
ptg999

From the Library of Melissa Nuno

ptg999

THE

MMIX

SUPPLEMENT

Supplement to

The Art of Computer Programming

Volumes 1, 2, 3

by Donald E. Knuth

MARTIN RUCKERT Munich University of Applied Sciences

6
77

ADDISON–WESLEY

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montréal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

From the Library of Melissa Nuno

ptg999

The author and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

For information about buying this title in bulk quantities, or for special
sales opportunities (which may include electronic versions; custom cover
designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries,
please contact governmentsales@pearsoned.com.

For questions about sales outside the United States,
please contact intlcs@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Ruckert, Martin.
The MMIX supplement : supplement to The art of computer programming,

volumes 1, 2, 3 by Donald E. Knuth / Martin Ruckert, Munich University
of Applied Sciences.

pages cm
Includes index.
ISBN 978-0-13-399231-1 (pbk. : alk. paper) -- ISBN 0-13-399231-4 (pbk.

: alk. paper)
1. MMIX (Computer architecture) 2. Assembly languages (Electronic

computers) 3. Microcomputers--Programming. I. Knuth, Donald Ervin,
1938-. Art of computer programming. II. Title.
QA76.6 .K64 2005 Suppl. 1
005.1--dc23 2014045485

Internet page http://mmix.cs.hm.edu/supplement.html contains current informa-
tion about this book, downloadable software, and general news about MMIX.
See also http://www-cs-faculty.stanford.edu/~knuth/taocp.html for information
about The Art of Computer Programming by Donald E. Knuth.

Copyright c© 2015 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms and the apprpriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-399231-1

ISBN-10: 0-13-399231-4

First printing, February 2015

From the Library of Melissa Nuno

http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://mmix.cs.hm.edu/supplement.html
http://www.pearsoned.com/permissions

ptg999

FOREWORD

Why are some programmers so much better than others? What is the magical
ingredient that makes it possible for some people to resonate with computers
so well, and to reach new heights of performance? Many different skills are
clearly involved. But after decades of observation I’ve come to believe that one
particular talent stands out among the world-class programmers I’ve known —
namely, an ability to move effortlessly between different levels of abstraction.

That may sound like a scary and complex thing, inherently abstract in itself,
but I think it’s not really too hard to explain. A programmer must deal with
high-level concepts related to a problem area, with low-level concepts related to
basic steps of computation, and with numerous levels in between. We represent
reality by creating structures that are composed of progressively simpler and
simpler parts. We don’t only need to understand how those parts fit together; we
also need to be able somehow to envision the whole show — to see everything in
the large while seeing it simultaneously in the small and in the middle. Without
blinking an eye, we need to understand why a major goal can be accomplished
if we begin by increasing the contents of a lowly computer register by 1.

The best way to enhance our level-jumping skills is to exercise them fre-
quently. And I believe the most effective strategy for that is to repeatedly
examine the details of what goes on at the hardware level when a sophisticated
algorithm is being implemented at a conceptual level. In the preface to Volume 1
of The Art of Computer Programming, I listed six reasons for choosing to discuss
machine-oriented details together with high-level abstractions, integrating both
aspects as I was presenting fundamental paradigms and algorithms of computer
science. I still like those six reasons. But in retrospect I see now that I was
actually blind to the most important reason — that is, the pedagogical reason: I
know of no better way to teach a student to think like a top computer scientist
than to ground everything in a firm knowledge of how a computing machine
actually works. This bottom-up approach seems to be the best way to help
nurture an ability to navigate fluently between levels. Indeed, Tony Hoare once
told me that I should never even think of condensing these books by removing
the machine-language parts, because of their educational value.

I am thrilled to see the present book by Martin Ruckert: It is jam-packed
with goodies from which an extraordinary amount can be learned. Martin has
not merely transcribed my early programs for MIX and recast them in a modern
idiom. He has penetrated to their essence and rendered them anew with elegance
and good taste. His carefully checked codes represent a significant contribution
to the art of pedagogy as well as to the art of programming. Although I myself
rarely write machine-level instructions nowadays, my experiences of doing so

iii

From the Library of Melissa Nuno

ptg999

iv FOREWORD

in the past have provided an indispensable boost to the quality of everything
that I now am undertaking. So I encourage serious programmers everywhere to
sharpen their skills by devouring this book.

Stanford, California D. E. K.
December 2014

From the Library of Melissa Nuno

ptg999

PREFACE

Translations are made to bring important works of literature closer to those
reading — and thinking — in a different language. The challenge of translating
is finding new words, phrases, or modes of expression without changing what
was said before. An easy task, you may think, when the translation asks
only for replacing one programming language with another. Wouldn’t a simple
compiler suffice to do the job? The answer is Yes, as long as the translated
programs are intended to be executed by a machine; the answer is No, if the
translated programs are intended to explain concepts, ideas, limitations, tricks,
and techniques to a human reader. The Art of Computer Programming by
Donald E. Knuth starts out by describing the “process of preparing programs
for a digital computer” as “an aesthetic experience much like composing poetry
or music.” That raises the level of expectation to a point where a translation
becomes a formidable challenge.

In 1990, the mythical MIX computer used for the exposition of implementa-
tion details in The Art of Computer Programming was so outdated that Knuth
decided to replace it. The design of the new MMIX computer was finally published
as a fascicle, comprising a replacement for the description of MIX in Chapter 1
of that series of books. It made the translation of all the MIX programs to MMIX
programs in Volumes 1, 2, and 3 inevitable; but Knuth decided that it would
be more important to complete Volumes 4 and 5 first before starting to rewrite
Volumes 1–3. Volume 4 meanwhile has grown and by now is to be delivered in
(at least) three installments, Volumes 4A, 4B, and 4C, of which the first has
already appeared in print. Still it means we have to exercise patience until the
new edition of Volume 1 will be published.

With the introduction of the new MMIX, Knuth asked programmers who
would like to help with the conversion process to join the MMIXmasters, a loose
group of volunteers organized and coordinated by Vladimir Ivanović. However,
progress was slow, so in the fall of 2011, when I took over the maintenance of the
MMIX home page, I decided to take on the task of translating all the remaining
programs and update them to a readable form. The result of that effort is the
present book, which is intended to be a bridge into the future although not the
future itself. It is supplementing Volumes 1, 2, and 3 for those who do not want
to wait several more years until that future arrives.

This book is not written for independent reading; it is a supplement, supple-
menting the reading of another book. You should read it side by side with The
Art of Computer Programming (let’s call that “the original” for short). Therefore
it is sprinkled with page references such as “[123]” pointing the reader to the
exact page (in the third edition of Volumes 1 and 2, and in the second edition

v

From the Library of Melissa Nuno

ptg999

vi PREFACE

of Volume 3) where the MIX version can be found in the original. References
are also included in the headings to simplify searching for a translation given
the page number in the original. Further, I tried to pick up a sentence or two
unchanged from the original before switching to MMIX mode. I also tried to
preserve, even in MMIX mode, the wording of the original as closely as possible,
changing as little as possible and as much as needed. Of course, all section names
and their numbering, as well as the numbers of tables, figures, or equations are
taken unchanged from the original. It should help you find the point where the
translation should be spliced in with the original.

When I assume that you are reading this book in parallel with the original,
strictly speaking, I assume that you are reading the original as augmented by
the above-mentioned Fascicle 1. A basic knowledge of the MMIX computer and
its assembly language as explained there is indispensable for an understanding
of the material presented here. If you want to know every detail, you should
consult MMIXware [Lecture Notes in Computer Science 1750, Springer Verlag, as
updated in 2014].

Also online you can find plenty of documentation; the MMIX home page at
http://mmix.cs.hm.edu provides full documentation and current sources of the
MMIXware package. Further, the tools mentioned below, other useful MMIX-related
software, and all the programs presented in this book, including test cases, are
available for download. The best companion of MMIX theory is MMIX practice —
so download the software, run the programs, and see for yourself.

This book is written using the TEX typesetting system. To display MMIX
code in print, it is therefore needed in TEX format; however, to assemble and
test MMIX code, it is needed in MMIX assembly language. An automatic converter,
mmstotex, was used to produce (almost all) TEX code in the book from the
same file that was submitted to the MMIX assembler. Another tool, testgen, was
written just for the production of this book: It combines a set of source files,
containing program fragments and test case descriptions, with library code to
produce a sequence of complete, ready-to-run test programs.

Great care was taken to complement the programs shown in this book with
appropriate test cases. Every line of code you see on the following pages was
checked by the MMIX assembler for syntactic correctness and executed at least
once in a test case. While I am sure that no errors could creep in by manual
preparation of TEX sources, that by no means implies that the MMIX code shown
is error free. Of course, it is not only possible but most likely that several bugs
are still hidden in the about 15,000 lines of code written for this book. So please
help in finding them!

Thanks to Donald Knuth, I have several boxes of nice MMIX T-shirts (sizes L
and XL) sitting on the shelf in my office, and I will gladly send one to each
first finder of a bug — technical, typographical, orthographical, grammatical, or
otherwise — as long as supplies last (T-shirts, not bugs). Known bugs will be
listed on the MMIX home page, so check there first before sending me an email.

Aside from tracking down bugs, the test cases helped me a lot while con-
ducting experiments with the code because I could see immediately how changes

From the Library of Melissa Nuno

http://mmix.cs.hm

ptg999

PREFACE vii

affected correctness and running time. Think of the public test cases as an
invitation to do your own experiments. Let me know about your findings, be it
an improvement to the code or a new test case to uncover a hidden bug.

Speaking about experiments: Of course it was tempting to experiment with
the pipeline meta simulator mmmix. The temptation was irresistible, especially
since it is so easy to take the existing programs, run them on the pipeline sim-
ulator, and investigate the influence of configuration parameters on the running
time. But in the end, I had to stop any work on this wide-open field of research
and decided to postpone a discussion of pipelined execution. It would have made
this booklet into a book and delayed its publication for years.

I am extremely grateful to Donald Knuth, who supported me in every aspect
of preparing this book. The draft version, which I sent to him at Stanford, came
back three months later with dozens of handwritten remarks on nearly every
page, ranging from typographic details such as: “Here I would put a \hair
between SIZE and ;” to questions of exposition: “No, you’ve got to leave this
tag bit 0. Other exercises depend on it (and so does illustration ())”, wrong
instruction counts: “Should be A+1[A]”, suggestions: “Did you consider keeping
2b instead of b in a register?”, and bug fixes: “SRU or you’ll be propagating a
‘minus’ sign.” Without him, this book would not have been written in the first
place, and without him, it would also not have reached its present form. For the
remaining shortcomings, errors, and omissions, I take full responsibility. I hope
that there are not too many left, and that you will enjoy the book all the same.

München Martin Ruckert
December 2014

From the Library of Melissa Nuno

ptg999

STYLE GUIDE

1. NAMES

Choosing good names is one of the most important and most difficult tasks when
writing programs, especially if the programs are intended for publication. Good
names need to be consistent and so this section starts with some simple rules
that guided how names in this book were chosen.

Small named constants, for instance, have all uppercase names such as
FACEUP. Special cases of this rule are the offsets of fields inside records such as
NEXT or TAG (see 2.1–() and 2.1–()). Addresses are associated with names that
always start with an uppercase letter and continue with uppercase or lowercase
letters. Examples are ‘TOP OCTA 1F’ and ‘Main SET i,0’. In contrast, names
for registers use only lowercase letters, as in x, t, or new.

As a short example illustrating these rules, consider the solution to exer-
cise 2.1–9 on page 123. The address where the printing subroutine starts has
the name :PrintPile (an explanation for the colon follows below), and the
location where the string is stored is named String. The constant #0a, the
ASCII newline character, is named NL; every node has a CARD field at offset 8,
and when the value of this field is loaded into a register, this register has the
name card.

Often the statement of algorithms has a more mathematical nature. In
mathematical language most variables have single-letter names that are set in
italic font, such as x, y, Q, or even Q′, f0, or α. In the actual program these
variables might look like x, y, Q, Qp, f0, or alpha. The single-letter style of
mathematics leads to rather terse programs. This style is appropriate if the
exposition is mostly mathematical and the implementation has to convince the
reader that it embodies the right mathematics. If the program describes the
manipulation of “real-world objects,” a more verbose style using descriptive
names such as card or title will improve readability.

In this book, the ultimate aim of choosing a specific name for an address,
register, or constant is to make the transition from the algorithms and MIX pro-
grams, as given in The Art of Computer Programming, to their implementations
as MMIX programs as painless as possible.

One difficulty arises from the fact that the MIX assembly language did not
provide named registers but only named memory locations; further, names con-
sisted of uppercase letters only. So when an algorithm mentions the variable X,
there is the silent assumption that if the corresponding MIX program uses X, it
names a memory location where the value of the variable X is stored. In MMIX
programs, names for memory locations are quite rare, because all load and store
instructions require registers to compute the target address. Therefore, it is most

viii

From the Library of Melissa Nuno

ptg999

STYLE GUIDE ix

likely that you will not find X in the corresponding MMIX program; instead you
will find a register, named x, that contains the address of the memory location
where the variable X resides. Taking this one step further, often there is no
need to store the value of variable X in memory at all; instead, it is completely
sufficient to keep the value of X in register x for the entire program or subroutine.
As an example, consider again the solution to exercise 2.1–9. The line that read

LD2 0,2(NEXT) Set X← NEXT(X).

in the MIX program on page [535] now reads as follows in the MMIX program:

LDOU x,x,NEXT Set X← NEXT(X).

2. TEMPORARIES

There is one special variable, named t, which is used as a temporary variable
(hence t). It is used to carry intermediate values from one instruction to the
next and there is no benefit in giving it an individual name. In a few cases,
where the name t is used already in the exposition of the algorithm, x is used
to name the temporary variable.

The specific register number used for one of the named registers is typically
not relevant; in connection with the PUSHJ instruction, however, all named local
registers will have register numbers smaller than t such that the subroutine call
‘PUSHJ t,. . . ’ will not clobber any of them — except t, which might hold the
return value.

3. INDEX VARIABLES

The variables used to index arrays fall into a special class. If the exposition of an
algorithm refers to xi for 1 ≤ i ≤ n, we might expect a register xi (the value of
xi), a register x (the address of the array), and a register i (the index) to show
up somewhere in the implementation. Often, however, the implementation will
find it more convenient to maintain in register i the value of 8×i (the offset of xi

relative to LOC(x0)), or 8× (i− 1) (the offset of xi relative to LOC(x1)), or even
8× (i− n) (the offset of xi relative to LOC(xn)). In the latter case (see below),
it is also more convenient to change the value of x to x + 8n. In all these cases,
the use of x (not X) and i (not i) will remind the reader that the registers x and
i are not exactly the variables X and i. For a short example see the solution to
exercise 4.3.1–25 on page 157.

From the Library of Melissa Nuno

ptg999

x STYLE GUIDE

4. REGISTER NUMBERS

Typically, it is best to avoid the use of register numbers, but instead use register
names. There are, though, a few exceptions.

When using TRIP and TRAP instructions, register $255 has a special purpose:
It serves as parameter register. For the reader of a program, there is some useful
information in the fact that a value is stored in $255: It will serve as a parameter
to the next TRAP or TRIP. This information should not be hidden by using an
alias for $255. Similarly, using the return value from a TRAP or TRIP can be
made explicit by using $255. For an example see Program 1.3.3A on page 1.

Further, the return value of a function must be in register $0 just before
the final POP. Identifying the register by its number makes the assignment of a
return value visible. For an example see again the solution to exercise 4.3.1–25.

The program in Section 2.2.5 is special, however: Due to the restrictions
imposed by its very simple implementation of coroutines, this program can use
local registers only for temporary variables. Consequently, there is no need to
give them names.

5. LOCAL NAME SPACES

If programs have multiple subroutines, name conflicts will be inevitable — unless
the pseudo-instruction PREFIX is used. In this book, every subroutine is given
its own name space by starting it with ‘PREFIX :name:’, where name repeats
the name of the subroutine itself. (See, for example, the solution to exercise 5–7
on page 162.)

The use of two colons, one before and one after ‘name’, begs for an expla-
nation. Without the first colon, ‘name:’ would just be added to the current
prefix, leading to longer and longer prefixes unless the prefix is reset regularly
by ‘PREFIX :’. Adding a colon before ‘name’ is the safer and more convenient
alternative. To explain the second colon, imagine using the label ‘Put’— without
defining it— after ‘PREFIX :Out’; then MMIXAL will complain about an undefined
symbol ‘OutPut’. In a long program, this error might be hard to diagnose. Could
it be a misspelling of ‘Output’? It becomes really hard to track down such an
error if your program contains an unrelated global symbol ‘OutPut’; MMIXAL
will use it without notice. The colon after ‘name’ will prevent MMIXAL from
confusing global and local names and will make error messages, like a complaint
about ‘Out:Put’, more readable.

In order to avoid a clumsy :name:name in the calling code, the entry point
into the subroutine is marked by :name, making it global. A short example is
the ShiftLeft subroutine shown in the solution to exercise 4.3.1–25. The entry
point is usually the only global name defined by a subroutine. However, the
subroutine might use quite a few global names, defined elsewhere, to reference
other subroutines, global registers, or special registers such as :rJ. In these
cases, the extra colon in front of the name is a useful hint that the name belongs

From the Library of Melissa Nuno

ptg999

STYLE GUIDE xi

to a global entity; as an added benefit, it allows us to say ‘rJ IS $0’ and use rJ
to keep a local copy of :rJ.

Not typical, but occasionally useful, is a joint name space for multiple sub-
routines. For example, in the simulation program of Section 2.2.5, the routines
Insert and Delete (lines 059–072 on page 30) share the same name space.

To leave the local name space and return to the global name space, a simple
‘PREFIX :’ is sufficient.

Because name spaces are merely a technicality, in most of the program
listings in this book, the PREFIX instructions are not shown.

6. INSTRUCTION COUNTS

For the analysis of algorithms, a column of instruction counts is added to the
program display. Instruction counts∗ are shown rather than cycle counts because
the former are easier to read and because there is no simple way to determine the
latter. For a superscalar pipeline processor such as MMIX, the number of cycles
per instruction depends on many, many factors. To further complicate the issue,
MMIX can be configured to mimic a wide variety of processors. Therefore, the
running time is approximated by counting υ and µ, where 1υ is approximately
one cycle and 1µ is one access to main memory. Most MMIX instructions require
1υ; the most important exceptions are load and store instructions (1υ+1µ), mul-
tiplication (10υ), division (60υ), most floating point instructions (4υ), POP (3υ),
TRIP (5υ), and TRAP (5υ).

For branch instructions, the number of bad guesses is given in square brack-
ets. So m[n] will label a branch that is executed m times with n bad guesses (and
m− n good guesses). It will contribute (m + 2n)υ to the total running time.

Often the code is presented as a subroutine. In this case, the “call over-
head”— the assignment of parameters, the PUSHJ, and the final POP— is not
included in the computation of the total running time. In situations where the
call overhead would be a significant percentage of the running time, the subrou-
tine code can be expanded inline (see, for example, the FindTag subroutine in
the solution to exercise 2.5–27 on page 143).

If, however, the subroutine under examination is itself the caller of a sub-
routine, the called subroutine, including its call overhead, will be included in the
total count. A special case arises for recursive routines. There, the PUSHJ and
POP instructions cannot be eliminated and must be counted. Further, it would be
confusing not to include the final POP in the total count since this would violate
Kirchhoff’s law. The initial PUSHJ is, however, not shown —and not counted.

∗ Actually, line counts are shown. In the rare cases where several instructions share a single
line of code, the instruction counts are easier to read if multiple instructions are treated as one
single-but-complex instruction that is counted once.

From the Library of Melissa Nuno

ptg999

PROGRAMMING TECHNIQUES

1. INDEX VARIABLES

Many algorithms traverse information structures that are sequentially allocated
in memory. Let us assume that a sequence of n data items a0, a1, . . . , an−1 is
stored sequentially. Further assume that each data item occupies 8 bytes, and
the first element a0 is stored at address A; the address of ai is then A + 8i. To
load ai with 0 ≤ i < n from memory into register ai, we need a suitable base
address and so we assume that we have A = LOC(a0) in register a. Then we can
write ‘8ADDU t,i,a; LDO ai,t,0’ or alternatively ‘SL t,i,3; LDO ai,a,t’. If
this operation is necessary for all i, it is more efficient to maintain a register i
containing 8i as follows:

SET i,0 i← 0.
LDO ai,a,i Load ai.
ADD i,i,8 Advance to next element: i← i + 1.
· · ·

Note how i advances by 8 when i advances by 1.
The branch instructions of MMIX, like most computer architectures, directly

support a test against zero; therefore a loop becomes more efficient if the index
variable runs toward 0 instead of toward n. The loop may then take the form:

SL i,n,3 i← n.
0H SUB i,i,8 Advance to next element: i← i− 1.

LDO ai,a,i Load ai.
· · ·
PBP i,0B Continue while i > 0.

In the above form, the items are traversed in decreasing order. If the algorithm
requires traversal in ascending order, it is more efficient to keep A + 8n, the
address of an, as new base address in a register an, and to run the index register
i from −8n toward −8 as in the following code:

8ADDU an,n,a an← A + 8n.
SUBU i,a,an i← 0 (or i← −8n).

0H LDO ai,an,i ai← ai.
· · ·
ADD i,i,8 Advance to next element: i← i + 1.
PBN i,0B Continue while i < n.

If a is used only to compute A+8n, it is possible to write ‘8ADDU a,n,a’ and reuse
register a to hold A + 8n. Loading ai then resumes the nice form ‘LDO ai,a,i’,
without any need for an. For an example, see Program 4.3.1S on page 63.

xii

From the Library of Melissa Nuno

ptg999

PROGRAMMING TECHNIQUES xiii

When computer scientists enumerate n elements, they say “a0, a1, a2, . . . ”,
starting with index zero. When mathematicians (and most other people) enu-
merate n elements, they say “a1, a2, a3, . . . ” and start with index 1. Nevertheless
when such a sequence of elements is passed as a parameter to a subroutine, it
is customary to pass the address of its first element LOC(a1). If this address is
in register a, the address of ai is now a + 8(i − 1). To load ai efficiently into
register ai, we have two choices: Either we adjust register a, saying ‘SUBU a,a,8’
for a ← LOC(a0), or we maintain in register i the value of 8(i − 1), saying for
example ‘SET i,0’ for i← 1. In both cases, we can write ‘LDO ai,a,i’ to load
ai← ai.

Many variations of these techniques are possible; a nice and important
example is Program 5.2.1S on page 76.

2. FIELDS

Let us assume that the data elements ai, just considered, are further structured
by having three fields, two WYDEs and one TETRA, like this:

LEFT RIGHT KEY .

It is then convenient to define offsets for the fields reusing the field names as
follows:

LEFT IS 0 Offset for field LEFT

RIGHT IS 2 Offset for field RIGHT

KEY IS 4 Offset for field KEY

There is very little information in these lines, so these definitions are usually
suppressed in a program’s display.

Computing the address of, say, the KEY field of ai requires two additions,
A+ 8i + KEY, of which only one must be done inside a loop over i. The quantity
A + KEY can be precomputed and kept in a register named key. This simplifies
loading of KEY(ai) as follows:

ADDU key,a,KEY key← A + KEY.
· · · Loop on i with i = 8i.
LDT k,key,i k← KEY(ai).

3. RELATIVE ADDRESSES

In a more general setting, this technique can be applied to relative addresses.
Assume that one of the data items ai is given by its relative address P =
LOC(ai)− BASE relative to some base address BASE.

Then again KEY(ai) can be loaded by a single instruction ‘LDT k,key,p’, if
P is in register p, and BASE + KEY is in register key.

While an absolute address always requires eight bytes in MMIX’s memory,
relative addresses can be stored using only four bytes, two bytes, or one byte,

From the Library of Melissa Nuno

ptg999

xiv PROGRAMMING TECHNIQUES

which allows tighter packing of information structures and reduces the memory
footprint of applications that handle large numbers of links. Using this technique,
the use of relative addresses can be as efficient as the use of absolute addresses.

4. USING THE LOW ORDER BITS OF POINTERS (“BIT STUFFING”)

Modern computers impose alignment restrictions on the possible addresses of
primitive data types. In the case of MMIX, an OCTA may start only at an address
that is a multiple of 8, a TETRA requires a multiple of 4, and a WYDE needs an
even address. As a result, data structures are typically octabyte-aligned, because
they contain one or more OCTA-fields — for example, to hold an absolute address
in a link field. Those link fields, in turn, are multiples of eight as well. Put
differently, their three low-order bits are all zero. Such precious bits can be put
to use as tag bits, marking the pointer to indicate that either the pointer itself or
the data item it points to has some special property. MMIX further simplifies the
use of these bits as tags by ignoring the low-order bits of an address in load and
store instructions. That convention is not the case for all CPU architectures.
Still, these bits are usable as tags; they just need to be masked to zero on such
computers before using link fields as addresses.

Three different uses need to be distinguished. First, a tag bit in a link may
contain some additional information about the data item it links to. Second,
it may tell about the data item that contains the link. Third, it may disclose
information about the link itself.

An example of the first type of use is the implementation of two-dimensional
sparse arrays in Section 2.2.6. There, the nonzero elements of each row (or
column) form a circular linked list anchored in a special list head node. It
would have been possible to mark each head node using one of the bits in one
of its link fields, but it is more convenient to put this information into the links
pointing to a head node. Once the link to the next node in the row is known,
a single instruction is sufficient to test for a head node, as for example in the
implementation of Program 2.2.6S on page 132:

S3 LDOU q0,q0,UP S3. Find new row. Q0← UP(Q0).
BOD q0,9F Exit if Q0 is odd.

If a head node would be marked by using a tag bit in its own UP link, the code
would require an extra load instruction:

S3 LDOU q0,q0,UP S3. Find new row. Q0← UP(Q0).
LDOU t,q0,UP t← UP(Q0).
BOD t,9F Exit if TAG(Q0) = 1.

The great disadvantage of this method, so it seems, is the need to maintain all
the tag bits in all of the links that point to a head node during the running time
of the program. A closer look at the operations a program like Algorithm 2.2.6S
performs will reveal, however, that it inserts and deletes matrix elements but
never deletes or creates head nodes. Inserting or deleting matrix elements will

From the Library of Melissa Nuno

ptg999

PROGRAMMING TECHNIQUES xv

just copy existing link values; hence no special coding is required to maintain
the tag bits in the links to head nodes.

The second, more common, type of use of a tag field is illustrated by the
solution to exercise 2.3.5–4 on page 139. The least significant bit of the ALINK
field is used to mark accessible nodes, and the least significant bit of the BLINK
field is used to distinguish between atomic and non-atomic nodes. The following
snippet taken from this code is typical for testing and setting of these tag bits:

E2 LDOU x,p,ALINK E2. Mark P.
OR x,x,1

STOU x,p,ALINK MARK(P)← 1.
E3 LDOU x,p,BLINK E3. Atom?

PBEV x,E4 Jump if ATOM(P) = 0.

An interesting variation of this use of a tag bit can be seen in exercise
2.2.3–26 on page 23. There, the data structure asks for a variable-length list of
links allocated sequentially in memory. Instead of encoding the length of the list
somewhere as part of the data structure, the last link of the structure is marked
by setting a tag bit. This arrangement leads to very simple code for the traversal
of the list.

As a final example, consider the use of tag bits in the implementation of
threaded binary trees in Section 2.3.1. There, the RIGHT and LEFT fields of a
node might contain “down” links to a left or right subtree, or they might contain
“thread” or “up” links to a parent node (see, for example, 2.3.1–(), page 324).
Within a tree, there are typically both “up” and “down” links for the same node.
Hence, the tag is clearly a property of the link, not the node. Searching down the
left branch of a threaded binary tree, as required by step S2 of Algorithm 2.3.1S,
which reads “If LTAG(Q) = 0, set Q← LLINK(Q) and repeat this step,” may take
the following simple form:

0H SET q,p Set Q← LLINK(Q) and repeat step S2.
S2 LDOU p,q,LLINK S2. Search to left. p← LLINK(Q).

PBEV p,0B Jump if LTAG(Q) = 0.

5. LOOP UNROLLING

The loop shown at the end of the last section has a SET operation that has no
computational value; it just reorganizes the data when the code advances from
one iteration to the next. A small loop may benefit significantly from eliminating
such code by unrolling it or, in the simplest case, doubling it. Doubling the loop
adds a second copy of the loop where the registers p and q exchange roles. This
leads to

S2 LDOU p,q,LLINK S2. Search to left. P← LLINK(Q).
BOD p,1F If LTAG(Q) 6= 0, exit the loop.
LDOU q,p,LLINK S2. Search to left. Q← LLINK(P).
PBEV q,S2 If LTAG(P) = 0, repeat step S2.

From the Library of Melissa Nuno

ptg999

xvi PROGRAMMING TECHNIQUES

SET q,p At this point p and q have exchanged roles.
1H IS @

The new loop requires 2υ per iteration instead of 3υ. For another example, see
the solution to exercise 5.2.1–33 on page 167. Further, Program 6.1Q′ on page 98
illustrates how loop unrolling can benefit loops maintaining a counter variable,
and the solution to exercise 6.2.1–10 on page 184 shows how to completely unroll
a loop with a small, fixed number of iterations.

6. SUBROUTINES

The code of a subroutine usually starts with the definition of its stack frame, the
storage area containing parameters and local variables. Using the MMIX register
stack, it is sufficient for most subroutines to list and name the appropriate local
registers. Once the stack frame is defined, the instructions that make up the
body of the subroutine follow. The first instruction is labeled with the name
of the subroutine — typically preceded by a colon to make it global; the last
instruction is a POP. For a simple example see the solution to exercise 2.2.3–2
on page 124 or the solution to exercise 5–7 on page 162.

Subroutine Invocation. Calling a subroutine requires three steps: passing of
parameters, transfer of control, and handling of return values. In the simplest
case, with no parameters and no return values, the transfer of control is accom-
plished with a single ‘PUSHJ $X,YZ’ instruction and a matching POP instruction.
The problem remains choosing a register $X such that the subroutine call will
preserve the values of registers belonging to the caller’s stack frame. For this
purpose, the subroutines in this book will define a local register, named t, such
that all other named local registers have register numbers smaller than t. Aside
from its role in calling subroutines, t is used as temporary variable. The typical
form of a subroutine call is then ‘PUSHJ t,YZ’.

If the subroutine has n > 0 parameters, the registers for the parameter
values can be referenced as t+1, t+2, . . . , t+n. A simple example is Program
2.3.1T, where the two functions Inorder and Visit are called like this:

T3 LDOU t+1,p,LLINK T3. Stack⇐ P.
SET t+2,visit

PUSHJ t,:Inorder Call Inorder(LLINK(P),Visit).
T5 SET t+1,p T5. Visit P.

PUSHGO t,visit,0 Call Visit(P).

After the subroutine has transferred control back to the caller, it may use the
return values. If the subroutine has no return values, register t (and all registers
with higher register numbers) will be marginal and a reference to it will yield
zero; otherwise, t will hold the principal return value and further return values
will be in registers t+1, t+2, The function FindTag in the solution to exercise
2.5–27 on page 143 is an example of a function with three return values.

From the Library of Melissa Nuno

ptg999

PROGRAMMING TECHNIQUES xvii

Nested Calls. If the return value of one function serves as a parameter for the
next function, the schema just described needs some modification. It is better
to place the return value of the first function not in register t but directly in the
parameter register for the second function; therefore we have to adjust the first
function call. For example, the Mul function in Section 2.3.2, page 42, needs to
compute Q1← Mult(Q1,Copy(P2)), and that is done like this:

SET t+1,q1 t+1← Q1.
SET t+3,p2

PUSHJ t+2,:Copy t+2← Copy(P2).
PUSHJ t,:Mult

SET q1,t Q1← Mult(Q1,Copy(P2)).

The Div function of exercise 2.3.2–15, which computes the slightly more complex
formula

Q← Tree2(Mult(Copy(P1),Q),Tree2(Copy(P2),Allocate(),“↑”),“/”),

contains more examples of nested function calls (see also the Pwr function of
exercise 2.3.2–16).

Nested Subroutines. If one subroutine calls another subroutine, we have a sit-
uation known as nested subroutines. The most common error when programming
MMIX is failing to save and restore the rJ register. At the start of a subroutine,
the special register rJ contains the return address for the POP instruction. It will
be rewritten by the next PUSHJ instruction and therefore must be saved if the
next PUSHJ occurs before the POP.

There are two preferred places to save and restore rJ: Either start the subrou-
tine with a GET instruction, saving rJ in a local register, and end the subroutine
with a PUT instruction, restoring rJ, immediately before the terminating POP
instruction; or, if the subroutine contains only a single PUSHJ instruction, save
rJ immediately before the PUSHJ and restore it immediately after the PUSHJ. An
example of the first method is the Mult function in Section 2.3.2; the second
method is illustrated by the Tree2 function in the same section. If subroutines
use the PREFIX instruction to create local namespaces, the local copy of ‘:rJ’
can simply be called ‘rJ’; that is the naming convention used in this book.

Tail Call Optimization. The Mult function of Section 2.3.2 is an interesting ex-
ample for another reason: It uses an optimization called “tail call optimization.”
If a subroutine ends with a subroutine call in such a way that the return values
of the inner subroutine are already the return values of the outer subroutine,
the stack frame of the outer subroutine can be reused for the inner subroutine
because it is no longer needed after the call to the inner routine. Technically,
this is achieved by moving the parameters into the right place inside the existing
stack frame and then using a jump or branch instruction to transfer control
to the inner subroutine. The POP instruction of the inner subroutine will then
return directly to the caller of the outer subroutine. So, when the function
Mult(u,v) wants to return Tree2(u,v,“×”), u and v are already in place and
‘GETA v+1,:Mul’ initializes the third parameter; then ‘BNZ t,:Tree2’ transfers

From the Library of Melissa Nuno

ptg999

xviii PROGRAMMING TECHNIQUES

control to the Tree2 function, which will return its result directly to the caller
of Mult.

A special case of this optimization is the “tail recursion optimization.” Here,
the last call of the subroutine is a recursive call to the subroutine itself. Applying
the optimization will remove the overhead associated with recursion, turning a
recursive call into a simple loop. For an example, see Program 5.2.2Q on page
82, which uses PUSHJ as well as JMP to call the recursive part Q2.

7. REPORTING ERRORS

There is no good program without good error handling. The standard situation
is the discovery of an error while executing a subroutine. If the error is serious
enough, it might be best to issue an error message and terminate the program
immediately. In most cases, however, the error should be reported to the calling
program for further processing.

The most common form of error reporting is the specification of special
return values. Most UNIX system calls, for example, return negative values on
error and nonnegative values on success. This schema has the advantage that the
test for a negative value can be accomplished with a single instruction, not only
by MMIX but by most CPUs. Another popular error return value, which can be
tested equally well, is zero. For example, functions that return addresses often
use zero as an error return, because addresses are usually considered unsigned
and the valid addresses span the entire range of possible return values. In most
circumstances, it is, furthermore, simple to arrange things in a way that excludes
zero from the range of valid addresses.

MMIX offers two ways to return zero from a subroutine: The two instructions
‘SET $0,0; POP 1,0’ will do the job, but just ‘POP 0,0’ is sufficient as well.
The second form will turn the register that is expected to contain the return
value into a marginal register, and reading a marginal register yields zero (see
the solution to exercise 2.2.3–4 on page 125 for an example).

The POP instruction of MMIX makes another form of error reporting very
attractive: the use of separate subroutine exits for regular return and for error
return (see exercise 2.2.3–3 and its solution on page 125 for an example). The
subroutine will end with ‘POP 0,0’ in case of error and with ‘POP 1,1’ in case of
success, returning control to the instruction immediately following the PUSHJ in
case of error and to the second instruction after the PUSHJ otherwise. The calling
sequence must then insert a jump to the error handler just after the PUSHJ while
the normal control flow continues with the instruction after the jump instruction.
The advantages of this method are twofold. First, the execution of the normal
control path is faster because it no longer contains a branch instruction to test
the return value. Second, this programming style forces the calling program to
provide explicit error handling; simply skipping the test for an error return will
no longer work.

From the Library of Melissa Nuno

ptg999

CONTENTS

Foreword . iii

Preface . v

Style Guide . viii

Programming Techniques . xii

Chapter 1 —Basic Concepts 1

1.3.3. Applications to Permutations 1
1.4.4. Input and Output 8

Chapter 2 — Information Structures 15

2.1. Introduction . 15
2.2.2. Sequential Allocation 17
2.2.3. Linked Allocation 18
2.2.4. Circular Lists . 25
2.2.5. Doubly Linked Lists 27
2.2.6. Arrays and Orthogonal Lists 36
2.3.1. Traversing Binary Trees 37
2.3.2. Binary Tree Representation of Trees 39
2.3.3. Other Representations of Trees 43
2.3.5. Lists and Garbage Collection 44
2.5. Dynamic Storage Allocation 45

Chapter 3 —Random Numbers 48

3.2.1.1. Choice of modulus 48
3.2.1.3. Potency . 49
3.2.2. Other Methods 50
3.4.1. Numerical Distributions 51
3.6. Summary . 52

xix

From the Library of Melissa Nuno

ptg999

xx CONTENTS

Chapter 4 —Arithmetic . 53

4.1. Positional Number Systems 53
4.2.1. Single-Precision Calculations 53
4.2.2. Accuracy of Floating Point Arithmetic 58
4.2.3. Double-Precision Calculations 58
4.3.1. The Classical Algorithms 62
4.4. Radix Conversion 68
4.5.2. The Greatest Common Divisor 70
4.5.3. Analysis of Euclid’s Algorithm 71
4.5.4. Factoring into Primes 72
4.6.3. Evaluation of Powers 72
4.6.4. Evaluation of Polynomials 73

Chapter 5 —Sorting . 74

5.2. Internal Sorting 74
5.2.1. Sorting by Insertion 76
5.2.2. Sorting by Exchanging 81
5.2.3. Sorting by Selection 87
5.2.4. Sorting by Merging 89
5.2.5. Sorting by Distribution 93
5.3.1. Minimum-Comparison Sorting 94
5.5. Summary, History, and Bibliography 95

Chapter 6 —Searching . 97

6.1. Sequential Searching 97
6.2.1. Searching an Ordered Table 99
6.2.2. Binary Tree Searching 102
6.2.3. Balanced Trees 103
6.3. Digital Searching 106
6.4. Hashing . 108

Answers to Exercises . 117

1.3.2. The MMIX Assembly Language 117
1.3.3. Applications to Permutations 120
1.4.4. Input and Output 120

2.1. Introduction . 122
2.2.2. Sequential Allocation 123
2.2.3. Linked Allocation 124
2.2.4. Circular Lists . 128
2.2.5. Doubly Linked Lists 130
2.2.6. Arrays and Orthogonal Lists 132
2.3.1. Traversing Binary Trees 134

From the Library of Melissa Nuno

ptg999

CONTENTS xxi

2.3.2. Binary Tree Representation of Trees 136
2.3.5. Lists and Garbage Collection 139
2.5. Dynamic Storage Allocation 140

3.2.1.1. Choice of modulus 147
3.2.1.3. Potency . 148
3.2.2. Other Methods 148
3.4.1. Numerical Distributions 149
3.6. Summary . 150

4.1. Positional Number Systems 150
4.2.1. Single-Precision Calculations 151
4.2.2. Accuracy of Floating Point Arithmetic 152
4.2.3. Double-Precision Calculations 153
4.3.1. The Classical Algorithms 156
4.4. Radix Conversion 158
4.5.2. The Greatest Common Divisor 160
4.5.3. Analysis of Euclid’s Algorithm 160
4.6.3. Evaluation of Powers 161
4.6.4. Evaluation of Polynomials 161

5. Sorting . 162
5.2. Internal Sorting 162
5.2.1. Sorting by Insertion 165
5.2.2. Sorting by Exchanging 169
5.2.3. Sorting by Selection 174
5.2.4. Sorting by Merging 175
5.2.5. Sorting by Distribution 179
5.3.1. Minimum-Comparison Sorting 180
5.5. Summary, History, and Bibliography 183

6.1. Sequential Searching 183
6.2.1. Searching an Ordered Table 184
6.2.2. Binary Tree Searching 185
6.2.3. Balanced Trees 185
6.3. Digital Searching 185
6.4. Hashing . 186

Acknowledgments . 188

Index . 189

From the Library of Melissa Nuno

ptg999

This page intentionally left blank

From the Library of Melissa Nuno

ptg999

CHAPTER ONE

BASIC CONCEPTS

1.3.3. Applications to Permutations

In this section, we shall give several more examples of MMIX programs, and at the
same time introduce some important properties of permutations. These inves-
tigations will also bring out some interesting aspects of computer programming
in general.

[167]
An MMIX program. To implement this algorithm for MMIX, the “tagging” can
be done by using the sign bit of a BYTE. Suppose our input is an ASCII text
file, with characters in the range 0 to #7F, where each character is either (a)
’(’, representing the left parenthesis beginning a cycle; (b) ’)’, representing
the right parenthesis ending a cycle; (c) an ignorable formatting character in the
range 0 to #20; or (d) anything else, representing an element to be permuted.
For example, () might be represented in two lines as follows:

(ACFG) (BCD)
(AED) (FADE) (BGFAE)

The output of our program will be the product in essentially the same format.

Program A (Multiply permutations in cycle form). This program implements
Algorithm A, and it also includes provision for input, output, and the removing
of singleton cycles. But it doesn’t catch errors in the input.

01 LOC Data_Segment

02 GREG @

03 MAXP IS #2000 Maximum number of permutations
04 InArg OCTA Buffer,MAXP The arguments for Fread

05 Buffer BYTE 0 Place for input and output
06 left GREG ’(’

07 right GREG ’)’

08 LOC #100

09 base IS $0 Base address of permutations
10 k IS $1 Index into input
11 j IS $2 Index into output
12 x IS $4 Some permutation
13 current IS $5

14 start IS $6

15 size IS $7

16 t IS $8

17 Main LDA $255,InArg Prepare for input.

1

From the Library of Melissa Nuno

ptg999

2 [168] BASIC CONCEPTS 1.3.3

18 TRAP 0,Fread,StdIn Read input.
19 SET size,$255

20 INCL size,MAXP size← $255 + MAXP.
21 BNP size,Fail Check if input was OK.
22 LDA base,Buffer

23 ADDU base,base,size base← Buffer + size.
24 NEG k,size 1 A1. First pass.
25 2H LDBU current,k,base A Get next element of input.
26 CMP t,current,#20 A
27 CSNP current,t,0 A Set format characters to zero.
28 STB current,k,base A
29 CSZ start,start,current A Remember first nonformat symbol.
30 CMP t,current,’(’ A Is it ‘(’?
31 PBNZ t,1F A[B]

32 ORL current,#80 B If so, tag it.
33 STBU current,k,base B
34 SET start,0 B Reset first nonformat symbol.
35 JMP 0F B
36 1H CMP t,current,’)’ A−B Is it ‘)’?
37 PBNZ t,0F A−B[D]

38 ORL start,#80 D Tag first nonformat symbol
39 STBU start,k,base D and replace ‘)’ by it.
40 0H ADD k,k,1 C
41 PBN k,2B C [1] Have all elements been processed?
42 SET j,0 1
43 Open NEG k,size E A2. Open.
44 1H LDB x,k,base F Look for untagged element.
45 PBP x,Go F [G]

46 ADD k,k,1 G
47 PBN k,1B G[1]

48 Done BNZ j,0F Is answer the identity permutation?
49 STB left,base,0 If so, change to ‘()’.
50 STB right,base,1

51 SET j,2

52 0H SET t,#0a Add a newline.
53 STB t,base,j

54 ADD j,j,1

55 SET t,0 Terminate the string.
56 STB t,base,j

57 SET $255,base

58 TRAP 0,Fputs,StdOut Print the answer.
59 SET $255,0

60 Fail TRAP 0,Halt,0 Halt program.
61 Go STB left,base,j H Output ‘(’.
62 ADD j,j,1 H
63 STBU x,base,j H Output X.
64 ADD j,j,1 H
65 SET start,x H
66 Succ ORL x,#80 J

From the Library of Melissa Nuno

ptg999

1.3.3 APPLICATIONS TO PERMUTATIONS [169] 3

67 STBU x,k,base J Tag X.
68 3H ADD k,k,1 J A3. Set CURRENT.
69 LDBU current,k,base J
70 ANDNL current,#80 J Untag.
71 PBNZ current,1F J [0] Skip past blanks.
72 JMP 3B 0
73 5H STBU current,base,j Q Output CURRENT.
74 ADD j,j,1 Q
75 NEG k,size Q Scan formula again.
76 4H LDBU x,k,base K A4. Scan formula.
77 ANDNL x,#80 K Untag.
78 CMP t,x,current K
79 BZ t,Succ K [K+J−L]

80 1H ADD k,k,1 L Move to right.
81 PBN k,4B L[P] End of formula?
82 CMP t,start,current P A5. CURRENT 6= START.
83 PBNZ t,5B P [R]

84 STBU right,base,j R A6. Close.
85 SUB j,j,2 R Suppress singleton cycles.
86 LDB t,base,j R
87 CMP t,t,’(’ R
88 BZ t,Open R[R−S]

89 ADD j,j,3 S
90 JMP Open S

This program of approximately 74 instructions is quite a bit longer than the
programs of the previous section, and indeed it is longer than most of the
programs we will meet in this book. Its length is not formidable, however, since it
divides into several small parts that are fairly independent. Lines 17–23 read the
input file; lines 24–41 accomplish step A1 of the algorithm, the preconditioning
of the input; lines 42–47 and 61–90 do the main business of Algorithm A; and
lines 48–60 output the answer.

· · ·

Timing. The parts of Program A that are not concerned with input-output
have been decorated with frequency counts as we did for Program 1.3.2́ M; thus,
line 34 is supposedly executed B times. For convenience it has been assumed
that no formatting characters appear in the input; under this assumption, line
72 is never executed.

By simple addition the total time to execute the program is

(6+9A+4B +2C +4D +E +2F +4G+5H +8J +3Q+6K +4P +9R)υ, ()

plus the time for input and output. In order to understand the meaning of
formula (), we need to examine the thirteen unknowns A, B, C, D, E, F , G,
H, J , K, P , Q, R (the running time does not depend on S or L) and we must
relate them to pertinent characteristics of the input. We will now illustrate the
general principles of attack for problems of this kind.

From the Library of Melissa Nuno

ptg999

4 [170] BASIC CONCEPTS 1.3.3

First we apply “Kirchhoff’s first law” of electrical circuit theory: The number
of times an instruction is executed must equal the number of times we transfer
to that instruction. This seemingly obvious rule often relates several quantities
in a nonobvious way. Analyzing the flow of Program A, we get the following
equations.

From lines We deduce

24, 25, 41 A = 1 + (C − 1)
35, 37, 39, 40 C = B + (A−B −D) + D

42, 43, 88, 90 E = 1 + R

43, 44, 47 F = E + (G− 1)
45, 60, 61 H = F −G

65, 66, 79 J = H + (K − L + J)
75, 76, 81 K = Q + (L− P)
72, 73, 83 R = P −Q

[171]
The next step is to try to match up variables with important characteristics

of the data. We find from lines 24 and 40 that

C = size of the input file = X. ()

From line 32,

B = number of ‘(’ in input = number of cycles in input. ()

Similarly, from line 38,

D = number of ‘)’ in input = number of cycles in input. ()

Now () and () give us a fact that could not be deduced by Kirchhoff’s law:

B = D. ()

From line 61,

H = number of cycles in output (including singletons). ()

Line 84 says R is equal to this same quantity; the fact that H = R was in this
case deducible from Kirchhoff’s law, since it already appears in ().

Using the fact that each nonformatting character is ultimately tagged, and
lines 33, 39, and 67, we find that

J = Y − 2B, ()

where Y is the number of nonformatting characters appearing in the input. From
the fact that every distinct element appearing in the input permutation is written
into the output just once, either at line 63 or line 73, we have

P = H + Q = number of distinct elements in input. ()

From the Library of Melissa Nuno

ptg999

1.3.3 APPLICATIONS TO PERMUTATIONS [171] 5

(See Eqs. ().) A moment’s reflection makes this clear from line 82 as well.
Clearly the quantities B, C, H, J , and P that we have now interpreted

are essentially independent parameters that may be expected to enter into the
timing of Program A.

The results we have obtained so far leave us with only the unknowns G and
L to be analyzed. For these we must use a little more ingenuity. The scans of
the input that start at lines 43 and 75 always terminate either at line 48 (the
last time) or at line 82. During each one of these P + 1 loops, the instruction
‘ADD k,k,1’ is performed C times; this takes place only at lines 46, 68, and 80,
so we get the nontrivial relation

G + J + L = C(P + 1) ()

connecting our unknowns G and L. Fortunately, the running time () is a
function of G+L (it involves · · ·+2F +4G+6K + · · · = · · ·+6G+ · · ·+6L+ · · ·),
so we need not try to analyze the individual quantities G and L any further.

Summing up all these results, we find that the total time exclusive of input-
output comes to

(6NX + 17X + 4M + 2Y + 8U + 7N + 7)υ; ()

in this formula, new names for the data characteristics have been used as follows:

X = number of characters in input,
Y = number of nonformatting characters in input,
M = number of cycles in input,
N = number of distinct element names in input,
U = number of cycles in output (including singletons).

()

In this way we have found that analysis of a program like Program A is in many
respects like solving an amusing puzzle.

We will show below that, if the output permutation is assumed to be random,
the quantity U will be HN on the average.

[174]

Let us now write an MMIX program based on the new algorithm. . . . A simple
way to solve this problem is to make table T large enough so that we can use
the elements xi directly as indices. In our case the range of possible elements is
#21 to #7F, which makes a moderate-sized table.

Program B (Same effect as Program A).

01 LOC Data_Segment

02 T GREG @-#21 T← LOC(T[0]).
03 BYTE 0 Now make a table
04 LOC @+#5F for all valid names.
05 Z IS $9

... Same as lines 02–22 of Program A.

From the Library of Melissa Nuno

ptg999

6 [175] BASIC CONCEPTS 1.3.3

27 SET k,#21 1 B1. Initialize. Set k to first valid name.
28 0H STB k,T,k A T [k]← k.
29 ADD k,k,1 A k ← k + 1.
30 CMP t,k,#80 A Loop until k = #7F.
31 PBN t,0B A[1]

32 SET k,size 1
33 JMP 9F 1
34 2H LDB X,base,k B B2. Next element.
35 CMP t,X,#20 B Skip formatting characters.
36 BNP t,9F B[0]

37 CMP t,X,’)’ B
38 BZ t,0F B[B−C]

39 CMP t,X,’(’ C
40 CSZ X,t,j C B4. Change T [i].
41 CSZ j,Z,X C B3. Change T [j].
42 LDB t,T,X C
43 STB Z,T,X C
44 0H SET Z,t D If t = 0, set Z ← 0.
45 9H SUB k,k,1 E
46 PBNN k,2B E[1] Input exhausted.
47 Output ADDU base,base,size 1 base← Buffer + size.
48 SET j,0 1
49 SET k,#21 1 Traverse table T .
50 0H LDB X,T,k F
51 CMP t,X,k F
52 PBZ t,2F F [G] Skip singleton.
53 PBN X,2F G[H] Skip tagged element.
54 STB left,base,j H Output ‘(’.
55 ADD j,j,1 H
56 SET Z,k H Loop invariant: X = T [Z].
57 1H STB Z,base,j J Output Z.
58 ADD j,j,1 J
59 OR t,X,#80 J
60 STBU t,T,Z J Tag T [Z].
61 SET Z,X J Advance Z.
62 LDB X,T,Z J Get successor element
63 PBNN X,1B J [H] and continue, if untagged.
64 STB right,base,j H Otherwise, output ‘)’.
65 ADD j,j,1 H
66 2H ADD k,k,1 K Advance in table T .
67 CMP t,k,#80 K
68 PBN t,0B K [1]

... Same as lines 48–60 of Program A.

Notice how lines 38–44 accomplish most of Algorithm B with just a few instruc-
tions.

· · ·

From the Library of Melissa Nuno

ptg999

1.3.3 APPLICATIONS TO PERMUTATIONS [175] 7

Making the table T large enough to enable the use of the elements as indices
is not feasible if arbitrary strings are allowed as element names. Algorithms for
searching and building dictionaries of names, called symbol table algorithms, are
of great importance in computer applications. Chapter 6 contains a thorough
discussion of efficient symbol table algorithms.

[177]

Program I (Inverse in place). We assume that the permutation is stored as an
array of BYTEs and that x ≡ LOC(X[1]).

01 :Invert SUBU x,x,1 1 x← LOC(X[0]).
02 SET m,n 1 I1. Initialize.
03 NEG j,1 1 j ← −1.
04 2H LDB i,x,m N I2. Next element. i← X[m].
05 BN i,5F N [N−C] To I5 if i < 0.
06 3H STB j,x,m N I3. Invert one. X[m]← j.
07 NEG j,m N j ← −m.
08 SET m,i N m← i.
09 LDB i,x,m N i← X[m].
10 4H PBP i,3B N [C] I4. End of cycle?. To I3 if i > 0.
11 SET i,j C Otherwise set i← j.
12 5H NEG i,i N I5. Store final value. i← −i.
13 STB i,x,m N X[m]← i.
14 6H SUB m,m,1 N I6. Loop on m.
15 BP m,2B N [1] To I2 if m > 0.

The timing for this program is easily worked out in the manner shown earlier;
every element X[m] is set first to a negative value in step I3 and later to a positive
value in step I5. The total time comes to (13N +C +5)υ, where N is the size of
the array and C is the total number of cycles. The behavior of C in a random
permutation is analyzed below.

[178]

Program J (Analogous to Program I).

01 :Invert SUBU x,x,1 1 x← LOC(X[0]).
02 SET k,n 1 J1. Negate all.
03 0H LDB i,x,k N i← X[k].
04 NEG i,i N i← −i.
05 STB i,x,k N X[k]← i.
06 SUB k,k,1 N Continue
07 PBP k,0B N [1] while k > 0.
08 SET m,n 1 m← n.
09 2H SET i,m N J2. Initialize. i← m.
10 0H SET j,i A j ← i.
11 LDB i,x,j A J3. Find negative entry. i← X[j].
12 PBP i,0B A[N] i > 0?
13 NEG i,i N J4. Invert. i← −i.
14 LDB k,x,i N k ← X[i].

From the Library of Melissa Nuno

ptg999

8 [178] BASIC CONCEPTS 1.3.3

15 STB k,x,j N X[j]← k.
16 STB m,x,i N X[i]← m.
17 SUB m,m,1 N J5. Loop on m.
18 BP m,2B N [1] To J2 if m > 0.

1.4.4. Input and Output

[215]

A brief digression about terminology is perhaps appropriate here. . . . This
completes today’s English lessons.

The old MIX machine that is featured in Volumes 1, 2, and 3 of The Art
of Computer Programming has old-fashioned conventions for input and output,
now called “non-blocking I/O.” That is, a MIX programmer said, “Please start
inputting (or outputting) now, but let me continue executing more code.” The
machine would block further computation only if it hadn’t yet finished the
previous I/O instruction on the same device. The programmer could also test,
if desired, whether or not that previous command was complete, again without
blocking.

By contrast, input and output are specified in MMIX programs by the primi-
tive operations Fopen, Fclose, Fread, . . . , which are supplied by an underlying
operating system. Modern operating systems and programming languages tend
to discourage the use of more primitive, low-level operations, because such
instructions are deemed to be too dangerous. Thus it is impossible to give MMIX
programs that correspond closely with the MIX programs in the original text.

At the same time, the rise of modern multicore processors has made it
necessary for every serious programmer to understand threads. A thread is a
kind of coroutine that enjoys special support from the operating systems. The
system might assign separate physical processors to individual threads, executing
them in parallel; or it might allow a pool of threads to share a pool of processors,
periodically switching processors from one thread to another, so as to create the
illusion of truly parallel execution. Like coroutines, multiple threads share a joint
memory space; in contrast to coroutines, each thread has its own register file and
stack space. In such an environment, the techniques used with non-blocking I/O
reappear when one thread is responsible for asking the operating system to do
input or output while another thread is concurrently doing the computation.
The computing thread can send data to the I/O thread for output, or the I/O
thread can send input data to the computing thread for processing.

There’s a nice symmetry between these two threads, because both are doing
“computation” in some sense. The I/O thread is blocked while waiting for the
operating system to finish reading or writing; the other thread is “blocked” while
waiting for its instructions to be performed. In the following, we will call one of
the threads the producer and the other one the consumer— but it really won’t
matter which one is doing the I/O because of the symmetry.

From the Library of Melissa Nuno

ptg999

1.4.4 INPUT AND OUTPUT [215] 9

The main interesting point is the sharing of a common resource. Inside an
operating system kernel, the available physical devices (disks, screens, network
connections, etc.) are shared resources; within user-space, the shared resource
is usually just a set of locations in main memory. In general, many threads can
share a complex data structure, but two threads might actually need to share
only one octabyte.

Let us therefore consider the problem of an I/O thread and a computing
thread, which exchange data using a shared area of memory called a “buffer.”
The simplest way to do this is probably to make the producer and the consumer
alternate in their use of the buffer: While the producer fills the buffer, the
consumer will wait; and while the consumer uses the buffer data, the producer
will wait. To synchronize both threads, we use a shared octabyte S, called a
semaphore. The octabyte will have the value 0 if the producer is allowed to
access the buffer (and the semaphore); it will have the value 1 if the consumer
has access to both. The code granting mutual exclusive access to the buffer may
look like this:

Consumer:

0H LDO t,S Acquire.
BZ t,0B Wait.
SYNC 2 Synchronize.
... Use buffer.

STCO 0,S Release.

Producer:

0H LDO t,S Acquire.
BNZ t,0B Wait.
... Use buffer.

SYNC 1 Synchronize.
STCO 1,S Release.

()

Note the ‘SYNC 2’ and ‘SYNC 1’ instructions in the consumer and the producer,
respectively. Here we assume that the producer is writing to the buffer and the
consumer is reading from it. Without the ‘SYNC 2’, the consumer might guess
that the ‘BZ’ will not be taken and it might load data from the buffer even before
the ‘LDO t,S’ instruction loads S. By the time S is known to be zero, the data
loaded from the buffer might already be outdated.

The reason for the ‘SYNC 1’ instruction in the producer is similar. Modern
processors will not usually guarantee “sequential consistency”; in other words,
we cannot rely on the machine to make the effect of store instructions visible to
another thread in exactly the same order in which the instructions are issued.
The ‘SYNC 1’ instruction is there to ensure that the consumer will see all changes
made to the buffer once it has seen the change of S.

Programming concurrent threads on the instruction level is a demanding
task. Here we can only touch on some of the problems and assure the reader
that this book is mostly about sequential programs.

The method of () is generally wasteful of computer time, however, because
a very large amount of potentially useful calculating time is spent in the waiting
loop. The program’s running speed can be as much as doubled if this additional
time is used for calculation (see exercises 4 and 5, page 225).

One way to avoid such a “busy wait” is to use two buffers to exchange
data between producer and consumer: The producer can fill one buffer while

From the Library of Melissa Nuno

ptg999

10 [216] BASIC CONCEPTS 1.4.4

the consumer is using the data in the other. The code for the consumer could
change to the following:

Consumer:

0H LDO t,S Acquire.
BZ t,0B Wait.
SYNC 2 Synchronize.
... Copy buffer one to buffer two.

STCO 0,S Release.
... Use buffer two.

()

This has the same overall effect as (), but it keeps the producer busy while the
consumer works on the data in buffer two.

[217]
The sequence () is not always superior to (), although the exceptions are

rare. Let us compare the execution times: Suppose P is the time required by
the producer to input one page containing 256 octabytes, and suppose C is the
computation time that intervenes between two input requests by the consumer.
Method () requires a time of essentially P + C per input page, while method
() takes essentially max(P,C) + 256υ. (The quantity 256υ is an estimate for
the time needed for the copy operation assuming that a pipelined processor can
complete one LDO and one STO instruction simultaneously per cycle.) One way
to look at this running time is to consider “critical path time” — in this case,
the amount of time the I/O unit is idle between uses. Method () keeps the unit
idle for C units of time, while method () keeps it idle for 256υ (assuming that
C < P).

The relatively slow copying of buffers in () is undesirable, particularly
because it takes up critical path time. An almost obvious improvement of the
method allows us to avoid the copying: Producer and consumer can be revised
so that they refer alternately to two buffers. While one buffer is filled by the
producer, the consumer can perform computations using the other; then the
producer can fill the second buffer while the consumer continues with the infor-
mation in the first. This is the important technique known as buffer swapping.
The location of the current buffer of interest will be kept in memory together
with the semaphore protecting it and a link to the next semaphore.

As an example of buffer swapping, suppose we have two buffers at locations
Buffer1 and Buffer2, each SIZE bytes long. Then we define two semaphores,
S1 and S2, and combine each one with a link to the respective buffer and a link
to the other semaphore. We assume that the consumer has set up three global
registers: buffer, pointing to one of the buffers; i, an index into this buffer;
and s, pointing to the corresponding semaphore. Then the following subroutine
GetByte gets the next byte from the buffer, switching to a new buffer if the end
of the current buffer (marked by a zero byte) is reached.

From the Library of Melissa Nuno

ptg999

1.4.4 INPUT AND OUTPUT [217] 11

S1 OCTA 1,Buffer1,S2 Consumers buffer linked to S2.
S2 OCTA 0,Buffer2,S1 Producers buffer linked to S1.

...

1H STCO 0,s,0 Release.
LDO s,s,16 Switch to next buffer.

0H LDO t,s,0 Acquire.
BZ t,0B Wait.
SYNC 2 Synchronize.
LDO buffer,s,8 Update buffer.
NEG i,1 Initialize i← −1.

:GetByte ADD i,i,1 Advance to next byte.
LDBU $0,buffer,i Load one byte.
BZ $0,1B Jump if end of buffer.
POP 1,0 Otherwise return a byte.

()

The subroutine used by the producer to fill the buffer is quite symmetric (see
exercise 2).

It is easy to see that the same subroutine would also work for multiple buffers
provided that they are set up with multiple semaphores linked to form a ring.

Some more programming is required to make the subroutine work for multi-
ple concurrent consumers. If used as written above, the second consumer could
acquire the same buffer that the first consumer is working on and process it a
second time. The obvious way to prevent this from happening is to use a three-
valued semaphore: The value 0 implies that the producer owns it, 1 marks it
for consumer one, and 2 marks it for consumer two. The producer could then
schedule the buffers alternating between both consumers.

In general, the flow of buffers through a system with many buffers and many
threads can be organized in the manner outlined above as long as every thread
releasing a buffer knows in advance which thread should acquire this buffer for
further processing. But this assumption is unrealistic in many situations. Just
think of a web server with one producer that turns incoming network traffic into
page requests and a variable number of consumers (depending on the current
workload) that take one page request at a time and assemble a reply. Since the
producer will not know in advance which consumer will finish next, it cannot
possibly assign the right consumer to a new page request.

We solve this problem in three steps. First, we separate acquisition and
release of buffers into separate subroutines; second, we color each buffer with
Red ≡ 0 if it is empty, with Green ≡ 1 if it is full, and with Yellow ≡ 2 if it is
assigned to a consumer; and third, we maintain two pointers, NEXTG and NEXTR,
pointing respectively to the green and red buffer that is to be processed next.
These pointers will split the ring of buffers in two sections: NEXTG points to the
sequence of all the green buffers, after which NEXTR points to the sequence of all
the red and yellow buffers. Of course, any of these sequences might be empty.
As long as these pointers are used by a single thread, we can keep them in global
registers; if multiple threads need to share them, they need to be stored in main

From the Library of Melissa Nuno

ptg999

12 [220] BASIC CONCEPTS 1.4.4

memory and concurrent access to them must be protected by two semaphores
GS and RS, respectively.

The producer will fill the first red buffer, then turn it green, and advance to
the next red buffer, waiting, if necessary, for a yellow (or even green) buffer to
turn red. Multiple consumers will be working, each one on its own yellow buffer.
When a consumer has finished work with its buffer, it will release the buffer and
color it red. Then the consumer will advance to the first green buffer, acquire
the corresponding semaphore, then wait if necessary for the buffer to turn green,
before finally coloring it yellow and releasing the semaphore.

