exact cover problem by leaving out the options o(i, j) =
‘ri cj ai+j bi−j’ for i = j or i+ j = n+ 1; also omit o(i, j) for i > j when j = n′; j > i
when i = n′; and (i, j) = (n′ − 1, n′) or (n′, 1). Then include secondary items to force
the pairwise ordering of αk = o(k+1, n′) and βk = o(n′, k+2), for 0 ≤ k < m = n′−2.

(b) Now we assume a queen in (j, j), where 1 ≤ j < n′, and that the queen in row n
is closer to the bottom right corner than the queen in column n. So we omit options
o(i, j) for i+j = n+1 or i = j ≥ n′ or (i, j) = (n, 2) or (i, j) = (n−1, n); we make item
b0 primary; and we let αk = o(n, n−k−1), βk = o(n−k−2, n) for 0 ≤ k < m = n−3.

(c) This time we want queens in (i, i) and (j, n+ 1− j) where 1 ≤ i < j < n′. We
promote an+1 and b0 to primary; omit o(i, j) when i = j ≥ n′−1 or i = n+1−j ≥ n′ or
(i, j) = (1, n); and let αk = o(k+1, k+1), βk = o(k+2, n−k−1) for 0 ≤ k < m = n′−2.

419

From the Library of Melissa Nuno

ptg999

420 ANSWERS TO EXERCISES 7.2.2.1

In case (a) there are (0, 0, 1, 8, 260, 9709, 371590) solutions for n = (5, 7, . . . , 17);
Algorithm X handles n = 17 in 3.4 Gμ. [In case (b) there are (0, 0, 1, 4, 14, 21, 109,
500, 2453, 14498, 89639, 568849) for n = (5, 6, . . . , 16); and n = 16 costs 6.0 Gμ. In
case (c), similarly, there are (1, 0, 3, 6, 24, 68, 191, 1180, 5944, 29761, 171778, 1220908)
solutions; n = 16 costs 5.5 Gμ.]

23. (a) Consider the queens in column a of row 1, row b of column n, column c̄ of row n,
and row d̄ of column 1, where x̄ = n+ 1− x. (These four queens are distinct, because
no queen is in a corner. Notice also that neither ā nor b̄ nor c̄ nor d̄ can equal a.)
Repeated rotations and/or reflections will change these numbers from (a, b, c, d) to

(b, c, d, a), (c, d, a, b), (d, a, b, c), (d̄, c̄, b̄, ā), (c̄, b̄, ā, d̄), (b̄, ā, d̄, c̄), (ā, d̄, c̄, b̄).

Those eight 4-tuples are usually distinct, and in such cases we can save a factor of 8
by eliminating all but one of them. There always is a solution with a ≤ b, c, d < ā; and
those inequalities can be enforced by doing three simultaneous pairwise comparisons,
between the options for row 1 and the respective options for column n, row n, and
column 1. For example, the options that correspond to a = 1 when n = 16 are ‘r1 c2 a3
b−1’; ‘r2 c16 a18 b−14 x1 x2 x4’; ‘r15 c16 a31 b−1 x1 x2 x4’; ‘r16 c2 a18 b14 y1 y2 y4’; ‘r16 c14
a30 b2 y1 y2 y4’; ‘r2 c1 a3 b1 z1 z2 z4’; ‘r15 c1 a16 b14 z1 z2 z4’. (Here m = n/2−1 = 7.)

With this change, the number of solutions for n = 16 drops from 454376 to 64374
(ratio ≈ 7.06), and the running time drops from 4.3 Gμ to 1.2 Gμ (ratio ≈ 3.68).

[The author experimented with further restrictions, so that solutions were allowed
only if (i) a < b, c, d; (ii) a = b < c, d; (iii) a = b = c < d; (iv) a = b = c = d; (v) a =
c < b, d. Five options were given for each value of a < n/2 − 1, and m was 6 instead
of 7. The number of solutions decreased to 59648; but the running time increased to
1.9 Gμ. Thus a point of diminishing returns had been reached. (A completely canonical
reduction would have produced 57188 solutions, with considerable difficulty.)]

(b) This case is almost identical to (a), because the queen in the center vacates
all other diagonal cells. Requiring a ≤ b, c, d < ā reduces the number of solutions for
n = 17 from 4067152 to 577732 (ratio ≈ 7.04), and run time to 3.2 Gμ (ratio ≈ 4.50).

24. We simply combine compatible options into (a) pairs, (b) quadruplets, and force
a queen in the center when n is odd. For example, when n = 4 we replace (23) by
(a) ‘r1 c2 a3 b−1 r4 c3 a7 b1’; ‘r1 c3 a4 b−2 r4 c2 a6 b2’; ‘r2 c1 a3 b1 r3 c4 a7 b−1’; ‘r2 c4
a6 b−2 r3 c1 a4 b2’; (b) ‘r1 c2 a3 b−1 r2 c4 a6 b−2 r4 c3 a7 b1 r3 c1 a4 b2’; ‘r2 c1 a3 b1
r3 c4 a7 b−1 r1 c3 a4 b−2 r4 c2 a6 b2’. The options when n = 5 are (a) ‘r1 c2 a3 b−1 r5
c4 a9 b1’; ‘r1 c4 a5 b−3 r5 c2 a7 b3’; ‘r2 c1 a3 b1 r4 c5 a9 b−1’; ‘r2 c5 a7 b−3 r4 c1 a5
b3’; ‘r3 c3 a6 b0’; (b) ‘r1 c2 a3 b−1 r2 c5 a7 b−3 r5 c4 a9 b1 r4 c1 a5 b3’; ‘r2 c1 a3 b1 r1
c4 a5 b−3 r4 c5 a9 b−1 r5 c2 a7 b3’; ‘r3 c3 a6 b0’.

An n-queen solution is either asymmetric (changed by 180◦ rotation) or singly sym-

metric (changed by 90◦ rotation but not 180◦) or doubly symmetric (unchanged by 90◦

rotation). Let Qa(n), Qs(n), Qd(n) be the number of such solutions that are essentially
different; then Q(n) = 8Qa(n) + 4Qs(n) + 2Qd(n) when n > 1. Furthermore there are
4Qs(n)+2Qd(n) solutions to (a) and 2Qd(n) solutions to (b). Hence we can determine
the individual values just by counting solutions, and we obtain these results for small n:

n = 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Qa(n) = 0 1 0 4 11 42 89 329 1765 9197 45647 284743 1846189 11975869
Qs(n) = 0 0 1 2 1 4 3 12 18 32 105 310 734 2006
Qd(n) = 1 1 0 0 0 0 0 0 4 4 0 0 32 64

We can reduce the solutions to (a) by a factor of 2, by simply eliminating the
options that contain {r1, ck} for k ≥ �n/2�. We can reduce the solutions to (b) by a

420

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 421

factor of 2�n/4�, by simply eliminating the options that contain {rj , ck} for j < �n/2�
and k ≥ �n/2�. With these simplifications, the computation of Qd(16) needs only
70 Kμ; and then the computation of Qs(16) needs only 5 Mμ. Only 20 Mμ are needed
to determine that Qd(32) = 27 · 1589.
25. With 64 items, one for each cell of the chessboard, let there be 92 options, one for
each of the 92 solutions to the eight queens problem (see Fig. 68). Every option names
eight of the 64 items; so an 8-coloring is equivalent to solving this exact cover problem.
Algorithm X needs only 25 kilomems and a 7-node search tree to show that such a
mission is impossible. [In fact no seven solutions can be disjoint, because
each solution touches at least three of the twenty cells 13, 14, 15, 16, 22, 27,
31, 38, 41, 48, 51, 58, 61, 68, 72, 77, 83, 84, 85, 86. See Thorold Gosset,
Messenger of Mathematics 44 (1914), 48. However, Henry E. Dudeney found
the illustrated way to occupy all but two cells, in Tit-Bits 32 (11 September
1897), 439; 33 (2 October 1897), 3.]

26. This is an exact cover problem with 92 + 312 + 396 + · · · + 312 = 3284
options (see exercise 7.2.2–6). Algorithm X needs about 32 megamems to find
the solution shown, and about 1.3 Tμ to find all 11,092 of them.

12345678
78563412
46718235
23854167
84236751
51672384
67481523
512784

07348652
18650437
75421860
26835071
34072186
52183704
80564213
61207345

27. Let ujh and djh be secondary items for 1 ≤ j ≤ 2n and 1 ≤ h ≤ �n/2�. Insert the
gadget

uj1 uj2 . . . uj
i/2� u(j+1)
i/2� . . . uk
i/2� . . . uk2 uk1

into each option (16); also append similar options, but with ‘u’ changed to ‘d’, except
when i = n. [Solutions whose planar graph “splits” will be obtained more than once.
One such example is 12 10 8 6 4 11 9 7 5 4 6 8 10 12 5 7 9 11 3 1 2 1 3 2.]

28. (a) Denoting that formula by ρ(c0, t0; . . . ; cl, tl), notice that if c
′
j = tj + 1− cj we

have ρ(c0, t0; . . . ; cl, tl) + ρ(c′0, t0; . . . ; c
′
l, tl) = 1. Consequently the completion ratio is

1/2 if and only if c′j = cj for all j, namely when tj = 2cj − 1.
(b) The ratio ρ(c0, t0; . . . ; cl, tl) never has an odd denominator, because p/q+p

′/q′

has an even denominator whenever q and p′ are odd and q′ is even. But we can get
arbitrarily close to 1/3, since ρ(2, 4; . . . ; 2, 4) = 1/3 + 1/(24 · 4l).
29. If T has only a root node, let there be one column, no rows.
Otherwise let T have d ≥ 1 subtrees T1, . . . , Td, and assume that
we’ve constructed matrices with rows Rj and columns Cj for each Tj .
Let C = C1 ∪ · · · ∪ Cd. The matrix for T is obtained by appending
three new columns {0, 1, 2} and the following new rows: (i) ‘0 1 2 and
all columns of C\Cj ’, for 1 ≤ j ≤ d; (ii) ‘j and all columns of C’, for j ∈
{0, 1}. The matrix for the example tree has 15 columns and 14 rows.

011111000000000
101111000000000
110111000000000
111100000000000
111010000000000
000000011111000
000000101111000
000000110111000
000000111100000
000000111010000
000000111111111
111111000000111
111111111111100
11111111111101030. Yes, assuming that duplicate options are permitted. Use the pre-

vious construction, but change ‘C\Cj ’ to ‘C’ if Tj is a solution node. (Without duplicate
options, no two solution nodes can be siblings.)

31. (a) In step I4 of answer 8, insert p+j into the rth position of the list for ij , instead
of at the bottom, where r is uniform between 1 and LEN(ij).

(b) In answer 9, when λ < θ also set r ← 1; when λ = θ, set r ← r+1, and change
i← p with probability 1/r.

32. (a) No. Otherwise there would be an option with no primary items.
(b) Yes, but only if there are two options with the same primary items.
(c) Yes, but only if there are two options whose union is also an option, when

restricted to primary items.

421

From the Library of Melissa Nuno

ptg999

422 ANSWERS TO EXERCISES 7.2.2.1

(d) The number of places, j, where x = 1 and x′ = 0 must be the same as the
number where x = 0 and x′ = 1. For if A has exactly k primary items in every option,
exactly jk primary items are being covered in different ways.

(e) Again distances must be even, because every solution also solves the restricted
problem, which is uniform. (Consequently it makes sense to speak of the semidistance

d(x, x′)/2 between solutions of a quasi-uniform exact covering problem. The semidis-
tance in a polyform packing problem is the number of pieces that are packed differently.)

33. (Solution by T. Matsui.) Add one new column at the left of A, all 0s. Then add
two rows of length n + 1 at the bottom: 10 . . . 0 and 11 . . . 1. This (m + 2) × (n + 1)
matrix A′ has one solution that chooses only the last row. All other solutions choose
the second-to-last row, together with rows that solve A.

34. (Solution by T. Matsui.) Assume that all 1s in column 1 appear in the first t rows,
where t > 3. Add two new columns at the left, and two new rows 1100 . . . 0, 1010 . . . 0
of length n+ 2 at the bottom. For 1 ≤ k ≤ t, if row k was 1αk, replace it by 010αk if
k ≤ t/2, 011αk if k > t/2. Insert 00 at the left of the remaining rows t+ 1 through m.

This construction can be repeated (with suitable row and column permutations)
until no column sum exceeds 3. If the original column sums were (c1, . . . , cn), the
new A′ has 2T more rows and 2T more columns than A did, where T =

∑n
j=1(cj

.− 3).

One consequence is that the exact cover problem is NP-complete even when
restricted to cases where all row and column sums are at most 3.

Notice, however, that this construction is not useful in practice, because it disguises
the structure of A: It essentially destroys the minimum remaining values heuristic,
because all columns whose sum is 2 look equally good to the solver!

35. Take a matrix with column sums (c1, . . . , cn), all ≤ 3, and extend it with three
columns of 0s at the right. Then add the following four rows: (x1, . . . , xn, 0, 1, 1),
(y1, . . . , yn, 1, 0, 1), (z1, . . . , zn, 1, 1, 0), and (0, . . . , 0, 1, 1, 1), where xj = [cj < 3], yj =
[cj < 2], zj = [cj < 1]. The bottom row must be chosen in any solution.

36. The following modifications (which work also with Algorithm C) will find all

solutions in lexicographic order; we can terminate early if we want only the first one.

Set LL← 0 in step X1. (We will use the MRV heuristic, but only on levels > LL.)

If RLINK(0) = 0 and l = LL + 1 in step X2, visit the current solution as usual.
Otherwise, however, set LL ← LL + 1 and do the following while l > LL (because the
current solution was not found lexicographically): Set l← l− 1, i← TOP(xl); uncover
the items �= i in the option that contains xl (as in X6); uncover i (as in X7).

In step X3, if l = LL simply set i← RLINK(0). Otherwise use exercise 9, say.

If l < LL after setting l← l − 1 in step X8, set LL← l.

To get the lexicographically smallest solution to the n queens problem, make sure
that the first n items are r1, r2, . . . , rn. (The other primary items, cj , can follow in
any order.) The first solution for n = 32, found after 4.2 Gμ, has queens in columns
1, 3, 5, 2, 4, 9, 11, 13, 15, 6, 18, 24, 26, 30, 25, 31, 28, 32, 27, 29, 16, 19, 10, 8, 17, 12,
21, 7, 14, 23, 20, 22. (Without MRV the computation would have taken 35.6 Gμ.)

[The analogous problem for n = 48 is already quite difficult; that case was first
solved by Wolfram Schubert. The best results currently known for large n have been
obtained via sophisticated methods of integer programming: In November 2017, Matteo
Fischetti and Domenico Salvagnin were the first to solve the case n = 56 and many
larger cases, although n = 62 was still unsolved; see arXiv:1907.08246 [cs.DS] (2019),
14 pages. See also OEIS A141843 for the latest developments.]

422

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 423

37. (a) Let ai,j = 0 if i ≤ 0 or j ≤ 0; otherwise

ai,j = mex({ai,j−k | k > 0}∪{ai−k,j | k > 0}∪{ai−k,j−k | k > 0}∪{ai+k,j−k | k > 0})
where ‘mex’ is defined in exercise 7.1.3–8. It is not difficult to verify that ai,qi = 1
and that each of the sequences 〈ai,n〉, 〈an,j〉 for n ≥ 1 is a permutation of the positive
integers. (See OEIS A065188 and Alec Jones’s A269526.)

(b) The following exercise gives strong empirical evidence for this conjecture. And
in the full plane, the analogous spiral sequence can be analyzed: See F. M. Dekking,
J. Shallit, and N. J. A. Sloane, Electronic J. Combinatorics 27 (2020), #P1.52, 1–27.

38. The following method, inspired by Eq. 7.2.2–(6) and the previous exercise, uses
binary vectors a, b, c, where c has both positive and negative subscripts.

G1. [Initialize.] Set r ← 0, s← 1, t← 0, n← 0. (We’ve computed qk for 1 ≤ k ≤ n.)

G2. [Try for qn ≤ n.] (At this point ak = 1 for 1 ≤ k < s and as = 0; also ck = 1 for
−r < k ≤ t and c−r = ct+1 = 0; each vector contains n 1s.) Set n← n+1, k ← s.

G3. [Found?] If k > n − r go to G4. Otherwise if ak = bk+n = ck−n = 0, go to G5.
Otherwise set k ← k + 1 and repeat this step.

G4. [Make qn > n.] Set t← t+1, qn← n+t, an+t ← b2n+t ← ct ← 1, and return to G2.

G5. [Make qn ≤ n.] Set qn ← k, ak ← bk+n ← ck−n ← 1. If k = s, set s ← s + 1
repeatedly until as = 0. If k = n − r, set r ← r + 1 repeatedly until c−r = 0.
Return to G2.

In step G2 we have s ≈ n − r ≈ t ≈ n/φ; hence the running time is extremely short.
Empirically, in fact, the calculation of qn requires at most 19 accesses to the bit vectors
(averaging about 5.726 accesses), for each n. Agreement with exercise 37 is very close:

(q999999997, . . . , q1000000004) = (618033989,1618033985,618033988,

1618033988,1618033990,1618033992,1618033994,618033991).

Moreover, it’s likely that qn ∈ [n/φ− 3 . . n/φ+ 5] ∪ [nφ− 2 . . nφ+ 1] for all n.

39. (a) With probability (1 − p)n, no items will be selected; in such cases we must
restart the clause generator, because options can’t be empty. Ten random trials with
m = 500, n = 100, and p = .05 gave respectively (444, 51, 138, 29, 0, 227, 26, 108, 2,
84) solutions, costing about 100 megamems per solution.

Although the exercise did not call for a mathematical analysis, we can derive a
formula for the expected number of solutions by computing the probability that a
given subset of the options is an exact cover, then summing over all subsets. If the
subset has k items, and if each item in each option were present with probability p,
this probability would be (kp(1 − p)k−1)n. However, we’ve excluded empty options;
the true probability f(n, p, k) turns out to be k!

{
n
k

}
(p(1−p)k−1)n/(1− (1−p)n)k. The

sum
∑

k

(
m
k

)
f(n, p, k), when (m,n, p) = (500, 100, .05), is approximately 3736.96 with

the incorrect formula and 297.041 with the correct one.
[In unpublished notes, Robin Pemantle and Boris Pittel have independently de-

rived asymptotic results for m = αn and p = r/n, for fixed α and r as n → ∞. The
behavior of Algorithm X with this random model is not easy to analyze, but an analysis
may be within reach because of the recursive structure.]

(b) This case has completely different behavior. In the first place, nmust obviously
be a multiple of r. In the second place, we’ll need more options to get even one solution
when n = 100 and r = 5, because conveniently small options don’t exist.

423

From the Library of Melissa Nuno

ptg999

424 ANSWERS TO EXERCISES 7.2.2.1

Proof: The total number of set partitions into twenty subsets of size 5 is P =
100!/(20! · 5!20) ≈ 1098; the total number of possible options is N =

(
100
5

)
= 75287520.

The probability that any particular set partition occurs as a solution is the proba-
bility that twenty given options occur in a random sample of m, with replacement,
namely g(N,m, 20) =

∑
k

(
20
k

)
(−1)k(N − k)m/Nm =

∑
t

{
m
t

}
t!
(
N−20
t−20

)
/Nm. If m

isn’t extremely large, this is almost the same as the probability without replace-
ment, namely

(
N−20
m−20

)
/
(
N
m

) ≈ (m/N)20. The expected number of solutions when
m = (500, 1000, 1500), respectively, is P g(N,m, 20) ≈ (.000002,2.41, 8500).

40. Set fm ← 0 and fk−1 ← fk | rk for m ≥ k > 1. The bits of uk represent items
that are being changed for the last time.

Let uk = u′ + u′′, where u′ = uk & p. If uk �= 0 at the beginning of step N4,
we compress the database as follows: For N ≥ j ≥ 1, if sj & u′ �= u′, delete (sj , cj);
otherwise if sj & u′′ �= 0, delete (sj , cj) and insert ((sj & ūk) | u′, cj).

To delete (sj , cj), set (sj , cj)← (sN , cN) and N ← N − 1.

When this improved algorithm terminates in step N2, we always have N ≤ 1.
Furthermore, if we let pk = r1 | · · · | rk−1, the size of N never exceeds 2νk , where
νk = ν〈pkrkfk〉 is the size of the “frontier” (see exercise 7.1.4–55).

[In the special case of n queens, represented as an exact cover problem as in (23),
this algorithm is due to I. Rivin, R. Zabih, and J. Lamping, Inf. Proc. Letters 41 (1992),
253–256. They proved that the frontier for n queens never has more than 3n items.]

41. The author has had reasonably good results using a triply linked binary search
tree for the database, with randomized search keys. (Beware: The swapping algorithm
used for deletion was difficult to get right.) This implementation was, however, limited
to exact cover problems whose matrix has at most 64 columns; hence it could do n
queens via (23) only when n < 12. When n = 11 its database reached a maximum
size of 75,009, and its running time was about 25 megamems. But Algorithm X was
noticeably better: It needed only about 12.5 Mμ to find all Q(11) = 2680 solutions.

In theory, this method will need only about 23n steps as n → ∞, times a small
polynomial function of n. A backtracking algorithm such as Algorithm X, which enu-
merates each solution explicitly, will probably run asymptotically slower (see exercise
7.2.2–15). But in practice, a breadth-first approach needs too much space.

On the other hand, this method did beat Algorithm X on the n queen bees problem
of exercise 7.2.2–16: When n = 11 its database grew to 364,864 entries; it computed
H(11) = 596,483 in just 30Mμ, while Algorithm X needed 440Mμ.

42. The set of solutions for sj can be represented as a regular expression αj instead of
by its size, cj . Instead of inserting (sj + t, cj) in step N3, insert αjk. If inserting (s, α),
when (si, αi) is already present with si = s, change αi ← αi ∪α. [Alternatively, if only
one solution is desired, we could attach a single solution to each sj in the database.]

43. Let i = (i1i0)3 and j = (j1j0)3; then cell (i, j) belongs to box (i1j1)3. Mathemat-
ically, it’s cleaner to consider the matrices a′ij = aij − 1, b′ij = bij − 1, c′ij = cij − 1,
which are the “multiplication tables” of interesting binary operators on {0, . . . , 8}.
We have a′ij = ((i0i1)3 + j) mod 9; b′ij = ((i0 + j1) mod 3, (i1 + j0) mod 3)3; and
c′ij = ((i0+ i1+ j1) mod 3, (i0− i1+ j0) mod 3)3. (Furthermore the latter two operators
are “isotopic”: c′ij = b′(iπ)(jπ−)π, when (i1, i0)3π = (i1, (i0 + i1) mod 3)3.)

[A pattern like (28c) appeared in a Paris newspaper of 1895, in connection with
magic squares. But no properties of its 3×3 subsquares were mentioned; it was a sudoku
solution purely by coincidence. See C. Boyer, Math. Intelligencer 29, 2 (2007), 63.]

424

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 425

44. No. The 33rd digit is 0. [A sudoku whose clues are π’s first 32 digits was
first constructed by Johan de Ruiter in 2007; see www.puzzlepicnic.com/puzzle?346.
Furthermore, π’s first 22 digits can actually be arranged in a circle to give a uniquely
solvable sudoku, if we also require the elements of both main diagonals to be distinct!
See Aad Thoen and Aad van de Wetering, Exotische Sudoku’s (2016), 144.]

45. Step X3 chooses p44, p84, p74, p24, p54, p14, p82, p42, p31, p32, p40, p45, p46, p50,
p72, p60, p00, p62, p61, p65, p35, p67, p70, p71, p75, p83, p13, p03, p18, p16, p07, p01, p05,
p15, p21, p25, p76, p36, p33, p37, p27, p28, p53, p56, p06, p08, p58, p77, p88, in that order.

46. The lists for items p44, p84, r33, r44, r48, r52, r59, r86, r88, c22, c43, b07, b32, b39,
b43, b54, and b58 have length 1 when Algorithm X begins to tackle puzzle (29a). Step
X3 will branch on whichever item was placed first in step X1. (The author’s sudoku
setup program puts p before r before c before b in that step.)

47. r13, c03, b03, b24, b49, b69. The latter three were hidden already in (32).

48. In case (a) we list the available columns; in case (b) we list the available rows:

(a)

3 6 8 0

0 1 3 5

6 3 8

0

5 0 6 4

5 6

6 1 3 2

4 6 7 8 3

4 2 7 3 1 6

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

1 1 12 2 2
4 4 4 45 5 5 5 5

7 7 7

2 2 2 2
4 4 4

6 67 7 7 78 8 8 8

0 0 0 0 01 1 1 1 12 2 2 2 2
4 4 45 5 5 5

7 7 7 7

1 1 1 1 12 2 2 2 2 2 2
3 3 34 4 4 4 45 5 5 5 5

6 6 67 7 7 7 78 8 8 8

1 1 12 2 2 2 2
3 3
7 7 78 8

0 0 0 0 01 1 1 1 12 2 2 2 2 2
3 3 3

6 6 67 7 7 78 8 8 8

0 0 0
4 4 4 45 5 5 5
7 7 78 8 8

0 0 01 1 1 12 2 2 2
5 5 5

0 0
5 5 5
8 8

(b)

1 2

0 8 4 6

4 1 8 2 7 5 0

1 8 0

0 6 8 5 1 7 2

4

7

8 6 7

3 6 7 4 8

1

0

2

1

3

2

4

3

5

4

6

5

7

6

8

7

9

8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7

7

7

7

7

7

78

8

8

8

8

8

8

(Notice that “hidden” singles and pairs, etc., become “naked” in this representation.
Similar plots, which relate boxes to values, are also possible; but they’re trickier,
because boxes aren’t orthogonal to rows or columns.)

49. (a) For columns, remove all items rik and bxk, as well as cjk with j �= j0; let
uj−−−vk when an option contains ‘pij0 cj0k’. For boxes, remove all rik, cjk, and bxk with
x �= x0; let uj−−−vk when an option contains ‘p(3�x0/3�+�j/3�)(3(xmod 3)+(j mod 3)) bx0k’.

(b) The n− q non-neighbors of a hidden q-tuple (e.g., {u3, u8, u1}) are “naked.”
(c) By (b) it suffices to list the naked ones (and only those for which q < r). Let’s

denote the option in (30) by ijk. In row 4 we find the naked pair {u3, u8}, hence we can
delete options 411, 417, 421, 427, 471; also the naked triple {u1, u3, u8}, so we can also
delete option 424. There’s no nakedness in the columns. The naked triple {u0, u3, u6}
in box 4 allows deletion of options 341, 346, 347, 351, 356, 357.

(d) Let ui−−−vj if there’s an option that contains ‘rik0 cjk0’. When k0 = 9 there’s
a naked pair {u1, u5}, so we can delete options 079 and 279.

[Many other reductions have been proposed. For example, (33) has a “pointing
pair” in box 4: Since ‘4’ and ‘8’ must occupy that box in row 3, we can remove options
314, 324, 328, 364, 368, 378. Classic references are the early tutorials by W. Gould, The
Times Su Doku Book 1 (2005); M. Mepham, Solving Sudoku (2005). A comprehensive
theory, applicable also to many other problems, has been developed by D. Berthier,
Pattern-Based Constraint Satisfaction and Logic Puzzles (2012).]

425

From the Library of Melissa Nuno

http://www.puzzlepicnic.com/puzzle?346

ptg999

426 ANSWERS TO EXERCISES 7.2.2.1

50. Such a puzzle must add a 7 or 8 in one of 18 places, because (29c)
has just 2 solutions. So there are 36 of them (18 isomorphic pairs).

51. We can solve this problem with Algorithm M, using options (30)
with k �= 8 and giving multiplicity 2 to each of the items ri7, cj7, bx7.
There are six solutions, all of which extend the partial solution shown.
Only one yields a sudoku square when we change half of the 7s to 8s.

9 3 4 5 1 7 6
7 6 2 4 9 3 1 7 5
7 5 1 7 4 9 3
2 7 5 9 7 1 6 3 4
6 4 9 3 5 1
1 7 3 5 9
4 1 7 6 5 9 3
3 2 7 1 9 5 6
5 9 6 3 7 4 1

52. (Solution by F. Stappers.) Puzzles claiming to be “the world’s
hardest sudoku” keep appearing in online forums. Rated by search
tree size with Algorithm X, the toughest among nearly 27,000 such
extreme puzzles is shown here in a canonical form. (It’s number
6539 in a list available from sites.google.com/site/sudoeleven/

(2011).) Its randomized search tree sizes are 24400±1900—astonish-
ingly high for sudoku; and its mean running time is about 12 Mμ.)

1 2 3 4
5 4 1

2 6
7

7 3 1
5 4 7

4 5 3
8
9 4

53. (a) Every shidoku solution is equivalent to one of the two special solutions A or
B below (which incidentally have respectively 32 and 16 automorphisms, in the sense
of exercise 114). We can’t uniquely specify either solution unless we have at least one
clue in each of the regions {A, B, C, D} of C.

A =
1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1

, B =
1 2 3 4
3 4 2 1
2 1 4 3
4 3 1 2

, C =
A A B B
C C D D
A A B B
C C D D

.

(b) Only 44 = 256 sets of four clues meet the conditions of (a), for each of A and B;
we can test them all. Reducing by the automorphisms leaves two for A and eleven for B:

W X

Y Z

W
X

Y
Z

Y X
X

Z

X Y
Z

X

W X
Y

Z

W X
Y

Z

W X

Y Z

X Y

Y Z
Z X

Y X
Z

X

Y X

X Z

X
Y

Z
X

Y
Z
X

X

W
X
Y

Z

X
X

Y
Z

(There also are 22 essentially different shidoku puzzles with five irredundant clues, and
a unique puzzle with six. The latter, which is solved by A, is shown above at the
bottom left; it cannot omit a clue without having an empty region in either C or CT .
These results were discovered by Ed Russell in 2006.)

54. For example, removing clues one at a time shows that only 10 of the 32 givens are
actually essential. The best strategy for finding all minimal X is probably to examine
candidate sets in order of decreasing cardinality: Suppose W ⊆ X, and suppose that
previous tests have shown that the solution is unique, given X, but not given X \w for
any w ∈W . ThusX is minimal ifW = X. Otherwise letX\W = {x1, . . . , xt}, and test
X \xi for each i. Suppose the solution turns out to be unique if and only if i > p. Then
we schedule the t−p candidate pairs (W ∪{x1, . . . , xp},X\xi), p < i ≤ t, for processing
in the next round. With suitable caching of previous results, we can avoid testing the
same subset of clues more than once. Furthermore we can readily modify Algorithm X
so that it backtracks immediately after discovering a single unwanted solution.

All 777 minimal subsets were found in this manner, involving 15441 invocations
of Algorithm X, but needing a total of only about 1.5 gigamems of computation.
Altogether (1, 22, 200, 978, 2780, 4609, 4249, 1950, 373, 22) candidate pairs were
examined in rounds (32, 31, . . . , 23); and exactly (8, 154, 387, 206, 22) solutions were

426

From the Library of Melissa Nuno

http://sites.google.com/site/sudoeleven/

ptg999

7.2.2.1 ANSWERS TO EXERCISES 427

found of sizes (27, 26, 25, 24, 23). The lexicographically last 23-clue subset, which is
illustrated below, turns out to be a fairly tough puzzle, with 220 nodes in its search tree.

(Let f(x1, . . . , x32) be the monotone Boolean function ‘[the solution is unique,
given the clues with xj = 1]’. This problem essentially asks for f ’s prime implicants.)

(29a)

1
4 1 9

6 5
5 8 9
7 3 2
3 8 4

2 6 4
3 8

3 7 5

; (28a)

1 2 3
7 8 9

2 3 4

5 6 7
5 6 7

9 1 8

; (28b)

1 6 8
5 1
9 4

3 5 7
9

8 1
7

6 4 8 2
3 5

.

55. If only one of those nine appearances has been specified, the other eight can always
be permuted into another solution. And the entire diagram can be partitioned into nine
disjoint sets of nine, all with the same property, thus requiring at least 2 · 9 clues.

This argument proves that all 18-clue characterizations must have a very special
form. The interesting solution above makes a particularly satisfying puzzle. (The
author found it with the help of a SAT solver; see Section 7.2.2.2.)

The same argument shows that (28b) needs at least 18 clues. But this time the
corresponding SAT instance is unsatisfiable. Moreover, any 19-clue solution must have
three clues in just one critical group of nine; the associated SAT instance, which insists
on having at least one clue in each of the 2043 subsets of at most 18 cells that can be
rearranged into new solutions, also is unsatisfiable. (Proved in 177 Mμ.) But hurrah,
the special structure does lead to 20-clue examples, like the one above.

(The constructions for (28b) apply also to (28c), via the isotopism in answer 43.)

56. (We assume that a decent sudoku problem has only one solution.)
An example with 40 irredundant clues, shown here, was first discovered
by Mladen Dobrichev in 2014, after examining a huge number of cases.
(Incidentally, the solution to this problem has no automorphisms.) An
example with 41 irredundant clues would be a big surprise.

1 2 3 4 5 6 7
3 4 5 6 1 8 2
1 5 8 2 6
8 6 1

2 7 5
3 7 5 2 8

8 6 7
2 7 8 3 6 1 5

57. There are only 2 ·3! ·3! ·3! ·3! = 2592 possibilities for each box. So we can set up an
exact cover problem with 9 ·2592 options, each of which names a box, nine row-column
pairs, three horizontal trios, and three vertical trios. We can assume by symmetry that
there’s only one option for box 0, namely ‘b0 r01 c01 r04 c14 r07 c27 r18 c08 r12 c12 r15
c25 r26 c06 r29 c19 r23 c23 h147 h258 h369 v168 v249 v357’. Furthermore row 0 can be
restricted to 1472AB3CD, where {A, C} = {5, 6} and {B, D} = {8, 9}. That reduces the
number of options to 16417; and Algorithm X quickly ((58+54)Mμ) finds 864 solutions.

Such solutions were first discovered by A. Thoen and A. van de Wetering; see
Thoen’s book Sudoku Patterns (2019), §2.7. All 864 are isomorphic under sudoku-
solution-preserving permutations of rows and columns. One of the nicest is

1 4 7 2 5 9 3 6 8
8 2 5 7 3 6 9 1 4
6 9 3 4 8 1 5 7 2
2 6 9 3 4 8 1 5 7
7 3 4 9 1 5 8 2 6
5 8 1 6 7 2 4 9 3
3 5 8 1 6 7 2 4 9
9 1 6 8 2 4 7 3 5
4 7 2 5 9 3 6 8 1

,

which has a
remarkable
inner symmetry
between
diagonally
adjacent boxes:

A B C
D E F
G H I

I B D
H A F
G C E

.

427

From the Library of Melissa Nuno

ptg999

428 ANSWERS TO EXERCISES 7.2.2.1

58. Use the standard 729 sudoku options (30); but also include queen items ‘a′(i+j)k
b′(i−j)k’ in option (i, j, k) when k ≤ 7. Furthermore, in order to avoid getting each
solution 7! 2! = 10080 times, force row 0 by adding a new primary item ‘∗’ and new
secondary items ‘∗j ’ for 0 ≤ j < 9, together with 20 options ‘∗ ∗0:f(0, p, q) . . .
∗8:f(8, p, q)’ for 0 ≤ p < q < 9, p + q < 9, where f(j, p, q) = (j = p? 8: j = q? 9:
1+ j− [j > p]− [j > q]). Include ‘∗j :k’ in option (0, j, k). There are only four solutions,
found in 3 Gμ, centrally symmetric and reducing under transposition to only two. (See
Appendix E, and Thoen’s book Sudoku Patterns (2019), §3.4.)
59. When ps precede rs precede cs precede bs in X1, the tree sizes are 1105, 910, 122.

(34a)

3 1
4 1
5 9
2 6
5 3
5 8
9 7
9 3
2

3 1 2 5 8 6 7 4 9
9 4 1 8 3 7 2 5 6
2 6 5 9 4 8 3 1 7
7 3 4 2 6 9 1 8 5
1 8 9 7 5 3 6 2 4
6 9 7 4 2 5 8 3 1
5 2 3 6 1 4 9 7 8
8 5 6 1 7 2 4 9 3
4 7 8 3 9 1 5 6 2

; (34b)

N
I

T R
R E

A N
M D

R
A

G

G T A R D N E I M
D N T G I R A M E
I G E T N A M D R
T I R N A M D E G
R A I D M E N G T
M R N I E D G T A
A M D E R G T N I
N E M A G T I R D
E D G M T I R A N

; (34c)

W V
K Y

W Y
F L

N V
A L

N Y
V A

T N

W V Y N A L T K F
F T L W K Y A N V
K A V T N F L W Y
N K F L T V W Y A
Y F T A L W N V K
A L W K V N Y F T
V W N Y F A K T L
L Y K F W T V A N
T N A V Y K F L W

.

60. Using the options (30), items rik and cjk should be secondary when row i or
column j contains fewer than 6 cells. The puzzles are fun to solve by hand; but in a
pinch, Algorithm X will traverse search trees of sizes 23, 26, and 16 to find the answers:

(a)

5
4 3

6
5 2

1

1 5 6 2
5 4 6 1 3 2
6 2 4 3
1 5 3 2 6 4
2 6 4 3 5 1
4 3 1 5

; (b)

2 6
4

4
3

5
1

3 2 1 5 6
6 5 4 1 3
4 1 5 6 2
1 4 3 2 5 6
5 3 4 2
2 6 4 1 3

; (c)

4
5 1

2
3 1

5 4

3 6 4 5
4 5 3 6 2 1
2 1
1 2
3 4 2 1 6 5
6 5 3 4

.

[These are the first of 26 elegant puzzles announced by Serhiy and Peter Grabarchuk
on Martin Gardner’s 100th birthday (21 October 2014) and posted at puzzlium.com.]

61. Exactly 1315 of the
(
25
5

)
= 53130 ways to retain five clues result in a unique solu-

tion, and 175 of them involve all five digits. The lexicographically first is Fig. A–2(a).

62. Follow the hint; the undesired straight n-ominoes can be rejected easily in step R2
by examining vn−1 and v0. This quickly produces (16, 105, 561, 2804, 13602) box
options, for n = (3, 4, 5, 6, 7), which can be fed to Algorithm X to get jigsaw patterns.

There are no patterns for n = 3. But n = 4 has 33 patterns, which divide into
eight equivalence classes under rotation and/or reflection:

1 1 2 2 2 4 4 8

(The number of symmetries is shown below each arrangement; notice that 8/1+ 8/1+
8/2 + 8/2 + 8/2 + 8/4 + 8/4 + 8/8 = 33.) Similarly, n = 5 has 266 equivalence classes,
representing 256 · (8/1) + 7 · (8/2) + 3 · (8/4) = 2082 total patterns; n = 6 has 40237
classes, representing 39791 · (8/1) + 439 · (8/2) + 7 · (8/4) = 320098 patterns in all.

The computation gets more serious in the case n = 7, when Algorithm X needs
about 1.9 Tμ to generate the 132,418,528 jigsaw patterns. These patterns include
16,550,986 classes with no symmetry, and 2660 with one nontrivial symmetry. The
latter break down into 2265 that are symmetric under 180◦ rotation, 354 that are
symmetric under horizontal reflection, and 41 that are symmetric under diagonal

428

From the Library of Melissa Nuno

http://puzzlium.com

ptg999

7.2.2.1 ANSWERS TO EXERCISES 429

reflection. Here are some typical symmetric examples:

2 2 2 4 8 8

(It’s not difficult to generate all of the symmetric solutions for slightly higher values
of n; three of the classes for n = 8, shown above, have more than 2 symmetries. And
the case n = 9 contains two patterns with 8-fold symmetry besides the standard sudoku
boxes: See Fig. A–2(b) and (c), where the latter might be called windmill sudoku! For
complete counts for n = 8 and n = 9, with straight n-ominoes allowed, see Bob Harris’s
preprint “Counting nonomino tilings,” presented at G4G9 in 2010.)

(a)

1 5 3
4
2 (b) (c) (d)

1 5 8 6 4 3 9 7 2
2 6 9 5 7 8 1 3 4
3 7 4 1 9 2 5 6 8
4 9 2 8 6 7 3 1 5
5 3 7 4 2 1 6 8 9
6 8 1 3 5 9 2 4 7
7 2 6 9 1 4 8 5 3
8 4 5 2 3 6 7 9 1
9 1 3 7 8 5 4 2 6

Fig. A–2. Jigsaw sudoku patterns.

63. A simple modification of exercise 7.2.2–76 will generate the 3173 boxes that have
the desired rainbow property. An exact cover problem, given those 3173 options, shows
(after 1.2 Gμ of computation) that the boxes can be packed in 98556 ways. If we restrict
the options to the 3164 that aren’t sudoku boxes, the number of packings goes down
to 42669, of which 24533 are faultfree. Figure A–2(d) is a faultfree example.

64. (a) When n = 4, one of the eight classes in answer 62 (the 2nd) has no solutions;
another (the 5th) is clueless. When n = 5, eight of the 266 classes have no solution;
six are clueless. When n = 6, 1966 of 40237 are vacuous and 28 are clueless.

(Maxime’s original puzzle appeared in the newsletter of Chicago Area Mensa
[ChiMe MM, 3 (March 2000), 15]. Algorithm X solves it with a 40-node search tree.
But the tree size would have been 215 if he’d put ABCDEF in the next row down!)

(b) (Solution by Bob Harris, www.bumblebeagle.org/dusumoh/proof/, 2006.) The
clueless jigsaw for n = 4 generalizes to all larger n, as illustrated here
for n = 7: First a = 3; hence b = 3; . . . ; hence f = 3. Then g = 4;
hence h = 4; . . . ; hence l = 4. And so on. Finally we know where
to place the 2’s and the 1’s. (This proof shows that, for odd n > 3,
there’s always an n × n jigsaw sudoku whose clues lie entirely on the
main diagonal. Is there also a general construction that works for even
values of n? An 8× 8 example appears in exercise 65.)

1 2 3 4 5 6 7
a
b
c
d

e
f

g
h

i

j

k
l

65. (The author designed these puzzles with the aid of exercises 62 and 64. Similar
puzzles have been contrived by J. Henle, Math. Intelligencer 38, 1 (2016), 76–77.)

D
A
N
C
I
N
G

D G C I A . N
N A I G . D C
G D N A C I .

I . A C N G D
. N G D I C A
A C D . G N I
C I . N D A G

L
I
N
K
S

L K S N I
N I K S L
I S N L K
S L I K N
K N L I S

C
O
M
P
U
T
E
R

C P T M R E O U
U O P R E C T M
E C M U O R P T
R T U P M O C E
O R E T U P M C
M U C E P T R O
T M R O C U E P
P E O C T M U R

A
L
G
O
R
I
T
H
M

A I L T G H O M R
I L T G H O M R A
L T G H O M R A I
T G H O M R A I L
G H O M R A I L T
H O M R A I L T G
O M R A I L T G H
M R A I L T G H O
R A I L T G H O M

S
O
L
V
I
N
G

S V O G L I N
N O I S V G L
I N L O G S V
L I G V N O S
V G S N I L O
G S V L O N I
O L N I S V S

S
U
D
O
K
U

S K O . U D
D U S K . O
O . D U S K
U D K O . S
. S U D K O
K O . S D U

P
U
Z
Z
L
E

P L E . Z U
Z U P L E .

E . Z U P L
U E L Z . P
. P U E L Z
L Z . P U E

429

From the Library of Melissa Nuno

http://www.bumblebeagle.org/dusumoh/proof/,2006

ptg999

430 ANSWERS TO EXERCISES 7.2.2.1

66. (Puzzles like this might be too difficult for humans, but not for Algorithm C.)
Extend the 729 options (30) by adding ‘ij:k’, where ij is a new secondary item for
0 ≤ i, j < 9. Also add eighteen new primary items k for 1 ≤ k ≤ 9 and sj for 0 ≤ j < 9,
where k represents card k and sj represents a slot in the 3×3 array. Each item k has nine
options, for the nine slots in which it might be placed; for example, the options for item 2
are ‘2 s0 00:2 11:3 22:4 20:1’, ‘2 s1 03:2 14:3 25:4 23:1’, . . . , ‘2 s8 66:2 77:3 88:4 86:1’.

There are 9! ways to place the cards in slots; but only 9!/(3! 3!) = 10080 are actu-
ally different, because the rows and columns can be permuted independently without
changing the number of sudoku solutions. Suppose card cj goes into slot sj ; then we
can assume without loss of generality that c0 = 1 and that c4 = min(c4, c5, c7, c8). (To
incorporate these constraints, give only one option for card 1 and only eight options
for cards 2–9; use ordering tricks like (26) to ensure that c4 < c5, c4 < c7, c4 < c8.)

With this understanding, puzzle (i) has only one solution, and only when c0 . . . c8 =
192435768. (That solution has six automorphisms, in the sense of exercise 114.) Puzzle
(ii) has a unique solution when c0 . . . c8 = 149523786. It also has ten sudoku solutions
when the slot permutation is 149325687; so we can’t use that placement.

67. (a) (Solution by A. E. Brouwer, homepages.cwi.nl/~aeb/games/sudoku/nrc.html,
2006.) The four new boxes force also aaaaaaaaa, . . . , eeeeeeeee to be rainbows.

e a a a e b b b e
c c c
c c c
c c c
e a a a e b b b e
d d d
d d d
d d d
e a a a e b b b e

(i)

3 2 7 1 5 4 8 6 9
6 1 5 8 2 9 4 7 3
8 9 4 3 7 6 2 1 5
9 6 2 7 1 5 3 8 4
7 4 3 9 8 2 1 5 6
5 8 1 4 6 3 7 9 2
1 3 6 2 9 8 5 4 7
4 7 9 5 3 1 6 2 8
2 5 8 6 4 7 9 3 1

(ii)

3 1 6 8 9 4 7 2 5
5 7 8 3 2 6 4 1 9
4 2 9 5 1 7 3 8 6
7 4 1 6 3 9 2 5 8
2 9 5 7 8 1 6 3 4
8 6 3 4 5 2 9 7 1
9 8 7 1 4 3 5 6 2
6 5 2 9 7 8 1 4 3
1 3 4 2 6 5 8 9 7

(b) Introduce new primary items b′yk for 0 ≤ y < 9 and 1 ≤ k ≤ 9. Add b′yk to
option (30) with y = 3�iτ/3�+ �jτ/3�, where τ is the permutation (03)(12)(58)(67).

(c) With items b′yk only considered for y ∈ {0, 2, 6, 8}, Algorithm X’s search tree
grows from 77 nodes to 231 for (i), and from 151 nodes to 708 for (ii).

[Puzzle (ii) is a variant of an 11-clue example constructed by Brouwer. The
minimum number of clues necessary for hypersudoku is unknown.]

(d) True. (That’s the permutation τ in (b), applied to both rows and columns.)

68. (a) A simple backtrack program generates all convex n-ominoes whose top cell(s)
are in row 0 and whose leftmost cell(s) are in column 0. [This problem has respectively
(1, 2, 6, 19, 59, 176, 502) solutions for 1 ≤ n ≤ 7; see M. Bousquet-Mélou and J.-M.
Fédou, Discrete Math. 137 (1995), 53–75, for the generating function.] The resulting
(1, 4, 22, 113, 523, 2196, 8438) placements into an n×n box yield exact cover problems
as in answer 62. Considering symmetries, we find 1 · (8/4) = 2 patterns when n = 2;
1·(8/1)+1·(8/4) = 10 patterns when n = 3; 10·(8/1)+7·(8/2)+4·(8/4)+1·(8/8) = 117
when n = 4; 355·(8/1)+15·(8/2)+4·(8/4) = 2908 when n = 5; 20154·(8/1)+342·(8/2)+
8 ·(8/4) = 162616 when n = 6; 2272821 ·(8/1)+1181 ·(8/2)+5 ·(8/4) = 18187302 when
n = 7. (Exercise 62 had different results because it disallowed straight n-ominoes.)

(b) There are 325 such nonominoes touching row 0 and column 0, leading to 12097
placements and 1014148 · (8/1)+ 119 · (8/2)+ 24 · (8/4)+ 1 · (8/8) = 8113709 patterns.
If we exclude the 3× 3 nonomino, and its 49 placements, the number of patterns goes
down to 675797 · (8/1) = 5406376.

[Convex polyominoes were introduced by Klarner and Rivest; see answer 303.]

430

From the Library of Melissa Nuno

http://homepages.cwi.nl/~aeb/games/sudoku/nrc.html

ptg999

7.2.2.1 ANSWERS TO EXERCISES 431

69. Say that an “Nk” is a suitable nonomino placement that has k Bs
and 9 − k Ls. Only two cases give seven wins for B: 1 N6, 6 N5, 2 N0;
7 N5, 1 N1, 1 N0. With the given voting pattern there are respectively
(1467, 2362, 163, 2) options for N6, N5, N1, N0. Algorithm M provides
the desired multiplicities. After 12 Mμ of computation we find that there
are no solutions in case 1 but 60 solutions in case 2, one of which is shown.

B B L B L L L L B
L L L B L L L B L
B B L B L B B L B
L L L L L L L L L
B B B L L B L L B
L B L B B B B B B
B B L B B B B B L
L B L L L L B L L
L L B L L B B L L

(Of course the author does not recommend secret deals such as this! The point
is that unfair gerrymandering is easy to do and hard to detect. Indeed, a trial of 1000
random voter patterns, each with 5/4 split in the nine standard 3×3 districts, included
696 cases that could be gerrymandered to seven Big-Endian districts using only convex
nonominoes that fit in a 5× 5. Eight of those cases could also achieve a 4× 4 fit.)

[Similar studies, using realistic data, go back to R. S. Garfinkel’s Ph.D. thesis
Optimal Political Districting (Baltimore: Johns Hopkins University, 1968).]

70. In (a), four pieces change; in (b) the solution is unique:

(a)

������������	���

�
�
�
�
���	�
�
��	���	��	�����
����	�����	�
�
�

�����
���	���	
��
�
���	�������

���	���	�
�
�
�

; (b)

��	�����	�������
�	�
�����
�
�
�
��	���
�
�����	�
����
���	�
��	�

�
���	���	���	�
���	���������	�

���	�
�
�
���	

.

Notice that the spot patterns�,�, and are rotated when a domino is placed ver-
tically; these visual clues, which would disambiguate (a), don’t show up in the matrix.

(Dominosa was invented by O. S. Adler [Reichs Patent #71539 (1893); see his
booklet Sperr-Domino und Dominosa (1912), 23–64, written with F. Jahn]. Similar
“quadrille” problems had been studied earlier by E. Lucas and H. Delannoy. See Lucas’s
Récréations Mathématiques 2 (1883), 52–63; W. E. Philpott, JRM 4 (1971), 229–243.)

71. Define 28 vertices Dxy for 0 ≤ x ≤ y ≤ 6; 28 vertices ij for 0 ≤ i < 7, 0 ≤ j < 8,
and i + j even; and 28 similar vertices ij with i + j odd. The matching problem has
49 triples of the form {Dxy, ij, i(j+1)} for 0 ≤ i, j < 7, as well as 48 of the form
{Dxy, ij, (i+1)j} for 0 ≤ i < 6 and 0 ≤ j < 8, corresponding to potential horizontal
or vertical placements. For example, the triples for exercise 70(a) are {D06, 00, 01},
{D56, 01, 02}, . . . , {D23, 66, 67}; {D01, 00, 10}, {D46, 01, 11}, . . . , {D12, 57, 67}.
72. Model (i) has M = 56!/8!7 ≈ 4.10 × 1042 equally likely possibilities; model (ii)
has N = 1292697 · 28! · 221 ≈ 8.27 × 1041, because there are 1292697 ways to pack 28
dominoes in a 7 × 8 frame. (Algorithm X will quickly list them all.) The expected
number of solutions per trial in model (i) is therefore N/M ≈ 0.201.

Ten thousand random trials with model (i) gave 216 cases with at least one
solution, including 26 where the solution was unique. The total number

∑
x of solutions

was 2256; and
∑
x2 = 95918 indicated a heavy-tailed distribution whose empirical

standard deviation is ≈ 3.1. The total running time was about 250 Mμ.
Ten thousand random trials with model (ii), using random choices from a precom-

puted list of 1292697 packings, gave 106 cases with a unique solution; one case had 2652
of them! Here

∑
x = 508506 and

∑
x2 = 144119964 indicated an empirical mean of

≈ 51 solutions per trial, with standard deviation ≈ 109. Total time was about 650 Mμ.

73. From 66110144/26611514/52132140/55322200/53242006/36430565/33643054 we
get 730,924 solutions, which is the current record. This array, found by Michael Keller

431

From the Library of Melissa Nuno

ptg999

432 ANSWERS TO EXERCISES 7.2.2.1

in 2004, has the surprising property that every candidate placement, except for the
‘21’ in ‘521’, occurs in at least one solution. (In fact, in at least 31,370 solutions!)

74. One way to obtain candidate arrays is to formulate an MCC problem: Given one
of the 1292697 matchings of answer 72, let there be options ‘Puv xy tu:x tv:y’, ‘Puv
xy tu:y tv :x’ for uv in the matching, and ‘Quv Dxy tu:x tv:y’, ‘Quv Dxy tu:y tv :x’ for
uv not in the matching; here 0 ≤ x ≤ y ≤ 6, and duplicate options are omitted when
x = y. Give each Dxy multiplicity 3. Also add 28 further options ‘# Dxy’, where #
has multiplicity 15 (because 15 pairs xy should have only two spurious appearances).

For fun, the author chose a tatami tiling for the matching (see exercise 7.1.4–
215), and obtained one candidate every 70 Mμ or so when the nonsharp variant of
Algorithm M was applied with randomization as in exercise 31. Surprisingly, the first
10000 candidates yielded 2731 solutions, of which the hardest (with a 572-node search
tree) was 15133034/21446115/22056105/65460423/22465553/61102332/63600044.

[See www.solitairelaboratory.com/puzzlelaboratory/DominoGG.html.]

75. (a) (x ◦ y) ◦ x = (x ◦ y) ◦ (y ◦ (x ◦ y)) = y.

(b) All five are legitimate. (The last two are gropes because f(t + f(t)) = t for
0 ≤ t < 4 in each case; they are isomorphic if we interchange any two elements. The
third is isomorphic to the second if we interchange 1↔ 2. There are 18 grope tables of
order 4, of which (4, 12, 2) are isomorphic to the first, third, and last tables shown here.)

(c) For example, let x ◦ y = (−x − y) mod n. (More generally, if G is any group
and if α ∈ G satisfies α2 = 1, we can let x ◦ y = αx−αy−α. If G is commutative and
α ∈ G is arbitrary, we can let x ◦ y = x−y−α.)

(d) For each option of type (i) in an exact covering, define x ◦ x = x; for each of
type (ii), define x ◦ x = y, x ◦ y = y ◦ x = x; for each of type (iii), define x ◦ y = z,
y ◦ z = x, z ◦ x = y. Conversely, every grope table yields an exact covering in this way.

(e) Such a grope covers n2 items with k options of size 1, all other options of size 3.
[F. E. Bennett proved, in Discrete Mathematics 24 (1978), 139–146, that such gropes
exist for all k with 0 ≤ k ≤ n and k ≡ n2 (modulo 3), except when k = n = 6.]

Notes: The identity x◦(y◦x) = y seems to have first been considered by E. Schröder
in Math. Annalen 10 (1876), 289–317 [see ‘(C0)’ on page 306], but he didn’t do much
with it. In a class for sophomore mathematics majors at Caltech in 1968, the author de-
fined gropes and asked the students to discover and prove as many theorems about them
as they could, by analogy with the theory of groups. The idea was to “grope for results.”
The official modern term for a grope is a real jawbreaker: semisymmetric quasigroup.

76. (a) Eliminate the n items for xx; use only the 2
(
n
3

)
options of type (iii) for which

y �= z. (Idempotent gropes are equivalent to “Mendelsohn triples,” which are families
of n(n − 1)/3 three-cycles (xyz) that include every ordered pair of distinct elements.
N. S. Mendelsohn proved [Computers in Number Theory (New York: Academic Press,
1971), 323–338] that such systems exist for all n �≡ 2 (modulo 3), except when n = 6.

(b) Use only the
(
n+1
2

)
items xy for 0 ≤ x ≤ y < n; replace options of type (ii)

by ‘xx xy’ and ‘xy yy’ for 0 ≤ x < y < n; replace those of type (iii) by ‘xy xz yz’
for 0 ≤ x < y < z < n. (Such systems, Schröder’s ‘(C1) and (C2)’, are called totally
symmetric quasigroups; see S. K. Stein, Trans. Amer. Math. Soc. 85 (1957), 228–
256, §8. If idempotent, they’re equivalent to Steiner triple systems.)

(c) Omit items for which x = 0 or y = 0. Use only the 2
(
n−1
3

)
options of type (iii)

for 1 ≤ x < y, z < n and y �= z. (Indeed, such systems are equivalent to idempotent
gropes on the elements {1, . . . , n− 1}.)

432

From the Library of Melissa Nuno

http://www.solitairelaboratory.com/puzzlelaboratory/DominoGG.html

ptg999

7.2.2.1 ANSWERS TO EXERCISES 433

77. Use primary items v and v′ for each vertex of G and H; also secondary items ee′

for each pair of edges e and e′ in G and the complement of H. There are n2 options,
namely ‘v v′

⋃
e(v),e′(v′) e(v)e

′(v′)’, where e(v) ranges over all edges v−−− u in G and

e′(v′) ranges over all nonedges v′ /−−− u′ in H. (The solutions to this problem are the
one-to-one matchings v ←→ v′ of the vertices such that u−−−v implies u′−−−v′.)
78. For example, CATALANDAUBOREL, GRAMARKOFFKNOPP, ABELWEIERSTRASS, BERTRAND-
HERMITE, CANTORFROBENIUS, GLAISHERHURWITZ, HADAMARDHILBERT, HENSELKIRCHHOFF,
JENSENSYLVESTER, MELLINSTIELTJES, NETTORUNGESTERN, MINKOWSKIPERRON.

79. In an n× n array for word search, every k-letter word generates (n+ 1− k) · n · 4
horizontal/vertical options and (n+1− k)2 · 4 diagonal options. So the desired answer
is (2, 5, 6, 5, 3, 5, 0, 1) · (1296, 1144, 1000, 864, 736, 616, 504, 400) = 24320.

80. Item q is selected at level 0, trying option x0 = 8, ‘q x y:A p’. We cover q, then
cover x, then purify y to color A, and cover p; but at level 1 we find that item r’s list is
empty. So we backtrack: Uncover p, unpurify y, uncover x—and try option x0 = 20,
‘q x:A’, hence purifying x to color A. This time at level 1 we try x1 = 12, ‘p r x:A
y’. That causes us to cover p, then cover r, and then (since x is already purified) to
cover y. At level 2 we discover that we’ve found a solution! Here’s what’s in memory:

i: 0 1 2 3 4 5 6
NAME(i): — p q r x y —
LLINK(i): 0 0 1 0 6 4 4
RLINK(i): 0 3 3 0 6 6 4

x: 0 1 2 3 4 5 6
LEN(x), TOP(x): — 1 2 1 2 0 0

ULINK(x): — 12 20 23 18 5 —
DLINK(x): — 12 8 23 14 5 10
COLOR(x): — — — — — — 0

x: 7 8 9 10 11 12 13
TOP(x): 1 2 4 5 −1 1 3
ULINK(x): 1 2 4 5 7 1 3
DLINK(x): 12 20 14 15 15 1 23
COLOR(x): 0 0 0 A 0 0 0

x: 14 15 16 17 18 19 20
TOP(x): 4 5 −2 1 4 −3 2
ULINK(x): 4 5 12 12 14 17 8
DLINK(x): 18 24 18 1 4 21 2
COLOR(x): −1 0 0 0 B 0 0

x: 21 22 23 24 25
TOP(x): 4 −4 3 5 −5
ULINK(x): 18 20 3 5 23
DLINK(x): 4 24 3 5 —
COLOR(x): A 0 0 B 0

81. Almost true, if TOP and COLOR are stored in the same octabyte (so that only one
is charged to read both). The only difference is when processing the input, because
Algorithm X has no COLOR fields to initialize but Algorithm C zeroes them out.

82. True; the LEN field of secondary items doesn’t affect the computation.

83. Before setting i← TOP(x0) in step C6 when l = 0, let node x be the spacer at the
right of x0’s option, and set j ← TOP(x − 1). If j > N1 (that is, if x0’s option ends
with the secondary item j), and if COLOR(x − 1) = 0, cover(j).

84. Let CUTOFF (initially ∞) point to the spacer at the end of the best solution found
so far. We’ll essentially remove all nodes > CUTOFF from further consideration.

433

From the Library of Melissa Nuno

ptg999

434 ANSWERS TO EXERCISES 7.2.2.1

Whenever a solution is found, let node PP be the spacer at the end of the option
for which xk = max(x0, . . . , xl−1). If PP �= CUTOFF, set CUTOFF← PP, and for 0 ≤ k < l
remove all nodes > CUTOFF from the list for TOP(xk). (It’s easy to do this because the
list is sorted.) Minimax solutions follow the last change to CUTOFF.

Begin the subroutine ‘uncover′(i)’ by removing all nodes > CUTOFF from item i’s
list. After setting d ← DLINK(q) in unhide′(p), set DLINK(q) ← d ← x if d > CUTOFF.
Make the same modifications also to the subroutine ‘unpurify(p)’.

Subtle point: Suppose we’re uncovering item i and encounter an option ‘i j . . . ’
that should be restored to the list of item j; and suppose that the original successor
‘j a . . . ’ of that option for item j lies below the cutoff. We know that ‘j a . . . ’ contains
at least one primary item, and that every primary item was covered before we changed
the cutoff. Hence ‘j a . . . ’ was not restored, and we needn’t worry about removing it.
We merely need to correct the DLINK, as stated above.

85. Now let CUTOFF be the spacer just before the best solution known. When resetting
CUTOFF, backtrack to level k − 1, where xk maximizes {x0, . . . , xl−1}.
86. The steps below also estimate the profile of the search tree. Running time is
estimated in terms of “updates” and “cleansings.” The user specifies a random seed
and a desired number of trials; the final estimates are the averages of the (unbiased)
estimates from each trial. Here we specify only how to make a single trial.

In step C1, also set D ← 1.
In step C2, estimate that the search tree has D nodes at level l. If RLINK(0) = 0,

also estimate that there are D solutions.
In step C3, let θ be the number of options in the list of the chosen item i. If θ = 0,

estimate that there are 0 solutions, and go to C7.
At the end of step C4, let k be uniformly random in [0 . . θ − 1]; then set xl ←

DLINK(xl), k times.

Just before setting l ← l + 1 at the end of step C5, suppose you’ve just done
U updates and C cleansings. (An “update” occurs when ‘cover’ sets LLINK(r) or
‘hide’ sets ULINK(d). A “cleansing” occurs when ‘commit’ calls ‘purify’ or ‘purify’ sets
COLOR(q)← −1.) Estimate that level l does D(U ′+ θ ·U) updates and DC cleansings,
where U ′ is the number of updates just done in step C4. Then set D← θ ·D.

Step C6 now should do absolutely nothing. Steps C7 and C8 don’t change.
Upon termination, all data structures will have been returned to their original

state, ready for another random trial. These steps will have estimated the number
of nodes, updates, and cleansings at each level. Sum those estimates to get the total

estimated number of nodes, updates, and cleansings.

87. Use 2n primary items ai, dj for the “across” and “down” words, together with n2

secondary items ij for the individual cells. Also use W secondary items w, one for each
legal word. The XCC problem has 2Wn options, namely ‘ai i1:c1 . . . in:cn c1 . . . cn’ and
‘dj 1j:c1 . . . nj:cn c1 . . . cn’ for 1 ≤ i, j ≤ n and each legal word c1 . . . cn. (See (110).)

We can avoid having both a solution and its transpose by introducing W further
secondary items w@ and appending c1 . . . cn@ at the right of each option for a1 and d1.
Then exercise 83’s variant of Algorithm C will never choose a word for d1 that it has
already tried for a1. (Think about it.)

But this construction is not a win for “dancing links,” because it causes massive
amounts of data to go in and out of the active structure. For example, with the five-
letter words of WORDS(5757), it correctly finds all 323,264 of the double word squares,
but its running time is 15 teramems! Much faster is to use the algorithm of exercise

434

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 435

7.2.2–28, which needs only 46 gigamems to discover all of the 1,787,056 unrestricted
word squares; the double word squares are easily identified among those solutions.

88. One could do a binary search, trying varying values of W . But the best way is to
use the construction of exercise 87 together with the minimax variant of Algorithm C in
exercise 84. This works perfectly, when the options for most common words come first.

Indeed, this method finds the double square ‘BLAST|EARTH|ANGER|SCOPE|TENSE’
and proves it best in just 64 Gμ, almost as fast as the specialized method of exercise
7.2.2–28. (That square contains ARGON, the 1720th most common five-letter word, in
its third column; the next-best squares use PEERS, which has rank 1800.)

89. The “minimax” method of exercise 88 finds the first five squares of

I S
T O

M A Y
A G E
N O T

S H O W
N O N E
O P E N
W E S T

S T A R T
T H R E E
R O O F S
A S S E T
P E E R S

C H E S T S
L U S T R E
O B T A I N
A R E N A S
C I R C L E
A S S E S S

H E R T Z E S
O P E R A T E
M I M I C A L
A C E R A T E
G E N E T I C
E N D M O S T
R E S E N T S

in respectively 200 Kμ, 15 Mμ, 450 Mμ, 25 Gμ, 25.6 Tμ. It struggles to find the best
6×6, because too few words are cut off from the search; and it thrashes miserably with
the 24 thousand 7-letter words, because those words yield only seven extremely esoteric
solutions. For those lengths it’s best to cull the 2038753 and 14513 unrestricted word
squares, which the method of exercise 7.2.2–28 finds in respectively 4.6 Tμ and 8.7 Tμ.

90. An XCC problem works nicely, as in answer 88: There are 2p primary items ai
and di for the final words, and pn + W secondary items ij and w for the cells and
potential words, where 0 ≤ i < p and 1 ≤ j ≤ n. The Wp options going across are
‘ai i1:c1 i2:c2 . . . in:cn c1 . . . cn’. The Wp options going down are ‘di i1:c1 ((i+1) mod
p)2:c2 . . . ((i+n−1) mod p)n:cn c1 . . . cn’ for left-leaning stairs; ‘di i1:cn ((i+1) mod
p)2:cn−1 . . . ((i+n−1) mod p)n:c1 c1 . . . cn’ for right-leaning stairs. The modification
to Algorithm C in exercise 83 saves a factor of 2p; and the minimax modification in
exercise 84 hones in quickly on optimum solutions.

There are no left word stairs for p = 1, since we need two distinct words. The
left winners for 2 ≤ p ≤ 10 are: ‘WRITE|WHOLE’; ‘MAKES|LIVED|WAXES’; ‘THERE|SHARE|
WHOLE|WHOSE’; ‘STOOD|THANK|SHARE|SHIPS|STORE’; ‘WHERE|SHEEP|SMALL|STILL|WHOLE|
SHARE’; ‘MAKES|BASED|TIRED|WORKS|LANDS|LIVES|GIVES’; ‘WATER|MAKES|LOVED|GIVEN|
LAKES|BASED|NOTES|TONES’; ‘WHERE|SHEET|STILL|SHALL|WHITE|SHAPE|STARS|WHOLE|
SHORE’; ‘THERE|SHOES|SHIRT|STONE|SHOOK|START|WHILE|SHELL|STEEL|SHARP’. They
all belong to WORDS(500), except that p = 8 needs WORDS(504) for NOTED.

The right winners have a bit more variety: ‘SPOTS’; ‘STALL|SPIES’; ‘STOOD|HOLES|
LEAPS’; ‘MIXED|TEARS|SLEPT|SALAD’; ‘YEARS|STEAM|SALES|MARKS|DRIED’; ‘STEPS|
SEALS|DRAWS|KNOTS|TRAPS|DROPS’; ‘TRIED|FEARS|SLIPS|SEAMS|DRAWS|ERECT|TEARS’;
‘YEARS|STOPS|HOOKS|FRIED|TEARS|SLANT|SWORD|SWEEP’; ‘START|SPEAR|SALES|TESTS|
STEER|SPEAK|SKIES|SLEPT|SPORT’; ‘YEARS|STOCK|HORNS|FUELS|BEETS|SPEED|TEARS|
PLANT|SWORD|SWEEP’. They belong to WORDS(1300) except when p is 2 or 3.

[Arrangements equivalent to left word stairs were introduced in America under
the name “Flower Power” by Will Shortz in Classic Crossword Puzzles (Penny Press,
February 1976), based on Italian puzzles called “Incroci Concentrici” in La Settimana

Enigmistica. Shortly thereafter, in GAMES magazine and with p = 16, he called them
“Petal Pushers,” usually based on six-letter words but occasionally going to seven. Left

435

From the Library of Melissa Nuno

ptg999

436 ANSWERS TO EXERCISES 7.2.2.1

word stairs are much more common than the right-leaning variety, because the latter
mix end-of-word with beginning-of-word letter statistics.]

91. Consider all “kernels” c1 . . . c14 that can appear as il-
lustrated, within a right word stair of 5-letter words. Such
kernels arise for a given set of words only if there are letters
x1 . . . x12 such that x3x4x5c2c3, c4c5c6c7c8, c9c10c11c12x6,
c13c14x7x8x9, x1x2x5c5c9, c1c2c6c10c13, c3c7c11c14x10, and
c8c12x7x11x12 are all in the set. Thus it’s an easy matter to
set up an XCC problem that will find the multiset of kernels,
after which we can extract the set of distinct kernels.

x1
x2 c1

x3 x4 x5 c2 c3
c4 c5 c6 c7 c8

c9 c10 c11 c12 x6
c13 c14 x7 x8 x9

x10 x11
x12

Construct the digraph whose arcs are the kernels, and whose vertices are the 9-
tuples that arise when kernel c1 . . . c14 is regarded as the transition

c1c2c3c4c5c6c7c9c10 → c3c7c8c9c10c11c12c13c14.

This transition contributes two words, c4c5c6c7c8 and c1c2c6c10c13, to the word stair.
Indeed, right word stairs of period p are precisely the p-cycles in this digraph for which

the 2p contributed words are distinct.

Now we can solve the problem, if the graph isn’t too big. For example, WORDS(1000)
leads to a digraph with 180524 arcs and 96677 vertices. We’re interested only in the
oriented cycles of this (very sparse) digraph; so we can reduce it drastically by looking
only at the largest induced subgraph for which each vertex has positive in-degree and
positive out-degree. (See exercise 7.1.4–234, where a similar reduction was made.) And
wow: That subgraph has only 30 vertices and 34 arcs! So it is totally understandable,
and we deduce quickly that the longest right word stair belonging to WORDS(1000) has
p = 5. That word stair, which we found directly in answer 90, corresponds to the cycle

SEDYEARST→ DRSSTEASA→ SAMSALEMA→ MESMARKDR→ SKSDRIEYE→ SEDYEARST.

A similar approach applies to left word stairs, but the kernel configurations are
reflected left-to-right; transitions then contribute the words c8c7c6c5c4 and c1c2c6c10c13.
The digraph from WORDS(500) turns out to have 136771 arcs and 74568 vertices; but this
time 6280 vertices and 13677 arcs remain after reduction. Decomposition into strong
components makes the task simpler, because every cycle belongs to a strong component.
Still, we’re stuck with a giant component that has 6150 vertices and 12050 arcs.

The solution is to reduce the current subgraph repeatedly as follows: Find a
vertex v of out-degree 1. Backtrack to discover a simple path, from v, that contributes
only distinct words. If there is no such path (and there usually isn’t, and the search
usually terminates quickly), remove v from the graph and reduce it again.

With this method one can rapidly show that an optimum left word stair from
WORDS(500) has period length 36: ‘SHARE|SPENT|SPEED|WHEAT|THANK|CHILD|SHELL|
SHORE|STORE|STOOD|CHART|GLORY|FLOWS|CLASS|NOISE|GAMES|TIMES|MOVES|BONES|

WAVES|GASES|FIXED|TIRED|FEELS|WALLS|WORLD|ROOMS|WORDS|DOORS|PARTY|WANTS|

WHICH|WHERE|SHOES|STILL|STATE’, with 36 other words that go down. Incidentally,
GLORY and FLOWS have ranks 496 and 498, so they just barely made it into WORDS(500).

Larger values of W are likely to lead to quite long cycles from WORDS(W). Their
discovery won’t be easy, but the search will no doubt be instructive.

92. Use 3p primary items ai, bi, di for the final words; pn + 2W secondary items ij,
w, w@ for the cells and potential words, with 0 ≤ i < p and 1 ≤ j ≤ n (somewhat
as in answer 90). The Wp options going across are ‘ai i1:c1 i2:c2 . . . in:cn c1 . . . cn

436

From the Library of Melissa Nuno

http://.in:c

ptg999

7.2.2.1 ANSWERS TO EXERCISES 437

c1 . . . cn@’. The 2Wp options going down in each way are ‘bi i1:c1 ((i+1) mod p)2:c2
. . . ((i+n−1) mod p)n:cn c1 . . . cn’ and ‘di i1:cn ((i+1) mod p)2:cn−1 . . . ((i+n−1) mod
p)n:c1 c1 . . . cn’. The items w@ at the right of the ai options save us a factor of p.

Use Algorithm C (modified). We can’t have p = 1. Then comes ‘SPEND|SPIES’;
‘WAVES|LINED|LEPER’; ‘LOOPS|POUTS|TROTS|TOONS’; ‘SPOOL|STROP|STAID|SNORT|
SNOOT’; ‘DIMES|MULES|RIPER|SIRED|AIDED|FINED’; ‘MILES|LINTS|CARES|LAMED|PIPED|
SANER|LIVER’; ‘SUPER|ROVED|TILED|LICIT|CODED|ROPED|TIMED|DOMED’; ‘FORTH|LURES|
MIRES|POLLS|SLATS|SPOTS|SOAPS|PLOTS|LOOTS’; ‘TIMES|FUROR|RUNES|MIMED|CAPED|
PACED|LAVER|FINES|LIMED|MIRES’. (Lengthy computations were needed for p ≥ 8.)

93. Now p ≤ 2 is impossible. A construction like the previous one allows us again to
save a factor of p. (There’s also top/bottom symmetry, but it is somewhat harder to
exploit.) Examples are relatively easy to find, and the winners are ‘MILES|GALLS|
BULLS’; ‘FIRES|PONDS|WALKS|LOCKS’; ‘LIVES|FIRED|DIKES|WAVED|TIRES’; ‘BIRDS|
MARKS|POLES|WAVES|WINES|FONTS’; ‘LIKED|WARES|MINES|WINDS|MALES|LOVES|FIVES’;
‘WAXES|SITES|MINED|BOXES|CAVES|TALES|WIRED|MALES’; ‘CENTS|HOLDS|BOILS|BALLS|
MALES|WINES|FINDS|LORDS|CARES’; ‘LOOKS|ROADS|BEATS|BEADS|HOLDS|COOLS|FOLKS|
WINES|GASES|BOLTS’. [Such patterns were introduced by Harry Mathews in 1975, who
gave the four-letter example ‘TINE|SALE|MALE|VINE’. See H. Mathews and A. Brotchie,
Oulipo Compendium (London: Atlas, 1998), 180–181.]

94. Set up an XCC problem with primary items k, pk, and secondary items xk, for
0 ≤ k < 16, and with options ‘j pk xk:a x(k+1) mod 16:b x(k+3) mod 16:c x(k+4) mod 16:d’
for 0 ≤ j, k < 16, where j = (abcd)2. The solution (0000011010111011) is essentially
unique (except for cyclic permutation, reflection, and complementation). [See C. Flye
Sainte-Marie, L’Intermédiaire des Mathématiciens 3 (1896), 155–161.]

95. Use 2m primary items ak, bk, and m secondary items xk, for 0 ≤ k < m. Define
m2 options of size 2 + n, namely ‘aj bk xj :t1 x(j+1) modm:t2 . . . x(j+n−1) modm:tn’,
where t1t2 . . . tn is the kth binary vector of interest. However, save a factor of m by
omitting the options with j = 0 and k > 0, and the options with j > 0 and k = 0.

The case (7, 0, 3) has 137216 solutions, found in 8.5 gigamems; the case (7, 3, 4)
has 41280 solutions, found in 3.2 gigamems. (We can make the items bk secondary
instead of primary. This makes the search tree a bit larger. But it actually saves a
little time, because the MRV heuristic causes branching on aj and maintains a good
focus; less time is spent computing that heuristic when bk isn’t primary. Alternatively
we could make the items ak secondary (or even omit them entirely, which would have
the same effect). But that would be a disaster! For example, the running time for case
(7, 0, 3) would then increase to nearly 50 teramems, because focus is lost.)

Section 7.2.1 discusses other “universal cycles,” which can be handled similarly.

96. In fact, there are 80 solutions for which the bottom four rows are the
complements of the top four. (This problem extends the idea of “ourotoruses” in
exercise 7.2.1.1–109. One can also consider windows that aren’t rectangles. For
example, the thirty-two ways to fill a cross of five cells can be identified with 32
positions of the generalized torus whose offsets are (4,±4); see exercise 7–137.)

00000110
00010111
11001010
10001110
11111001
11101000
00110101
01110001

97. Use primary items jk, pjk, and secondary items dj,k, for 0 ≤ j < 3 and 0 ≤
k < 9, with the following three options for each 0 ≤ i, j < 3 and 0 ≤ k, k′ < 9:
‘jk pj′k′ dj′,k′ :i dj′,k′+1:(i + a) dj′+1,k′ :(i + b) dj′+1,k′+1:(i + c)’, for 0 ≤ j′ ≤ 1, and
‘jk p2k′ d2,k′ :i d2,k′+1:(i+a) d0,k′−3:(i+b−1) d0,k′−2:(i+c−1)’, where 9j+k = (abc)3;
sums involving i are mod 3, while sums involving k′ are mod 9. We can assume that
00 is paired with p00. Then there are 2 · 2898 = 5796 solutions D; all have D �= DT .

437

From the Library of Melissa Nuno

ptg999

438 ANSWERS TO EXERCISES 7.2.2.1

98. Given a 3SAT problem with clauses (li1 ∨ li2 ∨ li3) for 1 ≤ i ≤ m, with each lij ∈
{x1, x̄1, . . . , xn, x̄n}, construct an XCC problem with 3m primary items ij (1 ≤ i ≤ m,
1 ≤ j ≤ 3) and n secondary items xk (1 ≤ k ≤ n), having the following options:
(i) ‘li1 li2’, ‘li2 li3’, ‘li3 li1’; (ii) ‘lij xk:1’ if lij = xk, ‘lij xk:0’ if lij = x̄k. That problem
has a solution if and only if the given clauses are satisfiable.

99. True—but perhaps with many more secondary items and much longer options:
Let x be a secondary item to which a color has been assigned, in some XCC problem A;
and let O be the options in which x appears. Replace A by a new problem A′, by delet-
ing item x and adding new secondary items x{o,p} for each o, p ∈ O for which x gets dif-
ferent colors in A. And for each o ∈ O, replace item x in o by the set of all x{o,p} that ap-
ply. If A′ still involves colors, replace it by A′′ in a similar way, until all colors disappear.

100. (a) There are five solutions: 00112, 00122, 01112, 01122, 11111.
(b) Let there be five primary items, {#1,#2,#3,#4,#5}, and five secondary

items, {x1, x2, x3, x4, x5}. Item #1 enforces the binary constraint x1 ≤ x2, and has
the options ‘#1 x1:0 x2:0’; ‘#1 x1:0 x2:1’; ‘#1 x1:0 x2:2’; ‘#1 x1:1 x2:1’; ‘#1 x1:1
x2:2’; ‘#1 x1:2 x2:2’. Similar options for #2, #3, and #4 will enforce the constraints
x2 ≤ x3, x3 ≤ x4, and x4 ≤ x5. Finally, the options ‘#5 x1:0 x3:1 x5:2’; ‘#5 x1:0 x3:2
x5:1’; ‘#5 x1:1 x3:0 x5:2’; ‘#5 x1:1 x3:1 x5:1’; ‘#5 x1:1 x3:2 x5:0’; ‘#5 x1:2 x3:0 x5:1’;
‘#5 x1:2 x3:1 x5:0’ will enforce the ternary constraint x1 + x3 + x5 = 3.

(c) Use primary items #j for 1 ≤ j ≤ m, one for each constraint, and secondary
items xk for 1 ≤ k ≤ n, one for each variable. If constraint Cj involves the d variables
xi1 , . . . , xid , include options ‘#j xi1 :a1 . . . xid :ad’ for each legal d-tuple (a1, . . . , ad).

(Of course this construction isn’t efficient for all instances of CSP; furthermore, we
can often find substantially better ways to encode a particular CSP as an XCC instance,
because this method uses only one primary item in each option. But the idea that un-
derlies this construction is a useful mental tool when formulating particular problems.)

101. Notice that the final sentence implies two further clues:

• Somebody trains a zebra. • Somebody prefers to drink just plain water.

Let there be primary items #k for 1 ≤ k ≤ 16, one for each clue. And let the
5 · 5 secondary items Nj , Jj , Pj , Dj , Cj represent the nationality, job, pet, drink, and
color associated with house j, for 0 ≤ j < 5. There are respectively (5, 5, 5, 5, 1, 5, 1, 5,
4, 5, 8, 5, 8, 8, 5, 5) options for clues (1, . . . , 16), typified by ‘#1 Nj :England Cj :red’,
for 0 ≤ j < 5; ‘#5 N0:Norway’; ‘#9 Ci:white Ci+1:green’, for 0 ≤ i < 4; ‘#14 Ji:nurse
Pi+1:fox’, ‘#14 Pi:fox Ji+1:nurse’, for 0 ≤ i < 4; ‘#15 Pj :zebra’, for 0 ≤ j < 5.

A more complex formulation enforces the redundant “all-different” constraint by
introducing 5 ·5 additional secondary items to represent the inverses of Nj , Jj , Pj , Dj ,
Cj . For example, the options for #1 then become ‘#1 Nj :England N

−
England:j Cj :red

C−
red:j’. (With those additional items, Algorithm C will infer C1:blue immediately from

#5 and #11; but without them, #5 doesn’t immediately makeN1:Norway illegal. They
reduce the search tree size from 112 to 32 nodes. However, the time they save during
the search just barely compensates for the extra time that they consume in step C1.)

The inverses alone are not sufficient; they don’t forbid, say, N−
England = N−

Japan.
[The author of this now-famous puzzle is unknown. Its first known publication, in

Life International 35 (17 December 1962), 95, used cigarettes instead of occupations.]

102. As in answer 7.2.2–68, let’s find all stable extensions of a given partially labeled
digraph. And let’s allow sinks too; we can assume that every vertex with out-degree
d ≤ 1 is labeled d. The following XCC formulation is based on ideas of R. Bittencourt.

438

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 439

Let Δ be the maximum out-degree. Introduce primary items Hv, Iv, Evd, and
secondary items v, hvd, ivd, for 0 ≤ d ≤ Δ and all vertices v. The color of v will be λ(v),
the label of v; the color of hvd will denote the Boolean quantity ‘[v sees d]’, meaning
that λ(w) = d for some w with v−−→w; and the color of ivd will denote ‘[λ(v) = d]’. The
options for Hv are ‘Hv v:d

⋃Δ
k=0{hvk:ek}’ where e0 + · · ·+ eΔ = d. The options for Iv

are ‘Iv v:d
⋃Δ
k=0{ivk:[k= d]} ⋃

u−−→v{hud:1}’. And the options for Evd are ‘Evd hvd:1

iwkd:1
⋃k−1
j=1{iwjd:0}’ for 1 ≤ k ≤ d+(v) and ‘Evd hvd:0

⋃d+(v)
j=1 {iwjd:0}’, when v−−→w1,

. . . , v −−→ wd+(v). For example, if the vertices of the puzzle in exercise 7.2.2–68 are
named 00, . . . , 99, some of the options of its unique solution are ‘H00 00:3 h000:0 h001:0
h002:0 h003:0 h004:1 h005:0 h006:0 h007:1 h008:0 h009:1’; ‘I00 00:3 i000:0 . . . i002:0 i003:1
i004:0 . . . i009:0 h013:1 h033:1 h053:1 h703:1 h803:1’; ‘E004 h004:1 i104:0 . . . i404:0 i504:1’.

Of course many of those options can be greatly simplified, because many of the
quantities are known from the given labels. We know the color of ivd when λ(v) is
given; we know the color of hvd when v sees d in the given puzzle. We don’t need
Iv when v is labeled; we don’t even need Evd, when v is known to see d. If v has
out-degree d and already sees some label twice, we know that ivd is 0. And so on. In
the pi day puzzle such simplifications reduce 60 thousand options on 1200+1831 items
to 11351 options on 880+1216 items. That’s still a lot, and Algorithm C needs 135 Mμ
to input them; but then it finds the solution and proves it unique after 25 more Mμ.
(The highly tuned method of answer 7.2.2–68 needed only 7 Mμ to prove uniqueness.
But that method solves only a small class of problems that happen to reduce nicely.)

Bittencourt notes that further speedup is possible when two arrows point in
the same direction. (This happens 123 times in the pi day puzzle.) In general if
v−−→w implies u−−→w, we must have λ(u) ≥ λ(v); and this condition can be enforced
by introducing a new primary variable whose options allow u and v to have only
appropriate combinations of colors.

103. (a) An all-interval row always has xn−1 = (x0 + 1 + · · · + (n − 1))mod n =
(x0 + n(n−1)/2)mod n = (x0 + [n even]n/2)mod n.

(b) Let j, pj , dk, qk be primary items and let xj be a secondary item, for 0 ≤ j < n
and 1 ≤ k < n. There’s an option ‘j pt xj :t’ for 0 ≤ j, t < n, omitted when (j = 0 and
t �= 0) or (j = n− 1 and t �= n/2). And there’s an option ‘dk qt xt−1:i xt:(i+k) mod n’
for 1 ≤ k, t < n and 0 ≤ i < n. Then the tone row and its intervals are permutations.

There are (1, 2, 4, 24, 288, 3856) solutions for n = (2, 4, 6, 8, 10, 12). [These
values were first computed by D. H. Lehmer, Proc. Canadian Math. Congress 4 (1959),
171–173, for n = 12 and E. N. Gilbert SIAM Review 7 (1965), 189–198, for n < 12.]

For larger n, Algorithm C is not at all competitive with a straightforward back-
track algorithm, which uses Algorithm 7.2.1.2X to find all suitable permutations of the
n−1 intervals: That method needs only 100 Mμ to find all 89328 solutions when n = 14,
compared to 107 Gμ by Algorithm C! With backtracking we can generate all 2755968
solutions for n = 16 in 4.7 Gμ, and all 103653120 solutions for n = 18 in 281 Gμ.

(c) The intervals between adjacent classes in xQ are the same as those of x, except
that xk − xk−1 is replaced by x0 − xn−1. And we know that x0 − xn−1 = ±n/2.

(d) True; both are xk−1 . . . x0xn−1 . . . xk. (Also (cx)R = c(xR); (cx)Q = c(xQ).)

(e) The solution for n = 2 has every possible symmetry; and both solutions x for
n = 4 are equivalent to xR, −xQ, and−xQR. But for n > 4 one can show that x is equiv-
alent to at most one of the 4ϕ(n) rows cx, cxR, cxQ, cxQR besides itself. We obviously
can’t have x ≡ cx when c �= 1. An elementary but nontrivial proof shows also that x ≡
cxR implies cmod n = 1; x ≡ cxQ implies cmod n = n−1; x ≡ cxQR implies cmod n =

439

From the Library of Melissa Nuno

ptg999

440 ANSWERS TO EXERCISES 7.2.2.1

n/2 + 1 and nmod 8 = 4. (See Richard Stong in AMM, to appear.) Gilbert stated
incorrectly [page 196] that no solutions of the latter kind exist; he had overlooked 12-
tone rows such as 0 3 9 1 2 4 11 8 7 5 10 6, 0 1 4 9 3 11 10 8 5 7 2 6, 0 1 8 11 10 3 9 5 7 4 2 6, for
which x ≡ 7xQR. Similarly, the 20-tone row 0 1 3 11 2 19 13 9 12 7 14 18 4 17 16 8 6 15 5 10
satisfies x ≡ 11xQR.)

At any rate, the transformations of (c) partition the solutions into clusters of size
2ϕ(n) when there’s symmetry, 4ϕ(n) when there’s not. Gilbert enumerated the cases of
symmetry when n < 12; R. Morris and D. Starr did it when n = 12 [J. Music Theory 18

(1974), 364–389]. For n = (6, 8, 10, 12, 14, 16, 18) the number of clusters with x ≡ xR

turns out to be respectively (1, 1, 6, 22, 48, 232, 1872); the number of clusters with x ≡
−xQ turns out to be (0, 0, 2, 15, 0, 0, 1346); also n = 12 has 15 cases with x ≡ 7xQR.

104. (a) We may assume that x0 = 0. There’s a constant cr such that ykr ≡ xk−1+ cr
(modulo n) for 1 ≤ k ≤ n. Thus yr = xr−1 ≡ cr; yr2 = x(r2−1) mod p ≡ xr−1+cr ≡ 2cr;
yr3 = x(r3−1) mod p ≡ x(r2−1) mod p+cr ≡ 3cr; etc. Let r be primitive modulo p, so that

{r mod p, . . . , rn mod p} = {1, . . . , p − 1}, and let R = rd where crdmod n = 1. Then
we’ve proved R

x
(rk−1) mod p ≡ (rk mod p) (modulo p) for 1 ≤ k ≤ n; that is, Rxk−1 ≡ k.

Now suppose xk − xk−1 ≡ xl − xl−1 (modulo n). Then RxkRxl−1 ≡ Rxk−1Rxl

(modulo p); consequently (k + 1)l ≡ k(l + 1) (modulo p), hence k = l.

(b) x(n) = xR. [See the papers by Lehmer and Gilbert in answer 103.]

105. There are just five solutions; the latter two are flawed by being disconnected:

N E V E S T

T E N . I W

H R V I X E

G H U E N L

I T W O L V

E E V I F E

N E V E S T

T E N . I W

H R V I X E

G H U E N L

I T W O L V

E V I F F E

N E V E S O

E V E N I N

V L V R X E

E E I G H T

L W F . W T

E T F O U R

N E I G H T

N E V E S W

F I V E . E

S O N E T L

I W U E L V

X T H R E E

N E I G H T

N E V E S W

F I V E . E

X O N E T L

I W U E L V

S T H R E E

Historical notes: The earliest known word search puzzle was “Viajando” by Henrique
Ramos of Brazil, published in Almanaque de Seleções Recreativas (1966), page 43. Such
puzzles were independently invented in America by Norman E. Gibat (1968). Jo Ouellet
of Canada developed “Wonderword,” which puts the unused letters to use, in 1970.

106. When Algorithm C is generalized to allow non-unit item sums as
in Algorithm M, it needs just 24 megamems to prove that there are
exactly eight solutions—which all are rotations of the two shown here.

T H R E E

H W U N V

R U O F I

E N F W F

E V I F T

E V I F T

V N F W H

I F O U R

F W U N E

T H R E E

107. To pack w given words, use primary items {Pij,Ric,Cic,Bic,#k | 1 ≤ i, j ≤ 9,
1 ≤ k ≤ w, c ∈ {A, C, E, M, O, P, R, T, U}} and secondary items {ij | 1 ≤ i, j ≤ 9}. There
are 729 options ‘Pij Ric Cjc Bbc ij:c’, where b = 3�(i−1)/3�+�j/3�, together with an
option ‘#k i1j1:c1 . . . iljl:cl’ for each placement of an l-letter word c1 . . . cl into cells
(i1, j1), . . . , (il, jl). Furthermore, it’s important to use the sharp preference heuristic
(exercise 10) in step C3 of the algorithm.

A brief run then establishes that COMPUTER and CORPORATE cannot
both be packed. But all of the words except CORPORATE do fit together;
the (unique) solution shown is found after only 7.3 megamems, most of
which are needed simply to input the problem. [This exercise was inspired
by a puzzle in Sudoku Masterpieces (2010) by Huang and Snyder.]

P M O T E U R C A

T A U C R P O M E

E C R O A M U T P

U R M A P C E O T

A O E U M T P R C

C P T R O E A U M

O E A M C R T P U

R U C P T A M E O

M T P E U O C A R

108. (a, b) The author’s best solutions, thought to be minimal (but there is no proof),
are below. In both cases, and in Fig. 71, an interactive method was used: After the

440

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 441

longest words were placed strategically by hand, Algorithm C packed the others nicely.

. N Y E L N I K C M . . T N V

. O . C O O L I D G E . A L A

. T . S . R E T R A C R Y O N

. N L . J D N A L E V E L C B

. I A T F A T O . . V W O N U

W L . G R I C A M . . O R I R

A C J G A U L K D . B H O L E

S . E N . E M L S A . N . H N

H . F I H C R A M O M E . O O

I R F D A R . A N O N S X F S

N U E R Y E D H A R R I S O N

G H R A E I Y D E N N E K R H

T T S H S P G A R F I E L D O

O R O O S E V E L T . . O Y J

N A N A H C U B U S H . P . T

P I E R C E I S E N H O W E R U H T R A H A R D I N G A R F I E L D N A L E V E L C T

O B A M A D I S O N O S L I W A S H I N G T O N O S I R R A H O O V E R E A G A N A F

L I N C O L N O S K C A J E F F E R S O N E R U B N A V A D A M S E Y A H S U B F O .

K E N N E D Y E L N I K C M O N R O E J O H N S O N O X I N A N A H C U B R E T R A C

F I L L M O R E L Y T A Y L O R O O S E V E L T R U M A N O T N I L C O O L I D G E .

[Solution (b) applies an idea by which Leonard Gordon was able to pack the names of
presidents 1–42 with one less column. See A. Ross Eckler, Word Ways 27 (1994), 147;
see also page 252, where OBAMA miraculously fits into Gordon’s 15× 15 solution!]

109. To pack w given words, use w +m(n − 1) + (m − 1)n primary items {#k | 1 ≤
k ≤ w} and {Hij,Vij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, but with Hin and Vmj omitted; Hij
represents the edge between cells (i, j) and (i, j+1), and Vij is similar. There also are
2mn secondary items {ij, ij′ | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Each horizontal placement of
the kth word c1 . . . cl into cells (i, j + 1), . . . , (i, j + l) generates the option

‘#k ij:. ij′:0 i(j+1):c1 i(j+1)
′:1 Hi(j+1) i(j+2):c2 i(j+2)

′:1 Hi(j+2) . . .

Hi(j+l−1) i(j+l):cl i(j+l)′:1 i(j+l+1):. i(j+l+1)′:0’
with 3l + 4 items, except that ‘ij:. ij′:0’ is omitted when j = 0 and ‘i(j+l+1):.
i(j+l+1)′:0’ is omitted when j+l = n. Each vertical placement is similar. For example,

‘#1 11:Z 11′:1 V11 21:E 21′:1 V21 31:R 31′:1 V31 41:O 41′:1 51:. 51′:0’ (∗)
is the first vertical placement option for ZERO, if ZERO is word #1. When m = n,
however, we save a factor of 2 by omitting all of the vertical placements of word #1.

To enforce the tricky condition (ii), we also include 3m(n−1)+3(m−1)n options:

‘Hij ij′:0 i(j+1)′:1 ij:.’

‘Hij ij′:1 i(j+1)′:0 i(j+1):.’

‘Hij ij′:0 i(j+1)′:0 ij:. i(j+1):.’

‘Vij ij′:0 (i+1)j′:1 ij:.’

‘Vij ij′:1 (i+1)j′:0 (i+1)j:.’

‘Vij ij′:0 (i+1)j′:0 ij:. (i+1)j:.’

This construction works nicely because each edge must encounter either a word that
crosses it or a space that touches it. (Beware of a slight glitch: A valid solution to the
puzzle might have several compatible choices for Hij and Vij in “blank” regions.)

Important: As in answer 107, the sharp preference heuristic should be used here,
because it gives an enormous speedup.

441

From the Library of Melissa Nuno

ptg999

442 ANSWERS TO EXERCISES 7.2.2.1

The XCC problem for our 11-word example has 1192 options, 123 + 128 items,
and 9127 solutions, found in 29 Gμ. But only 20 of those solutions are connected; and
they yield only the three distinct word placements below. A slightly smaller rectangle,
7 × 9, also has three valid placements. The smallest rectangle that admits a solution
to (i) and (ii) is 5× 11; that placement is unique, but it has two components:

F F
Z E R O S I X
I U V
G R T E N
H H I
T W O R N

N E E
S E V E N

F T W O
O N E S
U N I N E

Z E R O V
I F E
G S I X N
H V
T H R E E

F I V E
T W O I

U G
Z E R O H

N T E N
S E V E N I
I N
X T H R E E

E T
F I V E S I X
G N I N E
H V F
T W O Z E R O

N N U
T H R E E R

F S I X F T
O N E E I G H T
U V T V R T
R E E E E W

N I N E Z E R O

Suppose there are w words of total length s. Aaron Windsor suggests adding
options ‘E ij:. ij′:0’ for 1 ≤ i ≤ m and 1 ≤ j ≤ n, where E is a new primary item
representing an empty cell. All solutions to the MCC problem with the number of E’s
in the interval [mn− s+ w − 1 . .mn] are then either connected or contain a cycle.

Instead of generating all solutions to (i) and (ii) and discarding the disconnected
ones, there’s a much faster way to guarantee connectedness throughout the search; but
it requires major modifications to Algorithm C. Whenever no H or V is forced, we can
list all active options that are connected to word #1 and not smaller than choices that
could have been made earlier. Then we branch on them, instead of branching on an
item. For example, if (∗) above is used to place ZERO, it will force H00 and H20 and
V30. The next decision will be to place either EIGHT or ONE, in the places where they
overlap ZERO. (However, we’ll be better off if we order the words by decreasing length,
so that for instance #1 is EIGHT and #11 is ONE.) Interested readers are encouraged to
work out the instructive details. This method needs only 630 Mμ to solve the example
problem, as it homes right in on the three connected solutions.

110. Gary McDonald found this remarkable 20× 20 solution in 2017:

W I L S O N T A F T P
I A O C J O H N S O N
X Y R L E L

T H C O O L I D G E F A K
R E A G A N O V F R
U R R R O O S E V E L T
M R T B B L R H A Y E S
A I E U A D A M S U I
N S R C M N O R S

O H H A R D I N G E
N A O G R A N T

F M O N R O E J H
I A V W A S H I N G T O N
L M C K I N L E Y C A W
L L R K P I E R C E
M A D I S O N B U S H F R
O N O I
R T Y L E R V A N B U R E N
E O L
L I N C O L N K E N N E D Y

A 19× 19 is surely impossible, although no proof is known. L. Gordon had previously
fit the names of presidents 1–42 into an 18× 22 rectangle [Word Ways 27 (1994), 63].

111. (a) Set up an XCC problem as in answer 109, but with just three words AAA,
AAAA, AAAAA; then adjust the multiplicities and apply Algorithm M. The two essentially
distinct answers are shown below; one of them is disconnected, hence disqualified.

(b) Similarly, we find four essentially different answers, only two of which are OK:

, ; , , , .

442

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 443

Algorithm M handles case (b) with ease (5 Gμ). But it does not explore the space of
possibilities for case (a) intelligently, and costs 591 Gμ.

112. (a) Yes: IMMATURE, MATURING, COMMUTER, GROUPING, TROUPING, AUTHORING, and
THRUMMING. A straightforward backtracking program will quickly determine the pres-
ence or absence of any given string of letters.

(b) Let’s put DANCING and LINKS in there too. Then we obtain an array
with 24 words from WORDS(5757) (like LOVER, ROSIN, SALVO, TOADS, TROVE);
also ASKING, DOSING, LOSING, ORDAIN, SAILOR, SIGNAL, SILVER; also LANCING,
LOANING, SOAKING, and even ORTOLAN. (Notice that TORTO occurs in two ways.)

C G N
N I K
L A S
V O D
E R T
T O W

To find such arrays, as suggested by R. Bittencourt, we can let word k be
c0 . . . ct−1, and introduce primary items Wkl for 1 ≤ l < t to represent the placement
of cl−1cl. Let Xu be a secondary item, for each cell u of the array, to be colored with
some letter. Represent the king path for word k by giving color u to Pkl and color l
to Qku when cl is in cell u, where Pkl and Qku are additional secondary items. There
also are secondary items Dkv, for each internal vertex v. For example, if the cells and
vertices are numbered rowwise, two of the options chosen for DANCING and LINKS in the
example above are ‘W03 X3:N X0:C P02:3 P03:0 Q03:2 Q00:3’ and ‘W12 X4:I X2:N P11:4
P12:2 Q14:1 Q12:2 D11’. The ‘D11’ in the latter will prevent another step of word 1
between cells 2 and 4.

We can save a factor of nearly 4 by restricting the placement of, say, cl−1cl in
word 0 when l = �t0/2�, so that cl−1 lies in the upper left quadrant and cl isn’t in the
rightmost column. Then W0l has only 26 options instead of the usual 94.

It turns out that exactly 10 essentially different Torto arrays contain DANCING,
LINKS, TORTO, WORDS, and SOLVER; exactly 1444 contain THE, ART, OF, COMPUTER, and
PROGRAMMING. They’re found by Algorithm C in 713 Gμ and 126 Gμ, respectively.

(c) Yes, in 140 ways (but we can’t add ELEVEN). Similarly, we can
pack ZERO, ONE, . . . , up to EIGHT, in 553 ways. And FIRST, . . . , SIXTH
can be packed in 72853 ways, sometimes without using more than 16
of the 18 cells. (These computations took (16, 5, 1.5) Tμ. Interesting
words lurk in these arrays—can you spot them? See Appendix E.)

F X N
S I N
G E V
H R E
U T N
F O W

F S X
Z I E
G E V
H R N
T O U
W N F

E T V
F H X
F I T
O R S
U D E
N O C

[The name ‘Torto’ was trademarked by Coquetel/Ediouro of Rio de Janeiro in
1977, and an example appeared in issue #1 of Coquetel Total magazine that year.
Monthly puzzles still appear regularly in Coquetel’s magazine Desafio Cérebro. Bitten-
court posed the problem of constructing Torto arrays from a given list of required words
in 2011; see blog.ricbit.com/2011/05/torto-reverso.html.]

113. First, we can find all sets of six or fewer letters that could be on such a block, by
solving anMCC problem with 25 primary items TREES, . . . , DEQUE of multiplicity [1 . . 26]
and one primary item # of multiplicity [0 . . 6]. There are 22 options, ‘# ABOVE AVAIL

GRAPH STACK TABLE VALUE’ through ‘# EMPTY’, one for each potential letter (listing all
words that include that letter). This covering problem has 3223 solutions, found in
4 Mμ and ranging alphabetically from {A, B, C, D, E, I} to {E, L, R, T} to {L, N, R, T, U, V}.

Then we set up an XCC problem with 25 primary items TREES, . . . , DEQUE and five
primary items 1, . . . , 5, together with 5 · 22 secondary items Aj , . . . , Yj for 1 ≤ j ≤ 5.
Each word has an option for each permutation of its letters (see Algorithm 7.2.1.2L),
showing which letters it needs for that permutation of the blocks. (For example, QUEUE
will have 30 options, beginning with ‘QUEUE E1:1 E2:1 Q3:1 U4:1 U5:1’, which means that
block 1 should have an E, . . . , block 5 should have a U.) Break symmetry by giving
only one of the 120 options for one of the words (FIRST, for example). Each of the 3223

443

From the Library of Melissa Nuno

http://blog.ricbit.com/2011/05/torto-reverso.html

ptg999

444 ANSWERS TO EXERCISES 7.2.2.1

potential sets of letters has five options of size 23, showing exactly which letters are
present if block j uses that set; for example, the five options for {A, B, C, D, E, I} are ‘j
Aj :1 . . . Ej :1 Fj :0 . . . Ij :1 . . . Yj :0’ for 1 ≤ j ≤ 5. There are 18486 options altogether,
of total length 403357; Algorithm C solves them in 225 Gμ.

For these words the five blocks must be {E, F, G, L, O, S}, {C, E, T, R, U, Y}, {A, L, M,
N, Q, R}, {A, B, E, P, S, T}, {D, H, K, T, U, V}. (The XCC problem actually has 8 solutions,
because TIMES, TREES, and VALUE can each be formed in two ways from those blocks.)

[This exercise is based on an idea by E. Riekstiņš, who realized that a classic
puzzle called Castawords could be extended to words of length 5.]

114. Besides the primary items pij , rik, cjk, bxk of (30), introduce Rik, Cjk, and Bxk

for the permuted array, as well as uk and vl to define a permutation. Also introduce
secondary items πk to record the permutation and ij to record the value at cell (i, j).
The permutation is defined by 81 options ‘uk vl πk:l’ for 1 ≤ k, l ≤ 9. And there are
94 = 6561 other options, one for each cell (i, j) of the board and each pair (k, l) of
values before and after α is applied. If (ij)α = i′j′, let x′ = 3�i′/3� + �j′/3�. Then
option (i, j, k, l) is normally ‘pij rik cjk bxk Ri′l Cj′l Bx′l ij:k i

′j′:l πk:l’. However, if
i′ = i and j′ = j, that option is shortened to ‘pij rik cjk bxk Ril Cjl Bxl ij:k πk:l’; and
it is omitted when i = i′, j = j′, k �= l. The options (0, j, k, l) are also omitted when
k �= j + 1, in order to force ‘123456789’ on the top row.

With that top row and with α = transposition, Algorithm C produces 30,258,432
solutions in 2.2 teramems. (These solutions were first enumerated in 2005 by E. Russell;
see www.afjarvis.staff.shef.ac.uk/sudoku/sudgroup.html.)

115. A similar method applies, but with additional items b′yk and B′
y′l as in answer

67(b). The number of solutions is (a) 7784; (b) 16384; (c) 372; (d) 32. Here are
examples of (a) and (d); the latter is shown with labels {0, . . . , 7, *}, to clarify its
structure. [Enumerations (a), (b), (c) were first carried out by Bastian Michel in 2007.]

(a)

1 2 3 4 5 6 7 8 9
9 7 4 3 1 8 5 6 2
8 5 6 9 7 2 1 3 4
5 8 2 1 3 9 4 7 6
4 1 7 8 6 5 2 9 3
6 3 9 2 4 7 8 5 1
7 4 1 5 9 3 6 2 8
3 6 8 7 2 4 9 1 5
2 9 5 6 8 1 3 4 7

; (d)

7 0 2 5 1 3 * 4 6
5 3 6 * 7 4 2 0 1
* 1 4 2 0 6 7 5 3
2 5 7 0 6 1 3 * 4
0 4 3 7 * 5 1 6 2
6 * 1 3 4 2 5 7 0
1 7 5 4 2 0 6 3 *
3 2 0 6 5 * 4 1 7
4 6 * 1 3 7 0 2 5

.

116. (a) Any triangle in μ(G) must be in G, because u′ /−−−v′.
(b) Suppose μ(G) can be c-colored with some coloring function α, where α(w) = c.

If α(v) = c for any v ∈ V, change it to α(v′). This gives a (c − 1)-coloring of G.
[Hence a triangle-free graph on n vertices can have chromatic number Ω(logn). One
can show nonconstructively that the triangle-free chromatic number can actually be
Ω(n/logn)1/2; but currently known methods of explicit construction for large n achieve
only Ω(n1/3). See N. Alon, Electronic J. Combinatorics 1 (1994), #R12, 1–8.]

(c) If G is χ-critical, so is μ(G): Let e ∈ E and suppose α is a (c − 1)-coloring
of G \ e. Then we get c-colorings of all but one edge of μ(G) in several ways: (i) Set
α(v′)← c for all v ∈ V , and α(w)← 1. (ii) Let u ∈ e, and set α(u)← α(w)← c; also
set α(v′) = α(v) for all v ∈ V , either before or after changing α(u). If you want to
remove an edge of μ(G) that’s in G, use (i); otherwise use (ii).

[See J. Mycielski, Colloquium Mathematicum 3 (1955), 161–162; H. Sachs, Ein-
führung in die Theorie der endlichen Graphen (1970), §V.5.]

444

From the Library of Melissa Nuno

http://www.afjarvis.staff.shef.ac.uk/sudoku/sudgroup.html

ptg999

7.2.2.1 ANSWERS TO EXERCISES 445

117. (a) Use the answer to (b), with each clique consisting of a single edge.
(b) Each vertex v has d options ‘v c1j . . . ckj ’ for 1 ≤ j ≤ d, where the cliques

containing v are {c1, . . . , ck}.
(c) We save a factor of 9! = 362880 by fixing the colors of the queens in the top

row. Then there are 262164 solutions, found by Algorithm X in 8.3 Tμ with method (a)
but in only 0.6 Tμ with method (b).

(d) Insert ‘v′:j’ into the jth option for v, where v′ is secondary. (This reduces
the running time for method (a) in part (c) to 5.0 Tμ, without fixing any colors.)

(e) Using (d) to save a factor of c!, we get (2!·1, 3!·5, 4!·520, 5!·23713820) solutions,
in approximately (600, 4000, 130000, 4100000000) mems. [Monte Carlo estimates can
be made for larger cases by combining exercises 86 and 122; the true branching factor
at each level can be determined by rejecting options that involve illegal purification. It
appears that M6 can be 6-colored in approximately 6! · 2.0× 1017 ways.]

(f) Now (d) saves a factor of (c−1)!, despite having no solutions; the running times
are roughly (100, 600, 5000, 300000) mems. (But then for 5-coloring M6 it’s 45 Tμ!)

(g) There are (1! · 1, 2! · 1, 3! · (5 or 7), 4! · (1432, 1544, 1600, 2200, 2492, 2680,
3744, 4602, or 6640)) such colorings, depending on which edge is deleted.

118. In general, colorings of a hypergraph can be found with the
construction of the previous exercise, but using AlgorithmM and giv-
ing multiplicity [0 . . (r−1)] to each hyperedge of size r. In this case,
however, there are 380 independent sets of size 16 (see exercise 7.1.4–
242); we can simply use them as options to an exact cover problem
with 64 items. There are four solutions, having a curious symmetry so
that only two are “essentially different”: One is shown, and the other
is obtained by keeping A and C fixed but transposing the B’s and D’s.

A B C D C D A B
B D B D C A C A
C B A C D B A D
D D A B A B C C
A A D C D C B B
B C D B A C D A
C A C A B D B D
D C B A B A D C

119. Exactly three interior edges are white in every solution. Any other placement of
the all-white piece defines those three edges. That leaves no way to place all three of
the two-white pieces.

120. (a) Call the types 0, 1, . . . , 9, and use Algorithm C to find all ways to place a
given type at the center of a 5×5 array. There are respectively (16, 8, 19, 8, 8, 8, 10, 8,
16, 24) ways to do this; and the intersection of all solutions for a given type shows that

?????
?????
??0??
??2??
?????

,

0490?
2032?
?217?
8568?
490??

,

?????
??0??
??2??
?????
?????

,

68568
0490?
2032?
?217?
8568?

,

21721
?6856
9049?
320??
172??

,

32032
17217
68568
049??
20???

,

2032?
?217?
8568?
490??
032??

,

49049
0320?
21721
?6856
9049?

,

0320?
21721
?6856
9049?
320??

,

17217
68568
049??
20???
?2???

are the respective neighborhoods that are forced near a given type in any infinite tiling.
Consequently every such tiling contains at least one 5; and if we place 5 at the origin
everything in the entire plane is forced. The result is a torus in the sense of exercise
7–137, with a periodic supertile of size 12:

(b) Similarly, there’s again a unique tiling, this time with a 13-cell supertile:

445

From the Library of Melissa Nuno

ptg999

446 ANSWERS TO EXERCISES 7.2.2.1

121. (a) Marek Tyburec noticed in 2017 that there are no 2× 2 solutions with βUS at
lower right; similarly, there are no 3× 4 solutions with βUS at lower left. Hence βUS
can appear only in the top row, or at the left of the next-to-top row.

(b) Let (Ak, Bk, Ck,Dk) be the (2
k−1)×(2k−1) tilings defined by (αa, αb, αc, αd)

when k = 1, otherwise by placing (δNa, δNb, δNc, δNd) in the middle and placing
Ak−1, Bk−1, Ck−1, Dk−1 at the corners as in answer 2.3.4.3–5. The unique tiling
requested here has δRD in the middle and Dk−1, Ck−1, Bk−1, Ak−1 at the corners.

(c) With δRU or δLD in the middle, another solution has Ck−1, Dk−1, Ak−1,
Bk−1 at the corners. With δLU or δSU , there’s a third solution with Bk−1, Ak−1,
Dk−1, Ck−1 at the corners. And δSU also has 54 additional solutions with Ck−2 in the
upper left corner; they use {DL,DP,DS,DT,UL,UP, UR,US,UT} in the upper half
when choices need to be made, and independently {R, YR,L, P, S, T} in the lower half.

(d) Only one of each survives. As in (b), its four quadrants areD∞, C∞, B∞, A∞.

[Each of the other 86 types occurs in A6, hence in every sufficiently large tiling.
Incidentally, the “dragon sequence” (see answer 4.5.3–41) arises in the colors at the
edges of A∞, B∞, C∞, D∞.]

122. A new global variable Θ, initially v, is the current “color threshold.” Every item
has a new field CTH in addition to NAME, LLINK, and RLINK. That field is normally
zero in primary items, although it has a special use in step C3 as described below. In
secondary items, CTH will be used to undo changes to Θ.

Insert ‘CTH(i) ← Θ; if c = Θ, set Θ ← Θ + 1’ just after ‘i ← TOP(p)’ in the
purify routine (55). Insert ‘Θ ← CTH(i)’ just after ‘i ← TOP(p)’ in the unpurify
routine (57). Modify the commit routine (54) so that it jumps to the end of the
uncommit routine (56), if COLOR(p) > Θ, without changing j or p. (The effect is to
avoid committing to any option that would have set a color value greater than Θ, by
jumping from step C5 into the appropriate place within step C6.*)

Finally, change step C3 so that it never chooses an item i for which CTH(i) > Θ.
That step should then go to C8 if no item is choosable. (This mechanism prohibits
branching on primary items for which the assumption of total symmetry between all
colors ≥ Θ isn’t yet valid. Exercise 126 has an example.)

123. When, say, m = 4 and n = 10, Algorithm C takes 49 megamems to produce
1048576 solutions. The modified algorithm (where we set v = 1) takes 2 megamems to
produce 43947 solutions. (Notice that the value vectors q1 . . . qn are equivalent to the
restricted growth strings a1 . . . an of 7.2.1.5–4, with qk = ak + 1.)

124. Let (x, y) denote a Δ triangle, and let (x, y)′ denote the ∇ triangle that lies
immediately to its right. (Think of a square cell (x, y) that has been subdivided into
right triangles by its main diagonal, then slanted and yscaled by

√
3/2.)

For example, an m×n parallelogram has 2mn triangles (x, y) and (x, y)′

for 0 ≤ x < m and 0 ≤ y < n, Cartesianwise; the 3×2 case is illustrated. 00
00'

10
10'

20
20'

01
01'

11
11'

21
21'

The boundary edges of triangle (x, y) are conveniently denoted by /xy, \xy,
and -xy. Then the boundary edges of (x, y)′ are /(x+1)y, \xy, and -x(y+1).

[A “barycentric” alternative with three coordinates is also of interest, because it’s
more symmetrical: Each triangle corresponds to an ordered triple of integers (x, y, z)
such that x + y + z = 1 or 2, under the correspondence (x, y) ↔ (x, y, 2 − x − y) and

* Backtrack programs often run into such cases where it is permissible, even desirable, to
jump into the middle of a loop. See Examples 6c and 7a in the author’s paper “Structured
programming with go to statements,” Computing Surveys 6 (1974), 261–301.

446

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 447

(x, y)′ ↔ (x, y, 1 − x − y). The twelve symmetries are then the six permutations of
{x, y, z} with an optional flip between (x, y, z) and (x̄, ȳ, z̄) = (1− x, 1− y, 1− z).]

[One can also use “barycentric even/odd coordinates,” inspired by exercise 145,
which are ordered triples (x, y, z) with |x+y+ z| ≤ 1. Cases with x, y, z odd represent
triangles, with (x, y)↔ (2x−1, 2y−1, 3−2x−2y), (x, y)′ ↔ (2x−1, 2y−1, 1−2x−2y).
Cases with x, y, z even represent vertices. Cases with just one even coordinate represent
edges (the average of two adjacent triangles). Cases with two even coordinates could
represent directed edges.]

125. Every original triangle (x, y) or (x, y)′ expands to k2 triangles of the forms
(kx+ p, kx+ q) or (kx+ p′, kx+ q′)′ for 0 ≤ p, q, p′, q′ < k. Those obtained from (x, y)
have p+ q < k and p′+ q′ < k−1 (of which there are

(
k+1
2

)
and

(
k
2

)
, respectively). The

others are obtained from (x, y)′.

126. Let there be 24 primary items 01’, 02, 02’, . . . , 32 for the triangles, and 24
primary items aaa, aab, . . . , ddd for the tiles, together with 42 secondary items \01,
-02, /02, . . . , /41 for the edges. There are 24 ·64 options ‘01’ aaa -02:a /11:a \01:a’,
‘01’ aab -02:a /11:a \01:b’, ‘01’ aab -02:a /11:b \01:a’, . . . , ‘32 ddd -32:d /32:d

\32:d’—one for each way to place a tile. Finally, to force the boundary conditions,
add another primary item ‘*’, and another option ‘* -20:a -30:a /40:a . . . \10:a’.

Algorithm C finds 11,853,792 solutions, after 340 Gμ of computation; this total in-
cludes 72 different versions of every distinct solution, hence there really are just 164,636
of them (a number that was unknown until Toby Gottfried computed it in 2001).

Using exercise 119 we can remove all options for aaa except ‘20 aaa -20:a /20:a

\20:a’. Algorithm C then finds 11853792/12 = 987,816 solutions, in 25 Gμ.

Furthermore, using exercise 122 (with v = b), and not allowing step C3 to branch
on a tile name until Θ = e (because there’s total symmetry with respect to triangle
locations but not tile names), finds every distinct solution just once, in 6.9 Gμ.

Finally, we can allow branching on aab whenever Θ ≥ c, and in general on a piece
name whenever Θ exceeds all colors in its name. This reduces the runtime to 4.5 Gμ.

[MacMahon specifically designed pattern (59b) to include all three of the nonwhite
solid-color triangles in the center. If we fix them in those positions, an unmodified
Algorithm C quickly finds 2138 solutions. There also are 2670 solutions with those
three fixed in positions {11’, 21’, 12’} instead of {12, 21, 22}.]

127. Every color appears in (3 · 24)/4 = 18 places among the triangles, hence 18− 2k
times on the border when it occurs k times in the interior of a solution. Consequently no
color occurs an odd number of times on the border. That leaves 2099200 possibilities.

All of those 2099200 are actually completable. (MacMahon would have been very
happy to have known this!) The number of cases can be reduced to only 4054, using the
methods of Section 7.2.3, because there are 576 symmetries: cyclic shifting and/or re-
flection and/or permutation of colors. The Monte Carlo procedure of Algorithm 7.2.2E
not only finds solutions in each of those cases, it finds oodles of them. In fact, we can
be confident that every all-even-but-not-constant border specification has more than

four times as many solutions as the pure-white border does.

(More precisely, the pure-white border 000000000000 has 11853792 solutions,
without reducing by symmetry; the next-smallest border, 000000000011, has 48620416;
the next-smallest, 000000000101, has 49941040; and so on. There are more than 100
million solutions in the vast majority of cases, but probably never more than 500
million. Incidentally, 001022021121 is the only valid color pattern that has exactly
three automorphisms.)

447

From the Library of Melissa Nuno

ptg999

448 ANSWERS TO EXERCISES 7.2.2.1

128. We can pack them into the 11-triangle region obtained by deleting triangle (2, 1)′

from the 2× 3 parallelogram in answer 124, in such a way that the edge colors satisfy
-00 = -20, /01 = /30, -02 = -12. There are 1032 ways to do this, one
of which is shown. This yields a “supertile” that nicely tiles the plane,
in combination with its 180◦ rotation:

129. First consider rotation symmetry. Only 180◦ rotation applies, because of the four
single-color tiles. To generate all of the strong solutions, assume that rotation changes
a↔ d, b↔ c, and combine the options of answer 126 into pairs such as ‘02 abc -02:a

/02:b \02:c 31’ bdc -32:d /41:c \31:b’. The resulting 768 options have 68,024,064
solutions (found in about 0.5 Tμ); but many of those solutions are essentially the same
(that is, obtainable from each other by rotation, reflection and/or color permutation).

It’s somewhat tricky to count the essentially distinct patterns; canonical repre-
sentations can be obtained by distinguishing six types of solutions: (1) 02 aaa (hence
31’ ddd) and 03 bbb (hence 30’ ccc), and /12:a or /12:c. [The cases /12:b or /12:d are
equivalent to these, if we reflect and swap a↔ b, c↔ d.] (2) 02 aaa, 23 bbb [or equiva-
lently 03’ bbb]. (3) 02 aaa, 13’ bbb, and \03:a or \03:c. (4) 02 aaa, and bbb in 12, 12’,
22, 22’, or 13. (5) 13 aaa, 02’ bbb, and \12:a or \12:c. (6) 13 aaa, 12 bbb. Each type
is easy, yielding 80768+164964+77660+819832+88772+185172 = 1417168 solutions.

[Notice that the illustrated example of strong symmetry actually tiles the plane
without rotation; that is, it has -04 = -20, -14 = -30, /03 = /41, . . . , \10 = \32.
Exactly 40208 of the essentially distinct solutions satisfy this additional proviso.]

To generate the weak solutions, introduce new secondary items bxy, b
′
xy for each

triangle (x, y) or (x, y)′ with y > 1, representing color changes within the triangle.
Typical options are now ‘02 aad -02:a /02:a \02:d b02:5’, ‘02 aad -02:a /02:d \02:a

b02:3’, ‘02 aad -02:d /02:a \02:a b02:6’, ‘02 abc -02:a /02:b \02:c b02:7’, ‘31’
bdc -32:c /41:b \31:d b02:7’, ‘31’ ccd -32:c /41:c \31:d b02:5’. We may assume
that ddd is opposite aaa, ccc is opposite bbb. Algorithm C generates each weak-
not-strong solution twice, each strong solution once; the six types yield a total of
24516+45818+22202+341301+44690+130676 = 609203 weak-not-strong solutions.

Turning now to reflections of the hexagon, there are two essentially different
possibilities: Top-bottom reflection preserves the values of four edges, but all triangles
change; left-right reflection preserves the values of four triangles and two edges. There-
fore strong reflection symmetry is impossible. (In the first case, all triangles change,
hence all colors change. In the second case, two colors must be fixed. With colors a and
d fixed but b↔ c, eight triangles aaa, aad, abc, acb, bcd, bdc, dda, ddd must be fixed.)

Weak symmetry under top-bottom reflection can be assumed as before to take
aaa to ddd, bbb to ccc. Again there are six types: [1] 02’ aaa, 22’ bbb, -13:a or
-13:c. [2] 02’ aaa, bbb in 12’, 03’, 13, 13’, or 23. [3] 12’ aaa, bbb in 03 or 03’.
[4] 03 aaa, 23 bbb, -13:a or -13:c. [5] 03 aaa, bbb in 13 or 13’. [6] 03’ aaa,
13’ bbb, -13:a or -13:c. Surprisingly, some placements are “special”: They have
strong rotational symmetry, as well as weak top-down symmetry! Algorithm C, which
generates the special ones once and the others twice, produces respectively (88, 0, 0,
98, 0, 75) + 2(1108, 12827, 8086, 3253, 12145, 4189) solutions. Here are examples of

448

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 449

the 88 + 98 + 75 = 261 special placements, which belong simultaneously to types [1]
and (5), [4] and (3), [6] and (1):

Weak left-right symmetry is similar, but there now are some fixed triangles. If
aaa is fixed, assume that ddd is also fixed; three such types arise, with 46975+35375+
25261 = 107611 solutions. Otherwise assume that ddd is opposite aaa; six types of this
kind yield (75, 0, 98, 0, 0, 88) strong and (3711, 56706, 5889, 60297, 38311, 9093) non-
strong solutions. So there’s a grand total of 281618 essentially distinct weak-not-strong
placements with left-right symmetry—of which 194 are top-down symmetric too.

[Arrangements that have strong and weak symmetry were first discovered by
Kate Jones, who presented them in the 1991 user manual for Multimatch©R III, an
attractively produced set of triangular tiles.]

130. The nicest coordinate system for an octahedron is probably to number the faces
000, 001, . . . , 111 in binary, and to let the vertices be {0**, 1**, *0*, *1*, **0, **1};
the edges are {xy*, x*y, *xy} for x, y ∈ {0, 1}. Construct 512 options ‘000 aaa *00:a

0*0:a 00*:a’, ‘000 aab *00:a 0*0:b 00*:a’, ‘000 aab *00:b 0*0:a 00*:a’, . . . , with
face-name items 000, . . . , 111 primary and tile-name items aaa, . . . , ddd secondary.
Algorithm C quickly finds 2723472 solutions, which include 45356 distinct sets of eight.
Those 45356 sets become, in turn, new options for Algorithm X (or C), with 24 primary
tile-name items; now we get 1615452 solutions, which are the desired partitions.

Many symmetries are present, of course; we’ll study how to distinguish noniso-
morphic representatives in Section 7.2.3. One of the most interesting solutions,

,

has four color-swap symmetries, with all the solid-color triangles on one octahedron.

131. (a) Each triangle edge is either a (straight) or b (a wave) or c (a hump) or
d (a dip). We can set this up with options and items as in answer 126, except that the
edge-match condition is now a !→ a, b !→ b, c !→ d, d !→ c; to get proper matching, the
options of ∇ triangles should state the mate color, as in ‘01’ abc -02:a /11:b \01:d’.

Every solution corresponds to 24 equivalent solutions, because we get a factor
of 6 by rotating the hexagon, a factor of two by interchanging humps with dips, and
another factor of two by reflection. (Reflection is a bit tricky, because a wave becomes
an anti-wave when a piece is flipped over. However, every reflected piece has its own
anti-piece, which yields the desired anti-solution.) Thus we can force aaa to be in
position 02. Treating c and d symmetrically as in answer 126 (with v = c) produces
exactly 2,231,724 canonical solutions and needs only 30 gigamems of running time.

[This puzzle is manufactured by Kadon Enterprises under the name Trifolia©R.]
(b) A similar setup, letting c and d represent 0 spots and 3 spots so that it’s easy

to treat them symmetrically, now has mates a !→ b, b !→ a, c !→ d, d !→ c; hence one
option is ‘01’ abc -02:b /11:a \01:d’. The boundary colors in directions / and \ are a;
in direction - they are b. The solutions to this problem typically form groups of eight
(not 24): We can swap c ↔ d, reflect left-right, reflect top-down, or rotate by 180◦;

449

From the Library of Melissa Nuno

ptg999

450 ANSWERS TO EXERCISES 7.2.2.1

the latter two are combined with swapping a↔ b. Without attempting to remove any
symmetries, we get 3,419,736,176 solutions, after 20.6 teramems of computation.

Left-right reflection always gives a distinct solution, whether we swap c↔ d or not
(because there are at least eight pieces that stay fixed, and only four places to put them).
But the illustrated example shows that some solutions are fixed under 180◦ rotation; we
can find them by adding 15 new primary items, such as #/23, and 15 · 4 new options,
such as ‘#/23 /23:x /20:x’ for x ∈ {a, b, c, d}. Altogether 18656 solutions have that
symmetry; such cases form groups of four, not eight. Similarly, 169368 cases turn out
to have top-down symmetry. It follows from “Burnside’s lemma” that the total number
of essentially different solutions is (3419736176 + 18656 + 169368)/8 = 427490525.

To double the speed of all these computations, take v = c in exercise 122.

132. This challenging problem was first resolved by Peter Esser in April 2002, and pre-
sented online at www.polyforms.eu/coloredpolygons/triindex.html#trios24. [See
JRM 9 (1977), 209. One can show that the only solutions to the Diophantine equation
d+d(d−1)+d(d−1)(d−2)/3 = m2 are d = 1, 2, and 24, using advanced methods found
in N. P. Smart, The Algorithmic Resolution of Diophantine Equations (1998).]

133. This problem is like exercise 126, but considerably simpler because squares are
easier than triangles. There are 24 · 81 options ‘00 aaaa h00:a v10:a h01:a v00:a’,
. . . , ‘53 ccba h53:a v63:c h54:c v53:b’, where hxy and vxy denote the horizontal and
vertical edges between squares. We save a factor of 4 by limiting aaaa to four positions
on the border, and another factor of 2 by making b and c equivalent (exercise 122 with
v = b). The resulting 13328 solutions are found in 15 Gμ.

[Today it’s easy to count them; but this problem has a tortured history! T. H.
O’Beirne missed two of the 20 possible ways to place the internal white edges, when he
analyzed the situation by hand in New Scientist 9 (2 February 1961), 288–289. A few
years later, the problem of solution counts for MacMahon squares was probably the very
first large computation ever undertaken at Stanford Artificial Intelligence Laboratory;
Gary Feldman found 12261 placements, during a 40-hour computer run (see Stanford AI
Project, Memo 12 (16 January 1964), 8 pages). That number was believed to be correct
until May 1977, when the true value was obtained by H. Fernández Long in Argentina.]

Instead of denoting squares by xy and edges by {hxy, vxy}, it’s convenient to
use “even/odd coordinates” instead (see exercise 145). In that system, a pair of odd
numbers (2x+1)(2y+1) denotes a square, and the edge between two adjacent squares
is represented by the midpoint between them. For example, the 24 ·81 options sketched
above would then take the form

‘11 aaaa 01:a 12:a 21:a 10:a’, . . . , ‘b7 ccba a7:a b8:c c7:c b6:b’.

Such coordinates are easier to work with under reflection and rotation.

134. (O, P, Q, . . . , Z) occur respectively (0, 1672, 22, 729, 402, 61, 36, 48, 174, 259, 242,
0) times, sometimes twice in the same solution; one solution features four pentominoes.

[Kate Jones introduced such questions in the Multimatch©R I user manual (1991).]

135. Indeed, the total number of solutions is enormous; Monte Carlo estimates predict
≈ 9 × 108 of them for any fixed placements of aaaa, bbbb, cccc that aren’t obviously
impossible. Therefore it’s natural to impose extra conditions. The elegant wrapping
below permutes colors cyclically and has solid colors on every edge of the cube! Inves-
tigations by H. L. Nelson, F. Fink, and M. Risueño showed that 61 such solutions are
possible; see W. E. Philpott, JRM 7 (1974), 266–275. See answer 145 for an even/odd

450

From the Library of Melissa Nuno

http://www.polyforms.eu/coloredpolygons/triindex.html#trios24

ptg999

7.2.2.1 ANSWERS TO EXERCISES 451

coordinate system that is useful for representing this problem internally.

(Wrapping the surface of a symmetrical polyhedron is a nice way to avoid awk-
ward boundary conditions when arranging MacMahon-like tiles. Dario Uri devised
39 such problems in 1993, together with ingenious mechanical frames for building the
results. Here, for example, are a rhombic triacontahedron (30
rhombuses) and a stellated dodecahedron (60 isosceles triangles),
based on all possible ways to put distinct colors from {red, green,
blue, yellow, black} on the edges. His report “Tessere di Mac
Mahon su superfici tridimensionali” is online at www.uriland.it.)

136. The main challenge is to find a good way to represent the faces and edges of a
dodecahedron. Perhaps the nicest is to represent the faces by vertices of an icosahedron,
with the three-dimensional coordinates (0,(−1)bφ, (−1)c)σa, where (x, y,z)σ = (z, x, y);
let abc stand for this face, for 0 ≤ a < 3 and 0 ≤ b, c < 2. A face is adjacent to its five
nearest neighbors; we can represent the edge between abc and a′b′c′ as the midpoint
(abc + a′b′c′)/2. These 30 midpoints have two forms, either ab = (0, (−1)bφ, 0)σa or
abcd = 1

2
((−1)b, (−1)cφ, (−1)dφ2)σa. The corresponding XCC problem can now be

formulated as usual, with 120 options for each face. For example, a typical option for
face 201 is ‘201 01243 20:3 1100:0 2001:1 2101:2 1110:4’.

We can force the first tile to be in a particular place by default. Algorithm C
needs only 9 megamems to solve the resulting problem, and produces 60 solutions.

Of course many of those solutions are equivalent. There are 120 transformations
that preserve the dodecahedron and icosahedron as represented above, generated by
three reflection matrices and two orthogonal matrices,

D0 =

⎛⎝−1 0 0
0 +1 0
0 0 +1

⎞⎠, D1 =

⎛⎝+1 0 0
0 −1 0
0 0 +1

⎞⎠, D2 =

⎛⎝+1 0 0
0 +1 0
0 0 −1

⎞⎠,
P =

⎛⎝ 0 0 1
1 0 0
0 1 0

⎞⎠, Q =
1

2

⎛⎝ 1 −φ 1/φ
φ 1/φ −1
1/φ 1 φ

⎞⎠.
Applying any combination of these, and remapping the colors to agree with the de-
fault placement, gives an equivalent solution. It turns out, as Conway discovered by
hand(!), that there are just three inequivalent solutions, having respectively 4, 6, and
12 automorphisms (hence occurring 30, 20, and 10 times in the output of Algorithm C):

0

1

23
4

0
4

13

2
0

3
1
4

2

0
2

1 3

4

0

1

3

4

2

0

1

4 2

3 0

1

4

3 2

0

4
1

2

3

0

1

3

24

0

12

4

3

0

2

1

4

3

0
3

1 2

4
0

1

23

4

0
2

14

3

0

1 3

4

2

0
1

32

4
02

1
3
4

0

1

2 4

3 0
4
1

23

03

1

4

2

0
3

1

2 4

0

4

1

32

0
1

4

2 3

0

14

3

2 0

1

23

4

0
3

14

2

0
1
4

23

0

31

2
4

0
1
3

42

0

4

1

3 2

0

1

3 2

4

0
2

1 4

3

0
1

4

3 2

0

2 1

3
4

0
1

2

4 3

0

4

1

23

[See M. R. Boothroyd and J. H. Conway, Eureka: The Archimedeans’ Journal 22 (1959),
15–17, 22–23. Conway has named them the “quintominal dodecahedra.”]

451

From the Library of Melissa Nuno

http://www.uriland.it

ptg999

452 ANSWERS TO EXERCISES 7.2.2.1

137. (a) This is an easy application of Algorithm C, with 14 + 12 items and 7 · (1 +
6× 6) = 259 options. (Clever reasoning also allows it to be established by hand, with
a search tree of size 15.)

(b) No. Again Algorithm C gives the answer quickly.

(c) Thousands of random trials indicate that about 93% of the
(
120
7

)
choices have

no solution; about 5% have just one solution; about 1% have two solutions; and the
remaining 1% have three or more.

(d) About 0.4% of all cases work, as in the example shown.
Historical notes: Milton Bradley Company introduced Drive Ya
Nuts in 1970; the name of its inventor has unfortunately been
forgotten. It was preceded by a much more difficult puzzle with
19 hexagons in three concentric rings, called Super Dom [H. Hydes, British Patent

149473 (19 August 1920)], and by several similar puzzles [H. Hydes and F. R. B.
Whitehouse, British Patent 173588 (29 December 1921); G. H. Haswell, U.S. Patent
1558165 (20 October 1925)], featuring both kinds of edge-matching rules.

4

61

5

3 2

4

12

5

3 6

35

4

1 6

2

1

3

6 5

2

4

5

2 1

3

64

4 1

5

23

6

6

5

31

2

4

2

41

3

6 5

4

52

1

3 6

41

5

2 3

6

2

5

3 6

4

1

4

1 6

2

35

1 2

4

65

3

4

6

15

3

2

138. (a) We can name the tiles ABcd, ABdc, ACbd, . . . , DCba. Assuming that ABcd is
in the top left corner, a straightforward application of Algorithm C (with 2118 options
involving 48+ 48 items) will output 42680 solutions, in 13 gigamems. As in other such
problems, however, these outputs include many that are essentially the same. Up to
96 equivalent solutions are related by the operations of shifting any cell to the top-
left position and/or flipping horizontally and/or flipping vertically, then remapping the
colors. For instance, the given example has six automorphisms: We can shift it two
columns right, then map A !→ C !→ D !→ A, a !→ c !→ d !→ a; we can also shift two rows
down, reflect left-right, then A↔ D and a↔ d. Hence it contributes 96/6 = 16 cases
to the total of 42680. Altogether there are (79, 531, 5, 351, 6, 68, 12, 4) cases with
respectively (1, 2, 3, 4, 6, 8, 12, 24) automorphisms, hence 79+531+5+351+6+68+
12+4 = 1056 essentially different solutions. One with 24 symmetries is shown below (it
leads to itself if we move right 1 and down 2, and/or reflect horizontally or vertically).

(b) Now Algorithm C, given 1089 options involving 49+60 items, quickly finds just
six solutions— three different pairs related by transposition, each of which is symmetric
under 90◦ rotation, all with heads and tails in the same places.

(c) Take any of the three solutions to (b), reflect it top-down, interchange heads
with tails, and swap B ↔ D, b ↔ d. For example, the dual of the given solution
is shown below. Alternating all-heads with all-tails, in checkerboard fashion, yields
uncountably many tilings of the plane.

[These tiles are believed to have originated in 1990 with a puzzle called “Super
Heads & Tails,” designed by Howard Swift and produced in a limited edition.]

452

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 453

139. (a) Say that two sets of nine are essentially the same if one can be obtained
from the other by remapping the colors, and/or reflecting all of the pieces, and/or
interchanging heads with tails. For example, 4! × 2 × 2 = 96 different choices of nine
are equivalent to the set{

, , , , , , , ,

}
. (∗)

By considering canonical forms, as in exercise 138(a), we find 14124 equivalence classes,
of which (13157, 882, 7, 78) have the respective sizes (96/1, 96/2, 96/3, 96/4).

(b) There are exactly (9666, 1883, 1051, 537, 380, 213, 147, 68, 60, 27, 29, 9, 24,
4, 8, 2, 5, 4, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1) classes with (0, 1, 2, . . . , 27) solutions; the
amazing one with 27 is represented by (∗) above. Two of the 1883 puzzles with unique
solutions are particularly interesting because they have four automorphisms:

In each case we can flip the pieces and/or swap heads ↔ tails, then remap the colors
to get the original tiles.

[This problem was first solved by Jacques Haubrich in 1996, who considered color
remapping only (hence he had 54498 equivalence classes). Haubrich has collected 435
inequivalent puzzles, from around the world, that consist of nine tiles with two heads
opposite two tails. But only 17 of them have all tiles different and all four objects
different on each tile; for example, at least one tile such as ABcb is usually present. The
first “pure” HHtt puzzle in his collection was made by the Hoek Loos company in 1974.]

140. (a) We save a factor of 4! by applying exercise 122 with v = a. Then Algorithm C
gives respectively (10, 5, 6) solutions. The true numbers, however, are (5, 3, 3), be-
cause the shapes are symmetrical—and because the middle solution has an additional
symmetry: It goes into itself if we rotate by 180◦ and permute the colors.

(b) The scaled-up versions of , , are impossible. But we have

with respectively (4, 4, 3) solutions; and there are unique solutions to the other five:

453

From the Library of Melissa Nuno

ptg999

454 ANSWERS TO EXERCISES 7.2.2.1

(c) These shapes, with respectively (7, 9, 48, 2, 23, 28, 18) solutions, are a bit eas-
ier to handle. The “wave” has six solutions with central symmetry; the “bar” has four.

[Vertex-colored triangles have been named ‘Trioker’ by Marc Odier; see French
Patent 1582023 (1968), U.S. Patent 3608906 (1971), and the book Surprenant Triangles,
which he published with Yves Roussel in 1976. They also are sold as Multimatch©R IV.]

141. (a) Using exercise 122 with v = a yields respectively (138248, 49336, 147708) solu-
tions in (1390, 330, 720) gigamems. Then we divide by (8, 4, 4) to remove symmetries of
the board, getting (17281, 12334, 36927) solutions that are essentially distinct. [These
numbers were first computed by Toby Gottfried in (1998, 1999, 2002). He had been
interested in the puzzle ever since seeing the 5×5 version that was sold by Skor-Mor in
1970 under the name “Nitty Gritty.” The puzzle is extremely difficult to solve by hand,
in spite of the many solutions; Langford himself was unable to solve the 3× 8 case.]

The 12334 solutions for 4 × 6 include 180 that have matching colors at the left
and right. Each of these patterns therefore tiles a “cylinder”; and the 180 form 30
families of 6 that are equivalent to each other by rotating the cylinder. Similarly, 1536
of the 36927 solutions for 3× 8 are cylindrical, making 192 families of 8. The example
illustrated is one of 42 that have the same solid color at both left and right.

(b) Any solution can be used to tile the plane in combination with its mirror
reflections and its 180◦ rotation (which is a reflection of a reflection).

The 17281 solutions include 209 for which the hole is surrounded by a single color.
Six of these have matching colors at two opposite sides; the one illustrated will tile the
plane in conjunction with its mate, which is obtained by swapping b↔ c.

The 4 × 6 example illustrated is the unique solution for which both pairs of
opposite sides induce exactly the same color partition (the restricted growth strings
0121120 and 01220). Thus it too will tile the plane together with its b↔ c mate.

[Vertex-matched squares, with incomplete sets of tiles, first appeared in puzzles
devised by E. L. Thurston, U.S. Patents 487797 (1892), 490689 (1893).]

142. Each boundary between the square cells containing octagons now has two sec-
ondary items that receive color. For example, a typical option for Algorithm C is now
‘10 aabc a10:a r10:a l11:b a11:b b21:c l21:c r20:a b20:a’, where axy, bxy, lxy, and rxy
denote the half edges above, below, left, and right of (x, y). The number of solutions,
again using exercise 122 with v = a, is 2 · (132046861,1658603, 119599) in cases (i),
(ii), (iii), found in (2607, 10223, 77) gigamems. Case (i) includes 2 · (193920, 10512, 96)
“cylindrical” arrangements in which the colors match at top/bottom, left/right, both;
one of the 96 “toroidal” examples is shown. Case (ii) includes 2 · 5980 cylindrical
arrangements that match at left/right. Case (iii) has no cylindrical examples.

[Many other possibilities arise, because neighboring octagons can match without
lying in a square grid. Kadon Enterprises offers attractive sets called ‘Doris©R ’.]

143. (a) simplex(8, 6, 8, 2, 0, 0, 0); simplex(7, 4, 7, 3, 0, 0, 0); simplex(5, 5, 5, 4, 0, 0, 0).

454

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 455

(b, c) Nonnegative integers x0x1x2x3x4x5 define such a polygon if and only if the
boundary path returns to its starting point, which means that x0 + x1 = x3 + x4 and
x1+x2 = x4+x5. Rotating by 60

◦ replaces x0x1x2x3x4x5 by x5x0x1x2x3x4; reflecting
left ↔ right replaces x0x1x2x3x4x5 by x0x5x4x3x2x1. Hence we get a canonical form
by insisting that x0 ≥ x3 ≥ x5 ≥ x1: Every sequence of nonnegative integers (a, b, c, d)
with a ≥ b ≥ c ≥ d defines the boundary x0x1x2x3x4x5 of a unique convex triangular

polygon, where x0 = a, x1 = d, x2 = a − b + c, x3 = b, x4 = a − b + d, x5 = c.
Furthermore, that polygon contains exactly N = (a+ c+ d)2 − b2 − c2 − d2 triangles.

Given N , the following algorithm visits all relevant (a, b, c, d). For c = 0, 1, . . . ,
while 2c2 ≤ N do the following: For d = 0, 1, . . . , while d ≤ c and 2c(c+ 2d) ≤ N , let
x = N+c2+d2. If xmod 4 �= 2, for every divisor q of x such that q ≡ x (modulo 2) and
q2 ≤ x, set a← (x/q+q)/2−c−d and b← (x/q−q)/2. Visit (a, b, c, d) if a ≥ b and b ≥ c.

When N = 24 this algorithm visits six (a, b, c, d), namely (7, 5, 0, 0), (5, 1, 0, 0),
(12, 12, 1, 0), (6, 6, 2, 0), (2, 2, 2, 2), (4, 4, 3, 0). The fourth, sixth, and second are the
shapes of exercise 140. The other three cannot be tiled properly with Langford’s 24 tiles.

[See OEIS sequence A096004, contributed by P. Boddington in 2004.]

(d) Yes. One way is simplex(a+ c+ d, a+ c, a+ d, a− b+ c+ d, 0, 0, 0).

144. The constraints are severe, because a solid color is needed at transitions between
regimes. Algorithm C (with v = a as in answer 142) quickly finds 2·102 solutions to (ii).
But surprisingly many arrangements arise in case (i); Algorithm C finds 2 · 37586004
of them, not so quickly (643 teramems)!

(These tiles suggest many intriguing questions. For example, suppose we restrict
consideration to making a big hexagon from 24 small ones. There are 224 ways to specify
whether each position should be matched at vertices or edges; but very few of those
specifications are actually realizable. Can the realizable ones be nicely characterized?)

145. Suppose 0 ≤ i ≤ l, 0 ≤ j ≤ m, and 0 ≤ k ≤ n. Let (2i, 2j, 2k) represent vertex
(i, j, k); let (u+v)/2 represent the edge between adjacent vertices u and v; let (a+b)/2
represent the face containing parallel edges a and b; let (e + f)/2 represent the cell
containing parallel faces e and f . Thus, the triple (x, y, z) represents a vertex, edge,
face, or cell when it has respectively 0, 1, 2, or 3 odd coordinates.

For example, (2i, 2j+1, 2k) represents the edge between vertices (i, j, k) and
(i, j+1, k); (2i+1, 2j, 2k+1) represents the face whose vertices are (i, j, k), (i+1, j, k),
(i, j, k+1), (i+1, j, k+1); and (2i+1, 2j+1, 2k+1) represents the cell whose eight vertices
are (i+ (0 or 1), j + (0 or 1), k + (0 or 1)).

Notice that (a + b)/2 represents the vertex between adjacent parallel edges a
and b; (e+ f)/2 represents the edge between adjacent parallel faces e and f ; (p+ q)/2
represents the face between adjacent cells p and q.

(We can use a similar convention in two dimensions, as an alternative to the ‘H’
and ‘V’ items in situations like answer 109.)

146. (a) Each color occurs four times on the “visible” faces and at most twice on the
“hidden” faces. So the five adjacencies account for all six occurrences of five colors.

(b) For every partition of {a, b, c, d, e, f} into three pairs {u, u′}, {v, v′}, {w,w′},
there are two chiral cubes having u opposite u′, v opposite v′, w opposite w′. Order
the colors so that u < u′, u < v, v < v′, v < w, v < w′; there are 30 ways to do this.
The cube named uu′vv′ww′ is the one that can be placed with u on top, u′ on the
bottom, v in front, v′ in the back, w at left, w′ at the right. For example, the cubes
in (∗) are named aebfcd, acbfde, acbdef, afbdec, abcedf, aebcfd.

455

From the Library of Melissa Nuno

ptg999

456 ANSWERS TO EXERCISES 7.2.2.1

(c) We can set this up for Algorithm C by specifying 6 · 30 · 24 options, one for
each cube position, cube name, and cube placement. There are 6 primary items for the
positions; 30 secondary items for the names; 4 · 6 primary items uc, dc, fc, bc for colors
on the top, bottom, front, and back, where c ∈ {a, b, c, d, e, f}; and 6 secondary items
hk for the colors hidden between positions k and k+1. For example, the leftmost cube
in (∗) corresponds to the option ‘1 aebfcd ua de fb bf h0:c h1:d’.

If we eliminate all but one option for position 1 (thus saving a factor of 720),
there are 2176 solutions. Each solution is, however, potentially equivalent to 95 others,
because there are 16 possible rotations/reflections together with 6 cyclic permutations
(followed by remapping the colors of the leftmost cube). For example, the solution
illustrated has 12 such automorphisms. Further study shows that only 33 solutions are
“essentially different”—of which (17, 9, 3, 1, 3) have (1, 2, 4, 6, 12) automorphisms.

(d) Yes, in lots and lots of ways. The 720 · 2176 solutions obtained without fixing
the leftmost cube involve 15500 different 6-tuples of cubes; and the exact cover problem
for which those 6-tuples are the options has 163,088,368 solutions.

[This problem was posed by Martin Gardner in Scientific American 204, 3 (March
1961), 168–174 (long before the “Instant Insanity” craze), and he extended it to
question (c) in Scientific American 235, 3 (September 1978), 26. A solution to (d)
that involves five symmetrical arrangements was found by Zoltan Perjés in 1981; see
Gardner’s book Fractal Music, Hypercards, and More (1992), 97.]

147. (a) The “even/odd coordinates” of exercise 145 are ideal for representing the cube
positions and the faces between them. For example, the colors in the 1 × 2 × 2 brick
that was illustrated with the exercise are nicely represented by the 3× 5× 5 array⎡⎢⎢⎣

.....

.a.a.

.....

.a.a.

.....

⎤⎥⎥⎦
⎡⎢⎢⎣
.d.d.
c.e.c
.f.f.
c.d.c
.e.e.

⎤⎥⎥⎦
⎡⎢⎢⎣
.....
.b.b.
.....
.b.b.
.....

⎤⎥⎥⎦ ,

where entry (0, 1, 1) = a, entry (1, 0, 1) = d, entry (1, 1, 0) = c, . . . , entry (2, 3, 3) = b.
The cubes in positions (1, 1, 1), (1, 1, 3), (1, 3, 1), (1, 3, 3) of this example have the
respective names abcedf, abcefd, abcdfe, abcdef. In a similar way an l×m×n brick
has colors represented by a (2l + 1)× (2m+ 1)× (2n+ 1) tensor; and the tensor⎡⎢⎢⎢⎢⎢⎢⎣

...........

.a.a.a.a.a.

...........

.a.a.a.a.a.

...........

.a.a.a.a.a.

...........

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
.c.c.c.c.c.
b.f.d.f.d.b
.e.e.b.b.f.
b.c.d.f.e.b
.f.f.e.d.d.
b.e.d.b.e.b
.c.c.c.c.c.

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
...........
.d.b.e.e.e.
...........
.d.b.c.c.c.
...........
.d.b.f.f.f.
...........

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
.c.c.c.c.c.
b.f.d.b.f.b
.e.e.f.d.d.
b.c.d.e.f.b
.f.f.b.b.e.
b.e.d.e.d.b
.c.c.c.c.c.

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
...........
.a.a.a.a.a.
...........
.a.a.a.a.a.
...........
.a.a.a.a.a.
...........

⎤⎥⎥⎥⎥⎥⎥⎦
represents a “magnificent brick” whose faces are colored a, b, c (each twice).

(b) Let there be lmn primary items (2i+1)(2j+1)(2k+1) for the cube positions,
30 secondary items for the cube names, and lm(n+1)+ l(m+1)n+(l+1)mn secondary
items xyz for the cube faces, where 0 ≤ x ≤ 2l, 0 ≤ y ≤ 2m, 0 ≤ z ≤ 2n, (xmod 2) +
(y mod 2) + (z mod 2) = 2. For example, the option for position 135 in solution (a) is
‘135 acbefd 035:a 125:b 134:d 136:f 145:e 235:c’. We also introduce six primary items
to enforce the rule about solid colors on the brick’s faces. Each of them has six options,
one for each color c; for example, the options for the top face are ‘top 101:c 103:c 105:c

456

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 457

107:c 109:c 301:c 303:c 305:c 307:c 309:c’. The number of solutions is reduced by a
factor of 720 if we remove all but one of the 720 options for position 111.

It turns out that the brick’s face colors have an interesting property in every
solution: A repeated face color occurs only on opposite, parallel faces. The example
1×2×2 brick has face colors ab×cc×de; the 2×3×5 brick in (a) has colors aa×bb×cc.

A brick is considered to be essentially the same as any other that’s obtained
from it by rotation, reflection, and/or permutation of colors. The example 1 × 2 × 2
brick above has 8 automorphisms; for example, we can reflect top↔ bottom and swap
d ↔ e. The 2 × 3 × 5 brick above has 2 automorphisms: The nontrivial one reflects
front↔ back, top↔ bottom, e↔ f.

There’s another 1×2×2 brick, whose face colors are ab×cd×ef. It has 16 auto-
morphisms. Thus it occurs only once among the three solutions found by Algorithm C
when (l,m, n) = (1, 2, 2); the other two solutions are equivalent to each other.

There’s a unique 1× 2× 3 brick, easily found by hand. It has colors ab× cc× dd,
and 8 automorphisms. (Clearly 1×m× n is possible only if mn ≤ 6.)

The 2×2×2 bricks are especially interesting because MacMahon himself and his
friend J. R. J. Jocelyn considered this case (with six different face colors), when they
introduced the 30 6-color cubes in U.K. Patent 8275 of 1892. They observed that one
can choose any “prototype” cube and replicate it at twice the size, by assembling eight
of the other cubes. This can be done in two ways—using, in fact, the same eight cubes.
But those two solutions are isomorphic, in 24 different ways. [See Proc. London Math.

Soc. 24 (1893), 145–155. Their 8-cube puzzle was sold under the name “Mayblox.”]

