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Preface

The great advancements in the design of microchips, digital systems, and 
computer hardware over the past 40 years have given birth to digital signal 
processing (DSP) which has grown over the years into a ubiquitous, multi-
faceted, and indispensable subject of study. As such, DSP has been applied 
in most disciplines ranging from engineering to economics and from astron-
omy to molecular biology. Consequently, it would take a multivolume ency-
clopedia to cover all the facets, aspects, and ramifications of DSP, and such 
a treatise would require many authors. This book focuses instead on the fun-
damentals of DSP, namely, on the representation of signals by mathematical 
models and on the processing of signals by discrete-time systems. Various 
types of processing are possible for signals, but the processing of interest in 
this volume is almost always linear. It typically involves reshaping, transform-
ing, or manipulating the frequency spectrum of the signal of interest.

The author considers the processing of continuous- and discrete-time 
signals to be different facets of the same subject of study without a clear 
demarcation where the processing of continuous-time signals by analog 
systems ends, and the processing of discrete-time signals by digital systems 
begins. Discrete-time signals sometimes exist as distinct entities that are not 
derived from or related to corresponding continuous-time signals. The pro-
cessing of such a signal would result in a transformed discrete-time signal, 
which would be, presumably, an enhanced, or in some way, more desirable 
version of the original signal. Obviously, reference to an underlying continu-
ous time signal would be irrelevant in such a case. However, more often than 
not discrete-time signals are derived from corresponding continuous-time 
signals and, as a result, they inherit the spectral characteristics of the latter. 
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Discrete-time signals of this type are often processed by digital systems, 
and after that, they are converted back to continuous-time signals. A case in 
point can be found in the recording industry where music is first sampled 
to generate a discrete-time signal, which is then recorded on a disc. When 
the disc is played back, the discrete-time signal is converted into a continu-
ous-time signal. In order to preserve the spectrum of the underlying contin-
uous-time signal, e.g., that delightful piece of music, through this series of 
signal manipulations, special attention must be paid to the spectral relation-
ships that exist between continuous- and discrete-time signals.

In the past, signal processing appeared in various concepts in more 
traditional courses like telecommunications, control, circuit theory, and 
in instrumentation. The signal processing done was analog, and discrete 
components were used to achieve the various objectives. However, in the 
later part of the 20th century we saw the introduction of computers and their 
fast and tremendous growth. In the late 1960s and early 1970s, a number 
of researchers resorted to modeling and simulation of various concepts in 
their research endeavors, using digital computers, in order to determine 
performance and optimize their designs. It is these endeavors that led to the 
development of many digital signal processing algorithms which we know 
today. With the rapid growth of computing power in terms of speed and 
memory capacity, a number of researchers wanted to obtain their results 
from near real-time to real time. This saw the development of processors 
and I/O devices that were dedicated to real-time data processing; though 
initially at lower speeds, they are currently capable of processing high speed 
data including video signals. The many algorithms that were developed 
in the research activities, combined with software and hardware that was 
developed for processing by industry, ushered in a new course into the 
university curriculum – Digital Signal Processing.

For many years, the course titled Digital Signal Processing was offered 
as a postgraduate course with students required to have a background 
in telecommunications (spectral analysis), circuit theory and of course 
mathematics. The course provided the foundation to do more advanced 
research in the field. Though this was useful, it did not provide all the 
necessary background that many industries required; to write efficient 
programs and to develop applications. In many institutions a simplified 
version of the postgraduate course has filtered into the undergraduate 
programs. This book is an attempt to bridge the gap. It can serve as a text 
for undergraduate or graduate courses and various scenarios are possible 
depending on the background preparation of the class and the curriculum 
of the institution.
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C H A P T E R  1
Introduction to Digital Signal 
Processing (dsp)

1.1 	 INTRODUCTION

Digital signal processing (DSP) is an area of science and technology that has 
developed rapidly over the past few decades. The techniques and applications 
of DSP are as old as Newton and Gauss and as new as digital computers and 
integrated circuits (ICs). The rapid development of DSP is a result of the 
significant advances in digital computer technology and IC fabrication.

DSP is concerned with the representation of signals by sequences of num-
bers or symbols and the processing of these sequences. Processing means the 
modification of sequences into a form that is in some sense more desirable.

In another words, DSP is a mathematical manipulation of discrete-time 
signals to get more desirable properties of the signal, such as less noise or 
distortion.

The classical numerical analysis formulas such as those used for interpola-
tion, differentiation, and integration are also DSP algorithms.

DSP finds application in various fields such as speech communication, 
data communication, image processing, radar engineering, seismology, sonar 
engineering, biomedical engineering, acoustics, nuclear science, and many 
others.

DSP can be applied to one-dimensional signals as well as multidimen-
sional signals. Example of the one-dimensional signal is speech and an 
example of the two-dimensional signal is an image. Many picture processing 
applications require the use of two-dimensional signal processing techniques. 
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2 • Digital Signal Processing 

Two-dimensional signal processing includes X-ray enhancement, analysis of 
aerial photographs (these photographs are necessary for detection of a forest 
fire or crop damage), analysis of satellite weather photographs, etc. Analysis 
of seismic data is required in oil exploration, earthquake measurements, and 
monitoring of nuclear tests. These utilize multidimensional signal processing 
techniques. The impact of DSP techniques will undoubtedly promote revolu-
tionary advances in many fields of application. A notable example is telephony 
where digital techniques dramatically increased economy and flexibility in 
implementing switching and transmission systems.

1.2	 APPLICATIONS OF DIGITAL SIGNAL PROCESSING

There are a variety of application areas of DSP because of the availability of 
high-resolution spectral analysis. It requires high-speed processor to imple-
ment the Fast Fourier transform (FFT). Some of these areas are

1.	 Speech processing,

2.	 Image processing,

3.	 Radar signal processing,

4.	 Digital communications,

5.	 Spectral analysis, and

6.	 Sonar signal processing.

Many of the above applications are discussed in Chapter 13.
Some of the other applications of DSP are in

a.	 Transmission lines,

b.	 Advanced optical fiber communication,

c.	 Analysis of sound and vibration signals,

d.	 Implementation of speech recognition algorithms,

e.	 Very Large-Scale Integration technology,

f.	 Telecommunication networks,

g.	 Microprocessor systems,

h.	 Satellite communications,
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Introduction to Digital Signal Processing (dsp) • 3

i.	 Telephony transmission,

j.	 Aviation,

k.	 Astronomy,

l.	 Industrial noise control, and

m.	 New DSP algorithms and many more.

Speech Processing: Speech is a one-dimensional signal. Digital process-
ing of speech is applied to a wide range of speech problems such as speech 
spectrum analysis and channel vocoders (voice coders). DSP is applied to 
speech coding, speech enhancement, speech analysis and synthesis, speech 
recognition, and speaker recognition.

Image Processing: Any two-dimensional pattern is called an image. 
Digital processing of images requires two-dimensional DSP tools such as 
discrete Fourier transform, fast Fourier transform (FFT) algorithms, and 
z-transforms. Processing of electrical signals extracted from images by digital 
techniques includes image formation and recording, image compression, 
image restoration, image reconstruction, and image enhancement.

Radar Signal Processing: Radar stands for “radio detection and rang-
ing.” Improvement in signal processing is possible by digital technology. 
The development of DSP has led to greater sophistication of radar tracking 
algorithms. Radar systems consist of transmitting–receiving antenna, digital 
processing system, and control unit.

Digital Communications: Application of DSP in digital communication 
especially telecommunications comprises digital transmission using PCM, 
digital switching using time-division multiplexing, echo control, and digi-
tal tape recorders. DSP in telecommunication systems is found to be cost-
effective due to the availability of medium- and large-scale digital ICs. These 
ICs have desirable properties such as small size, low cost, low power, immunity 
to noise, and reliability.

Spectral Analysis: Frequency-domain analysis is easily and effectively pos-
sible in DSP using fast Fourier transform (FFT) algorithms. These algorithms 
reduce computational complexity and also reduce the computational time.

Sonar Signal Processing: Sonar stands for “sound navigation and rang-
ing.” Sonar is used to determine the range, velocity, and direction of targets 
that are remote from the observer. Sonar uses sound waves at lower frequen-
cies to detect objects underwater.

DSP can be used to process sonar signals, for the purpose of navigation 
and ranging.
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4 • Digital Signal Processing 

1.3	 SIGNALS

A signal can be defined as a 
function of one or more inde-
pendent variable(s) which con-
veys information. Independent 
variables may be time, space, 
etc., and depend on the type of 
signals.

Examples of signals are 
speech signals, pictures, electrocardiogram (ECG) signals, etc. A speech 
signal is represented mathematically as a function of time and a picture signal 
is represented as a brightness function of two spatial variables.

1.4	 CLASSIFICATION OF SIGNALS

Any investigation in signal processing is started with a classification of signals 
involved in the specific application. Signals can be classified in the following 
classes:

1.	 Multichannel and multidimensional signals,

2.	 Continuous-time and discrete-time signals,

3.	 Analog and digital signals,

4.	 Deterministic and random signals,

5.	 Energy and power signals, and

6.	 Periodic and non-periodic signals.

Now, we will discuss these in detail in subsequent sections.

1.4.1 Multichannel and Multidimensional Signals

Multichannel Signals: Signals which are generated by multiple sources 
or multiple sensors are called multichannel signals. These signals are repre-
sented by a vector:

1

2

3

( )
( ) ( )

( )

S t

s t S t

S t

 
 =  
  

.

Pitch period

s t( )

t

FIGURE 1.1  Speech signals.
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Introduction to Digital Signal Processing (dsp) • 5

The signal represents a 3-channel signal. In electrocardiography, 3-lead 
and 12-lead electrocardiographs are often used in practice, which results in 
3-channel and 12-channel signals, respectively.

Multidimensional Signal: A signal is called a multidimensional signal 
if it is a function of M independent variables. For example, Speech signal is a 
one-dimensional signal because the amplitude of the signal depends upon a 
single independent variable, namely, time. TV Picture Signal: A B/W picture 
signal is an example of a two-dimensional signal because the brightness of the 
signal at each point is a function of two spatial independent variables, namely, 
x and y. Variables x and y are width and height of the picture element.

A colored picture signal is an example of three-dimensional signal because 
brightness of the signal at each point is a function of three independent 
variables, namely, x, y, and time (t).

1.4.2 Continuous-time and Discrete-time Signals

Continuous-time Signals: A signal 
that varies continuously with time is 
called a continuous-time signal. These 
are defined for every value of the inde-
pendent variable, namely, time. For 
example, speech signal and temperature 
of the room are continuous-time signals. 
The continuous-time signal is shown in 
Figure 1.2.

Discrete-time Signal: 
Discrete-time signals are sig-
nals which are defined at dis-
crete times (Figure 1.3). These 
are represented by sequences of 
numbers. For example, the rail 
traffic signal is a discrete-time 
signal.

Discrete-time signals can be 
recovered by periodic sampling 
of continuous-time signals. Figure 1.3 illustrates the discrete-time signal.

1.4.3 Analog and Digital Signals

Analog Signals: Analog signals are signals of which both the dependent vari-
able and the independent variable(s) are continuous in nature. Analog signals 
arise when a physical waveform is converted into an electrical signal. This 

0 Time ( )t

s t( )
Amplitude

FIGURE 1.2  Continuous-time signal.

FIGURE 1.3  Discrete-time signal.
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6 • Digital Signal Processing 

conversion is performed by means of a transducer. For example, telephone 
speech signals, TV signals, etc., are very common types of the analog signal.

Telephone Speech Signals. A telephone message comprises speech sounds 
having vowels and consonants. These sounds produce an audio signal. These 
sound waves are converted into analog electrical signals by means of a trans-
ducer (microphone). The transducer is a device that converts non-electrical 
quantities into electrical signals, for example, a microphone. Continuous-
amplitude, continuous-time signals are called analog signals. The Analog 
signal is shown in Figure 1.1.

Digital Signals: Digital 
signals are signals of which 
both the dependent variable 
and the independent vari-
ables are discrete in nature. 
Digital signals comprise 
pulses occurring at discrete 
intervals of time. Telegraph and teleprinter signals are the examples of digital 
signals. Figure 1.4 illustrates a telegraph signal.

1.4.4 Deterministic and Random Signals

Deterministic Signals. A deter-
ministic signal is one that has no 
uncertainty with respect to its value 
at any value of an independent vari-
able, namely, time. For example, the 
rectangular pulse given by Eq. (1.1) 
is a deterministic signal. Figures 1.5 
and. 1.6 illustrate rectangular pulse and cosine signal, respectively; both are 
an example of the deterministic signal.

A

s t( )

T0–T0

t

FIGURE 1.6  Cosine signal.

s t( )

1

–1/2 1/2 t

FIGURE 1.5  Rectangular pulse.

MARK

SPACE

FIGURE 1.4  Telegraph signal (Digital signal).
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1
1,

( ) 2
0, otherwise

t
s t

 <= 


.

�

(1.1)

Another example of the deterministic signal is sinusoidal signals such as 
sine waves and cosine waves as given in Eq. (1.2):

	 s(t) = A cos wt, − ∞ < t < ∞.� (1.2)

Random signal: A random signal is a signal which has some degree of 
uncertainty with respect to its value at any value of independent variable 
namely, time. For example, thermal agitation noise in conductors is a random 
signal.

s t( )
Amplitude

Time ( )t

FIGURE 1.7  Random signal.

1.4.5 Energy and Power Signals

Energy signal: A signal is called an energy signal if and only if its total energy 
is finite. For example, the rectangular pulse is an energy signal.
Power signal: A signal is called a power signal if and only if its average power 
is finite. For example, sinusoidal waves are power signals.

The energy signals have zero average power and power signals have 
infinite energy. It means that both signals are mutually exclusive.

1.4.6 Periodic and Non-periodic Signals

Periodic Signal: A signal which repeats its waveform after a fixed period of 
time is called as a periodic signal. This fixed time is called Time period (T0).

In other words, a signal which satisfies the condition s(t) = s(t + T0) for all 
t is called a periodic signal. For example, sinusoidal signals are the example of 
a periodic signal.
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Non-periodic Signal: A signal which does not satisfy the above condition is 
called non-periodic signal.

Unit rectangular pulse is an example of a non-periodic signal.
Usually, periodic signals and random signals are power signals and deter-

ministic signals, and non-periodic signals are energy signals.

1.5	 SIGNAL PROCESSING SYSTEMS

A system responds to particular signals by producing other signals having 
some desired behavior.

Signal processing systems are of two types depending on the type of signal 
to be processed.

1.	 Continuous-time systems.

2.	 Discrete-time systems.

1.5.1 Continuous-time Systems

Continuous-time systems are the systems for which both input and output 
are continuous-time signals. H(s) is the transfer function of a continuous-time 
system. Figure 1.8 illustrates the block diagram of a continuous-time system.

FIGURE 1.8  Block diagram of continuous-time system.

An example of continuous-time system is an analog filter which is used to 
reduce the noise corrupting a message signal.

1.5.2 Discrete-time Systems

Discrete-time systems are systems for which both the input and output are 
discrete-time signals. H(z) is the transfer function of a discrete-time system. 
Figure 1.9 illustrates the block diagram of a discrete-time system.

FIGURE 1.9  Block diagram of discrete-time system.

An example of a discrete-time system is a digital computer.
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1.6	 SIGNAL PROCESSING

Changing the basic nature of signal to obtain the desired shaping of the input 
signal is called signal processing. Signal processing is concerned with the rep-
resentation, transformation, and manipulation of signals and the information 
they contain.

Signal processing is of two types depending upon the type of signal to be 
processed.

1.	 Analog signal processing (ASP), and

2.	 Digital signal processing (DSP).

1.6.1 Analog Signal Processing

In ASP, continuous-amplitude continuous-time signals are processed. Various 
types of analog signals are processed through low-pass filters, high-pass filters, 
band-pass filters, and band-reject filters to obtain the desired shaping of the 
input signal. Another example of ASP is the production of the modulated car-
rier using a high-frequency oscillator, and the modulating audio signal and a 
modulator. Figure 1.10 illustrates the block diagram of an ASP system.

FIGURE 1.10  Block diagram of ASP system.

1.6.2 Digital Signal Processing

Digital signal processing (DSP) is a numerical processing of signals on a digi-
tal computer or some other data processing machine. Figure 1.11 illustrates 
the block diagram of DSP system.

FIGURE 1.11  Block diagram of DSP system.

A digital system such as digital computer takes input signal in discrete-time 
sequence form and converts it in discrete-time output sequence.
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1.7	� ADVANTAGES OF DIGITAL SIGNAL PROCESSING OVER 
ANALOG SIGNAL PROCESSING

Digital signal processing has the following advantages:

1.	 Digital signal processing operations can be changed by changing the pro-
gram in a digital programmable system, that is, these are flexible systems.

2.	 Better control of accuracy in digital systems is compared to analog systems.

3.	 Digital signals are easily stored on magnetic media such as magnetic tape 
without loss of quality of reproduction of the signal.

4.	 Digital signals can be processed offline, that is, these are easily transported.

5.	 Sophisticated signal processing algorithms can be implemented by DSP 
method.

6.	 Digital circuits are less sensitive to tolerances of component values.

7.	 Digital systems are independent of temperature, aging, and other exter-
nal parameters.

8.	 Digital circuits can be reproduced easily in large quantities at a compara-
tively lower cost.

9.	 Cost of processing per signal in DSP is reduced by time-sharing of given 
processor among a number of signals.

10.	Processor characteristics during processing, as in adaptive filters can be 
easily adjusted in digital implementation.

11.	Digital system can be cascaded without any loading problems.

1.8	 ELEMENTS OF DIGITAL SIGNAL PROCESSING SYSTEM

A majority of the signals encountered in science are analog in nature. In 
analog signals, both the dependent variable and independent variable(s) are 
continuous. Such signals may be processed directly by analog systems (i.e., 
analog filters) for the purpose of changing their characteristics or extracting 
some desired information.

Analog signals can also be processed digitally using DSP techniques. To 
process analog signals digitally, an interface between the analog signal and 
digital processor is needed. This interface is termed an analog-to-digital con-
verter. The output of the analog-to-digital converter is a digital signal. This 
digital signal is appropriate for the digital processor.
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The digital signal processor may be a large programmable digital com-
puter or a small microprocessor.

In some applications such as in speech communication, we require digital 
signal in analog form at the receiver end. Here, we need another interface, 
called digital-to-analog converter. Figure 1.12 illustrates the block diagram of 
a DSP system.

FIGURE 1.12  Block diagram of a digital signal processing system.

EXERCISES

1.	 Define a signal. Give some examples of signals.

2.	 Give the classification of signals.

3.	 What is signal processing? Differentiate between ASP and DSP.

4.	 What are the basic elements of the DSP system?

5.	 What are the advantages of DSP over ASP?

6.	 Differentiate multichannel and multidimensional signals. Give some 
examples of these signals.

7.	 What is the importance of DSP in various fields of engineering and tech-
nology? Give a brief account of its applications.
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C H A P T E R  2
Review of Discrete— 
Time Signals and Systems

2.1	 INTRODUCTION

In Chapter 1, we have introduced the concept of digital signal processing. In 
this chapter, we will study discrete-time signals and systems. Discrete-time 
signals are obtained either by periodical sampling of continuous-time signals 
or by a recursion formula. Discrete-time signals are represented by discrete-
time sequences.

If both input and output for a system are discrete, then this system is 
termed a discrete-time system. An example of a discrete-time system is a dig-
ital computer.

In this chapter, we first study discrete-time signals: various ways of rep-
resenting discrete-time signals, different methods of obtaining discrete-time 
signals, elementary discrete-time signals, and manipulation of discrete-time 
signals.

After studying discrete-time signals, we will study discrete-time systems 
and their classification. In this chapter, we will also study LTI discrete-time 
systems, convolution and correlation operations for LTI discrete-time systems, 
inverse systems, and deconvolution operations.

Finally, we will study sampling of continuous-time signals, Nyquist rate, 
sampling theorem, aliasing, and reconstruction of the sampled version of 
continuous-time signals.
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2.2	 DISCRETE-TIME SIGNALS

Discrete-time signals are defined for discrete values of an independent vari-
able (time). Discrete-time signal is not defined at instants between two suc-
cessive samples.

Discrete-time signals are represented in two ways:

	 s(n), N1 ≤ n ≤ N2� (2.1)

where N1 and N2 are the first and the last sample points, respectively, in a 
given discrete-time signal.

It represents non-uniformly spaced samples, and these are shown in 
Figure 2.1(a):

	 s(nTs), N1 ≤ n ≤ N2� (2.2)

It represents uniformly spaced samples, and these are shown in Figure 2.1(b).

0 nTs
Ts 2Ts 3Ts 4Ts 5Ts 6Ts 7Ts

Ts Ts Ts Ts Ts Ts Ts

s(nT )s

0 n

s(n)

1 2 3 4 5 6

(a) (b)

FIGURE 2.1  (a) Discrete-time signal showing non-uniformly spaced samples (there is no sampling 
period Ts) and (b) Discrete-time signal showing uniformly spaced samples.

2.2.1 Representation of Discrete-Time Signals

Discrete-time signal sequences can be represented in the following four ways:

1.	 Graphical Representation

2.	 Functional Representation

3.	 Tabular Representation

4.	 Sequence Representation.

Graphical Representation: Discrete-time signals can be represented by 
a graph when the signal is defined for every integer value of n for − ∞ < n < ∞. 
This is illustrated in Figure 2.2.
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0.5

1.0

1.5

2.0

1.5

1.0

0.5

–3 –2 –1 0 1 2 3 n

s(n)

FIGURE 2.2  Graphical representation of a discrete-time signal.

Functional Representation: Discrete-time signals can be represented 
functionally as given below:

	
2, for 1,3

( ) 4, for 2
0, elsewhere

n

s n n

=
= =



� (2.3)

Tabular Representation: Discrete-time signals can also be represented by 
a table as follows:

n ..... −3 −2 −1 0 1 2 3 4 5 .....

s(n) 0 0 0 1 2 1 0 0 0

Sequence Representation: An infinite-duration (−∞ ≤ n ≤ ∞) signal 
with the time as origin (n = 0) and indicated by the symbol ↑.

	 s(n) = ...0,0,0,1,3,1,0,0...� (2.4)
↑

2.2.2 Methods of Obtaining a Signal Sequence

There are three methods of obtaining a sequence:

1.	 To generate a set of numbers and order them into sequence form,

Example: s(n) = n, 0 ≤ n ≤ N − 1� (2.5)

2.	 A sequence is generated by some recursion relation:

Example: s(n) = 
1
s

s(n − 1)� (2.6)

with initial condition s(0) = 1
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generates a sequence

	 s(n) = 
1
2

n
 
 
 

, 0 ≤ n ≤ ∞� (2.7)

3.	 A sequence is also obtained by periodic sampling of continuous-time sig-
nals. Periodic measurement of continuous-time signals is called periodic 
sampling.

Discrete-time sequence, s(nTs) = ( )
st nT

s t
=  −∞ < n < ∞� (2.8)

where Ts is the sampling interval and s(t) is a continuous-time signal.

2.2.3 Some Elementary Discrete-Time Signals

There are some basic signals which play an important role in the study of 
discrete-time signals and systems.

These signals are given as follows:

1.	 unit-sample (impulse) Sequence, δ(n),

2.	 unit-step sequence, u(n),

3.	 unit-ramp sequence, r(n),

4.	 exponential sequence, and

5.	 sinusoidal sequence.

Unit-Sample Sequence: Figure 2.3 shows a unit-sample sequence, it is 
denoted by δ(n) and is defined as follows:

	
1, 0

( )
0, 0

n
n

n
δ

=
=  ≠

� (2.9)

–3 –2 –1 0 1 2 3 n

(n)

1

FIGURE 2.3  Graphical representation δ(n).

Unit-Step Sequence: It is denoted by u(n) and is defined as follows:

	
1, 0

( )
0, 0

n
u n

n

≥
=  <

� (2.10)
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Figure 2.4 illustrates the graphical representation of the unit-step sequence.

0 1 2 3 n

u n( )

1

4

FIGURE 2.4  Graphical representation of u(n).

Unit-Ramp Sequence: It is denoted by r(n) and is defined as follows:

	
1, for 0

( )
0, for 0

n
r n

n

≥
=  <

� (2.11)

Figure 2.5 shows the graphical representation of the unit-ramp sequence.

0 1 2 3 n

u n( )

4 5

FIGURE 2.5  Graphical representation of r(n).

Exponential Sequence: It is defined as

	 s(n) = (A)n for all values of n� (2.12)

If parameter A is real, then s(n) is a real sequence. Figure 2.6 illustrates a 
graphical representation of the exponential sequence.

FIGURE 2.6  Graphical representation of exponential sequences.
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Sinusoidal Sequences: There are two types of sinusoidal sequences, one 
is called the sine sequence and the other is called the cosine sequence.

Sine sequence is defined as follows:

s(n) = sin ω0n, for all n

and cosine sequence is defined as follows:

s(n) = cos ω0n, for all n

Figure 2.7 illustrates the graphical representation of cosine type sinusoi-
dal sequence.

s n( )

–3 –2 –1 0 1 2 3 n

FIGURE 2.7  Graphical representation of cosine type sinusoidal sequence.

2.2.4 Manipulation of Discrete-Time Signals

Here, we will study some simple modifications in independent variable (time) 
and dependent variable (amplitude of signal). Such modification is required 
in DSP techniques.

Transformation of the Independent Variable (time): Modification 
of time can be done in three ways:

1.	 time shifting,

2.	 folding, and

3.	 time scaling.

Time Shifting: A signal can be shifted in time by replacing n by n − k, 
where k is integer and n is a discrete-time index.

If k is a positive integer, the result of time shifting is a delay of signal by 
k units of time.

If k is a negative integer, the result of time shifting is the advance of signal 
by |k| units of time. Figure 2.8 illustrates a graphical representation of time 
shifting of a discrete-time sequence s(n).
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1
2

3

s n( )
(Original sequence)

–2 –1 0 1 2 3
( )a

n
    

1
2

3

s n( )
(Original sequence)

–2 –1 0 1 2 3
( )a

n

1
2

3

s n( )
(Original sequence)

–2 –1 0 1 2 3
( )a

n

    

1
2

3

s n( )
(Original sequence)

–2 –1 0 1 2 3
( )a

n

1
2

3

s n( )
(Original sequence)

–2 –1 0 1 2 3
( )a

n

FIGURE 2.8  Graphical representation of (a) original sequence, s(n) (b) delayed sequence by one unit in 
time, s(n − 1) (c) advanced sequence by one unit in time, s(n + 1) (d) folded sequence of above original 

signal, s(n), s(−n) (e) shifted version of folded sequence s(−n), s(−n + 1).

Folding: If independent variable (time) n is replaced by −n, then signal 
folding (mirror image) about the time origin (n = 0) will take place.

Operations of folding and time delaying (or advancing) a signal are not 
commutative. Figure 2.8(d) illustrates the graphical representation of folding 
operation of original sequence s(n).

Time scaling: Time scaling is performed by replacing independent vari-
able n by mn, where m is an integer. Time scaling is also called down sampling.
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FIGURE 2.9  Graphical representation of (a) original sequence, s(n) (b) time-scaled version of s(n) by 

factor 2, y(n) = s(2n) (c) Amplitude-scaled version s(n) by factor 2, y(n) = 2s(n).

Transformation of the Dependent Variable (Signal Amplitude): 
Modification of signal amplitude can be done in three ways:

1.	 Addition of Sequences.

2.	 Multiplication of Sequences.

3.	 Amplitude Scaling of Sequence.

Addition of Sequences: The sum of two discrete-time sequences is 
given by

	 y(n) = s1(n) + s2(n), −∞ < n < ∞� (2.13)

Addition of two sequences is shown in Figure 2.10(a).
Multiplication of Sequences: The product of two discrete-time 

sequences is given by

	 y(n) = s1 (n), s2(n), −∞ < n < ∞� (2.14)

Multiplication of two sequences is shown in Figure 2.10(b).

  

 
FIGURE 2.10  Graphical representation of (a) sum of two sequences, s(n) = s1(n) + s2(n),  

(b) multiplication of two sequences, s(n) ⋅ s1(n) ⋅ s2(n).

DSP.Ch2_2pp.indd   20DSP.Ch2_2pp.indd   20 3/23/2022   12:19:55 PM3/23/2022   12:19:55 PM



Review of Discrete—Time Signals and Systems  • 21

Amplitude Scaling of Sequence: Amplitude scaling of a signal by a 
constant B is accomplished by multiplying the value of every signal sample 
by B.

	 y(n) = Bs(n), −∞ < n < ∞� (2.15)

where B is real constant quantity.

2.3	 DISCRETE-TIME SYSTEMS

A discrete-time system is a device or an algorithm in which both the input 
and the output are discrete-time signals. A block diagram representation of a 
discrete-time system is shown in Figure 2.11.

Input
Discrete-time

signal s(n)

Output
Discrete-time

signal y(n)
T

FIGURE 2.11  Block diagram representation of discrete-time system.

Output of a discrete-time system is given by

y(n) = Ts(n), where T is an operator

Examples of discrete-time system are

y(n) = s(n). This is an identity system.

y(n) = 
1
3

[s(n − 1) + s(n) + s(n + 1)]

This is a three sample averager.

Basic Building Blocks of a Discrete-time System: A discrete-time 
system (digital filter) consists of an interconnection of three simple building 
blocks or elements: Adders, multipliers, and delay elements. Adder is also 
called as a summing element. It performs addition of two or more discrete-time 
signals. The multiplier performs multiplication of a discrete-time signal with a 
scalar quantity. The adder and multiplier are conceptually simple components 
which are readily implemented in the arithmetic logic unit of a computer. 
Delay elements allow access to future and past values in the discrete-time sig-
nal. Delays are two types: positive and negative. A positive delay is simply called 
delay and it is implemented by a memory register which stores the current val-
ues of a discrete-time signal for one sample interval. These stored samples are 

available for future calculations. Positive delay is indicated by 1z− .
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A negative delay is also called as advance. It is used to look ahead to the 

next value in the discrete-time signal and is indicated by 1z+ .

Typical advances are used for non-real-time applications such as image 
processing. Advances in discrete-time signals simplify the analysis of dis-
crete-time systems (digital filters). In real-time applications, advances are not 
permitted.

FIGURE 2.12  Illustration of basic building blocks or elements of a discrete-time system (digital filter)  
(a) adder or summing element (b) multiplier or multiplication element (c) positive delay  

element or simply "delay" (d) negative delay element or "advance."

A discrete-time system involves selecting and interconnecting a finite 
number of building block and determination of mutiplier coefficients. These 
three building blocks are shown in Figure 2.12.

We can easily understand the meaning of these building blocks (or ele-
ments) of a discrete-time systems or digital filters by an example.

Three sample averager is an example of a digital filter and its input–output 
relationship is given by the following difference equation:

y(n) = 1
3

 [s(n − 1) + s(n) + s(n + 1)]

It means output of a three-sample averager is equal to the average the 
previous, present, and future input values. It is a non-recursive digital filter. 
The advance serves to access the next value of discrete-time sequence while 
the delay stores the previous value.

Its network structure is shown in Figure 2.13.

FIGURE 2.13  Three-sample averager. (It is an example of non-recursive digital filter).
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2.3.1 Classification of Discrete-time Systems

Discrete-time systems can be classified in five groups:

1.	 Memoryless systems and systems with memory.

2.	 Time-invariant and time-varying systems.

3.	 Linear systems and non-linear systems.

4.	 Casual systems and non-casual systems.

5.	 Stable system and unstable systems.

We now discuss these groups one by one.
Memoryless Systems and Systems with Memory: Memoryless sys-

tems are also called static systems. A discrete-time system is called memory-
less system if its output at any instant n depends at most on the input at the 
same instant, but not on past or future values of input samples.

2

( ) . ( )

(( ) ( ) ( )

y n A s n

y n ns n Bs n

= 


= + 
 Both systems are static systems

On the other hand, output of a system which depends on past or future 
samples of the input signal is called system with memory. It is also called 
dynamic system. These systems require memory for storage for future and 
past samples of input signal. For example, three-sample averager system,

y(n) = 
1
3

 [s(n − 1) + s(n) + s(n + 1)]

is a dynamic system.
Time-Invariant and Time-varying Systems: A system is called time 

invariant if its input–output characteristics do not change with time.
If the response to a delayed input and the delayed response are equal, 

then the system is called time-invariant system.
The response to a delayed input is denoted by y(n, k) and the delayed 

response is denoted as y(n − k). If both responses, y(n, k) and y(n − k) are 
equal, then the system is called time-invariant system. If both responses are 
not equal, then the system is called time-varying system. For example,

Differentiator

y(n) = s(n) − s(n − 1) is a time-invariant system.

Time multiplier

y(n) = ns(n) is a time-varying system.
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EXAMPLE 2.1

Check the system for time invariance which is characterized by the difference 
equation:

y(n) = ns(n).

Solution: The response to a delayed input is

y(n, k) = ns(n − k)

The delayed response is

y(n − k) = (n − k) s(n − k)

Both responses are not equal:

y(n, k) ≠ y(n − k)

Therefore, the given discrete-time system y(n) = ns(n) is not time invari-
ant. It is a time-varying system.

EXAMPLE 2.2

Check the system for time invariance which is characterized by difference 
equation:

y(n) = s(n) − s(n − 1).

SOLUTION:

The response to a delayed input is

y(n, k) = s(n − k) − s(n − k − 1)

The delayed response is

y(n − k) = s(n − k) − s(n − k − 1)

Both responses are equal:

y(n, k) = y(n − k)

Above system is time invariant.
Linear Systems and Non-Linear Systems: A system which satisfies 

superposition principle is called a linear system. A system which does not 
satisfy superposition principle is termed as a non-linear system.

Superposition principle is stated as follows:

Response of the system to a weighted sum of input signals is equal to the 
corresponding weighted sum of responses of the system to each of the 
individual input signals.
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A system is linear if and only if

T [As1(n) + Bs2(n)] = AT [s1(n)] + BT [s2(n)]

where s1(n) and s2(n) are arbitrary input sequences and A and B are arbitrary 
constants.

y(n) = ns(n) is a linear system.

y(n) = αs(n) + β, where α and β are constants.

This is a non-linear system. This will be further clarified in Ex. 2.3.

EXAMPLE 2.3

Check the systems for linearity

i.	 y(n) = ns(n)
ii.	 y(n) = αs(n) + β, where α and β are constants.

Solution:

i.	 The corresponding outputs for two discrete-time sequences s1(n) and 
s2(n) are

y1(n) = ns1(n)
y2(n) = ns2(n)

A linear combination of two input sequences results in the output

y3(n) = T [s3(n)] = T [As1(n) + Bs2(n)]

 = n[As1(n) + Bs2(n)] = Ans1(n) + Bns2(n)� (1)

A linear combination of the two outputs results in the output

	 Ay1(n) + By2(n) = Ans1(n) + Bns2(n)� (2)

Since both outputs are equal, the system is linear.

ii.	 The corresponding outputs for two discrete-time sequences s1(n) and 
s2(n) are

y1(n) = αs1(n) + β
y2(n) = αs2(n) + β

A linear combination of s1(n) and s2(n) results in the output

y3(n) = T [As1(n) + Bs2(n)] = α[As1(n) + Bs2(n)] + β

 = αAs1(n) + αBs2(n) + β� (3)
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Linear combination of the two outputs results in the output

Ay1(n) + By2(n) = A [αs1(n) + β] + B [αs2(n) + β]

= αAs1(n) + Aβ + αBs2(n) + Bβ� (4)

Here,	 y3(n) ≠ Ay1(n) + By2(n), both outputs are not equal.

The system is non-linear.
Causal Systems and Non-Causal Systems: A system in which present 

output depends only on present and past inputs is called causal system.
A system is called non-causal system if its present output depends on 

future values of the input. Most of the real-time physical systems are causal 
systems, and processing of images and geophysical signals are the examples of 
non-causal systems.

Differentiator, y(n) = s(n) − s(n − 1) is a causal system because its present 
output y(n) depends only on present input s(n) and past input s(n − 1), and 
system y(n) = s(n) + 3s(n + 1) is a non-causal system because its present output 
y(n) also depends on future input s(n + 1).

Stable Systems and Unstable Systems: An initially relaxed system is 
said to be bounded input bounded output (BIBO) stable if and only if every 
bounded input produces a bounded output.

Bounded input

|s(n)| ≥ Ms < ∞ ⇒ Bounded Input
|s(n)| ≥ My < ∞ ⇒ Bounded Output

2.3.2 Linear-Time-Invariant (LTI) Systems

A system which satisfies the condition of linearity and time invariance is called 
a linear time-invariant (LTI) system.

Response of a discrete time LTI system is computed by convolution sum. 
Discrete time LTI systems are described by constant coefficient difference 
equations.

In discrete time LTI systems category, we will study the following topics:

1.	 FIR and IIR discrete-time LTI systems.

2.	 Recursive and Non-recursive discrete-time systems.

3.	 Causal LTI systems.

4.	 Impulse response of LTI systems.

5.	 Stability of LTI systems.

6.	 Discrete-time systems described by difference equations.
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FIR and IIR LTI Discrete-time Systems: LTI systems are classi-
fied in two groups on the basis of number of samples taken in computing its 
unit-sample (impulse) response.

a.	 Finite-Duration Impulse Response (FIR) LTI systems.

b.	 Infinite-Duration Impulse Response (IIR) LTI systems.

If impulse response of a LTI system is computed for a finite number of 
sample points [Finite duration], then such systems are called FIR systems.

FIR LTI discrete-time systems can be realized either recursively or 
non-recursively.

On the other hand, if impulse response of a LTI system is computed for 
an infinite number of sample points [Infinite duration], then the system is 
called IIR system.

IIR systems can only be realized by recursive method.
Recursive and Non-Recursive Discrete Time Systems: A system of 

which present output y(n) at time n depends on any number of past output 
values y(n − 1), y(n − 2) ... is called a recursive discrete-time system.

The output of a causal recursive system is given by

	 y(n) = f [y(n − 1), y(n − 2), ... y(n − N), s(n), s(n − 1) ... ]� (2.16)
where y(n), y(n − 1) ... are outputs and s(n), s(n − 1) ... are inputs.

A first-order system:

y(n) = αy(n − 1) + s(n) is an example of recursive system.

A system of which present output y(n) at time n depends only on present and 
past values of input signal, s(n), s(n − 1), s(n − 2), ... is called non-recursive system.

The output of a causal non-recursive system is given by

	 y(n) = f [s(n), s(n − 1), s(s − 2), ...]� (2.17)

A differentiator, y(n) − s(n) − s(n − 1), is an example of non-recursive 
system.

Causal LTI System: Causal system is a system of which output depends only 
on present and past inputs but does not depend on future input sample values.

Causality of LTI systems can be translated into a condition on the impulse 
responses, h(n), or in other words, causality can be determined in terms of 
impulse response h(n).

If impulse response is zero for negative values of n, then the system is 
called a causal LTI system. The convolution sum formula for causal LTI 
system may be modified and given as follows:

	 y(n) = 
0

( ) ( )
k

s k h n k
∞

=

−∑ � (2.18)
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Response of a causal system to a causal input sequence is also a causal 
sequence.

If a sequence is zero for a negative value of n, then the sequence is called 
as causal sequence.

EXAMPLE 2.4

Determine the unit-step response of the LTI system with unit-sample 
response, h(n) = Anu(n), |A| < 1.

Solution: For computing the unit-step response, we put input sequence, s(n) 
equal to unit-step sequence, u(n).

u(n) is a causal sequence, and the system is also causal.
From convolution sum formula. We learn more about convolution given 

in Art. 2.3.

y(n) = ( ) ( )
k

h k s n k
∞

=−∞

−∑  = ( ) ( )k

k

A u k u n k
∞

=−∞

−∑
Since

u (k) = 
1, 0
0, 0

k

k

≥
 <

 and u(n − k) 
1, 0 1, 0
0, 0 0, 0

n k k

n k k

− ≥ ≤ 
= − < > 

= 
1

0

1
, 0

1

nn
k

k

A
A n

A

+

=

−
= ≥

−∑
y(n) = 0; n < 0

Impulse Response of LTI Systems: The value of the response or output 
of a LTI system when the input is equal to unit-sample (impulse) sequence, 
d(n) is called impulse response, h(n). It is also called unit-sample response.

LTI systems are completely characterized by their impulse response.
Stability of LTI Systems: Stability is an important property for the prac-

tical implementation of a system.
A LTI system is bounded input bounded output (BIBO) stable if its 

impulse response, h(n), is absolutely summable. Absolutely summable means 
summation of sequence h(n) is possible and sequence h(n) is a converging 
sequence.

Stability of a LTI system in terms of impulse response, h(n), is given by

	 Sh ≡ ( )
h

h k
∞

=−∞

< ∞∑ � (2.19)
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EXAMPLE 2.5

Check the stability of a LTI system with unit-sample (impulse) response,

h(n) = Anu(n), where A is a constant.

Solution: Condition for stability for LTI system is given by

Sh ≡ 
0

( ) k

k k

h k A
∞ ∞

=−∞ =

=∑ ∑  since 
1, 0

( )
0, 0

k
u k

k

≥ 
=  < 

= 
2

0

1k

k

A A A
∞

=

= + + +∑ 

= 
1

1 A− , for |A| < 1,

This series coverages otherwise it diverges.
Therefore, the system is stable for |A| < 1.
Discrete-Time Systems described by Difference Equations: We are 

already familiar that continuous-time systems are described by differential 
equations. But discrete-time systems are described by difference equations.

For example, a differentiator for discrete-time systems are described by 
its difference equation

y(n) = s(n) − s(n − 1)

A three-sample averager is also described by its difference equation

y(n) = 
1
3

 [s(n) + s(n − 1) + s(n + 1)]

The input–output relationship of discrete-time system is also described 
by its difference equation.

There are two methods by which difference equations can be solved.

1.	 Direct Method. This method is directly applicable in the time domain. 
We are not discussing this method in this book.

2.	 Indirect Method. It is also called z-transform method. This method will 
be discussed in Chapter 3.

2.4	 CONVOLUTION OF TWO DISCRETE-TIME SIGNALS

Convolution sum is used to compute the response of Linear-time-invariant 
(LTI) discrete-time systems. LTI systems are completely characterized by its 
unit-sample (impulse) response, h(n). This system is shown in Figure 2.14.
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FIGURE 2.14  LTI system.

Convolution sum for a LTI discrete-time system is defined as follows:

y(n) = ( ) ( ) ( ) ( )
h k

s k h n k h k s n k
∞ ∞

=−∞ =−∞

− = −∑ ∑

2.4.1 Procedure for Computing Convolution Sum

Convolution sum between s(n) and h(n) involves the following four steps:

1.	 Folding: Take the mirror image of h(k) about k = 0 to obtain h(−k).

2.	 Shifting: Shift h(−k) by n0 to the right (left) if n0 is +ve (−ve) to obtain 
h(n0 − k).

3.	 Multiplication: Multiply s(k) by h(n0 − k) to obtain the product sequence 
Pn0(k) = s(k) h(n0 − k).

4.	 Summation: Sum all the values of the product sequences Pn0(k) to obtain 
the value of the output at the time n = n0.

Above procedure results in the response of the system at a single time 
instant, n = n0.

If we are interested in evaluating the response of the system over all 
time instants, −∞ < n < ∞, then repetition of steps 2 to 4 is necessary till the 
response at all time instants is obtained.

Note: If one sequence has M points and second sequence has N points 
then convolution of these sequences will have M + N − 1 points.

EXAMPLE 2.6

Determine the response of a discrete-time system to input signal s(n) = {2, 1, 3, 1}.
Also given unit-sample (impulse) response

h(n) = {1, 2, 2, −1}.

Solution: Convolution sum is defined as follows:

y(n) = ( ) ( )
K

s k h n k
∞

=−∞

−∑

n = 0, 	 y(0) = ( ) ( )
K

s k h k
∞

=−∞

−∑
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s(k) = 2 1 3 1
↑

h(k) = 1, 2, 2, −1
↑

s k( ) , , ,

( ) , , ,

�

�
� �

2 1 3 1

1 2 2 1h k �

y(0) = ( ) ( ) 2 2 1 1 4 1 5
k

s k h k
∞

=−∞

− = × + × = + =∑

n = 1,	 y(1) = ( ) (1 )
k

s k h k
∞

=−∞

−∑

s k( ) , , ,

( ) , , ,

�

�
� �

2 1 3 1

1 1 2 2 1h k �

y(1) = ( ) (1 ) 2 2 1 2 3 1
k

s k h k
∞

=−∞

− = × + × + ×∑
= 4 + 2 + 3 = 9

n = 2,	 y(2) = ( ) (2 )
h

s k h k
∞

=−∞

−∑

( )

(

2,  1,  3,  1

1,  2,  2,  ) 1

s k

h z k

=

↑
− = −

y(2) = ( ) (2 )
k

s k h k
∞

=−∞

−∑
= 2 × ( −1) + 1 × 2 + 3 × 2 + 1 × 1 = −2 + 2 + 6 + 1 = 7

n = 3,	 y(3) = ( ) (3 )
k

s k h k
∞

=−∞

−∑
( )

(3

2,  1,  3,  1

1,  2,  ,) 2  1

s k

h k

=

↑
− = −

y(3) = ( ) (3 ) 1 ( 1) 3 2 1 2
k

s k h k
∞

=−∞

− = × − + × + ×∑
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= −1 + 6 + 2 = 7

n = 4,	 y(4) = ( ) (4 )
k

s k h k
∞

=−∞

−∑

( )

(4

2,  1,  3,  1

1,  2,  ,) 2  1

s k

h k

=

↑
− = −

y(4) = ( ) (4 )
k

s k h k
∞

=−∞

−∑
= 3 × (−1) + 1 × 2 = −3 + 2 = −1

n = 5,	 y(5) = ( ) (5 )
k

s k h k
∞

=−∞

−∑

( )

(5

2,  1,  3,  1

1,  2,  ,) 2  1

s k

h k

=

↑
− = −

y(5) = ( ) (5 ) 1 ( 1) 1
k

s k h k
∞

=−∞

− = × − = −∑
n = 6, y(6) = 0
n = 7, y(7) = 0
.	 .
.	 .
If sequences s(n) and h(n) have M sample points and N sample points, 

respectively, then convolution of these sequences will have M + N − 1 sample 
points. In this example, sequence s(n) has 4 points, and sequence h(n) has 
4 points.

Then convolution of these sequences will have 4 + 4 − 1 = 7 points

n = −1,	 y(−1) = ( )( 1 )
k

s k k
∞

=−∞

− −∑

( )

( 1

2,  1,  3,  1

1,  2,  2,  1)

s k

h k

=

− = −−
↑

y (−1) = ( ) ( 1 ) 2 1 2
k

s k h k
∞

=−∞

− − = × =∑
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Resultant of convolution sum of s(n) and h(n) is y(n) and is given as follows:

y(n) = {y(−1), y(0), y(1), y(2), y(3), y(4), y(5)}
= {2, 5, 9, 7, 7, −1, −1}

↑

EXAMPLE 2.7

Compute the convolution sum y(n) = s(n) * h(n) of the pair of signals given by

s(n) = An u(n)
h(n) = Bn u(n) for both A = B and A ≠ B.

Solution: Since both s(n) and h(n) are causal sequences. These sequences 
are causal because both sequences are multiplier of u(n), and u(n) is defined 
as follows:

u(n) = 
1, 0
0, 0

n

n

≥
 <

u(n) is a causal sequence and its value is 1 for positive time instants.
Convolution sum is defined as follows:

y(n) = ( ) ( )
n

k

s k h n k
=−∞

−∑

= ( ). ( ), 0,1,2,...
n

k n k

k

A u k B u n k n−

=−∞

− =∑
Now, u(k) = 1 for k = 0 and u(n − k) = 1, for k = n

y(n) = 
0 0

kn n
k n k n

k k

A
A B B

B
−

= =

 =  
 

∑ ∑
for all integer values of k ranging from 0 to n.

Case I: If A = B

then,	 y(n) = 
0 0

(1)
kn n

n n k

k k

A
B B

A= =

  = 
 

∑ ∑
= Bn (n + 1), n = 0, 1, ....

Case II: If A ≠ B

then,	 y(n) = 

1

0

1

1

n

kn
n n

k

A
BA

B B
AB
B

+

=

   −  
     = 

  −
∑

= 
1 1n nB A
B A

+ +−
−

, n = 0,1,2,....
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2.4.2 Linear Convolution

Linear convolution of two discrete-time sequences can be performed by 
graphical method. In this method, both discrete-time sequences are rep-
resented on graphs individually. We can understand linear convolution by 
graphical method with the help of following examples.

EXAMPLE 2.8

Determine the linear convolution y(n) = s(n) * h(n) of the following two 
signals:

s(n) = An .u(n), 0 < A < 1
h(n) = u(n).

Solution: Linear convolution is defined as follows:

y(n) = ( ) ( )
k

h n k s k
∞

=−∞

−∑
Figure 2.15 illustrates the computation of linear convolution of two 

discrete-time sequences using graphs.
For n ≤ 0, h(n − k) s(k) is given by

s(k) h(n − k) = Ak, 0 ≤ 1≤ n
 = 0, otherwise

  (a) Graphical representation of h(−k)

(d h(–k

(e h(–k

(f h(–k n n > 0.

(g h(–k n n < 0.

(h s(k) = Aku(k) where 0 < A < 1.

(a h(–k)

(b h(k)

(c h(k

    (b) Graphical representation of mirror image of h(k)

(d h(–k

(e h(–k

(f h(–k n n > 0.

(g h(–k n n < 0.

(h s(k) = Aku(k) where 0 < A < 1.

(a h(–k)

(b h(k)

(c h(k

  �(c) Graphical representation of shifted various of  
h(k) from right to left by one unit of time.

(d h(–k

(e h(–k

(f h(–k n n > 0.

(g h(–k n n < 0.

(h s(k) = Aku(k) where 0 < A < 1.

(a h(–k)

(b h(k)

(c h(k   
(d) Graphical representation of shifted various of 
h(−k) from left to right by one unit of time.(d h(–k

(e h(–k

(f h(–k n n > 0.

(g h(–k n n < 0.

(h s(k) = Aku(k) where 0 < A < 1.

(a h(–k)

(b h(k)

(c h(k
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�

(d h(–k

(e h(–k

(f h(–k n n > 0.

(g h(–k n n < 0.

(h s(k) = Aku(k) where 0 < A < 1.

(a h(–k)

(b h(k)

(c h(k

  (e) Graphical representation of shifted various of  
h(−k) from left to right by two unit of time.   

(f) Graphical representation of shifted various of 
h(−k) from left to right by n unit of time when n > 0.

(d h(–k

(e h(–k

(f h(–k n n > 0.

(g h(–k n n < 0.

(h s(k) = Aku(k) where 0 < A < 1.

(a h(–k)

(b h(k)

(c h(k

(g) Graphical representation of shifted various of  
h(− K) from right to left by n unit of time when n < 0.

(d h(–k

(e h(–k

(f h(–k n n > 0.

(g h(–k n n < 0.

(h s(k) = Aku(k) where 0 < A < 1.

(a h(–k)

(b h(k)

(c h(k

 
(h) Graphical representation of shifted various of 
s(k) = Aku(k) where 0 < A < 1.

(d h(–k

(e h(–k

(f h(–k n n > 0.

(g h(–k n n < 0.

(h s(k) = Aku(k) where 0 < A < 1.

(a h(–k)

(b h(k)

(c h(k

FIGURE 2.15

Thus, for n ≥ 0,	 y(n) = 
1

0

1
1

nn
k

k

A
A

A

+

=

−
=

−∑ A A

For n < 0, h(n − k) s(k) = 0, i.e.,
y(n) = 0

Therefore, for all n, y(n) is given by

y(n) = 
11 ( )

1

nA
A

+ −
 − 

 u(n)

This is the resultant of convolution of h(k) and s(k) by graphical method

y(n) = 
11 ( )

1

nA
A

+ −
 − 

 u(n)

can be sketched as shown in Figure 2.15(i).

(i y(n).  (i) Graphical representation of y(n).
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EXAMPLE 2.9

Determine linear convolution of the sequences

s(n) = 2nu(−n) and h(n) = u(n)

Solution: Linear convolution of two discrete-time sequences is given by

y(n) = ( ) ( )
k

s k h n k
∞

=−∞

−∑
The sequences s(k) and h(n − k) are sketched as a function of k in 

Figure 2.16(a). Here, s(k) is zero for k > 0 and h(n − k) is zero for k > n.
Here, we observe that s(k) h(n − k) is always non-zero samples along the 

k-axis.
Where n ≥ 0, s(k) h(n − k) has non-zero samples for k ≤ 0. There will be 

two cases.
Case I: For n ≥ 0,

y(n) = 
0

0

( ) ( ) (2) (2)k k

k k k

s k h n k
∞ ∞

−

=−∞ =−∞ =

− = =∑ ∑ ∑

 = ( )1
1

0

1 2
2 2

1 2 2 1
k

k

∞
−

−
=−

= = =
− −∑

Thus y(n) = 2, for n ≥ 0. It is a constant value.
Case II: For n < 0, s(k) h(n − k) has non-zero sample for k ≤ n.

y(n) = ( ) ( ) 2 (2)
n n

k k

k k k n

s k h n k
∞

−

=−∞ =−∞ =−

− = =∑ ∑ ∑

 = 
1
2

k

k n

∞

=−

 
 
 

∑
Substituting m = k + n

 = 
0 0

1 1 1
2 2 2

nm n m

k m

−−∞ ∞

= =

     =     
     

∑ ∑

 = (2)n 
1

1 1/2
 
 − 

 = 2 n + 1
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FIGURE 2.16 (a)

y(n) = 2n+1, for n < 0

y(n) = 1

2, 0
2 , 0n

n

n+

≥
 <

This complex sequence y(n) can be visualized by the graph given in 
Figure 2.16(b).

FIGURE 2.16 (b)

2.4.3 Properties of Convolution Sum

Convolution is a mathematical operation between two signal sequences s(n) 
and h(n). This operation satisfies following properties:

1.	 Commutative law

2.	 Associative law

3.	 Distributive law.

Commutative Law: Commutation sum satisfies commutative law. 
According to commutative law for a system shown in Figure 2.17,

FIGURE 2.17  LTI system
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s(n) * h(n) = h(n) * s(n)

or	 ( ) ( )
k

s k h n k
∞

=−∞

−∑  = ( ) ( )
k

h k s n k
∞

=−∞

−∑

This is true only for LTI discrete-time systems.
Associative Law: Convolution sum also satisfies the associative law.
According to associative law for the systems shown in Figure 2.18,

[s(n) * h1(n)] * h2(n) = s(n) * [h1(n) * h2(n)]

s(n)
h (n)1

LTI System
y(n)

h (n)2

LTI System

FIGURE 2.18  Cascading of two discrete-time LTI systems.

Distributive Law: This law is also satisfied by convolution sum of two 
discrete-time LTI systems. According to the distribution law for the systems 
shown in Figure 2.19,

s(n) * [h1(n) + h2(n)] = s(n) * h1(n) + s(n) * h2(n)

FIGURE 2.19  Two discrete-time LTI systems in parallel.

2.5	 INVERSE SYSTEMS

Convolution is used to determine output y(n) for any arbitrary input s(n) and 
unit-sample response h(n) of the LTI discrete-time system. There are some 
practical applications where we have an output signal y(n) from a system of 
which characteristics are unknown and we are required to determine the 
input signal s(n).

For example: In high-speed data (digital information) transmission 
through telephone channels, the channel distorts the signal and causes Inter 
Symbol Intereference (ISI) among the data symbols. ISI causes errors in 
the data recovered from the channel. In such circumstances, we require a 
corrective system which, when cascaded with the channel will produce a 
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reciprocal signal of the desired transmitted signal. This system is called as an 
equalizer in digital communications. Figure 2.20 illustrates the block diagram 
of a system and an inverse system (both are cascaded).

FIGURE 2.20  Block diagram showing system (channel) and inverse system (equalizer).

Inverse System: The frequency response of corrective system is basi-
cally reciprocal of the frequency response of the system which causes distor-
tion (in telephony for digital transmission it is called ISI).

H(z) = Transfer function of direct system.
HI(z) = Transfer function of inverse system.

For direct system–inverse system cascading

H(z) . HI(z) = 1
Deconvolution: The distorted system produces an output y(n) which 

is  the convolution of the input with unit-sample response h(n). Inverse 
system  produces s(n) by taking y(n) as input and this operation is called 
deconvolution.

Inverse system can be designed by comparing the received signal with 
the transmitted signal. The process of determining the characteristics of an 
unknown system, h(n) or H(ω) by a set of measurements performed on the 
system is termed as system identification.

Deconvolution is often used in seismic signal processing.
A system is said to be invertible if there is a one-to-one correspondence 

between its input and output signals. The cascading of a direct system and 
its inverse system is equivalent to the identity system, i.e., H(z).HI(z) = 1 or 
h(n) * hI(n) = δ(n). Inverse systems are applicable in geophysics and digital 
communications. Figure 2.21 illustrates the block diagram showing cascading 
of direct and inverse systems.

FIGURE 2.21  Block diagram showing cascading of direct system and inverse system.
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From Figure 2.21,

	 v(n) = h(n) * h1(n) * s(n) = s(n)� (2.20)
For identity system,

	 h(n) * hI(n) = δ(n)� (2.21)

Taking the z-transform * of Eqn. (2.21), we get

	 H(z) HI(z) = 1� (2.22)

Therefore, transfer function for inverse system will be

	 HI(z) = 
1
( )H z

� (2.23)

If transfer function of direct system is rational, then

	 H(z) = 
( )
( )

P z
Q z

� (2.24)

The transfer function of an inverse system is given by

	 H1(z) = 
( )
( )

Q z
P z

� (2.25)

Thus, the zeros of H(z) become the poles of HI(z) and poles of H(z) 
become the zeros of HI (z). If H(z) is an all-zero system (FIR system), then 
HI(z) is an all-pole system. If H(z) is an all-pole system, then H1(z) will be 
all-zero system (FIR system).

EXAMPLE 2.10
Find out the inverse of the system with unit-sample response h(n) = (1/3)n u(n).

Solution:
Given	 h(n) = (1/3)n u(n)

H(z) = z-transform of h(n)

 = 1

1
1 1/3z−−

 ROC: |z| > 1
3

This is a causal, stable, and an all-pole system.
Its inverse system will be all-zero system (FIR system). It is given by

HI(z) = 11 1
1

( ) 3
z

H z
−= −

*z-transform and inverse z-transform are discussed in detail in Chapter 3.
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hI(n) = inverse z-transform of HI(z)
 
= Z−1 11

1
3

z− −  

 = δ(n) − 
1
3

δ(n − 1)

hI(n) is the unit-sample response of inverse system of H(z).

EXAMPLE 2.11

Find out the inverse of the system with unit-sample response:

h(n) = δ(n) − 
1
3

δ(n − 1).

Solution:

H(z) = Z 
1

( ) ( 1)
3

n n δ − δ −  

= 1 − 
1
3

z−1, ROC: |z| > 0

This is an all-zero system (FIR system).
Transfer function of the inverse system

HI(z) = 
1

1 1
1 1( ) 1
3 3

z
H z z z−

= =
− −

This inverse system has a zero at z = 0 (i.e., origin) and a pole at z = 1/3.
In this case, there are two possible ROCs, and hence, there will be two 

possible inverse systems as shown in Figure 2.22.

Case I: ROC of HI(z): 
1
3

z >

hI(z) = Z−1[HI(z)]

= 1
3

n
 
 
 

u(n)

This is the unit-sample response of a causal and stable system.
Case II: ROC of HI(z): |z| < 1
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FIGURE 2.22  Two possible ROCs for H (z) = 
−

3
1
2

z

hI(z) = Z−1 [HI(z)]

 = 1
3

n
 
 
 

u(n − 1)

This system is the unstable and anticausal.

2.6	 CORRELATION OF TWO DISCRETE-TIME SIGNALS

A mathematical operation that has close resemblance with convolution is 
called correlation. Correlation operation also requires two discrete-time 
sequences just as convolution.

The objective in computing the correlation between two signals is to mea-
sure the degree of similarity of two signals. By measuring the degree of cor-
relation, we can extract some information that depends on the application. 
Here, application means the type of system where correlation operation is 
used for extracting some information. It is required in radar, sonar, digital 
communications, and other areas of engineering and technology. Resultant 
of correlation operation of two discrete-time sequences is a discrete-time 
sequence.

If the two sequences are identical, then the resultant of correlation of two 
discrete-time sequences is called auto-correlation sequence.

If the two sequences are different, then the resultant of correlation of two 
sequences is called cross-correlation sequence.

Digital communication is one of the areas where correlation operation is 
often used.
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2.6.1 Cross-correlation and Auto-correlation Sequences

Suppose s(n) and y(n) are two real signal sequences which have finite energy. 
It means that these are some energy sequences.

The cross-correlation of s(n) and y(n) is a sequence RSY(l) which is defined 
as follows:

	 RSY(l) = ( ) ( 1)
n

s n y n
∞

=−∞

−∑ � (2.26)

or,	 RSY(l) = ( ) ( )
n

y n l s n
∞

=−∞

+∑ � (2.27)

(l = 0, ±1, ±2, ....)
Comparing equations (2.26) and (2.27), we get

	 RSY(l) = RYS(−l)� (2.28)
where RSY(l) is a folded version of RYS(l). Here, folding is done with respect 
to l = 0.

EXAMPLE 2.12
Determine the cross-correlation sequence RSY(l) of the sequences

s(n) = {2, 1, 3}
↑

y(n) = {1, 2, 2}.
↑

Solution: Number of sample points in resultant of correlation of two dis-
crete-time sequences = 3 + 3 − 1 = 5.

Cross-correlation sequence is defined as follows:

RSY(l) = ( ) ( )
n

s n y n l
∞

=−∞

−∑ , l = 0, ±1, ±2,…

For l = 0,	 RSY(0) = ( ) ( )
n

s n y n
∞

=−∞
∑

( ) 2,1,3

( ) 1,2,2

s n

y n

=

↑
=

↑

RSY(0) = ( ) ( )
n

s n y n
∞

=−∞
∑  = 2 × 1 + 1 × 2 + 3 × 2 = 2 + 2 + 6 = 10

For l = 1,	 RSY(1) = ( ) ( 1)
n

s n y n
∞

=−∞

−∑
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( ) 2,1,3

( 1) 1,2,2

s n

y n

=

↑
− =

RSY(1) = ( ) ( 1)
n

s n y n
∞

=−∞

−∑  = 1 × 1 + 3 × 2 = 1 + 6 = 7

For l = 2,	 RSY(2) = ( ) ( 2)
n

s n y n
∞

=−∞

−∑

( ) 2,1,3

( 2) 1,2,2

s n

y n

=

↑
− =

RSY(2) = ( ) ( 2)
n

s n y n
∞

=−∞

−∑  = 3 × 1 = 3

RSY(3) = 0
RSY(4) = 0
RSY(5) = 0

.

.

.
.

For l = −1,	 RSY (−1) = ( ) ( 1)
n

s n y n
∞

=−∞

+∑
( ) 2,1,3

( 1) 1,2,2

s n

y n

=
↑

+ =

RSY(−1) = ( ) ( 1)
n

s n y n
∞

=−∞

+∑  = 2 × 2 + 1 × 2 = 6

For l = −z, RSY(−2) = ( ) ( 2)
n

s n y n
∞

=−∞

+∑
s (n) = 2, 1, 3

y (n + 1) = 1, 2, 2

RSY(−2) = ( ) ( 2)
n

s n y n
∞

=−∞

+∑  = 2 × 2 = 4

RSY(−3) = 0’
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RSY(−4) = 0
RSY(−5) = 0

The resultant cross-correlation sequence
RSY(l) = {RSY(−2), RSY(−1), RSY(0), RSY(1), RSY(2)}

 = {4, 6, 10, 7, 3}
↑

Note: If s(n) has M sample points and y(n) has N sample points in their 
sequences, then its resultant cross-correlation sequence will have M + N − 1 sam-
ple points just like linear convolution of two discrete-time sequences will have.

EXAMPLE 2.13
Compute the auto-correlation of the signal

s(n) = Anu(n), 0 < A < 1.

Solution: Since s(n) is an infinite-duration signal and its auto-correlation will 
also have infinite duration.

There will be two cases:
Case I: If l ≥ 0

Rss(l) = 1( ) ( ) ( ). ( )n n

n n

s n s n l A u n A u n l
∞ ∞

−

=−∞ =−∞

− = −∑ ∑

 = 
1n n

n l

A A
∞

−

=

⋅∑

 = 1 2. .
nn n l

n l n l

A A A A A
∞ ∞

− −

= =

 =  ∑ ∑
since A < 1, infinite series coverages

 = 
2

2 2 , 0
1 1

l l
l A A

A l
A A

−  
= ≥ − − 

� (1)

Case II: For l < 0

Rss(l) = 1 2

0 0 0

( ) ( ) .
nn n l

n n n

s n s n l A A A A
∞ ∞ ∞

− −

= = =

 − = =  ∑ ∑ ∑

 = 2 2

1
, 0

1 1

l
l A

A l
A A

−
−  ⋅ = < − − 

� (2)

From Eqns. (1) and (2), we get

2

2

( ) , 0
1

( ) , 0
1

l

ss

l

ss

A
R l l

A
A

R l l
A

−


= ≥ −


= < − 

 Auto-correlation sequences
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Hence, auto-correlation of the signal s(n) = Anu(n), 0 < A < l is given as follows:

Rss(l) = 21

lA
A−

, −∞ < l < ∞� (3)

2.7	 SIGNALS AND VECTORS

There is a perfect analogy between signals 
and vectors. Signals are not just like vec-
tors. Signals are vectors. A vector can be 
represented as a sum of its components in 
a variety of ways, depending on the choice 
of coordinate system. A signal can also be 
represented as a sum of its components in a 
variety of ways.

2.7.1 Component of a Vector

A vector is specified by its magnitude and its direction. Here, vectors are 
represented by an alphabet over which an arrow is shown. For example, x



 is a 
vector with magnitude or length x



. Consider two vectors v


 and x


, as shown 
in Figure 2.23. Let the component of v



 and x


 be cx


. Geometrically the com-
ponent of v



 along x


 is the projection of v


 on x


. The component of v


 along x


 
is obtained by drawing a perpendicular from the tip of v



 on the vector x


. It is 
shown in Figure 2.23.

Vector v


 can be expressed in terms of x


 as follows:

	 v


 = c x


 + e


� (2.29)

However, this is not the only way to express vector v


 in terms of vector x


.  
Figure 2.24 shows two of the infinite other possibilities.

FIGURE 2.24  Illustration of approximation of a vector in terms of another vector.

FIGURE 2.23  Illustration of two vectors  
v and x
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From Figs. 2.24(a) and 2.24(b), we have
v


 = c1 x


 + e


1

= c2
x


 + e


2� (2.30)
In each of these three representations of Figs. 2.23, 2.24(a), and 2.24(b), 

vector v


 can be represented in terms of x


 plus another vector (called the 
error vector).

If we approximate v


 by c x


 in Figure 2.23,

	 v


   c x


� (2.31)
The error in this approximation is the vector e v cx= −  

. Similarly, the 
errors in the approximations in Figs. 2.24(a) and 2.24(b) are e



 and e


2. But the 
error vector e is the smallest.

Now, we can define mathematically the component of a vector v


 along x


 to 
be cx



, where c is chosen to minimize the length of the error vector e v cx= −  

.
For convenience, we can define the scalar or dot or inner product of two 

vectors v


 and x


 as follows:

	 v x⋅   = v u
 

 cos θ� (2.32)

where θ = angle between vectors v


 and x


.
By using above definition, we can express magnitude of vector x



, i.e., x


 as 
follows:

2x


 = x x⋅  � (2.33)

Magnitude of a vector is also called length of the vector.
Now, the length of the component of v



 along x


 is v


 cos θ, but it is also 
equal to c x



.
Therefore,	 c x



 = v


 cos θ� (2.34)
On multiplying both sides of Eqn. (2.34) by x



, we get
c x


 x


 = v x
 

 cos θ

or	 c 2x


 = v x
 

 cos θ
= v x⋅  � (2.35)

From Eqns. (2.33) and (2.35), we get

c = 2

1
( )

v x
v x

x x x

⋅
= ⋅

⋅

 

 

 



� (2.36)

since 2x x x= ⋅  

.
From Figure 2.23, it is apparent that when vectors v



 and x


 are 
perpendicular, or orthogonal, then vector v



 has a zero component along x


; 
consequently, c = 0.
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Now, we can conclude from Eqn. (2.36) that if vectors v


 and x


 are to be 
orthogonal then their dot or scalar product must be zero, i.e.,

v x⋅   = 0.

2.7.2 Component of a Signal

Now, we can extend the concepts of vector component and orthogonality to 
signals. We consider the problem of approximating a real signal v(t) in terms 
of another real signal x(t) over an interval [t1, t2]:

v(t) 


 c x(t), t1 ≤ t ≤ t2� (2.37)

The error e(t) in this approximation is given by

e(t) = 
1 2( ) ( ),

0, otherwise
v t cx t t t t− ≤ ≤




� (2.38)

We now select some criterion for the “best approximation.” We know that 
the signal energy is one possible measure of a signal size. For best approxima-
tion, we need to minimize the error signal e(t). This error signal minimizes its 
size which is its energy Ee over the interval [t1, t2].

Energy of error signal is given by

Ee = 
2

1

t

t
≡  e2(t) dt� (2.39)

Substituting Eqn. (2.38) in Eqn. (2.39), we get

Ee = 
2

1

2( ) ( )
t

t
v t cx t dt − ∫ � (2.40)

Note that the R.H.S. of Eqn. (2.40) is definite integral with time t as a 
dummy variable. Hence, Ee is a function of the parameter c (not t) and Ee is 
minimum for some choice of c.

For minimization of Ee, a necessary condition is given as follows:

e

c

dE
d

 = 0� (2.41)

Putting Eqn. (2.40) in Eqn. (2.41), we get

[ ]{ }2

1

2( ) ( )
t

t

d
v t cx t dt

dc
−∫  = 0

Expanding the squared term inside the integral, we get

{ }2

1

2 2 2( ) ( ) 2 ( ) ( )
t

t

d
v t c x t cv t x t dt

dc
 + − ∫  = 0
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or	
2 2 2

1 1 1

2 2 2( ) ( ) 2 ( ) ( )
t t t

t t t

d d d
v t dt c x t dt c v t x t dt

dc dc dc
    + −          ∫ ∫ ∫  = 0

or	
2 2

1 1

22 ( ) ( ) 2 ( )
t t

t t
v t x t dt c x t dt− +∫ ∫  = 0

or	 c = 

2

1

2

1

2

( ) ( )

( )

t

t
t

t

v t x t dt

x t dt

≡

≡

= 
2

1

1
( ) ( )

t

tx

v t x t dt
E ≡ � (2.42)

where	 Ex = 
2

1

t

t
≡ x2(t) dt

Up to now, we have seen a remarkable similarity between the behavior of 
vectors and signals as indicated by the following two equations:

c = 2

1v x
v x

x x x

⋅
= ⋅

⋅

 

 

 



� (i)

c = 

2

1

2

1

2

( ) ( )

( )

t

t
t

t

v t x t dt

x t dt

≡

≡

= 
2

1

1
( ) ( )

t

tx

v t x t dt
E ≡ � (ii)

It is evident from these two parallel expressions that area under the prod-
uct of two signals corresponds to the scalar or dot product of two vectors. In 
fact, the area under the product of v(t) and x(t) is called the inner product of 
v(t) and x(t).

The energy of a signal is the inner product of a signal with itself and corre-
sponds to the vector length squared (which is the inner product of the vectors 
with itself).

If a signal v(t) is approximated by another signal x(t) as follows:
v(t)   c x(t) then the optimum value of c that minimizes the energy of the 

error signal in this approximation by Eqn. (2.42).
We have a signal v(t) which contains a component cx(t), where c is given 

by Eqn. (2.42). Note that in vector terminology, cx(t) is the projection of v(t) 
on x(t). From the vector-signal analogy, we say that if the component of a 
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signal v(t) of the form x(t) is zero (That is, c = 0), the signals v(t) and x(t) are 
orthogonal over the interval [t1, t2]. Therefore, we define the real signals v(t) 
and x(t) to be orthogonal over the interval [t1, t2] if

2

1

( ) ( )
t

t

v t x t dt≡  = 0� (2.43)

2.7.3 Orthogonality in Complex Signals

So far, our discussion was restricted to real functions of time “t.” Now, we gen-
eralize our discussion to complex functions of time “t.” We consider the same 
problem of approximating a function v(t) by a function x(t) over an interval 
(t1 ≤ t ≤ t2):

	 v(t)   cx(t)� (2.44)

In this case, both the coefficient c and the error

e(t) = v(t) − cx(t)� (2.45)

are complex (in general).
For the best approximation, we choose c such that we minimize Ee (Energy 

of the error signal) and given by

Ee = 
2

1

2( ) ( )
t

t
v t cx t dt−∫ � (2.46)

We also know that

|A + B|2 = (A + B) (A* + B*)
 = |A|2+ |B|2 + A*B + AB*� (2.47)

After some manipulation in Eqn. (2.46) and using result of Eqn. (2.47), 
we can express the integral Ee in Eqn. (2.46) as follows:

Ee = 2 2 2

1 1 1

2 2

2 1 1
( ) ( ) ( ) ( ) ( )

t t t

xt t t
x x

v t dt v t x t dt c E v t x t dt
E E

− * + − *∫ ∫ ∫

Since the first two terms on the R.H.S. are independent of c, it is clear 
that Ee is minimized by choosing c such that the third term is zero. This gives

c = 
2

1

1
( ) ( )

t

tx

v t x t dt
E

*≡ � ...(2.48)

This result needs to redefine orthogonality for the complex case as follows:
Two complex functions x1(t) and x2(t) are orthogonal over an interval  

(t1 ≤ t ≤ t2) if
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2

1

1 2( ) ( )
t

t

x t x t dt*≡  = 0

or	 2

1

1 2( ) ( )
t

t

x t x t dt*≡  = 0� (2.49)

Either equality suffices. This is the general definition of orthogonality. This 
equation will reduce to Eqn. 

2

1

( ) ( ) 0
t

t
v t x t dt =∫ , when the functions are real.

2.7.4 Energy of the Sum of Orthogonal Signals

We already know that the length of the sum of two orthogonal vectors is equal 
to the sum of the lengths squared of the two vectors. Thus, if vectors x



 and y


 
are orthogonal, and if z



 = x


 + y


, then
2z


 = 
22x y+ 

Similar results are also available for signals. The energy of the sum of the 
two orthogonal signals is equal to the sum of the energies of the two signals. 
Thus, if signals x(t) and y(t) are orthogonal over an interval [t1, t2], and if

z(t) = x(t) + y(t), then
Ez = Ex + Ey� (2.50)

Real signals case is special case of complex signals

2

1

2( )
t

t

z t dt≡  = 
2

1

2
( ) ( )

t

t
x t y t dt+∫

= 2 2 2 2

1 1 1 2

22( ) ( ) ( ) ( ) ( ) ( )
t t t t

t t t t
x t dt y t dt x t y t dt x t y t dt+ + * *∫ ∫ ∫ ∫

 = 
2 2

1 1

22( ) ( )
t t

t t
x t dt y t dt+∫ ∫ � (2.51)

This last result follows from the fact that because of orthogonality, the two 
integrals of the cross products x(t) y*(t) and x*(t) y(t) are zero. This result can 
be extended to the sum of any number of mutually orthogonal signals.

EXAMPLE 2.14
Determine the component in signal v(t) of the form sin(t) for the square signal 
v(t). It is shown in Figure 2.25. In other words, approximate v(t) in terms of sin(t):

v(t) 


 c sin (t), 0 ≤ t ≤ 2π

So that the energy of the error signal is minimum.
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FIGURE 2.25  Approximation of a square signal in terms of a single sinusoid.

Solution: In this case,

x(t) = sin(t)� (1)

Energy of signal x(t) is determined as follows:

Ex = 
2 2

0
sin ( )t dt

π

∫

 = 
2

0

1 cos(2 )
2

t
dt

π − 
  ∫

 = 
2 2

0 0

1 1
cos(2 )

2 2
dt t dt

π π
−∫ ∫

 = 
2 2

0 0

1 1 sin(2 )
2 2 2

t
t

π π
   −      

 = 2 2
0 0

1 1
[ ] sin(2 )

2 4
t tπ π− 

 = π − 0 = π
or	 Ex = π� (2)

Constant C is determined as follows:

c = 

2

1

2

1

2

( ) ( )

( )

t

t
t

t

v t x t dt

x t dt

≡

≡

 = 
2

1

1
( ) ( )

t

tx

v t x t dt
E ≡
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 = 
2

0

1
( )sin( )v t t dt

π

π ∫

or	 c = 
2

0

1
( )sin( )v t t dt

π

π ∫
 = 

2

0

1
sin( ) sin( )t dt t dt

π π

π
 + −  π ∫ ∫

or	 c = 
4
≠

� (3)

Therefore,	 v(t)   c sin(t)

  
4
≠

 sin(t)� (4)

Eqn.(4) represents the best approximation of v(t) by the function sin(t), 
which minimizes the error energy.

2.8	� REPRESENTATION OF SIGNALS ON ORTHOGONAL 
BASIS

In this section, we discuss a method of representing a signal as a sum of 
orthogonal signals. Here again, we can benefit from the insight gained from 
a similar problem with vectors. We know that a vector can be represented as 
the sum of orthogonal vectors, which form the coordinate system of a vector 
space. The problem with signals is analogous. The results for signals are paral-
lel to those for vectors. Here, we need review of vector representation.

2.8.1 Orthogonal Vector Space

Now, we consider a three-dimensional (3−D) Cartesian vector space described 
by three mutually orthogonal vectors x1, x2, and x3. It is shown in Figure 2.26. 
First, we shall seek to approximate a three-dimensional vector (v) in terms of 
two mutually orthogonal vector x1 and x2:

v 


 c1x1 + c2x2

The error in this approximation is given by
e = v − (c1x1 + c2x2)

or	 v   c1x1 + c2x2 + e
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We can see from Figure 2.26 that the length of e is minimum when e is 
perpendicular to x1 − x2 plane, and c1x1 and c2x2 are the projections or com-
ponents of v on x1 and x2, respectively. Therefore, the constants c1 and c2 are 
given by Eqn. (2.52)

c = 2

1v x
v x

x x x

⋅
= ⋅

⋅
� (2.52)

Now let us determine the best approximation to v in terms of all three 
mutually orthogonal vectors x1, x2, and x3:

v 


 c1x1 + c2x2 + c3x3� (2.53)

Figure 2.26 shows that a unique choice of c1, c2, and c3 exists, for which 
Eqn. (2.52) is no longer an approximation but an equality:

FIGURE 2.26  Representation of a vector in three-dimensional space.

v = c1x1 + c2x2 + c3x3

In this case, c1x1, c2x2, and c3x3 are the projections or components of v on x1, 
x2, and x3, respectively. We can note here that the error in the approximation is 
zero when v is approximated in terms of three mutually orthogonal vectors x1, 
x2, and x3. This is because v is a three-dimensional vector and the vectors x1, 
x2, and x3 represent a complete set of orthogonal vectors in three-dimensional 
space. Here, the meaning of word “complete” is that it is impossible to find 
in this space another vector x4 that is orthogonal to all three vectors x1, x2, and 
x3. Any vector in this space can then be represented (with zero error) in terms 
of these three vectors. Such vectors are called basis vectors. If a set of vectors 
{xi} is not complete, the error in the approximation will generally not be zero.
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Thus, in the three-dimensional case, it is generally not possible to repre-
sent a vector v in terms of only two basis vectors without an error.

The choice of basis vectors is not unique. In fact, a set of basis vectors cor-
responds to particular choice of coordinate system. Thus a three-dimensional 
vector v may be represented in many different ways which depends on the 
coordinate system used.

We can summarize, if a set of vectors {xi} is mutually orthogonal, that is, if

xm ⋅ xn = 2

0,

,m

m n

x m n

≠


=
and if this basis set is complete, a vector v in this space can be expressed as

v = c1x1 + c2x2 + c3x:3

where the constants ci are given by

ci = i

i i

v x
x x

⋅
⋅

 = 2

1
i

i

c x
x

⋅ , i = 1, 2, 3

2.8.2 Orthogonal Signal Space

Here, we first define the orthogonality of a signal set x1(t), x2(t), ..... xn(t) over 
the interval [t1, t2] as follows:

2

1

*( ) ( )
t

m n
t

x t x t dt≡  = 
0, for

, forn

m n

E m n

≠
 =

� (2.54)

If the energies En = 1 for all values of n, then the set is normalized. There-
fore, the set is called orthogonal set. An orthogonal set can be normalized by 
dividing xn(t) by nE  for all values of n.

Now, we are considering the problem of approximating a signal v(t) over 
the interval [t1, t2] by a set of N mutually orthogonal signals x1(t), ........... xN(t):

v(t)   c1x1 (t) + c2x2 (t) + ........ + cNxN (t)� (2.55)

or	 v(t)   1 2
1

( ),
N

n n
n

c x t t t t
=

≤ ≤∑ � (2.56)

In this approximation, energy of the error signal e(t), i.e., Ee is minimized 
by choosing Cn in the following manner:

Cn = 

2

1

2

1

2

( ) ( )

( )

t

n
t

t

n
t

v t x t dt

x t dt

*≡

≡
� (2.57)
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or	 Cn = 
2

1

1
( ) ( ) 1,2,...,

t

nt
n

v t x t dt n N
E

* = =∫ � (2.58)

Moreover, if the orthogonal set is complete, the error energy, Ee → 0, and 
the representation in Eqns. (2.56) and (2.57) is no longer an approximation, 
but an equality

v(t) = c1x1(t) + c2x2(t) + ........ + cncn(t) + ......

= 1 2
1

( ),n n
n

c x t t t t
∞

=

≤ ≤∑ � (2.59)

where the coefficients Cn are given by Eqns. (2.57) and (2.58). Because the 
error signal energy Ee approaches zero, it follows that the energy of v(t) is now 
equal to the sum of the energies of its orthogonal components c1x1(t), c2x2(t), 
c3x3(t), ....

The Series on the R.H.S. of Eqn. (2.57) is called the Generalized Fourier 
Series of signal v(t) with respect to the set {xn(t)}. When the set {xn(t)} is such 
that the error energy Ee → 0 and N → ∞ for every member of some particular 
class, we can say that the set {xn(t)} is complete on [t1, t2] for that class of v(t). 
Therefore, the set {xn(t)} is called a set of Basis functions or Basis Signals.

Thus, when the set {xn(t)} is complete, we have the equality of Eqn. (2.57). 
The equality here is not an equality in the ordinary sense, but in the sense that 
the error energy, that is, the energy of the difference between the two sides of 
Eqn. (2.57), approaches zero.

If the equality exists in the ordinary sense, the error energy is always zero, 
but the converse is not necessarily true. The error energy can approach zero 
even though e(t), the difference between the two sides, is non-zero at some 
isolated instants.

This is because even if e(t) is non-zero at such instants, the area under 
e2(t) is still zero. Thus, the Fourier Series on the R.H.S. of Eqn. (2.57) may 
differ from v(t) at a finite number of points. In fact, when v(t) has a jump 
discontinuity at t = t0, the corresponding Fourier Series at t0 converges to the 
mean of v(t0

+) and v(t0
−).

2.8.3 Parseval’s Theorem

We already know that the energy of the sum of orthogonal signals is equal 
to the sum of their energies. Therefore, the energy of the R.H.S. of Eqn. 
(2.57) is the sum of the energies of the individual orthogonal components. 
The energy of a component cnxn(t) is cn

2En. Now, we equate the energies of the 
two sides of Eqn. (2.57) and we get

Ev = c1
2 E1 + c2

2 E2 + c3
2 E3 + ....

= 
n
•   cn

2 En� (2.60)
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This relation is called Parseval’s Theorem.
Also, we know that the signal energy (the area under the squared value of 

a signal) is analogous to the square of the length of a vector in the vector-signal 
analogy. In vector space, we know that the square of the length of a vector is 
equal to the sum of the squares of the lengths of its orthogonal components. Par-
seval’s Theorem [Eqn. 2.60] is the statement of this fact that is applied to signals.

2.9	 SAMPLING OF CONTINUOUS-TIME SIGNALS

There are many ways to sample a continuous-time signal. Here, we will dis-
cuss only periodic sampling. It is also called uniform sampling.

If sα(t) is a continuous-time signal, periodical measurement of continu-
ous-time signal is called periodic sampling or uniform sampling.

By periodic sampling of continuous-time signal, we can get discrete-time 
signal.

Discrete-time signal,	 sα(nTs) ≡ |
st nTsα =

where T is the sampling period and reciprocal of sampling period is termed as 
sampling frequency Fs.

FIGURE 2.27  (a) Block diagram of a sampler, (b) Periodic sampling of continuous-time signal.

Periodic sampling is done according to sampling theorem given by 
Sannon, discussed in Sec. 2.9.2.
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2.9.1 Nyquist Rate

Nyquist rate is defined as a minimum sampling rate required for perfect recon-
struction of sampled signal at the receiver.

If any signal has the highest frequency component Fmax, then

Nyquist rate = 2 × Fmax

2.9.2 Sampling Theorem

It is stated as follows: For perfect reconstruction of sampled signal at receiver, 
sampling rate or sampling frequency should be greater than or equal to 
Nyquist rate of the message signal.

According to the sampling theorem,
Sampling rate ≥ Nyquist rate, 2Fmax.
Periodic sampling establishes a relationship between the time variables t 

and n of continuous-time and discrete-time signals, respectively.
Consider a continuous-time signal, sα(t) = As cos(2πFmax t + θ)
Sampling periodically at a sampling rate Fs = 1/Ts samples per second 

produces

s(n) ≡ sα(nTs) = As cos(2π Fmax nTs + θ)

 = max

1
cos 2s

s

A F n
F

 
π + θ 

 

 = maxcos 2s
s

F
A n

F

 
π + θ 

 
 = As cos(2πfn + θ), −∞ < n < ∞

where f = max

s

F
F

 is the frequency variable for discrete-time signals,

Fmax is the frequency variable for continuous-time signals, and
Fs is the sampling rate.

2.9.3 Aliasing

When sampling frequency is less than Nyquist rate, then aliasing phenom-
enon occurs.

Nyquist rate = 2Fmax = 2 × Highest frequency component of message signal
If sampling rate < Nyquist rate than it is called under sampling, and in this 

case, aliasing phenomenon occurs.
If sampling rate > Nyquist rate, then it is called over sampling, and in this 

case, no aliasing phenomenon occurs; in fact, this is a suitable and necessary 
condition for sampling process.
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Aliasing phenomenon is defined as a phenomenon of high-frequency 
component in a spectrum of a signal seemingly taking on the identity of a 
lower frequency in the spectrum of its sampled version.

Figure 2.28 shows spectra of signals showing the sampling relations 
between analog and digital systems for a properly sampled input signal.

Figure 2.29 shows the effect of under sampling on the digital frequency 
response.

Aliasing problem occurs when sampling frequency Fs < 2Fmax. In this 
case, sampling frequency Fs is not sufficiently high to prevent the shifting 
of high-frequency information into lower frequencies. Such transference of 
information from one band of frequencies to another is called Aliasing, and 
the resulting frequency response is called an aliased representation of the 
original signal.

There are two corrective measures which are used to eliminate aliasing.

1.	 a pre-alias low-pass filter is used before sampling for attenuating those 
high frequencies that are not essential for the transmission of information.

2.	 a pre-alias low-pass filtered signal is sampled at a rate slightly higher than 
the Nyquist rate (Fs > 2Fmax).

(a) Spectrum of a band-limited analog signal s(t). (b) Spectrum of a sampled version of signal 
s(t) for a sampling frequency Fs = 2Fmax.

  (a) Spectrum of a band-limited analog signal s(t). (b) Spectrum of a sampled version of signal s(t)  
for a sampling frequency Fs = 2Fmax.

FIGURE 2.28  Spectrum of signals showing the sampling relations between analog and  
digital systems for a properly sampled input.
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S(F/F )s

F

1
Ts

Fs
2

–Fs
2

FIGURE 2.29  The effect of under sampling an analog signal on its digital frequency  
response showing aliasing around the folding frequency Fs/2.

EXAMPLE 2.15

Given the continuous-time signal sα(t) = 5 cos 200 πt. Determine
a.	 Minimum sampling rate (Nyquist rate) required to avoid aliasing.

b.	 If Fs = 400 Hz. What is the discrete-time signal obtained after sampling?

c.	 If Fs = 150 Hz. What is the discrete-time signal obtained after sampling?

d.	 What is frequency 0 < F < 
2

sF
 of sinusoidal that yields samples identical 

to those obtained in part (c).

Solution:
a.	 If the signal is sampled at Fs = 400 Hz. Frequency of discrete-time signal,

f = 
Frequency of analog signal, 100 1

Sampling frequency, 400 4s

F
F

= =
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The discrete-time signal,
s(n) = 5 cos 2πfn = 5 cos 2π 

1
4

n = 5 cos 
2
nπ

b.	 The frequency of continuous-time signal,

F = 100 Hz.

Hence, minimum sampling rate required to avoid aliasing is

2F = 2 × 100 = 200 Hz

c.	 If the signal is sampled at Fs = 150 Hz

Frequency of discrete-time signal, f = 
100 2
150 5s

F
F

= =
The discrete-time signal

s(n) = As cos 2πfn = 5 cos 2π 
2
3

 n = cos 
4
3
π

 n

= 5 cos 2 2
2 5cos

3 3
n

n
π π π − = 

 
d.	 For the sampling rate of Fs = 150 Hz

f = 
s

F
F

 or F = f Fs = × 
1
3

 150 = 50 Hz

The sinusoidal signal

yα(t) = 5 cos 2nFt = 5 cos 2π50t = 5 cos 100πt

Sampled at Fs = 150 Hz, yields identical samples
Hence, F = 100 Hz is an alias of F = 50 Hz for sampling rate Fs = 150 Hz.

EXAMPLE 2.16

Given the analog signal

sα(t) = 5 cos 50πt + 20 sin 300πt − 10 cos 100πt

What is the Nyquist rate of this signal?

Solution: The frequencies present in the signal above

F1 = 
50

2 2
1ω π

=
π π

 = 25 Hz

F2 = 
300

2 2
2ω π

=
π π

 = 150 Hz

F3 = 
100

2 2
3ω π

=
π π

 = 50 Hz
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The highest frequency component of the given message signal

Fmax = 150 Hz

∴	 Nyquist rate = 2Fmax = 2 × 150 = 300 Hz.

2.10	� RECONSTRUCTION OF A SIGNAL FROM ITS SAMPLE 
VALUES

Interpolation is the commonly used procedure for reconstructing a signal 
from its sample values. Interpolation gives either approximate or exact recon-
struction of the signal. One simple interpolation procedure is zero-order hold. 
Another useful form of interpolation is linear interpolation.

In linear interpolation, the adjacent samples (sample points) are con-
nected by straight lines as shown in Figure 2.30. We can also use higher-order 
interpolation formulae for reconstructing the signal from its sample values.

FIGURE 2.30  Linear interpolation between sample points.

For a band-limited signal, if the sampling instants are sufficiently close, then 
the signal can be reconstructed exactly by using a low-pass filter. Exact interpo-
lation can be carried out between various sample points. The interpolation of 
the reconstruction of s(t) as a process becomes evident when we consider the 
effect in the time domain of a low-pass filter. It is shown in Figure 2.31.

Output of low-pass filter, i.e., reconstructed signal is given by

sr(t) = ss(t) * h(t)� (2.61)

where ss(t) is sampled signal, and it is given by

ss(t) = ( ) ( )s s
n

s nT t nT
∞

=−∞

δ −∑ � (2.62)

and h(t) is impulse response of low-pass filter.
Reconstructed signal is given by

sr(t) = ( ) ( )s s
n

s nT h t T
∞

=−∞

−∑ � (2.63)
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Equation (2.63) describes a method to fit a continuous curve between the 
sample points s(nTs), and consequently, it is a interpolation formula.

(a b) spectrum of original input signal  
s(t), S(F). (c) spectrum of sampled signal ss(t), SS(F). (d  

S(j�) from Sp(F)]. (e) spectrum of reconstructed signal sr(t), Sr(F).(a b) spectrum of original input signal  
s(t), S(F). (c) spectrum of sampled signal ss(t), SS(F). (d  

S(j�) from Sp(F)]. (e) spectrum of reconstructed signal sr(t), Sr(F).

  (a) System for sampling and reconstruction of continuous-time signal. (b) spectrum of original input 
signal s(t), S(F). (c) spectrum of sampled signal ss(t), SS(F). (d) ideal low pass filter [which is used to 

recover S(jω) from Sp(F)]. (e) spectrum of reconstructed signal sr(t), Sr(F).

FIGURE 2.31  Exact reconstruction of a continuous-time signal from its samples using low-pass filter.

Impulse response of ideal low-pass filter is given by

h(t) = 
( )sinc s c s

c s

T T

T

ω ω
πω

� (2.64)
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where ωc = 2πFc is cut-off frequency of low-pass filter.
Substituting Eqn. (2.64) in Eqn. (2.63), we get

sr(t) = ( ) ( )s s
n

s nT h t nT
∞

=−∞

−∑

 = ( )
( )

( )
sin c sc s

s
n c s

t nTT
s nT

t nT

∞

=−∞

 ω − ω  
 

π ω −  
∑ � (2.65)

The reconstruction of a signal according interpolation formula of Eqn. 

(2.65) is shown in Figure 2.32, where 
2

2 2
s c

c s

F
F

ω π
ω = = = π .

(a) Band limited signal s(t), (b) Impulse train of sample ss(t), (c    (a) Band limited signal s(t), (b) Impulse train of sample ss(t), (c) Ideal interpolation in  
which the impulse train is replaced by a superposition of sinc functions.

FIGURE 2.32  Ideal interpolation for band-limited signal using sinc functions.
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Interpolation using the h(t), i.e., impulse response of a low-pass filter 
as in Eqn. (2.64) is called band-limited interpolation. It implements exact 
reconstruction if s(i) is band limited and it satisfies the condition of sam-
pling theorem. According to sampling theorem for perfect reconstruction of 
a band-limited signal, sampling frequency should be greater than twice the 
higher frequency component of the signal. We prefer simpler interpolating 
function such as zero-order hold. It can be viewed as a form of interpolation 
between sample values in which the interpolating function h(t) is the impulse 
response.

EXERCISES

1.	 Define discrete-time signals. How are these signals represented?

2.	 What are the elementary discrete-time signals?

3.	 What meant by manipulation of discrete-time signals? In how many ways, 
such types of manipulation of discrete-time sequences can be performed?

4.	 What are discrete-time systems? Give some examples of discrete-time 
systems.

5.	 Give classification of discrete-time systems.

6.	 Differentiate between the following systems:

a.	 Static systems and dynamic systems.

b.	 Time-invariant systems and time-varying systems.

c.	 Linear systems and non-linear systems.

d.	 Causal systems and non-causal systems.

e.	 Stable systems and unstable systems.

7.	 Discuss convolution sum. Write properties of convolution sum for LTI 
systems. Summarize the computing of convolution sum.

8.	 What is the criterion of stability for LTI systems?

9.	 What are IIR and FIR LTI systems?

10.	 Differentiate between recursive and non-recursive discrete-time systems.

11.	 What is unit-sample (impulse) response?
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12.	 What is correlation of two discrete-time signals? Give one example where 
correlation is used.

13.	 Differentiate auto-correlation and cross-correlation sequences.

14.	 What is sampling? Give the statement of sampling theorem.

15.	 Define Aliasing. How aliasing is eliminated?

16.	 Define inverse systems.

17.	 What is deconvolution? Discuss with the help on example.

18.	 Explain the reconstruction of a signal from its sample values.

19.	 Define interpolation which is used for reconstructing a signal from its 
sample values.

NUMERICAL EXERCISES

1.	 Determine the response (output) of the following systems to the input 
signal.

s(n) = 
, 2 2

0, elsewhere
n n− ≤ ≤




a.  y(n) = 5 s(n)	 b.  y(n) = 2s(n − 1)

c.  y(n) = 3s(n + 1)	 d.  y(n) = 
1
3

 [s(n + 1) + s(n) + s(n − 1)]

2.	 Check the systems for time invariance

a.  y(n) = s(n) − s(n − 1)	 b.  y(n) = ns(n)

c.  y(n) = 5s(−n)	 d.  y(n) = s(n) cos ω0 n

3.	 Check the systems for linearity

a.  y(n) = ns(n)	 b.  y(n) = 2s(n2)

c.  y(n) = As(n) + B

4.	 Check the following systems for causality

a.  y(n) = s(n) − s(n − 1)	 b.  y(n) − As(n)

c.  y(n) = s(n) + 5s(n + 3)	 d.  y(n) = s(n2)

e.  y(n) = s(2n)

DSP.Ch2_2pp.indd   66DSP.Ch2_2pp.indd   66 3/23/2022   12:20:27 PM3/23/2022   12:20:27 PM



Review of Discrete—Time Signals and Systems  • 67

5.	 Resolve the following sequences into a sum of weighted impulse 
sequences of

a.  s(n) = { }, 1, 32, 4
↑

	 b.  s(n) = { }, 3, 40, 1

↑
c.  s(n) = { }, 51, 2, 3, 4−

↑
6.	 Compute the convolution sum of the following sequences:

a.	 s(n) = { },1, 2, 4

↑

, h(n) { }1, 1, 1, 1

↑
b.	 s(n) = { },1, 2, 1−

↑

, h(n) = s(n)

c.	 s(n) = { },1, 2, 3, 4

↑

, h(n) { }1

↑

d.	 s(n) = 
1
3

n
 
 
 

 u (n), h(n) = 
1
4

n
 
 
 

 u(n)

e.	 s(n) = An u(n), h(n) = Bnu(n) where A = B and A ≠ B

f.	 s(n) = 
, 2 2

0, elsewhere

nA n − ≤ ≤



, h(n) = 
1, 0 2
0, elsewhere

n≤ ≤



7.	 Check the system for stability with impulse response h(n) − Anu(n).

8.	 Compute the correlation of the sequences given in problem 6.

9.	 Given the analog signal, sα(t) − 5 cos 300 πt

a.	 Determine the minimum sampling rate required to avoid aliasing.

b.	 If signal is sampled at 600 Hz. What will be discrete time signal obtained 
after sampling?

c.	 If signal is sampled at 225 Hz. What will be discrete-time signal obtained 
after sampling?

d.	 What is the frequency 0 < F < 
2

sF
 of a sinusoid that yields samples iden-

tical to those obtained in part (c).

5.	 Given a continuous-time signal

sα(t) = 5 cos 80πt + 10 sin 300πt − cos 100πt

What will be the Nyquist rate of this signal?
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C H A P T E R  3
The z-Transform

3.1	 INTRODUCTION

Laplace transform is an extension of the continuous-time Fourier transform. 
This extension was motivated by the fact that the Laplace transform can be 
applied to a broader class of signals than the Fourier transform can. Since 
there are many signals for which the Fourier transform does not converge but 
it does for the Laplace transform.

z-transform for discrete-time signals is the discrete-time counterpart of 
the Laplace transform for continuous-time signals, and both of them have 
a similar relationship to the corresponding Fourier transform. The moti-
vation for introducing generalization of Discrete-time Fourier transform 
(DTFT) are:

1.	 DTFT does not converge for all sequences but its generalization 
(z-transform) can be applied to a broader class signals.

2.	 A second advantage is that in analytical problems the z-transform notation 
is often conveniently used than the DTFT.

It is worth noting that transform techniques are used for the analysis of 
various signals and linear time-invariant (LTI) systems.

Comparison between Transforms and Logarithms: In various trans-
forms, such as Laplace transform, Fourier transform, z-transform, etc., we use 
one transformation formula which converts signals or sequences from time-
domain to another corresponding domain depending upon a particular trans-
form, that domain is easy and suitable for computations and also we can extract 
more information in that domain which is necessary for signal processing.
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We use an inverse transform formula to again convert back that signal into 
time-domain.

Purpose of Transformation: There are two purposes of transformation

a.	 For extracting more information from the transformed domain (e.g., fre-
quency domain) for the purpose of signal processing.

b.	 For the purpose of simplification of computations in that domain. A log-
arithm is used for simplification and making easy computations and it is 
not used for the purpose of extracting any information from a sequence 
or signal that was done in transformation techniques.

As we know, transform techniques are used for the analysis of signals 
and LTI systems. The z-transform plays the same role in the analysis of 
discrete-time signals and LTI systems as the Laplace transform plays in the 
analysis of continuous-time signals and LTI systems.

3.2	 DEFINITION OF THE z-TRANSFORM

z-transforms are of two types:

1.	 Two-sided z-transform

2.	 One-sided z-transform.

The two-sided z-transform of a discrete-time signal s(n) is defined as the 
power series
			   -transform of sequenc (s( e) )S z z n= �

				   [ ( )] ( ) n

n

Z s n s n z
∞

−

=−∞

= = ∑ � (3.1)

where z is a complex variable.
				   jz re ω=

�

where r = |z| = magnitude of z and w is the angle of z.
It is also called bilateral z-transform.
One-sided z-transform of a discrete-time signal s(n) is defined as

			 
0

( ) [ ( )] ( ) n

n

S Z Z s n s n z
∞

−

=

= =∑ � (3.2)
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It is also called unilateral z-transform.
The difference between two-sided z-transform and one-sided z-transform 

is that the lower limit of summation is zero for one-sided z-transform and −∞ 
for two-sided z-transform. Generally, a one-sided z-transform is used for solv-
ing difference equations of discrete-time LTI systems.

For causal sequences the two-sided and one-sided z-transforms are 
equivalent. Two-sided z-transform can be defined only for a particular region 
of convergence (ROC). The ROC is not important for one-sided z-transform. 
One-sided z-transform is used for solving linear difference equations with 
non-zero initial conditions.

3.3	 REGION OF CONVERGENCE (ROC)

For some value of z, the 
power series in Eq. (3.1) 
does not converge to a finite 
value.

The portion of the 
z-plane for which the series 
in Eq. (3.1) converges is 
called the ROC. The ROC 
depends upon the magni-
tude of z. The ROC cannot 
contain any poles, since the 
series becomes infinite at 
the poles. The ROC can be 
a circle, interior of a circle, 
exterior of a circle, an annu-
lus, or the entire z-plane.

3.3.1	�Possible Configurations 
of the ROC for the 
z-Transform

These configurations are:

1.	 interior of a circle [Figure 3.1(a)],

2.	 exterior of a circle [Figure 3.1(b)],

( )a

Re( )z

Im( )z

Im( )z

Re( )z

( )b

Im( )z

Re( )z

( )c

Im( )z

Re( )z

( )d

FIGURE 3.1  �Possible configurations of the ROC for the z-
transform. (a) Interior of a circle (b) Exterior of a 
circle (c) An annulus (d) The entire z-plane.

DSP.CH03_3pp.indd   71DSP.CH03_3pp.indd   71 4/1/2022   4:33:50 PM4/1/2022   4:33:50 PM



72 • Digital Signal Processing 

3.	 an annulus [Figure 3.1(c)], and

4.	 the entire z-plane [Figure 3.1(d)].

3.3.2	Properties of ROC for z-Transform

Properties of the ROC for the two-transform are given in Table 3.1.

TABLE 3.1.

Discrete-time sequence, s(n) ROC for its z-transform, S(z)
1. Unit-sample sequence, δ(n) Entire z-plane

2. Finite-duration causal sequence Entire z-plane except z = 0

3. Finite-duration sequence with
s(n) ≠ 0 for some n < 0
s(n) = 0 for all n > 0

Entire z-plane except for z = ∞

4. Finite-duration sequence with
s(n) ≠ 0 for some n < 0
s(n) = 0 for some n > 0

Entire z-plane except for z = 0 and 
z = ∞

5. Right-sided sequence
s(n) = 0 for some n < 0

Outward from outermost pole

6. Right-sided sequence
s(n) ≠ 0 for some n < 0

Outward from outermost pole, z = ∞ 
is excluded

7. Left-sided sequence
s(n) = 0 for all n > 0

Inward from innermost pole

8. Left-sided sequence
s(n) ≠ 0 for some n > 0

Inward from innermost pole, z = 0 is 
excluded

9. Two-sided sequence Annulus

EXAMPLE 3.1
Determine the z-transforms of the following finite-duration sequences:

(a)	 s(n) = {2, 4, 5, 6, 1}	 (b)	 s(n) = {1, 2, 3, 4, 5}
		  ↑	 	 	 	 	 ↑
(c)	 s(n) = {0, 0, 1, 2, 3}	 (d)	 s(n) = δ(n)
		  ↑
(e)	 s(n) = δ(n − k), k > 0	 (f)	 s(n) = δ(n + k), k > 0
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Solution:
(a)	 z-transform is defined as

			   ( ) [ ( )] ( ) n

n

S z Z s n s n z
∞

−

=−∞

= = ∑ �

Given	 2,  4,  5,( ) ,{  1} 6s n =
↑ �

or	

0 1 2

4

0

3 4

1 2 3 4

1 2 3 4

(0) (1) (2) (3

( ) ( ) (

) (4)

2.1 4 5 6 1

2 4 5 6

)n n

n n

s z s z s z s z s z

z

S z s n z

z z z

z z z z

s n z
∞

−

− − − − −

− − − −

− − −

−∞ =

−

−

=

= =

=

= + + + +

+ + + +

+ += + +

∑ ∑

�
ROC: Entire z-plane except z = 0

(b)	 Given s(n) 1,  2,  3,  4 }5{ ,  =
↑

z-transform is defined as

			 

( ) ( ) ( ) ( ) ( )2 1 0 1 2

2 1 1 2

2 1

2

2

2

–2 –1 0

( ) [

1 2

1

(

2 3.1 4 5

2 3

)] ( ) (

4 5

)n n

n n

s z s z s z s z s

S z Z s n s n z s n

z

z z z z

z z z z

z
∞

− −

=−∞ =−

− −

− −

− −

+ + + +

+ + + +

= = =

=

=

= + + + +

∑ ∑

�
�

ROC: Entire z-plane except z = ∞ and z = 0

(c) Given s(n) = {0, 0, 1, 2, 3}
			   ↑
z-transform is defined as

			 

( ) ( ) ( ) ( ) ( )0 1 2 3 4

0 1 2 3 4

2

4

0

3 4

0 1 2 3 4

0.  0.  1.  2.  3.

 2

( ) [ ( )] ( ) ( )

 3

n n

n n

S z Z s n s n

s z s z s z s z s z

z z z z z

z z z

z s n z
∞

− − − − −

− − − −

− − −

− −

=−∞ =

= = =

= + + + +

+ + +

= +

= +

+

∑ ∑

�
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ROC: Entire z-plane except z = 0

(d) Given s(n) 
1, 0

( )
0, 0

n
d n

n

=
= =  ≠

z-transform is defined as

				 
( ) ( ) ( ) ( ) ( )2 1 0 1 2

2 1 0 1 2

... –2 –1 0 1 2  ...

...  0  0.  1.  

( ) [ ( )]

0.  0.  ...

( )

  1

n

n

s z s z s z s

S z Z s n

z s z

z z z z

s n

z

z

− − −

− −

∞
−

=−∞

+ + + + + +

= + + + + + +

=

=

=

= ∑

�

or	 ( ) 1S z =

ROC: Entire z-plane

(e) Given     ( ) ( , 0)s n n k k= δ − >

z-transform is defined as

			 

( ) [ ( )] ( )

( )

n

n

n

n

S z Z s n s n z

n k z

∞
−

=−∞

∞
−

=−∞

= =

= δ −

∑

∑ �

Substituting m = n − k
or	  ,n m k= +  we get

			 

( )( ) ( ) ( )

( ) .1

m k n k

m m

k m k k

m

S z m z m z z

z m z z z

∞ ∞
− + − −

=−∞ =−∞

∞
− − − −

=−∞

= δ = δ

= δ = =

∑ ∑

∑ �

where ( ) 1m

m

m z
∞

−

=−∞

δ =∑
			   [ ]( ) ( ) kS z Z n k z−−δ= = �

ROC: Entire z-plane except z = 0.

(f ) Given ( ) ( ), 0s n n k k+δ= >

z-transform is defined as

			 
( )( ) ( ) ( )m k m k

m m

S Z m z m z z
∞ ∞

− − −

=−∞ =−∞

= δ = δ∑ ∑ �
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Substituting m = n + k
or	 ,n m k= −  we get

			 
( )( ) ( ) ( )m k m k

m m

S z m z m z z
∞ ∞

− − −

=−∞ =−∞

= δ = δ∑ ∑ �

				   ( ) .1k m k k

m

z m z z z
∞

−

=−∞

= δ = =∑ �

where ( ) 11m

m

m z
∞

−

=−∞

δ =∑

			   [ ]( ) ( ) kS z Z n k z= + =δ �

ROC: Entire z-plane except z = ∞.

EXAMPLE 3.2
Determine the z-transform of the following discrete-time signals

(a)	 s(n) = u(n)	 (b)	 s(n) = Anu(n)
(c)	 s(n) = −Anu(– n − 1)	 (d)	 s(n) = cos(ω0n)u(n)
(e)	 s(n) = sin(ω0n)u(n)	 (f)	 s(n) = Anu(n) + Bnu(–n − 1)
(g)	 s(n) = nu(n)	 (h)	 s(n) = u(n − 1).

Solution:
(a) Given s(n) = u(n) and u(n) is defined as

			 
1, 0

( )
0, 0

n
u n

n

≥
=  <

�

z-transform is defined as

			   ( ) [ ( )] ( ) n

n

S n Z s n s n z
∞

−

=−∞

= = ∑ �

				  
0

( ) 1.n n

n n

u n z z
∞ ∞

− −

=−∞ =

= =∑ ∑ �

				    0 1
1

2  ... 
1

1
z z z z

z
− − − −∞

−= + + + + =
−

�

[Sum of geometric series for infinite number of points is given by

			   1
First poi
common rat

nt
ionS =∞


= − 

�
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This is a sum of geometric series for infinite number of points.
ROC: |z−1| < 1
or |z| > 1

(b) Given   ( ) ( )ns n A u n=

z-transform is defined as

			   ( )1

0 0

( ) [ ( ) ( ) ( )n n n

n n

nn n

n n

S z Z s n s n z A u n z

A z Az

∞ ∞
− −

=−∞ =−∞

∞ ∞
− −

= =

= = =

= =

∑ ∑

∑ ∑ �

where 
1, 0

( )
0, 0

n
u n

n

≥
=  <

(This is a geometric series for infinite number of points)

or	

1

1 0 1 1 2 2 1( ) ( ) ( ) ( ) ... ( )
1

1

S z

A

Az Az Az z

z

A− − − −

−=
−

= + + + + ∞

ROC: |Az−1| < 1
or |z| > |A|
where A is a scalar quantity. ROC of the z-transform of the sequence

		  ( ) ( ) |i |snA u ns z An = >

This is a causal sequence.
The ROC is the exterior of a circle having radius |A|.
ROC of the z-transform of the 

sequence s(n) = Anu(n) can be shown 
graphically on the z-plane and is illustrated 
in Figure 3.2.

(c) Given ( ) ( )– 1ns n A u n= − −

			 
0, 1

, 0n

n

A n

≥
= − <

�

z-transform is defined as

FIGURE 3.2  ROC of the z-transform of the 
sequence s(n) = Anu(n).

DSP.CH03_3pp.indd   76DSP.CH03_3pp.indd   76 4/1/2022   4:33:52 PM4/1/2022   4:33:52 PM



The z-Transform • 77

			   ( ) ( )
1 1

1 1 1

( ) [ ( )] ( )

( )

n

n

n n

n

nn

n n

s z Z s n s n z

A u z

A z z A z

∞
−

=−∞

∞
−

=−∞

− − −− − − −

=−∞ =−∞

= =

= −

= =

∑

∑

∑ ∑ �

Substituting l = −n

				 

( ) ( )
1

1 1

1

1 1 1 2 1 3

1

1

) ) ) ...

l l

l l

A z A z

A z A z A z

A z
A z

∞
− −

=∞ =

− − −

−

−

= − =

 = − + + + 
−

=
−

∑ ∑

�

(Sum of geometric series for infinite number of points).

ROC: |A−1z| < 1
or |z| < |A|
The ROC is interior of a circle having radius |A|.
Above sequence,

	 s(n) = −Anu(– n − 1)�

is a non-causal sequence.
ROC of the z-transform of the above sequence 

can be shown graphically on the z-plane. Its ROC is 
shown in Figure 3.3.

(d) Given s(n) = cos ω0nu(n)

		
0 0

( )
2

j n j ne e
u n

ω − ω +
=  
 

z-transform is given as

			   ( )
0 0

0

( ) [ ( )] ( )

cos ( ) ( )
2

n

n

j n j n
n n

n n

S z Z s n s n z

e e
n u n z u n z

∞
−

=−∞

ω − ω∞ ∞
− −

=−∞ =−∞

= =

 +
= ω =  

 

∑

∑ ∑ �

FIGURE 3.3  ROC of the z-
transform of above sequence 

s(n) = −Anu(n − 1)
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u(n) is defined as

			 
1, 0

( )
0, 0

n
u n

n

≥
=  <

�

	

( ) ( )

0 0

1 1
0 0

1 1
0 0

0 0

0 0

1
0

1 2
0

1 1
or ( )

2 2
1 1
2 2

1 1 1 1
2 21 1

1 cos
R, OC

1
: 1

2 cos

n nj z j z

n n

n n
j nz j z

n n

j z j z

S z e e

e e

e e

z
z

z
z

−

− −

− −

∞ ∞
ω − ω

= =

∞ ∞
ω ω

= =

ω − ω

−

− −

= +

= +

   = +   − −   
− ω

=
− +

>
ω

∑ ∑

∑ ∑

�

ROC: 
1

0j ze
−ω  < 1 ⇒ | z | > 0je ω  > 1

and 0 1je zω −  < 1 ⇒ | z | > 0je ω  > 1

If we get 0je± ω  = 1.

ROC of the z-transform of the sequence 
s(n) = cos (ω0n) u(n) is exterior to the unit circle. 
It can be shown graphically on z-plane. Its ROC 
is shown in Figure 3.4.

(e) �Given s(n) = sin (ω0n) u(n) = 
0 0

2

j n j ne e
j

ω − ω −
 
 

 u(n)

z-transform is given as

			 

( )

0 0

0

( ) [ ( )] ( )

sin ( )

( )
2

n

n

n

n

j n j n
n

n

S z Z s n s n z

n u n z

e e
u n z

j

∞
−

=−∞

∞
−

=−∞

ω − ω∞
−

=−∞

= =

= ω

 −
=  

 

∑

∑

∑ �

	 u(n) is defined as 
1, 0

( )
0, 0

n
u n

n

≥
=  <

�

FIGURE 3.4  �ROC of the transform 
of the sequence s(n) = 
cos (ω0n) u(n).
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( ) ( )0 0

0 0

1 1

0 0

1 1

1
0

1 2
0

1 1
or ( )

2 2

1 1 1 1
2 1 2 1

sin
1

ROC :  
2 c

 
o

1
s

nj j

n n

j j

S z e z e z
j j

j e z j e z

z
z

z
z

∞ ∞
ω − ω− −

= =

ω − ω− −

−

− −

= −

   = −   − −   

ω
=

− ω +
>

∑ ∑

�

Its ROC is also shown in Figure 3.4.
(f) Given s(n) = Anu(n) + Bnu(–n − 1)
z-transform is defined as

			   ( ) [ ( )] ( ) n

n

S z Z z n s n z
∞

−

=−∞

= = ∑ �

	 or			  ( ) ( ) ( 1)n n n

n

S z A u n B u n z
∞

−

=−∞

 = + − − ∑ �

	 or			  ( ) ( ) ( 1)n n n n

n n

S z A z u n B z u n
∞ ∞

− −

=−∞ =−∞

= + − −∑ ∑ � (1)

where,			
1, 0 1, 1

( ) , ( 1)
0, 0 0, 0

n n
u n u n

n n

≥ ≤ − = − − = < ≥  �

Substituting these values in above Eq. (1), we get

			 
1

0

( ) n n n n

n n

S z A z B z
∞ −

− −

= =−∞

= +∑ ∑ �

	 or			  ( ) ( )
1

1 1

0

( )

1st part 2nd part

n n

n n

S z Az Bz
∞ −

− −

= =−∞

= +∑ ∑
�

In second part, putting m = −n

			   ( ) ( )
1

1 1

0

( )
n m

n m

S z Az Bz
∞ −− −

= =∞

= +∑ ∑ �

	 or			  ( ) ( )1 1

0 1

( )
n m

n m

S z Az Bz
∞ ∞ −− −

= =

= +∑ ∑ �
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	 or		

	

( ) ( )1 1

0 1

( )

Ist series IInd series

n m

n m

S z Az B z
∞ ∞ −− −

= =

= +∑ ∑
�

The first power series converges if |Az−1| < 1 ⇒ |z| > |A|
The second power series converges if |B−1z| < 1 ⇒ |z| < |B|
For convergence of S(z), we consider two different cases:

Case I: If |B| < |A|. In this case, the two ROCs above do not overlap, as 
shown in Figure 3.5(a). Consequently, we cannot find values of z for which 
both power series In this case, we cannot converge simultaneously to deter-
mine S(z).

Case II: If |B| < |A|. In this case, there is an annulus region in the z-plane 
where both power series converge simultaneously as shown in Figure 3.5(b).

FIGURE 3.5  (a) if |B| < |A| then S(z) does not exist (b) ROC for a z-transform of the sequence s(n) = 
Anu(n) + Bnu(–n − 1) if |B| > |A|.

In this case, we can obtain S(z).

			 

1

1 1

1 1 1

1 1 1

1 1

1
( )

1 1
1
1

B z
S z

Az B z
B z B z AB
Az B z AB

B A B A
B ABz z A B A z ABz

−

− −

− − −

− − −

− −

= +
− −
− + −

=
− − +

− −
= =

− − + + − −
�

The ROC of the S(z) is |A| < |z| < |B|.
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(g) Given s(n) = r(n). It is a ramp sequence and given as s(n) = nu(n) 
z-transform is defined as

			 

( ) [ ( )] ( ) ( )

( )

n n

n n

n

n

S z Z s n s n z r n z

nu n z

∞ ∞
− −

=−∞ =−∞

∞
−

=−∞

= = =

=

∑ ∑

∑ �

From the definition of u(n) = 
1, 0
0, 0

n

n

≥
 <

, substituting this in Eq. (1), we get

			 
0

( ) n

n

S z nz
∞

−

=

=∑ �

Now expanding the above power series, we get

	

0 1 2 3 4

1 1 2 3 4

0 1 2 3 4 ...
 0 1 2 3 ...

( )
( )

S z z z z z z

z S z z z z z

− − − − −

− − − − −

+ + + + +
+ + + +

=
=

− − − − �

Subtracting,

	

1 1 2

1

1

3 4

1

( ) ( )

( )

...

1[ ]
1

S z z S z z z z z

S z
z

z
z

− − − − −

−
−

−

− + + +=

=
−

+

− �

[Sum of geometric series of infinite number of points]

	 1
1

1( )[ ]1
1

z
z

S
z

z
−

−
−=

−
− �

	 or			
( )

1

2 21
( )

(1 )1

z z
S z

zz

−

−
= =

−− �

ROC: |z−1| < 1
or |z| > 1

(h) Given s(n) = u(n − 1)
z-transform is defined as

			   [ ] 1( ) ( ) ( ) ( 1)n

n m

S z Z s n s n z u n z
∞ ∞

− −

=−∞ =−∞

= = = −∑ ∑ �
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Substituting m = n − 1

or	    1n m= +

or	 ( 1)( ) ( ) ( 1)m m n

m n

S n u m z u n z z
∞ ∞

− + − −

=−∞ =−∞

= = −∑ ∑

	

( )1

1 1 0 1 2 3

1
1

1 1

1, 0
( ) ,

0, 0

[ ...]