Program A (Acquire for multiple consumers).

01 s GREG 0 Pointer to current color, buffer, and link
02 t IS $0 Temporary variable
03 :Acquire PUT :rP,0 Expect GS = 0.
04 SET t,1 Intend to set GS← 1.
05 CSWAP t,:GS Acquire green semaphore.
06 BZ t,:Acquire Start over if swap failed.
07 SYNC 2 Synchronize.
08 LDOU s,:NEXTG Load address of next green buffer.
09 0H LDO t,s,0 Load buffer color.
10 CMP t,t,:Green Is it green?
11 BNZ t,0B Jump if it’s not green.
12 STCO :Yellow,s,0 Color buffer yellow.
13 LDOU t,s,16 Load link.
14 STOU t,:NEXTG Advance NEXTG.
15 LDO $0,s,8 Load buffer address.
16 SYNC 1 Synchronize.
17 STCO 0,:GS Release green semaphore.
18 POP 1,0 Return buffer address.

The most interesting part of this routine is the loop in lines 03–06 where the con-
sumer waits until it can acquire the green semaphore. The loop culminates in the
instruction ‘CSWAP t,:GS’. This instruction will — in one atomic operation—
load the content of the octabyte at location GS, compare it with the content of
the special prediction register rP, and, if both values are equal, will store the
content of register t at location GS and set register t to 1. The important word
here is “atomic.” The same sequence of operations could be achieved with a
sequence of ordinary load, compare, branch, and store instructions, but it would
not be atomic. In the context of multiple threads that execute in parallel, it
would easily be possible that one thread loads the value zero from location GS,
and while it is busy with comparing and branching, a second thread also loads
the value zero from location GS, long before the first thread can execute its store
instruction. Then both threads would proceed and both would start working
with the same buffer. The CSWAP instruction, in contrast, will do the load,
compare, and store as one uninterruptable (that is, atomic) operation. Once a
CSWAP instruction has started, it will prevent any other CSWAP instruction from
loading or storing at the same memory location in parallel. Multiple CSWAP
instructions will always execute one after the other.

From the Library of Melissa Nuno

ptg999

1.4.4 INPUT AND OUTPUT [223] 13

Therefore, if multiple consumer threads enter the above subroutine concur-
rently, one lucky thread gets its CSWAP instruction executed first and successfully.
The CSWAP instructions executing later will find that the value at location GS no
longer matches the content of the prediction register and so will fail. In case
of failure, the instruction ‘CSWAP t,:GS’ will change the prediction register to
reflect the new value at location GS, leave the memory at location GS unchanged,
and set the register t to zero to indicate failure.

In this way, the CSWAP instruction protects the code sequence from line 08 up
to line 17 where GS is reset to zero. If multiple consumers need a green buffer,
CSWAP and the semaphore guarantee that at any time only one consumer can
set GS to one and enter the protected code sequence; all the others will have to
wait. Once inside the protected code sequence, the thread has earned the right
to modify NEXTG, the buffer it points to, its color, and the semaphore GS (see
also exercise 15). First, the loop in lines 09–11 ensures that the buffer at NEXTG
is indeed green. Since NEXTG points to the next green buffer, we can reasonably
expect that the loop is executed only once. Then the color of the buffer is changed
to yellow and the NEXTG pointer is advanced. The final ‘SYNC 1’ ensures that
these changes become visible to other threads before they can see the change in
GS from 1 back to 0.

Compared to this, releasing a buffer is extremely simple.

Program R (Release for multiple consumers).

:Release STCO :Red,s,0 Turn buffer red.

EXERCISES [225]
x 1. [20] New : In (), the memory at location S is shared between two concurrent

threads that both alter it. Why is no CSWAP instruction required?

2. [20] New : Write a program for a producer collaborating with a consumer that
uses (). The producer should use Fgets to fill each buffer with one line from StdIn.

3. [25] New : Write an improved version of (). The current subroutine will delay
the release of the buffer unnecessarily until the first byte of the next buffer is requested.
The improved version should release the buffer as soon as the last byte of the current
buffer is taken out.

6. [20] New : How should the global registers s, i, and buffer as well as the content
of Buffer1 and Buffer2 be initialized so that the GetByte subroutine in () gets off to
the right start?

7. [17] New : Which changes are required in Programs A and R in order to obtain
Acquire and Release subroutines for use by a single producer?

12. [12] New : Modify Program A and R to work with multiple producers. Hint: Add
the color Purple; a buffer should have the color Purple if it is currently owned by a
producer.

From the Library of Melissa Nuno

ptg999

14 [227] BASIC CONCEPTS 1.4.4

13. [20] New : Discuss why a ring of buffers is not always the best data structure for
sharing buffers between multiple consumers and multiple producers.

x 15. [20] New : Mr. B. C. Dull (an MMIX programmer) thought that CSWAP is an
expensive instruction and he could improve Program A by first waiting until the buffer
at NEXTG turns green and only then start an attempt to acquire the green semaphore.
After all, the waiting loop does not modify any memory locations, therefore setting
the semaphore should not be necessary for this part of the program. So he used the
following code instead of Program A:

01 s GREG 0 Pointer to current color, buffer, and link
02 t IS $0 Temporary variable
03 :Acquire LDOU s,:NEXTG Load address of next green buffer.
04 LDO t,s,0 Load buffer color.
05 CMP t,t,:Green Is it green?
06 BNZ t,:Acquire Jump if it’s not green.
07 PUT :rP,0 Expect GS = 0.
08 SET t,1 Intend to set GS← 1.
09 CSWAP t,:GS Acquire green semaphore.
10 BZ t,:Acquire Start over if swap failed.
11 STCO :Yellow,s,0 Color buffer yellow.
12 . . . (Lines 12–18 remain as before.)

What serious mistake did he make, and what should he have done instead?

18. [35] New : Inside an operating system, I/O typically uses the interrupt facilities of
the processor. Write a forced trap handler that implements ‘TRAP 0,Fgets,StdIn’ and
a matching dynamic trap handler, which takes care of the keyboard interrupt. Both
handlers should communicate by using a shared buffer.

To keep things simple, assume that each keystroke causes an interrupt which will
set the KBDINT bit of rQ to 1; and that after such an interrupt, the character code just
typed can be read as a single byte value at physical address KBDCHAR. An invocation
of ‘TRAP 0,Fgets,StdIn’ should return immediately, if the necessary data is already
available in the buffer; otherwise, it should wait until sufficient data has accumulated.
Besides the buffer, both handlers may share additional data to do the “bookkeeping.”

From the Library of Melissa Nuno

ptg999

CHAPTER TWO

INFORMATION STRUCTURES

2.1. INTRODUCTION

[233]
We will illustrate methods of dealing with information structures in terms

of the MMIX computer. A reader who does not care to look through detailed
MMIX programs should at least study the ways in which structural information is
represented in MMIX’s memory.

· · ·
As a more interesting example, suppose the elements of our table are in-

tended to represent playing cards; we might have two-octabyte nodes broken
into five fields, TAG, SUIT, RANK, TITLE, and NEXT:

NEXT

TAG SUIT RANK TITLE
()

(This format reflects the content of two octabytes; see Section 1.3.1́ .)

[234]
TAG is stored as one BYTE; TAG = #80 means that the card is face down,

TAG = #00 means that it is face up. A single bit would be enough to store
this information; it is, however, convenient to use an entire byte, because this
is the smallest unit of memory that can be loaded or stored individually. Using
the most significant bit has the further advantage that it is the “sign” bit; it
can be tested directly — for instance, with a BN (branch if negative) instruction.
SUIT is another byte, with SUIT = 1, 2, 3, or 4 for clubs, diamonds, hearts, or
spades, respectively. The next byte holds the RANK; RANK = 1, 2, . . . , 13 for ace,
deuce, . . . , king. TITLE is a five-character alphabetic name of this card, for use
in printouts. NEXT is a link to the card below this one in the pile. A typical pile
might look like this:

Computer representation

#20...100: Λ
#20...108: #80 1 10 1 0 C

#20...388: #2000000000000100
#20...390: #00 4 3 3 S

#20...240: #2000000000000388
#20...248: #00 2 2 2 D

()

15

From the Library of Melissa Nuno

ptg999

16 [235] INFORMATION STRUCTURES 2.1

It is easy to transform this notation into MMIXAL assembly language code.
The values of link variables are put into registers; field-offsets, defined as appro-
priate constants, are used in load and store instructions. For example, Algorithm
A above could be written thus:

LOC Data_Segment

GREG @

TOP OCTA 1F Link variable; points to top card on pile.
NEWCARD OCTA 2F Link variable; points to a new card.

NEXT IS 0 Definition of NEXT
TAG IS 8 and TAG offsets for the assembler
FACEUP IS 0

top IS $0 Register for TOP

new IS $1 Register for NEWCARD

t IS $2 Temporary variable
. . .

LOC #100

Main . . .

LDOU new,NEWCARD A1. new← NEWCARD.
LDOU top,TOP top← TOP.
STOU top,new,NEXT NEXT(NEWCARD)← TOP.
STOU new,TOP A2. TOP← NEWCARD.
SET t,FACEUP A3.
STBU t,new,TAG TAG(TOP)← FACEUP.

. . .

()

· · ·
There is an important distinction between assembly language and the no-

tation used in algorithms. Since assembly language is close to the machine’s
internal language, the symbols used in MMIXAL programs mostly stand for ad-
dresses and registers instead of values. Thus, in the left-hand column of (),
the symbol TOP actually is bound to the address where the pointer to the top
card appears in memory; but in () and () and in the remarks at the right
of (), it denotes the value of TOP— namely, the address of the top card node.
To complicate things even further, before MMIX can work with the address of
the top card, it needs to load this address into a register. For this purpose, ()
introduces the symbol top and binds it to register $0. After MMIX loads the
content of TOP, the octabyte in memory, into top, the register, both will contain
the same value. Occasionally, however, a symbol in an MMIXAL program is indeed
bound to a plain value; in (), the name FACEUP was introduced just to illustrate
this case.

From the Library of Melissa Nuno

ptg999

2.1 INTRODUCTION [237] 17

EXERCISES [237]

x 7. [07] In the text’s example MMIX program (), the link variable TOP is stored in an
OCTA labeled TOP in MMIXAL assembly language. Given the field structure (), which of
the following sequences of code brings the quantity SUIT(TOP) into register t? Explain
why the other sequences are incorrect.

a) LDA t,TOP b) LDA t,TOP+SUIT c) LDOU t,TOP

LDB t,t,SUIT LDB t,t,0 LDB t,t,SUIT

x 8. [18] Write an MMIX program corresponding to steps B1–B3.

9. [23] Write an MMIX subroutine that prints out the alphabetic names of the cards
in the card pile, starting with card X, passed as a parameter, with one card per line,
and with parentheses around cards that are face down.

2.2.2. Sequential Allocation

[246]
In the case of MMIX, given an index in register i, the coding to bring the ith

one-octabyte node into register a is changed from
LDA base,L0

SL ii,i,3
LDO a,base,ii

to, for example,
LDOU base,BASE
SL ii,i,3
LDO a,base,ii

()

where ii is an auxiliary register and BASE contains the address of L0. Such
relative addressing may take longer than fixed-base addressing, because the LDOU
executes an additional load from memory after an address calculation, which by
itself is equivalent to the LDA instruction. If, however, the base address is kept
in a global register instead of in a memory location, relative addressing can be
as fast as fixed-base addressing.

EXERCISES [251]

3. [21] New : Suppose that MMIX is extended as follows: The value of the Z field of
the LDOUI instruction is to have the form Z = 8Z1 + 4Z2 + Z3, where 0 ≤ Z1 < 32,
0 ≤ Z2 < 2, and 0 ≤ Z3 < 4. If Z2 = 0, the meaning is that the instruction will load
u($X)← M8[$Y +Z1×8] if Z3 = 0, and it will load u($X)← M8[$Y +(Z1 +$Z3)×8]
if 0 < Z3 < 4. If, however, Z2 = 1 instead of loading $X, the instruction will first load
a new value of Z according to the rules above and then repeat the load instruction
using the new value for Z (with 0 ≤ Z1 < 261) and zero instead of $Y . The execution
time of the instruction will be 1υ + 1µ plus an extra υ + µ for each time where Z2 = 1.

The instruction LDOU will work the same, but will take the value of Z from
register $Z; the instructions LDO and LDOI will work like their unsigned counterparts.
As a nontrivial example, suppose that the octabyte at location #1020 contains #2002,
register $0 holds the value #1000, and register $2 holds the value 7.

Then the instruction LDOUI $X,$0,#24 will first compute $0+ #20 = #1020, then
load Z ← M8[

#1020] = #2002, and start over, now computing the address #2000 +
$2× 8 = #2038, and finally load u($X)← M8[

#2038].

From the Library of Melissa Nuno

ptg999

18 [251] INFORMATION STRUCTURES 2.2.2

Using this new addressing feature, show how to simplify the coding of (). How
much faster is your code than ()?

4. [20] New : Given the extension of exercise 3, suppose there are several tables
whose base addresses are stored as octabytes in locations X, X + 8, X + 16, How
can the new addressing feature be used to bring the ith element of the jth table into
register a?

5. [20] New : Discuss the merits of the extension proposed in exercise 3.

2.2.3. Linked Allocation

[256]

7) Simple operations, like proceeding sequentially through a list, are slightly
faster for sequential lists on many computers. For MMIX, the comparison is
between ‘INCL i,c’ and ‘LDOU p,p,LINK’, which both are done in one cycle but
with the difference of an additional memory access. If the elements of a linked
list belong to different cache lines, or even to different pages in bulk memory,
the memory accesses might take significantly longer.

· · ·
In the next few examples we will assume for convenience that a node has

two octabytes — first one octabyte for the LINK and then one octabyte for the
INFO:

LINK

INFO
. ()

[258]

Before looking at the case of queues, let us see how the stack operations can
be expressed conveniently in programs for MMIX. Assuming that AVAIL is kept in
a global register avail, we can write a program for insertion, with parameter y
(the INFO) as follows, using two auxiliary local registers p and t:

LINK IS 0 Offset of the LINK field
INFO IS 8 Offset of the INFO field

SET p,:avail P← AVAIL.
BZ p,:Overflow Is AVAIL = Λ?
LDOU :avail,p,LINK AVAIL← LINK(P).
STO y,p,INFO INFO(P)← Y.
LDOU t,:T

STOU t,p,LINK LINK(P)← T.
STOU p,:T T← P.

()

This takes 7υ + 5µ, compared to 3υ + 1µ for a comparable operation with a
sequential table (although Overflow in the sequential case would in many cases

From the Library of Melissa Nuno

ptg999

2.2.3 LINKED ALLOCATION [258] 19

take considerably longer). In this program, as in others to follow in this chapter,
Overflow denotes an ending routine.

A program for deletion is equally simple:

LDOU p,:T P← T.
BZ p,:Underflow Is T = Λ?
LDOU t,p,LINK

STOU t,:T T← LINK(P).
LDO y,p,INFO Y← INFO(P).
STOU :avail,p,LINK LINK(P)← AVAIL.
SET :avail,p AVAIL← P.

()

[263]

Therefore we will assume that the objects to be sorted are numbered from
1 to n in any order. The input of the program will be in a Buffer as a
sequential list of 256 pairs of TETRAs, where the pair (j, k) means that object j
precedes object k. The first pair, however, is (0, n), where n is the number of
objects. The pair (0, 0) terminates the input. We shall assume that n + 1 table
entries plus the number of relation pairs will fit comfortably in memory; that the
next input buffer can be obtained with ‘LDA $255,InArgs; TRAP 0,Fread,Fin’
from a binary file; and that it is not necessary to check the input for validity.
The output is to be the numbers of the objects in sorted order, followed by
the number 0. Up to 512 of these numbers can be stored as TETRAs in the
Buffer, before the buffer needs to be written to disk using the instructions
‘LDA $255,OutArgs; TRAP 0,Fwrite,Fout’.

[264]

The algorithm that follows uses a sequential table X[0], X[1], . . . , X[n],
and each node X[k] has the form

COUNT[k] TOP[k] .

Here COUNT[k] is the number of direct predecessors of object k (the number of
relations j ≺ k that have appeared in the input), and TOP[k] is a link to the
beginning of the list of direct successors of object k. The latter list contains
entries in the format

SUC NEXT ,

where SUC is a direct successor of k and NEXT is the next item of the list. To
make the links in the TOP[k] and NEXT fields fit into one tetrabyte, we use relative
addresses: All addresses are relative to a fixed global address Base and can be
converted into an absolute address by adding Base.

· · ·

From the Library of Melissa Nuno

ptg999

20 [266] INFORMATION STRUCTURES 2.2.3

The coding of Algorithm T in MMIX assembly language has a few additional
points of interest. Since no deletion from tables is made in the algorithm (because
no storage must be freed for later use), the operation P⇐ AVAIL can be done in
an extremely simple way, as shown in lines 11, 12, 24, and 25 below; we need not
keep any linked pool of memory, and we can choose new nodes consecutively. The
program includes complete input and output using Fopen, Fread, Fwrite, and
Fclose system calls; the details of the data structures containing the parameters
are omitted for the sake of simplicity. Right after the input buffer, we assume
a Sentinel, the pair (0, 0), in memory. It allows us to assert in step T4
simultaneously that neither the end of the input nor the end of the buffer has
been reached. The reader should not find it very difficult to follow the details
of the coding in this program, since it corresponds directly to Algorithm T but
with slight changes for efficiency. The efficient use of base addresses, which is an
important aspect of linked memory processing, is illustrated here. We combine
the conversion of relative addresses to absolute addresses and the addition of an
appropriate offset to access a field by precomputing two base addresses (see line
13): count← Base+COUNT and top← Base+TOP. Using these bases, COUNT[j]
and TOP[j] can be loaded or stored with a single instruction. The same applies to
the SUC and NEXT fields; because they use the same base and incidentally the same
offsets, we merely define suc as an alias for count and next for top. Again, qlink
is just an alias for count. The code is further simplified by scaling object numbers
by 8. This turns the object number k into the relative address of X[k]. Similarly,
we define suitable base address left and right for loading pairs from the Buffer.

Program T (Topological Sort).

01 :TSort LDA $255,InOpen 1 T1. Initialize.
02 TRAP 0,:Fopen,Fin 1 Open input file.
03 LDA $255,IOArgs 1
04 TRAP 0,:Fread,Fin 1 Read first input buffer.
05 SET size,SIZE 1 Load buffer size.
06 LDA left,Buffer+SIZE 1 Point left to the buffer end.
07 ADDU right,left,4 1 Point right to next TETRA.
08 NEG i,size 1 i← 0.
09 LDT n,right,i 1 First pair is (0, n), n← n.
10 ADD i,i,8 1 i← i + 1.
11 SET :avail,8 1 Allocate QLINK[0].
12 8ADDU :avail,n,:avail 1 Allocate n COUNT and TOP fields.
13 LDA count,Base+COUNT 1 count← LOC(COUNT[0]).
14 LDA top,Base+TOP 1 top← LOC(TOP[0]).
15 SL k,n,3 1 k ← n.
16 1H STCO 0,k,count n + 1 Set (COUNT[k], TOP[k])← (0, 0),
17 SUB k,k,8 n + 1 for 0 ≤ k ≤ n.
18 PBNN k,1B n + 1[1] Anticipate QLINK[0]← 0 (step T4).
19 JMP T2 1
20 T3 SL k,k,3 m T3. Record the relation.
21 LDT t,k,count m Increase COUNT[k] by one.
22 ADD t,t,1 m

From the Library of Melissa Nuno

ptg999

2.2.3 LINKED ALLOCATION [267] 21

23 STT t,k,count m
24 SET p,:avail m P⇐ AVAIL.
25 ADD :avail,:avail,8 m
26 STT k,suc,p m SUC(P)← k.
27 SL j,j,3 m
28 LDTU t,top,j m NEXT(P)← TOP[j].
29 STTU t,next,p m
30 STTU p,top,j m TOP[j]← P.
31 T2 LDT j,left,i m + b T2. Next relation.
32 LDT k,right,i m + b
33 ADD i,i,8 m + b i← i + 1.
34 PBNZ j,T3 m + b[b] End of input or buffer?
35 1H BNP i,T4 b[1] End of input?
36 TRAP 0,:Fread,Fin b− 1 Read next buffer.
37 NEG i,size b− 1 i← 0.
38 JMP T2 b− 1
39 T4 TRAP 0,:Fclose,Fin 1 T4. Scan for zeros.
40 SET r,0 1 R← 0.
41 SL k,n,3 1 k ← n.
42 1H LDT t,k,count n Examine COUNT[k],
43 PBNZ t,0F n[a] and if it is zero,
44 STT k,qlink,r a set QLINK[R]← k,
45 SET r,k a and R← k.
46 0H SUB k,k,8 n
47 PBP k,1B n[1] For n ≥ k > 0.
48 LDT f,qlink,0 1 F← QLINK[0].
49 LDA $255,OutOpen 1 Open output file.
50 TRAP 0,:Fopen,Fout 1
51 NEG i,size 1 Point i to the buffer start.
52 JMP T5 1
53 T5B PBN i,0F n[c−1] Jump if buffer is not full.
54 LDA $255,IOArgs c− 1
55 TRAP 0,:Fwrite,Fout c− 1 Flush output buffer.
56 NEG i,size c− 1 Point i to the buffer start.
57 0H SUB n,n,1 n n← n− 1.
58 LDTU p,top,f n P← TOP[F].
59 BZ p,T7 n[d] If P = Λ go to T7.
60 T6 LDT s,suc,p m T6. Erase relations.
61 LDT t,s,count m Decrease COUNT[SUC(P)].
62 SUB t,t,1 m
63 STT t,s,count m
64 PBNZ t,0F m[n−a] If zero,
65 STT s,qlink,r n− a set QLINK[R]← SUC(P),
66 SET r,s n− a and R← SUC(P).
67 0H LDT p,next,p m P← NEXT(P).
68 PBNZ p,T6 m[n−d] If P = Λ go to T7.
69 T7 LDT f,qlink,f n T7. Remove from queue.
70 T5 SR t,f,3 n + 1 T5. Output front of queue.
71 STT t,left,i n + 1 Output the value of F.

From the Library of Melissa Nuno

ptg999

22 [268] INFORMATION STRUCTURES 2.2.3

72 ADD i,i,4 n + 1
73 PBNZ f,T5B n + 1[1] If F = 0 go to T8.
74 T8 LDA $255,IOArgs 1 T8. End of process.
75 TRAP 0,:Fwrite,Fout 1 Flush output buffer.
76 TRAP 0,:Fclose,Fout 1 Close output file.
77 POP 1,0 Return n.

The analysis of Algorithm T is quite simple with the aid of Kirchhoff’s law;
the execution time has the approximate form c1m+ c2n, where m is the number
of input relations, n is the number of objects, and c1 and c2 are constants. It
is hard to imagine a faster algorithm for this problem! The exact quantities in
the analysis are given with Program T above, where a = number of objects with
no predecessor, b = number of disk blocks in the input file = d(m + 2)/256e,
c = number of disk blocks in the output file = d(n + 2)/512e, and d = number
of objects with no successor (needed only for the analysis of bad guesses at
the end of T4 and T6). Exclusive of input-output operations, with each TRAP
instruction contributing only 5υ, the total running time in this case is only
(22m + 22n + 14b + 9c + 50)υ + (12m + 6n + 2b + 4)µ.

EXERCISES [269]

2. [22] Write a “general purpose” MMIX subroutine to do the insertion operation, ().
This subroutine should have the following specifications:

Calling sequence: PUSHJ $X,Insert

Entry conditions: $0 ≡ LOC(T) and $1 ≡ Y.
AVAIL is kept in the global register avail.

Exit conditions: The information Y is inserted just before the node that was
pointed to by link variable T.

3. [22] Write a “general purpose” MMIX subroutine to do the deletion operation, ().
This subroutine should have the following specifications:

Calling sequence: PUSHJ $X,Delete

JMP Underflow

Entry conditions: $0 ≡ LOC(T).
AVAIL is kept in the global register avail.

Exit conditions: If the stack whose pointer is the link variable T is empty,
the first exit is taken. Otherwise, the top node of that stack
is deleted, exit is made to the second instruction following
‘PUSHJ’, and the return value in $X is the contents of the INFO

field of the deleted node.

4. [22] The exercise for the MIX computer used the fact that the conditional jump to
OVERFLOW could also be thought of as a subroutine call with a return to the instruction
immediately preceding the call. The MMIX computer, as most computers now do, uses
different instructions for subroutine calls and for conditional jumps, which are one-
way streets with no return path. A comparable exercise for MMIX could use a calling

From the Library of Melissa Nuno

ptg999

2.2.3 LINKED ALLOCATION [269] 23

convention as in exercise 3 and replace the ‘JMP Underflow’ after the call to Delete

with ‘PUSHJ $255,Underflow’. Another approach, used by many code libraries, is to
provide a subroutine that combines the operation P ⇐ AVAIL with memory repacking
and/or garbage collection. If in spite of all efforts sufficient memory is not available,
these subroutines return Λ and leave it to the calling program to attempt a program-
specific recovery. The following new exercise follows this second approach.

Show how to write an MMIX memory allocation subroutine Allocate following ().
This subroutine should have the following specifications:

Calling sequence: PUSHJ $X,Allocate

Entry conditions: AVAIL, POOLMAX, and SEQMIN are kept in global registers.

Exit conditions: If memory is available, return the address of a newly allocated
node. Otherwise, the subroutine returns zero.

8. [24] Write an MMIX subroutine for the problem of exercise 7, taking the address
of FIRST as a parameter. Try to design your program to operate as fast as possible.

· · ·

22. [23] Program T assumes that its input file contains valid information, but a
program that is intended for general use should always make careful tests on its input so
that clerical errors can be detected, and so that the program cannot “destroy itself.” For
example, if one of the input relations for k were negative, Program T may erroneously
change memory locations preceding array X when storing into X[k]. Suggest ways to
modify Program T so that it is suitable for general use.

24. [24] Incorporate the extensions of Algorithm T made in exercise 23 into Pro-
gram T.

26. [29] (Subroutine allocation.) Suppose that we have a large file containing the
main subroutine library in relocatable form. The loading routine wants to determine
the amount of relocation for each subroutine used, so that it can make one pass through
the file to load the necessary routines.

· · ·
One way to tackle this problem is to have a “file directory” that fits in memory.

The loading routine has access to two tables:

a) The file directory. This table is composed of variable-length nodes that consist
of two or more tetrabytes each. The first tetrabyte of a node contains the SPACE field,
and the following tetrabytes contain one or more LINK fields.

Dir: SPACE LINK0

LINK1 LINK2 | 1
SPACE LINK0

LINK1 | 1 SPACE

LINK0 · · ·

In each node, SPACE is the number of tetrabytes required by the subroutine in the
range 0 < SPACE < 231; LINK0, the first LINK field, is a link to the directory entry
for the subroutine that follows this subroutine in the linked list of entries or zero if
this subroutine is the last. We implement links as relative addresses and ensure, by a
suitable choice of the base address, that zero will not occur as link to a valid directory

From the Library of Melissa Nuno

ptg999

24 [271] INFORMATION STRUCTURES 2.2.3

entry. The remaining LINK fields, LINK1, LINK2, . . . , LINKk (k ≥ 0), are links to the
directory entries for any other subroutines required by this one. The LINK fields are
normally even, because nodes are TETRA aligned. However, the last LINK field of a node
has its least significant bit set to 1 to indicate the end of the node; this bit is ignored
when using a LINK field as an address in load or store instructions. The relative address
of the directory entry for the first subroutine of the library file is specified by the link
variable FIRST.

b) The list of subroutines directly referred to by the program to be loaded. This
is stored in consecutive octabytes X[0], X[1], . . . , X[N− 1], where N ≥ 0 is a variable
known to the loading routine. Each octabyte in this list has the following form:

BASE SUB .

Initially, only the SUB field is used, for the offsets of the directory entries for the
subroutines desired; the BASE field is unused.

The loading routine also knows MLOC, the amount of relocation to be used for the
first subroutine loaded.

As a small example, consider the following configuration:

File directory

#1000: 20 #1024
#1008: #100D 30
#1010: #1049 200
#1018: #1034 #1000
#1020: #102D 100
#1028: #1015 60
#1030: #1001 200
#1038: #0000 #1024
#1040: #100C #102D
#1048: 20 #102D

List of subroutines needed

X[0]: #1014

X[1]: #1048

with N = 2, FIRST = #100C, and MLOC = 2400.

The file directory in this case shows that the subroutines on file are #100C, #1048,
#102C, #1000, #1024, #1014, and #1034 in that order. Subroutine #1034 takes 200

TETRAs and implies the use of subroutines #1024, #100C, and #102C; etc. The program
to be loaded requires #1014 and #1048, which are to be placed into locations ≥ 2400.
These subroutines in turn imply that #1000, #102C, and #100C must also be loaded.

The subroutine allocator is to change the X-table so that in each entry X[0],
X[1], . . . , the SUB field is a subroutine to be loaded and the BASE field is the amount of
its relocation. These entries are to be in the order in which the subroutines appear in
the file directory. The last entry contains the first unused memory address and a zero
link field.

From the Library of Melissa Nuno

ptg999

2.2.3 LINKED ALLOCATION [272] 25

One possible answer for the example above would be:

X[0]: 2400 #100C

X[1]: 2430 #1048

X[2]: 2450 #102C

X[3]: 2510 #1000

X[4]: 2530 #1014

X[5]: 2730 #0000

The problem in this exercise is to design an algorithm for the stated task.

27. [25] Write an MMIX program for the subroutine allocation algorithm of exercise 26.

2.2.4. Circular Lists

[275]

We will consider here the two operations of addition and multiplication. Let
us suppose that a polynomial is represented as a list in which each node stands
for one nonzero term, and has the three-octabyte form

LINK

SIGN A B C

COEF

. ()

Here COEF contains the (signed) coefficient of the term xAyBzC. We will assume
that the coefficients and exponents will always lie in the range allowed by this
format, and that it is not necessary to check the ranges during our calculations.
The notation ABC will be used to stand for the SIGN A B C fields of the node (),
treated as a single octabyte. The SIGN field will always be zero, except that
there is a special node at the end of every polynomial that has ABC = −1 and
COEF = 0. This special node is a great convenience, analogous to our discussion
of a list head above, because it provides a convenient sentinel and it avoids the
problem of an empty list (corresponding to the polynomial 0). Actually, only
the sign bit of the SIGN field is necessary to tag the sentinel node; if required,
the remaining 15 bits could be used to accommodate a fourth exponent. The
nodes of the list always appear in decreasing order of the ABC field, if we follow
the direction of the links, except that the last node (which has ABC = −1) links
to the largest value of ABC. For example, the polynomial x6 − 6xy5 + 5y6 would
be represented thus:

+1
6 0 0

-6
1 5 0

+5
0 6 0

 0

PTR

-10 0 0

· · ·

From the Library of Melissa Nuno

ptg999

26 [277] INFORMATION STRUCTURES 2.2.4

The programming of Algorithm A in MMIXAL language shows again the ease
with which linked lists are manipulated in a computer. In the following code,
we assume that the global register avail points to a sufficiently large stack of
available nodes.

Program A (Addition of polynomials). The subroutine expects two parameters,
p ≡ polynomial(P) and q ≡ polynomial(Q). It will replace polynomial(Q) by
polynomial(Q) + polynomial(P).

01 :Add SET q1,q 1 + m′′ A1. Initialize. Q1← Q.
02 LDOU q,q,LINK 1 + m′′ Q← LINK(Q).
03 0H LDOU p,p,LINK 1 + p P← LINK(P).
04 LDO coefp,p,COEF 1 + p coefp← COEF(P).
05 LDO abcp,p,ABC 1 + p A2. ABC(P) : ABC(Q).
06 2H LDO t,q,ABC x t← ABC(Q).
07 CMP t,abcp,t x Compare ABC(P) and ABC(Q).
08 BZ t,A3 x[m+1] If equal, go to A3.
09 BP t,A5 p′ + q′[p′] If greater, go to A5.
10 SET q1,q q′ If less, set Q1← Q.
11 LDOU q,q,LINK q′ Q← LINK(Q).
12 JMP 2B q′ Repeat.
13 A3 BN abcp,6F m + 1[1] A3. Add coefficients.
14 LDO coefq,q,COEF m coefq← COEF(Q).
15 ADD coefq,coefq,coefp m coefq← coefq + coefp.
16 STO coefq,q,COEF m COEF(Q)← COEF(Q) + COEF(P).
17 PBNZ coefq,:Add m[m′] Jump if nonzero.
18 SET q2,q m′ A4. Delete zero term. Q2← Q.
19 LDOU q,q,LINK m′ Q← LINK(Q).
20 STOU q,q1,LINK m′ LINK(Q1)← Q.
21 STOU :avail,q2,LINK m′

22 SET :avail,q2 m′ AVAIL⇐ Q2.
23 JMP 0B m′ Go to advance P.
24 A5 SET q2,:avail p′ A5. Insert new term.
25 LDOU :avail,:avail,LINK p′ Q2⇐ AVAIL.
26 STO coefp,q2,COEF p′ COEF(Q2)← COEF(P).
27 STOU abcp,q2,ABC p′ ABC(Q2)← ABC(P).
28 STOU q,q2,LINK p′ LINK(Q2)← Q.
29 STOU q2,q1,LINK p′ LINK(Q1)← Q2.
30 SET q1,q2 p′ Q1← Q2.
31 JMP 0B p′ Go to advance P.
32 6H POP 0,0 Return from subroutine.

· · ·
The analysis given with Program A uses the abbreviations

m = m′ + m′′, p = m + p′, q = m + q′, x = 1 + m + p′ + q′;

the running time for MMIX is (21m′ + 15m′′ + 17p′ + 7q′ + 13)υ + (9m′ + 7m′′ +
9p′ + 2q′ + 5)µ.

From the Library of Melissa Nuno

ptg999

2.2.4 CIRCULAR LISTS [279] 27

EXERCISES [279]

11. [24] . . . Write an MMIX subroutine with the following specifications:

Calling sequence: PUSHJ $X,Copy

Entry conditions: $0 ≡ polynomial(P).

Exit conditions: Returns a pointer to a newly created polynomial equal
to polynomial(P).

12. [21] Compare the running time of the program in exercise 11 with that of Algo-
rithm A when the polynomial(Q) = 0.

13. [20] Write an MMIX subroutine with the following specifications:

Calling sequence: PUSHJ $X,Erase

Entry conditions: $0 ≡ polynomial(P).

Exit conditions: polynomial(P) has been added to the AVAIL list.

[Note: This subroutine can be used in conjunction with the subroutine of exercise 11
in the sequence ‘LDOU t+1,Q; PUSHJ t,Erase; LDOU t+1,P; PUSHJ t,Copy; STOU t,Q’
to achieve the effect “polynomial(Q)← polynomial(P)”.]

14. [22] Write an MMIX subroutine with the following specifications:

Calling sequence: PUSHJ $X,Zero

Entry conditions: None

Exit conditions: Returns a newly created polynomial equal to 0.

15. [24] Write an MMIX subroutine to perform Algorithm M, having the following
specifications:

Calling sequence: PUSHJ $X,Mult

Entry conditions: $0 ≡ polynomial(Q), $1 ≡ polynomial(M), $2 ≡ polynomial(P).

Exit conditions: polynomial(Q)← polynomial(Q)
+ polynomial(M)× polynomial(P).

[Note: Modify Program A by adding an outer loop on M and a multiplication by one
term of M in the inner loop.]

16. [M28] Estimate the running time of the subroutine in exercise 15 in terms of some
relevant parameters.

2.2.5. Doubly Linked Lists

[282]
. . . Corresponding to these buttons, there are two variables CALLUP and

CALLDOWN, in which the five least significant bits each represent one button.
There is also a variable CALLCAR representing with its bits the buttons within
the elevator car, which direct it to the destination floor. The individual bits

From the Library of Melissa Nuno

ptg999

28 [282] INFORMATION STRUCTURES 2.2.5

are denoted by CALLUP[j], CALLDOWN[j], and CALLCAR[j] in the following al-
gorithms, for 0 ≤ j ≤ 4. When a person presses a button, the appropriate bit in
one of these variables is set to 1; the elevator clears the bit to 0 after the request
has been fulfilled.

So far we have described the elevator from the user’s point of view; the
situation is more interesting as viewed by the elevator. The elevator is in one
of three states: GOINGUP (STATE > 0), GOINGDOWN (STATE < 0), or NEUTRAL
(STATE = 0).

[288]
Each node representing an activity (whether a user or an elevator action)

has the form

LLINK1

RLINK1

NEXTINST

NEXTTIME IN OUT

LLINK2

RLINK2

. ()

[289]
First comes a number of lines of code that just serve to define the initial contents
of the tables. There are several points of interest here: We have list heads for
the WAIT list (line 010), the QUEUE lists (lines 020–024), and the ELEVATOR list
(line 026). Each of them is a node of the form (), but with unimportant words
deleted; the WAIT list head contains only the first four octabytes of a node,
while the QUEUE and ELEVATOR list heads require only the last two octabytes of
a node. For convenience, we set up global registers wait, queue, and elevator
pointing to these list heads. We have also four nodes that are always present in
the system (lines 011–015): USER1, a node that is always positioned at step U1
ready to enter a new user into the system; ELEV1, a node that governs the main
actions of the elevator at steps E1, E2, E3, E4, E6, E7, and E8; and ELEV2 and
ELEV3, nodes that are used for the elevator actions E5 and E9, which take place
independently of other elevator actions with respect to simulated time. Each of
these four nodes contains only four octabytes, since they never appear in the
QUEUE or ELEVATOR lists. The nodes representing each actual user in the system
will appear in the pool segment.

001 LLINK1 IS 0 Definition of fields
002 RLINK1 IS 8

003 NEXTINST IS 16

004 NEXTTIME IS 24

005 IN IS 30

006 OUT IS 31

007 LLINK2 IS 32

008 RLINK2 IS 40

From the Library of Melissa Nuno

ptg999

2.2.5 DOUBLY LINKED LISTS [289] 29

009 LOC Data_Segment

010 WAIT OCTA USER1,USER1,0,0 List head for WAIT list
011 USER1 OCTA WAIT,WAIT,U1,0 User action U1
012 wait GREG WAIT Pointer to WAIT list head
013 ELEV1 OCTA 0,0,E1,0 Elevator actions except E5 and E9
014 ELEV2 OCTA 0,0,E5,0 Elevator action E5
015 ELEV3 OCTA 0,0,E9,0 Elevator action E9
016 time GREG 0 Current simulated time
017 c GREG 0 Current node
018 c0 GREG 0 Backup for current node
019 queue GREG @-4*8 Pointer to QUEUE[0] list head
020 OCTA @-4*8,@-4*8 List head for QUEUE[0]
021 OCTA @-4*8,@-4*8 List head for QUEUE[1]
022 OCTA @-4*8,@-4*8 (All queues are
023 OCTA @-4*8,@-4*8 initially empty.)
024 OCTA @-4*8,@-4*8 List head for QUEUE[4]
025 elevator GREG @-4*8 Pointer to ELEVATOR list head
026 OCTA @-4*8,@-4*8 List head for ELEVATOR

027 callup GREG 0

028 calldown GREG 0

029 callcar GREG 0

030 off IS 0

031 on GREG 1

032 floor GREG 0

033 d1 GREG 0 Indicates doors open, activity
034 d2 GREG 0 Indicates no prolonged standstill
035 d3 GREG 0 Indicates doors open, inactivity
036 state GREG 0 −1 going down, 0 neutral, +1 going up
037 dt GREG 0 Hold time
038 fi GREG 0 Floor IN

039 fo GREG 0 Floor OUT

040 tg GREG 0 Give-up time

The next part of the program coding contains basic subroutines and the
main control routines for the simulation process. Subroutines Insert and Delete
perform typical manipulations on doubly linked lists; they put the current node
C into or take it out of a QUEUE or ELEVATOR list. There are also subroutines for
the WAIT list: Subroutine SortIn adds the current node to the WAIT list, sorting
it into the right place based on its NEXTTIME field. Subroutine Immed inserts the
current node at the front of the WAIT list. Subroutine Hold puts the current node
into the WAIT list, with NEXTTIME equal to the current time plus the amount in
register dt. Subroutine DeleteW deletes the current node from the WAIT list.

The heart of the simulation control is the scheduling of the coroutines.
The following program implements these subroutines as TRIP handlers, and we
will see that TRIPs are very flexible and convenient for this kind of “system
programming.” TRIP Cycle,0 decides which activity is to be performed next
(namely, the first element of the WAIT list, which we know is nonempty) and
jumps to it. There are three special entrances to Cycle: Cycle1 first sets

From the Library of Melissa Nuno

ptg999

30 [290] INFORMATION STRUCTURES 2.2.5

NEXTINST in the current node; HoldC is the same with an additional call on
the Hold subroutine using the global register dt to specify the hold time; and
HoldCI is like HoldC but with the hold time given as an immediate value in the Z
field of the TRIP instruction. Thus, the effect of the instruction ‘TRIP HoldC,0’
with amount t in register dt or of ‘TRIP HoldCI,t’ is to suspend activity for t
units of simulated time and then return to the following location.

The implementation that follows will not save and restore the complete
context of each coroutine; in particular, it will not save the contents of local
registers. Consequently, it is not possible to use TRIPs inside of subroutines
because the register stack would be corrupted. This is a small inconvenience but
it simplifies the code.

041 LOC 0 TRIP entry point
042 GET $0,rX $0← TRIP X,Y,Z.
043 GET $1,rW $1← rW (the return address).
044 SR $2,$0,16 Extract X field
045 AND $2,$2,#FF and
046 GO $2,$2,0 dispatch depending on X.
047 Cycle1 STOU $1,c,NEXTINST Set NEXTINST(C)← rW.
048 JMP Cycle

049 HoldCI AND dt,$0,#FF Set dt← Z.
050 HoldC STOU $1,c,NEXTINST Set NEXTINST(C)← rW.
051 PUSHJ $0,Hold Insert NODE(C) in WAIT with delay dt.
052 Cycle LDOU c,wait,RLINK1 Set C← RLINK1(LOC(WAIT)).
053 LDTU time,c,NEXTTIME TIME← NEXTTIME(C).
054 PUSHJ $0,DeleteW Remove NODE(C) from WAIT list.
055 LDOU $0,c,NEXTINST

056 PUT rW,$0 rW← NEXTINST(C).
057 RESUME 0 Return.

058 LOC #100

059 PREFIX :queue:

060 p IS $0 Parameter for Insert

061 q IS $1 Local variable
062 :Insert LDOU q,p,:LLINK2 Insert NODE(C) to left of NODE(P).
063 STOU q,:c,:LLINK2

064 STOU :c,p,:LLINK2

065 STOU :c,q,:RLINK2

066 STOU p,:c,:RLINK2

067 POP 0,0

068 :Delete LDOU p,:c,:LLINK2 Delete NODE(C) from its list.
069 LDOU q,:c,:RLINK2

070 STOU p,q,:LLINK2

071 STOU q,p,:RLINK2

072 POP 0,0

073 PREFIX :wait:

074 tc IS $0 Parameter for SortIn

075 q IS $1 Local variables
076 p IS $2

From the Library of Melissa Nuno

ptg999

2.2.5 DOUBLY LINKED LISTS [290] 31

077 tp IS $3

078 t IS $4

079 :Immed SET tc,:time Insert NODE(C) first in WAIT list.
080 STTU tc,:c,:NEXTTIME

081 SET p,:wait

082 JMP 2F

083 :Hold ADDU tc,:time,:dt Add delay dt to current TIME.
084 :SortIn STTU tc,:c,:NEXTTIME Sort NODE(C) into WAIT list.
085 SET p,:wait P← wait.
086 1H LDOU p,p,:LLINK1 P← LLINK1(P).
087 LDTU tp,p,:NEXTTIME tp← NEXTTIME(P).
088 CMP t,tp,tc Compare NEXTTIME fields, right to left.
089 BP t,1B Repeat until tp ≤ tc.
090 2H LDOU q,p,:RLINK1 Insert NODE(C) right of NODE(P).
091 STOU q,:c,:RLINK1

092 STOU p,:c,:LLINK1

093 STOU :c,p,:RLINK1

094 STOU :c,q,:LLINK1

095 POP 0,0

096 :DeleteW LDOU p,:c,:LLINK1 Delete NODE(C) from WAIT list.
097 LDOU q,:c,:RLINK1 (This is the same as lines 068–071
098 STOU p,q,:LLINK1 except LLINK1, RLINK1 are used
099 STOU q,p,:RLINK1 instead of LLINK2, RLINK2.)
100 POP 0,0

Now comes the program for Coroutine U. At the beginning of step U1, the
function Values will initialize fi, fo, tg, and dt by generating new values for IN,
OUT, GIVEUPTIME, and INTERTIME. After these quantities have been computed,
line 103 of the program causes the current node C, which is USER1 (see line 011
above) to be reinserted into the WAIT list so that the next user will be generated
after dt = INTERTIME units of simulated time. The following lines 104–106 create
a new node using the function Allocate and record the values of fi and fo in
this node. The give-up time tg is used in line 139 when the new node enters
the WAIT list. The node is returned to free storage in step U6 by calling the
subroutine Free (line 146).

101 PREFIX :

102 U1 PUSHJ $0,Values U1. Enter, prepare for successor.
103 PUSHJ $0,Hold Put NODE(C) in WAIT list.
104 PUSHJ $0,Allocate Allocate new NODE(C).
105 STB fi,c,IN

106 STB fo,c,OUT

107 U2 SET c0,c U2. Signal and wait. Save value of C.
108 CMP $0,fi,floor

109 BNZ $0,2F Jump if FLOOR 6= fi.
110 LDA c,ELEV1 Set current coroutine to ELEV1.
111 LDOU $0,c,NEXTINST

112 GETA $1,E6

113 CMPU $0,$0,$1 Is elevator positioned at E6?

From the Library of Melissa Nuno

ptg999

32 [292] INFORMATION STRUCTURES 2.2.5

114 BNZ $0,3F

115 GETA $0,E3

116 STOU $0,c,NEXTINST If so, reposition at E3.
117 PUSHJ $0,DeleteW Remove it from WAIT list
118 JMP 4F and reinsert it at front of WAIT.
119 3H BZ d3,2F Jump if not waiting;
120 SET d3,off otherwise, make it not waiting,
121 SET d1,on but loading.
122 4H PUSHJ $0,Immed Schedule ELEV1 for
123 JMP U3 immediate execution.
124 2H SL $1,on,fi Elevator is not on floor fi.
125 CMP $0,fo,fi

126 ZSP $2,$0,$1

127 OR callup,callup,$2

128 ZSN $2,$0,$1

129 OR calldown,calldown,$2 Press buttons.
130 BZ d2,0F If not busy, make a decision.
131 LDOU $0,ELEV1+NEXTINST

132 GETA $1,E1

133 CMP $0,$0,$1 Elevator at E1?
134 BNZ $0,U3 If yes,
135 0H PUSHJ $0,Decision make a decision.
136 U3 SET c,c0 U3. Enter queue. Restore C.
137 16ADDU $1,fi,queue

138 PUSHJ $0,Insert Insert NODE(C) at right end of QUEUE[IN].
139 U4A SET dt,tg

140 TRIP HoldC,0 Wait GIVEUPTIME units.
141 U4 LDB fi,c,IN U4. Give up.
142 CMP $0,fi,floor

143 BNZ $0,U6 Give up if fi 6= FLOOR.
144 BNZ d1,U4A See exercise 7.
145 U6 PUSHJ $0,Delete U6. Get out.
146 PUSHJ $0,Free AVAIL⇐ C.
147 TRIP Cycle,0 Continue simulation.
148 U5 PUSHJ $0,Delete U5. Get in. Delete C from QUEUE.
149 SET $1,elevator

150 PUSHJ $0,Insert Insert it at right of ELEVATOR.
151 LDB fo,c,OUT

152 SL $0,on,fo

153 OR callcar,callcar,$0 Set bit CALLCAR[OUT(C)]← 1.
154 BZ state,1F

155 TRIP Cycle,0

156 1H CMP state,fo,floor STATE← 1, 0, or −1.
157 LDA c,ELEV2

158 PUSHJ $0,DeleteW Remove E5 action from WAIT list.
159 TRIP HoldCI,25

160 JMP E5 Restart E5 action 25 units from now.

The functions Allocate and Free perform the actions ‘C⇐ AVAIL’ and ‘AVAIL⇐
C’ using the POOLMAX technique; no test for Overflow is necessary here, since the

From the Library of Melissa Nuno

ptg999

2.2.5 DOUBLY LINKED LISTS [292] 33

total size of the storage pool (the number of users in the system at any one time)
rarely exceeds 10 nodes (480 bytes).

161 avail GREG 0 List of available nodes
162 poolmax GREG 0 Location of pool memory
163 Allocate PBNZ avail,1F C⇐ AVAIL using 2.2.3–().
164 SET c,poolmax

165 ADDU poolmax,c,6*8

166 POP 1,0

167 1H SET c,avail

168 LDOU avail,c,LLINK1

169 POP 1,0

170 Free STOU avail,c,LLINK1 AVAIL⇐ C using 2.2.3–().
171 SET avail,c

172 POP 0,0

The program for Coroutine E is a rather straightforward rendition of the
semi-formal description given earlier. Perhaps the most interesting portion is the
preparation for the elevator’s independent actions in step E3, and the searching
of the ELEVATOR and QUEUE lists in step E4.

173 E1A TRIP Cycle1,0 Set NEXTINST← E1, go to Cycle.
174 E1 IS @ E1. Wait for call. (no action)
175 E2A TRIP HoldC,0 Decelerate.
176 E2 OR $0,callup,calldown E2. Change of state?
177 OR $0,$0,callcar

178 BN state,1F Jump if going down.
179 ADD $1,floor,1 State is GOINGUP.
180 SR $2,$0,$1

181 BNZ $2,E3 Are there calls for higher floors?
182 NEG $1,64,floor If not, have passengers in the
183 SL $2,callcar,$1 elevator called for lower floors?
184 JMP 2F

185 1H NEG $1,64,floor State is GOINGDOWN.
186 SL $2,$0,$1

187 BNZ $2,E3 Are there calls for lower floors?
188 ADD $1,floor,1 If not, have passengers in the
189 SR $2,callcar,$1 elevator called for upper floors?
190 2H NEG state,state Reverse direction of STATE.
191 CSZ state,$2,0 STATE← NEUTRAL or reversed.
192 SL $0,on,floor

193 ANDN callup,callup,$0 Set all CALL bits to zero.
194 ANDN calldown,calldown,$0

195 ANDN callcar,callcar,$0

196 E3 LDA c,ELEV3 E3. Open doors.
197 LDO $0,c,LLINK1

198 BZ $0,1F If activity E9 is already scheduled,
199 PUSHJ $0,DeleteW remove it from the WAIT list.
200 1H SET dt,300

201 PUSHJ $0,Hold Schedule activity E9 after 300 units.

From the Library of Melissa Nuno

ptg999

34 [294] INFORMATION STRUCTURES 2.2.5

202 LDA c,ELEV2

203 SET dt,76

204 PUSHJ $0,Hold Schedule activity E5 after 76 units.
205 SET d2,on

206 SET d1,on

207 SET dt,20

208 E4A LDA c,ELEV1

209 TRIP HoldC,0

210 E4 LDA $0,elevator E4. Let people out, in.
211 LDA c,elevator C← LOC(ELEVATOR).
212 1H LDOU c,c,LLINK2 C← LLINK2(C).
213 CMP $1,c,$0 Search ELEVATOR list, right to left.
214 BZ $1,1F If C = LOC(ELEVATOR), search is complete.
215 LDB $1,c,OUT

216 CMP $1,$1,floor Compare OUT(C) with FLOOR.
217 BNZ $1,1B If not equal, continue searching;
218 GETA $0,U6 otherwise, send user to U6.
219 JMP 2F

220 1H 16ADDU $0,floor,queue

221 LDOU c,$0,RLINK2 Set C← RLINK2(LOC(QUEUE[FLOOR])).
222 LDOU $1,c,RLINK2

223 CMP $1,$1,c Is C = RLINK2(C)?
224 BZ $1,1F If so, the queue is empty.
225 PUSHJ $0,DeleteW If not, cancel action U4 for this user.
226 GETA $0,U5 Prepare to replace U4 by U5.
227 2H STOU $0,c,NEXTINST Set NEXTINST(C).
228 PUSHJ $0,Immed Put user at the front of the WAIT list.
229 SET dt,25

230 JMP E4A Wait 25 units and repeat E4.
231 1H SET d1,off

232 SET d3,on

233 TRIP Cycle,0 Return to simulate other events.
234 E5 BZ d1,0F E5. Close doors.
235 TRIP HoldCI,40 If people are still getting in or out,
236 JMP E5 wait 40 units and repeat E5.
237 0H SET d3,off If not loading, stop waiting.
238 LDA c,ELEV1

239 TRIP HoldCI,20 Wait 20 units, then go to E6.
240 E6 SL $0,on,floor E6. Prepare to move.
241 ANDN callcar,callcar,$0 Reset CALLCAR on this floor.
242 ZSNN $1,state,$0 If not going down,
243 ANDN callup,callup,$1 reset CALLUP on this floor.
244 ZSNP $1,state,$0 If not going up,
245 ANDN calldown,calldown,$1 reset CALLDOWN on this floor.
246 PUSHJ $0,Decision

247 E6B BZ state,E1A If STATE = NEUTRAL, go to E1 and wait.
248 BZ d2,0F

249 LDA c,ELEV3 If busy,
250 PUSHJ $0,DeleteW cancel activity E9

From the Library of Melissa Nuno

ptg999

2.2.5 DOUBLY LINKED LISTS [294] 35

251 STCO 0,c,LLINK1 (see line 197).
252 0H LDA c,ELEV1

253 TRIP HoldCI,15 Wait 15 units of time.
254 BN state,E8 If STATE = GOINGDOWN, go to E8.
255 E7 ADD floor,floor,1 E7. Go up a floor.
256 TRIP HoldCI,51 Wait 51 units.
257 SL $0,on,floor

258 OR $1,callcar,callup

259 AND $2,$1,$0 Is CALLCAR[FLOOR] 6= 0
260 BNZ $2,1F or CALLUP[FLOOR] 6= 0?
261 CMP $2,floor,2

262 BZ $2,2F If not, is FLOOR = 2?
263 AND $2,calldown,$0 If not, is CALLDOWN[FLOOR] 6= 0?
264 BZ $2,E7 If not, repeat step E7.
265 2H OR $1,$1,calldown

266 ADD $2,floor,1

267 SR $1,$1,$2

268 BNZ $1,E7 Are there calls for higher floors?
269 1H SET dt,14 It is time to stop the elevator.
270 JMP E2A Wait 14 units and go to E2.

... (See exercise 8.)

287 E9 STCO 0,c,LLINK1 E9. Set inaction indicator. (See line 197.)
288 SET d2,off

289 PUSHJ $0,Decision

290 TRIP Cycle,0 Return to simulation of other events.

We will not consider here the Decision subroutine (see exercise 9), nor the
Values subroutine that is used to specify the demands on the elevator. At the
very end of the program comes the code

Main SET floor,2 Start with FLOOR = 2,
SET state,0 STATE = NEUTRAL,
SETH poolmax,Pool_Segment>>48 and no extra nodes.
TRIP Cycle,0,0 Begin simulation.

· · ·
. . . The author made such an experiment with the elevator program above,

running it for 10000 units of simulated elevator time; 26 users entered the
simulated system. The instructions in the SortIn loop, lines 086–089, were
executed by far the most often, 1432 times, while the SortIn subroutine itself
was called 437 times. The Cycle routine was performed 407 times; so we could
gain a little speed by not calling the DeleteW subroutine at line 054: The four
lines of that subroutine could be written out in full (to save 4υ each time Cycle
is used). The profiler also showed that the Decision subroutine was called only
32 times and the loop in E4 (lines 212–217) was executed only 142 times.

From the Library of Melissa Nuno

ptg999

36 [297] INFORMATION STRUCTURES 2.2.5

EXERCISES [297]

7. [25] · · ·

Assume that line 144 said ‘BZ D1,U6; TRIP Cycle,0’ instead of ‘BNZ D1,U4A’.

8. [21] Write the code for step E8, lines 271–286, which has been omitted from the
program in the text.

9. [23] Write the code for the Decision subroutine, which has been omitted from
the program in the text.

2.2.6. Arrays and Orthogonal Lists

[302]

The representation we will discuss consists of circularly linked lists for each
row and column. Every node of the matrix contains four octabytes and five
fields:

LEFT

UP

ROW COL

VAL

()

· · ·
There are special list head nodes, BASEROW[i] and BASECOL[j], for every

row and column. These nodes are identified by odd links pointing to them. So
UP(P) is odd if and only if UP(P) = LOC(BASECOL[j]) | 1, and LEFT(P) is odd
if and only if LEFT(P) = LOC(BASEROW[i]) | 1.

· · ·
Using sequential allocation of storage, a 400 × 400 matrix would fill more

than 1 MByte, and this is more memory than used to fit in the cache of many
computers; but a suitable sparse 400× 400 matrix can be represented even in a
small 64 KByte level 1 cache.

[305]

The programming of this algorithm is left as a very instructive exercise for
the reader (see exercise 15). It is worth pointing out here that it is necessary to
allocate only one octabyte to each of the nodes BASEROW[i], BASECOL[j], since
most of their fields are irrelevant. (See the shaded areas in Fig. 14, and see the
program of Section 2.2.5.) Furthermore there is one additional octabyte required
for each PTR[j].

From the Library of Melissa Nuno

ptg999

2.2.6 ARRAYS AND ORTHOGONAL LISTS [306] 37

EXERCISES [306]

5. [20] Show that it is possible to bring the value of A[J,K] into register a in one
MMIX instruction, using the indirect addressing feature of exercise 2.2.2–3, even when A

is a triangular matrix as in (). (Assume that the values of J and K are in registers $1

and $2, respectively.)

11. [11] Suppose that we have a 400 × 400 matrix in which there are at most four
nonzero entries per row. How much storage is required to represent this matrix as in
Fig. 14, if we use four octabytes per node except for list heads, which will use one
octabyte?

x 15. [29] Write an MMIX program for Algorithm S. Assume that the VAL field is a
floating point number.

2.3.1. Traversing Binary Trees

[324]

For threaded trees, it turns out that things will work nicely if NODE(LOC(T))
is made into a “list head” for the tree, with

LLINK(HEAD) = T, LTAG(HEAD) = 0,
RLINK(HEAD) = HEAD, RTAG(HEAD) = 0.

()

(Here HEAD denotes LOC(T), the address of the list head.) An empty threaded
tree will satisfy the conditions

LLINK(HEAD) = HEAD, LTAG(HEAD) = 1. ()

· · ·
With these preliminaries out of the way, we are now ready to consider MMIX

versions of Algorithms S and T. The following programs assume that binary tree
nodes have the three-word form

RLINK | RTAG
LLINK | LTAG
INFO

.

The two TAGs are stored in the least significant bit of the link fields. In an
unthreaded tree, both TAGs will always be zero and terminal links will be rep-
resented by zero. In a threaded tree, the least significant bits of the link fields
come “for free,” because pointer values will generally be even, and MMIX ignores
the low-order bits when addressing memory.

The following two subroutines traverse a binary tree in symmetric order
(that is, inorder), calling the subroutine Visit periodically; that subroutine is
given a pointer to the node that is currently of interest.

From the Library of Melissa Nuno

ptg999

38 [325] INFORMATION STRUCTURES 2.3.1

Program T (Traverse binary tree inorder). In this implementation of Algo-
rithm T, the stack is kept conveniently on the register stack. While this might
appear to be less memory efficient —the register stack stores three octabytes
per nesting level instead of only one — it is just making good use of the available
hardware. After all, if the tree is well balanced, the 256 registers in the register
ring will go a long way. The subroutine expects two parameters: p ≡ LOC(HEAD),
the address of the root node of the tree; and visit ≡ LOC(Visit), the address
of a subroutine to be called for every node in the tree.

01 :Inorder PBZ p,T4 n + 1[a] T2. P = Λ?
02 GET rJ,:rJ a
03 T3 LDOU t+1,p,LLINK n T3. Stack⇐ P.
04 SET t+2,visit n
05 PUSHJ t,:Inorder n Call Inorder(LLINK(P),Visit).
06 T5 SET t+1,p n T5. Visit P.
07 PUSHGO t,visit,0 n Call Visit(P).
08 LDOU p,p,RLINK n P← RLINK(P).
09 BNZ p,T3 n[n−a] T2. P = Λ?
10 PUT :rJ,rJ a
11 T4 POP 0,0 n + 1 T4. P⇐ Stack.

Program S (Symmetric successor in a threaded binary tree). Algorithm S has
been augmented to form a complete subroutine comparable to Program T.

01 :Inorder GET rJ,:rJ 1 S0. Initialize.
02 SET head,p 1 Remember HEAD.
03 JMP S2 1 Skip step S1.
04 S3 PUSHGO t,visit,0 n S3. Visit P.
05 S1 LDOU p,p,RLINK n S1. RLINK(P) a thread?
06 BOD p,1F n[a] If RTAG(P) = 1, visit P.
07 S2 LDOU t,p,LLINK n + 1 S2. Search to left.
08 CSEV p,t,t n + 1 If LTAG(P) = 0, set P← LLINK(P)

09 BEV t,S2 n + 1[a] and repeat this step.
10 1H ANDN t+1,p,1 n + 1 Untag P and prepare to visit P.
11 CMP t,t+1,head n + 1 Unless P = HEAD,
12 PBNZ t,S3 n + 1[1] visit P.
13 9H PUT :rJ,rJ 1
14 POP 0,0

[326]

The analysis tells us Program T takes (15n+2a+4)υ+2nµ, and Program S
takes (11n + 4a + 12)υ + (2n + 1)µ, where n is the number of nodes in the tree
and a is the number of terminal right links (nodes with no right subtree).

From the Library of Melissa Nuno

ptg999

2.3.1 TRAVERSING BINARY TREES [332] 39

EXERCISES [332]

20. [20] Modify Program T so that it maintains an explicit stack, instead of using
the implicit register stack provided by PUSHJ. The stack can be kept in consecutive
memory locations or in a linked list.

22. [25] Write an MMIX program for the algorithm given in exercise 21 and compare
its execution time to Programs S and T.

[334]
x 37. [24] (D. Ferguson) If three computer words (octabytes) are necessary to contain

two link fields and an INFO field, representation () requires 3n words of memory for a
tree with n nodes. Design a representation scheme for binary trees that uses less space,
assuming that one LINK and an INFO field will fit in two computer words.

2.3.2. Binary Tree Representation of Trees

[338]

We shall assume that tree structures for the algebraic formulas with which
we will be dealing have nodes of the following form in MMIX programs:

RLINK |RTAG
LLINK

INFO DIFF

()

Here RLINK and LLINK have the usual significance, and RTAG is 1 for thread
links. The INFO field and the DIFF field share the third octabyte as shown.
Instead of storing a TYPE field to distinguish different kinds of nodes, we store
DIFF[TYPE(P)] (see Algorithm D) directly as DIFF(P), thereby avoiding an extra
level of indirection. Using object-oriented terminology, the DIFF field contains
the differentiation method ; in terms of MMIX machine language, it contains the
address of the code needed to differentiate the current node. In order to squeeze
the address into a single WYDE, the address is given relative to DIFF[0], the code
used to differentiate a constant. As a consequence, constants conveniently have
a DIFF value of zero. Constants use the high tetrabyte of the INFO field to store
the value of the constant, and variables use the INFO field to store the variable
name padded with zeros to the right; otherwise, the INFO field is zero.

[342]

Program D (Differentiation). The following MMIX subroutine performs Algo-
rithm D. It expects two parameters: Register y points to the list head of a tree
representing an algebraic formula and register x contains the INFO and DIFF
fields of the dependent variable. The return value is a pointer to the list head of
a tree representing the analytic derivative of y with respect to the variable given
by x. The order of computations has been rearranged a little, for convenience.