Gerhard Kowalewski, in Alte und neue mathematische Spiele (1930), 14–19, found
a 2 × 2 × 2 brick with face colors aa × bb × cd. Ferdinand Winter, in Mac Mahons

Problem: Das Spiel der 30 bunten Würfel (1933), 67–87, found another, with face colors
aa× bc× de. And there’s also a fourth solution, having Winter’s face colors:

MacMahon⎡⎢⎢⎣
.....
.a.a.
.....
.a.a.
.....

⎤⎥⎥⎦
⎡⎢⎢⎣
.c.c.
e.b.f
.f.e.
e.b.f
.d.d.

⎤⎥⎥⎦
⎡⎢⎢⎣
.....
.d.d.
.....
.c.c.
.....

⎤⎥⎥⎦
⎡⎢⎢⎣
.c.c.
e.a.f
.f.e.
e.a.f
.d.d.

⎤⎥⎥⎦
⎡⎢⎢⎣
.....
.b.b.
.....
.b.b.
.....

⎤⎥⎥⎦;
Kowalewski⎡⎢⎢⎣

.....

.a.a.

.....

.a.a.

.....

⎤⎥⎥⎦
⎡⎢⎢⎣
.b.b.
c.e.d
.f.f.
c.e.d
.b.b.

⎤⎥⎥⎦
⎡⎢⎢⎣
.....
.d.c.
.....
.d.c.
.....

⎤⎥⎥⎦
⎡⎢⎢⎣
.b.b.
c.f.d
.e.e.
c.f.d
.b.b.

⎤⎥⎥⎦
⎡⎢⎢⎣
.....
.a.a.
.....
.a.a.
.....

⎤⎥⎥⎦;

Winter⎡⎢⎢⎣
.....
.a.a.
.....
.a.a.
.....

⎤⎥⎥⎦
⎡⎢⎢⎣
.b.b.
d.c.e
.e.d.
d.f.e
.c.c.

⎤⎥⎥⎦
⎡⎢⎢⎣
.....
.f.f.
.....
.b.b.
.....

⎤⎥⎥⎦
⎡⎢⎢⎣
.b.b.
d.c.e
.e.d.
d.f.e
.c.c.

⎤⎥⎥⎦
⎡⎢⎢⎣
.....
.a.a.
.....
.a.a.
.....

⎤⎥⎥⎦;
Fourth⎡⎢⎢⎣

.....

.a.a.

.....

.a.a.

.....

⎤⎥⎥⎦
⎡⎢⎢⎣
.b.b.
d.f.e
.e.d.
d.f.e
.c.c.

⎤⎥⎥⎦
⎡⎢⎢⎣
.....
.c.c.
.....
.b.b.
.....

⎤⎥⎥⎦
⎡⎢⎢⎣
.b.b.
d.f.e
.e.d.
d.f.e
.c.c.

⎤⎥⎥⎦
⎡⎢⎢⎣
.....
.a.a.
.....
.a.a.
.....

⎤⎥⎥⎦.

These solutions have respectively (24, 8, 4, 8) automorphisms; hence Algorithm C finds
48/24 + 48/8 + 48/4 + 48/8 = 26 solutions to the case l = m = n = 2.

Larger cases have solutions that are, perhaps, even more remarkable; but there’s
room here for only a brief summary. For each feasible case of l×m×n bricks with partic-
ular face colors, we list the number of different solutions with (1, 2, 4, 8) automorphisms.
Case 2×2×3: aa×bb×cc, (0, 0, 1, 0); aa×bc×dd, (0, 2, 6, 1); aa×bc×de, (0, 1, 6, 0);
ab×cd×ee, (0, 1, 2, 0); ab×cd×ef, (0, 0, 2, 0). Case 2×2×4: aa×bb×cc, (0, 0, 1, 0);
aa×bb×cd, (0, 0, 1, 0); aa×bc×dd, (0, 3, 4, 2); aa×bc×de, (0, 11, 14, 2); ab×cd×ee,
(0, 2, 2, 3); ab×cd×ef, (0, 1, 1, 1). Case 2×2×5: aa×bc×dd, (0, 5, 4, 0); aa×bc×de,
(0, 18, 9, 0); ab×cd×ee, (0, 0, 1, 0); ab×cd×ef, (0, 2, 5, 1). Case 2×3×3: aa×bb×cc,
(2, 15, 4, 0); aa×bb×cd, (4, 8, 1, 0); aa×bc×de, (1, 4, 1, 2). Case 2×3×4: aa×bb×cd,

457

From the Library of Melissa Nuno

ptg999

458 ANSWERS TO EXERCISES 7.2.2.1

(6, 8, 1, 0); aa × bc × de, (0, 6, 0, 0); ab × cc × dd, (0, 4, 2, 0); ab × cc × de, (0, 2, 0, 0);
ab×cd×ee, (0, 2, 0, 0); ab×cd×ef, (0, 7, 0, 0). Case 2×3×5: aa×bb×cc, (0, 2, 0, 0).

(Conspicuous by its absence is the case l = m = n = 3. There’s no 3 × 3 × 3
brick, although we can come close: A 3× 3× 3 without a corner can be made from 26
of the 30; or without the middle cube and the one above it, from 25.)

148. There are eleven such cubes, and they can be matched in many pleasant ways:

a
b

a

b

a
b a

c

a

b

a
b a

c

a

b

b
b a

c

a

c

a
b a

c

a

c

b
b a

b

a

c

c
b a

c

b

c

b
b a

c

a

c

a
c a

c

a

c

b
c a

c

b

c

b
c b

c

b

c

b
c

⎡⎢⎢⎢⎢⎢⎢⎣
.......
.......
.......
...c...
.......
.......
.......

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
.......
.......
...a...
..a.c..
...c...
.......
.......

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
.......
.a.b.a.
.......
.b.a.b.
.......
.a.b.a.
.......

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
.a.a.a.
a.b.a.c
.c.b.c.
a.b.a.c
.b.a.a.
a.c.b.c
.c.c.c.

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
.......
.b.c.b.
.......
.c.b.c.
.......
.b.c.b.
.......

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
.......
.......
...b...
..b.c..
...c...
.......
.......

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
.......
.......
.......
...c...
.......
.......
.......

⎤⎥⎥⎥⎥⎥⎥⎦
149. Label the vertices with nonnegative barycentric coordinates wxyz, where w +
x + y + z = 3. Also label the ten unit tetrahedra with barycentric coordinates stuv,
where s + t + u + v = 2; the vertices wxyz of tetrahedron stuv are then stuv +
{1000, 0100, 0010, 0001}. Introduce ten primary items stuv for the tetrahedra, and ten
more abcd, abdc, abce, adec, . . . , bcde, bced for the different colorings. And introduce
20 secondary items wxyz for the vertices.

Then the admissible vertex colors are the solutions to the XCC problem with 1200
options ‘stuv α v1:p1 . . . v4:p4’, where α is a coloring, v1v2v3v4 are the vertices of stuv,
and p1p2p3p4 is an even permutation of α’s colors. Curiously, this problem has 2880
solutions (found in 500 Mμ)—and they’re all equivalent to the one below, under the
5! 4! = 2880 automorphisms present.

0030

0021

0012

0003

0120

0111

0102

0210

0201

0300

1020

1011

1002

1110

1101

1200

2010

2001

2100 3000

a

a

a

a

b

b

b

b

c

c

c

c

d

d

d

d

e

e

e

e

(This problem was posed in 2015 by J. McComb, and solved by J. Scherphuis.)

150. Notice that there are fourteen distinct pieces, with four pairs of two. So we use
Algorithm M, with 14 primary items for pieces and 64 for cells. We also introduce
secondary items for edges between cells, with colors to indicate the presence or absence
of links. The final two pieces must obviously be adjacent, hence we can combine them
into a “super-piece” of size 11; then all interfaces between adjacent cells are identical.
We can remove symmetry by forcing the super-piece to be in one of 18 positions.

458

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 459

Then 43 solutions are found, in 7 Gμ. Here are some typical examples:

(i) (ii) (iii) (iv)

Solution (i) appears in Hoffmann’s Puzzles Old and New, puzzle 3–18. Solution (iii)
avoids most of the lower left quadrant, and solution (iv) avoids the entire right column.
If we ignore blank spaces, the links form eight different paths, all of length 34. Paths
(i), (ii), (iii), (iv) occur in respectively 1, 15, 9, 3 of the 43 solutions. [The Endless
Chain Puzzle was distributed circa 1887 by Reason Manufacturing Company.]

151. (a) The key idea is to start by factoring this problem, by considering only the
task of edge-matching between adjacent dominoes, while ignoring the loop details.

Algorithm M applies, with primary items 1–9 and a–i for the distinct on-off pat-
terns of attachment points, as well as primary items ij for each cell to be covered (0 ≤
i < 8, 0 ≤ j < 9), and two special primary items H, V. There are 63+64 secondary items
hij and vij , to indicate path/nopath at internal attachment points. Typical options:

‘a 10 11 v12:1 h21:1 h20:1, h10:0 h11:1 H’,

‘a 11 21 h11:0 v12:0 v22:1, h31:1 v21:1 v11:1 V’;

the goal is to find an exact cover with multiplicities 1 for patterns 1–9, multiplicities
3 for patterns a–i, and multiplicities 18 for H and V. (There are millions of solutions.)

Once that task is solved, we need to assign the actual dominoes whose subpaths
jointly define a single loop. A (nontrivial) program, whose structure has a lot in
common with Algorithm X, will find such assignments in microseconds (although a full
day might be needed to actually write that program).

(b) Now H and V should have multiplicities 32 and 4. (Also, we can save about
half of AlgorithmM’s running time by omitting vertical placements at odd height.) The
algorithm finds 6420 solutions; suitable domino assignments are then found in a flash.

[These 36 path dominoes were first studied by Ed Pegg Jr. in 1999, and first
placed into a single-loop 8× 9 array by Roger Phillips later that year.]

152. This (factored) problem is like the previous one, but with an additional pattern j
of multiplicity 11, and a blank pattern of multiplicity 1, but without H or V. One needs
to be lucky to find a solution; the author struck it rich with Algorithm M after 35.1 Tμ.

[Notice that exactly 32 of the 48 path dominoes have no crossings. Thus it is
irresistible to try to place them on a chessboard, so as to form a single noncrossing

459

From the Library of Melissa Nuno

ptg999

460 ANSWERS TO EXERCISES 7.2.2.1

loop. Unfortunately, Algorithm M tells us that such a mission is impossible, even with
multiple loops, because the corresponding factored problem has no solution. Something

interesting, however, can surely be done with those 32.]

153. (a) Algorithm M quickly verifies the uniqueness of the solution below, if we add
a blank monomino of multiplicity 4. [“Line puzzles” like this were invented by Bill
Darrah; several of his ingenious designs were made by Binary Arts in 1994 and 1999.]

(b) There are 30 patterns, three for each distinct choice of three connection points.
(c) Trials with random choices of respectively (2, 2, 4)

sets of (2, 3, 4) distinct connection points usually give no
solutions at all. But one of the author’s first 1000 trials was
suitable, and it led to a nice puzzle whose solution is shown.

154. The integer solutions to P (n) = n(n+1)2(n+2)/12 = m2 involve perfect squares
u2 and v2 with v2 ≈ 3u2. If |v2 − 3u2| is sufficiently small, v/u must be a convergent
to the continued fraction

√
3 = 1 + //1, 2, 1, 2, 1, 2, 1, 2, . . . // (see exercise 4.5.3–42).

Pursuing this idea, let θ = 2 +
√
3, θ̂ = 2 − √3, 〈an〉 = 〈(θn + θ̂n)/2〉 =

〈1, 2, 7, 26, 97, . . . 〉 and 〈bn〉 = 〈(θn − θ̂n)/(2
√
3)〉 = 〈0, 1, 4, 15, 56, . . . 〉. Notice that

a2n = 3b2n + 1; (an + 3bn)
2 = 3(an + bn)

2 − 2. We find that P (n) is a perfect square if
and only if n = 6b2m for somem (thus n = 0, 6, 96, 1350, 18816, . . .) or n = (am+3bm)

2

for some m (thus n = 1, 25, 361, 5041, 70225, . . .).
[See R. Wainwright, in Puzzlers’ Tribute (A K Peters, 2002), 277–281; also Erich

Friedman’s survey in erich-friedman.github.io/mathmagic/0607.html.]

155. (a) Algorithm M finds 8 · 7571 solutions, in 60 Gμ.
(b) The maximum is 35 (not easy to find!), and the

minimum is 5. [This exercise was suggested by Robert Reid,
who found a minimum solution by hand in 2000.]

1 1 1

1 1 1

2 2 2

2

2

3

3

3

3

4

4 4

5

5

6

1 1 1 1

1

1

2 2

2

2 2

3 3

3

3

4

4

4
5 5

6

156. At level l of backtracking, branch on all ways to fill the leftmost unfilled cell of
the topmost unfilled row. Even though no MRV heuristic is used, this method needs
just 2.0 teramems (and negligible memory) to find 18656 solutions. The search tree
has 61636037366 nodes.

We can save a factor of 8 by removing symmetry: The 1 × 1 square can be
confined to cells (i, j) with i < 18 and j ≥ 35−i. Furthermore, if (i, j) is on the diagonal
(j = 35−i), the context of the 1×1 square must be either or , and we can insist on
the former. Now we find 2332 solutions (and 6975499717 nodes), in just 235 gigamems.

By contrast, the MCC problem (61) for n = 8 has 1304 items and 7367 options
of total length 205753, when we restrict the options of #1 to i < 18 and j ≥ 35 − i.
It needs 490.6 teramems to find 2566 solutions; postprocessing reduces that number to
2332, because 468 of those 2566 have #1 in position (i, j) with j = 35− i.

We conclude that a dancing-links approach is decidedly not the method of choice
for this partridge problem; straightforward backtracking with bitwise operations is more
than 2000 times faster! Indeed, we might consider ourselves fortunate to pay “only” a
2000-fold cost penalty, since each of the 841 options for #8 in (61) contributes 65 nodes
to doubly linked lists. Such updating and downdating keeps the dancers extremely busy.

[Historical notes: The 2332 solutions for n = 8 were first found by Bill Cutler
in 1996, using a refinement of the backtrack approach described above. At that time
no solutions for n < 11 had been known, although Wainwright knew how to solve
12 ≤ n ≤ 15 in 1981, and C. H. Jepsen and S. Ahearn had presented constructions for
11 ≤ n ≤ 33 in Crux Mathematicorum 19 (1993), 189–191. The puzzle can surely be
solved for all n > 7, but no proof is yet known.]

460

From the Library of Melissa Nuno

http://erich-friedman.github.io/mathmagic/0607.html

ptg999

7.2.2.1 ANSWERS TO EXERCISES 461

157. Algorithm M readily shows the nonexistence of perfect packings, but the back-
track method of exercise 156 is much better to show that we can’t pack all but one
2× 2. That method also shows that we can pack all but two of them:

1

3

3

3
4

4

4 4

5 5 5

5

5

6

6 6

6 6 6

1

3

3

3

4

4

4

4
5

5

5

5

5

6 6 6

6

6 6

7 7 7

7

7

7

7

158. The following solutions can be proved optimum with bitwise backtracking as in
exercise 156:

1

2

2

3 3 3

4 4 4 4
5 5

5 5 5

1

2 2
3

3 3
4 4

4 4
5 5

5

5

5

6 6

6

6 6 6

1

2

2

3

3

3

4 4

4 4

5 5 5 5

5
6 6 6

6

6

6

7 7 7 7

7

7

7

159. Replace # by four primary items #0, #1, #2, #3 representing “quadrants,” and
use #2�i/4�+�j/4� in place of # in (64). Then partition into ten separate cases, in which
the multiplicities m0m1m2m3 of #0#1#2#3 are respectively (2012, 2111, 2120, 3002,
3011, 3020, 3110, 4010, 4001, 5000). (Omit options containing #k of multiplicity 0.)
These cases produce (134, 884, 33, 23, 34, 1, 16, 0, 22, 0) solutions, in (95, 348, 60, 23,
75, 8, 19, 2, 10, 0) megamems. (Notice that 4 · 134+ 4 · 884+ 8 · 33+ 4 · 23+ 8 · 34+ 8 ·
1+4 ·16+8 ·0+4 ·22+4 ·0 = 4860.) The running time has decreased by a factor of 20.

[For larger values of n we could divide the cells into nine regions: eight octants,
plus a special region containing the diagonals (and the middle row, column if n is odd).]

160. There are 589 components, among which are 388 isolated vertices and one giant
of size 3804. The other 200 components have sizes ranging from 2 to 12. (For example,
the first three solutions in (65) belong to the giant component; the other belongs to a
component of size 8.)

161. In general, consider the problem of finding all the m-vertex dominating sets of a
graph G; the n× n m-queen problem is the special case where G is the queen graph of
order n. Then the options (64) have the form ‘# v v1 . . . vt’, where {v1, . . . , vt} are
the vertices adjacent to v, and # is a special primary item of multiplicity m.

Variant (i) is equivalent to asking for all kernels of size m (all of the maximal
independent sets). Let there be a secondary item e for every edge in G; the options
are then ‘# v v1 . . . vt e1 . . . et’, where ej is the edge between v and vj . An 8 × 8
chessboard has 8 · 91 = 728 kernels of size 5. (It also has 6912, 2456, and 92 kernels of
sizes 6, 7, and 8; see exercise 7.1.4–241(a).)

For variant (ii) we simply shorten v’s option to ‘# v1 . . . vt’; some other option
must then cover v. Exactly 352 of the 5-queen solutions satisfy (ii).

Variant (iii) seems a bit harder to formulate. Let there be a secondary item v̂ for
each vertex v. The option for choosing v can then be ‘# v v̂:1 v1 . . . vt û1:0 . . . ûs:0’,
where {u1, . . . , us} = V \ {v, v1, . . . , vt} is the set of vertices not adjacent to v. The
8× 8 chessboard has 20 clique-dominators of size 5.

461

From the Library of Melissa Nuno

ptg999

462 ANSWERS TO EXERCISES 7.2.2.1

[Chapter 10 of the classic work Mathematische Unterhaltungen und Spiele by
W. Ahrens (1910) is an excellent survey of early work on queen-domination problems.]

162. Formulate these as MCC problems, by starting with the ordinary options for the
n queens problem (see (23)), then adding additional options such as ‘# rj ck+1 aj+k+1
bj−k−1 rj+1 ck+3 aj+k+3 bj−k−3 rj+2 ck aj+k+2 bj−k+2 rj+3 ck+2 aj+k+5 bj−k+1’ to
represent a contained Q4, for 1 ≤ j, k ≤ n − 3. Here # is a new primary item, which
is given the desired multiplicity.

(a) 15; one can, in fact, get disjoint Q4 and Q5 in a Q15.

(b, c) 17. Put a queen in the center, make a pinwheel! [See Ahrens (1910), 258.]

(d) 22; see below. Algorithm M proves n = 21 impossible after 1.2 teramems.

(e) 16; there are four essentially different solutions.

(f) 19; see below. Only 35 Gμ to show that n = 18 is too small.

(g) 20(!). Once you know this, Algorithm X will find all 18 solutions in 2 Mμ.

(h) 22; there are 28 essentially different solutions.

(i) 25; see below. (After 6 teramems, we learn that n = 24 doesn’t work.)

�
�

�
�

�
�

�
�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

163. Sometimes Algorithm M is called on to choose zero or more items from an empty
list. Then it sets FT[l] ← i and xl ← i, where i is the item whose list is empty; but
step M5 doesn’t actually tweak anything. The peculiar rule in (71) ensures that step M8
doesn’t actually untweak anything as we backtrack.

164. If xj ≤ N , node xj is the header for item xj ; there’s no further option for such j.

[A good implementation will also extend answer 12, so that the relative positions
of each xj in the search tree are identified. For this purpose one can add a new array
SCORE, setting SCORE[l]← θi and FT[l]← 0 at the end of step M3. When printing the
jth step xj of a solution, the old answer 12 is used if FT[j] = 0; otherwise that answer is
modified as follows: If x≤N and (x = FT[j] or x = TOP(FT[j])), print ‘null NAME(x)’;
otherwise print option x as before. Conclude by looping with i← 0, q ← FT[j] rather
than i← TOP(x), q ← DLINK(i); report ‘k of SCORE[j]’ rather than ‘k of LEN(i)’.]

165. (a) To cover 2 of 4, we have 3 choices at the root, then 3 or 2 or 1 at the next
level, hence (1, 3, 6) cases at levels (0, 1, 2). To cover 5 of 7, there are (1, 3, 6, 10,
15, 21) cases at levels (0, 1, . . . , 5). Thus the search profile with item 1 first is (1, 3, 6,
6 · 3, 6 · 6, 6 · 10, 6 · 15, 6 · 21). The other way is better: (1, 3, 6, 10, 15, 21, 21 · 3, 21 · 6).

(b) With item 1 first the profile is (a0, a1, . . . , ap, apa1, . . . , apaq), where aj =(
j+d
d

)
. We should branch on item 2 first because ap+1 < apa1, ap+2 < apa2, . . . , aq <

apaq−p, aqa1 < apaq−p+1, . . . , aqap−1 < apaq−1. (These inequalities follow because
the sequence 〈aj〉 is strongly log-concave: It satisfies the condition a2j > aj−1aj+1 for
all j ≥ 1. See exercise MPR–125.)

462

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 463

166. (a) The “monus” operation x
.− y = max(x− y, 0) is good for situations like this:

θp = (LEN(p) + 1) .− (BOUND(p) .− SLACK(p)).

(b) It’s better to branch on p′ (although this may be counterintuitive).

[The author’s implementation of step M3 breaks ties by first preferring an item
with smaller SLACK, then preferring longer LEN when the SLACKs are equal. Thus, his
MRV replaces answer 9 by this: Set θ ← ∞, p ← RLINK(0). While p �= 0, do the
following: Set λ ← θp; if λ < θ or (λ = θ and SLACK(p) < SLACK(i)) or (λ = θ and
SLACK(p) = SLACK(i) and LEN(p) > LEN(i)) set θ ← λ, i← p; then set p← RLINK(p).

167. Step M3 isn’t precisely defined; therefore any change to vp could possibly affect
the behavior. But let’s assume that step M3 is implemented as in exercise 166.

Even so, there can be differences. A minor difference arises, for instance, if there
are no options: A primary item with multiplicity [0 . . 1] will be inactivated by covering
in step M4; with multiplicity [0 . . 2], it will become inactive at the end of step M5.

There can also be more significant differences. Suppose there’s just one option,
‘a’, and one primary item. If a has multiplicity 1, we simply cover a as in Algorithm X.
But if a has multiplicity [1 . . 2], we’ll do some tweaking and untweaking—even entering
a new level, and taking a null branch there.

On the other hand, the differences can’t get much worse. Let BOUND0(p) and
BOUND1(p) denote the values of BOUND(p) when the upper bound vp has respectively
been specified asMp andMp+δ. If the same options are chosen, we’ll have BOUND1(p) =
BOUND0(p) + δ throughout the algorithm, because BOUND(p) is adjusted appropriately
whenever the algorithm recursively reduces the problem by removing an option. Also
SLACK1(p) = SLACK0(p) + δ. One can then prove, by induction on the computation,
that the same options are indeed chosen (possibly with different amounts of tweaking).

Any two values of vp that are Mp + 2 or more will be totally equivalent.

168. Introduce a new primary item ‘!’ and a new secondary item ‘+’. Replace the two
copies of α by ‘! +:0’, ‘! α’, ‘α +:1’. [Similarly, three copies of α can be replaced by
‘! +:0’, ‘! α’, ‘!! ++:0’, ‘!! α +:1’, ‘α ++:1’, after introducing ‘!!’ and ‘++’.]

169. Let there be one primary item, #, together with one secondary item for each
vertex. And let there be one option, ‘# v v1:0 . . . vd:0’ for each vertex v, where v1
through vd are the neighbors of v. Finally, let # have multiplicity t. [Notice that the
secondary items in this construction are colored either with 0 or not at all!]

170. Introduce the primary item !v for each vertex, and give it d + 1 options: ‘# !v
v:1 v1:0 . . . vd:0’, ‘!v v:0 v1:1’, ‘!v v:0 v1:0 v2:1’, . . . , ‘!v v:0 v1:0 . . . vd−1:0 vd:1’.

171. Let there be ten primary items v, for 0 ≤ v < 10; also fifteen primary items #uv,
with multiplicity [1 . . 5], for each edge u−−−v, where the edges are 0−−−1−−−2−−−3−−−
4−−−0, 0−−−5, 1−−−6, 2−−−7, 3−−−8, 4−−−9, and 5−−−7−−−9−−−6−−−8−−−5. Let there
be 26 · 10 secondary items av through zv, for 0 ≤ v < 10; also 26 · 30 secondary items
auv through zuv , for u /−−−v; also a secondary item w for each word in, say, WORDS(1000).
There are 26 options, ‘#uv au av’ through ‘#uv zu zv ’, for each edge. And there are
10 options for each word; for example, the options for added are ‘v av :1 bv:0 cv:0 dv:1
ev:1 fv:0 . . . zv:0 a02 a03 a06 a07 a08 a09 d02 . . . e09 added’, where 0 ≤ v < 10.

Every solution to this MCC problem will be obtained 120 times, because the
Petersen graph has 120 automorphisms. But symmetry can be broken by choosing the
labels of 0, 1, and 3 at levels 0, 1, and 2, and by ordering the label ranks so that r0 > r1,
r0 > r2, r0 > r3, r0 > r6, r1 > r4, r1 > r5, r3 > r7, r3 > r8, r3 > r9.

463

From the Library of Melissa Nuno

ptg999

464 ANSWERS TO EXERCISES 7.2.2.1

There are two solutions in WORDS(834), namely muddy, thumb, books, knock, ended,
apply, fifth, grass, civil, (refer or fewer), found in 3.5 Tμ.

172. A construction analogous to answer 170 generates all solutions to the weaker

problem where connectivity isn’t tested; it’s easy to remove the unconnected solutions
from Algorithm M’s output. Consider cycles first: There are 1 +

(
d
2

)
options for each

primary item !v, namely ‘!v v:0’ and ‘# !v v:1 v1:a1 . . . vd:ad ’, where a1 . . . ad is a
binary vector with a1+ · · ·+ad = 2. For the path problem, the options for the starting
vertex should have a1 + · · · + ad = 1, not 2. The options for all other vertices that
aren’t adjacent to the starting vertex should have d additional options ‘# E !v v:1 v1:a1
. . . vd:ad ’, with a1+· · ·+ad = 1, where E is a new primary item signifying the end vertex.

(a) Paths of length l are obtained when the multiplicity of # is set to l + 1.
First let’s restrict consideration to paths that start in the corner cell (0, 0). Then

every essentially distinct path occurs twice—reflected about the diagonal. (i) There
are 16 distinct snake-in-the-box king paths of length 31 from a given corner, found
in 6 Tμ. One of them, illustrated below, also ends at a corner; hence it occurs four
times, not two—twice in each direction. These paths are optimum, because we can
divide the board into sixteen 2× 2 subsquares, each of which can contain at most two
kings. (ii) A single run, with the multiplicity of # set to [32 . . 33], suffices to find the
13 distinct knight solutions of length 31 in 58 Gμ, simultaneously showing that length
32 is impossible. One of the most remarkable solutions is shown below. (iii) With
bishops we should first eliminate all squares of the wrong parity, because they cannot
be connected to the start. Then the 32 solutions of length 12 are found in just 13 Mμ.
(It’s not difficult to prove by hand that an n×n board has exactly 2n−3 bishop solutions
of length 2n − 4, when n is even.) (iv) Rook solutions are even easier to enumerate
by hand: There are (n − 1)!2 of them, because we always have n − k choices at steps
2k − 1 and 2k. (Algorithm M finds the 7!2 = 25401600 solutions in 625 Gμ, while
generating also 21488110 disconnected impostors.) However, (n − 2)!2 − (n − 2)! of
those solutions are counted twice, because they go from corner to corner and have no
symmetry. Hence there are 25401600− 517680/2 = 25142760 distinct rook solutions of
length 14. (v) Finally, there are 134 distinct queen solutions of length 11— found and
proved optimum in 17 Gμ, despite having 16788 options of total length 454380(!). The
unique solution that occupies opposite corners is shown here. (You may enjoy finding
another unique 11-step path, which begins slowly by moving just one diagonal step.)

�
�
�
�
�
����

�
�

�
�

�
�
����

�
�
�
�
�
�

�������

�

�

�

�

�
�

�

�

�
�

�

�
�

�

�
�

�

�

�
�

�
�

�

�
�

�

�

�
�

�

�

� �

�
�

�

�

�

�

�

�

�

�
�

�

� �
��

��
��

��
��

� �
�

�

��

��

��

� �
�

�
�

Now let’s consider paths that start in cell (0, 1) and do not end in a corner.
(i) Five solutions with 32 kings are found (in 3.7 Tμ); but they all have 3-cycles and
are disconnected. (ii) Knights, however, yield a big surprise: There’s a unique path of
length 33, doubly counted! (Found in 43 Gμ.) (iii) Bishop paths can’t have length 12
unless they start or end in a corner. (iv) There are N = (n − 1)!2 − 2(n − 2)!2

solutions where the rook first moves down, and N where it first moves sideways. Of
these, 2Nc end at (n − 1, n − 2) and are double-counted by central symmetry, where
Nc = (2�n/2�−1(�n/2�−1)!)2; Nt = 2(n−2)! end at (1, 0) and are not double-counted by
transposition; Nt end at (n−2, n−1) and aren’t double-counted by dual transposition.

464

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 465

So there are 2N −Nc − (2(n− 2)!2 −Nt) = 47691936 equivalence classes when n = 8.
(v) Another nice surprise greets us, namely a unique queen path of length 12!

The next step is to consider paths that start in (0, 2) and don’t end in the 12 types
of cells already considered. And so on, for seven more cases. Of course rook counting
gets hairier and hairier; we shall omit it. Unexpectedly, there’s also another maximum
queen path(!). All of these computations are fast, except that the kings need 6.3 Tμ.

�

�

�

�
�

�

�

�
�

�
�

�

�
�

�

�

�

�
�

�
�

�

�

�
�

�
�

�

�

�
�

�

�

�

�

��
� �

��
��
��
� �

��

�

� �
��

��
��

��
��

��
� �

��
� �

��

�
�

��

�

� �
��

�
�
�

��
� �

��

(b) Cycles are similar, but symmetry now becomes even trickier. (i) The six
distinct 31-cycles of a king are asymmetric, so they each appear eight times when
reflected and/or rotated. (ii) But the four distinct 32-cycles of a knight include two
that are equivalent to their transpose, and one (shown below) with central symmetry.
(iii,v) A bishop has 36 distinct 12-cycles, and a queen has five 13-cycles, all asymmetric.

(iv) A rook, on the other hand, has oodles of 16-cycles, some of which (like the one
illustrated) even have 4-fold symmetry under both horizontal and vertical reflection.
Every rook snake-in-the-box 16-cycle can be represented uniquely as (p0q0 p0q1 p1q1
p1q2 . . . p7q7 p7q0), where p0p1 . . . p7 and q0q1 . . . q7 are permutations of {0, 1, . . . , 7}
with p0 = 0 and q0 < q1. Consequently there are 8!2/16 = 101606400 of them, if
symmetry isn’t taken into account. That cycle is equivalent to its transpose if and
only if pj = q(k−j) mod 8 for some k and all j; there are 8!/2 = 20160 such cases. It is
equivalent to its 180◦ rotation if and only if pj + p4+j = qj + q4+j = 7 for 0 ≤ j < 4;
there are 6 · 4 · 2 · 8 · 6 · 4 · 2/2 = 9216 such cases. And it is equivalent to both, in
6 · 4 · 2 · 8/2 = 192 cases. Hence by “Burnside’s lemma” there are (101606400 + 0 +
9216 + 0 + 20160 + 0 + 20160 + 0)/8 = 12706992 equivalence classes of rook cycles.

������
�
�
�
�
�
�

������
�
��

�
�
�
�

���
�

�
�

�

�
�

�

�

�
�

�

�
�

�

�

�

�
�

�

�

�
�

�

�

�
�

�

�
�

�

�

�

�
�

�

�
�

�
�

�
�

�

�
�
�

�
�

� �
� �

��

��

��
��

��

� �

�

��

�

��

��

��

�

��

[T. R. Dawson introduced this problem for knights, and presented an example
path of length 31 and an example cycle of length 32, in L’Echiquier (2) 2 (1930), 1085;
3 (1931), 1150. C. C. Verbeek posed the problem of maximizing the number of queens
such that each is “attacked by exactly two others” in Elsevier’s Weekly (June 1971);
if we allow several queens in the same row, arguing that the first doesn’t attack the
third, 14 queens are actually possible (see P. Torbijn, Cubism For Fun 17 (1991), 19).
The name ‘snake-in-the-box’ was coined by W. H. Kautz, IRE Trans. EC-7 (1958),
177–180, for the case where G is an n-cube. The term ‘coil-in-the-box’ is often used
nowadays for a snake-in-the-box cycle.]

Nikolai Beluhov proved in 2018 that, if n ≥ 6 is even, all snake-in-the-box king
paths of the maximal length n2/2 − 1 on n × n boards have an interesting structure,
which can be characterized completely. In fact, he showed that exactly 2n+(nmod 4)/2

465

From the Library of Melissa Nuno

ptg999

466 ANSWERS TO EXERCISES 7.2.2.1

such paths are distinct under symmetry. Furthermore, there are exactly six distinct
snake-in-the-box king cycles of length n2/2− 1, when n ≥ 8 is a multiple of 4.

With arguments of a different kind, Beluhov has also proved that the longest
snake-in-the-box paths and cycles of a knight, on an m×n board, have length mn/2−
O(m+ n). [To appear.]

173. (a) Write ‘k −−− ij’ if clue k is a (knight or bishop) move away from cell (i, j).
For each row, column, and box, compute “quotas” ri, cj , and bx, equal to 3 minus the
number of pieces already present among the given clues. Also compute the quota pk for
each clue k, equal to the label minus the number of neighboring cells already occupied.
There is no solution if any quota is negative.

Say that cell (i, j) of box x is known if it is occupied, or if ri = 0 or cj = 0 or
bx = 0, or if pk = 0 for some k−−− ij. Introduce primary items Ri, Cj , Bx, Pk for each
row, column, box, or clue with a positive quota, having multiplicities ri, cj , bx, pk.
There is one option for each unknown cell, namely ‘Ri Cj Bx

⋃{Pk | k−−− ij}’.
(b, c, d) See Fig. A–3. The knight puzzles with labels ≥ 6, and the bishop puzzles

with labels 0, 10, and 12, are due to N. Beluhov; the others represent the author’s best
early attempts, not necessarily minimum. Solutions can be found in Appendix E.

�1
�1 �1 �1

�1
�1 �1

�2
�2

�2
�2

�2 �2
�2 �2

�3
�3

�3
�3

�3
�3 �3

�3

�4
�4

�4 �4
�4
�4

�4 �4

�5
�5 �5
�5

�5
�5

�6
�8
�6

�1 �1 �1
�1 �1 �1

�1

�2
�2 �2 �2

�2 �2 �2
�2

�2

�3 �3 �3
�3 �3 �3

�3 �3

�3 �3

�4 �4 �4

�4

�4

�5 �5 �5
�5

�5

�5

�6
�6
�6

�6
�6

�6
�6

�7 �7

�7
�7

�8
�8

�8 �8
�8

�8
�8

�8

�9 �9
�9

�9
�9

�9

�10

�10

Fig. A–3. A gallery of knight and bishop sudoku puzzles.

[These variants of sudoku were devised by David Nacin and first published in
MAA Focus 38, 6 (Dec. 2018/Jan. 2019), 36; see also quadratablog.blogspot.com.]

174. Beluhov’s remarkable solution, which he obtained with the help of a SAT solver,
is also a pair of “rainbow puzzles”—every possible knight label occurs exactly once(!):

�1 �2
�6 �5

�4
�3

�8
�7

�0

�1 �2
�6 �5

�4
�3

�8
�7

�0

�4
�4

�4
�4

�4
�4 �4

�4 �4
�4

�4
�4

�4
�4

�4
�4 �4

�4 �4
�4

466

From the Library of Melissa Nuno

http://quadratablog.blogspot.com

ptg999

7.2.2.1 ANSWERS TO EXERCISES 467

[Also shown are his 10-clue puzzles in which all the labels are equal.]

175. We can allow an option α to be repeated twice by simply replacing it by three
options ‘α x’, ‘# x’, ‘# α’, where # is a new primary item and x is a new secondary
item. (If α contains uncolored secondary items y1, . . . , ys, we should first replace them
by y1:c, . . . , ys:c, where c is a new color.)

In general if α is the ith option and if ai = a + 1 > 1, replace α by the 2a + 1
options ‘α x1i’, ‘#1i x1i’, ‘#1i α x2i’, ‘#2i x2i’, ‘#2i α x3i’, . . . , ‘#ai xai’, ‘#ai α’,
where #ti and xti are new primary and secondary items.

176. (a) Introduce 3N items {Aj , Bj ,#j | 1 ≤ j ≤ N}, to be used in M options
{Aj | aij ≥ 1} ∪ {Bj | aij = 2} for 1 ≤ i ≤ M . (For example, the option for row (2,
1, 0, 2, 0, . . .) would be ‘A1 B1 A2 A4 B4’.) Add 2N further options ‘#j Aj ’, ‘#j Bj ’
for 1 ≤ j ≤ N . Use Algorithm M with multiplicities (2, 1, 1) for (Aj , Bj ,#j).

(b) The same construction works, but with multiplicities (3, 1, 1).

(c) Now use 4N primary items {Aj , Bj ,#j ,#
′
j} and N secondary items xj .

Change the 2N special options to ‘#j Aj ’, ‘#j Bj xj ’, ‘#
′
j Aj xj ’, ‘#

′
j Bj ’, for

1 ≤ j ≤ N . Use multiplicities (4, 2, 1, 1).

(d) With 7N primary items {Aj , Bj ,#1j , . . . ,#5j} and 4N secondary items
{x1j , x2j , x3j , x4j}, the special options are ‘#1j Aj ’, ‘#1j Bj x1j ’, ‘#2j Aj x1j ’, ‘#2j

Bj x2j ’, . . . , ‘#5j Aj x4j ’, ‘#5j Bj ’, and the multiplicities are (11, 5, 1, 1, 1, 1, 1).

177. (a) The 2s3t − 1 nonzero vectors a1 . . . asb1 . . . bt with 0 ≤ ai ≤ 1 and 0 ≤ bi ≤ 2
form the rows of a matrix A. Allow the 2t − 1 rows with ai = 0 and bi �= 2 to be
repeated, via answer 175; also encode the 2’s via answer 176. That leads to s+3t+2t−1
primary items, 2t − 1 secondary items, and a total of 2s3t − 1+ 2t+ 2(2t − 1) options.
(There are 91914202 multipartitions when s = t = 5. Algorithm M generates them at
a rate of about 1300 mems per solution; that’s only about seven times slower than the
special-purpose Algorithm 7.2.1.5M.)

(b) This problem is easier, because we simply disallow using an option twice.
That leaves us with s+ 3t primary items and 2s3t − 1 + 2t options.

(Exercise 7.2.1.5–73 enumerates the number of solutions P (s, t) for part (a). The
same argument gives a similar recurrence for the number Q(s, t) of solutions to part (b):

Q(s, 0) = �s; 2Q(s, t+ 1) = Q(s+ 2, t) +Q(s+ 1, t)−
∑
k

(
n

k

)
Q(s, k).

With this formula one finds quickly, for example, that Q(5, 5) = 75114998.)

178. (a) Since 360 = 23 · 32 · 5, we need first to extend exercise 176 to matrices of
0s, 1s, 2s, and 3s. Encoding aij = 3 in option i can be done by using items Aj , Bj ,
Cj . To ensure a total of 3 in that column, let #j and #′

j be new primary items, and
give multiplicity (3, 1, 1, 1, 1) to (Aj , Bj , Cj ,#j ,#

′
j); also let xj be secondary. Then

the special options ‘#j Aj ’, ‘#j Bj xj ’, ‘#
′
j Aj xj ’, ‘#

′
j Cj ’ will fix everything up.

This makes an MCC problem with 29 options, 9 + 1 items, and 34 solutions.

(b) Now use exercise 175 to allow the options for factors 3 and 2×3 to be repeated
at most twice, and to allow the option for factor 2 to be repeated at most thrice. The
MCC problem now has 37 options, 13+5 items, and 52 solutions. [These solutions were
first studied by John Wallis; see exercise 7.2.1.7–28.]

179. From 1000 + 0110 + 0001 we get four solutions 100000 + {011100, 011100} +
{000011, 000011}; from 1110 + 0001 we get two solutions 111100 + {000011,000011};
and from 1010 + 0101 we get 101000 + 010111.

467

From the Library of Melissa Nuno

ptg999

468 ANSWERS TO EXERCISES 7.2.2.1

180. The text showed that o1 = ‘i1’ and that i2 and o5 exist, when t = 4 and t′ ≥ 1.
Continuing that example, if s2 = 5 so that t′ ≥ 2, then option o2 intersects only
{o1, . . . , o5}; hence o2 = ‘i1 i2’, and i2 cannot occur in more than 4 options. Its
appearances must therefore be in {o2, o3, o4, o5}.

Furthermore, o3 must be ‘i1 i2 i3 . . . ’ for some third item, i3, since we can’t have
o3 = o2. Consequently there’s an option o6 = ‘i2 i3 . . . ’. And so on.

181. (c0, c1, c2, c3, c4) = (188, 248, 320, 425, 566)/96, by the initial values in the text.

182. (To establish the lower bound in Theorem E,
make n copies of this problem, on disjoint
four-tuples of items. This yields 7n solutions,
in a search tree with (5 ·7n−3)/2 nodes. No-
tice that the branching factor never exceeds 3
in this construction.)

183. (Can one, for example, often make the branching factor t = 4?)

184. Yes. If we can write t = an−1�n−1+an−2�n−2+ · · ·+a0�0, with 0 ≤ aj ≤
(
n−1
j

)
for 0 ≤ j < n, we get such a problem by letting the options consist of (i) all 2n−1 − 1
subsets of {1, . . . , n−1}; (ii) exactly aj subsets of {1, . . . , n} of size n−j that contain n.

To write t in that form, suppose t =
(
n−1
n−1

)
�n−1 + · · · + (

n−1
n−k+1

)
�n−k+1 +

an−k�n−k + t′, where 0 ≤ an−k <
(
n−1
n−k

)
and 0 ≤ t′ < �n−k. Then, by induction, we

can write t′ = an−k−1�n−1−k + · · ·+ a0�0, with 0 ≤ aj ≤
(
n−k−1

j

) ≤ (
n−1
j

)
.

For example, 10000 = 1·4140+6·877+(1·203+7·52+2·15+(0·5+(0·2+(1·1)))).
185. We get the most solutions when we have the most options, namely the 2N1+N2 −
2N2 subsets that aren’t entirely secondary. Then the solutions are the set partitions
that include at most one entirely secondary block; and the number of such set partitions
is seen to be

∑
m

{
N1
m

}
(m+ 1)N2 , when we consider their restricted growth strings.

186. (a) The list for i consists of all 2n−1 subsets that contain i. So there are
(
n−1
k−1

)
operations hide(p) on options p of size k; and un = 1+

∑
k

(
n−1
k−1

)
(k−1) = (n−1)2n−2+1.

(b) The lists get shorter, so the algorithm does un−1 + · · ·+ un−(k−1) updates.
(c) Sum un+

∑
k

(
n−1
k−1

)
(sn−1−sn−k), where sn =

∑n
k=1 uk = (n−2)2n−1+n+1.

For example, (v0, v1, . . . , v5) = (0,1,3,12,57,294); (x0, x1, . . . , x5) = (0,1,4,18,90,484).

187. (a) We haveX ′(z) =
∑

n xn+1z
n/n! = V ′(z)+ezX(z), where V (z) =

∑
n vnz

n/n!.
The given function solves this differential equation and has X(0) = 0.

(b) Similarly, we have T ′r,s(z) = ezTr,s(z) + zr and Tr,s(0) = 0.

(c) Integrate by parts.

(d) For example, T1,3(z) = 4ee
z−1+ 2T0,0(z)− ze2z − (2z + 1)ez − 2z − 3, by (c).

188. By induction, �̂nk is the number of n-element, single-tail set partitions (equiv-
alence relations) for which n > 1 and 1 �≡ 2, . . . , 1 �≡ k. (For example, if we know
that 22 single-tail partitions of {1, 2, 3, 4, 5} have 1 �≡ 2, and that 6 such partitions of
{1, 2, 3, 4} have 1 �≡ 2, then 6 single-tail partitions of {1, 2, 3, 4, 5} must have 1 �≡ 2 and
1 ≡ 3; hence 16 of them have 1 �≡ 2 and 1 �≡ 3.) Therefore �̂nn = �̂n−1, for all n ≥ 1.

[Leo Moser played with this triangular array in 1968 and found the generating
function

∑
n �̂nz

n/n! = ee
z∫ z
0
e−e

t

dt; he showed his results to R. K. Guy, who told

468

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 469

N. J. A. Sloane; see OEIS sequences A046936 and A298804. If we start with ‘0, 0, 1’ on
the diagonal instead of ‘0, 1’, we get Gould’s 〈an2〉 = 〈0, 0, 1, 1, 4, 14, 54, 233, . . . 〉; etc.]
189. (a) |eez | = |eex cos y+iex sin y| = exp(ex cos y); |e−ez | = exp(e−x cos y).

(b) |
∫ θ
0
exp(−eξeiφ)d(ξeiφ) + ∫∞

ξ
e−e

t

dt| = O(ξ exp(−excos y)) + O(exp(−eξ));
|eez | = O(exp(eξ)); and we have x = ξ cos θ ≥ ξ − 2.25/ξ, cos y ≥ cos 3

2
.

(c) We have
∫∞
z
e−e

t

dt =
∫∞
0
e−e

t

dt − ∫ 1
0
e−e

uz

d(uz) = ĝ/3 − I. Let max |eeuz |
for 0 ≤ u ≤ 1 be exp(−eu0x cosu0y). If cosu0y ≥ 0 we have |I| = O(ξ). Otherwise
if cos y − cosu0y ≤ 1 we have |eezI| ≤ ξ exp(ex cos y − eu0x cosu0y) ≤ ξ exp(ex cos y −
ex cosu0y) ≤ ξ exp(ex). Otherwise we use a more delicate argument: Since cos(a− b)−
cos(a + b) = 2(sin a)(sin b), we have | sin u0−1

2
y| = 1

2
|(cos y − cosu0y)/ sin

u0+1
2

y| ≥ 1
2
,

hence u0 ≤ 1 − π/(3y). And in this range, u0x ≤ x − π
3 x/y = ξ cos θ − π

3 cot θ ≤
ξ − cξ1/3 +O(1), where c3 = 3

8
π2.

The desired bound now holds in each case because x = ξ
√
1− sin2 θ ≤ ξ−9/(8ξ).

(d) If π
2
≤ θ ≤ π, |ee

z

| exp(−eu0x cosu0y) = O(1). Since ρn−1/(n − 1)! =
1
2πi

∮
R(z) dz/zn, and since�n−1/(n−1)! = Θ(ee

ξ

/(ξn−1
√
ξn)) by 7.2.1.5–(26), we have

|ρn−1/�n−1| = O(
√
ξn exp(−c2eξ/ξ)) for all c2 < 9

8
. And −eξ/ξ = −n/ξ2 < −n/ln2n.

[These results, and considerably more, were proved by W. Asakly, A. Blecher,
C. Brennan, A. Knopfmacher, T. Mansour, and S. Wagner, J. Math. Analysis and Ap-

plic. 416 (2014), 672–682. In particular, they proved that ank/�n rapidly approaches

the constant ĝk =
∫∞
0
tk−1e1−e

t

dt/k! =
∫∞
0
e−x lnk(1 + x) dx/k!, for all k > 0.]

Historical notes: Leonhard Euler computed the constant ĝ when he argued that
this value can be assigned to the divergent series

∑∞
n=0(−1)nn! [Novi Comment. Acad.

Sci. Pet. 5 (1754), 205–237]. Benjamin Gompertz, who did not know the constant ĝ
explicitly, studied the probability distributions F (x) = 1−a1−bx for a, b > 0 and x ≥ 0
[Philos. Trans. 115 (1825), 513–585]. His name came to be associated with ĝ because,
for example, a random variable with a = e in his distribution has EX = ĝ/ln b.

190. Empirically, these signs are essentially periodic, but with a slowly
increasing period length as n grows. For example, the signs for 4000 ≤
n ≤ 4100 are +2−4+4−5+4−4+5−4+4−5+4−4+4−5+4−4+5−4+4−5+4

−4+4−5. The quantities �̂nk − ĝ�nk for 1 ≤ k ≤ n ≤ 100 have the
interesting sign pattern shown at the right. (See exercise 188.) Complex
variables are evidently interacting here somehow!

191. The mean is G′(1) = 1+ ĝ; the variance is G′′(1)+G′(1)−G′(1)2 = 2ĝ2+ ĝ− ĝ2 ≈
0.773. [Incidentally, G(z) can also be written eΓ(1 + z)−∑∞

k=1(−1)kez/((k + z)k!).]

192. Let ξeξ = n as in 7.2.1.5–(24). Then, when x = eξ − 1+ t and t is small, we have
e−x(ln(1 + x))n ≈ A exp(−(1 + ξ)t2/(2n)), where A = exp(n ln ξ + 1 − eξ). Trading
tails and integrating over −∞ < t <∞ gives ĝn ∼ A

√
2πn/(1 + ξ)/n!.

193. At level 0, when given the complete graph Kt+1, the algorithm does t+1 updates
when covering i in step X4, and t updates when covering each of t values of j in step X5.
Thus U(t+ 1) = 1 + t+ t2 + tU(t− 1).

194. (a) In general we have X(2q+1) = (2q)(2q−2) . . . (2)(a0+a2/2+a4/(2 ·4)+ · · ·+
a2q/(2 ·4 · . . . ·(2q))) = 2qq!S−R, where S =

∑
n≥0 a2n/(2

nn!) and R = a2q+2/(2q+2)+
a2q+4/((2q+2) · (2q+4)) + · · · . Hence when at = 1 we have S = e1/2 and 0 < R < 1.
[This result was noticed in 1999 by Michael Somos; see OEIS A010844.]

(b) In general, X(2q) = ((2q)!/(2qq!))S − R, where S = X(0) + a1 + a3/3 +
a5/(3 · 5) + a7/(3 · 5 · 7) + · · · and R = a2q+1/(2q+1) + a2q+3/((2q+1) · (2q+3)) + · · · .

469

From the Library of Melissa Nuno

ptg999

470 ANSWERS TO EXERCISES 7.2.2.1

When at = X(0) = 1, S− 1 = 1+1/3+1/(3 · 5)+ · · · = e1/2 erf(
√
1/2)/((1

2
)1/2/(1

2
)!),

and 0 < R < 1. So the answer is �(1 +
√
eπ/2 erf(

√
1/2))(2q)!/(2qq!)�.

(c) 2qq!C−2q+O(1), where C =
∑

n≥0(1+2n+4n2)/(2nn!) = 5e1/2 ≈ 8.24361.

(d) ((2q)!/(2qq!))C ′ − 2q +O(1), where C ′ = 3+ 5
√
eπ/2 erf(

√
1/2) ≈ 10.05343.

195. Assume that q, r > 1, and let v be the unique vertex of degree 2. The algorithm
will try to match v with the vertex at its left; that leaves a problem of matching
the independent graphs K2q and K2r. If q ≤ r, each matching of K2q will initiate a
computation of the matchings of K2r; otherwise each matching of K2r will initiate the
matchings of K2q. So the running time of this phase will be C ′ updates per solution,
where C ′ is the constant of answer 194(d) and there are (2q)!(2r)!/(2qq! 2rr!) solutions.

The algorithm will also try to match v with the vertex at its right. That leaves a
problem of independently matching K2q+1 and K2r−1, and there are no solutions. The
running time of this phase will be C times min(2qq!, 2r−1(r − 1)!), where C is the con-
stant of answer 194(c). (Curiously, it’s actually negligible compared to the other phase.)

196. (a) b1 . . . b9 = 135778899. (Draw the bipartite graph, and rotate it 180◦.)
(b) Let k̄ = n+ 1− k for 1 ≤ k ≤ n. Then ‘Xj Yk’ is a dual option if and only if

‘Yj̄ Xk̄’ is an original option; q1 . . . qn is the inverse of an original solution if and only
if q̄n . . . q̄1 is a dual solution.

(c) 1 + a1(n+ 1), because each Yk for 1 ≤ k ≤ a1 appears in n options.

(d) a1(a2 − 1)(a3 − 2) . . . (an − n+ 1). [This number must therefore be equal to
b1(b2 − 1)(b3 − 2) . . . (bn − n+ 1)—and that’s not an obvious fact!]

(e) Let Πj =
∏j

i=1(ai−i+1). From (c), the answer is 1+(
∑n

j=1(n+3−j)Πj)−Πn.

(f) 1 + (
∑n

j=1(n+ 3− j)nj)− n! ≈ (4e− 1)n!. [Perfect matchings of Kn,n.]

(g) 6 · 2n − 2n− 7, because Πj = 2j for 1 ≤ j < n, and Πn = 2n−1.
(h) Now Πn = �n+1

2
��n+2

2
�; and the total number of updates, divided by Πn, is

therefore 6 + 4/1! + 5/2! + · · ·+O(n2/(n/2)!) ≈ 4e− 1.

(i) If b1 < a1, the first branch is on Yn, not X1; and 1+b1(n+1) updates are made
at root level. (The example problem in (a) branches on Y9, then X2, then Y8, etc.)

197. (a, b). Induction; σst can in fact be any permutation that takes s !→ t and doesn’t
increase any other element.

(c) C(a1, . . . , an) =
∏n

j=1(z+aj−j), by (a), since we gain a cycle in that product
representation if and only if tj = j. I(a1, . . . , an) =

∏n
j=1(1 + z + · · ·+ zaj−j), by (b).

[See exercise 7.2.1.5–29; also M. Dworkin, J. Combinatorial Theory B71 (1997), 17–53.]

198. (a) If s > ar we have πrs = 0. Otherwise let q be
the smallest j with aj ≥ s; then q ≤ r. Each permuta-
tion of P (a1, . . . , an) with pr = s corresponds to one of
P (a′1, . . . , a

′
r−1, a

′
r+1, . . . , a

′
n), where a

′
j = aj − [j≥ q].

Thus (ar + 1− r)πrs =
∏r−1

j=q (aj − j)/(aj + 1− j).

(b) We have q′ ≥ q when s′ > s. Consequently
πrs/πrs′ =

∏q′−1
j=q (aj − j)/(aj + 1 − j) for all r ≥ q′,

if πrs′ > 0. [In such cases the parameters r and s are
said to be “quasi-independent.”]

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2

0 0 0 0 0 0 0
1
8

1
8

1
4

1
4

1
4

0 0 0 0
1
8

1
8

1
4

1
4

1
4

0 0 0 0
1
12

1
12

1
6

1
6

1
6

1
3

0 0 0
1
12

1
12

1
6

1
6

1
6

1
3

0 0 0
1
24

1
24

1
12

1
12

1
12

1
6

1
2

0 0
1
72

1
72

1
36

1
36

1
36

1
18

1
6

1
3

1
3

1
72

1
72

1
36

1
36

1
36

1
18

1
6

1
3

1
3

1
72

1
72

1
36

1
36

1
36

1
18

1
6

1
3

1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

199. Assume by symmetry that m ≤ �n/2�. With the MRV heuristic it’s not difficult
to see that every branch at level l for l < m is on some ai for i ≤ m, with exactly
(n− l)(m− 1− l) descendants. Hence there are nl(m− 1)l nodes on level l. The total
number of nodes when m ≈ n/2 is huge, Θ((n− 2)!); and there are no solutions.

470

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 471

200. (a) When all n3 options are present, detQ(X) =
∑

sign(p)v1p1q1 . . . vnpnqn ,
summed over all permutations p = p1 . . . pn and all n-tuples q = q1 . . . qn with qj /∈ X.
Summing (−1)|X| detQ(X) yields

∑
sign(p)v1p1q1 . . . vnpnqn where both p and q are

permutations. (This is essentially an application of the inclusion-exclusion principle.)
Set vijk ← 0 if option ‘ai bj ck’ isn’t present.

(b) Assign a random integer in [0 . . p) to each of theM given options, where p is a
prime greater than 2M , and evaluate s = S mod p. If s �= 0, S is nonzero. If s = 0, S is
nonzero with probability less than 1 − (1−1/p)M < M/p < 1/2, by exercise 4.6.1–16,
because S is linear in each variable. Repeating r times will fail with probability < 2−r.

[In practice, 2n is often an overestimate because many of the determinants are
obviously zero. For example, if Q(X) has an all-zero row or column, so does Q(X ′) for
all X ′ ⊇ X. This method shines on unsolvable examples such as those of exercise 199.
Björklund’s paper, STACS 27 (2010), 95–106, has more general results.]

201. (a) “Given n people seated at a circular table, how many seating arrangements
do not require anybody to move more than one place left or right?”

(b) Two solutions in which everybody moves, plus Ln solutions (a Lucas number)
in which at least one person remains in the same seat.

(c) An interesting recursive structure leads to the answer 5Ln+2+10n−33. [This
analysis depends on using the given ordering to break ties in step X3 when several lists
have the minimum length.]

202. aA

bA cA

dA eA cB cC

dB dC cD cE cF

dD dE dF fF gF hF

dG iF

cG

.

203. (a) Yes; T ⊕ T ′ ⊕ T ′′ is the search tree corresponding to A⊕ A′ ⊕A′′.

(b) No; = ⊕ �= ⊕ = .

204. By definition of T ⊕ T ′, we have subtree(αα′) = subtree(α)⊕ subtree(α′). Hence
deg(αα′) = min(deg(α),deg(α′)).

Let ancestors(α) = {α0, . . . , αl} and ancestors(α′) = {α′0, . . . , α′l′}. Suppose αα′
is dominant in T ⊕ T ′ and deg(αα′) = d. If 0 ≤ k < l, some ancestor αkα

′
k′ of αα

′ has
deg(αk) = deg(αkα

′
k′) < d; hence α is dominant. Similarly, α′ is dominant.

We’ve proved the “only if” part, but the converse is false: ⊕ = .

205. The first statement follows easily from the definition (see exercise 202). Suppose
αα′ = αlα

′
l′ ∈ T ⊕T ′, as in answer 204, where neither α nor α′ is dominant, and where

l + l′ is minimum. Then l > 0 and l′ > 0, because α0 and α
′
0 are dominant.

Assume that the parent of αα′ is αα′l′−1. Then α
′
l′−1 is dominant, and αl isn’t.

So there’s a k < l such that deg(αk) = max(deg(α0), . . . , deg(αl)). Hence there’s a
maximum k′ < l′ such that αkα

′
k′ is an ancestor of αα

′. Then deg(α′k′) ≤ deg(α′l′−1) <
deg(α), and αkα

′
k′+1 is also an ancestor. But αkα

′
l′ isn’t. Contradiction.

A similar contradiction arises when the parent of αα′ is αl−1α′.

206. Replace each solution node of T by a copy of T ′.

207. (a) If λj = 4 we now prefer the 5-way branch on i, because λ′i = 7/2 < 11/3 = λ′j .
If λj = 3 we prefer min(i, j), because λ′i = 3 = λ′j . If λj = 2 we still prefer the binary
branch on j to the ternary branch on i. And if λj = 1 or 0 we certainly prefer j.

471

From the Library of Melissa Nuno

ptg999

472 ANSWERS TO EXERCISES 7.2.2.1

(b) Include two new fields, ACT and STAMP, initially zero, in each item node.
(They can share an octabyte, if ACT is a short float and STAMP is a tetrabyte.) A
global variable TIME serves as the “convenient clock.” Another global, BUMP (which
is a short float, initially 10−32), is the amount by which we advance activity scores.
Whenever i is covered or uncovered, or whenever LEN(i) is changed, we check to see if
STAMP(i) = TIME; if not, we set ACT(i)← ACT(i) + BUMP and STAMP(i)← TIME.

The “clock” advances at the beginning of steps X4, X5, X6, and X7. This means
that TIME ← (TIME + 1) mod 232 and BUMP ← BUMP/ρ. (Furthermore, if BUMP ≥ 1029,
we divide BUMP and all ACT fields by 1064, to avoid overflow. We limit ρ to be at most
.999, so that each αi is at most 1000.)

These changes allow us to replace the definition of λ in step X3 (answer 9) by
λ← (LEN(p) ≤ 1? LEN(p): 1 + LEN(p)/(1 + μACT(p)/BUMP)).

(c) Consider (90) first. After branching on 00 and trying option ‘00 01’, we have
α00 = α02 = ρ, α01 = 1+ ρ, α04 = α05 = α06 = 1, and the other α’s are zero. We want
λ′05 = 1+3/(1+μα05) to be less than λ

′
10 = 1+2; that is, μ > 1/2. Later, after trying

option ‘00 02’, we’ll have α05 > 1 and α06 > 1; again, item 01 isn’t chosen.

Problem (92) is trickier. After trying ‘00 01’, the nonzero α’s are α00 = α02 = ρ,
α01 = 1 + ρ, and α03 = α04 = α05 = 1. We’ll prefer the 3-way branch on 02 to the
2-way branch on 20 if μ > 1/(2ρ); and we’ll even prefer the 4-way branch on 04 (or 05)
to that 2-way branch, if μ > 1. In either case we’ll reach a solution to problem 0 before
starting on problem 1. The same calculations then take us to problem 2 only when
problem 1 has been solved; etc. (Furthermore, when coming back down there will be no
incentive to go back up. In fact, 4-way branches will be done on the items k3 because
of their high activity scores.)

(d) The normal Algorithm X finds all 212 solutions in 92 Gμ, with a 54-meganode
search tree. This modification finds them in 51 Gμ, if we set μ = 1/8 and ρ = .99, with
a 26-meganode search tree. (With μ = 1/2 and ρ = .9, the time is 62 Gμ. In long runs,
the α scores tend to approach 1/(1−ρ); so increases in ρ usually imply decreases in μ.)
208. The original problem has primary items ij for 0 ≤ i, j ≤ e, and eight kinds of
options ‘{ij + δ | δ ∈ Sk}’ for all cells ij + δ that are in range, where S0 = {01, 11,
21, 31, 10}, S1 = {00, 01, 02, 03, 11}, S2 = {00, 10, 20, 30, 21}, S3 = {10, 11, 12, 13, 02},
S4 = {01, 11, 21, 31, 20}, S5 = {00, 01, 02, 03, 12}, S6 = {00, 10, 20, 30, 11}, S7 =
{10, 11, 12, 13, 01}. Options that involve the center cell 77 come only from S0.

The modified problem adds secondary items Vij and Hji, for 0 ≤ i ≤ b, 1 ≤ j ≤ d.
It inserts Vij , H(i+1)j , Vi(j+1), Hij respectively into the options with S4, S5, S6, S7.

(The 16 solutions to this problem represent 22 + 24 + 25 + 22 + 23 + 22 + 25 +
23 + 25 + 23 + 22 + 24 + 23 + 24 + 22 + 24 = 212 solutions to the original. We’re lucky
that none of those solutions has an ‘H’ that includes 77.)

209. With the modified options ‘0 1 A’, ‘0 2 B’, ‘1 4 5 B’, ‘2 3 4 A’,
obtained from the bipairs (‘0 1’, ‘2 3 4’; ‘0 2’, ‘1 3 4’) and (‘0 1’, ‘2 4 5’;
‘0 2’, ‘1 4 5’), we get the balanced search tree shown here.

210. Add a new primary item #A and give it multiplicity [0 . . 2]. Insert it into options
α′, β′, γ′. Then use the nonsharp preference variant of Algorithm M.

211. No bipairs. (But Langford has bitriples, and all three have “biquadruples.”)

212. (a) Order the options first by their smallest item, and secondly by lexicographic
order among those with the same smallest item.

(b) Yes. For example, we can let 1 < 2, and 1 < 4 < 0 < 5.

472

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 473

213. Yes, provided that we regard a proper prefix of a string as lexicographically larger

than that string (contrary to the conventions of a dictionary). Otherwise the condition
fails when α is a prefix of α′ (although exercise 212 remains valid).

Suppose the items of α and β are respectively represented by the digits j and k
in rgs(π), the restricted growth string of π. Then j will also represent α′ in rgs(π′),
and both strings will be equal up to the point where j first appears.

Let β′ be represented by k′ in rgs(π′); then k′ > j. Consider the leftmost place
where rgs(π) differs from rgs(π′). If that digit is j in rgs(π), it is k′ in rgs(π′). Otherwise
it is k in rgs(π); but then it is j in rgs(π′), and α is a prefix of α′.

214. We can find all solutions Σ that reduce to a given strong solution Σ0, by repeat-
edly reversing the construction in the proof of Theorem S—replacing joint occurrences
of α and β by joint occurrences of α′ and β′, for all canonical bipairs, in all possible ways.
(It’s a reachability problem: to find all nodes of an acyclic digraph, given the sinks.)

Notice that different strong solutions can lead to the same nonstrong solution. For
example, in the 2DM problem with options {xX, xY, yX, yY, yZ, zY, zZ}, where uv stands
for ‘u v’, we might have the canonical bipairs (yX, xY; yY, xX), (yZ, zY; yY, zZ). The
strong solutions {xY, yX, zZ} and {xX, yZ, zY} both lead to the nonstrong {xX, yY, zZ}.
(However, in that same problem, we could have made the bipairs (yX, xY; yY, xX),
(yY, zZ; yZ, zY) canonical. Then there would have been only one strong solution.)

215. (a) This is the number of 4-cycles, of which there are 3
(
2q+1
4

)
: Four vertices

i < j < k < l can form three 4-cycles, with either j or k or l opposite i.
(b) For convenience, denote options by ij instead of ‘i j’. If i < j < k < l, we

exclude (i, j, k, l) unless min(ij, ik, il, jk, jl, kl) = ij or kl. We exclude (i, k, j, l) unless
min(ij, ik, il, jk, jl, kl) = ik or jl. We exclude (i, l, j, k) unless min(ij, ik, il, jk, jl, kl) =
il or jk. Hence exactly two of the three possibilities are excluded.

(c) When i < j < k < l they are (i, k, j, l) and (i, l, j, k).
(d) The root has 2q children, branching on 0. All of them are leaves except for

the branch ‘0 1’. That one has 2q − 2 children, all of which are leaves except for the
branch ‘2 3’. And so on, with 2(q − l) nodes on level l > 0.

(e) Use only (i, j, k, l) for k = i+ 1 < min(j, l) and i even.
(f) Put ‘1 2q’ first, then ‘2 2q−1’, . . . , then ‘q q+1’, then the others. When we

branch on ‘0 k’ at the root, for 1 ≤ k ≤ 2q, no options remain for item 2q + 1− k.
(g) ‘0 k’ and ‘2q+1−k l’ are excluded, for all l /∈ {0, k, 2q+1 − k}. (Altogether

(2q)(2q − 2) cases.) [Is it perhaps feasible to order the options dynamically?]

216. The search tree is almost always smaller than that of answer 215(c), which in fact
has the worst case on every level. But it rarely seems to go below half of the worst-case
size. (The author discovered the trick of answer 215(f) by studying randomly generated
examples that had unusually small trees.)

Algorithm X needs 540 Gμ to prove that K21 has no perfect matching. It has
potentially 2

(
21
4

)
= 11970 excludable quadruples. We can use Algorithm 3.4.2S to

sample just m of them; then the running time for m = (2000, 4000, 6000, 8000, and
10000) decreases to about (40 Gμ, 1.6 Gμ, 145 Mμ, 31 Mμ, 12 Mμ), respectively.

217. Each delta α−α′ has k positive terms and k negative terms; we can assume that
1 ≤ k ≤ 4. Furthermore it suffices to work with “normalized” deltas, which are lexico-
graphically smallest under rotation, reflection, and negation. The pentominoes (O, P,
. . . , Z) have (10, 64, 81, 73, 78, 25, 23, 24, 22, 3, 78, 24) normalized deltas, of which (1, 7,
3, 3, 2, 0, 1, 0, 1, 0, 4, 0) have k = 1. Two of the deltas are shared by four different pen-
tominoes: 00+01−23−33 (Q,S,W,Z); 00−02 (P,Q,R,Y). Eleven are shared by three.

473

From the Library of Melissa Nuno

ptg999

474 ANSWERS TO EXERCISES 7.2.2.1

A common delta is necessary but not sufficient; if α−α′ = β′−β, we still need to
fill in cancelled terms that don’t clash. For example, 00− 23 is common to Q and W,
but it doesn’t yield a bipair. Furthermore (although the exercise didn’t state this!), we
don’t want the 10-cell region to have a hole; the delta 00+01−12−22 is common to P,
U, and Y, but only PY makes a useful bipair. A delta can arise in more than one way:
From 00+ 01+ 02+ 03− 20− 21− 22− 23 we can make a Q with either 10 or 13, and
a Y with either 11 or 12; symmetry (and hole removal) yields only one bipair, not four.

The complete catalog has 34 essentially distinct entries. Eighteen of them

have 10-cell shapes with left-right symmetry. Fourteen have transposition symmetry:

The other two are especially interesting because they are asymmetric:

≡ ; ≡ .

(These two each lead to eight varieties when rotated and reflected, not just four. See
J. C. P. Miller in Eureka: The Archimedeans’ Journal 23 (1960), 14–15.)

218. If the only options involving p are ‘p i:0’ and ‘p i:1’, we can’t eliminate item i.
[But if they all involve, say, i:0, we could eliminate it; Algorithm P doesn’t go that far.]

219. If option o contains i, but neither p nor q, it can be in a solution only with two
other options {o′, o′′} that contain {p, q}. But o′ and o′′ must then both contain j.
[This argument is like the “naked pairs” of sudoku lore. It’s tempting to go further, by
also eliminating items i and j; but that could increase the number of solutions.]

220. Let the option be ‘i1 i2[:c2] . . . it[:ct]’. We’ve already covered item i = i1, which
is represented by node x. Nodes x+1, x+2, . . . represent the other items, possibly with
spacers that were inserted when this option was shortened (see exercise 222). We want
to commit i2, . . . , it, and to determine whether this causes LEN(p) to become 0 for some
primary p /∈ {i2, . . . , it}. The tricky part is to be sure that p /∈ {i2, . . . , it}; to accom-
plish this, we set COLOR(ij)← x for 1 < j ≤ t. [In detail: Set p← x+ 1; while p > x,
set j ← TOP(p), and if j ≤ 0 set p← ULINK(p), otherwise set COLOR(j)← x, p← p+1.]

Then we make a second pass over the option: Set p← x+1. While p > x, set j ←
TOP(p), and if j ≤ 0 set p← ULINK(p), otherwise commit′(p, j) and set p← p+1. Here
commit′(p, j) emulates (54): Set c ← COLOR(p), q ← DLINK(j); while q �= j, hide′′′(q)
unless COLOR(q) = c > 0, and set q ← DLINK(q). And hide′′′(p) is just like hide(p), but
it detects blocking if LEN(y) becomes 0 for some y ≤ N1 with COLOR(y) �= x.

Finally, a third pass undoes our changes: Set p ← x − 1. While p �= x, set j ←
TOP(p), and if j ≤ 0 set p ← DLINK(p), otherwise uncommit′(p, j) and set p ← p − 1.
Here uncommit′(p, j) undoes commit′(p, j) in the obvious way.

474

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 475

It is possible to switch immediately from committing to uncommitting as soon as
blocking is detected, by jumping into the middle of a loop (see answer 122).

221. While S > 0, set x ← S, S ← TOP(x), TOP(x) ← i, and do the following: Set
q ← x; while q ≥ x, set j ← TOP(q), and if j ≤ 0 set q ← ULINK(q); otherwise if j ≤ N1

and LEN(j) = 1, go to P9; otherwise set u← ULINK(q), d← DLINK(q), ULINK(d)← u,
DLINK(u) ← d, LEN(j)← LEN(j) − 1, q ← q + 1.

222. Set p ← DLINK(i), and do the following steps while p �= i: Set p′ ← DLINK(p),
q ← p + 1. While q �= p, set j ← TOP(q), and if j ≤ 0 set q ← ULINK(q); otherwise if
j = S, exit this loop; otherwise set q ← q + 1. Then if q �= p, set ULINK(p) ← p + 1,
DLINK(p)← p−1, TOP(p)← 0 (thereby making a spacer); otherwise set q ← p+1 and
perform the loop in answer 221 while q �= p (instead of while q ≥ x). Finally set p← p′.

223. In accordance with the conventions of exercise 8, we first declare the items of the
reduced problem: For 1 ≤ i ≤ N , output the distinguishing mark for secondary items,
if i = N1 + 1; and output the name of item i, if LEN(i) > 0 or i = N = 1. Then we
output the remaining options: For 1 ≤ i ≤ N , if LEN(i) > 0, set p← DLINK(i) and do
the following while p �= i: Set q ← p− 1 and while DLINK(q) = q − 1 set q ← q − 1. If
TOP(q) ≤ 0 (hence i was the leftmost item to survive, in the option following the spacer
node q), output the option as explained below. Then set p← DLINK(p) and repeat.

To output the (possibly shortened) option that follows node q, set q ← q + 1;
then, while TOP(q) ≥ 0, output the name of item TOP(q) if TOP(q) > 0, followed by :c
if COLOR(q) = c > 0, and set q ← q + 1. (Afterwards, −TOP(q) is the number of the
corresponding option in the original input.)

224. Use 3n−3 items p1, x1, i1, . . . , pn−1, xn−1, in−1 (in that order), with the options
‘in−k pk xk’, ‘in−k pk xk+1’, ‘in−k xk’, ‘in−k pk+1’, for 1 ≤ k < n− 1, and also ‘i1 pn−1
xn−1’, ‘i1 xn−1’. During round k, for 1 ≤ k < n, item in−k is forced by pk.

225. Some options, like ‘Z 01 02 11 20 21’ and ‘U 30 31 41 50 51’, are obviously useless
because they cut off a region of fewer than five cells. More of these options are discarded
in the larger problem—but only because of piece U. Eight options, like ‘O 10 11 12
13 14’, are useless because they block a corner cell.

The smaller problem also has numerous options like ‘P 02 12 13 22 23’, which
turn out to be useless because they block piece X. (That piece has been confined to
just eight placements, in order to break symmetry. It has more freedom in the larger
problem, and can’t be blocked there.) Round 2 also discovers that options like ‘O 22
23 24 25 26’ would block X, since round 1 has disabled one of X’s eight choices.

226. Since Σ′1 =
∑2n

k=1(2n + 1 − k)ak, it’s clear that Σ1 + Σ′1 = (2n + 1)
∑2n

k=1 ak =
(2n+ 1)(n+ 1)n. Similarly S + S′ = (2n+ 1)

∑2n
k=1 a

2
k = (2n+ 1)2(n+ 1)n/3.

The relation Σ′2− (2n+1)Σ′1 = Σ2− (2n+1)Σ1 holds for any sequence a1 . . . a2n.

227. (a) $(ij2+ ik2). (b) $(i2j+ i2k). [$(C− ij2− ik2), for large C, will maximize Σ2.]

228. Well, it certainly surprised the author. Intuitively, we expect small Σ1 =
∑
kak

to be correlated with small Σ2 =
∑
k2ak, but not nearly so well. For some mysterious

reason, Langford pairings with the same Σ1 tend to have the same Σ2, and vice versa!
That’s not always true. For example, 2 8 6 2 3 5 7 4 3 6 8 5 4 1 7 1 and 3 5 7 4 3 8 6 5 4

1 7 1 2 6 8 2 have the same Σ1 but different Σ2; 1 5 1 7 4 8 9 5 11 4 10 7 6 3 8 2 9 3 2 6 11 10
and 1 4 1 6 7 10 4 5 9 11 6 8 7 5 2 3 10 2 9 3 8 11 have the same Σ2 but different Σ1. Yet such
exceptions are rare. When n = 7, the four pairings that have Σ1 = 444 are the same as
the four that have Σ2 = 4440; the six pairings that have the larger value Σ1 = 448 are
the same as the six that have Σ2 = 4424, which is smaller than 4440. What is going on?

475

From the Library of Melissa Nuno

ptg999

476 ANSWERS TO EXERCISES 7.2.2.1

The special nature of Langford pairings does allow us to prove certain curious
facts. For example, let jk be the index of the first occurrence of k. The other occurrence
is at jk + k + 1; hence

∑n
k=1 jk = (3n− 1)n/4. Also

∑n
k=1 j

2
k = (4n2 − 1)n/3− 1

2Σ1.

229. These pairings can be found by Algorithm 7.2.2L (or its reverse-order variant).
But we can also find them via dancing links, using the sharp minimax modification
of Algorithm X (or C) in exercise 85: Order options (16) so that ‘i sj sk’ precedes
‘i′ sj′ sk′ ’ when j

′ < j, or when j′ = j and i′ < i (for lex max) or i < i′ (for lex min).
Then repeatedly (i) use the minimax algorithm to fill the smallest undetermined slot
sj ; (ii) move the option that minimally covered sj to the front of the list, and remove
all other options that involve sj .

Thus we find 1 2 1 3 2 4 8 3 12 13 4 10 14 15 16 8 9 6 11 5 7 12 10 13 6 5 9 14 7 15 11 16 in
sixteen such steps, all of which are easy (and need less than 110 Kμ) except for the
placements of 8 in s7 (4.5 Mμ) and 12 in s9 (500 Kμ). The total time (6 Mμ) includes
465 Kμ just for inputting the data in step X1. After placing 8 items, only 12 solutions
remain, so it’s slightly faster to switch gears when finishing. (This pairing has Σ1 =
$5240, Σ2 = $119192, S = $60324; somewhat high but not extreme.)

The lexicographic maximum turns out to be (108)—partially explaining why it
is so “remarkable.” It can be obtained in the same fashion, in fewer than 2 Mμ.

230. Assume that all solutions to the exact cover problem contain the same number of
options, d. (For example, d = 16 in Fig. 74.) Then we can replace each cost $c by the
complementary cost, $(C − c), where C is sufficiently large to make this nonnegative.
Solve the problem with the complementary costs; then subtract its total cost from Cd.
[It’s convenient to implement a special version of Algorithm X$ that does this automat-
ically, with appropriate changes to the presentation of intermediate and final results.]

231. (a) MAPLE
ARRAY
SMOKE
TYPES

($139);

(b) HAPPY
EXILE
ALLOW
PELTS

($176);

(c) JAMBS
EQUIP
TUMOR
SASSY

or

MAGMA
EQUIP
OUNCE
WAKED

($197).

Algorithm X$ needs 6 Gμ, 80 Gμ, and 483 Gμ to find these; Algorithm X needs 5 Gμ,
95 Gμ, and 781 Gμ to visit all solutions, of which there are 27, 8017, and 310077. (Sec-
tion 7.2.2’s trie-based methods aremuch faster: They need just 12 Mμ, 628 Mμ, 13 Gμ.)

232. No. Algorithm X$ finds 96 solutions of minimum cost $84; but the true solution
in Fig. 74(a) actually costs $86 by this measure. The effects of 16 rounding errors, each
potentially changing the result by nearly $1, have invalidated everything. [Therefore the
author used $�232d(i, j)� when preparing Fig. 74. This was safe, because the distance
between the first 8 solutions and the 9th was greater than 16— in fact, much greater,
although a difference of only 17 would have been convincing.]

233. With costs $�232 ln d(i, j)�, we get the same answers (but faster: 1.2 + 0.2 Gμ).

234. By that measure, every placement of n nonattacking queens (or rooks!) costs

n∑
k=1

((k − c)2 + (pk − c)2) = 2
n∑

k=1

(k − c)2 =
n(n2 − 1)

6
, where c = (n+ 1)/2.

235. Now the roles are reversed: We’re more interested in the periphery than in the
center, and the minimum is easier to compute than the maximum. The minimum cost,
$127760, is achievable in four ways, each symmetric; hence we must take K = 17, not
K = 9. This computation took only 1.3 Gμ. (The two examples below have different

476

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 477

sets of distances, which coincidentally yield the same total cost.) But there’s a unique
way to get the maximum cost, $187760, discovered (with K = 9) in 9.7 Gμ:

Minimum
∑

d4 Maximum
∑

d4

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

236. The idea is first to minimize the longest distance; then, placing a queen at that
distance in all possible ways, to minimize the next-longest distance; and so on. In other
words, if the options are in nondecreasing order by cost, it’s almost like the search for
lexicographically minimax solutions, iteratively as in answer 229.

However, there’s a catch: Many options have the same cost. Different orderings of
equal-cost options can lead to wildly different lex-min solutions. For example, suppose
there are four options, ‘1’ for $1, ‘2’ for $2, ‘1 3’ for $3, and ‘2 3’ for $3. In that order,
the minimax solution omits the final option and costs 3N +2N , which is not optimum.

The solution is to add to each option a primary item describing its cost, and
to use Algorithm M iteratively by specifying the number of queens of highest costs,
keeping this as low as possible until the problem has no solutions. Here are the best
such ways to place n queens, for n = 17, 18, and 19:

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

The author was able to reach n = 47 with dancing-links-based methods, in an
afternoon. But he knew that integer programming is significantly faster for “linear”
applications such as the n queens problem (see answer 36). So he enlisted the help of
Matteo Fischetti; and sure enough, Matteo was able to extend the results dramatically.
Here, for example, are optimum placements for n = 32, 64, and 128:

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�
�
�

�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�
�

�
�

�
�

�
�

�
�

477

From the Library of Melissa Nuno

ptg999

478 ANSWERS TO EXERCISES 7.2.2.1

It appears likely that these optimum queen placements have rotational symmetry
only when n = 1, 4, 5, 16, and 32. But the solutions for n = 64 and 128 do have 26 and
212 equivalent mates, because they contain respectively 6 and 12 “tiltable squares” in
the sense of exercise 7.2.2–11(c).

(The limiting behavior may not “kick in” until N is quite large. For example, the
optimum solution when n = 16 and N = 20 is not the symmetrical one illustrated; the
placements 8 11 4 7 5 12 1 16 14 2 15 10 3 13 6 9 have total cost ≈ 2.08× 1021, which beats
≈ 2.09× 1021. The limiting shape turns out to be optimum if and only if N ≥ 21.)

237. False. For example, the square shown here is the smallest of ≈ 3 billion
solutions for which 02 ≡ 20, 03 ≡ 30, 12 ≡ 21, 13 ≡ 31, 42 ≡ 24, 43 ≡ 34.

⎡⎢⎢⎣
1 2 1 1 3
1 1 0 0 3
1 0 1 0 3
1 0 3 6 9
3 1 3 9 1

⎤⎥⎥⎦
238.

[
1 1 3
3 0 7
1 3 9

][
2 1 1 1
1 0 3 1
1 1 9 3

][
2 1 2 1 1
1 0 3 0 1
1 1 3 9 3

][
1 1 1 2 1 1
1 0 0 1 0 3
3 3 1 1 7 1

][
1 1 1 1 2 1 1
1 0 0 0 4 0 3
3 1 9 3 1 7 1

]
;[

9 9 7
7 8 7
7 3 3

][
8 9 9 9
8 6 9 9
7 7 1 7

][
9 8 9 9 9
9 8 8 9 7
7 7 3 1 7

][
9 8 9 9 9 9
9 8 8 5 7 9
7 7 3 3 7 1

][
9 8 9 9 9 9 9
9 8 6 8 5 9 7
7 7 7 3 3 1 7

]
.

The problems for n = 7 have 1759244 options; yet they were solved in 20 Gμ without
preprocessing. Special methods would, however, be required for n ≥ 8.

239. Introduce primary items k and jk, for 1 ≤ k ≤ n and for all j with k ∈ Sj . When
Sj = {k1, . . . , kt}, there’s an option ‘jk1 . . . jkt’ of cost wj , together with t options
‘ki jki’ of “infinitesimal” cost ε

j for 1 ≤ i ≤ t; also t “slack” options ‘jki’ of cost 0.

For example, suppose the only sets that cover 1 are S1, S2, S3, S4; and suppose
that an optimum set cover uses S2 and S4 but neither S1 nor S3. Then a maximum-
cost solution to this exact cover problem will use option ‘11 . . . ’ of cost w1, ‘31 . . . ’ of
cost w3, ‘1 21’ of cost ε

2, and ‘41’ of cost 0 (because the alternative with ‘21’ and ‘1 41’
has smaller additional cost 0 + ε4).

[See M. Gondran and M. Minoux, Graphs and Algorithms (1984), exercise 10.35.
When finding the k best solutions instead of a single optimum, all solutions that become
identical when ε is set to zero should be counted just once.]

240. Add {WY, CO, NM} and either ID or UT or AZ. Or add {ID, UT, CO, OK}. Or add {SD, MO}
and either {IA, OK} or {NE, AR} (a surprise to the author when he posed this problem).

241. No, although it does find the cases where regions of fewer than 6 vertices are cut
off. Round 1 discovers that New England can be shrunk to a single item; then Round 2
is able to remove options such as ‘LA AR TN VA MD PA’. Altogether 3983 options and
5 items are removed, at a cost of 8 Gμ.

242. Before visiting a solution in step R2′, use depth-first search to find the connected
components of the residual graph. Reject the solution if any such component has a
size d for which d < L · �d/(U − 1)�.
243. Let W = w1+ · · ·+wn be the sum of all weights. Then we have

∑d
k=1(xk−r)2 =∑d

k=1 x
2
k − 2rW + r2d, because

∑d
k=1 xk =W in an exact cover problem.

244. True: Let G have m edges and n vertices. A solution with k edges between verti-
ces of the same option has total interior cost n(t−1)−2k, total exterior cost 2(m−k).

[But answer 246 shows that this can fail with options of different sizes.]

245. For (a), exercise 242 gives 42498 − 25230 = 17268 options of size 7. Minimum
cost $58 is discovered in 101 Mμ. For (b), there are 1176310−1116759 = 59551 options

478

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 479

with population in [43 . . 45] million. In the optimum solution shown below, which was
found in 7.7 Gμ, all populations lie in the range [43.51 . . 44.24] million.

DC

AL

AZ AR

CA CO

CT

DE

FL

GA

ID IL INIA

KS KY

LA

ME

MD

MAMIMN

MS

MO

MT

NE

NV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

246. Minimum exterior cost ($90 and $74, found in 612 and 11 Mμ):

Minimum interior cost ($176 and $230, found in 1700 and 100 Mμ):

247. Use the procedure of answer 8 for raw data entry, but also set COST(j) ← 〈the
cost of the current option〉 for p < j ≤ p+ k at the beginning of step I5.

Then assign taxes “greedily” by doing the following for k = 1, 2, . . . , n: If item k
has no options, terminate with an unsolvable problem. Otherwise let c be the minimum
cost of k’s options, and set COST(k) ← c; this is the “tax” on k. If c > 0, subtract c
from the cost of every option on k’s list; this will affect all nodes of those options.

(The modified costs will be used internally. But all results reported to the user
should be expressed in terms of the original costs, by adding the taxes back in.)

After all taxes have been assigned, sort the options by their (new) costs. (The
“natural list merge sort,” exercise 5.2.4–12, works well for this purpose, with the COST
fields in spacer nodes serving as links.)

Finally, achieve (118) by re-inserting all nodes, in order of cost.

[Taxes could be assessed in many other ways. In general we seek real numbers u1,
. . . , un such that cj ≥

∑{ui | item i in option j} for 1 ≤ j ≤ m, where u1 + · · · + un
is maximum. This is a linear programming problem, which happens to be dual to the
(fractional) exact cover problem of minimizing c1x1+· · ·+cmxm such that x1, . . . , xm ≥
0 and

∑{xj | item i in option j} = 1 for 1 ≤ i ≤ n. An “optimum” taxation scheme,
found by a linear programming solver, might make Algorithm C$ significantly faster
than it is with the greedy scheme above, even on highly nonlinear XCC problems; careful
tests have not yet been made. See M. Gondran and J. L. Laurière, Revue Française

d’Automatique, Informatique et Recherche Opérationnelle 8, V-1 (1974), 27–40.]

479

From the Library of Melissa Nuno

ptg999

480 ANSWERS TO EXERCISES 7.2.2.1

248. Set t ← ∞, c ← 0, j ← RLINK(0), and do the following while j > 0: Set
p ← DLINK(j) and c′ ← COST(p). If p = j or c′ ≥ ϑ, go to C8$. Otherwise set s ← 1,
p ← DLINK(p), and loop as follows: If p = j or COST(p) ≥ ϑ, exit the loop; otherwise
if s = t, set s← s+ 1 and exit; otherwise if s ≥ L, set s← LEN(j) and exit; otherwise
set s ← s + 1, p ← DLINK(p), and continue. After exiting the loop, if s < t or (s = t
and c < c′), set t← s, i← j, and c← c′. Finally set j ← RLINK(j).

[The author uses L = 10. He considered doing a complete search, thereby avoiding
the frequent updates to LEN in (13), (15), etc.; but that turned out to be a bad idea.]

249. After we’ve seen t costs, we know only that the remaining dk− t are nonnegative.
The following algorithm sorts incoming costs into the rightmost positions of a buffer
b0b1 . . . bdk−1, maintaining the best possible lower bound l: Set l← t← 0. When seeing
a new cost c, set p← t, y ← 0, r ← 1, and do this while rp > 0: Set x← bdk−p. If c ≤ x,
set r ← 0. Otherwise if pmod k = 0, set l← l+x−y; set y ← bdk−p−1 ← x, p← p−1.
After rp = 0, set bdk−p−1 ← c, t← t+1; if pmod k = 0, set l← l+ c−y. Stop if l ≥ θ.

250. Keep a separate “accumulator” for each character in Z, and another for z if it
is present. Look at each active item i: If NAME(i) begins with a character of Z, add
COST(DLINK(i)) to the appropriate accumulator. Otherwise if z = 1, add that cost to
the accumulator for z. Otherwise if z > 1, use exercise 249 to accumulate costs that
are separated by z. If any of the accumulators becomes ≥ T − Cl, go to C8$.

(When Z or z hints are given, step C1$ should verify that they are legitimate.)

251. When all items have been covered, step Z2 will see the signature S[0] = 0, which
was initialized in step Z1; Z[0] = 1 is the “success” node ‘&’.
252.

20 21

10 11 11 21

10 20

02 12

00 01

11 12

01 02 02 12

01 11

20 21

00 10

⊥
⊥ ⊥

⊥

&
&

Notice that this free
ZDD is not ordered,
because ‘02 12’ appears
above ‘20 21’ in the left
branch but below ‘20
21’ in the right branch.
See exercise 264.

253. Introduce a global variable COUNT; also auxiliary variables c0c1 . . . indexed by the
current level l; also integer variables C[t] indexed by cache location t. Set COUNT ← 0
and C[0] ← 1 in step Z1. If a cache hit occurs in Z2, set COUNT ← COUNT + C[t];
otherwise set cl ← COUNT. Set C[ml]← COUNT − cl in step Z7.

254. (a) If the options include d different colors for item i, a subproblem has d + 2
distinct cases: Either item i does not appear in any remaining options, or its list has
not been purified, or its list has been purified to a particular color. So we reserve
�lg(d + 2)� bits for i in the signature. If, for example, d = 4, those three bits will
contain one of the codes 000, 001, 010, 011, 100, 101.

[In order to recognize the relevant case, Algorithm Z’s version of the ‘purify’
operation in (55) should set COLOR(i) ← c in the header node for i; the ‘unpurify’ in
(57) should set COLOR(i)← 0; and step Z1 should set COLOR(i)← 0. That initialization
step should also remap i’s colors so that they appear internally as 1, 2, . . . , d.]

(b) In large problems σ will occupy several octabytes. Give each item i a new
field SIG(i), which is an index to a code table, and a new field WD(i). If LEN(i) �= 0,
item i will contribute CODE[SIG(i) + COLOR(i)] to octabyte WD(i) of σ.

480

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 481

[If hashing is used for the cache lookup in step Z2, the CODE table can also contain
random bits, for convenience in computing a good hash function.]

(c) Operation hide′(p) doesn’t remove node q from list TOP(q), if that list has been
purified. But if TOP(q) is included in the signature, we’ll never get a cache hit for solu-
tions with different colors, even when subproblems don’t actually depend on those col-
ors. Therefore we need to know when a secondary item has no active options in its list.

(d) The trick is to decrease LEN(i), while still retaining the nodes on list i. If
LEN(i) becomes zero, when i is a secondary item, we can then remove it from the list
of active secondary items (whose head is N + 1, by answer 8).

[We can also use this trick in the ‘hide’ routine: Let hide′′′′(p) be like hide(p)
except that DLINK(u) and ULINK(d) remain unmodified when COLOR(q) < 0; LEN(x) is
decreased as usual.] Of course unpurify and unhide′′′′ should undo purify and hide′′′′.

Some delicate maneuvers are needed to avoid deactivating a secondary item
twice, and to reactivate it at precisely the right time when unpurifying. (The author’s
implementation temporarily sets the LEN to −1.)
255. Let Vn =

∑n
k=0(n−1−2k)

(
n−k
k

)
,Wn =

∑n
k=0(1+(n−1−2k)+(n−1−2k)2)(n−k

k

)
.

Using the fact that
∑n

k=0

(
k
r

)(
n−k
k

)
= [zn] z2r/(1−z−z2)r+1, we obtain the closed forms

Vn = ((n−5)Fn+1+2(n+1)Fn)/5 andWn = ((5n2+7n+25)Fn+1−6(n+1)Fn)/25. (See
the derivation of 1.2.8–(17).) When N is even, Algorithm Z performs WN − 1 updates
and outputs a ZDD with VN + 2 nodes. When N is odd, it performs WN updates and
outputs the trivial ZDD ‘⊥’.
256. Let T (N), Z(N), and C(N) be the time, ZDD size, and cache size needed for
KN . With (89) the algorithm first spends T (2q) + T (2r) time to create a ZDD of size
Z(2q) + Z(2r). Then it spends min(T (2q + 1), T (2r − 1)) time to learn that no more
ZDD nodes are desirable. The cache size is C(2q)+C(2r)+min(C(2q+1), C(2r− 1)).

257. (a) There are 2n−1+1 signatures: 11 . . . 1 and all n-bit strings beginning with 0.

(b)

1111 0111

0110

0101

0100

0011

0010

0001 �

Each nonzero
signature σ
has 2νσ−1

branches.

258. See (84). Now it’s Vn = vn+
∑n−1

k=1

(
n−1
k

)
vk = ((72n−342)5n+(375n−875)4n+

600·3n+1800n2n+1550)/3600. [For example, V16 = 40454337297;�16 = 10480142147.]

259. (a) The signatures at level l are {Xl+1, . . . ,Xn} together with all
(
n
l

)
l-element

subsets of {Y1, . . . , Yn}. So there are 2n of them; also 2 +
∑n

l=0(n− l)
(
n
l

)
= n2n−1 + 2

ZDD nodes; and ((n2 + 3n+ 4)2n − 4)/4 updates.

(b) Now the signatures are {Xl+1, . . . ,Xn} plus l-element subsets of {Y1, . . . ,Yl+1}.
So we get

(
n
2

)
+ 1 cache memos; n2 + 2 ZDD nodes; (2n3 + 15n2 + n)/6 updates.

260. The ménage problem, with ≈ n!/e2 solutions, leads to unexpected running times:
We seem to get roughly order n3/2ρn updates, where ρ ≈ 3.1; but better results are
obtained for n ≥ 13 when the MRV heuristic is not used in step Z3! Then the running
time may well be Θ(nen), although the ZDD size apparently grows as nρn with ρ ≈ 2.56.

The other problem, with Ln+2 solutions, needs just 6n+9 memos, 8n− 9 ZDD
nodes, and 34n− 58 updates.

481

From the Library of Melissa Nuno

ptg999

482 ANSWERS TO EXERCISES 7.2.2.1

261. (a) Introduce primary items v− and v+ for each vertex v, representing the
possibility of passing through v; but omit v− for v ∈ S, and v+ for v ∈ T . Also
introduce secondary items v, whose color (if nonzero) represents the path number. The
main options are ‘u+ v− u:k v:k’, for each arc u−−→ v and for 1 ≤ k ≤ m. There also
are options ‘v− v:0’ for all v /∈ S, and ‘v+ v:0’ for all v /∈ T .

Moreover, we need a way to number each path canonically, so that we don’t get
m! equivalent solutions. (The method of exercise 122 does not work with Algorithm Z.)
If S = {s1, . . . , sp}, introduce primary items xk and secondary items yk for 1 ≤ k ≤ p,
with the following options: ‘xk sk:0 yk−1:j yk:j’ and ‘xk sk:(j+1) yk−1:j yk:(j+1)’, for
1 ≤ k ≤ p and 0 ≤ j < k. [Omit the item yk−1:j when k = 1; omit options with yp �= m.]

Many of these options can never be used. Algorithm P readily removes them.

(b) Remove unreachable vertices and unreachable arcs from G, if necessary, so
that the only sources and sinks are S = {s1, . . . , sm} and T = {t1, . . . , tm}. Then use
items v−, v+, v and the main options of the construction in part (a); but omit any
option that specifies sj :k or tj :k for j �= k.

(c) This is a trick question, because each path contains exactly one vertex on
the diagonal. The problem therefore factors neatly into two independent subproblems.
It suffices to find n− 1 vertex-disjoint paths from S = {(0, 1), . . . , (0, n−1), (1, n), . . . ,
(n−1, n)} to T = {(1, 1), . . . , (n−1, n−1)} in the digraph with vertices (i, j) for 0 ≤
i ≤ j ≤ n, (i, j) /∈ {(0, 0), (0, n), (n,n)}, and arcs (i, j)−−→(i+ 1, j), (i, j)−−→(i, j − 1).

If this problem has Pn solutions, given by a ZDD Z with Mn nodes, the original
problem has P 2

n solutions, given by a ZDD Z ′′ with 2Mn nodes. We obtain Z ′′ by
replacing & in Z with the root of Z ′, where Z ′ specifies the reflections of the paths of Z.

Algorithm Z needs just 7 gigamems to find P16 = 992340657705109416 andM16 =
3803972. (In fact, Pn is known to be

∏
1≤i≤j≤k≤n(i+j+k−1)/(i+j+k−2), the number

of plane partitions that are totally symmetric: N. Beluhov [to appear] has found a nice
way to glue six triangular diagrams together, in kaleidoscope fashion, which establishes
a one-to-one correspondence linking these paths to symmetrical diamond tilings like
those of exercise 262(b).)

(d) There are exactly 47356 solutions. Algorithm C finds them in 278 Gμ, without
preprocessing; but it needs only 760 Mμ, after Algorithm P has removed redundant
options. Algorithm Z, by contrast, handles the problem in 92 Gμ, using 7 gigabytes
of memo-cache memory (without preprocessing); 940 Mμ and 90 megabytes (with).
Hence Algorithm Z is undesirable for problem (d), but essential for problem (c).

262. (a) The ordering of the primary items—the cells of Sn—is critical: Rowwise
ordering (left-to-right, top-to-bottom) causes exponential growth; but columnwise or-
dering (top-to-bottom, left-to-right) yields linear ZDD size, and Θ(n2) running time.

Furthermore, it turns out to be better not to use the MRV heuristic, when n ≥ 18.
Then the number of ZDD nodes is 154440n− 2655855 for all n ≥ 30. Only 2.2 Gμ are
needed for n = 32. There are 68719476736 = (

√
2)72 solutions for S16, via exercise

7.1.4–208; for S32 there are 152326556015596771390830202722034115329≈ 1.552200.

(An Aztec diamond of orderm has exactly 2m(m+1)/2 domino tilings; moreover, as
m→∞, the dominoes at the corners are q.s. aligned, except within an “arctic circle” of
radiusm/

√
2. See W. Jockusch, J. Propp, and P. Shor, arXiv:math/9801068 [math.CO]

(1995), 44 pages; H. Cohn, N. Elkies, and J. Propp, Duke Math. J. 85 (1996), 117–166.
See also D. Grensing, I. Carlsen, and H.-Chr. Zapp, Philos. Mag.A41 (1980), 777–781.)

[Tilings of the more general shapes Smn considered here, where we replace 16 by
2m and 7 bym−1, are more mysterious. M. Ciucu observes that R(2m)(n−2m) ⊆ Smn ⊆

482

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 483

R(2m)(n+2m), where Rkn is a k×n rectangle; furthermore both R(2m)(n+2m) \Smn and
Smn \R(2m)(n−2m) are tilable. Richard Stanley has shown, in Discrete Applied Math.

12 (1985), 81–87, that R(2m)n has ∼ a2mμ
n+1
2m tilings, for fixed m as n→∞, where

ak =
(1+

√
2)k+1 − (1−√2)k+1

2
√
2

, μ2m =

m∏
j=1

(
cos θj +

√
1 + cos2 θj

)
, θj =

jπ

2m+1
.

Hence Smn has Θ(μn2m) tilings in that limit. But if m = αn as n → ∞, the limiting
“arctic curve” outside which dominoes tend to be frozen remains to be discovered.]

There is, incidentally, a beautiful connection between domino tilings and vertex-
disjoint paths, discovered by D. Randall (unpublished):

blue
paths:

red
paths:

every vertical
domino has either
a blue or red path

every horizontal
domino has blue and
red paths, crossed

(b) In this case the triangle coordinates of answer 124 yield linear growth if we
use items (x, y) for 0 ≤ x < n + 8, 0 ≤ y < 16, x + y ≥ 8; (x, y)′ for 0 ≤ x < n + 8,
0 ≤ y < 16, 7 ≤ x + y < n + 15. The options are ‘(x, y) (x′, y′)’, where (x′, y′) =
(x, y)− {(0, 0), (0, 1), (1, 0)} and both items exist. Then the ZDD size (without MRV)
turns out to be 257400n− 1210061, for all n ≥ 7.

The convex triangular regions that can be tiled with diamonds are precisely those
that have equally many Δ and ∇ triangles, namely the generalized hexagons Tlmn

with sides (l,m, n, l,m, n) for some l,m, n ≥ 0. These tilings are equivalent to plane
partitions that fit in an l×m× n box. In fact you can “see” this equivalence, because
the diagrams resemble cubies packed into a corner of the box! (David Klarner made
this discovery in the 1970s, but didn’t publish it.) Therefore every tiling of Tn has
respectively (1, 2, . . . , 8, 7, . . . , 1) vertical diamonds in rows (1, 2, . . . , 15), hence
64 in all; and these occurrences are nested. For example, the middle diagram
corresponds to the reverse plane partition shown here. (See exercise 5.1.4–36,
from which it follows that the generalized hexagon Tlmn has exactly Πlmn =∏l

i=1

∏m
j=1

∏n
k=1(i+j+k−1)/(i+j+k−2) tilings. In particular, we have Π888 =

5055160684040254910720; Π88(16) = 2065715788914012182693991725390625.)

00012457
1134569c
12368abc
25789bbc
4578accc
459aaccc
569aaccc
bbbbcccc

[In New York J. of Math. 4 (1998), 137–165, H. Cohn, M. Larsen, and J. Propp
studied random tilings of Tlmn when l,m, and n approach infinity with constant scaling,
and conjectured that they are q.s. “frozen” outside of the largest enclosed ellipse. See
also the more general results of C. Boutillier, Annals of Probability 37 (2009), 107–142.]

263. parameters solutions items options Alg C time, space Alg Z time, space ZDD
(a) organ-pipe order 14772512 32 + 58 256 40 Gμ 23 KB 55 Gμ 4.1 GB 56M
(b) 6× 10 2339 72 + 0 2032 4.1 Gμ 230 KB 3.1 Gμ 23 MB 11K
(b) 8× 8, square 16146 77 + 1 2327 20 Gμ 264 KB 14 Gμ 101 MB 59K
(b) 8× 8, straight 24600 77 + 1 2358 36 Gμ 267 KB 26 Gμ 177 MB 93K
(b) 8× 8, skew 23619 77 + 1 2446 28 Gμ 275 KB 20 Gμ 137 MB 84K
(b) 8× 8, ell 60608 77 + 1 2614 68 Gμ 291 KB 44 Gμ 276 MB 183K
(b) 8× 8, tee 25943 77 + 1 2446 35 Gμ 275 KB 25 Gμ 166 MB 92K
(c) aaa placed 987816 49 + 42 1514 25 Gμ 149 KB 18 Gμ 646 MB 2.2M

483

From the Library of Melissa Nuno

ptg999

484 ANSWERS TO EXERCISES 7.2.2.1

(d) (7, 0, 3) 137216 64 + 128 3970 8.5 Gμ 642 KB 1.7 Gμ 20 MB 210K
(d) (7, 3, 4) 41280 70 + 140 4762 3.2 Gμ 769 KB 1.0 Gμ 13 MB 122K
(e) p=6, WORDS(1200) 1 12 + 1230 14400 17 Gμ 2 MB 25 Gμ 91 MB 14
(f) kill symmetry 44* 12 + 36 1188 1.3 Gμ 110 KB 0.9 Gμ 10 MB 186
(g) unmodified 18 1165 + 66 4889 202 Gμ 509 MB 234 Gμ 8.9 GB 2049
(g) modified 1 1187 + 66 5143 380 Gμ 537 MB 424 Gμ 15 GB 336
(g) preprocessed 18 446 + 66 666 223 Mμ 66 KB 1.8 Mμ 136 KB 574

* includes solutions that touch all cells

264. Let the primary items be linearly ordered, and let r(o) be the smallest primary
item in option o. If (ō? l: h) is a ZDD node, every option o′ in the subZDD rooted at h
has r(o′) > r(o), because o covers r(o) and smaller items have already been covered.
Moreover, if l �= 0, the option o′ in node l has r(o′) = r(o); and o′ precedes o in the input.

Thus, if we use a stable sorting algorithm to sort the options by decreasing r(o),
the ZDD will respect the reverse of this ordering. [This result was proved by Nishino,
Yasuda, Minato, and Nagata in their original paper. Unfortunately, the algorithm is
usually too slow without MRV, except in special situations like those of exercise 262.]

265. Every solution below any given ZDD node covers the same primary items. If all
items are primary, no two visible nodes have the same signature. And the nodes of the
chain below every visible node are distinct, because they branch on different options.

Now suppose we have three primary items {p, q, r}, and one secondary item s,
with options ‘p’, ‘p r’, ‘p s’, ‘q r’, ‘q s’. If we don’t use MRV, we’ll branch on p.
Choice 1, ‘p’, leads to a subproblem with signature 0111 that outputs I2 = (q r? 0: 1),
I3 = (p̄? 0: 2). Choice 2, ‘p r’, leads to a subproblem with signature 0101 that outputs
I4 = (q s? 0: 1), I5 = (p r? 3: 4). Choice 3, ‘p s’, leads to a subproblem with signature
0110 that outputs I6 = (q r? 0: 1), I7 = (p s? 5: 6). And I6 = I2.

A similar example, with items {q1, q2, q3, r1, r2, r3} in place of {q, r}, and with 23
options ‘p’, ‘p ri’, ‘p s’, ‘qi qj ’, ‘ri rj ’, ‘qi ri’, ‘qi rj ’, ‘qj ri’, ‘qi s’, for 1 ≤ i < j ≤ 3,
fails when MRV dictates the choices.

266. Let the given shape be specified as a set of integer pairs (x, y). These pairs might
simply be listed one by one in the input; but it’s much more convenient to accept a
more compact specification. For example, the utility program with which the author
prepared the examples of this book was designed to accept UNIX-like specifications
such as ‘[14-7]2 5[0-3]’ for the eight pairs {(1, 2), (4, 2), (5, 2), (6, 2), (7, 2), (5, 0),
(5, 1), (5, 3)}. (Notice that a pair is included only once, if it’s specified more than
once.) The range 0 ≤ x, y < 62 has proved to be sufficient in almost all instances, with
such integers encoded as single “extended hexadecimal digits” 0, 1, . . . , 9, a, b, . . . , z,
A, B, . . . , Z. The specification ‘[1-3][1-k]’ is one way to define a 3× 20 rectangle.

Similarly, each of the given polyominoes is specified by stating its piece name and
a set T of typical positions that it might occupy. Such positions (x, y) are specified using
the same conventions that were used for the shape; they needn’t lie within that shape.

The program computes base placements by rotating and/or reflecting the elements
of that set T . The first base placement is the shifted set T0 = T − (xmin, ymin), whose
coordinates are nonnegative and as small as possible. Then it repeatedly applies an
elementary transformation, either (x, y) !→ (y, xmax − x) or (x, y) !→ (y, x), to every
existing base placement, until no further placements arise. (That process becomes easy
when each base placement is represented as a sorted list of packed integers (x$16)+y.)
For example, the typical positions of the straight tromino might be specified as ‘1[1-3]’;
it will have two base placements, {(0, 0), (0, 1), (0, 2)} and {(0, 0), (1, 0), (2, 0)}.

484

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 485

After digesting the input specifications, the program defines the items of the exact
cover problem, which are (i) the piece names; (ii) the cells xy of the given shape.

Finally, it defines the options: For each piece p and for each base placement T ′

of p, and for each offset (δx, δy) such that T
′+(δx, δy) lies fully within the given shape,

there’s an option that names the items {p} ∪ {(x+ δx, y + δy) | (x, y) ∈ T ′}.
(The output of this program is often edited by hand, to take account of special

circumstances. For example, some items may change from primary to secondary; some
options may be eliminated in order to break symmetry. The author’s implementation
also allows the specification of secondary items with color controls, along with base
placements that include such controls.)

Historical notes: Early algorithms for polyomino packing failed to realize the
essentially unity between cells to be covered and pieces to be covered; their treatment
of cells was quite different from their treatment of pieces. The fact that both cells and
pieces are primary items of a “pure” exact cover problem was first noticed in connection
with the Soma cube, by C. Peter-Orth [Discrete Mathematics 57 (1985), 105–121]. The
base placements of tiles that are to be translated (but not rotated or reflected) are called
“aspects” in Tilings and Patterns by Grünbaum and Shephard (1987).

267. RUSTY. [Leigh Mercer posed a similar question to Martin Gardner in 1960.]

268. As in the 3 × 20 example considered in the text, we can set up an exact cover
problem with 12 + 60 items, and with options for every potential placement of each
piece. This gives respectively (52, 292, 232, 240, 232, 120, 146, 120, 120, 30, 232, 120)
options for pieces (O, P, . . . , Z) in Conway’s nomenclature, thus 1936 options in all.

To reduce symmetry, we can insist that the X occurs in the upper left corner; then
it contributes just 10 options instead of 30. But some solutions are still counted twice,
when X is centered in the middle row. To prevent this we can add a secondary item

‘s’: Append ‘s’ to the five options that correspond to those centered appearances; also
append ‘s’ to the 60 options that correspond to placements where the Z is flipped over.

Without those changes, Algorithm X would use 10.04 Gμ to find 4040 solutions;
with them, it needs just 2.93 Gμ to find 1010.

This approach to symmetry breaking in pentomino problems is due to Dana Scott
[Technical Report No. 1 (Princeton University Dept. of Electrical Engineering, 10 June
1958)]. Another way to break symmetry would be to allow X anywhere, but to restrict
the W to its 30 unrotated placements. That works almost as well: 2.96 Gμ.

269. There’s a unique way to pack P, Q, R, U, X into a 5 × 5 square, and to pack
the other seven into a 5× 7. (See below.) With independent reflections, together with
rotation of the square, we obtain 16 of the 1010. There’s also a unique way to pack
P, R, U into a 5× 3 and the others into a 5× 9 (noticed by R. A. Fairbairn in 1967),
yielding 8 more. And there’s a unique way to pack O, Q, T, W, Y, Z into a 5 × 6,
plus two ways to pack the others via a bipair, yielding another 16. (These paired 5× 6
patterns were apparently first noticed by J. Pestieau; see answer 286.) Finally, the
packings in the next exercise give us 264 decomposable 5× 12s altogether.

[Similarly, C. J. Bouwkamp discovered that S, V, T, Y pack uniquely into a 4×5,
while the other eight can be put into a 4 × 10 in five ways, thus accounting for 40 of
the 368 distinct 4× 15s. See JRM 3 (1970), 125.]

485

From the Library of Melissa Nuno

ptg999

486 ANSWERS TO EXERCISES 7.2.2.1

270. Without symmetry reduction, 448 solutions are found in 1.24 Gμ. But we can
restrict X to the upper left corner, as in answer 268, flagging its placements with ‘s’
when centered in the middle row or middle column (but not both). Again the ‘s’ is
appended to flipped Z’s. Finally, when X is placed in dead center, we append another

secondary item ‘c’, and append ‘c’ to the 90◦-rotated placements of W. This yields 112
solutions, after 0.35 Gμ.

Or we could leave X unhindered but curtail W to 1/4 of its placements. That’s
easier to do (although not quite as clever) and it finds those 112 in 0.44 Gμ.

Incidentally, there aren’t actually any solutions with X in dead center.

271. The exact cover problem analogous to that in exercise 268 has 12+ 60 items and
(56, 304, 248, 256, 248, 128, 152, 128, 128, 32, 248, 128) options. It finds 9356 solutions
after 16.42 Gμ of computation, without symmetry reduction. But if we insist that X
be centered in the upper left quarter, by removing all but 8 of its placements, we get
2339 solutions after just 4.11 Gμ. (The alternative of restricting W’s rotations is not
as effective in this case: 5.56 Gμ.) These solutions were first enumerated by C. B. and
Jenifer Haselgrove [Eureka: The Archimedeans’ Journal 23 (1960), 16–18].

272. (a) Obviously only k = 5 is feasible. All such packings can be obtained by
omitting all options of the cover problem that straddle the “cut.” That leaves 1507 of
the original 2032 options, and yields 16 solutions after 104 Mμ. (Those 16 boil down
to just the two 5× 6 decompositions that we already saw in answer 269.)

(b) Now we remove the 763 options for placements that don’t touch the boundary,
and obtain just the two solutions below, after 100 Mμ. (This result was first noticed
by Tony Potts, who posted it to Martin Gardner on 9 February 1960.)

(c) With 1237 placements/options, the unique solution is now found after 83 Mμ.
(d) There are respectively (0, 9, 3, 47, 16, 8, 3, 1, 30, 22, 5, 11) solutions for

pentominoes (O, P, Q, . . . , Z). (The I/O pentomino can be “framed” by the others in
11 ways; but all of those packings also have at least one other interior pentomino.)

(e) Despite many ways to cover all boundary cells with just seven pentominoes,
none of them lead to an overall solution. Thus the minimum is eight; 207 of the 2339
solutions attain it. To find them we might as well generate and examine all 2339.

(f) The question is ambiguous: If we’re willing to allow the X to touch unnamed
pieces at a corner, but not at an edge, there are 25 solutions (8 of which happen to
be answers to part (a)). In each of these solutions, X also touches the outer boundary.
(The cover and frontispiece of Clarke’s book show a packing in which X doesn’t touch
the boundary, but it doesn’t solve this problem: Using Golomb’s piece names, there’s
an edge where X meets I, and there’s a point where X meets P.) There also are two
packings in which the edges of X touch only F, N, U, and the boundary, but not V.

On the other hand, there are just 6 solutions if we allow only F, N, U, V to touch
X’s corner points. One of them, shown below, has X touching the short side and seems
to match the quotation best. These 6 solutions can be found in just 47 Mμ, by intro-
ducing 60 secondary items as sort of an “upper level” to the board: All placements of X
occupy the normal five lower-level cells, plus up to 16 upper-level cells that touch them;
all placements of F, N, U, V are unchanged; all placements of the other seven pieces
occupy both the lower and the upper level. This nicely forbids them from touching X.

486

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 487

273. (a) We could set this up as twelve separate exact cover problems, one for each pen-
tomino omitted. But it’s more interesting to consider all cases simultaneously, by giving
a “free pass” to one pentomino as follows: Add a new primary item ‘#’, and twelve new
options ‘# O’, ‘# P’, . . . , ‘# Z’. The sixty items ij are demoted to secondary status.

To remove symmetry, delete 3/4 of the options for piece V; also make its new
option ‘# V s’, and add ‘s’ to 3/4 of the options for piece W, where ‘s’ is a new secondary
item. That makes a total of 1194 options, involving 13 + 61 items.

If Algorithm X branches first on #, the effect is equivalent to 12 separate runs;
the search tree has 7.9 billion nodes, and the run time is 16.8 teramems. But if we use
the nonsharp preference heuristic (see answer 10), the algorithm is able to save some
time by making decisions that are common to several subcases. Its search tree then
has 7.3 billion nodes, and the run time is 15.1 teramems. Of course both methods give
the same answer, which is huge: 118,034,464.

(b) Now keep items ij primary, but introduce 60 new secondary items ij′. There
are 60 new options ‘ij ij′ (i+1)j′ i(j+1)′ (i+1)(j+1)′’, where we omit items containing
(i+1) when i = 2 or (j+1) when j = 19. This problem has 1254 options involving 73+61
items. Its search tree (with deprecated # branching) has about 950 million nodes; it
finds 4,527,002 solutions, after about 1.5 teramems of computation.

A related, but much simpler, problem asks for packings in which exactly one hole
appears in each of the column pairs {1, 2}, {5, 6}, {9, a}, {d, e}, {h, i}. That one has
1224 options, 78+1 items, 20 meganodes, 73 gigamems, and 23642 solutions. Here’s one:

︸ ︷︷ ︸

︷ ︸︸ ︷

(c) A setup like the one in (a) yields 1127 options, 13+58 items, 1130 meganodes,
2683 gigamems, 22237 solutions. (One of the noteworthy solutions is illustrated above.)

274. Restrict X to five essentially different positions; if X is on the diagonal, also keep
Z unflipped by using the secondary item ‘s’ as in answer 268. There are respectively
(16146, 24600, 23619, 60608, 25943) solutions, found in (20.3, 36.3, 28.0, 68.3, 35.2) Gμ.

In each case the tetromino can be placed anywhere that doesn’t immediately cut off
a region of one or two squares. [The twelve pentominoes first appeared in print when
H. E. Dudeney published The Canterbury Puzzles in 1907. His puzzle #74, “The
Broken Chessboard,” presented the first solution shown above, with pieces checkered
in black and white. That parity restriction, with the further condition that no piece is
turned over, would reduce the number of solutions to only 4, findable in 120 Mμ.]

The 60-element subsets of the chessboard that can’t be packed with the pentomi-
noes have been characterized by M. Reid in JRM 26 (1994), 153–154.

The earliest known polyomino puzzle appeared in P. F. Catel’s Verzeichniß von

sämmtlichen Waaren (Berlin, 1785), #11: 4 Z pentominoes + 4 ells make a 6×6 square.

487

From the Library of Melissa Nuno

ptg999

488 ANSWERS TO EXERCISES 7.2.2.1

275. Yes, in seven essentially different ways. To remove symmetry, we can make
the O vertical and put the X in the right half. (The pentominoes will have a total
of 6× 2 + 5× 3 + 4 = 31 black squares; therefore the tetromino must be .)

276. These shapes can’t be packed in a rectangle. But we can use the “supertile”
to make an infinite strip · · · · · · . [See B. Grünbaum and G. C. Shephard,
Tilings and Patterns (1987), 508.] We can also tile the plane with a supertile like ,
or even use a generalized torus such as (see exercise 7–137). That supertile was
used in 2009 by George Sicherman to make tetromino wallpaper.

277. The 2339 solutions contain 563 that satisfy the “tatami” condition: No four pieces
meet at any one point. Each of those 563 leads to a simple 12-vertex graph coloring
problem; for example, the SAT methods of Section 7.2.2.2 typically need at most two
or three kilomems to decide each case.

It turns out that exactly 94 are three-colorable, including the second solution to
exercise 272(b). Here are the three for which W, X, Y, Z all have the same color:

278. The 2339 solutions in answer 271 restrict X to the upper left quarter; we must
be careful not to include bipairs that might swap X out of that region. One way (see
exercise 212) is to order the items: Put X first, then the other piece names, then the
place names from 00 to 59. All swaps involving X will then move it up or left.

The 34 bipairs of the catalog now result in an exact cover problem with the same
primary items and options as before, but with 2804 new secondary items. They limit
the number of solutions to 1523; but the running time increases to 4.26 Gμ.

[The proof idea of Theorem S yields an interesting directed acyclic graph with
2339 vertices and 937 arcs. It has 1528 source vertices, 1523 sink vertices, and 939
isolated vertices (both sources and sinks). If we ignore the arc directions, there are
1499 components, of which the largest has size 10. That component contains the
leftmost solution below, which belongs to four different bipairs. There also are two com-
ponents of size 8, with three nonoverlapping bipairs. The rightmost solution belongs to
a component of size 6, which would grow to size 8 if X were allowed to move downward.]

279. It’s also possible to wrap two cubes of size
√
5×√5×√5,

as shown by F. Hansson; see Fairy Chess Review 6 (1947–
1948), problems 7124 and 7591. A full discussion appears in
FGbook, pages 685–689.

280. (Notice that width 3 would be impossible, because every faultfree placement of
the V needs width 4 or more.) We can set up an exact cover problem for a 4 × 19
rectangle in the usual way; but then we make cell (x, y + 15) identical to (3− x, y) for
0 ≤ x < 4 and 0 ≤ y < 5, essentially making a half-twist when the pattern begins to
wrap around. There are 60 symmetries, and care is needed to remove them properly.
The easiest way is to put X into a fixed position, and allow W to rotate at most 90◦.

488

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 489

This exact cover problem has 850 solutions, 502 of which are faultfree. Here’s
one of the 29 strongly three-colorable ones, shown before and after its ends are joined:

top: bottom:

281. Both shapes have 8-fold symmetry, so we can save a factor of nearly 8 by placing
the X in (say) the north-northwest octant. If X thereby falls on the diagonal, or in
the middle column, we can insist that the Z is not flipped, by introducing a secondary
item ‘s’ as in answer 270. Furthermore, if X occurs in dead center—this is possible
only for shape (i)—we use ‘c’ as in that answer to prohibit also any rotation of the W.

Thus we find (a) 10 packings, in 3.5 Gμ; (b) 7302 packings, in 353 Gμ; for instance

, ; .

It turns out that the monomino must appear in or next to a corner, as shown. [The
first solution to shape (i) with monomino in the corner was sent to Martin Gardner
by H. Hawkins in 1958. The first solution of the other type was published by J. A.
Lindon in Recreational Mathematics Magazine #6 (December 1961), 22. Shape (ii)
was introduced and solved much earlier, by G. Fuhlendorf in The Problemist: Fairy

Chess Supplement 2, 17 and 18 (April and June, 1936), problem 2410.]

282. It’s easy to set up an exact cover problem in which the cells touching the poly-
omino are primary items, while other cells are secondary, and with options restricted
to placements that contain at least one primary item. Postprocessing can then remove
spurious solutions that contain holes. Typical answers for (a) are

representing respectively (9, 2153, 37, 2, 17, 28, 18, 10, 9, 2, 4, 1) cases. For (b) they’re

representing (16, 642, 1, 469, 551, 18, 24, 6, 4, 2, 162, 1). The total number of fences
is respectively (3120, 1015033, 8660380, 284697, 1623023, 486, 150, 2914, 15707, 2,
456676, 2074), after weeding out respectively (0, 0, 16387236, 398495, 2503512, 665,
600, 11456, 0, 0, 449139, 5379) cases with holes. (See MAA Focus 36, 3 (June/July

489

From the Library of Melissa Nuno

ptg999

490 ANSWERS TO EXERCISES 7.2.2.1

2016), 26; 36, 4 (August/September 2016), 33.) Of course we can also make fences for
one shape by using other shapes; for example, there’s a beautiful way to fence a Z with
12 Ps, also a unique way to fence one pentomino with only three copies of another.

283. The small fences of answer 282(a) already meet this condition—except for the
X, which has no tatami fence. The large fences for T and U in 282(b) are also good.
But the other nine fences can no longer be as large:

[The tatami condition can be incorporated into the exact cover problem by intro-
ducing a secondary item /ij for each interior point ij. Add this item to every placement
option that has a convex corner at ij and occupies either the cell to the northeast or
the cell to the southwest. However, for this exercise it’s best simply to apply the tatami
condition directly to each ordinary solution, before postprocessing for hole-removal.]

284. This problem is readily solved with the “second death” algorithm of exer-
cise 19, by letting the four designated piece names be the only primary items.
The answers to both (a) and (b) are unique. [See M. Gardner, Scientific Amer-

ican 213, 4 (October 1965), 96–102, for Golomb’s conjectures about minimum
blocking configurations on larger boards.]

285. This exercise, with 3 × 30, 5 × 18, 6 × 15, and 9 × 10 rectangles, yields four
increasingly difficult benchmarks for the exact cover problem, having respectively (46,
686628, 2567183, 10440433) solutions. Symmetry can be broken as in answer 270. The
3×30 case was first resolved by J. Haselgrove; the 9×10 packings were first enumerated
by A. Wassermann and P. Österg̊ard, independently. [See New Scientist 12 (1962), 260–
261; J. Meeus, JRM 6 (1973), 215–220; and FGbook pages 455, 468–469.] Algorithm X
needs (.006, 5.234, 15.576, 63.386) teramems to find them.

286. Two solutions are now equivalent only when related by 180◦ rotation. Thus there
are 2 · 2339/64 = 73.09375 solutions per problem, on average. The minimum (42) and
maximum (136) solution counts occur for the cases

(a) ; (b) .

[In U.S. Patent 2900190 (1959, filed 1956), J. Pestieau remarked that these 64 problems
would give his pentomino puzzle “unlimited life and utility.”]

287. Let c = (12, 11, . . . , 1) for pieces (O,P, . . . ,Z) when assigning costs to each option.
Algorithm X$, when told that every option contains one piece and five cells, finds

(each of these least-cost solutions is unique)

490

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 491

in respectively (1.5, 3.4, 3.3, 2.9, 3.2, 1.4, 1.1) Gμ. The corresponding times for Algo-
rithm X are (3.7, 10.0, 16.4, 16.4, 10.0, 3.7, 2.0) Gμ. (However, we could reduce
symmetry when applying Algorithm X, then calculate the values of four or eight differ-
ent reflections or rotations whenever a solution is found; that would often be faster.)

288. When symmetry is removed efficiently, Algorithm X needs 63 Tμ to visit all of the
essentially different solutions. But Algorithm X$ wins this competition, by discovering

(which both are uniquely optimum) in 28.9 Tμ and 25.1 Tμ, respectively.

289. (a) One of the 8·2422·85·263·95·224·262·226·228·96·105·174 solutions is shown
in Fig. A–4. (It isn’t hard to keep pentominoes of the same shape from touching.)

(b) Now there are 1472 · 5915 · 596 · 251 · 542 · 204 · 170 · 226 · 228 · 96 · 651 · 316.
(c) The first seven columns left of the middle line can yield six 12-cell regions only

by using all 72 cells. Thus the problem factors neatly into ten independent problems of
the form (i). That problem has 7712 solutions with six connected regions; Algorithm X$

needs a search tree of only 622 nodes to determine that there are just 11 minimum-
perimeter solutions. Three of them are symmetrical; and the nicest is shown in (ii).
(And two of the solutions, such as (iii), maximize the total perimeter.)

(i) = ; (ii) = ; (iii) = .

Unfortunately (36) can’t be expanded into the desired 720-cell shape based on (ii),
because the scaled-up Q can’t be packed. But the alternative form of (36) does lead to
16 · 2139 · 6 · 97 · 259 · 111 · 44 · 64 · 79 · 12 · 17 · 111 solutions, such as the one in Fig. A–4.

290. There are no ways to fill 2× 20; 4 · 66 ways to fill 4× 10;
4 · 84 ways to fill 5× 8. None of the solutions are symmetrical.
[See R. K. Guy, Nabla 7 (1960), 99–101.]

291. The puzzles for January, April, September, and December (say) are equivalent;
thus only 4·31 = 124 puzzles need to be solvable, not 366. Only 53 of the 220 pentomino
triples are unsuitable: First reject all 55 that include X, and all 10 that are subsets
of {O,R, S,W,Z}; then restore P{O,Q, S,T,U,V,Y}X and ORS, OSW, RSW; then
reject RTZ and TWZ. Of the remaining 167 triples, PQV is by far the easiest: Every
PQV puzzle has at least 1778 solutions! The hardest is QTX, which allows only about
33 solutions per day, on average. [This puzzle was designed by Marcel Gillen, c© 2018,
who made it with pentominoes R, U, W for the 2018 International Puzzle Party.]

292. Most of the hexominoes will have three black cells and three white cells, in any
“checkering” of the board. However, eleven of them (shown as darker gray in the
illustration) will have a two-to-four split. Thus the total number of black cells will
always be an even number between 94 and 116, inclusive. But a 210-cell rectangle

491

From the Library of Melissa Nuno

ptg999

492 ANSWERS TO EXERCISES 7.2.2.1

Fig. A–4. Pentominoes of pentominoes.

always contains exactly 105 black cells. [See The Problemist: Fairy Chess Supplement

2, 9–10 (1934–1935), 92, 104–105; Fairy Chess Review 3, 4–5 (1937), problem 2622.]
Benjamin’s triangular shape, on the other hand, has 1+3+5+· · ·+19 = 102 = 100

cells of one parity and
(
21
2

) − 102 = 110 of the other. It can be packed with the 35
hexominoes in a huge number of ways, probably not feasible to count exactly.

293. The parity considerations in answer 292 tell us that this is possible only for the
“unbalanced” hexominoes, such as the one shown. And in fact, Algorithm X readily
finds solutions for all eleven of those, too numerous to count. Here’s an example:

[See Fairy Chess Review 6 (April 1947) through 7 (June 1949), problems 7252, 7326,
7388, 7460, 7592, 7728, 7794, 7865, 7940, 7995, 8080. See also the similar problem 7092.]

294. Each castle must contain an odd number of the eleven unbalanced hexominoes
(see answer 292). Thus we can begin by finding all sets of seven hexominoes that can
be packed into a castle: This amounts to solving

(
11
1

)
+
(
11
3

)
+
(
11
5

)
+
(
11
7

)
= 968 exact

cover problems, one for each potential choice of unbalanced elements. Each of those
problems is fairly easy; the 24 balanced hexominoes provide secondary items, while the
castle cells and the chosen unbalanced elements are primary. In this way we obtain
39411 suitable sets of seven hexominoes, with only a moderate amount of computation.

That gives us another exact cover problem, having 35 items and 39411 options.
This secondary problem turns out to have exactly 1201 solutions (found in just 115 Gμ),
each of which leads to at least one of the desired overall packings. Here’s one:

In this example, two of the hexominoes in the rightmost castle can be flipped vertically;
and of course the entire contents of each castle can independently be flipped horizon-
tally. Thus we get 64 packings from this particular partition of the hexominoes (or

492

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 493

maybe 64 · 5!, by permuting the castles), but only two of them are “really” distinct.
Taking multiplicities into account, there are 1803 “really” distinct packings altogether.

[Frans Hansson found the first way to pack the hexominoes into five equal shapes,
using as the container; see Fairy Chess Review 8 (1952–1953), problem 9442. His
container admits 123189 suitable sets of seven, and 9298602 partitions into five suitable
sets instead of only 1201. Even more packings are possible with the container ,
which has 202289 suitable sets and 3767481163 partitions!]

In 1965, M. J. Povah packed all of the hexominoes into containers of shape ,
using seven sets of five; see The Games and Puzzles Journal 2 (1996), 206.

295. By exercise 292, m must be odd, and less than 35. F. Hansson posed this question
in Fairy Chess Review 7 (1950), problem 8556. He gave a solution for m = 19,

,

and claimed without proof that 19 is maximum. The 13 dark gray hexominoes in this
diagram cannot be placed in either “arm”; so they must go in the center. (Medium gray
indicates pieces that have parity restrictions in the arms.) Thus we cannot havem ≥ 25.

When m = 23, there are 39 ways to place all of the hard hexominoes, such as

.

However, none of these is completable with the other 22; hence m ≤ 21.
When m = 21, the hard hexominoes can be placed in 791792 ways, without

creating a region whose size isn’t a multiple of 6 and without creating more than one
region that matches a particular hexomino. Those 791792 ways have 69507 essentially
distinct “footprints” of occupied cells, and the vast majority of those footprints appear
to be impossible to fill. But in 2016, George Sicherman found the remarkable packing

,

which not only solvesm = 21, it yields solutions form = 19, 17, 15, 11, 9, 7, 5, and 3 by
simple modifications. Sicherman also found separate solutions for m = 13 and m = 1.

296. Stead’s original solution makes a very pleasant three-colored design:

[See Fairy Chess Review 9 (1954), 2–4; also FGbook, pages 659–662.]
This problem is best solved via the techniques of dynamic programming (Sec-

tion 7.7), not with Algorithm X, because numerous subproblems are equivalent.

297. Yes— in fact, there are so many ways, further conditions ought to be imposed.
Torbijn’s original quest, to leave a hexomino-shaped “hole” in one square, turns out to
have been impossible. But there’s a nice alternative: We can add the two trominoes.

A. van de Wetering showed in 1991 that exactly 13710 sets of six hexominoes can
fit into a single square. [See JRM 23 (1991), 304–305.] Similarly, exactly 34527 sets of
five hexominoes will fit, when supplemented by two trominoes that both occupy two

493

From the Library of Melissa Nuno

ptg999

494 ANSWERS TO EXERCISES 7.2.2.1

black cells. So we’re left with a secondary covering problem, with 35 primary items
and 48237 options, as in answer 294. That problem has 163 solutions (found in 3 Tμ).

Another alternative, also suggested by van de Wetering, is to place six empty
cells symmetrically. He also was able to add a monomino and one of the pentominoes:
The secondary covering problems associated with pentominoes (O, P, . . . , Z) turn out
to have (94, 475, 1099, 0, 0, 2, 181, 522, 0, 0, 183, 0) solutions.

298. Make options for the pentominoes in cells xy for 0 ≤ x < 8, 0 ≤ y < 10 as in
exercise 266, and also for the tetrominoes in cells xy for 1 ≤ x < 7, 1 ≤ y < 9. In the
latter options include also items xy′:0 for all cells xy in the tetromino, as well as xy′:1
for all other cells xy touching the tetromino, where the items xy′ for 0 ≤ x < 8 and
0 ≤ y < 10 are secondary. We can also assume that the center of the X pentomino lies
in the upper left corner. There are 168 solutions, found after 1.5 Tμ of computation.
(Another way to keep the tetrominoes from touching would be to introduce secondary
items for the vertices of the grid. Such items are more difficult to implement, however,
because they behave differently under the rotations of answer 266.)

[Many problems that involve placing the tetrominoes and pentominoes together
in a rectangle were explored by H. D. Benjamin and others in the Fairy Chess Review,
beginning already with its predecessor The Problemist: Fairy Chess Supplement 2, 16
(February 1936), problem 2171. But this question seems to be new; it was inspired by
Michael Keller’s 15 × 18 pentomino + hexomino construction in World Game Review

9 (1989), 3. See also P. Torbijn’s elegant 13 × 23 packing of all the n-ominoes for
1 ≤ n ≤ 6, in Cubism For Fun 25, part 1 (1990), 11.]

299. P. J. Torbijn and J. Meeus [JRM 32 (2003), 78–79] have exhibited solutions for
rectangles of sizes 6 × 45, 9 × 30, 10 × 27, and 15 × 18; thus intuition suggests that
enormously many solutions ought to be possible for this case too. But Peter Esser has
surprisingly proved that no packing of the 35 hexominoes into a 5 × 54 rectangle will
occupy all 114 of the border cells. Indeed, the pieces can individually occupy at most
(6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 5 + x24, 4 + x25, 4 + x26,
4+x27, 3+x28, 3+x29, 3+x30, 2+x31, 2+x32, 4+2x33, 3+2x34, 3+2x35) border cells,
respectively, under an appropriate numbering of the pieces, where xk = 1 only if piece k
is in a corner. Since there are only four corners, we can occupy at most 6+5+· · ·+4+3+
3+(1+2+2+2) = 114 border cells—but only if x33 = x34 = x35 = 1. Unfortunately,
those last three pieces (namely , ,) can’t simultaneously occupy corners.

300. Make options as usual (exercise 266), but also include 100 new options ‘xy Rx
Cy’ for 0 ≤ x, y < 10. Then use Algorithm M, assigning multiplicity 4 to each Rx and
Cy. Remove symmetry by confining X to the upper left corner, and by insisting that
O be horizontal. (a) One of the 31 solutions (found in 12 Gμ) is shown below. (b)
This case has 5347 solutions (found in 4.6 Tμ); and if we insist on filling also all cells
just above the diagonals, the solution turns out to be unique (see below). (c) Instead
of focusing on diagonals, Aad van de Wetering noticed that we can require the empty
spaces to be symmetrical. For example, there are 1094 solutions (found in 19.2 Tμ)

494

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 495

whose empty spaces are diagonally symmetric. Three of them, like the one shown here,
are also rather close (92%) to being centrally symmetric (that is, under 180◦ rotation).

Three others, like the fourth example above, leave a 4×4 hole in the corner. Moreover,
there are 98 solutions (found in 3.2 Tμ) whose empty spaces have 100% central sym-
metry. One of them has a large “moat” between two blocks of pentominoes; another
has connected pentominoes, with holes of size at least 6.

Furthermore, van de Wetering reported that he had found “by accident” a solution
where each of the four 5× 5 quadrants of the 10× 10 contained exactly three pentom-
inoes. This additional stipulation is, indeed, easy to add to our MCC formulation: We
omit options that cross quadrant boundaries, append a new item Qt to each option in
the tth quadrant, and give multiplicity 3 to each Qt. It turns out that there actually
are 1,124,352 inequivalent solutions(!), found by Algorithm M in 23 Tμ.

But van de Wetering also discovered a class of solutions that’s even more inter-
esting: He packed the empty spaces entirely with “ghost” pentominoes, all different!

To obtain such remarkable solutions, use primary items #xy, !xy, #Rx, and #Cy for
0 ≤ x, y < 10, as well as O, P, . . . , Z; use secondary items xy as well as O′, P′, . . . , Z′.
Items #Rx and #Cy have multiplicity 4. Specify two options for each pentomino
placement, such as ‘V !00 00:1 !01 01:1 !02 02:1 !10 10:1 !20 20:1’ for V in the corner and
‘V′ !00 00:0 !01 01:0 !02 02:0 !10 10:0 !20 20:0’ for its ghost in that place. Also specify 200
further options, ‘#xy #Rx #Cy xy:0’ and ‘#xy xy:1’, for 0 ≤ x, y < 10. Algorithm M
with the nonsharp heuristic will then make intelligent choices. There are (amazingly)
357 solutions, found in 322 teramems with a search tree of 32 giganodes. The first
solution above is one of six that cover exactly six cells of each main diagonal, answering
a question that had been posed by Aad Thoen. The second solution is one of two for
which all seven of the “unambiguously named pentominoes” T, U, V, W, X, Y, Z are
among the ghosts. The third solution is one of two that respects 5×5 quadrants. [Note:
A similar question, but with identical polyominoes, was Erich Friedman’s “problem of
the month” in May 2007; see erich-friedman.github.io/mathmagic/0507.html.]

301. (a) Algorithm M produces 4 · 13330 solutions when we specify the desired multi-
plicities for cell items. Symmetry under reflection can be removed by restricting, say,
W to only 1/4 of its options.

(b) Consider the conflict graph on vertices O, P, . . . , Z, defined by declaring pieces
to be adjacent when they appear in the same cell. We can achieve ≤ d levels if and
only if we can color that graph with ≤ d colors. The conflict graph for the given
arrangement has the 4-clique {Q, X, Y, Z}; so it can’t be 3-colored.

(c, d) A SAT solver such as Algorithm 7.2.2.2D quickly determines that exactly
(587, 12550, 193) of the conflict graphs for the 13330 distinct solutions to (a) have

495

From the Library of Melissa Nuno

http://erich-friedman.github.io/mathmagic/0507.html

ptg999

496 ANSWERS TO EXERCISES 7.2.2.1

chromatic numbers (3, 4, 5). The first example below can be (uniquely) 3-colored
O V Y Z | P R W X | Q S T U; the second example has the clique {Q, R, S, W, Y}.

OU XY UW WZ SZ

OUX UXY UXY SWZ SVW

OT XY RZ SZ VW

ORT RTY RTV PSV PQV

OT QR PQ PQ PQ

QY QR TU TX TU

RSY QRY RUX UTX UVX

SY QW RW TX VZ

SWY QSW PVZ PVZ PVZ

OW OS OZ OP OP

302. (a) There are 94. (But 16 of them have interior “holes” and can’t be used in (b).)
(b) The two solutions are related by rotating four of the pieces:

3 1 4
. . 1 5 9 2 6 . .
. 5
. 3

5 8 9
. . 7 . . . 9 3 2
. 3 8 . .
. . . 4 6
2 6 . . 4

(c) Sixteen different jigsaw sudoku diagrams can be used. The first of them collab-
orates with π as shown above; the others probably do too. [Appendix E has the answer.
This exercise was suggested by E. Timmermans, Cubism For Fun 85 (2011), 4–9.]

303. (a) Represent the tree as a sequence a0a1 . . . a2n−1 of nested parentheses; then
a0 will match a2n−1. The left boundary of the corresponding parallomino is obtained
by mapping each ‘(’ into N or E, according as it is immediately followed by ‘(’ or ‘)’.
The right boundary, similarly, maps each ‘)’ into N or E according as it is immediately
preceded by ‘)’ or ‘(’. For example, if we take 7.2.1.6–(1) and enclose it in an additional
pair of parentheses, the corresponding parallomino is shown below with part (d).

(b) This series wxy + w2(xy2 + x2y) + w3(xy3 + 2x2y2 + x3y) + · · · can be
written wxyH(w,wx,wy), where H(w, x, y) = 1/(1 − x − y − G(w, x, y)) generates
a sequence of “atoms” corresponding to places x, y, G where the juxtaposed boundary
paths have the respective forms E

E,
N
N, or

N
E〈inner〉EN. The area is thereby computed by

diagonals between corresponding boundary points. (In the example from (a), the area is
1+1+1+1+2+2+2+2+2+2+2+2+2+1+1; there’s an “outer” G, whoseH is yxyGy,
and an “inner” G, whose H is xyyxyxxy.) Thus we can write G as a continued fraction,

G(w, x, y) = wxy/(1− wx− wy − w3xy/(1− w2x− w2y − w5xy/(· · ·))).
[A completely different form is also possible, namely G(w, x, y) = xJ1(w,x,y)

J0(w,x,y)
, where

J0(w, x, y) =

∞∑
n=0

(−1)nynwn(n+1)/2

(1− w)(1− w2) . . . (1− wn)(1− xw)(1− xw2) . . . (1− xwn)
;

J1(w, x, y) =

∞∑
n=1

(−1)n−1ynwn(n+1)/2

(1− w)(1− w2) . . . (1− wn−1)(1− xw)(1− xw2) . . . (1− xwn)
.

This form, derived via horizontal slices, disguises the symmetry between x and y.]
(c) Let G(w, z) = G(w, z, z). We want [zn]G′(1, z), where differentiation is with

respect to the first parameter. From the formulas in (b) we know that G(1, z) =

496

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 497

z(C(z)− 1), where C(z) = (1−√
1−4z)/(2z) generates the Catalan numbers. Partial

derivatives ∂/∂w and ∂/∂z then give G′(1, z) = z2/(1−4z) and G′(1, z) = 1/
√
1−4z−1.

(d) This problem has four symmetries, because we can reflect about either di-
agonal. When n = 5, Algorithm X finds 801 × 4 solutions, of which 129 × 4 satisfy
the tatami condition, and 16× 4 are strongly three-colorable. (The tatami condition is
easily enforced via secondary items in this case, because we need only stipulate that the
upper right corner of one parallomino doesn’t match the lower left corner of another.)
When n = 6 there are oodles and oodles of solutions. All of the trees/parallominoes
thereby appear together in an attractive compact pattern.

21

12 53

44 85 a6

3f 78 97

6a 78 b9

3f 6a 6a db fc

3f 3f ce ed

3f ce

3f

[References: J. Levine, Scripta Mathematica 24 (1959), 335–338; D. A. Klarner
and R. L. Rivest, Discrete Math. 8 (1974), 31–40; E. A. Bender, Discrete Math. 8

(1974), 219–226; I. P. Goulden and D. M. Jackson, Combinatorial Enumeration (New
York: Wiley, 1983), exercise 5.5.2; M.-P. Delest and G. Viennot, Theoretical Comp. Sci.

34 (1984), 169–206; W.-J. Woan, L. Shapiro, and D. G. Rogers, AMM 104 (1997),
926–931; P. Flajolet and R. Sedgewick, Analytic Combinatorics (2009), 660–662.]

304. E. D. Demaine and M. L. Demaine [Graphs and Combinatorics 23 (2007), Sup-
plement, 195–208] show the NP-completeness also of several other related problems,
such as to exactly pack given boxes of sizes {1×x1, . . . , 1×xn} into a given rectangle.

305. A scheme of “even/odd coordinates” (see exercise 145 and answer 133) works
beautifully to represent the space occupied by a windmill domino: Encode the large
square in row i and column j by the ordered pair (2i+1)(2j+1); encode the small
“tilted” square that overlaps two adjacent large squares by the midpoint between them.
Then, for example, ‘15’ is the large square in row 0 and column 2; ‘25’ is the small tilted
square whose top and bottom halves are the bottom and top quarters of 15 and 35.
Large squares have area 4; small tilted squares have area 2; the encoding of each square
specifies the coordinates of its center point. The relevant coordinates xy in anm×n box
satisfy 0 < x < 2n and 0 < y < 2m, where x and y are integers that aren’t both even.

Therefore the possible placements of the leftmost windmill domino are either
{13, 15, 12, 23}+(2k, 2l), {33, 53, 23, 32}+(2k, 2l), {33, 31, 34, 23}+(2k, 2l), or {31, 11,
41, 32}+ (2k, 2l), where k and l are nonnegative integers.

(a) Here it suffices to use a 5 × 5 box, and to require that the small squares of
each option are either {34, 45}, {47, 56}, {76, 65}, or {63, 54}. Each piece has exactly
four such options; for example, if we call the leftmost piece ‘0’, its options are ‘0 35

37 34 45’, ‘0 57 77 47 56’, ‘0 53 33 63 54’, ‘0 75 73 76 65’. The problem has 4 · 183
solutions, in groups of four that are related by 90◦ rotation. Here are six of the eight
classes of equivalent solutions whose large squares form a symmetric shape:

497

From the Library of Melissa Nuno

ptg999

498 ANSWERS TO EXERCISES 7.2.2.1

(b) Algorithm X quickly finds 501484 = 2 · 4+4 · 125369 solutions, including four
classes that are symmetric under reflection and 125369 unsymmetric classes. One of
the symmetric examples is shown below; also one of the 164 asymmetric classes whose
small squares do at least form a symmetric shape.

(c) The 288 = 2 · 4 + 4 · 70 solutions include four symmetric classes (like the one
shown) and 70 that have no symmetry.

(d) We can set this up as a 7 × 7 problem in which the small squares form a
rectangle whose corners are {47, 74, 8b, b8}. It has 2 · 2696 solutions, all asymmetric;
2 · 95 of them fit in a 5 × 5 box, and 2 · 3 of them have large squares that form the
symmetric shape shown.

(e) Now there are two possibilities: We might have an 8 × 8 box, with small
squares in the rectangle whose corners are {34, 43, cd, dc}; or we might have a 9 × 9
box, with small squares confined to the rectangle {45, 54, de, ed}. The first case has
69120 = 2 · 4 + 4 · 17278 solutions, four with reflective symmetry; the second case has
a whopping 157398 = 2 · 75 + 4 · 39312 solutions, with 75 classes unchanged under
reflection. Symmetric solutions of both types are shown.

306. Introduce items 0 to 9 and xy as in the previous answer, as well as pxy and #xy;
again x and y aren’t both even, and 0 < x < 2n, 0 < y < 2m. Here pxy and #xy
are primary, but the xy items are secondary. Options of the first kind, like ‘0 p35 35:1
p37 37:1 p34 34:1 p45 45:1’, specify placement of a piece. Options of the second kind,
‘pxy xy:0’, allow square xy to be empty. Options of the third kind, either ‘#xy xy:0’
or ‘#xy xy:1 (x−2)y:a (x+2)y:b x(y−2):c x(y+2):d’ for binary variables a, b, c, d with
a + b + c + d = 2, and where both x and y are odd, enforce the snake condition for
large squares. Options of the fourth kind, either ‘#xy xy:0’ or ‘#xy xy:1 (x−1)(y−1):a
(x−1)(y+1):b (x+1)(y−1):c (x+1)(y+1):d’ and where x + y is odd, enforce the snake
condition for small squares. Nonsharp branching (exercise 10) should be used.

Those options unfortunately produce a huge number of spurious solutions con-
taining 4-cycles. One can rule out the 4-cycle whose large squares have a given x′y′

as midpoint by using Algorithm M and introducing a new primary item #x′y′ whose
multiplicity is [0 . . 3]. (Notice that x′ and y′ are both even.) This primary item is
appended to every option of type 3 that begins with ‘#xy xy:1’, where xy is one of
the four squares touching point x′y′. The 4-cycles of small squares can be ruled out
similarly, with new primary items #xy!, where x+ y is even.

Every snake-in-the-box cycle of 20 large squares will fit into a box of size 3 × 9,
4×8, 5×7, or 6×6; and AlgorithmM finds respectively (0, 0, 4·9, 8·8) solutions in those
four cases. Six of the eight 6 × 6 equivalence classes are, however, spurious solutions,
because their small squares form an 8-cycle and a 12-cycle instead of a single 20-
cycle. Thus there are eleven essentially different solutions. Two of each size are shown
below. [The middle two examples show two of the large squares touching at a corner.

498

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 499

The definition of snake-in-the-box cycles allows this to happen; but five of the eleven
solutions don’t have this “defect.” See Cubism For Fun 41 (October 1996), 30–32.]

307. “Factoring” with the residues (i − j) mod 3 and (i + j) mod 3, we see that the
domino must go into adjacent cells with (i− j) mod 3 �= 1 and (i+ j) mod 3 �= 2. That
means either {(3i, 3j), (3i, 3j+1)} or {(3i+1,3j+2), (3i+2, 3j+2)}. Conversely, it’s
easy to insert straight trominoes after placing a domino into any of those cell pairs.

308. (a) Each shape now has integer pairs of the forms (x, y) and (x, y)′. One elemen-
tary transformation, which rotates by 60◦, takes (x, y) !→ (x + y,−x)′ and (x, y)′ !→
(x+y+1,−x); the shape’s triangles should be shifted afterwards so that all coordinates
are nonnegative and as small as possible. The other elementary transformation, which
is a reflection, simply takes (x, y) !→ (y, x) and (x, y)′ !→ (y, x)′.

For convenience, let’s write just xy for (x, y). One tetriamond is the triangle of
size 2, {00, 01, 10, 00′}. It has two base placements; the other one is {01′, 10′, 11′, 11}.
Another tetriamond is “straight,” {00, 00′, 10, 10′}, and it has six base placements.
(Three of them, such as {00, 00′, 01, 01′}, involve reflection; hence that tetriamond
has two one-sided versions.) The remaining tetriamond is “bent,” {00′, 01, 10, 10′}, a
hexagon minus a diamond. Its six base placements are all obtained by rotation.

(b) Four of the 20-iamonds are convex, namely those parameterized by (6,4,0,0),
(10,10,1,0), (4,2,1,0), and (5,5,2,0) in the notation of exercise 143. But only (4,2,1,0)
can be packed with the four pentiamonds— in fact in two ways, differing by a bipair.

(c) The convex 30-iamonds (15,15,1,0) and (7,7,1,1) cannot be packed. But
(4,2,1,1), (5,5,3,0), (3,3,3,1) have respectively 3, 1, and 4 distinct solutions.

309. (a) (A, . . . , L) have respectively (6, 3, 6, 1, 6, 6, 12, 12, 6, 12, 12, 12) placements.
(The hexiamonds have also been given descriptive names: A = lobster (or heart);

B = butterfly (or spool); C = chevron (or bat); D = hexagon; E = crown (or boat); F =
snake (or wave); G = hook (or shoe); H = signpost (or pistol or airplane); I = bar (or
rhomboid); J = crook (or club or ladle); K = yacht (or steps); L = sphinx (or funnel).)

(b) Hexiamonds K and L are special, because they contain four triangles of one
kind (Δ or ∇) and two of the other (∇ or Δ). The other hexiamonds are balanced,
with three of each kind.

Eleven convex polygons are 72-iamonds, by exercise 143. Those with height less
than 4, namely (36, 36, 1, 0), (19, 17, 0, 0), (18, 18, 2, 0), and (12, 12, 3, 0), are unsolvable.
So is (9, 3, 0, 0), which is out of balance by 6. The other six are solvable; for example,

(11, 7, 0, 0)

2 · 76 solutions
(8, 8, 2, 2)

4 · 856 solutions
(9, 9, 4, 0)

2 · 74 solutions

499

From the Library of Melissa Nuno

ptg999

500 ANSWERS TO EXERCISES 7.2.2.1

(6, 2, 2, 1)

2 · 5885 solutions
(6, 6, 3, 2)

2 · 5916 solutions
(6, 6, 6, 0)

4 · 156 solutions

The shape (6, 2, 2, 1) is out of balance by 4. Consequently we can restrict K and L
to about half of the positions where they would otherwise fit. The running time to find
all solutions (without removing symmetry) thereby decreases, from 168 Gμ to 135 Gμ;
thus the parity theory helps here, but not as much as might be expected.