1 1
1 1

ro

1

f mm

m

m

m

m
z u m z

m

z z z z z z z

z
z

u

z
z z

m
∞

− −

=−∞

∞
− − − − − − −

=−∞

−
−

− −

≥
=  <

 
= = + + + + 

 

= = =
− − −

∑

∑

ROC: |z−1| < 1 or |z| > 1.

3.4	 PROPERTIES OF z-TRANSFORM

We already know that z-transform is a very powerful tool for the analysis of 
discrete-time signals and LTI systems. It possesses the following important 
properties.

1.	 Linearity.

2.	 Time shifting.

3.	 Scaling in the z-domain.

4.	 Time reversal.

5.	 Differentiation in the z-domain.

6.	 Convolution of two discrete-time sequences.

7.	 Correlation of two discrete-time sequences.

8.	 Multiplication of two discrete-time sequences.

9.	 Parseval’s theorem for z-transform.

10.	 Conjugation of complex sequences.

11.	 The initial value theorem.
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TABLE 3.2  Properties of z-transform

Property

Signal 
sequences s(n), 
s1(n), s2(n)

z-transform of 
sequences S(z), 
S1(z), S2(z) ROC R, R1, R2

Linearly As1(n) + Bs2(n) AS1(z) + BS2(z) At least the intersection 
of R1 and R2

Time shifting s(n − n0) z−n0S(z) R, except for the 
possible addition or 
deletion of origin 
(z = 0)

Scaling of 
z-domain

Ans(n) S(z/A) Scaled version of R, 
i.e., |A| R

Time reversal s(–n) S(z−1) Inverted version of R 
(i.e., |A| R−1 = the set 
of points z−1, where z is 
in R)

Time expansion s(mn) S(zm) R1/m (i.e., the set of 
points z1/m, where z in 
R)

Conjugation s*(n) S*(z*) R

Complex 
convolution

s1(n) * s2(n) S1(z)S2(z) At least the intersection 
of R1 and R2

Correlation (r)s1s2(l) = s1(l) * 
s2(–l)

Rs1s2(z) = S1(z) 
S2(1/z)

At least the intersection 
of R1 and R2

First difference s(n) − s(n − 1) (1 − z−1)S(z) At least the intersection 
of R and |z| > 0

Accumulation

1

( )
m

s m
∞

=−
∑ 1

1
( )

1
S z

z−−

At least the intersection 
of R and |z| > 0

Differentiation 
in the z-domin

ns(n) −zds(z)/dz R

3.4.1	Linearity

A discrete-time system is said to be linear if it is homogeneous and satisfies 
the principle of superposition.

DSP.CH03_3pp.indd   83DSP.CH03_3pp.indd   83 4/1/2022   4:33:55 PM4/1/2022   4:33:55 PM



84 • Digital Signal Processing 

If the z-transforms for the two discrete-time sequences is given as
					   

1 1( ) ( )zs n S z←→ �

	 and			 	    2 2( ) ( )zs n S z←→ �

then according to property of linearity of z-transform.

			  s(n) = A1s1(n) + A2s2(n) z←→  S(z) = A1S1(z) + A2S2(z)�

for any value of constants A1 and A2 and for any arbitrary discrete-time 
sequences s1(n) and s2(n).

EXAMPLE 3.3
Find the z-transform and ROC of the signal sequence
			 

 4 2   5( ) [ ( ) ( )] ( )3 .n ns n u n= −
�

Solution:
Given:	 ( ) ( ( )4 ( ) )2 (3 3n n ns n u n u n u n   −  =  � (1)

Now the combined signal is given by,

			   1 2( ) (   ) ( )s n As n Bs n= + � (2)

After comparing Eqs. (1) and (2), we get two sequences as
			 

1 2( ) ( ) ( )ns n u n= �

and	 2 3( ) ( ) ( )ns n u n= �
Taking the z-transform of both sides of Eq. (2), we get

			 
1 2( ) ( ) ( ) S z AS z BS z= + �

				  
1 2( )4 5 ( )S z S z−= � (3)

		  [ ]1 1 1( ) ( ) ( ) (2) ( )n n n

n n

Z s n S z s n z u n z
∞ ∞

− −

=−∞ =−∞

= = =∑ ∑ �

	
1, 0

From ( )
0, 0

n
u n

n

≥ 
=  < 

�

				   ( )1
1

0 0

1
(2) 2

1 2
nn n

n n

z z
∞ ∞

− −
−

= =

= = =
−∑ ∑ �
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ROC: |z| > 2

			 

[ ]

( )

2 2 2

1
1

0 0

( ) ( ) 3 ( )

1
3 3

1 3

n n n

n n

nn n

n n

Z s n S z S n z u n z

z z
z

∞ ∞
− −

=−∞ =−∞

∞ ∞
− −

−
= =

= = =

= = =
−

∑ ∑

∑ ∑ �

ROC: |z| > 3
After substituting the value of S1(z) and S2(z) in Eq. (3), we get

					    1 1

4 5
( )

1 2 1 3
S z

z z− −= −
− −

� ROC: |z| > 3

3.4.2 Time Shifting

The purpose of time shifting is that we want to see a particular signal in pre-
vious time or in future time by delaying the signal in time or advancing the 
signal in time, respectively. Consider a discrete-time sequence s(n) and its 
z-transform S(z).

If ( ) ( )zs n S z←→

Now if signal s(n) is delayed by k units of time, then we get
					  

( ) . ( )z ks n k z S z− ←→
�

Now if signal s(n) is advanced by k units of time, then we get
					  

( ) . ( )z ks n k z S z+ ←→
�

The ROC of z−kS(z) is the same as that of S(z) except for z = 0 and the 
ROC of zkS(z) is the same as that of S(z) except for z = ∞.

EXAMPLE 3.4
Find z-transform of signal

				   2 {1,  2,  3,  4,   ) , }( 0 1s n
↑

=
�

from the z-transform of signal

				   1  {1,  2,  3,  4,  ,  1}( ) 0s n =
↑ �

by using time shifting property of z-transform.
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Solution:
Above two signal sequences s2(n) and −s1(n) can be related in time-

domain by

			   2 1 2)  ( ( )s n s n= + � (1)

Taking the z-transform of Eq. (1), we get

			   2
2 1 ( ) ( )S z z S z= � (2)

But	 1 1( ) ( ) n

n

S z s n z
∞

−

=−∞

= ∑

or	 0 1 2
1 1 1 1

0
1( ) ( ) (0) (1) (2)n

n

s z sS z s n z s zz − −
∞

−

=

= = + + +∑
				    3 4 5

1 1 1(3) (4) (5)s z s z s z− − −+ + + �

or	 1 2 3 4 5
1  1 2 3 4 0( ) 1S z z z z z z− − − − −= + + + + +

or	 1 2 3 5
1 1 2 3( ) 4S z z z z z− − − −= + + + + � (3)

Substituting Eq. (3) in Eq. (2), we get

	

2 2 1 2 3 5
2 1

2 1 3

  2 3 4

3

) 1

4

(

2

) (S z z S z z z z z z

z z z z

− − − −

− −

= = + + + 

= +


+ +
 +

+
�

ROC: All values of z except z = ∞.

3.4.3	Scaling in z-Domain

Scaling in the z-domain means we want to multiply or divide z-domain param-
eter by any constant A. By scaling in z-domain, we can increase or decrease 
the value of z. Scaling in z-domain (frequency domain) by a scalar quantity A 
is equivalent to scaling in time-domain by a scalar quantity 1/A.

If			   1 2( ) ( ) ROC :z Rs n S z z R← → < <

then		 1 2RO( ) | |: | |Czn z
A s n S

A
A R z A R ←→  

 
<

(This is the Division of z-domain parameter by A)

and		  1
2

1 1
( ) ( ) ROC :znA s n S Az R z

A R
− ←→ < <

(This is the Multiplication of z-domain parameter by A)
For any constant A, real or complex.
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3.4.4	Time Reversal

Time reversal of a discrete-time sequence means taking the mirror image of 
the signal or folding the signal.

If we have a discrete-time sequence s(n), then its mirror image will be 
s(–n).

If				    1 2ROC :( ) ( ) | |R z Rsn S z← <→ <

2
1

1 1
 thenz R

R A
< <

	
1 2ROC :

1
( ) | |

2
s n S R z R − ←


<→   <




EXAMPLE 3.5
Find the z-transform of sequence s(n) = u(–n).

Solution:
We know that, z-transform of unit-step sequence u(n) is given by

				   1

1
( ) [ ( )] | |

1
ROC : 1S z Z u n z

z−
= = >

−
�

By using property of time reversal of z-transform, we get

			   ( )1[ ( )]  zZ s n S −− = �

or			 

( )
1

1
1

1

ROC :

[ ( )]
1

1
| |

1
1

z z

Z u n S z
z

z
z

−

−
−

=

= =
−

=
−

>

−

�

3.4.5 Differentiation in the z-Domain

Here we want to differentiate z-transform of discrete-time sequence with 
respect to z. Differentiation of z-transform of a discrete-time sequence s(n) 
with respect to variable z, that is, dS(z)/dz.

If			   ( ) ( )s n S z←→

then			
( )

( )
dS s

n s n z
dz

←→−

In this case, both transforms will have the same ROC.
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EXAMPLE 3.6
Find the sequence s(n) where z-transform is given by
			   1 log 1( ) ( | .),S z Az z A−= + > �

Solution:
Taking the first derivative of S(z), we get

			   ( )1( )
log 1

dS z d
Az

dz dz
− = +  �

or			 
( ) ( )2

1

( ) 1
1

dS z
Az

dz Az
−

−
= −

+ �

or			 
( )

2

1

( )
1

dS z Az
dz Az

−

−

−
=

+ �

or		
( )

1

1

( )
1

dS z Az
z

dz Az

−

−

+
− =

+ � (1)

From the property of differentiation in z-domain of z-transform:

		
( )

[ ( )]
dS z

z Z ns n
dz

− = � (2)

Comparing Eqs. (1) and (2), we get

		  ( )
1

1
[ ( )]

1
Az

Z ns n
Az

−

−
=

+ � (3)

From Eq. (3), we get

			 
1 1

1 1
1 1( )

1 1
Az z

ns n Z AZ
Az Az

− −
− −

− −

   
= =   + +   

�

				   1( ( )– ) 1nA A u n−= −
�

or				   1( ) ( 1) ( 1).
n

n A
s n u n

n
−= − − �
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3.4.6	Convolution of the Two Discrete-time Sequences

The convolution property is one of the most important property of the 
z-transform because it is used to convert the convolution of two discrete-time 
signals in the time-domain into multiplication of their z-transform.

We have two discrete-time sequences s1(n) and s2(n).
If				    s1(n) z←→ S1(z)

				    s2(n) z←→ S2(z)

Then 	 1 2 1 2( ) ( ) ( ) ( ) ( ) ( )z

k

s n s n s n s k s n k S z
∞

=−∞

= ∗ = − ←→∑

			   1 2( ) ( )S z S z=

*(asterix) shows the convolution operation between sequence s1(n) and 
s2(z).

The ROC of the z-transform of s(ii) = s1(n) * s2(n) is at least the intersec-
tion of S1(z) and S2(z).

We now enumerate the steps involved in computation of the convolution 
of two signals using z-transform.

Step I: Compute the z-transform of individual signals which are to be 
convolved.

					  
( )
( )

2 1

2 2

( )

( )

S z Z s n

S z Z s n

=   
=   

�

Step II: Multiply two z-transforms
					  

1 2( ) ( ) ( )S z S z S z= �

Step III: Find the inverse z-transform of S(z).
					    1( ) [ ( )]s n Z S z−=

−1�

EXAMPLE 3.7
Find the convolution of sequences

				   2

1 1, 2,( ) { }

( ) { }

 1

1,  1,  1 .S

S z

n =
↑

−=
↑

�
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Solution:

Step I: Determine z-transforms of individual signal sequences.

			 

[ ]1

0 1 2
1 1 1

1 2 1

2

1 1

2

0

( ) ( ) ( )

(0) (

1 2 1 1 2

1) ( )

n

n

S z

s z s z s z

z z

Z s n s

z

n z

z

s− −

−

=

− − − −

+ +

= − + = −

=

+

=

=

∑

�

			 

[ ]
0 1

2

2 2 2
0

2
2 2 2

2

1 2

( ) ( ) ( )

(0) (1)

1 1 1 1 1

1

(2)

n

n

S z Z s n s n z

s z s z s z

z z

z z

− −

−

− −

−

=

= =

=

=

+ +

× + × − ×

+ +=

+

∑

�

Step II: Multiplication of S1(z) and S2(z)
			 

1 2( ) ( ) ( )S z S z S z= �

Step III: Taking inverse z-transform of S(z)

			 

1 1 1 3 4( ) [ ( )] [1 3 2
3,  0,  0,  0,  2,  

]
{ }1

z zs n Z S z zZ − −− −− −=
=

− +=

↑
�

3.4.7 Correlation of Two Discrete-time Sequences

Correlation of two signals means a degree of similarity between two similar or 
dissimilar signals.

Correlation of two discrete-time sequences is equivalent to multiplication 
of z-transform of s1(n), S1(z) and z-transform of second sequence s2(n), S2(z) 
at z = 1/z.

If	 s1(n) 
z←→  S1(z)

	 s2(n) 
z←→  S2(z)

then	 1 1 1 1 2 1 2( ) ( ) ( )z

n

r s s s n s n l Rs s z
∞

=−∞

= − ←→∑

	
1 2

1
( )S z S

z
 =  
 
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The z-Transform • 91

We now enumerate the steps involved in computation of the correlation 
of two sequences using z-transform.

Step I: Compute the z-transform of individual sequences which are to be 
correlated

			 
1 1

2 2

( ) [ ( )]
( ) [ ( )]

S z Z s n

S z Z s n

=
= �

Step II: Determine S2
1
z

 
 
 

			   2 2 1/

1
( )

z z
S S Z

z =

  = 
 

�

Step III: Multiply two-transform

			   1 2

1
( ) ( )S z S z S

z
 =  
 

�

Step IV: Find the inverse z-transform of S(z)
			   1( ) [ ( )]s n SZ z−=

�

where s(n) is the resultant of correlation between sequences s1(n) and s2(n).

EXAMPLE 3.8
Find the auto-correlation sequence of the signal.
			 

1( ) 1( , 1 .)ns n A u n A= − < < �

Solution:
Auto-correlation sequence is given by

	 1 11 1( ) ( ) ( )
n

s n s nrs s l l
∞

=−∞

= −∑ �

This sequence can be determined by z-transform and it can be repre-
sented as

		  1 2 11 11 ( ) ( ) ( )s s
n

Z r l Z s n sRrs ns l
∞

=−∞

  = = −    
∑ �

				   1 1

1
( )S z S

z
 =  
 

� (1)
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			   [ ]1 1 2( ) ( ) ( ) n

n

S z Z s n s n z
∞

−

=−∞

= = ∑ �

				 
0

1, 0
( ) , since ( )

0, 0
n n n n

n n

n
A u n z A z u n

n

∞ ∞
− −

=−∞ =

≥
= = =  <
∑ ∑ �

				 
1

0

n

n

Az
∞

−

=

 =  ∑ �

or				   1 1

1
( ) |

1
ROC :S z

Az
z A−=

−
> � (2)

It is a causal signal
Also we can determine

			   1 1 1/
RO

1 1
( )

2 1
C :

z z
S S z

z
z

A
A

=

  =  − 
>= � (3)

It is a non-causal signal.
Substituting the Eqs. (3) and (2) in Eq. (1), we get

			   1 11 11

1 1 1
( ) ( )

1 1
S z S

z
R s z

Az Az
s −

    = =    − −    
�

				   ( )1 2

1 1
,ROC:

1
A z

AA z z A−
= < <

− + + �

Since the ROC of Rs1s2 (z) is a ring, rs1s1(l) is a two-sided signal, even if 
s1(n) is causal.

Auto-correlation sequence,

			 

( )

( )( ) ( )( )

1 1

1 1
1 2

1
1

1
2 1 2

1
2 1

|
2

1

|

1

1
( ) ( )

1

1 1
1 1

1 1
1 1 1 1

1 1 1
1 1 1

1
.

1

s s

l

Z R z Z
A z z A

Z
Az Az

Z
A Az A Az

Z
A A

r

z

s s l

Az

A
A

− −
−

−
−

−
−

−
−

 
 = =    − + +  
   =    − −   
 

= + 
− − − −  

 = + − − − 

=
−

�
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3.4.8	Multiplication of Two Discrete-time Sequences

The z-transform of a multiplication of two discrete-time sequences is the 
complex convolution of the z-transforms of the individual sequences.

If				    1 1( ) ( )zs n S z←→

				    2 2( ) ( )zs n S z←→  

then 		 1
1 2 2 1 2

1
( ) ( ) ( ) ( ) ( )

2
z

c

z
s n s n s n S z S S d

j
u u u

u
− = ←→ =  π  ∫

where	u 	 = other variable in frequency domain
	 z	 = standard variable in frequency domain for z-transform
	 j	 = 1−
	 π	 = standard parameter.

This is called complex convolution of S1(z) and S2(z).
Where c is the closed contour that encloses the origin and lies within the 

ROC common to both S1(υ) and S2(1/υ).
This property of z-transform is not generally used, because the complexity 

of computations increases.

3.4.9	Parseval’s Theorem

If we have two discrete-time sequences s1(n) and s2(n) and both are 
complex-valued sequences.

Then, according to Parseval’s theorem

		
1

1 2 1 2

1 1
( ) ( ) ( )

2 c
n

s n s n S S d
j

u u u
u

∞
∗ ∗ −

=−∞

 =  π ∗ 
∑ ∫ �

ROC of S1(z): R1l < |z| < R1u

ROC of S2(z): R2l < |z| < R2u

For the above theorem following condition should be satisfied.
							   

1 2 1 21l l u uR R R R< < �

where 2s
∗ (n) is the complex conjugate of s2(n), where s2(n) is a complex-valued 

sequence if
						   

2 2 2( ) ( ) ( )  R Is n s n js n= + �

then				   2 2 2( ) ( ) ( )R Is s n jsn n= −
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where s2R(n) and s2I(n) are the real part and imaginary part of signal S2(n), 
respectively.

2S∗ (1/υ*) is the complex conjugate of z-transform of s2(n) at z = 1/υ*, 
where υ is another frequency variable and υ* is the complex conjugate of υ.
							     1j = − �

l for lower limit
u for upper limit

c
≡  represents a contour integration.

Parseval equations relate energy in a signal to energy in its frequency 
spectrum.

3.4.10	Conjugation of a Complex Sequence

Let us take a sequence which is complex valued.

If			   ( ) ( )zs n z←→

then			  ( ) ( )zs n S z←→∗ ∗ ∗

ROC for both S(z) and S*(z*) will be the same.

where s*(n) and S*(z) are the complex conjugates of s(n) and S(z) respectively 
and z* is complex conjugate of z.

3.4.11	Initial Value Theorem

If a discrete-time sequence s(n) = 0 for n < 0, that is, s(n) is a causal sequence;

then					     at  0(  )s n n= �

					  
0

(0) lim{ ( )}
z

s S z
→

= = � (3.4)

This is called initial value theorem.

3.5	 SOME COMMON z-TRANSFORM PAIRS

Some of the commonly used discrete-time sequences and their z-transforms 
are given in Table 3.3.
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3.6	 THE INVERSE z-TRANSFORM

The mechanism for transforming S(z) back to a discrete-time sequence s(n) is 
called the inverse z-transform.

Inverse z-transform is formally given as

							   
11

( ) ( )
2

n

c
s n S z z dz

j
−=

π ∫ � (3.5)

Eq. (3.5) represents a contour integral over a closed path c that encloses 
the origin and lies within the ROC of S(z).

Contour integration is a complex integration over a closed path in the 
ROC encompassing the origin z = 0 in the z-plane, exactly once in the 
counterclockwise direction, a circle of radius c > R1. Where R1 is the radius 
of convergence of z-transform.

From the Cauchy integral theorem, we know that

					  
1 1,1

0,2
n m

c

m n
z dz

m nj
− − =

=  ≠π 
∫ � (3.6)

where the integral is over any simple contour c encircling the origin.
Figure 3.6 shows the closed contour c.

TABLE 3.3  Some Common z-transform Pairs

Signal s(n)
z-transform of signal, 
S(z)

Region of convergence 
(ROC)

δ(n) 1 All values of z

u(n)
1

1
1 z−−

|z| > 1

r(n) = nu (n)

( )
1

211

z

z

−

−−

|z| > 1

Anu(n) 1

11
z
Az

−

−−

|z| > |A|

nAnu(n)

( )
1

211

z

Az

−

−−

|z| > |A|

(Continued)
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Signal s(n)
z-transform of signal, 
S(z)

Region of convergence 
(ROC)

−Anu(−n−1)
1

1
1 Az−

−
−

|z| > |A|

−nAnu(−n−1)

( )21

1

1 Az−
−

−

|z| > |A|

(cos ω0n) u(n) 1
0

1 2
0

1 cos
1 2 cos

z
z z

−

− −

− ω
− ω +

|z| > 1

(sin ω0n) u(n) 1
0

1 2
0

1 sin
1 2 cos

z
z z

−

− −

− ω
− ω +

|z| > 1

(An cos ω0n) u(n) 1
0

1 2 2
0

1 cos
1 2 cos

Az
Az A z

−

− −

− ω
− ω +

|z| > |A|

(An sin ω0n) u(n) 1
0

1 2 2
0

sin
1 2 cos

Az
Az A z

−

− −

ω
− ω +

|z| > |A|

u(n − 1)
1

1

1
1

z
z

−
−

 
 − 

|z| > 1

δ(n − k) z−k.1 = z−k All values of z except z 
= 0

d(n + k) zk.1 = zk All values of z except z 
= ∞

From the definition of z-transform

				   ( ) ( ) m

m

S z s m z
∞

−

=−∞

= ∑ � (3.7)

Multiplying Eq. (3.7) by zn−1 and integrating 
over a closed contour with the ROC and enclos-
ing the origin, we get

				   1( ) n

c
S z z dz−∫ �

R2

R1

C
Im(z)

Re(z)

FIGURE 3.6  Closed contour c taken 
for the integral, in the ROC of S(z) 

and encircling the origin z − 0 exactly 
in the origin-clockwise direction.
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1( ) n

c
m

s m z dz
∞

−

=−∞

= ∑∫ � (3.8)

where contour c is taken exactly once in the counterclockwise direction.
Now the order of integration and summation can be interchanged as the 

series is convergent on this contour. It yields

			 
1 1( ) ( )n n m

c c
m

S z z dz s m z dz
∞

− − −

=−∞

= ∑∫ ∫ 

� (3.9)

					    )2 (js np= 	 (on applying Cauchy integral theorem)

Three methods are often used for the evaluation of the inverse z-transform 
in practice.

These methods are

1.	 The inverse z-transform by contour integration method.

2.	 The inverse z-transform by power series expansion method.

3.	 The inverse z-transform by partial fraction expansion method.

3.6.1	The Inverse z-Transform by Contour Integration Method

In this method, we use the Cauchy Residue Theorem for determining the 
inverse z-transform directly from the contour integral.

Cauchy Residue Theorem: If we have S(z) which is a function of com-
plex variable z and c is a closed path in the z-plane. Here we assume that 
dS(z)/dz exists on and inside the contour c and S(z) has no poles at z = z0.

In general, the Cauchy Residue Theorem is stated as

			 
0

01

0
0

1 ( )
if is inside 1 ( ) 1

2 ( )
0, if is outside 

k

k
z zkc

d S z
z cS z k dzdz

j z z
z c

−
=


 −= 

π − 


∫ � (3.10)

For k = 1		
( )

0 0

00

( ) | if is inside 1 ( )
0 if is inside 2

z
kc

S z z cS z
dz

z cj z z
=

= 
π − 
∫ � (3.11)

The values on the RHS of Eqs. (3.10) and (3.11) are called residues of pole at 
z − z0. Inverse z-transform of S(z) is given by
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11

( ) ( )
2

n

c
s n S z z dz

j
−=

π ∫ �

					  
1

0
All poles inside 

[Residue of ( )  at ]n

c

S z z z z−= =∑ �

					    ( ) 1( ) |
i

n
i z z

i

z z S z z −
== −∑ � (3.12)

where {zi} are simple poles.

Note: If S(z) zn−1 has no poles inside c for one or more values of n. Then, 
s(n) = 0 for these values.

EXAMPLE 3.9
Evaluate the inverse z-transform of

				   ( ) ,
z

S z z A
z A

= >
−

�

Using contour integration method.

Solution:

Given				   ( ) ,
z

S z z A
z A

= >
−

�

The contour integration formula is given as

				 
11

( ) ( )
2

n

c
s n S z z dz

j
−=

π ∫ �

					    ( ) 1( ) |
i

n
i z z

i

z z S z z −
== −∑ �

Putting the value of S(z)

				   ( ) 1( ) |
i

n
i z z

i

z
s n z z z

z A
−

== −
−∑ �

					    ( ) |
i

n

i z z
i

z
z z

z A == −
−∑ � (i)

For n ≥ 0: there is only one pole at z = A

				   ( ) ( ) | ( )
n

n n
z A z A

z
s n z A z A

z A = =
= − = =

−
� (ii)
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For n < 0
n = −1, Eq. (i) becomes

				 

1

( 1) ( )
i

i
i z z

z
s z z

z A

−

=

− = −
−∑ �

					    ( ) 1
( )( )

i

i
i z z

z z
z z A =

= −
−∑ �

					  
0

1 1
( 0) ( )

( ) ( )z z A

z z A
z z A z z A= =

= − + −
− − �

					  
0

1 1 1 1
0

z z Az A z A A= =

= + = − + =
− �

n = −2, Eq. (i) becomes

				 

2

( 2) ( )
i

i
i z z

z
s z z

z A

−

=

− = −
−∑ �

					    ( ) 2

1
( ) ( )

i

i
i z z

z z
z z A =

= −
−∑ �

					    { } 2
0

1 1

z Az

d
dz z A z ==

= +
− �

					    ( ) 2 2 22

0

1 1 1 1
0

z A
z

z A Az A =
=

= − + = − + =
− �

Similarly, n = −3, s(–3) = 0
	 n = −4, s(–4) = 0 and so on.

Now we can show that s(n) = 0, n < 0
Thus	 ( ) ( ) ns n A u n=

EXAMPLE 3.10
Determine the inverse z-transform of

				 
5

( )
( 1)( 2)

z
S z

z z
=

− − �

Using the contour integration method.
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Solution:
The contour integral formula is given by

				 
11

( ) ( )
2

n

c
s n S z z dz

j
−=

π ∫ �

					  
1

All poles  inside 

Residue of ( ) at poles of ( )n

c

S z z S z−= ∑ �

					  
1( ) ( )

i

n
i z z

i

z z S z z −

=
= −∑ �

					  
15

( )
( 1)( 2) i

n
i z z

i

z
z z z

z z
−

=
= −

− −∑ �

					  
5

( )
( 1)( 2)

i

n

i
i z z

z
z z

z z =

= −
− −∑ � (i)

					  
1 2

5 5
( 2) ( 1)

n n

z z

z z
z z= =

= +
− − �

					  
5(1)  5(2)  5 –1  2 , ³0( )n n n n= − + = +

�

or				    5 –1 2 ,( ) ( )  for 0ns n n= + ≥
�

For n < 0,
n = −1. The Eq. (i) becomes

	 ( ) 5
( )

( 1)( 2)
i

n

i
i z z

z
s n z z

z z =

= −
− −∑ � (ii)

	

15
( 1) ( )

( 1)( 2)
i

i
i z z

z
s z z

z z

−

=

− = −
− −∑ �

			 
1

5 ( )
( 1)( 2)

i

i
i z z

z z
z z z =

= −
− −∑ �

			 
0 1 2

1 1 1
5

( 1)( 2) ( 2) ( 1)z z zz z z z z z= = =

 
= + + − − − − 

�
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1 1 1

5
(0 1)(0 2) 1(1 2) 2(2 1)
 

= + + − − − − 
�

			 
1 1

5 1 5[1 1] 0
2 2
 = − + = − =  

�

	 ( )
25

2 ( 2)
( 1)( 2)

i

i
i z z

z
n s z z

z z

−

=

= − − = −
− −∑ �

			   ( ) 2

1
5

( 1)( 2)
i

i
i z z

z z
z z z =

= −
− −∑ �

				   2 2
1 20

1 1 1
5

( 1)( 2) ( 2) ( 1)z zz

d
dz z z z z z z= ==

  
= + +  

− − − −   
�

			 
3 1

1 1 1 0
4 4

= − + = − = �

		
    3, (–3) 0n s= − =

�

		  ( )4, –4 0 and so on.n s= − = �

Hence, 0,( )  0s n n= <

But	      ( ) (5 2 1 ,  for) 0ns n n= − ≥

∴	 5 2 1( ) ( ).) (ns n u n= −

3.6.2	The Inverse z-Transform by Power Series Expansion Method

For rational z-transforms a power series expansion can be obtained by long 
division.

For this method, we have a z-transform S(z) with its corresponding ROC.
Now we can expand S(z) into a power series of the form

					    ( ) n
n

n

S z C z
∞

−

=−∞

= ∑ � (3.13)

which converges in the given ROC.
Inverse z-transforms of S(z) is given by

					    1( ) [ ( )]  for all ns n Z S z C n−= = � (3.14)
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EXAMPLE 3.11
Determine the inverse z-transform of

						    1 2

2
( ) by long division method.

2 3
S z

z z− −=
− +

�

When (a) ROC: | z | > 1

	 (b) ROC: | z | < 
1
2

.

Solution:
(a) In this part ROC is |z| > 1. Since the ROC is the exterior of a circle whose 
radius is 1. Now s(n) will be causal sequence and it requires a power series 
expansion in negative power of z.

Long division is performed as:

			 

�2 3
2
2 3

1
3
2

7
4

3

3
9
2

1 2
1 2

1 2

1

1

2

� �
� �

� � �

� � �

�

�

� �
� �

� �

�

�

�

z z
z z

z z

z

z

z

z

....

�� �

�

� �

� �

�

� � �

�

� �

� � �

�

2 3

2

2

3

3 4

3 4

3
2

7
2
7
2

3
2
21
4

7
4

15
4

7
4

z

z

z

z

z z

z z

�

�

			   1 2
1 2

2 3 7
( ) 1 ...

2 3 2 4
S z z z

z z
− −

− −= = + + +
− +

�
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But	 0 1 2

0

( ) ( ) (0) (1) 2(2) ...n

n

S z s n z s z s z z
∞

− − − −

=

= = + + +∑
�

	

( ) ( ) ( ) ( ) { }0 , 1 , 2 ,  ...
3 7

{ } 1, ,. ,...
2 4

s n s s s= =

↑ �

(b) In this case, the ROC is the interior of a circle of radius 1/2.
Consequently, then signal s(n) is non-causal and it requires a power series 

expansion in positive powers of z.
Now long division is performed as

			 

�z z
z x

z z z

z

z

z

z z

� �� �
� �

� � �

� � �

�
� �

� �

2 1
2

2 3 4

2

2 3

3 2
2

2 6 4
2 6 14

6
6

4
18 12

...

��

�

� �

� � �

�

�

14
14

12

42 28

30 28

2

1

3

3 4

3 4

z

z

z

z z

z z
�

�

			   2 3 4( ) 2  6  14  ...S z z z z= + + + � (1)

z-transform for n ≤ 0
			   0 1 2 3 4(0) ( 1) ( 2) ( 3) ( 4) ) .( ..S z s z s z s z s z s z− −= + − + − + − + − +

�

Comparing Eq. (1) with expansion of z-transform for n ≤ 0, we get the 
sequence

			 
{...14,  6,  2,0, 0}(  )s n

↑
=

�

This is a non-causal sequence.
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EXAMPLE 3.12
Find s(0), s(1), s(2), s(3), s(4) for

	
2

3 by long div
1

( )
2

ision metho .
4

d
z

S z
z z

−
=

+ +
�

Solution:
Long division is performed as follows:

�z z
z

z z
z z z

z

z z

3
2

2 1
1 3 4

1

2 3

2 4
1

2 4
3 4

3
3

4

6 12

� �
�

� �

� � �

� �

�
�

�

� �

� �

�
� � �

�

� �

��

�
�

� �

� �

� � �

�
�

� �

�

�

� �

� �

�

�

� �

4
4

6 12

6 12

4
4

6 12

1

1

2 3

2 3

1

1

2 3

z

z

z z

z z

z

z

z z

�� �

� � �

� �

� �

� � �

8 16

6 20 16

3 4

2 3 4

z z

z z z

�
Thus			   1 3 43 4 ..( ) .S z z z z− − −= − − +

� (1)

By the definition of z-transform

	 ( ) ( ) n

n

S z s n z
∞

−

=−∞

= ∑ �

			   4 3 2 1... ( 4) ( 3) ( 2) ( 1)s z s z s z s z= − + − + − + −
�

				   0 1 2 3 4(0) (1) (2) (3) (4) ...s z s z s z s z s z− − − −+ + + + + +
� (2)
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Comparing Eqs. (1) and (2), we get

					  

(0)  0
(1) 1
(2) 0
(3) 3
(4) 4

s

s

s

s

s

=
=
=
= −
= −

�

3.6.3	The Inverse z-Transform by Partial Fraction Expansion Method

In this method, we attempt to express the function S(z) as a linear combina-
tion of S1(z), S2(z), S3(z) where S1(z), S2(z)... are additive parts of function S(z) 
recovered by partial fraction, it is shown in Eq. (3.15)
	

1 1 2 2( ) ( ) . .( . ).) (k kS z A S z A S z A S z= + + + � (3.15)

where S1(z), S2(z), .... Sk(z) are the expressions with inverse z-transforms s1(n), 
s2(n), .... sk(n). Then inverse z-transform of S(z) will be
	 1( ) [ ( )]s n Z s z−=

�

			   [ ] 1
1 2

1
1 2( ) ( ...) ( )k kA S z A S z A SZ z− −=

�

			   [ ] [ ] [ ]1 1 1
1 1 2 2( ) ( ) ... ( )k kZ A S z Z A S z Z A S z− − −= + �

			 
1 1 2 2 ...) ( ).( ( ) k kA s n A s n A s n= + + + � (3.16)

This method is particularly useful if S(z) is a rational function given as 
follows.

	
1

0 1
1

0 1

...( )
( )

( ) ...

m
m

N
n

B B z B zN z
S z

D z A A z B z

− −

− −

+ + +
= =

+ + + � (3.17)

Here A0 should be equal to 1.
The partial fraction method is applicable only for proper rational transfer 

function. A rational transfer function is called proper if
			   0 and .AN M N≠ < �

EXAMPLE 3.13
Determine the inverse z-transform by using partial fraction expansion method. 
Given

	 ( ) .
( 1/2)( 1/4)

z
S z

z z
=

− − �
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Solution:
Partial fraction expansion of S(z) is given as

	 1 2( )
( 1/2)( 1/4) ( 1/2) ( 1/4)

z
S z

z z z z
α α

= = +
− − − −

� (i)

1
,

2
z = 			  1

1/2
2

1/4 1/2 1/4
z

z
α = = =

− −
�

1
4

z = 			   2

1/4
1

1/2 1/4 1/2
z

z
α = = =

− −
�

Substituting the value of α1 and α2 in Eq. (i), we get

	
2 1

( )
( 1/2) ( 1/4)

S z
z z

= −
− −

� (ii)

Taking the inverse z-transform of both sides of Eq. (ii), we get

	
1 12 1

( )
1/2 1/4

s n Z Z
z z

− −   = −   − −   
�

			 
1 1

1 1
1 1

2
1 1/2 1 1/4

z z
Z Z

z z

− −
− −

− −

   
= −   − −   

�

			 
1 11 1

2 ( 1) ( 1)
2 4

n n

u n u n
− −

   = − − −   
   

�

			 
1 1

4 ( 1).
2 4

n n

u n
    = − −    
     

�

EXAMPLE 3.14
Obtain inverse z-transform using partial fraction expansion method. Given

	
2

3 2

4 2
( ) .

5 8 4
z z

S z
z z z

−
=

− + −
�

Solution:
Here S(z) is a proper rational function. So we can apply partial fraction expan-
sion method for inverse z-transform.

	
2 2

3 2 2

4 2 4 2
( )

5 8 4 ( 1)( 2)
z z z z

S z
z z z z z

− −
= =

− + − − − �
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			   31 2
2( 1) ( 2) ( 2)z z z

αα α
= + +

− − − � (i)

z − 1 = 0, or z = 1

	 ( )

2 2

1 2 2

4 2 4(1) 2 1
2

(1 2)2

z z

z

− − ×
α = = =

−− �

z − 2 = 0,

	
( )22

2 2

( 1)(8 2) 4 2 (1)4 2
1 ( 1)

z z z zd z z
dz z z

− − − − −
α = = − − 

�

or z = 2

			 
2

2

(2 1)(8 2 2) 4(2) 2 2 14 12
2

(2 1) 1

 − × − − − × − = = =
− �

z − 2 = 0, or z = 2

	
2 2

3

4 2 4(2) 2 2 16 4
12

1 2 1 1
z z
z
− − × −

α = = = =
− −

�

Putting the values of α1, α2 and α3 in Eq. (i), we get

	 2

2 2 12
( )

( 1) ( 2) ( 2)
S z

z z z
= + +

− − −
� (ii)

( )
1 1 2

21 1 1

2 2 12
( )

1 1 2 1 2

z z z
S z

z z z

− − −

− − −
⇒ = + +

− − −
� (iii)

Taking the inverse z-transform of both sides of Eq. (iii), we get

	 ( )
1 1 2

1 1 1
21 1 1

2 2 12
( )

1 1 2 1 2

z z z
s n Z Z Z

z z z

− − −
− − −

− − −

      = + +     − −    − 
�

			   1 1 12(1) 2(2 ( )(2)) 6 1 , 0n n nn n− − −= + + − ≥
�
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TABLE 3.4  Inverse z-transform

z-transform s(n) 
S(z)

Inverse z-transform 
s(n) ROC

1 δ(n) All z

1
z

z −

u(n), n ≥ 0 | z | > 1

1
z

z −

−u(n), n < 0 | z | > 1

z
z A−

An, n ≥ 0 | z | > | A |

z
z A−

−An, n < 0 | z | > | A |

( )2

Az

z A−

nAn, u(n) | z | > | A |

1
z

z −

−Anu, (−n − 1) | z | > | A |

( )2

Az

z A−

−nAnu, (−n − 1) | z | > | A |

2
0

2
0

cos
2 cos 1

z z
z z

− ω
− ω +

(cos ω0n) u(n) | z | > 1

0
2

0

sin
2 cos 1
z

z z
ω

− ω +

(sin ω0n) u(n) | z | > 1

2
0

2 2
0

cos
2 cos
z Az

z z Az A
− ω

− ω +

(A2 cos ω0n) u(n) | z | > | A |

0
2 2

0

cos
2 cos
Az

z Az A
ω

− ω +

(A2 sin ω0n) u(n) | z | > | A |
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3.7	 SYSTEM FUNCTION

The z-transform of a discrete-time system’s unit-sample response h(n) is called 
the system function or transfer function of the system. It is denoted by H(z).

			   ( ) [ ( )] ( ) n

n

H z Z h n h n z
∞

−

=−∞

= = ∑ �

In other words, system function can be defined as the ratio of two-
transform of output and z-transform of input keeping all initial conditions 
zero, that is, initially the system is relaxed.

			 
-transform of output( )

( )
( ) -transform of input

zY z
H z

S z z
= = � (3.18)

The output of a relaxed LTI system to an input sequence s(n) can be 
obtained by computing the convolution of s(n) with h(n) of the system, where 
h(n) is the unit-sample response of the system.

			   ( ) ( ) ( ) ( ) ( )
k

y n s k h n k s n h n
∞

=−∞

= − = ∗∑ �

Here * denotes convolution operation.
Above relationship can be represented in the z-domain as

			 
( ) ( ) ( )Y z S z H z=

�

or			 
( )

( )
( )

Y z
H z

S z
= �

where	 S(z) = z-transform of the input sequence, s(n)
	 Y(z) = z-transform of the output sequence, y(n).
	 H(z) = z-transform of unit-sample response, h(n).

H(z) represents the z-domain characterization of a system, whereas h(n) is 
the corresponding time-domain characterization of the system.

Transfer function for a system which is described by a linear constant-
coefficient difference equation given as follows:

			 
1 0

( ) ( ) ( )
N M

k k
k k

y n A y n k B s n k
= =

= − + −∑ ∑ � (3.19)
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Taking the z-transform of both sides of above Eq. (3.19), we get

			 
1 0

( ) ( ) ( )
N M

k k
k k

k k

Y z A z Y z B z S n− −

= =

= +∑ ∑ �

or			   0

1

( )
( ) 1

M
k k

k
N

k
k

k

B z
Y z
S z A z

−

=

−

=

=
+

∑

∑
� (3.20)

Note that LTI system will always have rational z-transforms.

EXAMPLE 3.15
Determine the system function H(z) and unit-sample response h(n) of the 
system whose difference equation is

			  y(n) = 
1
2

y(n − 1) + 2s(n)�

where y(n) and s(n) are the output and input of the system, respectively.

Solution:
Taking the z-transform of the above difference equation

			   11
( ) ( ) 2 ( )

2
Y z z Y z S z−= + �

or		  	
11

( ) 1 2 ( )
2

Y z z S z− − =  
�

or			 
1

( ) 2
( )

1( ) 1
2

Y z
H z

S z z−
= =

− �

This system function has a pole at z = 
1
2

 and zero at z = 0.

			 

12
( )

1
1

2

H z z−=
− �
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h(n) = Inverse z-transform of 1
1

2
( )

1 1 / 2
H z Z

z
−

−
 =  − 

�

						  
1

2 ( )
2

n

u n =  
 

�

This is the unit-sample response of the system.

3.8	 POLES AND ZEROS OF RATIONAL z-TRANSFORMS

An important family of z-transforms is those for which S(z) is a rational 
function.

	 Rational transfer function is a ratio of two polynomials of z, that is, S(z) = 
P(z)/Q(z).

	 The zeros of a z-transform S(z) are the values of z for which S(z) = 0.

	 The poles of a z-transform S(z) are the values of z for which S(z) = ∞.

We can represent S(z) graphically by pole-zero plot in the complete 
z-plane. Pole is located by X and zero by o. From the definition of ROC, the 
ROC of a z-transform should not contain any pole.

EXAMPLE 3.16
Determine the pole-zero plot for the signal s(n) = (2)nu(n).

Solution:
	

( ) [ ( )]S z Z s n=
�

			   ( ) n

n

s n z
∞

−

=−∞

= ∑ �

			   (2) ( )n n

n

u n z
∞

−

=−∞

= ∑ �

			   1

1
ROC : 2

1 2
z

z−
= >

−
�

Thus S(z) has one zero at z = 0 and one 
pole at z = 2. The pole-zero plot is shown 
in Figure 3.7.

FIGURE 3.7  �Pole-zero plot for the 
sequence s(n) = (2)nu(n). 
s(n) = (2)n u(n)
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3.9	� SOLUTION OF DIFFERENCE EQUATIONS USING 
z-TRANSFORM

One-sided z-transform is used to solve difference equations with initial condi-
tions. The difference equations relating the two time-domain signals can be 
converted into an equivalent algebraic equation with the help of using one-
sided z-transform. This algebraic equation can be easily solved to obtain the 
z-transform of the desired signal. The signal in the time-domain is obtained 
by taking inverse z-transform of the resulting z-transform.

EXAMPLE 3.17
Determine the step response of a system given by
			   1 , 1 1( ) ( ) ( )y n Ay n s n A= − + − < < �

When the initial condition is y(–l) = 1.

Solution:
By taking the one-sided z-transform of both sides of the above difference 
equation
			   ( ) ( )1 . We ob ain( t)y n Ay n s n= − + �

			   ( )1  ( ) ( ) – ( )1Y z A z Y z y S z− = + + 
�

or			   1  ( ) ( )  ( )1Y z A z Y z S z− = + +  �

or			   1( ) ( )1  Y z Az A S z−  = +− � (1)

But for step response, s(n) = u(n)

Then,			   1

1
( ) [ ( )]

1
S z Z u n

z−
= =

−
� (2)

Substituting Eq. (2) in Eq. (1), we get

			   1
1)

1
1

1
(Y z Az A

z
−

−
  = +  −
− �

or			 
( )( )1 1 1

1
( )

1 1 1
A

Y z
Az z Az− − −

= +
− − −

� (3)

or			   1 2
1 1 1( )

1 1 1
A

Y z
Az z Az− − −

α α
= + +

− − −
� (4)

� [By partial fraction expansion]
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1 − z−1 = 0, z – 1		  1 1

1
1 1

A
Az A−α = =

− −
�

1 − Az−1 = 0, z−1 = 1/A		
2 1

1 1
11 1 11

A A
z A A

A

−α = = = =
− − −− �

Substituting the values of α1 and α2 in Eq. (4), we get

					    1 1 1

1
1 1( )

1 1 1

A
A A AY n
Az z Az− − −

−   
   − −   = + +

− − −
� (5)

Taking the inverse z-transform of Eq. (5), we get

					  
1 11 1

( ) ( ) ( ) ( ).
(1 ) (1 )

n nY n A u n u n A u n
A A

+ +−
= = +

− − �

					  
1

1 1
( ) ( )

(1 )

n
n A

A u n u n
A

+
+  −

= +  − 
�

					    21
1 ( )

1
nA u n

A
+ = − −

�

EXAMPLE 3.18
Solve the following difference equation by using z-transform method

			  s(n + 2) + 3s(n + 1) + 2s(n) = 0�

Initial conditions are s(0) = 0 and s(1) = 1.

Solution:
Given the difference equation

	 2 3 1 2  0( ) ( ) ( )s n s n s n+ + + + = � (1)

Taking the z-transform of both sides of the above equation, we get
		 [ ] [ ]1 1 (0) (1)  (( ) 3 ( ) ( )]0) 2[  0z S z z s zs zS z zs S z− ++− − = �
or		  [ ] [ ]2 2 .0 .1 .0 2( ) 3 ( ) ( ) 0z S z z z zS z z S z  + − − − + =

�
or		  [ ]3 ( ) 3 3 ( ) 2 ( ) 0Z S z zS z S z− + + = �
or		  2( ) 3 2S z z z z + + =  �

	 2( )
3 2
z

S z
z z

=
+ +

� (2)
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Taking the inverse z-transform of above z-transform by partial fraction expan-
sion method

	
1 2

2( )
3 2 ( 1) ( 2)
z

S z z
z z z z

α α 
= = + 

+ + + + 
� (3)

			   1 1

1 1
1 2 1 1 2

z z
z z z z− −= − = −
+ + + +

�

	 1 1

1 1
( )

1 1 2
S z

z z− −= −
+ +

� (4)

Taking the inverse z-transform of above Eq. (4), we get

	
1 1

1 1

1 1
( )

1 1 2
s n Z Z

z z
− −

− −
   = −   + +   

�

			 
( 1) ( ) ( 2) .( )n nu n n− −= −

�

EXAMPLE 3.19
Find the response of the system
			 

2 3 1( ) ( ( ) ( )2)s n s n s nn+ − + + = δ � (1)

When all the initial conditions are zero.

Solution:
Taking z-transform of both sides of above equation, we get
					    2 1( ) ( )3 1)2 (z S z z S z S z− + =

�

or	 )2 3 2) 1(S z z z + − = �

or		  1 2
2

1 1
( )

3 2 ( 2)( 1) 2 1
S z

z z z z z z
α α

= = = +
− + − − − − �

or		
1 1

( )
2 1

S z
z z

= −
− −

� (2)

� (By partial fraction expansion)

Taking inverse z-transform of both sides of Eq. (2), we get

	
1 11 1

( )
2 1

s n Z Z
z z

− −   = −   − −   
�

	
1 1

1
1 11 2 1

z z
z z

− −
−

− −

   
= −   − −   
  �

	 1 1 1(1) 1 (2)(2)n n n− − −= += −
�
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3.10	� ANALYSIS OF LINEAR TIME-INVARIANT (LTI) SYSTEMS 
IN THE z-DOMAIN

We have already studied the system function of LTI systems or the transfer 
function of the LTI system.

Also, we know that system function is directly related to unit-sample 
response (i.e., Impulse response) of the LTI system. Discrete-time LTI sys-
tems are described by their difference equations. System function can be 
found only for initially relaxed systems. In this section, we describe the use 
of the system function in the determination of the response of the system 
to some excitation signal. Furthermore, we extend this method of analysis 
to non-relaxed systems. Here, we shall focus our attention on the important 
class of pole-zero systems represented by linear constant-coefficient differ-
ence equations with arbitrary initial conditions.

We also consider the topic of stability of LTI systems. Finally, we provide 
a detailed analysis of second-order discrete-time systems. These second-order 
systems form the basic building blocks in the realization of higher-order sys-
tems.

3.10.1 Response of LTI Systems with Rational System Functions

General form of a linear constant-coefficient difference equation of discrete-
time LTI system is given by

			 
1 0

( ) ( ) ( )
N M

k k
k k

y n A y n k B s n k
= =

= − + −∑ ∑ � (3.21)

System function corresponding to Eq. (3.21) can be obtained by using 
time shifting property of z-transform.

	
1 0

( ) ( ) ( )
N M

k k
k k

Z y n Z A y n k B s n k
= =

 
= − − + − 

 
∑ ∑ .�

or	
1 0

( ) ( ) ( )
N M

k k
k k

k k

Y z A Y z z B S z z− −

= =

= − +∑ ∑ �

or	
1 1

( ) ( ) ( ) ( )
N N

k k
k k

k k

Y z B S z z Y z B S z z− −

= =

+ = +∑ ∑ �

or	 1

1 0

( ) ( )
N M

k
k k

k k

Y z A z B S z z− −

= =

+ =∑ ∑ �
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or	 0

1

( )
( ) 1

M
k

k
k

N
k

k
k

B z
Y z
S z A z

−

=

−

=

=
+

∑

∑ �

or	 0

1

( )
( )

( ) 1

M
k

k
k

N
k

k
k

B z
Y z

H z
S z A z

−

=

−

=

= =
+

∑

∑
� (3.22)

Therefore, a linear time-invariant system described by a constant-
coefficient difference equation has a rational system function. This is the 
general form for the system function of a system described by a linear 
constant-coefficient difference equation.

We represent system function H(z) as a ratio of two polynomials D(z)/
C(z), where D(z) is the numerator polynomial that contains the zeros of H(z), 
and C(z) is the denominator polynomial that determines the poles of H(z).

Furthermore, let us assume that the input signal s(n) has a rational 
z-transform S(z) of the form.

	
( )

( )
( )

N z
S z

Q z
= � (3.23)

Most of the signals of practical interest have rational z-transforms.
If the system is initially relaxed, that is, the initial conditions for the differ-

ence equation are zero, y(–1) = y(–2) = y(–3) = ... = y(–N) − 0, the z-transform 
of the output of the system has the form.
	

( ) ( ) ( )Y z H z S z=
�

						  
( ) ( )
( ) ( )

D z N z
C z Q z

= ⋅ � (3.24)

Now suppose that the system contains simple poles p1, p2, ..., pN, and the 
z-transform of the input signal contains poles q1, q2, ... q3, where pk ≠ qm for all 
k = 1, 2, ..... N and m − 1, 2, ..., L. In addition, we assume that the zeros of the 
numerator polynomials D(z) and N(z) do not coincide with the poles {pk} and 
{qk}, so that there is no pole-zero cancelation.

Then a partial fraction expansion of Y(z) gives

	
1 1

1 11 1
( )

Ist part IInd part

N L
kk

k kk k

QC
p z q z

Y z
− −

= =− −
= +
∑ ∑

� (3.25)
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On taking inverse z-transform of Eq. (3.25), we obtain

	
1 1

( ) ( ) ( ) ( )
( )

Ist part IInd part

N L
n n

k k k k
k k

C p u n Q q u n
Y n = == +

∑ ∑
� (3.26)

We observe from Eq. (3.26) that the output sequence y(n) can be subdi-
vided into two parts. The first part is a function of the poles {pk} of the system 
and is called the natural response of the system. The influence of the input 
signal on this part of the response is through the scale factors {Ck}.

The second part of the response is a function of the poles {qk} of the input 
signal and is called the forced response of the system. The influence of the 
system on this response is exerted through the scale factors {Qk}.

It is to be emphasized that the scale factors {Ck} and {Qk} are functions 
of both sets of poles {qk} and {qk}. For example, if S(z) = 0. so that the input 
is zero, then Y(z) = 0, and consequently, the output is zero. Clearly, then the 
natural response of the system is zero. This implies that the natural response 
of the system is different from the zero-input response.

When S(z) and H(z) have one or more poles in common or when S(z) 
and/or H(z) contain multiple-order poles, then Y(z) will have multiple-order 
poles. Consequently, the partial fraction expansion of Y(z) will contain factors 
of form 1/(1 − pl

z−1)k, k = 1, 2, ..., m, where m is the pole order. The inversion 
of these factors will produce terms of the form nk−1 n

lp  in the output y(n) of 
the system.

3.10.2	Response of Pole-Zero Systems with Non-Zero Initial Conditions

We suppose that the signal s(n) is applied to the pole-zero system at n = 0. 
Thus the signal s(n) is assumed to be causal. The effects of all previous input 
signals to the system are reflected in the initial conditions y(–1), y(–2), ..., 
y(–N). Since the input s(n) is causal and we are interested in determining the 
output y(n) for n ≥ 0, we can use the unilateral or one-sided z-transform. One-
sided z-transform allows us to deal with the initial conditions.

Now taking the one-sided z-transform of both sides of Eq. (3.21), we get

	
1 0

[ ( )] ( ) ( )
N M

u k k
k k

y n Z A y n k B s n k
= =

 
= − − + − 

 
∑ ∑ �
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or	
1 1

( ) ( ) ( )
N k

k n
k

k n

Y z A z Y z y n z− +

= =

+  
= − + − 

 
∑ ∑ �

							   
0

( )
M

k
k

k

B z S z− +

=

+∑ � (3.27)

Since s(n) is a causal, we can set S + (z) = S(z).
In any case Eq. (3.27) may be expressed as

	

0 1 1

1 1

( )
( ) ( )

1 1

I II

M N k
k k n

k k
k k n

N N
k k

k k
k k

B z A z y n z
Y z S z

A z A z

− −

+ = = =

− −

= =

−
= −

+ +

∑ ∑ ∑

∑ ∑
� (3.28)

	 0(
( )

( )
( )

) ( )Y z H z S z
N z
C z

+ = + �

where	
1

0
1

( ) ( )
N k

k n
k

k n

A z y zN z n−

= =

= − −∑ ∑ � (3.29)

From Eq. (3.28), it is apparent that the output of the system with non-
zero initial conditions can be subdivided into two parts.

The first part is the zero-state response of the system. It is defined in 
z-domain as
	 ( ) ( )zsY H z S z= � (3.30)

and the second part is the zero-input response. It is given in z-domain as

	 0 ( )
( )

( )zi

N z
Y z

C z
+ = �

Hence, the total response is the sum of their two output components. 
These output components can be expressed in the time-domain by determin-
ing the inverse z-transforms of Yzs(z) and Yzi(z), separately, and then adding 
the results. Thus 
	 ( ) ( ) ( )zs ziy n y n y n= + � (3.31)

Since the denominator of ( )ziY z+ , is C(z), its poles are p1, p2, p3, ..., pn. 
Consequently, the zero-input response has the form

	
1

( ) ( ) ( )
N

n
zi k k

k

Y n E p u n
=

=∑ � (3.32)
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This can be added to Eq. (3.26) and the terms involving the poles can be 
combined to yield the total response in the form

	
1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
N L N

n n n
k k k k k k

k k k

y n C p u n Q q u n E p u n
= = =

= + +∑ ∑ ∑ �

			   [ ]
1 1

( ) ( ) ( ) ( )
N L

n n
k k k k k

k k

C E p u n Q q u n
= =

= + +∑ ∑ �

			 
1 1

( ) ( ) ( ) ( )
N L

n n
k k k k

k k

C p u n Q q u n′

= =

= +∑ ∑ � (3.33)

where,	 k k kC C E= + � (3.34)

This discussion indicates clearly that the effect of initial conditions is to 
alter the natural response of the system through modification of the scale 
factor {Ck}.

There are no new poles introduced by the non-zero initial conditions. 
Furthermore, there is no effect on the forced response of the system. These 
important points can be understood by following example.

EXAMPLE 3.20
Find the unit-step response of the discrete-time system described by the fol-
lowing difference equation
			   0.9 1 0.81( ) ( ) ( ) ( )2y n y n y n s n= − − − + �

under the following initial conditions:
(a) y(–1) = y(–2) = 0		  (b) y(–1) = y(–2) = 1.

Solution:
The system function of above system described difference equation
			   0.9 1 0.81( ) ( ) ( ) ( )2y n y n y n s n= − − − + �

is determined by taking z-transform as
	 0.9 ( 1) 0.81 ([ ( ) 2) ( )]Z Y n y n y n sZ n− − − +=   

�

			   1 20.9 0.81( ) ( ) ( ) ( )Y z z Y z z Y z S z− −= − +
�

or			   1 2

( ) 1
( ) 1 0.9 0.81

Y z
S z z z− −=

− + �

or			   1 2

( ) 1
( )

( ) 1 0.9 0.81
Y z

H z
S z z z− −= =

− +
� (1)

DSP.CH03_3pp.indd   119DSP.CH03_3pp.indd   119 4/1/2022   4:34:17 PM4/1/2022   4:34:17 PM



120 • Digital Signal Processing 

This system has two complex-conjugate poles at
	 /3/3

1 20.9 and 0.9j jp e p e pp −= = �

The z-transform of unit-step sequence u(n) is
	

( ) [ ( )]S n Z u n=
�

			   1

1
1 z−

=
−

� (2)

Substituting Eq. (2) in Eq. (1), we get

	
1 1 13 3

1
( )

1 0.9 1 0.9 1
zs j j

Y z

e z e z z
p p

− − −

=
   

 − − −     
   

�

			 
( )1

1 13 3

(0.542 0.049) (0.542 0.049) 1.099
1

1 0.9 1 0.9
j j

j j

z
e z e z

p p −
− −

− +
= + +
    −

− −   
   

� (3)

We can determine the zero-state response by taking inverse z-transform 
of Eq.(3)
	 [ ]1( ) ( )zs zsy n Z Y z−= �

			   1.099 1.088(0.9) cos 5.2 ( )
3

n n u n
p  = + = °    

� (4)

(a) Since the initial conditions are zero in this case, we conclude that
	 ( ) ( )zsy n y n= �

(b) For the initial conditions
	 ( 1) (–2) 1y y− = = �

the additional component in the z-domain is given

	 0 ( )
( )

( )zi

N z
Y z

C z
= �

			 
1

1 2

0.09 0.81
1 0.9 0.81

z
z z

−

− −

−
=

− +
�

			 
1 13 3

(0.026 0.4936) (0.026 0.4936)

1 0.9 1 0.9
j j

j j

e z e z
p p

− −

+ −
= +

   
− −   

   

� (5)
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Consequently, the zero-input response is determined as
	 1( ) [ ( )]zi ziy n YZ z−= �

			 

1

1 13 3

(0.026 0.4936) (0.026 0.4936)

1 0.9 1 0.9
j j

j j
Z

e z e z
p p

−

− −

 
 

+ − = +    
 − −   
     

�

			   0 988(0 9) cos 87 ( ) ( )
3

n n u n u n
p = + ° 
 

� (6)

In this case, the total response has the z-transform
	 ( ) ( ) ( )zs ziY z Y z Y z= + � (7)

Substituting Eqs. (3) and (5) in Eq. (7), we get

	
( )1

13 3

(0.568 0.445) (0.568 0.445)1.099
( )

1
1 0.9 1 0.9

j

j j
y z

z
e z e

p p−
−−

+ −
= + +

   −
− −   

   

� (8)

Total response of the system in this case is obtained by taking inverse 
z-transform of Eq. (8)

	 1.099 (n) 1.44(0.9( ) cos 3
3

) 8 ( )n ny n uu n
p + ° 


=


+ � (9)

3.10.3	Transient and Steady-State Responses

We have already studied that the response of a system to a given input can be 
separated into two components. These components are

Natural Response and Forced Response.
The natural response of a causal system has the form

	 ( )
1

( ) ( )
N

n

k k
k

nry n C p u n
=

=∑ � (3.35)

where {pk} k = 1, 2, 3, ..., N are the poles of the system and {Ck} are the scale 
factors. These scale factors depend upon the initial conditions and on the 
characteristics of the input sequence.
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If |pk| < 1 for all values of k, then, natural response ynr(n) decays to zero as 
n approaches ∞. In such a case, we refer to the natural response of the system 
as the transient response.

The rate at which natural response ynr(n) decays toward zero depends on 
the magnitude of the pole positions. If all the poles have small magnitudes, 
the decay is very rapid.

On the other hand, if one or more poles are located near the unit circle, 
the corresponding terms in natural response ynr(n) will decay slowly toward 
zero and the transient will persist for a relatively longer time.

The forced response of the system has the form

	 ( )
1

( ) ( )
L

n

k k
k

fr n Q q u n
=

=∑ � (3.36)

where {qk}, k = 1, 2, 3, ..., L are the poles in the forcing function and are the 
scale factors. These scale factors depend on the input sequence and on 
the characteristics of the system. If all the poles of the input signal fall inside 
the unit circle, forced response yfr(n) will decay toward zero as n approaches 
∞, just as in the case of natural response.

It is not surprising, since the input signal is also a transient signal. On the 
other hand, when the causal input signal is a sinusoid, the poles fall on the unit 
circle and consequently, the forced response is also a sinusoid that persists for 
all n > 0. In this case, the forced response is called the steady-state response 
of the system. Thus, for the system to sustain a steady-state output for x ≥ 0 
the input signal must persist for all n ≥ 0.

Transient and steady-state response can be understood by the following 
example.

EXAMPLE 3.21
Find the transient and steady-state responses of the discrete-time system 
characterized by the difference equation.
	 0.5( ) ) ( )1(  y n y n s n= − + �

when the input signal is

	 ( ) 10cos ( )
4
n

s n u n
p =  
 

�

The system is initially at rest, that is, it is initially relaxed.
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Solution:
The system function can be found by taking z-transform of the above differ-
ence equation.
					    0.5 ([ ( ] 1) ( ))y n y nZ Z s n− +=   

�

or				   10.5( ) ( ) ( ) Y z z Y z S z−= +
�

or			   11 0.5( )[  ] ( )Y z z S z−− =
�

or					  
1

( ) 1
( ) 1 0.5

Y z
S z z−

=
− �

or					    1

( ) 1
( )

( ) 1 0.5
Y z

H z
S z z−

= =
− � (1)

This system has a pole at z = 0.5.
The z-transform of the input signal can be determined by using the table 

of z-transform as

					    ( ) [ ( )] 10cos ( )
4
n

S z Z s n Z u n
p  = =     

�

					  

1

1 2

1
10 1

2
1 2

z

z z

−

− −

  −     =
− +

� (2)

Eq. (1) can be written as

					    1( ) ( )
1

( ) ( )
1 0.5

Y S z
z

z H z S z −= =
−

� (3)

Substituting Eq. (2) in Eq. (3), we get,

					    ( )

1

1 21

1
10 1

1 2
( )

1 21 0.5

z
Y z

z zz

−

− −−

  −     =
− +− �

					  
( )

1

1
1 14 4

1
10 1

1 2
1 0.5

1 1
j j

z

z
e z e z

p p

−

−
−− −

  −     =
  −

− −  
  

�
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or					  
28.7 28.7

1
1 14 4

6.3 6.78 6.78
( )

1 0.5
1 1

j j

j j

e e
Y z

z
e z e z

p p

− ° °

−
−− −

= + +
−    

− −   
   

� (4)

� (Using partial fraction expansion)

The natural or transient response is determined as

					    1

6.3
( ) Inverse -transform

1 0.5
yfr n

z
z −

 =  − 
�

				 
6.3(0.5 )) (n u n= � (5)

The forced or steady-state response is determined as

				 
1 1

28.7 28.7

4 4

6.78 6.78
( ) Inverse -transform

1 1

j j

j j
z z

e e
yfr n

e e

z
p p− −

− ° °

−
= +

   
− −   

   
�

					  
28.7 28.74 46.78 6.78 ( )

j n j n

e e e e u n
p p

−− ° °
    

= +    
     

	

					    13.56 cos 28.7 ( )
4

n u n
p = − ° 
 

�

Thus, we see that the steady-state response persists for all n ≥ 0, just as the 
input signal persists for all n ≥ 0.

3.10.4	Causality and Stability

A causal LTI system is one whose unit-sample (impulse) response h(n) satis-
fies the condition.
				 

0( 0) ,h n n= <
�

We have also shown that the ROC of the z-transform of a causal sequence 
is the exterior of a circle. Consequently, an LTI system is causal if and only 
if the ROC of the system function is the exterior of a circle of radius r < ∞, 
including the point z = ∞.

The stability of an LTI system can also be expressed in terms of the char-
acteristics of the system function H(z). A necessary and sufficient condition 
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for LTI discrete-time system to be bounded input bounded output (BIBO) 
stable is

				   ( )
n

h n
∞

=−∞

< ∞∑ �

In turn, this condition implies that H(z) must contain the unit circle within 
its ROC.

Indeed, since		  ( ) ( ) n

n

H z h n z
∞

−

=−∞

= ∑ �

it follows that

				   ( ) ( ) ( )n n

n n

H z h n z h n z
∞ ∞

− −

=−∞ =−∞

≤ =∑ ∑ �

when evaluate on the unit circle (i.e., |z| = 1),

				   ( ) ( )
n

H z h n
∞

=−∞

≤ ∑ �

Hence, if the system is BIBO stable, the unit circle is contained in the 
ROC of H(z). The converse is also true. Therefore, an LTI system is BIBO 
stable if and only if the ROC of the system function H(z) includes the unit 
circle.

We know that the conditions for causality and stability are different and 
that one does not imply the other.

For example, a causal system may be stable or unstable, just as a non-
causal system may be stable or unstable. Similarly, an unstable system may 
be either causal or non-causal, just as a stable system may be causal or non-
causal.

For a causal system, however, the condition on stability can be narrowed 
to some extent. Indeed, a causal system is characterized by a system function 
H(z) having a ROC as the exterior of some circle of radius r.

For a stable system, the ROC must include the unit circle. Consequently, 
casual and stable system must have system functions that converges for |z| > r 
< 1. Since the ROC cannot contain any poles of H(z), it follows that a causal 
LTI system is BIBO stable if and only if all the poles of H(z) are inside the 
unit circle, |z| = 1.
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EXAMPLE 3.22

An LTI (discrete-time) system is characterized by the system function

				 
1

1 2

3 4
( )

1 3.5 1.5
z

H z
z z

−

− −

−
=

− +
�

Specify the ROC of H(z).
Also, find unit-sample response h(n) for the following conditions:

a.	 The system is stable

b.	 The system is causal

c.	 The system is anti-causal.

Solution:

System function

				 
1

1 2

3 4
( )

1 3.5 1.5
z

H z
z z

−

− −

−
=

− +
�

					    ( )

1

1 1

3 4
1

1 1 3
2

z

z z

−

− −

−
=
 − − 
 

�

					    ( )1
1

1 2
1 1 31
2

zz
−

−
= +
  −− 
 

� (i)

The system has poles at z = 
1
2

 and z = 3

a.	 Since the system is stable. Therefore its ROC must include the 1 unit 

circle and hence it is 
1
2

 < |z| < 3. Consequently, h(h) is non-causal.

In this case, unit-sample response h(n) is given by

					    (
1

( ) ( 1
2

) )2(3)n
n

u n uh nn  − −
 


−=


�

b.	 Since the system is causal, its ROC is |z| > 3. In this case
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1

( )
2

( ) 2(3) ( )n
n

uh nn u n = 
 

+ �

This system is unstable.
c.	 If the system is anti-causal, its ROC is |z| < 0.5. Hence

				 
1

( ) 2(3) ( 1)
2

n
nh n u n

  = − + − −  
   

�

In this case, the system is unstable.

3.10.5	Pole-zero Cancelations

When a z-transform of signal has a pole that is at the same location as zero, 
the pole canceled by zero. Consequently, the term containing that pole in the 
inverse z-transform vanishes. Such pole-zero cancelations are very important 
in the analysis of pole-zero systems.

Pole-zero cancelations can occur either in the system function itself or in 
the product of the system function with the z-transform of the input signal. 
Pole-zero cancelations in system function itself reduce the order of the system 
by one. Pole-zero cancelations in the case of product of H(z) and S(z), where 
S(z) = Z  {s(n)}, suppress the pole of the system by the zero in the input signal 
or vice versa. Thus by properly selecting the position of the zeros of the input 
signal, it is possible to suppress one or more system modes (poles factors) in 
the response of the system.

Similarly, by proper selection of the zeros of the system function H(z), it is 
possible to suppress one or more modes of the input signal from the response 
of the system.

When the zero is located very near the pole but not exactly at the same 
location the term in the response has a very small amplitude. For example, 
non-exact pole-zero cancelations can occur in practice as a result of insuffi-
cient numerical precision used in representing the coefficient of the system. 
Consequently, one should not attempt to stabilize an inherently unstable sys-
tem by placing a zero in the input signal at the location of the pole.

EXAMPLE 3.23
Find the unit-sample (impulse) response h(n) of the system characterized by 
the difference equation.
				   2.5 1 – 2( ) ( ) ( ) ( ) (5 1 )6 2( .)y n y n y n s n s n s n= − − + − − + − �
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Solution:
System function H(z) can be determined by taking z-transform of both sides 
of above difference equation.
	

2.5 1 2[ ( )] [ ( ) ( ) ( ) ( ) ( )6 ]5 1 2Z y n Z y n y n s n s n s n− − − + − − + −=
�

or			   1 2 1 2( ) ( )2 ( ) ( ) (.5 5 6) ( )Y z z Y z z Y z S z z S z z S z− − − −= − + − +
�

or			 
1 2

1 2

( ) 1 5 6
( )

( ) 1 2.5
Y z z z

H z
S z z z

− −

− −

− +
= =

− +
� (1)

Eq. (1) can also be written as

		  ( )

1 2

1 1

1 5 6
( )

1
1 1 2

2

z z
H z

z z

− −

− −

− +
=
 − − 
 

� (2)

This system has poles at p1 = 2 and p2 = 
1

.
2

 Consequently,

					  
( ) ( ) ( )Y z H z S z=

�

or			 
( )

1 2

1 1

1 5 6
( ) ( )

1
1 1 2

2

z z
Y z S z

z z

− −

− −

− +
=
 − − 
 

� (3)

Since s(n) = δ(n)
	

[ ( )] [ ( )]Z s n Z n= δ
�

or			   ( ) 1S z = � (4)
Substituting Eq. (4) in Eq. (3), we get

			   ( )

1 2

1 1

1 5 6
( ) 1

1
1 1 2

2

z z
y z

z z

− −

− −

− +
= ⋅
 − − 
 

�

				 
5 / 2 0

1 / 2 2 1 / 2 2
A B

z z
z z z z

   = + = +   − − − −   
�

				 

5
2.52

1 1
2 2

z z

z z
= =

− − �
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The fact that B = 0 indicates that there exists a zero at z = 2 which cancels 
the pole at z = 2. In fact, the zeros at occur z = 2 and z = 3.

Consequence, H(z) reduces to

	

1

1

1 3
( )

1
1

2

z
H z

z

−

−

−
=

− �

			 

3
1
2

z

z

−
=

− �

			 

1

1

2.5
1

1
1

2

z
z

−

−= −
− � (5)

Taking the inverse z-transform of both sides of Eq. (5), we get
	 1( ) [ ( )]h n Z H z−=

�

			 
1

1
1

2.5
1

1 1 / 2
z

Z
z

−
−

−

 
= − − 

�

			 
11

( ) 2.5 ( 1)
2

n

n u n
−

 = δ − − 
 

� (6)

The reduced-order system was obtained by canceling the common pole 
and zero. Then it is characterized by the difference equation.

	 ( )( 1)
1

( 1
2

( ) 3)y y n s n nn n− + − −= � (7)

Although the original system is also BIBO stable due to pole-zero can-
celations, in a practical implementation of the second-order system, we may 
encounter instability due to imperfect cancelation of the pole and the zero.

EXAMPLE 3.24
Find the response of the discrete-time system described by difference equa-
tion given as

	
5 1

( ) ( 1) ( 2) ( )
6 6

y n y n y n s n= − − − + �

to the input signal

		
1

( ) ( ) ( 1)
3

s n n n= δ − δ − �
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Solution:
The system function of this system can be found by taking z-transform of both 
sides of difference equation.

			 
5 1

( ) ( 1) ( 2) ( )
6 6

y n y n y n s n= − − − + �

as			   1 25 1
( ) ( ) ( ) ( )

6 6
Y z z Y z y Y z S z− −= − + �

or			 
1 2

( ) 1
( )

5 1( ) 1
6 6

Y z
H z

S z z z− −
= =

− +
� (1)

Eq. (1) can be written as

			   1 1

1
( )

1 1
1 1

2 3

H z
z z− −

=
  − −  
  

� (2)

This system has two poles at z = 1/2 and z = 1/3.
The z-transform of input signal can be determined as

				 
( ) [ ( )]S z Z s n=

�

				 
1

( ) ( 1)
3

Z n n = δ − δ −  
�

				   11
1

3
z−= − � (3)

In this case, the input signal contains a zero at z = 1/3 which cancels the 
pole at z = 1/3. Consequently,
				 

( ) ( ) ( )Y z H z S z=
�

			   1

1
( )

1
1

2

Y z
z−

=
−

� (4)

Now, taking the inverse z-transform of Eq. (4), we get the response of the 
system

			 
1

( ) ( )
2

n

y n u n =  
 

� (5)

Clearly, the mode (1/3)n is suppressed from the output as a result of the 
pole-zero cancelation.
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3.10.6	Multiple-order Pole and Stability

A necessary and sufficient condition for a causal LTI system to be BIBO stable 
is that all its poles be inside the unit circle. The input signal is bounded if its 
z-transform contains poles {qk}, k = 1, 2, 3, ..., L, which satisfy the condition 
|qk| ≤ 1 for all values of k. We note that the forced response of the system, 
given here:.

		
1

( ) ( ) ( )
L

n
k k

k

yfr n Q q u n
=

=∑ �

is also bounded, even when the input signal contains one or more distinct 
poles on the unit circle.

In view of the fact that a bounded input signal may have poles on the unit 
circle, it might appear that a stable system may also have poles on the unit cir-
cle. This is not the case, however, since such a system produces an unbounded 
response when executed at the same position on the unit circle.

EXAMPLE 3.25
Find the step response of the causal system described by the difference 
equation
	 ( ) ( ) (1 )y n y n s n= − + � (1)

Solution:
System function of above system can be determined by taking z-transform of 
both side of Eq. (1) as
	 [ ( )] ( 1) ( )Z y n Z y n s n− +=   

�

or	 1( ) ( ) ( )Y z z Y z S z−= +
�

or	
1

( ) 1
( ) 1

Y z
S z z−

=
− �

or	 1

( ) 1
( )

( ) 1
Y z

H z
S z z−

= =
− �

or	 1

1
( ) ( )

1
Y z S z

z−
=

−
� (2)

For step response, we put
	

( ) ( )s n u n=
�
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[ ( )] [ ( )]Z s n Z u n=

�

			   1

1
( )

1
S n

z−
=

−
� (3)

Substituting Eq. (3) in Eq. (2), we get

			   ( )21 1 1

1 1 1
( )

1 1 1
Y z

z z z
− − −

= ⋅ =
− − −

� (4)

Y(z) contains a double pole at z = 1. Taking the inverse z-transform of 
Eq.(4)
			   1( ) [ ( )]y n Z Y z−=  �

				   ( )
1

21

1

1
Z

z
−

−

 
 =
 − 

�

or	 ( ) ( ) (1 )y n n u n= + �

This is ramp sequence.
Thus y(n) is unbounded, even when the input is bounded. Consequently, 

the system is unstable.
Example 3.25 demonstrates clearly that BIBO stability requires that the 

system poles be strictly inside the unit circle, that is, |z| = 1. If the system 
poles are all inside the unit circle and the excitation sequence s(n) contains 
one or more poles that coincide with the poles of the system, the output Y(z) 
will contain multiple-order poles. Such multiple-order poles result in a output 
sequence that contains terms of the form
					    ( ) ( )b n

k kC n p u n �

where 0 ≤ b ≤ m − 1 and m is the order of the pole. If |pk| < 1, these terms decay 
to zero as n → ∞ because the exponential factor (pk)

n dominates the terms nb.
Consequently, no bounded input signal can produce an unbounded out-

put signal if the system poles are all inside the unit circle.
Finally, the only useful systems which contain poles on the unit circle are 

the digital oscillators. We call such systems marginally stable.
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3.10.7  The Schur-Cohn Stability Test

We know that the stability of a system is determined by the position of the 
poles. The poles of the system are the roots of the denominator polynomial of 
H(z), namely,
				   1 2

1 21 .( ) .. N
NC z A z A z A z− − −= + + + � (3.37)

When the system is causal all the roots of C(z) must lie inside the unit 
circle for the system to be stable.

There are several computational procedures that help in determining if 
any of the roots of C(z) be outside the unit circle. These procedures are called 
stability criteria.

Now, we describe the Schur-Cohn test procedure for the stability of a 
system characterized by the system function H(z) = D(z)/C(z). Before we 
describe the Schur-Cohn test, we need to establish some useful notation.

We denote a polynomial of degree m by

				 
0

( ) ( ) , (0) 1
m

k
m m

k

Cm z A k z A−

=

= =∑ � (3.38)

The reciprocal or reverse polynomial Dm(z) of degree in is defined as

					    ( )1( ) m
mD z z Cm z− −= �

					  
0

( )
m

k
m

k

A m k z−
=

= −∑ � (3.39)

We observe that the coefficients of Dm(z) are the same as those of Cm(z), 
but in reverse order.

In the Schur-Cohn Stability test, to determine if the polynomial C(z) has 
all its roots inside the unit circle, we compute a set of coefficients.

These coefficients are called reflection coefficients, α1, α2, ... ,αN from the 
polynomials Cm(z). First, we set
					    ( ) ( )NC z C z= �

and				   ( )N NA Nα = � (3.40)

Then we determine the lower-order polynomial Cm(z), m = N, N − 1, N 
− 2, ..., 1, according to the recursive equation

				   1 2

( ) ( )
( )

1
m m m

m
m

C z D z
C z−

− α
=

−α
� (3.41)
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Where the coefficients are defined as
					    ( )n mA mα = � (3.42)

The Schur-Cohn Stability test states that the polynomial C(z) given by 
Eq. (3.37) has all its roots inside the unit circle if and only if the reflection 
coefficients αm satisfy the condition |αm| < 1 for all m = 1, 2, ..., N.

EXAMPLE 3.26
Find if the system having the system function

				   1 2

1
( )

7 1
1

4 2

H z
z z− −

=
− −

 is stable.�

Solution:

We begin with C2(z).C2(z) is defined as

				   1 27 1
( ) 1

4 2sC z z z− −= − − �

Hence,	 2

1
2

α =

Now	 1 2
2

1 1
( )

2 4
D z z z− −= − − +

and		  2 2 2
1 2

2

( ) ( )
( )

1
C z D z

C z
−α

=
−α

			 
17

1
2

z−= −

Therefore,	 1

7
2

α = −

Since |α1| > 1, it follows that the system is unstable. The fact is easily 
established in this example, since the denominator is easily factored to yield 
the two poles at p1 = −2 and p2 = 1/4. However, for higher degree polynomials, 
the Schur-Cohn test provides a simpler test for stability than direct factoring 
of H(z).

The Schur-Cohn Stability test can be easily programmed in a digital com-
puter. It is very efficient in terms of arithmetic operations. Specially, it requires 
only N2 multiplications to determine the coefficients {αm}, m = 1, 2,..., N. The 
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recursive equation Cm−1(z) = 2

( ) ( )
1

m m m

m

C z D z−α
−α

 can be expressed in terms of 

the polynomial coefficients corresponding to equal powers. Indeed, it is easily 
established that equation:

				   1( ) 2

( ) ( )
1

m m m
m z

m

C z D z
C −

− α
=

−α �

is equivalent to the following algorithm
					    ( ) , 1,2,...N kA k A k N= = � (7)
					    ( )N NA Nα = � (8)

Then, for m = N, N − 1, ..., N, compute
				   ( )m mA mα = �

				 
1( 10)mA − = �

and				   1( ) 2

( ) ( )
, 1, 2,..., 1

1
m m m

m k
m

A k D k
A k m−

− α
= = −

−α
� (9)

where				   ( ) ( ,  0,1,) 2m mD k A m k k= − = � (10)

This recursive algorithm for the computation of coefficients {αm} finds 
application in various signal processing problems, especially in speech signal 
processing.

3.10.8	Stability of Second-order Systems

Here, we discuss a detailed analysis of a system having two poles. As we know 
that two-pole systems form the basic building blocks for the realization of 
higher-order systems.

Let us consider a causal two-pole system described by the second-order 
difference equation.
				 

1 2 01 2( ) ( ) ( ) ( )A y n A By nn y s n− − − − += � (3.43)

The system function can determined by taking z-transform of both sides 
of above equation as
					  

1 2 0[ ( )] ( 1) ( 2) ( )y n A y n A y n B s n= − − − − +   

 �

or				   	 1 2
1 2 0( ) ( ) ( ) ( )A z Y z A BY z z Y z S z− −− − += �
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or			  	 1 2
1 2 0( )[1 ] ( )Y z A z A z B S z− −+ + = �

or							     0
1 2

1 2

( )
( ) 1

BY z
S z A z A z− −=

+ +
� (3.44)

Eq. (3.44) can be written as

			 
2

0
2

1 2

( )
( )

( )
B zY z

H z
S z z A z A

= =
+ +

� (3.45)

This system has two zeros at the origin (z = 0) and two poles at

				 
2

1 1 2
1

4
2 4
A A A

p z
−

= = − + �

				 
2

1 1 2
2

4
2 4
A A A

p
−

= − − �

This system is BIBO stable if the poles lie inside the unit circle, that is, 
|z| = 1, that is if |p1| < 1 and |p2| < 1. These conditions can be related to the 
values of the coefficients A1 and A2. In particular, the roots of a quadratic 
equation satisfy the relations
				 

11 2( )pA p− += � (3.46)
				 

2 1 2A p p= � (3.47)

From Eqs. (3.46) and (3.47), we easily obtain the conditions that A1 and 
A2 must satisfy for stability. First, A2 must satisfy the condition.
				 

2 1 2 1 2| | | | | 1| | |A p p p p= = < � (3.48)

The condition for A1 can be expressed as
				 

1 21| |A A< + � (3.49)

The conditions in Eqs. (3.48) and (3.49) can also be derived from the 
Schur-Cohn Stability test. From the following recursive equation:
		   , 1,2,  ....) ,(N kA k A k N= = �

				   ( )N NA Nα = �

DSP.CH03_3pp.indd   136DSP.CH03_3pp.indd   136 4/1/2022   4:34:29 PM4/1/2022   4:34:29 PM



The z-Transform • 137

		  1 2

( ) ( )
( )

1
m m m

m
m

A k B k
A k−

− α
=

−α �

where	 ( ) ( ), 0,  1,  ...., ,m mB k A m k k m= − = �

We obtain that

				 
1

1
21

A
A

α =
+

� (3.50)

and				   2 2Aα = � (3.51)

The system is stable if and only if |α1| < 1 and |α2| < 1. Consequently,
				 

21 1A− < < �

or, equivalently,
				 

1 21A A< + �

				 
1 21A A> − − �

which are in agreement with Eq. (3.50). Therefore, a two-pole system is stable 
if and only if the coefficients A1 and A2 satisfy conditions given Eqs. (3.49) 
and (3.50).

The stability conditions are given in Eqs. (3.49) and (3.50), define a region 
in the coefficient plane (A1, A2), which is in the form of a triangle as shown in 
Figure 3.8. The system is stable if and only if the point (A1, A2) lies inside the 
triangle. This triangle is called the stability triangle.

Characteristics of Second-order (two-pole) Discrete-time Systems: 
The characteristics of the two-pole system depend on the location of the poles 
or, equivalently, on the loca-
tion of the point (A1, A2) in the 
stability triangle. The poles of 
the system may be real or com-
plex conjugate.

These poles depend on 
the value of the discriminant 

2
1 24 .A A∆ = −  The parabola A2 

= 2
1 /4A  splits the stability trian-

gle into two regions (as shown 
in Figure 3.8. The region 
below the parabola 2

1 2( 4 )A A>  
FIGURE 3.8  �Region of stability (stability triangle) in the 

(A1, A2) coefficient plane for a second-order 
system.
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corresponds to real and distinct poles. The points on the parabola 2
1 2( 4 )A A>  

result in real and equal (double) poles. Finally, the points above the parabola 
correspond to complex-conjugate poles.

Now, we discuss the behavior of the system by using unit-sample responses 
for the following three cases:

1.	 Real and distinct poles ( )2
1 24A A>

2.	 Real and equal poles ( )2
1 24A A=

3.	 Complex-conjugate poles ( )2
1 24A A< .

Real and distinct poles ( )2
1 24A A> : Since poles p1 and p2 are real and 

p1 ≠ p2, the system function can be expressed in the form

			
1 2

1 1
1

( )
1 1 s

A A
H z

p z p z− −= +
= −

� (3.52)

where			 

0 1
1

1 2

0 2
2

1 2

B p
A

p p

B p
A

p p

= − 

=
− 

� (3.53)

Consequently, the unit-sample response h(n) can be determined by tak-
ing inverse z-transform of Eq. (5.52)
			  ( )1( )h H zn Z −=   

 �

			 
1 1 2

1 1
1 21 1

A A
Z

p z p z
−

− −

 
= + − − 

�

			 
1 1 2 2 ( ) ( ) ( ) ( )n nA p u n A p u n= + �

			 
1 1 2 2[ ( ) ( ) ] ( )n nA p A p u n+= � (3.54)

Putting the values of Eq. (3.53) in Eq. (3.54), we get

			   ( )1 10
1 2

1 2

( ) ( )n nB
h n p p u n

p p
+ += −

− � (3.55)
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Therefore, the unit-sample 
(impulse) response h(n) is the 
difference of two decaying expo-
nential sequences. Figure 3.9 
shows a typical graph when the 
poles are distinct.

( )
1 1

1 2
1 2

1
( ) ( )n nh n p p u n

p p
+ + = − −

Real and Equal poles 
( )2

1 24A A= . In this case p1 = p2 

= p = −A1/2. The system function 
is given by

( )
0

21
( )

1

B
H z

pz−
=

− � (3.56)

Now, unit-sample response 
h(n) of the system is determined 
as
	 1( ) [ ( )]h n Z h n−=

�

	 ( )
1 0

211

B
Z

pz
−

−

 
 =
 − 

�

	 = +0 ( ) (1 )nB n p u n � (3.57)

Here, we observe that h(n) is the product of a ramp sequence and a real 
decaying exponential sequence. The graph of impulse response given by Eq. 
(3.57) is shown in Figure 3.10.

Complex-conjugate poles ( )2
1 24A A= . Since the poles are complex 

conjugate, the system function H(z) can be expressed as

	
1 1( )

1 1
D D

H z
pz p z− −

∗
= +

− − ∗
� (3.58)

or	
0 01 1( )

1 1j j

D D
H z

re z re zω − ω− −

∗
= +

− −
� (3.59)

0.5

1.0

1.5

2.0

h(n)

n
500

FIGURE 3.9  �Plot of impulse response h(n) given by Eq. 
(3.55) with poles p1 = 0.5 and p2 = 0.75.

FIGURE 3.10  �Plot of h(n) given by Eq. (3.57) with p = 
3/4, h(n) = (n + 1) pn u(n)
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Since, we know that p = 0jre′ ω  and 0 < ω0 < π. Note that when the poles 
are complex conjugates, the parameters A1 and A2 are related to r and ω0 
according to

				 
1 0

2
2

2 cosA r

A r

= − ω 
= 

� (3.60)

The constant D in the partial fraction expansion of H(z) is easily shown 
to be

				   ( )
0

0 0

0 0
j

j j

B p B re
D

p p r e e

ω

ω − ω
= =

− ∗ − �

				 
0

0

02sin

jB e
j

ω

=
ω

� (3.61)

Consequently, the unit-sample (impulse) response of the system with 
complex-conjugate poles is

				 
0 0( 1) ( 1)

0

0

( ) ( )
sin 2

j n j nnB r e e
h n u n

j

w w+ − + −
=  ω  

�

				 
0

0
0

sin( 1) ( )
sin

nB r
n u n= + ω

ω
� (3.62)

In this case unit-sample 
(impulse) response h(n) has 
an oscillatory behavior with 
an exponentially decaying 
envelope when r < 1. The 
angle ω0 of the poles deter-
mines the frequency of oscil-
lation and the distance r of 
the poles from the origin 
determines the rate of decay. 
When r is close to unity, the 
decay is slow. When r is close 
to the origin, the decay is fast. 
A typical graph of impulse 
response h(n) is shown in 
Figure 3.11.

n

1.2

1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1.0

–1.2

50

h(n)

FIGURE 3.11  �Plot of impulse response h(n) given by 
Eq. (3.62) with B0 = 1, ω0 = π/4, r = 0.9,

 
= + ω ω 

0

0

( ) sin( 1) ( ).
sin

nB r
h n n u n
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EXERCISES

1.	 Define z-transform with ROC.

2.	 Why ROC is required in z-transform determination?

3.	 Give some possible configurations of the ROC for the z-transform.

4.	 Give the properties of the ROC for the z-transform.

5.	 Discuss various properties of the z-transform.

6.	 What is inverse z-transformation? Discuss all the methods of the inverse 
z-transform.

7.	 Define a system function. What is the relationship between system func-
tion and unit-sample response, h(n) of a system?

8.	 What is meant by poles and zeros of a rational z-transform?

9.	 How z-transform and inverse z-transform are used for solving difference 
equations of a discrete-time system?

NUMERICAL EXERCISES

1.	 Find the z-transform with ROC for the following discrete-time sequences;

(a) 
1

( ) ( )
3

n

s n u n =  
 

	 (b) 
1

( ) ( 1)
3

n

s n u n = − − 
 

(c) 
1

( ) ( )
3

n

s n u n = − 
 

	 (d)  δ(n)

(e)  δ(n − 1)	 (f)  δ(n + 1)

2.	 Determine the z-transform and their ROC for the following sequences:

(a) 
↑

= {2,  4,  5,  6 }( ) ,  8s n 	 (b)  =
↑

 {1,  2,  3,  4( ) ,  5}s n

(c)  =
↑

{0,  0,  3,  4,  5( ) ,  6}s n
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3.	 Determine the z-transform and its ROC of following sequences:

s(n) = Anu(n) + Bnu(–n −1)

where A and B are constant scalar quantities.

4.	 Determine the z-transform and the ROC of the following signals:

(a)  s(n) = [4(3)n − 5(4)n] u(n)	 (b)  s(n) = A(cos ω0n) u(n)
(c)  s(n) = A(cos ω0n) u(n)	 (d)  s(n) = An(cos ω0n) u(n)
(e)  s(n) = An(sin ω0n) u(n)	 (f)  s(n) = nAnu(n)
(h)  s(n) = u(n)

5.	 Find the inverse z-transform s(n) for the following one-sided z-transforms 
is given by:

(a)  2

( 3)
( )

3 2
z z

S z
z z

+
=

+ +
	 (b) 

2

2

2
( )

2 2 1
z

S z
z z

=
− +

(c) 
2

2

2
( )

1
z

S z
z
+

=
+

	 (d)  2

(4 3)
( )

2 3 1
z z

S z
z z

−
=

− +

6.	 Solve the following difference equations using one-sided z-transform:

(a)  y(n) = 
1
3

 y(n − 1) 
1
4

 − y(n − 2) = 0, y(−1) = y(−2) = 1

(b)  y(n) = 0.5y(n − 1) + s(n), where input s(n) = 
1
3

n
 
 
 

 u(n), y(−1) = 1

(c)  y(n) = 0.25y(n − 2) + s(n)

Input s(n) = u(n), y(–1) = 0 and y(–2) = 1.

7.	 Determine the unit-sample response and system function of the following 
causal systems:

(a)  y(n) = 0.7y(n − 1) − 0.1 y(n − 2) + 2s(n) − s(n − 2)
(b)  y(n) = y(n−1) − 0.5y(n − 2) + s(n) + s(n − 1)
(c)  y(n + 2) − 3y(n + 1) + 2y(n) + s(n)

where y(n) = output of a system, and s(n) = input of a system.
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C H A P T E R  4
Frequency Analysis  
Using DTFT

4.1	� INTRODUCTION TO DISCRETE-TIME FOURIER 
TRANSFORM (DTFT)

In this chapter, we will discuss about the Fourier transform of discrete-time 
signals, that is, discrete-time Fourier transform (DTFT). There are many sim-
ilarities in the analysis of continuous-time and discrete-time signals using the 
Fourier series and there are also important differences between continuous-
time Fourier series (CTFS) and discrete-time Fourier series (DTFS). For 
example, the Fourier series representation of a discrete-time periodic signal 
is finite series but the Fourier series representation of the continuous-time 
periodic signal is infinite series. Also, we will see in this chapter, there are cor-
responding differences between continuous-time Fourier transform (CTFT) 
and DTFT.

Here we will extend the Fourier series description of discrete-time 
periodic signals in order to develop a Fourier transform representation for 
discrete-time non-periodic signals.

4.2	� DEVELOPMENT OF THE DISCRETE-TIME FOURIER 
TRANSFORM (DTFT)

DTFT is a transformation tool that transforms a discrete-time signal from 
time-domain to frequency domain. In this section, we will develop an expres-
sion for DTFT for discrete-time signals. We have already learned that the 
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Fourier series coefficient for a continuous-time periodic square wave can be 
viewed as samples of an envelope function. As the fundamental period of the 
continuous-time periodic square wave increases, its samples become more 
and more finely spaced. Here a non-periodic signal s(t) is used to construct a 
periodic signal �s(t) that equals s(t) over one fundamental period. As the period 
approaches infinity, �s(t) will be equal to s(t) over larger and larger intervals of 
time and the Fourier series representation for �s(t) converges to the Fourier 
transform representation for �s(t). In this section, we will develop an analo-
gous procedure for deriving an expression for DTFT for discrete-time non-
periodic signals.

Consider a general discrete-time sequence s(n) of finite duration. That is,
	 ≠ − ≤ ≤1 2( ) 0, fors n N n N

	 = 0,  otherwise � (4.1)

From this non-periodic signal, we can construct a periodic signal or 
sequence �s(n) for which s(n) is of one period. A discrete-time non-periodic 
signal s(n) is shown in Figure 4.1(a) and a periodic signal �s(n) which is con-
structed from s(n) for which s(n) is of one fundamental period is shown in 
Figure 4.1(b).

If fundamental period N0 approaches infinity then �s(n) = s(n) for any finite 
value of n.

FIGURE 4.1  (a) Finite duration discrete-time signal s(n) 
(b) Periodic signal s(n) constructed to be equal to s(n) over one period.
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Fourier series representation of �s(n) can be expressed as

	
w

=< >

= ∑� 0

0

( ) jk n
k

k N

s n A e � (4.2)

where Ak is the Fourier series coefficient and ω0 = 2p/N0 is the fundamental 
frequency. N0 is the fundamental period.

Fourier series coefficients Ak are given by

	
0

00

1
( ) jk n

k
n N

A s n e
N

w−

=< >

= ∑ � � (4.3)

Since s(n) = �s(n) over one period that includes the interval N1 ≤ n ≤ N2. 
Therefore replacing �s(n) by s(n) in Eq. (4.3), we get

	

2
0

10

1
( )

N
jks n

k
n N

A s n e
N

w−

=

= ∑
�

(4.4)

But s(n) is zero outside the interval –N1 ≤ n ≤ N2.
Defining the function

	
( )w w

∞
−

=−∞

= ∑ ( )j j n

n

S e s n e
�

(4.5)

We see that the Fourier series coefficients Ak are directly proportional to 
samples of S(e jω)

	
( )0

0

1 jk
kA S e

N
w= � (4.6)

Now combining Eqs. (4.2) and (4.6), we get

	 ( )w w w

=< > =< >

= =∑ ∑� 0 0 0

0 0 0

1jk n jk jk n
k

k N k N

s A e S e e
N

� (4.7)

Since ω0 = 
p

0

2
N

 or 
w
p

= 0

0

1
2N

, Eq. (4.7) can be rewritten as

	

w ww
p=< >

= ∑� 0 0

0

0( ) ( )
2

jk jk n

k N

s n S e e

	 ( ) ww w

p =< >

= ∑ 0 0

0

1
2

jk jk n

k N

S e e � (4.8)

As fundamental period N0 increases, fundamental frequency ω0 decreases. 
As N0 approaches infinity, Eq. (4.8) passes to an integral. Eq. (4.8) can be 
graphically interpreted in Figure 4.2.
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From Eq. (4.5), S(e jω) 
is periodic in w with 
period 2p and therefore 
ω > n is also periodic in 
ω with the same period. 
Thus, the product S(e jω)
e jω0n will also be periodic 
in w with period 2p. Each 
term in the summation 
in Eq. (4.8) represents 
the area of a rectangle of 
height S(e jkwω0)e jω0n and 
width ω0. As fundamental 
frequency ω0 approaches 
zero, the summation in 
Eq. (4.8) becomes an integral. The summation is carried out over N0 at con-
secutive intervals of width ω0 but the total interval of integration will always 
be of width 2p.

Therefore, as N0 → ∞ or ω0 → 0, �s(n) = s(n), the Eq. (4.8) becomes

	 ( )w w

p

w
p

= ∫
2

1
( )

2
j j ns n S e e d � (4.9)

where

	 ( )w w
∞

−

=−∞

= ∑ ( )j j n

n

S e s n e � (4.10)

The function S(e jω) is called the DTFT. Eq. (4.9) is called the DTFT 
synthesis equation. Eq. (4.10) is referred to as the DTFT analysis equation. 
These equations show how a non-periodic sequence can be thought of as a 
linear combination of complex exponential functions. The DTFT has many 
similarities with the CTFT such as linearity, convolution property, etc. The 
major differences between the DTFT and CTFT are:

i.	 DTFT is periodic in w with period 2p but CTFT is not periodic.

ii.	 DTFT has a finite interval of integration in the synthesis equation but 
CTFT has an infinite interval of integration in the synthesis equation.

4.3	 CONVERGENCE OF THE DTFT

Here we will discuss about the convergence of the infinite summation in the 
DTFT analysis equation given as

FIGURE. 4.2  Graphical representation of equation

�s (n) = ( )w w w
p =< >

∑ 0

0

0
0

1
2

jk jk n

k N

S e e
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	 ( )w w
∞

−

=−∞

= ∑ ( )j j n

n

S e s n e � (4.11)

The conditions on s(n) that guarantee the convergence of this sum are 
direct counterparts of the convergence conditions for the CTFT. Eq. (4.11) 
will converge either if signal s(n) is absolutely summable, that is,

	
∞

=−∞

< ∞∑ ( )
n

s n � (4.12)

or, if the sequence has finite energy, that is,

	
∞

=−∞

< ∞∑ 2( )
n

s n � (4.13)

But, there are no issues associated with DTFT synthesis equation given by

	
w w

p

w
p

= ∫
2

1
( ) ( )

2
j j ns n S e e d � (4.14)

as the integral in this synthesis equation is over a finite interval of integration. 
This is a similar situation as for the DTFS synthesis equation which involves 
a finite sum. Consequently, there is no issue of convergence associated with 
DTFT synthesis equation.

EXAMPLE 4.1
Determine DTFT of a discrete-time signal s(t) = Anu(n), |A| < 1.

Solution:
DTFT of s(n) is given by

	
( ) { }w w

∞
−

=−∞

= = ∑DTFT ( ) ( )j j nn

n

S e s n A u n e

	
w

∞
−

=−∞

= ∑ ( ) j nn

n

A u n e � (1)

But u(n) is the unit step sequence and it is defined as

	
≥

=  <

1, 0
( )

0, 0
n

u n
n � (2)

Substituting Eq. (2) in Eq. (1), we obtain

	
( ) ( )w w w

∞ ∞
− −

= =−∞

= =∑ ∑
0

1
nj j n jn

n n

S e A e Ae

(This is a geometric progression of infinite number of terms.)

	 w−=
−

1
1 jAe
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	 or	 ( )w
w−=

−
1

1
j

jS e
Ae

Note that DTFT of any discrete-time sequence s(n) is periodic function 
in ω with period 2p.

EXAMPLE 4.2
Determine the DTFT of the discrete-time signal

	 = <( ) , 1.ns n A A

Solution:
DTFT of the discrete-time signal is determined;

	 ( ) { }w w
∞

−

=−∞

= = ∑DTFT ( ) ( )j j n

n

S e s n s n e

	

w w w
∞ ∞ −

− − −−

=−∞ = =−∞

= = +∑ ∑ ∑
�������� ���������

1
| |

0

I II

j n j n j nn n n

n n n

A e A e A e

Substituting n = –m in the second summation, we obtain

	 ( )w w w
∞ ∞

−

=−∞ =

= +∑ ∑| |

1

j j n j mn m

n m

S e A e A e

Both of the summations given in Eq. (1) are infinite geometric progres-
sions that we can evaluate in closed form, producing.

	 ( ) ( ) ( )w w w
∞ ∞

−

= =

= +∑ ∑
0 1

n mj j j

n m

S e Ae Ae

	
w

w w−= +
− −

1
1 1

j

j j

Ae
Ae Ae

	
( )

( )( )
w w w

w w

−

−

− + −
=

− −

1 1

1 1

j j j

j j

Ae Ae Ae

Ae Ae

	
w w

w w−
− + −=
− − +

2

2

1
1

j j

j j

Ae Ae A
Ae Ae A

	
w w−

−=
 +− + 
 

2

2

1

1 2
2

j j

A

e e
A A

	 or	 ( )w

w
−=

− +

2

2

1
1 2 cos

j A
S e

A A
� (2)
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This discrete-time signal s(n) is shown in Figure 4.3 and its DTFT is 
shown in Figure 4.4.

FIGURE 4.3  Discrete-time signal s(n) = A|n|, |A| < 1.

FIGURE 4.4  DTFT of the discrete-time signal = A|n|, |A| < 1.

Here ( )w

w
−=

− +

2

2

1
1 2 cos

j A
S e

A A
 is a real-valued function of ω.

EXAMPLE 4.3
Determine the DTFT of the discrete-time rectangular pulse given as

	
≤

=  >
1

1

1,
( )

0,
n N

s n
n N

Solution:
This rectangular pulse is shown in Figure 4.5.
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FIGURE 4.5  Discrete-time rectangular pulse.

	
≤

=  >
1

1

1,
( )

0,
n N

s n
n N

DTFT of this rectangular pulse is determined as

	 ( )w w
∞

−

=−∞

= = ∑DTFT [ ( )] ( )j j n

n

S e s n s n e

	
w w− −

=− =−

= ∑ ∑
1 1

1 1

1
N N

j n j n

n N n N

e e � (1)

This is a geometric series or progression of a finite number of terms. 
Eq. (1) can be rewritten as

	 ( ) [ ]w w w
w

−

=

+
= =∑

1

1

1sin (1 / 2)

sin( / 2)

N
j j n

n N

N
S e e

The DTFT of rectangular pulse is shown in Figure 4.6.

FIGURE 4.6  DTFT of rectangular pulse shown in Figure 4.5 for Nl = 2.

DTFT of a discrete-time rectangular pulse is periodic with period 2p but 
the CTFT of the continuous-time rectangular pulse is not periodic.
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4.4	� FOURIER TRANSFORM OF DISCRETE-TIME PERIODIC 
SIGNALS

In this section, we will study about the Fourier transform for discrete-time 
periodic signals. Fourier transform for discrete-time periodic signals is inter-
preted as the Fourier transform of a periodic signal as an impulse train in the 
frequency domain.

To derive an expression for Fourier transform for discrete-time periodic 
signals, we consider the signal

	
w=( ) j ns n e � (4.15)

We know that the CTFT of e jω0n can be interpreted as an impulse at ω = 
ω0. Therefore, we expect the same type of Fourier transform that results for 
the discrete-time signal of Eq. (4.15). However, the DTFT must be periodic 
in w with period 2p Fourier transform of s(n) = e jωn should have impulses at 
ω0, ω0 ± 2p, ω0 ± 4p and so on. Fourier transform of s(n) is the impulse train. 
It is given by Eq. (4.16) and illustrated in Figure 4.7.

	 ( ) ( )w pd w w p
∞

=−∞

= − −∑ 02 2j

m

S e m � (4.16)

FIGURE 4.7  Illustration of Fourier transform of signal s(n) = e jωn.

For checking the validity of expression given in Eq. (4.16), we will deter-
mine the inverse Fourier transform.

Substituting the Eq. (4.16) into the DTFT synthesis equation given as

	 ( )w w

p

w
p ∫

2

1
2

j j nS e e d

	 ( ) w

p

pd w w p w
p

∞

=−∞

 = − −  
∑∫ 0

2

1
2 2

2
j n

m

m e d � (4.17)

We know that any interval of length 2p includes exactly one impulse in 
the summation given by Eq. (4.16). Therefore, if the interval of integration 
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is so chosen that it includes the impulse located at ω0 + 2n(l), then Eq. (4.17) 
becomes

	
ww w w dw

p

w
p

==∫ 0( )

2

1
( )

2

j nj j n j l eS e e d e � (4.18)

Fourier series representation for a discrete-time periodic signal s(n) is 
given by

	
w

=< >

= ∑
0

( ) jk n
k

k N

s n A e � (4.19)

and the DTFT is given by

	 ( )w pp d w
∞

=−∞

 
= − 

 
∑

0

2
2j

k
k

k
S e A

N � (4.20)

From the above analysis, we conclude that the Fourier transform of a dis-
crete-time periodic signal can be directly constructed from its Fourier series 
coefficients Ak.

EXAMPLE 4.4
Determine the DTFT of the discrete-time periodic signal

	 w= 0( ) coss n n

with fundamental frequency ω0 = 2p/5.

Solution:
Using Euler’s relation, signal s(n) – cosω0n can be written as

	
w w

w
−+=

0 0

0( ) cos
2

j n j ne e
s n n � (1)

	
w w−= +0 0

1 1
2 2

j jn ne e

But we know that DTFT of a period signal s(n) = e jω0n is given by

	
ww = = 0( ) { (DTFT DTFT)} { }j j nS e s n e

	 ( )02 2
m

mpd w w p
∞

=−∞

= − −∑ � (2)

Similarly, DTFT of Eq. (1) can be determined as

	 ( ) { }w w w−= = +0 0
1 1

DTFT{ ( )} DTFT
2 2

j j n j nS e s n e e

	 { } { }ω − ω= +0 0
1 1

DTFT DTFT
2 2

js n js ne e
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	 ( ) ( )d w w pd w w p
∞ ∞

=−∞ =−∞

= π − − π + + −∑ ∑0 0

1 1
2 2 2 2

2 2m m

m m

pw =  0

2
Substituting 

5

	 or	 ( )w p ppd w p w p
∞ ∞

=−∞ =−∞

   = − − + + −      ∑ ∑2 2
2 2 3

5 3
j

m m

S e m � (3)

	 ( )w p ppd w p w p
∞ ∞

=−∞ =−∞

   = − − + + −      ∑ ∑2 2
2 2

5 5
j

m m

S e m m

	
p ppd w p pd w    = + − + + −        

2 2
... 2

5 5

	
ppd w p  + − − +    

2
2 ....

5

	
p ppd w p pd w    + + + + + −        

2 2
... 2

5 5

	
ppd w p  + + − +    

2
2 ....

5

or	 ( )w p ppd w pd w p w p   = − + + − ≤ ≤      
2 2

,
5 3

jS e � (4)

Here S(e jω) repeats periodically with a period of 2p. DTFT of s(n) = cos ω0n 
is shown in Figure 4.8.

FIGURE 4.8  DTFT of s(n) = cos ω0n.

EXAMPLE 4.5
Determine the DTFT of the discrete-time periodic impulse train given by

	 ( )0( ) .
k

s n n kNd
∞

=−∞

= −∑
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Solution:

Discrete-times periodic impulse train ( )0( )
k

s n n kNd
∞

=−∞

= −∑  is sketched in 
Figure 4.9.

FIGURE 4.9  Discrete-time periodic impulse train ( )d
∞

=−∞

= −∑ 0( )
k

s n n kN .

Now, we can calculate the Fourier series coefficients for this discrete-time 
periodic impulse train ( )0( )

k

s n n kNd
∞

=−∞

= −∑  directly from equation given 
below

	
w−

=< >

= ∑ 0

0

( ) jk n
k

n N

A s n e � (1)

Substituting ( )d
∞

=−∞

= −∑ 0( )
k

s n n kN  and choosing the interval of summation 

as 0 ≤ n ≤ N0 – 1 Eq. (1), we obtain

	
0

0

1

0
00 0

1 1
( )

N
jk n

k
n k

A n kN e
N N

wd
− ∞

−

= =−∞

= − =∑ ∑ � (2)

DTFT of s(n) is determined as

	 ( ) { } ( )0DTFT ( ) DTFTj

k

S e s n n kNw d
∞

=−∞

 = = − 
 
∑

	
pp d w

∞

=−∞

 
= − 

 
∑

0

2
2 k

k

k
A

N � (3)

Substituting Eq. (2) in Eq. (3), we obtain

	 ( )w p pd w
∞

=−∞

 2= − 
 

∑
0 0

2j

k

k
S e

N N � (4)

DTFT of discrete-time periodic impulse train ( )0( )
k

s n kNd w
∞

=−∞

= −∑  is 
shown in Figure 4.10.
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FIGURE 4.10  DTFT of discrete-time periodic impulse train.

	 ( )0( )
k

s n n kNd
∞

=−∞

= −∑

4.5	 PROPERTIES OF THE DTFT

In this section, we will study about the various properties of the Fourier trans-
form of discrete-time signals. Fourier transform of discrete-time signals is 
also referred to as DTFT. These properties are often useful in reducing the 
complexity in the evaluation of the Fourier transform and inverse Fourier 
transform. Also, we will see some of the similarities and differences between 
CTFT and DTFT. The derivation of DTFT properties is essentially identical 
to its continuous-time counterpart, that is, CTFT. Also, because of the close 
relationship between the Fourier series and Fourier transform, many of the 
DTFT properties translate directly into corresponding DTFS properties.

Here we will use one notation similar to that used for CTFT to indicate 
the pairing of a signal and its Fourier transform. That is
	 ( )w = DTFT { ( )}jS e s n

	 ( )w= Inverse DTFT ( ) js n S e

	 or	 ( )w←→DTFT( ) js n S e

In this section, we will discuss the following properties of the DTFT:

1.	 Periodicity of the DTFT;

2.	 Linearity of the DTFT;

3.	 Time-shifting and frequency shifting;
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4.	 Complex conjugation and conjugate symmetry;

5.	 Differencing and accumulation in time-domain;

6.	 Time reversal of a discrete-time sequence;

7.	 Time expansion;

8.	 Differentiation in frequency domain;

9.	 Parseval’s relation for DTFT;

10.	 The convolution property for DTFT;

11.	 The multiplication property for DTFT.

4.5.1 Periodicity of the DTFT

We have already discussed that DTFT of a discrete-time signal is always peri-
odic in w with period 2p. A periodic function is a function that repeats its 
value after some fixed value of the independent variable. This fixed value of 
the independent variable is called the period of the periodic function.

The DTFT of s(n) is always periodic in p with period 2p, that is,
	 ( )w←→DTFT( ) js n S e

	 ( )w p w+ =( 2 ) ( )j jSS e S e � (4.21)

This is in contrast to CTFT, which in general is not a periodic function.

4.5.2 Linearity of DTFT

The DTFT is also a linear transformation tool as CTFT.

{ }
{ }

w

w

←→

←→

DTFT
1 1

DTFT
2 2

( )

( )

j

j

s n S e

s n S e

where s1(n) and s2(n) are discrete-time sequences whose DTFTs are S1(e
jω) 

and S2(e
jω), respectively.

From the property of linearity, it is true for the above two discrete-time 
sequences s1(n) and s2(n) given as
	 w←→+ +1 1 2 2 1

DTFT
1 2 2 1( ) ( ) ( ) ( ){ ( )}  jA s n A s n A S n A S n S e � (4.22)

where A1 and A2 are constants.
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4.5.3 Time-Shifting and Frequency Shifting

Here we will first study the effect of time-shifting of a discrete-time sequence 
s(n) on its DTFT S(e jω) and then the effect of frequency shifting.
If	 ( ){ }w←→DTFT( ) js n S e

then	 ( ){ }ww−
− ←→ 0DTFT

0( )
jj S e

s n n e � (4.23)

where s(n – n0) is the time-shifted version of s(n). Now will see the effect of 
frequency shifting.

If	 ( ){ }w←→DTFT( ) js n S e

then	
w w w−←→0 0DTFT ( )j js S e � (4.24)

where S(e(  jω−ω0)) is the frequency-shifted version of S(e jω).

4.5.4 Complex Conjugation and Conjugate Symmetry

We can obtain complex conjugation of a complex discrete-time signal s(n) by 
reversing the sign of the imaginary part of the complex signal s(n).

Let s(n) be the complex discrete-time signal, s(n) = sR(n) + jsI(n) and its 
DTFT is also complex, that is,
	 ( )w ww= + ) ) ( (j j

R IS e S j jS e

where sR(n) and s(n) are real and imaginary parts of s(n), and SR(e jω) and 
SI(e

jω) are also real and imaginary parts of S(e jw), respectively.
Now complex conjugation of s(n) is given by

	 ( ) ( ) – ( ) Rs n s n js n=∗

and complex conjugation of S(e jw) is given by
	   –( ) ( ) ( )j j j

R IS e S e jS ew w w∗ =

If	 ( )w←→DTFT( ) js n S e

then	 s* (n) ( )DTFT( ) js n S e w−∗ ←→ ∗ � (4.25)

Also, if signal s(n) is a real-valued function, then its DTFT S(e jw) will be 
conjugate symmetric. That is
	 –( ) ( )  for (  real)j jS e S e s nw w= ∗ �

(4.26)

From Eq. (4.26), we can say that Re{S(e jω)} is an even function of w and 
Im{S(e jω)} is an odd function of w. Similarly, the magnitude of {S(e jω)} is an 
even function and the phase angle ∠{S(e jω)} is an odd function.
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Also, we can decompose sequence s(n) into even and odd parts. Further-
more,
	 DTFTE { ( )} ( ) Re ( ) ( )j j

V E Rs n s n S e S ew w= ←→ =

and	 w w= ←→ =DTFT
0{ ( )} ( ) Im{ ( )} ( )j j

IOd s n s n j S e jS e

where Ev{s(n)} and Od{s(n)} are the even and odd parts, respectively, of 
s(n). Specifically, if s(n) is real and even, its DTFT is also real and even.

4.5.5 Differencing and Accumulation in Time

Accumulation is the discrete-time counterpart of integration. Integration is 
used for continuous-time signals. The inverse of accumulation is referred to 
as first differencing.

Let s(n) be a discrete-time signal with DTFT S(e jω). The first differencing 
of signal s(n) is given by s(n) – s(n – 1). DTFT of first differencing of signal 
s(n) can be determined by using the properties of linearity and time-shifting as
	 w ww−←→− − −DTFT( ) ( ) ( ) ( )1 j j js n s n S e e S e

	
w w−= −( ) ( )1 j je S e � (4.27)

The accumulation of signal s(n) is given by

	
∞

=−∞

= ∑( ) ( )
m

y n s m � (4.28)

Eq. (4.28) can also be expressed as
	 y(n) – y(n – 1) = s(n)� (4.29)

Thus, we can conclude that DTFT of y(n) should be related to the DTFT 
of s(n) division by (1 – e–jω). This is not perfectly correct but the precise rela-
tionship is given by

	 ( )w p d w p
∞ ∞

−
=−∞ =−∞

←→ + −
−∑ ∑0DTFT 1

( ) ( 2 )
1

j
j

m k

s m S e k
e

� (4.30)

The impulse train on the RHS of Eq. (4.30) shows the dc or average value 
that can result from summation.

EXAMPLE 4.6
Determine the DTFT of the unit-step function s(n) = u(n) using the accumu-
lation property of DTFT.

Solution:
We know that

	 ( )w= ←→ =DTFT( ) ( ) 1jg n s n S e
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Also, we have studied that the unit-step function u(n) is the running sum 
of the unit-impulse function &(n). This relation is given as

	 ( )w
∞

=−∞

= ∑DTFT ( )j

m

S e s m

Now, taking the DTFT of both sides of Eq. (2) and using the accumula-
tion property of DTFT, we obtain

	 ( )w
∞

=−∞

 =  
 

∑DTFT ( )j

m

S e s m

or	 ( ) ( ) ( ) ( )w w
w

p d w p
∞

−
=−∞

= + −
− ∑01

( 2 )
1

j j j

j
k

S e G e G e k
e � (3)

But from Eq. (1), we have
	 w = =0( ) 1 and ( ) 1j jG e G e

Substituting these values in Eq. (3), we obtain

	 ( ) ( ) ( )1

1
j

j
k

S e k
e

w
w

p d w wp
∞

−
=−∞

= + −
− ∑ � (4)

4.5.6 Time Reversal of Discrete-Time Signals

Taking a mirror image or folding of a discrete-time sequence is called time 
reversal. Consider a discrete-time signal or sequence s(n) whose mirror image 
is given by s(n).

If					    ( )w←→DTFT( ) js n S e �

then					    w−− ←→DTFT( ) ( )js n s e � (4.31)

s(n)
Now we can prove this property as

	 = −( ) ( )y n s n � (4.32)

Taking DTFT of both sides of Eq. (4.32), we obtain

	 ( ) DTFT{ ( )]= ( )j j n

n

y e y n s n ew w
∞

−

=−∞

= −∑ � (4.33)

Now substituting m = –n in Eq. (4.33), we obtain

	 ( )w w w
∞

− − −

=−∞

= =∑ ( )( ) ( )j j m j

m

y e s m e S e � (4.34)
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That is,
					    ( )w−− ←→DTFT( ) js n S e � (4.35)

Hence, it is to be proved.

4.5.7 Time Expansion of Discrete-Time Signals

Time expansion of a discrete-time signal is equivalent to multiplication of 
independent variable, that is, time of a signal by an integer scalar quantity A, 
which is greater than unity.

We have already derived time-expansion property of CTFT which is given by

					  
w ←→   

CTFT 1
( )

j
s At S

A A � (4.36)

We cannot slow down the signal by choosing A < 1. On the other hand, if 
we let A be an integer other than ±1. For example A = 2 then s(2n), we cannot 
merely speed up the original signal. That is since n can take on only integer 
values the signal s(2n) consists of the even samples of original signal s(n) alone.

Time-expanded signal is given by

				   ( )

( / ) if  is a multiple of 
( )

0 if  is not multiple of k

s n k n k
s n

n k


= 
 � (4.37)

where k is a positive integer.
For k = 2, the sequence s(k)(n) is obtained from the original sequence s(n) 

by placing k – 1 zeroes between successive values of the original sequence. 
Now, we can say that s(k)(n) is a slowed-down version of s(n).

FIGURE 4.11  The signal s(2)(n) obtained from s(n) by inserting one zero between 
successive values of the original signal s(n).
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One sequence s(n) and its slowed-down version s(k)(n) for k = 2 are shown 
in Figure 4.11.