From the Library of Melissa Nuno

ptg999

40 [342] INFORMATION STRUCTURES 2.3.2

001 :D GET rJ,:rJ

002 LDOU p1,y,:LLINK D1. Initialize. P1← LLINK(Y), prepare to find Y$.
003 1H SET p,p1 P← P1.
004 2H LDOU p1,p,:LLINK P1← LLINK(P).
005 BNZ p1,1B If P1 6= Λ, repeat.
006 D2 LDWU diff,p,:DIFF D2. Differentiate.
007 GETA t,:Const

008 GO t,t,diff Jump to the differentiation method.
009 D3 STOU p2,p1,:RLINK D3. Restore link. RLINK(P1)← P2.
010 D4 SET p2,p D4. Advance to P$. P2← P.
011 LDOU p,p,:RLINK P← RLINK(P).
012 BOD p,1F Jump if RTAG(P) = 1;
013 STOU q,p2,:RLINK otherwise, set RLINK(P2)← Q.
014 JMP 2B Note that Node(P$) will be terminal.
015 1H ANDN p,p,1 Remove tag from P.
016 D5 CMP t,p,y D5. Done?
017 LDOU p1,p,:LLINK P1← LLINK(P), prepare for step D2.
018 LDOU q1,p1,:RLINK Q1← RLINK(P1).
019 BNZ t,D2 Jump to D2 if P 6= Y;
020 PUSHJ dy,:Allocate otherwise, allocate DY.
021 STOU q,dy,:LLINK LLINK(DY)← Q.
022 STOU dy,dy,:RLINK RLINK(DY)← DY.
023 OR t,dy,1

024 STOU t,q,:RLINK RLINK(Q)← DY, RTAG(Q)← 1.
025 PUT :rJ,rJ

026 SET $0,dy Return DY.
027 POP 1,0 Exit from differentiation subroutine.

The next part of the program contains the basic subroutines Tree1 and Tree2.
They create nodes for unary and binary operations, respectively. Tree2 expects
three parameters: first u and v, the pointers to the operands; and then diff,
the absolute address of the differentiation method of the operation in question.
Tree2 returns a tree that represents the two operands connected by the given
operation.

For convenience, Tree1 uses the same calling convention; the second param-
eter v is, however, ignored.

028 :Tree1 SET v,u Set V← U in the unary case.
029 JMP 1F

030 :Tree2 STOU v,u,:RLINK RLINK(U)← V.
031 1H GET rJ,:rJ

032 PUSHJ r,:Allocate R⇐ AVAIL.
033 PUT :rJ,rJ

034 STOU u,r,:LLINK LLINK(R)← U.
035 GETA t,:Const

036 SUBU diff,diff,t Convert diff to relative address.
037 STOU diff,r,:INFO INFO(R)← 0, DIFF(R)← diff.
038 OR t,r,1 Set tag bit.
039 STOU t,v,:RLINK RLINK(V)← R, RTAG(V)← 1.

From the Library of Melissa Nuno

ptg999

2.3.2 BINARY TREE REPRESENTATION OF TREES [343] 41

040 SET $0,r Return R.
041 POP 1,0

Next is the Copy subroutine, which appears as exercise 13.
Allocate returns a zero-initialized node representing the constant “0”; Free

puts a node back to free storage.

071 avail GREG 0

072 pool GREG 0

073 :Allocate BNZ avail,1F AVAIL stack empty?
074 SETH $0,#4000 If so, get 24 bytes
075 ADDU $0,$0,pool from the Pool_Segment.
076 ADDU pool,pool,24

077 JMP 0F

078 1H SET $0,avail Else, get the next node
079 LDOU avail,avail,:LLINK from the AVAIL stack.
080 0H STCO 0,$0,:RLINK Zero out the node.
081 STCO 0,$0,:LLINK

082 STCO 0,$0,:INFO

083 POP 1,0

084 :Free STOU avail,$0,:LLINK Add node to the AVAIL stack.
085 SET avail,$0

086 POP 0,0

The remaining portion of the program corresponds to the differentiation routines.
These routines are written to return control to step D3 after processing a binary
operator; otherwise they return to step D4. Note that all named registers (except
t) have register numbers smaller than register q, so that ‘PUSHJ q,:Allocate’
will not clobber them.

087 :Const PUSHJ q,:Allocate Q← “0”.
088 JMP D4

089 :Var PUSHJ q,:Allocate Q← “0”.
090 LDOU t,p,:INFO

091 CMP t,t,x Is INFO(P) = x?
092 BNZ t,D4 If not, it’s a constant;
093 SET t,1 else Q← “1”.
094 STT t,q,:INFO

095 JMP D4

096 :Ln LDOU t,q,:INFO

097 BZ t,D4 Return to control routine if INFO(Q) = 0.
098 SET q+1,q

099 SET q+3,p1

100 PUSHJ q+2,:Copy

101 GETA q+3,:Div

102 PUSHJ q,:Tree2 Q← Tree2(Q,Copy(P1),“/”).
103 JMP D4

104 :Neg LDOU t,q,:INFO

105 BZ t,D4 Return to control routine if INFO(Q) = 0.
106 SET q+1,q

From the Library of Melissa Nuno

ptg999

42 [344] INFORMATION STRUCTURES 2.3.2

107 GETA q+3,:Neg

108 PUSHJ q,:Tree1 Q← Tree1(Q, · ,“−”).
109 JMP D4

110 :Add LDOU t,q1,:INFO

111 PBNZ t,1F Jump unless INFO(Q1) = 0.
112 SET t+1,q1

113 PUSHJ t,:Free AVAIL⇐ Q1.
114 JMP D3

115 1H LDOU t,q,:INFO

116 PBNZ t,1F Jump unless INFO(Q) = 0.
117 2H SET t+1,q

118 PUSHJ t,:Free AVAIL⇐ Q.
119 SET q,q1 Q← Q1.
120 JMP D3

121 1H GETA q+3,:Add

122 3H SET q+1,q1

123 SET q+2,q

124 PUSHJ q,:Tree2 Q← Tree2(Q1,Q,“+”).
125 JMP D3

126 :Sub LDOU t,q,:INFO

127 BZ t,2B If INFO(Q) = 0, then −Q = +Q.
128 GETA q+3,:Sub Prepare for Q← Tree2(Q1,Q,“−”).
129 LDOU t,q1,:INFO

130 PBNZ t,3B

131 SET t+1,q1

132 PUSHJ t,:Free AVAIL⇐ Q1.
133 SET q+1,q

134 GETA q+3,:Neg

135 PUSHJ q,:Tree1 Q← Tree1(Q, · ,“−”).
136 JMP D3

137 :Mul LDOU t,q1,:INFO

138 BZ t,1F Jump if INFO(Q1) = 0.
139 SET t+1,q1

140 SET t+3,p2

141 PUSHJ t+2,:Copy

142 PUSHJ t,:Mult

143 SET q1,t Q1← Mult(Q1,Copy(P2)).
144 1H LDOU t,q,:INFO

145 BZ t,:Add Jump if INFO(Q) = 0.
146 SET q+2,p1

147 PUSHJ q+1,:Copy

148 SET q+2,q

149 PUSHJ q,:Mult Q← Mult(Copy(P1),Q).
150 JMP :Add

Mult expects two parameters u and v; it returns an optimized representation
of u× v.

151 :Mult GET rJ,:rJ

152 SETMH info,1 The constant “1” has INFO = 1 and DIFF = 0.

From the Library of Melissa Nuno

ptg999

2.3.2 BINARY TREE REPRESENTATION OF TREES [345] 43

153 LDO t,u,:INFO

154 CMP t,info,t Test if U is the constant “1”;
155 BZ t,1F jump if so.
156 LDO t,v,:INFO Otherwise,
157 CMP t,info,t test if V is the constant “1”,
158 GETA v+1,:Mul prepare third parameter,
159 BNZ t,:Tree2 and if not so, return Tree2(U,V,“×”);
160 SET t+1,v else, pass V to Free.
161 JMP 2F

162 1H SET t+1,u Pass U to Free.
163 SET u,v U← V.
164 2H PUSHJ t,:Free Free one parameter
165 PUT :rJ,rJ and return U.
166 POP 1,0

The last two routines Div and Pwr are similar and they have been left as
exercises (see exercises 15 and 16).

EXERCISES [347]

x 13. [26] Write an MMIX program for the Copy subroutine. [Hint: Adapt Algorithm
2.3.1C to the case of a right-threaded binary tree, with suitable initial conditions.]

x 14. [M21] How long does it take the program of exercise 13 to copy a tree with n
nodes?

15. [23] Write an MMIX program for the Div routine, corresponding to DIFF[7] as
specified in the text. (This program should be added to the program in the text after
line 166.)

16. [24] Write an MMIX program for the Pwr routine, corresponding to DIFF[8] as
specified in exercise 12. (This program should be added to the program in the text
after the solution to exercise 15.)

2.3.3. Other Representations of Trees

[357]

Nodes have six fields, which in the case of MMIX might fit in three octabytes.
A compact representation may use the fact that either the VALUE field is used
to represent a constant or the NAME and DOWN fields are used to represent a
polynomial gj . So two kinds of nodes are possible:

RIGHT LEFT

UP EXP

VALUE

or
RIGHT LEFT

UP EXP

NAME DOWN

. ()

Here RIGHT, LEFT, UP, and DOWN are relative links; EXP is an integer representing
an exponent; VALUE contains a 64-bit floating point constant; and the NAME field

From the Library of Melissa Nuno

ptg999

44 [357] INFORMATION STRUCTURES 2.3.3

contains the variable name. To distinguish between the two types of nodes, the
low-order bit in a link field can be used. There are two essentially different
choices: Either one of the link fields within the node is used or all the links that
point to the node are marked. The first choice makes it easy to change a node
from one type to the other (as is possible in step A9); the second choice makes
searching for a constant (as in step A1) simpler.

2.3.5. Lists and Garbage Collection

[411]
1) . . . Therefore each node generally contains tag bits that tell what kind

of information the node represents. The tag bits can occupy a separate TYPE
field that can also be used to distinguish between various types of atoms (for
example, between alphabetic, integer, or floating point quantities, for use when
manipulating or displaying the data), or the tag bits can be placed in the low-
order bits of the link fields, where they are ignored when using link fields as
addresses of other OCTA-aligned nodes.

2) The format of nodes for general List manipulation with the MMIX computer
might be designed in many different ways. For example, consider the following
two ways.

a) Compact one-word format, assuming that all INFO appears in atoms:

REF RLINK |HMA ()

This format uses 32-bit relative addresses to nodes from a common storage pool;
the short addresses imply a limit of 4GByte on its maximum size. RLINK is such
a pointer for straight or circular linkage as in (). Limiting addresses to OCTA-
aligned data, the three least significant bits H, M, and A are freely available as
tag bits.

The M bit, normally zero, is used as a mark bit in garbage collection (see
below).

The A bit indicates an atomic node. If A = 1, all the bits of the node, except
A and M, can be used to represent the atom. If A = 0, the H bit can be used to
distinguish between List heads and List elements. If H = 1, the node is a List
head, and REF is a reference count (see below); otherwise, REF points to the List
head of the sub-List in question.

b) Simple three-word format: A straightforward modification of () yields
three-word nodes using absolute addresses. For example:

RLINK |HMA
LLINK

INFO

()

The H, M, and A bits are as in (). RLINK and LLINK are the usual pointers for
double linkage as in (). INFO is a full word of information associated with this

From the Library of Melissa Nuno

ptg999

2.3.5 LISTS AND GARBAGE COLLECTION [412] 45

node; for a header node this may include a reference count, a running pointer to
the interior of the List to facilitate linear traversal, an alphabetic name, and so
on. If H = 0, this field contains the DLINK.

[420]

Of all the marking algorithms we have discussed, only Algorithm D is
directly applicable if atomic nodes must use all the node bits except a single
bit, the mark bit. For example, Lists could be represented as in () using only
the least significant bit for M. The other algorithms all test whether or not a given
node P is an atom; they will need the A bit. However, each of the other algorithms
can be modified so that they will work when atomic data is distinguished from
pointer data in the word that links to it instead of by looking at the word itself.
. . . The adaptation of Algorithm E is almost as simple; both ALINK and BLINK
can even accommodate two more tag bits in addition to the mark bit.

EXERCISES [422]

4. [28] Write an MMIX program for Algorithm E, assuming that the nodes are repre-
sented as two octabytes, with ALINK the first octabyte and BLINK the second octabyte.
The least significant bits of ALINK and BLINK can be used for MARK and ATOM. Also
determine the execution time of your program in terms of relevant parameters.

2.5. DYNAMIC STORAGE ALLOCATION

[440]

The method we will describe assumes that each block has the following
form:

Reserved block (TAG = 1) Free block (TAG = 0)

· · · SIZE +1

.

.

. (SIZE− 8) bytes

SIZE +1 · · ·

· · · SIZE

RLINK LLINK

.

.

.

SIZE · · ·

()

Note that the SIZE−8 bytes reserved for use by an application are OCTA-aligned,
while the node itself starts and ends with a SIZE field that is only TETRA-aligned.

The idea in the following algorithm is to maintain a doubly linked AVAIL
list, so that entries may conveniently be deleted from random parts of the list.
The TAG bit at either end of a block— the least significant bit in the SIZE field—
can be used to control the collapsing process, since we can tell easily whether or
not both adjacent blocks are available.

From the Library of Melissa Nuno

ptg999

46 [440] INFORMATION STRUCTURES 2.5

To save space, links are stored as relative addresses in a TETRA. As base
address, we use LOC(AVAIL), the address of the list head, which conveniently
makes the relative address of the list head zero.

Unfortunately, a notation such as ‘LINK(P + 1)’ does not work well in the
world of MMIX, where addresses refer to bytes and links are stored as tetrabytes or
octabytes. Therefore, we use the familiar RLINK and LLINK instead of ‘LINK(P)’
and ‘LINK(P + 1)’, but we do not rephrase Algorithm C. Double linking is
achieved in a familiar way— by letting RLINK point to the next free block in
the list, and letting LLINK point back to the previous block; thus, if P is the
address of an available block, we always have

LLINK(RLINK(P)) = P = RLINK(LLINK(P)). ()

To ensure proper “boundary conditions,” the list head is set up as follows:

LOC(AVAIL)− 4: · · · 0

LOC(AVAIL) + 4: RLINK LLINK

LOC(AVAIL) + 12: 0 · · ·
()

Here RLINK points to the first block and LLINK to the last block in the available
space list. Further, a tagged tetrabyte should occur before and after the memory
area used to limit the activities of Algorithm C.

[449]

Here are the approximate results:

Time for reservation Time for liberation
Boundary tag system: 24 + 5A 18, 22, 27, or 28
Buddy system: 26 + 26R 36.5 + 24S

· · ·
This shows that both methods are quite fast, with the buddy system reser-

vation faster and liberation slower by a factor of approximately 1.5 in MMIX’s
case. Remember that the buddy system requires about 44 percent more space
when block sizes are not constrained to be powers of 2.

A corresponding time estimate for the garbage collection and compacting
algorithm of exercise 33 is about 98υ to locate a free node, assuming that garbage
collection occurs when the memory is approximately half full, and assuming that
nodes have an average length of 5 octabytes with two links per node.

EXERCISES [453]

4. [22] Write an MMIX program for Algorithm A, paying special attention to making
the inner loop fast. Assume that the SIZE and the LINK fields are stored in the high
and low TETRA of an octabyte. To make links fit in a tetrabyte, use addresses relative to
the base address in the global register base. If successful, return an absolute address.

From the Library of Melissa Nuno

ptg999

2.5 DYNAMIC STORAGE ALLOCATION [453] 47

Use Λ = −1 if dealing with relative addresses, but for absolute addresses (the return
value) use Λ = 0.

13. [21] Write an MMIX subroutine using the algorithm of exercise 12. Assume that
the only parameter N is the size of the requested memory in bytes and that the return
value is an OCTA-aligned absolute address where these N bytes are available. In case of
overflow, the return value should be zero.

16. [24] Write an MMIX subroutine for Algorithm C that complements the program of
exercise 13, incorporating the ideas of exercise 15.

27. [24] Write an MMIX program for Algorithm R, and determine its running time.

28. [25] Write an MMIX program for Algorithm S, and determine its running time.

x 33. [28] (Garbage collection and compacting.) Assume a storage pool of nodes of
varying sizes, each one having the following form:

SIZE T

LINK

P→
.
.
.

}
Links

.

.

.

}
Other content

SIZE(P) = number of bytes in NODE(P);
T(P) = number of bytes used for links,

T(P) < SIZE(P);
LINK(P) = special link field for use only

during garbage collection.

The node at address P starts with two octabytes preceding the address P; these
contain special data for use during garbage collection only. The node immediately
following NODE(P) in memory is the node at address P+ SIZE(P). The nodes populate
a memory area starting at BASE− 16 up to AVAIL− 16. Assume that the only fields in
NODE(P) that are used as links to other nodes are the octabytes LINK(P)+8, LINK(P)+
16, . . . , LINK(P) + T(P), and that each of these link fields is either Λ or the absolute
address of another node. Finally, assume that there is one further link variable in the
program, called USE, and it points to one of the nodes.

34. [29] Write an MMIX program for the algorithm of exercise 33, and determine its
running time.

From the Library of Melissa Nuno

ptg999

CHAPTER THREE

RANDOM NUMBERS

3.2.1.1. Choice of modulus

[12]

Consider MMIX as an example. We can compute y mod m by putting y and m in
registers and dividing y by m using the instruction ‘DIV t,y,m’; y mod m will
then appear in register rR. But division is a comparatively slow operation, and
it can be avoided if we take m to be a value that is especially convenient, such
as the word size of our computer.

Let w be the computer’s word size, namely 2e on an e-bit binary computer.
The result of an addition and multiplication is usually given modulo w. Thus,
the following program computes the quantity (aX + c) mod w efficiently:

MULU x,x,a X ← aX mod w.
ADDU x,x,c X ← (X + c) mod w.

()

The result appears in register x. The code uses arithmetic on unsigned numbers,
which never causes overflow. If c is less than 216, the instruction ‘ADDU x,x,c’
can be replaced by ‘INCL x,c’, using an immediate value c instead of a register c.
The same is possible for the constant a; however, satisfactory values for a
are typically large and the MULU instruction allows only a one-byte immediate
constant.

A clever technique that is less commonly known can be used to perform
computations modulo w +1. For reasons to be explained later, we will generally
want c = 0 when m = w + 1, so we merely need to compute (aX) mod (w + 1).
With w = 264, the following program does this:

01 MULU r,x,a; GET q,rH Compute q, r with aX = qw + r.
02 SUBU x,r,q X ← r − q mod w.
03 CMPU t,r,q

04 ZSN t,t,1 Set t← [r < q].
05 ADDU x,x,t X ← X + t mod w.

()

The register x now contains the value (aX) mod (w+1). Of course, this value
might lie anywhere between 0 and w, inclusive, so the reader may legitimately
wonder how we can represent so many values in one register! (The register
obviously cannot hold a number larger than w − 1.) The answer is that X will
be 0 and t will be 1 after program () if and only if the result equals w. We
could represent w by 0, since () will not normally be used when X = 0; but
it is most convenient simply to reject the value w (and 0) if it appears in the

48

From the Library of Melissa Nuno

ptg999

3.2.1.1 CHOICE OF MODULUS [13] 49

congruential sequence modulo w + 1. We do this by appending the instructions
‘NEGU t,1,a; CSZ x,x,t’.

To prove that code () actually does determine (aX) mod (w +1), note that
in line 02 we are subtracting the lower half of the product from the upper half;
and if aX = qw + r, with 0 ≤ r < w, we will have the quantity r − q in register
x after line 02. Now

aX = q(w + 1) + (r − q),

and we have −w < r− q < w since q < w; hence (aX) mod (w + 1) equals either
r − q or r − q + (w + 1), depending on whether r − q ≥ 0 or r − q < 0.

EXERCISES [15]
1. [M12] In exercise 3.2.1–3 we concluded that the best congruential generators will

have a multiplier a relatively prime to m. Show that in such a case there is a constant
c′ such that (aX + c) mod m = a(X + c′) mod m.

2. [16] Write an MMIX subroutine having the following characteristics:

Calling sequence: PUSHJ t,Random

Entry conditions: The global registers x ≡ X, a ≡ a, and c ≡ c are initialized.

Exit conditions: Set X ← (aX + c) mod 264 and return X.

(Thus a call on this subroutine will produce the next random number of a linear
congruential sequence.)

5. [20] Given that m is less than the word size, that x and y are nonnegative integers
less than m, and assuming that the values x, y, and m are already loaded into registers,
show that the difference (x−y) mod m may be computed in just four MMIX instructions
without requiring any division. What is the best code for the sum (x + y) mod m?
What is the best code if m is less than 2e−1?

x 8. [20] Write an MMIX program analogous to () that computes (aX) mod (w − 1).
The values 0 and w− 1 are to be treated as equivalent in the input and output of your
program.

3.2.1.3. Potency

[24]

For example, suppose that we choose a = 2k + 1, where k ≥ 2 is a constant.
With a temporary register t, the code

SLU t,x,k; ADDU x,t,x; ADDU x,x,1 ()

can be used in place of the instructions given in Section 3.2.1.1, and the execution
time decreases from 11υ to 3υ. Even faster code is possible for k = 2, 3, or 4. For
example, the code ‘16ADDU x,x,x; ADDU x,x,1’ has a running time of only 2υ.

From the Library of Melissa Nuno

ptg999

50 [25] RANDOM NUMBERS 3.2.1.3

EXERCISES [25]
1. [M10] Show that, for all k ≥ 2, the code in () yields a random number generator

of maximum period.

2. [10] What is the potency of the generator represented by the MMIX code ()?

3.2.2. Other Methods

[28]

This algorithm in MMIX is simply the following:

Program A (Additive number generator). Using global registers j ≡ 8j, k ≡ 8k,
and y ≡ LOC(Y [1])−8, the following MMIX code is a step-by-step implementation
of Algorithm A.

:Random LDOU $0,y,j A1. Add. $0← Y [j].
LDOU t,y,k t← Y [k].
ADDU $0,$0,t $0← Y [j] + Y [k].
STOU $0,y,k Y [k]← Y [j] + Y [k].
SUB j,j,8 A2. Advance. j ← j − 1.
SUB k,k,8 k ← k − 1.
SET t,55*8

CSNP j,j,t If j ≤ 0, set j ← 55.
CSNP k,k,t If k ≤ 0, set k ← 55.
POP 1,0 Return $0.

One disadvantage of the code above is its use of three possibly precious global
registers. An improved version of this program is discussed in exercise 25.

[30]

There is a simple way to generate a highly random bit sequence on a binary
computer, manipulating k-bit words: Start with an arbitrary binary word X
in register x. To get the next random bit of the sequence, do the following
operations, shown in MMIX’s language (see exercise 16):

ZSN t,x,a Adjust by a if the high bit of x is 1, else by zero.
SLU x,x,1 Shift left one bit.
XOR x,x,t Apply the adjustment with “exclusive or.”

()

The value of the global register a is the k-bit binary constant a = (a1 . . . ak)2,
shifted left by 64−k bits, where xk−a1x

k−1−· · ·−ak is a primitive polynomial
modulo 2 as above. After the code () has been executed, the next bit of
the generated sequence may be taken as the kth bit from the left of register x.
Alternatively, we could consistently use the most significant bit (the sign bit)
of x; that gives the same sequence, but each bit is seen one step earlier.

· · ·

From the Library of Melissa Nuno

ptg999

3.2.2 OTHER METHODS [34] 51

On MMIX we may implement Algorithm B by taking k = 256, obtaining the
following simple generation scheme once the initialization has been done:

SRU j,y,53 j ← b256Y/wc, j← 8j + {0, . . . , 7}.
MULU x,x,a; ADD x,x,c Xn+1 ← (aXn + c) mod w.
LDOU y,V,j Y ← V [j].
STOU x,V,j V [j]← Xn+1.

()

The output appears in register y. Notice that Algorithm B requires only
3υ + 2µ of additional overhead per generated number.

EXERCISES [37]

7. [20] Show that a complete sequence of length 2e (that is, a sequence in which
each of the 2e possible sets of e consecutive sign bits occurs just once in the period)
may be obtained if program () is changed to the following:

ZSN t,x,a

SLU x,x,1

ZSZ s,x,a

XOR x,x,t

XOR x,x,s

[39]

25. [26] Discuss an alternative to Program A: a subroutine Random55 that changes all
55 entries of the Y table every 55th time a random number is required. Try to get by
with just one global register.

3.4.1. Numerical Distributions

[119]

In general, to get a random integer X between 0 and k− 1, we can multiply
by k, and let X = bkUc. On MMIX, we would write

MULU t,k,u (rH, t)← kU
GET x,rH X ← bkU/mc ()

and after these two instructions have been executed the desired integer will
appear in register x. If a random number between 1 and k is desired, we add
one to this result. (The instruction ‘INCL x,1’ would follow ().)

From the Library of Melissa Nuno

ptg999

52 [138] RANDOM NUMBERS 3.4.1

EXERCISES [138]

x 3. [14] Discuss treating U as an integer and computing its remainder mod k to get
a random integer between 0 and k− 1, instead of multiplying as suggested in the text.
Thus () would be changed to

DIV t,u,k t← bU/kc
GET x,rR X ← U mod k

with the result again appearing in register x. The new method might be especially
tempting if k = 2i (for a small constant i) because

AND x,u,(2i − 1) X ← U mod 2i

will do the job in a single MMIX cycle. Is this a good method?

3.6. SUMMARY

EXERCISES [189]
1. [21] Write an MMIX subroutine RandInt using method () according to the follow-

ing specification:

Calling sequence: PUSHJ t,RandInt

Entry conditions: Global register x ≡ X initialized.
$0 ≡ k, a positive integer.

Return value: A random integer Y , 1 ≤ Y ≤ k, with each integer
about equally probable.

Exit conditions: Global register x modified.

From the Library of Melissa Nuno

ptg999

CHAPTER FOUR

ARITHMETIC

4.1. POSITIONAL NUMBER SYSTEMS

[203]

The MIX computer, as used in Chapter 4 of The Art of Computer Program-
ming, deals only with signed magnitude arithmetic, whereas the MMIX computer,
used here, deals only with two’s complement binary arithmetic. However, alter-
native procedures for complement notations are discussed in Chapter 4 when it
is important to do so.

EXERCISES [209]

4. [20] Assume that we have an MMIX program in which register a contains a non-
negative number for which the radix point lies between bytes 3 and 4, while register b

contains a nonnegative number whose radix point lies between bytes 5 and 6. (The
leftmost byte is number 1.) Where will the radix point be in registers x, rH, and rR after
the following instructions (assuming that the instructions do not raise an arithmetic
exception)?

(a) MUL x,a,b (b) DIV x,a,b

(c) MULU x,a,b (d) PUT rD,0; DIVU x,a,b

4.2.1. Single-Precision Calculations

[215]

The MMIX computer assumes that its floating point numbers have the form

s e f ′ . ()

Here we have base b = 2, excess q = 1023, floating point notation with p = 53
bits of precision. The sign bit is stored in the leftmost bit; it is 1 for negative
numbers and 0 otherwise. The exponent e is stored in the next 11 bits; it is
an integer in the range 0 < e < 2047. The fraction part f is stored as a 52-bit
binary value f ′ in the range 0 ≤ f ′ < 252 with f = 1 + f ′/252. Since b = 2, the
most significant digit of a normalized fraction part is always 1, and there is no
need to store this bit. With this hidden bit added to the left of f ′, the precision
is 53.

53

From the Library of Melissa Nuno

ptg999

54 [215] ARITHMETIC 4.2.1

B. Normalized calculations. The floating point arithmetic of MMIX follows
IEEE/ANSI Standard 754, which is implemented by most modern computers.
Following this standard and contrary to the definitions used in the current edition
of The Art of Computer Programming, Volume 2, the radix point is placed just
between the hidden bit and the stored part f ′ of f . A floating point number
(s, e, f) is normalized if 0 < e < 2047 and the most significant digit of the
representation of f is nonzero, so that

1 ≤ f < 2. ()

The floating point number represents ±0.0 if f = e = 0.

[218]
The following MMIX subroutines, for addition and subtraction of numbers

having the form (), show how Algorithms A and N can be expressed as computer
programs. The subroutines below do not handle all the complications of the
IEEE Standard 754. They are designed to take two parameters u and v and
return a normalized result w. A simple JMP Error is used whenever this is not
possible.

Program A (Addition, subtraction, and normalization). The following program
is an implementation of Algorithm A, and it is also designed so that the trailing
implementation of Algorithm N can be used by other programs that appear later
in this section.

The variables are named to match Algorithms A and N. Where the variable
names differ in Algorithms A and N, we gave preference to Algorithm N. So
instead of fw we use f in Algorithm A, and similarly we use e instead of ew. The
registers s, su, and sv are used for the sign bits of w, u, and v. To ensure proper
rounding, the next lower 64 bits of f are stored in register fl. The register carry
is used as a shuttle between f and fl. Another register, d, is needed in step A4
and A5 to hold the difference eu − ev.

01 :Fsub SETH t,#8000; XOR v,v,t Change sign of operand.
02 :Fadd SLU eu,u,1; SLU ev,v,1 Remove sign bit.
03 CMPU t,eu,ev A2. Assume eu dominates ev.
04 BNN t,A1 Jump if (eu, fu) ≥ (ev, fv);
05 SET t,u; SET u,v; SET v,t else swap u with v
06 SLU eu,u,1; SLU ev,v,1 and remove sign bits again.
07 A1 SRU eu,eu,53; SRU ev,ev,53 A1. Unpack.
08 SETH t,#FFF0 Get sign and exponent mask.
09 ANDN fu,u,t; ANDN fv,v,t Remove sign and exponent.
10 INCH fu,#10; INCH fv,#10 Add hidden bit.
11 SRU su,u,63; SRU sv,v,63 Get sign bit.
12 SET e,eu; SET s,su A3. Set ew ← eu.
13 SUB d,eu,ev Step A4 unnecessary.
14 A5 NEG t,64,d A5. Scale right.
15 SLU fl,fv,t Shift (fv, fl) to the right
16 SRU fv,fv,d eu − ev places.
17 CMP t,su,sv; BNZ t,0F Signs su and sv differ.

From the Library of Melissa Nuno

ptg999

4.2.1 SINGLE-PRECISION CALCULATIONS [218] 55

18 ADDU f,fu,fv A6. Add.
19 JMP :Normalize

20 0H NEGU fl,fl; ZSNZ carry,fl,1 A6. Subtract.
21 SUBU f,fu,fv

22 SUBU f,f,carry

23 :Normalize OR t,f,fl; BZ t,:Zero Assume u + v 6= 0.
24 SRU t,f,53 N1. Test f .
25 BP t,N4 If f ≥ 2, scale right.
26 N2 SRU t,f,52; BP t,N5 N2. Is f normalized?
27 SRU carry,fl,63 N3. Scale left.
28 SLU fl,fl,1

29 SLU f,f,1

30 ADDU f,f,carry

31 SUB e,e,1

32 JMP N2

33 N4 SLU carry,f,63 N4. Scale right.
34 SRU f,f,1

35 SRU fl,fl,1

36 ADDU fl,fl,carry

37 ADD e,e,1

38 N5 SETH t,#8000 N5. Round.
39 CMPU t,fl,t Compare fl to 1

2
.

40 CSOD carry,f,1 f is odd. Round up if fl ≥ 1
2
.

41 CSEV carry,f,t f is even. Round up if fl > 1
2
.

42 ZSNN carry,t,carry Round down if fl < 1
2
.

43 ADDU f,f,carry

44 SET fl,0

45 SRU t,f,53; BP t,N4 Rounding overflow.
46 SET t,#7FE; CMP t,e,t N6. Check e.
47 BP t,:Error Overflow.
48 BNP e,:Error Underflow.
49 SLU w,s,63 N7. Pack.
50 SLU t,e,52; OR w,w,t

51 ANDNH f,#FFF0 Remove hidden bit.
52 OR $0,w,f

53 POP 1,0 Return w.
54 :Zero POP 0,0 Return zero.

Using a second register fl for the lower 64 bits of fraction f and extending
adding, subtracting, and shifting to it is not strictly necessary. Exercise 5 shows
how to get by with p+2 = 55 digits, which fit nicely into one of MMIX’s registers.
This optimization, however, will make the code neither significantly shorter nor
faster; there are just too many special cases to consider. On the other hand,
MMIX is well suited to do multi-precision arithmetic.

[220]
The following MMIX subroutines, intended to be used in connection with

Program A, illustrate the machine considerations that arise in Algorithm M.

From the Library of Melissa Nuno

ptg999

56 [220] ARITHMETIC 4.2.1

Program M (Floating point multiplication and division).

01 :Fmul SLU eu,u,1; SRU eu,eu,53 M1. Unpack.
02 SLU ev,v,1; SRU ev,ev,53

03 SETH t,#FFF0 Get sign and exponent mask.
04 ANDN fu,u,t; ANDN fv,v,t Remove sign and exponent bits.
05 INCH fu,#10; INCH fv,#10 Add hidden bit.
06 XOR s,u,v; SRU s,s,63 s← su × sv.
07 SLU fv,fv,6; SLU fu,fu,6 M2. Operate.
08 MULU fl,fu,fv; GET f,:rH (f, fl)← 252+6fu · 252+6fv = 252+64fufv.
09 ADD e,eu,ev

10 SET t,1023; SUB e,e,t e← eu + ev − q.
11 JMP :Normalize M3. Normalize.

12 :Fdiv SLU eu,u,1; SRU eu,eu,53 M1. Unpack.
13 SLU ev,v,1; SRU ev,ev,53

14 SETH t,#FFF0 Get sign and exponent mask.
15 ANDN fu,u,t; ANDN fv,v,t Remove sign and exponent bits.
16 INCH fu,#10; INCH fv,#10 Add hidden bit.
17 XOR s,u,v; SRU s,s,63 s← su × sv.
18 SLU fv,fv,11 M2. Operate. fv ← 211fv.
19 PUT :rD,fu; SET t,0

20 DIVU f,t,fv (f, fl)← 252+64fu/(252+11fv) = 253fu/fv.
21 GET t,:rR; PUT :rD,t

22 SET t,0; DIVU fl,t,fv

23 SUB e,eu,ev

24 INCL e,1023-1 e← eu − ev + q − 1.
25 JMP :Normalize M3. Normalize.

The most noteworthy feature of this program is the use of double-precision
multiplication in line 08 and division in lines 19–22 in order to ensure enough
accuracy to round the answer.

The numbers fu and fv are represented by the unsigned integers 252fu and
252fv, respectively. Using the MULU directly would yield 252+52fufv; applying an
extra factor of 26 to both fu and fv prior to the multiplication yields 252+64fufv,
which moves the radix point in rH just to the right place after bit 52. Applying
an extra factor of 212 to only one operand would cause overflow.

The division works differently since extra factors applied to fu and fv shift
the radix point of the result in opposite directions. Shifting fu (the high 64 bits
of the dividend) right would be possible if the bits are shifted into the low 64 bits
of the dividend. Fortunately, the limit for shifting fv left is 11 bits, which is just
what we need. Dividing by 211fv gives 21+52+64fu/fv. With the imagined radix
point just left of bit 52 in (f, fl), we have (f, fl) ← 2fu/fv. We compensate
for the extra factor 2 by reducing e by 1. If fu and fv are normalized, we have
1 ≤ fu < 2 and 1 ≤ fv < 2 so that 1 ≤ 2fu/fv < 4; step N4 of the normalization
will then adjust f if needed.

We occasionally need to convert values between fixed and floating point
representations. A “fix-to-float” routine is easily obtained with the help of the

From the Library of Melissa Nuno

ptg999

4.2.1 SINGLE-PRECISION CALCULATIONS [221] 57

normalization algorithm above; for example, in MMIX, the following subroutine
converts a nonzero integer u to floating point form:

01 :Flot ZSN s,u,1 Set sign.
02 SET f,0; NEG fl,u; CSNN fl,u,u (f, fl)← |u| /264.
03 SET e,64+52+1023 Set raw exponent.
04 JMP :Normalize Normalize, round, and exit.

()

A “float-to-fix” subroutine is the subject of exercise 14.

[223]

The MMIX computer, which is being used as an example of a “typical” ma-
chine in this supplement, has a full set of floating point instructions conforming
to IEEE/ANSI Standard 754.

EXERCISES [228]

14. [25] Write an MMIX subroutine, to be used in connection with the other subroutines
in this section, that takes as a parameter a normalized floating point number and
returns the nearest signed 64-bit two’s complement integer (or determines that the
number is too large in absolute value to make such a conversion possible).

x 15. [28] Write an MMIX subroutine, to be used in connection with the other subroutines
in this section, that takes a nonzero normalized floating point number u as a parameter
and returns u mod 1, namely u − buc rounded to the nearest floating point number.
Notice that when u is a very small negative number, u mod 1 should be rounded so
that the result is unity (even though u mod 1 has been defined to be always less than
unity, as a real number).

19. [24] What is the running time for the Fadd subroutine in Program A, in terms
of relevant characteristics of the data? What is the maximum running time, over all
inputs that do not cause exponent overflow or underflow?

20. [28] New : Given a nonzero octabyte in register f, find a fast way to compute the
number of its leading zero bits and use the result to eliminate the loop in steps N2 and
N3 of Algorithm N. How will this change affect the average running time?

21. [40] New : Imagine a low-cost version of MMIX with no hardware support for
floating point numbers (used in the CEO’s office, where floating point calculations
are routinely delegated to the research department). In such an MMIX CPU, floating
point instructions will trap with the operands in registers rYY and rZZ. The operating
system should then compute the result, store it back to register rZZ, and set exception
flags in the upper half of rXX in preparation for a final RESUME 1. Write a subroutine
library, emulating the standard MMIX floating point hardware, to be used in such an
operating system.

From the Library of Melissa Nuno

ptg999

58 [229] ARITHMETIC 4.2.1

4.2.2. Accuracy of Floating Point Arithmetic

EXERCISES [244]

17. [28] Assume that MMIX needs to emulate its FCMPE (floating compare with respect
to epsilon) instruction in software. Write an MMIX subroutine, Fcmpe, that compares
two nonzero normalized floating point numbers u and v with respect to a positive
normalized floating point number ε stored in register rE. Under the conditions just
stated, the subroutine should be equivalent to ‘Fcmpe FCMPE $0,$0,$1; POP 1,0’.

4.2.3. Double-Precision Calculations

[246]

Double precision is quite frequently desired not only to extend the precision
of the fraction parts of floating point numbers, but also to increase the range
of the exponent part. The IEEE/ANSI standard specifies a lower bound on
the precision and a minimum exponent range only for what it calls “extended
precision.” It requires p ≥ 64 and emin ≤ −16382 and emax > 16382. One way
to satisfy these requirements could be to take one OCTA for the fraction part and
another OCTA to provide very generous room for the sign and exponent. A more
common compromise between precision and exponent range is to use 15 bits for
the exponent, just enough to satisfy the range requirement. With one bit for the
sign, that leaves 112 bits for the fraction part. Thus we shall deal in this section
with the following 128-bit format for double-precision floating point numbers in
the MMIX computer:

s e f ′

f ′
. ()

Here two bytes are used for the sign bit and the exponent and 14 bytes for the
fraction part. We have base b = 2, excess q = 214 − 1 = 16383, and because of
the hidden bit added to the left of f ′, a precision of p = 113.

For a double-precision floating point number u, we will use the notation su

for the sign field and eu for the exponent field of u as before; um is used to denote
the most significant fraction part from the first octabyte with the radix point
just after the hidden bit, and ul is used to denote the least significant fraction
part stored in the second octabyte with the radix point just to the left of its 64
bits. With that notation and ε = 2−48, we can write f = 1 + f ′ = um + ε ul.
To do computations on um and ul, the programs that follow will use registers
named um and ul to perform unsigned integer arithmetic on the values 248um

and 264ul, respectively.

· · ·

From the Library of Melissa Nuno

ptg999

4.2.3 DOUBLE-PRECISION CALCULATIONS [247] 59

Program A (Double-precision addition). The subroutine DFadd adds a double-
precision floating point number v, having the form (), in registers vm and vl
to a double-precision floating point number u in registers um and ul, storing the
answer w in registers wm and wl. The subroutine DFsub subtracts v from u under
the same conventions.

Both input operands are assumed to be nonzero and normalized; the answer
is normalized. The last portion of this program is a double-precision normal-
ization procedure that is used by other subroutines of this section. Step 5 of
Algorithm N is omitted; exercise 5 shows how to get better rounding.

01 :DFsub SETH t,#8000; XOR vm,vm,t Change sign of operand.
02 :DFadd SLU eu,um,1; SLU ev,vm,1 Remove sign bit.
03 CMPU t,eu,ev A2. Assume
04 BP t,A1 eu dominates ev.
05 PBN t,0F

06 CMPU t,ul,vl; BNN t,A1 If (eu, um, ul) < (ev, vm, vl),
07 0H SET t,um; SET um,vm; SET vm,t swap u with v
08 SET t,ul; SET ul,vl; SET vl,t and
09 SLU eu,um,1; SLU ev,vm,1 remove sign bit again.
10 A1 SRU eu,eu,49; SRU ev,ev,49 A1. Unpack.
11 SRU su,um,63; SRU sv,vm,63 Get sign bit.
12 ANDNH um,#FFFF; ANDNH vm,#FFFF Remove s and e bits.
13 ORH um,#0001; ORH vm,#0001 Add hidden bit.
14 SET e,eu; SET s,su A3. Set ew ← eu.
15 SUB d,eu,ev A4. Test eu − ev.
16 CMP t,d,113+2; PBN t,A5 eu − ev ≥ p + 2 ?
17 SET wm,um; SET wl,ul w ← u.
18 JMP :DNormalize

19 A5 CMP t,d,64; PBN t,0F A5. Scale right.
20 SET vl,vm; SET vm,0 Scale right by 64 bits.
21 SUB d,d,64

22 0H NEG t,64,d

23 SRU vl,vl,d

24 SLU carry,vm,t; OR vl,vl,carry Shift (vm, vl) right by
25 SRU vm,vm,d eu − ev places.
26 CMP t,su,sv; BNZ t,0F Signs su and sv differ.
27 ADDU wl,ul,vl A6. Add.
28 CMPU t,wl,ul; ZSN carry,t,1

29 ADDU wm,um,vm

30 ADDU wm,wm,carry

31 JMP :DNormalize

32 0H SUBU wl,ul,vl A6. Subtract.
33 CMPU t,wl,ul; ZSP carry,t,1

34 SUBU wm,um,vm

35 SUBU wm,wm,carry

36 :DNormalize SRU t,wm,49 N1. Test f .
37 BOD t,N4 If w ≥ 2, scale right.
38 OR t,wm,wl; BZ t,:Zero

39 N2 SRU t,wm,48; PBOD t,6F N2. Is w normalized?

From the Library of Melissa Nuno

ptg999

60 [249] ARITHMETIC 4.2.3

40 ZSN carry,wl,1; SLU wl,wl,1 N3. Scale left.
41 SLU wm,wm,1

42 ADDU wm,wm,carry

43 SUB e,e,1

44 JMP N2

45 N4 SLU carry,wm,63 N4. Scale right.
46 SRU wl,wl,1

47 ADDU wl,wl,carry

48 SRU wm,wm,1

49 ADD e,e,1

50 6H SET t,#7FFE; CMP t,e,t N6. Check e.
51 BP t,:Error Overflow.
52 BNP e,:Error Underflow.
53 SLU s,s,63 N7. Pack.
54 SLU e,e,48

55 ANDNH wm,#FFFF Remove hidden bit.
56 OR wm,wm,s; OR wm,wm,e

57 SET $0,wl

58 SET $1,wm

59 POP 2,0 Return w.
60 :Zero POP 0,0 Return zero.

· · ·
Now let us consider double-precision multiplication. The product has four

components, shown schematically in Fig. 4. If the limited precision (p = 96) of
the leftmost six WYDEs is sufficient, we can ignore the digits to the right of the
vertical line in the diagram; in particular, we need not even compute the product
of the two least-significant halves.

Program M (Double-precision multiplication). The input and output conven-
tions for this subroutine are the same as for Program A.

01 :DFmul SLU eu,um,1; SLU ev,vm,1 M1. Unpack.
02 SRU eu,eu,49; SRU ev,ev,49

03 XOR s,um,vm; SRU s,s,63 s← su × sv.
04 ANDNH um,#FFFF; ORH um,#0001

05 ANDNH vm,#FFFF; ORH vm,#0001

06 MULU t,um,vl M2. Operate.
07 GET wl,:rH wl← 248um × 264vl × 2−64.
08 MULU t,ul,vm

09 GET t,:rH; ADDU wl,wl,t wl← wl + 248ulvm.
10 MULU t,um,vm; GET wm,:rH wm← b232um × vmc.
11 ADDU wl,wl,t wl← wl + um× vm mod 264.
12 CMPU t,wl,t; ZSN carry,t,1 carry← 1 if wl + t < t.
13 ADDU wm,wm,carry

14 SLU wm,wm,16 wm← 216wm = 216b232um × vmc.
15 SRU carry,wl,64-16

16 ADDU wm,wm,carry

17 SLU wl,wl,16 wl← 216wl.

From the Library of Melissa Nuno

ptg999

4.2.3 DOUBLE-PRECISION CALCULATIONS [250] 61

1.u u u u u uu = um + ε ul

1.v v v v v v v = vm + ε vl

x x x x x x x x = ε2ul × vl

1.x x x x x x x = ε um × vl

1.x x x x x x x = ε ul × vm

3.x x x x x x = um × vm

3.ww wwww wwww wwww =
Fig. 4. Double-precision multiplication of seven-WYDE fraction parts.

18 ADD e,eu,ev

19 SET t,#3FFF; SUB e,e,t e← eu + ev − q.
20 JMP :DNormalize M3. Normalize.

Notice that there is no carry into wm from the addition in line 09 because um
and vm are smaller than 249; in line 11, however, we add the low 64 bits of
um × vm, which can be any value less than 264, so that we need to consider a
carry. Program M is perhaps too slipshod in accuracy, since it uses only 49-bit
operands when computing the most significant digits of the result in line 10, and
it adds 16 zero bits in line 17. More accuracy can be achieved as discussed in
exercise 4.

[251]

Program D (Double-precision division). This program adheres to the same
conventions as Programs A and M. For the DIVU (divide unsigned) instruction
in line 11 to work properly, we need um < vm. Since u and v are normalized,
shifting (vm, vl) to the left by one bit would be sufficient. We shift by 15
bits, the maximum amount possible, instead and compute wm ← (264+48um +
264ul)/(215+48vm) = 248+1(um + ε ul)/vm. This moves the radix point in wm

one bit too far to the left. We compensate for this by adjusting the exponent e
by −1 in line 09; the “Scale Right” step in the normalization routine will shift
wm back if necessary. Some more precision could be gained if we shifted v only
by one bit, but then the normalization routine would need a “Scale Right” step
that is not restricted to shifting a single bit.

01 :DFdiv SLU eu,um,1; SLU ev,vm,1 D1. Unpack.
02 SRU eu,eu,49; SRU ev,ev,49

03 XOR s,um,vm; SRU s,s,63 sw ← su · sv.
04 ANDNH um,#FFFF; ORH um,#0001

05 SLU vm,vm,15; ORH vm,#8000 vm ← vm215.
06 SRU carry,vl,64-15

07 ADDU vm,vm,carry

08 SLU vl,vl,15 (vm, vl)← (vm, vl)2
15.

09 SUB e,eu,ev; INCL e,#3FFF-1 e← eu − ev + q − 1.
10 PUT :rD,um D2. Operate.
11 DIVU wm,ul,vm wm← b248+1(um + ε ul)/vmc.
12 GET r,:rR Get remainder r.
13 PUT :rD,r; SET t,0

From the Library of Melissa Nuno

ptg999

62 [251] ARITHMETIC 4.2.3

14 DIVU wl,t,vm wl← 264r/vm.
15 MULU pl,wm,vl; GET pm,:rH (pm, pl)← wm × vl.
16 PUT :rD,pm

17 DIVU ql,pl,vm ql ← (pm + ε pl)/vm.
18 CMPU t,wl,ql; ZSN carry,t,1 carry← [wl < ql].
19 SUBU wl,wl,ql; SUBU wm,wm,carry w ← w − ε ql.
20 JMP :DNormalize M3. Normalize.

Here is a table of the approximate average computation times for these
double-precision subroutines, compared to the single-precision subroutines that
appear in Section 4.2.1:

Single precision Double precision

Addition 62.3υ 64.4υ
Subtraction 64.3υ 66.4υ
Multiplication 55.8υ 75.6υ
Division 167.5υ 235.5υ

EXERCISES [252]

2. [20] Is it strictly necessary to clear the hi-wyde of um in line 12 of Program A?
After all, these bits get cleared later in line 55 during normalization.

3. [M20] Explain why overflow cannot occur during Program M.

4. [22] Program M should be changed so that extra accuracy is achieved, essentially
by making a better use of the MULU instruction. Investigate these alternatives:

(a) Use the low 64 bits now wasted in lines 06 and 08.
(b) Shift the fraction parts left by up to 15 bits when unpacking.

Specify all changes that are required, and determine the difference in execution time
caused by these changes.

x 5. [24] How should Program A be changed so that extra accuracy is achieved,
essentially by keeping the lowest bits of v in a separate register vll and using it to
achieve proper rounding in the normalization procedure? Specify all changes that are
required, and determine the difference in execution time caused by these changes.

4.3.1. The Classical Algorithms

[266]
For the following MMIX subroutines, we assume that u, v, and w are stored
in arrays and the addresses of the three arrays are in registers u, v, and w. In
principle, the arrays can be in big-endian or little-endian order; that is, if LOC(u)
is the starting address of the array holding u = (un−1 . . . u1u0)b, then at address
LOC(u) we might have either un−1 or u0. Here, we assume little-endian ordering;
thus LOC(u) is the address of u0, LOC(u) + 8 is the address of u1, and so on.
Further, we take b = 264, so that each digit uj fits in one octabyte.

From the Library of Melissa Nuno

ptg999

4.3.1 THE CLASSICAL ALGORITHMS [266] 63

Program A (Addition of nonnegative integers). This subroutine expects four
parameters: the addresses of u, v, w, in registers u, v, and w and the value of n
in register n. To make traversal of the arrays from j = 0 to j = n− 1 as efficient
as possible, we keep the value 8(j − n) in register j and change the values of u,
v, and w to LOC(u) + 8n, LOC(v) + 8n, and LOC(w) + 8n. After these changes,
adding the values of u and j will yield LOC(u) + 8n + 8(j − n) = LOC(u) + 8j,
which is exactly the address of the digit uj .

01 :Add 8ADDU u,n,u 1 A1. Initialize. u← u + 8n.
02 8ADDU v,n,v 1 v← v + 8n.
03 8ADDU w,n,w 1 w← w + 8n.
04 SL j,n,3; NEG j,j 1 j ← 0.
05 SET k,0 1 k ← 0.
06 A2 LDOU t,u,j; ADDU wj,t,k N A2. Add digits. wj ← uj + k.
07 ZSZ k,wj,k N Carry?
08 LDOU t,v,j; ADDU wj,wj,t N wj ← wj + vj .
09 CMPU t,wj,t; CSN k,t,1 N Carry?
10 STOU wj,w,j N
11 ADD j,j,8 N A3. Loop on j. j ← j + 1.
12 PBN j,A2 N [1] Probably j < n.
13 STOU k,w,j 1 wn ← k.
14 POP 0,0

The running time for this program is 9υ + 1µ + N(10υ + 3µ).

[267]

Program S (Subtraction of nonnegative integers). The program uses the same
conventions as Program A and is very similar to it. It changes the ADDU instruc-
tion into a SUBU instruction as expected and the carry is now a borrow. The CSN
instruction in line 10 will not work with negative constants, so we set k to 1 (not
−1) if a subtraction does not make the number smaller.

01 :Sub 8ADDU u,n,u 1 S1. Initialize.
02 8ADDU v,n,v 1
03 8ADDU w,n,w 1
04 SL j,n,3; NEG j,j 1 j ← 0.
05 SET k,0 1 k ← 0.
06 S2 LDOU uj,u,j N S2. Subtract digits.
07 SUBU wj,uj,k N wj ← uj − k.
08 CSNZ k,uj,0 N Carry?
09 LDOU vj,v,j N
10 CMPU t,wj,vj; CSN k,t,1 N Carry?
11 SUBU wj,wj,vj N wj ← wj − vj .
12 STOU wj,w,j N
13 ADD j,j,8 N S3. Loop on j. j ← j + 1.
14 PBN j,S2 N [1] Probably j < n.
15 BNZ k,:Error 1[0] k 6= 0 only if u < v.
16 POP 0,0

From the Library of Melissa Nuno

ptg999

64 [267] ARITHMETIC 4.3.1

The running time of Program S is 9υ + N(10υ + 3µ), just one µ shorter than
the corresponding amount for Program A, because it finally tests k but does not
store it.

[269]
The following MMIX program shows the considerations that are necessary

when Algorithm M is implemented on a computer. Fortunately, MMIX has the
MULU operation, which delivers a 128-bit result.

Program M (Multiplication of nonnegative integers). To make the inner loop
as fast as possible, we scale i by 8 and run register i from −8m toward zero.
Further, we maintain in register wj the address (namely LOC(wj)+ 8m) needed
to make wj + i the address of wj+i. Thanks to the MULU instruction, the value
of bt/bc needed in step M4 can be found in the rH register (we just need to add
the possible carry of the two ADDU instructions).

01 :Mul 8ADDU u,m,u; 8ADDU v,n,v 1 M1. Initialize.
02 SL j,n,3; NEG j,j 1 j ← 0.
03 8ADDU wj,m,w 1 wj← LOC(wj) + 8m.
04 SL i,m,3; NEG i,i 1 i← 0.
05 0H STCO 0,wj,i M (wm−1 . . . w0)← (0 . . . 0).
06 ADD i,i,8 M i← i + 1.
07 PBN i,0B M [1] Loop for 0 ≤ i < m.
08 M2 SET k,0 N M2. Zero multiplier?
09 LDOU vj,v,j N
10 BZ vj,6F N [Z] If vj = 0, set wj+m ← 0.
11 SL i,m,3; NEG i,i N − Z M3. Initialize i. i← 0.
12 M4 LDOU t,u,i (N − Z)M M4. Multiply and add.
13 MULU t,t,vj (N − Z)M t← ui × vi.
14 ADDU t,t,k (N − Z)M t← ui × vi + k.
15 CMPU c,t,k; ZSN k,c,1 (N − Z)M Carry?
16 LDOU wij,wj,i (N − Z)M
17 ADDU t,t,wij (N − Z)M t← ui × vi + k + wi+j .
18 CMPU c,t,wij; CSN k,c,1 (N − Z)M Carry?
19 STOU t,wj,i (N − Z)M wi+j ← t mod b.
20 GET t,:rH; ADDU k,k,t (N − Z)M k ← bt/bc.
21 ADD i,i,8 (N − Z)M M5. Loop on i. i← i + 1.
22 PBN i,M4 (N − Z)M [N−Z]

23 6H STOU k,wj,0 N − Z wj+m ← k.
24 ADD wj,wj,8 N M6. Loop on j.
25 ADD j,j,8 N j ← j + 1.
26 PBN j,M2 N [1]

27 POP 0,0

The execution time of Program M depends on the number of places, M ,
in the multiplicand u; the number of places, N , in the multiplier v; and the
number of zeros, Z, in the multiplier. We find that the total running time comes
to (23MN +3M +11N +11−Z(23M +3))υ +(3MN +M +2N −Z(3M +1))µ.
If step M2 were deleted, the running time would be (23MN + 3M + 10N +

From the Library of Melissa Nuno

ptg999

4.3.1 THE CLASSICAL ALGORITHMS [270] 65

11)υ + (3MN + M + 2N)µ, so that step is advantageous only if the density of
zero positions within the multiplier is Z/N > 1/(23M + 3). If the multiplier is
chosen completely at random, the ratio Z/N is expected to be only about 1/b,
which is extremely small. Unless the PBNZ instruction on line 10 can be done in
parallel on a superscalar pipeline processor (such as MMIX) with proper branch
prediction, causing zero delay if the branch is not taken, we conclude that step
M2 is usually not worthwhile.

[273]
Program D (Division of nonnegative integers). The conventions of this sub-
routine are analogous to Program A. It expects five parameters: First, u, v, and
q hold the addresses of u = (um+n−1 . . . u0)b, v = (vn−1 . . . v0)b where vn−1 6= 0,
and q = (qm . . . q0)b; then follow nu and nv, which hold the number of digits of
u and v (we compute m, needed in Algorithm D, as m = nu − nv). The array
u is used as the algorithm’s working area. It will contain the remainder r after
the program has finished. Similar to Program M, we maintain registers uj and i
such that uj + i = LOC(uj+i). The DIVU instruction will not compute quotient
q̂ and remainder r̂ unless rD = uj+n < vn−1. So we test for it before attempting
the division. In step D1, instead of d, we compute the number of leading zeros in
vn−1 because shifting is more efficient than multiplication. The variables pm and
pl in registers pm and pl, respectively, are used for the most and least significant
64 bits of the product q̂ × vn−2. Registers vn1, vn2, uji, and ujn are used to
hold the values of vn−1, vn−2, uj+i, and uj+n, respectively.

01 :Div GET rJ,:rJ 1
02 SL nv,nv,3; SL nu,nu,3 1
03 SUB t,nv,8 1 D1. Normalize.
04 LDOU ld+1,v,t 1
05 PUSHJ ld,:LeadingZeros 1 See new exercise 4.2.1–20.
06 SET t+1,v; SR t+2,nv,3 1
07 SET t+3,ld 1
08 PUSHJ t,:ShiftLeft 1 See new exercise 25.
09 SET t+1,u; SR t+2,nu,3 1
10 SET t+3,ld 1
11 PUSHJ t,:ShiftLeft 1 See new exercise 25.
12 SET ujn,t 1 uj+n ← carry.
13 SUB m,nu,nv 1 m← nu − nv.
14 SET j,m 1 D2. Initialize j. j ← m.
15 ADDU v,nv,v 1 v← LOC(v) + 8n.
16 NEG t,8; LDOU vn1,v,t 1 vn1← vn−1.
17 NEG t,16; LDOU vn2,v,t 1 vn2← vn−2.
18 ADDU uj,j,u 1
19 ADDU uj,nv,uj 1 uj← LOC(u) + 8(j + n).
20 JMP 0F 1 Avoid loading um+n.
21 D3 LDOU ujn,uj,0 M D3. Calculate q̂.
22 0H CMPU t,ujn,vn1 M + 1
23 BNN t,1F M + 1[0] Jump if q̂ would be b.
24 NEG i,8 M + 1 i← n− 1.

From the Library of Melissa Nuno

ptg999

66 [274] ARITHMETIC 4.3.1

25 LDOU uji,uj,i M + 1 Get uj+n−1.
26 PUT :rD,ujn M + 1 rD← uj+n.
27 DIVU qh,uji,vn1 M + 1 q̂ ← b(uj+nb + uj+n−1)/vn−1c.
28 GET rh,:rR M + 1 r̂ ← · · · mod vn−1.
29 JMP 2F M + 1
30 1H SET qh,0 q̂ ← b.
31 SET rh,uji r̂ ← uj+n = vn−1.
32 3H SUBU qh,qh,1 E Decrease q̂ by one.
33 ADDU rh,rh,vn1 E r̂ ← r̂ + vn−1.
34 CMPU t,rh,vn1 E Check if overflow.
35 BN t,D4 E[E−F] If yes, continue the test.
36 2H MULU pl,qh,vn2 M + F + 1 pmb + pl ← q̂vn−2.
37 GET pm,:rH M + F + 1
38 CMPU t,pm,rh M + F + 1 Compare high 64 bits.
39 PBN t,D4 M + F + 1[E]

40 PBP t,3B E[0]

41 NEG i,16 i← n− 2.
42 LDOU uji,uj,i Get uj+n−2.
43 CMPU t,pl,uji Compare low 64 bits.
44 BP t,3B

45 D4 SET k,0 M + 1 D4. Multiply and subtract.
46 NEG i,nv M + 1 i← 0.
47 0H LDOU uji,uj,i N(M + 1) Load uj+i.
48 LDOU t,v,i N(M + 1) t← vi.
49 MULU pl,t,qh N(M + 1) (pm, pl)← vi × q̂.
50 GET pm,:rH N(M + 1)
51 ADDU pl,pl,k N(M + 1) (pm, pl)← (pm, pl) + k.
52 CMPU t,pl,k; ZSN k,t,1 N(M + 1) Carry from pl to pm?
53 ADDU pm,pm,k N(M + 1)
54 CMPU t,uji,pl; ZSN k,t,1 N(M + 1) Carry from uj+i − pl?
55 SUBU uji,uji,pl N(M + 1) uj+i ← uj+i − vi × q̂.
56 STOU uji,uj,i N(M + 1) Store uj+i.
57 ADDU k,pm,k N(M + 1) Add pm to carry.
58 ADD i,i,8 N(M + 1) i← i + 1.
59 PBN i,0B N(M + 1)[M+1]Repeat for 0 ≤ i < n.
60 SUBU uji,ujn,k M + 1 Complete D4 for i = n.
61 CMPU t,ujn,k M + 1
62 ZSN k,t,1 M + 1 Borrow to the left?
63 CMP t,j,m; BNN t,D5 M + 1[1] Store unless j = m.
64 STOU uji,uj,i M uj+n ← uj+n + carry.
65 D5 PBZ k,1F M + 1[0] D5. Test remainder.
66 SUBU qh,qh,1 D6. Add back.
67 NEG i,nv i← −8n.
68 SET k,0 Carry← 0.
69 0H LDOU uji,uj,i

70 ADDU uji,uji,k uj+i ← uj+i + carry.
71 ZSZ k,uji,k Carry?
72 LDOU t,v,i t← vi.
73 ADDU uji,uji,t uj+i ← uj+i + vi.

From the Library of Melissa Nuno

ptg999

4.3.1 THE CLASSICAL ALGORITHMS [274] 67

74 CMPU t,uji,t

75 CSN k,t,1 Carry?
76 STOU uji,uj,i

77 ADD i,i,8

78 PBN i,0B Probably j < 0.
79 LDOU uji,uj,i

80 ADDU uji,uji,k

81 STOU uji,uj,i uj+n ← uj+i + carry.
82 1H STOU qh,q,j M + 1 qj ← q̂.
83 D7 SUB uj,uj,8 M + 1 D7. Loop on j.
84 SUBU j,j,8 M + 1 j ← j − 1.
85 PBNN j,D3 M + 1[1]

86 SET t+1,u 1 D8. Unnormalize.
87 SR t+2,nv,3 1
88 SET t+3,ld 1
89 PUSHJ t,:ShiftRight 1 See exercise 26.
90 PUT :rJ,rJ 1
91 POP 0,0

The running time for Program D can be estimated by considering the quantities
M , N , E, and F shown in the program. (These quantities ignore several
situations that occur only with very low probability; for example, we may assume
that lines 30 and 31, lines 41–44, and step D6 are never executed.) Here M + 1
is the number of words in the quotient; N is the number of words in the divisor;
E is the number of times q̂ is adjusted downward in step D3; and F is the
number of times the full test of q̂ in step D3 is required. If we assume that F is
approximately 0.5E and E is approximately 0.5M , we get a total running time
of approximately (24MN + 45N + 110.25M + 169)υ. When M and N are large,
this is only about five percent longer than the time needed by Program M to
multiply the quotient and the divisor.

EXERCISES [281]

3. [21] Write an MMIX program for the algorithm of exercise 2, and estimate its
running time as a function of m and n.

8. [M26] Write an MMIX program for the algorithm of exercise 5, and estimate its
running time based on the expected number of carries as computed in the text.

10. [18] Would Program S work properly if the three instructions on lines 10 and 11
were replaced by ‘SUBU wj,wj,vj; CSN k,wj,1’?

13. [21] Write an MMIX subroutine that multiplies (un−1 . . . u1u0)b by v, where v is
a single-precision number (that is, 0 ≤ v < b), producing the answer (wn . . . w1w0)b.
Assume that b = 232 and numbers are stored as TETRA arrays in little-endian order.
How much running time is required?