What about the one-sided hexiamonds (with “flipped” versions of F through L,
making 19 in all)? There are six convex polygons made up of 6 · 19 = 114 triangles,
and again the small-height ones (57, 57, 1, 0), (28, 28, 1, 1), (19, 19, 3, 0) are unsolvable.
The case (13, 9, 1, 0) has 1,687,429 solutions (found by Algorithm X in 11 Tμ). Shape
(8, 8, 3, 3) has 4,790,046 distinct solutions (103 Tμ); (9, 5, 2, 1) has 17,244,919 (98 Tμ).

(13, 9, 1, 0) (9, 5, 2, 1) (8, 8, 3, 3)

Historical notes: T. Scrutchin [U.S. Patent 895114 (1908)] described an early puz-
zle based on assembling checkered polyiamonds of sizes 3–7 into a large equilateral tri-
angle. The complete set of hexiamonds was perhaps first invented by Charles H. Lewis,
who submitted a paper about them to the American Mathematical Monthly in April
1958. His paper wasn’t judged worthy of publication; but a copy survives in the files
of Martin Gardner, to whom he had sent a preprint. (He’d been inspired by Martin’s
exposition of polyominoes in December 1957.) Lewis named his pieces hexotinoes, and
said that they belonged to the family of “polotinoes,” which began with the monotino,
the dotino, the trotino, three tetrotinoes, and four pentotinoes. He knew the parity
rule, and he exhibited one of the ways to pack all 12 hexotinoes into a 6× 6 rhombus.

Other people came up with similar ideas independently a few years later. It
was T. H. O’Beirne who coined the names “polyiamond” and “hexiamond”—to the
eternal dismay of language purists—first in letters to Richard Guy in 1960, then in
his popular weekly columns in New Scientist [12 (1961), 261, 316–317, 379, 706–707].
He introduced an intriguing problem about packing the one-sided hexiamonds into
the rosette shape formed by 19 hexagons (12 surrounding 6 surrounding 1); see pages
452–455 of FGbook for details. Martin Gardner wrote about the subject in Scientific

American 211, 6 (December 1964), 123–130, and hexiamonds were soon sold as pleasing
puzzles in Japan, Germany, the USA, and elsewhere. The 24 heptiamonds also have
many aficionados, but they are beyond the scope of this book.

The earliest papers about hexiamonds considered mostly standard shapes like
parallelograms, or shapes that are decidedly non-convex. Polygon (6, 2, 2, 1) above,
the “diaper,” may have first appeared as problem 130 in the Russian magazine Nauka
i Zhizn’ #6 (1969), 146; #7 (1969), 101; Michael Beeler enumerated its solutions in
HAKMEM (M.I.T. A.I. Laboratory, 1972), Hack 112. Polygon (6, 6, 3, 2) has apparently
not occurred previously in print, although it has more solutions than the others.

500

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 501

310. The container holds 4m+2 triangles; m = 18 doesn’t work, so we need at least six
empty cells. The author’s favorite way constrains them to be well-separated “teeth”:

311. H. Postl found a nice proof that N must be at least 190: Replace hexiamonds A,
G, K by the heptiamond that includes a hexagon. The twelve resulting pieces contain 75
triangles; enlarge them by appending quarter-size triangles around all the edges. This
adds 91 trapezoids and 163 quarter-triangles. The latter must occupy at least 91 +
(163−91)/3 = 115 triangles, because we can’t fill a triangle without using a trapezoid.

Exercise 7–137 explains how to obtain many generalized toruses that are com-
posed of 95 rhombuses; so we might as well make the repeating pattern as square as
possible by choosing (a, b, c, d) = (11,−4,−1, 9), as in the solution below. There are
(astonishingly) 321530 such packings, each of which represents 24 different solutions
when the heptiamonds revert to {A,G,K}. The example shown is one of only 1768
solutions for which the three resulting “females” attract three neighboring “males.”

[The smallest region for pentomino wallpaper has 143 cells. See A. Thoen and A. van
de Wetering, Facets of Pentominoes (2018), 95.]

312. Adrian Struyk wrapped the octahedron with hexiamonds, and showed it to Martin
Gardner in 1964. An attractive solution by Walter Stead (1970, unpublished),

,

doesn’t bend any piece in more than two places. (Incidentally, Thijs Notenboom showed
in 1967 how to wrap the icosahedron with the four pentiamonds.)

313. The whirled versions of pieces (A, . . . , L) can be packed in respectively (13, 2 · 2,
10, 6 · 55, 19, 2 · 10, 9, 10, 2 · 10, 18, 6, 20) ways. But with flipped whirls, the one-sided
pieces lead to different shapes, and the counts for (F, G, . . . , L) change to (2 · 6, 7, 8,
2 · 0, 25, 7, 8). Here’s how the pattern of answer 310 looks when scaled up by

√
12:

[The “whirl” in this exercise is the case n = 3 of an n-whirl, which has n2 + 3
triangles for n ≥ 2. In 1936, Maurits Escher visited the Alhambra and saw a pattern

501

From the Library of Melissa Nuno

ptg999

502 ANSWERS TO EXERCISES 7.2.2.1

related to the whirl tessellation. He was subsequently inspired to develop it much
further; see The World of M. C. Escher (1971), plates 84 and 199.]

314. To make the same shape from two pairs {a, b} and {c, d} of polyiamonds (or
polyominoes, etc.), choose an n-celled region A into which any solution will fit. Use
four primary items {a, b, c, d} and 6n secondary items 0α, 1α, aα, bα, cα, dα for each
cell α. For each placement ‘a α1 . . . αs’ in A, and each of the 2s sequences q1 . . . qs
with qk ∈ {c, d}, create the option ‘a 0α1 q1α1 . . . 0αs qsαs aβ1 . . . aβn−s’, where
{β1, . . . , βn−s} = A \ {α1, . . . , αs}. Also create similar options for each placement of b,
c, d, with the roles of (0, a, c, d) replaced respectively by (0, b, c, d), (1, c, a, b), (1, d, a, b).

Choose one of {a, b, c, d} (one-sided if possible) and restrict it to a single place-
ment. For the pentiamond problem, the author chose the piece a that includes a tetra-
hedron, and placed it in the center of a 70-iamond A. There are three separate cases,
depending on which piece is called b; they yielded three huge exact cover problems, each
of which had 15300 options of length 76 (thus total length 1.2 million). Yet Algorithm X
solved each problem in at most 1.5 Gμ, including 0.3 Gμ just to load the data.

The answer, as Sicherman observed, is unique. [See Ed Pegg Jr.’s blog,
www.mathpuzzle.com/30November2008.html. Solomon Golomb, in Recreational
Math.Mag. #5 (October 1961), 3–12, had shown that the twelve pentominoes
can be partitioned into three sets of four, each of which make congruent pairs.]

315. Proceed as in answer 308, but simply let (x, y) !→ (x+y, xmax−x); ignore (x, y)′.
[There’s also an even/odd coordinate system for hexagons, with hexagon xy

represented by (2x + 1, 2y + 1), and the edge between adjacent hexagons represented
by their average. Then 60◦ rotation takes (x, y) !→ (x+ y − 1, xmax − x+ 1).]

316. There are 12 · 12290 solutions, and it’s not hard to find one by hand. (The first
solutions were discovered independently by T. Marlow and E. Schwartz in 1966; the
total number was found by K. Noshita in 1974.) The example shown here
has the trihexes “maximally separated.” [The seven tetrahexes pack the
rhomboid {xy | 0 ≤ x < 4, 0 ≤ y < 7} in 2 · 9 ways, and the skew triangle
{xy | 0 ≤ x < 7, x ≤ y < 7} in 2 · 5 ways; but they can’t pack the triangle
{xy | 0 ≤ x < 7, 0 ≤ y < 7− x}.]
317. The scaled-up “bar,” “wave,” and “propeller” cannot be packed. But the “bee,”
“arch,” “boot,” and “worm” are doable in respectively 2 · 2, 1, 10, and 4 ways, such as

, , , .

[This problem was introduced by E. Schwartz in 1966 and independently by G. Edgar
in 1967, who showed their solutions to Martin Gardner. Edgar pointed out that the
rosettes can actually be placed in two ways—either rising or falling slightly from left
to right when put together. The three one-sided tetrahexes therefore lead to distinct

scaled-up shapes. Only one of those two is packable, for the boot and the worm; both
are impossible for the wave. The slight tilting accounts for some of the remarkable prop-
erties of R. W. Gosper’s “flowsnake” fractal; see M. Gardner, Scientific Amer. 235, 6
(December 1976), 124–128, 133; A. Vince, SIAM J. Discrete Math. 6 (1993), 501–521.]

318. The “holes” in the T-grid correspond to vertices of the infinite triangular grid;
and every hexagon of the T-grid is inside exactly one of the triangles made by those

502

From the Library of Melissa Nuno

http://www.mathpuzzle.com/30November2008.html

ptg999

7.2.2.1 ANSWERS TO EXERCISES 503

vertices. More formally, we can let

Δ (x, y) ↔ hexagon (x− y, x+ 2y + 1); ∇ (x, y)′ ↔ hexagon (x− y, x+ 2y + 2).

Adjacent triangles correspond to adjacent hexagons. The hexiamond hexahexes are

.

319. One way is to replace each square by a 3 × 3 array, representing , , , by
ooo
xoo
oxo ,

oxo
xoo
ooo,

oxo
oox
ooo,

ooo
oox
oxo . But it uses only 4 pixels out of 9. A more compact scheme is able to

use 4 pixels out of every 8: We rotate the pieces by 45◦ and represent , , , by
xo
xo, xxoo, oxox, ooxx, separated by oo

oo. For example, the 14 tetraboloes take the following forms:

· A A ·· A A ·
A · · A
A · · A

B B · ·
B B · ·· · B B· · B B

· C · · ·· C · · ·
C · · · ·
C · · C C· C C · ·

· D D ·
D · · D
D · · D· D D ·

E · · · ·
E · · · ·· E E · ·· E E · ·· · · E E

F · · · · ·
F · · F F ·· F F · · F· · · · · F

· G G
G · ·
G · ·· G G· G G

· · H H · ·
H H · · H H· · · · H H

I I · · I I · ·· · I I · · I I

J J · · J J ·· · J J · · J· · · · · · J
· K · ·· K · ·
K · · K
K · · K· K K ·

· · · L
L L · L· L L ·· L L ·

· · M M · ·· · M M · ·
M M · · M M

N N · · · ·· · N N · ·· · N N · ·· · · · N N

This scheme sets up a one-to-one correspondence between n-aboloes and 2n-ominoes
on the “H-grid,” which is the set of all pixels (x, y) with �x/2� + �y/2� even. (Each
2n-omino is kingwise connected; it actually consists of n dominoes.)

Formally speaking, let’s divide every square cell into four quarters, by cutting at
the diagonals. Then every n-abolo occupies 2n quarters; and the (north, east, south,
west) quarters of cell (x, y), in polyabolo coordinates, correspond respectively to cells
(2x− 2y, 2x+ 2y) + ((0, 1), (1, 1), (1, 0), (0, 0)) of the H-grid.

[After first seeing the H-grid versions of the tetraboloes, the author felt a foolish
but irresistible urge to pack them into a 10 × 12 box, putting seven of them in the
H-grid and the other seven in the complementary H-grid, leaving eight vacant pixels
at the sides. This corresponds to putting the tetraboloes into two layers of a certain
frame that’s capable of holding 29 halfsquares. It turned out that there are 8 ·305 ways
to do this (found by Algorithm X in 10 Gμ). For example:

· D D · · M M L L M M ·
D G G D C B B M M L L N
D G G D C B B M M L L N
G D D B B C H K L N N J
G C C B B C H K L N N J· G G C C F K H N K J E· F F A A F K H N K J E
F A A F F H H K K E E J
F A A I I H H I I E E J· I I A A I I E E J J ·

Nowadays, polyaboloes are often called “polytans,” based on their connection to classi-
cal tangram puzzles from 18th-century China. T. H. O’Beirne introduced polyaboloes
in New Scientist 13 (18 January 1962), 158–159.]

320. Every convex polyabolo can be characterized by six more-or-less independent
parameters: We start with an m×n rectangle, then cut off triangles of sizes a, b, c, d at
the lower left, lower right, upper right, and upper left corners, where a+b ≤ n, b+c ≤ m,
c+ d ≤ n, and d+ a ≤ m. The number of halfsquares is N = 2mn− a2 − b2 − c2 − d2.
To avoid duplicates, we require m ≤ n, and insist that (a, b, c, d) be lexicographically
greater than or equal to (b, a, d, c), (c, d, a, b), (d, c, b, a). Furthermore, if m = n, this
4-tuple (a, b, c, d) should also be lexicographically greater than or equal to (a, d, c, b),
(b, c, d, a), (c, b, a, d), (d, a, b, c).

503

From the Library of Melissa Nuno

ptg999

504 ANSWERS TO EXERCISES 7.2.2.1

The smallest positive area achievable with m < n is 2m(n−m) halfsquares; and
when m = n the smallest is 2n−1. Thus we must have n ≤ (N +2)/2, and it’s feasible
to backtrack through a finite number of cases.

There are 63 solutions when N = 56. But most of them are unpackable, because of
an important property noted by T. H. O’Beirne in 1962: Exactly five of the tetraboloes,
namely {E,G, J,K,L}, have an odd number of unmatched

√
2 sides in each direction.

It follows that a+ c (and b+ d) must be odd.
Just 10 of the 63 solutions pass this extra test. Two of those ten—(1×29; 1, 1, 0, 0)

and (3×11; 3, 1, 0, 0)—don’t work. But the other eight are achievable:

(7×7; 5, 1, 4, 0)
1836 solutions

(3×11; 2, 2, 1, 1)
2 · 236 solutions

(5×9; 5, 3, 0, 0)
772 solutions

(5×9; 4, 4, 1, 1)
2 · 747 solutions

∗

(5×7; 3, 2, 0, 1)
5365 solutions

(5×7; 3, 0, 2, 1)
5274 solutions

(5×7; 3, 1, 0, 2)
4828 solutions

(5×7; 3, 1, 2, 0)
4454 solutions

Most of them were cracked by E. S. Ainley in 1965; but H. Picciotto found ‘∗’ in 1989.
[This enumeration problem was first studied by F. T. Wang and C.-C. Hsiung,

AMM 49 (1942), 596–599, who proved that there are 20 convex 16-aboloes. The totals
for general N are OEIS sequence A245676, contributed by E. Fox-Epstein in 2014.]

321. [In a letter to Martin Gardner dated 12 March 1967, O’Beirne said that
he now knew of 13 solutions, with help from several readers. “Are these the
lot?” The answer is yes: The total is indeed 13. The solution shown here
leads to three of the others, via tricky rearrangements.]

322. (i) We can reduce polysticks to (disconnected) polyominoes, by 3-fold enlarge-
ment: Let vertex ij of a square grid correspond to pixel (3i)(3j); and let the line segment
between adjacent vertices ij−−− i′j′ correspond to the two pixels between (3i)(3j) and
(3i′)(3j′). Placements can intersect each other only at internal pixels where two parallel
segments touch; we can prevent crossing by making such pixels secondary.

For example, to pack the 6 × 6 array in the example, we use the pixels xy for
0 ≤ x, y ≤ 18, where x or y is a multiple of 3; item xy is secondary if 3 divides both x
and y. One of the options for the T-shaped tetrastick is ‘04 05 07 08 16 26 36 46 56’;
one of the options for the V-shaped tetrastick is ‘34 35 36 37 38 49 59 69 79 89’. The
secondary item 36 ensures that these options won’t both be chosen simultaneously.

(ii) Instead of scaling up by 3, we can scale up by 2, as in the even/odd coordinate
system, by letting vertex ij correspond to pixel (2i)(2j). Then segment ij −−− i′j′

corresponds to pixel (i+ i′)(j + j′); and the 6 × 6 example involves primary items xy
for 0 ≤ x, y ≤ 12 with x+ y odd, together with secondary items xy with x and y both
even. The example T and V options in this scheme become ‘03 05 14 24 34’ and ‘23 24
25 36 46 56’; now it’s the secondary item 24 that keeps them from interacting.

504

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 505

Scheme (i) can be used without change to answer 266. Scheme (ii) is almost
twice as fast; but answer 266 must then be modified so that it never shifts by odd
amounts. (Notice, for example, that the O and X tetrasticks each have only one base
placement in scheme (ii), namely ‘01 10 12 21’ and ‘12 21 23 32’. Shifting by 11 would
change O to X and vice versa!) Thus, 90◦ rotation must be redefined as (x, y) !→
(y, xmax + (xmax & 1)− x), in the modified answer 266; also, δx and δy must be even.

[Polysticks were named and explored by B. R. Barwell in JRM 22 (1990), 165–
175. They had actually been studied in the 1940s by H. D. Benjamin and T. R. Dawson,
who already knew how to pack the pieces for n ≤ 4 into a 6× 6 grid; see G. P. Jelliss,
JRM 29 (1998), 140–142. See also FGbook, pages 457–472.]

323. (a) For example, the vertices (m,n) of an ordinary square grid can be skewed to

(m,n)′ = (m− (nmod 2)ε, n− (mmod 2)ε), where ε is the degree of skew.

Notice that each square of the skewed grid has a clockwise or counterclockwise “spin.”

(b) There’s a nice way to represent each square as a 5-pixel cross, and each
rhombus as a 3-pixel diagonal. For example, here are pixel equivalents of the tetraskews:

· I · · i I · · i
I I I i I I I i ·· I i · · I i · ·

k · · · · · ·· k · · · · ·· K k · k K ·
K K K k K K K· K k · · K ·

· · l · · · ·· l · · · · ·
l L l · · L ·
L L L l L L L· L · · l L ·

q · · Q ·· q Q Q Q· Q q Q q
Q Q Q q ·· Q q · ·

· S s · · · ·
S S S s · · ·· S · S s · s· · S S S s ·· · · S s · ·

· · t T · · t· t T T T t ·
t · t T t · ·· · · t · · ·· · · · t · ·

· · u U · · u· u U U U u ·
u · · U u U ·· · · · U U U· · · · · U ·

v · · V v · ·· v V V V v ·· · v V · V v· · · · V V V· · · · · V ·

· · · Y · · ·· · Y Y Y · ·· Y y Y · Y ·
Y Y Y y Y Y Y· Y · · y Y ·

· · · Z · · z· · Z Z Z z ·· Z z Z z · ·
Z Z Z z · · ·· Z · · z · ·

(Lowercase letters indicate the rhombuses here only for clarity; all pixels are either “in”
or “out.” The shapes fit together only when squares and rhombuses alternate properly.)

(c) The 4× 10 frame in the example has 486 solutions; the analogous 5× 8 frame
has 572; these were first enumerated by Brendan Owen in 2000. There are 3648 ways
to fit the pieces into a 2× 21 frame, but 2× 20 is too tight.

However, those counts can be divided by 2, because solutions to this problem
come in pairs. Consider an arrangement of ten unskewed tetrominoes that involves
one square, one straight, two skews, two tees, and four ells. It can be skewed in four
ways, because we have two choices for which cells should be rhombuses and two choices
for the spins; and it will be a valid skewed solution if and only if the resulting ten
tetraskews are distinct. Changing the spins of a valid solution always gives another
valid solution in which K ↔ L, S ↔ Z, U ↔ V are swapped. Every solution therefore
has a dual, which looks rather different but is well defined.

For example, the 486 solutions to the 4 × 10 rectangle problem correspond to
exactly 226 unskewed arrangements that are distinct under reflections, 17 of which
actually yield two dual pairs of skewed solutions, in which the roles of squares and
rhombuses are reversed! Here’s one such case:

↔ ; ↔ .

[Michael Keller named the polyskews in 1993, and found a way to pack
the tetraskews into two 4×5 frames, thus solving the 4×10 and 5×8 rectangles
simultaneously. (See World Game Review 12 (1994), 12. That problem has
just 24 solutions.) Generalizations to 3D await investigation.]

505

From the Library of Melissa Nuno

ptg999

506 ANSWERS TO EXERCISES 7.2.2.1

References: Polyforms live on many excellent and well-illustrated websites—no-
tably puzzler.sourceforge.net by David Goodger; www.polyforms.eu by Peter Esser;
www.iread.it/lz/polymultiforms2.html by Livio Zucca; userpages.monmouth.com/
~colonel/polycur.html by George Sicherman; www.recmath.org/PolyPages/ by An-
drew Clarke; abarothsworld.com/Puzzles.htm by Abaroth. In particular, Abaroth’s
page “Squaring the Hexagon” discusses many ways to reduce one polyform to another.
See also Ed Pegg Jr.’s chapter in Tribute to a Mathemagician (2005), 119–125.

324. The same ideas apply, but with three coordinates instead of two, and with the
elementary transformations (x, y, z) !→ (y, xmax − x, z), (x, y, z) !→ (y, z, x).

Pieces (1, 2, . . . , 7) have respectively (12, 24, 12, 12, 12, 12, 8) base placements,
leading to 144 + 144 + 72 + 72 + 96 + 96 + 64 options for the 3× 3× 3 problem.

325. It’s tempting, but wrong, to try to compute the Somap by considering only the
240 solutions that restrict the tee and the claw as suggested in the text; the pairwise
semidistances between these special solutions will miss many of the actual adjacencies.
To decide if u−−−v, one must compare u to the 48 solutions equivalent to v.

(a) The strong Somap has vertex degrees 7167519431359263145015; so an “average”
solution has (1 · 7+7 · 6+ · · ·+15 · 0)/240 ≈ 2.57 strong neighbors. (The unique vertex
of degree 7 has the level-by-level structure 3

5
5

3
3
5

3
4
2

1
6
6

1
7
5

4
4
2

1
7
6

7
7
6

4
2
2
from bottom to top.) This graph

has two edges between 3
5
5

3
3
5

3
4
2

6
1
7

1
1
5

4
4
2

6
7
7

6
6
7

4
2
2
and 3

5
5

3
3
5

3
4
4

6
1
7

1
1
5

4
4
2

6
7
7

6
6
7

2
2
2
, so it’s actually a multigraph.

The full Somap has vertex degrees 212181169151314101316121711121016928826

72562651641733211101, giving an average degree ≈ 9.14. (Its unique isolated vertex
is 3

4
4

3
3
6

3
2
2

4
4
7

5
6
6

5
6
2

1
7
7

1
1
7

5
5
2
, and its only pendant vertex is 3

4
2

3
3
2

3
5
2

7
4
4

5
6
6

5
5
2

7
7
4

7
1
6

1
1
6
. Two other noteworthy solutions,

3
4
4

3
3
6

3
6
6

4
4
7

1
5
6

2
2
2

1
7
7

1
5
7

5
5
2
and 3

4
4

3
3
6

3
6
6

4
4
7

1
5
6

2
5
5

1
7
7

1
5
7

2
2
2
, are the only ones that contain the two-piece substructure .

There are 14 instances of repeated edges.)

(b) The Somap has just two components, namely the isolated vertex and the
239 others. The latter has just three bicomponents, namely the pendant vertex, its
neighbor, and the 237 others. Its diameter is 8 (or 21, if we use the edge lengths 2 and 3).

The strong Somap has a much sparser and more intricate structure. Besides
the 15 isolated vertices, there are 25 components of sizes {8 × 2, 6 × 3, 4, 3 × 5, 2 × 6,
7, 8, 11, 16, 118}. Using the algorithm of Section 7.4.1.2, the large component breaks
down into nine bicomponents (one of size 2, seven of size 1, the other of size 109); the
16-vertex component breaks into seven; and so on, totalling 58 bicomponents altogether.

(One can also consider “physical” Somaps with 480 vertices, by saying that
solutions are equivalent under rotation but not reflection. There are no repeated edges.
The degree sequences are 72614 . . . 030 and 214182 . . . 02, double what we had before.)

[The Somap was first constructed by R. K. Guy, J. H. Conway, and M. J. T. Guy,
without computer help. It appears on pages 910–913 of Berlekamp, Conway, and Guy’s
Winning Ways, where all of the strong links are shown, and where enough other links
are given to establish near-connectedness. Each vertex in that illustration has been
given a code name; for example, the seven special solutions mentioned in part (a) have
code names B5f, W4e, W2f, R7d, LR7g, YR3a, and R3c, respectively.]

326. Let the cubie coordinates be 51z, 41z, 31z, 32z, 33z, 23z, 13z, 14z, 15z, for
z ∈ {1, 2, 3}. Replace matrix A of the exact cover problem by a simplified matrix
A′ having only items (1, 2, 3, 4, 5, 6, 7,S), where S is the sum of all items xyz of A
where x · y · z is odd. Any solution to A yields a solution to A′ with item sums
(1, 1, 1, 1, 1, 1, 1, 10). But that’s impossible, because the S counts of pieces (1, . . . , 7)
are at most (1, 2, 2, 1, 1, 1, 1). [See the Martin Gardner reference in answer 333.]

506

From the Library of Melissa Nuno

http://puzzler.sourceforge.net
http://www.polyforms.eu
http://www.iread.it/lz/polymultiforms2.html
http://userpages.monmouth.com/~colonel/polycur.html
http://userpages.monmouth.com/~colonel/polycur.html
http://www.recmath.org/PolyPages/
http://abarothsworld.com/Puzzles.htm

ptg999

7.2.2.1 ANSWERS TO EXERCISES 507

327. (a) The solution counts, ignoring symmetry reduction, are: 4 × 5 corral (2),
gorilla (2), smile (2), 3 × 6 corral (4), face (4), lobster (4), castle (6), bench (16),
bed (24), doorway (28), piggybank (80), five-seat bench (104), piano (128), shift 2
(132), 4× 4 coop (266), shift 1 (284), bathtub (316), shift 0 (408), grand piano (526),
tower 4 (552), tower 3 (924), canal (1176), tower 2 (1266), couch (1438), tower 1 (1520),
stepping stones (2718). So the 4×5 corral, gorilla, and smile are tied for hardest, while
stepping stones are the easiest. (The bathtub, canal, bed, and doorway each have four
symmetries; the couch, stepping stones, tower 4, shift 0, bench, 4 × 4 coop, castle,
five-seat bench, piggybank, lobster, piano, gorilla, face, and smile each have two. To
get the number of essentially distinct solutions, divide by the number of symmetries.)

(b) Notice that the stepping stones, canal, bed, and doorway appear also in (a).
The solution counts are: W-wall (0), almost W-wall (12), bed (24), apartments 2 (28),
doorway (28), clip (40), tunnel (52), zigzag wall 2 (52), zigzag wall 1 (92), underpass
(132), chair (260), stile (328), fish (332), apartments 1 (488), goldfish (608), canal
(1176), steps (2346), stepping stones (2718); hence “almost W-wall” is the hardest of
the possible shapes. Notice that the stepping stones, chair, steps, and zigzag wall 2 each
have two symmetries, while the others in Fig. 75(b) all have four. The 3×3×3 cube, with
its 48 symmetries, probably is the easiest possible shape to make from the Soma pieces.

[Piet Hein himself published the tower 1, shift 2, stile, and zigzag wall 1 in his
original patent; he also included the bathtub, bed, canal, castle, chair, steps, stile,
stepping stones, shift 1, five-seat bench, tunnel, W-wall, and both apartments in his
booklet for Parker Brothers. Parker Brothers distributed four issues of The SOMA

R©

Addict in 1970 and 1971, giving credit for new constructions to Noble Carlson (fish,
lobster), Mrs. C. L. Hall (piano, clip, underpass), Gerald Hill (towers 2–4), Craig
Kenworthy (goldfish), John W. M. Morgan (piano, face, gorilla, smile), Rick Murray
(grand piano), and Dan Smiley (doorway, zigzag wall 2). Sivy Farhi published a booklet
called Somacubes in 1977, containing the solutions to more than one hundred Soma
cube problems including the bench, the couch, and the piggybank.]

328. By eliminating symmetries, there are (a) 421 distinct cases with cubies omitted on
both layers, and (b) 129 with cubies omitted on only one layer. All are possible, except
in the one case where the omitted cubies disconnect a corner cell. The easiest of type (a)
omits {000, 001, 200} and has 3599 solutions; the hardest omits {100, 111, 120} and has
2·45 solutions. The easiest of type (b) omits {000, 040, 200} and has 3050 solutions; the
hardest omits {100, 110, 140} and has 2 · 45 solutions. (The two examples illustrated
have 2 · 821 and 4 · 68 solutions. Early Soma solvers seem to have overlooked them!)

329. (a) The 60 distinct cases are all quite easy. The easiest has 3497 solutions and uses
{002, 012, 102} on the top level; the hardest has 268 solutions and uses {002, 112, 202}.

(b) Sixteen of the 60 possibilities are disconnected. Three of the others are also im-
possible—namely those that omit {01z, 13z, 21z} or {10z, 11z, 12z} or {10z, 11z, 13z}.
The easiest has 3554 solutions and omits {00z, 01z, 23z}; the hardest of the possibles
has only 8 solutions and omits {00z, 12z, 13z}.

(The two examples illustrated have 2 · 132 and 2 · 270 solutions.)
330. T. Bundg̊ard and C. McFarren found in 1999 that all but 216 are realizable
[www.fam-bundgaard.dk/SOMA/NEWS/N990308.HTM]. Five cases have unique (2 · 1) solu-
tions:

507

From the Library of Melissa Nuno

http://www.fam-bundgaard.dk/SOMA/NEWS/N990308.HTM

ptg999

508 ANSWERS TO EXERCISES 7.2.2.1

331. Every polycube has a minimum enclosing box for which it touches all six faces. If
those box dimensions a×b×c aren’t too large, we can generate such polycubes uniformly
at random in a simple way: First choose 27 of the abc possible cubies; try again if that
choice doesn’t touch all faces; otherwise try again if that choice isn’t connected.

For example, when a = b = c = 4, about 99.98% of all choices will touch all faces,
and about 0.1% of those will be connected. This means that about .001

(
64
27

) ≈ 8× 1014

of the 27-cubie polycubes have a 4× 4× 4 bounding box. Of these, about 5.8% can be
built with the seven Soma pieces.

But most of the relevant polycubes have a larger bounding box; and in such
cases the chance of solvability goes down. For example, ≈ 6.2×1018 cases have bounding
box 4× 5× 5; ≈ 3.3× 1018 cases have bounding box 3× 5× 7; ≈ 1.5× 1017 cases have
bounding box 2× 7× 7; and only 1% or so of those cases are solvable.

Section 7.2.3 will discuss the enumeration of polycubes by their size.

332. Each interior position of the penthouse and pyramid that might or might not be
occupied can be treated as a secondary item in the corresponding exact cover problem.
We obtain 2 · 10 solutions for the staircase; (223, 8 · 286) solutions for the penthouse
with hole at the (bottom,middle); and 2 · 32 solutions for the pyramid, of which 2 · 2
have all three holes on the diagonal and 2 · 3 have no adjacent holes.
333. A full simulation of gravity would be quite complex, because pieces can be
prevented from tipping with the help of their neighbors above and/or at their side.
If we assume a reasonable coefficient of friction and an auxiliary weight at the top, it
suffices to define stability by saying that a piece is stable if and only if at least one of
its cubies is immediately above either the floor or a stable piece.

The given shapes can be packed in respectively 2 · 202, 2 · 21, 2 · 270, 8 · 223, and
2 · 122 ways, of which 2 · 202, 2 · 8, 2 · 53, 8 · 1, and 2 · 6 are stable. Going from the
bottom level to the top, the layers 4

.

3

.

.

.

.

.

.

7
.

6

4
5
3

4
5
3

7
6
6

7
7
6

5
5
3

4
.

1

.

.

.

.

.

.

2
2
2

2
1
1

.

.

.

.

.

. give a decently stable cot; a fragile
vulture comes from 2

.

3

.

.

.

.

.

.

.

7
.

2
3
3

4
1
5

4
7
6

7
7
6

2
1
3

2
1
5

4
5
5

4
6
6
; a delicate mushroom comes from

.

.

.

.

7
.

.

.

.

5
5
4

7
7
6

2
7
6

5
3
4

5
.

4

2
6
6

3
3
3

2
1
4

2
1
1
; and a

delicate cantilever from
.

2
.

.

2
.

.

2
.

.

2
.

.

5
.

.

5
.

.

.

.

5
5
7

.

.

.

6
6
1

3
7
7

4
4
7

3
6
1

3
6
1

3
4
4
. The author’s cherished set of Skjøde Skjern

Soma pieces, made of rosewood and purchased in 1967, includes a small square base
that nicely stabilizes both mushroom and cantilever. The vulture needs a book on top.

[The casserole and cot are due respectively to W. A. Kustes and J. W. M. Morgan.
The mushroom, which is hollow, is the same as B. L. Schwartz’s “penthouse,” but
turned upside down; John Conway noticed that it then has a unique stable solution.
See Martin Gardner, Knotted Doughnuts (1986), Chapter 3.]

334. Infinitely many cubies lie behind a wall; but it suffices to consider only the hidden
ones whose distance is at most 27− v from the v visible ones. For example, the W-wall
has v = 25, and the two invisible cubies are {332, 331} if we use the coordinates of
answer 326. We’re allowed to use any of {241, 242, 251, 252, 331, 332, 421, 422, 521, 522}
at distance 1, and {341, 342, 351, 352, 431, 432, 531, 532, 621, 622} at distance 2. (The
stated projection doesn’t have left-right symmetry.) The X-wall is similar, but it has
v = 19 and potentially (9, 7, 6, 3, 3, 2, 1) hidden cubies at distances 1 to 7 (omitting
cases like 450, which is invisible at distance 2 but “below ground”).

Using secondary items for the optional cubies, we must examine each solution to
the exact cover problem and reject those that are disconnected or violate the gravity
constraint of exercise 333. Those ground rules yield 282 solutions for the W-wall, 612
for the X-wall, and a whopping 1,130,634 for the cube itself. (These solutions fill
respectively 33, 275, and 13842 different sets of cubies.) Here are examples of some of

508

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 509

the more exotic shapes that are possible, as seen from behind and below:

There also are ten surprising ways to make the cube façade if we allow hidden “un-
derground” cubies: The remarkable construction

.

.

.

.

.

.

.

.

.

.

.

5

.

.

5

4
7
2

4
.
.

6
6
.

.

5
5

.

.

.

7
7
2

4
7
.

4
6
.

.

6
.

.

.

.

3
2
2

3
3
1

3
1
1

.

.

.

.

.

. raises the entire
cube one level above the floor, and is gravitationally stable, by exercise 333’s criteria!
Unfortunately, though, it falls apart—even with a heavy book on top.

[The false-front idea was pioneered by Jean Paul Francillon, whose construction
of a fake W-wall was announced in The SOMA

R© Addict 2, 1 (spring 1971).]

335. (a) Each of 13 solutions occurs in 48 equivalent arrangements. To remove the
symmetry, place piece 7 horizontally, either (i) at the bottom or (ii) in the middle. In
case (ii), add a secondary ‘s’ item as in answer 268, and append ‘s’ also to all placements
of piece 6 that touch the bottom more than the top. Run time: 400 Kμ.

[This puzzle was number 3–39 in Hoffmann’s Puzzles Old and New (1893). An-
other 3× 3× 3 polycube dissection of historical importance, “Mikusinski’s Cube,” was
described by Hugo Steinhaus in the 2nd edition of his Mathematical Snapshots (1950).
That one consists of the ell and the two twist pieces of the Soma cube, plus the
pentacubes B, C, and f of exercise 340; it has 24 symmetries and just two solutions.]

(b) Yes: Michael Reid, circa 1995, found the remarkable set

which also makes 9 × 3 × 1 uniquely(!). George Sicherman carried out an exhaustive
analysis of all relevant flat polyominoes in 2016, finding exactly 320 sets that are unique
for 3× 3× 3, of which 19 are unique also for 9× 3× 1. In fact, one of those 19,

⊆ ⊆ ⊆ ⊆ ⊆ ,

is the long-sought “Holy Grail” of 3 × 3 × 3 cube decompositions: Its pieces not only
have flatness and double uniqueness, they are nested (!!). There’s also Yoshiya Shindo’s

,

known as the “Neo Diabolical Cube” (1995); notice that it has 24 symmetries, not 48.

336. This piece can be modeled by a polycube with 20 + 20 + 27 + 3 cubies, where
we want to pack nine of them into a 9× 9× 9 box. Divide that box into 540 primary
cells (which must be filled) and 189 secondary cells (which will contain the 27 cubies
of the simulated dowels). Answer 324 now yields an exact cover problem with 1536
options; and Algorithm X needs only 33 Mμ to discover 24 solutions, all equivalent by
symmetry. (Or we could modify answer 324 so that all offsets have multiples of 3 in
each coordinate; then there would be only 192 options, and the running time would go
down to 8 Mμ.) One packing is 1

1
4

2
2
4

2
3
3

5
1
8

6
6
4

7
3
9

5
8
8

5
6
9

7
7
9
, with dowels at 0

4
0

1
0
3

0
0
0

0
5
0

7
2
8

0
9
0

0
6
0

0
0
0

0
0
0
.

One might be tempted to factor this problem, by first looking at all ways to pack
nine solid bent trominoes into a 3× 3× 3 box. That problem has 5328 solutions, found
in about 5 Mμ; and after removing the 48 symmetries we’re left with just 111 solutions,
into which we can try to model the holes and dowels. But such a procedure is rather
complicated, and it doesn’t really save much time, if any.

509

From the Library of Melissa Nuno

ptg999

510 ANSWERS TO EXERCISES 7.2.2.1

Ronald Kint-Bruynseels, who designed this remarkable puzzle, also found that it’s
possible to drill holes in the solid cubies, parallel to the other two, without destroying
the uniqueness of the solution(!). [Cubism For Fun 75 (2008), 16–19; 77 (2008), 13–18.]

337. Let’s use even/odd coordinates as in exercise 145, so that each final face has one
coordinate in {0, 6} and two coordinates in {1, 3, 5}. The first goal has red spots on
faces 330, 105, 501, 015, 033, 051, 611, 615, 651, 655, 161, 165, 363, 561, 565, 116, 136,
156, 516, 536, 556. The other goal has green spots on 19 of those 21 faces;
but 303 replaces 033 and 633 replaces 363. (For simplicity, we’ll ignore
alternative setups; there are 16 ways to put spots on dice, not just two.)

red green

Nine bent tricubes will pack a 3 × 3 × 3 cube in 5328 ways. (They
fall into 111 equivalence classes of size 48, under rotation and reflection; but that fact
is irrelevant here.) Take any such solution and color its 54 external faces with the red
solution. Then see if its pieces can be rearranged to give the green solution.

Notice that each bent tricube has fourteen square faces; but the two “inner” faces
are never visible in the final assembly. That assembly will specify from 2 to 7 of the
12 potential faces, leaving 5 to 10 faces unconstrained. Altogether we’ll have 21 faces
specified red, 33 specified blank, and 54 still free.

It turns out that 371 of the 5328 red solutions can be rearranged into green
solutions; in fact one case leads to 6048 different green solutions! And there are 52
combinations of red+green solutions that leave 18 faces unspecified, such as this:

We’re free to put anything we like on those 18 faces—giving red or green spots that are
false clues, and/or concealing a third pattern that the puzzler is challenged to achieve.

(The classic “Spots Puzzle” in Hoffmann’s Puzzles Old and New (1893), No. 3–17,
distributed by E. Wolff & Son’s pencil company, assembled a single die from straight

tricubes. Lavery’s elegant “Twice Dice” was produced by Pentangle Puzzles in 1990.)

338. The straight tetracube and the square tetracube , together with

the size-4 Soma pieces in (39), make a complete set.

We can fix the tee’s position in the twin towers, saving a factor of 32; and each
of the resulting 40 solutions has just one twist with the tee. Hence there are five
inequivalent solutions, and 256 · 5 altogether.

The double claw has 6 · 63 solutions. But the cannon, with 4 · 1 solutions, can be
formed in essentially only one way. (Hint: Both twists are in the barrel.)

There are no solutions to ‘up 3’. But ‘up 4’ and ‘up 5’ each have 8 · 218 solutions
(related by turning them upside down). Gravitationally, four of those 218 are stable
for ‘up 5’; the stable solution for ‘up 4’ is unique, and unrelated to those four.

References: Jean Meeus, JRM 6 (1973), 257–265; Nob Yoshigahara, Puzzle World

No. 1 (San Jose: Ishi Press International, 1992), 36–38.

339. All but 48 are realizable. The unique “hardest” realizable case, , has 2 · 2
solutions. The “easiest” case is the 2× 4× 4 cuboid, with 11120 = 16 · 695 solutions.
340. (a) A, B, C, D, E, F, a, b, c, d, e, f, j, k, l, . . . , z. (It’s a little hard to see why
reflection doesn’t change piece ‘l’. In fact, S. S. Besley once patented the pentacubes
under the impression that there were 30 different kinds! See U.S. Patent 3065970

(1962), where Figs. 22 and 23 illustrate the same piece in slight disguise.)

510

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 511

Historical notes: R. J. French, in Fairy Chess Review 4 (1940), problem 3930,
was first to show that there are 23 different pentacube shapes, if mirror images are
considered to be identical. The full count of 29 was established somewhat later by
F. Hansson and others [Fairy Chess Review 6 (1948), 141–142]; Hansson also counted
the 35+ 77 = 112 mirror-inequivalent hexacubes. Complete counts of hexacubes (166)
and heptacubes (1023) were first established soon afterwards by J. Niemann, A. W.
Baillie, and R. J. French [Fairy Chess Review 7 (1948), 8, 16, 48].

(b) The cuboids 1×3×20, 1×4×15, 1×5×12, and 1×6×10 have of course already
been considered. The 2× 3× 10 and 2× 5× 6 cuboids can be handled by restricting X
to the bottom upper left, and sometimes also restricting Z, as in answers 268 and 270;
we obtain 12 solutions (in 350 Mμ) and 264 solutions (in 2.5 Gμ), respectively.

The 3 × 4 × 5 cuboid is more difficult. Without symmetry-breaking, we obtain
3940 × 8 solutions in about 200 Gμ. To do better, notice that O can appear in four
essentially different positions. With four separate runs we can find 5430/2 + 1348/4 +
716/2 + 2120/4 = 3940 solutions, in 35.7 + 10.0 + 4.5 + 7.1 ≈ 57 Gμ.

[The fact that solid pentominoes will fill these cuboids was first demonstrated by
D. Nixon and F. Hansson, Fairy Chess Review 6 (1948), problem 7560 and page 142.
Exact enumeration was first performed by C. J. Bouwkamp in 1967; see J. Combina-
torial Theory 7 (1969), 278–280, and Indagationes Math. 81 (1978), 177–186.]

(c) Almost any subset of 25 pentacubes can probably do the job. But a particu-
larly nice one is obtained if we simply omit o, q, s, and y, namely those that don’t fit
in a 3 × 3 × 3 box. R. K. Guy proposed this subset in Nabla 7 (1960), 150, although
he wasn’t able to pack a 5× 5× 5 at that time.

The same idea occurred independently to J. E. Dorie, who trademarked the name
“Dorian cube” [U.S. Trademark 1,041,392 (1976)].

An amusing way to form such a cube is to make 5-level prisms in the shapes of the
P, Q, R, U, and X pentominoes, using pieces {a, e, j,m,w}, {f, k, l,p, r}, {A,d,D,E,n},
{c,C,F,u, v}, {b,B, t, x, z}; then use the packing in answer 269(!). This solution can
be found with six very short runs of Algorithm X, taking only 300 megamems overall.

Another nice way, due to Torsten Sillke, is more symmetrical: There are 70,486
ways to partition the pieces into five sets of five that allow us to build an X-prism in
the center (with piece x on top), surrounded by four P-prisms.

One can also assemble a Dorian cube from five cuboids, using one 1× 3× 5, one
2×2×5, and three 2×3×5s. Indeed, there are zillions more ways, too many to count.

341. (a) Make an exact cover problem in which a and A, b and B, . . . , f and F are
required to be in symmetrical position; there are respectively (86, 112, 172, 112, 52, 26)
placements for such 10-cubie “super-pieces.” Furthermore, the author decided to force
piece m to be in the middle of the top wall. Solutions were found immediately! So piece
x was placed in the exact center, as an additional desirable constraint. Then there were
exactly 20 solutions; the one below has also n, o, and u in mirror-symmetrical locations.

(b) The super-pieces now have (59, 84, 120, 82, 42, 20) placements; the author also
optimistically forced j, k, and m to be symmetrical about the diagonal, with m in the
northwest corner. A long and apparently fruitless computation (34.3 teramems) ensued;
but—hurrah—two closely related solutions were discovered at the last minute.

(c) This computation, due to Torsten Sillke [see Cubism For Fun 27

(1991), 15], goes much faster: The quarter-of-a-box shown here can be packed
with seven non-x pentacubes in 55356 ways, found in 1.3 Gμ. As in answer 294,
this yields a new exact cover problem, with 33412 different options.

511

From the Library of Melissa Nuno

ptg999

512 ANSWERS TO EXERCISES 7.2.2.1

Another 11.8 Gμ then yields seven suitable partitions into four sets of seven, one
of which is illustrated below. [See also Cubism For Fun 49 (1999), 26.]

l l l q q q q

l o o o o o q

f f u u u F F

D f u m u F d

l l f D D D m m m d d d F q q

l f f C C D D m d d c c F F r

v v v B C C C x c c c b r r r

v w B B B B x x x b b b b r z

v w w A A A A x a a a a z z z

k k w w E E A n a e e y z j j

k k s s s E E n e e y y y y j

s E n n n e y

s s p t t t y

k s p p t j y

k k p p t j j

(a)

m o o o o o s

m m x q q q q

m x x x b b b

r n x e e b a

m m m r r n e e a a a a b q s

t m r r n n n e a D D D b q s

t t t r E p p p v C C D D s s

t w w E E E p p v F C C C s z

w w B E A A v v v F F F z z z

w l B B A d c f f k k F z j j

l l B A A d c c f k k k u u j

A d d c f f k

B B d c u u u

l l l y u j u

l y y y y j j

(b)

v E z z t A A

E E z s t t t

E z z s t F F

f f s s a F k

v E E f B f s w a k k k F t A

v E f f B B w w a k k D F F A

v v v B B w w x a a D D y A A

u u u j j j x x x D D y y y y

u p u j m j C x c d o o o o o

p p e m m m C b c d d n n n l

p p e e m C C b c c d d n l l

e C q b b c d

e e q b r n n

p e q r r r l

p q q r l l l

(c)

342. As in previous exercises, the key is to reduce the search space drastically,
by asking for solutions of a special form. (Such solutions aren’t unlikely, because
pentacubes are so versatile.) Here we can break the given shape into four pieces:
Three modules of size 33+23 to be packed with seven pentacubes, and one of size
43−3 ·23 to be packed with eight pentacubes. The first problem has 13,587,963
solutions, found with 2.5 Tμ of computation; they involve 737,695 distinct sets
of seven pentacubes. The larger problem has 15,840 solutions, found with 400 Mμ and
involving 2075 sets of eight. Exactly covering those sets yields 1,132,127,589 suitable
partitions; the first one found, {a,A,b, c, j, q, t, y}, {B,C,d,D, e, k, o}, {E, f, l,n, r, v, x},
{F,m,p, s,u,w, z}, works fine. (We need only one partition, so we needn’t have com-
puted more than a thousand or so solutions to the smaller problem.)

Pentacubes galore: Since the early 1970s, Ekkehard Künzell and Sivy Farhi have
independently published booklets that contain hundreds of solved pentacube problems.

343. We can use an instructive variety of methods to deduce that the tallest towers
have heights (hO, hP, . . . , hZ) = (12, 29, 28, 28, 29, 25, 26, 23, 24, 17, 28, 27): Case O
is trivial. A perfect tower for P was published by S. Farhi in Pentacubes, 5th edition
(1981), Fig. 78. And it’s easy to show that hW ≤ 24, because r, t, v, x, z can’t be placed.

Factorization yields most of the upper bounds. For example, let the cells of a
tower for R be {00k, 01k, 11k, 12k, 21k | 1 ≤ k ≤ h}, and add a new “weight” column
to the exact-cover matrix, representing the sum of all items/columns 00k and 12k.
(Thus the option ‘y 212 311 312 412 512’ has weight 4.) An exact cover by disjoint
options/rows will then make the new column sum 2h. But the maximum weights of
the pentacubes (a, A, . . . , f, F, j, k, . . . , z) are respectively (1, 1, 1, 1, 3, 3, 3, 3, 2, 2, 2,
2, 2, 2, 1, 1, 3, 5, 3, 4, 2, 3, 0, 3, 0, 0, 0, 4, 0). Their sum is 57; hence hR ≤ 57/2 < 29.

Similar arguments prove that hU < 27, hV < 24, hX < 18, hZ < 28. But case T
is more complicated. Let’s introduce a column for the weights (100 ·00k)+(100 ·02k)+
(10 · 11k)+ (101 · 21k), and compute the 29 maximum weights (312, 312, 310, 310, 311,
311, 221, 221, 210, 210, 220, 220, 220, 210, 211, 210, 310, 505, 323, 414, 300, 323, 400,
400, 400, 300, 200, 414, 400). The heaviest 27 sum to 8296, which is less than 311 · 27;
hence hT < 27. And if hT = 26, further study shows that we must omit x and two of
{e,E, k,m}. Moreover, each piece must use an option of maximum weight, except that
c and C should use weight 310. These restrictions narrow down the search considerably;
Algorithm X is able to prove that hT < 26 in 11 Tμ (and Algorithm M in 7.6 Tμ).

512

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 513

It’s difficult to prove that hQ < 29, and even harder to prove that hY < 29. But
in both cases a suitable weighted factorization makes the calculations feasible. (See
www.math.uni-bielefeld.de/~sillke/POLYCUBE/TOWER/pentacube.)

Such weights also greatly accelerate the successful searches, for towers of maxi-
mum height. Here are some that were hardest-to-find (add piece ‘s’ atop the first one):

b
e

b
b
b e

e

t
b
e e

n

t
t
t n

n

t
x
n E

n

x
x
x E

E

A
x
E A

E

A
A
A l

l

w
w
l l

y

p
w
w l

y

p
p
w y

y

p
p
B B

y

u
u
B k

k

u
B
B k

k

u
u
k d

d

r
d
d m

d

r
r
r m

m

z
r
m m

q

z
z
z j

q

v
j
z j

q

v
j
j q

q

v
v
v C

C

o
f
C f

C

o
f
f f

C

o
c
F F

F

o
c
F c

F

o
c
c a

D

a
a
a D

D

a
D
D

q
q
k
k k

q
D
D
k k

q
A
D
D D

q
A
A
A A

t
l
l
l l

t
t
t
l n

t
x
n
n n

x
x
x
e n

w
x
e
e e

w
w
d
d e

o
w
w
d d

o
u
u
m d

o
u
m
m m

o
u
u
m F

o
p
F
F F

p
p
F
B B

p
p
B
B C

v
v
v
B C

v
s
C
C C

v
s
c
c c

s
s
a
a c

s
r
r
a c

r
r
f
a a

y
r
f
f f

y
y
b
b f

y
z
z
b b

y
z
j
b j

z
z
j
j j

b

a
b
b
b

a

a
a
a
b

m

w
m
m
m

q

w
w
m
v

q

s
w
w
v

q

s
v
v
v

q

s
s
q
n

n

r
s
n
n

F

r
r
r
n

F

p
r
F
F

k

p
p
k
F

k

p
p
k
k

C

d
d
C
C

d

o
d
d
C

e

o
e
e
C

y

o
z
e
e

y

o
z
z
z

y

o
x
y
z

y

x
x
x
f

f

t
x
f
f

f

t
t
t
B

B

t
B
B
B

E

u
u
E
E

j

u
E
E
j

j

u
u
j
j

A

A
A
A
c

D

A
D
D
c

c

D
D
c
c

344. Reduce the placements that occupy the center cell from 72 to 3. That problem has
2528 solutions, found by Algorithm X in 25 Gμ; and those solutions form 1264 mirror-
symmetric pairs. [See C. J. Bouwkamp and D. A. Klarner, JRM 3 (1970), 10–26.]

345. A variation of even/odd coordinates works nicely: Let the pieces fill 13 cells
like (x, y, z)+{(±1,±1,±3), (1,±1,±1)}, xyz odd, where
the items (x, y, z) for 0 ≤ x, y ≤ 10 and 0 ≤ z ≤ 6
are primary for x, y, z even and secondary for x, y, z odd.
The solution is unique. [This puzzle, marketed as “Vier
Farben Block,” was designed by T. Geerinck in 2004.]

001122
001122
334444
334444
556677
556677

001122
888899
834894
a34a94
aaaa99
556677

001122
888899
83b89b
a3ba9b
aaaa99
556677

001122
001122
33bbbb
33nnnn
556677
556677

346. (a) Shifting by multiples of (0, 1, 1) gives N disjoint tripods whose corners are on
layer 0 of the torus, filling all cells of that layer except for a (possibly broken) diagonal,
and also filling all cells of such a diagonal on layer 1. We can plug the holes on layer 0
by appropriately placing N tripods whose corners are on layer N − 1. And so on.

(b) Here’s a way to pack twelve of them into a 3×6×6 torus. (Is 7/9 optimum?)

012600
112371
222348
933345
0a4445
01b555

066678
917778
9a2888
9ab399
aab64a
bbb675

0..6..
.1..7.
..2..8
9..3..
.a..4.
..b..5

(c) Place 13 tripods in a 6×6×6 torus, with corners at (0, 0, 0), (0, 1, 1), (0, 2, 2),
(1, 1, 3), (1, 2, 4), (2, 3, 2), (2, 4, 4), (3, 3, 3), (3, 4, 5), (4, 4, 0), (4, 5, 1), (5, 0, 5), (5, 5, 3).

(d) One can place 2r(l,m, n) nonoverlapping tripods in a 2l× 2m× 2n torus, by
putting the tripod corners at the positions of the pod corners, plus (0, 0, 0) and (l,m, n).

(e) With one primary item # and lmn secondary items xyz, and with options
such as ‘# 123 023 103 113 120 121 122’ (one for each pod with 0 ≤ x < l, 0 ≤ y < m,
0 ≤ z < n), we can find solutions with t pods by giving multiplicity t to #. Furthermore
we can save time by letting the items 000 and (l−1)(m−1)(n−1) be primary, because
those two pods can be assumed to be present. In this way we find 444 !→ 8, 445 !→ 9,
446 !→ 9, 455 !→ 10, 456 !→ 10, 466 !→ 12, 555 !→ 11, 556 !→ 12, 566 !→ 13, 666 !→ 14.
(Algorithm M can determine that r(6, 6, 6) < 15 in reasonable time, 253 Gμ, despite its
rather weak heuristics for pruning the search. But the SAT solver Algorithm 7.2.2.2C
solves this problem in only 2 Gμ; it can also establish that r(7, 7, 7) = 19 in 169 Gμ,
while Algorithm M as it stands would be hopeless for that task.)

513

From the Library of Melissa Nuno

http://www.math.uni-bielefeld.de/~sillke/POLYCUBE/TOWER/pentacube

ptg999

514 ANSWERS TO EXERCISES 7.2.2.1

[Notes: Sherman Stein initiated the study of tripods (actually an n-dimensional
generalization called “semicrosses”) in IEEE Trans. IT-30 (1984), 356–363; see also
his paper with W. Hamaker on pages 364–368. They proved that the function r(n) =
r(n, n, n) is Ω(n1.516), and that r(l, n, n)/n approaches a limit as n → ∞. The initial
values (r(1), . . . , r(9)) = (1, 2, 5, 8, 11, 14, 19, 23, 28) were found by C. Morgan, in an
undergraduate project at the University of Warwick in 2000; see also S. Szabó, Ann.
Univ. Sci. Budapestinensis, Sect. Computatorica 41 (2013), 307–322. With extensive
computations, P. R. J. Österg̊ard and A. Pöllänen have proved that r(10) = 32 and
(surprisingly) that r(11) = 38 [Discrete and Computational Geometry 61 (2019), 271–
284]. See also A. Tiskin, Discrete Math. 307 (2007), 1973–1981, who showed among
other things that r(12) ≥ 43, r(n) = Ω(n1.534), r(n) = O(n2/(logn)1/15).]

347. Fourteen proofs have been given by S. Wagon, AMM 94, (1987), 601–617. [For
generalizations, see R. J. Bower and T. S. Michael, Math. Magazine 79 (2006), 14–30.]

348. See F. W. Barnes’s complete solution, Discrete Mathematics 133 (1994), 55–78.

349. Let t = s/4. Each brick of anm-brick packing contains at least one of the 27 “spe-
cial points” {(it, jt, kt) | 0 < i, j, k < 4}, because a, b, and c exceed t. Hence m ≤ 27.

In a packing with m = 27, each of the “special lines” l∗jk, li∗k, lij∗ with two
coordinates fixed will be totally full, because the bricks collectively occupy 27(a+b+c)
units of space on those lines. The special lines also intersect the bricks in 27 segments
of each length a, b, c; hence each special line has a segment of each length.

Thus we’re led to solve an XCC problem with primary items pijk, l∗jk, li∗k, lij∗
and secondary items xijk, yijk, zijk, and with options like ‘pijk xijk:π1 yijk:π2 zijk:π3’
and ‘li∗k yi1k:π1 yi2k:π2 yi3k:π3’, where π1π2π3 is a permutation of {a, b, c}. That
problem has 7712 solutions, when we fix one of the six options for p111.

Only 168 of those solutions, in 21 equivalence classes under the 48 symmetries
of the cube, actually pack properly when (a, b, c) = (2, 3, 4). And it can be shown
that those 21 solutions will solve Hoffman’s problem for arbitrary (a, b, c). Here, for
example, is the unique solution that is “self-dual”— isomorphic to itself when a↔ c:

A B C

D E F

G H I

A B C

D E F

G H I

A B C

D E F

G H I

A B C

D E F

G H I

A B
D

G H I

L

N O

A

G H

K L
M N O

R

J K L
M N O
P Q R

J K L
M N O
P Q R

J K L
M N O
P Q R

J

M O
P Q R

T U

W M

P R

S T U

W X

Z

S T U

V W X

Y Z &

S T U

V W X

Y Z &

S T U

V W X

Y Z &

S T U

V W X

Y Z &

[See Hoffman’s exposition in The Mathematical Gardner (1981), 212–225.]

350. Set this up for Algorithm M with 28 instances of a 3×4×5 brick and 48 instances
of a single cubie. We can omit all options where a brick lies 1 or 2 units from a face but
not on the face, because the brick could move outward in such solutions. We can also
force the placement of a brick at corner (0, 0, 0). Furthermore, an empty corner would
imply at least 27 cubies there; hence we can omit placing a cubie in any corner except
(11, 11, 11). This problem, with 715 options of size 61 and 1721 options of size 2, has 112
solutions(!), found in 440 Gμ. (The author’s first attempt, in 2004, took much longer.)

There are three species of solutions: (i) Pack seven bricks into 5×7×12; arrange
four of those in a pinwheel (see exercise 365), leaving a 2 × 2 × 12 hole. (ii) Pack 12
into 5× 12× 12; add a pinwheel of four 5× 7× 7s, each of which is a pinwheel of four
3× 4× 5s. (iii) Assemble the bricks in a bizarre way that includes two such 5× 7× 7s:

A B C D

E F G

H I J K

A B C D

E F G

H I J K

A B C D

E F G

H I J K

A B C D

E F G

H I J K

A B C D

E F

H
L

M N

L
M N

O P Q
R

S
L

M N

O P Q
R

S N

O P Q
R

S
T U
V

O Q

S
T U
V

W
X

Y

T U
V

W
X

Y

Z &

@
T U
V

W
X

Y

Z &

@
T U
V

W
X

Y

Z &

@

Types (i), (ii), (iii) contribute 6+10+4 nonisomorphic solutions. [George Miller’s puzzle
with bricks of tricolored faces is called Perfect Packing, because 28 is a perfect number.]

514

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 515

351. (Generalizing exercise 349, Hoffman observed that such a construction would
yield a nice geometrical way to prove the inequality (abcde)1/5 ≤ (a+ b+ c+d+ e)/5.)

352. None. But any eleven of the “hypersolid pentominoes” can easily be squeezed in;

for example,
Q X W W .
X X X W W
. X P P W

T S S S U
T T T . U
T P P P U

S S Z R U
Z Z Z R R
Z Y R R U

Q Q Q Q .
O O O O O
Y Y Y Y .

is one way to
pack all but V.

353. There are exactly 9 (including a mirror pair). They pack a 3 × 3 × 3 cube in
48 · 8789 ways, such as 0

1
1

0
1
2

0
2
3
| 4

5
5

3
2
6

4
3
7
| 5

7
8

4
8
7

8
6
6
. [See J. Lou, Danish patent 126840 (1973).]

354. (a) Let cell (x, y) of a polyomino correspond to (−x, x, y,−y). Let cell (x, y) of a
polyhex, as represented in exercise 315, correspond to (0, x, y,−x− y).

(b) A polysphere is planar if and only if the differences between its adjacent cells
lie in a plane. Each of those differences has the form eij = ei−ej , where e1 = (1, 0, 0, 0),
. . . , e4 = (0, 0, 0, 1). Three such differences can’t be linearly independent yet lie in a
plane; the linearly dependent cases are polyominoes and/or polyhexes.

(c) Every connected graph has at least one vertex whose removal doesn’t discon-
nect the graph. So the result follows by induction on n.

(d) An orthogonal matrix fixes w + x + y + z if and only if its row and column
sums are 1. The matrices (i) T and (ii) R below respectively rotate by 120◦ about
x = y = z and by 90◦ about (x = y) ∧ (w = z).

T =
(1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

)
; R =

1

2

(1 −1 1 1
1 1 1 −1

−1 1 1 1
1 1 −1 1

)
; R2 =

(0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
; H =

1

6

(5 −1 −1 3
−1 −1 5 3
−1 5 −1 3
3 3 3 −3

)
.

(e) The matrices (i) R2 and (ii) H above respectively rotate by 180◦ about
(x = y)∧ (w = z) and about (x = y)∧ (w = 3z−2x). Thus H can be used when z = 0.

(f) Suppose V ′ = {v′1, . . . , v′n} is a rotation of V = {v1, . . . , vn} ⊂ S, where
vk = (wk, xk, yk, zk), v

′T
k = (w′k, x

′
k, y

′
k, z

′
k)
T = QvTk , v1 = v′1 = (0, 0, 0, 0), and

v2 = e12 = (1,−1, 0, 0). The matrix Q = (qij) is orthogonal, with row and column
sums and determinant 1. By applying an even permutation to the coordinates of v′

and the rows of Q, we can assume without loss of generality that v′2 = e12 = v2. Hence
qk1 = qk2+δk1−δk2, q11 = q22. If Q �= I we have vp−vq = eij �= ei′j′ = v′p−v′q for some
p, q, i, j, i′, and j′, with i < j. By orthogonality, e12 · eij = e12 · ei′j′ ∈ {−1, 0,+1}.

If e12 · eij = 1, there are six cases, depending on (i, j, i′, j′): (1, 3, 1, 4) implies
Q = TH; (1, 4, 1, 3) implies Q = HT 2; (1, 3, 4, 2) implies Q = T 2RT or THR3T 2;
(1, 4, 3, 2) implies Q = T 2RT or HR; (1, 3, 3, 2) and (1, 4, 4, 2) are impossible.

If e12 · eij = 0, we have (i, j, i′, j′) = (3, 4, 4, 3) and Q is forced to be TR. Finally,
the case (i, j, i′, j′) for e12 ·eij = −1 is the same as the case (i, j, j′, i′) for e12 ·eij = +1.

Note: Some authors represent S as the set of integer triples (X,Y,Z) with
X+Y +Z even. The Hadamard transform provides an isomorphism between these rep-
resentations: If −2M is the upper left 4×4 submatrix of 7.2.1.1–(21), we haveM2 = I,
detM = 1, and M takes (−x− y − z, x, y, z) !→ (0, x+ z, y + z, x+ y) = (0,X, Y, Z).

355. (a) Normalize the given polysphere by subtracting (xmin, ymin, zmin), to get its

base placement. Then, for each base placement P , form up to three others until
no more can be formed: (i) Replace each xyz by yzx. (ii) Replace each xyz by
(x + y + z)(t − z)(t − x), for some large t; then normalize. (iii) If z = 0 in each
cell of P , replace each xy0 by yx0.

[The (X,Y,Z) representation mentioned in answer 354 suggests “polyjubes”—
George Sicherman’s name for the sets of edge-connected cubes that don’t touch face-to-
face. Transformation (iii) does not apply to polyjubes; hence there are 5 trijubes and

515

From the Library of Melissa Nuno

ptg999

516 ANSWERS TO EXERCISES 7.2.2.1

28 tetrajubes. Polyjubes are also equivalent to “polyrhons”—the connected sets of
rhombic dodecahedra, which are the Voronoi regions of the face-centered cubic lattice.
See S. Coffin, The Puzzling World of Polyhedral Dissection (1990), Figure 167.]

(b) Phenalene has eight base placements; in lexicographic order they are {000, 001,
010}, {000, 001, 100}, {000, 010, 100}, {001, 010, 011}, {001, 010, 100}, {001, 100, 101},
{010, 100, 110}, {011, 101, 110}. The straight trisphere has six base placements, namely
{000,001,002}, {000,010,020}, {000,100,200}, {002,011,020}, {002,101,200}, {020,
110,200}. The bent trisphere has twelve, from {001,010,101} to {011,100,110}. And
phenanthrene has twenty-four, from {000, 001, 011} to {020, 101, 110}.

(c) There are 853 connected subsets, with 475 different base placements. (Each
placement with max(x + y + z) = (1, 2, 3) occurs respectively (10, 4, 1) times.) They
form 25 distinct tetraspheres—five from tetrominoes and six additional planar pieces
from tetrahexes, plus four nonplanar nonchiral pieces and five chiral pairs:

i (6, 6)

000 001 002 003

l (24, 24)

001 010 101 201

q (3, 12)

001 010 101 110

t (12, 12)

001 011 021 110

z (12, 12)

001 011 110 120

j (48, 48)

000 001 002 012

n (24, 24)

000 001 011 012

o (12, 48)

000 001 010 011

p (48, 120)

000 001 002 010

u (24, 60)

000 001 011 020

y (8, 8)

001 011 012 020

a (24, 24)

001 011 012 110

s (2, 11)

000 001 010 100

v (24, 60)

000 001 011 101

x (12, 48)

001 010 011 100

c (12, 12)

000 001 011 111

d (24, 24)

001 010 110 120

e (24, 60)

000 001 011 110

f (12, 12)

001 002 012 100

g (24, 60)

000 001 010 101

C (12, 12)

000 001 101 111

D (24, 24)

001 010 101 102

E (24, 60)

000 001 101 110

F (12, 12)

001 002 010 102

G (24, 60)

000 001 010 110

Each piece has been given an identifying letter. This chart shows the number of base
placements and the number of occurrences in simplex(3, 3, 3, 3, 3, 0, 0), as well as the
lexicographically smallest base placement. Notice that j and p have 48 base placements,
while a polycube can have at most 48. Piece s is simplex(1, 1, 1, 1, 1, 0, 0), a tetrahedron
with four equidistant spheres. Piece x is perhaps the most fascinating to play with.

[The tetraspheres were first enumerated by K. Takizawa; then T. Sillke enumer-
ated the nonplanar polyspheres of larger sizes. See B. Wiezorke, Cubism For Fun 25,
part 3 (1990), 10–17; G. Bell, Cubism For Fun 81 (2010), 18–23; OEIS A038174.]

356. (a) The n-tetrahedron, which is the same as simplex(n − 1, n − 1, n − 1, n − 1,
n−1, 0, 0), has base placement {xyz | x, y, z ≥ 0, x+y+z < n}; (n+2

3

)
cells. (It has one

other base placement, namely {(n−1−x)(n−1−y)(n−1−z) | x, y, z ≥ 0, x+y+z < n}.)
One of the 12 base placements of the m × n roof is {x(y+k)(m−1−y) | k ≥ 0,

0 ≤ x < n− k, 0 ≤ y < m− k}. If m ≤ n, it has m(m+ 1)(3n−m+ 1)/6 cells.

The stretched m × n roof is based on slicing the face-centered cubic lattice into
layers with constant y−z. (Each cell has two neighbors on its own layer, four neighbors
on each adjacent layer, and two neighbors that are two layers away.) One of its 12 base
placements is {(x+m−1−y)(y+k)y | k ≥ 0, 0 ≤ x < n− k, 0 ≤ y < m− k}.

516

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 517

(b) Let’s call the four shapes T4, R3×4, S3×4, and S4×3. Here are the stats:

Total All planar Mixed All nonplanar
Shape

multisets(sets) (balanced) (balanced) (chiral) (balanced) (chiral)

T4 2952(1211) 174(34) 308(115) 2442(1062) 2(0) 26(0)
R3×4 11531(6274) 372(69) 1250(583) 9818(5608) 3(0) 88(14)
S3×4 1184(480) 51(6) 108(48) 1014(426) 1(0) 10(0)
S4×3 266(52) 2(0) 27(8) 234(44) 1(0) 2(0)

For example, {j, j,p, p, t} is one of 174 multisets of five planar pieces that can make T4.
[In fact, the solution is unique—and {j, j, p,p, t} also uniquely solves R3×4 and S3×4!
G. Bell used this fact as the basis for his elegant Triple Pyradox puzzle; see Cubism For

Fun 94 (2014), 10–13.] Of those 174 cases, 34 have five different pieces; for instance,
{n, o,p, u, y} is one of only seven that contains y, the “propeller.”

Many other suitable sets of five mix planar pieces with nonplanar ones. Of
these, 115 (like {g,G, i, s, x}) are closed under reflection; that one has 24 solutions,
all essentially the same. The other 1062 form 531 mirror-image pairs (like {d, e, f,G, i}
and {D,E,F, g, i}); every solution for a chiral set has 12 equivalents, not 24.

Algorithm M discovers all such solutions quickly, if we assign multiplicity [0 . . 5]
to each piece. There are respectively (88927, 77783, 3440, 996) solutions to (T4, R3×4,
S3×4, S4×3), without symmetry removal; they’re found in (840, 607, 48, 13) Mμ.

Six of the multisets—three mirror pairs—are actually able to make all four

shapes. These versatile combinations of pieces are {e, g, g,p,p} and {E,G,G,p,p},
{g, j,p,p, p} and {G, j, p,p, p}, {g,p,p, p, p} and {G,p, p,p, p}.

There’s an obvious, yet interesting, way to make T4 with the “pure” multiset
{s, s, s, s, s}. The only other pure multiset that works is {p, p,p, p,p}, which is able to
form both T4 and R3×4, as well as many other shapes noted by W. Schneider in 1995.

[A 2× 7 roof also has 20 cells. So we might want to consider additional stats:

R2×7 3940(1628) 608(116) 1296(512) 1970(1000) 14(0) 52(0)
S2×7 426(84) 58(4) 48(20) 306(60) 2(0) 12(0)
S7×2 4(0) 0(0) 0(0) 0(0) 2(0) 2(0)

The long and skinny S7×2 can be made in only two ways, both with x in the middle,
surrounded by g’s or G’s. The set {i, j,n, o, p} packs both S2×7 and S7×2, as well as T4.]

(c) Let’s name the trispheres 1, 2, 3, 4, according to the squared distance between
the two farthest-apart cells; thus the pieces in exercise 355 are 2, 4, 1, 3. The pyramid
P4 is buildable from 296 such multisets, many of which allow huge numbers of solutions.
(For example, each of the ten multisets that contain {1, 1, 2, 2, 3, 3, 4, 4} leads to more
than 30,000 solutions; {1, 1, 2, 2, 2, 3, 3, 4, 4, 4} has more than 120,000!) Most interesting
are the cases with unique solution ({2, 2, 4, 4, 4, 4, 4, 4, 4, 4}‡, {1, 1, 1, 4, 4, 4, 4,
4, 4, 4}, {1, 2, 2, 2, 2, 2, 2, 2, 2, 2}), or with just two solutions ({2, 2, 2, 2, 2, 2, 2,
2, 2, 2}†, {1, 1, 3, 3, 3, 3, 3, 3, 3, 3}, {2, 4, 4, 4, 4, 4, 4, 4, 4, 4}‡); † = noted by
L. Gordon (1986); ‡ = noted by J. Becker (2009). The stretched pyramid S4 has 213
such multisets, all of which can also make P4. Unique solutions occur for {1, 1, 1, 3,
4, 4, 4, 4, 4, 4} and {1, 3, 3, 3, 3, 3, 3, 3, 4, 4}; almost for {3, 3, 3, 3, 3, 3, 3, 3, 4, 4}.

Historical notes: The first polysphere puzzle may have been “Pyramystery,” copy-
right by Piet Hein in 1967 when his Soma cube was becoming popular. Pyramystery
had the six pieces {1, 1, 3, 4, o,p}; Hein knew that it could form T4, as well as two
copies of T3, and several planar designs. A similar puzzle of unknown origin, called

517

From the Library of Melissa Nuno

ptg999

518 ANSWERS TO EXERCISES 7.2.2.1

Kugelpyramide, may have been created earlier, because it was seen by B. Wiezorke
in 1968. Kugelpyramide’s pieces, {1, 3, 4, 4, o, p} were slightly different. With either
Pyramystery or Kugelpyramide one can make T4, T3 + T3, R3×4, R2×7, and S2×7;
and with the not-thought-of pieces {1, 2, 3, 4, o,p}, one could have made also S3×4 but
not T3 + T3. The first puzzle to mix polyomino-type polyspheres with polyhex-type
polyspheres—a nonobvious possibility—was Tetra, by A. Kuwagaki and S. Takenaka;
see Sugaku Seminar 11, 7 (July 1972), cover, 34–38; also U.S. Patent 3837652 (1974).
That patent describes making P3 from the dispheres and trispheres, and making the 44-
ball octahedron P4P

R
3 from the planar tetraspheres {i, j, l,n, o,p, q, t,u, y, z}. In those

early days, the stretched roofs and pyramids weren’t known to be possible; they were
first introduced by Leonard Gordon, in his WARP-30 puzzle (Kadon Enterprises, 1986).

(d) The unique base placement is {xyz | x, y, z ∈ {0, 1, 2, 3}, x �= y �= z �= x}.
Stats are 95(0) 5(0) 13(0) 70(0) 3(0) 4(0). Only pieces a, c, d, q, u will fit in this shape.
Here’s how to make it with {a, a, c,d, u, u}, {c, c, c,C,C,C}, or {u,u, u,u, u, u}:

a2a2 a1 a2 a1a1
c a2 c u2 a1u1
d d c u2 c u1

d u2 d u2 u1u1

;

C2c3 C2 c3 C2c3
c1 C3 c1 C3 C2c3
C1c2 c1 C3 c1 C3

C1c2 C1 c2 C1c2

;

u5u3 u1 u3 u3u3
u5 u6 u1 u6 u2u2
u5u5 u1 u6 u1 u2

u4u4 u4 u6 u4u2

(Note that {q, q, q, q, q, q} is trivial.) This is a hollow object that can’t stand on its own.

357. Truncated octahedra are the Voronoi regions of the “body-centered cubic lattice,”
which is less tight than the face-centered cubic lattice: It can be represented as the set of
all integer triples (x, y, z) with xmod 2 = y mod 2 = z mod 2. Two truncated octahedra
whose centers are two such points are adjacent if and only if the distance between those
points is either

√
3 (eight neighbors, joined at hexagonal faces) or 2 (six neighbors,

joined at square faces). There are 2 displatts, 6 trisplatts, and 44 tetrasplatts—
including 9 chiral pairs. [See M. Owen and M. Richards, Eureka 47 (1987), 53–58.]

Base placements can be found almost as in exercise 324, except that we must set
(x, y, z) !→ (y, 2�xmax�−x, z). Furthermore, each base placement should be normalized,
by adding (±1,±1,±1) if needed, so that xmin + ymin + zmin ≤ 1.

[One might also consider truncating further, leaving only the union of four small
hexagonal prisms between diametrically opposite hexagonal faces. This yields a sub-
family of polysplatts called “polycrunches”—named and enumerated by G. Sicherman:
Adjacent crunches, with centers

√
3 apart, are pasted together where the prisms meet.

The polycrunch family has 1 monocrunch, 1 dicrunch, 3 tricrunches, and 14 tetra-
crunches (including 2 chiral pairs). The tricrunches have respectively (4, 12, 12) base
placements; the tetracrunches have respectively (4, 6, 6, 8, 12, 12, 12, 12, 24, . . . , 24).]

358. This fascinating packing is considerably more difficult than the other. For ex-
ample, there are six distinct trihexaspheres, having respective angles of (60◦, 90◦,
arccos(−1/3) ≈ 109.5◦, 120◦, arccos(−5/6) ≈ 146.4◦, 180◦) and respective maximum
squared distances (1, 2, 8/3, 3, 11/3, 4). G. Bell has discovered a convenient way to rep-
resent magnified polyhexaspheres within the face-centered cubic lattice: Consider the
subset Ŝ of S whose elements have the special form αj+βk+γl for integers j, k, l, where
α = (0, 3,−3, 0), β = (0, 0, 3,−3), γ2l = (6l,−2l,−2l,−2l), and γ2l+1 = (6l+3,−3−2l,
−2l,−2l). Two cells of Ŝ are called adjacent if the distance between them is

√
18.

Thus each cell v of layer l has six neighbors v ± {(0, 3,−3, 0), (0, 0, 3,−3), (0,−3, 0, 3)}
on the same level; three neighbors v + A[l even] + B[l odd] on level l + 1, where
A = {(3,−3, 0, 0), (3, 0,−3, 0), (3, 0, 0,−3)} and B = {(3, 1,−2,−2), (3,−2, 1,−2),
(3,−2,−2, 1)}; and three neighbors v − A[l odd]− B[l even] on level l − 1.

518

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 519

All of the tetraspheres are tetrahexaspheres, because they fit on at most two
levels. But many of the pentaspheres, for example the planar one for pentomino T, are
not pentahexaspheres. A polyomino polyhexasphere exists if and only if the polyomino
fits in a 2×k box: Connected subsets of {(0, 0, 3k,−3k), (−3,−1, 2+3k, 2−3k)} are OK.

The matrices T and R2HR2 of answer 354 are rotations of Ŝ. Therefore we can
obtain equivalent base placements in the manner of answer 355, replacing each xyz by
either yzx or (y+ 2

3
w)(x+ 2

3
w)(z+ 2

3
w), where w = −x−y−z. Normalize a placement

by adding or subtracting 666 or 330 or 033 or 303. But the analysis is still incomplete:
Are further transformations of base placements needed? How many n-hexaspheres are
possible, for n = 4, 5, . . . ? [See Cubism For Fun 106 (2018), 24–29.]

359. First we realize that every edge of the square must touch at least three pieces;
hence the pieces must in fact form a 3 × 3 arrangement. Consequently any correct
placement would also lead to a placement for nine pieces of sizes (17 − k) × (20 − k),
. . . , (24 − k) × (25 − k), into a (65 − 3k) × (65 − 3k) box. Unfortunately, however, if
we try, say, k = 16, Algorithm X quickly gives a contradiction.

But aha—a closer look shows that the pieces have rounded corners. Indeed,
there’s just enough room for pieces to get close enough together so that, if they truly
were rectangles, they’d make a 1× 1 overlap at a corner.

So we can take k = 13 and make nine pieces of sizes 4×7, . . . , 11×12, consisting
of rectangles minus their corners. Those pieces can be packed into a 26×26 square, as if
they were polyominoes (see exercise 266), but with the individual cells of the enclosing
rectangle treated as secondary items because they needn’t be covered. (Well, the eight
cells adjacent to corners can be primary.) We can save a factor of 8 by insisting that
the 9× 11 piece appear in the upper left quarter, with its long side horizontal.

Algorithm X solves that problem in 620 gigamems—but it finds 43 solutions,
most of which are unusable, because the missing corners give too much flexibility. The
unique correct solution is easily identified, because a 1× 1 overlap between rectangles
in one place must be compensated by a 1×1 empty cell between rectangles in another.
The resulting cross pattern (like the X pentomino) occurs in just one of the 43.

360. Let there be mn primary items pij for 0 ≤ i < m and 0 ≤ j < n, one for
each cell that should be covered exactly once. Also introduce m primary items xi for
0 ≤ i < m, as well as n primary items yj for 0 ≤ j < n. The exact cover problem has(
m+1
2

) · (n+12)
options, one for each subrectangle [a . . b) × [c . . d) with 0 ≤ a < b ≤ m

and 0 ≤ c < d ≤ n. The option for that subrectangle contains 2 + (b− a)(d− c) items,
namely xa, yc, and pij for a ≤ i < b, c ≤ j < d. The solutions correspond to reduced
decompositions when we insist that each xi be covered [1 . . n] times and that each yj
be covered [1 . .m] times. (We can save a little time by omitting x0 and y0.)

The 3×5 problem has 20165 solutions, found in 18 Mμ. They include respectively
(1071, 3816, 5940, 5266, 2874, 976, 199, 22, 1) cases with (7, 8, . . . , 15) subrectangles.

[See C. J. Bloch, Environment and Planning B6 (1979), 155–190, for a complete
catalog of all reduced decompositions into at most seven subrectangles.]

361. The minimum is m + n − 1. Proof (by induction): The result is obvious when
m = 1 or n = 1. Otherwise, given a decomposition into t subrectangles, k ≥ 1 of them
must be confined to the nth column. If two of those k are contiguous, we can combine
them; the resulting dissection of order t − 1 reduces to either (m − 1) × n or m × n,
hence t− 1 ≥ (m− 1) + n− 1. On the other hand if none of them are contiguous, the
reduction of the first n− 1 columns is m× (n− 1); hence t ≥ m+ (n− 1)− 1 + k.

519

From the Library of Melissa Nuno

ptg999

520 ANSWERS TO EXERCISES 7.2.2.1

Close examination of this proof shows that a reduced decomposition has minimum
order t if and only if its boundary edges form m− 1 horizontal lines and n− 1 vertical
lines that don’t cross each other. (In particular, the “tatami condition” is satisfied; see
exercise 7.1.4–215.) See C. F. Earl, Environment and Planning B5 (1978), 179–187.

362. Simply remove the offending subrectangles, so that the cover problem has only
(
(
m+1
2

)−1)((n+12)−1) options. Now there are 13731 3×5 solutions, found in 11 Mμ, and
(410, 1974, 3830, 3968, 2432, 900, 194, 22, 1) cases with (7, 8, . . . , 15) subrectangles.

363. Introduce additional primary items Xi for 0 < i < m, to be covered [1 . . n − 1]
times, as well as Yj for 0 < j < n, to be covered [1 . .m− 1] times. Then add items Xi

for a < i < b and Yj for c < j < d to the constraint for subrectangle [a . . b)× [c . . d).
Now the 3 × 5 problem has just 216 solutions, found in 1.9 megamems. They

include (66, 106, 44) instances with (7, 8, 9) subrectangles. Just two of the solutions
are symmetric under left-right reflection, namely and its top-bottom reflection.

364. We can delete non-tromino options from the exact cover problem, thereby getting
all faultfree tromino tilings that are reduced. If we also delete the constraints on xi
and yj —and if we require Xi and Yj to be covered [1 . . n] and [1 . .m] times instead of
[1 . . n− 1] and [1 . .m− 1]—we obtain all of the m× n faultfree tromino tilings.

It is known that such nontrivial tilings exist if and only if m,n ≥ 7 and mn is a
multiple of 3. [See K. Scherer, JRM 13 (1980), 4–6; R. L. Graham, The Mathematical

Gardner (1981), 120–126.] So we look at the smallest cases in order of
mn: When (m,n) = (7, 9), (8, 9), (9, 9), (7, 12), (9, 10), we get respectively
(32, 32), (48, 48), (16, 16), (706, 1026), (1080, 1336) solutions. Hence the
assertion is false; a smallest counterexample is shown.

365. Augment the exact cover problem of answer 362 by introducing
(
m+1
2

)
+
(
n+1
2

)−2
secondary items xab and ycd, for 0 ≤ a < b ≤ m and 0 ≤ c < d ≤ n, (a, b) �= (0,m),
(c, d) �= (0, n). Include item xab and ycd in the option for subrectangle [a . . b)× [c . . d).
Furthermore, cover xi [1 . .m− i] times, not [1 . . n]; cover yj [1 . . n− j] times.

366. The hint follows because [a . . b)× [0 . . d) cannot coexist motleywise with its left-
right reflection [a . . b)× [n−d . . n). Thus we can forbid half of the solutions.

Consider, for example, the case (m,n) = (7, 7). Every solution will include x67
with some ycd. If it’s y46, say, left-right reflection would produce an equivalent solution
with y13; therefore we disallow the option (a, b, c, d) = (6, 7, 4, 6). Similarly, we disallow
(a, b, c, d) = (6, 7, c, d) whenever 7− d < c.

Reflection doesn’t change the bottom-row rectangle when c+d = 7, so we haven’t
broken all the symmetry. But we can complete the job by looking also at the top-row
rectangle, namely the option where x01 occurs with some yc′d′ . Let’s introduce new
secondary items t1, t2, t3, and include tc in the option that has x67 with yc(7−c). Then
we include t1, t2, and t3 in the option that has x01 with yc′d′ for c

′ + d′ > 7. We also
add t1 to the option with x01 and y25; and we add both t1 and t2 to the option with
x01 and y34. This works beautifully, because no solution can have c = c′ and d = d′.

In general, we introduce new secondary items tc for 1 ≤ c < n/2, and we disallow
all options x(m−1)m ycd for which c + d > n. We put tc into the option that contains
x(m−1)m yc(n−c); t1 thru t�(n−1)/2� into the option that contains x01 yc′d′ when c

′+d′ >
n; and t1 thru tc′−1 into the option that contains x01 yc′(n−c′). (Think about it.)

For example, when m = n = 7 there now are 717 options instead of 729, 57
secondary items instead of 54. We now find 352546 solutions after only 13.2 gigamems
of computation, instead of 705092 solutions after 26.4. The search tree now has just
7.8 meganodes instead of 15.7.

520

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 521

(It’s tempting to believe that the same idea will break top-bottom symmetry too.
But that would be fallacious: Once we’ve fixed attention on the bottommost row while
breaking left-right symmetry, we’ve lost all symmetry between top and bottom.)

367. From any m × n dissection of order t we get two (m+2) × (n+2) dissections of
order t + 4, by enclosing it within two 1 × (m+1) tiles and two 1 × (n+1) tiles. So
the claim follows by induction and the examples in exercise 365, together with a 5× 6
example of order 10—of which there are 8 symmetrical instances such as the
one shown here. (This construction is faultfree, and it’s also “tight”: The order
of every m× n dissection is at least m+ n− 1, by exercise 361.)

In general, Helmut Postl observes that we can create nested motley dissections
by motley-dissecting any subrectangle of a motley dissection (taking care not to repeat
any internal boundary coordinates) and reducing the result. For example, one of
the 2 · (6+ 3+ 3+ 3+ 1+ 9+ 3) = 56 ways to nest a pinwheel within the second
motley 4× 4 is shown here.

368. The number of subrectangles [a . . b) × [c . . d) that have either c = k or d = k,
given k, is ≥ 2 when k ∈ {0, n} and ≥ 3 when 0 < k < n. Hence 2t ≥ 2 + 3(n− 1) + 2.

369. All 214 of the 5×7 motley dissections have order 11, which is far short of(
6
2

) − 1 = 14; and there are no 5×8s, 5×9s, or 5×10s. Surprisingly, however,
424 of the 696 dissections of size 6×12 do have the optimum order 20,
and 7×17 dissections with the optimum order 27 also exist. Examples of
these remarkable patterns are shown. (The case m = 7 is still not fully
explored except for small n. For example, the total number of motley
7×17 dissections is unknown. No 7×18s exist, by exercise 368. If we
restrict attention to symmetrical dissections, the maximum orders
for 5 ≤ m ≤ 8 are 11 (5×7); 19 (6×11); 25 (7×15); 33 (8×21).)
370. The basic idea is to combine complementary options into a single option whenever
possible. More precisely: (i) If a+ b = m and c+ d = n, we retain the option as usual;
it is self-complementary. (ii) Otherwise, if a + b = m or c + d = n, reject the option;
merging would be non-motley. (iii) Otherwise, if a + b > m, reject the option; we’ve
already considered its complement. (iv) Otherwise, if b = 1 and c + d < n, reject
the option; its complement is illegal. (v) Otherwise, if b > m/2 and c < n/2 and
d > n/2, reject the option; it intersects its complement. (vi) Otherwise merge the
option with its complement. For example, when (m,n) = (4, 5), case (i) arises when
(a, b, c, d) = (1, 3, 2, 3); the option is ‘x1 y2 p12 p22 x13 y23’ as in answer 366. Case
(ii) arises when (a, b, c, d) = (1, 3, 0, 1). Case (iii) arises when (a, b) = (2, 3). Case (iv)
arises when (a, b, c, d) = (0, 1, 0, 1); the complement (3, 4, 4, 5) isn’t a valid subrectangle
in answer 366. Case (v) arises when (a, b, c, d) = (1, 3, 1, 3); cells p22 and p23 occur also
in the complement (1, 3, 2, 4). And case (vi) arises when (a, b, c, d) = (0, 1, 4, 5); the
merged option is the union of ‘x0 y4 p04 x01 y45 t1 t2’ and ‘x3 y0 p30 x34 y01’. (Well,
x0 and y0 are actually omitted, as suggested in answer 360.)

Size 8× 16 has (6703, 1984, 10132, 1621, 47) solutions, of orders (26, . . . , 30).

371. (a) Again we merge compatible options, as in answer 370. But now (a, b, c, d)→
(c, d, n− b, n−a)→ (n− b, n− c, n− b, n−a)→ (n− b, n−a, c, d), so we typically must
merge four options instead of two. The rules are: Reject if a = n − 1 and c + d > n,
or c = n− 1 and a+ b < n, or b = 1 and c+ d < n, or d = 1 and a+ b > n. Also reject
if (a, b, c, d) is lexicographically greater than any of its three successors. But accept,
without merging, if (a, b, c, d) = (c, d, n−b, n−a). Otherwise reject if b > c and b+d > n,

521

From the Library of Melissa Nuno

ptg999

522 ANSWERS TO EXERCISES 7.2.2.1

or if b > n/2 and c < n/2 and d > n/2, because of intersection. Also reject if a+ b = n
or c+ d = n, because of the motley condition. Otherwise merge four options into one.

For example, the merged option when n = 4 and (a, b, c, d) = (0, 1, 2, 4) is ‘x0 y2
p02 p03 x01 y24 t1 x2 y3 p23 p33 x24 y34 x3 y0 p30 p31 x34 y24 p00 p10 x02 y01’, except
that x0 and y0 are omitted. Notice that it’s important not to include an item xi or yj
twice, when merging in cases that have a = c or b = d or a = n− d or b = n− c.

(b) With bidiagonal symmetry it’s possible to have (a, b, c, d) = (c, d, a, b) but
(a, b, c, d) �= (n− d, n− c, n− b, n− a), or vice versa. Thus we’ll sometimes merge two
options, we’ll sometimes merge four, and we’ll sometimes accept without merging. In
detail: Reject if a = n − 1 and c + d > n, or c = n − 1 and a + b > n, or b = 1 and
c + d < n, or d = 1 and a+ b < n. Also reject if (a, b, c, d) is lexicographically greater
than any of its three successors. But accept, without merging, if a = c = n−d = n− b.
Otherwise reject if b > c or b > n− d or a+ b = n or c+ d = n. Otherwise merge two
or four distinct options into one.

Examples when n = 4 are: ‘x1 y1 p11 p12 p21 p22 x13 y13’; ‘x0 y3 p03 x01 y34 t1
x3 y0 p30 x34 y01’; ‘x0 y2 p02 x34 y23 t1 x1 y3 p13 x12 y34 x3 y1 p31 x34 y12 x2 y0 p20
x23 y01’; again with x0 and y0 suppressed.

(c) The unique solution for n = 10 is shown. [The total number of such
patterns for n = (10, 11, . . . , 16) turns out to be (1, 0, 3, 6, 28, 20, 354). All
354 of the 16×16 solutions are found in only 560 megamems; they have orders
34, 36, and 38–44. Furthermore the number of n× n motley dissections with
symmetry (a), for n = (3, 4, 5, . . . , 16), turns out to be (1, 0, 2, 2, 8, 18, 66, 220, 1024,
4178, 21890, 102351, 598756, 3275503), respectively. Algorithm M needs 3.3 teramems
when n = 16; those patterns have orders 4k and 4k + 1 for k = 8, 9, . . . , 13.]

372. (a) This fact, and the others noted below, can be proved by induction on the
number of rooms: If the lower right corner of the upper left room is a ⊥ junction, we can
“flatten” and remove that room by bringing its right bound left; otherwise we can bring
its bottom bound up. All floorplans can be built up by reversing this flattening process.

Let the rooms be r1 . . . rn in diagonal order and rp1 . . . rpn in antidiagonal order
(left to right). Then ri ⇓ rj ⇐⇒ i < j and i follows j in the permutation p = p1 . . . pn;
ri ⇒ rj ⇐⇒ i < j and i precedes j in p. The number of horizontal bounds is the number
of descents in p, plus 2. The number of vertical bounds is the number of ascents, plus 2.

(b) Here’s the twin tree structure for the example. Notice that its leftward and
rightward chains are the ordered sequences of rooms adjacent to the bounds.

A

B

C

D

E

F

G

H

I

J

A

B

C

D

E

F

G

H

I

J

Every twin tree structure arises in a remarkably simple way: Let p = p1p2 . . . pn
be any permutation of {1, 2, . . . , n}. Obtain T0 by inserting p1, p2, . . . , pn into an
initially empty binary tree; obtain T1 similarly by inserting pn, . . . , p2, p1. Those trees
can be constructed in linear time (exercise 6.2.2–50); and it’s easy to see that they
are twins, both with inorder 12 . . . n. Although different permutations can yield the
same twin tree, exactly one Baxter permutation (exercise MPR–135) does so; and it
can be computed from the twin tree in linear time(!). Thus there are nice one-to-one
correspondences between floorplans, twin trees, and Baxter permutations.

522

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 523

[Floorplans are important in VLSI layout, where rooms correspond to modules
and bounds correspond to channels. Twin trees were introduced by S. Dulucq and
O. Guibert in Discrete Math. 157 (1996), 91–106, purely for their combinatorial
interest, then applied to floorplans by B. Yao, H. Chen, C.-K. Cheng, and R. Graham
in ACM Trans. Design Aut. Electronic Syst. 8 (2003), 55–80. See also J. M. Hart, Int.
J. Comp. Inf. Sciences 9 (1980), 307–321; H. Murata, K. Fujiyoshi, T. Watanabe, and
Y. Kajitani, Proc. Asia South Pacific Design Aut. Conf. 2 (1997), 625–633; E. Ack-
erman, G. Barequet, and R. Y. Pinter, Discrete Applied Mathematics 154 (2006),
1674–1684; and the author’s programs FLOORPLAN-TO-TWINTREE, TWINTREE-TO-

BAXTER, BAXTER-TO-FLOORPLAN, available online (2021).]

373. The reduction of a perfectly decomposed rectangle is a motley dissection. Thus
we can find all perfectly decomposed rectangles by “unreducing” all motley dissections.

For example, the only motley dissection of order 5 is the 3 × 3 pinwheel. Thus
the perfectly decomposed m× n rectangles of order 5 with integer dimensions are the
positive integer solutions to x1+x2+x3 = m, y1+y2+y3 = n such that the ten values
x1, x2, x3, x1 + x2, x2 + x3, y1, y2, y3, y1 + y2, y2 + y3 are distinct. Those equations
are readily factored into two easy backtrack problems, one for m and one for n, each
producing a list of five-element sets {x1, x2, x3, x1 + x2, x2 + x3}; then we search for
all pairs of disjoint solutions to the two subproblems. In this way we quickly see that
the equations have just two essentially different solutions when m = n = 11, namely
(x1, x2, x3) = (1, 7, 3) and (y1, y2, y3) = (2, 4, 5) or (5, 4, 2). The smallest perfectly
decomposed squares of order 5 therefore have size 11× 11, and there are two of them
(shown below); they were discovered by M. van Hertog, who reported them to Martin
Gardner in May 1979. (Incidentally, a 12×12 square can also be perfectly decomposed.)

There are no solutions of order 6. Those of orders 7, 8, 9, 10 must come
respectively from motley dissections of sizes 4× 4, 4× 5, 5× 5, and 5× 6. By looking
at them all, we find that the smallest n × n squares respectively have n = 18, 21,
24, and 28. Each of the order-t solutions shown here uses rectangles of dimensions
{1, 2, . . . , 2t}, except in the case t = 9: There’s a unique perfectly decomposed 24× 24
square of order 9, and it uses the dimensions {1, 2, . . . , 17, 19}.

[W. H. Cutler introduced perfectly decomposed rectangles in JRM 12 (1979), 104–111.]

374. (a) False (but close). Let the individual dimensions be z1, . . . , z2t, where z1 ≤
· · · ≤ z2t. Then we have {w1, h1} = {z1, z2t}, {w2, h2} = {z2, z2t−1}, . . . , {wt, ht} =
{zt, zt+1}; consequently z1 < · · · < zt ≤ zt+1 < · · · < z2t. But zt = zt+1 is possible.

(b) False (but close). If the reduced rectangle is m × n, one of its subrectangles
might be 1× n or m× 1; a motley dissection must be strict.

(c) True. Label the rectangles {a, b, c, d, e} as shown. Then there’s a
contradiction: wb > wd ⇐⇒ we > wc ⇐⇒ he < hc ⇐⇒ hd < hb ⇐⇒ wb < wd.

a
b

c

d
e

(d) The order can’t be 6, because the reduction would then have to be a
pinwheel together with a 1×3 subrectangle, and the argument in (c) would still
apply. Thus the order must be 7, and we must show that the second dissection
of exercise 365 doesn’t work. Labeling its regions {a, . . . , g} as shown, we have hd > ha;
hence wa > wd. Also he > hb; so wb > we. Oops: wf > wg and hf > hg.

a
b

c

d
e

fg

523

From the Library of Melissa Nuno

ptg999

524 ANSWERS TO EXERCISES 7.2.2.1

In the other motley 4× 4 dissection of exercise 365 we obviously have

w4 < w5, w4 < w6, w6 < w7, h4 < h3, h3 < h1, h4 < h2;

therefore h4 > h5, h4 > h6, h6 > h7, w4 > w3, w3 > w1, w4 > w2. Now h5 < h6 ⇐⇒
w5 > w6 ⇐⇒ w2 > w3 ⇐⇒ h2 < h3 ⇐⇒ h6+h7 < h5. Hence h5 < h6 implies h5 > h6;
we must have h5 > h6, thus also h2 > h3. Finally h2 < h1, because h7 < h5.

(e) The condition is clearly necessary. Conversely, given any such pair of solutions,
the rectangles w1 × αh1, . . . , wt × αht are incomparable for all large enough α.

[Many questions remain unanswered: Is it NP-hard to determine whether or
not a given motley dissection supports an incomparable dissection? Is there a motley
dissection that supports incomparable dissections having two different permutation
labels? Can a symmetric motley dissection ever support an incomparable dissection?]

375. (a) By exercise 374(d), the widths and heights must satisfy

w5 = w2 + w4,
h3 = h4 + h5,

w6 = w3 + w4,
h2 = h4 + h6 + h7,

w7 = w1 + w3 + w4;
h1 = h4 + h5 + h6.

To prove the hint, consider answer 374(a). Each zj for 1 ≤ j ≤ t can be either h or w;
then z2t+1−j is the opposite. So there are 2t ways to shuffle the h’s and w’s together.

For example, suppose all the h’s come first, namely h7 < · · ·<h1 ≤w1 < · · ·<w7:

1 ≤ h7, h7 + 1 ≤ h6, h6 + 1 ≤ h5, h5 + 1 ≤ h4, h4 + 1 ≤ h4 + h5,
h4 + h5 + 1 ≤ h4 + h6 + h7, h4 + h6 + h7 + 1 ≤ h4 + h5 + h6,
h4 + h5 + h6 ≤ w1, w1 + 1 ≤ w2, w2 + 1 ≤ w3, w3 + 1 ≤ w4,
w4 + 1 ≤ w2 + w4, w2 + w4 + 1 ≤ w3 + w4, w3 + w4 + 1 ≤ w1 + w3 + w4.

The least semiperimeter in this case is the smallest value of w1 +w2 +w3 +w4 + h7 +
h6+h5+h4, subject to those inequalities; and one easily sees that the minimum is 68,
achieved when h7 = 2, h6 = 3, h5 = 4, h4 = 5, w1 = 12, w2 = 13, w3 = 14, w4 = 15.

Consider also the alternating case, w1 < h7 < w2 < h6 < w3 < h5 < w4 ≤ h4 <
w2+w4 < h4+h5 < w3+w4 < h4+h6+h7 < w1+w3+w4 < h4+h5+h6. This case turns
out to be infeasible. (Indeed, any case with h6 < w3 < h5 requires h4 + h5 < w3 +w4,
hence it needs h4 < w4.) Only 52 of the 128 cases are actually feasible.

Each of the 128 subproblems is a classic example of linear programming, and a
decent LP solver will resolve it almost instantly. The minimum semiperimeter with
seven subrectangles is 35, obtained uniquely in the case w1 < w2 < w3 < h7 < h6 <
h5 < h4 ≤ w4 < w5 < w6 < w7 < h3 < h2 < h1 (or the same case with w4 ↔ h4) by
setting w1 = 1, w2 = 2, w3 = 3, h7 = 4, h6 = 5, h5 = 6, h4 = w4 = 7. The next-best
case has semiperimeter 43. In one case the best-achievable semiperimeter is 103!

To find the smallest square, we simply add the constraint w1+w2+w3+w4 = h7+
h6+h5+h4 to each subproblem. Now only four of the 128 are feasible. The minimum
side, 34, occurs uniquely when (w1, w2, w3, w4, h7, h6, h5, h4) = (3, 7, 10, 14, 6, 8, 9, 11).

(b) With eight subrectangles the reduced pattern is 4× 5. We can place a 4× 1
column at the right of either the 4 × 4 pattern or its transpose; or we can use one of
the first two 4 × 5 patterns in exercise 365. (The other six patterns can be ruled out,
using arguments similar to those of answer 374.) The labeled diagrams are

1
2

3

4
5
6

7
8

, 1
2
3

4
5
6

7

8

,
1

2
3

4
5
6

7

8

, 1
2

3

4
5
6
7

8

.

524

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 525

For each of these four choices there are 256 easy subproblems to consider. The
best semiperimeters are respectively (44, 44, 44, 56); the best square sizes are re-
spectively—and surprisingly—(27, 36, 35, 35). [With eight subrectangles we can
dissect a significantly smaller square than we can with seven! Furthermore, no smaller
square can be incomparably dissected, integerwise, because nine subrectangles would
be too many.] One way to achieve 44 is with (w1, w2, w3, w4, w5, h8, h7, h6, h5) =
(4, 5, 6, 7, 8, 1, 2, 3, 8) in the third diagram. The only way to achieve a square of side 27
is with (w1, w2, w3, w4, w5, h8, h7, h6, h5) = (1, 3, 5, 7, 11, 4, 6, 8, 9) in the first diagram.

These linear programs usually have integer solutions; but sometimes they don’t.
For example, the optimum for the second diagram in the case h8 < h7 < w1 < h6 <
w2 < w3 < w4 < h5 turns out to be 97/2, achievable when (w1, w2, w3, w4, w5, h8,
h7, h6, h5) = (7, 11, 13, 15, 17, 3, 5, 9, 17)/2. The minimum rises to 52, if we restrict to
integer solutions, achieved by (w1, w2, w3, w4, w5, h8, h7, h6, h5) = (4, 6, 7, 8, 9, 1, 3, 5, 9).

[The theory of incomparable dissections was developed by A. C. C. Yao, E. M.
Reingold, and B. Sands in JRM 8 (1976), 112–119. For generalizations to three
dimensions, see C. H. Jepsen, Mathematics Magazine 59 (1986), 283–292.]

376. This is an incomparable dissection in which exercise 374(d) applies. Let’s try first
to solve the equations a(x+y+z) = bx = c(w+x) = d(w+x+y) = (a+b)w = (b+c)y =
(b+c+d)z = 1, by setting b = x = 1. We find successively c = 1/(w+1), a = (1−w)/w,
y = (w+1)/(w+2), d = (w+2)/((w+1)(w+3)), z = (w+1)(w+3)/((w+2)(w+4)).
Therefore x+y+z−1/a = (2w+3)(2w2+6w−5)/((w−1)(w+2)(w+4)), and we must
have 2w2+6w = 5. The positive root of this quadratic is w = (

√−3)/2, where √ =
√
19.

Having decomposed the rectangle (a+b+c+d)×(w+x+y+z) into seven different
rectangles of area 1, we normalize it, dividing (a, b, c, d) by a+ b+ c+ d =
7
15
(
√
+1) and dividing (w, x, y, z) by w+x+y+z = 5

6
(
√−1). This gives the

desired tiling (shown), with rectangles of dimensions 1
14 (7−

√
)× 1

15 (7+
√
),

5
42
(−1+√)× 1

15
(1+

√
), 5

21
× 3

5
, 1
21
(8−√)× 1

15
(8+

√
), 1

21
(8+

√
)× 1

15
(8−√),

5
42
(1 +

√
)× 1

15
(−1 + √), 1

14
(7 +

√
)× 1

15
(7− √).

[See W. A. A. Nuij, AMM 81 (1974), 665–666. To get eight different rectangles
of area 1/8, we can shrink one dimension by 7/8 and attach a rectangle (1/8) × 1.
Then to get nine of area 1/9, we can shrink the other dimension by 8/9 and attach a
(1/9)× 1 sliver. And so on. The eight-rectangle problem also has two other solutions,
supported by the third and fourth 4× 5 patterns in exercise 375(b).]

377. (a) We can obtain h× w except when w is odd and h is not a multiple of 3. For
if w is even, we can concatenate w/2 instances of size h× 2; if h is a multiple of 3, we
can concatenate h/3 instances of size 3 × w; otherwise we can’t use concatenation to
obtain w as the sum of two even numbers, or h as the sum of two multiples of 3.

(b) The shapes 2×3, 2×4, 2×5, 3×4, 3×5, 3×6, 3×7 are necessary and sufficient.
(And then Λ(S) = {h×w | h > 1, w > 3} ∪ {2h×3 | h ≥ 1}.)

(c) S = {2×4, 3×8, 4×2, 8×3}.
(d) h×w ∈ S if and only if h = an′ for some a with �m/n′� < a < 2�m/n′� + 2

and w = bn′′ for some b with �m/n′′� < b < 2�m/n′′�+2, where n′ = n/ gcd(n,w) and
n′′ = n/ gcd(n, h).

378. Consider first a one-dimensional analog: If A is a set of positive integers, let Λ(A)
be the integers obtainable by adding together one or more elements of A. We can prove
that any set B of positive integers has a finite subset A such that B ⊆ Λ(A). For if B
is empty, there’s nothing to prove; otherwise let b = min(B). Let qr be the smallest

525

From the Library of Melissa Nuno

ptg999

526 ANSWERS TO EXERCISES 7.2.2.1

element of B such that qr mod b = r, for 0 ≤ r < b, or let qr be undefined if no such
element exists. Then every element of B is some qr plus a multiple of q0 = b.

Therefore in two dimensions, there’s a finite set X = {h1×w1, . . . , ht×wt} ⊆ T
such that the width of every element of T is in Λ(X∗), where X∗ = {w1, . . . , wt} is the
set of widths in X. Let p = h1 . . . ht be the product of all heights in X. It follows that
p×w ∈ Λ(X) whenever h×w ∈ T .

For 0 ≤ r < p, let Tr be the elements h×w of T with hmod p = r, and let Qr be
a finite subset of Tr such that every element of Tr has a width in Λ(Q∗

r). Let q be the
largest height of any element of any Qr. Notice that if h×w ∈ T with h > q, and if
h′×w′ ∈ Qhmod p, we have h×w′ ∈ Λ(X ∪Qr), because p×w′ ∈ Λ(X) and h − h′ is a
positive multiple of p. Hence h×w ∈ Λ({h×w′ | h′×w′ ∈ Qr}) ⊆ Λ(X ∪Qr).

Finally, for 1 ≤ i ≤ q, let T ′i be the elements h×w of T with h = i, and let Pi be
a finite subset of T ′i such that every element of T ′i has a width in Λ(P ∗i). Then every
element of T belongs to Λ(X ∪Q0 ∪ · · · ∪Qp−1 ∪ P1 ∪ · · · ∪ Pq).

[This argument extends to any number of dimensions. See N. G. de Bruijn
and D. A. Klarner, Philips Research Reports 30 (1975), 337∗–343∗; Michael Reid,
J. Combinatorial Theory A111 (2005), 89–105.]

379. A 2×5 packing is obvious; thus the basis contains 2×5 (and 5×2). The case 5×w
and w > 2 has a packing only if 5×(w − 2) does. The case h = 3 is clearly impossible.

The case h = 7 is more interesting: 7×10 follows by concatenation, while 7×15
has 80 distinct and easily found solutions. Hence the basis contains 7×15 and 15×7.

This basis is complete: We’ve shown that if h is not a multiple of 5, h×w is
possible whenever w is a multiple of 5, except when h = 1 or h = 3 or (h is odd and
w = 5). If h and w are both multiples of 5, h×w is possible except when h or w
equals 5 and the other is odd. [See W. R. Marshall, J. Combinatorial Theory A77

(1997), 181–192; M. Reid, J. Combinatorial Theory A80 (1997), 106–123.]

380. The minimum basis consists of 15×15 (see Fig. 73) plus 39 pairs {h×w,w×h},
where (h,w) ∈ {(5, 10), (9, 20), (9, 30), (9, 45), (9, 55), (10, 14), (10, 16), (10, 23),
(10, 27), (11, 20), (11, 30), (11, 35), (11, 45), (12, 50), (12, 55), (12, 60), (12, 65), (12, 70),
(12, 75), (12, 80), (12, 85), (12, 90), (12, 95), (13, 20), (13, 30), (13, 35), (13, 45), (14, 15),
(15, 16), (15, 17), (15, 19), (15, 21), (15, 22), (15, 23), (17, 20), (17, 25), (18, 25), (18, 35),
(22, 25)}. (This problem has a long history, going back to the discovery by David
Klarner that ten one-sided Y pentominoes can be packed uniquely in a 5 × 10 box
[Fibonacci Quarterly 3 (1965), 20]. Klarner eventually found 14 of the 39 basic pairs
by hand, including the difficult case (12, 80). The other nine cases (12, w) were found
by J. Bitner [JRM 7 (1974), 276–278], using a frontier-transition method that works
much faster than Algorithm X in cases where h is much less than w. The complete set
was nailed down by T. Sillke in 1992 [unpublished], then independently by J. Fogel, M.
Goldenberg, and A. Liu [Mathematics and Informatics Quarterly 11 (2001), 133–137].)

381. Algorithm X quickly finds examples for n = 7, 11, 12, 13, 15, 16, 17; hence it’s
possible for all n ≥ 11. [J. B. Kelly discovered the case n = 7 in AMM 73 (1966), 468.
Are all packable rectangles consequences of this basis?]

382. Let the back corner in the illustration be the point 777, and write just ‘abcdef ’
instead of [a . . b)×[c . . d)×[e . .f). The subcuboids are 670517 (270601) 176705 (012706)
051767 (060127), 561547 (260312) 475615 (122603) 154756 (031226), 351446 (361324)
463514 (243613) 144635 (132436), 575757 (020202), 454545 (232323)—with the 11
mirror images in parentheses—plus the central cubie 343434. Notice that each of the 28
possible intervals is used in each dimension, except [0 . .4), [1 . .6), [2 . .5), [3 . .7), [0 . .7).

526

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 527

I started from a central cube and built outwards, all the while

staring at the 24-cell in Hilbert’s Geometry and the Imagination.

— SCOTT KIM, letter to Martin Gardner (December 1975)

383. (Solution by Helmut Postl.) We can use the 7-tuples (2, 10, 27, 17, 11, 20, 5),
(1, 14, 18, 8, 21, 24, 6), (3, 19, 16, 7, 34, 9, 4) to “unreduce” the 1st, 2nd, 3rd coordinates.
For example, subcuboid 670517 becomes 5×(1+14+18+8+21)×(19+16+7+34+9+4).
The resulting dissection, of a 92×92×92 cube into blocks of sizes 1×70×87, 2×77×88,
3× 80× 86, 4× 67× 91, 5× 62× 89, 6× 79× 90, 7× 8× 17, 9× 51× 65, 10× 38× 71,
11 × 21 × 34, 12 × 15 × 22, 13 × 25 × 30, 14 × 39 × 66, 16 × 18 × 27, 19 × 33 × 75,
20 × 47 × 61, 23 × 32 × 48, 24 × 36 × 76, 26 × 37 × 50, 28 × 40 × 43, 29 × 31 × 42,
35× 44× 53, 41× 45× 54, makes a fiendishly difficult puzzle.

How were those magic 7-tuples discovered? An exhaustive search such as that of
exercise 374 was out of the question. Postl first looked for 7-tuples that led to very few
dimensions in the “popular” ranges [13 . . 23] and [29 . . 39]. With luck, a large set of
other 7-tuples would lead to no conflict in the 23 relevant subtotals; and with further
luck, some of those wouldn’t conflict with each other.

(Postl also proved that no 91× 91× 91 decomposition is possible.)

384. The exact cover problem of answer 365 is readily extended to 3D: The option for
every admissible subcuboid [a . . b)× [c . . d)× [e . .f) has 6+ (b− a)(d− c)(f − e) items,
namely xa yc ze xab ycd zef and the cells pijk that are covered.

We can do somewhat better, as in exercise 366: Most of the improvement in that
answer can be achieved also 3Dwise, if we simply omit cases where a = l−1 and either
c+ d > m or e+ f > n. Furthermore, if m = n we can omit cases with (e, f) < (c, d).

Without those omissions, Algorithm M handles the case l = m = n = 7 in 98
teramems, producing 2432 solutions. With them, the running time is reduced to 43
teramems, and 397 solutions are found.

(The 7× 7× 7 problem can be factored into subproblems, based on the patterns
that appear on the cube’s six visible faces. These patterns reduce to 5 × 5 pinwheels,
and it takes only about 40 Mμ to discover all 152 possibilities. Furthermore, those
possibilities reduce to only 5 cases, under the 48 symmetries of a cube. Each of those
cases can then be solved by embedding the 5×5 reduced patterns into 7×7 unreduced
patterns, considering 153 = 3375 possibilities for the three faces adjacent to vertex 000.
Most of those possibilities are immediately ruled out. Hence each of the five cases can be
solved by Algorithm C in about 70 Gμ—making the total running time about 350 Gμ.
However, this 120-fold increase in speed cost the author two man-days of work.)

All three methods showed that, up to isomorphism, exactly 56 distinct motley
cubes of size 7×7×7 are possible. Each of those 56 dissections has exactly 23 cuboids.
Nine of them are symmetric under the mapping xyz !→ (7− x)(7− y)(7− z); and one
of those nine, namely the one in exercise 382, has six automorphisms.

[These runs confirm and slightly extend the work of W. H. Cutler in JRM 12

(1979), 104–111. His computer program found exactly 56 distinct possibilities, when
restricting the search to solutions that have exactly 23 cuboids.]

385. No; there are infinitely many. For example, Postl has constructed a primitive
11 × 11 × 13 by pasting Kim’s 7 × 7 × 7 to its mirror image, perturbing a few planes
normal to the splice, and reducing.

386. The twelve possible symmetries can be represented as the permutations of {0, 1, 2,
3, 4, 5} defined by x !→ (ax + b) mod 6, where a = ±1 and 0 ≤ b < 6; let’s denote that
permutation by b or b, according to the sign of a. There are ten symmetry classes,

527

From the Library of Melissa Nuno

ptg999

528 ANSWERS TO EXERCISES 7.2.2.1

depending on the automorphisms that are present: (i) all twelve; (ii) {0, 0, 2, 2, 4, 4};
(iii) {0, 1, 2, 3, 4, 5}; (iv) {0, 1, 2, 3, 4, 5}; (v) {0, 3, 0, 3} or {0, 3, 2, 5} or {0, 3, 4, 1}; (vi)
{0, 2, 4}; (vii) {0, 3}; (viii) {0, 0} or {0, 2} or {0, 4}; (ix) {0, 1} or {0, 3} or {0, 5}; (x) {0}.

(i)

;

full

(ii)

;

triaxial-a

(iii)

;

triaxial-b

(iv)

;

60◦

(v)

;

biaxial

(vi)

;

120◦

(vii)

;

180◦

(viii)

;

axial-a

(ix)

;

axial-b

(x)

.

none

(i)

;

full

(ii)

;

triaxial-a

(iii)

;

triaxial-b

(iv)

;

60◦

(v)

;

biaxial

(vi)

;

120◦

(vii)

;

180◦

(viii)

;

axial-a

(ix)

;

axial-b

(x)

.

none

(Types (ii), (iii) and (viii), (ix) depend on whether a reflection is left-right or top-down.
Notice that there are 12/k base placements when there are k automorphisms.)

387. The 24 potential symmetries S can be represented as signed permutations of
{±1,±2,±3}, meaning that coordinates are permuted and/or complemented. Using
the notation of answer 7.2.1.2–20, they are 123, 123, 123, . . . , 321, where the number
of inversions of the permutation plus the number of complementations is even.

Each of those symmetries is a rotation in 3-space about some line through the
origin. (After a polycube has been rotated by one of its symmetries, we should shift
the result, if necessary, to bring it into the original position.) For example, 132 takes
(x, y, z) !→ (c − x, z, y); it’s a rotation of 180◦ about the diagonal line x = c/2, y = z.
It’s a symmetry of the bent tricube {000, 001, 010} when c = 0; it’s a symmetry of the
L-twist {000, 001, 100, 110} when c = 1.

All subgroups of this group are easily found by constructing the BDD for the
Boolean function whose 24 variables are the potential symmetries. Indeed, all subsets
of any set S that are closed under any given binary operator % on that set are the
solutions to

∧
x,y∈S(¬x ∨ ¬y ∨ (x % y)). In this case the resulting BDD (found in

2.5 Mμ) has 197 nodes, and it characterizes exactly 30 subgroups.
Two subgroups T and T ′ are said to be conjugate if T ′ = t−Tt for some t ∈ S.

Such subgroups are considered to be equivalent, because they amount to viewing the
objects from a different direction. The distinct conjugacy classes of subgroups according
to this equivalence relation are called the “symmetry types,” and there are 11 of them:

(i)

;

full

(ii)

even

(iii)

;

8-fold

(iv)

;

6-fold

(v)

;

90◦

(vi)

;

bidiagonal

(vii)

;

tricentral

(viii)

;

120◦

(ix)

;

diagonal

(x)

;

axial

(xi)

.

none

Class (ii) consists of the 12 symmetries whose permutations are even. The smallest
polycube which admits these symmetries and no more—and hence it has just two base
placements—contains 20 cubies, with 12 surrounding a central core of 8. Class (iv)
has one symmetry for each permutation of the three coordinates. Classes (iii), (v), (vi),
(vii), (ix), (x), (xi) correspond to the eight symmetry types of a square, with reflections
implemented by “turning the square over” to the opposite side. In this interpretation
biaxial symmetry becomes “tricentral,” because it corresponds to central symmetry
about each coordinate axis. The former class called “180◦” is now the same as “axial,”

528

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 529

when viewed from either of the two other axes. [Many of these twelve examples have re-
flective symmetries too; but those don’t count. Under the full set of 48 hyperoctahedral
symmetries, when reflections are allowed, there are 33 symmetry types(!), nicely pre-
sented by W. F. Lunnon in Graph Theory and Computing (Academic Press, 1972),
101–108. Lunnon also exhibited the ten symmetry types for polyhexes on pages 87–100.]

388. The directed path of four weak clues in (a) is equivalent to the five strong clues
(1, 2, 3, 4, 5). Then there are “hidden singles” in columns 1 and 2, leading to a “naked
single” in cell (4, 2), etc.; we cruise to victory without branching. Puzzle (b) has a
naked single in (4, 2)—and we notice, by the way, that the middle cell needn’t be 5

even though it is greater than each of its four neighbors. Then (4, 4) is naked, and so
on; again everything is forced. Puzzle (c) begins with hidden singles, which place the
three missing 1s and then the 5 in row 0. After we fix cell (4, 2), the rest falls into place.

a)
>

>

>

>

>>

>

4 5 1 3 2

5 4 2 1 3

3 1 5 2 4

2 3 4 5 1

1 2 3 4 5

; b)

2

4

>

>
>

>

>

>

>

>

3 1 4 5

2 3 1 4 5

5 2 3 1 4

4 5 2 3 1

1 5 2 3

; c)

3

1

4

1

5

>

>

5 1 2 4

4 5 3 2

2 3 5 1

5 4 2 3

1 2 3 4

.

[Historical note: Futoshiki was invented by Yoshihiko Asao, who called it Dainarism
(“Greater Than”); see Puzzle Communication Nikoli 92 (September 2000).]

389. In general, given a digraph in which each vertex v is supposed to be given an
integer label l(v) with l(v) ≥ a(v), where the lower bounds a(v) have been specified, we
can refine them as follows: For each vertex with d+(v) > 0, push v ⇒ S, where S is an
initially empty stack. Then while S is nonempty, repeatedly do this: Pop S ⇒ v; for
each w with v−−→w and a(w) ≤ a(v), set a(w)← a(v)+1, and push w ⇒ S if d+(w) > 0.

A similar algorithm will refine a given set of upper bounds b(v). For futoshiki, we
apply these algorithms with a(v) = 1 and b(v) = n initially, except that a(v) = b(v) = l
when a strong clue has specified v’s label. (Note: This method isn’t clever enough to
prove that the middle element of puzzle (b) must be 3 or more. But it’s still very useful.)

390. In both cases we use primary items pij , rik, and cjk for 0 ≤ i, j < n and 1 ≤ k ≤ n,
as we did for sudoku. There will be one option analogous to (30) for every (i, j) and
for every k ∈ [aij . . bij], where the bounds aij and bij are calculated as in exercise 389.

(a) Suppose there are w weak clues, where the tth weak clue is l(itjt) < l(i′tj
′
t).

Introduce (n− 3)w secondary items gtd for 1 < d < n− 1 and 1 ≤ t ≤ w. Such an item
informally means that l(itjt) > d and d ≥ l(i′tj

′
t); so we don’t want it to appear twice.

We include gtd in each option for ij with d < k, and in each option for i′j′ with d ≥ k.
For example, the options for cells (0, 0) and (0, 1) in puzzle 388(b) are ‘p00 r02

c02 g12 g13’, ‘p00 r03 c03 g13’, ‘p00 r04 c04’, ‘p00 r05 c05’; ‘p01 r01 c11’, ‘p01 r02 c12’, ‘p01
r03 c13 g12’, ‘p01 r04 c14 g12 g13’. Another option is ‘p22 r23 c23 g23 g33 g43 g53’.

(b) Introduce w primary items gt, and 3n2 secondary items Pij , Rik, Cjk. The
options for pij , rik, and cjk are ‘pij rik cjk Pij :k Rik:j Cjk:i’ for 0 ≤ i, j < n and
aij ≤ k ≤ bij . The options for gt are ‘gt Pitjt :k Pi′tj′t :k

′ Ritk:jt Ri′
t
k′ :j

′
t Cjtk:it Cj′tk′ :i

′
t’

for k < k′, where k and k′ are within the bounds for l(itjt) and l(i
′
tj
′
t).

Experience shows that formulation (a) is a clear winner over formulation (b).

391. Given 5 · 5 · 5 options ‘pij rik cjk’ as in answer 390, Algorithm X needs just 230
megamems to generate 161280 = 5! · 4! · 56 solutions. [Euler enumerated them in his
major paper on latin squares [Verhandelingen Genootschap Wetenschappen Vlissingen

529

From the Library of Melissa Nuno

ptg999

530 ANSWERS TO EXERCISES 7.2.2.1

9 (1782), 85–239, §148], though he was nearly blind at the time.] Every 5 × 5 latin
square has 40 pairs of adjacent elements, leading to a string of 40 inequality signs; and
we can sort those 161280 strings. Only 115262 distinct strings actually occur; and only
82148 of them occur just once. The other 79132 cannot be identified by weak clues only.

392. Here are the first examples found of each type, and the total number of cases:

(a) Unique solution
(long path)
> >

> >

>

>

2976

(no long path)
>

> >

>

>

>

4000

(b) No solutions
(long path)
> >

> >

>

>

369404

(no long path)
>
> >

> > >

405636

(c) Multiple solutions
(long path)
> > >

>

> >

1888424

(no long path)
> > >

> > >

242985880

(More detailed counting shows exactly (369404, 2976, 4216, 3584, . . . , 80) cases with at
least one long path and (0, 1, 2, 3, . . . , 1344) solutions; (405636, 4000, 4400, 1888, . . . ,
72) cases with no long path and (0, 1, 2, 3, . . . , 24128) solutions.) Example (i) below is
one way to get the maximum number of solutions, using six particularly unhelpful clues.

The most interesting cases, of course, are those that make valid puzzles. They
fall into equivalence classes under rotation and/or reflection and/or complementation;
thus sixteen examples are typically equivalent to any given one. However, there are 46
equivalence classes with only eight members, self-dual under transposition, of which 26
have long paths (as in (ii), (iii), (iv) below) and 18 do not (as in (v), (vi), (vii)). Thus
(173+26)+(241+18) = 458 essentially different futoshiki puzzles with six weak clues are
valid; however, many of these are really the same, under row-and-column permutations
that preserve all clues. The most difficult symmetric instance is probably (vii), because
exercise 390 needs a 374-node search tree to solve it. (A clever solver will, however,
deduce immediately that all diagonal elements of a symmetric puzzle must be 3!)

>

>

>

>
>

>

(i)

>

>

>

>

>

>

(ii)

>

>

>

>

> >

(iii)

>

> >

>

>

>

(iv)

>

>

>

>

>
>

(v)

>

>

> >

>

>

(vi)

>

> >
>

>

>

(vii)

393. The 56 = 15625 ways to label six cells can be reduced to �6 = 203, by limiting
consideration to restricted growth strings (Section 7.2.1.5), multiplying the results for
every such string by 5k when it has k different labels. (In fact, only 202 such strings are
relevant, because the last one (123456) will be multiplied by 56 = 0 and never used.)
Running through each subset of five cells, we find respectively (1877807500, 864000, 0,
0, 1296000, 10368000, . . . , 144000) cases that have (0, 1, 2, 3, 4, 5, . . . , 336) solutions.

0 solutions
1 1 1 1 1

1

1 solution
1 2

2

3 4

4

4 solutions
1 2

2 3

4 5

5 solutions
1 2

2

3 4

5

336 solutions
1 2 3 4 5

2

336 solutions
1

1

1

1

1

2

Every case with a unique solution is obtained from the example shown by independently
permuting the rows, columns, and labels. (Indeed, 864000 = 5!3/2.)

530

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 531

394. Let there be h strong clues and k = 5 − h weak clues. Four solutions are
obtained only in (144, 2016, 2880) cases for h = (1, 2, 3). In every such case, two
rows and two columns are completely free from clues; thus the four solutions arise from
swapping those two rows and/or those two columns. As in answer 392, most of the cases
belong to classes of 16 puzzles that are equivalent under rotation, transposition, and/or
complementation. But when h = 3 there are 30 classes of size 8, having transposition
symmetry (see (iii) and (iv) below); also 6 self-dual classes of size 8 (see (v)). Hence
there are 9+126+(36+162) = 333 inequivalent 4-solution 5-clue futoshikis altogether.

1
>

>

> >

(i)

1
>

5

> >

(ii)

1

2

5

>

>

(iii)

1

5

3

>

>

(iv)

1

5

3

>

>

(v)

3

5

4

>

>

>

>

>

(vi)

[This exercise was inspired by a talk that Dan Katz gave at the Joint Mathematics
Meetings in January 2012. He observed, among other things, that valid puzzles exist
with h + k = 6 for all values 0 ≤ h ≤ 6. Indeed, we can start with example (iv) in
answer 392, and repeatedly insert a clue (5, 1, 5, 1, 4, 2) while removing an inequality.]

[The minimum number of strong clues needed to specify an n× n latin square is
known to be �n2/4� for n ≤ 8. See R. Bean, arXiv:math/0403005 [math.CO] (2004).]

395. Let L solve (vi) in answer 394. [See Appendix E if you’re stuck.] The only way to
distinguish L from fifteen other latin squares that have the same string of 40 inequality
signs is to give at least one clue 2 or 3 in a boundary row or column, at least one clue 4 or
5 in a boundary row or column, and at least one 4 or 5 in cells {(1, 1), (1, 3), (3, 1), (3, 3)}.
396. For example, here’s one that Algorithm P+X solves in 90 Mμ. (See Appendix E.)

3

1

4

1

5

9

2

6

5

> >

> >

>

> >

> >

>

>

>

>

>

>

>>

>

>

>

> > > >

> >

>

>

>

>

>

> >

397. (a) Assuming an m × n grid, let there be (m+1)(n+1) − 4 primary “endpoint”
items ij for 0 ≤ i ≤ m, 0 ≤ j ≤ n, and [i=0] + [i=m] + [j=0] + [j=n] ≤ 1; also
“sheep” items sij when a sheep is in cell ij; also “start-stop” items + and −. Let there
be mn secondary items xij for 0 ≤ i < m and 0 ≤ j < n, one for each cell. Three kinds
of options are used: (i) There are 14(m−1)(n−1) “junction” options ‘ij x(i−1)(j−1):a
x(i−1)j :b xij :c xi(j−1):d’, for 0 < i < m and 0 < j < n and 0 ≤ a, b, c, d ≤ 1 and (a = b
or b = c or c = d). (ii) There are 2m+ 2n− 4 sets of four “boundary” options typified
by ‘02 x01:0 x02:0’, ‘02 x01:0 x02:1 −’, ‘02 x01:1 x02:0 +’, ‘02 x01:1 x02:1’, for 0 ≤ i ≤ m,
0 ≤ j ≤ n, and [i=0]+ [i=m]+ [j=0]+ [j=n] = 1; adjacent boundary cells, like x01
and x02 in this example, are listed in clockwise order. (For example, one of the options
at the right boundary when n = 5 is ‘35 x24:0 x34:1 −’; one of the options at the left is
‘20 x20:1 x10:0 +’.) (iii) Each sheep has up to six “sheep” options, ‘sij xij :1 x(i−1)j :a
xi(j+1):b x(i+1)j :c xi(j−1):d’, where a + b + c + d = 2; the x items are omitted if the
corresponding cells lie outside of the grid, in which case their values are assumed to

531

From the Library of Melissa Nuno

ptg999

532 ANSWERS TO EXERCISES 7.2.2.1

be 1. For example, the topmost sheep has only three options in the example puzzles,
namely ‘s03 x03:1 x04:b x13:c x02:d’, where b+ c+ d = 1.

This XCC problem for the rightmost example puzzle has five solutions:

To eliminate the spurious ones, we traverse the fence from ‘+’ to ‘−’, accepting a
solution only if that path contains all of the color transitions between adjacent cells.

(b) There’s a unique solution if we put k sheep into a diagonal of length k; but that
puzzle is trivial, not “interesting.” Random trials show that about one configuration in
every 10,000 makes a suitable puzzle; the author found the first three examples below
in that way. The fourth example was contrived by hand. All are solvable by hand:

[E. Olson invented this game; see J. Henle, Math. Intelligencer 40, 1 (2018), 69–70.]

398. The blanks in rows 0 and 4 of (c) can be filled with 3 and 5 in two ways.

a)

3− 14+ 15×

9× 2÷

6+ 5+

3− 5+

5 7+

1 4 2 3 5

3 1 5 2 4

4 3 1 5 2

2 5 4 1 3

5 2 3 4 1

; b)

34560× 3−

5÷

10+

3+ 9+

2 1−

4 2 3 1 5

3 1 5 4 2

5 3 4 2 1

3 4 1 5 3

1 5 2 3 4

; c)

3− 14+ 15×

9× 2÷ 6+

5

3− 5+

8× 9+

4 1 2

1 3 5 2 4

3 5 4 1 2

5 2 3 4 1

2 4 1

.

[Tetsuya Miyamoto invented KenKen©R in 2004, as an aid to education. The special
case where all operations are multiplication, and all cages are rectangular, had been
published by Ryuoh Yano in Puzzle Communication Nikoli 92 (September 2000).]

399. Set up an XCC problem with 3n2 primary items pij , rik, cjk and 3n2 secondary
items Pij , Rik, Cjk, and with n2 options ‘pij rik cjk Pij :k Rik:j Cjk:i’ for 0 ≤ i, j < n
and 1 ≤ k ≤ n, as in answer 390(b). Also, if there are w cages, introduce primary
items gt for 1 ≤ t ≤ w. Let Ct be the cells of the tth cage, and let there be an option

‘gt
⋃
{{Pitjt :l(it, jt), Ritl(it,jt):jt, Cjtl(it,jt):it} | (it, jt) ∈ Ct}’

for every feasible way to assign labels l(it, jt) to the cells of Ct. For example, there
are two labelings that satisfy the clue ‘15×’ in the third cage in puzzle 398(a), namely
either l(0, 3) = 3 and l(0, 4) = 5 or l(0, 3) = 5 and l(0, 4) = 3; the two options for g3
are therefore ‘g3 P03:3 R03:3 C33:0 P04:5 R05:4 C45:0’ and ‘g3 P03:5 R05:3 C35:0 P04:3
R03:4 C43:0’. The cage of that puzzle whose clue is ‘9×’ has just one option: ‘g4 P10:3
R13:0 C03:1 P11:1 R11:1 C11:1 P21:3 R23:1 C13:2’.

The option for a one-cell cage is trivial, and the options for two-cell cages are
also easy. The options for larger cages are readily listed by a straightforward backtrack
algorithm: We can represent unchosen labels in each row and column by bit vectors,
just as unchosen values in the queens problem were represented in Algorithm 7.2.2B∗.
Simple upper and lower bounds on the final sum or product, given a partial labeling,
yield satisfactory cutoffs in the analog to step B3∗ of that algorithm, based on the λ
and ρ functions of Section 7.1.3. The ten-cell ‘34560×’ cage of puzzle 398(b) turns out
to have 288 options, with 31 items each; the links will dance merrily around them all.

532

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 533

(Incidentally, this formulation doesn’t require the cells of a cage to be connected.)

400. The formulation in answer 399 makes it easy to omit the options for any cage.
Thus Algorithm C almost instantaneously breezes through those 2048 problems, and
finds that exactly 499 of them are uniquely solvable. The number of such puzzles with
(5, 6, . . . , 11) given clues is (14, 103, 184, 134, 52, 11, 1); for example, one can solve it
when given only the clues ‘15×’, ‘6+’, ‘3−’, ‘5+’, ‘5’, in five cages! Exactly (14, 41, 6)
of those 499 puzzles have (5, 6, 7) minimal clues; minimal-clue puzzles correspond to
the prime implicants of the associated monotone Boolean function.

Similar remarks apply to puzzle 398(b), which can be solved uniquely without

knowing either of the clues ‘34560×’ or ‘2’—although the reader probably made heavy
use of those clues when solving it. (On the other hand, its clue ‘9+’ cannot be omitted.)

401. There are 36 ways to cover a 4×4 board with dominoes, but nearly all of them are
unsuitable. For example, can’t define the cages of a valid kenken problem, because
the middle rows of any solution could be swapped to give another solution. And no
two dominoes can cover a 2× 2 region whose solution has the form ab

ba. Therefore we’re
left with only two cage patterns, and its transpose.

A given cage pattern can be filled with two clues of each type in 8!/2!4 = 2520
ways. Most of those ways are obviously impossible, because ÷ cannot be applied to
the pairs {2, 3} or {3, 4}. It turns out that (1620, 847, 52, 1) of the cases give a kenken
puzzle with respectively (0, 1, 2, 4) solutions. Notable examples are

2÷ 12×

2÷ 5+ 1−

2−

12× 3+

and

2÷ 12×

2− 5+ 5+

2−

12× 2÷

,

where the first is the “most difficult,” in the sense that its search tree via the construc-
tion of exercise 399 has the most nodes (134). The second is the one with four solutions.

402. The solution follows answer 403. The author constructed this puzzle by first
designing the cages, then generating a dozen or so random latin squares via exercise 86
until finding one that had a unique solution. Then the domino clues were permuted at
random, ten times; the most difficult of those ten puzzles (77 meganodes) was selected.

The construction of answer 399 gives an XCC problem with 10914 options, 486+
432 items, and 163288 total entries. There are respectively (720, 684, 744, 1310,
990, 360, 792, 708, 568, 1200, 606, 30) options for the pentominoes (O, P, . . . , Z);
preprocessing with Algorithm P reduces those counts to (600, 565, 96, 1122, 852,
248, 744, 656, 568, 1144, 606, 26). Overall, the reduced problem has 8927 options,
484 + 432 items, and 134530 total entries. The total time to find the solution and
prove its uniqueness was 9 Gμ for Algorithm P and 293 Gμ for Algorithm C. (Without
preprocessing, Algorithm C would have taken 6.4 Tμ, and its search tree would have
had 2 giganodes. Could a human being solve this puzzle by hand?)

403. The author’s best attempt, shown below, manages to match 35 digits before
deviating in the final cage. The construction of answer 399 fails spectacularly on this
particular instance, because the monster cage for ‘79+’ has 3,978,616,320 options! We
can, however, work around that problem by simply making row 7 unconstrained and
subtracting 1+2+· · ·+9 = 45 from the cage total. (A latin square is determined by any
n− 1 of its rows.) Then Algorithm C solves the problem handily, with a cost of 2 Gμ
(from 184422 options), and with a search tree of only 252 nodes. (See Appendix E.

533

From the Library of Melissa Nuno

ptg999

534 ANSWERS TO EXERCISES 7.2.2.1

Surprisingly, the non-π clue ‘3780×’ in the bottom row affects row 1 of the solution.)

O P Q

R S

T

U

V

W

X

Y

Z

3÷

8÷

5÷

2÷

8÷

10÷

5÷

8÷

2÷

3÷

2÷2÷

4÷

7÷

1−

7−

1−

1−1−

3−

3−

1−

2−

4−

3−

1−

4−

4−

14+

15+

11+

14+

16+

8+

13+ 16+

21+

7+11+

8+

13+

15+

B A 7 6 2 4 9 5 3 8 1 C

7 8 9 2 5 1 C A 6 3 4 B

2 1 8 9 6 C 4 3 7 B 5 A

5 4 6 7 A 2 B 8 C 9 3 1

3 2 A B 7 6 1 9 5 4 C 8

1 5 B 4 C 7 8 2 9 6 A 3

4 9 3 1 8 5 7 B A C 6 2

C B 2 8 4 3 A 7 1 5 9 6

A 3 4 5 9 B 6 C 8 1 2 7

9 6 C 3 B A 2 1 4 7 8 5

6 7 1 C 3 8 5 4 2 A B 9

8 C 5 A 1 9 3 6 B 2 7 4

3÷ 14× 15× 9+ 2÷ 6÷

5+ 35+ 8 9÷

7+ 9 32×

3− 84× 62+ 64×

3

3 8+ 32× 79+ 50×

2− 8 3780×

404. Such puzzles can be defined on any N -vertex graph G, some of whose vertices are
labeled with elements of {1, 2, . . . , N}; the problem is to extend such a labeling to a full
Hamiltonian path, in all possible ways. We imagine an additional vertex ∞, which is
adjacent to all the others. A Hamiltonian path in G is then equivalent to a Hamiltonian
cycle in G ∪∞, with ∞ interposed between the first and last vertices of the path.

For 1 ≤ k ≤ N , let vk be the vertex labeled k, or vk = Λ if there’s no such vertex.
Also let v0 = vN+1 =∞. We define an XCC problem with two kinds of primary items:
(i) −v and +v for all unlabeled vertices v; (ii) sk for 0 ≤ k ≤ N , except when both
vk �= Λ and vk+1 �= Λ. We also introduce secondary items pv for all unlabeled v, and
qk for all unused labels k. (Thus the example has 35 primary items {−00, +00, −10,
+10, −11, . . . , +33, s1, . . . , s7, s9, . . . , s16}, and 20 secondary items {p00, . . . , p33,
q2, q4, . . . , q15, q16}.) The options for sk are ‘sk −u pu:k qk:u +v pv:k+1 qk+1:v’ for
all pairs of unlabeled vertices u−−− v such that u might be labeled k and v might be
labeled k+1. However, we omit −u pu:k qk:u if vk �= Λ, and we omit +v pv:k+1 qk+1:v
if vk+1 �= Λ. For example, four of the options in the 4× 4 toy problem are

‘s3 +10 p10:4 q4:10’,
‘s4 −11 p11:4 q4:11’,

‘s6 −31 p31:6 q6:31 +30 p30:7 q7:30’,
‘s6 −30 p30:6 q6:30 +31 p31:7 q7:31’;

the bottom two appear in the solution, but the top two do not. The secondary items
are colored so that interdependent options will always link up properly.

Suppose l < k < r and vl �= Λ, vl+1 = · · · = vk = · · · = vr−1 = Λ, vr �= Λ. The
statement “u might be labeled k” in the specification above means more precisely that
there is a simple path of length k − l from vl to u and a simple path of length r − k
from u to vr. (This condition is necessary for u to be labeled k, but not sufficient.
It is, however, sufficient for our purposes.) A simple path of length 1 is equivalent to
adjacency. A simple path of length > 1 can be decided using the algorithm in the
following exercise; but if that algorithm is taking too long, we can proceed safely by
assuming that a simple path does exist. The value of min(k− l, r− k) is usually small.

[Gyora Benedek invented Hidato©R in 2005 and began to publish examples in
2008. Similar brainteasers sprang up later, based on other kinds of paths; but king
moves Pm×Pn have a special appeal because they can cross each other.]

405. For l = 0, 1, . . . , L, find the set Sl of all pairs (S,w) such that at least one simple
path from v to w runs through the vertices of S∪v, where S is an l-element set. Clearly
S0 = {(∅, v)}; and Sl+1 = {(S ∪ w,w) | w−−−u and w /∈ S for some (S, u) ∈ Sl}.

534

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 535

If at most 58 vertices w are reachable from v in ≤ l steps, we can represent each
pair (S,w) in a single octabyte, with 6 bits for w and 58 bits for S. These octabytes
can be stored in two stacks, alternately at the low and high ends of a sequential list.

406. The moves from 12 to 19 are forced, as are those on several other diagonals. So
everything is quickly filled in, except for blanks between 42 and 51. Aha.

407. Using exercise 404, Algorithm C finds the 52 solutions quickly (1500 kilomems).
Only one of them has ‘18’ in row 3, column 3; and that clue makes a puzzle with a
nicely symmetric solution (see Appendix E). [We could also put ‘27’ in cell (2, 4); or
‘18’ in (4, 3); or ‘17’ in (4, 4). But that would destroy the smile.]

408.

(a)

6

28

11 24 33

; (b)

2 6 10

1 5 9

22 18 13

21 17 14

25 30 36

26 29 35

.
(See Appendix E for solutions.
Are the numbers 5 and 18 best
possible for 6× 6?)

409. Yes! (This puzzle is fiendishly difficult to solve
by hand, although that has actually been done.
Algorithm C finds the unique solution in 330 Mμ,
with a search tree of 161612 nodes. (If you give
up, the solution can be found in Appendix E.) A
“pidato puzzle” like this is presumably possible only
because 10 × 10 hidato solutions are quite abundant.
Indeed, the actual number of 10 × 10 king paths is
721833220650131890343295654587745095696; it can
be determined with ZDD technology, as explained in
Section 7.1.4.)

31 41

59 26 53

58 97 93

23 84 50

21 100 49

19 67 81 89 47

18 68 79 3

9

77

410. Puzzles (a), (b), (d) have unique solutions; remarkably, all 12 of the clues in (b)
are essential. But (c) has 40 solutions, including two whose loop doesn’t touch a corner.

(a)

0 0 0

0 0

0 0

0 0

0 0 0

; (b)

1 1 1

1 1

1 1

1 1

1 1 1

; (c)

2 2 2

2 2

2 2

2 2

2 2 2

; (d)

3 3 3

3 3

3 3

3 3

3 3 3

; (x)

x x

x x x

x x x

x x x x

.

Pattern (x), incidentally, has unique solutions for x = 0, 1, 2, but none for x = 3.
[Historical note: Slitherlink was invented by Nikoli editor Nobuhiko Kanamoto,

who combined the puzzle ideas of Ayato Yada and Kazuyuki Yuzawa. See Puzzle

Communication Nikoli 26 (June 1989).]

411. False; for instance, 3 2

2 3
has two. [But such cases are somewhat mysterious. There

are 93 of size 5 × 5, including three that give two loops despite 8-fold symmetry. A
6×6 example yields four loops; can you find them? (See Appendix E.) Are three loops
possible? If m+1 and n+1 are relatively prime, N. Beluhov has proved that an m×n
slitherlink diagram with all clues given cannot have more than one solution.]

1 2 2 2 1

2 1 0 1 2

2 0 0 0 2

2 1 0 1 2

1 2 2 2 1

3 2 2 2 3

2 1 1 1 2

2 1 0 1 2

2 1 1 1 2

3 2 2 2 3

3 2 2 2 3

2 3 2 3 2

2 2 0 2 2

2 3 2 3 2

3 2 2 2 3

3 2 2 2 2 2

2 2 2 2 3 2

2 2 2 2 2 2

2 2 2 2 2 2

2 3 2 2 2 2

2 2 2 2 2 3

412. With an m × n grid it’s convenient to use the (2m + 1)(2n + 1) pairs xy for
0 ≤ x ≤ 2m and 0 ≤ y ≤ 2n, with xy representing either (i) a vertex, if x and y are

535

From the Library of Melissa Nuno

ptg999

536 ANSWERS TO EXERCISES 7.2.2.1

both even; (ii) a cell, if x and y are both odd; or (iii) an edge, if x+ y is odd. The edge
between two adjacent vertices is their midpoint. The four edges surrounding a cell are
obtained by adding (±1, 0) and (0,±1) to the coordinates of the cell.

To obtain the weak solutions for any slitherlink diagram on a planar graph,
introduce one primary item for each vertex, one primary item for each face in which the
number of edges is specified, and one secondary item for each edge. There are 1 +

(
d
2

)
options for each vertex v of degree d, namely ‘v e1:x1 . . . ed:xd’ where xj ∈ {0, 1} and
x1+ · · ·+xd = 0 or 2. There are

(
d
k

)
options for each face f of degree d that should have

k edges in the path, namely ‘f e1:x1 . . . ed:xd’ with xj ∈ {0, 1} and x1 + · · ·+ xd = k.

For example, the options for vertex 00 in the diagram of exercise 410(i) are ‘00
01:1 10:1’ and ‘00 01:0 10:0’. The options for cell 11 are ‘11 01:1 10:1 12:1 21:0’, ‘11
01:1 10:1 12:0 21:1’, ‘11 01:1 10:0 12:1 21:1’, ‘11 01:0 10:1 12:1 21:1’.

This construction yields (2, 2, 104, 2) weak solutions for puzzles 410(a) to 410(d).
(In cases (a), (b), (d) we can delete or insert the 4-cycle that surrounds the middle cell.)

413. (Solution simplified by R. Molinari.) Let each record for an item include two new
fields U and V. The U and V fields of a secondary item that represents edge u −−− v
will point to the primary items u and v. The U and V fields of a primary item that
represents vertex v are renamed MATE and INNER. MATE(v) is zero until v first becomes
the endpoint of an edge, after which it points to the other endpoint of the path fragment
containing that edge. INNER(v) is nonzero when v lies within a path fragment.

Introduce two new global variables: Global variable F is the current number of
fragments. Global variable E is the edge that closed a loop, or zero if there’s no loop.

For example, suppose two edges currently have color 1, say v1−−−v2 and v3−−−v4.
Then we’ve set MATE(v1) ← v2, MATE(v2) ← v1, MATE(v3) ← v4, MATE(v4) ← v3, and
F ← 2. If now v2 −−− v5 joins the fray, we set MATE(v5) ← v1, MATE(v1) ← v5, and
INNER(v2)← 1; but we leave MATE(v2) unchanged. Subsequent edges to v2 are rejected.

When the ‘purify’ routine (55) is called to give color 1 to a new edge i, it will
refuse to do so when E is nonzero, because a loop has already been closed. Furthermore,
when E = 0, it will know that edge i shouldn’t be chosen if U(i) and V(i) are mates
and F �= 1, because that would close a loop disjoint from other fragments. On the other
hand, it will close the loop if F = 1, also setting E← i.

All of these operations are nicely and easily undone when we need to ‘unpurify’.
For example, suppose edge i loses color 1 when u = U(i) and v = V(i). If v = MATE(u),
we unclose the loop (and set E ← 0) if i = E; otherwise we zero the mates and set
F ← F − 1. If MATE(u) �= MATE(v), we set MATE(MATE(u)) ← u, MATE(MATE(v)) ← v,
and INNER(u)← INNER(v)← 0, F← F+ 1. The case MATE(u) = MATE(v) is easy too.

Caution: Algorithm P must be modified so that it never discards redundant
items, when it is used to preprocess a problem for this extension of Algorithm C.

414. After the forced moves have been made as shown, only two edges are
undecided between the vertices of rows 1 and 2. A strongest possible algorithm
will know that those two edges must either both be present or both absent.
(In fact, a truly strongest possible algorithm will force both to be present as
soon as any edge in or between rows 0 and 1 has been chosen.)

1 0

2 3

3 0

×

× ×

× ×

× ×

×

× × × ×

× ×

× ×

× ×

In general, consider the graph G consisting of the original vertices V and all the
currently undecided edges. If X is any proper subset of V , connected or not, any loop
will contain an even number of edges between X and V \X. Thus any cutset of size
two will force a relation between two undecided edges. An algorithm that dynamically
maintains minimum cutsets of G (see Section 7.5.3) will therefore be helpful.

536

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 537

415. Instead of solving millions of puzzles, we can use the ZDD technology of Section
7.1.4 to list all the loops in P6 P6, of which there are 1222363. Say that the “signature”
of a loop is the full sequence of 25 clues— the number of edges around each cell. It
turns out that 93 pairs of loops have the same signature (see exercise 411); those 186
loops cannot be the solution to any 5×5 slitherlink puzzle. Let S be the set of 1222270
distinct signatures, and let S′ be the subset of 1222177 that give a valid 25-clue puzzle.

s =

2 1 2 3 1

2 1 3 1 1

2 1 2 3 3

1 1 0 1 1

1 2 1 1 2

, s′ =
2 2 2 3 1

2 2 1 1 1

2 1 1 2 3

2 3 2 1 1

2 2 1 1 2

Suppose s′ ∈ S′ has t > 0 entries equal to digit d; and
for s ∈ S let p(s, s′) be the binary “projection vector” x1 . . . xt,
where xk = 1 if and only if s has d in the kth cell where s′ has d.
For example, if d = 1, the signatures s and s′ shown above have t = 10 and p(s, s′) =
1011101111. Form the set P (s′) = {p(s, s′) | s �= s′}. Then s′, with all clues restricted
to digit d, is a valid puzzle if and only if 11 . . . 1 /∈ P (s′). Moreover, the valid puzzles
contained in that one are precisely those whose projections aren’t contained in any
element of P (s′). (If we regard P (s′) as a family of sets, such projections are the
elements of ℘↗P (s′), in the notation of exercise 7.1.4–236.) We can find those vectors,
and the minimal ones, with a reachability algorithm such as Algorithm 7.1.3R.

In this way we discover exactly (9310695, 833269, 242772, 35940, 25) valid puzzles
for d = (0, 1, 2, 3, 4), of which exactly (27335, 227152, 11740, 17427, 25) have no
redundant clues. The minimum number of clues, in such irredundant homogeneous
puzzles, is respectively (7, 8, 11, 4, 1); and the maximum number is respectively (12,
14, 18, 10, 1). Many of the extreme cases make pleasant little puzzles:

0

0 0

0

0

0 0

0 0 0

0 0

0 0

0 0

0 0 0

1

1 1

1 1

1 1

1

1 1 1

1 1 1

1 1

1 1 1

1 1 1

2

2 2 2 2

2 2 2 2

2

2

2 2

2 2 2 2

2 2 2 2

2 2 2 2 2

2 2 2

3 3 3

3

3 3

3 3

3

3 3

3 3 3

(See Appendix E. This minimum-1s puzzle is one of two based on signature s′ above.)