Since s(k)(n) equals zero unless n is multiple of k.

For	 = ( ),DTFT of ( ) is given bykn mk s n

	
( ) ( ) ( )( ) DTFT{ ( )}= ( )j j n
k k k

n

S e s n s n ew w
∞

−

=−∞

= ∑

	

w
∞

−

=−∞

= ∑ ( ) ( ) j mk
k

n

s mk e

Furthermore, since S(k)(mk), we find that

	
( )w ww

∞
−

=−∞

= =∑ ( )
( ) ( ) ( ) j m jk
k

m

S ej s m e S e

That is					   ( )w←→DTFT( )( ) kjs k n S e � (4.38)

As the discrete-time signal is spread out and slowed-down in time by taking 
k > 1, its DTFT is compressed. For example, since S(e jω) is periodic in w with 
period 2n and S(e jkω) is also periodic in w with period 2p/k.

Now we can conclude that there is an inverse relationship between time 
and frequency domains. In other words, we can say that as the value of k 
increases, s(k)(n) spreads out while its DTFT is compressed.

EXAMPLE 4.7
Determine the DTFT of the discrete-time sequence s(n) shown in Figure 4.12 
using a time-expansion property of DTFT.

FIGURE 4.12  Discrete-time sequence s(n).

Solution:
This sequence s(n) can be related to the simpler sequence g(n) shown in 
Figure 4.13(a).
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FIGURE 4.13  (a) Simpler sequence g(n). (b) Time-expanded version of sequence g(n). 
(c) Time-shifted version of g(2)(n) by one unit to the right.

The discrete-time sequence s(n) is related to the discrete-time sequence 
g(n) as
	 = + −(2) (2)( ) ( ) 2 ( 1)s n g n g n � (1)

where	


= 


2

( / 2), if is even
( )

0, if is odd
g n n

g n
n � (2)

and g2(n – 1) is the shifted version of g(2)(n) by one unit to the right. The signals 
g(2)(n) and 2g(2)(n – 1) are depicted in Figure 4.13(b) and 4.13(c), respectively.

Here, we relate given sequence s(n) in terms of a simpler sequence g(n) 
which is a discrete-time rectangular pulse:

	
w w

∞
−

=−∞

= = ∑DTFT of ( ) ( ) ( )j j n

n

g n G e g n e

	

( )w

w
w

−

−
−

=

 −  = =
 − 

∑
5

4

0

1
1 1

1

j

j n

j
n

e
e

e

	

w w
w

w

w w w
w

−
−

−

− −
−

 −
 

−  = =
−  −

 
 

5 /2 5 /2
5 /2

5

/2 /2
/2

21
1

2

j j
j

j

j j j
j

e e
e

je
e e e

e
j
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or

					  

w w

w

w

  
    =        

2

5
sin

2( )
sin

2

j jG e e
�

(3)

2DTFT

5
sin

2
( ) ( ) ( )

sin
2

j j j

k

s n G e G e e
k

w w w

w

w

      ←→ =        
then from time-expansion property

2DTFT
( )

5
sin

2
( ) ( )

sin
2

jk j k
k

k

g n G e e
k

w w

w

w

  
    ←→ =        

	

For k = 2,

	

2 2 2DTFT
(2)

5 2
sin

2
( ) ( )

2
sin

2

j jg n G e ew w

w

w
− ×

×  
    ←→ =        

	

( )
( )

w w
w

  =  
  

4 sin 5
sin

je
�

(4)

Now using the linearity and time-shifting properties, we get

( ){ }w w−←→ 2DTFT
(2)2 ( ) 2j jg n e G e

	
w w w

w
− −  =     

4 sin(5 )
2

sin( )
j je e

	
w w

w
−  =   

5 sin(5 )
2

sin( )
je � (5)

Combining Eqs. (4) and (5), we have

( ) ( )
4DTFT

2 2   2  – 1
sin(5 )

( ) ( ) ( ) ( )
sin( )

js n g n g n n e w w
w

−  ←→= 
+  ←→DTFT

5 sin(5 )
2

sin( )
je w w

w
−  +   
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w w w

w
− −  = −   

4 sin(5 )
(1 23 )

sin( )
j je

4.5.8 Differentiation in Frequency Domain

Here we will study the differentiation of DTFT of. s(n), S(e jω) with respect 
to ω. Let

w←→DTFT( ) ( )js n S e

Using the DTFT analysis equation ( )w w
∞

−

=−∞

= ∑ ( )j j n

n

S e s n e  and differenti-

ating both sides with respect to ω, we obtain

	
( )w

w

w w

∞
−

=−∞

 =   
∑ ( )

j

j n

n

dS e d
s n e

d d

	
w

∞
−

=−∞

 = − ∑ ( ) j n

n

s n jne

	
w

∞
−

=−∞

= − ∑ ( ) j n

n

j ns n e

or	
( )w

w

w

∞
−

=−∞

= − ∑2 ( )
j

j n

n

jdS e
j ns n e

d

or	
( )w

w

w

∞
−

=−∞

= =∑ ( ( )) DTFT{ ( )}
j

j n

n

jdS e
ns n e ns n

d

or	
( )w

w
←→DTFT( )

jjdS e
ns n

d
� (4.39)

4.5.9 Parseval’s Relation for DTFT

Parseval’s relation for DTFT states that the total energy in a discrete-time 
signal s(n) may be determined either by computing the energy per unit time 
|s(n)|2 and summing overall time or by computing the energy per unit fre-
quency |S(e jω)|2/2p and integrating over a full 2ω interval of distinct discrete-
time frequencies. In analogous with the continuous-time signal, |S(e jω)| is 
called the energy-density spectrum of the signal s(n). Parseval’s relation for 
DTFT is given as
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w

p

w
p

∞

=−∞

=∑ ∫
22

2

1
| ( ) | ( )

2
j

n

s n S e d � (4.40)

4.5.10 The Convolution Property

Here we will discuss the importance of the DTFT with regard to its effect on 
the convolution operation and analysis of discrete-time LTI systems. By using 
DTFT, convolution of two discrete-time signals s1(n) and s2(n) is converted 
into multiplication of DTFT of individual discrete-time signals.

If 						   s1(n) ←→DTFT
 S1(e

jω)

and 						   s2(n) ←→DTFT
 S2(e

jω)

then from convolution property of DTFT
			   DTFT

1 2 1 2( ) (( )   ) ( ) ( ) ( )j j js n s s S e S e Sn en w w w← =→= ∗ � (4.41)

Now we are going to apply DTFT for representing and analyzing 
discrete-time LTI systems. Specifically, if s(n), h(n) and y(n) are the input, 
impulse response and output, respectively, of a discrete-time LTI system.

FIGURE 4.14  Discrete-time LTI system.

Output y(n) is determined by convolving s(n) and h(n) given as
	 ( ) ( ) ( )y n s n h n= ∗ � (4.42)

By using DTFT, Eq. (4.42) can be expressed as
					  

( ) ( ) ( )j j jY e S e H ew w w= ∗ �
(4.43)

where S(e jω), H(e jω) and Y(e jω) are the DTFTs of s(n), h(n) and y(n), 
respectively.

Now, combining Eqs. (4.42) and (4.43), we get
	 DTFT( ) ( ) ( ) ( ) ( ) ( )j j jy n s n h n Y e S e H ejw w w← =→= ∗ � (4.44)

where H(e jω) is the DTFT of the impulse response h(n) of the discrete- 
time LTI system. It is also called frequency response of discrete-time LTI 
system.

EXAMPLE 4.8
Determine the frequency response of a discrete-time LTI system with impulse 
response h(n) = 5(n - n0). Also determine output for this system.
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Solution:
The frequency response of a discrete-time LTI system is equal to the DTFT 
of the impulse response δ(n) of the system. The frequency response is deter-
mined as

	
ww

∞
−

=−∞

= = ∑( ) { ( )}DT T (F ) j

n

j nh nh eH e n

	 ( ) w wd
∞

− −

=−∞

= − =∑ 0
0

j n j n

n

n n e e � (1)

We know from convolution property of DTFT

	
DTFT( ) ( ) ( ) ( ) ( ) j jy n h n s n H e S ew w= ∗ ←→ =

or	
w w w=( ) ( ) ( )j j jY H e S e � (2)

Substituting Eq. (1) in Eq. (2), we obtain

	
w ww= 0–( ) ( )j j jnY e e S e � (3)

Output y(n) of above discrete-time LTI system is determined by taking 
the inverse DTFT of Eq. (3). Taking inverse DTFT, we get

	
w= Inverse D( ) { (TFT )}jy n Y e

	 w w−= = −0
0{ ( )} ( )Inverse DTFT j n je S e s n n � (4)

Note in this example output y(n) is equal to the shifted version of input 
s(n) by a constant time n0. The frequency response H(e jω) = e–jωn0 is purely 
time-shifted and has unity magnitude at all frequencies. Its phase characteris-
tics are equal to –ωn0, that is, it is linear with frequency.

EXAMPLE 4.9
Determine the impulse response h(n) of a discrete-time ideal low pass filter 
whose frequency response H(e jω) is shown in Figure 4.15.

FIGURE 4.15  Frequency response of a discrete-time ideal low pass filter.

Solution:
Impulse response h(n) of discrete-time ideal low pass filter is equal to inverse 
DTFT of the frequency response He(e jω).
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w= Inverse ( ) { (DTFT )}jh n H e

	 ( )w w

p

w
p

= ∫
2

1
2

j j nH e e d � (1)

In particular, using –p ≤ ω ≤ p as the interval of integration in Eq. (1), we 
obtain

	
( )

p
w w

p

w
p −

= ∫
1

( )
2

j j nh n H e e d

	

ww
w w

w w

w
p p− −

 
= =  

 
∫

1 1 1
1

2 2

cc

c c

j n j ne d e
jn

	

w w

w
p p

− −= = 
 

1 1
sin

2

j n j n

c

e e
n

n j n

or	
w

p
= sin

( ) cnh n
n

� (2)

The impulse response h(n) is shown in Figure 4.16.

FIGURE 4.16  Impulse response of a discrete-time ideal low pass filter.

EXAMPLE 4.10
Determine the output y(n) of a discrete-time LTI system with impulse 
response h(n) = Anu(n) with |A| < 1 to an input s(n) = Bnu(n) with |B| < 1.

Solution:
Output y(n) is determined by using convolution property of DTFT as
	 w w w←→= ∗ =DTFT( ) ( ) ( ) ( ) ( ) ( )j j jy n h n s n Y e H e S e ←→DTFT

or	
w w w=( ) ( ) ( )j j jY e H e S e � (1)

Now we will determine H(e jω) and S(e jω) as
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w ww
∞ ∞

− −

=−∞ =−∞

= = =∑ ∑DT( ) { ( )} ( ) ( )FT  j n nj j n

n n

H h n e A u n ee h n

≥ 
=  < 

1, 0
But ( ) is defined as ( )

0, 0
n

u n u n
n

	
( )w w

∞ ∞
− −

= =

= =∑ ∑
0 0

nj n jn

n n

A e Ae

or	 w
w−=

−
1

( )
1

j
jH e

Ae
� (2)

Similarly, we can determine S(e jω) as

	
ww

∞
−

=−∞

== ∑( ) { ( )}DT T (F ) j

n

j ns ns eS e n

	
w w

∞ ∞
− −

=−∞ =

= =∑ ∑
0

( ) j n j nn n

n n

B u n e B e

	 ( )w
w

∞
−

−
=

= =
−∑

0

1
1

nj
j

n

Be
Be

or	 ( )w
w−=

−
1

1
j

jS e
Be

� (3)

Substituting Eqs. (2) and (3) in Eq. (1), we get
	 w w w=( ) ( ) ( )j j jY e H e S e

	 ( )( )w w w w− − − −
  = =  − −   − −

1 1 1
1 1 1 1j j j jAe Be Ae Be

(using partial fraction expansion method)

or
	

w
w w

a a
− −= +

− −
1 2( )

1 1
j

j jY e
Ae Be �

(4)

Determination of values of a1 and a2:

	 ww −= =– 1
1 – 0 orj jAe e

A

	
( )w

a
−

= = =
− − −  

1

1 1
1 ( )1 1

j

A
A BBe B

A
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	 ww −= =– 1
1 – 0 or ,j jBe e

B

	 ( )w
a

−

−= = = =
− − − −  

2

1 1
1 ( ) ( )1 1

j

B B
B A A BAe A

B

Substituting the values of a1 and a2 in Eq. (1) we get

	 ( )w
w w− −

   −   − −   = +
− −1 1

j
j j

A B
A B A BY e

Ae Be
� (5)

For determining output y(n), we take inverse DTFT of both sides of Eq. (1), 
we get

	 w=( ) Inverse D [ }FT )T ( jy n Y e

	 w w− −

   −   − −   = +
− −

INVERSE DTFT 
1 1j j

A B
A B A B

Ae Be

	 { }w−
 =  − − 

1
 INVERSE DTFT 

1 j

A
A B Ae

	 { }w−
 − − − 

1
 INVERSE DTFT 

1 j

B
B A Be

	
   = −   − −   

( ) ( )n nA B
A u n B u n

A B B A

or	 + += 1 1( ) ( ){ ( )– – ( )}n ny n A B A u n B u n � (6)

Note that for a1 = a2, the partial fraction expansion of Eq. (4) is not valid.

4.5.11 The Multiplication Property

The multiplication property of DTFT is used in the sampling and communi-
cation theory.

Consider s(n) is a sequence that is a product of two sequences s1(n) and 
s2(n).

			   = 1 2( ) ( ) ( )s n s n s n

Let			   w←→DTFT
1 1( ) ( )s n S e

			   w←→DTFT
2 2( ) ( )s n S e
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and
	 w←→DTFT( ) ( )s n S e

Taking the DTFT of both sides of Eq. (4.45) we get

	
w = DTFT( ) { ( )}jS e s n

	
w w

∞ ∞
− −

=−∞ =−∞

= =∑ ∑ 1 2( ) ( ) ( )j n j n

n n

s n e s n s n e � (4.46)

Since from inverse DTFT

	 ( )q q

p

q
p

= ∫1 1
2

1
( )

2
j j ns n S e e d � (4.47)

Substituting Eq. (4.47) in Eq. (4.46), we obtain

	
( )w w

∞
−

=−∞

= ∑ 1 2( ) ( )j j n

n

S e s n s n e

	 ( )q q w

p

q
p

∞
−

=−∞

  =  
  

∑ ∫1 1
2

1
( )

2
j j n j n

n

s n S e e d e � (4.48)

Interchanging the order of summation and integration in Eq. (4.48), we get

	 ( ) ( )w q w q

p

q
p

∞
− −

=−∞

 =   
∑∫ ( )

1 2
2

1
( )

2
j j j n

n

S e S e s n e d � (4.49)

But	 ( )w q w q
∞

− − −

=−∞

= ∑ ( )
2 2 ( )j j n

n

S e s n e � (4.50)

Substituting the Eq. (4.50) in Eq. (4.49), we get

	 ( ) ( ) ( )w q qw q

pp

−

= ∫
( )

1 2
2

1
2

je dj jS e S e S � (4.51)

Eq. (4.51) corresponds to a periodic convolution of S1(e
jω) and S2(e

jω). 
Integral in Eq. (4.51) can be evaluated over an interval of length 2p. The usual 
form of convolution is often referred to as non-periodic convolution as the 
integral ranges from – ∞ to ∞.

EXAMPLE 4.11
Determine the DTFT of the multiplication of two discrete-time signals given 
as s(n) = S1(n) s2(n).

	 where
	

( )p
p

=1

sin 3 / 4
( )

n
s n

n
 and 

p
p

=2

sin( / 2)
( )

n
s n

n
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Solution:
From the multiplication property of DTFT, we know that DTFT of s(n), that 
is, S(e jω) is the periodic convolution of S1(e

jω) and S2(e
jω). Here integration is 

done over any interval of length 2n. In this periodic convolution, we have cho-
sen the interval –p < θ < p. The multiplication property of DTFT is given as

	 ( ) ( ) ( )w q qw q

pp

−

←→= = ∫
( )

DTFT
1 2

2
1 2

1
( ) ( ) ( )

2

je dj jSs n s n s n e S e S

or	 ( ) ( ) ( )w q w q

p

q
p

−= ∫ ( )
1 2

2

1
2

j j jS e S e S e d � (1)

Eq. (1) represents a periodic convolution, it resembles a non-periodic 
convolution except that the integration is limited to the interval –p < θ ≤ p.

Eq. (1) can be converted into an ordinary convolution by defining

FIGURE 4.17  (a) �S1(e jω) shows one period of S1(e jω). (b) DTFT of S2(n), that is, S2(e jω). 
(c) Resultant of the periodic convolution of �S1(e jω) and S2(e jω).
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� ( )

w
w p w p − < ≤= 


1

1
( ), for

0, otherwise

j
j S e

S e � (2)

Substituting Eq. (2) in Eq. (1), we get

	 ( ) ( ) ( )
p

w q w q

p

q
p

−

−

= ∫ ( )
1 2

1
2

j j jS e S e S e d

	 � ( )q w q q
p

∞
−

−∞

= ∫ ( )
1 2

1
( )

2
j jS e S e d � (3)

Thus, S(e jω) is 1/2p the non-periodic convolution of the rectangular pulse 
�S 1(e

jω) and periodic square wave S2(e
jω). Both �S1(e

jω) and S2(e
jω) are shown in 

Figure 4.17. The result of this convolution is the DTFT of s(n), that is, S(e jω) 
shown in Figure 4.17(c).

4.6	 TABULATION OF PROPERTIES OF DTFT

A number of important properties of the DTFT are summarized in Table 4.1.

TABLE 4.1  Summary of Important Properties of DTFT

DTFT property Non-periodic signal DTFT

s(n) s1(n) s2(n) S(e jω), S1(e
jω) and S2(e

jω)
These are periodic with 
period 2p

Linearity A1s1 (n) + A2s2(n) A1s1 (e
jω) + A2s2(e

jω) 
where A1 are A2 scalar 
constants e−jωn0 S(e jω)

Time-shifting s(n − n0) where n0 is constant time

Frequency shifting e jω0ns(n) S(e j(ω−ω0))

Complex conjugation s*(n) S*(e −jω)

Time reversal s(−n) S(e −jω)

Time expansion s(k)(n) S(e −jkω)





( / ), if is multiple of 
0, if is a not multiple of 
s n k n k

n k
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Convolution of two 
discrete-time signal

s1(n) * s2(n) s1(e
jω) s2(e

jω)

Multiplication of two 
discrete-time signal

s1(n) s2(n)
( ) ( )q w q

p

q
p

−∫ ( )
1 2

2

1
2

j jS e S e d

First difference of a 
discrete-time signal 
in time

s(n) − s(n−1) (1 − e−jω) S(e jω)

Accumulation of a 
discrete-time signal

=−∞
∑ ( )

n

k

s k ( ) ( )w
w p− +

−
01

1
j j

j S e S e
e

d w p
∞

=−∞

× −∑ ( 2 )
k

k

Differentiation in 
frequency

ns(n) ( )w

w

jjdS e

d

Conjugate symmetry 
for real signal

s(n) real ( ) ( )
( ){ } ( ){ }
( ){ } ( ){ }

( ) ( )
( ) ( )

w w

w w

w w

w w

w w

−

−

−

−

−

 = ∗

 =

 = −

 =

∠ = −∠

Re Re

Im

j j

j j

j j

j j

j j

S e S e

S e S e

S e S e

s e S e

S e S e

Symmetry for real 
and even signals

s(n) real and even s(e jω) real and even

Symmetry for real 
and odd signals

s(n) real and even s(e jω) purely imaginary and 
odd

Decomposition of a 
real signal into even 
and odd pats.

sE(n) = Ev{s(n)}
s0(n) = Od{s(n)}
Here, s(n) is real signal

Re {S(e jω)}

jIm {S(e jω)}

Parseval’s relation for non-periodic signals

w

p

w
p

∞

=−∞

=∑ ∫
22

2

1
( ) ( )

2
j

n

s n S e d
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4.7	 TABULATION OF DTFT PAIRS

A summary of the basic DTFT pairs is shown in Table 4.2.

TABLE 4.2  Summary of Basic DTFT Pairs

Discrete-time signal s(n) DTFT S(e jω)

Exponential function e jω0n

( )p d w w p
∞

=−∞

− −∑ 02 2
m

m  where 
0

2 m
N
pw =

Cosine function ( ) ( )p d w w p d w w p
∞ ∞

=−∞ =−∞

 − − + − −  
∑ ∑0 0

2
2 2

2 m m

m m

w w

w
−−=

0 0

0cos
2

j n j ne e
n ( ) ( )p d w w p d w w p

∞ ∞

=−∞ =−∞

 − − + + −  
∑ ∑0 0

2
2 2

2 m m

m m
j

s(n) = 1 e jω0n|ω0=0 ( ) ( )p d w w p d w p
∞ ∞

=−∞ =−∞

 − − + −  
∑ ∑02 2 2

m m

m m

wp
∞

=< >

= ∑ 0

0

( ) 2 j n
k

k N

s n A e ( )w pp d w
∞

=−∞

 
= − 

 
∑

0

2
2j

k
k

km
S e A

N

Periodic square wave ( )w pp d w
∞

=−∞

 
= − 

 
∑

0

2
2j

k
k

km
S e A

N

s(n) = 
≤

 < ≤
1

1 0

1,
1, / 2

n N

N n N
 

and for periodic signal 
s(n + N0) s(n)

Where,

( )

p
p

+

 ≠ ± ±
 +


= ±

0 1

0 0

0 0

1 0

0 0

sin[(2 / )( 1 / 2)]
sin[2 / 2 ]

0, , 2 ....
2 1 / ,

0, ,2 ....

k N N
N k N

k N N

N N

k N N

d
∞

=−∞

−∑ 0( )
k

n kN p pd w
∞

=−∞

 
− 

 
∑

0 0

2 2

k

km
N N

s(n) = Anu(n), |A| < 1 ( )w
w−=

−
1

1
j

jS e
Ae
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4.8	 DUALITY

There is a duality between the CTFT analysis equation and the CTFT synthe-
sis equation. Both equations are given as

CTFT analysis equation,

	 ( )w w
∞

−

−∞

= ∫ ( )j j tS e S t e dt � (4.52)

and CTFT synthesis equation

					  
ww w

p

∞

−∞

= ∫
1

( ) ( )
2

j ts t S j d d � (4.53)

≤
=  >

1

1

1,
( )

1,
n N

s n
n N ( )w

w

w

  +    =
 
  

1
1

sin
2

sin
2

j

N
S e

p p
 

= =  
 

sin sin
( ) n n

n

W WW
s n

n W
( )w w

w p
≤ ≤

=  < ≤

1, 0 | |
0, | |

j W
S e

W

p p
 =   

sin
W Wn

c
where is S(e jω) is periodic with period 2p

for 0 < W < p

Impulse function δ(n) 1

Unit-step function u(n)
w pd w p

∞

=−∞

+ −
− ∑1

( 2 )
1 j

k

k
e

Shifted version of δ(n), 
δ(n − n0), where n0 is constant 
time

ejωn0

(n + 1)Anu(n), |A| < 1

( )w−−
2

1

1 jAe

for |A| < 1

( )w−−

1

1
mjAe
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But there is no corresponding duality between the DTFT analysis equa-
tion and DTFT synthesis equation. These equations are given as

DTFT analysis equation,

	 ( )w w
∞

−

=−∞

= ∑ ( )j j n

n

S e s n e � (4.54)

and DTFT synthesis equation

	 ( )w w

p

w
p

= ∫
2

1
( )

2
j j ns n S e e d � (4.55)

However, there is a duality between the DTFS equation. These equations 
are given as DTFS analysis equation,

	
w−

=< >

= ∑ 0

00

1
( ) jk n

k
n N

A s n e
N � (4.56)

and DTFS synthesis equation,

	
w−

=< >

= ∑ 0

0

( ) jk n
k

k N

s n A e � (4.57)

where Ak is the Fourier series coefficients of a discrete-time periodic 
signal s(n).

Also, there is a duality relationship between the DTFT and the CTFS.

4.8.1 Duality in the DTFS

Since the Fourier series coefficients Ak of the periodic signal s(n) are them-
selves a periodic sequence, we can expand the sequence Ak in a Fourier series. 
The duality property for DTFS implies that the Fourier series coefficients for 
the periodic sequence Ak are the values of (1/N0)s(–n).

In other words, the duality property for DTFS implies that the Fourier 
series coefficients for the periodic sequence Ak is proportional to the values of 
the original sequence which is reversed or folded in time.
Proof:
To prove the duality property for DTFS, we consider two periodic sequences 
with period N0. These two sequences are related through the summation 
given as,

	
w−

=< >

= ∑ 0

0

1 2
0

1
( ) ( ) jl n

l N

s m s l e
N � (4.58)

where	 pw =0
0

2
N
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If we let m = k and l = n, Eq. (4.58) becomes

	
w−

= >

= ∑ 0

0

1 2( ) ( ) jn k

n N

s k s n e

	
w−

=< >

= ∑ 0

0

2 ( ) jn k

n N

s n e � (4.59)

Comparing Eq. (4.59) with DTFS analysis equation given as

	
w−

=< >

= ∑ 0

00

1
( ) jk n

k
n N

A s n e
N � (4.60)

We see that the sequence s1(k) corresponds to the Fourier series coeffi-
cients of the signal s2(n).

Eq. (4.60) can be represented as
←→DTFT( ) ks n A

Similarly, Eq. (4.59) can be represented as
						    ←→DTFT

2 1( ) ( )s n S k � (4.61)

Alternatively, if we let m = n and l = –k, Eq. (4.58) becomes

	
w

=< >

= −∑ 0

0

1 2
0

1
( ) ( ) jk n

k N

s n s k e
N

	
w

=< >

= −∑ 0

0

2
0

1
( ) jk n

k N

s k e
N � (4.62)

Now, comparing Eq. (4.62) with DTFS synthesis equation given as

	
w

=< >

= ∑ 0

0

( ) jk n
k

k N

s n A e � (4.63)

We obtain,	 = ←→ −DTFT
1 1 2

1
( ) ( ) ( )s n s n s k

N
� (4.64)

Now, we can conclude that 
0

1
N

S2(−k) corresponds to the sequence of the 

Fourier series coefficients of discrete-time signal s1(n).
Thus it is to be proved.
As in continuous-time, this duality implies that every property of the 

DTFS has a dual character.
For example, we have two DTFS pairs given as

					    w− ←→ 0 0DTFS
0( ) jk n

kA es n n � (4.65)

						    w
−←→0 DTFSjk n

k me A � (4.66)
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Both DTFS pairs are dual.
Duality is often useful in reducing the complexity of the calculations 

involved in determining Fourier series representations.

EXAMPLE 4.12
Verify the duality of the following periodic signal with a period of N0 = 9

	

p
p

 ≠= 
 =

sin(5 / 9)
1 / 9 , multiple of 9

sin( / 9)( )
5 / 9, multiple of 9

n
n

ns n
n �

(1)

Solution:
We have already studied that the Fourier series coefficients of a discrete-time 
square (rectangular) wave is given as

	

p

p

   +        ≠ ± ±  =     
+ ≠ ± ±

1

0
0 0 0

0

1
0 0

0

1
2

2sin ,
1 / 0, , 2 ,...

sin

2 1
, 0, , 2 ,...

k

k N

N
N k N N

kA
N

N
k N N

N

� (2)

Duality, then suggest that the Fourier series coefficients for s(n) must be 
in the form of a rectangular square wave. The rectangular (square) wave with 
period N0 = 9 is such that

	
≤

=  < ≤

1, | | 2
( )

0, 2 | | 4
n

g n
n � (3)

The Fourier series coefficients Bk for discrete-time square wave g(n) is 
determined as

	

p

p

      ≠
 =   
 


=



0

5
sin

91
, for multiple of 9

9
sin

5
for multiple of 9

0

k

n

k
k

B
N

k

� (4)

The DTFS analysis equation for sequence g(n) is given as
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w−

=< >

= ∑ 0

00

1
( ) jk n

k
n N

B g n e
N

	
p−

=−

= ∑
2

(2 /9)

2

1
(1)

9
jk n

n

e

	
p−

=−

= ∑
2

(2 )/9

2

1
9

jk n

k

e � (5)

Interchanging the names of the variables k and n and putting Bn = s(n), 
we obtain

	
p−

=−

= ∑
2

( 2 )/9

2

1
9

jn k
n

k

B e

or	
p−

=−

= ∑
2

( 2 )/9

2

1
( )

9
j nk

k

s n e � (6)

Also letting k = –k’ in the sum of RHS of Eq. (1), we get

	
p ′

′=−

= ∑
2

( 2 )/9

2

1
( )

9
j nk

k

s n e � (7)

or	
p ′

′=−2

= ∑
2

( 2 )/91
( )

9
j k

k

s n e � (8)

Finally, we can say that RHS of Eq. (8) has the form of a DTPS synthesis 
equation for s(n).

	
w−

=< >

= ∑ 0

0

( ) jk n
k

k N

s n A e � (9)

We thus conclude that the Fourier series coefficients of sequence s(n) are 
given by

	

 ≤= 
 < ≤

1
, | | 2

9
0, 2 | | 4

k

k
A

k �
(10)

These Fourier series coefficients Ak, of course, are periodic with period 
N0 = 9.

4.8.2 Duality Between the DTFT and CTFTS

We have already studied duality in DTFS. In this section, we will study the 
property of duality between the DTFT and CTFS. Here, we will compare 
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CTFS analysis and synthesis equations with DTFT analysis and synthesis 
equations. These equations are given as follows:

CTFS synthesis equation,

	
w

∞

=−∞

= ∑ 0( ) jk t
k

m

s t A e � (4.67)

and CTFS analysis equation,

	
w= ∫ 0

00

1
( ) jk dt

k
T

A S t e
T � (4.68)

DTFT synthesis equation,

	 ( )w w

p

w
p

= ∫
2

1
( )

2
j j ns n S e e d � (4.69)

DTFT analysis equation,

	 ( )w w
∞

−

=−∞

= ∑ ( )j j n

n

S e s n e � (4.70)

Eqs. (4.69) and (4.68) are very similar. Similarly, Eqs. (4.70) and (4.67) 
are also very similar. Now we can interpret Eqs. (4.69) and (4.70) as a Fourier 
series representation of the periodic frequency response S(e jω). In particu-
lar, since S(e jω) is a periodic function of co with period 2n and it has a Fou-
rier series representation as a weighted sum of harmonically related periodic 
exponential functions of w, all of which have the common period of 2n.

DTFT of s(n), S(e jω) can be represented in a Fourier series as a weighted 
sum of the exponential functions e jωn, n = 0, ±1, ±2, .... From equation S(e jω) = 

w
∞

−

=−∞
∑ ( ) j n

n

s n e , we see that the nth Fourier series coefficients in this expan-

sion (that is, the Fourier series coefficient multiplying e jωn is s(–n). Since the 

fundamental period of S(e jω) is 2p, equation s(n) = w w

p

w∫
2

1
( )

2
j j nS e e d  can be 

interpreted as the Fourier series analysis equation for the Fourier series coef-
ficient s(n) (That is, for the Fourier series coefficient multiplying e −jωn in the 

expression for S(e jω) in equation S(e jω) = w
∞

−

=−∞
∑ ( ) j n

n

s n e .

EXAMPLE 4.13

Determine the DTFT of the sequence p
p

= sin( / 2)
( )

n
s n

n
.
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Solution:

To determine the DTFT of the sequence 
p
p

= sin( / 2)
( )

n
s n

n
, we will exploit 

the duality between the DTFT synthesis equation and the CTFS analysis 
equation.

To use duality, we must first identify a continuous-time signal g(t) with 
period’ T0 = 2p and Fourier series coefficients Ak = s(k). If g(t) is a periodic 
square wave with period 2p, that is,

	 p
≤

=  < ≤
1

1

1, | |
( )

0, | |
t T

g t
T t � (1)

then the Fourier series coefficients of g(t) are

	
p

= 1sin( )
k

kT
A

k
� (2)

If we take 
p=1 2

T , then

	

sin
2

( )k

k

A s k
k

p

p

 
  

= = � (3)

In this case, CTFS analysis equation for g(t) is

	

sin
2 1

( )
2

jkt

k

g t e
n

p

p

p

p p
−

−

 
  

= ∫

	
p

pp
−

−

= ∫
1

(1)
2

jkte � (4)

Renaming k to n and t as to in Eq. (4), we get

	
/2

/2

sin
2 1

(1)
2

jn

k

e d
n

p
w

p

p

w
p p

−

−

 
  

= ∫ � (5)

Replacing n by –n on both sides of Eq. (1), we get

	
/2

/2

sin
2 1

(1)
2

jn

k

e d
n

p
w

p

p

w
p p

−

−

 
  

= ∫ � (6)
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The RHS of Eq. (6) has the form of the DTFT synthesis equation for 
sequence s(n), where

	 ( )w w p
p w p

≤
=  < ≤

1, | | / 2
0, / 2 | |

jS e

4.9	� DISCRETE-TIME LTI SYSTEMS CHARACTERIZED 
BY LINEAR CONSTANT-COEFFICIENT DIFFERENCE 
EQUATIONS

The general form of a linear constant-coefficient difference equation for a 
discrete-time LTI system is given as

	
= =

− = −∑ ∑
0 0

( ) ( )
N M

k k
k k

A y n k B s n k � (4.71)

This difference equation is generally called nth order difference equation.
Here, Ak and Bk are the constant coefficients, s(n) and y(n) are the inputs 

and outputs of the discrete-time LTI system, respectively.
Here, we will determine the frequency response s(e jω) for an LTI system 

described by Eq. (4.71). In determining the frequency response H(e jω) of a 
discrete-time LTI system, we will take advantage of several important prop-
erties of the DTFT.

There are two related methods for determining the frequency response 
H(e jω) of the discrete-time LTI system.

In the first method, we explicitly use the fact that complex exponential 
functions are eigenfunctions of LTI systems. Specifically, if s(n) = e jωn is the 
input to a discrete-time LTI system then the output of this system is given by 
the multiplication of (e jω) and He jωn.

Now, substituting s(n) = e jωn and y(n) = H(e jω) e jωn in Eq. (4.71), we get

	 = =

− = −∑ ∑
0 0

( ) ( )
N M

k k
k k

A y n k B s n k

or
	

w w w− −

= =

=∑ ∑( ) ( )

0 0

( )
N M

j j n k j n k
k k

k k

A H e e A

or
	

w w w w w− −

= =

=∑ ∑
0 0

( )
N M

j j n j k j n j k
k k

k k

H e A e e B e e
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or

	

w

w

w

−

=

−

=

=
∑

∑
0

0

( )

M
j k

k
j k

N
j k

k
k

B e
H e

A e �

(4.72)

In the second method, we make use of the convolution, linearity, and 
time-shifting properties of DTFT. Let S(e jω), Y(e jω) and H(e jω) be the DTFT 
of the input s(n), output y(n) and 
impulse response h(n), respectively. 
Figure 4.18 shows a discrete-time LTI 
system.

From the convolution property of 
the DTFT,

DTFT( ) ( ) ( ) ( ) ( ) ( )j j jy n s n h n Y e S e H ew w w← =→= ∗

	 w w w=( ) ( ) ( )j j jY e S e S e
�

(7.73)

or	 ( )
w

w
w= ( )

( )

j
j

j

Y e
H e

S e
� (7.74)

Taking the DTFT of both sides of Eq. (4.71) and using the properties of 
linearity and time-shifting of DTFT, we get

	
= =

− = −∑ ∑
0 0

( ) ( )
N M

k k
k k

A y n k B s n k � (4.75)

	 = =

   − = −   
   
∑ ∑

0 0

DTFT ( ) DTFT ( )
M M

k k
k k

A y n k B y n k

or
	 = =

− = −∑ ∑
0 0

DTFT{ ( )} DTFT{ ( )}
N M

k k
k k

A y n k B s n k

or
	

ww w w− −

= =

=∑ ∑0 0 ( )

0 0

( )
j

N M
jk j jk S e

k k
k k

A e Y e B e

or
	

( ) ( )0 0

0 0

N M
j jk j jk

k k
k k

S e A e S e A ew w w w− −

= =

=∑ ∑

	

or

	

( )
( )

w
w

w
w

−

=

−

=

=
∑

∑
0

0

M
jk

j k
k
Nj

jk
k

k

B eY e

S e B e

FIGURE 4.18  Discrete-time LTI system 
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From Eqs. (4.74) and (4.76), we obtain

	

( ) ( )
( )

w
w

w
w

w

−

=

−

=

= =
∑

∑
0

0

M
jk

j k
j k

Nj
jk

k
k

B eY e
H e

S e B e

We see from Eq. (4.77) that frequency response H(e jω) is a ratio of two 
polynomials in the variable e−jω. The coefficient of the numerator polynomial 
is the same as the ones that appear on the RHS of Eq. (4.71) and the coeffi-
cients of the denominator polynomial are the same as the ones that appear on 
the LHS of Eq. (4.71). Therefore, the frequency response of an LTI system 
described by Eq. (4.71) can be written by inspection.

EXAMPLE 4.14
Determine the frequency response and impulse response of a causal discrete-
time LTI system that is characterized by the difference equation given as
	 =( ) (– – ( )1)y n Ay n s n � (1)

Solution:
To determine frequency response, we take DTFT of both sides of Eq. (1), we 
obtain

	 =DTFT – –  { ( ) 1 DTF( )} { ( )}Ty n Ay n s n

or	
w w w w− =( ) ( )–  ( )j j j jY e Ae Y e S e

or	
w w w− =( )[ – ( )1 ]j j jY e Ae S e

or
	

( )
( )

w

ww −=
−

1
1

j

jj

Y e

AeS e �
(2)

But we know that frequency response H(e jω) is given by

	
( )
( )

w
w

w
=( )

j

j

j

Y e
H e

S e � (3)

From Eqs. (2) and (3), we obtain

	 ( )w
w−=

−
1

1
j

jH e
Ae

� (4)

Now we will determine impulse response h(n) as

	
w= Inverse D( ) [ (TFT )]jh n H e
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w−

  = − 
1

= INVERSE DTFT ( )
1

n
j A u n

Ae

Thus, the impulse response of the LTI system is
	 =( ) ( )nh n A u n

� (5)

EXAMPLE 4.15
Determine the frequency response H(e jω) and impulse response h(n) of a 
causal discrete-time LTI system that is characterized by the difference equa-
tion given as

	 − − + − =3 1
( ) ( 1) ( 2) 2 ( )

4 8
y n y n y n s n � (1)

Solution:
To determine frequency response, taking DTFT of both sides of Eq. (1), 
we get

	
 − − + − =  

3 1
DTFT ( ) ( 1) ( 2) DTFT{2( )}

4 8
y n y n y n s �

or	 w w= 2( ) ( )j jy e S e �

or	 ( ) ( )w w w w− − − + =  
23 1

1 2
4 8

j j j jy e e e S e �

or
	

( )
( )

w

w w w

g

− −
=

− + 2

2
3 1

1
4 8

j

j
j j

e

S e e e �
(2)

But frequency response is given by

	 ( ) ( )
( )

w
w

w

g
=

j

j

j

e
H e

S e �

From Eqs. (2) and (3), we get frequency response,

	
( )w

w w− −
=

− + 2

2
3 1

1
4 8

j

j j
H e

e e �
(4)

Now, we will determine impulse response h(n) by taking inverse DTFT 
of Eq. (1) as
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w= Inverse ( ) { (DTFT )}jh n H e

	 w w− −

 
 

=  
 − +
 

2

2
INVERSE DTFT

3 1
1

4 8
j je e �

(5)

By using partial fraction expansion method:

	

w w w w− − − −
=

   − + − + −      
2

2 2
3 1 3 11 1 1
4 8 4 8

j j j je e e e

	
w w

a a
− −

= +
   − −      

1 2

3 1
1 1

4 4
j je e �

(6)

Determination of a1 and a2:

	 w w−− = =1
1 0 or 2

2
j je e

	
w

a
−

= = =
   − −      

1

2 2
4

1 1
1 1 2

4 4
je

	 w w− −− = =1
1 0 or 4

2
j je e

	
w

a
−

= = = −
   − −      

2

2 2
2

1 1
1 1 4

4 4
je

Putting the value of a1 and a2 in Eq. (1) we get

	
w w w w− − − −

= −
   − + − −      

2

2 4 2
3 1 1 11 1 1
4 8 2 4

j j j je e e e �

(7)

Substituting Eq. (7) in Eq. (5), we obtain

	

w w− −

 
  = −     − −        

4 2
( )

1
Inverse DT

1
1

F

4

T
1

2
j j

h n
e e
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w−

 
  
   −    

= Inverse DTFT
4
1

1
2

je

					   

w−

 
  −    −    

Inverse DT
2
1

F

2

T
1 je

or	    = −      
1 1

( ) 4 ( ) 2 ( )
2 2

n n

h n u n u n � (8)

This is the impulse response of a given system.

EXAMPLE 4.16
Determine the output y(n) of a causal discrete-time LTI system that is char-
acterized by the difference equation

	 − − + − = −3 1
( ) ( 1) ( 2) 2 ( )

4 8
y n y n y n s n � (1)

for input	
 =   

1
( ) ( )

4

n

s n u n � (2)

Solution:
From Eqs. (1) and (2), we get

	
− − + − = −3 1

( ) ( 1) ( 2) 2 ( )
4 8

y n y n y n s n

or	  − − + − =   
3 1 1

( ) ( 1) ( 2) 2 ( )
4 8 4

n

y n y n y n u n � (3)

Now taking the DTFT of both sides of Eq. (3) we obtain

	
{ }    − − + − =      

3 1 1
DTFT ( ) ( 1) ( 2) DTFT 2 ( )

4 8 4

n

y n y n y n u n

Now taking the DTFT of both sides of Eq. (3) we obtain

	
{ }    − − + − =      

3 1 1
DTFT ( ) ( 1) ( 2) DTFT2 ( )

4 8 4

n

y n y n y n u n
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or
	

{ }− − + −3 1
DTFT ( ) DTFT{ ( 1)} DTFT{ ( 2)}

4 8
y n y n y n

	

   
     

1
DTFT ( )

4

n

y u n

or

	

( )w w w

w

− −

−

 − + =     −  

23 1 2
14 8 1
4

j j j

j
y e e e

e

	

( )w

w w w− − −
=

  − + −    
2

2
3 1 1

1 1
4 8 4

j

j j j
Y e

e e e

		

w w w− − −
=

   − − −      

2
1 1 1

1 1 1
2 4 4

j j je e e

	
w w− −

=
  − −    

2

2

1 1
1 1

2 4
j je e �

(4)

By using partial fraction expansion method

	

( )w

w w− −

=
  − −    

2

2

1 1
1 1

2 4

j

j j

Y e

e e

		

w w w

aa a
− − −

= + +
     − − −          

31 2

1 1 1
1 1 1

2 4 4
j j je e e

	
w w w− − −

− −= + +
     − − −          

8 ( 4) ( 2)
1 1 1

1 1 1
2 4 4

j j je e e �

(5)

To determine, we take inverse DTFT of Eq. (5), we get
	 w= Inverse D( ) { (TFT )}jy n Y e

	

w w− −

 
 =    − −      

2

2
Inverse DTFT 1 1

1 1
2 4

j je e
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w w w− − −

 
  = − − 
      − − −            

8 4 2
Inverse DTFT

1 1 1
1 1 1

2 4 4
j j je e e

	

w−

 
  = ×  
  −    

1
8 inverse DTFT

1
1

2
je

w w− −

  
     − × − ×   

      − −           

2

1 1
4 inverse DTFT 2 inverse DTFT

1 11 14 4
j je e

or	
     = − − +     
     

1 1 1
( ) 8 ( ) 4 ( ) 2( 1) ( )

2 4 4

n n n

y n u n u n n u n � (6)

This is the output of the system for a given input.

EXERCISES

1.	 What is discrete-time Fourier Transform (DTFT)?

2.	 Distinguish between CTFT and DTFT.

3.	 Distinguish between discrete-time Fourier transform (DTFT) and 
discrete-time Fourier sequence (DTFS).

4.	 Write a short note on the development of discrete-time Fourier transform 
(DTFT).

5.	 Are there any issues associated with DTFT? Discuss.

6.	 Give DTFT analysis and synthesis equations.

7.	 Discuss Fourier transform for discrete-time signals.

8.	 Discuss various properties of DTFT in brief.

9.	 Tabulate various properties of DTFT.

10.	 Tabulate various basic DTFT pairs.

11.	 What is periodicity? Discuss property of periodicity for DTFT.
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12.	 What do you mean by the linearity property of DTFT?

13.	 Discuss properties of time-shifting and frequency shifting of DTFT.

14.	 State and explain differencing and accumulation properties of DTFT.

15.	 Distinguish time reversal from time expansion.

16.	 Give the expression of Parseval’s relation to DTFT.

17.	 Discuss the following properties of DTFT :

a.	 The convolution property of DTFT.

b.	 The multiplication property of DTFT.

18.	 Discuss the following:

a.	 Duality in the DTFS analysis and synthesis equations.

b.	 Duality between the DTFT and the CTFT.

NUMERICAL EXERCISES

1.	 Determine the DTFT of following signals:

a.   s(n) = u(n – 2) – u(n – 6)		 b.   s(n)  
  

| |1
3

n

 u(n – 2)

c.   s(n) = p   −      

| |1
cos ( 1)

3 8

n

n 	 d.   s(n) = 
p  +  

sin cos( )
2

n n

e.   s(n) = 
p p
p

   
      

sin / 5 7
cos

2
n

n
n

Ans.
a.	 S(e jω) = e–2jω + e–3jω + e–4jω + e–5jω

b.	 S(e jω) = 

w

w− −  

2

1
9 1

3

j

j

e

e

c.	 S(e jω) = 
p w p w

p w p w

 
 
 + 

    − −        

/ 4 /4

/8 /8

1
1 12 1 1
2 2

j j j j

j j j j

e e e e
j e e e e
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d.	 S(e jω) = 
p p pd w w p d w d w    − − + + − + +        

[ ( 1) ( 1)]
2 2j

e.	 in 0 ≤ |ω| ≤ (e) S(e jω) = 
p w p< ≤




1, 3 / 10 | | 7 / 10
0, elsewhere

2.	 Find the inverse DTFT of the following DTFTs:

a.	 S(e jω) = 1 + 3e–jω + 2e–j2ω – 4e–j3ω + e–j10ω

b.	 S(e jω) = cos2 ω + sin2 3ω

c.	 S(e jω) = 
p w p
p w p w p

≤ ≤
 ≤ ≤ ≤ <

1, / 4 | | 3 / 4
0, 3 / 4 | | ,0 | | / 4

d.	 S(e jω) = 
pd w

∞

=−∞

 − −  ∑ ( 1)
2

k

k

k

Ans.
a.	 s(n) = δ(n) + 3δ(n – 1) + 2δ(n – 2) – 4δ(n – 3) + δ(n – 10)

b.	 s(n) = δ(n) = 1
4
δ(n – 2) + 1

4
δ(n + 2) − 

1
4
δ(n – 3) − 1

4
δ(n + 3)

c.	 s(n) = 1 – e jpn/2 + e jpn − e j3pn/2

d.	 s(n) = 
p p

p
    −        

1 3
sin sin

4 4
n n

n

3.	 Find the response of a discrete-time LTI system with impulse response 
h(n) = (1/2)nu(n) for input s(n) = (3/4)nu(n)

Use DTFT analysis and synthesis equations.
    = −         

3 1
( ) 3 ( ) 2 ( )

4 2

n n

y n u n u nAns.

4.	 The difference equation of a causal discrete-time LTI system is given as

= − +1
( ) ( 1) ( )

2
y n y n s n

a.	 Find frequency response H(e jω) for the system

b.	 Find output response to the input given as
	  =   

1
( ) ( )

2

n

s n u n

1
 ( )

1
1

2

j

j
H e

e

w

w−




=
 +


Ans. a.
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1 1 1 1
( ) ( ) ( )

2 2 2 2

n n

y n u n u n
   = + −        

b.

5.	 Two discrete-time LTI systems are cascaded. These two systems have fre-
quency responses

		

( )
w

w

w

−

−

−=
+

1

2
1

1
2

j
j

j

e
H e

e

		

( )w

w w− −
=

+ +
1

2

1
1 1

1
2 4

j

j j
H e

e e

a.	 Find the difference equation describing the overall system

b.	 Find the impulse response of the overall system

1
( ) ( 3) 2 ( ) ( 1)

8
y n y n s n s n + − = − −

Ans. a.

	 b. 
−+   = − +      

/1201 34 1 1
( ) ( ) ( )

3 2 3 2

n n
jj

h n u n e u n

					   

− +  +    
/1201 3 1

( )
3 2

n
jj

e u n

6.	 Determine the impulse response of the inverse system and the difference 
equation that characterize the inverse system. Following difference equa-
tions for causal discrete-time LTI systems are given:

a.
 

+ − −1
( ) ( ) ( 1)

2
y n s n s n

		
b.

 
= − − +1

( ) ( 1) ( )
2

y n y n s n

1 1
 ( ) ( 1) ( ) ( ) ( 1)

4 2
y n y n s n y n s n = − − = + −  

Ans. a. b.

7.	 Find a linear constant-coefficient difference equation relating the input 
and output. We have given impulse response for the system

   = +      
1 1 1

( ) ( ) ( )
2 2 4

n n

h n u n u n
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Ans.
 

= − − − + − −3 1 3 1
( ) ( 1) ( 2) ( ) ( 1)

4 8 2 2
y n y n y n s n s n

8.	 A block diagram implementation of a causal discrete-time LTI system is 
depicted in Figure 4.19.

FIGURE 4.19.

a.	 Find a difference equation relating input s(n) and output y(n)

b.	 Determine frequency response of the system

c.	 Determine the system’s impulse response.

1 1 7 1
( ) ( 2) ( ) ( 1) ( 2)

4 4 8 2
y n y n s n s n s n = − + + − − −

Ans. a.

	 b.
 

( )
w w

w

w

−

−

+ −
=

+

2

2

1 7 1
4 8 2

1
1

2

j j

j

j

e e
H e

e

	 c. d
   = − − +        

21 1 7 1
( ) 2 ( ) ( ) ( )

16 2 16 2

n n

h n n u n u n

9.	 We have given the fact that

w
−←→ <

− +
DTFT

2

1
, 1

1 2 cos
n

A A
A

A
A

Use the property of duality to determine the Fourier series coefficients of 
the following continuous-time signal with period T = 1.

( )p
=

−
1

( )
5 4cos 2

s t
t
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[Ans. Fourier series coefficients of the signal are 
p


− 

1
5 4cos(2 )t

10.	A discrete-time LTI system with impulse response h1(n) = (1/3)n u(n) is 
connected in parallel with another causal discrete-time LTI system with 
impulse response h2(n). The resulting parallel interconnection has the 
frequency response

( )
w

w
w w− −

− +=
− + 2

12 5
12 7

j
j

j j

e
H e

e e
Find impulse response h2(n).

  = −     
2

1
( ) 2 ( )

4

n

h n u nAns.
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C H A P T E R  5
Discrete Fourier  
Transforms (DFTs)

5.1	 INTRODUCTION

Frequency-domain analysis of discrete-time signals is usually and conveni-
ently performed on a digital signal processor. This digital signal processor may 
be a general-purpose digital computer or specially designed digital hardware. 
Fourier transform of discrete-time signal s(n) is called discrete-time Fourier 
transform (DTFT) and denoted by S(e jω) or S(ω). DTFT S(ω) is a continu-
ous function of frequency (ω). Therefore, this representation is not a com-
putationally convenient representation of {s(n)}. We represent a sequence by 
samples of its continuous spectrum. This frequency-domain representation 
of a signal is called discrete Fourier transform. It is a very powerful tool for 
frequency-domain analysis of discrete-time signals.

The discrete Fourier transform (DFT) is itself a sequence rather than a 
function of a continuous variable and it corresponds to equally spaced frequency 
samples of the DTFT of a signal. DFT plays a central role in the implementa-
tion of various DSP algorithms. Fourier series representation of the periodic, 
sequence corresponds to the DFT of the finite length sequence. DFT is used 
for transforming discrete-time sequence s(n) of finite length into discrete-
frequency sequence S(K) of finite length. By DFT, discrete-time sequence 
s(n) is transformed into corresponding discrete-frequency sequence S(K).
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Continuous-time Fourier transform (CTFT) of a continuous-time signal 
is given by

				 
ww w

∞
−

−∞

= ∫( ) ( ) j tS j S t e d � (5.1)

This is an analysis equation of CTFT.
It is also called the Fourier integral. Inverse CTFT is given by the follow-

ing synthesis equation

				 
w w

p

∞
−

−∞

= ∫
1

( ) ( )
2

j ts t S t e d � (5.2)

CTFT is used for non-periodic continuous-time signals. It produces a 
continuous spectrum of s(t).

Similarly, DTFT of a discrete-time signal s(n) is given by

			   ( )w ww
∞

−

=−∞

= ∑( ) or ( )j j n

n

s S e s n e � (5.3)

This is called the analysis equation of DTFT of a discrete-time sequence. 
Inverse DTFT is given by the following synthesis equation

				 
w w

p

w
p

= ∫
2

1
( ) ( )

2
j j ns n S e e d � (5.4)

It also produces a continuous spectrum of s(n).
DFT of a discrete-time sequence s(n) is obtained by performing the 

sampling operation in both the time and frequency domains. But DTFT of a 
discrete-time sequence s(n) is obtained by performing the sampling operation 
in the time-domain only.

DFT of a discrete-time sequence s(n) is related to DTFT of the same 
sequence by
				 

2 K/N( ) ( ) |S K S w pw == �

where S(K) is the DFT of s(n) and is given by

				 
2 /( ) ( ) k Kn N

n

S K s n e p
∞

−

=−∞

= ∑ �
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and S(ω) is the DTFT of the sequence s(n) and is given by

				 
ww

∞
−

=−∞

= ∑( ) ( ) j n

n

S s n e �

DTFT gives a continuous spectrum but DFT gives a discrete spectrum.

5.2	 DEFINITION OF DFT

DFT is used for transforming a discrete-time sequence s(n) of a finite length of 
N-points into a discrete-frequency sequence of the same finite length as s(n).

DFT is defined as

					  
( )

1
/

0

( ) DFT ( )
N

j N n

N

S K s n e p
−

− 2

=

= = ∑ � (5.5)

where				   = −0,  1,  ... 1.K N
�

and inverse DFT (IDFT) is defined as

				 
1

( 2 / )

0

( ) [ (IDFT )] ( )
N

j N n

N

S KS K es n p
−

−

=

= = ∑ � (5.6)

where n = 0, 1, .... N − 1.
S(K) is the DFT of the signal s(n) and is given by

				   = +( ) ( )  ( )R IS K S K jS K �

Magnitude or amplitude of S(k) is given by

				   = +2 2( ) ( ) ( )R IS K S K S K �

Phase of S(K) is given by

				 
1 ( )

( ) tan
( )

I

R

S K
S K

S K
−  

∠ =  
 

�

where SR(K) is the real part of the S(K) and SI(K) is the imaginary part of S(K).
Spectrum drawn between the amplitude of S(K) and discrete-frequency 

variable (K) is called amplitude or magnitude spectrum of DFT of s(n), that 
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is, S(K). Spectrum drawn between phase of S(K) and discrete-frequency vari-
able (K) is called phase spectrum of S(K). Both spectrums are shown by the 
example given below.

EXAMPLE 5.1

Compute the eight-point DFT of the signal

				 
=
↑
1,1,1,  1,  1,  1,  0( ) 0{ },  s n

�

Also, sketch its magnitude and phase spectrums.

Solution:
DFT of a signal s(n) is given by

				 
−

= =

= =∑ ∑
1 7

0 0

( ) ( ) ( )
N

nK nK
N N

n n

S K s n W s n W �

where				   2 / 2 /8 /4j N j j
NW e e ep p w−− −= = = �

				   = + + +0 1 2 3(0) (1) (2) (3)K K K K
N N N Ns W s W s W s W �

					    + + + +4 5 6 7(4) (5) (6) (7)K K K K
N N N Ns W s W s W s W �

				   = + + + + +2 3 4 51 K K K K K
N N N N NW W W W W �

				   /4 – 2 /4 – 3 /4 – 4 /4 – 5 /41 j K j K j K j K j Ke e e e ep p p p p−= + + + + +
�

K = 0,	 S(0) = 6
K = 1,	 S(1) = −0.7071 − j1.7071
K = 2,	 S(2) = l − j
K = 3,	 S(3) = 0.7071 + j0.2929
K = 4,	 S(4) = 0
K = 5,	 S(5) = 0.7071 − j0.2929
K = 6,	 S(6) = 1 + j
K = 7,	 S(7) = −0.7071 + j1.7071
DFT of s(n) is given by
				 

= (0), (1), (2), (3), (4), (5), (6), (7)( ) { }S K S S S S S S S S
�

				   − − += − −6, 0.7071 1.7071,  1{ , 0.7071 0.2929,0,j j j �

					    0.7071 0.2029,1 , 0.7071 1.707 }1j j j− + − + �

				   ( ) ( )= +
2 2

Amplitude Real part  Imaginary part �
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−  

=  
 

1 Imaginary 
Phase tan

Real part
part

�

Amplitude of S(K) is given by
				   { }= 6,  1.8478,1.4142,0.7654,0,0.7654,1.4142,1.( 8) 847S K �

Phase of S(K) is given by
				 

∠ = − − − >0, 1.9635, 0.785,0.3927,0, 0.3927 0.785,1.9{ }5( ) 63S K
�

EXAMPLE 5.2

Determine the N-point DFT of a finite-duration sequence given by

				 
≤ ≤ −

= 


1, 0 1
( )

0, otherwise
n L

s n �

Solution:
DFT of sequence s(n) is given by

				 
p−

=

= ∑ ( 2 / )

0

( ) DTFT [ ( )] ( )
N

j k N n

n

S K s n s n e �

Now,				 
≤ ≤ −

= 


1, 0 1
( )

0, otherwise
n L

S K �

				 
p

−
−

=

=∑
1

( 2 / )

0

( ) 1.
L

j K N n

n

S K e �

					    p p p− − − −= + + +
0( 2 / ) ( 2 / )1 ( 2 / )( 1)...j K N j K N j K N Le e e

�

					    − − −= + +…+ +2 / 2 / 1)( )(1  j pK N j pK N Le e
�

FIGURE 5.1  (a) Amplitude spectrum and (b) phase spectrum.
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This is a geometric progression of the form

					  
+ − =

−

11

[1 ]

MA R

R
� (1)

where A is the first term of GP.
R is the common ratio of GP.
Putting the values of A, R, and M in Eq. (1), we get

				 

( )

( )

1 12 /

2 /

1
2 /

2 /1

1 1
( )

1

Lj K N

j K N

e
j KL N

j K Ne

e
S K

e

p

p

p

p

− +−

−

 −  − 

− −  

−
= =

− �

� where K = 0, 1,..., N − 1

or				 
2 /

2 /

1
( )

1

j KL N

j K N

e
S K

e

p

p

−

−

−
=

−
� where K = 0, 1, ..., N − 1

This is the N-point DFT of the sequence s(n).

EXAMPLE 5.3

Find the DFT of the sequence

				 
≤ ≤

=  =

1, 2 6
( )

0, for 0,1,7,8,9
n

s n
n �

Given that N = 10.

Solution:
DFT of s(n) is given by

					  
1

( 2 / )

0

( ) ( )
N

j K N n

n

S K s n e p
−

−

=

= ∑ �

Let e−j(2p/N) = W, then

					  
−

− −

= =

= =∑ ∑
1 6

0 2

( ) ( ) ( )
N

nK nK

n n

S K s n W s n W �

where				 
	 (2 )/j NW e p−=

�

				 
− −

= =

= −∑ ∑
6 1

0 0

nK nK

n n

W W �
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( ) +− − +

− −

− −
= −

− −

6 1
1 11 1 ( )

1 1

K K

K K

W W
W W

�

				 
− −

− −

− −
= −

− −

71 1
1 1

K K

K K

W W
W W

�

or				 
− − − −

− −

− − + −
= −

− −

7 2 2 71 1
( )

1 1

K K K K

K K

W W W W
S K

W W
� (1)

Substituting		  2 / 2 /10 / 5j N j jW e e ep p p= + =  in Eqn. (1), we get�

				 

2 7( / 5) ( / 5)
(4 / 5)

( /2)(1)

sin
2( )

1 sin
10

j K j K
j K

j K

K
e e

S K e
Ke

p p
p

p

p

p

− −
−

−

 
 −  = =

−  
 
 

�

5.3	 THE DFT AS A LINEAR TRANSFORMATION TOOL

DFT and IDFT both are linear transformations on sequences s(n) and S(K), 
respectively, where s(n) and S(K) are discrete-time sequence and discrete-
frequency sequence, respectively.

DFT and Inverse DFT (IDFT) satisfy the principle of superposition. 
DFT is a linear transformation tool just like z-transform. The same property 
also applies to both DFT and its inverse DFT.

The DFT as a linear transformation tool is explained and studied by using 
matrices. DFT and IDFT can be computed by using matrices. Computation 
of N-point DFT requires N × N complex multiplications and N(N − 1) com-
plex additions.

N-point vector SN of frequency samples is given by

				 

 
 
 =
 
 − 



(0)
(1)

( 1)

N

S

S
S

S N

� (5.7)
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N-point vector sN of signal sequence s(n) is given by

				 

 
 
 =
 
 − 



(0)
(1)

( 1)

N

s

s
s

s n � (5.8)

DFT			  p
− −

−

= =

= =∑ ∑
1 1

(2 / )

0 0

( ) ( )
N N

j K N n Kn
N N

n n

s s n e s n W

� where K = 0, 1, ..., N − 1

IDFT,				   p
− −

− −

= =

= =∑ ∑
1 1

( 2 / )

0 0

1 1
( ) ( ) ( )

N N
j K N n Kn

N
K n

S n s K e S K W
N N

�

� where K = 0, 1, ..., N − 1

where	 p−= 2 /j N
NW e  is an Nth root of unity.

N-point DFT in matrix form is defined as
				   = . N NS WN s � (5.9)

where WN is the matrix of the linear transformation and is a N × N symmetric 
matrix. WN is given by

				 

−

−

− − − −

 
 
 
 =
 
 
  









1 1 1

2 4 2( 1)

1 2( 1) ( 1)( 1)

1 1 1 1
1
:
: : : :
1

N
N N N

N
N N NN

N N N N
N N N

W W W

W W WW

W W W

� (5.10)

N-point IDFT in matrix form is defined as

				   1 1
N N N N Ns W S W S

N
− ∗= = � (5.11)

where NW∗ denotes the complex conjugate of matrix WH and −1
NW  is the inverse 

of WN.
The relationship between WN and its complex conjugate will be

				 
N N NW W N I∗⋅ = ⋅ � (5.12)

where IN is an N × N identity matrix.
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EXAMPLE 5.4
Determine the DFT of the four-point discrete-time sequence s(n) = {1, 2, 3, 
4} using DFT transformation matrix. Also determine IDFT from DFT.

Solution:
Here we require a 4 × 4 DFT transformation matrix because s(n) has four 
points.

				 

 
 
 =  
 
  

0 0 0 0
4 4 4 4
0 1 2 3

4 4 4 4
4 0 2 4 6

4 4 4 4
0 3 6 9

4 4 4 4

W W W W

W W W W
W

W W W W

W W W W

� (1)

where	 p−= =2 /40 0
4 [ ] 1.jW e

Now we will use the property of periodicity and symmetry of W4.
The property of periodicity for WN is given by
					    + =K N K

N NW W �

From this property, WN is repeated after a period N.
The property of symmetry for WN is given by
				   + = −/2K N K

N NW W �

From this property, WN is repeated with inverse sign after a half period 
2
N

.

where p−= 2 /j N
NW e  is called phase rotation factor or twiddle factor for DFT.

From the property of periodicity
				   += =4 (0 4) 0

4 4 4W W W �

				   += =6 (2 4) 2
4 4 4W W W � because N = 4

				   + ×= =9 (1 2 4) 1
4 4 4W W W �

Substituting these values in Eq. (1), we get

				 

 
 
 =
 
 
 

1 2 3
4 4 4

4 2 0 2
4 4 4
3 2 1

4 4 4

1 1 1 1
1
1
1

W W W
W

W W W

W W W

� (2)

				   ( )p−= = −2 /41
4

jW e j �
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				   ( )22 /42
4 1jW e p−= = − �

				   ( )p−= =
32 /43

4
jW e j �

Substituting the above values in Eq. (2), we get

				 

 
 − − =
 − −
 − − 

4

1 1 1 1
1 1
1 1 1 1
1 1

j j
W

j j �

Then				 
44 4

1 1 1 1 1
1 1 2
1 1 1 1 3
1 1 4

S

j j
S W

j j

   
   − −   = =
   − −
   − −   

�

				 

+ + +   
   − − + − +   =
   − + − −
   + − − − −   

1 2 3 4 10
1 2 3 4 2 2
1 2 3 4 2

1 2 3 4 2 2

j j j

j j j �

Inverse DFT of S4 is determined by
1

N N Ns W S
N

∗=  where NW∗  is the complex conjugate WN and N = 4:

				 

4 4 4

1 1 1 1 10
1 1 21 1
1 1 1 1 24 4
1 1 2 2

j j zj
s W S

j j j

   
   − − − − −   = ∗ =
   − − −
   − − − −   

�

				 

− + − − − 
 − + + + + =
 + − − − +
 + = + − − 

2 2

2 2

10 2 2 2 2 2
10 2 2 2 2 2

10 2 2 2 2 2
10 2 2 2 2 2

j j

j j j j

j j

j j j j �
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   
   
   = =
   
   
   

4 1
8 21

12 34
16 4 �

Note: NW∗  is determined from WN by changing the sign of in WN.

5.4	 PROPERTIES OF DFT

Most of the properties of the DFT and z-transform have some similarities 
because they have some relationship with each other. DFT also differs in 
some properties such as the circular convolution property. This property is 
explained in detail in Figure 5.6.

Circular convolution is the special property of DFT of a discrete-time 
sequence. There are several properties of the DFT that play an important 
role in practical techniques for processing signals. These properties are given 
as follows:

1.	 Periodicity.

2.	 Linearity.

3.	 Symmetry properties.

4.	 Circular convolution of two sequences.

5.	 Time reversal of a sequence.

6.	 Circular time-shift of a sequence.

7.	 Circular frequency-shift of a sequence.

8.	 Circular correlation of two sequences.

9.	 Multiplication of two sequences.

10.	 Parseral’s theorem.

These properties are discussed one by one in subsequent sections.
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5.4.1	Periodicity

If a discrete-time signal is periodic then its DFT will also be periodic. If a 
signal or sequence repeats its waveform after N number of samples then it is 
called a periodic signal or sequence and N is called the period of signal.

If s(n) is a discrete-time signal and S(K) is the N-point DFT of s(n). Then
	

+ =  for all values of( ) (  )s n N s n n � (5.13)

This is true for periodic signals only.
	

+ =  for all values of( ) (  )S K N S K K � (5.14)

DFT of s(n) is also periodic.
This property is used in some applications of DSP such as in Fast Fourier 

Transform (FFT) algorithms used for linear filtering, power spectrum esti-
mation, etc.

5.4.2	Linearity

DFT is also a linear transform just like transform. It satisfies the principle of 
superposition.

If		
−←→.ptN

1 1( ) ( )DRTs n S K

		
−←→.ptN

1 2( ) ( )DRTs n S K

Then for any real-valued or complex-valued constants A1 and A2

A1s1(n) + A2s2(n) −←→.ptN DRT  A1S1(K) + A2S2(K)

5.4.3	Symmetry Properties of the DFT

If a signal or sequence repeats its waveform in a negative direction after N/2 
number of samples, then it is called symmetric sequence or signal. Symmetry 
properties of the DFT are studied in two cases:

Case I. Signal s(n) and its DFT S(K) both are complex and periodic 
sequences.

These properties are given in Table 5.1.
We know that for periodic signals

	 = − = −  a( ) ( ) ( ) (nd )s n s N n S K S N K

It concludes that if a discrete-time sequence s(n) is periodic then its DFT 
S(K) is also periodic in the same period.
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TABLE 5.1  �Symmetry properties of the DFT for s(n) and S(K) both are periodic 
and complex sequences

N-point discrete-time sequence s(n), 
0 < n < N − 1

N-point DFT S(K), 0 ≤ K ≤ N − 1

Complex conjugate of s(n) ⇒ s(n) S* (N − K)

s*(N − n) S*(K)

Real part of complex sequence ⇒ sR(n) Conjugate even part of S(K)

⇒ Sce(K) = 1
2

[S(K) + S*(N − K)]

Imaginary part of complex sequence ⇒ 
jsI(n)

Conjugate odd part of S(K) 

⇒ SCO(K) = 
1
2

[S(K) + S*(N − J)]

Conjugate even part of s(n)

⇒ Sce(n) = 
1
2

 [s(n) + s*(N − n)]

SR(K)

Conjugate odd part of s(n) 

⇒ sco(n) = 
1
2

 [s(n) + s*(N − n)]

jS1(K)

where s*(n) is the complex conjugate of s(n) 
and S*(K) is the complex conjugate of S(K)

Case II. Now in this case s(n) is a real and periodic sequence but its DFT 
is a complex and periodic sequence of N samples.

Now S(K) satisfies the following symmetry conditions.
					    ∗= −( ) ( )S K S N K

� (5.15)

Real part of 	 = −,  ( ) ( ) ( )R RS K S K S N K � (5.16)

Imaginary part of 	 = −,  ( ) ( ) ( )I IS K S K S N K � (5.17)

Both SR(K) are SR(N − K) even functions and SI(K) and SI(N − K) are odd 
functions.

Amplitude of 	 = −( ) | ( ) | | ( ), |S K S K S N K � (5.18)

Phase of 			  ∠ = −∠ −( ), ( ) ( )S K S K S N K � (5.19)
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Both |S(K)| and |S(N − K)| are even.
and S(K) and S(N − K) are odd.
Conjugate even part of

					    [ ] −= + − ←→.ptN1
( ) ( ) ( ) ( )

2
DRT

Rs n s n s N n S K �

Conjugate odd part of

				   [ ] −= − − ←→.ptN1
( ) ( ) ( ) ( )

2
DRT

Is n s n s N n jS K �

where SR(K) is the real part of S(K)
and SI(K) is the imaginary part of S(K).
Note. Complex discrete-time sequence is represented as
				   = +)( () ( )R Is n s n js n �

and complex DFT of s(n) is represented as
				   ( ) ( ) ( )R IS K S K jS K= + �

S(K) is also represented in polar form as
				   = ∠( ) | ( ) |  . ( )S K S K ej S K �

where |S(K)| is the amplitude of S(K)
∠S(K) is the phase of S(K).

5.4.4	Circular Convolution

This is the special property of the DFT. This property is not satisfied by 
z-transform.

Circular convolution is defined as

					    [ ]
−

=

= −∑
1

3 1 2
0

( ) ( ) ( )
N

N
n

s m s n s m n � (5.20)

� where m = 0, 1, ..., N − 1
where s2[(m − n)]N is a circular shift of sequence s2(n) and s1(n) and s2(n) are 
two discrete-time sequences of the finite length of N-point.

Circular convolution of two-discrete-time sequences s1(n) and s2(n) is 
denoted by

						  

=

=





2

2 2

2 1 (( ) )

( ) (

( )

)

N

N

s n

s n

n

s

s n

n

s

� (5.21)
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Here 


N  denotes N-pt. circular convolution of two sequences. Circular 
convolution like linear convolution is a commutative operation.

Multiplication of the DFTs of the two sequences is equivalent to the cir-
cular convolution of the two sequences in the time domain.

The basic difference between circular convolution and linear convolution 
is that, in circular convolution, the folding and shifting operations are per-
formed in a circular fashion by computing the index of one of the sequences 
modulo N. Modulo N operation is not used in linear convolution. This opera-
tion is used for the circular shifting of sequence s(n). It can be explained with 
the help of an example given below:

	If				   −←→.ptN
1 1( ) ( )DRTs n S K �

	and				   −←→.ptN
2 2( ) ( )DRTs n S K �

then from the special property of the DFT

	 ( )
−

−

=−

= − ←→ ⋅  ∑

.pt
1

N
21 1 2 1 2( ) ( ) ( ) ( )( )

N
DRT

N
n

N s n s n s m n Sn K S Ks �

Example for Modulo N-operation

In general, the circular shift of the sequence s(n) can be represented as the 
index modulo N.
					    ′ = − = −,modu( ) ( )lo [( )]Ns n s n K N s n K �

if If = 2 and N = 4, then
					    ′ = − 4( ) [( 2)]s n s n �

n = 0,		  s′(0) = s[(0 − 2)]4 = s(2)
n = 1,		  s′(1) = s[(1 − 2)]4 = s[(−1)]4 = s(3)
n = 2,		  s′(2) = s[(2 − 2)]4 = s[(0)]4 = s(0)
n = 3,		  s′(3) = s[(3 − 2)]4 = s[(1)]4 = s(1)

Step in computation of circular convolution.

There are four steps in the computation of circular convolution just as those 
involved in the computation of ordinary linear convolution. These four steps are:

1.	 Folding one of two sequences.

2.	 Shifting the folded sequence.
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3.	 Multiplying the two sequences for obtaining the product sequence.

4.	 Summing the values of the product sequences.

This is illustrated by Example 5.5.

EXAMPLE 5.5
Compute the circular convolution of the two discrete-time sequences s1(n) = 
{1, 2, 1, 2} and s2(n) = {3, 2, 1, 4}.

Solution:
Circular convolution is defined as

					  
−

=

= −∑
1

3 1 2
0

( ) ( ) [( )]
N

N
n

s m s n s m n �

where				   	 { }= =1 1 1 1 1( ) (0), (1), (2), (3) {1,2,1,2}s n s s s s �

and				   	 { }= =2 2 1 2 2( ) (0), (1), (2), (3) {3,2,1,4}s n s s s s �

Computation of circular convolution using a graph as shown in Figure 5.2.
Circular convolution is defined as

					  
−

=

= −∑
1

3 1 2
0

( ) ( ) [( )]
N

N
n

s m s n s m n �

From Figure 5.2, we can compute following:

	 m = 0,			
=

= − = + + + =∑
3

3 1 2 4
0

(0) ( ) [( )] 3 8 1 4 16
n

s s n s n �

	 m = 1,			
=

= − = + + + =∑
3

3 1 2 4
0

(1) ( ) [(1 )] 2 6 4 2 14
n

s s n s n �

	 m = 2,			
=

= − = + + + =∑
3

3 1 2 4
0

(2) ( ) [(2 )] 2 4 3 8 17
n

s s n s n �

	 m = 3,			
=

= − = + + + =∑
3

3 1 2 4
0

(3) ( ) [(3 )] 4 2 2 6 14
n

s s n s n �

Now the circularly convoluted sequence
						     { }3 3 3 3 3(0), (1), (2), (3( ) { }) 16,14,17,14s n s s s s= = �

EXAMPLE 5.6
Compute the s3(n) corresponding to circular convolution of the sequences 
s1(n) and s2(n) by using DFT and IDFT approach.

Given s1(n) = {2, 1, 2, 1} and s2(n) = {1, 2, 3, 4}
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Solution:
DFT of s1(n) is given by

��������������

FIGURE 5.2  Circular convolution of the sequences s1(n) and s2(n) given in problem 5.5.
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p−

=

= =∑
3

2 /4
1 1

0

( ) ( ) , 0,1,2,3j Kn

n

S K s n e K �

						    p p p− − −= + +2 .0 /4 2 .1/4 2 .2 /4
1 1 1(0) (1) (2)j K j K j Ks e s e s e �

						    p−+ 2 .3 /4
1(3) j Ks e �

					    p p p− − −= + + +2 /4 4 /4 6 /42(1) 1. 2. 1.j K j K j Ke e e
�

					    p p p− − −= + + +/2 3 /22 1. 2j K j K Ke e e
�

� where K = 0, 1, 2, 3
Thus, K = 0,	 	 p p p− − −= + + +.0 /2 .0 3 .0 /2

0 (1) 2 2j j jS e e e �

						   
= + + + =2 1 2 1 6

�

K = 1,					    p p p− − −= + + + =.1/2 .1 3 .1/2
1(1) 2 2 0j j jS e e e �

K = 2,					    p p p− − −= + + + =.2 /2 .2 3 .2 /2
1(1) 2 2 2j j jS e e e �

K = 3,					    p p p− − −= + + + =.3 /2 .3 3 .3 /2
1(3) 2 2 0j j jS e e e �

					    ( ) { }= =1 1 1 1 1(0), (1), (2), (3) 6,0,2{ } ,0S K S S S S �

DFT of s2(n) is given by

					  
p−

=

= =∑
3

2 /4
2 1

0

( ) ( ) , 0,1,2,3j Kn

n

s K s n e K �

						    p p p− − −= + +2 .0 /4 2 .1/4 2 .2 /4
2 2 2(0) (1) (2)j K j K j Ks e s e s e �

						    p−+ 2 .3 /4
2 (3) j Ks e �

						    p p p− − −= + + +2 /4 4 /4 6 /401 2 3 4j K j K j Ke e e e
�

						    p p p− − −= + + +/2 3 /21 2 3 4j K j J j Ke e e
�

� where K = 0, 1, 2, 3
K = 0,					    p p p− − −= + + +.0 /2 .0 3 .0 /2

2 (1) 1 2 3 4j j jS e e e �

					  
= + + + =1 2 3 4 10

�

K = 1,					    p p p− − −= + + + = − +.1/2 .1 3 .1/2
2 (1) 1 2 3 4 2 2j j jS e e e j �

K = 2,					    p p p− − −= + + + = −.2 /2 .2 3 .2 /2
2 (2) 1 2 3 4 2j j jS e e e �

K = 3,					    p p p− − −= + + + = − −.3 /2 .3 3 .3 /2
2 (3) 1 2 3 4 2 2j j jS e e e j �

					    { }=2 2 2 2 2( ) (0), (1), (2), (3)S K S S S S �

						     = − + − −{10, 2 2, 2 2, 2}j j �
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But from the important property of the DFT that circular convolution of 
two discrete-time sequences is equivalent to multiplication of DFTs of indi-
vidual sequences:
					    =3 1 2( ) ( ). ( )S K S K S K �

						     { }= − + − − −6,0,2,0 10, 2 2, 2, 2 2{ }j j �

						     { }= −60,0, 4,0 �

					    { }= −3 60,0, ,0( ) 4S K �

Taking inverse DFT of S3(K) for computing s3(n):
					    =3 3( ) IDFT [ ( )]s n S K �

					  
p−

=

= =∑
3

2 /4
3

0

1
( ) , 0,1,2,3

4
j Kn

K

S K e n �

					    p p p= + +
( 2 . /4) ( 4 1. /4) ( 2 2. /4)

3 3 3

1
(0) (1) (2)

4
j n j n j nS e s e s e �

						    p + 
( 2 3. /4)

3 (3) j ns e �

					    p p p = + + − + 
2 /4 4 /4 6 /401

60 0 ( 4) 0.3
4

j n j n j ne e e �

					    p p = + − 
1

60 4 15
4

j n j ne e �

or				   p= −3 ( ) 15 j ns n e �

n = 0,				   p= − = − =.0
3 (0) 15 15 1 14j ns e �

n = 1,				   p= − =1
3 (1) 15 16js e �

n = 2,				   p= − =2
3 (2) 15 14js e �

n = 3,				   p= − =3
3 (3) 15 16js e �

				   { }= =3 3 3 3 3( ) (0), (1), (2), (3) {14,16,14,16}s n s s s s �

This is the result of the output sequence from the circular convolution of 
two sequences by the DFT method.
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5.4.5	Time Reversal of a Sequence

Reversing the N-point discrete-time sequence is equivalent to reversing the 
DFT values.

If			 
−←→.ptN DFT( ) ( )s n S K

�

Now we are reversing the sequence s(n) in time
			   −− = − ←→ − = −.ptN DFT[( )] ( ) [( )] ( )N Ns n s N m S K S N K 	

5.4.6	Circular Time-Shift of a Sequence

If			   −←→.ptN DFT( ) ( )s n S K
�

then,			   p− −− ←→.ptN DFT 2 /[( )] ( )j Km N
Ns n m e S K �

where s[(n − m)]N is a circularly time-shifted version of s(n).

5.4.7	Circular Frequency-Shift of a Sequence

If			   −←→.ptN DFT( ) ( )s n S K
�

then,			   p −− ←→ −.ptN DFT2 / ( ) [( )]j nm N
Ne s n S K m �

where S[(K − m)]N is a circularly frequency shifted version of S(K).

5.4.8	Circular Correlation of Two Sequences

Let us consider two complex-valued discrete-time sequences s1(n) and s2(n).

If			   −←→.ptN DFT
1 1( ) ( )s n S K �

and			   −←→.ptN DFT
2 2( ) ( )s n S K �

Then,

			   [ ] .pt

1 2

1
N DFT

( ) 1 2 1 2
0

( ) ( ) ( ) ( )
N

s s m N
n

r s n s n m S K S K
−

−∗ ∗

=

= − ←→∑ �
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where 2 ( )]Ns n m∗ −  is the complex conjugate of s2[(n − m)]N and 

2 ( )S K∗  is the complex conjugate of S2(K)

1 2 ( )s s mr  is called circular correlation sequence.

5.4.9	Multiplication of Two Sequences

If			   −←→.ptN DFT
1 1( ) ( )s n S K �

and			   −←→.ptN DFT
2 2( ) ( )s n S K �

then,			 
−⋅ ←→



.ptN DFT
1 2 1 2

1
( ) ( ) ( ( )) Ns n s n S K S K

N
�



N  denotes circular convolution.
This property is dual of circular convolution and defined as

			   −←→


.ptN DF
2 1 21

T( ( ) ( () ) )N s n S K Sn Ks �

5.4.10 Parseval’s Theorem

For complex-valued sequences s1(n) and s2(n)

If			   −←→.ptN DFT
1 1( ) ( )s n S K �

and			   −←→.ptN DFT
2 2( ) ( )s n S K �

Then,			 
1 1

1 2 1 2
0 0

1
( ) ( ) ( ) ( )

N N

n n

s n s n S n S n
N

− −
∗ ∗

= =

=∑ ∑
 
 
 
 
  

This expression is a
general form of
Parseval’s theorem. �

If				   = = =1 2 1 2( ) ( ), then ( ) ( ) ( )s n s n S K S K S K �

Then the above theorem will be

	
.pt

1 1
N DFT

0 0

( ) ( ) ( ) ( )
N N

n K

s n s n S K S K
− −

−∗ ∗

= =

←→∑ ∑ �

But we know that s(u) s*(n) = |s(n)|2

and				   2( ) ( ) ( )SS K S K S K∗⋅ = �
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Putting these values in above expression, we get

				 
− −

= =

=∑ ∑
1 1

2 2

0 0

( ) ( )
N N

n K

s n S K � (5.22)

When s1(n) = s2(n) and S1(K) = S2(K) it is called special form of Parseval’s 
theorem.

5.5	 TABULATION OF PROPERTIES OF DFT

All the properties of the DFT are given in Table 5.2.

TABLE 5.2

Properties of DFT Time-domain frequency-domain
Notation s1(n), s2(n) Two discrete-time 

sequences
S1(K) and S2(K) Two discrete-
frequency sequences

Periodicity s1(n) = s1(N + n) and s2(n) = 
s2(N + n)

S1(K) = S1(N + K) and S2(K) = 
S2(N + K)

Linearity A1s1(n) + A2s2(n) A1S1(K) + A2S2(K)

Time–Reversal 
(Folding)

s1(N − n) and s2(N − n) S2(N − K) and S2(N − K)

Circular time shift s1[(n − m)N and s2[(n − m)]N e j2pKm/N S1(K) and e j2pKm/N S2(K)

Circular Frequency 
Shift

e j2pnm/N s1(n) and e j2pnm/N s2(n) S1[(K − m)]N and S2[(K − m)]N

Complex conjugate 1 ( )s n∗  and 2 ( )s n∗
1 ( )S N K∗ −  and 2 ( )S N K∗ −

Circular convolution 1 ( )s n∗
 N  2 ( )s n∗ S1(K) S2(K)

Circular correlation 1 ( )s n∗
 N  2 ( )s n∗ S1(K) 2 ( )S K∗

Multiplication of two 
sequences

s1(n) s2(n) S1(K) N  S2(K)

Parseval’s theorem
1

2
0

( ) ( )
N

n

s n s n
−

∗

=
∑

1

0

1
( ) ( )

N

K

S K S K
N

−
∗

=
∑
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5.6	 RELATIONSHIP BETWEEN DFT AND z-TRANSFORM

Now we will develop the relationship between DFT and z-transform, 
z-transform of a discrete-time sequence of finite duration is defined as

					  
∞

−

=−∞

= ∑( ) ( ) n

n

S z s n z � (5.23)

Consider a finite-duration sequence s(n), 0 ≤ n ≤ N – 1.
Now Eq. (5.23) reduces to

					  
−

−

=

= ∑
1

0

( ) ( )
N

n

n

S z s n z � (5.24)

DFT is given by

					  
p

−
−

=

= ∑
1

( 2 / )

0

( ) ( ) n

N
j K N

n

S K s n e � (5.25)

Substituting z = e j2pK/N in Eq. (5.24), we get

				   p
p

+

−
−

=
=

= ∑2 /

1
( 2 / )

0

( ) ( ) n
j K N

N
j K N

z e
n

S z s n e � (5.26)

Comparing Eqs. (5.26) and (5.25), we get
				 

p+=
= 2 /( ) ( ) j K Nz e

S K S z � (5.27)

Now z-transform is uniquely determined by its Appoint DFT. S(z) can be 
expressed as a function of the DFT, S(K) as follows:

					  
−

−

=

= ∑
1

0

( ) ( )
N

n

n

S z s n z � [From Eqn. (5.24)]

But inverse DFT is given by

					  
p

−

=

= ∑
1

2 /

0

1
( ) ( )

N
j Kn N

K

s n S K e
N

� (5.28)

Substituting the value of s(n) in above Eq. (5.24), we get

					  
p

− −
−

= =

 
=  

 
∑ ∑

1 1
2 /

0 0

1
( ) ( )

N N
j Kn N n

n K

S z S K e z
N �
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Rearranging the summations, we get

					    ( )1
1 1

2 /

0 0

1
( ) ( ) z

nN N
j K N

K n

S z S K e
N

p −
− −

= =

= ∑ ∑ �

					  

( )1

1

1 12 /
1

2 /
0

11
( )

1

z

z

Nj K N
N

j K N
K

e
S K

N e

p

p

−

−

− +−
−

=

 − =  −  

∑
�

					    1

2 /1

2 /
0

1 1
( )

1

Nz

z

j Kn NN

j K N
K

e
S K

N e

p

p

−

−

−−

=

 −
=  

−  
∑ �

But e j2pK = 1

or					  
1

1

2 /
0

1 ( )
( )

1 z

N N

j K N
K

z S K
S z

N e
p −

− −

=

−
=

−
∑ � (5.29)

Eq. (5.29) is a very important result and gives the relationship between 
z-transform and DFT of a finite-duration discrete-time sequence.

5.7	 LINEAR CONVOLUTION USING DFT

The product of two DFTs is equivalent to the circular convolution of the cor-
responding time-domain sequences. Here we have no use of circular convo-
lution because our objective is to determine the output of a linear filter to a 
given input sequence. The purpose of linear convolution is linear filtering the 
input of a linear system.

FIGURE 5.3  FIR filter.

The output of an FIR filter is given by the linear convolution of s(n) and 
h(n) as

					  
∞

=−∞

= −∑( ) ( ) ( )
k

y n h k s n k �

Here, k is a discrete-time index.
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Here, we are considering a finite-duration input sequence s(n) of length 
L and the unit-sample response of FIR filter h(n) of length M. Output of this 
FIR filter will be given by

					  
−

=

= −∑
1

0

( ) ( ) ( )
M

k

y n h k s n k � (5.30)

The duration of y(n) will be N ≥ L + M − 1.
The frequency-domain equivalent of Eq. (5.30) will be

					    w w w=( ) ( ) ( )Y S H
�

DFT,					    w ww w w= == =2 / 2 /( ) ( ) | ( ) ( ) |nK N nK NY K Y S H
� (5.31)

� K = 0, 1, ... , N − 1

DFT of size N ≥ L + M − 1 required to represent y(n) in the frequency 
domain
					  

=( ) ( ) ( )Y K S K H K
� (5.32)

					  
= −0,1,2,..., 1K N

�

Here K is a discrete-frequency index, where S(K) is the DFT of s(n) and 
represented by

					  
p

−
− = −

=

= ∑
1

( 2 / ) , 0,1,2,...., 1

0

( ) ( ) n

N
j K N K N

n

S K s n e �

and H(K) is the DFT of h(n) and represented by

					  
p

−
−

=

= = −∑
1

( 2 / )

0

( ) ( ) , 0,1,2,.., 1n

N
j K N

n

H K h n e K N �

Since s(n) and h(n) have a duration less than N. If DFT is to be used for 
performing linear convolution then we are required to increase the length of 
s(n) arid h(n) to N by padding these sequences with zero.

After padding these sequences with zero, the N-point circular convolution 
of s(n) with h(n) must be equivalent to the linear convolution of s(n) with h(n).

Thus we see that with zero as padding, the DFT can be used to perform 
linear filtering.
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EXAMPLE 5.7
Compute linear convolution of s(n) and h(n) using DFT method

Given	

= = = = = = 
 
  

11, 0 , 0
21

( ) , 1 and ( ) 1, 1
2

0, otherwise0, otherwise

n n

s n n h n n

Solution:
Sample points of s(n), Ns = 2

Sample points of h(n), Nh = 2
Sample points of y(n) = s(n)*h(n), Ny = Ns + 

Nh − 1 = 2 + 2 − 1 = 3
To avoid time-aliasing, we convert two-

sample sequences into three-sample sequences 
by padding with zero. Figure 5.4 illustrates 
the graphical representation of sequences s(n) 
and h(n).

Three-point DFT sequences are given by

			 
2

( 2 /3)

0

( ) ( ) , 0,1,2j K

n

S K s n e Kp−

=

= =∑ �

				   p p p− − −= + +2 .0 /3 2 1/3 2 2/3(0) (1) (2)j K j K j Ks e s e s e
�

				   p p p− − −= + + = +2 /3 4 /3 2 /31
1.1 0. 1 0.5

2
j K j K j Ke e e �

K = 0,				   ( 2 3/0)(0) 1 0.5 0.5 1 1.5jS e p−= + = + = �
K = 1,				   ( 2 /3)1 2 /3(1) 1 0.5 1 0.5j jS e ep p− −= + = + �

K = 2,				   p p− −= + = +( 2 /3)2 4 /3(2) 1 0.5 1 0.5j jS e e �

		
p−

=

= =∑
2

( 2 /3)

0

( ) ( ) , 0,1,2nj K

n

H K s n e K �

				   p p p− − −= + +
0 1 2( 2 /3) ( 2 /3) ( 2 /3)(0) (1) (2)j K j K j Kh e h e h e

�

				   2 /3 4 /3 2 /301
1. 0. 1 0.5

2
j K j K j Ke e e ep p p− − −= + + + + �

FIGURE 5.4  �Graphical representa-
tion of s(n) and h(n).
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K = 0,			   p−= + = + =
0( 2 /3)(0) 0.5 1 0.5 1.5jH e �

K = 1,			   p p− −= =( 2 /3)1 2 /3(1) 0.5 0.5j jH e e �

K = 2,			   p p− −= = +( 2 /3)2 4 /3(2) 0.5 0.5j jH e e �

Since a time-domain convolution is equivalent to a frequency-domain 
multiplication

			   = =( ) ( ) (· , 0,  1,  2)Y K S K H K K �

K = 0,			   = ⋅ = × =(0) (0) (0) 1.5 1.5 2.25Y S H �

K = 1,			   = ⋅(1) (1) (1)Y S H �

				   p p− −= + +2 /3 2 /31 0.5  .( ) ( ) 0.5j je e �

				   p p p− − −= + + +2 /3 2 /3 4 /30.5 0.25  0.5j j je e e �

				   p p− −= + +2 /3 4 /30.5 1.25 0.5j je e �

K = 2,				   = ⋅(2) (2) (2)Y S H �

				    ( ) ( )p p− −= + +4 /3 4 /31 0.5  0.5j je e �

				    p p p− − −= + + +4 /3 4 /3 8 /30.5 0.25 0.5j j e je e �

				    4 8 /30.5 1.25 /3 0.5e j e jp p− −= + + �

The inverse DFT is given by

			 
p

−

=

= ≤ ≤ − =∑
1

( 2 / )

0

1
( ) ( ) , 0 1 ( 3)n

N
j K N

K

y n Y K e n N N
N

�

			 
2

2 /3

0

1
( ) ( ) , 0,1,2

3
j Kn

K

y n Y K e np

=

= =∑ �

				   p p p = + + 
2 0. /3 2 1. /3 2 2. /31

(0) (1) (2)
3

j n j n j nY e Y e Y e �

				   ( )p p p= + + +
2 /3 4 /3 2 /31

2.25 0.5 1.25 0.5
3

j j j ne e e �

					    ( )p p p + + + 
4 /3 8 /3 4 /30.5 1.25 0.5j j j ne e e �
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n = 0, 2		  ( )p p p= + + +
2 /3 4 /3 2 .0 /31

(0) 2.25 0.5 1.25 0.5
3

j j jy e e e �

					    ( )p p p− − + + + 
4 /3 8 /3 4 .0 /30.5 1.25 0.5j j je e e �

				   2 /3 4 /31
2.25 0.5 1.25 0.5

3
j je ep p− −= + + + �

					    4 /3 8 /30.5 1.25 0.5 ]j je ep p− −+ + �

				   p p p− − − = + + + 
2 /3 4 /3 8 /31

3.25 1.25 1.75 0.5
3

j j je e e �

				   = 0.5 �

In similar manner, we can compute

				   = = = =(1) 1.25 at 1 and (3) 0.50 at 2y n y n �

Hence			

=
 ==  =


0.50, 0
1.25, 1

( )
0.50, 2

0, elsewhere

n

n
y n

n
�

Figure 5.5 illustrates the graphical 
representation of the resultant convolu-
tion of s(n) and h(n).

5.8	 PITFALLS IN USING DFT

The DFT is primarily concerned with the analysis and processing of discrete-
time periodic signals and it is an approximation of the CTFT. FFT is a compu-
tationally efficient and speedier method of performing DFT. FFT can be used 
directly for numerical spectral analysis of sampled versions of continuous-time 
signals. Most of the problems of using DFT arise due to a misunderstanding 
of what this approximation involves.

Important characteristics of DFT are:

1.	 CTFT of a periodic function is also periodic.

2.	 Both DFT and IDFT operations are done over a finite number of samples 
of the continuous-time signal.

FIGURE 5.5  Graphical representation of 
resultant of convolution of s(n) and h(n).
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3.	 Both DFT and IDFT produce discrete samples which are equally peri-
odic with period N.

4.	 DFT of convolution between two discrete-time sequences is equal to the 
product of their individual DFTs.

Figure 5.6(a) illustrates the sinusoidal continuous-time signal s(t) = 
cos2pf0t and its Fourier transform S(f ). S(f ) consists of two impulses at f = ±f0 
because s(t) has a single frequency.

FIGURE 5.6  Discrete Fourier transform (DFT) of discrete-time sequence s(n), S(K) viewed as a corrup-
tive estimate of continuous Fourier transform of continuous-time signal s(t).

DSP.CH05_2pp.indd   223DSP.CH05_2pp.indd   223 3/23/2022   5:43:07 PM3/23/2022   5:43:07 PM



224 • Digital Signal Processing 

Figure 5.6(b) shows the rectangular window function wR(t) and its Fourier 
transform WR(f ). The spectrum of window function extends from −∞ to ∞. 
Here the window function wR(t) is a time-limited function.

Figure 5.6(c) represents the multiplication of s(t), and wR(t) that is, y(t) 
and its Fourier transform Y(f ) = S(f ) * WR(f ). This product results in the 
“truncation” of continuous-time signal s(t). The product in time-domain {; 
corresponds to convolution in the frequency domain. Star (*) denotes the 
convolution operation.

Figure 5.6(d) illustrates a comb function f(t) and its Fourier transform 
F(f ). Comb function f(t) is a periodic train of impulses with a time interval of 
Dt between the impulses. Fourier transform of comb function, that is, F(f ) is 
the corresponding Fourier spectra which are again a set of periodic impulses 

separated by 
1

.sf t
=
∆

 It is the sampling frequency due to Nyquist.

Figure 5.6(e) illustrates the sampled version of product y(f ) = s(t)wR(t) 
and it is denoted d(t). Sampling is done by multiplying y(t) with comb function 
y(t) then d(t) = y(t) f(t) = s(t) wR(t) f(t) and corresponding Fourier transform

			   ( ) ( ) ( ) ( ) ( ) ( )RD f Y f F f S f W f F f∗ ∗ ∗= = �

This figure shows that the sampled truncated cosine wave s(t) produces 
continuous spectra from −∞ to ∞.

Figure 5.6(f ) shows the discrete-time sequence sd(n) and its DFT. DFT 
of sequence s(n) is given by

			 
p

−
−

=

= ∑
1

2 /

0

( ) ( )
N

j nK N
d d

n

S K s n e �

Note. The dotted pattern represents the DFT of sd(n), that is, sd(K).
Sd(K) are the sample values of S(f ), where S(f ) is the Fourier transform of 

continuous-time signal s(t).

5.8.1	Problems of Pitfalls in Using DFT

For convenience, we have taken cosine sinusoidal signal s(t) of single fre-
quency f0. We expect an arbitrary waveform.

In this sub-section we are going to discuss the problems which arise in 
using DFT and their remedies.

1.	 Truncation error.

2.	 Aliasing error.
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3.	 Spectral leakage.

4.	 Improper use of DFT.

5.	 Picket-Fence effect.

Now these problems will be discussed one by one in detail.

1.	 Truncation Error: This error is caused by using the rectangular window 
function wR(t). But a time-limited signal has an infinite frequency spectra 
and spectrum of wR(t) is spread into frequencies other than ± f0.

The resultant y(f ) which is product of s(t) and wR(t) gives a truncated 
version in time-domain. Fourier transform of y(t), that is, Y(f ) is the spec-
tral function which spread into frequencies other than only those due to 
WR(f ). These are not useful and it is called truncation error.

2.	 Aliasing Error: We have already studied aliasing error in Chapter 2. To 
avoid aliasing effect, sampling rate should be greater than or equal to 
Nyquist rate. Nyquist rate is equal to twice the highest-frequency compo-
nent of the signal. However, due to truncation of signal s(t), the frequen-
cies spread into the frequency-domain for larger than the allowable range. 
Even after sampling a signal higher than the Nyquist rate, the aliasing 
error cannot be entirely eliminated.

3.	 Spectral Leakage: We have one more effect other than truncation and 
aliasing error. It is called spectral leakage. Leakage of energy take place 
when the original signal s(t) is truncated and sampled. It means energy in 
the original signal frequency f0 will now leak into other frequencies. This 
leakage is due to truncating the original signal s(t). Due to this leakage, we 
get an undesirable modification of the total spectrum. The spectral leak-
age effect cannot always be isolated from the aliasing effect because leak-
age leads to aliasing if the higher frequency component of the composite 
spectrum shifts beyond the folding frequency fs/2.

4.	 Improper Use of DFT: This problem is shown in Figure 5.7(a). In this 
figure, the waveforms are continuous-time in shape. For correct use of 
DFT separate the waveform of s(t) with duration T1 which is equal to 
impulse duration T. Here, y(t) − s(t) * h(t) where * denotes convolution 
operation between s(t) and h(t) and results in y(t). We have no signal 
between T and T + T1. If this gap is not provided during computation by 
FFT, the aliasing effect will arise and its other associated problems will 
also occur.
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5.	 Picket-Fence Effect: This problem is caused by the inability of the DFT 
to observe the spectrum as a continuous function y(t) because DFT com-
putation is limited to integer multiples of the fundamental frequency f0, 
where f0 is given by f/N = fs/N.

FIGURE 5.7  Correct and incorrect use of DFT.

The observation of spectrum with the DFT is equivalent to looking at it 
through a sort of “Fence.” It means we observe the exact waveform of y(t) 
only at discrete points of signals.

5.8.2	Remedies to Problems of Pitfalls in Using DFT

Now, we shall discuss very briefly the remedies to problems to pitfalls in using 
a discrete Fourier transform.

1.	 Remedy to truncation error.

2.	 Remedy to aliasing error.

3.	 Remedy to spectral leakage.

4.	 Remedy to improper use of DFT.

5.	 Remedy to picket-fence effect.

DSP.CH05_2pp.indd   226DSP.CH05_2pp.indd   226 3/23/2022   5:43:08 PM3/23/2022   5:43:08 PM



Discrete Fourier Transforms (DFTs) • 227

Now we shall discuss each remedy one by one as follows.

1.	 Remedy to Truncation Error: The truncation is shown in Figure 5.6(c). 
Here we have used a rectangular window function wR(t). If we want to 
perform DFT using FFT on a digital computer, we would be required 
to perform on a finite piece 
of the signal s(t) because we 
have limitations in computer 
storage memory. Thus trun-
cation is usually necessary 
(if signal s(t) is not naturally 
limited) and it results in a 
smearing effect. This effect 
is shown in Figure 5.6(c).

Truncation error can be reduced by selecting a window function w(t) that 
minimizes the spreading of the spectra into higher frequencies. A raised 
cosine window function is shown in Figure 5.8. This window function 
reduces the time function more gradually near the ends of the interval 
than the rectangular window function, which is shown in Figure 5.6(b). 
These window functions are called data windows.

By using these window functions, the convergence of series is more rapid 
and results in less spectral leakage.

These window functions can be expressed mathematically as follows:

	

2
( ) 0.50 0.50cos 0

2

1.
2 2

2
0.50 0.50cos .

2

R

t T
w t t

T
T T

t T

t T
T t T

T

p a
a

a a

p a
a

= + < ≤

= < < −

= + − < ≤ �

Typical values of a lie between 0.10 and 0.20.

2.	 Remedy to Aliasing Error: Aliasing error can be reduced by choosing a 
sampling rate higher than the Nyquist rate to avoid any spectral overlap. 
There is a need for prior knowledge of the spectrum of the signal so we 
can choose the appropriate sampling rate. If we have no prior knowledge 
of the signal then we must filter the signal before sampling using a low pass 
filter. Prefiltering is done in order to ensure about the highest-frequency 

FIGURE 5.8  Data window.
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component so as to decide the appropriate sampling rate. By doing so we 
can reduce aliasing error.

3.	 Remedy to Spectral Leakage: This leakage of energy into other fre-
quencies can be minimized by selecting sampling frequency in such a way 
that the zero and peak samples of the truncated signal s(t) are always pre-
sent. Longer bandwidth which is some integral multiple of the bandwidth 
of the signal will reduce spectral leakage. This is shown in Figure 5.6(e). 
Spectral leakage can also be reduced by choosing the window function for 
which the first and the last set of samples are weighted by a raised cosine 
wave, which is shown in Figure 5.8.

4.	 Remedy to Improper Use of DFT: Improper use of DFT can be taken 
care of by adding some extra zero samples to the set of non-zero samples 
so that the N-point DFT produces the correct result.

5.	 Remedy to Picket-Fence Effect: Picket-fencing can be reduced by var-
ying the number of points N in a given time period T and adding zeros at 
the end of the original record while maintaining the original record intact. 
This method artificially alters the period and this new period changes the 
locations of spectral lines without changing the continuous form of the 
original spectrum. By shifting the sample points, we can easily observe 
those spectral components which were originally hidden from view.

EXAMPLE 5.8
Find out the DFT of the sequence s(n) 
illustrated in the figure below for N = 6.

Solution:
For the above sequence s(n)

			 
 = = = 
 

(0) (3) 0
2
N

s s s �

			 
= −(1) 1s

�

			   = − =
3

(2) (4)
2

s s �

			 
(5) (1) 1s s= − =

�

FIGURE 5.9  �Graphical representation of 
sequence s(n) with N = 6.
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Using a formula of DFT as:

			 
p−

=

= =∑
5

2 /

0

( ) ( ) , where j NnK
N N

n

S K s n W W e �

				 
p−

=

=∑
5

2 /

0

( ) j K N

n

s n e �

				 
p p− −

= =

= =∑ ∑
5 5

2 / 2 /3

0 0

( ) ( )j K b j nK

n n

s n e s n e �

				   p p p− − −= + +2 .0 /3 2 .1 /3 2 .2 /3(0) (1) (2)j K j K j Ks e s e s e �

					  
2 .3 /3 2 .4 /3 2 .5 /3(3) (4) (5)j K j K j Ks e s e s ep p p− − −+ + + �

				   p p p− − −= × − + +/3 2 /3 2 3 /33
0 1( 1) 0

2
j K j K j Ke e e �

					  
p p− − − + 

 
4 /3 5 /33

(1)
2

j K j Ke e �

				   p p p p− − − −= − + − +/3 /3 4 /3 5 /33 3
2 2

j K j K j Kn j Ke e e e �

			   p p p p− − − −= − + − +/3 2 /3 4 /3 5 /33 3
( )

2 2
j K j K j K j KS K e e e e �

K = 0,				   =(0) 0S �

K = 1,				   = −
3

(1)
2

S j �

K = 2,				   =
5

(2) 3
2

S �

K = 3,				   =(3) 0S �

K = 4,				   = −
3

(4)
2

S j �

K = 5,				   = +
3

(5)
2

S j �

				 
  = − − 
  

3 5 5 3
( ) 0, , 3,0, 3,

2 2 2 2
S K j j j j �
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EXAMPLE 5.9
Determine the circular convolution of two sequences s1(n) and s2(n) given by

			   = = ≤ ≤ −1 2( ) ( ) 1, for 0 1s n s n n N �

				   = 0,  otherwise �

Solution:
Since both the sequences s1(n) and s2(n) are of unity value.

DFTs of the sequences will be

			 
p

−
−

=

= = ∑
1

2 /
1 2

0

( ) ( ) 1.
N

j nK N

n

S K S K e �

The above computation is applied for N = 4

			 
p−

=

= =∑
3

2 /4
1 2

0

( ) ( ) 1. j nK

n

S K S K e �

				   p p p− − −= + + +2 1 /2 3 /21 j K j K j Ke e e
�

K = 0,	 = =1 2(0) (0) 4S S

K = 1,	 = =2(1) (1) 0S S

K = 2,	 = =1 2(2) (2) 0S S

K = 3,	 = =1 2(3) ( ) 0,  etc.S S n

That is, S1(K) = S2(K) = N, for K = 0

				   = 0, otherwise �

Resultant of circular convolution of two sequences

			   = = ≤ ≤ −1 2( ) ( ) 1,0 1s n s n n N �

				   = 0, otherwise �
is given by

			   = = = =2
3 1 2( ) ( ) (. ,  ) . for 0S K S K S K N N N K �

Inverse DFT

				 
p

−

=

= ∑
1

2 /
3 3

0

1
( ) ( )

N
j nK N

K

s n S K e
N

�
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				   = = ≤ ≤ −21
. for 0 1N N n N

N
�

This is the result of circular convolution.

EXAMPLE 5.10
Find the symmetry in each 
case for the periodic sequence 
s(n) as shown in Figure 5.10.

Solution:

a.	 For the sequence s(n) in 
Figure 5.10(a), we find 
N = 8 and that,

				   = −(1) (7)s s �

				   = −(2) (6)s s �

				   = −(3) (5)s s �
except s(0) and s(4).

Therefore, it obeys sym-
metry

				   = − −( ) ( )s n s N m �

Hence the Fourier coef-
ficients S(K) will be imaginary.

b.	 For the Figure 5.10(b), we find that

				   =(1) (7)s s �

				   =(2) (6)s s �

and				  =(3) (5)s s �

thus it obeys the symmetry s(n) = s(N − m). Hence the Fourier coef-
ficients S(K) are real.

c.	 Sequence s(n) of Figure 5.10(c) does not obey any symmetry, thus the 
Fourier coefficients S(K) will be complex numbers.

FIGURE 5.10.
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EXAMPLE 5.11
Show for an arbitrary K, that

a.	 ( ) ( )S K S K∗− =

b.	  
2 2
N N

S K S K∗   − = +   
   

where S(K) is the DFT of s(n).
S*(K) is the complex conjugate of S(K). Here s(n) is real and N is even.

Solution:

a.	 DFT of s(n) is given by

			 
−

−

=

= ∑
1

0

( ) ( )
N

nK
N

n

S K s n W � (1)

where			  p= 2 /j N
NW e �

Substituting K = −K in Eq. (1), we get

		
−

−

=

− = ∑
1

0

( ) ( )
N

nK
N

n

S K s n W � (2)

Taking the complex conjugate of both sides of Eq. (2), we get

		
1

0

( ) ( )
N

nK
N

n

S K s n W
−

−

=

∗ − =∑ � (3)

Comparing Eqs. (1) and (3), we get

			   ( ) ( ) Proved.S K S K∗= − �

b.	 Since s(n) is real, then

			   ( ) ( )S K S K∗= − �

It holds symmetry in its Fourier coefficients (DFTs)

	
−

− −

=

   − = −   
   

∑
1

( /2 )

02 2

N
N n K

N
n

N N
S K s n W � (4)
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−

− −

=

   + = −   
   

∑
1

( /2 )

02 2

N
N n K

N
n

N N
S K s n W �

or	
−

− −

=

 + = − 
 

∑
1

( /2 )

0

( / 2 )
2

N
N n K

N
n

N
S K s N n W � (5)

Taking the complex conjugate of both sides of Eq. (5), we get

	
1

( /2 )

02 2

N
N n K

N
n

N N
S K s n W

−
∗ − −

=

   + = −   
   

∑ � (6)

Because sequence s(n) is a real sequence.

			   ( ) ( )s n s n∗ = �

Comparing Eqs. (4) and (6), we get

		   Proved.
2 2
N N

S K S K∗   − = +   
   

�

EXAMPLE 5.12
If sequence s1(n) is a periodic sequence with period N and it is also periodic 
with period 2N. Assume that S1(K) is the DFT of s1(n) with period N and S2(K) 
is the DFT of s1(n) with period 2N. Determine S2(K) in terms of S1(K).

Solution:
DFT of s1(n) with period N is given by

		
p

−
−

=

= ∑
1

( 2 / )
1 1

0

( ) ( )
N

j N nK

n

S K s n e � (1)

Substituting WN = e−2≤/N in above Eq. (1), we get

		
−

=

= ∑
1

1 1
0

( ) ( )
N

nK
N

n

S K s n W � (2)

Substituting DFT of s1(n) with period 2N is given by

		
p

−
−

=

= ∑
2 1

( 2 /2 )
2 1

0

( ) ( )
N

j N nK

n

S K s n e � (3)

Substituting W2N = e−2p/2N in Eq. (3), we get

		
−

=

= ∑
2 1

1 1 2
0

( ) ( )
N

nK
N

n

S K s n W � (4)
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Now, we want to express S2(K) in terms of S1(K), where s(n) is a periodic 
sequence and it satisfies the condition

				   = + = +( ) ( ) ( 2 )s n s n N s n N � (5)

			   p p− −= = =(2 /2 ) (2 / ) /2/2
2

j N nK j N nKnK nK
N NW W e e � (6)

Substituting Eq. (6) in Eq.(4), we get

			 
−

=

= ∑
2 1

2 1 2
0

( ) ( )
N

nK
N

n

S K s n W �

				 
−

=

= ∑
2 1

/2
1 2

0

( )
N

nK
N

n

s n W � (7)

				 
− −

+

= =

= + +∑ ∑
2 1 2 1

/2 ( ) /2
1 2

0

( ) ( )
N N

nK n N K
N N

n n N

s n W s n N W �

				 
−

+

=

  = + +      
∑

2 1
( ) /2

1 ( )
2

N
n N K

N
n N

K
S s n N W �

1
/2

1 1where ( )
2

N
nK

N
n N

K
S s n W

−

=

  = 
 

∑ �

				 
−

=

  = +      
∑

1
( ) /2 /2

1 1( )
2

N
n K NK

N N
n N

K
S s n W W �

				 
   = +   
   

/2
1 12 2

NK
N

K K
S S W �

or			   ( )  = +  
 

/2
2 1( ) 1

2
NK

N

K
S K W S � (8)

This is the desired expression.
Note. If K is even then	 =/2 1NK

NW

and if K is odd then /2 ( 1)NK K
NW = −  if, therefore, for K is even,

			 
 =  
 

2 1( ) 2
2
K

S K S �

for K is odd,
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    = + = −        

2 1 1( ) 1 (1) [1 1]
2 2

K K K
S K S S �

				 
 = = 
 

1[0] 0.
2
K

S �

EXAMPLE 5.13
Consider two periodic sequences, s(n) is periodic with period N and y(n) is 
periodic with period M. The sequence z(n) is defined as z(n) − s(n) + y(n),

a.	 Show that z(n) is periodic with period MN.

b.	 DFTs of s(n) and y(n) will be periodic with period N and M, respectively.

Find Z(L) in the terms S(L) and Y(L), where Z(L), S(L), and Y(L) are the 
DFTs of z(n), s(n), and y(n), respectively.

Solution:
Given:
		  ( )( ) ( )( ) ( )( )= +

K N M
z n s n y n � (1)

Here double brackets are used as it illustrates a sequence with its time 
period.

For linearity, both sequences s(n) and y(n) should have the same period.
		  ( )( ) ( )( ) ( )( )= +

K K K
z n s n y n � (2)

In Eq. (2) all the sequences have the same period, that is, K.

a.	 Now we want to determine the relation between K, M, and N.

	
p

−
−

=

= =∑
1

( 2 )

0

DFT of ( ) ( ) ( )
K

j j K nL

n

z n Z L z n e � (3)

where L is the discrete-frequency index.
We know that Z(L) is periodic with period K. Hence

			 
=(0) ( )Z Z L

�

			 
= +(1) ( 1)Z Z L

�

			 
= +(2) ( 2) etc.Z Z L

�
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Substituting Twiddle factor WN = e−j2p/L in Eq. (3), we get

		
− −

= =

= = +  ∑ ∑
1 1

0 0

(( )) ( ) ( ) ( )
K K

nL nL
K N K

n n

Z L z n W s n y n W �

			 
− −

= =

= +∑ ∑
1 1

0 0

(( )) (( ))
K K

nL nL
K K

n n

s n W y n W �

or		  p p
− −

− −

= =

= +∑ ∑
1 1

( 2 / ) ( 2 / )

0 0

(( )) (( )) (( ))
K K

j N nL j M nL
K

n n

Z L s n e y n e �

or			   p p
− −

− −

= =

= +∑ ∑
1 1

( 2 / ) ( 2 / )

0 0

(( )) (( ))
K K

j MN MnL j MN NnL

n n

s n e y n e �

� (We know that M × 2p = N × 2p = K × 2p = 2p, Hence K = MN.)

		
p p

− −
− −

= =

= +∑ ∑
1 1

( 2 / ) ( 2 / )

0 0

(( )) (( )) (( ))
K K

j K nL j K nL
K

n n

Z L s n e y n e �

or	 	
− −

= =

= +∑ ∑
1 1

0 0

(( )) ( ) ( )
K K

nL nL
K K K

n n

Z L s n W y n W � (4)

The relation of Eq. (4) shows that if K = MN, then only the sum of equa-
tion. z((n))k = s((n))N + y((n))M is possible and relevant, and that LCM of M 
and N is MN, where M ≠ N.

b.	 Now, we are required to determine the relationship between Z((L))K, 
S((L))K, and Y((L))K, where K = MN.

		
−

=

=∑
1

0

(( )) (( ))
K

nL
K K

n

Z L z n W �

			 
− −

= =

= +∑ ∑
1 1

0 0

(( )) (( ))
MN MN

nL nL
MN MN

n n

s n W y n W �

or		  = +2 2(( )) (( )) (( ))K K KZ L S L Y L � (5)

Now, S2((L))K can be expressed in terms of S((L))N.

Where,	 	
−

=

= ∑
1

0

(( )) (( ))
N

nL
N

n

S L s n W � (6)
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Since s((n)) is also periodic with period MN

	 = + = + = = + −2 ...  1(( )) (( )) (( )) (( ( ) ))s n s n N s n N s n M N � (7)

Double brackets are used to show the periodicity of a particular sequence. 
From the above two equations (6) and (7), we can expand S((L)) as

	
− − −

+ +

= = =

+ + +∑ ∑ ∑
1 1 1

( ) ( 2 )

0 0 0

(( )) (( )) (( )) ....
N N N

nL n N L n N L
NM NM NM

n n n

s n W s n W s n W �

	
−

+ −

=

+∑
1

[ ( 1) ]

0

(( ))
N

n M N L
NM

n

s n W � (8)

Rewriting Eqn. (8) in a convenient form, we get
1 1 1

/ / / /( 1) /

0 0 0

(( )) (( )) ... (( ))
N N N

NL M NL M NL M NL M NL M
N N N N N

n n n

s n W W s n W W s n W
− − −

−

= = =

+ + +∑ ∑ ∑
Now, we can write an expression for S2((L)) as

			 

1
/ ( 1)/ ( 1) / /

2
0

(( )) 1 ...
N

NL M N L M N M L M NL M
N N N N

n

S L W W W W
−

+ +

=

= + + + + ∑ �

where			   	
  =     

.
L

F S
M

� (9)

				 
/ ( 1)/ ( 2) / ( 1) /1 ...NL M N L M N M L M N M L M

N N N NF W W W W+ − −= + + + + + �

					  
− −

= =

= = =∑ ∑
1 1

0 0

1
M M

PN
N

P P

W M � (10)

where P is any integer

		
p− = = 

2 / . 1j N PNPN
NW e �

			   =F M � (11)

Substituting F = M in Eq. (1), we get

			 
      = =            

2 (( ))
L L

S L FS MS
M M

� (12)

Let			 
−

=

= ∑
1

0

(( )) (( ))
M

nL
M

n

Y L y n W �
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Since y((n)) is also periodic in NM

			   (( )) (( )) ( 2 ... 1) [ ( ) ]y n y n M y n m y n N M= + = + + + + − � (13)

		
− − −

+ + +

= = =

= + +∑ ∑ ∑
1 1 1

( ) ( 1)
2

0 0 0

(( )) (( )) (( )) (( ))
M M M

nL n M L n M L
NM NM NM

n n n

Y L y n W y n W y n W �

	
1

( ( 1) )

0

... (( ))
M

n N M L
NM

n

y n W
−

+ −

=

+ +∑ �

				  
− −

= =

= + +∑ ∑
1 1

0 0

(( )) (( )) ...
M M

nL nL nL
NM NM NM

n n

y n W W y n W �

	
−

−

=

+ ∑
1

( 1)

0

(( ))
M

N L nL
NM NM

n

W y n W �

				 
−

+ −

=

 = + + + + ∑
1

( 1) ( 1)

0

1 ... (( ))
M

ML M L N ML nL
NM NM NM NM

n

W W W y n W �

� ( )= =/ /Putting  and NL ML N nL n N
NM M NM MW W W W

				 
−

+ −

=

 = + + + + ∑
1

/ ( 1/ ) ( 1/ ) /

0

1 ... (( ))
M

ML N M N L N N L nL N
M M M M

n

W W W y n W �

				 
−

=

 = =  
 

∑
1

/

0

(( ))
M

nL N
M

n

L
N y n W NY

N
� (14)

where + − + + + + = 
/ ( 1/ ) ( 1/ )1 ...ML N M N L N N ML

M M MW W W N  already determined.