25. [26] Write an MMIX subroutine ShiftLeft, which is needed to complete Pro-
gram D. ShiftLeft accepts three parameters: LOC(x), the address of an array of
octabytes; n, the size of the array; and p, the number of bits to shift x to the left.

From the Library of Melissa Nuno

ptg999

68 [282] ARITHMETIC 4.3.1

If x is considered an n-digit number to the base 264 stored in little-endian order, the
routine will transform x to 2px. The bits shifted out of the most significant “digit”
of x comprise the return value of the subroutine.

26. [21] Write an MMIX routine ShiftRight, which is needed to complete Program D.
ShiftRight uses the same conventions as ShiftLeft in exercise 25, but shifts x in the
other direction.

4.4. RADIX CONVERSION

[320]

B. Single-precision conversion. To illustrate these four methods, suppose
that we want to store the decimal representation of a nonnegative (binary) integer
u in register u as an array U of BYTEs in little-endian order at address u10 ≡
LOC(U). With b = 2 and B = 10, Method 1a could be programmed as follows:

SET j,0 Set j ← 0.
PUT rD,0 Prepare for DIVU.

1H DIVU u,u,10 u← bu/10c and rR← u mod 10.
GET t,rR; STBU t,u10,j Uj ← u mod 10.
ADD j,j,1 j ← j + 1.
PBP u,1B Repeat until result is zero.

()

This requires (64υ + µ)M + 4υ to obtain M digits. The expensive instruction
here is the division, which costs 60υ each time.

[321]

For the corresponding MMIX program, we choose n = 19, the largest n with
10n < 264 = w, and assume that the global register ten19 contains the constant
1019. If u < 10n, we can implement Method 2a as follows:

PUT rD,u

DIVU x,ten19,ten19 x← b(wu + 10n)/10nc.
SET j,n-1 j ← n− 1.

0H MULU x,x,10 (rH, x)← 10x.
GET t,rH; STB t,u10,j Uj ← b10xc.
SUB j,j,1 j ← j − 1.
PBNN j,0B Repeat for n > j ≥ 0.

()

This slightly longer routine requires (14υ + µ)n + 64υ, so it is faster than
program () if no leading zeros are present and n = M ≥ 2; if leading zeros are
present, () will be faster if n = 19 and M ≤ 5. The most expensive instruction
of the previous program is the MULU inside the loop, which contributes 190υ. If
we choose w sufficiently smaller than 264, we can avoid this multiplication. For
example, with 32-bit integers, we choose w = 232 and n = 9. We can then write

From the Library of Melissa Nuno

ptg999

4.4 RADIX CONVERSION [321] 69

SLU u,u,32

ADD u,u,ten9

DIV x,u,ten9 x← b(wu + 10n)/10nc.
SET j,n-1 j ← n− 1.

0H 4ADDU x,x,x

SLU x,x,1 x← 10x.
SRU t,x,32

STBU t,u10,j Uj ← b10xc.
ANDNMH x,#FFFF x← x mod w.
SUB j,j,1 j ← j − 1.
PBNN j,0B Repeat for n > j ≥ 0.

(′)

This routine requires (7υ + µ)n + 65υ; it has a loop twice as fast as before. For
n = 9, it requires 128υ, which is close to the 131υ required by Method 1a for a
two-digit number. With more than two digits, Method 1a is significantly slower.

· · ·
An MMIX program for conversion using () appears in exercise 8; it requires

about 19υ per digit.

[322]
Method 1b is the most practical method for decimal-to-binary conversion

in the great majority of cases. The following MMIX code assumes that there
are at least two digits in the number (um . . . u1u0)10 being converted, and that
10m+1 < w so that overflow is not an issue:

SET j,m-1 j ← m− 1.
LDBU u,u10,m U ← um.

1H MULU u,u,10

LDBU t,u10,j; ADDU u,u,t U ← 10U + uj .
SUB j,j,1 j ← j − 1.
PBNN j,1B Repeat for m > j ≥ 0.

()

The running time is (14υ + µ)m− 10υ.
The multiplication by 10 can be done in 2υ by ‘4ADDU u,u,u; SL u,u,1’,

which brings the running time down to (6υ + µ)m− 4υ.

EXERCISES [328]

5. [M20] Show that program () would still work if the DIVU instruction were re-
placed by DIVU x,c,c for certain other constants c.

8. [24] Write an MMIX program analogous to () that uses () and includes no division
instructions.

x 13. [25] Assume that u is a multiple-precision fraction u = (.u−1u−2 . . . u−m)b, where
b = 232, and that u is stored as an array of tetrabytes in little-endian order. Write
an MMIX subroutine with parameters LOC(u), m, and LOC(Buffer) that converts the

From the Library of Melissa Nuno

ptg999

70 [328] ARITHMETIC 4.4

fraction u to decimal notation, truncating it to 126 decimal digits. The answer should
be stored in the given Buffer as an ASCII string, such that the two instructions
‘LDA $255,Buffer; TRAP 0,Fputs,StdOut’ print the answer on two lines, with the
digits grouped into 14 blocks of nine each separated by blanks.

x 19. [M23] Let the decimal number u = (u7 . . . u1u0)10 be represented in register u

as a sequence of eight ASCII characters u7 + ’0’, . . . , u1 + ’0’, u0 + ’0’. Convert
the ASCII code representation first to a sequence of eight binary coded numbers
u7, . . . , u1, u0. Then find appropriate constants ci and masks mi so that the operation
u← u− ci(u & mi) repeated for i = 1, 2, 3, will convert u to the binary representation
of u. Write an MMIX routine to do the conversion.

4.5.2. The Greatest Common Divisor

[337]
The following MMIX program illustrates the fact that Algorithm A can easily

be implemented on a computer.

Program A (Euclid’s algorithm). Assume that u and v are nonnegative integers.
This subroutine expects u and v as parameters and returns gcd(u, v).

0H DIV t,u,v A2. Take u mod v.
SET u,v u← v.
GET v,rR v ← u mod v.

:Gcd PBNZ v,0B A1. v = 0? Done if v = 0.
POP 1,0 Return u.

The running time for this program is (63T + 3)υ, where T is the number of
divisions performed.

[339]
An MMIX program for Algorithm B requires a bit more code than for Algo-

rithm A, but the steps are elementary.

Program B (Binary gcd algorithm). Assume that u and v are positive integers.
This subroutine expects u and v as parameters, uses Algorithm B, and returns
gcd(u, v).

01 :Gcd SET k,0 1 B1. Find powers of 2.
02 0H OR t,u,v A + 1
03 PBOD t,B2 A + 1[A] Both even?
04 SR u,u,1; SR v,v,1 A u← u/2 and v ← v/2.
05 ADD k,k,1 A k ← k + 1.
06 JMP 0B A
07 B2 NEG t,v 1 B2. Initialize.
08 PBOD u,B4 1[B]

09 SET t,u B
10 B3 SR t,t,1 D B3. Halve t.
11 B4 PBEV t,B3 1−B + D[C] B4. Is t even?
12 CSP u,t,t C B5. Reset max(u,v).

From the Library of Melissa Nuno

ptg999

4.5.2 THE GREATEST COMMON DIVISOR [339] 71

13 NEG t,t; CSNN v,t,t C
14 SUB t,u,v C B6. Subtract.
15 PBNZ t,B3 C [1]

16 SL u,u,k 1
17 POP 1,0 Return 2k · u.

The running time of this program is

(8A + 2B + 7C + 2D + 9)υ,

where A = k, B = 1 if t← u in step B2 (otherwise B = 0), C is the number of
subtraction steps, and D is the number of halving steps in step B3. Calculations
discussed later in this section imply that we may take A = 1

3 , B = 1
3 , C =

0.71N−0.5, and D = 1.41N−2.7 as average values for these quantities, assuming
random inputs u and v in the range 1 ≤ u, v < 2N . The total running time is
therefore about 7.8N + 3.4 cycles, compared to about 36.8N + 6.8 cycles for
Program A under the same assumptions. The worst possible running time for
u and v in this range occurs when A = 0, C = N , D = 2N − 2; this amounts
to 11N + 5.7 cycles. (The corresponding value for Program A is 90.7N + 45.4
cycles.)

Thus the greater speed of the iterations in Program B, due to the simplicity
of the operations, compensates for the greater number of operations required.
We have found that the binary algorithm is almost 5 times faster than Euclid’s
algorithm on the MMIX computer.

EXERCISES [356]

43. [20] New : It is possible to compute k in Step B1 of Algorithm B with just three
MMIX instructions, because lines 01–06 can be replaced by

01 :Gcd OR t,u,v B1. Find powers of 2.
02 SUBU k,t,1; SADD k,k,t

03 SR u,u,k; SR v,v,k u← u/2k and v ← v/2k.

Will this make Program B more efficient?

4.5.3. Analysis of Euclid’s Algorithm

EXERCISES [373]
x 1. [20] Since the quotient bu/vc is equal to unity more than 40 percent of the time

in Algorithm 4.5.2A, it may be advantageous on some computers to make a test for
this case and to avoid the division when the quotient is unity. Is the following MMIX

program for Euclid’s algorithm more efficient than Program 4.5.2A?

From the Library of Melissa Nuno

ptg999

72 [373] ARITHMETIC 4.5.3

0H SUB r,u,v r ← u− v.
SET u,v u← v.
NEG v,r; CSN v,v,r v ← |r|.
CMP t,r,u

BN t,Gcd r < u ?
DIV t,v,u; GET v,:rR v ← u mod v.

Gcd PBNZ v,0B

POP 1,0

4.5.4. Factoring into Primes

[389]
An even more important method of speeding up Algorithm D is to use

Boolean operations. For example, MMIX has 64 bits per word. The tables S[i, ki]
can be kept in memory with one bit per entry; thus 64 values can be stored
in a single word and the AND instruction can be used to process 64 values of
x at once! For convenience, we can make several copies Si of the tables S[i, j]
so that the table entries for mi involve lcm(mi, 64) bits; then the sieve tables
for each modulus fill an integral number of words. Under these assumptions,
64 executions of the main loop in Algorithm D are equivalent to code of the
following form:

D2 LDOU sieve,S1,k1 sieve← S′[1, k′1].
CSZ k1,k1,m1*8; SUB k1,k1,8 k1 ← (k1 − 64) mod lcm(m1, 64).
LDOU t,S2,k2; AND sieve,sieve,t sieve← sieve & S′[2, k′2].
CSZ k2,k2,m2*8; SUB k2,k2,8 k2 ← (k2 − 64) mod lcm(m2, 64).
... (m3 through mr are like m2)

LDOU t,Sr,kr; AND sieve,sieve,t sieve← sieve & S′[r, k′r].
CSZ kr,kr,mr*8; SUB kr,kr,8 kr ← (kr − 64) mod lcm(mr, 64).
ADD x,x,64 x← x + 64.
PBZ sieve,D2 Repeat if all sieved out.

The number of cycles for 64 iterations is essentially (1 + 4r)υ; if r < 16, this
means that less than one υ is being used on each iteration, compared to 3υ to
5υ in Algorithm C, and Algorithm C involves y = 1

2 (v−u) more iterations. The
savings in the loop are partially offset by the extra time needed to initialize all
the registers and tables.

4.6.3. Evaluation of Powers

EXERCISES [481]

2. [22] Write an MMIX subroutine for Algorithm A, with parameters x and n > 0,
returning xn mod w (where w is the word size).

Write another MMIX subroutine that computes xn mod w in a serial manner (mul-
tiplying repeatedly by x), and compare the running times of these subroutines.

From the Library of Melissa Nuno

ptg999

4.6.4 EVALUATION OF POLYNOMIALS [485] 73

4.6.4. Evaluation of Polynomials

EXERCISES [516]

x 20. [10] Write an MMIX program that evaluates a fifth-degree polynomial according to
scheme (). Use MMIX’s floating point instructions.

From the Library of Melissa Nuno

ptg999

CHAPTER FIVE

SORTING

EXERCISES [6]

6. [15] Mr. B. C. Dull (an MMIX programmer) wanted to know if the number stored
in location A is greater than, less than, or equal to the number stored in location B.
So he wrote ‘LDO $0,A; LDO $1,B; SUB $2,$0,$1’ and tested whether register $2 was
positive, negative, or zero. What serious mistake did he make, and what should he
have done instead?

7. [17] Write an MMIX subroutine MCmp for multiprecision comparison of n-byte keys
(an−1, . . . , a0) and (bn−1, . . . , b0), where ai and bi are unsigned bytes stored in order of
increasing index i. Use the following specification:

Calling sequence: PUSHJ t,MCmp

Entry conditions: $0 ≡ n; $1 ≡ LOC(a0); and $2 ≡ LOC(b0)

Return value: 1, if (an−1, . . . , a0) > (bn−1, . . . , b0);

0, if (an−1, . . . , a0) = (bn−1, . . . , b0);

−1, if (an−1, . . . , a0) < (bn−1, . . . , b0).

Here the relation (an−1, . . . , a0) < (bn−1, . . . , b0) denotes lexicographic ordering from
left to right; that is, there is an index j such that ak = bk for n > k > j, but aj < bj .

8. [20] Registers a and b contain two nonnegative numbers a and b, respectively.
Find the most efficient MMIX program that computes min(a, b) and max(a, b) and assigns
these values to registers min and max. Hint: 3υ are sufficient for this task.

5.2. INTERNAL SORTING

[76]
Program C (Comparison counting). The following MMIX implementation of
Algorithm C assumes that keys and counts are stored as arrays of consecutive
octabytes. Furthermore, the registers k, count, and n are initialized to contain
LOC(K1), LOC(COUNT[1]), and N , respectively. To allow a more efficient use of
the counts later on (see exercises 4 and 5), we scale the counts by 8.

01 :Sort SL i,n,3 1 C1. Clear COUNTs.
02 JMP 0F 1
03 1H STCO 0,count,i N COUNT[i]← 0.
04 0H SUB i,i,8 N + 1
05 PBNN i,1B N + 1[1] N > i ≥ 0.
06 SL i,n,3 1 C2. Loop on i.
07 JMP 1F 1

74

From the Library of Melissa Nuno

ptg999

5.2 INTERNAL SORTING [76] 75

08 2H LDO ci,count,i N − 1
09 LDO ki,k,i N − 1
10 3H LDO kj,k,j A
11 CMP t,ki,kj A C4. Compare Ki : Kj .
12 PBNN t,4F A[B] Jump if Ki ≥ Kj .
13 LDO cj,count,j B COUNT[j]
14 ADD cj,cj,8 B + 1
15 STO cj,count,j B → COUNT[j].
16 JMP 5F B
17 4H ADD ci,ci,8 A−B COUNT[i]← COUNT[i] + 1.
18 5H SUB j,j,8 A C3. Loop on j.
19 PBNN j,3B A[N−1]

20 STO ci,count,i N − 1
21 1H SUB i,i,8 N
22 SUB j,i,8 N N > i > j ≥ 0.
23 PBNN j,2B N [1]

The running time of this program is (11N+6A+5B+5)υ+(4N+A+2B−3)µ.

[78]

Hence Program C requires between (3N2 +8N +5)υ +(0.5N2 +3.5N − 3)µ
and (5.5N2 + 5.5N + 5)υ + (1.5N2 + 2.5N − 3)µ; the average running time lies
halfway between these two extremes. For example, the data in Table 1 has
N = 16, A = 120, B = 41, so Program C will sort it in 1106υ + 263µ.

EXERCISES [79]

4. [16] Write an MMIX program that “finishes” the sorting begun by Program C; your
program should transfer the records R1, . . . , RN to an output area S1, . . . , SN in the
desired order. How much time does your program require?

5. [22] Does the following set of changes improve Program C?

New line 08a: ADD ci,ci,i

Change line 12: PBNN t,5F

Change line 16: SUB ci,ci,8

Delete line 17.

9. [23] Write an MMIX program for Algorithm D, analogous to Program C and
exercise 4. What is the execution time of your program, as a function of N and (v−u)?

11. [M27] Write an MMIX program for the algorithm of exercise 10, and analyze its
efficiency.

x 12. [25] Design an efficient algorithm suitable for rearranging the records R1, . . . , RN

into sorted order, after a list sort (Fig. 7) has been completed. Try to avoid using
excess memory space. Write an MMIX program for this algorithm.

From the Library of Melissa Nuno

ptg999

76 [80] SORTING 5.2.1

5.2.1. Sorting by Insertion

[81]

Program S (Straight insertion sort). For simplicity, we assume that the records
consist just of the keys, which are 64-bit signed integers. This subroutine expects
two parameters: key ≡ LOC(R1) = LOC(K1), the address where the items to
be sorted are located; and n ≡ N , the number of items. We use the register
i ≡ 8i together with the base addresses key and key1 ≡ key + 8 (for the
computation of key + 8(i + 1)); register j ≡ 8(N − j) is used with the base
address keyn ≡ key+ 8N . To convert between the bases, we keep the difference
in register d ≡ keyn− key1.

01 :Sort ADD key1,key,8 1
02 8ADDU keyn,n,key 1
03 SUBU d,keyn,key1 1
04 SUBU j,key1,keyn 1 j ← 1.
05 JMP S1 1
06 S2 LDO k,keyn,j N − 1 S2. Set up j, K, R.
07 ADD i,d,j N − 1 i← j − 1.
08 S3 LDO ki,key,i N − 1 + B −A S3. Compare K : Ki.
09 CMP c,k,ki N − 1 + B −A
10 BNN c,S5 N − 1 + B −A[N−1−A] To S5 if K ≥ Ki.
11 STO ki,key1,i B S4. Move Ri, decrease i.
12 SUB i,i,8 B i← i− 1.
13 PBNN i,S3 B[A] To S3 if i ≥ 0.
14 S5 STO k,key1,i N − 1 S5. R into Ri+1.
15 ADD j,j,8 N − 1 j ← j + 1.
16 S1 PBN j,S2 N [1] S1. Loop on j. 1 ≤ j < N .
17 POP 0,0

The running time of this program is (10N−3A+6B−2)υ+(3N−1A+2B−3)µ,
where N is the number of records sorted, A is the number of times i decreases
to zero in step S4, and B is the number of moves.

The branch in line 10 is optimized for large values of B compared to N −A.
For an array that is expected to be almost sorted, B might be small compared
to N −A; in this case the branch should be replaced by a probable branch.

[82]

The average running time of Program S, assuming that the input keys are
distinct and randomly ordered, is (1.5N2 +8.5N−3HN−2)υ. Exercise 33 shows
how to improve this slightly.

The example data in Table 1 involves 16 items; there are two changes to the
left-to-right minimum, namely 087 and 061; and there are 41 inversions, as we
have seen in the previous section. Hence N = 16, A = 2, B = 41, and the total
sorting time is 398υ.

· · ·

From the Library of Melissa Nuno

ptg999

5.2.1 SORTING BY INSERTION [84] 77

Program D (Shellsort). We assume that the increments are stored in an
auxiliary table, with hs in location H + 8s; all increments are less than N . The
parameters of the following subroutine are: key ≡ LOC(K1), the address of
an array of octabytes to be sorted; n ≡ N , the number of elements in the
array; inc ≡ LOC(H), the address of a suitable array of increments; and t ≡ t,
the number of increments to be used. The use of other registers is similar to
Program S; the constant d, used to set i to j − h in line 10, is computed once
for each h.

01 :Sort 8ADDU keyn,n,key 1 keyn← LOC(KN+1).
02 SL s,t,3 1 s← t− 1.
03 JMP D1 1
04 D2 LDO h,inc,s T D2. Loop on j. h← hs.
05 SL h,h,3 T
06 ADDU keyh,key,h T keyh← LOC(Kh+1).
07 SUBU d,keyn,keyh T d← N − h.
08 SUBU j,keyh,keyn T j ← h + 1.
09 JMP 0F T
10 D3 ADD i,d,j NT − S D3. Set up j, K, R. i← j − h.
11 LDO k,keyn,j NT − S
12 D4 LDO ki,key,i B + NT − S −A D4. Compare K : Ki.
13 CMP c,k,ki B + NT − S −A
14 BNN c,D6 B + NT − S −A[NT−S−A] To D6 if K ≥ Ki.
15 STO ki,keyh,i B D5. Move Ri, decrease i.
16 SUB i,i,h B i← i− h.
17 PBNN i,D4 B[A] To D4 if i ≥ 0.
18 D6 STO k,keyh,i NT − S D6. R into Ri+1.
19 ADD j,j,8 NT − S j ← j + 1.
20 0H PBN j,D3 NT − S + T [T] To D3 if j < N .
21 D1 SUB s,s,8 T + 1 D1. Loop on s.
22 PBNN s,D2 T + 1[1] 0 ≤ s < t.

[92]

Let’s consider practical sizes of N more carefully by looking at the total
running time of Program D, namely (6B + 10NT + 11T − 10S − 3A + 7)υ +
(2B + 3NT + T − 3S−A)µ. Table 5 shows the average running time for various
sequences of increments when N = 8. For this small value of N , bookkeeping
operations are the most significant part of the cost, and the best results are
obtained when t = 1; hence for N = 8, we are better off using simple straight
insertion. (The average running time of Program S when N = 8 is only 154υ.)
Curiously, the best two-pass algorithm occurs with MMIX when h1 = 7 (this was
h1 = 6 for the MIX computer), since a large value of S is more important here
than a small value of B.

[94]

Since Program D takes (6B + 10(NT − S) + · · ·)υ, we see that saving one
pass is about as desirable as saving 10

6 N moves; when N = 1000 we are willing to

From the Library of Melissa Nuno

ptg999

78 [94] SORTING 5.2.1

Table 5
Analysis of Algorithm D when N = 8

Increments Aave Bave S T MMIX υ MMIX µ

1 1.718 14.000 1 1 166.85 48.28
2 1 2.667 9.657 3 2 208.94 57.65
3 1 2.917 9.100 4 2 194.85 53.28
4 1 3.083 10.000 5 2 189.75 51.92
5 1 2.601 10.000 6 2 181.20 49.40
6 1 2.135 10.667 7 2 176.60 48.20
7 1 1.718 12.000 8 2 175.85 48.28

4 2 1 3.500 8.324 7 3 249.44 67.15
5 3 1 3.301 8.167 9 3 229.10 61.03
3 2 1 3.320 7.829 6 3 257.01 69.34

add 1666 moves if we can save one pass. (The first pass is very quick, however,
if ht−1 is near N , because NT − S = (N − ht−1) + · · ·+ (N − h0).)

[97]
Program L (List insertion). We assume that Kj is stored in the octabyte at
LOC(R0) + 16j + KEY and Lj is stored in the octabyte at LOC(R0) + 16j. The
subroutine has two parameters: link ≡ LOC(R0) = LOC(LINK(R0)) = LOC(L0)
and n ≡ N , the number of records. The registers p and q, as well as the link
fields, contain relative addresses using LOC(R0) as base address.

01 :Sort ADDU key,link,KEY 1 L1. Loop on j.
02 SL j,n,4 1 j ← N .
03 STOU j,link,0 1 L0 ← N .
04 STCO 0,link,j 1 LN ← 0.
05 JMP 0F 1 Go to decrease j.
06 L2 LDOU p,link,0 N − 1 L2. Set up p, q, K. p← L0.
07 SET q,0 N − 1 q ← 0.
08 LDO k,key,j N − 1 K ← Kj .
09 L3 LDO kp,key,p B + N − 1−A L3. Compare K : Kp.
10 CMP t,k,kp B + N − 1−A
11 BNP t,L5 B + N − 1−A[N−1−A] To L5 if K ≤ Kp.
12 SET q,p B L4. Bump p, q. q ← p.
13 LDOU p,link,q B p← Lq.
14 PBNZ p,L3 B[A] To L3 if p 6= 0.
15 L5 STOU j,link,q N − 1 L5. Insert into list. Lq ← j.
16 STOU p,link,j N − 1 Lj ← p.
17 0H SUB j,j,16 N j ← j − 1.
18 PBP j,L2 N [1] N > j ≥ 1.

The running time of this program is (6B+12N−3A−3)υ+(2B+5N−A−3)µ,
where N is the length of the file, A + 1 is the number of right-to-left maxima,
and B is the number of inversions in the original permutation. (See the analysis
of Program S. Note that Program L does not rearrange the records in memory;
this can be done as in exercise 5.2–12, at a cost of about 17N additional units
of time.) Program S requires (6B + 10N − 3A − 2)υ, and we can see that the
extra memory space used for the link fields has not bought us any extra speed.

From the Library of Melissa Nuno

ptg999

5.2.1 SORTING BY INSERTION [97] 79

If, however, the records contain other data besides the key and the link field, the
copy operation of Program S will require one LDO and one STO for each additional
memory word. So for each additional octabyte, the running time of Program S
will increase by 2Bυ +2Bµ, which is about 33 percent of the running time. The
running time of Program L can be reduced by 33 percent by careful programming
(see exercise 33), but the running time remains proportional to N2.

[99]
To illustrate this approach, suppose that the 16 keys used in our examples

are divided into the M = 4 ranges 0–255, 256–511, 512–767, 768–1023. We
obtain the following configurations as the keys K1,K2, . . . ,K16 are successively
inserted:

After After After Final
4 items: 8 items: 12 items: state:

List 1: 061, 087 061, 087, 170 061, 087, 154, 170 061, 087, 154, 170
List 2: 503 275, 503 275, 426, 503, 509 275, 426, 503, 509
List 3: 512 512 512, 653 512, 612, 653, 677, 703, 765
List 4: 897, 908 897, 908 897, 908

(Program M below actually inserts the keys in reverse order, K16, . . . ,K2,K1,
but the final result is the same.) Because linked memory is used, the varying-
length lists cause no storage allocation problem. All lists can be combined into
a single list at the end, if desired (see exercise 35).

Program M (Multiple list insertion). In this program we make the same
assumptions as in Program L, except that the keys must be nonnegative in the
range

0 ≤ Kj < 2e

for some suitable value of e ≤ 64. The program divides this range into M
equal parts by multiplying each key by a suitable constant. As before, p, q,
and the link fields contain relative addresses using the address of the artificial
record LOC(R0) as base address. The list heads H1 to HM are allocated as M
consecutive octabytes with nonzero relative addresses. Besides link ≡ LOC(R0)
and n ≡ N , the subroutine takes head ≡ LOC(H1) and m ≡ M as parameters;
e ≤ 64 is assumed to be constant.

01 :Sort SL i,m,3 1 i←M .
02 JMP 1F 1
03 0H STCO 0,head,i M Clear heads.
04 1H SUB i,i,8 M + 1 i← i− 1.
05 PBNN i,0B M + 1[1]

06 SUBU head,head,link 1 Make head a relative address.
07 ADDU key,link,KEY 1 M1. Loop on j.
08 SL j,n,4 1 j ← N .
09 JMP 0F 1
10 M2 LDO k,key,j N M2. Set up p, q, K. K ← Kj .
11 MUL i,m,k N i←M ·Kj .
12 SRU i,i,e-3 N i← bM ·Kj/2ec.

From the Library of Melissa Nuno

ptg999

80 [100] SORTING 5.2.1

13 ADDU q,head,i N q ← relative address of Hi.
14 JMP 4F N Jump to load and test p.
15 M3 LDO kp,key,p B + N −A M3. Compare K : Kp.
16 CMP t,k,kp B + N −A
17 BNP t,M5 B + N −A[N−A] To L5 if K ≤ Kp.
18 SET q,p B M4. Bump p, q. q ← p.
19 4H LDOU p,link,q B + N p← Lq.
20 PBNZ p,M3 B + N [A] To L3 if p 6= 0.
21 M5 STOU j,link,q N M5. Insert into list. Lq ← j.
22 STOU p,link,j N Lj ← p.
23 SUB j,j,16 N
24 0H PBP j,M2 N + 1[1] N > j ≥ 1.

This program is written for general M , but it would be much better to fix M
at some convenient value; for example, if the range of keys is 0 ≤ Kj < 2e,
we can choose d < e and M = 2d, so that the multiplication sequence of lines
11–12 could be replaced by the single instruction SRU i,k,e-3-d, reducing the
total running time by 10Nυ. In the following discussion, we shall consider this
improved version of Program M, unless otherwise noted.

The most notable contrast between Program L and Program M is the fact
that Program M must consider the case of an empty list, when no comparisons
are to be made.

How much time do we save by having M lists? The total running time of (the
improved) Program M is (6B+15N−3A+3M +13)υ+(2B+5N−A+M)µ, . . .

[101]
By combining () and () we can deduce the total running time of Pro-

gram M, for fixed M as N →∞:

min 12N + 3M + 13,
ave 1.5N2/M + 15N − 3MHN + 3M lnM + 3M − 3δ − 1.5N/M + 13,

max 3N2 + 12N + 3M + 10, ()

· · ·
If we set M = N , the average running time of Program M is approximately

(17.11N +11.5)υ+(5.70N−0.5)µ; when M = 1
2N , it is approximately (16.02N +

11.5)υ + (5.34N − 0.5)µ; and when M = 1
10N , it is approximately (15.94N +

11.5)υ + (5.31N − 2.5)µ. The additional cost of the supplementary program in
exercise 35, which links all M lists together in a single list, raises these times
respectively to (28.00N+8.5)υ+(8.34N−1.5)µ, (23.32N+5.5)υ+(7.27N−2.5)µ,
(19.84N − 18.5)υ + (6.51N − 10.5)µ. (Note that an extra 10Nυ is necessary if
the multiplication by M cannot be avoided.)

EXERCISES [102]

x 3. [30] Is Program S the shortest possible sorting program that can be written for
MMIX, or is there a shorter program that achieves the same effect?

From the Library of Melissa Nuno

ptg999

5.2.1 SORTING BY INSERTION [102] 81

x 10. [22] If Kj ≥ Kj−h when we begin step D3, Algorithm D specifies a lot of actions
that accomplish nothing. Show how to modify Program D so that this redundant
computation can be avoided, and discuss the merits of such a modification.

[104]
x 31. [25] Write an MMIX program for Pratt’s sorting algorithm (exercise 30). Express

its running time in terms of quantities A, B, S, T , N analogous to those in Program D.

x 33. [25] Find a way to improve on Program L so that its running time is dominated
by 4B instead of 6B, where B is the number of inversions. Discuss corresponding
improvements to Program S.

35. [21] Write an MMIX program to follow Program M, so that all lists are combined
into a single list. Your program should set the LINK fields exactly as they would have
been set by Program L.

36. [18] The sixteen example keys in Table 8 fit nicely into the range 0 ≤ Kj < 210.
Determine the running time of Programs L and M on this data, when M = 4.

5.2.2. Sorting by Exchanging

[107]
Program B (Bubble sort). As in previous MMIX programs of this chapter, the
Sort subroutine expects two parameters: key ≡ LOC(K1), the address where the
items to be sorted are located; and n ≡ N , the number of items. For simplicity,
we assume that the records consist of just the key, which is a 64-bit signed integer.
Instead of the index BOUND, we maintain the address of KBOUND in register keyb.

01 :Sort SUB n,n,1 1 B1. Initialize BOUND.
02 8ADDU keyb,n,key 1 BOUND← N .
03 JMP B2 1
04 B3 LDO kj,keyb,j A B3. Compare/exchange Rj : Rj+1.
05 B3A ADD j,j,8 C j ← j + 1.
06 LDO kjj,keyb,j C kjj← Kj+1.
07 CMP c,kj,kjj C Kj > Kj+1?
08 BNP c,0F C [C−B] If Kj > Kj+1,
09 STO kj,keyb,j B interchange Rj ↔ Rj+1.
10 SUB t,j,8 B t← j.
11 STO kjj,keyb,t B Kj ← Kj+1.
12 PBN j,B3A B[D]

13 JMP 1F D To B4 (but skip test for termination).
14 0H SET kj,kjj C −B kj← Kj .
15 PBN j,B3A C −B[A−D]

16 B4 BZ t,9F A−D[1] B4. Any exchanges?
17 1H ADD keyb,keyb,t A− 1 BOUND← t.
18 B2 SET t,0 A B2. Loop on j. t← 0.
19 SUB j,key,keyb A j ← 1.
20 PBN j,B3 A[0] 1 ≤ j < BOUND.
21 9H POP 0,0

From the Library of Melissa Nuno

ptg999

82 [108] SORTING 5.2.2

Analysis of the bubble sort. It is quite instructive to analyze the running
time of Algorithm B. Four quantities are involved in the timing: the number of
passes, A; the number of exchanges, B; the number of comparisons, C; and the
number of times that a pass ends with an exchange, D. The running time of
Program B (not counting the final POP) is (4 + 8A + 8C)υ + (A + 2B + C)µ;
fortunately, it does not depend on D (which appears subtle to analyze).

· · ·
In example () we therefore have A = 9, B = 41, C = 15 + 14 + 13 + 12 +

7 + 5 + 4 + 3 + 2 = 75. The total MMIX sorting time for Fig. 14 is 676υ + 166µ.

[109]
In each case the minimum occurs when the input is already in order, and the
maximum occurs when it is in reverse order; so the MMIX running time is (4 +
8A + 8C)υ + (A + 2B + C)µ = (min (6N + 6)υ + Nµ, ave (4N2 + O(N lnN))υ +
(N2 + O(N lnN))µ,max (5N2 + 4N + 4)υ + (1.5N2 − 0.5N)µ).

[117]
The corresponding MMIX program is rather long, but not complicated; in

fact, a large part of the coding is devoted to step Q7, which uses recursion to
make use of the MMIX register stack.

Program Q (Quicksort). Records to be sorted are octabyte values. Assume that
the extra records R0 and RN+1 contain, respectively, the smallest and largest
64-bit signed number.

Instead of the index l, we maintain the register left ≡ LOC(Rl−1); it serves
as base address for the registers i, j, and r, which are scaled to make LOC(Ki) =
left + i and similarly for j and r. The stack is kept on the register stack of
MMIX. The recursive part from steps Q2 to Q8 is called with two parameters, the
address $0 ≡ left and the offset $1 ≡ LOC(Rr+1) − LOC(Rl−1), such that the
addresses of all records to be sorted are then strictly between $0 and $0 + $1.
Instead of using $1 to hold r, we use it to hold j. This is very convenient for
the recursive calls, since in step Q7, the left partition simply has the parameters
left and j, and the right partition has the parameters left + j and r− j.

To keep the stack frame for each invocation as small as possible, we choose
key ≡ left ≡ $0, n ≡ j ≡ $1, rJ ≡ $2, and t ≡ $3; all other local registers
have register numbers greater than 3.

01 :Sort CMP t,n,M 1 Q1. Initialize.
02 BNP t,Q9 1[0] To Q9 if N ≤M .
03 GET rJ,:rJ 1
04 SUBU t+1,key,8 1 l← 0.
05 8ADDU t+2,n,8 1 r ← N + 1.
06 PUSHJ t,Q2 1 To Q2.
07 PUT :rJ,rJ 1
08 JMP Q9 1
09 Q2 SET i,16 A Q2. Begin new stage. i← l + 1.
10 LDO k,left,8 A k← Kl.

From the Library of Melissa Nuno

ptg999

5.2.2 SORTING BY EXCHANGING [117] 83

11 SET r,j A r ← j.
12 JMP 0F A
13 Q6 STO ki,left,j B Q6. Exchange. Kj ← Ki.
14 STO kj,left,i B Ki ← Kj .
15 Q3 ADD i,i,8 C′ −A Q3. Compare Ki : K. i← i + 1.
16 0H LDO ki,left,i C′ ki← Ki.
17 CMP t,ki,k C′ If Ki < K,
18 PBN t,Q3 C′

[A] repeat this step.
19 Q4 SUB j,j,8 C − C′ Q4. Compare K : Kj . j ← j − 1.
20 LDO kj,left,j C − C′ kj← Kj .
21 CMP t,k,kj C − C′ If K < Kj ,
22 PBN t,Q4 C − C′

[B+A] repeat this step.
23 CMP t,i,j B + A Q5. Test i : j.
24 PBN t,Q6 B + A[A] If i < j go to Q6.
25 STO kj,left,8 A Interchange Rl ↔ Rj .
26 STO k,left,j A
27 SUB d,r,j A Q7. Put on stack. d← r − j.
28 CMP t,d,j A
29 BNN t,0F A[A−A′] Put smaller subfile on stack.
30 CMP t,j,8*M+8 A′ Is left subfile too small?
31 BNP t,Q8 A′

[A′−S′−A′′] To Q8 if M + 1 ≥ j > r − j.
32 CMP t,d,8*M+8 S′ + A′′ If right subfile is too small,
33 PBNP t,Q2 S′ + A′′

[S′] go to Q2 with l and j.
34 GET rJ,:rJ S′ Now j > r − j > M + 1.
35 ADDU t+1,left,j S′ To Q2 with l + j
36 SET t+2,d S′ and r − j.
37 PUSHJ t,Q2 S′ (l, j)⇒ stack.
38 PUT :rJ,rJ S′

39 JMP Q2 S′ To Q2 with l and j.
40 0H CMP t,d,8*M+8 A−A′ Is right subfile too small?
41 BNP t,Q8 A−A′

[A−A′−S+S′−A′′′] To Q8 if M + 1 ≥ r − j ≥ j.
42 CMP t,j,8*M+8 S − S′ + A′′′ Is left subfile too small?
43 PBNP t,0F S − S′ + A′′′

[S−S′] Jump if r − j > M + 1 ≥ j
44 GET rJ,:rJ S − S′ Now r − j ≥ j > M + 1.
45 SET t+1,left S − S′ Continue with l
46 SET t+2,j S − S′ and j.
47 ADD left,left,j S − S′ l← l + j.
48 SET j,d S − S′ j ← r − j.
49 PUSHJ t,Q2 S − S′ (l + j, r − j)⇒ stack.
50 PUT :rJ,rJ S − S′

51 JMP Q2 S − S′ To Q2 with l + j and r − j.
52 0H ADD left,left,j A′′′ Now r − j > M ≥ j − 0.
53 SET j,d A′′′

54 JMP Q2 A′′′ To Q2 with l + j and r − j.
55 Q8 POP 0,0 S Q8. Take off stack.

56 Q9 SL j,n,3 1 Q9. Straight insertion sort.
57 SUB j,j,8 1 j ← N − 1.
58 SUBU key0,key,8 1 key0← LOC(K0).
59 JMP S1 1

From the Library of Melissa Nuno

ptg999

84 [117] SORTING 5.2.2

60 S2 LDO ki,key,j N − 1 S2. Set up j, K, R.
61 SUB j,j,8 N − 1
62 LDO kj,key,j N − 1
63 CMP t,kj,ki N − 1 S3. Compare K : Ki.
64 PBNP t,S1 N − 1[D]

65 ADD i,j,8 D
66 S4 STO ki,key0,i E S4. Move Ri, increase i.
67 ADD i,i,8 E
68 LDO ki,key,i E S3. Compare K : Ki.
69 CMP t,kj,ki E
70 PBP t,S4 E[D]

71 STO kj,key0,i D Ri+1 ← Rj .
72 S1 PBP j,S2 N [1] S1. Loop on j.

Analysis of quicksort. The timing information shown with Program Q is not
hard to derive using Kirchhoff’s conservation law (Section 1.3.3) and the fact
that everything put onto the stack is eventually removed again. Kirchhoff’s law
applied at Q2 also shows that

A = 1 + A′′ + 2S′ + 2(S − S′) + A′′′ = 2S + 1 + A′′ + A′′′, ()

hence the total running time comes to

(25A− 2A′ − 3A′′ + 6B + 4C + 6D + 5E + 6N + 7S − 2S′ + 6)υ
+ (3A + 2B + C + D + 2E + 2N − 2)µ

where

S′ = number of times j > r − j > M + 1;
A′ = number of times r − j < j;
A′′ = number of times j > M + 1 ≥ r − j;
A′′′ = number of times r − j > M + 1 ≥ j;

A = number of partitioning stages;
B = number of exchanges in step Q7;
C = number of comparisons made while partitioning;
D = number of times Kj−1 > Kj during straight insertion (step Q9);
E = number of inversions removed by straight insertion;
S = number of times an entry is put on the stack.

()

Because of symmetry, we may assume A′′ = A′′′, A′ = A−A′, and S′ = S − S′.
This simplifies the total running time to

(22.5A+6B+4C+6D+5E+6N +9S+7.5)υ+(3A+2B+C+D+2E+2N−2)µ.

[121]

Formulas () and () can be used to determine the best value of M on
a particular computer. In MMIX’s case, Program Q requires 10(N + 1)HN+1 +

From the Library of Melissa Nuno

ptg999

5.2.2 SORTING BY EXCHANGING [121] 85

1
6 (N + 1)f(M)− 27 cycles on the average, for N > 2M + 1, where

f(M) = 5M − 60HM+2 + 87− 72
HM+1

M + 2
+

264
M + 2

+
54

2M + 3
. ()

We want to choose M so that f(M) is a minimum, and a simple computer
calculation shows that M = 12 is best. The average running time of Program Q
is approximately 10(N+1) lnN−7.27N−34.27 cycles when M = 12, for large N .

So Program Q is quite fast, on average, considering that it requires very
little memory space. Its speed is primarily due to the fact that the inner loops,
in steps Q3 and Q4, are extremely short —only four MMIX instructions each (see
lines 15–18 and 19–22).

[125]
Program R (Radix exchange sort). The following MMIX code expects the
parameters key ≡ LOC(K1), n ≡ N , and b ≡ 2m−1. It keeps the addresses
of Kl, Kr, and Kj in registers left, right, and j; instead of i and j, the main
loop maintains the difference d ≡ 8(i − j). The code uses recursion, keeping
the return address rJ and the values of right and b on the register stack. The
function returns the final value of right so that processing can continue with
left = right + 8. Steps R2 to R10 form the body of this recursive procedure.
Its parameters are $0 ≡ right ≡ LOC(Kr), $2 ≡ b, and $3 ≡ left ≡ LOC(Kl);
the second parameter is ignored and the corresponding register $1 is used later
to save the return address. Passing the address of Kj as the new value for right
does not need an instruction, since j ≡ $4 is the same register as left+1.

01 :Sort SET left,key 1 R1. Initialize. l← 1.
02 8ADDU right,n,left 1
03 SUBU right,right,8 1 r ← N .
04 R2 SET j,right A R2. Begin new stage. j ← r.
05 SUB d,left,j A i← l.
06 R3 LDO ki,j,d C′ R3. Inspect Ki for 1.
07 AND t,ki,b C′

08 PBZ t,R4 C′
[B+X] To R4 if it is 0.

09 R6 SUBU j,j,8 C′′ + X R6. Decrease j. j ← j − 1.
10 BNN d,R8 C′′ + X [X] To R8 if j < i.
11 ADD d,d,8 C′′ j ← j − 1.
12 LDO kj,j,8 C′′ R5. Inspect Kj+1 for 0.
13 AND t,kj,b C′′

14 BNZ t,R6 C′′
[C′′−B] To R6 if it is 1.

15 STO ki,j,8 B R7. Exchange Ri, Rj+1.
16 STO kj,j,d B
17 R4 ADD d,d,8 C′ −X R4. Increase i. i← i + 1.
18 PBNP d,R3 C′ −X [A−X] To R3 if i ≤ j.
19 R8 BOD b,R10 A[G] R8. Test special cases.
20 SRU b,b,1 A−G b← b + 1.
21 CMPU t,j,right A−G
22 BNN t,R2 A−G[R] To R2 if j = r.
23 CMPU t,j,left A−G−R

From the Library of Melissa Nuno

ptg999

86 [125] SORTING 5.2.2

24 BN t,R2 A−G−R[L] To R2 if j < l.
25 BZ t,0F A−G−R− L[K+1] To R9 if j 6= l.
26 SET left+3,b S R9. Put on stack.
27 SET left+4,left S
28 GET rJ,:rJ S
29 PUSHJ left,R2 S Call R2 with (Kj , · , b, Kl).
30 PUT :rJ,rJ S
31 0H ADDU left,left,8 S + K + 1 l← return value + 1.
32 CMP t,left,right S + K + 1 R2. Begin new stage.
33 BN t,R2 S + K + 1[K+G] To R2 if l < r.
34 R10 POP 1,0 S + 1 R10. Take off stack.

[127]

By Kirchhoff’s law, S = A−G−R−L−K−1; so the total running time comes
to (22A + 2B + 5C ′ + 8C ′′− 13G− 4K − 10L− 12R + 2X)υ + (C ′ + C ′′ + 2B)µ.
Assuming C ′ = C ′′ = C/2, this simplifies to (22A + 2B + 6.5C − 13G − 4K −
10L− 12R + 2X)υ + (2B + C)µ.

· · ·
Here α = 1/ ln 2 ≈ 1.4427. Notice that the average number of exchanges, bit
inspections, and stack accesses is essentially the same for both kinds of data,
even though case (ii) takes about 44 percent more stages. Our MMIX program
takes approximately 10.1N lnN units of time, on the average, to sort N items
in case (ii), and this could be cut to about 8.66N lnN using the suggestion of
exercise 34; the corresponding figure for Program Q is 10.0N lnN , which can be
decreased to about 8.91N lnN using Singleton’s median-of-three suggestion.

Thus radix exchange sorting takes about as long as quicksort, on the average,
when sorting uniformly distributed data. On some machines, such as MMIX, it is
actually a little quicker than quicksort.

EXERCISES [134]

12. [24] Write an MMIX program for Algorithm M. How much time does your program
take to sort the sixteen records in Table 1?

34. [20] How can the bit-inspection loops of radix exchange (in steps R3 through R6)
be speeded up?

x 55. [22] Show how to modify Program Q so that the partitioning element is the
median of the three keys (), assuming that M > 1.

56. [M43] Analyze the average behavior of the quantities that occur in the running
time of Algorithm Q when the program has been modified to take the median of three
elements as in exercise 55. (See exercise 29.)

From the Library of Melissa Nuno

ptg999

5.2.3 SORTING BY SELECTION [138] 87

5.2.3. Sorting by Selection

[140]

Program S (Straight selection sort). As in previous programs of this chapter,
the parameters key ≡ LOC(K1) and n ≡ N are passed to this subroutine to sort
the records in place on a full octabyte key.

01 :Sort SL j,n,3 1 S1. Loop on j. j ← N .
02 JMP 1F 1
03 2H SET k,j N − 1 S2. Find max(K1, . . . , Kj).
04 SET i,j N − 1 i← j.
05 LDO max,key,i N − 1 max← Ki.
06 3H SUB k,k,8 A Loop on k.
07 LDO kk,key,k A kk← Kk.
08 CMP t,max,kk A Compare max : Kk.
09 PBNN t,0F A[B] If max < Kk,
10 SET i,k B i← k and
11 SET max,kk B max← Kk.
12 0H PBP k,3B A[N−1] Repeat if k > 0.
13 LDO t,key,j N − 1 S3. Exchange with Rj .
14 STO max,key,j N − 1
15 STO t,key,i N − 1
16 1H SUB j,j,8 N Decrement j.
17 PBP j,2B N [1] N > j > 0.

· · ·
Thus the average running time of Program S is (2.5N2 + 4(N + 1)HN −

0.5N − 4)υ + (0.5N2 + 3.5N − 4)µ, noticeably slower than straight insertion
(Program 5.2.1S).

[146]

Program H (Heapsort). The records K1 through KN are sorted by Algo-
rithm H. The subroutine expects the parameters key ≡ LOC(K1) and n ≡ N .

01 :Sort SLU r,n,3 1 H1. Initialize.
02 SUB r,r,8 1 r ← N .
03 SRU l,n,1 1
04 SLU l,l,3 1 l← bN/2c.
05 BNP l,9F 1[0] Terminate if N < 2.
06 1H SUB l,l,8 bN/2c l← l − 1.
07 LDO k,key,l bN/2c K ← Kl.
08 SET j,l bN/2c H3. Prepare for siftup. j ← l.
09 JMP H4 bN/2c
10 5H LDO kj,key,j B + A kj← Kj .
11 BZ t,H6 B + A[D] To H6 if j = r.
12 ADD j1,j,8 B + A−D H5. Find larger child. j1← j + 1.
13 LDO kj1,key,j1 B + A−D kj1← Kj+1.
14 CMP t,kj,kj1 B + A−D Compare Kj : Kj+1.
15 CSNP j,t,j1 B + A−D If Kj < Kj+1, j ← j + 1.

From the Library of Melissa Nuno

ptg999

88 [146] SORTING 5.2.3

16 CSNP kj,t,kj1 B + A−D If Kj < Kj+1, kj← kj1.
17 H6 CMP t,k,kj B + A H6. Larger than K?
18 BNN t,H8 B + A[A] To H8 if K ≥ Kj .
19 STO kj,key,i B H7. Move it up. Ri ← Rj .
20 H4 SET i,j B + P H4. Advance downward. i← j.
21 2ADDU j,j,8 B + P j ← 2j + 1.
22 CMP t,j,r B + P Compare j : r.
23 PBNP t,5B B + P [P−A] Jump if j ≤ r.
24 H8 STO k,key,i P H8. Store R. Ki ← K.
25 BP l,1B P [bN/2c−1] H2. Decrease l or r.
26 2H LDO k,key,r N − 1 If l = 0, set K ← Kr.
27 LDO t,key,0 N − 1
28 STO t,key,r N − 1 Kr ← K1.
29 SUB r,r,8 N − 1 r ← r − 1.
30 SET j,0 N − 1 H3. Prepare for siftup. j ← l.
31 PBP r,4B N − 1[1] To H3 if r > 1.
32 STO k,key,0 1 K1 ← K.
33 9H POP 0,0

[148]
The total running time,

(9A + 14B + 17N − 3D + 8bN/2c− 16)υ + (2A + 3B + 4.5N −D + bN/2c− 4)µ,

is therefore approximately (14N lg N−2N−3 ln N−16)υ+(3N lg N− lnN−4)µ
on the average.

A glance at Table 2 makes it hard to believe that heapsort is very efficient;
large keys migrate to the left before we stash them at the right! It is indeed a
strange way to sort, when N is small; the sorting time for the 16 keys in Table 2
is 898υ, while the simple method of straight insertion (Program 5.2.1S) takes
only 393υ. Straight selection (Program S) takes 852υ.

For larger N , Program H is more efficient. It invites comparison with
shellsort (Program 5.2.1D) and quicksort (Program 5.2.2Q), since all three pro-
grams sort by comparisons of keys and use little or no auxiliary storage. When
N = 1000, the approximate average running times on MMIX are

140000υ for heapsort,
100000υ for shellsort,
70000υ for quicksort.

(MMIX is a typical computer, but particular machines will of course yield some-
what different relative values.) As N gets larger, heapsort will be superior to
shellsort, but its asymptotic running time 14N lg N ≈ 20.2N lnN will never beat
quicksort’s 10N lnN .

· · ·
We always have

A ≤ 1.5N, B ≤ Nblg Nc, C ≤ Nblg Nc, ()

From the Library of Melissa Nuno

ptg999

5.2.3 SORTING BY SELECTION [148] 89

so Program H will take no more than 14Nblg Nc + 34.5N − 16 units of time,
regardless of the distribution of the input data.

EXERCISES [156]

x 8. [24] Show that if the search for max(K1, . . . , Kj) in step S2 is carried out by
examining keys in left-to-right order K1, K2, . . . , Kj , instead of going from right to
left as in Program S, it is often possible to reduce the number of comparisons needed
on the next iteration of step S2. Write an MMIX program based on this observation.

9. [M25] What is the average number of comparisons performed by the algorithm
of exercise 8, for random input?

5.2.4. Sorting by Merging

[162]
We can sketch the time in the inner loop as follows, if we assume that there

is low probability of equal keys:

Step Operations Time
N3 CMP 1υ
N3 BP (good guess), CMP, BZ (good guess) 3υ

Either

{
N4 STO, ADD 2υ
N5 ADD, SET, LDO, CMP, PBNP (good guess) 5υ
N3 BP (bad guess) 3υ

Or

{
N8 STO, ADD 2υ
N9 SUB, SET, LDO, CMP, PBNP (good guess) 5υ

Thus about 11υ is spent on each record in each pass, and the total running time
will be asymptotically 11N lg N , for both the average case and the worst case.
This is a little bit slower than quicksort’s average time, and it may not be enough
better than heapsort to justify taking twice as much memory space, since the
asymptotic running time of Program 5.2.3H is never more than 14N lg N .

[163]
The former tests for stepdowns have been replaced by decrementing q or r

and testing the results for zero; this reduces the asymptotic MMIX running time
to 9N lg N units, slightly faster than we were able to achieve with Algorithm N.
(The implementation of exercise 9 reduces this further to 8N lg N units.)

[164]

Algorithm L (List merge sort).

· · ·
The use of signed links is well suited to MIX, but unfortunately not to MMIX

and most other computers. Instead of the sign bit, we use the least significant bit

From the Library of Melissa Nuno

ptg999

90 [164] SORTING 5.2.4

of a link as a TAG field; TAG(Ls) = 1 denotes the end of an ordered sublist. MMIX
ignores this tag bit when the link value is used as an address; the TAG bit can be
tested with BEV (branch if even) or BOD (branch if odd) instructions. Inside the
inner loop, it is too expensive to extract the tag bit from Ls and set it in p before
storing p; instead, we keep track of the location of the initial link to an ordered
sublist by setting s0 ← s each time we start a new sublist and set TAG(Ls0)← 1
after we finish the sublist. This method can be used on all computers that have
“spare bits” in address values.

L1. [Prepare two lists.] Set Li ← i + 2 and TAG(Li) = 1 for 1 ≤ i ≤ N − 2,
L0 ← 1, TAG(L0) = 1, LN+1 ← 2, TAG(LN+1) = 1, LN ← 0, TAG(LN) = 1,
LN−1 ← 0, and TAG(LN−1) = 1. (We have created two lists containing R1,
R3, R5, . . . and R2, R4, R6, . . . , respectively; the TAG fields indicate that
each ordered sublist consists of one element only. For another way to do this
step, taking advantage of ordering that may be present in the initial data,
see exercise 12.)

L2. [Begin new pass.] Set s ← 0, S0 ← s, t ← N + 1, p ← Ls, TAG(p) = 0,
q ← Lt, TAG(q) = 0. If q = 0, the algorithm terminates. (During each pass,
p and q traverse the lists being merged; s0 points to the location of the initial
link to the current sublist; s usually points to the most recently processed
record of the current sublist; while t points to the end of the previously
output sublist.)

L3. [Compare Kp : Kq.] If Kp > Kq, go to L6.

L4. [Advance p.] Set Ls ← p, s← p, p← Lp. If TAG(p) = 0, return to L3.

L5. [Complete the sublist.] Set Ls ← q, s← t. Then set t← q and q ← Lq, one
or more times, until TAG(q) = 1. Finally go to L8.

L6. [Advance q.] (Steps L6 and L7 are dual to L4 and L5.) Set Ls ← q, s← q,
q ← Lq. If TAG(q) = 0, return to L3.

L7. [Complete the sublist.] Set Ls ← p, s← t. Then set t← p and p← Lp, one
or more times, until TAG(p) = 1.

L8. [End of pass?] (At this point TAG(p) = 1 and TAG(q) = 1, since both
pointers have moved to the end of their respective sublists.) Set TAG(Ls0)←
1, s0 ← s, TAG(p) ← 0, TAG(q) ← 0. If q = 0, set Ls ← p, Lt ← 0 and
return to L2. Otherwise return to L3.

· · ·
Let us now construct an MMIX program for Algorithm L, to see whether the

list manipulation is advantageous from the standpoint of speed as well as space:

Program L (List merge sort). For convenience, we assume that records are
one octabyte long, with Lj in the low TETRA and Kj in the high TETRA. The
parameters are key ≡ LOC(R0) = LOC(K0), the location of the first key, and
n ≡ N , the number of records to be sorted.

From the Library of Melissa Nuno

ptg999

5.2.4 SORTING BY MERGING [166] 91

01 :Sort SL n,n,3 1 L1. Prepare two lists.
02 ADDU link,key,4 1 link← LOC(L0).
03 SUB p,n,16 1 p← N − 2.
04 BN p,9F 1[0] Terminate if N < 2.
05 OR q,n,1 1 q ← N , TAG(q)← 1.
06 0H STTU q,link,p N − 2 LINK(p)← q.
07 SUB q,q,8 N − 2 q ← q − 1.
08 SUB p,p,8 N − 2 p← p− 1.
09 PBP p,0B N − 2[1] Repeat until p = 0.
10 SET c,8|1 1
11 STTU c,link,0 1 L0 ← 1, TAG(L0)← 1.
12 SUB c,n,8 1
13 ADDU linkn1,link,c 1 linkn1← LOC(LN−1).
14 SET c,16|1 1
15 STTU c,linkn1,16 1 LN+1 ← 2, TAG(LN+1)← 1.
16 SET c,0|1 1
17 STTU c,linkn1,8 1 LN ← 0, TAG(LN)← 1.
18 STTU c,linkn1,0 1 LN−1 ← 0, TAG(LN−1)← 1.
19 JMP L2 1
20 L3 CMP c,kp,kq C L3. Compare Kp : Kq.
21 BP c,L6 C [C′′] If Kp > Kq, go to L6.
22 L4 STTU p,link,s C′ L4. Advance p. Ls ← p.
23 SET s,p C′ s← p.
24 LDTU p,link,p C′ p← Lp.
25 LDT kp,key,p C′ kp← Kp.
26 PBEV p,L3 C′

[B′] If TAG(p) = 0, return to L3.
27 L5 STTU q,link,s B′ L5. Complete the sublist. Ls ← q.
28 SET s,t B′ s← t.
29 0H SET t,q D′ t← q.
30 LDTU q,link,q D′ q ← Lq.
31 BEV q,0B D′

[D′−B′] Repeat until TAG(q) = 1.
32 LDT kq,key,q B′ kq← Kq.
33 JMP L8 B′ Go to L8.
34 L6 STTU q,link,s C′′ L6. Advance q. Ls ← q.
35 SET s,q C′′ s← q.
36 LDTU q,link,q C′′ q ← Lq.
37 LDT kq,key,q C′′ kq← Kq.
38 PBEV q,L3 C′′

[B′′] If TAG(q) = 0, return to L3.
39 L7 STTU p,link,s B′′ L7. Complete the sublist. Ls ← p.
40 SET s,t B′′ s← t.
41 0H SET t,p D′′ t← p.
42 LDTU p,link,p D′′ p← Lp.
43 BEV p,0B D′′

[D′′−B′′] Repeat until TAG(p) = 1.
44 LDT kp,key,p B′′ kp← Kp.
45 L8 LDTU c,link,s0 B L8. End of pass?
46 OR c,c,1 B
47 STTU c,link,s0 B TAG(Ls0)← 1.
48 SET s0,s B s0 ← s.
49 ANDN p,p,1 B TAG(p)← 0.

From the Library of Melissa Nuno

ptg999

92 [166] SORTING 5.2.4

50 ANDN q,q,1 B TAG(q)← 0.
51 PBNZ q,L3 B[A] If q 6= 0, go to L3.
52 OR p,p,1 A
53 STTU p,link,s A Ls ← p, TAG(Ls)← 1.
54 SET c,1 A
55 STTU c,link,t A Lt ← 0, TAG(Lt)← 1.
56 L2 SET s,0 A + 1 L2. Begin new pass. s← 0.
57 SET s0,s A + 1 s0 ← s.
58 ADDU t,n,8 A + 1 t← N + 1.
59 LDTU p,link,s A + 1 p← Ls.
60 ANDN p,p,1 A + 1 Clear TAG bit.
61 LDTU q,link,t A + 1 q ← Lt.
62 ANDN q,q,1 A + 1 Clear TAG bit.
63 LDT kp,key,p A + 1 kp← Kp.
64 LDT kq,key,q A + 1 kq← Kq.
65 PBNZ q,L3 A + 1[1] Terminate if q = 0.
66 9H POP 0,0

The running time of this program can be deduced using techniques we have
seen many times before (see exercises 13 and 14); it comes to approximately
(8N lg N+21.5N)υ on the average, with a small standard deviation of order

√
N .

Exercise 15 shows that the running time can be reduced to about (6.5N lg N)υ
at the expense of a somewhat longer program.

Thus we have a victory for linked-memory techniques over sequential al-
location, when internal merging is being done: Typically, less memory space is
required, and using all possible optimizations, the program runs about 10 percent
faster. On the other hand, we haven’t considered the effects of cache memory,
which can be complicated.

EXERCISES [167]

9. [24] Write an MMIX program for Algorithm S. Specify instruction frequencies in
terms of quantities analogous to A, B′, B′′, C′, . . . in Program L.

x 13. [M34] Give an analysis of the average running time of Program L, in the style of
other analyses in this chapter: Interpret the quantities A, B, B′, . . . , and explain how
to compute their exact average values. How long does Program L take to sort the 16
numbers in Table 3?

15. [20] Hand simulation of Algorithm L reveals that it occasionally does redundant
operations; the assignments Ls ← p, Ls ← q in steps L4 and L6 are unnecessary about
half of the time, since we have Ls = p (or q) each time step L4 (or L6) returns to L3.
How can Program L be improved so that this redundancy disappears?

From the Library of Melissa Nuno

ptg999

5.2.5 SORTING BY DISTRIBUTION [168] 93

5.2.5. Sorting by Distribution

[173]

Program R (Radix list sort). The given records are assumed to have a link field
at offset LINK = 0 and a p-byte key field at offset KEY+ 8− p. We use M = 256
and extract the next ak from the key with a simple LDBU (load byte unsigned)
instruction. The following subroutine has four parameters: key ≡ LOC(R1), the
location of the records; n ≡ N , the number of records; p ≡ p, the number of bytes
in the key; and bot ≡ LOC(BOTM[0]), the location of the 256 bottom link fields
followed by the 256 top link fields. We keep the variable named P in register P
(using an uppercase name for a register) because we are already using p for p,
the length of the key.

01 :Sort GET rJ,:rJ 1 First pass.
02 SET t+1,bot 1
03 PUSHJ t,:Empty 1 R2. Set piles empty.
04 SET t,M 1
05 8ADDU top,t,bot 1 top← LOC(TOP[0]).
06 16ADDU P,n,key 1 R1. Loop on k. P← LOC(RN+1).
07 SET k,KEY+7 1 k ← 1.
08 0H SUBU P,P,16 N R5. Step to next record.
09 LDBU i,P,k N R3. Extract first digit of key.
10 SL i,i,3 N
11 LDOU ti,top,i N R4. Adjust links. ti← TOP[i].
12 STOU P,ti,LINK N LINK(TOP[i])← P.
13 STOU P,top,i N TOP[i]← P.
14 SUB n,n,1 N
15 PBP n,0B N [1]

16 JMP R6 1 Later passes.
17 R2 SET t+1,bot P − 1 R2. Set piles empty.
18 PUSHJ t,:Empty P − 1
19 SUB k,k,1 P − 1
20 R3 LDBU i,P,k N(P − 1) R3. Extract kth digit of key.
21 SL i,i,3 N(P − 1)
22 LDOU ti,top,i N(P − 1) R4. Adjust links. ti← TOP[i].
23 STOU P,ti,LINK N(P − 1) LINK(TOP[i])← P.
24 STOU P,top,i N(P − 1) TOP[i]← P.
25 LDOU P,P,LINK N(P − 1) R5. Step to next record.
26 PBNZ P,R3 N(P − 1)[P−1] To R3 if not end of pass.
27 R6 SET t+1,bot P R6. Do Algorithm H.
28 PUSHJ t,:Hook P
29 LDOU P,bot,0 P P← BOTM[0].
30 SUB p,p,1 P R1. Loop on k.
31 PBP p,R2 P [1]

32 PUT :rJ,rJ 1
33 POP 0,0

The running time of Program R is (7P + 1)N + 11PM + 26P + 8 cycles, where
N is the number of input records, M is the radix (the number of piles), and P

From the Library of Melissa Nuno

ptg999

94 [174] SORTING 5.2.5

is the number of passes. This includes the running time for the two auxiliary
procedures: Hook and Empty. Both procedures are called P times.

After the Hook procedure, the first bottom link is pointing to the entire list.