416. Of course d = 4 is trivial. So is d = 0; but that case has an amusing sparse
construction. The following puzzles generalize to all n with (n+ d) mod 4 = 1:

0 0 0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3

3

3

3 3 3 3 3 3 3 3 3 3 3 3 3

3

3 3 3 3 3 3 3 3 3 3 3 3 3

3

3 3 3 3 3 3 3 3 3 3 3 3 3

3

3 3 3 3 3 3 3 3 3 3 3 3 3

3

3 3 3 3 3 3 3 3 3 3 3 3 3

3

3 3 3 3 3 3 3 3 3 3 3 3 3

(See the solutions in Appendix E.) N. Beluhov, who found these patterns for d = 2 and
3, has raised interesting problems of optimum density: Let β(d) = lim infn→∞ ‖S‖/n2
and β(d) = lim supn→∞ ‖S‖/n2, where S ranges over all valid n × n slitherlink puz-
zles that are d-homogeneous, and where ‖S‖ denotes the number of clues. Clearly
‖S‖ ≤ n2/2 when d = 3, because no 2 × 2 subsquare can contain more than two 3s.
Furthermore ‖S‖ ≥ n2/4−O(n) when d = 0. For we must eliminate at least n2+2n of
the 2n(n+ 1) edges if all but one cycle is to be cut; each 0 eliminates at most four. If
n > 5 we obtain a valid puzzle with only fourteen 1s, by placing a suitable 4×6 pattern
in the upper left corner. Similarly, there’s a valid puzzle with only four 3s,

if n > 3. Therefore these constructions prove that β(0) = β(1) = β(2) = 1;

β(3) = 1/2; β(1) = β(3) = β(4) = β(4) = 0; β(0) = 1/4.

1 1 1 1

1 1

1 1 1 1

1 1 1 1

537

From the Library of Melissa Nuno

ptg999

538 ANSWERS TO EXERCISES 7.2.2.1

The intriguing case of β(2) remains unknown.
Beluhov proved that it is at most 11

16
, using a con-

struction for n = 4k that’s illustrated here for n = 12.
Palmer Mebane has constructed this 2-homogeneous
puzzle on an 8 × 8 board that has only 24 clues [see
puzsq.jp/main/puzzle_play.php?pid=14178].

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2

2

2 2

2 2 2 2

2 2 2 2

2 2 2

2 2 2

2 2 2 2

2 2 2

417. The pattern for d = 3 in answer 416 works also for d = 0, if we remove one clue
from the top row. Fascinating diagrams arise when such patterns are attempted for
d = 1; Beluhov’s largest example so far is the 30× 30 puzzle obtained when removing
the 1 in column 26 of row 0. (Such puzzles are extremely difficult for the algorithm of
answer 413 to handle; but SAT solvers have no trouble with them.)

418. (a) 6 · 2612 ≈ 5.7× 1017, from the central cell and 12 complementary pairs.

(b, c, d, e) As in answer 415, we define the projection p(s, s′) = x1 . . . x13, where
xk = 1 if and only if s and s′ agree in the kth pair (or in the center, when k = 13).
We obtain altogether 2,692,250,947 puzzles, of which 199,470,026 are minimal. The
minimal ones include (1, 24, 0, 7, 42, 1648, 13428, 257105, . . . , 184, 8) that have
respectively (1, 2, 3, 4, 5, 6, 7, 8, . . . , 19, 20) clues; here are some choice specimens:

4

0

4

0

0

3

3

0 0

0

3 3

0 1 0

2 3 1

1

1 1 3 2 3

3

3 2 0 1

2 3 0 1

3 2 1 3

2 1 2 2

2 2 2 2

2 1 2 2

3 2 2 3

419. To design this puzzle, the author began with the signature of the desired loop (see
answer 415), then removed pairs of centrally opposite clues, more-or-less at random,
until no redundant pairs remained. The construction of exercise 412 produced 2267 op-
tions on 404+573 items from the final clue set; and Algorithm P
needed just 17 Mμ to remove 1246 of those options. Then the
algorithm of exercise 413 discovered the solution, and proved
it unique, with 5.5 Gμ of computation and a search tree of 15
meganodes. (It’s another big win for preprocessing: Otherwise
that algorithm would have taken 37 Tμ, with a 78-giganode
search tree!) Reference: D. E. Knuth, Computer Modern Type-

faces (Addison–Wesley, 1986), 158–159.

2 1 1 1 1 1 1

2 0 1 0 1 1 2

2 1 2 1 2 1 1 1

2 2 2 2 1 1 2

3 0 0 2 1 2 0 0 0 0

1 1 0 1 0

2 0 1 1 1 0

2 1 1 0 1 1

1 1 0 1 0

0 0 2 1 1 0 1 0 0 0

2 0 1 1 1 0 0

0 2 1 1 0 1 1 0

0 1 1 1 1 1 0

1 1 0 1 2 1 0

420. (Solution by Palmer Mebane.) In any solution, each cell is either inside or outside
the loop. Lemma: Every 2 has exactly two neighbors inside. (For if the 2 is outside,
the neighbors opposite its two edges are inside; otherwise the neighbors opposite its
two nonedges are inside.) Let S be the set of cells next to a 2. Color each 2 alternately
red or blue; then each cell of S is a neighbor of exactly one red 2 and exactly one
blue 2. In particular, that’s true for each inside cell of S. Thus, by the lemma, there
are equally many red and blue cells. But that contradicts mmod 4 = nmod 4 = 1!

[This exercise is due to N. Beluhov, who observes that solutions aplenty exist
when m is odd and nmod 4 = 3.]

421.

(1 of 44) (1 of 7) (1 of 1) (1 of 7) (1 of 5)

[Historical note: Masyu was invented by Ryuoh Yano, who developed a white-
circles-only version, together with Mitsuhiro Ase, who contributed the black circles.
See Puzzle Communication Nikoli 84 (April 1999); 90 (March 2000).]

538

From the Library of Melissa Nuno

http://puzsq.jp/main/puzzle_play.php?pid=14178

ptg999

7.2.2.1 ANSWERS TO EXERCISES 539

422. Now we use the (2m−1)(2n−1) pairs xy for 0 ≤ x ≤ 2m−2 and 0 ≤ y ≤ 2n−2.
Cell (i, j) corresponds to x = 2i and y = 2j (a “vertex”); clue (i, j) corresponds to x =
2i+1 and y = 2j+1. Edges are as before, and we use the same options to ensure that
either 0 or 2 edges touch every vertex in a solution. The only essential change from an-
swer 412 is the treatment of clues, since masyu clues are different from slitherlink clues.

A black masyu clue in (i, j) has four options, corresponding to north-west, north-
east, south-west, and south-east legs; for example, the north-west option is

‘C(i, j) N(i, j):1 NN(i, j):1 W (i, j):1 WW (i, j):1’,

where C(i, j) = (2i+1)(2j+1), N(i, j) = C(i, j)−10, NN(i, j) = C(i, j)−30,W (i, j) =
C(i, j)− 01, WW (i, j) = C(i, j)− 03. Edges off the grid have “color” 0, so this option
is omitted when i ≤ 1 or j ≤ 1.

A white masyu clue in (i, j) has six options, three for north-south orientation and
three for east-west. The three for east-west are

‘C(i, j) E(i, j):1 EE(i, j):0 W (i, j):1 WW (i, j):0’,

‘C(i, j) E(i, j):1 EE(i, j):0 W (i, j):1 WW (i, j):1’,

‘C(i, j) E(i, j):1 EE(i, j):1 W (i, j):1 WW (i, j):0’.

Again we omit an option that would set an off-board edge to 1. An off-board edge item
that sets color 0 is silently dropped.

For example, the options for the black clue in exercise 421’s puzzle are ‘15 14:1 34:1
03:1 01:1’, ‘15 14:1 34:1 05:1 07:1’. The options for the white clue in the bottom row are
‘97 87:1 85:1 83:0’, ‘97 87:1 85:1 83:1’. That puzzle has 15 clue options altogether, and
119 vertex options ‘00 01:1 10:1’, ‘00 01:0 10:0’, ‘02 01:1 03:1 12:0’, . . . , ‘88 78:0 87:0’.

423. Obtain a representative of each class of equivalent variables, for example by adapt-
ing Algorithm 2.3.3E. This calculation may show that certain variables are constant.
A contradiction might also arise— for example, if there’s a white clue in a corner; in
such cases the masyu puzzle has no solution.

The vertex options of answer 422 can now be eliminated, at all vertices for which
a clue was given. The clue options can also be consolidated, so that equivalent variables
don’t appear together, and so that constants are suppressed. Every option that tries
to set a variable both true and false is, of course, eliminated.

For example, variables 14, 50, 70, 85, and 87 in the puzzle of exercise 421 are forced
to be true; variables 61 and 76 are forced to be false. We can eliminate variables 05,
16, 27, 36, 54, 65, and 74 because 05 = ∼03, 16 = 36 = ∼25, 27 = 25, 54 = 74 = ∼63,
65 = 63. The options for the black clue become ‘15 01:1 03:1 34:1’, ‘15 03:0 07:1 34:1’.
The options for the white clue in the bottom row become ‘97 83:0’, ‘97 83:1’.

Caveat: These simplifications are very nice, but they mess up the single-loop-
detection mechanism of answer 413—because that answer uses several fields of item
nodes as key elements of its data structure! To keep that algorithm happy, we must
append a special option that covers all of the supposedly eliminated vertex items and
constant-edge items; this option is ‘04 26 60 64 86 87:1 85:1 76:0 50:1 70:1 61:0 14:1’ in
the example. We also need pairs of options such as ‘#25 16:1 36:1 27:0 25:0’ and ‘#25
16:0 36:0 27:1 25:1’, to keep all variables of an equivalence class in sync.

A tenfold speedup is achieved even on small puzzles like the 8×10 in exercise 426.
424. As in answer 415, we can begin with the 1222363 loops that are potential so-
lutions. But this time the “signature” of a loop is the maximum set of clues that it
supports. Such a signature turns out to have at most 24 clues; indeed, only puzzle (i) in

539

From the Library of Melissa Nuno

ptg999

540 ANSWERS TO EXERCISES 7.2.2.1

Fig. A–5, along with its rotations or reflections, attains this maximum. (At the other
extreme, 64 loops have an entirely empty signature, despite having lengths up to 28.)

Let S be the set of 905472 distinct signatures; and let S′ be the subset of 93859
that aren’t contained in (or equal to) the signature of any other loop. These are the
signatures of loops that can solve a valid 6× 6 puzzle. If s′ ∈ S′ has t clues, we define
the projection vector p(s, s′) = x1 . . . xt for s ∈ S by setting xj = 1 when s agrees with
s′ in the jth cell where s′ has a clue. For example, when s′ is puzzle (i) and s is its
transpose, the projection p(s, s′) is 000011000011101110110011.

Form the set P (s′) = {p(s, s′) | s �= s′}. We know that 11 . . . 1 /∈ P (s′), because
s′ isn’t dominated by any other signature. Moreover, the valid puzzles having the loop
of s′ as their solution are precisely those whose clues are not contained in any element
of P (s′). We can find such puzzles, and the minimal ones, with a reachability compu-
tation like Algorithm 7.1.3R, whose running time is O(2t). For example, the loop of (i)
turns out to be the solution to 8924555 puzzles(!). Four of them, such as (ii) and (iii),
are minimal with only four clues; three of them, such as (iv), are minimal with eleven.

Most elements of S′ have far fewer than 24 clues. Hence it isn’t difficult to
determine that there are exactly 1,166,086,477 valid 6× 6 masyu puzzles altogether, of
which 4,366,185 are minimal. (There are (80, 1212, 26188, 207570, . . . , 106) minimal
puzzles with (3, 4, 5, 6, . . . , 12) clues. One of the 3s is puzzle (v); it also has the shortest
loop. One of the 12s is puzzle (vi); it also has the longest loop—a Hamiltonian cycle.
(A Hamiltonian cycle can actually be forced by only four clues; see puzzle (xvii).)

The valid puzzles include 5571407 that are pure white, 4820 that are pure black.
The white clues can take on 22032015 different patterns; the black clues can assume
only 39140. A surprisingly large number of 6 × 6 puzzles, 37472, can be “inverted,”
remaining valid when white and black are swapped. If we restrict consideration to
minimal puzzles, these figures become: 574815 pure white, 1914 pure black, 2522171
white patterns, 22494 black patterns, 712 invertible. The latter include many amusing
and amazing pairs, such as (vii)–(viii), (ix)–(x), (xi)–(xii), as well as self-dual examples
such as (xiii), (xiv), (xv), (xvi); there are 49 essentially distinct invertible puzzles of size
6 × 6. [Considerably larger invertible puzzles have been published in the anonymous
blog uramasyu.blog80.fc2.com/, every few days since 2006.]

The author thinks puzzle (vi) may well be the hardest 6× 6, although its search
tree via exercise 423 has only 212 nodes. (That tree has 1001 nodes with exercise 422.)

425. A “balanced” n × n masyu solution of order k clearly requires 2 ≤ k ≤ �n2/4�.
All such k turn out to be achievable, for n ≤ 6, except that the upper limit �n2/4� is
not. Solutions for k = 2 exist for all n ≥ 3; solutions for k = 3 exist for all n ≥ 4;
solutions for k = 4, due to B. S. Ho, exist for all n ≥ 5; solutions for k = 5 and k = 6,
due to G. J. H. Goh, exist for all n ≥ 6. (See (xviii)–(xxiv) in Fig. A–5.) Goh has also
discovered analogous constructions for k = 7, 8, 9, 10.

426. The clue in the corner must obviously be ‘ ’. That leaves
us with 228 other possibilities to consider, many of which can be
rejected immediately because certain local patterns are impossible.
(For example, there cannot be three consecutive ‘ ’s.) Consider the
Boolean function of x0x1 . . . x27 that’s true if and only if the diagram
has at least one solution, with ‘ ’ when xj = 1 and ‘ ’ when xj = 0.
One can easily verify that there’s no solution when x0x1 or x1x3 or x0x̄1x4 or . . . or
x̄3x̄4x̄5 or x6x7 or x̄7x̄8x̄10x̄11, etc.; also when we replace xj by xj+12. We can also
rule out extreme cases such as x̄1x26.

0 1 2

3

4

5

6

7

8

9

10

11

12 13 14

15

16

17

18

19

20

21

22

23

24

25

26

27

540

From the Library of Melissa Nuno

http://uramasyu.blog80.fc2.com/

ptg999

7.2.2.1 ANSWERS TO EXERCISES 541

(i) (ii) (iii) (iv) (v) (vi)

(vii) (viii) (ix) (x) (xi) (xii)

(xiii) (xiv) (xv) (xvi) (xvii) (xviii)

(xix) (xx) (xxi) (xxii) (xxiii) (xxiv)

Fig. A–5. A gallery of interesting 6× 6 masyu puzzles.

After compiling several dozen such “bad” configurations, the author applied BDD
technology: Less than a megamem sufficed to generate a BDD of size
715, which showed that exactly 10239 vectors x0x1 . . . x27 were not
yet ruled out. The masyu solver of exercise 423 tossed off those
cases with search trees of 3 nodes per problem, on average; and it
turned out that exactly (10232, 1, 1, 1, 4) vectors had (0, 1, 2, 3, 4)
solutions. The unique winning puzzle is shown here (and solved in
Appendix E).

427. Here’s an example with 8 · 15 white clues (solved in Appendix E):

.

It turns out to be problematic for the method of exercise 423, which severely loses
focus and takes forever to prove that there’s only one solution. One can, however,

541

From the Library of Melissa Nuno

ptg999

542 ANSWERS TO EXERCISES 7.2.2.1

exploit symmetry by modifying Algorithm C as follows: Whenever a color setting is
made on the rightmost branch of the search tree, all settings that are equivalent to it
by symmetry can be forced. Then uniqueness is proved in about 36 Mμ, provided that
the primary items are suitably ordered. [This exercise was inspired by Nikoli’s Giant
Logic Puzzles for Geniuses (Puzzlewright Press, 2016), #53.]

428. (Solution by N. Beluhov.) 3n− 12 black clues suffice when nmod 4 = 0; 5n− 21
white clues suffice when nmod 4 = 1. (Are these constants 3 and 5 the best possible?)

(a) ; (b) .

429. (a) Incidentally, each of these puzzles is minimal (all clues important):

(b) In fact, two permutations of the colors are possible in each case:

430. (a) The lower right corner must contain 5. See Appendix E for the other cells.

(b) Set cnk ← 0 for all n and k. Now do this for 3 ≤ x < 512: Set k ← n← 0; for
0 ≤ t < 9 set k ← k+1, n← n+ t+1 if x&(1$t) �= 0; finally if k > 1, set Cnkcnk ← x
and cnk ← cnk + 1. The n-in-k combinations are now Cnkj for 0 ≤ j < cnk.

The maximum cnk, 12, is obtained for (n, k) = (20, 4) or (25, 5). Notice that cnk =
c(45−n)(9−k) when 1 < k < 8. Cases with cnk = 1 are called “restricted” or “magic
blocks”; they’re extremely helpful when present (but our example doesn’t have any).

(c) The middle must be 7 9 8 (an odd digit < 9, 9, then an even digit).

(d) The tables from (b) convert kakuro to generalized kakuro. Introduce a primary
item ij for each cell to be filled. Let there be H horizontal blocks, and assume that
horizontal block h has ch combinationsXhp of length kh, for 1 ≤ h ≤ H and 1 ≤ p ≤ ch.
Introduce chkh primary items Hhpx, for x ∈ Xhp, to represent the elements of block
h’s pth combination. (For example, the primary items for the first horizontal block of
our example are H111, H114, H122, H123 because the two combinations are {1, 4} and

542

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 543

{2, 3}.) Similarly, introduce primary items Vvqy for the elements of the qth combination
Yvq of vertical block v, for 1 ≤ v ≤ V and 1 ≤ q ≤ dv.

Also introduce secondary items Hh and Vv for 1 ≤ h ≤ H and 1 ≤ v ≤ V , one for
each block. The “color” of such an item represents the choice of combination to be used.

The options for cell ij are ‘ij Hhpx Hh:p Vvqx Vv :q’, where h and v indicate
the horizontal and vertical blocks through ij, for 1 ≤ p ≤ ch and 1 ≤ q ≤ dv and
x ∈ Xhp ∩ Yvq. (Thus, the options for the upper left blank cell in our example are
‘11 H111 H1:1 V111 V1:1’, ‘11 H114 H1:1 V124 V1:2’, ‘11 H122 H1:2 V122 V1:2’. Set
intersections are easily computed from the bitmaps Xhp and Vvq.)

Additional options are also necessary to “absorb” the combinations not used.
These are ‘

⋃{Hhpx | x ∈ Xhp} Hh:p
′’ for 1 ≤ p, p′ ≤ ch and p �= p′; ‘

⋃{Vvqy | y ∈ Yvq}
Vv :q

′’ for 1 ≤ q, q′ ≤ dv and q �= q′. (Thus the options for h = 1 in our example are ‘H111

H114 H1:2’, ‘H122 H123 H1:1’.) This instructive construction deserves careful study.

431. There are 18 solutions, because of two ways to complete the middle left portion
and (independently) nine ways to complete the lower left corner. (The digits that
are uniquely determined by his conditions are shown below.) We can freeze most of
those digits, and extract two much smaller problems, then insert a few wildcards as
in exercise 433 until obtaining uniqueness. One suitable patch, shown below, changes
seven clues and has the solution found in Appendix E. (In this problem, preprocessing
greatly improves the focus, reducing the search tree size from 115 million to just 343!)

6 13 19 27 41 18 7 32 10 13 21

27 8 29

11 13

17

16

26

41 18

15

32

38

15 10 17 32

22 23

10

10

7

7

41

29

42

18 7

14

28

28

26 14

11 15

16

32

23 22

24

12 15

37

9 13 16

24 41

6

14 22 14

30 9 29

3 7 8 9 5 1 2 5 7 9 8

1 2 3 5 6 2 5 4 2 1 9

2 4 5 6 7 8 9 8 2 1 3 4

2 3 4 9 6 8 5 1

3 2 1 4 5 7 7 4 3 1 2 6

1 4 2 9 8 2 3 7

4 5 2 1 4 9 7 4 8

5 4 6 7 3 4 7 9

5 4 8 5 7 3 4 1 2

2 1 3 6 7 9 4 5

8 7 9 8 2 6 4 5

5 9 8 1 8 2 3

1 2 6 5 9 7 8

6 13 19 27 41 18 7 32 10 13 21

27 8 29

11 13

17

16

26

41 18

15

30

38

15 10 17 32

22 23

10

5

7

7

41

29

42

18 7

14

28

28

26 14

11 15

16

32

26 22

24

10 17

37

9 13 16

25 41

6

14 22 14

29 9 29

[Funk had copyrighted a Cross Sums Puzzle already in September 1935; see Canadian
Patent Office Record and Register of Copyrights and Trade Marks 63 (1935), 2253.]

432. (a) We save a lot of time by considering only “restricted growth strings” as
solutions (see Section 7.2.1.5). That is, we can assume that the top row is ‘12’; then the
second row is either ‘213’ or ‘234’ or ‘312’ or ‘314’ or ‘34x’ for 1 ≤ x ≤ 5; etc. Altogether
there are (5, 28, 33, 11, 1) such strings with maximum element (3, 4, 5, 6, 7). Thus we
know that the blanks can be filled in 5 ·93+28 ·94+33 ·95+11 ·96+97 = 1432872 ways.
And we can quickly compute the 1432872 sequences of block sums from those restricted
growth strings, using a table of 9! permutations built by Algorithm 7.2.1.2L. Exactly
78690 of those sequences, about 5.5%, occur uniquely and define a kakuro puzzle.

Every kakuro puzzle has a dual, obtained by replacing all clue-sums s for blocks
of length k by 10k − s; the dual is solved by changing each digit d to 10− d. Thus, if
a puzzle of type (a) is defined by horizontal and vertical sums s1s2s3/t1t2t3, its dual is
defined by (20−s1)(30−s2)(20−s3)/(20−t1)(30−t2)(20−t3). Diagonal symmetry also

543

From the Library of Melissa Nuno

ptg999

544 ANSWERS TO EXERCISES 7.2.2.1

makes s1s2s3/t1t2t3 equivalent to s3s2s1/t3t2t1 and t1t2t3/s1s2s3; so we get up to eight
equivalent puzzles from each sequence. There are 9932 essentially distinct puzzles, only
one of which has four symmetries, namely 6 15 14/14 15 6; 190 have one symmetry, and
the remaining 9741 are asymmetric. (The asymmetric ones are, of course, more difficult
to solve, because a symmetric puzzle will have a symmetric solution.) The example
5 19 6/6 10 14 in exercise 430 is asymmetrical; but it’s relatively easy because it has a
forced move in the lower right corner. The easiest puzzles, with four forced moves, are
4 15 12/12 15 4 and 4 15 16/12 15 8, both symmetric. Altogether 4011 of the asymmetric
puzzles have no forced moves. And of those, 570 have no “magic blocks.” And of those,
puzzle 6 19 6/8 11 10 is the hardest, in the sense that it maximizes the number of nodes
(79) in Algorithm C’s search tree, using the construction of answer 430(d).

(b) Similarly, this shape has 2 · 93+42 · 94+186 · 95+234 · 96+105 · 97+18 · 98+
99 = 43038576 sequences of block sums, of which 6840 ≈ 0.016% are unique. Those
6840 yield 49 equivalence classes under the symmetries s1s2s3/t1t2t3 !→ s2s1s3/t1t2t3,
s3s2s1/t1t2t3, s1s2s3/t2t1t3, s1s2s3/t3t2t1, t1t2t3/s1s2s3, (30−s1)(30−s2)(30−s3)/
(30−t1)(30−t2)(30−t3). All but 3 of those 49 puzzles are asymmetric; 7 11 20/7 11 20
and 7 19 20/7 19 20 are self-transpose, and 7 15 23/10 15 20 is self-dual. They aren’t
great, because they all have at least one forced move from 7 opposite 20 or from its dual.

[It’s extremely difficult to find a kakuro puzzle whose spaces make a 4×4 grid. But
Johan de Ruiter discovered in 2010 that there are five essentially different ways. For ex-
ample, 11 15 23 29/12 15 23 28 has a 488-node search tree, so it’s a nice little challenge.]

433. A slight extension to the construction of answer 430(d) allows “wildcard” blocks,
with unspecified length and with the universal combination {1, . . . , 9} as their X or Y .
The items Hh1x or Vv1y for such wildcards are secondary, not primary. Algorithm C
now pumps out 89638 solutions (in 150 Mμ); and 12071 of the corresponding sum
sequences s1 . . . s7/t1 . . . t7 occur once only and yield valid puzzles. (The easiest ones,
16 4 18 (d+14) 16 16 16/9 34 24 6 d 12 15 for 7 ≤ d ≤ 9, have a search tree of only 47
nodes. A median puzzle such as 16 4 20 18 16 16 15/9 22 24 6 17 12 15 needs 247 nodes.
And the hardest, 16 4 23 19 16 16 13/9 25 24 6 17 11 15, needs 1994.)

[The author tried 10000 experiments in which all 21 cells of this diagram were
simply filled at random, and their block sums recorded. Those 10000 problems had ≈ 75
solutions, on average, with standard deviation ≈ 1200. Only five of them led to valid
puzzles; the most difficult one, 15 3 2116 27 8 10/9 22 28 11 21 5 4, needed 1168 nodes.]

434. In 700 Mμ, a BDD with 64 variables and 124487 nodes charac-
terizes 93,158,227,648 solutions. N. Beluhov proved in 2018 that there
are at most 38 blocks, achieved for example as shown, by listing all
cases with 38 or more. He also observed that the maximum for n× n
kakuro is n2/3 − O(n), using a similar construction with (i, j) black
⇐⇒ (i+ j) mod 3 = 0 except near the boundary.

∗ ∗ ∗ ∗ ∗

∗ ∗

∗ ∗

∗ ∗ ∗

∗

∗

∗

∗

∗

∗ ∗

∗

∗

∗

∗ ∗

∗ ∗ ∗

∗

∗

∗

∗

∗

∗ ∗ ∗

∗ ∗ ∗

435. The search tree for this one has 566 nodes. (See Appendix E.)

12 14 21 3 8 27 15 32 15 6 6 27 28 9

4 5 14

5

8 8 13

11

16

12 15

3

3 18 7

8

6 10 10

10

6

13

23

19 38 15

23

544

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 545

436. (a) Any solution with a black seed works also with that cell white.

(b) A solution with a non-articulation point would work also with that cell black.

437. Introduce a primary item * to make the seeds white; also primary items Ric and
Cjc for each character c that occurs more than once in row i or column j. Introduce
secondary items ij for 0 ≤ i < m and 0 ≤ j < n, representing cell (i, j). For example,
the first option for puzzle 436(α) is ‘* 01:0 02:0 10:0 13:0 14:0 21:0 31:0 32:0’.

Suppose row i contains character c in columns j1, . . . , jt, where t > 1. Then Ric
normally has t+ 1 options ‘Ric ij1:e1 . . . ijt:et u1:0 . . . us:0’ for e1 + · · ·+ et ≥ t− 1,
where {u1, . . . , us} are the non-seed neighbors of the cells being colored 1. However,
this option is suppressed if it would assign two colors to the same item. For example,
if i = 1, t = 3, and j1j2j3 = 123, there is only one option ‘R1c 11:1 12:0 13:1 01:0 03:0
10:0 14:0 21:0 23:0’ (but with entries deleted that color a seed with 0), because the
other three options are contradictory.

Of course the options for Cjc are similar. For example, the options for C3L in
puzzle 436(α) are ‘C3L 23:0 33:1 34:0’ and ‘C3L 33:0 23:1 22:0 24:0’.

[Notice, incidentally, that this XCC problem is a special case of 2SAT. Therefore
it can be solved in linear time. Furthermore, by Theorem 7.1.1S, the median of any
three solutions is also a solution—a curious fact!]

438. The basic idea is to abandon partial solutions that cut off any white cells from
the first seed. Connectedness can be assured by maintaining a triply linked spanning
tree, rooted at that seed, with the help of new fields in each item record. Changes to
the spanning tree need not be undone when unblackening a cell while backtracking;
any spanning tree on the currently nonblack cells is satisfactory.

[This method can be patched to handle the rare instances that have no seeds.
To ensure uniqueness, as in exercise 436(b), each solution should also be tested for
articulation points. Hopcroft and Tarjan’s algorithm for bicomponents does that
efficiently. See Section 7.4.1.2; also The Stanford GraphBase, pages 90–99.]

439. (a) Property (ii) states that U is a vertex cover (or equivalently that V \ U is
independent). Thus (i) and (ii) together state that U is a connected vertex cover.
Adding property (iii) gives us a minimal connected vertex cover. [Minimal connected
vertex covers were introduced by M. R. Garey and D. S. Johnson in SIAM J. Applied

Math. 32 (1977), 826–834, who proved that it is NP-complete to decide if a planar
graph with maximum degree 4 has a connected vertex cover of a given size.]

(b) This is the thrust of exercise 436(b). [N. Beluhov has proved constructively
that every m × n hitori cover for m,n > 1 solves at least one valid puzzle, using an
alphabet of at most max(m,n) letters.]

440. False (if neither A is alone in its column). Consider
A B A

B C A

A C C
or

0 A B C D A 1

B 2 3 4 5 6 D

B A B C D A D
.

441. When n = 1 any single letter a is trivially a valid puzzle. When n > 1 the pos-
sibilities are (i) aαa for every string α of n − 2 distinct letters containing an a (thus
(n − 2)dn−2 puzzles); (ii) aαb for a �= b and every string α of n − 2 distinct letters
containing a and b (thus (n− 2)2dn−2 puzzles); altogether (n− 2)2dn−2 valid puzzles.

442. A “frontier-based” algorithm analogous to those of answers 7.1.4–55 and 7.1.4–225
will produce an unreduced ZDD for the family f of all complements V \U of connected
vertex covers, from which a variant of Algorithm 7.1.4R will give a ZDD. Then the
NONSUB subroutine of answer 7.1.4–237 will produce a ZDD for f↑, the complements of
hitori covers (the black cells of potential solutions). In the most complicated case, m =

545

From the Library of Melissa Nuno

ptg999

546 ANSWERS TO EXERCISES 7.2.2.1

n = 9, an unreduced ZDD of size 203402 is reduced quickly to 55038 nodes; then 550 Gμ
of computation produces a ZDD of size 1145647 for the family of maximal black cells.

Those ZDDs make it easy to count and generate hitori covers; we obtain the totals⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1 1 1 1 1 1 1
2 4 6 12 20 36 64 112 200
1 6 11 30 75 173 434 1054 2558
1 12 30 110 382 1270 4298 14560 49204
1 20 75 382 1804 7888 36627 166217 755680
1 36 173 1270 7888 46416 287685 1751154 10656814
1 64 434 4298 36627 287685 2393422 19366411 157557218
1 112 1054 14560 166217 1751154 19366411 208975042 2255742067
1 200 2558 49204 755680 10656814 157557218 2255742067 32411910059

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Further statistics about these fascinating patterns are also of interest:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[1..1] [1..1] [2..2] [2..2] [2..2] [2..2] [2..2] [2..2] [2..2]
[1..1] [1..1] [1..2] [2..2] [2..3] [2..3] [3..4] [3..4] [3..5]
[2..2] [1..2] [2..4] [2..4] [3..6] [4..6] [4..8] [5..8] [5..10]
[2..2] [2..2] [2..4] [4..5] [4..7] [5..8] [6..9] [7..10] [8..12]
[2..2] [2..3] [3..6] [4..7] [5..9] [6..10] [8..12] [9..14] [10..15]
[2..2] [2..3] [4..6] [5..8] [6..10] [8..12] [9..14] [11..16] [12..18]
[2..2] [3..4] [4..8] [6..9] [8..12] [9..14] [11..17] [12..19] [14..21]
[2..2] [3..4] [5..8] [7..10] [9..14] [11..16] [12..19] [14..21] [16..24]
[2..2] [3..5] [5..10] [8..12] [10..15] [12..18] [14..21] [16..24] [18..27]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0
1 0 3 2 5 1 6 2 10
1 0 2 0 2 0 2 0 2
1 0 5 2 10 2 21 1 46
1 0 1 0 2 0 1 0 2
1 0 6 2 21 1 48 1 150
1 0 2 0 1 0 1 0 3
1 0 10 2 46 2 150 3 649

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The left-hand matrix shows how many black cells can occur in hitori covers. The
right-hand matrix shows how many hitori covers have both horizontal and vertical
symmetry; when m �= n, such covers are counted just once in the previous totals, while
the unsymmetrical covers are counted twice or four times. When m = n, such covers
are counted either once (if there’s 8-fold symmetry) or twice (otherwise); there are
respectively (1, 0, 1, 0, 2, 0, 2, 0, 11) n×n hitori covers with 8-fold symmetry. Further
types of 4-fold symmetry are possible when m = n: There’s 90◦ rotational symmetry
(but not 8-fold) in (0, 0, 0, 1, 1, 3, 11, 30, 106) pairs of cases; there’s symmetry about
both diagonals (but not 8-fold) in (0, 0, 0, 0, 0, 1, 4, 9, 49) pairs of cases. Figure A–6
shows some of the winners in this beauty contest for symmetrical hitori covers.

Fig. A–6. A gallery of interesting hitori covers.

Fourfold horizontal and vertical symmetry is impossible when m and n are both
even, because it forces at least 12 white cells near the center. The number of 2 × n

546

From the Library of Melissa Nuno

ptg999

7.2.2.1 ANSWERS TO EXERCISES 547

hitori covers can readily be shown to satisfy the recurrence Xn = 2Xn−2 + 2Xn−3,
growing as Θ(rn) where r ≈ 1.76929.

443. (Solution by N. Beluhov.) Let there be s black cells, of which a lie in the interior,
b on the boundary but not in a corner, and c in a corner. One can show that b+ 2c ≤
m+n+2− [m even]− [n even]− [mn odd]. Therefore the number of edges in Pm Pn |U
is m(n− 1) + (m− 1)n− 4a− 3b− 2c = 2mn−m− n− 4s+ b+ 2c ≤ 2mn− 4s+ 1.
But Pm Pn |U is connected, so it has at least mn− s− 1 edges.

[Beluhov has also proved that the number of black cells is always at least mn/5−
O(m + n). One can obtain a small hitori cover by blackening (i, j) when i + 2j is a
multiple of 5, and possibly a few more cells; this cover has at mostmn/5+2 black cells.]

444. No. By exercise 443, the solution has at most �(n2/3+2)/n� black
cells in some row. This is at most n/3, when n > 5; hence 2n/3 elements
of that row are white. Conversely, the puzzle illustrated here for n = 9
can be generalized to 3k×3k for all k > 1. (It’s a simplification of a con-
struction by N. Beluhov. Notice that every nonzero element is a seed!)

0 0 1 0 2 3 0 4 5

0 1 0 2 3 0 4 5 0

1 6 2 3 0 4 5 0 0

0 2 3 6 4 5 0 0 1

2 3 0 4 5 0 0 1 0

3 0 4 5 6 0 1 0 2

0 4 5 0 0 1 6 2 3

4 5 0 0 1 0 2 3 0

5 0 0 1 0 2 3 6 4

445. Array (α) below is a seedless puzzle that corresponds to (ii), if you change its
lowercase letters to uppercase. (The lowercase letters are convenient for our purposes in
understanding seedlessness, because they indicate the cells that we’ll want to darken.)
When every black cell has a different letter to be hidden, a seedless puzzle must fill
each white cell (i, j) with a hidden letter from either row i or column j.

Given a hitori cover, its “RC problem” is to put either R or C into each white
cell so that the number of Rs in each row is at most the number of black cells in that
row, and the number of Cs is similar but for columns. Array (β) shows the RC solution
that corresponds to (α); this is one of four ways to solve the RC problem for (ii).

Suppose a hitori cover has s black cells. Every solution to its RC problem has at
most s white cells marked R and at most s marked C; so we must have s ≥ n2/3 in an
n×n cover. Consequently s must be 12 when n = 6, by exercise 443. In particular, pat-
tern (i) can’t lead to a seedless puzzle. Also, equality must hold when we said “at most.”

It’s easy to formulate the RC problem as an MCC problem, by introducing a
primary item ij for each white cell (i, j), also primary itemsRi and Cj for each nonwhite
row i and column j. In the problem for pattern (ii) we have, for example, two options
‘23 R2’ and ‘23 C3’ for item 23. The multiplicity of C3 is 2. (This is actually a bipartite
matching problem; we use Algorithm M only because of the multiplicities.)

Array (γ) shows a seedless puzzle different from (α) that comes from the same
RC solution (β). Indeed, (β) yields 3!1!2!2!1!3! · 3!1!2!2!1!3! = 20736 different seedless
puzzles, because the letters chosen in each row and column can be permuted arbitrarily.

All such permutations yield valid puzzles. Proof: Each of the 12 letters occurs
thrice. To solve the puzzle we must blacken each letter at least once, preserving white
connectedness. One successful solution is to kill two birds with each stone; any other
way would blacken 13 or more. But no 6× 6 hitori cover has more than 12 black cells.

Pattern (iii) has eight RC solutions, and 20736 seedless puzzles for each of them.

Pattern (iv) has no RC solutions. But pattern (v) has the unique solution (δ),
and one of its 3!0!3!2!1!3! · 2!2!1!3!1!3! = 62208 seedless puzzles is (ε).

(α)

a A p P B b

A W Y w X B

S z Q R Z q

s X P S x Q

D Z y W Y C

d D R r C c

(β)

R R R

C R C C C

C R C R

R C R C

C C C R C

R R R

(γ)

a P p A B b

S W P w X Q

A z Z R Q q

s X Y S x B

D Z y W Y C

d C D r R c

(δ)

R R R

C C C C C C

R R R

R R C C

C C C R C

R R R

(ε)

A A B B C C

G A I B H C

D D E E F F

G G H E H F

J D I K I L

J J K K L L

547

From the Library of Melissa Nuno

ptg999

548 ANSWERS TO EXERCISES 7.2.2.1

[N. Beluhov has proved that valid n× n seedless puzzles exist ⇐⇒ nmod 6 = 0.]

446. There are only 1804 hitori covers, according to answer 442; but the exact proba-
bility appears to be difficult to compute. Experiments with millions of random numbers
show convincingly, however, that the probability is ≈ .0133. It drops to ≈ .0105 with
radix 8, and even further to ≈ .0060 with radix 16; the “sweet spot” appears to be
radix 10(!). [Also, the probability for decimal 4× 4 is ≈ .0344; for 6× 6 only ≈ .0020.]

447. Yes, when 2 ≤ m ≤ 4 and n = 6! (Johan discovered the 4 × 6, and the 5 × 5
for e, in 2017. The cases 2 × 6, 3 × 2, and 4 × 5 also work for e. By exercise 443, we
can assume that m,n ≤ 15.)

448. There are just two answers. (Also a nice 6×6 with only one not-so-common word.)

T A S T E

U P P E R

F R I A R

T O R S O

S N E E R

I D L E D

S W E A R

L E A S E

E L V E S

S L E D S

S C H E M A

H A U L E D

I S S U E D

R E T A K E

T I L T E R

S N E E R S

449. A few more nuggets: Johan noticed (i) in the (appropriately named) 1990 movie
Home Alone; and he found (ii) in the King James Bible, Luke 9 : 56. George Sicherman
hit on Falstaff’s famous repartee (iii) in 1 Henry IV, Act V, Scene 4, Line 119. The
author found (iv) within the graffiti on page 278 of CMath; also (v), an inspiring
remark by Francis Sullivan, on page 2 of Computing in Science and Engineering 2, 1
(January/February 2000). Example (vi) appears in the front matter to Volume 1. And
example (vii), also 11×3, shows that a nice hitori can involve lowercase letters, spaces,
and punctuation; it’s a quote from Samuel Rogers’s poem Human Life (1819).

(i)

M E R R

Y C H R

I S T M

A S S W

E E T H

E A R T

(ii)

F O R T H E

S O N O F M

A N I S N O

T C O M E T

O D E S T R

O Y M E N S

L I V E S B

U T T O S A

V E T H E M

(iii)

T H E B

E T T E

R P A R

T O F V

A L O R

I S D I

S C R E

T I O N

(iv)

W E L L

T H E Y

C A N T

R E A L

L Y G O

A T I T

T H I S

L O N G

(v)

G R E A

T A L G

O R I T

H M S A

R E T H

E P O E

T R Y O

F C O M

P U T A

T I O N

(vi)

D O Z

E N S

O F N

E W E

X E R

C I S

E S H

A V E

B E E

N A D

D E D

(vii)

N

l

l

h

h

l

e v

e r

e s

s a

o n

e

a n

w

e n

a o

n e

t

.

The current record for largest literary hitori nugget, 12 × 5 = 60, was found by Gary
McDonald in September 2019: “Ruth intimated that, as far as she could judge, he was
a very eligible swain.” [Charles Dickens, Martin Chuzzlewit.]

450. The solutions are characterized by 25 items {tot, tibi, . . . , caelo, 1a, 1b, 1c, . . . ,
5a, 5b, 5c, 6a, 6b} and 80 options ‘tot 1a’, ‘tot 1b 1c’, . . . , ‘tot 4b 4c’, ‘tot 5a’, ‘tot
6a’, ‘tot 6b’; ‘tibi 1b 1c’, ‘tibi 1c 2a’, . . . , ‘tibi 5c 6a’; . . . , ‘sidera 1a 1b 1c’, . . . ,
‘sidera 5a 5b 5c’; ‘caelo 1a 1b 1c’, ‘caelo 1b 1c 2a’, . . . , ‘caelo 4b 4c 5a’, ‘caelo 6a 6b’.

548

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 549

SECTION 7.2.2.2

1. (a) ∅ (no clauses). (b) {ε} (one clause, which is empty).

2. Letting 1 ↔ lazy, 2 ↔ happy, 3 ↔ unhealthy, 4 ↔ dancer, we’re given the
respective clauses {314, 1̄42, 34̄2, 2̄43̄, 1̄32̄, 23̄1, 1̄4̄3̄}, matching R′ in (7). So all known
Pincusians dance happily, and none are lazy. But we know nothing about their health.
[And we might wonder why travelers have bothered to describe so many empty sets.]

3. f(j − 1, n) + f(k − 1, n), where f(p, n) =
∑q

d=1(n − pd) = p
(
q
2

)
+ q(nmod p) ≈

n2/(2p), if we set q = �n/p�.
4. Those constraints are unsatisfiable if and only if we remove a subset of either
{357, 456, 3̄5̄7̄, 4̄5̄6̄}, {246, 468, 2̄4̄6̄, 4̄6̄8̄}, {246, 357, 468, 4̄5̄6̄}, or {456, 2̄4̄6̄, 3̄5̄7̄, 4̄6̄8̄}.
5. No polynomial upper bound for W (3, k) is currently known. Clearly W (3, k) is

less than W (3, k), the minimum n that guarantees either three equally spaced 0s or k
consecutive 1s. An analysis by R. L. Graham in Integers 6 (2006), A29:1–A29:5, beefed
up by a subsequent theorem of T. F. Bloom in J. London Math. Society (2) 93 (2016),
643–663, shows that W (3, k) = expO(k(log k)4).

6. Let each xi be 0 with probability p = (2 ln k)/k, and let n be at most k2/(ln k)3.
There are two kinds of “bad events”: Ai, a set of three equally spaced 0s, occurs
with probability P = p3; and A′j , a set of k equally spaced 1s, occurs with probability
P ′ = (1 − p)k ≤ exp(−kp) = 1/k2. In the lopsidependency graph, which is bipartite,
each Ai is adjacent to at most D = 3k3/((k − 1)(ln k)3) nodes A′j ; each A

′
j is adjacent

to at most d = 3
2
k3/(ln k)3 nodes Ai. By Theorem L, we want to show that, for all

sufficiently large values of k, P ≤ y(1− x)D and P ′ ≤ x(1− y)d, for some x and y.

Choose x and y so that (1−x)D = 1/2 and y = 2P . Then x = Θ((log k)3/k2) and
y = Θ((log k)3/k3); hence (1−y)d = exp(−yd+O(y2d)) = O(1). [See T. Brown, B. M.
Landman, and A. Robertson, J. Combinatorial Theory A115 (2008), 1304–1309.]

7. Yes, for all n, when x1x2x3 . . . = 001001001

8. For example, let xi,a signify that xi = a, for 1 ≤ i ≤ n and 0 ≤ a < b. The relevant
clauses are then xi,0 ∨ · · · ∨ xi,b−1 for 1 ≤ i ≤ n; and x̄i,a ∨ x̄i+d,a ∨ · · · ∨ x̄i+(ka−1)d,a,
for 1 ≤ i ≤ n − (ka − 1)d and d ≥ 1. Optionally include the clauses x̄i,a ∨ x̄i,a′ for
0 ≤ a < a′ < b. (Whenever the relevant clauses are satisfiable, we can also satisfy the
optional ones by falsifying some variables if necessary.)

[V. Chvátal found W (3, 3, 3) = 27. Kouril’s paper shows that W (2, 4, 8) = 157,
W (2, 3, 14) = 202, W (2, 5, 6) = 246, W (4, 4, 4) = 293, and lists many smaller values.]

9. W (2, 2, k) = 3k − (2, 0, 2, 2, 1, 0) when kmod 6 = (0, 1, 2, 3, 4, 5). The sequence
2k−102k−112k−1 is maximal when k ⊥ 6; also 2k−102k−112k−3 when k mod 6 = 3;
also 2k−102k−212k−1 when k mod 6 = 4; otherwise 2k−102k−212k−2. [See B. Landman,
A. Robertson, and C. Culver, Integers 5 (2005), A10:1–A10:11, where many other
values of W (2, . . . , 2, k) are also established.]

10. If the original variables are {1, . . . , n}, let the new ones be {1, . . . , n}∪{1′, . . . , n′}.
The new problem has positive clauses {11′, . . . , nn′}. Its negative clauses are, for
example, 2̄′6̄7̄9̄′ if 26̄7̄9 was an original clause. The original problem is equivalent
because it can be obtained from the new one by resolving away the primed variables.

[One can in fact construct an equivalent monotonic problem of size O(m + n) in
which (x1 ∨ · · · ∨ xk) is a positive clause if and only if (x̄1 ∨ · · · ∨ x̄k) is a negative
clause. Such a problem, “not-all-equal SAT,” is equivalent to 2-colorability of hyper-
graphs. See L. Lovász, Congressus Numerantium 8 (1973), 3–12; H. Kleine Büning and
T. Lettmann, Propositional Logic (Cambridge Univ. Press, 1999), §3.2, Problems 4–8.]

549

From the Library of Melissa Nuno

ptg999

550 ANSWERS TO EXERCISES 7.2.2.2

11. For each variable i, the only way to match vertices of the forms ij′ and ij′′ is to
choose all of its true triples or all of its false triples.

Furthermore, the only way to match j′1 is to choose one of the satisfiability triples
for clause j. Suppose l̄kj belongs to the chosen triple; then we must also have chosen
the true triples for literal lk. Thus a perfect matching implies satisfiable clauses.

Conversely, if all clauses are satisfied, with lk true in clause j, there always are
exactly two ways to match l̄kj with j′1 while matching wj, xj, yj, zj, and the other
two l̄j vertices with j′2, . . . , j′7. (It’s a beautiful construction! Notice that no vertex
appears in more than three triples.)

12. Equation (13) says S1(y1, . . . , yp) = S≥1(y1, . . . , yp) ∧ S≤1(y1, . . . , yp). If p ≤ 4,
use

∧
1≤j<k≤p(ȳj ∨ ȳk) for S≤1(y1, . . . , yp); otherwise S≤1(y1, . . . , yp) can be encoded

recursively via the clauses S≤1(y1, y2, y3, t)∧S≤1(t̄, y4, . . . , yp), where t is a new variable.
[This method saves half of the auxiliary variables in the answer to exercise 7.1.1–55(b).]

Note: Langford’s problem involves primary items only; in an exact cover problem
with nonprimary items, such items only need the constraint S≤1(y1, . . . , yp).

13. (a) S1(x1, x2, x3, x4, x5, x6) ∧ S1(x7, x8, x9, x10, x11) ∧ S1(x12, x13) ∧ S1(x14, x15,
x16)∧S1(x1, x7, x12, x14)∧S1(x2, x8, x13, x15)∧S1(x1, x3, x9, x16)∧S1(x2, x4, x7, x10)∧
S1(x3, x5, x8, x11, x12) ∧ S1(x4, x6, x9, x13, x14) ∧ S1(x5, x10, x15) ∧ S1(x6, x11, x16).

(b) Duplicate clauses occur when options intersect more than once. We avoid them
if we simply generate clauses x̄i ∨ x̄j for every pair (i, j) of intersecting options.

(c) When langford (4) is generated in this way, it has 85 distinct clauses in 16 vari-
ables, namely (x1∨x2∨x3∨x4∨x5∨x6)∧(x7∨x8∨x9∨x10∨x11)∧· · ·∧(x6∨x11∨x16)∧
(x̄1∨x̄2) ∧ (x̄1∨x̄3) ∧ · · · ∧ (x̄15∨x̄16).

But langford ′(4) cannot use the trick of (b). It has 85 (nondistinct) clauses in 20
variables, beginning with 123456, 1̄2̄, 1̄3̄, 1̄1̄′, 2̄3̄, 2̄1̄′, 3̄1̄′, 1′4̄, 1′5̄, 1′6̄, 4̄5̄, 4̄6̄, 5̄6̄, . . . ,
if we denote the auxiliary variables by 1′, 2′, Two of those clauses (1̄3̄ and 4̄6̄) are
repeated. (Incidentally, langford ′(12) has 1548 clauses, 417 variables, 3600 literals.)

14. (Answer by M. Heule.) Those clauses sometimes help to focus the search. For
example, if we’re trying to color the complete graph Kn with n colors (or pigeons), we
don’t want to waste time trying v2 = 1 when v1 is already 1.

On the other hand, other instances of SAT often run slower when redundant clauses
are present, because more updates to the data structures are needed.

We might also take an opposite approach, and replace (17) by nd clauses that
force every color class to be a kernel. (See exercise 21.) Such clauses sometimes speed
up a proof of uncolorability.

15. There are N = n(n+1) vertices (j, k) for 0 ≤ j ≤ n and 0 ≤ k < n. If (j, k) = (1, 0)
we define (j, k) −−− (n, i) for x ≤ i < n, where x = �n/2�. Otherwise we define the
following edges: (j, k)−−−(j+1, k+1) if j < n and k < n−1; (j, k)−−−(j+1, k) if j < n
and j �= k; (j, k)−−− (j, k + 1) if k < n − 1 and j �= k + 1; (j, k)−−− (n, n − 1) if j = 0;
(j, k)−−− (n − j, 0) if k < n − 1 and j = k; (j, k)−−− (n + 1 − j, 0) if j > 0 and j = k;
(j, k)−−−(n−j, n−j−1) if k = n−1 and 0 < j < k; (j, k)−−−(n+1−j, n−j) if k = n−1
and 0 < j < n. Finally, (0, 0)−−− (1, 0), and (0, 0)−−− (n, i) for 1 ≤ i ≤ x. That makes
a grand total of 3N − 6 edges. (It’s a maximal planar graph; see exercise 7–46.)

16. There’s a unique 4-clique for all n ≥ 3, namely {(0, n − 2), (0, n − 1), (1, n − 1),
(n, n−1)}. All other vertices, except (0, 0) and (1, 0), are surrounded by neighbors that
form an induced cycle of length 4 or more (usually 6). [See J.-L. Lauriere, Artificial
Intelligence 10 (1978), 117.]

550

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 551

17. Let mcgregor (n) be the clauses (15) and (16) for the graph. Add clauses (18) and
(19), for symmetric threshold functions to bound the number of variables v1 for color 1;
the kth vertex xk can be specified by the ordering in answer 20. Then if, for instance,
we can satisfy those clauses together with the unit clause sNr , where N = n(n + 1),
we have proved that f(n) < r. Similarly, if we can satisfy them together with s̄Nr , we
have proved that g(n) ≥ r. Additional unit clauses that specify the colors of the four
clique vertices will speed up the computation: Four cases should be run, one with each
clique vertex receiving color 1. If all four cases are unsatisfiable, we’ve proved that
f(n) ≥ r or g(n) < r, respectively. Binary search with different values of r will identify
the optimum.

For speedier g(n), first find a maximum independent set instead of a complete
4-coloring; then notice that the colorings for f(n) already achieve this maximum.

The results turn out to be f(n) = (2, 2, 3, 4, 5, 7, 7, 7, 8, 9, 10, 12, 12, 12) for
n = (3, 4, . . . , 16), and g(n) = (4, 6, 10, 13, 17, 23, 28, 35, 42, 50, 58, 68, 77, 88).

18. Assuming that n ≥ 4, first assign to vertex (j, k) the following “default color”:
1 + (j + k) mod 3 if j ≤ k; 1 + (j + k + 1 − n) mod 3 if k < j/2; otherwise 1 + (j +
k + 2 − n) mod 3. Then make the following changes to exceptional vertices: Vertex
(1, 0) is colored 2 if nmod 6 = 0 or 5, otherwise 3. Vertex (n, n− 1) is colored 4. For
k ← 0 up to n − 2, change the color of vertex (n, k) to 4, if its default color matches
vertex (0, 0) when k ≤ n/2 or vertex (1, 0) when k > n/2. And make final touchups
for 1 ≤ j < n/2, depending again on nmod 6:

Case 0: Give color 4 to vertex (2j, j − 1) and color 1 to vertex (2j + 1, j).

Case 1: Give color 4 to vertex (2j, j) and color 2 to vertex (2j + 1, j).

Case 2: Give color 4 to vertex (2j, j) and color 1 to vertex (2j + 1, j). Also give
(n, n− 2) the color 1 and (n− 1, n− 3) the color 4.

Cases 3, 4, 5: Give color 4 to vertex (2j + 1, j).

For example, the coloring for the case n = 10 (found by Bryant) is shown in Fig. A–7(a).

(a) (b) (c)

Fig. A–7. Colorings and kernels of McGregor’s graph.

The color distribution is (�n2/3�, �n2/3�, �n2/3�, 5k) + ((0, 1, k,−1), (1, k, 1, 0),
(−1, k+1, 1, 2), (0, k, 1, 2), (1, k+1, 1, 2), (0, 2, k+1, 3)), for nmod 6 = (0, 1, 2, 3, 4, 5),
k = �n/6�. Since this construction achieves all of the optimum values for f(n) and g(n),
when n ≤ 16, it probably is optimum for all n. Moreover, the value of g(n) agrees with
the size of the maximum independent set in all known cases. A further conjecture is
that the maximum independent set is unique, whenever nmod 6 = 0 and n > 6.

551

From the Library of Melissa Nuno

ptg999

552 ANSWERS TO EXERCISES 7.2.2.2

19. Use the clauses of mcgregor (n), together with (v1∨v2∨v3∨ v̄x)∧(v1∨v2∨v4∨ v̄x)∧
(v1 ∨ v3 ∨ v4 ∨ v̄x)∧ (v2 ∨ v3 ∨ v4 ∨ v̄x) for each vertex, together with clauses from (20)
and (21) that require at least r of the vertices vx to be true. Also assign unique colors
to the four clique vertices. (One assignment, not four, is sufficient to break symmetry
here, because h(n) is a more symmetrical property than f(n) or g(n).) These clauses
are satisfiable if and only if h(n) ≥ r. The SAT computation goes faster if we also
provide clauses that require each color class to be a kernel (see exercise 21).

The values h(n) = (1, 3, 4, 8, 9, 13) for n = (3, 4, . . . , 8)
are readily obtained in this way. Furthermore, if we extend
color class 4 in the construction of answer 18 to a suitable ker-
nel, we find h(9) ≥ 17 and h(10) ≥ 23. The resulting diagram
for n=10, illustrated in Fig. A–7(b), nicely exhibits 223 so-
lutions to McGregor’s original coloring problem, all at once.

A good SAT solver also shows that h(9) ≤ 18 and h(10) ≤
23, thus proving that h(10) = 23. And Armin Biere’s solver
proved in 2013 that h(9) = 18, by discovering the surprising
solution shown here. (This exercise was inspired by Frank Bernhart, who sent a diagram
like Fig. A–7(b) to Martin Gardner in 1975; his diagram achieved 221 solutions.)

20. Arrange the vertices (j, k) of answer 15 in the following order v0, v1, . . . : (n, n−1);
(0, n − 1), (0, n − 2), . . . , (0, 0); (1, n − 1), (1, n − 2), . . . , (1, 1); . . . ; (n − 2, n − 1),
(n− 2, n− 2); (n− 1, n− 2), (n− 2, n− 3), . . . , (2, 1); (n− 1, n− 1); (2, 0), (3, 1), . . . ,
(n, n−2); (3, 0), (4, 1), . . . , (n,n−3); (1, 0); (4, 0), . . . , (n,n−4); . . . ; (n−1, 0), (n, 1);
(n, 0). Then if Vt = {v0, . . . , vt−1}, let the “frontier” Ft consist of all vertices ∈ Vt that
have at least one neighbor /∈ Vt. We can assume that (v0, v1, v2) are colored (0, 1, 2),
because they are part of the 4-clique.

All 4-colorings of Vt that have a given sequence of colors on Ft can be enumerated
if we know the corresponding counts for Ft−1. The stated ordering ensures that Ft
never will contain more than 2n−1 elements; in fact, at most 32n−2 sequences of colors
are feasible, for any given t. Since 318 is less than 400 million, it’s quite feasible to do
these incremental calculations. The total (obtained with about 6 gigabytes of memory
and after about 500 gigamems of computation) turns out to be 898,431,907,970,211.

This problem is too large to be handled efficiently by BDD methods when n = 10,
but BDD calculations for n ≤ 8 can be used to check the algorithm. The frontiers essen-
tially represent level-by-level slices of a QDD for this problem. The 4-coloring counts
for 3 ≤ n ≤ 9 are respectively 6, 99, 1814, 107907, 9351764, 2035931737, 847019915170.

21. With one Boolean variable v for every vertex of a graph G, the kernels are
characterized by the clauses (i) ū ∨ v̄ whenever u −−− v; (ii) v ∨ ∨

u−−v u for all v.
Adding to these the clauses for the symmetric threshold function S≤r(x1, . . . , xN), we
can find the least r for which all clauses are satisfiable. The graph of Fig. 76 yields
satisfiability for r = 17; and one of its 46 kernels of size 17 is shown in Fig. A–7(c).

[BDD methods are slower for this problem; but they enumerate all 520,428,275,749
of the kernels, as well as the generating function 46z17+47180z18+ · · ·+317z34+2z35.]

22. Eight colors are needed. The coloring
12771
22788
33668
34655
14451

is “balanced,” with each color used
at least thrice.

23. Writing k for xk and
k
j for s

k
j , the clauses from (18)–(19) are 1̄

1
1
2 ,

1̄
2
1
3 ,

2̄
1
2
2 ,

2̄
2
2
3 ,

3̄
1
3
2 ,

3̄
2
3
3 ,

4̄
1
4
2 ,

4̄
2
4
3 ; 1̄

1
1 , 2̄

1
2 , 3̄

1
3 , 2̄

1̄
1
2
1 , 3̄

1̄
2
2
2 , 4̄

1̄
3
2
3 , 3̄

2̄
1
3
1 , 4̄

2̄
2
3
2 , 5̄

2̄
3
3
3 , 4̄

3̄
1
4
1 , 5̄

3̄
2
4
2 , 6̄

3̄
3
4
3 , 5̄

4̄
1 , 6̄

4̄
2 , 7̄

4̄
3 .

Similarly, (20) and (21) define the clauses 7̄ 61 , 6̄
6
1 , 6̄7̄

6
2 ; 5̄

5
1 , 4̄

5
1 , 4̄5̄

5
2 ; 3̄

4
1 , 2̄

4
1 , 2̄3̄

4
2 ;

1̄ 31 ,
6̄
1
3
1 ,

6̄
1 1̄

3
2 ,

6̄
2
3
2 ,

6̄
2 1̄

3
3 ;

5̄
1
2
1 ,

4̄
1
2
1 ,

5̄
2
2
2 ,

4̄
2
2
2 ,

4̄
1
5̄
1
2
2 ,

4̄
1
5̄
2
2
3 ,

4̄
2
5̄
1
2
3 ,

4̄
2
5̄
2
2
4 ;

2̄
4
3̄
1 ,

2̄
3
3̄
2 ,

2̄
2
3̄
3 . So

552

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 553

this tree-based method apparently needs one more variable and two more clauses when
(n, r) = (7, 4). But the next exercise shows that (18) and (19) don’t really win!

24. (a) The clause (b̄21 ∨ b̄3r) appears only if t3 = r; and t3 ≤ n/2.

(b) For example, t3 = min(r, 4) < r when n = 11 and r = 5.

(c) In this case tk is the number of leaves below node k, and the only auxiliary
variables that survive pure literal elimination are bktk . We’re left with just n−1 surviving
clauses, namely (b̄2kt2k ∨ b̄2k+1t2k+1

∨ bktk) for 1 < k < n, plus (b̄2t2 ∨ b̄3t3).
(d) If 2k ≤ n ≤ 2k + 2k−1 we have (n′, n′′) = (n− 2k−1, 2k−1); on the other hand

if 2k + 2k−1 ≤ n ≤ 2k+1 we have (n′, n′′) = (2k, n− 2k). (Notice that n′′ ≤ n′ ≤ 2n′′.)
(e) No pure literals are removed in this completely balanced case (which is the

easiest to analyze). We find a(2k, 2k−1) = (k−1)2k and c(2k, 2k−1) = (2k−2+k−1)2k.
(f) One can show that a(n, r) = (r ≤ n′′? b(n′, r) + b(n′′, r): r ≤ n′? b(n′, n′′) +

b(n′′, n′′): b(n′, n−r)+b(n′′, n−r)), where b(1, 1) = 0 and b(n, r) = r+b(n′,min(r, n′))+
b(n′′,min(r, n′′)) for n ≥ 2. Similarly, c(n, r) = (r ≤ n′′? r + f(n′, 0, r) + f(n′′, 0, r):
r ≤ n′? n′′+ f(n′, r−n′′, r)+ f(n′′, 0, n′′): n− r+ f(n′, r−n′′, n′)+ f(n′′, r−n′, n′′)),
where f(n, l, r)=

∑r
k=l+1min(k+1, n

′′+1, n+1−k)+(r ≤ n′′? r+f(n′, 0, r)+f(n′′, 0, r):
r ≤ n′? n′′ + f(n′, 0, r) + f(n′′, 0, n′′): r < n? n − r + f(n′, 0, n′) + f(n′′, 0, n′′):
f(n′, (n′ + l)

.− r, n′) + f(n′′, (n′′ + l)
.− r, n′′)) for n ≥ 2 and f(1, 0, 1) = 0. The

desired results follow by induction from these recurrence relations.

Incidentally, ternary branching can give further savings. We can, for example,
handle the case n = 6, r = 3 with 17 clauses in the 6 variables b21, b

2
2, b

2
3, b

3
1, b

3
2, b

3
3.

25. From (18) and (19) we obtain 5n − 12 clauses in 2n − 4 variables, with a simple
lattice-like structure. But (20) and (21) produce a more complex tree-like pattern, with
2n− 4 variables and with �n/2� nodes covering just two leaves. So we get �n/2� nodes
with 3 clauses, nmod 2 nodes with 5 clauses, �n/2� nodes with 7 clauses, and 2 clauses
from (21), totalling 5n− 12 as before (assuming that n > 3). In fact, all but n− 2 of
the clauses are binary in both cases.

26. Imagine the boundary conditions s0j = 1, sr+1j = 0, sk0 = 0, for 1 ≤ j ≤ n− r and

1 ≤ k ≤ r. The clauses say that sk1 ≤ · · · ≤ skn−r and that xj+ks
k
j ≤ sk+1j ; so the hint

follows by induction on j and k.

Setting j = n−r and k = r+1 shows that we cannot satisfy the new clauses when
x1 + · · ·+ xn ≥ r + 1. Conversely, if we can satisfy F with x1 + · · ·+ xn ≤ r then we
can satisfy (18) and (19) by setting skj ← [x1 + · · ·+ xj+k−1≥ k].
27. Argue as in the previous answer, but imagine that bk0 = 1, b1r+1 = 0; prove the
hint by induction on j and n−k (beginning with k = n−1, then k = n−2, and so on).

28. For example, the clauses for x̄1 + · · · + x̄n ≤ n − 1 when n = 5 are (x1 ∨ s11),
(x2 ∨ s̄11 ∨ s21), (x3 ∨ s̄21 ∨ s31), (x4 ∨ s̄31 ∨ s41), (x5 ∨ s̄41). We may assume that n ≥ 4;
then the first two clauses can be replaced by (x1 ∨ x2 ∨ s21), and the last two by
(xn−1 ∨ xn ∨ s̄n−21), yielding n− 2 clauses of length 3 in n− 3 auxiliary variables.

29. We can assume that 1 ≤ r1 ≤ · · · ≤ rn = r < n. Sinz’s clauses (18) and (19) actu-
ally do the job nicely if we also assert that skj is false whenever k = ri+1 and j = i−ri.
30. The clauses now are (s̄kj ∨ skj+1), (x̄j+k ∨ s̄kj ∨ sk+1j), (skj ∨ s̄k+1j), (xj+k ∨ skj ∨ s̄kj+1),
hence they define the quantities skj = [x1 + · · ·+ xj+k−1≥ k]; implicitly sk0 = sr+1j = 0

and s0j = skn−r+1 = 1. The new clauses in answer 23 are 1
1
2̄
1 ,

2
1
3̄
1 ,

3
1
4̄
1 ,

1
2
2̄
2 ,

2
2
3̄
2 ,

3
2
4̄
2 ,

1
3
2̄
3 ,

2
3
3̄
3 ,

3
3
4̄
3 ; 1

1̄
1 , 2

2̄
1 , 3

3̄
1 , 4

4̄
1 , 2

1
1
1̄
2 , 3

2
1
2̄
2 , 4

3
1
3̄
2 , 5

4
1
4̄
2 , 3

1
2
1̄
3 , 4

2
2
2̄
3 , 5

3
2
3̄
3 , 6

4
2
4̄
3 , 4

1
3 , 5

2
3 , 6

3
3 , 7

4
3 .

553

From the Library of Melissa Nuno

ptg999

554 ANSWERS TO EXERCISES 7.2.2.2

With (20) and (21) we can identify b′kj with b̄klk+1−j , when lk > 1 leaves are below

node k. Then bkj is true if and only if the leaves below k have j or more 1s. For

example, answer 23 gets the new clauses 7 6̄2 , 6
6̄
2 , 67

6̄
1 ; 5

5̄
2 , 4

5̄
2 , 45

5̄
1 ; 3

4̄
2 , 2

4̄
2 , 23

4̄
1 ; 1

3̄
3 ,

6
2
3̄
3 , 1

6
2
3̄
2 ,

6
1
3̄
2 , 1

6
1
3̄
1 ;

4
2
2̄
4 ,

5
2
2̄
4 ,

4
1
2̄
3 ,

4
2
5
2
2̄
3 ,

5
1
2̄
3 ,

4
1
5
2
2̄
2 ,

4
2
5
1
2̄
2 ,

4
1
5
1 ;

2
4
3
1 ,

2
3
3
2 ,

2
2
3
3 .

Furthermore, (20) and (21) can be unified in the same way with the weaker
constraints r′ ≤ x1+ · · ·+xn ≤ r. If we want, say, 2 ≤ x1+ · · ·+x7 ≤ 4, we can simply
replace the final four clauses of the previous paragraph by 4

1
5
1
2̄
1 ,

2
2
3
1 ,

2
1
3
2 . Under the con-

ventions of (18) and (19), by contrast, these weaker constraints would generate a compa-
rable number of new clauses, namely 1

1
2̄
1 ,

1
2
2̄
2 ,

1
3
2̄
3 ,

1
4
2̄
4 ,

1
5
2̄
5 and 1

1̄
1 , 2

2̄
1 , 3

2
1
2̄
2 , 3

1
2
1̄
3 , 4

2
2
2̄
3 ,

4 13
1̄
4 , 5

2
3
2̄
4 , 5

1
4
1̄
5 , 6

2
4
2̄
5 , 6

1
5 , 7

2
5 ; but those clauses involve the new variables 1

4 ,
1
5 ,

2
4 ,

2
5 .

31. We can use the constraints on the second line of (10), together with the constraints
of exercise 30 that force x1 + · · · + xn = r. Then we seek n for which this problem is
satisfiable, while the same problem with xn = 0 is not. The following small values can
be used to check the calculations:

r = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

F3(r) = 1 2 4 5 9 11 13 14 20 24 26 30 32 36 40 41 51 54 58 63 71 74 82 84 92 95100
F4(r) = 1 2 3 5 6 8 9 10 13 15 17 19 21 23 25 27 28 30 33 34 37 40 43 45 48 50 53
F5(r) = 1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19 24 25 27 28 29 31 33 34 36 37 38
F6(r) = 1 2 3 4 5 7 8 9 10 12 13 14 15 17 18 19 20 22 23 24 25 26 29 32 33 35 36

Furthermore, significant speedup is possible if we also make use of previously
computed values Ft(1), . . . , Ft(r−1). For example, when t = 3 and r ≥ 5 we must have
xa+1+· · ·+xa+8 ≤ 4 for 0 ≤ a ≤ n−8, because F3(5) = 9. These additional subinterval
constraints blend beautifully with those of exercise 30, because xa+1 + · · ·+ xa+p ≤ q
for 0 ≤ a ≤ n− p implies s̄kb+p−q ∨ sk−qb for 0 ≤ b ≤ n+ 1− p+ q − r and q < k ≤ r.

We can also take advantage of left-right symmetry by appending the unit clause
s̄

r/2�

(n−r)/2� when r is odd; s

r/2
n/2−r/2+1 when n and r are both even.

Suitable benchmark examples arise when computing, say, F3(27) or F4(36). But for
large cases, general SAT-based methods do not seem to compete with the best special-
purpose backtrack routines. For example, Gavin Theobald and Rodolfo Niborski have
obtained the value F3(41) = 194, which seems well beyond the reach of these ideas.

[See P. Erdös and P. Turán, J. London Math. Soc. (2) 11 (1936), 261–264; errata,
34 (1959), 480; S. S. Wagstaff, Jr., Math. Comp. 26 (1972), 767–771.]

32. Use (15) and (16), and optionally (17), but omit variable vj unless j ∈ L(v).
33. To double-color a graph with k colors, change (15) to the set of k clauses v1∨· · ·∨
vj−1 ∨ vj+1 ∨ · · · ∨ vk, for 1 ≤ j ≤ k; similarly,

(
k
2

)
clauses of length k − 2 will yield a

triple coloring. Small examples reveal that C2l+1 for l ≥ 2 can be double-colored with

five colors: {1, 2}({3, 4}{5, 1})l−1{2, 3}{4, 5}; furthermore, seven colors suffice for triple
coloring when l ≥ 3: {1, 2, 3}({4, 5, 6}{7, 1, 2})l−2{3, 4, 5}{6, 7, 1}{2, 3, 4}{5, 6, 7}. The
following exercise proves that those colorings are in fact optimum.

34. (a) We can obviously find a q-tuple coloring with qχ(G) colors. And McGregor’s
graph has a four-clique, hence χ∗(G) ≥ 4.

(b) Any q-tuple coloring with p colors yields a solution to the fractional exact cover
problem, if we let λj =

∑p
i=1[Sj is the set of vertices colored i]/q. Conversely, the

theory of linear equalities tells us that there is always an optimum solution with rational
{λ1, . . . , λN}; such a solution yields a q-tuple coloring when each qλj is an integer.

554

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 555

(c) χ∗(Cn) = χ(Cn) = 2 when n is even; and χ∗(C2l+1) ≤ 2 + 1/l = n/α(C2l+1),
because there’s an l-tuple coloring with n colors as in the previous exercise. Also
χ∗(G) ≥ n/α(G) in general: n =

∑
v

∑
j λj [v∈Sj] =

∑
j λj |Sj | ≤ α(G)

∑
j λj .

(d) For the hint, let S = {v1, . . . , vl} where vertices are sorted by their colors.
Since vertex vj belongs to Ci with |Ci| ≥ |{vj , . . . , vl}|, we have tvj ≤ 1/(l + 1− j).

So χ(G) ≤ k =
∑

v tv =
∑

v tv
∑

jλj [v∈Sj] =
∑

jλj
∑

v tv[v∈Sj] ≤
∑

jλjHα(G).

[See David S. Johnson, J. Computer and System Sci. 9 (1974), 264–269; L. Lovász,
Discrete Math. 13 (1975), 383–390. The concept of fractional covering is due to A. J. W.
Hilton, R. Rado, and S. H. Scott, Bull. London Math. Soc. 5 (1973), 302–306.]

35. (a) The double coloring below proves that χ∗(G) ≥ 7/2; and it is optimum because
NV and its neighbors induce the wheel W5. (Notice that χ

∗(Wn) = 1 + χ∗(Cn).)
(b) By part (c) of the previous exercise, χ∗(G) ≥ 25/4. Furthermore there is a

quadruple coloring with 25 colors:

AEUY ABUV BCVW CDWX DEXY
AEFJ ABFG BCGH CDHI DEIJ
FJKO FGKL GHLM HIMN IJNO
KOPT KLPQ LMQR MNRS NOST
PTUY PQUV QRVW RSWX STXY

45

46

35 47

26 16

67

26

25

17

36 23 5717

47 14

26

13

13

451223

15

56

12

23

17

27

35

47

12

45

57

36

23

45 47 13

26

46

23

15

24

36

67

12

25

46

57

[Is C5×C5 the smallest graph for which χ∗(G) < χ(G)− 1?]

36. A few more binary color constraints analogous to (16) yield the corresponding SAT
problem. We can also assume that the upper right corner is colored 0, because that
region touches n + 4 = 14 others; at least n + 6 colors are needed. The constraints
elsewhere aren’t very tight (see exercise 38(b)); thus we readily obtain an optimum
radio coloring with n + 6 colors for the McGregor graphs of all orders n > 4, such as
the one below. An (n+ 7)th color is necessary and sufficient when n = 3 or 4.

f 3 8 4 9 d b 6 e 2

d a e 1 f 5 8 4 c

6 c 5 b 3 1 f 7

1 7 0 8 d 9 0

d 3 f 4 2 c

8 1 6 0 f

c 9 d 7

0 4 a

8 2

d

1 9

3 5 0

7 b 8 e

2 4 d 3 9

5 e 6 f 5 1

9 7 0 a 2 d a

4 b 3 5 e 4 6 e

0 8 e 1 9 0 f 2 5

9 5 2 a 4 b 3 d a 0

7

2

1

8 2

5 9

4

3

8

6

6 8 25

3 4

7

3

5

609

5

0

8

7

2

1

7

1

0

3

0

6

6

9 9 9

0

2

9

4

0

8

7

1

1

3

4

37. The 10-coloring shown here is optimum, because Missouri (MO) has degree 8.

38. By looking at solutions for n = 10, say, which can be obtained quickly via Algo-
rithm W (WalkSAT), it’s easy to discover patterns that work in general: (a) Let (x, y)
have color (2x + 4y) mod 7. (Seven colors are clearly necessary when n ≥ 3.) (b) Let
(x, y, z) have color (2x+ 6y) mod 9. (Nine colors are clearly necessary when n ≥ 4.)

39. Let f(n) denote the fewest consecutive colors. SAT solvers readily verify that
f(n) = (1, 3, 5, 7, 8, 9) for n = (0, 1, 2, 3, 4, 5). Furthermore we can exploit symmetry to
show that f(6) > 10: One can assume that 000000 is colored 0, and that the colors of
000001, . . . , 100000 are increasing; that leaves only three possibilities for each of the

555

From the Library of Melissa Nuno

ptg999

556 ANSWERS TO EXERCISES 7.2.2.2

latter. Finally, we can verify that f(6) = 11 by finding a solution that uses only the
colors {0, 1, 3, 4, 6, 7, 9, 10}.

But f(7) is known only to be ≥ 11 and ≤ 15.
[L(2, 1) labelings were named by J. R. Griggs and R. K. Yeh, who initiated the

theory in SIAM J. Discrete Math. 5 (1992), 586–595. The best known upper bounds,
including the fact that f(2k − k − 1) ≤ 2k, were obtained by M. A. Whittlesey, J. P.
Georges, and D. W. Mauro, who also solved exercise 38(a); see SIAM J. Discrete Math.

8 (1995), 499–506.]

40. No; the satisfiable cases are z = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 21. [The
statement would have been true if we’d also required (xm∨ · · · ∨x2) ∧ (yn∨ · · · ∨y2).]
41. First there are mn ANDs to form xiyj . A bin that contains t bits initially will
generate �t/2� carries for the next bin, using (t− 1)/2 adders. (For example, t = 6 will
invoke 2 full adders and one half adder.) The respective values of t for bin [2], bin [3],
. . . , bin [m+ n+ 1] are (1, 2, 4, 6, . . . , 2m− 2, 2m− 1, . . . , 2m− 1, 2m − 2, 2m − 3,
. . . , 5, 3, 1), with n −m occurrences of 2m − 1. That makes a total of mn −m − n
full adders and m half adders; altogether we get mn+2(mn−m−n)+m instances of
AND, mn−m− n instances of OR, and 2(mn−m− n) +m instances of XOR.

42. Ternary XOR requires quaternary clauses, but ternary clauses suffice for median:

(t ∨ u ∨ v ∨ x̄)
(t ∨ ū ∨ v̄ ∨ x̄)
(t̄ ∨ u ∨ v̄ ∨ x̄)
(t̄ ∨ ū ∨ v ∨ x̄)

(t ∨ u ∨ v̄ ∨ x)
(t ∨ ū ∨ v ∨ x)
(t̄ ∨ u ∨ v ∨ x)
(t̄ ∨ ū ∨ v̄ ∨ x)

(t ∨ u ∨ ȳ)
(t ∨ v ∨ ȳ)
(u ∨ v ∨ ȳ)

(t̄ ∨ ū ∨ y)
(t̄ ∨ v̄ ∨ y)
(ū ∨ v̄ ∨ y)

These clauses specify respectively that x ≤ t⊕u⊕v, x ≥ t⊕u⊕v, y ≤ 〈tuv〉, y ≥ 〈tuv〉.
43. x = y = 3 works when n = 2, but the cases 3 ≤ n ≤ 7 are unsatisfiable. We can
use x = 3(2n−2 + 1), y = 7(2n−3 + 1) for all n ≥ 8. (Such solutions aren’t at all rare.
For example, (x, y) = (#C4466223,#E26E7647) is one of 293 instances when n = 32.)

44. First scout the territory quickly by looking at all
(
N+1
2

) ≈ 660 billion cases with at

most six zeros in x or y; here N =
(
32
26

)
+
(
32
27

)
+ · · ·+(

32
32

)
. This uncovers the remarkable

pair x = 232−226−222−211−28−24−1, y = 232−211+28−24+1, whose product is
264 − 258 − 254− 244 − 233 − 28 − 1. Now a SAT solver finishes the job by showing that
the clauses for 32×32 bit multiplication are unsatisfiable in the presence of the further
constraint x̄1+ · · ·+ x̄32+ ȳ1+ · · ·+ ȳ32+ z̄1+ · · ·+ z̄64 ≤ 15. (The LIFO version of the
clauses worked much faster than FIFO in the author’s experiments with Algorithm L.
Symmetry was broken by separate runs with xk . . . x1 = 01k−1, yk . . . y1 = 1k.)

45. Use the clauses for xy = z in the factorization problem, withm = �t/2�, n = �t/2�,
and xj = yj for 1 ≤ j ≤ m; append the unit clause (ȳn) if m < n.

46. The two largest, 2850002886173752 and 3014295893299492, have 97 bits; the next
square binary palindrome, 11784487448816572, has 101. [This problem is not easy for
SAT solvers; number theory does much better. Indeed, M. Coriand has discovered a
nice way to find all n-bit examples by considering only O(2n/4) cases, because the left
and right halves of a binary number are nearly forced by the left and right quarters of
its square. The first eight square binary palindromes were found by G. J. Simmons,
JRM 5 (1972), 11–19; see OEIS sequence A003166 for many further results.]

47. Each wire has a “top” and a “bottom.” There are n + g + 2h tops of wires, and
m+2g+h bottoms of wires. Hence the total number of wires is n+g+2h = m+2g+h,
and we must have n+ h = m+ g.

556

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 557

48. The wires compute q1 ← q, q2 ← q, x ← p ⊕ q1, y ← q2 ⊕ r, z ← x ⊕ y. Let p
denote “p stuck at 1” while p̄ denotes “p stuck at 0.” The pattern pqr = 000 detects
p, q1, q2, r, x, y, z; 001 detects p, q1, q2, r̄, x, ȳ, z̄; 010 detects p, q̄1, q̄2, r, x̄, ȳ, z; 011
detects p, q̄1, q̄2, r̄, x̄, y, z̄; 100 detects p̄, q1, q2, r, x̄, y, z̄; 101 detects p̄, q1, q2, r̄, x̄,
ȳ, z; 110 detects p̄, q̄1, q̄2, r, x, ȳ, z̄; 111 detects p̄, q̄1, q̄2, r̄, x, y, z. Notice that the
stuck-at faults for q aren’t detectable (because z = (p ⊕ q)⊕ (q ⊕ r) = p ⊕ r); but we
can detect faults on its clones q1, q2. (In Fig. 77 the opposite happens.)

Three patterns such as {100, 010, 001} suffice for all of the detectable faults.
49. One finds, for example, that the faults b23, c̄

2
1, s̄

2, and q̄ are detected only by the
pattern y3y2y1x2x1 = 01111; ā22, ā

2
3, b̄

2
3, p̄, c̄

2
2, z̄5 are detected only by 11011 or 11111.

All covering sets can be found by setting up a CNF with 99 positive clauses, one
for each detectable fault; for example, the clause for z̄5 is x27 ∨ x31, while the clause
for x22 is x4 ∨ x5 ∨ x12 ∨ x13 ∨ x20 ∨ x21 ∨ x28 ∨ x29. We can find minimum covers from
a BDD for these clauses, or by using a SAT solver with additional clauses such as (20)
and (21) to limit the number of positive literals. Exactly fourteen sets of five patterns
suffice, the most memorable being {01111, 10111, 11011, 11101, 11110}. (Indeed, every
minimum set includes at least three of these five patterns.)

50. Primed variables for tarnished wires are x′2, b
′
2, b

′
3, s

′, p′, q′, z′3, c
′
2, z

′
4, z

′
5. Those

wires also have sharped variables x�2, b
�
2, . . . , z

�
5; and we need sharped variables x

1�
2 , x

3�
2 ,

x4�2 , b
1�
2 , b

2�
2 , b

1�
3 , b

2�
3 , s

1�, s2�, c1�2 , c
2�
2 for fanout wires. The primed variables are defined

by clauses such as (p̄′∨a3)∧ (p̄′ ∨ b′2)∧ (p′ ∨ ā3 ∨ b̄′2), which corresponds to p′ ← a3∧ b′2.
Those clauses are appended to the 49 clauses listed after (23) in the text. Then there
are two clauses (25) for nine of the ten primed-and-sharped variables; however, in the
case of x2 we use the unit clauses (x

′
2) ∧ (x̄2) instead, because the variable x�2 doesn’t

exist. There are five fanout clauses (26), namely (x̄1�2 ∨x3�2 ∨x4�2)∧ (b̄�2∨ b1�2 ∨ b2�2)∧· · ·∧
(c̄�2∨c1�2 ∨c2�2). There are eleven clauses (x̄3�2 ∨b�2)∧(x̄4�2 ∨b�3)∧(b̄1�2 ∨s�)∧· · ·∧(b̄2�3 ∨z�5)∧
(c̄2�2 ∨ z�5) for tarnished inputs to gates. And finally there’s (x1�2) ∧ (z�3 ∨ z�4 ∨ z5).
51. (The complete set of 196 patterns found by the author in 2013 included the inputs
(x, y) = (232 − 1, 231 + 1) and (�263/2�, �263/2�) as well as the two number-theoretic
patterns mentioned in the text. Long runs of carries are needed in the products.)

52. (z1,2∨z2,2∨ · · · ∨zM,2) ∧ (z̄i,2∨ q̄i,1) ∧ (z̄i,2∨ p̄i,2) ∧ (z̄i,2∨ q̄i,3) ∧ (z̄i,2∨ p̄i,4) ∧ · · · ∧
(z̄i,2∨ q̄i,20), for 1 ≤ i ≤M . The second subscript of z is k in the kth case, 1 ≤ k ≤ P .

53. On the left is the binary expansion of π, and on the right is the binary expansion
of e, 20 bits at a time (see Appendix A).

One way to define f(x) for all 20-bit x is to write π/4 =
∑∞

k=1 uk/2
20k and

e/4 =
∑∞

l=1 vl/2
20l, where each uk and vl is a 20-bit number. Let k and l be smallest

such that x = uk and x = vl. Then f(x) = [k≤ l].
Equation (27) has actually been contrived to sustain an illusion of magic: Many

simple Boolean functions are consistent with the data in Table 2, even if we require four-
term DNFs of three literals each. But only two of them, like (27), have the additional
property that they actually agree with the definition of f(x) in the previous paragraph
for ten more cases, using uk up to k = 22 and vl up to l = 20! One might almost begin
to suspect that a SAT solver has discovered a deep new connection between π and e.

54. (a) The function x̄1x9x11x̄18 ∨ x̄6x̄10x̄12∨ x̄4x10x̄12 matches all 16 rows of Table 2;
but adding the 17th row makes a 3-term DNF impossible.

(b) 21 rows are impossible, but (27) satisfies 20 rows.

557

From the Library of Melissa Nuno

ptg999

558 ANSWERS TO EXERCISES 7.2.2.2

(c) x̄1x̄5x̄12x17∨ x̄4x8x̄13x̄15∨ x̄6x̄9x̄12x16∨ x̄6x̄13x̄16x20∨x13x14x̄16 does 28, which
is max. (Incidentally, this problem makes no sense for sufficiently largeM , because the
equation f(x) = 1 probably does not have exactly 219 solutions.)

55. Using (28)–(31) with pi,j = 0 for all i and j, and also introducing clauses like (20)
and (21) to ensure that qi,1 + · · ·+ qi,20 ≤ 3, leads to solutions such as

f(x1, . . . , x20) = x̄1x̄7x̄8 ∨ x̄2x̄3x̄4 ∨ x̄4x̄13x̄14 ∨ x̄6x̄10x̄12.
(There are no monotone increasing solutions with ≤ 4 terms of any length.)

56. We can define f consistently from only a subset of the variables if and only if no
entry on the left agrees with any entry on the right, when restricted to those coordinate
positions. For example, the first 10 coordinates do not suffice, because the top entry on
the left begins with the same 10 bits as the 14th entry on the right. The first 11 coordi-
nates do suffice (although two entries on the right actually agree in their first 12 bits).

Let the vectors on the left be uk and those on the right be vl, as in answer 53,
and form the 256 × 20 matrix whose rows are uk ⊕ vl for 1 ≤ k, l ≤ 16. We can solve
the stated problem if and only if we can find five columns for which that matrix isn’t
00000 in any row. This is the classical covering problem (but with rows and columns
interchanged): We want to find five columns that cover every row.

In general, such an m × n covering problem corresponds to an instance of SAT
with m clauses and n variables xj , where xj means “select column j.” The clause for
a particular row is the OR of the xj for each column j in which that row contains 1.
For example, in Table 2 we have u1 ⊕ v1 = 01100100111101111000, so the first clause
is x2 ∨ x3 ∨ x6 ∨ · · · ∨ x17. To cover with at most five columns, we add suitable clauses
according to (20) and (21); this gives 396 clauses of total length 2894, in 75 variables.

(Of course
(
20
5

)
is only 15504; we don’t need a SAT solver for this simple task!

Yet Algorithm D needs only 578 kilomems, and Algorithm C finds an answer in 353 Kμ.)
There are 12 solutions: We can restrict to coordinates xj for j in {1, 4, 15, 17, 20},

{1, 10, 15, 17, 20}, {1, 15, 17, 18, 20}, {4, 6, 7, 10, 12}, {4, 6, 9, 10, 12}, {4, 6, 10, 12, 19},
{4, 10, 12, 15, 19}, {5, 7, 11, 12, 15}, {6, 7, 8, 10, 12}, {6, 8, 9, 10, 12}, {7, 10, 12, 15, 20}, or
{8, 15, 17, 18, 20}. (Incidentally, BDD methods show that the number of solutions to the
covering problem has the generating function 12z5+994z6+13503z7+ · · ·+20z19+z20,
counting by the size of the covering set.)

57. Table 2 specifies a partially defined function of 20 Boolean variables, having 220−32
“don’t-cares.” Exercise 56 shows how to embed it in a partially defined function of only
5 Boolean variables, in twelve different ways. So we have twelve different truth tables:

11110110 0∗1∗010∗ 10000111 10∗0∗1∗0
011∗011∗ 1∗110100 10∗001∗1 1000∗∗10
011∗1∗11 010∗100∗ 10∗0∗000 ∗101∗011
10101110 0∗100∗1∗ 1∗001∗00 1∗∗00∗∗∗
10101110 0∗1∗0∗10 1∗0∗1∗00 0∗∗01∗∗∗
1∗01110∗ 00∗∗110∗ 11∗∗0∗00 10∗∗∗∗∗0

00100101 11110∗0∗ 1011∗∗∗∗ ∗∗0∗∗00∗
100∗1∗∗0 11∗00010 1100∗∗0∗ ∗0∗∗0101
∗∗1∗1000 1∗101100 1∗100∗10 0∗∗∗∗∗1∗
1∗1∗1∗10 10001100 0∗101∗1∗ ∗∗1∗0∗10
1∗01∗00∗ 1101∗0∗0 0011∗11∗ 1∗100∗0∗
001∗1001 ∗1∗∗1∗1∗ 11∗0∗010 01011001

And the tenth of these yields f(x) = ((x8 ⊕ (x9 ∨ x10)) ∨ ((x6 ∨ x12)⊕ x̄10))⊕ x12.

58. These clauses are satisfiable whenever the other clauses are satisfiable (except in
the trivial case when f(x) = 0 for all x), because we don’t need to include both xj and
x̄j in the same term. Furthermore they reduce the space of possibilities by a factor of
(3/4)N . So they seem worthwhile. (On the other hand, their effect on the running time
appears to be negligible, at least with respect to Algorithm C in small-scale trials.)

558

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 559

59. f(x)⊕ f̂(x) = x2x̄3x̄6x̄10x̄12(x̄8∨x8(x13∨x15)) is a function of eight variables that
has 7 solutions. Thus the probability is 7/256 = .02734375.

60. A typical example with 32 given values of f(x), chosen randomly, yielded

f̂(x1, . . . , x20) = x4x̄7x̄12 ∨ x̄6x8x̄11x14x20 ∨ x̄9x̄12x18x̄19 ∨ x̄13x̄16x̄17x19,
which of course is way off; it differs from f(x) with probability 102752/218 ≈ .39. With
64 training values, however,

f̂(x1, . . . , x20) = x2x̄13x̄15x19 ∨ x̄3x̄9x̄19x̄20 ∨ x̄6x̄10x̄12 ∨ x̄8x10x̄12
comes closer, disagreeing only with probability 404/211 ≈ .197.

61. We can add 24 clauses (pa,1 ∨ qa,1 ∨ pa,2 ∨ q̄a,2 ∨ pa,3 ∨ q̄a,3 ∨ · · · ∨ pb,1 ∨ qb,1 ∨ · · · ∨
pc,1∨qc,1∨· · ·∨pd,1∨qd,1∨· · ·∨ p̄d,10∨qd,10∨· · ·∨pd,20∨qd,20), one for each permutation
abcd of {1, 2, 3, 4}; the resulting clauses are satisfiable only by other functions f(x).

But the situation is more complicated in larger examples, because a function can
have many equivalent representations as a short DNF. A general scheme, to decide
whether the function described by a particular setting p′i,j and q

′
i,j of the ps and qs is

unique, would be to add more complicated clauses, which state that pi,j and qi,j give
a different solution. Those clauses can be generated by the Tseytin encoding of

M∨
i=1

N∧
j=1

((p̄i,j∧x̄j) ∨ (q̄i,j∧xj)) ⊕
M∨
i=1

N∧
j=1

((p̄′i,j∧x̄j) ∨ (q̄′i,j∧xj)).

62. Preliminary experiments by the author, with N = 20 and p = 1/8, seem to
indicate that more data points are needed to get convergence by this method, but the
SAT solver tends to run about 10 times faster. Thus, locally biased data points appear
to be preferable unless the cost of observing the hidden function is relatively large.

Incidentally, the chance that x(k) = x(k−1) was relatively high in these experiments
((7/8)20 ≈ .069); so cases with y(k) = 0 were bypassed.

63. With Tseytin encoding (24), it’s easy to construct 6r+2n−1 clauses in 2r+2n−1
variables that are satisfiable if and only if α fails to sort the binary sequence x1 . . . xn.
For example, the clauses when α = [1:2][3 :4][1 :3][2 :4][2 :3] are (x1∨ l̄1) ∧ (x2∨ l̄1) ∧
(x̄1∨x̄2∨l1)∧ (x̄1∨h1)∧ (x̄2∨h1)∧ (x1∨x2∨h̄1)∧ · · ·∧ (l4∨ l̄5)∧ (h3∨ l̄5)∧ (l̄4∨h̄3∨l5)∧
(l̄4∨h5)∧ (h̄3∨h5)∧ (l4∨h3∨h̄5)∧ (g1∨g2∨g3)∧ (ḡ1∨l3)∧ (ḡ1∨ l̄5)∧ (ḡ2∨l5)∧ (ḡ2∨h̄5)∧
(ḡ3∨h5) ∧ (ḡ3∨h̄4). They’re unsatisfiable, so α always sorts properly.

64. Here we reverse the policy of the previous answer, and construct clauses that are
satisfiable when they describe a sorting network: Let the variable Ct

i,j stand for the
existence of comparator [i :j] at time t, for 1 ≤ i < j ≤ n and 1 ≤ t ≤ T . Also, adapting
(20) and (21), let variables Bt

j,k be defined for 1 ≤ j ≤ n−2 and 1 ≤ k ≤ n, with clauses

(B
t
2j,k∨B t

2j+1,k) ∧ (Bt
2j,k∨Bt

j,k) ∧ (Bt
2j+1,k∨Bt

j,k) ∧ (Bt
2j,k∨Bt

2j+1,k∨B t
j,k); (∗)

in this formula we substitute {Ct
1,k, . . . , C

t
k−1,k, C

t
k,k+1, . . . , C

t
k,n} for the n − 1 “leaf

nodes” {Bt
n−1,k, . . . , B

t
2n−3,k}. These clauses prohibit comparators from clashing at

time t, and they make Bt
1,k false if and only if line k remains unused.

If x = x1 . . . xn is any binary vector, let y1 . . . yn be the result of sorting x (so that
(y1 . . . yn)2 = 2νx−1). The following clauses F (x) encode the fact that comparators Ct

i,j

transform x !→ y: (C
t
i,j∨V t

x,i∨V t−1
x,i) ∧ (C t

i,j∨V t
x,i∨V t−1

x,j) ∧ (C t
i,j∨V t

x,i∨V t−1
x,i ∨V t−1

x,j) ∧
(C

t
i,j∨V t

x,j∨V t−1
x,i ∨V t−1

x,j)∧(C t
i,j∨V t

x,j∨V t−1
x,i)∧(C t

i,j∨V t
x,j∨V t−1

x,j)∧(Bt
1,i∨V t

x,i∨V t−1
x,i)∧

559

From the Library of Melissa Nuno

ptg999

560 ANSWERS TO EXERCISES 7.2.2.2

(Bt
1,i∨V t

x,i∨V t−1
x,i), for 1 ≤ i < j ≤ n and 1 ≤ t ≤ T ; here we substitute xj for V

0
x,j and

also substitute yj for V
T
x,j , thereby simplifying the boundary conditions.

Furthermore, we can remove all variables V t
x,i when x has i leading 0s and V t

x,j

when x has j trailing 1s, replacing them by 0 and 1 respectively and simplifying further.

Finally, given any sequence α = [i1 :j1] . . . [ir :jr] of initial comparators, T further
parallel stages will yield a sorting network if and only if the clauses (∗), together with∧
x F (x) over all x producible by α, are simultaneously satisfiable.

Setting n = 9, α = [1:6][2 :7][3 :8][4 :9], and T = 5, we obtain 85768 clauses
in 5175 variables, if we leave out the ten vectors x that are already sorted. Al-
gorithm C finds them unsatisfiable after spending
roughly 200 megamems; therefore T̂ (9) > 6. (Algo-
rithm L fails spectacularly on these clauses, how-
ever.) Setting T ← 6 quickly yields T̂ (9) ≤ 7.
D. Bundala and J. Závodný [LNCS 8370 (2014),
236–247] used this approach to prove in fact that
T̂ (11) = 8 and T̂ (13) = 9. Then T. Ehlers and
M. Müller extended it [LNCS 9136 (2015), 167–
176], to prove that T̂ (17) = 10, with the surprising
optimum network shown here.

65. (a) The goal is to express the transition equation in CNF. There are
(
8
4

)
clauses like

(x̄′∨ x̄a∨ x̄b∨ x̄c∨ x̄d), one for each choice of four neighbors {a, b, c, d} ⊆ {NW,N, ..., SE}.
Also

(
8
7

)
clauses like (x̄′ ∨ xa ∨ · · · ∨ xg), one for each choice of seven. Also

(
8
6

)
like

(x̄′∨x∨xa∨· · ·∨xf), for each choice of six. Also
(
8
3

)
like (x′∨x̄a∨x̄b∨x̄c∨xd∨· · ·∨xh),

complementing just three. And finally
(
8
2

)
like (x′ ∨ x̄ ∨ x̄a ∨ x̄b ∨ xc ∨ · · · ∨ xg),

complementing just two and omitting any one of the others. Altogether 70 + 8 + 28 +
56+28 = 190 clauses of average length (70 ·5+8 ·8+28 ·8+56 ·9+28 ·9)/190 ≈ 7.34.

(b) Here we let x = xij , xNW = x(i−1)(j−1), . . . , xSE = x(i+1)(j+1), x
′ = x′ij . There

are seven classes of auxiliary variables aijk , . . . , g
ij
k , each of which has two children;

the meaning is that the sum of the descendants is ≥ k. We have k ∈ {2, 3, 4} for the
a variables, k ∈ {1, 2, 3, 4} for the b and c variables, and k ∈ {1, 2} for d, e, f, g.

The children of aij are b(i|1)j and cij . The children of bij are di(j−(j&2)) and
ei(j+(j&2)). The children of cij are f i

′j′ and gij , where i′ = i+2 and j′ = (j−1) |1 if i is
odd, otherwise i′ = i and j′ = j−(j&1). The children of dij are x(i−1)(j+1) and xi(j+1).
The children of eij are x(i−1)(j−1) and xi(j−1). The children of f ij are x(i−1)j and
x(i−1)(j+1). Finally, the children of g

ij are xi′j and xi′′j′′ , where i
′ = i+1−((i&1)$1);

and (i′′, j′′) = (i+1, j⊕ 1) if i is odd, otherwise (i′′, j′′) = (i− 1, j− 1+ ((j&1)$ 1)).
(OK—this isn’t elegant. But hey, it works!)

If the children of p are q and r, the clauses that define pk are (pk ∨ q̄k′ ∨ r̄k′′) for
k′ + k′′ = k and (p̄k ∨ qk′ ∨ rk′′) for k′ + k′′ = k+ 1. In these clauses we omit q̄0 or r̄0;
we also omit qm or rm when q or r has fewer than m descendants.

For example, these rules define d351 and d352 by the following six clauses:

(d351 ∨ x̄26), (d351 ∨ x̄36), (d352 ∨ x̄26 ∨ x̄36), (d̄351 ∨ x26 ∨ x36), (d̄352 ∨ x26), (d̄352 ∨ x36).
The variables bijk are defined only when i is odd; dijk and eijk only when i is odd and

j mod 4 < 2; f ijk only when i+ j is even. Thus the total number of auxiliary variables
per cell (i, j), ignoring small corrections at boundary points, is 3+4/2+4+2/4+2/4+
2/2+2 = 13 of types a through g, not 19, because of the sharing; and the total number
of clauses per cell to define them is 21 + 16/2 + 16+ 6/4 + 6/4 + 6/2 + 6 = 57, not 77.

560

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 561

Finally we define x′ij from aij2 , a
ij
3 , a

ij
4 , by means of six clauses

(x̄′ij∨āij4), (x̄′ij∨aij2), (x̄′ij∨xij∨aij3), (x′ij∨aij4 ∨āij3), (x′ij∨x̄ij∨ȳij), (yij∨aij4 ∨āij2),
where yij is another auxiliary variable (introduced only to avoid clauses of size 4).

66. All solutions to (a) can be characterized by a BDD of 8852 nodes, from which we
can obtain the generating function 38z28+550z29+ · · ·+150z41 that enumerates them
(with a total computation time of only 150 megamems or so). Part (b), however, is
best suited to SAT, and X0 must have at least 38 live cells. Typical answers are

→ ← ← .

67. Either or at lower left will produce the X0 of (37) at time 1. But length 22
is impossible: With r = 4 we can verify that all the live cells in X4 lie in some 3 × 3
subarray. Then with r = 22 we need to rule out only (

(
9
3

)
+
(
9
4

)
+
(
9
5

)
) × 6 = 2016

possibilities, one for each viable X4 within each essentially different 3× 3 subarray.

68. The author believes that r = 12 is impossible, but his SAT solvers have not yet
been able to verify this conjecture. Certainly r = 11 is achievable, because we can
continue with the text’s fifth example after prepending

→ → → .

69. Since only 8548 essentially different 4× 4 bitmaps are possible (see Section 7.2.3),
an exhaustive enumeration is no sweat. The small stable patterns arise frequently, so
they’ve all been named:

(a) block tub boat ship snake
bee-
hive carrier barge loaf eater

long
boat

long
ship pond

(b) blinker clock toad beacon

↔ ↔ ↔ ↔
(A glider is also considered to be stable, although it’s not an oscillator.)

70. (a) A cell with three live neighbors in the stator will stay alive.
(b) A 4× n board doesn’t work; Fig. A–8 shows the 5× 8 examples.
(c) Again, the smallest-weight solutions with smallest rectangles are shown in

Fig. A–8. Oscillators with these rotors are plentiful on larger boards; the first examples
of each kind were found respectively by Richard Schroeppel (1970), David Buckingham
(1972), Robert Wainwright (1985).

71. Let the variables Xt = xijt characterize the configuration at time t, and suppose
we require Xr = X0. There are q = 8r automorphisms σ that take Xt !→ X(t+p) mod rτ ,
where 0 ≤ p < r and τ is one of the eight symmetries of a square grid.

Any global permutation of the N = n2r variables leads via Theorem E to a
canonical form, where we require the solution to be lexicographically less than or equal
to the q − 1 solutions that are equivalent to it under automorphisms.

Such lexicographic tests can be enforced by introducing (q−1)(3N−2) new clauses
of length ≤ 3, as in (169)—and often greatly simplified using Corollary E.

These additional clauses can significantly speed up a proof of unsatisfiability. On
the other hand they can also slow down the search, if a problem has abundant solutions.

561

From the Library of Melissa Nuno

ptg999

562 ANSWERS TO EXERCISES 7.2.2.2

In practice it’s usually better to insist only on solutions that are partially canonical,
by using only some of the automorphisms and by requiring lexicographic order only on
some of the variables.

72. (a) The two 7× 7s, shown in Fig. A–8, were found by R. Wainwright (trice tongs,
1972) and A. Flammenkamp (jam, 1988).

Omega
Van de
Graaff J3 genie copter

trice
tongs jam spinners infinity

Fig. A–8. Noteworthy minimal oscillators of periods 2 and 3.

(b) Here the smallest examples are 9×13 and 10×15; the former has four L-rotors
surrounding long stable lines. Readers will also enjoy discovering 10× 10 and 13× 13
instances that have full eightfold symmetry. (When encoding such symmetrical prob-
lems by using exercise 65(b), we need only compute the transitions between variables
xtij for 1 ≤ i ≤ �m/2� and 1 ≤ j ≤ �n/2�; every other variable is identical to one of
these. However, the auxiliary variables aij , . . . , gij shouldn’t be coalesced in this way.)

(c,d) Champion heavyweights have small rotors. What a cool four-way snake dance!

120/225 ≈ .53 130/240 ≈ .54 132/256 ≈ .52 120/225 ≈ .53 136/256 ≈ .53

73. (a) They don’t have three A neighbors; and they don’t have three B neighbors.
(b) Two examples appear in Fig. A–9, where they are packed as snugly as possible

into a 12 × 15 box. This pattern, found by R. W. Gosper about 1971, is called the
phoenix, since its living cells repeatedly die and rise again. It is the smallest mobile
flipflop; the same idea yields the next smallest (also seen in Fig. A–9), which is 10×12.

(c) The nonblank one comes from a 1× 4 torus; the checkerboard from an 8× 8.
Here are some amazing m× n ways to satisfy the constraints for small m and n:

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

AABBAABB

A BA B

BA BA

AB AB

B AB A

A BA B

BA BA

AB AB

B AB A

A BA B

BA BA

AB AB

B AB A

BAB BAB

A AA A

B BB B

A AA A

BA BA

BAB BAB

A AA A

B BB B

A AA A

BA BA

AA AA

B BB B

A A A A

B B B B

AA AA

B B B B

AA AA

B BB B

A A A A

B B B B

AA AA

B B B B

AA AA

BB BB

AA AA

BB BB

AA AA

B BB B

AA AA

BB BB

AA AA

BB BB

AA AA

B BB B

ABA ABA

BAB BAB

A A

BB BB

AA AA

B B

ABA ABA

BAB BAB

A A

BB BB

AA AA

B B

B A B A

A AB BA AB B

B A B A

A B A B

B BA AB BA A

A B A B

B A B A

A AB BA AB B

B A B A

A B A B

B BA AB BA A

A B A B

BA AB BA AB

A B AA B A

B A BB A B

AB BA AB BA

B A BB A B

A B AA B A

BA AB BA AB

BA AB BA AB

A B AA B A

B A BB A B

AB BA AB BA

B A BB A B

A B AA B A

BA AB BA AB

A A B B A A B B

B B A A B B A A

B A A B B A A B

A B B A A B B A

B B A A B B A A

A A B B A A B B

A B B A A B B A

B A A B B A A B

A A B B A A B B

B B A A B B A A

B A A B B A A B

A B B A A B B A

B B A A B B A A

A A B B A A B B

A B B A A B B A

B A A B B A A B

B BABAB B BABAB

A BA A BA

B B

A A A A

AB B BABAB B BAB

A AB A AB

B B

A A A A

B BABAB B BABAB

A BA A BA

B B

A A A A

AB B BABAB B BAB

A AB A AB

B B

A A A A

AA A AA A

B B B B

A A A A A A

B B B B B B B B

A A A A A A

B B B B

A AA A AA

BB BB BB BB

AA A AA A

B B B B

A A A A A A

B B B B B B B B

A A A A A A

B B B B

A AA A AA

BB BB BB BB

BABA BABA

A B A B

BABA BABA

A B A B

BABA BABA

B A B A

BA BABA BA

B A B A

BABA BABA

A B A B

BABA BABA

A B A B

BABA BABA

B A B A

BA BABA BA

B A B A

AA BB

B B A A

AA BB

B B A A

AA BB

A B B A

B AA B

A B B A

BB AA

A A B B

BB AA

A A B B

BB AA

B A A B

A BB A

B A A B

AA AA

BB BB

AA AA

BB BB

A AA A

BB BB

A AA A

BB BB

AA AA

BB BB

AA AA

B BB B

AA AA

B BB B

B A B

ABAB BABA

BA AB

AB BA

BABA ABAB

A B A

B A B

ABAB BABA

BA AB

AB BA

BABA ABAB

A B A

Notice that infinite one-dimensional examples are implied by several of these motifs;

the checkerboard, in fact, can be fabricated by placing
A A

B B

A A

B B

diagonals together.

562

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 563

AB

BA BA BABA

ABAB ABAB A B

BAB A B A BB AA

ABA BB AA BB AA BB

B AA AB BA BB AA AB AB BA A

AB AA B BABA ABAB A B BABA BAB BAB BAB

AB BABA BB ABA A B B A BABA A BABA AA A ABA

BABA ABA B A BAB BB AA AA BB AB BB AB BB BB B

ABA B BAB AA BABA AA BB BB AA AA A AA AA

BAB AA BB AB B A A B BA AB B BAB BA BB

A B B A ABABAB BABA ABAB BABA ABA AB BAB A

BB AA BAB AB B AB A AB AB B AA B BAB AA A B

AA B B ABA BABA A A B B BABA AA BB AA ABA BA BB BB AA

B AA BAB A B B B A A A B BB A BB BAB ABAB A AA BB

A B B ABA BA BB A A AB B B AA BA ABAB A AB AB B A

BB AA B ABAB AA BB B A AA BB ABA AB A AB BABABA A B

AA B B AA B ABA B AA A B BB A B BB B B BAB A B BB AA

B AA BB AA BAB ABA B B BA A A BAB AA AA A A A A BA BA AA BB

AB B A BB B A BABA A A B B BABA BB B B B B BB ABAB AB B A

BA A BA A AA BB B B A A A A A A AA AA B ABAB A A B

ABA BB AB B BB AA A BA B BAB B B BB B AA BA BB BB AA

BAB A ABAB AA A B BABABA BA A BA ABA BB A AA AA A BB

A B BA BB ABA A B A BABA AB A BB B B B BB A

BB AA A BAB BB AA BB A BB B AA A A A AA B

AA BB BABA AA BB AA BB AA AA B BB BB B AA

B A AB B A B AA B BB AB AA AA BB

ABAB ABAB ABAB BABA A BABA B B A

BA BA BA AB BABA BABA ABAB

AB AB BA

Fig. A–9. Mobile flipflops: An ideal way to tile the floor of a workspace for hackers.

74. Call a cell tainted if it is A with more than one A neighbor or B with more than
one B neighbor. Consider the topmost row with a tainted cell, and the leftmost tainted
cell in that row. We can assume that this cell is an A, and that its neighbors are S, T,
U, V, W, X, Y, Z in the pattern

STU

VAW

XYZ
. Three of those eight neighbors are type B, and

at least four are type A; several cases need to be considered.

Case 1: W = X = Y = Z = A. Then we must have S = U = V = B and T = 0
(blank), because S, T, U, V aren’t tainted. The three left neighbors of V can’t be
type A, since V already has three A neighbors; nor can they be type B, since V isn’t
tainted. Hence the tainted X, which must have two B neighbors in the three cells below
it, cannot also have two or more A neighbors there.

Case 2: T = A or V = A. If, say, T = A then X = Y = Z = A, and neither V
nor W can be type B.

Case 3: S �= A, U = A. Then W can’t be type B, and S must be tainted.

Case 4: S = A, U �= A. At least one of W, X, Y, Z is B; at least three are A; so
exactly three are A. The B can’t be Y, which has four A neighbors. Nor can it be W
or Z: That would force V to be blank, hence T = U = B; consequently W = A, Z = B.
Since W is tainted, at least two of its right neighbors must be A, contradicting Z = B.

Thus X = B in Case 4. Either T or V is also B, while the other is blank; say
T is blank. The three left neighbors of V cannot be A. So they must either all be B
(tainting the cell left of S) or all blank. In the latter case the upper neighbors of T must
be BBA in that order, since T is blank. But that taints the B above T. A symmetric
argument applies if V is blank.

Case 5: S = U = A. Then W �= A, and at least two of {X,Y,Z} are A. Now
Y = Z = A forces T = V = X = B and W blank, tainting V.

Similarly, X = Y = A forces T = W = Z = B and V blank; this case is more
difficult. The three lower neighbors of Y must be AAB, in that order, lest a B be
surrounded by four A’s. But then the left neighbors of X are BBB; hence so are the
left neighbors of V, tainting the middle one.

Finally, therefore, Case 5 implies that X = Z = A. Either T, V, W, or Y is blank;
the other three are B. The blank can’t be T, since T’s upper three neighbors can’t
be A. It can’t be W or Y, since V and T aren’t tainted. So T = W = Y = B and V is
blank. The left neighbors of S cannot be A, because S isn’t tainted. So the cell left of X
must be A. Therefore X must have at least four A neighbors; but that’s impossible,
because Y already has three.

563

From the Library of Melissa Nuno

ptg999

564 ANSWERS TO EXERCISES 7.2.2.2

Diagonally adjacent A’s are rare. (In fact, they cannot occur in rectangular grids
of size 15× 18 or 16× 17.) But diligent readers will be able to spot them in Fig. A–9,
which exhibits an astonishing variety of different motifs that are possible in large grids.

75. Let the cells alive at times p − 2, p − 1, p be of types X, Y, Z, and consider the
topmost row in which a live cell ever appears. Without loss of generality, the leftmost
cell in that row is type Z. The cell below that Z can’t be of type Y, because that Y
would have three X neighbors and four Y neighbors besides Z and the blank to its left.

Thus the picture must look like ZYX

YXYX
, where the three predecessors of Z and the

topmost Y are filled in. But there’s no room for the three predecessors of the topmost X.

76. The smallest known example, a 28×33 pattern found
by Jason Summers in 2012, is illustrated here using the
letters {F,A,B}, {B,C,D}, {D,E,F} for cells that are
alive when tmod 3 = 0, 1, 2. His ingenious construction
leads in particular to an infinite solution based on a 7×24
torus. An amazing infinite 7 × 7 toroidal pattern also
exists, but little else is yet known.

A ACDDC

CDDCA A

CA ACDD

ACDDCA

DCA ACD

ACDDCA

DDCA AC

F F F F

DBD FE EF DBD DBD FE EF DBD

CB CDDDF FDDDC BC CB CDDDF FDDDC BC

DB FA AF BD DB FA AF BD DB FA AF BD DB FA AF BD

FDDDC BC CB CDDDF FDDDC BC CB CDDDF

EF DBD DBD FE EF DBD DBD FE

F F F F

F A F F A F

BDDEF DBD DBD FEDDB

FEDDC BC CB CDDEF

FA AF BD DB FA AF

C CDDDF FDDDC C

CF FE EF FC

FDF FDF

D D

DBE DBE

BB BB

DBE DBE

FC F FC F

B C BEDC B C BEDC

DFFAB AFEFAB DFFAB AFEFAB

BAFEFA BAFFD BAFEFA BAFFD

CDEB C B CDEB C B

F CF F CF

EBD EBD

BB BB

EBD EBD

D D

FDF FDF

CF FE EF FC

C CDDDF FDDDC C

FA AF BD DB FA AF

FEDDC BC CB CDDEF

BDDEF DBD DBD FEDDB

F A F F A F

77. If the first four cells in row 4 of X0 (and of X5) contain a, b, c, d, we need a+b �= 1,
a+ b+ c �= 1, b+ c+d �= 2. In clause form this becomes ā∨ b, a∨ b̄, b∨ c̄, c̄∨d, b̄∨ c∨ d̄.

Similarly, let the last four elements of column 5 be (f, g, h, i); then we want f +
g+h �= 2, g+h+ i �= 2, h+ i �= 2. These conditions simplify to f̄ ∨ ḡ, f̄ ∨ h̄, ḡ∨ ı̄, h̄∨ ı̄.
78. The “92 phage” in Fig. A–10 is a minimal example.

79. (Solution by T. G. Rokicki.) A tremendous battle flares up, raging wildly on all
fronts. When the dust finally settles at time 1900, 11 gliders are escaping the scene
(1 going in the original NE direction, 3 going NW, 5 going SW, and 2 going SE), leaving
behind 16 blocks, 1 tub, 2 loaves, 3 boats, 4 ships, 8 beehives, 1 pond, 15 blinkers, and
1 toad. (One should really watch this with a suitable applet.)

80. Paydirt is hit on 10× 10 and 11× 11 boards, with X8 = X9; see Fig. A–10. The
minimal example, “symeater19,” has a close relative, “symeater20,” which consists
simply of two blocks and two carriers, strategically placed. (The first of these, also
called “eater 2,” was discovered by D. Buckingham in the early 1970s; the other by
S. Silver in 1998.) They both have the additional ability to eat the glider if it is moved
one or two cells to the right of the position shown, or one cell to the left.

It is important to realize that the diagonal track of a glider does not pass through
the corners of pixels, bisecting them; the axis of a glider’s symmetry actually passes
through the midpoints of pixel edges, thereby cutting off small triangles whose area is
1/8 of a full pixel. Consequently, any eater that is symmetric about a diagonal will eat
gliders in two adjacent tracks. The two in Fig. A–10 are exceptional because they’re
quadruply effective. Furthermore symeater20 will eat from the opposite direction; and
either of its carriers can be swapped to another position next to the blocks.

81. Two eaters make “ssymeater14” (Fig. A–10); and “ssymeater22” is narrower.

82. (a) If X → X ′, then x′ij = 1 only if we have
∑i+1

i′=i−1
∑j+1

j′=j−1 xi′j′ ≥ 3.

(b) Use the same inequality, and induction on j.

564

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 565

92-phage

sym-
eater19

sym-
eater20

ssym-
eater14

ssym-
eater22

Fig. A–10. Various examples of minimal still lifes that eat gliders and spaceships.

(c) (Proof of the hint by John Conway, 1970.) In the transitions

X = ?

? ?

? ? ?

→ ?

? ?

? ? ?

? ? ? ?

→
?

? ?

? ?

? ? ? ?

? ? ? ? ?

= X ′′,

we must have in the center of X ′; hence we must have
?

at the lower left of X.
But then the center of X ′ is .

83. Work with (2r + 1 − 2t) × (2r + 1 − 2t) grids xtij centered at cell (i0, j0), for
0 ≤ t ≤ r = f(i0, j0); and assume that xtij = 0 whenever f(i, j) > t. For example,
if (i0, j0) = (1, 2), only 14 of the x3ij can be alive, namely when (i, j) = (−2 . .−1, 2),
(−2 . . 0, 1), (−2 . . 1, 0), (−2 . . 2,−1). The case (i0, j0) = (1, 2) leads to 5031 readily
satisfiable clauses on 1316 variables, including the unit clause x612, when the state
transitions are encoded as in answer 65; all but 106 of those variables are auxiliary.

84. (a) Use a glider, positioned properly with its tip at (0, 0).

(b) Similarly, a spaceship reaches these cells in the minimum possible time.

(c) Consider patterns An = and Bn = of width 2n + 1, illustrated
here for n = 3. Then Bj works when j mod 4 ∈ {1, 2}; Aj and Bj−1 work when
j mod 4 ∈ {2, 3}; Aj−1 works when j mod 4 ∈ {0, 3}.

(d) The pattern assembles a suitable glider at time 3.

(e) A SAT solver found the pattern shown here, which launches an appro-
priate spaceship (plus some construction debris that vanishes at t = 5).

[It appears likely that f∗(i, j) = f(i, j) for all i and j. But the best general
result at present, based on space-filling constructions such as Tim Coe’s “Max,” is that
f∗(i, j) = f(i, j) + O(1). There’s no known way to prove even the special cases that,
say, f∗(j, 2j) = 6j or that f∗(−j, 2j) = 3j for all j ≥ 0.]

85. (a) Let X be a 12 × 12 bitmap. We must show that the clauses T (X,X ′) of
exercise 65, together with 92 unary clauses x′23, x̄

′
24, x

′
25, . . . from the given pattern, are

unsatisfiable. (The pattern is symmetrical; but Life’s rules often produce symmetrical
states from unsymmetrical ones.) Thus 2144−8 different conceivable predecessor states
need to be ruled out. Fortunately Algorithm C needs fewer than 100 Mμ to do that.

(b) Most states have thousands of predecessors (see the following exercise); so
Algorithm C can almost always find one in, say, 500 Kμ. Therefore one can prove, for
example, that no 6×6 Gardens of Eden exist, by rapidly finding a predecessor for each
of the 236 patterns. (Only about 236/8 patterns actually need to be tried, by symmetry.)
Furthermore, if we run through those patterns in Gray code order, changing the polarity
of just one assumed unary clause ±x′ij at each step, the mechanism of Algorithm C
goes even faster, because it tends to find nearby solutions to nearby problems. Thus
thousands of patterns can be satisfied per second, and the task is feasible.

565

From the Library of Melissa Nuno

ptg999

566 ANSWERS TO EXERCISES 7.2.2.2

Such an approach is out of the question for 10× 10 bitmaps, because 2100 # 236.
But we can find all 10×10 Gardens of Eden for which there is 90◦-rotational symmetry,
by trying only about 225/2 patterns, again using Gray code. Aha: Eight such patterns
have no predecessor, and four of them correspond to the given orphan.

[See C. Hartman, M. J. H. Heule, K. Kwekkeboom, and A. Noels, Electronic
J. Combinatorics 20, 3 (2013), #P16, 1–19. The existence of Gardens of Eden with
respect to many kinds of cellular automata was first proved nonconstructively by E. F.
Moore, Proc. Symp. Applied Math. 14 (1962), 17–33.]

86. The 80 cells outside the inner 8× 8 can be chosen in N = 11,984,516,506,952,898
ways. (A BDD of size 53464 proves this.) So the answer is N/2100−64 ≈ 174,398.

87. Instead of using subscripts t and t + 1, we can write the transition clauses for
X → X ′ in the form (@ ∨ A0 ∨ A0′), etc. Let Alice’s states be {α1, . . . , αp} and let
Bob’s be {β1, . . . , βq}. The clauses (@ ∨ ᾱi ∨ α′i) and (@ ∨ β̄i ∨ β′i) say that your state
doesn’t change unless you are bumped. If state α corresponds to the command ‘Maybe
go to s’, the clause (@∨ ᾱ∨α′ ∨s′) defines the next possible states after bumping. The
analogous clause for ‘Critical, go to s’ or ‘Set v ← b, go to s’ is simply (@ ∨ ᾱ ∨ s′);
and the latter also generates the clause (@ ∨ ᾱ∨ v′) if b = 1, (@∨ ᾱ∨ v̄′) if b = 0. The
command ‘If v go to s1, else to s0’ generates (@ ∨ ᾱ ∨ v̄ ∨ s′1) ∧ (@ ∨ ᾱ ∨ v ∨ s′0). And
for each variable v, if the states whose commands set v are αi1 , . . . , αih , the clauses

(@ ∨ v ∨ αi1 ∨ · · · ∨ αih ∨ v̄′) ∧ (@ ∨ v̄ ∨ αi1 ∨ · · · ∨ αih ∨ v′)
encode the fact that v isn’t changed by other commands.

Bob’s program generates similar clauses—but they use @, not @, and β, not α.

Incidentally, when other protocols are considered in place of (40), the initial
state X0 analogous to (41) is constructed by putting Alice and Bob into their smallest
possible states, and by setting all shared variables to 0.

88. For example, let all variables be false except A00, B00, @0, A11, B01, A12, B12,
A13, B23, @3, A24, B24, @4, A35, B25, l5, A36, B36, l6.

89. No; we can find a counterexample to the corresponding clauses as in the previous
exercise: A00, B00, A01, B11, A02, B22, b2, @2, A13, B23, b3, A14, B34, b4, A15, B45,
b5, @5, A26, B46, a6, b6, @6, A57, B47, a7, b7, A58, B28, a8, b8, l8, A59, B59, a9, b9, l9.

(This protocol was the author’s original introduction to the fascinating problem of
mutual exclusion [see CACM 9 (1966), 321–322, 878], about which Dijkstra had said
“Quite a collection of trial solutions have been shown to be incorrect.”)

90. Alice starves in (43) with p = 1 and r = 3 in (47), if she moves to A1 and then
Bob remains in B0 whenever he is bumped. The A2 ∧ B2 deadlock mentioned in the
text for (45) corresponds to (47) with p = 4 and r = 6. And in (46), successive moves
to B1, (B2, A1, A2, B3, B1, A4, A5, A0)∞ will starve poor Bob.

91. A cycle (47) with no maybe/critical states for Alice can certainly starve her.
Conversely, given (i), (ii), (iii), suppose Alice is in no maybe/critical state when t ≥ t0;
and let t0 < t1 < t2 < · · · be times with @ti = 1 but with @t = 0 for at least one t
between ti and ti+1. Then we must have Xti = Xtj for some i < j, because the number
of states is finite. Hence there’s a starvation cycle with p = ti and r = tj .

92. For 0 ≤ i < j ≤ r we want clauses that encode the condition Xi �= Xj . Introduce
new variables σij for each state σ of Alice or Bob, and vij for each shared variable v.
Assert that at least one of these new variables is true. (For the protocol (40) this clause

566

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 567

would be (A0ij ∨· · ·∨A4ij ∨B0ij ∨· · ·∨B4ij ∨ lij).) Also assert the binary clauses (σ̄ij ∨
σi)∧(σ̄ij∨σ̄j) for each σ, and the ternary clauses (v̄ij∨vi∨vj)∧(v̄ij∨ v̄i∨ v̄j) for each v.

The transition clauses can also be streamlined, because we needn’t allow cases
where Xt+1 = Xt. Thus, for example, we can omit B0t+1 from the clause (@t ∨ B0t ∨
B0t+1 ∨ B1t+1) of (42); and we can omit the clause (@t ∨ B1t ∨ l̄t ∨ B1t+1) entirely.

[If r is large, encodings with O(r(log r)2) clauses are possible via sorting networks,
as suggested by D. Kroening and O. Strichman, LNCS 2575 (2003), 298–309. The
most practical scheme, however, seems to be to add the ij constraints one by one
as needed; see N. Eén and N. Sörensson, Electronic Notes in Theoretical Computer

Science 89 (2003), 543–560.]

93. For the Φ in (50), for example, we can use (x1 ∨ x2 ∨ · · · ∨ x16)∧ (x̄1 ∨A0′)∧ · · · ∧
(x̄1∨A6′)∧(x̄2∨B0′)∧· · ·∧(x̄2∨B6′)∧(x̄3∨A0′)∧(x̄3∨a′)∧· · ·∧(x̄16∨B6′)∧(x̄16∨ b̄′).
94. (X → X ′ → · · · → X(r)) ∧ Φ(X) ∧ Φ(X ′) ∧ · · · ∧ Φ(X(r−1)) ∧ ¬Φ(X(r)). [This
important technique is called “k-induction”; see Mary Sheeran, Satnam Singh, and
Gunnar St̊almarck, LNCS 1954 (2000), 108–125. One can, for example, add the clause
(A5 ∨ B5) to (50) and prove the resulting formula Φ by 3-induction.]

95. The critical steps have a = b = 1, by the invariants, so they have no predecessor.

96. The only predecessor of A52 ∧B52 ∧ a2 ∧ b2 ∧ l̄2 is A51 ∧B41 ∧ a1 ∧ b1 ∧ l̄1; and the
only predecessor of that is A50 ∧ B30 ∧ a0 ∧ b0 ∧ l̄0. The case l2 is similar.

But without the invariants, we could find arbitrarily long paths to A5r ∧ B5r. In
fact the longest such simple path has r = 33: Starting with A20 ∧B20 ∧ ā0 ∧ b̄0 ∧ l0, we
could successively bump Alice and Bob into states A3, A5, A6, A0, A1, A2, A3, B3,
B4, A5, B3, A6, B4, A0, B3, A1, A2, A3, A5, A6, A0, A1, A2, B4, A3, A5, A6, A0,
B5, A1, A2, A3, A5, never repeating a previous state. (Of course all of these states are
unreachable from the real X0, because none of them satisfy Φ.)

97. No. Removing each person’s final step in a path to A6∧B6 gives a path to A5∧B5.
98. (a) Suppose X0 → · · · → Xr = X0 is impure and Xi = Xj for some 0 ≤ i < j < r.
We may assume that i = 0. If either of the two cycles X0 → · · · → Xj = X0 or
Xj → · · · → Xr = Xj is impure, it is shorter.

(b) In those states she would have had to be previously in A0 or A5.

(c) Generate clauses (ḡ0), (ḡt ∨ gt−1 ∨ @t−1), (h̄0), (h̄t ∨ ht−1 ∨ @t−1), (f̄t ∨ gt),
(f̄t ∨ ht), (f̄t ∨ α0 ∨ ᾱt), (f̄t ∨ ᾱ0 ∨ αt), (f̄t ∨ v0 ∨ v̄t), (f̄t ∨ v̄0 ∨ vt), for 1 ≤ t ≤ r; and
(f1 ∨ f2 ∨ · · · ∨ fr). Here v runs through all shared variables, and α runs through all
states that can occur in a starvation cycle. (For example, Alice’s states with respect
to protocol (49) would be restricted to A3 and A4, but Bob’s are unrestricted.)

(d) With exercise 92 we can determine that the longest simple path, using only
states that can occur in a starvation cycle for (49), is 15. And the clauses of (c) are
unsatisfiable when r = 15 and invariant (50) is used. Thus the only possible starvation
cycle is made from two simple pure cycles; and those are easy to rule out.

99. Invariant assertions define the values of a and b at each state. Hence mutual
exclusion follows as in exercise 95. For starvation-freedom, we can exclude states A0,
A6, A7, A8 from any cycle that starves Alice. But we need also to show that the state
A5t ∧ B0t ∧ lt is impossible; otherwise she could starve while Bob is maybe-ing. For
that purpose we can add ¬((A6∨A7∨A8)∧ (B6∨B7∨B8)) ∧ ¬(A8∧ l̄) ∧ ¬(B8∧ l) ∧
¬((A3 ∨ A4 ∨ A5) ∧ B0 ∧ l) ∧ ¬(A0 ∧ (B3 ∨ B4 ∨ B5) ∧ l̄) to the invariant Φ(X). The
longest simple path through allowable states has length 42; and the clauses of exercise

567

From the Library of Melissa Nuno

ptg999

568 ANSWERS TO EXERCISES 7.2.2.2

98(c) are unsatisfiable when r = 42. Notice that Alice and Bob never compete when
setting the common variable l, because states A7 and B7 cannot occur together.

(See Dijkstra’s Cooperating Sequential Processes, cited in the text.)

100. Bob is starved by the moves B1, (A1, A2, A3, B2, A4, B3, A0, B4, B1)∞. But
an argument similar to the previous answer shows that Alice cannot be.

[The protocol obviously provides mutual exclusion as in exercise 95. It was devised
independently in the late 1970s by J. E. Burns and L. Lamport, as a special case of an
N -player protocol using only N shared bits; see JACM 33 (1986), 337–339.]

101. The following solution is based on G. L. Peterson’s elegant protocol for N pro-
cesses in ACM Transactions on Programming Languages and Systems 5 (1983), 56–65:

A0. Maybe go to A1.
A1. Set a1 ← 1, go to A2.
A2. If b2 go to A2, else to A3.
A3. Set a2 ← 1, go to A4.
A4. Set a1 ← 0, go to A5.
A5. If b1 go to A5, else to A6.
A6. Set a1 ← 1, go to A7.
A7. If b1 go to A8, else to A9.
A8. If b2 go to A7, else to A9.
A9. Critical, go to A10.
A10. Set a1 ← 0, go to A11.
A11. Set a2 ← 0, go to A0.

(Alice and Bob might need an
app to help them deal with this.)

B0. Maybe go to B1.
B1. Set b1 ← 1, go to B2.
B2. If a1 go to B2, else to B3.
B3. Set b2 ← 1, go to B4.
B4. Set b1 ← 0, go to B5.
B5. If a2 go to B5, else to B6.
B6. Set b1 ← 1, go to B7.
B7. If a1 go to B8, else to B12.
B8. If a2 go to B9, else to B12.
B9. Set b1 ← 0, go to B10.
B10. If a1 go to B11, else to B6.
B11. If a2 go to B10, else to B6.
B12. Critical, go to B13.
B13. Set b1 ← 0, go to B14.
B14. Set b2 ← 0, go to B0.

102. The clauses for, say, ‘B5. If a go to B6, else to B7.’ should be (@∨B5∨ ā∨α1 ∨
· · · ∨ αp ∨ B6′) ∧ (@ ∨ B5 ∨ a ∨ α1 ∨ · · · ∨ αp ∨ B7′) ∧ (@ ∨ B5 ∨ B6′ ∨ B7′), where α1,
. . . , αp are the states in which Alice sets a.

103. See, for example, any front cover of SICOMP, or of SIAM Review since 1970.

104. Assume that m ≤ n. The case m = n is clearly impossible, because all four
corners must be occupied. When m is odd and n = m + k + 1, put m bishops in the
first and last columns, then k in the middle columns of the middle row. When m is even
and n = m+ 2k + 1, put m in the first and last columns, and two in the middle rows
of columns m/2 + 2j for 1 ≤ j ≤ k. There’s no solution when m and n are both even,
because the maximum number of independent bishops of each color is (m + n− 2)/2.
[R. Berghammer, LNCS 6663 (2011), 103–106.]

105. (a) We must have (xij , x
′
ij) = (1, 0) for t pairs ij, and (0, 1) for t other pairs;

otherwise xij = x′ij . Hence there are 2
mn−2t solutions.

(b) Use 2mn variables yij , y
′
ij for 1 ≤ i ≤ m and 1 ≤ j ≤ n, with binary clauses

(ȳij ∨ ȳ′ij), together with m + n+ 2(m+ n− 1) sets of cardinality constraints such as
(20) and (21) to enforce the balance condition

∑{yij+ ȳ′ij | ij ∈ L} = |L| for each row,
column, and diagonal line L.

(c) T (m,n) = 1 when min(m,n) < 4,
because only the zero matrix qualifies in
such cases. Other values can be enumerated
by backtracking, if they are small enough.
(The asymptotic behavior is unknown.)

n = 4 5 6 7 8

T (4, n) = 3 7 17 35 77
T (5, n) = 7 31 109 365 1367
T (6, n) = 17 109 877 6315 47607
T (7, n) = 35 365 6315 107637 1703883
T (8, n) = 77 1367 47607 1703883 66291089

(d) Supposem ≤ n. Any solution with
nonzero first row and column has all entries zero except that y1t = −yt1 = y(k+1−t)1 =

568

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 569

−ykt = yk(k+1−t) = −y(k+1−t)k = ytk = −y1(k+1−t), for some t and k with 1 < t ≤
k/2 ≤ m/2. So the answer is 2

∑m
k=4�k/2− 1�(m+ 1− k)(n+ 1− k), which simplifies

to q(q − 1)(4q(n− q)− 5n+ 2q + 3 + (mmod 2)(6n− 8q − 5))/3 when q = �m/2�.
[The answer in the case (m,n) = (25, 30) is 36080; hence a random 25×30 image

will have an average of 36080/256 ≈ 140.9 tomographically equivalent “neighbors” that
differ from it in exactly eight pixel positions. Figure 79 has five such neighbors, one of
which is shown in answer 111 below.]

(e) We can make all entries nonzero except on the main diagonals (see below).
This is optimum, because the diagonal lines for a1, a3, . . . , a4n−1, b1, b3, . . . , b4n−1
must each contain a different 0. So the answer is 2n(n − 1). (But the maximum for
odd sized boards is unknown; for m = n = (5, 7, 9) it turns out to be (6, 18, 33).)

0+++−−−0
−0++−−0+
−−0+−0++
−−−00+++
+++00−−−
++0−+0−−
+0−−++0−

0−−−+++0

0+++0−−−0
−−−−+++0+

0−+−+−−++
++−++0−−−
−+−+−−0++
+0−0+0+−−
−−+−−+++0
++++−0−−−

0−0−−+++0

0++−−00
−−++000
0+−−00+
−00+0−+
+0−0+0−
+0+0−0−

0−−0++0

0++−−00
−−++000
0+−0−0+
−0−+00+
+000+−−
+0+−00−

0−−0++0

(f) The smallest counterexamples are 7× 7 (see above).

106. In an m × n problem we must have 0 ≤ ri ≤ n, 0 ≤ cj ≤ m, and 0 ≤ ad, bd ≤
min{d,m, n,m+n−d}. So the total number B of possibilities, assuming thatm ≤ n, is
(n+1)m(m+1)n((m+1)! (m+1)n−mm!)2, which is ≈ 3 ·10197 when (m,n) = (25, 30).
Since 2750/B ≈ 2 · 1028, we conclude that a “random” 25 × 30 digital tomography
problem usually has more than 1028 solutions. (Of course there are other constraints
too; for example, the fact that

∑
ri =

∑
cj =

∑
ad =

∑
bd reduces B by at least a

factor of (n+ 1)(m+ 1)2.)

107. (a) (r1, . . . , r6) = (11,11,11,9,9,10); (c1, . . . , c13) = (6,5,6,2,4,4,6,5,4,2,6,5,6);
(a1, . . . , a6) = (11,10,9,9,11,11); (b1, . . . , b12) = (6,1,6,5,7,5,6,2,6,5,7,5).

(b) There are two others, namely the following one and its left-right reversal:

· · · · · ·

[Reference: P. Gerdes, Sipatsi (Maputo: U. Pedagógica, 2009), page 62, pattern #122.]

108. Here are four of the many possibilities:

109. F1. [Initialize.] Find one solution y1 . . . yn, or terminate if the problem is unsat-
isfiable. Then set yn+1 ← 1 and d← 0.

F2. [Advance d.] Set d to the smallest j > d such that yj = 1.

F3. [Done?] If d > n, terminate with y1 . . . yn as the answer.

F4. [Try for smaller.] Try to find a solution with additional unit clauses to force
xj = yj for 1 ≤ j < d and xd = 0. If successful, set y1 . . . yn ← x1 . . . xn.
Return to F2.

Even better is to incorporate a similar procedure into the solver itself; see exercise 275.

569

From the Library of Melissa Nuno

ptg999

570 ANSWERS TO EXERCISES 7.2.2.2

110. Algorithm B actually gives these directly:

001111111011101111100101111101111011111110111011011111111100101111101111011111100111011111110111
111111111011111111001100111111001111011111111010111111110111101111111001100111110110111101111111

111. This family of problems appears to provide an excellent (though sometimes formi-
dable) series of benchmark tests for SAT solvers. The suggested example has solutions

(a) colexicographically first; (b) minimally different; (c) colexicographically last;

and several of the entries in (a) were by no means easy. An even more difficult case
arises if we base lexicographic order on a rook path that spirals out from the center
(thus favoring solutions that are mostly 0 or mostly 1 in the middle):

(a) spiral rook path; (b) “spirographically” first; (c) “spirographically” last.

Here many of the entries have never yet been solved by a SAT solver, as of 2013, although
again IP solvers have no great difficulty. In fact, the “lexicographic pure cutting plane”
procedure of E. Balas, M. Fischetti, and A. Zanette [Math. Programming A130 (2011),
153–176; A135 (2012), 509–514] turns out to be particularly effective on such problems.

112. Reasonably tight upper and lower bounds would also be interesting.

113. Given an N ×N ×N contingency problem with binary constraints CJK = X∗JK ,
RIK = XI∗K , PIJ = XIJ∗, we can construct an equivalent n × n digital tomography
problem with n = N2 +N3 +N4 as follows: First construct a four-dimensional tensor
YIJKL = X(I⊕L)JK , where I ⊕ L = 1 + (I + L − 1) modN , and notice that Y∗JKL =
YIJK∗ = X∗JK , YI∗KL = X(I⊕L)∗K , YIJ∗L = X(I⊕L)J∗. Then define xij for 1 ≤
i, j ≤ n by the rule xij = YIJKL when i = I − N2K + N3L, j = NJ + N2K + N3L,
otherwise xij = 0. This rule makes sense; for if 1 ≤ I, I ′, J, J ′, K,K ′, L,L′ ≤ N and
I −N2K +N3L = I ′ −N2K ′ +N3L′ and NJ +N2K +N3L = NJ ′ +N2K ′ +N3L′,
we have I ≡ I ′ (modulo N); hence I = I ′ and K ≡ K ′; hence K = K ′, L = L′, J = J ′.

Under this correspondence the marginal sums are ri = YI∗KL when i = I−N2K+
N3L, cj = Y∗JKL when j = NJ+N2K+N3L, ad = YIJ∗L when d+1 = I+NJ+2N3L,
bd = YIJK∗ when d − n = I − NJ − 2N2K, otherwise zero. [See S. Brunetti, A. Del
Lungo, P. Gritzmann, and S. de Vries, Theoretical Comp. Sci. 406 (2008), 63–71.]

570

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 571

114. (a) From x7,23 + x7,24 = x7,23 + x7,24 + x7,25 = x7,24 + x7,25 = 1 we deduce
x7,23 = x7,25 = 0 and x7,24 = 1, revealing n7,23 = n7,25 = 5. Now x6,23 + x6,24 =
x6,24 + x6,25 = x4,24 + x5,24 + x6,24 + x6,25 = 1; hence x4,24 = x5,24 = 0, revealing
n4,24 = n5,24 = 2. So x6,23 = x6,25 = 0, and the rest is easy.

(b) Let yi,j mean “cell (i, j) has been probed safely, revealing ni,j .” Consider
the clauses C obtained by appending ȳi,j to each clause of the symmetric function
[
∑i+1

i′=i−1
∑j+1

j′=j−1 xi′,j′=ni,j], for all i, j with xi,j = 0. Also include (x̄i,j∨ ȳi,j), as well
as clauses for the symmetric function SN (x) if we’re told the total number N of mines.

Given any subset F of mine-free cells, the clauses CF = C ∧∧{yi,j | (i, j) ∈ F}
are satisfiable precisely by the configurations of mines that are consistent with the data
{ni,j | (i, j) ∈ F}. Therefore cell (i, j) is safe if and only if CF ∧ xi,j is unsatisfiable.

A simple modification of Algorithm C can be used to “grow” F until no further
safe cells can be added: Given a solution to CF for which neither xi,j nor x̄i,j was
obtained at root level (level 0), we can try to find a “flipped” solution by using the
complemented value as the decision at level 1. Such a solution will be found if and only
if the flipped value is consistent; otherwise the unflipped value will have been forced at
level 0. By changing default polarities we can favor solutions that flip many variables
at once. Whenever a literal x̄i,j is newly deduced at root level, we can force yi,j to be
true, thus adding (i, j) to F . We reach an impasse when a set of solutions has been
obtained for CF that covers both settings of every unforced xi,j .

For problem (i) we start with F = {(1, 1)}, etc. Case (iv) by itself uncovers only
56 cells in the lower right corner. The other results, each obtained in < 6 Gμ, are:

(i), (ii)
00012321000000000000013X200000
0002XXX310000000000012XX310000
0013X5XX3101233333212X44X20000
002X434XX433XXXXXXX35X32X31000
003X5X34XXXX3333333XXX424X2000
003X6X33X532100000125X5X5X3000
003X5X22X200000000003X5X5X3000
003X41111100000000002X424X3000
002X310000000000000012X23X3100
0012X2100000000000000112X4X200
00013X21232100000123210114X300
00003X42XXX2100012XXX21003X300
22113X4X6 5X20002X6 5X2002X310
XX34X34XX 6X30002XX 5X20013X20
23XXX43XXXXX312123XXX210003X30
245 XX2233323X4X21232100014X52
XXX 653100013X5X3000012333XXXX

XXXX10001X45X200001XXXX5
42222112XX21000135
211XX43443100001XX

2X334XXXXX433333444
X 4 XXXXXXXXX2

(iii)
00012321000000000000013X200000
0002XXX310000000000012XX310000
0013X5XX3101233333212X44X20000
002X434XX433XXXXXXX35X32X31000
003X5X34XXXX3333333XXX424X2000
003X6X33X532100000125X5X5X3000
003X5X22X200000000003X5X5X3000
003X41111100000000002X424X3000
002X310000000000000012X23X3100
0012X2100000000000000112X4X200
00013X21232100000123210114X300
00003X42XXX2100012XXX21003X300
22113X4X6 5X20002X6 5X2002X310
XX34X34XX 6X30002XX 5X20013X20
23XXX43XXXXX312123XXX210003X30
2456XX2233323X4X21232100014X52
XXXX653100013X5X3000012333XXXX
235XXXX10001X45X200001XXXX5
002X542222112XX21000135
0012X211XX43443100001XX
00012X334XXXXX433333444
000012XX445 XXXXXXXXX2
00000123XX3
0000000123
0000000001

(v)
00012321000000000000013X200000
0002XXX310000000000012XX310000
0013X5XX3101233333212X44X20000
002X434XX433XXXXXXX35X32X31000
003X5X34XXXX3333333XXX424X2000
003X6X33X532100000125X5X5X3000
003X5X22X200000000003X5X5X3000
003X41111100000000002X424X3000
002X310000000000000012X23X3100
0012X2100000000000000112X4X200
00013X21232100000123210114X300
00003X42XXX2100012XXX21003X300
22113X4X6 5X20002X6 5X2002X310
XX34X34XX 6X30002XX 5X20013X20
23XXX43XXXXX312123XXX210003X30
2456XX2233323X4X21232100014X52
XXXX653100013X5X3000012333XXXX
235XXXX10001X45X200001XXXX5X
002X542222112XX210001356656X
0012X211XX43443100001XXXXXXXXX
00012X334XXXXX433333444345X432
000012XX445 XXXXXXXXX223X2100
00000123XX3 5554XX21000
0000000123 5XXX3210000
0000000001 XXX421000000

Notice that the Cheshire cat’s famous smile defies logic and requires much guesswork!
[For aspects of Minesweeper that are NP-complete and coNP-complete, see Kaye,

Scott, Stege, and van Rooij, Math. Intelligencer 22, 2 (2000), 9–15; 33, 4 (2011), 5–17.]

115. Several thousand runs of the algorithm in the previous exercise, given that the
total number of mines is 10, indicate success probabilities .490 ± .007, .414 ± .004,
.279± .003, when the first guess is respectively in a corner, in the center of an edge, or
in the center.

116. The smallest is the “clock” in answer 69(b). Other noteworthy possibilities are

↔

↔
↔

as well as the “phoenix” in Fig. A–9.

571

From the Library of Melissa Nuno

ptg999

572 ANSWERS TO EXERCISES 7.2.2.2

117. (a) Set x0 = xn+1 = 0, and let (a, b, c) be respectively the number of occurrences
of (01, 10, 11) as a substring of x0x1 . . . xn+1. Then a + c = b + c = νx and c = ν(2)x;
hence a = b = νx− ν(2)x is the number of runs.

(b) In this case the complete binary tree will have only n−1 leaves, corresponding
to {x1x2, . . . , xn−1xn}; therefore we want to replace n by n− 1 in (20) and (21).

The clauses of (20) remain unchanged unless tk ≤ 3. When tk = 2 they become
(x̄2k−n+1∨x̄2k−n+2∨bk1)∧(x̄2k−n+2∨x̄2k−n+3∨bk1)∧(x̄2k−n+1∨x̄2k−n+2∨x̄2k−n+3∨bk2).
When tk = 3 we have 2k = n−1, and they become (b̄2k1 ∨bk1)∧(x̄1∨ x̄2∨bk1)∧(b̄2k2 ∨bk2)∧
(b̄2k1 ∨ x̄1 ∨ x̄2 ∨ bk2) ∧ (b̄2k2 ∨ x̄1 ∨ x̄2 ∨ bk3).

The clauses of (21) remain unchanged except in simple cases when n ≤ 3.
(c) Now the leaves represent xixi+1 = x̄i ∨ x̄i+1. So we change (20), when tk = 2,

to (x2k−n+1 ∨ bk1) ∧ (x2k−n+2 ∨ bk1) ∧ (x2k−n+3 ∨ bk1) ∧ (x2k−n+2 ∨ bk2) ∧ (x2k−n+1 ∨
x2k−n+3 ∨ bk2). And there are eight clauses when tk = 3: (b̄2k1 ∨ bk1) ∧ (x1 ∨ bk1) ∧ (x2 ∨
bk1) ∧ (b̄2k2 ∨ bk2) ∧ (b̄2k1 ∨ x1 ∨ bk2) ∧ (b̄2k1 ∨ x2 ∨ bk2) ∧ (b̄2k2 ∨ x1 ∨ bk3) ∧ (b̄2k2 ∨ x2 ∨ bk3).
118. Let pi,j = [the pixel in row i and column j should be covered], and introduce
variables hi,j when pi,j = pi,j+1 = 1, vi,j when pi,j = pi+1,j = 1. The clauses are
(i) (hi,j ∨ hi,j−1 ∨ vi,j ∨ vi−1,j), whenever pi,j = 1, omitting variables that don’t exist;

(ii) (h̄i,j∨h̄i,j−1), (h̄i,j∨v̄i,j), (h̄i,j∨v̄i−1,j), (h̄i,j−1∨v̄i,j), (h̄i,j−1∨v̄i−1,j), (v̄i,j∨v̄i−1,j),
whenever pi,j = 1, omitting clauses whose variables don’t both exist; and (iii) (hi,j ∨
hi+1,j∨vi,j∨vi,j+1), whenever pi,j+pi,j+1+pi+1,j+pi+1,j+1 ≥ 3, omitting variables that
don’t exist. (The example has 10527 clauses in 2874 variables, but it’s quickly solved.)

119. There’s symmetry between l and l̄, also between l and 10− l; so we need consider
only l = (1, 2, 3, 4, 5), with respectively (4, 4, 6, 6, 8) occurrences. The smallest result is
F |5 = {123, 234, 678, 789, 246, 468, 147, 369, 1̄2̄3̄, 2̄3̄4̄, 3̄4̄, 4̄6̄, 6̄7̄, 6̄7̄8̄, 7̄8̄9̄, 1̄3̄, 2̄4̄6̄,
3̄7̄, 4̄6̄8̄, 7̄9̄, 1̄4̄7̄, 2̄8̄, 3̄6̄9̄, 1̄9̄}.
120. True.

121. The main point of interest is that an empty clause is typically discovered in the
midst of step A3; partial backtracking must be done when taking back the changes
that were made before this interruption.

A3. [Remove l̄.] Set p ← F(l̄) (which is F(l ⊕ 1), see (57)). While p ≥ 2n + 2,
set j ← C(p), i← SIZE(j), and if i > 1 set SIZE(j)← i− 1, p← F(p). But
if i = 1, interrupt that loop and set p ← B(p); then while p ≥ 2n + 2, set
j ← C(p), i← SIZE(j), SIZE(j)← i+ 1, p← B(p); and finally go to A5.

A4. [Deactivate l’s clauses.] Set p ← F(l). While p ≥ 2n + 2, set j ← C(p),
i ← START(j), p ← F(p), and for i ≤ s < i + SIZE(j) − 1 set q ← F(s),
r ← B(s), B(q) ← r, F(r) ← q, and C(L(s)) ← C(L(s)) − 1. Then set
a← a− C(l), d← d+ 1, and return to A2.

A7. [Reactivate l’s clauses.] Set a ← a + C(l) and p ← B(l). While p ≥ 2n+ 2,
set j ← C(p), i← START(j), p← B(p), and for i ≤ s < i+ SIZE(j) − 1 set
q ← F(s), r ← B(s), B(q) ← F(r) ← s, and C(L(s)) ← C(L(s)) + 1. (The
links dance a little here.)

A8. [Unremove l̄.] Set p← F(l̄). While p ≥ 2n+ 2, set j ← C(p), i← SIZE(j),
SIZE(j)← i+ 1, p← F(p). Then go to A5.

122. Pure literals are problematic when we want all solutions, so we don’t take advan-
tage of them here. Indeed, things get simpler; only the move codes 1 and 2 are needed.

A1∗. [Initialize.] Set d← 1.

572

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 573

A2∗. [Visit or choose.] If d > n, visit the solution defined by m1 . . .mn and go to
A6∗. Otherwise set l← 2d+ 1 and md ← 1.

A3∗. [Remove l̄.] Delete l̄ from all active clauses; but go to A5∗ if that would
make a clause empty.

A4∗. [Deactivate l’s clauses.] Suppress all clauses that contain l. Then set d ←
d+ 1 and return to A2∗.

A5∗. [Try again.] If md = 1, set md ← 2, l← 2d, and go to A3∗.

A6∗. [Backtrack.] Terminate if d = 1. Otherwise set d ← d − 1 and l ← 2d +
(md & 1).

A7∗. [Reactivate l’s clauses.] Unsuppress all clauses that contain l.

A8∗. [Unremove l̄.] Reinstate l̄ in all the active clauses that contain it. Then go
back to A5∗.

It’s no longer necessary to update the values C(k) for k < 2n+2 in steps A4∗ and A7∗.

123. For example, we might have

p = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

L(p) = 3 9 7 8 7 5 6 5 3 4 3 8 2 8 6 9 6 4 7 4 2

and START(j) = 21 − 3j for 0 ≤ j ≤ 7; W2 = 3, W3 = 7, W4 = 4, W5 = 0, W6 = 5,
W7 = 1, W8 = 6, W9 = 2. Also LINK(j) = 0 for 1 ≤ j ≤ 7 in this case.

124. Set j ←Wl̄. While j �= 0, a literal other than l̄ should be watched in clause j, so
we do the following: Set i ← START(j), i′ ← START(j − 1), j′ ← LINK(j), k ← i + 1.
While k < i′, set l′ ← L(k); if l′ isn’t false (that is, if |l′| > d or l′ + m|l′| is even,
see (57)), set L(i)← l′, L(k)← l̄, LINK(j)←Wl′ , Wl′ ← j, j ← j′, and exit the loop
on k; otherwise set k ← k + 1 and continue that loop. If k reaches i′, however, we
cannot stop watching l̄; so we set Wl̄ ← j, exit the loop on j, and go on to step B5.

125. Change steps B2 and B4 to be like A2∗ and A4∗ in answer 122.

126. Starting with active ring (6 9 7 8), the unit clause 9 will be found (because 9
appears before 8); the clause 9̄3̄6̄ will become 6̄3̄9̄; the active ring will become (7 8 6).