	 = +2 2(( )) (( )) (( ))K K KV L S L Y L � (15)

2 2(( ))  and (( ))
L L

S L MS Y L NY
F M

      = =            

Substituting the value of S2((L)) and Y2((L)) in Eq. (15), we get

	
      = + = +            

2 2(( )) (( )) (( ))K K K

L L
V L S L Y L MS NY

F M �

Hence proved.
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EXERCISES

1.	 Differentiate between discrete-time Fourier transform (DTFT) and dis-
crete Fourier transform (DFT) of a sequence.

2.	 How DTF can be used as a liner transformation tool in signal analysis and 
digital signal processing?

3.	 Discuss various properties of the DFT in brief.

4.	 Differentiate between circular convolution and linear convolution of two 
discrete-time sequences.

5.	 Discuss circular convolution of two discrete-time sequences in detail.

6.	 What is Parseval’s theorem for discrete-time sequences.

7.	 What is the relationship between DFT and z-transform?

8.	 How lines convolution can be performed using the DFT?

9.	 In what case resultant of linear convolution and circular convolution will 
be the same? Discuss.

10.	 Discuss various problems of pitfalls in using DFT.

11.	 Write short notes on the following:
(i)	 Truncation error.	 (ii)	 Aliasing error.
(iii)	 Spectral leakage.	 (iv)	 Improper use of DFT.
(v)	 Picket-fence effect.

12.	 Discuss remedies of various problems of pitfalls in using DFT.

NUMERICAL EXERCISES

1.	 Evaluate the N-point DFT of the sequences given as follows:

(i) 
 ≤= 


1
, 0 2

( ) 2
0, elsewhere 

s n 	 (ii)  s(n) = (A)nu(n)
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2.	 Determine the DFT of the following sequences:

(i)	
≤ ≤

=  =

2, 2 6
( )

0, for 0,1,7,8,9
n

s n
n

	 Given N = 10

(ii)	
=

=  =

1, 3 3,7
( )

0, for 1,2,4,5,6,8,9
s n

n
	 Given N = 10

(iii)	
≤ ≤

=  ≤ ≤

1, 0 5
( )

2, 6 9
n

s n
n

		  Given N = 10

3.	 Determine the circular convolution of the following sequences using the 
time-domain formula.
(i)	 s1(n) = {1, 2, 3, 1} and s2(n) = {4, 3, 2, 2}
(ii)	 s1(n) = {1, 1, 1, 1} and s2(n) = {2, 2, 2, 2}
(iii)	 s1(n) = {1, 2, 3, 1} and s2(n) = {1, 1, 1, 1}

4.	 Determine linear convolution using DFT method

=
 =



1

1, 0
1

( ) , 1
2
0, otherwise

n

s n n  and 

 =
= =




2

1
, 0

2
( ) 1, 1

0, otherwise

n

s n n

5.	 Find the circular convolution of two sequences given as follows:

=
 =



1

1, 0
1

( ) , 1
2
0, otherwise

n

s n n  and 

 =
= =




2

1
, 0

2
( ) 1, 1

0, otherwise

n

s n n

6.	 Given the two 5-point sequences as

			 
1( ) {0,1,2,3,4}s n =

↑

			 
1( ) {0,1,0,0,0}s n =

↑
Determine s(n) = S1(n) 



N  s2(n) by DFT method.
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C H A P T E R  6
Fast Fourier Transform (FFT) 
Algorithms

6.1	 INTRODUCTION

The FFT does not represent a transform different from the discrete Fourier 
transform (DFT) but they are special algorithms for speedier implementation 
of DFT. FFT requires a comparatively smaller number of arithmetic opera-
tions such as multiplications and additions than DFT. FFT also requires lesser 
computational time than DFT. The fundamental principle on which all these 
algorithms are based is that of decomposing the computation of the DFT of a 
sequence of length N into successively smaller DFTs. The way in which this 
principle is implemented leads to a variety of different algorithms, all with 
comparable improvements in computational speed. Thus, we can say that 
DFT plays an important role in several applications of digital signal process-
ing such as linear filtering, correlation, analysis and spectrum analysis.

Direct Computation of the DFT. DFT for a complex-valued sequence, 
s(n) may be expressed as

	
1

2 /

0

( ) ( )
N

j nK N

n

S K s n e p
−

−

=

= ∑ � (6.1)

Here both S(K) and s(n) are complex-valued discrete-frequency and 
discrete-time sequences of N-points, respectively.
	 ( ) ( ) ( )R IS K S K jS K= +
	 ( ) ( ) ( )R Is n s n js n= +  
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	 2 / 2 2
cos sin

2
j K N nK nK

e j
N

p p p− = =

Substituting the value of S(K), s(n), and e− j2pnK/N in Eq. (6.1), we get

	
1

2 /

0

( ) ( ) , 0,1,..., 1
N

j nK N

n

S K s n e K Np
−

−

=
= = −∑ � (6.2)

	
1

0

2 2
( ) ( ) ( ) ( ) cos sin

2

N

R I R I
n

nK nK
S K jS K s n js n j

N
p p−

=

 + = + −    ∑

	
1

0

2 2
( )cos ( )sin

2

N

R I
n

nK nK
s n s n

N
p p−

=

 = +  ∑

	
1

0

2 2
( )cos ( )cos

2

N

R I
n

nK nK
j s n s n

N
p p−

=

 − −  ∑ � (6.3)

Separating real and imaginary parts of above Eq. (6.3), we get

	
1

0

2 2
( ) ( )cos ( )sin

N

R R I
n

nK nK
S K s n s n

N N
p p−

=

 = +  ∑ � (6.4)

	 and	
1

0

2 2
( ) ( )sin ( )cos

N

I R I
n

nK nK
s K s n s n

N N
p p−

=

 = − −  ∑ � (6.5)

where sR(n) and sI(n) are the real and imaginary parts of a discrete-time 
sequence s(n), respectively.

SR(K) and SI(K) are the real and imaginary parts of the DFT of s(n), 
respectively.

From Eqs. (6.4) and (6.5), it is clear that for each value of K, the direct 
computation of DFT of S(n), that is, S(K) requires 4N real multiplications and 
4(N − 1) real additions. Since S(K) is computed for N different values of K, the 
direct computation of the DFT of a sequence s(n) requires 4N × N = 4N2 real 
multiplications and 4(N − 1) × N = 4N(N − 1) real additions. In other words, 
we can say that direct DFT computation requires N2 complex multiplications 
and N(N − 1) complex additions.

The direct computation of Eqs. (6.4) and (6.5) requires:

i.	 N2 Complex multiplications or 4N2 Real multiplications.

ii.	 N(N − 1) Complex additions or 4N(N − 1) Real additions

iii.	 2N2 Evaluations to trigonometric functions such as

2
sin

nK
N

p
 and 

2
cos

nK
N

p
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6.2	 GOERTZEL ALGORITHM

In Goertzel algorithm, the periodicity of the phase factors K
NW  is exploited. 

This algorithm allows us to express the computation of the DFT as linear 
filtering.

DFT of sequence s(n) is given by

	
1

0

( ) ( )
N

Km
N

m

S K s m W
−

=

= ∑ � (6.6)

where WN = e− j2p/N is called phase factor.

	 Since	 ( )(2 / ) 2 1, 0,1,2,...
KNj N j KKN

NW e e Kp p−−− = = = =

Now multiplying above Eq. (6.6) by KN
NW − , we get

	
1 1

( )

0 0

( ) ( ) ( )
N N

KN Km K m N
N N N

m m

S K W s n W s m W
− −

− −

= =

= =∑ ∑

	 or	
1

( )

0

( ) ( )
N

K N m
N

m

S K s m W
−

− −

=

= ∑ � (6.7)

From the inspection of Eq. (6.7), we note that it is in the form of convo-
lution. Now, if we define the discrete-time sequence yK(n) as

	
1

( )

0

( ) ( )
N

K N m
K N

m

y n s m W
−

− −

=

= ∑ � (6.8)

Then, yK(n) is the convolution of a sequence s(n) of length N with a filter 
that has a unit-simple response
	 ( ) . ( )KN

K NH n W u n−= � (6.9)

Comparing Eqs. (6.7) and (6.8), we get
	 ( ) ( ) |n NS K yk n == � (6.10)

System function H(z) of a filter whose unit-sample response, hK(n) = 
. ( )KN

NW u n− .

Taking the z-transform of Eq. (6. 9), we get
	 ( ) [ ( )] KN

K K NH z Z h n Z W − = =  

	 1

1
1 zK K

N N

z
W z W− − −= =

− −
� (6.11)

	
or

	

( )
( )

( )K K
N

z N z
H z

W D z−= =
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where N(z) and D(z) are numerator and denominator polynomial of rational 
z-transform.

The zeros of a z-transform HK(z) are the values of z for which HK(z) = 0 
and poles of a z-transform HK(z) are the values of z for which HK(z) = ∞.

In other words, the roots of numerator polynomial N(z) are called 
zeros, and roots of denominator polynomial D(z) are called poles of rational 
z-transform.

In the above z-transform, there is one zero at z = 0 and one pole at K
Nz W −=

These poles and zeros are illustrated graphically by a pole-zero plot as 
shown in Figure 6.1.

This filter has a pole at K
Nz W −=

	
2 /j K j K Ne ew p=

 

	
or

	 2
K

K
N
pw =

It means it has a pole on the unit 

circle at the frequency 
2

K

K
N
pw = .

Thus, the entire DFT can be com-
puted by passing the block of input data 
into a parallel bank of N single-pole 
filters.

	 1

1
( )

1K K
N

H z
W z− −=

−

	 or	 1

( ) 1
( ) 1

K
K

K N

Y z
S z W z− −=

−

	 or	 1( ) 1 ( )K
K N KY z W z S z− − − = 

	 or	 1( ) ( ) S ( )K
K N K KY z W z Y z z− −− =

	 or	 1( ) ( ) ( )K
K N K KY z W z Y z S z− −= + � (6.12)

Taking the inverse z-transform of above Eq. (6.12), we get
	 ( ) ( 1) S ( )K

K N K Ky n W y n n−= − + � (6.13)

When initial conditions are zero, y(−1) = 0
The desired output is ( ) ( ) | ( )K n N KS K y n y N== = � (6.14)
for K = 0, 1, ... , N − 1.

FIGURE 6.1  Pole-zero plot for above 
z-transform Hg(z).
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Since both the input s(n) and K
NW −  are complex, the computation of each 

new value of yK(n) requires four real multiplications and four real additions.
System function of first-order 

filter* is

	
1

1
( )

1K K
N

H z
W z− −=

−

and its difference equation is

	 ( ) ( 1) s ( )K
K N K Ky n W y n n−= − +

The complex multiplications and 
additions in Eq. (6.13) can be avoided 
by combining the pairs of single-pole filters as they possess complex-conjugate 
poles. Complex-conjugate poles are those poles whose imaginary parts have 
opposite signs. For example, one pole is given by p1 = a + jb then its complex- 
conjugate pole will be given by p2 − p∗

1 = a − jb.
We can get a second-order filter from a first-order filter by multiplying 

both the numerator and denominator of a system function of the first-order 
filter by a factor ( )11 K

NW z−− .

	 ( )( )
1

1 1

1
( )

1 1

K
N

K K K
N N

W z
H z

W z W z

− −

− −

−=
− − �

	

1

1 2

1
2

1 2cos

K
NW z
K

z z
N
p

−

− −

−=
 − +  

�

(6.15)

This is the system function of a second-order filter. The above system 
function can be written as follows:

	

1

1 2

( ) 1
( )

2( ) 1 2cos

K
K N

K

Y z W z
H z

KS z z z
N
p

−

− −

−= =
 − +  

�
(6.16)

Eq. (6.16) can also be written as

	 1 2

( ) 1
2( ) 1 2cos

KY z
KS z z z

N
p − −

=
 − +  

�

or

	 1 2

( ) ( ) 1
2( ) ( ) 1 2cos

K KY z V z
KS z S z z z

N
p − −

⋅ =
 − +  

�

FIGURE 6.2  Flow graph of first-order complex 
recursive computation of S(K).
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The above equation can be separated into two parts as

	
1( )

1
( )

KK
N

K

Y z
W z

V z
−= − � (6.17)

	

and

	 1 2

( ) 1
2( ) 1 2cos

kV z
Ks z z z

N
p − −

=
 − +  

� (6.18)

Taking the inverse z-transform of Eqs. (6.17) and (6.18), we get

	 ( ) ( ) ( 1)K
K K N Ky n n W nu u= − − � (6.19)

where all initial conditions are zero.

	

2
( ) 2cos ( 1} ( 2) s( )K K K

K
n n n n

N
pu u u= − − − + � (6.20)

where initial conditions are zero.
The Direct Form-II Realization of the system function given by Eq. (6.20) 

is shown in Figure 6.3.
Only two multiplica-

tions are required to imple-
ment the poles of the sys-
tem given in Eq. (6.20). 
Since the coefficients are 
real and (−1) is not counted 
as a multiplication. Four 
additions are required for 
implementing the poles. 
Complex multiplication 
( )K

NW−  is required to 
implement zero. This oper-
ation is not performed at every iteration of the difference equation.

Goertzel algorithm is especially attractive for DFT computation of a 
smaller number of points. Number of complex multiplications required for 
N-point DFT computation using Goertzel algorithm is N2 and number of 
additions required is 2N2.

From Eq. (6.16), we get

	

1 2 12
1 2cos ( ) 1 ( )K

K N

K
z z Y z W z S z

N
p − − −    − + = −      

� (6.21)

Taking inverse z-transform of above Eq. (6.21), we get

	
( ) 2cos ( 1) ( 2) s( ) ( 1)K

K K k N

K
y n y n y n n W s n

N
p2 − − + − = − −  

� (6.22)

FIGURE 6.3  Flow graph of second-order recursive computa-
tion of S(K). This is an illustration of Goertzel algorithm.
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with initial conditions are zero.

	
( ) 2cos ( 1) ( 2) s( ) ( 1)K

K K k N

K
y n y n y n n W s n

N
p2 = − − − + − −  

� (6.23)

The signal flow graph of second-order filter is illustrated in Figure 6.3.

6.3	 FAST FOURIER TRANSFORM ALGORITHMS

Direct computation of the DFT is less efficient because it does not exploit the 
properties of symmetry and periodicity of the phase factor WN = e−2p/N.

These properties are:
Symmetry property: /2K N K

N NW W+ = −
Periodicity property: K N K

N NW W+ = −
As we already know that all computationally efficient algorithms for DFT 

are collectively known as FFT algorithms and these algorithms exploit the 
above two properties of phase factor, WN.

6.3.1 Classification of FFT Algorithms

According to the storage of the components of the intermediate vector, FFT 
algorithms are classified into two groups:

1.	 In-Place FFT algorithms.

2.	 Natural Input–Output FFT algorithms.

In-Place FFT Algorithms: In this FFT algorithm, component of an 
intermediate vector can be stored at the same place as the corresponding 
component of the previous vector.

In-place FFT algorithms reduce the memory space requirement.
Natural Input–Output FFT Algorithms. In this FFT algorithm, 

both input and output are in natural order. It means both discrete-time 
sequence s(n) and is DFT S(K) are in natural order. This type of algorithm 
consumes more memory space for the preservation of natural order of s(n) 
and S(K).

The disadvantage of an In-place FFT algorithm is that the output appears 
in an unnatural order necessitating proper shuffling of s(n) or S(K).

In-place FFT algorithms are superior to the natural input–output FFT 
algorithms although it needs shuffling of s(n) or S(K). This shuffling operation 
is known as Scrambling.
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The scrambled value of an integer I is defined as a new number gener-
ated by reversing the order of all bits in the equivalent binary number for that 
integer.

Another classification of FFT algorithms is based on decimation of s(n) or 
S(K). Decimation means decomposition into decimal parts.

On the basis of decimation process, FFT algorithms are of two types:

1.	 Decimation-in-Time FFT algorithms.

2.	 Decimation-in-Frequency FFT algorithms.

Decimation-in-Time (DIT) FFT Algorithms. In DIT FFT algorithms, 
the sequence s(n) will be broken up into odd-numbered and even-numbered 
subsequences.

This algorithm was first proposed by Cooley and Tukey in 1965.
Decimation-in-Frequency (DIP) FFT Algorithms. In DIF FFT algo-

rithms, the sequence s(n) will be broken up into two equal halves. This algo-
rithm was first proposed by Gentlemen and Sande in 1966.

Computation reduction factor of FFT algorithms

		

Number of computations required for direct DFT
Number of computation required for FFT algorithm

=

		

2

2

.
log ( )

2

N
N

N
=

 

6.3.2 Number of Stages in DFT Computation using FFT Algorithms

Number of stages in DFT computation using FFT algorithms depends upon 
the total number of points (N) in a given sequence.

For these algorithms, number of points in a discrete-time sequence,

	 2 where 0,rN r= >
r is the number of stages required for DFT computation via FFT 

algorithms.
Let us have a 8-point discrete-time sequence, N = 8 = 23. It requries three 

stages for DFT computations.
In DIT FFT algorithm, input discrete-time sequence s(n) is in Bit- 

reversed order but output, S(K) is in netural order for in-place computa-
tion. In Decimation-in-frequency (DIF) FFT algorithm, input discrete-time 
sequence s(n) is in natural order but its DFT is in Bit-reversed order for 
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in-place computation. For in-place computation, smaller memory space is 
required.

Generally, we use Radix-2 FFT algorithms. In Radix-2 FFT algorithms, 
the original discrete-time sequence, s(n) is divided into two parts and DFT 
computation is done on each part separately and the resultant of each part 
added to get the overall discrete-frequency sequence.

In the DIT FFT algorithm, original sequence s(n) is divided into 
even-numbered points and odd-numbered points. But in the DIF FFT 
algorithm, original discrete-time sequence s(n) is divided into two parts as 
first half and second half. Figure 6.4 illustrates the number of stages required 
in N-point DFT computation via. DIT FFT algorithm (here N = 8).

6.3.3 DIT FFT Algorithm

This FFT algorithm was first proposed by Cooley and Tukey in 1965. 
Algorithms in which the decomposition is based on breaking the original 
sequence s(n) into successively smaller subsequences are called DIT FFT 
algorithms.

The principle of DIT is conveniently explained by considering N = 2r, 
where r > 0. In this algorithm, DFT can be computed by separating original 
sequence s(n) into two N/2-point sequences. These two N/2-point sequences 
consist of Even-numbered and Odd-numbered points in s(n).

DFT of sequence s(n) is given by

	

1

0

( ) ( ) , 0,1,..., 1
N

nK
N

n

S K s n W K N
−

=

= = −∑
�

(6.24)

FIGURE 6.4  Three stages in N-point DFT computation via 
decimation-in-time FFT algorithm (N = 8).
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where WN = e− j2p/N is called the phase factor.
Now separating s(n) into even- and odd-numbered points, we get

	

1

0  Even  Odd

( ) ( ) ( ) ( )
N

nK nK nK
N N N

m n n

S K s n W s n W s n W
−

=

= = +∑ ∑ ∑
�

(6.25)

Substituting n = 2m for even and n = 2m + 1 for n odd in Eq. (6.25), 
we get

	

1 1
2 2

2 (2 1)

0 0

( ) (2 ) (2 1)

N N

mK m K
N N

m m

S K s m W s m W
− −

+

= =

= + +∑ ∑

		

1 1
2 2

2 2

0 0

(2 ) (2 1)

N N

mK mK K
N N N

m m

s m W s m W W
− −

= =

= + +∑ ∑

		

1 1
2 2

2 2

0 0

(2 ) (2 1)

N N

mK K mK
N N N

m m

s m W W s m W
− −

= =

= + +∑ ∑

	 Since	 ( ) ( )( )2 2 /22 /2
/2

j Nj N
N NW e e Wpp −−= = =

Putting the value of 2
NW  in above equation, we get

or	
1 1

2 2

/2 /2
0 0

( ) (2 ) (2 1)

N N

mK K mK
N N N

m m

S K s m W W s m W
− −

= =

= + +∑ ∑

		  ( ) ( )K
NG K W H K= +

or	 ( ) ( ) ( )K
NS K G K W H K= + � (6.26)

where 
1

2

/2
0

( ) (2 )

N

mK
N

m

G K s m W
−

=

= ∑  DFT of even-numbered points of sequence 
s(n).

1
2

/2
0

( ) (2 1)

N

mK
N

m

H K s m W
−

=

= +∑  DFT of odd-numbered points of sequence s(n).

Both s(n) and S(K) are periodic with period N, consequently, G(K) and 
H(K) will be also periodic with period N/2.

After computing N/2-point DFTs, that is, G(K) and H(K), they are then 
combined to produce the N-point DFT, S(K). To illustrate the procedure let 
us consider Eq. (6.26) again

( ) ( ) ( ), 0,1,..., 1K
NS K G K W H K K N= + = −

Now we are considering a case where sequence has 8 points or samples.
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K = 0,	 S(0) = G(0) + 0
NW  H(0)

K = 1,	 S(1) = G(1) + 1
NW  H(1)

K = 2,	 S(2) = G(2) + 2
NW  H(2)

K = 3,	 S(3) = G(3) + 3
NW  H(3)

K = 4,	 S(4) = G(4) + 4
NW  H(4) = G(0) + 4

NW  H(0)

Since	 G(4) = G(0 + 4) = G(0); H(4) = (0 + 4) = H(0)

K = 5,	 S(5) = G(5) + 5
NW  H(5) = G(1) + 5

NW  H(1)

Since	 G(5) = G(l + 4) = G(1); H(5) = (1 + 4) = H(1)

K = 6,	 S(6) = G(6) + 6
NW  H(6) = G(2) + 6

NW  H(2)

Since	 G(6) = G(2 + 4) = G(2); H(6) = (2 + 4) = H(2)

K = 7,	 S(7) = G(7) + 7
NW  H(7) = G(3) + 7

NW  H(3)

Since	 G(7) = G(3 + 4) = G(3); H(7) = (3 + 4) = H(3)

Note. G(K) and H(K) are periodic with period N/2. Above sequence has 
8 points then its DFT also has 8 points. Therefore G(K) and H(K) are also 
periodic with period N/2, that is, 8/2 = 4.

FIGURE 6.5  Flow graph of the DIT decomposition of an N-point DFT 
computation into two N/2-point DFT computation (N = 8).
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or	 ( ), ( )
2 2
N N

G K G K H K H K   + = + =      
 

Figure 6.6 illustrates the flow graph of DIT decomposition of N-point 
DFT computation into two N/2-point DFT computation (For N = 8)

G(K) and H(K) in Eq. (6.26) can be computed as follows:

	
/2 1

/2 /2 /2
0  Even  Odd

( ) ( ) ( ) ( )
N

mK mK mK
N N N

m m m

G K g m W g m W g m W
−

=

= + +∑ ∑ ∑

FIGURE 6.6  Flow graph of the decimation-in-time decomposition of an N/2-point 
DFT computation into two N/4 point DFT computations (where N = 8).

FIGURE 6.7  Result of substituting Figure 6.6 into Figure 6.5.
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Substituting m = 2l for m even and m = 2l + 1 for m odd in above equation, 
we get

	
/ 4 1 /4 1

2 (2 1)
/2 /2

0 0

( ) (2 ) (2 1)
N N

lK l K
N N

l l

G K g l W g l W
− −

+

= =

= + +∑ ∑

	
/4 1 /4 1

/4 /2 /4
0 0

(2 ) (2 1)
N N

lK K lK
N N N

l l

g l W W g l W
− −

= =

= + +∑ ∑ � (6.27)

Similarly,

	
/4 1 /4 1

/4 /2 /4
0 0

( ) (2 ) (2 1)
N N

lK K lK
N N N

l l

H K g l W W h l W
− −

= =

= + +∑ ∑ � (6.28)

4-point DFT is computed accord-
ing to Eqs. (6.27) and (6.28). This 
computation is shown in Figure 6.6.

After inserting Figure 6.6 into 
Figure 6.5, we get Figure 6.7.

Two-point DFT is computed 
s(0) as given in Figure 6.8. It is also 
known as butterfly computation 
because of its appearance. FIGURE 6.8  Flow graph of 2-point DFT.

FIGURE 6.9  Flow graph of complete decimation-in-time of 
an 8-point DFT computation.
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Substituting Figure 6.8 into Figure 6.7, we get Figure 6.9 which is a com-
plete DIT decomposition of 8-point DFT computation.

6.3.4 Steps for Computation of DIT FFT Algorithm

Followings are the important steps involved in the computation of DIT FFT 
algorithms:

1.	 Data shuffling must be done first. It is performed by Bit Reversal.

2.	 Number of stages in the calculation is r = log2 N, where N = number 
points in DFT.

3.	 2-point DFT is to be performed at the first stage which involves no multi-
plication, but it requires some addition and subtraction.

4.	 General formulation for DIT FFT algorithm provides us a readymade 
formula for calculation of phase rotation factors required for each 
butterfly.

EXAMPLE 6.1
Find the DFT of the following discrete-time sequence
	 { }1, 1, 1, 1,1( ) ,1,1, 1s n = − − − −

using Radix-2 DIT FFT algorithm.

Solution:
The twiddle factor or phase rotation factor 2 /j N

NW e p−=  involved in the FFT 
calculation are found out as follows for N = 8.

	 2 /Phase rotation factor j N
NW e p−= =

	 (2 /8)0 0
8 1j NW e ep−= = =

	
(2 /8).1 /41

8

1
cos sin

4 4 2
j j j

W e e jp p p p− − −
= = = − =

	 (2 /8).2 /22
8 cos sin

3 2
j jW e e j jp p p p− −= = = − = −

	
(2 /8).3 3 /43

8

1

2
j j j

W e ep p− − − −
= = =

In Radix-2 DIT FFT algorithm, original sequence s(n) is decomposed 
into two parts even-numbered point and odd-numbered point sequence. This 
is done very easily by bit reversal of original discrete-time sequence. Flow 
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graph of Radix-2 DIT FFT algorithm is given in Figure 6.10. Determination 
of DFT using Radix-2 DIF FFT algorithm requires three stages because the 
number of points in a given sequence is 8, that is, 23 = 2r = N = 8, where r is 
number of stages required = 3.

Stage I:

		  A0 = s(0) + s(4) 0
NW = 1 + 1 × 1 = 2

		  A1 = s(0) + s(4) 4
NW N = 1 + 1 × (−1) = 0

		  A2 = s(2) + s(6) 0
NW  = −1 + 1 × (1) = 0

		  A3 = s(2) + s(6) 4
NW  = −1 + 1 × (−1) = −2

		  A4 = s(1) + s(5) 0
NW  = −1 + 1 × (1) = 0

		  A5 = s(1) + s(5) 4
NW  = −1 + 1 × (−1) = −2

		  A6 = s(3) + s(7) 4
NW  = −1 + (−1) × 1 = −2

		  A7 = s(3) + s(7) 4
NW  = −1 + (−1) × (−1) = 0

FIGURE 6.10  Flow graph of Radix-2 decimation-in-time FFT algorithm for N = 8.
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Stage II:

		  B0 = A0 + A2
0

NW = 2 + 0 × 1 = 2

		  B1 = A1 + A3
2

NW = 0 + (−2) (−j) = 2j

		  B2 = A0 + A2
4

NW N = 2 + 0 × (−1) = −2

		  B3 = A1 + A3
6

NW = 0 + (−2) j = −2j

		  B4 = A4 + A6
0

NW = 0 + (−2) (1) = 2

		  B5 = A5 + A7
2

NW = −2 + 0 × (−j) = 2j

		  B6 = A4 + A6
4

NW = 0 + (−2) (−1) = 2

		  B7 = A5 + A7
6

NW = −2 + 0 × (j) = −2j

Stage III:

		  S(0) = B0 + B4
0

NW = 2 + (−2) (1) = 0

		  S(1) = B1 + B5
1
NW = 2j + (−2)

1

2

j− 
  

 = 2j − 2 + 2 j

		  = ( )2 2 2 j+ +  

		  S(2) = B2 + B6
2

NW = 2 + (2)(−j) = 2 − 2j

		  S(3) = B3 + B7
3

NW = 2j + (−2)
1

2

j− − 
  

		  = −2j + 2 + 2 j = ( )2 2 2 j+ − +

		  S(4) = B0 + B4
4

NW = 2 + (−2) (−1) = 4

		  S(5) = B1 + B5
5

NW = 2j + (−2) (1 )

2

j− − 
  

		  = −2j + 2 − 2 j = ( )2 2 2 j+ +

		  S(6) = B2 + B6
6

NW = 2 + 2(j) = 2 + 2j

		  S(7) = B0 + B7
5

NW = −2j + (−2)
(1 )

2

j−
 = −2j − 2 − 2 j

		  = ( )2 2 2 j− +

Resultant discrete-frequency sequency will be
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(0), (1), (2), (3), (4), (5),( ) { }(6), (7)K S S S S S S S S=

	 ( ) ( ){0, 2 2 2 ,2 2 , 2 2 2 ,4,j j j= − + + − + − +

	 ( ) ( ) }2 2 2 ,2 2 2 2 2j j j+ − + − − +

6.3.5 Decimation-in-Frequency FFT Algorithm

In DIF FFT algorithm, the output DFT sequence S(K) is broken into smaller 
and smaller subsequences. For the derivation of this algorithm, the number 
of points or samples in a given sequence should be N − 2r where r > 0. For 
this purpose, we can first divide the input sequence into the first-half and the 
second-half of the points.

DFT of sequence s(n) is given by

	
1

0

( ) ( ) , 0,1,... 1
N

nK
N

n

S K s n W K N
−

=

= = −∑ � (6.29)

where WN = e−j2p/N is called the phase factor.

	
Ist Half IInd Half

( ) ( )nK nK
N Ns n W s n W= +∑ ∑

TABLE 6.1  Phase Rotation Factors for Quick Computation

Number of 
points in DFT, N Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

4
No. of stages = 2

Twiddle factor 
not required

0 1
4 4,W W  

— — —

8
No. of stages = 3

Twiddle factor 
not required

0 2
8 8,W W  0 1

8 8,W W
2 3

8 8,W W
— —

16
No. of stages = 4

Twiddle factor 
not required

0 4
16 16,W W  

0 2
16 16,W W
4 6

16 16,W W

0 0
16 16,W W
2 3

16 16,W W
4 5

16 16,W W
6 7

16 16,W W

—

32
No. of stages = 4

Twiddle factor 
not required

0 8
32 32,W W  

0 4
32 32,W W
8 12

32 32,W W

0 2
32 32,W W
14
32W
4 5

16 16,W W
6 7

16 16,W W

0
32 ,W
1

32 ....W
15
32W
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/2 1 1

0 /2

( ) ( )
N N

nK nK
N N

m n N

s n W s n W
− −

= =

= +∑ ∑

Putting 
2
N

n n= +  in the second part of the above equation, we get

	
/2 1 /2 1

( /2)

0 0

( ) ( )
2

N N
nK n N K

N N
n n

N
S K s n W s n W

− −
+

= =

 = + +  ∑ ∑

	 or	
/2 1 /2 1

( /2)

0 0

( ) ( )
2

N N
nK N K nK

N N N
n n

N
S K s n W W s n W

− −

= =

 = + +  ∑ ∑

Since ( /2) (1)N K K
NW = . Substituting the value of /2NK

NW  in above equation, 
we get

	
/2 1 /2 1

0 0

( ) ( ) ( 1)
2

N N
nK nK

N N
n n

N
S K s n W s n W

− −

= =

 = + − +  ∑ ∑ � (6.30)

	 or	
/2 1

0

( ) ( )( 1)
2

N
K nK

N
n

N
S K s n s n W

−

=

  = − +    
∑ � (6.31)

Putting, S(2m) for K Even — It is for even-numbered points of DFT
S(2m + 1) for K Odd — It is for odd-numbered points of DFT in 

Eq. (6.31), we get

	
/2 1 /2 1

2
/2

0 0

(2 ) ( ) ( )
2

N N
mn mn

N N
n n

N
S m s n s n W g n W

− −

= =

  = + + =    
∑ ∑ � (6.32)

	
/2 1

(2 1)

0

(2 1) ( ) s
2

N
m n

N
n

N
S m s n n W

−
+

=

  + = − +    
∑

	
/2 1

2
/2

0

( ) s
2

N
mn n

N N
n

N
s n n W W

−

=

  = − + =    
∑

	 or	 [ ]
/2 1

/2
0

(2 1) ( )
N

n mn
N N

n

S m h n W W
−

=

+ = ∑ � (6.33)

	 where	 ( ) ( )
2
N

g n s n s n = + +  

	 ( ) ( )
2
N

h n s n s n = − +  
	 2

/2N NW W=
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			   0,1,..., 1
2
N

m  = −  
 

Eqs. (6.32) and (6.33) can be recognized as N/2-point DFTs. The DFT can 
be computed by first forming the sequences g(n) and h(n), then computing 
the N/2-point DFTs of these two sequences that are called the even- 
numbered output points and odd-numbered points, respectively.

Eqs. (6.32) and (6.33) are illustrated in Figure 6.11 for 8-point DFT. 
8-point DFT is broken into two 4-point DFTs. The first 4-point DFT is for 
even-numbered points and the second 4-point DFTs are for odd-numbered 
points of S(K). Now, 4-point DFTs is further broken into two 2-point DFTs in 
the same manner as given above. It is illustrated in Figure 6.12.

After inserting Figure 6.12 into Figure 6.11, we get Figure 6.13 and this is 
illustrated as follows. Now 2-point DFT is computed as follows in Figure 6.14.

After inserting Figure 6.14 into Figure 6.13, we get a flow graph of com-
plete DIF decomposition of an N-point DFT computation (N = 8) and illus-
trated in Figure 6.15.

Note. In DIF decomposition, input discrete-time sequence s(n) is in 
natural order and output DFT sequence S(K) is in Bit-reversed order for 
an in-place computation. But in DIT decomposition, input discrete-time 

FIGURE 6.11  Flow graph of the decimation-in-frequency decomposition of an N-point 
DFT compilation into two N/2-point. DFT computation. Here N = 8.
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FIGURE 6.12  Flow graph of the decimation-in-frequency decomposition N/2-point 
DFT computation into two N/4 point DFT computation Here, N = 8.

FIGURE 6.13  Flow graph after inserting Figure 6.12 into Figure 6.11.
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sequence, s(n) is in 
Bit-reversed order 
and output DFT 
sequence, S(K) is in 
natural order for an 
in-place computa-
tion.

6.3.6 Steps for Computation of DIF FFT Algorithm

Given below are the important steps for the computation of DIF FFT 
algorithms.

1.	 Data shuffling is not required but whole sequence is divided into two 
parts: first half and second half. From these we calculate g(n) and h(n) as 
follows:

	 ( ) ( )
2
N

g n s n s n = + +  

FIGURE 6.14  Flow graph of a 2-point DFT which is required in 
the last stage of decimation-in-frequency decomposition.

FIGURE 6.15  Flow graph of complete DIF decomposition of 
an N-point DFT computation (N = 8).
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	 and	 ( ) ( )
2
N

h n s n s n = − +  

	 where	 0,1,..., 1.
2
N

n = −  

2.	 From these two sequences, we compute N/2-point DFTs. Before compu-
tation of N/2-point DFT for h(n), it is multiplied by n

NW .

3.	 Number of stages required in the calculation of N-point DFT is r = log2 N, 
where N is the number of points in DFT.

4.	 N/2-point DFT is to be performed at the first stage which involves N/2 
multiplication.

5.	 In the DIF algorithm, twiddle factors can be found from the previous 
Table (6.1) in the reverse order.

6.	 Finally data shuffling is performed. It is also performed by Bit reversal.

Bit Reversal. In bit reversal, MSB (most significant bit) and LSB (least 
significant bit) of data are exchanged. Bit reversal is helpful in shuffling the 
data in DIT and DIF FFT algorithms.

If the number of bits required to convert decimal numbers into binary = 3.
Total number of samples = 23 = 8.
We can understand bit reversal very easily with the help following 

example for an 8 point discrete-time sequence.

Original sequence Bit-reversed sequence

Decimal
Original 
Binary

Bit-reversed 
Binary Decimal

( )0s
�����

⇒ ( )000s
����

→ ( )000s
����

⇒ ( )0s
�����

s(1) ⇒ s(001) → s(100) ⇒ s(4)

s(2) ⇒ s(010) → s(010) ⇒ s(2)

s(3) ⇒ s(011) → s(110) ⇒ s(6)

s(4) ⇒ s(100) → s(001) ⇒ s(1)

s(5) ⇒ s(101) → s(101) ⇒ s(5)

s(6) ⇒ s(110) → s(011) ⇒ s(3)

s(7) ⇒ s(111) → s(111) ⇒ s(7)
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EXAMPLE 6.2
Find the DFT of the following discrete-time sequence

	 { }1, 1, 1, 1,1( ) ,1,1, 1s n = − − − −

using Radix-2 DIF FFT algorithm.

Solution.
The twiddle factor or phase rotation factor 

2 /j N

NW e
p−

=  involved in the FFT 
calculation are found out as follows for N = 8.
	 2 /Phase rotation factor .j N

NW e p−=  

	 (2 /8)00 0
8 1jW e ep−= = =

	
(2 /8)1 /41

8

1

2
j j j

W e ep p− − −
= = =  

	 (2 /8)2 /22
8

j jW e e jp p− −= = = −  

	
(2 /8)3 3 /43

8

(1 )

2
j j j

W e ep p− − − +
= = =  

In Radix-2 DIF FFT algorithm, original sequence s(n) is decomposed into 
two subsequences as first half and second half of a sequence. There is no need to 
reordering (shuffling) the original sequence as in Radix-2 DIT FFT algorithm. But 
resultant discrete-frequency sequence is shuffled (reordered) into natural order 
because these are obtained in unnatural order. Flow graph of Radix-2 DIF FFT 

FIGURE 6.16  Flow graph of Radix-2 DIF FFT algorithm N = 8.
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algorithm for N = 8 is shown in Figure 6.11. Determination of DFT using Radix-2 
DIF FFT algorithm requires three stages because the number of points in a given 
sequence is 8, that is, 23 = 2r = N = 8, where r is number of stages required = 3.

Stage I:
		  A0 = s(0) + s(4) = 1 + 1 = 2
		  A1 = s(1) + s(5) = −1 + 1 = 0
		  A2 = s(2) + s(6) = −1 + 1 = 0
		  A3 = s(3) + s(7) = −1 − 1 = −2

		  A4 = [s(0) + (−1) s(4)] 0
8W  = [−1 + (−1) (1)] × 1 = 0

		  A5 = [s(1) + (−1) s(5)] 1
8W  = [−1 + (−1) (1)] 

(1 )
2(1 )

2

j
j

−
= − −

		  A6 = [s(2) + (−1) s(6)] 
2

8W  = [−1 + (−1) × 1](−j) = 2j

		  A7 = [s(3) + (−1) s(7)] 
3

8W  = [−1 + (−1)(−1)] 
(1 )

2

j− − 
 
 

 = 0
Stage II:
		  B0 = A0 + A2 = 2 + 0 = 2
		  B1 = A1 + A3 = 0 + (−2) = −2

		  B2 = [A0 + (−1)A2] 
0

8W  = [2 − 0] × 1 = 2

		  B3 = [A1 + (−1)A3] 
2

8W  = [0 + (−1) (−2)] × (−1) = −2j
		  B4 = A4 + A6 = 0 + 2j = 2j

		  B5 = A5 + A7 = [− 2 (1 − j)] +0 =− 2 (1 − j)

		  B6 = [A4 + (−1) A6] 
0

8W  = [0 + (−1) 2j] × 1 = −2j

		  B7 = [A5 + (−1) A7] 
2

8W  = [− 2 (1 − j)

	 + (−1) × 0] × (−j) = − 2 (1 + j)
Stage III:
	 S(0) = B0 + B1 = 2 + (−2) = 0
	 S(4) = B0(−1) B1 = 2 + (−1) (−2) = 4S
	 (2) = B2 + B3 = 2 + (−2j) = 2 − 2j
	 S(6) = B2 + (−1)B3 = 2 + (−1) (−2j) = 2 + 2j

S(1) = B4 + B5 = 2j + [− 2(l − j)] = 2j − 2 + 2 j = 2 + (2 + 2)j

S(5) = B4 + (−1)B5 = 2j + (−1) [− 2(l − j)] = 2j − 2 + 2 j

	 = 2 + (2 + 2 )j

S(3) = B6 + B7 = −2j + 2(l + j) = −2j + 2 + 2 j = 2 + (−2 + 2)j

S(7) = B6 + (−1)B7 = −2j + (−1) 2(l + j) = −2j − 2 + 2 j

	 = − 2 − (2 + 2 )j
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These are in unnatural order. Resultant discrete-frequency sequence can 
be written as
	

(0),  (1),  (2),  (3),  (4),  (5),  (6),(  (6),) { } (7)S K S S S S S S S S S=

	 or	 ( ) ( )( ) 0, 2 2 2 ,2 2 , 2 1 2 ,4,S K j j j= − + + − + − +

	 ( ) ( ) }2 2 2 ,2 2 , 2 2 2j j j+ − + − − .

6.3.7 Number of Complex Multiplications Required in DIF FFT Algorithm

Number of complex multiplications required in DIF FFT algorithm are the 
same as that required in DIT FFT algorithm. Number of complex multiplica-
tion required in these FFT algorithms are N/2 log2 N, where N = 2r, r > 0 and 

TABLE 6.2

No. of points 
(or samples) in a 
sequence s(n), N

Complex multipli-
cations in direct 
computation of 
DFT = N × N = A

Complex multi-
plications in FFT 
algorithms N/2 
log2 N = B

Speed improve-
ment Factor = A/B

22 = 4 16 4
16

4.0
4

=

23 = 8 64 12
64

5.3
12

=

24 = 8 256 32
256

8.0
32

=

25 = 32 1024 80
1024

12.8
80

=
 

26 = 64 4096 192
4096

21.3
192

=

27 = 128 16384 448
16384

36.6
448

=

28 = 256 65536 1024
65536

64.0
1024

=

29 = 512 262144 2304
262144

113.8
2304

=
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N is the total number of points (or samples) in a discrete-time sequence. Thus 
the total computations (number of multiplication and addition operations) are 
the same in both FFT algorithms.

Now we will compare the computational complexity for the direct compu-
tation of the DFT and FFT algorithm. This comparison is given in Table 6.2.

EXERCISES

1.	 What is Fast Fourier Transformation (FFT)?

2.	 Explain Goertzel algorithm.

3.	 Define following terms:
(a) Decimation-in-time		  (b) Decimation-in-frequency
(c) Phase rotation factor or twiddle factor.

4.	 Distinguish between decimation-in-time and decimation-in-frequency 
algorithms.

5.	 Give classification of FFT algorithms.

6.	 Give various steps required for the computation of decimation-in-time 
(DIT) FFT algorithms and decimation-in-frequency (DIF) FFT algorithms.

7.	 Discuss the number of complex multiplication required in FFT algorithms.

8.	 Give flow graph of complete decimation-in-time (DIT) FFT algorithm 
for N = 8.

9.	 Give flow graph of complete decimation-in-frequency (DIF) FFT 
algorithm for N = 8, where N is the total number of samples in DFT.

10.	Find the DFT of the following sequences using decimation-in-time (DIT) 
and decimation-in-frequency (DIF) FFT algorithms

(a) s(n) = {1, 1, 1, 1, 1, 1, 1, 1}	 (b) s(n) = {1, 0, 0, 0, 1, 1, 1, 0}
(c) s(n) = {1, 0, 0, 1, −1, 1}		  (d) s(n) = {1, 1, 1, 1, 0, 0, 0, 0}.
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C H A P T E R  7
Implementation of  
Discrete-Time Systems

7.1	 INTRODUCTION

In this chapter, we will study the realization of linear-time invariant (LTI) 
discrete-time systems in either software or hardware.

There are various structures for the realization of finite-duration impulse 
response (FIR) and IIR discrete-time systems. LTI discrete-time systems are 
characterized by the general linear constant-coefficient difference equation,

	
= =

= − − + −∑ ∑
1 0

( ) ( ) ( )
N M

k k
k k

y n A y n k B s n k � (7.1)

where s(n) and y(n) are the input and output of a discrete-time system, respec-
tively. Ak and Bk are the system coefficients.

Taking the z-transform of Eq. (7.1), we get

	 − −

= =

= − +∑ ∑
1 0

( ) ( ) ( )
N M

k k
k k

k k

Y z A z Y z B z S z

or

	

−

=

−

=

=
+

∑

∑
0

0

( )
( ) 1

M
k

k
k

N
k

k
k

B z
Y z
S z A z

But the system function is given by

	 = =
-tranform of output ( ) ( )

( )
-tranform of input ( ) ( )

z y n Y z
H z

z s n S z
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or

	

−
−

=
−

−

=

= =
+

∑

∑

1

0
1

1

( )
( )

( ) 1

M
k

k
k

N
k

k
k

B z
Y z

H z
S z A z �

(7.2)

where H(z) is the system function of the LTI discrete-time system.
Zeros and poles of the system function H(z) depend on the choice of the 

system parameters (Bk) and (Ak) and these parameters determine the fre-
quency response characteristics of the system.

Network structure in block diagram form implies a hardware configura-
tion for the realization of the discrete-time system.

EXAMPLE 7.1
Find out the system function of the system for which output and input is 
given as

	 = − − − +5 1
( ) ( 1) ( 2) s( )

6 6
y n y n y n n

Also, draw a pole-zero plot for the above system function.

Solution:
The system function is defined as the ratio of z-transform of output and 
z-transform of input of a system keeping all initial conditions zero.

	 = =
[ ( )]( )

( )
( ) [ ( )]

Z y nY z
H z

S z Z s n
	 where,	 =( ) -transform of ( )Y z z y n

	 =( ) -transform of ( )S z z s n

Given:	 = − − − +5 1
( ) ( 1) ( 2) ( )

6 6
y n y n y n s n

Taking the z-transform of both sides of above difference equation, we get

	 − −= − +1 25 1
( ) ( ) ( ) ( )

6 6
Y z z Y z z Y z S z

	
or

	 − −
=

− +1 2

( ) 1
5 1( ) 1
6 6

Y z
S z z z

or
	

= = =
− +− +

2 2

2
2

( ) 6
( )

5 1( ) 6 5 1
6 6

Y z z z
H z

S z z zz z
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	 = =
− − + − − −

2 2

2

6 6
6 2 3 1 6 (3 1) 1(3 1)

z z
z z z z z z

or	 = =
− −

2( ) 6
( )

( ) (2 1)(3 1)
Y z z

H z
S z z z

This is the system function of the given difference equation.
H(z) can be written in terms of two polynomials one is called numerator 

polynomial N(z) and the other is called denominator polynomial D(z).

	 = =
− −

2( ) 6
( )

( ) (2 1)(3 1)
N z z

H z
D z z z

The roots of the numerator polynomial of a system function H(z) is called 
zeros of H(z) and the roots of the denominator polynomial of a system func-
tion H(z) is called poles of H(z).

In this problem

	 = =
− −

2( ) 6
( )

( ) (2 1)(3 1)
N z z

H z
D z z z

Zeros of	 =:( ) ) 0(H z N z	
=26 0z

	 = 0z
H(z) will have one zeros at z = 0
Poles of H(z) : D(z) = 0

	 =( ) (2 – 1  3 – 1 0)z z
or

	
=2 – 1 0z

	 = 1
2

z

and
	

=3 – 1 0z

	 = 1
3

z

H(z) will have two poles, one at

	
= =1 1

 and other at .
2 3

z z

There poles and zeros of H(z) can be shown by a pole-zero plot. It is 
shown in Figure 7.1.

Note. The location of zeros is shown by circle (O) and location of poles 
are shown by cross (×) in the pole-zero plot.

FIGURE 7.1  Pole-zero plot for 
26

( )
(2 1)(3 1)

z
H z

z z
=

− −
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7.2	� MAJOR FACTORS INFLUENCING OUR CHOICE OF 
SPECIFIC REALIZATION

There are three major factors that influence our choice of specific realization. 
There are

1.	 Computation complexity.

2.	 Memory requirements.

3.	 Finite-word-length effects in the computations.

7.2.1 Computational Complexity

It is defined as the number of arithmetic operations required to compute an 
output value y(n) for the system. Arithmetic operations are multiplications, 
divisions, additions and subtractions. Nowadays some other operations are 
also included for the measurement of computational complexity. These oper-
ations are how many times a fetch from memory is performed or how many 
times a comparison between two numbers is performed per output sample.

7.2.2 Memory Requirements

It is defined as the number of memory locations required to store the system 
parameters such as previous inputs, previous outputs and any intermediate 
computed values.

7.2.3 Finite-Word-Length Effects in the Computations

These are also known as finite precision effects. These are defined as the 
rounding-off effects that occur in any digital implementation of the system, 
either in hardware or software. The computations that are performed in 
the process of determining an output from the system must be rounded off 
to fit within the limited precision constraints of the hardware used in the 
implementation. We select a realization that is not very sensitive to finite-
word-length effects.

7.3	 NETWORK STRUCTURES FOR IIR SYSTEMS

Infinite-duration Impulse Response (IIR) systems are described by the sys-
tem function given by Eq. (7.2), as
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−
−

=
−

−

=

= =
+

∑

∑

1

0
1

1

( )
( )

( ) 1

M
k

k
k

N
k

k
k

B z
Y z

H z
S z A z

where M and N are integer numbers.
This system can be realized by several types of network structures. These 

are given as follows:

1.	 Direct-form network structures

2.	 Transposed-form network structures

3.	 Cascade-form network structures

4.	 Parallel-form network structures.

These are discussed one by one in detail in the following subsections.

7.3.1 Direct-Form Network Structures

As already stated that the rational system function of Eq. (7.2) characterizes 
an IIR system. This system can be viewed as cascading of two systems H1(z) 
and H2(z),

	

−
−

=
−

−

=

= =
+

∑

∑

1

0
1 21

1

( ) ( ). ( )
1

M
k

k
k

N
k

k
k

B z
H z H z H z

A z �
(7.3)

	 where	
−

−

=

= ∑
1

1
0

( )
M

k
k

k

H z B z � (7.4)

and
	

−
−

−
− =

=

 = = +  +
∑

∑

1

2 1
1

1

1
( ) 1

1

N
k

kN
k k

k
k

H z A z
A z

	 − −

= =

= − = + −∑ ∑
1 1

1 1 ( )
N N

k k
k k

k k

A z A z � (7.5)

There will be two different direct-form realizations, characterized by whether 
H1(z) proceeds H2(z) or whether H2(z) proceeds H1(z). Since H1(z) is an FIR 
system because it has a finite number of filter coefficients BK. Figure 7.2 
illustrates the block diagram of two types of direct-form realizations.
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Direct-Form I Realization: By 
attaching the all-pole system H2(z) in cas-
cade (series) with All-zero system H1(z), 
we obtain the direct-form I realization as 
shown in Figure 7.3(b). This realization 
requires M + N − 1 multiplications and 
M + N additions. It requires M + N – 1 
memory locations. All-pole system is a sys-
tem that has only poles in its system func-
tion but does not possess any zeros in it. 
All-zero system is a system that has only 
zeros in its system function but does pos-
sess any pole in its system function.

Direct-Form II Realization: If the All-pole system H2(z) is placed 
before the All-zero system H1(z) in cascade then we obtain a more compact 
network structure. This is called Direct-Form II Realization. Figures 7.4 and 
7.5 illustrate the Direct-Form II network structures.

(a) Block diagram of direct form-I network structure.
(b)

FIGURE 7.3.

FIGURE 7.2  Block diagram of two types 
of direct-form realizations.
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This network structure requires M + N − 1 multiplications and M + N 
additions. It requires a maximum of M or N memory locations. Since the 
direct-form II realization reduces the number of memory locations by using 
common delay elements for both all-zero and all-pole systems.

These forms of network structure are obtained directly from system func-
tion H(z) without any rearrangement of H(z). But both the direct-form net-
work structures are very sensitive to parameter quantization. Therefore, they 
are not recommended in practical applications.

In practical applications, we prefer direct-form II instead of direct-form 
I because it requires lesser number of memory locations. Figure 7.4 can be 
reconfigured in a compact form as given in Figure 7.5.

FIGURE 7.4  Direct-form realization with H2(z) cascaded with H1(z).

7.3.2 Transposed-Form Network Structures

Before studying the above topic, we should know the following terms and 
definitions.
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Signal Flow Graph: It pro-
vides an alternative but equiv-
alent graphical representation 
of a block diagram network 
structure. Signal flow graphs 
are comprised of branches and 
nodes. A signal flow graph is a 
collection of directed branches 
that connect at nodes. The sum 
of incoming signals at a node 
is equal to the sum of outgo-
ing signals at the same node. A 
signal flow graph is shown in 
Figure 7.6.

For example. Consider a 
second-order IIR filter given in 
Figure 7.6(a)

FIGURE 7.5  Direct-form II realization (N = M).

(a)

(b) Signal flow graph of the above filter structure.

FIGURE 7.6.
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A signal flow graph contains the same information as the network struc-
ture of the system. The difference in both, branch points and adders in the 
block diagram are represented by nodes in the signal flow graph.

One useful technique in deriving a new system structure for FIR and IIR 
systems is stemmed by transposition theorem. This theorem is also called the 
flow graph reversal theorem.

Transposition Theorem: This theorem states that if we reverse the 
direction of all the transmittances, interchange input and output and also 
interchange branch points and summers or adders in the flow graph, the sys-
tem function remains unchanged. This theorem resulting a network structure 
which is called a transposed network structure.

Transposition of the network structure of Figure 7.6 is performed as 
follows:

Transposed direct-form II network structure requires the same number 
of multiplications, additions and memory locations as required in the original 
direct-form II network structure.

(a) Flow graph reversal of Fig. 7.6(a)

(b) Transposed network structure of Fig. 7.6(b)

FIGURE 7.7. 
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7.3.3 Cascade-Form Network Structure

Cascade-form network structure is implemented by attaching all the factors of 
a system function H(z) in series, that is, in cascade. Consider a high-order IIR 
system with system function given by Eq. (7.2). This system function H(z) can 
be factored into a cascade of second-order subsystems. This network struc-
ture is shown in Figure 7.8:

	
′

′
=

= = =∏ 1 2 3
1

( )
( ) ( ) ( ). ( ). ( ),..., ( )

( )

N

k N
k

Y z
H z H z H z H z H z H z

S z
� (7.6)

Here ν is used for showing the product of various parts of H(z), that is,

	
′

′
=

= =∏ 1 2 3
1

( ) ( ) ( ). ( ). ( )..... ( )
N

k N
k

H z H z H z H z H z H z

where N′ is the integer part of 
+ 

  
1

2
N

 

Hk(z) has the general form

	
− −

− −

+ +
=

+ +
0 1 2

1 2

1 2

1 2( )
1

k k k
k

k k

B B z B z
H z

A z A z � (7.7)

The coefficients Aki and Bki are real coefficients.

FIGURE 7.8  (a) Cascade-form network structure of second-order subsystems.  
(b) Equivalent network structure of above cascade-form network structure.

7.3.4 Parallel-Form Network Structure

A parallel-form realization of an IIR system can be obtained by performing a 
partial-fraction expansion of H(z).

System function H(z) of Eq. (7.2) can be written in partial fractions as

	
a

−
=

= +
−∑ 1

1

( )
1

N
k

k k

H z C
P z

� (7.8)

where Pk are the poles and αk are the coefficients or residues in the 
partial-fraction expansion and constant C is defined as the ratio of BN/AN.
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This network structure consists of a parallel bank single-pole filter. Gen-
erally, some of the poles of H(z) may be complex-valued and coefficients are 
also complex-valued. For avoiding multiplications by complex numbers, we 
can combine pairs of complex-conjugate poles to form two-pole subsystems.

Two real-valued poles can also be combined to form two-pole subsystems. 
Real-valued poles have some real values and there is no imaginary part.

These subsystems have the system function in the form

	
−

−

+=
+ − +

2

1
0 1

2
1

( )
1 1

k k
k

k

B B z
H z

Ak zh A z � (7.9)

Coefficients Bki ard Aki real-valued system parameters.
Parallel-form network structures are shown in Figures 7.9 and 7.10.
H(z) can be implemented in either direct forms or in transposed direct forms.

EXAMPLE 7.2
Sketch the direct-form I, direct-form II, cascade and parallel-form network 
structures for the system characterized by following difference equations.

	 = − − − + + −3 1 1
( ) ( 1) ( 2) ( ) ( 1).

4 8 3
y z y n y n s n s n

Solution:
For computing transfer function of the above system, we take z-transform of 
both sides of above difference equation, we get

FIGURE 7.9  Paralled-form network structure 
of IIR system.

FIGURE 7.10  Structure of second-order section in a 
parallel-form network structure realization.
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	 − − −= − + +1 2 13 1 1
( ) ( ) ( ) ( ) ( )

4 8 3
Y z z Y z z Y z S z z S z

or
	

−

− −

+
= = =

− +

1

1 2
1 2

1
1( ) 3( ) ( ). ( )
3 1( ) 1
4 8

zY z
H z H z H z

S z z z

Direct-form I. −= + 1
1

1
( ) 1

3
H z z . It is an all-zero system because it has only 

zeros in it.

	 − −
=

− +
2

1 2

1
( )

3 1
1

4 8

H z
z z

It is an all-pole system because it has only poles in it.
Figure 7.10(a) and (b) illustrates the direct-form I network structure of 

the system function H(z) given for the above problem.

  (a) Block diagram of direct-form I of above problem.

  (b) Direct-form I, network structure of above filter.

FIGURE 7.11.

Direct-form II. Direct-form II network structure is shown in Figure 7.12.
Cascade-form network structure. Cascade-form network structure for 

H(z) is illustrated in Figure 7.13.

	

−−

− − − −

 + +  = =
  − + − −    

11

1 2 1 1

11 11 33( )
3 1 1 11 1 1
4 8 2 8

zz
H z

z z z z
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−

− −

 + 
= =    − −    �������� ��������

1 2

1

1 1

( ) direct form-II ( ) cascaded
with direct form-II

1
1 13

1 11 1
2 4

H z H z

z

z z

or

	

−

− −

 + 
= =    − −    �������� ��������

1 2

1

1 1

( ) direct form-II ( ) cascaded
with direct form-II

1
1 13

1 11 1
2 4

H z H z

z

z z

  

FIGURE 7.12  Direct-form II realization of above filter.

FIGURE 7.13  Cascade-form network structure of above filter.
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Parallel-form network structure. Parallel-form network structure for H(z) 
is shown in Figure 7.14.

	

−

− − − −

+
= = +

      − − − −            

1

1 1 1 1

1
1

3( )
1 1 1 1

1 1 1 1
2 4 2 4

z A B
H z

z z z z

	 − −

 −    = + = + −  − −
1 2

1 1

710
3 10 73 ( ) ( )

1 1 3 41 1
2 4

H z H z
z z

FIGURE 7.14  Parallel-form network structure of the above filter.

EXAMPLE 7.3
Sketch the block diagram representation of direct-form I and direct-form II 
network structures of a system with system function.

	
−

− − −

−=
− + −

2

1 2 3

1.2 4.8
( )

1 0.9 0.28 0.16
z

H z
z z z

Solution:
Given system function

	
−

− − −

−= = =
− + −

2

1 21 2 3

( ) 1.2 4.8
( ) ( ) ( )

( ) 1 0.9 0.28 0.16
Y z z

H z H z H z
S z z z z

where	
−= − 2

1( ) 1.2 4.8  is an all-zero systemH z z
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−

− − −

−=
− + −

2

2 1 2 3

1.2 4.8
( )  is an all-pole system.

1 0.9 0.28 0.16
z

H z
z z z

Figures 7.15 and 7.16 illustrate the direct-form I and direct-form II net-
work structures of the above system function H(z), respectively.

FIGURE 7.15  Direct-form I realization of the above system.

EXAMPLE 7.4
Sketch a cascade network structure of the system characterized by the trans-
fer function

	
+=

− + +
2( 2)

( )
( 0.1)( 0.5)( 0.4)

z
H z

z z z z

Solution:
Given the system function

	
+=

− + +
2( 2)

( )
( 0.1)( 0.5)( 0.4)

z
H z

z z z z

	
( )

( )( )( )
− −

− − −

+
=

− − −

3 1

1 1 1

2 1 2

1 0.1 1 0.5 1 0.4

z z

z z z

Parallel-form network structure for system function H(z) is shown in 
Figure 7.17.

EXAMPLE 7.5
Sketch the parallel-form network structure of the system with transfer 
function.
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	 +=
+ +2

2 ( 3)
( )

0.3 0.02
z z

H z
z z

Solution:
Given, the transfer function

	
+ += =

+ + + +2

2 ( 3) 2 ( 3)
( )

0.3 0.02 ( 0.1)( 0.2)
z z z z

H z
z z z z

	 −= + = +
+ + + +

5.8 11.2
0.1 0.2 0.1 0.2

A B
z z z z

	
− −

− −

−= + = +
+ +

1 1

1 21 1

5.8 11.2
( ) ( )

1 0.1 1 0.2
z z

H z H z
z z

� (1)
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FIGURE 7.17  Parallel-form network structure of the above system (Ex. 7.4).

Figure 7.18 illustrates the parallel-form network structure for system 
function H(z) given by Eq. (1).

FIGURE 7.18  Parallel-form network structure of the above system (Ex. 7.5).

FIGURE 7.16  Direct-form II realization of the above system (Ex. 7.3).
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7.4	 NETWORK STRUCTURE FOR FIR SYSTEMS

FIR systems are systems whose impulse response h(n) is determined for the 
finite number of sample points. Impulse response h(n) is the response of a 
system to a particular input, that is, unit-sample sequence δ(n). It is defined as

	 d
≥

=  <

1, 0
( )

0, 0
n

n
n

z-transform of impulse response h(n) is called system function or transfer 
function H(z) of the system.

System function of an LTI discrete-time system is characterized by Eq. (7.2) as

	

−
−

=
−

−

=

=
+

∑

∑

1

0
1

1

( )
1

M
k

k
k

N
k

k
k

B z
H z

A z

If Ak = 0 then,

	
−

−

=

= ∑
1

0

( )
M

k
k

k

H z B z � (7.10)

Eq. (7.10) is the system function of FIR system

	
−

−

=

= = ∑
1

0

( )
( )

( )

M
k

k
k

Y z
H z B z

S z

or	
−

−

=

= ∑
1

0

( ) ( )
M

k
k

k

y z B z S z � (7.11)

Taking the inverse z-transform of Eq. (7.11), we get

	
−

=

= −∑
1

0

( ) ( )
M

k
k

y n B s n k � (7.12)

Unit-sample response of the FIR system is

	
≤ ≤ −

= 


, 0 1
( )

0, otherwise
nB n M

h n � (7.13)

where M is the length of the FIR filter.
There are several types of network structures for FIR filters/systems given 

as follows:

1.	 Direct-form network structures.

2.	 Cascade-form network structures.

3.	 Frequency-sampling network structures.

We will discuss them one by one.
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7.4.1 Direct-Form Network Structures

The direct-form realization of the FIR system follows immediately from the 
non-recursive realization. Direct-form realization is shown in Figure 7.19.

FIGURE 7.19  Direct-form realization of FIR system.

Non-recursive realization is given by Eq. (7.12)

	
−

=

= −∑
1

0

( ) ( )
M

k
k

y n B s n k

or by convolution summation/linear convolution of h(n) and s(n), given by

	
−

=

= −∑
1

0

( ) ( ) ( )
M

k

y n h k s n k � (7.14)

This network structure requires M − 1 memory locations for storing M − 1 
previous inputs. The complexity of this network structure has M number of 
multiplications and M − 1 number of additions per output sample. This struc-
ture resembles a Tapped-Delay-Line system. Therefore, this network struc-
ture is also called Tapped-Delay-Line Filter.

Unit-sample response h(n) of linear-phase FIR filter satisfies either sym-
metry or asymmetry condition.

Symmetry condition ⇒ h(n) = h(M − 1 − n)
Asymmetry condition ⇒ h(n) = −h(M − 1 − n)
For a system that satisfies either of the two conditions the number of mul-

tiplications is reduced by half.

7.4.2 Cascade-Form Network Structures

The cascade-form realization follows from Eq. (7.2). Here system function 
H(z) is being factored into second-order FIR system.

	
=

= ∏
1

( ) ( )
N

k
k

H z H z � (7.15)

where
	 − −= + + = ′1 2

0 1( ) , 1,2,...,k k k kzH z B B z B z k N � (7.16)
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where N′ is the integer part of  
+ 

  
1

2
M

. The zeros of system function H(z) are
  

grouped in pairs to get the second-order FIR systems of the form given in 
Eq. (7.16). Coefficients Bki in Eq. (7.16) should be real-valued.

Real coefficient Bki can be achieved by forming pairs of complex-conjugate 
roots. Complex-conjugate roots are roots whose value is complex and each 
one is a complex conjugate of the others.

For example, one root is given by 2 + j3. It is a complex root because it 
has one real part and one imaginary part. Its complex-conjugate root is given 
by just reversing the sign of the imaginary part of the root. The second root 
will be 2 − j3.

The basic fourth-order FIR filter structure is shown in Figure 7.20.

FIGURE 7.20  Fourth-order structure of FIR system.

A comparison of two pairs of pole results in fourth-order FIR filter. Its 
cascade-form realization is shown in Figure 7.21.

FIGURE 7.21  Cascade-form realization of FIR filter.

In linear-phase FIR filters, symmetry in h(n) implies that the zeros of 
H(z) also have symmetry. If zk and ∗

kz  are the pair of complex-conjugate zeros 
then 1/zk and ∗1/ kz  are also a pair of complex-conjugate zeros. By doing so we 
can form fourth-order sections of the FIR systems.

This formation can be given as

	 ( )( )
− −

− ∗ −
∗

  
= − − − −  

  

1 1
1 1

0( ) 1 1 1 1k k k k
k k

z z
H z C z z z z

z z
	 − − − −= + + + +1 2 3 4

0 1 1 1k k k kC C z C z C z z � (7.17)
Coefficients Ck1 and Ck2 are the functions of zk.
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The combination of two pairs of poles resulting in the fourth-order filter 
section reduces the number of multiplications from 6 to 3. Figure 7.22 illus-
trates the cascade-form realization of a FIR system.

FIGURE 7.22  Cascade-form realization of an FIR system.

7.4.3 Frequency-Sampling Network Structures

The frequency-sampling realization is an alternative network structure for an 
FIR system. In this network structure, parameters of the system are charac-
terized by frequency response instead of the impulse response h(n).

Derivation: Frequency response of FIR system is given by Discrete-Time 
Fourier Transform (DTFT) of h(n), as follows:

	
ww

−
−

=

= ∑
1

0

( ) ( )e
M

j n

n

H h n � (7.18)

Now for deriving the frequency-sampling structure, frequency sampling 
of DTFT of h(n) is done.

The values of H(w) at frequencies 
pw a= +2

( )K K
M

.

	
pa a + = +  

2
( ) ( )H K H K

M

	
p a

−
− +

=

= ∑
1

(2 / )( )

0

( )
M

j M K n

n

h n e � (7.19)

The set of values {H(K + α)} are called the frequency samples of H(w).
If α = 0, then it called DFT of {h(n)}.
Impulse response h(n) in terms of the frequency samples H(K + α) is 

given by

	
p aa

−
− +

=

= +∑
1

(2 / )( )

0

1
( ) ( )

M
j M K n

n

h n H K e
M

� (7.20)

n = 0, 1,... , M − 1
If α = 0, then it is called inverse DFT of {H(K)}.
System function H(z) is given by
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−

−

=

= ∑
1

0

( ) ( )
M

n

n

H z h n z � (7.21)

Substituting the value of h(n) in Eq. (7.21), we get

	 p aa
− −

− + −

= =

 = +  
∑ ∑

1 1
(2 / ) ( )

0 0

1
( ) ( )

M M
j M K n n

n n

H z h K e z
M

� (7.21a)

Now interchanging the order of summations in Eq. (7.21a), we get

	
{ }p aa

− −
− + −

= =

 = +   
∑ ∑

�������������������

1 1
(2 / ) ( ) 1

0 0

This is a geometric progression

1
( ) ( )

M M nj M K

K n

H z H K e z
M

	
p a

p aa
− + −−

− + −
=

 −= +  − 
∑

2 ( )1

[ 2 ( ) ]/ 1
0

1 1
( )

1

j K MM

j K M
K

e z
H K

M e z

or	
p pa

p aa
−−

+ −
=

 −= +  − 
∑

2 21

[ 2 ( ) ]/ 1
0

1 1
( ) ( )

1

j K j MM

j K M
K

e e z
H z H K

M e z
 

Hence
	 p = =2 1, 0,1,2,j Ke K

	 p= = =2 .0 00, 1jK e e
	 p p= = =2 .1 21, 1 and so onj jK e e

∴
	

p =2 1j Ke

or	
pa

p aa
−−

+ −
=

 −= +  − 
∑

21

[ 2 ( )] / 1
0

1 1
( ) ( )

1

j MM

j K M
K

e z
H z H K

M e z

	
pa

p a
a− −

+ −
=

− +=
−∑

2 1

(2 / ) ( ) 1
0

1 ( )
1

j M M

j M K
K

e z H K
M e z

or	
pa

p a
a− −

+ −
=

− +=
−∑

2 1

(2 / ) ( ) 1
0

1 ( )
( )

1

j M M

j M K
K

e z H K
H z

M e z
� (7.22)

This system function is characterized by a set of frequency samples 
H(K + α).

System function H(z) consists of two subsystem functions in cascade and 
is given by	

= ⋅1 2( ) ( ) ( )H z H z H z � (7.23)
This FIR system realization is viewed as a cascade of two subsystems 

H1(z) and H2(z). H1(z) is an all-zero filter. It is also called comb filter with 
system function.

	 pa − = − 
2

1

1
( ) 1 j MH z e z

M
� (7.24)

The second subsystem with system function
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	 p a
a−

+ −
=

+=
−∑

1

2 (2 / )( ) 1
0

( )
( )

1

M

j M K
K

H K
H z

e z
� (7.25)

Pole locations are identical to the zero locations and both occur at ωK = 
(2p/M) (K + α), which are the frequencies at which the desired frequency 
response is specified. Frequency-sampling realization of the FIR system 
given by Eq. (7.22) is shown in Figure 7.23:

	 p a
a−

+ −
=

+=
−∑

1

2 (2 / )( ) 1
0

( )
( )

1

M

j M K
K

H K
H z

e z

	
p ap

a a
+− −

+= +
− − (2 / )( )2 / 1 1

( ) ( )
1 1 j M KM

H H K
e z e z

	
p a p a

a a
+ − +− −

+ − ++ + +
− −(2 / )(2 ) (2 / )( 1 )1 1

(2 ) ( 1 )
...

1 1j M j M K

H H M
e z e z

� (7.26)

FIGURE 7.23  Frequency-sampling realization of FIR system.
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When the desired frequency response characteristic of the FIR system is 
narrow band, its most of the gain parameters H(K + a) are zero. Consequently, the 
corresponding resonant filters can be eliminated as the gain parameters are zero 
for them. Now only non-zero-gain parameter resonant filters will be retained.

In other words, we can say this network structure requires fewer compu-
tations than the corresponding direct-form realization.

The frequency-sampling network structure can be simplified further by 
exploiting the property of symmetry in H(K + α) which is
	 a= ∗ − =( ) ( ) for 0H K H M K

and

	 a   + = ∗ − − =      
1 1 1

 for 
2 2 2

H K H M K � (7.27)

Thus for α = 0, the system function H2(z) is simplified as
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+ −
=
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=
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1
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=
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1
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−
− −=

′ + ′= +
−  − +  

∑
1
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1
1 20
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H A K B K z
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M is odd� (7.28)

	
p

−
−

− −
− −=

′ + ′= +
− +  − +  

∑
1

12

2 1 1
1 21

(0) ( /2) ( ) ( )
( )

21 1 1 2cos

M

K

H H M A K B K z
H z

Kz z z z
M

						      M is even� (7.29)

where	 ′ = − −( ) ( ) ( )A K H K H M K

	
p p− −′ = + −2 2 //( ) ( ) ( )j K j K MMB K H K e H M K e  � (7.30)

EXAMPLE 7.6
Sketch a direct-form realization for the following linear-phase FIR filter. Its 
impulse response is given by
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= 1, 2, 3, 4, 3, 2 .( ) ( }, 1h n

Solution:
System function H(z) of the above FIR filter is computed by

	 = =( ) -transform of ( ) [ ( )]H z z h n Z h n

	
−

− −

= =

= =∑ ∑
1 6

0 0

( ) ( )
M

n n

n n

h n z h n z
	 − − − − −= + + + +0 1 2 3 4(0) (1) (2) (3) (4)h z h z h z h z h z

							       − −+ +5 6(5) (6)h z h z	
− − − − − −= + + + + + +1 2 3 4 5 61 2 3 4 3 2 1z z z z z z

or	 − − − − − −= = + + + + + +1 2 3 4 5 6( )
( ) 1 2 3 4 3 2 1

( )
Y z

H z z z z z z z
S z

Direct-form realization of the system function H(z) given in this problem 
is illustrated in Figure 7.24.

FIGURE 7.24  Direct-form realization for the above linear-phase filter.

EXAMPLE 7.7
Sketch the block diagram for the direct-form realization and frequency- 
sampling realization of M = 16, α = 0, symmetric linear-phase FIR filter. This 
filter has the following frequency samples

	

p
=

  = =   
=

1, 0,1,2
2 1

, 3
16 2

0, 4,5,6,7

K

K
H K

K

Also, compare the computational complexity of these structures.
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Solution:
Since the given FIR filter is symmetric. By exploiting the property of symmetry, 
the number of multiplications per output point can be reduced from 16 to 8 in 
the direct-form realization. The number of additions per output point is 16 − 
1= 15. The block diagram of direct-form realization is shown in Figure 7.25.

FIGURE 7.25  Block diagram of direct-form realization.

Frequency-sampling Network Structure. For this network structure, 
we use

	 ( )pa−= − 2
1

1
( ) 1 jMH z z e

M
� (1)

and	 p a
a−

+ −
=

+=
−∑

1

2 (2 / )( ) 1
0

( )
( )

1

M

j M K
K

H K
H z

e z

	
p

− −

− −
− −=

′ + ′= +
− +  − +  

∑
1 12

2 1 1
1 20

(0) ( /2) ( ) ( )
( )

21 1 1 2cos

M

K

H H M A K B K z
H z

Kz z z z
M

�
(2)

								        For M even

	
p

− −

−
− −=

′ + ′= +
−  − +  

∑
1 12

2 1
1 21

(0) ( )
( )

21 1 2cos

M

K

H A K B K z
H z

Kz z z
M

	 For M odd

The frequency-sampling network structure can be simplified further by 
exploiting the property of symmetry in H(K + α) as

	
a= ∗ − =( ) ( ) for 0H K H M K

	 a   + = ∗ − − =      
1 1 1

 for 
2 2 2

H K H M K

We use Eqs. (1) and (2) for the frequency-sampling realization and drop 
all terms which have zero-gain coefficients {H(K)}.
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The non-zero coefficients are H(K) and corresponding pairs are H(M − K) 
for K = 0, 1, 2.

Since H(0) = 1, the single-pole filter requires no multiplication. The two 
double-pole filter sections require three multiplications each for a total of 
six multiplications. Total number of addition is 9. Therefore, the frequency- 
sampling realization of this FIR system is computationally more efficient than 
the direct-form realization. Frequency-sampling realization of H(z) given in 
this problem is shown in Figure 7.26.

EXAMPLE 7.8
Sketch a cascade-form network realization in such a way that it requires only 
three delay elements for a system characterized by the following transfer 
function

	
a b

a b

− −

− −

− −= ⋅
− −

1 1

1 1( )
1 1
z z

H z
z z

where α are β constants.

Solution:
For cascade realization, we break the original transfer function in this manner

	
a b

a b

− −

− −

  − −= =   − −  

1 1

1 2 1 1( ) ( ) ( )
1 1
z z

H z H z H z
z z � (1)

FIGURE 7.26  Frequency-sampling realization for FIR filter (Ex. 7.7).
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FIGURE 7.27  H(z) is realized in cascading of H1(z) and H2(z).

or	
a

a

−

−

′ −= =
−

1

1 1

( )
( )

( ) 1
Y s z

H z
S z z

� (2)

and	
b

b

−

−

−= =
′ −

1

2 1

( )
( )

( ) 1
Y z z

H z
Y z z

� (3)

From Eq. (2), we get

	
a

a

−

−

′ −=
−

1

1

( )
( ) 1

Y s z
S z z

or	 a a− −   ′ − = −   
1 1( ) 1 ( )Y z z S z z

or
	

a a− −′ − ′ = −1 1( ) ( ) ( ) ( )Y z z Y z z S z S z
 

On taking inverse z-transform, we get
	 a a′ − − = − −( ) ( ) ( ) ( )1 1y n y n s n s n

or
	

a a′ − − = − −( ) ( ) ( ) ( )1 1y n y n s n s n
�

(4)

From Eq. (3), we get

	
b

b

−

−

−=
′ −

1

1

( )
( ) 1

Y z z
Y z z

or	 b b− −   − = ′ −   
1 1( ) 1 ( )Y z z Y z z

or
	

b b− −− = ′ − ′1 1( ) ( ) ( ) ( )Y z z Y z z Y z Y z
On taking inverse z-transform, we get	 b b− − = ′ − − ′( ) ( )1 1( ) ( )y n y n y n y n

or
	 b b= − + ′ − − ′( ) ( )1 1( ) ( )y n y n y n y n

 �
(5)

Figure 7.28 shows the cascade realization. It contains only three delay 
elements as per our requirement.

FIGURE 7.28  Cascade-form realization of transfer function given.
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EXAMPLE 7.9
Find out the parallel-form realization for a system which is characterized by 
the transfer function

	
− −=

− −1 2

1
( ) .

1
H z

z z

Solution:
Given transfer function H(z) can be modified as follows:

	
− −=

− −1 2

1
( )

1
H z

z z

or	
−=

− −2

1
( )

1
H z

z z
Factorization of z2 − z − 1 results in

	
      + −− − = − −      
         

2 1 5 1 5
1

2 2
z z z z

Also substitute a
+= 1 5
2  and b

+= 1 5
2

then
	 a b− − = − −2 1 ( ) ( )z z z z

and	 a b
   + −− = − =   
   

1 5 1 5
5

2 2

or	 ( )( )a b a b− −
= =

− − − −

2

1 1

1
( )

( ) (z ) 1 1
z

H z
z z z

	 ( ) ( )a b− −
= +

− −1 11 1
A B

z z
� (By partial fraction)

Determination of constants A and B.
1 − αz−1 = 0

or αz−1 = 1,

or z = α

1 − βz−1 = 0

or βz−1 = 1,

or z = β

a a
bb a b
a

−= = = =
− −−

1

1 1
1 51

A
z

b b
aa b a
b

−= = = =
− − −−

1

1 1
1 51

B
z
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or	
a b− −= +

− −1 1( )
1 1

A B
H z

z z

	
a b

a b− −

−= + = +
− − 1 21 1

/ 5 / 5
( ) ( )

1 1
H z H z

z z
 

Figure 7.29(a) shows the realization of H1(z) and H2(z) separately and 
Figure 7.29(b) shows parallel realization of H1(z) and H2(z).

FIGURE 7.29  (a) Realization of H1(z) and H2(z) separately. 
(b) Parallel-form realization of above transfer function.

	
= +1 2( ) ( ) ( )H z H z H z

EXAMPLE 7.10
Draw the network structure for the following transfer function.

	
q

= =
− ⋅ +

2

2 2

( )
( )

( ) cos
Y z z

H z
S z z zr z r

Solution.
Given transfer function

	
q

= =
− +

2

2 2

( )
( )

( ) cos .
Y z z

H z
S z z zr z r

	
q − −=

− +1 2 2

1
1 2 cos .r z r z

where Y(z) and S(z) are the z-transforms of output the input, respectively.
		  ( )q −− − + =2 2 1 2 cos (1( ) )Y z r z r z S z � (1)

Taking the inverse z-transform of Eq. (1), we get
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q− − + − =2 2 cos ( 1( ) () ( 2) )y n r y n r y n ns
 

or
	 q− − + − +22 cos 1( ) ( ) ( 2) ( )y n r y n r y n s n

�
(2)

Network structure for transfer function H(z) is shown in Figure 7.30.

FIGURE 7.30  Network structure for the transfer function H(z).

EXAMPLE 7.11
Find the transfer function H(z) of the system shown in Figure 7.31. Also 
determine the difference equation which characterize it.

FIGURE 7.31  Network structure of a discrete-time system with input s(n) and output y(n).

Solution:
From the network structure of Figure 7.31.

	  = = − − −  1 1 1

1 3
( ) ( ) ( 1) ( 2)

4 8
s n s n s n s n � (1)

And	 = + −1 1

1
( ) 2 ( ) ( 1)

4
y n s n s n � (2)

Eqs. (1) and (2) are the difference equations of above network structure.
Taking the z-transform of equations (1) and (2), we get
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− − = + −  

1 2
1 1 1

1 3
( ) ( ) ( ) ( )

4 8
S z S z z S z z S z � (3)

and	 −= + 1
1 1

1
( ) 2 ( ) ( )

4
Y z S z z S z � (4)

From Eq. (3)

	 − −
=

 − +  

1
1 3

1
( ) ( )

1 3
1

4 8

S z S z
z z �

(5)

From Eq. (4)

	
− = +  

1
1

1
( ) 1 ( )

4
Y z z S z � (6)

Substituting Eq. (5) in Eq. (6), we get

	
− = +  

1
1

1
( ) ( )

4
Y z z z S z

	

−

− −

 = +     − +  

1

1 3

1 1
2 ( )

1 34 1
4 8

z S z
z z

or

	

−

− −

 +  =
 − +  

1

1 3

1
2

4( )
1 3( ) 1
4 8

z
Y z
S z z z �

(7)

But transfer function of a system is defined as the ratio of z-transform of 
output, Y(z) to the z-transform of input, S(z) and is given by

	

−

− −

 +  = =
 − +  

1

1 2

1
2

( ) 4(z)
1 3( ) 1
4 8

z
Y z

H
S z z z

This is the transfer function of above system given in Figure 7.31.

EXAMPLE 7.12
Find and draw a parallel-form of realization for the system which is character-
ized by the following transfer function

	

( )+ +
=

  + − +    

2

2

2 1
( )

1 1 1
4 8 8

z z z
H z

z z z

DSP.CH07_2pp.indd   298DSP.CH07_2pp.indd   298 3/23/2022   12:13:28 PM3/23/2022   12:13:28 PM



Implementation of Discrete-Time Systems • 299

Draw the realization with only first-order systems.

Solution:
Given transfer function H(z) can be modified as

	

+=
  + − +    

2

2

(2 (1)
( )

1 1 1
4 8 8

z z z
H z

z z z

	

− −

− − −

+ +=
  + − +    

1 2

1 2 1

2
1 1 1

1 1
4 8 8

z z

z z z

(Dividing both numerator and denominator by zn)

or
	

− −

− − −

+ +=
   + − +      

1 2

1 1 1

2
( )

1 1 1
1 1 1

4 4 8

z z
H z

z z z

	 − − −
= + +

     + − +          
1 1 11 1 1

1 1 1
2 4 8

A B C

z z z

(By partial-fraction method)

	 − − −
= + +

     + − +          
1 1 1

32/9 44/9 29/38
1 1 1

1 1 1
2 4 8

z z z

	 = + +1 2 3( ) ( ) ( )H z H z H z

The network realization for the system given in this problem is shown in 
Figure 7.32. It is a parallel-form of network structure.

FIGURE 7.32  Parallel-form of network realization of transfer function H(z).
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EXERCISES

1.	 What are the major factors that influence our choice of specific realiza-
tion? Discuss.

2.	 Discuss network structures for IIR systems given as follows:

a.	 Direct-form I and Direct-form II network structures.

b.	 Transposed-form network structures.

c.	 Cascade-form network structures.

d.	 Parallel-form network structures.

3.	 Define transposition theorem and network flow graph with an example.

4.	 Discuss network structures for FIR systems given as follows:

a.	 Direct-form network structure.

b.	 Cascade-form network structure.

c.	 Frequency-sampling network structures.

NUMERICAL EXERCISES

1.	 Sketch the direct-form I and direct-form II network structures of the sys-
tems with transfer function

a. 
−

− −

+=
− +

1

1 2

1
( )

1 0.5 0.06
z

H z
z z

	 b. ( )( )
− −

− − −

−=
− + +

1 2

1 1 2

3
( )

10 1 0.5 0.5
z z

H z
z z z

c. ( )
+=

− + −

2

2

3 6
( )

( 0.2) 0.5 0.5
z z

H z
z z z

	 d. 
− −

− −

+ +=
− +

2 4

1 2

2 3 1.5
( )

10 0.2 0.35
z z

H z
z z

e. 
( )−

− −

+
=

− +

1

1 2

6 1 3
( )

3 0.9 0.006

z
H z

z z
.

2.	 Sketch a cascade-form network structures of the systems with transfer 
function

a.
 

+=
+ +2

2 ( 3)
( )

0.3 0.02
z z

H z
z z �

b.
 

− −

− −

+=
− +

1 2

1 2

4
( )

5 2 0.15
z z

H z
z z
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c. 
−

− −

−=
− +

2

1 2

2 10
( )

1 0.8 0.15
z

H z
z z �

d. 
−=

− +

2

2

3 12
( )

0.4 0.03
x

H z
z

e.
 

+ + −=
+ + +

3 2

4 3 2

4 16 4 24
( )

2 1.6 0.5 0.1
z z z

H z
z z z z

.

3.	 Find and sketch parallel-form network structure of the systems with 
transfer function

a.	
+=

+ +2

2 ( 3)
( )

0.3 0.02
z z

H z
z z

b.	
− −

− −

+=
− +

1 2

1 2

4
( )

5 2 0.15
z z

H z
z z

c.	
−=

+ +

2

2

1
( )

0.7 0.1
z

H z
z z

4.	 System function H(z) of an FIR filter is given by
	 − − − −= + + + +1 2 3 41 3 3.5 2 2( )H z z z z

Sketch the direct-form network structure of this system (filter).

5.	 Sketch the direct-form network structure and frequency-sampling net-
work structure of the M = 32, α = 0, symmetric linear-phase FIR filter 
which has frequency samples.

	

p
=

  = =   
=

1, 0,1,2
2 1

3
32 3

0, 4,5,...,15

K

K
H K

K

Also compute of the complexity of these two structures.

6.	 Find the direct-form I, direct-form II, cascade and parallel-form network 
structures for the following systems

a.	 = − + − + −1 1
( ) ( 1) ( 2) ( 1)

2 4
y n y n y n s n

b.	 = − − − + − + −1
( ) ( 1) ( 2) ( 1) ( 2)

2
y n y n y n s n s n  

where y(n) and s(n) are outputs and inputs of the system, respectively.
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C H A P T E R  8
Digital Filters

8.1	 INTRODUCTION

Filtering is a process by which the frequency spectrum of a signal can be mod-
ified, reshaped, or manipulated to achieve some desired objectives. These 
objectives are:

1.	 To eliminate noise contaminated in signal.

2.	 To remove signal distortion due to an imperfect transmission channel.

3.	 To separate two or more distinct signals which were purposely mixed for 
maximizing channel utilization.

4.	 To resolve signals into their frequency components.

5.	 To demodulate the signals which were modulated at the transmitter end.

6.	 To convert digital (discrete-time) signals into analog signals.

7.	 To limit the bandwidth of the signals.

Filters are of two types depending upon the type of signal to be processed.
Analog Filters: Analog filter is a system in which both the input and the 

output are continuous-time signals. Block diagram of analog filter is shown in 
Figure 8.1.

FIGURE 8.1  Analog filter.
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Digital Filters: Digital filter is a system in which both the input and the 
output are discrete-time signals. Block diagram of the digital filter is shown 
in Figure 8.2.

FIGURE 8.2  Digital filter.

Review of Analog Filter Design

There are five kinds of analog filters given as:

1.	 low-pass analog filter,

2.	 high-pass analog filter,

3.	 band-pass analog filter,

4.	 band-stop analog filter, and

5.	 all-pass analog filter.

Pole-zero configuration and corresponding frequency responses of vari-
ous kinds of analog filters are given in Table 8.1.

TABLE 8.1  Pole-zero Configuration and Corresponding Frequency Responses of 
Various Kinds of Analog Filters

Name of the 
analog filter

Its transfer func-
tion H(s)

Frequency re-
sponse H(jω)

Pole-zero 
locations of 
|H(jω>)|

1. Low-pass filter 
(LPF)

2
0

2 20
0

r

r
s s r

Q
+

 
 
   

2. High-pass filter 
(HPF)

2

2 20
0

s

r
s s r

Q
+ +
 
 
   

(Continued)
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Name of the 
analog filter

Its transfer func-
tion H(s)

Frequency re-
sponse H(jω)

Pole-zero 
locations of 
|H(jω>)|

3. Band-pass filter 
(BPF)

0

2 20
0

( / )r Q s

r
s s r

Q
+ +
 
 
   

4. Band-stop filter 
(BSF)

2
0 0

2 20
0

s r

r
s s r

Q

+

+ +
 
 
   

5. All-pass filter 
(APF)

2 2
0 0

2 20
0

( / )s r Q s r

r
s s r

Q

− +

+ +
 
 
 

In Table 8.1, all the poles and zeros are seen to be located on a circle 
of radius r0. This design was given by Butterworth therefore, is called But-
terworth Analog filter design. Here Q is the quality factor of the circuit at 
resonance. In the pole-zero plot given in Table 8.1 location of poles and zeros 
are shown by cross (×) and circle (O), respectively.

All poles are located on the circle of radius, it is one kind of similarity 
that exists between the analog and digital filters. Another similarity is that the 
design of all types of analog filters is done from the LPFs using frequency 
transformation. Digital filters are also designed in the same manner as ana-
log filters. Pole-zero characteristics are very important in both types of filters 
design (analog and digital filters). Pole-zero characterization of analog filters 
is summarized in Table 8.2 given below.

TABLE 8.2  Summary of Pole-zero Characterization of Analog Filter

Name of the Analog Filter Pole-zero Characterization
1. Low-pass filter (LPF) There are no zeros at the origin (σ, ω) = (0, 0) and 

poles are on the circle of radius r0 in a complex 
conjugate.

2. High-pass filter (HPF) There are two zeros at the origin for two complex-
conjugate poles on the circle of radius r0.

(Continued)
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Name of the Analog Filter Pole-zero Characterization
3. Band-pass filter (BPF) There is one zero at the origin and two complex-

conjugate poles on a circle of radius r0.
4. Band-stop filter (BSF) There are two zeros on the imaginary axis of s-plane 

on a circle of radius r0 and two complex-conjugate 
poles on the same circle. Zeros on the imaginary axis 
of s-plane ensure that there is no output of the filter 
at frequency ω = ω0. Band-stop filter (BSF) is also 
called Notch filters.

5. All-pass filter (APF) Two complex poles in the left half-plane and two 
complex zeros in the right half-plane lie on the circle 
of radius r0. These pairs of complex poles and zeros 
lie in the quadrantal symmetry. For all-pass filters 
(APF), magnitude is unity for all values of ω.

A first-order analog filter is one that has only one pole on the real axis 
(s-axis) of s-plane. Its transfer function is given by

	

1
( )H s

s A
=

+
�

and its impulse response will be given by

	 Inverse Laplace transform of ( ) ( )h t H s= �

		  1 1 1
£ [ ( )] £ AtH s e

s A
− − − = = + 

= �

In other words, we can say that a first-order low-pass analog filter has 
one pole in the frequency-domain and its impulse response (time-domain 
response) is exponentially decreasing with time in the range 0 ≤ t ≤ ∞.

Similarly, a first-order digital filter has one real zero on the real axis of 
z-plane, and this real zero lies inside the unit circle |z| = 1 or r0 = 1. The trans-
fer function of the first-order digital filter is given by

	 1

1
( )

1
H z

Az−
=

−
�

and its impulse (unit-sample) response will be given by h(n) = Inverse 
z-transform of H(z)

		
1 1

1

1
( )

1
nZ H z Z A

Az
− −

−
  = =   − 

�

Note. It is worth noting here that digital filters have a similarity with 
the expression of analog filters. Impulse responses (time-domain responses) 
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for both the filters (analog 
and digital) decrease expo-
nentially to zero as n or t 
approaches infinity.

The impulse response 
is used to characterize both 
types of filters. The impulse 
response of a digital filter is 
given in the form h(n) = An. 
It is called an infinite impulse 
response (IIR) digital filter.

Figure 8.3 shows the 
LPF specifications for the 
analog case.

Amax is the maximum 
allowable attenuation in the 
pass band (0 ≤ Ω ≤ 1) and Amin is the minimum allowable attenuation in the 
stop band (Ω = Ωs).

There will exist a transition band in the range of frequencies (1 ≤ Ω ≤ Ωs).
There are four specifications of a LPF; Amax, Amin, 1, and Ωs. These specifi-

cations depend upon the tolerance limits along with corresponding frequencies.

If we divide the frequency ω by ωp and this division is denoted by ,
p

w
w

Ω =
 

then the cut-off frequency is normalized to unity.

Also 
p

w
w

Ω = , where ωs is the stop-band frequency.

	
2

2

2

(0)
( )

1 n n

H
H j

e
Ω =

+ Ω
� (8.1)

where H(0) is the maximum magnitude at zero frequency which is equal to 
unity and 0.1 max(10 1.Ae = −  It is illustrated in Figure 8.3.

Here at ω = ωP and 1p

p p

ww
w w

Ω = = =

Substituting Ω = 1 in Eq. (8.1)

		
2

2

2

(0)
( ) at 

1p

H
H j w w

e
Ω = =

+
� (8.2)

FIGURE 8.3  Butterworth approximation of magnitude 
response of an Nth order filter  

[Tolerance limits: Amax and Amin].
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Writing Eq. (8.1) in decibel (dB) as
	 ( ) 20 log ( )dBH j H jΩ = Ω �
		  ( )2 220 log (0) 10 log 1 nH e= − + Ω � (8.3)

At Ω = 1, H(0) = 1, attenuation loss will be maximum and is given by

	
2 2

max 10 log 1 nA e = + Ω � (8.4)

or	 0.1 1/2
max 1[10 ]Ae −= � (8.5)

At Ω = Ωs, the minimum allowable attenuation loss is given by

	 ( )1/22 2
min 20 log 1 n

sA e= + Ω � (8.6)

or	 ( )1/20.1 min10 1 /n A
s eΩ = − � (8.7)

Taking the log of both sides of Eq. (8.7) yields

	 ( )min0.1
10 10 10

1
log log 10 1 log ( )

2
A

sn eΩ = − + �

		
maxmin 0.10.1

10 10log 10 1 log 10 1AA= − − −
 �

		
min

max

0.1

10 0.1

10 1
log

10 1

A

A

−
=

−
�

or	
min

max

0.1

10 0.1
10

10 1 1
log

log ( )10 1

A

A
s

n
−

= ⋅
Ω− �

Note: If ε = 1 then ε = max
1/20.110 1A − 

or	 max
1/20.11 10 1A = −  �

or	 max0.110 2A = �

		  max0.1
10 10 maxlog 10 log (2)0.1 0.3010A A  =  �

		  max 3 at 1A = Ω = �

For Chebyshev approximation, the order of filter can be determined as

		
min

1/20.1
1

0.1 max 1

10 1 1
cosh

10 1 cosh ( )

A

A
s

n −
−

 −
= − − Ω 

� (8.8)

where		  –1 2 1/2[ ( ) ]cosh log – 1x e x x= + �

First of all, we determine the order of the filter n, then we determine the 
expression for transfer function H(s) for Butterworth filter or for Chebyshev 
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filter. From the above expressions, we can design a LPF. To find the transfer 
function H(s) for high-pass, band-pass, or band-stop filters, we use the low-
pass expression. Here we use frequency transformation given in Table 8.3.

TABLE 8.3  Frequency Transformations from LPF to HPF, BPF, and BSF

Type of 
Filter Filter Specifications

Frequency variable 
Transformation

Pass Band Stop Band

Low-pass 
filter (LPF)

0 → Ω1 Ω2 → ∞ Transition band =  
Ω2 − Ω1

High-pass 
filter (HPF)

Ω2 → ∞ 0 → Ω1 2q
s

Ω
=

Band-pass 
filter (BPF)

Ω1 → Ω2 0 → Ω1

Ω4 → ∞
Transition band
Ω3 → Ω1

Ω2 → Ω4

0 1 2Ω → Ω Ω 0

0

s
q Q

s

Ω
= +

Ω

    
      

Band-stop 
filter (BSF)

0 → Ω1

Ω2 → ∞

0 1 2Ω → Ω Ω

Ω3 → Ω4 Transition band
Ω3 → Ω4

Ω4 → Ω2

0

0

1
q

s
Q

s

=
Ω

+
Ω

    
      

8.2	 MAJOR CONSIDERATIONS IN USING DIGITAL FILTERS

The procedure for the implementation of a digital filter has the following 
steps in order

1.	 selection of filter,

2.	 specification of the frequency response characteristic of the filter,

3.	 phase response specification,

4.	 filter design,

5.	 filter realization, and

6.	 filter implementation.
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8.2.1	Selection of Filter

The selection of filter depends on the market demand and intended 
applications.

8.2.2	Specification of the Frequency Response Characteristics of the Filter

After deciding on the choice of filter type to be used, analog or digital, we 
decide about the specifications of the frequency response characteristics of 
the filter.

Digital filters are classified into four types similar to analog filter on the 
basis of frequency response.

These are:

1.	 low-pass (LP) filter,

2.	 high-pass (HP) filter,

3.	 band-pass (BP) filter and

4.	 band-stop (BS) filters.

●● Low-pass (LP) filters are 
those which pass low fre-
quencies from zero to a 
cut-off frequency ωP with 
approximately unity gain.

●● High-pass (HP) filter 
passes frequencies from 
cut-off frequency ωP1 = 
ωP to ωP2 = π with a unity 
gain.

●● Band-pass (BP) filter 
passes frequencies in a 
chosen range from ωP1 to 
ωP2 with a unity gain.

●● Band-stop (BS) filter stops frequencies in the chosen range from ωS1 to ωS2.

Each class of filters is specified in terms of pass-band frequency ωP, stop-
band frequency (ωS, transition band ωP ≤ ω ≤ ωS, pass-band tolerance δP, stop-
band tolerance δS, positive tolerance δ+ of magnitude response, negative tol-
erance δ− of magnitude response, pass-band ripple (δ+, δ−) defined in dB and 
stop-band attenuation.

FIGURE 8.4  �Frequency response of ideal filters (a) Low-pass 
filter, (b) high-pass filter, (c) band-pass filter, 
and (d) band-stop filter.
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Pass-band ripple defined in dB is given as
	

0 max10 120 log 1 2{ ( ) (0 log 1 )} pA d d+ −= + − − � (8.9)

Stop-band attenuation defined in dB is given as	
1020 lo ( )g SAs d= − � (8.10)

Low-pass filter: Specifications of a LPF is given in terms of its frequency 
response H(ω) as

		
1 ( ) , 0

0 ( ) ,
p

S S

H

H

d w d w w
w d w w p

− + − ≤ ≤ + ≤ ≤
 ≤ ≤ ≤ ≤

� (8.11)

LPF specification is shown in Figure 8.5.

FIGURE 8.5  Low-pass filter specifications.

High-pass Filter: Specification of a high-pass filter is given in terms of 
its frequency response H(w) as

		
0 ( ) , 0

1 ( ) 1 ,
S S

P

H

H

w d w w
d w d w w p− +

≤ ≤ ≤ ≤
 − ≤ ≤ + ≤ ≤

� (8.12)

Its specifications are shown in Figure 8.6.

FIGURE 8.6  High-pass filter specifications.
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Band-pass filter: Specifications of a band-pass filter is given in terms of 
its frequency response H(ω) as

		

1 1

1 2

2 2

1

0 ( ) , 0
1 ( ) 1 ,
0 ( ) ,

S S

P P

S s

H

H

H

w d w w
d w d w w w

w d w w p

− +

 ≤ ≤ ≤ ≤
 − ≤ ≤ + ≤ ≤
 ≤ ≤ ≤ ≤

� (8.13)

Its specifications are shown in Figure 8.7.

FIGURE 8.7  Band-stop filter specifications.

Band-stop filter: Specifications of a band-stop filter is given in terms of 
its frequency response H(ω) as

		

1

1 2

2

1 1

2 2

1 ( ) 1 , 0
0 ( ) ,
1 ( ) 1 ,

P

S P P

s

H

H

H

d w d w w
w d w w w

d w d w w p

− +

− +

 − ≤ ≤ + ≤ ≤
 ≤ ≤ ≤ ≤
 − ≤ ≤ + ≤ ≤

� (8.14)

Its specifications are shown in Figure 8.8.

FIGURE 8.8  Band-stop filter specifications.
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8.2.3	Phase Response Specifications

The frequency response of a filter can be written as

	 ( ) ( ) ( )R IH H jHw w w= + �

		  ( )( ) jH e q ww= � (8.15)

in terms of the real and imaginary part HR(ω) and HI(ω), respectively and also 
in terms of magnitude response |H(ω)| and phase response (ω).

Where magnitude response

	 2 2( ) ( ) ( ) ( )R IA H H Hw w w w= = + � (8.16)
and phase response

	
1 1( )

( ) tan
( )R

H
H

wq w
w

−  
=  

 
� (8.17)

H(ω) is a continuous function of ω.
A digital filter whose frequency response can be expressed in continuous-

phase from as

	 ( ) ( ) j
PH A e wpw w= � (8.18)

is said to have a linear phase.
Where τP is the phase delay (measured in samples). Linear phase filters 

preserve input signal shape with minimum distortion.
A digital filter with frequency response H(ω) = A(ω)ej(θ0−ωτg) is called 

generalized-linear phase filter.
Where τg is group delay measured in samples. In such cases, the envelope 

of the output signal is approximately a distortionless version of that of the 
input signal.

Generalized-linear phase real digital filters are of four types. Real digital 
filters are filters that work on the real sequences and not on the imaginary 
sequences. For these filters, both input and output are real sequences. The 
sequences on which these filters are used will have no imaginary part in them.

Type I.	� These have integral group delay and their initial phase delay is 
zero.

Type II.	� These have fractional group delay and their integral phase delay is 
zero.

Type III.	These have integral group delay and their initial phase delay is 
2
p

.

Type IV.	 These have fractional group delay and their initial phase delay is 
2
p

.
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Types I and II have constant phase delay while types III and IV have 
varying phase delay.

Minimum-phase filter is a filter whose all zeros are located inside or on 
the unit circle.

8.2.4	Filter Design

Now we determine unit-sample response h(n) or system function H(z) with 
targeted specifications for minimum complexity.

FIR filters are designed either by the windowing design method or by 
least-square design method. These filters are discussed in Chapter 10.

An analog IIR filter is first designed and converted into an equivalent 
digital IIR filter. This conversion required four steps:

Step I.	� A given analog filter is converted into 
a digital filter that has approximately 
identical frequency response.

Step II.	� Specifications of the above digital IIR 
filter are transformed to those of the 
analog IIR filter.

Step III.	� Now analog IIR filter design has been 
completed.

Step IV.	� The digital design is extracted from 
the analog design.

This approach of designing the digital filter from 
analog filter easy and reliable but there is a lack 
of generality.

Flow chart of digital filter design (digital IIR 
filter) is shown in Figure 8.9.

8.2.5	Filter Realization

Construction of a block diagram of the filter comprising of elementary com-
ponents such as adders, multipliers, and delay elements is called filter real-
ization. A digital filter can be realized by direct-forms (I and II), parallel, 
cascade, and transposed forms.

8.2.6	Filter Implementation

Filter implementation is carried out by building the filter either in software or 
in hardware. Filters are also implemented by a combination of software and 
hardware.

FIGURE 8.9  Flowchart of digital 
filter design (digital IIR filter).
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8.3	� COMPARISON BETWEEN DIGITAL AND ANALOG 
FILTERS

A comparative study between digital filter and analog filter is given in Table 8.4.

TABLE 8.4 

S. 
No. Analog filters Digital filter
1. In analog filters, both inputs and 

outputs are continuous-time signals.
In digital filters, both inputs and 
outputs are discrete-time signals.

2. Implementation of such filters is carried 
out using passive components (resistors, 
capacitors, inductors) and active 
components (transistors, operational 
amplifiers).

These are implemented on a digital 
computer or microcomputer using 
DSP integrated circuits. Three basic 
elements such as adder, multiplier, 
and delay elements are used for 
implementing digital filters.

3. These operate in the infinite 
frequency range theoretically but 
are limited in practice by the finite 
maximum operating frequencies of 
the semiconductor devices used. For 
example, OP AMPs function upto 
100 MHz, and higher frequencies are 
handled by microwave devices.

The frequency range is restricted to half 
of the sampling rate. It is also restricted 
by the maximum computational speed 
available in a particular application. 
This is a drawback of a digital filter.

4. Main disadvantages of analog filters 
are their higher noise sensitivity, 
nonlinearities, dynamic range 
limitations, lack of flexibility in 
designing and reproductivity, errors 
generated due to drift, and variations 
in the value of active and passive 
components used in circuits.

Digital filters require additional 
A/D and D/A converter sections for 
connecting to the physical analog world.

5. These have a higher frequency range 
of operation as well as they can interact 
directly with the real analog world.

The main advantages of digital filters 
are that they are insensitive to noise, 
have higher linearity, unlimited 
dynamic range, flexibility in software 
design, high accuracy, reliability is 
higher.

DSP.CH08_2pp.indd   315DSP.CH08_2pp.indd   315 3/23/2022   11:45:07 AM3/23/2022   11:45:07 AM



316 • Digital Signal Processing 

8.4	 COMPARISON BETWEEN IIR AND FIR DIGITAL FILTERS

A comparison between IIR and FIR digital filters is given in Table 8.5.

TABLE 8.5 

S. 
No. IIR Digital filters IIR Digital filters
1. IIR digital filters are characterized by 

rational system function as

0

1

( )
1

M
K

K
K

N
K

k
K

B z
H z

A z

−

=

−

=

=
+

∑

∑

FIR digital filters are characterized by 
system function which is not rational as

1

0

( )
M

K
k

K

H z B z
−

−

=

= ∑  

2. The impulse response of these digital 
filters is computed for infinite number 
of samples (points), that is, h(n) ≠ 0, 
0 ≤ n < ∞ where h(n) is the impulse 
response of the above filter. Hence 
these are called Infinite Impulse 
Response (IIR) digital filters.

The impulse response of these 
digital filters is computed for finite 
number of samples (points), that is, 

0,  0 – 1

0,  elsewh e

( )

er

h n n M≠ ≤ ≤

=  

Hence these are called Finite Impulse 
Response (FIR) digital filters.

3. These filters do not have linear phase 
and these are used where some phase 
distortion is tolerable.

These filters have linear phase 
characteristics. These filters are used 
in speech processing to eliminate the 
adverse effects of frequency dispersion 
due to the non-linearity of phase.

4. Theoretically, these filters are stable. 
After truncation their coefficients 
become unstable.

These filters are realized by direct 
convolution which is why these are 
stable.

5. These filters have less flexibility for 
obtaining non-standard frequency 
responses or for those filters for which 
analog filter design techniques are not 
available.

These filters have greater flexibility to 
control the shape of their magnitude 
response and realization efficiency.

6. These filters are usually realized by a 
recursive method. The present output 
of these filters also depends on previous 
outputs as well as present and past 
inputs. It is a feedback system.

These filters are generally realized 
nonrecursively or by direct convolution. 
These are not feedback systems. The 
present output of these filters does not 
depend on previous outputs.

(Continued)
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S. 
No. IIR Digital filters IIR Digital filters
7. IIR filters are more susceptible to 

round-off noise associated with finite 
precision arithmetic, quantization error, 
and coefficient in accuracies.

These effects are less severe in FIR 
digital filters.

8. There is a shorter time delay in these 
filters.

Time delay increases with increase in 
the order of the filter.

9. These, require a lesser number of 
arithmetic operations and these have 
lower computational complexity and 
smaller memory requirements.

For sharp amplitude response, we 
require higher-order FIR digital filter. 
This is the main drawback of an FIR 
filter.

10. IIR filters have resemblance with analog 
filters. The common method for IIR 
digital filter design is to design an IIR 
analog filter followed by analog-to-
digital transformation by either method 
given below: invariant impulse response 
method, bilinear transformation 
method, etc.

FIR filters are unique to the discrete-
time domain. These cannot be derived 
from analog filters.

8.5	 REALIZATION PROCEDURES FOR DIGITAL FILTERS

Digital filters can be realized in various ways. Realization depends upon the 
relationship between input sequence and output sequence of the digital fil-
ter. These realization procedures can be classified into three major categories 
given as:

1.	 recursive realization,

2.	 non-recursive realization, and

3.	 FFT realization.

8.5.1	Recursive Realization

A digital filter is said to be recursively realized if its present output y(n) 
depends both on the previous outputs as well as on the present and previous 
inputs. It requires the feedback of output. Recursive realization is shown in 
Figures 8.10 and 8.11:
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System function	
1 2 3

0 1 2 3
1 2 3

1 2 3

( )
( )

( ) 1

z z z

z z z

Y z B B B B
H z

S z A A A

− − −

− − −

+ + +
= =

+ + +
� (8.19)

is a recursively realized digital filter.

FIGURE 8.10 

FIGURE 8.11  Block diagram of a recursively realized digital filters.

8.5.2	Non-recursive Realization

Non-recursive realization is one in which present output y(n) depends only on 
present and past values of inputs but not on previous values of outputs. There 
is no feedback of outputs. Non-recursive realization is shown in Figure 8.12.

System function	 1 2 3
0 1 2 3( ) z z zH z B B B B− − −= + + + � (8.20)

where B0, B1, B2, B3 are the filter coefficients.

FIGURE 8.12  Block diagram of a nonrecursively realized digital filter.
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8.5.3	Fast Fourier Transform (FFT) Realization

In this realization procedure, the input signal s(n) is transformed by the FFT 
algorithms thereby increasing the computational speed considerably. After 
filtering the spectrum of the signal, an inverse FFT transformation is per-
formed. FFT realization is shown in Figure 8.13.

FIGURE 8.13  Block diagram of FFT realization.

From the spectrum of input signal, we can choose any frequency content 
either low-frequency, high-frequency or other frequencies.

Note. IIR digital filters are easily realized using the recursive realization 
procedure. FIR digital filters are easily realized using either non-recursive 
realization or FFT realization procedures.

8.6	 NOTCH FILTERS

A notch filter is a filter that contains one or more notches or ideally perfect 
nulls in its frequency response characteristics. Figure 8.14 shows the fre-
quency response characteristics of a notch filter.

FIGURE 8.14  Frequency response characteristics of a notch filter.

There are two nulls at frequencies ω0 and ω1. Null points are frequency 
points where amplitudes are zero.

These filters are useful in many applications where some specific fre-
quency components are to be eliminated. These are used in instrumentation 
and recording systems that have a power-line frequency of 60 Hz or 50 Hz 
and their harmonics are to be eliminated.
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To insert a null in the frequency response of a filter at a frequency ω0, 
there is a need to introduce a pair of complex-conjugate zeros on the unit 
circle at an angle.

	 0
1

jz e w= �

	 0
2 1

jz z e w−∗= = �

Thus the system function for an FIR notch filter is given by

	 ( )( )1 1
0 1 2( ) 1 1H z B z z z z− −= − − �

		  0 1 0 1
0(1 )(1 )z zj jB e ew w− −= − − �

		
0 0 1 2

0 (1 )(1 )j jB e e z zw w − − = − − + �

		
0 0

1 2
0 1 2

2

j je e
B z z

w w−
− −  +

= − +  
  

 �

or	 1 2
0 0( ) 1 2cosH z B z zw − − = − + � (8.21)

where B0 is a constant.
Figure 8.15 shows the frequency 

response of a notch FIR filter which 

has a null at 
4
pw = .

There is a problem associated with 
the FIR notch filter. The problem is 
that the notch has a relatively large 
bandwidth. Due to the large band-
width, other frequency components 
around the desired null are severely 
attenuated. For reducing the band-
width of the null, we resort to a more 
sophisticated longer FIR filter.

Now we want to improve the fre-
quency response characteristics by 
inserting poles in the system function 
H(z) of Eq. (8.21).

We place a pair of complex-
conjugate poles at

FIGURE 8.15  Frequency response characteristics 
of a notch filter without poles H(z) = B0 [1 − 2 

cos ω0z−1 + z−2] where B0 is a constant,  
(a) magnitude response characteristics of a 

notch filter (null at ω = π/4) and  
(b) phase response characteristics of a notch 

filter (null at ω = π/4).
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	 0 0
1 2 1 and j jp re p p rew w−∗= = = �

These poles introduce a resonance in the vicinity of the null and reduce 
the bandwidth of the notch. The resulting system function of a notch filter 
with one pair of the complex conjugate of zeros and one pair of the complex 
conjugate of poles is given by

	
( )( )

( )( )
1 1

0 1 2

1 1
1

1 1
( )

1 1z

B z z z z
H z

p z p z

− −

− −

− −
=

− − �

		
( )( )

( )( )
0

0 0

0 1 1
0

1 1

1 1

1 1

j j

j j

B e z e z

re z re z

w w

w w

− −

−− −

− −
=

− − �

or	
1 2

0
0 1 2 2

0

1 2cos
1 2 cosz

z z
H B

r z r z
w
w

− −

− −

− +
=

− +
� (8.22)

The frequency response charac-
teristics of a notch filter with a pole 

at r = 0.85 and null at 
4
pw =  given in 

Eq. (8.22) are plotted in Figure 8.16.
By comparing the frequency 

response of the FIR filter shown in 
Figures 8.15 and 8.16, we see that 
the introduction of poles reduces the 
bandwidth of the notch. The intro-
duction of a pole in the vicinity of the 
null reduces the bandwidth of the 
notch and also results in a small ripple 
in the pass-band of the filter due to 
resonance produced by the pole. The 
effect of the ripple can be reduced by 
inserting additional poles and/or zeros 
in the system function of the notch 
FIR filter.

8.7	 COMB FILTERS

The simplest form of a comb filter can be viewed as a notch filter in which the 
nulls occur periodically across the frequency band. It has an analogy with an 

FIGURE 8.16  Frequency response characteristics 
of a notch filter with pole r = 0.85 and null at 

w p= /4 . 
w
w

− −

− −

− +
=

− +

1 2
0

0 1 2 2
0

1 2cos
1 2 cosz

z z
H B

r z r z
  

 (a) Magnitude response characteristics of a notch filter 
with pole at r − 0.85 and null at ω = π/4.  

(b) Phase response characteristics of a notch filter with 
pole at r = 0.85 and null at ω = π/4.
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ordinary comb filter which has periodically spaced teeth. These types of filters 
have applications in a wide range of practical systems such as in the rejection 
of power-line harmonics, suppression of clutter from fixed objects in moving-
target-indication radars.

A simple form of comb filter is illustrated by considering a moving-average 
FIR filter. It is described by the difference equation given as

	
0

1
( ) ( )

1

M

m

y n s n m
M =

= −
+ ∑ � (8.23)

Transfer function of the above filter of Eq. (8.23) can be determined by 
taking z-transform of both sides of Eq. (8.23),

	
0

1
( ) ( )

1

M

m

Y z Z s n m
M =

 
= − + 

∑ �

		
0 0

1 1
( ) ( )

1 1

M M
m

m m

s n m z S z
M M

−

= =

 
= − = + + 

∑ ∑ �

or	
0

( ) 1
( ) 1

M
m

m

Y z
z

S z M
−

=

=
+ ∑ �

where 
0

M
m

m

z−
=
∑  is a geometric progression with first term equal to 1 and common

 
ratio is equal to z−1.

or	
1 1

1

( ) 1 1 ( )
( )

( ) 1 1

MY z z
H z

S z M z

− +

−

 −
= =  + − 

� (8.24)

Frequency response of FIR filter given in Eq. (8.24) is determined by substi-
tuting z = e jω,

or	
( )
( )

1

1

11
( )

1 1

Mj

j

e
H

M e

w

w
w

− −

−

 −
 =
 + − 

�

		
( 1)1 1

1 1

j M

j

e
M e

w

w

− +

−

 −
=  + − 

�

		
( 1)/2 ( 1)/2

/2
/2 /2

1 1
1

j M j M
j M

j j

e e
e

M e e

w w
w

w w

+ − +
−

− −

 − −
=  + − 

�

		

( 1)/2 ( 1)/2

/2

/2 /2

21
1

2

j M j M

j M

j j

e e
j

e
M e e

j

w w

w
w w

+ +

−
−

  −
  
  =  +  −
  
   

�
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or	 ( )
/2 sin [ 1] /21

( )
1 sin /2

j M M
H e

M
w w

w
w

−  +
=  

+   
� (8.25)

From observation of Eq. (8.25), we see that the filter has zeros on the unit 
circle at
	 2 / 1( ) , 0,  1,  ... ,j m Mz e m Mp += = � (8.26)

Note. Pole at z = 1 is cancelled by the zero at z = 1. So that the FIR filter 
does not contain poles outside z = 0.

A plot of mangitude characteristics of frequency response of Eq. (8.25) 
shows the existence of the periodically spaced zeros in frequency response 

at 
2

1m

m
M

pw =
+

 for m = 1, 2, 3,... M. Figure 8.17 shows magnitude response
 

characteristics of filter given in Eq. (8.25).

FIGURE 8.17  Magnitude response characteristics for comb filter is given by Eq. (7.23) with M = 10.

In the general case, we can develop a comb filter by taking an FIR filter. 
It is given by

	
0

( ) ( )
M

m

m

H z h m z−
=

= ∑ � (8.27)

Replacing z by zP in Eq. (8.27), where P is the positive integer, we get

	 ( )
0 0

( ) ( ) ( )
M MmP Pm

P
m m

H z h m z h m z
− −

= =

= =∑ ∑ � (8.28)

If H(ω) is the frequency response of the original FIR filter then frequency 
response of the filter of Eq. (8.28) is given by

	
0

( ) ( ) ( )
M

j Pm
P

m

H h m e H Pww w−

=

= =∑ � (8.29)

Consequently, frequency response characteristics HP(w) is a P-order rep-
etition of frequency response of original filter H(w) in the range
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FIGURE 8.18  Comb filter with frequency response Hp(ω) obtained from H(ω).  
(a) Frequency response H(ω). (b) Frequency response Hp(ω) for P = 5.

0 ≤ w < 2ω. Figure 8.18 shows the relationship between HP(ω) and H(ω) for 
P = 5.

Now, let the original FIR filter with transfer function H(z) have a spectral 
null at some frequency. Then the filter with transfer function HP(z) has peri-
odically spaced spectral null at

	 0

2
, 0,1,2,3,... 1m

m
m P

P
pw w= + = − �

Figure 8.19 shows an FIR comb filter with M = 3 and P − 3. This filter

FIGURE 8.19  Network structure of an FIR digital comb filter with M = 3 and P = 3.

can be viewed as an FIR filter of length 10 with only 4 of the 10 filter coef-
ficients non-zero. We know that the transfer function of the original FIR filter 
is given by

	
( 1)

1

1 1
( )

1 1

Mz
H z

M z

− +

−

 −
=  + − 

�

But we also know that

	 ( )
( 1)1 1

( )
1 1

P M
P

P P

z
H H z

M z
w

− +

−

 −
= =  + − 

� (8.30)

The frequency response of the original FIR filter is given by

	
/2 sin [( 1)/2]

( )
1 sin( /2)

j M Me
H

M

w w
w

w

− +
=

+ �
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But we know that Hp(ω) = H(Pω)

∴	
/2 sin [( 1)/2]

( )
1 sin( /2)

j M

P

P Me
H

M P

w
ww

w

− +
=

+
� (8.31)

The filter has zeros on the unit circle at z = ej2πm/L(M+1), for all integer values 
of in except in m = 0, P, 2P, ..., MP.