01 :Hook SET i,M*8 1 H1. Initialize. i← 0.
02 ADDU bot,bot,i 1 bot← LOC(BOTM[M + 1]).
03 ADDU top,bot,i 1 top← LOC(TOP[M + 1]).
04 NEG i,i 1 Now bot + i = LOC(BOTM[i])
05 JMP H2 1 and top + i = LOC(TOP[i]).
06 0H LDOU bi,bot,i M − 1 bi← BOTM[i].
07 BZ bi,H3 M − 1[E′] H4. Is pile empty?
08 STOU bi,P,LINK M − 1− E′ H5. Tie piles together.
09 H2 LDOU P,top,i M − E′ H2. Point to top of pile.
10 H3 ADD i,i,8 M H3. Next pile.
11 PBN i,0B M [1]

12 STCO 0,P,LINK 1 Terminate list.
13 POP 0,0 1

The total running time for the Hook procedure is (6M+8)υ+(3M−2E′−1)µ,
where E′ is the number of occurrences of empty piles in each pass.

After the Empty procedure, all piles are empty.

01 :Empty SET i,M*8 1 i←M .
02 ADDU top,bot,i 1 top← LOC(TOP[0]).
03 SUB i,i,8 1 i← i− 1.
04 0H ADDU bi,bot,i M bi← LOC(BOTM[i]).
05 STCO 0,bi,LINK M BOTM[i]← Λ.
06 STOU bi,top,i M TOP[i]← LOC(BOTM[i]).
07 SUB i,i,8 M i← i− 1.
08 PBNN i,0B M [1] 0 ≤ i < M .
09 POP 0,0 1

The Empty procedure takes (5M + 8)υ + 2Mµ.

EXERCISES [177]

5. [20] New : What changes are necessary to Program R so that it uses M = 2m,
sorting keys of length Pm ≤ 64 bits in P passes? What is the running time of the
program, after these changes have been made?

5.3.1. Minimum-Comparison Sorting

EXERCISES [196]

28. [40] Write an MMIX program that sorts five one-byte keys in the minimum possible
amount of time, and halts. (See the beginning of Section 5.2 for ground rules.)

From the Library of Melissa Nuno

ptg999

5.5 SUMMARY, HISTORY, AND BIBLIOGRAPHY [380] 95

5.5. SUMMARY, HISTORY, AND BIBLIOGRAPHY

[381]
Table 1 summarizes the speed and space characteristics of many of these

methods, when programmed for MMIX.

· · ·
since MMIX is a fairly typical computer.

[383]
The case N = 16 refers to the sixteen keys that appear in so many of

the examples of Section 5.2; the binary representation of the keys requires 10
bits. The case N = 1000 refers to the sequence K1,K2, . . . ,K1000 of 32-bit keys
defined by

X0 = 0; Xn+1 = (6364136223846793005Xn + 9754186451795953191) mod 264 ;

Kn = bXn/232c .
For the multiplier, see Section 3.3.4, page 108; 9754186451795953191 is some
random increment value. An MMIX program of reasonably high quality has been
used to represent each algorithm in the table, often incorporating improvements
that have been suggested in the exercises.

EXERCISES [390]

2. [20] Based on the information in Table 1, what is the best list-sorting method for
32-bit keys, for use on the MMIX computer?

From the Library of Melissa Nuno

ptg999

96
[382

]
S
O

R
T

IN
G

5.5
Table 1

A COMPARISON OF INTERNAL SORTING METHODS USING THE MMIX COMPUTER

Running Timez }| {
Method Reference S

ta
b
le

?

L
en

g
th

o
f

M
M
I
X

co
d
e

Space Average Maximum N = 16 N = 1000 Notes

Comparison counting Ex. 5.2–5 Yes 23 N(1 + ε) 4N2 + 8N 5.5N2 1042 4046134 c
Distribution counting Ex. 5.2–9 Yes 35 2N + 216ε 15N + 8 · 216 + 29 15N 7054 539310 a
Straight insertion Ex. 5.2.1–33 Yes 15 N + 1 1.25N2 + 9.75N 2.5N2 377 1291521
Shellsort Prog. 5.2.1D No 22 N + ε lg N 2.58N7/6 + 10N lg N + 111N cN3/4 443 103798 d, h
List insertion Ex. 5.2.1–33 Yes 27 N(1 + ε) 1N2 + 11N 2N2 356 1036420 c
Multiple list insertion Prog 5.2.1M No 24 N + ε(N + 128) 0.012N2 + 15N 3N2 286 26092 c, f, i
Merge exchange Ex. 5.2.2–12 No 39 N 2.75N(lg N)2 3.5N(lg N)2 819 258142
Quicksort Prog. 5.2.2Q No 72 N + 3ε lg N 10N ln N − 7.27N ≥ 2N2 401 67587
Median-of-3 quicksort Ex. 5.2.2–55 No 91 N + 3ε lg N 8.91N ln N − 3.66N ≥ 2N2 413 67384 e
Radix exchange Ex. 5.2.2–34 No 61 N + 5 · 20ε 8.66N ln N − 1.14N 291N 400 63975 g, i
Straight selection Prog. 5.2.3S No 17 N 2.5N2 + 4N ln N 3.5N2 852 2529124 j
Heapsort Prog. 5.2.3H No 33 N 20.2N ln N − 2N 20.2N ln N 898 137106 h, j
List merge Prog. 5.2.4L Yes 66 N(1 + ε) 11.5N ln N − 21.5N 11.5N ln N 757 90571 c, j
Radix list sort Prog. 5.2.5R Yes 33 N + ε(N + 512) 29N + 11376 29N 5932 40376 c

a: Sixteen-bit (that is, two-byte) keys only.
c: Output not rearranged; final sequence is specified implicitly by links or counters.
d: Increments chosen as in 5.2.1–(); a slightly better sequence appears in exercise 5.2.1–29; N7/6 is not rigorous.
e: M = 11.
f: M = 22 = 4 for N = 16; M = 27 = 128 for average, maximum, and N = 1000.
g: M = 32.
h: The average time is based on an empirical estimate, since the theory is incomplete.
i: The average time is based on the assumption of uniformly distributed keys.
j: Further refinements, mentioned in the text and exercises accompanying this program, would reduce the running time.

From the Library of Melissa Nuno

ptg999

CHAPTER SIX

SEARCHING

6.1. SEQUENTIAL SEARCHING

[397]

Program S (Sequential search). Assume that the keys Ki are stored as an array
of octabyte values.

The following subroutine has three parameters: key ≡ LOC(K1); n ≡ N , the
number of keys; and k ≡ K, the key we want to find. After a successful search,
the subroutine returns the location of the key found; otherwise, it returns zero.
For efficiency, register i is scaled by 8, the size of the table entries. Further, we
subtract 8N , the table size, from i and add it to key. With this trick, we can
replace the test i ≤ N by 8(i − N) < 0 and control the loop with a single PBN
instruction.

01 :Search SL i,n,3 1 S1. Initialize.
02 NEG i,i 1 i← −8N , i← 1.
03 SUBU key,key,i 1 key← LOC(KN+1).
04 S2 LDO ki,key,i C S2. Compare.
05 CMP t,k,ki C
06 BZ t,Success C [S] Exit if K = Ki.
07 ADD i,i,8 C − S S3. Advance.
08 PBN i,S2 C − S[1−S] S4. End of file?
09 POP 0,0 Return zero if not in table.
10 Success ADDU $0,key,i S Return LOC(Ki).
11 POP 1,0

The analysis of this program is straightforward; it shows that the running
time of Algorithm S depends on two things,

C = the number of key comparisons;
S = 1 if successful, 0 if unsuccessful.

()

Program S takes (5C − S + 5)υ + Cµ units of time. If the search successfully
finds K = Ki, we have C = i, S = 1; hence the total time is (5i + 4)υ + iµ. On
the other hand if the search is unsuccessful, we have C = N , S = 0, for a total
time of (5N + 5)υ + Nµ.

· · ·

Program Q (Quick sequential search). This algorithm is the same as Algo-
rithm S, except that it assumes the presence of a dummy record RN+1 at the
end of the file.

97

From the Library of Melissa Nuno

ptg999

98 [397] SEARCHING 6.1

01 :Search SL i,n,3 1 Q1. Initialize.
02 NEG i,i 1 i← −8N , i← 1.
03 SUBU key,key,i 1 key← LOC(KN+1).
04 STO k,key,0 1 KN+1 ← K.
05 JMP Q2 1
06 Q3 ADD i,i,8 C − S Q3. Advance.
07 Q2 LDO ki,key,i C − S + 1 Q2. Compare.
08 CMP t,k,ki C − S + 1
09 PBNZ t,Q3 C − S + 1[1] To Q3 if K 6= Ki.
10 PBN i,Success 1[1−S] Q4. End of file?
11 POP 0,0 Exit if not in table.
12 Success ADDU $0,key,i S Return LOC(Ki).
13 POP 1,0

In terms of the quantities C and S in the analysis of Program S, the running
time has decreased to (4C − 5S + 13)υ + (C − S + 2)µ; this is an improvement
whenever i ≥ 5 in a successful search, and whenever N ≥ 9 in an unsuccessful
search.

The transition from Algorithm S to Algorithm Q makes use of an impor-
tant speed-up principle: When an inner loop of a program tests two or more
conditions, we should try to reduce the testing to just one condition.

Another technique will make Program Q still faster.

Program Q′ (Quicker sequential search).

01 :Search SL i,n,3 1 Q1. Initialize.
02 NEG i,i 1 i← −8N , i← 1.
03 SUBU key,key,i 1 key← LOC(KN+1).
04 ADDU key1,key,8 1 key1 + i← LOC(KN+2).
05 STO k,key,0 1 KN+1 ← K.
06 JMP Q2 1
07 Q3 ADD i,i,16 b(C − S)/2c Q3. Advance. (twice)
08 Q2 LDO ki,key,i b(C − S)/2c+ 1 Q2. Compare.
09 CMP t,k,ki b(C − S)/2c+ 1
10 BZ t,Q4 b(C − S)/2c+ 1[1−F] To Q4 if K = Ki.
11 LDO ki,key1,i b(C − S)/2c+ F Q2. Compare.
12 CMP t,k,ki b(C − S)/2c+ F
13 PBNZ t,Q3 b(C − S)/2c+ F [F] To Q3 if K 6= Ki.
14 ADD i,i,8 F
15 Q4 PBN i,Success 1[1−S] Q4. End of file?
16 POP 0,0 Exit if not in table.
17 Success ADDU $0,key,i S Return LOC(Ki).
18 POP 1,0

The inner loop has been duplicated; this avoids about half of the “i ← i + 1”
instructions, so with F = (C − S) mod 2, it reduces the running time to

3.5C − 4.5S + 14 +
(C − S) mod 2

2
units.

From the Library of Melissa Nuno

ptg999

6.1 SEQUENTIAL SEARCHING [405] 99

EXERCISES [405]
3. [16] Write an MMIX program for the algorithm of exercise 2. What is the running

time of your program, in terms of the quantities C and S in ()?

5. [20] Program Q′ is, of course, noticeably faster than Program Q, when C is large.
But are there any small values of C and S for which Program Q′ actually takes more
time than Program Q?

x 6. [20] Add five more instructions to Program Q′, reducing its running time to about
(3.33C + constant)υ.

6.2.1. Searching an Ordered Table

[411]
Program B (Binary search). As in the programs of Section 6.1, we assume
here that the keys Ki are an array of octabyte values. The following subroutine
expects three parameters: key ≡ LOC(K1), the location of K1; n ≡ N , the
number of keys; and k ≡ K, the given key. It returns the address of the key, if
found, and zero otherwise.
01 :Search SET l,0 1 B1. Initialize. l← 1.
02 SUB u,n,1 1 u← N .
03 JMP B2 1
04 B5 ADD l,i,1 C1 B5. Adjust l.
05 B2 CMP t,u,l C + 1− S B2. Get midpoint.
06 BN t,Failure C + 1− S[1−S] Jump if u < l.
07 ADDU i,u,l C
08 SRU i,i,1 C i← b(u + l)/2c.
09 SLU t,i,3 C B3. Compare.
10 LDO ki,key,t C ki← Ki.
11 CMP t,k,ki C
12 BP t,B5 C [C1] Jump if K > Ki.
13 BZ t,Success C2[S]

14 SUB u,i,1 C2 − S B4. Adjust u. u← i− 1.
15 JMP B2 C2 − S To B2.
16 Success 8ADDU $0,i,key S
17 POP 1,0

18 Failure POP 0,0

The running time is (11C − 3S + 7)υ + Cµ, where C = C1 + C2 is the
number of comparisons made (the number of times step B3 is performed), and
S = [outcome is successful].

[414]
The average running time of Program B is approximately

(11 lg N − 7)υ for a successful search,
(11 lg N + 7)υ for an unsuccessful search,

()

if we assume that all outcomes of the search are equally likely.

· · ·

From the Library of Melissa Nuno

ptg999

100 [415] SEARCHING 6.2.1

Program C (Uniform binary search). This program does the same job as
Program B, using Algorithm C. It adds a fourth parameter j ≡ LOC(DELTA[1]),
the location of the auxiliary table. For convenience, this table contains offsets,
scaled and decremented, ready to access the keys relative to the parameter key.

01 :Search LDO i,j,0 1 C1. Initialize. j = 1, i← DELTA[j].
02 JMP 2F 1
03 3H BZ t,Success C1[S] Jump if K = Ki.
04 BZ dj,Failure C1 − S[A] Jump if DELTA[j] = 0.
05 SUB i,i,dj C1 − S −A C3. Decrease i.
06 2H ADDU j,j,8 C j ← j + 1.
07 LDO dj,j,0 C C2. Compare.
08 LDO ki,key,i C
09 CMP t,k,ki C
10 PBNP t,3B C [C2] Jump if K ≤ Ki.
11 ADD i,i,dj C2 C4. Increase i.
12 PBNZ dj,2B C2[1−S−A] Jump if DELTA[j] 6= 0.
13 Failure POP 0,0 Exit if not in table.
14 Success ADDU $0,key,i S Return LOC(Ki).
15 POP 1,0

· · ·
The total running time of Program C is not quite symmetrical between left

and right branches, since C2 is weighted more heavily than C1, but exercise 11
shows that we have K < Ki roughly as often as K > Ki; hence Program C takes
approximately

(8.5 lg N − 6)υ for a successful search,
(8.5blg Nc+ 12)υ for an unsuccessful search.

()

This is about 23 percent faster than Program B.

· · ·

Program F (Fibonaccian search). We follow the previous conventions, with
key ≡ LOC(K1) and k ≡ K. Instead of N , we have i ≡ 8Fk − 8, p ≡ 8Fk−1, and
q ≡ 8Fk−2. As usual, the values are scaled by 8 and i is reduced by 8, so that
it can be used directly as offset relative to key.

01 F4A ADD i,i,q C2 − S −A F4. Increase i. i← i + q.
02 SUB p,p,q C2 − S −A p← p− q.
03 SUB q,q,p C2 − S −A q ← q − p.
04 :Search LDO ki,key,i C F2. Compare.
05 CMP t,k,ki C
06 PBN t,F3A C [C2] To F3 if K < Ki.
07 BZ t,Success C2[S] Exit if K = Ki.
08 CMP t,p,8 C2 − S
09 PBNZ t,F4A C2 − S[A] To F4 if p 6= 1.
10 POP 0,0 Exit if not in table.
11 F3A SUB i,i,q C1 F3. Decrease i. i← i− q.

From the Library of Melissa Nuno

ptg999

6.2.1 SEARCHING AN ORDERED TABLE [418] 101

12 SUB p,p,q C1 p← p− q.
13 PBP q,F2B C1[1−S−A] Swap registers if q > 0.
14 POP 0,0 Exit if not in table.
15 F4B ADD i,i,p (Lines 15–27 are
16 SUB q,q,p parallel to 01–13.)
17 SUB p,p,q

18 F2B LDO ki,key,i

19 CMP t,k,ki

20 PBN t,F3B

21 BZ t,Success

22 CMP t,q,8

23 PBNZ t,F4B

24 POP 0,0

25 F3B SUB i,i,p

26 SUB q,q,p

27 PBP p,:Search

28 POP 0,0

29 Success ADDU $0,key,i S Return LOC(Ki).
30 POP 1,0

· · ·

The total average running time of Program F therefore comes to approxi-
mately

√
5

5
(
8φ−1 + 3 + 3φ

)
kυ + 6υ ≈ (8.24 lg N + 6)υ ()

for a successful search, and (4 + 3φ−1)υ ≈ 5.85υ less for an unsuccessful search.
This is slightly faster than Program C, although the worst case running time
(roughly 14.4 lg N) is slower.

EXERCISES [423]

4. [20] If a search using Program 6.1S (sequential search) takes exactly 640 units of
time, how long does it take with Program B (binary search)?

5. [M24] For what values of N is Program B actually slower than a sequential search
(Program 6.1Q′) on the average, assuming that the search is successful?

10. [21] Explain how to write an MMIX program for Algorithm C containing approxi-
mately 6 lg N instructions and having a running time of about 6 lg N units.

From the Library of Melissa Nuno

ptg999

102 [426] SEARCHING 6.2.2

6.2.2. Binary Tree Searching

[428]

This algorithm lends itself to a convenient machine language implementa-
tion. We may assume, for example, that the tree nodes have the form

RLINK

LLINK

KEY

()

followed perhaps by additional words of INFO. Using an AVAIL list for the free
storage pool, as in Chapter 2, we can write the following MMIX program:

Program T (Tree search and insertion). This subroutine expects two param-
eters: p, a pointer to the root node, and k ≡ K, the given key. If the search is
successful, it returns the location of the node found; otherwise, it returns zero.
Note how the ZSN (zero or set if negative) instruction is used to compute the
offset of the next link.

01 0H SET p,q C − 1 P← Q.
02 :Search LDO kp,p,KEY C T2. Compare. kp← KEY(P).
03 CMP t,k,kp C
04 BZ t,Success C [S] Exit if K = KEY(P).
05 ZSN l,t,LLINK C − S l← (K < KEY(P)) ? LLINK : RLINK.
06 T3 LDOU q,p,l C − S T3/4. Move left/right.
07 PBNZ q,0B C − S[1−S] To T2 if Q 6= Λ.
08 SET q,:avail 1− S T5. Insert.
09 BZ q,:Overflow 1− S
10 LDOU :avail,:avail,0 1− S Q⇐ AVAIL.
11 STOU q,p,l 1− S LINK(P)← Q.
12 STCO 0,q,RLINK 1− S RLINK(Q)← Λ.
13 STCO 0,q,LLINK 1− S LLINK(Q)← Λ.
14 STO k,q,KEY 1− S KEY(Q)← K.
15 POP 0,0 Exit after insertion.
16 Success POP 1,0 Return node address.

The first 7 lines of this program do the search; the next 8 lines do the
insertion. The running time for the searching phase is (7C−3S+1)υ+(2C−S)µ,
where

C = number of comparisons made;
S = [search is successful].

This compares favorably with the binary search algorithms that use an implicit
tree (see Program 6.2.1C). By duplicating the code we could effectively eliminate
line 01 of Program T, reducing the running time to (6C−3S +7)υ. If the search
is unsuccessful, the insertion phase of the program costs an extra 7υ + 5µ.

From the Library of Melissa Nuno

ptg999

6.2.2 BINARY TREE SEARCHING [454] 103

EXERCISES [454]
1. [15] Algorithm T has been stated only for nonempty trees. What changes should

be made so that it works properly for the empty tree too?

x 3. [20] In Section 6.1 we found that a slight change to the sequential search Algo-
rithm 6.1S made it faster (Algorithm 6.1Q). Can a similar trick be used to speed up
Algorithm T?

6.2.3. Balanced Trees

[464]
Program A (Balanced tree search and insertion). This program for Algorithm A
uses tree nodes having the form

RLINK |a
LLINK |a
KEY

. ()

The balance factor a of a node is not stored as a field in the node itself; it is stored
as a 2-bit value in two’s complement format (a mod 4) in the low-order bits of the
link field pointing to the node. (MMIX ignores these low-order bits of a register
when using it to load or store an octabyte.) This saves one load instruction
in the main loop (lines 05–12), because we can determine the balance factor of
NODE(P) from P without loading B(P). Further, we do not need to maintain the
variable S inside the loop. Instead, we set T ← LOC(LINK(a,T)), computing a
from K and KEY(T), and set S ← LINK(a,T) right after the loop (lines 13–17).
The new value of T is more convenient in step A7, where we modify B(S), and
in step A10, when we finish the new tree.

Extending the notation used in Algorithm A, we use the notation LINK(a)
as a synonym for the offset LLINK if a = −1, and for RLINK if a = +1. These
offsets are zero and eight, respectively, so that MMIX can compute LINK(a) from
a 6= 0 with a single ZSN (zero or set if negative) instruction (see line 27).

The first parameter of the subroutine is head ≡ LOC(HEAD). The second
parameter, k ≡ K, is the key.

01 :Search SET t,head 1 A1. Initialize. T← HEAD.
02 STO k,t,KEY 1 (See line 13.)
03 LDOU p,t,RLINK 1 P← RLINK(HEAD).
04 JMP A2 1
05 0H CSOD t,q,p C − 1 If B(Q) 6= 0, T← LOC(LINK(a,P)).
06 SET p,q C − 1 P← Q.
07 A2 LDO kp,p,KEY C A2. Compare. kp← KEY(P).
08 CMP a,k,kp C Compare K and KEY(P); set a.
09 BZ a,Success C [S] Exit if K = KEY(P).
10 ZSN la,a,LLINK C − S la← LINK(a).
11 LDOU q,p,la C − S A3/4. Move left/right.
12 PBNZ q,0B C − S[1−S] Jump if Q = LINK(a,P) 6= Λ.

From the Library of Melissa Nuno

ptg999

104 [465] SEARCHING 6.2.3

13 LDOU x,t,KEY 1− S x← KEY(T).
14 CMP a,k,x 1− S Compare K and KEY(T); set a.
15 ZSN x,a,LLINK 1− S x← LINK(a).
16 ADDU t,t,x 1− S T← LOC(LINK(a,T)).
17 LDOU s,t 1− S S← LINK(a,T).
18 SET q,:avail 1− S A5. Insert. B(Q)← 0.
19 BZ q,:Overflow 1− S
20 LDOU :avail,:avail 1− S Q⇐ AVAIL.
21 STOU q,p,la 1− S LINK(a,P)← Q.
22 STCO 0,q,RLINK 1− S RLINK(Q)← Λ.
23 STCO 0,q,LLINK 1− S LLINK(Q)← Λ.
24 STO k,q,KEY 1− S KEY(Q)← K.
25 LDO kp,s,KEY 1− S A6. Adjust balance factors.
26 CMP a,k,kp 1− S Compare K and KEY(S); set a.
27 ZSN la,a,LLINK 1− S la← LINK(a).
28 ADDU ll,s,la 1− S ll← LOC(LINK(a,S)).
29 LDOU p,ll 1− S P← LINK(a,S).
30 JMP 0F 1− S
31 1H LDO kp,p,KEY F kp← KEY(P).
32 CMP c,k,kp F c← K : KEY(P).
33 AND x,c,3 F x← c mod 4.
34 OR p,p,x F B(P)← K : KEY(P).
35 STOU p,ll F LINK(c,P)← P.
36 ZSN x,c,LLINK F x← LINK(c).
37 ADDU ll,p,x F ll← LOC(LINK(c,P)).
38 LDOU p,ll F P← LINK(c,P).
39 0H CMPU x,p,q F + 1− S P = Q?
40 PBNZ x,1B F + 1− S[1−S] Repeat until P = Q.
41 AND a,a,3 1− S A7. Balancing act.
42 AND x,s,3 1− S x← B(S).
43 BZ x,i 1− S[J] If B(S) = 0, go to case (i).
44 CMP x,x,a 1− S − J B(S) = a?
45 BZ x,iii 1− S − J [G+H] If B(S) = a, go to case (iii).
46 ii ANDN s,s,3 1− S − J −G−H (ii)
47 STOU s,t 1− S − J −G−H B(S)← 0.
48 POP 0,0

49 i LDO x,head,LLINK J (i)
50 ADD x,x,1 J The tree has grown higher.
51 STO x,head,LLINK J LLINK(HEAD)← LLINK(HEAD) + 1.
52 OR s,s,a J
53 STOU s,t J B(S)← a.
54 POP 0,0

55 iii LDOU r,s,la G + H (iii) R← LINK(a,S).
56 NEG lm,LLINK,la G + H lm← LINK(−a).
57 AND x,r,3 G + H x← B(R).
58 CMP x,a,x G + H a = B(R)?
59 BZ x,A8 G + H [G] Go to A8 if B(R) = 0.
60 LDOU p,r,lm H A9. Double Rotation.
61 LDOU x,p,la H x← LINK(a,P).

From the Library of Melissa Nuno

ptg999

6.2.3 BALANCED TREES [465] 105

62 STOU x,r,lm H LINK(−a,R)← LINK(a,P).
63 AND bp,p,3 H bp← B(P).
64 CMP x,bp,a H B(P) = a?
65 CSZ a,x,#02 H a← −1 mod 4, if B(P) = a.
66 XOR s,s,a H B(S)← B(P) = a ?−B(S) : 0.
67 CSZ x,bp,0 H x← 0, if B(P) = a.
68 AND bp,r,3 H bp← B(R).
69 CSNZ bp,x,#02 H bp← −1, if B(P) = −a.
70 XOR r,r,bp H B(R)← B(P) = −a ?−B(R) : 0.
71 STOU r,p,la H LINK(a,P)← R.
72 LDOU x,p,lm H x← LINK(−a,P).
73 STOU x,s,la H LINK(a,S)← LINK(−a,P).
74 STOU s,p,lm H LINK(−a,P)← S.
75 ANDN p,p,3 H B(P) = 0?
76 STOU p,t H A10. Finishing touch.
77 POP 0,0

78 A8 ANDN r,r,3 G A8. Single Rotation. B(R)← 0.
79 ANDN s,s,3 G B(S)← 0.
80 SET p,r G P← R.
81 LDOU x,r,lm G x← LINK(−a,R).
82 STOU x,s,la G LINK(a,S)← LINK(−a,R).
83 STOU s,r,lm G LINK(−a,R)← S.
84 STOU p,t G A10. Finishing touch.
85 POP 0,0

86 Success SET $0,p S
87 POP 1,0

[470]
The running time of the search phase of Program A (lines 01–12) is

8C − 3S + 4, ()

where C and S are the same as in previous algorithms of this chapter. Empirical
tests show that we may take C + S ≈ 1.01 lg N + 0.1, so the average search
time is approximately 8.08 lg N + 4.8 − 11S units. (If searching is done much
more often than insertion, we could of course use a separate, faster program for
searching, since it would be unnecessary to look at the balance factors. With
p ≡ LOC(HEAD) and k ≡ K, we can write:

01 :Search LDOU p,p,RLINK 1 A1. Initialize. P← RLINK(HEAD).
02 BZ p,Failure 1[0]

03 A2 LDO kp,p,KEY C A2. Compare. kp← KEY(P).
04 CMP a,k,kp C Compare K and KEY(P); set a.
05 BZ a,Success C [S] Exit if K = KEY(P).
06 ZSN la,a,LLINK C − S la← LINK(a).
07 LDOU p,p,la C − S A3/4. Move left/right. P ← LINK(a,P).
08 PBNZ p,A2 C − S[1−S]

09 Failure POP 0,0 Not found.
10 Success POP 1,0

From the Library of Melissa Nuno

ptg999

106 [470] SEARCHING 6.2.3

The running time of the above code is only (6C − 3S + 4)υ + (2C − S + 1)µ; it
reduces the average running time for a successful search to only about (6.06 lg N−
4.4)υ. Even the worst case running time would, in fact, be similar to the average
running time obtained with Program 6.2.2T.

The running time of the insertion phase of Program A (lines 18–40) is (10F +
22)υ, when the search is unsuccessful. The data of Table 1 indicate that F ≈ 1.8
on the average. The rebalancing phase (lines 41–85) takes either 10, 7, 21, or
29 υ, depending on whether we increase the total height, or simply exit without
rebalancing, or do a single or double rotation. The first case almost never occurs,
and the others occur with the approximate probabilities .534, .233, .232, so the
average running time of the combined insertion-rebalancing portion of Program
A is about 55υ.

These figures indicate that maintenance of a balanced tree in memory is
reasonably fast, even though the program is rather lengthy. If the input data
are random, the simple tree insertion algorithm of Section 6.2.2 is roughly 48υ
faster per insertion; but the balanced tree algorithm is guaranteed to be reliable
even with nonrandom input data.

One way to compare Program A with Program 6.2.2T is to consider the
worst case of the latter. If we study the amount of time necessary to insert N
keys in increasing order into an initially empty tree, it turns out that Program A
is slower for N ≤ 27 and faster for N ≥ 28.

EXERCISES [479]

x 12. [24] What is the maximum possible running time of Program A when the eighth
node is inserted into a balanced tree? What is the minimum possible running time for
this insertion?

28. [41] Prepare efficient implementations of 2-3 tree algorithms.

6.3. DIGITAL SEARCHING

[493]

Program T (Trie search). This program assumes that all keys consist of seven
or less uppercase characters; keys are represented in one OCTA, left aligned and
padded with zero bytes to the right; the rightmost byte is always zero. Since
MMIX uses ASCII codes, each byte of the search argument is assumed to contain a
value between 65 (ASCII ‘A’) and 90 (ASCII ‘Z’). For simplicity, we use the five
least significant bits of each character as index k. This allows 32 values instead of
26 and, therefore, uses more memory but simplifies the extraction of the index.
Links are represented as absolute addresses, with the least significant bit set to 1
(this bit is ignored by MMIX when using the value to load OCTAs). The following
subroutine expects two parameters: p ≡ LOC(ROOT), the location of the root
node, and K ≡ K, the given key. It returns the location of the key in the table if

From the Library of Melissa Nuno

ptg999

6.3 DIGITAL SEARCHING [493] 107

Table 1
A TRIE FOR THE 31 MOST COMMON ENGLISH WORDS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

0 A I HE

A (2) (10) WAS THAT

B (3)
C

D HAD

E BE (11) THE

F (4) OF

G

H (5) (12) WHICH

I (6) HIS WITH THIS

J

K

L

M

N NOT AND IN ON

O (7) FOR TO

P

Q

R ARE FROM OR HER

S AS IS

T (8) AT IT

U BUT

V HAVE

W (9)
X

Y YOU BY

Z

the search is successful and zero otherwise. To obtain successive characters from
the key K, we copy it into a shift register s, from which we extract the leftmost
character by shifting right and advance to the next character by shifting left.

01 :Start SLU s,K,3 1 T1. Initialize. s← 8K.
02 JMP T2 1
03 T3 SET p,x C − 1 T3. Advance. P← X.
04 SLU s,s,8 C − 1 Advance to next character of K.
05 T2 SRU k,s,64-8 C T2. Branch. Extract 8k.
06 LDOU x,p,k C X ← table entry number k in NODE(P).
07 PBOD x,T3 C [1] If X is a link, go to T3.
08 CMP t,K,x 1 T4. Compare.
09 BNZ t,Failure 1[1−S] If X 6= K, terminate unsuccessfully;
10 ADDU $0,p,k S else return LOC(X).
11 POP 1,0

12 Failure POP 0,0

The running time of this program is (5C−S +6)υ +Cµ, where C is the number
of characters examined. Since C ≤ 7, the search will never take more than 41υ.

If we now compare the efficiency of this program (using the trie of Table 1)
to Program 6.2.2T (using the optimum binary search tree of Fig. 13), we can
make the following observations.

From the Library of Melissa Nuno

ptg999

108 [493] SEARCHING 6.3

1. The trie takes much more memory space; we are using 384 octabytes
just to represent 31 keys, while the binary search tree uses only 93 octabytes.
(However, exercise 4 shows that, with some fiddling around, we can actually fit
the trie of Table 1 into only 53 octabytes.)

2. A successful search takes about 16υ with trie search compared to 28υ with
binary search. An unsuccessful search will go even faster in the trie and slower
in the binary search tree. Hence, the trie is preferable from the standpoint of
speed.

3. If we consider the KWIC indexing application of Fig. 15 (page 440)
instead of the 31 commonest English words, the trie loses its advantage because
of the nature of the data. For example, a trie requires 12 iterations to distinguish
between COMPUTATION and COMPUTATIONS. In this case it would be better to build
the trie so that words are scanned from right to left instead of from left to right.

EXERCISES [507]

x 4. [21] Most of the 384 entries in Table 1 are blank (null links). But we can
compress the table into only 53 entries, by overlapping nonblank entries with blank
ones as follows:

Position

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

Entry T
H
A
T

W
A
S

T
H
E

O
F

H
E

(1
2
)

T
H
I
S

W
H
I
C
H

W
I
T
H

(1
0
)

B
E

O
N

T
O

(1
1
)

I O
R

F
O
R

H
I
S

H
A
D

F
R
O
M

A H
E
R

Position 2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

4
6

4
7

4
8

4
9

5
0

5
1

5
2

Entry (2
)

(3
)

B
U
T

I
N

(4
)

B
Y

(5
)

(6
)

I
S

I
T

A
N
D

H
A
V
E

N
O
T

(7
)

A
R
E

A
S

A
T

(8
)

(9
)

Y
O
U

(Nodes (1), (2), . . . , (12) of Table 1 begin, respectively, at positions 26, 24, 8, 4,
11, 17, 0, 0, 2, 17, 7, 0 within this compressed table.)

Show that if the compressed table is substituted for Table 1, Program T will still
work, but not quite as fast.

9. [21] Write an MMIX program for Algorithm D, and compare it to Program 6.2.2T.
You may use the idea of exercise 8 if it helps.

6.4. HASHING

[513]
For example, let’s consider again the set of 31 English words that we have

subjected to various search strategies in Sections 6.2.2 and 6.3. Table 1 shows a
short MMIX program that transforms each of the 31 keys into a unique number
f(K) between 0 and 39. If we compare this method to the MMIX programs for

From the Library of Melissa Nuno

ptg999

6.4 HASHING [513] 109

the other methods we have considered (for example, binary search, optimal tree
search, trie memory, digital tree search), we find that it is superior from the
standpoint of both space and speed, except that binary search uses slightly less
space. In fact, the average time for a successful search, using the program of
Table 1 with the frequency data of Fig. 12 on page 436 , is only about 13.4υ
(not counting the final POP), and only 40 table locations are needed to store the
31 keys.

Unfortunately, such functions f(K) aren’t very easy to discover. There are
4031 ≈ 1050 possible functions from a 31-element set into a 40-element set, and
only 40 · 39 · . . . · 10 = 40!/9! ≈ 1042 of them will give distinct values for each
argument; thus only about one of every 100 million functions will be suitable.

[516]

For example, on the MMIX computer we could choose M = 1009 (unfortu-
nately 2009 is not prime), computing h(K) by the sequence

SET m,1009

DIV t,k,m

GET h,rR h(K)← K mod 1009.
()

The multiplicative hashing scheme is equally easy to do, but it is slightly
harder to describe because we must imagine ourselves working with fractions
instead of with integers. Let w be the word size of the computer, so that w is
usually 232 or 264 for MMIX; we can regard an integer A as the fraction A/w if we
imagine the radix point to be at the left of the word. The method is to choose
some integer constant A relatively prime to w, and to let

h(K) =
⌊
M

((
A

w
K

)
mod 1

)⌋
. ()

In this case we usually let M be a power of 2, so that h(K) consists of the leading
bits of the least significant half of the product AK.

In MMIX code, if we let M = 2m for some small constant m and w = 264, the
multiplicative hash function is

MULU t,a,k t← AK mod 264.
SRU h,t,64-m Retain the m most significant bits.

()

Now h(K) appears in register h. Since MMIX, like many machines, has a multi-
plication instruction that is significantly faster than its division instruction, this
sequence takes only 11 cycles to compute, compared to 62 cycles for ().

[518]

The theory above suggests Fibonacci hashing, where we choose the constant
A to be the nearest integer to φ−1w that is relatively prime to w. For example
with MMIX, a binary computer with w = 264, we would take

From the Library of Melissa Nuno

ptg999

110 [518] SEARCHING 6.4

Table 1
TRANSFORMING A SET OF KEYS INTO UNIQUE ADDRESSES

A A
N
D

A
R
E

A
S

A
T

B
E

B
U
T

B
Y

F
O
R

F
R
O
M

H
A
D

H
A
V
E

H
E

H
E
R

Instruction

SET k,$0
LDBU a,k,0 65 65 65 65 65 66 66 66 70 70 72 72 72 72
SUB a,a,63 2 2 2 2 2 3 3 3 7 7 9 9 9 9
LDBU b,k,1 2 2 2 2 2 3 3 3 7 7 9 9 9 9
BZ b,9F 2 2 2 2 2 3 3 3 7 7 9 9 9 9
LDBU c,k,2 . 2 2 2 2 3 3 3 7 7 9 9 9 9
PBNZ c,1F . 2 2 2 2 3 3 3 7 7 9 9 9 9
2ADDU a,a,a . . . 6 6 9 . 9 27 .
ADD a,a,b . . . 89 90 78 . 98 96 .
SUB a,a,75 . . . 14 15 3 . 23 21 .
SUB t,a,38 . . . 14 15 3 . 23 21 .
CSNN a,t,t . . . 14 15 3 . 23 21 .
POP 1,0 . . . 14 15 3 . 23 21 .

1H LDBU d,k,3 . 2 2 3 7 7 9 9 9
BNZ d,1F . 2 2 3 7 7 9 9 9
ADD a,a,c . 70 71 87 89 . 77 . 91
SUB a,a,51 . 19 20 36 38 . 26 . 40
CMP t,a,37 . 19 20 36 38 . 26 . 40
BN t,9F . 19 20 36 38 . 26 . 40
SUB a,a,32 6 . . . 8
POP 1,0 6 . . . 8

1H ADD a,a,d 84 . 78
SUB a,a,66 18 . 12

9H POP 1,0 2 19 20 36 18 26 12

A = 11400714819323198485
= (9E37 79B9 7F4A 7C15)16 .

()

· · ·
Therefore we might do better with a multiplier like

A = (9E 9E 9E 9E 9E 9E 9E 9E)16

in place of (); such a multiplier will separate out consecutive sequences of keys
that differ in any character position.

[519]

A value of A can be found so that each of its bytes lies in a good range and is
not too close to the values of the other bytes or their complements, for example

A = (40 56 93 B4 62 46 5C 68)16 . ()

· · ·

From the Library of Melissa Nuno

ptg999

6.4 HASHING [523] 111
H
I
S

I I
N

I
S

I
T

N
O
T

O
F

O
N

O
R

T
H
A
T

T
H
E

T
H
I
S

T
O

W
A
S

W
H
I
C
H

W
I
T
H

Y
O
U

Contents of a after executing the instruction, given a particular key K

72 73 73 73 73 78 79 79 79 84 84 84 84 87 87 87 89
9 10 10 10 10 15 16 16 16 21 21 21 21 24 24 24 26
9 10 10 10 10 15 16 16 16 21 21 21 21 24 24 24 26
9 10 10 10 10 15 16 16 16 21 21 21 21 24 24 24 26
9 . 10 10 10 15 16 16 16 21 21 21 21 24 24 24 26
9 . 10 10 10 15 16 16 16 21 21 21 21 24 24 24 26
. . 30 30 30 . 48 48 48 . . . 63
. . 108 113 114 . 118 126 130 . . . 142
. . 33 38 39 . 43 51 55 . . . 67
. . 33 38 39 . 43 51 55 . . . 67
. . 33 0 1 . 5 13 17 . . . 29
. . 33 0 1 . 5 13 17 . . . 29
9 . 15 21 21 21 24 24 24 26
9 . 15 21 21 21 24 24 24 26

92 . 99 . 90 . 107 . . 111
41 . 48 . 39 . 56 . . 60
41 . 48 . 39 . 56 . . 60
41 . 48 . 39 . 56 . . 60
9 . 16 . 7 . 24 . . 28
9 . 16 . 7 . 24 . . 28

. 105 104 91 96

. 39 38 25 30
10 39 38 25 30

Program C (Chained hash table search and insertion). For convenience, the
keys and links are assumed to be only four bytes long, and nodes are represented
as follows:

KEY LINK . ()

Empty nodes have a negative link field; occupied nodes have a nonnegative link
field containing the offset of the next node in the chain. These offsets are all
even; an odd offset is used to mark the end of the chain.

We assume a descriptor D for each hash table that contains the absolute
address of the table and the values of M and R as follows:

TABLE

M R
.

The following subroutine is called with two parameters: d ≡ LOC(D), the
location of the descriptor for the hash table, and k ≡ K, the given key.

01 :Start LDT m,d,M 1 M ← M(D).
02 LDOU key,d,TABLE 1 key← TABLE(D).
03 ADDU link,key,LINK 1 link← TABLE(D) + LINK.
04 DIV t,k,m 1 C1. Hash.
05 GET i,:rR 1 i← h(K) = K mod M .
06 SL i,i,3 1 Scale i. (Now 0 ≤ i < 8M .)

From the Library of Melissa Nuno

ptg999

112 [523] SEARCHING 6.4

07 LDT t,link,i 1 C2. Is there a list?
08 BN t,C6 1[1−A] If TABLE[i] is empty, go to C6.
09 3H LDT t,key,i C t← KEY[i].
10 CMP t,t,k C C3. Compare.
11 PBZ t,Success C [C−S] Exit if K = KEY[i].
12 SET p,i C − S Keep previous value of i.
13 LDT i,link,i C − S C4. Advance to next.
14 PBEV i,3B C − S[A−S] To C3 if LINK[i] is even.
15 LDT r,d,R A− S C5. Find empty node. R← R(D).
16 5H SUB r,r,8 T R← R− 1.
17 BN r,Failure T [0] Exit if no empty nodes left.
18 LDT t,link,r T t← LINK[R].
19 BNN t,5B T [T−(A−S)] Repeat until TABLE[R] empty.
20 STT r,d,R A− S R(D)← R.
21 STT r,link,p A− S LINK[i]← R.
22 SET i,r A− S i← R.
23 C6 SET t,1 1− S C6. Insert new key.
24 STT t,link,i 1− S LINK[i]← 1. (End of chain.)
25 STT k,key,i 1− S KEY[i]← K.
26 POP 0,0

27 Success ADDU $0,key,i S Return LOC(TABLE[i]).
28 POP 1,0

29 Failure NEG $0,1 0 Return −1.
30 POP 1,0

The running time of this program depends on
C = number of table entries probed while searching;
A = [initial probe found an occupied node];
S = [search was successful];
T = number of table entries probed while looking for an empty space.

The total running time for the searching phase of Program C is (8C−6S+69)υ+
(2C − S + 3)µ and the insertion of a new key when S = 0 takes an additional
(6T +2A+3)υ+(T +3A+2)µ. The division to obtain h(K) is the most expensive
part of this subroutine.

Program L (Linear probing and insertion). This program deals with full
octabyte keys; but a key of 0 is not allowed, since 0 is used to signal an
empty position in the table. (Alternatively, we could require the keys to be
non-negative, letting empty positions contain −1.)

As in Program C, we assume a descriptor D for each hash table that contains
the absolute address of the table, the value of M , and the number of vacancies,
M − 1−N , as follows:

TABLE

M VACANCIES
.

The following subroutine is called with two parameters: d ≡ LOC(D), the location
of the descriptor for the hash table, and k ≡ K, the given key.

From the Library of Melissa Nuno

ptg999

6.4 HASHING [527] 113

The table size M is assumed to be prime, and KEY[i] is stored in location
TABLE(D)+8i for 0 ≤ i < M . For speed in the inner loop, location TABLE(D)−8
is assumed to contain 0, and the test “i < 0” has been removed from the loop so
that only the essential parts of steps L2 and L3 remain. The total running time
for the searching phase comes to (7C + 6E + 2S + 62)υ + (C + E + 2)µ, and the
insertion after an unsuccessful search adds an extra 5υ + 3µ.

01 :Start LDO m,d,M 1 M ← M(D).
02 LDOU key,d,TABLE 1 key← TABLE(D).
03 DIV t,k,m 1 L1. Hash.
04 GET i,:rR 1 i← K mod M .
05 SL i,i,3 1 i← 8i.
06 JMP L2 1
07 L3 SL i,m,3 E L3. Advance to next.
08 L3B SUB i,i,8 C + E − 1 i← i− 1.
09 L2 LDO ki,key,i C + E L2. Compare.
10 CMP t,ki,k C + E KEY[i] = K?
11 BZ t,Success C + E[S] Exit if KEY[i] = K.
12 BNZ ki,L3B C + E − S[C−1] To L3 if TABLE[i] nonempty.
13 BN i,L3 E + 1− S[E] To L3 with i←M if i < 0.
14 LDO t,d,VACANCIES 1− S L4. Insert. t← VACANCIES(D).
15 BZ t,Failure 1− S[0] Exit with overflow if N = M − 1.
16 SUB t,t,1 1− S Increase N by 1.
17 STO t,d,VACANCIES 1− S
18 STO k,key,i 1− S KEY[i]← K.
19 POP 0,0

20 Success ADDU $0,key,i S Return LOC(KEY[i]).
21 POP 1,0

22 Failure NEG $0,1 0 Return −1.
23 POP 1,0

[529]

If M = 2m and we are using multiplicative hashing, h2(K) can be computed
simply by shifting left m more bits and “oring in” a 1, so that the coding sequence
in () would be followed by

SLU h2,t,m Shift AK mod 264 left m more bits.
SRU h2,h2,64-m Retain the m most significant bits.
OR h2,h2,1 h2 ← h2 | 1.

()

This is faster than the division method.

[530]

Algorithms L and D are very similar, yet there are enough differences that it
is instructive to compare the running time of the corresponding MMIX programs.

Program D (Open addressing with double hashing). This program is sub-
stantially like Program L, except that no zero value is assumed in location
TABLE(D)− 8.

From the Library of Melissa Nuno

ptg999

114 [530] SEARCHING 6.4

01 :Start LDO m,d,M 1 M ← M(D).
02 LDOU key,d,TABLE 1 key← TABLE(D).
03 DIV q,k,m 1 D1. First hash.
04 GET i,:rR 1 i← h1(K) = K mod M .
05 SL i,i,3 1 i← 8i.
06 LDO ki,key,i 1 D2. First probe.
07 CMP t,ki,k 1 KEY[i] = K?
08 PBZ t,Success 1[1−S1] Exit if KEY[i] = K.
09 PBZ ki,D6 1− S1[A−S1] To D6 if TABLE[i] is empty.
10 SUB t,m,2 A− S1 D3. Second hash.
11 DIV t,k,t A− S1

12 GET c,:rR A− S1 c← K mod (M − 2).
13 8ADDU c,c,8 A− S1 c← 1 + (K mod (M − 2)).
14 D4 SUB i,i,c C − 1 D4. Advance to next. i← i− c.
15 8ADDU t,m,i C − 1 t← i + 8M .
16 CSN i,i,t C − 1 If i < 0, then i← i + M .
17 LDO ki,key,i C − 1 D5. Compare.
18 CMP t,ki,k C − 1 KEY[i] = K?
19 PBZ t,Success C − 1[C−1−S2] Exit if KEY[i] = K.
20 BNZ ki,D4 C − 1− S2[C−1−A+S1] To D4 if nonempty.
21 D6 LDO t,d,VACANCIES 1− S D6. Insert. t← VACANCIES(D).
22 BZ t,Failure 1− S[0] Overflow if N = M − 1.
23 SUB t,t,1 1− S Increase N by 1.
24 STO t,d,VACANCIES 1− S VACANCIES(D)←M − 1−N .
25 STO k,key,i 1− S KEY[i]← K.
26 POP 0,0

27 Success ADDU $0,key,i S Return LOC(KEY[i]).
28 POP 1,0

29 Failure NEG $0,1 0 Return −1.
30 POP 1,0

The frequency counts A, C, and S = S1 + S2 in this program have a similar
interpretation to those in Program C above.

[531]

Since each probe takes less time in Algorithm L, double hashing is advanta-
geous only when the table gets full. Figure 42 compares the average running time
of Program L, Program D, and a modified Program D that involves secondary
clustering, replacing the rather slow calculation of h2(K) in lines 10–13 by the
following three instructions:

SL t,m,3 t← 8M .
SUB c,t,i c←M − i.
CSZ c,i,8 If i = 0, c← 1.

()

Program D takes a total of 11C + 63(A − S1) − 7S + 64 units of time; modifi-
cation () saves 60(A− S1) ≈ 30α of these in a successful search. In this case,
secondary clustering is preferable to independent double hashing.

From the Library of Melissa Nuno

ptg999

6.4 HASHING [531] 115

0 0.2 0.4 0.6 0.8 1.0
60υ

70υ

80υ

90υ

100υ

110υ

120υ

130υ

0.1 0.3 0.5 0.7 0.9

Program D modified as in (30)

Program D Program L

Load Factor, α = N/M

MM
IX

 t
im

e

Fig. 42. The running time for successful searching by three open addressing schemes.

On a binary computer, we can speed up the computation of h2(K) in another
way, if M is a prime greater than, say, 512, replacing lines 10–13 by

AND t,q,511 t← bK/Mcmod 512.
8ADDU c,t,8 c← bK/Mcmod 512 + 1 (scaled).

()

EXERCISES [549]

1. [20] When one of the POP 1,0 instructions in Table 1 is reached, how small and
how large can the return value in a ≡ $0 possibly be, assuming that bytes 1, 2, 3, and
4 of K each contain ASCII codes for uppercase alphabetic characters?

2. [20] Find a reasonably common English word not in Table 1 that could be added
to that table without changing the program.

3. [23] Explain why no program beginning with the seven instructions

SET k,$0

LDBU a,k,0

ADD a,a,x or SUB a,a,x
LDBU b,k,1

ADD a,a,b or SUB a,a,b

LDBU c,k,2

BZ c,9F

From the Library of Melissa Nuno

ptg999

116 [549] SEARCHING 6.4

could be used in place of the more complicated program in Table 1, for any constant
x, since unique addresses would not be produced for the given keys.

5. [15] Mr. B. C. Dull was writing a FORTRAN compiler using an MMIX computer,
and he needed a symbol table to keep track of the names of variables in the FORTRAN
program being compiled. These names were restricted to be at most 31 characters in
length. He decided to use a hash table with M = 256, and to use the fast hash function
h(K) = leftmost byte of K. Was this a good idea?

6. [15] Would it be wise to change the second instruction of () from ‘DIV t,k,m’
to ‘PUT rD,k; SET z,0; DIVU t,z,m’?

[551]
x 12. [21] Show that Program C can be rewritten so that there is only one conditional

jump instruction in the inner loop. Compare the running time of the modified program
with the original.

[557]
x 72. [M28] · · ·

b) Suppose each hj in () is a randomly chosen mapping from the set of all characters
to the set {0, 1, . . . , M − 1}. Show that this corresponds to a universal family of hash
functions.

Write an MMIX program to compute such a hash function. Assume that K =
x1x2 . . . x8 is a full octabyte key consisting of eight BYTE values and that M is a power
of 2, so that you can avoid the division in () as suggested in the text. Compare the
average running time to the running time of Program L, Program D, and the modified
Program D as shown in Fig. 42.

From the Library of Melissa Nuno

ptg999

ANSWERS TO EXERCISES

1.3.2. The MMIX Assembly Language

With three exceptions, the exercises of this section have been revised in Fascicle 1.
Here we give solutions to exercises 14, 18, and 22, which are numbered 32, 21,
and 29 in Fascicle 1.

[516]
14. The following subroutine has one parameter, the year, and two return values, the
day and the month. The printing is left to a driver that is not shown here. A basic
implementation is easy to obtain. The following solution uses multiplication instead
of division (see exercise 1.3.1́ –19), cutting the running time from approximately 337υ
down to 122υ. Further improvements are possible. The multiplication by 19 can be
achieved in two cycles using 2ADDU and 16ADDU; similarly, multiplication by 7 can be
done with NEG and 8ADDU; and multiplication by 30 needs three cycles using SL, NEG
and 2ADDU.

01 1H GREG 970881267037344822 264/19 + 2/19
02 :Easter MULU t,y,1B; GET t,:rH E1. Golden number.
03 MUL t,t,19

04 SUB g,y,t

05 ADD g,g,1 G← Y mod 19 + 1.
06 1H GREG 184467440737095517 264/100 + 84/100
07 MULU t,y,1B; GET t,:rH E2. Century.
08 ADD c,t,1 C ← bY/100c+ 1.
09 2ADDU x,c,c E3. Corrections.
10 SRU x,x,2

11 SUB x,x,12 X ← b3C/4c − 12.
12 8ADDU z,c,5

13 1H GREG 737869762948382065 264/25− 9/25
14 MULU t,z,1B; GET z,:rH

15 SUB z,z,5 Z ← b(8C + 5)/25c − 5.
16 4ADDU d,y,y E4. Find Sunday.
17 SRU d,d,2

18 SUB d,d,x

19 SUB d,d,10 D ← b5Y/4c −X − 10.
20 2ADDU e,g,g E5. Epact.
21 8ADDU e,g,e

22 ADD e,e,20

23 ADD e,e,z

24 SUB e,e,x

25 1H GREG 614891469123651721 264/30− 14/30
26 MULU t,e,1B; GET t,:rH

27 MUL t,t,30

117

From the Library of Melissa Nuno

ptg999

118 [516] ANSWERS TO EXERCISES 1.3.2

28 SUB e,e,t E ← (11G + 20 + Z −X) mod 30.
29 CMP t,e,25

30 BNZ t,1F

31 CMP t,g,11

32 ZSP t,t,1 t← G > 11.
33 JMP 2F

34 1H CMP t,e,24

35 ZSZ t,t,1 t← E = 24.
36 2H ADD e,e,t Increase E if needed.
37 NEG n,44,e E6. Find full moon. N ← 44− E.
38 CMP t,n,21

39 ZSN t,t,30

40 ADD n,n,t N ← N + 30 if N < 21.
41 ADD t,d,n E7. Advance to Sunday.
42 1H GREG 2635249153387078803 264/7 + 5/7
43 MULU t+1,t,1B; GET t+1,:rH

44 MUL t+1,t+1,7

45 SUB t,t,t+1

46 ADD n,n,7

47 SUB n,n,t N ← N + 7− (D + N) mod 7.
48 CMP t,n,31 E8. Get month.
49 BNP t,1F If N > 31,
50 SUB $1,n,31 return N − 31
51 SET $0,4 and April.
52 POP 2,0

53 1H SET $1,n Else return N
54 SET $0,3 and March.
55 POP 2,0

18. For each value of k ≥ 1, we maintain the three values xk−1, xk, and xk+1 in
registers xp (previous), xk, and xn (next), respectively; we follow a similar pattern
for the y-values. Advancing k therefore needs four SET instructions, which could be
eliminated by unrolling the loop.

01 x IS $0

02 y IS $1

9=; Parameter
03 n IS $2

04 k IS $3 k scaled by 4
05 xn IS $4 xk+1

06 yn IS $5 yk+1

07 xk IS $6 xk

08 yk IS $7 yk

09 xp IS $8 xk−1

10 yp IS $9 yk−1

11 f IS $10 b(yk−1 + n)/ykc
12 t IS $11

13 :Farey SET k,4 k ← 1.
14 SET xp,0 xk−1 ← 0.

From the Library of Melissa Nuno

ptg999

1.3.2 THE MMIX ASSEMBLY LANGUAGE (ANSWERS) [519] 119

15 SET yp,1 yk−1 ← 1.
16 STT xp,x,0 Store xk−1.
17 STT yp,y,0 Store yk−1.
18 SET xk,1 xk ← 1.
19 SET yk,n yk ← n.
20 JMP 1F

21 Loop ADD t,yp,n

22 DIV f,t,yk f← b(yk−1 + n)/ykc.
23 MUL t,f,xk

24 SUB xn,t,xp xk+1 ← f · xk − xk−1.
25 MUL t,f,yk

26 SUB yn,t,yp yk+1 ← f · yk − yk−1.
27 ADD k,k,4 Advance k.
28 SET xp,xk Advance xp.
29 SET xk,xn Advance xk.
30 SET yp,yk Advance yp.
31 SET yk,yn Advance yk.
32 1H STT xk,x,k Store xk.
33 STT yk,y,k Store yk.
34 CMP t,xk,yk Test if xk < yk.
35 PBN t,Loop If so, continue.

36 POP 0,0 Exit from subroutine.

22. For n = 24 and m = 11, the last man is found after 913υ in position 15.

01 :Josephus SET i,n 1
02 SET t,0 1
03 JMP 1F 1
04 0H STBU t,x,i N Set each cell to the
05 SET t,i N number of the next man
06 1H SUB i,i,1 N + 1 in the sequence.
07 PBNN i,0B N + 1[1]

08 SET e,1 1 Set execution count.
09 SET p,0 1 Start with the first man.
10 0H SUB i,m,3 N − 1 Count around the circle.
11 1H LDBU p,x,p (M − 3)(N − 1)
12 SUB i,i,1 (M − 3)(N − 1)
13 PBP i,1B (M − 3)(N − 1)[N−1]

14 LDBU l,x,p N − 1 lucky man
15 LDBU d,x,l N − 1 doomed man
16 LDBU p,x,d N − 1 next man
17 STBU p,x,l N − 1 Take man from circle.
18 STBU e,x,d N − 1 Store execution count.
19 ADD e,e,1 N − 1 Increment execution count.
20 CMP t,e,n N − 1 How many left?
21 PBN t,0B N − 1[1]

22 STBU e,x,l 1 One man left; he is clobbered too.
23 POP 0,0

From the Library of Melissa Nuno

ptg999

120 [521] ANSWERS TO EXERCISES 1.3.2

The total running time is (3(N − 1)(M + 2) + 16)υ + ((N − 1)(M + 3) + 2)µ. An
asymptotically faster method appears in exercise 5.1.1–5.

1.3.3. Applications to Permutations [522]

7. With some formatting characters as shown on page 1, we have X = 34, Y = 29,
M = 5, N = 7, U = 3. Total, by Eq. (), 2164υ. Without any formatting characters,
we have X = 29, Y = 29, M = 5, N = 7, U = 3. Total, by Eq. (), 1869υ.

9. No. For example, given () as input, Program A will produce ‘(ADG)(CEB)’ as
output, while Program B produces ‘(ADG)(BCE)’. The answers are equivalent but not
identical, due to the nonuniqueness of cycle notation. The first element chosen for a
cycle is the leftmost available name, in the case of Program A, and the first character
in the order given by the ASCII code, in Program B.

10. (1) Kirchhoff’s law yields D = B, E = D+1 (assuming that there are no formatting
characters in the input), and F = K. (2) Interpretations: F = A = #80 − #21 = 95
is the size of table T ; B = number of characters in the input = X; B − C = number
of cycles in the input = M ; G = number of distinct elements in the output = N ; H =
J = number of cycles in the output (not counting singletons) = U − V . (3) Summing
up, we have (10A+13X +10N −3M +9(U −V)+14)υ, where A is the size of table T .
This is better than Program A. Even for a table T that is far too large for the simple
input (6), the time is still only 1439υ and without any formatting symbols 1404υ.

1.4.4. Input and Output [532]

1. The code in () has two protected code sequences that allow access to the buffer.
Each code sequence starts with a wait loop to acquire access rights and ends with a
store instruction to release the access rights. Let’s assume that the system is initially
in a valid state: The consumer is using the buffer, the octabyte S has the value 1, and
the producer is not using the buffer. There is only one instruction that can change
the value of S from 1 to 0; to execute this instruction, the consumer has to exit the
protected code segment. Using real hardware, it might take some time until the change
in the value of S becomes visible to the producer, but the change will be immediately
visible to the consumer itself. A load following a store on the same memory location
and within the same thread will always return the value just stored. Therefore, the
consumer will not be able to reenter the protected code segment but will get caught
in the waiting loop. Eventually, the producer will notice the value 1 in octabyte S and
can enter the protected code. The new situation is symmetric to the initial situation
and the same reasoning applies. (See also 7.2.2.2–().) The ‘SYNC 1’ instruction in
the producer is not needed to protect S; it is needed to protect the buffer. Without
it, the consumer could see the change in S, but still miss recent changes to the buffer
made by the producer before changing S.

From the Library of Melissa Nuno

ptg999

1.4.4 INPUT AND OUTPUT (ANSWERS) [532] 121

2. :Producer LDA s,:S2 Initialize s← LOC(S2).
0H LDO t,s,0 Acquire.

BNZ t,0B Wait.
LDO buffer,s,16 Update buffer.
LDA $255,:InArgs Load argument for Fgets.
STOU buffer,$255 Point InArgs to the buffer.
TRAP 0,:Fgets,:StdIn Read one line.
BN $255,EOF Jump if error or end of file.
SYNC 1 Synchronize.
STCO 1,s,0 Release.
LDO s,s,16 Advance to next buffer.
JMP 0B Repeat.

3. In order to decide if the current character is the last character of the buffer, we need
to look ahead to the next character in the buffer. For efficiency, we use an additional
global register c, initially set to zero, to hold the look-ahead character.

1H STCO 0,s,0 Release.
LDO s,s,16 Switch to next buffer.

2H LDO t,s,0 Acquire.
BZ t,2B Wait.
LDO buffer,s,8 Update buffer.
SET i,0 Initialize i← 0.
SYNC 2 Synchronize.
LDB c,buffer,i Load first byte.
BZ c,1B If zero, advance to next buffer.

:GetByte BZ c,2B Jump if look-ahead is zero.
SET $0,c Prepare to return c.
ADD i,i,1 Advance to next byte.
LDB c,buffer,i Load next byte.
BNZ c,0F Jump if not end of buffer.
STCO 0,s,0 Release.

0H POP 1,0 Return byte.

6. Buffer1 OCTA 0 Empty buffer.
LOC Buffer1+SIZE

Buffer2 OCTA 0

LOC Buffer2+SIZE

. . .
PREFIX :Consumer:

buffer GREG 0

i GREG 0

s GREG 0

t IS $0

:Consumer LDA s,:S1 Initialize s← LOC(S1).
LDOU buffer,s,8 Initialize buffer.
NEG i,1 Initialize i← −1.
PUSHJ t,:GetByte

. . .

From the Library of Melissa Nuno

ptg999

122 [532] ANSWERS TO EXERCISES 1.4.4

7. With a single producer thread, there is no need for another semaphore. In
Program A, delete the instructions of lines 03–07, 12, and 16–17; then replace Green

by Red and NEXTG by NEXTR. For Program R, it is sufficient to insert ‘SYNC 1’ at the
beginning and then replace Red by Green.

12. We define Red ≡ 0, Purple ≡ 1, Green ≡ 2, and Yellow ≡ 3. With these settings,
no changes are necessary for the consumers. For the producers, in Program A replace
GS by RS, NEXTG by NEXTR, Green by Red, and Yellow by Purple; and in Program R
insert ‘SYNC 1’ at the beginning and then replace Red by Green.

13. One invariant of the buffer ring is that all red or yellow buffers follow all green
and purple buffers, and vice versa. This invariant ensures that all buffers are consumed
in the same order as they are produced. So a single consumer that needs more time
than usual can delay all producers, waiting for its yellow buffer to turn red, even
if there are many red buffers following the yellow buffer. If the situation lasts long
enough, the other consumers must also wait because no new red buffers have been
produced. Because of symmetry, the same can happen with a slow producer. If the
time a consumer or producer needs for a buffer varies greatly, it might be more efficient
to process buffers out of order; in this case, maintaining separate linked lists for buffers
of “different color” can be more efficient.

15. The thread that sets the semaphore to 1 does not only earn the right to modify
the protected data: It earns the exclusive right to do so, preventing all other threads
from making modifications. The thread executing the “improved” code loads NEXTG

into register s before it sets the green semaphore to 1; so by the time the semaphore is
1, another thread might have modified NEXTG. In this case, s is pointing to the wrong
buffer, which might not even be green any more. If Mr. Dull wants to wait for a green
buffer first, he has to repeat the wait loop after setting the semaphore to 1, just as
Program A does. It still might be an improvement. A CSWAP instruction might need
to synchronize multiple distributed caches of multiple processors to gain exclusive and
atomic access to the semaphore. So one processor executing a CSWAP instruction can
reduce the performance of all other processors. But of course, it is much better to
allocate sufficient buffers so that NEXTG almost always points to a green buffer.