127. Before: 11414545; after: 1142. (And then 11425, etc.)

128. Active ring x1x2x3x4 Units Choice Changed clauses

(1 2 3 4) - - - - 1̄ 213̄
(2 3 4) 0 - - - 2̄ 3̄12, 324̄
(3 4) 0 0 - - 3̄ 3̄ 4̄23, 431
(4) 0 0 0 - 4, 4̄ Backtrack
(3 4) 0 - - - 2 3̄2̄4
(3 4) 0 1 - - 4̄ 4̄ 341, 1̄42
(3) 0 1 - 0 3, 3̄ Backtrack
(4 3) - - - - 1 41̄2, 2̄1̄3
(2 4 3) 1 - - - 2̄
(4 3) 1 0 - - 4 4 324̄, 14̄2̄
(3) 1 0 - 1 3, 3̄ Backtrack
(4 3) 1 - - - 2 31̄2̄
(4 3) 1 1 - - 3 3 42̄3̄, 13̄2, 4̄3̄1̄
(4) 1 1 1 - 4, 4̄ Backtrack

573

From the Library of Melissa Nuno

ptg999

574 ANSWERS TO EXERCISES 7.2.2.2

129. Set j ← Wl, then do the following steps while j �= 0: (i) Set p ← START(j) + 1;
(ii) if p = START(j − 1), return 1; (iii) if L(p) is false (that is, if x|L(p)| = L(p) & 1),
set p← p+ 1 and repeat (ii); (iv) set j ← LINK(j). If j becomes zero, return 0.

130. Set l ← 2k + b, j ← Wl, Wl ← 0, and do the following steps while j �= 0: (i) Set
j′ ← LINK(j), i ← START(j), p ← i + 1; (ii) while L(p) is false, set p ← p + 1 (see
answer 129; this loop will end before p = START(j − 1)); (iii) set l′ ← L(p), L(p)← l,
L(i) ← l′; (iv) set p ← Wl′ and q ← Wl̄′ , and go to (vi) if p �= 0 or q �= 0 or x|l′| ≥ 0;
(v) if t = 0, set t ← h ← |l′| and NEXT(t) ← h, otherwise set NEXT(|l′|)← h, h ← |l′|,
NEXT(t) ← h (thus inserting |l′| = l′ # 1 into the ring as its new head); (vi) set
LINK(j)← p, Wl′ ← j (thus inserting j into the watch list of l′); (vii) set j ← j′.

[The tricky part here is to remember that t can be zero in step (v).]

131. For example, the author tried selecting a variable xk for which s2k · s2k+1 is
maximum, where sl is the length of l’s watch list plus ε, and the parameter ε was 0.1.
This reduced the runtime for waerden (3, 10; 97) to 139.8 gigamems, with 8.6 mega-
nodes. Less dramatic effects occurred with langford (13): 56.2 gigamems, with 10.8
meganodes, versus 99.0 gigamems if the minimum s2k · s2k+1 was chosen instead.

132. The unsatisfiable clauses (x̄1∨x2), (x1∨x̄2), (x̄3∨x4), (x3∨x̄4), . . . , (x̄2n−1∨x2n),
(x2n−1 ∨ x̄2n), (x̄2n−1 ∨ x̄2n), (x2n−1 ∨ x2n) cause it to investigate all 2n settings of x1,
x3, . . . , x2n−1 before encountering a contradiction and repeatedly backtracking.

(Incidentally, the successive move codes make a pretty pattern. If the stated
clauses are ordered randomly, the algorithm runs significantly faster, but it still appar-
ently needs nonpolynomial time. What is the growth rate?)

133. (a) Optimum backtrack trees for n-variable SAT problems can be calculated with
Θ(n3n) time and Θ(3n) space by considering all 3n partial assignments, “bottom up.”
In this 9-variable problem we obtain a tree with 67 nodes (the minimum) if we branch
first on x3 and x5, then on x6 if x3 �= x5; unit clauses arise at all other nodes.

(b) Similarly, the worst tree turns out to have 471 nodes. But if we require the
algorithm to branch on a unit clause whenever possible, the worst size is 187. (Branch
first on x1, then x4, then x7; avoid opportunities for unit clauses.)

134. Let each BIMP list be accessed by ADDR, BSIZE, CAP, and K fields, where ADDR is the
starting address in MEM of a block that’s able to store CAP items, and CAP = 2K; ADDR is
a multiple of CAP, and BSIZE is the number of items currently in use. Initially CAP = 4,
K = 2, BSIZE = 0, and ADDR is a convenient multiple of 4. The 2n BIMP tables therefore
occupy 8n slots initially. If MEM has room for 2M items, those tables can be allocated
so that the doubly linked lists AVAIL[k] initially contain ak = (0 or 1) available blocks
of size 2k for each k, where 2M − 8n = (aM−1 . . . a1a0)2.

Resizing is necessary when BSIZE = CAP and we need to increase BSIZE. Set
a← ADDR, k ← K, CAP ← 2k+1, and let b← a ⊕ 2k be the address of a’s buddy. If b is
a free block of size 2k, we’re in luck: We remove b from AVAIL[k]; then if a & 2k= 0,
nothing needs to be done, otherwise we copy BSIZE items from a to b and set ADDR← b.

In the unlucky case when b is either reserved or free of size < 2k, we set p to the
address of the first block in AVAIL[k′], where AVAIL[t] is empty for k < t < k′ (or
we panic if MEM’s capacity is exceeded). After removing p from AVAIL[k′], we split off
new free blocks of sizes 2k+1, . . . , 2k

′−1 if k′ > k + 1. Finally we copy BSIZE items
from block a to block p, set ADDR ← p, and put a into AVAIL[k]. (We needn’t try to
“collapse” a with its buddy, since the buddy isn’t free.)

135. They’re the complements of the literals in BIMP(l̄).

574

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 575

136. Before, {(1, 2), (4, 2), (4, 5), (5, 1), (5, 7), (6, 9)}; after, {(1, 2), (4, 2), (6, 9)}.
137. If p in a TIMP list points to the pair (u, v), let’s write u = U(p) and v = V(p).

(a) Set N ← n − G, x ← VAR[N], j ← INX[X], VAR[j] ← x, INX[x] ← j,
VAR[N]← X, INX[X]← N . Then do the following for l = 2X and l = 2X+1, and for
all p in TIMP(l): u← U(p), v ← V(p), p′ ← LINK(p), p′′ ← LINK(p′); s← TSIZE(ū)−1,
TSIZE(ū) ← s, t ← pair s of TIMP(ū); if p′ �= t, swap pairs by setting u′ ← U(t),
v′ ← V(t), q ← LINK(t), q′ ← LINK(q), LINK(q′) ← p′, LINK(p) ← t, U(p′) ← u′,
V(p′) ← v′, LINK(p′) ← q, U(t) ← v, V(t) ← l̄, LINK(t) ← p′′, p′ ← t. Then set
s← TSIZE(v̄)−1, TSIZE(v̄)← s, t← pair s of TIMP(v̄); if p′′ �= t, swap pairs by setting
u′ ← U(t), v′ ← V(t), q ← LINK(t), q′ ← LINK(q), LINK(q′) ← p′′, LINK(p′) ← t,
U(p′′)← u′, V(p′′)← v′, LINK(p′′)← q, U(t)← l̄, V(t)← u, LINK(t)← p.

Notice that we do not make the current pairs of TIMP(l) inactive. They won’t be
accessed by the algorithm until it needs to undo the swaps just made.

(b) In VAR and in each TIMP list, the active entries appear first. The inactive entries
follow, in the same order as they were swapped out, because inactive entries never
participate in swaps. Therefore we can reactivate the most-recently-swapped-out entry
by simply increasing the count of active entries. We must, however, be careful to do this
“virtual unswapping” in precisely the reverse order from which we did the swapping.

Thus, for l = 2X + 1 and l = 2X, and for all p in TIMP(l), proceeding in the
reverse order from (a), we set u ← U(p), v ← V(p), TSIZE(v̄) ← TSIZE(v̄) + 1, and
TSIZE(ū)← TSIZE(ū)+ 1.

(The number N of free variables increases implicitly, because N + E = n in
step L12. Thus nothing needs to be done to VAR or INX. These efficient techniques based
on swapping are examples of “sparse-set representations”; see 7.2.2–(16) thru (23).)

138. Because v̄ ∈ BIMP(ū), (62) will be used to make u nearly true. That loop will
also make v nearly true, because v ∈ BIMP(u) is equivalent to ū ∈ BIMP(v̄).

139. Introduce a new variable BSTAMP analogous to ISTAMP, and a new field BST(l)
analogous to IST(l) in the data for each literal l. At the beginning of step L9, set
BSTAMP ← BSTAMP + 1, then set BST(l) ← BSTAMP for l = ū and all l ∈ BIMP(ū). Now,
if BST(v̄) �= BSTAMP and BST(v) �= BSTAMP, do the following for all w ∈ BIMP(v): If w
is fixed in context NT (it must be fixed true, since w̄ implies v̄), do nothing. Otherwise
if BST(w̄) = BSTAMP, perform (62) with l ← u and exit the loop on w (because ū
implies both w and w̄). Otherwise, if BST(w) �= BSTAMP, append w to BIMP(ū) and u
to BIMP(w̄). (Of course (63) must be invoked when needed.)

Then increase BSTAMP again, and do the same thing with u and v reversed.

140. Unfortunately, no: We might have Ω(n) changes to BSIZE on each of Ω(n) levels
of the search tree. However, the ISTACK will never have more entries than the total
number of cells in all BIMP tables (namely 2M in answer 134).

141. Suppose ISTAMP ← (ISTAMP + 1) mod 2e in step L5. If ISTAMP = 0 after that
operation, we can safely set ISTAMP← 1 and IST(l)← 0 for 2 ≤ l ≤ 2n+1. (A similar
remark applies to BSTAMP and BST(l) in answer 139.)

142. (The following operations, performed after BRANCH[d] is set in step L2, will also
output ‘|’ to mark levels of the search where no decision was made.) Set BACKL[d]← F ,
r ← k ← 0, and do the following while k < d: While r < BACKF[k], output ‘6+(Rr&1)’
and set r ← r+1. If BRANCH[k] < 0, output ‘|’; otherwise output ‘2BRANCH[k]+(Rr&1)’
and set r ← r + 1. While r < BACKL[k + 1], output ‘4 + (Rr & 1)’ and set r ← r + 1.
Then set k ← k + 1.

575

From the Library of Melissa Nuno

ptg999

576 ANSWERS TO EXERCISES 7.2.2.2

143. The following solution treats KINX and KSIZE as the unmodified algorithm treats
TIMP and TSIZE. It deals in a somewhat more subtle way with CINX and CSIZE: If
clause c originally had size k, and if j of its literals have become false while none have
yet become true, CSIZE(c) will be k − j, but the nonfalse literals will not necessarily
appear at the beginning of list CINX(c). As soon as j reaches k−2, or one of the literals
becomes true, clause c becomes inactive and it disappears from the KINX tables of all
free literals. The algorithm won’t look at CINX(c) or CSIZE(c) again until it unfixes the
literal that deactivated c. Thus a big clause is inactive if and only if it has been satisfied
(contains a true literal) or has become binary (has at most two nonfalse literals).

We need to modify only the three steps that involve TIMP. The modified step L1,
call it L1′, inputs the big clauses in a straightforward way.

Step L7′ removes the formerly free variable X from the data structures by first
deactivating all of the active big clauses that contain L: For each of the KSIZE(L)
numbers c in KINX(L), and for each of the CSIZE(c) free literals u in CINX(c), we swap
c out of u’s clause list as follows: Set s← KSIZE(u)−1, KSIZE(u)← s; find t ≤ s with
KINX(u)[t] = c; if t �= s set KINX(u)[t] ← KINX(u)[s] and KINX(u)[s] ← c. [Heuristic:
If the number of free literals remaining in c is small compared to c’s original size,
for example if say 15 or 20 original literals have become false, the remaining nonfalse
literals can usefully be swapped into the first CSIZE(c) positions of CINX(c) when c is
being deactivated. The author’s experimental implementation does this when CSIZE(c)
is at most θ times the original size, where the parameter θ is normally 25/64.]

Then step L7′ updates clauses for which L has become false: For each of the
KSIZE(L) numbers c in KINX(L), set s ← CSIZE(c) − 1 and CSIZE(c) ← s; if s = 2,
find the two free literals (u, v) in CINX(c), swap them into the first positions of that list,
put them on a temporary stack, and swap c out of the clause lists of u and v as above.

Finally, step L7′ does step L8′ = L8 for all (u, v) on the temporary stack. [The
maximum size of that stack will be the maximum of KSIZE(l) over all l, after step L1′;
so we allocate memory for that stack as part of step L1′.]

In step L12′ we set L← RE , X ← |L|, and reactivate the clauses that involve X
as follows: For each of the KSIZE(L) numbers c in KINX(L), proceeding in reverse order
from the order used in L7′, set s← CSIZE(c), CSIZE(c)← s+ 1; if s = 2, swap c back
into the clause lists of v and u, where u = CINX(c)[0] and v = CINX(c)[1]. For each
of the KSIZE(L) numbers c in KINX(L), and for each of the CSIZE(c) free literals u
in CINX(c), again proceeding in reverse order from the order used in L7′, swap c back
into the clause list of u. The latter operation simply increases KSIZE(u) by 1.

ParamILS advises changing α from 3.5 to 0.001(!) in (195).

144. False; h′(l) = 0.1 if and only if the complement, l̄, doesn’t appear in any clause.

145. By symmetry we know that h(l) = h(l̄) = h(10 − l) for 1 ≤ l ≤ 9 at depth 0,
and the BIMP tables are empty. The first five rounds of refinement respectively give
(h(1), . . . , h(5)) ≈ (4.10, 4.10, 6.10, 6.10, 8.10), (5.01, 4.59, 6.84, 6.84, 7.98), (4.80, 4.58,
6.57, 6.57, 8.32), (4.88, 4.54, 6.72, 6.67, 8.06), and (4.85, 4.56, 6.63, 6.62, 8.23), slowly con-
verging to the limiting values

(4.85810213,4.55160111,6.66761920,6.63699698,8.16778057).

But when d = 1, the successively refined values of (h(1), h(1̄), . . . , h(4), h(4̄)) are erratic
and divergent: (2.10, 9.10, 3.10, 6.60, 3.10, 13.60, 4.10, 11.10), (5.63, 3.37, 9.24, 2.57,
5.48, 5.67, 8.37, 4.87), (1.42, 10.00, 2.31, 10.42, 1.28, 17.69, 1.94, 16.07), (8.12, 1.43,
12.42, 1.30, 7.51, 2.41, 12.02, 1.81), (0.32, 14.72, 0.42, 16.06, 0.30, 26.64, 0.43, 24.84).

576

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 577

They eventually oscillate between limits that favor either positive or negative literals:

(0.1017, 20.6819, 0.1027, 21.6597,0.1021, 32.0422, 0.1030, 33.0200) and
(8.0187, 0.1712, 11.9781,0.1361, 11.9781, 0.2071, 15.9374,0.1718).

[Equations (64) and (65), which were inspired by survey propagation, first appeared
in unpublished work of S. Mijnders, B. de Wilde, and M. J. H. Heule in 2010. The
calculations above indicate that we needn’t take h(l) too seriously, although it does seem
to yield good results in practice. The author’s implementation also sets h′(l) ← Θ if
the right-hand side of (65) exceeds a threshold parameter Θ, which is 20.0 by default.]

146. Good results have been obtained with the simple formula h(l) = ε+ KSIZE(l̄)+∑
u∈BIMP(l), u free KSIZE(ū), which estimates the potential number of big-clause reduc-

tions that occur when l becomes true. The parameter ε is typically set to 0.001.

147. ∞, 600, 60, 30, 30.

148. If a problem is easy, we don’t care if we solve it in 2 seconds or in .000002 seconds.
On the other hand if a problem is so difficult that it can be solved only by looking ahead
more than we can accomplish in a reasonable time, we might as well face the fact that
we won’t solve it anyway. There’s no point in looking ahead at 60 variables when
d = 60, because we won’t be able to deal with more than 250 or so nodes in any
reasonable search tree.

149. The idea is to maintain a binary string SIG(x) for each variable x, representing the
highest node of the search tree in which x has participated. Let bj = [BRANCH[j]=1],
and set σ ← b0 . . . bd−1 at the beginning of step L2, σ ← b0 . . . bd at the beginning of
step L4. Then x will be a participant in step X3 if and only if SIG(x) is a prefix of σ.

We update SIG(x) when x = |u| or x = |v| in step L9, by setting SIG(x) ← σ
unless SIG(x) is a prefix of σ. The initial value of SIG(x) is chosen so that it is never
a prefix of any possible σ.

(Notice that SIG(x) needn’t change when backtracking. In practice we can safely
maintain only the first 32 bits of σ and of each string SIG(x), together with their exact
lengths, because lookahead computations need not be precise. In answer 143, updates
occur not in step L9 but in step L7′; they are done for all literals u �= L that appear in
any big clause containing L that is being shortened for the first time.)

150. Asserting 7 at level 22 will also 22fix 1̄, because of the clause 1̄4̄7̄. Then 1̄ will
22fix 3 and 9, which will 22fix 2̄ and 6̄, then 8̄; and clause 258 becomes false. Therefore
7̄ becomes proto true; and (62) makes 3, 6, 9 all proto true, contradicting 3̄6̄9̄.

151. For example, one such arrangement is

l: 2 8̄ 9 3 1̄ 6 7̄ 4̄ 4 7 6̄ 1 3̄ 9̄ 8 2̄

o(l): 4 2 10 14 6 16 8 12 22 26 18 28 20 24 32 30
.

[Digraphs that are obtainable in this way are called “partial orderings of dimension
≤ 2,” or permutation posets. We’ve actually seen them in exercise 5.1.1–11, where the
set of arcs was represented as a set of inversions. Permutation posets have many nice
properties, which we shall study in Section 7.4.2. For example, if we reverse the order
of the list and complement the offsets, we reverse the directions on the arrows. All but
two of the 238 connected partially ordered sets on six elements are permutation posets.
Unfortunately, however, permutation posets don’t work well with lookahead when they
aren’t also forests. For example, after 10fixing ‘9’ and its consequences, we would want
to remove those literals from the R stack when 14fixing ‘3’; see (71). But then we’d
want them back when 6fixing ‘1̄’.]

577

From the Library of Melissa Nuno

ptg999

578 ANSWERS TO EXERCISES 7.2.2.2

152. A single clause such as ‘12’ or ‘123’ would be an example, except that the autarky
test in step X9 would solve the problem before we ever get to step X3. The clauses
{123̄, 12̄3, 1̄23̄, 1̄2̄3, 245, 34̄5̄} do, however, work: Level 0 branches on x1, and level 1
discovers an autarky with x2 and x3 both true but returns l = 0. Then level 2 finds all
clauses satisfied, although both of the free variables x4 and x5 are newbies.

[Indeed, the absence of free participants means that the fixed-true literals form
an autarky. If TSIZE(l) is nonzero for any free literal l, some clause is unsatisfied.
Otherwise all clauses are satisfied unless some free l has an unfixed literal l′ ∈ BIMP(l).]

153. Make the CAND array into a heap, with an element x of least rating r(x) at the
top. (See Section 5.2.3; but start indices at 0, with r(CAND[k]) ≤ min(r(CAND[2k+1]),
r(CAND[2k+2])).) Then, while C > Cmax, delete the top of the heap (namely CAND[0]).

154. The child−−→ parent relations in the subforest will be d−−→c−−→a, b−−→a, c̄−−→ d̄,
and either ā−−→ b̄ or ā−−→ c̄. Here’s one suitable sequence, using the latter:

preorder b̄ a b c d d̄ c̄ ā

2·postorder 2 10 4 8 6 16 14 12

155. First construct the dependency graph on the 2C candidate literals, by extracting
a subset of arcs from the BIMP tables. (This computation needn’t be exact, because
we’re only calculating heuristics; an upper bound can be placed on the number of arcs
considered, so that we don’t spend too much time here. However, it is important to
have the arc u−−→v if and only if v̄−−→ ū is also present.)

Then apply Tarjan’s algorithm [see Section 7.4.1.2, or SGB pages 512–519]. If
a strong component contains both l and l̄ for some l, terminate with a contradiction.
Otherwise, if a strong component contains more than one literal, choose a representa-
tive l with maximum h(l); the other literals of that component regard l as their parent.
Be careful to ensure that l is a representative if and only if l̄ is also a representative.

The result will be a sequence of candidate literals l1l2 . . . lS in topological order,
with li−−→ lj only if i > j. Compute the “height” of each lj , namely the length of the
longest path from lj to a sink. Then every literal of height h > 0 has a predecessor
of height h − 1, and we let one such predecessor be its parent in the subforest. Every
literal of height 0 (a sink) has a null parent. Traversal of this subforest in double order
(exercise 2.3.1–18) now makes it easy to build the LL table in preorder while filling the
LO table in postorder.

156. If l̄ doesn’t appear in any clause of F , then A = {l} is clearly an autarky.

157. Well, any satisfying assignment is an autarky. But more to the point is the
autarky {1, 2} for F = {12̄3, 1̄24, 3̄4̄}.
158. BIMP(l) and TIMP(l) will be empty, so w will be zero when Algorithm X looks
ahead on l. Thus l will be forced true, at depth d = 0. (But pure literals that arise
in subproblems for d > 0 won’t be detected unless they’re among the preselected
candidates.)

159. (a) False (consider A = {1}, F = {1, 2, 1̄2}); but true if we assume that F |A is
computed as a multiset (so that F |A would be {2, 2} �⊆ F in that example).

(b) True: Suppose A = A′ ∪ A′′, A′ ∩ A′′ = ∅, and A′′ or A′′ touches C ∈ F |A′.
Then C ∩ A′ = ∅ and C ∪ C ′ ∈ F , where C ′ ⊆ A

′
. Since A or A touches C ∪ C ′, some

a ∈ C ∪ C ′ is in A; hence a ∈ A′′.
160. (a) If the gray clauses are satisfiable, let all black literals be true. [Notice,
incidentally, that the suggested example coloring works like a charm in (7).]

578

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 579

(b) Given any set A of strictly distinct literals, color l black if l ∈ A, white if
l̄ ∈ A, otherwise gray. Then A is an autarky if and only if condition (a) holds.

[E. A. Hirsch, Journal of Automated Reasoning 24 (2000), 397–420.]

161. (a) If F ′ is satisfiable, so is F . If F is satisfiable with at least one blue literal false,
so is F ′. If F is satisfiable with all the blue literals true, make all the black literals true
(but keep gray literals unchanged). Then F ′ is satisfied, because every clause of F ′ that
contains a black or blue literal is true, hence every clause that contains a white literal
is true; the remaining clauses, whose literals are only orange and gray, each contain at
least one true gray literal. [The black-and-blue condition is equivalent to saying that
A is a conditional autarky, namely an autarky of F |L. Tseytin’s notion of “extended
resolution” is a special case, because the literals of A and L need not appear in F . See
S. Jeannicot, L. Oxusoff, and A. Rauzy, Revue d’intelligence artificielle 2 (1988), 41–60,
Section 6; O. Kullmann, Theoretical Comp. Sci. 223 (1999), 1–72, Sections 3, 4, and 14.]

(b) Without affecting satisfiability, we are allowed to add or delete any clause
C = (a ∨ l̄1 ∨ · · · ∨ l̄q) for which all clauses containing ā also contain l1 or · · · or lq.
(Such a clause is said to be “blocked” with respect to a, because C produces nothing
but tautologies when it is resolved with clauses that contain ā.)

(c) Without affecting satisfiability, we are allowed to add or delete any or all of
the clauses (l̄∨a1), . . . , (l̄∨ap), if A is an autarky of F | l; that is, we can do this if A is
almost an autarky, in the sense that every clause that touches A but not A contains l.

(d) Without affecting satisfiability, we are allowed to add or delete the clause
(l̄ ∨ a) whenever every clause that contains ā also contains l.

162. Construct a “blocking digraph” with l′ ↪→ l when every clause that contains
literal l̄ also contains l′. (If l is a pure literal, we’ll have l′ ↪→ l for all l′; this case can
be handled separately. Otherwise all in-degrees will be less than k in a kSAT problem,
and the blocking digraph can be constructed in O(k2m) steps if there are m clauses.)

(a) Then (l ∨ l′) is a blocked binary clause if and only if l̄ ↪→ l′ or l̄ ′ ↪→ l. (Hence
we’re allowed in such cases to add both l̄−−→ l′ and l̄ ′−−→ l to the dependency digraph.)

(b) Also A = {a, a′} is an autarky if and only if a ↪→ a′ ↪→ a. (Moreover, any
strong component {a1, . . . , at} with t > 1 is an autarky of size t.)

163. Consider the recurrence relations Tn = 1 + max(Tn−1, Tn−2, 2Un−1), Un = 1 +
max(Tn−1, Tn−2, Un−1+Vn−1), Vn = 1+Un−1 for n > 0, with T−1 = T0 = U0 = V0 = 0.
We can prove that Tn, Un, Vn are upper bounds on the step counts, where Un refers to
cases where F is known to have a nonternary clause, and Vn refers to cases when s = 1
and R2 was entered from R3: The terms Tn−1 and Tn−2 represent autarky reductions
in step R2; otherwise the recursive call in R3 costs Un−1, not Tn−1, because at least one
clause contains l̄s. We also have Vn = 1 + Un−1, not 1 + Tn−1, because the preceding
step R3 either had a clause containing l2 not l1 or a clause containing l̄1 not l̄2.

Fibonacci numbers provide the solution: Tn = 2Fn+2−3+[n=0], Un = Fn+3−2,
Vn = Fn+2−1. [Algorithm R is a simplification of a procedure devised by B. Monien and
E. Speckenmeyer, Discrete Applied Mathematics 10 (1985), 287–295, who introduced
the term “autarky” in that paper. A Stanford student, Juan Bulnes, had discovered
a Fibonacci-bounded algorithm for 3SAT already in 1976; his method was, however,
unattractive, because it also required Ω(φn) space.]

164. If k < 3, Tn = n is an upper bound; so we may assume that k ≥ 3. Let
Un = 1 + max(Tn−1, Tn−2, Un−1 + Vn−1,1, . . . , Un−1 + Vn−1,k−2), Vn,1 = 1 + Un−1,
and Vn,s = 1 + max(Un−1, Tn−2, Un−1 + Vn−1,s−1) for s > 1, where Vn,s refers to an
entry at R2 from R3. The use of Un−1 in the formula for Vn,s is justified, because the

579

From the Library of Melissa Nuno

ptg999

580 ANSWERS TO EXERCISES 7.2.2.2

previous R3 either had a clause containing ls+1 not ls or one containing l̄s not l̄s+1. One
can show by induction that Vn,s = s+Un−1+ · · ·+Un−s, Un = Vn,k−1; and Tn = Un+
Un−k+1 = 2Un−1+1 if n ≥ k. For example, the running time when k = 4 is bounded by
Tribonacci numbers, whose growth rate 1.83929n comes from the root of x3 = x2+x+1.

165. Clause 1̄3̄4̄ in the example tells us that 1, 3, 4 /∈ A. Then 136̄ implies 6 /∈ A. But
A = {2, 5} works, so it is maximum. There always is a maximum (not just maximal)
positive autarky, because the union of positive autarkies is a positive autarky.

Each clause (v1 ∨ · · · ∨ vs ∨ v̄s+1 ∨ · · · ∨ v̄s+t) of F , where the v’s are positive, tells
us that v1 /∈ A and · · · and vs /∈ A implies vs+j /∈ A, for 1 ≤ j ≤ t. Thus it essentially
generates t Horn clauses, whose core is the set of all positive literals not in any positive
autarky. A simple variant of Algorithm 7.1.1C will find this core in linear time; namely,
we can modify steps C1 and C5 in order to get t Horn clauses from a single clause of F .

[By complementing a subset of variables, and prohibiting another subset, we can
find the largest autarky A contained in any given set of strictly distinct literals. This ex-
ercise is due to unpublished work of O. Kullmann, V. W. Marek, and M. Truszczyński.]

166. Assume first that PARENT(l0) = Λ, so that H(l0) = 0 at the beginning of X9
(see X6). Since l0 = LL[j] is not fixed in context T , we have RF = l0 by (62).
And A = {RF , RF+1, . . . , RE−1} is an autarky, because no clause touched by A or A
is entirely false or contains two unfixed literals. Thus we’re allowed to force l0 true
(which is what “do step X12 with l← l0” means).

On the other hand if w = 0 and PARENT(l0) = p, so that H(l0) = H(p) > 0 in X6,
the set A = {RF , . . . , RE−1} is an autarky with respect to the clauses of F |p. Hence
the additional clause (l0 ∨ p̄) doesn’t make the clauses any less satisfiable, by the black
and blue principle. (Notice that (l̄0 ∨ p) is already a known clause; so in this case l0 is
essentially being made equal to its parent.)

[The author’s implementation therefore goes further and includes the step

VAL[|l0|] ← VAL[|p|] ⊕ ((l0 ⊕ p) & 1), (∗)
which promotes the truth degree of l0 to that of p. This step violates the invariant
relation (71), but Algorithm X doesn’t rely on (71).]

167. If a literal l is fixed in context T during the lookahead, it is implied by l0. In
step X11 we have a case where l is also implied by l̄0; hence we’re allowed to force its
truth, if l isn’t already proto true. In step X6, l̄0 is implied by l0, so l0 must be false.

168. The following method works well in march: Terminate happily if F = n. (At
this point in Algorithm L, F is the number of fixed variables, all of which are really
true or really false.) Otherwise find l ∈ {LL[0], . . . , LL[S − 1]} with lmod 2 = 0
and maximum (H(l) + .1)(H(l+1) + .1). If l is fixed, set l ← 0. (In that case,
Algorithm X found at least one forced literal, although U is now zero; we want to do
another lookahead before branching again.) Otherwise, if H(l) > H(l+1), set l← l+1.
(A subproblem that is less reduced will tend to be more satisfiable.)

169. When a and b are positive, the function f(x) = e−ax + e−bx − 1 is convex and
decreasing, and it has the unique root ln τ(a, b). Newton’s method for solving this
equation refines an approximation x by computing x′ = x + f(x)/(ae−ax + be−bx).
Notice that x is less than the root if and only if f(x) > 0; furthermore f(x) > 0 implies
f(x′) > 0, because f(x′) > f(x)+(x′−x)f ′(x) when f is convex. In particular we have
f(1/(a+ b)) > 0, because f(0) = 1 and 0′ = 1/(a+ b), and we can proceed as follows:

K1. [Initialize.] Set j ← k ← 1, x← 1/(a1 + b1).

580

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 581

K2. [Done?] (At this point (aj , bj) is the best of (a1, b1), . . . , (ak, bk), and e
−ajx+

e−bjx ≥ 1.) Terminate if k = s. Otherwise set k ← k + 1, x′ ← 1/(ak + bk).

K3. [Find α, β.] If x′ < x, swap j ↔ k and x ↔ x′. Then set α ← e−ajx
′

and

β ← e−bjx
′

. Go to K2 if α+ β ≤ 1.

K4. [Newtonize.] Set x← x′+(α+β−1)/(ajα+bjβ), α′ ← e−akx
′

, β′ ← e−bkx
′

,
x′ ← x′ + (α′ + β′ − 1)/(akα

′ + bkβ
′), and return to K3.

(The floating point calculations should satisfy eu ≤ ev and u+w ≤ v+w when u < v.)

170. If the problem is unsatisfiable, Tarjan’s algorithm discovers l and l̄ in the same
strong component. If it’s satisfiable, Algorithm X finds autarkies (because w is always
zero), thus forcing the value of all literals at depth 0.

171. It prevents double-looking on the same literal twice at the same search tree node.

172. When Algorithm Y concludes normally, we’ll have T = BASE+LO[j], even though
BASE has changed. This relation is assumed to be invariant in Algorithm X.

173. The run reported in the text, using nonoptimized parameters (see exercise 513),
did 29,194,670 double-looks (that is, executions of step Y2), and exited 23,245,231
times to X13 in step Y8 (thus successfully forcing l0 false in about 80% of those cases).
Disabling Algorithm Y (i) increased the running time from 0.68 teramems to 1.13
teramems, with 24.3 million nodes. Disabling wraparound (ii) increased the time to 0.85
teramems, with 13.3 million nodes. Setting Y = 1, which disabled wraparound only in
Algorithm Y, yielded 0.72 teramems, 11.3 meganodes. (Incidentally, the loops of Algo-
rithm X wrapped around 40% of the time in the regular run, with a mean of 0.62 and
maximum of 12; those of Algorithm Y had 20% wraparound, with a mean of 0.25; the
maximum Y = 8 was reached only 28 times.) Disabling the lookahead forest (iii) gave
surprisingly good results: 0.70 teramems, 8.5 meganodes; there were fewer nodes [hence
a more discriminating lookahead], but more time spent per node because of duplicated
effort, although strong components were not computed. (Structured problems that
have numerous binary clauses tend to generate more helpful forests than random 3SAT

problems do.) Disabling compensation resolvents (iv) made very little difference: 0.70
teramems, 9.9 meganodes. But disabling windfalls (v) raised the cost to 0.89 teramems
and 13.5 meganodes. And branching on a random l ∈ LL (vi) made the running
time soar to 40.20 teramems, with 594.7 meganodes. Finally, disabling Algorithm X
altogether (vii) was a disaster, leading to an estimated run time of well over 1020 mems.

The weaker heuristics of exercise 175 yield 3.09 teramems and 35.9 meganodes.

174. Setting Y to a huge value such as PT will never get to step Y2. (But for (ii), (iii),
. . . , (vii) one must change the programs, not the parameters as they stand.)

175. Precompute the weights, by setting K2 = 1 and Ks ← γKs−1+ .01, for s between
3 and the maximum clause size. (The extra .01 keeps this from being zero.) The third
line of (72) must change to “take account of c for all c in KINX(L),” where that means
“set s ← CSIZE(c) − 1; if s ≥ 2, set CSIZE(c) ← s and w ← w +Ks; otherwise if all
literals of c are fixed false, set a flag; otherwise if some literal u of c isn’t fixed (there
will be just one), put it on a temporary stack.” Before performing the last line of (72),
go to CONFLICT if the flag is set; otherwise, for each unfixed u on the temporary stack,
setWi ← u and i← i+1 and perform (62) with l← u; go to CONFLICT if some u on the
temporary stack is fixed false. (A “windfall” in this more general setting is a clause for
which all but one literal has been fixed false as a consequence of l0 being fixed true.)

Of course those changes to CSIZE need to be undone; a simulated false literal that
has been “virtually” removed from a clause must be virtually put back. Fortunately,

581

From the Library of Melissa Nuno

ptg999

582 ANSWERS TO EXERCISES 7.2.2.2

the invariant relation (71) makes this task fairly easy: We set G← F in step X5, and
insert the following restoration loop at the very beginning of (72): “While G > F , set
u ← RG−1; stop if u is fixed in context T ; otherwise set G ← G − 1, and increase
CSIZE(c) by 1 for all c ∈ KINX(ū).” The restoration loop should also be performed,
with T ← NT, just before terminating Algorithm X in steps X7 or X13.

[The additional step (∗) in answer 166 can’t be used, because (71) is now crucial.]

Algorithm Y should change in essentially the same way as Algorithm X.

[See O. Kullmann, Report CSR 23-2002 (Swansea: Univ. of Wales, 2002), §4.2.]
176. (a) aj −−− aj+1, aj −−− bj , aj −−− bj+1, bj −−− cj , bj −−− dj , cj −−− dj , cj −−− ej ,
dj−−−fj , ej−−−dj+1, ej−−−fj+1, fj−−−cj+1, fj−−−ej+1.

(b) Let (tj , uj , vj , wj , aj , bj , cj , dj , ej , fj) have colors (1, 2, 1, 1, 1, 2, 1, 3, 3, 2) when
j is even, (2, 1, 2, 2, 3, 2, 3, 1, 1, 2) when j is odd. The lower bounds are obvious.

(c) Vertices aj , ej , fj can’t all have the same color, because bj , cj , dj have distinct
colors. Let αj denote the colors of ajejfj . Then αj = 112 implies αj+1 = 332 or 233;
αj = 121 implies αj+1 = 233 or 323; αj = 211 implies αj+1 = 323 or 332; αj = 123
implies αj+1 = 213 or 321. Since α1 = αq+1, the colors of α1 must be distinct, and we
can assume that α1 = 123. But then αj will be an odd permutation whenever j is even.

[See Rufus Isaacs, AMM 82 (1975), 233–234. Unpublished notes of E. Grinberg
show that he had independently investigated the graph J5 in 1972.]

177. There are 20 independent subsets of Vj = {aj , bj , cj , dj , ej , fj} when q > 1; eight
of them contain none of {bj , cj , dj} while four contain bj . Let A be a 20×20 transition
matrix, which indicates when R∪C is independent for each independent subset R ⊆ Vj
and C ⊆ Vj+1. Then Iq is trace(Aq); and the first eight values are 8, 126, 1052,
11170, 112828, 1159416, 11869768, 121668290. The characteristic polynomial of A,
x12(x2 − 2x− 1)(x2 + 2x− 1)(x4 − 8x3 − 25x2 + 20x+ 1), has nonzero roots ±1±√2
and ≈ −2.91, −0.05, +0.71, +10.25; hence Iq = Θ(rq), where r ≈ 10.24811166 is the
dominant root. Note: The number of kernels of L(Jq) is respectively 2, 32, 140, 536,
2957, 14336, 70093, 348872, for 1 ≤ q ≤ 8, and its growth rate is ≈ 4.93q.

178. With the first ordering, the top 18k levels of the search tree essentially represent
all of the ways to 3-color the subgraph {aj , bj , cj , dj , ej , fj | 1 ≤ j ≤ k}; and there are
Θ(2k) ways to do that, by answer 176. But with the second ordering, the top 6kq levels
essentially represent all of the independent sets of the graph; and there are Ω(10.2k) of
those, by answer 177.

Empirically, Algorithm B needs respectively 1.54 megamems, 1.57 gigamems, and
1.61 teramems to prove unsatisfiability when q = 9, 19, and 29, using the first ordering;
but it needs 158 gigamems already for q = 5 with the second! Additional clauses, which
require color classes to be kernels (see answer 14), reduce that time to 492 megamems.

Algorithm D does badly on this sequence of problems: When q = 19, it consumes
37.6 gigamems, even with the “good” ordering. And when q = 29, its cyclic method
of working somehow transforms the good ordering into a bad ordering on many of the
variables at depths 200 or more. It shows no sign of being anywhere near completion
even after spending a petamem on that problem!

Algorithm L, which is insensitive to the ordering, needs 2.42 megamems, 2.01
gigamems, and 1.73 teramems when q = 9, 19, and 29. Thus it appears to take Θ(2q)
steps, and to be slightly slower than Algorithm B as q grows, although exercise 232
shows that a clairvoyant lookahead procedure could theoretically do much better.

Algorithm C triumphs here, as shown in Fig. 92.

582

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 583

179. This is a straightforward exact cover problem. If we classify the solutions accord-
ing to how many asterisks occur in each coordinate, it turns out that exactly (10, 240,
180, 360, 720, 480, 1440, 270, 200, 480) of them are respectively of type (00088, 00268,
00448, 00466, 02248, 02266, 02446, 04444, 22228, 22246).

By complementation, we see that 4380 choices of 8 clauses are unsatisfiable; hence
q8 = 1− 4380/

(
80
8

)
= 1− 4380/28987537150 ≈ 0.9999998.

180. With N variables yj , one for each possible clause Cj , the function f(y1, . . . , yN) =
[
∧{Cj | yj = 1} is satisfiable] is ∨x fx(y), where fx(y) = [x satisfies

∧{Cj | yj = 1}]
is simply

∧{ȳj | x makes Cj false}. For instance if k = 2 and n = 3, and if C1, C7, C11
are the clauses (x1 ∨ x2), (x1 ∨ x̄3), (x2 ∨ x̄3), then f001(y1, . . . , y12) = ȳ1 ∧ ȳ7 ∧ ȳ11.

Each function fx has a very simple BDD, but of course the OR of 2n of them will
not be simple. This problem is an excellent example where no natural ordering of the
clause variables is evident, but the method of sifting is able to reduce the BDD size
substantially. In fact, the clauses for k = 3 and n = 4 can be ordered cleverly so that
the corresponding 32-variable BDD for satisfiability has only 1362 nodes! The author’s
best result for k = 3 and n = 5, however, was a BDD of size 2,155,458. The coefficients
of its generating function (exercise 7.1.4–25) are the desired numbers Qm.

The largest such count, Q35 = 3,449,494,339,791,376,514,416, is so enormous that
we could not hope to enumerate the relevant sets of 35 clauses by backtracking.

181. The previous exercise essentially computed the generating function
∑

mQmz
m;

now we want the double generating function
∑

l,m Tl,mw
lzm, where Tl,m is the number

of ways to choose m different k-clauses in such a way that these clauses are satisfied by
exactly l vectors x1 . . . xn. To do this, instead of taking the OR of the simple functions
fx, we compute the BDD base that contains all of the symmetric Boolean functions
Sl(f0...0, . . . , f1...1) for 0 ≤ l ≤ 2n, as follows (see exercise 7.1.4–49): Consider the
subscript x to be a binary integer, so that the functions are fx for 0 ≤ x < 2n. Start
with Sl = 0 for −1 ≤ l ≤ 2n, except that S0 = 1. Then do the following for x = 0, . . . ,
2n − 1 (in that order): Set Sl = fx?Sl−1:Sl for l = x+ 1, . . . , 0 (in that order).

After this computation, the generating function for Sl will be
∑

m Tl,mz
m. In

the author’s experiments, the sifting algorithm found an ordering of the 80 clauses for
k = 3 and n = 5 so that only about 6 million nodes were needed when x had reached
24; afterwards, however, sifting took too long, so it was turned off. The final BDD base
had approximately 87 million nodes, with many nodes shared between the individual
functions Sl. The total running time was about 22 gigamems.

182. T0 = 32 and T1 = 28 and Tm = 0 for 71 ≤ m ≤ 80. Otherwise minTm < maxTm.

183. Let tm = Pr(Tm = 1), and suppose that we obtain clauses one by one until
reaching an unsatisfiable set. The fact that tm gets reasonably large suggests that we
probably have accumulated a uniquely satisfiable set just before stopping. (That proba-
bility is 2−kN

∑
m tm/(N−m), which turns out to be ≈ 0.8853 when k = 3 and n = 5.)

However, except for the fact that both Figs. 85 and 86 are bell-shaped curves with
roughly the same tendency to be relatively large or small at particular values of m,
there is apparently no strong mathematical connection. The probabilities in Fig. 86
sum to 1; but the sum of probabilities in Fig. 85 has no obvious significance.

When n is large, uniquely satisfiable sets are encountered only rarely. The final
set before stopping a.s. has at most f(n) solutions, for certain functions f ; but how
fast does the smallest such f grow? [See D. J. Aldous, J. Theoretical Probability 4

(1991), 197–211, for related ideas.]

583

From the Library of Melissa Nuno

ptg999

584 ANSWERS TO EXERCISES 7.2.2.2

184. The probability q̂m is Q̂m/N
m, where Q̂m counts the choices (C1, . . . , Cm) for

which C1 ∧ · · · ∧ Cm is satisfiable. The number of such choices that involve t distinct
clauses is t!

{
m
t

}
times Qt, because

{
m
t

}
enumerates set partitions; see Eq. 3.3.2–(5).

185. q̂m =
∑N

t=0

{
m
t

}
t! qt

(
N
t

)
/Nm ≥ qm

∑N
t=0

{
m
t

}
t!
(
N
t

)
/Nm = qm.

186.
∑

m

∑
t

{
m
t

}
t! qt

(
N
t

)
N−m can be summed onm, since

∑
m

{
m
t

}
N−m = 1/(N−1)t

by Eq. 1.2.9–(28). Similarly, the derivative of 1.2.9–(28) shows that
∑

mm
{
m
t

}
N−m =

(N/(N − 1) + · · ·+N/(N − t))/(N − 1)t .

187. In this special case, qm = [0≤m<N] and pm = [m=N]; hence Sn,n = N = 2n

(and the variance is zero). By (78), we also have Ŝn,n = NHN ; indeed, the coupon
collector’s test (exercise 3.3.2–8) is an equivalent way to view this situation.

188. Now qm = 2mnm/(2n)m. It follows by (78) that Ŝ1,n =
∑n

m=0 2
mnm/(2n− 1)m,

because N = 2n. The identity 2mnm/(2n−1)m = 2qm−qm+1 yields the surprising fact

that Ŝ1,n = (2q0−q1)+(2q1−q2)+· · · = 1+S1,n; and we also have Ŝ1,n−1 = 2n
2n−1S1,n−1.

Hence, by induction, we obtain the (even more surprising) closed forms

S1,n = 4n
/ (

2n

n

)
, Ŝ1,n = 4n

/ (
2n

n

)
+ 1.

So random 1SAT problems become unsatisfiable after
√
πn+O(1) clauses, on average.

189. With the autosifting method in the author’s experimental BDD implementation,
the number of BDD nodes, given a sequence of m distinct clauses when k = 3 and
n = 50, increased past 1000 when m increased from 1 to about 30, and it tended to
peak at about 500,000 when m was slightly more than 100. Then the typical BDD size
fell to about 50,000 when m = 150, and to only about 500 when m = 200.

BDD methods break down when n is too large, but when they apply we can count
the total number of solutions remaining after m steps. In the author’s tests with k = 3,
n = 50, and m = 200, this number varied from about 25 to about 2000.

190. For example, S1(x1, . . . , xn) can’t be expressed in (n − 1)CNF: All clauses of
length n− 1 that are implied by S1(x1, . . . , xn) are also implied by S≤1(x1, . . . , xn).

191. Let f(x0, . . . , x2n−1) = 1 if and only if x0 . . . x2n−1 is the truth table of a Boolean
function of n variables that is expressible in kCNF. This function f is the conjunction
of 2n constraints c(t), for 0 ≤ t = (t0 . . . t2n−1)2 < 2n, where c(t) is the following
condition: If xt = 0, then

∨{xy | 0 ≤ y < 2n, (y ⊕ t) & m = 0} is 0 for some n-bit
pattern m that has νm = k. By combining these constraints we can compute the BDD
for f when n = 4 and k = 3; it has 880 nodes, and 43,146 solutions.

Similarly we have the following results, analogous to those in Section 7.1.1:

n=0 n=1 n=2 n=3 n=4 n=5 n=6

1CNF 2 4 10 28 82 244 730
2CNF 2 4 16 166 4,170 224,716 24,445,368
3CNF 2 4 16 256 43,146 120,510,132 4,977,694,100,656

And if we consider equivalence under complementation and permutation, the counts are:

1CNF 2 3 4 5 6 7 8
2CNF 2 3 6 14 45 196 1,360
3CNF 2 3 6 22 253 37,098 109,873,815

192. (a) S(p) =
∑N

m=0 p
m(1− p)N−mQm. (b) We have

∫ N
0
(t/N)m(1− t/N)N−m dt =

NB(m + 1, N − m + 1) = N
N+1

/
(
N
m

)
, by exercises 1.2.6–40 and 41; hence Sk,n =

N
N+1

∑N
m=0 qm = N

N+1Sk,n. [See B. Bollobás, Random Graphs (1985), Theorem II.4.]

584

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 585

194. A similar question, about proofs of unsatisfiability when α > lim supn→∞ S3,n/n,
is also wide open.

195. EX = 2n Pr(0 . . . 0 satisfies all) = 2n(1− 2−k)m = exp(n ln 2 +m ln(1− 2−k)) <
2 exp(−2−k−1n ln 2). Thus Sk(�(2k ln 2)n�, n) = Pr(X > 0) ≤ exp(−Ω(n)). [Discrete
Applied Math. 5 (1983), 77–87. Conversely, in J. Amer. Math. Soc. 17 (2004), 947–973,
D. Achlioptas and Y. Peres use the second moment principle to show that (2k ln 2 −
O(k))n random kSAT clauses are almost always satisfiable by vectors x with νx ≈ n/2.
Careful study of “covering assignments” (see exercise 364) leads to the sharp bounds

2k ln 2− 1+ ln 2

2
−O(2− k

3) ≤ lim inf
n→∞

αk(n) ≤ lim sup
n→∞

αk(n) ≤ 2k ln 2− 1+ ln 2

2
+O(2−

k
3);

see A. Coja-Oghlan and K. Panagiotou, Advances in Math. 288 (2016), 985–1068.]

196. The probability is ((n − t)k/nk)αn+O(1) = e−ktα(1 + O(1/n)) that αn + O(1)
random kSAT clauses omit t given letters. Let p = 1 − (1 − e−kα)k. By inclusion and
exclusion, the first clause will be easy with probability p(1+O(1/n)), and the first two
will both be easy with probability p2(1+O(1/n)). Thus if X =

∑m
j=1[clause j is easy],

we have EX = pm+O(1) and EX2 = p2m2+O(m). Hence, by Chebyshev’s inequality,
Pr(|X − pm| ≥ r

√
m) = O(1/r2).

197. By Stirling’s approximation, ln q(a, b,A,B, n) = nf(a, b,A,B) + g(a, b, A,B) −
1
2
ln 2πn − (δan − δ(a+b)n) − (δbn − δ(b+B)n) − (δAn − δ(a+A)n) − (δBn − δ(A+B)n) −

δ(a+b+A+B)n, where δn is positive and decreasing. And we must have f(a, b, A,B) ≤ 0,
since q(a, b,A,B, n) ≤ 1. The O estimate is uniform when 0 < δ ≤ a, b,A,B ≤M .

198. Consider one of the NM possible sequences of M 3SAT clauses, where N = 8
(
n
3

)
and M = 5n. By exercise 196 it contains g = 5(1 − (1 − e−15)3)n + O(n3/4) easy
clauses, except with probability O(n−1/2). Those clauses, though rare, don’t affect the
satisfiability; and all

(
M
g

)
of the ways to insert them among the r = M − g others are

equally likely, so they tend to dampen the transition.

Let l ≤ r be maximum so that the first l noneasy clauses are satisfiable, and let
p(l, r, g,m) be the probability that, when drawing m balls from an urn that contains g
green balls and r red balls, at most l balls are red. Then S3(m,n) =

∑
p(l, r, g,m)/NM

and S3(m
′, n) =

∑
p(l, r, g,m′)/NM , summed over all NM sequences.

To complete the proof we shall show that

p(l, r, g,m+ 1) = p(l, r, g,m)−O(n−1/2) when 3.5n < m < 4.5n;

hence S3(m+1, n) = S3(m,n)−O(n−1/2), S3(m,n)−S3(m′, n) = O((m′−m)n−1/2).
Notice that p(l, r, g,m) = p(l, r, g,m+1) when m < l or m > l+g ; thus we may assume
that l lies between 3.4n and 4.6n. Furthermore the difference

dm = p(l, r, g,m)− p(l, r, g,m+ 1) =

(
m
l

)(
r+g−m−1
r−l−1

)(
r+g
r

) =

(
m
l

)(
r+g−m
r−l

)(
r+g
r

) r − l

r + g −m

has a decreasing ratio dm/dm−1 = (m/(m− l))((l + g + 1−m)/(r + g −m)) when m
increases from l to l+ g. So maxdm occurs at m ≈ l(r + g)/r, where this ratio is ≈ 1.
Now exercise 197 applies with a = l/n, b = ρg/n, A = (r−l)/n, B = (1−ρ)g/n, ρ = l/r.

[D. B. Wilson, in Random Structures & Algorithms 21 (2002), 182–195, showed
that similar methods apply to many other threshold phenomena.]

585

From the Library of Melissa Nuno

ptg999

586 ANSWERS TO EXERCISES 7.2.2.2

199. (a) Given the required letters {a1, . . . , at}, there are m ways to place the left-
most a1, then m − 1 ways to place the leftmost a2, and so on; then there are at most
N ways to fill in each of the remaining m− t slots.

(b) By inclusion and exclusion: There are (N−k)mwords that omit k of the letters.
(c) N−m∑

k

(
t
k

)
(−1)k∑j

(
m
j

)
Nm−j(−k)j =∑

j

(
m
j

)
(−1)j+tN−jAj , where Aj =∑

k

(
t
k

)
(−1)t−kkj = {

j
t

}
t! by Eq. 1.2.6–(53).

200. (a) The unsatisfiable digraph must contain a strong component with a path

l̄t−−→ l1−−→ · · · −−→ lt−−→ lt+1−−→ · · · −−→ ll = l̄t,

where l1, . . . , lt are strictly distinct. This path yields an s-snare (C; t, u) if we set s to
the smallest index such that |ls+1| = |lu| for some u with 1 ≤ u < s.

(b) No: (x∨y)∧ (ȳ∨x)∧ (x̄∨y) and (x∨y)∧ (ȳ∨x)∧ (x̄∨ ȳ) are both satisfiable.
(c) Apply exercise 199(a) with t = s+1, N = 2n(n−1); note that ms+1 ≤ ms+1.

201. (a) Set (li, li+1)← (x1, x2) or (x̄2, x̄1), where 0 ≤ i < 2t (thus 4t ways).
(b) Set (li, li+1, li+2) ← (x1, x2, x3) or (x̄3, x̄2, x̄1), where 0 ≤ i < 2t; also

(l̄1, lt, lt+1) or (lt−1, lt, l̄2t−1)← (x1, x2, x3) or (x̄3, x̄2, x̄1) (total 4t+ 4 ways, if t>2).
(c) (l1, lt−1, lt) or (l̄2t−1, l̄t+1, l̄t)← (x1, xt−1, xt) or (x̄t−1, x̄1, xt) (4 ways).
(d) li or l̄2t−i←xi or x̄t−i, for 1≤ i≤ t (4 ways, if you understand this notation).
(e) By part (a), it is 2t× 4t = 8t2.
(f) Parts (b) and (c) combine to give N(3, 2) = (2t + 2) × (4t + 4) + 2 × 4 =

8(t2 + 2t + 2) when t > 2. From part (d), N(t, t) = 8. Also N(2t − 1, 2t) = 8; this is
the number of snakes that specify the same 2t clauses. (Incidentally, when t = 5 the
generating function

∑
q,rN(q, r)wqzr is 1+200w2z1+(296w3+7688w4)z2+(440w4+

12800w5+55488w6)z3+(640w5+12592w6+66560w7+31104w8)z4+(8w5+736w6+
8960w7 + 32064w8 + 6528w9)z5 + (32w6 + 704w7 + 4904w8 + 4512w9)z6 + (48w7 +
704w8 + 1232w9)z7 + (64w8 + 376w9)z8 + 80w9z9 + 8w9z10.)

(g) The other l’s can be set in at most 22t−1−q(n− q)2t−1−q = R/(2qnq) ways.
(h) We may assume that r < 2t. The r chosen clauses divide into connected

components, which are either paths or a “central” component that contains either
(x̄0 ∨ x1) and (x̄t−1 ∨ xt) or (x̄t ∨ xt+1) and (x̄2t−1 ∨ x0). Thus q equals r plus the
number of components, minus 1 if the central component includes a cycle. If the
central component is present, we must set lt ← xt or x̄t, and there are at most 8 ways
to complete the mapping of that component. And N(r, r) = 16(r+1−t) for t < r < 2t.

Cases with k > 0 paths can be chosen in at most
(
2t+2
2k

)
ways, because we choose

the starting and ending points, and they can be mapped in at most 2kk!
(
2t+2
2k

)
ways;

so they contribute
∑

k>0O(t
4kk/(k!3nk)) = O(t4/n) to (2n)rpr. The noncyclic central

components, which can be chosen in Θ(t4) ways, also contribute O(t4/n).

202. (a)m(m−1) . . . (m−r+1)/mr ≥ 1−(r
2

)
/m; (2n(n−1)−r)m−r/(2n(n−1))m−r ≥

1− (m− r)r/(2n(n− 1)) when r ≤ m < 2n(n− 1); and both factors are ≤ 1.
(b) The term of (95) for r = 0 is 1 plus a negligible error. The contribution of

O(t4/n) for r > 0 is O(n4/5+1/6−1), because
∑

r≥0 (1 + n−1/6)−r = n1/6 + 1. And
the contributions of (96) to (95) for r ≥ t are exponentially small, because in that
range we have (1+n−1/6)−t = exp(−t ln(1+n−1/6)) = exp(−Ω(n1/30)). Finally, then,
by the second moment principle MPR–(22), S2(�n + n5/6�, n) ≤ 1 − Pr(X > 0) ≤
1− (EX)2/(EX2) = 1− 1/((EX2)/(EX)2) = 1− 1/(1 +O(n−1/30)) = O(n−1/30).

203. (a) EX = dn EX(1, . . . , 1), by symmetry; and EX(1, . . . , 1) = (1− p)m, because
each set of q clauses is falsified with probability p. So EX = exp((r ln(1−p)+1)n ln d)
is exponentially small when r ln(1− p) + 1 < 0; and we know that Pr(X > 0) ≤ EX.

586

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 587

(b) Let θs =
(
s
2

)
/
(
n
2

)
= s(s−1)

n(n−1) , and consider a random constraint set, given

that X(1, . . . , 1) = 1. With probability θs, both u and v have color 1 and the
constraint is known to be satisfied. But with probability 1−θs, it holds with probability(
d2−2
q

)
/
(
d2−1
q

)
. Thus ps = (θs + (1− θs)(d

2 − pd2 − 1)/(d2 − 1))m.
(c) We have Pr(X > 0) ≥ dn(1−p)m/E(X |X(1, . . . , 1) = 1), from the inequality

and symmetry; and the denominator is
∑n

s=0

(
n
s

)
(d − 1)n−sps. We can replace ps by

the simpler value p′s = (1 − p + ps2/n2)m, because ps < (θs + (1 − θs)(1 − p))m =
(1− p+ θsp)

m < p′s. And we can divide the simplified sum by dn(1− p)m.

(d) We have
∑3n/d

s=0 ts = eO(m/d2)∑3n/d
s=0

(
n
s

)
(1
d
)s(1 − 1

d
)n−s, because s2/n2 =

O(1/d2) when s ≤ 3n/d. This sum is ≥ 1 − (e2/27)n/d by exercise 1.2.10–22; and the
crucial assumption that α > 1

2
makes m/d2 → 0.

(e) Transition between increase and decrease occurs when xs ≈ 1; and we have

xs =
n− s

s+ 1

1

d− 1

(
1 +

(2s+ 1)p

(1− p)n2 + ps2

)m
≈ exp

(
ln
1− σ

σ
+
(

2prσ

1− p+ pσ2
− 1
)
ln d
)

when s = σn. Let f(σ) = 2prσ/(1 − p + pσ2) − 1, and notice that f ′(σ) > 0 for
0 ≤ σ < 1 because p ≤ 1

2
. Furthermore our choice of r makes f(1

2
) < 0 < f(1).

Setting g(σ) = f(σ)/ ln σ
1−σ , we seek values of σ with g(σ) = 1/ ln d. There are three

such roots, because g(1/N) ≈ −f(0)/ lnN ≥ 1/ lnN ; g(1
2
± 1/N) ≈ ∓f(1

2
)N/4; and

g(1− 1/N) ≈ f(1)/ lnN .
(f) At the second peak, where s = n− n/df(1), we have (see exercise 1.2.6–67)

ts <
(
ned

n− s

)n−s(1
d

)n(
1 +

p

1− p

)m
= exp((−ε+O(1/df(1)))n ln d),

which is exponentially small. And when s = 3n/d, ts < (ne
sd

)
s
eO(m/d2) = O((e/3)3n/d)

is also exponentially small. Consequently
∑n

s=3n/d ts is exponentially small.

[This derivation holds also when the random constraints are k-ary instead of
binary, with q = pdk and α > 1/k. See J. Artificial Intelligence Res. 12 (2000), 93–103.]

204. (a) If the original literals ±xj that involve variable xj correspond to σ1Xi(1), . . . ,
σpXi(p), with signs σh, add the clauses (−σhXi(h)∨σh+Xi(h+)) for 1 ≤ h ≤ p to enforce

consistency, where h+ = 1+(hmod p). (This transformation, due to C. A. Tovey, works
even in degenerate cases. For example, if m = 1 and if the given clause is (x1∨x1∨ x̄2),
the transformed clauses are (X1 ∨X2 ∨X3), (X̄1 ∨X2), (X̄2 ∨X1), (X3 ∨ X̄3).)

(b) (Solution by E. Wynn.) The following 44 clauses in 35 variables are satisfiable
if and only if each variable is false: ai ∨ b̄i ∨ ci, āi ∨ b̄i ∨ ci, b̄i ∨ c̄i ∨ d̄i, c̄i ∨ di ∨ ei,
di ∨ ēi ∨ fi, ēi ∨ f̄i ∨ ḡi, f̄i ∨ gi ∨ hi, f̄i ∨ gi ∨ h̄i, for i ∈ {1, 2}; b1 ∨ b2 ∨ Ā, A ∨B ∨ C̄,
A∨ B̄ ∨D, A∨ D̄∨E, B̄ ∨ D̄∨ Ē, B ∨C ∨ F̄1, C ∨ Ē ∨G1, C ∨F1 ∨ Ḡ1; Fj ∨Gj ∨ F̄j+1,
Fj ∨ Gj ∨ Ḡj+1, for 1 ≤ j ≤ 6; D ∨ E ∨ ā1, F2 ∨G2 ∨ ā2, F3 ∨ G3 ∨ h̄1, F4 ∨G4 ∨ h̄2,
a1 ∨ h1 ∨ d̄1, a2 ∨ h2 ∨ d̄2, F5 ∨G5 ∨ ḡ1, F6 ∨G6 ∨ ḡ2.

(c) Add the clauses of (b), and the clauses Fj ∨Gj ∨ F̄j+1, Fj ∨Gj ∨ Ḡj+1 for 7 ≤
j ≤ �3m/2�+3, to the 4m clauses of (a). We can stick the literals {F7, G7, . . . }, which
are always false, into the 2-clauses without using any variable five times, obtaining at
most (7m+39) 3-clauses in N ≈ 7m+ 30 variables.

205. (a) After F0 = {ε}, F1 = F0 � F0, F2 = F0 � F1, F3 = F0 � F2, F4 = F3 � F ′3,
F5 = F4 � F ′′4 , always putting the new variable into the four shortest possible clauses,
we get F5 = {345, 23̄4, 12̄3̄, 1̄2̄3̄, 3′4̄5, 2′3̄′4̄, 1′2̄′3̄′, 1̄′2̄′3̄′, 3′′4′′5̄, 2′′3̄′′4′′, 1′′2̄′′3̄′′,
1̄′′2̄′′3̄′′, 3′′′4̄′′5̄, 2′′′3̄′′′4̄′′, 1′′′2̄′′′3̄′′′, 1̄′′′2̄′′′3̄′′′}.

587

From the Library of Melissa Nuno

ptg999

588 ANSWERS TO EXERCISES 7.2.2.2

(b) Let F0 = {ε}, F1 = F0 � F0, F2 = F0 � F1, F3 = F0 � F2, F4 = F0 � F3,
F5 = F1 � F4, F6 = F0 � F5, F7 = F0 � F6, F8 = F4 � F ′7, F9 = F0 � F8, F10 = F7 � F ′9,
F11 = F7 � F ′10, F12 = F0 � F11, F13 = F9 � F ′′12, F14 = F10 � F (3)

12 , F15 = F12 � F (4)
14 ,

F16 = F13 � F (6)
14 , F17 = F14 � F (7)

15 , F18 = F16 � F (13)
17 . (Here ‘x(3)’ stands for ‘x′′′’,

etc.) Then F18 consists of 257 unsatisfiable 4-clauses in 234 variables.

(Is there a shorter solution? This problem was first solved by J. Stř́ıbrná in her
M.S. thesis (Prague: Charles University, 1994), with 449 clauses. The � method was
introduced by S. Hoory and S. Szeider, Theoretical Computer Science 337 (2005), 347–
359, who presented an unsatisfiable 5SAT problem that uses each variable at most 7
times. It’s not known whether 7 can be decreased to 6 when every clause has size 5.)

206. Suppose F and F ′ are minimally unsatisfiable, and delete a clause of F �F ′ that
arose from F ′; then we can satisfy F � F ′ with x true.

Conversely, if F�F ′ is minimally unsatisfiable, F and F ′ can’t both be satisfiable.
Suppose F is unsatisfiable but F ′ is satisfied by L′. Removing a clause of F � F ′
that arose from F ′ is satisfiable only with x true; but then we can use L′ to satisfy
F � F ′. Hence F and F ′ are both unsatisfiable. Finally, if F \ C is unsatisfiable, so is
(F � F ′) \ (C | x̄), because any solution would satisfy either F \ C or F ′.

207. The five clauses of C(x, y, z; a, b, c) = {xāb, yb̄c, zc̄a, abc, āb̄c̄} resolve to the single
clause xyz. Thus C(x, y, y; 1, 2, 3)∪C(x, ȳ, ȳ; 4, 5, 6)∪C(x̄, z, z; 7, 8, 9)∪C(x̄, z̄, z̄; a, b, c)
is a solution. [K. Iwama and K. Takaki, DIMACS 35 (1997), 315–333, noted that the
16 clauses {x̄ȳz̄} ∪ C(x, x, x; 1, 2, 3) ∪ C(y, y, y; 4, 5, 6) ∪ C(z, z, z; 7, 8, 9) involve each
variable exactly four times, and proved that no set of twelve clauses does so.]

208. Makem clones of all but one of the 20 clauses in answer 207, and put the other 3m
cloned literals into the 3m binary clauses of answer 204(a). This gives 23m 3-clauses
in which every literal occurs twice, except that the 3m literals X̄i occur only once.

To complete the solution, we “pad” them with additional clauses that are always
satisfiable. For example, we could introduce 3m more variables ui, with new clauses
X̄iuiūi+1 for 1 ≤ i ≤ 3m and {u′3ju′3j+1u′3j+2, ū′3j ū′3j+1ū′3j+2} for 1 ≤ j ≤ m (treating
subscripts mod 3m), where u′i denotes (i even? ui: ūi).

209. Since the multiset of kt literals in any t clauses contains at least t different vari-
ables, the “marriage theorem” (Theorem 7.5.1H) implies that we can choose a different
variable in each clause, easily satisfying it. [Discr. Applied Math. 8 (1984), 85–89.]

210. [P. Berman, M. Karpinski, A. D. Scott, Electronic Colloquium on Computational

Complexity (2003), TR22.] This answer uses the magic number ε = δ7 ≈ 1/58, where
δ is the smallest root of δ((1− δ7)6 + (1− δ7)7) = 1. We will assign random values to
each variable so that Pr[all clauses are satisfied] > 0.

Let ηj = (1 − ε)j/((1 − ε)j + (1 − ε)13−j), and observe that ηj ≤ δ(1 − ε)j for
0 ≤ j ≤ 13. If variable x occurs d+ times and x̄ occurs d− times, let x be true with
probability ηd− , false with probability 1− ηd− = η13−d− ≤ δ(1− ε)13−d− ≤ δ(1− ε)d+.

Let bad(C) = [clause C is falsified by the random assignment], and construct
the lopsidependency graph for these events as in exercise 351. Then, if the literals
of C = (l1 ∨ · · · ∨ l7) have contrary appearances in d1, . . . , d7 other clauses, we have

Pr(bad(C)) ≤ (δ(1−ε)d1) . . . (δ(1−ε)d7) = ε(1−ε)d1+···+d7 ≤ ε(1−ε)degree(C),
because C has at most d1 + · · ·+ d7 neighbors. Theorem L, with parameter θi = ε for
each event bad(C), now tells us that Pr[all m clauses are satisfied] ≥ (1− ε)m.

[See H. Gebauer, T. Szabó, and G. Tardos, JACM 63 (2016), 43:1–43:32, for
asymptotic results that apply to kSAT as k →∞.]

588

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 589

211. If m clauses in n variables are given, so that 3m = 4n, let N = 8n. Consider N
“colors” named jk or jk, where 1 ≤ j ≤ n and k is one of the four clauses that contains
±xj . Let σ be a permutation on the colors, consisting of 4-cycles that involve the same
variable, with the properties that (i) (jk)σ = jk′ for some k′ and (ii) (jk)σ = (jk)σ.

There are 4n vertices of KN named jk, having the respective color lists

L(jk, 1) = {jk, jk}, L(jk, 2) = {jk, (jk)σ}, L(jk, 3) = {jk, (jk)σ}.
The other 3m vertices of KN are named ak, bk, ck for each clause k. If that clause is,
say, x2 ∨ x̄5 ∨ x6, the color lists are

L(ak, 1) = {2k, 5k, 6k}, L(bk, 1) = L(ck, 1) = {2k, 2k, 5k, 5k, 6k, 6k};
L(ak, 2) = {(2k)σ}, L(bk, 2) = {(5k)σ}, L(ck, 2) = {(6k)σ};

L(ak, 3) = {(2k)σ2, (2k)σ}, L(bk, 3) = {(5k)σ2, (5k)σ}, L(ck, 3) = {(6k)σ2, (6k)σ}.
Then KN K3 is list-colorable if and only if the clauses are satisfiable. (For example,
(jk, 1) is colored jk ⇐⇒ ((jk)σ, 1) is colored (jk)σ ⇐⇒ (ak, 1) is not colored jk.)

212. (a) Let xijk = 1 if and only if Xij = k. [Note: Another equivalent problem is
to find an exact cover with options { {Pij,Rik,Cjk} | pij = rik = cjk = 1}. This is a
special case of 3D matching. Incidentally, the 3D matching problem can be formulated
as the problem of finding a binary tensor (xijk) such that xijk ≤ yijk and xi∗∗ = x∗j∗ =
x∗∗k = 1, given (yijk).]

(b) c31 = c32 = r13= r14=0 forces x13∗=0 �= p13 when r= c=

(
1100
0110
0011
1001

)
, p=

(
1010
1100
0101
0011

)
.

(c) Make L(I, J) = {1, . . . , N} for M < I ≤ N , 1 ≤ J ≤ N . It is well known
(Theorem 7.5.1L) that a latin rectangle can always be extended to a latin square.

(d) Index everything by the set {1, . . . , N} ∪⋃I,J{(I, J,K) | K ∈ L(I, J)}. The
elements (I, J,K) where K = minL(I, J) are called headers. Set pij = 1 if and only
if (i) i = j = (I, J,K) is not a header; or (ii) i = (I, J,K) is a header, and j = J or
j = (I, J,K ′) is not a header; or (iii) j = (I, J,K) is a header, and i = I or i = (I, J,K ′)
is not a header. Set rik = cik = 1 if and only if (i) 1 ≤ i, k ≤ N ; or (ii) i = (I, J,K)
and k = (I, J,K ′), and if i is not a header then (K ′ = K or K ′ is the largest element
< K in L(I, J)). [Reference: SICOMP 23 (1994), 170–184.]

213. The hinted probability is (1 − (1− p)n
′

(1− q)n−n
′

)
m
, where n′ = b1 + · · · + bn.

Thus if p ≤ q, every x has probability at least (1 − (1 − p)n)m of satisfying every
clause. This is huge, unless n is small or m is large: If m is less than αn, where
α is any constant less than 1/(1 − p), then when n > −1/ lg(1 − p) the probability
(1− (1− p)n)m > exp(αn ln(1− (1− p)n)) > exp(−2(α(1− p))n) > 1− 2(α(1− p))n is
exponentially close to 1. Nobody needs a SAT solver for such an easy problem.

Even if, say, p = q = k/(2n), so that the average clause size is k, a clause is
empty—hence unsatisfiable—with probability e−k +O(n−1); and indeed a clause has
exactly r elements with the Poisson probability e−kkr/r! + O(n−1) for fixed r. So the
model isn’t very relevant. [See J. Franco, Information Proc. Letters 23 (1986), 103–106.]

214. (a) T (z) = zez + 2T (pz)(e(1−p)z − 1).

(b) If f(z) =
∏∞

m=1(1 − e(p−1)z/p
m

) and τ(z) = f(z)T (z)e−z , we have τ(z) =
zf(z) + 2τ(pz) = zf(z) + 2pzf(pz) + 4p2zf(p2z) + · · · .

(c) See P. Jacquet, C. Knessl, and W. Szpankowski, Combinatorics, Probability,
and Computing 23 (2014), 829–841. [The sequence 〈Tn〉 was first studied by A. T.
Goldberg, Courant Computer Science Report 16 (1979), 48–49.]

589

From the Library of Melissa Nuno

ptg999

590 ANSWERS TO EXERCISES 7.2.2.2

215. Since any given x1 . . . xl is a partial solution in (8
(
n
3

) − (
l
3

)
)m of the (8

(
n
3

)
)m

possible cases, level l contains Pl = 2l(1− 1
8 l
3/n3)m nodes on the average. When m =

4n and n = 50, the largest levels are (P31, P32, . . . , P36) ≈ (6.4, 6.9, 7.2, 7.2, 6.8, 6.2) ×
106, and the mean total tree size P0 + · · ·+ P50 is about 85.6 million.

If l = 2tn andm = αn we have Pl = 2f(t)n, where f(t) = 2t+α lg(1−t3)+O(1/n)
for 0 ≤ t ≤ 1/2. The maximum f(t) occurs when ln 4 = 3αt2/(1− t3), at which point
t = tα = β− 1

2
β4+ 5

8
β7+O(β10), where β =

√
ln 4/(3α); for example, t4 ≈ 0.334. Now

PL+k
PL

= exp
(
−γk

2

n
+O

(
k

n

)
+O

(
k3

n2

))
, γ =

(ln 2)2

6α

(
1 +

2

t3α

)
, when L = 2tαn;

by trading tails, the expected total tree size is
√
πn/γPL(1 +O(1/

√
n)).

[This question was first studied by C. A. Brown and P. W. Purdom, Jr., SICOMP

10 (1981), 583–593; K. M. Bugrara and C. A. Brown, Inf. Sciences 40 (1986), 21–37.]

216. If the search tree has q two-way branches, it has fewer than 2nq nodes; we shall
find an upper bound on E q. Consider such branches after values have been assigned
to the first l variables x1, . . . , xl, and also to s additional variables y1, . . . , ys because
of unit-clause forcing; the branch therefore occurs on level t = l+ s. The values can be
assigned in 2t ways, and the y’s can be chosen in

(
n−1−l

s

)
ways. For 1 ≤ i ≤ s the m

given clauses must contain ji ≥ 1 clauses chosen (with replacement) from the F =
(
t−1
2

)
that force the value of yi from other known values. The other m − j1 − · · · − js must
be chosen from the R = 8

(
n
3

) − sF − (
t
3

) − 2
(
t
2

)
(n − t) remaining clauses that aren’t

entirely false and don’t force anything further. Thus the expected number of two-way
branches is at most

Plt = 2t
(
n−l−1

s

) ∑
j1,...,js≥1

(
m

j1, . . . , js,m−j
)
F jRm−j

Nm
, j = j1 + · · ·+ js, N = 8

(
n

3

)
,

summed over 0 ≤ l ≤ t < n. Let b = F/N and c = R/N ; the sum on j1, . . . , js is

m! [zm] (ebz − 1)secz =
∑
r

(
s

r

)
(−1)s−r(c+ rb)m = s! cm

∑
q

(
m

q

){
q

s

}(
b

c

)q
.

These values Plt are almost all quite small when m = 200 and n = 50, rising above 100
only when l ≥ 45 and t = 49;

∑
Plt ≈ 4404.7.

If l = xn and t = yn, we have b ≈ 3
8
y2/n and c ≈ 1− 1

8
(3(y−x)y2+y3+6y2(1−y)).

The asymptotic value of [zαn] (eβz/n−1)δneγz can be found by the saddle point method:
Let ζ satisfy βδeζ/(eζ − 1) + γ = αβ/ζ, and let ρ2 = α/ζ2 − δeζ/(eζ − 1)2. Then the

answer is approximately (eζ − 1)δneγζn/β
√
n/(
√
2πρβ(ζn/β)αn+1).

[For exact formulas and lower bounds, see SICOMP 12 (1983), 717–733. The total
time to find all solutions grows approximately as (2(7

8
)α)n when α < 4.5, according to

H.-M. Méjean, H. Morel, and G. Reynaud, SICOMP 24 (1995), 621–649.]

217. True, unless both l and l̄ belong to A or to B (making A or B tautological). For
if L is a set of strictly distinct literals that covers both A and B, we know that neither
A nor B nor L contains both l and l̄; hence L\{l, l̄} covers (A\{l, l̄})∪ (B \{l, l̄}) = C.

(This generalization of resolution is, however, useless if C ⊇ A or C ⊇ B, because
a large clause is easier to cover than any of its subsets. Thus we generally assume that
l ∈ A and l̄ ∈ B, and that C isn’t tautological, as in the text.)

218. x? B: A. [Hence (x ∨A) ∧ (x̄ ∨B) always implies A ∨ B.]

590

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 591

219. If C ′ or C ′′ is tautological (℘), we define ℘2C = C 2℘ = C. Otherwise, if there’s
a unique literal l such that C ′ has the form l∨A′ and C ′′ has the form l̄∨A′′, we define
C ′2C ′′ = A′∨A′′ as in the text. If there are two or more such literals, strictly distinct,
we define C ′ 2 C ′′ = ℘. And if there are no such literals, we define C ′ 2C ′′ = C ′ ∨C ′′.

[This operation is obviously commutative but not associative. For example, we
have (x̄ 2 ȳ) 2 (x ∨ y) = ℘ while x̄ 2 (ȳ 2 (x ∨ y)) = ε.]

220. (a) True: If C ⊆ C′ and C ′ ⊆ C ′′ and C ′′ �= ℘ then C ′ �= ℘; hence every literal
of C appears in C ′ and in C ′′. [The notion of subsumption goes back to a paper by
Hugh McColl, Proc. London Math. Soc. 10 (1878), 16–28.]

(b) True: Otherwise we’d necessarily have (C 2C ′) ∨ α ∨ α′ �= ℘ and C �= ℘ and
C ′ �= ℘ and C 2 C ′ �= C ∨ C ′; hence there’s a literal l with C = l ∨A, C ′ = l̄ ∨A′,
and the literals of A ∨ A′ ∨ α ∨ α′ are strictly distinct. So the result is easily checked,
whether or not α or α′ contains l or l̄. (Notice that we always have C 2C ′ ⊆ C ∨ C ′.)

(c) False: x̄y ⊆ ℘ but x2 x̄y = y �⊆ x = x2℘. Also ε ⊆ x̄ but x2 ε = x �⊆ ε = x2 x̄.
(d) Such examples are possible if C �= ε: We have x, x̄ 3 y (and also x, x̄ 3 ℘),

although the only clauses obtainable from x and x̄ by resolution are x, x̄, and ε. (On
the other hand we do have F 3 ε if and only if there’s a refutation chain (104) for F .)

(e) Given a resolution chain C′1, . . . , C
′
m+r, we can construct another chain

C1, . . . , Cm+r in which Ci ⊆ C ′
i for 1 ≤ i ≤ m+ r. Indeed, if i > m and C ′

i = C ′
j 2C ′

k,
it’s easy to see that either Cj 2 Cj or Ck 2 Ck or Cj 2Ck will subsume C ′

i.

(f) It suffices by (e) to prove this when α1 = · · · = αm = α; and by induction
we may assume that α = l is a single literal. Given a resolution chain C1, . . . , Cm+r

we can construct another one C ′
1, . . . , C

′
m+r such that C ′

i = Ci ∨ l for 1 ≤ i ≤ m and
C ′
i ⊆ Ci∨l for m+1 ≤ i ≤ m+r, with C ′

i = C ′
j or C

′
k or C

′
j 2C ′

k whenever Ci = Cj 2Ck.
221. Algorithm A recognizes ‘1’ as a pure literal, but then finds a
contradiction because the other two clauses are unsatisfiable. The
resolution refutation uses only the other two clauses. (This is an
example of an unnecessary branch. Indeed, a pure literal never appears
in a refutation tree, because it can’t be canceled; see the next exercise.)

1

2

2 2̄

1

0 1

222. If A is an autarky that satisfies C, it also satisfies every clause on the path to ε
from a source vertex labeled C, because all of the satisfied literals cannot simultaneously
vanish. For the converse, see Discrete Appl. Math. 107 (2000), 99–137, Theorem 3.16.

223. (The author has convinced himself of this statement, but he has not been able to
construct a formal proof.)

224. At every leaf labeled by an axiom A of F | x̄ that is not an axiom of F , change
the label to A ∪ x; also include x in the labels of all this leaf’s ancestors. We obtain a
resolution tree in which the leaves are labeled by axioms of F . The root is labeled x,
if any labels have changed; otherwise it is still labeled ε.

[See J. A. Robinson, Machine Intelligence 3 (1968), 77–94.]

225. Let’s say that a regular resolution tree for clause A is awkward if at least one of
its nodes resolves on one of the variables in A. An awkward tree T for A can always be
transformed into a regular non-awkward tree T ′ for some clause A′ ⊆ A, where T ′ is
smaller than T . Proof: Suppose T is awkward, but none of its subtrees are. Without
loss of generality we can find a sequence of subtrees T0, . . . , Tp, T

′
1, . . . , T

′
p, where

T0 = T and Tj−1 for 1 ≤ j ≤ p is obtained from Tj and T
′
j by resolving on the variable

xj ; furthermore xp ∈ A. We can assume that the labels of Tj and T ′j are Aj and A′j ,
where Aj = xj ∪ Rj and A

′
j = x̄j ∪ R′j ; hence Aj−1 = Rj ∪ R′j . Let Bp = Ap; and for

591

From the Library of Melissa Nuno

ptg999

592 ANSWERS TO EXERCISES 7.2.2.2

j = p− 1, p − 2, . . . , 1, let Bj = Bj+1 if xj /∈ Bj+1, otherwise obtain Bj by resolving
Bj+1 with A

′
j . It follows by induction that Bj ⊆ xp ∪ Aj−1. Thus B1 ⊆ xp ∪ A0 = A,

and we’ve derived B1 with a non-awkward tree smaller than T .

Now we can prove more than was asked: If T is any resolution tree that derives
clause A, and if A ∪ B is any clause that contains A, there’s a non-awkward regular
resolution tree Tr no larger than T that derives some clause C ⊆ A ∪ B. The proof
is by induction on the size of T : Suppose A = A′ ∪ A′′ is obtained at the root of T
by resolving the clauses x ∪ A′ with x̄ ∪ A′′ that label the subtrees T ′ and T ′′. Find
non-awkward regular trees T ′r and T

′′
r that derive C ′ and C ′′, where C ′ ⊆ x∪A′∪B and

C ′′ ⊆ x̄ ∪A′′ ∪B. If x ∈ C ′ and x̄ ∈ C ′′, we obtain the desired Tr by resolving T ′r and
T ′′r on x. Otherwise we can either let C = C ′ and Tr = T ′r, or C = C ′′ and Tr = T ′′r .
[It’s interesting to apply this construction to the highly irregular resolutions in (105).]

226. Initially α is the root, C(α) = ε, ‖α‖ = N , and s = 0. If α isn’t a leaf, we
have C(α) = C(α′) 2 C(α′′) where x ∈ C(α′) and x̄ ∈ C(α′′) for some variable x. The
Prover names x, and changes α ← α′ or α ← α′′ if the Delayer sets x ← 0 or x ← 1,
respectively. Otherwise min(‖α′‖, ‖α′′‖) ≤ ‖α‖/2, and the Prover can keep going.

227. The proof is by induction on the number of variables, n: If F contains the empty
clause, the game is over, the Delayer has scored 0, and the root is labeled 0. Otherwise
the Prover names x, and the Delayer considers the smallest possible labels (m,m′) on
the roots of refutations for F | x and F | x̄. If m > m′, the reply x ← 0 guarantees
m points; and the reply x ← ∗ is no better, because m′ + 1 ≤ m. If m < m′, the
reply x ← 1 guarantees m′; and if m = m′, the reply x ← ∗ guarantees m + 1. Thus
an optimum Delayer can always score at least as many points as the root label of any
branch of a refutation tree constructed by the Prover. Conversely, if the Prover always
names an optimal x, the Delayer can’t do better.

(This exercise was suggested by O. Kullmann. One can compute the optimum
score “bottom up” by considering all 3n possible partial assignments as in answer 133.)

228. We need only assume the transitivity clauses Tijk of (100) when i < j and k < j.
[Notice further that Tijk is tautological when i = j or k = j, thus useless for resolution.]

229. Using the binary-relation interpretation, these clauses say that j �≺ j, that the
transitive law “i ≺ j and j ≺ k implies i ≺ k” holds whenever i ≤ k and j < k, and
that every j has a successor such that j ≺ k. The latter axiom combines with the
finiteness of m to imply that there must be a cycle j0 ≺ j1 ≺ · · · ≺ jp−1 ≺ jp = j0.

Consider the shortest such cycle, and renumber the subscripts so that jp =
max{j0, . . . , jp}. We cannot have p ≥ 2, because (100′) implies jp−2 ≺ jp, yielding
a shorter cycle. Hence p = 1; but that contradicts (99).

230. Call the axioms Ij , Tijk, andMjm as in the text. If Ij0 is omitted, let xij = [j= j0]
for all i and j. If Ti0j0k0 is omitted, let xij = [j ∈A] for all i /∈ A = {i0, j0, k0}; also
let xi0j = [j= j0], xj0j = [j= k0], and (if i0 �= k0) xk0j = [j= i0]. Finally, if Mj0m

is omitted, let xij = [pi<pj], where p1 . . . pm = 1 . . . (j0−1)(j0+1) . . .mj0. (The same
construction shows that the clauses of answer 228 are minimally unsatisfiable.)

231. Since G11 =M1m, we can assume that j > 1. Then G(j−1)j = G(j−1)(j−1) 2 Ij−1.
And if 1 ≤ i < j− 1 we have Gij = (· · · ((G(j−1)j 2Aijj) 2Aij(j+1)) 2 · · ·) 2Aijm, where
Aijk = Gi(j−1) 2 Ti(j−1)k = Gij ∨ x̄(j−1)k. These clauses make it possible to derive
Bij = (· · · ((Gij 2Tjij) 2Tji(j+1)) 2 · · ·) 2Tjim = Gjj ∨ x̄ji for 1 ≤ i < j, from which we
obtain Gjj = (· · · ((Mjm 2B1j) 2B2j) 2 · · ·) 2B(j−1)j . Finally Gmm 2 Im = ε.

592

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 593

232. It suffices to exhibit a backtrack tree of depth 6 lg q +O(1). By branching on at
most 6 variables we can find the color-triplet α1 in answer 176(c).

Suppose we know that αj = α and αj+p = α′, where α′ cannot be obtained
from α in p steps; this is initially true with j = 1, α = α′ = α1, and p = q. If
p = 1, a few more branches will find a contradiction. Otherwise at most 6 branches
will determine αl, where l = j + �p/2�; and either αl will be unreachable from α in
�p/2� steps, or α′ will be unreachable from αl in �p/2� steps, or both. Recurse.
233. C9 = C6 2 C8, C10 = C1 2 C9, C11 = C3 2 C10, C12 = C7 2 C10, C13 = C4 2 C11,
C14 = C2 2 C12, C15 = C13 2 C14, C16 = C5 2 C15, C17 = C6 2 C15, C18 = C8 2 C15,
C19 = C12 2 C17, C20 = C11 2 C18, C21 = C16 2 C19, C22 = C20 2C21.
234. Reply xjk ← ∗ to any query that doesn’t allow the Prover to violate (107). Then
the Prover can violate (106) only after every hole has been queried.

235. Let C(k,A) = (
∨k
j=0

∨
a∈A xja), so that C(0, {1, . . . ,m}) = (x01 ∨ · · · ∨ x0m) and

C(m, ∅) = ε. The chain consists of m stages for k = 1, . . . , m, where stage k begins by
deriving the clauses x̄ka ∨ C(k − 1, A) from the clauses of stage k − 1, for all (m− k)-
element subsets A of {1, . . . ,m}\a; every such clause requires k resolutions with (107).
Stage k concludes by deriving C(k,A) for all (m− k)-element subsets A of {1, . . . ,m},
each using one resolution from (106) and k − 1 resolutions from the beginning of the
stage. (See (103).) Thus stage k involves a total of

(
m

m−k
)
(k2 + k) resolutions.

For example, the resolutions when m = 3 successively yield 11 02 03, 12 01 03,
13 01 02; 01 02 11 12, 01 03 11 13, 02 03 12 13 (stage 1); 21 02 11 12, 21 02 12, 21 03 11 13,
21 03 13, 22 01 12 11, 22 01 11, 22 03 12 13, 22 03 13, 23 01 13 11, 23 01 11, 23 02 13 12,
23 02 12; 01 11 21 22, 01 11 21, 02 12 22 23, 02 12 22, 03 13 23 22, 03 13 23 (stage 2); and
31 11 21, 31 21, 31, 32 12 22, 32 22, 32, 33 13 23, 33 23, 33; 32 33, 33, ε (stage 3).

[Stephen A. Cook constructed such chains in 1972 (unpublished).]

236. The symmetry of the axioms should allow exhaustive verification by computer
for m = 2, possibly also for m = 3. The construction certainly seems hard to beat.
Cook conjectured in 1972 that any minimum-length resolution proof would include, for
every subset S of {1, . . . ,m}, at least one clause C such that

⋃
±xjk∈C{k} = S.

237. The idea is to define yjk = xjk ∨ (xjm ∧ xmk) for 0 ≤ j < m and 1 ≤ k < m, thus
reducing from m+ 1 pigeons to m. First we append 6m(m− 1) new clauses

(xjm∨zjk) ∧ (xmk∨zjk) ∧ (x̄jm∨x̄mk∨z̄jk) ∧ (x̄jk∨yjk) ∧ (yjk∨zjk) ∧ (xjk∨ȳjk∨z̄jk),
involving 2m(m− 1) new variables yjk and zjk. Call these clauses Ajk, . . . , Fjk.

Now if Pj stands for (106) and Hijk for (107), we want to use resolution to derive
P ′j = (yj1 ∨ · · · ∨ yj(m−1)) and H ′

ijk = (ȳik ∨ ȳjk). First, Pj can be resolved with Dj1,
. . . , Dj(m−1) to get P

′
j ∨ xjm. Next, Pm 2Hjmm = xm1 ∨ · · · ∨ xm(m−1) ∨ x̄jm can be

resolved with Gjk = Cjk 2Ejk = x̄jm ∨ x̄mk ∨ yjk for 1 ≤ k < m to get P ′j ∨ x̄jm. One
more step yields P ′j . (The intuitive “meaning” guides these maneuvers.)

From Bjk 2 Fjk = xjk ∨ xmk ∨ ȳjk, we obtain Qijk = x̄ik ∨ ȳjk after resolving
with Hijk and Himk. Then (Qijk 2 Fik) 2 Aik = xim ∨ ȳik ∨ ȳjk = Rijk, say. Finally,
(Rjik 2Hijm) 2Rijk = H ′

ijk as desired. (When forming Rjik we need Qjik with j > i.)
We’ve done 5m3 − 6m2 + 3m resolutions to reduce m+ 1 to m. Repeating until

m = 0, with fresh y and z variables each time, yields ε after about 5
4
m4 steps.

[See Stephen A. Cook, SIGACT News 8, 4 (October 1976), 28–32.]

238. The function (1 − cx)−x = exp(cx2 + c2x3/2 + · · ·) is increasing and > ecx
2

.
Setting c = 1

2n
, W =

√
2n ln r, and b = �W � makes f ≤ r < ρ−b. Also W ≥ w(α0)

593

From the Library of Melissa Nuno

ptg999

594 ANSWERS TO EXERCISES 7.2.2.2

when n ≥ w(α0)
2 and r ≥ 2; hence w(α0 3 ε) ≤W + b ≤ √8n ln r + 1 as desired. The

‘−2’ in the lemma handles the trivial cases that arise when r < 2.

(It is important to realize that we don’t change n or W in the induction proof.
Incidentally, the exact minimum of W + b, subject to r = (1−W/(2n))−b, occurs when

W = 2n(1− e−2T (z)) = 4nz +
2nz3

3
+ · · · , b =

ln r

2T (z)
= (ln r)

(
1

2z
− 1

2
− z

4
− · · ·

)
,

where z2 = (ln r)/(8n) and T (z) is the tree function. Thus it appears likely that the
proof of Lemma B supports the stronger result w(α0 3 ε) <

√
8n ln r − 1

2 ln r + 1.)

239. Let α0 consist of all 2
n nontautological clauses of length n. The shortest refutation

is the complete binary tree with these leaves, because every nontautological clause must
appear. Algorithm A shows that 2n − 1 resolutions suffice to refute any clauses in n
variables; hence ‖α0 3 ε‖ = 2n − 1, and this is the worst case.

240. If A′ has t elements and ∂A′ has fewer than t, the sequence of 5t integers fij
for its neighbors must include at least 2t repeats of values seen earlier. (In fact there
are at least 2t + 1 repeats, because 2t would leave at least t in the boundary; but the
calculations are simpler with 2t, and we need only a rather crude bound.)

The probability pt that some such A
′ exists is therefore less than

(
m+1
t

)(
5t
2t

)
(3t
m
)2t,

because there are
(
m+1
t

)
ways to select A′,

(
5t
2t

)
to select the repeating slots, and at most

(3t)2t out ofm2t ways to fill those slots. Also
(
m+1
t

)
=
(
m
t

)
+
(
m
t−1

)
< 2

(
m
t

)
when t ≤ 1

2
m.

By exercise 1.2.6–67 we have pt ≤ 2(me
t
)t(5te

2t
)2t(3t

m
)2t = 2(ct/m)t, where c =

225e3/4 ≈ 1130. Also p0 = p1 = 0. Thus the sum of pt for t ≤ m/3000 is less than
2
∑∞

t=2(c/3000)
t ≈ .455; and the probability of strong expansion exceeds .544.

241. If 0 < |A′| ≤ m/3000, we can put one of its elements into a hole bk ∈ ∂A′. Then
we can place the other elements in the same way, since bk isn’t their neighbor.

242. The proof of Theorem B remains valid when these new axioms are added.

243. (a) The probability that F ′ has t elements and V (F ′) has fewer than t is at most(
αn
t

)(
n
t

)
(tn)

3t ≤ (αe
2t
n)t. The sum of this quantity for 1 ≤ t ≤ lgn is O(n−1), and so is

the sum for lgn ≤ t ≤ n/(2αe2).

(b) If the condition in (a) holds, there’s a matching from F ′ into V (F ′), by
Theorem 7.5.1H; hence we can satisfy F ′ by assigning to its variables, one by one. If
F is unsatisfiable we’ll therefore need to invoke more than n/(2αe2) of its axioms.

(c) The probability pt that F
′ has t elements and 2|V (F ′)| − 3|F ′| < 1

2 |F ′| is at
most

(
αn
t

)(
n
λt

)
(λt
n
)3t≤ (αe1+λλ3−λ(t/n)1/4)t, where λ = 7

4
. We have (e1+λλ3−λ)4<106;

so pt < ct when t ≤ n′, where c < 1, and
∑n′

t=n′/2 pt is exponentially small.

(d) Since n′ < n/(2αe2), every refutation a.s. contains a clause C with n′/2 ≤
μ(C) < n′. The minimal axioms F ′ on which C depends have |F ′| = μ(C). Let k
be the number of “boundary” variables that occur in just one axiom of F ′. If v is
such a variable, we can falsify C and the axiom containing v, while the other axioms
of F ′ are true; hence V must contain v or v̄. We have |V (F ′)| = k + |nonboundary| ≤
k + 1

2 (3|F ′| − k), because each nonboundary variable occurs at least twice. Therefore
k ≥ 2|V (F ′)| − 3|F ′| ≥ n′/4, q.s. (Notice the similarities to the proof of Theorem B.)

244. We have [A ∪ B]0 = [A]0[B]0 ∪ [A]1[B]1 and [A ∪ B]1 = [A]0[B]1 ∪ [A]1[B]0,
where concatenation of sets has the obvious meaning. These relations hold also when
A = ∅ or B = ∅, because [∅]0 = {ε} and [∅]1 = ∅.

594

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 595

245. (a) When conditioning on ēuv , simply delete the edge u −−− v from G. When
conditioning on euv , also complement l(u) and l(v). The graph might become discon-
nected; in that case, there will be exactly two components, one even and one odd, with
respect to the sums of their labels. The axioms for the even component are satisfiable
and may be discarded.

For example, α(G) | {b, ē} corresponds to while α(G) | {b, e} corresponds
to . We toss out the left component in the first case, the right one in the other.

(b) If C ∈ α(v) we may take V ′ = {v}. And we have μ(ε) = |V |, because the
axioms

⋃
v∈V \u α(v) are satisfiable for all u ∈ V .

(c) If u ∈ V ′ and v /∈ V ′, there’s an assignment that falsifies C and some axiom
of α(u) while satisfying all α(w) for w ∈ V ′ \ u, because |V ′| is minimum. Setting
euv ← ēuv will satisfy α(u) without affecting the axioms α(w) (which don’t contain euv).

(d) By (b), every refutation of α(G) must contain a clause C with 1
3
m ≤ μ(C) <

2
3
m. The corresponding V ′ has |V ′|/(|V ′|+ |∂V ′|) < (2

3
+ 8)/9, hence |∂V ′| > 1

26
|V ′|.

[Property (i) is interesting but irrelevant for this proof. Notice that α(G) has
exactly 8

3n ≈ 2.67n 3SAT clauses in n = 3m/2 variables when G is cubic; every
literal occurs four times. G. Tseytin proved lower bounds for refutations of α(G) by
regular resolution in 1966, before graphs with property (iii) were known; A. Urquhart
obtained them for general resolution in JACM 34 (1987), 209–219, and the simplified
argument given here is due to Ben-Sasson and Wigderson. The fact that α(G) requires
exponentially long refutation chains, although the same axioms can be refuted easily
by working with linear equations mod 2, amounts to a proof that backtracking is a poor
way to deal with linear equations! Suitable Ramanujan graphs raman (2, q, 3, 0) can be
found by the algorithms of the Stanford GraphBase for infinitely many prime numbers q.
We can also obtain the same lower bounds with the multigraphs raman (2, q, 1, 0) and
raman (2, q, 2, 0). Section 7.4.3 will explore expander graphs in detail.]

246. Let’s write [a1 . . . ak]
� for what exercise 244 calls [{a1, . . . , ak}]�. With new

variables x, y, z we can introduce {xa, xb̄, x̄āb, yā, yb, ȳab̄, zx, zy, z̄x̄ȳ} and resolve those
clauses to [zab]1, which means z = a ⊕ b. So we can assume that ‘z ← a ⊕ b’ is a
legal primitive operation of “extended resolution hardware,” when z is a new variable.
Furthermore we can compute a1 ⊕ · · · ⊕ ak in O(k) steps, using z0 ← 0 (which is the
clause [z0]

1, namely z̄0) and zk ← zk−1 ⊕ ak when k ≥ 1.

Let the edge variables E(v) be a1, . . . , ad, where d is the degree of v. We compute
sv ← a1 ⊕ · · · ⊕ ad by setting sv,0 ← 0, sv,k ← sv,k−1 ⊕ ak, and sv ← sv,d. We can
resolve sv with the axioms α(v) in O(2d) steps, to get the singleton clause [sv]

l(v)⊕1,
meaning sv = l(v). Summing over v, these operations therefore take O(N) steps.

On the other hand, we can also compute zn ←
⊕

v sv and get zero (namely ‘z̄n’).
Doing this cleverly, by omnisciently knowing G, we can in fact compute it in O(mn)
steps: Start with any vertex v and set z1 ← sv (more precisely, set z1,k ← sv,k for
0 ≤ k ≤ d). Given zj for 1 ≤ j < n, with all its subvariables zj,k, we then compute
zj+1 ← zj⊕su, where u is the unused vertex with su,1 = zj,1. We can arrange the edges
into an order so that if zj has p edge variables in common with su, then zj,k = su,k for
1 ≤ k ≤ p. Suppose the other variables of zj and su are respectively a1, . . . , aq and
b1, . . . , br; we want to merge them into the sequence c1, . . . , cq+r that will be needed
later when zj+1 is used. So we set zj+1,0 ← 0, zj+1,k ← zj+1,k−1⊕ ck, zj+1 ← zj+1,q+r.

From the clauses constructed in the previous paragraph, resolution can deduce
[zj,ksu,k]

1 for 1 ≤ k ≤ p, and hence [zj+1,0zj,psu,p]
1 (namely that zj+1,0 = zj,p ⊕ su,p).

Furthermore, if ck = ai, and if we know that zj+1,k−1 = zj,s ⊕ su,t where s = p+ i− 1

595

From the Library of Melissa Nuno

ptg999

596 ANSWERS TO EXERCISES 7.2.2.2

and t = p + k − i, resolution can deduce that zj+1,k = zj,s+1 ⊕ su,t; a similar formula
applies when ck = bi. Thus resolution yields zj+1 ← zj ⊕ su as desired. Ultimately we
deduce both zn and z̄n from the singleton clauses sv = l(v).

247. Eliminating x2 from {12, 1̄2, 1̄2̄} gives {1̄}; eliminating x1 then gives ∅. So those
five clauses are satisfiable.

248. We have F (x1, . . . , xn) = (xn∨A′1)∧· · ·∧ (xn∨A′p)∧ (x̄n∨A′′1)∧· · ·∧ (x̄n∨A′′q)∧
A′′′1 ∧· · ·∧A′′′r = (xn∨G′)∧(x̄n∨G′′)∧G′′′, where G′ = A′1∧· · ·∧A′p, G′′ = A′′1∧· · ·∧A′′q ,
and G′′′ = A′′′1 ∧ · · · ∧A′′′r depend only on {x1, . . . , xn−1}. Hence F ′ = (G′ ∨G′′)∧G′′′;
and the clauses of G′ ∨G′′ = ∧p

i=1

∧q
j=1(A

′
i ∨A′′j) are the resolvents eliminating xn.

249. After learning C7 = 2̄3̄ as in the text, we set d ← 2, l2 ← 2̄, Cj = 23̄, learn
C8 = 3̄, and set d← 1, l1 ← 3̄. Then l2 ← 4̄ (say); and l3 ← 1̄, l4 ← 2̄. Now Ci = 1234
has been falsified; after l4 ← 2 and Cj = 12̄ we learn C9 = 134, set l3 ← 1, and learn
C10 = 134 2 1̄3 = 34. Finally l2 ← 4, we learn C11 = 3; l1 ← 3, and we learn C12 = ε.

250. l1 ← 1, l2 ← 3, l3 ← 2̄, l4 ← 4; learn 1̄23̄; l3 ← 2, l4 ← 4; learn 1̄2̄3̄ and 1̄3̄;
l2 ← 3̄, l3 ← 2̄, l4 ← 4; learn 1̄23; l3 ← 2, l4 ← 4; learn 1̄2̄3, 1̄3, 1̄; l1 ← 1̄, l2 ← 3,
l3 ← 4̄, l4 ← 2; learn 13̄4; l3 ← 4, l4 ← 2̄, l4 ← 2.

251. Algorithm I has the property that l̄i1 , . . . , l̄ik−1 , lik are on the stack whenever
the new clause li1 ∨ · · · ∨ lik has been learned, if i1 < · · · < ik = d and step I4 returns
to I2. These literals limit our ability to exploit the new clause; so it appears to be
impossible to solve this problem without doing more resolutions than St̊almarck did.

However, we can proceed as follows. LetM ′′
imk be the clause xm1∨· · ·∨xm(k−1)∨

xik ∨ · · · ∨ xi(m−1) ∨ x̄im, for 1 ≤ i, k < m. Using ij to stand for xij , the process for
m = 3 begins by putting 11, 12, 13, 21, 22, 23, 31, 32, 33 on the stack. Then step I3
has Ci = I3, step I4 has Cj = M33; so step I5 learns I3 2M33 = M32. Step I4 now
changes 32 to 32 and chooses Cj = T232; so I5 learns M32 2 T232 = M ′′

232. Step I4
changes 31 to 31 and chooses Cj = T231; now we learn M ′′

232 2 T231 = M ′′
231. Next, we

learn M ′′
231 2M23 =M22; and after changing 22 to 22 we also learn M21.

The stack now contains 11, 12, 13, 21. We add 31, 32, and proceed to learn
M32 2 T132 = M ′′

132, M
′′
132 2 T131 = M ′′

131, M
′′
131 2M13 = M12. The stack now contains

11, 12, and we’ve essentially reduced m from 3 to 2.

In a similar way, O(m2) resolutions will learn Mi(m−1) for i = m− 1, . . . , 1; and
they’ll leave x̄11, . . . , x̄1(m−2), x1(m−1) on the stack so that the process can continue.

252. No; large numbers of clauses such as x̄12 ∨ x̄23 ∨ · · · ∨ x̄89 ∨ x19 are generated by
the elimination process. Although these clauses are valid, they’re not really helpful.

Exercise 373 proves, however, that the proof is completed in polynomial time if
we restrict consideration to the transitivity clauses of exercise 228(!).

253. A conflict arises when we follow a chain of forced moves:

t Lt level reason

0 6̄ 1 Λ
1 4 1 46
2 5 2 Λ
3 3̄ 2 3̄4̄5̄
4 9 2 369

t Lt level reason

5 7̄ 2 5̄7̄9̄
6 1̄ 2 1̄5̄9̄
7 8 2 678
8 2 2 123
9 2̄ 2 2̄5̄8̄

Now 2̄5̄8̄→ 2̄5̄8̄ 2 123 = 135̄8̄→ 135̄67→ 35̄679̄→ 35̄69̄→ 35̄6→ 4̄5̄6; so we learn 4̄5̄6
(which can be simplified to 5̄6, because 4̄ is “redundant” as explained in exercise 257).

596

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 597

Setting L2 ← 5̄, with reason 4̄5̄6 or 5̄6, now forces 7, 1̄, 3, 9, 2̄, 8̄, 8, all at level 1;
this conflict soon allows us to learn the unit clause 6. (Next we’ll inaugurate level 0,
setting L0 ← 6. No “reasons” need to be given at level 0.)

254. Deducing 3, 2, 4, 4̄ at level 1, it will find 2̄4̄ 2 43̄ = 2̄3̄ and 2̄3̄ 2 23̄ = 3̄, learning 3̄.
(Or it might learn 3̄ after deducing 2̄.) Then it will deduce 3̄, 1̄, 2, 4̄ at level 0.

255. For example, {1̄2̄4̄, 2̄3̄5̄, 456, 456̄}. [Since the clause c′ that is learned by the
procedure described in the text contains just one literal l from the conflict level d,
the trail position for l̄ has been called a “unique implication point” (UIP). If l isn’t
the decision literal for its level, we could resolve c′ with l’s reason and find another
UIP; but each new resolution potentially increases the b array and limits the amount
of backjumping. Therefore we stop at the first UIP.]

256. If it is false, literals 50, 26, . . . , 30 are true; hence also 25, 23, and 29, a conflict.
Consequently we can obtain ‘∗∗’ by starting with 23 26 . . . 50 and resolving with 23 25 27,
25 27 29, and 25 30 . . . 70. [Similarly, and more simply, one can learn (122) by resolving
11 16 . . . 56 with 31 61 91, 41 66 91, and 56 61 66.]

257. (a) Suppose l̄ ′ on level d′ > 0 is redundant. Then some l′′ in the reason for l′ is
also on level d′; and l′′ is either in c or redundant. Use induction on trail position.

(b) We can assume that the stamp value s used when resolving conflicts is a
multiple of 3, and that all stamps are ≤ s. Then we can stamp literal l with S(|l|)←
s+ 1 if l̄ is known to be redundant, or s+ 2 if l̄ is known to be nonredundant and not
in c. (These stamps serve as a “memo cache” to avoid repeated work.) While building
c we can also stamp levels as well as literals, setting LS[d′]← s if level d′ has exactly
one of the bi, or s+ 1 if it has more than one.

Then for 1 ≤ j ≤ r, b̄j is redundant if and only if LS[lev (bj)] = s + 1 and
red (b̄j) is true, where lev (l) = VAL(|l|)# 1 and where red (l̄) is the following recursive
procedure: “If l is a decision literal, return false. Otherwise let (l∨ ā1 ∨ · · · ∨ āk) be l’s
reason. For 1 ≤ i ≤ k with lev (ai) > 0, if S(|ai|) = s + 2 return false; if S(|ai|) < s
and either LS[lev (ai)] < s or red (āi) is false, set S(|ai|)← s+2 and return false. But
if none of these conditions hold, set S(|l|)← s+ 1 and return true.”

[See Allen Van Gelder, LNCS 5584 (2009), 141–146.]

258. That statement is true in Table 3, but false in general. Indeed, consider the
sequel to Table 3: The decision L44 = 57 causes the watch list of 57 to be examined,
thus forcing 15, 78, and 87 (among other literals) in some order because of the clauses
15 57 36, 78 57 36, 87 57 27. Then 96 will be forced by the clause 96 87 . . . 15; and the
second literal of that clause at the time of forcing will be 15, regardless of trail order,
if the watched literals of that clause were 96 and 15 (making it invisible to 78 and 87).

259. 1 + ρ6 + ρ7 < ρ+ ρ2 when .7245 < ρ < .7548. (There can in fact be any number
of crossover points: Consider the polynomial (1− ρ− ρ2)(1− ρ3 − ρ6)(1− ρ9 − ρ18).)

260. First, to get a random permutation in the heap we can use a variant of Algo-
rithm 3.4.2P: For k ← 1, 2, . . . , n, let j be a random integer in [0 . . k − 1] and set
HEAP[k − 1]← HEAP[j], HEAP[j]← k. Then set HLOC(HEAP[j]) ← j for 0 ≤ j < n.

Next, set F ← 0 and Wl ← 0 for 2 ≤ l ≤ 2n + 1 and c ← 3. Do the following
for each input clause l0l1 . . . lk−1: Terminate unsuccessfully if k = 0, or if k = 1 and
0 ≤ VAL(|l0|) �= l0 &1. If k = 1 and VAL(|l0|) < 0, set VAL(|l0|)← l0 &1, TLOC(|l0|)←
F , F ← F + 1. If k > 1, set MEM[c + j] ← lj for 0 ≤ j < k; also MEM[c − 1] ← k,
MEM[c − 2]←Wl0 , Wl0 ← c, MEM[c − 3]←Wl1 , Wl1 ← c, c← c+ k + 3.

597

From the Library of Melissa Nuno

ptg999

598 ANSWERS TO EXERCISES 7.2.2.2

Finally, set MINL← MAXL← c+2 (allowing two cells for extra data in the preamble
of the first learned clause). Of course we must also ensure that MEM is large enough.

261. (Throughout this answer, lj is an abbreviation for MEM[c + j].) Set q ← 0 and
c ← Wl̄. While c �= 0, do the following: Set l′ ← l0. If l′ �= l̄ (hence l1 = l̄), set
c′ ← l−3; otherwise set l′ ← l1, l0 ← l′, l1 ← l̄, c′ ← l−2, l−2 ← l−3, and l−3 ← c′. If
VAL(|l0|) ≥ 0 and VAL(|l0|)+ l0 is even (that is, if l0 is true), perform the steps

if q �= 0, set MEM[q − 3]← c, else set Wl̄ ← c; then set q ← c. (∗)
Otherwise set j ← 2; while j < l−1 and VAL(|lj |) ≥ 0 and VAL(|lj |) + lj is odd, set
j ← j+1. If now j < l−1, set l1 ← lj , lj ← l̄, l−3 ←Wl1 ,Wl1 ← c. But if j = l−1, do (∗)
above; jump to C7 if VAL(|l0|) ≥ 0; otherwise set LF ← l0, etc. (see step C4) and c← c′.

Finally, when c = 0, do (∗) above to terminate l̄’s new watch list.

262. To delete k = HEAP[0] in C6: Set h← h − 1 and HLOC(k) ← −1. Stop if h = 0.
Otherwise set i ← HEAP[h], α ← ACT(i), j ← 0, j′ ← 1, and do the following while
j′ < h: Set α′ ← ACT(HEAP[j′]); if j′ + 1 < h and ACT(HEAP[j′ + 1]) > α′, set j′ ←
j′+1 and α′ ← ACT(HEAP[j′]); if α ≥ α′, set j′ ← h, otherwise set HEAP[j]← HEAP[j′],
HLOC(HEAP[j′])← j, j ← j′, and j′ ← 2j+1. Then set HEAP[j]← i and HLOC(i)← j.

In C7, set k ← |l|, α ← ACT(k), ACT(k) ← α + DEL, j ← HLOC(k), and if
j > 0 perform the “siftup” operation: “Looping repeatedly, set j′ ← (j − 1)# 1 and
i← HEAP[j′], exit if ACT(i) ≥ α, else set HEAP[j] ← i, HLOC(i) ← j, j ← j′, and exit
if j = 0. Then set HEAP[j]← k and HLOC(k)← j.”

To insert k in C8, set α ← ACT(k), j ← h, h ← h + 1; if j = 0 set HEAP[0] ← k
and HLOC(k)← 0; otherwise perform the siftup operation.

263. (This answer also sets the level stamps LS[d] needed in answer 257, assuming
that the LS array is initially zero.) Let “bump l” mean “increase ACT(|l|) by DEL” as
in answer 262. Also let blit (l) be the following subroutine: “If S(|l|) = s, do nothing.
Otherwise set S(|l|)← s, p← lev (l). If p > 0, bump l; then if p = d, set q ← q+1; else
set r ← r + 1, br ← l̄, d′ ← max(d′, p), and if LS[p] ≤ s set LS[p]← s+ [LS[p]= s].”

When step C7 is entered from C4, assuming that d > 0, set d′ ← q ← r ← 0,
s ← s + 3, S(|l0|) ← s, bump l0, and do blit (lj) for 1 ≤ j < k. Also set t ←
max(TLOC(|l0|), . . . , TLOC(|lk−1|)). Then, while q > 0, set l ← Lt, t ← t − 1; if
S(|l|) = s then set q ← q− 1, and if Rl �= Λ let clause Rl be l0l1 . . . lk−1 and do blit (lj)
for 1 ≤ j < k. Finally set l′ ← Lt, and while S(|l′|) �= s set t← t− 1 and l′ ← Lt.

The new clause can now be checked for redundancies as in answer 257. To install
it during step C9, there’s a subtle point: We must watch a literal that was defined on

level d′. Thus we set c ← MAXL, MEM[c] ← l̄ ′, k ← 0, j′ ← 1; and for 1 ≤ j ≤ r if
S(|bj |) = s set k ← k+1 and do this: If j′ = 0 or lev (bj) < d′, set MEM[c + k + j′]← b̄j ;
otherwise set MEM[c + 1]← b̄j , j

′ ← 0, MEM[c − 2]←Wl̄′ , Wl̄′ ← c, MEM[c−3]←Wb̄j
,

Wb̄j
← c. Finally set MEM[c−1]← k + 1, MAXL← c+ k + 6.

264. We can maintain a “history code” array, setting HF to 0, 2, 4, or 6 when LF
is set, and then using Ht + (Lt & 1) as the move code that represents trail location t
for 0 ≤ t < F . History codes 6, 4, and 0 are appropriate in steps C1, C4, and C6,
respectively; in C9, use code 2 if l′ was a decision literal, otherwise use code 6.

[These move codes do not increase lexicographically when the trail is flushed and
restarted; hence they don’t reveal progress as nicely as they do in the other algorithms.]

265. (1) A literal Lt on the trail with G ≤ t < F has become true, but the watch list
of Lt has not yet been examined. (2) If l0 is true, so that c is satisfied, step C4 doesn’t

598

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 599

remove c from the watch list of l1 when l1 becomes false. (This behavior is justified,
because c won’t be examined again until l1 has become free during the backtracking
step C8.) (3) A clause that becomes a reason for l0 remains on the watch list of its
false l1. (4) During a full run, a clause that triggers a conflict is allowed to keep both
of its watched literals false.

In general, a false watched literal must be defined at the highest trail level of all
literals in its clause.

266. If U < p, where U is a uniform deviate between 0 and 1, do this: Set j to a
random integer with 0 ≤ j < h, and k ← HEAP[j]. If j = 0, or if VAL(k) ≥ 0, use the
normal C6. Otherwise branch on k (and don’t bother to remove k from the heap).

267. As in Algorithm L, let there be a sequential table BIMP(l) for each literal l,
containing all literals l′ such that l̄ ∨ l′ is a binary clause. Furthermore, when the
propagation algorithm sets LF ← l′ because l′ ∈ BIMP(l), we may set Rl′ ← −l,
instead of using a positive clause number as the “reason.” (Notice that a binary clause
therefore need not be represented explicitly in MEM, if it is represented implicitly in
the BIMP tables. The author’s implementation of Algorithm C uses BIMP tables only
to expedite binary clauses that appear in the original input. This has the advantage
of simplicity, since the exact amount of necessary space can be allocated permanently
for each table. Learned binary clauses are comparatively rare in practice; thus they
can usually be handled satisfactorily with watched literals, instead of by providing the
elaborate buddy-system scheme that was important in Algorithm L.)

Here, more precisely, is how the inner loop goes faster with BIMPs. We want to
carry out binary propagations as soon as possible, because of their speed; hence we
introduce a breadth-first exploration process analogous to (62):

Set H ← F ; take account of l′ for all l′ ∈ BIMP(l0);
while H < F , set l0 ← LH , H ← H + 1, and

take account of l′ for all l′ ∈ BIMP(l0).

(∗∗)

Now “take account of l′” means “if l′ is true, do nothing; if l′ is false, go to C7
with conflict clause l̄ ∨ l′; otherwise set LF ← l′, TLOC(|l′|) ← F , VAL(|l′|) ← 2d +
(l′ & 1), Rl′ ← −l, F ← F + 1.” We do (∗∗) just before setting c ← c′ in answer 261.
Furthermore, we set E ← F just after G ← 0 in step C1 and just after F ← F + 1 in
steps C6 and C9; and if G ≤ E after G← G+ 1 in step C4, we do (∗∗) with l0 ← l̄.

Answer 263 is modified in straightforward ways so that “clause Rl” is treated as
if it were the binary clause (l ∨ l̄ ′) when Rl has the negative value −l′ .
268. If MEM[c − 1] = k ≥ 3 is the size of clause c, and if 1 < j < k, we can delete
the literal l in MEM[c + j] by setting k ← k − 1, MEM[c − 1] ← k, l′ ← MEM[c + k],
MEM[c + j] ← l′, and MEM[c + k] ← l + f , where f is a flag (typically 231) that
distinguishes a deleted literal from a normal one. (This operation does not need to
be done when the current level d is zero; hence we can assume that k ≥ 3 and j > 1
before deletion. The flag is necessary so that global operations on the entire set of
clauses, such as the purging algorithm, can pass safely over deleted literals. The final
clause in MEM should be followed by 0, an element that’s known to be unflagged.)

269. (a) If the current clause contains a literal l = L̄t that is not in the trivial clause,
where t is maximum, resolve the current clause with Rl̄ and repeat.

(b) (ū1∨ bj) ∧ (lj∨ l̄j−1∨ b̄j) for 1 ≤ j ≤ 9, (l0 ∨ ū2 ∨ ū3) ∧ (l̄9 ∨ l̄8 ∨ b̄10); l′ = l0.
(c) If r ≥ d′ + τ , where τ is a positive parameter, learn the trivial clause instead

of (l̄ ′ ∨ b̄1 ∨ · · · ∨ b̄r). (The watched literals should be l̄ ′ and ūd′ .)

599

From the Library of Melissa Nuno

ptg999

600 ANSWERS TO EXERCISES 7.2.2.2

Notice that this procedure will learn more than simple backtrack à la Algorithm D
does, even when the trivial clause is always substituted (that is, even when τ = −∞),
because it provides for backjumping when d′ < d+ 1.

270. (a) Consider the clauses 32̄, 43̄2̄, 54̄3̄1̄, 65̄4̄1̄, 6̄5̄4̄, with initial decisions L1 ← 1,
L2 ← 2. Then L3 ← 3 with reason R3 ← 32̄; similarly L4 ← 4, L5 ← 5. If L6 ← 6, the
conflict clause 6̄5̄4̄ allows us to strengthen R6 to 5̄4̄1̄; but if L6 ← 6̄, with R6̄ ← 6̄5̄4̄, we
don’t notice that 65̄4̄1̄ can be strengthened. In either case we can, however, strengthen
R5 to 4̄3̄1̄, before learning the clause 2̄1̄.

(b) After doing blit (lj) to the literals of Rl, we know that Rl \ l is contained
in {b̄1, . . . , b̄r} together with q + 1 unresolved false literals that have been stamped at
level d. (Exercise 268 ensures that p �= 0 within each blit .) Thus we can subsume
clause Rl on the fly if q + r + 1 < k and q > 0.

In such cases the procedure of answer 268 can be used to delete l from c = Rl. But
there’s a complication, because l = l0 is a watched literal (j = 0 in that answer), and all
other literals are false. After l is deleted, it will be essential to watch a false literal l′ that
is defined at trail level d. So we find the largest j′ ≤ k such that VAL(MEM[c + j′]) ≥ 2d,
and we set l′ ← MEM[c + j′]. If j′ �= k, we also set MEM[c + j′] ← MEM[c + k]; we can
assume that j′ > 1. Finally, after setting MEM[c] ← l′ and MEM[c + k] ← l + f as in
answer 268, we also delete c from the watch list Wl, and insert it into Wl′ .

[This enhancement typically saves 1%–10% of the running time, but sometimes
it saves a lot more. It was discovered in 2009, independently by two different groups
of researchers: See H. Han and F. Somenzi, LNCS 5584 (2009), 209–222; Y. Hamadi,
S. Jabbour, and L. Säıs, Int. Conf. Tools with Artif. Int. (ICTAI) 21 (2009), 328–335.]

271. We shall check for discards only if the current clause Ci is not trivial (see exercise
269), and if the first literal of Ci−1 does not appear in the trail. (Indeed, experience
shows that almost every permissible discard falls into this category.) Thus, let Ci−1 be
l0l1 . . . lk−1 where VAL(|l0|) < 0; we want to decide if {l̄′, b̄1, . . . , b̄r} ⊆ {l1, . . . , lk−1}.

The secret is to use the stamp fields that have already been set up. Set j ← k−1,
q ← r + 1, and do the following while q > 0 and j ≥ q: If lj = l̄′, or if 0 ≤ VAL(|lj |) ≤
2d′+1 and S(|lj |) = s, set q ← q− 1; in any case set j ← j− 1. Then discard if q = 0.

272. Reflection isn’t as easy to implement as it may seem, unless C is a unit clause,
because CR must be placed carefully in MEM and it must be consistent with the trail.
Furthermore, experience shows that it’s best not to learn the reflection of every learned
clause, because excess clauses make unit propagation slower. The author has obtained
encouraging results, however, by doing the following operations just before returning
to C3 in step C9, whenever the length of C doesn’t exceed a given parameter R:

Assign ranks to the literals of CR by letting rank(l) = ∞ if l is on the trail,
rank(l) = d′′ if l̄ is on the trail at level d′′ < d′, rank(l) = d otherwise. Let u and v
be two of the highest ranking literals, with rank(u) ≥ rank(v). Put them into the first
two positions of CR, so that they will be watched. Do nothing further if rank(v) > d′.
Otherwise, if rank(v) < d′, backjump to level rank(v) and set d′← rank(v). Then if
rank(u) = rank(v) = d′, treat CR as a conflict clause by going to step C7 with c← CR.
(That is a rare event, but it can happen.) Otherwise, if u doesn’t appear in the current
trail, set LF ← u, TLOC(|u|)← F , Ru ← CR, F ← F + 1. (Possibly F = E + 2 now.)

(For example, this method with R ← 6 roughly halved the running time of
waerden (3, 10; 97) and waerden (3, 13; 160) with parameters (193) except for ρ← .995.)

A similar idea works with the clauses langford (n), and in general whenever the
input clauses have an automorphism of order 2.

600

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 601

273. (a) We can convert Algorithm C into a “clause learning machine” by keeping the
process going after F reaches n in step C5: Instead of terminating, start over again by
essentially going back to step C1, except that the current collection of clauses should
be retained, and the OVAL polarities should be reset to random bits. Learned clauses of
size K or less, where K is a parameter, should be written to a file. Stop when you’ve
found a given number of short clauses, or when you’ve exceeded a given time limit.

For example, here’s what happened when the author first tried to find W (3, 13):
Applying this algorithm to waerden (3, 13; 158) with K = 3, and with a timeout limit of
30 Gμ (gigamems), yielded the five clauses 65 68 70, 68 78 81, 78 81 90, 78 79 81, 79 81 82.
So fifteen clauses 65 68 70, 66 69 71, . . . , 81 83 84 could be added to waerden (3, 13; 160),
as well as their fifteen reflections 96 93 91, 95 92 90, . . . , 80 78 77. Then the algorithm
“CR”of exercise 272 proved this augmented set unsatisfiable after an additional 107 Gμ.
In a second experiment, using K = 2 with waerden (3, 13; 159) led to three binary
clauses 76 84, 81 86, and 84 88. Shifting and reflecting gave twelve binary clauses, which
in company with waerden (3, 13; 160) were refuted by CR in another 80 Gμ. (For com-
parison, Algorithm CR refuted waerden (3, 13; 160) unaided in about 120 Gμ, compared
to about 270 Gμ for both Algorithm C and Algorithm L.) Optimum strategies for learn-
ing useful clauses from satisfiable subproblems are far from clear, especially because
running times are highly variable. But this method does show promise, especially on
more difficult problems—when more time can be devoted to the preliminary learning.

(b) Short clauses that can be learned from satisfiable instances of, say, X0 →
X1 → · · · → Xr−1, when X0 is not required to be an initial state, can be shifted and
used to help refute X0 → X1 → · · · → Xr.

274. With care, circular reasoning can (and must) be avoided. But the author’s elabo-
rate experiments with such ideas (and with the related notion of “better conflicts”) were
disappointing; they didn’t beat the running time of the simpler algorithm. However,
an intriguing idea by Allen Van Gelder [Journal on Satisfiability, Boolean Modeling

and Computation 8 (2012), 117–122] shows promise.

275. When a solution has been found, let k be minimum such that xk = 1 and the
value of xk has not been assigned at level 0. If no such k exists, we stop. Otherwise
we are entitled to force variables x1 through xk−1 all to have their current values, at
level 0, because we know that this doesn’t produce an unsatisfiable problem. So we fix
those values, and we restart the solution process at level 1 with the tentative decision
‘xk = 0’. If a conflict occurs, we’ll know that xk = 1 at level 0; if not, we’ll have a
solution with xk = 0. In either case we can increase k. (This method is considerably
better than that of answer 109, because every learned clause remains valid.)

276. True. Unit propagation essentially transforms F ∧ L into F |L.
277. Otherwise F ∧ C1 ∧ · · · ∧ Ct−1 31 ε fails (unit propagation wouldn’t start).

278. For example, (46, 5̄6, 5̄4, 6, 4, ε). (Six steps are necessary.)

279. True, because the dependency digraph contains a literal l with l−−→∗ l̄−−→∗ l.

280. (a) They’re satisfied if and only if x1 . . . xn has at least j 0s and at least k 1s.
[The problem cook (k, k) was introduced by Stephen A. Cook (unpublished) in 1971.]

(b) Take all positive (j − t)-clauses on {1, . . . , n− 1− t} for t = 1, 2, . . . , j.
(c) Suppose the very first decision is L0 ← xn. The algorithm will proceed to act

as if the input were cook (j, k) | xn = cook (j, k − 1). Furthermore, with these clauses,
every clause that it learns initially will include x̄n. Therefore, by induction, the unit
clause (x̄n) will be learned clause number

(
n−2
j−1

)
. All previously learned clauses are

601

From the Library of Melissa Nuno

ptg999

602 ANSWERS TO EXERCISES 7.2.2.2

subsumed by this one, hence they’re no longer relevant. The remaining problem is
cook (j, k) | x̄n = cook (j − 1, k); so the algorithm will finish after learning

(
n−2
j−2

)
more.

Similarly, if the first decision is L0 ← x̄n, the
(
n−2
j−2

)
th learned clause will be (xn).

281. St̊almarck’s refutation corresponds to the sequence (M ′
jk1, M

′
jk2, . . . , M

′
jk(k−1),

Mj(k−1)) for j = 1, . . . , k − 1, for k = m, m− 1, . . . , 1. (M ′
jk(k−1) can be omitted.)

282. First learn the exclusion clauses (17). In the next clauses we shall write aj , bj , . . . ,
as shorthand for aj,p, bj,p, . . . , where p is a particular color, 1 ≤ p ≤ 3. Notice that
the 12q edges appear in 4q triangles, namely {bj , cj , dj}, {aj , aj′ , bj′}, {fj , ej′ , cj′},
{ej , fj′ , dj′}, for 1 ≤ j ≤ q, where j′ is j + 1 (modulo q). For every such triangle
{u, v, w}, learn (ūp′ ∨ vp ∨ wp) and then (up ∨ vp ∨ wp), where p′ is p+ 1 (modulo 3).

Now for j = 1, 2, . . . , q, learn (aj∨fj∨aj′∨ej′), (aj∨ej∨aj′∨fj′), (ej∨fj∨ej′∨fj′),
(āj ∨ ēj ∨ ēj′), (āj ∨ f̄j ∨ f̄j′), (ēj ∨ f̄j ∨ āj′), as well as eighteen more:

(ū1 ∨ v̄1 ∨ u′j ∨ v′j), (ū2 ∨ v̄2 ∨ u′j′ ∨ v′j′), if j ≥ 3 is odd;

(ū1 ∨ v̄1 ∨ ū′j), (ū2 ∨ v̄2 ∨ ū′j′), if j ≥ 3 is even;

here u, v ∈ {a, e, f} and u′, v′ ∈ {a, e, f} yield 3× 3 choices of (u, v, u′, v′). Then we’re
ready to learn (āj ∨ ēj), (āj ∨ f̄j), (ēj ∨ f̄j) for j ∈ {1, 2} and (aj ∨ ej ∨ fj ∨ aj′),
(aj ∨ ej ∨ fj) for j ∈ {1, q}. All of these clauses are to be learned for 1 ≤ p ≤ 3.

Next, for j = q, q − 1, . . . , 2, learn (āj ∨ ēj), (āj ∨ f̄j), (ēj ∨ f̄j) for 1 ≤ p ≤ 3
and then (aj−1 ∨ ej−1 ∨ fj−1 ∨ aj), (aj−1 ∨ ej−1 ∨ fj−1) for 1 ≤ p ≤ 3. We have now
established all clauses in the hint.

The endgame consists of the following for 1 ≤ p ≤ 3: For all choices of p′ and p′′

with {p, p′, p′′} = {1, 2, 3} (thus two choices), and for j = 2, 3, . . . , q, learn three clauses

(ā1,p ∨ ē1,p′ ∨ āj,p ∨ ej,p′′), (ā1,p ∨ ē1,p′ ∨ āj,p′ ∨ ej,p), (ā1,p ∨ ē1,p′ ∨ āj,p′′ ∨ ej,p′), j even;
(ā1,p ∨ ē1,p′ ∨ āj,p ∨ ej,p′), (ā1,p ∨ ē1,p′ ∨ āj,p′ ∨ ej,p′′), (ā1,p ∨ ē1,p′ ∨ āj,p′′ ∨ ej,p), j odd;
then learn (ā1,p ∨ ē1,p′). Finally learn ā1,p.

[Not all of these clauses are actually necessary. For example, the exclusion clauses
for b’s, c’s, and d’s aren’t used. This certificate doesn’t assume that the symmetry-
breaking unit clauses b1,1 ∧ c1,2 ∧ d1,3 of fsnark (q) are present; indeed, those clauses
don’t help it much. The actual clauses learned by Algorithm C are considerably longer
and somewhat chaotic (indeed mysterious); it’s hard to see just where an “aha” occurs!]

283. A related question is to ask whether the expected length of learned clauses is
O(1) as q →∞.

284. It’s convenient to represent each unit clause (l) in F ∪C1∪· · ·∪Ct as if it were the
binary clause (l∨ x̄0), where x0 is a new variable that is always true. We borrow some
of the data structures of Algorithm C, namely the trail array L, the reason array R,
and the fields TLOC, S, VAL associated with each variable. We set VAL(k) = 0, 1, or −1
when xk has been forced true, forced false, or not forced, respectively.

To verify the clause Ci = (a1∨· · ·∨ak), we begin with VAL(j)← 0 for 0 ≤ j ≤ n,
L0 ← 0, L1 ← ā1, . . . , Lk ← āk, E ← F ← k + 1, G← 0, and VAL(|Lp|)← Lp & 1 for
0 ≤ p < F ; then we carry out unit propagation as in Algorithm C, expecting to reach
a conflict before G = F . (Otherwise verification fails.)

A conflict arises when a clause c = l0 . . . lk−1 forces l0 at a time when l̄0 has already
been forced. Now we mimic step C7 (see exercise 263), but the operations are much
simpler: Mark c, stamp S(|lj |) ← i for 0 ≤ j < k, and set p ← max(TLOC(|l1|), . . . ,

602

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 603

TLOC(|lk−1|)). Now, while p ≥ E, we set l ← Lp, p ← p − 1, and if S(|l|) = i we also
“resolve with the reason of l” as follows: Let clause Rl be l0l1 . . . lk−1, mark Rl, and
set S(|lj |)← i for 1 ≤ j < k.

[Wetzler, Heule, and Hunt have suggested an interesting improvement, which will
often mark significantly fewer clauses at the expense of a more complicated algorithm:
Give preference to already-marked clauses when doing the unit propagations, just as
Algorithm L prefers binary implications to the implications of longer clauses (see (62)).]

285. (a) j = 77, s77 = 12 + 2827, m77 = 59, b77 = 710.
(b) j = 72, s72 = 12 + 2048, m72 = 99 + 243 + 404 + 536 = 1282, b72 =

3 + 40 + 57 + 86 = 186. (The RANGE statistic is rather coarse when α = 1
2
, because

many different signatures yield the same value.)
(c) j = 71, s71 = 12 + 3087, m71 = 243, b71 = 40.

286. The maximum, 738, is achieved uniquely by the RANGE-oriented solution with
α = 15

16
, except that we can optionally include also the signatures (6, 0) and (7, 0) for

which apq = 0. [This solution optimizes the worst case of clause selection, because the
stated problem implicitly assumes that the secondary heuristic is bad. If we assume,
however, that the choice of tie-breakers based on clause activity is at least as good as
a random choice, then the expected number 738 + 45 · 10

59 ≈ 745.6 from α = 15
16 is not

as good as the expected number 710 + 287 · 57
404

≈ 750.5 from α = 9
16
.]

287. When a conflict is detected in step C7 (with d > 0), keep going as in step C3;
but remember the first clause Cd that detected a conflict at each level d.

Eventually step C5 will find F = n. That’s when clauses get their RANGE scores,
if we’re doing a full run because we want to purge some of them. (Sometimes, however,
it’s also useful to do a few full runs at the very beginning, or just after a restart, because
some valuable clauses might be learned.)

New clauses can be learned in the usual way from the remembered clauses Cd, in
decreasing order of d, except that “trivial” clauses (exercise 269) are considered only at
the lowest such level. We must keep track of the minimum backjump level d′, among all
of these conflicts. And if several new clauses have the same d′, we must remember all
of the literals that will be placed at the end of the trail after we eventually jump back.

288. Step C5 initiates a full run, then eventually finds F = n. At this point we’re
done, in the unlikely event that no conflicts have arisen. Otherwise we set LS[d] ← 0
for 0 ≤ d < n and mj ← 0 for 1 ≤ j < 256. The activity ACT(c) of each learned
clause c has been maintained in MEM[c − 5], as a 32-bit floating point number. The
following steps compute RANGE(c), which will be stored in MEM[c − 4] as an integer, for
all learned c in increasing order, assuming that c’s literals are l0l1 . . . ls−1:

If Rl0 = c, set RANGE(c) ← 0. Otherwise set p ← r ← 0, and do the following
for 0 ≤ k < s: Set v ← VAL(|lk|). If v < 2 and v + lk is even, set RANGE(c) ← 256
and exit the loop on k (because c is permanently satisfied, hence useless). If v ≥ 2 and
LS[lev (lk)] < c, set LS[lev (lk)]← c and r ← r+1. Then if v ≥ 2 and LS[lev (lk)] = c
and lk + v is even, set LS[lev (lk)] ← c + 1 and p ← p + 1. After k reaches s, set
r ← min(�16(p+ α(r − p))�, 255), RANGE(c) ← r, and mr ← mr + 1.

Now resolve conflicts (see answer 287), giving ACT(c) ← 0 and RANGE(c) ← 0 to
all newly learned clauses c, and jump back to trail level 0. (A round of purging is a
major event, something like spring cleaning. It is possible that d′ = 0, in which case
one or more literals have been appended to trail level 0 and their consequences have not
yet been explored.) Find the median range j as defined in (124), where T is half the
total current number of learned clauses. If j < 256 and T > sj , find h = T − sj clauses

603

From the Library of Melissa Nuno

ptg999

604 ANSWERS TO EXERCISES 7.2.2.2

with RANGE(c) = j and ACT(c) as small as possible, and bump their range up to j + 1.
(This can be done by putting the first mj − h of them into a heap, then repeatedly
bumping the least active as the remaining h are encountered; see exercise 6.1–22.)

Finally, go again through all the learned clauses c, in order of increasing c, ignor-
ing c if RANGE(c) > j, otherwise copying it into a new location c′ ≤ c. (Permanently
false literals, which are currently defined at level 0, can also be removed at this time;
thus the clause’s size in MEM[c′ − 1] might be less than MEM[c − 1]. It is possible, but
unlikely, that a learned clause becomes reduced to a unit in this way, or even that it
becomes empty.) The activity score in MEM[c − 5] should be copied into MEM[c′ − 5];
but RANGE(c) and the watch links in MEM[c − 2] and MEM[c − 3] needn’t be copied.

When copying is complete, all the watch lists should be recomputed from scratch,
as in answer 260, including original clauses as well as the learned clauses that remain.

289. By induction, yk = (2− 21−k)Δ + (2(k − 2) + 22−k)δ for all k ≥ 0.

290. Set k ← HEAP[0]; then if VAL(k) ≥ 0, delete k from the heap as in answer 262,
and repeat this loop.

291. OVAL(49) will be the even number 36, because of the propagations on level 18
that led to (115).

292. If AGILITY ≥ 232 − 213, then (127) either subtracts 219 − 1 or adds 1. Hence
there’s a minuscule chance that AGILITY will overflow by passing from 232 − 1 to 232

(zero). (But overflow won’t be a calamity even if—unbelievably— it happens. So this
is one “bug” in the author’s program that he will not try to fix.)

293. Maintain integers uf , vf , and θf , where θf has 64 bits. Initially uf = vf =Mf = 1.
WhenM ≥Mf in step C5, do this: SetMf ←Mf+vf . If uf&−uf = vf , set uf ← uf+1,
vf ← 1, θf ← 232ψ; otherwise set vf ← 2vf and θf ← θf+(θf#4). Flush if AGILITY ≤ θf .

294. We have, for example, g1100 =
z
3
(g0100+g1000+g1110), and g01∗1 = 1. The solution

is g00∗1 = g01∗0 = g11∗1 = A/D, g00∗0 = g10∗1 = g11∗0 = B/D, g10∗0 = C/D, where
A = 3z− z2− z3, B = z2, C = z3, D = 9− 6z− 3z2+ z3. Hence the overall generating
function is g = (6A + 6B + 2C + 2D)/(16D); and we find g′(1) = 33/4, g′′(1) = 147.
Thus mean(g) = 8.25, var(g) = 87.1875, and the standard deviation is ≈ 9.3.

295. Consider all 3
(
n
3

)
clauses x̄i ∨ xj ∨ xk for distinct {i, j, k}, plus two additional

clauses (x̄1 ∨ x̄2 ∨ x̄3)∧ (x̄4 ∨ x̄5 ∨ x̄6) to make the solution 0 . . . 0 unique. Only the two
latter clauses cause the variables Xt and Yt in the proof of Theorem U to deviate from
each other. [C. Papadimitriou, Computational Complexity (1994), Problem 11.5.6.
These clauses spell trouble for a lot of other SAT algorithms too.]

296. The hinted ratio 2(2p+q+1)(2p+q)/(9(p+1)(p+q+1)) is ≈ 1 when p ≈ q (more
precisely when p = q − 7 + O(1/q)). And f(q + 1, q + 1)/f(q, q) = 2(n − q)(3q + 3)3/
(27(q+1)2(2q+2)2) is ≈ 1 when q ≈ n/3. Finally, f(n/3, n/3) = 3

4πn
(3/4)n(1+O(1/n))

by Stirling’s approximation, when n = 3q.

297. (a) Gq(z) = (z/3)qC(2z2/9)q = G(z)q where G(z) = (3 − √9− 8z2)/(4z), by
Eqs. 7.2.1.6–(18) and (24). [See Algorithmica 32 (2002), 620–622.]

(b) Gq(1) = 2−q is the probability that Yt actually reaches 0, for some finite t.
(c) If the Y process does stop, Gq(z)/Gq(1) = (2G(z))q describes the distribution

of stopping times. Hence G′q(1)/Gq(1) = 2qG′(1) = 3q is the mean length of the random
walk, given that it terminates. (The variance, incidentally, is 24q. A random Y -walker
who doesn’t finish quickly is probably doomed to wander forever.)

(d) The generating function for T , the stopping time of the Y process, is T (z) =∑
q

(
n
q

)
2−nGq(z); and T is finite with probability T (1) = (3

4
)n by (b). If we restrict

604

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 605

consideration to such scenarios, the mean T ′(1)/T (1) is n; and Markov’s inequality
tells us that Pr(T ≥ N |the algorithm terminates) ≤ n/N .

(e) The algorithm succeeds with probability p > Pr(T < N) ≥ (1− n/N)(3/4)n,
when it is given satisfiable clauses. So it fails after K(4/3)n trials with probability less
than exp(K(4/3)n ln(1− p)) < exp(−K(4/3)np) < exp(−K/2) when N = 2n.

298. Change 1/3 and 2/3 in (129) to 1/k and (k − 1)/k. The effect is to change G(z)
to (z/k)C((k − 1)z2/k2), with G(1) = 1/(k − 1) and G′(1) = k/((k − 1)(k − 2)). As
before, T (1) = 2−n(1 + G(1))n and T ′(1)/T (1) = nG′(1)/(1 + G(1)). So the general-
ized Corollary W gives success probability > 1 − e−K/2 when we apply Algorithm P
K(2− 2/k)n times with N = �2n/(k − 2)�.
299. In this case G(z) = (1−√

1− z2)/z; thus G(1) = T (1) = 1. But G′(1) =∞, so
we must use a different method. The probability of failure if N = n2 is

1

2n

∑
p,q

(
n

q

)
q

2p+ q

(
2p+ q

p

)
[2p+ q >n2]

22p+q
=

∑
t>n2

2−n−t

t

∑
p

(
n

t− 2p

)(
t

p

)
(t− 2p)

≤
∑
t>n2

2−n−t

t

(
t

�t/2�
)∑

p

(
n

t− 2p

)
(t− 2p) =

n

4

∑
t>n2

2−t

t

(
t

�t/2�
)

<
n

4

∑
t>n2

√
2

πt3
=

n√
8π

∫ ∞

n2

dx

�x�3/2 <
n√
8π

∫ ∞

n2

dx

x3/2
=

1√
2π

.

[See C. Papadimitriou, Computational Complexity (1994), Theorem 11.1.]

300. In this algorithm, variables named with uppercase letters (except C and N) de-
note bit vectors of some fixed size (say 64); each bit position represents a separate trial.
The notation Ur stands for a vector of random bits, each of which is 1 with probability
1/r, independently of all other bits and all previous U ’s. The maximum number of
flips per bit position in this variant of Algorithm P is only approximately equal to N .

P1′. [Initialize.] Set Xi ← U2 for 1 ≤ i ≤ n. Also set t← 0.

P2′. [Begin pass.] Set Z←0 and j←0. (Flipped positions are remembered in Z.)

P3′. [Move to next clause.] If j = m, go to P5′. Otherwise set j ← j + 1.

P4′. [Flip.] Let Cj be the clause (l1 ∨ · · · ∨ lk). Set Y ← L̄1 & · · · & L̄k, where
Li denotes Xh if li = xh and Li denotes X̄h if li = x̄h. (Thus Y has 1s in
positions that violate clause Cj .) Set Z ← Z | Y and t← t+ (Y &1). Then
for r = k, k − 1, . . . , 2 set Y ′ ← Y & Ur, Lr ← Lr ⊕ Y ′, Y ← Y − Y ′.
Finally set L1 ← L1 ⊕ Y and return to P3′.

P5′. [Done?] If Z �= −1, terminate successfully: One solution is given by the
bits (X1 & B) . . . (Xn & B), where B = Z̄ & (Z + 1). Otherwise, if t > N ,
terminate unsuccessfully. Otherwise return to P2′.

The shenanigans in step P4′ have the effect of flipping the offending bits of each literal
with probability 1/k, thus distributing the 1s of Y in an unbiased fashion.

301. In practice we can assume that all clauses have limited size, so that (say) k ≤ 4
in step P4′. The clauses can also be sorted by size.

A traditional random number generator produces bits U2; and one can use U2&U2
to get U4. The method of exercise 3.4.1–25 can be used for other cases; for example,

U2 & (U2 | (U2 & (U2 | (U2 & (U2 | (U2 & (U2 | (U2 & U2))))))))

605

From the Library of Melissa Nuno

ptg999

606 ANSWERS TO EXERCISES 7.2.2.2

is a sufficiently close approximation to U3. The random numbers needed in step P1′

must be of top quality; but those used in step P4′ don’t have to be especially accurate,
because most of their bits are irrelevant. We can precompute the latter, making tables
of 2d values for each of U2, U3, U4, and running through them cyclically by means of
table indices U2P, U3P, U4P as in the code below, where UMASK = 2d+3−1. The values of
U2P, U3P, and U4P should be initialized to (truly) random bits whenever step P2′ starts
a new pass over the clauses.

Here is sample code for the inner loop, step P4′, for clauses with k = 3. The
octabyte in memory location L+ 8(i−1) is the address in memory where Xh is stored,
plus 1 if it should be complemented; for example, if l2 is x̄3, the address X+3×8+1 will
be in location L+ 8, where L is a global register. Register mone holds the constant −1.
LDOU $1,L,0 addr(L1)
LDOU $4,$1,0 |L1|
LDOU $2,L,8 addr(L2)
LDOU $5,$2,0 |L2|
LDOU $3,L,16 addr(L3)
LDOU $6,$3,0 |L3|
ZSEV $0,$1,mone

XOR $7,$4,$0 L̄1
ZSEV $0,$2,mone

XOR $8,$5,$0 L̄2
ZSEV $0,$3,mone

XOR $9,$6,$0 L̄3
AND $7,$7,$8

AND $7,$7,$9 Y
OR Z,Z,$7 Z | Y
AND $0,$7,1 Y & 1
ADD T,T,$0 new t
LDOU $0,U3,U3P

ADD U3P,U3P,8

AND U3P,U3P,UMASK

AND $0,$0,$7 U3 & Y
XOR $6,$6,$0

STOU $6,$3,0 |L3| ⊕ Y ′

SUBU $7,$7,$0

LDOU $0,U2,U2P

ADD U2P,U2P,8

AND U2P,U2P,UMASK

AND $0,$0,$7 U2 & Y
XOR $5,$5,$0

STOU $5,$2,0 |L2| ⊕ Y ′

SUBU $7,$7,$0

XOR $4,$4,$7

STOU $4,$1,0 |L1| ⊕ Y

302. Assume that literals are represented internally as in Algorithm A, and that all
clauses have strictly distinct literals. An efficient implementation actually requires more
arrays than are stated in the text: We need to know exactly which clauses contain any
given literal, just as we need to know the literals of any given clause.

W4. [Choose l.] Set g ← [U ≥ p], c←∞, j ← z ← 0, and do the following while
j < k: Set j ← j + 1. Then if c|lj | < c and either c|lj | = 0 or g = 1, set
c← c|lj | and z ← 0. Then if c|lj | ≤ c, set z ← z + 1, and if zU < 1 also set
l← lj . (Here each random fraction U should be independent of the others.)

W5. [Flip l.] Set s← 0. For each j such that Cj contains l, make clause Cj hap-
pier as follows: Set q ← kj , kj ← q+1; and if q = 0, set s← s+1 and delete
Cj from the f array (see below); or if q = 1, decrease the cost of Cj ’s critical
variable (see below). Then set c|l| ← s and x|l| ← x̄|l|. For each j such that
Cj contains l̄, make clause Cj sadder as follows: Set q ← kj−1, kj ← q; and
if q = 0, insert Cj into the f array (see below); or if q = 1, increase the cost
of Cj ’s critical variable (see below). Set t← t+ 1 and return to W2.

To insert Cj into f , we set fr ← j, wj ← r, and r ← r + 1 (as in step W1). To
delete it, we set h← wj , r ← r − 1, fh ← fr, wfr ← h.

Whenever we want to update the cost of Cj ’s critical variable in step W5, we know
that Cj has exactly one true literal. Thus, if the literals of Cj appear sequentially
in a master array M, it’s easy to locate the critical variable x|Mi|: We simply set
i← START(j); then while Mi is false (namely while x|Mi| =Mi & 1), set i← i+ 1.

A slight refinement is advantageous when we will be increasing c|Mi|: If i �=
START(j), swap MSTART(j) ↔ Mi. This change significantly shortens the search when
c|Mi| is subsequently decreased. (In fact, it reduced the total running time by more
than 5% in the author’s experiments with random 3SAT problems.)

606

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 607

303. In this case D = 3 − z − z2 = A/z, and we have g′(1) = 3, g′′(1) = 73/4. Thus
mean(g) = 3 and var(g) = 12.25 = 3.52.

304. If νx = x1 + · · ·+ xn = a, there are a(n− a) unsatisfied clauses; hence there are
two solutions, 0 . . . 0 and 1 . . . 1. If x1 . . . xn isn’t a solution, Algorithm P will change
a to a ± 1, each with probability 1

2
. Thus the probability generating function ga for

future flips is 1 when a = 0 or a = n, otherwise it is z(ga−1 + ga+1)/2. And the overall
generating function is g =

∑
a

(
n
a

)
ga/2

n. Clearly ga = gn−a.
Exercise MPR–105 determines ga and proves that the mean number of flips, g

′
a(1),

is a(n− a) for 0 ≤ a ≤ n. Thus g′(1) = 2−n
∑n

a=0

(
n
a

)
g′a(1) =

1
2

(
n
2

)
.

Turning now to Algorithm W, again with x1 + · · · + xn = a, the cost of xi is
a− 1 when xi = 1, n− a− 1 when xi = 0. Therefore g1 = gn−1 = z in this case. And
for 2 ≤ a ≤ n − 2, a �= n/2, we will move closer to a solution with probability q and
farther from a solution with probability p, where p + q = 1 and p = p′/2 ≤ 1/2; here
p′ is the greed-avoidance parameter of Algorithm W. Thus for 2 ≤ a ≤ n/2 we have
ga = gn−a = z(qga−1 + pga+1).

If p′ = 0, so that the walk is 100% greedy, Algorithm W zooms in on the solution,
with ga = za. Exercise 1.2.6–68 with p = 1/2 tells us that g′(1) = n/2 −m

(
n
m

)
/2n =

n/2 −√
n/2π + O(1) in that case. On the other hand if p′ = 1, so that the walk is

greedy only when a = 1 or a = n− 1, we’re almost in the situation of Algorithm P but
with n decreased by 2. Then g′(1) = 2−n

∑n−1
a=1

(
n
a

)
(1 + (a − 1)(n − 2) − (a − 1)2) =

n(n− 5)/4 + 2 + (2n− 4)/2n; greed triumphs.
What happens as p′ rises from 0 to 1? Let’s decrease n by 2 and use the rule

ga = z(qga−1 + pga+1) for 1 ≤ a ≤ n/2, so that the calculations resemble those we did
for Algorithm P but with p now ≤ 1/2 instead of p = 1/2. Functions tk and uk can
be defined as in MPR–105; but the new recurrences are tk+1 = (tk − pz2tk−1)/q and
uk+1 = (uk − pz2uk−1)/q. Hence

T (w) =
q − pw

q − w + pz2w2
; U(w) =

q − (1− qz)w

q − w + pz2w2
.

Differentiating with respect to z, then setting z = 1, now yields

t′k(1) =
2pq(1− (p/q)k)

(q − p)2
− 2pk

q − p
, u′k(1) =

(2p− (p/q)k)q

(q − p)2
− 2p(k − 1/2)

q − p
.

It follows that g′a(1) = a/(q − p) − 2pq((p/q)m−a − (p/q)m)/(q − p)2 for 0 ≤ a ≤
n/2 when n is even, a/(q − p) − q((p/q)m−a − (p/q)m)/(q − p)2 when n is odd. The
overall totals when n = 1000 and p′ = (.001, .01, .1, .5, .9, .99, .999) are respectively
≈ (487.9, 492.3, 541.4, 973.7, 4853.4, 44688.2, 183063.4).

305. That little additional clause reverses the picture! Now there’s only one solution,
and greediness fails badly when νx > n/2 because it keeps trying to move x away

from the solution. To analyze the new situation in detail, we need 3(n− 1) generating
functions gab, where a = x1 + x2 and b = x3 + · · ·+ xn. The expected number of flips
will be g′(1), where g = 2−n

∑2
a=0

∑n−2
b=0

(
2
a

)(
n−2
b

)
gab.