Figure 8.20 shows magnitude response for P = 5 and M = 10.

FIGURE 8.20  Magnitude response characteristics for a comb filter given  
by Eq. (8.31) with P = 5 and M = 10.

8.8	 ALL-PASS FILTERS

An all-pass filter is defined as a system that has a constant magnitude response 
at all frequencies.

	 1,( 0) |  | H ww p= ≤ ≤ � (8.32)

The pure delay system is an example of an all-pass filter and its system 
function is given by
	 ( ) mH z z−= � (8.33)

This system passes all signals without modification except for a delay of m 
samples. All-pass filters have application as phase equalizers. When these are 
placed in a cascade with a system that has an undesired phase response, a 
phase equalizer compensates for the poor phase characteristics of the system 
and produces an overall linear phase response.
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8.9	 DIGITAL SINUSOIDAL OSCILLATORS

It can be viewed as a limiting form of a two-pole resonator. This resonator has 
complex-conjugate poles which lie on the unit circle.

The transfer function of second-order systems is given by

	
0

1 2
1 2

( )
1

B
H z

A z A z− −=
+ + � (8.34)

where A1 and A2 are parameters and are given by

	 2
1 0 22 cos and A r A rw= − = �

This has complex-conjugate poles at p = re± jω0

	
0

1 2 2
0

( )
1 2 cos

B
H z

r z r zw − −=
− + � (8.35)

Unit-sample response,

	
1 1 0

1 2 2
0

( ) [ ( )]
1 2 cos

B
h n Z H z Z

r z r zw
− −

− −

 
= =  − + 

�

or	 0
0

0

( ) sin( 1) . ( )
sin

nB r
h n n u nw

w
= + � (8.36)

If the poles are located on the unit circle |z| = 1 or r = 1 and B0 is set to A0 
sin ω0, then

	 0 0( ) (sin 1) ( )h n A n u nw= + � (8.37)

Impulse response of the second-
order system with complex-conjugate 
poles on the unit circle |z| is sinusoi-
dal and this system is called a digital 
sinusoidal oscillator. It is also called 
a digital sinusoidal generator. It is a 
basic component of a digital frequency 
synthesizer.

The difference equation of system of Figure 7.21 is given by

	 1 0( ) ( 1 ( )2) ( )y n A n y n B nd= − − − + � (8.38)

where parameters A1 = −2 cos ω0 and B0 = A sin ω0

FIGURE 8.21  Digital sinusoidal oscillator.
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The initial conditions are

	 1 0 an 2) 0( (d )y y− = − = �

	 1 0( ) ( 1) ( 2) ( )y n A y n y n B n= − − − − + δ �

By iteration method using initial conditions given above

n = 0,	 0 0(0) 2cos ( 1) ( 2) sin (0)y y y A= + ω − − − + ω δ �
		  0 0 02cos (0) (0) sin ( ) sinA l A= + ω − + ω = ω �

n = 1,	 0 0(1) 2cos (0) ( 1) sin ( )y y y A l= + ω − − + ω δ �
		  0 0 02cos ( sin ) (0) sin (0)A A= + ω ω − + ω �
		  0sin2A= + ω �

n = 2,	 0 0(2) 2cos ( ) (0) sin (2)y y l y A= ω − + ω δ �
		  0 0 0 02cos ( sin2 ) sin sin (0)A A A= ω ω − ω + ω �
		  0 0 02cos sin2 sin 0A A= ω ω − ω + �
		  0 0 0 02 cos [2sin cos ] sinA A= ω ω ω − ω �

		  2
0 0sin [4cos ]A l= ω ω − �

		

w w w= − =


3
0 0 03 sin 4sin sin3

.

A A

�
		  and so forth.

Note. Application of the impulse at n = 0 serves the purpose of “begin-
ning of sinusoidal oscillation.”

In some practical applications, we require modulation of two sinusoidal 
carrier signals in phase quadrature, one is A sin (ω0n and second is A cos ω0n. 
These signals can be generated by coupled-form oscillator. These signals can 
be obtained by using trigonometric formulas given below

			   cos cos c( os sin sin)C D C D C D+ = − �
			   sin sin c( os cos sin)C D C D C D+ = + �

where from definition C = ω0, D = ω0

and	 0cos( ) ( )cy n n u nw= � (8.39)

	 0sin( ) ( )sy n n u nw= � (8.40)
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Thus we find two coupled difference equations

	 0 0( ) ( ) (cos 1 sin 1) ( ) ( )c c sy n y n y nw w= − − − � (8.41)

	 0 0( ) ( ) (sin 1 cos 1) ( ) ( )s c sy n y n y nw w= − + − � (8.42)

Eqs. (8.41) and (8.42) can be written 
in the matrix form as

0 0

0 0

( ) cos sin ( 1)
( ) sin cos ( 1)

c c

s s

y n y n

y n y n

w w
w w
− −     

=     −     
�(8.43)

The structure of the realization of 
Eq. (8.43) is shown in Figure 8.22.

8.10	DIGITAL RESONATORS

It is a special two-pole band-pass filter with the pair 
of complex-conjugate poles placed near the unit circle 
|z| = 1 or r = 1. Here resonator means that the filter has 
a large magnitude response in the vicinity of the pole 
location. The resonant frequency of the filter is deter-
mined by determining the angular position of the pole. 
These are useful in many applications such as in band-
pass filtering and speech generation.

Figure 8.23 illustrates the pole-zero pattern of a 
digital resonator without zeros.

Figure 8.24 shows the magnitude response of a dig-
ital resonator without zeros.

FIGURE 8.22  Realization of the coupled-
form oscillator.

FIGURE 8.23  Pole-zero 
pattern of digital resonator 

without zeros.

FIGURE 8.24  Magnitude response of a digital reso-
nator without zeros.

FIGURE 8.25  Phase response of a digital  
resonator without zeros.
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Figure 8.25 shows the phase response of a digital resonator without zeros.
Digital resonators are designed by selecting the complex-conjugate poles at

	 0
1

jp re w= �

and	 0
2 1 ,  0 1jp p re rw∗= = < <  �

In addition to one pair of complex-conjugate poles, we can select up to 
two zeros. There are many possible choices but we have two cases of special 
interest.

Case I.	 One choice is to locate the zeros at the origin (z = 0).
Case II.	Another choice is to locate a zero at z = 1 and other at z = 1.

Choice of case II completely removes the response of the filter at fre-
quencies ω = 0 and ω = π. It is useful in many DSP applications.

The transfer function of a digital resonator with zeros at the origin z = 0 
is given by

	 ( )( )0 0

0
1 1

( )
1 1j j

B
H z

re z re zw w− −
=

− −
� (8.45)

or	 0
1 2 2

0

( )
1 2 cos

B
H z

r z r zw − −=
− +

� (8.46)

The frequency response of digital resonator given in Eq. (8.45) is.

	 ( )( )0 0

0( )
1 1j j j j

B
H z

re e re ew w w w− −
=

− − �

	 ( )( )0 0 0 0

0
0( ) ( ) |

1 1j j j j

B
H H

re e re e
w w w w w w

w w = − −
= =

− − �

		  ( )( )0

0
21 1 j

B

r re w−
=

− − �

Magnitude of H(ω0)

	 ( )
0

0 2
0

( )
1 1 2 cos2

B
H

r r r
w

w
=

− + − � (8.47)

Now we want to determine the value of B0 for unity magnitude,

	 0( | 1| )H w = � (8.48)

or	
( )

0

2
0

1
1 1 2 cos2

B

r r r w
=

− + −
�
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or	 ( ) 2
0 01 1 2 cos2B r r r w= − + − �

where B0 is the desired normalization factor.
Frequency response of the resonator

	 ( )( )0 0

0
1 1

( )
1 1j j

B
H

re z re zw w
w

− −
=

− − �

can be expressed as

	 ( ) ( )
0

2 2
0 0

( )
1 2 cos 1 2 cos

B
H

r r r r
w

w w w w
=

+ − − + − − �

		  0

1 2( ) ( )
B

V Vw w
= �

where V1(ω) and V2(ω) are the magnitudes of the vectors from p1 and p2 to the 
point ω in the unit circle |z| = 1 or r = 1.
	 2

1 0( ) 1 2 cos( )V r rw w w= − − − � (8.50)
	 2

2 0( ) 1 2 cos( )V r rw w w= + − − � (8.51)

θ1(w) and β2(ω) are angles of vectors V1(ω) and V1(ω), respectively.
	 1 2( ) 2 ( ) ( )q w w q w q w= − − � (8.52)

V(ω) takes its minimum value (1 − r) at ω = ω0 for any value r.
Product V1(ω), V2(ω) reaches a minimum value at the frequency.

	
2

1
0

1
cos cos

2r

r
r

w w−  +
=  

 
� (8.53)

It is the resonant frequency of the filter. We have observed that when r is 
very close to unity, the resonant frequency ω will be approximately equal to ω0. 
ω0 is the angular position of the pole. It is also observed that as r approaches 
unity, the resonance peak becomes sharper because V1(ω) changes more rap-
idly in relative size in the vicinity of ω0. A quantitative measure of the sharp-
ness of the resonance is given by the 3-dB bandwidth of the filter.

3-dB bandwidth is given by
	 2(1 )rw∆ ≈ − � (8.54)

r is close to unity.
Figures 8.24 and 8.25 show the magnitude and phase response of a digital 

resonator for ω = π/3.
Phase response changes very rapidly and suddenly near resonant 

frequency.
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System function of the digital resonator when the zeros of the digital res-
onator are placed at z = 1 and z = −1 is given by

	 ( )( )0 0

1 1

1 1

(1 )(1 )
( )

1 1j j

z z
H z

re z re zw w

− −

− −

− +
=

− −
� (8.55)

		
2

1 2 2
0

1
1 2 cos

z
E

r z r zw − −

−
=

− +
�

where E is a constant.
Frequency response is determined by substituting z = e jω in Eq. (8.56),

	 0 0

2

( ) ( )

1
( )

1 2 1 2

j

j j

e
H E

re re

w

w w w ww
−

− −

−
=

   − −   
� (8.57)

Here we have observed that the zeros at z = 1 and z = −1 affect both the 
magnitude and phase response of digital resonator.

Magnitude response is given by

	
1 2

( )
( )

( ) ( )
N

H E
V V

ww
w w

= � (8.58)

where N(ω) is given by

	 ( ) 2(1 cos2 )N w w= − � (8.59)

Due to the presence of the zero factor, 
the resonant frequency changes from that 
given by

	
2

1
0

1
cos cos

2r

r
r

w w−  +
=  

 
�

The bandwidth of the filter also 
changes. Figure 8.26 shows the magnitude 
and phase characteristics for ω0 = π/3 and 
r = 0.8. Here we observe that this filter has 
a slightly smaller bandwidth than the reso-
nator which has zeros at the origin, |z| = 0.

There is a very small shift in the reso-
nant frequency due to the presence of the 
zeros.

FIGURE 8.26  Frequency response 
characteristics of a digital resonator with  

zero at ω = 0 and ω = π and ω0 = π/3  
and r = 0.8.  

(a) Magnitude response characteristics  
of a digital resonator with  

zeros at ω = 0 and ω = π and ω0 = π/3  
and r = 0.8.  

(b) Phase response characteristics  
of a digital resonator with  

zeros at ω = 0 and ω = π and π = π/3  
and r = 0.8.
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EXERCISES

1.	 What is filtering? Give some objectives of the filtering process.

2.	 Define analog and digital filters.

3.	 Give a review of analog filter design in brief.

4.	 What are the various considerations in using digital filters?

5.	 Compare digital and analog filters.

6.	 Compare IIR and FIR digital filters.

7.	 Describe various methods of filter realization such as recursive, non-
recursive, and FFT realization.

8.	 Sketch a flow chart of digital filter design.

9.	 Write a summary of pole-zero characteristics of analog filters.

10.	 Discuss the frequency response characteristics of frequency-selective 
filters such as low-pass, high-pass, band-pass, and band-reject filters.

11.	 Describe the phase response of a filter.
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C H A P T E R  9
Design and Analysis of Infinite 
Impulse Response (IIR) Digital 
Filters

9.1	 INTRODUCTION

Digital filters are of two types depending upon the number of sample points 
used to determine the unit-sample (impulse) response of an LTI discrete-time 
system. If infinite number of sample points are used to determine the unit-
sample response then these digital filters are called Infinite-duration Impulse 
Response (IIR) digital filters.

IIR digital filter design procedures are extensions of those originally 
developed for analog filters. In fact, IIR digital filters are commonly used to 
replace existing analog filters.

9.2	� APPROXIMATION OF IIR DIGITAL FILTERS FROM 
ANALOG FILTERS

The corresponding discrete-time transfer function HD(z) of an IIR digital fil-
ter is obtained from the continuous-time transfer function HA(s) of an analog 
filter. This approximation is obtained using one of the following methods:

1.	 impluse response invariance method, and

2.	 bilinear transformation method.

All these methods will be discussed in the next sections.
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9.2.1	Realizability Constraints Imposed on Transfer Function HD(z)

For a realizable IIR digital filter, its transfer function HD(z) must satisfy the 
following constraints:

1.	 It must be a rational function of z with real coefficients.

2.	 Poles of HD(z) must lie within the unit-circle of the z-plane, that is, |z| = 1.

3.	 The degree of numerator polynomial, N(z) must be equal or less than that 
of the denominator polynomial, D(z).

The first constraint is imposed by the assumption that the signals are real. 
The second and third constraints are due to the assumption of a stable and 
causal filter, respectively.

9.2.2	Impulse-Response Invariance Method

In this method, the impulse response of a derived digital filter is the same as 
that of the given reference analog filter at sampling intervals. Now we have a 
reference analog filter and its transfer function, HA(s). It is converted into a 
digital filter with the transfer function HD(z). Figure 9.1 illustrates the impulse 
response of an analog filter and its corresponding derived digital filter. From 
Figure 9.1, it is seen that the impulse response for both the filters is approxi-
mately the same at some given sampling intervals.

FIGURE 9.1  Impulse response for analog filter and derived digital filter is approximately the same.

This method has the following three design steps:
Step I:	 Deduce impulse response hA(t) of the analog filter, that is,

	
( ) Inverse Laplace Transform of ( )A Ah t H s=

	 1 (£ .[ )]AH s−=
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Step II:	� Deduce the discrete-time version of hA(t). It can be achieved by 
putting t = nTs.

	 hD(nTs) = hA(t)|t = nTs, n = 0, 1, ...
where		  t = Continuous-time independent variable

	 n = Discrete-time index

	 Ts = Sampling interval 
1

sf
, in seconds

	 fs = Sampling rate in Hz.

Step III:	 Determination of HD(z) by taking z-transform of hD(nTs)
	 HD(z) = z-transform of hD(nTs)
	 = Z  [hD(nTs)]

HD(z) is the required transfer function of digital filter.

EXAMPLE 9.1
Design an IIR digital filter from second-order analog filter whose transfer 
function is given as HA(s) = b/{(s + a)2 + b2} using impulse-response invariance 
method.

Solution:
We have the transfer function of second-order analog filter,

	 2 2( ) where .
( )Z

b
H s s j

s a b
s= = = Ω

+ +
 

Step I.	� Impulse response hA(t) of an analog filter is determined by taking 
inverse Laplace transformation of HA(s).

	 hA(t) = Inverse Laplace transform of HA(s)

	 [ ]1 1
2 2£ ( ) £

( )A

b
H s

s a b
− −  

= =  + + 

	
1£

( )( )
b

s a jb s a jb
−  

=  + + + − 

	
1£

( ) ( )
A B

s a jb s a jb
−  

= + + + + − 

	 where A and B are constant (from partial fraction expansion)

	
1 ( 1/2 ) (1/2 )

£
( ) ( )

j j
s a jb s a jb

−  −
= + + + + − 

	
1 1
2 2

jbt jbtat ate e e e
j j

− −= − + �
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	 sin
2

jbt jbt
at ate e

e e bt
j

−
− − −

=  
 

�

	 or	
sin , 0

( )
0, otherwise

at

A

e bt t
h t

− ≥= 


�

Step II.	 ( ) ( ) |D A t nTsh nTs h t == �
	 sin sins

s

anTat
st nT

e bt e bnT−−

=
 = = 

�

	 where Ts is the sampling period.

	 or	
sin , 0

( )
0, otherwise

s sanT bnT

D s

e n
h nT

− ≥= 


�

	 where hD(nTs) is the impulse response of digital filter.

Step III.	� Determination of transfer function of digital filter HD(z) from 
hD(nTs).

	 ( ) -transform of ( )D D sH z z h nT=
	 ( ) )sinsanT

D s sZ h nT Z e bnT−= =   

	 22

sin
2 cos

s

s s

aT
s

aT aT
s

ze bT
z ze bT e

−

− −=
− +

 

This is the transfer function of derived digital FIR filter.
Poles of analog filter which are complex conjugate in the 

s-plane and the corresponding frequency response are shown 
in Figure 9.2(a). Its frequency response is seen to have a peak 
shape. Figure 9.2(b) illustrates the pole-zero location and fre-
quency response of digital filters.

The magnitude has been scaled by the value |HA(j0)|, so that 
at zero frequency, both the responses commence at zero dB.

When the analog filter is band limited the impulse-response 
invariance method produces a digital filter whose frequency 
response is given by

	
1

( ) | ( ) ( )j
j

D D Az e
s

H z H e H j
T

w
w

=
= = Ω � (1)

Transfer function H(s) can be written in the general partial 
fraction form

	 2 2
1

( )
( )

M
m

A
m m

Rb
H s

s a b s s=

= =
+ + −∑ � (2)
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FIGURE 9.2  (a) Pole locations and frequency response of the analog filter, 
(b) Pole-zero locations and frequency response of the digital filter.

where Rm is the mth residue at the mth pole s = sm of the transfer function 
HA(s). The poles may be real or complex conjugate.

Corresponding transfer function for digital filter will be given by

	 1
1

( )
1 s m

M
m

D T s
m

R
H z

e z− −
=

=
−∑ � (3)

Rm and sm have their usual meaning.
A digital filter has an extremely high gain due to high sampling rate. For 

this reason, it is advised to multiply Eq. (3) by Ts and then use it.

	 1
1

( )
1 s m

M
s m

D T s
m

T R
H z

e z−=

=
−∑ � (4)

Taking the inverse z-transform of above Eq. (4), we get

	 [ ]1 1
1

1

( ) ( )
1 s m

M
s m

D D T s
m

T R
h z Z H z Z

e z
− −

− −
=

 
= =  − 

∑
or	 ( )( )D s A sh n T h nT= � (5)

It is the basis of impulse-response invariance method that we choose 
a unit-sample response for the digital filter that is similar to the impulse 
response of the analog filter.
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Distortion in the frequency response is introduced due to aliasing in the 
impulse-response invariance method of deriving the digital IIR filter.

The relationship between analog and digital frequency is linear and con-
sequently, the shape of frequency response is preserved except for aliasing.

This method can only be used for band-limited filters. So first of all, all 
filters are band limited to avoid severe aliasing distortion.

9.2.3	Bilinear Transformation Method

In impulse-response invariance method, the derived IIR digital filter has 
exactly the same impulse response as the original analog filter for continuous 
time t = nTs, where Ts is the sampling time.

Now, we have another approximation technique of IIR digital filters from 
analog filters. It is called bilinear transformation method. Digital filter derived 
from this method has approximately the same time-domain response as the 
original analog filter for any value of input.

By bilinear transformation method, digital filter is derived from the ana-
log filter as

	 (2 / )( 1/ 1)( ) ( ) |D A s Ts z zH z H s = − += � (9.1)

where	 Transfer function of digital f( ) ilterDH z =

	 Transfer function of analog f( ) ilterAH s =

	 Sampling period.sT =
Bilinear transformation method is one of the best currently available 

methods for designing IIR digital filters from reference analog filters due 
to simplicity and similarity of the frequency response of IIR digital filters 
to that of reference analog filters. This method produces true frequency-to-
frequency transformation.

The bilinear transformation method is applicable to all types of filters.

9.2.3.1 Derivations of Formula for Bilinear Transformation Method

Figure 9.3 shows a simple block diagram of an analog filter. In this figure, the 
analog filter is an analog integrator and its response is shown.

FIGURE 9.3  Analog filter is an analog integrator.

	
(2 / –( 1/ 1) )( ) ( ) |

sD A s T z zH z H s = +=
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For this derivation, we consider a transfer function of an analog integrator 
given by

	 1
( )AH s

s
= � (9.2)

Impulse response of the above analog filter is determined as

	 Inverse Laplace transform of ( ) ( )A Ath H s=

	 [ ]1 1 1
£ ( ) £ ( )AH s u t

s
− −  = = =  

� (9.3)

where u(t) is called the unit-step function and it is defined as

	
1, for 0

( )
0, for 0

t
u t

t

+

−

 ≥= 
≤

� (9.4)

Response to an arbitrary input (excitation) s(t) is determined by the con-
volution integral as

	
0

( ) ( ) ( )
t

Ay t s h t dt t t= −∫ � (9.5)

FIGURE 9.4  Response of above analog filter (analog integrator)

If 0 ± < t < t2, Eq. (9.5), can be written as

	 ( )
2

2 2
0

( ) ( )
t

Ay t s t h t dt t= −∫ � (9.6)

	 ( )
1

1 1
0

( ) ( )
t

Ay t s t h t dt t= −∫ � (9.7)

Subtracting Eq. (9.7) from Eq. (9.6), we get

	 ( ) ( ) ( )
2 1

2 1 2 1
0 0

( ) ( ) ( )
t t

A Ay t y t s t h t d s t h t dt t t t− = − − −∫ ∫ � (9.8)
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We know that hA(t2 − τ) = hA(t1 − τ) = 1

	 for 0+ < τ < t1

	 0+ < τ ≤ t2

Substituting the values hA(t2 − τ) = hA(t1 − τ) = 1 in Eq. (9.8), we get

	 ( ) ( )
2 1 2

1

2 1
0 0

( ) ( ) ( )
t t t

t

y t y t s d s d s dt t t t t t− = − =∫ ∫ ∫ � (9.9)

As t1 → t2, from Figure 9.4

	 ( ) ( ) ( ) ( )2 1
2 1 1 22

t t
y t y t s t s t

−
− ≡ +  � (9.10)

Putting t1 = nTs − Ts and t2 = nTs in above Eq. (9.10), we get

or	 ( ) ( ) ( ) ( )
2

s s s
s s s s s s

nT nT T
y nT y nT T s nT T s nT

− +
− − = − +  

or	 ( ) ( ) ( ) ( )
2

s
B s s s s s

T
y nT y nT T s nT T s nT− − = − +  � (9.11)

This is the difference equation of derived digital filter (integrator) from 
analog filter (integrator).

Transfer function of digital integrator can be determined by 
z-transformation of the above difference Eq. (9.11). By z-transforming, we get

	 1 1( ) ( ) ( ) ( )
2

sT
Y z Z Y z z S z S z− − − = + 

or	 ( )1 1( ) 1 ( ) 1
2

sT
Y z z S z S z− −  − = +   

or	
1

1

( ) 1 1
( ) 2 1 2 1

s sT TY z z z
S z z z

−

−

 + + = =   − −  

or	
( ) 1

( )
( ) 2 1

s
D

TY z z
H z

S z z
+ = =  − 

� (9.12)

HD(z) is the transfer function of the digital filter and is defined as the 
ratio of z-transform of output sequence to z-transform of the applied input 
sequence, keeping all initial conditions zero:

	
-transform of output sequence

 
-transform of input s

(
equen e

)
c

z
HD z

z
=

	
[ ( )] ( )
[ ( )] ( )

Z y n Y z
Z s n S z

= =

Eq. (9.12) gives the transfer function of the digital integrator.
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From	
1 1

(s) and ( ) ,  we get
2 1

s
A D

T z
H H z

s z
+ = =  − 

	 (2 / )( 1/ 1)( ) ( ) |
sD A s T z zH z H s = − += � (9.13)

that is, the transfer function of a digital integrator can be obtained by applying 
the bilinear transformation

	
2 1

 to (s)
1 A

s

z
s H

T z
− =  + 

Here the digital filter has been assumed to have approximately the same 
response (time-domain) as the analog filter for any value of input signal.

9.2.3.2 Properties of Mapping of Bilinear Transformation

Here mapping properties of bilinear transformation will be studied. The rela-
tion between the frequency response of the derived digital filter and that 
of the original analog filter can be established by examining these mapping 
properties.

We know that for bilinear transformation method

	
2 1

1s

z
s

T z
− =  + 

� (9.14)

or	 ( 1) 2( 1)ssT z z+ = −

or	 2 2s ssT z sT z+ = −

or	 2 2s ssT z z sT− = −

or	 ( ) ( )2 2s sz sT sT− = − +

or	
( )2

2
s

s

sT
z

sT

− +
=

−

or	
2
2

s

s

sT
z

sT
+

=
−

or	
2 /
2 /

s

s

sT s
z

sT s
+

=
−

� (9.15)

s = σ + jω is a complex variable that is used in the Laplace transform of 
the analog system and z = re jθ is another complex variable that is used for 
z-transform of digital systems:

	
2 / (2 )
2 / (2 )

j s s

s s

T j T j
re

T j T j
q s w s w

s w s w
+ + + +

= =
− − − −
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( )
( )

1 1
2 2

tan (2 ) tan /2 /

2 2

2 /

2 /
sj Ts Ts

s

T
e

T

w s w ss w
s w

− − + + − 
+ +

=
− − � (9.16)

Comparing both sides of Eq. (9.16), we get

	
( )
( )

2 2

2 2

2 /

2 /
s

s

T
r

T

s w
s w

+ +
=

− + � (9.17)

and	 ( ) ( )
1 1tan tan

2 / 2 /s sT T
w wq

s s
− −= +

+ − � (9.18)

Let us consider Eq. (9.17):

Case I:	� if σ > 0, then r > 1, that is, the bilinear transformation maps the 
open right-half s-plane onto the region exterior to the unit-circle 
|z| = 1, that is, r = 1 of the z-plane.

Case II:	� if σ < 0, then r < 1, that is, the bilinear transformation maps the 
open left-half s-plane onto the interior of the unit-circle |z| = 1 of 
the z-plane.

Case III:	� if σ = 0, then r = 1, that is, the bilinear transformation maps the 
imaginary axis of the s-plane onto the unit-circle |z| = 1 of the 
z-plane.

Now for Case III where σ = 0 and r = 1. Substituting σ = 0 in Eq. (9.18), 
we get

	 ( ) ( )
1 1 1tan tan 2 tan

2 / 2 / 2
s

s s

T
T T

ww wq
s s

− − −  = + =  + −  

or	 12 tan
2

sTwq −  =  
 

� (9.19)

Hence from Eq. (9.19), we get

	 12 tan
2

sTwq −  =  
 

if	 1 10
0 then 2 tan 2 tan (0) 0

2
sTw q − − = = = = 

 

if	 1 1 then 2 tan 2 tan ( )
2

sTw q p− −+∞ = +∞ = = +∞ = + 
 
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1.	 The origin (σ, ω) = (0, 0) of s-plane maps onto points (r, θ) = (1, 0) of the 
z-plane.

2.	 Positive imaginary axis (σ, ω) = (0, +∞) of s-plane maps onto point (r, θ) = 
(1, +π), that is, upper semicircle |z| = 1.

3.	 Negative imaginary axis (σ, ω) = (0, −∞) of s-plane maps onto point (r, θ) = 
(1, −π), that is, lower semicircle |z| = 1.

This transformation is shown in Figure 9.5.

FIGURE 9.5  Illustration of bilinear transformation from s-plane onto z-plane.

9.2.3.3 Warping Effect

At low frequencies, the derived digital filter has the same frequency response 
as the reference analog filter. For higher frequencies, the relation between 
analog frequency w and digital frequency W is highly nonlinear and a distor-
tion is introduced in the frequency scale of the digital filter relative to the 
analog filter. This distortion is known as warping effect:

	 12 tan
2

sTwq −  =  
 

� (9.20)

or	 1tan
2 2

sTwq −  =  
 

or	 1tan ,  since 
2 2

s s
s

T T
T

w q−Ω  = = Ω 
 

or	
12

tan
7 2

sTw−  Ω = Ω =  
 

� (9.21)
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Eq. (9.21) relates the frequency of reference analog filter (ω) and 
frequency of the derived digital filter (Ω). Warping effect influences both 
amplitude response phase response of a digital filter at higher frequencies.

9.2.3.4 �Influence of the Warping Effect on the Amplitude Response of  
a Digital Filter

Demonstration of influence of warping effect on the amplitude response of a 
derived digital filter from reference analog filter is performed by

FIGURE 9.6  Demonstration of influence of the warping effect on the amplitude response of  
a derived digital filter from reference analog filter in bilinear transformation method.

Considering an analog filter with a number of passbands centered at fixed 
intervals is shown in Figure 9.6. The derived digital filter has the same num-
ber of passbands. But its center frequencies and bandwidths of passbands is 
reducing disproportionately. This is shown in Figure 9.6.

9.2.3.5 �Influence of the Warping Effect on the Phase Response of  
a Derived Digital Filter

For the purpose of demonstrating the influence of warping effect on the phase 
response of a derived digital filter from a reference analog filter, we consider 
an analog filter with linear phase response. As we have shown in Figure 9.7, 
the phase response of a derived digital filter is nonlinear.
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FIGURE 9.7  Demonstration of influence of the warping effect on the phase response of a derived 
digital filter from reference analog filter in bilinear transformation method.

EXAMPLE 9.2
Obtain an IIR digital filter from the second-order analog filter whose transfer 
function is given as HA(s) = s + a/(s + a)2 + b2 using impulse-response invari-
ance method.

Solution:
Step I:	� Impulse response hA(t) of an analog filter is determined by inverse 

Laplace transformation of HA(s).

	 Inverse Laplace transformation of ( ) ( )A Ah Ht s=

	 [ ]1 1
2 2£ ( ) £

( )A

s a
H s

s a b
− − + 

= =  + + 

	
1 1

£
( )( )

s
s a jb s a jb

−  +
=  + + + − 

	
1£

( ) ( )
A B

s a jb s a jb
−  

= + + + + − 

	
1 1 / 2 1 / 2

£ (by partial fraction)
s a jb s a jb

−  
= + + + + − 
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	 ( ) ( )1 1
2 2

a jb t a jb te e− + − −= +

	 cos
2

jbt jbt
at ate e

e e bt
−

− − +
=  

 

or	
cos( ), 0

( )
0, otherwise

at

A

e bt t
h t

− ≥= 


 

Step II:	 h(nTs) = hA(t)|t=nTs = [e−at cos bt]t=nTs = e−anTs cos bnTs

where Ts = Sampling period

or	 ( ) cos , 0
0, otherwise

sanT
s

s

e bnT n
h nT

− ≥= 


Step III:	 Determination of H(z):

	 ( )-transform of( )  sH z z h nT=
	 ( ) cossanT

s sZ h nT Z e bnT− = =    

	 ( )( )
cos 1

( ) ( )1 1

1

1 1

s s

s s

aT bT

a jb T a jb T

e z

e z e z

− −

− + − +− −

−
=

− −

or	
1

21 2

1 cos
( )

1 2 cos

s

s s

aT
s

aT aT
s

e bT z
H z

e bT z e z

− −

− −− −

−
=

− +
This is transfer function of digital IIR filter and its network structure is 

shown in Figure 9.8.

FIGURE 9.8  Network structure of above IIR digital filter.

EXAMPLE 9.3
Convert following analog filter into digital filter using impulse-response invar-
iance method.
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FIGURE 9.9  Analog filter.

Solution:
Determination of HA(s):

	
0

1
( ) ( ) ( )

t
s t RI t I t dt

C
= + ∫ � (1)

	
0

1
( )

t
y t dt

C
= ∫ � (2)

Taking the Laplace transform above Eqs. (1) and (2), we get

	
1 1

( ) ( ) ( ) ( )S s RI s I s R I s
Cs Cs

 = + = + 
 

� (3)

	 1
( ) ( )Y s I s

Cs
= � (4)

From Eqs. (3) and (4), we get

	
1

( ) ( ) ( 1) ( )S s R Y s Cs RCs Y s
Cs

 = + = + 
 

or	
( ) 1

( )
( ) 1A

Y s
H s

S s RCs
= =

+
� (5)

Determination of hA(t) from HA(s):

	 Inverse Laplace transform of ( ) ( )A Ath H s=

	 [ ]1 1 1
£ ( ) £

1AH s
RCs

− −  = =  + 

	

1 /

1
1

£
1

1

t RCRC e
RC

RC

− −

 
 

= = 
 +
 

or	

/1
, 0

( )
0, otherwise

t RC

A

e t
h t RC

− ≥= 

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Determination of h(nTs):

	 ( ) /1
( ) | s

s

nT RC
s A t nTh nT h t e

RC
−

== =

	 se nTtt −= � Assuming 1
RC

t =

or	 ( ) , for 0
0, otherwise

snT

s

e n
h nT

tt − ≥= 


Determination of HD(z) from h(nTs)
	 ( )( ) -transform of snT

D sH z z h nT Z e tt − = =  

or	
1( )

1 sD TH z
e zt

t
− −=

−
 

This is the transfer function of digital filter. Figure 9.10 illustrates the 
network structure of the above digital filter.

FIGURE 9.10  Network structure of above digital filter.

EXAMPLE 9.4
Convert the analog filter with transfer function H(s) = s + 0.1/(s + 0.1)2 + (3)2 
into a digital filter using bilinear transformation method. Given sampling point 
Ts = 2 s.

Solution:
From bilinear transformation method

	 (2/ 1/ 1)( )( ) ( ) |
sD A s T z zH z H s = − +=

This is the transfer function of a derived digital filter.

	
( )

2
2/ ( 1/ 1)

0.1
( 0.1) 9

ss T z z

s
s = − +

+ 
=  + + 

	
2

1
0.1

1
1

0.1 9
1

z
z

z
z

−  + + =
−   + +  +  

DSP.CH09_2pp.indd   348DSP.CH09_2pp.indd   348 3/23/2022   2:59:08 PM3/23/2022   2:59:08 PM



Design and Analysis of Infinite Impulse Response (IIR) Digital Filters • 349

	
2 2

2

1 0.1 0.1
( 1)

( 1 0.1 0.1) 9( 1)
( 1)

z z
z

z z z
z

− + +
+=

− + + + +
+

	
2

2 2 2

( 1) (1.1 0.9) 1.1 0.2 0.9
(1.1 0.9) 9( 1) 10.21 16.02 9.81

z z z z
z z z z
+ + + + −

= =
− + + + +

or	
( )

( )
1 2

1 2

0.1066 1 0.18 0.82
( )

1 1.569 0.96D

z z
H z

z z

− −

−

+ −
=

+ −

EXAMPLE 9.5
Design a first order low-pass IIR digital filter with a 3-dB bandwidth of 0.2π 
by using bilinear transformation method. Transfer function of analog filter is 
given as

	 ( ) c
A

C

H s
s
Ω

=
+Ω

where ΩC is the 3-dB bandwidth of analog filter.

Solution:
The digital filter is specified to have ωC = 0.2π for 3-dB bandwidth.

	
2 2 0.2

tan tan
2 2

C
C

s sT T
w p

Ω = =

	
2 0.65

tan0.1
s sT T

p= =

	 ( ) C
A

C

H s
s
Ω

=
+Ω

Substituting the ΩC = 0.65/Ts in the transfer function of above analog fil-
ter.

	
0.65 / 0.65

( )
0.65 / 0.65

C s
A

C s s

T
H s

s s T sT
Ω

= = =
+Ω + +

From the bilinear transformation method
	

( )( )2 / 1/ 1( ) ( ) |
sD a s T z zH z H s = − +=

	

0.65
( )

2 1
0.65

1

D

s

H z
z

T
T z

=
−  + + 
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0.65( 1) 0.65( 1)

2( 1) 0.65( 1) 2.65 (1 1.35)
z z

z z z
+ +

= =
− + + + −

	 0.65( 1)
2.65 1.35

z
z

+
=

−

or	 ( )1

1

0.245 1
( )

1 0.509D

z
H z

z

−

−

+
=

−
This the transfer function of a derived digital filter.

9.2.4	Digital Butterworth Filter

Butterworth method for analog filter design plays a very important role because 
of its simplicity and also because the magnitude characteristics are very nearly 
ideal near the cut-off frequency of high order filter. Figure 9.11(a) shows 
the magnitude characteristics of the Butterworth filter for different orders. 
Figure 9.11(b) illustrates the pole locations in the s-plane for a Butterworth 
analog filter (n = 3).

FIGURE 9.11  (a) Magnitude characteristics of a Butterworth analog filter for 
different orders of the filter. (b) Pole locations in the s-plane for the 

Butterworth analog filter. [Here order of the filter n = 3]

As the order of the Butterworth filter increases, the magnitude charac-
teristic’s role-off becomes much faster and transition band decreases. All the 
characteristic curves pass through a common point at |H(jΩC)| = 2  / 2 (mag-
nitude at cut-off frequency Ω = ΩC).

Transfer function of a Butterworth analog filter is given as

	 2

1
( ) ( )

1
A A n

C

H s H s
a

j

− =
 

+  Ω 

� (9.22)
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where ΩC is the cut-off frequency and n is the order of the Butterworth analog 
filter. The roots of the denominator polynomial are the poles of the squared 
magnitude function

	

2

1 0
n

C

s
j

 
+ = 

Ω 

or	

2

1
n

C

s
j

 
= − 

Ω 

or	
1/2( 1) n

C

s
j

 
= − 

Ω 
or	 1/2( 1) n

m Cs j= − Ω � (9.23)

Thus we see that there are 2n poles spaced on a circle of radius ΩC in the 
s-plane.

Here HA(s) is a rational transfer function in s with positive real coefficients 
and poles of H(s) must appear in complex conjugate.

For a third-order Butterworth analog filter (n = 3), the poles will be 
equally spaced around the circle. It is shown in Figure 9.11(b). These poles  

are spaced by 
2

60
6
p
= °. For stable causal filter, the poles must lie in the left  

half of the s-plane on the Butterworth circle.
Transfer function of a third-order Butterworth analog filter is constructed 

by using the complex poles at the angles 
2 3 4

,  and
3 3 3
p p p

 and this transfer  
function is given by

	 ( )( ) 2/3 /3

1 1
( )

( 1)( 1)( 1) j j
H s

s s ss s e s ep p
= =

+ + ++ + +

	
3 2

1
2 2 1s s s

=
+ + +

� (9.24)

H(j0) is always equal to unity for Butterworth filter and its normalized 
cut-off frequency ΩC is also equal to unity.

To obtain a digital Butterworth filter from an analog Butterworth filter 
we map pole pattern from s-plane to z-plane using bilinear transformation. 
Hence corresponding 2n zeros of magnitude squared function lie at z = −1.

Bilinear transformation is a conformal mapping because the Butterworth 
circle in the s-plane maps into a circle in the z-plane. Butterworth circle in the 
z-plane is not centered at the origin of the z-plane, that is, (z = 0).

Now we will derive an expression to the Butterworth circle in the z-plane.
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Let s = σ + jΩ, where s is the complex variable used in Laplace transfor-
mation, σ and Ω are the real and imaginary parts of the complex variable s.

Let the cut-off frequency be Ω1. In Figure 9.11(b) cut-off frequency is Ω1 
denoted by ΩC. Equation of the Butterworth circle in the s-plane centered at 
the origin (σ, Ω) = (0, 0) is given by

	
2 2 2
1 sΩ = +Ω � (9.25)

We know from bilinear transformation of analog filter into IIR digital fil-
ter that s-plane is mapped into z-plane.

1.	 Left-half of s-plane maps into interior of the unit-circle, |z| = 1.

2.	 Right-half of the s-plane maps into exterior of the unit-circle, |z| =1.

3.	 A circle maps into a circle.

4.	 σ-axis maps into c-axis in the z-plane.

From Bilinear transformation, we also know that

	
2 1

1s

z
s

T z
− =  + 

� (9.26)

It can be written as

	

1
2

1
2

s

s

T
s

z
T

s

 +  
 =
 −  
 

� (9.27)

where Ts = sampling period.
Substituting s = σ + jΩ in Eq. (9.27), we get

	

1 ( )
2

1 ( )
2

s

s

T
j

z
T

j

s

s

 + + Ω 
 =
 − + Ω 
 

	

1
2 2

1
2 2

s s

s s

T T
j

T T
j

s

s

Ω   + +   
   =

Ω   − +   
   

	 where 1 , 1 ,
2 2 2

s s sA jB T T T
A A B

jB
s s

+ Ω
= = + ′ = − =
Α′ −

	
( )( )
( )( )
A jB A jB
A jB A jB
+ ′ +

=
′ − ′ +
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2 2

2 2( )
AA jA B jAB j B

A B
′ + ′ + +

=
′ +

	
( )2

2 2

( )

( )

AA B j AB A B

A B

′ + + + ′
=

′ +

	
( )2

2 2

( )

( )

AA B jB A A

A B

′ + + + ′
=

′ +
� [But A + A′ = 2]

or	
2

2 2

( ) 2
( )

AA B j B
A B
′ = +

=
′ +

� (9.28)

Now our aim is to find the equation of the Butterworth circle in the 
z-plane. Here z is a complex variable and is given by z = C + jD, where C and 
D are real and imaginary parts of z. We know that the center of the Butter-
worth circle in the s-plane cannot be mapped to the z-plane using bilinear 
transformation but only the points on the circle in s-plane can be mapped 
onto the points in the z-plane.

From Eq. (9 28)

	
( )2

2 2

(2 )

( ) ( )

AA B j B
z C

A
jD

B

′ − +
= + =

′ +

Substituting	 1
2

sT
I t= +

	
2

sT
A t′ =1+

	
2

sT
B

Ω
=

	
( )2 2

1
1 2 2

s
s

TT
B

s +ΩΩ
= =

In Eq. (9.28), we get

	
2
1

2 2 2
1 1

1 2

1 2

B j B
z C jD

B B B

+ +
= + =

+ − − � (9.29)

Comparing real and imaginary parts of the previous equation, we get

	
2
1

2 2 2
1 1

1

1 2

B
C

B B B

−
=

+ − − � (9.30)

and	 2 2 2
1 1

2

1 2

B
D

B B B
=

+ − − � (9.31)
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Both C and D have the same denominator. If B = 0 then D is also zero.

From 
2

sT
B

Ω
=  if B = 0, then Ω = 0 as Ts = 0.

The frequency Ω = 0 corresponds to σ-axis (real axis) of the s-plane. It 
means c-axis of the z-plane maps into the σ-axis of the s-plane and vice-versa.

Now we need to find two extreme points C1 and C2 on the z-plane Butter-
worth circle and whose diameter will be (C1 − C2). The center of the Butter-
worth circle on the z-plane will be given by (C1 −C2/2).

From the above discussion, we substitute σ = +Ω1 or B1 = Ω1Ts/2 and B = 
0 and C = C1 in the Eq. (9.30), we get

	
2
1

2 2 2
1 1

1

1 2

B
C

B B B

−
=

+ − −

or	
2
1 1 1 1

1 2
1 1 1 1

1 (1 )(1 ) 1
1 2 (1 ) 1

B B B B
C

B B B B
+ + − +

= = =
+ − − −

or
	

1

1
1 1

1

1
2 Substituting

21
2

s

s

s

T
T

C B
T

Ω
+ Ω = + Ω  − �

(9.32)

Now we need to find another extreme point C = C2 corresponding to 
σ = Ω1 of the s-plane Butterworth circle. Substituting B = 0 and C = C2 and 
σ = −Ω, or B1 = Ω1Ts/2 in Eq. (9.30):

	
2
1

2 2 2
1 1

1

1 2

B
C

B B B

−
=

+ − −

	

2
1

2
1 1

1
2

1 2
2 2

s

s s

T

C
T T

Ω −  
 =

Ω Ω   + +   
   

or
	

1 1

1
1

1 1
2 2

1
2

s s

s

T T

C
T

Ω Ω  − +  
  =

Ω + 
 

�
(9.33)

or	

1

2
1

1
2

1
2

s

s

T

C
T

Ω − 
 =

Ω + 
 

Therefore the two extreme points are
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1

1
1

1
2

1
2

s

s

T

C
T

Ω
+

=
Ω

−

	
1

1

1
1

B
B

+
=

−

and

1

2
1

1
2

1
2

s

s

T

C
T

Ω
+

=
Ω

−

	
1

1

1
1

B
B

+
=

−
Equation to the circle in the z-plane is given by

	 ( )2 2 2
0C C D R− + = � (9.34)

R is the radius of circle and is determined by

	 1 2 1 1 1 1
2 2

1 1 1 1

1 1 4 21 1
2 2 1 1 2 1 1

C C B B B B
R

B B B B
   − + − = = − = =     − + − −     

� (9.35)

Center of the circle will be determined by

	 0 2C C R= +

	
( )2

1 11 1
2 2

2 1 1

1 21 2
1 1 1

B BB B
B B B

− +−
= + =

+ − −

	
2 2
1 1 1 1

2 2
1 1

1 2 2 1
1 1

B B B B
B B

+ − + +
= =

− −
� (9.36)

Substituting the values of R and C0 in the equation of circle

	 ( )2 2 2
0C C D R− + =

we get,	
( )
( )

2 22
1 2 1

22
11

1 2
11

B B
C D

BB

 +  
− + =   −−    

� (9.37)

Both the unit-circle and the Butterworth circle are illustrated in Figure 9.12.

FIGURE 9.12  Butterworth circle in the z-plane. (It is transformed  
from the s-plane using bilinear transformation method.)
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EXAMPLE 9.6
Find the Butterworth circle in the z-plane and the corresponding pole loca-
tions for a third-order Butterworth analog filter. Given B1 = 1/4 and Ω1 = 1 in 
the s-plane.

Solution:
First, we will determine the two extreme points on the real axis of z-plane. 
From the theory of the Butterworth filter, we know that

	 1
1

1

1 1 1 / 4 5 / 4 5
1 1 1 / 4 3 / 4 3

B
C

B
+ +

= = = =
− −

and	 1
2

1

1 1 1 / 4 3 / 4 5
1 1 1 / 4 5 / 4 3

B
C

B
+ +

= = = =
− −

The radius of the Butterworth circle in the z-plane will be determined by

	 1
2 2
1

2 1 1 / 4 1 / 2 8
1 1 (1 / 4) 15 / 16 15

B
R

B
×

= = = =
− −

Center of the Butterworth circle

	
0 2

3 8 9 8 17
5 15 15 15

C C R
+

= + = + = =

It is given that it is a third-order filter (n = 3) and there will be 6 poles 
located on the Butterworth circle in the s-plane. The angle between two  

consecutive poles will be 
2 2

60
2 2 3n
p p
= = °

×
Complex conjugate poles will be determined as

	 cos  60 in  60( )ss j= − ° ± °

	
1 3
2 2

 
= − ± 

 

Since	
1 3
2 2

s j js
 

= + Ω = − ± 
 

∴	 1 3
and

2 2
s = − Ω = +  

Given Ω1 = 1, but 1
1 2

sT
B

Ω
=

or	 1 1
1 or

4 2 2
s

s

T
T= × =

Substituting the above values in Eq. (1),
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1

2

1
2

s

s

T
s

z
T

s

 +  
 =
 −  
 

� (1)

	

31 1 1
1

2 2 2 2

31 1 1
1

2 2 2 2

j

j

    + × − +          =
    − × − +         

	

3 31 7
1 7 38 8 8 8

3 3 9 31 9
1

8 8 8 8

j j
j

z
j j j

− + + +
= = =

−
+ − −

Magnitude of 
( )

( )

22

22

(7) 3 52
| | 0.787

84(9) 3
z z

+
= = = =

+ −

Phase of 1 13 3
tan tan

7 9
z z − −   
= ∠ = − = −   

   

	
1 13 3

tan tan
7 9

− −   
= + =   

   
	 13.9 10.89 24.78= + = °

Transfer function of a third-order Buttterworth filter is given by

	 ( )( )( )0 /3 /3

1
( )A j j j

H s
s e s e s ep p−

=
+ + +

	 ( )2 2

1
( 1) 1s s s

=
+ + +  

We now determine the transfer function of the digital filter using the 
bilinear transformation method

	

( / )( 1/ 1) (2 /1/2)( 1/ 1)( ) ( ) | ( ) |
sD A s s T z z A s z zH z H s H s= − + = − += =

	
4( 1/ 1)

1
( ) | , Given sec

2A s z z sH s T= − += =

	 2
4( 1/ 1)

1
( 1)( 1) s z zs s s = − +

=
+ + +
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2

1

1 1 1
4 1 4 4 1

1 1 1 1
z z z

z z

=
 − − −        + + +        + + +          

	
2 2

2

1
4 4 1 16( 1) 4( 1)( 1) ( 1)

1 ( 1)
z z z z z z

z z

=
 − + + − + − + + + 

  + +  

	 ( )
2

2 2 2

( 1)
(5 3) 16 32 4 4 1 2

z
z z z z z z

+
=

− − + − + + +

	 ( )
3

2

( 1)
(5 3) 22 30 13

z
z z z

+
=

− − +

or	
( )

3

2

( 1)
( )

(5 3) 21 30 13D

z
H z

z z z
+

=
− − +

	
30.2( 1)

( 0.6)( 0.7143 .3299)( 0.7143 0.3299)
z

z z j z j
+

=
− − − − − +

	
3

0 1 1

0.2( 1)
( )( )( )

z
z z z z z z∗

+
=

− − −
where 1z∗ is the complex conjugate of z1 and z0, z1, 1z∗ are the poles of the third-
order Butterworth filter.

Now let us find where the poles will be

	 0 0.6z =

	 1 0.7143 0.3299 0.787 24.78z j= + = ∠ °

	 1 0.7143 0.3299 0.787 24.78z j∗ = − = ∠ °

poles z1 and 1z∗ both have magnitude of 0.787 and argument 0 = 24.78°.
The corresponding right-hand plane poles are obtained by taking inverse 

of the left-hand plane poles. So that C1 is a point in the exterior of unit-circle 
|z| = 1 on the real z-axis which is inverse of C2 which is located in the interior 
of the unit-circle |z| = 1. Poles and zeros of third-order. Butterworth digital 
filter in the z-plane is shown in Figure 9.13.

Note. This transfer function HD(z) has three zeros at z = −1 which corre-
spond to three zeros at s = −∞ for the transfer function of analog.

9.2.5	Digital Chebyshev Filter

Magnitude response of Butterworth filters is monotonic in both pass-band 
and stop-band. To get a higher roll-off in the transition band, a Butterworth 
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polynomial of higher order is required. As higher-order Butterworth filters 
require more stages and are therefore much more expensive.

FIGURE 9.13  Demonstration of the poles and zeros of  
third-order Butterworth digital filter in the z-plane.

If the response is allowed to ripple either in the pass band or in the stop 
band, a lower order filter can be achieved in comparison with the Butterworth 
design method. This method is also called equiripple method and is obtained 
by using the Chebyshev polynomial. So these filters are also called Chebyshev 
filters.

The magnitude response function has the equiripple behavior in the pass 
band. It is illustrated in Figure 9.14.

	
FIGURE 9.14  Magnitude response function approximation using  

Chebyshev polynominal (a) For n = 5 (b) for n = 6.
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Transfer function of Chebyshev filter is given by

	
2

2

2

[ (0)]
( )

1 ( )n

H
H

E C
Ω =

+ Ω
� (9.38)

where	 max 110AE −=
	 max max0.1A a=

αmax is the maximum allowable attenuation and Cn(Ω) is the nth order 
Chebyshev polynomial. It is expressed by

	
( )
( )

1

1

cos cos for 1
( )

cosh cosh for 1
n

n
C

n

−

−

 Ω Ω ≤Ω = 
Ω Ω >

� (9.39)

For Chebyshev filter H(0) ≠ 1
and	 1 a 0) t( ( )A AH s H j s j j= Ω = = Ω = ∞ =
Figure 9.14 shows the equiripple behavior for n odd and for n even.

Case I: At ( )10, cos cos cos(0)
2n

nk
C n

p−  Ω = = =  
 

where 1,2,...k =  
For odd values of n, 

2
nkp  is also odd, so that

	
(0) cos 0

2n

nk
C

p = = 
 

For these values of k, |HA(Ω)| = 1

Case II. For even values of k, cos 1
2

nkp  = ± 
 

Hence,	 (0) cos 1
2n

nk
C

p = = ± 
 

For these, values of k, 
2

| ( ) |
1

1
AH

E
Ω =

+
For Ω = 1,|Cn(Ω) = 1, therefore,

	 2

2
|

1
( ) |

1
AH

E
=

+
Ω � (9.40)

For Ω > 1, the hyperbolic function is monotonic and hence beyond the 
pass band, the curves are monotonic in behavior shape.

From Figure 9.14, pass-band attenuation is given by

	
2

max 1010 log 1 Ea  = +  � (9.41)
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All these measurements are for |H(0)| = 1, Similarly, stop-band attenua-
tion αmin is also specified with respect to |HA(0)| = 1 and this value of atten-
uation occurs at Ω = Ωs, where Ωs is the edge of the stop-band frequency. 
Stop-band attenuation is given by.

	 ( )2 2 1
max 1010 log 1 cosh cosh[ E n sa −= + Ω � (9.42)

Taking antilog of two Eqs. (9.41) and (9.42), we get
From Eq. (8.41),

	
2

max 1010 log 1 Ea  = + 

or	 2max
10log 1

10
E

a
 = + 

or	
2

max 10log 1A E = + 
or	

2
max10 1A E= +  

	 max10 1E A= − � (9.43)
From Eq. (9.42),

	 ( )2 2 1
min 1010 log 1 cosh cos sE na − = + Ω 

 

or	 ( )2 2 1max
10log 1 cosh cosh

10 sE n
a − = + Ω 

or	 ( )2 2 1
max 10 log 1 cosh cosh sA E n − = + Ω 

or	 ( )2 2 1
min10 1 cosh cosh sA E n −= + Ω

or	 ( )2 1
min10 1 cosh2 cosh sA E n −− = Ω

or	
min1 1 10 1

cosh coshs

A
n

E
− −

 −
Ω =  

  

or	
max1

1
max

10 1 1
cosh

cosh10 1 s

A
n

A
−

−

 −
=  

Ω−  
Substituting	 max10 1, we getE A= −

or	 max1
1

max

10 1 1
cosh

cosh10 1 s

A
n

A
−

−

 −
=  

Ω−  
� (9.44)

where,	 ( )1 2cos ( ) log 1z e z z− = + − � (9.45)
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Equation (9.45) can be used to simplify the calculations of cosh−1 (z). A 
comparison of two relations is given below in the Eqs. (9.46) and (9.47)

	 10
10

1
10

log s

P
n

E
=

Ω
� (9.46)

where P = 10A
min − 1.

This is an expression of the order of filter by the Butterworth filter design 
method:

	
min

min

1
1

10 1 1
cosh

10 1 cos

A

A
s

n −
−

−
=

− Ω
� (9.47)

This is an expression of the order of filter by the Chebyshev filter design 
method.

We observe that the equations are similar in form except for the differ-
ence in the logarithm and cosh−1 functions in the Butterworth and Chebyshev 
methods respectively. In both cases, we can easily calculate the order of filter 
(n) from the knowledge of the following parameters:

αmax = maximum allowable attenuation in the pass-band
αmin = minimum allowable attenuation in the stop-band

	 1 1
1 2 tan

2
w − Ω =  

 

	 1 2
2 2 tan

2
w − Ω =  

 

Pole Locations for Chebyshev Filters

Poles for the Chebyshev transfer function are located on an ellipse. 
Geometrically an ellipse can be constructed from two circles of radii R and r 
and these two radii form the major and minor axis respectively of the ellipse. 
Therefore, in order to determine the pole locations of Chebyshev filters, we 
need to know the following parameters:

1.	 	 ( )1 21M E E− −= + + � (9.48)

where	 ( )max10 1AE = −

2.	 Radius of minor circle is determined by

	
1/ 1/

2

n nM M
r

− −
=  
 

� (9.49)
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Radius of major circle is determined by

	
1/ 1/

2

n nM M
R

− −
=  
 

� (9.50)

where n is determined from the equation

	

min

max

1
1

10 1 1
cosh

cosh10 1

A

A
s

n −
−

 −
=  

Ω−  
� (9.51)

Figure 9.15 shows the method of construction and shows the locations of 
three poles in the left half s-plane for a third-order filter. One of these three 
poles is located on the real axis (σ-axis) and it is denoted by p1 (its length from 
the center of the circle is 0 − r).

Now, we want to find the complex poles p2 and 2p∗ . The method of con-
struction of these complex poles is explained as follows:

FIGURE 9.15  Determination of pole locations on an ellipse with major axis R and minor axis r.

1.	 First of all draw a line OB with an angle 
360 360

60
2 2 3n

= = °
×

. The line OB  

intersects the smaller circle at B′ and the large circle at B.

2.	 Now draw a horizontal line Bp2 from point B and a vertical line p2B′. 
Intersection of these two lines (Bp2 and p2B′) gives us the pole p2.

3.	 The complex conjugate of p2, that is, 2p∗  can be determined in the same 
manner explained above.
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Poles are determined as
Pole, p1 = −r
where r is the radius of the minor circle.
Pole, p2 = −r cos 60° ± jR sin 60°
Note. The value of r and R depends upon the value of αmax. So r and R 

are fixed for a given αmax and E. The number of poles in an ellipse depends 
upon the order of the filter n. For example, if the order of the filter n, is 4, 
the angles are the same as the Butterworth filters and its pole pairs are deter-
mined as

	 1 1 cos22.5 sin22.5p p r jR∗ = ° ± °

	 2 2 cos67.5 sin67.5p p r jR∗ = ° ± °

EXAMPLE 9.7
Design a low-pass digital filter with the following specifications: Maximum 
pass-band attenuation,

	
max

2
3 dB, for 0

10
pa w= − ≤ ≤

Minimum stop-band attenuation,

	
min

3
15 dB, for

10
pa w p= − ≤ ≤

Using the following two methods,

1.	 impulse-response invariance method, and

2.	 bilinear transformation method.

Solution:
We will design the above filter using both methods mentioned above one by one:

1.	 Design Using Impulse-Response Invariance Method

Maximum allowable ripple should be 1 dB. So the given maximum allow-
able ripple, that is, −3 dB is inadequate for this design. Here we need to 
calculate E and M separately. Order of the filter for the Chebyshev method 
is given by

	
min

min

1
1

10 1 1
cosh

10 1 cos

A

A
s

n −
−

−
=

− Ω

	
max/10

min/10

1
1

10 1 1
cosh

10 1 cos s

a

a
−

−

−
= ⋅

− Ω
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	 2 2

1 1
s

w
w

Ω
Ω = =

Ω

Given	
1

2
10

w p=

and	
2

3
10

w p=

∴	

10
1.5

2
2

10

s

p

=
Ω =

Determination of the order of the filter:

	 ( )
min

min

1
1

10 / 10 1 1
cosh

10 / 10 1 cos

A

A
s

n −
−

−
= ⋅

− Ω

	
3 /10

1
15/10 1

10 1 1
cosh

10 1 cos (1.5)

−
−

− −

−
= ⋅

−

	
0.3

1
1.5 1

10 1 1
cosh

10 1 cos (1.5)

−
−

− −

−
= ⋅

−	
2.5 3= ≈

Now we will recalculate the value of Ω1:

	 1
1

1 2
2 tan 2 tan

2 2 10
w p   Ω = = ×  

  	
12 tan (0.5 ) 0.705 0.244p p−= = =

Determination of E:
	

max /10 3/1010 1 10 1E a −= − = −
	

0.310 1 0.9976−= − =
Determination of M:

	
2

1 1
1M

E E
= + +

	 2

1 1
1 2.4183

0.9976 (0.9976)
= + + =

Determination of the values of r and R for the order of the filter n = 3
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1/ 1/ 1/3 1/3(2.4183) (2.4183)

2 2

n nM M
r

−   − −
= =   
   

	 0.29863=

	
1/ 1/ 1/3 1/3(2.4183) (2.4183)

2 2

n nM M
R

− −   − −
= =   
   

	 1.04363=
Here the order of the filter is 3 so this filter requires three poles given as 

follows.

	 1 1 0.705 0.29863 0.21053p r= −Ω = − × = −

	 2 2 cos60 sin60 0.1053 0.637( 2)p r jR j= Ω − ° + ° = − +

	 2 1 cos60 sin( )60 0.1053 0.6372p r jR j∗ = Ω − ° + ° = − −

The transfer function of the analog filter is given by

where	 0

1

)
(

(
)A n

i
i

H
H s

s p
=

=
−∏

It is the general form of any analog filter.

where	

max0.5

1
0

1

10 ( ) for  even
( )

( ) for odd

n

i
i

n

i
i

p n
H s

p n

a−

=

=

 −= 
 −


∏

∏
Here n is odd, therefore,

	 0
1

( )
n

i
i

H p
=

= −∏
	

2 3ip p p= − ×− � ( )3 2but p p∗=
	

0 1 2 2H p p p∗= − ×− ×−
	 ( ) ( )0.21053 0.1053 0.6372 0.1053  0.637( 2)j j= − − ×− − + ×− − −

	
2 20.21053 0.1053 (0.6372)( ( ) = − + 

	 ( )( )( )
0

1 2 3

( )A

H
H s

s p s p s p
=

− − −

	 ( )( )( )
0

1 2 2

H

s p s p s p∗
=

− − −

	
0.0878

( 0.21053)( 0.1053 0.6372) ( 0.1053 0.6372)s s j s j
=

+ + − × + +
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or	
( )2

0.0878
( )

( 0.21053) 0.2106 0.4171AH s
s s s

=
+ + +

It is the transfer function of an analog filter.
Now we have the transfer function for the analog filter and it can be modi-

fied into the transfer function of the digital filter in the following manner.

	 ( )2

0.0878
( )

( 0.21053) 0.2106 0.4171AH s
s s s

=
+ + +

	
0.0878

( 0.21053)( 0.1053 0.6372)( 0.1053 0.6372)s s j s j
=

+ + − + +

	
( 0.21053) ( 0.1053 0.6372) ( 0.1053 0.6372)

A B C
s s j s j

= + +
+ + − + +

	
(0.10524 0.01738) (0.10524 0.01738)0.2115

( 0.21053) ( 0.1053 0.6372) ( 0.1053 0.6372)
j j

s s j s j
+ −

= + +
+ + − + +

Determination of impulse response of analog filter:

	 Inverse Laplace transform of ( ) ( )h t H s=

	 [ ]1£ ( )AH s−=

	 1 1
0.2105£

0.21053s
−  =  + 

	
1 1

(0.10524 0.01738)£
0.1053 0.6372

j
s j

−  
− +  + − 

	
1 1

(0.10524 0.01738)£
0.1053 0.6372

j
s j

−  
− +  + − 

	
0.1053 0.63720.21053 ( )0.2105 0.10524 0.01738( ) j te t j e− −−= − +

	 0.1053 0. 3 2( )6 70.10524 0.0173 )8( j tj e− −− +

Determination of impulse response (unit-sample response) of a digital 
filter:
	 ( ) ( ) |

st nTh n h t ==

where Ts is the sampling period and it is assumed to be equal to 1 s:

or	 0.1053 0.63720.21 (053 )0.2105 0.10524 0.01( 738) ( )e j ne nh n j − −−= − +

	
0.1053 0. 3 2( )6 70.10524 0.0173 )8( j nj e− −− +  

Determination of transfer function of digital filter:
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	 ( ) -transform( ) ( of ) [ ( )]DH z h n Z h n= =

	
0.21053[0.201 )5 nz e−=

	 0.1053 0.( 6 )3720.10524 0.01738( ) j neZj − −− +   
	 0.1053 0.( 6 )3720.10524 0.01738( ) j neZj − +− +   

	 0.21053 1

1
0.2105

1 e z− −
 =  − 

	 1(0.1053 0. )6372

1
0.10524 0.01738

1
( )

zj
j

e
−− −

− +
−


  

	 1(0.1053 0. )6372

1
0.10524 0.01738

1
( )

zj
j

e
−− +

− −
−


  

	 1 1

(0.10524 0.01738)0.2105
1 0.81 1 (0.899 0.0099)

j
z j z− −

+
= −

− − +

	 1

(0.10524 0.01738)
1 (0.899 0.0099)

j
j z−

+
−

− +

or	
1

1 1 2

0.2105 0.2105 0.1897
1 0.81 1 1.7998 0.8

( )
1D

z
H z

z z z

−

− − −

− +
= +

− − +
This is the transfer function of digital filter which is derived from ana-

log filter (Chebyshev filter) using impulse-response invariance method of IIR 
digital filter.

2.	 Design using Bilinear Transformation Method

Step I.	� First, the prewarping is required in this method. Prewarping is done 
in this manner.

	 1
1

1 2
2 tan 2 tan 0.65

2 2 10
w p   Ω = = × =  

  

	 2
2

1 2
2 tan 2 tan 1.02

2 2 10
w p   Ω = = × =  

  

Ωs is determined as, 2

1

1.02
1.569

0.65s

Ω
Ω = = =

Ω
And cosh−1(Ωs) = cosh−1(1.569) = 1.022
Now the order of the filter is determined by

	
min

max

1
1

10 1 1
cosh

10 1 cos

A

A
s

n −
−

−
= ⋅

− Ω
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min

max

/10
1

/10 1

10 1 1
cosh

10 1 cos s

a

a
−

−

−
= ⋅

− Ω

	
15/10

1
15/10 1

10 1 1
cosh

10 1 cos (1.569)
−

−

−
= ⋅

−

	 2.34 3= ≈
Recalculation of Ωs for n = 3.

	
min

min

/10
1

/10 1

10 1 1
cosh

10 1 cos s

n
a

a
−

−

 − = ⋅ − Ω  

or	
15/10

1
3/10 1

10 1 1
3 cosh

103 1 cosh s

−
−

−
= ⋅

− Ω

or	 1

1
3 2.4

cosh s
−=
Ω

or	 1 24
cosh 0.8

3s
− Ω = =

or	 cosh(0.8) 1.3374sΩ = =

Keeping Ω2 fixed and Ω1 is allowed to vary, we get Ω1 = 0.224π.
It is worth noting here that Ω1 is the same as found by impulse-response 

invariance method. Therefore, transfer function HA(s) will also be the same as 
found by impulse-response invariance method.

	
( )2

0.0878
( )

( 0.21053) 0.2106 0.4171AH s
s s s

=
+ + +

� (1)

We know from the bilinear transformation method 
2 1

1s

z
s

T z
− =  + 

 substi-
tuting this value in above Eq. (1), we get

	 ( )2 ( 1/ 1)( ) ( ) |
sD A s T z zH z H s = − += � ( )1 secsT =

	

2

0.0878

1 1 1
2 0.21053 2 0.2106 2 0.4171

1 1 1
z z z
z z z

=
 − − −          + + +          + + +            

or	
3

2

0.0878( 1)
( )

( 0.8096)( 1.481 0.8267)D

z
H z

z z z
+

=
− − +

� (2)

Determination of frequency response:
Substituting z = e jΩ in Eq. (2), we get

DSP.CH09_2pp.indd   369DSP.CH09_2pp.indd   369 3/23/2022   2:59:28 PM3/23/2022   2:59:28 PM



370 • Digital Signal Processing 

	
( )

( )( )

3

( )

2

0.0878 1

0.8096 1.481 0.8267

j

ej
D j j j

e
H

e e ew

Ω
Ω

Ω Ω

+
=

− − +

Given, 1

2
10

pΩ =  and 2

3
10

pΩ =

	 ( ) ( )1 02. 0.942 164j jH e H e pΩ = = − °

and	 ( )0.2 0.5dBjH e p = −

	 ( )0.244 0.5865 202jH e p = − °

and	 ( )0.244 4.63 dBjH e p = −

	 ( )0.3 0.1287 97jH e p = − °

and	 ( )0.3 18 dBjH e p = −  

These are the required specifications and will be met by the bilinear 
transformation.

9.2.6	Inverse Chebyshev Filters

Inverse Chebyshev Filters are also known as type II Chebyshev filters. 
The  magnitude response of a low-pass inverse Chebyshev digital filter is 
given by

	

2

1/2
2 2 2

( )

1

N

N

EC
H j

E C

Ω 
 Ω Ω =

 Ω +  Ω  

� (9.52)

where E is a constant and ΩC is the 3 dB cut of frequency.
The Chebyshev polynomial CN(x) is given by

	
( )
( )

1

1

cos cos , for | | 1
( )

cos cosh , for | | 1
N

N x x
C x

N x x

−

−

 ≤= 
>

The magnitude response of the inverse Chebyshev filter is shown in 
Figure (9.16).
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FIGURE 9.16  Magnitude response of the low-pass inverse Chebyshev digital filter.

The magnitude response has maximally flat pass-band and equiripple 
stop-band, just opposite of the Chebyshev filter’s response. That is why the 
type II Cheybyshev filters are also called inverse Chebyshev filters.

The parameters of the inverse Chebyshev filter are obtained by consider-
ing the low-pass filter with the desired specifications as given below.

	 | ( )0.707 1,  0| CH j≤ Ω ≤ ≤ Ω ≤ Ω � (9.54)
	 0 2| ( ) | ,H j dΩ ≤ Ω ≥Ω � (9.55)

From Eqs. (9.52), (9.54), and (9.55), we get

	

2 2 2

2

2 2 2

(0.707) 1, 0
1

N

C

N

E C

E C

Ω 
 Ω ≤ ≤ ≤ Ω ≤ Ω

Ω +  Ω 

� (9.56)

	

2 2 2

2
2

2 2 2

,
1

N

C

N

E C

E C
d

Ω 
 Ω = ≤ Ω ≤ Ω

Ω +  Ω 

� (9.57)

when Ω = Ω2, Eq. (9.57) can be written as

	
2

2
2 21

E
E

d =
+

or	 2

2
21

E
d

d
=

+
� (9.58)

When Ω = Ω2, Eq. (9.56) becomes
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2 2 2

2 2 2

0.5
1

N
C

N
C

E C

E C

 Ω
 Ω =
 Ω

+  Ω 

or	
2 2 2 22 20.5 0.5 N N

C C

E C E C
   Ω Ω

+ =   Ω Ω   

or	 2 1
N

C

C
E

 Ω
= Ω 

� (9.59)

Using Eq. (9.53)

	
1 2 1

cosh cosh
C

N
E

−  Ω
=  Ω   

� (9.60)

From Eqs. (9.59) and (9.60), we can get the order of the filter (N).

	

1/2

11
2
2

1 12 2

11 cosh 1cosh

cosh cosh
C C

EN
d

−−

− −

   −  
   = =
   Ω Ω
   Ω Ω   

� (9.61)

The value of N is chosen to be the nearest integer greater than the value 
given by Eq. (9.61)

9.2.7	Elliptic Filters

The elliptic filter is sometimes called the Cauer filter. This filter has equiripple 
pass-band and stop-band. Among the filter types such as Butterworth filter, 
Chebyshev filter, and inverse Chebyshev filter, for a given filter order, pass-
band and stop-band deviations, elliptic filters have the minimum transition 
bandwidth. The magnitude response of an odd-ordered elliptic filter is shown 
in Figure (9.17). The magnitude squared response is given by

	 2

2

1
| ( ) |

1 N
C

H j

E J

Ω =
 Ω

+  Ω 

� (9.62)

where JN(x) is the Jacobian elliptical function of order N and E is a constant 
related to the pass-band ripple.
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FIGURE 9.17  Magnitude response of a low-pass elliptic filter.

9.3	 FREQUENCY TRANSFORMATION

There are basically four types of frequency-selective filters, viz. low-pass filter 
(LPF), high-pass filter (HPF), band-pass filter (BPF), and band-stop filter 
(BSF). In the design techniques, we have discussed only LPFs. This LPF can 
be considered as a prototype filter and its system function can be obtained. 
Then, if a HPF or BSF or BPF is to be designed, it can be easily obtained by 
using frequency transformation.

Frequency transformation can be accomplished in two ways. These two 
ways are:

1.	 analog-frequency transformation, and

2.	 digital frequency transformation.

In the analog-frequency transformation the analog system function Hp(s) 
of the prototype filter is converted into another analog system function H(s) 
of the desired filter.

Then using any of the mapping techniques, it is converted into the digital 
filter having a system function H(z).

In the digital frequency transformation, the analog prototype filter is first 
transformed to the digital domain, to have a system function Hp(z). Then using 
frequency transformation, it can be converted into the desired “digital filter.”

9.3.1	Analog-Frequency Transformation

The frequency transformation formulae used to convert a prototype LPF into 
a low-pass (with a different cut-off frequency) high-pass, band-pass or band-
stop are given as follows:
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i.	 Analog-Frequency Transformation of LPF with cut-off frequency ΩC to 
LPF with a new cut-off frequency C

∗Ω :

	 C

C

s s∗

Ω
→

Ω
� (9.63)

�Thus, if the system function of the prototype filter is Hp(s), the system 
function of the new LPF will be

	 ( ) C
p

C

H s H s∗

 Ω
=  Ω 

� (9.64)

ii.	 Analog-Frequency transformation of LPF with cut-off frequency ΩC to 
HPF with cut-off frequency C

∗Ω :

	 C Cs
s

∗Ω Ω
→ � (9.65)

The system function of the HPF is then given by

	 ( ) C C
pH s H

s

∗ Ω Ω
=  

 
� (9.66)

iii.	 Analog-frequency transformation of LPF with cut-off frequency ΩC to 
BPF with low cut-off frequency Ω1 and higher cut-off frequency Ω2

	 2 1
2

1 2

( )
C

s
s

s
Ω −Ω

→Ω
+Ω −Ω

� (9.67)

The system function of the BPF is then given by

	
( )
2

2 1

( ) C C
p c

s
H s H

s

 + Ω Ω
= Ω  Ω −Ω 

� (9.68)

iv.	 Analog-frequency transformation of LPF with cut-off frequency ΩC to 
BSF with lower cut-off frequency Ω1 and higher cut-off frequency Ω2

	
( )2 1

2
1 2

C

s
s

s

Ω −Ω
→Ω

+Ω −Ω
� (9.69)

The system function of BSF is then given by

	
( )2 1

2
1 2

( ) p C

s
H s H

s

Ω −Ω 
= Ω Ω Ω 

� (9.70)

Analog-frequency transformation formulae are given in Table 9.1
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TABLE 9.1  Analog-Frequency Transformation Formulae

Type of Filter Transformation
1. Low-pass filter (LPF)

c

C

s s∗

Ω
→

Ω

2. High-pass filter (HPF)
C Cs
s

∗ Ω Ω
→ 

 

3. Band-pass filter (BPF)

( )
2

1 2

2 1
S

s
s

s
+Ω Ω

→Ω
Ω −Ω

4. Band-stop filter (BSF) ( )2 1
2

1 2
C

s
s

s

Ω −Ω
→Ω

+Ω −Ω

EXAMPLE 9.8
A prototype LPF has the system function Hp(s) = 1/s2 + 2s +1. Find a BPF with 
Ω0 = 2 radian/second and Q = 2

010Ω , = Ω1 Ω2 and Q = Ω0/Ω2 − Ω1.

Solution:
From Table 9.1 the required analog-frequency transformation of LPF to 
BPF is

( )
2

1 2

2 1

s
s

s
+Ω Ω

→
Ω −Ω

that is,	
2 2

0

0

C

s
s

s
Q

+Ω
= Ω

 Ω
 
 

	

2 2(2)
2

10

C

s

s

+
= Ω

 
 
 

	
2 4

5 C

s
s

 +
= Ω  

 
Therefore, system function of BPF will be

	 2 4
3 5

( ) ( ) |
C

BPF p s
s

H s H s  +
= Ω   

 

=
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	 22 4
3 5

1
2 1

C
s

s
s s  +

= Ω   
 

 =  + + 

	

( )
2

2 4 3 2 2 2

0.04
.

0.4 8 0.01 1.6 16C C C c C

s
s S s s

=
Ω + Ω + Ω + + Ω + Ω

EXAMPLE 9.9
Transform the prototype LPF with system function

	 ( ) C
p

C

H s
s
Ω

=
+Ω

into an HPF with cut-off frequency C
∗Ω .

Solution:
From Table 9.1, the analog-frequency transformation of LPF to HPF if 
given as

	 C Cs
s

∗Ω Ω
→

Thus, the system function of HPF is given as
	 ( ) ( )

C CHPF p s
s

H s H s ∗Ω Ω
=

=

	
C Cs

s

C

Cs
∗Ω Ω

=

 Ω
=  +Ω 

	

C

C C
Cs

∗

Ω
=
Ω Ω

+Ω

	
C

C C C

s
s ∗

Ω
=
Ω +Ω Ω

	 ( ) .C

CC C

s s
ss s ∗∗

Ω
= =

+ΩΩ + +Ω

9.3.2	Digital Frequency Transformation

Frequency transformation is also possible in the digital domain. The fre-
quency transformation is done in the digital domain by replacing the variable 
z−1 with a function of z−1, that is, f(z−1). This mapping must take into account 
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the stability criterion. All the poles lying within the unit-circle that is, |z| = 1 
must map onto itself and the unit-circle must also map onto itself. For the 
unit-circle to map onto itself, the implication is that for |z| = r = 1

	 ( )j je f ew w− −=

	 ( ) [ ])( jjArgj efef e
ww −−=

Hence, we must have ( ) 1jf e w− =  for all frequencies. So, the mapping is  

that of an all-pass filter and of the form.

	 ( )
1

1
1

1 1

n
k

k k

z A
f z

A z

−
−

−
=

 −
= ±  − 
∏ � (9.71)

For obtaining a stable filter from the stable prototype filter, we must have 
|Ak| ≤ 1. The transformation formulae can be obtained from Eq. (9.71) for con-
verting the prototype low-pass digital filter into a digital LPF, digital HPF, dig-
ital BPF, or digital BSF. Digital frequency transformation is given in Table 9.2.

TABLE 9.2  Digital Frequency Transformation

Types of  
Digital Filter Transformation Design Parameters
1. Digital LPF 1

1
11

z A
z

Az

−
−

−

 −
→  − 

( )
( )

sin / 2

sin / 2

c c

c c

A
w w

w w

∗

∗

 − =
 + 

2. Digital HPF 1
1

11
z A

z
Az

−
−

−

 +
→  + 

( )
( )

cos / 2

cos / 2

c c

c c

A
w w

w w

∗

∗

 − − =
 + 

3. Digital BPF 2 1
1 1 2

2 1
1 1z

z A z A
z

A z A z

− −
−

− −

 − +
→  − + 

1

2
1

K
A

K
a

= −
+

2

( 1)
( 1)
K

A
K
−

= −
+

( )
( )

2 1

2 1

cos / 2

cos / 2
A

w w
w w

+  =
−  

2 1cot tan
2 2

cK
ww w−   =    

   

(Continued)
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Types of  
Digital Filter Transformation Design Parameters
4. Digital BSF 2 1

1 1 2
2 1

1 1z

z A z A
z

A z A z

− −
−

− −

 − +
→  − + 

1

2
1

K
A

K
a

= −
+

2

(1 )
(1 )

K
A

K
−

= −
+

( )
( )

2 1

2 1

cos / 2

cos / 2
A

w w
w w

+  =
−  

2 1tan tan
2 2

cK
ww w−   =    

   

The frequency transformation may be accomplished in any of the available 
two techniques, however, caution must be taken to which technique to use.

For example, the impulse-response invariant transformation method is 
not suitable for HPFS or BPFS whose resonant frequencies are higher. In such 
a case, suppose a low-pass prototype filter is converted into an HPF using 
analog-frequency transformation and transformed later to a digital filter using 
impulse-response invariant technique. This will result in aliasing problems. 
However, if the same prototype LPF is first transformed into a digital filter 
using impulse-response invariant technique and later converted into an HPF 
using digital frequency transformation will not have any aliasing problem. 
Whenever, the bilinear transformation is used, it is of no significance whether 
the analog-frequency transformation method is used or digital frequency 
transformation. In this case, both analog and digital frequency transformation 
techniques will give the same result.

EXERCISES

1.	 What is an IIR digital filter?

2.	 How are IIR digital filters realized?

3.	 What are the various realizability constraints imposed on transfer function 
of an IIR digital filter?

4.	 Discuss impulse-response invariance method of deriving IIR digital filter 
from the corresponding analog filter.
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5.	 Discuss bilinear transformation method of deriving IIR digital filter from 
the corresponding analog filter.

6.	 Derive a relationship between complex variables used in Laplace trans-
form (for analog filters) and complex variable z used in z-transform (for 
digital filters), that is, derive

2 1
1s

z
s

T z
− =  + 

where Ts is the sampling period.

7.	 Discuss various properties of the bilinear transformation method.

8.	 What is Warping effect? Discuss the influence of Warping effect on 
amplitude response and phase response of a derived digital filter from a 
corresponding analog filter.

9.	 Discuss Digital Butterworth filter.

10.	 Discuss the magnitude characteristics of an analog Butterworth filter and 
give its pole locations.

11.	 Explain the method of constructing Butterworth circle in the z-plane 
using the bilinear transformation method.

12.	 Discuss digital Chebyshev filters.

13.	 Discuss the pole locations for the digital Chebyshev filters.

NUMERICAL EXERCISES

1.	 Convert the following analog filter with transfer function

( )2

0.2
( )

0.2 16
A

s
H s

s

+
=

+ +

into a digital IIR filter using the following methods:
i.	 Impulse-response invariance method.

ii.	 Bilinear transformation method.

2.	 Convert the following analog filters with transfer function

( )2

0.2
( )

0.1 9
A

s
H s

s

+
=

+ +
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�into a digital IIR filter by using the bilinear transformation method. The 
digital IIR filter is having a resonant frequency of ωr = π/2.

3.	 Design a single-pole low-pass IIR digital filter with a 3 dB bandwidth of 
0.3π, using bilinear transformation method. The transfer function of the 
analog filter is given by

( ) C
A

C

H s
s
Ω

=
+Ω

where Ωc is the 3 dB bandwidth of the analog filter.

4.	 Find the order and poles of a low-pass Butterworth filter that has a-3 dB 
bandwidth of 500 Hz and an attenuation of 40 dB at 1 kHz.

5.	 An analog integrator is described by a transfer function HA(s) = 1/s.

i.	 Obtain a digital integrator using the bilinear transformation method.

ii.	 Obtain the difference equation for the digital integrator relating input 
s(n) to the output y(n).
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C H A P T E R  10
Design and Analysis of Finite 
Impulse Response (FIR) Digital 
Filters

10.1  INTRODUCTION

If the impulse response of a digital filter is determined for some finite number 
of sample points then these filters are called FIR digital filters. FIR digital 
filters can readily be designed to have a constant delay as well as prescribed 
loss specifications. These filters are designed by Fourier Series Method or 
Numerical-Analysis Methods. Window functions are also used in the design-
ing of FIR digital filters. These functions reduce Gibb’s oscillations*.

10.2  PROPERTIES OF FIR DIGITAL FILTERS

A causal FIR digital filter can be characterized by the transfer function

		  ( )
1

0

( )
N

n
s

n

H z h nT z
−

−

=

= ∑ � (10.1)

The frequency response of the above FIR digital filter can be determined 
by substituting z = e−jωTs in Eq. (10.1).

*See Art. 10.3.1 for details.
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( ) ( )( )
1

0

s s

N nj T j T
s

n

H e h nT eω ω
− −

=

= ∑

	 ( )
1

( )

0

( )s

N
j T n j

s
n

h nT e A eω φ ωω
−

−

=

= =∑ � (10.2)

where ( )( ) sj TA H e ωω =  is called amplitude response

and ( )( ) sj TH e ωφ ω = , argument of ( )sj TH e ω  is called phase response.

Phase Delay: It is the negative ratio of phase φ(ω) and frequency w of a 
filter.

	
( )

g

φ ωτ
ω

= − � (10.3)

Group Delay: It is the negative differentiation of φ(ω) with respect to w.

	
( )

g

d
d
φ ωτ

ω
= − � (10.4)

For linear-phase FIR digital filter both phase delay as well as group delay 
are constant. If both phase delay and group delay are constant then
	 ( )φ ω τω= − � (10.5)

From Eq. (10.1),

( ) ( )
1

0

s s

N
j T j nT

s
n

H e h nT eω ω
−

−

=

= ∑

	 ( )
1

0

cos sin
N

s s s
n

h nT nT j nTω ω
−

=

= −  ∑

	 ( ) ( )
1 1

0 0

cos sin
N N

s s s s
n n

h nT T j h nT nTω ω
− −

= =

= −∑ ∑
	

A jB= +
 

	

( )

( )

1

1 0
1

0

sin
( ) tan

cos

N

s s
n

N

s s
n

h nT nT

h nT nT

ω
φ ω τω

ω

−

− =
−

=

 − 
 = − =
 
  

∑

∑

DSP.CH10_2pp.indd   382DSP.CH10_2pp.indd   382 3/23/2022   2:32:20 PM3/23/2022   2:32:20 PM



Design and Analysis of Finite Impulse Response (FIR) Digital Filters • 383

Thus from Eqs. (10.5) and (10.6)

( )

( )

1

1 1 0
1

0

sin
( ) tan tan

cos

N

s s
n

N

s s
n

h nT nT
B
A h nT nT

ω
φ ω

ω

−

− − =
−

=

 −    = = 
   

  

∑

∑

or	
( )

( )

1

0
1

0

sin
tan( )

cos

N

s s
n

N

s s
n

h nT nT

h nT nT

ω
τω

ω

−

=
−

=

 − 
 =
 
  

∑

∑

or	
( )

( )

1

0
1

0

sin
sin( )
cos( ) cos

N

s s
n
N

s s
n

h nT nT

h nT nT

ω
τω
τω ω

−

=
−

=

 
 
 =
 
  

∑

∑

or	 ( )( )
1

0

cos sin sin cos 0
N

s s s
n

h nT nT nTω ωτ ω ωτ
−

=

− =∑

or	 ( ) ( )
1

0

sin 0
N

s s
n

h nT nTωτ ω
−

=

− =∑

or	 ( )
1

0

( ) sin( )
N

s s
n

h nT nTφ ω ωτ ω
−

=

= −∑ � (10.7)

Eq. (10.7) gives the expression for phase response of an FIR digital filter.

10.2.1 Frequency Response

Before discussing frequency response, let us first discuss what symmetrical 
and anti-symmetrical impulse responses are:

Symmetrical impulse response is the impulse response that satisfies the 
condition given by

( ) ( )1 for 0 1s sh nT h N n T n N= − − ≤ ≤ −  

It means that impulse response has symmetry about the midpoint between 
sample points (N − 2)/2 and 2N/2 for even number of samples points or about 
sample point (N −1)/2 for the odd number of sample points.

Anti-symmetrical impulse response is the impulse response that satisfies 
the condition given by

( ) ( )1  for 0 1s sh nT h N n T n N= − − − ≤ ≤ −  

DSP.CH10_2pp.indd   383DSP.CH10_2pp.indd   383 3/23/2022   2:32:21 PM3/23/2022   2:32:21 PM



384 • Digital Signal Processing 

It means that impulse response has an anti-symmetry about the midpoint 
between sample points (N − 2)/2 and N/2 for even number of sample points or 
about sample point (N−l)/2 for the odd number of sample points.

There are four cases of frequency response in constant-delay FIR digital 
filters given as:

1.	 Frequency response for symmetrical impulse response with N odd.

2.	 Frequency response for symmetrical impulse response with N even.

3.	 Frequency response for anti-symmetrical impulse response with N odd.

4.	 Frequency response for anti-symmetrical impulse response with N even.

Frequency Response for Symmetrical Impulse Response with 
N Odd

In this case, the frequency response ( ) ( )
1

0

s s

N
j T j T

s
n

H e h nT eω ω
−

−

=

= ∑  can be 
expressed as

	

( ) ( )
2

0

3
[( 1) / 2]

2
I II

s sj T j T j
s s s

n

N
H e h nT e h T e N Tω ω ω− −

=

−  = + −    
∑

( )
1

1
2

III

s

N
j nT

s
N

n

h nT e ω
−

−

+ = 
 

+ ∑

�

(10.8)

Using equation h(nTs) = h[(N − 1 − n)Ts] and substituting N − 1 − n = m 
and them m = n in the III summation Eq. (10.8), we get

	

[ ] ( )
1 1

( 1 )

31
22

( 1 ) s s

N N
j nT j N m T

s s
Nn mn

h N n T e h mT eω ω
− −

− − − −

−+  == 
 

− − =∑ ∑

( )
3

2
( 1 )

0

s

N

j N m T
s

m

h mT e ω

− 
 
 

− − −

=

= ∑

Now substituting n = m in above Eq. (10.8), we get

( ) ( )
3

21
( 1 )

1 0
2

s s

N
N

j nT j N m T
s s

N nn

h nT e h nT eω ω

− 
 −  

− − − −

+ = = 
 

=∑ ∑
�

(10.9)
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Substituting Eq. (10.9) into Eq. (10.8), we get

( ) ( )
3

2
[( 1)/2]

0

1
2

s s s

N

j T j nT j N T
s s

n

N
H e h nT e h T eω ω ω

− 
 
 

− − −

=

−  = +     
∑

( )
1

1
2

s

n
j nT

s
N

n

h nT e ω
−

−

+ = 
 

+ ∑

( )
3

2
[( 1)/2]

0

1
2

s s

N

j nT j N T
s s

n

N
h nT e h T eω ω

− 
 
 

− − −

=

−  = +     
∑

( )
3

2
[( 1)/2]

0

s

N

j N T
s

n

h nT e ω

− 
 
 

− −

=

+ ∑

( )
3

2
[( 1)/2]

0

1
2

s s

N

j nT j N T
s s

n

N
h nT e h T eω ω

− 
 
 

− − −

=

−  = +     
∑

( )
3

2
( 1)/2

0

j nTs
s

N

e j N T
s

n

h nT e
ω

ω

− 
 
 

− −

=

 
 +  
  

∑
 

or	 ( ) ( )
3

2
( 1 )

0

s s s

N

j T j nT j N n T
s

n

H e h nT e eω ω ω

− 
 
 

− − − −

=

 = + ∑
[( 1)/2]1

2
sj N T

s

N
h T e ω− −−  +     

( )
3

2
[( 1)/2] [{( 1)/2} ] [{( 1)/2} ]

0

s s s

N

j N T j N n T j N n T
s

n

e h nT e eω ω ω

− 
 
 

− − − − − − − −

=

 = + ∑
[( 1)/2]1

2
sj N T

s

N
h T e ω− −−  +     

( )
3

2
[( 1)/2] [{( 1)/2} ] [{( 1)/2} ]

0

2s s s

N

j N T j N n T j N n T
s

n

e h nT e eω ω ω

−

− − − − − − − −

=

 = + ∑
[( 1)/2]1

2
sj N T

s

N
h T e ω− −−  +     

DSP.CH10_2pp.indd   385DSP.CH10_2pp.indd   385 3/23/2022   2:32:22 PM3/23/2022   2:32:22 PM



386 • Digital Signal Processing 

( )
3

2
[( 1)/2]

02

1
2 cos

2
s

N

j N T
s s

n

N
e h nT n Tω ω

−

− −

=

−  = −    
∑

[( 1)/2]1
2

sj N T
s

N
h T e ω− −−  +     

 

or	 ( ) ( )
3

2
[( 1)/2]

0

1
2 cos

2

j Ts
s

N

e j N T
s s

n

N
H e h nT n T

ω
ω ω

−

− −

=


−   = −     

∑

1
2 s

N
h T

−  +     
� (10.10)

Substituting 
1

2
N

k n
−

= −  in Eq. (10.10), we get

( ) ( )
3

2
[( 1)/2]

0

1
2 cos

2

j Ts
s

N

e j N T
s s

n

N
H e h nT n T

ω
ω ω

−

− −

=


−   = −     

∑

1
2 s

N
h T

−  +     
� (10.11)

or	
1

[( 1)/2]

1
2

1
2 cos

2
sj N T

s s
N

k

N
e h k T kTω ω− −

−
=


−   = −     

∑
1

2 s

N
h T

−  +     
 

or	 [ ]
1

2
[( 1)/2]

0
1

coss

N

j N T
k s

k

e A T Aω ω

−

− −

=

 
 = + 
  
∑

or	 ( ) [ ]
1

2
[( 1)/2]

0

coss s

N

j T j N T
k s

k

H e e A Tω ω ω

−

− −

=

= ∑ � (10.12)

where	 0

1
2 s

N
A h T

−  =     
� (10.13)

And	 1
2

2k s

N
A h k T

−  = −    
� (10.14)

Eq. (10.12) is the frequency response for symmetrical impulse response with 
N odd.

Note. In a similar manner, we can simplify the frequency responses for the 
case of symmetrical impulse response with N even anti-symmetrical impulse 
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response with N odd and anti-symmetrical impulse response with N even. The 
frequency response for these four cases are summarized in Table 10.1.

TABLE 10.1  Frequency Response of Constant-Delay FIR Digital Filters

Impulse Response 
h(nTs)

Number of Samples in 
Impulse Response N

Frequency Response 
H(e jωT

s)
Symmetrical Old 1

2
[( 1)/2]

0

s

N

j N T

k

e ω

− 
 
 

− −

=
∑ 

Ak cos ωTs

Symmetrical Even
2

[( 1)/2]

1

s

N

j N T

k

e ω

 
 
 

− −

=
∑ 

1
cos

2k sB k Tω  −    
Anti-symmetrical Odd

2
[ ( 1/2)] /2

1

s

N

j N T

k

e ω π

 
 
 

− − −

=
∑ 

Ak sin ωkTs 

Anti-symmetrical Even 1
2

[ ( 1/2) /2]

1

s

N

j N T

k

e ω π

− 
 
 

− − −

=
∑ 

Bk sin
 

1
2 sk Tω  −    

where
	

0

1 1
, 2

2 2s k s

N N
A h T A h k T

− −      = = −            

and
	

2
2k s

N
B h k T

  = −    
The solution of Eq. (10.7) is

2 s

N
k Tτ  = − = 

   
Constant phase delay and group delay

�
(10.15)

( ) [ ] 1(  )s sh nT h N n T= − − = Impulse response, for 0 – 1n N< < � (10.16)
Therefore, FIR digital filters have constant phase and group delays over 

the entire baseband. These delays are constant only for symmetrical impulse 
response. Impulse response is called symmetrical when h(nTs) = h[(N − 1 − n)Ts].
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Impulse response symmetry is about midpoint between [(N/2) − 1] and 
N/2 for even N or about [(N − 1)/2] for odd N. This symmetry is shown in Fig-
ure 10.1(a) and (b) for N = 6 and 7, respectively.

FIGURE 10.1  (a) Impulse response for constant phase and group and delays for even N. (b) Impulse 
response for constant phase and group delays for odd N.

In some applications, only the group delay is constant, in these cases, 
the phase response is equal to φ(ω) = φ0 − τω where φ0 is a constant. By 
using this method, we can obtain another class of constant delay FIR digital 
filter. Putting θ0 = +π/2, the solution is τ = (N − 1/2)Ts and impulse response 
h(nTs) = −h[N − 1 − n)Ts].

In this case, the impulse response h(nTs) is asymmetrical about the 

midpoint between samples
 

1
2
N − 

  
and

 2
N

 
for even N or about sample 

1
2

N − 
 
  

for odd N.

This anti-symmetry is shown in Figure 10.2(a) and (b) for N = 6 and 7, 
respectively.
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FIGURE 10.2  (a) Impulse response for constant and group delays for even N. (b) Impulse  
response for constant group delays for odd N.

10.3 � DESIGN OF FIR DIGITAL FILTERS USING FOURIER 
SERIES METHOD

The frequency response of an FIR digital filter is a periodic function of ω with 
sampling frequency ωs. It can be expressed by a Fourier series. Discrete-time 
Fourier Transform of impulse response h(nTs) is called frequency response of 
FIR digital filter.

( ) ( )s sj T j nT
s

n

H e h nT eω ω
∞

−

=−∞

= ∑ �
(10.17)

where
	

( ) ( )
/2

/2

1 s

s s

s

j T j nT
s

s

h nT H e e d
ω

ω ω

ω

ω
ω −

= ∫
�

(10.18)
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Transfer function H(z) can be determined by substituting z = e jωTs in 
Eq. (10.17), as

( )( ) n
s

n

H z h nT z
∞

−

=−∞

= ∑ � (10.19)

This is the derived transfer function of a given frequency response. It is a 
non-causal and infinite order transfer function.

For changing this infinite order transfer function into a finite order trans-
fer function, the series of Eq. (10.19) can be truncated as

( ) 1 1
0, for

2 2s

N N
h nT n

− −   = − > >   
   

From the above Eq. h(nTs) is assumed zero outside the some defined 
sample points. Here h(nTs) is zero outside the −(N − 1)/2 and (N − 1)/2 sam-
ple points. This is called truncation of impulse response. In FIR digital filter 
design we first truncate impulse response.

10.3.1 Gibb’s Oscillations

Slow convergence in the Fourier series results in passband and stopband 
oscillations. These oscillations are caused by the discontinuity at the passband 
edge. These oscillations are known as Gibb’s oscillations. The frequency of 
these oscillations increases with the increase of the order of the filter (N).

The amplitude of the last passband ripple and the first stopband ripple 
remains unchanged. This type of performance is objectionable in practice.

Ways to reduce Gibb’s oscillations

There are two methods to reduce Gibb’s oscillations:

1.	 The discontinuity between passband and stopband in the frequency 
response is avoided by introducing a transition band between passbands 
and stopbands.

2.	 Another technique used for the reduction of Gidd’s oscillations is to pre-
condition the impulse response h(nTs). This precondition is imposed by 
using window functions. Window functions are a class of time domain 
functions.

10.3.2 Use of Window Functions in the Designing of FIR Digital Filters

Window functions are a class of time domain functions. Gibb’s oscillations are 
reduced using the appropriate window function. Window functions are used 
to precondition the impulse response h(nTs).
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( ) ( )( ) ( )-transform of n
s s s

n

H z z h nT Z h nT h nT z
∞

−

=−∞

= = =   ∑ � (10.20)

( ) ( )( ) ( )-transform of n
s s s

n

H z z h nT Z w nT w nT z
∞

−

=−∞

= = =   ∑ � (10.21)

( ) ( ) ( ) ( )-tr( a) nsform of  s s s sH z z w nT h nT Z w nT h nTω = =      

( ) ( ) n
s s

n

h nT h nT z
∞

−

=−∞

= ∑ � (10.22)

where w(nTs) is called a window function.
The most frequently used window functions are:

1.	 Rectangular Window Function.

2.	 Hann Window Function and Hamming Window Function.

3.	 Blackman Window Function.

4.	 Kaiser Window Function.

These window functions will be discussed in the next sections.

10.3.2.1. �Rectangular Window Function 

It is the simplest window function and is given by

( )
1 1

1, for
2 2

0, otherwise
s

N N
n

w nT
− −    − ≤ ≤    =    

 �
(10.23)

It corresponds to the direct truncation of the Fourier series.

Spectrum of Rectangular Window Function

Frequency response of any window function is given by

( ) ( )s sj T j nT
s

n

W e w nT eω ω
∞

−

=−∞

= ∑ � (10.24)

Frequency response of the rectangular window is given by

( )
1 1

2 2

1 1
2 2

1. 1.s s s

N N

j T j nT j nT
R

N N
n n

W e e eω ω ω

− −   
   
   

− −

− −   =− =−   
   

= =∑ ∑

This is a Geometric Progression and its sum is given by the formula

[ ]

11

1

MA R

R

+ − 
−
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where	 A = First term of Geometric Progression (G.P.)
R = Common Ratio
M = Total number of terms in G.P.

In above G.P., A = ejωTs[(N − 1)/2]
sj TR e ω=

1 1
1

2 2
N N

M N
− −    = − − = −       

( )
( ) 1 1

[( 1)/2]
1

1

s

s s

s

Nj T

j T j T N
R j T

e
W e e

e

ω

ω ω
ω

− +

−
−

 −  =
 − 

[( 1)/2] [( 1)/2]

1

s s

s

j T N j T N

j T

e e
e

ω ω

ω

− −

−

=
=

−
[( 1)/2] [( 2)/2] /2 /2

/2 /21

s s s s

s s s

j T N j T N j NT j NT

j T j T j T

e e e e
e e e

ω ω ω ω

ω ω ω

− + −

− −

= −
= =

− −
/2

/2 /2

/ 2
sin2 2

sin
22

s s

s s

j NT j nT

s

j T j T
s

e e NT
j

Te e
j

ω ω

ω ω

ω

ω

−

−

 −
 
 = =

 −
 
 

The frequency response of a rectangular window function is

( )
sin

2

sin
2

s

s

j T
R

s

NT

W e
T

ω

ω

ω=
�

(10.25)

Figure 10.3 illustrates the frequency spectrum of rectangular window 
function.

FIGURE 10.3  Spectrum of the rectangular window function
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Main lobe width is 
2 s

N
ω

 for rectangular window function.

The ripple ratio is defined as
Percentage of ripple ratio is given by,

( )Maximum side lobe Amplitude
% R.R. 100

(Main-lob Amplitude)

−
=

RR is 22.34% for N = 11 and decreases as N is increased.

10.3.2.2. Hann and Hamming Window Functions

Combined Hann and Hamming window function is called generalized ham-
ming window function and it is given by the following expression

( )
2 1 1

(1 )cos , for
1 2 2

0, otherwise
H s

n N N
n

w nT N
πα α − −    + − − ≤ ≤    = −    

 �

(10.26)

α = 0.50 for Hann window function and
α = 0.54 for Hamming window function.
Spectrum of Hann and Hamming Window Functions,
Spectrum of Hann and Hamming window functions wH(nTs) can be 

related to that of the rectangular window functions wR(nTs).
Rectangular window function wR(nTs) = 1
but for Hann and Hamming window functions

( ) ( ) 2
(1 )cos

1H s R s

n
w nT w nT

N
πα α = + − − 

( ) ( )2
(1 ) cos

1R s R s

n
w nT w nT

N
πα α  = + −  − 

( ) ( )
2 /( 1) 2 /( 1)

(1 )
2

j n N j n N

R s R s

e e
w nT w nT

π π

α α
− − − +

= + −  
 

( ) ( )2 /( 1)1
2

R sj n N w nT
R sw nT e παα − −− =  

 
( )2 /( 1)1

2
R sj n N w nTe πα − −− +  

 
� (10.27)

Putting e− j2πn/(N−1) = A in Eq. (10.27), we get

( ) ( ) ( ) ( )11
2

n

H s R s R sw nT w nT A w nT
αα

−−− = +  
 

( ) ( )1
2

n
R sA w nT

α −− + 
 
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[using the theorem of z-transform in which complex scale of z changes, that is,

( ) ( ) ( )n
R s RZ A w nT W Az−  = 

Taking the z-transform of Eq. (10.27), we get

or
	

( ) ( ) ( ) ( )11
2H s R s R sZ w nT Z w nT Z A w nT

αα −−  = +            

( ) ( )1
2

n
R sZ A w nT

α −−  +     

or
	

[ ] ( )11 1
( ) ( ) ( )

2 2H H R R RW w z W z W A z W Az
α αα −− −   = + +   

    �
(10.28)

Substituting z = e jωT
s and A = e j2π/(N − 1) in Eq. (10.28), we get

( ) ( ) ( )2 /( 1)1
2

j Tss s e
j Nj T j T

H R RW e W e W e ωπω ω αα
− −−

= +

( )2 /( 1)1
2

j Tse
j N

RW e ωπα + −−
+

( ) ( 2 /( 1))1
.

2
s sj T j T N

R RW e W eω ω παα − − −−  = +  

( )2 /( 1)1
2

sj T N
RW e ω πα + −−  +  

� (10.29)

Since the frequency response of a rectangular window, function is given by

( )
sin

2

sin
2

s

s

j T
R

s

wnT

W e
wT

ω =

Similarly,

	

( )2 /( 1)

2
sin

1 2
2 1

sin
1 2

s

s
j T N

R

s

N
T

N
W e

T
N

ω π

πω

πω

− −

  −  −    =    −  −  

( )2 /( 1)

2
sin

1 2
2 1

sin
1 2

s

s
j T N

R

s

N
T

N
W e

T
N

ω π

πω

πω

− −

  −  −    =    +  −  
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Substituting the above values in Eq. (10.29), we get

( )
( )

( )

sin
2

2
sin

1 1 1 2
sin

2 12 2
sin

1 2
I-term II-term

j Ts s
e

H

s

s

s

N
T

W
N

T
N

T
T

N

ω
ω

α
πω

αω
πω

 
  =

  −  − −      +          −  −  

2
sin

1 1 2
2 12

sin
1 2

III-term

s

s

N
T

N

T
N

πω
α

πω

  +  − −    +      +  −   �

(10.30)

The spectra for the Hann and Hamming window functions can be formed 
by shifting frequency response of rectangular window function, WR(e jωTs) first 
to the right and then to the left by 2π (N − 1)Ts and then adding them to 
Eq. (10.30). Figure 10.4 illustrates the frequency spectra of Hann and Ham-
ming window function. Figure 10.5 shows the equivalent of spectra of Hann 
and Hamming window functions.

FIGURE 10.4  Spectra of Hann and Hamming window functions
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II and III terms are tending to cancel the right and left sides lobes in 

a ( )sj T
RW e ωα . Both Hann and Hamming window functions reduce the side 

lobes in comparison to rectangular window fimrimn:

RR = 1 47% for Hamming window function and
RR = 2.62% for Hann window function

For	 N = 11 and ωs = 10 rad/s

FIGURE 10.5  Equivalent spectra of Hann and Hamming window functions.

The main lobe width for these window functions is 4ws/N which is twice 
the main lobe width for rectangular window function.

10.3.2.3. Blackman Window Function

Blackman window function has one additional cosine term than Hann and 
Hamming window functions and is given by

( )
2 4 1 1

0.42 0.50cos 0.08cos , for
1 1 2 2

0, otherwise
B s

n n N N
n

W nT N N
π π − −      + − ≤ ≤      = − −     


� (10.31)

This additional term in the Blackman window function leads to a further 
reduction in the amplitude of Gibb’s oscillations. Ripple ratio (RR) is equal to 
0.124% for N = 11 and ωs = 10 rad/sec. The main lobe width is increased for 
this window function and is equal to 6 cos/N.
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EXAMPLE 10.1

Design a low-pass FIR filter using the following window functions:

i.	 rectangular,

ii.	 ann, and

iii.	 hamming, for N = 7.

Solution:
The frequency response of linear-phase FIR filters is given by

( )
1

2
[( 1)/2]

1

1 1
2 cos

2 2
s s

N

j T j N T
s

n

N N
H e e h h n n Tω ω ω

− 
 
 

− −

=

 
− −    = + −         

∑
�

(1)

For N = 7, the desired filter coefficients hd(n) for 0 ≤ n ≤ 6 are determined.

1 7 1
Delay 3

2 2s s s

N
T T Tτ − −   = = = =   

   
Assume Ts = 1 second then Eq. (1) can be written as

( )
1

2
[( 1)/2]

1

1 1
2 cos

2 2

N

j j N

n

N N
H e e h h n nω ω ω

− 
 
 

− −

=

 
− −    = + −         

∑

and delay τ = 3.
Also assuming ωC = 1 radian/s.
We know that the impulse response of low-pass filter is

( ) sin C s
s

nT
h nT

n
ω

π
=

sin
( )

n
h n

nπ
=

sin
(0) (6) 0.01497

3d d

n
h h

π
= = =

sin2
(1) (5) 0.014472

2d dh h
π

= =

sin1
(2) (4) 0.26785d dh h

π
= = =

1
(3) 0.31831dh

π
= =

Using a rectangular window function, wR(n) = 1
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then h(n) = ωR(n)hd(n) = 1hd(n), 0 ≤ n ≤ 6

( ) [ ]3 (3) 2 (2)cos 2 (1)cos2 2 (0)cos3j jH e e h h h hω ω ω ω ω−= + + +

[ ]3 0.31831 2 0.20089 cos 2 0.03618 cos2 2 0 cos3je ω ω ω ω−= + × + × + ×

[ ]3 0.31831 0.40178 cos 0.07236 cos2je ω ω ω−= + +
For Hamming window function

2
( ) 0.54 0.46cos , 0 6

7 1Hm

n
n n

πω = − ≤ ≤
−

2
0.54 0.46cos , 0 6

7 1
n

n
π

= − ≤ ≤
−

2
0.54 0.46cos , 0 6

6
n

n
π

= − ≤ ≤

0.54 0.46cos , 0 6
3
n

n
π

= − ≤ ≤

(0) 0.54 0.46cos0 0.08 (6)Hm Hmω ω= − = =
1

(1) 0.54 0.46cos 0.54 0.46 0.31 (5)
3 2Hm Hm

πω ω= − = − × = =

2 1
(2) 0.54 0.46cos 0.54 0.46 0.54 0.23

3 2Hm

πω = − = − × = +

0.77 (5)Hmω= =
3

(3) 0.54 0.46cos 0.54 0.46 cos 0.54 0.46 1
3Hm

πω π= − = + × = + =

( ) ( ) ( )Hm dh n n h nω=
(0) (0) (0) 0.08 0.01497 0.0011976 (6)Hm dh h hω= = × = =
(1) (1) (1) 0.31 0.14472 0.0437632 (5)Hm dh h hω= = × = =
(2) (2) (2) 0.77 0.26785 0.2172445 (4)Hm dh h hω= = × = =
(3) (3) (3) 1 0.31831 0.3183Hm dh hω= = × =

3( ) [ (3) 2 (2)cos 2 (1)cos2 2 (0)cos3 ]j jH e e h h h hω ω ω ω ω−= + + +
3 [0.3183 2 0.217445cos 2 0.0437632cos2je ω ω ω−= + × + ×

2 0.0011976cos3 ]ω+ ×

( ) 3 [0.3183 0.4348890cos 0.0875264cos2sj T jH e eω ω ω ω−= + +

0.0023952cos3 ]ω+
7 1

2
[(7 1)/2]

1

7 1
(3) 2 cos

2
j

n

e h h n nω ω

− 
 
 

− −

=

 
−  = +      

∑
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3
3

1

(3) 2 (3 )cosj

n

e h h n nω ω−

=

 
= + − 

 
∑

3 [ (3) 2 (2)cos ] 2 (1)cos2 2 (0)cos3 ]je h h h hω ω ω ω−= + + +
3 [0.31831 2 0.26785cos 2 0.14472cos2je ω ω ω−= + × + ×

2 0.01497cos3 ]ω+ ×
3 [0.31831 0.5357cos 0.28944cos2je ω ω ω−= + +

0.02994cos3 ]ω+
For Hann window function

2
( ) 0.50 0.50cos ,0 6

7 1Hn

n
n n

πω = − ≤ ≤
−

1 2 1
1 cos ,0 6 1 cos ,0 6

2 6 2 3
n n

n n
π π   = − ≤ ≤ = − ≤ ≤   

   
1 1

(0) (1 cos0) (1 1) 0 (6)
2 2Hn Hnω ω= − = − = =

1 1 1 1
(1) 1 cos 1 0.25 (5)

2 3 2 2 4Hn Hn

πω ω   = − = − = = =   
   

1 2 1 1 3
(2) 1 cos 1 0.75 (4)

2 3 2 2 4Hn Hn

πω ω   = − = + = = =   
   

1 3 1 2
(3) 1 cos (1 1) 1 (3)

2 3 2 2Hn Hn

πω ω = − = + = = = 
 

( ) ( ) ( )n dh n H n h nω=
(0) (0) (0) 0.01497 0n dh H hω= = =
(1) (1) (1) 0.25 0.14472 0.03618n dh H hω= = × =
(2) (2) (2) 0.75 0.26785 0.20089n dh H hω= = × =
(3) (3) (3) 1 0.31831 0.31831n dh H hω= = × =  

10.3.2.4. Kaiser Window Function

RR is decreased from rectangular to Blackman window function but the main 
lobe width is increased. Main lobe width can be adjusted by changing N. For 
achieving prescribed minimum stopband attenuation and passband ripple, we 
select a window function with an appropriate RR and then choose N to get the 
prescribed transition width.

To get the desired transition width, the order of the filter (N) is to be 
increased to an unnecessarily high value. A window function that easily over-
comes this problem is called Kaiser Window Function.
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( ) 0

1 1
( ), for

2 2
0, otherwise

K s

N n
F n

w nT
β − −    − ≤ ≤    =    

 �

(10.32)

where α is an independent parameter and β is a dependent parameter, which 
depends upon α as

2
1

1
n

N
β α  = −  −  � (10.33)

2

0
1

1
( ) 1

2

k

k

F
k

ββ
∞

=

  = +   ∠    
∑

and
	

2

0
1

1
( ) 1

2

n

k

F
k

αα
∞

=

  = +   ∠    
∑

where ∠ k is factorial of k and F0(β) and F0(α) are zeroth-order Bessel func-
tions of the first-kind.

Spectrum of Kaiser Window,
Now we will determine the spectrum of Kaiser window.

( )( ) ( ) n
s s

n

W z Z w nT w nT z
∞

−

=−∞

= =   ∑
Putting z = e jωT

s

( ) ( )( )s s
nj T j T

k s
n

W e w nT eω ω
∞ −−

=−∞

= ∑

or

	
( ) ( )

1
2

1
2

(For Kaiser window function)s s

N

j T j T n
k k s

N
n

W e w nT eω ω

−

−

− =− 
 

= ∑

( ) ( )
1

2

1

(0) 2 coss

N

j T
k k s s

n

W e w w nT T nω ω

− 
 
 

=

= + ∑ �
(10.34)

Kaiser window function in a continuous-time domain is given by

0

0

( )
, for

( )( )
0, otherwise

d d
k

F
T t T

FW t
β
α

 − ≤ ≤= 
 �

(10.35)

where
	

2

1
d

t
T

β α
 

= −  
  �

(10.36)

1
delay time

2d s

N
t T

− = =  
 
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The spectrum of Wk(t):

( )2 2

2 2
0

sin2
( )

( )

d

k

T
W j

F

α

α

ω ω
ω

α ω ω

−
=

− � (10.37)

where
 dTα

αω =

If
 

( ) 0 for | .
2

s
kW j

ωω ω≈ ≥

The spectrum of the sampled window function ( )k tω′  is equivalently the 
spectrum of ( )k snTω . It is expressed as

( ) 1
( ) ( ) for 0 | |

2
sj T s

k k k
s

W
W j W e W j

T
ωω ω ω= ≈ ≤ ≤ � (10.38)

From Eq. (10.37),
 

( ) ( )2 2

2 2
0

sin2
( )

s
dj T

s k

T
T W e

F

αω

α

ω ω

α ω ω

−
≈

−

( ) ( )2 2

2 2
3 0

sin2
( )

s
dj T

k

T
W e

T F

αω

α

ω ω

α ω ω

−
=

−

( )( )
( )

2

2
0

sin / 12
( ) / 1

d

s

T

T F

α α

α α

ω ω ω

ω α ω ω

−
≈

−
� (10.39)

But we know that

( 1)
 and   

2
s

d d
d

N T
T or T

Tα α
αω α ω−

= = =

∴

	
( )

2
1 ( 1)

2
s sN T N Tα

α αω = =
− −

or
	

2
( 1)sT
Nα

αω =
−

Substituting α = Td ωα and 
2

( 1)dT
Nα

αω =
−

 in Eq. (10.39)

( )
( )

( )

2

0 2

2

sin / 12
( )

( 1) / 1

sj T
kW e

F
N

ω

α

α

α ω ωα α
ω ω

≈
 −  

− −
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( )

( )

2

2
0

sin / 11
( ) / 1

N
F

α

α

α ω ω

α α ω ω

 −−   ≈
−

�
(10.40)

A very attractive property of the Kaiser window is that the RR can be 
varied continuously from the low value in the Blackman window function to 
the high value in the rectangular window function by simply changing the 
parameter a. In other window functions such as rectangular, Hann, Ham-
ming, and Blackman window functions, the main lobe width can be adjusted 
by changing the order of filter (N).

For low-pass filter specifications,

The passband ripple,
 

1
20 log

1pR
γ
γ

+
=

−
, dB

and minimum stopband attenuation, Rα = −20 log γ, dB
Transition width, Bt = ωα − ωp, radians

For a filter with passband ripple Rp ≤ pR′ ,
A minimum stopband attenuation Ra ≤ aR′

and transition width Bt can be designed by the following procedure:
Step I: Determination of h(nTs) using Fourier series method

( )
1, for | |

1, | |
2

s

C
j T

s
C

H e ω
ω ω

ωω ω

≤
= 

< ≤
ωC is the lower cutoff frequency

2
p

C
αω ω

ω
+

=

Step II: Choice of γ

( )1 2minimum ,γγ γ=

where γ1 = 10−0.05R′a

0.05

2 0.05

10 1

10 1

p

p

R

R
γ

′

′

 −
 =
 + 

Step III: Calculation of Ra using Eq. Ra = −20 log (γ)
Step IV: Choosing the parameter α:

( ) ( )
( )

0.4

0, for 21

0.5842 1 0.07886 1 , for 21 50
0.1102 8.7 for 50

a a a

a

R

R R R

R R

α

α

α

≤


= − + − < ≤
 − >
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Relation for α is an empirical one and is developed by Kaiser.
Step V: Choosing parameter D:

0.9222, for 21
7.95

, for 21
14.36

R
D R

R

α

α
α

≤
= −

>

It is also an empirical relation developed by Kaiser
After choosing D, we select the smallest odd value of N satisfying the 

following relation

1s

t

D
N

B
ω

≥ +  

Step VI: Determine

 

( )
0

0

( ) 1
, for | |

( ) 2
0, otherwise

k s

F N
n

Fw nT
β
α

− ≤= 
  

Step VII: Determine 
[( 1)/2]( ) ( )N

w wH z z H z′ − −

where ( )( )w k s sH z Z w nT h nT=   

EXAMPLE 10.2
Design a low-pass filter whose specifications are:

Frequency response

 
( )

1,

0, for | |
2

s

C C
j T

s
C

H e ω
ω ω ω

ωω ω

≤ ≤
≈ 

< ≤
Passband ripple in frequency range 0 to 15 rad/sec < 0.1 dB.
Minimum stopband attenuation in frequency range 2.5 to 5.0 rad/sec  

≥ 40 dB
Sampling frequency ωs = 10 rad/sec

Solution:
Step I: Impulse response of low-pass filter

( ) ( )
/2

/2

1 1
1

s C

s s s

s C

j T j T j nT
s

s s

h nT H e e d e d
ω ω

ω ω ω

ω ω

ω ω
ω ω− −

= = =∫ ∫

1
C

s

C

j nT

s s

e
jnT

ωω

ω
ω

−

 
=  

 

1 2
But 2

s c sj nT j nT

s s
s s s

e e
f

n T j T

ω ω πω π
ω

 −
= = = 

 
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1 1
2 2

c s c s c s c sj nT j nT j nT j nT

s
s

e e e e
j nn T

T

ω ω ω ω

π π

− −   − −
= =   

  

∴
	 ( ) sin c s

s

nT
h nT

n
ω
π

=

(It is the impulse response of the LPF filter.)
Step II: Determination of γ from γ1 and γ2

2
10

2

1
20 log

1pR
γ
γ

′ +
=

−

10 120 logRα γ′ = −  
10 140 20 log γ= −

or	 1 0.01γ =

2
10

2

1
0.1 20 log

1
γ
γ

 +
=  − 

or	 3
2 5.7564 10γ −= ×

( ) ( )3
1 2Minimum , Minimum 0.01, 5.7564 10γ γ γ −= = ×  

Step III: Determination of α, Kaiser’s empirical relations for α is given as
( )3

10 1020 log ( ) 20 log 5.7564 10 44.797 dBaR γ −= − = − × =
Step IV: Determination of α, Kaiser’s empirical relations for α is given as

( ) ( )
( )

0.40

0, for 21

0.5842 1 0.07886 21 , for 21 50
0.1102 8.7 for 50

R

R R R

R R

α

α α α

α α

α

≤


= − + − < ≤
 − >

From step III, we have determined Ra = 44.797 dB

then	 ( ) ( )0.40 0.5842 21 0.07886 21a aR Rα = − + −
0.400.5842 (44.797 21) 0.07886 (44.797 21)= − + −

3.9524=
Step V: Determination of D, Kaiser’s empirical relations for D is given by

0.9222, for 21
7.95

, for 21
14.36 a

R
D R

R

α

α

≤
= −

>
From Step III, we have determined Ra = 44.797 dB

then
	

7.95 44.797 7.95
0.5660

14.36 14.36
R

D α − −
= = =
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Hence the order of the filter (N) is given by

1s

t

D
N

B
ω

≥ +

But transition width Bt = ωa − ωp = 2.5 − 1.5 = 1.0 rad/sec

Now
	

10 2.5660
1 26.66

1.0
N

×
> + ≥

or	 27N =
Step VI: From Kaiser window

( )
0

0

( ) 1 1
, for

( ) 2 2
0, otherwise

k s

F N N
n

Fw nT
β
α

− −    − ≤ ≤    =    



Step VII:
	

( )
1

2
[( 1)/2]

0

( )
2

N

N n nn
w

n

a
H z z z z

−
′

′ − − −

=

= +∑
where	 0 (0) (0)kw hα ′ =

( ) ( )2 .n k s sw nT h nTα ′ =

10.4 � DESIGN OF FIR DIGITAL FILTER BASED ON 
NUMERICAL-ANALYSIS FORMULAE

A signal s(t) whose sampled values are known at t = nTs, where n = 0, 1, 2, ... and 
Ts is called sampling period. It can be interpolated, differentiated or integrated 
by using Numerical-Analysis formulae such as Gregory-Newton Forward and 
Backward difference formulae and Bessel’s, Everett’s and Stirling’s central  
difference formulae.