2.1. INTRODUCTION [535]

7. Sequence (a) loads the address of TOP to t and then the contents of t + SUIT; so
we have t← SUIT(LOC(TOP)). Sequence (b) loads the address of TOP + SUIT to t and
then the contents of t + 0; so again we have t ← SUIT(LOC(TOP)). Sequence (c) is
correct. There is no need for confusion; consider the analogous example when x is the
MMIXAL label of a numeric variable x: To bring the value of x into register t, we write
‘LDO t,x’, not ‘LDA t,x’, since the latter brings LOC(x) into the register (namely, the
value of the label).

8. With registers x and n we can write:

SET n,0; LDOU x,TOP B1. N← 0, X← TOP.
JMP B2

B3 ADD n,n,1; LDOU x,x,NEXT B3. N← N + 1, X← NEXT(X).
B2 PBNZ x,B3 B2. If X = Λ, stop.

From the Library of Melissa Nuno

ptg999

2.1 INTRODUCTION (ANSWERS) [535] 123

9. The following subroutine takes a pointer to the starting card in the pile as a
parameter and prints the card names on StdOut.

LOC Data_Segment

GREG @

String OCTA 0 8-byte string
BYTE 0 with a terminating zero byte
LOC #100

PREFIX :PrintPile:

x IS $0 The parameter
card IS $1

down IS $2

up IS $3

9>>>=>>>; Local variables
title IS $4

t IS $5

NL IS #0a The ASCII newline character
NEXT IS 0 Offset of NEXT
CARD IS 8 Offset of TAG, SUIT, RANK, and TITLE

:PrintPile SETH t,#FF00

ORL t,#FFFF t← #FF0000000000FFFF.
PUT :rM,t Move t to the mask register.
SETH down,’(’<<8

ORL down,(’)’<<8)+NL down← ’(’,0,0,0,0,0,’)’,NL.
SETH up,’ ’<<8

ORL up,NL<<8 up← ’ ’,0,0,0,0,0,NL,0.
JMP 2F Start the loop.

1H LDOU card,x,CARD Load TAG, SUIT, RANK, and TITLE.
SLU title,card,16 Position TITLE(X) after ’(’ or ’ ’.
SET t,up Assume face up.
CSN t,card,down If sign bit in TAG is set, it’s face down.
MUX title,t,title Combine up or down with title.
LDA $255,:String Get address of String.
STOU title,$255 Store title in String.
TRAP 0,:Fputs,:StdOut Print it.
LDOU x,x,NEXT Set X← NEXT(X).

2H PBNZ x,1B Continue until reaching the end.
POP 0,0 Return from subroutine.

2.2.2. Sequential Allocation [540]

3. Left side: The instruction LDA base,L0 is assembled as ADDUI base,b,c for some
suitable constant 0 ≤ c < 256 with c mod 8 = 0 and base register b determined by the
assembler. If register i is, for example, register $2, the instruction LDOI a,b,c + 2 will
do the job.

Right side: Again the assembler will choose a constant c and base register b

as before to assemble the instruction LDOU base,BASE as LDOUI base,b,c. Hence we
can replace the three instructions in () by LDOU a,b,c + 4 provided the octabyte at

From the Library of Melissa Nuno

ptg999

124 [540] ANSWERS TO EXERCISES 2.2.2

location BASE (ordinarily a multiple of 8) is incremented by 2 to specify register $2 as
the index register to be used. The left side might take 1υ + 1µ instead of 3υ + 1µ as in
(), while the right side will take 2υ + 2µ instead of 3υ + 2µ.

4. Assuming that register j is $1, register i is $2, LOC(X) = b+ c, and the addresses
stored in X, X + 8, X + 16, . . . are incremented by 2 to specify register $2 as index
register, we can simply write LDO a,b,c + 4 + 1.

5. A multiple-level LDOU instruction will cost as much µ and υ as the written-out
sequence of ordinary LDOU instructions, except that the implicit scaling of the index
registers might save some execution time. But a pipelined RISC machine, such as
MMIX, can easily execute the scaling in parallel with the loading because there is no
data dependency between index and loaded value. Further, as many implementations
in this booklet attest, the shift instructions to scale index registers can be entirely
eliminated at least from critical loops.

By comparison, automatic scaling or an extension as proposed in exercise 3 will
make special use of these precious low-order bits, preventing their use as tag bits (as
shown later in this chapter).

The whole concept is of limited use, because the available bits in an instruction
are severely limited such that only 3 bits remain to specify an index register. If
complex operations need to be specified for a RISC processor, we can use multiple
short instructions instead of one long instruction. The concept of a pointer specifying
an index register in its low-order bits moves information that is normally part of the
code into the data. Again this goes against the concept of pipelined RISC processors,
where data dependencies can prevent parallel and speculative execution of code.

In summary, such an extension violates the principles of RISC processor design, is
of limited use, and does not offer true advantages on pipelined processors. There is no
need to implement it.

2.2.3. Linked Allocation [545]

2. As an example, we show the full code of the subroutine Insert.

PREFIX :Insert:

t IS $0 LOC(T)
o

Parameters
y IS $1 The INFO

p IS $2 Pointer to node
o

Local variables
x IS $3 Temporary variable

LINK IS 0 Offset of the LINK field
INFO IS 8 Offset of the INFO field

:Insert SET p,:avail P← AVAIL.
BZ p,:Overflow Is AVAIL = Λ?
LDOU :avail,p,LINK AVAIL← LINK(P).
STO y,p,INFO INFO(P)← Y.
LDOU x,t

STOU x,p,LINK LINK(P)← T.
STOU p,t T← P.
POP 0,0 Return.

From the Library of Melissa Nuno

ptg999

2.2.3 LINKED ALLOCATION (ANSWERS) [545] 125

3. The Delete subroutine is similar. Notice that it has separate exits for success
and failure.

PREFIX :Delete:

t IS $0 First parameter
p IS $1 Local variable
x IS $2 Temporary variable

LINK IS 0 Offset of the LINK field
INFO IS 8 Offset of the INFO field

:Delete LDOU p,t P← T.
BZ p,1F Is T = Λ?
LDOU x,p,LINK

STOU x,t T← LINK(P).
LDO $0,p,INFO y← INFO(P).
STOU :avail,p,LINK LINK(P)← AVAIL.
SET :avail,p AVAIL← P.
POP 1,1 Successful (second) exit

1H POP 0,0 Unsuccessful (first) exit

4. The Allocate subroutine uses a different way to signal errors. It “returns” zero
using the instruction POP 0,0, making the return register marginal.

PREFIX :Allocate:

x IS $0 The return value
t IS $1 Local variable

c IS 16 The node size
LINK IS 0 Offset of the LINK field

:Allocate SET x,:avail X← AVAIL.
BZ x,1F Is AVAIL = Λ?
LDOU :avail,:avail,LINK AVAIL← LINK(AVAIL).

0H POP 1,0 Return X.
1H SET x,:poolmax X← POOLMAX.

ADDU :poolmax,:poolmax,c POOLMAX← X + c.
CMPU t,:poolmax,:seqmin Is POOLMAX > SEQMIN?
PBNP t,0B If not, return X.

Overflow . . . Try to recover; if all fails,
POP 0,0 return zero.

8. Here and in the following, we will not show the definition of register names, such
as ‘p IS $1’, that are irrelevant for an understanding of the code.

:Revert LDO p,first 1 I1. P← FIRST.
BZ p,2F 1[0] I2. If the list is empty, jump.
SET q,0 1 Q← Λ.

1H SET r,q n R← Q.
SET q,p n Q← P.
LDOU p,q,LINK n P← LINK(Q).
STOU r,q,LINK n LINK(Q)← R.
PBNZ p,1B n[1] Is P 6= Λ?

From the Library of Melissa Nuno

ptg999

126 [546] ANSWERS TO EXERCISES 2.2.3

STOU q,first 1 I3. FIRST← Q.
2H POP 0,0

For a nonempty list, the time is (5n+6)υ +(2n+2)µ (not counting the call overhead).
Better speed (3nυ + 2nµ + constant) is attainable; see exercise 1.1–3.

22. To make the program “fail-safe” we should (a) check that 0 < n < some appropri-
ate maximum; (b) check each relation j ≺ k for the conditions 0 < j, k ≤ n and check
the initial zero in the first pair (0, n) and the final zero in the last pair (0, 0); (c) check
that avail does not get too large.

24. Insert four lines in the program of the text:

51a SL k,n,3 Prepare for T9: k ← n.
58a SET t,0

58b STTU t,top,f TOP[F]← 0.
76a BNZ n,T9 Jump if N 6= 0.

Add the following at the end of Program T:

78 T9 GET rJ,:rJ

79 GETA $255,Msg

80 TRAP 0,:Fputs,:StdErr Print indication of loop.
81 SET t,0 t← 0.
82 1H LDTU p,top,k P← TOP[k].
83 STT t,top,k TOP[k]← 0.
84 T10 BZ p,0F Resume T9 if P = Λ.
85 LDT t,suc,p

86 STT k,qlink,t QLINK[SUC(P)]← k.
87 LDT p,next,p P← NEXT(P).
88 BNZ p,T10 Is P = Λ?
89 0H SUB k,k,8 k ← k − 1.
90 BP k,1B Repeat while k > 0.
91 T11 ADD k,k,8 k ← k + 1.
92 LDT t,qlink,k

93 BZ t,T11 Find k with QLINK[k] 6= 0.
94 T12 STT k,top,k TOP[k]← k.
95 LDT k,qlink,k k ← QLINK[k].
96 LDT t,top,k

97 BZ t,T12 Repeat if TOP[k] = 0.
98 T13 SR t+1,k,3 Scale back.
99 PUSHJ t,:Println Assume this prints k on StdErr.

100 LDT t,top,k

101 BZ t,1F Stop when TOP[k] = 0.
102 SET t,0

103 STT t,top,k TOP[k]← 0.
104 LDT k,qlink,k k ← QLINK[k].
105 JMP T13

106 1H PUT :rJ,rJ

107 POP 0,0 Return.
108 Msg BYTE "Loop detected"

109 BYTE " in input:",#a,0

From the Library of Melissa Nuno

ptg999

2.2.3 LINKED ALLOCATION (ANSWERS) [548] 127

Note: If the relations 9 ≺ 1 and 6 ≺ 9 are added to the data (), this program will
print “1, 9, 6, 4, 7, 3, 1” as the loop.

26. One solution is to proceed in two phases as follows:

Phase 1. (We use the X-table as a (sequential) stack as we mark each subroutine that
needs to be used by setting SPACE← −SPACE.)

A0. For 0 ≤ i < N set SPACE(SUB[i])← −SPACE(SUB[i]).
A1. If N = 0, go to phase 2; otherwise set i ← 0, decrease N by 1, and set Q ←

LINKi(SUB[N]).

A2. If Q is odd, go to A1.

A3. Set i ← i + 1 and Q ← LINKi(SUB[N]). If SPACE(Q) ≥ 0, set SPACE(Q) ←
−SPACE(Q), SUB[N]← Q, and set N← N + 1. Now return to A2.

Phase 2. (We go through the table and allocate memory.)

B1. Set P← FIRST.

B2. If P = 0, set BASE[N]← MLOC, SUB[N]← P, and terminate the algorithm.

B3. If SPACE(P) < 0, set BASE[N]← MLOC, SUB[N]← P, SPACE[(P)← −SPACE(P),
MLOC← MLOC + SPACE(P), and N← N + 1.

B4. Set P← LINK(P) and return to B2.

27. The following subroutine expects five parameters: dir ≡ LOC(Dir), the address
of the file directory; x ≡ LOC(X[0]), the address of the X-table; n ≡ N, the number of
entries in the X-table; mloc ≡ MLOC, the amount of relocation for the first subroutine
loaded; and first ≡ FIRST, the address of the directory entry for the first subroutine in
the file. To access the LINK field in the file directory, register link is set to dir+ LINK;
to access the SPACE field, it suffices to define space as an alias for dir because the offset
is zero. Similarly for the fields in the X-table, register sub is set to x+ SUB and base is
defined as an alias for x.

01 :Ex27 ADDU link,dir,LINK

02 ADDU sub,x,SUB

03 SL n,n,3 Scale N.
04 SET i,n A0. i← N.
05 BNP i,A1 Loop on i for N > i ≥ 0.
06 0H SUB i,i,8 i← i− 1.
07 LDTU p,sub,i P← SUB[i].
08 LDT s,space,p s← SPACE(P).
09 NEG s,s Negate s.
10 STT s,space,p SPACE(SUB[i])← −SPACE(SUB[i]).
11 PBP i,0B Continue while i > 0.
12 JMP A1

13 A3 ADDU p,p,4 A3. i← i + 1.
14 LDTU q,link,p Q← LINKi(SUB[N]).
15 LDT s,space,q

16 BN s,A2 If SPACE(Q) ≥ 0,
17 NEG s,s

18 STT s,space,q SPACE(Q)← −SPACE(Q),
19 STT q,sub,n SUB[N]← Q, and

From the Library of Melissa Nuno

ptg999

128 [550] ANSWERS TO EXERCISES 2.2.3

20 ADD n,n,8 N← N + 1.
21 A2 PBEV q,A3 A2. If Q is odd, go to A1; else to A3.
22 A1 BZ n,B1 A1. If N = 0, go to phase 2.
23 SUB n,n,8 N← N− 1.
24 LDTU p,sub,n P ← SUB[N], i← 0.
25 LDTU q,link,p Q← LINKi(SUB[N]).
26 JMP A2

27 B1 SET p,first B1. P← FIRST.
28 JMP B2

29 B4 LDT p,link,p B4. P← LINK(P).
30 B2 BZ p,0F B2.
31 LDT s,space,p B3.
32 PBNN s,B4 To B4 if SPACE(P) ≥ 0.
33 0H STT mloc,base,n B2/B3. BASE[N]← MLOC.
34 ANDN p,p,1 Remove tag bit.
35 STTU p,sub,n SUB[N]← P.
36 NEG s,s

37 STT s,space,p SPACE(P)← −SPACE(P).
38 ADD mloc,mloc,s MLOC← MLOC + SPACE(P).
39 ADD n,n,8 N← N + 1.
40 PBNZ p,B4 If P = 0, terminate.
41 POP 0,0 Done.

2.2.4. Circular Lists [552]

As stated before, we assume in the following code that the global register avail
points to a sufficiently large stack of available nodes.

11. :Copy SET q0,:avail 1 The future backlink
1H SET q,:avail p Q← AVAIL.

LDOU :avail,:avail,LINK p AVAIL← LINK(AVAIL).
LDOU p,p,LINK p Advance P.
LDO t,p,COEF p
STO t,q,COEF p COEF(Q)← COEF(P).
LDOU t,p,ABC p
STOU t,q,ABC p ABC(Q)← ABC(P).
PBNN t,1B p[1] Was ABC 6= 0?
STOU q0,q,LINK 1 Store backlink to LINK(Q).
SET $0,q 1
POP 1,0 Return Q.

Note that it is not necessary to set LINK(Q) (except for the last node) because the
nodes on the AVAIL stack are already linked together.

From the Library of Melissa Nuno

ptg999

2.2.4 CIRCULAR LISTS (ANSWERS) [552] 129

12. Let the polynomial copied have p terms. Program A takes (17p+13)υ+(9p+5)µ.
One can argue that a fair comparison should add the time to create a zero polynomial
with exercise 14, which is 6υ + 4µ (not including the final POP). The program of
exercise 11 takes (8p + 5)υ + (6p + 1)µ, about half as much time as Program A and for
small p just a third as much time as the combination of Program A with exercise 14.

13. :Erase LDOU t,p,LINK Get first node.
STOU :avail,p,LINK Link end of polynomial to the AVAIL list.
SET :avail,t Point AVAIL to first node.
POP 0,0 Done.

14. :Zero SET p,:avail P⇐ AVAIL.
LDOU :avail,:avail,LINK

STCO 0,p,COEF COEF(P)← 0.
NEG t,1; STO t,p,ABC ABC(P)← −1.
STOU p,p,LINK LINK(P)← P.
POP 1,0 Return P.

15. This subroutine combines Algorithm M with Algorithm A. The parallel addition
of the exponents is accomplished using the WDIF operation. In case of an overflow, this
will produce the maximum exponent that can be represented as a two-byte unsigned
integer; and as a special case of this, adding to ABC = −1 will always give −1.

01 :Mult LDOU m,m,LINK r + 1 M1. Next multiplier.
02 LDO abcm,m,ABC r + 1 abcm← ABC(M).
03 BN abcm,9F r + 1[1] If ABC(M) < 0, terminate.
04 LDO coefm,m,COEF r coefm← COEF(M).
05 A1 SET q1,q

P
m′′ A1. Initialize. Q1← Q.

06 LDOU q,q,LINK
P

m′′ Q← LINK(Q).
07 0H LDOU p,p,LINK

P
p P← LINK(P).

08 LDO coefp,p,COEF
P

p coefp← COEF(P).
09 MUL coefp,coefm,coefp

P
p coefp← coefm · coefp.

10 LDO abcp,p,ABC
P

p A2. ABC(P) : ABC(Q).
11 NOR abcp,abcp,0

P
p abcp← abcm + abcp by:

12 WDIF abcp,abcp,abcm
P

p invert, parallel subtract,
13 NOR abcp,abcp,0

P
p and invert.

14 2H LDO t,q,ABC
P

x t← ABC(Q).
15 CMP t,abcp,t

P
x Compare abcp and ABC(Q).

16 BZ t,A3
P

x[
P

m+1] If equal, go to A3.

17 BP t,A5
P

p′ + q′[
P

p′] If greater, go to A5.

18 SET q1,q
P

q′ If less, set Q1← Q.
19 LDOU q,q,LINK

P
q′ Q← LINK(Q).

20 JMP 2B
P

q′ Repeat.
21 A3 BN abcp,:Mult

P
m + 1[1] A3. Add coefficients.

22 LDO coefq,q,COEF
P

m
23 ADD coefq,coefq,coefp

P
m coefq← coefq + coefp.

24 STO coefq,q,COEF
P

m COEF(Q)← coefq.
25 PBNZ coefq,A1

P
m[

P
m′] If coefq 6= 0, go to A1.

26 SET q2,q
P

m′ A4. Delete zero term.

From the Library of Melissa Nuno

ptg999

130 [552] ANSWERS TO EXERCISES 2.2.4

27 LDOU q,q,LINK
P

m′ Q← LINK(Q).
28 STOU q,q1,LINK

P
m′ LINK(Q1)← Q.

29 STOU :avail,q2,LINK
P

m′

30 SET :avail,q2
P

m′ AVAIL⇐ Q2.
31 JMP 0B

P
m′ Go to advance P.

32 A5 SET q2,:avail
P

p′ A5. Insert new term.
33 LDOU :avail,:avail,LINK

P
p′ Q2⇐ AVAIL.

34 STO coefp,q2,COEF
P

p′ COEF(Q2)← coefp.
35 STO abcp,q2,ABC

P
p′ ABC(Q2)← abcp.

36 STOU q,q2,LINK
P

p′ LINK(Q2)← Q.
37 STOU q2,q1,LINK

P
p′ LINK(Q1)← Q2.

38 SET q1,q2
P

p′ Q1← Q2.
39 JMP 0B

P
p′ Go to advance P.

40 9H POP 0,0 Return from subroutine.

16. Let r be the number of terms in polynomial(M). The subroutine requires 13+4r+
34

P
m′ + 28

P
m′′ + 30

P
p′ + 7

P
q′ units of time, where the summations refer to

the corresponding quantities during the r activations of the modified Program A. The
number of terms in polynomial(Q) goes up by p′−m′ each activation of Program A. If
we make the not unreasonable assumption that m′ = 0 and p′ = αp where 0 < α < 1,
we get the respective sums equal to 0, (1−α)pr, αpr, and rq0

′+αp(r(r− 1)/2), where
q0
′ is the value of q′ in the first iteration. The grand total is 3.5αpr2 +28pr− 1.5αpr +

7q0
′r + 4r + 13. This analysis indicates that the multiplier ought to have fewer terms

than the multiplicand, since we have to skip over unmatching terms in polynomial(Q)
more often. (See exercise 5.2.3–29 on page 157 for a faster algorithm.)

2.2.5. Doubly Linked Lists [554]

7. In line 225 this user is assumed to be in the WAIT list. . . .

8. This code implements step E8 of the elevator coroutine.

271 E8 SUB floor,floor,1 E8. Go down a floor.
272 TRIP HoldCI,61 Wait 61 units.
273 SL $0,on,floor

274 OR $1,callcar,calldown

275 AND $2,$1,$0 Is CALLCAR[FLOOR] 6= 0
276 BNZ $2,1F or CALLDOWN[FLOOR] 6= 0?
277 CMP $2,floor,2

278 BZ $2,2F If not, is FLOOR = 2?
279 AND $2,callup,$0 If not, is CALLUP[FLOOR] 6= 0?
280 BZ $2,E8 If not, repeat step E8.
281 2H OR $1,$1,callup

282 NEG $2,64,floor

283 SL $1,$1,$2 Ignore FLOOR and above.
284 BNZ $1,E8 Are there calls for lower floors?
285 1H SET dt,23 It is time to stop the elevator.
286 JMP E2A Wait 23 units and go to E2.

From the Library of Melissa Nuno

ptg999

2.2.5 DOUBLY LINKED LISTS (ANSWERS) [555] 131

9. This code implements the Decision subroutine.

291 PREFIX :Decision:

292 next IS $0 NEXTINST(ELEV1)

293 e1 IS $1 Zero if next = E1

294 calls IS $2 All buttons combined
295 j IS $3

296 c IS $4 Local copy of :c
297 rJ IS $5

298 t IS $6

299 :Decision BNZ :state,9F D1. Decision necessary?
300 LDOU next,:ELEV1+:NEXTINST D2. Should doors open?
301 GETA t,:E1

302 CMP e1,next,t

303 BNZ e1,D3 Jump if elevator not at E1.
304 OR calls,:callup,:calldown

305 OR calls,calls,:callcar

306 GETA next,:E3 Prepare to schedule E3.
307 AND t,calls,1<<2

308 BNZ t,8F Jump if call set in 2.
309 D3 SL t,:on,:floor D3. Any calls?
310 ANDN calls,calls,t Calls except in current floor
311 SUB t,calls,1

312 SADD j,t,calls Smallest j with a call
313 BNZ calls,D4 Jump if calls with j 6= FLOOR.
314 GET rJ,:rJ

315 GETA t,:E6B

316 CMPU t,rJ,t Invoked by step E6?
317 BNZ t,9F If not, exit subroutine.
318 SET j,2

319 D4 CMP :state,j,:floor D4. Set STATE.
320 BNZ e1,9F D5. Elevator dormant?
321 BZ :state,9F Exit if j = 2.
322 GETA next,:E6 Prepare to schedule E6.
323 8H SET c,:c Save current thread.
324 LDA :c,:ELEV1 Disguise as ELEV1.
325 STOU next,:c,:NEXTINST Set NEXTINST to E3 or E6.
326 SET :dt,20 Wait 20 units of time.
327 GET rJ,:rJ

328 PUSHJ t,:Hold Schedule the activity.
329 PUT :rJ,rJ

330 SET :c,c Restore current thread.
331 9H POP 0,0

From the Library of Melissa Nuno

ptg999

132 [556] ANSWERS TO EXERCISES 2.2.6

2.2.6. Arrays and Orthogonal Lists [556]

5. With a secondary table TA2 of base addresses for each row such that the octabyte
at location TA2+8j contains LOC(A[j,0])+2, and assuming that there is a global base
register b and small constant c with b + c = LOC(TA2) (such that the MMIX assembler
could assemble the instruction ‘LDA t,TA2’), we can write ‘LDO a,b,c + 4 + 1’.

11. At most 400 + 400 + 4 · 4 · 400 = 7200 octabytes or approximately 56 KByte.

15. The following program expects four parameters: first pivot, the address of the
pivot node; then baserow ≡ LOC(BASEROW[0]); next basecol ≡ LOC(BASECOL[0]); and
finally ptr ≡ LOC(PTR[0]). Since only the LEFT field of the BASEROW nodes and the UP

field of the BASECOL nodes is used, the nodes are assumed to overlap, such that only a
single octabyte is used per header node. Further, the program assumes that pointers
to the list heads have their least significant bit set to 1, making them odd. Within
the program, no new pointers to the list heads are created, since inserting and deleting
nodes will just copy existing links. The functions Allocate and Free are assumed
to manage the allocation of nodes and their return to free storage. Note that line
54 requires register x to have a suitably large register number, and that the floating
point comparison in line 67 assumes that register rE (epsilon register) has been set
appropriately.

01 :PStep GET rJ,:rJ S1. Initialize.
02 LDO v,pivot,VAL v ← VAL(PIVOT).
03 SETH t,#3FF0 t← 1.0.
04 STO t,pivot,VAL VAL(PIVOT)← 1.0.
05 FDIV alpha,t,v ALPHA← 1.0/VAL(P).
06 SETH t,#8000 The sign bit
07 XOR malpha,t,alpha Precompute malpha← −ALPHA.
08 LDT i0,pivot,ROW I0← ROW(PIVOT).
09 8ADDU p0,i0,baserow P0← LOC(BASEROW[I0]).
10 LDT J0,pivot,COL J0← COL(PIVOT).
11 8ADDU q0,J0,basecol Q0← LOC(BASECOL[J0]).
12 JMP S2

13 2H LDT J,p0,COL J← COL(P0).
14 SL j,J,3 Scale J.
15 ADDU t,basecol,j

16 STOU t,ptr,j PTR[J]← LOC(BASECOL[J]).
17 LDO t,p0,VAL

18 FMUL t,alpha,t

19 STO t,p0,VAL VAL(P0)← ALPHA× VAL(P0).
20 S2 LDOU p0,p0,LEFT S2. Process pivot row. P0← LEFT(P0).
21 BEV p0,2B If P0 is even, process P0.
22 S3 LDOU q0,q0,UP S3. Find new row. Q0← UP(Q0).
23 BOD q0,9F Exit if Q0 is odd.
24 LDT i,q0,ROW I← ROW(Q0).
25 CMP t,i,i0

26 BZ t,S3 If I = I0, repeat.
27 8ADDU p,i,baserow P← LOC(BASEROW[I]).
28 S4A LDOU p1,p,LEFT P1← LEFT(P).
29 S4 LDOU p0,p0,LEFT S4. Find new column. P0← LEFT(P0).

From the Library of Melissa Nuno

ptg999

2.2.6 ARRAYS AND ORTHOGONAL LISTS (ANSWERS) [557] 133

30 BOD p0,1F

31 LDT J,p0,COL J← COL(P0).
32 CMP t,J,J0

33 BNZ t,S5 If J = J0,
34 JMP S4 repeat step S4.
35 1H LDO t,q0,VAL If P0 is odd,
36 FMUL t,malpha,t

37 STO t,q0,VAL VAL(Q0)← −ALPHA× VAL(Q0),
38 JMP S3 and return to S3.
39 1H SET p,p1 P← P1.
40 LDOU p1,p,LEFT P1← LEFT(P).
41 S5 BOD p1,S6 S5. Find I, J element.
42 LDT t,p1,COL t← COL(P1).
43 CMP t,t,J

44 BP t,1B Loop until COL(P1) ≤ J.
45 BZ t,S7 If COL(P1) = J, go right to S7.
46 S6 SL t,J,3 S6. Insert I, J element.
47 LDOU pj,ptr,t pj← PTR[J].
48 2H SET qj,pj qj← pj.
49 LDOU pj,qj,UP pj← UP(PTR[J]).
50 BOD pj,0F Jump if pj is odd.
51 LDT t,pj,ROW

52 CMP t,t,i

53 BP t,2B Loop until ROW(UP(PTR[J])) ≤ I.
54 0H PUSHJ x,:Allocate X⇐ AVAIL.
55 STCO 0,x,VAL VAL(X)← 0.0.
56 STT i,x,ROW ROW(X)← I.
57 STT J,x,COL COL(X)← J.
58 STOU p1,x,LEFT LEFT(X)← P1.
59 STOU pj,x,UP UP(X)← UP(PTR[J]).
60 STOU x,p,LEFT LEFT(P)← X.
61 STOU x,qj,UP UP(PTR[J])← X.
62 SET p1,x P1← X.
63 S7 LDO v,q0,VAL S7. Pivot. v ← VAL(Q0).
64 LDO t,p0,VAL t← VAL(P0).
65 FMUL v,v,t v ← VAL(Q0)× VAL(P0).
66 LDO w,p1,VAL w ← VAL(P1).
67 FEQLE t,w,v

68 BNZ t,S8 If w ≈ v (ε), go to S8.
69 FSUB v,w,v

70 STO v,p1,VAL VAL(P1)← VAL(P1)− VAL(Q0)× VAL(P0).
71 SL t,J,3

72 STOU p1,ptr,t PTR[J]← P1.
73 SET p,p1 P← P1.
74 JMP S4A

75 S8 SL t,J,3 S8. Delete I, J element.
76 LDOU pj,ptr,t pj← PTR[J].
77 1H SET qj,pj qj← pj.
78 LDOU pj,qj,UP pj← UP(qj).

From the Library of Melissa Nuno

ptg999

134 [557] ANSWERS TO EXERCISES 2.2.6

79 CMP t,pj,p1

80 BNZ t,1B Repeat if UP(PTR[J]) 6= P1.
81 LDOU t,p1,UP

82 STOU t,qj,UP UP(PTR[J])← UP(P1).
83 LDOU t,p1,LEFT

84 STOU t,p,LEFT LEFT(P)← LEFT(P1).
85 SET t+1,p1

86 PUSHJ t,:Free AVAIL⇐ P1.
87 JMP S4A

88 9H PUT :rJ,rJ

89 POP 0,0

2.3.1. Traversing Binary Trees [567]

20. The following implementation of Program T uses a third parameter a, the address
where it will store the stack in consecutive memory locations. The local register s is
used as a stack pointer such that the stack consists of the octabyte values at a, a + 8,
. . . , a + 8(s− 1).

01 :Inorder BZ p,1F 1[0] T1. Initialize.
02 GET rJ,:rJ 1 Stop if P = Λ.
03 SET s,0 1 Set stack empty.
04 T3 STOU p,a,s n T3. Stack⇐ P.
05 ADD s,s,8 n
06 LDOU p,p,LLINK n P← LLINK(P).
07 BNZ p,T3 n[a−1] T2. P = Λ?
08 T4 SUB s,s,8 n T4. P⇐ Stack.
09 LDOU p,a,s n
10 T5 SET t+1,p n T5. Visit P.
11 PUSHGO t,visit,0 n
12 LDOU p,p,RLINK n P← RLINK(P).
13 PBNZ p,T3 n[a] T2. P = Λ?
14 PBP s,T4 a[1] Test if the stack is empty.
15 PUT :rJ,rJ 1
16 1H POP 0,0

This version reduces the running time of Program T to (12n + 5a + 4)υ + 4nµ.
If LLINK(P) = Λ, the node P is pushed on the stack in step T3 and removed

immediately again in step T4. Adding a test to step T3 like this

T3 LDOU left,p,LLINK n
PBZ left,T5 n[a−1] To T5 if LLINK(P) = Λ.
STOU p,a,s a− 1 T3. Stack⇐ P.
ADD s,s,8 a− 1
SET p,left a− 1 P← LLINK(P).
JMP T3 a− 1

From the Library of Melissa Nuno

ptg999

2.3.1 TRAVERSING BINARY TREES (ANSWERS) [567] 135

will eliminate the redundancy. The running time would then be (8n+11a−2)υ+(2n+
2a− 2)µ, which is a further improvement if we assume that a = (n + 1)/2.

For a linked stack, replace in the previous program

lines 04–05 by:

T3 STOU p,a,INFO n
LDOU t,a,LINK n
STOU s,a,LINK n
SET s,a n
SET a,t n

and lines 08–09 by:

T4 LDOU t,s,LINK n
STOU a,s,LINK n
SET a,s n
SET s,t n
LDOU p,a,INFO n

These replacements increase the running time for pushing and popping the stack from
4nυ + 2nµ to 10nυ + 6nµ to yield a total running time of (18n + 5a + 4)υ + 8nµ.
Applying the optimization for nodes with LLINK(P) = Λ, we can reduce the total to
(10n + 13a− 8)υ + (2n + 6a− 6)µ.

The same optimization applied to the recursive implementation of Program T
yields the following program:

01 :Inorder BZ p,T4 1[0] T2. P = Λ?
02 0H GET rJ,:rJ a Entry for recursive calls.
03 T3 LDOU t+1,p,LLINK n T3. Stack⇐ P.
04 PBZ t+1,T5 n[a−1] T2. P = Λ?
05 SET t+2,visit a− 1
06 PUSHJ t,0B a− 1 Call Inorder(LLINK(P),Visit).
07 T5 SET t+1,p n T5. Visit P.
08 PUSHGO t,visit,0 n Call Visit(P).
09 LDOU p,p,RLINK n P← RLINK(P).
10 BNZ p,T3 n[n−a] T2. P = Λ?
11 PUT :rJ,rJ a
12 T4 POP 0,0 a T4. P⇐ Stack.

Its running time is a remarkable (10n + 7a− 3)υ + 2nµ.

22. In the following implementation of algorithm U, the variable R has been eliminated
(saving two instructions) by replacing the test R = Q with RLINK(Q) = P.

01 :Inorder BZ p,1F 1[0] U2. Done? Stop if P = Λ.
02 GET rJ,:rJ 1
03 U3 LDOU q,p,LLINK n + a− 1 U3. Look left. Q← LLINK(P).
04 PBZ q,U6 n + a− 1[a−1] To U6 if Q = Λ.
05 U4 LDOU rq,q,RLINK 2c U4. Search for thread.
06 CMP t,rq,p 2c
07 BZ t,5F 2c[a−1] Branch if RLINK(Q) = P.
08 CSNZ q,rq,rq d Q← RLINK(Q) if RLINK(Q) 6= Λ.
09 PBNZ rq,U4 d[a−1] Continue with U4 if RLINK(Q) 6= Λ.
10 STOU p,q,RLINK a− 1 U5a. Insert thread. RLINK(Q)← P.
11 LDOU p,p,LLINK a− 1 U9. Go to left. P← LLINK(P).
12 JMP U3 a− 1 To U3.
13 5H STCO 0,q,RLINK a− 1 U5b. Remove thread. RLINK(Q) = Λ.
14 U6 SET t+1,p n U6. Inorder visit P.
15 PUSHGO t,visit,0 n
16 LDOU p,p,RLINK n U7. Go to right or up.

From the Library of Melissa Nuno

ptg999

136 [568] ANSWERS TO EXERCISES 2.3.1

17 PBNZ p,U3 n[1] U2. Done? To U3 if P 6= Λ.
18 PUT :rJ,rJ 1
19 1H POP 0,0

The total running time is (18n + 10a− 10b− 5)υ + (4n + 4a− 2b− 4)µ, where n is the
number of nodes, a is the number of null RLINKs (hence a− 1 is the number of nonnull
LLINKs), c = n− b, and d = 2c− (a− 1), where b is the number of nodes of the tree’s
“right spine” P, RLINK(P), RLINK(RLINK(P)), etc.

In summary, the approximate running times for inorder traversal are:

Program U (23υ + 6µ)n−O(log n)
Program T (with register stack) (16υ + 2µ)n + O(1)
Program T (with stack in linked list) (16.5υ + 5µ)n + O(1)
Program T (with stack in consecutive locations) (13.5υ + 3µ)n + O(1)
Program T (optimized with register stack) (13.5υ + 2µ)n + O(1)
Program S (13υ + 2µ)n + O(1)

The optimized recursive version of Program T is simple and short, requires a minimum
amount of memory access, and is among the fastest programs considered here. If a
program needs a simple stack, recursion should be considered an option; it is hard to
beat the efficiency of a hardware-supported register stack.

[571]
37. If LLINK(P) = RLINK(P) = Λ in the representation (), let LINK(P) = Λ; otherwise
let LINK(P) = Q where NODE(Q) corresponds to NODE(LLINK(P)) and NODE(Q + 16) to
NODE(RLINK(P)). The condition LLINK(P) or RLINK(P) = Λ is represented by a sentinel
in NODE(Q) or NODE(Q + 16) respectively. This representation uses between 2n and 4n−2
octabytes; under the stated assumptions, () would require 27 octabytes, compared to
22 in the present scheme. Insertion and deletion operations are approximately of equal
efficiency in either representation. But this representation is not quite as versatile in
combination with other structures.

2.3.2. Binary Tree Representation of Trees [572]

13. The following subroutine implements Algorithm 2.3.1C after appropriate changes
to the initialization and termination conditions. It expects one parameter p pointing
to a node and returns a copy of this node and everything reachable through its LLINK

pointer.

042 :Copy BZ p,9F 1[0] C1. Initialize.
043 GET rJ,:rJ 1
044 PUSHJ u,:Allocate 1 Create NODE(U) with RLINK(U) = Λ.
045 SET q,u 1 Q← U.
046 JMP C3 1 To C3, the first time.
047 4H PUSHJ r,:Allocate a R⇐ AVAIL.
048 STOU r,q,:LLINK a LLINK(Q)← R.
049 OR t,q,1 a
050 STOU t,r,:RLINK a RLINK(R)← Q, RTAG(R)← 1.
051 SET q,r a C5a. Advance. Q← LLINK(Q).
052 LDOU p,p,:LLINK a P← LLINK(P).

From the Library of Melissa Nuno

ptg999

2.3.2 BINARY TREE REPRESENTATION OF TREES (ANSWERS) [572] 137

053 C2 LDOU t,p,:RLINK n− 1 C2. Anything to right?
054 BOD t,C3 n− 1[a] Jump if RTAG(P) = 1.
055 PUSHJ r,:Allocate n− 1− a R⇐ AVAIL.
056 LDOU t,q,:RLINK n− 1− a
057 STOU t,r,:RLINK n− 1− a RLINK(R)← RLINK(Q).
058 STOU r,q,:RLINK n− 1− a RLINK(Q)← R, RTAG(Q)← 0.
059 C3 LDOU t,p,:INFO n C3. Copy INFO.
060 STOU t,q,:INFO n
061 LDOU t,p,:LLINK n C4. Anything to left?
062 BNZ t,4B n[a] Jump if LLINK(P) 6= Λ.
063 C5B LDOU p,p,:RLINK n C5b. Advance. P← RLINK(P).
064 LDOU q,q,:RLINK n Q← RLINK(Q).
065 BOD q,C5B n[a] Jump if RTAG(Q) = 1.
066 PBNZ q,C2 n− a[1] C6. Test if complete.
067 STOU u,u,:RLINK 1 RLINK(U)← U.
068 PUT :rJ,rJ 1
069 SET $0,u 1 Return U.
070 9H POP 1,0

Here n is the total number of nodes copied and a is the number of nonterminal
(operator) nodes copied.

14. The total time (not counting the time spent in Allocate) is (14n + 7a + 4)υ +
(9n− 3)µ. The time used to copy the INFO field is just 2n(υ + µ); for the LLINK fields,
we need a(υ + µ); and for the RLINK fields, we need n(υ + µ). The total copy time of
(3n + a)(υ + µ) accounts for about 20% of the cycles and 40% of the memory access.
The rest is spent on traversing the tree.

15. The following code is an exercise in nesting subroutines.

167 PREFIX :D: This is part of subroutine D.
168 :Div LDOU t,q1,:INFO

169 BZ t,1F

170 SET t+1,q1

171 SET t+3,p2

172 PUSHJ t+2,:Copy

173 GETA t+3,:Div

174 PUSHJ t,:Tree2

175 SET q1,t Q1← Tree2(Q1,Copy(P2),“/”).
176 1H LDOU t,q,:INFO

177 BZ t,:Sub

178 SET q+3,p1

179 PUSHJ q+2,:Copy

180 SET q+3,q

181 PUSHJ q+1,:Mult Q+1← Mult(Copy(P1),Q).
182 SET q+4,p2

183 PUSHJ q+3,:Copy

184 PUSHJ q+4,:Allocate

185 SET q+5,2

186 STTU q+5,q+4,:INFO

187 GETA q+5,:Pwr

From the Library of Melissa Nuno

ptg999

138 [573] ANSWERS TO EXERCISES 2.3.2

188 PUSHJ q+2,:Tree2 Q+2← Tree2(Copy(P2),Allocate(),“↑”).
189 GETA q+3,:Div

190 PUSHJ q,:Tree2 Q← Tree2(Q+1,Q+2,“/”).
191 JMP :Sub Q← Q1− Q.

16. Even more nested subroutine calls! Note the unusual definition of register r serving
as basis for the nested subroutine calls.

192 r IS t+1

193 :Pwr LDOU t,q1,:INFO

194 BZ t,2F Jump if INFO(Q1) = 0.
195 SET r+1,p1

196 PUSHJ r,:Copy R← Copy(P1).
197 LDWU diff,p2,:DIFF

198 BNZ diff,1F Jump if DIFF(P2) 6= 0.
199 LDT info,p2,:INFO Load value of constant P2.
200 CMP t,info,2 Is it 2?
201 BZ t,3F If yes, jump.
202 SET r+1,r 1) R

203 PUSHJ r+2,:Allocate 2) New constant
204 SUB info,info,1 with value INFO(P2)− 1
205 STT info,r+2,:INFO

206 GETA r+3,:Pwr 3) “↑”
207 PUSHJ r,:Tree2 R← Tree2(R,INFO(P2)− 1,“↑”).
208 JMP 3F

209 1H SET r+1,r 1) R

210 SET r+4,p2 α) P2

211 PUSHJ r+3,:Copy a) Copy(P2)

212 PUSHJ r+4,:Allocate b) New constant
213 SET info,1 with value 1
214 STT info,r+4,:INFO

215 GETA r+5,:Sub c) “−”
216 PUSHJ r+2,:Tree2 2) Tree2(Copy(P2),1,“−”)
217 GETA r+3,:Pwr 3) “↑”
218 PUSHJ r,:Tree2 R← Tree2(R,Tree2(Copy(P2),1,“−”),“↑”)
219 3H SET r+1,q1 1) Q1

220 SET r+4,p2 α) P2

221 PUSHJ r+3,:Copy a) Copy(P2)

222 SET r+4,r b) R

223 PUSHJ r+2,:Mult 2) Mult(Copy(P2),R)

224 PUSHJ r,:Mult R← Mult(Q1,Mult(Copy(P2),R)).
225 SET q1,r Q1← Mult(Q1,Mult(Copy(P2),R)).
226 2H LDOU t,q,:INFO

227 BZ t,:Add If INFO(Q) = 0 go to Add.
228 SET q+4,p1 i) P1

229 PUSHJ q+3,:Copy α) Copy(P1)

230 GETA q+5,:Ln β) ignored, γ) “ln”
231 PUSHJ q+2,:Tree1 a) Tree1(Copy(P1),·,“ln”)
232 SET q+3,q b) Q

233 PUSHJ q+1,:Mult 1) Mult(Tree1(Copy(P1),·,“ln”),Q)

From the Library of Melissa Nuno

ptg999

2.3.2 BINARY TREE REPRESENTATION OF TREES (ANSWERS) [574] 139

234 SET q+4,p1 α) P1

235 PUSHJ q+3,:Copy a) Copy(P1)

236 SET q+5,p2 α) P2

237 PUSHJ q+4,:Copy b) Copy(P2)

238 GETA q+5,:Pwr c) “↑”
239 PUSHJ q+2,:Tree2 2) Tree2(Copy(P1),Copy(P2),“↑”)
240 GETA q+3,:Mul 3) “×”
241 PUSHJ q,:Tree2 Q← Tree2(Mult(Tree1(Copy(P1), · ,“ln”),Q),
242 JMP :Add Tree2(Copy(P1),Copy(P2),“↑”),“×”).

2.3.5. Lists and Garbage Collection [601]

4. The program that follows incorporates the suggested improvements in the speed of
processing atoms that appear in the text after the statement of Algorithm E. It follows
closely the original MIX program. The least significant bit of ALINK(P) is used as mark
bit MARK(P), and the least significant bit of BLINK(P) is used as atom bit ATOM(P). Note
the use of the MUX (multiplex) instruction to selectively set or copy these bits.

01 :Mark SET t,0 1 E1. Initialize. T← Λ.
02 PUT :rM,1 1 Prepare for MUXing the tag bits.
03 E2 LDOU x,p,ALINK 1 E2. Mark P.
04 OR x,x,1 1
05 STOU x,p,ALINK 1 MARK(P)← 1.
06 E3 LDOU x,p,BLINK 1 E3. Atom?
07 PBEV x,E4 1[0] Jump if ATOM(P) = 0.
08 E6 BZ t,9F n[1] E6. Up.
09 SET q,t n− 1 Q← T.
10 LDOU t,q,BLINK n− 1 T← BLINK(Q).
11 PBOD t,1F n− 1[t2] Jump if ATOM(T) = 1.
12 STOU p,q,BLINK t2 BLINK(Q)← P.
13 SET p,q t2 P← Q.
14 JMP E6 t2
15 1H ANDN t,t,1 t1 Remove tag bit from T.
16 STOU t,q,BLINK t1 ATOM(Q)← 0.
17 LDOU x,q,ALINK t1 t← ALINK(Q).
18 ANDN t,x,1 t1 T← ALINK(Q) without mark bit.
19 MUX x,x,p t1 t← P retaining MARK(Q).
20 STOU x,q,ALINK t1 ALINK(Q)← P retaining MARK(Q).
21 SET p,q t1 P← Q.
22 E5 LDOU r,p,BLINK n E5. Down BLINK. R← BLINK(P).
23 ANDN q,r,1 n Q← BLINK(P) without atom bit.
24 BZ q,E6 n[b2] Jump if Q = Λ.
25 LDOU x,q,ALINK n− b2

26 BOD x,E6 n− b2[t1+1−b2−a2] Jump if MARK(Q) = 1.
27 OR x,x,1 t2 + a2 Set mark bit.
28 STOU x,q,ALINK t2 + a2 MARK(Q)← 1.
29 LDOU x,q,BLINK t2 + a2

From the Library of Melissa Nuno

ptg999

140 [602] ANSWERS TO EXERCISES 2.3.5

30 BOD x,E6 t2 + a2[a2] Jump if ATOM(Q) = 1.
31 MUX r,r,t t2 R← T retaining ATOM(P).
32 STOU r,p,BLINK t2 BLINK(P)← T retaining ATOM(P).
33 E4A SET t,p n− 1 T← P.
34 SET p,q n− 1 P← Q.
35 E4 LDOU r,p,ALINK n E4. Down ALINK. Q← ALINK(P).
36 ANDN q,r,1 n Q← ALINK(P) without mark bit.
37 BZ q,E5 n[b1] Jump if Q = Λ.
38 LDOU x,q,ALINK n− b1

39 BOD x,E5 n− b1[t2+1−b1−a1] Jump if MARK(Q) = 1.
40 OR x,x,1 t1 + a1 Set mark bit.
41 STOU x,q,ALINK t1 + a1 MARK(Q)← 1.
42 LDOU x,q,BLINK t1 + a1

43 BOD x,E5 t1 + a1[a1] Jump if ATOM(Q) = 1.
44 LDOU x,p,BLINK t1
45 OR x,x,1 t1 Set atom bit.
46 STOU x,p,BLINK t1 ATOM(P)← 1.
47 MUX r,r,t t1 R← T retaining ATOM(P).
48 STOU r,p,ALINK t1 ALINK(P)← T retaining ATOM(P).
49 JMP E4A t1
50 9H POP 0,0

By Kirchhoff’s law, t1 + t2 + 1 = n, a1 + a2 = a, and b1 + b2 = b. The total time
is (29n + 6t1 + 4a − 2b − 5)υ + (9n + 4t1 + 2a − b − 2)µ, where n is the number of
nonatomic nodes marked, a is the number of atoms marked, b is the number of Λ links
encountered in marked nonatomic nodes, and t1 is the number of times we went down
an ALINK (0 ≤ t1 < n).

2.5. DYNAMIC STORAGE ALLOCATION [607]

4. The following implementation uses a register link to simplify (and speed up)
access to the LINK field given an address relative to base. For the SIZE field, no such
register is needed since the offset of the SIZE field is zero. To improve the readability,
however, we define size as an alias for base.

01 :Allocate ADDU link,:base,LINK

02 size IS :base

03 LDA p,:AVAIL A1. Initialize. P← LOC(AVAIL).
04 SUBU p,p,link Convert to relative address.

05 1H SET q,p Q← P.
06 LDT p,q,link A2. End of list? P← LINK(Q).
07 BN p,9F If P = Λ, no room.
08 LDT s,p,size A3. Is SIZE enough?
09 SUB k,s,n K← SIZE(P)− N.
10 PBN k,1B Jump if N > SIZE(P).

11 PBNZ k,1F A4. Reserve N.
12 LDT t,p,link If K = 0,
13 STT t,q,link set LINK(Q)← LINK(P).

From the Library of Melissa Nuno

ptg999

2.5 DYNAMIC STORAGE ALLOCATION (ANSWERS) [607] 141

14 1H STT k,p,size SIZE(P)← K.
15 ADD p,p,k P + K.
16 ADDU $0,p,:base Convert P + K to an absolute address
17 POP 1,0 and return it.
18 9H POP 0,0 Return Λ.

13. The following code uses registers size, rlink, llink, and psize to simplify access
to the various fields of a node using relative addresses. The notation PSIZE(P) is a
convenient shorthand for the SIZE field that terminates the block preceding NODE(P) as
if it were a field of NODE(P).

01 :Allocate ADD n,n,8+7 1 A.1 Initialize.
02 ANDN n,n,7 1 Add overhead and round up.
03 LDA size,:AVAIL+SIZE 1 Base address for SIZE field,
04 LDA rlink,:AVAIL+RLINK 1 for RLINK field,
05 LDA llink,:AVAIL+LLINK 1 for LLINK field, and
06 SUBU psize,size,4 1 for preceding SIZE.
07 SET p,:rover 1 P← ROVER.
08 SET f,0 1 F← 0.
09 JMP A2 1 Start the search.
10 A3 LDTU s,size,p A A3. Is SIZE enough?
11 SUB k,s,n A K← SIZE(P)− N.
12 BNN k,A4 A[1] Jump if SIZE(P) ≥ N.
13 1H LDTU p,rlink,p A + B − 1 P← RLINK(P).
14 A2 PBNZ p,A3 A + B[B] A2. End of list?
15 BNZ f,9F B[0] Overflow if P = 0 and F 6= 0.
16 SET f,1 B F← 1.
17 JMP 1B B
18 A4 LDTU :rover,p,rlink 1 A4́ . Reserve at least N.
19 CMP t,k,c 1
20 BNN t,1F 1[1−D] Jump if K ≥ c.
21 LDTU q,llink,p D Delete NODE(P) from list.
22 STTU :rover,rlink,q D
23 STTU q,llink,:rover D
24 SET l,p D Result is P.
25 SET n,s D Size of result is size of P.
26 JMP 2F D
27 1H ADDU l,p,k 1−D Split NODE(P) into P and L.
28 STTU k,size,p 1−D SIZE(P)← K.
29 STTU k,psize,l 1−D SIZE(P)← K at block end.
30 2H OR n,n,1 1
31 STTU n,size,l 1 SIZE(L)← N, TAG(L)← 1.
32 ADDU q,l,n 1 Advance to block after L.
33 STTU n,psize,q 1 SIZE(L)← N,TAG(L)← 1.
34 ADDU $0,rlink,l 1 Return absolute address
35 POP 1,0 of usable memory.
36 9H POP 0,0 Overflow.

The running time is (23 + 5A + 7B + D)υ + (4 + 2A + B + D)µ. Here A ≥ 1 is
the number of iterations necessary when searching for an available block that is large

From the Library of Melissa Nuno

ptg999

142 [609] ANSWERS TO EXERCISES 2.5

enough; B = 1, if the iteration wraps around the end of the list; and D = 1, if a block
is deleted from the list. We can assume that the average value of B is quite small,
whereas the average value of D will approach 1 when the system reaches a stable state.

16. This subroutine uses the same conventions as the solution to exercise 13. We use
the variables P1 and N1, respectively, for the address and size of the block following P0,
and N2 for the size of the block preceding P0; F is the forward block and B the backward
block in the linked list.

01 :Free LDA size,:AVAIL+SIZE Base address for SIZE field,
02 LDA rlink,:AVAIL+RLINK for RLINK field,
03 LDA llink,:AVAIL+LLINK for LLINK field, and
04 SUBU psize,size,4 for preceding SIZE.
05 SUBU p0,p0,rlink Make P0 a relative address.
06 LDTU n,size,p0 D1. Initialize. N← SIZE(P0).
07 ANDN n,n,1 Remove TAG bit.
08 ADDU p1,p0,n P1← P0 + N.
09 LDTU n1,size,p1 N1← SIZE(P1).
10 LDTU n2,psize,p0 N2← PSIZE(P0).
11 BEV n1,D4 To D4 if NODE(P1) is free.
12 BEV n2,D7 To D7 if NODE(P2) is free.
13 D3 LDTU f,llink,0 D3. Insert P0. F← LLINK(AVAIL).
14 SET b,0 B← AVAIL.
15 JMP D5

16 D4 ADD n,n,n1 D4. Delete upper area. N← N + SIZE(P1).
17 LDTU b,llink,p1 B← LLINK(P1).
18 LDTU f,rlink,p1 F← RLINK(P1).
19 CMP t,p1,:rover

20 CSZ :rover,t,0 If P1 = ROVER, set ROVER← AVAIL.
21 ADDU p1,p1,n1 P1← P1 + SIZE(P1).
22 BEV n2,D6 To D6 if NODE(P2) is free.
23 D5 STTU f,rlink,p0 D5. Insert NODE(P0). RLINK(P0)← F.
24 STTU b,llink,p0 LLINK(P0)← B.
25 STTU p0,rlink,b RLINK(B)← P0.
26 STTU p0,llink,f LLINK(F)← P0.
27 JMP D8

28 D6 STTU f,rlink,b D6. Delete. RLINK(B)← F.
29 STTU b,llink,f LLINK(F)← B.
30 D7 ADD n,n,n2 D7. Enlarge lower area.
31 SUBU p0,p0,n2 Move P0 to NODE(P2).
32 D8 STTU n,size,p0 D8. Store SIZE. SIZE(P0)← N.
33 STTU n,psize,p1 PSIZE(P1)← N.
34 POP 0,0

The possible running times are 18υ (next block occupied, preceding block free), 22υ
(next block occupied, preceding block occupied), 27υ (next block free, preceding block
occupied), or 28υ (next block free, preceding block free).

27. The node sizes are 2k bytes with 4 ≤ k ≤ m; the minimum node size is 24 = 16
bytes because an available node must contain three tetrabytes for KVAL, LINKF, and
LINKB. Addresses are stored relative to the value of the global register base and are

From the Library of Melissa Nuno

ptg999

2.5 DYNAMIC STORAGE ALLOCATION (ANSWERS) [611] 143

assumed to fit in a tetrabyte. Consequently, m is some constant m < 32. The list heads
AVAIL[4], AVAIL[5], . . . , AVAIL[m] are allocated immediately before the base-address
such that the relative address of AVAIL[k] is 16(k − m − 1); list heads are the only
nodes with negative relative addresses. In the KVAL field of a node, we do not store k or
2k (its size), but rather the relative address of AVAIL[k]; this is more convenient and
the value of k can be easily computed from the address if needed.

For the TAG bits — anticipating exercise 29—we use a separate memory area,
starting at address TAGS, containing one bit for each 16-byte block of available memory.
For convenience, we keep LOC(TAGS) in the global register tags. The following auxiliary
function FindTag will take any nonnegative relative address P as a parameter and return
three return values: the octabyte containing the TAG bit, a mask with the respective
bit set to 1, and the relative address of the octabyte within the TAGS.

PREFIX :FindTag:

p IS $0 Parameter
tag IS $2 Primary return value
mask IS $0 Second return value
address IS $1 Third return value
t IS $3 Temporary variable

:FindTag SR address,p,7 address← b(P/16/64) ∗ 8c.
SR t,p,4

AND t,t,64-1 t← bP/16cmod 64.
SETH mask,#8000

SRU mask,mask,t mask← 263−t.
LDOU tag,:tags,address

POP 3,0 Return tag, mask, and address.

The running time of this function is 9υ + 1µ (including the final POP); it is used in the
following implementation of Algorithm R and again in the solution of exercise 28.

The function Allocate expects one parameter k. On success, it will return an
absolute address to 2k bytes; on failure, it will return Λ = 0.

01 :Allocate ADDU linkf,:base,LINKF 1
02 ADDU linkb,:base,LINKB 1
03 CMP t,k,4 1
04 CSN k,t,4 1 k ← max{k, 4}.
05 NEG availk,16*(:m+1) 1 availk← LOC(AVAIL[0]).
06 16ADDU availk,k,availk 1 availk← LOC(AVAIL[k]).
07 SET availj,availk 1 R1. Find block. j ← k.
08 1H LDT l,availj,linkf 1 + R L← availF[j].
09 PBNN l,R2 1 + R[R] To R2 if L 6= AVAIL[j].
10 ADD availj,availj,16 R j ← j + 1.
11 PBN availj,1B R[0] Is j ≤ m?
12 POP 0,0 0 Return Λ.
13 R2 GET rJ,:rJ 1 R2. Remove from list.
14 LDT p,l,linkf 1 P← LINKF(L).
15 STT p,availj,linkf 1 availF[j]← P.
16 STT availj,p,linkb 1 LINKB(P)← LOC(AVAIL[j]).
17 SET t+1,l 1
18 PUSHJ t,:FindTag 1 Find TAG(L).

From the Library of Melissa Nuno

ptg999

144 [611] ANSWERS TO EXERCISES 2.5

19 ANDN t,t,t+1 1 Set tag bit to zero.
20 STOU t,:tags,t+2 1 TAG(L)← 0.
21 SUB jk,availj,availk 1 R3. Split required?
22 SR jk,jk,4 1 jk← j − k.
23 PBZ jk,9F 1[R′] Terminate if j = k.
24 SET bitk,1 R′ bitk← 20.
25 SL bitk,bitk,k R′ bitk← 2k.
26 R4 SUB jk,jk,1 R R4. Split. j ← j − 1.
27 SL t,bitk,jk R t← 2j .
28 ADDU p,l,t R P← L + 2j .
29 SET t+1,p R
30 PUSHJ t,:FindTag R Find TAG(P).
31 OR t,t,t+1 R Set tag bit to one.
32 STOU t,:tags,t+2 R TAG(P)← 1.
33 16ADDU availj,jk,availk R Get LOC(AVAIL[j]).
34 STT availj,p,kval R KVAL(P)← LOC(AVAIL[j]).
35 STT availj,p,linkf R LINKF(P)← LOC(AVAIL[j]).
36 STT availj,p,linkb R LINKB(P)← LOC(AVAIL[j]).
37 STT p,availj,linkf R availF[j]← P.
38 STT p,availj,linkb R availB[j]← P.
39 BP jk,R4 R[R−R′] Repeat if j > k.
40 9H ADDU $0,:base,l 1 Return L as absolute address.
41 PUT :rJ,rJ 1
42 POP 1,0

The running time is (22+22R+2R′)υ+(5+7R)µ plus (R+1)(9υ+1µ) for the FindTag
subroutine, where R is the number of times a block is split in two, and R′ is 1 if R > 0,
and 0 otherwise. Since R is quite small on the average, we can assume ave R′ ≈ ave R.
For good performance, the FindTag subroutine should be inlined, reducing its cost by
(R + 1)(5υ + 1µ).

28. The function Free expects two parameters L and k, assuming that L was obtained
through a call to the function Allocate (see exercise 27) with the same value k.

01 :Free GET rJ,:rJ 1
02 ADDU linkf,:base,LINKF 1
03 ADDU linkb,:base,LINKB 1
04 CMP t,k,4 1
05 CSN k,t,4 1 k ← max{k, 4}.
06 SUBU l,l,:base 1 Make L a relative address.
07 SUB availk,k,:m+1 1
08 SLU availk,availk,4 1 availk← LOC(AVAIL[k]).
09 S1 SET t,1 1 + S S1. Is buddy available?
10 SLU t,t,k 1 + S t← 2k.
11 XOR p,l,t 1 + S P ← buddyk(L).
12 SET t+1,p 1 + S
13 PUSHJ t,:FindTag 1 + S Find TAG(P).
14 AND t,t,t+1 1 + S Extract TAG(P).
15 PBZ t,S3 1 + S[B] To S3 if TAG(P) = 0.
16 LDT t,p,kval B + S t← KVAL(P).
17 CMP t,t,availk B + S KVAL(P) = k?

From the Library of Melissa Nuno

ptg999

2.5 DYNAMIC STORAGE ALLOCATION (ANSWERS) [613] 145

18 PBNZ t,S3 B + S[S] To S3 if KVAL(P) 6= k.
19 LDT r,p,linkf S S2. Combine with buddy.
20 LDT q,p,linkb S R← LINKF(P); Q← LINKB(P).
21 STT r,q,linkf S LINKF(LINKB(P))← LINKF(P).
22 STT q,r,linkb S LINKB(LINKF(P))← LINKB(P).
23 ADD k,k,1 S Increase k.
24 ADD availk,availk,16 S
25 AND l,l,p S If L > P, set L← P.
26 JMP S1 S
27 S3 SET t+1,l 1 S3. Put on list.
28 PUSHJ t,:FindTag 1 Find TAG(L).
29 OR t,t,t+1 1 Set tag bit to one.
30 STOU t,:tags,t+2 1 TAG(L)← 1.
31 LDT p,availk,linkf 1 P← AVAILF[k].
32 STT p,l,linkf 1 LINKF(L)← P.
33 STT l,p,linkb 1 LINKB(P)← L.
34 STT availk,l,kval 1 KVAL(L)← k.
35 STT availk,l,linkb 1 LINKB(L)← LOC(AVAIL[k]).
36 STT l,availk,linkf 1 AVAILF[k]← L.
37 PUT :rJ,rJ 1
38 POP 0,0

The running time is (26 + 20S + 5B)υ + (7 + 5S + B)µ plus (S + 2)(9υ + 1µ) for the
FindTag subroutine, where S is the number of times buddy blocks are reunited, and
B is the number of times a potential buddy is available but of the wrong size. With
B ≈ 0.5, the running time simplifies to (46.5 + 29S)υ + (9.5 + 6S)µ. Storing the tag
bits inside the nodes would improve the performance, but reserving a bit in a node
is usually not convenient for a general-purpose memory allocator. Again, inlining the
FindTag function saves another (10 + 5S)υ.

34. The variables BASE, AVAIL, and USE are kept in global registers. These node ad-
dresses, as well as P, Q, and TOP, always point into the node as described in exercise 33—
except during step G9, where P and Q point to the LINK field. The field offsets for LINK,
SIZE, and T are negative, and MMIX is not specially suited to handle negative constants.
Therefore, we use three registers to hold these constants. Step G1 is omitted from the
following program.