The behavior of Algorithm P is ambiguous, because the unsatisfied clause found
in step P2 depends on the clause ordering. The most favorable case arises when a = 2,
because we can decrease a to 1 by working on the special clause x̄1∨x̄2. Any other clause
is equally likely to increase or decrease a + b. So the best-case generating functions
maximize the chance of reaching a = 2: g00 = 1, g01 =

z
2
(g00+g11), g02 =

z
2
(g01+g12),

g10 =
z
2 (g00+g20), g11 =

z
2 (g10+g21), g12 =

z
2 (g11+g22), and g2b = zg1b. The solution

has g1b = (z/(2− z2))
b+1

; and we find mean(g) = 183/32 = 5.71875.

607

From the Library of Melissa Nuno

ptg999

608 ANSWERS TO EXERCISES 7.2.2.2

The worst case arises whenever g20 �= zg10 and g21 �= zg11; for example we can
take g20 =

z
2
(g10+g21), g21 =

z
2
(g20+g22), together with the other seven equations from

the best case. Then g01 = g10 = z(4−3z2)/d, g02 = g11 = g20 = z2(2−z2)/d, and g12 =
g21 = z3/d, where d = 8−8z2+z4. Overall, g = (1+z)2(2−z2)/(4d) and mean(g) = 11.

(This analysis can be extended to larger n: The worst case turns out to have gab =
ga+b = (z/2)a+b tn−a−b/tn, in the notation of the previous exercise, giving n(3n− 1)/4
flips on average. The best case has g1b as before; hence g

′
0b = 3b+2−21−b, g′1b = 3b+3,

and g′2b = 3b+ 4 when z = 1. The best average number of flips therefore turns out to
be linear , with mean(g) = 3

2n− 8
9 (3/4)

n.)
The analysis becomes more exciting, but trickier, when we use Algorithm W. Let

p = p′/2 and q = 1 − p as in the previous answer. Clearly g00 = 1, g01 = g10 = zg00,
g02 =

z
2
(g01+g12), and g22 = zg12; but the other four cases need some thought. We have

g11 =
z

4
((12 + q)(g01 + g10) + g12 + 2pg21),

since the costs for x1x2x3x4 = 1010 are 1211 and the unsatisfied clauses are (x̄1∨ x4),
(x̄3∨x4), (x̄1∨x2), (x̄3∨x2); in the former two clauses we flip each literal equally often,
but in the latter two we flip x2 with probability p and the other with probability q.
A similar but simpler analysis shows that g21 =

z
4
(g11+3g22) and g20 =

z
5
(3g10+2g21).

The most interesting case is g12 =
z
3
(pg02 + 2pg11 + 3qg22), where the costs are

2122 and the problematic clauses are (x̄1∨x2), (x̄3∨x2), (x̄4∨x2). If p = 0, AlgorithmW
will always decide to flip x2; but then we’ll be back in state 12 after the next flip.

Indeed, setting p = 0 yields g00 = 1, g01 = g10 = z, g02 = 1
2
z2, g11 = 3

4
z2,

g20 =
3
5
z2+ 3

40
z4, g21 =

3
16
z3, and g12 = g22 = 0. The weighted total therefore turns out

to be g = (40 + 160z + 164z2 + 15z3 + 3z4)/640. Notice that the greedy random walk
never succeeds after making more than 4 flips, in this case; so we should set N = 4 and
restart after each failure. The probability of success is g(1) = 191/320. (This strategy
is actually quite good: It succeeds after making an average of 1577/382 ≈ 4.13 flips
and choosing random starting values x1x2x3x4 about 320/191 times.)

If p is positive, no matter how tiny, the success probability for N =∞ is g(1) = 1.
But the denominator of g is 48 − 48z2 + 26pz2 + 6pz4 − 17p2z4, and we find that
mean(g) = (1548+2399p−255p2)/(1280p−680p2) = (6192+4798p′−255p′2)/(2560p′−
680p′2). Taking p′ = (.001, .01, .1, .5, .9, .99, .999) in this formula gives, respectively,
the approximate values (2421.3, 244.4, 26.8, 7.7, 5.9, 5.7, 5.7).

(Calculations for n = 12 show that g is a polynomial of degree 8 when p = 0,
with g(1) ≈ .51 and g′(1) ≈ 2.40. Thus, setting N = 8 yields success after about
16.1 flips and 1.95 initializations. When p > 0 we have g′(1) ≈ 1.635p−5 + O(p−4) as
p→ 0, and the seven values of p′ considered above yield respectively (5×1016, 5×1011,
5× 106, 1034.3, 91.1, 83.89, 83.95) flips—surprisingly not monotone decreasing in p′.
These WalkSAT statistics can be compared with 17.97 to 105 flips for Algorithm P.)

306. (a) Since l(N) = EN + (1− qN)(N + l(N)), we have qN l(N) = EN +N −NqN =
p1 + 2p2 + · · ·+NpN +NpN+1 + · · ·+Np∞ = N − (q1 + · · ·+ qN−1).

(b) If N = m + k and k ≥ 0 we have EN = m2/n, q1 + · · ·+ qN−1 = km/n, and
qN = m/n; hence l(N) = n+ k(n−m)/m.

(c) If N≤n, l(N) = (N−(N
2

)
/n)/(N/n) = n− N−1

2
; otherwise l(N)= l(n)= n+1

2
.

(d) From qN = p1(N − q1 − · · · − qN−1) and qN+1 = p1(N + 1 − q1 − · · · − qN)
we deduce pN+1 = p1(1− qN), hence 1− qN+1 = (1− p1)(1− qN). So it’s a geometric
distribution, with pt = p(1− p)t−1 for t ≥ 1. (The fact that l(1) = l(2) = · · · is called
the “memoryless property” of the geometric distribution.)

608

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 609

(e) Choose p1, . . . , pn arbitrarily, with qn = p1 + · · ·+ pn ≤ 1. Then, arguing as
in (d), pn+1, pn+2, . . . are defined by 1− qN = (1− 1/l(n))N−n(1− qn) for N ≥ n.

(f) Since l(n+1)− l(n) = (n−(q1+ · · ·+qn))(1−1/qn) ≤ 0, we must have qn = 1
and l(n) = l(n+ 1). (The case l(n) < l(n+ 1) is impossible.)

(g) Let x = p1 and y = p2. By part (f), the conditions are equivalent to
0 < x ≤ x+y < 1 and x(3−2x−y) > 1. Hence 0 < (2x−1)(1−x)−xy ≤ (2x−1)(1−x);
we get the general solution by first choosing 1

2
< x < 1, then 0 ≤ y < (2x−1)(1−x)/x.

(h) If N∗ =∞ and l(n) <∞, we can find n′ with qn′ l(n
′) = p1+2p2+· · ·+n′pn′+

n′pn′+1 + · · ·+ n′p∞ > l(n). Hence l(N) ≥ qN l(N) ≥ qn′ l(n
′) > l(n) for all N ≥ n′.

(i) We have qn+k = k/(k + 1) for k ≥ 0; hence l(n + k) = (k + 1)(n + Hk)/k.
The minimum occurs when l(n + k) ≈ l(n + k − 1), namely when n ≈ k − Hk; thus
k = n+ lnn+O(1). For example, the optimum cutoff value when n = 10 is N∗ = 23.
(Notice that E∞ =∞, yet l = l(N∗) ≈ 14.194 in this case.)

(j) Let pt = [t> 1]/2t−1. Then l(N) = (3− 22−N)/(1− 21−N) decreases to 3.
(k) Clearly l ≤ L. For N ≤ L we have l(N) = (N − (q1 + · · · + qN−1))/qN ≥

(N−(1+ · · ·+(N−1))/L)/(N/L) = L−(N−1)/2 ≥ (L+1)/2. And forN = �L�+k+1,
similarly, l(N) ≥ N − (1+ · · ·+�L�+ kL)/L = �L+ 1�(1− �L�/(2L)) ≥ (L+ 1)/2.

307. (a) EX = EN1 + (1− qN1)(N1 + EX ′), where X ′ is the number of steps for the
sequence (N2, N3, . . .). For numerical results, start with j ← 0, s ← 0, α ← 1; then,
while α > ε, set j ← j + 1, α← (1− qNj)α, and s← s+ ENj + αNj . (Here ε is tiny.)

(b) Let Pj = (1 − qN1) . . . (1 − qNj−1) = Pr(X > Tj), and note that Pj ≤
(1− pn)

j−1 where n = min{t | pt > 0}. Since qN l(N) = EN + (1− qN)N , we have

EX = qN1 l(N1) + (1− qN1)(qN2 l(N2) + (1− qN2)(qN3 l(N3) + · · ·))
=

∞∑
j=1

PjqNj l(Nj) =
∞∑
j=1

(Pj − Pj+1) l(Nj).

(c) EX ≥∑∞
j=1(Pj − Pj+1)l(N

∗) = l.

(d) We can assume that Nj ≤ n for all j; otherwise the strategy would do even
worse. For the hint, let {N1, . . . , Nr} contain rm occurrences of m, for 1 ≤ m ≤ n,
and suppose tm = rm + · · · + rn. If tm < n/(2m), the probability of failure would
be (1 − m/n)tm ≥ 1 − tmm/n > 1/2. Hence we have tm ≥ n/(2m) for all m, and
N1 + · · ·+Nr = t1 + · · ·+ tn ≥ nHn/2.

Now there’s some m such that the first r − 1 trials fail on p(m) with probability
> 1

2 . For this m we have EX > 1
2 (N1 + · · ·+Nr−1) ≥ 1

2 (N1 + · · ·+Nr − n).

308. (a) 2a+1 − 1; and we also have S2a+b = Sb+1 for 0 ≤ b < 2a − 1 (by induction).

(b) The sequence (un, vn) in (131) has 1 + ρk entries with un = k; and ρ1 +
· · · + ρn = n − νn by Eq. 7.1.3–(61). From the double generating function g(w, z) =∑

n≥0 w
νnzn = (1+wz)(1+wz2)(1+wz4)(1+wz8) . . . we deduce that

∑
k≥0 z2k+1−νk =

zg(z−1, z2).
(c) {n | Sn = 2a} = {2a+1k + 2a+1 − 1− νk | k ≥ 0}; hence ∑n≥0 z

n[Sn=2a] =

z2
a+1−1g(z−1, z2

a+1

) = z2
a+1−1(1 + z2

a+1−1)(1 + z2
a+2−1)(1 + z2

a+3−1)
(d) When 2a occurs for the 2bth time, we’ve had 2a+b−c − [c>a] occurrences

of 2c, for 0 ≤ c ≤ a+ b. Consequently Σ(a, b, 1) = (a+ b− 1)2a+b + 2a+1.

(e) The exact value is
∑a+b

c=0 2
a+b−c2c +

∑ρk
c=1 2

a+b+c; and ρk ≤ λk = �lg k�.
(f) The stated formula is Emink{Σ(a, b, k) | Σ(a, b, k) ≥ X}, if we penalize the

algorithm so that it never succeeds unless it is run with the particular cutoff N = 2a.

609

From the Library of Melissa Nuno

ptg999

610 ANSWERS TO EXERCISES 7.2.2.2

(g) We have Q ≤ (1− qt)2
b ≤ (1− qt)

1/qt < e−1; hence EX < (a+ b− 1)2a+b +
2a+1+

∑∞
k=1(a+ b+2k−1)2a+be−k = 2a+b((a+ b)e/(e−1)+e(3−e)/(e−1)2+21−b).

Furthermore we have 2a+b < 8l − 4l[b=0], by exercise 306(k).

309. No—far from it. If Algorithm C were to satisfy the hypotheses of exercise 306, it
would have to do complete restarts: It would not only have to flush every literal from
the trail, it would also have to forget all the clauses that it has learned, and reinitialize
the random heap. [But reluctant doubling appears to work well also outside of Vegas.]

310. A method analogous to (131) can be used: Let (u′1, v
′
1) = (1, 0); then define

(u′n+1, v
′
n+1) = (u′n & −u′n = 1$ v′n? (succ(u′n), 0): (u

′
n, v

′
n + 1)). Here ‘succ’ is the

Fibonacci-code successor function that is defined by six bitwise operations in answer
7.1.3–158. Finally, let S′n = Fv′n+2 for n ≥ 1. (This sequence 〈S′n〉, like 〈Sn〉, is “nicely
balanced”; hence it is universal as in exercise 308. For example, when Fa appears
for the first time, there have been exactly Fa+2−c occurrences of Fc, for 2 ≤ c ≤ a.)

311. Because 〈Rn〉 does surprisingly well in these tests, it seems desirable to consider
also its Fibonacci analog: If fn = succ(fn−1) is the binary Fibonacci code for n, we
can call 〈ρ′n〉 = 〈ρfn〉 = (0, 1, 2, 0, 3, 0, 1, 4, 0, . . .) the “Fibonacci ruler function,” and
let 〈R′n〉 = (1, 2, 3, 1, 5, 1, 2, 8, 1, . . .) be the “ruler of Fibonaccis,” where R′n = F2+ρ′n.

The results (ES , ES′ , ER, ER′) form = 1 andm = 2 are respectively (315.1, 357.8,
405.8, 502.5) and (322.8, 284.1, 404.9, 390.0); thus S beats S′ beats R beats R′ when
m = 1, while S′ beats S beats R′ beats R when m = 2. The situation is, however,
reversed for larger values of m: R beats R′ beats S beats S′ when m = 90, while R′

beats R beats S′ beats S when m = 89.
In general, the reluctant methods shine for small m, while the more “aggressive”

ruler methods forge ahead as m grows: When n = 100, S beats R if and only if m ≤ 13,
and S′ beats R′ if and only ifm ≤ 12. The doubling methods are best whenm is a power
of 2 or slightly less; the Fibonacci methods are best when m is a Fibonacci number or
slightly less. The worst cases occur at m = 65 = 26 + 1 for S and R (namely 1402.2
and 845.0); they occur at m = 90 = F11 + 1 for S′ and R′ (namely 1884.8 and 805.9).

312. T (m,n) = m + b2bh0(θ)/θ + 2bg(θ), where b = �lgm�, θ = 1 − m/n, ha(z) =∑
n z

n[Sn=2a], and g(z) =
∑

n≥1 Snz
n =

∑
a≥0 2

aha(z).

313. If l is flipped, the number of unsatisfied clauses increases by the cost of |l| and
decreases by the number of unsatisfied clauses that contain l; and the latter is at least 1.

Consider the following interesting clauses, which have the unique solution 0000:

x1 ∨ x̄2, x̄1 ∨ x2, x2 ∨ x̄3, x̄2 ∨ x3, x3 ∨ x̄4, x̄3 ∨ x4, x̄1 ∨ x̄4.
“Uphill” moves 1011 !→ 1111 and 1101 !→ 1111 are forced; also 0110 !→ 1110 or 0111.

314. (Solution by Bram Cohen, 2012.) Consider the 10 clauses 1̄2̄345̄67, 1̄23̄45̄67,
1234̄5, 1234̄6, 1234̄7, 1̄2̄3̄4̄, 1̄2̄3̄5̄, 1̄2̄3̄6̄, 1̄2̄4̄5̄, 1̄2̄4̄6̄, and 60 more obtained by the cyclic
permutation (1234567). All binary x = x1 . . . x7 with weight νx = 2 have cost-free flips
leading to weight 3, but no such flips to weight 1. Since the only solution has weight 0,
Algorithm W loops forever whenever νx > 1. (Is there a smaller example?)

315. Any value with 0 ≤ p < 1/2 works, since each graph component is eitherK1 orK2.

316. No; max θ(1 − θ)d for 0 ≤ θ < 1 is dd/(d + 1)d+1, when θ = 1/(d + 1). [But
Theorem J for d > 2 is a consequence of the improved Theorem L in exercise 356(c).]

317. Number the vertices so that the neighbors of vertex 1 are 2, . . . , d′, and let
Gj = G \ {1, . . . , j}. Then α(G) = α(G1) − Pr(A1 ∩ A2 ∩ · · · ∩ Am), and the latter
probability is ≤ Pr(A1∩Ad′+1∩· · ·∩Am) = Pr(A1 | Ad′+1∩· · ·∩Am)α(Gd′) ≤ pα(Gd′).

610

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 611

Let ρ = (d − 1)/d. By induction we have α(Gj) > ρα(Gj+1) for 1 ≤ j < d′,
because vertex j + 1 has degree < d in Gj . If d

′ = 1 then α(G) ≥ α(G1) − pα(G1) >
ρα(G1) > 0. Otherwise if d′ ≤ d, α(G) ≥ α(G1)− pα(Gd′) > α(G1) − pρ1−d′α(G1) ≥
α(G1)− pρ1−dα(G1) = ρα(G1) > 0. Otherwise we must have d′ = d+1, with vertex 1
of degree d, and α(G) > α(G1)− pρ−dα(G1) =

d−2
d−1α(G1) ≥ 0.

318. Let fn = MG(p) where G is the graph of a complete t-ary tree with tn leaves;
thus G has tk vertices at distance k from the root, for 0 ≤ k ≤ n. Then

f0 = 1− p, f1 = (1− p)t − p, and fn+1 = f tn − pf t
2

n−1 for n > 1.

By Theorem S, it suffices to show that fn ≤ 0 for some n.

The key idea is to let g0 = 1− p and gn+1 = fn+1/f
t
n = 1− p/gtn. Assuming that

gn > 0 for all n, we have g1 < g0 and gn − gn+1 = p/gtn − p/gtn+1 > 0 when gn+1 < gn.
Hence limn→∞ gn = λ exists, with 0 < λ < 1. Furthermore λ = 1 − p/λt, so that
p = λt(1− λ). But then p ≤ tt/(t+ 1)t+1 (see answer 316 with θ = 1− λ).

[One must admit, however, that the limit is not often reached until n is extremely
large. For example, even if t = 2 and p = .149, we don’t have fn < 0 until n = 45.
Thus G must have at least 245 vertices before this value of p is too large for Lemma L.]

319. Let x = 1/(d− 1). Since ex > 1 + x = d/(d− 1), we have e > (d/(d− 1))d−1.

320. (a) Let fm(p) be the Möbius polynomial when p1 = · · · = pm = p. Then we have
fm(p) = fm−1(p) − pfm−2(p), and one can show by induction that fm(1/(4 cos

2 θ)) =
sin((m+ 2)θ)/((2 cos θ)m+1 sin θ). The threshold decreases to 1/4 as m→∞.

(b) 1/(4 cos2 π
2m

); the Möbius polynomial gm(p) = fm−1(p) − pfm−3(p) satisfies
the same recurrence as fm(p), and equals 2 cosmθ/(2 cos θ)m when p = 1/(4 cos2 θ).

[In terms of the classical Chebyshev polynomials, gm(p) = 2pm/2Tm(1/(2
√
p))

and fm(p) = p(m+1)/2Um+1(1/(2
√
p)).]

321. Let θ = (2 − √2)/2, θ′ = θ(1 − θ) = (
√
2 − 1)/2, and c = (p − θ)/(1 − θ).

The method of answer 345 gives (Pr(ABCD), Pr(ABCD), Pr(ABCD), Pr(ABCD),
Pr(ABCD), Pr(ABCD)) = (0, θ′(1−c)3, 2θ′(1−c)2c, θ2(1−c)2+2θ′(1−c)3, θ2(1−c)c+
3θ′(1− c)c2, θ2c2+4θ′c3). Other cases are symmetric to these six. When p = 3/10 the
six probabilities are ≈ (0, .20092, .00408, .08815, .00092, .00002).

322. (a) Let aj =
∑

i wi[ij ∈A], bj =
∑

k yk[jk∈B], cl =
∑

k yk[kl∈C], and dl =∑
i wi[li∈D]. Then when X = j and Z = l, the best way to allocate the events is

AB AB

ABAB

Y

W

︷ ︸︸ ︷āj ︷ ︸︸ ︷aj

︷︸︸︷ bj︷
︸︸
︷ b̄j CD CD

CDCD

Y

W

︷ ︸︸ ︷cl ︷ ︸︸ ︷c̄l

︷︸︸︷ d̄l︷︸︸︷ dl

withinW and Y. Hence Pr(A∩B∩C∩D) =∑
j,l xjzl((āj+d̄l)

.−1)((b̄j+ c̄l) .−1), which
is zero if and only if we have aj + dl ≥ 1 or bj + cl ≥ 1 for all j and l with xjzl > 0.

(b) Since
∑

j xj(aj , bj) = (p, p), the point (p, p) lies in the convex hull of the

points (aj , bj). So there must be points (a, b) = (aj , bj) and (a′, b′) = (aj′ , bj′) such
that the line from (a, b) to (a′, b′) intersects the region {(x, y) | 0 ≤ x, y ≤ p}; in other
words μa+ (1− μ)a′ ≤ p and μb+ (1− μ)b′ ≤ p. Similarly we can find c, d, c′, d′, ν.

611

From the Library of Melissa Nuno

ptg999

612 ANSWERS TO EXERCISES 7.2.2.2

(c) Fact: If a ≥ 2
3
and b′ ≥ 2

3
, then μ = 1

2
; hence a = b′ = 2

3
and a′ = b = 0.

Notice also that there are 16 symmetries, generated by (i) a ↔ b, c ↔ d; (ii) a ↔ a′,
b↔ b′, μ↔ 1− μ; (iii) c↔ c′, d↔ d′, ν ↔ 1− ν; (iv) a↔ d, b↔ c, μ↔ ν.

If c ≤ c′ and d ≤ d′, or if c ≤ 1
3
and d ≤ 1

3
, we can assume (by symmetry) that

the Fact applies; this gives a solution to all the constraints, with c = d = c′ = d′ = 1
3
.

For the remaining solutions we may assume that a, b′ > 1
3
> a′, b. Suppose the line

from (a, b) to (a′, b′) intersects the line from (0, 0) to (1, 1) at the point (α,α); dividing
a, b, a′, b′ by 3α gives a solution in which μa+(1−μ)a′ = μb+(1−μ)b′ = 1

3
. Similarly,

we can assume that d, c′ > 1
3
> d′, c and that νc + (1 − ν)c′ = νd + (1 − ν)d′ = 1

3
.

Consequently a + d ≥ 1 and b′ + c′ ≥ 1. Symmetry also allows us to assume that
a+d′ ≥ 1. In particular, a > 2

3
; and, by the Fact, b′ < 2

3
. So a′+d ≥ 1, d > 2

3
, c′ < 2

3
.

Now extend the lines that connect (a, b) to (a′, b′) and (c, d) to (c′, d′), by increas-
ing a, b′, c′, d while decreasing a′, b, c, d′, until a′ = 1 − d and a = 1 − d′, and until
either a = 1 or b = 0, and either d = 1 or c = 0. The only solution of this kind with
b′ + c′ ≥ 1 occurs when a = d = 1, a′ = b = c = d′ = 0, b′ = c′ = 1/2, μ = 1

3 , ν =
2
3 .

(d) For the first solution, we can let W , X, Y, Z be uniform on {0, 1, 2}, {0, 1},
{0, 1, 2}, and {0}, respectively; and let A = {10, 20}, B = {11, 12}, C = {00},
D = {00}. (For example, WXY Z = 1110 gives event B.) The second solution turns
out to be the same, but with (X,Y,Z,W) in place of (W,X, Y,Z). Notice that the
solution applies also to P4, where the threshold is 1

3
. [See STOC 43 (2011), 242.]

323. cbc. In this simple case, we just eliminate all strings in which c is followed by a.

324. For 1 ≤ j ≤ n, and for each v such that v = xj or v−−−xj , let i ≺ j for each i < j
such that v = xi. (If several values of i qualify, it suffices to consider only the largest
one. Several authors have used the term “dependence graph” for this partial ordering.)
The traces equivalent to α correspond to the topological sortings with respect to ≺,
because those arrangements of the letters are precisely the permutations that preserve
the empilement.

In (136), for example, with x1 . . . xn = bcebafdc, we have 1 ≺ 2, 1 ≺ 4, 2 ≺ 4,
4 ≺ 5, 3 ≺ 6, 2 ≺ 7, 3 ≺ 7, 2 ≺ 8, 4 ≺ 8, and 7 ≺ 8. Algorithm 7.2.1.2V produces 105
solutions, 12345678 (bcebafdc) through 36127485 (efbcdbca).

325. Every such trace α yields an acyclic orientation, if we let u−−→v when u appears
at a lower level in α’s empilement. Conversely, the topological sortings of any acyclic
orientation are all equivalent traces; so this correspondence is one-to-one. [See Ira M.
Gessel, Discrete Mathematics 232 (2001), 119–130.]

326. True: x commutes with y if and only if y commutes with x.

327. Each trace α is represented by its height h = h(α) ≥ 0, and by h linked lists
Lj = Lj(α) for 0 ≤ j < h. The elements of Lj are the letters on level j of α’s
empilement; these letters have disjoint territories, and we keep each list in alphabetic
order so that the representation is unique. The canonical string representing α is
then L0L1 . . . Lh−1. (For example, in (136) we have L0 = be, L1 = cf , L2 = bd ,
L3 = ac, and the canonical representation is becfbdac.) We also maintain the sets
Uj =

⋃{T (a) | a ∈ Lj} as bit vectors; in (136), for example, they are U0 = #36,
U1 =

#1b, U2 =
#3c, U3 =

#78.

To multiply α by β, do the following for k = 0, 1, . . . , h(β) − 1 (in that order),
and for each letter b ∈ Lk(β) (in any order): Set j ← h(α); then while j > 0 and
T (b) & Uj−1(α) = 0, set j ← j − 1. If j = h(α), set Lj(α) empty, Uj(α) ← 0, and
h(α)← h(α) + 1. Insert b into Lj(α), and set Uj(α)← Uj(α) + T (b).

612

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 613

328. Do the following for k = h(β) − 1, . . . , 1, 0 (in that order), and for each letter
b ∈ Lk(β) (in any order): Set j ← h(α) − 1; while j > 0 and T (b) & Uj(α) = 0, set
j ← j − 1. Report failure if b isn’t in Lj(α). Otherwise remove b from that list and set
Uj(α)← Uj(α)− T (b); if Uj(α) is now zero, set h(α)← h(α)− 1.

If there was no failure, the resulting α is the answer.

329. Do the following for k = 0, 1, . . . , h(α) − 1 (in that order), and for each letter
a ∈ Lk(α) (in any order): Report failure if a isn’t in L0(β). Otherwise remove a from
that list, set U0(β)← U0(β)− T (a), and renormalize the representation of β.

Renormalization involves the following steps: Set j ← c← 1. While Uj−1(β) �= 0
and c �= 0, terminate if j = h(β); otherwise set c← 0, j ← j+1, and then, for each letter
b in Lj−1(β) such that T (b) & Uj−2(β) = 0, move b from Lj−1(β) to Lj−2(β) and set
Uj−2(β)← Uj−2(β)+T (b), Uj−1(β)← Uj−1(β)−T (b), c← 1. Finally, if Uj−1(β) = 0,
set Ui−1(β)← Ui(β) and Li−1(β)← Li(β) for j ≤ i < h(β), then set h(β)← h(β)− 1.

If there was no failure, the resulting β is the answer.

330. Let the territorial universe be V ∪E, the vertices plus edges of G, and let T (a) =
{a} ∪ {{a, b} | a −−− b}. [G. X. Viennot, in 1985, called this subgraph a starfish.]
Alternatively, we can get by with just two elements in each set T (a) if and only if
G = L(H) is the line graph of some other multigraph H. Then each vertex a of G
corresponds to an edge u−−−v in H, and we can let T (a) = {u, v}.

[Notes: The smallest graph G that isn’t a line graph is the “claw” K1,3. Since
sets of independent vertices in the line graph G are sets of disjoint edges in H, also
called matchings of H, the Möbius polynomial of G is also known as the “matching
polynomial” ofH. Such polynomials are important in theoretical chemistry and physics.
When all territories have |T (a)| ≤ 2, all roots of the polynomial M∗

G(z) in (149) are
real and positive, by exercise 341. ButMclaw(z, z, z, z) = 1−4z+3z2−z3 has complex
roots ≈ 0.317672 and 1.34116± 1.16154i.]

331. If α is a string with k > 0 occurrences of the substring ac, there are 2k ways
to decompose α into factors {a, b, c, ac}, and the expansion includes +α and −α each
exactly 2k−1 times. Thus we’re left with the sum of all strings that don’t contain ‘ac’.

332. No: If b commutes with a and c, but ac �= ca, we’re dealing with strings that
contain no adjacent pairs ba or cb; hence cab qualifies, but it’s equivalent to the smaller
string bca. [Certain graphs do define traces with the stated property, as we’ve seen in
(135) and (136). Using the next exercise we can conclude that the property holds if
and only if no three letters a < b < c have a /−−− b, b /−−− c, and a−−− c in the graph G
of clashes. Thus the letters can be arranged into a suitable linear order if and only if
G is a cocomparability graph; see Section 7.4.2.]

333. To show that
∑

α∈A,β∈B(−1)|β|αβ = 1, let γ = a1 . . . an be any nonempty string.

If γ cannot be factored so that a1 . . . ak ∈ A and ak+1 . . . an ∈ B, then γ doesn’t appear.
Otherwise γ has exactly two such factorizations, one in which k has its smallest possible
value and the other in which k is one greater; these factorizations cancel each other
in the sum. [Discrete Mathematics 14 (1976), 215–239; Manuscripta Mathematica 19

(1976), 211–243. See also R. Fröberg, Mathematica Scandinavica 37 (1975), 29–39.]

334. Equivalently we want to generate all strings of length n on the alphabet {1, . . . ,m}
that satisfy the following criterion, which strengthens the adjacent-letter test of exer-
cise 332: If 1 ≤ i < j ≤ n, xi /−−− xj , xi+1 /−−− xj , . . . , xj−1 /−−− xj , then xi ≤ xj . [See
A. V. Anisimov and D. E. Knuth, Int. J. Comput. Inf. Sci. 8 (1979), 255–260.]

T1. [Initialize.] Set x0 ← 0 and xk ← 1 for 1 ≤ k ≤ n.

613

From the Library of Melissa Nuno

ptg999

614 ANSWERS TO EXERCISES 7.2.2.2

T2. [Visit.] Visit the trace x1 . . . xn.

T3. [Find k.] Set k ← n. While xk = m set k ← k − 1. Terminate if k = 0.

T4. [Advance xk.] Set xk←xk + 1 and j ← k − 1.

T5. [Is xk valid?] If xj > xk and xj /−−−xk, return to T4. If j > 0 and xj < xk
and xj /−−−xk, set j ← j − 1 and repeat this step.

T6. [Reset xk+1 . . . xn.] While k < n do the following: Set k ← k + 1, xk ← 1;
while xk−1 > xk and xk−1 /−−−xk, set xk ← xk + 1. Then go back to T2.

335. Given such an ordering, we have MG = det(I −A), where the entry in row u and
column v of A is v [u≥ v or u−−−v]. The determinant in the given example is

det

⎛⎜⎜⎜⎜⎜⎝
1 −b −c 0 0 0
0 1−b 0 −d 0 0
0 −b 1−c −d −e 0
0 −b −c 1−d 0 −f
0 −b −c −d 1−e −f
0 −b −c −d −e 1−f

⎞⎟⎟⎟⎟⎟⎠+ det

⎛⎜⎜⎜⎜⎜⎝
−a −b −c 0 0 0
0 1 c −d 0 0
0 0 1 −d −e 0
0 0 0 1−d 0 −f
0 0 0 −d 1−e −f
0 0 0 −d −e 1−f

⎞⎟⎟⎟⎟⎟⎠ ,

after expanding the first column, then subtracting the first row from all other rows in
the right-hand determinant. Therefore this rule satisfies recurrence (142).

[The result also follows from MacMahon’s Master Theorem, exercise 5.1.2–20,
using the characterization of lexicographically smallest traces in answer 334. Accord-
ing to Theorem 5.1.2B, such traces are in one-to-one correspondence with multiset
permutations whose two-line representation does not contain v

u when v > u and v /−−−u.
Is there a similar determinantal expression when G is not a cocomparability graph?]

336. (a) If α is a trace for G and β is a trace for H, we have μG⊕H(αβ) = μG(α)μH(β).
Hence MG⊕H =MGMH . (b) In this case μG−−−H(αβ) = μG(α) if β = ε, μH(β) if α = ε;
otherwise it’s zero. Therefore MG−−−H =MG +MH − 1.

[These rules determine MG recursively whenever G is a cograph (see exercise 7–
90). In particular, complete bipartite and k-partite graphs have simple Möbius series,
exemplified byMG = (1−a)(1−b)(1−c)+(1−d)(1−e)+(1−f)−2 when G = K3,2,1.]

337. Substituting a1 + · · ·+ ak for a in MG gives MG′ . (Each trace for G′ is obtained
by putting subscripts on the a’s of the traces for G.)

338. The proof of Theorem F needs only minor changes: We limit α to traces that
contain no elements of A, and we define α′ and β′ by letting a be the smallest letter /∈ A
in the bottom level of γ’s empilement. If γ has no such letter, there’s only one factor-
ization, with α = ε. Otherwise we pair up cancelling factorizations. [Incidentally, the
sum of all traces whose sinks are in A must be written in the other order: M−1

G MG\A.]

339. (a) “Push down” on piece xj and factor out what comes through the floor.
(b) Factor out the pyramid for the smallest label, and repeat on what’s left.
(c) This is a general convolution principle for labeled objects [see E. A. Bender

and J. R. Goldman, Indiana Univ. Math. J. 20 (1971), 753–765]. For example, when
l = 3 the number of ways to get a labeled trace of length n from three labeled pyramids
is
∑

i,j,k

(
n

i,j,k

)
PiPjPk/3! = n!

∑
i,j,k(Pi/i!)(Pj/j!)(Pk/k!)/3!, with i+j+k = n in both

of these sums. We divide by 3! so that the topmost pyramid labels will be increasing.
(d) Sum the identity in (c) for l = 0, 1, 2,
(e) T (z) =

∑
n≥0 tnz

n = 1/MG(z) by Theorem F, and P (z) =
∑

n≥1 pnz
n/n.

Note: If we retain the letter names, writing for exampleMG(z) = 1−(a+b+c)z+acz2
instead ofMG(z) = 1−3z+z2, the formal power series− lnMG(z) exhibits the pyramids

614

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 615

of length n in the coefficient of zn, but only in the sense of commutative algebra (not
trace algebra). For example, the coefficient of z3 obtained from

∑
k≥1(1−MG(z))

k/k
with trace algebra includes the nonpyramidal term bac/6.

340. Let w((i1 . . . ik)) = (−1)k−1ai1i2ai2i3 . . . aiki1 ; thus w(π) = (−a13a34a42a21)
(−a57a75)(a66) in the given example. The permutation polynomial is then detA, by
definition of the determinant. (And we get the permanent, if we omit the (−1)k−1.)
341. The hint is true when n = 2, since the first involution polynomials are w11x and
w11w22x

2−w12. And there’s a recurrence: W (S) = wiixW (S \ i)−∑j �=iW (S \{i, j}).
So we can prove the existence of n+1 roots s1 < r1 < · · · < rn < sn+1 by induc-

tion: LetWn(x) be the polynomial for {1, . . . , n}. ThenWn+1(x) is w(n+1)(n+1)xWn(x)

minus n polynomials w(n+1)jW ({1, . . . , n} \ j), each with roots q
(j)
k that are nicely

sandwiched between the roots of Wn. Furthermore q
(j)
n−k = −q(j)k and rn+1−k = −rk,

for 1 ≤ k ≤ n/2. It follows that Wn+1(rn) < 0, Wn+1(rn−1) > 0, and so on, with
(−1)kWn+1(rn+1−k) > 0 for 1 ≤ k ≤ n/2. Moreover, Wn+1(0) = 0 when n is even;
(−1)kWn+1(0) > 0 when n = 2k − 1; and Wn+1(x) > 0 for all large x. Hence the
desired sk exist. [See Heilmann and Lieb, Physical Review Letters 24 (1970), 1412.]

342. If we replace (i1 . . . ik) by ai1i2ai2i3 . . . aiki1 (as in answer 340, but without the
(−1)k−1), thenMGn becomes det(I−A). Replacing aij by aijxj gives the determinant
in MacMahon’s Master Theorem. And if x1 = · · · = xn = x, we get the polynomial
det(I−xA), whose roots are the reciprocals of the roots of A’s characteristic polynomial.
343. The formulas in answer 336 show that MG(p1, . . . , pm) increases whenever any
pj decreases, with respect to a cograph G. The only graph on ≤ 4 vertices that isn’t
a cograph is P4 (see exercise 7–90); then MG(p1, p2, p3, p4) = 1 − p1 − p2 − p3 − p4 +
p1p3 + p1p4 + p2p4 = (1 − p1)(1 − p3 − p4) − p2(1 − p4). In this case also we can
conclude that MG(p1, . . . , p4) > 0 implies (p1, . . . , p4) ∈ R(G). But when G = P5, we
find MG(1− ε, 1− ε, ε, 1− ε, 1− ε) > 0 for 0 ≤ ε < φ−2; yet (1− ε, 1− ε, ε, 1− ε, 1− ε)
is never in R(G) because MG(0, 0, ε, 1− ε, 1− ε) = −(1− ε)2.

344. (a) If some minterm, say B1B2B3B4, has negative “probability,” then p1p4 ×
(1− π2 − π3 + π23) < 0; hence MG(0, p2, p3, 0) < 0 violates the definition of R(G).

(b) In fact, more is true: πI∪J = πIπJ when i /−−−j for i ∈ I, j ∈ J, and I∩J = ∅.
(c) It’s MG(p1[1∈ J], . . . , pm[m∈ J]), by (140) and (141). This important fact,

already implicit in the solution to part (a), implies that β(G | J) > 0 for all J .
(d) Writing just ‘J ’ for ‘G|J ’, we shall prove that α(i∪ J)/β(i∪ J) ≥ α(J)/β(J)

for i /∈ J , by induction on |J |. Let J ′ = {j ∈ J | i /−−−j}. Then we have

α(i ∪ J) = α(J)− Pr
(
Ai ∩

⋂
j∈J

Aj

)
≥ α(J)− Pr

(
Ai ∩

⋂
j∈J′

Aj

)
≥ α(J)− piα(J

′),

because of (133). Also β(i∪J) = β(J)−piβ(J ′). Hence α(i∪J)β(J)−α(J)β(i∪J) ≥
(α(J) − piα(J

′))β(J) − α(J)(β(J) − piβ(J
′)) = pi(α(J)β(J

′) − α(J ′)β(J)), which is
≥ 0 by induction since J ′ ⊆ J .

[This argument proves that Lemma L holds whenever (p1, . . . , pm) leads to a le-
gitimate probability distribution with β(G) > 0; hence such probabilities are in R(G).]

(e) By induction, we have β(i ∪ J) = β(J) − θiβ(J
′)
∏

i−−−j(1 − θj) ≥ β(J) −
θiβ(J

′)
∏

j∈J\J′(1− θj) ≥ (1− θi)β(J), because β(J)/β(J
′) ≥∏

j∈J\J′(1− θj).

345. (Solution by A. D. Scott and A. D. Sokal.) Set p′j = (1 + δ)pj where δ ≤ 0 is
the slack of (p1, . . . , pm). Then MG(p

′
1, . . . , p

′
m) = 0, but it becomes positive if any

p′j is decreased. Define events B′
1, . . . , B

′
m by the construction in exercise 344. Let

C1, . . . , Cm be independent binary random variables such that Pr(Cj = 1) = qj ,

615

From the Library of Melissa Nuno

ptg999

616 ANSWERS TO EXERCISES 7.2.2.2

where (1 − p′j)(1 − qj) = 1 − pj . Then the events Bj = B′
j ∨ Cj satisfy the desired

conditions: Pr(Bi | Bj1 ∩ · · · ∩ Bjk) = Pr(Bi | B ′
j1 ∩ · · · ∩ B

′
jk) = Pr(Bi) = pi; and

Pr(B1 ∨ · · · ∨ Bm) ≥ Pr(B′
1 ∨ · · · ∨ B′

m) = 1.

346. (a) By (144), Ka,G is the sum of all traces on the probabilities of G \ a whose
sources are neighbors of a. Decreasing pj doesn’t decrease any trace.

(b) Suppose vertex a = 1 has neighbors 2, . . . , j. If we’ve recursively computed
MG\a∗ and MG\a, finding that (pj+1, . . . , pm) ∈ R(G\a∗) and (p2, . . . , pm) ∈ R(G\a),
then we know Ka,G; and the monotonicity property in (a) implies that (p1, . . . , pm) ∈
R(G) if and only if aKa,G < 1.

The graph G =
a b

c d

e f

in exercise 335 can, for example, be processed as follows:

Mabcdef =Mbcdef

(
1−a Mdef

Mbcdef

)
= (1−a′)(1−b′) . . . (1−f ′), a′ =

a

(1−b′)(1−c′) ,

Mbcdef =Mcdef

(
1−b Mcef

Mcdef

)
= (1−b′)(1−c′) . . . (1−f ′), b′ =

b(1−c′′)
(1−c′)(1−d′) ,

Mcdef =Mdef

(
1−c Mf

Mdef

)
= (1−c′)(1−d′)(1−e′)(1−f ′), c′ =

c

(1−d′)(1−e′) ,

Mcef =Mef

(
1−c Mf

Mef

)
= (1−c′′)(1−e′)(1−f ′), c′′ =

c

(1−e′) ,

Mdef =Mef

(
1−d Me

Mef

)
= (1−d′)(1−e′)(1−f ′), d′ =

d(1−e′′)
(1−e′)(1−f ′) ,

Mef =Mf

(
1−eMε

Mf

)
= (1−e′)(1−f ′), e′ =

e

(1−f ′) ,

Me =Mε

(
1−eMε

Mε

)
= (1−e′′), e′′ = e,

Mf =Mε

(
1−f Mε

Mε

)
= (1−f ′), f ′ = f,

with Mε = 1. (The equations on the left are derived top-down, then the equations on
the right are evaluated bottom-up. We have (a, b, . . . , f) ∈ R(G) if and only if f ′ < 1,
e′′ < 1, e′ < 1, . . . , a′ < 1.) Even better is to traverse this graph in another order,
using the rule MG⊕H =MGMH (exercise 336) when subgraphs aren’t connected:

Mcdabef =Mdabef

(
1−cMbMf

Mdabef

)
= (1−c′)(1−d′) . . . (1−f ′), c′ =

c

(1−a′)(1−d′)(1−e′) ,

Mdabef =MabMef

(
1−d MaMe

MabMef

)
= (1−d′)(1−a′)(1−b′)(1−e′)(1−f ′), (see below)

Mab =Mb

(
1−aMε

Mb

)
= (1−a′)(1−b′), a′ =

a

(1−b′) ,

Ma =Mε

(
1−aMε

Mε

)
= (1−a′′), a′′ = a,

Mb =Mε

(
1−bMε

Mε

)
= (1−b′), b′ = b,

where d′ = dMaMε/(MabMef) = d(1−a′′)(1−e′′)/((1−a′)(1−b′)(1−e′)(1−f ′)), and
Mef , Me, Mf , Mε are as before. In this way we can often solve the problem in linear
time. [See A. D. Scott and A. D. Sokal, J. Stat. Phys. 118 (2005), 1151–1261, §3.4.]

616

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 617

347. (a) Suppose v1−−−v2−−−· · ·−−−vk−−−v1 is an induced cycle. We can assume that
v1 4 v2. Then, by induction on j, we must have v1 4 · · · 4 vj for 1 < j ≤ k; for if
vj+1 4 vj we would have vj+1−−−vj−1 by (∗). But now vk−−−v1 implies that k = 3.

(b) Let the vertices be {1, . . . ,m}, with territory sets T (a) ⊆ U for 1 ≤ a ≤ m;
and let U be a tree such that each U | T (a) is connected. Let Ua be the least common
ancestor of T (a) in U . (Thus the nodes of T (a) appear at the top of the subtree rooted
at Ua.) Since Ua ∈ T (a), we have a−−−b when Ua = Ub.

Writing s 4U t for the ancestor relation in U, we now define a 4 b if Ua 4U Ub
or if Ua = Ub and a < b. Then (∗) is satisfied: If t ∈ T (a)∩T (b), we have Ua 4U t and
Ub 4U t, hence Ua �U Ub or Ub �U Ua, hence a 4 b or b 4 a. And if a 4 b 4 c and
t ∈ T (a) ∩ T (c), we have Ua �U Ub �U Uc; consequently Ub ∈ T (a) ∩ T (b), because Ub
lies on the unique path between t and Ua in U and T (a) is connected.

(c) Processing the nodes in any order such that a is eliminated before b whenever
Ua is a proper ancestor of Ub will then lead only to subproblems in which the algorithm
needs no “double-primed” variables.

For example, using (a, b, . . . , g) instead of (1, 2, . . . , 7) in order to match the
notation in exercise 346, suppose U is the tree rooted at p having the edges p−−− q,
p −−− r, r −−− s, r −−− t, and let T (a) = {p, q, r, t}, T (b) = {p, r, s}, T (c) = {p, q},
T (d) = {q}, T (e) = {r, s}, T (f) = {s}, T (g) = {t}. Then a 4 b 4 c 4 d, c 4 e 4 f ,
e 4 g. The algorithm computes Mabcdefg = (1 − a′)Mbcdefg, Mbcdefg = (1 − b′)Mcdefg,
etc., where a′ = aMf/Mbcdefg, b

′ = bMdfg/Mcdefg = b(MdMfMg)/(McdMefMg), etc.
In general, the tree ordering guarantees that no “double-primed” variables are

needed. Thus the formulas reduce to v′ = v/
∏

u−−v, v�u(1− u′) for each vertex v.

(d) For example, we have p1 = a, . . . , p7 = g, θ1 = a′, . . . , θ7 = g′ in (c). The
values of the θ’s, which depend on the ordering 4, are uniquely defined by the given
equations; and we haveMG(p1, . . . , pm) = (1−θ1) . . . (1−θm) in any case. [W. Pegden,
Random Structures & Algorithms 41 (2012), 546–556.]

348. There is at least one singularity at z = ρeiθ for some θ. If 0 < r < ρ, the power
series f(z) =

∑∞
n=0 f

(n)(reiθ)(z−reiθ)n/n! has radius of convergence ρ−r. If z = ρ isn’t

a singularity, the radius of convergence for θ = 0 would exceed ρ−r. But |f (n)(reiθ)| =
|
∑∞

m=0m
nan(re

iθ)m−n| ≤ f (n)(r). [Mathematische Annalen 44 (1894), 41–42.]

349. Typical generating functions are g0000001 = 1; g0110110 = z(g0100110 + g0101110 +
g0110110+g0111110)/4 (in Case 1) or g0110110 = z(g0000110+g0010110+g0100110+g0110110)/4
(in Case 2). These systems of 128 linear equations have solutions whose denominators
involve one or more of the polynomials 4−z, 2−z, 16−12z+z2, 4−3z, 64−80z+24z2−z3,
8−8z+z2 in Case 1 (see exercise 320); the denominators in Case 2 are powers of 4−z.

Setting g(z) =
∑

x gx(z)/128 leads to g(z) = 1/((2− z)(8 − 8z + z2)) in Case 1,
with mean 7 and variance 42; g(z) = (1088−400z+42z2− z3)/(4− z)6 in Case 2, with
mean 1139/729 ≈ 1.56 and variance 1139726/7292 ≈ 2.14.

[The upper bound E1+ · · ·+E6 is achieved by the distribution of Case 1, because
it matches the extreme distribution (148) of the path graph P6. Incidentally, if Case 1
is generalized from n = 7 to arbitrary n, the mean is n(n − 1)/6 and the variance is
(n+ 3)(n+ 2)n(n− 1)/90.]

350. (a) The generating function for N is
∏n

k=1(1 − ξk)/(1 − ξkz); so the mean and
variance, in general, are

∑n
k=1 ξk/(1 − ξk) and

∑n
k=1 ξk/(1 − ξk)

2. In particular, the
means are (i) n; (ii) n/(2n− 1); (iii) n/(2n − 1); (iv) H2n −Hn +

1
2n

= ln 2 +O(1/n);

(v) 1
2
(1
n+1

+ 1
2n
− 1

2n+1
) = 1

2n
+O(1/n2). The variance in case (i) is 2n; otherwise it’s

asymptotically the same as the mean, times 1 +O(1/n).

617

From the Library of Melissa Nuno

ptg999

618 ANSWERS TO EXERCISES 7.2.2.2

(b) In this case the mean and variance are ξ/(1 − ξ) and ξ/(1 − ξ)2, where
ξ = Pr(Am) = 1− (1− ξ1) . . . (1− ξn). This value ξ is (i) 1− 2−n; (ii) 1− (1− 1

2n
)
n
=

1 − e−1/2 + O(1/n); (iii) 1 − (1− 2−n)n = n/2n + O(n2/4n); (iv) 1/2; (v) 1/(2n+ 2).
Hence the respective means are (i) 2n−1; (ii) e1/2−1+O(1/n); (iii) n/2n+O(n2/4n);
(iv) 1; (v) 1/(2n + 1). And the variances are (i) 4n − 2n; (ii) e − e1/2 + O(1/n);
(iii) n/2n +O(n2/4n); (iv) 2; (v) 1/(2n+ 1) + 1/(2n+ 1)2.

(c) Since G is Kn,1, exercises 336 and 343 imply that (ξ1, . . . , ξn, ξ) ∈ R(G) if
and only if ξ < 1

2
. This condition holds in cases (ii), (iii), and (v).

351. (Solution by Moser and Tardos.) We require i −−− j if there’s a setting of the
variables such that Ai is false and Aj is true, provided that some change to the variables
of Ξj might make Ai true. And vice versa with i↔ j.

(The Local Lemma can be proved also for directed lopsidependency graphs; see
Noga Alon and Joel H. Spencer, The Probabilistic Method (2008), §5.1. But the theory
of traces, which we use to analyze Algorithm M, is based on undirected graphs, and no
algorithmic extension to the directed case is presently known.)

352. Answer 344(e), withMG = β(i∪J),MG\i = β(J), proves thatMG\i/MG ≥ 1−θi.
353. (a) There are n+1 sorted strings in Case 1, namely 0k1n−k for 0 ≤ k ≤ n. There
are Fn+2 solutions in Case 2 (see, for example, exercise 7.2.1.1–91).

(b) At least 2nMG(1/4), where G is the path Pn−1. By exercise 320 we have
MG(1/4) = fn−1(1/4) = (n+ 1)/2n; so Case 1 matches the lower bound.

(c) There are no lopsidependencies. Hence the relevant G is the empty graph on
m = n−1 vertices;MG(1/4) = (3/4)n−1 by exercise 336; and indeed, Fn+2 ≥ 3n−122−n.

354. Differentiate (151) and set z ← 1.

355. If A = Aj is an isolated vertex of G, then 1 − pjz is a factor of the polynomial
M∗

G(z) in (149), hence 1 + δ ≤ 1/pj ; and Ej = pj/(1 − pj) ≤ 1/δ. Otherwise
MG(p1, . . . , pj−1, pj(1 + δ), pj+1, . . . , pm) = M∗

G(1) − δpjM
∗
G\A∗(1) > M∗

G(1 + δ) = 0;
so Ej = pjM

∗
G\A∗(1)/M

∗
G(1) > 1/δ.

356. (a) We prove the hint by induction on |S|. It’s obvious when S = ∅; otherwise
let X = S ∩⋃i∈Uj Uj and Y = S \X. We have

Pr(Ai | AS) =
Pr(Ai ∩ AX ∩AY)

Pr(AX ∩ AY)
≤ Pr(Ai ∩ AY)

Pr(AX ∩AY)
≤ Pr(Ai) Pr(AY)

Pr(AX ∩AY)
=

Pr(Ai)

Pr(AX |AY)

by (133). Suppose i belongs to the cliques Uj0 , . . . , Ujr where j = j0. Let X0 = ∅
and Xk = (S ∩ Ujk) \ Xk−1, Yk = Y ∪ X1 ∪ · · · ∪ Xk−1 for 1 ≤ k ≤ r. We have
Pr(Al |AYk)≤θljk for all l ∈ Xk, since |Yk| < |S| when Xk �= ∅; hence Pr(AXk | AYk) ≥
(1 + θijk − Σjk). Thus Pr(AX |AY) = Pr(AX1 |AY1) Pr(AX2 |AY2) . . . Pr(AXr |AYr) ≥∏

k �=j,i∈Uk (1 + θik −Σk), by the chain rule (exercise MPR-14); the hint follows.

Finally let Wk = U1 ∪ · · · ∪ Uk for 1 ≤ k ≤ t. The hint implies that

Pr(A1 ∩ · · · ∩ Am) = Pr(AW1) Pr(AW2 | AW1) . . . Pr(AWt | AWt−1)

≥ (1−Σ1)(1−Σ2) . . . (1−Σt) > 0.

(b) The extreme events B1, . . . , Bm of Theorem S satisfy the hint of (a). Thus
Pr(Bi |

⋂
k/∈Uj Bk) ≤ θij for all i ∈ Uj ; hence qi = Pr(Bi |

⋂
k �=i Bk) ≤ θij/(1+θij−Σj).

Furthermore Ei = qi/(1− qi) in (152), because qi = piMG\i∗/MG\i.

618

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 619

(c) Let U1, . . . , Ut be the edges of G, with θik = θi when Uk = {i, j}. Then
Σk = θi+θj < 1, and the sufficient condition in (a) is that Pr(Ai) ≤ θi

∏
j �=k,i−−−j(1−θj)

whenever i−−−k. (But notice that Theorem M does not hold for such larger pi.)

[K. Kolipaka, M. Szegedy, and Y. Xu, LNCS 7408 (2012), 603–614.]

357. If r > 0, we have x = r/(1−p), y = r/(1−q). But r = 0 is possible only on the axes
of Fig. 94: Either (p, q) = (0, 1), x = 0, 0 < y ≤ 1, or (p, q) = (1, 0), 0 < x ≤ 1, y = 1.

358. Suppose x ≥ y (hence p ≥ q and x > 0). Then p ≤ r if and only if 1− y ≤ y.

359. Instead of computing πl by formula (154), represent it as two numbers (π+l , π
′
l),

where π+l is the product of the nonzero factors and π′l is the number of zero factors.
Then the quantity πl̄ needed in (156) is π+

l̄
[π′̄l=0]; and the quantity πl/(1− ηC→l) is

π+l [π
′
l=1] if ηC→l = 1, otherwise it’s π+l [π

′
l=0]/(1− ηC→l). A similar method can be

used to separate out the zero factors of
∏

l∈C γl→C in (157).

360. We may assume that η3 = 0. Since πl = 1 implies that ηC→l = γl̄→C = 0, we
have ηC→1 = ηC→2̄ = ηC→3 = ηC→4̄ = γ1̄→C = γ2→C = γ3̄→C = γ4→C = 0 for
all C. Consequently, as in (159), all but three of the values ηC→l are zero; let x, y, z
denote the others. Also let η1̄ = a, η2 = b, η4 = c, η3̄ = d. Then π1̄ = (1−a)(1−x),
π2 = (1−b)(1−y), π4 = (1−c)(1−z), and π3̄ = 1 − d. A fixed point is obtained if
x = d(b+ cd(1−b) + ad2(1−b)(1−c))/(1− d3(1−a)(1−b)(1−c)), etc. If d is 0 or 1 then
x = y = z = d. [Are there any other fixed points, say with π1 �= 1?]

361. The π’s and γ’s will also be either 0 or 1, and we exclude the case πl = πl̄ = 0; thus
each variable v is either 1, 0, or ∗, depending on whether (πv, πv̄) is (0, 1), (1, 0), or (1, 1).

Any assignment of 1, 0, or ∗ to the variables is permissible, provided that every
clause has at least one literal that’s true or two that are ∗. (Such partial assignments
are called “covering,” and they’re usually possible even with unsatisfiable clauses; see
exercise 364.) All survey messages η′C→l = ηC→l are zero except when clause C has l
as its only non-false literal. The reinforcement message ηl can be either 0 or 1, except
that it must be 1 if l is true (πl = 0) and all messages ηC→l are 0.

If we also want η′l = ηl, we take κ = 1 in (158), and ηl = 1− πl.

362. Create a linked list L, containing all literals that are to be forced true, including
all literals that are in 1-clauses of the original problem. Do the following steps while L
is nonempty: Remove a literal l from L; remove all clauses that contain l; and remove
l̄ from all the clauses that remain. If any of those clauses has thereby been reduced
to a single literal, (l′), check to see if l′ or l̄ ′ is already present in L. If l̄ ′ is present,
a contradiction has arisen; we must either terminate unsuccessfully or restart step S8
with increased ψ. But if l̄ ′ and l′ are both absent, put l′ into L.

363. (a) True; indeed, this is an important invariant property of Algorithm C.

(b) W (001) = 1, W (∗∗∗) = p1p2p3, otherwise W (x) = 0.

(c) Statements (i) and (iii) are true, but not (ii); consider x = 10∗, x′ = 00∗, and
the clause 123.

(d) All eight subsets of {1, 2̄, 3̄} are stable except {2̄, 3̄}, because x1 is
constrained in 100. The other seven are partially ordered as shown. (This
diagram illustrates L7, the smallest lattice that is lower semimodular but not modular.)

(e) x2x3 = 00 01 0∗ 10 11 1∗ ∗0 ∗1 ∗∗
x1 = 0 0 q1q2 0 q1q3 q1q2q3 q1q2p3 0 q1p2q3 q1p2p3
x1 = 1 q2q3 q1q2q3 q1q2p3 q1q2q3 q1q2q3 q1q2p3 q1p2q3 q1p2q3 q1p2p3
x1 = ∗ 0 p1q2q3 p1q2p3 p1q2q3 p1q2q3 p1q2p3 p1p2q3 p1p2q3 p1p2p3

619

From the Library of Melissa Nuno

ptg999

620 ANSWERS TO EXERCISES 7.2.2.2

(f) One solution is {1̄2̄34̄5̄, 1̄4, 2̄5, 3̄45̄, 3̄4̄5}. (For these clauses the partial assign-
ment {3} is stable, but it is “unreachable” below {1, 2, 3, 4, 5}.)

(g) If L = L′ \ l and L′ ∈ L but L /∈ L, introduce the clause (xl ∨
∨
k∈L′ x̄k).

(h) True, because L′ = L \ l′ and L′′ = L \ l′′, where |l′| and |l′′| are uncon-
strained with respect to L. A variable that’s unconstrained with respect to L is also
unconstrained with respect to any subset of L.

(i) Suppose L′ = L′(0) ≺ · · · ≺ L′(s) = {1, . . . , n} and L′′ = L′′(0) ≺ · · · ≺ L′′(t) =
{1, . . . , n}. Then L′(s−i) ∩ L′′(t−j) is stable for 0 ≤ i ≤ s and 0 ≤ j ≤ t, by induction
on i+ j using (h).

(j) It suffices to consider the case L = {1, . . . , n}. Suppose the unconstrained
variables are x1, x2, x3. Then, by induction, the sum is q1q2q3 + p1 + p2 + p3 −
(p1p2 + p1p3 + p2p3) + p1p2p3 = 1, using “inclusion and exclusion” to compensate for
terms that are counted more than once. A similar argument works with any number
of unconstrained variables.

Notes: See F. Ardila and E. Maneva, Discrete Mathematics 309 (2009), 3083–
3091. The sum in (j) is ≤ 1 when each pk+qk ≤ 1 for 1 ≤ k ≤ n, because it is monotone.
Because of (i), the stable sets below L form a lower semimodular lattice, with

L′ ∧ L′′ = L′ ∩ L′′ and L′ ∨ L′′ =
⋂
{L′′′ | L′′′ ⊇ L′ ∪ L′′ and L′′′ 5 L}.

E. Maneva and A. Sinclair noted in Theoretical Comp. Sci. 407 (2008), 359–369 that a
random satisfiability problem is satisfiable with probability ≤ E

∑
W (X), the expected

total weight of partial assignments having the given distribution, because of identity (j);
this led them to sharper bounds than had previously been known.

364. (a) True if and only if all clauses have length 2 or more.
(b) 001 and ∗∗∗ are covering; these are the partial assignments of nonzero weight,

when q1 = · · · = qn = 0 in the previous exercise. Only 001 is a core.
(c) ∗∗∗ is the only covering and the only core; W (0101) =W (0111) = q3.
(d) In fact, every stable partial assignment L′ has a unique covering assignment L

with L 5 L′, namely L =
⋂{L′′ | L′′ 5 L′, obtained by successively removing

unconstrained literals (in any order)}.
(e) If L′ and L′′ are adjacent we have L′ ∩ L′′ 5 L′ and L′ ∩ L′′ 5 L′′.
(f) Not necessarily. For example, the clauses {1̄2̄34, 1̄23̄4, 1̄234̄, 12̄3̄4, 12̄34̄, 123̄4̄}

define S2(x1, x2, x3, x4); there are two clusters but only an empty core.
[A. Braunstein and R. Zecchina introduced the notion of covering assignments in

J. Statistical Mechanics (June 2004), P06007:1–18.]

365. If L is any of the six solutions in (8), and if q is odd, then qL−d is a covering assign-
ment for 0 ≤ d < q and 8q−d ≤ n < 9q−d. (For example, if L = {1̄, 2̄, 3, 4, 5̄, 6̄, 7, 8} the
partial assignment 3L− 1 = {2, 5, 8, 11, 14, 17, 20, 23} works for n ∈ [23 . . 25].) Thus all
n > 63 are “covered.” [Do all nonempty coverings of waerden (3, 3;n) have this form?]

366. Eliminating variable 1 (x1) by resolution yields the erp rule x̄1 ← (x2 ∨ x̄3) ∧
(x3 ∨ x4), and new clauses {23̄4, 23̄4̄, 234, 2̄34}. Then eliminating 2 (x2) yields x2 ←
(x3 ∨ x4) ∧ (x̄3 ∨ x4) and new clauses {34, 3̄4}. Now 4 (x4) is pure; so x4 ← 1, and
F ′ = ∅ is satisfiable. (Going backwards in the erp rules will then make x4 ← 1, x2 ← 1,
x1 ← 0, regardless of x3.)

367. (We can choose whichever of the two assignments is most convenient, for example
by picking the shortest, since either one is a valid erp rule.) Any solution will either
satisfy all the clauses on the right side of x̄ or all the clauses on the right side of x, or
both. For if a solution falsifies both Ci \ x and C ′

j \ x̄, it falsifies Ci 2C ′
j .

620

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 621

In either case the value of x will satisfy all of the clauses C1, . . . , Ca, C
′
1, . . . , C

′
b.

368. If (l) is a clause, subsumption removes all other clauses that contain l. Then
resolution (with p = 1) will remove l̄ from all q of its clauses, and (l) itself.

369. Let Ci = (l∨αi) and C ′
j = (l̄∨βj). Each omitted clause Ci 2C ′

j = (αi∨βj), where
1 < i ≤ p and r < j ≤ q, is redundant, because it is a consequence of the non-omitted
clauses (αi ∨ l̄1), . . . , (αi ∨ l̄r), (l1 ∨ · · · ∨ lr ∨ βj) via hyperresolution. [This technique
is called “substitution,” because we essentially replace |l| by its definition.]

370. (a ∨ b) ∧ (a ∨ b̄ ∨ c̄) ∧ (ā ∨ b ∨ c) = (a ∨ c̄) ∧ (b ∨ c). (See the discussion following
7.1.1–(27). In general, advanced preprocessors use the theory of DNF minimization, in
its dual form, to find irredundant minimum forms for CNF. Such techniques are not
implemented, however, in the examples of preprocessing considered in this section.)

371. One scenario starts by eliminating variable 1, replacing eight clauses by eight new
ones: 234̄7̄, 2̄3̄47, 235̄9̄, 2̄3̄59, 34̄57̄, 3̄45̄7, 45̄79̄, 4̄57̄9. Then 8 is eliminated, replacing
another eight by eight: 24̄56̄, 2̄45̄6, 256̄7̄, 2̄5̄67, 257̄9̄, 2̄5̄79, 467̄9̄, 4̄6̄79. Then come
self-subsumptions: 234̄7̄ !→ 237̄ (via 234), 34̄57̄ !→ 357̄ (345), 357 !→ 35 (357̄); and
35 subsumes 345, 357̄. Further self-subsumptions yield 235̄9̄ !→ 239̄, 2̄3̄59 !→ 2̄3̄9,
2̄5̄79 !→ 2̄79, 2̄45̄6 !→ 2̄46, 246 !→ 46; and 46 subsumes 456, 467̄9̄, 2̄46. Similarly,
2̄5̄67 !→ 2̄67, 4̄57̄9 !→ 4̄59, 2̄3̄47 !→ 2̄3̄7, 3̄45̄7 !→ 3̄5̄7, 3̄5̄7̄ !→ 3̄5̄; and 3̄5̄ subsumes 3̄4̄5̄,
3̄5̄7. Then 24̄56̄ !→ 24̄6̄, 2̄4̄6̄ !→ 4̄6̄; and 4̄6̄ subsumes 4̄5̄6̄, 24̄6̄, 4̄6̄79. Also 256̄7̄ !→ 26̄7̄,
45̄79̄ !→ 45̄9̄, 257̄9̄ !→ 27̄9̄.

Round 2 of variable elimination first gets rid of 4, replacing six clauses by just
four using exercise 369: 236̄, 2̄3̄6, 569, 5̄6̄9̄. Then variable 3 goes away; ten clauses
become eight, again via exercise 369: 25̄6̄, 2̄56, 25̄7̄, 2̄57, 25̄9̄, 2̄59, 56̄9̄, 5̄69. And the
ten clauses that now contain 2 or 2̄ resolve into just four: 567̄9̄, 56̄7̄9, 5̄679̄, 5̄6̄79.

After eliminating 7 and 9, only four clauses remain, namely 56, 56̄, 5̄6, 5̄6̄; and
they quickly produce a contradiction.

372. (This problem is surprisingly difficult.) Are the clauses {1̄5̄, 1̄6̄, 2̄5̄, 2̄6̄, 3̄7̄, 3̄8̄,
4̄7̄, 4̄8̄, 123, 124, 134, 234, 567, 568, 578, 678} as “small” as possible?
373. Using the notation of (102), elimination of x1m, x2m, . . . , xmm produces new
clauses M ′

imk for 1 ≤ i, k < m as well as Mm(m−1). Then elimination of xm(m−1)
gives (Mi(m−1)∨Mm(m−2)) for 1 ≤ i < m. This clause self-subsumes toMi(m−1), using
M ′

im1, . . . ,M
′
im(m−2). AndMi(m−1) subsumes eachM

′
imk, so we’ve reducedm tom−1.

374. As in (57), variables are numbered 1 to n, and literals from 2 to 2n+ 1. But we
will now number the clauses from 2n + 2 to m + 2n + 1. The literals of clauses will
be stored in cells, somewhat as in Algorithm A, but with additional links: Each cell p
contains not only a literal L(p), a clause number C(p), and forward/backward pointers
F(p) and B(p) to other cells with the same literal, but also left/right pointers S(p) and
D(p) to other cells in the same clause. (Think “sinister” and “dexter.”) Cells 0 and 1
are reserved for special use; cell l, for 2 ≤ l < 2n+ 2, serves as the head of the doubly
linked list of cells that contain the literal l; cell c, for 2n+ 2 ≤ c < m+ 2n+ 2, serves
as the head of the doubly linked list of cells that contain the elements of clause c; and
cell p, for m + 2n + 2 ≤ p < M , either is available for future use or holds literal and
clause data for a currently active clause.

Free cells are accessed via a global pointer AVAIL. To get a new p⇐ AVAIL when
AVAIL �= 0, we set p← AVAIL, AVAIL← S(AVAIL); but if AVAIL = 0, we set p←M and
M ←M +1 (assuming that M never gets too large). To free one or more cells from p′

to p′′ that are linked together via left links, we set S(p′)← AVAIL and AVAIL← p′′.

621

From the Library of Melissa Nuno

ptg999

622 ANSWERS TO EXERCISES 7.2.2.2

The number of active clauses containing literal l, TALLY(l), can therefore be
computed as follows: Set t← 0, p← F(l); while not lit (p), set t← t+1 and p← F(p);
set TALLY(l)← t; here ‘lit (p)’ stands for ‘p < 2n+2’. The number of literals in clause c,
SIZE(c), can be computed by a similar loop, using ‘cls (p)’ to stand for ‘p < m+2n+2’:
Set t ← 0, p ← S(c); while not cls (p), set t ← t + 1 and p ← S(p); set SIZE(c) ← t.
After initialization, the TALLY and SIZE statistics can be updated dynamically as local
changes are made. (TALLY(l) and SIZE(c) can be maintained in L(l) and C(c).)

To facilitate resolution, the literals of each clause are required to increase from
left to right; in other words, we must have L(p) < L(q) whenever p = S(q) and
q = D(p), unless cls (p) or cls (q). But the clauses within literal lists need not appear
in any particular order. We might even have C(F(p)) > C(q) but C(F(p′)) < C(q′),
when C(p) = C(p′) and C(q) = C(q′).

To facilitate subsumption, each literal l is assigned a 64-bit signature SIG(l) =
(1$U1) | (1$U2), where U1 and U2 are independently random 6-bit numbers. Then
each clause c is assigned a signature that is the bitwise OR of the signatures of its
literals: Set t ← 0, p ← S(c); while not cls (p), set t ← t | SIG(L(p)) and p ← S(p);
set SIG(c)← t. (See the discussion of Bloom’s superimposed coding in Section 6.5.)

(a) To resolve c with c′, where c contains l and c′ contains l̄, we essentially want
to do a list merge. Set p ← 1, q ← S(c), u ← L(q), q′ ← S(c′), u′ ← L(q′), and
do the following while u + u′ > 0: If u = u′, copy(u) and bump(q, q′); if u = ū′ = l,
bump(q, q′); if u = ū′ �= l, terminate unsuccessfully; otherwise if u > u′, copy(u)
and bump(q); otherwise copy(u′) and bump(q′). Here ‘copy(u)’ means ‘set p′ ← p,
p⇐ AVAIL, S(p′)← p, L(p)← u’; ‘bump(q)’ means ‘set q ← S(q); if cls (q) set u← 0,
otherwise set u← L(q)’; ‘bump(q′)’ is similar, but it uses q′ and u′; and ‘bump(q, q′)’
means ‘bump(q) and bump(q′)’. Unsuccessful termination occurs when clauses c and
c′ resolve to a tautology; we set p ← 0, after first returning cells p through S(1) to
free storage if p �= 1. Successful termination with u = u′ = 0 means that the resolved
clause consists of the literals in cells from p through S(1), linked only via S pointers.

(b) Find a literal l in C with minimum TALLY(l). Set p ← F(l), and do the
following while not lit (p): Set c′ ← C(p); if c′ �= c and ∼SIG(c′) & SIG(c) = 0 and
SIZE(c′) ≥ SIZE(c), do a detailed subsumption test; then set p← F(p). The detailed
test begins with q ← S(c), u ← L(q), q′ ← S(c′), u′ ← L(q′), and does the following
steps while u′ ≥ u > 0: bump(q′) while u′ > u; then bump(q, q′) if u′ = u. When the
loop terminates, c subsumes c′ if and only if u ≤ u′.

(c) Use (b), but set p← F(l = x̄? x: l), and use ((SIG(c)&∼SIG(x̄)) | SIG(x))
in place of SIG(c). Also modify the detailed test, by inserting ‘if u = x̄ then u ← x’
just after each occurrence of ‘u← L(q)’.

[The algorithm in (b) was introduced by A. Biere, LNCS 3542 (2005), 59–70, §4.2.
“False hits,” in which the detailed test is performed but no actual (self-)subsumption
is detected, tend to occur less than 1% of the time in practice.]

375. Let each literal l have another field STAMP(l), initially zero; and let s be a global
“time stamp” that is initially zero. To make the test, set s ← s + 1 and σ ← 0; then
set STAMP(u) ← s and σ ← σ | SIG(u) for all u such that (l̄ū) is a clause. If σ �= 0,
set σ ← σ | SIG(l) and run through all clauses c that contain l, doing the following: If
SIG(c) & ∼σ = 0, and if each of c’s literals u �= l has STAMP(u) = s, exit with C1 = c
and r = SIZE(c) − 1. If C1 has thereby been found, set s← s + 1 and STAMP(ū)← s
for all u �= l in c. Then a clause (l̄ ∨ βj) implicitly has j ≤ r in the notation of exercise
369 if and only if βj is a single literal u with STAMP(u) = s.

Given a variable x, test the condition first for l = x; if that fails, try l = x̄.

622

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 623

376. Highest priority is given to the common operations of unit conditioning and pure
literal elimination, which are “low-hanging fruit.” Give each variable x two new fields,
STATE(x) and LINK(x). A “to-do stack,” containing all such easy pickings, begins at
TODO and follows LINKs until reaching Λ. The nonzero states are called FF (forced false),
FT (forced true), EQ (eliminated quietly), and ER (eliminated by resolution). Variable x
is on the to-do stack only if STATE(x) is FF, FT, or EQ.

Whenever a unit clause (l) is detected, with STATE(|l|) = 0, we set STATE(|l|)←
(l & 1? FF: FT), LINK(|l|) ← TODO, and TODO ← |l|. But if STATE(|l|) = (l & 1? FT: FF),
we terminate, because the clauses are unsatisfiable.

Whenever a literal with TALLY(l̄) = 0 is detected, we do the same thing if
STATE(|l|) = 0. But if STATE(|l|) = (l & 1? FT: FF), we simply set STATE(|l|) ← EQ

instead of terminating. (In that case TALLY(l) is also 0.)
To clear the to-do stack, we do the following while TODO �= Λ: Set x← TODO and

TODO← LINK(x); if STATE(x) = EQ, do nothing (no erp rule is needed to eliminate x);
otherwise set l← (STATE(x) = FT?x: x̄), output the erp rule l← 1, and use the doubly
linked lists to delete all clauses containing l and to delete l̄ from all clauses. (Those
deletions update TALLY and SIZE fields, so they often contribute new entries to the to-
do stack. Notice that if clause c loses a literal, we must recompute SIG(c). If clause c
disappears, we set SIZE(c)← 0, and never use c again.)

Subsumption and strengthening are next in line. We give each clause c a new field
LINK(c), which is nonzero if and only if c appears on the “exploitation stack.” That
stack begins at EXP and follows LINKs until reaching the nonzero sentinel value Λ′. All
clauses are initially placed on the exploitation stack. Afterwards, whenever a literal l̄ is
deleted from a clause c, either during unit conditioning or self-subsumption, we test if
LINK(c) = 0; if so, we put c back on the stack by setting LINK(c)← EXP and EXP← c.

To clear the exploitation stack, we first clear the to-do stack. Then, while EXP �=
Λ′, we set c ← EXP, EXP ← LINK(c), and do the following if SIZE(c) �= 0: Remove
clauses subsumed by c; clear the to-do stack; and if SIZE(c) is still nonzero, strengthen
clauses that c can improve, clear the to-do stack, and set TIME(c)← T (see below).

All of this takes place before we even think about the elimination of variables. But
rounds of variable elimination form the “outer level” of computation. Each variable x
has yet another field, STABLE(x), which is nonzero if and only if we need not attempt to
eliminate x. This field is initially zero, but set nonzero when x is eliminated or its elim-
ination has been abandoned. It is reset to zero whenever a variable is later “touched,”
namely when x or x̄ appears in a deleted or self-subsumed clause. (In particular, every
variable that appears in a new clause produced by resolution will be touched, because
it will appear in at least one of the clauses that were replaced by new ones.)

If a round has failed to eliminate any variables, or if it has eliminated them all,
we’re done. But otherwise there’s still work to do, because the new clauses can often
be subsumed or strengthened. (Indeed, some of them might actually be duplicates.)
Hence two more fields are introduced: TIME(l) for each literal and TIME(c) for each
clause, initially zero. Let T be the number of the current elimination round. We
set TIME(l) ← T for all literals l in all clauses that are replaced by resolution, and
TIME(c)← T is also set appropriately as mentioned above.

Introduce yet another field, EXTRA(c), initially zero. It is reset to zero whenever
TIME(c) ← T , and set to 1 whenever c is replaced by a new clause. For every literal
l such that STATE(|l|) = 0 and TIME(l) = T at the end of round T , set EXTRA(c) ←
EXTRA(c) + 4 for all clauses c that contain l, and EXTRA(c) ← EXTRA(c) | 2 for all
clauses c that contain l̄. Then run through all clauses c for which SIZE(c) > 0 and

623

From the Library of Melissa Nuno

ptg999

624 ANSWERS TO EXERCISES 7.2.2.2

TIME(c) < T . If SIZE(c) = EXTRA(c)# 2, remove clauses subsumed by c and clear the
exploitation stack. Also, if EXTRA(c) & 3 �= 0, we may be able to use c to strengthen
other clauses—unless EXTRA(c) & 1 = 0 and EXTRA(c) # 2 < SIZE(c) − 1. Self-
subsumption using l need not be attempted when EXTRA(c)&1 = 0 unless TIME(l̄) = T
and EXTRA(c)# 2 = SIZE(c) − [TIME(l)=T]. Finally, reset EXTRA(c) to zero (even if
TIME(c) = T). [See Niklas Eén and Armin Biere, LNCS 3569 (2005), 61–75.]

377. Each vertex v of G corresponds to variables v1, v2, v3 in F ; each edge u −−− v
corresponds to clauses (ū1 ∨ v2), (ū2 ∨ v3), (ū3 ∨ v̄1), (u2 ∨ v̄1), (u3 ∨ v̄2), (ū1 ∨ v̄3). The
longest paths in the dependency digraph for F have the form t1 → u2 → v3 → w̄1 or
t1 → ū3 → v̄2 → w̄1, where t−−−u−−−v−−−w is a walk in G.

[A similar method reduces the question of finding an oriented cycle of length r in a
given digraph to the question of finding a failed literal in some dependency digraph. The
cycle detection problem has a long history; see N. Alon, R. Yuster, and U. Zwick, Algo-
rithmica 17 (1997), 209–223. So any surprisingly fast algorithm to decide whether or
not failed literals exist—that is, faster than n2ω/(ω+1) whenm = O(n) and matrix mul-
tiplication takesO(nω)—would lead to surprisingly fast algorithms for other problems.]

378. The erp rule l← l∨ (l̄1∧ · · ·∧ l̄q) will change any solution of F \C into a solution
of F . [See M. Järvisalo, A. Biere, and M. Heule, LNCS 6015 (2010), 129–144.]

(In practice it’s sometimes possible to remove tens of thousands of blocked clauses.
For example, all of the exclusion clauses (17) in the coloring problem are blocked, as
are many of the clauses that arise in fault testing. Yet the author has yet to see
a single example where blocked clause elimination is actually helpful in combination
with transformations 1–4, which are already quite powerful by themselves.)

379. (Solution by O. Kullmann.) In general, any set F of clauses can be replaced by
another set F ′, whenever there’s a variable x such that the elimination of x from F
yields exactly the same clauses as the elimination of x from F ′. In this case the elimi-
nation of a has this property. The erp rule a← a∨(b̄∧ c̄∧d) is necessary and sufficient.
380. (a) Reverse self-subsumption weakens it to (a∨b∨c∨d), then to (a∨b∨c∨d∨e),
which is subsumed by (a∨d∨e). [In general one can show that reverse self-subsumption
from C leads to a subsumed clause if and only if C is certifiable from the other clauses.]

(b) Again we weaken to (a ∨ b ∨ c ∨ d ∨ e); but now we find this blocked by c.
(c) No erp rule is needed in (a), but we need c ← c ∨ (ā ∧ b̄) in (b). [Heule,

Järvisalo, and Biere, LNCS 6397 (2010), 357–371, call this “asymmetric elimination.”]

381. By symmetry, we’ll remove the final clause. (Without it, the given clauses state
that x1 ≤ x2 ≤ · · · ≤ xn; with it, they state that all variables are equal.) Assume more
generally that, for 1 ≤ j < n, every clause other than (x̄j ∨ xj+1) that contains x̄j
also contains either xn or x̄i for some i < j. For 1 ≤ j < n − 1 we can then weaken
(x1 ∨ · · · ∨ xj ∨ x̄n) to (x1 ∨ · · · ∨ xj+1 ∨ x̄n). Finally, (x1 ∨ · · · ∨ xn−1 ∨ x̄n) can be
eliminated because it is blocked by xn−1.

Although we’ve eliminated only one clause, n − 1 erp rules are actually needed
to undo the process: x1 ← x1 ∨ xn; x2 ← x2 ∨ (x̄1 ∧ xn); x3 ← x3 ∨ (x̄1 ∧ x̄2 ∧ xn); . . . ;
xn−1 ← xn−1∨(x̄1∧· · ·∧x̄n−2∧xn). (Those rules, applied in reverse order, can however
be simplified to xj ← xj ∨ xn for 1 ≤ j < n, because x1 ≤ · · · ≤ xn in any solution.)

[See Heule, Järvisalo, Biere, EasyChair Proc. in Computing 13 (2013), 41–46.]

382. See M. J. H. Heule, M. Järvisalo, and A. Biere, LNCS 6695 (2011), 201–215.

383. (a) In a learning step, let Φ′ = Φ and Ψ′ = Ψ∪C. In a forgetting step, let Φ′ = Φ
and Ψ = Ψ′ ∪ C. In a hardening step, let Φ′ = Φ ∪ C and Ψ = Ψ′ ∪ C. In a softening

624

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 625

step, let Φ = Φ′ ∪ C and Ψ′ = Ψ ∪ C. In all four cases it is easy to verify that (sat(Φ)
⇐⇒ sat(Φ ∪ Ψ)) implies (sat(Φ) ⇐⇒ sat(Φ′) ⇐⇒ sat(Φ′ ∪ Ψ′)), where sat(G) means
“G is satisfiable,” because sat(G∪G′) =⇒ sat(G). Thus the assertions are invariant.

(b) Each erp rule allows us to go one step backward, until reaching F .

(c) The first (softening) step is fine, because both Φ = (x) and Φ \ (x) = 1 are
satisfiable, and because the erp rule unconditionally makes x true. But the second
(learning) step is flawed, because sat(Φ ∪ Ψ) does not imply sat(Φ ∪ Ψ ∪ C) when
Φ∪Ψ = (x) and C = (x̄). (This example explains why the criterion for learning is not
simply ‘sat(Φ) =⇒ sat(Φ ∪ C)’ as it essentially is for softening.)

(d) Yes, because C is also certifiable for Φ ∪Ψ.
(e) Yes, after softening it. No erp rule is needed, because Φ \ C 3 C.
(f) A soft clause can be discarded whether or not it is subsumed. To discard a

hard clause that is subsumed by a soft clause, first harden the soft one. To discard a
hard C that is subsumed by a hard C ′, weaken C and then discard it. (The weakening
step is clearly permissible, and no erp rule is needed.)

(g) If C contains x̄ and C ′ contains x and C \ x̄ ⊆ C ′ \ x, we can learn the soft
clause C 2 C ′ = C ′ \ x, then use it to subsume C ′ as in (f).

(h) Forget all soft clauses that contain x or x̄. Then let C1, . . . , Cp be the hard
clauses containing x, and C ′

1, . . . , C
′
q those containing x̄. Learn all the (soft) clauses

Ci 2C ′
j , and harden them, noting that they don’t involve x. Weaken each Ci, with erp

rule x← x∨Ci, and forget it; also weaken and forget each C
′
j , with erp rule x← x∧C ′

j .
(One can show that either of the erp rules in (161) would also suffice.)

(i) Whenever Φ∪Ψ is satisfiable, so is Φ∪Ψ∪{(x∨z), (y∨z), (x̄∨ ȳ∨ z̄)}, because
we can always set z ← x̄ ∨ ȳ.

[Reference: M. Järvisalo, M. Heule, and A. Biere, LNCS 7364 (2012), 355–370.
Notice that, by exercise 368, parts (f) and (h) justify the use of unit conditioning.]

384. Whenever we have a solution to Φ \ C that falsifies C, we will show that Φ is
satisfied by making l true; hence softening C is permissible, with erp rule l← l ∨ C.

To prove that claim, notice that a problem could arise only in a hard clause C ′

that contains l̄. But if all other literals of C ′ are false in the given solution, then all
literals of C 2 C ′ are false, contradicting the assumption that (Φ \ C) ∧ C 2C ′ 31 ε.

(Such clauses C are “resolution certifiable” with respect to Φ\C. Blocked clauses
are a very special case. Similarly, we can safely learn any clause that is resolution
certifiable with respect to Φ ∪Ψ.)
385. (a) True, because C ∧ l 31 ε when l ∈ C.

(b) 1̄ is implied, not certifiable; 1̄2 is certifiable, not absorbed; 1̄23 is absorbed.

(c,d) If C is any clause and l is any literal, then F ∧ C 31 l implies F ′ ∧ C 31 l,
because unit propagation in F carries over to unit propagation in F ′.

386. (a) The trail contained exactly score(F,C, l) literals when decision l̄ was made at
level d during the helpful round. The clause learned from the ensuing conflict causes
at least one new literal to be implied at level d′ < d.

(b) The score can’t decrease when F grows.

(c) Each l ∈ C needs at most n helpful rounds to make score(F,C, l) =∞.

(d) Suppose, for example, F = (a∨ d̄)∧(a∨b∨e∨l)∧(ā∨c)∧(b̄)∧(c∨d∨ ē∨l) and
C = (a ∨ b ∨ c ∨ d ∨ l). The helpful sequences of decisions are (ā, c̄, l̄), (c̄, l̄), (d̄, ā, c̄, l̄),
(d̄, c̄, l̄), and they occur with probabilities 1

10
1
6
1
4
, 1
10

1
4
, 1
10

1
8
1
6
1
4
, 1
10

1
8
1
4
.

625

From the Library of Melissa Nuno

ptg999

626 ANSWERS TO EXERCISES 7.2.2.2

In general if a decision is to be made and j elements of C are not yet in the trail,
the probability that suitable decisions will be made at random is at least

f(n, j) = min
(
j−1
2n

f(n−1, j−1), j−2
2(n−1)f(n−2, j−2), . . . ,
1

2(n−j+2)f(n−j+1,1),
1

2(n−j+1)
)
=

(j−1)!
2jnj

.

(e) The waiting time to absorb each clause Ci is upper-bounded by a geometric
distribution whose mean is ≤ 4n|Ci|, repeated at most |Ci|n times.

References: K. Pipatsrisawat and A. Darwiche, Artif. Intell. 175 (2011), 512–525;
A. Atserias, J. K. Fichte, and M. Thurley, J. Artif. Intell. Research 40 (2011), 353–373.

387. We may assume that G and G′ have no isolated vertices. Letting variable vv′

mean that v corresponds to v′, we need the clauses (uv′∨vv′) for u < v and (vu′ ∨vv′)
for u′ < v′. Also, for each u < v with u−−− v in G, we introduce auxiliary variables
uu′vv′ for each edge u′ −−− v′ in G′, with clauses (uu′vv′ ∨ uu′) ∧ (uu′vv′ ∨ vv′) ∧
(
∨{uu′vv′ | u′−−−v′ in G′}). The variables vv′ and uu′vv′ can be restricted to cases
where degree(u) ≤ degree(u′) and degree(v) ≤ degree(v′).

388. (a) Can the complete graph Kk be embedded in G? (b) Can G be embedded in
the complete k-partite graph Kn,...,n, where G has n vertices? (c) Can the cycle Cn be
embedded in G?

389. This is similar to a graph embedding problem, with G′ the 4× 4 (king ∪ knight)
graph and with G defined by edges T−−− H, H−−− E, E−−− �, . . . , N−−− G; however, we
allow v′ = w′ when v �= w, and labels must match. The adjacent Ms can be avoided by
changing ‘PROGRAMMING’ to either ‘PROGRAMXING’ or ‘PROGRAXMING’.

Algorithm C needs fewer than 10 megamems to find the first solution below.
Furthermore, if the blank space can also be moved, the algorithm will rather quickly
also find solutions with just five knight moves (the minimum), or 17 of them (the max):

U P C F

M M O �

I T R A

N G E H

M M I N

A P O G

H R � F

U T E C

H N U F

E M O I

G T � P

A R M C

390. Let d(u, v) be the distance between vertices u and v. Then d(v, v) = 0 and

d(u, v) ≤ j + 1 ⇐⇒ d(u,w) ≤ j for some w ∈ N(v) = {w | w−−−v}
if u �= v. In parts (a), (d), we introduce variables vj for each vertex v and 0 ≤ j ≤ k. In
part (c) we do this for 0 ≤ j < n. But parts (b), (e), (f) use just n variables, {v | v ∈ V }.

(a) Clauses (s0) ∧
∧
v∈V \s((v̄0) ∧

∧k−1
j=0 (v̄j+1∨

∨
w∈N(v)wj)) are satisfied only if

vj ≤ [d(s, v)≤ j]; hence the additional clause (tk) is also satisfied only if d(s, t) ≤ k.
Conversely, if d(s, t) ≤ k, all clauses are satisfied by setting vj ← [d(s, v)≤ j].

(b) There’s a path from s to t if and only if there’s a subset H ⊆ V such that s ∈
H, t ∈ H, and every vertex v of the induced graph G |H has degree 2− [v= s]− [v= t].
[The vertices on a shortest path from s to t yield one such H. Conversely, given H, we
can find vertices vj ∈ H such that s = v0−−−v1−−−· · ·−−−vk = t.]

We can represent that criterion via clauses on the binary variables v = [v∈H] by
asserting (s) ∧ (t), together with clauses to ensure that Σ(v) = 2− [v= s]− [v= t] for
all v ∈ H, where Σ(v) =

∑
w∈N(v)w is the degree of v in G |H. The number of such

clauses for each v is at most 6|N(v)|, because we can append v̄ to each clause of (18)

626

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 627

and (19) with r = 2, and |N(v)| additional clauses will rule out Σ(v) < 2. Altogether
there are O(m) clauses, because

∑
v∈V |N(v)| = 2m.

[Similar but simpler alternatives, such as (i) to require Σ(v) ∈ {0, 2} for all v ∈
V \{s, t}, or (ii) to require Σ(v) ≥ 2 for all v ∈ H\{s, t}, do not work: Counterexamples
are (i) s t and (ii) s t. Another solution, more cumbersome, associates a
Boolean variable with each edge of G.]

(c) Let s be any vertex; use (a) with k = n− 1, plus (vn−1) for all v ∈ V \ s.
(d) Clauses (s0) ∧

∧k−1
j=0

∧
v∈V

∧
w∈N(v)(v̄j∨ wj+1) are satisfied only if we have

vj ≥ [d(s, v)≤ j]; hence the additional unit clause (t̄k) cannot also be satisfied when
d(s, t) ≤ k. Conversely, if d(s, t) > k we can set vj ← [d(s, v)≤ j].

(e) (s) ∧ (
∧
v∈V

∧
w∈N(v)(v̄ ∨ w)) ∧ (t̄).

(f) Letting s be any vertex, use (s) ∧ (
∧
v∈V

∧
w∈N(v)(v̄ ∨ w)) ∧ (

∨
v∈V \s v̄).

[Similar constructions work with digraphs and strong connectivity. Parts (d)–(f)
of this exercise were suggested by Marijn Heule. Notice that parts (a) and (c)–(f)
construct renamed Horn clauses, which work very efficiently (see exercise 444).]

391. (a) Let d − 1 = (ql−1 . . . q0)2. To ensure that (xl−1 . . . x0)2 < d we need the
clauses (x̄i∨

∨{x̄j | j > i, qj = 1}) whenever qi = 0. The same holds for y.
To enforce x �= y, introduce the clause (al−1 ∨ · · · ∨ a0) in auxiliary variables

al−1 . . . a0, together with (āj ∨ xj ∨ yj) ∧ (āj ∨ x̄j ∨ ȳj) for 0 ≤ j < l (see (172)).
(b) Now x �= y is enforced via clauses of length 2l, which state that we don’t have

x = y = k for 0 ≤ k < d. For example, the appropriate clause when l = 3 and k = 5 is
(x̄2 ∨ ȳ2 ∨ x1 ∨ y1 ∨ x̄0 ∨ ȳ0).

(c) Use the clauses of (b) for 0 ≤ k < 2d − 2l, plus clauses of length 2l − 2 for
d ≤ k < 2l stating that we don’t have (xl−1 . . . x1)2 = (yl−1 . . . y1)2 = k − 2l−1. (The
encodings in (b) and (c) are identical when d = 2l.)

[See A. Van Gelder, Discrete Applied Mathematics 156 (2008), 230–243.]

392. (a) [Puzzle (ii) was introduced by Sam Loyd in the Boston Herald, 13 November
1904; page 27 of his Cyclopedia (1914) states that he’d created a puzzle like (i) at age 9!
Puzzle (iv) is by H. E. Dudeney, Strand 42 (1911), 108, slightly modified. Puzzle (iii)
is from the Grabarchuks’ Big, Big, Big Book of Brainteasers (2011), #196; puzzle (v)
was designed by Serhiy A. Grabarchuk in 2015.]

A A A A A
A B B B B
A A A A A

C C C C A

A A A A A

A A A A D D D D

A D D D D E E D

A A A A A A E D

C C C C C A E D

C A A A C A E D
C A B A A A E B
C A B B B E E B

C A A A B B B B

A A A B B B B B
A C A A A C C B

A C C C A C B B

A A D C C C B E
F A D D D E B E

F A A A D E B E

F D D D D E B E

F F F F F E E E

G G G G G H A A A A A A A C C C C C

G F F F G H A C C C C C C C E E E C

G F B F G H A C E E E E E E E D E C
G F B F G H A A E A A A A A A D E E
G F B F G H H A A A G H H H A D D D

G F B F G G H H H H H H G H A A A D

F F B F F G G G G G G G G H H H A D

F B B J F F F F F F F F F F F H A D

B B J J H H H H H H H H H H H A D

B I I I I H I I I I I I A A A A A D

B B B I I I D D D D D D D D D D D

E E E E E A A A A A A A A A A A A A

E D D D E E C C C C C C C C C C C A

E D B D C E C B B B B B B B B B C A

E D B D C E C B F F F F F F F B C A

E D B D C E C B F D D D D D F B C A

E D B B C E C B F D E E E D F B C A

E D F B C C C B F D E A E D F B C A

E D F B B B B B F D E A C B F B C A

E D F F F F F F F D E A C B B B C A

E D D D D D D D D D E A C C C C C A

E E E E E E E E E E E A A A A A A A

(i) (ii) (iii) (iv) (v)

(b) [Puzzle (vi) is an instance of the odd-even transposition sort, exercise 5.3.4–
37. Eight order-reversing connections would be impossible with only eight columns,
instead of the nine in (vii), because the permutation has too many inversions.]

A B B D D F F H H
B A D B F D H F G
C D A F B H D G F
D C F A H B G D E
E F C H A G B E D
F E H C G A E B C
G H E G C E A C B
H G G E E C C A A

A B B D D F

B A D B F D F G
C D A F B D G F
D C F A B G D E
E F C A G B E D
F E C G A E B C
G E G C E A C B

G E E C C A A

A B B C C D D A
D A C B D C A B
D C A B D A C B

C D B A A D B C
C B D B D A D B

B C C D B A B D

B A D C A B A D
A D A A C B A

(vi) (vii) (viii)

627

From the Library of Melissa Nuno

ptg999

628 ANSWERS TO EXERCISES 7.2.2.2

(c) Let dj =
∑j

i=1(|Ti| − 1) and d = dt. We introduce variables vi for 1 ≤ i ≤ d,
and the following clauses for 1 ≤ j ≤ t and dj−1 < i ≤ dj : (v̄i′∨ v̄i) for 1 ≤ i′ ≤ dj−1;
the clauses of answer 390(b) on variables vi, where s is the (i− dj−1)th element of Tj
and t is the last element. These clauses ensure that the sets Vj = {v | vdj−1+1∨· · ·∨vdj}
are disjoint, and that Vj contains a connected component Sj ⊇ Tj .

We also assert (v̄i) for 1 ≤ i ≤ d, whenever Tj is a singleton set {v}.
[For the more general “Steiner tree packing” problem, see M. Grötschel, A. Mar-

tin, and R. Weismantel, Math. Programming 78 (1997), 265–281.]

393. A construction somewhat like that of answer 392(c) can be used with
five different 8 × 8 graphs, one for the moves of each white-black pair Sj .
But we need to keep track of the edges used, not vertices, in order to
prohibit edges that cross each other. Additional clauses will rule that out.

��������
��������
��������
��������
��������
��	��
��
��������
�������

394. Call these clauses langford ′′′(n). [Steven Prestwich described a similar method
in Trends in Constraint Programming (Wiley, 2007), 269–274.] Typical results are:

variables clauses Algorithm D Algorithm L Algorithm C

langford ′′′(9) 206 1157 131Mμ 18Mμ 22Mμ (UNSAT)

langford ′′′(13) 403 2935 1425Gμ 44Gμ 483Gμ (UNSAT)

langford ′′′(16) 584 4859 713Kμ 42Mμ 343Kμ (SAT)

langford ′′′(64) 7352 120035 (huge) (big) 71Mμ (SAT)

395. The color of each vertex v gets binary axiom clauses (v̄j+1∨vj) for 1 ≤ j < d−1, as
in (164). And for each edge u−−−v in the graph, we want d clauses (ūj−1∨uj∨v̄j−1∨vj)
for 1 ≤ j ≤ d, omitting ū0 and v̄0 when j = 1, ud and vd when j = d.

[The surprising usefulness of order encoding in graph coloring was first noticed by
N. Tamura, A. Taga, S. Kitagawa, and M. Banbara in Constraints 14 (2009), 254–272.]

396. First we have (x̄j+1∨xj) and (x̂j+1∨x̂j) for 1 ≤ j < d. Then we have “channeling”
clauses to ensure that j ≤ x < j + 1 ⇐⇒ jπ ≤ xπ < jπ + 1 for 0 ≤ j < d:

(x̄j ∨ xj+1 ∨ x̂jπ) ∧ (x̄j ∨ xj+1 ∨ x̂jπ+1) ∧ (x̂jπ ∨ x̂jπ+1 ∨ xj) ∧ (x̂jπ ∨ x̂jπ+1 ∨ x̄j+1).

(These clauses should be either shortened or omitted in boundary cases, because x0 and
x̂0 are always true, while xd and x̂d are always false. We obtain 6d−8 clauses for each x.)

With such clauses for every vertex of a graph, together with clauses based on
adjacent vertices and cliques, we obtain encodings for n-coloring the n×n queen graph
that involve 2(n3 − n2) variables and 5

3
n4 + 4n3 +O(n2) clauses, compared to n3 − n2

variables and 5
3
n4 − n3 + O(n2) clauses with single cliques and (162) alone. Typical

running times with Algorithm C and single cliques are 323Kμ, 13.1Mμ, 706Gμ for
n = 7, 8, 9; with double clique-ing they become 252Kμ, 1.97Mμ, 39.8Gμ, respectively.

The double clique hints turn out to be mysteriously ineffective when π is the stan-
dard organ-pipe permutation (0π, 1π, . . . , (d−1)π) = (0, 2, 4, . . . , 5, 3, 1) instead of its
inverse. Random choices of π when n = 8 yielded significant improvement almost half
the time, in the author’s experiments; but they had negligible effect in 1/3 of the cases.

Notice that the example π for d = 4 yields x1 = x̄0, x
3 = x3, x̂

1 = x̄2, x̂3 = x1.
Hence the direct encoding is essentially present as part of this redundant representation,
and the hints (ū3∨ v̄3)∧(u1∨v1)∧(û3∨ v̂3)∧(û1∨ v̂1) for 2-cliques {u, v} are equivalent
to (16). But the hints (u2 ∨ v2 ∨w2) ∧ (ū2 ∨ v̄2 ∨ w̄2) ∧ (û2 ∨ v̂2 ∨ ŵ2) ∧ (û2 ∨ v̂2 ∨ ŵ2)
that apply when {u, v, w} is a triangle give additional logical power.

628

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 629

397. There are (p− 2)d binary clauses (ȳi+1j ∨ yij) for 1 ≤ i < p− 1, together with the

(2p− 2)d clauses (x̄ji ∨ xj+1i ∨ yij) ∧ (x̄ji−1 ∨ xj+1i−1 ∨ ȳij) for 1 ≤ i < p, all for 0 ≤ j < d.

The hint clauses (xp−10 ∨ · · · ∨ xp−1p−1) ∧ (x̄d−p+10 ∨ · · · ∨ x̄d−p+1p−1) are also valid.

(This setup corresponds to putting p pigeons into d holes, so we can usually
assume that p ≤ d. If p ≤ 4 it is better to use

(
p
2

)
d clauses as in exercise 395. Notice

that we obtain an interesting representation of permutations when p = d. In that case
y is the inverse permutation; hence (2d−2)p additional clauses corresponding to yj = i
=⇒ xi = j are also valid, as well as two hint clauses for y.)

A related idea, but combined with direct encoding of the x’s, was presented by
I. Gent and P. Nightingale in Proceedings of the International Workshop on Modelling

and Reformulating Constraint Satisfaction Problems 3 (2004), 95–110.

398. We could construct (3p − 4)d binary clauses that involve yij , as in exercise 397.
But it’s better just to have (3p−6)d clauses for the at-most-one constraints x0k+x1k+
· · ·+ x(p−1)k ≤ 1, 0 ≤ k < d.

399. (a) d2−t preclusion clauses (binary); or 2d support clauses (total length 2(d+t)).
(b) If unit propagation derives v̄j from (ūi ∨ v̄j), we knew ui; hence (17) gives ūi′

for all i′ �= i, and v̄j follows from the support clause that contains it.

(c) If unit propagation derives v̄j from its support clause, we knew ūi for all i �= j;
hence (15) gives uj , and v̄j follows from (16). Or if unit propagation derives ui from that
support clause, we knew vj and ūi′ for all i

′ /∈ {i, j}; hence ūj from (16), ui from (15).

(d) A trivial example has no legal pairs; then unit propagation never gets started
from binary preclusions, but the (unit) support clauses deduce all. A more realistic
example has d = 3 and all pairs legal except (1, 1) and (1, 2), say; then we have
(15) ∧ (17) ∧ (ū1 ∨ v̄1) ∧ (ū1 ∨ v̄2) ∧ (v̄3) �31 ū1 but (15) ∧ (17) ∧ (ū1 ∨ v3) ∧ (v̄3) 31 ū1.

[Preclusion was introduced by S. W. Golomb and L. D. Baumert, JACM 12

(1965), 521–522. The support encoding was introduced by I. P. Gent, European Conf.

on Artificial Intelligence 15 (2002), 121–125, based on work of S. Kasif, Artificial
Intelligence 45 (1990), 275–286.]

400. This problem has n variables q1, . . . , qn with n values each; thus there are n2

Boolean values, with qij = [qi= j] = [there’s a queen in row i and column j]. The
constraint between qi and qj is that qi /∈ {qj , qj + i− j, qj − i+ j}; so it turns out that
there are n at-least-one clauses, plus (n3−n2)/2 at-most-one clauses, plus either n3−n2
support clauses or n3−n2+(

n
3

)
preclusion clauses. In this problem each support clause

has at least n− 2 literals, so the support encoding is much larger.

Since the problem is easily satisfiable, it makes sense to try WalkSAT. When
n = 20, AlgorithmW typically finds a solution from the preclusion clauses after making
fewer than 500 flips; its running time is about 500Kμ, including about 200Kμ just to
read the input. With the support clauses, however, it needs about 10 times as many
flips and consumes about 20 times as many mems, before succeeding.

Algorithm L is significantly worse: It consumes 50Mμ with preclusion clauses,
11Gμ with support clauses. Algorithm C is the winner, with about 400Kμ (preclusion)
versus 600Kμ (support).

Of course n = 20 is pretty tame; let’s consider n = 100 queens, when there are
10,000 variables and more than a million clauses. Algorithm L is out of the picture;
in the author’s experiments, it showed no indication of being even close to a solution
after 20Tμ! But Algorithm W solves that problem in 50Mμ, via preclusion, after
making only about 5000 flips. Algorithm C wins again, polishing it off in 29Mμ. With

629

From the Library of Melissa Nuno

ptg999

630 ANSWERS TO EXERCISES 7.2.2.2

the support clauses, nearly 100 million literals need to be input, and Algorithm W is
hopelessly inefficient; but Algorithm C is able to finish after about 200Mμ.

The preclusion clauses actually allow us to omit the at-most-one clauses in this
problem, because two queens in the same row will be ruled out anyway. This trick
improves the run time when n = 100 to 35Mμ for Algorithm W.

We can also append support clauses for the columns as well as the rows. This idea
roughly halves the search space, but it gives no improvement because twice as many
clauses must be handled. Bottom line: Support clauses don’t support n queens well.

(However, if we seek all solutions to the n queens problem instead of stopping
with the first one, using a straightforward extension of Algorithm D (see exercise 122),
the support clauses proved to be definitely better in the author’s experiments.)

401. (a) yj = x2j−1. (b) zj = x3j−1. In general w = �(x+ a)/b� ⇐⇒ wj = xbj−a.

402. (a)
∧�d/2�
j=1 (x̄2j−1 ∨ x2j); (b) ∧
d/2�

j=1 (x̄2j−2 ∨ x2j−1); omit x̄0 and xd.
403. (a)

∧d−1
j=1(x̄

j∨ȳj∨zj); (b)∧d−1
j=1((x̄

j∨zj)∧(ȳj∨zj)); (c)∧d−1
j=1((x

j∨z̄j)∧(yj∨z̄j));
(d)

∧d−1
j=1(x

j ∨ yj ∨ z̄j).
404.

∧d−a
j=0 (x̄

j ∨ xj+a ∨ ȳj ∨ yj+a). (As usual, omit literals with superscript 0 or d.)

405. (a) If a < 0 we can replace ax by (−a)x̄ and c by c + a − ad, where x̄ is given
by (165). A similar reduction applies if b < 0. Cases with a, b, or c = 0 are trivial.

(b) We have 13x + 8ȳ ≤ 63 ⇐⇒ not 13x + 8ȳ ≥ 64 ⇐⇒ not (P0 or . . . or
Pd−1) ⇐⇒ not P0 and . . . and not Pd−1, where Pj = ‘x ≥ j and ȳ ≥ �(64− 13j)/8�’.
This approach yields

∧7
j=0(x̄

j ∨ y8−
(64−13j)/8�), which simplifies to (x̄1 ∨ y1) ∧ (x̄2 ∨
y3) ∧ (x̄3 ∨ y4) ∧ (x̄4 ∨ y6) ∧ (x̄5). (Notice that we could have defined Pj = ‘ȳ ≥ j
and x ≥ �(64 − 8j)/13�’ instead, thereby obtaining the less efficient encoding (x̄5) ∧
(y7 ∨ x̄5)∧ (y6 ∨ x̄4)∧ (y5 ∨ x̄4)∧ (y4 ∨ x̄3)∧ (y3 ∨ x̄2)∧ (y2 ∨ x̄2)∧ (y1 ∨ x̄1); it’s better
to discriminate on the variable with the larger coefficient.)

(c) Similarly, 13x̄+8y ≤ 90 gives (x5∨ ȳ7)∧ (x4∨ ȳ5)∧ (x3∨ ȳ4)∧ (x2∨ ȳ2)∧ (x1).
(The (x, y) pairs legal for both (b) and (c) are (1, 1), (2, 3), (3, 4), (4, 6).)

(d)
∧min(d−1,
(c+1)/a�)
j=max(0,
(c+1−b(d−1))/a�)(x̄

j ∨ ȳ
(c+1−aj)/b�), when a ≥ b > 0 and c ≥ 0.

406. (a) (
∧�√a+1�
j=
(a+1)/(d−1)�(x̄

j ∨ ȳ
(a+1)/j�)) ∧ (
∧
√a+1 �−1
j=
(a+1)/(d−1)�(x̄

(a+1)/j� ∨ ȳj)).
(b) (

∧�√a−1�+1
j=l+1 (xj ∨ y�(a−1)/(j−1)�+1)) ∧ (

∧
√a−1 �
j=l+1 (x�(a−1)/(j−1)�+1 ∨ yj)) ∧

(xl) ∧ (yl), where l = �(a− 1)/(d− 1)�+ 1. [Both formulas belong to 2SAT.]

407. (a) We always have �x/2�+�x/2� = x, �x/2�+�y/2� ≤ x+y
2
≤ �x/2�+�y/2�+1,

and �x/2�+�y/2�−1 ≤ x+y
2 ≤ �x/2�+�y/2�. (Similar reasoning proves the correctness

of Batcher’s odd-even merge network; see Eq. 5.3.4–(3).)

(b) Axiom clauses like (164) needn’t be introduced for u and v, or even for z; so
they aren’t counted here, although they could be added if desired. Let ad = d2 − 1 be
the number of clauses in the original method; then the new method has fewer clauses
when a
d/2� + a�d/2�+1 + 3(d − 2) < ad, namely when d ≥ 7. (The new method
for d = 7 involves 45 clauses, not 48; but it introduces 10 new auxiliary variables.)
Asymptotically, we can handle d = 2t + 1 with 3t2t + O(2t) = 3d lg d + O(d) clauses
and d lg d+O(d) auxiliary variables.

(c) x+ y ≥ z ⇐⇒ (d− 1−x)+ (d− 1− y) ≤ (2d− 2− z); so we can use the same
method, but complemented (namely with xj !→ x̄d−j , yj !→ ȳd−j , zj !→ z̄2d−1−j).

630

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 631

[See N. Tamura, A. Taga, S. Kitagawa, and M. Banbara, Constraints 14 (2009),
254–272; R. Aśın, R. Nieuwenhuis, A. Oliveras, and E. Rodŕıguez-Carbonell, Con-
straints 16 (2011), 195–221.]

408. (a) No; makespan 11 is best, achievable as follows (or via left-right reflection):

M1:

M2:

M3:

J1 J3

J2 J1J3

J3J2 J1

M1:

M2:

M3:

J1J3

J2 J1J3

J3 J2J1

(b) If j is the last job processed by machine i, that machine must finish at time
≤∑n

k=1wik +
∑m

k=1wkj − wij , because j uses some other machine whenever i is idle.
[See D. B. Shmoys, C. Stein, and J. Wein, SICOMP 23 (1994), 631.]

(c) Clearly 0 ≤ sij ≤ t− wij . And if ij �= i′j′ but i = i′ or j = j′, we must have
either sij + wij ≤ si′j′ or si′j′ + wi′j′ ≤ sij whenever wijwi′j′ �= 0.

(d) When wij > 0, introduce Boolean variables skij for 1 ≤ k ≤ t − wij , with
the axiom clauses (s̄k+1ij ∨ skij) for 1 ≤ k < t− wij . Then include the following clauses
for all relevant i, j, i′, and j′ as in (c): For 0 ≤ k ≤ t + 1 − wij − wi′j′ , assert

(p̄iji′j′ ∨ s̄kij ∨ sk+wiji′j′) if ij < i′j′ or (pi′j′ij ∨ s̄kij ∨ sk+wiji′j′) if ij > i′j′, omitting s̄0ij in

the first of these ternary clauses and omitting s
t+1−wi′j′
i′j′ in the last.

[This method, introduced by N. Tamura, A. Taga, S. Kitagawa, and M. Banbara
in Constraints 14 (2009), 254–272, was able to solve several open shop scheduling
problems in 2008 that had resisted attacks by all other approaches.]

Since the left-right reflection of any valid schedule is also valid, we can also save
a factor of two by arbitrarily choosing one of the p variables and asserting (piji′j′).

(e) Any schedule for W and T yields a schedule for �W/k� and �T/k�, if we
examine time slots 0, k, 2k, [With this observation we can narrow down the
search for an optimum makespan by first working with simpler problems; the number
of variables and clauses for �W/k� and T/k is about 1/k times the number for W
and T , and the running time also tends to obey this ratio. For example, the author
solved a nontrivial 8×8 problem by first working with �W/8� and getting the respective
results (U,S,U) for t = (128, 130, 129), where ‘U’ means “unsatisfiable” and ‘S’ means
“satisfiable”; running times were about (75, 10, 1250) megamems. Then with �W/4� it
was (S,U,U) with t = (262, 260, 261) and runtimes (425, 275, 325); with �W/2� it was
(U,S,U) with t = (526, 528, 527) and runtimes (975, 200, 900). Finally with the full W
it was (U,S, S) with t = (1058, 1060, 1059) and runtimes (2050, 775, 300), establishing
1059 as the optimum makespan while doing most of the work on small subproblems.]

Notes: Further savings are possible by noting that any clauses learned while
proving that t is satisfiable are valid also when t is decreased. Difficult random problems
can be generated by using the following method suggested by C. Guéret and C. Prins
in Annals of Operations Research 92 (1999), 165–183: Start with work times wij that
are as near equal as possible, having constant row and column sums s. Then choose
random rows i �= i′ and random columns j �= j′, and transfer δ units of weight by
setting wij ← wij−δ, wi′j ← wi′j+δ, wij′ ← wij′+δ, wi′j′ ← wi′j′−δ, where δ ≤ wij
and δ ≤ wi′j′ ; this operation clearly preserves the row and column sums. Choose δ at
random between p ·min{wij , wi′j′} and min{wij , wi′j′}, where p is a parameter. The
final weights are obtained after making r such transfers. Guéret and Prins suggested
choosing r = n3, and p = .95 for n ≥ 6; but other choices give useful benchmarks too.

409. (a) If S ⊆ {1, . . . , r}, let ΣS =
∑

j∈S aj . We can assume that job n runs on
machines 1, 2, 3 in that order. So the minimum makespan is 2w2n + x, where x is the

631

From the Library of Melissa Nuno

ptg999

632 ANSWERS TO EXERCISES 7.2.2.2

smallest ΣS that is ≥ �(a1 + · · · + ar)/2�. (The problem of finding such an S is well
known to be NP-hard [R. M. Karp, Complexity of Computer Computations (New York:
Plenum, 1972), 97–100]; hence the open shop scheduling problem is NP-complete.)

(b) Makespan w2n + w4n is achievable if and only if ΣS = (a1 + · · · + ar)/2 for
some S. Otherwise we can achieve makespan w2n + w4n + 1 by running jobs 1, . . . , n
in order on machine 1 and letting s3(n−1) = 0, s4n = w2n; also s2j = w2n + w4n, if
machine 1 is running job j at time w2n. The other jobs are easily scheduled.

(c) �3n/2� − 2 time slots are clearly necessary and sufficient. (If all row and
column sums of W are equal to s, can the minimum makespan be ≥ 3

2
s?)

(d) The “tight” makespan s is always achievable: By renumbering the jobs we
can assume that aj ≤ bj for 1 ≤ j ≤ k, aj ≥ bj for k < j ≤ n, b1 = max{b1, . . . , bk},
an = max{ak+1, . . . , an}. Then if bn ≥ a1, machine 1 can run jobs (1, . . . , n) in order
while machine 2 runs (n, 1, . . . , n− 1); otherwise (2, . . . , n, 1) and (1, . . . n) suffice.

If a1 + · · · + an �= b1 + · · · + bn, we can increase an or bn to make them equal.
Then we can add a “dummy” job with an+1 = bn+1 = max{a1 + b1, . . . , an + bn} .− s,
and obtain an optimum schedule in O(n) steps as explained above.

Results (a), (b), (d) are due to T. Gonzalez and S. Sahni, who introduced and
named the open shop scheduling problem in JACM 23 (1976), 665–679. Part (c) is a
subsequent observation and open problem due to Gonzalez (unpublished).

410. Using half adders and full adders as we did in (23) allows us to introduce interme-
diate variables wj such that (x2x1x0)2+(x2x1x000)2+(x2x1x0000)2+(ȳ2ȳ1ȳ0000)2 ≤
(w7w6 . . . w0)2, and then to require (w̄7)∧(w̄6). In slow motion, we successively compute
(c0z0)2 ≥ x0 + x1, (c1z1)2 ≥ x0 + x1 + ȳ0, (c2z2)2 ≥ c0 + z1, (c3z3)2 ≥ x1 + x2 + ȳ1,
(c4z4)2 ≥ c1 + c2 + z3, (c5z5)2 ≥ x2 + ȳ2+ c3, (c6z6)2 ≥ c4+ z5, (c7z7)2 ≥ c5+ c6; then
w7w6 . . . w0 = c7z7z6z4z2z0x1x0. In slower motion, each step (cizi)2 ≥ u + v expands
to zi ≥ u⊕ v, ci ≥ u∧ v; each step (cizi)2 ≥ t+ u+ v expands to si ≥ t⊕u, pi ≥ t∧ u,
zi ≥ v ⊕ s, qi ≥ v ∧ s, ci ≥ pi ∨ qi. And at the clause level, t ≥ u ∧ v ⇐⇒ (t ∨ ū ∨ v̄);
t ≥ u∨ v ⇐⇒ (t∨ ū)∧ (t∨ v̄); t ≥ u⊕ v ⇐⇒ (t∨ ū∨ v)∧ (t∨u∨ v̄). [Only about half of
(24) is needed when inequalities replace equalities. Exercise 42 offers improvements.]

We end up with 44 binary and ternary clauses; 10 of them can be omitted, because
z0, z2, z4, z6, and z7 are pure literals, and the clause for c7 can be omitted if we simply
require c5 = c6 = 0. But the order encoding of exercise 405 is clearly much better. The
log encoding becomes attractive only with larger integers, as in the following exercise.
[See J. P. Warners, Information Processing Letters 68 (1998), 63–69.]

411. Use m + n new variables to represent an auxiliary number w = (wm+n . . . w1)2.
Form clauses as in exercise 41 for the product xy = w; but retain only about half of
the clauses, as in answer 410. The resulting 9mn − 5m − 10n clauses are satisfiable
if w = xy; and we have w ≥ xy whenever they are satisfiable. Now add 3m + 3n − 2
further clauses as in (169) to ensure that z ≥ w. The case z ≤ xy is similar.

412. Mixed-radix representations are also of interest in this connection. See, for
example, N. Eén and N. Sörensson, J. Satisfiability, Bool. Modeling and Comp. 2

(2006), 1–26; T. Tanjo, N. Tamura, and M. Banbara, LNCS 7317 (2012), 456–462.

413. There’s only one, namely
∧
σ1,...,σn∈{−1,1}(σ1x1∨σ1y1∨· · ·∨σnxn∨σnyn). Proof:

Some clause must contain only positive literals, because f(0, . . . , 0) = 0. This clause
must be (x1 ∨ y1 ∨ · · · ∨ xn ∨ yn); otherwise it would be false in cases where f is true.
A similar argument shows that every clause (σ1x1 ∨ σ1y1 ∨ · · · ∨ σnxn ∨ σnyn) must be
present. And no clause for f can contain both xj and ȳj , or both x̄j and yj .

632

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 633

414. Eliminating first an−1, then an−2, etc., yields 2n−1 clauses. (The analogous result
for x1 . . . xn < y1 . . . yn is 2n+ 2n−1+ 1. A preprocessor will probably eliminate an−1.)

415. Construct clauses for 1 ≤ k ≤ n that represent ‘ak−1 implies xk < yk + ak’:(
āk−1 ∨

d−1∨
j=1

(x̄jk ∨ yjk)
)
∧
(
āk−1 ∨ ak ∨

d−1∨
j=0

(x̄jk ∨ yj+1k)
)
, omitting x̄0k and ydk;

also omit ā0. For the relation x1 . . . xn ≤ y1 . . . yn we can omit the d clauses that
contain the (pure) literal an. But for x1 . . . xn < y1 . . . yn, we want an = 0; so we omit
an and the d− 1 clauses (ān−1 ∨ x̄jn ∨ yjn). [The clauses (169) are due to K. Sakallah,
Handbook of Satisfiability (2009), Chapter 10, (10.32).]

416. The other clauses are
∧m
i=1((ui ∨ v̄i ∨ ā0)∧ (ūi ∨ vi ∨ ā0)) and (a0 ∨ a1 ∨ · · · ∨ an).

[See A. Biere and R. Brummayer, Proceedings, International Conference on Formal

Methods in Computer Aided Design 8 (IEEE, 2008), 4 pages [FMCAD08].]

417. The four clauses (s̄ ∨ t̄ ∨ u) ∧ (s̄ ∨ t ∨ v) ∧ (s ∨ t̄ ∨ ū) ∧ (s ∨ t ∨ v̄) ensure that s is
true if and only if t?u: v is true. But we need only the first two of these, as in (173),
when translating a branching program, because the other two are blocked in the initial
step. Removing them makes the other two blocked on the second step, etc.

418. A suitable branching program for hn when n = 3, beginning at I11, is I11 =
(1̄? 21: 22), I21 = (2̄? 31: 32), I22 = (2̄? 32: 33), I31 = (3̄? 0: 42), I32 = (3̄? 42: 43), I33 =
(3̄? 43: 1), I42 = (1̄? 0: 1), I43 = (2̄? 0: 1). It leads via (173) to the following clauses for
row i, 1 ≤ i ≤ m: (ri,1,1); (r̄i,k,j∨ xik∨ ri,k+1,j) ∧ (r̄i,k,j∨ x̄ik∨ ri,k+1,j+1), for 1 ≤ j ≤
k ≤ n; (r̄i,n+1,1) ∧ (ri,n+1,n+1) and (r̄i,n+1,j+1∨ xij) for 1 ≤ j < n. Also the following
clauses for column j, 1 ≤ j ≤ n: (ci,1,1); (c̄j,k,i∨xkj∨ cj,k+1,i)∧ (c̄j,k,i∨ x̄kj∨ cj,k+1,i+1),
for 1 ≤ i ≤ k ≤ m; (c̄j,m+1,1) ∧ (cj,m+1,m+1) and (c̄j,m+1,i+1∨ xij) for 1 ≤ i < m.

419. (a) There are exactly n−2 solutions: xij = [j=1][i �=m−1]+[j=2][i=m−1]+
[j= k][i=m−1], for 2 < k ≤ n.

(b) There are exactly m−2 solutions: x̄ij = [j > 1][i=m−1]+[j=1][i=m−2]+
[j=1][i= k], for 1 ≤ k < m−2 or k = m.

420. Start via (24) with (x̄1 ∨ x2 ∨ s) ∧ (x1 ∨ x̄2 ∨ s) ∧ (x1 ∨ x2 ∨ s̄) ∧ (x̄1 ∨ x̄2 ∨ s̄);
(x1 ∨ c̄) ∧ (x2 ∨ c̄) ∧ (x̄1 ∨ x̄2 ∨ c); (s̄ ∨ x3 ∨ t) ∧ (s ∨ x̄3 ∨ t) ∧ (s ∨ x3 ∨ t̄) ∧ (s̄ ∨ x̄3 ∨ t̄);
(s∨ c̄′)∧ (x3 ∨ c̄′)∧ (s̄∨ x̄3 ∨ c′); (c̄)∧ (c̄′). Propagate (c̄) and (c̄′), obtaining (x̄1 ∨ x̄2)∧
(s̄ ∨ x̄3); remove subsumed clauses (x̄1 ∨ x̄2 ∨ s̄), (s̄ ∨ x̄3 ∨ t̄); remove blocked clause
(s ∨ x3 ∨ t̄); remove clauses containing the pure literal t; rename s to a1.
421. Start via (173) with (ā5∨ x1∨ a4)∧ (ā5∨ x̄1∨ a3)∧ (ā4∨ x̄2∨ a2)∧ (ā3∨ x2∨ a2)∧
(ā3∨ x̄2) ∧ (ā2∨ x̄3) ∧ (a5). Propagate (a5).
422. (a) x1 implies x̄2, then a1, then x̄3; x2 implies x̄1, then a1, then x̄3.

(b) x1 implies a3, then x̄2, then a2, then x̄3; x2 implies ā3, then x̄1, a4, a2, x̄3.

423. No; consider x1? (x2? x3: x4): (x2? x4: x3) with L = (x̄3) ∧ (x̄4). (But Ab́ıo,
Gange, Mayer-Eichberger, and Stuckey have shown [LNCS 9676 (2016), 1–17] that
weak forcing is always achieved if (āj∨al∨ah) is added to (173). Furthermore, a forcing
encoding can always be constructed, via the extra clauses defined in exercise 436. Notice
that, in the presence of failed literal tests, weak forcing corresponds to forcing.)

424. The clause 1̄3̄4̄ is redundant (in the presence of 1̄2̄3̄ and 23̄4̄); it cannot be omitted,
because {2̄3̄, 23̄, 12} �31 3̄. The clause 23̄4̄ is also redundant (in the presence of 1̄3̄4̄ and
12); it can be omitted, because {1̄4̄, 34, 1} 31 4̄, {1̄3̄, 34, 1} 31 3̄, and {1̄2̄, 1̄, 12} 31 2.
425. If x is in the core, F 31 x, because Algorithm 7.1.1C does unit propagation. Oth-
erwise F is satisfied when all core variables are true and all noncore variables are false.

633

From the Library of Melissa Nuno

ptg999

634 ANSWERS TO EXERCISES 7.2.2.2

426. (a) True. Suppose the clauses involving am are (am∨ αi) for 1 ≤ i ≤ p and
(ām∨ βj) for 1 ≤ j ≤ q; then G contains the pq clauses (αi ∨ βj) instead. If F |L 31 l
we want to prove that G |L 31 l. This is clear if unit propagation from F |L doesn’t
involve am. Otherwise, if F | L 31 am, unit propagation has falsified some αi; every
subsequent propagation step from F | L that uses (ām∨ βj) can use (αi ∨ βj) in a
propagation step from G |L. A similar argument applies when F |L 31 ām.

(Incidentally, the elimination of an auxiliary variable also preserves “honesty.”)
(b) False. Let F = (x1∨ x2∨ a1) ∧ (x1∨ x2∨ ā1), L = x̄1 or x̄2.

427. Suppose n = 3m, and let f be the symmetric function [νx<m or νx>2m]. The
prime clauses of f are the N =

(
n

m,m,m

) ∼ 3n+3/2/(2πn) ORs of m positive literals

and m negative literals. There are N ′ =
(

n
m−1,m,m+1

)
= m

m+1
N ways to specify that

xi1 = · · · = xim = 1 and xim+1 = · · · = xi2m−1 = 0; and this partial assignment
implies that xj = 1 for j /∈ {i1, . . . , i2m−1}. Therefore at least one of the m+1 clauses
(x̄i1 ∨ · · · ∨ x̄im ∨ xim+1 ∨ · · · ∨ xi2m−1 ∨xj) must be present in any set of prime clauses
that forces f . By symmetry, any such set must include at least N ′/m prime clauses.

On the other hand, f is characterized by O(n2) forcing clauses (see answer 436).

428. (a) (y∨ zj1∨ · · · ∨ zjd) for 1 ≤ j ≤ n; (x̄ij∨ z̄ik∨ z̄jk) for 1 ≤ i < j ≤ n, 1 ≤ k ≤ d.
(b) Imagine a circuit with 2N(N + 1) gates glt, one for each literal l of Gnd and

for each 0 ≤ t ≤ N , meaning that literal l is known to be true after t rounds of unit
propagation, if we start with given values of the xij variables only. Thus we set gl0 ← 1
if l = xij and xij is true, or if l = x̄ij and xij is false; otherwise gl0 ← 0. And

gl(t+1) ← glt ∨
∨
{gl̄1t ∧ · · · ∧ gl̄kt | (l ∨ l1 ∨ · · · ∨ lk) ∈ Gnd}, for 0 ≤ t < N.

Given values of the xij , the literal y is implied if and only if the graph has no d-coloring;
and at most N rounds make progress. Thus there’s a monotone chain for gyN = f̄nd.

[This exercise was suggested by S. Buss and R. Williams in 2014, based on a
similar construction by M. Gwynne and O. Kullmann.]

429. Let Σk be the sum of the assigned x’s in leaves descended from node k. Unit
propagation will force bkj ← 1 for 1 ≤ j ≤ Σk, moving from leaves toward the root.
Then it will force bkj ← 0 for j = Σk + 1, moving downwards from the root, because
r = Σ2 + Σ3 and because (21) starts this process when k = 2 or 3.

430. Imagine boundary conditions as in answer 26, and assume that xj1 , . . . , xjr
have been assigned 1, where j1 < · · · < jr. Unit propagation forces skjk+1−k ← 1 for

1 ≤ k ≤ r; then it forces skjk−k ← 0 for r ≥ k ≥ 1. So unassigned x’s are forced to zero.

431. Equivalently x1+· · ·+xm+ȳ1+· · ·+ȳn ≤ n; so we can use (18)–(19) or (20)–(21).

432. The clauses of answer 404(b) can be shown to be forcing. But not those of 404(a)
when a > 1; for example, if a = 2 and we assume x̄2, unit propagation doesn’t yield y2.

433. Yes. Imagine, for example, the partial assignment x = 1∗∗∗10∗∗1, y = 10∗00∗1∗∗.
Then y3 must be 1; otherwise we’d have 10010001 ≤ x ≤ y ≤ 100001111. In this situ-
ation unit propagation from the clauses that correspond to 1 ≤ 〈a101〉, a1 ≤ 〈a2x̄20〉,
a2 ≤ 〈a3x̄3y3〉, a3 ≤ 〈a4x̄40〉, a4 ≤ 〈a500〉 forces a1 = 1, a2 = 1, a4 = 0, a3 = 0, y3 = 1.

In general if a given partial assignment is consistent with x ≤ y, we must have
x↓ ≤ y↑, where x↓ and y↑ are obtained from x and y by changing all unassigned
variables to 0 and 1, respectively. If that partial assignment forces some yj to a
particular value, the value must be 1; and we must in fact have x↓ > y′↑, where
y′ is like y but with yj = 0 instead of yj = ∗. If xj �= 1, unit propagation will force
a1 = · · · = aj−1 = 1, ak = · · · = aj = 0, yj = 1, for some k ≥ j.

634

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 635

Similar remarks apply when xi is forced, because x ≤ y ⇐⇒ ȳ ≤ x̄.

434. (a) Clearly pk is equivalent to x̄1 ∧ · · · ∧ x̄k, qk is equivalent to x̄k ∧ · · · ∧ x̄n, and
rk implies that a run of exactly l 1s begins at xk.

(b) When l = 1, if xk = 1 unit propagation will imply p̄j for j ≥ k and q̄j for
j ≤ k, hence r̄j for j �= k; then rk is forced, making xj = 0 for all j �= k. Conversely,
xj = 0 forces r̄j ; if this holds for all j �= k, then rk is forced, making xk = 1.

But when l = 2 and n = 3, the clauses fail to force x2 = 1 by unit propagation.
They also fail to force x1 = 0 when we have l = 2, n = 4, and x3 = 1.

435. The following construction with O(nl) clauses is satisfactory when l is small:
Begin with the clauses for pk and qk (but not rk) in exercise 434(a); include also
(x̄k ∨ pk−l) for l < k ≤ n, and (x̄k ∨ qk+l) for 1 ≤ k ≤ n− l. Append (p̄k−l ∨ q̄k+l ∨ xk)
for 1 ≤ k ≤ n, omitting p̄j for j < 1 and omitting q̄j for j > n. Finally, append

(xk ∨ x̄k+1 ∨ xk+d) for 0 ≤ k < n and 1 < d < l, (∗)
omitting xj when j < 1 or j > n.

To reduce to O(n log l) clauses, suppose 2e+1 < l ≤ 2e+2, where e ≥ 0. The

clauses (∗) can be replaced by (x̄k ∨ ȳ(e)k ∨ z̄(e)k) for 1 ≤ k ≤ n, if x̄k−d implies y
(e)
k

for 1 ≤ d ≤ �l/2� and x̄k+d implies z
(e)
k for 1 ≤ d ≤ �l/2�. And to achieve the latter,

we introduce clauses (ȳ
(t)
k ∨ y(t+1)k), (ȳ

(t)

k−2t ∨ y
(t+1)
k), (z̄

(t)
k ∨ z(t+1)k), (z̄

(t)

k+2t
∨ z(t+1)k),

(xk−1 ∨ y(0)k), (xk+2e−1−�l/2� ∨ y(0)k), (xk+1 ∨ z(0)k), (xk−2e+1+
l/2� ∨ z(0)k), for 1 ≤ k ≤ n
and 0 ≤ t < e, always omitting xj or ȳj or z̄j when j < 1 or j > n.

436. Let the variables qk for 0 ≤ k ≤ n and q ∈ Q represent the sequence of states, and
let tkaq represent a transition when 1 ≤ k ≤ n and when T contains a triple of the form
(q′, a, q). The clauses, F , are the following, for 1 ≤ k ≤ n: (i) (t̄kaq∨ xak) ∧ (t̄kaq∨ qk),
where x0k denotes x̄k and x

1
k denotes xk; (ii) (q̄k−1∨

∨{tkaq′ | (q, a, q′) ∈ T}), for q ∈ Q;
(iii) (q̄k∨

∨{tkaq | (q′, a, q) ∈ T}); (iv) (x̄ak ∨
∨{tkaq | (q′, a, q) ∈ T}); (v) (t̄kaq′ ∨∨{qk−1 | (q, a, q′) ∈ T}), for a∈A, q′∈Q. And (vi) (q̄0) for q ∈ Q\I, (q̄n) for q ∈ Q\O.

It is clear that if F 31 x̄ak, no string x1 . . . xn ∈ L can have xk = a. Conversely,
assume that F �31 x̄ak, and in particular that F �31 ε. To prove the forcing property, we
want to show that some string of L has xk = a. It will be convenient to say that a
literal l is ‘n.f.’ (not falsified) if F �31 l̄; thus xak is assumed to be n.f.

By (iv), there’s a (q′, a, q) ∈ T such that tkaq is n.f. Hence qk is n.f., by (i). If
k = n we have q ∈ O by (vi); otherwise some t(k+1)bq′ is n.f., by (ii), hence x

b
k+1 is n.f.

Moreover, (v) tells us that there’s (q′′, a, q) ∈ T with q′′k−1 n.f. If k = 1 we have q′′ ∈ I;
otherwise some t(k−1)cq′′ is n.f., by (iii), and x

c
k−1 is n.f. Continuing this line of reason-

ing yields x1 . . . xn ∈ L with xk = a (and with xk+1 = b if k < n, xk−1 = c if k > 1).
The same proof holds even if we add unit clauses to F that assign values to one

or more of the x’s. Hence F is forcing. [See F. Bacchus, LNCS 4741 (2007), 133–147.]
For example, the language L2 of exercise 434 yields 20n+ 4 clauses with 8n+ 3

auxiliary variables: F =
∧n
k=1((t̄k00∨ x̄k)∧ (t̄k00∨ 0k)∧ (t̄k11∨ xk)∧ (t̄k11∨ 1k)∧ (t̄k12∨

xk) ∧ (t̄k12∨ 2k) ∧ (t̄k02∨ x̄k) ∧ (t̄k02∨ 2k) ∧ (0̄k−1∨ tk00 ∨ tk11) ∧ (1̄k−1∨ tk12) ∧ (2̄k−1∨
tk02)∧ (0̄k∨ tk00)∧ (1̄k∨ tk11)∧ (2̄k∨ tk02 ∨ tk12)∧ (xk∨ tk00 ∨ tk02)∧ (x̄k∨ tk11 ∨ tk12)∧
(t̄k00∨ 0k−1) ∧ (t̄k11∨ 0k−1) ∧ (t̄k12∨ 1k−1) ∧ (t̄k02∨ 2k−1)) ∧ (1̄0) ∧ (2̄0) ∧ (0̄n) ∧ (1̄n).

The clauses produced by this general-purpose construction can often be signifi-
cantly simplified by preprocessing to eliminate auxiliary variables. (See exercise 426.)

437. Each variable xk now becomes a set of |A| variables xka for a ∈ A, with clauses
like (15) and (17) to ensure that exactly one value is assigned. The same construction is

635

From the Library of Melissa Nuno

ptg999

636 ANSWERS TO EXERCISES 7.2.2.2

then valid, with the same proof, if we simply replace ‘xak’ by ‘xka’ throughout. (Notice
that unit propagation will often derive partial information such as x̄ka, meaning that
xk �= a, although the precise value of xk may not be known.)

438. Let l≤j = l1 + · · · + lj . Exercise 436 does the job via the following automaton:
Q = {0, 1, . . . , l≤t + t − 1}, I = {0}, O = {l≤t + t − 1}; T = {(l≤j + j, 0, l≤j + j) |
0 ≤ j < t} ∪ {(l≤j + j + k, 1, l≤j + j + k + 1) | 0 ≤ j < t, 0 ≤ k < lj+1} ∪
{(l≤j + j − 1, 0, l≤j + j − [j= t]) | 1 ≤ j ≤ t}.
439. We obviously want the clauses (x̄j ∨ x̄j+1) for 1 ≤ j < n; and we can use, say,
(18) and (19) with r = t, to force 0s whenever the number of 1s reaches t. The difficult
part is to force 1s from partial patterns of 0s; for example, if n = 9 and t = 4, we can
conclude that x4 = x6 = 1 as soon as we know that x3 = x7 = 0.

An interesting modification of (18) and (19) turns out to work beautifully, namely
with the clauses (t̄kj ∨ tkj+1) for 1 ≤ j < 2t − 1 and 1 ≤ k ≤ n − 2t + 1, together with
(x2j+k−1∨t̄k2j−1∨tk+12j−1) for 1 ≤ j ≤ t and 0 ≤ k ≤ n−2t+1, omitting t̄ 02j−1 and tn−2t+22j−1 .

440. It’s convenient to introduce
(
n+1
2

)|N | variables Pik for all P ∈ N and for 1 ≤ i ≤
k ≤ n, as well as

(
n+1
3

)|N |2 variables QRijk for Q,R ∈ N and for 1 ≤ i < j ≤ k ≤ n,
although almost all of them will be eliminated by unit propagation. The clauses are:
(i) (QRijk ∨ Qi(j−1)) ∧ (QRijk ∨ Rjk); (ii) (P kk ∨

∨{xak | P → a ∈ U}); (iii) (P ik ∨∨{QRijk | i < j ≤ k, P → QR ∈ W}), if i < k; (iv) (x̄ak ∨
∨{Pkk | P → a ∈ U});

(v) (P ik ∨
∨{PRi(k+1)l | k < l ≤ n,R ∈ N} ∨∨{QPhik | 1 ≤ h < i,Q ∈ N}), if i > 1

or k < n; (vi) (QRijk ∨
∨{Pik | P → QR ∈W}); (vii) (P 1n) for P ∈ N \ S.

The forcing property is proved by extending the argument in answer 436: Assume
that xak is n.f.; then some Pkk with P → a is also n.f. Whenever Pik is n.f. with i > 1
or k < n, some PRi(k+1)l or QPhik is n.f.; hence some “larger” P ′il or P

′
hk is also n.f.

And if P1n is n.f., we have P ∈ S.
Furthermore we can go “downward”: Whenever Pik is n.f. with i < k, there’s

QRijk such that Qi(j−1) and Rjk are n.f.; on the other hand if Pkk is n.f., there’s a ∈ A
such that xak is n.f. Our assumption that xak is n.f. has therefore shown the existence
of x1 . . . xn ∈ L with xk = a.

[See C.-G. Quimper and T. Walsh, LNCS 4741 (2007), 590–604].

441. See O. Bailleux, Y. Boufkhad, and O. Roussel, LNCS 5584 (2009), 181–194.

442. (a) F |L−q = F | l1 | . . . | lq−1 | l̄q contains ε if and only if F | l1 | . . . | lq−1 contains ε
or the unit clause (lq).

(b) If F �31 l and F | l̄ 31 ε, the failed literal elimination technique will reduce F
to F | l and continue looking for further reductions. Thus we have F 32 l if and only if
unit propagation plus failed literal elimination will deduce either ε or l.

(c) Use induction on k; both statements are obvious when k = 0. Suppose we
have F 3k+1 l̄ via l1, . . . , lp = l̄, with F | L−q 3k ε for 1 ≤ q ≤ p. If p > 1 we have
F | l |L−q 3k ε for 1 ≤ q < p; it follows that F | l 3k+1 lp−1 and F | l 3k+1 l̄p−1. If p = 1
we have F | l 3k ε. Hence F | l 3k+1 ε in both cases.

Now we want to prove that F | l 3k+1 ε and F 3k+2 ε, given F 3k+1 l′ and
F 3k+1 l̄′. If F | L−q 3k ε for 1 ≤ q ≤ p, with lp = l′, we know that F | L−q 3k+1 ε.
Furthermore we can assume that F �3k+1 l̄; hence l �= l̄q for 1 ≤ q ≤ p, and l �= lp. If
l = lq for some q < p, then F | l |L−r 3k ε for 1 ≤ r < q and F |L−r 3k ε for q < r ≤ p;
otherwise F | l | L−q 3k ε for 1 ≤ q ≤ p. In both cases F | l 3k+1 l′ and F 3k+2 l′.
Essentially the same proof shows that F | l 3k+1 l̄′ and F 3k+2 l̄′.

(d) True, by the last relation in part (c).

636

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 637

(e) If all clauses of F have more than k literals, Lk(F) is empty; hence L0(R
′) =

L1(R
′) = L2(R

′) = ∅. But Lk(R′) = {1̄, 2, 4} for k ≥ 3; for example, R′ 33 1̄ because
R′ |1 32 ε, because R′ |1 32 3 and R′ |1 32 3̄.

(f) Unit propagation can be done in O(N) steps if N is the total length of all
clauses; this handles the case k = 1.

For k ≥ 2, procedure Pk(F) calls Pk−1(F | x1), Pk−1(F | x̄1), Pk−1(F | x2), etc.,
until either finding Pk−1(F | l̄) = {ε} or trying both literals for each variable of F . In
the latter case, Pk returns F . In the former case, if Pk−1(F | l) is also {ε}, Pk returns
{ε}; otherwise it returns Pk(F | l). The set Lk contains all literals for which we’ve
reduced F to F | l, unless Pk(F) = {ε}. (In the latter case, every literal is in Lk.)

To justify this procedure we must verify that the order of testing literals doesn’t
matter. If F | l̄ 3k ε and F | l̄′ 3k ε, we have F | l | l̄′ 3k ε and F | l′ | l̄ 3k ε by (c); hence
Pk(F | l) = Pk(F | l | l′) = Pk(F | l′ | l) = Pk(F | l′).

[See O. Kullmann, Annals of Math. and Artificial Intell. 40 (2004), 303–352.]

443. (a) If F |L 3 ε then F |L 3 l for all literals l; so if F ∈ PCk we have F |L 3k l
and F |L 3k l̄ and F |L 3k ε, proving that PCk ⊆ UCk.

Suppose F ∈ UCk and F |L 3 l. Then F |L | l̄ 3 ε, and we have F |L | l̄ 3k ε.
Consequently F |L 3k+1 l, proving that UCk ⊆ PCk+1.

The satisfiable clause sets ∅, {1}, {1, 1̄2}, {12, 1̄2}, {12, 1̄2, 12̄, 1̄2̄3}, {123, 1̄23,
12̄3, 1̄2̄3}, {123, 1̄23, 12̄3, 1̄2̄3, 123̄, 1̄23̄, 12̄3̄, 1̄2̄3̄4}, . . . , show that PCk �= UCk �= PCk+1.

(b) F ∈ PC0 if and only if F = ∅ or ε ∈ F . (This can be proved by induction on
the number of variables in F , because ε /∈ F implies that F has no unit clauses.)

(c) If F has only one clause, it is in UC0. More interesting examples are {12̄, 1̄2};
{1234, 1̄2̄3̄4̄}; {1234̄, 123̄4, 12̄34, 1̄234}; {12, 1̄2̄, 345̄, 3̄4̄5}; etc. In general, F is in UC0

if and only if it contains all of its prime clauses.

(d) True, by induction on n: If F |L 3 l then F |L | l̄ 3 ε, and F |L | l̄ has ≤ n− 1
variables; so F |L | l̄ ∈ PCn−1 ⊆ UCn−1. Hence we have F |L | l̄ 3n−1 ε and F |L 3n l.

(e) False, by the examples in (c).

(f) R′ ∈ UC2 \ PC2. For example, we have R
′ |1 32 2 and R′ |1 32 2̄.

[See M. Gwynne and O. Kullmann, arXiv:1406.7398 [cs.CC] (2014), 67 pages.]

444. (a) Complementing a variable doesn’t affect the algorithm’s behavior, so we can
assume that F consists of unrenamed Horn clauses. Then all clauses of F will be Horn
clauses of length ≥ 2 whenever step E2 is reached. Such clauses are always satisfiable,
by setting all remaining variables false; so step E3 cannot find both F 31 l and F 31 l̄.

(b) For example, {12, 2̄3, 12̄3̄, 1̄23}.
(c) Every unsatisfiable F recognized by SLUR must be in UC1. Conversely, if

F ∈ UC1, we can prove that F is satisfiable and in UC1 whenever step E2 is reached.

[Essentially the same argument proves that a generalized algorithm, which uses
3k instead of 31 in steps E1 and E3, always classifies F if and only if F ∈ UCk. See
M. Gwynne and O. Kullmann, Journal of Automated Reasoning 52 (2014), 31–65.]

(d) If step E3 interleaves unit propagation on F | l with unit propagation on
F | l̄, stopping when either branch is complete and ε was not detected in the other,
the running time is proportional to the number of cells used to store F , using data
structures like those of Algorithm L. (This is an unpublished idea of Klaus Truemper.)

[SLUR is due to J. S. Schlipf, F. S. Annexstein, J. V. Franco, and R. P. Swami-
nathan, Information Processing Letters 54 (1995), 133–137.]

637

From the Library of Melissa Nuno

ptg999

638 ANSWERS TO EXERCISES 7.2.2.2

445. (a) Since the lexicographic constraints (169) are forcing, a succinct certificate is
(x̄1m, x̄2m, . . . , x̄(m−1)m, x̄2(m−1), x̄3(m−1), . . . , x̄(m−1)(m−1), x̄3(m−2), x̄4(m−2), . . . ,
x̄(m−1)(m−2), . . . , x̄(m−1)2, ∅). The first m− 1 steps can be replaced by ‘x0m’.

(b) (x̄(m−1)1, x̄(m−2)2, . . . , x̄1(m−1), ∅).
(c) (x01, x12, . . . , x(m−2)(m−1), ∅).

446. Z(m,n)− 1, because a 4-cycle corresponds to a quad.

447. For general m and n we can add the m3n3/3! constraints (x̄ij ∨
x̄i′j ∨ x̄i′j′ ∨ x̄i′′j′ ∨ x̄i′′j′′ ∨ x̄ij′′) to (184), for 1 ≤ i < i′ < i′′ ≤ m
and distinct {j, j′, j′′} ⊆ {1, . . . , n}. The 19-edge graph illustrated here works when
m = n = 8; and Algorithm C finds girth ≥ 8 unsatisfiable with 20 edges, after only
400 megamems of calculation (using lexicographic row/column symmetry).

448. Each pair of points can occur together in at most one line. If the lines contain
respectively l1, . . . , ln points, we therefore have

(
l1
2

)
+ · · ·+(

ln
2

) ≤ (
m
2

)
= 3n. A Steiner

triple system achieves equality, with l1 = · · · = ln = 3. Since
(
l−1
2

)
+
(
l′+1
2

)
<
(
l
2

)
+
(
l′

2

)
when l ≥ l′ + 2, we can’t have l1 + · · ·+ ln > 3n. Thus Z(m,n) = 3n+ 1.

[If m is even and
(
m
2

)
= 3n, we can’t cover all the pairs with triples, because

no point can be in more than (m − 2)/2 triples. Daniel Horsley proved in 2015 that
Z(m,n) = 3n+ �1−m/14� in such cases.]

449. It’s wise to try first for symmetric solutions with xij = xji, roughly halving the
number of variables; then the matrices below are found quickly. Such solutions are
impossible when n = 9, 12, 13 (and also when n = 15 and 16 if we insist on five
1s in the top row). The case n = 13 corresponds to the projective plane of order 3;
indeed, a projective plane of order q is equivalent to a maximum quad-free matrix with
m = n = q2 + q + 1 and Z(n, n) = (q + 1)n+ 1.

11100000

10011000

10000110

01010100

01000011

00110001

00101010

00001101

111100000

100011100

100000011

010010010

010001001

001010001

001000110

000101010

000100101

1111000000

1000110000

1000001100

1000000011

0100101010

0100000101

0010100001

0010010110

0001100100

0001011001

11110000000

10001100000

10000011100

10000000011

01001010010

01000001001

00101001000

00100110001

00100000110

00011000101

00010101010

111100000000

100011100000

100000011000

100000000111

010010010100

010001001010

010000100001

001010001001

001000110010

000110000010

000101010001

000100101100

1111000000000

1000111000000

1000000111000

1000000000111

0100100100100

0100010010010

0100001001001

0010100010001

0010010001100

0010001100010

0001100001010

0001010100001

0001001010100

11110000000000

10001110000000

10000001110000

10000000001110

01000100001001

01001001000100

01000010100010

00100101000010

00100010011000

00100000100101

00011000101000

00010100010100

00010011000001

00001000010011

111100000000000

100011100000000

100000011100000

100000000011110

010010010010000

010001001001000

010000000100101

001010001000011

001001010000100

001000100110000

000110000101000

000101000010001

000100101000100

000100010000010

000000110001001

1111000000000000

1000111000000000

1000000111100000

1000000000011100

0100100100010000

0100010010001010

0100000001000101

0010100010000100

0010010100000001

0010001001001000

0010000000110010

0001100000101001

0001010001010000

0001001100000110

0000010000100100

0000001010010001

450. To prove the hint, add the unary clause (x̄15) to the others; this problem is rapidly
found to be unsatisfiable, hence no line has more than 4 points. On the other hand, a
line with fewer than 3 points is impossible because Z(9, 10) = 32. The same arguments
show that every point belongs to either 3 or 4 lines. Thus exactly four lines contain
four points, and exactly four points lie on such lines.

If p ∈ l and l is a 4-point line, every other line containing p must contain 2 of
the remaining 6 points. And the four 4-point lines contain at least 4 × 4 − (

4
2

)
= 10

points altogether. Hence, pigeonwise, we see that each of the four 4-point lines contains
exactly one of the four 4-line points.

Now we may call the 4-line points {a, b, c, d}, and the 4-point lines {A,B,C,D}.
The other points may be called {ab, ac, ad, bc, bd, cd}, with A = {a, ab, ac, ad}, B =
{b, ab, bc, bd}, C = {c, ac, bc, cd}, D = {d, ad, bd, cd}. The other lines can be called
{AB,AC,AD,BC,BD,CD}; and we have AB = {a, b, cd}, AC = {a, c, ad}, etc.
451. One of the colors can be placed uniquely, by the previous exercise. So we’re left
with the simple problem of two-coloring the remaining 66 squares and avoiding both
0-quads and 1-quads. That problem is unsatisfiable with

∑
xij odd. The author then

638

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 639

constructed a 33 + 33 + 33 solution by hand, using the fact that each color class must
be unable to use the deleted square. [See M. Beresin, E. Levine, and
J. Winn, The College Mathematics Journal 20 (1989), 106–114 and the
cover; J. L. Lewis, JRM 28 (1997), 266–273.]

452. Any such solution must have exactly 81 cells of each color, because
R. Nowakowski proved in 1978 that Z(18, 18) = 82. The solution exhibited
here was found by B. Steinbach and C. Posthoff [Multiple-Valued Logic and

Soft Computing 21 (2013), 609–625], exploiting 90◦ rotational symmetry.

453. (a) If R⊆{1, . . . ,m} and C⊆{1, . . . , n}, let V (R,C)= {ui | i∈R}∪{vj | j ∈C}. If
X is decomposable, there’s no path from a vertex in V (R,C) to a vertex not in V (R,C);
hence the graph isn’t connected. Conversely, if the graph isn’t connected, let V (R,C) be
one of its connected components. Then 0 < |R|+|C| < m+n, and we’ve decomposedX.

(b) False in general, unless every row and column of X ′ contains a positive
element. Otherwise, clearly true by the definition of lexicographic order.

(c) True: A direct sum is certainly decomposable. Conversely, let X be decom-
posable via R and C. We may assume that 1 ∈ R or 1 ∈ C; otherwise we could replace
R by {1, . . . ,m} \ R and C by {1, . . . , n} \ C. Let i ≥ 1 and j ≥ 1 be minimal such
that i /∈ R and j /∈ C. Then xi′j = 0 for 1 ≤ i′ < i and xij′ = 0 for 1 ≤ j′ < j.
The lexicographic constraints now force xi′j′ = 0 for 1 ≤ i′ < i, j′ ≥ j; also for i′ ≥ i,
1 ≤ j′ < j. Consequently X = X ′ ⊕ X ′′, where X ′ is (i − 1) × (j − 1) and X ′′ is
(m + 1 − i) × (n + 1 − j). (Degenerate cases where i = 1 or j = 1 or i = m + 1 or
j = n+1 need to be considered, but they work fine. This result allows us to “read off”
the block decomposition of a lexicographically ordered matrix.)

Reference: A. Mader and O. Mutzbauer, Ars Combinatoria 61 (2001), 81–95.

454. We have f(x) ≤ f(xτ) ≤ f(xττ) ≤ · · · ≤ f(xτk) ≤ · · · ; eventually xτk = x.

455. (a) Yes, because C only causes 1001 and 1011 to be nonsolutions. (b) No, because
F might have been satisfied only by 0011. (c) Yes as in (a), although (187) might no
longer be an endomorphism of F ∧C as it was in that case. (d) Yes; if 0110 is a solution,
so are 0101 and 1010. [Of course this exercise is highly artificial: We’re unlikely to know
that a weird mapping such as (187) is an endomorphism of F unless we know a lot
more about the set of solutions.]