Gregory-Newton Forward Difference Formula

The value of signal s(t) at = nTs + mTs, 0 ≤ m ≤ 1 is given by Gregory-Newton 
forward difference formula as

( ) ( )( ) | (1 )
s s

m
t nT mT s s ss t s nT mT s nT= + = + = + ∆

2 3( 1) ( 1)( 2)
1 ...

1 2 3
m m m m m m− − − = + ∆ + ∆ + ∆ + ∠ ∠ ∠ 

� (10.41)

where	 ( ) ( ) ( )s s s ss nT s nT T s nT∆ = + −

( ) ( )2  and so ons s s ss nT T s nT T+ − + � (10.42)
∆ is known as forward or ascending difference operator.
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Gregory-Newton Backward Difference Formula

The value of signal s(t) at t = nTs + mTs, 0 ≤ m < 1 is given by Gregory-Newton 
backward difference formula as

( ) ( )( ) | (1 ) s s

s s

m nT
t nT mT s ss t s nT mT −
= + = + = − ∇

( )2 3( 1) ( 1)( 2)
1 ...

1 2 3 s

m m m m m m
s nT

+ + + = + ∇ + ∇ + ∇ + ∠ ∠ ∠  �
(10.43)

∇ is known as backward or descending difference operator.
Stirling’s Central Difference Formula
The value of signal s(t) at t = nTs + mTs, 0 ≤ m < 1 is given by Stirling’s 

central difference formula as

( )( ) |
s st nT mT s ss t s nT mT= + = +

( )
2 2

2 ( 1)
1 ...

2 4 s

m m m
s nTδ

 −
= + + + ∠ ∠ 

2 2 2
s s

s s

T Tm
s nT s nTδ δ    + − + −        

( )2
3 5

1

2 3 2
s s

s s

m m T T
s nT s nT

s
δ δ

−     + − + +    ∠     

( )( )2 2 2
5 5

1 2
...

2( 5) 2 2
s s

s s

m m m T T
s nT s nTδ δ

− −     + − + + +    ∠     
� (10.44)

where
	

( ) ( )
2

s
s s s s

T
s nT s nT T s nTδ  + = + − 
  �

(10.45)

δ is known as central difference operator.
Differentiation of s(t) at t = nTs + mTs

( )( )
s s

s s
t nT mT

d d
s t s nT mT

dt dt= +

= +

( ) 1
s s

c

d
s nT mT

dm T
= +

�
(10.46)

But
 	 s st nT mT= +

1 0 s

dm
T

dt
= +

or
	

1

s

dm
dt T


= 


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Substituting the value of 
1

s

dm
dt T

=  in Eq. (10.46), we get

( ) 1
( )

s s

s s
t nT mT s

d d
s t s nT mT

dt dm T= +

= +

( )1
s s

s

d
s nT mT

T dm
= +

�
(10.47)

Integration Formula
It can be derived as

( )
2 2

0

( )
s

q m

s s s
t nT

s t dt T s nT mT dm
=

= +∫ ∫
�

(10.48)

where 2s s snT q nT T< < +  and 
2

2
s

s

q nT
m

T
−

= , 0 < m2 ≤ 1

FIR filter that perform interpolation, differentiation or integration can 
now be obtained. Now we assume s(nTs) and y(nTs) are the input and output 
of a FIR filter.

( ) [ ( )]sy nT f s t= � (10.49)

( ) ( )

s s

s
t nT mT

ds t
y nT

dt = +

= � (10.50)

( ) ( )
M

s j s s
j k

y nT A s nT jT
=−

= −∑ � (10.51)

Thus the derived transfer function is given as

( )( )
M

n
s

j k

H z h nT z−

=−

= ∑ � (10.52)

For the case of forward central difference formula. Transfer function 
H(z) is non-causal. For converting this non-causal transfer function into 
causal transfer function previous one is multiplied by an appropriate negative 
powers of z.

EXAMPLE 10.3

A signal s(t) sampled at a rate 1/Ts Hz. By using Stirling’s central difference 
formula, design a sixth order differentiating filter. Its time domain response 
is given by

( ) ( )

s

s
t nT

ds t
y nT

dt =

=
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Solution:
From Stirling’s central difference formula

( )( ) 1

s s

s s

t nT mT s

ds nT mTds t
dt T dm= +

+
=

( )( ) 1 1

s s

s s
t nT mT s

ds t
s nT mT

dt T dm= +

= +

( ) ( )
2 22

2 4
11 1

1 ...
2 4 s

s m

m mm
s nT

T d
δ δ

 −= + + + 
∠ ∠  

2 2 2
s s

s s s

T Tm
s nT nTδ δ    + − + +        

( )2
3 3

1

2( 3) 2 2
s s

s s

m m T T
s nT s nTδ δ

−     + − + +    ∠     

( )( )2 2 2
5 5

1 2
...

2( 5) 2 2
s s

s s

m m m T T
nT s nTδ δ

− −      + − + + +     ∠      
� (1)

( ) ( )
2

2 4
4 21

1 ...
4 s

s

m m
m s nT

T
δ δ

 −= + + + 
∠  

1
2 2 2

s s
s s s

T T
s nT nTδ δ    + − + +        

( )2
3 3

3 1

2( 3) 2 2
s s

s s

m T T
s nT s nTδ δ

−     + − + +    ∠     

( )4 2
5 5 3

5 15 4
...

2( 5) 2 2
s s

s s

m m T T
s nT s s nTδ δ δ

− +      + − + + +     ∠      
� (2)

( ) ( )
after putting 0

s s st nT t nT mT

ds t ds t
m

dt dt= = +

= =

1
2 2 2

s s
s s s

s

T T
s nT nT

T
δ δ    = − + +        

3 31
12 2 2

s s
s s

s

T T
s nT s nT

T
δ δ    − − + +        

5 51
...

60 2 2
s s

s s
s

T T
s nT s nT

T
δ δ    + − + + +        

� (3)
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Now using the relation

( ) ( )
2

s
s s s s

T
s nT s nT T s nTδ  + = + − 
  �

(4)

Similarly
	

( ) ( )
2

s
s s s s s

T
nT s nT s nT Tδ  − = − 

  �
(5)

Adding both Eqs. (4) and (5), we get

( ) ( )3

2 2
s s

s s s s s s s

T T
nT s nT s nT T s nT Tδ δ   + + − = + − −   

    �
(6)

Now we will determine
 

3 3

2 2
s s

s s

T T
s nT s nTδ δ   + + −   
   

From Eq. (6)

( ) ( )
2 2

s s
s s s s s s s s

T T
nT nT s nT T s nT Tδ δ δ δ    + + − = + − −           

or	 ( ) ( )2 2

2 2
s s

s s s s s s

T T
s nT s nT s nT T s nT Tδ δ δ δ   + + − = + − −   
   

2 2
s s

s s s s

T T
s nT T s nT T

    = + + − + +        

2 2
s s

s s s s

T T
s nT T s nT T

    − − + − − −        
3
2 2

s s
s s

T T
s nT s nT

    = + − +       
3

2 2
s s

s s

T T
s nT s nT

   − + − +      
� (7)

From Eq. (7),	 2 2

2 2
s s

s s

T T
s nT s nTδ δ δ    + − −        
3
2 2

s s
s s

T T
s nT s nTδ     = + − +       

3
2 2

s s
s s

T T
s nT s nT

   − − + −      
� (8)

or	 3 3

2 2
s s

s s

T T
s nT s nTδ δ   + + −   
   

3 3
2 2 2 2

s s s s
s s s s

T T T T
s nT s nT s nT s nTδ δ δ δ       = + − + − − + −       
       
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3 3
2 2 2 2

s s s s
s s

T T T T
s nT s nT

    = + + − + −        

2 2 2 2
s s s s

s s

T T T T
s nT ss nT

    − + + − + −        

2 2 2 2
s s s s

s s

T T T T
s nT s nT

    − − + − − −        
3 3
2 2 2 2

s s s s
s s

T T T T
s nT s nT

    + − + − − −        
( ) ( ) ( ) ( )2s s s s s s ss nT T s nT T s nT T s nT= + − − − + +

( ) ( ) ( ) ( )s s s s s s ss nT s nT T s nT T s nT T− + − + − − −

( ) ( ) ( ) ( )2 2 2 2s s s s s s s ss nT T s nT T s nT T s nT T= + − + + + − −

or ( ) ( ) ( )3 3 2 2 2
2 2

s s
s s s s s s s s

T T
s nT s nT s nT T s nT T s nT Tδ δ   + + − = + − + + +   
   

( )2s ss nT T− − � (9)

Similarly, we can determine

( ) ( ) ( )5 5 3 4 2 5
2 2

s s
s s s s s s s s

T T
s nT s nT s nT T s nT T s nT Tδ δ   + + − = + − + + +   
   

			   ( ) ( ) ( )5 4 2 3s s s s s ss nT T s nT T s nT T− − + − − − � (10)
Hence, from Eq. (10.44), we can get

( )
 with 0

( ) ( )

s s s

s
t nT t nT mT m

ds t ds t
y nT

dt dt= = + =

= =

1
2 2 2

s s
s s

s

T T
s nT s nT

T
δ δ    = − + +        

3 31
12 2 2

s s
s s

s

T T
s nT s nT

T
δ δ    − − + +        

51
...

60 2 2
ss s

s s
s

T T
s nT s nT

T
δ δ    + − + + +         �

(11)

Putting the values of
 2 2

s s
s s s

T T
s nT nTδ δ   − + +   
   

3 3

2 2
s s

s s

T T
s nT s nTδ δ   + + +   
   

and
	

5 5

2 2
s s

s s

T T
s nT s nTδ δ   − + +   
   
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In Eq. (10), we get

( ) ( ) ( )1
2

2s s s s s
s

y nT s nT T s nT T
T

= + − −  

( ) ( ) ( ) ( )1
2 2 2 2

12 s s s s s s s s
s

s nT T s nT T s nT T s nT T
T

− + − + + − − −  

( ) ( ) ( ) ( )1
3 4 2 5 5

60 s s s s s s s s
s

s nT T s nT T s nT T s nT T
T

+ + − + + + − −

( ) ( )4 2 3s s s ss nT T s nT T+ − − + 

or
	

( ) ( ) ( ) ( )1
3 9 2 45

60s s s s s s s
s

y nT s nT T s nT T s nT T
T

= + − + + +

( ) ( ) ( )45 9 2 3s s s s s ss nT T s nT T s nT T− − + − − − � (12)
This is the difference equation of the sixth order differentiator.
Taking the z-transform of Eq. (12), we get

3 2 11
( ) ( ) 9 ( ) 45 ( ) 45 ( )

60 s

y z z S z z S z zS z z S z
T

−= − + −
2 39 ( ) ( )z S z z S z− − + − 

3 2 1 2 3( ) 1
( ) 9 45 45 9

( ) 60 s

Y z
H z z z z z z z

S z T
− − − = = − + − + − � (13)

3 2 1 2 31
( ) 9 45 45 9

60 s

H z z z z z z z
T

− − − = − + − + − 

This filter has an anti-symmetrical impulse response and is non-causal. 
This non-causal filter is converted into a causal filter by multiplying H(z) by z−3

3 3 3 2 1 2 31
( ) ( ) 9 45 45 9

60 s

H z z H z z z z z z z z
T

− − − − − 
′ = = − + − + − 

 

( )2 2 4 5 61
1 9 45 45 9

60 s

z z z z z
T

− − − −− + − + −

This is the transfer function of causal sixth-order FIR digital differentiator.

10.5 � DESIGN OF OPTIMAL LINEAR-PHASE FIR DIGITAL 
FILTERS USING M-CLELLAN–PARKS METHOD

In both frequency sampling and windowing methods of designing FIR digital 
filters, there was a problem with the precise control of the critical frequencies. 
In the optimal filter design method, we consider the Chebyshev approxima-
tion problem. It is viewed that the weighted approximation error between the 
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actual frequency response and the desired filter response is spread across the 
passband and the stopband and the maximum error is minimized.

This design method results in passband and the stopband having ripples. 
The design procedure is explained using a low-pass filter (LPF) with passband 
and stopband edge frequencies wp and ws, respectively.

From Figure 10.6, the frequency response of the filter in the passband is 
given by

		  ( )1 1 ,| |j
p p pH e ωδ δ ω ω− ≤ ≤ + ≤ � (10.53)

The frequency response in the stopband is given by

		  ( ) 1 ,| |j
p s sH e ωδ δ ω ω− ≤ ≤ + ≤  � (10.54)

The term δp represents the passband ripple, and δs is the maximum atten-
uation in the stopband.

There are four different cases that result in a linear-phase FIR digital 
filter, viz.,

1.	 Symmetric unit-sample (impulse) response and the length of the filter 
(M) is odd.

2.	 Symmetric unit-sample (impulse) response and (M) is over.

3.	 Anti-symmetric unit-sample (impulse) response and (M) is odd.

4.	 Anti-symmetric unit-sample (impulse) response and (M) is even.

FIGURE 10.6  Frequency characteristics of physically Realizable Filters.
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Here we discuss the only first case and other cases are given in Table 10.1 
In the symmetric unit-sample (impulse) response case,

( ) ( 1 )h n h M n= − −
The real-valued frequency response characteristics are

( ) ( ) ,j j
rH e H eω ω=  given in Eq. (10.55), is

( )
( 3)

2

0

1 1
2 ( )cos

2 2

M

j

n

M M
H e h h n nω ω

−

=

− −   = + −      
∑ �

(10.55)

Let
	

1
2

M
k n

− = − 
 

Eq. (10.55) can be written as

( )
( 3)

2

0

( )cos( )

M

j

k

H e A k kω ω

−

=

= ∑ �
(10.56)

where
	

1
(0)

2
M

A h
− =   

1 1
( ) 2 , for 1

2 2
M M

A k h k k
− − = − ≤ ≤   �

(10.57)

The magnitude response for other there cases are similarly converted to a 
compact form as given in Table 10.2.

TABLE 10.2  Magnitude Response functions for Linear-Phase FIR Digital filters.

Filter Type Q(ω) P(ω)
Case I: Symmetric and M odd h(n) = h(M − 1 − n) 1 1

2

0

( )cos( )

M

k

A k kω

− 
 
 

=
∑

Case II: Symmetric and M Even h(n)  
= h(M − 1 − n) cos

2
ω 1

2

0

( )cos( ).

M

k

B k kω

 − 
 

=
∑

Case III: Anti-symmetric and M odd h(n) =  
−h(M − 1 − n)

sin ω 3
2

0

( )cos( )

M

k

C k kω

− 
 
 

=
∑

Case IV: Anti-symmetric and M even h(n) =  
−h(M − 1 − n) sin

2
ω ( 1)

2

0

( )cos( )

M

k

D k kω

−

=
∑
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From Table 10.2, it can be seen that the magnitude response function can be 
written as given in Eq. (10.58), for the four different cases.

( ) ( ) ( )jH e Q Pω ω ω=
�

(10.58)

where

	

1, for Case I

cos , for Case II
2( )

sin , for Case III

cos , for Case IV
2

Q

ω

ω
ω
ω




= 



 �

(10.59)

and P(ω) is of the common form

0

( ) ( )cos( )
L

k

P A k kω ω
=

= ∑ 

�
(10.60)

{ }( ) Filter parameters.A k =

These filter parameters are linearly related to the unit-impulse response 
h(n) of the filter. The upper limit L changes from case to case. In the design 
of optimal filters, the decreased frequency Hd(ω) and the weighting function 
W(ω) on the approximation error are also defined. The desired frequency 
response is defined to be 1 in the passband and 0 in the stopband. The weight-
ing function W(ω) helps in selecting the relative size of the errors in the fre-
quency bands. The weighting function is usually normalized to unity in the 
stopband and W(ω) = δs/δp in the passband:

, passband
( )

1, stopband

s

pW

δ
δω


= 

 �

(10.61)

The weighted approximation error is defined as
( ) ( ) ( ) ( )j

dE W H H e ωω ω ω = − 
[ ]( ) ( ) ( ) ( )dW H Q Pω ω ω ω= −

( )
( ) ( ) ( )

( )
dH

W Q P
Q

ωω ω ω
ω

 
= − 

 �
(10.62)

Let us define the modified weighting function Ŵ(ω). The modified 
desired frequency response Ŵd (ω) is given below

ˆ ( ) ( ) ( )
( )ˆand ( )

( )
d

d

W W Q

H
H

Q

ω ω ω
ωω

ω

=

= 
�

(10.63)
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The approximation error is then given by
ˆ ˆ( ) ( ) ( ) ( )dE W H Pω ω ω ω = − � (10.64)

Expression for the approximation error given by Eq. (10.64) is valid for all 
four types of linear-phase FIR digital filters. Once the error function is given, 
the filter parameters {Ã(k)} are determined such that the maximum absolute 
value of E(ω) is minimized. Mathematically, this is equivalent to seeking the 
solution to the problem

| ( )|
0

~ min max ~ min ˆ ( ) ( ) ( )cos( )
( ) ( )

L

S dE
k

W H A k k
A k S A k ωω ω ω ω

ω ∈
=

         = −        ∈          
∑ 

� (10.65)
where S is the set of frequency bands over which the optimization is to be 
performed. Parks and Mc Clellan applied the alternation theorem in the 
Chebyshev approximation and obtained the solution to the problem specified 
in Eq. (10.65). The alternation theorem is given below. Let S be a compact 
subset of the interval [0, π]. A necessary and sufficient condition for

0

( ) ( )cos( )
L

k

P A k kω ω
=

= ∑ 

�
(10.66)

to be the unique, best weighted Chebyshev approximation to Hd(ω) in S is 
that the error function E(ω) exhibit at least L + 2 external frequencies in S. 
That is, there must exist at least L + 2 frequencies {ωi}; in S such that

ω1 < ω2 < ω3 < ..., ωL+2, E(ωi) = −(ωi + 1),

and	 ( )
| ( )|max

, 1,2,3,...., 2
E

iE S i L
ω

ω ω= ∈ = + � (10.67)

The error function E(ω) alternates in sign between two successive exter-
nal frequencies. Hence, this theorem is called alternation theorem. The fil-
ter designs containing more than L + 2 external frequencies are called extra 
ripple filters. The alternation theorem guarantees a unique solution for the 
approximation problem and for a given set of external frequencies {ωn} then 
the error function may be written as

( ) ( 1)n
nE ω δ= −

( ) ( ) ( )ˆ ˆ , 1,2,3,..., 1n n nW H P n Lω ω ω = − = −  � (10.68)

where δ represents the maximum value of the error function E(ω). Eq. (10.68) 
can be written in matrix form as
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( )

( )

( )

0 0 0 0
0

1 1 1 1
1

2 2 2 2
2

1

1 1 1 1
1

1
1cos cos2 cos3 ... cos ˆ

(0)1
1cos cos2 cos3 ... cos ˆ ( )

1
1cos cos2 cos3 ... cos ˆ

. . . ... . .

. . . ... . .

( 1)
1cos cos2 cos3 ... cos ˆ

L

L L L L
L

L
W

A
L

W

L
W

L
W

ω ω ω ω
ω

ω ω ω ω
ω

ω ω ω ω
ω

ω ω ω ω
ω

+

+ + + +
+

 
 
 
 −
 
 
 
 
 
 
 
 
 − 
  



( )

0

1

2

1

ˆ ( )
ˆ ( )(1)
ˆ(2) ( )

. .

. .
ˆ( )

d

d

d

d L

H

HA

A H

A L H

ω

ω

ω

ω +

  
  
  
  
   =   
  
  
  
    







�
(10.69)

Therefore, if the external fre-
quencies are known as the coefficients 
{h(n)}, the peak error δ, and hence the 
frequency response of the filter, can be 
determined by inverting the matrix. As 
matrix inversion is time-consuming and 
insufficient, the peak error δ can be 
computed using the Ramez Exchange 
Algorithm.

10.5.1 Ramez Exchange Algorithm

In this algorithm, a set of external fre-
quencies is first assumed, the values of 
P(ω) and δ are determined and then the 
error function E(ω) is computed. This 
error function is then used to determine 
another set of L + 2 external frequencies.

This iterative process is repeated 
until the error function converges. to 
the optimal set of external frequencies. 
A flowchart of the Ramez Exchange 
Algorithm is given in Figure 10.7. A 
computer-aided iterative procedure for 
designing an optimal FIR digital filter 
has been developed by parks and Me 
Clellan.

FIGURE 10.7  Flowchart of the Ramez  
Exchange Algorithm.
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10.6  FINITE WORD LENGTH EFFECTS IN DIGITAL FILTERS

Finite word length effects are also called finite precision effects. In digital 
signal processing (DSP), all the signals and systems are digital. The digital 
implementation has finite accuracy. When numbers are represented in digital 
form, errors are introduced due to their finite accuracy. These errors generate 
finite word length effects.

Now we consider an example of the first-order IIR digital filter to illustrate 
how errors are encountered in discretization process. Such an IIR digital filter 
can be described by following difference equation

( ) ( ) (1 )y n y n s nα= − +
�

(10.70)

Taking the z-transform of both sides of Eq. (10.70)
[ ( )] [ ( ) ( )]1Z y n Z y n s nα= − +

or	 1( ) ( ) ( )Y z z Y z S zα −= +

or
	 1

( ) 1
( ) 1

Y z
S z zα −=

− �
(10.71)

Hence the transfer function of the system is given as

1

( ) 1
( )

( ) 1
Y z

H z
S z zα −= =

−

or
	 1

1
( )

1
H z

zα −=
− �

(10.72)

Eq. (10.72) can be written as

( )
z

H z
z α

=
−

� (10.73)

Here we observe that α is the filter coefficient when this filter is imple-
mented on some DSP process or software, α can have any discrete values. Let 
the discrete values of coefficient α be represented by α̂ . The α̂  is the discrete 
approximation of α. Hence the actual transfer function which is implemented 
is given as

ˆ ( )
ˆ

z
H z

z α
=

−
� (10.75)

The transfer function Ĥ  (z) is slightly different from H(z). Hence the 
actual frequency response will be different from desired frequency response.

Here e(n) is the error introduced during analog-to-digital (A/D) conver-
sion process due to the finite word length of the quantizer. Similarly, the 
error is introduced in the multiplication of a and y(n − 1) in Eq. (10.70). This 
is because the product a y(n −1) has to be quantized to one of the available 
discrete values. This introduces errors. Here, we introduced various sources 
of errors.
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10.6.1 Quantization Process and Errors

The digital data can be represented by fixed-point or floating-point format. 
This representation as well as arithmetic operations such as addition, subtrac-
tion and multiplications give rise to various errors. Such errors are generated 
due to finite word length limitations of the registers. For example, the product 
of N-bit numbers is 2N bits long. This product must be quantized to N-bits, so 
that it will fit in the prescribed word length of the registers. Such quantization 
generates an error.

Similarly, in fixed-point arithmetic, the addition of the two numbers can 
result in a sum exceeding the word length of the register. This causes overflow 
and the error is generated. Again the result of addition and multiplication has 
to be quantized.

Let us consider that the available word length is (N + l) bits and the most 
significant bit is representing the sign of the number. Let the data be (N + 1) 
bit fixed-point fraction with the binary point just to the right of the sign bit. 
This is shown in Figure 10.8.

FIGURE 10.8  Illustration bit fixed-point fraction

The smallest positive number in this format will have the least significant 
bit of 1, will all bits zero. The decimal equivalent of such a number will be 2−N. 
This smallest number of 2−N is called the quantization step. The quantization 
step is denoted by δ.

Quantization step,	 2 Nδ −= � (10.76)
Let us assume that the original data x is represented by (δ + 1) bit fraction 

is quantized to (N + 1) bits. This quantization can be performed by truncation 
or by rounding off. The value of b can be very large since it does not use any 
quantization. Ideally speaking (β + 1) bit fraction is also called infinite preci-
sion representation. This quantization operation can be modeled as shown in 
Figure 10.9.
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FIGURE 10.9  Quantization process model.

The range of quantization errors for fixed-point numbers is given in 
Table 10.3.

TABLE 10.3  Range of Quantization Errors

Type of Quantization Number Representation Range of Error Q[x] − x
Truncation Positive number and 2’s 

complement negative number
−δ < εt ≤ 1

Truncation Sign magnitude negative number 
and 1’s complement negative 
number

0 ≤ εt < δ

Rounding All positive and negative 
numbers.

2 2r

δ δε− < ≤

Here εt = Truncation error
εr = Rounding error

For the floating-point numbers, the quantization is carried out only on 
mantissa. Hence it is more relevant to consider the relative error caused by 
the quantization process.

Let the unquantized floating-point number is represented as x = 2EM, and 
quantized floating-point number is represented as

[ } 2 [ ]EQ x Q M=
Then relative error e in this operation is given as

[ ]Q x x
e

x
−

=

[ ]Q M M
M

−
=

�
(10.77)

The range of relative errors in truncation and rounding for various types 
of numbers is given in Table 10.4.
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TABLE 10.4  Range of Relative errors

Type of quantization Number of representation Range of relative error
Truncation 2’s complement −2δ < et, 0, x > 0

0 ≤ et < 2δ, x < 0

Truncation sign magnitude and 1’s 
complement

−2δ < et ≤ 0

Rounding All numbers − δ< er ≤ δ

et = Relative error in truncation, er = Relative error in rounding

10.6.2 Analysis of Coefficient Quantization Effects in FIR Digital Filters

In this section, we discuss the analysis of coefficient quantization effects in 
FIR digital filters. Consider the transfer function of the FIR digital filter of 
length M

1

0

( ) ( )
M

n

n

H z h n z
−

−

=

= ∑ �
(10.78)

The quantization of impulse response h(n) takes place during the imple-
mentation of filter. Let the quantized coefficient be denoted by ĥ(n) and e(n) 
be the error in quantization.

Then, ĥ(n) is given by
ˆ( ) ( ) ( )h n h n e n= +

�
(10.79)

Now, the new transfer function is given as
1

0

ˆˆ ( ) ( )
M

n

n

H z h n z
−

−

=

= ∑ � (10.80)

Substituting Eq. (10.79) in Eq. (10.80), we get

[ ]
1 1 1

0 0 0

ˆ ( ) ( ) ( ) ( ) ( )
M M M

n n n

n n n

H z h n e n z h n z e n z
− − −

− − −

= = =

= + = +∑ ∑ ∑
( ) ( )H z E z= + � (10.81)

where
	

1

0

( ) ( )
M

n

n

E z e n z
−

−

=

= ∑ �
(10.82)

Here we observe that the FIR digital filter with quantized coefficient can 
be modeled as a parallel connection of two FIR digital filters H(z) and E(z). 
This is illustrated in Figure 10.10.
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FIGURE 10.10  Model of FIR digital filter with quantized coefficient.

H(z) is the transfer function of the FIR digital filter with unquantized 
coefficients (see Figure 10.10). Here, E(z) is the transfer function of the FIR 
digital filter representing coefficient quantization error.

From the equation, Ĥ(z) − H(z) + E(z), we can write the frequency 
response of FIR digital filter with quantized coefficients as,

ˆ ( ) ( ) ( )H H Eω ω ω= +
�

(10.83)
Here E(ω) is the error in the desired frequency response which is given by

1

0

( ) ( )
M

j n

n

E e n z ωω
−

−

=

= ∑ � (10.84)

The magnitude of E(ω) is determined as
1

0

( ) ( )
M

j n

n

E e n z ωω
−

−

=

= ∑
1 1

0 0

( ) ( )
M M

j n

n n

e n e e nω
− −

−

= =

≤ ≤∑ ∑ � (10.85)

Since	  1 always.j be ω− =

The upper bound on the error in the frequency response is given by  
Eq. (10.85). From Table 10.1, it could be observed that the magnitude of 
error for rounding is

( )
2

e n
δ

≤ � (10.86)

Substituting Eq. (10.86) in Eq. (10.85), we get
1

0

( )
2 2

M

n

E M
δ δω

−

=

   ≤ ≤   
   

∑ � (10.87)
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This upper bound is reached if all the errors have the same sign and have 
the maximum value in the range. If we consider e(n) to be statistically inde-
pendent random variables, then a more realistic bound is given by standard 
deviation of E(ω), that is,

2 1
( )

12E

Mσ ω δ −
≤ � (10.88)

Here σE(0) is the standard deviation of the error in frequency 
response E(ω).

10.6.3 Analog-to-Digital (A/D) Conversion Noise Analysis

Many types of continuous-time signals are processed using DSP techniques. 
For example, speech, music, video, environmental parameters, biomedi-
cal signals such as ECG, EEG, etc. These continuous-time signals must be 
converted to discrete-time (digital) sample. The conversion from continuous-
time signals to digital samples is done by analog-to-digital (A/D) converters.

The A/D converters represent the digital samples by finite number of 
bits. This introduces errors in the A/D conversion process. In this section, we 
analyze the effect of such errors.

Quantization Noise Model

The analog-to-digital (A/D) converter generates a sample at the output. This 
sample is to be quantized to one of the finite set of discrete values. The num-
ber of these discrete values depends upon the output word length. For exam-
ple, if the output word length is (N + l) bits including sign bit then the number 
of discrete values, that is, quantization levels will be 2(N+1). A model of a practi-
cal A/D conversion system is shown in Figure 10.11.

FIGURE 10.11  Model of the practical A/D conversion system.

The ideal sampler samples s(t) to s(n). The quantizer maps s(n) to ŝ(n). 
There is a limited number of values of ŝ(n) depending upon the word length. 
The encoder converts S(M) to its binary equivalent ŝeq(n) depending upon the 
type of binary number representation. The quantizer of Figure 10.11 can use 
either rounding or truncation.

Let the quantization error be denoted by e(n). Quantization error is the 
difference between quantized value s(n) and input sample ŝ(n), that is,

ˆ( ) ( ) ( )e n s n s n= −
�

(10.89)
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We consider that the quantizer has the step size of δ, which is given

12
FS

N

Rδ +=
�

(10.90)

where RFS is the full-scale range of A/D converter and (N + l) output word 
length.

Then for rounding, the quantization error lies within,

( )
2 2

e n
δ δ

− < ≤
�

(10.91)

When the sample is exactly halfway between two levels, then it round up 
to the nearest higher level. In such an operation the quantization error will 
be maximum and equal to δ/2. When the input analog sample is outside the 
full range of the A/D converter, then the magnitude of error e(n) increases 
linearly with an increase in input. Such error is called saturation error or over-
load error. Therefore, the A/D converter output is clipped to its maximum 
value which is equal to (1 − 2−N). The clipping can be avoided by scaling down 
the analog input, such that it remains within the full-scale range of the A/D 
converter.

A statistical model for the analysis of quantization error is shown in  
Figure 10.12.

FIGURE 10.12  Statistical model of A/D converter.

It is to be assumed that quantization error e(n) is a random signal. We also 
assume the followings:

1.	 The error sequence e(n) is the sample sequence of a wide sense station-
ary process. The sequence follows uniform distribution over the range of 
quantization error.

2.	 The error sequence e(n) is uncorrelated with the input sequence s(n).

3.	 The input sequence s(n) is the sample sequence of a stationary random 
process.

The probability density functions (pdfs) of quantization error are shown 
in Figure 10.13.

DSP.CH10_2pp.indd   423DSP.CH10_2pp.indd   423 3/23/2022   2:33:04 PM3/23/2022   2:33:04 PM



424 • Digital Signal Processing 

FIGURE 10.13  Probability density function (a) in rounding operation  
(b) in 2’s complement truncation.

The practical A/D converters use either rounding or 2’s complement 
truncation. The mean and variance of error sample from Figure 10.13(a), for 
rounding operation is given by

2 2Mean (rounding) 0
2em

δ δ +  
 = = = � (10.92)

2Variance (rouding)eσ=
2

22 2
2 2

δ δ
δ

    − −        = = � (10.93)

Similarly, the mean and variance of error sample for 2’s complement 
truncation is given as from Figure 10.13(b),

0 ( )
Mean (2’s comp.)

2 2em
δ δ+ −

= = = − � (10.94)

2
2 [0 ( )]

Variance  (comp.)
12 2e

δ δσ − −
= = = � (10.95)

Signal-to-Quantization Noise Ratio

Now let us evaluate the signal-to-quantization noise ratio (SNR) of the quan-
tizer. This ratio is denoted by SNRA/D. It is given as

2

A/D 10 2SNR 10 log , dBs

e

σ
σ

 
=  

 
� (10.96)

Here,	�  2
sσ  = Variance of the input signal, which represents input 

signal power
		�   2

eσ  = Variance of the quantization noise, which represents 
quantization noise power.
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The variance of quantization error in rounding operation is given as
2

2

12e

δσ = � (10.97)

Substituting 
12

FS
N

Rδ +=  in Eq. (10.97), we get
2 2 2

2
21

2
482 12

N
FS FS

e N

R Rσ
−

+
= =

  
�

(10.98)

Substituting Eq. (10.98) in Eq. (10.96), we get
2

A/D 10 2 2SNR 10 log
2 / 48

s
N

FSR
σ

−

 
=  

 
2

2
1010 log 48 2 N FSR

sσ

  
 = × ×  
   

or
	

A/D 10SNR 16.81 6.02 20 log ,dBFS

s

R
N

σ
 

= + −  
  �

(10.39)

This is the expression for SNR of the A/D converter. It shows that the sig-
nal-to-quantization noise ratio SNRA/D increases by 6 dB for every bit added to 
the word length. This equation can be used to determine the number of bits 
in the output word for the given power, full-scale range and acceptance SNR.

Effect of Input Scaling on SNR

Let the input is to be scaled by some constant A such that the new input will 
be As(n). then the variance of this scaled input will be 2 2

sA σ .
Hence SNR of Eq. (10.99) becomes

A/D 10SNR 16.81 6.02N 20 log FS

s

R
Aσ

 
= + −  

 

10 1016.81 6.02 20 log 20 log ( )FS

s

R
N A

σ
 

= + − + 
  �

(10.100)

Hence, we observe that SNR increases if A > 1. But this may exceed the 
full-scale range of input RFS. Hence scaled input should remain within the 
full-scale range.

If A < 1, then SNR decreases. The last term in Eq. (10.100) becomes neg-
ative. Hence to get maximum SNRA/D, the input should be scaled such that it 
uses the complete full-scale range of the A/D converter.
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10.6.4 Effect of Quantization Noise on Filter Output

The output of the A/D converter is s(n). This is given to the digital filter. Also, 
we know that s(n) = ŝ(n) + e(n). That is quantization noise e(n) is also given to 
the filter as input. A model of such a system is shown in Figure 10.14.

FIGURE 10.14  Model of digital filter with quantization noise input.

As given in above figure that ŷ(n) = y(n) + u(n), that is, ŷ (n) is the sum of 
two sequences y(n) and u(n). The digital filter is the discrete-time LT1 sys-
tem hence we can say that y(n) is the output due to input s(n) and y(n) being 
output due to error sequence e(n). If h(n) is the unit-sample response of the 
digital filter, then y(n) can be expressed as,

( ) ( ) ( )
m

u n e m h n m
∞

=−∞

= −∑ � (10.101)

The mean of output noise is given as
(0)v em m H= � (10.102)

Here,	 0( |( ) )0H H ωω == 	
and me is the mean of output noise sequence.
Similarly, the variance of the output noise is given as

2 2 21
| ( ) |

2e H d
π

υ
π

σ σ ω ω
π −

= ∫ � (10.103)

The power spectrum of output noise is given as
2 2( ) | ( ) |vv eP Hω σ ω=

 �
(10.104)

The normalized output noise variance is given as
2

2
2

1
( ) | ( ) |

2
v

vv
e

P H d
π

π

σω ω ω
σ π −

= = ∫ � (10.105)

From the standard results, Eq. (10.105) can also be written as

( )2 1 1
,

1
( )

2v n C
H z H z z dzσ

π
− −= ∫ � (10.106)

Here C is the counterclockwise contour in the ROC of H(z) H(z−1).
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10.6.5 Analysis of Arithmetic Rounding off Errors

Now, let us consider the effects of arithmetic errors particularly in multiplica-
tion and summation. The results of arithmetic operations are required to be 
quantized so that they can occupy one of the finite set of digital levels. Such 
operation can be visualized as multiplier (or other arithmetic operation) with 
quantizer at its output. It is shown in Figure 10.15.

FIGURE 10.15  Quantization of multiplication or product.

The above process can be represented by a statistical model for error 
analysis.

The output ˆ( )nυ  can be considered as the sum of error-free output υ(n) 
and error eα(n) in the product quantization process. It is given as

ˆ( ) ( ) ( )n v n e nαυ = +
�

(10.107)
A statistical model is shown in Figure 10.16.

FIGURE 10.16  Statistical model for analysis of round-off error multiplication.

For the analysis purpose following assumptions are made:

1.	 The error sequence { }( )e nα  is the sample sequence of a stationary white 
noise process.

2.	 eα(n) is having uniform distribution over the range of quantization error.

3.	 The sequence { }( )e nα  is uncorrelated with the sequence υ(n) and input 
sequence s(n).

10.6.6 Dynamic Range Scaling

When the digital filters are implemented by using fixed-point arithmetic, the 
overflow can take place at some internal nodes. Such nodes can be inputs/out-
puts of adders or multipliers. This overflow can take place even if the inputs 
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are scaled. Because of such overflow at intermediate points, produced totally 
undesired output or oscillations. The overflow can be avoided by scaling the 
internal signal levels with the help of scaling multipliers. These scaling mul-
tipliers are inserted at the appropriate points in the filter structure to avoid 
the possibilities of overflow. Sometimes these scaling multipliers are absorbed 
with the existing multipliers in the structure to reduce the total number and 
complexity.

At which node the overflow will take place is not known in advance. 
This is because the overflow depends upon the type of input signal samples. 
Hence, whenever overflow takes place at some node, the scaling should be 
done dynamically. Hence dynamic range scaling in the digital filter structure 
can avoid the effects of overflow.

Let ur(n) be the signal sample at rth node in the structure. Then the 
scaling should ensure that,

( ) 1 for all  and ru n r n≤ � (10.108)

10.6.7 Low Sensitivity Digital Filters

We already know that the frequency response of the digital filter changes 
because of coefficient quantization. The unquantized coefficients provide per-
fect frequency response, but such coefficients need infinite precision. Because 
of the coefficient quantization, the change in frequency response may be sig-
nificant and the filter may be unsuitable for a particular application. Hence 
it is necessary to develop the digital filter coefficient quantization. Such low 
sensitivity digital filters can be obtained by one of the following two methods:

1.	 An inherently low sensitivity analog filter is considered. This filter is con-
verted to a digital filter such that the overall structure simulates the analog 
prototype. Such a digital filter is called a wave digital filter.

2.	 The condition for low coefficient sensitivity to be satisfied by the digital 
filter structure is determined. Then the realization methods are devel-
oped such that these conditions are really satisfied.

Requirements for low coefficient sensitivity

Let H(z) be a causal stable real coefficient function having magnitude response 
|H(ω)| bounded by unity, that is,

| ( ) | 1H ω ≤ � (10.109)
Let us assume that transfer function H(z) is such that at a set of frequen-

cies wk, the magnitude is exactly equal to unity, that is,

( )| | 1kH ω = � (10.110)
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The typical frequency response satisfying Eq. (10.110) is shown in 
Figure 10.17.

FIGURE 10.17  Magnitude response of a bounded real transfer function.

The transfer function shown in Figure 10.17 is called the bounded real 
transfer function.

Let the filter structure be characterized by the set of multipliers having 
coefficient mi. Let the values of these coefficients with infinite precision real-
ization be mi0. Then the condition of Eq. (10.109) implies that the plot of 

( )kH ω  as a function of w, will be as shown in Figure 10.18.

FIGURE 10.18  Illustration of zero sensitivity property.
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It is observed from Figure 10.18 that at mi = mi0, ( )| | 1kH ω = . This shows 
that mi = mi0, transfer function has zero sensitivity. But for mi ≠ mi0, that is, 
quantized coefficients ( )| | 1kH ω < . This condition can be represented math-
ematically as follows.

( )

0

0
i i

k

k m m

H

m

ω

=

∂
=

∂ �

(10.11)

This means ( )| |kH ω  has zero slope at mi = mi0. If the frequencies ωk are 
closely spaced, then |H(ω)| will remain at unity. The sensitivity will be very 
low at other frequencies. If all the frequencies ωk lie in passband, then such 
filters are called low passband sensitivity filters. Many methods are available 
to realize low passband sensitivity IIR and FIR digital filters.

Reduction of Product Round-off Error

When the digital filters are implemented using fixed-point arithmetic, the 
results of product or multiplication operations are quantized to fit into the 
finite word length. This quantization uses a rounding operation. Hence errors 
generated in such operation are called product round-off errors. The effect 
of product round-off errors can be analyzed using the statistical model of the 
quantization process. The noise due to product round-off errors reduces the 
signal to noise ratio at the output of the filter. Sometimes this ratio may be 
reduced below acceptable levels.

Hence it is necessary to reduce the effect of product round-off errors.
Now we discuss first-order error-feedback structure for reducing round-

off errors.
Let the quantization error signal be given as the difference between 

unquantized signal y(n) and quantized signal υ(n), that is,
( ) ( ) ( )e n y n nυ= − � (10.112)

FIGURE 10.19  First-order error-feedback structure for reducing round-off errors.
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The incorporation of quantization error feedback as shown in Figure 10.19 
helps in reducing the noise power at the output.

10.6.8 Limit Cycles in IIR Digital Filters

The finite word length effects are analyzed using the linear model of the digi-
tal systems. But non-linearities are introduced because of the quantization of 
arithmetic operations. Because of these non-linearities, the stable digital filter 
under infinite precision may become unstable under finite precision. Because 
of this instability, the oscillating period output is generated. Such output is 
called the limit cycle. The limit cycles occur in IIR digital filters due to the 
feedback path. The FIR filters do not show limit cycles, since they do not have 
any feedback paths.

The limit cycles are of two types: (1) granular and (2) overflow.

Granular Limit Cycles

The granular limit cycles are of low amplitude. These limit cycles occur in 
digital filters when the input signal level is very low. The granular limit cycles 
are inaccessible and accessible limit cycles.

Overflow Limit Cycles

These limit cycles occur because of overflow in digital filters implemented 
with finite precision. The amplitudes of overflow limit cycles are very large 
and they can cover the complete dynamic range of the register. This further 
loads to overflow causing the cumulative effect. Hence overflow limit cycles 
are more serious than granular limit cycles.

Limit cycle free structures are normally used to avoid the effects of limit 
cycles.

EXERCISES

1.	 What is an FIR digital filter? Differentiate between FIR and IIR digital 
filters.

2.	 Discuss the properties of the FIR digital filter.

3.	 Describe the design of FIR digital filters using the Fourier series method.

4.	 What is Gibb’s oscillations? Give some ways by which these oscillations 
can be reduced.
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5.	 Define window function. Discuss various types of window functions used 
in the design of FIR digital filters.

6.	 Derive an expression for frequency response of a rectangular window 
function.

7.	 Derive an expression for frequency response of Hann and Hamming win-
dow functions.

8.	 Discuss the Blackman window function and give all the steps of design of 
FIR filters using Blackman window.

9.	 Describe FIR digital filter design based on the numerical-analysis formula.

10.	 What do you mean by optimal linear-phase FIR digital filter? What 
parameters are optimized in these filters?

11.	 Give the four cases that result in a linear-phase FIR digital filter.

12.	 State and explain the alternation theorem.

13.	 What are extra ripple filters?

14.	 What are maximal ripple filters?

15.	 Discuss the Ramez Exchange Algorithm used in the design of optimal 
filters.

16.	 What is the finite word length effect in Digital Filters?

17.	 Discuss the quantization process and error.

18.	 Tabulate the range of quantization errors.

19.	 Explain the effects of coefficient quantization in FIR Digital Filters.

20.	 Explain the statistical model of the A/D converter.

21.	 Derive the signal-to-quantization noise ratio (SKRA/D) of the analog-to-
digital (A/D) converter.

22.	 Explain the effect of input scaling on signal-to-quantization noise ratio 
(SKRA/D) of A/D converter.

23.	 Describe the statistical model for analysis of round-off error multiplication.

24.	 Explain how the reduction of product round-off error is achieved in digital 
filters?
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25.	 Write short notes on the following topics:

a.  Dynamic range scaling		  b.  Low sensitivity digital filter
c.  Limit cycles in IIR digital	 d.  Finite precision effects.

NUMERICAL EXERCISES

1.	 Design an FIR LPF which satisfy following specifications

	 Passband ripple, Ap ≤ 0.1 dB
	 Stopband attenuation, Aa ≤ 44.0 dB
	 ωp = 20 rad/s
	 ωα = 2 rad/s
	 Sampling frequency, ωs = 10 rad/s.

2.	 Design an FIR low-pass digital filter using Kaiser window. The specifica-
tions are given below:

Passband ripple, Ap ≤ 0.1 dB,  0 ≤ w ≤ 1.5 rad/s
Minimum stopband attenuation, Aα ≤ 40 dB,

2.5 ≤ ω ≤ 5.0 rad/s
Sampling frequency, ωs = 10 rad/s.

3.	 Design a low-pass FIR digital filter whose frequency response is given by

( )
1,

0, | |
2

s

c c
j T

s
c

H e ω
ω ω ω

ωω ω

≤ ≤
= 

< ≤
�where ωs is the sampling frequency and ωc is the cutoff frequency of the 
LPF.

4.	 Design a low-pass FIR digital filter using Hamming and Blackman win-
dows whose frequency response is given by

( )
1,

0, | |
2

s

c c
j T

s
c

H e ω
ω ω ω

ωω ω

≤ ≤
= 

< ≤
5.	 Derive an expression for the impulse response of constant-delay FIR digi-

tal filters given by 

( ) ( )
1

0

sin 0
N

s s
n

h nT nTωτ ω
−

=

− =∑ .
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C H A P T E R  11
Statistical Digital Signal 
Processing

11.1	 INTRODUCTION TO SPECTRAL ESTIMATION

The signal processing methods which characterize the frequency content of a 
signal corresponds to spectral analysis. The signals which are analyzed in any 
communication system are either purely random or will have noisy compo-
nents also. If the signal is random, then, only an estimate of the spectrum of 
the signal can be obtained. This is possible only if the statistical attributes of 
the random signal are known.

Determination of spectral estimation is useful in a variety of fields such as 
astronomy, seismology, communication engineering, etc. In communication 
engineering, spectral estimation is helpful in detecting the signal component 
(carrier) which has the noise component in it. In radar and sonar, spectral 
estimation is useful in detecting the targets.

11.2	 ENERGY DENSITY SPECTRUM

In this section, we study Energy Density Spectrum in two cases:

1.	 Energy Density Spectrum of a Continuous-time Signal.

2.	 Energy Density Spectrum of a Discrete-time Signal.

Now we discuss each one in detail in subsequent subsections.
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11.2.1	Energy Density Spectrum of a Continuous-time Signal

Consider a continuous-time signal s(t) which is deterministic, analog, and 
complex-valued. Now, we sample this signal at the sampling rate fs. Then, we 
obtain a discrete-time signal s(n).

If s(t) is a finite energy signal, then

	 2( )s t dt
∞

−∞
< ∞∫ � (11.1)

Continuous-time Fourier transform (CTFT) of signal s(t) is given by

	 ( ) CTFT [ ( )] ( )
j TeS f s t s t e dt
ω∞ −

−∞
= = ∫

	 2( ) j fts t e dtπ∞ −

−∞
= ∫ � (11.2)

Signal energy is given by Parseval’s relations

	 2 2( ) | ( ) | energys t dt s f dt
∞ ∞

−∞ −∞
= =∫ ∫ � (11.3)

The density of energy of signal s(t) with respect to frequency is represented 
by |s(f  )|2.

This density of a signal is called the energy spectral density (ESD). Energy 
spectral density (ESD) is denoted by ψSS(f  ):

	 2( ) [ ( )] | ( ) |ss f EST s t S fψ = = � (11.4)

Let Rss(τ) be the autocorrelation function of the signal s(t)

	 ( ) ( ) ( )ssR s t s t dtτ τ
∞ *

−∞
= +∫ � (11.5)

The CTFT of Rss(τ) is given by
	 { }( ) ( ) j

ss ssCTFT R R e dtωττ τ
∞ −

−∞
= ∫

	 2( ) j f
ssR e dπ ττ τ

∞ −

−∞
= ∫ � (11.6)

Substituting Eq. (11.5) in Eq. (11.6), we get

	 { } ( ) 2CTFT ( ) ( ) j f
ssR s t s t dt e dπ ττ τ τ

∞ ∞ −*

−∞ −∞
 = +  ∫ ∫

	
2( ) ( ) j fs t s t e d dtπ ττ τ

∞ ∞ −*

−∞ −∞
 = +  ∫ ∫

	
2 2( ) ( ) ( ) ( )j ft j fts t s f e dt s f s t e dtπ π∞ ∞* *

−∞ −∞
 = = ∫ ∫
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2( ) ( ) j fts f s t e dtπ∞ −

−∞
 =   ∫

	 2( ) ( ) | ( ) | ( )SSs f s f s f Y f*= = = � (11.7)

Therefore, we can say that the CTFT of the autocorrelation function of a 
signal gives the spectral density.

11.2.2	Energy Density Spectrum of a Discrete-Time Signal

Analog signal s(t) be discretized by ideally sampling s(t) with the sampling 
period of Ts. The resultant signal is denoted by s′(t) and represented by

	 ( )( ) ( ) s
n

s t s t t nTδ
∞

=−∞

′ = −∑ � (11.8)

The CTFT of the sampled signal is given by

	 { } ( )( ) ( ) ( ) s
n

s f CTFT s t FTFT s t t nTδ
∞

=−∞

 
′ = ′ = − 

 
∑

	 ( ) 2( ) j ft
s

n

s t t nT e dtπδ
∞∞ −

−∞
=−∞

 
= − 

 
∑∫

	 ( )2( ) j ft
s

n

s t e t nT dtπ δ
∞ ∞ −

−∞
=−∞

 = −    ∑ ∫

	 ( ) ( )2 sj fnT
s s s

n k

s nT e f s f kfπ
∞ ∞

−

=−∞ =−∞

= = −∑ ∑ � (11.9)

If aliasing is avoided, that is, s(t) is band-limited to a frequency less than 
1/2 Ts, then

	 ( ) ( )sS f f S f′ = � (11.10)

Let s(n) be a sampled version of signal s(t). DTFT of s(n) is given by

	 2( ) DTFT{sin( )} ( ) j fn

n

S f n s n e π
∞

−

=−∞

′ = = ∑ � (11.11)

The autocorrelation of the sampled signal s(n) is given by

	 ( ) ( ) ( )ss
n

r k s n s n k
∞

*

=−∞

= +∑ � (11.12)

The DTFT of rss(k) from the Wiener–Khintchine theorem is
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	 2( ) ( ) j kf
SS ss

k

f r k e πψ
∞

−

=−∞

= ∑ � (11.13)

The other method for computing the energy density spectrum is obtained 
from the DTFT of s(n),

2
22( ) | ( ) | ( ) j fn

ss
n

f S f s n e πψ
∞

−

=−∞

= = ∑

Since finite energy signals possess Fourier transform spectral analysis is 
done with the energy spectral density (ESD) function.

11.3	� ESTIMATION OF THE AUTOCORRELATION AND 
POWER SPECTRUM OF RANDOM SIGNALS

Here, we consider signals which do not have finite energy. For these signals, 
Fourier transform is not possible. But these signals possess finite average 
power.

For these signals, spectral analysis is done with power spectral density 
(psd) function.

Let s(t) be a stationary random process.
The statistical autocorrelation function for this signal is given by

	 ( ) [ ( ) ( )]ssR E s t s tτ τ′ *= + � (11.14)
The Fourier transform of the autocorrelation function of a stationary 

random process gives the power density spectrum. It is given by

	 [ ]( ) Fourier Transform ( )ss ssf Rφ τ=

	
2( ) j f

ssR e dπ ττ τ
∞ −′

−∞
= ∫ � (11.15)

11.3.1	Estimate of Autocorrelation Function

Since the only single realization of the random process is considered, the true 
autocorrelation function is not known, and hence time-average autocorrela-
tion function is taken. Let the observation interval be To.

The time-average autocorrelation function is given by

	
0

00

1
( ) ( ) ( )

2

T

ss T
R s t s t dt

T
τ τ*

−
= +∫ � (11.16)
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If the stationary random process is ergodic, then
	

0

( ) lim ( )ss ssT
R Rτ τ′

→∞
=

	
1

lim ( ) ( )
2

o

oo

T

TT
o

s t s t dt
T

τ*

−→∞
= +∫ � (11.17)

The time-average autocorrelation function Rss(τ) is an estimate of the sta-
tistical autocorrelation function ( )ssK τ′ .

11.3.2	Estimate of Power Density Spectrum

The Fourier transform of time-average autocorrelation function is given by

Fourier Transform	 { } 0 2( ) ( ) ( )
o

T j f
ss ss ssT

R P f R e dπ ττ τ τ−

−
= = ∫ � (11.18)

Substituting Eq. (11.16) in Eq. (11.18), we get

	

2

1
( ) ( ) ( )

2

j f

o o

o o

e d
T T

ss T T
o

P f s t s t dt
T

π τ τ

τ

−

*

− −

 
= + 

 
∫ ∫

	
1

( ) ( )
2

o o

o o

T T

T T
o

s t s t dt
T

τ*

− −

 = +  ∫ ∫

	
2

21
( )

2
o

o

T j ft

T
o

s t e dt
T

π−

−
= ∫ � (11.19)

The statistical power density spectrum is given by

	 [ ]( ) lim ( )
o

ss ss
T

f E P fφ
→∞

=

	
2

21
lim ( )

2
o

oo

T j ft

TT
o

E s t e dt
T

π−

−→∞

 
=  

 
∫ � (11.20)

11.3.3	Estimation from Samples

There are two estimates: (1) estimate 1 and (2) estimate 2 which are discussed 
below.

Estimate 1

Let s(n) be an N-point sequence obtained by sampling the signal s(t).
The time-average autocorrelation sequence for the sequence s(n) is

	
| | 1

0

1
( ) ( ) ( ),| | 0,1,..., 1

| |

N m

ss
n

r m s n s n m m N
N m

− −
′ *

=

= + = −
− ∑ � (11.21)
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The Fourier transform of the autocorrelation sequence is given by

	 { }( ) DTFT ( )ss ssP f r m′ ′=

	
1

2

( 1)

( )
N

j fm
ss

m N

r m e π
−

−′

=− −

= ∑ � (11.22)

Mean and Variance for Estimate 1

The mean value of estimate ( )ssr m′  is given by

	

| | 1

0

1
( ) ( ) ( )

| |

N m

ss
n

E r m E s n s n m
N m

− −
′ *

=

   = +   − ∑

	 ( )ss mφ= � (11.23)
where N−|m| is the normalization factor. ( )ssr m′  is an unbiased estimate of the 
autocorrelation of the sequence s(n).

The approximate value of variance of the estimate ( )ssr m′  is given by 
Jenkins and Watts as

	 ( )
2

2
0

( ) ( ) ( )
| |

 ( ) ss ss ss
n

ss

N
Var n n m n mm

N
r

m
φ φ φ′

∞
*

=

   = + − +   − ∑ � (11.24)

As N becomes infinity, the variance becomes zero, and this estimate ( )ssr m′  
is consistent.

Estimate-2

If the value of m is large, then only less points are considered for the estimate.
Hence, considering a different estimate for the autocorrelation function

	
| | 1

0

1
( ) ( ) ( ),0 1

N m

ss
n

r m s n s n m m N
N

− −
*

=

= + ≤ ≤ −∑ � (11.25)

Mean and Variance for Estimate 2

	 { }
| | 1

0

1
( ) [ ( ) ( )]

N m

ss
n

E r m E s n s n m
N

− −
*

=

= +∑

	
| | 1

0

| | 1
[ ( ) ( )]

| |

N m

n

N m
E s n s n m

N m N

− −
*

=

 −
= + − 

∑

	
| | 1

0

| | 1
[ ( ) ( )]

| |

N m

n

N m
E s n s n m

N N m

− −
*

=

− = +  − 
∑ � (11.26)
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Substituting Eq. (11.23) in Eq. (11.26), we get

	 [ ] | |
( ) 1 ( )ss ss

m
E r m m

N
φ = −  

� (11.27)

This is the mean of autocorrelation sequence rss(m). Here, 
| |

( )ss

m
m

N
φ  is 

the bias for the estimate rss(m).
The variance of the estimate is given by

	 [ ] 21
( ) | ( ) | ( )ss ss ss

n

Var r m n n m
N

φ φ
∞

*

=−∞

 = + + ∑ � (11.28)

As N becomes infinity, the variance value becomes zero. Hence rss(m) is 
an asymptotically unbiased estimate.

Estimate of Power Density Spectrum

The estimate of the power density spectrum is given by

	
( 1)

2

( 1)

( ) ( )
N

j fm
ss ss

m N

P f r m e π
−

−

=− −

= ∑ � (11.29)

Here, we consider that rss(m) is the estimate for the autocorrelation function.
Substituting the value of rss(m), the power density spectrum becomes

	
21

2

0

1
( ) ( )

N
j fn

ss
n

P f s n e
N

π
−

−

=

= ∑ � (11.30)

This estimate for the power density spectrum is called the periodogram.

Mean and Variance of Periodogram Estimate

The mean value of the periodogram estimate is given by

	 [ ]
1

2

( 1)

( ) ( )
N

j fm
ss ss

m N

E P f E r m e π
−

−

=− −

= ∑

	 { }
( 1)

2

( 1)

( )
N

j fm
ss

m N

E r m e π
−

−

=− −

= ∑

	
( 1)

2

( 1)

1 | |
( )

N
j fm

ss
m N

m
m e

N
πφ

−
−

=− −

− =   
∑

	
( 1)

2

( 1)

( )
N

j fm
ss

m N

m e πφ
−

−′

=− −

= ∑ � (11.31)

where	 1 | |
( ) ( )ss ss

m
m m

n
φ φ′ − =   
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The mean value now given as

	 [ ] 2( ) ( ) j fm
ss ss

m

E P f m e πφ
∞

−′

=−∞

= ∑

	
1
2

1
2

( ) ( )ss W f dγ α α α
−

= −∫ � (11.32)

Where W(f) is the frequency domain representation of the Bartlett win-
dow. Spectral leakage problem is present in this case as only finite samples are 
considered. If the data sequence is a Gaussian random process, the variance 
is given by

	 [ ] 2 sin2
( ) ( ) 1

sin 2ss ss

f N
Var P f f

N f
π

γ
π

   = +  
    

� (11.33)

As N becomes infinity, the estimated spectrum becomes the actual spec-
trum. Hence, the estimate is an asymptotically unbiased estimate. But the 
variance does not become zero as N becomes infinity,

Hence, the periodogram is not a consistent estimate of the power density 
spectrum. The estimated autocorrelation is a consistent estimate, but its Fou-
rier transform, that is, power density spectrum is not a consistent estimate.

EXAMPLE 11.1
Compute the autocorrelation function and power spectral density (psd) for 
the signal

	 ( )0cos 2( ) c cts t A fπ φ= +

where Ac and fc are constants, φ is a random variable which is uniformly dis-
tributed over the interval (−π, π).

Solution:
The probability density function (pdf) of the random variable is given by

	

1
,

( ) 2
0, otherwise

f
π φ π

φ π
 − ≤ ≤= 


The autocorrelation function for the signal s(t) is given by

	 [ ]( ) ( ) ( )ssR E S t s tτ τ= +
Putting the value of signal s(t), we get

	 ( ) ( )( ) cos 2 ( ) cos 2ss c c c cR E A f t A f tτ π τ φ π φ = + + ⋅ + 
	 ( ) ( )2 cos 2 2 cos 2c c c cE A f t f f tπ π τ φ π φ = + + + 
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	 ( ) ( )
2 2

cos 4 2 2 cos 2
2 2

c c
c c c

A A
E f t f E fπ π τ φ π τ   = + + +   

	 ( ) ( )
2 21

4 2 2 cos 2
2 2 2

c c
c c c

A A
f t f d f

π

π
π π τ φ φ π τ

π−
= + + +∫

	 ( )
2

cos 2
2

c
c

A
fπ τ=

The autocorrelation function plot is shown in Figure 11.1(a)

FIGURE 11.1  (a) Autocorrelation function RSS (t) of a sine wave with random phase.

The power spectral density (psd) function is obtained by taking the 
Fourier transform of the autocorrelation function and is given by

	 [ ]( ) ( )ss ssP f FT R τ=

	 ( ) ( ) ( )
2 2

cos 2
2 2

c c
c c c

A A
FT f t f f f fπ δ δ

 
 = = − + +   

 
The plot of psd function is shown in Figure 11.1(b)

P (f)ss

Ac
2 (f – f )c

fc–fc 0

Ac
2

2 (f + f )c

FIGURE 11.1  (b) psd of sine wave with random phase.

11.4	 DFT IN SPECTRAL ESTIMATION

The periodogram is given by

	
21

2

0

1
( ) ( )

N
j fn

ss
n

P f s n e
N

π
−

−

=

= ∑ � (11.34)
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The samples of the periodogram can be obtained by using the discrete 
Fourier transform (DFT) algorithm.

Let	 , where 0,1,2,...., 1
k

f k N
N

= = −  

The periodogram can be given as

	

221

0

1
( )

j kN
N

ss
n

k
P s n e

N N

π−−

=

  = 
 

∑ � (11.35)

where	 0, 1, 2, ...., – 1.k N=
If more samples are required in the frequency domain, the length of the 

sequence s(n) can be increased by zero padding.
Let the new length be L, the power spectral density (psd) is given by

	
221

0

1
( )

j kN
N

ss
n

k
P s n e

L N

π−−

=

  = 
 

∑ � (11.36)

where	 0,1,2,..., – 1k L=
This does not increase the resolution but provides the interpolated values.

EXAMPLE 11.2
We have given the discrete-time signal

	 ( ) ( )1 2cos 2 cos( 2 , 0,1,2) ,....7s n f n f n nπ π= + =

Find the power spectrum for the data sequence length L = 8, 16, 32 for 
different values of f1 and f2, where f2 = f1 + ∆f and ∆f is small deviation from f1 
or simply frequency separation.

Solution:
The power spectrum for the discrete-time signal s(n) is given by

	

2
1

0

1
( )

j nkN
N

ss
n

k
P s n e

L N

π−−

=

  = 
 

∑

The power spectrum is determined for different values of L by appending 
zeros to the original sequence.

Figure 11.2 illustrates the plot for the power spectrum.
Let f1 = 0.6 and ∆f = 0.05 which gives

	 2 1 – 0.6 0.05 0.65f f f= ∆ = + =

	 ( ) ( )1 2co 2) s 2 cos(s n f n f nπ π= +
	 ( ) ( )cos 2 (0.6) cos 2 (0.65)n nπ π= +
	 ( )cos 1.2 cos( 3 )1.n nπ π= + � (1)
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FIGURE 11.2  (a) Power Spectrum 1/N|S(k)|2  
Verses k for ω1 = 2π(0.6) and ω2 = 2π(0.65)

The power spectrum of s(n) for various values of L is shown in Figure 11.2(a)
Let	 ∆f = 0.02 and f1 = 0.60,
Hence	 f2 = f1 + ∆f = 0.60 + 0.02 = 0.62
Now, signal s(n) is given by

	 cos 2 (0.( ) ( )6) cos 2 (0.62)( )s n n nπ π= +

The power spectrum of signal s(n) for various values of L is shown in 
Figure 11.2(b)

L = 8

k

L = 16

k
L = 32

k

0 1 2 3 4 5 6 7

FIGURE 11.2  (b) Power spectrum 1/N |S(k)|2 verses k for ω1 = 2π(0.6) and ω2 = 2π(0.62)
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It is concluded from Figure 11.2(a) and (b) that when ∆f is very small, the 
spectral components are not resolvable. The effect of zero padding is to pro-
vide more interpolation. It is not used to provide improvement in frequency 
resolution.

11.5	� NON-PARAMETRIC METHODS OF POWER SPECTRUM 
ESTIMATION

These methods of power spectrum estimation make no assumption about 
how the data were generated and hence are called non-parametric methods. 
The estimation techniques that are discussed under non-parametric methods 
decrease the frequency resolution for reducing the variance of the spectral 
estimate.

The power spectrum estimation methods discussed here are the classical 
methods developed by Bartlett, Blackman and Tukey, and Welch.

Since the estimates are based entirely on a finite record of data, the fre-
quency resolution of these methods is, at best, equal to the spectral width 
of the rectangular window of length N, which is approximately 1/N at the  
−3 dB points.

In this section, we discuss the following non-parametric methods of power 
spectrum estimation:

1.	 the Bartlett method (Averaging periodograms),

2.	 the Welch Method (Averaging modified periodograms), and

3.	 the Blackman and Tukey method (smoothing the periodograms).

11.5.1	The Bartlett Method (Averaging Periodograms)

The procedure for reducing the variance in the periodogram involves three 
steps:

1.	 Divide the N-point sequence s(n) into k non-overlap sub-sequences of 
length M.

2.	 Find the periodogram for each sub-sequence.

3.	 Determine the average periodogram from k sub-sequence periodograms.

The variance of the periodogram can be reduced by averaging the peri-
odograms and unlike either the periodogram or the modified periodogram, 
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Bartlett’s method of periodogram averaging produces a consistent estimate of 
the power spectrum.

Consider the N-point sequence s(n).
Divide this sequence into k non-overlapping sequences of length M.
The k-data sub-sequences are

	 , 0,1,..., –( ) ( ) 1is n s n iM i k= + =

	 0,1,...., 1n M= − � (11.37)
The periodogram for each sub-sequence is given by

	
21

2( )

0

1
( ) ( ) , 0,1, ..., 1

M
j fni

ss i
n

P f s n e i k
M

π
−

−

=

= = −∑ � (11.38)

The Bartlett power spectral estimate is obtained by averaging the peri-
odogram of k-data sub-sequences.

	
1

( )

0

1
( ) ( )

k
B i

ss ss
i

P f P f
k

−

=

= ∑ � (11.39)

Mean of Bartlett Power Spectral Estimate

The expected value of ( )B
ssP f  is given by

	
1 1

( ) ( )

0 0

1 1
( ) ( ) ( )

k k
B i i

ss ss ss
i i

E P f E P f E P f
k k

− −

= =

    = =     
∑ ∑

	 ( )( )i
ssE P f =  � (11.40)

The mean value of Bartlett power spectral estimate ( )B
ssP f  is identical to 

that of individual sub-sequence if the input is a zero-mean stationary process.

From following equations, [ ]
1

2

( 1)

1 | |
( ) ( )

N
j fm

ss ss
m N

m
E P f m e

N
πφ

−
−

=− −

− =  
 

∑  and  
1/2

1/2

( ) ( ) ( )ss ss BE P f W f dγ α α α
−

= −   ∫ , we have the expected value for single 

periodogram as

	
( 1)

2( )

( 1)

| |
( ) 1 ( )

M
j fmi

ss ss
n M

m
E P f m e

M
πφ

−
−

=− −

   = −    
∑

	
21/2

1/2

sin ( )1
( )

sin ( )ss

f M
f d

M f

δπ α
γ α

π α−

 −
=  − 

∫ � (11.41)

where	
2

sin1
( )

sinB

fM
W f

M f
π
π

 
=  

 
� (11.42)
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WB(f) is the frequency characteristics of the Bartlett window function and 
wB(n) is given by

	
| |

1 , | | 1
( )

0, otherwise
B

m
m M

w n M
 − ≤ −= 


� (11.43)

Since the data sequence length is reduced from N to M, the spectral width 
is increased by a factor k (= N/M) and the frequency resolution is reduced by 
a factor k.

Variance of Bartlett Power Spectral Estimate

By reducing the resolution, the variance is also reduced by a factor k. The 
variance of Bartlett power spectral estimate is given by

	
1

( ) ( )
2 2

0

1 1
( ) ( ) . ( )

M
B i i

ss ss ss
k

Var P f Var P f k Var P f
k k

−

=

     = =     ∑

	 ( )1
( )i

ssVar P f
k

 =  � (11.43)

By using equation	 [ ] 2 sin2
( ) ( ) 1

sin2ss ss

fN
Var P f f

N f
π

γ
π

  
= +  

   

in Eq. (11.43), we get	
2

2 sin21
( ) ( ) 1

sin2
B

ss ss

fM
Var P f f

k M f
π

γ
π

  
   = +       

� (11.44)

Therefore, the variance of the Bartlett power spectrum estimate has been, 
reduced by the factor k.

11.5.2	The Welch Method (Averaging Modified Periodograms)

The following two modifications were made by Welch in 1967 in the averaging 
periodogram or Bartlett method.

1.	 The Sub-sequences of s(n) are allowed to overlap.

2.	 The data window function w(n) is applied to each sub-sequence in com-
puting the periodograms.

In the Welch method, the overlapping sequences are represented by

	  ,( ) ( ) 0,1,  ..., – 1si n s n iD n M= + =
	 0,1,...., – 1i L= � (11.45)

Where iD is the starting point of the sub-sequence. If D = M, then this is 
same as the Bartlett method.
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The modified periodogram estimate is given by

	
21

2( )

0

1
( ) ( ) ( ) , 0,1,... 1

M
j fni

ss i
n

P f s n n e dn i L
MU

πω
−

−−

=

= = −∑ � (11.46)

where U is the normalization factor for the power in the window function.
It is selected as

	
1

2

0

1
( )

M

n

U n
M

ω
−

=

= ∑ � (11.47)

The Welch power spectrum estimate is the average of these modified 
periodograms, that is,

	
1

( )

0

1
( ) ( )

L
i

ss ss
i

P f P f
L

ω
−

=

= ∑  � (11.48)

Mean Value of the Welch Estimate

The expected value or mean value of the Welch estimate is given by

	
1

( )

0

1
( ) ( )

L
i

ss ss
i

E P f E P f
L

ω
−

=

   =   ∑ 

	 ( )( )i
ssE P f− =  � (11.49)

But the expected value of the modified periodogram given by

	
1 1

2 ( )( )

0 0

1
( ) ( ) ( ) ( ) ( )

M M
j f n mi

ss i i
n m

E P f n m E s n s m e
MU

πω ω
− −

− −− *

= =

   = =   ∑ ∑

	
1 1

2 ( )

0 0

1
( ) ( ) ( )

M M
j f n m

ss
n m

n m n m e
MU

πω ω φ
− −

− −

= =

= −∑ ∑ � (11.50)

Since	
1/2

2

1/2

( ) ( ) j an
ss ssn e dπφ γ α α−

−

= ∫ � (11.51)

Substituting the value of φss(n) from Eq. (11.51) in Eq. (11.50), we get

	
1/2 1 1

2 ( )( )( )

0 01/2

1
( ) ( ) ( ) ( )

M M
j n m fi

ss ss
n m

E P f n m e d
MU

π αγ α ω ω α
− −

− − −

= =−

   =     
∑ ∑∫

	
1/2

1/2

( ) ( )ss W f dγ α α α
−

= −∫ � (11.52)

where by definition

	
21

2

0

1
( ) ( )

M
j fn

n

W f n e
MU

πω
−

−

=

= ∑ � (11.53)
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The normalization factor U ensures that

	
1/2

1/2

( ) 1W f df
−

=∫ � (11.54)

Variance of the Welch Estimate

The variance of the Welch Estimate is given by

	 { }
1 1 2( )( )

2
0 0

1
( ) ( ) ( ) ( )

L L
jw i w

ss ss ss ss
i j

Var P f E P f P f E P f
L

− −

= =

    = −    ∑∑  

� (11.55)

In the case of no overlap between successive data segments (L = k), Welch 
has shown that

	 ( )1
( ) ( )w i

ss ssVar P f Var P f
L

   =   


	 21
( )ss f

L
γ≈ � (11.56)

In the case of 50% overlap between successive data segments (L = 2k), 
the variance of the Welch power spectrum is estimated with the Bartlett 
(triangular) window.

Welch also derived that

	 29
( ) ( )

8
w

ss ssVar P f f
L

γ  =  � (11.57)

Here, we considered only the triangular window function in the computa-
tion of the variance. Other window functions may be used.

In general, they will produce a different variance. We can improve the 
relevant characteristics of the estimate by varying the data segment overlap-
ping by either more or less than 50%.

11.5.3	The Blackman and Tukey Method (Smoothing the Periodogram)

Smoothing the periodogram method was proposed by Blackman and Tukey 
in 1958. The autocorrelation sequence is windowed before calculating the 
power spectral density (psd). Windowing is used because if the value of m is 
large, that is, for larger lags, only less data enter in the estimation.

The Blackman–Tukey estimate is given by

	
( 1)

2

( 1)

( ) ( ) ( )
M

j fmBT
SS ss

m M

P f r m m e πω
−

−

=− −

= ∑ � (11.58)

where ω(m) is the window function with length 2M − 1. This is also called lag 
window. The lag window tapers away from the center.
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The effect of multiplication by lag window is convolution in the frequency 
domain.

	
1/2

1/2

( ) ( ) ( )BT
SS ssP f P W f dα α α

−

= −∫ � (11.59)

where Pss(f) is the periodogram. The window sequence should be symmetric 
about m = 0 and the window spectrum should be non-negative.

Mean Value of Blackman–Tukey Estimate

The expected value of the Blackman–Tukey power spectrum estimate is given 
by

	
1/2

1/2

( ) ( ) ( )BT
SS ssE P f E P W f dα α α

−

 
  = −  

 
∫

	 [ ]
1/2

1/2

( ) ( )ssE P W f dα α α
−

= −∫ � (11.60)

We know that

	 [ ]
1/2

1/2

( ) ( ) ( )ss ss BE P W dα γ θ α θ θ
−

= −∫ � (11.61)

where WB(f ) = Fourier transform of the Bartlett Window function or triangu-
lar window function.

Substituting Eq. (11.61) in Eq. (11.60), we get the double convolution 
integral.

	
1/2 1/2

1/2 1/2

( ) ( ) ( ) ( )BT
SS ss BE P f W W f d dγ θ α θ α α θ

− −

  = − −  ∫ ∫ � (11.62)

Above Eq. (11.62) is in frequency domain.
Equivalently, in the time domain, the expected value of the Blackman–

Tukey power spectrum estimate is

	 [ ]
( 1)

2

( 1)

( ) ( ) ( )
M

j fmBT
SS ss

m M

E P f E r m m e πω
−

−

=− −

  =  ∑

	
( 1)

2

( 1)

( ) ( ) ( )
M

j fm
ss B

m M

m W m m e πγ ω
−

−

=− −

= ∑ � (11.63)

where the Bartlett window is given by

	
1 | |

, | |
( )

0, otherwise
B

m
m N

m Nω
− <= 



� (11.64)
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Choose the window length such that M << N. Then w(n) will be narrower 
than ωB(m). This provides further smoothing of the periodogram. Under the 
conditions of M << N, Eq. (11.62) can be written as

	
1/2

1/2

( ) ( ) ( )BT
SS ssE P s W f dγ θ θ θ

−

  ≈ −  ∫ � (11.65)

Since

	
1/2 1/2

1/2 1/2

( ) ( ) ( ) ( )B BW W f d W W f dα θ α α α θ α α
− −

− − = − −∫ ∫
	 ( )W f θ≈ − � (11.66)

Variance of the Blackman–Tukey Power Spectrum Estimate

The variance of the Blackman–Tukey power spectrum estimate is given by

	 { } { }22
( ) ( ) ( )BT BT BT

SS SS SSVar P f E P f E P f     = −      � (11.67)

where the mean can be approximated as in Eq. (11.65).
The second moment in Eq. (11.67) is given by

	 { } [ ]
1/2 1/2

2

1/2 1/2

( ) ( ) ( ) ( ) ( )BT
SS SS SSE P f E P P W f W f d dα θ α θ α θ

− −

  = − −  ∫ ∫ � (11.68)

Now, we are assuming that process is a Gaussian random process:

	 [ ]
2 2

sin ( ) sin ( )
( ) ( ) ( ) ( ) 1

sin ( ) sin ( )SS SS ss ssE P P
N N

π θ α π θ αα θ γ α γ θ
π θ α π θ α

 + −    = + +    + −     
� (11.69)

Substituting Eq. (11.69) in Eq. (11.68), we get

{ }
21/2 1/2 1/2

2

1/2 1/2 1/2

( ) ( ) ( ) ( ) ( ) ( ) ( )BT
SS ss ss ssE P f W f d W f W fγ θ θ θ γ α γ θ α θ

− − −

 
  = − + − −  

 
∫ ∫ ∫

	

2 2
sin ( ) sin ( )

sin ( ) sin ( )
N N

d d
N N

π θ α π θ α α θ
π θ α π θ α

 + −    × +    + −     
� (11.70)

The first term of Eq. (11.70) is simply the square of the mean of ( )BT
SSP f .

This term is to be subtracted out according to Eq. (11.67). This leaves 
the second term in Eq. (11.70), which constitutes the variance. For the case 

in which N >> M, the functions sin ( )
sin ( )

N
N

π θ α
π θ α

+ 
 + 

 and sin ( )
(sin( )

N
N

π θ α
θ α
+ 

 + 
 are  

relatively narrow compared to W(f) in the vicinity of θ = −α and θ = α, respectively.
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Therefore,

21/2

1/2

sin ( ) sin ( )
( ) ( )

sin ( ) sin ( )ss

N N
W f d

N N
π θ α π θ αγ θ θ θ

π θ α π θ α−

 + −    − +    + −     
∫

	 ( ) ( ) ( ) ( )ss ssW f W f
N

γ α α γ α α− + + −
≈ � (11.71)

Using the above approximation given in Eq. (11.71), the variance of 
( )BT

SSP f  is given by

	
1/2

1/2

1
( ) ( ) ( )BT

SS SSVar P f W f
N

γ α α
−

  ≈ −  ∫
	 [ ]( ) ( ) ( ) ( )SS SSW f W f dγ α α γ α α α× − + + −

	
1/2

2 2

1/2

1
( ) ( )SS W f d

N
γ α α α

−

≈ −∫ � (11.72)

Wherein the last step, we made the approximation

	
1/2

1/2

( ) ( ) ( ) ( ) 0SS SS W f W f a dγ α γ α α α
−

− − + =∫ � (11.73)

When W(f ) is narrow compared to the true power spectrum γSS(f ),  
Eq. (11.72) in further approximated as

	
1/2

2 2

1/2

1
( ) ( ) ( )BT

SS SSVar P f f W d
N

γ θ θ
−

 
  ≈   

 
∫

	
( 1)

2 2

( 1)

1
( ) ( )

M

SS
m M

f m
N

γ ω
−

= −

 
≈  

  
∫ � (11.74)

11.5.4	Quality of Non-parametric Power Spectrum Estimators

In this section, we compare the quality or performance characteristics of the 
Bartlett, Welch, and Blackman and Tukey power spectrum estimates.

The quality of the estimator is given by the ratio of the square of the mean 
of the power spectrum estimate to its variance. It is given as

	
{ }2

( )

( )

A
SS

A A
SS

E P f
Q

Var P f

  =
  

where A = B, W, or BT for the three power spectrum estimates.
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Variability is another measure of performance. It is the reciprocal of the 
quality of the estimator.

Now, we shall discuss and calculate the quality of periodogram using Bart-
lett, Welch, and Blackman–Tukey power spectrum estimation techniques.

For reference, the periodogram has a mean and variance.

Mean of Periodogram

Mean of periodogram can be given as

	 [ ]
1/2

1/2

( ) ( ) ( )SS ss BE P f W f dγ θ θ θ
−

= −∫ � (11.75)

Variance of Periodogram

Variance of the periodogram is given by

	 [ ]
2

2 sin2
( ) ( ) 1

sin2SS SS

fN
Var P f f

N f
π

γ
π

  
 = +  
   

� (11.76)

where	

2
sin1

( )
sinB

fN
W f

N f
π
π

 
=  

 
� (11.77)

when N → ∞,

	 [ ]
1/2

1/2

( ) ( ) ( )SS ss BE P f f W dγ θ θ
−

→ ∫
	 ( ) ( ) ( )B ss SSo f fω γ γ= =

	 [ ] 2( ) ( )SS SSVar P f fγ→ � (11.78)
This is an asymptotically unbiased estimate, but not consistent as variance 

does not approach zero when N → ∞.
Asymptotically, the periodogram is characterized by the quantity factor

	
2

2

( )
1

( )
SS

P
SS

f
Q

f
γ
γ

= = � (11.79)

Here QP is constant and independent of N specifies the poor quantity.

Bartlett Power Spectrum Estimate

Mean of ( )B
ssP f

Mean of Bartlett power spectrum estimate is given by
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1/2

1/2

( ) ( ) ( )B
SS SS BE P f W f dγ θ θ θ

−

  = −  ∫ � (11.80)

Variance of ( )B
ssP f

The variance of Bartlett power spectrum estimate is given by

	

2

2 sin21
( ) ( ) 1

sin2
B

SS ss

fM
Var P f f

k M f
π

γ
π

  
   = +       

� (11.81)

where

	

2
sin1

( )
sinB

fM
W f

M f
π
π

 
=  

 
� (11.82)

As N → ∞ and M → ∞, while 
N

k
M

=  remains fixed, we find that

	
1/2

1/2

( ) ( ) ( ) ( ) (0)B
SS ss B ss BE P f f W f df f wγ γ

−

  → =  ∫
	 ( )SS fγ= � (11.83)

	 2
2

1
( ) ( )B

SS ssVar P f f
k

γ  →  � (11.84)

This estimate is asymptotically unbiased and k can increase with an 
increase in N. The estimate is consistent. Hence, asymptotically, this estimate 
is characterized by the quality factor

	
B

N
Q k

M
= = � (11.85)

With 3-dB main lobe width of a rectangular window, the frequency reso-
lution is given by

	
0.9

f
M

∆ = � (11.86)

Hence,	
0.9

M
f

=
∆

� (11.87)

Substituting Eq. (11.87) in Eq. (11.85), we get the quality factor

	
0.9

B

N N
Q

M

f

= =
 
 ∆ 
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or	 1.1 .
0.9

B

N
Q N f

f

= = ∆
 
 ∆ 

� (11.88)

Welch Power Spectrum Estimate

Mean of ( )B
ssP f

The mean of Welch power spectrum estimate is given by

	
1/2

1/2

( ) ( ) ( )B
SS ssE P f W f dγ θ θ θ

−

  = −  ∫ � (11.89)

where	
21

2

0

1
( ) ( )

M
j fn

n

W f n e
MU

πω
−

−

=

= ∑ � (11.90)

Variance of ( )B
ssP f

The variance of Welch power spectrum estimate is given by

	

2

2

1
( ), for no overlap

( )
9

( ), for 50% overlap and triangular window
8

SS
B

SS

SS

f
LVar P f

f
L

γ

γ


  =  



� (11.91)

As N → ∞ and M → ∞, the mean of ( )W
SSP f  converges to

	 ( ) ( )W
SS ssE P f fγ  →  � (11.92)

As N → ∞ and M → ∞, the variance of ( )W
SSP f  converges to zero. There-

fore the estimate is consistent.
The quantity factor for two conditions is given in Eq. (11.91) are

	
, for no overlap

8 16
, for 50% overlap and triangular window

9 9

W

N
L

MQ
L M

M

 == 
 =


�(11.93)

With spectral width of the triangular window at 3dB points,

	 1.28
f

M
∆ = � (11.94)

Consequently, the quality factor expressed in terms of ∆f and N is

	
0.78 , for no overlap
1.39 , for 50% overlap and triangular windowW

N f
Q

f

∆
=  ∆

� (11.95)
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Blackman–Tukey Power Spectrum Estimate

Mean of ( )BT
SSP f

The mean of the Blackman–Tukey power spectrum estimate is approximated as

	
1/2

1/2

( ) ( ) ( )BT
SS SSE P f W f dγ θ θ θ

−

  = −  ∫
� (11.96)

Variance of ( )BT
SSP f

The variance of the Blackman–Tukey power spectrum estimate is approxi-
mated as

	
( 1)

2 2

( 1)

1
( ) ( ) ( )

M
BT

SS SS
n M

Var P f f m
N

γ ω
−

=− −

 
  =   

 
∑ � (11.97)

where ω(m) is the window sequence used to taper the estimated autocorrela-
tion sequence.

For the rectangular window, we have

	
( 1)

2

( 1)

1 2
( )

M

m M

M
m

N N
ω

−

=− −

=∑ � (11.98)

For the triangular window, we have

	
( 1)

2

( 1)

1 2
( )

3

M

n M

M
n

N N
ω

−

=− −

=∑ � (11.99)

The mean value of this estimate is asymptotically unbiased.
The quality factor of this estimate for the triangular window is given by

	 1.5BT

N
Q

M
= � (11.100)

Since the window length is 2M − 1, the frequency resolution measured at 
the 3-dB points is

	 1.28 0.64
2

f
M M

∆ = = � (11.101)

Eq. (11.101) can be written as

	
0.64

M
f

=
∆

� (11.102)

Substituting Eq. (11.102) in Eq. (11.100), we get

	 1.5
.

0.64BTQ N f= ∆

	 234N f= ∆ � (11.103)
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Quality factor increases when N is increased. For a desired quality level, 
decrease ∆f by increasing N.

Results of the Quality factor for Bartlett, Welch, and Blackman–Tukey 
power spectrum estimates are summarized in Table 11.1.

TABLE 11.1  Quality of Power Spectrum Estimates

S. No. Estimate Quality factor
1. Bartlett 1.11 N∆ f

2. Welch (50% overlap) 1.39 N∆ f

3. Blackman–Tukey 2.34 N∆ f

11.5.5 �Computational Requirements of  
Non-parametric Power Spectrum Estimates

The other important aspect of the non-parametric power spectrum esti-
mates is their computational requirements. Here, we consider the following 
assumptions:

Fixed data length = N
Frequency resolution = ∆f
Radix-2 FFT algorithm for computation.

Bartlett Power Spectrum Estimate

	
0.9

FFT length M
f

= =
∆

	 Number of FFTs 1.11
N

N f
M

= = ∆

	 2 2

0.9
Number of computations log log

2 2
N M N

M
M f

  = =    ∆   

Welch Power Spectrum Estimate (50% Overlap)

	
1.28

FFT length M
f

= =
∆

	 2
Number of FFTs 1.56

N
N f

M
= = ∆

	 2 2

2 1.28
Number of computations log log

2 2
N M N

M
M f

  = =    ∆   
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For windowing 
2N

M
M

×  multiplications are required.

	 2 2

128 5.12
Total computations 2 log logN N N

f f

   
= + =   ∆ ∆   

Blackman–Tukey Power Spectrum Estimate

In the Blackman–Tukey method, the autocorrelation rss(m) can be computed 
efficiently via the FFT algorithm. For large data points, FFT can be done by 
segmenting the data into k = N/2M (windowing to 2m − 1 points or samples)

By using this approach,

	
1.28

FFT length 2M
f

= =
∆

	
Number of FFTs 2 1k= +

	 2 1 1
2
N N N
N M M

 = + = + = 
 



	 ( )2 2

128
Number of computations log 2 log

N
M M N

M f

 
= =  ∆ 

11.5.6 �Limitations of Non-parametric  
Methods for Power Spectrum Estimation

These methods have the following limitations

1.	 It requires long data sequences to obtain the necessary frequency resolution.

2.	 Spectra] leakage effects because of windowing.

3.	 The assumption of the autocorrelation estimate rss(m) to be zero for  
m ≥ N. This assumption limits the frequency resolution and quality of the 
power spectrum estimate.

4.	 Assumption that the data are periodic with period N. These assumptions 
may not be realistic.

11.6	� PARAMETRIC METHODS OF POWER  
SPECTRUM ESTIMATION

The non-parametric methods of power spectrum estimation which we stud-
ied in the previous section are relatively simple, well understood, and easy 
to compute using the FFT algorithms. However, these methods require the 
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availability of long data records in order to obtain the necessary frequency 
resolution required in many applications. Furthermore, non-parametric 
methods of power spectrum estimation suffer from spectral leakage, due to 
windowing that is inherent in finite-length data records. Often, the spectral 
leakage masks weak signals that are present in the data.

Parametric methods provide better frequency resolution since this mod-
eling does not require window function and the assumptions that autocorrela-
tion sequence to be zero for |m| ≥ N is not required.

It extrapolates the values for |m| ≥ N. But it requires prior information 
about the generation of the data sequence. A model for the signal generation 
can be obtained from the observed data. These methods are useful for data 
sequences that are short.

The parametric spectral estimation has three steps:

1.	 First of all select the model.

2.	 Estimate the model parameters from the observed measured data or the 
correlation sequence which is estimated from the data.

3.	 Obtain the power spectral estimate with the help of the estimated model 
parameters.

11.6.1 �Basics of Auto-Regressive (AR), Moving Average (MA)  
and Auto-Regressive Moving Average (ARMA) Models

Let s(n) be the observed signal which is modeled as the output of a linear 
system represented by
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The difference equation of this system is given by

	
1 0

( ) ( ) ( )
p q

k k
k k

y n A y n k B n kω
= =

= − + −∑ ∑ � (11.105)

where ω(n) is the input sequence to the linear system shown in Figure 11.3 
and y(n) is the output sequence from the linear system.

FIGURE 11.3  Linear system for analyzing parametric models.
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If the observed data is considered as a stationary random process, then 
the input can also be assumed as a stationary random process Let γww(f) be the 
power spectral density of the input sequence ω(n), γyy(f) be the power spectral 
density of the output sequence y(n) and H(f) be the frequency response of the 
linear system then

	 2( ) | ( ) | ( )yy wwf H f fγ γ= � (11.106)

If the sequence w(n) is a zero-mean white noise of the process of variance 
2
wσ , the autocorrelation sequence is given by

	
2( ) ( )ww wm mγ σ δ= � (11.107)

The power spectral density of the input sequence is given by

	
2( )ww mγ σω= � (11.108)

Hence, the power spectral density of the output sequence y(n) is given as

	
2( ) | ( ) | ( )ff wwf H f fγ γ=

	 2 2| ( ) |w H fσ=

	
2

2 ( )
( )w

D f
C f

σ= � (11.109)

The process modeled by such a linear system is the ARMA process of 
order (p, q). It is represented as ARMA (p, q).

If q = 0, Bo = 1 and Bk = 0 for 1 ≤ k ≤ q, then
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The model for this system is called the AR process of order p. It is repre-
sented as AR (p)

If Ak = 0 for 1 ≤ k ≤ p, then	 0( )

q
k

k
k

B Z
H z

−

==
∑

� (11.111)

The model for this system is called moving average (MA) process of order 
q. It is represented as MA (q). Of these three linear models, the AR model is 
by far the most widely used. There are two reasons.

1.	 The AR model is suitable for representing spectra with narrow peaks 
(resonances).

2.	 The AR model results in very simple linear equations for the AR parameters.
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On the other hand, the MA model, as a general rule, requires many more 
coefficients to represent a narrow spectrum. Consequently, it is rarely used by 
itself as a model for spectrum estimation. By combining poles and zeros, the 
ARMA model provides a more efficient representation, from the viewpoint of 
the number of model parameters, of the spectrum of a random process.

The decomposition theorem due to Wold (1938) assets that any AR MA or 
MA process can be represented uniquely by an AR model of possibly infinite 
order, and any ARMA or AR process can be represented by a MA model of 
possibly infinite order. In view of this theorem, the issue of model selection 
reduces to selecting the model that requires the smallest number of param-
eters that are also easy to compute. Usually, the choice in practice is the AR 
model.

The ARMA model is used to a lesser extent.

ARMA Process

The output power spectral density for ARMA (p, q) process is given by
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The power spectral density depends only on the white noise variance 
2
wσ  

and filter coefficients Ak and Bk. The filter coefficients are to be estimated.
If the observed N data points are greater than p + q + 1, then a good esti-

mate for the unknown parameters can be obtained.
Consider the general ARMA(p, q) model represented by the difference 

equation,

	
1 0

( ) ( ) ( )
p q

k k
k k

y n A y n k B n kω
= =

= − − + −∑ ∑ � (11.113)

Let Bo = 1 and w(n) be a zero-mean white noise process with variance.
Multiplying both sides of Eq. (11.113) by y*(n − m) and taking the expec-

tation, we get
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or	
1 0

( ) ( ) ( )
p q

xy k yy k y
k k

r m A r m k B r m kω
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= − − + −∑ ∑ � (11.114)

where	 ( ) [ ( ) ( )yyr m E y n y n m*= −

	 ( ) [ ( ) ( )yyr m k E y n k y n k*− = − −

	 ( ) [ ( ) ( )wyr m k E n k y n kω *− = − −

The cross-correlation function rωy(m) is given by
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Since,	 2[ ( ) ( )] ( )wE n n m mω ω σ δ* + =
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Therefore,
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The relationships in Eq. (11.117) provide a formula for determining the 
model parameters {Ak} by restricting our attention to the case m > q.

The set of linear equations is used in solving for {Ak} right with the auto-
correlation estimates.
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AR Process

If q = 0, then AR model parameters can be obtained
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In this case, the AR parameters {Ak} are obtained from the solution of the 
Yule–Walker or normal equations
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Using a set of Eq. (11.120), coefficients {Ak} can be obtained and the vari-
ance is determined as
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Eqs. (11.120) and (11.121) are usually combined into a single matrix 
equation of the form
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The correlation matrix is a Toeplitz and non-singular and can be solved 
with Levinson – Durbin Algorithm for obtaining the inverse matrix.

Thus all the system parameters in the AR (p) model are easily determined 
from knowledge of the autocorrelation sequence ryy(m) for 0 ≤ m ≤ p.
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MA Process

If Ak = 0 for 1 ≤ k ≤ p and h(k) = Bk for 0 ≤ k ≤ q, then MA(q) model is obtained
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11.6.2 �Power Spectrum Estimation Using AR(p),  
ARMA(p, q), and MA(q) Models

With the background that is discussed in the previous section, we now describe 
the power spectrum estimation methods for the AR(p), ARMA(p, q), and MA 
(q) models.

The Yule–Walker Method for the AR Model Parameters

In this method, we simply estimate the autocorrelation from the data and use 
the estimates given by Eq. (11.120) to solve for the AR model parameters

Let the autocorrelation estimate (based) be,
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The autocorrelation matrix should be positive semidefinite to yield a 
stable AR model. The power spectral estimate is given by
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where,
( )pA k′  are the estimates of the AR parameters obtained from the Levinson- 

Derbin recursions or algorithm, 2
pωσ ′  is the estimated minimum mean square 

value for the pth order predictor
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In estimating the power spectrum of sinusoidal signals via AR models, 
Lacos showed in 1971 that spectral peaks in an AR spectrum estimate are 
proportional to the square of the power of the sinusoidal signal. On the other 
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hand, the area under the peak in the power density spectrum is linearly pro-
portional to the power of the sinusoid. This characteristic behavior holds for 
all AR model-based estimation methods.

MA Model

The MA (q) model for the observed data is represented by
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The power spectral estimate is given by
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	 2( )D z=

Hence, MA parameters {Bk} need not be calculated, but an estimate of 
autocorrelation for |m| ≤ q will suffice.

ARMA Model

For certain type of processes, the ARMA model is used to estimate the spec-
trum with fewer parameters. This model is mostly used when the data is cor-
rupted by noise.

We construct a set of linear equations for m > q and use the method of 
least squares on the set of equations. Here, we use linear prediction,
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where ryy (m) is the estimated autocorrelation sequence. Select the param-
eters {Ak} such that the squared error is minimized.

Squared error is given by
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Eq. (11.130) can be written as
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Thus the AR parameters can be obtained and the procedure is known 
as the least-squares modified Yule–Waker method. Suitable weightage can 
also be applied to the autocorrelation sequence. After finding the AR model 
parameters, the system obtained is represented by
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−

′ =∑ � (11.132)

Consider the sequence s(n) to be filtered by FIR filter, that is, AR model 
is C′(z). Let the output be z(n).
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MA model D(z) can be obtained by cascading ARMA(p, q) model with 
C(z).

The sequence z(n) for p ≤ n ≤ N − 1 is used to obtain the correlation 
sequence rzz(m). The MA power spectral estimate is given by
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The ARMA power spectral estimate is given by
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Among the three models, the AR model is widely used for power spectrum 
estimation due to

i.	 AR model is suitable for representing power spectra with narrow peaks.

ii.	 AR model is represented by a simple linear equation.

11.6.3 The Burg Method for the AR Model Parameters

The method devised by Burg for estimating the AR parameters can be viewed 
as an order recursive least-squares lattice method, based on the minimization 
of the forward and backward errors in linear predictors, with the constraint 
that the AR parameters satisfy the Levinson–Durban recursion or algorithm.

For a given data sequence s(n), n = 0, 1, ..., N − 1 the mth order forward 
and backward linear prediction estimates are
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The corresponding forward and backward errors are fm(n) and gm(n). 
These errors are defined as

	 ˆ( ) ( ) ( )mf n s n s n= −

and	 ˆ( ) ( ) ( )mg n s n m s n m= − − −  

where Am(k), 0 ≤ k ≤ m − 1, m = 1, 2, ..., p are the prediction coefficients.
Total least squared error is given by
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This error is to be minimized by selecting the prediction coefficients, sub-
ject to the constraint that they satisfy the Levinson–Durbin recursion given by
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where Km = Am(m) is the mth reflection coefficient in the lattice filter realiza-
tion of the predictor.

When Eq. (11.138) is substituted into expressions for fm(n) and gm(n), the 
result is the pair of order recursive equations for the forward and backward 
prediction errors given by equation:
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Now, if we substitute Eq. (11.139) into Eq. (11.138) and perform the 
minimization of εm with respect to the complex-valued reflection coefficient 
Km, we obtain the result
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The term in the numerator of Eq. (11.140) is an estimate of the cross-
correlation between the forward and backward prediction errors. With the 
normalization factors in the denominator of Eq. (11. 140), it is apparent that 
|Km| < 1, so that the all pole model obtained from the data is stable.

The denominator of ˆ
mK  is the least-squares estimate of the forward and 

backward errors. Hence,
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	 1,2,...,m p=

where	 1 1
ˆ ˆf b

m mE E− −+  is an estimate of the total squared error Em.

	 1
ˆ f

mE −  Least-squares estimate of the forward errors

	 1
ˆ b

mE −  Least-squares estimate of the backward errors.

An estimate of total squared error (Em) is given by
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This result is due to Anderson.
In Burg’s algorithm, with the estimates of AR parameters, the power 

spectrum estimate becomes
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Advantages of Burg’s Method

Burg’s method has the following advantages:

1.	 high-frequency solution,

2.	 stable AR model, and

3.	 computationally efficient.

Disadvantages of Burg’s Method

This method has the following disadvantages:

1.	 exhibits spectral line splitting at high SNRs,

2.	 sensitive to the initial phase of a sinusoid, and

3.	 produces spurious peaks in high-order models.
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Several modifications have been proposed to overcome some of the more 
important limitations of the Burg method: namely the line splitting, spurious 
peaks, and frequency bias. Basically, the modifications involve the introduc-
tion of a weighing (window) sequence on the squared forward and backward 
errors. That is, the least-squares optimization is performed on the weighted 
squared errors:
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upon minimization, we obtain the reflection coefficient estimates
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These windowing and energy weighing methods have proved effective 
in reducing the occurrence of line splitting and spurious peaks, and are also 
effective in reducing frequency bias.

11.6.4 �Unconstrained Least-Squares  
Method for the AR Model Parameters

Burg’s method for determining the parameters of the AR model is basically 
a least-squares lattice algorithm with the added constraint that the predictor 
coefficients satisfy the Levinson recursion.

As a result of this constraint, an increase in the order of the AR model 
requires only a single parameter optimization at each stage. In contrast to this 
approach, we may use an unconstrained least-squares algorithm to determine 
the AR parameters.

Minimize the sum of forward and backward errors as

	
1 2 2

( ) ( )
N

p p p
n p

f n g nε
−

=

 = +  ∑

	

2 21

1 1

( ) ( ) ( ) ( ) ( ) ( )
p pN

p p
n p k k

s n A k s n k s n p A k s n k p
−

*

= = =

 
= + − − + + − 

  
∑ ∑ ∑ � (11.145)

Without using the Levinson–Durbin constraint for AR parameters, the 
minimization of εp with respect to the prediction coefficients results in the set 
of linear equations

	
1

( ) ( , ) ( ,0), 1,2,...,
p

p ss ss
k

A k r l k r l l p
=

= =∑ � (11.146)
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where, by definition, the autocorrelation rss(l, k) is given by

	
1

( , ) ( ) ( ) ( ) ( )
N

ss
n p

r l k s n k s n l s n p l s n p k
−

* *

=

 = − − + − + − + ∑ � (11.147)

The resulting residual least-squares error is given by

	
1

ˆ(0,0) ( ) (0, )
p

LS
P ss p ss

k

r A k r kε
=

= + ∑ � (11.148)

Hence, the unconstrained least-squares power spectrum estimate is

	 2

2

1

( )
ˆ1 ( )

LS
LS P

SS p
j fk

p
k

P f

A k e π

ε

−

=

=

+ ∑
� (11.149)

This method can also be called as unwanted data least-squares method. 
The limitations of Burg’s method are not present in this method. Also, com-
putational efficiency is comparable with the Levinson–Durbin algorithm. But 
stability is not guaranteed.

In the above methods, AR parameter estimates are obtained from a block 
of data s(n), n = 0, 1, ....., N − 1. If continuous data is not available then seg-
ments of data with N-point block is taken for estimation. Another way is using 
sequential estimation methods using adaptive filtering.

11.6.5 Maximum Likelihood Method

This method is also known as Capon method. The Capon method was initially 
used for large seismic array of frequency wavenumber estimation.

Later on, this was extended to single time series spectrum estimation by 
Lucas.

Consider an FIR filter, where the filter coefficients to be determined are 
Ak, where 0 ≤ k ≤ p. Hence, there is no restriction that Ao should be unity.

Let s(n), 0 ≤ n ≤ N − 1 be the data sequence that is passed through the 
FIR filter.

The output filter response is given by

	
0

( ) ( ) ( )
p

t
k

k

y n A s n k S n A
=

= − =∑ � (11.150)

where	 ( ) ( ) ( 1), ( 2)... ( )tS n s n s n s n s n p= − − −  
⇒ Data Vector

	 Filter Coefficient VectorA =
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Let us assume that the mean of the data sequence is zero, that is,  
E[s(n)] = 0.

The variance of y(n) is given by

	 2 2[ ( )] [| ( ) | ]y Var y n E y nσ = =

	 ( ) ( )t t
ssE A S n S n A A Aγ* * * = =  � (11.151)

where rss = Autocorrelation matrix of s(n) with elements yss(m).
Choose the filter coefficients such that the frequency response is normal-

ized to unity at a particular selected frequency fl.
The constraint is given by

	 12

0

1
p

j kf
k

k

A e π−

=

=∑

In matrix form E*t(fl) A = 1

where	 ( ) 2 22 ....l lj f j ft
lE f e eπ π =  

Minimize the variance σy2 subjected to the constraint specified, yields 
an FIR filter which allows the fl frequency components undistorted. Other 
frequency components are alternated.

This yields,

	
( )

( ) ( )
1

1
ss l

t
l ss l

E f
A

E f E f

γ
γ

*

− *=

The variance becomes

	 ( ) ( )
2
min 1

1
t

l ss lE f E f
σ

γ − *= � (11.152)

The minimum variance power spectrum estimate at frequency fl is rep-
resented in the above equation. By varying the frequency fl from 0 to 0.5, the 
power spectrum estimate can be obtained. Even if fl changes, 1

ssγ −  is computed 
only once. The denominator of 2

minσ  can be computed using single DFT. If 
Rss is the estimate of γss, Rss can replace γss and the minimum variance power 
spectrum estimate of capon’s method is given by

	 1

1
( )

( ) ( )
mv

ss t
ss

P f
E f R E f− *= � (11.153)

This estimate results in spectrum peaks estimate proportional to the 
power at that frequency.
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11.6.6 The Pisarenko Harmonic Decomposition Method

This method provides the estimate for the signal components which are 
sinusoids corrupted by additive white noise.

A real sinusoid signal can be obtained from the difference equation
	 1 2( ) ( ) ( )1 2s n A s n A s n= − − − − � (11.154)

where	 1 2cos2 kA fπ=
	 2 1A =

Initial conditions,
	 ( 1) 1s − = −
	 ( )2 0s − =

This system has complex-conjugate poles at f = fk and f = −fk, obtaining 
the sinusoid

	 ( ) cos2 , 0ks n f n nπ= ≥

Consider p sinusoid components available in the signal,

	
2

1

( ) ( )
p

m
m

s n A s n m
=

= − −∑ � (11.155)

The system function is given by

	 2

1

1
( )

1
p

m
m

m

H z
A z−

=

=
+ ∑

� (11.156)

The denominator of H(z) has 2p roots on the unit-circle. They correspond 
to the sinusoid frequencies. Assume that the sinusoids are corrupted by an 
additive white noise ω(n).

	 ( ) ( ) ( )y n s n nω= + � (11.157)

and	 2 2( )E nω σω  = 
From Eq. (11.157), we get

	 ( ) ( ) ( )s n y n nω= − � (11.158)

Substituting the values of s(n) in the difference equation provides,

	
2

1

( ) ( ) [ ( ) ( )]
p

m
m

y n n A y n m n mω ω
=

− = − − − −∑

or	
2 2

0 0

( ) ( )
p p

m m
m m

A y n m A n mω
= =

− = −∑ ∑ � (11.159)
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Let	 1oA =
The difference equation for ARMA (p, p) process has both AR and MA 

parameters identical.
In matrix form,

	 t tY A W A=
where	 1  2 .... 2  - Observed data vecto[ ( r) ( ) ( ) ( )]tY y n y n y n y n p= − − −

	 1 2 .... 2  - Noise vect[ ( ) ( ) ( ) ( )] ortW n n n n pω ωω ω= − − −

	 1 2 3 21 ....  - Coefficien[ t v or] ectpA A A A A=

Premultiply by Y and take expected value,

	  ) (t t tE Y Y A E Y W A E X W W A     = = +     
	 2

yyA Aωγ σ= � (11.160)
This expression is obtained with the following assumptions:

1.	 ω(n) is zero mean white noise

2.	 X is a deterministic signal.

In Eigen equation form
	 ( )2 0yy I Aωγ σ− =

Where 2
ωσ  is the eign value of the autocorrelation matrix γyy.

This forms the basis for the decomposition method.
The autocorrelation values are given by

	 2

1

( )
p

yy i
i

o Pωγ σ
=

= + ∑

	
1

( ) cos2 , 0
p

yy i i
i

k P f k kγ π
=

− = ≠∑ � (11.161)

where	
2

Average power in the th sinusoid.
2

i
i

A
P i→

	

1 2 3 1

1 2 3 2

1 2 3 4

1 2 3

cos2 cos2 cos2 cos2 (1)
cos4 cos4 cos4 cos4 (2)
cos6 cos6 cos6 cos6 (2

cos2 cos2 cos2 cos2

p yy

p yy

p yy

p P

f f f f P
f f f f P
f f f f P

pf pf pf pf P

π π π π γ
π π π π γ
π π π π γ

π π π π

   
   
   
   
   
   
   
   
   
   

  

   


   


   


)

( )yy pγ

 
 
 
 
 
 
 
 
 
 
 







� (11.162)
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The powers of sinusoids can be obtained if the frequencies are known.
γss(m) can be replaced by its estimate rss(m).
The noise variance is obtained from,

	 2

1

( )
p

yy i
i

r o Pωσ
=

= − ∑ � (11.163)

EXAMPLE 11.3
Show that

a.	 ( ) ( ) ( )
( )

( )
( )

2

1 2 1 22
1 2

1 2 1 2

sin sin
1

sin sinss ss s

f f N f f N
E P f P f

N f f N f f

π π
σ

π π

    + −   = + +      + −        

b.	 [ ]
2

2 sin2
( ) 1

sin2SS s

f N
Var P f

N f
π

σ
π

   = +  
   

Use the expression for the 4th joint moment for Gaussian random variable.
E[S1 S2 S3 S4] = E [S1 S2] E [S3 S4] + E [S1 S3] E [S2 S4] + E [S1 S4] E [S2 S3].

Solution:

a.	 ( ) ( ) ( ) ( )1 1 2 2

1 2

2 2
1 1

2 2
1 2 1 22

0 0

1 N N
j f n j f n

SS SS
n n

E P f P f E s n e s n e
N

π π
− −

− −

= =

 
   = ⋅    

∑ ∑

	

( ) ( ) ( ) ( ) ( ) ( )1 1 3 2 2 4

1 2 3 4

1 1 1 1
2 2

1 2 3 42
0 0 0 0

1 N N N N
j f n n j f n n

n n n n

E s n s n s n s n e e
N

π π
− − − −

− − − −

= = = =

 =  ∑ ∑ ∑ ∑ � (1)

But,	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 1 2 3 4E S n S n S n S n E S n S n E S n S n=          

	 ( ) ( ) ( ) ( )1 3 2 4E s n s n E s n s n+       

	 ( ) ( ) ( ) ( )1 4 2 3E s n s n E s n s n+       
	 4

1 2 3 4, for  and ;S n n n nσ= = =  

	 1 3 2 4and ;n n n n= =

	 1 4 2 3and ,n n n n= = � (2)

For	 1 4 2 3and ,n n n n= =

	 ( ) ( ) ( ) ( )1 1 3 1 1 3 2 3 12 2 42 2 22j f n n j f n n j f n nj f n ne e e eπ π ππ− − − − − −− − =
	 ( ) ( )1 1 3 2 1 32 2j f n n j f n ne eπ π− − + −=
	 ( )( )1 2 1 32j f f n ne π− − −= � (3)

For n1 = n2 and n3 = n4

	 ( ) ( ) ( ) ( )1 1 3 1 1 3 2 1 32 2 42 2 22j f n n j f n n j f n nj f n ne e e eπ π ππ− − − − − −− − =
	 ( )( )1 2 1 32j f f n ne π− − += � (4)
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Substituting Eq. (2) in Eq. (1), we get
E[PSS(f1) PSS(f2)]

( ) ( ) ( ) ( ){
1 2 3 4

1 1 1 1

1 2 3 42
0 0 0 0

1 N N N N

n n n n

E s n s n E s n s n
N

− − − −

= = = =

=       ∑ ∑ ∑ ∑

( ) ( ) ( ) ( ) ( ) ( )( ( ) ( ) }1 3 2 4 1 4 2 3E s n s n E s n s n E s n s n E s n s n  + +     
( ) ( )1 1 3 2 2 42 2j f n n j f n ne eπ π− − × 

( )( ) ( )( )1 2 1 3 1 2 1 3

1 2 1 3 1 2

1 1 1 1 1 1
2 24 4 4

2
0 0 0 0 0 0

1 N N N N N N
j f f n n j f f n n

s s s
n n n n n n

e e
N

π πσ σ σ
− − − − − −

− − − − + −

= = = = = =

  = + + 
  
∑ ∑ ∑ ∑ ∑ ∑

( ) ( ) ( ) ( )1 2 1 1 2 3 1 2 1 1 2 3

1 3 1 3

4 1 1 1 1
2 2 2 22

2
0 0 0 0

N N N N
j f f n j f f n j f f n j f f nS

n n n n

N e e e e
N

π π π πσ − − − −
− − − − + +

= = = =

  = + + 
  

∑ ∑ ∑ ∑
( )

( )

( )

( )

( )

( )

( )

( )

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2 2 2 2

2 22 2 2 2

1 1 1 1 1 1
1

1 1 1 1

j f f N j f f N j f f N j f f N
r
S j f f N j f f N j f f N j f f

e e e e
N Ne e e e

π π π π

π π π π
σ

− − − − + +

− − − − + +

 − − − − = + × × + × × 
− − − −  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

2 2 2 2
4

2 22 2 2 2

2 1 2 1
1

2 2

j f f N j f f N j f f N j f f N

S j f f j f f j f f N j f f

e e e e
N Ne e e e

π π π π

π π π π
σ

− − − − − −

− − − − − −

 − − − − = + × + × 
− − − −  

( )
( )

( )
( )

1 2 1 24
2 2

1 2 1 2

2 2cos2 2 2cos21 1
1

2 2cos2 2 2cos2S

f f N f f N

N f f N f f

π π
σ

π π

    − − − − = + +    
− − − −        

( )
( )

( )
( )

2 2

1 2 1 24

1 2 1 2

sin sin
1

sin sinS

f f N f f N

N f f N f f

π π
σ

π π

    − −= +    
− −       

Proved.

b.	 [ ] { }22 2( ) ( ) ( )SS SS SSVar P f E P f E P f   = −   
But, [ ] 2( )ss sE P f σ=

	 ( ) ( ) ( ) ( ) ( )1 2 3 4

1 2 3 4

1 1 1 1
22

1 2 3 42
0 0 0 0

1
( )

N N N N
j f n n n n

SS
n n n n

E P f E s n s n s n s n e
N

π
− − − −

− − + −

= = = =

  =     ∑ ∑ ∑ ∑

and	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 1 2 3 4E s n s n s n s n E s n s n E s n s n=          

	

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 3 2 4

1 4 2 3

E s n s n E s n s n

E s n s n E s n s n

 +    
+       

	 4
1 2 3 4, and ;S n n n nσ= = =

	 1 3 2 4and ;n n n n= =

	 1 4 2 3andn n n n= =
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Similar to part (a), the summation can be expanded and the value is

	

24
2 2

2

sin2
( ) 2

sin2
S

SS

fN
E P f N

N N f
πσ

π

     = +   
   

	 [ ]
24

2 4
2

sin2
( ) 2

sin2
S

SS s

fN
Var P f N S

N N f
πσ σ

π

   = + −  
   

	

2

4 sin2
1 .

sin2s

fN
N f

π
σ

π

   = +  
   

EXAMPLE 11.4
Find the frequency resolution of the Bartlett, Welch, and Blackman–Tukey 
methods of power spectrum estimation for quality factor Q = 10. Assume 
that overlap in Welch’s method is 50%. Given the length of the sample, the 
sequence is 1000.

Solution:
Data given:

Quality factor,	 Q = 10
Length of the Sample Sequence,	 N = 1000
Overlap in Welch’s method,		    = 50%

Bartlett method

	 Quality factor QB = 1.11 N ∆f

⇒	 ∆f = frequency resolution = 1.11
BQ
N

	 10
0.009

1.11 1000
= =

×

Welch Method

	 Quality factor Qw = 1.39 N ∆f

⇒	 ∆f = frequency resolution = 
1.39

WQ
N

	 10
0.0072

1.39 1000
= =

×
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Blackman–Tukey Method

	 QBT = Quality factor Qw = 2.34 N ∆f

⇒	 ∆f = frequency resolution = 
2.34

BTQ
N

	 10
0.0042

2.34 1000
= =

×

EXAMPLE 11.5
We have given an auto-regressive (AR) process of order 1. This process is 
described by
	  ( ) ( ) ( )1s n A s n nω= − +

where A is a constant and ω(n) is a white noise process of zero mean and vari-
ance σ2. Find the mean and autocorrelation function of the process {S(n)}.

Solution:
Given,	  ( ) ( ) ( )1s n A s n nω= − +
or	  ( ) ( ) ( )1s n A s n nω− − = � (1)

This is a difference equation with constant coefficients. The complemen-
tary solution and particular solution can be obtained.

Complementary solution of Eq. (1)
Consider the homogeneous equation

	  1 0( ) ( )s n A s n− − = � (2)

The solution of Eq. (2) is of the form C(A)n, where C is a constant.
A particular solution of Eq. (1)
Substituting s(n − 1) = Z−1 s(n) in Eq. (1), we get

	 1.( ) ( ) ( )s n A Z s n nω−− =

or	 1

1
( ) ( )

1
s n n

AZ
ω−=

−

or	
0

( ) ( )k k

k

s n A Z nω
∞

−

=

 
=  

 
∑ � (3)

Since	 1 2 2 3 3
1

1
1 ...

1
AZ A Z A Z

AZ
− − −

− = + + + +
−

	
0

k k

k

A Z
∞

−

=

= ∑ � (4)

From Eq. (3),

	
0

( ) ( )k k

k

s n A Z nω
∞

−

=

= ∑
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0

( )k

k

A n kω
∞

=

= −∑ � (5)

Since	 ( ) ( )kZ n n kω ω− = −

Complete solution of Eq. (1) can be obtained by adding both solutions

	
0

( ) ( )n k

k

s n CA A n kω
∞

=

= + −∑ � (6)

Assuming	 ( ) 0.s o =

	
0

( )k

k

C A kω
∞

=

= − −∑ � (7)

Substituting the value of C from Eq. (7) in Eq. (6), we get

	
0 0

( ) ( )( ) n k k

k k

s n A A k A n kω ω
∞ ∞

= =

= − + −∑ ∑

	
0

( ) ( )k k

k n k

A n k A n kω ω
∞ ∞

= =

= − − + −∑ ∑

or	
0 0

( ) ( )( ) n k k

k k

s n A A k A n kω ω
∞ ∞

= =

= − + −∑ ∑ � (8)

Mean:

	 [ ] 0( )E nω =

	
1

0

[ ( )] ( )
n

k

k

E s n E A n kω
−

=

 
= − 

 
∑

	
1

0

[ ( )] 0 for all .
n

k

k

A E n k nω
−

=

= − =∑

Autocorrelation:

	 ( ) [ ( ) ( )]ssr l E s n s n l= −

	
1 1

0 0

( ) ( )
n n

k i

k i

E A n k A n l iω ω
− −

= =

 
= − − − 

 
∑ ∑

	
1 1

0 0

( ) ( )
n n

k i

k i

E A n k n l iω ω
− −

+

= =

 
= − − − 

 
∑∑

	
1 1

0 0

[ ( ) ( ) correct it
n n

k i

k i

A E n k n l iω ω
− −

+

= =

= − − −∑∑ � (9)
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2 ,

[ ( ) ( )]
,

k l i
E n k n l i

O k l i

σ
ω ω

 = +− − − = 
≠ +

� (10)

Since {ω(n)} is a white noise process.
Substituting Eq. (10) in Eq. (9), we get

	
1 1

2

0 0

( ) for 
n n

k i
ss

k i

r l A k l iσ
− −

+

= =

= = +∑∑

	
2

2
2

1
( )

1

n
l

ss

A
r l A

A
σ −  −

=  
− 

EXAMPLE 11.6
A second-order AR process is described by

s(n) + A1s(n − 1) + A2s(n − 2) = ω(n)
where {ω(n)} is a white noise process of zero mean and variance σ2. Find the 
conditions required for this AR process to be asymptotically stationary up to 
order 2.