01 :GC NEG size,16 1 Field offset for SIZE

02 NEG t,12 1 Field offset for T

03 NEG link,8 1 Field offset for LINK

04 SET top,:avail 1 G2. Initialize marking phase.
05 STCO 0,:avail,link 1 LINK(AVAIL)← Λ.
06 BZ :use,G3 1[0] If USE 6= Λ push it.
07 STOU top,:use,link 1 LINK(USE)← TOP.
08 SET top,:use 1 TOP← USE.
09 G3 SET p,top a + 1 G3. Pop up stack. P← TOP.
10 LDOU top,top,link a + 1 TOP← LINK(TOP).
11 BZ top,G5 a + 1[1] If TOP = Λ, go to G5.
12 LDTU k,p,t a G4. Put new links on stack. k ← T(P).
13 1H BNP k,G3 a + b[a] While k > 0 do:
14 SUB k,k,8 b decrement k,

From the Library of Melissa Nuno

ptg999

146 [615] ANSWERS TO EXERCISES 2.5

15 LDOU q,p,k b Q← LINK(P + k),
16 BZ q,1B b[b′] continue if Q = Λ,
17 LDOU l,q,link b− b′ L← LINK(Q),
18 BNZ l,1B b− b′[a−1] continue if LINK(Q) 6= Λ,
19 STOU top,q,link a− 1 LINK(Q)← TOP, and
20 SET top,q a− 1 TOP← Q.
21 JMP 1B a− 1
22 G5 SET q,:base 1 G5. Initialize next phase.
23 STOU q,:avail,link 1 LINK(AVAIL)← Q.
24 STCO 0,:avail,size 1 SIZE(AVAIL), T(AVAIL)← 0.
25 SET p,:base 1 P← base.
26 JMP G6 1
27 1H STOU q,p,link 1 Q← LINK(P).
28 ADDU q,q,s 1 Q← Q + SIZE(P).
29 ADDU p,p,s 1 P← P + SIZE(P).
30 G6 LDOU l,p,link a + 1 L← LINK(P).
31 G6A LDTU s,p,size a + c + 1 s← SIZE(P).
32 BZ l,G7 a + c + 1[c] To G7 if LINK(P) = Λ.
33 PBNZ s,1B a + 1[1] To G8 if SIZE(P) = 0.
34 G8 BZ :use,0F 1 G8. Translate all links.
35 LDOU :use,:use,link 1 USE← LINK(USE).
36 0H SET :avail,q 1 AVAIL← Q.
37 SET p,:base 1 P← base.
38 JMP G8P 1
39 1H LDTU x,ps,size d x← SIZE(ps).
40 ADDU s,s,x d s← s + SIZE(ps).
41 G7 ADDU ps,p,s c + d G7. Collapse available area.
42 LDOU l,ps,link c + d L← LINK(ps).
43 BZ l,1B c + d[d] Repeat if LINK(ps) = Λ.
44 STTU s,p,size c SIZE(P)← s.
45 ADDU p,p,s c P← P + SIZE(P).
46 JMP G6A c
47 2H SUB k,k,8 b Decrement k.
48 LDOU q,p,k b Q← LINK(P + 8 + k).
49 BZ q,1F b[b′] Ignore Λ.
50 LDOU l,q,link b− b′ L← LINK(Q).
51 STOU l,p,k b− b′ LINK(P + 8 + k)← L.
52 1H BP k,2B a + b[b] Jump if k > 0.
53 3H ADDU p,p,s a + c P← P + SIZE(P).
54 G8P LDTU s,p,size 1 + a + c s← SIZE(P).
55 LDOU l,p,link 1 + a + c L← LINK(P).
56 BZ l,3B 1 + a + c[c] Is LINK(P) = Λ?
57 LDTU k,p,t 1 + a k ← T(P).
58 PBNZ s,1B 1 + a[1] Jump unless SIZE(P) = 0.
59 G9 SUBU p,:base,16 1 G9. Move.
60 SET q,p 1 Q and P start at LINK(base).
61 JMP G9P 1
62 1H STCO 0,q,8 a LINK(Q)← Λ.
63 STOU st,q,0 a SIZE(Q), T(Q)← SIZE(P), T(P).

From the Library of Melissa Nuno

ptg999

2.5 DYNAMIC STORAGE ALLOCATION (ANSWERS) [615] 147

64 ADDU q,q,s a Q← Q + SIZE(P).
65 NEG s,16,s a s← 16− s.
66 2H LDOU x,p,s w − 2 Copy data from P to Q.
67 STOU x,q,s w − 2
68 ADD s,s,8 w − 2 s← s + 8.
69 0H PBN s,2B w − 2[a]

70 G9P LDOU l,p,8 1 + a + c L← LINK(P).
71 LDOU st,p,0 1 + a + c st← SIZE(P), T(P).
72 SRU s,st,32 1 + a + c s← SIZE(P).
73 ADDU p,p,s 1 + a + c P← P + SIZE(P).
74 BZ l,G9P 1 + a + c[c] Jump if LINK(P) = Λ.
75 PBNZ s,1B 1 + a[1] Jump unless SIZE(P) = 0.
76 POP 0,0

The total running time for this program is (35a + 14b + 4w + 23c + 7d + 37)υ +
(12a + 5b − 3b′ + 2w + 7c + 2d + 9)µ, where a is the number of accessible nodes, b is
the number of link fields therein, b′ is the number of link fields containing Λ, c is the
number of inaccessible nodes that are not preceded by an inaccessible node, d is the
number of inaccessible nodes that are preceded by an inaccessible node, and w is the
total number of octabytes in the accessible nodes. If the memory contains n nodes, with
ρn of them inaccessible, then we may estimate a = (1 − ρ)n, c = (1 − ρ)ρn, d = ρ2n.
Example: five-octabyte nodes (on the average), with two link fields per node (on the
average), and a memory of 1000 nodes. Then when ρ = 0.2, it takes 352υ per available
node recovered; when ρ = 0.5, it takes 98υ; and when ρ = 0.8, it takes only 31υ.

3.2.1.1. Choice of modulus [543]

1. Let c′ be a solution to the congruence ac′ ≡ c (modulo m). (Thus, c′ = a′c mod m,
if a′ is the number in the answer to exercise 3.2.1–5.) Results derived in Section 3.3.4
imply that c′ = 1 works about as well as any constant.

2. For a small c < 216, an INCL instruction can be used instead of the ADDU instruction,
which requires c to be in a register.

:Random MULU x,x,a X ← aX mod w.
ADDU x,x,c X ← (X + c) mod w.
SET $0,x

POP 1,0

5. A CMPU instruction is needed to find out whether d = x − y is negative without
overflow.

SUBU d,x,y

CMPU t,x,y

ZSN t,t,m

ADDU d,d,t

The sum s = x + y mod m is computed similarly after rewriting it as a difference
x− (m− y) mod m.

From the Library of Melissa Nuno

ptg999

148 [544] ANSWERS TO EXERCISES 3.2.1.1

SUBU t,m,y

SUBU s,x,t

CMPU t,x,t

ZSN t,t,m

ADDU s,s,t

But if m is less than 2e−1, the computations can be done directly without CMPU, using
ordinary two’s complement representations.

SUB d,x,y

ZSN t,d,m

ADD d,d,t

And for the sum:

ADDU s,x,y

SUBU t,s,m

CSNN s,t,t

8. MULU r,a,x; GET q,rH Compute q, r with aX = qw + r.
ADDU x,q,r X ← q + r.
CMPU t,x,q

ZSN t,t,1 t← [q + r ≥ w].
ADDU x,x,t X ← X + t.

3.2.1.3. Potency [550]

1. For MMIX, we have m = 264. With a = 2k + 1 and b = 2k, b is a multiple of 2,
the only prime dividing m; and b is a multiple of 4, if k > 1. So we have a maximum
period.

2. If ks ≥ 64, then bs = 2ks ≡ 0 (modulo m). We conclude: k ≥ 32 gives potency
s = 2, k ≥ 22 gives potency s = 3, and k ≥ 16 gives potency s = 4. The only reasonable
values for k, considering potency, are less than 16. On the other hand, small values of
k yield small multipliers, which should be avoided.

3.2.2. Other Methods [556]

25. If the subroutine of Program A is invoked as PUSHJ t,Random, it puts the next
random number in register t. The overhead of the subroutine call is 4υ, one for the
PUSHJ and three for the POP. The subroutine itself takes 9υ + 3µ (not counting the
POP). The total time per random number is 13υ + 3µ; the calling overhead is about 30
percent.

We save overhead by using the five instructions

From the Library of Melissa Nuno

ptg999

3.2.2 OTHER METHODS (ANSWERS) [556] 149

SUB j,j,8

PBP j,1F

PUSHJ t,Random55

SET j,55*8

1H LDOU t,y,j

to put the next random number in register t, with the following subroutine:

:Random55 SET j,24*8 j ← 24.
ADD ykj,y,31*8 k ← 55, ykj← Address of Y [k − j].

1H LDOU x,y,j X ← Y [j].
LDOU t,ykj,j t← Y [k − j + j] = Y [k].
ADDU x,x,t X ← Y [j] + Y [k].
STOU x,ykj,j Y [k]← Y [k] + Y [j].
SUB j,j,8 j ← j − 1.
PBP j,1B

k IS j Reuse register j for k.
SET k,31*8 k ← 31.
ADD ykj,y,24*8 j ← 55, ykj← Address of Y [j − k].

1H LDOU x,ykj,k X ← Y [j − k + k] = Y [j].
LDOU t,y,k t← Y [k].
ADDU x,x,t X ← Y [j] + Y [k].
STOU x,y,k Y [k]← Y [k] + Y [j].
SUB k,k,8 k ← k − 1.
PBP k,1B

POP 0,0

The cost is now only 11υ + 55(6υ + 3µ) for the subroutine call, and a single random
number costs (9 + 15/55)υ + 4µ on average. [A similar implementation, . . .

3.4.1. Numerical Distributions [584]

3. If full-word random numbers are given . . .

Unfortunately, however, the “himult” operation in () is not supported in many
high-level languages; see exercise 3.2.1.1–3. Division by m/k may be best when high-
mult is unavailable. Indeed, if k = 2i and m = 264, the division by m/k can be
accomplished in a single MMIX cycle as well:

SRU x,u,(64− i) X ← U/(m/k).

In this special but common case, the division by m/k is the same as multiplication
with k/m. The remainder method uses the i least significant bits of U, where the
multiplication method uses the i most significant bits. The latter is preferable.

From the Library of Melissa Nuno

ptg999

150 [599] ANSWERS TO EXERCISES 3.6

3.6. SUMMARY [599]

1. The following subroutine keeps X in a global register for efficiency; no load or
store operations are required. The constant a is loaded in four steps as an immediate
value; it could also be in a global register, of course.

x GREG

a IS 6364136223846793005 See Section 3.3.4, Table 1, line 26.
c IS 2009 MMIX

k IS $0 Parameter
t IS $1 Temporary variable
:RandInt SETH t,(a>>48)&#FFFF Load constant a.

INCMH t,(a>>32)&#FFFF

INCML t,(a>>16)&#FFFF

INCL t,a&#FFFF

MULU x,x,t X ← aX mod m.
INCL x,c X ← (aX + c) mod m.
MULU t,x,k (rH, t)← Xk.
GET t,:rH t← bXk/mc.
ADD $0,t,1 Return bXk/mc+ 1.
POP 1,0

The total running time of the subroutine is 30υ including the final POP. Adding the
time to pass the parameter k (1υ) and to execute the PUSHJ instruction (1υ), a random
integer value can be computed in 32υ. Keeping a in another global register will save 4υ.

4.1. POSITIONAL NUMBER SYSTEMS [605]

4. (a) The product in register x has the radix point at the left end. Overflow will
occur if the result is greater than or equal to (0.1)2. Registers rH and rR are not
affected.
(b) The remainder in register rR has the radix point between bytes 3 and 4 (the same
as a). The quotient in register x has the radix point between bytes 6 and 7. Register
rH is not affected. The results get a bit confusing if the radix point in the divisor is
farther to the left than the radix point in the dividend. Imagine dividing (00101.000)256
by (001.00000)256. Then after division, register rR will contain a “remainder” of
(00001.000)256 and the register x will be 1, representing a “quotient” of (100)256 with
the radix point two bytes past the right end of the register.
(c) The product in registers (rH, x) has the radix point between rH and x. Register
rR is not affected.
(d) As long as rD contains zero, the radix points are the same as in (b). The results
are also the same, because we assumed a and b to be nonnegative.

The DIVU (divide unsigned) instruction uses the register pair (rD, a) to form a
128-bit dividend with the upper 64 bits of the dividend residing in the dividend register
rD. As long as the quotient will fit into the single register x, the radix points will be as
in (b). Otherwise, MMIX simply sets x← rD and the remainder register rR← b; register
x will inherit the radix point from the register pair (rD, a) and register rR from b.

From the Library of Melissa Nuno

ptg999

4.2.1 SINGLE-PRECISION CALCULATIONS (ANSWERS) [612] 151

4.2.1. Single-Precision Calculations [612]

14. The following subroutine has one parameter: u, a normalized floating point num-
ber. It returns the nearest signed 64-bit two’s complement integer.

01 :Fix ZSN s,u,1 Unpack. Record sign.
02 ANDNH u,#8000 Remove sign bit.
03 SRU e,u,52 Get exponent.
04 SLU u,u,11 Get fraction part
05 ORH u,#8000 and add hidden bit.
06 SET t,1023+63; SUB e,e,t e← e− q − 63. Now u = u× 2e.
07 BP e,:Error Overflow.
08 BZ e,Sign

09 NEG e,e Round. Set e← −e.
10 NEG t,64,e

11 SLU f,u,t f ← the fraction part of u× 2e.
12 SRU u,u,e u← bu× 2ec.
13 SETH t,#8000; CMPU t,f,t Compare f to 0.5.
14 CSOD carry,u,1 u is odd. Round up if f ≥ 1

2
.

15 CSEV carry,u,t u is even. Round up if f > 1
2
.

16 ZSNN carry,t,carry Round down if f < 1
2
.

17 ADDU u,u,carry

18 Sign BNZ s,Negative Attach sign.
19 BN u,:Error Overflow.
20 POP 1,0 Return u.
21 Negative NEG u,u

22 BNN u,:Error Overflow.
23 POP 1,0 Return u.

15. The following code uses the same register names as Program A; it finally jumps
to Program N, except if the return value is zero.

01 :Fmod ZSN s,u,1 1. Unpack. Set sign.
02 ANDNH u,#8000 Remove sign bit.
03 SRU e,u,52 Get exponent.
04 SETH t,#FFF0; ANDN f,u,t Get fraction part and
05 INCH f,#10 add hidden bit.
06 SET fl,0 u = ±(f, fl)2

e−q/252.
07 SET t,1023; SUB e,e,t 2. Subtract q.
08 BN e,0F Branch if u has no integer part.
09 ADD t,e,12; SLU f,f,t 3. Remove integer part.
10 SRU f,f,12

11 SET e,0

12 0H BZ f,6F Branch if u has no fraction part.
13 BZ s,5F Branch if u is nonnegative.
14 ADD t,e,64; SLU fl,f,t 4. Complement fraction part.
15 NEG t,e; SRU f,f,t (f, fl)← (f, 0)/2e.
16 SET e,0 e← 0.
17 NEGU fl,fl

18 ZSNZ carry,fl,1

From the Library of Melissa Nuno

ptg999

152 [612] ANSWERS TO EXERCISES 4.2.1

19 ADDU f,f,carry

20 SETH t,#10; SUBU f,t,f (f, fl)← 1− (f, fl).
21 SET s,0 (f, fl) > 0.
22 5H INCL e,1023 5. Add q.
23 OR t,f,fl; BNZ t,:Normalize 6. Normalize if not zero.
24 6H POP 0,0 Else return 0.

19. The running time for Fadd is 28 − 3[|u| < |v|] + 4[sign(u) 6= sign(v)]. The
running time for Normalize is 4 + [u + v 6= 0](22 + 3[fraction overflow] + 8N +
16[rounding overflow]−4[overflow]−3[underflow]), where N is the number of left shifts
during normalization. If there are neither overflows nor underflows and the result is
not zero, these formulas simplify to

Fadd: 28− 3[|u| < |v|] + 4[sign(u) 6= sign(v)],
Normalize: 26 + 8N .

The minimum time for Fadd and Normalize combined is 51υ. The maximum time
is 482υ; it occurs if u and v have opposite signs, |u| < |v|, eu = ev, and u + v < u/253.
In this case, the shift-left loop, taking 8υ, runs 53 times. It is tempting to remove the
dependency on N by eliminating the loop during normalization (but see exercise 20).
[The average time, considering the data in Section 4.2.4, will be about 62.3υ.]

20. Use ‘MOR t,f,z; MOR t,z,f’ with z ≡ #01 02 04 08 10 20 40 80 to assign to t the
bits of f in reverse order; then use ‘SUBU d,t,1; SADD d,d,t’ to assign to d the
number of trailing bits of t. This computation will add 4υ to the running time of
the normalization routine in place of the loop time. The data in Section 4.2.4 shows,
however, that the number of left shifts per normalization is only about 0.9; on average
then, adding this computation will make the normalization run slower, not faster.

4.2.2. Accuracy of Floating Point Arithmetic [615]

17. Fcmpe is almost like Fadd in that it computes |u− v| and compares it to 2e−1022ε.

01 :Fcmpe GET eps,:rE Get ε.
02 SET su,u Sign of u.
03 XOR s,u,v Signs different?
04 ANDNH u,#8000; ANDNH v,#8000 Remove sign bits.
05 CMPU x,u,v; BNN x,0F Compare |u| and |v|.
06 SET t,u; SET u,v; SET v,t Swap u with v.
07 0H CSN x,s,1 If signs are different,
08 NEG t,x u is larger
09 CSN x,su,t unless u < 0.
10 SRU eu,u,52; SRU ev,v,52 Get exponents.
11 SETH t,#FFF0

12 ANDN fu,u,t; ANDN fv,v,t Get fraction part.
13 INCH fu,#10; INCH fv,#10 Add hidden bit.
14 SUBU d,eu,ev Scale right.
15 NEG t,64,d

From the Library of Melissa Nuno

ptg999

4.2.2 ACCURACY OF FLOATING POINT ARITHMETIC (ANSWERS) [615] 153

16 CSN t,t,0 Keep all low-order bits.
17 SLU f0,fv,t

18 SRU fv,fv,d

19 SET eu,1022 Divide by 2eu−1022.
20 BN s,Add Add if signs are different;
21 NEGU f0,f0; ZSNZ carry,f0,1 else subtract.
22 SUBU fu,fu,fv; SUBU fu,fu,carry u← |u− v| /2eu−1022.
23 OR t,fu,f0; BZ t,Equal Jump if |u− v| = 0.
24 0H SETH t,#0010; AND t,fu,t Normalized?
25 BNZ t,Compare

26 SRU carry,f0,63

27 SLU fu,fu,1; OR fu,fu,carry Adjust left.
28 SLU f0,f0,1

29 SUB eu,eu,1

30 JMP 0B

31 Add ADDU fu,fu,fv u← |u− v| /2eu−1022.
32 SETH t,#0020; CMP t,fu,t Normalized?
33 BN t,Compare

34 SLU carry,fu,63

35 SRU fu,fu,1; SRU f0,f0,1 Adjust right.
36 OR f0,f0,carry

37 ADD eu,eu,1

38 Compare ANDNH fu,#FFF0 Remove hidden bit.
39 SLU eu,eu,52

40 OR u,eu,fu Combine eu with fu and
41 CMPU t,u,eps compare to ε.
42 CSN x,t,0 If u < ε, then u ∼ v.
43 CSP f0,t,1 If u > ε, force f0 6= 0.
44 Equal CSZ x,f0,0 If f0 = 0, then u ∼ v.
45 SET $0,x Return x.
46 POP 1,0

4.2.3. Double-Precision Calculations [617]

2. Only the two lowest bits in the hi-wyde of um are strictly needed during normal-
ization. The hidden bit is tested in step N4, but this bit is set to 1, so there is no need
to clear it. The bit left of the hidden bit is tested in step N1, line 37, so it needs to
be cleared. Clearing the complete wyde, however, also simplifies the test for zero in
line 38.

3. Program M will not cause an overflow exception because it uses “unsigned” in-
structions; there might be, however, a silent overflow. Working with exponents is safe
because exponents are very small; the same holds for the upper 48 bits of the fraction
parts. Whenever we work with 64-bit fraction parts, we determine an eventual carry
and apply necessary corrections.

In contrast to the implementation of floating point numbers in the MIX computer,
where both fraction parts are less than 1 and therefore the product is less than 1 as

From the Library of Melissa Nuno

ptg999

154 [618] ANSWERS TO EXERCISES 4.2.3

well, MMIX’s fraction parts fu and fv are in the range 1 ≤ fu, fv < 2 (due to the hidden
bit) and so 1 ≤ fu × fv < 4. This might cause an extra increase of the exponent; the
normalization routine takes care of this possibility.

4. (a) As can be seen from Fig. 4, using the low 64 bits computed in lines 06 and 08
alone would not improve the precision, because the high 64 bits of ul × vl would still
be missing. But the product ul × vl is not computed.

(b) While unpacking, we shift the fraction parts of both operands u and v to the
left by 8 bits. The code changes to the following:

01 :DFmul SLU eu,um,1; SLU ev,vm,1 M1. Unpack.
02 SRU eu,eu,49; SRU ev,ev,49

03 XOR s,um,vm; SRU s,s,63 s← su × sv.
04 ANDNH um,#FFFF; ORH um,#0001

05 ANDNH vm,#FFFF; ORH vm,#0001

06 SLU um,um,8 Shift (um, ul) left.
07 SRU carry,ul,64-8

08 ADDU um,um,carry

09 SLU ul,ul,8

10 SLU vm,vm,8 Shift (vm, vl) left.
11 SRU carry,vl,64-8

12 ADDU vm,vm,carry

13 SLU vl,vl,8

14 MULU t,um,vl M2. Operate.
15 GET wl,:rH wl← 256um × 264vl × 2−64.
16 MULU t,ul,vm

17 GET t,:rH; ADDU wl,wl,t wl← wl + 256ulvm.
18 MULU t,um,vm; GET wm,:rH wm← b248um × vmc.
19 ADDU wl,wl,t wl← wl + um× vm mod 264.
20 CMPU t,wl,t; ZSN carry,t,1 carry← 1 if wl + t < t.
21 ADDU wm,wm,carry

22 ADD e,eu,ev

23 SET t,#3FFF; SUB e,e,t e← eu + ev − q.
24 JMP :DNormalize M3. Normalize.

The shifting yields a 50-bit result for wm in line 18— just the amount of precision
we need. Further, wm is still small enough to leave the single shift-right step to the
normalization routine if needed. The precision improves by a factor of 216 and the
error in the result will be less than 2e−q−112.

Program M has 28 instructions including 3 multiplications; its running time is
55υ. The new program has 4 additional instructions, each taking 1υ; this increases the
running time by about 7 percent to 59υ.

5. We add another register vll to keep the lowest bits of v when shifting right. We
initialize it to zero after unpacking by adding the following instruction after line 13:

SET vll,0

We replace lines 19–21 by

A5 CMP t,d,64; PBN t,0F A5. Scale right.
SET vll,vl; SET vl,vm; SET vm,0 Shift right by 64 bits.

From the Library of Melissa Nuno

ptg999

4.2.3 DOUBLE-PRECISION CALCULATIONS (ANSWERS) [618] 155

SUB d,d,64

0H CMP t,d,64; PBN t,0F

SET vll,vl; SET vl,vm; SET vm,0 Shift right by 64 bits.
SUB d,d,64

and add after line 22

SRU vll,vll,d; SLU carry,vl,t; OR vll,vll,carry

to accomplish step A5 with three registers.
In case of a subtraction, vll must be subtracted from zero and might cause a carry

into wl. After line 32, we insert the following line:

ZSNZ carry,vll,1; SUBU wl,wl,carry; NEGU vll,vll

Next we modify the scale right and scale left steps of the normalization procedure.
We replace line 40 with

ZSN t,vll,1; SLU vll,vll,1 N3. Scale left.
ZSN carry,wl,1; SLU wl,wl,1; ADDU wl,wl,t

and line 45 with

N4 SLU carry,wl,63; SRU vll,vll,1 N4. Scale right.
ADDU vll,vll,carry; SLU carry,wm,63

Last but not least, we round the result. The code for step N5 is inserted just before
line 50.

6H SETH t,#8000 N5. Round.
CMPU t,vll,t Compare fl to 1

2
.

CSOD carry,wl,1 f is odd. Round up if fl ≥ 1
2
.

CSEV carry,wl,t f is even. Round up if fl > 1
2
.

ZSNN carry,t,carry Round down if fl < 1
2
.

ADDU wl,wl,carry

ZSZ carry,wl,carry

ADDU wm,wm,carry

SET vll,0

SRU t,wm,49; BP t,N4 Rounding overflow.

The cost in performance is 6υ for all calls to DFadd/DFsub plus 11υ for all calls
to DNormalize. Further, a scale right step needs an extra 3υ if executed. In case of a
subtraction (opposite signs of the operands), the running time increases by 3υ + T3υ,
where T is the number of left shifts executed in step N3. On average, the running time
increases by 21υ.

6. The function ToDouble expects a single-precision floating point number in register
x and returns a double-precision floating point number in two registers.

01 :ToDouble BZ x,:Zero

02 SRU s,x,63; SLU s,s,63 Extract sign.
03 SLU exm,x,1; SRU exm,exm,5 Position ex and xm.
04 INCH exm,#3FFF-#3FF Adjust exponent.
05 SLU $0,x,64-(52-48) Extract xl.
06 OR $1,exm,s Add sign bit.
07 POP 2,0 Return.

From the Library of Melissa Nuno

ptg999

156 [618] ANSWERS TO EXERCISES 4.2.3

The function ToSingle expects a double-precision floating point number (f, fl) as a
parameter and returns a single-precision floating point number.

01 :ToSingle SRU s,f,63 Get sign bit.
02 SLU e,f,1; SRU e,e,49 Get exponent.
03 SET t,#3FFF-#3FF-4

04 SUBU e,e,t Adjust exponent.
05 ANDNH f,#FFFF Remove sign and exponent.
06 INCH f,1 Add hidden bit.
07 JMP :Normalize Normalize, round, and exit.

4.3.1. The Classical Algorithms [623]

3. We assume that we have four parameters: u ≡ LOC(u), the address where the first
of m numbers each n octabytes wide is stored; then m ≡ m; then w ≡ LOC(w), the
address where the result will be stored in n + 1 octabytes; and finally n ≡ n.

01 :AddC 8ADDU w,n,w 1
02 SL j,n,3; NEG j,j 1 j ← 0.
03 SET k,0 1 k ← 0.
04 JMP 4F 1
05 1H 8ADDU u,n,u0 N i← 0.
06 LDOU t,u,j; ADDU wj,k,t N wj ← u0j + k.
07 ZSZ k,wj,k N Carry?
08 SET i,m N
09 JMP 3F N
10 2H LDOU t,u,j; ADDU wj,wj,t N(M − 1) wj ← wj + uij .
11 CMPU t,wj,t; ZSN t,t,1 N(M − 1) Carry?
12 ADD k,k,t N(M − 1)
13 3H 8ADDU u,n,u NM Advance i.
14 SUB i,i,1 NM
15 PBP i,2B NM [N] Loop on i.
16 STOU wj,w,j N
17 ADD j,j,8 N j ← j + 1.
18 4H PBN j,1B N + 1[1] Loop on j.
19 STOU k,w,j 1 wn ← k.
20 POP 0,0

The running time is (8NM + 6N + 9)υ + (NM + N + 1)µ.

8. Given three n-digit numbers u, v, and w, the following subroutine expects four
parameters: u ≡ LOC(u), v ≡ LOC(v), w ≡ LOC(w), and n ≡ n. The program will set
w ← u + v using the algorithm of exercise 5.

01 :Add SL j,n,3 1 B1. j ← n− 1.
02 STCO 0,w,j 1 wn ← 0.
03 SUB j,j,8 1 j ← n− 1.
04 2H LDOU wj,u,j N B2.
05 LDOU t,v,j; ADDU wj,wj,t N wj ← uj + vj mod b.

From the Library of Melissa Nuno

ptg999

4.3.1 THE CLASSICAL ALGORITHMS (ANSWERS) [624] 157

06 STOU wj,w,j N
07 CMPU t,wj,t N B3.
08 PBNN t,4F N [L]

09 SET i,j L i← j.
10 0H ADD i,i,8 K i← i + 1.
11 LDOU wi,w,i K wi ← wi + 1 mod b.
12 ADDU wi,wi,1 K
13 STOU wi,w,i K
14 BZ wi,0B K [K−L] Repeat until wi + 1 < b.
15 4H SUB j,j,8 N B4. j ← j − 1.
16 PBNN j,2B N [1] If j ≥ 0, go back to B2.
17 POP 0,0

The running time depends on L, the number of positions in which uj + vj ≥ b, and on
K, the total number of carries. It is not difficult to see that K is the same quantity
that appears in Program A. The analysis in the text shows that L has the average
value N((b−1)/2b) and K has the average value 1

2
(N − b−1− b−2−· · ·− b−n). So if we

ignore terms of order 1/b, the running time is (8N +7K +L+5)υ +(3N +2K +1)µ ≈
(12N + 5)υ + (4N + 1)µ.

10. No. The instruction CMPU t,wj,vj compares two unsigned integers wj and vj and
will set t to −1 if wj < vj ; the instruction SUBU wj,wj,vj subtracts two unsigned
integers wj and vj and will set wj to (wj − vj) mod 264. As long as |wj − vj | < 263,
the difference will be considered negative if wj < vj ; if |wj − vj | ≥ 263, however, the
difference will be considered negative if wj > vj . The CMPU instruction does not suffer
from this kind of “overflow.”

13. The following subroutine expects four parameters: u ≡ LOC(u), v ≡ v, w ≡
LOC(w), and n ≡ n.

01 :MulS 4ADDU u,n,u; 4ADDU w,n,w 1
02 SL i,n,2; NEG i,i 1 i← 0.
03 SET k,0 1 k ← 0.
04 0H LDTU wi,u,i N wi ← ui.
05 MUL wi,wi,v N wi ← ui × v.
06 ADD wi,wi,k N wi ← ui × v + k.
07 STTU wi,w,i N wi ← wi mod b.
08 SRU k,wi,32 N k ← bwi/bc.
09 ADD i,i,4 N i← i + 1.
10 PBN i,0B N [1] Loop in i.
11 STTU k,w,0 1 wn ← k.
12 POP 0,0

The running time is (16N + 8)υ + (2N + 1)µ.

25. As an example, the following subroutine is given with complete details.

01 PREFIX :ShiftLeft:

02 x IS $0 LOC(x0)

03 n IS $1 n

)
Parameter

04 p IS $2 p
05 i IS n i shares a register with n.

From the Library of Melissa Nuno

ptg999

158 [626] ANSWERS TO EXERCISES 4.3.1

06 q IS $3 64− p
07 k IS $4 Carry
08 xi IS $5 xi

09 t IS $6 Temporary variable

10 :ShiftLeft NEG q,64,p q ← 64− p.
11 SET k,0 k ← 0.
12 SLU i,n,3; ADDU x,x,i; NEG i,i i← 0.
13 0H LDOU xi,x,i Load xi.
14 SLU t,xi,p; OR t,t,k Shift and add carry.
15 STOU t,x,i Store xi.
16 SRU k,xi,q New carry.
17 ADD i,i,8 i← i + 1.
18 PBN i,0B Loop on i.
19 SET $0,k Return carry.
20 POP 1,0

The running time is 8υ + N(7υ + 2µ).

26. The ShiftRight subroutine is very similar to the ShiftLeft subroutine.

01 :ShiftRight NEG q,64,p q ← 64− p.
02 SET k,0 k ← 0.
03 SLU i,n,3 i← n.
04 JMP 1F

05 0H LDOU xi,x,i Load xi.
06 SRU t,xi,p; OR t,t,k Shift and add carry.
07 STOU t,x,i Store xi.
08 SLU k,xi,q New carry.
09 SUB i,i,8 i← i− 1.
10 1H PBNN i,0B Loop on i.
11 SET $0,k Return carry.
12 POP 1,0

The running time is 7υ + N(7υ + 2µ).

4.4. RADIX CONVERSION [636]

8. To replace division by multiplication, we need a value 1/10 < x < 1/10 + 1/264 in
a register. The following code uses a global register x to store d264xe; it is also possible
to load this value into a local register (with an additional 4υ of total running time). As
in Program (), we store the decimal representation of a nonnegative (binary) integer
u as an array of BYTE at address U .

x GREG 1+(1<<63)/5 x← d264 × 1/10e.
SET j,0 j ← 0.

Loop MULU t,u,x; GET ux,rH ux← buxc.
4ADDU t,ux,ux; SLU t,t,1 t← 10buxc.
SUBU r,u,t r ← u− 10buxc.
PBNN r,0F

From the Library of Melissa Nuno

ptg999

4.4 RADIX CONVERSION (ANSWERS) [636] 159

SUBU ux,ux,1 (Can occur only on first iteration,
ADD r,r,10 by exercise 7.)

0H STBU r,U,j Uj ← r = u mod 10.
SET u,ux

ADD j,j,1 j ← j + 1.
PBP u,Loop Repeat until result is zero.

The code has a running time of (19υ + µ)M + 3υ. With approximately 19υ per digit,
it is about three times faster than Program (), with 62υ per digit; close to Program
(), with 14υ per digit; and for “small” numbers (M ≤ 6), better than Program (′),
with 128υ for nine digits.

13. We use the multiplication program of exercise 4.3.1–13, with v = 109 and w = u
to get the nine leading decimal digits of u. Then we use 4.4–(4′) to convert these digits
to ASCII codes.

ToString 4ADDU u,m,u

SET lines,2

SET t,’.’ Start with a decimal point.
1H STBU t,buffer; INCL buffer,1

SET blocks,7

2H SL i,m,2; NEG i,i i← 0.

〈See exercise 4.3.1–13, lines 03–10 with w = u. 〉
SLU ui,k,32

ADD ui,ui,v

DIV ui,ui,v

SET i,8

9>>>>>>>=>>>>>>>;
See 4.4–(′).

0H 4ADDU ui,ui,ui

SLU ui,ui,1

SRU t,ui,32

ADD t,t,’0’ Convert to ASCII code.
STB t,buffer,0; INCL buffer,1

ANDNMH ui,#FFFF

SUB i,i,1

)
See 4.4–(′).

PBNN i,0B

SUB blocks,blocks,1

SET t,’ ’; STBU t,buffer Insert a space.
INCL buffer,1 Advance to next block.
BP blocks,2B

SET t,#a; STBU t,buffer Insert a newline.
INCL buffer,1

SET t,’ ’ Start next line with a space.
SUB lines,lines,1 Advance to next line.
BP lines,1B

SET t,0; STBU t,buffer Terminate with a zero byte.
POP 0,0

From the Library of Melissa Nuno

ptg999

160 [638] ANSWERS TO EXERCISES 4.4

19. To convert the ASCII codes to pure numbers, we subtract the ASCII code ’0’

from every byte. Then set m1 = #FF00FF00FF00FF00, m2 = #FFFF0000FFFF0000,
m3 = #FFFFFFFF00000000, and ci = 1 − (10/256)2

i−1
. The division is done by a SRU

instruction; the multiplication is done by 4ADDU and SLU instructions.

ascii GREG #3030303030303030 "00000000"

m1 GREG #FF00FF00FF00FF00

m2 GREG #FFFF0000FFFF0000

m3 GREG #FFFFFFFF00000000

LDO u,str

SUBU u,u,ascii

AND t,u,m1

SUBU u,u,t

4ADDU t,t,t; SRU t,t,8-1 t← t× 10/28.
ADD u,u,t

AND t,u,m2

SUBU u,u,t

4ADDU t,t,t; 4ADDU t,t,t; SRU t,t,16-2 t← t× 100/216.
ADD u,u,t

AND t,u,m3

SUBU u,u,t

4ADDU t,t,t; 4ADDU t,t,t; 4ADDU t,t,t

4ADDU t,t,t; SRU t,t,32-4 t← t× 10000/232.
ADD u,u,t

The conversion needs 21υ+1µ, less than half the time needed by () for the same eight
decimal digits even when () is improved to run in 44υ + 8µ.

4.5.2. The Greatest Common Divisor [647]

43. The replacement has a constant running time of 5υ; step B1 of Program 4.5.2B
has a running time of (8A + 3)υ. Assuming an average value of A = 1

3
gives a running

time of 5.67υ. In this case, the replacement is only marginally faster, but it can be a
good insurance against large values of k.

4.5.3. Analysis of Euclid’s Algorithm [647]

1. The running time is about (44.4T + 3)υ, which is about 30 percent faster than
Program 4.5.2A.

From the Library of Melissa Nuno

ptg999

4.6.3 EVALUATION OF POWERS (ANSWERS) [691] 161

4.6.3. Evaluation of Powers [691]

2. The following subroutine has two parameters, x and n, and returns xn mod 264.

01 A1 SET y,1 1 A1. Initialize.
02 JMP 0F 1

03 A2 SRU n,n,1 L + 1−K A2. Halve N . N even.
04 A5 MULU z,z,z L A5. Square Z.
05 0H PBEV n,A2 L + 1[K] A2. Halve N . N odd.
06 SRU n,n,1 K N ← bN/2c.
07 MULU y,z,y K A3. Multiply Y by Z.
08 PBNZ n,A5 K [1] A4. N = 0?
09 SET $0,y 1 Return Y .
10 POP 1,0

The running time is (12L + 13K + 7)υ, where L = λn = blg nc is one less than the
number of bits in the binary representation of n, and K = νn is the number of 1 bits
in that representation.

The serial program is very simple:

01 A1 SET y,x 1
02 JMP 1F 1
03 0H MUL y,y,x N − 1
04 1H SUB n,n,1 N
05 PBP n,0B N [1]

06 SET $0,y 1
07 POP 1,0

The running time for this program is (12N−5)υ; it is faster than the previous program
when n ≤ 5, slower when n ≥ 6.

4.6.4. Evaluation of Polynomials [701]

20. Assuming that x and the coefficients αi are in registers, we can write:

FADD y,x,a0 y ← x + α0.
FMUL y,y,y y ← (x + α0)

2.
FADD u,y,a1 u← (y + α1).
FMUL u,u,y u← (y + α1)y.
FADD u,u,a2 u← (y + α1)y + α2.
FADD t,x,a3 t← x + α3.
FMUL u,u,t u← ((y + α1)y + α2)(x + α3).
FADD u,u,a4 u← ((y + α1)y + α2)(x + α3) + α4.
FMUL u,u,a5 u← (((y + α1)y + α2)(x + α3) + α4)α5.

From the Library of Melissa Nuno

ptg999

162 [585] ANSWERS TO EXERCISES 5

5. SORTING [585]

6. Overflow is possible in the ‘SUB $2,$0,$1’ instruction, and it can lead to a false
equality indication. He should have written ‘CMP $2,$0,$1’. (The inability to make
full-word comparisons by subtraction is a problem on essentially all computers; it is
the chief reason for including CMP, CMPU, and FCMP in MMIX’s repertoire.)

7. As an example, we show this subroutine in its full length.

PREFIX :MCmp: (Begin of local symbols for subroutine MCmp)

n IS $0 n > 0
a IS $1 LOC(a0)

9=; Parameters
b IS $2 LOC(b0)

aj IS $3 aj

bj IS $4 bj

9=; Local variables
j IS $5 j

:MCmp SUB j,n,1 :MCmp is a global symbol. j ← n− 1.
0H LDBU aj,a,j Load aj .

LDBU bj,b,j Load bj .
CMPU $0,aj,bj Compare aj and bj .
BNZ $0,1F Jump if $0 is not zero.
SUB j,j,1 j ← j − 1.
PBNN j,0B Loop while j ≥ 0.

1H POP 1,0 Return the value in $0.

PREFIX : (End of local symbols for subroutine MCmp)

8. ODIF t,a,b; SUB min,a,t; ADD max,b,t

5.2. INTERNAL SORTING [615]

4. The following code has a running time of (5N + 6)υ + 3Nµ.

:Finish SL i,n,3 1
JMP 0F 1

1H LDO ri,r,i N
LDO ci,count,i N
STO ri,s,ci N Counts are already scaled.

0H SUB i,i,8 N + 1
PBNN i,1B N + 1[1]

5. The running time is decreased by (A + 1−N −B)υ, and this is almost always an
improvement.

From the Library of Melissa Nuno

ptg999

5.2 INTERNAL SORTING (ANSWERS) [616] 163

9. Let M = v − u; assume that a record fits into one octabyte and that the key,
in the range from u to v, is stored in the most significant WYDE of each record. The
following program sorts the records R1, . . . , RN using an auxiliary table COUNT of
size M +1. The sorted records are written to an output area S1, . . . , SN . We maintain
two pointers to the array of counters: count0 points to the fictive counter for the key
value zero, and countv points to the counter for the key value v. We use the first one
as base address with Kj as index, keeping in register kj the value of 8Kj and we use
the second with j and i as index, keeping in registers i and j the values of 8(v− j) and
8(v − i), respectively. Further, we assume key ≡ LOC(K1), count ≡ LOC(COUNT[1]),
s ≡ LOC(S1), n ≡ N , u ≡ u, and v ≡ v.

01 :Sort NEG t,u 1
02 8ADDU count0,t,count 1 count0← count− 8u.
03 8ADDU countv,v,count0 1 countv← count0 + 8v.
04 SUBU i,count,countv 1 D1. Clear COUNTs. i← u.
05 JMP 0F 1
06 1H STCO 0,countv,i M + 1 COUNT[j]← 0.
07 ADD i,i,8 M + 1 i← i + 1.
08 0H PBNP i,1B M + 1[1] u ≤ i ≤ v.
09 SL j,n,3 1 D2. Loop on j. j ← N + 1.
10 JMP 2F 1
11 3H LDWU kj,key,j N D3. Increase COUNT[Kj].
12 SL kj,kj,3 N
13 LDO c,count0,kj N COUNT[Kj]

14 ADD c,c,8 N + 1
15 STO c,count0,kj N → COUNT[Kj].
16 2H SUB j,j,8 N + 1 j ← j − 1.
17 PBNN j,3B N + 1[1] N > j ≥ 0.
18 SUB i,count,countv 1 D4. Accumulate. i← u.
19 LDO c,countv,i 1 c← COUNT[i].
20 JMP 4F 1
21 0H LDO ci,countv,i M COUNT[i]
22 ADD c,ci,c M + COUNT[i− 1]
23 STO c,countv,i M → COUNT[i].
24 4H ADD i,i,8 M + 1 i← i + 1.
25 PBNP i,0B M + 1[1] u ≤ i ≤ v.
26 SL j,n,3 1 D5. Loop on j. j ← N .
27 JMP 5F 1
28 6H LDOU rj,key,j N D6. Output Rj .
29 SRU kj,rj,48-3 N Extract 8Kj .
30 LDO i,count0,kj N i← COUNT[Kj].
31 SUB i,i,8 N i← i− 1.
32 STO i,count0,kj N COUNT[Kj]← i.
33 STOU rj,s,i N Si ← Rj .
34 5H SUB j,j,8 N + 1 j ← j − 1.
35 PBNN j,6B N + 1[1]

The running time is (15N + 8M + 29)υ + (7N + 3M + 2)µ.

From the Library of Melissa Nuno

ptg999

164 [617] ANSWERS TO EXERCISES 5.2

11. We assume key ≡ LOC(K1), p ≡ LOC(p(1)), and n ≡ N . Further, we use i ≡ i,
j ≡ j, k ≡ k, ii ≡ 8i, jj ≡ 8j, and kk ≡ 8k. The program would be simpler if we
could assume that the permutation p uses already scaled values.

01 P1 SET i,n 1 P1. Loop on i.
02 JMP 0F 1
03 P2 SL ii,i,3 N P2. Is p(i) = i?
04 LDO pi,p,ii N
05 CMP eq,pi,i N
06 BZ eq,0F N [N−(A−B)] Jump if p(i) = i.
07 LDO t,key,ii A−B P3. Begin cycle. t← Ri.
08 SET j,i; SET jj,ii A−B j ← i.
09 P4 LDO k,p,jj N −A P4. Fix Rj . k ← p(j).
10 SL kk,k,3 N −A
11 LDO rk,key,kk N −A
12 STO rk,key,jj N −A Rj ← Rk.
13 STO j,p,jj N −A p(j)← j.
14 SET j,k; SET jj,kk N −A j ← k.
15 LDO pj,p,jj N −A
16 CMP eq,pj,i N −A
17 PBNZ eq,P4 N −A[A−B] Repeat if p(j) 6= i.
18 STO t,key,jj A−B P5. End cycle. Rj ← t.
19 STO j,p,jj A−B p(j)← j.
20 0H SUB i,i,1 N + 1
21 PBNN i,P2 N + 1[1] N > i ≥ 0.

The running time is (18N−5A−5B+6)υ+(6N−2A−3B)µ, where A is the number of
cycles in the permutation p(1) . . . p(N) and B is the number of fixed points (1-cycles).
We have

A = (min 1, ave HN , max N, dev

q
HN −H

(2)
N)

and
B = (min 0, ave 1, max N, dev 1),

for N ≥ 2, by Eqs. 1.3.3–() and 1.3.3–().

12. . . .
The following subroutine implements MacLaren’s algorithm. It assumes records

that consist of two octabytes —first the LINK field, then the KEY field. It expects the
list head in the LINK field of an artificial record R0 preceding record R1. Further, all
LINK fields contain relative addresses with LOC(R0) as base address. The parameter of
the subroutine is link ≡ LOC(LINK(R0)) = LOC(HEAD).

01 M1 LDOU p,link,0 1 M1. Initialize. P← HEAD.
02 SET k,16 1 k ← 1.
03 ADDU key,link,KEY 1
04 JMP M2 1
05 0H LDOU p,link,p A P← LINK(P).
06 M3 CMPU t,p,k N + A M3. Ensure P is at least k.
07 BN t,0B N [A]

08 LDOU t,key,k N M4. Exchange.
09 LDOU kp,key,p N

From the Library of Melissa Nuno

ptg999

5.2 INTERNAL SORTING (ANSWERS) [618] 165

10 STOU t,key,p N
11 STOU kp,key,k N
12 LDOU t,link,k N
13 LDOU q,link,p N Q← LINK(k).
14 STOU t,link,p N
15 STOU p,link,k N LINK(k)← P.
16 SET p,q N P← Q.
17 ADDU k,k,16 N k ← k + 1.
18 M2 PBNZ p,M3 N + 1[1] M2. Done?
19 POP 0,0

The total running time is (13N + 4A + 7)υ + (8N + A + 1)µ.

5.2.1. Sorting by Insertion [618]

3. The following program is conjectured to be the shortest general-purpose MMIX

sorting subroutine, although it is not recommended for speed. The routine sorts only
BYTE values; otherwise, an additional SL instruction is necessary after line 09 to scale i
by the size of the records. A ten-instruction sorting subroutine is possible in the special
case where the base address key of the keys is zero. In this case, the ADD in line 07 can
be merged with the STB in line 08 to a single STB s,i,1.

01 2H LDB r,key,i B r ← Ki.
02 SUB i,i,1 B Decrement i.
03 LDB s,key,i B s← Ki−1.
04 CMP t,s,r B
05 PBNP t,1F B[A] Continue if Ki−1 ≤ Ki;
06 STB r,key,i A else swap Ki

07 ADD i,i,1 A with Ki−1

08 STB s,key,i A and start from the beginning.
09 :Sort SUB i,n,1 A + 1 Initialize i← n− 1.
10 1H PBP i,2B B + 1[1] Loop while i > 0.
11 POP 0,0

Note: The analyses of the MIX and the MMIX programs are the same. The average
running time of the MMIX program is roughly 2

3
N3υ + 2

9
N3µ.

10. Change the loop in lines 12–20 to:

12 LDO ki,key,i NT − S D4. Compare K : Ki.
13 CMP c,k,ki NT − S
14 BNN c,7F NT − S[C] If Kj ≥ Kj−h, jump to increment j.
15 D5 STO ki,keyh,i B D5. Move Ri, decrease i.
16 SUB i,i,h B i← i− h.
17 BN i,D6 B[A] To D6 if i < 0.
18 LDO ki,key,i B −A D4. Compare K : Ki.
19 CMP c,k,ki B −A
20 PBN c,D5 B −A[NT−S−C−A] To D5 if K < Ki.
21 D6 STO k,keyh,i NT − S − C D6. R into Ri+1.
22 7H ADD j,j,8 NT − S j ← j + 1.
23 0H PBN j,D3 NT − S + T [T] To D3 if j < N .

From the Library of Melissa Nuno

ptg999

166 [621] ANSWERS TO EXERCISES 5.2.1

For a net increase of three instructions, this saves Cυ, where C is the number of times
Kj ≥ Kj−h. In Tables 3 and 4 the time saved is 33υ and 29υ, respectively; . . .

[624]
31. The following MMIX program implements Pratt’s sorting algorithm.

01 :Sort 8ADDU keyn,n,key 1 keyn← LOC(KN+1).
02 SL n,n,3 1 Scale N .
03 SL s,t,3 1 s← t− 1.
04 JMP 1F 1
05 2H LDO h,inc,s T
06 SL h,h,3 T Scale h.
07 SUB keyh,keyn,h T keyh← LOC(Kh+1).
08 SET m,h T Loop on m.
09 JMP 0F T
10 3H LDO k,keyn,j NT − S −B + A Load and compare Kj : Kj−h.
11 LDO kh,keyh,j NT − S −B + A
12 CMP c,k,kh NT − S −B + A
13 PBNN c,7F NT − S −B + A[B] Jump if Kj ≥ Kj−h.
14 STO kh,keyn,j B Exchange Kjand Kj−h.
15 STO k,keyh,j B
16 ADD j,j,h B Increment j.
17 7H ADD j,j,h NT −B + A Increment j.
18 PBN j,3B NT −B + A[S] m < j + N < N .
19 0H SUB m,m,8 T + S Decrement m.
20 SUB j,m,n T + S j ← n.
21 PBNN m,7B T + S[T] 0 ≤ m < h.
22 1H SUB s,s,8 T + 1 Loop on s.
23 PBNN s,2B T + 1[1] 0 ≤ s < t.

Here A is related to right-to-left maxima in the same way that A in Program D is
related to left-to-right minima; both quantities have the same statistical behavior. The
simplifications in the inner loop have cut the running time to (6NT + 6A − B + S +
12T + 8)υ + (2NT + 2A + T − 2S)µ. Curiously, the number of load/store operations
is independent of B.

When N = 8 the increments are 6, 4, 3, 2, 1, and we have Aave = 3.892, Bave =
6.762; the average total running time is 280.59υ + 43.78µ. (Compare with Table 5.)
Both A and B are maximized in the permutation 7 3 8 4 5 1 6 2. When N = 1000
there are 40 increments, 972, 864, 768, 729, . . . , 8, 6, 4, 3, 2, 1; empirical tests like those
in Table 6 give A ≈ 875, B ≈ 4250, and a total time of about 250533υ + 63700µ (more
than twice as long as Program D with the increments of exercise 28). Since many
increments are larger than N/2, some time is wasted in the loop from line 17 to line
21 until j = m + h < N . These iterations can be avoided by inserting the following
instructions before line 09:

SL c,m,1; CMP c,c,n; BNP c,0F; SUB m,n,h

This will improve the running time by about 8 percent.

From the Library of Melissa Nuno

ptg999

5.2.1 SORTING BY INSERTION (ANSWERS) [624] 167

33. Two types of improvements can be made. First, by adding the artificial key ∞
at the end of the list, we can omit testing whether or not p = 0. (This idea has been
used, for example, in Algorithm 2.2.4A.) Secondly, a standard optimization technique:
We can make two copies of the inner loop with the register assignments for p and q

interchanged; this avoids the assignment SET q,p. (This idea has been used in exercise
1.1–3.)

We put the largest possible value in the key field of R0, and initialize the link fields
of R0 and RN to form a circular list (there is no test for the end of the list anyway).

01 :Sort ADDU key,link,KEY 1 L1. Loop on j.
02 SL j,n,4 1 j ← N .
03 NEG t,1; SRU t,t,1 1 t← the largest signed 64-bit number.
04 STO t,key,0 1 K0 ←∞. ;-)

05 STOU j,link,0 1 L0 ← N .
06 STCO 0,link,j 1 LN ← 0.
07 JMP 0F 1 Go to decrease j.
08 L2 SET q,0 N − 1 L2. Set up p, q, K. p← L0.
09 LDO k,key,j N − 1 K ← Kj .
10 4H LDOU p,link,q B′ L4. Bump p, q.
11 LDO kp,key,p B′ L3. Compare K : Kp.
12 CMP t,k,kp B′

13 BNP t,L5 B′
[N′] To L5 if K ≤ Kp.

14 LDOU q,link,p B′′ L4. Bump q, p.
15 LDO kp,key,q B′′ L3. Compare K : Kq.
16 CMP t,k,kp B′′

17 PBP t,4B B′′
[N′′] To L5 if K ≤ Kq.

18 STOU j,link,p N ′′ L5. Insert into list. Lp ← j.
19 STOU q,link,j N ′′ Lj ← q.
20 0H SUB j,j,16 N ′′ + 1 j ← j − 1.
21 PBP j,L2 N ′′ + 1[A′] N > j ≥ 1.
22 POP 1,0

23 L5 STOU j,link,q N ′ L5. Insert into list. Lq ← j.
24 STOU p,link,j N ′ Lj ← p.
25 0H SUB j,j,16 N ′ j ← j − 1.
26 PBP j,L2 N ′

[A′′] N > j ≥ 1.
27 POP 1,0

Here B′ + B′′ = B + N − 1, N ′ + N ′′ = N − 1, A′ + A′′ = 1 so the total running time
is (4B + 12N)υ + (2B + 5N − 2)µ.

The∞ trick also speeds up Program S. Unlike MIX, however, MMIX does not feature
a nifty MOVE instruction that loads, stores, and increments all in one instruction. The
following code simplifies Program S, because j can run down to zero, while i, which is
not tested for the end of the array, runs upward, assuming that the last element of the
array already contains the largest possible value.

01 :Sort SUBU key0,key,8 1 key0← LOC(K0).
02 SL j,n,3; SUB j,j,16 1 j ← N − 1.
03 JMP S1 1
04 S2 ADD i,j,8 N − 1 S2. Set up j, K, R.
05 LDO k,key,j N − 1
06 JMP S3 N − 1

From the Library of Melissa Nuno

ptg999

168 [625] ANSWERS TO EXERCISES 5.2.1

07 S4 STO ki,key0,i B S4. Move Ri, increase i.
08 ADD i,i,8 B
09 S3 LDO ki,key,i B + N − 1 S3. Compare K : Ki.
10 CMP t,k,ki B + N − 1
11 PBP t,S4 B + N − 1[N−1]

12 STO k,key0,i N − 1 S5. R into Ri−1.
13 SUB j,j,8 N − 1
14 S1 PBNN j,S2 N [1] S1. Loop on j.

The running time is reduced to (5B +11N −4)υ +(2B +3N −3)µ. Doubling the inner
loop will not produce any further savings.

35. Passing head ≡ LOC(H1) and m ≡ M as parameters, as in Program M, we have
the following subroutine:

01 :ListCat SL j,m,3; SUB j,j,8 1 j ←M .
02 LDOU tail,head,j 1 Initialize tail.
03 JMP 0F 1
04 1H LDOU hj,head,j M − 1 hj← LOC(Hj).
05 BZ hj,0F M − 1[E] Skip empty heads.
06 SET q,hj M − 1− E
07 2H SET p,q N − L Bump p and q.
08 LDOU q,link,p N − L
09 PBNZ q,2B N − L[M−1−E]

10 STOU tail,link,p M − 1− E Concatenate lists.
11 SET tail,hj M − 1− E Advance to the next list.
12 0H SUB j,j,8 M j ← j − 1.
13 PBNN j,1B M [1] Loop on j.
14 STOU hj,head,0 1
15 POP 0,0

The running time depends not only on the number of list heads M and the number
of elements N , but also on E, the number of list heads with an empty list, and on
L, the length of the list with the biggest elements Hm−1. The total running time is
(3N − 3L + 9M − 3E)υ + (N − L + 2M − E)µ. For equally distributed keys, we can
assume L = N/M . There are MN ways to map N keys to M lists and (M − 1)N ways
to map N keys to M lists while leaving list j empty; therefore the probability of list j
being empty is (M − 1)N/MN and we should expect ave E = M(M − 1)N/MN . Using
limM→∞((M − 1)/M)M = 1/e, we conclude that for large N and M = αN , ave E
approaches Me−1/α. In summary, the running time approaches ((3+9α−3αe1/α)N −
3/α)υ + ((1 + 2α− αe1/α)N − 1/α)µ.

Note: If Program M were modified to keep track of the current end of each list in
an array at location tail, by inserting first ‘STCO 0,tail,i’ between lines 03 and 04,
and then ‘STOU j,tail,i’ between lines 21 and 22, we could save time by hooking the
lists together as in Algorithm 5.2.5H.

36. Program L: A = 3, B = 41, N = 16, time = 426υ + 156µ. Program M: A =
2+1+2+2 = 7, B = 2+2+2+1 = 7, N = 16; as given, the running time of Program
M is 446υ + 91µ. The multiplications are slow! Folding the multiplication by M = 4
into the following shift, as suggested in the text, improves the time to 286υ +91µ. (We
should also add the time needed by exercise 35, 78υ + 22µ, in order to make a strictly

From the Library of Melissa Nuno

ptg999

5.2.1 SORTING BY INSERTION (ANSWERS) [627] 169

fair comparison. Notice also that the improved Program L in exercise 33 takes only
356υ + 160µ.)

5.2.2. Sorting by Exchanging [629]

12. The following program maintains scaled values of j, p, q, d, and r, in order to use
them as offsets into an array of octabytes with base address key ≡ LOC(K1). Instead
of d, keeping the address of Kd in register d is more convenient. Aside from moving
the test of the loop condition to the bottom of each loop, the following code is a simple
translation of Algorithm M.

01 :Sort FLOTU t,ROUND_UP,n 1 M1. Initialize p.
02 SETH c,#FFF0 1
03 NOR c,c,c 1
04 ADDU t,t,c 1 Round N up to 2t.
05 SRU t,t,52 1 Extract t.
06 ANDNL t,#400 1 t← dlg Ne − 1.
07 8ADDU keyn,n,key 1 keyn← LOC(KN+1).
08 SET p,8 1 p← 1.
09 SLU p,p,t 1 p← p · 2t.
10 M2 SET q,8 T M2. Initialize q, r, d.
11 SL q,q,t T q ← 2t.
12 SET r,0 T r ← 0.
13 ADDU d,p,key T d← p.
14 JMP M3 T
15 M5 ADDU d,key,d A− T M5. Loop on q.
16 SR q,q,1 A− T q ← q/2.
17 ANDNL q,7 A− T q ← 8 · bq/8c.
18 SET r,p A− T r ← p.
19 M3 SUB i,keyn,d A M3. Loop on i. i← N + 1− d.
20 JMP 0F A
21 1H AND c,i,p AN −D
22 CMP c,c,r AN −D If i & p = r,
23 BNZ c,0F AN −D[AN−D−C] go to M4.
24 LDO k,key,i C M4. Compare/exchange
25 LDO kd,d,i C Ri+1 : Ri+d+1.
26 CMP c,k,kd C
27 PBNP c,0F C [B] If Ki + 1 > Ki+d+1,
28 STO k,d,i B interchange Ri+d+1

29 STO kd,key,i B and Ri+1.
30 0H SUB i,i,8 AN + A−D i← i− 1.
31 PBNN i,1B AN + A−D[A] 0 ≤ i < N − d.
32 SUB d,q,p A M5. Loop on q. d← q − p.
33 PBNZ d,M5 A[T]

34 SR p,p,1 T M6. Loop on p. p← p/2.
35 ANDNL p,7 T p← 8 · bp/8c.
36 PBP p,M2 T [1]

37 POP 0,0

From the Library of Melissa Nuno

ptg999

170 [629] ANSWERS TO EXERCISES 5.2.2

The running time depends on six quantities, only one of which depends on the input
data (the remaining five are functions of N alone): T = t, the number of “major
cycles”; A = t(t + 1)/2, the number of passes or “minor cycles”; B = the (variable)
number of exchanges; C = the number of comparisons; D = the number of blocks of
consecutive comparisons; and E = the number of incomplete blocks. When N = 2t, it
is not difficult to prove that D = (t−2)N+t+2 and E = 0. For Table 1, we have T = 4,
A = 10, B = 3+0+1+4+0+0+8+0+4+5 = 25, C = 63, D = 38, E = 0, so the total
running time is (7NA+12A+4B +2C−7D+6T +14)υ+(2B+2C)µ = 1238υ+176µ.

In general when N = 2e1 + · · · + 2er , Panny has shown that D = e1(N + 1) −

2(2e1 − 1), E = (e1−er

2
) + (e1 + e2 + · · ·+ er−1)− (e1 − 1)(r − 1).

Using the observation by Panny that step M4 is performed for i = r + 2kp + s,
k ≥ 0, and 0 ≤ s < p, we have the following program. It maintains r + d in a register
instead of r, because the only use of r is in adding it to d when computing the initial
value of i.

01 :Sort FLOTU t,ROUND_UP,n 1 M1. Initialize p.
02 SETH c,#FFF0 1
03 NOR c,c,c 1
04 ADDU t,t,c 1 Round N up to 2t.
05 SRU t,t,52 1 Extract t.
06 ANDNL t,#400 1 t← dlg Ne − 1.
07 8ADDU keyn,n,key 1 keyn← LOC(KN+1).
08 SET w,8 1 w ← 1.
09 SLU p,w,t 1 p← 2t.
10 SL n,n,3 1 Scale n.
11 M2 SL q,w,t T M2. Initialize q, r, d. q ← 2t.
12 ADD r,p,0 T r ← 0.
13 SUBU d,keyn,p T d← p.
14 3H SUB i,r,n A i← r.
15 8H SUB s,p,w D + E s← 0.
16 M4 LDO k,d,i C M4. Compare/exchange.
17 LDO kd,keyn,i C Ri+1 : Ri+d+1.
18 CMP c,k,kd C
19 PBNP c,0F C [B] If Ki + 1 > Ki+d+1,
20 STO kd,d,i B interchange Ri+d+1

21 STO k,keyn,i B and Ri+1.
22 0H PBNP s,7F C [C−D] Jump if s = p− 1.
23 ADD i,i,w C −D i← i + 1.
24 SUB s,s,w C −D s← s− 1.
25 PBN i,M4 C −D[E] Repeat loop if i + d < N .
26 JMP 5F E Otherwise, go to M5.
27 7H ADD i,i,p D
28 ADD i,i,w D i← i + p + 1.
29 PBN i,8B D[A−E] Repeat loop if i + d < N .
30 5H SUB d,q,p A
31 BZ d,M6 A[T]

32 ADD r,d,p A− T M5. Loop on q. r ← p.
33 SUBU d,keyn,d A− T
34 SR q,q,1 A− T q ← q/2.

From the Library of Melissa Nuno

ptg999

5.2.2 SORTING BY EXCHANGING (ANSWERS) [629] 171

35 ANDNL q,7 A− T q ← 8 · bq/8c.
36 JMP 3B A− T
37 M6 SR p,p,1 T M6. Loop on p. p← p/2.
38 ANDNL p,7 T p← 8 · bp/8c.
39 PBP p,M2 T [1]

The total running time is (10A + 4B + 10C −D + 2E + 3T + 15)υ + (2B + 2C)µ. For
Table 1, we have 819υ + 176µ.

Using Panny’s formula, k and s can be precomputed before entering the loop,
thereby reducing the number of tests in each loop to one. The time invested in this
optimization is, however, recovered in the loop only for large N .

[634]
34. We can avoid testing whether or not i ≤ j, as soon as we have found at least one
0 bit and at least one 1 bit in each stage —that is, after making the first exchange in
each stage. To do so, replace lines 06–19 of Program R by

JMP R3B A
R5 LDO kj,j,8 C′′ −D′′ −X R5. Inspect Kj+1 for 0.

AND t,kj,b C′′ −D′′ −X
BNZ t,R6B C′′ −D′′ −X [C′′−D′′−A] To R6B if it is 1.
ADDU i,j,d A−X

R7 STO ki,j,8 B R7. Exchange Ri, Rj+1.
STO kj,i,0 B

R4A ADD i,i,8 D′ R4 ′. Increase i. i← i + 1.
LDO ki,i,0 D′ R3 ′. Inspect Kifor 1.
AND t,ki,b D′

PBZ t,R4A D′
[B] To R4A if it is 0.

R6A SUBU j,j,8 D′′ R6 ′. Decrease j. j ← j − 1.
LDO kj,j,8 D′′ R5 ′. Inspect Kj+1 for 0.
AND t,kj,b D′′

BNZ t,R6A D′′
[D′′−B] To R6A if it is 1.

SUB d,i,j B
PBNP d,R7 B[A−X] To R7 if i ≤ j;
ADDU j,j,8 A−X else adjust j
JMP R8 A−X and continue with R8.

R4B ADD d,d,8 C′ −D′ −A R4. Increase i.
BP d,R8 C′ −D′ −A[X′] To R8 if i > j.

R3B LDO ki,j,d C′ −D′ −X ′ R3. Inspect Ki for 1.
AND t,ki,b C′ −D′ −X ′

PBZ t,R4B C′ −D′ −X ′
[A−X′] To R4B if it is 0.