456. Only (1 + 2 · 7)(1 + 2)(1 + 8) = 405, out of 65536 possibilities (about 0.06%).

457. We have min0≤k≤16(kk1616−k) = 661610 ≈ 51.3 × 1015. For general n, the mini-
mum occurs when k = 2n/e+O(1); and it is 22

n(n−x) where x = 1/(e ln 2)+O(2−n) < 1.

458. The operation of assigning values to each variable of an autarky, so that all clauses
containing those variables are satisfied, while leaving all other variables unchanged, is
an endomorphism. (For example, consider the operation that makes a pure literal true.)

459. sweep(Xij) = −∞ when i = 0 or j = 0. And for 1 ≤ i ≤ m and 1 ≤ j ≤ n we
have sweep(Xij) = max(xij + sweep(X(i−1)(j−1)), sweep(X(i−1)j), sweep(Xi(j−1))).

[Let the 1s in the matrix be xi1j1 , . . . , xirjr , with 1 ≤ i1 ≤ · · · ≤ ir ≤ m and with
jq+1 < jq when iq+1 = iq. Richard Stanley has observed (unpublished) that sweep(X)
is the number of rows that occur when the Robinson–Schensted–Knuth algorithm is
used to insert the sequence n− j1, . . . , n− jr into an initially empty tableau.]

460. We introduce auxiliary variables stij that will become true if sweep(Xij) > t.
They are implicitly true when t < 0, false when t = k. The clauses are as follows, for
1 ≤ i ≤ m, 1 ≤ j ≤ n, and 0 ≤ t ≤ min(i − 1, j − 1, k): (s̄t(i−1)j ∨ stij), if i > 1 and

639

From the Library of Melissa Nuno

ptg999

640 ANSWERS TO EXERCISES 7.2.2.2

t < k; (s̄ti(j−1) ∨ stij), if j > 1 and t < k; and (x̄ij∨ s̄t−1(i−1)(j−1) ∨ stij). Omit s̄t−10(j−1) and

s̄t−1(i−1)0 and s̄
−1
(i−1)(j−1) and s

k
ij from that last clause, if present.

461.
∧m−1
i=1

∧n−1
j=1 (xij∨ c̄(i−1)j∨ cij) ∧

∧m
i=1

∧n−1
j=1 (c̄(i−1)j∨ x̄ij ∨ xi(j+1)), omitting c̄0j .

These clauses take care of τ1; interchange i↔ j, m↔ n for τ2.

462. Let X̃ij denote the last m+ 1− i rows and the last n+ 1− j columns of X; and
let tij = sweep(X(i−1)(j−1))+sweep(X̃(i+1)(j+1)). For τ1 we must prove 1+ ti(j+1) ≤ k,
given that 1 + tij ≤ k. It’s true because sweep(X(i−1)j) = sweep(X(i−1)(j−1)) when
column j begins with i−1 zeros, and we have sweep(X̃(i+1)(j+2)) ≤ sweep(X̃(i+1)(j+1)).

LetX ′ = Xτ3 have the associated sweep sums t
′
ij . We must prove that t′ij ≤ k and

1+t′(i+1)(j+1) ≤ k, if 1+tij ≤ k, 1+ti(j+1) ≤ k, 1+t(i+1)j ≤ k, and t(i+1)(j+1) ≤ k. The

key point is that sweep(X ′
ij) = max(sweep(X(i−1)j), sweep(Xi(j−1))), since x

′
ij = 0.

Also sweep(X̃ ′
(i+1)(j+1)) ≤ 1 + sweep(X̃(i+2)(j+1)).

(Notice that τ1 and τ2 might actually decrease the sweep, but τ3 preserves it.)

463. If row i + 1 is entirely zero but row i isn’t, τ2 will apply. Therefore the all-zero
rows occur at the top. And by τ1, the first nonzero row has all its 1s at the right.

Suppose rows 1 through i have r1, . . . , ri 1s, all at the right, with ri > 0.
Then r1 ≤ · · · ≤ ri, by τ2. If i < n we can increase i to i + 1, since we can’t have
x(i+1)j > x(i+1)(j+1) when j ≤ n−ri, by τ1; and we can’t have it when j > n−ri, by τ3.

Thus all the 1s are clustered at the right and the bottom, like the diagram of a
partition but rotated 180◦; and the sweep is the size of its “Durfee square” (see Fig. 91
in Section 7.2.1.4). Hence the maximum number of 1s, given sweep k, is k(m+ n− k).

[Under the partial ordering (i, j) ≺ (i′, j′) when i < i′ and j < j′, binary matrices
of sweep ≤ k correspond to sets of cells with all chains of length ≤ k. Significant lattice
and matroid properties of such “Sperner k-families” have been studied by C. Greene
and D. J. Kleitman, J. Combinatorial Theory A20 (1976), 41–68.]

464. By answer 462, τ1 can be strengthened to τ ′1, which sets xi(j+1) ← 1 but leaves
xij = 1. Similarly, τ2 can be strengthened to τ ′2. These endomorphisms preserve the
sweep but increase the weight, so they can’t apply to a matrix of maximumweight. [One
can prove, in fact, that max-weight binary matrices of sweep k are precisely equivalent
to k disjoint shortest paths from the leftmost cells in row m to the rightmost cells in
row 1. Hence every integer matrix of sweep k is the sum of k matrices of sweep 1.]

465. If not, there’s a cycle x0 → x1 → · · · → xp = x0 of length p > 1, where xiτuvi !→
xi+1. Let uv be the largest of {uv1, . . . , uvp−1}. Then none of the other τ ’s in the cycle
can change the status of edge uv. But that edge must change status at least twice.

(See also the more general result in Theorem 7.2.2.1S.)

466. Notice first that v11 must be true, if m ≥ 2. Otherwise h11, v21, h22, v32, . . .
would successively be forced by unit propagation, until reaching a contradiction at the
edge of the board. And v31 must also be true, ifm ≥ 4, by a similar argument. Thus the
entire first column must be filled with verticals, except the bottom row when m is odd.

Then we can show that the remainder of row 1 is filled with horizontals, except
for the rightmost column when n is even. And so on.

The unique solution when m and n are both even uses vij if and only if i + j is
even and 1 ≤ j ≤ min(i,m− i, n/2), or i+ j is odd and vi(n+1−j) is used. When m is
odd, add a row of horizontals below the (m − 1)× n solution. When n is
odd, remove the rightmost column of verticals in the m× (n+1) solution.

467. The 8×7 covering is the reflection of the 7×8 covering (shown here)
about its southwest-to-northeast diagonal. Both solutions are unique.

640

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 641

468. (a) Typical running times with Algorithm C for sizes 6 × 6, 8 × 8, . . . , 16 × 16
are somewhat improved: 39Kμ, 368Kμ, 4.3Mμ, 48Mμ, 626Mμ, 8Gμ.

(b) Now they’re even better, but still growing exponentially: 30Kμ, 289Kμ,
2.3Mμ, 22Mμ, 276Mμ, 1.7Gμ.

469. For instance (v11), (v31), (v51), (h12), (h14), (v22), (v42), (h23), (v33), ε.

470. There can’t be a cycle x0 → x1 → · · · → xp = x0 of length p > 1, because the
largest vertex whose mate is changed always gets smaller and smaller mates.

471. We must pair 2n with 1, then 2n− 1 with 2, . . . , then n+ 1 with n.

472. We can number the vertices from 1 to mn in such a way that every
4-cycle switches as desired. For example, we can make (i, j) < (i, j + 1)
⇐⇒ (i, j) < (i+ 1, j) ⇐⇒ (i, j) mod 4 ∈ {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2),
(2, 3), (3, 3), (3, 0)}. One such numbering in the 4× 4 case is shown here.

16 15
14 13

12 11
109 87

65
4 3

21

473. For every even-length cycle v0−−−v1−−−· · ·−−−v2r−1−−−v0 with v0 = max vi and
v1 > v2r−1, assert (v0v1 ∨ v1v2 ∨ v2v3 ∨ · · · ∨ v2r−1v0).
474. (a) (2n) · (2n− 2) · . . . · 2 = 2nn!. (b) (173̄)(1̄7̄3)(252̄5̄)(44̄)(6)(6̄).

(c) Using 0, 1, . . . , f for the 4-tuples 0000, 0001, . . . , 1111, we must have
f(0) = f(9) = f(5); f(2) = f(b) = f(7); f(4) = f(8) = f(d); and f(6) = f(a) = f(f);
in other words, the truth table of f must have the form abcdeagceagcfehg , where
a, b, c, d, e, f, g, h ∈ {0, 1}. So there are 28 f ’s.

(d) Change ‘=’ to ‘�=’ in (c). There are no such truth tables, because (191)
contains odd cycles; all cycles of an antisymmetry must have even length.

(e) The 128 binary 7-tuples are partitioned into sixteen “orbits” {x, xσ, xσ2, . . . },
with eight of size 12 and eight of size 4. For example, one of the 4s is {0011010,0010110,
0111110, 0110010}; one of the 12s is {0000000, 0011101, . . . , 1111000}. Hence there are
216 functions with this symmetry, and 216 others with this antisymmetry.

475. (a) 2n+1n!. (There are 2n+1n!/a, if f has a automorphisms+antiautomorphisms.)
(b) (xz̄)(x̄z), because (surprisingly) (x ∨ y) ∧ (x⊕ z) = (z̄ ∨ y) ∧ (z̄ ⊕ x̄).
(c) In general if σ is any permutation having a cycle of length l, and if p is a

prime divisor of l, some power of σ will have a cycle of length p. (Repeatedly raise σ
to the qth power for all primes q �= p, until all cycle lengths are powers of p. Then, if
the longest remaining cycle has length pe, compute the pe−1st power.)

(d) Suppose f(x1, x2, x3) has the symmetry (x1x̄2x3)(x̄1x2x̄3). Then f(0, 0, 0) =
f(1, 1, 0) = f(0, 1, 1), f(1, 1, 1) = f(0, 0, 1) = f(1, 0, 0), so (x1x̄2)(x̄1x2) is a symmetry.

(e) A similar argument shows that (ux)(vw)(ūx̄)(v̄w̄) is a symmetry.
(f) If σ is an antisymmetry of f , then σ2 is a symmetry. If f has a nontrivial

symmetry, it has a symmetry of prime order p, by (c). And if p �= 2, it has one of
order 2, by (d) and (e), unless n > 5.

(g) Let f(x1, . . . , x6) = 1 only when x1 . . . x6 ∈ {001000, 001001, 001011, 010000,
010010, 010110, 100000, 100100, 100101}. (Another interesting example, for n = 7, has
f = 1 ⇐⇒ x1 . . . x7 is a cyclic shift of 0000001, 0001101, or 0011101; 21 symmetries.)

476. We want clauses that specify r-step chains in n variables, having a single out-
put xn+r. For 0 < t < t′ < 2n, introduce new variables Δtt′ = x(n+r)t ⊕ x(n+r)t′ .
(See (24).) Then for each signed involution σ, not the identity, we want a clause that
says “σ is not a symmetry of f ,” namely (

∨{Δtt′ | t < t′ and t′ = tσ}). (Here t is
considered to be the same as its binary representation (t1 . . . tn)2, as in exercise 477.)

Also, if σ has no fixed points—this is true if and only if σ takes xi !→ x̄i for at
least one i—we have further things to do: In case (b), we want a clause that says “σ

641

From the Library of Melissa Nuno

ptg999

642 ANSWERS TO EXERCISES 7.2.2.2

is not an antisymmetry,” namely (
∨{Δtt′ | t < t′ and t′ = tσ}). But in case (a), we

need further variables aj for 1 ≤ j ≤ T , where T is the number of signed involutions
that are fixedpoint-free. We append the clause (a1 ∨ · · · ∨ aT), and also (āj ∨Δtt′) for
all t < t′ such that t′ = tσ when σ corresponds to index j. Those clauses say, “there’s
at least one signed involution that is an antisymmetry.”

There are no solutions when n ≤ 3. Answers for (a) are (((x1⊕x2)∨x3)∧x4)⊕x1
and ((((x̄1 ⊕ x2) ∧ x3) ⊕ x4) ∧ x5) ⊕ x1; in both cases the signed involution (11̄)(22̄)
is obviously an antisymmetry. Answers for (b) are ((x1 ⊕ x2) ∨ x3) ∧ (x4 ∨ x1) and
(((x1 ∧ x2)⊕ x3) ∧ x4)⊕ (x5 ∨ x1). [Is there a simple formula that works for all n?]
477. Use the following variables for 1 ≤ h ≤ m, n < i ≤ n+ r, and 0 < t < 2n: xit =
(tth bit of truth table for xi); ghi = [gh=xi]; sijk = [xi=xj ◦i xk], for 1 ≤ j < k < i;
fipq = ◦i(p, q) for 0 ≤ p, q ≤ 1, p+ q > 0. (We don’t need fi00, because every operation
in a normal chain takes (0, 0) !→ 0.) The main clauses for truth table computations are

(s̄ijk∨ (xit⊕a)∨ (xjt⊕ b)∨ (xkt⊕ c)∨ (fibc⊕ ā)), for 0 ≤ a, b, c ≤ 1 and 1 ≤ j < k < i.

Simplifications arise in special cases: For example, if b = c = 0, the clause is omitted
if a = 0, and the term fi00 is omitted if a = 1. Furthermore if t = (t1 . . . tn)2, and if
j ≤ n, the (nonexistent) variable xjt actually has the known value tj ; again we omit
either the whole clause or the term (xjt⊕ b), depending on b and t. For example, there
usually are eight main clauses that involve sijk; but there’s only one that involves si12
when t < 2n−2, namely (s̄i12 ∨ x̄i1), because the truth tables for x1 and x2 begin with
2n−2 0s. (All such simplifications would be done by a preprocessor if we had defined
additional variables fi00 and xjt, and fixed their values with unit clauses.)

There also are more mundane clauses, namely (ḡhi ∨ x̄it) or (ḡhi ∨ xit) according
as gh(t1, . . . , tn) = 0 or 1, to fix the outputs; also (

∨n+r
i=n+1 ghi) and (

∨i−1
k=1

∨k−1
j=1 sijk),

to ensure that each output appears in the chain and that each step has two operands.
Additional clauses are optional, but they greatly shrink the space of possibilities:

(
∨m
k=1 gki∨

∨n+r
i′=i+1

∨i−1
j=1 si′ji∨

∨n+r
i′=i+1

∨i′−1
j=i+1 si′ij) ensures that step i is used at least

once; (s̄ijk∨ s̄i′ji) and (s̄ijk∨ s̄i′ki) for i < i′ ≤ n+ r avoid reapplying an operand.
Finally, we can rule out trivial binary operations with the clauses (fi01∨fi10∨fi11),

(fi01∨ f̄i10∨ f̄i11), (f̄i01∨fi10∨ f̄i11). (But beware: These clauses, for n < i ≤ n+r, will
make it impossible to compute the trivial function g1 = 0 in fewer than three steps!)

Further clauses such as (s̄ijk ∨ fi01 ∨ x̄it ∨xjt) are true, but unhelpful in practice.

478. We can insist that the (j, k) pairs in steps n+1, . . . , n+r appear in colexicographic
order; for example, a chain step like x8 = x4 ⊕ x5 need never follow x7 = x2 ∧ x6. The
clauses, for n < i < n+r, are (s̄ijk∨ s̄(i+1)j′k′) if 1 ≤ j′ < j < k = k′ < i or if 1 ≤ j < k
and 1 ≤ j′ < k′ < k < i. (If (j, k) = (j′, k′), we could insist further that fi01fi10fi11 is
lexicographically less than f(i+1)01f(i+1)10f(i+1)11. But the author didn’t go that far.)

Furthermore, if p<q and if each output function is unchanged when xp is swapped
with xq, we can insist that xp is used before xq as an operand. Those clauses are

(s̄ijq ∨
∨
n<i′<i

∨
1≤j′<k′<i′ [j

′= p or k′= p] si′j′k′) whenever j �= p.

For example, when answer 477 is applied to the full-adder problem, it yields Mr

clauses in Nr variables, where (M4,M5) = (942, 1662) and (N4, N5) = (82, 115). The
symmetry-breaking strategy above, with (p, q) = (1, 2) and (2, 3), raises the number of
clauses to M ′

r, where (M ′
4,M

′
5) = (1025, 1860). Algorithm C reported ‘unsat’ after

(1015, 291) kilomems using (M4,M
′
4) clauses; ‘sat’ after (250, 268) kilomems using

(M5,M
′
5). With larger problems, such symmetry breakers give significant speedup

when proving unsatisfiability, but they’re often a handicap in satisfiable instances.

642

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 643

479. (a) Using the notation of the previous answer, we have (M8,M
′
8, N8) = (14439,

17273, 384) and (M9,M
′
9, N9) = (19719, 24233, 471). The running times for the ‘sat’

cases with M9 and M ′
9 clauses were respectively (16, 645, 1259) and (66, 341, 1789)

megamems—these stats are the (min,median,max) of nine runs with different random
seeds. The ‘unsat’ cases withM8 andM

′
8 were dramatically different: (655631, 861577,

952218) and (8858, 10908, 13171). Thus s(4) = 9 in 7.1.2–(28) is optimum.
(b) But s(5) = 12 is not optimum, despite the beauty of 7.1.2–(29)! The M11 =

76321 clauses in N11 = 957 variables are ‘sat’ in 680 Gμ, yielding an amazing chain:

x6 = x1 ⊕ x2,
x7 = x1 ⊕ x3,
x8 = x4 ⊕ x5,
x9 = x3 ⊕ x6,

x10 = x6 ∨ x7,
x11 = x4 ⊕ x9,
x12 = x9 ⊕ x10,

z0 = x13 = x5 ⊕ x11,

x14 = x̄8 ∧ x11,
z1 = x15 = x10 ⊕ x14,
z2 = x16 = x12 ∧ x̄15.

And (M ′
10, N10) = (68859, 815) turns out to be ‘unsat’ in 1773 gigamems; this can be

reduced to 309 gigamems by appending the unit clause (g3(15)), since C(S4,5) = 10.
Hence we can evaluate x1+ · · ·+x7 in only 5+11+2+1 = 19 steps, by computing

(u1u0)2 = x5+x6+x7, (v2v1z0)2 = x1+x2+x3+x4+u0, (w2z1)2 = u1+v1, z2 = v2⊕w2.
(c) The solver finds an elegant 8-step solution for (M8, N8) = (6068, 276) in 6Mμ:

x4 = x1 ∨ x2,
x5 = x1 ⊕ x2,

x6 = x3 ⊕ x4,

S0 = x7 = x3 ∨ x4,
x8 = x3 ⊕ x5,

S3 = x9 = x̄6 ∧ x8,
S1 = x10 = x6 ∧ x8,
S2 = x11 = x7 ⊕ x8.

The corresponding (M ′
7, N7) = (5016, 217) problem is ‘unsat’ in 97Mμ.

(d) The total cost of evaluating the S’s independently is 3 + 7 + 6 + 7 + 3 = 26,
using the optimum computations of Fig. 9 in Section 7.1.2. Therefore the author was
surprised to discover a 9-step chain for S1, S2, and S3, using the footprint heuristic:

x5 = x1 ⊕ x2,
x6 = x1 ⊕ x3,
x7 = x3 ⊕ x4,

x8 = x5 ⊕ x7,
x9 = x6 ∨ x7,
x10 = x2 ⊕ x9,

S2 = x11 = x̄8 ∧ x9,
S3 = x12 = x8 ∧ x̄10,
S1 = x13 = x8 ∧ x10.

This chain can solve problem (d) in 13 steps; but SAT technology does it in 12(!):

x5 = x1 ⊕ x2,
x6 = x1 ⊕ x3,
x7 = x3 ⊕ x4,
x8 = x5 ⊕ x7,

x9 = x6 ∨ x7,
x10 = x2 ⊕ x9,
x11 = x5 ∨ x9,

S3 = x12 = x8 ∧ x̄10,

S1 = x13 = x8 ∧ x10,
S4 = x14 = x1 ∧ x̄11,
S0 = x15 = x4 ∨ x11,
S2 = x16 = x̄8 ∧ x11.

The nonexistence of an 11-step solution can be proved via Algorithm C by a long
computation (11034 gigamems), during which 99,999,379 clauses are learned(!).

(e) This solution (found in 342 Gμ) matches the lower bound in exercise 7.1.2–80:

x7 = x1 ⊕ x2,
x8 = x3 ⊕ x4,
x9 = x1 ⊕ x5,
x10 = x6 ⊕ x8,

x11 = x4 ⊕ x10,
x12 = x5 ⊕ x10,
x13 = x8 ∨ x11,
x14 = x7 ⊕ x12,

x15 = x̄9 ∧ x12,
x16 = x13 ⊕ x15,
x17 = x14 ∧ x16.

(f) This solution (found in 7471 Gμ) also matches that lower bound:

x7 = x1 ∧ x2,
x8 = x1 ⊕ x2,
x9 = x3 ⊕ x4,
x10 = x5 ∧ x6,

x11 = x5 ⊕ x6,
x12 = x4 ⊕ x11,
x13 = x9 ⊕ x11,
x14 = x9 ∨ x12,

x15 = x8 ⊕ x13,
x16 = x10 ⊕ x14,
x17 = x7 ⊕ x16,
x18 = x15 ∨ x17.

Here x18 is the normal function S0,4 = S1,2,3,5,6. We beat exercise 7.1.2–28 by one step.
(g) A solution in t(3) = 12 steps is found almost instantaneously (120 megamems);

but 11 steps are too few (‘unsat’ in 301 gigamems).

643

From the Library of Melissa Nuno

ptg999

644 ANSWERS TO EXERCISES 7.2.2.2

480. (a) Let x1x2x3x4 = xlxrylyr. The truth tables for zl and zr are 0011010010001000
and 01∗∗1∗00∗011∗011, where the ∗s (“don’t-cares”) are handled by simply omitting

the corresponding clauses (ḡhi ∨ ±xit) in answer 477.

Less than 1 gigamem of computation proves that a six-step circuit is ‘unsat’.
Here’s a seven-stepper, found in just 30 Mμ: x5 = x2⊕ x3, x6 = x3 ∨ x4, x8 = x1⊕ x6,
x7 = x1 ∨ x5, x9 = x6 ⊕ x7, zl = x10 = x7 ∧ x8, zr = x11 = x3 ⊕ x9. (See exercise
7.1.2–60 for a six-step solution that is based on a different encoding.)

(b) Now we have the truth tables zl = 00110100010010000100100010000011,
zr = 01∗∗1∗001∗00∗0111∗00∗011∗01101∗∗, if x4x5 = ylyr. One of many 9-step
solutions is found in 6.9 gigamems: x6 = x1⊕x2, x7 = x2⊕x5, x8 = x4⊕x6, x9 = x̄4∧x7,
x10 = x1⊕x9, x11 = x8 ∨x9, x12 = x3⊕x10, zr = x13 = x3⊕x11, zl = x14 = x11 ∧ x̄12.

The corresponding clauses for only 8 steps are proved ‘unsat’ after 190 Gμ of
work. (Incidentally, the encoding of exercise 7.1.2–60 does not have a 9-step solution.)

(c) Let cn be the minimum cost of computing the representation zlzr of (x1 +
· · ·+xn) mod 3. Then (c1, c2, c3, c4) = (0, 2, 5, 7), and cn−3 ≤ cn+9. Hence cn ≤ 3n−4
for all n ≥ 2. [This result is due to A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev,
whose paper in LNCS 5584 (2009), 32–44, also inspired exercises 477–479.]

Conjecture: For n ≥ 3 and 0 ≤ a ≤ 2, the minimum cost of evaluating the (single)
function [(x1 + · · ·+ xn) mod 3= a] is 3n−5− [(n+ a) mod 3=0]. (It’s true for n ≤ 5.
Here’s a 12-step computation when n = 6 and a = 0, found in 2014 by Armin Biere:
x7 = x1 ⊕ x2, x8 = x3 ⊕ x4, x9 = x1 ⊕ x5, x10 = x3 ⊕ x5, x11 = x2 ⊕ x6, x12 = x8 ⊕ x9,
x13 = x8 ∨ x10, x14 = x7 ⊕ x13, x15 = x̄12 ∧ x13, x16 = x̄11 ∧ x14, x17 = x11 ⊕ x15,
S0,3,6 = x18 = x16 ∨ x17. The case n = 6 and a �= 0, which lies tantalizingly close to
the limits of today’s solvers, is still unknown. What is C(S1,4(x1, . . . , x6))?)

481. (a) Since z⊕z′ = 〈x1x2x3〉 and z′ = x1⊕x2⊕x3, this circuit is called a “modified
full adder.” It costs one less than a normal full adder, since z′ = (x1 ⊕ x2) ⊕ x3 and
z = (x1⊕x2)∨ (x1⊕x3). (And it’s the special case u = 0 of the more general situation
in exercise 7.1.2–28.) Part (b) describes a “modified double full adder.”

(b) The function z2 has 20 don’t-cares, so there are many eight-step solutions
(although 7 are impossible); for example, x6 = x1⊕x5, x7 = x2⊕x5, z3 = x8 = x3⊕x6,
x9 = x4 ⊕ x6, x10 = x1 ∨ x7, x11 = x̄3 ∧ x9, z2 = x12 = x6 ⊕ x11, z1 = x13 = x10 ⊕ x11.

(c) Letting y2k−1y2k = [[x2k−1x2k]], it suffices to show that the binary represen-
tation of Σn = ν[[y1y2]] + · · · + ν[[y2n−1y2n]] + y2n+1 can be computed in at most 8n
steps. Four steps are enough when n = 1. Otherwise, letting c0 = y2n+1, we can
compute z’s bits with ν[[y4k−3y4k−2]] + ν[[y4k−1y4k]] + ck−1 = 2ν[[z2k−1z2k]] + ck for
1 ≤ k ≤ �n/2�. Then Σn = 2(ν[[z1z2]] + · · · + ν[[zn−1zn]]) + cn/2 if n is even, Σn =
2(ν[[z1z2]]+· · ·+ν[[zn−2zn−1]]+zn)+c′ if n is odd, where ν[[y2n−1y2n]]+c�n/2� = 2zn+c

′,
at a cost of 4n in both cases. The remaining sum costs at most 8�n/2� by induction.
[See E. Demenkov, A. Kojevnikov, A. S. Kulikov, and G. Yaroslavtsev, Information

Processing Letters 110 (2010), 264–267.]

482. (a)
∑k

j=1(2yj − 1) is odd when k is odd, and it’s ±1 when k = 1.

(b) Adapting Sinz’s cardinality clauses as in exercises 29 and 30, we only need the
auxiliary variables aj = sj−1j , bj = sjj , and cj = sj+1j , because sj+2j = 0 and sjj+2 = 1.

The clauses are then (b̄j∨aj+1)∧(c̄j∨bj+1)∧(bj∨ c̄j)∧(aj+1∨ b̄j+1), for 1 ≤ j < t/2−1;
and (ȳ2j−2 ∨ aj) ∧ (ȳ2j−1 ∨ āj ∨ bj) ∧ (ȳ2j ∨ b̄j ∨ cj) ∧ (ȳ2j+1 ∨ c̄j) ∧ (y2j−2 ∨ c̄j−1) ∧
(y2j−1 ∨ cj−1 ∨ b̄j) ∧ (y2j ∨ bj ∨ āj+1) ∧ (y2j+1 ∨ aj+1) for 1 ≤ j < t/2, omitting ā1, c0,
and the two clauses that contain y0.

644

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 645

(c) Use the construction in (b) with yj = xjd for 1 ≤ d ≤ n/3 and independent
auxiliary variables aj,d, bj,d, cj,d. Also, assuming that n ≥ 720, break symmetry by
asserting the unit clause (x720). (That’s much better than simply asserting (x1).)

This problem was shown to be satisfiable if and only if n < 1161 by B. Konev
and A. Lisitsa [Artificial Intelligence 224 (2015), 103–118], thereby establishing the
case C = 2 of a well-known conjecture by Paul Erdős [Michigan Math. J. 4 (1957),
291–300, Problem 9]. Algorithm C can prove unsatisfiability for n = 1161 in less than
600 gigamems, using the parameters of exercise 512.

483. Using a direct encoding as in (15), with vjk meaning that vj has color k, we can
generate the clauses (v̄jk) for 1 ≤ j < k ≤ d and (v̄j(k+1)∨

∨j−1
i=k vik) for 2 ≤ k < j ≤ n.

A similar but slightly simpler scheme works with the order encoding, when vjk means
that vj has color > k. [See Ramani, Markov, Sakallah, and Aloul, Journal of Artificial
Intelligence Research 26 (2006), 289–322. The vertices might be ordered in such a way
that degree(v1) ≥ · · · ≥ degree(vn), for example.]

It’s not difficult to color the Mycielski graph Mc with c colors (which is the min-
imum), without any symmetry breaking. For example, the 191-vertex graph M12 leads
to 2,446,271 clauses in 36852 variables (total length 4.9 million); yet 12-color solutions
are found by Algorithms C, W, and L respectively in 2.6, 523, and 12200 megamems.
The symmetry breaking clauses actually would retard that calculation, because those
clauses are much longer. On the other hand, when we try to succeed with only c − 1
colors, those clauses are extremely helpful: The runtime needed by Algorithm C to show
thatM6 isn’t 5-colorable goes down from 124 Gμ to 32 Mμ! Furthermore, Algorithm L
does better here: Its runtime for that problem goes down from 7.5 Gμ to 28 Mμ.

484. (a) A type (iii) move will work if and only if v1−−−v4, v2−−−v4, v2−−−v3.
(b) For 0 ≤ t < n − 1 we have the clause (

∨n−t−1
k=1 qt,k ∨

∨n−t−3
l=1 st,l), as well as

the following for 1 ≤ i < j < n− t, 1 ≤ k < n− t, 1 ≤ l < n− t − 2: (q̄t,k ∨ xt,k,k+1);
(q̄t,k∨x̄t+1,i,j∨xt,i′,j′); (s̄t,l∨xt,l,l+3); (s̄t,l∨x̄t+1,i,j∨xt,i′′,j′′); here i′ = i+[i≥ k], j′ =
j+[j≥ k], and {i′′, j′′} are the min and max of {i+[i≥ l + 3]+3[i= l], j+[j≥ l + 3]+
3[j= l]}. Finally there’s a unit clause (x̄0,i,j) for all 1 ≤ i < j ≤ n with vi /−−−vj .

(These clauses essentially compute [G is quenchable], which is a monotone Bool-
ean function of the

(
n
2

)
elements above the diagonal in the adjacency matrix of G. The

prime implicants of this function correspond to certain spanning trees, of which there
are respectively 1, 1, 2, 6, 28, 164, 1137, . . . when n = 1, 2, 3, 4, 5, 6, 7,)

485. Let t′ = t + 1. Instances of commutativity are: (qt,k, qt′,k′) ↔ (qt,k′+1, qt′,k) if
k < k′; (st,l, st′,l′) ↔ (st,l′+1, st′,l) if l + 2 < l′; (qt,k, st′,l′) ↔ (st,l′+1, qt′,k) if k < l′;
(st,l, qt′,k′) ↔ (qt,k′+1, st′,l) if l + 2 < k′; (st,l, st′,l) ↔ (qt,l+3, st′,l). These can be
broken by appending the clauses (q̄t,k′+1 ∨ q̄t′,k), (s̄t,l′+1 ∨ s̄t′,l), . . . , (q̄t,l+3 ∨ s̄t′,l).

Endomorphisms are also present in the two cases (qt,k, qt′,k)↔ (qt,k+1, qt′,k) and
(st,k+1, qt′,k) ↔ (qt,k+1, st′,k), provided that both pairs of transitions are legal. These
are exploited by the clauses (q̄t,k+1 ∨ q̄t′,k ∨ x̄t,k,k+1) and (q̄t,k+1 ∨ s̄t′,k ∨ x̄t,k+1,k+4).
486. This game is a special case of graph quenching, so we can use the previous
two exercises. Algorithm C finds a solution after about 1.2 gigamems, without the
symmetry-breaking clauses; this time goes down to roughly 85 megamems when those
clauses are added. Similarly, the corresponding 17-card problem after A♣×J♣ is found
to be unsatisfiable, after 15 Gμ without and 400 Mμ with. (A♣×× 10♣ fails too.)

Those SAT problems have respectively (1242, 20392, 60905), (1242, 22614, 65590),
(1057, 15994, 47740), (1057, 17804, 51571) combinations of (variables, clauses, cells),
and they are not handled easily by Algorithms A, B, D, or L. In one solution both

645

From the Library of Melissa Nuno

ptg999

646 ANSWERS TO EXERCISES 7.2.2.2

q0,11 and s0,7 are true, thus providing two ways to win(!), when followed by q1,15, s2,13,
q3,12, s4,10, s5,7, q6,7, s7,5, q8,5, s9,4, q10,5, s11,3, q12,3, s13,1, s14,1, q15,1, q16,1.

Notes: This mildly addictive game is an interesting way to waste time in case
you ever get lost with a pack of cards on a desert island. If you succeed in reducing the
original 18 piles to a single pile, you can continue by dealing 17 more cards and trying
to reduce the new 18 piles. And if you succeed also at that, you have 17 more cards
for a third try, since 52 = 18 + 17 + 17. Three consecutive wins is a Grand Slam.

In a study of ten thousand random deals, just 4432 turned out to be winnable.
Computer times (with symmetry breaking) varied wildly, from 1014 Kμ to 37 Gμ in
the satisfiable cases (median 220 Mμ) and from 46 Kμ to 36 Gμ in the others (median
848 Mμ). The most difficult winnable and unwinnable deals in this set were respectively

9♠ 7♣ 3♣ K♦ 7♠ 3♥ 2♦ 8♣ 6♥ J♦ 8♠ 2♥ 6♠ 4♦ 5♠ 4♥ 10♦ Q♠ and

A♥ Q♥ 2♦ 9♦ 7♣ 7♦ 8♥ K♣ 3♦ 10♣ 3♣ 3♠ Q♠ 8♣ 2♣ K♠ 6♦ 5♣ .
Students in Stanford’s graduate problem seminar investigated this game in 1989

[see K. A. Ross and D. E. Knuth, Report STAN-CS-89-1269 (Stanford Univ., 1989),
Problem 1]. Ross posed an interesting question, still unsolved: Is there a sequence of
(say) nine “poison cards,” such that all games starting with those cards are lost?

The classic game Idle Year is also known by many other names, including Tower of
Babel, Tower of London, Accordion, Methuselah, and Skip Two. Albert H. Morehead
and Geoffrey Mott-Smith, in The Complete Book of Solitaire and Patience Games

(1949), 61, suggested that moves shouldn’t be too greedy.

487. Every queen in a set of eight must attack at least 14 vacant cells. Thus |∂S| gets
its minimum value 8× 14 = 112 when the queens occupy the top row. Solutions to the
8 queens problem, when queens are independent, all have |∂S| ≤ 176. The maximum
|∂S| is 184, achieved symmetrically for example in Fig. A–11(a). (This problem is
not at all suitable for SAT solvers, because the graph has 728 edges. The best way
to proceed is to run through all

(
64
8

)
possibilities with the revolving-door Gray code

(Algorithm 7.2.1.3R), because incremental changes to |∂S| are easy to compute when
a queen is deleted or inserted. The total time by that method is only 601 gigamems.)

The maximum of |∂outS| is obviously 64 − 8 = 56. The minimum, which corre-
sponds to Turton’s question, is 45; it can be achieved symmetrically as in Fig. A–11(b),
leaving 64 − 8 − 45 = 11 cells unattacked (shown as black queens). In this case SAT

solvers win: The revolving-door method needs 953 gigamems, but SAT methods show
the impossibility of 44 after only 2.2 Gμ of work. With symmetry reduction as in the
following exercise, this goes down to 900 Mμ although there are 789 variables and 4234
clauses. [Bernd Schwarzkopf, in Die Schwalbe 76 (August 1982), 531, computed all
solutions of minimum |∂outS|, given |S|, for n × n boards with n ≤ 8. Extensions of
Turton’s problem to larger n have been surveyed by B. Lemaire and P. Vitushinskiy
in two articles, written in 2011 and accessible from www.ffjm.org. Optimum solutions
for n > 16 are conjectured but not yet known.]

All sets S of eight queens trivially have |∂inS| = 8.

488. Let variables wij and bij represent the presence of white or black queens on
cell (i, j), with clauses (w̄ij ∨ b̄i′j′) when (i, j) = (i′, j′) or (i, j)−−−(i′, j′). Also, if each
army is to have at least r queens, add clauses based on (20) and (21) to ensure that∑
wij ≥ r and

∑
bij ≥ r. Optionally, add clauses based on Theorem E to ensure that

k of the w variables for the top row are lexicographically greater than or equal to the
corresponding k variables in fifteen symmetrical variants. (For instance, if k = 3, we
might require w11w12w13 ≥ b1nb2nb3n, thus partially breaking the symmetries.)

646

From the Library of Melissa Nuno

http://www.ffjm.org.

ptg999

7.2.2.2 ANSWERS TO EXERCISES 647

�
�

�
�

�
�

�
�

(a)

���

� �
�
� �

��

��
� ���
� ��

(b)

���
���

�

�
��

���
��

��
���

(c)

� � � �

� � � �

� � � �

�
� � � �

�

�
� � � �

�

(d)

� �

�� �
��� �
�� �

� �

�

� ��
� ���

� ���
� ��

(e)

���
����
����
���

���

����
���
��

� �

���
����

(f)

Fig. A–11. Optimum queen placements of various kinds.

The maximum army sizes for 3 ≤ n ≤ 13 are known to be (1, 2, 4, 5, 7, 9, 12,
14, 17, 21, 24); see OEIS sequence A250000. An extra black queen can actually be
included in the cases n = 3, 4, 6, 8, 10, 11, and 13. Solutions appear in Fig. A–11; the
construction shown in Fig. A–11(d) generalizes to armies of 2q(q+1) queens whenever
n = 4q + 1, while the one in part (c) belongs to another family of constructions that
achieve the higher asymptotic density 7

48
n2.

When n = 8 and r = 9, Algorithm C typically finds a solution in about 10
megamems (k = 0), or about 30 megamems (k = 3); but with r = 10 it typically
proves unsatisfiability in about 1800 Mμ (k = 0) or 850 Mμ (k = 3) or 550 Mμ
(k = 4) or 600 Mμ (k = 5). Thus the symmetry breaking constraints are helpful
for unsatisfiability in this case, but not for the easier satisfiability problem. On the
other hand, the extra constraints do turn out to be helpful for both the satisfiable and
unsatisfiable variants when n is larger. The “sweet spot” turns out to be k = 6 when
n = 10 and n = 11; unsatisfiability was proved in those cases, with r = 15 and r = 18,
after about 185 Gμ and 3500 Gμ, respectively. [B. M. Smith, K. E. Petrie, and I. P.
Gent obtained similar results using CSP methods in LNCS 3011 (2004), 271–286.]

(This problem was posed by S. Ainley in his Mathematical Puzzles (1977), prob-
lem C1. He mentioned solutions for n ≤ 30 that have never yet been beaten, although
he obtained them by hand. See also Martin Gardner, Math Horizons 7, 2 (November
1999), 2–16, for generalizations to coexisting armies of sizes r and s. D. M. Kane has
proved, among other things, that the maximum value of s, if r = 3q2 + 3q + 1, is
asymptotically n2 − (6q + 3)n+O(1) [arXiv:1703.04538 [math.CO] (2017), 19 pages].)

489. T0 = 1, T1 = 2, Tn = 2Tn−1 + (2n− 2)Tn−2 (see Eq. 5.1.4–(40)). The generating
function

∑
n Tnz

n/n! and the asymptotic value are given in exercise 5.1.4–31.

490. Yes. For example, using the signed permutation 4̄132̄, we’re allowed to assume
that some solution satisfies x̄4x1x3x̄2 ≤ x̄′4x

′
1x

′
3x̄

′
2 for every endomorphism—because

the solution with lexicographically smallest x̄4x1x3x̄2 has this property. Notice that
the signed permutation 1̄2̄ . . . n̄ converts ‘≤’ to ‘≥’.
491. Let σ be the permutation (1 2 3 4 1̄ 2̄ 3̄ 4̄). Then σ4 = (1 1̄)(2 2̄)(3 3̄)(4 4̄); and by
Theorem E we need only search for solutions that satisfy x1x2x3x4 ≤ x̄1x̄2x̄3x̄4. We’re
therefore allowed to append the clause (x̄1) without affecting satisfiability.

(We actually are allowed to assert that x1 = x2 = x4 = 0, because 0000 and 0010
are the lex-leaders of the two 8-cycles when σ is written as a permutation of states.)

In general if an automorphism σ is a permutation of literals having a cycle that
contains both v and v̄, for some variable v, we can simplify the problem by assigning
a fixed value to v and then by restricting consideration to automorphisms that don’t
change v. (See the discussion of Sims tables in Section 7.2.1.2.)

492. Suppose x1 . . . xn satisfies all clauses of F ; we want to prove that (x1 . . . xn)τ =
x′1 . . . x

′
n also satisfies them all. And that’s easy: If (l1∨ · · · ∨ lk) is a clause, we have

647

From the Library of Melissa Nuno

ptg999

648 ANSWERS TO EXERCISES 7.2.2.2

l′1 = l1τ , . . . , l
′
n = lnτ ; and we know that (l1τ ∨ · · · ∨ lkτ) is true because it’s subsumed

by a clause of F . [See S. Szeider, Discrete Applied Math. 130 (2003), 351–365.]

493. Using the global ordering p1 . . . p9 = 543219876 and Corollary E, we can add
clauses to assert that x5 = 0 and x4x3x2x1 ≤ x6x7x8x9. A contradiction quickly fol-
lows, even if we stipulate only the weaker relation x4 ≤ x6, because that forces x6 = 1.

494. Exercise 475(d) shows that (uv)(ūv̄) is a symmetry of the underlying Boolean
function, although not necessarily of the clauses F . [This observation is due to Aloul,
Ramani, Markov, and Sakallah in the cited paper.] The other symmetries allow us to
assert (i) (x̄i ∨ xj) ∧ (x̄j ∨ x̄k), (ii) (x̄i ∨ x̄j) ∧ (x̄j ∨ x̄k), (iii) (x̄i ∨ x̄j) ∧ (x̄j ∨ xk).
495. Suppose, for example, that m = 3 and n = 4. The variables can then be called
11, 12, 13, 14, 21, . . . , 34; and we can give them the global ordering 11, 12, 21, 13, 22,
31, 14, 23, 32, 24, 33, 34. To assert that 21 22 23 24 ≤ 31 32 33 34, we use the involution
that swaps rows 2 and 3; this involution is (21 31)(22 32)(23 33)(24 34) when expressed
in form (192) with signs suppressed. Similarly we can assert that 12 22 13 ≤ 13 23 33
because of the involution (12 13)(22 23)(32 33) that swaps columns 2 and 3. The same
argument works for any adjacent rows or columns. And we can replace ‘≤’ by ‘≥’, by
complementing all variables.

For generalm and n, consider any global ordering for which xij precedes or equals
xi′j′ when 1 ≤ i ≤ i′ ≤ m and 1 ≤ j ≤ j′ ≤ n. The operation of swapping adjacent
rows makes the global lexicographic order increase if and only if it makes the upper
row increase lexicographically; and the same holds for columns.

[See Ilya Shlyakhter, Discrete Applied Mathematics 155 (2007), 1539–1548.]

496. No; that reasoning would “prove” that m pigeons cannot fit into m holes. The
fallacy is that his orderings on rows and columns aren’t simultaneously consistent with
a single global ordering, as in the previous exercise.

497. A BDD with 71,719 nodes makes it easy to calculate the total, 818,230,288,201,
as well as the generating function 1 + z + 3z2 + 8z3 + 25z4 + · · · + 21472125415z24 +
31108610146z25 + · · ·+ 10268721131z39 + 6152836518z40 + · · ·+ 24z60 + 8z61 + 3z62 +
z63+z64. (The relatively small coefficients of z39 and z40 help account for the fact that
≥ was chosen in (185)–(186); problems with sparse solutions tend to favor ≥.)

[Pólya’s theorem in Section 7.2.3 shows that exactly 14,685,630,688 inequivalent
matrices exist; compare this to 264 ≈ 1.8447× 1019 without any symmetry reduction.]

498. Consider the global ordering x01, x11, . . . , xm1; x12, x22, . . . , xm2, x02; x23, x33,
. . . , xm3, x03, x13; . . . ; x(m−1)m, xmm, x0m, . . . , x(m−2)m. There’s a column symmetry
that fixes all elements preceding x(j−1)j and takes x(j−1)j !→ x(j−1)k.

499. No. The unusual global ordering in answer 498 is not consistent with ordinary
lexicographic row or column ordering. [Nor can the analogous clauses (xii∨ x̄ij) for
1 ≤ i ≤ m and i < j ≤ n be appended to (185) and (186). No quad-free matrix for
m = n = 4 and r = 9 satisfies all those constraints simultaneously.]

500. If F0 has a solution, then it has a solution for which l is true. But (F0 ∪ F1) | l
might be unsolvable. (For example, let F0 = (x̄1 ∨ x2) ∧ (x̄2 ∨ x1), which has the
symmetry 1̄2̄; so we can take S = (x̄1), l = x̄1. Combine that with F1 = (x1).)

501. Let xij denote a queen in cell (i, j), for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Also
let rij = [xi1 + · · ·+ xij ≥ 1] and r′ij = [xi1 + · · ·+ xi(j+1)≥ 2], for 1 ≤ i ≤ m and
1 ≤ j < n. Using (18) and (19) we can easily construct about 8mn clauses that
define the r’s in terms of the x’s and also ensure that xi1 + · · · + xin ≤ 2. Thus
r′i(n−1) = [xi1 + · · ·+ xin=2]; call this condition ri.

648

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 649

Similar conditions cj , ad, and bd are readily established for column j, and for the
diagonals with i+j = d+1 or i−j = d−n, for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and 1 ≤ d < m+n.
Then condition (ii) corresponds to the mn clauses (xij ∨ ri ∨ cj ∨ ai+j−1 ∨ bi−j+n).

Finally we have clauses from (20) and (21) to ensure that
∑
xij ≤ r.

When m = n, the lower bound r ≥ n − [nmod 4=3] has been established by
A. S. Cooper, O. Pikhurko, J. R. Schmitt, and G. S. Warrington [AMM 121 (2014),
213–221], who also used backtracking to show that r ≥ 12 on an 11 × 11 board. SAT

methods, with symmetry breaking, yield that result much more quickly (after about 9
teramems of computation); but this problem, like the tomography problem of Fig. 79,
is best solved by integer programming techniques when m and n are large.

If we call the upper left corner white, solutions with m = n = r−1 and all queens
on white squares appear to exist for all n > 2, and they are found almost instantly.
However, no general pattern is apparent. In fact, when n is odd it appears possible to
insist that the queens all appear in odd-numbered rows and in odd-numbered columns.

Here are examples of optimum placements on smallish boards. The solutions for
8× 9, 8× 10, 8× 13, 10× 10, and 12× 12 also work for sizes 8× 8, 9× 10, 8× 12, 9× 9,
and 11× 11, respectively.

�
� �

� �

� �

� �

� �
��
� �
��
� �

� �
�

� �
� �

� �

� �

� �
� �

� �
� �
� �
� �

� �

� �

� �

� �

� �

� �
��
� �
� �
��

� �

This placement of ten queens on a 10 × 10 board can be described by the “magic
sequence” (a1, . . . , a5) = (1, 3, 7, 5, 9), because the queens appear in positions (ai, ai+1)
and (ai+1, ai) for 1 ≤ i < n/2 as well as in (a1, a1) and (an/2, an/2). The magic
sequences (1, 3, 9, 13, 15, 5, 11, 7, 17) and (9, 3, 1, 19, 5, 11, 15, 25, 7, 21, 23, 13, 17)
likewise describe optimum placements for n = 18 and 26. No other magic sequences
are known; none exist when n = 34.

502. For each j, construct independent cardinality constraints for the relation x
(j)
1 +

· · ·+ x
(j)
n ≤ rj , using say (20) and (21), where x

(j)
k = (sjk? x̄k: xk).

503. The Hamming distance d(x, y) = ν(x ⊕ y) between binary vectors of length n
satisfies d(x, y) + d(x̄, y) = n. Thus there is no x with d(x, sj) ≥ rj + 1 for all j if and
only if there is no x with d(x̄, sj) ≤ n − 1 − rj for all j. [See M. Karpovsky, IEEE
Transactions IT-27 (1981), 462–472.]

504. (a) Assume that n ≥ 4. For strings of length 2n we have d(z,w) + d(z, w̄) = 2n;
hence d(z, w) ≤ n and d(z, w̄) ≤ n if and only if d(z,w) = d(z, w̄) = n. Every string
z with z2k−1 �= z2k for 1 ≤ k ≤ n satisfies d(z,wj) = n for 1 ≤ j ≤ n. Conversely, if
d(z, wj) = d(z,wk) = n and 1 ≤ j < k ≤ n, then z2j−1 + z2j = z2k−1 + z2k. Thus if
z2j−1 = z2j for some j we have z = 00 . . . 0 or 11 . . . 1, contradicting d(z,w1) = n.

(b) For each string x̂ = x̄1x1x̄2x2 . . . x̄nxn that satisfies part (a) we have d(x̂, y) =
2l̄1 + 2l̄2 + 2l̄3 + n− 3, which is ≤ n+ 1 if and only if (l1∨ l2∨ l3) is satisfied.

(c) Let sj = wj and rj = n for 1 ≤ j ≤ 2n; let s2n+k = yk and r2n+k = n + 1
for 1 ≤ k ≤ m, where yk is the string in (b) for the kth clause of F . This system
has a closest string x̂ = x̄1x1x̄2x2 . . . x̄nxn if and only if x1 . . . xn satisfies every clause.
[A similar construction in which all strings have length 2n + 1 and all rj are equal
to n + 1 is obtained if we append the bit [n< j≤ 2n] to each sj . See M. Frances and
A. Litman, Theory of Computing Systems 30 (1997), 113–119.]

649

From the Library of Melissa Nuno

ptg999

650 ANSWERS TO EXERCISES 7.2.2.2

(d) Boilerplate 11000000, 00110000, 00001100, 00000011, 00111111, 11001111,
11110011, 00000011, at distance ≤ 4; for the clauses, 01011000, 00010110, 01000101,
10010001, 10100100, 00101001, 10001010, and possibly 01100010, at distance ≤ 5.

505. (For k = 0, 1, . . . , n − 1 one can set j to a uniform integer in [0 . . k] and
INX[k + 1]← j; also if j = k set VAR[k] ← k + 1, otherwise i← VAR[j], VAR[k] ← i,
INX[i] ← k, VAR[j] ← k + 1.) With nine random seeds, typical runtimes for D3 are
(1241, 873, 206, 15, 748, 1641, 1079, 485, 3321)Mμ. They’re much less variable for the
unsatisfiable K0, namely (1327, 1349, 1334, 1330, 1349, 1322, 1336, 1330, 1317)Mμ;
and even for the satisfiable W2: (172, 192, 171, 174, 194, 172, 172, 170, 171)Mμ.

506. (a) Almost true: That sum is the total number of clauses of length ≥ 2, because
every such clause of length k contributes 1/

(
k
2

)
to the weights of

(
k
2

)
edges.

(b) Each of the 122 − 2 = 142 cells of the mutilated 12 × 12 board contributes
one positive clause (v1 ∨ · · · ∨ vk) and

(
k
2

)
negative clauses (v̄i ∨ v̄j), when that cell can

be covered by k potential dominoes {v1, . . . , vk}. So the weight between u and v is 2,
4/3, or 7/6 when dominoes u and v overlap in a cell that can be covered in 2, 3, or 4
ways. Exactly 6 cells can be covered in just 2 ways (and exactly 102 in 4 ways).

(The largest edge weights in all of Fig. 95 are 37/6, between 20 pairs of vertices
in K6. At the other extreme, 95106 of the 213064 edges in X3 have the tiny weight
1/8646, and 200904 of them have weight at most twice that much.)

507. Consider, for example, the clauses (u ∨ t̄), (v ∨ t̄), (ū ∨ v̄ ∨ t), (u ∨ t̄′), (v ∨ t̄′),
(ū∨ v̄∨ t′) from (24). Looking ahead from t = 1 yields the windfall (t̄∨ t′), and looking
ahead from t′ = 1 yields (t̄′ ∨ t). Henceforth Algorithm L knows that t equals t′.

508. According to (194), the purging parameters were Δp = 1000 and δp = 500; thus
we have learned approximately 1000k + 500

(
k
2

)
clauses when doing the kth purging

phase. After 1000L clauses this works out to be ≈ (
√
16L+ 9− 3)/2 phases, which is

≈ 34.5 when L = 323. (And the actual number was indeed 34.)

509. One remedy for overfitting is to select training examples at random. In this case
such randomness is already inherent, because of the different seeds used while training.

510. (a) From Fig. 96 or Fig. 97 or Table 7 we know that T1 < T2 < L6 in the median
rankings; thus T2 obscures L6 and T1.

(b) Similarly, L8 < M3 < Q2 < X6 < F2 < X4 < X5; X6 obscures L8 and X4.

(c) X7 obscures K0, K2, and (indirectly) A2, because K2 obscures K0 and A2.

511. (a) Nine random runs finished in only (4.9, 5.0, 5.1, 5.1, 5.2, 5.2, 5.3, 5.4, 5.5)Mμ(!).

(b) Nine random runs now each were aborted after a teramem of trials. (No theo-
retical explanation for this discrepancy, or for the wildness of P4 in Fig. 97, is known.)

(c) (0.2, . . . , 0.5, . . . , 3.2)Mμ without; (0.3, . . . , 0.5, . . . , 0.7)Mμ with.

512. A training run with ParamILS in 2015 suggested the parameters

α = 0.7, ρ = 0.998, + = 0.99995, Δp = 100000, δp = 2000,

τ = 10, w = 1, p = 0, P = 0.05, ψ = 0.166667, (∗)
which produce the excellent results in Fig. A–12.

513. After training on rand (3, 1062, 250, 314159), ParamILS chose the values α = 3.5
and Θ = 20.0 in (195), together with distinctly different values that favor double
lookahead, namely β = .9995, Y = 32. [The untuned values α = 3.3, β = .9985,
Θ = 25.0, and Y = 8 had been used by the author when preparing exercise 173.]

650

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 651

←

R
u
n
n
in
g
ti
m
e
fr
o
m
e
rd
o
s
p
a
ra
m
et
er
s
(∗
)
→

← Running time from default parameters (194) →
400

500

600
700

800

900

1000

1000

1100

1100

1160

1160
1161

5
T
μ

1
T
μ

.1
T
μ

1
0
G
μ

1
G
μ

.1
G
μ

1
0
M
μ

1
M
μ

1Tμ

.1Tμ

10Gμ

1Gμ

.1Gμ

10Mμ

1Mμ

Fig. A–12. Running times for Algorithm C, with and without special parameter tuning.

514. ParamILS suggests p = .85 and N = 5000n; that gives a median time ≈ 690Mμ.
(But those parameters give horrifically bad results on most other problems.)

515. Use variables Sijk meaning that cell (i, j) in the solution holds k, and Zij meaning
that cell (i, j) is blank in the puzzle. The 729 S variables are constrained by 4× 81×
(1+

(
9
2

)
) = 11,988 clauses like (13). From condition (i), we need only 41 variables Zij .

Condition (ii) calls for 15 clauses such as (Z11∨· · ·∨Z19), (Z11∨· · ·∨Z51∨Z49∨· · ·∨Z19),
(Z15 ∨ · · · ∨ Z55), (Z44 ∨ Z45 ∨ Z46 ∨ Z54 ∨ Z55), when equal Z’s are identified via (i).
Condition (iii), similarly, calls for 28 clauses such as (Z̄11∨ Z̄12∨ Z̄13), (Z̄11∨ Z̄21∨ Z̄31),
(Z̄45 ∨ Z̄55). Condition (vi) is enforced by 34,992 clauses epitomized by (S̄111 ∨ Z̄11 ∨
S̄122 ∨ Z̄12 ∨ S̄412 ∨ Z̄41 ∨ S̄421 ∨ Z̄42).

For conditions (iv) and (v), we introduce auxiliary variables Vijk = Sijk ∧ Z̄ij ,
meaning that k is visible in (i, j); Rik = Vi1k ∨ · · · ∨ Vi9k, meaning that k is visible
in row i; Cjk = V1jk ∨ · · · ∨ V9jk, meaning that k is visible in column j. Also Bbk =∨
〈i,j〉=b Vijk, meaning that k is visible in box b; here 〈i, j〉 = 1+3�(i−1)/3�+�(j−1)/3�.

Then Pijk = Zij ∧ R̄ik ∧ C̄jk ∧ B̄〈i,j〉k means that k is a possible way to fill cell (i, j)
without conflict. These 1701 auxiliary variables are defined with 8262 clauses.

Condition (iv) is enforced by nine 9-ary clauses for each i and j, stating that we
mustn’t have exactly one of {Pij1, . . . , Pij9} true. Condition (v) is similar, enforced by
three sets of 81× 9 clauses of length 9; for example, one of those clauses is

(P417 ∨ P427 ∨ P437 ∨ P517 ∨ P̄527 ∨ P537 ∨ P617 ∨ P627 ∨ P637).

651

From the Library of Melissa Nuno

ptg999

652 ANSWERS TO EXERCISES 7.2.2.2

(“We aren’t obviously forced to put 7 into box 4 by using cell (5, 2).”)

Finally, some of the symmetry is usefully broken by asserting the unary clauses
(S1kk)∧(Z̄11)∧(Z12). Altogether there are 2,471 variables, 58,212 clauses, 351,432 cells.

(This problem was suggested by Daniel Kroening. There are zillions of solutions,
and about one in every five or six appears to be completable uniquely to the setting
of the S variables. Thus we can obtain as many “hard sudoku” puzzles as we like, by
adding additional unary clauses such as (S553) ∧ (Z̄17) more-or-less at random, then
weeding out ambiguous cases via dancing links. The clauses are readily handled by
Algorithms L or C, but they’re often too difficult for Algorithm D. That algorithm did,
however, find the uniquely completable solution (a) below after only 9.3 Gμ of work.)

If we beef up condition (iii), insisting now that no box contains a row or column
with more than one blank, condition (vi) becomes superfluous. We get solutions such
as (b) below, remarkable for having no forced moves in spite of 58 visible clues, yet
uniquely completable. That puzzle is, however, quite easy; only 2, 4, 7 are unplaced.

1....6.8.

5.87214.6

.6.38.2.1

84...3..5

..5.6.8..

6..8...42

3.6.48.2.

4.76321.8

.8.5....4

(a)

1.3.56.89

59738.61.

68.1.93.5

956.318.7

.315.896.

2.896.153

8.96.5.31

.65.13298

31.89.5.6

(b)

1.3.5.7..

.5.79...1

7....125.

..1..5.76

..5.7.1..

47.1..5..

.185....7

5...87.1.

..7.1.8.5

(c)

1.3.56.89

68.3.91.5

.9518.63.

3.896..51

.195.836.

56..319.8

.56.9381.

8.16.5.93

93.81.5.6

(d)

We might also try to strengthen conditions (iv) and (v) by requiring at least three ways
to make each choice, not just two. Then we get solutions like (c) above. Unfortunately,
however, that one is completable in 1237 ways! Even if we also strengthen condition (iii)
as in (b), we get solutions like (d), which can be completed in 12 ways. No uniquely
completable sudoku puzzles are known to have such ubiquitous threefold ambiguity.

516. This conjecture can be expressed in several equivalent forms. R. Impagliazzo and
R. Paturi [J. Comp. Syst. Sci. 62 (2001), 367–375] defined sk = inf{ lg τ | we can know
an algorithm to solve kSAT in τn steps}, and stated the exponential time hypothesis:
s3 > 0. They also defined s∞ = limk→∞ sk, and proved that sk ≤ (1−d/k)s∞ for some
positive constant d. They conjectured that s∞ = 1; this is the strong exponential time

hypothesis. An alternative formulation [C. Calabro, R. Impagliazzo, and R. Paturi,
IEEE Conf. on Comput. Complexity 21 (2006), 252–260] was found later: “If τ < 2,
there is a constant α such that no knowable randomized algorithm can solve every SAT

problem with ≤ αn clauses in fewer than τn steps, where n is the number of variables.”

517. (a) (Solution by Günter Rote.) Replace the jth ternary clause (lj∨ l′j∨ l′′j) by
three ternary equations lj + aj + cj = 1, l̄′j + aj + bj = 1, l̄′′j + cj + dj = 1, where aj ,
bj , cj , and dj are new variables.

(b) Remove equations of length > 3 by using the fact that l1+ · · ·+ lk = 1 if and
only if l1+ · · ·+ lj + t = 1 and lj+1+ · · ·+ lk+ t̄ = 1, where t is a new variable. Also, if
a, b, c, and d are new variables with a+ b+ d = a+ c+ d̄ = 1, beef up short equations
using l + l′ = 1 ⇐⇒ l + l′ + a = 1 and l = 1 ⇐⇒ l̄ + b+ c = 1.

[Thomas J. Schaefer proved the NP-completeness of 1-in-3 SAT as a special case
of considerably more general results, in STOC 10 (1978), 216–226.]

652

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 653

518. (a) A =
(
x y y
y x y
y y x

)
, where x = −1

1
0
0
, y = 1

−1
1
1
.

(b) Twice in the n variable rows and n variable columns; once in the 3m output
rows and 3m input columns; never in the 3m input rows and 3m output columns.

(c) By (a), each way to choose 2s in different rows and columns contributes zero
to the permanent unless, in every clause, the subset of chosen inputs is nonempty and
matches the chosen outputs. In the latter case it contributes 16m2n. [See A. Ben-Dor
and S. Halevi, Israel Symp. Theory of Computing Systems 2 (IEEE, 1993), 108–117.]

519. The unsatisfiable problem corresponding to D1 and D2 has median running time
2099Mμ (losing to both factor fifo and factor lifo). The satisfiable one corresponding
to D3 and D4 is unstable (as in Fig. 97), with median 903Mμ (winning over both).

520. (Solution by Sven Mallach, 2015, using solvers X and Y, where X was CPLEX 12.6
and Y was GUROBI 6, both used with emphasis on mixed-integer-program feasibility,
constant objective function, and solution limit 1.) With a time cutoff of 30 minutes on a
single-threaded Xeon computer, neither X nor Y could solve any of the 46 problems A1,
A2, C1, C2, C3, C4, C5, C6, C8, D1, D2, E1, E2, F1, F2, G1, G2, G5, G6, G7, G8, K7,
K8, M5, M7, M8, O1, O2, P0, P1, P2, Q7, S3, S4, T5, T6, T7, T8, W2, W4, X1, X3,
X5, X6, X7, X8. (In particular, this list includes P0, S4, and X1, which are extremely
easy for Algorithm C.) On the other hand both X and Y solved the langford problems
L3 and L4—which were the toughest for Algorithm C—in less than a second.

Algorithm C performs about 20Gμ per minute on a comparable Xeon. In these
experiments it significantly outperformed the geometric methods except on problems
K0, K1, K2, L3, L4, and P4 (and some easy cases such as B2).

Of course we must keep in mind that the particular clauses in Table 6 aren’t
necessarily the best ways to solve the corresponding combinatorial problems with an
IP solver, just as they aren’t necessarily the best encodings for a SAT solver. We are
comparing here only black-box clause-solving speeds.

521. A variety of simple schemes have been surveyed by S. Jabbour, J. Lonlac, L. Säıs,
and Y. Salhi, arXiv:1402.1956 [cs.AI] (2014), 13 pages.

522. For cycles of length T we can introduce 27T variables xyzt for 1 ≤ x, y, z ≤ 3 and
0 ≤ t < T , signifying that vertex (x, y, z) occupies slot t in the path. Binary exclusion
clauses ¬xyzt∨¬x′y′z′t′ , when xyz = x′y′z′ and t �= t′ or when xyz �= x′y′z′ and t = t′,
ensure that no vertex appears twice in the path, and that no two vertices occupy the
same slot. A valid path is specified via the adjacency clauses

¬xyzt ∨
∨

{x′y′z′(t+1) mod T | 1 ≤ x′, y′, z′ ≤ 3 and |x′ − x|+ |y′ − y|+ |z′ − z| = 1}.

We represent the shadows by introducing 36 variables a!b∗, ba!∗, a!∗b, b∗a!, ∗a!b, ∗ba!
for 1 ≤ a ≤ 2 and 1 ≤ b ≤ 3; here a!∗b (for example) means that the shadow of
(x, z) coordinates has a transition between (a, b) and (a+1, b). These variables appear
in ternary clauses such as (¬xyzt ∨ ¬(x+1)yzt′ ∨ x!∗z) ∧ (¬xyzt ∨ ¬(x+1)yzt′ ∨ x!y∗)
whenever x < 3 and t′ ≡ t± 1 (modulo T). To exclude loops we append clauses like

¬1!1∗ ∨ ¬2!1∗ ∨ ¬31!∗ ∨ ¬32!∗ ∨ ¬2!3∗ ∨ ¬22!∗ ∨ ¬1!2∗ ∨ ¬11!∗;
this one excludes the loop in the example illustration. There are 39 such loop-defeating
clauses, one for each of the 13 simple cycles in each shadow.

Finally we can break symmetry by asserting the unary clauses 121T−1, 1110, 1121
without loss of generality, after verifying that no solution can avoid all eight corners.

653

From the Library of Melissa Nuno

ptg999

654 ANSWERS TO EXERCISES 7.2.2.2

Clearly T must be an even number, because the graph is bipartite; also T < 27.
If the method of exercise 12 is used for the exclusions, we obtain a total of 6264 clauses,
822 variables, and 17439 cells when T = 16; there are 9456 clauses, 1242 variables, and
26199 cells when T = 24. These clauses are too difficult for Algorithm D. But Algo-
rithm L resolves them almost instantaneously for any given T ; they turn out to be satis-
fiable if and only if T = 24, and in that case there are two essentially different solutions.
One of these cycles, due to John Rickard (who introduced this problem at Cambridge
University, circa 1990), is beautifully symmetric, and it is illustrated on the cover of
Peter Winkler’s bookMathematical Mind-Benders (2007). It can be represented by the
delta sequence (3223̄1331̄2̄1123̄2̄2̄31̄3̄3̄121̄1̄2̄), where ‘k’ and ‘k̄’ change coordinate k by
+1 or −1. The other is unsymmetric and represented by (33212̄13̄3̄1̄2212̄3231̄1̄3̄12̄1̄3̄2̄).
523. (Solution by Peter Winkler.) With coordinates (x, y, z) for 1 ≤ x ≤ m, 1 ≤ y ≤ n,
1 ≤ z ≤ 2, any cycle with loopless shadows must contain at least two steps (x, y, 1)−−−
(x, y, 2) and (x′, y′, 1) −−− (x′, y′, 2). We can assume that x < x′ and that x′ − x is
minimum. The m × 2 shadow contains (x, 1)−−− (x, 2) and (x′, 1)−−− (x′, 2), together
with (say) the path (x, 1)−−−· · ·−−−(x′, 1), but without the edge (x′′, 2)−−−(x′′+1, 2) for
some x′′ with x ≤ x′′ < x′. The unique shortest path from (x, y) to (x′, y′) in the m×n
shadow contains some edge (x′′, y′′)−−− (x′′+1, y′′); hence (x′′, y′′, 1)−−− (x′′+1, y′′, 1)
must occur twice in the cycle.

524. This problem involves clauses very much like those for a cyclic path, but simpler;
we have T = 27 and no “wrap-around” conditions. With typically 1413 variables, 10410
clauses, and 28701 cells, Algorithm L shines again, needing only a gigamem or two to
handle each of several cases that break symmetry based on starting and ending points.
There are four essentially different solutions, each of which can be assumed to start
at 111; one ends at 333, another at 133, another at 113, and the other at 223. Using
the delta sequence notation above, they are: 3323̄3̄23313̄3̄2̄332̄3̄3̄13323̄3̄233 (which is
reflected ternary code); 313̄1331̄1̄2113̄3̄1̄31̄3̄2313̄1331̄1̄; 323̄2313̄2̄32̄3̄1323̄2332̄2̄1̄221̄2̄2̄;
11221̄1̄2̄131̄2112̄2̄1̄1̄311221̄1̄2̄1.

[Such paths, and more generally spanning trees that have loopless shadows, were
invented in 1983 by Oskar van Deventer, who called them “hollow mazes”; see The

Mathemagician and Pied Puzzler (1999), 213–218. His Mysterians puzzle is based on
an amazing Hamiltonian path on P5 P5 P5 that has loopless shadows.]

525. The author’s best solution, as of July 2015, had 100 variables, 400 clauses, and
1200 literals (cells); it was derived from Tseytin’s examples of exercise 245, applied to a
more-or-less random 4-regular graph of girth 6 on 50 vertices. Tseytin’s construction,
with one odd vertex and 49 even ones, yields 400 clauses of 4SAT, which are quite
challenging indeed. It can be simplified to a 3SAT problem by insisting further that
every even vertex must have degree exactly 2 in the subgraph specified by true edges.
(See K. Markström, J. Satisfiability, Boolean Modeling and Comp. 2 (2006), 221–227).

That simplified problem still turned out to be fairly challenging: It was proved
unsatisfiable by Algorithm L in 3.3 Tμ and by Algorithm C in 1.9 Tμ. (But by applying
the endomorphisms of exercise 473, which broke symmetry by adding 142 clauses of
length 6, the running time went down to just 263 Mμ and 949 Mμ, respectively.)

Another class of small-yet-difficult problems is worth mentioning, although it
doesn’t fit the specifications of this exercise [see I. Spence, ACM J. Experimental Algo-

rithmics 20 (2015), 1.4:1–1.4:14]: Every instance of 3D matching whose representation
as an exact cover problem has 3n items and 5n options, with five options for each item
and three items in each option, can be represented as a SAT problem in 3n variables, 10n

654

From the Library of Melissa Nuno

ptg999

7.2.2.2 ANSWERS TO EXERCISES 655

binary clauses, and 2n quinary clauses, hence only 30n total literals. This 5SAT problem
has the same number of literals as the 3SAT problem discussed above, when n = 40; yet
it is considerably more difficult if the matching problem is unsatisfiable. (The problem
of this kind that defeated all the SAT solvers in the 2014 competition corresponds to
an instance of 3D matching that is solved almost instantaneously by the dancing links
method: Algorithm 7.2.2.1X needs fewer than 60 Mμ to prove it unsatisfiable. On the
other hand, if we encode that 3D matching problem with 3n quinary at-least-one and
3n · 10 binary at-most-one clauses, as in (13), instead of using only 2n for at-least-one
and n · 10 for at-most-one, Algorithm L will be almost as good as dancing links.)

526. We prove by induction on |F | that it’s possible to leave at most w(F) clauses
unsatisfied, where w(F) =

∑
C∈F 2−|C|: If all clauses of the multiset F are empty we

have w(F) = |F |, and the result holds. Otherwise suppose the variable x appears in F .
Let l = x if w({C | x ∈ C ∈ F}) ≥ w({C | x̄ ∈ C ∈ F}); otherwise l = x̄. A simple
calculation shows that w(F | l) ≤ w(F). [J. Computer and System Sciences 9 (1974),
256–278, Theorem 3.]

655

From the Library of Melissa Nuno

ptg999

APPENDIX A

TABLES OF NUMERICAL QUANTITIES

Table 1

QUANTITIES THAT ARE FREQUENTLY USED IN STANDARD SUBROUTINES
AND IN ANALYSIS OF COMPUTER PROGRAMS (40 DECIMAL PLACES)

√
2 = 1.41421 35623 73095 04880 16887 24209 69807 85697−√
3 = 1.73205 08075 68877 29352 74463 41505 87236 69428+√
5 = 2.23606 79774 99789 69640 91736 68731 27623 54406+√
10 = 3.16227 76601 68379 33199 88935 44432 71853 37196−
3
√
2 = 1.25992 10498 94873 16476 72106 07278 22835 05703−

3
√
3 = 1.44224 95703 07408 38232 16383 10780 10958 83919−

4
√
2 = 1.18920 71150 02721 06671 74999 70560 47591 52930−

ln 2 = 0.69314 71805 59945 30941 72321 21458 17656 80755+
ln 3 = 1.09861 22886 68109 69139 52452 36922 52570 46475−
ln 10 = 2.30258 50929 94045 68401 79914 54684 36420 76011+
1/ln 2 = 1.44269 50408 88963 40735 99246 81001 89213 74266+
1/ln 10 = 0.43429 44819 03251 82765 11289 18916 60508 22944−

π = 3.14159 26535 89793 23846 26433 83279 50288 41972−
1◦ = π/180 = 0.01745 32925 19943 29576 92369 07684 88612 71344+

1/π = 0.31830 98861 83790 67153 77675 26745 02872 40689+
π2 = 9.86960 44010 89358 61883 44909 99876 15113 53137−√

π = Γ(1/2) = 1.77245 38509 05516 02729 81674 83341 14518 27975+
Γ(1/3) = 2.67893 85347 07747 63365 56929 40974 67764 41287−
Γ(2/3) = 1.35411 79394 26400 41694 52880 28154 51378 55193+

e = 2.71828 18284 59045 23536 02874 71352 66249 77572+
1/e = 0.36787 94411 71442 32159 55237 70161 46086 74458+
e2 = 7.38905 60989 30650 22723 04274 60575 00781 31803+
γ = 0.57721 56649 01532 86060 65120 90082 40243 10422−

lnπ = 1.14472 98858 49400 17414 34273 51353 05871 16473−
φ = 1.61803 39887 49894 84820 45868 34365 63811 77203+
eγ = 1.78107 24179 90197 98523 65041 03107 17954 91696+

eπ/4 = 2.19328 00507 38015 45655 97696 59278 73822 34616+
sin 1 = 0.84147 09848 07896 50665 25023 21630 29899 96226−
cos 1 = 0.54030 23058 68139 71740 09366 07442 97660 37323+

−ζ ′(2) = 0.93754 82543 15843 75370 25740 94567 86497 78979−
ζ(3) = 1.20205 69031 59594 28539 97381 61511 44999 07650−
lnφ = 0.48121 18250 59603 44749 77589 13424 36842 31352−

1/lnφ = 2.07808 69212 35027 53760 13226 06117 79576 77422−
−ln ln 2 = 0.36651 29205 81664 32701 24391 58232 66946 94543−

656

656

From the Library of Melissa Nuno

ptg999

TABLES OF NUMERICAL QUANTITIES 657

Table 2

QUANTITIES THAT ARE FREQUENTLY USED IN STANDARD SUBROUTINES
AND IN ANALYSIS OF COMPUTER PROGRAMS (40 HEXADECIMAL PLACES)

The names at the left of the “=” signs are given in decimal notation.

0.1 = 0.1999 9999 9999 9999 9999 9999 9999 9999 9999 999A−
0.01 = 0.028F 5C28 F5C2 8F5C 28F5 C28F 5C28 F5C2 8F5C 28F6−
0.001 = 0.0041 8937 4BC6 A7EF 9DB2 2D0E 5604 1893 74BC 6A7F−
0.0001 = 0.0006 8DB8 BAC7 10CB 295E 9E1B 089A 0275 2546 0AA6+
0.00001 = 0.0000 A7C5 AC47 1B47 8423 0FCF 80DC 3372 1D53 CDDD+
0.000001 = 0.0000 10C6 F7A0 B5ED 8D36 B4C7 F349 3858 3621 FAFD−
0.0000001 = 0.0000 01AD 7F29 ABCA F485 787A 6520 EC08 D236 9919+
0.00000001 = 0.0000 002A F31D C461 1873 BF3F 7083 4ACD AE9F 0F4F+
0.000000001 = 0.0000 0004 4B82 FA09 B5A5 2CB9 8B40 5447 C4A9 8188−
0.0000000001 = 0.0000 0000 6DF3 7F67 5EF6 EADF 5AB9 A207 2D44 268E−√

2 = 1.6A09 E667 F3BC C908 B2FB 1366 EA95 7D3E 3ADE C175+√
3 = 1.BB67 AE85 84CA A73B 2574 2D70 78B8 3B89 25D8 34CC+√
5 = 2.3C6E F372 FE94 F82B E739 80C0 B9DB 9068 2104 4ED8−√
10 = 3.298B 075B 4B6A 5240 9457 9061 9B37 FD4A B4E0 ABB0−
3
√
2 = 1.428A 2F98 D728 AE22 3DDA B715 BE25 0D0C 288F 1029+

3
√
3 = 1.7137 4491 23EF 65CD DE7F 16C5 6E32 67C0 A189 4C2B−

4
√
2 = 1.306F E0A3 1B71 52DE 8D5A 4630 5C85 EDEC BC27 3436+

ln 2 = 0.B172 17F7 D1CF 79AB C9E3 B398 03F2 F6AF 40F3 4326+
ln 3 = 1.193E A7AA D030 A976 A419 8D55 053B 7CB5 BE14 42DA−
ln 10 = 2.4D76 3776 AAA2 B05B A95B 58AE 0B4C 28A3 8A3F B3E7+
1/ln 2 = 1.7154 7652 B82F E177 7D0F FDA0 D23A 7D11 D6AE F552−
1/ln 10 = 0.6F2D EC54 9B94 38CA 9AAD D557 D699 EE19 1F71 A301+

π = 3.243F 6A88 85A3 08D3 1319 8A2E 0370 7344 A409 3822+
1◦ = π/180 = 0.0477 D1A8 94A7 4E45 7076 2FB3 74A4 2E26 C805 BD78−

1/π = 0.517C C1B7 2722 0A94 FE13 ABE8 FA9A 6EE0 6DB1 4ACD−
π2 = 9.DE9E 64DF 22EF 2D25 6E26 CD98 08C1 AC70 8566 A3FE+√

π = Γ(1/2) = 1.C5BF 891B 4EF6 AA79 C3B0 520D 5DB9 383F E392 1547−
Γ(1/3) = 2.ADCE EA72 905E 2CEE C8D3 E92C D580 46D8 4B46 A6B3−
Γ(2/3) = 1.5AA7 7928 C367 8CAB 2F4F EB70 2B26 990A 54F7 EDBC+

e = 2.B7E1 5162 8AED 2A6A BF71 5880 9CF4 F3C7 62E7 160F+
1/e = 0.5E2D 58D8 B3BC DF1A BADE C782 9054 F90D DA98 05AB−
e2 = 7.6399 2E35 376B 730C E8EE 881A DA2A EEA1 1EB9 EBD9+
γ = 0.93C4 67E3 7DB0 C7A4 D1BE 3F81 0152 CB56 A1CE CC3B−

lnπ = 1.250D 048E 7A1B D0BD 5F95 6C6A 843F 4998 5E6D DBF4−
φ = 1.9E37 79B9 7F4A 7C15 F39C C060 5CED C834 1082 276C−
eγ = 1.C7F4 5CAB 1356 BF14 A7EF 5AEB 6B9F 6C45 60A9 1932+

eπ/4 = 2.317A CD28 E395 4F87 6B04 B8AB AAC8 C708 F1C0 3C4A+
sin 1 = 0.D76A A478 4867 7020 C6E9 E909 C50F 3C32 89E5 1113+
cos 1 = 0.8A51 407D A834 5C91 C246 6D97 6871 BD29 A237 3A89+

−ζ ′(2) = 0.F003 2992 B55C 4F28 88E9 BA28 1E4C 405F 8CBE 9FEE+
ζ(3) = 1.33BA 004F 0062 1383 7171 5C59 E690 7F1B 180B 7DB1+
lnφ = 0.7B30 B2BB 1458 2652 F810 812A 5A31 C083 4C9E B233+

1/lnφ = 2.13FD 8124 F324 34A2 63C7 5F40 76C7 9883 5224 4685−
−ln ln 2 = 0.5DD3 CA6F 75AE 7A83 E037 67D6 6E33 2DBC 09DF AA82−

657

From the Library of Melissa Nuno

ptg999

658 APPENDIX A

Several interesting constants with less common names have arisen in connec-
tion with the analyses in the present book. Those constants have been evaluated
to 40 decimal places in Eq. 7.2.2.1–(86) and in the answer to exerciseMPR–19(d).

Table 3

VALUES OF HARMONIC NUMBERS, BERNOULLI NUMBERS,
AND FIBONACCI NUMBERS, FOR SMALL VALUES OF n

n Hn Bn Fn n

0 0 1 0 0
1 1 1/2 1 1
2 3/2 1/6 1 2
3 11/6 0 2 3
4 25/12 −1/30 3 4
5 137/60 0 5 5
6 49/20 1/42 8 6
7 363/140 0 13 7
8 761/280 −1/30 21 8
9 7129/2520 0 34 9
10 7381/2520 5/66 55 10
11 83711/27720 0 89 11
12 86021/27720 −691/2730 144 12
13 1145993/360360 0 233 13
14 1171733/360360 7/6 377 14
15 1195757/360360 0 610 15
16 2436559/720720 −3617/510 987 16
17 42142223/12252240 0 1597 17
18 14274301/4084080 43867/798 2584 18
19 275295799/77597520 0 4181 19
20 55835135/15519504 −174611/330 6765 20
21 18858053/5173168 0 10946 21
22 19093197/5173168 854513/138 17711 22
23 444316699/118982864 0 28657 23
24 1347822955/356948592 −236364091/2730 46368 24
25 34052522467/8923714800 0 75025 25
26 34395742267/8923714800 8553103/6 121393 26
27 312536252003/80313433200 0 196418 27
28 315404588903/80313433200 −23749461029/870 317811 28
29 9227046511387/2329089562800 0 514229 29
30 9304682830147/2329089562800 8615841276005/14322 832040 30

658

From the Library of Melissa Nuno

ptg999

TABLES OF NUMERICAL QUANTITIES 659

For any x, let Hx =
∑

n≥1

(
1

n
− 1

n+ x

)
. Then

H1/2 = 2− 2 ln 2,

H1/3 = 3− 1
2π/

√
3− 3

2 ln 3,

H2/3 =
3
2 +

1
2π/

√
3− 3

2 ln 3,

H1/4 = 4− 1
2
π − 3 ln 2,

H3/4 =
4
3 +

1
2π − 3 ln 2,

H1/5 = 5− 1
2πφ

3/25−1/4 − 5
4 ln 5− 1

2

√
5 lnφ,

H2/5 =
5
2 − 1

2πφ
−3/25−1/4 − 5

4 ln 5 +
1
2

√
5 lnφ,

H3/5 =
5
3 +

1
2πφ

−3/25−1/4 − 5
4 ln 5 +

1
2

√
5 lnφ,

H4/5 =
5
4
+ 1

2
πφ3/25−1/4 − 5

4
ln 5− 1

2

√
5 lnφ,

H1/6 = 6− 1
2π
√
3− 2 ln 2− 3

2 ln 3,

H5/6 =
6
5 +

1
2π
√
3− 2 ln 2− 3

2 ln 3,

and, in general, when 0 < p < q (see exercise 1.2.9–19),

Hp/q =
q

p
− π

2
cot

p

q
π − ln 2q + 2

∑

1≤n<q/2

cos
2pn

q
π · ln sin n

q
π.

659

From the Library of Melissa Nuno

ptg999

APPENDIX B

INDEX TO NOTATIONS

In the following formulas, letters that are not further qualified have the following
significance:

j, k integer-valued arithmetic expression

m,n nonnegative integer-valued arithmetic expression

p, q binary-valued arithmetic expression (0 or 1)

x, y real-valued arithmetic expression

z complex-valued arithmetic expression

f integer-valued, real-valued, or complex-valued function

G,H graph

S, T set or multiset

F ,G family of sets

u, v vertex of a graph

α, β string of symbols

The place of definition is either a page number in the present volume or a section
number in another volume. Many other notations, such as Kn for the complete
graph on n vertices, appear in the main index at the close of this book. See also
‘Notational conventions’ in that index.

Formal Where

symbolism Meaning defined

V ← E give variable V the value of expression E §1.1
U ↔ V interchange the values of variables U and V §1.1

An or A[n] the nth element of linear array A §1.1
Amn or A[m,n] the element in row m and column n of

rectangular array A §1.1
(R? a: b) conditional expression: denotes

a if relation R is true, b if R is false 336

[R] characteristic function of relation R: (R? 1: 0) §1.2.3
δjk Kronecker delta: [j= k] §1.2.3

[zn] f(z) coefficient of zn in power series f(z) §1.2.9
z1 + z2 + · · ·+ zn sum of n numbers (even when n is 0 or 1) §1.2.3

a1a2 . . . an product or string or vector of n elements

(x1, . . . , xn) vector of n elements

〈x1x2 . . . x2k−1〉 median value (the middle value after sorting) §7.1.1
660

660

From the Library of Melissa Nuno

ptg999

INDEX TO NOTATIONS 661

Formal Where

symbolism Meaning defined

∑
R(k) f(k) sum of all f(k) such that relation R(k) is true §1.2.3

∏
R(k) f(k) product of all f(k) such that relation R(k) is true §1.2.3

minR(k) f(k) minimum of all f(k) such that relation R(k) is true §1.2.3
maxR(k) f(k) maximum of all f(k) such that relation R(k) is true §1.2.3⋃

R(k) S(k) union of all S(k) such that relation R(k) is true
∑b

k=a f(k) shorthand for
∑

a≤k≤b f(k) §1.2.3
{a | R(a)} set of all a such that relation R(a) is true∑{f(k) | R(k)} another way to write

∑
R(k) f(k)

{a1, a2, . . . , an} the set or multiset {ak | 1 ≤ k ≤ n}
[x . . y] closed interval: {a | x ≤ a ≤ y} §1.2.2
(x . . y) open interval: {a | x < a < y} §1.2.2
[x . . y) half-open interval: {a | x ≤ a < y} §1.2.2
(x . . y] half-closed interval: {a | x < a ≤ y} §1.2.2

|S| cardinality: the number of elements in S

|x| absolute value of x: (x ≥ 0? x: −x)
|z| absolute value of z:

√
zz̄ §1.2.2

|α| length of α: m if α = a1a2 . . . am

|l| base variable of literal l: |v| = |v̄| = v 186
	x
 floor of x, greatest integer function: maxk≤x k §1.2.4
�x� ceiling of x, least integer function: mink≥x k §1.2.4

xmod y mod function:
(
y = 0? x: x− y	x/y
) §1.2.4

{x} fractional part (used in contexts where
a real value, not a set, is implied): xmod 1 §1.2.11.2

x ≡ x′ (modulo y) relation of congruence: xmod y = x′ mod y §1.2.4
j\k j divides k: k mod j = 0 and j > 0 §1.2.4

S \ T set difference: {s | s in S and s not in T}
S \ t shorthand for S \ {t}
G \ U G with vertices of the set U removed §7
G \ v G with vertex v removed §7
G \ e G with edge e removed §7
G / e G with edge e shrunk to a point §7.2.1.6
S ∪ t shorthand for S ∪ {t}
S � T multiset sum; e.g., {a, b} � {a, c} = {a, a, b, c} §4.6.3

gcd(j, k) greatest common divisor: (j=k=0? 0: maxd\j,d\k d) §1.1
j ⊥ k j is relatively prime to k: gcd(j, k) = 1 §1.2.4

661

From the Library of Melissa Nuno

ptg999

662 APPENDIX B

Formal Where

symbolism Meaning defined

AT transpose of rectangular array A: AT [j, k] = A[k, j]

αR left-right reversal of string α

αT conjugate of partition α §7.2.1.4
xy x to the y power (when x > 0): ey ln x §1.2.2
xk x to the k power:

(
k ≥ 0?

∏k−1
j=0 x: 1/x

−k
) §1.2.2

x− inverse (or reciprocal) of x: x−1 §1.3.3
xk x to the k rising: Γ(x+ k)/Γ(k) =(

k ≥ 0?
∏k−1

j=0 (x+ j): 1/(x+ k)−k
) §1.2.5

xk x to the k falling: x!/(x− k)! =(
k ≥ 0?

∏k−1
j=0 (x− j): 1/(x− k)−k

) §1.2.5
n! n factorial: Γ(n+ 1) = nn §1.2.5(
x
k

)
binomial coefficient: (k < 0? 0: xk/k!) §1.2.6(

n
n1,...,nm

)
multinomial coefficient (when n = n1 + · · ·+ nm) §1.2.6

[
n
m

]
Stirling cycle number:

∑
0<k1<···<kn−m<n

k1 . . . kn−m §1.2.6
{
n
m

}
Stirling subset number:

∑
1≤k1≤···≤kn−m≤m

k1 . . . kn−m §1.2.6
〈
n
m

〉
Eulerian number:

∑m
k=0(−1)k

(
n+1
k

)
(m+ 1− k)n §5.1.3∣∣n

m

∣∣ m-part partitions of n:
∑

1≤k1≤···≤km
[k1 + · · ·+ km=n] §7.2.1.4

(. . . a1a0.a−1 . . .)b radix-b positional notation:
∑

k akb
k §4.1

�z real part of z §1.2.2
�z imaginary part of z §1.2.2
z complex conjugate: �z − i�z §1.2.2

¬p or ∼p or p complement: 1− p §7.1.1
∼x or x bitwise complement §7.1.3

p ∧ q Boolean conjunction (and): pq §7.1.1
x ∧ y minimum: min{x, y} §7.1.1
x& y bitwise AND §7.1.3
p ∨ q Boolean disjunction (or): p̄ q̄ §7.1.1
x ∨ y maximum: max{x, y} §7.1.1
x | y bitwise OR §7.1.3
p⊕ q Boolean exclusive disjunction (xor): (p+ q) mod 2 §7.1.1
x⊕ y bitwise XOR §7.1.3
x

.− y saturated subtraction, x monus y: max{0, x− y} §1.3.1́
x� k bitwise left shift: 	2kx
 §7.1.3
x� k bitwise right shift: x� (−k) §7.1.3
x ‡ y “zipper function” for interleaving bits, x zip y §7.1.3

662

From the Library of Melissa Nuno

ptg999

INDEX TO NOTATIONS 663

Formal Where

symbolism Meaning defined

logb x logarithm, base b, of x (defined when x > 0,
b > 0, and b �= 1): the y such that x = by §1.2.2

lnx natural logarithm: loge x §1.2.2
lg x binary logarithm: log2 x §1.2.2
λn binary logsize (when n > 0): 	lgn
 §7.1.3

expx exponential of x: ex =
∑∞

k=0 x
k/k! §1.2.9

ρn ruler function (when n > 0): max2m\nm §7.1.3
νn sideways sum (when n ≥ 0):

∑
k≥0

(
(n� k) & 1

) §7.1.3
〈Xn〉 the infinite sequence X0, X1, X2, . . .

(here the letter n is part of the symbolism) §1.2.9
f ′(x) derivative of f at x §1.2.9
f ′′(x) second derivative of f at x §1.2.10
H

(x)
n harmonic number of order x:

∑n
k=1 1/k

x §1.2.7
Hn harmonic number: H

(1)
n §1.2.7

Fn Fibonacci number: (n ≤ 1? n: Fn−1 + Fn−2) §1.2.8
Bn Bernoulli number: n! [zn] z/(1− e−z) §1.2.11.2

det(A) determinant of square matrix A §1.2.3
sign(x) sign of x: [x> 0]− [x< 0]

ζ(x) zeta function: limn→∞H
(x)
n (when x > 1) §1.2.7

Γ(x) gamma function: (x− 1)! = γ(x,∞) §1.2.5
γ(x, y) incomplete gamma function:

∫ y
0
e−ttx−1dt §1.2.11.3

γ Euler’s constant: −Γ′(1) = limn→∞(Hn − lnn) §1.2.7
e base of natural logarithms:

∑
n≥0 1/n! §1.2.2

π circle ratio: 4
∑

n≥0(−1)n/(2n+ 1) §1.2.2
∞ infinity: larger than any number

Λ null link (pointer to no address) §2.1
∅ empty set (set with no elements)

ε empty string (string of length zero)

ε unit family: {∅} §7.1.4
φ golden ratio:

(
1 +

√
5
)
/2 §1.2.8

ϕ(n) Euler’s totient function:
∑n−1

k=0 [k⊥n] §1.2.4
x ≈ y x is approximately equal to y §1.2.5

G ∼= H G is isomorphic to H §7
O
(
f(n)

)
big-oh of f(n), as the variable n→∞ §1.2.11.1

O
(
f(z)

)
big-oh of f(z), as the variable z → 0 §1.2.11.1

Ω
(
f(n)

)
big-omega of f(n), as the variable n→∞ §1.2.11.1

Θ
(
f(n)

)
big-theta of f(n), as the variable n→∞ §1.2.11.1

663

From the Library of Melissa Nuno

ptg999

664 APPENDIX B

Formal Where

symbolism Meaning defined

G complement of graph (or uniform hypergraph) G §7
GT converse of digraph G (change ‘−−→’ to ‘←−−’) §7.2.2.3

G | U G restricted to the vertices of set U §7
u−−−v u is adjacent to v §7
u /−−−v u is not adjacent to v §7
u−−→v there is an arc from u to v §7
u−−→∗ v transitive closure: v is reachable from u §7.1.3
d(u, v) distance from u to v §7
G ∪H union of G and H §7
G⊕H direct sum (juxtaposition) of G and H §7
G−−−H join of G and H §7
G−−→H directed join of G and H §7
G H Cartesian product of G and H §7
G⊗H direct product (conjunction) of G and H §7
G×H strong product of G and H §7
G�H odd product of G and H §7
G ◦H lexicographic product (composition) of G and H §7

ej elementary family: {{j}} §7.1.4
℘ universal family: all subsets of a given universe §7.1.4

F ∪ G union of families: {S | S ∈ F or S ∈ G} §7.1.4
F ∩ G intersection of families: {S | S ∈ F and S ∈ G} §7.1.4
F \ G difference of families: {S | S ∈ F and S /∈ G} §7.1.4
F ⊕ G symmetric difference of families: (F \ G) ∪ (G \ F) §7.1.4
F " G join of families: {S ∪ T | S ∈ F , T ∈ G} §7.1.4
F # G meet of families: {S ∩ T | S ∈ F , T ∈ G} §7.1.4
F G delta of families: {S ⊕ T | S ∈ F , T ∈ G} §7.1.4
F/G quotient (cofactor) of families §7.1.4

F mod G remainder of families: F \ (G " (F/G)) §7.1.4
F § k symmetrized family, if F = ej1 ∪ ej2 ∪ · · · ∪ ejn §7.1.4
F↑ maximal elements of F :

{S ∈ F | T ∈ F and S ⊆ T implies S = T} §7.1.4
F↓ minimal elements of F :

{S ∈ F | T ∈ F and S ⊇ T implies S = T} §7.1.4
F ↗ G nonsubsets: {S ∈ F | T ∈ G implies S �⊆ T} §7.1.4
F ↘ G nonsupersets: {S ∈ F | T ∈ G implies S �⊇ T} §7.1.4
F ↙ G subsets: {S ∈ F | T ∈ G implies S ⊆ T} = F \ (F ↗ G) §7.1.4
F ↖ G supersets: {S ∈ F | T ∈ G implies S ⊇ T} = F \ (F ↘ G) §7.1.4

664

From the Library of Melissa Nuno

ptg999

INDEX TO NOTATIONS 665

Formal Where

symbolism Meaning defined

X · Y dot product of vectors: x1y1 + x2y2 + · · ·+ xnyn,
if X = x1x2 . . . xn and Y = y1y2 . . . yn §7

X ⊆ Y containment of vectors: xk ≤ yk for 1 ≤ k ≤ n,
if X = x1x2 . . . xn and Y = y1y2 . . . yn §7.1.3

α(G) independence number of G §7
γ(G) domination number of G 461

κ(G) vertex connectivity of G §7.4.1.3
λ(G) edge connectivity of G §7.4.1.3
ν(G) matching number of G §7.5.5
χ(G) chromatic number of G §7
ω(G) clique number of G §7
c(G) number of spanning trees of G §7.2.1.6

C ′ & C ′′ resolvent of clauses C ′ and C ′′ 336

Pr
(
S(X)

)
probability that statement S(X) is true,
when X is a random variable §1.2.10

EX expected value of the random variable X:∑
x xPr(X = x) §1.2.10

varX variance of the random variable X: E
(
(X − EX)2

)
2

Pr
(
A |B) conditional probability of A given B:

Pr(A and B)/Pr(B) 1

E(X |Y) expected value of X given Y 3

end of algorithm, program, or proof §1.1

In the end, however, I did put in one equation,

Einstein’s famous equation, E = mc2.
I hope that this will not scare off half of my potential readers.

— STEPHEN HAWKING, A Brief History of Time (1987)

665

From the Library of Melissa Nuno

ptg999

APPENDIX C

INDEX TO ALGORITHMS AND THEOREMS

Algorithm 7.2.2B, 30.

Algorithm 7.2.2B*, 32.

Algorithm 7.2.2C, 45–46.

Algorithm 7.2.2E, 49.

Corollary 7.2.2E, 48.

Theorem 7.2.2E, 48.

Algorithm 7.2.2L, 35.

Algorithm 7.2.2O, 403.

Algorithm 7.2.2R, 414.

Algorithm 7.2.2R′, 414.

Algorithm 7.2.2W, 33.

Algorithm 7.2.2.1C, viii, 90.

Algorithm 7.2.2.1C$, viii, 113, 116–118.

Lemma 7.2.2.1D, 105.

Theorem 7.2.2.1E, 100.

Algorithm 7.2.2.1G, 423.

Algorithm 7.2.2.1I, 417.

Algorithm 7.2.2.1M, viii, 97–98.

Algorithm 7.2.2.1N, 128.

Algorithm 7.2.2.1P, viii, 110.

Theorem 7.2.2.1S, 108.

Algorithm 7.2.2.1X, viii, 69.

Algorithm 7.2.2.1X$, 112, 116–118.

Algorithm 7.2.2.1Z, viii, 120.

Algorithm 7.2.2.2A, viii, 212–213, 572.

Algorithm 7.2.2.2A∗, 572–573.

Algorithm 7.2.2.2B, viii, 215.

Lemma 7.2.2.2B, 242.

Theorem 7.2.2.2B, 243.

Algorithm 7.2.2.2C, viii, 252.

Theorem 7.2.2.2C, 236–238.

Algorithm 7.2.2.2D, viii, 217–218.

Algorithm 7.2.2.2E, 360.

Corollary 7.2.2.2E, 297.

Theorem 7.2.2.2E, 295.

Algorithm 7.2.2.2F, 569.

Theorem 7.2.2.2F, 270.

Theorem 7.2.2.2G, 254.

Algorithm 7.2.2.2I, 245.

Theorem 7.2.2.2J, 266.

Algorithm 7.2.2.2K, 580–581.

Theorem 7.2.2.2K, 274.

Algorithm 7.2.2.2L, viii, 222–223.

Algorithm 7.2.2.2L0, 223.

Algorithm 7.2.2.2L′, viii, 576.

Lemma 7.2.2.2L, 266.

Theorem 7.2.2.2L, 266.

Algorithm 7.2.2.2M, 266–267.

Theorem 7.2.2.2M, 267.

Algorithm 7.2.2.2P, 261.

Algorithm 7.2.2.2P′, 605.

Program 7.2.2.2P′, 606.

Algorithm 7.2.2.2R, 330.

Theorem 7.2.2.2R, 240.

Algorithm 7.2.2.2S, viii, 277.

Theorem 7.2.2.2S, 271.

Algorithm 7.2.2.2T, 613–614.

Theorem 7.2.2.2U, 262–263.

Algorithm 7.2.2.2W, viii, 263–264, 606.

Corollary 7.2.2.2W, 263.

Algorithm 7.2.2.2X, 228–229.

Algorithm 7.2.2.2Y, 230.

There is a curious poetical index to the Iliad in Pope’s Homer,

referring to all the places in which similes are used.

— HENRY B. WHEATLEY, What is an Index? (1878)

666

666

From the Library of Melissa Nuno

ptg999

APPENDIX D

INDEX TO COMBINATORIAL PROBLEMS

The purpose of this appendix is to present concise descriptions of the major problems
treated in the present book, and to associate each problem description with the name
under which it can be found in the main index. Some of these problems can be solved
efficiently, while others appear to be very difficult in general although special cases
might be easy. No indication of problem complexity is given here.
Combinatorial problems have a chameleon-like tendency to assume many forms.

For example, certain properties of graphs and hypergraphs are equivalent to other
properties of 0–1 matrices; and an m × n matrix of 0s and 1s can itself be regarded
as a Boolean function of its index variables (i, j), with 0 representing FALSE and
1 representing TRUE. Each problem also has many flavors: We sometimes ask only
whether a solution to certain constraints exists at all; but usually we ask to see at least
one explicit solution, or we try to count the number of solutions, or to visit them all.
Often we require a solution that is optimum in some sense.
In the following list—which is intended to be helpful but by no means complete—

each problem is presented in more-or-less formal terms as the task of “finding” some
desired objective. This characterization is then followed by an informal paraphrase (in
parentheses and quotation marks), and perhaps also by further comments.
Any problem that is stated in terms of directed graphs is automatically applicable

also to undirected graphs, unless the digraph must be acyclic, because an undirected
edge u−−−v is equivalent to the two directed arcs u−−→v and v−−→u.

• Satisfiability: Given a Boolean function f of n Boolean variables, find Boolean values
x1, . . . , xn such that f(x1, . . . , xn) = 1. (“If possible, show that f can be true.”)

• kSAT: The satisfiability problem when f is the conjunction of clauses, where each
clause is a disjunction of at most k literals xj or x̄j . (“Can all the clauses be true?”)
The cases 2SAT and 3SAT are most important. Another significant special case arises
when f is a conjunction of Horn clauses, each having at most one nonnegated literal xj .

• Boolean chain: Given one or more Boolean functions of n Boolean values x1, . . . , xn,
find xn+1, . . . , xN such that each xk for n < k ≤ N is a Boolean function of xi and xj
for some i < k and j < k, and such that each of the given functions is either constant
or equal to xl for some l ≤ N . (“Construct a straight-line program to evaluate a given
set of functions, sharing intermediate values.”) (“Build a circuit to compute a given
collection of outputs from the inputs 0, 1, x1, . . . , xn, using 2-input Boolean gates with
unlimited fanout.”) The goal is usually to minimize N .

• Broadword chain: Like a Boolean chain, but using bitwise and/or arithmetic opera-
tions on integers modulo 2d instead of Boolean operations on Boolean values; the given
value of d can be arbitrarily large. (“Work on several related problems at once.”)

• Boolean programming: Given a Boolean function f of n Boolean variables, to-
gether with given weights w1, . . . , wn, find Boolean values x1, . . . , xn such that
f(x1, . . . , xn) = 1 and w1x1 + · · · + wnxn is as large as possible. (“How can f be
satisfied with maximum payoff?”)

667

667

From the Library of Melissa Nuno

ptg999

668 APPENDIX D

• Matching: Given a graph G, find a set of disjoint edges. (“Pair up the vertices so
that each vertex has at most one partner.”) The goal is usually to find as many edges
as possible; a “perfect matching” includes all the vertices. In a bipartite graph with m
vertices in one part and n vertices in the other, matching is equivalent to selecting a
set of 1s in an m × n matrix of 0s and 1s, with at most one selected in each row and
at most one selected in each column.

• Assignment problem: A generalization of bipartite matching, with weights associated
with each edge; the total weight of the matching should be maximized. (“What
assignment of people to jobs is best?”) Equivalently, we wish to select elements of
an m×n matrix, at most one per row and at most one per column, so that the sum of
selected elements is as large as possible.

• Covering: Given a matrix Ajk of 0s and 1s, find a set of rows R such that we have∑
j∈RAjk > 0 for all k. (“Mark a 1 in each column and select all rows that have been

marked.”) Equivalently, find an implicant of a monotone Boolean function, given its
clauses. The goal is usually to minimize |R|.
• Exact cover: Given a matrix Ajk of 0s and 1s, find a set of rows R such that∑

j∈RAjk = 1 for all k. (“Cover with mutually orthogonal rows.”) The perfect
matching problem is equivalent to finding an exact cover of the transposed incidence
matrix.

• Independent set: Given a graph or hypergraph G, find a set of vertices U such that
the induced graph G | U has no edges. (“Choose unrelated vertices.”) The goal is
usually to maximize |U |. Classical special cases include the 8 queens problem, when G
is the graph of queen moves on a chessboard, and the no-three-on-a-line problem.

• Clique: Given a graph G, find a set of vertices U such that the induced graph G |U
is complete. (“Choose mutually adjacent vertices.”) Equivalently, find an independent
set in ∼G. The goal is usually to maximize |U |.
• Vertex cover: Given a graph or hypergraph, find a set of vertices U such that
every edge includes at least one vertex of U . (“Mark some vertices so that no edge
remains unmarked.”) Equivalently, find a covering of the transposed incidence matrix.
Equivalently, find U such that V \ U is independent, where V is the set of all vertices.
The goal is usually to minimize |U |.
• Dominating set: Given a graph, find a set of vertices U such that every vertex not
in U is adjacent to some vertex of U . (“What vertices are within one step of them
all?”) The classic 5-queens problem is the special case when G is the graph of queen
moves on a chessboard.

• Kernel: Given a directed graph, find an independent set of vertices U such that
every vertex not in U is the predecessor of some vertex of U . (“In what independent
positions of a 2-player game can your opponent force you to remain?”) If the graph is
undirected, a kernel is equivalent to a maximal independent set, and to a dominating
set that is both minimal and independent.

• Coloring: Given a graph, find a way to partition its vertices into k independent sets.
(“Color the vertices with k colors, never giving the same color to adjacent points.”)
The goal is usually to minimize k.

• Shortest path: Given vertices u and v of a directed graph in which weights are
associated with every arc, find the smallest total weight of an oriented path from u
to v. (“Determine the best route.”)

668

From the Library of Melissa Nuno

ptg999

INDEX TO COMBINATORIAL PROBLEMS 669

• Longest path: Given vertices u and v of a directed graph in which weights are
associated with every arc, find the largest total weight of a simple oriented path from
u to v. (“What route meanders the most?”)

• Reachability: Given a set of vertices U in a directed graph G, find all vertices v such
that u−−→∗ v for some u ∈ U . (“What vertices occur on paths that start in U?”)

• Spanning tree: Given a graph G, find a free tree F on the same vertices, such that
every edge of F is an edge of G. (“Choose just enough edges to connect up all the
vertices.”) If weights are associated with each edge, a minimum spanning tree is a
spanning tree of smallest total weight.

• Hamiltonian path: Given a graph G, find a path P on the same vertices, such that
every edge of P is an edge of G. (“Discover a path that encounters every vertex exactly
once.”) This is the classic knight’s tour problem when G is the graph of knight moves
on a chessboard. When the vertices of G are combinatorial objects— for example,
tuples, permutations, combinations, partitions, or trees—that are adjacent when they
are “close” to each other, a Hamiltonian path is often called a Gray code.

• Hamiltonian cycle: Given a graph G, find a cycle C on the same vertices, such that
every edge of C is an edge of G. (“Discover a path that encounters every vertex exactly
once and returns to the starting point.”)

• Traveling Salesrep Problem: Find a Hamiltonian cycle of smallest total weight, when
weights are associated with each edge of the given graph. (“What’s the cheapest way to
visit everything?”) If the graph has no Hamiltonian cycle, we extend it to a complete
graph by assigning a very large weight W to every nonexistent edge.

• Topological sorting: Given a directed graph, find a way to label each vertex x with a
distinct number l(x) in such a way that x−−→y implies l(x) < l(y). (“Place the vertices
in a row, with each vertex to the left of all its successors.”) Such a labeling is possible
if and only if the given digraph is acyclic.

• Optimum linear arrangement: Given a graph, find a way to label each vertex x with
a distinct integer l(x), such that

∑
u−−−v |l(u)− l(v)| is as small as possible. (“Place the

vertices in a row, minimizing the sum of the resulting edge lengths.”)

• Knapsack problem: Given a sequence of weights w1, . . . , wn, a threshold W, and
a sequence of values v1, . . . , vn, find K ⊆ {1, . . . , n} such that

∑
k∈K wk ≤ W and∑

k∈K vk is maximum. (“How much value can be carried?”)

• Orthogonal array: Given positive integers m and n, find an m × n2 array with
entries Ajk ∈ {0, 1, . . . , n − 1} and with the property that j �= j′ and k �= k′ implies
(Ajk, Aj′k) �= (Ajk′ , Aj′k′). (“Construct m different n × n matrices of n-ary digits in
such a way that all n2 possible digit pairs occur when any two of the matrices are
superimposed.”) The case m = 3 corresponds to a latin square, and the case m > 3
corresponds to m− 2 mutually orthogonal latin squares.

• Nearest common ancestor: Given nodes u and v of a forest, find w such that every
inclusive ancestor of u and of v is also an inclusive ancestor of w. (“Where does the
shortest path from u to v change direction?”)

• Range minimum query: Given a sequence of numbers a1, . . . , an, find the minimum
elements of each subinterval ai, . . . , aj for 1 ≤ i < j ≤ n. (“Solve all possible queries
concerning the minimum value in any given range.”) Exercises 150 and 151 of Section
7.1.3 show that this problem is equivalent to finding nearest common ancestors.

669

From the Library of Melissa Nuno

ptg999

670 APPENDIX D

• Universal cycle: Given b, k, and N , find a cyclic sequence of elements x0, x1, . . . ,
xN−1, x0, . . . of b-ary digits {0, 1, . . . , b−1} with the property that all combinatorial
arrangements of a particular kind are given by the consecutive k-tuples x0x1 . . . xk−1,
x1x2 . . . xk, . . . , xN−1x0 . . . xk−2. (“Exhibit all possibilities in a circular fashion.”)
The result is called a de Bruijn cycle if N = bk and all possible k-tuples appear; it’s a
universal cycle of combinations if N =

(
b
k

)
and if all k-combinations of b things appear;

and it’s a universal cycle of permutations if N = b!, k = b−1, and if all (b−1)-variations
appear as k-tuples.

In most cases we have been able to give a set-theoretic definition

that describes the problem completely, although the need for conciseness

has often led to some obscuring of the intuition behind the problem.

— M. R. GAREY and D. S. JOHNSON, A List of NP-Complete Problems (1979)

670

From the Library of Melissa Nuno

ptg999

APPENDIX E

ANSWERS TO PUZZLES IN THE ANSWERS

All answers here refer to exercises in Section 7.2.2.1.

1 2 8 3 7 9 4 6 5

4 6 7 1 5 2 9 8 3

9 3 5 8 6 4 7 2 1

3 9 4 6 2 8 5 1 7

8 7 6 5 9 1 2 3 4

2 5 1 7 4 3 6 9 8

5 4 3 2 1 6 8 7 9

6 1 9 4 8 7 3 5 2

7 8 2 9 3 5 1 4 6

(see answer 52)

8 1 2 3 4 5 6 9 7

3 9 6 1 7 2 4 5 8

5 4 7 6 3 2 1

7 2 4 5 1 6 3

6 3 2 1 7 4 5

4 5 1 6 3 7 2

1 7 4 5 2 3 6

9 6 3 7 2 1 5 8 4

2 8 5 6 3 4 7 1 9

(see answer 58)

SEVENTH, FOURTEEN, FIGHTER, REINVENT, VENTURES;
NONE, FORGIVEN, FORGIVES, UNTHRONE;
UNDOERS, FOUNDERS, CONDORS, TRIODES, ROUNDEST,
SECONDO, CERTIFY, FORTIFY, EXTRUDES.

(see answer 112)

� � �
� � �
�� �
� � �

� � �
� ��

�� �
� � �
�� �

���
�� �
�� �
� ��

� � �
�� �

� ��
� � �
� � �

� � �
���

� ��
� � �

� ��
� � �
���

� � �
� � �

�� �
� ��
� ��

� � �
� � �

�� �
�� �

� ��
� � �

� � �
� ��

� � �
� � �

� � �
� � �

� � �
�� �

� � �

�� �
� � �
� ��

� � �
� � �

� � �
�� �
���

� ��

� � �
� ��
�� �

� � �
� ��

� � �
� ��

� � �
� � �

� ��
� � �

� � �
�� �

� � �
� ��
� � �

� � �
�� �

� ��
�� �

� � �
� ��

�� �
� ��
� ��

� � �
� ��

���
�� �
���

� ��
�� �
� ��

� � �
� � �
� � �

���
���

���
� � �

� � �
� � �

� � �
� � �
� ��

���
���

���
���
� � �

� ��
� � �

� ��
�� �

���
� ��
�� �

���
���
���

�� �
� ��

� � �

� � �
� � �

���
� � �
� � �

���
� � �
�� �

� ��

(see
answer
173)

� � �
� � �
�� �
�� �

� � �
� ��
� � �

� � �
� � �

� � �
� � �
� � �

� � �
� � �

� � �
� � �
� � �

� � �

�� �
� � �
� � �
� ��

� � �
� � �
� � �

� � �
� � �

� � �
�� �
� � �

� � �
� � �
� � �

� � �
� � �

���

� ��
� � �

� � �
� ��

� � �
� � �

� � �
� ��

� � �

� � �
� � �
� � �

� � �
� � �

� ��
� � �
� � �
� � �

� � �
� ��
� � �

� � �
� � �
� � �

� ��
� � �

� � �

� � �
� � �
� ��

�� �
� ��
� ��

� � �
� ��

�� �

� ��
�� �
� � �

� ��
� � �

� � �
� � �

� � �
� � �

� � �
� ��

� ��
� � �
� ��

� � �
�� �

� � �
� � �

(see answer 174)

(see answer 282)

3 1 4 2 6 9 7 5 8

7 4 1 5 9 2 6 8 3

6 9 2 7 8 1 3 4 5

8 3 5 9 2 7 4 6 1

5 8 6 1 3 4 2 7 9

4 6 7 8 1 5 9 3 2

1 5 9 6 4 3 8 2 7

9 2 3 4 7 8 5 1 6

2 7 8 3 5 6 1 9 4

(see answer 302(c))

red bot = 1
1
3

8
8
3

8
5
5
, mid = 1

2
4

7
7
3

9
9
5
, top = 2

2
4

7
6
4

9
6
6
; green bot = 5

8
8

9
6
6

9
9
6
, mid = 5

8
4

5
7
4

7
7
3
, top = 1

1
4

1
2
3

2
2
3
(see answer 337)

671

671

From the Library of Melissa Nuno

ptg999

672 APPENDIX E

3

5

4

>

>

>

>

>

3 1 4 2 5

1 5 2 4

5 2 1 3 4

2 4 3 1

3 5 1 2

(see answer 395)

3

1

4

1

5

9

2

6

5

> >

> >

>

> >

> >

>

>

>

>

>

>

>>

>

>

>

> > > >

> >

>

>

>

>

>

> >

4 5 7 8 1 6 9 2

8 2 5 6 7 9 3 4

9 5 6 7 8 1 2 3

5 7 8 9 2 3 4 6

1 2 3 4 6 7 8 9

2 3 6 8 1 4 5 7

6 8 9 3 4 5 7 1

7 9 1 2 3 4 5 8

4 6 7 9 2 3 8 1

(see answer 396)

3÷ 14× 15× 9+ 2÷ 6÷

5+ 35+ 8 9÷

7+ 9 32×

3− 84× 62+ 64×

3

3 8+ 32× 79+ 50×

2− 8 3780×

9 7 2 3 5 8 4 6 1

3 2 6 5 4 7 8 1 9

2 1 5 4 7 6 3 9 8

5 6 7 2 3 9 1 8 4

8 5 9 7 6 1 2 4 3

6 9 3 1 8 4 7 2 5

7 8 4 6 1 3 9 5 2

1 4 8 9 2 5 6 3 7

4 3 1 8 9 2 5 7 6

(see answer 403)

23 24 31 32 6 5 14 13

22 30 25 17 7 15 4 12

21 29 18 26 16 8 3 11

20 19 28 27 1 2 9 10

(see answer 407)

1 2 3 4 5 6

28 29 16 17 7 19

27 15 30 8 18 20

14 26 9 31 21 36

13 10 25 22 32 35

11 12 23 24 34 33

;

3 2 7 6 11 10

1 4 5 8 9 12

22 23 18 19 13 15

24 21 20 17 16 14

27 25 31 30 33 36

26 28 29 32 35 34

. (see answer 408)

60 30 31 32 33 34 35 41 40 39

59 61 29 26 27 54 53 36 42 38

62 58 25 28 55 97 52 93 37 43

63 24 57 56 98 96 94 51 92 44

23 64 84 85 86 99 95 91 50 45

22 21 65 83 100 87 88 90 49 46

19 20 66 67 82 81 80 89 48 47

18 69 68 74 75 1 79 3 5 6

70 17 73 76 14 78 2 4 7 9

71 72 16 15 77 13 12 11 10 8

(see answer 409)

3 2 2 2 2 2

2 2 2 2 3 2

2 2 2 2 2 2

2 2 2 2 2 2

2 3 2 2 2 2

2 2 2 2 2 3

(see answer 411)

0

0 0

0

0

0 0

0 0 0

0 0

0 0

0 0

0 0 0

1

1 1

1 1

1 1

1

1 1 1

1 1 1

1 1

1 1 1

1 1 1

2

2 2 2 2

2 2 2 2

2

2

2 2

2 2 2 2

2 2 2 2

2 2 2 2 2

2 2 2

3 3 3

3

3 3

3 3

3

3 3

3 3 3

(see answer 415)

0 0 0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3 3 3 3

3

3

3 3 3 3 3 3 3 3 3 3 3 3 3

3

3 3 3 3 3 3 3 3 3 3 3 3 3

3

3 3 3 3 3 3 3 3 3 3 3 3 3

3

3 3 3 3 3 3 3 3 3 3 3 3 3

3

3 3 3 3 3 3 3 3 3 3 3 3 3

3

3 3 3 3 3 3 3 3 3 3 3 3 3

1 1 1 1

1 1

1 1 1 1

1 1 1 1

2

2 2

2 2 2 2

2 2 2 2

2 2 2

2 2 2

2 2 2 2

2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2

(see answer 416)

4

0

4

0

0

3

3

0 0

0

3 3

0 1 0

2 3 1

1

1 1 3 2 3

3

3 2 0 1

2 3 0 1

3 2 1 3

2 1 2 2

2 2 2 2

2 1 2 2

3 2 2 3

(see answer 418)

672

From the Library of Melissa Nuno

ptg999

ANSWERS TO PUZZLES IN THE ANSWERS 673

(see answer 424) (see answer 426)

6 13 19 27 41 18 7 32 10 13 21

27 8 29

11 13

17

16

26

41 18

15

30

38

15 10 17 32

22 23

10

5

7

7

41

29

42

18 7

14

28

28

26 14

11 15

16

32

26 22

24

10 17

37

9 13 16

25 41

6

14 22 14

29 9 29

3 7 8 9 5 1 2 5 7 9 8

1 2 3 5 6 2 5 4 2 1 9

2 4 5 6 7 8 9 8 2 1 3 4

2 3 4 9 6 8 5 1

3 2 1 4 5 7 7 4 3 1 2 6

4 1 1 4 2 9 8 2 3 7

9 3 2 4 2 1 4 9 7 4 8

8 5 4 6 3 7 3 4 7 9

6 4 1 5 2 8 5 7 3 4 1 2

2 1 3 6 7 9 4 5

1 6 3 7 8 7 9 8 2 6 4 5

2 3 1 8 5 9 8 1 8 2 3

7 8 5 9 1 2 6 5 9 7 8

(see answer 427) (see answer 431)

6 10

5

14

19

6

2 3

4 6 9

1 5

(see answer 430(a))

12 14 21 3 8 27 15 32 15 6 6 27 28 9

4 5 14

5

8 8 13

11

16

12 15

3

3 18 7

8

6 10 10

10

6

13

23

19 38 15

23

3 1 4 1 5 9 2 6 5 3 5 8 9 7

9 3 5 2 4 1 3 1 2 4 2 8 1 3 5 2

2 1 3 1 2 7 3 7 2 1 3 9 6 8

8 2 9 6 7 5 9 8 3 7 2 6

2 3 4 8 5 1

(see answer 435)

3 1 4 1 5 9

2 6 5 3 5 8

9 7 9 3 2 3

8 4 6 2 6 4

(see answer 447)

B E I N G I N A M I

N O R I T Y E V E N

A M I N O R I T Y O

F O N E D I D N O T

M A K E Y O U M A D

(see exercise 449)

T A S T E

U P P E R

F R I A R

T O R S O

S N E E R

I D L E D

S W E A R

L E A S E

E L V E S

S L E D S

S C H E M A

H A U L E D

I S S U E D

R E T A K E

T I L T E R

S N E E R S

(see answer 448)

By my troth, we that have good wits, have much to answer for.

— SHAKESPEARE (As You Like It, Act V, Scene 1, Line 11)

673

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY

There is an easy index,

so you can find whatever you wish without delay.

— McCall’s Cook Book (1963)

When an index entry refers to a page containing a relevant exercise, see also the answer to
that exercise for further information. An answer page is not indexed here unless it refers to a
topic not included in the statement of the exercise.

(number sign or hash mark, can indicate
hexadecimal constants like #c0ffee), x.

∂S (boundary set), 242–243, 338, 364.
=⇒ : Implies.
⇐⇒: If and only if.
∅ (the empty set), 549, 594.
0-origin indexing, 74, 424.
0–1 matrices, seeMatrices of 0s and 1s.
{0, 1, 2} matrices, 146.
{0, 1, 2, 3} matrices, 467.
1×1×1 cube, 82.
1-in-3 SAT problem, 367.
1SAT problem, 233, 332.
2×2×2 cube, 139, 457.
2-colorability of hypergraphs, 549.
2-letter block codes, 57.
2-letter postal codes, 78, 114.
2-letter words of English, 36, 56, 413.
2-regular graphs, 53, 59, 146.
2D matching problem (2DM), 103, see

Bipartite matching problems.
2SAT problem, 233, 235–238, 261–262,

264, 285, 328, 331, 333, 341–343,
351, 545, 630, 667.

3×3×3 cube, 84–85, 166, 368, 458, 515;
see also Soma cube.

3-letter words of English, 36, 56, 413.
3-regular graphs, 331, 338, 595.
3CNF, 187, 332.
3D matching problem (3DM), 103, 131,

149, 318, 589, 654–655.
3D visualizations, 300–302.
3SAT problem, 187–188, 231–235, 243,

244, 262–264, 277–278, 315, 319, 330,
332–335, 337, 366–368, 438, 595, 667.

4×4×4 cube, 508.
4-cycles, 107, 293–294, 362, 473, 589,

638, 641.
4-fold symmetry, 171, 174, 322, 402,

465, 528, 546.
4-letter codewords, 37–46, 57.
4-letter words of English, 36, 56, 94–95,

152, 413, 437.
4-regular graphs, 654.
4D matching problem (4DM), 103.
4SAT problem, 233, 235, 334, 654.
5×5×5 cube, 167.

5-letter words of English, 36–37, 56,
59, 62, 94–95, 133–134, 136, 145,
152, 156, 183, 402.

5-queens problem, 93–94, 144, 668.
5SAT problem, 235, 242, 588, 655.
6-color cubes, 142–143, 457.
6-letter and k-letter words of English,

36–37, 56, 402, 413.
6SAT problem, 235.
7×7×7 cube, 173, 527.
7SAT problem, 235, 335.
8-fold symmetry, 174, 180, 322, 429,

489, 535, 546, 562.
8-neighbors (king moves), 145–146, 176, 503.
8 queens problem, 31–32, 47–48, 53–54, 209,

421, 646, 668; see n queens problem.
9 queens problem, 129.
12-tone rows, 135.
16 queens problem, 48, 72, 73, 112, 152, 155.
60◦-rotational symmetry, 91, 528.
64 queens problem, 48, 477.
90◦-rotational symmetry, 55, 126, 171,

174, 322, 428–429, 452, 478, 497,
505, 546, 566, 639.

100 test cases, vii, viii, 297–308, 311,
366, 368.

120◦-rotational symmetry, 528.
180◦-rotational symmetry (central

symmetry), 126, 143, 171, 174, 428–429,
450, 454, 464–465, 490, 495, 528.

666 (number of the beast), 61, 159.
∞ queens problem, 127.
γ (Euler’s constant), 373, 656–657.
as source of “random” data, 47.

δf ,Δf (parameters for flushing),
260–261, 342.

δp,Δp (parameters for purging), 258–259,
309–311, 650.

ε (the empty clause), 187, 211, 549, 655.
ε (the empty string), 268–269, 663.
ε (the tolerance for convergence), 277–278.
ε (offset in heuristic scores), 310, 577.
λx (�lg x�), x, 532.
Λ (the null link), 407–408, 414.
μ(C) (clause complexity), 243, 337.
νx (1s count), see Sideways sum.
π (circle ratio), see Pi.
	n (the nth Bell number), 15, 101–102,

147–148, 467, 481, 530.

674

674

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 675

ρ (damping factor for reinforcement),
277–278.

ρ (damping factor for variable activity),
251, 309–311, 339, 650.

ρx (ruler function), x, 126, 344, 532, 609.
� (damping factor for clause activity),

258, 309–311, 650.
τ parameter, 309–311, 599, 650.
τ(a, b) function, 331.
φ (golden ratio), 12, 121, 127, 330, 331,

344, 370, 451, 615, 656–657.
as source of “random” data, 47.

χ-critical graph, 137.
ψ (agility threshold), 260–261, 308–311,

604, 650.
ψ (confidence level), 277, 619.

A priori versus a posteriori probabilities,
25, 407.

a.s.: Asymptotically almost surely, 11–12,
20, 21, 26, 333, 337, 384.

AAAI: American Association for Artificial
Intelligence (founded in 1979);
Association for the Advancement of
Artificial Intelligence (since 2007), 251.

Abaroth (= Barlow, David Stewart), 506.
Abel, Niels Henrik, 87–88.
Ab́ıo Roig, Ignasi, 633.
Absorbed clauses, 352.
Accordion solitaire, 646.
Ace Now, 8, 19.
Achlioptas, Dimitris (��������	

������), 585.
Ackerman, Eyal (����� ����), 523.
ACT(c), 258, 309.
ACT(k), 250–252, 259–260, 309, 316.
Acta Mathematica, 87–88.
Active elements of a list, 40.
Active list of items, 67.
Active path, 197.
Active ring, 216, 573.
Activity scores, 150, 251, 258–260, 309,

316, 339, 603.
Acyclic digraphs, 473, 667.
Acyclic orientation, 345.
Adams, Douglas Noel (42), 310.
Adaptive control, 230, 310.
Addition, encoding of, 284–285, 298; see

also Full adders, Half adders.
Adjacency matrix, 645.
Adjacent pairs of letters, avoiding, 612.
Adler, Oskar Samuel, 431.
Affinity scores, 144.
Agarwal, Akshay Kumar (a�� �� ���

a	
���), 399.
Agility level, 260, 308, 342.
Agility threshold (ψ), 260–261, 308–311,

604, 650.
AGILITY variable, 260, 342, 604.
Agriculture, 78.

Ahearn, Stephen Thomas, 460.
Ahlswede, Rudolph, 379.
Ahmed, Tanbir (������ ���	
�), 189, 331.
Ahrens, Wilhelm Ernst Martin Georg,

34, 55, 399, 462.
Ainley, Eric Stephen, 504, 647.
Alava, Mikko Juhani, 264.
Aldous, David John, 378, 583.
Alekhnovich, Michael (Misha) Valentinovich

(��������	
 ������ �����
�����������), 54.

Algorithm L0, 223, 331.
Algorithms for exact covering, 67–70,

88–90, 95–98.
modifications to, 126, 127, 132, 133, 138,
183, 422, 442, 445, 542.

with minimum cost, 112–113, 116–118.
without backtracking, 127–128, 149.

Alhambra palace, 501.
Alice, 204–208, 323–325.
All-different constraint, 355, 438, see

At-most-one constraint.
All-interval tone row, 135.
All solutions, 327–328, 630.
Almost sure events, 11, see a.s.
Alon, Noga Mordechai (���� �	
�� ���),

358, 388–389, 444, 618, 624.
Aloul, Fadi Ahmed (������ ��	
 ���),

296, 645, 648.
Alphabet, 129.
Alphabet blocks, 59, 136.
AMM: The American Mathematical

Monthly, published by the Mathemat-
ical Association of America since 1894.

Anacrostic puzzle, 62.
Analysis of algorithms, 9–10, 21, 22, 28,

57, 58, 98–103, 120–121, 149, 154,
330–336, 342–344, 348, 406.

Ancestors, 227.
nearest common, 669.

AND operation, 193, 194, 197.
bitwise (x & y), 17, 128, 212, 213, 215,
221, 222, 250, 252, 260, 265, 344, 400,
419, 542, 560, 573–575, 584, 605.

André, Pascal, 315.
Anisimov, Anatoly Vasilievich (��������

�������� ���������), 613.
Annexstein, Fred Saul, 637.
Answers to the puzzles in the answers,

671–673.
Anthracene, 162, 169.
Anti-maximal-element clauses, 240, 246,

281, 299, 337, 339, 341, 351.
Anti-wave, 449.
Antisymmetry, 362.
Aperiodic words, 38, 57, 404.
Appier dit Hanzelet, Jean, 241.
April Fool, 191.
ARCS(v) (first arc of vertex v), 62, 414.
Arctic circle, 482.

675

From the Library of Melissa Nuno

ptg999

676 INDEX AND GLOSSARY

Ardila Mantilla, Federico, 620.
Aristophanes of Athens, son of Philippus

(�����������	 ���������� ��������), xiii.
Arithmetic–geometric mean inequality,

28, 375, 383, 515.
Arithmetic overflow, 113.
Arithmetic progressions, 188, 298.
avoiding, 319; see also waerden (j, k;n).

Armbruster, Franz Owen, 52.
Armies of queens, 364.
Aromatic hydrocarbons, 162.
Array, 3-dimensional, 456.
Articulation points, 116, 182, 545.
Asakly, Walaa (����� ���), 469.
Asao, Yoshihiko (), 529.
Ascents of a permutation, 394, 522.
Ase, Mitsuhiro (), 538.
Aśın Achá, Roberto Javier, 631.
Aspects of tiles, 485.
Assembly language, 82.
Asserting clause, see Forcing clause.
Assignment problem, 668.
Assignments, 185, 214.
Associative block design, 188.
Associative law, 149, 591.
Asymmetric Boolean functions, 362.
Asymmetric elimination, 624.
Asymmetric solutions, 420, 474, 491.
Asymmetric tautology, see Certifiable

clauses.
Asymptotic methods, 11, 12, 16, 26, 55,

147–148, 237–238, 331–335, 348, 418,
423, 424, 574, 580, 582, 590, 594, 647.

Asterisk (∗), vii.
At-least-one constraint, 355, 629.
At-most-one constraint, 190, 281–283,

287, 288, 304, 318, 333, 354, 355,
602, 629, 630, 653.

Atomic events, 1.
ATPG: Automatic test pattern generation,

see Fault testing.
Atserias, Albert Peŕı, 626.
Aubrey, John, 416.
Audemard, Gilles, 256.
Aurifeuille, Léon François Antoine,

factors, 198.
Autarkies, 228, 255, 330, 336, 361,

578, 579, 581.
testing for, 330, 578.

Autarky principle, 228.
Automatic test pattern generation, see

Fault testing.
Automaton, 359, 636, see also Cellular

automata.
Automorphisms, 137, 292, 295, 364,

426, 427, 430, 451–453, 456–458,
463, 528, 561, 600, 641; see also
Symmetry breaking.

Autosifting, 584.

Auxiliary variables, 190, 192, 199, 201,
244, 281, 285, 288, 289, 293, 319,
320, 332, 354–358, 550, 626, 632,
640–643, 644–645, 651.

AVAIL stack, 621.
Average-case bounds, 28, see Analysis

of algorithms.
Averages, 28, 304, see Expected value.
Avoiding submatrices, 290–291.
Awkward trees, 591.
Axial symmetry, 174, 428–429, 495, 528.
Axiom clauses, 238, 243, 284, 628, 630.
Aztec diamonds, 155, 157, 482.
Azuma, Kazuoki (), 9–10, 20.

B(p1, . . . , pm), seeMultivariate Bernoulli
distribution.

Bm,n(p), see Cumulative binomial
distribution.

Bn(p), see Binomial distribution.
Babbage, Charles, 56.
Bacchus, Fahiem, 257, 635.
Bach, Johann Sebastian, 63.
Backjumping, 54, 248, 252, 258, 316,

597, 600, 603.
Backmarking, 54.
Backtrack programming, 30–65, 69, 90,

97–98, 117–118, 144, 188, 211–218,
222–223, 248, 278, 289, 312, 313, 316,
335, 360, 424, 430, 443, 460–461, 523,
532, 554, 568, 583, 595, 600, 649.

efficiency of, 398.
history of, 30, 33–34, 53–54.
introduction to, 30–64.
variant structure, 54, 414.

Backtrack trees, 31, 32, 35, 37–39, 46–48, 52,
54, 55, 73, 98–100, 104–107, 126, 328,
406, 407, 411, 434, see also Search trees.

estimating the size of, 48–49, 58–59.
Backward versus forward, 21, 124.
Bailleux, Olivier, 192, 210, 319, 321,

327, 358, 636.
Baillie, Andrew Welcome Spencer, 511.
Baker, Andrew Baer, 282.
Balanced coloring, 126.
Balanced masyu solutions, 540.
Balas (Blatt), Egon, 54, 570.
Baldassi, Carlo, 277.
Ball, Walter William Rouse, 364.
Ball-piling, 168–169.
Ballot numbers, 262, 383.
Balls and urns, 6–7, 18–20, 382, 585.
Banbara, Mutsunori (), 628,

631, 632.
Banderier, Cyril, 396.
Barequet, Gill (���� ���), 523.
Barlow, David Stewart (= Abaroth), 506.
Barnes, Frank William, 514.
Barris, Harry, iv, 65.
Bartley, William Warren, III, 313.
Barwell, Brian Robert, 505.

676

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 677

Barycentric coordinates, 168–169,
446–447, 458.

Base placements, 161–162, 164, 169,
484–485, 497, 505, 518, 519, 528.

Basis theorem for packing, 173, 526.
Basket weavers, 325.
Batcher, Kenneth Edward, 630.
Baumert, Leonard Daniel, 54, 413, 629, 691.
Baxter, Glen Earl, 395.
permutations, 27, 522.

Baxter, Nicholas Edward, 170.
Bayardo, Roberto Javier, Jr., 316.
Bayes, Thomas, 14.
networks, 279.

BCP: Boolean constraint propagation,
see Unit propagation.

BDD: A reduced, ordered binary decision
diagram, 5, 201–202, 286, 287, 316,
321, 332, 358, 365, 378, 528, 541, 544,
552, 557, 558, 561, 566, 584.

BDD base, 583.
Bean, Richard, 531.
Beauty contest, 138, 152, 156, 158, 162, 546.
Becker, Joseph D., 517.
Beeler, Michael David, 500.
Bees, queen, 55, 424.
Behrens, Walter Ulrich, 78, 79, 129.
Beier, René, 396.
Belief propagation, 279.
Bell, Eric Temple, numbers 	n, 15, 101–102,

147–148, 467, 530.
Bell, George Irving, III, 516–518.
Bellman, Richard Earnest, xi.
Beluhov, Nikolai Ivanov (�������

������� ������), ix, 146, 177, 178,
465, 466, 482, 535, 537, 538, 542,
544, 545, 547, 548.

Ben-Dor, Amir (��
-�� ����), 653.
Ben-Sasson, Eli (���� -�� ���), 241–242,

337, 595.
Benchmarks, 81, 219, 315–317, 323, 331,

490, 554, 570, 631.
100 test cases, vii, 297–308, 311, 366, 368.

Bender, Edward Anton, 497, 614.
Benedek, György Mihály Pál (= George

Mihaly Pal = �
� ��� ��	�� �����), 534.
Benjamin, Herbert Daniel, 157, 159,

494, 505.
Bennett, Frank Ernest, 432.
Bent tricubes, 166, 528.
Bent trominoes, 79, 82, 509.
Benzene, 162.
Beresin, May, 639.
Berg, Alban Maria Johannes, 135.
Berghammer, Rudolf, 568.
BerkMin solver, 316.
Berlekamp, Elwyn Ralph, 86, 201, 506.
Berman, Piotr, 588.
Bernhart, Frank Reiff, 552.
Bernoulli, Daniel, 380.

Bernoulli, Jacques (= Jakob = James), 53.
distribution, multivariate, 14, 18, 20, 273.
numbers, 658, 663.

Bernoulli, Nicolas (= Nikolaus), 380.
Berthier, Denis, 425.
Bertrand, Joseph Louis François, 87–88.
Besley Tollefson, Serena Sutton, 510.
Bessel, Friedrich Wilhelm, functions,

generalized, 496.
BEST table, 117.
Beta distribution, 14.
Bethe, Hans Albrecht, 279.
Better reasons, 341.
Bezzel, Max Friedrich Wilhelm, 53.
Bhatia, Rajendra (����
� ������), 372.
Bias messages, 276.
Biased random bits, 196, 605.
Biased random walks, 59, 407.
Biaxial symmetry, 174, 465, 528, 546.
Bible verse, 548.
Bicomponents, 164, 545.
Bidiagonal symmetry, 171, 174, 546.
Bienaymé, Irénée Jules, inequality, 4.
Biere, Armin, ix, 250, 260, 280, 313, 316,

350, 552, 622, 624, 625, 633, 644.
Big clauses, 329.
Bilateral symmetry, 174, see Biaxial

symmetry.
BIMP tables, 220–225, 227, 229, 308,

328, 578, 599.
Bin-packing problem, 11, 20.
Binary addition, 298.
Binary Arts, 460.
Binary clauses, 187, 190, 220, 308,

318, 339–340.
Binary constraints, 134, 355.
Binary decoder, 363.
Binary implication graph, seeDependency

digraph, 225.
Binary matrices, seeMatrices of 0s and 1s.
Binary multiplication, 192.
Binary notation, 14, 126.
Binary number system, 193, 282.
Binary operators, 105, 132, 149–150,

424, 528.
Binary partitions, 59.
Binary random variables, 2, 3, 5, 13–15,

20, 25, 27.
Binary recurrence relations, 553.
Binary relations, 240.
Binary search, 435, 551.
Binary search trees, 24, 124, 424.
Binary strings, 365.
Binary tensor contingency problem,

326, 335.
Binary trees, 172.
Binary vectors, 3, 9, 13–14, 25, 108, 532.
Binet, Jacques Philippe Marie, 29, 391.
Bing, R. H., 370.
Bingo, 12–13.

677

From the Library of Melissa Nuno

ptg999

678 INDEX AND GLOSSARY

Binomial coefficients, 333, 394.
Binomial convolutions, 25, 614.
Binomial distribution, 14, 24, 377, 392, 396.
cumulative, 14–15, 375, 406.

Binomial trees, 49.
Bipair: Two pairs of options that cover the

same items, 107–108, 119, 150–151,
157, 473, 485, 492, 499.

Bipartite graphs, 107, 128, 242, 361,
416, 470, 654.

Bipartite matching problems, 103, 104, 128,
134, 149, 154, 155, 334, 473, 547, 668.

Bipartite structure, 274.
Biquadruples, 472.
Birthday greeting, 100.
Birthday paradox, 233.
Bishop moves, 145–146, 325.
Bit vectors, 3, 9, 13–14, 25, 108, 532.
Bitland, 131.
Bitmaps, 181, 201, 323.
Bitner, James Richard, 34, 54, 526.
Bitriples, 150, 472.
Bits of information, 24.
Bittencourt Vidigal Leitão, Ricardo,

438, 439, 443.
Bitwise operations, 33, 55, 72, 76, 127,

144, 195, 196, 265, 342, 345, 410,
605, 610, 622–623.

AND (&), see AND operation.
median (〈xyz〉), 545.
OR (|), see OR operation.
XOR (⊕), see XOR operation.

Björklund, John Nils Andreas, 149, 471.
Björner, Anders, 379.
Black and blue principle, 330, 580.
Black and white cells, 85–86, see

Parity of cells.
Black and white principle, 330.
Blackwell, David Harold, 381.
Blair, Eric Arthur [= Orwell, George], 183.
Blake, Archie, 314.
Blecher, Aubrey, 469.
blit, 598, 600.
Bloch, Cecil Joseph, 519.
Block codes, 37, 56.
Block decomposition, 639.
Block designs, 290.
Block diagonal matrices, 361.
Blocked clauses, 286, 579, 624, 625, 633.
binary, 330.
elimination of, 351.

Blocked items, 109.
Blocked self-subsumption, 351.
Blocking digraph, 579.
Blocks in kakuro, 180–182.
Blocks in Life, 561, 564.
Bloom, Burton Howard, coding, 622.
Bloom, Thomas Frederick, 549.
Bob, 204–208, 299, 323–325.
Boddington, Paul Stephen, 455.

Body-centered cubic lattice, 518.
Böhm, Max Joachim, 315.
Bollobás, Béla, 238, 388, 584.
Bonacina, Maria Paola, 313.
book graphs, 310.
Boole, George, 313.
Boolean chains, 193, 195, 196, 286,

298, 357, 667.
optimum, 362–363.

Boolean formulas, 185.
Boolean functions, 5, 15, 198–200,

378, 380, 528.
dual of, 378.
expressible in kCNF, 584.
monotone, 5, 380.
symmetric, 16.
synthesis of, 362–363.

Boolean programming problem, 667.
Boolean random variables, see Binary

random variables.
Boolean vectors, see Bit vectors.
Boothroyd, Michael Roger, 451.
Boppana, Ravi Babu, 358.
Borel, Émile Félix Édouard Justin, 87–88.
Borgs, Christian, 238.
Borodin, Allan Bertram, 54.
Botermans, Jacobus (= Jack) Petrus

Hermana, 410.
Bottleneck optima, seeMinimax solutions.
Bottom-up algorithms, 616.
Boufkhad, Yacine (����� ����), 192, 210,

315, 319, 321, 327, 358, 636.
BOUND field, 97–98, 145.
Boundary markers, 57.
Boundary sets, 242–243, 338, 364, see

also Frontiers.
Boundary variables, 594.
Bounded model checking, 200–208, 316,

321–325, 341, 363–364.
Bounded permutation problem, 103,

148–149, 154.
Bounding box, 130.
Bounds and rooms, 171–172, 394.
Bounds in futoshiki, 174.
Bousquet-Mélou, Mireille Françoise, 60, 430.
Boutillier, Cédric Grégory Marc, 483.
Bouwkamp, Christoffel Jacob, 485, 511, 513.
Bower, Richard John, 514.
Boxes in sudoku, 74, 78, 129.
Boyce, William Martin, 395.
Boyd, Stephen Poythress, 377, 399.
Boyer, Christian, 424.
Bracket notation, 2.
Bracketing property, 378.
Bradley, Milton, 452.
Branch, choice of, seeMRV heuristic,

Nonsharp preference heuristic, Sharp
preference heuristic.

Branching heuristics, 289, 328, see also
Decision literals.

678

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 679

Branching programs, 119, 122, 286, 357, 358.
Branchless computation, 606.
Braunstein, Alfredo, 274, 275, 620.
Breadth-first search, 127–128, 221, 227,

252, 314, 399, 599.
Break count, 263.
Breaking symmetry, see Symmetry breaking.
Brennan, Charlotte Alix, 469.
Bricks, 82, 143, 168.
Briggs, Preston, 41.
British National Corpus, 36, 413.
Broadcasting, 354.
Broadword computations, 195, 196, 342,

345, 610, 622, 667.
Broder, Andrei Zary, 387, 388.
Broken diagonals, seeWraparound.
Brotchie, Alastair, 437.
Brouwer, Andries Evert, 430.
Brown, Cynthia Ann Blocher, 214, 216,

315, 335, 590.
Brown, John O’Connor, 370.
Brown, Thomas Craig, 549.
Bruijn, Nicolaas Govert de, 82, 123,

168, 526.
cycles, 91, 134, 155, 670.

Brummayer, Robert Daniel, 633.
Brunetti, Sara, 570.
Bryant, Randal Everitt, 191, 551.
BST(l) field, 575.
BSTAMP counter, 575.
Bucket elimination, see Frontiers.
Buckingham, David John, 561, 564.
Buddy system, 220, 328, 599.
Bugrara, Khaled Mohamed

(���Ǳ���� ��� ��!), 590.
Bugs, 200, 253, 261, 317, 604.
Buhler, Joe Peter, 370.
Bulnes-Rozas, Juan Bautista, 579.
Bumped processes, 205–206, 324, 566.
Bumping the current stamp, 44, 58.
Bunch, Steve Raymond, 34.
Bundala, Daniel, 560.
Bundg̊ard, Thorleif, 507.
Buresh-Oppenheim, Joshua, 54.
Burns, James Edward, 568.
Burnside, William Snow, lemma, 450, 465.
Buro, Michael, 315.
Buss, Samuel Rudolph, 337, 634.
Bystanders, see Easy clauses.

C-SAT solver, 315.
Cache-friendly data structures, 39.
Cache hits, 120.
Cache memories, 208.
CACM: Communications of the ACM,

a publication of the Association for
Computing Machinery since 1958.

Cages in kenken puzzles, 175–176.
Calabro, Christopher Matthew, 652.

California Institute of Technology
(Caltech), 432.

Candidate variables, 224–228, 315, 578.
Cannonballs, 168.
Canonical arrangements, 62, 83, 126,

426, 455.
bipairs, 108, 150–151, 473.
bricks, 168.

Canonical forms, 322, 612.
Cantelli, Francesco Paolo, inequality,

377, 395.
Cantor, Georg Ferdinand Ludwig

Philipp, 87–88.
Cardinality constraints, 191–192, 210, 288,

290, 297, 298, 305, 319, 327, 551, 552,
557, 558, 560, 568, 636, 648, 649.

for intervals, 284, 554, 644.
Carlier, Jacques, 315.
Carlitz, Leonard, 346.
Carlsen, Ingwer, 482.
Carlson, Noble Donald, 507.
Carriers in Life, 561, 564.
Carroll, Lewis (= Dodgson, Charles

Lutwidge), v, 313–314.
Carry bits, 193, 196, 285, 556, 557.
Carteblanche, Filet de (pseudonym, most

likely of C. A. B. Smith), 52.
Cartesian coordinates, 80–85, 142, 446.
Cartier, Pierre Emile, 267, 270, 347.
Casanova de Seingalt, Giacomo

Girolamo, 380.
Case analysis, 211, 314.
Castawords, 444.
Castles, 159.
Catalan, Eugène Charles, 87–88.
numbers, 380, 416, 497.

Catel, Peter Friedrich, 487.
Cauchy, Augustin Louis, 390–391, 393.
distribution, 26.

Cavanaugh, James, iv.
Cavenagh, Nicholas John, 399.
Cayley, Arthur, 59, 418.
CDCL (conflict driven clause learning)

solvers, 246–255, 287, 305, 316–317, 339.
combined with lookahead solvers, 313.
compared to lookahead solvers, 282–284,
302–305, 366, 654.

Cells of memory, 39, 212, 306–308.
Cells versus pieces, 485.
Cellular automata, 201, 566.
Census data, 115.
Central (180◦) symmetry, 126, 143, 171,

174, 428–429, 450, 454, 464–465,
490, 495, 528.

Certifiable clauses, 352, 624.
Certificates of unsatisfiability, 253–255,

341, 353, 360, 362.
Chaff solver, 251, 316.
Chain rule for conditional probability,

14, 372, 618.

679

From the Library of Melissa Nuno

ptg999

680 INDEX AND GLOSSARY

Chains, 640, see also Boolean chains,
Resolution chains, s-chains.

Channel assignment, 320.
Channeling clauses, 628.
Characteristic function, 26.
Characteristic polynomial of a matrix,

347, 582.
Charikar, Moses Samson (���� �����

�����), 387.
Chatterjee, Sourav (��� ��������), 50, 391.
Chavas, Joël, 275.
Chayes, Jennifer Tour, 238.
Chebyshev (= Tschebyscheff), Pafnutii

Lvovich (��������
 �� ���!�
"�����	� = �������
 �� �����
"�����), 377, 388.

inequality, 4, 9, 16, 394, 585.
monotonic inequality, 379.
polynomials, 371, 386, 611.

Checkerboard coloring, 85–86, see
Parity of cells.

Chemistry, 162.
Chen, Hongyu (), 523.
Cheng, Chung-Kuan (), 523.
Chervonenkis, Alexey Yakovlevich

(��#��������
 ������� $�������),
27.

Cheshire Tom, 208–210, 299, 326–327.
Chess, 191, 354.
Chessboards, 30–34, 50–54, 55, 59, 84,

93–94, 145–146, 155, 156, 202, 209,
283, 290, 299, 322, 364.

Chesterton, Gilbert Keith, 370.
Chicks, eggs, and hens, 15.
Chiral pairs, 82, 91, 167, 169, 449,

455, 511, 518.
Choice of item to cover, seeMRV heuristic,

Nonsharp preference heuristic, Sharp
preference heuristic.

Chordal graphs, 347–348.
Christmas, 92, 144, 159.
Christofides, Demetres (����������	

������), 379.
Chromatic number χ(G), 137, 283,

319–320, 331, 358, 645.
Chung Graham, Fan Rong King

(), 395.
Chuzzlewit, Martin, 548.
Chvátal, Václav (= Vašek), 189, 236,

243, 549.
Cimatti, Alessandro, 316.
Circle, discrete, 158.
Circle ratio (π), see Pi.
Circuits, Boolean, 194, 285–287, 298, see

also Boolean chains.
Circular lists, 216.
Circular table, 125, 154, 471.
Ciucu, Mihai Adrian, 482–483.
Civario, Gilles, 76.
Clarke, Andrew Leslie, 506.

Clarke, Arthur Charles, 156.
Clarke, Edmund Melson, Jr., 316.
Clarkson, James Andrew, 397.
Clashing pairs of letters, 268.
Clausal proofs, see Certificates of

unsatisfiability.
Clause: A disjunction of literals, 186–187,

667–668.
Clause activity scores, 258, 603.
Clause-learning algorithms, 245–246, 287,

302, 305, 316–317, 338–339.
Clauses per literal, 334, 595; see also

Density of clauses.
Claw graph, 613.
Claw tetracube, 82.
Cleansings, 434.
Clichés, 260.
Clique dominators, 144.
Clique hints, 284, 298, 355.
Clique Local Lemma, 349.
Cliques, 16–17, 137, 265, 284, 318, 346, 351,

353, 355, 363, 495, 554, 668.
covering by, 349.

Close packing of spheres, 168–169.
Closed lists, 42–43.
Closed paths, 177.
Closest strings, 298, 365, 366.
Clueless anacrostic, 62.
Clueless jigsaw sudoku, 130.
Clusters, 350.
CMath: Concrete Mathematics, a book

by R. L. Graham, D. E. Knuth,
and O. Patashnik.

CNF: Conjunctive normal form, 193, 285,
338, 357, 405, 557, 560.

Coalescing random walk, 21.
Cocomparability graphs, 613, 614.
Codes for difficulty of exercises, xi–xiii.
Codewords, commafree, 37–46, 57–59.
Coe, Timothy Vance, 565.
Coexisting armies of queens, 364.
Coffin, Stewart Temple, 516.
Cographs, 347, 614.
Cohen, Bram, 263, 610.
Cohn, Henry Lee, 482, 483.
Coil-in-the-box: A snake-in-the-box

cycle, 146, 161, 465.
Coin tosses, 11–12, 19, 20, 58, 392.
Coja-Oghlan, Amin, 585.
Colexicographic order, 56, 570, 642.
Collins, Stanley John “Alfie”, 163.
Colon notation for colors, 88.
Color controls for exact covering, 87–91,

122–123, see XCC problem.
for MCC problems, 94–95.

COLOR field, 88–90, 109, 433, 434, 446,
480–481.

Color patches, 139.
Color symmetries, 91.

680

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 681

Colored cubes, 91, 142–143.
Coloring a graph, 137, 157, 190–191,

283–284, 337, 363, 495, 624, 668.
fractional, 319–320.
multiple, 319.
of queens, 126, 283–284, 298–299, 355.
radio, 320.

Coloring arguments, 84.
Column sums, 22, 335.
Columns as “items”, 66, 123.
Columnwise ordering, 482.
Columnwise symmetry, 290, 365.
Combinations, generation of, 55, 419.
Combinations for kakuro, 181.
Combinatorial nullstellensatz, 23.
Commafree codes, 37–46, 54, 57–59.
commit(p, j), 90, 120, 446.
commit′(p, j), 474.
Commutative law, 132, 211, 364, 385, 591.
partial, 267, 614–615.

Comparator modules, 299, 321.
Comparison, lexicographic, 285, 295–297.
Comparison of running times, 218–219,

223, 253, 281–284, 289–291, 294,
296, 302–312, 366, 368, 582, 601,
628, 645, 654.

Compensation resolvents, 223, 328, 331.
Competitions, 315–317, 655.
Compilers, 43.
Complement of a graph, 318.
Complement under central symmetry, 171.
Complementation of unary representations,

284.
Complemented literals, 186–188, 221,

246–248, 262, 295, 574, 630.
Complete binary trees, 192, 319, 594.
Complete bipartite graphs Km,n, 107,

360, 470, 614, 618.
Complete graphs Kn, 102, 108, 120–121,

148, 151, 154, 268, 335, 337, 362,
481, 550, 626.