Solution:

Given	 1 2( ) ( ) ) (2( )1s n A s n A s n nω+ − + − = � (1)

Substituting s(n − 1) = Z−1s(n) and s(n − 2) = Z−2s(n) in Eq. (1), we get

	 1 2
1 2( ) ( ) ( ) ( )s n A Z s n A Z s n nω− −+ + =

or	 1 2
1 2( ) ( )1s n A Z A Z nω− − + + =  � (2)

Let	 1 1
1 21( )A z Z Z A Z− −= + +

	 ( )( )1 1
1 21 1r Z r Z− −= − −

where r1 and r2 are roots of A(z).
A particular solution of Eq. (1):

	 ( )( )1 1
1 2

1
( ) ( )

1 1
s n n

r z r Z
ω

− −
=

− −

	 1 2
1 1

1 2 2

1
( )

1 1z

r r
n

r r r z r z
ω− −

 
= − − − − 

	
1 1

1 2
0 01 2

1
( )k k k k

k k

r z r z n
r r

ω
∞ ∞

+ − + −

= =

 
= − −  

∑ ∑

	
1 1

1 2
0 01 2

1
( ) ( )k k k k

k k

r z n r z n
r r

ω ω
∞ ∞

+ − + −

= =

 
= − −  

∑ ∑
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	 1 1
1 2

0 01 2

1
( ) ( )k k

k k

r n k r n k
r r

ω ω
∞ ∞

+ +

= =

 
= − − − −  

∑ ∑

	
1 1

1 2

0 1 2

( )
k k

k

r r
n k

r r
ω

+ +∞

=

 −
= − − 

∑ � (3)

Complementary solution of Eq. (1):
The solution of the homogeneous equation

	 1 21( ) ( 2 0( )  )s n A s n A s n+ − + − = � (4)

is of the form

	 1 1 2 2
n nC r C r+

where C1 and C2 are constants.
The general solution of Eq. (1) is the sum of complementary solution and 

particular solution.

	
1 1

1 2
1 1 2 2

0 1 2

( ) ( )
k k

n n

k

r r
s n C r C r n k

r r
ω

+ +∞

=

 −
= + + − − 

∑ � (5)

For asymptotically stationary process ( )1 1 2 2
n nC r C r+  must decay to zero as 

n → ∞.
Hence, |r1| < 1 and |r2| < 1.

EXERCISES

1.	 What is the need for spectral estimation?

2.	 How can the energy density spectrum be determined?

3.	 Define autocorrelation function.

4.	 Give the relationship between autocorrelation function and spectral density.

5.	 Give the estimate of autocorrelation function and power density for 
random signals.

6.	 Find the expression for mean and variance for the autocorrelation func-
tion of random signal.

7.	 Give the time and frequency domain representation for Bartlett Window.

8.	 What is periodogram?

9.	 Explain how DFT and FFT algorithms are useful in power spectral 
estimation.
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10.	 Discuss power spectrum estimation using the Bartlett method.

11.	 Obtain the mean and variance for the Welch method of power spectrum 
estimation.

12.	 How is the Blackman and Tukey method used in smoothing the 
periodogram?

13.	 Derive the mean and variance of the power spectral estimate of the 
Blackman and Tukey method.

14.	 Give the limitations of non-parametric methods of power spectrum 
estimation.

15.	 How do the parametric methods of power spectrum estimation overcome 
the limitations of the non-parametric methods?

16.	 Give the various steps involved in the parametric estimation process.

17.	 Describe the following models:
a.	 AR model
b.	 MA model
c.	 ARMA model.

18.	 Why is the AR model widely used?

19.	 Give the relationship between input and output power spectral density of 
a linear system.

20.	 Give the expression for cross-correlation.

21.	 Give the expression for power spectrum estimates of AR, MA, and ARMA 
models.

22.	 Derive the power spectrum estimates using the Burg method.

NUMERICAL EXERCISES

1.	 The discrete-time sequence is given by

s(n) = sin 2π(0.12)n + cos 2π(0.122)n, n = 0, 1, ..., 15

Find the power spectrum

� 21
( ) | ( ) |P f S f

N
=  at the frequencies k

k
f

L
= , 0, 1, 2, ..., L − 1, for L = 16,  

32, 64, and 128.
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2.	 In the Welch method, find the variance of the Welch power spectrum 
estimate with the Bartlett window if there is a 50% overlap between suc-
cessive sequences.

3.	 Using the 4th joint moment for Gaussian random variables, show that

( ) ( ) ( )
( )

( )
( )

1 2 1 24
1 2

1 2 2 2

sin sin
Covar 

sin sinSS SS S

f f N f f N
P f P f

N f f N f f

π π
σ

π π

    + −   = +      + −        
�Under the condition that the sequence s(n) is a zero-mean white Gaussian 
noise sequence with variance ( )2

sσ .

4.	 For the AR process of order 2,
	 1 2( ) ( ) ) (2( )1s n A s n A s n nω= − + − +

�where A1 and A2 are constants. ω(n) is a white process of zero mean and 
variance σ2. Determine the mean and autocorrelation of {s(n)}.

5.	 Find the mean and the autocorrelation of the sequence s(n) generated by 
the MA process described by the difference equation.

	 ( ) ( ) ( 1 2) ( )s n n A n B nω ω ω= − − + −

where w(n) ⇒ White noise process with variance σ2.

6.	 Find the power spectra for the random process generated by
	 ( ) ( ) ( )2s n n s nω= − −

where w(n) ⇒ White noise process with variance σ2.

7.	 Suppose we have N = 500 samples from a sample sequence of a random 
process
a.	 Determine the frequency resolution ∆f of the following:

i.	 Bartlett method,
ii.	 Welch method,
iii.	 Blackman–Tukey method.
Overlapping is 50%.
Quality factor Q = 12.

b.	 Find the record length (M) for the Bartlett, Welch (50% overlap), and 
Blackman–Tukey methods.
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C H A P T E R  12
Multirate Digital Signal 
Processing (MDSP)

12.1  INTRODUCTION

There are many applications where the signal of a given sampling rate (sam-
pling frequency) requires to be converted into an equivalent signal with a 
different sampling rate. For example, there are three sampling rates that are 
used in digital audio, 32 kHz in broadcasting, 44.1 kHz in digital compact disk, 
and 48 kHz in digital audio tape. Conversion of sampling rates of audio signals 
between these three different sampling rates is often necessary under many 
circumstances.

In telecommunication systems that transmit and receive different types of 
signals such as speech, video, teletype, facsimile, etc., there is a requirement 
to process the various signals at different sampling rates commensurate with 
the corresponding bandwidths of signals. 

In digital video, the sampling rates for composite video signals are 
14.3181818 MHz and 17.734475 MHz for NTSC and PAL TV systems, 
respectively. But the sampling rates for the digital component of video sig-
nals are 13.5 MHz and 6.75 MHz for luminance and color difference signals, 
respectively.

The process of converting or alternating a signal from a given sampling 
rate to a different sampling rate is called sampling rate conversion. The sys-
tems which employ multisampling rates in the processing of digital signals are 
called multirate digital signal processing (MDSP) systems.

Different sampling rates can be obtained using an upsampler and downs-
ampler. The basic operations in MDSP to achieve this are decimation and 
interpolation.
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Decimation is for reducing the sampling rate and interpolation is for 
increasing the sampling rate. In digital transmission systems like teletype, fac-
simile, low-bit-rate speech where data has to be handled at different rates, 
MDSP is used. MDSP finds its applications in (i) subband coding for speech 
and image, (ii) voice privacy using analog phone lines, (iii) signal compression 
by subsampling, (iv) A/D and D/A converters, etc.

There are various areas in which MDSP is used. Some of few are given 
as under:

1.	 radar systems,

2.	 antenna systems,

3.	 speech and audio processing systems, and

4.	 communication systems.

Advantages of using MDSP

1.	 computational requirements are less,

2.	 storage for filter coefficients is less,

3.	 finite arithmetic effects are less,

4.	 filter order required in multirate application is low, and

5.	 sensitivity to filter coefficient lengths is less.

12.1.1 Sampling Rate Conversion Methods

There are two sampling rate conversion methods that are used in MDSP:
First Method: In this method, digital signal is passed through D/A converter 

then it is filtered if necessary, and then it is resampled at the desired sampling 
rate. The resampling of analog signal is performed by using an A/D converter.

Figure 12.1 shows the block diagram of sampling rate conversion using 
D/A converter and A/D converter. This block diagram comprises three blocks. 
These blocks are:

D/A Converter, Linear Filter, and A/D Converter.

FIGURE 12.1  Sampling rate conversion using D/A converter and A/D converter.

Second Method: In this method, sampling rate conversion is performed 
entirely in the digital-domain. This method does not require any D/A and A/D 
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converters. This method uses interpolator, or decimator or both depending 
upon the sampling rate conversion factor. Interpolator and decimator will be 
discussed in the next section.

The advantages of the first method are that the new sampling rate can be 
arbitrarily selected and this new sampling rate has no special relationship with 
the old sampling rate.

Major disadvantages of the first method are that there is a signal distor-
tion introduced by the D/A converter in the signal reconstruction and by the 
quantization noise in the A/D conversion.

Sampling rate conversion performed in the digital domain avoids the 
major disadvantages of the first method.

12.2  SAMPLING RATE CONVERSION

There are two cases of sampling rate conversion.
Decimation: The process of reducing the sampling rate by an integer 

factor (D) is called the decimation of the sampling rate. It is also called downs-
ampling by factor (D). Figure 12.2 shows the block diagram of a decimator.

FIGURE 12.2  Block diagram of a decimator.

This decimator comprises two blocks such as decimation filter and downs-
ampler. Decimation filter is used to band limit the signal before decimation 
operation. Downsampler decreases the sampling rate by an integer factor (D).

Decimation filter is used to avoid aliasing caused by downsampling the 
signal s(n).

Prior to downsampling the signal s′(n) should be band limited to | |
M
πω <

 
by means of a low pass filter (LPF), H(z), called the decimation filter.

Interpolation: The process of increasing the sampling rate by an integer 
factor (I) is called interpolation of the sampling rate. It is also called upsam-
pling by factor (I).

Figure 12.3 shows the block diagram of an interpolator. The interpolator 
comprises two blocks such as upsampler and interpolation filter. Here upsam-
pler is used to increase the sampling rate by an integer (I) and interpolation 
filter removes the unwanted images that are yielded by upsampling.

The unwanted images are removed by using a LPF, H(z) called the inter-
polation filter.
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The process of sampling rate conversion in the digital domain can be 
viewed as a linear filtering operation. It is shown in Figure 12.4

The input signal s(n) is characterized by the sampling rate 
1

s
s

F
T

=  and the 

output signal y(m) is characterized by the sampling rate 
1

y
y

F
T

= . Here Ts and 
Ty are corresponding sampling intervals:

	

Sampling frequency of output signal
Sampling frequency of input signal

y

s

F

F
=

	

Prime Integer ( )
Prime Integer ( )

II
D D

= =

where I is the integer factor by which interpolation of sampling rate is per-
formed and the D is the integer factor by which decimation of the sampling 
rate is performed.

But for the case of ratio 
I
D

, both I and D should be prime integer. Linear
 

filter is characterized by a time-varying impulse response, h(n, m).
Hence the input s(n) and output y(n) are related by convolution sum for 

the time-varying system.
The sampling rate conversion process can also be performed by digital res-

ampling of the same analog signal. Let us have an analog signal s(t) which is 
sampled at first rate Fs to generate s(n). The purpose of sampling rate conver-
sion is to obtain another sequence y(m) directly from s(n), which is equal to the 
sampled values of s(t) at second sampling rate Fy, y(m) is shifted version of s(n).

Time shift in sampling rate conversion can be realized by using a linear 
filter which has a flat magnitude response and a linear phase response. If both 
the sampling rates are not equal, then the required amount of time-shifting 
will vary from sample to sample as shown in Figure 12.5.

Up-
Sampler

Interpolation
Filter H(z)

Output
signal
(F )y

y(n)

Input
signal
(F )s

s(n)

Up-sampled signal
s (n)u

FIGURE 12.3  Block diagram of an interpolator.

Output
signal

y(n)

Input
signal

s(n)

1
Ts

F =s
1
Ty

F =y

Sampling rateSampling rate

Linear
Filter

h(n, m)

FIGURE 12.4  Linear filter.
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12.2.1 Decimation of Sampling Rate by an Integer Factor (D)

The process of reducing the sampling rate of a signal is called decimation. 
Let us assume that the discrete-time signal s(n) with spectrum S(ω) is to be 
downsampled by an integer factor D. The spectrum s(ω) is assumed to be 

non-zero in the frequency interval 0 ≤ |ω| ≤ π it or equivalently, 
2

sF
F″ . We 

know that if we reduce the sampling rate simply by selecting every Dth value 
of signal s(n), the resulting signal will be an aliased version of s(n) with folding 

frequency of 
2

sF
D

. For avoiding aliasing, we must first reduce the bandwidth
 

of s(n) to max 2
sF

F
D

=  or max D
πω = . Then we may down-sample by D and thus

 
avoid aliasing.

The block diagram of the decimation process is given in Figure 12.6.

FIGURE 12.6  Block Diagram of decimation process.

The input signal or sequence s(n) is passed through a decimation filter, 
that is, LPF. This LPF is characterized by the impulse response h(n) and 
frequency response HD(ω).

The LPF ideally satisfies the condition

	

1, | |
( )

0, Otherwise
DH D

πω
ω

 ≤= 


� (12.1)

FIGURE 12.5  Sampling Rate conversion viewed as linear filtering process.
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Thus the filter eliminates the spectrum of S(ω) in the range 
D
π ω π< < .

 

Here, only the frequency components of s(n) in the range |
D
πω ≤  are of interest 

in further processing of the signal.
The output of the filter is a sequence υ(n) which is given as

	
0

( ) ( ) ( )
k

n h k s n kυ
∞

=

= −∑ � (12.2)

The sequence υ(n) is then downsampled by the factor D to produce 
another sequence y(m). Thus
	 ( ) ( )y m mDυ= � (12.3)

Substituting Eq. (12.2) in Eq. (12.3), we get

	
0

( ) ( ) ( )
k

y m h k s mD k
∞

=

= −∑ � (12.4)

Although the filtering operation on s(n) is linear and time-invariant, 
the downsampling operation in combination with the filtering results in a 
time-varying or time-variant system. Now we can easily verify it. Given the 
fact that s(n) produces y(m), we note that s(n − n0) does not imply y(n − n0) 
unless no is a multiple of D. Consequently, we can say that the overall linear 
operation (linear operation followed by downsampling) on sequence s(n) is 
not time-invariant.

The frequency-domain characteristics of the output sequence y(m) can 
be obtained by relating the spectrum of y(m) to the spectrum of the input 
sequence s(n).

For convenience, we define a sequence ( )nυ  as

	
( ), 0, , 2 , 3 ,....

( )
0, otherwise
n n D D D

n
υ

υ
− ± ± ±

= 


 � (12.5)

Clearly, the sequence ( )nυ  can be viewed as a sequence obtained by mul-
tiplying υ(n) with a periodic train of impulses p(n), with period D. It is illus-
trated in Figure 12.7.

The discrete Fourier series representation of p(n) is given by

	
21

0

1
( )

j knD
D

k

p n e
D

π−

=

= ∑ � (12.6)

Hence,	 ( ) ( ) ( )n n p nυ υ=

� (12.7)
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and	 ( ) ( ) ( ) ( ) ( )y m mD mD p mD mDυ υ υ= = =

� (12.8)
Now, taking z-transform of the output sequence y(m).

	
( ) [ ( )] ( ) m

m

Y z Z y m y m z
∞

−

=−∞

= = ∑

	 ( ) m

m

mD zυ
∞

−

=−∞

= ∑  � (12.9)

Eq. (12.9) can be written as

	
( )( ) ( )

m
D

m

Y z m zυ
∞

−

=−∞

= ∑  � (12.10)

Eq. (12.10) follows from the fact that ( ) 0mυ = , except at multiples of D.
Using Eqs. (12.6) and (12.7) in Eq. (12.9), we get

	
( )

21

0

1
( ) ( )

m
D

j mkD
D

m k

Y z m e z
D

π

υ
∞ −

−

=−∞ =

 
=  

 
∑ ∑

	
1

21

0

1
( ) D

mj kD
D

k m

m e z
D

π

υ
−−− ∞

= =−∞

 
=  

 
∑ ∑ � (12.11)

Eq. (12.11) can be written as

	
1

21

0

1
( ) D

j kD
D

k

Y z V e z
D

π−−

=

 
=  

 
∑ � (12.12)

where
	

1 1
2 2

( )D D

mj k j k
D D

m

V e z m e z
π π

υ
−− −∞

=−∞

   
=   

   
∑

FIGURE 12.7  Multiplication of v(n) and p(n) with period D = 3.
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We know that V(z) = HD(z) S(z)

or	
1 1 1

2 2 2
D D D

j k j k j k
D D D

DV e z H e z S e z
π π π− − −     

=     
     

� (12.13)

Substituting Eq. (12.13) in Eq. (12.12), we get

	
1 1

2 211
( ) D D

j k j kD
D D

D
D

Y z H e z S e z
D

π π− −−    
=    

   
∑ � (12.14)

By evaluating Y(z) in the unit circle, that 
is, |z| = 1, we obtain the spectrum of the out-
put signal y(m). Since the sampling rate is 

1
y

y

F
T

= , the frequency variable, which we 

denote as ωy, is in radians and relative to the 
sampling rate Fy,

	
2

2y y
y

F
FT

F
πω π= = � (12.15)

	 Since,	 s
y

F
F

D
= � (12.16)

	
2

2s s
s

F
FT

F
πω π= = � (12.17)

But, ωy and ωs are related by

	
y sw Dω= � (12.18)

Thus, as expected, the frequency range 

0 | |s D
πω≤ ≤  is stretched into the correspond-

ing frequency range 0 ≤ |ωy| ≤ p by the downs-
ampling process.

Now, we conclude that the spectrum Y(ωy), 
which is obtained by evaluating Eq. (12.11) 
on the unit circle, can be expressed as

	 ( )
1

0

2 21 D
y y

y D
k

k k
Y H S

D D D

ω π ω π
ω

−

=

− −   
=    

   
∑ � (12.19)

FIGURE 12.8  Spectra of Signals in the 
decimation of s(n) by a factor D.
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With a properly designed filter HD(ω), the aliasing is eliminated and con-
sequently, all but the first term in Eq. (12.19) vanish.

Hence,	 ( ) 1 y y
y DY H S

D D D

ω ω
ω

   
=    

   

	
1 yS
D D

ω 
=  

 
� (12.20)

for 0 ≤ |ωy| ≤ π.The spectra for the sequences (n), υ(n) and y(m) are shown in 
Figure 12.8.

12.3 � INTERPOLATION OF SAMPLING RATE BY A INTEGER 
FACTOR (I)

Increasing the sampling rate of a signal is called interpolation. An increase in 
the sampling rate by an integer factor I can be accomplished by interpolating 
(I − 1) new samples between successive values of the signals. The interpola-
tion process can be accomplished by various types of methods. Here we shall 
describe a process that preserves the spectral shape of the signal sequence s(n).

Let υ(m) is a signal sequence with a sampling rate Fy = IFs. This signal 
sequence υ(m) is obtained from s(n) by adding (I − 1) zeros between succes-
sive values of s(n).

Thus,	
0, , 2 ,...

( )
0, otherwise

m
s m I I

m Iυ
   = ±  =  




�
(12.21)

The sampling rate of υ(m) is identical to the sampling rate of y(m).
Taking z-transform of Eq. (12.21)

	
( ) [ ( )]V z Z mυ=

or
	

( ) ( ) m

m

V z m zυ
∞

−

=−∞

= ∑

	
m

m

m
S z

u

∞
−

=−∞

 =  
 

∑

	 ( ) mI

m

s m z
∞

−

=−∞

= ∑ � (12.22)
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or	 ( )( ) IV z S z= � (12.23)

The corresponding spectrum of υ(m) is obtained by evaluating Eq. (12.22) 
on the unit circle. Thus

	 ( ) ( )y yV S Iω ω= � (12.24)

where ωy denotes the frequency variable relative to the new sampling rate Fy.

Here 
2

y
y

F
F
πω = . Now the relationship between sampling rates is Fy = IFs

 
and hence, the frequency variables ωs and ωy are related according to the 
formula

	 s
y I

ωω = � (12.25)

Figure 12.9 illustrates the spectra S(ωs) and V(ωy). We observe that the 
sampling rate increases (obtained by the addition of I-1 zero samples between 
successive values of s(n)) result in a signal whose spectrum V(ωy) is an I-fold 
periodic repetition of the input-signal spectrum S(ωs).

Since only the frequency components of input sequence s(n) in the range 

0 y I
πω≤ ≤  are unique, the images of s(ω) above y I

πω =  should be rejected 

by passing the sequence υ(m) through an LPF. This LPF has a frequency 
response of HI (ωy). Ideal frequency response of the above LPF is given as

	
( ) , 0

0, otherwise

y
I y

C
H I

πω
ω

 ≤ ≤= 


�
(12.26)

where C is the scale factor. 
The scale factor C requires proper normalization of the output sequence 

y(m). Consequently, the output spectrum is given by

	
( ) ( ), 0

0, otherwise

y y
y

CS I
Y I

πω ω
ω

 ≤ ≤= 


�
(12.27)

The scale factor C is selected so that the output ( )
m

y m s
I

 =  
 

 for m = 0, 
±I, ±2I, .....

For mathematical convenience, we select the point m = 0. Thus

	
( )π

π
ω ω

π −
= = = ∫

1
(0) ( )/ 0

2 y yy y m m Y d � (12.28)

Substituting Eq. (12.27) in Eq. (12.28), we get
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	 ( )1
(0)

2 y yy CS I d
π

π
ω ω

π
= ∫

	 ( )
2

I

I
y y

C
S I d

π

π
ω ω

π −
= ∫ �

Since s
y I

ωω = 
 

or
	 ( )1

(0)
2 s s

C
y S d

I

π

π
ω ω

π −
= ∫

	 (0)
C

s
I

= � (12.29)

Therefore, C = I is the desired normalization factor.
Finally, output sequence y(m) can be expressed as a convolution of the 

sequence υ(n) with the unit-sample response h(n) of LPF.

Thus,	 ( ) ( ) ( ) ( ) ( )
k

y m h m k k h m mυ υ
∞

=−∞

= − = ∗∑ � (12.30)

Since υ(k) = 0 except at multiples of I, where υ(kI) = s(k), above 
Eq. (12.30) can be written as

	 ( ) ( ) ( )
k

y m h m kI s k
∞

=−∞

= −∑ � (12.31)

|V ( )|y

|S ( )|y

– 0
s

0
IIII y = s

I

FIGURE 12.9  Illustration of spectra of s(n) and v(n) where V(ωy) = S(ωyI).
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12.4 � SAMPLING RATE ALTERNATION OR CONVERSION 

BY A RATIONAL FACTOR  
 
 

I
D

We have already discussed two special cases of decimation and interpolation. 
We now consider the general case of sampling rate conversion by first per-
forming interpolation by the factor I and decimating the output of the inter-
polator by the factor D. In other words, a sampling rate conversion by the 

rational factor I
D

 is accomplished by cascading an interpolator with a decima-

tor. It is illustrated in Figure 12.10.
The importance of performing the interpolation first and the decimation 

second is to preserve the desired spectral characteristics of s(n). Furthermore, 
the two filters shown in Figure 12.10 with impulse response {hu(l)} are oper-
ated at the same sampling rate, namely IFs, and hence can be combined into a 
single LPF with impulse response [h(l)]. It is shown in Figure 12.11, The fre-
quency response H(ωv) of the combined filter must incorporate the filtering 
operations for both interpolation and decimation, and hence this LPF ideally 
possess the frequency response characteristic.

FIGURE 12.10  Block diagram of a method for sampling rate conversion by a factor 
I
D

 
 
 

.

	
( )

, 0 min. of ,

, otherwise

I
I w

H D I
o

υ
υ

π
ω

  ≤  =  


� (12.32)

where
	

2 2 sF F
F IF Iυ
υ

ωπ πω = = =

In the time domain, the output of the upsampler is given as

	
υ

   = ± ±  =  


, 0, , 2 ,...
( )

0, otherwise

l
s l I I

l I � (12.33)
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The output of the linear time-invariant filter is given as

	 ω υ
∞

=−∞

= −∑( ) ( ) ( )
k

l h l k k � (12.34)

or	 ω
∞

=−∞

= −∑( ) ( ) ( )
k

l h l kI s k � (12.35)

Finally, the output of the sampling rate converter {y(m)} is obtained by 
downsampling the sequence {ω (l)} by a factor D. Thus
	 ( ) ( )y m mDω= � (12.36)

Substituting Eq. (12.35) in Eq. (12.36), we get

	 ( ) ( ) ( )
k

y m h mD kI s k
∞

=−∞

= −∑ � (12.37)

We can express Eq. (12.37) in different form by making a change in 
variable.

Let	
md

k n
I

 = −  
� (12.38)

The notation A    denotes the largest integer contained in A.
Substituting Eq. (12.38) in Eq. (12.37), we get

	 ( )
n

mD mD
y m h mD I nI s n

I I

∞

=−∞

      = − + −            
∑ � (12.39)

Here, we note that

modulo 
mD

mD I mD I
I

 − =  
	 ( )ImD=
Consequently, Eq. (12.39) can be expressed as

	 ( ) [ ( )I
n

mD
y m h nI mD s n

I

∞

=−∞

  = + −    
∑ � (12.40)

FIGURE 12.11  Block diagram of a method for sampling rate conversion by a factor  
 
 
I
D

. Here two 
filters hu(l) and hd(l) are combined in a single LPF h(l).
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It is apparent from this form that the output sequence y(m) is obtained 
by passing the input sequence s(n) through a time-varying filter with impulse 
response
	 [ ]( ) ( ),   ,– ,g n m h nI mD I m n= + ∞ < < ∞� (12.41)
where h(k) is the impulse response of time-invariant LPF operating at the 
sampling rate IFs.

For any integer k, impulse response is given by

	 [ ]( (,  ) )Ig n m kI h nI mD kDI+ = + +

	 ( )I
h nI mD = + 

	 ),(g n m= � (12.42)
Hence, g(n, m) is periodic in the variable m with period I.
The frequency-domain relationships can be obtained by combining the 

results of the interpolation and decimation processes. Thus the spectrum at 
the output of the linear filter with impulse response h(l) is given by
	 ( ) ( ) ( )V H S Iυ υ υω ω ω=

	

( ), 0 min ,

0, otherwise

uIS I
D Iυ
π πω ω  ≤ ≤  =  



� (12.43)

The spectrum of the output sequence y(m) [Obtained by decimating the 
sequence υ(n) by a factor D] is given as

	 ( )
1

0

21 D
y

y
k

k
Y V

D D

ω π
ω

−

=

− 
=  

 
∑ � (12.41)

where	 υω ω= .y D
Since the linear filter prevents aliasing as implied by Eq. (12.43), the 

spectrum of the y(m) given by Eq. (12.44) reduces to

	
( ) , 0 min. ,

0, otherwise

y
y

y

I D
S

Y D D I

ω πω π
ω

    ≤ ≤    =    



�
(12.45)

12.5 � FILTER DESIGN AND IMPLEMENTATION FOR 
SAMPLING RATE ALTERNATION OR CONVERSION

Sampling rate alternation by a factor  
 
 

I
D

 can be achieved by first increasing
 

the sampling rate by integer factor I then downsampling the filtered signal 
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by the integer factor D. Interpolation is accomplished by inserting I-1 zeros 
between successive values of the input signal S(n). Before downsampling, 
interpolated signal is linearly filtered to eliminate the unwanted images of 
S(ω). Here, we discuss the design and implementation of the linear filter. We 
discuss the following types of linear filters:

1.	 Direct-form FIR digital filter structures.

2.	 Polyphase digital filter structures.

3.	 Time-varying digital filter structures.

12.5.1 Direct-Form FIR Digital Filter Structures

In principle, the simplest realization of the digital filter is the direct-form FIR 
digital filter structure. Its system function is given as

	
1

0

( ) ( )
M

k

k

H z h k z
−

−

=

= ∑ � (12.46)

where {h(k)} is the unit-sample response of the FIR digital filter. The LPF can 
be designed to have linear phase. It also has a specified passband ripple and 
stop band attenuation. Any other standards are the same as for FIR digital 
filter techniques, that is, window method, frequency sampling method.

Thus we will have the filter parameters {h(k)}. These filter parameters 
allow us to implement the FIR digital filter directly. It is shown in Figure 12.12.

Although this realization is simple, it is also very inefficient. The ineffi-
ciency results from the fact that the upsampling process introduces (I − 1) 
zeros between successive points of the input signal s(n).

If I is large, most of the signal components in the FIR digital filter are 
zero. Consequently, most of the multiplications and additions result in zeros. 
Furthermore, the downsampling process at the output of the filter implies 
that only one out of every D output sample is required at the output of the 
filter. Consequently, only one out of every D possible value at the output of 
the filter should be computed.

12.5.1.1 Efficient Implementation of a Decimator

For developing a more efficient filter structure we consider a decimator that 
reduces the sampling rate by an integer factor D.

A decimator is obtained by passing the input sequence s(n) through an 
FIR digital filter and then downsampling the filter output by a factor D. It 
is shown in Figure 12.13(a). In this configuration, the filter is operating at a 
high sampling rate Fs, while only one out of every D output sample is actually 
needed.
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The logical solution to this inefficiency problem is to imbed the downs-
ampling operation within the filter. Such a filter realization is shown in 
Figure 12.13(b). In this filter structure, all the multiplications and the 

additions are performed at the lower sampling rate sF
D

. Thus, we have 
achieved the deserved efficiency.

Additional reduction in computation can be achieved by exploiting the 
symmetry property of {h(k)}. Efficient realization of the decimator in which 
the FIR digital filter has linear phase is shown in Figure 12.14 Hence {h(k)} 
is symmetric.

Efficient Implementation of an Interpolator

Here we consider the efficient implementation of an interpolator. This 
interpolator is realized by first inserting I-1 zeros between samples of 
sequence s(n) and then filtering the resulting sequence. The direct-form 
realization of an FIR digital filter in interpolation by an integer factor I is 
shown in Figure 12.15. The major problem with this structure is that the 
filter computations are performed at the high sampling rate IFs.

FIGURE 12.12  Direct-form realization of FIR digital filter in sampling rate conversion by factor I
D

 
 
 

.
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FIGURE 12.13  Decimation of a signal by a factor D.
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The desired simplification is achieved by first using the transposed form 
of FIR digital filter [it is shown in Figure 12.16(a)] and then embedding the 
upsampler within the filter.

It is shown in Figure 12.16(b). Thus, all the filter multiplications are per-
formed at the low sampling rate Fs, while the upsampling process introduces 

FIGURE 12.14  Efficient realization of a decimator. This decimator exploits 
the property of symmetry in the FIR digital filter.
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I-1 zeros in each of the filter branches of the structure of Figure 12.16(b). 
Filter structures depicted in Figure 12.16(a) and (b) are equivalents.

Here we note that the structure of the interpolator [shown in Figure 
12.16(b)] can be obtained by transposing the structure of the decimator 
[Figure 12.13]. We observe that the transpose of a decimator is an interpolator, 
and vice-versa. These relationships are shown in Figure 12.17. Figure 12.17(b) 
is obtained by transposing Figure 12.17(a) and (d) is obtained by transposing 
Figure 12.17(c). Consequently, a decimator is the dual of an interpolator, and 
vice-versa. From the above relationships, it follows that there is an interpo-
lator whose structure is the dual of the decimator shown in Figure 12.14. 
Figure 12.14 exploits the symmetry in h(n).

12.5.2 Polyphase Filter Structure

The computational efficiency of the filter structure given in Figure 12.16 can 
also be achieved by reducing the large FIR digital filter of length M into a set 

of smaller filters of length 
M

K
I

= , where M is selected to be a multiple of I.

For demonstrating how the computational efficiency of the filter is 
achieved, we consider the interpolator given in Figure 12.15. Since the upsam-
pling process inserts I−1 zeros between successive values of s(n), only K out of 

FIGURE 12.15  Direct-form realization of FIR filter in interpolation by a factor I.
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FIGURE 12.16  Efficient realization of interpolator.
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the M input values stored in the FIR digital filter at any one time is non-zero. 
At one time-instant, these non-zero values coincide and are multiplied by the 
filter coefficients h(o), h(I), h(2I), ...., h(M − 1).

In the following time-instant, the non-zero values of the input-sequence 
coincide and are multiplied by the filter coefficients h(1), h(I + 1), h(I + 2), 
..., h(M − I + 1), and so on. This observation leads us to define a set of smaller 
filters. These smaller filters are called polyphase filters. The unit-sample 
responses of polyphase filters are given by
	 , 0, 1, 2, ... 1( ) ( ) ,kp n h k nI k I= + = −

	 0,1,2,...,  – 1n K= � (12.47)

where
	

is in integer.
M

K
I

=

Now we conclude that the set of I polyphase filters can be arranged as a 
parallel realization and the output of each filter can be selected by the com-
mutator. It is shown in Figure 12.18(a). The rotation of the commutator is in 
the counterclockwise direction beginning with the point at m = 0. Thus, the 
polyphase filters perform the commutations at the low sampling rate Fs, and 
the sampling rate conversion results from the fact that I output samplers are 
generated, one from each of the filters, for each input sample.

The decomposition of [h(k)] into the set of I subfilters with impulse 
response pk(n), k = 0, 1, ..., I–1,. The input signal was being filtered by a peri-
odically time-varying linear filter with impulse response
	 [ ]( ) ), ( Ig n m h nI mD= + � (12.48)

where D = 1 in the case of the interpolator. We already know that g(n, m) var-
ies periodically with period I. Consequently, a different set of coefficients are 
used to generate the set of I output samples y(m), m = 0, 1, .... I − 1.

We can gain additional insight about the characteristics of the set of 
polyphase subfilters by noting that pk(n) is obtained from h(n) by decimation 

FIGURE 12.17  Duality relationships are obtained through transposition.
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with a factor I. Consequently, if the original filter frequency response H(ω) 

is flat over the range | |O
I
ωω≤ ≤ , each of the polyphase subfilter possesses a 

relatively flat response over the range o ≤|ω| ≤ π (i.e., the polyphase subfilters 
are basically all passfilters and differ primarily in their phase characteristics).

The polyphase filter can also be viewed as a set of I subfilters connected 
to a common delay line. Ideally, the kth subfilter will generate a forward time 

shift of 
k
I

 
 
 

 Ts, for k = 0,1, 2,..., I−1, relative to the zeroth subfilter. Therefore, 

if the zeroth filter generates zero delays, the frequency response of the kth 
subfilter is given as

	 ( )
j k
I

kp e
ω

ω = � (12.49)

A time shift of integer number of input sampling intervals (e.g., lTs) can 
be generated by shifting the input data in the delay line by l samples and using 
the same subfilters. By combining these two methods, we can generate an 

output that is shifted forward by an amount 
i

l
I

 + 
 

Ts relative to the previous 
output.

By transposing the interpolator structure given in Figure 12.18(a), we 
obtain a commutator structure for the decimator based on the parallel bank of 
polyphase filters. It is shown in Figure 12.18(b). The until sample responses 
of the polyphase filters are now defined as
	 , 0,1,2, ...( ) ( ) . 1pk n h k nD k D= + = −

FIGURE 12.18  (a) Interpolation by use of polyphase filters.
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	 0,1,2,..., 1n K= − � (12.50)

where 
M

K
D

=  is an integer when M is selected to be a multiple of D. The com-

mutator rotates in counterclockwise duration starting with the filter po(n) at m = 0.
Two commutator structures for the interpolator and the decimator rotate 

in a counter or counterclockwise direction.
It is also possible to derive an equivalent pair of commutator structures 

having a clockwise direction. In this alternative formulation, the sets of 
polyphase filters are defined to have impulse responses:
	 , 0,1,2, ...,) ( ) 1(pk n h nI k k I= − = − � (12.51)

	 , 0,1,2, ...,) ( ) 1(pk n h nD k k D= − = − � (12.52)
for the interpolator and decimator, respectively.

12.5.3 Time-Varying Digital Filter Structures

To date, we have described the filter implementation for a decimator and an 
interpolator. Let us now consider the general problem of sampling rate con-

version by a rational factor 
I
D

 
 
 

. In the general case of sampling rate conver-

sion by a factor 
I
D

 
 
 

, the filtering can be accomplished by means of the linear 

time-varying filter. This filter is described by the response function.

	 [ ]( ) ), ( Ig n m h nI mD= − � (12.53)

p (n)0

p (n)D–1

p (n)2

p (n)1

Rate = Fs

s(n)

+

+

+

y(m)

Rate = F /Ds

FIGURE 12.18  (b) Decimation process by use of polyphase filters.
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where h(n) is the impulse response of the LPF, For convenience, we select 
the length of the FIR digital filter {h(n)} to a multiple of I (i.e., M = KI). 
Consequently, the set of coefficients {g(n, m)} for each m = 0, 1, 2, .... I − 1, 
contains K elements. Since sequence g(n, m) is also periodic with the period 
I. The output y(m) can be expressed as

	
1

0

( ) ,
K

n

m mD
y m g n m I S n

I I

−

=

      = − −            
∑ � (12.54)

Conceptually, we can think of performing the computations specified 
by Eq. (12.54) by processing blocks of data of length K by a set of K filter 
coefficients

, , 0,1,2,..., 1.
m

g n m I n K
I

  − = −    
There are I such sets of coefficients, one set for each block of I output 

points of y(m). For each block of I output points, there is a corresponding 
block of D input points of s(n) that enter the computation.

For computing Eq. (12.54), we can visualize a block processing algorithm. 
This algorithm is shown in Figure 12.19. A block of D input samples is buff-
ered and shifted into a second buffer occurs at a sampling rate of one sample 

each time the quantity mD
I

 
  

 increases by one.

For each output sample y(l), the samples from the second buffer are mul-
tiplied by the corresponding set of filter coefficients g(n, I) for n = 0, 1, 2, …, 

FIGURE 12.19  Efficient implementation of sampling rate conversion by block processing.
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K − 1, and the K products are accumulated to give y(l), for l = 0, 1, …, I −1. 
Thus this computation produces I output. It is then repeated for a new set of 
D input samples, and so on.

An alternative method for computing the output of the sample rate con-
verter [Eq. (12.54)] is by means of an FIR digital filter structure with periodi-
cally varying filter coefficients. Such a structure is shown in Figure 12.20. The 
input samples s(n) are passed into a shift register that operates at the sampling 

rate Fs and is of length 
M

K
I

= , where M is the length of the time-varying FIR 
filter.

The frequency response of the above filter is given by

	
( )

, 0 | min ,

0, otherwise

I
H D Iυ

υ

π πω
ω

  ≤ ≤  =  


� (12.55)

Each stage of the register is connected to a hold-and-sample device 
that serves to couple the input sampling rate Fs to the output sampling rate 

y s

I
F F

D
 =  
 

. The sample at the input to each hold-and-sample device is held 

until the next input sample arrives and then is discarded. The output samples 

of the hold-and-sample devices are taken at times mD
I

, m = 0, 1, 2, … When 

both the input and output sampling times varying coefficients coincide (i.e., 

when mD
I

 is an integer), the input to the hold-and-sample is changed first and
 

then the output samples the new input. The K outputs from the K hold-and-
sample devices are multiplied by the periodically time-varying coefficients 

,
m

g n m I
I

  −    
, for n = 0, 1, 2, ..., K − 1, and the resulting products are 

summed to yield y(m). The computations at the output of the hold-and-sam-
ple devices are repeated at the output sampling rate of

	 y s

I
F F

D
 =  
 

Finally, sampling rate conversion by a rational factor I
D

 can be performed 

by the use of polyphase filters having I subfilters. If we assume that the mth 
sample y(m) is computed by taking the output of the imth subfilter with input 
data s(n), s(n − 1), s(n − 2), ..., s(n − k − 1), in the delay line. The next sample 
y(m + 1) is taken from the (im + 1)th subfilter after shifting lm + 1 new samples 
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in the delay lines where im + 1 = (im + D)mod I and lm + 1 is the integer part of 

mi D
I
+ 

 
 

. The integer im + 1 should be saved to be used in determining the 

subfilter from which the next sample is taken.

+
D/I

z1

+
D/I

z1

+
D/I

+
D/I

z1

g(2, l)

g(K – 1, )l

g(0, l)

g(0, I), l = 0, 1,...,I – 1l

y(m)
mD

Is

mD
Is – 1

mD
Is – 2

mD
Is – K + 1

Rate = I
D Fs

FIGURE 12.20  Efficient realization of sampling rate conversion by a factor I
D

 
 
 

12.6 � SAMPLING RATE CONVERSION BY AN ARBITRARY 
FACTOR

In some previous sections, we have shown how to perform sampling rate 

conversion exactly by a rational number I
D

 
 
 

. But in some applications, it 

is inefficient or impossible to use such an exact sampling rate conversion 
scheme.

Here we consider the following two cases:

Case I: We need to perform sampling rate conver-

sionby a rational number I
D

 
 
 

, where I is a large integer 

1023
For example, 1023 and 511, . .,

511
I

I D i e
D

 = = =  
. Although we can achieve 
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exact sampling rate conversion by this number, we would use a polyphase 
filter with I = 1023 subfilters, such an exact implementation is obviously inef-
ficient in memory usage because we need to store a large number of filter 
coefficients.

Case II: In some applications, the exact conversion sampling rate is not 
known when we design the sampling rate converter, or the sampling rate is 
continuously changing during the conversion process. For example, we may 
counter the situation where the input and output samples are controlled by 
two independent clocks. It is possible to define a nominal conversion rate that 
is a rational number, the actual sampling rate would be slightly difficult. Sam-
pling rates depend on the frequency difference between the two clocks obvi-
ously, it is not possible to design an exact sampling rate converter in this case.

Non-exact sampling rate conversion scheme will introduce some distor-
tion in the converted output signal. It is also possible that an exact rational 
sampling rate converter introduces some distortion because the polyphase 
filter is never ideal. Such a converter will be adequate, as long as the total 
distortion does not exceed the specification required in the application.

We can use first-order, second-order, and higher-order approximations 
for non-exact sampling rate conversion. It depends on the application require-
ments and implementation constraints.

Here, we discuss only first-order approximation and second-order approx-
imation methods.

12.6.1 First-Order Approximation Method

Let us denote the arbitrary sampling rate by Ra. Suppose that the input to 
the sampling rate converter is the sequence {s(n)}. We need to generate a 

sequence of output samples separated in time by ,s

a

T
R

 where Ts is the sampling 

interval for {s(n)}. By constructing a polyphase filter with large number of 
subfilters, we can approximate such a sequence with a non-uniformly spaced 
sequence.

In the general case, we can express 
1

aR
 as

1

a

k
R I

β= +

where k and I are positive integers and b is a number in the range.
1

0
I

β< <
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Now, the boundaries of 
1

aR
 is given as

1 1

a

k k
I R I

+
< <

where I corresponds to interpolation factor. Interpolation factor I will be 
determined to satisfy the specification on the amount of tolerable distortion 
introduced by the sampling rate converter. Also, I is equal to the number of 
polyphase filters.

For example
Suppose that Ra = 2.2 and that we have determined, as we will demon-

strate, that I = 6 polyphase filters are required to meet the distortion specifi-
cation. Then

2 1 3 1
6 6a

k k
I R I

+
≡ < < ≡

So, that k = 2.

The time spacing between samples of the interpolated sequence is sT
I

. 

However, the desired conversion rate Rs = 2.2 for I = 6 corresponds to deci-
mation factor of 2,727, which falls between k = 2 and k = 3.

In the first-order approximation method, we achieve the desired decima-
tion rate by selecting the output sample from the polyphase filter closest in 
time to the desired sampling time. It is illustrated in Figure 12.21 for I = 6.

In general, to perform sampling rate conversion by factor Ra, we employ 
a polyphase filter to perform interpolation and therefore to increase the fre-
quency of the original sequence of a factor of I. The time spacing between the 

samples of the interpolated sequence is equal to sT
I

. If the ideal sampling time 

of the mth sample, y(m), of the desired output sequence in between the sam-
pling times of two samples of the interpolated sequence, we select the sample 
closer to y(m) as its approximation.

We assume that the mth selected sample is generated by the (im)th subfil-
ter using the input samples s(n), s(n − 1),..., s(n − k +1) in the delay line. The 
normalized sampling time error is denoted by tm. The normalized sampling 
time error is the time difference between the selected sampling time and 
desired sampling time normalized by Ts. The sign of tm is positive if the desired 
sampling time leads to the selected sampling time, and negative otherwise. 

The value of time tm will be 
0.5

mt
I

″ . The normalized time advance from the 

mth output y(m) to the (m + 1)th output y(m + 1) is equal to 
1

m
a

t
R

 
+ 

 
.
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For computing the next output, we first determine a number closest to 
1m m

m
a

i k
t

I R I

 
+ + + 

 
 that is of the form 1

1
m

m

i
l

I
+

−
 + 
 

 where both lm+1 and 

im+1 are integers and im+1 < I. Then, the (m + 1)th output y(m + 1) is com-
puted using the (im+1)th subfilter after shifting the signal in the delay lines by 
lm+1 input samples. The normalized timing error for the (m + 1)th sample is 

1
1 1

1m m
m m m

a

i i
t t l

I R I
+

+ +

   = + + − +   
  

. It is saved for the computation of the 

next output sampler.
By increasing the number of subfilters used, we can arbitrarily increase 

the conversion accuracy. An increased number of subfilters require more 
memory to store a large number of filter coefficients. Hence it is describable 
to use as few subfilters as possible while keeping the distortion in the con-
verted signal below the specification. The distortion introduced due to the 
sampling time approximation is most conveniently evaluated in the frequency 
domain.

We suppose that the input data sequence {s(n)} has a flat spectrum from 
−ωs to ωs, where ωs < π, with a magnitude A. Its total power can be computed 
using Parseval’s theorem.

It is given as	
2

21
( )

2
s

s

sA
P S d

ω

ω

ωω ω
π π−

= =∫ � (12.56)

Ts
I

Ts I = 6

Desired y(m + 2)

Analog signal

y(m + 3)

s(n + 3)

y(m)
s(n)

s(n + 1)

y(x + 2)
y(m + 1)
Desired y(m + 1)

t

FIGURE 12.21  Sampling rate conversion by use of first-order approximations.
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We know that for each output, y(m), the time difference between the 

desired filter and the filter actually used to tm, where 
0.5

| .mt
I

″  Hence the 

frequency response of these filters can be written as e jωt and ( )ω τ − mj t te , respec-
tively. When I is large, ωtm is small. We ignore higher-order errors and we can 
express the difference between the frequency responses as
	 ( ) ( )m mj t j tj t je e e eω τ ω τω ωτ− −− = −
	 1 cos sinjj t j

m m me t j t e tω ωτω ω ω= − + ≈   � (12.57)

Using the bound 
0.5

| ,mt
I

″  we obtain an upper bound for the total error 

power as

	
( ) 21

( ) ( )
2

s
m

s

j tj
eP s e S e d

ω ω τωτ

ω
ω ω ω

π
−

−
= −∫

	
21

( )
2

s

s

j
ms je t d

ω ωτ

ω
ω ω ω

π −
≈ ∫

	

2
2 21 0.5

2
s

s

A d
I

ω

ω
ω ω

π −

 ≤  
 ∫

	
2 2

212
sA

I
ω
π

= � (12.58)

This bound shows that the error power is inversely proportional to the 
square of the number of subfilters I. Therefore, the magnitude of error is 
inversely proportional to I. Hence we call the approximation of sampling rate 
conversion method described above a first-order approximation. The ratio of 
the signal-to-distortion due to a sampling time error for the first-order approx-
imation is determined by using Eqs. (12.56) and (12.58) as

	
2

1 2

12

e s

P I
SDR

P ω
= ≥ � (12.59)

We can conclude from Eq. (12.59) that the signal-to-distortion ratio is 
proportional to the square of the number of subfilters.

12.6.2 Second-Order Approximation Method

The disadvantage of the first-order approximation method is the large num-
ber of subfilters needed to achieve a specified distortion requirement.

Now we describe a method that uses linear interpolation (second-order 
approximation) to achieve the same performance with a reduced number of 
subfilters.
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The implementation of the linear interpolation method is very similar to 
the first-order approximation. In linear interpolation, we compute two adja-
cent samples with the desired sampling time falling between their sampling 
times (see Figure 12.22). But in first-order approximation, we use the sample 
from the interpolating filter closest to the desired conversion output as the 

approximation. The normalized time spacing between these two samples is 1
I
.

We assume that the sampling time of the first sample lags the desired 
sampling time by tm, the sampling time of the second sample is then lead-

ing the desired sampling time by 1
mt

I
  − 
 

. If the two samples are denoted 

by y1(m) and y2(m) then by using linear interpolation, we can compute the 
approximation to the desired output as
	 ( ) 1 2( ) 1 ( ) ( )m my m y m y mα α= − + � (12.60)

where	 .m mItα =

Note that	 0 1mα≤ ≤
The implementation of linear interpolation is similar to that for the 

first-order approximation. Normally, both y1(m) and y2(m) are determined 
using ith and (i + 1)th subfilters, respectively, with the same set of input data 

y (m + 2)2

s(n + 3)

y(m)
s(n)

s(n + 1)
Desired y(m + 2)

t

Desired y(m + 1)

y (m + 2)1

y (m + 1)2
y (m + 1)1

y(m + 1) = (1 – m) y (m) + y (m)1 m 2

= ltm m

FIGURE 12.22  Sampling rate conversion by use of linear interpolation 
or second-order approximation.
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samples in the delay line. The only exception, in the boundary case, where 
i = I − 1. In this case, we use the (I − 1)th subfilter to compute y1(m), but the 
second sample y2(m) is determined using the zeroth subfilter after new input 
data are shifted into the delay line.

Analysis of error introduced by the second-order approximation is done 
by first writing the frequency responses of the desired filter and the two sub-
filters used to compute y1(m) and y2(m).

The frequency responses of the desired filter, first-subfilter, and second 

subfilter are ( ), ,mj tje e ω τωτ −  and 
1

mj t
Ie

ω τ − + 
 , respectively. Because linear interpo-

lation is a linear operation, we can also use linear interpolation to compute the 
frequency response of the filter that generates y(m) as

( ) ( )
1

1
m

m
j t

j t I
m mIt e It e

ω τω τ
 − + −  − +

( )
1

1
m

m
j t

j j t I
m me e e

ωωτ ωα α
 − + −  

 
= − + 

  
( )[ ]1 cos 1sinj

m m me t tωτ α ω ω= − −

	
ωτα ω ω    + − + −        

1 1
cos sinj

m m me t j t
I I � (12.61)

By ignoring higher-order errors, we can write Eq. (12.61) as

( ) ( )
1

1
m

m
j t t

j tj i
m me e e

ωω τωτ α α
 − + −  − − −

( ) 1
1 1 cos cosj

m m m me t t
I

ωτ α ω α ω
  = − − − −     

( ) 1
1 sin sin sinm m m m m mj t t t

I
α ω ω ω α ω

  + − − − −     

( )2
21j m

me
I

ωτ αω α ≈ −  
� (12.62)

Using (1 − αm) αm ≤ 1
4

, we obtain an upper bound for the total error power as

	
( ) ( )

1
21

/ ( ) 1 /
2

ms
m

s

j t
j tj t

e m mP S e e e d
ω τω ω τωτ

ω
ω α α ω

π

 − + −  

−

 
= − − − 

  
∫

	
( )2 2

2

1
/ ( ) 1 /

2
s

s

j m
mS e d

I

ω ωτ

ω

αω ω α ω
π −

 
≈ − 

 
∫
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( )52 2

2 4
2 4

1 0.25
2 80

s

s

sA
A d

I I

ω

ω

ω
ω ω

π π−

 ≤ = 
 ∫ � (12.63)

This result shows that the magnitude of errors is inversely proportional to I2.
Hence, we call the approximation using linear interpolation a second- 

order approximation. The ratio of signal-to-distortion due to sampling time 
error for second-order approximation is determined using Eqs. (12.56) and 
(12.63) as

	
4

2 4

80

e s

P I
SDR

P ω
= ≥ � (12.64)

Therefore, the signal-to-distortion ratio is proportional to the fourth 
power of the number of subfilters (I).

12.7 � APPLICATION OF MULTIRATE DIGITAL SIGNAL 
PROCESSING

Multirate digital signal processing has the following applications:

1.	 Design of phase shifters.

2.	 Interfacing of digital systems with different sampling rates.

3.	 Implementation of narrow band low pass filters (NB-LPF).

4.	 Implementation of digital filter banks.

5.	 Subband coding of speech signals.

6.	 Quadrature mirror filters.

7.	 Transmultiplexers.

8.	 Oversampling A/D and D/A conversion.

SOLVED EXAMPLES

EXAMPLE 12.1
Obtain the decimated signal y(n) by a factor 3 from the input signal s(n) shown 
in Figure 12.23(a).
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Solution:
The decimated signal is given by

y(n) = s(Dn), where D is the decimation factor and equal to 3.
The decimated signal y(n) is shown in Figure 12.23(b)

0 1 2 3 4 5 6 7

1
2

3
4

5
6

8 9 10 111213 14
n

(a)

3

1 2 3 40

2

5
6

n

y(n)3s(n)

(b)

y(n)

s(n)

FIGURE 12.23  Illustration of decimation process with factor 3.

EXAMPLE 12.2
Obtain the two-fold expanded signal y(n) of the input signal s(n).

	
>

= 


, 0
( )

0, otherwise
n n

s n

Solution:
The output signal y(n) is given by

	

   =  =  


, multiple of 1
( )  

0, otherwise

n
s n

y n I

where I = 2
	

0,1,2,3,4,5,6,  ...( ) .. .s n =

	 0,0,1,0,2,0,3,0,4,0,5,0,6.0,... ..) .( .y n =
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In general, to obtain the expanded signal y(n) by a factor I, (I − 1) zeros 
are inserted between the samples of the original signal s(n).

The z-transform of the expanded signal is
( )( ) , 2.IY z s z I= =

The input and output signals are shown in Figure 12.24.

FIGURE 12.24.

EXAMPLE 12.3
Find the expression for the output y(n) in terms of input s(n) for the multi-
sampling rate system given as follows:

5 20 4
Output

y(n)
Input
s(n)

FIGURE 12.25.

Solution:
The decimation with factor 20 can be represented as a cascade of two decima-
tors with factors 5 and 4. The resultant system is given as
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5 20 4
Output

y(n)
Input
s(n) 4

FIGURE 12.26.

Systems 1 and 2 can be combined. The upsampler operation of system 1 
is canceled by the downsampler operation the system 2.

Therefore, 2 ( ) ( )s n s n=
Now, Figure 12.26 reduces to Figure 12.27

4 20
Input
s(n)

Output
y(n)

s (n)3

FIGURE 12.27.

Combining systems 3 and 4. The downsampler operation of system 3 is 
canceled by the upsampler operation of system 4.

It means that

	 ( ) ( )s n y n=

where
	

= ± ± ±
= 


1 0, ,4, 8, 12, .....
( )

0, otherwise
n

s n

EXAMPLE 12.4
Find the polyphase decomposition of the IIR Digital System with transfer 
function.

	
1

1

1 4
( ) .

1 5
z

H z
z

−

−

−
=

+

Solution:
	 1

1( ) ( ) ( )oH z H z z H z−= + � (1)
where Ho(z) and H1(z) are polyphase components of the IIR digital system 
H(z):

	

( )
( )

( )( )
( )( )

1 1 1

1 1 1

1 4 1 4 1 5
( )

1 5 1 5 1 5

z z z
H z

z z z

− − −

− − −

− − −
= =

+ + −  

	

2 2

2

1 9 20
1 25

z z
z

− −

−

− +
=

−

	
2

1
2 2

1 20 9
1 25 1 25

z
z

z z

−
−

− −

 + − = +   − −  
� (2)

By comparing Eqs. (1) and (2), we get polyphase components of H(z):
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2

0 2

1 20
( )

1 25
z

H z
z

−

−

+
=

−

	 1 2

9
( ) .

1 25
H z

z−
−

=
−

EXAMPLE 12.5
Implement a two-stage decimator for the following specifications:

Sampling rate of the Input signal s(n)

	 Fs = 20,000 Hz
Decimation Factor,	 D = 100
	 Pass Band = 0 to 40 Hz
	 Transition Band = 40 to 50 Hz
	 Passband ripple = 0.01
	 Stopband ripple = 0.002.

Solution:

LPF
h(n) 100

Input
s(n)

Output
y(n)

s (n)3

F = 20,000 Hzs F = 200 Hzy

|H(f)|

f (Hz)04 050

|H (f)|2

0 40 100 f (Hz)

|H (f)|1

0 40 350 f (Hz)

h (n)1 50 h (n)2 2
Input
s(n)

Output
s(n)

F = 20,000 Hzs F = 200 Hzy

LPF 1 400 Hz LPF 2

FIGURE 12.28  Illustration of single-stage and two-stage network for decimator.

The implementation of the system in shown in Fig. (12.28)
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	 Upper limit of passband Fp = 40 Hz
	 limit of stopband Fs = 50 Hz
	 Pass band ripple δp = 0.01
	 Stopband ripple δ = 0.002
	 D = Decimation factor = 100
Sampling rate of the input signal s(n)
	 1

sF=  = 20,000 Hz
	 = 20 kHz
Normalized transition bandwidth

	
s p

s

F F
f

F ′

−
∆ =

	
450 40 10

5 10
20,000 20,000

−−
= = = ×

For an equiripple linear phase FIR digital filter, the length N is given by

	
1020 log 13

14.6
p s

N
f

δ δ− −
=

∆

	 ( )
10

4

20 log (0.01)(0.02) 13
4656

14.6 5 10−

− −
= =

×
In the single-stage implementation, the number of a multiplication per 

second is,

	
,

4656 20,000
100

931200.

s
M H

F
N N

D

′ ×
= =

=

Two-Stage Realization

H(z) can be implemented as a cascade realization in the form G(z50)F(z). The 
steps in the two-stage realization of the decimator structure are shown in 
Figure 12.29 and the magnitude response is shown in Figure 12.30.

For a cascade realization, the overall ripple is the sum of the passband 
ripples of F(z) and G(z50). To maintain the stopband ripple at least as good as 
F(z) or G(z50), ds for both can be 0.002. The specification for the interpolated 
FIR digital filters is given by

For	  . 0.005.( ) 0.002p sG z δ δ= =
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2500

2.5 10
20,000

f −∆ = = ×

For	 ( ), 0.005, 0.002p sF z δ δ= =

	
3150

7.5 10
20,000

f −∆ = = ×

The filter lengths are calculated as follows:

FIGURE 12.29  Two-stage realization of the decimators structure.

FIGURE 12.30  Magnitude response for a two-stage decimeter.
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For G(z),

	

10
3 3

3

20 log (0.005)(0.002) 13

2.5 10 2 10
14.6

20 10

N
− −

=
 × − ×
 × 

	 101=
For F(z),

	

10

3

20 log (0.005)(0.002) 13
190 40

14.6
20 10

N
− −

=
− 

 × 
	 337=

The length of the overall filter in cascade is given by

	 ( )337 50 101 2 5389+ + + =
The filter length in cascade realization has increased but the number of a 

multiplication per second can be reduced,

	 ,

101 400
20,200

2M GN
×

=

	 ,

337 20000
134800

50M FN
×

=

The total number of a multiplication per second is given by

	 + = +, , 20,200 1,34,800M G M FN N

	 1,55,000.=

EXAMPLE 12.6
Compare the single-stage, two-stage, three-stage, and multistage realization 
of the decimator with the following specifications.

A sampling rate of a signal has to be reduced from 10 kHz to 500 Hz. The 
decimation filter H(z) has the passband edge (Fp) to be 150 Hz, stopband 
edge (Fs) to be 180 Hz.

Passband ripple δp = 0.002
Stopband ripple δs = 0.001

Solution:
The length N of an equiripple linear phase FIR digital filter is given by

	

1020 log 13

14.6
p s

N
f

δ δ− −
=

∆

where	 Normalized transition band-widthf∆ =
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s p

s

F F

F ′

−
=

Given	 10 kHzsF ′ =

	

2020 log (0.002)(0.001) 13
180 150

14.6
10,000

N
− −

=
− 

 
 

	 1004≈
For the single-stage implementation of the decimator with a decimation 

factor of 20, the number of multiplications per second is given by

	 ,
s

M H

N F
N

D

′

=

	
1004 10,000

50,2000
20
×

= =

Two-stage realization

H(z) can be implemented as a cascade realization in the form of G(z10) F(z). 
The steps in the two-stage realization of the decimator structure are shown in 
Figure 12.31(a) and the response is shown in Figure 12.31(b)

F(z) F(z )
10 20

F(z) G(z )10 210

10 KHz 10 KHz 10 KHz 500 Hz

10 KHz 10 KHz 10 KHz 1 KHz 500 Hz

F(z) G(z) 250

10 KHz 10 KHz 1 KHz 1 KHz 500 Hz

FIGURE 12.31  (a) Two-stage realization of the decimators structure.

For the cascade realization, the overall ripple is the sum of the passband 
ripples of F(z) and G(z10). To maintain the stopband ripple at least as good as 
F(z) or G(z10), δs for both can be 0.001. The specification for the interpolated 
FIR digital filters is given by

For	 , 0.001( )G z pδ =

	 0.001sδ =

DSP.CH12_2pp.indd   525DSP.CH12_2pp.indd   525 3/23/2022   2:20:03 PM3/23/2022   2:20:03 PM



526 • Digital Signal Processing 

	
300

10,000f∆ =

For	 δ =( ), 0.001pF z

FIGURE 12.31  (b) Magnitude response for a two-stage decimator.

	 0.001s∆ =

	
570

10,000
f∆ =

The filter length N can be determined as follows:
For G(z),

	

10 1020 log 13 20 log 13

14.6( )
14.6

p s p s

s p

s

N
F Ff

F

δ δ δ δ

′

− − − −
= =

−∆  
 
 

For F(z),

	

10
3 3

3

20 log (0.001)(0.001) 13
107

18 10 15 10
14.6

10 10

− −
= =

 × − ×
 × 
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The length of the overall filter in cascade is given by
56 (10 107) 2 1128+ × + =

The filter length in cascade realization has increased but the number of 
multiplications per second can be reduced.

	 ,

1000
107 53,500

2M GN = =

	 ,

10,000
56 56,000

10M FN = =

The total number of a multiplication per second is

	 , ,M G M FN N= +

	 53,500 56,000= +
	 1,09,500=

Three-Stage Realization

The decimation filter F(z) can be realized in the cascade form P(z) Q(Z5).
The specifications are given as follows:

For	 , 0.005( )G z pδ =

	 δ = 0.001s

	

570
5 0.285

10,000
fδ = × =

	 12N =

For P(z),	 0.0005pδ =

	 0.001sδ =

	

1130
0.113

10,000
fδ = =

	 30N =
The three-stage realization is shown in Figure 12.32.

P(z) 5 Q(z) 2 G(z) 2

10 KHz 10 KHz 2 KHz 2 KHz 1 KHz 500 KHz

FIGURE 12.32  Frequency response for a three-stage decimation.

The number of multiplications per second is given by

	 ,

12 2000
12,000

2M QN
×

= =
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	 ,

30 1000
60,000

2M PN
×

= =

The overall number of multiplications per second for a three-stage reali-
zation is given by

	 , , , 53,500 12,000 60,000M G M Q M PN N N+ + = + +

	 1,25,500=
The number of multiplications per second for a three-stage realization is 

more than that of a two-stage realization. Hence higher than two-stage reali-
zation may not lead to an efficient realization.

EXAMPLE 12.7
We have given a multisampling rate system shown in Figure 12.33. Find y(n) 
as a function of s(n).

z–1z–1

22

22

+
Output

y(n)

(n)(n)

s(n)
Input v(n) v (n)u

FIGURE 12.33  Multisampling rate system.

Solution:
From Figure 12.33, the outputs of the downsampler are given as

	 ( ) ( )= + −
1 1
2 2

1 1
( )

2 2
V z S z S z � (1)

	 ( ) ( )
1 1

2 21 1
2 2( )

2 2
z z

W z S z S z
− −

−

= − − � (2)

The outputs of the upsampler are

	
1 1

( ) ( ) ( )
2 2uV z S z S z= + − � (3)

	
1 1

( ) ( ) ( )
2 2u

Z Z
W z S z S z

− −−
= − � (4)
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Y(z) is given by
	 1( ) ( ) ( )u uY z z V z W z−= + � (5)

Substituting Eqs. (3) and (4) in Eq. (5), we get

	
1 1

1 1 1
( ) ( ) ( ) ( ) ( )

2 2 2
z z

Y z Z S z S z S z S z
z

− −
−   = + − + − −     

or	 1( ) ( )Y z Z S z−= � (6)
Taking the inverse z-transform of both sides of Eq. (6), we get

	 = −( ) ( )1 .y n s n

EXERCISES

1.	 What is multirate digital signal processing (MDSP)?

2.	 What is the need for multirate digital signal processing?

3.	 Give some examples of multirate digital systems.

4.	 Write short notes on the following topics:

�a. MDSP, b. Decimator, c. Decimation filter, d. Interpolator, and
e. Interpolation filter.

5.	 Explain the interpolation process for an integer factor I with an example.

6.	 Explain the decimation process for an integer factor D with an example.

7.	 The signal s(n) is defined by

	
, 0

( )
0, otherwise

nA n
s n

 >= 


a. Obtain the decimated signal with a factor of 3
b. Obtain the interpolated signal with a factor of 3.

8.	 Explain polyphase decomposition process.

9.	 Describe the sampling rate conversion by a rational factor  
 
 

I
D

.

10.	 Obtain the polyphase structure of the filter with the transfer function.

	

1

1

1 3
( ) .

1 4
z

H z
z

−

−

−
=

+
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11.	 Give the name of some areas where MDSP systems are used.

12.	 Give the advantages of using MDSP systems.

13.	 Discuss filter design and implementation for sampling rate conversion.

14.	 Describe and draw a direct-form FIR digital filter structure.

15.	 Write short notes on the following:

a.	 Polyphase digital filter structure

b.	 Time-varying digital filter structure

16.	 Describe the sampling rate conversion by an arbitrary factor.

17.	 Write short notes on the following:

a.	 �Sampling rate conversion by use of the first-order approximation 
method.

b.	 �Sampling rate conversion by use of the second-order (Linear) approx-
imation method.

18.	 List some applications of MDSP.
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C H A P T E R  13
Applications of Digital  
Signal Processing to Speech

13.1  INTRODUCTION

Some of the most important applications of digital signal processing tech-
niques have been in the area of speech processing. In fact, a large percent-
age of the theoretical background of digital signal processing (DSP) has been 
derived from speech studies. A speech signal is a one-dimensional signal. DSP 
techniques can be applied to a wide range of problems in speech such as spec-
trum analysis, channel vocoders, homomorphic processing systems, speech 
synthesizers, linear prediction systems, and computer voice response systems. 
All modern speech processing systems are dependent on DSP algorithms.

Speech processing problems are divided into three categories:

1.	 Speech Analysis.

2.	 Speech Synthesis.

3.	 Speech Compression.

We now discuss them below.

Speech Analysis: In this category, speech analysis is performed to extract 
some desirable information of speech signal. An example of speech analysis is 
in the automatic speech recognition system. This system starts with an anal-
ysis of speech waveform and the desired results are used for speech recogni-
tion and speaker identification.
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Speech Synthesis: In this type of problem, input is in written text form 
and the output is a speech signal. An example of speech synthesis is automatic 
reading machines. It is used to retrieve data from a computer via telephone 
line in the form of speech at a remote place.

Speech Compression: In this type of problem speech signal is coded in 
such a manner that there will be some compression in a speech signal. Speech 
compression is done in order to have smaller bandwidth for its transmission. 
Compression means reducing the number of bits required for representing its 
samples. Purpose of speech compression to preserve bandwidth for its trans-
mission. Another purpose of speech compression is to reduce to the number 
of bits required per sample. By doing so memory requirement (Number of 
bytes) is reduced.

13.2  MODEL OF SPEECH PRODUCTION

13.2.1  Model of Speech Waveform

Basic techniques of speech analysis and synthesis, use the knowledge of a 
model of the speech waveform. Speech is considered as the response of a 
slowly time-varying system. There are two types of excitations used. One is 
periodic and the other is 
noise-like. The speech pro-
duction mechanism consists 
of an acoustic tube, a vocal 
tract that is excited by an 
appropriate source to gen-
erate the desired sound.

Figures 13.1 and 13.2 
illustrate the cross-sectional 
view of the speech pro-
duction system of a human 
(vocal tract system) and 
schematic diagram of 
human speech production 
system (vocal tract system) 
respectively.

Figure 13.2 illustrates 
a schematic diagram of 

Nasal
cavity

Vocal tract

Lips

Tongue

Glottis

Velum

FIGURE 13.1  �Cross-sectional view of the speech production 
system (vocal tract).
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the human speech pro-
duction mechanism. In a 
normal speech production 
mechanism, the chest cav-
ity expands and contracts to 
force air from the lungs out 
through the trachea past the 
glottis.

If the vocal cords which 
are available in the trachea 
are tensed then voiced sounds 
like vowels are produced. 
These vocal cords vibrate in 
the mode of a relaxation oscil-
lator and modulate the  air 
into discrete pulses. The air 
stream passes through the 
pharynx cavity, then passes 
through a tongue, and at the 
last it passes through either 
nasal cavity or mouth cavity 
depending on the position of 
the trap door velum. The air 
stream is expelled at either 
the nose or mouth or both 
and it is perceived as speech.

In the case of unvoiced sounds, the vocal cords are spread apart and one 
or two conditions are possible. Either a turbulent flow is produced as the air 
passes through the narrow constriction in the vocal tract or a brief transient 
excitation occurs following a build-up of pressure behind a point of total clo-
sure along the vocal tract.

Shapes of various cavities can be changed drastically by changing the posi-
tion of various articulators such as lips, tongue, jaw, and velum during contin-
uous speech.

As we know now that speech sounds are of two types:

1.	 Voiced Sounds: Voiced sounds are produced by forcing air through the 
glottis with the tension of vocal cords so adjusted that they vibrate in the 
mode of a relaxation oscillator and produce quasi-periodic pulses of air 
that excite the vocal tract. Voiced speech is repetitive in nature and its 

FIGURE 13.2  �Schematic diagram of the human speech pro-
duction system (vocal tract).
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waveform contains high energy. Rich melodious sounds are generally 
voiced sounds.

2.	 Unvoiced Sounds: It is also called fricative sounds. These sounds are 
generated by forcing air through a constriction in the vocal tract at high 
enough velocity to produce turbulence. Unvoiced speech is non-repetitive 
and random in nature. Hissing sounds are unvoiced.

Speech waveform can be modeled as the response of a linear time-varying 
system (Vocal tract) with appropriate excitation. If the vocal tract (acous-
tic tube) has a fixed shape, the output of the system is determined by the 
convolution of excitation and vocal tract impulse response. Various types of 
sounds are produced by changing the shape of the vocal tract. If the vocal 
tract changes slowly, the output is still approximated on a short-time basis and 
determined by the convolution of excitation and vocal tract impulse response.

Waveforms of voiced and unvoiced speech for a long duration (600 ms) 
are shown in Figure 13.3.

S
Unvoiced

sound

B
Voiced
sound

FIGURE 13.3  Waveform for voiced and unvoiced speech (long segment ≠ 600 ms).

A waveform of voiced speech for a short duration (25 ms) is shown in 
Figure 13.4.

Pitch period

FIGURE 13.4  Waveform for voiced speech (short segment ≠ 25 ms).

A waveform of an unvoiced signal for a short duration (25 ms) is shown in 
Figure 13.5.

t

FIGURE 13.5  Waveform for unvoiced speech (short segment ≠ 25 ms).
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If the input is periodic on a short-time basis for voiced speech, the output 
to the corresponding fundamental frequency is also periodic.

Now if we want to see the system in the frequency domain. The Fourier 
transform of speech waveform is the product of Fourier transforms of exci-
tation function and impulse response of the vocal tract system.

V(t)

Vocal tract system y(t) = s(t) * v(t)
s(t)

T

FIGURE 13.6  Time-domain characterization of a vocal tract system.

2
T

S( )

F1 F2 F3 F4

Y( )=S( ) V( )V( )

FIGURE 13.7  Frequency domain, characterization of vocal tract system.

The resonant frequency of the vocal tract is called formants, it is denoted 
by F1, F2, F3, and so on. The human vocal tract system extends from the glottis 
to the lips. Its length is approximately 17 cm. The first formant will be at

	 1
1

1 1 340
500 Hz

4 4 4 0.17
v

F
L

l    = = = =   
   

�

where v′ = velocity of sound = 340 m/s and L = vocal tract length = 17 cm.
The non-uniform cross-sectional area of the vocal tract depends strongly 

on the position of the articulators and varies from 0 cm2
 at closure to about 

20 cm2. The vocal tract has certain normal resonant modes of operation. These 
resonant modes of operation are called formants. These formants depend 
heavily on the exact position of the articulators.

There are three primary modes for exciting the vocal tract system. For 
voiced sounds, the source is at the glottis and consists of broadband quasi-
periodic puffs of air produced by the vibrating vocal cords.

For unvoiced sounds like s, the source is at the point constriction and 
consists of turbulent quasi-random airflow.
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Finally, for unvoiced sounds like p as in pop, the source is at the point of 
closure and consists of a rapid release of the air pressure built up behind the 
total constriction.

The basic assumption of almost all speech processing systems is that 
the source of excitation and the vocal tract system are independent. Source-
system independence allows us to discuss the transmission function of the 
vocal tract and to let it be excited by any of the possible sources. The validity 
of the assumption above is quite good for the majority of cases of interest. 
There are some cases, however, when the assumption is invalid and the basic 
model breaks down such as during transient sounds like p in a pot.

Based on the ideas above, a simple digital model of speech production is 
shown in Figure 13.8.

The sources of excitation are an impulse generator and a random number 
generator. The impulse generator is controlled from the outside world by the 
pitch-period signal. The impulse generator produces an impulse (correspond-
ing to the initiation of a puff of air) once every N0 sample. This duration is 
referred to as the pitch period and its reciprocal is the pitch frequency or rate 
of oscillation of the vocal cords. The random number generator output simu-
lates both the quasi-random turbulence and the pressure build-up waveform 
for unvoiced sounds.

Amplitude

Time-varyring
digital filter Speech

samples

t

Digital filter coefficients
(vocal tract parameters)

Pitch period signal

Impulse
train

generator

Random
number

generator

FIGURE 13.8  Digital model of speech production.

Either or both of these sources may be applied as input to a linear, 
time-varying digital filter. This filter simulates the vocal tract system and thus 
the filter coefficients specify, the vocal tract as a function of time during con-
tinuous speech. Once every 10 ms, on average, the filter coefficients are var-
ied, indicating a new vocal track configuration.
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Finally, gaining control between the source and system allows certain 
flexibility in the acoustic level of the output. The digital waveform at the out-
put of the filter corresponds to the final speech output, sampled at the appro-
priate rate.

To control the model above requires a knowledge of the appropriate 
parameters as a function of time. Various parameters are pitch period, switch 
position, amplitude, and filter coefficients. This is the goal of almost all speech 
analysis systems. The purpose of speech analysis systems is to estimate the 
appropriate model parameters from real speech.

The goal of most speech synthesis systems is to use these parameters, 
obtained in any reasonable manner, to derive a synthetic speech signal that 
is indistinguishable perceptually from the original signal. Speech analysis-
synthesis systems combine the two problems with the twin goals of efficiency 
and flexibility. Efficiency means to lower the bit rate of the synthesis system 
below that required for conventional waveform representations. Flexibility is 
the ability to modify and alter the speech in some desired manner through 
manipulation of the model parameters.

13.3  SHORT-TIME FOURIER TRANSFORM (STFT)

13.3.1  Short-Time Fourier Transform (STFT)

Fourier transform can be used for time-varying signals such as speech signals. 
In the frequency domain, speech can be represented on short-time basis in 
terms of the product of the Fourier transform of a transfer function of the 
vocal tract and Fourier transform of the excitation. Consequently, the spec-
trum of speech must be based on a STFT which of course changes with time.

STFT of sampled speech sequence is defined as

	 [ ]( ) ( , ) ( ) ( ) j k

k

STFT s n S n s k h n k e ww
∞

−

=−∞

= = −∑ � (13.1)

It represents the Fourier transform of a windowed segment of speech 
signal where window h(n) slides with time.

13.3.1.1  Implementation of STFT

Now let us suppose that h(n) is the impulse response of the vocal tract and 
s(n) is the input speech signal. Convolution between h(n) and s(n) multiplied 
by e−jωk

 summed over −∝ to ∝ is termed as STFT.
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	 ( , ) ( ) ( ) j k

k

S w n s k h n k e w
∞

−

=−∞

= −∑ �

		  ( ) ( ).j k j k j k

k

e s k h n k e ew w w
∞

− − −

=−∞

= −∑ �

or	 ( )( , ) ( ) ( )j k j k n k

k

S n e s k h n k ew ww
∞

− + −

=−∞

= −∑ � (13.2)

Eq. (13.2) can also be written

	 –( ) { ( ) ) }, [ ( ]j k j nS n e s n h n ew ww = ∗ � (13.3)

Figure 13.9 shows the block diagram for the determination of STFT. Here 
original speech signal s(n) is first-multiplied by e−jωk. The output of multiplier, 
that is, h(n) e−jωk

 is linearly convoluted with h(n) to get STFT of the speech 
signal. It is given by the following equation.

	 STFT of , ,( ) ( ) ( ) ( )j kes n S n s n h nww −= ∗   �

h(n)

e–j n

s( , n) STFT
s(n)

FIGURE 13.9  Determination of STFT.

Figure 13.10 illustrates the block diagram of an alternative method of 
determination of STFT. In this method, speech signal s(n) is linearly convo-
luted with the product of h(n) and e−jωn

 to get S(ω, n) e−jωn. It is given by the 
following equation

		  { }of ( ), ( , ) ( ) ( )j k j kDTFT s n S n e s n h n ew ww − − = ∗   �

FIGURE 13.10  An alternative method of determination of STFT.

There are two common ways in which we can implement the STFT given by 
Eq. (13.1).

1.	 The first method uses a filter bank when a spectral analysis is done with 
an analog system.
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2.	 The other method uses a digital circuitry (FFT algorithm) for the imple-
mentation of STFT.

h(n)

n

S(k)
h(n – k)

k

n

FIGURE 13.11  Short-time Fourier transform (STFT) analysis explanation.

A more useful measure of the energy content of a speech waveform is the 
STFT. STFT of sampled speech sequence s(n) is defined as

	 ( )[ ( ) , ( ) ( ) j k

k

STFT s n S n s k h n k e ww
∞

−

=−∞

= = −∑ � (13.1)

where cos sin .j ke k j kw w w− = −
This can also be written as

	 , ,( ) ( ) ( ),S n A n j B nw w w= + � (13.2)

where A(ω, n) and B(ω, n) are the real and imaginary parts of the STFT, S(ω, 
n) of sequence s(n).

From Eqs. (13.1) and (13.2), we get

	 ( , ) ( ) ( )cos( )
k

A n s k h n k kw w
∞

=−∞

= −∑ � (13.3)

and

	 ( , ) ( ) ( )sin( )
k

B n s k h n k kw w
∞

=−∞

= − −∑ � (13.4)

The equations given above suggest a simple technique for measuring 
STFT that is shown in Figure 13.12.
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h(n)

cos ( , n)r

cos ( , n)r

S(n)

A( , n)r

B( , n)rh(n)

FIGURE 13.12  Simple techniques for analyzing speech based on STFT Analysis.

Generally, H(ejω) is chosen to approximate the ideal low pass filter with 
cutoff frequency ωc, as shown in Figure 13.13, where H(ejω) is the Fourier 
transform of h(n). Thus S(ω, n) is the energy of the speech waveform at time 
n and at frequency w. The energy measurement reflects the speech energy in 
the band from (ω − ωc) to (ω + ωc).

1

H(e )
j

– c 0 c

FIGURE 13.13  Ideal low pass filter for STFT analysis.

In most speech spectrum analysis systems it is desired to measure the 
STFT at a finite set of N frequencies, spaced (often uniformly) over the band 
0 ≤ ω ≤ 2π. These measurements are accomplished by iterating the measure-
ment technique above for each of the N frequencies.

In the case where h(n) is the impulse response of an FIR digital filter and 
where the analysis frequencies are uniformly spaced, the FFT algorithm can 
be used to simultaneously make all the desired measurements in an extremely 
efficient manner. To see this, let h(n) be non-zero for 0 ≤ n ≤ M − 1 and let 
the center frequencies for analysis ωr be chosen as

	 2
, 0,1,..., 1r r r N

N
pw = = − � (13.5)
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Eq. (13.1) can be written as

	 ( )
1

, ( ) ( ) r

n
j k

r
k n m

S n s k h n k e ww −

= − +

= −∑ � (13.6)

		
1

0 ( 1) 1

( ) ( )
M
n

r

n mN
j k

m k n m N

s k h n k e w
 + − 

−

= = − + +

= −∑ ∑ � (13.7)

where M
N

 
  

 stands for the greatest integer less than or equal to M/N.

If we let 	 ,I n mN k= − −

	 ( )
1 1

( )

0 0

, ( ) ( )
M
N

r

N
j l n mN

r
m l

S n s n k mN h l mN e ww
 + − 

− − +

= =

= − − +∑ ∑ �

Substituting Eq. (13.5) in Eq. (13.8), we get

	 ( ) ( ) ( )2 2
11

0 0

, ( ) ( )
M
N

N N

N
j j rl

r
l m

S n e s n l mN h l mN e
p p

w
 +−  

−

= =

 
= − − + 

  
∑ ∑ � (13.9)

where we have replaced ej2πm
 by 1.

Eq. (13.9) can now be written as

	
( ) ( ) ( )2 21

0

, ( , )N N

N
j rn j lr

r
l

DFT

S n e g l n e
p p

w
−

−

=

= ∑


� (13.10)

where

	
1

0

( , ) ( ) ( )
M
N

m

g l n s n l mN h l mN
 + 

=

= − − +∑ � (13.11)

Eq. (13.11) shows that S(ωr, n) may be obtained as the product of the 
sequence ( )2

Nj rne
p−  and the DFT of the sequence g(l, n).

Figure 13.14 illustrates how the sequence g(k, n) is obtained term by term 
from the individual sequences s(k) and h(k).

Thus STFT analysis of speech is readily performed either directly using a 
bank of digital filters and modulators or indirectly using the FFT algorithms.
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FIGURE 13.14  The construction of g(r, n) from x(nT) and h(nT).

13.4  SPEECH ANALYSIS-SYNTHESIS USING STFT

The principles of measuring the short-time spectrum of speech may be 
applied to an entire analysis-synthesis system. The basic idea is to measure 
the outputs of a bank of M bandpass filters (BPFs) and reconstruct the speech 
from these M signals. A simplified schematic diagram of this system is shown 
in Figure 13.15.

FIGURE 13.15  Schematic diagram of an analysis-synthesis system based  
on STFT or short-time spectrum analysis.
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The input speech is s(n) and the reconstructed synthetic waveform is 
y(n). The M individual BPFs have impulse responses hr(n), r = 1, 2, ..., M. 
The bandpass outputs are labeled yr(n), r = 1, 2 ..., M. If the bandpass filter 
impulse responses are restricted to be of the form

	 ( )( ) ( ) cos ,  r rh n h n nw= � (13.12)

where h(n) is the impulse response of a low pass filter (LPF) (i.e., the band-
pass impulse response is a modulated low pass impulse response), then the 
bandpass outputs yr(n) can be written as

	 [ ]( ) ( ) ( )cos ( )r r
k

y n s k h n k n kw
∞

=−∞

− −∑ � (13.13)

or	 ( ),( ) Real ,j n
r ry n e S nw w =  � (13.14)

where S(ωr, n) is the STFT. Thus each channel of the system can be obtained 
in the manner shown in Figure 13.16.

Since S(ωr, n) can be written in terms of real and imaginary components 
as given in Eq. (13.14). Now, Eq. (13.14) can be put in the form.

h(n) Real { }
y (n)r

e
j rn

s(n)

e
j rn

FIGURE 13.16  The operations for the rth channel.

	 ( ) ( ) ( ) ( )( ) , cos , , sin ,r r r r ry n A n n B n nw w w w= + � (13.15)

Realization of Eq. (13.15) is shown in Figure 13.17. The dashed lines in 
Figures 13.16 and. 13.17 indicate points of transmission and reception when 
the system is implemented as a speech bandwidth compression system. The 
straight path between the dotted lines represents the communication channel 
(assumed error-free here).

The transmitted parameters A(ωr, n) and B(ωr, n) would have to be sam-
pled to a lower rate than the speech transmission rate and quantized to achieve 
any significant bandwidth reduction.
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FIGURE 13.17  The operations for the rth channel using real processing.

13.5  ANALYSIS CONSIDERATIONS

The quality with which this system can represent speech is dependent on the 
extent to which the bank of M filters adequately represents the speech spec-
trum. One simple way of measuring this is to determine the overall impulse 
response of the system and examine its Fourier transform. If we denote the 
impulse response of the composite bank as ĥ(n), then

	 ( )ˆ( ) ( ) ( )cos
M M

r r
r r

h n h n h n nw= =∑ ∑ �

		  ( )( ) cos
M

r
r

h n nw= − ∑ � (13.16)

If we denote ( )cos
M

r
r

nw∑  by d(n). Then we can write as

	 ( )
1

( ) cos
M

r
r

d n nw
=

=∑ � (13.17)

Now Eq. (13.17) can be written as

	 ˆ( ) ( ) ( )h n h n d n= � (13.18)

It means that the composite filter bank impulse response is the product 
of the prototype LPF impulse response and response depends entirely on the 
number of filters M and their center frequencies ωr.
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To see how well ĥ(n) approximates a digital impulse (with some delay), we 
can examine the behavior of either ĥ(n) or its Fourier transform.

In the special case of a uniform filter bank with

	 (for uniform spacing)r rw w= ∆ � (13.19)

If ∆w is a constant, then d(n) can be solved by using Eq. (13.17). It gives

	 ( ) 1
M

jr n

r M

d n e w∆

=−

= −∑ � (13.20)

Eq. (13.20) can be simplified as follows:

	 [ ]

sin
2

( )
sin ( / )

M n
d n

z n

w

w

  + ∆    = −
∆

� (13.21)

If 
2
N
pw∆ = , with N as integer, then the sequence d(n) is periodic with 

period N samples.

If 
2
N
pw∆ =  is not an integer, then the sequence d(n) is not periodic but 

still has peaks at intervals of N seconds.
Another interesting case is that we choose parameters as follows.

Let N be an odd integer and 
1

2
N

M
− =  

 
. For 

2
N
pw∆ = , it can easily be

 
seen that this corresponds to evaluating the STFT at equally spaced frequen-
cies in the range 0 < ω < π. If, in addition, we include a channel centered on 
zero frequency. It can be shown that

	

sin( )
( )

sin

n
d n

n
N

p
p

=
 
 
 

�

		
, 0, , 2 ,...

0, elsewhere
N n N N= ± ±

= 


� (13.22)

Thus, for these conditions d(n) is a periodic train of impulses, with a period 
N that is inversely proportional to the frequency spacing between channels. 
Since ĥ(n) = h(n) d(n), it is clear that the composite impulse response will also 
be an impulse train. Since the ideal composite impulse response is a delayed 
impulse, we must choose the prototype low pass impulse response h(n) so as 
to eliminate all but one of the impulses in d(n). Suppose we fix N, correspond-
ing to fixed frequency spacing ∆ω.
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Then if we choose a very narrow impulse response (e.g., of dura-
tion less than 2N) the composite impulse response will appear as shown in 
Figure 13.17(a). Here we have shown the prototype low pass response or data 
window as a dotted curve superimposed on the impulse train that represents 
the composite response. Clearly, there is only one impulse. However, such 
a narrow impulse response h(n) corresponds to a rather wide band low pass 
filter (LPF) that would not give satisfactory frequency resolution. If we use a 
narrower bandwidth filter, the impulse response will become proportionately 
greater in duration as shown in Figure 13.17(b). In this case, the composite 
impulse response consists of several impulses that would give rise to a rever-
berant quality in the output speech. Thus, we see that good frequency resolu-
tion (i.e., narrowband channels) seems to be at odds with low reverberation.

Figure 13.17(c) suggests one way in which, at least theoretically, the out-
put can match the input exactly. Here we have used a wider filter but have 
constrained the values of h(n) to be zero at integer multiples of the period N. 
In this case the composite response is a single impulse delayed by 2N. Thus 
the output is a delayed and scaled replica of the input. Such a data window 
can be designed. Therefore, the STFT can theoretically represent the speech 
signal exactly.

13.6  OVERALL ANALYSIS-SYNTHESIS SYSTEM

Figure 13.18 shows the block diagram of an overall analysis-synthesis system. 
This figure shows all the processing required for the kth channel. Each of the 
M channels requires similar processing. This figure is conveniently segmented 
into three parts. These parts are an analysis section, a bit-rate reduction sec-
tion, and a synthesis section.

The analysis section works as described in the previous section, comput-
ing A(ωr, n) and B(ωr, n) for each channel.

To achieve any bit-rate reduction (bandwidth compression), these signals 
must be sampled at a lower rate (i.e., once every T1 seconds) and quantized to 
a smaller number of bits. These are the functions of the sampler and quantizer 
of the bit-rate reduction section. Appropriate values of T1 and the number of 
bits per sample must be obtained from speech perception experiments.

The synthesis stage is used to interpolate the received values from quan-
tizers of the bit-rate reduction section. Interpolating low pass filters are used 
to interpolate the received values of A(ωr, n) and B(ωr, n) to the appropriate 
synthesis rate, T2 seconds, which need not be identical to the analysis rate.
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FIGURE 13.18  Block diagram of overall analysis-synthesis system.
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0 N 2N 3N 4N 5N

(c)

n

FIGURE 13.19  Time versus frequency resolution trade-offs.

13.7	CHANNEL VOCODER

It is commonly used for bandwidth compression of analog speech. It is also 
known as a channel voice coder. Its digital implementation can be carried 
out by designing the digital bandpass and lowpass filters. Spectral analysis of 
these filter hanks is performed by using discrete Fourier transform (DFT). 
Figure 13.20 illustrates the block diagram of a channel vocoder (voice coder).

Channel vocoder comprises of two units out of which one is the channel 
vocoder analyzer and the other is the channel vocoder synthesizer.

(a) Channel Vocoder Analyzer: The input speech signal is fed into an 
analysis filter bank consisting of M BPFs which are contiguous in frequency. 
The output of each hand-pass filter is fed to a rectifier and LPF for low pass 
filtering. These LPF signals are the output of the channel vocoder analyzer. 
Here, for speech analysis, we use STFT. We should note here that DFT and 
FFT cannot be used directly as speech signal is time-varying signal.

DSP.CH13_2pp.indd   548DSP.CH13_2pp.indd   548 3/23/2022   12:02:48 PM3/23/2022   12:02:48 PM



Applications of Digital Signal Processing to Speech  • 549

+

BPF
100 Hz

Rectifier
and LPF

BPF
100 Hz

BPF
200 Hz

Rectifier
and LPF

BPF
200 Hz

BPF
3200 Hz

Rectifier
and LPF

BPF
3200 Hz

Excitation
analyzer

Excitation
generator

Excitation parameter

It is indicating transmission channel

Speech
output
y(n)

SynthesizerAnalyzer

Channel
signals

Channel
signals

Channel
signals

FIGURE 13.20  Block diagram of a channel vocoder.

(b) Channel Vocoder Synthesizer: In the synthesizer, the channel sig-
nals obtained from analyses are used as amplitudes. These amplitudes are 
multiplied by the excitation parameter generated by the excitation generator. 
Each multiplier output is bandpass filtered using a bank of BPFs. This bank 
of BPFs is the same as used in the channel vocoder analyzer.

The excitation parameters obtained from the channel vocoder analyzer 
are used to generate an excitation consisting of pulses spaced by the pitch 
period for voiced speech and a noise-like sequence for unvoiced speech. The 
pitch period is the time period after which the voiced speech repeated its 
waveform.

13.8 � PITCH DETECTION AND VOICED–UNVOICED 
DECISIONS

To complete these sections on the channel vocoder, it is appropriate to men-
tion the problems of pitch detection and voiced–unvoiced decision making 
in the analyzer. There exists a wide variety of algorithms for estimating the 
pitch period. For the sake of illustration, we shall discuss a particularly effi-
cient algorithm that works in the time domain and uses parallel processing 
techniques to make its final decisions. The problems of pitch detection and 
voiced–unvoiced decisions are really a combination of signal processing and 
feature extraction. Since pitch detectors are embedded in a large number of 
speech processing systems, however, it is worthwhile discussing them here.
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A block diagram of a pitch-period estimation algorithm is shown in 
Figure 13.21.

The algorithm is conveniently segmented into four distinct processing or 
decision-making parts.

1.	 Low pass filtering of the speech signal.

2.	 Generation of six functions of the peaks of the filtered speech signal.

3.	 Six identical simple pitch-period estimators, each working on one of the 
six functions above.

4.	 Final pitch-period computation, based on examination of the results from 
each simple pitch-period estimator.

PPE 1

PPE 2

PPE 3

PPE 4

PPE 5

PPE 6

4

3

21

EECH
Filter

Processor
of signal
peaks

Final pitch-
period

computation

Pitch
period

Six individual pitch
period estimators

FIGURE 13.21  Block diagram of the pitch-period estimation algorithm.

The primary purpose of the lowpass filter is to filter out higher harmonics of 
the speech waveform. A lowpass filter with a cutoff of about 600 Hz works well.

The second part of the algorithm generates pulses at various peaks in 
the lowpass filtered waveform as illustrated in Figure 13.22. Pulses of height 
m1, m2, and m3 are generated at every positive peak, while pulses of height 
m4, m5, and m6 are generated at each negative peak. Measurements m1 and m4 

are simple peaks (positive and negative) measurements, whereas m2 and m5 
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are peak-to-valley and valley-to-peak measurements, respectively, and m3 and 
m6 are peak-to-previous-peak and valley-to-previous-valley measurements, 
respectively. All the m’s are converted into positive pulse trains. Thus if a cur-
rent peak (valley) is not so large as the previous peak (valley), measurement 
m3(m6) is set to zero.

The choice of this particular set of measurements was based on consider-
ation of two extreme cases as shown in Figure 13.23. For the case when only 
the fundamental is present (as on the left), measurements m3 and m6 fail but 
measurements m1, m2, m4, and m5 provide strong indications of the period.

For the case when a very strong second harmonic and some fundamental 
are present (as on the right) measurements m3 and m6 will be correct and all 
others will fail. In this case, although four of the six measurements may fail, it 
will be shown below how the final computation has a high probability of being 
correct.

m4m5

Time

m1
m2

m6

m3

FIGURE 13.22  Measurements for determining pitch period.

True period True period

m1

m2

m3

m4

m5

m6

(a) (b)

FIGURE 13.23  Pitch measurements for two extreme conditions.
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The six sets of pulse trains are applied to six identical pitch detectors, each 
of which operates as shown in Figure 13.24. In essence, each pitch-period 
estimator is a peak-detecting run-down circuit. Following each detected pulse 
there is a blanking interval (during which no pulses can be detected) followed 
by a simple exponential decay. Whenever a pulse exceeds the level of the run-
down circuit (during the decay), it is detected and an exponential run-down 
circuit is reset. The run-down time constant and the blanking time of each 
detector are made to be functions of the smoothed estimate of pitch period 
Pav, of that detector Pav is derived from the iteration.

Variable blanking
time

Variable exponential
decay

Time

FIGURE 13.24  Operations of each pitch detector.

	 ( 1)
( )

2
av new

av

P n P
P n

− +
= � (13.23)

where Pnew is the most recent estimate of pitch period, Pav(n) is the current 
smoothed estimate of pitch period, and Pav(n − 1) is the previous smoothed 
estimate of the pitch period.

Each time a new peak is detected, Pav is updated according to the itera-
tion. To prevent extremes of values of blanking time or run-down time con-
stant, Pav is limited to be greater than 4 ms and less than 10 ms. Within these 
limits, the dependence of blanking time T(τ) and run-down time constant-β 
on Pav is given by

	

0.4 ,

0.695

av

av

P

P
B

t = 



= 

� (13.24)

The final computation of the pitch period is performed by block 4 (as 
shown in Figure 13.21), which may be thought of as a special purpose com-
puter with a memory, an arithmetic algorithm, and control hardware to steer 
all the incoming signals.

At any time an estimate of the pitch period is made by

1.	 Forming a 6 × 6 order matrix of estimates of the pitch period. The col-
umns of the matrix represent the individual detectors and the rows are 
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estimates of the period. The first three rows are the three most recent 
estimates of the period. The fourth row is a sum of the first and second 
rows; the fifth row is the sum of the second and third rows, and the sixth 
row is a sum of the first three rows. The technique for forming the matrix 
is shown in Figure 13.25.

FIGURE 13.25  Technique for forming the matrix of estimates of pitch periods.

	 The reason for the last three rows of the matrix is that sometimes the 
individual detectors will indicate second or third harmonic rather than 
fundamental and it will be entries in the last three rows that are correct 
rather than the three most recent estimates of the pitch period.
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2.	 Comparing each of the entries in the first row of the matrix to the other 
35 entries of the matrix and counting the number of coincidences. That 
particular Pi1 (i = 1, 2, 3, 4, 5, 6) that is the most popular (greatest number 
of coincidences) is used as the final estimate of the pitch period.

13.8.1  Coincidence

First, to determine whether two pitch-period estimates “coincide.” It seems 
more appropriate to observe their ratios rather than their differences. 
However, the ratio measurement can be very approximate to avoid the need 
for a divide computation.

Second, because during many parts of the speech there are sizable varia-
tions of successive pitch-period measurements, it is useful to include several 
threshold values to define coincidence and then to try to select, for each over-
all pitch-period computation, the threshold that yields the most consistent 
answer. With this explanation, we now define the computation of block-4.

Figure 13.26 shows a table of 16 coincidence window widths. As indicated 
in Figure 13.25, only the most recent estimated pitch period from a given 
detector is a candidate for a final choice. This candidate is thus one of six 
possible choices for the correct pitch period. To determine the “winner,” each 
candidate is numerically compared with all the remaining 35 pitch numbers.

This comparison is repeated four times, corresponding to each column in 
the table of Figure 13.26. From each column, the appropriate window width 
is chosen as a function of the estimate associated with the candidate. Thus, if 
this estimate, for example, were 4 µs, the coincidence between the candidate 
and any compared interval would mean that their difference was less than or 
equal to ±200 ms at a sampling rate of 10 kHz. After the number of coinci-
dences is tabulated, a bias of 1 is subtracted 
from that number. The measurement is then 
repeated for the second column; this time 
the windows are wider and this increases 
the probability of coincidence but, in com-
pensation, a bias of 2 is subtracted from the 
computation. After the computation has 
been repeated in this way for all four col-
umns, the largest biased number is used as 
the number of coincidences that represent 
that particular pitch-period estimate. The 
entire procedure is now repeated for the FIGURE 13.26  �Table of coincidence 

window widths.
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remaining five candidates and the winner is chosen to be that number with 
the greatest number of biased coincidences.

In the course of this computation, a total of 6 × 4 × 35 = 840 coincidences 
measurements (comparison of the magnitude of a difference with a fixed 
number) have to be made. Repetition of the complete computation every 
5 ms suffices to follow even rapid pitch period variations.

Demonstration of typical results obtained with this algorithm is shown 
in Figure 13.27. This figure shows a comparison between fundamental fre-
quency estimates obtained by the method above and the true values as used 
in generating the synthetic utterance used in the test. The algorithm clearly 
works very well in this case.

FIGURE 13.27  Comparison between synthetic pitch and that generated by the algorithm.

13.9  VOICED–UNVOICED (BUZZ-HISS) DETECTION

The pitch-period estimation algorithm described above can readily be con-
verted to give voiced–unvoiced estimates. Whenever the speech is unvoiced, 
the number of coincidences observed by the individual detectors will be small. 
Quantitative measurements can be made to set thresholds for the appropriate 
decisions. In addition, if the energy measurements out of the pitch detec-
tion LPF are below a fixed threshold, this strongly indicates either silence 
or unvoiced speech. By combining this with functions of the pitch detector 
output, as indicated above, a voice-unvoiced algorithm can be implemented 
as discussed by Gold.

DSP.CH13_2pp.indd   555DSP.CH13_2pp.indd   555 3/23/2022   12:02:49 PM3/23/2022   12:02:49 PM



556 • Digital Signal Processing 

13.10  VOICED–UNVOICED (BUZZ-HISS) DETECTION

The term “homomorphic processing” is generally applied to a class of systems 
that obey a generalized principle of superposition, and this generalized super-
position can be stated as follows:

If s1(n) and s2(n) are input to a homomorphic system, y1(n) and y2(n) are 
the respective outputs, and C is any scalar, then if

	 [ ]1 1( ) ( )y n s nf= � (13.25)

	 [ ]2 2( ) ( )y n s nf= � (13.26)

	 [ ] [ ]1 2 1 1( ) ( ) ( ) ( )s n s n s n s nf f f∆ =    � (13.27)

and	 [ ]1 1( ) ( )C s n Cy nf ◊ = � (13.28)

where ∆, , ◊, and  correspond to unspecified mathematical operations 
such as multiplication, addition, and convolution.

The importance of this type of processing lies in the fact that the opera-
tion of the homomorphic system can be decomposed into a cascade of opera-
tions as shown in Figure 13.28.

y(n) y(n)s(n)
A0 L A0

–1s(n)

FIGURE 13.28  A homomorphic processing system.

The systems A0 and 1
0A−  are the inverse systems. The system L is a linear 

time-invariant (LTI) system, that is, a simple filter. Thus, with the decompo-
sition as shown in Figure 13.28, one can process the output of system A0 using 
standard techniques and perform processing in a relatively straightforward 
manner. Systems A0 and 1

0A−  are readily determined from φ.
Speech waveform is modeled as the convolution of three components. 

These components are:

1.	 a train of impulses representing the pitch,

2.	 the excitation pulse, and

3.	 the vocal tract impulse response.

The effects of radiation from the mouth also enter into the model but 
these effects are generally combined with excitation pulse. Now we are using 
the following notation:
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	 p(n) to represent the train of pitch impulses,

	 e(n) to represent the excitation pulse,

	 u(n) to represent the vocal tract impulse response, and 

	 and w(n) to represent a time-limited window through which the speech 
waveform s(n) is viewed.

We find that

	 ( ) [ ( ) ( ) ( )] ( )s n p n e n u n w n= � (13.29)

Since w(n) is generally a smooth sequence Eq. (13.29) can be simplified 
to the approximate form

	 ( ) [ ( ). ( ) ( ) ( )]s n p n w n e n u n≈ � (13.30)

	 ( ) ( ) ( ) ( )s n p n e n u n≈ � (13.31)

Eq. (13.31) shows s(n) to be triple convolution. This convolution can read-
ily be converted to a summation by Fourier transforming Eq. (13.2) and then 
taking the logarithm of the result. The resulting waveform may then be pro-
cessed by a linear time-invariant (LTI) system to process each of the compo-
nents of s(n) in some desired manner. To recover a processed waveform, the 
inverse system 1

0A−  consists of an exponentiator and an inverse Fourier trans-
formation. Thus the homomorphic system for processing speech is shown in 
Figure 13.29.

FIGURE 13.29  A homomorphic system for processing speech.

Depending on the specific application, several variations on the system 
above have been used to process speech.

A system is shown in Figure 13.30 has been used to estimate parame-
ters of both the vocal tract transmission function and the excitation function. 
In this case, the excitation is considered to be p(n) e(n) and the vocal tract 
impulse response is u(n). Thus s(n) is a simple discrete convolution.

	 ( ) ( ) ( )s n u n g n= � (13.32)

where g(n) is the excitation signal
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DC EBA
DFT Log |  | Inverse

DFT DFT

Cepstrum
window

Data
window

Speech

FIGURE 13.30  Homomorphic processing for speech.

In this case, s(n) is the signal at point A in Figure 13.30. The application 
of DFT gives a signal at point B that is the product of the DFTs of u(n) and 
g(i). The next block takes the log magnitude of the signal at point B giving a 
signal at point C. Signal C is the sum of the log magnitudes of the DFTs of 
g(n) and u(n). The sequence of blocks following point C (an inverse DFT, a 
windowing, and a DFT) is readily seen to be linear filtering of the signal at 
point C. The filtering is carried out in the transform domain (as a multipli-
cative operation) for the reasons discussed below. Since the inverse DFT is 
linear, the signal at point D (called the cepstrum of the signal at point A) is 
the sum of the cepstra of the excitation and the vocal tract impulse response.

It can be argued that the cepstrum at point D serves to separate the exci-
tation from the vocal tract impulse response in the following manner. The 
excitation signal can be viewed as a sequence of quasi-periodic pulses whose 
Fourier transform consists approximately of a line spectrum where the lines 
are spaced at harmonics of fundamental frequency. The process of taking the 
log magnitude does not affect the general characteristics of the excitation 
spectrum. The IDPT operation yields another quasi-periodic waveform with 
pulses spaced at the fundamental period. Thus, the cepstrum of the exci-
tation signal should consist of pulses around n = 0, T, 2T, ..., where T is the 
pitch period. The vocal tract impulse response is a sequence that generally is 
non-negligible for about 20–30 ms. Its Fourier transform is a slowly varying 
function of frequency. The process of taking the log magnitude and IDFT 
yields a sequence that is non-negligible for only a small number of samples 
(generally less than the number of samples in a pitch period).

It can be shown that for a sequence that decays as 
1
n

, its cepstrum decays 

as 2

1
n

. Thus the cepstrum serves to differentiate the excitation information
 

from the vocal tract impulse response information.
Homomorphic processing on both voiced and unvoiced speech is shown 

in Figure 13.31. Figure 13.31(a) shows typical waveforms obtained at points A 
to E for voiced sequence. Figure 13.31(b) shows typical waveforms obtained 
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at points A to E for an unvoiced sequence. Here we have included three dis-
tinct pitch periods in this analysis. The wiggly curve in Figure 13.31(a)(iii) 
shows the log magnitude of the transform of this sequence, which consists of 
a rapidly varying periodic component (due to the excitation) and a slowly vary-
ing component due to the vocal tract transmission. Figure 13.31(a)(ii) shows 
the resulting cepstrum. The strong peak at about 9 ms shows the pitch period.

(b) Analysis for unvoiced speech

FIGURE 13.31  Homomorphic analysis for voiced and unvoiced speech.

The low-time portion corresponds to the cepstrum of the vocal tract 
impulse response. Application of a low-time cepstral window (to eliminate 
excitation information) the DFT transformation yields the slowly varying 
curve in Figure 13.31(a)(iii). Based on the peaks in the resulting spectrum 
at point E, efficient algorithms exist for estimating formant resonances corre-
sponding to the particular vocal tract transmission function. Figure 13.31(a)
(i) shows a Hamming window-weighted voiced sequence.

For unvoiced speech, the excitation is a random input rather than a 
quasi-periodic pulse train. In this case, the waveform at point A is as shown 
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in Figure 13.31(b)(i). The random nature of the input is evident from this 
plot. The log magnitude of the DFT is as shown in the rapidly varying curve 
in Figure 13.31(b)(iii). The curve may again be modeled as the linear combi-
nation of a random component due to the source and a slowly varying com-
ponent due to the vocal tract. The resulting cepstrum as shown in Figure 
13.31(b)(iii) displays no strong peak indicating the absence of voicing. The 
result of using a cepstrum window and the DFT is shown as the slowly varying 
curve in Figure 13.31(b)(iii).

This curve represents the transmission of the vocal tract. Generally, both 
poles and zeros are used to represent the shape of the unvoiced spectrum.

Homomorphic Vocoder

The analysis scheme above may be readily combined with a synthesizer of the 
type shown in Figure 13.32 to compromise an entire vocoder system.

Exponential Inverse
DFT

Excitation
generator

Smoothed
spectrum

Excitation

u(n)

Synthetic
speech

g(n)

FIGURE 13.32  Block diagram of a homomorphic vocoder.

Instead of coding the vocal tract impulse response spectrum into either 
formants or a pole-zero representation, it is preserved and put through an 
inverse system to the original non-linear processing. This inverse system con-
sists of an exponentiator (to undo the logarithm) and an inverse DFT transfor-
mation to give û(n), an estimate of the vocal tract impulse response.

The excitation period (as obtained from a cepstral measurement) is used 
to create either a quasi-periodic pulse train or a random train of impulses to 
act as an estimate of the true excitation. These two sequences are convolved 
to give the synthetic speech.

Formant Synthesis

One of the most important speech research problems concerns techniques for 
synthesizing speech from appropriate excitation parameters. Speech synthesis 
applications include several types of computer voice response systems and 
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provide important insight into the basic mechanism of speech production and 
perception. One of the most basic sets of such parameters is the set of for-
mant frequencies as a function of time. Formant synthesis lends a consider-
able degree of flexibility and efficiency to the various applications of synthetic 
speech. Here we present some of the signal processing problems associated 
with synthesizing speech from formant data. It is assumed that an analysis 
system is available for deriving the formant data from natural speech.

A schematic block diagram of a general-purpose formant synthesizer 
of the type used in several computer voice response studies is shown in 
Figure  13.33. There are two excitation sources. An externally controllable 
impulse generator (the source for voiced sounds), whose output consists of a 
unit pulse once every pitch period (P samples), and a pseudorandom uniform 
number generator (the source for unvoiced sounds), whose output approxi-
mates a white noise generator.

FIGURE 13.33  Schematic block diagram of a formant synthesizer.

There are two basic signal processing paths in the synthesizer. The upper 
path consists of an intensity modulator (Av) and a time-varying digital filter 
consisting of a cascade of L variable resonators (poles). The transfer function 
of this filter (under steady-state conditions) is

	

( ) ( ) ( )

( ) ( ) ( ) 2

2

1 2

1 2cos
( )

1 1 2cos

k k

kk z

T T
k

v TT
k Z

L
e b T e

H z
k e b T e

a a

aa
−

−

− −−

 − +Π  =
=  − + 

� (13.33)

where αk is the radian bandwidth of the kth pole, bk is the radian center fre-
quency of the kth pole, and T is the sampling period.
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A typical z-plane plot of the pole locations 
for a vowel (L = 5) is shown in Figure 13.34. 
Although all the pole center frequencies and 
bandwidths can be controlled, generally only 
the lowest three center frequencies are var-
ied as shown by the control signal inputs (F1, 
F2, and F3) to the variable resonator system 
in Figure 13.33. The variable resonator sys-
tem accounts for the effects of the time-vary-
ing shape of the vocal tract on the speech 
spectrum.

The effects of radiation of sound from the 
mouth (or nose) into air and glottal excitation pulse shape must be accounted 
for. This is the function of the fixed spectral compensation network whose 
transfer function is of the form

	 1 1

( ) ( )

( ) ( )

1 1
( )

1 1z z

T T

T T

e e
G z

e e

a b

a b− −

− −

− −

   − +   =
   − +   

� (13.34)

This network consists of two real axis 
poles (one in the right-half z-plane and one in 
the left-half z-plane), which approximates the 
desired transfer function. The z-plane plot of 
pole locations for this network is as shown in 
Figure 13.35.

The lower path in Figure 13.33 consists 
of a modulator (AN) that controls the variance 
of the noise generator output and another 
time-varying digital filter consisting of a cas-
cade of a pole and zero. Its transfer function 
is of the form

	 1 2

1 2

(1) ( )
( )

( ) (1)u

H H z
H z

H z H
= � (13.35)

where	 1 2 2
1( ) 1 2 cos( )aT aTH z e bT Z e Z− − − −= − +

	 1 2 1
2 ( ) 1 2 cos( )cT cH z e dt Z e Z− − − −= − + �

where a, b, c, and d are the radian bandwidths and center frequencies of the 
time-varying pole and zero. Generally, the bandwidths of the pole and zero 
are fixed and only the center frequencies vary as shown by the control signal 

X X
X

X X

X X

X
X X

Im(z)

Z-plane

Re(z)

FIGURE 13.34  Pole locations for a 
typical vowel.

X X

Im(z)

Z-plane

Re(z)

FIGURE 13.35  Pole locations for the 
source function.
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inputs Fp and Fz to the variable pole and zero 
systems in Figure 13.33. The z-plane pole-
zero plot for a typical unvoiced sound is given 
in Figure 13.36. The output of this system 
is passed to the fixed spectral compensation 
system to provide the final unvoiced speech 
output.

It should be noted that each of the trans-
fer functions [Eqs. (13.33) to (13.35)] of the 
synthesizer has the property that at zero 
frequency the transfer function is unity inde-
pendent of the center frequencies and band-
widths of any pole or zero. This property is essential to account for the unity 
transmission of a vocal tract at zero frequency and is achieved by using reso-
nators that are individually normalized to have this property.

The synthesizer configuration above is incomplete in its ability to syn-
thesize the sounds of speech in several aspects that are desirable in a gener-
al-purpose synthesizer. For example, there is no provision for a network to 
produce the nasal consonants n and m or a network to produce the voiced 
fricatives z (as in zoo), v (as in very), and th (as in there). To synthesize nasal 
consonants, a network consisting of a time-varying pole and zero must be 
placed in a cascade with the variable resonator system of Figure 13.33.

To synthesize voice fricatives adequately, a network that modulates the 
noise generator output by the voiced path output is necessary. Also, for addi-
tional flexibility in the synthesizer, provision should be made to allow the 
noise generator output to excite the voiced processing path in order to pro-
duce whispered speech.

A more versatile synthesizer is shown in Figure 13.37. In this synthesizer, 
remedies for the aforementioned problems have been obtained. This synthe-
sizer possesses both simulated and built-in digital hardware. The synthesizer 
derives its time-varying control parameters synchronously that is, it changes 
all parameters once per pitch period, at the beginning of the period. At this 
time, each of the filters has minimum energy and the adverse effects of any 
large change in any control parameter are minimized. The control parameters 
are supplied to the hardware from a control computer (indicated as honey 
well DDP-5/6 computer in Figure 13.37).

This synthesizer is similar to that discussed in Figure 13.27. Specifically, 
the upper signal processing path consists of six two-pole digital filters [L = 6 
in Eq. (13.33)] and one two-zero filter, where the bandwidth and center 

X

X

Im(z)

Re(z)

FIGURE 13.36  Pole-zero locations of a 
typical unvoiced sound.
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frequency of each filter is 
controllable. The six two-pole 
filters and the two-zero filter 
account for a nasal pole and 
zero and cancel each other 
during non-nasal sounds.

The exact cancellation 
of a pole by zero is easily 
accomplished in a digital sys-
tem. Four of the two-pole fil-
ters (or possibly five during 
non-nasal sounds) are used 
to represent the time-varying 
vocal tract transfer function 
Hv(z) and the last two-pole fil-
ter provides the desired spec-
tral compensation G(z).

The unvoiced signal 
processing path consists of 
two two-pole filters and one 
two-zero filter. Again the 
bandwidths and center fre-
quencies of each of the filters 
can be varied externally. One 
two-pole and one two-zero 
filter are used to represent 
Hu(z) and the remaining two-
pole filter is used to provide 
the necessary spectral com-
pensation G(z). In this synthe-
sizer, for added flexibility, the 
voiced and unvoiced spectral 
compensation networks may 
be different since they are 
included separately in each 
path of the synthesizer. FIGURE 13.37  Block diagram of a hardware synthesizer.
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13.11  VOICED FRICATIVE EXCITATION NETWORK

The voiced fricative excitation network connects the output at one point in 
the voicing path to the unvoiced path. It is used to model the production of 
the unvoiced component of voiced fricatives. The relevant networks used to 
synthesize the entire voiced fricative are shown in Figure 13.38.

FIGURE 13.38  Excitation network for voiced fricatives.

The unvoiced excitation is produced as follows:
The pitch pulses excite a resonator tuned to the first formant of the voiced 

component of the fricative. This resonator is the first-order approximation to 
the transfer function of volume velocity from the glottis through the point of 
constriction of the vocal tract. A threshold level (VTh) is subtracted from the 
output of the resonator and the result is half-wave rectified.

These operations model the physical observation that turbulence is not 
produced until the volume velocity of the airflow exceeds a threshold value.

The output of the half-wave rectifier modulates the output of the noise 
generator, producing a pitch. Synthesis excitation for the unvoiced component 
of the fricative. The final unvoiced component is produced by feeding this 
excitation into a fricative network (i.e., the lower branch of the synthesizer). 
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The voiced component is produced by exciting the formant networks in the 
usual manner.

13.12  RANDOM NUMBER GENERATOR

Generation of pseudorandom numbers needed as the source for unvoiced 
sounds uses any of a large number of available algorithms. For the hardware 
realization, the specific pseudorandom number generator used is a 16-bit 
maximal length shift register sequence. This algorithm generates a random bit 
from mod-2 sums of the previous 16 bits, shifts out the bit generated 16 clock 
pulses earlier, and shifts in the new bit. The algorithm used to generate the 
current bit is
	 1 12 14 15n n n n nX X X X X− − − −=    �
	 1,2,3, .....n = � (13.36)

where each X is either 1 or 0 and a 1 physically corresponds to a positive exci-
tation pulse and a 0 to a negative excitation pulse. Thus, the noise generator 
output consists of a random succession of positive and negative pulses. The 
spectrum of the noise generator output is flat.

13.13  PRINCIPLES OF DIGITAL OPERATION

The basic principle behind the digital hardware is the multiplexing of a single 
arithmetic unit among all the two-pole filters and the two-zero filters. The 
arithmetic operations required to realize a two-pole filter (for example) are 
two additions, two subtractions, and two multiplications for each output. 
Sample high-speed integrated circuits are currently capable of doing about 
25 times this number of arithmetic operations in the time between output 
samples (100 μs at a 10 kHz sampling rate). Thus, the notation of sharing a 
single arithmetic unit among many filters attains practical significance in the 
synthesizer. By providing storage for the filter coefficients and the delayed 
outputs of the filters and by dynamically controlling which inputs go into the 
arithmetic unit and where the outputs go, a single arithmetic unit can service 
the entire synthesizer.

A schematic block diagram of the digital logic used to realize the synthe-
sizer is shown in Figure 13.39. The arithmetic unit consists of a three-input 
adder, a shift register delay, a subtracter, and a multiplex shift register delay 
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that holds the delayed fil-
ter variables. The length 
of the shift register delay 
is 480 bits (20 delayed 
variables × 24 bits per 
variable).

Another shift register 
memory of 320 bits (20 
filter coefficients times 
16 bit per coefficient) 
holds the multiplexers for 
each of the filter sections. 
This arithmetic unit can 
perform a multiplication, 
an addition, and a sub-
traction simultaneously 
in about 3.9 μs; there-
fore, each filter section 
requires about 7.8 μs per 
iteration. In this manner, 
the 10 filter sections of 
the synthesizer require 
about 78 μs. Thus, the 
synthesizer can operate at 
sampling frequencies up 
to 12.8 kHz.