R6B SUBU j,j,8 C′′ −D′′ −X ′ R6. Decrease j.
ADD d,d,8 C′′ −D′′ −X ′

PBNP d,R5 C′′ −D′′ −X ′
[X′′] To R8 if i > j.

Here X = X ′ + X ′′ is the number of times j < i before the first exchange, C′ + C′′

is the number of bit inspections before the first exchange, and D′ + D′′ is the number
of bit inspections after the first exchange. Assuming C′ ≈ C′′, D′ ≈ D′′, and X ′ ≈
X ′′, the new program saves 3D′ − 2A − 2B + 12X compared to Program R. With
random bits, the initial loops need an average of 2 bit-inspections each to reach the
first exchange. Neglecting the cases where the loops end prematurely because j < i,

From the Library of Melissa Nuno

ptg999

172 [634] ANSWERS TO EXERCISES 5.2.2

we have ave(D′ + D′′) = C − 4A. With case (ii) data (see page 127), the improved
program is approximately (N ln N − 8N)/ ln 2+6N ≈ 1.44N ln N − 5.5N cycles faster.

As an alternative, we can apply the optimizations used in Program Q; add a key
with all zeros and a key with all ones to the left and right of the array, respectively;
and finish with a final run of straight insertion sort (see also exercise 40). This yields
the following program:

01 :Sort CMP t,n,M 1 R1. Initialize.
02 BNP t,S1 1 To straight insertion sort, if N ≤M .
03 GET rJ,:rJ 1
04 SUBU t+1,key,8 1 l← 0.
05 8ADDU t+2,n,0 1 j ← N + 1.
06 SET t+3,b 1 b← b.
07 PUSHJ t,R2 1 To radix exchange sort.
08 PUT :rJ,rJ 1
09 JMP S1 1 To straight insertion sort.
10 R2 SET i,0 A R2. Begin new stage. i← l.
11 SET r,j A r ← j.
12 JMP 0F A
13 R7 STO ki,l,j B R7. Exchange Ki, Kj .
14 STO kj,l,i B
15 R6 SUB j,j,8 C′′ −A R6. Decrease j. j ← j − 1.
16 0H LDO kj,l,j C′′ R5. Inspect Kj for 0.
17 AND t,kj,b C′′

18 PBNZ t,R6 C′′
[A+B] To R4 if it is 0.

19 R4 ADD i,i,8 C′ R4. Increase i. i← i + 1.
20 LDO ki,l,i C′ R3. Inspect Ki for 1.
21 AND t,ki,b C′

22 PBZ t,R4 C′
[A+B] To R8 if it is 1.

23 CMP t,i,j A + B R8. Test special cases.
24 PBN t,R7 A + B[A] To R7 if i < j.
25 BOD b,R10 A[G] To R10 if m ≤ 0.
26 SR b,b,1 A−G m← m− 1.
27 SUB d,r,j A−G d← r − j.
28 CMP t,j,8*M A−G
29 BNP t,0F A−G[R] Jump if left subfile is too small.
30 CMP t,d,8*M A−G−R
31 BNP t,R2 A−G−R[L] Jump if right subfile is too small.
32 GET rJ,:rJ S Now j > r − j > M + 1.
33 ADDU t+1,l,j S R9. Put on stack. To R2 with
34 SET t+2,d S l← l + j, j ← r − j,
35 SET t+3,b S 2b−1,
36 PUSHJ t,R2 S and (l, j, rJ)⇒ stack.
37 PUT :rJ,rJ S
38 JMP R2 S To R2 with l and j.
39 0H CMP t,d,8*M+8 R
40 PBNP t,R10 R[R−K] Jump if right subfile is too small.
41 ADD l,l,j R−K Now r − j > M ≥ j − 0.
42 SET j,d R−K
43 JMP R2 R−K To R2 with l + j and r − j.

From the Library of Melissa Nuno

ptg999

5.2.2 SORTING BY EXCHANGING (ANSWERS) [634] 173

44 R10 POP 0,0 S R10. Take off stack.
45 S1 SL j,n,3 1 S1. Loop on j.
46 SUBU key0,key,8 1 key0← LOC(K0).
47 SUB j,j,8 1 j ← j − 1.
48 JMP 0F 1
49 S3 LDO ki,key,j N − 1 S3. ki ← Kj .
50 SUB j,j,8 N − 1 j ← j − 1.
51 LDO kj,key,j N − 1 kj ← Kj .
52 CMP t,kj,ki N − 1 Compare Kj : Ki.
53 BNP t,0F N − 1[N−1−D] Done if Kj ≤ Kj+1.
54 ADD i,j,8 D i← j + 1.
55 S4 STO ki,key0,i E S4. Move Ki.
56 ADD i,i,8 E Increase i.
57 LDO ki,key,i E ki ← Ki.
58 CMP t,kj,ki E Compare Kj : Ki.
59 PBP t,S4 E[D] Loop while Kj > Ki.
60 STO kj,key0,i D S5. Ki+1 ← Kj .
61 0H PBP j,S3 N [1] Continue while j > 0.

The program can be analyzed using the quantities A, B, C, G, R, L, K, and N as in
Program R, together with the quantities D, E, and M as in Program Q. Looking at
the innermost loop, it is clear that the asymptotic running time is the same as in the
previous program, but the O(N) part gets smaller; as a consequence, with m = 32,
M = 12, and N = 10000, it runs about 33 percent faster.

55. Replace lines 09–10 of Program Q by

Q2 LDO kl,l,8 A Q2. Begin new stage.
SUB r,j,8 A
LDO kr,l,r A
SR m,r,1 A
LDO k,l,m A
CMP t,kl,k A
CSP kt,t,k A Swap Km and Kl if Kl > Km.
CSP k,t,kl A
CSP kl,t,kt A
CMP t,k,kr A
BNP t,0F A[A/3] Done if K ≤ Kr.
STO k,l,r 2A/3
SET k,kr 2A/3 K ← Kr.
CMP t,kl,k 2A/3
CSP k,t,kl 2A/3 Swap Kr and Kl if Kl > Kr.
CSP kl,t,kr 2A/3

0H STO kl,l,8 A
LDO kt,l,16 A
STO kt,l,m A
STO k,l,16 A
SET i,24 A

From the Library of Melissa Nuno

ptg999

174 [638] ANSWERS TO EXERCISES 5.2.2

Also, change the instruction in line 25 to STO kj,l,16 (see the remark after ()).
On average, this modification adds A(20υ + 7 2

3
µ) to the total running time of

Program Q.

56. · · ·
Similarly SN = 3

7
(N +1)(5M +3)/(2M +3)(2M +1)−1+O(N−6). The total average

running time of the program in exercise 55 is (42.5AN + 6BN + 4CN + 6DN + 5EN +
9SN + 6N + 7.5)υ + (10 2

3
AN + 2BN + CN + DN + 2EN + 2N − 2)µ. The choice

M = 11 is slightly better than M = 12, producing an average time of approximately
(8.91(1 + N) ln N − 3.66N − 39.66)υ + (2.4(1 + N) ln N − 0.22N − 10.88)µ.

5.2.3. Sorting by Selection [640]

8. We can start the next iteration of step S2 at position i, provided that we have
remembered max(K1, . . . , Ki−1). One way to keep all of this auxiliary information is
to use a link table L1 . . . LN such that KLk is the previous boldface element of Table 1
whenever Kk is boldface; L1 = −1. [We could get by with less auxiliary storage, at the
expense of some redundant comparisons.]

The following MMIX program has an additional parameter link ≡ LOC(L1). The
indices i, j, and k are scaled by 8, to be used as offsets. To make the inner loop fast, the
offset k ≡ 8(k − j) is relative to Kj (and Lj), keeping it in the range −8j <= k <= 0.

01 :Sort SL j,n,3 1 S1. Loop on j. j ← N .
02 SUB j,j,8 1 j ← j − 1.
03 BNP j,9F 1[0] j > 0?
04 NEG t,1 1
05 STO t,link,0 1 L1 ← −1.
06 JMP 1F 1
07 2H ADDU linkj,link,j N −D linkj← LOC(Lj+1).
08 ADDU keyj,key,j N −D keyj← LOC(Kj+1).
09 S2 LDO kk,keyj,k A S2. Find max(K1, . . . , Kj). kk← Kk.
10 CMP t,max,kk A Compare Ki : Kk.
11 PBNN t,0F A[N−C] If Ki < Kk,
12 STO i,linkj,k N − C Lk ← i,
13 ADD i,j,k N − C i← k, and
14 SET max,kk N − C max← Kk.
15 0H ADD k,k,8 A k ← k + 1.
16 PBNP k,S2 A[N−D] Jump if k ≤ j.
17 S3 LDO t,key,j N − 1 S3. Exchange with Kj .
18 STO max,key,j N − 1
19 STO t,key,i N − 1
20 SUB j,j,8 N − 1 j ← j − 1.
21 SUB k,i,j N − 1 k ← i.
22 LDO i,link,i N − 1 i← Li.
23 PBNN i,0F N − 1[C−1] If there is no link,
24 1H NEG k,8,j C k ← 1 and
25 SET i,0 C i← 0.
26 0H LDO max,key,i N max← Ki.

From the Library of Melissa Nuno

ptg999

5.2.3 SORTING BY SELECTION (ANSWERS) [640] 175

27 PBNP k,2B N [D]

28 PBP j,S3 D[1]

29 9H POP 0,0

9. N − 1 +
P

N≥k≥2((k − 1)/2− 1/k) = 1
2

`
N
2

´
+ N + HN . [The average values of C

and D are, respectively, HN + 1 and HN − 1
2
; hence the average running time of the

program is (1.25N2 + 21.75N + 3HN − 1.5)υ + (0.25N2 + 6.75N − 4)µ.] Program H is
much better for large N .

5.2.4. Sorting by Merging [647]

9. The following subroutine implements Algorithm S. It expects three parameters:
key ≡ LOC(K1) = LOC(R1), the location of the records to be sorted; key2, the location
of a second area where the records can be stored (which can be LOC(RN+1)); and
n ≡ N , the number of records. Switching the output areas is achieved by interchanging
key and key2; a variable s is not needed. The return value is the location of the sorted
records, which will be either key or key2.

The implementation presented here maintains two pointers q ≡ LOC(Kq) and
r ≡ LOC(Kr) instead of the counters q and r. The offsets i and j are relative to q

and r. Hence, we can access the keys Ki and Kj at locations q+i and r+j, respectively.
In the inner loop, decrementing q or p is eliminated and the tests q > 0 and r > 0 are
replaced by i < 0 and j > 0. This reduces the asymptotic running time to 8N lg N
units.

01 :Sort SL n,n,3 1 S1. Initialize.
02 SET p,8 1 p← 1.
03 S2 ADDU q,key,p A S2. Prepare for pass. q← LOC(R1+p).
04 NEG i,p A i← 1 (i is relative to q).
05 LDO ki,q,i A ki← Ki.
06 ADDU r,key,n A r← LOC(RN+1).
07 SUB r,r,8 A r← LOC(RN).
08 SUB r,r,p A r← LOC(RN−p).
09 SET j,p A j ← N (j is relative to r).
10 LDO kj,r,j A kj← Kj .
11 NEG k,8 A k ← −1.
12 SET l,n A l← N .
13 SET d,8 A d← 1.
14 S3 CMP t,ki,kj C S3. Compare Ki : Kj .
15 BP t,S8 C [C′′] If Ki > Kj , go to S8.
16 ADD k,k,d C′ S4. Transmit Ri. k ← k + d.
17 STO ki,key2,k C′ Rk ← Ri.
18 ADD i,i,8 C′ S5. End of run? i← i + 1.
19 LDO ki,q,i C′ ki← Ki.
20 PBN i,S3 C′

[B′] If q > 0, go to S3.
21 S6 ADD k,k,d D′ S6. Transmit Rj . k ← k + d.
22 CMP t,k,l D′

23 BZ t,S13 D′
[A′] If k = l, go to S13.

24 STO kj,key2,k D′ −A′ Rk ← Rj .

From the Library of Melissa Nuno

ptg999

176 [647] ANSWERS TO EXERCISES 5.2.4

25 SUB j,j,8 D′ −A′ S7. End of run? j ← j − 1.
26 LDO kj,r,j D′ −A′ kj← Kj .
27 PBNP j,S12 D′ −A′

[D′−B′] If r ≤ 0, go to S12;
28 JMP S6 D′ −B′ otherwise, go to S6.
29 S8 ADD k,k,d C′′ S8. Transmit Rj . k ← k + d.
30 STO kj,key2,k C′′ Kk ← Kj .
31 SUB j,j,8 C′′ S9. End of run? j ← j − 1.
32 LDO kj,r,j C′′ kj← Kj .
33 PBP j,S3 C′′

[B′′] If r > 0, go to S3.
34 S10 ADD k,k,d D′′ S10. Transmit Ri. k ← k + d.
35 CMP t,k,l D′′

36 BZ t,S13 D′′
[A′′] If k = l, go to S13.

37 STO ki,key2,k D′′ −A′′ Rk ← Ri.
38 ADD i,i,8 D′′ −A′′ S11. End of run? i← i + 1.
39 LDO ki,q,i D′′ −A′′ ki← Ki.
40 BN i,S10 D′′ −A′′

[D′′−B′′] If q > 0, go to S10.
41 S12 SUB ji,r,q B −A S12. Switch sides. ji← j − i.
42 ADDU q,q,p B −A q ← p.
43 NEG i,p B −A i is relative to q.
44 SUB r,r,p B −A r ← p.
45 SET j,p B −A j is relative to r.
46 NEG d,d B −A d← −d.
47 SET t,l B −A Interchange k ↔ l.
48 SET l,k B −A
49 SET k,t B −A
50 CMP t,ji,p B −A
51 PBNN t,S3 B −A[E] If j − i ≥ p, go to S3;
52 JMP S10 E otherwise, go to S10.
53 S13 ADD p,p,p A S13. Switch areas. p← p + p.
54 CMP t,p,n A
55 BNN t,0F A[1] If p ≥ N , sorting is complete.
56 SET t,key2 A− 1 Interchange key2↔ key.
57 SET key2,key A− 1
58 SET key,t A− 1
59 JMP S2 A− 1 Go to S2.
60 0H SET $0,key2 1 Return key2.
61 POP 1,0

The running time for N ≥ 3 is (5A + 11B − B′ + 9C − 2C′ + 9D + D′ + 3E + 1)υ +
(2C + 2D)µ, where A = A′ + A′′ is the number of passes, where A′ is the number of
passes that end with step S6; B = B′ + B′′ is the number of subfile-merge operations
performed, where B′ is the number of such merges in which the q subfile was exhausted
first; C = C′ + C′′ is the number of comparisons performed, where C′ is the number
of such comparisons with Ki ≤ Kj ; D = D′ + D′′ is the number of elements remaining
in subfiles when the other subfile has been exhausted, where D′ is the number of such
elements belonging to the r subfile; and D′′ includes E, the number of subfiles that
need no merging because the number of subfiles was odd. Using A ≈ dlg Ne, A′ ≈ A/2,
B = N−1, B′ ≈ B/2, C +D ≈ N lg N , C′ ≈ C/2, D ≈ 1.26N +O(1) (see exercise 13),
and E ≈ A/2, the asymptotic running time is 8N lg N + 12.4N + 6.5 lg N + O(1).

From the Library of Melissa Nuno

ptg999

5.2.4 SORTING BY MERGING (ANSWERS) [647] 177

The innermost loop of the program contains two branch instructions: one in line
15 and the other in line 20 or 33. On a highly pipelined processor, the first of these
branches will cause a considerable slowdown, because no branch prediction logic will
be able to achieve more than 50 percent of good guesses on average. Using bitwise
tricks and techniques, this branch can be eliminated (see Section 7.1.3, page 181).

13. The running time for N ≥ 3 is (16A + 10B + 1B′ + 9C − 2C′ + 5D + 4N + 21)υ +
(6A + 4B + 3C + D + N + 6)µ, where A is the number of passes; B = B′ + B′′ is
the number of subfile-merge operations performed, where B′ is the number of such
merges in which the p subfile was exhausted first; C = C′ + C′′ is the number of
comparisons performed, where C′ is the number of such comparisons with Kp ≤ Kq;
D = D′+D′′ is the number of elements remaining in subfiles when the other subfile has
been exhausted, where D′ is the number of such elements belonging to the q subfile.
In Table 3 we have A = 4, B′ = 6, B′′ = 9, C′ = 22, C′′ = 22, D′ = 10, D′′ = 10, total
time = 757υ + 258µ. (The comparable Program 5.2.1L takes only 356υ + 160µ, when
improved as in exercise 5.2.1–33, so we can see that merging isn’t especially efficient
when N is small.) . . .

15. Add an extra copy of L3 and L4, replacing line 26 of Program L with

BOD p,L5 C′
[B′

1] If TAG(p) = 0, continue with L3A.

L3A CMP c,kp,kq C′
1 L3. Compare Kp : Kq.

BP c,L6 C′
1[C′′

1] If Kp > Kq, go to L6.

SET s,p C′
1 L4. Advance p. s← p.

LDTU p,link,p C′
1 p← Lp.

LDT kp,key,p C′
1 kp← Kp.

PBEV p,L3A C′
1[B′−B′

1] If TAG(p) = 0, return to L3A.

The replacement for line 38 is similar. The elimination of Ls ← p (and Ls ← q)
reduces the asymptotic running time by 0.5C to 7.5N lg N . A further improvement
can also be made, removing the assignments s ← p (and s ← q) from the inner loop
by renaming the registers! With twelve copies of the inner loop, corresponding to the
different permutations of (p, q, s) and the different knowledge about Ls, we can cut the
average running time to (6.5N lg N + O(N))υ.

This is the code for steps L3, L4, and L5 (the code for steps L3, L6, and L7 is
similar):

L3pqs CMP c,kp,kq L3. Compare Kp : Kq.
BP c,L6pqs If Kp > Kq, go to L6pqs.

L4pqs STTU p,link,s L4. Advance p. Ls ← p.
LDTU s,link,p p← Lp.
LDT kp,key,s kp← Kp.
BOD s,L5sqp If TAG(p) = 1, continue with L5sqp.

L34sqp CMP c,kp,kq L3. Compare Kp : Kq.
BP c,L6sqp If Kp > Kq, go to L6sqp.
LDTU p,link,s L4. Advance p. p← Ls.
LDT kp,key,p kp← Kp.
BOD p,L5pqs If TAG(p) = 1, continue with L5pqs.

L34pqs CMP c,kp,kq L3. Compare Kp : Kq.
BP c,L6pqs If Kp > Kq, go to L6pqs.
LDTU s,link,p L4. Advance p. s← Lp.

From the Library of Melissa Nuno

ptg999

178 [648] ANSWERS TO EXERCISES 5.2.4

LDT kp,key,s kp← Ks.
PBEV s,L34sqp If TAG(p) = 0, continue with L34sqp.

L5sqp STTU q,link,p L5. Complete the sublist. Lp ← q.
SET p,s Undo permutation of (p, q, s).
JMP L5A

L4psq STTU p,link,q L4. Advance p. Lq ← p.
LDTU q,link,p q ← Lp.
LDT kp,key,q kp← Kq.
BOD q,L5qsp If TAG(q) = 1, continue with L5qsp.

L34qsp CMP c,kp,kq L3. Compare Kp : Kq.
BP c,L6qsp If Kp > Kq, go to L6qsp.
LDTU p,link,q L4. Advance p. p← Lq.
LDT kp,key,p kp← Kp.
BOD p,L5psq If TAG(p) = 1, continue with L5psq.

L34psq CMP c,kp,kq L3. Compare Kp : Kq.
BP c,L6psq If Kp > Kq, go to L6psq.
LDTU q,link,p L4. Advance p. q ← Lp.
LDT kp,key,q kp← Kq.
PBEV q,L34qsp If TAG(q) = 0, continue with L34qsp.

L5qsp STTU s,link,p L5. Complete the sublist. Lp ← s.
SET p,q Undo permutation of (p, q, s).
SET q,s

JMP L5A

L4spq STTU s,link,q L4. Advance p. Ls ← p.
LDTU q,link,s q ← Ls.
LDT kp,key,q kp← Kq.
BOD q,L5qps If TAG(q) = 1, continue with L5qps.

L34qps CMP c,kp,kq L3. Compare Kp : Kq.
BP c,L6qps If Kp > Kq, go to L6qps.
LDTU s,link,q L4. Advance p. s← Lq.
LDT kp,key,s kp← Ks.
BOD s,L5spq If TAG(s) = 1, continue with L5spq.

L34spq CMP c,kp,kq L3. Compare Kp : Kq.
BP c,L6spq If Kp > Kq, go to L6spq.
LDTU q,link,s L4. Advance p. q ← Ls.
LDT kp,key,q kp← Kq.
PBEV q,L34qps If TAG(q) = 0, continue with L34qps.

L5qps STTU p,link,s L5. Complete the sublist. Ls ← p.
SET s,p Undo permutation of (p, q, s).
SET p,q

SET q,s

JMP L5A

L4qps STTU q,link,s L4. Advance p. Ls ← q.
LDTU s,link,q s← Lq.
LDT kp,key,s kp← Ks.
PBEV s,L34spq If TAG(s) = 0, continue with L34spq.

L5spq STTU p,link,q L5. Complete the sublist. Lq ← p.
SET q,p Undo permutation of (p, q, s).
SET p,s

From the Library of Melissa Nuno

ptg999

5.2.4 SORTING BY MERGING (ANSWERS) [648] 179

JMP L5A

L4sqp STTU s,link,p L4. Advance p. Lp ← s.
LDTU p,link,s p← Ls.
LDT kp,key,p kp← Kp.
PBEV p,L34pqs If TAG(s) = 0, continue with L34pqs.

L5pqs STTU q,link,s L5. Complete the sublist. Ls ← q.
L5A SET s,t s← t.
0H SET t,q t← q.

LDTU q,link,q q ← Lq.
BEV q,0B Repeat until If TAG(q) = 1.
LDT kq,key,q kq← Kq.
JMP L8

L4qsp STTU q,link,p L4. Advance p. Lp ← q.
LDTU p,link,q p← Lq.
LDT kp,key,p kp← Kp.
PBEV p,L34psq If TAG(p) = 0, continue with L34psq.

L5psq STTU s,link,q L5. Complete the sublist. Lq ← s.
SET q,s Undo permutation of (p, q, s).
JMP L5A

5.2.5. Sorting by Distribution [650]

5. In Program R, replace lines 07–10 by

NEG k,3 1 k ← 1.
SET mask,8*((1<<m)-1) 1 mask← 8(2m − 1) (the bit mask).

0H SUBU P,P,16 N R5. Step to next record.
LDOU i,P,KEY N R3. Extract first digit of key.
SLU i,i,3 N
AND i,i,mask N i← a1.

to initialize the registers k (the bitoffset) and mask (the bitmask). Here, we assume
m ≥ 3 so that in later passes the bitoffset can be adjusted by adding m. Then replace
lines 19 and 21 by

ADD k,k,m P − 1 k ← k + 1.
R3 LDOU i,P,KEY N(P − 1) R3. Extract kth digit of key.

SRU i,i,k N(P − 1)
AND i,i,mask N(P − 1) i← ap+1−k.

The changes to the sort routine add (NP + 1)υ to the running time; it amounts to
((8P + 1)N + 11MP + 26P + 9)υ. For fixed N and fixed key length Pm, the extra
time spent in the sort routine will grow linearly with increasing P and the amount of
time spent in the Hook and Empty subroutines will grow exponentially larger as P gets
smaller. So for each N and key length, there will be an optimal number of passes. For
N < 10000 and keys up to 32 bits long, the changes will always make the program
slower. For N = 100000 and a full 64-bit key, the improved program with m = 13 and
P = 5 will be about 20 percent faster.

From the Library of Melissa Nuno

ptg999

180 [657] ANSWERS TO EXERCISES 5.3.1

5.3.1. Minimum-Comparison Sorting [657]

28. The simplest and most efficient solution starts by loading all five keys in registers;
then implements the decision tree as described in the text, using a CMP instruction
followed by a BP for each node; and finishes off by storing the five keys.

:Sort LDB a,K,0 1
LDB b,K,1 1
LDB c,K,2 1
LDB d,K,3 1
LDB e,K,4 1
CMP t,a,b 1
BP t,0F 1[0.5] a < b
CMP t,c,d 1
BP t,1F 1[0.5] a < b, c < d
CMP t,b,d 1
BP t,2F 1[0.5] a < b < d, c < d
· · ·

2H · · · a < b, c < d < b
· · ·

1H CMP t,b,c 1 a < b, d < c
BP t,2F 1[0.5] a < b < c, d < c
· · ·

2H · · · a < b, d < c < b
· · ·

0H CMP t,c,d 1 b < a
BP t,1F 1[0.5] b < a, c < d
CMP t,a,d 1
BP t,2F 1[0.5] b < a < d, c < d
· · ·

2H · · · b < a, c < d < a
· · ·

1H CMP t,a,c 1 b < a, d < c
BP t,2F 1[0.5] b < a < c, d < c
· · ·

2H · · · b < a, d < c < a
· · ·
〈Using 3H and 4H to insert e,
using 5H and 6H to insert the last element c,
and finishing with 120 variations of 7H. 〉

7H STB a,K,0 1
STB b,K,1 1
STB c,K,2 1
STB d,K,3 1
STB e,K,4 1
POP 0,0

From the Library of Melissa Nuno

ptg999

5.3.1 MINIMUM-COMPARISON SORTING (ANSWERS) [657] 181

The full 1075-line program has an average running time of 30.8υ + 10µ. Its minimum
running time is 22υ +10µ (6 correctly predicted branches); its maximum running time
is 38υ + 10µ. The latter appears to be optimal since it is the time for 5 LDB, 7 CMP,
7 BP (all mispredicted), and 5 STB. One should not write such a program. If desired,
one should implement a generator to produce merge insertion programs for arbitrary
(small) N .

Much shorter programs are possible at minimal extra cost. For example, the first
test and branch

CMP t,a,b 1
BP t,0F 1[0.5]

can be replaced by a test and a swap of a with b:

CMP t,a,b 1
CSP x,t,a 1 a↔ b
CSP a,t,b 1
CSP b,t,x 1

This cuts the size of the program in half without changing the maximum running time.
The average running time will increase by 1 cycle, and the minimum running time by
2 cycles.

A similar replacement can be done for the next test c < d. Joining the control flow
after the third test b < d requires two swaps: a ↔ c and b ↔ d. Using Conditional-
Set instructions here is less efficient than a branch. The transformation in lines 14–21
adds 4 cycles to the maximum running time and 2 cycles to the average and minimum
running times.

Next, e must be inserted in the sequence a < b < d. Swapping values as needed,
we can reduce the possibilities to two cases: a < b < e < d, c < d and a < b < d < e,
c < d. The endgame inserts c below d. The STB instructions can be issued as soon as
the final position is known, further reducing the size of the code without affecting the
running time. We obtain:

01 :Sort LDB a,K,0 1
02 LDB b,K,1 1
03 LDB c,K,2 1
04 LDB d,K,3 1
05 LDB e,K,4 1
06 CMP t,a,b 1
07 CSP x,t,a 1 a↔ b.
08 CSP a,t,b 1
09 CSP b,t,x 1
10 CMP t,c,d 1 Here a < b.
11 CSP x,t,c 1 c↔ d.
12 CSP c,t,d 1
13 CSP d,t,x 1
14 CMP t,b,d 1 Here c < d.
15 BN t,2F 1[1/2]

16 SET x,a 1/2 a↔ c.
17 SET a,c 1/2
18 SET c,x 1/2

From the Library of Melissa Nuno

ptg999

182 [657] ANSWERS TO EXERCISES 5.3.1

19 SET x,b 1/2 b↔ d.
20 SET b,d 1/2
21 SET d,x 1/2
22 2H CMP t,e,b 1 Here a < b < d and c < d.
23 BP t,3F 1[7/15]

24 CMP t,e,a 8/15 Here a < b < d, e < b, and c < d.
25 SET x,e 8/15 x← e.
26 SET e,b 8/15 e← b.
27 CSNP b,t,a 8/15 If e < a, b← a.
28 CSNP a,t,x 8/15 If e < a, a← x.
29 CSP b,t,x 8/15 If e > a, b↔ e.
30 0H STB d,K,4 4/5 Here a < b < e < d and c < d.
31 CMP t,c,b 4/5
32 BP t,5F 4/5[2/5]

33 STB e,K,3 2/5 Here a < b < e < d and c < b.
34 1H STB b,K,2 8/15
35 CMP t,c,a 8/15
36 BP t,6F 8/15[4/15]

37 STB c,K,0 4/15 Here c < a < b < e < d.
38 STB a,K,1 4/15
39 POP 0,0

40 6H STB a,K,0 4/15 Here a < c < b < e < d.
41 STB c,K,1 4/15
42 POP 0,0

43 5H STB a,K,0 2/5 Here a < b < e < d and b < c < d.
44 STB b,K,1 2/5
45 CMP t,c,e 2/5
46 BN t,6F 2/5[1/5]

47 STB e,K,2 1/5 Here a < b < e < c < d.
48 STB c,K,3 1/5
49 POP 0,0

50 6H STB e,K,3 1/5 Here a < b < c < e < d.
51 STB c,K,2 1/5
52 POP 0,0

53 3H CMP t,e,d 7/15 Here a < b < d, b < e, and c < d.
54 PBN t,0B 7/15[1/5]

55 STB e,K,4 1/5 Here a < b < d < e and c < d.
56 STB d,K,3 1/5
57 CMP t,c,b 1/5
58 PBN t,1B 1/5[1/15]

59 STB a,K,0 1/15 Here a < b < c < d < e.
60 STB b,K,1 1/15
61 STB c,K,2 1/15
62 POP 0,0

The above code has only 62 instructions. Its maximum running time is 42υ + 10µ, the
minimum is 32υ + 10µ and the average is 37.2υ + 10µ.

On computers, such as MMIX, that have an ODIF instruction for saturating subtrac-
tion, implementing a sorting network (see Section 5.3.4) is an attractive alternative.
When three instructions (see exercise 5–8) suffice to order two nonnegative numbers

From the Library of Melissa Nuno

ptg999

5.3.1 MINIMUM-COMPARISON SORTING (ANSWERS) [657] 183

a and b, a sorting network for five numbers that will need nine such comparators (see
5.3.4–()) can be implemented with 27 instructions. Add to this five load and store
instructions, and you obtain a sorting procedure only 37 instructions long that takes
exactly 37υ + 10µ to execute.

This will not beat the 30.8υ + 10µ average running time of the full program
with 1075 instructions, but it is much shorter than even the reduced program with 62
instructions, beating its average running time of 37.2υ + 10µ with a constant running
time of 37υ + 10µ.

For n keys, the minimum possible average number of comparisons is approximately
lg n, while the size of the smallest sorting network for n keys is O(n(log n)2). Obviously
for large n, neither of the two methods can be recommended.

5.5. SUMMARY, HISTORY, AND BIBLIOGRAPHY [701]

2. For small and medium N , say N ≤ 1000, multiple list insertion; for large N , radix
list sort.

6.1. SEQUENTIAL SEARCHING [702]

3. The following subroutine expects two parameters: p, the location of the first node,
and k ≡ K, the key. After a successful search, it returns the location of the record
found; otherwise, it returns zero.

01 S3 LDOU p,p,LINK C − S S3. Advance. P ← LINK(P).
02 :Search BZ p,0F C − S + 1[1−S] S4. End of file?
03 LDO kp,p,KEY C kp← KEY(P).
04 CMP t,k,kp C S2. Compare.
05 PBNZ t,S3 C [S] If K = KEY(P), terminate successfully.
06 0H POP 1,0 Return p.

The running time is (5C − 2S + 3)υ + (2C − S)µ.

5. Program Q′ takes more time than Program Q if C < S + 2 + (C − S) mod 2. A
successful search (S = 1) will take more time only for i ≤ 2; an unsuccessful search will
take more time only for N = 1.

6. We unroll the inner loop three times.

01 :Search SL i,n,3 1 Q1. Initialize.
02 NEG i,i 1 i← −8N , i← 1.
03 SUBU key,key,i 1 key + i← LOC(KN+1).
04 ADDU key1,key,8 1 key1 + i← LOC(KN+2).
05 ADDU key2,key1,8 1 key2 + i← LOC(KN+3).
06 STO k,key,0 1 KN ← K.
07 JMP Q2 1
08 Q3 ADD i,i,24 b(C − S)/3c Q3. Advance. (3 times)
09 Q2 LDO ki,key,i b(C − S)/3c+ 1 Q2. Compare.
10 CMP t,k,ki b(C − S)/3c+ 1

From the Library of Melissa Nuno

ptg999

184 [702] ANSWERS TO EXERCISES 6.1

11 BZ t,Q4 b(C − S)/3c+ 1[1−F] To Q4 if K = Ki.
12 LDO ki,key1,i b(C − S)/3c+ F Q2. Compare.
13 CMP t,k,ki b(C − S)/3c+ F
14 BZ t,0F b(C − S)/3c+ F [F−G] To Q4 if K = Ki+1.
15 LDO ki,key2,i b(C − S)/3c+ G Q2. Compare.
16 CMP t,k,ki b(C − S)/3c+ G
17 PBNZ t,Q3 b(C − S)/3c+ G[G] To Q3 if K 6= Ki+2.
18 ADD i,i,8 G
19 0H ADD i,i,8 F
20 Q4 PBN i,Success 1[1−S] Q4. End of file?
21 POP 0,0 Exit if not in table.
22 Success ADDU $0,key,i S Return LOC(Ki).
23 POP 1,0

The total running time is (10b(C − S)/3c − S + 4F + 4G + 15)υ + (3b(C − S)/3c +
F + G + 2)µ. Using (C − S) mod 3 = F + G, this is about (3.33C − 4.33S + 0.67((C −
S) mod 3) + 15)υ + (C − S + 2)µ.

6.2.1. Searching an Ordered Table [705]

4. It must be an unsuccessful search with N = 127; hence by Theorem B the answer
is 84υ.

5. Program 6.1Q′ has an average running time of 1.75N +11.5− (N mod 2)/4N ; this
beats Program B if and only if N ≤ 17. [It beats Program C only for N = 2, 4, 5,
and 6.]

10. Use a “macro-expanded” program with the DELTA’s included; thus, for N = 10:

01 :Search ADDU i,key,8*5-8 i← DELTA[1], DELTA[1] = 5.
02 LDO ki,i,0 ki← K5.
03 CMP t,k,ki Compare K : K5.
04 BZ t,Success

05 ADDU i,i,8*3 i← i + DELTA[2], DELTA[2] = 3.
06 SUBU l,i,2*8*3 l← i− 2DELTA[2].
07 CSN i,t,l If K < K5, then i← l.
08 LDO ki,i,0 ki← K2,8.
09 CMP t,k,ki Compare K : K2,8.
10 BZ t,Success

11 ADDU i,i,8*1 i← i + DELTA[3], DELTA[3] = 1.
12 SUBU l,i,2*8*1 l← i− 2DELTA[3].
13 CSN i,t,l If K < K2,8, then i← l.
14 LDO ki,i,0 ki← K1,3,7,9.
15 CMP t,k,ki Compare K : K1,3,7,9.
16 BZ t,Success

17 ADDU i,i,1*8 i← i + DELTA[4], DELTA[4] = 1.
18 SUBU l,i,2*8*1 l← i− 2DELTA[4].
19 CSN i,t,l If K < K1,3,7,9, then i← l.
20 LDO ki,i,0 ki← K0,2,2,4,6,8,8,10.

From the Library of Melissa Nuno

ptg999

6.2.1 SEARCHING AN ORDERED TABLE (ANSWERS) [705] 185

21 CMP t,k,ki Compare K : K0,2,2,4,6,8,8,10.
22 BZ t,Success

23 Failure POP 0,0

24 Success POP 1,0

[Exercise 23 shows that most of the “BZ t,Success” instructions may be eliminated,
yielding a program about 5 lg N lines long that takes only about 5 lg N units of time;
but that program will be faster only for N > 16300 (approximately).]

6.2.2. Binary Tree Searching [708]

1. Use an extra octabyte in memory to contain the location of the root node. Call
the subroutine with the location of this octabyte in parameter p and replace the first
two lines of Program T with the following:

:Search SET l,0 1 T1. Initialize. l← 0.
JMP T3 1

0H SET p,q C P← Q.
LDO kp,p,KEY C T2. Compare. kp← KEY(P).

3. We could replace Λ by a valid address, and set KEY(Λ)← K at the beginning of the
algorithm; then the test for Q 6= Λ could be removed from the inner loop. In addition,
the instruction SET p,q can be removed by duplicating the code as in Program 6.2.1F.
Thus the MMIX time would be reduced to about 5C units.

6.2.3. Balanced Trees [715]

12. The maximum occurs when inserting into the second external node of (); C = 4,
F = H = 1, S = G = J = 0, for a total time of 97υ. The minimum occurs when
inserting into the third-last external node of (); C = 2, S = J = F = G = H = 0, for
a total time of 49υ. [The corresponding figures for Program 6.2.2T are 57υ and 15υ.]

6.3. DIGITAL SEARCHING [721]

4. Successful searches take place exactly as with the full table, but unsuccessful
searches in the compressed table may go through several additional iterations. For
example, an input argument such as ACCD will make Program T take six iterations: The
A takes the search to node (2), where the C is linked again to node (2)! Consequently,
any number of C’s in the given key will loop here. In our case, the loop is taken just
once more before the D takes the search to node (3), from where the end of string
will take the search one step further to node (12). There, finally, the search ends
unsuccessfully with a zero table entry. It is necessary to verify that no infinite looping
on zero sequences is possible. . . .

From the Library of Melissa Nuno

ptg999

186 [722] ANSWERS TO EXERCISES 6.3

9. This subroutine has two parameters: p ≡ LOC(ROOT), a pointer to the root node,
and k ≡ K, the given key. If the search is successful, it returns the location of the node
found; otherwise, it returns zero. We use s ≡ K′ as a shift register.

01 :Search SET s,k 1 D1. Initialize. K′ ← K.
02 JMP D2 1
03 0H SET p,q C − 1 P← Q.
04 SLU s,s,1 C − 1
05 D2 LDO kp,p,KEY C D2. Compare. kp← KEY(P).
06 CMP t,k,kp C
07 BZ t,Success C [S] Exit if K = KEY(P).
08 ZSNN l,s,LLINK C − S l← b ? LLINK : RLINK.
09 LDOU q,p,l C − S D3/4. Move left/right. Q← LINK(b,P).
10 PBNZ q,0B C − S[1−S]

11 〈Continue as in Program 6.2.2T.〉

The running time for the searching phase of this program is (8C−3S+2)υ+(2C−
S)µ, where C −S is the number of bit inspections. For random data, the approximate
average running times are therefore:

Successful Unsuccessful

Program 6.2.2T 14 ln N − 14.92 14 ln N − 4.91
This program 11.5 ln N − 6.73 11.5 ln N − 0.19

(Consequently, this program is faster on a successful search if N ≥ 28 and on an
unsuccessful search if N ≥ 7.)

6.4. HASHING [728]

1. −4 ≤ a ≤ 58. Therefore the locations preceding and following the table containing
the keys must be guaranteed to contain no data that matches any given argument;
alternatively, the instructions ‘CMP t,a,40; CSNN a,t,4’ inserted before the first POP

and ‘CSN a,a,4; CMP t,a,40; CSNN a,t,4’ inserted before the last POP will keep a in
the range 0 ≤ a ≤ 39. (The middle POP will not need such a test.) The extra tests will
add 1.4 cycles to the average running time. [Without these precautions, we might say
that the method in exercise 6.3–4 uses less space, since the boundaries of that table
are never exceeded.]

2. BLACK and DATA both hash to 4; FOR and SHE to 6; DAY and NO to 11; LOOK and
STUDENT (and PROGRAM) to 22; ALL and TRY to 27; CAN and PEOPLE to 31; THEM and OVER

to 32; ONE and WILL to 34; HIM and PART to 35; and THEY and WHAT to 37.

3. The ASCII codes satisfy A+ T = O+ F and B− E = O− R, so we would have either
f(AT) = f(OF) or f(BE) = f(OR). Notice that the instruction 2ADDU a,a,a in Table 1
resolves this dilemma rather well.

5. The hash function is bad since it assumes at most 26 different values, and some
of them occur much more often than the others. Even with double hashing (letting
h2(K) = 1 plus the second byte of K, say, and M = 257) the search will be slowed
down more than the time saved by faster hashing. Also M = 256 is too small, since

From the Library of Melissa Nuno

ptg999

6.4 HASHING (ANSWERS) [728] 187

FORTRAN programs often have more than 256 distinct variables (especially when
produced by a program generator).

6. Not on MMIX, since K > M will almost always occur. In this case rR will not
contain the remainder (wK) mod M , but rather the value of register z = 0. [It would
be nice to be able to compute (wK) mod M , especially if linear probing were being
used with c = 1, but unfortunately MMIX, like most computers, disallows this since the
quotient overflows.]

12. We can store K in an extra entry KEY[m] at the end of the table, and make the
odd link that marks the end of the chain point to this entry. So we replace line 23 by

C6 8ADDU t,m,1 1− S C6. Insert new key.

and replace lines 09–14 by

SL t,m,3 A
STT k,key,t A KEY[M]← K.
JMP 3F A

0H SET p,i C −A Keep previous value of i.
LDT i,link,i C −A C4. Advance to next.

3H LDT t,key,i C t← KEY[i].
CMP t,t,k C C3. Compare.
BNZ t,0B C [C−A] Jump if KEY[i] 6= K.
PBEV i,Success A[A−S] Exit unless i is odd.

The total running time for the searching phase of the “improved” Program is (7C −
S + 69)υ + (2C + 3)µ. The time saved is (C − 5S)υ − Sµ, which is actually a net loss
if S = 1 and C < 5. (An inner loop shouldn’t always be optimized!)

72.
(b) . . .
We assume that at location H, a table of 8 × 256 tetrabytes is initialized with

random numbers in the range 0 to M − 1, and that the address of H is in the global
register h ≡ LOC(H). Then we can replace lines 03 and 04 of Program L by the following

SRU j,k,7*8-3; LDTU i,:h,j

SLU j,k,8; SRU t,j,7*8-3; INCL t,1*4*258; LDTU t,:h,t; XOR i,i,t

SLU j,j,8; SRU t,j,7*8-3; INCL t,2*4*258; LDTU t,:h,t; XOR i,i,t

SLU j,j,8; SRU t,j,7*8-3; INCL t,3*4*258; LDTU t,:h,t; XOR i,i,t

SLU j,j,8; SRU t,j,7*8-3; INCL t,4*4*258; LDTU t,:h,t; XOR i,i,t

SLU j,j,8; SRU t,j,7*8-3; INCL t,5*4*258; LDTU t,:h,t; XOR i,i,t

SLU j,j,8; SRU t,j,7*8-3; INCL t,6*4*258; LDTU t,:h,t; XOR i,i,t

SLU j,j,8; SRU t,j,7*8-3; INCL t,7*4*258; LDTU t,:h,t; XOR i,i,t

The above code is lengthy but needs only 37υ + 8µ instead of the 61υ before. Fig. 42
tells us that the running time of Program L is between 70υ and 80υ as long as the load
factor is within a reasonable range. In this case, the new code is about one third faster.
Under the same conditions, the speedup for Program D will start again at one third for
an empty table and will increase to about one half as more second hashes need to be
computed. The modified Program D will benefit from a similar speedup as Program
L, but over a slightly extended range. It is possible to initialize the table of tetrabytes
at H with random numbers from the full range 0 to 232 − 1 and reduce the range to 0
to M − 1 by appending a final AND instruction to the code. Then the same tables can
be used for all M = 2m with 1 ≤ m ≤ 32.

From the Library of Melissa Nuno

ptg999

ACKNOWLEDGMENTS

In December 1998, Vladimir Ivanović started a mailing list to coordinate the
people who had either responded to the call for volunteers on Donald Knuth’s
MMIX page or were referred by Donald Knuth. The MMIXmasters project had
started. Later he added a web page and a wiki to aid in communication and
present the submitted solutions to the public.

In the course of the following years, multiple contributions were received.
They aided in completing the collection of programs presented in this book.

Jan-Hendrik Behrmann contributed an implementation for Program 5.2.3H.

Wijtze de Boer and Kenneth Laskoski both contributed an implementation for
Program 5.2C.

Andrey Dubinchak contributed implementations for Programs 2.1–(), 2.2.3–
(), 2.2.3–(), 2.2.3T, 2.2.4A, 6.1S, 6.1Q, and 6.1Q′ as well as solutions to
exercises 2.1–8, 2.1–9, 2.2.3–24, 2.2.4–11, 2.2.4–13, 2.2.4–14, and 2.2.4–15.

Evgeny Eremin contributed an implementation for Program 5.2.2B.

Armin Grodon contributed an implementation for Program 5.2.4L.

Blake Hegerle contributed an implementation for Programs 5.2.1S, 5.2.1L, and
5.2.1D as well as a solution to exercise 5.2.1–3.

Johannes Maier and Georg Schmidl together contributed implementations of
Programs 6.2.1B and 6.2.1F.

Ladislav Sladecek contributed solutions to exercises 2.2.6–15 and 2.5–27.

Michael Unverzart contributed an implementation for Program 5.2.3S and a
solution to exercise 5.2.3–8.

Chan Vinh Vong contributed implementations for Programs 2.3.2D, 6.4C, 6.4D,
and 6.4L as well as solutions to exercises 2.2.3–2, 2.2.3–3, 2.2.3–8, 2.2.3–24,
2.2.3–27, 2.3.5–4, 2.5–4, and 2.5–34.

Yuval Yarom contributed an implementation for Program 2.3.1T.

An unknown contributor submitted Program 2.3.1S.

We want to thank all of them!

188

From the Library of Melissa Nuno

ptg999

INDEX

µ (average memory access time), xi.
υ (instruction cycle time), xi.
: (colon), x.
$0, x.
$255, x.
2ADDU (times 2 and add unsigned),

88, 117, 186.
4ADDU (times 4 and add unsigned), 69,

117, 157–160.
8ADDU (times 8 and add unsigned), xii, 117.
16ADDU (times 16 and add unsigned),

32, 49, 93, 117.

Acquisition, 11.
Addition, 62, 63, 156.
Addition of polynomials, 26.
Additive number generator, 50.
Address, viii, 16.

absolute, xiii, 20.
relative, xiii, 17, 20, 44, 46, 111, 142.

Algebraic formula, 39.
Alias, 20.
Alignment, xiv, 45.
Analytic derivation, 39.
ANDNH (bitwise and-not high wyde), 55,

59, 60, 151, 154, 156.
ANDNMH (bitwise and-not medium high

wyde), 69, 159.
Array, ix, 36.
Assembly language, 16.
Atomic node, 44.
Atomic operation, 12.
AVAIL stack: Available space list, 18, 45,

124, 125, 140, 141.

Bad guess, xi.
Balance factor, 103.
Balanced tree insertion, 103.
Balanced tree search, 103, 105.
Base address, xii, xiii, 17, 20.
Batcher, Kenneth Edward:

sorting method, 169.
Behrmann, Jan-Hendrik, 188.
BEV (branch if even), xv, 90.
Big-endian, 62.
Binary gcd algorithm, 70.

Binary search, 99.
Binary tree, 37.
Binary tree insertion, 102.
Binary tree representation, 39.
Binary tree search, 102.
Binary tree traversal, 134.
Binding, 16.
Bit stuffing, xiv.
Blocking I/O, 8.
BOD (branch if odd), xiv, 90.
Boolean operations, 72.
Boundary tag system, 46.

liberation, 142.
reservation, 140, 141.

Branch, xii.
Bubble sort, 81, 82.
Buddy system, 46.

liberation, 144.
reservation, 142, 143.

Buffer swapping, 10.
Busy wait, 9.

Call overhead, xi.
Circular linked list, 25, 36.
CMPU (compare unsigned), 157.
Coefficient, 25.
Comparison counting, 74.
Concurrent access, 12.
Constant, viii.
Consumer, 8, 121.
Coroutine, 8, 29, 33.
Critical path time, 10.
CSEV (conditional set if even), 38, 55, 151.
CSOD (conditional set if odd), 55, 103, 151.
CSWAP (compare and swap), 12, 14, 122.
Cycle counts, xi.
Cycle notation, 1, 120.

de Boer, Wijtze, 188.
Differentiation, 39, 41.
Digital search, 106.
Digital tree search and insertion, 186.
Distribution counting, 163.
Division, xi, 65.
Division, double-precision, 56.
DIVU (divide unsigned), 61, 65, 150.

189

From the Library of Melissa Nuno

ptg999

190 INDEX

Double rotation, 106.
Doubly linked list, 27, 45.
Dubinchak, Andrey, 188.
Dynamic storage allocation, 45.

Easter date, 117.
Elevator, 27.
Empty list, 25.
Entry point, x.
Eremin, Evgeny, 188.
Error handling, xviii, 23, 125.
Euclid’s algorithm, 70, 160.
Evaluation of polynomials, 161.
Evaluation of powers, 161.
Exponent, 25, 43.

Factoring into primes, 72.
Factoring with sieves, 72.
Farey, John:

series, 118.
Fclose (close file operation), 8, 20, 21.
FCMPE (floating compare with respect

to epsilon), 58, 152.
FDIV (floating divide), 132.
FEQLE (floating equivalent with respect

to epsilon), 133.
Ferguson, David Elton, 39.
Fgets operation, 13, 14, 121.
Fibonacci hashing, 109.
Fibonaccian search, 100.
Field, viii, xiii, 15.
Field name, xiii.
First-fit method, 140.
FIX (convert floating to fixed), 57, 151.
Fixed-base addressing, 17.
Floating point instruction, xi.
Floating point number:

addition, 54, 57, 59, 152.
base, 53.
comparison, 152.
division, 56, 61.
double-precision, 58, 155.
example, 43.
excess, 53.
exponent, 58.
fix-to-float, 56.
float-to-fix, 57, 151.
fraction part, 53.
hidden bit, 53.
IEEE/ANSI Standard, 54, 58.
mod, 57, 151.
multiplication, 56, 60, 61.
normalization, 53, 54, 56, 59, 152, 153.
precision, 53, 55, 56, 61, 154.
rounding, 56, 153.
running time, 62.

sign bit, 53.
subtraction, 54, 59.

FLOT (convert fixed to floating), 57.
FLOTU (convert fixed to floating unsigned),

169, 170.
FMUL (floating multiply), 132, 133, 161.
Fopen (open file operation), 8, 20.
Fputs (output string operation), 126.
Fread (read file operation), 8, 20.
Fwrite (write file operation), 20, 21.

Garbage collection, 44, 139.
Garbage collection and compacting,

46, 47, 145.
GETA (get address), xvii, 31, 34, 40, 41,

43, 126, 131, 137, 138.
Global name, x.
Global register, 17.
GO (go to location), 30, 40.
Golden number, 117.
Good guess, xi.
Greatest common divisor, 70.
GREG (allocate global register), 117.
Grodon, Armin, 188.

Halt operation, 2.
Hash table:

chained search and insertion, 111, 187.
linear probing and insertion, 112.

Hashing:
division method, 109.
double hashing, 113, 114.
English words, 108.
Fibonacci method, 109.
multiplication method, 109, 113.
open addressing, 112, 113.
secondary clustering, 114.

Head node, xiv, 36.
Heapsort, 87, 88.
Hegerle, Blake, 188.
Himult register, 48, 51, 53, 56, 60, 64,

66, 68, 117, 148, 150.
Hoare, Charles Antony Richard, iii.

I/O, 8, 20.
IEEE (The Institute of Electrical and

Electronics Engineers):
floating point standard, 54, 57, 58.

Immediate constant, 30, 48.
INCH (increase by high wyde), 54, 155.
INCL (increase by low wyde), 150.
INCMH (increase by medium high wyde), 150.
INCML (increase by medium low wyde), 150.
Index variable, ix, xii.
Information structure, 15.
Inline expansion, xi, 144.

From the Library of Melissa Nuno

ptg999

INDEX 191

Inorder traversal, 37, 38, 134–136.
Input, 8.
Instruction count, xi.
Internal sorting, 74.
Internet, ii.
Inverse permutation, 7.
Ivanović, Vladimir Gresham, v, 188.

Josephus, Flavius, son of Matthias:
problem, 119.

Kirchhoff’s law, 4, 22, 84, 86, 120.
KWIC indexing, 108.

Laskoski, Kenneth, 188.
Liberation:

boundary tag system, 46, 142.
buddy system, 46, 144.

Linked list, 18.
Linked memory, 20.
List head, 25, 28, 37, 44, 46.
List insertion sort, 78, 167, 168.
List manipulation, 44.
List merge sort, 89, 90, 92, 177.
Little-endian, 62.
Load instruction, xi.
Local name, x.
Local register, ix, xvi.
Look ahead character, 121.
Loop counter, xvi.
Loop doubling, xv, 98, 118, 167, 177.
Loop unrolling, xv, xvi, 177, 183.
Low order bits, xiv.
Lowercase, viii.

MacLaren, Malcolm Donald:
sorting method, 164.

Maier, Johannes, 188.
Marginal register, xvi, xviii, 125.
Marking algorithm, 45.
Matrix:

sequential allocation, 36.
sparse allocation, 36.
triangular, 37.

Memory pool, 20.
Merge exchange sort, 169.
Method call, 39, 40.
Minimum and maximum, 162.
Minimum-comparison sorting, 180.
Minus zero, 54.
MMIXmasters, v, 188.
MMIXware document, vi.
Modulus, 48.
MOR (multiple or), 152.
Multiple exits, xviii.
Multiple list insertion sort, 79, 168.

Multiplication, xi, 64, 157.
Multiplication, double-precision, 56.
Multiplication of permutations, 1, 5.
Multiplication of polynomials, 129.
Multiprecision comparison, 162.
Mutual exclusive access, 9.
MUX (multiplex), 123, 139, 140.

Name space, x.
Names, viii.
Natural two-way merge sort, 89.
NEGU (negate unsigned), 49, 55, 151, 153.
Nested calls, xvii.
Nested subroutines, xvii.
Non-blocking I/O, 8.
NOR (bitwise not-or), 129, 169, 170.
Normal floating point number, 53,

54, 56, 59.
Numerical distribution of random

numbers, 51.

ODIF (octa difference), 162, 182.
Offset, viii, ix, xiii, 20.
Operating system, 8.
Optimization:

of loops, xv, 167, 171.
tail call, xvii, 43.
tail recursion, xviii, 83.

ORH (bitwise or with high wyde), 59–61,
151, 154.

Orthogonal lists, 36.
Output, 8.
Overflow, 18, 152.

Panny, Wolfgang Christian, 170.
Parallel execution, 8.
Parameter passing, xvi.
Permutation, 1, 164.
Pipeline simulator, vii.
Pivot step, 132.
Playing cards, 15.
Polynomial, 25, 43.
Pool segment, 28.
Poolmax technique, 32, 125.
POP (pop registers and return), x, xi,

xvii, xviii.
Positional number systems, 53.
Potency, 49.
Pratt, Vaughan Robert:

sorting method, 81, 166.
Prediction register, 12, 14.
PREFIX specification, x.
Prime number, 72, 109, 113, 115.
Probable branch, xii, 76.
Producer, 8, 121.
Protected code, 13, 120.

From the Library of Melissa Nuno

ptg999

192 INDEX

PUSHGO (push registers and go), xvi,
38, 134, 135.

PUSHJ (push registers and jump), ix, xi, xvi.

Queue, 18, 28.
Quick sequential search, 97.
Quicksort, 82, 84, 86, 88, 173, 174.

Radix conversion:
binary to decimal, 68, 158, 159.
decimal to binary, 69, 160.

Radix exchange sort, 85, 86, 171, 172.
Radix list sort, 93, 179.
Radix point, 54.
Random integer, 51.
Random number, 48, 50, 147, 148, 150.
Randomizing by shuffling, 51.
rD (dividend register), 56, 65, 68, 150.
rE (epsilon register), 58, 132, 152.
Rebalancing, 106.
Recursion, xi, 85, 135.
Register, 16.
Register name, viii, x.
Register number, x.
Register stack, 30, 38.
Relative address, 17, 20, 44, 46, 111, 142.
Relative subroutine address, 39.
Release, 11, 13.
Remainder register, 48, 53, 56, 68, 70, 72,

109, 111, 114, 150, 187.
Reporting errors, xviii.
Reservation:

boundary tag system, 46, 140, 141.
buddy system, 46, 142, 143.

Resource sharing, 9.
RESUME (resume after interrupt), 30, 57.
Return value, ix, x, xvi.
rH (himult register), 48, 51, 53, 56, 60,

64, 66, 68, 117, 148, 150.
rJ (return-jump register), xvii, 38.
rM (multiplex mask register), 123, 139.
ROVER, 141.
rP (prediction register), 12, 14.
rQ (interrupt request register), 14.
rR (remainder register), 48, 53, 56, 68, 70,

72, 109, 111, 114, 150, 187.
Running time, xi.
rW (where interrupted register for trips), 30.
rX (execution register for trips), 30.
rXX (execution register for traps), 57.
rYY (Y operand register for traps), 57.
rZZ (Z operand register for traps), 57.

SADD (sideways add), 71, 131, 152.
Saturating difference, 162, 182.
Schmidl, Georg, 188.

Secondary clustering, 114.
Semaphore, 9–13, 120, 122.
Sentinel, 20, 25, 167.
Sequential:

allocation, 17.
list, 18.
search, 97, 183.
storage, xii.

SETH (set high wyde), 150.
Shared resource, 9.
Shellsort, 77, 88, 96, 165.
Sideways addition, 71, 131, 152.
Sign bit, 15.
Simulation, 28–32, 34, 35.
Single rotation, 106.
Single-precision calculations, 53.
Singleton cycle, 1.
Singleton, Richard Collom, 86, 173, 174.
Sladecek, Ladislav, 188.
Sorting:

bubble sort, 81.
by distribution, 93.
by exchanging, 81.
by insertion, 76.
by merging, 89.
by selection, 87.
comparison counting, 74, 96.
distribution counting, 96, 163.
heapsort, 87, 96.
list insertion, 78, 96, 167.
list merge, 89, 90, 96, 177.
merge exchange, 96, 169.
minimum-comparison, 180.
multiple list insertion, 79, 96.
natural two-way merge, 89.
network, 182.
quicksort, 82, 96, 173.
radix exchange, 85, 96, 171, 172.
radix list, 93, 96, 179.
shellsort, 77, 165.
straight insertion, 76, 96, 167.
straight selection, 87, 96.
straight two-way merge, 89, 175.
topological, 20.

Special register, x.
Stack, 18, 124, 125, 127, 134, 135.
Stack frame, xvi.
Standard error file, 126.
Standard input file, 2, 13, 14, 121.
Standard output file, 2, 70, 123.
STCO (store constant octabyte), 11–13, 20,

35, 64, 79, 94, 121, 129.
StdErr (standard error), 126.
StdIn (standard input), 2, 13, 14, 121.
StdOut (standard output), 2, 70, 123.
Storage pool, 44.

From the Library of Melissa Nuno

ptg999

INDEX 193

Store instruction, xi.
Straight insertion sort, 76, 88, 167, 172.
Straight selection sort, 87, 88.
Straight two-way merge sort, 89, 175.
Subroutine, xvi, 118, 124, 157, 162.
Subtraction, 63.
Symbol table algorithm, 7.
Symmetric successor, 38.
SYNC (synchronize), 9, 12, 120, 121.

t (temporary variable), ix, xvi.
Tag, 15, 25, 36, 37.
Tag bit, xiv, 1, 44, 45.
Tail call optimization, xvii.
Tail recursion optimization, xviii.
Temporary variable, ix.
TEX, vi.
Thread, 8, 12, 122.
Threaded tree, 37, 136.
Topological sort, 20.
TRAP (force trap interrupt), x, xi.
Trie search, 106.

TRIP (force trip interrupt), x, xi, 29.
Two’s complement, 53.

Underflow, 57, 152.
Uniform binary search, 100, 184.
Unverzart, Michael, 188.
Uppercase, viii.

Variable, viii.
Vong, Chan Vinh, 188.

Wait loop, 9, 120, 122.
WDIF (wyde difference), 129.
Where interrupted register, 30.

x (temporary variable), ix, 124, 125.
XOR (bitwise exclusive-or), 50.

Yuval, Yarom, 188.

ZSN (zero or set if negative), 102.

From the Library of Melissa Nuno

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Style Guide
	Programming Techniques
	Chapter 1—Basic Concepts
	1.3.3. Applications to Permutations
	1.4.4. Input and Output

	Chapter 2—Information Structures
	2.1. Introduction
	2.2.2. Sequential Allocation
	2.2.3. Linked Allocation
	2.2.4. Circular Lists
	2.2.5. Doubly Linked Lists
	2.2.6. Arrays and Orthogonal Lists
	2.3.1. Traversing Binary Trees
	2.3.2. Binary Tree Representation of Trees
	2.3.3. Other Representations of Trees
	2.3.5. Lists and Garbage Collection
	2.5. Dynamic Storage Allocation

	Chapter 3—Random Numbers
	3.2.1.1. Choice of modulus
	3.2.1.3. Potency
	3.2.2. Other Methods
	3.4.1. Numerical Distributions
	3.6. Summary

	Chapter 4—Arithmetic
	4.1. Positional Number Systems
	4.2.1. Single-Precision Calculations
	4.2.2. Accuracy of Floating Point Arithmetic
	4.2.3. Double-Precision Calculations
	4.3.1. The Classical Algorithms
	4.4. Radix Conversion
	4.5.2. The Greatest Common Divisor
	4.5.3. Analysis of Euclid’s Algorithm
	4.5.4. Factoring into Primes
	4.6.3. Evaluation of Powers
	4.6.4. Evaluation of Polynomials

	Chapter 5—Sorting
	5.2. Internal Sorting
	5.2.1. Sorting by Insertion
	5.2.2. Sorting by Exchanging
	5.2.3. Sorting by Selection
	5.2.4. Sorting by Merging
	5.2.5. Sorting by Distribution
	5.3.1. Minimum-Comparison Sorting
	5.5. Summary, History, and Bibliography

	Chapter 6—Searching
	6.1. Sequential Searching
	6.2.1. Searching an Ordered Table
	6.2.2. Binary Tree Searching
	6.2.3. Balanced Trees
	6.3. Digital Searching
	6.4. Hashing

	Answers to Exercises
	1.3.2. The MMIX Assembly Language
	1.3.3. Applications to Permutations
	1.4.4. Input and Output
	2.1. Introduction
	2.2.2. Sequential Allocation
	2.2.3. Linked Allocation
	2.2.4. Circular Lists
	2.2.5. Doubly Linked Lists
	2.2.6. Arrays and Orthogonal Lists
	2.3.1. Traversing Binary Trees
	2.3.2. Binary Tree Representation of Trees
	2.3.5. Lists and Garbage Collection

	2.5. Dynamic Storage Allocation
	3.2.1.1. Choice of modulus
	3.2.1.3. Potency
	3.2.2. Other Methods
	3.4.1. Numerical Distributions

	3.6. Summary
	4.1. Positional Number Systems
	4.2.1. Single-Precision Calculations
	4.2.2. Accuracy of Floating Point Arithmetic
	4.2.3. Double-Precision Calculations
	4.3.1. The Classical Algorithms

	4.4. Radix Conversion
	4.5.2. The Greatest Common Divisor
	4.5.3. Analysis of Euclid’s Algorithm
	4.6.3. Evaluation of Powers
	4.6.4. Evaluation of Polynomials

	5. Sorting
	5.2. Internal Sorting
	5.2.1. Sorting by Insertion
	5.2.2. Sorting by Exchanging
	5.2.3. Sorting by Selection
	5.2.4. Sorting by Merging
	5.2.5. Sorting by Distribution
	5.3.1. Minimum-Comparison Sorting

	5.5. Summary, History, and Bibliography
	6.1. Sequential Searching
	6.2.1. Searching an Ordered Table
	6.2.2. Binary Tree Searching
	6.2.3. Balanced Trees

	6.3. Digital Searching
	6.4. Hashing

	Acknowledgments
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