Complete k-partite graphs, 614, 626.
Complete t-ary trees, 344.
Completion ratio, 73, 126.
Components, see Connected components.
Compositions, 381.
Compressed tries, 401–402.
Compressing, see Purging unhelpful clauses.
Concatenated shapes, 173.
Concatenated strings, 37.
Concave functions, 4, 377, 396.
Conditional autarkies, 579.
Conditional distribution, 3, 389.
Conditional expectation, 2–3, 15–19.
inequality, 5, 16, 334, 378.

Conditional probability, 1–2, 13–14, 380.
Conditional symmetries, 291, see

Endomorphisms.

Conditioning operations (F | l and
F |L), 211, 280, 327, 341, see
Unit conditioning.

Cones in trace theory, 271.
Confidence level (ψ), 277, 619.
Conflict clauses, 247, 254, 355; see also

Preclusion clauses.
Conflict driven clause learning, 246–253,

287, 305, 316–317, 339.
Conflict graph, 495.
Conflicts, 246, 308, 316.
Congruent pairs, 162.
Conjugate partitions, 148.
Conjugate subgroups, 528.
Conjunctive normal form, 185, 193, 285,

338, 357, 557, 560.
irredundant, 621.

Conjunctive prime form, 288.
Connected components, 136, 144–145, 153,

164, 169, 436, 440, 442, 478, 488, 586.
Connected graphs, 361.
Connected subsets, 62.
Connectedness testing, 353–354.
Connection puzzles, 298, 354.
Connelly, Robert, Jr., 382.
CoNP-complete problems, 187, 571.
Consecutive 1s, 272, 359, 618.
Consensus of implicants, 314.
Consistent Boolean formulas, see

Satisfiable formulas.
Consistent partial assignments, 214, 349.
Constants, fundamental, 656–658.
Constrained variables in partial assignments,

349–350.
Constraint satisfaction problems, 92,

134, 413.
Contact system for adjacent tiles, 449.
Contention resolution, 25–26.
Contests, 315–317, 655.
Context free languages, 359.
Contiguous United States of America,

114–116, 118, 153, 320.
Contingency tables, binary, 326.
3D, 335.

Continued fractions, 460, 496.
Contour integration, 26.
Convex combinations, 377, 393.
Convex functions, 4, 8, 16, 20, 27, 377,

383, 397, 580.
strictly, 390.

Convex hulls, 611.
Convex polygons, 141–142, 163, 499–500.
in triangular grids (simplex), 141–143,
155, 169, 483, 516.

Convex polyominoes, 130, 131.
Convolution of sequences, 25, 414.
Convolution principle, 614.
Conway, John Horton, 80, 86, 139, 156, 161,

201, 323, 485, 506, 508, 565.
Cook, Matthew Makonnen, 409.

681

From the Library of Melissa Nuno

ptg999

682 INDEX AND GLOSSARY

Cook, Stephen Arthur, 245, 246, 314–315,
338, 593, 601.

cook clauses, 341.
Cooper, Alec Steven, 649.
Coordinate systems for representation, 451.
barycentric, 168–169, 446–447, 458.
Cartesian, 80–85, 142, 446.
even/odd, 178, 447, 450–451, 455, 456,
497, 502, 504–505, 510, 513.

octahedron, 449.
row/column, 70–72, 74–75.
triangular grid, 138, 163.

Copyrights, iv, 543.
Core assignments, 350.
Core of Horn clauses, 358, 580.
Coriand, Michael Johannes Heinrich, 556.
Corner-to-corner paths, 50–51, 59, 63.
Correlated random variables, 17–18,

372, 381.
Correlation inequalities, 17.
COST, 117–118, 479–480.
Costs, 47, 111–118, 123, 152–154, 407.
Coupling, 22–23.
from the past, 385.

Coupon collecting, 21, 392, 584.
Covariance, 2, 14, 17, 373, 380.
Cover, Thomas Merrill, 13, 372.
cover(i), 68.
cover′(i), 90, 117, 120.
cover′′(i), 109.
Covering all points, 23.
Covering an item, 67, 109.
Covering assignments, 350, 585, 619.
Covering problems, 94, 153, 186, 443, 557,

558, 668; see also Exact cover problem,
Tilings by dominoes.

Covering strings, 365.
CPLEX system, 210, 653.
CPU: Central Processing Unit (one

computer thread), 305.
Crawford, James Melton, Jr., 282, 297.
Cray 2 computer, 321.
Crelle: Journal für die reine und angewandte

Mathematik, an international journal
founded by A. L. Crelle in 1826.

Crick, Francis Harry Compton, 37.
Crisscross puzzles, composing, see

Wordcross puzzles.
Critical sections, 205–207, 324–325.
Cross of polycubes, 167.
Cross Sums puzzles, 181.
Crossings, 459.
Crossover point, see Threshold of

satisfiability.
Crossroads, 157.
Crossword puzzle diagrams, 136.
Crossword puzzles, 180.
Crusoe (= Kreutznaer), Robinson, xiv.
CSP: The constraint satisfaction problem,

92, 134, 647.

CTH field, 446.
Cube and conquer method, 313.
Cube Diabolique, 166.
Cubes, 52–53, 59, 139, 142–143.
coordinates for, 85, 142.
numbers of the form n3, 92.
wrapped, 157.

Cubic graphs (3-regular, trivalent),
331, 338, 595.

Cubie: A 1×1×1 cube inside a larger
box, 82.

Cuboids, 82, 142, 510, 511.
Cufflink pattern, 619.
Culver, Clayton Lee, 549.
Cumulative binomial distribution,

14–15, 375, 406.
Cut rule, 243.
Cutler, William Henry, 460, 523, 527.
CUTOFF, 433–434.
Cutoff parameters, 225, 329.
Cutoff principle, 35.
Cutoff properties, 30, 33, 38, 46, 55.
Cutoff threshold, 117, 153.
Cutsets, 536.
Cutting planes, 368, 570.
Cycle detection problem, 624.
Cycle graphs Cn, x, 22, 319, 320, 344, 386,

555, 626; see also Loops.
Cycle structure of a permutation, 149, 292,

296–297, 347, 362, 641.
Cyclic DPLL algorithm, 217.
Cyclic patterns, 203.
Cyclic permutations, 140, 347.
Cyclic shifts, 38, 57.
Cylindrical tilings, 454.

d+(v) (out-degree of v), 410, 439, 529.
da Vinci, Leonardo di ser Piero, 191.
Dadda, Luigi, 193, 298, 320, 357.
Dags: Directed acyclic graphs, 155, 488, 667.
of resolutions, 238–240, 254.

Daily puzzle, 158.
Dainarism, 529.
Damerow, Valentina, 396.
Damping factors, 150, 230, 251, 258, 260,

277–278, 309, 310, 339.
Dancing links, v–vi, 35, 65–183, 189,

318, 572, 652, 655.
sometimes slow, 434–435, 439, 460,
477, 493, 513, 538.

Dancing slitherlinks, 536.
Dancing with ZDDs, 119–123.
Daniel, Samuel, 369.
Dantchev, Stefan Stoyanov (%��	��

&�� �� &��'���), 294.
Darrah, William, 460.
Darwiche, Adnan Youssef

("���� #��� $%��), 251, 626.
Darwin, Charles Robert, 29.
Data streams, 393.

682

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 683

Data structures, 32–34, 37, 39–42, 46, 58,
65–69, 96–97, 109, 120, 172, 212–218,
220–222, 227, 250–251, 264, 279–280,
327–329, 339–340, 343, 351, 602, 637.

Database, shared, 25–26.
Davenport, Harold, 391.
Davis, Horace Chandler, 372.
Davis, Martin David, 193, 215–216, 314, 684.
Dawson, Thomas Rayner, 354, 465, 505.
Daykin, David Edward, 379.
de Bruijn, Nicolaas Govert, 82, 123,

168, 526.
cycles, 91, 134, 155, 670.

de Carteblanche, Filet (pseudonym, most
likely of C. A. B. Smith), 52.

de Jaenisch, Carl Ferdinand Andreevitch
($����
 (�#�� ��)#����	�), 93, 398.

de La Vallée Poussin, Charles Jean
Gustave Nicolas, 388.

de Moivre, Abraham, 382.
martingale, 19.

de Montmort, Pierre Rémond, 380.
De Morgan, Augustus, 56, 401, 402.
laws, 187, 630.

de Ruiter, Johan, 60, 183, 425, 544.
de Vries, Sven, 570.
de Wilde, Boris, 577.
Dead end, 50, 177.
Deadlock, 206–207.
Debugging, 253, 261.
Dechter, Rina Kahana (��	
 ��	 ���), 251.
Decision literals, 246, 253, 308, 316.
Decision trees, see Search trees.
Decomposable matrices, 361.
Default parameters, 277, 309–310.
Default values of gates, 195.
Definite Horn clauses, 358.
Defoe, Daniel (= Daniel Foe), xiv.
Degenerate trees, 416.
Degree of a multivariate polynomial, 23.
Degree of a node, 47, 105, 150.
Degree of a vertex, 24, 555.
Degree sequences, 164.
Degrees of truth, 221–223, 226–227,

229–230, 580.
Dekker, Theodorus Jozef, 324.
Dekking, Frederik Michel, 423.
Del Lungo, Alberto, 570.
Delannoy, Henri-Auguste, 431.
Delayer, 239–240, 336–337.
Delest, Marie-Pierre, 497.
Deletion from a heap, 598.
Deletion operation, 35, 40–41, 404–405.
and undeletion, 65, 124.

Dell Precision 3600 workstation, xi, 714.
Delta sequence, 654.
Demaine, Erik Dylan Anderson, 497.
Demaine, Martin Lester, 497.

Demenkov, Evgeny Alexandrovich
(%�������
 *�+���� �������)#���),
644.

Density, relative, 24.
Density of clauses: The number of clauses

per variable, 234–235, 334, 595, 652.
Dependence graph in trace theory, 612.
Dependence of literals, 247.
Dependency digraph (of literals), 225,

315, 352, 579, 601, 624.
Dependency-directed backtracking, see

Backjumping.
Dependency graph (of events), 266, 348, 349.
Dependency on a variable, 321.
Depth-first search, 53, 314, 478, see also

Backtrack programming.
Dequen, Gilles Maurice Marceau, 315.
Descartes, René, coordinates, 80–85,

142, 446.
Descents of a permutation, 394, 522.
Designing puzzles, vi, 87, 136, 140, 144,

146, 160, 166, 174–183, 367.
Determinants, 169, 346, 347, 394, 615.
Deterministic algorithm, 201, 304.
Deventer, Mattijs Oskar van, 654.
Dewey, Melville (= Melvil) Louis Kossuth,

notation for trees, 398.
DFAIL field, 230, 331.
Dfalse literals, 229.
Diabolical Cube, 166.
Diaconis, Persi Warren, 50, 391.
Diagonal lines (slope ±1), 23, 31, 55,

70–72, 126, 399, 429.
Diagonals of a matrix, 208–209, 325–326.
Diagram of a trace, 268.
Diameter of a graph, 506.
Diamonds, 161.
Aztec, 155, 157, 482.
tilings by, 155, 482.

Dı́az Cort, José Maria (= Josep), 235.
Dice, xviii, 12, 24, 166.
Dick, William Brisbane, 364.
Dickens, Charles John Huffam, 548.
Dictionaries, 36, 56, 413.
Dicubes, 82.
Differential equations, 468.
Difficult instances of SAT, 189, 198, 210,

235, 239–243, 302–305, 337–338, 368,
554, 556, 561, 570, 644.

Digges, Leonard, xiv.
Digital tomography, 208–210, 299,

325–327, 351, 649.
Digraphs, 57, 62, 64, 238, 292, 345, 346, 410,

436, 438–439, 473, 482, 529, 627, 667,
see also Blocking digraph, Dependency
digraph, Implication digraph.

acyclic, 155, 488, 667.
Dihedral groups, 91, 447, 449, 527–528.
Dijkstra, Edsger Wybe, 206, 566, 568.
DIMACS: Center for Discrete Mathematics

and Theoretical Computer Science, 315.

683

From the Library of Melissa Nuno

ptg999

684 INDEX AND GLOSSARY

DIMACS: DIMACS Series in Discrete
Mathematics and Theoretical Computer
Science, inaugurated in 1990.

Dimension reduction, 393.
Dimer tilings, 431.
Ding, Jian (), 235.
Diophantine equations, 144, 450.
Dips, 57.
Direct encoding, 282, 298, 355, 550,

628, 629, 645.
Direct sum of graphs or matrices, 346, 361.
Direct sum T⊕T ′ of search trees,

105, 149–150.
Directed acyclic graphs, 155, 488, 667.
Directed acyclic graphs of resolutions,

238–240, 254.
Directed graphs, seeDigraphs.
Directed graphs versus undirected

graphs, 63, 667.
Discarded data, 50.
Discarding the previous learned clause,

256, 340.
Disconnected shapes, 173.
Discrepancy patterns, 298, 366.
Discrete probabilities, 1.
Disjoint sets, 53, 407.
Disjoint shortest paths, 640.
Disjunctive normal forms, 198–200,

299, 314, 559, 621.
Dissection: Decomposition of one structure

into substructures, 170.
Distance d(u, v) in a graph, 626.
dynamically updating, 59.
Hamming, 127, 649.
in a plane, 112.

Distinct literals, 186.
Distributed computations, 34.
Distribution function, 395.
Divergence, Kullback–Leibler, 24–25, 407.
Divergent series, 469.
Diversity of exact coverings, 127.
Divide and conquer paradigm, 52.
Division of traces, 269, 345, 614.
DLINK field, 67–69, 88–90, 95–98, 109–110,

117–118, 120, 125, 433–434, 474–475,
480–481.

DLX algorithm, viii, 123.
DNF: Disjunctive normal form, 198–200,

299, 314, 559, 621.
Döblin, Wolfgang (= Doeblin, Vincent), 387.
Dobrichev, Mladen Venkov (%��#�	��

���)�� ������), 427.
Dobrushin, Roland L’vovich (%��#����

,����) "�����), 387.
Dodecahedron, 139, 451.
rhombic, 516.

Dodeciamond, 162.
Dodgson, Charles Lutwidge (= Carroll,

Lewis), v, 313–314.
Domains, 30, 55, 56.

Dominant nodes, 105, 643.
Dominating sets, 461, 668, see also

5-queens problem.
Dominoes, 79, 131, 161, 533.
tilings by, 119, 155, 294, 298, 299,
327, 361, 362.

windmill, 160–161.
Dominosa, 131.
Don’t-cares, 558, 644.
Doob, Joseph Leo, 6, 9, 383.
martingales, 9–10, 20, 27, 384.

Doomsday function D(n), 98–100, 147.
Dorian cube, 511.
Dorie, Joseph Edward, 511.
Doris©R puzzle, 454.
Dot-minus operation (x

.
−y = max{0, x−y}),

x, 21–22, 463.
Dot product of vectors, 20, 26.
Double clique hints, 284, 298, 355.
Double coloring, 299, 319.
Double counting, 464–465.
Double-crostics, 413.
Double factorial, see Semifactorial.
Double lookahead, 229–230, 310, 315, 650.
Double order, 578.
Double truth, 229.
Double word squares, 133, 183, 402.
Doubly linked lists, 65, 124, 212, 621, 623.
Doubly symmetric queen patterns,

152, 420–421.
Dowels, 166.
Dowler, Robert Wallace Montgomery,

Box, 167.
Downdating versus updating, 32–33, 39, 43.
Downhill resolution, 280, 350.
Downhill transformations, 279.
Downloadable programs, viii, 523.
Doyle, Arthur Ignatius Conan, 64, 256.
DPLL (Davis, Putnam, Logemann,

Loveland) algorithm, 216–217, 246.
with lookahead, 222, 315.

Dragon sequence, 446.
Drive Ya Nuts puzzle, 140.
DT (double truth), 229.
Dtrue literals, 229.
Dual linear programming problem, 479.
Dual of a Boolean function, 314, 358, 378.
Dual of a hypergraph, 125.
Dual of a kakuro puzzle, 543–544.
Dual of a permutation problem, 148.
Dual of a skewed pattern, 505.
Dual oriented spanning tree, 63.
Dual solutions, 34, 36, 56.
Dubois, Olivier, 315.
Dudeney, Henry Ernest, 79, 298, 402,

421, 487, 627.
Dufour, Mark, 221.
Duhamel, Jean-Marie Constant, 396.
Dull, Brutus Cyclops, 365.
Dulucq, Serge, 395, 523.
Duplicate options, 98, 145, 147, 421.

684

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 685

Durfee, William Pitt, square, 640.
Dworkin, Morris Joseph, 470.
Dynamic ordering, 38–39, 52, 54, 59, 411.
Dynamic programming, xi, 493.
Dynamic shortest distances, 59.
Dynamic storage allocation, 328.
Dynamical system, discrete, 200.

e (base of natural logarithms), 656–657.
as source of “random” data, 47,
183, 196, 557.

Eager data structures, 214, 220, 340.
Earl, Christopher Francis, 520.
Eastman, Willard Lawrence, 57, 58, 404.
Easy clauses, 333.
Eaters in Life, 204, 323.
Eckler, Albert Ross, Jr., 402, 441.
Edgar, Gerald Arthur, 502.
Edge-connected cubes, 515–516.
Eén, Niklas Göran, ix, 251, 280, 350,

567, 624, 632.
Efficient: Reasonably fast, 181.
Eggenberger, Florian, 6.
Ehlers, Thorsten, 560.
Eight queens problem, see 8 queens problem.
Eightfold symmetry, 174, 180, 322, 429,

489, 535, 546, 562.
Einstein, Albert, 665.
Elective items, 88.
Elegance, 219–220, 560.
Eleven blog, 426.
Elimination of clauses, 351–352; see also

Purging unhelpful clauses.
Elimination of variables, 244–245, 279–281,

285, 286, 313, 314, 338–339, 350–352,
357, 358, 620–621, 623–624, 634, 635.

Elkies, Noam David, 482.
Ell tetrominoes and tetracubes, 82, 483.
Ell trominoes, see Bent trominoes.
Ellipses, 483.
Elton, John Hancock, 375.
Embedded graphs, 132, 132, 353, 626.
Emlong, Ruby Charlene Little Hall, 507.
Empilements, 268, 345, 612.
Empirical performance measurements,

306–308.
Empirical probabilities, 27.
Empirical standard deviation, 431.
Empty clause (ε), 187, 211, 549, 655.

Empty graph (Kn), 268, 618.
Empty list, representation of, 40, 45,

217, 574.
Empty partial assignment, 350.
Empty set (∅), 549.
Empty string (ε), 187, 269.
Encoding into clauses, 190–194, 202,

281–289, 304, 318, 354, 363, 562,
566, 655.

ternary data, 284, 325, 363.

Endless Chain puzzle, 143.
Endomorphisms, 291–295, 361–362,

365, 645, 654.
Engelhardt, Matthias Rüdiger, 34, 398.
English words, viii, 36–37, 56, 59, 62, 94–95,

133–134, 136, 145, 152, 156, 183,
401–402, 413, 434, 443, 463–464, 484.

Enneominoes, 130, see Nonominoes.
Entropy, 24, 25, 27.
relative, 24.

Enveloping series, 378.
Eppstein, David Arthur, 100, 147.
Equal sums, encoding of, 358.
Equal temperament, 135.
Equally spaced 1s, 188, 298, 319; see

also waerden (j, k;n).
Equilateral triangles, 139.
coordinates for, 138, 163.

Equivalence algorithm, 539.
Equivalence classes in trace theory, 268.
Equivalence of Boolean functions, 362.
Equivalence relations, 468.
Erdős, Pál (= Paul), 265, 291, 378, 554, 645.
discrepancy patterns, 298, 363, 366.

Ernst, George Werner, 410.
Erp rules, 279–280, 350–352, 623.
Error bars, 50.
Escher, Maurits Cornelis, 501–502.
Essentially different (inequivalent), 86, 129,

137–141, 420, 442, 445, 450, 452, 456,
507; see also Symmetry breaking.

Esser, Peter Friedrich, 450, 494, 506.
Estimates of run time, 46–49, 54, 58–59,

73, 113, 133, 445, 447, 450.
Estimating the number of solutions, 49–51.
Euler, Leonhard (*���#�
 "����#)� =

-���#
 "����#)), 469, 529–530.
constant γ, 47, 373, 656–657.

Euler–Gompertz constant, 102, 469.
Eulerian numbers, 381.
Evaluation of Boolean functions, 321,

362–363, 558.
Even-length cycles, 641.
Even/odd coordinate systems, 178,

447, 450–451, 455, 456, 497, 502,
504–505, 510, 513.

Even-odd endomorphisms, 294, 361–362.
Even symmetry, 528.
Events, 1–3.
Every kth cost, 153–154.
Exact cover problem, v–vi, 66–72, 98,

114, 122, 123, 127, 153, 174, 186,
189–190, 212, 318, 367, 409, 456, 492,
550, 583, 589, 654, 668.

by pairs (perfect matchings), 293–294,
see also Tilings by dominoes.

by triples (3DM), 318, 589, 654–655.
extreme, 101, 147, 154.
fractional, 319–320, 479.
minimum-cost, vi, 111–118, 123,
152–154, 491.

685

From the Library of Melissa Nuno

ptg999

686 INDEX AND GLOSSARY

Exact cover problem (continued)
random, 127.
strict, 98, 99, 147.
uniform, 118, 127.
with colors, see XCC problem.
with multiplicities, seeMCC problem.
without backtracking, 127–128, 149.

Exact (one-per-clause) satisfiability, 367.
Exchangeable random variables, 381.
Exclusion clauses, 190, 205, 283, 298, 318,

333, 337, 602, 624, 635, 653, 654.
Exclusive or, ternary, 320.
Exercises, notes on, xi–xiii.
Existential quantifiers, 244.
Expander graphs, 242, 595.
Expected value, 2–5, 14–16, 393, see also

Conditional expectation.
Exploitation stack, 623.
Exploration phase of lookahead, 224,

227–228.
Exponential behavior, 104.
Exponential generating functions,

147–148, 418.
Exponential time, 328.
hypothesis, 652.

Exponentially small, 391, see also
Superpolynomially small.

Extended hexadecimal digits, 73, 80, 484.
Extended resolution, 244, 255, 317,

337, 338, 352, 579.
Exterior costs, 114, 153.
Extreme distribution, 271, 273, 347.

f↑ (maximal elements of family f), 545–546.
F pentomino, 80, 486, see R pentomino.
Façades, 166.
Face-centered cubic lattice, 168, 516, 518.
Face of a planar graph, 536.
factor fifo(m,n, z), 194, 196, 298, 368, 556.
factor lifo(m,n, z), 194, 298, 368, 556.
factor rand (m,n, z, s), 194, 368.
Factorial generating function, 418.
Factoring an exact cover problem, 83–86,

102, 109, 124, 137, 164, 167, 459–460,
482, 491, 492, 499, 509, 523, 527; see
also Relaxation of constraints.

Factorization of a string, 38, 57.
Factorization of problems, 52–53, 59, 60,

62, 192–194, 320, 368, 414, 556.
of traces, 270, 346, 614.

Factorizations of an integer, 146.
Failed literals, 281, 351, 359, 633.
Fair sequences, 7, 10, 19, 382, 393–394.
with respect to a sequence, 7, 382.

Fairbairn, Rhys Aikens, 485.
Fallacious reasoning, 200, 648.
Fallback points, 44.
False hits, 622.
False literals preferred, 215, 217, 251,

309–311, 650.

Falstaff, John, 548.
Families of sets, 17, 124, 537.
Fanout gates, 194–198, 320.
Farhi, Sivy, 507, 512.
Fat clauses, 242.
Fault testing, 194–198, 298, 310, 320–321,

351, 624.
Faultfree rectangle decompositions, 157,

170, 172, 429, 521.
Fédou, Jean-Marc, 430.
Feedback mechanism, 230, 288.
Feige, Uriel (����� ������), 375, 392.
Feldman, Gary Michael, 450.
Feller, Willibald (= Vilim = Willy =

William), 381.
Fences, 157, 175.
Fermat, Pierre de, 194.
Fernandez de la Vega, Wenceslas, 236.
Fernández Long, Hilario, 450.
Ferrers, Norman Macleod, diagrams, 160.
FGbook: Selected Papers on Fun & Games,

a book by D. E. Knuth.
Fibonacci, Leonardo, of Pisa (= Leonardo

filio Bonacii Pisano),
dice, 12.
martingale, 19.
numbers, 12, 121, 154, 344, 382,
579, 618, 658.

ruler function, 610.
Fichte, Johannes Klaus, 626.
Field of a variable, 275, 349.
Fields, Dorothy, iv, 65.
FIFO: first in, first out, 194.
Finite basis theorem, 173, 526.
Finite-state automata, 359, 636.
Fink, Federico [= Friedrich], 450.
Finkel, Raphael Ari, 54.
First in, first out, 194.
First moment principle, 4, 16, 237, 332, 334.
First-order logic, 243, 314.
First tweaks, 96.
Fischetti, Matteo, 422, 477, 570.
Five-letter words of English, 36–37, 56,

59, 62, 94–95, 133–134, 136, 145,
152, 156, 183, 402.

Fixed point of recursive formula, 412.
Fixed points of endomorphisms, 293–294,

361–362.
Fixed points of messages, 276, 349.
Fixed values of literals, 221, 226–230.
FKG inequality, 5, 17, 273, 380.
Flag bits, 599.
Flajolet, Philippe Patrick Michel, 418, 497.
Flammenkamp, Achim, 562.
Flat pentacubes, 167.
Fletcher, John George, 82.
Flexibility coefficients, 275.
Flickering state variables, 325.
Flipflops in Life, 322, 327.

686

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 687

Flipping pieces over, 81, 82, 140, 158, 449,
452, 453, 485–487, 489.

Floating point arithmetic, 275–276, 581, 603.
overflow, 251.

Floor tiling, 299, 327, 563.
Floorplans, 171–172, 394.
Flow in a network, 22.
Flower Power puzzles, 435.
Flower snarks, 253, 331, 337, 341.
Flowsnake fractal, 502.
Floyd, Robert W, 43.
Flushing literals and restarting, 252,

259–261, 308, 316, 341, 342, 353,
598, 610.

Flye Sainte-Marie, Camille, 437.
Foata, Dominique Cyprien, 267, 270, 347.
FOCS: Proceedings of the IEEE Symposia

on Foundations of Computer Science
(1975–), formerly called the Symposia
on Switching Circuit Theory and
Logic Design (1960–1965), Symposia
on Switching and Automata Theory
(1966–1974).

Focus of attention, 82, 104–106, 124, 150,
225, 251, 275, 316, 437, 541, 543.

Foe, Daniel (= Daniel Defoe), xiv.
Fogel, Julian, 526.
Fool’s Disk, 60.
Footprint heuristic, 643.
Forced literals, 229.
Forcing, 75, 109, 151.
Forcing clause, 246, see Unit propagation.
Forcing representations, 288–289, 358,

359, 638.
Forests, 227, 271, 347, 496.
Forgetting clauses, 352, 353, see Purging

unhelpful clauses.
Formal power series, 395–396.
Fortuin, Cornelis Marius, 17.
Forward versus backward, 21.
Four bit protocol, 299.
Four Color Theorem, 191.
Four functions theorem, 17, 379.
Four-letter codewords, 37–46, 57.
Fourfold symmetry, 171, 174, 322, 402,

465, 528, 546.
Fox-Epstein, Eli, 504.
FPGA devices: Field-programmable

gate arrays, 34.
Fractal, 502.
Fractional coloring number, 319–320.
Fractional exact cover problem, 319–320.
Fragment list, 536.
Frames, 39.
Frances, Moti (���� �
��), 649.
Francillon, Jean Paul, 509.
Franco, John Vincent, 315, 332, 589, 637.
Franel, Jérôme, 399.
Free literals and free variables, 222,

250, 349–350.

Free ZDDs, 480.
Freeman, Jon William, 315.
Freeman, Lewis Ransome, 30.
French, Richard John, 511.
Frere, John Hookham, xiii.
Friedgut, Ehud (���
���
���), 235.
Friedland, Shmuel (
�
��� �����), 389.
Friedman, Bernard, urn, 19.
Friedman, Erich Jay, 460, 495.
Frieze, Alan Michael, 387.
Frobenius, Ferdinand Georg, 87–88.
Fröberg, Ralf Lennart, 613.
Frontiers, 424, 526, 545, 552, see also

Boundary sets.
Frost, Daniel Hunter, 251.
fsnark clauses, 253, 255, 298, 331–332,

337, 341.
FT array, 96.
Fuhlendorf, Georg, 489.
Fujiyoshi, Kunihiro (), 523.
Full adders, 193, 320, 363, 556, 632, 642.
modified, 298, 644.

Full runs, 257, 342, 599.
Funk, Jacob Ewert, 181, 543.
Furtlehner, Cyril, 275.
Futoshiki, 174–175.

G4Gn: The nth “Gathering for Gardner,”
a conference inaugurated in 1993.

Gμ: One gigamem (one billion memory
accesses), 72, 219, 223, 281, 305, 552.

per minute, 653.
Gadgets, 318, 367, 421.
Gallager, Robert Gray, 279.
Game of Life, 201–204, 281, 298, 321–323,

327, 351.
Games, 8, 13.
Gamma function, 397, 469, 656–657, 663.
Gange, Graeme Keith, 633.
Garbage collection, 65.
Garćıa-Molina, Héctor, 157.
Garden of Eden, 323.
Gardner, Erle Stanley, 30.
Gardner, Martin, vi, 78, 83, 191, 203, 365,

428, 456, 485, 486, 489, 490, 500–502,
504, 506, 508, 523, 527, 552, 647, 687.

Garey, Michael Randolph, 11, 545, 670.
Garfinkel, Robert Shaun, 123, 431.
Garns, Howard Scott, 74.
Gaschnig, John Gary, 54.
Gates of a circuit, 194–197, 285–287,

305, 320.
Gauß (= Gauss), Johann Friderich Carl

(= Carl Friedrich), 53, 398.
GB GATES program, 197–198.
Gebauer, Heidi Maria, 588.
Geek art, 300–301, 497, 511.
Geerinck, Theodorus, 513.
Generalization of resolution, 590.
Generalized kakuro, 181.

687

From the Library of Melissa Nuno

ptg999

688 INDEX AND GLOSSARY

Generalized toruses, 501.
Generating functions, 15, 22, 24, 28, 58, 148,

149, 160, 269, 273–274, 335, 342–344,
348, 376, 378, 381, 384, 385, 392, 393,
406, 408, 414, 415, 418, 430, 481, 552,
558, 561, 583, 586, 594, 617, 648.

exponential, 147–148, 346, 418, 647.
Generation of random objects, 385.
Generic graph, 358.
Generic option, 109.
Gent, Ian Philip, 629, 647.
Gentzen, Gerhard Karl Erich, 243.
Geoffrion, Arthur Minot, 54.
Geometric distribution, 21, 24, 392,

608, 626.
Geometric mean and arithmetic mean,

28, 375, 383, 515.
Geometric sudoku, 78.
Georges, John Pericles, 556.
Georgiadis, Evangelos (���� ����	

!�� ���), 372.
Gerdes, Paulus Pierre Joseph, 569.
Gerechte designs, 79, 129.
Gerry, Elbridge, 131.
Gerrymandering, 131.
Gessel, Ira Martin, 612.
Ghost pentominoes, 495.
Giant component, 144, 436.
Giant strong component, 236.
Gibat, Norman Edlo, 440.
Gigamem (Gμ): One billion memory

accesses, 33, 219, 223, 281,
302–305, 552.

per minute, 653.
Gilat, David, 382.
Gilbert, Edgar Nelson, 439–440.
Gillen, Marcel Robert, 491.
Ginibre, Jean, 17.
Ginsberg, Matthew Leigh, 297, 316.
Gipatsi patterns, 325.
Girth of a graph, 360, 654.
Given literals (F | l or F |L), 211, 280, 327,

341; see also Unit conditioning.
Glaisher, James Whitbread Lee, 87–88.
Gliders in Life, 203, 322–323, 561, 565.
symmetry of, 564.

Global ordering, 648.
Global variables, 55, 536.
Glucose measure, see Literal block distance.
go to statements, 446.
Goerdt, Andreas, 236.
Goh, Jun Herng Gabriel (), 540.
Goldberg, Allen Terry, 315, 589.
Goldberg, Eugene Isaacovich (.���)��#+

*�+���� ��������), 254, 316.
Golden ratio (φ), 12, 121, 127, 330, 331,

344, 370, 451, 615, 656–657.
as source of “random” data, 47.

Goldenberg, Mark (= Meir) Alexandrovich
(.���)����#+
 ��#� �������)#���),
526.

Goldman, Jay Robert, 614.
Goldstein, Michael Milan, 410.
Golomb, Solomon Wolf, 37, 54, 79, 80, 84,

157, 413, 486, 502, 629, 691.
Gompertz, Benjamin, 102, 469.
Gondran, Michel, 478, 479.
González-Arce, Teófilo Francisco, 632.
Goodger, David John, 506.
Gordon, Basil, 37, 691.
Gordon, Leonard Joseph, 441, 442, 517, 518.
Gosper, Ralph William, Jr., 204, 373,

502, 562.
Gosset, John Herbert de Paz Thorold, 421.
Gosset, William Sealy (= Student),

t-distribution, 393.
Gottfried, Alan Toby, 447, 454.
Gould, Henry Wadsworth, 102.
numbers, 101–102, 147–148, 469.

Gould, Wayne, 425.
Goulden, Ian Peter, 497.
Goultiaeva, Alexandra Borisovna

(.����'���
 �������)#� ��#������),
257.

Graatsma, William Petrus Albert Roger
Stephaan, 84.

Grabarchuk, Petro (= Peter) Serhiyovych
(.#���#	��
 ���#� &�#+!����),
428, 627.

Grabarchuk, Serhiy Oleksiyovych
(.#���#	��
 &�#+!� /����!����),
161, 428, 627.

Grabarchuk, Serhiy Serhiyovych
(.#���#	��
 &�#+!� &�#+!����), 627.

Graders, 411.
Graffiti, 548.
Graham, Ronald Lewis (), 370,

395, 520, 523, 549, 680.
Gram, Jørgen Pedersen, 87–88.
GRAND TIME puzzle, 78.
Graph-based axioms, 243, 338, 362, 654.
Graph coloring problems, see Coloring

a graph.
Graph embedding, 353, 626.
Graph layout, 300–302.
Graph problems, 667–669.
Graph quenching, 298, 363–364, 645.
Gravitationally stable structures, 164,

166, 509.
Gray, Frank, codes, 565–566, 646, 669.
Greed-avoidance parameter (p), 263,

278, 302, 607–608.
Greedy algorithms, 264, 320, 356, 479.
Greedy queens, 127.
Greenbaum, Steven Fine, 286.
Greene, Curtis, 640.
Grensing, Dieter, 482.

688

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 689

Grid graphs (Pm Pn), 23, 62–63, 294,
320, 335, 346–347.

list coloring of, 335.
oriented, 62.

Grid patterns, 201–204, 208–210, 321–323,
326; see also Game of Life.

rotated 45◦, 157, 160, 325–326.
Gridgeman, Norman Theodore, 409.
Griffith, John Stanley, 37.
Griggs, Jerrold Robinson, 556.
Grimmett, Geoffrey Richard, 377.
Gr̄ınbergs (= Grinberg), Emanuels Donats

Fr̄ıdrihs Jänis, 582.
Gritzmann, Peter, 570.
Gropes, 132.
Grötschel, Martin, 628.
Groupoids, see Binary operators.
Groups, 432.
Grünbaum, Branko, 485, 488.
Gu, Jun (), 261.
Guéret-Jussien, Christelle, 631.
Guibert, Olivier, 395, 523.
Guilherme De Carvalho Resende,

Mauricio, 199.
Gumball machine problem, 375.
GUROBI system, 653.
Guruswami, Venkatesan (��������

	
���), 392.
Gut, Allan, 397.
Guy, Michael John Thirian, 86, 506.
Guy, Richard Kenneth, 86, 201, 203, 291,

468, 491, 500, 506, 511.
Gwynne, Matthew Simon, 289, 634, 637.

H-grid, 503.
Haagerup, Uffe Valentin, 397.
Hackers, 563.
Hadamard, Jacques Salomon, 87–88.
transform, 515.

Hajiaghayi, MohammadTaghi
(&'�(&)	 &*+ ���), 235.

Haken, Armin, 241, 242.
HAKMEM, 373, 500.
Hales, Alfred Washington, 370, 691.
Halevi, Shai (���� ��), 653.
Half adders, 193, 556, 632.
Hall, Marshall, Jr., 54.
Hall Emlong, Ruby Charlene Little, 507.
Halting problem, 314.
Hamadi, Youssef (������ ����	,

���	 #���), 600.
Hamaker, William, 514.
Hamilton, William Rowan,
cycles, 143, 353, 534, 540, 669.
king paths, 535.
paths, 51, 176, 368, 669.

Hammersley, John Michael, 54.
Hamming, Richard Wesley, distance,

127, 649.
Han, Hyojung (), 600.

Handscomb, David Christopher, 54.
Handwaving, 273.
Hansson, Frans, 80, 81, 159, 488, 493, 511.
Hanzelet, see Appier dit Hanzelet.
Haralambous, Yannis (���������	

�"�����), 714.
Hard clauses, 352.
Hard sudoku, 367.
Hardest sudoku puzzle, 129.
Hardy, Godfrey Harold, 397.
Harmonic numbers, fractional, 383, 659.
Harris, Robert Scott, 78, 429.
Hart, Johnson Murdoch, 523.
Hartman, Christiaan, 566.
Haselgrove, Colin Brian, 486.
Haselgrove, Jenifer Wheildon-Brown

(= Leech, Jenifer), 106, 486, 490.
Hashing, 9–10, 20, 481.
H̊astad, Johan Torkel, 392.
Haswell, George Henry, 452.
Haubrich, Jacob Godefridus Antonius

(= Jacques), 453.
Haven, G Neil, 315.
Hawking, Stephen William, 665.
Hawkins, Harry, 489.
Hayes, Brian Paul, 75.
Head of the list, 212.
Header elements, 589.
Header nodes, 65–68, 89, 124, 416, 480.
Heads and tails puzzles, 140.
HEAP array, 251–252, 342, 597–599, 604.
Heap data structure, 251–252, 339, 578.
insertion and deletion from, 598.

Heap ordered arrays, 117.
Heaps of pieces, 267.
Heavy tails, 26, 431.
Height of a literal, 578.
Height of a trace, 269.
Height of binary trees, 59, 416.
Heilmann, Ole Jan, 615.
Hein, Piet, 82, 83, 164, 507, 517.
Helpful rounds, 353.
Henle, James Marston, 429, 532.
Hensel, Kurt Wilhelm Sebastian, 87–88.
Heptacubes, 511.
Heptiamonds, 500, 501.
Hermite, Charles, 87–88.
Hertog, Martien Ilse van, 523.
Heule, Marienus (= Marijn) Johannes

Hendrikus, ix, 221, 224, 230, 255, 259,
281–282, 288, 313, 318, 331, 366, 550,
566, 577, 603, 624, 625, 627.

Heuristic scores, 274–279.
for clauses, 256–258, 309–311, 342,
603, 650.

for variables, 224–228, 245, 251, 264,
310, 329–331, 578.

Hexacubes, 511.
Hexadecimal constants, x, 657.

689

From the Library of Melissa Nuno

ptg999

690 INDEX AND GLOSSARY

Hexadecimal digits, 176.
extended, 73, 80, 484.

Hexagonal close packing, 170.
Hexagons, 55, 142, 162.
coordinates for, 162.

Hexiamonds, 141, 161, 503.
Hexominoes, 79, 129, 159.
Hexotinoes, 500.
Hidato©R , 176–177.
Hidden mathematicians, 87–88.
Hidden singles and pairs, 76–77, 128,

425, 529.
Hidden weighted bit function, 357.
hide(p), 69.
hide′(p), 90, 120, 154.
hide′′(p), 109.
hide′′′(p), 474.
hide′′′′(p), 481.
Hiding an option, 69, 117.
Hierarchy of hardness, 360, 362.
Hilbert, David, 87–88, 527.
Hill, Gerald Allen, 507.
Hilton, Anthony John William, 555.
Hint clauses, 284, 298, 355.
Hirsch, Edward Alekseevich (.�#�
 -)��#)

���������), 579.
Historical notes, 30, 33–34, 53–54, 81–82,

106, 123, 215–216, 243–244, 289,
313–317, 387–388, 396–397, 402, 418,
435, 440, 443, 450–454, 457, 459–460,
465–469, 482–483, 485, 487, 489–490,
493, 500, 505, 509–511, 514, 517–518,
526, 529, 532, 535, 538, 595, 627.

Hitori, 182–183.
Hitori covers, 183.
Hitotumatu, Hirosi (), 123.
Hitting set problem, 416.
Ho, Boon Suan (), 540.
Hoare, Charles Antony Richard, 123.
Hobby, John Douglas, 714.
Hoek Loos company, 453.
Hoeffding, Wassily (= Wassilij), 9, 15.
inequality, 9–10, 20, 394.

Hoffman, Dean Gunnar, 168, 515.
Hoffmann, Louis (= Lewis, Angelo John),

60, 459, 509, 510.
Hoggatt, Verner Emil, Jr., 395.
Hölder, Ludwig Otto, 396.
inequality, 29.

Holes in cubies, 166.
Holes in polyominoes, 157, 496.
Hollow mazes, 654.
Holmes, Thomas Sherlock Scott, 64, 256.
Holy Grail, 509.
Homer (#$���), 183, 666.
Homogeneous puzzles, 178, 180.
Homomorphic embedding, 353, 626.
Homomorphic images, 52.
Honest representations, 289, 634.
Honeycombs, 55.

Hoory, Shlomo (���� ����), 588.
Hoos, Holger Hendrik, ix, 309–311, 317, 344.
Hopcroft, John Edward, 545.
Horizontal and vertical symmetry, 174,

465, 528, 546.
Horn, Alfred, clauses, 317, 350, 360,

580, 627.
core of, 358, 580.
renamed, 360, 627.
satisfiability, 667.

Horsley, Daniel James, 638.
Horton, Robert Elmer, numbers, 336.
Hsiang, Jieh (), 313.
Hsiung, Chuan-Chih (), 504.
Huang, Wei-Hwa (), ix, 123, 440.
Hume, David, 185.
Hunt, Warren Alva, Jr., 255, 603.
Hurwitz, Adolf, 87–88, 399.
Hutter, Frank Roman, 309, 317.
Hydes, Horace, 452.
Hypercubes, 82, 168, 465.
Hyperedges, 125.
Hypergeometric functions, 393, 395.
Hypergraphs, 125.
2-colorability, 549.
4-colorability, 137.

Hyperoctahedral symmetries, 529.
Hyperresolution, 240, 592, 621.
Hypersolid pentominoes, 515.
Hypersudoku, 130, 137.

I pentomino, 80, 486, seeO pentomino.
IBM 704 computer, 413.
IBM 1620 computer, 34.
IBM System 360-75 computer, 34.
iCauchy distribution, 26.
Icosahedron, regular, 451, 501.
Idempotent elements, 132.
Identical options, 98, 145, 147, 421.
Identity elements, 132, 149.
Idle Year solitaire, 364.
IEEE Transactions, ix.
If-then-else operation (u? v: w), 265,

286, 336, 357, 583.
ILP (integer linear programming), see

Integer programming problems.
ILS: Iterated local search, 309.
Impagliazzo, Russell Graham, 54, 239, 652.
Implicant: A conjunction of literals, 668.
Implication digraph, 236–237, 328.
Implicit enumeration, 54.
Importance sampling, 25, 54.
In-degree of a vertex, 436.
in situ deletion, 69, 340.
Incidence matrices, 124.
Inclusion and exclusion, 376, 378, 388,

471, 585–586, 620.
Incomparable dissections, 172–173.
Incomplete beta function, 14.

690

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 691

Inconsistent clauses, see Unsatisfiable
formulas.

Incroci Concentrici puzzles, 435.
Indecomposable matrices, 361.
Independent events, 2.
Independent random variables, 1, 7, 9,

10, 13–15, 20, 382.
k-wise, 1, 13.

Independent sets, 145, 191, 331, 668.
Independent subproblems, 52.
Indeterminate statements, 412–413.
Induced subgraphs, 63, 114, 145, 153,

183, 265, 436, 626.
Induction proofs by machine, 208, 567.
Indyk, Piotr Józef, 393.
Infinite loop, 608.
Infinite mean, 381, 382.
Infinity lemma, 138.
Information, bits of, 24.
Information gained, 24–25.
Initial guess for literals, 215, 217, 250,

309–311, 650.
Initial state X0, 200–201, 205, 208, 324, 566.
Inner loops, 398.
Inorder traversal, 172.
Inprocessing, 279, 352.
Input and output, 304.
Input states, 359.
Insertion into a heap, 598.
Insertion operation, 40.
Instant Insanity©R , 52–53, 59–60, 142–143.
Instantiations, see Assignments.
Integer multilinear representation, see

Reliability polynomials.
Integer partitions, 55, 59.
Integer programming problems, 54, 210,

368, 422, 477, 525, 570, 649.
Intelligent design, 201, 321.
Interactive methods, 88, 326, 440–441.
Interior costs, 153.
Interlaced roots of polynomials, 347.
Internal zeros, 25, 391.
Internet, iv, viii, xii, 302.
Intersection graphs, 268, 345.
Intersection of solutions, 445.
Interval graphs, 271, 347.
Intervals, cardinality constrained to,

284, 554, 644.
Intervals of allowed multiplicities, 93.
Intervals of the real line, x, 4, 27, 386, 661.
Invariant assertions, 207–208, 227, 299, 324,

409, 567, 580, 581, 619, 625.
Inverse lists, 40–43, 45.
Inverse permutations, 27, 40–41, 148,

296, 629.
Inverses, 381.
Inversions of a permutation, 149, 577.
Invertible puzzles, 540, 542.
Invisible nodes, 122.
Involution polynomial of a set, 347.

Involutions, signed, 296–297, 364, 641–642.
INX array, 222, 575, 650.
IP: Integer programming, 210, 368, 570, 649.
Irredundant CNF, 621.
Irreflexive relation, 240.
Irving, Robert Wylie, 335.
Isaacs, Rufus Philip, 582.
Isolated vertices, 488, 626.
Isometric projection, 155.
non-, 166.

Isomorphic binary operators, 432.
Isosceles right triangles, 163.
Isosceles triangles, 451.
Isotopic binary operators, 424, 427.
IST(l) field, 222.
ISTACK array, 222, 329.
ISTAMP counter, 221–222, 230, 329.
ITE, see If-then-else operation.
Items, v, 66–69, 88, 123; see also

Secondary items.
Iterated local search, 309.
Iteration versus recursion, 55, 398.
Itoh, Toshiya (), 388.
Iwama, Kazuo (), 588.

Jabbour, Säıd (
���� ����, ��,) ����),
600, 653.

Jabbour-Hattab, Jean (-.	 ��,)
$/�), 390.

Jaccard, Paul, 387.
index, 387.

Jackson, David Martin Rhŷs, 497.
JACM: Journal of the ACM, a publication

of the Association for Computing
Machinery since 1954.

Jacquet, Philippe Pierre, 589.
Jaenisch, Carl Ferdinand Andreevitch de

($����
 (�#�� ��)#����	�), 93, 398.
Jagger, Michael Philip “Mick”, 185.
Jahn, Fritz, 431.
James White, Phyllis Dorothy, 11.
Janson, Carl Svante, ix, 374, 382,

384–385, 389.
Japanese arrow puzzles, 135, 410.
Järvisalo, Matti Juhani, 289, 316, 624, 625.
Jeannicot, Serge, 579.
Jelliss, George Peter, 505.
Jensen, Johan Ludvig William Valdemar,

87–88, 377.
inequality, 4, 16, 27, 377, 382, 390,
396–397.

Jepsen, Charles Henry, 460, 525.
Jerrum, Mark Richard, 335.
Jewett, Robert Israel, 691.
Jiggs, B. H. (pen name of Baumert, Hales,

Jewett, Imaginary, Golomb, Gordon,
and Selfridge), 45.

Jigsaw puzzles, 139.
Jigsaw sudoku puzzles, 78, 129, 130, 160.
Job shop scheduling problems, 299, 356–357.

691

From the Library of Melissa Nuno

ptg999

692 INDEX AND GLOSSARY

Jocelyn, Julian Robert John, 91, 457.
Jockusch, William Carl, 482.
Johnson, David Stifler, 11, 368, 545,

555, 670.
Join of families (F � G), 17.
Join of graphs, 346.
Joint distribution, 13, 24, 380, 396–397.
Joint entropy, 24.
Jones, Alec Johnson, 423.
Jones, Kate (= Katalin Borbála Éva Ingrid

Adrienne née Eyszrich), 449, 450.
JRM: Journal of Recreational Mathematics,

published 1970–2014.
Jumping into the middle of a loop, 446, 475.

k-cliques, 17.
k-colorable graphs or hypergraphs, 668.
k-induction, 567.
k-wise independence, 1, 13.
k-wise ordering, 126.
Km,n (complete bipartite graphs), 107,

360, 470, 614, 618.
Kn (complete graphs), 102, 108, 120–121,

148, 151, 154, 268, 335, 337, 362,
481, 550, 626.

Kμ: One kilomem (one thousand memory
accesses), 282.

Kadner, Franz, 159.
Kadon Enterprises, 449, 454, 518.
Kajitani, Yoji (), 523.
Kakuro, 155, 174, 180–182.
Kalai, Gil (���� ���), 389.
Kallenberg, Olav Herbert, 381.
Kamath, Anil Prabhakar (a��� pr����

����), 199.
Kanamoto, Nobuhiko (), 535.
Kane, Daniel Mertz, 647.
Kaplan, Craig Steven, 157.
Kaplansky, Irving, 418.
Kaporis, Alexis Constantine Flora (%�����	

��&'��	 %����������� ��(��), 235.
Karmarkar, Narendra Krishna (�����

��� ������), 199.
Karp, Richard Manning, 236, 384, 632.
Karpiński (= Karpinski), Marek

Mieczys�law, 588.
Karpovsky, Mark Girsh, 649.
Kasif, Simon (���	 �����), 629.
Kasteleyn, Pieter Willem, 17.
Katona, Gyula (Optimális Halmaz), 291.
Katz, Daniel Jason, 531.
Kautz, Henry Alexander, 263, 316.
Kautz, William Hall, 465.
Kaye, Richard William, 571.
Keller, Michael, 132, 431, 494, 505.
Keller, Robert Marion, 267.
Kelly, John Beckwith, 526.
Kelvin, Lord [= William Thomson, 1st

Baron Kelvin], 82.
Kendall, David George, 381.

KenKen©R , 174–176.
Kennedy, Michael David, 34.
Kenworthy, Craig, 507.
Kern, Jerome David, iv.
Kernelization, 108.
Kernels of a digraph, 668.
Kernels of a graph (maximal independent

sets), 145, 283, 318, 436, 461, 550,
552, 582, 668.

clauses for, 298, 318.
Khinchin, Alexander Yakovlevich (0��	��

�������)# $�������), inequality, 29.
Kilomem (Kμ): One thousand memory

accesses, 77, 223, 282.
Kim, Jeong Han (), 238.
Kim, Scott Edward, 173, 527.
King, Benjamin Franklin, Jr., 30.
King moves, 145–146, 176, 318, 353.
King paths, 50–51, 54, 59, 136.
Hamiltonian, 535.

Kingsley, Hannah Elizabeth Seelman, 413.
Kingwise connected cells, 354, 503.
Kint-Bruynseels, Ronald Odilon

Bondewijn, 510.
Kirchhoff, Gustav Robert, 87–88.
Kirousis, Lefteris Miltiades (%���)��	

!����&���	 *�������), 235.
Kitagawa, Satoshi (), 628, 631.
Kitchiner, William, 64.
Klarner, David Anthony, 430, 483,

497, 513, 526.
Kleber, Michael Steven, 409.
Kleiman, Mark Philip, 395.
Kleinberg, Jon Michael, 392.
Kleine Büning (= Kleine-Büning), Hans

Gerhard, 315, 549.
Kleitman, Daniel J (Isaiah Solomon), 640.
Knapsack problem, 669.
with a partial ordering, 342.

Knessl, Charles, 589.
Knight and bishop sudoku, 146.
Knight moves, 51, 145–146, 155, 299, 353.
Knopfmacher, Arnold, 469.
Knopp, Konrad Hermann Theodor, 87–88.
Knuth, Donald Ervin (), ii, iv, vi, viii,

ix, xvii, 46, 54, 55, 63, 73, 77–79, 100,
118, 123, 185, 198, 200, 203, 235–236,
256, 258, 277, 278, 302, 309–311, 384,
389, 397, 401, 406, 411, 413, 419, 420,
424–425, 427, 429, 431–432, 440, 446,
459, 460, 463, 466, 473, 475–478, 480,
481, 484, 485, 501–503, 508, 511, 514,
523, 527, 532, 533, 538, 540, 541, 544,
548, 556, 557, 559, 561, 566, 574, 576,
577, 580, 583, 584, 591, 599–601, 604,
606, 613, 624, 628–631, 638, 639, 642,
643, 646, 650, 654, 680, 686, 714.

Knuth, John Martin (), see Truth.
Knuth, Nancy Jill Carter (), 63, 157.
Knutsen, Theodor Skjøde, see Skjøde Skjern.

692

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 693

Kojevnikov, Arist Alexandrovich
((�1�������
 �#���
�������)#���), 644.

Kolipaka, Kashyap Babu Rao (����� �� ����	
�
��� �����), 274, 345, 619.

Kolmogorov, Andrei Nikolaevich
((����+�#��
 ��)#�� ���������), 9.

inequality, 9.
Komisarski, Andrzej, 371.
Konev, Boris Yurevich ((����
 ��#��

2#����), 645.
Kopparty, Swastik (��� ���
� �� ����� ,

!��!"� ��#$� %"), 392.
Kouřil, Michal, 189, 549.
Kowalewski, Waldemar Hermann

Gerhard, 457.
Kroening, Daniel Heinrich Friedrich

Emil, 567, 652.
Krom, Melven Robert, clauses, see

2SAT problems.
kSAT, 187, 233–235, 330, 332, 334, 367, 667.
Kugelpyramide puzzle, 518.
Kulikov, Alexander Sergeevich ((������

�������)# &�#+����), 644.
Kullback, Solomon, 390.
divergence (D(y ||x)), 24–25, 407.

Kullmann, Oliver, 189, 289, 313, 331, 336,
579, 580, 582, 592, 624, 634, 637.

Künzell, Ekkehard, 512.
Kustes, William Adam, 508.
Kuwagaki, Akira (), 518.
Kwekkeboom, Cornelis (= Kees)

Samuël, 566.

l1 norm (‖ . . . ‖1), 393.
L(2, 1) labeling of graphs, 320.
L7 lattice, 619.
L-bert Hall, 166.
L-cube puzzle, 509.
L pentomino, 80, seeQ pentomino.
L-twist, 82, 174, 528.
La Vallée Poussin, Charles Jean Gustave

Nicolas de, 388.
Labeled pyramids, 346.
Labeled traces, 346.
Lake Wobegon dice, 12.
Lalas, Efthimios George (+���	
 !��)��	

���� ���), 235.
Lamping, John Ogden, 424.
Lamport, Leslie B., 208, 568.
Land mines, 326.
Landau, Edmund Georg Hermann, 87–88.
Landman, Bruce Michael, 549.
Langford, Charles Dudley, 140–141, 454–455.
pairs, 34–36, 55–56, 70, 105, 110–112, 118,
122, 125, 126, 150, 152, 154, 189–190,
218, 282, 305, 309, 318, 354, 550, 653.

langford (n), 190, 218–219, 223, 281, 282,
298, 305, 318, 574, 600, 653.

langford ′(n), 190, 282, 298, 318, 653.
langford ′′(n), 282.
langford ′′′(n), 628.
Lapko, Olga Georgievna ("�3��
 /��+�

.��#+�����), 714.
Large deviations, see Tail inequalities.
Larrabee, Tracy Lynn, 197, 321.
Larrie, Cora Mae, 21.
Larsen, Michael Jeffrey, 483.
Las Vegas algorithms, vii, 343–344.
Last block of a set partition, 101–102.
Last in, first out, 194.
Late Binding Solitaire, 298, 364.
Latin rectangle construction, 335.
Latin squares, 52, 78, 174–176, 533, 669.
Lattices, 619, 640.
of partial assignments, 349–350.

Lauria, Massimo, 240.
Laurière, Jean-Louis, 479, 550.
Lavery, Angus, 166.
Law of large numbers, 393.
Laxdal, Albert Lee, 45.
Layouts, see Floorplans, Tilings.
Lazy data structures, 214–218, 220,

249, 340, 598.
Le Berre, Daniel Claude Yves, 316.
Le Nombre Treize, see Royal Aquarium

Thirteen Puzzle.
Learned clauses, 247–249, 254–255,

308, 316, 352.
sequence of, 254, 340.

Learning a Boolean function, 198–200,
299, 321.

Learning a probability distribution, 27.
Least common ancestor, 617.
Least common multiple, 23.
Leaves of a search tree, 101, 103, 126.
Leech, Jenifer (= Haselgrove, Jenifer

Wheildon-Brown), 106, 486, 490.
Left-continuous function, 395.
Left division of traces, 269, 345.
Left factor of a trace, 345–346.
Left-right symmetry, 174, 428–429, 474,

520–521, 528.
Left shift, 25.
Left-to-right maxima or minima, 28, 394.
Lehmer, Derrick Henry, 54, 439, 440.
Leibler, Richard Arthur, 390.
divergence (D(y ||x)), 24–25, 407.

Lemaire, Bernard François Camille, 646.
Lemma generation, see Clause-learning

algorithms.
LEN field, 68–69, 89, 97, 101, 109, 110,

125–126, 132, 145, 150, 153, 155,
474–475, 480, 481.

Length of a trace, 269.
Lettmann, Theodor August, 549.
Level 0, 246, 250, 308, 340, 571, 597.

693

From the Library of Melissa Nuno

ptg999

694 INDEX AND GLOSSARY

Levels of values, 246–250, 340, 597.
Levesque, Hector Joseph, 234.
Levine, Eugene, 639.
Levine, Jack, 497.
Lewis, Angelo John (= Hoffmann, Louis),

60, 459, 509, 510.
Lewis, Charles Howard, 500.
Lewis, Jerome Luther, 639.
Lewis, Meriwether, 30.
Lex-leader: The lexicographically smallest

element, 295, 647.
LEXI-CUBES puzzle, 59.
Lexicographic order, 30, 35, 53, 57, 62,

108, 127, 150–152, 188, 209, 210, 214,
285, 289, 291, 293, 295–297, 299, 503,
516, 561–562, 646–647.

encoded in clauses, 285, 357, 358.
Lexicographic row/column symmetry,

290–291, 361, 365, 638.
Lexicographically smallest (or largest)

solution, 152, 209–210, 295–297, 326,
341, 477, 646, 647.

Lexicographically smallest traces, 268,
345, 346, 614.

Leyton-Brown, Kevin Eric, 309, 317.
Li, Chu Min (), 315.
Li, Wei (), 333.
Lieb, Elliott Hershel, 615.
Life, Game of, 201–204, 281, 298,

321–323, 327, 351.
Lifting, 52–53.
Light speed in Life, 323.
Lindon, James Albert, 489.
Line graph of a graph, 331, 613.
Line puzzles, 460.
Linear equations, 124, 210, 595.
Linear extensions, see Topological sortings.
Linear inequalities, 172, 368.
encoding of, 284–285, 356, 357.

Linear hypergraphs, seeQuad-free matrices.
Linear programming problems, 210,

479, 524–525.
Lines, abstracted, 290.
Link manipulations, 65–66, 96–97, 124.
Linked lists, 34–35, 404.
Links, dancing, 189, 305, 318, 572, 652.
Lipschitz, Rudolph Otto Sigismund,

condition, 10.
Lisitsa, Alexei Petrovich ("!�!4�
 ��'����

�'�#��!), 645.
List coloring of graphs, 319, 335.
List-decodable codes, 392.
List heads, 65–68, 89, 124, 480.
List merge sort, 479.
List merging, 595, 622.
Literal block distance, 256, 258, 342.
Literals, 186, 295.
flushing, 260.
internal representation, 212, 221, 250,
572, 573, 606, 621.

Litman, Ami (����� ���), 649.
Littlewood, John Edensor, 397.
Liu, Andrew Chiang-Fung (), 526.
Liu, Lily Li (), 391.
Livelock, 206–207.
LLINK field, 65–69, 89, 97–98, 124, 416.
Llunell, Albert Oliveras i, 631.
LNCS: Lecture Notes in Computer Science,

inaugurated in 1973.
Load balancing, 54.
Loaded dice, 24.
Local equivalence, 106–108.
Local Lemma, 265–274, 317, 335, 344–349.
Local maximum, 26.
Local resampling, 266–267, 348–349.
Log-concave sequences, 14, 25, 462.
Log-convex sequences, 25.
Log encodings, 282–283, 298–299, 357.
Logemann, George Wahl, 215–216, 314, 684.
Logic puzzles, 174–183; see also Sudoku.
Longest paths and cycles, 669.
Longest simple path, 207, 567.
Lonlac, Jerry, 653.
Look-back, see Backjumping.
Lookahead, 38, 44, 54, 59.
Lookahead autarky clauses, see Black

and blue principle.
Lookahead forest, 226–228, 329–331, 352.
Lookahead solvers, 222–230, 239, 281,

313, 315, 360.
combined with CDCL solvers, 313.
compared to CDCL solvers, 282–284,
302–305, 366, 654.

Loop, running time of, 21.
Loopless shadows, 368.
Loops (arcs or edges from vertices to

themselves), 24.
Loops (cyclic paths), 143, 177–180, 537–538.
Loose Langford pairs, 56.
Lopsidependency graphs, 266, 267, 344,

348, 349, 549, 588.
Lord, Nicholas John, 374.
Lou, Jørgen, 515.
Lou, Xingliang David (), 416.
Lovász, László, 265, 266, 549, 555.
Loveland, Donald William, 216, 314, 684.
Lower bounds for resolution, 241–244,

337–338.
Lower semimodular lattices, 619–620.
Loyd, Samuel, 627.
Lozenges, seeDiamonds.
Luby, Michael George, 264, 343.
Lucas, François Édouard Anatole, 53,

134, 399, 418, 431.
numbers, 471, 481.

Lukács, Eugene (= Jenő), 372.
Luks, Eugene Michael, 297.
Lunnon, William Frederick, 529.

694

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 695

m×n parallelograms, 446.
Mf and Mp, 252.
Mμ: One megamem (one million memory

accesses), 46, 253, 282, 305–307.
Maaren, Hans van, 221, 230.
MacColl (= McColl), Hugh, 591.
MacMahon, Percy Alexander, 91, 110,

137–141, 155, 447, 457.
Master Theorem, 614, 615.

MacQueen, James Buford, 382.
Macro instructions, 82.
Mader, Adolf, 639.
Madigan, Conor Francis, 316.
Magen, Avner (��� ����), 54.
Magic, 557.
Magic blocks, 542, 544.
Magic masks, 372.
Magic sequences, 649.
Magic squares, 424.
Magmas, see Binary operators.
Magnetic tape, 216.
Magnification of polyforms, 159, 162.
Mahler, Kurt, 373, 409.
Makespan, 356–357.
Malik, Sharad (&�� ����), 316.
Mallach, Sven, 653.
Manber, Udi (��� �
��), 54.
Maneva, Elitza Nikolaeva (������
 *��4�

���������), 350, 620.
Mansour, Toufik (���0 1���+), 469.
Manthey (Siebert), Bodo, 396.
Mapping three items into two-bit codes, 363.
Mappings of {1, . . . , n} into {1, . . . ,m}, 138.
march solver, 224, 580.
Marcinkiewicz, Jósef, inequality, 29.
Marek, Victor Wiktor, 580.
Marginal costs, 118.
Marino, Raffaele, 278.
Markov (= Markoff), Andrei Andreevich

(��#���
 ��)#�� ��)#����),
the elder, 4, 87–88.

inequality, 4, 5, 16, 342, 383, 390, 605.
Markov, Igor Leonidovich (��#���
 5+�#

"���!)���), 296, 645, 648.
Markström, Klas Jonas, 654.
Marlow, Thomas William, 502.
Marques da Silva (= Marques-Silva),

João Paulo, 316.
Marriage theorem, 588.
Marshall, William Rex, 526.
Martin, Alexander, 628.
Martingale differences, see Fair sequences.
Martingales, 6–11, 18–20, 24, 58, 376.
with respect to a sequence, 7, 19, 382.

Masks, 398.
Mason, Perry, 30.
Masyu, 174, 178–180.
Matching, three-dimensional, see

3D matching problem.
Matching polynomial of a graph, 613.

Matchings in a graph: Sets of disjoint
edges, 334, 594, 613, 668.

perfect, 102–103, 107, 120–121, 125, 148,
154, 293–294, 361, 470, 668.

Math. Comp.: Mathematics of Computation
(1960–), a publication of the American
Mathematical Society since 1965;
founded by the National Research
Council of the National Academy
of Sciences under the original title
Mathematical Tables and Other Aids
to Computation (1943–1959).

Mathematicians, 87–88, 132.
Mathews, Edwin Lee (41), 251.
Mathews, Harry, 437.
Matrices of 0s and 1s, 27, 66, 83–84,

98–99, 124, 126, 127, 146, 290–293,
335, 360–361, 365, 667–668; see
also Grid patterns.

Matrix multiplication, 624.
Matroids, 640.
Matsui, Tomomi (), 422.
Mauro, David Whittlesey, 556.
Max-flow min-cut theorem, 22, 536.
Maximal elements of family f (f↑), 240, 246,

281, 299, 337, 341, 351, 545–546.
Maximal independent sets, seeKernels

of a graph.
Maximal inequality, 8–9, 20.
Maximal planar graphs, 550.
Maximé, Oriel Dupin, 130.
Maximum-cost solutions, 158, 491.
Maximum independent sets, 271, 320,

551, 552.
Maximum number of 1s, 290–293,

319, 320, 361.
MAXSAT lower bound, 368.
“Maybe” state, 204.
Mayblox puzzle, 457.
Mayer-Eichberger, Valentin Christian

Johannes Kaspar, 633.
Mazurkiewicz, Antoni Wies�law, 267.
MCC problem: Multiple covering with

colors, vi, 93–95, 123, 144–146, 431,
432, 442, 443, 459–463, 472, 494,
495, 498, 517, 547.

McCall’s, 64, 674.
McColl (= MacColl), Hugh, 591.
McComb, Jared Bruce, 458.
McDiarmid, Colin John Hunter, 10.
McDonald, Gary, 442, 548.
McFarren, Courtney Parsons, 507.
McGregor, William Charles, 191, 552.
graphs, 191–192, 298–299, 318–320, 552.

McGuire, Gary Mathias, 75, 76, 129.
McIlroy, Malcolm Douglas, 401, 402.
Mean, see Expected value.
Mean running time, 304.
Measure theory, 383.
Mebane, Palmer Croasdale, 538.

695

From the Library of Melissa Nuno

ptg999

696 INDEX AND GLOSSARY

Median function (〈xyz〉), x, 24, 193,
320, 363, 389, 545.

Median running times, 283, 304–308, 311.
Median value of a random variable,

14, 27, 393.
Meet of families (F G), 17.
Meeus, Jean, 490, 494, 510.
Megamem (Mμ): One million memory

accesses, 253, 282, 307.
Mehlhorn, Kurt, 396.
Méjean, Henri-Michel, 590.
Mellin, Robert Hjalmar, 87–88.
transforms, 335.

MEM, an array of “cells”, 39–46, 57–58, 250,
252, 259, 308, 339–340, 603–604.

Mem (μ): One 64-bit memory access,
32, 73, 101, 218, 305.

Memo cache, 120–122, 244, 480–481, 597.
Memoization technique, 597.
Memory constraints, historic, 404.
Memoryless property, 608.
Ménage problem, 125, 481.
Menagerie, 300–301.
Mendelsohn, Nathan Saul, triples, 432.
Mengden, Nicolai Alexandrovitch von

(���+)���
 ������� �������)#���	�
 ���), 29.

Mepham, Michael Andrew, 425.
Mercer, Leigh, 485.
Merge networks, 630.
Merging lists, 595, 622.
Merkle, Milan Jovan, 395.
Mertens, Stephan, 235.
Message passing, 274–279, 349–350.
METAFONT, 714.
METAPOST, 714.
Method I, 245.
Method IA, 245, 338.
Method of bounded differences, 10.
Method of Trees, 313.
Methuselah solitaire, 646.
Methuselahs in Life, 203.
mex (minimal excludant) function, 423.
Meyer auf der Heide, Friedhelm, 396.
Mézard, Marc Jean Marcel, 235, 274,

275, 279.
Michael, T. S. (born Todd Scott), 514.
Michel, Bastian, 444.
Midpoint inequalities, 630.
Mijnders, Sid, 577.
Mikusiński, Jan Stefan Geniusz, Cube, 509.
Miller, George Arthur, 514.
Miller, Jeffrey Charles Percy, 474.
Mills, Burton Everett, 314.
Minato, Shin-ichi (), 123, 484.
Minesweeper, 326–327.
Minhash algorithms, 387.
Minimal-clue puzzles, 129, 178–179, 542.
Minimal elements of a family of sets,

537, 540.

Minimal excludant (mex), 423.
Minimally dominant search trees, 105, 150.
Minimally unsatisfiable clauses, 334, 337.
Minimax solutions, 133, 402, 435, 476.
Minimum-cost exact covers, vi, 111–118,

123, 152–154, 491.
Minimum covers, 557.
Minimum cutsets, 536.
Minimum remaining values heuristic,

seeMRV heuristic.
Minimum spanning trees, 669.
Minimum vertex covers, 668.
Minirows of sudoku, see Trios in sudoku.
MiniSAT, 251.
Minkowski, Hermann, 87–88, 397.
inequality, 29.

Minoux, Michel, 478.
Minterms, 363, 376.
Minwise independent permutations, 23.
Mirror images, see Reflection symmetry.
Mitchell, David Geoffrey, 234.
Miters, 305, 366.
Mitsche, Dieter Wilhelm, 235.
Mittag-Leffler, Magnus Gösta (= Gustaf),

87–88.
Mitzenmacher, Michael David, 387, 388, 395.
Mixed metaphors, 260.
Mixed-radix number systems, 632.
Miyamoto, Tetsuya (), 532.
MMIX computer, iv, viii, 342.
Mobile Life paths, 202–203, 322–323.
flipflops, 322.

Möbius, August Ferdinand,
functions, 270.
series, 270, 344, 346–347, 349, 611, 613.
strip, 157.

Mod 3 addition, 298, 363.
Mod 3 parity, 363.
Mod 4 parity, 363.
Mode of a probability distribution, 26.
Model checking, 200–201, 321–325, 363–364.
Model RB, 333.
Modifications of Algorithm 7.2.2.1C and

related algorithms, 126, 127, 132, 133,
138, 183, 422, 442, 445, 542.

Modified full adders, 298, 644.
Modular lattices, 619.
Moivre, Abraham de, 19, 382.
Molinari, Rory Benedict, 536.
Moments of a probability distribution, 4, 29.
Moments of a random variable, 4, 29.
Mondrian, Piet (= Mondriaan, Pieter

Cornelis), 170.
mone (−1), 606.
Moniamonds, 161.
Monien, Burkhard, 579.
Monkey wrench principle, 297, 365.
Monocubes, 82.
Monominoes, 79, 84, 157, 460, 494.

696

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 697

Monotone functions, 347.
Boolean, 5, 321, 380, 414, 427, 533, 645.
computing CNF from DNF, 668.

Monotone Monte Carlo method, 385.
Monotonic clauses, 189, 317–318, 341.
Monotonic paths, 292, 640.
Montanari, Andrea, 279.
Monte Carlo algorithms, vii, 261–267,

342–344.
Monte Carlo estimates, 46–51, 54, 58–59,

113, 133, 445, 447, 450.
Montmort, Pierre Rémond de, 380.
Monus operation (x

.
−y = max{0, x−y}), x,

21–22, 276, 395, 463, 553, 611, 632.
Moore, Edward Forrest, 566.
Moraleda Oliván, Jorge Alfonso, 371.
Morehead, Albert Hodges, 646.
Morel, Henri, 590.
Morgan, Christopher Thomas, 514.
Morgan, John William Miller, 507, 508.
Morgenstern, Detlef, 200.
Morris, Robert, 440.
Morse, Harold Calvin Marston,

constant, 373.
Moser, Leo, 418, 468.
Moser, Robin Alexander, 266, 618.
Moskewicz, Matthew Walter, 316.
Mossel, Elchanan (���� ����), 350.
Motley dissections, 170–173.
Mott-Smith, Geoffrey Arthur, 646.
Motwani, Rajeev (����� �������), 384.
Move codes, 213–215, 218, 328, 329,

339, 572, 574.
Moves, 39.
Movies, 166.
MPR: Mathematical Preliminaries

Redux, ix, 1–29.
MRV heuristic (minimum remaining values),

54, 69, 75, 82, 90, 97, 99, 104–105,
118, 125–127, 145, 149, 150, 154, 155,
419, 422, 437, 470, 481–484.

Mueller, Rolf Karl, 244, 314.
Muir, Thomas, 418.
Müller, Mike, 560.
Mulmuley, Ketan Dattatraya (�"�

�tt�(� �� ��� �), 387.
Multicommodity flows, 354.
Multigraphs, 506, 595.
Multilinear function, 270.
Multimatch©R puzzles, 449, 450, 454.
Multinomial theorem, 397.
Multipartitions into distinct multisets, 146.
Multiple-precision constants, 102,

373, 656–657.
Multiplication of binary numbers, 192–193,

196–198, 298, 320, 357.
Multiplication of traces, 269, 345.
Multiplication tables of a binary operator,

132, 424.
Multiplicatively fair sequences, 19.

Multiplicities of items, seeMCC problem.
Multisets, 28, 129, 131, 146, 187, 578,

588, 614.
Multivalued graph colorings, 190,

283, 551–552.
Multivariate Bernoulli distribution,

14, 18, 20.
Multivariate total positivity, see FKG

inequality.
Munro, James Ian, 409.
Murata, Hiroshi (), 523.
Murray, Rick, 507.
Music, 63, 135.
Mutilated chessboard, 294, 298,

361–362, 650.
Mutual exclusion protocols, 204–208,

299, 323–325.
Mutual information, 24.
Mutzbauer, Otto Adolf, 639.
Mux operation (u? v: w), 265, 286,

336, 357, 583.
Mycielski, Jan, 444.
graphs, 137, 363.

Mysterians, 654.
Mystery text, 62.

N (the number of items), 69, 71, 417–419.
N1 (the number of primary items), 71, 417.
n-cubes, 82, 263, 320, 332, 368, 465.
n.f.: Not falsified, 635–636.
n-letter words of English, viii, 36.
n-ominoes, 79, 129–130, 414.
N pentomino, 80, 486, see S pentomino.
n queen bees, 55, 424.
n-queens problem (dominating queens),

93–94, 144, 668.
n queens problem (independent queens),

31–34, 46–48, 53–55, 70–73, 105, 110,
112–113, 118, 122, 123, 126–128, 145,
150, 152, 209, 299, 355, 424, 646, 668.

n-tone rows, 135.
n-tuples, 55.
Nacin, David Rodriguez, 466.
Nagata, Masaaki (), 123, 484.
Nahil, Julie Ann Baker, ix.
Naked singles and pairs, 75–77, 128,

425, 474, 529.
Names of hexiamonds, 161, 499.
Names of pentominoes, 80, 156, 176.
NAND operation, 244.
NanoBingo, 12–13.
Naphthalene, 162.
Napier, John, Laird of Merchiston, 193, 357.
Natsuhara, Masanori (), 410.
Nauck, Franz Christian, 53.
Nawrotzki, Kurt, 387.
Near truth, 221–223.
Nearest common ancestors, 617, 669.
Necessary assignments, 229, 330.
Negated auxiliary variables, 289.

697

From the Library of Melissa Nuno

ptg999

698 INDEX AND GLOSSARY

Negative binomial distribution,
cumulative, 14.

Negative k-clauses, 341.
Negative literals, 186, 318, 337.
Negatively correlated random variables,

18, 373.
Nelson, Harry Lewis, 139.
Nemhauser, George Lann, 123.
Neo Diabolical Cube, 509.
Nested motley dissections, 173, 521.
Nested parentheses, 55, 496.
Nesting phase of lookahead, 224, 226–227,

329–331.
Netto, Otto Erwin Johannes Eugen, 87–88.
Neumann, Peter, 374.
Neville-Neil, George Vernon, III (=

Vicious, Kode), xvii.
New England, 115, 116, 153, 478.
New York, 116, 153.
Newbie variables, 225.
Newton, Isaac, 374.
method for rootfinding, 580–581.

NEXT(a) (the next arc with the same initial
vertex as a), 62, 414.

Niborski, Rodolfo, 554.
Niemann, John, 511.
Niemelä, Ilkka Niilo Fredrik, 289.
Nieuwenhuis, Robert Lukas Mario, 631.
Nightingale, Peter William, 629.
Niho, Yoji Goff (), 405.
Nikoli puzzles, 74, 529, 532, 535, 539, 542.
Nishino, Masaaki (), 123, 484.
Nitty Gritty puzzle, 454.
Nixon, Dennison, 511.
No-player game, 201.
No-three-in-line problem, 137, 668.
Nobel, Parth Talpur, 399.
Node, 73.
Nodes of a search tree, 31–32, 102–103,

218–219, 253, 308.
Noels, Alain, 566.
Noisy data, 365.
Nonattacking queens, 209, 299, 355, 646.
Nonaveraging sets, 298, 319.
Nonchromatic rectangles, 360–361.
Nonchronological backtracking, see

Backjumping.
Noncommutative variables, 346.
Nonconstructive proofs, 241, 242, 265, 566.
Noncrossing king paths, 136.
Nondeterministic finite-state automata, 359.
Nondeterministic polynomial time, 315.
Nondeterministic processes, 204, 325, 366.
Nongreedy parameter (p), 263, 278,

302, 607–608.
Nonintersecting paths, 354.
Nonisomorphic solutions, 58.
Nonnegative coefficients, 348.
Nonnegative submartingales, 9, 382.

Nonnegatively correlated random
variables, 17.

Nonominoes, 130–131, 160, 164, 165, 429.
Nonprimary items, 128, 550, see also

Secondary items.
Nonsharp preference heuristic, 95, 417,

432, 472, 487, 495, 498.
Nonstraight polyominoes, 156.
NONSUB subroutine, 545.
Nonsubsets f ↗ g, 537.
Nonterminal symbols, 359.
Nontransitive dice, 12.
Normal chains, 642.
Normal deviate, 393.
Normal functions, 643.
Noshita, Kohei (), 123, 502.
Not-all-equal SAT, 549.
Notational conventions, x, 660–665.
C′ � C′′ (resolvent), 238, 336.
C ⊆ C′ (subsumption), 245, 336.
F | l (F given l), 211, 280, 655.
F |L (F given L), 211, 288, 341.
F � C (F implies C), 243, 336, 337.
F �1 ε, 254, 341, 359.
F �1 l, 287–288, 360.
F �k ε, F �k l, 359–360.
G ⊕ H (direct sum), 346, 361.
|l| (a literal’s variable), 186.
±v (v or v̄), 186.
〈xyz〉 (median), x, 24, 193, 320.
x & y (bitwise AND), see AND operation.
x | y (bitwise OR), see OR operation.
x ⊕ y (bitwise XOR), see XOR operation.
x
.
−y (monus), x, 21–22, 276, 395,
463, 553, 611, 632.

x? y: z (if-then-else), 265, 286, 336,
357, 583.

w(α), 241.
w(α � ε), 241.
‖α � C‖, 241.

Notenboom, Thijs, 501.
Novikov, Yakov Andreevich (�������

$��� ��)#����), 254, 316.
Nowakowski, Richard Joseph, 291, 639.
NP-hard and NP-complete problems, 11,

60, 127, 134, 160, 177, 185, 187, 211,
271, 314–315, 318, 326, 335, 365–367,
422, 524, 545, 571, 632, see also
CoNP-complete problems.

NRC Sudoku, see Hypersudoku.
NT (near truth), 221–223, 575.
Nuij, Wilhelmus (= Wim) Antonius

Adrianus, 525.
Null clause (ε), 187, 211, 549, 655.
Null list, representation of, 217, 574.
Null partial assignment, 350.
Null set (∅), 549.
Null string (ε), 268–269, 663.
Nullary clause (ε), 187, 211, 549, 655.
Nullstellensatz, combinatorial, 23.

698

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 699

Number Place puzzles, 74.
Number theory, 194, 198, 321, 556.

O pentomino, 80, 176, 489–490.
O’Beirne, Thomas Hay, 158, 163, 450,

500, 503, 504.
Occurrence threshold of a graph, 344.
Octabytes, 535.
Octagons, 141.
Octahedra, 139, 162, 518.
Octants, 461.
Octominoes, 166.
Odd coordinates, 455.
Odd/even coordinates, see Even/odd

coordinate systems.
Odd-even merge network, 630.
Odd-even transposition sort, 627.
Odd permutations, 582.
Odier, Marc, 454.
Odlyzko, Andrew Michael, 395.
OEIS©R : The On-Line Encyclopedia of

Integer Sequences©R (oeis.org), 422,
423, 455, 469, 504, 516, 556, 647.

Oliveras i Llunell, Albert, 631.
Ollerton, Richard Laurance, 395.
Olson, EvaMarie, 532.
On-the-fly subsumptions, 308, 340.
One-in-three satisfiability, 367.
One-per-clause satisfiability, 367.
One-sided estimates, 16.
One-sided polyforms, 110, 158, 161,

163, 487, 499–502.
Online algorithms, 153–154.
Onnen, Hendrik, Sr., 34.
Open shop scheduling problems, 299,

356–357.
Operations research, 123.
Optimization, 54.
Optimum linear arrangment problem, 669.
Optional stopping principle, 8, 382.
Options, v, 66, 88, 123.
duplicate, 98, 145, 147, 421.
three per item, 127.
without primary items, 126.

OR operation, 193, 194, 197, 622.
bitwise (x | y), 17, 128, 227, 560,
605, 622–623.

Oranges, stacking, 168–169.
Orbits of a permutation group, 292, 641.
Order encoding, 282–285, 298, 304,

354–357, 554, 632, 645.
Order ideals, 386, 427.
Order of a dissection, 171.
Order of a permutation, 295.
Order of primary items, 72, 108, 126, 150.
Ordered options, see Pairwise ordering trick.
Ordered partitions into distinct parts,

180–181.
Ordered ZDDs, 155, 480.
Organ-pipe order, 72, 355, 483.

Organ sounds, 63.
Orgel, Leslie Eleazer, 37.
Oriented cycle detection, 624.
Oriented grids, 62.
Oriented trees, 63, 292.
Orphan patterns in Life, 323.
Orponen, Olli Pekka, 264.
Orthogonal 4×4 matrices, 169.
Orthogonal arrays, 669.
Orthogonal lists, 56.
Orwell, George (= Blair, Eric Arthur), 183.
Oscillators in Life, 203, 322–323.
OSPD4: Official SCRABBLE R© Players

Dictionary, 36, 56, 133, 413.
Österg̊ard, Patric Ralf Johan, 490, 514.
Ouellet, Joséphine née Quart, 440.
Oulipo, 437.
Ourotoruses, 134, 437.
Out-degree of vertex v (d+(v)), 436,

438–439, 529.
Output states, 359.
OVAL array, 250–252, 258–260, 309, 601, 604.
Overfitting, 366.
Overflow in arithmetic, 228, 251, 604.
Overflow of memory, 40, 44.
Owen, Brendan David, 505.
Owen, Mark St. John, 518.
Oxusoff, Laurent, 579.

℘ (power set, the family of all subsets),
379, 537.

℘ (tautology, the always-true clause), 187,
242, 244, 336, 364, 579, 590–592, 622.

P = NP (?), 185.
P0(), 30.
Pm×Pn (king-move graph), 145, 534.
Packed integers, 484.
Packing problems, 125, see Exact

cover problem.
Pairwise independent random variables,

1, 13.
Pairwise ordering trick, 72, 126, 174,

420, 430.
Paley, Raymond Edward Alan Christopher,

24, 389.
Palindromes, 320, 401, 402.
Panagiotou, Konstantinos (,��� �(���

%����������), 585.
Papadimitriou, Christos Harilaos

(,�����������
 ������	 ��������),
261, 604, 605.

Paradoxes, 12, 13, 61, 380.
Parallel multiplication circuits, 196–198, 321.
Parallel processes, 204, 208, 305, 312–313.
Parallel programming, 54.
Parallelepipeds, 82, see Cuboids.
Parallelograms, 140–141, 446.
Parallominoes (parallelogram polyominoes),

155, 160.
Parameters, tuning of, 264–265, 277–278,

308–312, 366.

699

From the Library of Melissa Nuno

http://oeis.org

ptg999

700 INDEX AND GLOSSARY

ParamILS, 309, 576, 650–651.
Parent in a tree, 63.
Parentheses, 55, 496.
Parisi, Giorgio Leonardo Renato, 278.
Parity argument, 400, 408.
Parity number, 373.
Parity of a binary integer, 13.
Parity of cells, 55, 85–86, 156–160, 163,

452, 464, 487, 491–492, 494.
Parity-related clauses, 337–338, 356,

362, 595–596, 654.
Parker, Ernest Tilden, 52.
Parker, George Swinnerton, Brothers,

83, 507.
Parliament, 131.
Partial assignments, 214, 216, 245, 246,

287, 349–350, 360, 574.
Partial backtracking, 572.
Partial fractions, 392.
Partial latin square construction, 335.
Partial orderings, 22, 240, 269, 299,

612, 640.
of dimension ≤ 2, 577.

Partial sums of random variables, 20, 28–29.
Participants, 225, 228, 329.
Partitions, 55, 59.
of a multiset, 146.
of a set, 101, 124, 138, 150, 454, 511.
of an integer, 160.

Partridge puzzle, 92–93, 144.
Patashnik, Oren, 680.
Patching and updating an algorithm, 90.
Patents, 52, 83, 91, 316, 431, 452, 454,

457, 490, 500, 510, 515, 518.
Path detection, 353.
Path dominoes, 143–144.
Path graphs Pn, 268, 344, 617.
Path length of a tree, 160.
Paths, simple, 50, 54, 59.
Patience, see Solitaire games.
Pattern design, 138, 156, 158, 162.
Paturi, Ramamohan (�������
� �� ���), 652.
Paul, Jerome Larson, 189.
Paull, Marvin Cohen, 332.
Pauls, Emil, 399.
PCk hierarchy, 360, 362.
Peaceable queens, 364.
Pearl, Judea (��� �
���), 279.
Pearson, Karl (= Carl), 373.
Pegden, Wesley Alden, 348, 617.
Pegg, Edward Taylor, Jr., 459, 502, 506.
Peierls, Rudolf Ernst, 279.
Peirce, Charles Santiago Sanders,

triangle, 147.
Pell, John, 416.
Pemantle, Robin Alexander, 423.
Pencil-and-paper method, 46–48.
Pendant vertex: A vertex of degree one, 506.
Pentacubes, 82, 166–167, 509.
Pentagons, 139.

Pentangle Puzzles, 510.
Pentiamonds, 161–162, 501.
Pentominoes, 62, 79–82, 106, 110, 118,

130, 139, 151, 152, 155–160, 167,
176, 494, 502, 511.

hypersolid, 515.
names of, 80, 156, 176.
shortest games, 490.
solid, 167.
wallpaper, 501.

Perelman, Grigori Yakovlevich (��#������

.#�+�#�� $�������), 370.

Peres, Yuval (��� ����), 585.
Pérez Giménez, Xavier, 235.
Perfect matchings in a graph, 102–103,

107, 120–121, 125, 148, 154, 293–294,
361, 470, 668.

Perfect n-tone rows, 135.
Perfect Packing puzzle, 514.
Perfectly decomposed rectangles, 172.
Periodic sequences, 57.
Periodic words, 38, 41.
Perjés, Zoltan, 456.
Permanent of a matrix, 367, 615.
Permutation polynomial of a set, 347.
Permutation posets, 577.
Permutations, 27, 34, 55, 103, 107, 124, 135,

137, 140, 148, 170, 289, 543, 629.
of a multiset, 131.
signed, see Signed permutations.
weighted, 347.

Permuting variables and/or complementing
them, see Signed permutations.

Perron, Oskar, 87–88.
Perturbed data, 28.
Pestieau, Jules, 485, 490.
Petamems: Quadrillions of memory

accesses, 121, 582.
Petal Pushers, 435.
Peter-Orth, Christoph, 485.
Petersen, Julius Peter Christian, graph, 145.
Peterson, Gary Lynn, 207, 299, 324, 568.
Petrie, Karen Elizabeth Jefferson, 647.
Phase saving, 251, 259.
Phase transitions, 234–236, 333–334.
Phenalene, 162, 169.
Phenanthrene, 162, 169.
Phi (φ), 12, 121, 127, 330, 331, 344, 370,

451, 615, 656–657.
as source of “random” data, 47.

Phillips, Roger Neil, 459.
Philpott, Wade Edward (born Chester Wade

Edwards), 139, 431, 450.
Phoenix in Life, 562, 571.
Pi (π), 14, 26.
as source of “random” data, 47–48, 50,
57, 60, 74, 78, 116–117, 128, 130,
146, 154, 160, 174–177, 182, 183, 196,
230, 292, 299, 331, 368, 394, 538, 557,
650; see also Pi function.

700

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 701

Pi day puzzle, 60, 439.
Pi function, 286–287, 358.
Picciotto, Henri (= Enrico), 504.
Pidato puzzle, 535.
Pieces, in trace theory, 268–271.
Pieces versus cells, 485.
Pierce, John Franklin, Jr., 123.
Pigeonhole principle, 241.
clauses for, 241–243, 289–290, 297,
337, 360, 365, 550, 629.

Pijanowski, Lech Andrzej, solitaire,
seeDominosa.

Pikhurko, Oleg Bohdan (�!��#��
 /��+
��+)�����), 649.

Pile sums, 335.
Pinch, Ruth, 548.
Pincusians, 317.
Pinter, Ron Yair (���� ���� ���), 523.
Pinwheels, 171–172, 462, 514, 521, 523, 527.
Pipatsrisawat, Thammanit (= Knot)

(���������	
��
�� �������� (= ���)),
251, 626.

Pipe organ, 63.
Pitassi, Toniann, 54.
Pitch class, 135.
Pitman, James William, 375.
Pittel, Boris Gershon (�������
 ��#��

.�#������), 384, 423.
Pixel images, 564; see also Grid patterns,

Tomography.
Plaisted, David Alan, 286.
Planar graphs, 114, 536.
Planar polyspheres, 169.
Plane partitions, 482–483.
Planning, 316.
Playable sounds, 63.
Playing cards, 1, 8, 14, 19, 298, 364, 646.
Pods, 167–168.
Poetic license, 401.
Poetry, 183, 548, 666.
Poincaré, Jules Henri, 87–88, 370.
Pointing pairs, 425.
Points, abstracted, 290.
Poison cards, 646.
Poison list, 44–45, 58, 407.
Poisson, Siméon Denis, 393.
probability distribution, 15, 24, 379, 589.
trials, 379.

Polarities, 187, 251, 260, 571, 601.
Political districting, 131.
Pöllänen, Antti Ensio, 514.
Pólya, György (= George), xiii, 6, 19,

391, 397, 399.
theorem, 648.
urn model, 6–7, 19–20, 382.

Polyaboloes, 163.
Polycrunches, 518.
Polycubes, 82–86, 127, 164–168, 174.
Polyforms, 156, 163, 502.
of polyforms, 158, 162.

Polyhedron, wrapping a, 139, 157, 162, 451.
Polyhexaspheres, 170.
Polyhexes, 162–163, 174, 529.
Polyiamonds, 141, 161–163, 174, 503.
Polyjubes, 515–516.
Polylines, see Polysticks.
Polynomials, 23, 149; see also Chebyshev

polynomials, Reliability polynomials.
in trace theory, 269.

Polyomino sudoku, 78.
Polyominoes, 62, 79, 127, 139, 156–160, 164,

414; see also Pentominoes.
convex, 130.

Polyrhons, 516.
Polyskews, 163–164.
Polyspheres, 168–170.
Polysplatts, 170.
Polysquarerhombuses, see Polyskews.
Polysticks, 163.
Polytans, 503.
Pope, Alexander, 666.
Population, 115–116, 153.
Population in Life, 203.
Portfolio solvers, 317.
Posets, see Partial orderings.
Positive autarkies, 330.
Positive j-clauses, 341.
Positive literals, 186, 318, 330.
Positively correlated random variables,

17, 372.
Postal codes, 78, 114.
Posthoff, Christian, 639.
Postl, Helmut, 171, 173, 501, 521, 527.
Postorder, 226–227, 578.
Postprocessor, 280.
Potts, Charles Anthony, 486.
Povah, Maurice James, 493.
Power series, 377, 395–396.
Practice versus theory, 293, 424.
Preclusion clauses, 283, 355, 550.
Prefix of a string, 473.
Preorder, 226–227, 578.
Preprocessing of clauses, 279–281, 287,

350–352, 366, 633, 635, 642.
Preprocessing of options, 108–111,

113–114, 151–153, 482, 484, 531,
533, 536, 538, 543.

costs, 118.
Preselection phase of lookahead,

224–226, 331.
Presidents of the United States of

America, 136.
Prestwich, Steven David, 628.
Preußer, Thomas Bernd, 34, 398.
Primary items, 71, 88, 93, 127, 495, 545.
Primary variables, 288, 289.
Prime clauses, 358, 634, 637.
Prime implicants of a Boolean function,

5, 378, 427, 533, 645.
Prime numbers, 135, 320, 471, 595, 641.

701

From the Library of Melissa Nuno

ptg999

702 INDEX AND GLOSSARY

Prime square problem, 113–114, 118,
152–153.

Prime strings, 38.
Primitive motley dissections, 173.
Primitive root of a prime, 440.
Princess, 158.
Pringsheim, Alfred Israel, 272, 348.
Prins, Christian, 631.
Priority branching trees, 54.
Prisms, 164–165.
Probabilistic method, 265.
Probability distribution function, 395.
Probability distributions, 148.
Bernoulli, 14, 18, 20.
Beta, 14.
binomial, 14, 24, 377, 392–393.
Cauchy, 26.
cumulative binomial, 14–15, 375, 406.
cumulative negative binomial, 14.
geometric, 21, 24, 392, 608, 626.
joint, 13, 24, 380, 396–397.
multivariate Bernoulli, 14, 18, 20.
Poisson, 15, 24, 379, 589.
Student’s t, 393.
uniform, 1, 13, 16, 22–24, 381, 385,
389–390.

Probability estimates, 3–5, 8–9, 16.
Probability generating functions, 15,

28, 384, 392, 393.
Probability of satisfiability, 231–238.
Probability spaces, 1–2, 27.
prod (m,n), 196–198, 298, 321.
Production rules, 359.
Profile of a search tree, 31–32, 37, 56,

59, 335, 406, 434, 462.
Progress, display of, 73, 214, 329, 339.
Progress saving, 251, see Phase saving.
Projection, 3D to 2D, 166.
Projection of a path, 368.
Projection vectors, 537, 538–540.
Projective plane, 638.
Propagation, kth order, 359–360, 637.
Propagation algorithm, 411.
Propagation completeness (UC1), 360.
Propeller, 502, 517.
Proper ancestors, 348.
Properties: Logical propositions

(relations), 30, 55.
Propp, James Gary, 385, 482, 483.
Proto truth, 221, 226, 329.
Protocol, randomized, 25–26.
Prover–Delayer game, 239–240, 336–337.
PSATO solver, 313.
Pseudo-Boolean constraints, see Threshold

functions.
PT (proto truth), 221, 226, 581.
Pudlák, Pavel, 239.
Puget, Jean-François, 297.
Purdom, Paul Walton, Jr., 214, 216,

315, 335, 590.

Pure cycles, 324.
Pure literals, 213, 215, 216, 218, 228, 244,

314, 319, 330, 336, 572, 579, 591,
620, 623, 632, 633, 639.

Purging unhelpful clauses, 252, 255–259,
308, 316, 341, 342, 352, 366, 368, 599.

threshold for, 258, 309, 311.
purify(p), 90.
Purifying an item, 90, 117, 154, 446,

480, 536.
Putnam, Hilary Whitehall, 193, 216,

314, 684.
Puzzle Square JP, 538.
Puzzles, vi.
design of, vi, 87, 136, 140, 144, 146,
160, 166, 174–183, 367.

fiendishly difficult, 129, 170, 454,
527, 533, 535.

maximally difficult, 129, 179.
Puzzlium Sudoku ABC, 129.
Pyradox puzzle, 517.
Pyramids in trace theory, 271, 346.
Pyramids of polyspheres, 169–170.
Pyramystery puzzle, 517–518.

Q pentomino, 80, 173, 176, 474, 489–490.
q.s.: Asymptotically quite surely, 12, 20,

21, 25, 58, 149, 333, 337, 353, 371,
392, 396, 399, 482, 483.

QDD: A quasi-BDD, 552.
Quad-free matrices, 290–291, 297,

360–361, 638, 648.
Quadrants, 461, 495.
Quadrilles, 431.
Quaintance, Jocelyn Alys, 102.
Quantified Boolean formulas, 244, 338, 412.
Quarterturn symmetry, see 90◦-rotational

symmetry.
Quasi-independent parameters, 470.
Quasi-uniform exact cover problems, 127.
Quasigroups, 432.
Queen bees, 55, 424.
Queen domination problems, 93–94, 144.
Queen graphs, 126, 137, 209, 283–284,

298–299, 304, 355, 364, 365, 461.
Queen moves, 70–73, 93–94, 112–113,

125–127, 137, 145–146, 461, 532.
Queens, see n queens problem.
Quenchable graphs, 363–364, 645.
Questionnaires, 61.
Queues, 404, 407–408.
Quick, Jonathan Horatio, 18, 55–56, 365.
Quilt patterns, 562.
Quimper, Claude-Guy, 636.
Quine, Willard Van Orman, 313, 314.
Quintominal dodecahedra, 451.
Quite sure events, 12, see q.s.

702

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 703

R(G) (Local Lemma bounds), 266,
271–274, 344, 347–349.

R pentomino, 80, 176, 489–490.
R-twist, see L-twist.
Räcke, Harald, 396.
Radio colorings, 320.
Radix-d representation, 41, 357.
Rado, Richard, 555.
Ragaller, Franz, 79.
Raghavan, Prabhakar (������

�����), 384.
RainBones puzzle, 421.
Rainbows, 129, 130, 466.
Ramakrishnan, Kajamalai Gopalaswamy,

199.
raman graphs, 595.
Ramani, Aarthi (���� ���), 296,

645, 648.
Ramanujan Iyengar, Srinivasa (�����

������� ������), graphs, 338;
see also raman graphs.

Ramos, Antonio, 259, 440.
Ramsey, Frank Plumpton, theorem, 265.
rand , 223–224, 230, 234, 299, 331, 366.
Randall, Dana Jill, 483.
Random bits, 2, 3, 5, 9, 13–15, 58, 380, 406.
biased, 196, 605.

Random choices, 196.
Random decision variables, 309–311,

339, 650.
Random domino placement, 131.
Random exact cover problems, 127.
Random graphs, 16, 18, 265.
Random number generators, 385.
Random permutations, 15, 28, 597.
Random sampling, 46.
Random satisfiability problems, 231–238,

275, 335.
2SAT, 235–238, 333.
3SAT, 223–224, 230–235, 243–244, 264,
277–278, 331–337, 606.

kSAT, 233–235, 330, 332.
Random signs, 29.
Random solutions of XCC problems, 155.
Random trials, 452, 460; see also Monte

Carlo estimates.
Random variables, 1–21, 47.
Random walks, 18, 28, 46–51, 59,

261–265, 309, 607.
coalescing, 21.
on r-cycle, 22, 386.

Random words, 333.
Randomization of the input, 126, 366,

432, 574.
Randomized algorithms, 21, 25–26, 149,

261, 304, 313, 622.
Range minimum query problem, 669.
RANGE scores, 258, 309–311, 342, 603.
RAT, see Resolution certifiable clauses.
Ratio of completion, 73.

Rational summation, 26.
Rauzy, Antoine Bertrand, 315, 579.
RC problems, 547.
Reachability in a graph, 183, 353, 473,

537, 540, 669.
Reachable subsets, 62–63.
Ready list, 216.
Real roots of polynomials, 347, 613.
Real truth, 221–223.
Reason, Henry, 459.
Reasons, 246–247, 250, 256, 341, 349, 597.
Rebooting, 206.
Reckhow, Robert Allen, 245.
Recreational mathematics, vi.
Rectangle-free grids, seeQuad-free matrices.
Rectangles into rectangles, 170–173.
Rectangular grids, 175, 177–183.
Recurrence relations, 101–103, 148, 335, 361,

364, 381, 385, 394, 395, 408, 411, 418,
467, 547, 553, 579, 580, 607.

in a Boolean equation, 412.
Recursion versus iteration, 55, 398.
Recursive algorithms, 55, 67, 95–98, 101,

211, 314, 330, 356, 406, 412, 550, 597.
Recycling of clauses, 250, 308.
Redistricting, 131.
Reduced ZDDs, 155.
Reducing one polyform to another, 163,

169, 503, 506.
Reduction of a decomposition, 170–172.
Reduction of clauses, 211, 327; see also

Simplification of clauses.
Redundant clauses, 621.
Redundant clues, removing, 129,

178–179, 542.
Redundant literals, 249, 339–340, 596, 598.
Redundant representations, 355.
Reed, Bruce Alan, 236.
Reflected strings, 152.
Reflected ternary code, 654.
Reflection symmetry, 42, 55, 83, 91, 167,

171, 174, 296, 322, 340, 398, 428–429,
449, 452–454, 495, 498, 520, 529.

about both diagonals, 171, 174, 546.
Refutation chains, 241, 591.
Refutation trees, 336.
Refutations, 238–244, 254, 294, 336; see also

Certificates of unsatisfiability.
Registers, 33, 400–401.
Regular expressions, 358–359, 424.
Regular graphs and multigraphs, 24.
Regular resolution, 239, 336, 595.
Reid, Michael, 487, 509, 526.
Reid Dalmau, Robert John (= Bobby), 460.
Reinforcement messages, 275–277.
Reingold, Edward Martin (
������,

���� �� ��� ����), 54, 525.
Rejection method, 47, 406.
Relabeling, remapping, 137, 138, 449, 452.
Relaxation of constraints, 53, 128, 399.

703

From the Library of Melissa Nuno

ptg999

704 INDEX AND GLOSSARY

Reliability polynomials, 5, 15, 16, 267.
Reluctant doubling, vii, 261, 264–265,

343–344.
Reluctant Fibonacci sequence, 344.
Rémond de Montmort, Pierre, 380.
Removing symmetry, see Symmetry

breaking.
Renamed Horn clauses, 360, 627.
Rényi, Alfréd, 378.
Repeated clauses, 233.
Repeated edges, 506.
Repeated items, 146.
Repeated options, 146.
Replacement principle, 280.
Representation of Boolean functions, 288,

see Encoding into clauses.
Representation of sets, 535.
Representing three states with two bits, 363.
Required items, 88.
Rescaled activity scores, 251.
Resende, seeGuilherme De Carvalho

Resende.
Residue theorem, 26, 393.
Resizing of data structures, 574.
Resolution certifiable clauses, 625.
Resolution chains, 241–243, 336, 337, 591.
Resolution of clauses, 238–249, 254, 285,

313, 314, 328, 351, 549, 579, 588, 620.
implementation of, 351.

Resolution refutations, 238–244, 254,
294, 336; see also Certificates of
unsatisfiability.

extended, 244, 255, 317, 338, 352, 579.
regular, 239, 336, 595.
treelike, 239–240, 336–337.

Resolvable clauses, 348.
Resolvent (C′ � C′′), 238, 314, 336.
Restarting, 264–265, 279, 309, 316.
and flushing literals, 252, 259–261, 308,
316, 341, 342, 353, 598, 610.

Restricted growth strings, 15, 150, 363,
398, 446, 454, 468, 530, 543.

Restricted pigeonhole principle, 242.
Reusing the trail, 259.
Reverse dictionaries, 56.
Reverse of a string, 111, 135, 152.
Reverse plane partitions, 483.
Reverse unit propagation, 255.
Reversible memory technique, 44, 59.
Revolving-door Gray code, 646.
Reynaud, Antoine André Louis, 396.
Reynaud, Gérard, 590.
Rhombic dodecahedra, 516.
Rhomboids, 502.
Rhombuses, 163, 451, 500, 501.
Ricci-Tersenghi, Federico, 278.
Richards, Keith, 185.
Richards, Matthew John, 518.
Rickard, John Robert, 654.

Riekstiņš, Eduards (,�6��������
 -)��#)
$����), 444.

Riesz, Marcell (= Marcel), 87–88.
Right-continuous function, 395.
Right division of traces, 269, 345.
Right factor of a trace, 345.
Right shift, 25.
Right-to-left maxima or minima, 28, 394.
Right trominoes, see Bent trominoes.
Riis, Søren Møller, 294.
Riordan, John Francis, 418.
Ripoff, Robert Iosifovich (,�3��
 ,���#�

���� ���), 191.
Risueño Ferraro, Manuel Maŕıa, 450.
Ritmeester, Peter, 130.
Rivest, Ronald Linn, 430, 497.
clauses R, 188, 213, 217, 239, 254,
318, 328, 334, 366.

clauses R′, 188, 212, 261, 264, 342,
350, 360, 364, 549.

Rivin, Igor (,����
 �+�#� *�+������),
399, 424.

RLINK field, 65–69, 82, 89, 90, 97, 124,
416, 434, 480.

Roberts, Fred Stephen, 320.
Robertson, Aaron Jon, 549.
Robertson, Edward Lowell, III, 409.
Robinson, Gilbert de Beauregard, 639.
Robinson, John Alan, 243, 280, 591.
Rodŕıguez Carbonell, Enric, 631.
Rogers, Douglas George, 497.
Rogers, Leonard James, 29.
Rogers, Samuel, 548.
Rohl, Jeffrey Soden, 123.
Rokicki, Tomas Gerhard, ix, 564.
Roofs, 169.
Rooij, Iris van, 571.
Rook moves, 145–146, 476, 570.
Rookwise connected cells, 136, 354.
Rooms and bounds, 171–172, 394.
Root node, 47.
Rosenbluth, Arianna Wright, 54.
Rosenbluth, Marshall Nicholas, 54.
Rosenthal, Haskell Paul, inequality, 29.
Rosettes, 162, 500.
Ross, Kenneth Andrew, 646.
Ross, Sheldon Mark, 5, 377.
Rotated grid, 160.
Rotating Century Puzzle, see Fool’s Disk.
Rotational symmetry, see 60◦-rotational

symmetry, 90◦-rotational symmetry,
120◦-rotational symmetry,
180◦-rotational symmetry.

Rote, Günter (= Rothe, Günther Alfred
Heinrich), 652.

Rotors in Life, 322.
Rounding errors, 476.
Rounds of preprocessing, 152.
Roussel, Olivier Michel Joseph, 316, 636.
Roussel, Yves, 454.
Routing, disjoint, 354.

704

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 705

Row and column sums, 22, 335, 515.
Rows as “options”, 66, 123.
Rowwise ordering, 482.
Roy, Amitabha (��
��� ���), 297.
Royal Aquarium Thirteen Puzzle, 60.
Royalties, use of, 63.
Royle, Gordon Fortune, 75.
RT (real truth), 221–223, 227.
Ruiter, Johan de, 60, 183, 425, 544.
Ruler doubling, 344.
Ruler function (ρn), x, 126, 344, 532, 609.
Ruler of Fibonaccis, 610.
Runge, Carl David Tolmé, 87–88.
Running times, 73, 98, 101, 273–274.
comparison of, 218–219, 223, 253,
281–284, 289–291, 294, 296, 302–312,
366, 368, 582, 601, 628, 645, 654.

estimates of, 46–49, 54, 58–59, 113,
133, 445, 447, 450.

mean versus median, 304.
worst case, 28, 328, 330, 338.

Runs of 1s, 210, 327, 359.
Runs of a permutation, 381.
Russell, Ed (“Red Ed”), 426, 444.

S1(y1, . . . , yp), 189–190, 584.
Sk(m,n), 234–238.
Sk,n, 233–235, 332, 333.
S≥m (a symmetric threshold function), 16.
S≤r(x1, . . . , xn) and S≥r(x1, . . . , xn), 192,

see Cardinality constraints.
s-chains, 236–237, 333.
S pentomino, 80, 176, 489–490.
s-snares, 237, 333.
Sachs, Horst, 444.
Saddle point method, 148, 590.
Safe Combination Puzzle, see Fool’s Disk.
Sahni, Sartaj Kumar (��"�� �� ���

��)��), 632.
Säıs, Lakhdar (���� �����, 2�� Ǳ3��),

600, 653.
Sakallah, Karem Ahmad (4�5� ��	
 6�7),

296, 316, 633, 645, 648.
Salhi, Yakoub (8��9 -�*��), 653.
Salvagnin, Domenico, 422.
Sample variance, 50.
Sampling with and without replacement,

26–27, 233–234, 316, 424, 473, 590.
Samson, Edward Walter, 244, 314.
Samuels, Stephen Mitchell, 15, 375.
Sands, George William (= Bill), 525.
SAT: The satisfiability problem, vi–vii, 187.
SAT solvers, viii, 150, 185, 314–317, 405–406,

427, 466, 488, 495, 513, 538.
SATexamples.tgz, viii, 302.
Satisfiability-preserving transformations,

291–297.

Satisfiability problem, 185–368, 667.
history, 216, 243–244, 289, 313–317.
Horn clauses, 667.
thresholds for, 234–238, 275, 332–333, 585.

Satisfiable formulas, 185.
variability in performance, 219,
304–305, 312, 651.

Satisfying assignments, 185, 214, 327–328,
350, 578, 583.

Saturating addition and subtraction,
x, 21–22.

Saturating ternary addition, 403.
SATzilla solver, 316–317.
Sauer, Norbert Werner, 394.
Savage, Richard Preston, Jr., 370.
Save the sheep, 175.
Say Red, 382.
Schaefer, Thomas Jerome, 652.
Scheideler, Christian, 396.
Schensted, Craige Eugene (= Ea Ea), 639.
Scherer, Karl, 520.
Scherphuis, Berend Jan Jakob (= Jaap),

458.
Schlipf, John Stewart, 637.
Schmitt, John Roger, 649.
Schneider, Wolfgang, 517.
Schoenberg, Arnold Franz Walter, 135.
Scholtz, Robert Arno, 404.
Schöning, Uwe, 262.
Schossow, Frederick Alvin, 52.
Schrag, Robert Carl, 316.
Schröder, Friedrich Wilhelm Karl Ernst, 432.
Schroeppel, Richard Crabtree, 373, 561.
Schubert, Dirk Wolfram, 422.
Schulte-Geers, Ernst Franz Fred, ix,

13, 375, 383.
Schumacher, Heinrich Christian, 53, 398.
Schwartz, Benjamin Lover, 164, 508.
Schwartz, Eleanor Louise, 502.
Schwarz, Karl Hermann Amandus,

inequality, 390.
Schwarzkopf, Bernd, 646.
Scott, Alexander David, 588, 615, 616.
Scott, Allan Edward Jolicoeur, 571.
Scott, Dana Stewart, 485.
Scott, Sidney Harbron, 555.
Scoville, Richard Arthur, 346.
SCRABBLE

©R game, 152.
Scrutchin, Thomas, 500.
Search rearrangement, seeDynamic

ordering.
Search trees, 31, 32, 35, 37–39, 46–48, 52,

54, 73, 98–100, 104–107, 126, 147,
212–213, 216–218, 239, 308, 336,
399, 406, 407, 411, 434.

direct sum of (T ⊕ T ′), 105, 149–150.
estimating the size, 48–49, 58–59.
expected size, 335–336.
optimum, 108, 328.

Seats at a circular table, 125, 154, 471.

705

From the Library of Melissa Nuno

ptg999

706 INDEX AND GLOSSARY

Second death, 419, 490.
Second moment principle, 4–5, 16, 24,

238, 377, 585, 586.
Secondary items, 70–71, 77, 81, 88, 93,

94, 107, 125, 126, 150, 151, 416–417,
428, 467, 481, 485, 486, 489, 494,
495, 497, 508, 545.

list of active, 417, 419.
Sedgewick, Robert, 418, 497.
Seed of a hitori puzzle, 182, 547.
Seedless hitori puzzles, 183.
Seitz, Simo Sakari, 264.
Self-avoiding walks, 50, 54, 59, 60.
Self-dual futoshiki patterns, 530.
Self-dual packing, 514.
Self-equivalent sudoku solutions, 111.
Self-reference, 60, 61, 706.
Self-subsumption, 280, 351, 352, 621.
Self-supporting Soma structures, 164.
Self-synchronizing block codes, 37.
Selfridge, John Lewis, 691.
Selman, Bart, 234, 263, 316.
Semi-queens, 399.
Semicrosses, 514.
Semidistance, 422, 506.
Semifactorial (n!!), 29.
Semimodular lattices, 619–620.
Semiperimeter, 173.
Semisymmetric quasigroups, 432.
Sentinel values, 623.
Sequential allocation, 58.
Sequential consistency, 208.
Sequential lists, 39–43, 220–221, 328, 535.
Sequents, 243.
Serial correlation coefficients, 327.
Set covers, 93, 153, 443.
Set partitioning, v, see Exact cover problem.
Set partitions, 55, 101, 124, 138, 150, 374,

376, 454, 468, 511, 584.
Set splitting, see Not-all-equal SAT.
Sets, represented as integers, 379.
Sex, 501.
SGB, see Stanford GraphBase.
Shadows of paths, 368.
Shakespeare (= Shakspere), William,

183, 673.
Shallit, Jeffrey Outlaw, 423.
Shapiro, Louis Welles, 497.
Shared resource, 25–26.
Sharp preference heuristic, 106, 125,

440, 441.
Sharp thresholds, 235–236, 333.
Sharp turns, 180.
Shattered rows, 27.
Shearer, James Bergheim, 266, 271, 344.
Sheep, 175.
Sheeran, Mary, 567.
Shephard, Geoffrey Colin, 485, 488.
Shidoku, 129.
Shifted sequences, 25, 391.

Shindo, Yoshiya (), 509.
Shinozaki, Takahiro (), 388.
Shlyakhter, Ilya Alexander (7�'���#

���' �������)#���), 648.
Shmoys, David Bernard, 631.
Shor, Peter Williston, 482.
Short floating point number, 472.
Shortest paths in a graph, 626, 668.
dynamic, 59.

Shortz, William Frederic, 435.
Shuffles, 1.
SIAM: The Society for Industrial and

Applied Mathematics, 568.
Sicherman, George Leprechaun, ix, 162, 488,

493, 506, 509, 515, 518, 548.
SICOMP: SIAM Journal on Computing,

published by the Society for Industrial
and Applied Mathematics since 1972.

Sideways sum (νx): Sum of binary digits, x,
13, 25, 127, 134, 298, 327, 363, 379, 410,
424, 481, 559, 584, 607, 609, 643.

second order (ν(2)x), 327.
Sifting, 583, 584.
Siftup in a heap, 117, 598.
Signature of a clause, 256–257, 342.
Signature of a literal, 622.
Signature of a loop, 537, 539–540.
Signature of a subproblem, 120, 154, 484.
Signature of a trie node, 400.
Signed mappings, 364–365.
Signed permutations, 188, 295, 362, 528.
involutions, 296–297, 364, 641–642.

Sillke, Torsten Jürgen Georg, 167,
511, 516, 526.

Silva, seeMarques da Silva.
Silver, Stephen Andrew, 322, 564.
Simkin, Menahem Michael

(������ ��	�� ���), 55.
Simmons, Gustavus James, 556.
Simon, Laurent Dominique, 256, 316.
Simple cycles, enumerating, 537.
Simple paths, 50, 54, 59, 177, 207–208,

324, 534.
simplex graphs, 141–143, 155, 169,

320, 483, 516.
Simplification of clauses, 249, 339, 596; see

also Preprocessing of clauses.
Sims, Charles Coffin, tables, 647.
Simultaneous read/write, 325.
Simultaneous write/write, 325.
Sinclair, Alistair, 264, 343, 620.
Singh, Satnam, 567.
Single lookahead unit resolution, 289, 360.
Single-stuck-at faults, 194–198, 298,

320–321.
Singleton, Colin Raymond John, 144.
Singly linked lists, 123.
Singly symmetric queen patterns, 420–421.

706

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 707

Sink: A vertex with no successor, 155,
271, 473, 488, 578.

components, 292–294.
Sinz, Carsten Michael, 192, 301, 302,

319, 358, 553, 644.
Sketches, 23.
Skew Ferrers boards, 155, 160.
Skew tetromino, 82.
Skew Young tableaux, 160.
Skewed rectangle, 164.
Skip Two solitaire, 646.
Skjøde Skjern, 508.
Skor-Mor Corporation, 454.
Slack, 46, 407.
in trace theory, 272, 274, 349, 615.

SLACK field, 97–98, 145.
Slack turns, 180.
Slack variables, 71, 478.
Slim polyominoes, 160.
Slisenko (= Slissenko), Anatol Olesievitch

(&�������
 ������� /�������), 243.
Slitherlink, 174, 177–179.
Sloane, Neil James Alexander, 127, 423, 469.
Slocum, Gerald Kenneth (= Jerry), 410.
Slothouber, Gerrit Jan, 84.
SLS: Stochastic local search, 261.
SLUR algorithm, 289, 360.
Sly, Allan Murray, 235.
Small polyominoes, 160.
Smart, Nigel Paul, 450.
Smile, ix, 165, 413, 535, 571.
Smiley, Dan, 507.
Smith, Barbara Mary, 647.
Smith, Cedric Austen Bardell, 679, 683.
Smoothed analysis of algorithms, 28.
Snake dance, 322.
Snake-in-the-box cycles, 146, 161, 465.
Snake-in-the-box paths, 145.
Snakes, 236–238, 333.
Snares, 236–238, 333.
Snark graphs, 253, 331, 337, 341.
Snevily, Hunter Saint Clair, 189.
Snyder, Thomas Marshall, 78, 440.
Social distancing, 159.
Socrates, son of Sophroniscus of

Alopece (-�.����	 -�������.��
������./���), 313.

SODA: Proceedings of the ACM–SIAM
Symposia on Discrete Algorithms,
inaugurated in 1990.

Soduko, see Sudoku.
Soft clauses, 352.
Sohler, Christian, 396.
Sokal, Alan David, 615, 616.
Solid bent trominoes, 509.
Solid pentominoes, 167.
Solitaire games, 131, 364, 646.
Solutions, number of, 232, 583.
Soma cube, 82–83, 85–86, 164–166,

485, 508, 517.

Somap, 164.
Somenzi, Fabio, 600.
Somos, Michael, 469.
Sörensson, Niklas Kristofer, 251, 339,

567, 632.
Sorkin, Gregory Bret, 235.
Sorting, 434, 479, 484, 530.
Sorting networks, 299, 321, 567, 627, 630.
Source: A vertex with no predecessor,

155, 271, 488, 616.
Spacer nodes, 68, 151, 417, 434, 474,

475, 479.
Spaceships in Life, 323, 565.
Spanning trees, 62, 545, 645, 654, 669.
Sparse binary vectors, 25.
Sparse encoding, seeDirect encoding.
Sparse matrices, 66.
Sparse-set representation, 41, 575.
Speckenmeyer, Ewald, 315, 579.
Speedy Schizophrenia, 59.
Spence, Ivor Thomas Arthur, 654.
Spencer, Joel Harold, 265, 266, 618.
Sperner, Emanuel, k-families, 640.
Spiegelthal, Edwin Simeon, 413.
Spielman, Daniel Alan, 28.
Spin of a skewed square, 505.
Spiral order, 570.
Spitzer, Frank Ludvig, 28.
Spots Puzzle, 510.
Sprague, Thomas Bond, 33, 34, 55.
Square Dissection puzzle, 170.
Square of primes, 113–114, 118, 152–153.
Square tetracubes, 84, 510.
Squares (numbers of the form n2), 92.
Squarish triangles, 501.
Squiggly sudoku, 78.
St. Petersburg paradox, 380.
Stable extensions, 438.
Stable labeling of digraphs, 410.
Stable Life configurations, 203, 561.
Stable partial assignments, 349–350.
Stable sorting, 484.
Stacks, 44, 151, 221–223, 227, 404, 529, 576.
Stacking the pieces, 268–269.
STACS: Symposium on Theoretical

Aspects of Computer Science,
inaugurated in 1984.

Stadje, Gert Wolfgang, 383.
Staircase polygons, 155, 160.
St̊almarck, Gunnar Martin Natanael, 240,

316, 337, 567, 596, 602.
Stamm-Wilbrandt, Hermann, 315.
STAMP(l) field, 622.
Stamping (time stamps), 44–47, 58,

221–222, 248, 250, 329, 339, 472,
575, 600, 622–624.

Standard deviation: Square root of variance,
27, 48, 50, 58, 232, 392, 604.

Stanford Artificial Intelligence Laboratory,
450.

707

From the Library of Melissa Nuno

ptg999

708 INDEX AND GLOSSARY

Stanford GraphBase, iv, viii, 36, 94,
141–142, 196, 197, 310, 578, 595.

format for digraphs and graphs, 62, 413.
Stanford InfoLab, ix.
Stanford University, 646.
Stanley, Richard Peter, 483, 639.
Stappers, Filip Jan Jos, ix, 426.
Starfish graphs, 613.
Starr, Daniel Victor, 440.
Starvation, 206–208, 299, 324, 325.
Statistical mechanics, 274.
Statistics, 50.
Stators in Life, 322.
Stead, Walter, 159, 501.
Stege, Ulrike, 571.
Stein, Clifford Seth, 631.
Stein, Sherman Kopald, 432, 514.
Steinbach, Heinz Bernd, 639.
Steiner, Jacob,
tree packing, 628.
triple systems, 290, 432, 638.

Steinhaus, W�ladys�law Hugo Dyonizy, 509.
Stellated polyhedra, 451.
Stern, Moritz Abraham, 87–88.
Stickel, Mark Edward, 316.
Sticking values, 251, see Phase saving.
Stieltjes, Thomas Jan, 87–88.
Still Life, 203, 322, 564.
Stirling, James,
approximation, 585, 604.
cycle numbers, 58.
subset numbers, 138, 234, 333, 423,
424, 468, 584, 590.

Stirzaker, David Robert, 377.
STOC: Proceedings of the ACM

Symposia on Theory of Computing,
inaugurated in 1969.

Stochastic local search, 261.
Stong, Richard Andrew, 440.
Stopping rules, 7, 8, 19–20.
Stopping time, 232–234, 332.
Stork, David Geoffrey, 371.
Strahler, Arthur Newell, numbers, 336.
Straight n-ominoes, 428, 430.
Straight tetracubes, 510.
Straight trominoes, 79, 84, 161, 170, 484.
Strassen, Volker, 387.
Strengthening a clause, 280, 340, 623–624.
Stř́ıbrná, Jitka, 588.
Strichman, Ofer (��	���� ����), 567.
Strict exact cover problems, 98, 99, 147.
Strictly distinct literals, 186–187, 236, 349.
Strictly reduced patterns, 170, 523.
Strings generalized to traces, 267.
Strong clues, 174–175.
Strong components: Strongly connected

components, 225–226, 236–237, 292,
315, 436, 578, 579, 581, 585, 627.

Strong exact coverings, 108.
Strong exponential time hypothesis, 367.

Strong product of graphs (G×H), 145, 318.
Strong solutions, 151, 157.
Strong symmetry, 138–139.
Strongly balanced sequences, 363.
Strongly three-colorable, 157, 489, 493, 497.
Stross, Charles David George, xvii.
Struyk, Adrian, 501.
Stuck-at faults, single, 194–198, 298,

320–321.
Stuckey, Peter James, 633.
Student (= William Sealy Gosset),

t-distribution, 393.
Students, 411.
Stützle, Thomas Günter, 309.
Su, Francis Edward (), 184.
Subadditive law, 11, 243.
Subcubes, 332.
Subcuboids, 173.
Subforests, 226.
Subgraph isomorphism, see Embedded

graphs.
Subgroups, 528.
Subinterval constraints, 554.
Sublevel sets (It), 395.
Submartingales, 8–9, 20.
Submatrices, 290–293, 361.
Submodular set functions, 379.
Subsequence of a martingale, 18.
Subset sum problem, 631–632.
Substitution, 621.
Substrings, 57.
Subsumption of clauses, 245, 280, 308, 336,

339, 340, 350–352, 365, 633.
implementation, 351, 623.
on-the-fly, 308, 340.

Subtraction, encoding of, 284.
Subtrees, 48, 54.
Sudoku, vi, 74–79, 102, 111, 128–130,

136–137, 150, 154, 174, 367, 418,
424, 474.

setup program, 425.
Sullivan, Francis Edward, 548.
Summation, rational, 26.
Summation by parts, 232.
Summers, Jason Edward, 564.
Sun, Nike (), 235.
Super Dom puzzle, 452.
Super Heads & Tails puzzle, 452.
Superdips, 403–404.
Superdominoes, 91.
Supermartingales, 8, 385.
Superpolynomially small, 12, 385.
Supertiles, 445, 448, 488.
Support clauses, 283, 298, 355.
Supported sets, 17–18.
Surprise, 178.
Survey propagation, 235, 274–279,

349–350, 577.
SWAC computer, 34.

708

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 709

Swaminathan, Ramasubramanian (= Ram)
Pattu (���������� ��
���!�"�), 637.

Swapping to the front, 575, 606.
Swastika, 535.
Sweep of a matrix, 292–293, 361.
Swift, Howard Raymond, 452.
Swoop of a matrix problem, 293.
Syllogisms, 313.
Sylvester, James Joseph, 87–88, 374.
Symeater in Life, 564.
Symmetric Boolean functions, 16, 363,

571, 583, 634; see also Cardinality
constraints.

S≤1, see At-most-one constraint.
S1, 189–190, 584.
S≥1, see At-least-one constraint.
Sr , 319, 363, 620.

Symmetric threshold functions, see
Cardinality constraints.

Symmetrical clauses, 188, 289–290, 340.
Symmetrical clue placement, 178.
Symmetrical solutions, 322, 367, 638.
Symmetries of Boolean functions, 362.
Symmetrization of a random variable, 29.
Symmetry breaking (removal), 36, 42,

58, 70, 72, 81, 83, 86, 106, 126, 137,
138, 140, 144, 156, 157, 167, 171,
174, 189, 289–298, 322, 360–365, 398,
402, 428, 443, 445, 447, 449, 450,
458, 460, 463, 465, 482, 485, 487,
488, 491, 494, 507, 511, 517, 519, 528,
542, 546, 551, 552, 554–556, 602, 631,
645–647, 649, 652–654.

in graph coloring, 283–284, 298,
355, 363, 551.

Symmetry from asymmetry, 203, 565.
Symmetry types, 174, 528.
Synthesis of Boolean functions, 321,

362–363, 558.
Szabó, Sándor, 514.
Szabó, Tibor András, 588.
Szegedy, Márió, 274, 345, 619.
Szegő, Gábor, xiii.
Szeider, Stefan Hans, 588, 648.
Szemerédi, Endre, 243.
Szpankowski, Wojciech, 589.

t-ary ballot numbers, 383.
t-distribution, 393.
T-grid, 163.
t-snakes, 237, 238, 333.
Tμ: One teramem (one trillion memory

accesses), 81, 294, 305, 310–311,
629, 654.

Tableaux, 160, 639.
Tables of numerical quantities, 656–657.
Bell numbers (n), 101.
Bernoulli numbers (Bn), 658.

Fibonacci numbers (Fn), 658.
Gould numbers (̂n), 101, 147.
Harmonic numbers (Hn), 658–659.
kCNF function counts, 584.
Queen bee numbers (H(n)), 399.
Queen numbers (Qn), 33, 420.
van der Waerden numbers (W (j, k)), 189.

Taga, Akiko (), 628, 631.
Tagged vertices, 413–414.
Tail inequalities, 4, 8–11, 15, 20, 21,

27, 391, 392, 406.
Tail of a set partition, 101–102, 148, 468.
Tait, Peter Guthrie, 418.
Tajima, Hiroshi (), 284.
Tak, Peter van der, 259.
Takaki, Kazuya (), 588.
“Take account”, 221, 227, 229–230, 581, 599.
Takei, Yoshinori (), 388.
Takenaka, Sadao (), 518.
Takizawa, Kiyoshi (), 516.
Tamura, Naoyuki (), 284, 355,

628, 631, 632.
Tangrams, 503.
Tanjo, Tomoya (), 632.
Tantalizer, see Instant Insanity.
Tantau, Till, 396.
TAOCP: The Art of Computer

Programming, iv, vi, vii, xvii,
28, 299, 353.

Tape records, 216.

Tardos, Éva, 392.
Tardos, Gábor, 266, 588, 618.
Tarjan, Robert Endre, 225, 226, 545,

578, 581.
Tarnished wires, 197, 557.
Tatami tilings, 157, 171–172, 299, 327,

432, 488, 497, 520.
Tau function, 331.
Taub, Mark Lance, ix.
TAUT: The tautology problem, 187,

313, 314.
Tautological clause (℘), 187, 242, 244, 336,

364, 579, 590–592, 622.
Taxes, 118, 153.
Taylor, Brook, formula, 20.
Tee tetromino, 82.
Teng, Shang-Hua (), 28.
Tensors, 326, 335, 456.
Teramem (Tμ): One trillion memory

accesses, 36–37, 224, 290, 291, 294,
305, 581, 582, 650.

Ternary clauses, 187–190, 220, 302, 315,
367; see also 3SAT problem.

Ternary commafree codes, 38–39, 41, 406.
Ternary constraints, 134.
Ternary numbers, 284, 325, 363.
Ternary operations, 193, 320.
Terpai, Tamás, 389.
Territory sets, 268, 345, 347.
Tessellations, 502.

709

From the Library of Melissa Nuno

ptg999

710 INDEX AND GLOSSARY

Test cases for SAT, 297–308.
capsule summaries, 298–299.

Test patterns, see Fault testing.
Tetra puzzle, 518.
Tetracubes, 82, 166.
Tetrad tiles, 91, 138.
Tetrahedra, 143, 169, 516.
Tetrahexes, 141, 162.
Tetraspheres, 169–170.
Tetrasticks, 163.
Tetriamonds, 161.
Tetris©R game, 79, 268.
Tetrominoes, 79, 82, 156–159, 505.
names of, 156.

TEX, 714.
Theobald, Gavin Alexander, 554.
Theory versus practice, 293, 424.
Thoen, Adrianus Nicolaas Joseph, 129,

425, 427, 495, 501.
Thompson, Joseph Mark, 78.
Thomson, William, seeKelvin.
Three-colorable, 157, 489, 493, 497, see

also Flower snarks.
Three-connected, 523.
Three dimensions projected to two, 166.
Threshold for costs, 117–118, 153.
Threshold for new color, 446.
Threshold for progress reports, 73.
Threshold functions, 284–285, 359.
Threshold of satisfiability, 234–238,

275, 332–333, 585.
Threshold parameter Θ, 310, 577, 650.
Thue, Axel, constant, 373.
Thurley, Marc, 626.
Thurston, Edwin Lajette, 454.
Tie-breakers, 258, 603.
Tiling a floor, 299, 322, 327, 563.
Tiling the plane, 138, 140–141, 162,

322, 448, 488.
Tilings, see Exact cover problem.
by dominoes, 119, 155, 294, 298, 299,
327, 361, 362.

Time stamps, see Stamping.
Timeouts, 304.
Timmermans, Eduard Alexander (=

Edo), 496.
TIMP tables, 220–224, 227, 229, 328–329.
TIP(a) (final vertex of arc a), 62, 414.
Tiskin, Alexander Vladimirovich (8�����

�������)# ���)���#���), 514.
To-do stack, 623.
Tolstoy, Lev Nikolayevich (8������
 "���

���������	�), 183.
Tomographically balanced matrices, 325.
Tomography, 208–210, 299, 325–327,

351, 649.
TOP, 67–69, 88–90, 120, 125, 127,

474–475, 481.
Top-down algorithms, 616.
Topological sortings, 269, 416, 612, 669.

Torbijn, Pieter Johannes, 159, 465, 494.
Torczon, Linda Marie, 41.
Toroidal tilings, 138, 454.
Torto puzzles, 136.
Toruses, x, 55, 134, 140, 318, 322,

445, 488, 564.
3D, 167–168, 513.
generalized, 488.

Tot tibi . . . , 53, 183.
Total expectation, law of, 3, 15, 28.
Total variance, law of, 28.
Totally symmetric plane partitions, 482.
Totally symmetric quasigroups, 432.
Totally uncorrelated sequences, 382.
Totient function ϕ(n), 439–440, 663.
Touchard, Jacques, 418.
Touched clauses, 228.
Touched variables, 623.
Tovey, Craig Aaron, 334, 587.
Tower of Babel solitaire, 646.
Tower of London solitaire, 646.
Towers, 167.
Trace of a matrix: The sum of its diagonal

elements, 292, 582.
Traces (generalized strings), 267–274,

345–346, 616, 618.
Trademarks, 79.
Tradeoffs, 121, 309–310.
Trading tails, 390, 396, 469, 590.
Trail (a basic data structure for Algorithm

7.2.2.2C), 246–249, 252, 256, 308,
350, 600, 602.

reusing, 259.
Training sets, 199–200, 299, 309–311,

317, 321, 366, 650.
Transcendental numbers, 373.
Transitions between states, 200–208,

359, 566, 582.
Transitive law, 240, 592.
Transposition symmetry, 113, 137,

474, 530, 531.
Traub, Joseph Frederick, 406.
Traveling Salesrep Problem (TSP), 669.
Tree-based lookahead, see Lookahead forest.
Tree function, 594.
Tree insertion, 522.
Tree-ordered graphs, 347–348.
Treelike resolution, 239–240, 336–337.
Treengeling solver, 305.
Trees as parallominoes, 160.
Trémaux, Charles Pierre, 53.
Triacontahedron, 451.
Triagonal neighbors, 518.
Triamonds, 161.
Triangle-free graphs, 137, 351.
Triangles (3-cliques), 16, 351, 602, 628.
Triangular grids, 141–142, 163, 180, 320.
coordinates for, 138–139, 163.

Triangular masyu, 180.
Triaxial symmetry, 528.

710

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 711

Tribonacci numbers, 580.
Trick shapes, 164.
Tricubes, 82, 166.
Tries, 36–37, 56, 400, 476.
compressed, 401–402.

Trifolia©R puzzle, 449.
Triggers, 230, 310.
Trihexaspheres, 518.
Trihexes, 169.
Trioker puzzles, 454.
Triominoes, 139.
Trios in sudoku, 129.
Triplication, 159.
Triply linked trees, 424, 545.
Tripods, 167–168.
Trispheres, 169–170.
Trivalent graphs, 331, 338, 595.
Trivial clauses, 308–311, 340, 600, 603.
Trivially satisfiable clauses, 187.
Trominoes, 79, 158, 169, 170, 493.
Truemper, Klaus, 637.
Truncated octahedron, 170.
Truncation errors, 113, 476.
Truszczyński, Miros�law (= Mirek)

Janusz, 580.
Truth, degrees of, 221–223, 226–227,

229–230, 580.
Truth tables, 313–314, 363, 558, 584, 641.
Trybu�la, Stanis�law Czes�law, 371.
Tseytin, Gregory Samuelovich (9�����

.#�+�#�� &��������), 193,
243–244, 255, 317, 336, 338, 352,
362, 579, 595, 654.

encodings, 193, 201, 285–286, 320,
357, 559.

encodings, half of, 556, 632.
Tsimelzon, Mark Boris, 318.
Tugemann, Bastian, 76.
Tuning of parameters, 308–312, 317, 366.
Tuples, 55.
Turán, Pál (= Paul), 554.
Turton, William Harry, 364.
Tweaking, 96–97.
Twelve-tone rows, 135.
Twenty Questions, 61.
Twice Dice puzzle, 510.
Twin tree structure, 172.
Twist tetracubes, 82.
Two-factor, induced, 178.
Two-layer pieces, 160–161.
Two-letter block codes, 57.
Two-level circuit minimization, 621.
Two stacks, 535.
Tyburec, Marek, 446.

UCk hierarchy, 360, 637.
UCLA: The University of California at

Los Angeles, 34.
UIP: Unique implication point, 316, 597.

ULINK field, 67–69, 88–90, 95–97, 109–110,
120, 433–434, 474–475, 481.

Unary clauses, see Unit clauses.
Unary constraints, 134.
Unary representation (= order encoding),

282–285, 298, 304, 354–357, 554,
632, 645.

Uncommitting an item in an option,
90, 120, 446.

Uncorrelated sequences, 382.
Uncovering an item, 69, 90, 117, 120.
Undeletion, 65–66, 124.
Undirected graphs versus directed

graphs, 63, 667.
UNDO stack, 44.
Undoing, 32–33, 35, 43–44, 58, 65, 212–215,

221–223, 279–280, 327–329, 572,
576, 581–582.

Unhiding an option, 69, 90, 117, 120,
154, 481.

Uniform deviate: A random real number
that is uniformly distributed
between 0 and 1.

Uniform distribution, 1, 13, 16, 22–24, 28,
343, 381, 385, 389–390.

Uniform exact cover problems, 118, 127.
Uniform probing, 387.
Uniform sampling error, 27.
Uniformly random numbers, 406.
Union-find algorithm, 539.
Union inequality, 14.
Unique implication points, 316, 597.
Unique solutions, 59, 75, 85, 128, 130–132,

140, 144, 146, 157, 160, 164, 173–183,
413, 490–491, 502, 513, 514, 517,
519, 522, 535, 640.

and NP, 127.
Uniquely satisfiable clauses, 232, 583.
Unit clauses (= unary clauses), 187, 190,

193, 197, 205, 207, 214, 215, 217, 219,
220, 250, 254, 314, 328, 335, 341, 405,
556, 569, 574, 602, 653.

Unit conditioning, 211, 280, 350, 623, 625.
Unit propagation (�1), 215–218, 220, 246,

249, 252, 254–255, 277, 281–283,
287–288, 316–317, 339, 341, 349, 355,
358, 600, 633, 636, 640.

generalized to �k, 359.
United States Jigsaw Sudoku, 78.
United States of America graph, 114–116,

118, 153, 320.
Universal cycles, 437, 670.
Universality of Life, 201.
University of California, 34.
University of Dresden, 34.
University of Illinois, 34.
University of Tennessee, 34.
UNIX-like convention, 484.

711

From the Library of Melissa Nuno

ptg999

712 INDEX AND GLOSSARY

Unlabeled set partitions, 138.
Unnecessary branches, 239, 591.
Unordered sequential lists, 39.
Unordered sets, 404.
Unpurifying an item, 90, 117, 446, 480, 536.
Unsatisfiable core, 549.
Unsatisfiable formulas, 185.
implications of, 288, 359–360.

Unsolvable problems, 314.
Unsymmetrical queen patterns, 126.
Untweaking, 96–98.
Updates, 101–103, 147–149, 434.
Upfal, Eliezer (= Eli; ���� ������), 384, 395.
Uppercase letters, 59.
Uramasyu blog, 540.
Uri, Dario, 451.
Urns and balls, 6–7, 18–20, 382, 585.
Urquhart, Alasdair Ian Fenton, 595.
Usiskin, Zalman Philip, 371.
Utility fields in SGB format, 413.

V pentomino, 80, 81, 488.
v-reachable subsets, 62–63.
VAL array, in Algorithm 7.2.2.2C, 250–252,

257–260, 597–600, 602, 604.
in Algorithm 7.2.2.2L, 221–223, 227, 580.

Valid gradings, 411.
Valid partial assignments, 349–350.
Valid puzzles, 174–175, 180.
Vallée Poussin, Charles Jean Gustave

Nicolas de La, 388.
Van de Graaff, Robert Jemison, 562.
van de Wetering, Arie [= Aad], 129, 425,

427, 493, 494, 495, 501.
van der Tak, Peter, 259.
van der Waerden, Bartel Leendert, 188.
numbers, 189, seeW (k0, . . . , kb−1).

van Deventer, Mattijs Oskar, 654.
Van Gelder, Allen, 255, 597, 601, 627.
van Hertog, Martien Ilse, 523.
van Maaren, Hans, 221, 230.
van Rooij, Iris, 571.
van Zwieten, Joris Edward, 221.
Vandenberghe, Lieven Lodewijk André, 377.
Vandermonde, Alexandre Théophile,

matrix, 372.
Vapnik, Vladimir Naumovich (��3���

���)���# �������), 27.
Vapnik–Chervonenkis dimension, 27.
VAR array, 222, 366, 575.
Vardi, Ilan, 399.
Variability in performance on satisfiable

problems, 219, 304–305, 312, 651.
on unsatisfiable problems, 253, 305,
312, 651.

Variable elimination, 280–281, 285, 286,
313, 338–339, 350–352, 357, 358,
620–621, 623–624, 634, 636.

Variable interaction graphs, 300–302, 366.

Variables, 186.
introducing new, 187, 190, 192, 193,
197, 244; see Auxiliary variables,
Extended resolution.

Variance of a random variable, 2, 4, 9, 14,
21–22, 27, 50, 58, 60, 148, 233, 342,
348, 373, 390, 392, 604, 607.

law of total variance, 28.
Vassilevska Williams, Virginia

Panayotova (����������
 ��#+���'
����������), 351.

Vaughan, Theresa Elizabeth Phillips, 346.
Velthuis, Frans Jozef, 714.
Venn, John, diagram, 408.
Verbeek, Cornelis Coenraadt, 465.
Verification, 200, 341; see also Certificates

of unsatisfiability.
Vertex-colored tetrahedra, 143.
Vertex cover problem, 416, 545, 668.
Vertex-disjoint paths, 155, 483.
Vertex matching, 140–141.
Vertices, 125.
Viajando puzzle, 440.
Vicious, Kode (= Neville-Neil III, George

Vernon), xvii.
Vidigal Leitão, Ricardo Bittencourt,

438, 439, 443.
Viennot, Gérard Michel François Xavier,

267, 268, 271, 346, 497, 613.
Vier Farben Block puzzle, 513.
Vince, Andrew Joseph, 502.
Vinci, Leonardo di ser Piero da, 191.
Virtual unswapping, 575.
Visible nodes, 484.
Visiting an object, 30, 32, 33, 35, 46,

69, 90, 97, 414, 573.
Visualizations, 300–302.
Vitushinskiy, Pavel Viktorovich

(�����������
 ����� �����#���),
646.

VLSI layout, 523.
Volkov, Stanislav Evgenyevich (������

&�������� *�+������), 390.
von Mengden, Nicolai Alexandrovitch

(��� ���+)���
 �������
�������)#���	�), 29.

Vondrák, Jan, 392.
Voronöı, Georgii Fedoseevich (��#����

.��#+�� :�)������), regions,
516, 518.

Voters, 131.
Vries, Sven de, 570.
VSIDS, 316.

W (k0, . . . , kb−1) (van der Waerden
numbers), 188–189, 311, 317.

W pentomino, 80, 485.
W-wall, 164–166.
Waerden, Bartel Leendert van der, 188.
numbers, 189, seeW (k0, . . . , kb−1).

712

From the Library of Melissa Nuno

ptg999

INDEX AND GLOSSARY 713

waerden (j, k;n) problem, 188–189, 216,
219, 221, 223–226, 229, 247–250,
253, 255–259, 281, 296, 299, 305,
311–313, 317, 326–329, 340, 341, 350,
351, 365, 574, 600, 620.

Wagner, Stephan, 469.
Wagon, Stanley, 514.
Wagstaff, Samuel Standfield, Jr., 554.
Wainwright, Martin James, 350.
Wainwright, Robert Thomas, 92, 93,

322, 460, 561, 562.

Wald, Abraham (= Ábrahám), 382.
equation, 20.

Walker, Robert John, 30, 33, 34, 53–54.
Walks in a graph, 624.
WalkSAT algorithm, 263–265, 277–278, 302,

309, 343–344, 366, 555, 629, 645.
Walkup, David William, 391.
Wallis, John, 467.
Wallpaper, 140, 162, 488, 501.
Walsh, Toby, 636.
Wang, Fu Traing (), 504.
Wang, Hao (), 138.
Wang, Yi (), 391.
Wanless, Ian Murray, 399.
Warmup runs, 309, 603.
Warners, Johannes (= Joost) Pieter, 632.
Warp-30 puzzle, 518.
Warrington, Gregory Saunders, 649.
Washington Monument Puzzle, see

Fool’s Disk.
Wassermann, Alfred, 490.
Watanabe, Masatoshi (), 714.
Watanabe, Tomomi (), 523.
Watched literals, 214–218, 249–250, 252,

316, 328, 339, 597–600.
Watilliaux, Charles Auguste, 166.
Weak clues, 174–175.
Weak solutions, 178, 182.
Weak symmetry, 139.
Weakly forcing, 358.
Websites, iv, viii, xii, 302, 387.
Weierstrass (= Weierstraß), Karl Theodor

Wilhelm, 87–88.
Weighted factorization, 512.
Weighted graphs, 63.
Weighted items, 124, 153.
Weighted permutations, 347.
Wein, Joel Martin, 631.
Weismantel, Robert, 628.
Welch, Lloyd Richard, 37.
Wells, Mark Brimhall, 54.
Welzl, Emmerich Oskar Roman (=

Emo), 342.
Wendel, James Gutwillig, 396.
Wermuth, Udo Wilhelm Emil, ix.
Wetering, Arie [= Aad] van de, 129, 425,

427, 493, 494, 495, 501.
Wetzler, Nathan David, 255, 603.
Wheatley, Henry Benjamin, 666.

Wheel graphs (Wn), 555.
Whirls, 162.
White squares, 55, see Parity of cells.
Whitehouse, Francis Reginald Beaman, 452.
Whittlesey, Marshall Andrew, 556.
whp (with high probability), see a.s.
Width of a resolution chain, 241–243,

337–338.
Wieringa, Siert, 313.
Wiezorke, Bernhard Walter, 516, 518.
Wigderson, Avi (����
��� ���), 241–242,

337, 384, 595.
Wildcards in kakuro, 544.
Wilde, Boris de, 577.
Williams, Richard Ryan, 634.
Williams, Virginia Panayotova

Vassilevska (��#+���' ����������
����������), 351.

Wilson, David Bruce, 238, 333, 385, 585.
Windfalls, 227, 331, 366, 581.
Windmill dominoes, 160–161.
Windmill sudoku, 429.
Windsor, Aaron Andrew, 405, 406, 442.
Winkler, Peter Mann, 375, 654.
Winn, John Arthur, Jr., 639.
Winter, Ferdinand, 457.
Winthrop Andrews, William, 402.
Wires of a circuit, 194–198, 320.
Woan, Wen-jin (), 497.
Wobble function, 235, 335.
Wolff, Elias, 510.
Wonderword puzzles, 440.
Woods, Donald Roy, 61, 413.
Word cubes, 402.
Word rectangles, 36–37, 56, 91, 94–95,

152, 153, 182.
Word search puzzles, 87–88, 132, 136,

155, 433.
Word squares, 56.
double, 133, 181, 402.
history of, 402.

Word stair puzzles, 133, 155.
Wordcross puzzles, 136.
WORDS(n), the n most common five-letter

words of English, 36, 56, 62, 94, 133,
183, 401, 434, 443, 463–464, 484.

Worst-case bounds, 28, 57, 328, 330,
338, 603, 608.

Wraparound, 55.
Wrapping a polyhedron, 139, 157, 162, 451.
Write buffers, 208.
Wyman, Max, 418.
Wynn, Edward James William, 587.

X pentomino, 80, 81, 156, 485–489,
494, 511, 519.

X2C problem: Exact cover with 2-sets,
102–103, 107, 151.

X3C problem, 102.
X4C problem, 102.

713

From the Library of Melissa Nuno

ptg999

714 INDEX AND GLOSSARY

XC problem, v, see Exact cover problem.
XCC problem: Exact covering with colors,

v–vi, 87–92, 113, 120, 123, 132–144,
174–183, 430, 443, 514, 532.

Xeon computer, 653.
XOR operation, 193, 194, 197, 286,

320, 338, 357.
bitwise (x ⊕ y), 127, 212, 214, 321,
560, 572, 584, 605.

Xray-like projections, 208.
XSAT, see Exact (one-per-clause)

satisfiability.
Xu, Ke (), 333.
Xu, Lin (), 317.
Xu, Yixin (), 619.

Y pentomino, 80, 106, 111, 150, 167, 173.
Yada, Ayato (), 535.
Yano, Tatsuo (= Ryuoh,),

532, 538.
Yao, Andrew Chi-Chih (), 406, 525.
Yao, Bo (), 523.
Yaroslavtsev, Grigory Nikolaevich

($#�����4��
 .#�+�#��
���������), 644.

Yasuda, Norihito (), 123, 484.
Yeh, Roger Kwan-Ching (), 556.
Yoder, Michael Franz, 397.
Yoshigahara, Nobuyuki (= Nob)

(), 510.
Young, Alfred, tableaux, 160.

Yuster, Raphael (����� ����), 624.
Yuzawa, Kazuyuki (), 535.

Z (address of the last spacer), 69, 416, 418.
Z(m,n) (Zarankiewicz numbers),

290–291, 360.
Z pentomino, 80, 485–486.
Zabih, Ramin David, 424.
Zanette, Arrigo, 570.
Zapp, Hans-Christian, 482.
Zarankiewicz, Kazimierz, 290.
quad-free problem, 290–291, 297, 360.

Závodný, Jakub, 560.
ZDD: A zero-suppressed decision diagram,

51, 59, 119–124, 154–155, 535,
537, 545–546.

Zebra puzzle, 134–135.
Zecchina, Riccardo, 235, 274, 275, 620.
Zhang, Hantao (), 313, 316.
Zhang, Linbo (), 714.
Zhang, Lintao (), 316.
Zhao, Ying (), 316.
Zhu, Yunshan (), 316.
Zimmermann, Paul Vincent Marie, 399.
Živković, Zdravko, 141.
ZSEV (zero or set if even), 606.
Zucca, Livio, 506.
Zuckerman, David Isaac, 264, 343.
Zwick, Uri (����� ����), 624.
Zwieten, Joris Edward van, 221.
Zygmund, Antoni, 24, 29, 389.

THIS BOOK was composed on an Dell Precision 3600 with Computer Modern typefaces, using
the TEX andMETAFONT software as described in the author’s books Computers & Typesetting
(Reading, Mass.: Addison–Wesley, 1986), Volumes A–E. The illustrations were produced with
John Hobby’s METAPOST system. Some names in the index were typeset with additional
fonts developed by Yannis Haralambous (Greek, Hebrew, Arabic), Olga G. Lapko (Cyrillic),
Frans J. Velthuis (Devanagari), Masatoshi Watanabe (Japanese), and Linbo Zhang (Chinese).

714

From the Library of Melissa Nuno

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Notes on the Exercises
	Mathematical Preliminaries Redux
	Inequalities
	Martingales
	Tail inequalities from martingales
	Applications
	Statements that are almost sure, or even quite sure
	Exercises

	Chapter 7—Combinatorial Searching
	7.2. Generating All Possibilities
	7.2.1. Generating Basic Combinatorial Patterns
	7.2.2. Backtrack Programming
	Data structures
	Walker’s method
	Permutations and Langford pairs
	Word rectangles
	Commafree codes
	Dynamic ordering of choices
	Sequential allocation redux
	Lists for the commafree problem
	A general mechanism for doing and undoing
	Backtracking through commafree codes
	Running time estimates
	Estimating the number of solutions
	Factoring the problem
	Historical notes
	Exercises

	7.2.2.1. Dancing links
	Exact cover problems
	Secondary items
	Progress reports
	Sudoku
	Polyominoes
	Polycubes
	Factoring an exact cover problem
	Color-controlled covering
	Introducing multiplicity
	A new dance step
	Analysis of Algorithm X
	Analysis of matching problems
	Maintaining a decent focus
	Exploiting local equivalence
	Preprocessing the options
	Minimum-cost solutions
	Implementing the min-cost cutoffs
	Dancing with ZDDs
	Summary
	Historical notes
	Exercises—First set
	Exercises—Second set
	Exercises—Third set

	7.2.2.2. Satisfiability
	Example applications
	Backtracking algorithms
	Random clauses
	Resolution of clauses
	Clause-learning algorithms
	Monte Carlo algorithms
	The Local Lemma
	Message-passing algorithms
	Preprocessing of clauses
	Encoding constraints into clauses
	Unit propagation and forcing
	Symmetry breaking
	Satisfiability-preserving maps
	One hundred test cases
	Tuning the parameters
	Exploiting parallelism
	History
	Exercises

	Answers to Exercises
	Appendix A—Tables of Numerical Quantities
	1. Fundamental Constants (decimal
	2. Fundamental Constants (hexadecimal)
	3. Harmonic Numbers, Bernoulli Numbers, Fibonacci Numbers

	Appendix B—Index to Notations
	Appendix C—Index to Algorithms and Theorems
	Appendix D—Index to Combinatorial Problems
	Appendix E—Answers to Puzzles in the Answers
	Index and Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