The synthesizer con-
trol signals come from the 
computer output line to 
the input of the synthe-
sizer. A memory buffer 
transfers the gain coeffi-
cients and pitch period to 
the pulse and noise gen-
erator and to the input 
multiplexer. The mem-
ory buffer shifts the filter 
coefficients to the shift register memory. The pulse and noise generator pro-
vides excitation to the arithmetic unit via the input multiplexer. An accumu-
lator sums the voiced and unvoiced outputs and sends the 16 most significant 

FIGURE 13.39  Block diagram of logic in hardware synthesizer.
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bits (MSBs) back to the computer, simultaneously converting the 12 MSBs to 
analog form. The switching and timing logic is determined from timing logic, 
which uses an externally supplied clock to determine the basic synthesizer 
sampling rate. The sampling rate is thus easily changed without any interval 
modifications to the synthesizer.

13.14  LINEAR PREDICTION OF SPEECH

The basic idea of formant 
analysis and synthesis is that 
speech production is well 
modeled by exciting a cascade 
of linear time-varying second-
order section digital filters (for-
mant resonators) with either 
quasi-periodic pulses or noise. 
The major difficulty with this 
idea lies in assigning computed 
formants to specific second-
order sections. Formants seem 
to disappear during certain 
sounds and additional for-
mants are seen to be present 
during other sounds. A large number of errors of either of these types can 
quickly render the synthetic output unintelligible or at best make its qual-
ity unacceptable. Such errors are generally not uncommon across sentence 
length utterances.

The aforementioned problems can be overcome by modifying the basic 
speech synthesis (production) model to the form as shown in Figure 13.40.

The L individual second-order systems of the formant model are com-
bined to give one pth-order linear system (where P ≥ 2L). This system accounts 
for the vocal tract transmission, the source pulse shape, and the radiation 
characteristics.

The input s(n) is either a stream of digital impulses or a quasi-random 
input.

The transfer function H(z) of the filter is of the form
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� (13.37)

FIGURE 13.40  Linear prediction model of speech 
production.
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The analysis of speech to determine pitch and the voiced–unvoiced deci-
sion is performed as for any other system using a pitch detector of the type 
shown earlier or any other algorithm that is desired. The predictor coeffi-
cients {ak, k = 1, 2, ..., p} are determined from a minimum mean square error 
analysis.

The difference equation of the system shown in Figure 13.40 is written as

		
1

( ) ( ) ( )
p

k
k

s n a s n k nd
=

− +∑ � (13.38)

For voiced speech, δ(n) = 0 except for one sample at the beginning of 
every pitch period.

Thus, except in this sample when δ(n) is non-zero.
Now, Eq. (13.38) can be written as

	
1

( ) ( )
p

k
k

s n a s n k
=

= −∑ � (13.39)

Theoretically, we can say that if the linear prediction model of speech 
production is perfect, the speech samples s(n) are completely predictable 
from Eq. (13.39). Since the speech waveform does not fit the model perfectly, 
it is possible to define an error between s(n), the true value at the sample n, 
and ŝ(n), the value predicted by Eq. (13.39). Let E(n) be the prediction error, 
that is,
	 ˆ( ) ( ) ( )E n s n s n= − � (13.40)

or	
1

( ) ( ) ( )
p

k
k

E n s n a s n k
=

= − −∑ � (13.41)

The predictor coefficients are chosen so as to minimize the mean square 
prediction error <E2(n)>, averaged over all n.

The expression for the mean square error can be put into the form

	
2

2

1 1

( ) ( ) ( )
p

k
n k

E n s n a s n k
∞

= =

 
〈 〉 = − − 

 
∑ ∑ � (13.42)

We can solve Eq. (13.42) for the predictor coefficients. Now, Eq. (13.42) 
is differentiated with respect to aj, j = 1, 2, ..., p, and the result is set to zero 
giving the set of equations

	
1 1 1

( ) ( ) ( ) ( )
p

k
k n n

a s n k s n j s n s n j
∞ ∞

= = =

− − = −∑ ∑ ∑ �

		  1,2,3,...,h p= � (13.43)
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In matrix formulation, the set of equations given by Eq. (13.43) can be 
written as

	 af y= � (13.44)

where	
1

( ) ( )ij
n

s n i s n jf
∞

=

= − −∑ � (13.45)

and	 j ojy f= � (13.46)

Thus φ is a matrix of autocorrelations and ψ is a vector of autocorrelations. 
Since φ is symmetric and positive definite, there exist several efficient meth-
ods of solving the set of equations implied by Eq. (13.43). Thus, the analysis 
required by linear prediction is relatively straightforward.

For synthesis, the system shown in Figure 13.41 is used to give a high-
quality representation of the natural signal. The distinctions between linear 
prediction synthesizer and formant synthesizer are worth noting.

G +nen

V/UV Switch

Pulse
generator

Pitch

p

k = 1
a sk n–k

White-noise
generator

Adaptive
linear

predictor

Predictor
parameters

ak

5-kHz
Lowpass

Filter

Speech
s(t)

FIGURE 13.41  Linear prediction synthesizer.

The most important difference is the use of a single pth-order recursive 
filter in place of the cascade of second-order filters. In the time-invariant case, 
for example, a steady vowel, these two models are exactly equivalent. In the 
time-varying case, for example, most of the time during a speech, these two 
configurations are not equivalent. In the formant synthesizer, it is essential 
that each resonance be assigned to the proper formant or improper operation 
results.
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This is not necessary for the linear prediction case as all formants are 
synthesized by one recursive filter. Another important difference is that the 
amplitude of the pitch pulses, as well as the white noise, is adjusted by the 
gain network G to provide the correct rms value of the synthetic speech sam-
ples. No such adjustment is generally made for synthetic speech.

13.15  A COMPUTER VOICE RESPONSE SYSTEM

Representation of speech in parametric form (e.g., in terms of pitch and for-
mants) has two important advantages in terms of its utility in computer voice 
response systems.

1.	 Since the formants change at rates comparable to the motions of the vocal 
tract, they can be sampled and quantized to low bit rates. Hence repre-
sentation of speech by formant parameters constitutes as an economical 
form for digital storage of speech information.

2.	 The advantage of the formant representation of speech is its inherent flex-
ibility. Since contextual information is contained in the formant data, and 
prosodic data (e.g., inflection, rate of speaking, etc.) is contained in the 
pitch data and the timing information, the formant representation ena-
bles you to separate “What is sad,” from “the manner in which it is sad.” 
This flexibility and economy form the basis for a simple computer voice 
response system where isolated vocabulary elements are smoothly assem-
bled into connected speech.

A block diagram of the system used for the synthesis of connected speech 
from a vocabulary of formant coded words is shown in Figure 13.42. Naturally 
spoken, isolated words (or phrases) are analyzed by a formant analyzer to give 
three formants (F1, F2, and F3), voiced and unvoiced amplitude (AV and AN), 
pitch period (P), and unvoiced pole, and zero (Fp and FZ) once every 10 ms. 
These control parameters are smoothed by programmed digital filters, sam-
pled at their Nyquist rates, quantized, and stored in the word catalog as the 
reference library. The typical bit rate used for storage of these data is 700 bps 
when the pitch signal is saved. When the pitch is not saved, the bit rate for the 
stored data is 533 bps.

A breakdown of how these bit rates are achieved is given in Table.
The data in this table are derived from experimentation and investigation 

of the effects of smoothing and quantization on the perception of the syn-
thetic output.

DSP.CH13_2pp.indd   571DSP.CH13_2pp.indd   571 3/23/2022   12:02:57 PM3/23/2022   12:02:57 PM



572 • Digital Signal Processing 

As shown in Table at every 10 ms interval the speech is classified as voiced 
on unvoiced (V/U) by a 1-bit signal. Thus, for each frame, storage is required 
for either voiced parameters or unvoiced parameters but not for both. It 
should be noted that the control parameter frame rate (331

3  per second) is 
one-third the rate of the V/U signal.

Once input words and phrases are coded in terms of the formant rep-
resentation, they can easily be modified for use with the synthesis program. 
Words can be lengthened or shortened, formants can be changed easily, and a 
pitch contour, different from the one originally spoken, can be superimposed 
on the data. Thus, the vocal resonance data is available to the synthesis pro-
gram in a form flexible enough to confirm the timing and pitch generated by 
the concatenation program.

The lower portion of Figure 13.42 shows how the system assembles a 
synthetic message composed of words and phrases from the reference library.

First, the answer-back program requests the word sequence for a spe-
cific message. The word concatenation program first determines timing data 
for the message from an auxiliary program. The timing data is in the form 
of a word duration for each word in the output message. The concatenation 
program then accesses, in a sequence, the control parameters for each of the 
words in the string. A duration modification adjustment on each word is first 
made so the word duration in context matches the duration specified by the 
timing rules. Next, the concatenation program smoothly interpolates the for-
mant control parameters when the final part of any word and the initial part 
of the following word are both voiced. An interpolation algorithm designed 
to produce realistic formant transitions is used. Finally, a continuous func-
tion for pitch variation is produced for the whole message. All computed 
control parameters are outputted to a hardware digital speech synthesizer. 
Digital-to-analog (D/A) conversion produces a continuous synthetic speech 
output.

The computer voice response system has been applied to several spe-
cific problems including automatic generation of telephone numbers and 
computer-aided voice wiring.
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FIGURE 13.42  Block diagram of concatenation voice response system.
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EXERCISES

1.	 Discuss the following:

i.	 Speech analysis,

ii.	 Speech synthesis,

iii.	 Speech compression.

2.	 Describe the model of speech production.

3.	 Draw and discuss a schematic diagram of the human speech production 
mechanism.

4.	 Write short notes on:

i.	 Voiced sounds.

ii.	 Unvoiced sounds.

5.	 Explain the digital model of speech production with the help of a diagram.

6.	 What is short-time Fourier transform (STFT)? Discuss the advantage of 
STFT in speech analysis and synthesis.

7.	 Discuss speech analysis-synthesis using STFT.

8.	 Describe the overall speech analysis-synthesis system with the help of a 
block diagram.

9.	 Describe channel vocoder with the help of block diagram.

10.	 Describe the pitch-period estimation algorithm.

11.	 Discuss voiced–unvoiced (Buzz-Hiss) detection.

12.	 What is the homomorphic processing of speech?

13.	 Discuss the homomorphic processing system with the help of a block 
diagram.

14.	 Explain homomorphic vocoder.

15.	 Draw and discuss the schematic block diagram of a formant synthesizer.

16.	 Describe voiced fricative excitation network.

17.	 Discuss random number generators.

18.	 Explain principles of digital operation.
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19.	 What do you mean by linear prediction of speech?

20.	 Describe a linear prediction synthesizer with the help of a block diagram.

21.	 Describe a computer voice response system with the help of a diagram.

22.	 What do you mean by acoustic characteristics of speech signals? Draw the 
block diagram of the speech analysis procedure with parameters. Why is 
the short-term or short-time spectrum of speech preferred?

23.	 What is meant by cepstrum? Draw the block diagram of cepstrum analysis 
for extracting spectral envelope and fundamental period. Explain each 
block of your diagram with suitable mathematical expressions.
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C H A P T E R  14
Applications of Digital Signal 
Processing to Radar

14.1  INTRODUCTION

“Radar” is an acronym for radio detection and ranging. It was named by U.S. 
Navy in 1942 (during World War II). It is basically a means of gathering infor-
mation about distant objects or targets by sending electromagnetic (EM) 
waves to them and thereafter analyzing reflected waves or echo signals. Radar 
was actually developed for the first time a few years before World War II. It 
was radar that gave birth to microwave technology. Radar can detect static or 
mobile objects or targets and is the most effective method for guiding a pilot 
with regards to his location in space as well as for warning the approach of 
an enemy plane for similar purposes (early warning radars). Electromagnetic 
waves have some special properties that they encounter a sudden change in 
conductivity, permittivity, or permeability in the medium, a part of the elec-
tromagnetic energy gets absorbed by the second medium and is re-radiated. 
This sudden change in the electrical property of the medium constitutes the 
target.

The re-radiated energy on being received back at the radar station gives 
information about the location of the target. The location of the target includes 
range, angle, and velocity parameters. The range is the distance of the target 
from the radar station. The angle could be azimuth or elevation angle for 
static targets and velocity for moving or mobile targets.

To find the location of the target satisfactorily, the echo power (power 
of a received signal) must be appreciable. Accordingly, the amount of power 
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(energy) required to be radiated by the radar transmitter must be tremen-
dous, typically few KW to MW. Such high power at high frequencies can be 
generated using magnetrons.

We know that the development of digital computer technology has led to 
great sophistication of radar tracking algorithms. In addition, computers in 
conjunction with electronically steerable phased array antennas have led to 
refined methods of scheduling of the radar’s repertoire of transmitted signals. 
We anticipate that future radars will incorporate high-speed digital hardware 
to perform the desired filtering and thresholding algorithms. Several radars 
are incorporated with digital signal processing (DSP) hardware. DSP pro-
cessors are more flexible than their analog counterpart, that is, analog signal 
processing processors.

14.2  APPLICATIONS AND ADVANTAGES OF RADARS

Radars can be used in civilian applications as well as in military applications. 
Some of the applications are given below:

1.	 Detection and range of enemy targets even at night.

2.	 Early warning regarding approaching aircraft or ships.

3.	 For directing guided missiles.

4.	 For aiming guns at aircraft and ships.

5.	 For bombing ships, aircraft, or cities even during overcast or at night.

6.	 For searching submarines, landmasses, and buoys.

7.	 Navigational aids on ground and sea. But navigation is not affected by 
poor visibility or darkness.

8.	 Police radars for directing and detecting speeding vehicles.

9.	 Airborne radar for satellite surveillance.

10.	 Radar altimeters for determining the height of the plane above ground.

11.	 Radars for determining the speed of moving targets such as automobiles, 
shells, guided missiles, etc.

12.	 Radar blind lander for aiding aircraft to land under poor visibility, at night, 
under adverse weather conditions, etc.
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Advantages of Using Radar

Radar has the following advantages:

1.	 Radar can see through darkness, haze, fog, rain, and snow.

2.	 They can determine the range, angle, that is, the location of the target 
very accurately. It can also determine the speed of moving objects.

14.3  LIMITATIONS OF USING RADAR

Radar has the following limitations:

1.	 Radar cannot resolve in detail like the human eye, especially at short 
distances.

2.	 They cannot recognize the color of the target.

Before embarking on our study of applications of DSP to radar, let us first 
discuss the various radar system radar parameters. We will also study the chirp 
z-transform which is used extensively in the digital processing of radar signals.

14.4  CHIRP z-TRANSFORM (CZT) ALGORITHM

We have already studied the computation of DFT in a very efficient manner, 
that is, fast Fourier transform (FFT) algorithms.

CZT algorithms are equivalent to efficient computation of samples of the 
z-transform of a finite length sequence taken at equally spaced points around 
the unit circle. In order to achieve this efficiency in evaluating the z-transform, 
N is required to be a highly composite number. Also, we will have an inter-
est either in sampling the z-transform on some other contour or we may not 
require samples of the z-transform over the entire unit circle. Thus, the scheme 
for increasing the flexibility of DFT computations is of considerable interest.

Now, we are interested in obtaining samples of the z-transform of a finite 
length sequence on a circle that is concentric with the unit circle, and the 
samples are to be equally spaced in angle around this circle.

In such a case, we can use an FFT algorithm after a minor modification. 
Specifically, if we have a finite duration sequence s(n) of length N, then the 
DFT of the sequence s(n)α−n

 will provide N samples equally spaced in angle 
around a circle of radius α in the z-plane.
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If we are interested in obtaining frequency samples equally spaced over 
a small portion of the unit circle, the most efficient approach is often to use 
an FFT algorithm to computer frequency samples with the desired spacing, 
but obtaining samples outside the frequency range of interest. For example, 
we have a sequence s(n) with N = 128. Now we are interested in obtaining 

128 samples of z-transform on the unit circle between 
πω −

=
8

 and 
πω =
8

.
 

The most efficient procedure is to compute a 1024 point DFT sequence by 
augmenting the original sequence with zeroes and retain only the 128 spectral 
points desired.

An alternative procedure is the use of the CZT algorithm. In many situa-
tions, CZT algorithm is the most efficient method. The algorithm is directed 
toward the computation of samples of the z-transform on a spiral contour 
equally spaced in angle over some portion of the spiral.

Specifically, let s(n) is an N-point sequence and s(n) is the z-transform of 
s(n). Using the CZT algorithm, s(n) can be computed at the points zk given by

	 − −= = 1, 0,1,2,  ...,k
kz AW k M  � (14.1)

where,	 0
0W W e φ−= � (14.2)

	 0
0

jA A e θ= � (14.3)
	 A and W are positive real numbers.
Consequently, the contour along which the samples are obtained is shown 

in Figure 14.1.

0

(N – 1) 0

z-plane

A0

A W0 0
–1

0

|z| = 1

FIGURE 14.1  z-plane contour for the CZT.

DSP.CH14_3pp.indd   580DSP.CH14_3pp.indd   580 4/1/2022   10:47:53 AM4/1/2022   10:47:53 AM



Applications of Digital Signal Processing to Radar • 581

This contour is a spiral in z-plane. The parameter W0 controls the rate at 
which the contour spirals.

1.	 If W0 is greater than unity, the contour spirals toward the origin as k 
increases.

2.	 If W0 is less than unity, the contour spirals outward as k increases. 
The parameters A0 and φ0 are the location in radius and angle, respec-
tively, of the first sample, that is, k = 0. The remaining samples are located 
along the spiral contour with an angular spacing of φ0.

3.	 If W0 = 1, the spiral is, in fact, a circular arc, and if A0 = 1, this circular arc 
is a part of the unit circle, that is, |z| = 1.
z-transform of sequence s(n) is given be

	 ( ) [ ( )] ( )
nz

n

S z Z s n s n
−

∞

=−∞

= = ∑ � (14.4)

where
	 Complex variable.z =

Substituting z = zk and s(n) is finite length sequence, that is, s(n) = Non-
zero, 0 ≤ n ≤ N − 1 = Zero, elsewhere in Eq. (14.4), we get

	 ( )
0

( ) n
k k

n

S z s n z
∞

−

=

=∑ � (14.5)

Substituting Eq. (14.1) in Eq. (14.5), we get

	
( )

1

0

( )
N nk

k
n

S z s n AW
− −−

=

 =  ∑

	
1

0

( ) , 0,1,2,..., 1
N

n nk

n

s n A W k M
−

−

=

= = −∑ � (14.6)

where N is the length of the sequence s(n).
Now we have an identity

	 ( )22 21
2

nk n k k n = + − − � (14.7)

Substituting identity given by Eq. (14.7) in Eq. (14.6), we get

	
( )

1

0

( )
N

n nk
k

n

S z s n A W
−

−

=

= ∑

	
( )22 21

2
1

0

( )
N n k k nn

n

s n A W
−  + − −−  

=

= ∑
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2
2 2
2 2

( )1
2

0

( )
n k

k nN
n

n

s n A W W W
− −−

−

=

= ∑

or	 ( )
2

2 2
2 2

( )1
2

0

( )
k n

k nN
n

k
n

S z W s n A W W
− −−

−

=

= ∑ � (14.8)

Let us assume that

	
2

2( ) ( )
a

ng n S n A W−= � (14.9)

Substituting Eq. (14.9) in Eq. (14.8), we get

	 ( )
2

2
2

( )1
2

0

( ) , 0,1,2,..., 1.
k

k nN

k
n

S z W g n W k M
− −−

=

= = −∑ � (14.10)

Eq. (14.16) expresses S(zk) in terms of the new sequence g(n). We recog-
nize the summation as corresponding to the convolution of the sequence g(n) 

with the sequence 
2

2
n

W
−

.
Therefore Eq. (14.10) can be written as

	 ( )
− 

= ∗ 
  

2
2
2 2( )

k
n

kS z W g n W � (14.11)

Sign * shows the convolution sum between two sequences.

Let us assume that 
2

2
n

W
−

 is another sequence and given as

	
2

2( )
n

h n W
−

= � (14.12)

Interpretation of Eq. (14.11) in terms of a linear system with impulse 
response

	
2

2( )
n

h n W
−

=  is shown in Figure 14.2.

h(n)

A
–n

h(n)
1

h(n)

s(zn)

g(n)
Sequence

s(n)

FIGURE 14.2  Interpretation of Eq. (14.11) in terms of a linear system with impulse response h(n).
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When A and W0 are unity, the sequence h(n) can be thought of as a com-
plex exponential sequence with linearly increasing frequency. In radar sys-
tems such signals are chirp signals; hence the name CZT. A system similar 
to shown in Figure 14.2 is commonly used for spectrum, analysis in radar 
problems.

Since the sequence g(n) is of finite duration, the convolution in Eq. (14.6) 
can be carried out by means of the DFT (of course computed by using FFT 
algorithms).

Whereas the sequence g(n) is of finite duration, the sequence 
2

2
n

W
−

 is of 
infinite duration. Consequently, if the convolution is to be implemented using 

the DFT, then it is necessary to section the sequence 
2

2
n

W
−

.
We also note that, while the result of the convolution is of indefinite 

length, we are only interested in the result of the convolution for k = 0, 1, 2, 

..., M − 1. Consequently, in sectioning the sequence 
2

2
n

W
−

, it would be advan-
tageous to choose the sections in such a way that the result of the computation 
of one section results in the M desired output points.

Various sequences involved in this process for the case N = 10 and M = 6 

are shown in Figure 14.3. The sequence g(n) and 
2

2
n

W
−

 are depicted in Figure 
14.3(a) and (b), respectively.

In implementing the convolution of sequences s(n) and 
2

2
n

W
−

, the only 

part of 
2

2
n

W
−

 that is required to compute the result of the convolution in 
the interval 0 to M − 1 is that part from −N + 1 to M − I, including both of 

these end points. That part of the sequence 
2

2
n

W
−

 is between the dashed lines 
labeled A and B in Figure 14.3(b).

Consequently, the convolution can be implemented by computing the (M 
+ N − 1) point DFT of g(n) (augmented of course with M − 1 zeroes) and the 

(M + N − 1)-point DFT of the part of the sequence 
2

2
n

W
−

 in the region from 
A and B in Figure 14.3(b).

The inverse DFT of the product of these two DFTs will be the circu-

lar convolution of the sequences g(n) with the section of 
2

2
n

W
−

. We consider 
the overlap-save method of implementing a convolution, part of the circular 
convolution will correspond to a linear convolution and part will not. We can 
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arrange for the “good” or desired points to occur in the region 0 ≤ n ≤ M − 1, 
by interpreting the index n-modulo (N + M − 1). This means that we would 
compute the DFT of the sequence.

	 ( )+ − −

−

−


≤ ≤ −= 

 ≤ ≤ + −

2

21
2

2

,

, for 0 1
( )

for 2
N M n

n

W n M
h n

W m n N

� (14.13)

FIGURE 14.3  Illustration of sequences involved in the chirp z-transform 
(CZT) algorithm (L = N + M − 1).
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h(n) is shown in Figure 14.3(c).
If we multiply the DFTs of g(n) and h(n), the first M values of the corre-

sponding inverse DFTs are the desired values of the convolution of g(n) with 
2

2
n

W
−

. To obtain the desired M values of S(k) as in ( )
12 2

0

( )( )
2 2

N

n

k k ng n

kS z W W

−

=

− −− =∑
= , 

we must multiply these values by 
2

2
k

W .
In the above discussion the size of the DFTs computed was (M + N − 1). 

If we wish to compute the DFT using a power of 2 (2r) algorithm. This can 
easily be accomplished by augmenting the (M + N − 1)-point sequences with 
a sufficient number of zeroes so that their total length is a power of 2. Since 
the number of complex multiplications required for the computation of each 
DFT is on the order of

21 log  ) 1( ( )N M N M+ − + −

1.	 It is clear that the total computation required to implement the evalu-

ation of ( )
1

0

( )
N

n nk
k

n

S z s n A W
−

−

=

= ∑  using the CZT algorithm is proportional 

(N + M − 1). log2 (N + M − 1).

In contrast, the direct evaluation of ( )
1

0

( )
N

n nk
k

n

S z s n A W
−

−

=

= ∑  requires com-

putation proportional to (N.M.). It is also clear that the direct method will 
be most efficient for small enough values of N or M, But, it is also true that 
for sufficiently large M and N (on the order of 50), the CZT algorithm will 
be most efficient.

2.	 In addition to increased efficiency, the CZT algorithm also offers added 
flexibility in the computation of samples of the z-transform of the finite 
length sequence. We do not require N = M as m the FFT algorithms, 
and neither N nor M need be highly composite numbers; in fact, they 
may be prime numbers, if desired. The parameter φ0 is required to be 
2
N
π  in an FFT algorithm, whereas φ0 is arbitrary in the CZT algorithm. 

Further, the samples of the z-transform are taken on a slightly more 
general contour that includes the unit circle as a special case.

The CZT algorithm is an example of the way that Fourier analysis can be 
performed using linear filtering. Similarly, the Goertzel algorithm is another 
example of the same.
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FIGURE 14.4  Use of chirp z-transform (CZT) algorithm, (a) z-plane pole locations for 
synthetic speech signal. (b) Evaluation of z-transform for several spiral contours.
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EXAMPLE 14.1
An example of the use of the CZT algorithm to sharpen resonances by evalu-
ating the z-transform of the unit circle, |z| = 1 is shown in Figure 14.4. The 
signal to be analyzed corresponds to a finite length segment of a synthetic 
speech signal.

The speech signal was generated by exciting a five-pole system with a 
periodic impulse train. The system was simulated to correspond to a 10 kHz 
sampling frequency. The poles were located at center frequencies of 270, 
2290, 3010, 3500, and 4500 Hz with bandwidths of 30, 50, 60, 87, and 140 Hz, 
respectively.

Solution:
Figure 14.4(a) shows the z-plane plot indicating the location of the poles used 
to generate the signal. The CZT algorithm was applied to one period of the 
steady-state data for five different choices of |W| with the results shown in 
Figure 14.4(b). The first two spectra correspond to spiral contours outside the 
unit circle with a resulting broadening of the resonance peaks.

|W| = 1 corresponds to evaluate the z-transform on the unit circle. As |W| 
increases past unity the contour spirals inside the unit circle and closer to the 
pole locations resulting in a sharpening of the resonance peaks.

14.5  RADAR SYSTEM AND RADAR PARAMETERS

The major components of a radar are the antenna, the tracking computer, 
and the signal processor. Associated with the antenna are the transmitter and 
modulator and receiver hardware.

The tracking computer is the brain of the radar System which is used to 
schedule the appropriate antenna positions and transmit signals as a function 
of time, keep the track of important targets, and run the display system.

The major traditional functions of the signal processor are matched fil-
tering and removal of useless information by threshold detection. A key ele-
ment in the design of the overall radar is signal design. Transmitted radar 
signals may vary from simple pulse trains to high bandwidth chirp signals or 
low-frequency modulated (LFM) signals, bursts of pulses or chirps, nonuni-
form bursts, or polyphase circles.

The block diagram of a modern radar system is shown in Figure 14.5. 
Tracking computer controls all the functions. There is a control path from the 
tracking computer to the antenna system, if the antenna beam is electronically 
steerable, the tracking computer can control the beam position on a pulse- 
to-pulse basis and can determine whether monopulse information is called for.
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Monopulse information is useful for better angle resolution. The tracking 
computer also controls the signal generator and coordinates the transmitted 
signals and the matched filter configuration of the tasks of the tracking com-
puter becomes too great, and the jobs may be divided among several comput-
ers as shown in Figure 14.5.

14.5.1 Radar Parameters

We will consider the following radar parameters, which are discussed below:

1.	 Antenna aperture and wavelength.

2.	 Range and range resolution.

3.	 Doppler filtering.

1.	 Antenna Aperture and Wavelength: Antenna beamwidth is given by

0B
D
λ

∞ � (14.14)

where B0 = beamwidth of the antenna, and λ = wavelength, D = antenna width.
If the antenna geometry is symmetric as in a parabolic reflector antenna, 

then antenna beamwidth B0 is the same in both horizontal (azimuth) and ver-
tical (elevation) dimensions, this corresponds to a pencil beam.

A spherical coordinate system is normally used for radar antennas. The 
radius of the sphere corresponds to range (distance from antenna), while azi-
muth is the angular dimensions parallel to the earth, elevation is the orthogo-
nal angular dimensions perpendicular to the earth.

In many applications such as air traffic control (ATC), a fan beam is 
required to obtain full coverage in a reasonable tone. A fan-beam antenna is 
built with a large horizontal and small vertical aperture to obtain a beam that 
is narrow in azimuth and wide in elevation.
2.	 Range and Range Resolution: The maximum unambiguous range 

(Rmax) of the Radar is given by

	 max 2
cT

R = � (14.15)

where c = velocity of light = 3 × 108 meter/second and T = pulse repetition 
time in seconds.

For example, if pulse repetition time T is equal to 1 millisecond, then

	
8 3

max

3 10 1 10
Radar Range,

2 2
cT

R
−× × ×

= =
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FIGURE 14.5  Block diagram of a modern radar system.
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	 150 kilometer=
If T is decreased, targets at ranges greater than Rmax will appear after the 

next radar pulse has been transmitted, causing an ambiguity in the interpre-
tation of the measured range. Receiver noise and clutter may clamp a much 
lower limit than Rmax on the maximum range at which target detection proba-
bilities are good.

14.5.2 Range Resolution

Range resolution ∆R is the measure of how well two targets that are near 
each other can be resolved by the radar. If the transmitted signal is a pulse of 
constant carrier frequency, then the minimum ∆R is determined by the pulse 
width p.

If the range difference ∆R between two targets in the same beam is less 

than 
2
pc , the two received radar signals (echo signals) will interfere and the

 
two targets may be mistaken for a single target. By decreasing the width of 
the pulse, improvement in range resolution ∆R will take place but maximum 
range Rmax will reduce due to a decrease in the average power of the signal.

14.5.3 Doppler Filtering

Moving targets can be identified by using the Doppler effect, When the target 
is moving relative to radar, then there will be a shift in the carrier frequency 
of the received signal, and this effect is called the Doppler effect. The shift in 
frequency is the Doppler shift and this is the measure of the velocity of the 
radar.

When a continuous sine wave of frequency f0 is transmitted and the target 
is moving with a constant velocity n, then the received echo signal frequency 
is f0 + ∆f.

The resultant frequency shift in the received echo signal is given by

	 0

2 2
f f

c
ν ν

λ
∆ = = � (14.16)

where f0 = carrier frequency; ν = target velocity, and λ = wavelength = 
0

c
f

;  
c = 3 × 10s m/second.

Continuous-time signals or practically speaking signals of long duration 
would result in poor range resolution. To obtain both range and velocity res-
olution it becomes necessary to deal with pulsed Doppler signals. We shall 
now show that detection of pulsed Doppler signals corresponds to sampling a 
sinusoid of frequency ∆f at the pulse repetition period. Here, we assume that 
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each pulse of carrier frequency f0 begins at exactly the same phase, then at 
some given range, a return signal is received.

Since, during the pulse duration, the aircraft can be considered stationary, 
there is no measurable Doppler shift of the received signal. After T seconds, 
however, the aircraft has moved slightly and if the next return is sampled at 
the same range, a phase shift relative to the first return is discernible.

	 Phase Shift 2
Tνφ π
λ

= � (14.17)

If the aircraft maintains constant radial velocity, there will be an addi-
tional phase shift φ for each repetition interval T. Thus, any signal return from 
a given range can be represented as
	 [ ]02 ( )( , ) ( ) j f t T ns n t A n e π φ− +=

� (14.18)

where A(n) = amplitude modulation caused by the motion of the antenna 
beam as it sweeps by the target.

For an electronically steerable antenna, it is possible to stop the antenna 
beam so that A(n) can be unity.

In the radar receiver, we assume that the returned complex exponential is 
multiplied by a coherent oscillator source with an arbitrary but fixed phase y. 
This signal is denoted by sr(t).

The demodulated signal will be given as
	 ( ) ( ) ( ), , rf n t s n t s t= � (14.19)

Substituting Eq. (14.5) and ( )π ψ− += 02( ) j f t
rs t e  in Eq. (14.6), we get

	 ( ) ( ) ( ), , rf n t s n t s t=

	 [ ] ( )0 02 ( ) 2( ) j f t T n j f tA n e eπ φ π ψ− + − +=
	

00( ) j T j jnA n e e eω ψ φ−=
�

(14.20)
Putting the value of φ from Eq. (14.4) in Eq. (14.7), we get
The exponentials e− jω

0
T

 and e−jψ are constants of unity amplitude and can 

be ignored. The variable part is simply an oscillation of frequency ν
λ

, which is 
the Doppler frequency.

14.6  RADAR SIGNAL DESIGN AND AMBIGUITY FUNCTIONS

Radar signal design is directed toward achieving the best range and veloc-
ity measurement on one or more targets. We know that a transmitted nar-
row pulse results in good range but poor velocity measurement, a wide pulse 
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of a single frequency yields good velocity but bad range information. From 
this, the signal design will consider a compromise between range and veloc-
ity measurement. We use the ambiguity function of two variables, range and 
velocity to achieve a compromise between range and velocity. The ambiguity 
function is at the center of analog radar signal design using analog matched 
filtered and the emphasis will be given to digital ambiguity functions. Here, 
we discuss and develop ambiguity functions entirely based on the assumption 
that the signal processor is digital.

The ambiguity function is an idealized mathematical model of the system 
shown in Figure 14.6. We assume that the signal is generated digitally but 
must pass through an analog filter on its way to the transmitter. Ideally the 
analog signal return s (t − τ) ej2π (t − τ) is a delayed and frequency shifted version 
of the transmitted signal s(t). These effects, due to target displacement and 
velocity, are assumed to be carried undisturbed through the receiver analog 
filter and the A/D converter so that the input to the matched filter is the dig-
ital signal ( ) ( )2 sj f nT

ss nT π ττ −− . Note that this signal is a function of two contin-
uous parameters, τ and f (range and Doppler).

FIGURE 14.6  Block diagram of the radar model leading to the ambiguity function.

Now, we enquire about the nature of the digital matched filter used. To 
preserve radar power it is describable to make the signal duration large, but to 
preserve range resolution the output from a given range bin must be compact in 
time. This apparent contradiction is resolved by designing long-duration signals 
with short-duration correlation functions so that when the received signal passes 
through the appropriate matched filter, the output will be a very sharp pulse.

Hence, if we have a digital filter matched to the signal return for zero 
range and zero Doppler, then this filter must have the impulse response 
s*(−nTs). Therefore, the digital matched filter output will be defined as 
the digital ambiguity function. The ambiguity function is also in actuality 
the cross-correlation function between the signal and the matched filter 
impulse response.
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Ambiguity function will be given as

	 ( ) ( ) ( )π ττ τ
∞

+

=−∞

= + ∗ −∑ 2( , ) sj f nT
s s

n

A f s nT s nT e � (14.22)

where Ts is the sampling period at A/D converter.
If the matched filter is matched to a given range and Doppler, this corre-

sponds to a two-dimensional displacement of A(t, f). Therefore, Eq. (14.22) is 
a perfectly general formulation.

The major importance of the ambiguity function, that is, the magnitude of 
A(τ, f) is to bring into focus a basic constraint of radar signal design. The basic 
constraint of a radar signal design is that a signal cannot be designed that gives 
high performance everywhere in the range-velocity plane. The mathematical 
manifestation of this constraint is that the total volume under the squared 
magnitude of the ambiguity function is independent of the signal wave shape. 
Thus pushing A(τ, f) down anywhere in the (τ, f) plane will cause it to pop up 
elsewhere. To prove this, we use Eq. (14.22).

	
τ τ τ

−

∞

−∞

= ∗∫ ∫
2

2

( , ) ( , )

Fs

Fs

V A f A f dfd
�

(14.23)

where Fs = sampling frequency = 
1

sT
 and Ts = sampling period.

Substituting Eq. (14.22) in Eq. (14.23), we get

	

2

2

( , ) ( , )

Fs

Fs

V A f A f dfdτ τ τ
−

∞

−∞

= ∗∫ ∫

	
( ) ( ) ( )

2

2

2

Fs

s

Fs

j nT
s s

n

s nT s nT e π ττ
−

∞ ∞
+

=−∞−∞


= + ∗


∑∫ ∫

	
( ) ( ) ( )2 sj mT

s s
m

s mT s mT e dfdπ ττ τ
∞

− +

=−∞


× + 


∑

	
( ) ( ) ( ) ( )

2

2

Fs

Fs

s s s s
n m

s nT s nT s mT s mTτ τ
−

∞∞ ∞

=−∞ =−∞ −∞


= + ∗ ∗ +


∑ ∑ ∫ ∫

	
( ) ( ){ }2 2s sj f nT j f mTe e df dπ τ π τ τ+ − + × 

	
( ) ( ) ( ) ( )

2

2

Fs

Fs

s s s s
n m

s nT s nT s mT s mTτ τ
−

∞∞ ∞

=−∞ =−∞ −∞

= + ∗ ∗ +∑ ∑ ∫ ∫

	
2 ( ) sj f n m Te df dπ τ−
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(on integration with respect to f)

	
( ) ( ) ( ) ( )s s s s

n m

s nT s nT s mT s mTτ τ
∞∞ ∞

=−∞ =−∞ −∞

= + ∗ ∗ +∑ ∑ ∫

	
[ ]sin ( )

( )
s s

s

F T n m
d

T n m

π
τ

π
−

− � (14.24)

Since [ ] ( ) ( )( ) s s sR n m T s nT s mT dτ τ τ
∞

−∞

− = + ∗ +∫ � (14.25)

Substituting Eq. (14.25) in Eq. (14.24), we get the autocorrelation func-
tion of the signal

	 ( ) [ ] [ ]sin ( )
( )

( )
s s

s s
n m s

F T n m
V s nT R n m T

T n m

π
π

∞ ∞

=−∞ =−∞

−
= ∗ −

−∑ ∑ � (14.26)

Since
	

1
or 1.s s s

s

F F T
T

= =

	
[ ] 0, when sin ( )

when ( )
s s

ss

n mF T n m
F n mT n m

π
π

≠− 
=  =− 

�
(14.27)

Therefore, the double sum of Eq. (13) can be replaced with the single 
sum

	 ( ) 2
(0)s s

n

V F R s nT
∞

=−∞

= ∑ � (14.28)

We see from Eq. (14.28) that V (volume under the ambiguity function) 
is dependent only on the total signal energy and not in any way on the signal 
shape.

Thus, for a given amount of signal energy, we have demonstrated that any 
decrease of the ambiguity function must result in an increase somewhere else 
in the (τ, f) plane.

14.7 � AMBIGUITY FUNCTIONS OF CHIRPS AND 
SINUSOIDAL PULSES

A chirp waveform is a linear frequency modulated (LFM) signal which com-
bines some of the useful properties of both long and short pulses of a single 
sinusoidal carrier.
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Now we first find the ambiguity function for the chirp and then obtain 
that of the continuous wave (CW) pulse as a special case.

From a practical point of view, we are interested in signals and systems, 
that is, filters with a finite duration. It means that we have to establish some 
convention on the limits in Eq. (14.9) that takes into account the precise way 
that s(nTs + τ) and s*(nTs) overlap. We agree on the following convention as 
shown in Figure 14.7.

Let the width of the signal T be exactly equal to Mts where M is the num-
ber of samples in the matched filter. Thus for −Ts < t ≤ 0, the overlap between 
signal and impulse response is perfect.

For 0 < t ≤ Ts, they are misaligned by one sample.
Now let us define I(τ) as the nearest rounded up integer of the ratio |i|/Ts. 

Thus, when 0 < t ≤ Ts, T(τ) = 1, when Ts < t ≤ 2Ts, I(τ) = 2, etc. For t negative, 
Eq. (9) can be written as

= 0

Ts samples of s*(nT )s

T = MTs

= –Ts

= –2Ts

= Ts

= 2Ts

s(t + )

M 1

1

A( , f )

M 1

2

A( , f )

M 2

0

A( , f )

M 3

0

A( , f )

FIGURE 14.7  Synchronization conventions between digital matched filter and sampled signal.
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	 ( ) ( )
1

2

( )

( , ) s

M
j fnT

s s
n I

A f s nT s nT e π

τ

τ τ
−

=

= + ∗∑ � (14.29)

Similarly, for τ positive, Eq. (14.22) can be written as

	 ( ) ( )
1 ( )

2

0

( , ) s

M I
j fnT

s s
n

A f s nT s nT e
τ

πτ τ
− −

=

= + ∗∑ � (14.30)

If s(nTs) is of the form of an exponential, then Eq. (14.29) can be changed 
into Eq. (14.30) by the simple change of variable k = n − I(τ), the inclusion of 
I(τ) in the arguments of the three functions inside the sum of Eq. (14.29) has 
been factored out to become a phase term that can be discarded. Thus, any 
computation can be done using Eq. (14.30) and A(τ, f ) is really a function of 
|I(τ)|, where |I(τ)| is the magnitude of I(τ). Now, we can develop Eq. (14.30) 
for the special case of a chirp.

	 π=
2( / )( ) j W T ts t e � (14.31)

where W = swept bandwidth of the chirp and T = total signal time duration.

We replace the parameter W by N
T

 so that N is the time-bandwidth prod-
uct of the signal.

For the case when Ts is the Nyquist sampling interval, that is, 1
W

, we find 

s

T
N M

T
= = . If we derive the result keeping M and N independent variables, 

then our answer will be valid for any sampling rate.
After neglecting phase terms from Eqs. (14.30) and (14.31), we get

	
( )1 ( )

2 2

0

| ( , )|
W

s sT

M I
j nT fnT

n

A f e
τ

π τ πτ
− −

 + 

=

= ∑ � (14.32)

Normalization of τ and f will be done by using the following relationships

	  and fT
T
τγ ν= = � (14.33)

Substituting Eq. (14.33) in Eq. (14.32), we get

	
1 ( )

2

0

| ( , ) |
T

s M

M I T
j w W nT fn

n

A e
γ

π γ πγ ν
− −

 + 

=

= ∑

	

2
1 ( )

2

0

n
M

M I T
j fn

n

e
πν

γ
π

− −
 + 

=

= ∑

or	
1 ( )

2

0

| ( , ) | M

M I T
j n

n

A e
ν

γ
π γγ ν

− −
 + 

=

= ∑ � (14.34)
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After solving Eq. (14.34) and further manipulating, we obtain

	
sin[ ( )][1 (| ( ) | / )]

| ( , ) |
sin[( / )( )]
N T M

A
M N

π γ ν γγ ν
π γ ν
+ −

=
+

� (14.35)

Eq. (14.35) is our fundamental result.
Now we check two conditions to see what happens when γ and νn are 

zero.
If ν = 0, then Eq. (14.35) can be written as

	
sin( )[1 (| ( ) | / )]

| ( ,0) |
sin[( / ) ]
N I T M

A
N M

π γ γγ
π γ
−

= � (14.36)

If γ = 0, then Eq. (14.35) can be written as

	
sin( )[1 (| (0) | / )]

| (0, ) |
sin( / )

I M
A

M
πνν

πν
−

= � (14.37)

The important point to note is that both Eqs. (14.36) and (14.37) look like 
sharp pulses (about either γ = 0 and ν = 0) on about the same width, given 
that M is reasonably large integer. The term 1 − (|I(γT)|/M) has the effect of 
reducing the frequency of the side lobe ripples at large range offsets.

Because the term Nγ + ν appears as an entity in both arguments of 
Eq. (14.35). There is no way to separate the effects of range and velocity off-
sets. The ambiguity function of the chirp signal is shown in Figure 14.8. This 
figure shows two range cross-sections of the ambiguity function at different 
Doppler. Assume the chirp signal is used to track two targets in the same 
range bin traveling at different velocities. The result will be target returns 
apparently displayed in the range.

Since the chirp may be of long duration, it illuminates a target with sub-
stantial energy, thus increasing range. In addition, since the matched filter 
response is always a sharp pulse, the range resolution is also obtained. In this 
sense, the chirp has several good properties. Range–Doppler coupling makes 
it impossible to separate range from velocity measurements, thus the chirp is 
not a good signal for velocity measurements. Fortunately, in many practical 
problems, the range offset caused by Doppler is very small so that the signal 
return can also be used as a range measure.

Along the line Nγ + ν = 0 in the (γ, ν) plane Eq. (14.35) reduces to

	
| ( ) |

| ( , ) | 1
I T

A M
M
γγ ν  = − 

 
� (14.38)

Thus, in three dimensions one can imagine a ridge along the line Nγ + 
ν = 0 with a triangular decrease in the height of the ridge with increas-
ing range offset. Due to the stepwise nature of |I(γT)|, the top of the ridge 
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actually decreases in discrete steps. Figure 14.9(a) is a sketch of Eq. (14.35). 
This sketch shows |A(γ, ν)| (or |A(τ, f)|) has substantial value (shaded region) 

and where it does not. For the case M = N or 
1

sT
W

= , which corresponds to 

Nyquist sampling. Figure 14.9(b) shows what happens when the sampling 

rate is halved so that 
1

2sT
W

= , extra shaded regions due to leasing appear.

By comparing equation given below

	 ( ) ( ) ( )π ττ τ
∞

+

=−∞

= + ∗∑ 2( , ) sj f nT
s s

n

A f s nT s nT e

With the well-known formula for the analog ambiguity function

	
πτ τ

∞

−∞

= + ∗∫ 2( , ) ( ) ( ) j fta f s t s t e dt � (14.39)

We can derive the relationship between a(τ, f) and A(τ, f).
Relationship between the continuous-time Fourier transform of an ana-

log signal g(t) and the Fourier transform of the sampled version of the same 
analog signal are as follows:

if	 2( ) ( ) j ft
aG f g t e dtπ

∞
−

−∞

= ∫

and
	

( ) ( )π π
∞

−

=−∞

= ∑2 2 sj f j fnT
s

n

G e g nT e

Velocity

Apparent range shift

Range

FIGURE 14.8  Ambiguity function of Chirp.
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By inspecting Eqs. (14.22) and (14.39), we conclude that the Eq. (14.39) 
is the Fourier transform of the “signal” s(t + τ) s*(t) and Eq. (14.22) is the 
Fourier transform of the sampled version, hence

	 ( , ) ,
n s

n
A f a f

T
τ τ

∞

=−∞

 
= + 

 
∑ � (14.41)

Digital ambiguity function is periodic in frequency but not in time.

FIGURE 14.9  (a) Dense Portion of Chirp ambiguity function when sampling at the Nyquist rate. 
(b) Dense portion of Chirp Ambiguity function when sampling at half the Nyquist rate.

14.8  AMBIGUITY FUNCTION OF A CW PULSE

From Eq. (14.35), if we set W = 0 so that N = 0, this corresponds to a CW 
pulse and we find

	 ( )
sin( )[1 (| ( ) | / ]

| ( , ) |
sin /

I T M
A

M
πν γγ ν

πν
−

= � (14.42)
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A few cross-sections versus n for fixed values of γ are shown in Figure 
14.10 We can note that as range offsets increases not only does the main lobe 
decrease in size but it widens so that velocity resolution is lost.

If we take cross-section cuts versus γ for fixed values of n, then poor results 
would be obtained. For ν = 0, |A(γ, 0)| has a triangular shape, for other values 
of ν, the shape is sinusoidal with peaks occurring in arbitrary places.

Y

= 7/8

= 3/4

= 1/2

= 0

= 0 = 1

FIGURE 14.10  Cross-sections of the Arbitrary functions of a CW pulse.

14.9  AMBIGUITY FUNCTIONS OF A BURST

A chirp signal results in good signal detectability but it leaves unanswered the 
numerical values of velocity for a given target. The chirp is a popular radar sig-
nal to help increase range, Precise velocity measurements require additional 
radar signals.
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An increased unambiguous range window is obtained through transmit-
ting at a low repetition rate, while an increased unambiguous velocity window 
requires increasing the pulse repetition rate. In either case, the signal being 
transmitted is a succession of pulses, for which we now derive and discuss 
the ambiguity function. Since the burst is a pulse sequence, the analog and 
digital ambiguity exhibit the same basic features and there is no new property 
imparted to the signal by virtue of its digitization. A sketch of the ambiguity 
function of a 10-pulse burst with uniform spacing is shown in Figure 14.11.

This is also called “Bed of Nails.” The parameter ∆ is the spacing between 
pulses Figure 14.10 displays both range and velocity ambiguity. Since the 
periods in both τ and f are functions of only ∆, we see that increasing ∆ lessens 
range ambiguity and increases velocity ambiguity and vice-versa. Thus, a 
burst most usefully yields range and velocity measurements. A burst provides 
sought but reliable information either range or velocity or both.

Range

Velocity
1/ 1/

FIGURE 14.11  Ambiguity function cross-section of a burst.

14.10  OTHER SIGNALS

Sometimes, it may be useful during radar research to try to measure both 
range and velocity. This can be done by designing a signal with an ambiguity 
function that approximates a thumbtack, with a substantial peak of energy 
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concentrated in a small section of the range–Doppler plane. Many such sig-
nals have been invented, such as up-down chirps, Barker and polyphase codes, 
and shift register codes.

There is a similarity between the design of filters and the design of signals 
having desired ambiguity functions.

There are several reasons why a formal signal synthesis procedure is quite 
difficult.

1.	 One is faced with a criterion for approximating a two-dimensional ideal 
function, it is more difficult than the filter design counterpart of approxi-
mating either a one-dimensional spectrum or impulse response.

2.	 Radar signal design is greatly influenced by many other radar design 
parameters, involving the antenna, transmitter, and receiver tracking 
computer, which is not necessarily under the control of the radar signal 
processor.

3.	 It is most important, clutter environments are often very difficult to model 
and the “right” ambiguity function depends on clutter properties.

It means that a radar system will not be optimized until the radar has 
undergone much field testing. Thus, extra flexibility inherent in DSP should 
be exploited as fully as possible.

14.10.1 Digital Matched Filters for Radar Signals

For any given range-angle cell, the signal return from the desired target may be 
marked by undesired background clutter. If the target-velocity is sufficiently 
different from clutter-velocity, Doppler filtering can be applied to extract the 
signal component. In a broad sense, the work of a radar signal processor is to 
perform matched filtering of the return signal for every range–Doppler (and 
angle) celt of interest. This results in very complex equipments and leads us 
to treat from the general case. Therefore, we require an appropriate matched 
filter for a variety of more specialized situations.

14.10.2 Filter Matched to a Long Pulse of Constant Frequency

Here, we consider the problem of obtaining a radar track on a satellite. We 
assume that the approximate angular position of the satellite relative to the 
radar is known but both range and velocity are relatively unknown.

We already know that a long pulse results in poor range resolution but 
the major problem is detection because of the large distance and small size of 
the target. In this case, it behooves us to construct a bank of filters. Here each 
filter is tuned to a different presumed.
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0.1 sec Range aperture
= 0.2 sec

Sine wave signal

(a) Signal

FIGURE 14.12  System for Detection and crude range estimation at very long ranges.

Doppler frequency: A pulse (assumed) is on for 0.1 s as shown in Figure 
14.12 and the search interval encompasses 0.2 s, which corresponds to an 
unambiguous range aperture of 18,600 mi. Let the maximum satellite velocity 
be 1000 mph and choose an S-band radar, with λ ≈ 10 cm. Then, maximum 

Doppler frequency 
2 2 1000

20,000
0.10

f
ν
λ

×
∆ = = =  Hz. The velocity resolution is 

inversely proportional to the signal “on” time and is therefore 10 Hz. Hence, 
a bank of 1000 Doppler filters and a sampling rate of 10,000 Hz is called for.
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We know that a sliding DFT is equivalent to a bank of filters. In fact, it 
is also true that the sliding unweighted FFT corresponds exactly to a bank of 
“matched” filters since the impulse responses of the filters comprising the 
sliding FFT correspond exactly to the received signal. A sliding 1024-Point 
FFT at a sampling rate of 10 kHz is a more expensive item than is really 
needed. However, because each FFT filter is only 10 Hz wide and there is 
no need to sample at 10 kHz. If we replace the sliding FFT by a hopping 
FFT, performing the FFT at (say) 50 times per second, this is equivalent to 
sampling the sliding FFT output 50 times per second. This results in a 200: 1 
reduction in required computation speed.

As shown in Figure 14.12(c), the detected returns from the successive 
hopping FFTs can be used to yield a rough range marking.

14.10.3 Matched Filters for General Signals

In actuality, radar signal is often a function of the environment (which can be 
time-varying). It is useful to contemplate the design of digital matched filters 
with arbitrary impulse response and inquire as to how to design and imple-
ment them. Two different implementations of such a filter can be postulated. 
One is a straightforward direct-form FIR digital filter and the other an FFT 
realization of the same filter.

In the Direct-Form FIR Filter, the flexibility is attained by changing the 
impulse response, which means the changing of filter coefficients. In the FFT 
realization, the DFT of this impulse response is made flexible. The relative 
desirability of these two methods depends primarily on the time-bandwidth 
product (TW). The larger TW, the more one should favor the FFT. Time- 
Bandwidth (TW) product is an extremely important concept for matched 
filtering.

Bandwidth (W) determines the best range resolution possible with a given 
signal, and time (T) determines the best possible velocity resolution. In digital 
systems, the total “on” time T of a signal is equal to NTs, where Ts is the sam-
pling period or interval and N is the total number of signal samples.

But, in a digital system that samples the received analog signal at the 

Nyquist rate, Ts is precisely 1
W

. Thus

	
N TW= � (14.43)

Here, we can say that the time-Bandwidth product is equal to the number 
of signal samples. Since, in general, a filter matched to a given signal has the 
same number of samples in the impulse response as does the signal. N also 
determines the complexity of the digital matched filter.
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We will see that the time-Bandwidth products vary over a very wide range, 
yet in most instances, the FFT version of digital matched filtering seems most 
appropriate.

In any given radar application. Time-Bandwidth product is determined 
by radar requirements. Hence, the number of samples in the matched fil-
ter impulse response is equal to the number of signal samples. It is a design 
condition more or less imposed by system considerations. The section size 
(i.e., FFT size) is an additional parameter, however, that can be chosen to 
minimize the hardware cost. Two possibilities are shown in Figure 14.13. In 
case (a) the section length is twice the signal length and also twice the impulse 
length.

But case (b) the section length is made four times as big as the signal and 
impulse length. The advantage of case (a) is the use of a smaller FFT size, 
while the advantage of case (b) as shown in Figure 14.13 is the throwing away 
of fewer points.

This trade-off efficiency can be given by the following formula

		

1 log
, 2
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s h
s s
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� (14.44)

where Lh is the impulse response length and is defined as the number of sam-
ples in the impulse response and Ls is the section length.

We are assuming equal signal and impulse response lengths so that the 
smallest section length must be at least twice the impulse response length. The 
first term of above Eq. (14.44) expresses the increased efficiency. Increased 
efficiency is determined in terms of the fraction of good samples obtained 
from the evaluation.

The second term of Eq. (14.44) expresses the decreased efficiency result-
ing from the logarithmic increase in multiplication power needed to perform 
a larger FFT. The trade-off efficiency (E) is therefore efficiency of computa-
tion and can be thought of as the multiplication power per processed datum.

As a norm, we take Ls − 2Lh, in this case, trade-off efficiency (E) will be 1
2

 

for LH >> 1. We can now plot E verses Ls with Lh as a parameter. This plot is 
shown in Figure 14.14. We see that improvements in multiplication efficiency 
are possible with larger sections, but that the curves are not monotonic, that 
is, there is a “best” section length for each value of Lh. In fact, the best length 
for the cases we have shown will be Ls = 8Lh. Here only the multiplication cost 
has been computed. For example, the memory size increases linearly with 
FFT size so that the gain in multiplication efficiency may be more than offset 
by the increased memory hardware.
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FIGURE 14.14  The efficiency of convolution versus FFT size.

14.10.4 Weighting to Reduce Matched Filter Side Lobes

The matched filter for a typical radar signal such as chirp is designed to yield 
the greatest signal-to-noise ratio (SNR) at a single instant of time. It means 
that the matched filter output will look like a sharp pulse. For most systems, 
this desirable main lobe of the filtered signal is accompanied by side lobes of 

FIGURE 14.13  Comparison of Information thrown away for two different section lengths, 
with some signal lengths.
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fairly high amplitude. This can be decreasing when the radar is processing sig-
nals from several targets of differing cross-sections. This is because the main 
lobe of the smaller target can be marked by a side lobe of the large target.

The side lobes can be reduced by windowing or weighting at the cost of 
both range and SNR. This can be done in the time-domain by passing the 
matched filter output through another filter or in the frequency-domain by 
appropriate spectral weighting sandwiched between the forward and inverse 
FFTs. With reference to Figure 14.15, weighting can be accomplished by 
the appropriate design of the analog filter prior to the A/D converter. Three 
methods of weighting are shown in Figure 14.15.

Method I: In the method of Figure 14.15(a), extra computation is 
required if r is made too large where r is the filter length in the number of 
samples. For this reason, Hamming and Hann Windows are very useful since 
they correspond to r = 3 and still reduce the sidelobe levels to more than 
40 dB below the main lobe.

Method II: In the second method of Figure 14.15(b) the situation is a bit 
more subtle. Since the output signal is always 2Lk long, where Lk is the length 
of both the signal as well as an impulse response, any spectral weighting 

FIGURE 14.15  Various methods to reduce matched filter synthesis.
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equivalent to an r-point FIR filter must be taken away from the matched filter 
duration. For example, let the signal consist of 256 samples, then we perform 
512-point forward and inverse FFTs. With or without spectral weighting, the 
number of points generated by the inverse FFT is 512 but since r of these 
samples are associated with weighting, the effective time-bandwidth product 
shrinks slightly but this loss is minor compared to mismatch loss.

Method III: In the method of Figure 14.15(c), we note that if the A/D 
converter is ignored, we have a linear system and the weighting filter can 
be the presampling analog filter. The disadvantage in this form of weight-
ing is the fact that this analog filter serves another rule, that is, removing 
noise mixed with the signal that could be aliased in with the signal due to 
sampling.

14.10.5 Matched Filter for a Burst

When trying first to detect a target at long range and then track the target as the 
range decreases, a standard procedure is first to transmit a chirp followed by 
a burst. The chirp is useful for detection but one cannot distinguish between 
range and velocity changes. To measure both velocity and range unambigu-
ously, the radar signal generator will send out a burst. This signal may consist 
of a succession of short pulses or, to increase signal strength, it may consist of 
a succession of subpulses each of which is a chirp. To increase signal strength, 
we first pass the signal through a filter matched to these subpulses producing 
a succession of very narrow pulses with greater peak amplitude.

Thus, in either case, we are interested in the filter or filters matched to 
presumed target velocity or velocities for a burst of sharp pulses.

One method of matched filtering is shown in Figure 14.16. This method 
corresponds to a sliding FFT on N signal samples separated in time by the 
interpulse interval. Here we assume that one of the N FFT. Outputs are 
tuned to the correct Doppler. Now, we would expect that output to be a pulse 
train with a rectangular envelope.

This type of burst processing is inherently wasteful because k samples, 
later (N − 1) of the original N outputs at the delay line taps, will be repro-
cessed when k is the interpulse spacing. If Ts is the sampling interval, then 
every Ts seconds a complete N-point FPT must be performed.

For example, in a 106-sample system processing 16 Doppler channels, a 
16-point FFT must be performed every 100 ns.

The efficiency shortcoming of the scheme above can be overcome through 
the use of a permit memory structure and a band of digital filters, as shown in 
Figure 14.17. It is one of the rare cases for which a digital filter system is more 
efficient than an FFT.
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FIGURE 14.17  Digital realization of a burst processor using a permute memory.
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FIGURE 14.16  Burst processing by sliding FFT.
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The permute memory can be understood as follows:
We imagine a sequence of numbers labeled 0, 1, 2, 3, 4, ... as input to 

this memory. Also, we assume that the spacing between adjacent pulses 
is k samples. The function of the permute memory is to rearrange the 
ordering of the input sequence to be 0, k, 2k, ......1, k + 1, 2k + 1 ..., 2, k + 
2, 2k + 2. ....

With this reordering, Doppler processing now takes place on each range 
bin, beginning with range bin 0, then range 1, etc. For each new input sample, 
if we wish to process all N Doppler channels, we have to perform N complex 

multiplications, compared to 
2
N  log2(N) complex multiplications using burst 

processing by sliding FFT method. A further saving in the filter hank imple-
mentation is possible if not all N Doppler channels are needed. In FFT imple-
mentation, all channels are computed whether needed or not.

0 0 0 0
1 5 25 8
2 10 11 16
3 15 36 24
4 20 22 32
5 25 8 1
6 30 33 9
7 35 19 17
8 1 5 25
9 6 30 33

10 11 16 2
11 16 2 10
12 21 27 18
13 26 13 26
14 31 38 34
15 36 24 3
16 2 10 11
17 7 35 19
18 12 21 27

19 17 7 35 Sequences Repeat
�����

20 22 32 3
21 27 18 12
22 32 4 20
23 37 29 28
24 3 15 36
25 8 1 5
26 13 26 13
27 18 12 21
28 23 37 29
29 28 23 37
30 33 9 6
31 38 34 14
32 4 20 22
33 9 6 30
34 14 31 38
35 19 17 7
36 24 3 15
37 29 28 23
38 34 14 31
39 39 39 39
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Implementation of the permute memory is done using a random access 
memory and a special addressing algorithm. By using this algorithm, real-time 
permutation of the data can be accomplished with no extra memory beyond 
that needed to hold the original database.

This addressing algorithm is shown in Figure 14.18. This algorithm is 
illustrated for a system where five range bins are to be processed for an eight-
pulse burst. Each column represents the permitting of all 40 data samples. 
For the first 40 inputs, the memory addressing is sequential, 0, 1, 2, 3, etc. 
The Doppler Filter bank must receive samples in the order 0, 5, 10, 15, ..., 1, 
6, 11, 16, etc., however, and this can be done by using the address sequence 
in the second column. To present extra buffering, each new input datum must 
replace the most recent output datum. Thus, for each new set of 40 data 
points, entry and exit from the memory follow a new addressing pattern, as 
shown in the succeeding columns.

0 0 0 0
1 5 25 8
2 10 11 16
3 15 36 24
4 20 22 32
5 25 8 1
6 30 33 9
7 35 19 17
8 1 5 25
9 6 30 33

10 11 16 2
11 16 2 10
12 21 27 18
13 26 13 26
14 31 38 34
15 36 24 3
16 2 10 11
17 7 35 19
18 12 21 27

19 17 7 35 Sequences Repeat
�����

20 22 32 3
21 27 18 12
22 32 4 20
23 37 29 28
24 3 15 36
25 8 1 5
26 13 26 13
27 18 12 21
28 23 37 29
29 28 23 37
30 33 9 6
31 38 34 14
32 4 20 22
33 9 6 30
34 14 31 38
35 19 17 7
36 24 3 15
37 29 28 23
38 34 14 31
39 39 39 39

FIGURE 14.18  Example of addressing sequence (for eight-pulse bursts and five range bins).
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14.11 � AIRBORNE SURVEILLANCE RADAR FOR AIR TRAFFIC 
CONTROL (ATC)

In present-day ATC radars, the antenna rotates mechanically, sweeping out a 
full 360° every 4–12 s.

In this radar, azimuth beam resolution is about 1°–2°, and the vertical 
antenna pattern is a fan beam usually having a 30°–45° width. Thus, as the 
antenna sweeps by a target aircraft, there will be a succession of hits, that 
is, radar returns at the pulse repetition period after which no information is 
obtained from that particular target until the antenna has made a complete 
revolution. Based on this information, the system must track up to perhaps 
50 aircraft within its field of view and display these tracks in a useful manner 
to the air traffic controller who can then correlate this information with his 
knowledge of the traffic schedule, planned flight paths of the various com-
mercial and private aircraft, and his audio communication links with the air-
craft and other control towers.

Present airport surveillance radars operate at S. band (wavelength approxi-
mately λ = 10 cm). At this wavelength, weather clutter, caused by radar reflec-
tions from rain, can be quite troublesome but perhaps the most important dis-
turbing effect is ground clutter, which is picked by the antenna. Such effects 
can be alleviated through better signal processing, in particular, by Doppler 
filtering that permits the relatively fast aircraft target to be discriminated from 
the ground and weather returns.

Time

b
360

T

Amplitude modulation
caused by antenna

pattern

FIGURE 14.19  Radar return signal from a target at a given range as antenna sweeps by.

The ground clutters are having only a DC spectral component. These 
clutters actually have a spectral spread induced by the antenna motion. This 
makes Doppler processing less effective and could be avoided by the other 
antenna designs (such as a phased array).
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A sketch of the experimental setup is shown in Figure 14.20.

The antenna and associated radar equipment were about 1
2

 miles away 

from the FDP facility. Two communication links were used. One link is used 
to relay the received radar signal to the FDP for signal processing and thresh-
old detection. But, the other link is used to relay back the processed informa-
tion to the radar display. The radar used was a coherent S-band radar with a 
1° fan-beam antenna having a width of 5.25 m, a rotation rate of 1.36 radian/s, 
and a wavelength of 10.7 cm. The pulse repetition frequency (PRF) was 1000 
pulses per second and these pulses were about 1 μ second wide, correspond-
ing to a 1-MHz bandwidth. Given the antenna beamwidth and PRF, the num-
ber of hits as the antenna scanned by the target was 15. This corresponds to 
the burst signal for any range bin in the range aperture the problem would be 
to design a matched filter to the transmitted signal, taking into account some 
reasonable model of clutter.

Now, we discuss the system parameters to obtain an idea of the Range- 
velocity ambiguity problem.

First, the pulse repetition period of 1 ms is needed to give the required 
unambiguous range coverage of 60 miles. For an S-band radar, the range of 

Doppler frequencies. corresponding to the velocity range of 
1
3

 km/s is about 

3300 Hz. Since PRF is 1000 Hz, the Doppler spectrum will be periodic with a 
1000-Hz period so that, for example, the system will not be able to distinguish 
among, say, 400-Hz, 1400-Hz, or 2400-Hz Doppler. Furthermore, since the 
Doppler frequency of ground clutter is close to DC, the 1000-Hz sampling 
will introduce large clutter components at 1000, 2000, 3000 Hz, etc., these 
frequencies correspond to “blind speeds.” At blind speed, airplanes will be 
lost in the clutter.

Thus, an important aspect of a complete signal processing system is Dis-
ambiguation. Disambiguation may be accomplished by transmitting a signal 
at two different PRFs. The scheme devised for the present experiment was 
to transmit 8 pulses at one PRF, switch to another PRF for the next 8 pulses, 
and then switch back again, etc. This will allow a target whose radial velocity 
corresponds to a blind speed at one PRF to become detectable at a different 
PRF. Thus, the matched filter for our system becomes an 8-pulse processor. A 
bank of such processors is needed for many Doppler frequencies since there 
is no prior way of knowing the target’s radial velocity. Optimum Processing 
from a computational point of view needs to be done for each range bin and 
perform a weighted sum of eight signal returns.
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FIGURE 14.20  Experimental setup for airborne surveillance radar (ASR) signal processing.

Both weights and signals are assumed to be complex numbers. If N Dop-
pler basis is to be examined, then 8N multiplications must be performed, 
for real-time operation, since each range gate is 1 μs wide (the width of the 
transmitted pulse), these multiplications must be performed in an 8-μs inter-
val. For example, if N = 8, then 8 × 8 = 64 complex multiplications must 
be performed every 8 μs or one complex multiplication every 125 μs. One 
question arises in our mind that how the algorithm can be altered to main-
tain close to optimum performance while reducing the computation load. A 
filter greatly alternates the large DC clutter component followed by a bank 
of filters turned to the various Dopplers of interest should yield good results. 
Since an FFT resembles a filter bank and since FFTs tend to be compu-
tationally effort, a suboptimal signal processor using three pulse canceler, 
followed by an FFT was designed and simulated and compared with the 
simulated optimum processor.

Comparisons of “optimal 8-pulse processors” and “suboptimal processor 
three pulse canceler and unweighted DFT filter” are shown in Figures 14.21–
14.23 for 0, 125, and 500 Hz, respectively. These plots are drawn between 
signal-to-interference ratio (SIR) improvement in dB and Target Doppler 
frequency in Hz for 0, 125, and 500 Hz frequency. In all cases, SIR improve-
ment due to filtering is plotted as a function of the Doppler. There are three 
cases for this study:
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1.	 0-Hz optimization,

2.	 125-Hz optimization, and

3.	 500-Hz optimization.

For 0-Hz optimization, we note that the best improvement for both cases 
is not at 0 Hz. The peak improvement for the optimum processor occurs at 
about 130 Hz and is about 26 dB, whereas the peak improvement for a subop-
timal processor is about 80 Hz but is only about 18 dB.

For the 500-Hz case, both curves peak at 500 Hz. It appears that the sub-
optimal peak is actually bigger than the optimal but this is misleading because 
to perform three-point clutter cancelation filtering followed by an 8-point 
FFT really requires 10 input samples, whereas the optimum processor uses 
8-samples.

It was shown that 2 multiplications are needed to perform an 8-point FFT 
compared to 64 for the optimal processor. Among the two designs, it can be 
argued that the clutter cancelations filter plus 8-point DFT are the correct fil-
ters to build. Actually, benefits result from the weighting of the signal prior to 
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FIGURE 14.21  Signal-to-interference ratio (SIR) improvement of 
optimal S-pulse processor optimized at 0 Hz.
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FIGURE 14.23  Signal-to-interference ratio (SIR) improvement of optimal 
8-pulse processor optimized at 125 Hz.

FIGURE 14.22  Signal-to-interference ratio (SIR) improvement of suboptimal processor 3-pulse 
canceler and unweighted DFT filter tuned to 0 Hz.
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FIGURE 14.25  Signal-to-interference ratio (SIR) improvement of optimal 
8-pulse processor optimized at 500 Hz.

FIGURE 14.24  Signal-to-interference ratio (SIR) improvement of suboptimal 
processor 3-pulse canceler and unweighted DFT filter tuned to 125 Hz.
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the FFT, Weighting of the signal means passing the signal through the clutter 
cancelation filter.

This adds four complex multiplications, the benefits are reduction in the 
side lobes of curves of Figures 14.21–14.23. Figure 14.24 shows a complete 
suboptimal filter block diagram. This filter consists of a third-order FIR digi-
tal filter for pulse cancelation, weighting, and an 8-point FFT.

Given ground clutter suppression are still faced with the very severe prob-
lem of signal detection. SIR improvement factor is shown in Figures 14.21–
14.23. Since the intensity of the clutter varies greatly with the terrain, the 
curves of these figures will be raised or lowered as a function of the range- 
angle sector. In order to obtain reasonably constant false alarm probabilities 
for all the illuminated space, we need a “clutter map” as a reference, that is, an 
averaged clutter intensity for each range-angle sector. This is accomplished by 
means of a scan-to-scan averaging of the dC component of the signal. Letting 
xi be that component due to the dth scan, we can then prescribe the clutter 
map intensity to be
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FIGURE 14.26  Signal-to-interference ratio (SIR) improvement of a suboptimal 
3-pulse canceler and unweighted DFT filter tuned to 500 Hz.
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		  ( )1j j iy y x a x−= − + � (14.45)

For any range-angle sector, threshold detection is accomplished by com-
paring the largest output of the FFT with yj. α will determine the length of 
time to build up a reliable clutter map indication.

Now we will discuss the FDP simulation of the signal processing and clut-
ter mapping algorithms. The FDP is not a fast enough processor to process 
all information coming to the antenna in a 60 miles radius. This means that, 
in order to approximate real-time simulation, the data from a given section of 
space must be buffered and then processed while the information from the 

FIGURE 14.27  Block diagram of the suboptimal processor.
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next scan is being accumulated. This situation is shown in Figure 14.28. The 
FDP facility proved to be useful for this processing for two reasons:

1.	 Its high speed meant that a large enough sector could be examined so that 
a useful number of targets are displayed.

2.	 The large core memory connected as an input–output device to the FDP 
(1,60,00018 Bit registers) allowed the buffing of raw video from a reason-
ably large sector.

FIGURE 14.28  FDP real-time processing of a range-angle sector.

For determining the buffer storage requirements for the full 60 miles 
and 360°, we assume 600 range bins that are needed for 60 miles (at 1 μs per 
range bin and 10 μs per mile). It means that 600 numbers must be stored in 
1 ms or 6,00,000 numbers per second and 2,700,000 numbers for a full 4.5-s 
scan. Given the buffer memory size round off to 1,50,000, this means that at 
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most one-eighteenth of the total space can be processed in real time (with a 
one-scan delay before display). Thus, for example, the shaded sector could be 
10 miles by 120° or 30 miles by 40°.

The buffer size is the real limitation in our case since the FDP can be 
real-time processing sectors 2 or 3 times these sizes. For display purposes, the 
sector was rectangularized.

Good Doppler processing and clutter mapping using special-purpose 
DSP hardware could be a useful addition to airport surveillance radar (ASR) 
system.

14.12  LONG-RANGE DEMONSTRATION RADAR (LRDR)

The purpose of a radar system using FDP (as a real-time simulator) was the 
detection of moving objects in large amounts of ground clutter background. 
The clutter spectrum consists of a very large DC return plus an AC component  
caused by foliage motion. The moving object, which could be either a vehicle, 
such as a car or truck or an airplane, or an animal or a human lost in the woods 
or an enemy soldier, returned a signal level about 80 dB below the steady-state 
clutter and 60 dB below the fluctuating background caused by foliage motion. 
The radar antenna was a phased array UHF antenna. With a 1.5° horizontal 
beamwidth and a vertical fan beam. This experimental antenna consisted of 
several thousand array elements arranged on half a cylinder, which permitted 
illumination of a 45° sector, a full cylindrical array would of course cover a full 
360° sector.

Because of the very high. Clutter-to-Signal Ratio, a variety of signal pro-
cessing tricks were necessary to obtain good signal detection. Following tricks 
were used in signal processing to obtain good detection:

1.	 pulse compression using complementary coding,

2.	 presuming,

3.	 Doppler processing, and

4.	 post-detection integration.

We describe the idea of implementation of each of these techniques 
briefly.

First of all, we present a diagram of the complete experimental setup.
The block diagram of LRDR is given in Figure 14.29. Prior to the 

A/D converter, the received radar signals are amplified and heterodyned. 
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Sensitivity time control (STC), which is a range-dependent gain control, 
takes place in a digitally controlled stepped alternator. Demodulation is 
performed in quadrature so that the video return signal is a coherent com-
plex signal.

After A/D conversion at 10° samples and seven bits, the video is pulse 
compressed. This radar is assumed to survey 2048 range bins for each beam 
position, since there are 30 beamwidths in 45°, a total of 2048 × 30 = 61,440 
range–azimuth bins are illuminated.

14.12.1 �A Criterion of Choosing the Various Parameters of 
this Particular Radar

Since one of the main purposes of the project was to study the possibility of 
detecting moving targets in foliage, the wavelength had to be large enough to 
penetrate foliage. Here we choose UHF (a wavelength of about 5 m). Targets 
of interest moved as slowly as several tenths of a meter per second. In this 
case, the frequency resolution requirement is about 0.5 Hz. This meant that 
the total integration time before target detection was about 2 s.

If we assume that the maximum Doppler we desire to detect is about 
32 Hz, then we need 64 velocity bins. This means that the information in the 
received signal is collected and put in a “bungle” 32 times per second and 
64 of these bundles are eventually velocity filtered. These Doppler require-
ments determine the lowest permissible repetition period.

The highest permissible repetition period is determined by range ambi-
guity. The largest unambiguous range was assumed to be 22.4 mm (nautical 
miles), which led to a radar PRF of 3600 per second. Thus, approximately 
113 radar return signals at the PRF rate can be combined to create a single 
bundle. The bandwidth of 10 MHz was chosen to give the required 50 ft 
range resolution.

The succession of signal processing devices also includes a range–azimuth 
gate selector, This selector was necessitated by the inability of the FDP to pro-
cess the entire field of view in the basic 2-s coherent time interval. The FDP 
was able to process 2048 bins in that time, thus the function of the gate selector 
was the selection of 2048 out of the possible 64,440 bins for each 2-s interval.

Following gate selection the partially processed radar data is sent, via 
a Modem and appropriate digital interfaces, to the large core memory that 
resides nest to the FDP. The selected data enters the memory sequentially 
with respect to range bins, the memory addressing algorithm permutes the 
data so that 64 successive inputs from a single range bin are sequentially inter-
ested in the FDP. This reordered data can now be processed by the FDP that 
performs FFTs for Doppler discrimination.
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Then the EDP is in conjunction with the large memory to perform 
post-detection integration on each Doppler bin by adding fine successive 
FFT magnitudes at that Doppler frequency. Following this, various statisti-
cal decision algorithms are implemented fay FDP programs, leading to the 
detection of targets.

Finally, this processed information is sent back to the radar site, entering 
a general-purpose computer for formatting and display purposes. The other 
general-purpose computer at the radar site acts primarily as an input–output 
processor, controlling the antenna beam, the STC, the radar timing, and the 
selection pattern for use by the gate selection processor. Various time-epochs 
in the system are shown in Figure 14.30.

Here we will discuss some details of A/D conversion and implementation 
of the pulse compressor algorithm.

14.12.2 A/D Conversion

In the presence of large ground clutter, a minute target return rides within 
a huge clutter signal. Eventually, the target detection will depend on the 
Doppler discrimination properties of the radar signal processor, meanwhile, 
there is a concern list of the minuscule signal gets wiped out by non-linear 
and noise effects if quantization beginning with the A/D converter. It is really 
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FIGURE 14.29  Block diagram of long-range demonstration radar (LRDR).
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not necessary for the target return strength to be as big as a complete quan-
tum step. As long as the clutter fluctuates and does not “get stuck” between 
two quantum levels at a precise value that would wipe out the target, one can 
expect that target presence will not be wiped out. In the present radar, 7 bits 
are used and the target is presumed to be about 12 bits below clutter level, yet 
enough signal strength is present to make it useful to perform further process-
ing to raise SNR.

14.12.3 Pulse Processor

The transmitted signal consists of a 32 bits code and its complement sent out 
at alternative repetition intervals. The matched filter response to this pair of 
signals is a sharp pulse with no side lobes for zero Doppler. For this particular 
radar, if the requirement is imposed that only very slowly moving targets be 
detected but the theoretical result is quite valid for a noiseless signal.

Now we can define complementary codes, we begin with a very sim-
ple example, let s1(n) be the sequence +1, +1, and s2(n) be the sequence 
+1, −1. The matched filters at zero Doppler’s will yield the autocorrelation 
sequences, for s1(n) the correlation sequence is +1, +2, +1, while for the s2(n) 
we find −1, +2, −1.

FIGURE 14.30  Illustration of various time-epochs in long-range demonstration radar (LRDR).
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Adding the two matched filter outputs yields the final result 0, 4, and 0.

FIGURE 14.31  Illustration of the output of two matched filters. Here y1(n) and y2(n) are 
the autocorrelation sequences for two sequences s1(n) and s2(n), respectively.

Larger codes can be generated from s1(n) and s2(n) by the following 
algorithms:

1.	 Define a new signal s3(n) as s1(n) followed by s2(n), namely, +1, +1, +, −1. 
Define another new signal S4(n) as S1(n) followed by ŝ1(n) [s2(n) with all 
sign reversed], or +1, +1, −1, +1. These two new sequences form a com-
plementary code pair of length 4 and have the matched filter outputs −1, 
0, 1, 4, 1, 0, −1 and 1, 0, −1, 4, −1, 0, 1, which when added yield the side-
lobeless sequences 0, 0, 0, 8, 0, 0, 0.

FIGURE 14.32  Illustration of the output of another two matched filters here y3(n) and y4(n) are 
the autocorrelation sequences for two sequences s3(n) and s4(n), respectively.

2.	 The procedure above can be iterated to double the length of succeeding 
complementary codes. Thus, the pair would be +1, +1, +1, −1, +1, +1, −1, 
−1 and +1, +1, +1, −1, −1, −1, +1, −1.

Figure 14.33 lists the complementary code pairs through length 3.2. The 
LRDR transmits a pair of length 32 (or 3.2 μs, since the bandwidth is 10 MHz 
and the subsequent sampling rate is 106 samples per second.

Implementation of the matched filter was a digital FIR filter with an 
interesting property that all the 32 multiplications per iteration were +1 or −1. 
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If not for this, 32 multiplications per 100 ns would have been necessary. 
Instead, 32 additions per 100 ns are required, a much less formidable task 
although certainly nontrivial. The implementation algorithm is shown in 
Figure 14.34 for a code of length 4.

+ +
+ –

+ + + –
+ + – +

+ + + – + + – +
+ + + – – – + –

+ + + – + + – + + + + – – – + +
+ + + – + + – + – – – + + + – +

+ + + – + + – + + + + – – – + – + + + – + + – + – – – + + + – +
+ + + – + + – + + + + – – – + – – – – + – – + – + + + – – – + –

2

4

8

16

32

FIGURE 14.33  List of complementary code pairs from 2 to 32.

The hardware was implemented with 32 hardware adders operating in 
parallel, using TTL adder logic and TTL shift register memory for the delays. 
Thus, one clock cycle corresponded to a complete iteration of the Digital 
matched filter.

FIGURE 14.34  Filter matched to one of a length 4 complementary code pair.
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14.13 � DIGITAL MATCHED FILTER FOR A 
HIGH-PERFORMANCE RADAR (HPR)

The specification for this example included a phased array antenna with 
scheduling activities controlled by a large g.p. computer and a digital signal 
processor capable of handling bandwidths somewhat higher than 10 MHz 
with time-bandwidth (TW) products of about 2000. Chirps, bursts with chirp 
subpulses and nonuniform bursts signals will be handled. Here we treat one 
important part of this as digital matched filter.

First of all, a digital filter matched to a 10-MHz signal with TW = 2000 
must be a two-thousandth-order FIR filter. If one attempted to implement 
such a filter by non-FFT methods, then 2000 complex multiplications would 
have to be performed every 100 ns.

A system with eight thousand 100-ns multipliers has a very good chance of 
never working. The use of the FFT cuts this requirement considerably. One 
would have to perform a 4096-point forward FFT followed by multiplication 
of the output by a reference spectrum (that of the matched filter) followed by 
a 4096-point universe FFT. Half of the processed result would be the correct 
matched filter output, while the other half would be worthless results of cir-
cularly convolved information. Thus the total number of multiplications for a 
radix-2 FFTs to process 2048 points is

	
( )   + + = + = ×   

   
2 2 2log ( ) log ( ) 1 log 4096 13

2 2
N N

N N N N N

or a total of 26 complex multiplications every 100 ns. This is nearly two orders 
of magnitude reduction compared to non-FFT convolution. Radar specifica-
tions demand a pipeline convover.

The next step was to determine the most suitable radix number. Only 
the radix-2 and radix-4 cases were considered. For radix-4, we have six stages 
in the forward FFT and six stages in the inverse FFT. Each stage consists of 
three complex multipliers, for a total of 36 + 1 for the reference spectrum, 
making 37. This is greater than the 2fi attributed to radix-2 but, for the same 
clock rate, the radix-4 can process at twice the data rate of the radix-2 since 
it has four parallel paths compared to 2. This advantage can be used either 
by designing a more powerful system or by slowing the clock rate so that 
the multiplication speed requirement is eased. Radix-4 structure is compli-
cated even quite valid. Therefore radix-4 structure is chosen. Since the speed 
requirements of this matched filter are so severe and since it was hoped that 
this radar would lead the way to even more powerful radars. We looked for 
the fastest logic family with sufficient versatility and this turned out to be 2-ns 
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ECL. Important design decisions dealing with the precision and the overall 
strategy of computation could only be answered by extensive computer sim-
ulation experiments.

The following problems will be studied:

1.	 register length of coefficient (W nk),

2.	 register the length of samples of the reference spectrum,

3.	 register length of data,

4.	 type of arithmetic (fixed or floating-point or hybrid scheme),

5.	 scaling strategy, and

6.	 Koundmg or truncation.

Following simulation experiments were used to help the evaluation of 
problems given above.

1.	 Computation of the matched filter output for a single LFM or chirp signal 
with hamming weighting to determine whether any spurious side lobe 
peaks appear.

2.	 Computation of the matched filter output for the sum of a large LFM 
signal and a small LFM signal close in range to the large signal to see if 
the small signal is lost in a side lobe of the large one.

3.	 A low-level LFM signal is processed in the presence of simulated receiver 
noise. The purpose of this experiment is to ascertain whether the process 
has altered the statistics of the random signal component thereby affect-
ing SNR.

The first simulation experiments were run with fixed-point arithmetic. 
For LFM signals, the signal amplitude as it passes through the successive FFT 
stages build up quite rapidly, essentially one bit per stage. Thus, to avoid using 
very long register lengths, the result after each butterfly was right-shifted by 
one bit. For this strategy in both forward and inverse FFT, it was found that 
coefficient register lengths of 8-bits and data register lengths of 16 bits were 
required.

Next, the system was altered to do floating-point arithmetic. Some 
decrease in the number of bits needed could be expected. The simulation 
showed this is true, it was found that a 9-bit mantissa and 4-bit exponent was 
adequate for all registers in the system. Despite the decrease in memory size, 
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however, arithmetic complexity increase and arithmetic speed decrease made 
this system less attractive than the fixed-point case.

The system that was simulated most extensively used a hybrid arithmetic 
scheme that was cross between fixed and floating points. The hybrid scheme 
had the following features:

1.	 Coefficients were fixed-point 9-bit fractions.

2.	 The complex data word had two mantissa and a single exponent that 
served both mantissas. One mantissa is used for the real part and the 
other for the imaging part.

3.	 Mantissas were never left-justified (normalized). On overflow of either 
mantissa of the complex datum, however, both mantissas were right-
shifted one bit and the exponent incremented by one.

4.	 The exponent is assumed to be a positive number, mantissas are signed, 
2’s-complement numbers.

An arithmetic system for one state of a radix-r pipeline FFT processor 
is shown in Figure 14.35. Here we have used decimation-in-time (DIT) 
algorithm.

FIGURE 14.35  Hybrid arithmetic scheme for radix-r pipeline DIT-FFT algorithm.
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Processing begins by immediately performing the (r − 1) complex multi-
plications. These are simply fixed-point operations, and overflow is prevented 
in the cross-product combination by carrying an extended sign bit. In paral-
lel with the multiplications, the largest of the r exponents is determined and 
transmitted to the output of the stage for later use. Before proceeding with 
the r-point DFT it is necessary to align the twiddled mantissa pairs to have 
the same exponents. The r-alignment shifter is controlled by the difference 
between the maximum exponent and the individual exponents of each man-
tissa pair. Following this alignment, all operations are fixed points. Notice that 
the twiddles and the search for the largest exponent, this was possible because, 
in the DIT-FFT algorithm, multiplication proceeds the r-point DFT,

Depending on the value of r, several further extended sign bits are carried 
through the fixed-point DFT computations to avoid possible overflow. At the 
DFT output, each complex mantissa pair is inspected to see if these extended 
bits have been used. Special logic examines these bits and determines the 
number of right shifts needed to bring the mantissa back into the range so that 
the length of the memory registers need not include these extra bits. A more 
detailed sketch of this overflow convection logic is shown in Figure 14.36.
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FIGURE 14.36  Details of overflow correction for the hybrid arithmetic scheme.
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Simulation results convinced us that the scheme given above was highly 
competitive in performance with either the fixed or floating-point schemes. 
From a hardware point of view, this scheme was faster and cheaper than the 
full floating point and yet overcome the crucial problem of dynamic range that 
made the fixed-point system worrisome.

Finally, the question of truncation versus rounding was addressed. Var-
ious simulation experiments were performed to compare the two methods.

EXAMPLE 14.2
What is “Chirp Signal”? Why it is called so?

Solution:
Chirp: A short, high-pitched sound, such as that made by small bird or an 
insect is called a chirp.

A chirp is a signal in which the frequency increases (up-chirp) or decreases 
(down-chirp) with time. It is commonly used in sonar and radar but has other 
applications, such as in spread spectrum communications. In spread spectrum 
usage, SAW devices such as RACs are often used to generate and demodulate 
the chirped signals. In optics, ultrashort laser pulses also exhibit chirp due to 
the dispersion of the materials they propagate through.

In a linear chirp, the frequency varies linearly with time:

0( )f t f kt= +
where f0 is the starting frequency (at time t = 0), and k is the rate of frequency 
increase. A corresponding time-domain function for a sinusoidal chirp is:

( )( )0
sin 2 sin( ) ( ( ) 2  )x t f t t f kt tπ π= = +

In a geometric or exponential chirp, the frequency of the signal varies with 
a geometric relationship over time. In other words, if two points in the wave-
form are chosen, t1 and t2, and the time interval between them t2 − t1 is kept 
constant, the frequency ratio f(t2) / f(t1) will also be constant. The frequency 
varies exponentially as a function of time:

0( ) tf t f k−
In this case, f0 is the frequency at t = 0, and k is the rate of exponential 

increase in frequency. A corresponding sinusoidal chirp waveform would be 
defined by:

( ( )0( ) ( ( ) )sin 2 sin 2 tx t f t t f k tπ π= =
Although somewhat harder to generate, the geometric type does not suf-

fer from a reduction in correlation gain if Doppler is shifted by a moving tar-
get. This is because the Doppler shift actually scales the frequencies of a wave 
by a multiplier (shown below as the constant c).
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			   Doppler Original( ) ( )f t cf t=
From the equations above, it can be seen that this actually changes the 

rate of frequency increase of a linear chirp (kt multiplied by a constant) so 
that the correlation of the original function with the reflected function is low.

A linear chrip waveform

An exponential chirp waveform
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Because of the geometric relationship, the Doppler-shifted geometric 
chirp will effectively start at a different frequency (f0 multiplied by a constant), 
but follow the same pattern of exponential frequency increase, so the end of 
the original wave, for instance, will still overlap perfectly with the beginning 
of the reflected wave, and the magnitude of the correlation will be high for 
that section of the wave,

A chirp signal can be generated with analog circuitry via a VCO, and a 
linearly or exponentially ramping control voltage. It can also be generated 
digitally by a DSP and D/A converter (DAC), by varying the phase angle coef-
ficient in the sinusoid generating function.

EXERCISES

1.	 What is radar? Give various applications of radar.

2.	 Write down various advantages and limitations of a radar.

3.	 Describe the modern radar system with a block diagram. Define various 
radar parameters.

4.	 What is Doppler filtering?

5.	 Write short notes on radar signal design.

6.	 What is the ambiguity function? Draw a block diagram of the radar model 
leading to the ambiguity function.

7.	 Discuss the followings:

a.	 Ambiguity functions of chirps and sinusoidal pulses.

b.	 Ambiguity function of a CW pulse.

c.	 Ambiguity function of a burst.

d.	 Other signals.

8.	 What are digital matched filters for radar signals?

9.	 Discuss filter matched to a long pulse of constant frequency.

10.	 What are Doppler effect and Doppler frequency?

11.	 Describe a system for detection and crude range estimation at very long 
ranges.
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12.	 Describe a matched filter for general signals.

13.	 Discuss three methods of weighting to reduce matched filter side lobes.

14.	 Describe a matched filter for a burst.

15.	 Discuss burst processing by sliding FFT.

16.	 Discuss the digital realization of a burst processor using a permit memory.

17.	 Describe airborne surveillance radar (ASR) for air traffic control (ATC).

18.	 Compare optimal 8-pulse processors and suboptimal processor three 
pulse canceler and unweighted DFT filter for the following cases:

a.	 0-Hz optimization

b.	 125-Hz optimization

c.	 500-Hz optimization

19.	 Describe a suboptimal processor with the help of a block diagram.

20.	 Discuss FDP real-time processing of a range-angle section with help of a 
diagram.

21.	 Describe long-range-demonstration radar (LRDR) with the help of a 
diagram.

22.	 Illustrate various time-epochs in LRDR.

23.	 Discuss pulse processor.

24.	 Describe a digital matched filter for a high-performance radar (HPR).

25.	 Discuss hybrid arithmetic scheme for radix-r pipeline DTT-FFT algorithm 
with the help of block diagram.

26.	 Discuss details of overflow correction for the hybrid arithmetic scheme 
with the help of a diagram.

27.	 Define chirp z-transform. Explain with the help of suitable mathematical 
expressions, how to chirp z-transform can be used for radar signal 
spectrum analysis.

28.	 i.  What is a “chirp signal”? and why it is called so?

ii.  What are clutter signals and how these can be alleviated?
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29.	 Briefly explain the working of the following subsystems of a Digital signal 
generator used in a radar system.

i.	 Memory and recursive generator

ii.	 Memory for table lookup

iii.	 D/A converter (DAC)

iv.	 Analog filter

v.	 How mixer DSP can be applied in this digital signal generator

30.	 Why DSP hardware/algorithms are becoming popular in speech and radar 
signal processing? Explain how DSP hardware/algorithm can improve 
speech processing.
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Adder: A device used to add two or more signals.
A/D conversion noise: The difference between the quantized signal and the 

sampled signal.
Aliasing: The phenomenon in which a high-frequency component in the frequency 

spectrum of a signal takes the identity of a lower frequency component in the 
spectrum of the sampled signal.

Amplitude spectrum: A plot of the amplitude of Fourier coefficients versus 
frequency.

Anti-aliasing filter: The low-pass filter is placed before the downsamples to prevent 
the effect of aliasing by band-limiting the input signal.

Anti-imaging filter: The low-pass filter is placed after the upsampler to remove the 
images created due to up-sampling.

Aperiodic signal: A signal which does not repeat at regular intervals of time.
Autocorrelation: A measure of similarity or match or relatedness or coherence 

between a signal and its time-delayed version.
Average power: The power dissipated by a voltage applied across a 1W resistor (or 

by a current flowing through a 1W resistor).
BIBO stable system: A system that produces a bounded output for a bounded 

input.
Bilinear transformation: It is a conformal mapping that transforms the s-plane 

into a z-plane on a one-to-one basis.
Bounded signal: A signal whose magnitude is always a finite value.
Butterworth filter: A filter designed by selecting an error function such that the 

magnitude is maximally flat in the passband and monotonically decreasing in the 
stopband.

Canonical structure: A form of realization in which the number of delay elements 
used is equal to the order of the difference equation.

Cascade form: A series interconnection of the sub-transfer functions.
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Cascade form realization: Realization of a complex system as a cascade of 
subsystems.

Causal signal: A signal which does not exist for n < 0.
Causal system: A system in which the output at any instant depends only on the 

present and past values of the input and not on future inputs.
Circular convolution: Convolution that can be performed only when at least one 

of the two sequences is periodic.
Coefficient quantization error: The error that arises due to the quantization of 

the coefficients.
Constant multiplier: A device used to multiply the signal by a constant.
Continuous-time Fourier transform: Fourier transform of continuous-time 

signals.
Continuous-time signals: Signals are defined for all instants of time.
Continuous-time system: A system that transforms continuous-time input signals 

into continuous-time output signals.
Convolution: A mathematical operation that is used to express the input-output 

relationship of an LTT system.
Correlation theorem: A theorem that states that the cross-correlation of two 

energy signals corresponds to the multiplication of the Fourier transform of one 
signal by the complex conjugate of the Fourier transform of the second signal.

Correlation: An operation between two signals which gives the degree of similarity 
between those two signals.

Cross-correlation: A measure of similarity or match of relatedness or coherence 
between one signal and the time-delayed version of another signal.

Dead band of the filter: The range of values to which the output of a filter is 
confined during a limit cycle that occurs as a result of the quantization effect in 
multiplication.

Deconvolution: The process of finding the input once the output and impulse 
response is given.

Deterministic signal: A signal exhibiting no uncertainty of its magnitude and phase 
at any given instant of time. It can be represented by a mathematical equation.

DIF algorithm: An algorithm used to compute the DFT efficiently by decimating 
the frequency domain sequence into smaller sequences.

Digital signal processor: A large programmable digital computer or microprocessor 
programmed to perform the desired operations on the signal.

Digital signals: Signals which are discrete in time and quantized in amplitude.
Discrete Fourier series: The Fourier series representation of a periodic discrete-

time sequence.
Discrete-time Fourier transform: A transformation technique that transforms 

signals from the discrete-time domain to the corresponding frequency domain.
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Discrete-time signals: Signals are defined only at discrete instants of time.
Discrete-time system: A system that transforms discrete-time input signals into 

discrete-time output signals.
DIT algorithm: An algorithm used to compute the DFT efficiently by decimating 

the given time sequence and computing the DFTs of smaller sequences and 
combining them.

Downsampling: Reducing the sampling rate of a discrete-time signal.
Dynamic system: A system in which the output is due to past or future inputs also.
Energy signal: A signal whose total energy is finite and average power is zero.
Even signal: A symmetric signal with x(−n) = x(n) for all it.
Even symmetry: Also called mirror symmetry which is said to exist if the signal x(n) 

satisfies the condition x(n) = x(−n).
Fast Fourier transform: An algorithm for computing the DFT efficiently.
Filter: A frequency selective network.
Finite word length effects: The effects due to finite precision representation of 

numbers in a digital system.
FIR systems: Systems whose impulse response has a finite number of signals.
Flipping a sequence: Time reversing a sequence.
Forced response: The response is due to input alone when the initial conditions 

are zero.
Fourier transform: A transformation technique that transforms signals from the 

continuous-time domain to the corresponding frequency domain.
Frequency response: The transfer function in the frequency domain.
Frequency spectrum: Amplitude spectrum and phase spectrum together.
Frequency warping: The distortion in the frequency axis introduced when s-plane 

is mapped into z-plane using the bilinear transformation.
Functional representation: A way of representing a discrete-time signal where 

the amplitude of the signal is written against the value of n.
Fundamental period: The smallest value of N that satisfies the condition x (n + N) = 

x(n) for all values of n.
General-purpose DSPs: High-speed microprocessors with architecture and 

instruction sets optimized for DSP operations.
Graphical representation: A way of representing a discrete-time signal as a plot 

with value o x(n) at the sampling instant n indicated.
Gibbs phenomenon: The ripples present at the point of discontinuity in signal 

approximation.
Host port: A special parallel port in P-DSPs that enables them to communicate with 

a microprocessor or PC.
ITR systems: S systems whose impulse response has infinite number of samples.
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Imaging: The phenomenon of producing additional spectra by the upsampler.
Impulse invariant transformation: Transformation of an analog filter into a digital 

filter without modifying the impulse response of the filter.
Impulse response: The output of the system for a unit impulse input.
Input quantization error: The error that arises due to the representation of the 

input signal by a fixed number of digits.
Interpolation: The process of increasing the sampling rate by an integer factor I by 

interpolating I-1 new samples between successive sampling instants.
Interpolator: The anti-imaging filter and upsampler together.
Inverse discrete-time Fourier transform: The process of finding the discrete-

time sequence from this frequency response.
Inverse Fourier transform: A transformation technique that transforms signals 

from the frequency domain to the corresponding continuous-time domain.
Inverse z-transform: A transformation technique that transforms signals from the 

z-domain to the corresponding discrete-time domain.
Invertible system: A system that has a unique relationship between its input and 

output.
Laplace transform: A transformation technique that transforms signals from 

the continuous-time domain to the corresponding complex frequency domain 
(s-domain)

Linear phase systems: Systems for which the phase drops linearly with an increase 
in frequency.

Linear system: A system that obeys the principle of superposition and homogeneity.
LPF: A frequency selective network which allows transmission of low-frequency 

signals.
LTI system: A system that is both linear and time-variant.
LTV system: A system that is linear but time-variant.
Memory system: Same as a dynamic system.
Memoryless system: Same as a static system.
Multirate systems: Discrete-time systems that process data at more than one 

sampling rate.
Narrowband low-pass filter: A low-pass filter characterized by a narrow passband 

and narrow transition band.
Noise transfer function: The transfer function from the noise source to the filter 

output.
Non-recursive filters: Filters that do not employ any kind of feedback connection.
Non-canonical structure: A form of realization in which the number of delay 

elements used is more than the order of the difference equation.
Non-causal signal: A signal which exists for n < 0 also.
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Non-causal system: A system in which the output at any time depends on future 
inputs.

Non-invertible system: A system that does not have a unique relationship between 
its input and output.

Non-linear system: A system that does not obey the principle of superposition and 
homogeneity.

Non-recursive system: A system whose output depends only on the present and 
past inputs and not on past outputs.

Nyquist interval: The time interval between any two adjacent samples when the 
sampling rate is Nyquist rate.

Nyquist rate of sampling: The theoretical minimum sampling rate at which a signal 
can be sampled and still be recovered from its samples without any distortion.

Odd signal: An antisymmetric signal with x(−n) = −x(n) all n.
One-dimensional signal: A signal which depends on only one independent variable.
One’s–complement form: A type of representation in which a negative number is 

obtained by complementing each bit of the positive number.
Parallel form realization: Realization of a complex system as a parallel connection 

of subsystems.
Periodic signal: A signal which repeats itself at regular intervals of time.
Phase factor: A factor that is equal to Nth root of unity. Exploiting its symmetry 

properties the DFT is computed efficiency.
Power signal: A signal whose average power is finite and total energy is infinite.
Prewarping: The conversion of the specified digital frequencies to analog equivalent 

frequencies to nullify the effect of warping in IIR filter design using the bilinear 
transformation.

Product quantization error: The error that arises due to the truncation of the 
multiplier output.

Product round-off noise: Same as product quantization error.
Quantization: Process of reducing the size of a binary word.
Quantization noise: The error introduced is due to the quantization of the signal.
Quantization step: The interval between successive quantization levels.
Radix: Number of independent symbols used in a number system.
Random signal: A signal characterized by uncertainty about its occurrence. It 

cannot be represented by a mathematical equation.
Recursive filters: Filters that make use of feedback connections to get the desired 

filter implementation.
Recursive system: A system whose output depends on the present and any number 

of past inputs and outputs.
Right-sided signal: A signal which is equal to zero for n < N1 for some finite N1.
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ROC of z-transform: The range of values of |z| for which X(z) converges.
Rounding: The process of reducing the size of a binary number so that the rounded 

number is closest to the original unquantized number.
Sampling frequency: The reciprocal of the sampling period indicates the number 

of samples per second.
Sampling interval: Same as sampling period.
Sampling period: The time interval between two successive sampling instants.
Sampling rate conversion: The process of converting a sequence with one 

sampling rate into another sequence with a different sampling rate.
Sampling theorem: A condition to be satisfied by the sampling frequency for a 

band-limited signal to be recovered from its samples without distortion.
Sampling: The process of converting a continuous-time signal into a discrete-time 

signal.
Signal processing: A method of extracting information from the signal.
Signal to noise ratio: The ratio of signal power to noise power.
Signal: A single-valued function of one or more independent variables which contain 

some information.
Stable system: A system that produces a bounded output for a bounded input.
Standard signals: Signals like unit step, unit ramp, unit impulse, etc., in terms of 

which any given signal can be expressed.
Static system: A system in which the response is due to present input alone.
Steady-state response: The response due to the poles of the input function. It 

remains as n → ∞.
Step response: The output of the system for a unit step input.
Step band: The band of frequencies that is rejected by the filter.
System: An entity that acts on an input signal and transformed it into an output 

signal.
Tabular representation: A way of representing a discrete-time signal where the 

magnitude of the signal at the sampling instants is represented in tabular form.
Time convolution theorem: A theorem that states that convolution in the time 

domain is equivalent to multiplication of their spectra in the frequency domain.
Time invariant system: A system whose input/output characteristics do not change 

with time.
Time-variant system: A system whose input/output characteristics change with 

time.
Total response: The sum of the natural and forced responses.
Transfer function: The ratio of the Fourier transform/Laplace transform/ 

Z-transform of the output to the Fourier transform/Laplace transform of the input of 
the system when the initial conditions are neglected. It is also the Fourier transform/
Laplace transform/DTFT/z-transform of the impulse response of the system.
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Transient response: The response due to the poles of the system function. It 
vanishes after some time.

Truncation: The process of reducing the binary number by discarding all bits less 
significant than the least significant bit that is retained.

Two’s complement form: A type of representation in which a negative number is 
obtained by complementing each bit of the positive number and adding 1 to MSB.

Two-sided signal: A signal which exists in both positive and negative times.
Unit impulse function: A function that exists only at n = 0 with a magnitude of 

unity.
Unit parabolic function: A function whose magnitude is zero for r < 0 and is n2/2 

for n ≥ 0.
Unit ramp function: A function whose magnitude is zero for n < 0, and rises linearly 

with a slope of unity for n > 0.
Unit step function: A function whose magnitude is zero for n < 0, suddenly jumps 

to 1 level at n = 0 and remains constant at that value for n > 0.
Unstable system: A system that produces an unbounded output for a bounded 

input.
Up-sampling: Increasing the sampling rate of a discrete-time signal.
Word length: The maximum size of binary information that can be stored in a 

register.
Zero padding: Appending zeros to a sequence in order to increase the size or length 

of the sequence.
z-transform: A transform technique that transforms signals from the discrete-time 

domain to the corresponding z-domain.
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A

All-pass filters, 325
Analog filters, 303

Butterworth analog filter design, 305
vs. digital filters, 315
frequency responses, 304–305
impulse responses, 306–307
pole-zero configuration, 304–306
transfer function, 306

Analog signal processing (ASP), 9
Analog signals, 5–6
ASR signal processing

disambiguation, 613
FDP simulation, 619–620
ground clutters, 612
signal-to-interference ratio 

improvement, 614–618
suboptimal filter block diagram, 618, 619

C

Cauchy Residue Theorem, 97
Cauer filter, 372
Causal LTI System, 27–28
Comb filter, 321–325
Computer voice response systems, 571–573
Continuous-time Fourier transform (CTFT)

analysis and synthesis equation, 175
continuous-time signal, 196
vs. DTFT, 146, 155

inverse, 196
time-expansion property, 160

Continuous-time signals, 5
aliasing phenomenon, 58–62
Nyquist rate, 58
periodic sampling, 57
sampling theorem, 58

Continuous-time systems, 8

D

Deterministic signals, 6–7
Digital filters

all-pass filters, 325
analog filters, 303

Butterworth analog filter design, 305
frequency responses, 304–305
impulse responses, 306–307
pole-zero configuration, 304–306
transfer function, 306

band-pass (BP) filter, 312
band-stop (BS) filter, 312
comb filter

frequency response characteristics, 
323–324

magnitude response characteristics, 
323, 325

network structure of an FIR filter, 
324

digital resonators, 328–331
digital sinusoidal oscillator, 326–328
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filter design, 314
filter implementation, 314
filter realization, 314
FIR (see Finite impulse response (FIR) 

digital filters)
high-pass (HP) filter, 311
IIR (see Infinite-duration impulse 

response (IIR) digital filters)
IIR vs. FIR, 316–317
low-pass (LP) filter, 311
notch filter, 319–321
objectives, 303
phase response specifications, 313–314
realization procedures

Fast Fourier Transform (FFT) 
realization, 319

non-recursive realization, 318
recursive realization, 317–318

selection of filter, 310
Digital resonators, 328–331
Digital signal processing (DSP)

advantages, 10
applications of, 2
block diagram of, 9
continuous-time systems, 8
digital communications, 3
discrete-time systems, 8
elements of, 10–11
image processing, 3
impacts of, 2
one-dimensional signal processing 

techniques, 1
radar signal processing, 3
signals, 4
sonar signal processing, 3
spectral analysis, 3
speech processing, 3
two-dimensional signal processing 

techniques, 2
Digital signals, 6
Digital sinusoidal oscillator, 326–328
Discrete Fourier transforms (DFTs)

amplitude and phase spectrum, 199
characteristics of, 222–223
circular convolution, 208–213
circular correlation of two sequences, 

214–215
circular frequency-shift of a sequence, 

214
circular time-shift of a sequence, 214
definition of, 197
direct computation of, 241–242
of discrete-time sequence, 223
inverse, 197
linear convolution, 218–222
linearity, 206
linear transformation tool, 201
multiplication of two sequences, 215
Parseval’s theorem, 215–216
periodicity, 206
phase rotation factor or twiddle factor, 

203
problems of pitfalls

aliasing error, 225
improper use of DFT, 225
Picket-Fence effect, 226
remedies to, 226–228
spectral leakage, 225
truncation error, 225

properties, 205, 216
symmetry properties, 206–208
time reversal of a sequence, 214
vs. z-transform, 217–218

Discrete-time Fourier transform (DTFT), 
195

convergence of, 146–150
vs. CTFT, 146
discrete-time LTI system

convolution property, 183
frequency response, 182, 184–187
linear constant-coefficient difference 

equation, 182
linearity and time-shifting properties, 

183

DSP.CH16_Index_2pp.indd   646DSP.CH16_Index_2pp.indd   646 4/1/2022   5:16:01 PM4/1/2022   5:16:01 PM



Index • 647

for discrete-time non-periodic signals, 
144

for discrete-time periodic signals, 143–
144
complex conjugation and conjugate 

symmetry, 157–158
convolution property, 165–169
differencing and accumulation in 

time, 158–159
differentiation of, 164
Fourier transform, 151–155
linearity of, 156
multiplication property, 169–172
Parseval’s relation, 164–165
periodicity of, 156
time expansion, 160–164
time reversal, 159–160
time-shifting and frequency shifting, 

157
duality, 176–182
pairs, 174–175
properties, 172–173
synthesis and analysis equation, 146

Discrete-time signals, 5
convolution sum

computing procedure, 30–33
linear convolution, 34–37
properties, 37–38

correlation operation
auto-correlation sequence, 42–46
cross-correlation sequence, 42–46
objectives, 42

definition, 14
exponential sequence, 17
folding, 19
obtaining a sequence, methods of, 

15–16
representation, 14–15
signal amplitude modification, 20–21
sinusoidal sequences, 18
time scaling, 19–20
time shifting, 18–19

unit-ramp sequence, 17
unit-sample sequence, 16
unit-step sequence, 16–17

Discrete-time systems, 8
block diagram, 21
building blocks of, 21–22
causal system, 26
classification of, 23–26
FIR systems, network structure for

cascade-form network realization, 
285–287

direct-form realization, 285
frequency-sampling realization, 

287–299
infinite-duration impulse response (IIR) 

systems
cascade-form network structure, 276
direct-form network structures, 

271–273
parallel-form network structure, 

276–283
transposed-form network structures, 

273–275
linear system, 24
linear time-invariant (LTI) system, 267

causal system, 27–28
difference equations, 29
FIR and IIR, 27
impulse response, 28
realization, factors influencing, 270
recursive and non-recursive, 27
stability, 28–29

memoryless systems, 23
non-causal system, 26
non-linear system, 24–26
stable and unstable systems, 26
systems with memory, 23
three-sample averager, 22
time-invariant system, 23–24
time-varying system, 23

Doppler effect, 590
Down sampling. See Time scaling
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E

Elliptic filter, 372–373
Energy signal, 7
Equiripple method, 359

F

Fast Fourier Transform (FFT) algorithms
decimation-in-frequency, 248
decimation-in-time, 248

complex multiplications, 265–266
computation of, 254–257, 261–262
decimation-in-frequency, 257–261
flow graphs, 251–253

in-place FFT algorithms, 247
natural input-output, 247
number of stages in DFT computation, 

248–249
phase factor properties, 247

Filtering, 303
Finite-Duration Impulse Response (FIR) 

LTI systems, 27
Finite impulse response (FIR) digital filters

characterization, 381
finite word length effects

analog-to-digital (A/D) converters, 
422–425

arithmetic rounding off errors, 427
coefficient quantization error,  

420–422
dynamic range scaling, 427–428
granular limit cycles, 431
low sensitivity digital filters, 428–431
overflow limit cycles, 431
quantization noise, 426
quantization process and errors, 

418–420
frequency response

anti-symmetrical impulse response, 
383

of constant-delay FIR digital filters, 
387

symmetrical impulse response, 383

Gibb’s oscillations, 390
linear-phase FIR digital filter

alternation theorem, 415
frequency response characteristics, 

412, 413
magnitude response functions, 413, 

414
Ramez Exchange algorithm, 416
weighted approximation error, 414

Numerical-Analysis formulae
Gregory-Newton backward 

difference formulae, 406
Gregory-Newton forward difference 

formulae, 405
Stirling’s central difference formula, 

406
phase delay and group delay, 382
truncation of impulse response, 390
window functions

Blackman window function, 396–399
Hann and Hamming window 

function, 393–396
Kaiser window function, 399–405
rectangular window function,  

391–393
Flow graph reversal theorem, 275

G

Goertzel algorithm, 243–247

H

High-performance radar (HPR), 627–633

I

Impulse response of LTI systems, 28
Infinite-duration impulse response (IIR) 

digital filters
bilinear transformation method

formula derivations, 338–341
mapping properties, 341–343
warping effect, 343–350
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Butterworth method
magnitude characteristics, 350
third-order transfer function, 351

Chebyshev filters, 35
bilinear transformation method, 

368–370
magnitude response function, 359
pole locations, 362–364
stop-band attenuation, 361
transfer function of, 360

elliptic filter, 372–373
frequency transformation

analog-frequency transformation, 
373–376

digital frequency transformation, 
376–378

impluse response invariance method, 
334–338

inverse Chebyshev filters, 370–372
Infinite-duration impulse response (IIR) 

LTI systems, 27
Interpolation

band-limited interpolation, 65
linear interpolation, 62
low-pass filter, 62–64

Inverse Chebyshev filters, 370–372
Inverse systems

deconvolution, 39
system identification, 39

L

Linear time-invariant (LTI) system
discrete-time Fourier transform (DTFT)

convolution property, 183
frequency response, 182, 184–187
linear constant-coefficient difference 

equation, 182
linearity and time-shifting properties, 

183
discrete-time systems, 267

causal system, 27–28
difference equations, 29

FIR and IIR, 27
impulse response, 28
realization, factors influencing, 270
recursive and non-recursive, 27
stability, 28–29

finite-duration impulse response, 27
impulse response of, 28
infinite-duration impulse response, 27
z-transforms

causality and stability, 124–127
multiple-order pole and stability, 

131–132
pole-zero cancelations, 127–130
pole-zero systems with non-zero 

initial conditions, 117–121
with rational system functions, 

115–117
Schur-Cohn stability test, 133–135
second-order systems, 135–140
transient and steady-state responses, 

121–124
Long-range demonstration radar (LRDR), 

621–626

M

Multichannel signals, 4–5
Multidimensional signals, 5
Multirate digital signal processing (MDSP)

advantages, 486
applications, 517
sampling rate conversion methods, 

486–487
by arbitrary factor, 510
decimation, 487, 489–493
direct-form FIR digital filter 

structures, 499–503
first-order approximation method, 

511–514
interpolation, 487, 493–495
linear filtering operation, 488
polyphase digital filter structures, 

503–507
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by rational factor (I/D), 496–498
second-order approximation method, 

514–517
time shift in, 488
time-varying digital filter structures, 

507–510

N

Non-periodic signal, 8
Non-recursive discrete-time system, 27
Notch filter, 319–321

P

Parseval’s theorem, 56–57
DFTs, 215–216
discrete-time periodic signals, 164–165
signals and vectors, 56–57
z-transforms, 93–94

Periodic signal, 7
Power signal, 7
Power spectrum estimation

DFT, 443–446
non-parametric methods

Bartlett method, 446–448
Blackman and Tukey method,  

450–453
computational requirements,  

458–459
limitations, 459
quality or performance 

characteristics, 453–454
Welch method, 448–450

parametric methods
ARMA process, 462–463
AR process, 464
MA process, 465
maximum likelihood method,  

471–472
Pisarenko harmonic decomposition 

method, 473–481

R

Radar signals
airborne surveillance radar (ASR) signal 

processing
disambiguation, 613
FDP simulation, 619–620
ground clutters, 612
signal-to-interference ratio 

improvement, 614–618
suboptimal filter block diagram, 618, 

619
digital matched filters, 602

burst processing, 608–611
high-performance radar (HPR), 

627–633
side lobes reduction by weighting, 

606–608
time-bandwidth product, 604–605

long pulse of constant frequency,  
602–604

Radio detection and ranging (Radar)
advantages, 579
ambiguity function

of burst, 600–601
chirps and sinusoidal pulses, 594–599
of CW pulse, 599–600
importance of, 593
signals, 601–611

applications, 578
block diagram, 589
CZT algorithms

linear system with impulse response, 
582

overlap-save method, 583
z-plane contour, 580

description, 577
limitations, 579
long-range demonstration radar (LRDR)

A/D conversion, 623–624
block diagram, 623
permissible repetition period, 622
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pulse processor, 624–626
parameters

antenna aperture and wavelength, 
588

Doppler filtering, 590–591
range and range resolution, 588, 590

signal design, 591–592
Random signals, 7
Recursive discrete-time system, 27

S

Short-Time Fourier Transform (STFT), 
537–542

Signal processing
analog signal processing, 9
digital signal processing, 9

Signals
analog and digital signals, 5–6
classification of, 4
continuous-time and discrete-time 

signals, 5
definition, 4
deterministic and random signals, 6–7
energy and power signals, 7
multichannel and multidimensional 

signals, 4–5
periodic and non-periodic signals, 7–8

Signals and vectors
orthogonality

in complex signals, 50–51
energy of signal, 51–53
Parseval’s theorem, 56–57
signal space, 55–56
vector space, 53–55

signal component, 48–50
vector component, 46–48

Speech processing systems
analysis considerations, 544–546
channel vocoder

block diagram of, 549

channel vocoder analyzer, 548
channel vocoder synthesizer, 549

computer voice response systems, 
571–573

frequency domain characterization, 535
linear prediction synthesizer, 568–571
overall analysis-synthesis system,  

546–548
pitch-period estimation algorithm, 

550–555
principles of digital operation, 566–568
probems, 531–532
pseudorandom number generator, 566
sources of excitation, 536
speech production mechanism

cross-sectional view, 532
digital model of, 536
schematic diagram, 533

STFT
analysis-synthesis system, 542–544
implementation of, 537–542

time-domain characterization, 535
unvoiced sounds, 534
voiced fricative excitation network, 

565–566
voiced sounds, 533–534
voiced-unvoiced decision

excitation pulse, 558
formant synthesis, 560–561
hardware synthesizer, 563–564
homomorphic processing system, 556
homomorphic vocoder, 560
train of pitch impulses, 557
vocal tract impulse response, 558

Speech signals, 4
Statistical digital signal processing

energy density spectrum
continuous-time signal, 436–437
discrete-time signal, 437–438

estimation of
autocorrelation function, 438–439
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power density spectrum, 439
from samples, 439–443

power spectrum estimation, 435
DFT, 443–446
non-parametric methods, 446,  

458–459
parametric methods, 462–481

T

Tapped-Delay-Line Filter, 285
Telephone speech signals, 6
Time scaling, 19–20
Transform

advantages, 69
vs. logarithms, 69
purposes of, 70

Transposed network structure, 275
TV Picture signal, 5
Type II Chebyshev filters, 370

U

Unit-sample response. See Impulse 
response of LTI systems

Unvoiced sounds, 534

V

Voiced sounds, 533–534

Z

z-transforms
common z-transform Pairs, 94–96
difference equations, 112–114
inverse z-transform

by contour integration method, 
97–101

by partial fraction expansion method, 
105–108

by power series expansion method, 
101–105

linear time-invariant (LTI) systems
causality and stability, 124–127
multiple-order pole and stability, 

131–132
pole-zero cancelations, 127–130
pole-zero systems with non-zero 

initial conditions, 117–121
with rational system functions, 

115–117
Schur-Cohn stability test, 133–135
second-order systems, 135–140
transient and steady-state responses, 

121–124
properties

complex conjugates, 94
convolution property, 89–90
correlation of two discrete-time 

sequences, 90–92
differentiation in z-domain, 87–88
initial value theorem, 94
linearity, 83–85
multiplication of two discrete-time 

sequences, 93
Parseval’s theorem, 93–94
scaling in z-domain, 86
time reversal, 87
time shifting, 85–86

rational function, 111
region of convergence (ROC)

configurations, 71–72
properties, 72

system function, 109–111
types, 70–71
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